From 0344a846c083c11e9ed93ddc5898dd55c6dd1022 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 20 Apr 2022 10:30:56 +0200 Subject: lemniscate sine stuff --- buch/chapters/110-elliptisch/lemniskate.tex | 299 ++++++++++++++++++++++++---- 1 file changed, 262 insertions(+), 37 deletions(-) (limited to 'buch/chapters/110-elliptisch/lemniskate.tex') diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex index 7083b63..e766779 100644 --- a/buch/chapters/110-elliptisch/lemniskate.tex +++ b/buch/chapters/110-elliptisch/lemniskate.tex @@ -22,23 +22,46 @@ elliptischen Funktionen hergestellt werden. \end{figure} Die Lemniskate von Bernoulli ist die Kurve vierten Grades mit der Gleichung \begin{equation} -(x^2+y^2)^2 = 2a^2(x^2-y^2). +(X^2+Y^2)^2 = 2a^2(X^2-Y^2). \label{buch:elliptisch:eqn:lemniskate} \end{equation} Sie ist in Abbildung~\ref{buch:elliptisch:fig:lemniskate} dargestellt. -Die beiden Scheitel der Lemniskate befinden sich bei $x=\pm a/\sqrt{2}$. +Die beiden Scheitel der Lemniskate befinden sich bei $X_s=\pm a\sqrt{2}$. +Dividiert man die Gleichung der Lemniskate durch $X_s^2=4a^4$ entsteht +\begin{equation} +\biggl( +\biggl(\frac{X}{a\sqrt{2}}\biggr)^2 ++ +\biggl(\frac{Y}{a\sqrt{2}}\biggr)^2 +\biggr)^2 += +2\frac{a^2}{2a^2}\biggl( +\biggl(\frac{X}{a\sqrt{2}}\biggr)^2 +- +\biggl(\frac{Y}{a\sqrt{2}}\biggr)^2 +\biggr). +\qquad +\Leftrightarrow +\qquad +(x^2+y^2)^2 = x^2-y^2, +\label{buch:elliptisch:eqn:lemniskatenormiert} +\end{equation} +wobei wir $x=X/a\sqrt{2}$ und $y=Y/a\sqrt{2}$ gesetzt haben. +In dieser Normierung liegen die Scheitel bei $\pm 1$. +Dies ist die Skalierung, die für die Definition des lemniskatischen +Sinus und Kosinus verwendet werden soll. In Polarkoordinaten $x=r\cos\varphi$ und $y=r\sin\varphi$ -gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskate} +gilt nach Einsetzen in \eqref{buch:elliptisch:eqn:lemniskatenormiert} \begin{equation} r^4 = -2a^2r^2(\cos^2\varphi-\sin^2\varphi) +r^2(\cos^2\varphi-\sin^2\varphi) = -2a^2r^2\cos2\varphi +r^2\cos2\varphi \qquad\Rightarrow\qquad -r^2 = 2a^2\cos 2\varphi +r^2 = \cos 2\varphi \label{buch:elliptisch:eqn:lemniskatepolar} \end{equation} als Darstellung der Lemniskate in Polardarstellung. @@ -46,15 +69,7 @@ Sie gilt für Winkel $\varphi\in[-\frac{\pi}4,\frac{\pi}4]$ für das rechte Blatt und $\varphi\in[\frac{3\pi}4,\frac{5\pi}4]$ für das linke Blatt der Lemniskate. -Für die Definition des lemniskatischen Sinus wird eine Skalierung -verwendet, die den rechten Scheitel im Punkt $(1,0)$. -Dies ist der Fall für $a=1/\sqrt{2}$, die Gleichung der Lemniskate -wird dann zu -\[ -(x^2+y^2)^2 = 2(x^2-y^2). -\] - -\subsubsection{Bogelänge} +\subsection{Bogenlänge} Die Funktionen \begin{equation} x(r) = \frac{r}{\sqrt{2}}\sqrt{1+r^2}, @@ -76,7 +91,7 @@ r^4 \end{align*} sie stellen also eine Parametrisierung der Lemniskate dar. -Mit Hilfe der Parametrsierung~\eqref{buch:geometrie:eqn:lemniskateparam} +Mit Hilfe der Parametrisierung~\eqref{buch:geometrie:eqn:lemniskateparam} kann man die Länge $s$ des in Abbildung~\ref{buch:elliptisch:fig:lemniskate} dargestellten Bogens der Lemniskate berechnen. Dazu benötigt man die Ableitungen nach $r$, die man mit der Produkt- und @@ -123,11 +138,16 @@ s(r) \label{buch:elliptisch:eqn:lemniskatebogenlaenge} \end{equation} -\subsubsection{Darstellung als elliptisches Integral} +% +% Als elliptisches Integral +% +\subsection{Darstellung als elliptisches Integral} Das unvollständige elliptische Integral erster Art mit Parameter -$m=-1$ ist +$k^2=-1$ oder $k=i$ ist \[ -K(r,-1) +K(r,i) += +\int_0^x \frac{dt}{\sqrt{(1-t^2)(1-i^2 t^2)}} = \int_0^x \frac{dt}{\sqrt{(1-t^2)(1-(-1)t^2)}} = @@ -136,11 +156,209 @@ K(r,-1) s(r). \] Der lemniskatische Sinus ist also eine Umkehrfunktion des -ellptischen Integrals erster Art für einen speziellen Wert des -Parameters $m$ +elliptischen Integrals erster Art für den speziellen Wert $i$ des +Parameters $k$. + +Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet +und hat den numerischen Wert +\[ +\varpi += +2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt += +2.6220575542. +\] +$\varpi$ ist auch als die {\em lemniskatische Konstante} bekannt. +\index{lemniskatische Konstante}% +Der Lemniskatenbogen zwischen dem Nullpunkt und $(1,0)$ hat die Länge +$\varpi/2$. + +% +% Bogenlängenparametrisierung +% +\subsection{Bogenlängenparametrisierung} +Die Lemniskate mit der Gleichung +\[ +(X^2+X^2)^2=2(X^2-X^2) +\] +(der Fall $a=1$ in \eqref{buch:elliptisch:eqn:lemniskate}) +kann mit Jacobischen elliptischen Funktionen +parametrisiert werden. +Dazu schreibt man +\[ +\left. +\begin{aligned} +X(t) +&= +\sqrt{2}\operatorname{cn}(t,k) \operatorname{dn}(t,k) +\\ +Y(t) +&= +\phantom{\sqrt{2}} +\operatorname{cn}(t,k) \operatorname{sn}(t,k) +\end{aligned} +\quad\right\} +\qquad\text{mit $k=\displaystyle\frac{1}{\sqrt{2}}$} +\] +und berechnet die beiden Seiten der definierenden Gleichung der +Lemniskate. +Zunächst ist +\begin{align*} +X(t)^2 +&= +2\operatorname{cn}(t,k)^2 +\operatorname{dn}(t,k)^2 +\\ +Y(t)^2 +&= +\operatorname{cn}(t,k)^2 +\operatorname{sn}(t,k)^2 +\\ +X(t)^2+Y(t)^2 +&= +2\operatorname{cn}(t,k)^2 +\bigl( +\underbrace{ +\operatorname{dn}(t,k)^2 ++{\textstyle\frac12} +\operatorname{sn}(t,k)^2 +}_{\displaystyle =1} +\bigr) +%\\ +%& += +2\operatorname{cn}(t,k)^2 +\\ +X(t)^2-Y(t)^2 +&= +\operatorname{cn}(t,k)^2 +\bigl( +2\operatorname{dn}(t,k)^2 - \operatorname{sn}(t,k)^2 +\bigr) +\\ +&= +\operatorname{cn}(t,k)^2 +\bigl( +2\bigl({\textstyle\frac12}+{\textstyle\frac12}\operatorname{cn}(t,k)^2\bigr) +- +\bigl(1-\operatorname{cn}(t,k)^2\bigr) +\bigr) +\\ +&= +2\operatorname{cn}(t,k)^4 +\\ +\Rightarrow\qquad +(X(t)^2+Y(t)^2)^2 +&= +4\operatorname{cn}(t,k)^4 += +2(X(t)^2-Y(t)^2). +\end{align*} +Wir zeigen jetzt, dass dies tatsächlich eine Bogenlängenparametrisierung +der Lemniskate ist. +Dazu berechnen wir die Ableitungen +\begin{align*} +\dot{X}(t) +&= +\sqrt{2}\operatorname{cn}'(t,k)\operatorname{dn}(t,k) ++ +\sqrt{2}\operatorname{cn}(t,k)\operatorname{dn}'(t,k) +\\ +&= +-\sqrt{2}\operatorname{sn}(t,k)\operatorname{dn}(t,k)^2 +-\frac12\sqrt{2}\operatorname{sn}(t,k)\operatorname{cn}(t,k)^2 +\\ +&= +-\sqrt{2}\operatorname{sn}(t,k)\bigl( +1-{\textstyle\frac12}\operatorname{sn}(t,k)^2 ++{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(u,t)^2 +\bigr) +\\ +&= +\sqrt{2}\operatorname{sn}(t,k) +\bigl( +{\textstyle \frac32}-\operatorname{sn}(t,k)^2 +\bigr) +\\ +\dot{X}(t)^2 +&= +2\operatorname{sn}(t,k)^2 +\bigl( +{\textstyle \frac32}-\operatorname{sn}(t,k)^2 +\bigr)^2 +\\ +&= +{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2 +- +6\operatorname{sn}(t,k)^4 ++2\operatorname{sn}(t,k)^6 +\\ +\dot{Y}(t) +&= +\operatorname{cn}'(t,k)\operatorname{sn}(t,k) ++ +\operatorname{cn}(t,k)\operatorname{sn}'(t,k) +\\ +&= +-\operatorname{sn}(t,k)^2 +\operatorname{dn}(t,k) ++\operatorname{cn}(t,k)^2 +\operatorname{dn}(t,k) +\\ +&= +\operatorname{dn}(t,k)\bigl(1-2\operatorname{sn}(t,k)^2\bigr) +\\ +\dot{Y}(t)^2 +&= +\bigl(1-{\textstyle\frac12}\operatorname{sn}(t,k)^2\bigr) +\bigl(1-2\operatorname|{sn}(t,k)^2\bigr)^2 +\\ +&= +1-{\textstyle\frac{9}{2}}\operatorname{sn}(t,k)^2 ++6\operatorname{sn}(t,k)^4 +-2\operatorname{sn}(t,k)^6 +\\ +\dot{X}(t)^2 + \dot{Y}(t)^2 +&= +1. +\end{align*} +Dies bedeutet, dass die Bogenlänge zwischen den Parameterwerten $0$ und $s$ +\[ +\int_0^s +\sqrt{\dot{X}(t)^2 + \dot{Y}(t)^2} +\,dt += +\int_0^s\,dt += +s, +\] +der Parameter $t$ ist also ein Bogenlängenparameter. + +Die mit dem Faktor $1/\sqrt{2}$ skalierte Standard-Lemniskate mit der +Gleichung +\[ +(x^2+y^2)^2 = x^2-y^2 +\] +hat daher eine Bogenlängenparametrisierung mit +\begin{equation} +\begin{aligned} +x(t) +&= +\phantom{\frac{1}{\sqrt{2}}} +\operatorname{cn}(\sqrt{2}t,k)\operatorname{dn}(\sqrt{2}t,k) +\\ +y(t) +&= +\frac{1}{\sqrt{2}}\operatorname{cn}(\sqrt{2}t,k)\operatorname{sn}(\sqrt{2}t,k) +\end{aligned} +\label{buch:elliptisch:lemniskate:bogenlaenge} +\end{equation} + +\subsection{Der lemniskatische Sinus und Kosinus} +Der Sinus Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des +Kreises, er ist die Umkehrfunktion der Funktion, die der Gegenkathete +die Bogenlänge zuordnet. -\subsubsection{Der lemniskatische Sinus und Kosinus} -Berechnet die Gegenkathete zu einer gegebenen Bogenlänge des Kreises. Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in \eqref{buch:elliptisch:eqn:lemniskatebogenlaenge} den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung @@ -150,22 +368,29 @@ Der Kosinus ist der Sinus des komplementären Winkels. Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine komplementäre Bogenlänge definieren, nämlich die Bogenlänge zwischen dem Punkt $(x(r), y(r))$ und $(1,0)$. -Die Länge des rechten Blattes der Lemniskate wird mit $\varpi$ bezeichnet -und hat den numerischen Wert + +Da die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge} +eine Bogenlängenparametrisierung ist, darf man $t=s$ schreiben. +Dann kann man aber auch $r(s)$ daraus berechnen, +es ist \[ -\varphi +r(s)^2 = -2\int_0^1\sqrt{\frac{1}{1-t^4}}\,dt +x(s)^2 + y(s)^2 = -2.6220575542. +\operatorname{cn}(s\sqrt{2},k)^2 +\qquad\Rightarrow\qquad +r(s) += +\operatorname{cn}(s\sqrt{2},k) \] -Lemniskatenbogens zwischen dem Nullpunkt und $(1,0)$ hat die Länge -$\varpi/2$. - -Der {\em lemniskatische Kosinus} von $s$ ist derjenige Radiuswert $r$, -für den der Lemniskatenbogen zwischen $(x(r), y(r))$ und $(1,0)$ -die Länge $s$ hat. - -XXX Algebraische Beziehungen \\ -XXX Ableitungen \\ +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/slcl.pdf} +\caption{ +Lemniskatischer Sinus und Kosinus sowie Sinus und Kosinus +mit derart skaliertem Argument, dass die Funktionen die gleichen Nullstellen +haben. +\label{buch:elliptisch:figure:slcl}} +\end{figure} -- cgit v1.2.1