From 88031a6a5bad428cb3bf03dea6f0f95d79484723 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 16 Jun 2022 17:02:24 +0200 Subject: new plots --- buch/chapters/110-elliptisch/lemniskate.tex | 92 +++++++++++++++++++++-------- 1 file changed, 67 insertions(+), 25 deletions(-) (limited to 'buch/chapters/110-elliptisch/lemniskate.tex') diff --git a/buch/chapters/110-elliptisch/lemniskate.tex b/buch/chapters/110-elliptisch/lemniskate.tex index fceaadf..fd998b3 100644 --- a/buch/chapters/110-elliptisch/lemniskate.tex +++ b/buch/chapters/110-elliptisch/lemniskate.tex @@ -86,9 +86,11 @@ eines geraden Kreiskegels (grün) mit einem Rotationsparaboloid (hellblau). \label{buch:elliptisch:lemniskate:kegelpara}} \end{figure}% +\index{Kegel}% +\index{Paraboloid}% Schreibt man in der Gleichung~\eqref{buch:elliptisch:eqn:lemniskate} für die Klammer auf der rechten Seite $Z^2 = X^2 - Y^2$, dann wird die -Lemniskate die Projektion in die $X$-$Y$-Ebene der Schnittmenge der Flächen, +Lemniskate die Projektion in die $X$-$Y$-Ebene der Schnittkurve der Flächen, die durch die Gleichungen \begin{equation} X^2-Y^2 = Z^2 @@ -112,14 +114,18 @@ mit einer zur Torusachse parallelen Ebene (blau), die den inneren Äquator des Torus berührt, ist eine Lemniskate. \label{buch:elliptisch:lemniskate:torusschnitt}} \end{figure} +\index{Torus}% Schneidet man einen Torus mit einer Ebene, die zur Achse des Torus parallel ist und den inneren Äquator des Torus berührt, entsteht ebenfalls eine Lemniskate. Die Situation ist in Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt} dargestellt. -Der Torus kann mit den Radien $2$ und $1$ mit der $y$-Achse als Torusachse -kann mit der Parametrisierung +Der in Abbildung~\ref{buch:elliptisch:lemniskate:torusschnitt} +dargestellte Torus mit den Radien $2$ und $1$ hat als Achse die +um eine Einheit in $Z$-Richtung verschobene $Y$-Achse und die +$X$-$Z$-Ebene als Äquatorebene. +Sie kann mit \[ (s,t) \mapsto @@ -129,9 +135,10 @@ kann mit der Parametrisierung (2+\cos s) \sin t + 1 \end{pmatrix} \] -beschrieben werden. -Die Gleichung $z=1$ beschreibt eine -achsparallele Ebene, die den inneren Äquator berührt. +parametrisiert werden, die $s$- und $t$-Koordinatenlinien sind +in der Abbildung gelb eingezeichnet. +Die Gleichung $Z=0$ beschreibt eine achsparallele Ebene, die den +inneren Äquator berührt. Die Schnittkurve erfüllt daher \[ (2+\cos s)\sin t + 1 = 0, @@ -141,7 +148,8 @@ Wir müssen nachprüfen dass die Koordinaten $X=(2+\cos s)\cos t$ und $Y=\sin s$ die Gleichung einer Lemniskate erfüllen. -Zunächst können wir in der $X$-Koordinate den Klammerausdruck durch +Zunächst können wir in der $X$-Koordinate den Klammerausdruck durch +$\sin t$ ausdrücken und erhalten \begin{equation} X = @@ -155,10 +163,9 @@ X^2 = \frac{\cos^2t}{\sin^2 t} = -\frac{1-\sin^2t}{\sin^2 t} +\frac{1-\sin^2t}{\sin^2 t}. \label{buch:elliptisch:lemniskate:Xsin} \end{equation} -ersetzen. Auch die $Y$-Koordinaten können wir durch $t$ ausdrücken, nämlich \begin{equation} @@ -218,7 +225,7 @@ X^2-Y^2 Die Berechnung des Quadrates von $X^2+Y^2$ ergibt die Gleichung \[ -(X^2+Y^2) +(X^2+Y^2)^2 = 16 \biggl(\frac{1-S}{S}\biggr)^2 @@ -226,7 +233,7 @@ die Gleichung 8 \cdot 2 \biggl(\frac{1-S}{S}\biggr)^2 = -2\cdot 2^2\cdot (X-Y)^2. +2\cdot 2^2\cdot (X^2-Y^2). \] Sie ist eine Lemniskaten-Gleichung für $a=2$. @@ -279,7 +286,7 @@ Kettenregel berechnen kann: &&\Rightarrow& \dot{y}(r)^2 &= -\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)} +\frac{1-r^2}{2} -r^2 + \frac{r^4}{2(1-r^2)}. \end{align*} Die Summe der Quadrate ist \begin{align*} @@ -342,6 +349,13 @@ $\varpi/2$. % Bogenlängenparametrisierung % \subsection{Bogenlängenparametrisierung} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/lemnispara.pdf} +\caption{Parametrisierung