From 0344a846c083c11e9ed93ddc5898dd55c6dd1022 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 20 Apr 2022 10:30:56 +0200 Subject: lemniscate sine stuff --- buch/chapters/110-elliptisch/ellintegral.tex | 208 ++++++++++++++++++++++++++- 1 file changed, 206 insertions(+), 2 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 46659cd..4cb2ba3 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -7,7 +7,7 @@ \label{buch:elliptisch:section:integral}} \rhead{Elliptisches Integral} Bei der Berechnung des Ellipsenbogens in -Abschnitt~\ref{buch:geometrie:subsection:hyperbeln-und-ellipsen} +Abschnitt~\ref{buch:geometrie:subsection:kegelschnitte} sind wir auf ein Integral gestossen, welches sich nicht in geschlossener Form ausdrücken liess. Um solche Integrale in den Griff zu bekommen, ist es nötig, sie als @@ -172,7 +172,188 @@ die {\em Jacobi-Normalform} heisst. \subsubsection{Vollständige elliptische Integrale als hypergeometrische Funktionen} -XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ +%XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ +Das vollständige elliptische Integral $K(k)$ kann mit Hilfe der +Binomialreihe umgeformt werden in eine hypergeometrische Reihe. +Da im Integral nur $k^2$ auftaucht, wird sich $K(k)$ als +hypergeometrische Funktion von $k^2$ ausdrücken lassen. + +\begin{satz} +\label{buch:elliptisch:satz:hyperK} +Das vollständige elliptische Integral $K(k)$ lässt sich durch die +hypergeometrische Funktion $\mathstrut_2F_1$ als +\[ +K(k) += +\frac{\pi}2 +\cdot +\mathstrut_2F_1\biggl( +\begin{matrix}\frac12,\frac12\\1\end{matrix};1;k^2 +\biggr) +\] +ausdrücken. +\end{satz} + +\begin{proof}[Beweis] +Zunächst ist das vollständige elliptische Integral in der Legendre-Form +\begin{align} +K(k) +&= +\int_0^{\frac{\pi}2} +\frac{d\vartheta}{\sqrt{1-k^2\sin^2\vartheta}} +%\notag +%\\ +%& += +\int_0^{\frac{\pi}2} +\bigl( +1-(k\sin\vartheta)^2 +\bigr)^{-\frac12}\,d\vartheta. +\notag +\intertext{Die Wurzel im letzten Integral kann mit Hilfe der binomischen +Reihe vereinfacht werden zu} +&= +\sum_{n=0}^\infty +(-1)^n k^2\binom{-\frac12}{n} +\int_0^{\frac{\pi}2} +\sin^{2n}\vartheta +\,d\vartheta. +\label{buch:elliptisch:beweis:ellharm2} +\end{align} +Der verallgemeinerte Binomialkoeffizient lässt sich nach +\begin{align*} +\binom{-\frac12}{n} +&= +\frac{(-\frac12)(-\frac32)(-\frac52)\cdot\ldots\cdot(-\frac12-n+1)}{n!} += +(-1)^n +\cdot +\frac{1}{n!} +\cdot +\frac12\cdot\frac32\cdot\frac52\cdot\ldots\cdot\biggl(\frac12+n-1\biggr) += +(-1)^n\frac{(\frac12)_n}{n!} +\end{align*} +vereinfachen. +Setzt man dies in \eqref{buch:elliptisch:beweis:ellharm2} ein, erhält +man +\begin{align*} +K(k) +&= +\sum_{n=0}^\infty +(-1)^n k^{2n} +\cdot +(-1)^n +\frac{(\frac12)_n}{n!} +\cdot +\int_0^{\frac{\pi}2} \sin^{2n}\vartheta\,d\vartheta += +\sum_{n=0}^\infty +\frac{(\frac12)_n}{n!} +\int_0^{\frac{\pi}2} \sin^{2n}\vartheta\,d\vartheta +\cdot (k^2)^n. +\end{align*} +Es muss jetzt also nur noch das Integral von $\sin^{2n}\vartheta$ +berechnet werden. +Mit partieller Integration kann man +\begin{align*} +\int \sin^m\vartheta\,d\vartheta +&= +\int +\underbrace{\sin \vartheta}_{\uparrow} +\underbrace{\sin^{m-1}\vartheta}_{\downarrow} +\,d\vartheta +\\ +&= +-\cos\vartheta\sin^{m-1}\vartheta ++ +\int \cos^2\vartheta (m-1)\sin^{m-2}\vartheta\,d\vartheta +\\ +&= +-\cos\vartheta \sin^{m-1}\vartheta ++ +(m-1) +\int +(1-\sin^2\vartheta) +\sin^{m-2}\vartheta\,d\vartheta. +\end{align*} +Wegen $\sin 0=0$ und +$\cos\frac{\pi}2=0$ verschwindet der erste Term im bestimmten Integral +und der zweite wird +\begin{align*} +\int_0^{\frac{\pi}2} +\sin^{m} \vartheta +\,d\vartheta +&= +(m-1) +\int_0^{\frac{\pi}2} +\sin^{m-2}\vartheta\,d\vartheta +- +(m-1) +\int_0^{\frac{\pi}2} +\sin^m \vartheta\,d\vartheta +\\ +m +\int_0^{\frac{\pi}2} +\sin^{m} \vartheta\,d\vartheta +&= +(m-1) +\int_0^{\frac{\pi}2} +\sin^{m-2} \vartheta\,d\vartheta +\\ +\int_0^{\frac{\pi}2} +\sin^{m} \vartheta\,d\vartheta +&= +\frac{m-1}{m} +\int_0^{\frac{\pi}2} +\sin^{m-2} \vartheta\,d\vartheta. +\end{align*} +Mit dieser Rekursionsformel kann jetzt das Integral berechnet werden. +Es folgt +\begin{align*} +\int_0^{\frac{\pi}2} +\sin^{2n}\vartheta\,d\vartheta +&= +\frac{2n-1}{2n} +\int_0^{\frac{\pi}2} +\sin^{2n-2}\vartheta\,d\vartheta +\\ +&= +\frac{2n-1}{2n} +\frac{2n-3}{2n-2} +\frac{2n-5}{2n-4} +\cdots +\frac{2n-(2n-1)}{2(n-1)} +\int_0^{\frac{\pi}2} +\sin^{2n-4}\vartheta\,d\vartheta +\\ +&= +\frac{ +(n-\frac12)(n-\frac32)(n-\frac52)\cdot\ldots\cdot\frac32\cdot\frac12 +}{ +n! +} +\int_0^{\frac{\pi}2} 1\,d\vartheta +\\ +&= +\frac{(\frac12)_n}{n!