From 335c3a23f09759be380291ec89b0f2c43c2d3db6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 25 Jun 2022 22:46:16 +0200 Subject: fix agm --- buch/chapters/110-elliptisch/ellintegral.tex | 34 ++++++++++++++++------------ 1 file changed, 19 insertions(+), 15 deletions(-) (limited to 'buch/chapters/110-elliptisch/ellintegral.tex') diff --git a/buch/chapters/110-elliptisch/ellintegral.tex b/buch/chapters/110-elliptisch/ellintegral.tex index 970d8fa..79ed91e 100644 --- a/buch/chapters/110-elliptisch/ellintegral.tex +++ b/buch/chapters/110-elliptisch/ellintegral.tex @@ -578,9 +578,9 @@ Gauss hat gefunden, dass die Substitution \end{equation} zu \begin{equation} -\frac{dt}{a^2\cos^2 t + b^2 \sin^2 t} +\frac{dt}{\sqrt{a^2_{\phantom{1}}\cos^2 t + b^2_{\phantom{1}} \sin^2 t}} = -\frac{dt_1}{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1} +\frac{dt_1}{\sqrt{a_1^2\cos^2 t_1 + b_1^2 \sin^2 t_1}} \label{buch:elliptisch:agm:dtdt1} \end{equation} führt. @@ -608,7 +608,7 @@ ableiten, es ist \frac{dt}{dt_1} \biggr)^2 = -\frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. +\frac{a^2_{\phantom{1}} \cos^2 t + b^2_{\phantom{1}} \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. \] Man muss also nachprüfen, dass \begin{equation} @@ -618,7 +618,7 @@ Man muss also nachprüfen, dass \frac{a^2 \cos^2 t + b^2 \sin^2 t}{a_1^2 \cos^2 t_1 + b_1^2 \sin^2 t_1}. \label{buch:elliptisch:agm:deq} \end{equation} -Dazu muss man zunächst $a_1=(a+b)/2$, $b_1=\sqrt{ab}$ setzen. +Dazu muss man zunächst $a_1=(a+b)/2$, $b_1=\!\sqrt{ab}$ setzen. Ausserdem muss man $\cos^2 t$ durch $1-\sin^2t$ ersetzen und $\sin t$ durch \eqref{buch:elliptisch:agm:subst}. Auch $\cos^2 t_1$ muss man durch $1-\sin^2t_1$ ersetzt werden. @@ -724,15 +724,19 @@ K(k) = I(1,\sqrt{1-k^2}) = \frac{\pi}{2M(1,\sqrt{1-k^2})} \subsubsection{Numerisches Beispiel} \begin{table} \centering -\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline -n& a_n & b_n \\ +n& a_n & b_n & \pi/2a_n \mathstrut +\text{\vrule height12pt depth6pt width0pt}\\ \hline -0 & 1.0000000000000000 & 0.7071067811865476\\ -1 & 0.\underline{8}535533905932737 & 0.\underline{84}08964152537146\\ -2 & 0.\underline{8472}249029234942 & 0.\underline{8472}012667468916\\ -3 & 0.\underline{847213084}8351929 & 0.\underline{8472130847}527654\\ -4 & 0.\underline{847213084793979}2 & 0.\underline{847213084793979}1\\ +\text{\vrule height12pt depth0pt width0pt} + 0 & 1.0000000000000000000 & 0.7071067811865475243 & 1.5707963267948965579 \\ + 1 & 0.8535533905932737621 & 0.8408964152537145430 & 1.\underline{8}403023690212201581 \\ + 2 & 0.8472249029234941526 & 0.8472012667468914603 & 1.\underline{8540}488143993356315 \\ + 3 & 0.8472130848351928064 & 0.8472130847527653666 & 1.\underline{854074677}2111781089 \\ + 4 & 0.8472130847939790865 & 0.8472130847939790865 & 1.\underline{854074677301371}8463 \\ +\infty& & & 1.8540746773013719184  +\text{\vrule height12pt depth6pt width0pt}\\ \hline \end{tabular} \caption{Die Berechnung des arithmetisch-geometrischen Mittels für @@ -747,11 +751,11 @@ Konvergenz der Berechnung des arithmetisch-geometrischen Mittels von $1$ und $\sqrt{2}/2$. Mit Satz~\ref{buch:elliptisch:agm:satz:Ek} folgt jetzt \[ -K(\sqrt{2}/2) +K(\!\sqrt{2}/2) = -\frac{\pi}{2M(1,\sqrt{2}/2)} +\frac{\pi}{2M(1,\!\sqrt{2}/2)} = -0.751428163461842. +1.854074677301372. \] Die Berechnung hat nur 4 Mittelwerte, 4 Produkte, 4 Quadratwurzeln und eine Division erfordert. @@ -848,7 +852,7 @@ Integrale vorkommen, haben Nullstellen bei $\pm1$, $\pm1/k$ und $\pm 1/\sqrt{n}$ % XXX Additionstheoreme \\ -XXX Parameterkonventionen \\ +% XXX Parameterkonventionen \\ % % Wertebereich -- cgit v1.2.1