der Lemniskate mit Jacobischen elliptischen +Funktion wie in \eqref{buch:elliptisch:lemniskate:bogeneqn} +\label{buch:elliptisch:lemniskate:bogenpara}} +\end{figure} Die Lemniskate mit der Gleichung \[ (X^2+Y^2)^2=2(X^2-Y^2) @@ -350,7 +364,7 @@ Die Lemniskate mit der Gleichung kann mit Jacobischen elliptischen Funktionen parametrisiert werden. Dazu schreibt man -\[ +\begin{equation} \left. \begin{aligned} X(t) @@ -364,9 +378,17 @@ Y(t) \end{aligned} \quad\right\} \qquad\text{mit $k=\displaystyle\frac{1}{\sqrt{2}}$} -\] -und berechnet die beiden Seiten der definierenden Gleichung der -Lemniskate. +\label{buch:elliptisch:lemniskate:bogeneqn} +\end{equation} +Abbildung~\ref{buch:elliptisch:lemniskate:bogenpara} zeigt die +Parametrisierung. +Dem Parameterwert $t=0$ entspricht der Punkt +$(\sqrt{2},0)$ der Lemniskate. + +Dass \eqref{buch:elliptisch:lemniskate:bogeneqn} +tatsächlich eine Parametrisierung ist kann nachgewiesen werden dadurch, +dass man die beiden Seiten der definierenden Gleichung der +Lemniskate berechnet. Zunächst ist \begin{align*} X(t)^2 @@ -436,7 +458,7 @@ Dazu berechnen wir die Ableitungen &= -\sqrt{2}\operatorname{sn}(t,k)\bigl( 1-{\textstyle\frac12}\operatorname{sn}(t,k)^2 -+{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(u,t)^2 ++{\textstyle\frac12}-{\textstyle\frac12}\operatorname{sn}(t,k)^2 \bigr) \\ &= @@ -507,6 +529,7 @@ Gleichung \] hat daher eine Bogenlängenparametrisierung mit \begin{equation} +\left. \begin{aligned} x(t) &= @@ -515,8 +538,13 @@ x(t) \\ y(t) &= -\frac{1}{\sqrt{2}}\operatorname{cn}(\sqrt{2}t,k)\operatorname{sn}(\sqrt{2}t,k) +\frac{1}{\sqrt{2}} +\operatorname{cn}(\sqrt{2}t,k)\operatorname{sn}(\sqrt{2}t,k) \end{aligned} +\quad +\right\} +\qquad +\text{mit $\displaystyle k=\frac{1}{\sqrt{2}}$} \label{buch:elliptisch:lemniskate:bogenlaenge} \end{equation} @@ -527,7 +555,7 @@ die Bogenlänge zuordnet. Daher ist es naheliegend, die Umkehrfunktion von $s(r)$ in \eqref{buch:elliptisch:eqn:lemniskatebogenlaenge} den {\em lemniskatischen Sinus} zu nennen mit der Bezeichnung -$r=\operatorname{sl} s$. +$r=r(s)=\operatorname{sl} s$. Der Kosinus ist der Sinus des komplementären Winkels. Auch für die lemniskatische Bogenlänge $s(r)$ lässt sich eine @@ -537,9 +565,9 @@ Da die Bogenlänge zwischen $(0,0)$ und $(1,0)$ in in \eqref{buch:elliptisch:eqn:varpi} bereits bereichnet wurde. ist sie $\varpi/2-s$. Der {\em lemniskatische Kosinus} ist daher -$\operatorname{cl}(s) = \operatorname{sl}(\varpi/2-s)$ +$\operatorname{cl}(s) = \operatorname{sl}(\varpi/2-s)$. Graphen des lemniskatische Sinus und Kosinus sind in -Abbildung~\label{buch:elliptisch:figure:slcl} dargestellt. +Abbildung~\ref{buch:elliptisch:figure:slcl} dargestellt. Da die Parametrisierung~\eqref{buch:elliptisch:lemniskate:bogenlaenge} eine Bogenlängenparametrisierung ist, darf man $t=s$ schreiben. @@ -551,18 +579,32 @@ r(s)^2 x(s)^2 + y(s)^2 = \operatorname{cn}(s\sqrt{2},k)^2 -\qquad\Rightarrow\qquad +\biggl( +\operatorname{dn}(\sqrt{2}t,k)^2 ++ +\frac12 +\operatorname{sn}(\sqrt{2}t,k)^2 +\biggr) += +\operatorname{cn}(s\sqrt{2},k)^2. +\] +Die Wurzel ist +\[ r(s) = -\operatorname{cn}(s\sqrt{2},k) +\operatorname{sl} s += +\operatorname{cn}(s\sqrt{2},{\textstyle\frac{1}{\sqrt{2}}}). \] +Damit ist der lemniskatische Sinus durch eine Jacobische elliptische +Funktion darstellbar. \begin{figure} \centering \includegraphics[width=\textwidth]{chapters/110-elliptisch/images/slcl.pdf} \caption{ Lemniskatischer Sinus und Kosinus sowie Sinus und Kosinus -mit derart skaliertem Argument, dass die Funktionen die gleichen Nullstellen -haben. +mit derart skaliertem Argument, dass die Funktionen die +gleichen Nullstellen haben. \label{buch:elliptisch:figure:slcl}} \end{figure} -- cgit v1.2.1