} +\cdot +\frac{\pi}2. +\end{align*} +Damit wird die Reihenentwicklung für $K(k)$ jetzt zu +\[ +K(k) += +\frac{\pi}2 +\sum_{n=0}^\infty +\frac{(\frac12)_n(\frac12)_n}{n!} \cdot \frac{(k^2)^n}{n!} += +\frac{\pi}2 +\cdot +\mathstrut_2F_1\biggl(\begin{matrix}\frac12,\frac12\\1\end{matrix};k^2\biggr), +\] +dies beweist die Behauptung. +\end{proof} @@ -247,6 +428,29 @@ Für den extremen Wert $\varepsilon=0$ entsteht der Umfang einer Ellipse, also $E(0)=\frac{\pi}2$. Für $\varepsilon=1$ ist $a=0$, es entsteht eine Strecke mit Länge $E(1)=1$. +\begin{satz} +\label{buch:elliptisch:satz:hyperE} +Das volständige elliptische Integral $E(k)$ ist +\[ +E(k) += +\int_0^{\frac{\pi}2} \sqrt{1-k^2\sin^2\vartheta}\,d\vartheta += +\frac{\pi}2 +\cdot +\mathstrut_2F_1\biggl( +\begin{matrix}-\frac12,\frac12\\1\end{matrix}; +k^2 +\biggr). +\] +\end{satz} + +\begin{proof}[Beweis] +Die Identität kann wie im Satz~\ref{buch:elliptisch:satz:hyperK} mit +Hilfe einer Entwicklung der Wurzel mit der Binomialreihe gefunden +werden. +\end{proof} + \subsubsection{Komplementäre Integrale} \subsubsection{Ableitung} -- cgit v1.2.1 From ad5607531d028801836823469f82d5e7c0a4f11f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 18 May 2022 14:20:41 +0200 Subject: =?UTF-8?q?Dreiecke=20f=C3=BCr=20Nav?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/chapters/110-elliptisch/ellintegral.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 4cb2ba3..3acce2f 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -651,7 +651,7 @@ werden, dass $1-k'^2=k^2$ ist. \begin{definition} Ist $0\le k\le 1$ der Modul eines elliptischen Integrals, dann heisst -$k' = \sqrt{1-k^2}$ er {\em Komplementärmodul} oder {\em Komplement +$k' = \sqrt{1-k^2}$ der {\em Komplementärmodul} oder {\em Komplement des Moduls}. Es ist $k^2+k'^2=1$. \end{definition} -- cgit v1.2.1 From 45e236bc519b62e8afc1aea7d2e625df4c145348 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 22 Jun 2022 11:49:27 +0200 Subject: add ell stuff --- buch/chapters/110-elliptisch/ellintegral.tex | 25 +++++++++++++++++++++---- 1 file changed, 21 insertions(+), 4 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 3acce2f..bc597d6 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -355,9 +355,9 @@ K(k) dies beweist die Behauptung. \end{proof} - - - +% +% Umfang einer Ellipse +% \subsubsection{Umfang einer Ellipse} \begin{figure} \centering @@ -451,13 +451,20 @@ Hilfe einer Entwicklung der Wurzel mit der Binomialreihe gefunden werden. \end{proof} +% +% +% \subsubsection{Komplementäre Integrale} \subsubsection{Ableitung} XXX Ableitung \\ XXX Stammfunktion \\ -\subsection{Unvollständige elliptische Integrale} +% +% Unvollständige elliptische Integrale +% +\subsection{Unvollständige elliptische Integrale +\label{buch:elliptisch:subsection:unvollstintegral}} Die Funktionen $K(k)$ und $E(k)$ sind als bestimmte Integrale über ein festes Intervall definiert. Die {\em unvollständigen elliptischen Integrale} entstehen, indem die @@ -522,12 +529,18 @@ Die Abbildung~\ref{buch:elliptisch:fig:unvollstaendigeintegrale} zeigt Graphen der unvollständigen elliptischen Integrale für verschiedene Werte des Parameters. +% +% Symmetrieeigenschaften +% \subsubsection{Symmetrieeigenschaften} Die Integranden aller drei unvollständigen elliptischen Integrale sind gerade Funktionen der reellen Variablen $t$. Die Funktionen $F(x,k)$, $E(x,k)$ und $\Pi(n,x,k)$ sind daher ungeraden Funktionen von $x$. +% +% Elliptische Integrale als komplexe Funktionen +% \subsubsection{Elliptische Integrale als komplexe Funktionen} Die unvollständigen elliptischen Integrale $F(x,k)$, $F(x,k)$ und $\Pi(n,x,k)$ in Jacobi-Form lassen sich auch für komplexe Argumente interpretieren. @@ -541,7 +554,11 @@ $\pm 1/\sqrt{n}$ XXX Additionstheoreme \\ XXX Parameterkonventionen \\ +% +% Wertebereich +% \subsubsection{Wertebereich} +\label{buch:elliptische:subsubsection:wertebereich} Die unvollständigen elliptischen Integrale betrachtet als reelle Funktionen haben nur positive relle Werte. Zum Beispiel nimmt das unvollständige elliptische Integral erster Art -- cgit v1.2.1 From 7cc8f34f003ecb25ade7f1ff2287fe12b5a22c40 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 25 Jun 2022 14:36:04 +0200 Subject: arithmetic-geometric-mean --- buch/chapters/110-elliptisch/ellintegral.tex | 320 ++++++++++++++++++++++++++- 1 file changed, 311 insertions(+), 9 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index bc597d6..970d8fa 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -451,14 +451,310 @@ Hilfe einer Entwicklung der Wurzel mit der Binomialreihe gefunden werden. \end{proof} +Die Darstellung von $E(k)$ als hypergeometrische Reihe ermöglicht +jetzt zum Beispiel auch die Berechnung der Ableitung nach dem +Parameter $k$ mit der Ableitungsformel für die Funktion $\mathstrut_2F_1$. + + % +% Berechnung mit dem arithmetisch-geometrischen Mittel +% +\subsection{Berechnung mit dem arithmetisch-geometrischen Mittel} +Die numerische Berechnung von elliptischer Integrale mit gewöhnlichen +numerischen Integrationsroutinen ist nicht sehr effizient. +Das in diesem Abschnitt vorgestellte arithmetisch-geometrische Mittel +\index{arithmetisch-geometrisches Mittel}% +liefert einen Algorithmus mit sehr viel besserer Konvergenz. +Die Methode lässt sich auch auf die unvollständigen elliptischen +Integrale von Abschnitt~\eqref{buch:elliptisch:subsection:unvollstintegral} +verallgemeinern. +Sie ist ein Speziallfall der sogenannten Landen-Transformation, +\index{Landen-Transformation}% +welche ausser für die elliptischen Integrale auch für die +Jacobischen elliptischen Funktionen formuliert werden kann und +für letztere ebenfalls sehr schnelle numerische Algorithmen liefert. + % +% Das arithmetisch-geometrische Mittel % -\subsubsection{Komplementäre Integrale} +\subsubsection{Das arithmetisch-geometrische Mittel} +Seien $a$ und $b$ zwei nichtnegative reelle Zahlen. +Aus $a$ und $b$ werden jetzt zwei Folgen konstruiert, deren Glieder +durch +\begin{align*} +a_0&=a &&\text{und}& a_{n+1} &= \frac{a_n+b_n}2 &&\text{arithmetisches Mittel} +\\ +b_0&=b &&\text{und}& b_{n+1} &= \sqrt{a_nb_n} &&\text{geometrisches Mittel} +\end{align*} +definiert sind. + +\begin{satz} +Falls $a>b>0$ ist, nimmt die Folge $(a_k)_{k\ge 0}$ monoton ab und +$(b_k)_{k\ge 0}$ nimmt monoton zu. +Beide konvergieren quadratisch gegen einen gemeinsamen Grenzwert. +\end{satz} + +\begin{definition} +Der gemeinsame Grenzwert von $a_n$ und $b_n$ heisst das +{\em arithmetisch-geometrische Mittel} und wird mit +\[ +M(a,b) += +\lim_{n\to\infty} a_n += +\lim_{n\to\infty} b_n +\] +bezeichnet. +\index{arithmetisch-geometrisches Mittel}% +\end{definition} -\subsubsection{Ableitung} -XXX Ableitung \\ -XXX Stammfunktion \\ +\begin{proof}[Beweis] +Zunächst ist zu zeigen, dass die Folgen monoton sind. +Dies folgt sofort aus der Definition der Folgen: +\begin{align*} +a_{n+1} &= \frac{a_n+b_n}{2} \ge \frac{a_n+a_n}{2} = a_n +\\ +b_{n+1} &= \sqrt{a_nb_n} \ge \sqrt{b_nb_n} = b_n. +\end{align*} +Die Konvergenz folgt aus +\[ +a_{n+1}-b_{n+1} +\le +a_{n+1}-b_n += +\frac{a_n+b_n}{2}-b_n += +\frac{a_n-b_n}2 +\le +\frac{a-b}{2^{n+1}}. +\] +Dies zeigt jedoch nur, dass die Konvergenz mindestens ein +Bit in jeder Iteration ist. +Aus +\[ +a_{n+1}^2 - b_{n+1}^2 += +\frac{(a_n+b_n)^2}{4} - a_nb_n += +\frac{a_n^2 -2a_nb_n+b_n^2}{4} += +\frac{(a_n-b_n)^2}{4} +\] +folgt +\[ +a_{n+1}-b_{n+1} += +\frac{(a_n-b_n)^2}{2(a_{n+1}+b_{n+1})}. +\] +Da der Nenner gegen $2M(a,b)$ konvergiert, wird der Fehler für in +jeder Iteration quadriert, es liegt also quadratische Konvergenz vor. +\end{proof} + +% +% Transformation des elliptischen Integrals +% +\subsubsection{Transformation des elliptischen Integrals} +In diesem Abschnitt soll das Integral +\[ +I(a,b) += +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{a^2\cos^2 t + b^2\sin^2t}} +\] +berechnet werden. +Es ist klar, dass +\[ +I(sa,sb) += +\frac{1}{s} I(a,b). +\] + +Gauss hat gefunden, dass die Substitution +\begin{equation} +\sin t += +\frac{2a\sin t_1}{a+b+(a-b)\sin t_1} +\label{buch:elliptisch:agm:subst} +\end{equation} +zu +\begin{equation} +\frac{dt}{a^2\cos^2 t + b^2 \sin^2 t} += +\frac{dt_1}{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1} +\label{buch:elliptisch:agm:dtdt1} +\end{equation} +führt. +Um dies nachzuprüfen, muss man zunächst +\eqref{buch:elliptisch:agm:subst} +nach $t_1$ ableiten, was +\[ +\frac{d}{dt_1}\sin t += +\cos t +\frac{dt}{dt_1} +\qquad\Rightarrow\qquad +\biggl( +\frac{d}{dt_1}\sin t +\biggr)^2 += +(1-\sin^2t)\biggl(\frac{dt}{dt_1}\biggr)^2 +\] +ergibt. +Die Ableitung von $t$ nach $t_1$ kann auch aus +\eqref{buch:elliptisch:agm:dtdt1} +ableiten, es ist +\[ +\biggl( +\frac{dt}{dt_1} +\biggr)^2 += +\frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. +\] +Man muss also nachprüfen, dass +\begin{equation} +\frac{1}{1-\sin^2 t} +\frac{d}{dt_1}\sin t += +\frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. +\label{buch:elliptisch:agm:deq} +\end{equation} +Dazu muss man zunächst $a_1=(a+b)/2$, $b_1=\sqrt{ab}$ setzen. +Ausserdem muss man $\cos^2 t$ durch $1-\sin^2t$ ersetzen und +$\sin t$ durch \eqref{buch:elliptisch:agm:subst}. +Auch $\cos^2 t_1$ muss man durch $1-\sin^2t_1$ ersetzt werden. +Dann kann man nach einer langwierigen Rechnung, die sich am leichtesten +mit einem Computer-Algebra-System ausführen lässt finden, dass +\eqref{buch:elliptisch:agm:deq} +tatsächlich korrekt ist. + +\begin{satz} +\label{buch:elliptisch:agm:integrale} +Für $a_1=(a+b)/2$ und $b_1=\sqrt{ab}$ gilt +\[ +\int_0^{\frac{\pi}2} +\frac{dt}{a^2\cos^2 t + b^2 \sin^2 t} += +\int_0^{\frac{\pi}2} +\frac{dt_1}{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1}. +\] +\end{satz} + +Der Satz~\ref{buch:elliptisch:agm:integrale} zeigt, dass die Ersetzung +von $a$ und $b$ durch $a_1$ und $b_1$ das Integral $I(a,b)$ nicht ändert. +Dies gilt natürlich für alle Glieder der Folge zur Bestimmung des +arithmetisch-geometrischen Mittels. + +\begin{satz} +Für $a\ge b>0$ gilt +\begin{equation} +I(a,b) += +\int_0^{\frac{\pi}2} +\frac{dt}{a^2\cos^2 t + b^2\sin^2t} += +\frac{\pi}{2M(a,b)} +\end{equation} +\end{satz} + +\begin{proof}[Beweis] +Zunächst folgt aus Satz~\ref{buch:elliptisch:agm:integrale}, dass +\[ +I(a,b) += +I(a_1,b_1) += +\dots += +I(a_n,b_n). +\] +Ausserdem ist $a_n\to M(a,b)$ und $b_n\to M(a,b)$, +damit wird +\[ +I(a,b) += +\frac{1}{M(a,b)} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{\cos^2 t + \sin^2 t}} += +\frac{\pi}{2M(a,b)}. +\qedhere +\] +\end{proof} + +% +% Berechnung des elliptischen Integrals +% +\subsubsection{Berechnung des elliptischen Integrals} +Das elliptische Integral erster Art hat eine Form, die dem Integral +$I(a,b)$ bereits sehr ähnlich ist. +Im die Verbindung herzustellen, berechnen wir +\begin{align*} +I(a,b) +&= +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{a^2\cos^2 t + b^2 \sin^2 t}} +\\ +&= +\frac{1}{a} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{1-\sin^2 t + \frac{b^2}{a^2} \sin^2 t}} +\\ +&= +\frac{1}{a} +\int_0^{\frac{\pi}2} +\frac{dt}{\sqrt{1-(1-\frac{b^2}{a^2})\sin^2 t}} += +K(k) +\qquad\text{mit}\qquad +k'=\frac{b^2}{a^2},\; +k=\sqrt{1-k^{\prime 2}} +\end{align*} + +\begin{satz} +\label{buch:elliptisch:agm:satz:Ek} +Für $0{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n& a_n & b_n \\ +\hline +0 & 1.0000000000000000 & 0.7071067811865476\\ +1 & 0.\underline{8}535533905932737 & 0.\underline{84}08964152537146\\ +2 & 0.\underline{8472}249029234942 & 0.\underline{8472}012667468916\\ +3 & 0.\underline{847213084}8351929 & 0.\underline{8472130847}527654\\ +4 & 0.\underline{847213084793979}2 & 0.\underline{847213084793979}1\\ +\hline +\end{tabular} +\caption{Die Berechnung des arithmetisch-geometrischen Mittels für +$a=1$ und $b=\sqrt{2}/2$ zeigt die sehr rasche Konvergenz. +\label{buch:elliptisch:agm:numerisch}} +\end{table} +In diesem Abschnitt soll als Zahlenbeispiel $E(k)$ für $k=\sqrt{2}/2$ +berechnet werden. +In diesem speziellen Fall ist $k'=k$. +Tabelle~\ref{buch:elliptisch:agm:numerisch} zeigt die sehr rasche +Konvergenz der Berechnung des arithmetisch-geometrischen Mittels +von $1$ und $\sqrt{2}/2$. +Mit Satz~\ref{buch:elliptisch:agm:satz:Ek} folgt jetzt +\[ +K(\sqrt{2}/2) += +\frac{\pi}{2M(1,\sqrt{2}/2)} += +0.751428163461842. +\] +Die Berechnung hat nur 4 Mittelwerte, 4 Produkte, 4 Quadratwurzeln und +eine Division erfordert. % % Unvollständige elliptische Integrale @@ -551,7 +847,7 @@ Die Faktoren, die in den Integranden der unvollständigen elliptischen Integrale vorkommen, haben Nullstellen bei $\pm1$, $\pm1/k$ und $\pm 1/\sqrt{n}$ -XXX Additionstheoreme \\ +% XXX Additionstheoreme \\ XXX Parameterkonventionen \\ % @@ -648,6 +944,9 @@ l({\textstyle\frac{1}{k}})=\int_1^{\frac1{k}} \end{equation} ausgewertet werden. +% +% Komplementärmodul +% \subsubsection{Komplementärmodul} Im vorangegangen Abschnitt wurde gezeigt, dass der Wertebereicht des unvollständigen elliptischen Integrals der ersten Art als komplexe @@ -751,6 +1050,9 @@ in das blaue. \label{buch:elliptisch:fig:rechteck}} \end{figure} +% +% Reelle Argument > 1/k +% \subsubsection{Reelle Argument $> 1/k$} Für Argument $x> 1/k$ sind beide Faktoren im Integranden des unvollständigen elliptischen Integrals negativ, das Integral kann @@ -797,7 +1099,7 @@ F(x,k) = iK(k') - F\biggl(\frac1{kx},k\biggr) für die Werte des elliptischen Integrals erster Art für grosse Argumentwerte fest. -\subsection{Potenzreihe} -XXX Potenzreihen \\ -XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ -XXX Berechnung mit der Landen-Transformation https://en.wikipedia.org/wiki/Landen%27s_transformation +%\subsection{Potenzreihe} +%XXX Potenzreihen \\ +%XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ +%XXX Berechnung mit der Landen-Transformation https://en.wikipedia.org/wiki/Landen%27s_transformation -- cgit v1.2.1 From 335c3a23f09759be380291ec89b0f2c43c2d3db6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 25 Jun 2022 22:46:16 +0200 Subject: fix agm --- buch/chapters/110-elliptisch/ellintegral.tex | 34 ++++++++++++++++------------ 1 file changed, 19 insertions(+), 15 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 970d8fa..79ed91e 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -578,9 +578,9 @@ Gauss hat gefunden, dass die Substitution \end{equation} zu \begin{equation} -\frac{dt}{a^2\cos^2 t + b^2 \sin^2 t} +\frac{dt}{\sqrt{a^2_{\phantom{1}}\cos^2 t + b^2_{\phantom{1}} \sin^2 t}} = -\frac{dt_1}{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1} +\frac{dt_1}{\sqrt{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1}} \label{buch:elliptisch:agm:dtdt1} \end{equation} führt. @@ -608,7 +608,7 @@ ableiten, es ist \frac{dt}{dt_1} \biggr)^2 = -\frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. +\frac{a^2_{\phantom{1}} \cos^2 t + b^2_{\phantom{1}} \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. \] Man muss also nachprüfen, dass \begin{equation} @@ -618,7 +618,7 @@ Man muss also nachprüfen, dass \frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. \label{buch:elliptisch:agm:deq} \end{equation} -Dazu muss man zunächst $a_1=(a+b)/2$, $b_1=\sqrt{ab}$ setzen. +Dazu muss man zunächst $a_1=(a+b)/2$, $b_1=\!\sqrt{ab}$ setzen. Ausserdem muss man $\cos^2 t$ durch $1-\sin^2t$ ersetzen und $\sin t$ durch \eqref{buch:elliptisch:agm:subst}. Auch $\cos^2 t_1$ muss man durch $1-\sin^2t_1$ ersetzt werden. @@ -724,15 +724,19 @@ K(k) = I(1,\sqrt{1-k^2}) = \frac{\pi}{2M(1,\sqrt{1-k^2})} \subsubsection{Numerisches Beispiel} \begin{table} \centering -\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline -n& a_n & b_n \\ +n& a_n & b_n & \pi/2a_n \mathstrut +\text{\vrule height12pt depth6pt width0pt}\\ \hline -0 & 1.0000000000000000 & 0.7071067811865476\\ -1 & 0.\underline{8}535533905932737 & 0.\underline{84}08964152537146\\ -2 & 0.\underline{8472}249029234942 & 0.\underline{8472}012667468916\\ -3 & 0.\underline{847213084}8351929 & 0.\underline{8472130847}527654\\ -4 & 0.\underline{847213084793979}2 & 0.\underline{847213084793979}1\\ +\text{\vrule height12pt depth0pt width0pt} + 0 & 1.0000000000000000000 & 0.7071067811865475243 & 1.5707963267948965579 \\ + 1 & 0.8535533905932737621 & 0.8408964152537145430 & 1.\underline{8}403023690212201581 \\ + 2 & 0.8472249029234941526 & 0.8472012667468914603 & 1.\underline{8540}488143993356315 \\ + 3 & 0.8472130848351928064 & 0.8472130847527653666 & 1.\underline{854074677}2111781089 \\ + 4 & 0.8472130847939790865 & 0.8472130847939790865 & 1.\underline{854074677301371}8463 \\ +\infty& & & 1.8540746773013719184  +\text{\vrule height12pt depth6pt width0pt}\\ \hline \end{tabular} \caption{Die Berechnung des arithmetisch-geometrischen Mittels für @@ -747,11 +751,11 @@ Konvergenz der Berechnung des arithmetisch-geometrischen Mittels von $1$ und $\sqrt{2}/2$. Mit Satz~\ref{buch:elliptisch:agm:satz:Ek} folgt jetzt \[ -K(\sqrt{2}/2) +K(\!\sqrt{2}/2) = -\frac{\pi}{2M(1,\sqrt{2}/2)} +\frac{\pi}{2M(1,\!\sqrt{2}/2)} = -0.751428163461842. +1.854074677301372. \] Die Berechnung hat nur 4 Mittelwerte, 4 Produkte, 4 Quadratwurzeln und eine Division erfordert. @@ -848,7 +852,7 @@ Integrale vorkommen, haben Nullstellen bei $\pm1$, $\pm1/k$ und $\pm 1/\sqrt{n}$ % XXX Additionstheoreme \\ -XXX Parameterkonventionen \\ +% XXX Parameterkonventionen \\ % % Wertebereich -- cgit v1.2.1 From 753507e2be9ce6019b934b8422980c62b55ef1fe Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 25 Jun 2022 22:52:08 +0200 Subject: final agm --- buch/chapters/110-elliptisch/ellintegral.tex | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 79ed91e..4589ffa 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -547,7 +547,8 @@ a_{n+1}-b_{n+1} \frac{(a_n-b_n)^2}{2(a_{n+1}+b_{n+1})}. \] Da der Nenner gegen $2M(a,b)$ konvergiert, wird der Fehler für in -jeder Iteration quadriert, es liegt also quadratische Konvergenz vor. +jeder Iteration quadriert, die Zahl korrekter Stellen verdoppelt sich +in jeder Iteration, es liegt also quadratische Konvergenz vor. \end{proof} % @@ -726,16 +727,15 @@ K(k) = I(1,\sqrt{1-k^2}) = \frac{\pi}{2M(1,\sqrt{1-k^2})} \centering \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline -n& a_n & b_n & \pi/2a_n \mathstrut -\text{\vrule height12pt depth6pt width0pt}\\ +n& a_n & b_n & \pi/2a_n \mathstrut\text{\vrule height12pt depth6pt width0pt}\\ \hline -\text{\vrule height12pt depth0pt width0pt} - 0 & 1.0000000000000000000 & 0.7071067811865475243 & 1.5707963267948965579 \\ - 1 & 0.8535533905932737621 & 0.8408964152537145430 & 1.\underline{8}403023690212201581 \\ - 2 & 0.8472249029234941526 & 0.8472012667468914603 & 1.\underline{8540}488143993356315 \\ - 3 & 0.8472130848351928064 & 0.8472130847527653666 & 1.\underline{854074677}2111781089 \\ - 4 & 0.8472130847939790865 & 0.8472130847939790865 & 1.\underline{854074677301371}8463 \\ -\infty& & & 1.8540746773013719184  +\text{\vrule height12pt depth0pt width0pt}% +0 & 1.0000000000000000000 & 0.7071067811865475243 & 1.5707963267948965579 \\ +1 & 0.8535533905932737621 & 0.8408964152537145430 & 1.\underline{8}403023690212201581 \\ +2 & 0.8472249029234941526 & 0.8472012667468914603 & 1.\underline{8540}488143993356315 \\ +3 & 0.8472130848351928064 & 0.8472130847527653666 & 1.\underline{854074677}2111781089 \\ +4 & 0.8472130847939790865 & 0.8472130847939790865 & 1.\underline{854074677301371}8463 \\ +\infty& & & 1.8540746773013719184% \text{\vrule height12pt depth6pt width0pt}\\ \hline \end{tabular} -- cgit v1.2.1 From 05d75b0f467b2535db538ecaee461cf0c8b637d1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Jun 2022 20:17:16 +0200 Subject: add stuff for elliptic filters --- buch/chapters/110-elliptisch/ellintegral.tex | 141 ++++++++++++++++++++++++++- 1 file changed, 138 insertions(+), 3 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 4589ffa..cc99218 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -459,7 +459,8 @@ Parameter $k$ mit der Ableitungsformel für die Funktion $\mathstrut_2F_1$. % % Berechnung mit dem arithmetisch-geometrischen Mittel % -\subsection{Berechnung mit dem arithmetisch-geometrischen Mittel} +\subsection{Berechnung mit dem arithmetisch-geometrischen Mittel +\label{buch:elliptisch:subsection:agm}} Die numerische Berechnung von elliptischer Integrale mit gewöhnlichen numerischen Integrationsroutinen ist nicht sehr effizient. Das in diesem Abschnitt vorgestellte arithmetisch-geometrische Mittel @@ -472,7 +473,11 @@ Sie ist ein Speziallfall der sogenannten Landen-Transformation, \index{Landen-Transformation}% welche ausser für die elliptischen Integrale auch für die Jacobischen elliptischen Funktionen formuliert werden kann und -für letztere ebenfalls sehr schnelle numerische Algorithmen liefert. +für letztere ebenfalls sehr schnelle numerische Algorithmen liefert +(siehe dazu auch die +Aufgaben~\ref{buch:elliptisch:aufgabe:2}--\ref{buch:elliptisch:aufgabe:4}). +Sie kann auch verwendet werden, um die Werte der Jacobischen elliptischen +Funktionen für komplexe Argument zu berechnen. % % Das arithmetisch-geometrische Mittel @@ -574,7 +579,7 @@ Gauss hat gefunden, dass die Substitution \begin{equation} \sin t = -\frac{2a\sin t_1}{a+b+(a-b)\sin t_1} +\frac{2a\sin t_1}{a+b+(a-b)\sin^2 t_1} \label{buch:elliptisch:agm:subst} \end{equation} zu @@ -1103,6 +1108,136 @@ F(x,k) = iK(k') - F\biggl(\frac1{kx},k\biggr) für die Werte des elliptischen Integrals erster Art für grosse Argumentwerte fest. +% +% AGM und Berechnung von F(x,k) +% +\subsubsection{Berechnung von $F(x,k)$ mit dem arithmetisch-geometrischen Mittel\label{buch:elliptisch:subsubection:berechnung-fxk-agm}} +Wie das vollständige elliptische Integral $K(k)$ kann auch das +unvollständige elliptische Integral +\begin{align*} +F(x,k) +&= +\int_0^x \frac{d\xi}{\sqrt{(1-\xi^2)(1-k^{\prime 2}\xi^2)}} += +\int_0^{\varphi} +\frac{dt}{\sqrt{1-k^2 \sin^2 t}} +\\ +&= +a +\int_0^{\varphi} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t} +\qquad\text{mit $k=b/a$} +\end{align*} +mit dem arithmetisch-geometrischen Mittel berechnet werden. +Dazu muss die Substitution +\eqref{buch:elliptisch:agm:subst} +verwendet werden, um auch den Winkel $\varphi_1$ zu berechnen. +Dazu muss \eqref{buch:elliptisch:agm:subst} nach $x_1=\sin t_1$ +aufgelöst werden. +Durch Multiplikation mit dem Nenner erhält man mit der Abkürzung +$x=\sin t$ und $x_1=\sin t_1$ die quadratische Gleichung +\[ +(a-b)x x_1 +- +2ax_1 +(a+b)x += +0, +\] +mit der Lösung +\begin{equation} +x_1 += +\frac{a-\sqrt{a^2-(a^2-b^2)x^2}}{(a-b)x}. +\label{buch:elliptisch:unvollstagm:xrek} +\end{equation} +Der Algorithmus zur Berechnung des arithmetisch-geometrischen Mittels +muss daher verallgemeinert werden zu +\begin{equation} +\left. +\begin{aligned} +a_{n+1} &= \frac{a_n+b_n}2, &\qquad a_0 &= a +\\ +b_{n+1} &= \sqrt{a_nb_n}, & b_0 &= b +\\ +x_{n+1} &= \frac{a_n-\sqrt{a_n^2-(a_n^2-b_n^2)x_n^2}}{(a_n-b_n)x_n}, & x_0 &= x +\end{aligned} +\quad +\right\} +\label{buch:elliptisch:unvollstagm:rek} +\end{equation} +Die Folge $x_n$ konvergiert gegen einen Wert $x_{\infty} = \lim_{n\to\infty} x_n$. +Der Wert des unvollständigen elliptischen Integrals ist dann der Grenzwert +\[ +F(x,k) += +\lim_{n\to\infty} +\frac{\arcsin x_n}{M(a_n,b_n)} += +\frac{\arcsin x_{\infty}}{M(1,\sqrt{1-k^2})}. +\] + +In dieser Form ist die Berechnung allerdings nicht praktisch durchführbar. +Das Problem ist, dass die Differenz $a_n-b_n$, die in +\eqref{buch:elliptisch:unvollstagm:rek} +im Nenner vorkommt, sehr schnell gegen Null geht. +Ausserdem ist die Quadratwurzel im Zähler fast gleich gross wie +$a_n$, was zu Auslöschung und damit ungenauen Resultaten führt. +\label{buch:elliptisch:agm:ellintegral-stabilitaet} + +Eine Möglichkeit, das Problem zu entschärfen, ist, die Rekursionsformel +nach $\varepsilon = a-b$ zu entwickeln. +Mit $a+b=2a+\varepsilon$ kann man $b$ aus der Formel elimineren und erhält +mit Hilfe der binomischen Reihe +\begin{align*} +x_1 +&= +\frac{a}{x\varepsilon} +\left(1-\sqrt{1-\varepsilon(2a-\varepsilon)x^2/a^2}\right) +\\ +&= +\frac{a}{x\varepsilon} +\biggl( +1-\sum_{k=0}^\infty +(-1)^k +\frac{(\frac12)_k}{k!} \varepsilon^k(2a-\varepsilon)^k\frac{x^{2k}}{a^{2k}} +\biggr) +\\ +&= +\sum_{k=1}^\infty +(-1)^{k-1} +\frac{(\frac12)_k}{k!} \varepsilon^{k-1}(2a-\varepsilon)^k\frac{x^{2k-1}}{a^{2k-1}} +\\ +&= +\frac{\frac12}{1!}(2a-\varepsilon)\frac{x}{a} +- +\frac{\frac12\cdot(\frac12-1)}{2!}\varepsilon(2a-\varepsilon)^2\frac{x^3}{a^3} ++ +\frac{\frac12\cdot(\frac12-1)(\frac12-2)}{3!}\varepsilon^2(2a-\varepsilon)^3\frac{x^5}{a^5} +- +\dots +\\ +&= +x\biggl(1-\frac{\varepsilon}{2a}\biggr) +\biggl( +1 +- +\frac{\frac12-1}{2!}\varepsilon(2a-\varepsilon)\frac{x^2}{a^2} ++ +\frac{(\frac12-1)(\frac12-2)}{3!}\varepsilon^2(2a-\varepsilon)^2\frac{x^4}{a^4} +- +\dots +\biggr) +\\ +&= +x\biggl(1-\frac{\varepsilon}{2a}\biggr) +\cdot +\mathstrut_2F_1\biggl( +\begin{matrix}-\frac12,1\\2\end{matrix};-\varepsilon(2a-\varepsilon)\frac{x^2}{a^2} +\biggr). +\end{align*} +Diese Form ist wesentlich besser, aber leider kann es bei der numerischen +Rechnung passieren, dass $\varepsilon < 0$ wird. + %\subsection{Potenzreihe} %XXX Potenzreihen \\ %XXX Als hypergeometrische Funktionen \url{https://www.youtube.com/watch?v=j0t1yWrvKmE} \\ -- cgit v1.2.1 From 3d742539c034e5b9569722e95395fd5ede33d770 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Jun 2022 21:19:31 +0200 Subject: some improvements in tables --- buch/chapters/110-elliptisch/ellintegral.tex | 2 ++ 1 file changed, 2 insertions(+) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index cc99218..27724fd 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -478,6 +478,8 @@ für letztere ebenfalls sehr schnelle numerische Algorithmen liefert Aufgaben~\ref{buch:elliptisch:aufgabe:2}--\ref{buch:elliptisch:aufgabe:4}). Sie kann auch verwendet werden, um die Werte der Jacobischen elliptischen Funktionen für komplexe Argument zu berechnen. +Eine weiter Anwendung ist die Berechnung einer grossen Zahl von +Stellen der Kreiszahl $\pi$, siehe Aufgaben~\ref{buch:elliptisch:aufgabe:5}. % % Das arithmetisch-geometrische Mittel -- cgit v1.2.1 From b751d10130f923c1399a9eca58cfeb62c3a7a0e2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 28 Jun 2022 07:27:57 +0200 Subject: cleanup --- buch/chapters/110-elliptisch/ellintegral.tex | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 27724fd..6dd1ef6 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -1113,7 +1113,8 @@ fest. % % AGM und Berechnung von F(x,k) % -\subsubsection{Berechnung von $F(x,k)$ mit dem arithmetisch-geometrischen Mittel\label{buch:elliptisch:subsubection:berechnung-fxk-agm}} +\subsubsection{Berechnung von $F(x,k)$ mit dem arithmetisch-geometrischen +Mittel\label{buch:elliptisch:subsubection:berechnung-fxk-agm}} Wie das vollständige elliptische Integral $K(k)$ kann auch das unvollständige elliptische Integral \begin{align*} @@ -1123,11 +1124,12 @@ F(x,k) = \int_0^{\varphi} \frac{dt}{\sqrt{1-k^2 \sin^2 t}} +&&\text{mit $x=\sin\varphi$} \\ &= a \int_0^{\varphi} \frac{dt}{a^2 \cos^2 t + b^2 \sin^2 t} -\qquad\text{mit $k=b/a$} +&&\text{mit $k=b/a$} \end{align*} mit dem arithmetisch-geometrischen Mittel berechnet werden. Dazu muss die Substitution -- cgit v1.2.1 From 9fd9ca9c2071b0911f08d434aa0fa722d7037640 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 28 Jun 2022 07:29:32 +0200 Subject: Formulierung --- buch/chapters/110-elliptisch/ellintegral.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 6dd1ef6..f509fcb 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -1135,8 +1135,8 @@ mit dem arithmetisch-geometrischen Mittel berechnet werden. Dazu muss die Substitution \eqref{buch:elliptisch:agm:subst} verwendet werden, um auch den Winkel $\varphi_1$ zu berechnen. -Dazu muss \eqref{buch:elliptisch:agm:subst} nach $x_1=\sin t_1$ -aufgelöst werden. +Zunächst wird \eqref{buch:elliptisch:agm:subst} nach $x_1=\sin t_1$ +aufgelöst. Durch Multiplikation mit dem Nenner erhält man mit der Abkürzung $x=\sin t$ und $x_1=\sin t_1$ die quadratische Gleichung \[ -- cgit v1.2.1 From 971770c50241f483ba0f880dc6fafdd3f91d4983 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 28 Jun 2022 07:56:22 +0200 Subject: typos --- buch/chapters/110-elliptisch/ellintegral.tex | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index f509fcb..25f7083 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -1138,11 +1138,13 @@ verwendet werden, um auch den Winkel $\varphi_1$ zu berechnen. Zunächst wird \eqref{buch:elliptisch:agm:subst} nach $x_1=\sin t_1$ aufgelöst. Durch Multiplikation mit dem Nenner erhält man mit der Abkürzung -$x=\sin t$ und $x_1=\sin t_1$ die quadratische Gleichung +$x=\sin t$ %und $x_1=\sin t_1$ +die quadratische Gleichung \[ -(a-b)x x_1 +(a-b)x x_1^2 - 2ax_1 ++ (a+b)x = 0, -- cgit v1.2.1 From 931871e8c8e9b266b9b626d816a803bbd2c56653 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Fri, 1 Jul 2022 20:55:53 +0200 Subject: more index stuff --- buch/chapters/110-elliptisch/ellintegral.tex | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 25f7083..466aeb7 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -179,6 +179,7 @@ Da im Integral nur $k^2$ auftaucht, wird sich $K(k)$ als hypergeometrische Funktion von $k^2$ ausdrücken lassen. \begin{satz} +\index{Satz!vollständiges elliptisches Integral als hypergeometrische Funktion}% \label{buch:elliptisch:satz:hyperK} Das vollständige elliptische Integral $K(k)$ lässt sich durch die hypergeometrische Funktion $\mathstrut_2F_1$ als @@ -430,7 +431,7 @@ Für $\varepsilon=1$ ist $a=0$, es entsteht eine Strecke mit Länge $E(1)=1$. \begin{satz} \label{buch:elliptisch:satz:hyperE} -Das volständige elliptische Integral $E(k)$ ist +Das vollständige elliptische Integral $E(k)$ ist \[ E(k) = @@ -496,6 +497,7 @@ b_0&=b &&\text{und}& b_{n+1} &= \sqrt{a_nb_n} &&\text{geometrisches Mittel} definiert sind. \begin{satz} +\index{Satz!arithmetisch-geometrisches Mittel}% Falls $a>b>0$ ist, nimmt die Folge $(a_k)_{k\ge 0}$ monoton ab und $(b_k)_{k\ge 0}$ nimmt monoton zu. Beide konvergieren quadratisch gegen einen gemeinsamen Grenzwert. @@ -636,6 +638,7 @@ mit einem Computer-Algebra-System ausführen lässt finden, dass tatsächlich korrekt ist. \begin{satz} +\index{Satz!Gauss-Integrale}% \label{buch:elliptisch:agm:integrale} Für $a_1=(a+b)/2$ und $b_1=\sqrt{ab}$ gilt \[ @@ -653,6 +656,7 @@ Dies gilt natürlich für alle Glieder der Folge zur Bestimmung des arithmetisch-geometrischen Mittels. \begin{satz} +\index{Satz!Iab@$I(a,b)$ und arithmetisch geometrisches Mittel}% Für $a\ge b>0$ gilt \begin{equation} I(a,b) @@ -719,6 +723,7 @@ k=\sqrt{1-k^{\prime 2}} \end{align*} \begin{satz} +\index{Satz!vollständige elliptische Integrale und arithmetisch-geometrisches Mittel}% \label{buch:elliptisch:agm:satz:Ek} Für $0