From 4666311b63fb00a3f90d1c9858218e24b14360bc Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 20 Apr 2022 10:31:44 +0200 Subject: add missing files --- buch/chapters/110-elliptisch/mathpendel.tex | 250 ++++++++++++++++++++++++++++ 1 file changed, 250 insertions(+) create mode 100644 buch/chapters/110-elliptisch/mathpendel.tex (limited to 'buch/chapters/110-elliptisch/mathpendel.tex') diff --git a/buch/chapters/110-elliptisch/mathpendel.tex b/buch/chapters/110-elliptisch/mathpendel.tex new file mode 100644 index 0000000..d61bcf6 --- /dev/null +++ b/buch/chapters/110-elliptisch/mathpendel.tex @@ -0,0 +1,250 @@ +% +% mathpendel.tex -- Das mathematische Pendel +% +% (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% + +\subsection{Das mathematische Pendel +\label{buch:elliptisch:subsection:mathpendel}} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/images/pendel.pdf} +\caption{Mathematisches Pendel +\label{buch:elliptisch:fig:mathpendel}} +\end{figure} +Das in Abbildung~\ref{buch:elliptisch:fig:mathpendel} dargestellte +Mathematische Pendel besteht aus einem Massepunkt der Masse $m$ +im Punkt $P$, +der über eine masselose Stange der Länge $l$ mit dem Drehpunkt $O$ +verbunden ist. +Das Pendel bewegt sich unter dem Einfluss der Schwerebeschleunigung $g$. + +Das Trägheitsmoment des Massepunktes um den Drehpunkt $O$ ist +\( +I=ml^2 +\). +Das Drehmoment der Schwerkraft ist +\(M=gl\sin\vartheta\). +Die Bewegungsgleichung wird daher +\[ +\begin{aligned} +\frac{d}{dt} I\dot{\vartheta} +&= +M += +gl\sin\vartheta +\\ +ml^2\ddot{\vartheta} +&= +gl\sin\vartheta +&&\Rightarrow& +\ddot{\vartheta} +&=\frac{g}{l}\sin\vartheta +\end{aligned} +\] +Dies ist eine nichtlineare Differentialgleichung zweiter Ordnung, die +wir nicht unmittelbar mit den Differentialgleichungen erster Ordnung +der elliptischen Funktionen vergleichen können. + +Die Differentialgleichungen erster Ordnung der elliptischen Funktionen +enthalten das Quadrat der ersten Ableitung. +In unserem Fall entspricht das einer Gleichung, die $\dot{\vartheta}^2$ +enthält. +Der Energieerhaltungssatz kann uns eine solche Gleichung geben. +Die Summe von kinetischer und potentieller Energie muss konstant sein. +Dies führt auf +\[ +E_{\text{kinetisch}} ++ +E_{\text{potentiell}} += +\frac12I\dot{\vartheta}^2 ++ +mgl(1-\cos\vartheta) += +\frac12ml^2\dot{\vartheta}^2 ++ +mgl(1-\cos\vartheta) += +E +\] +Durch Auflösen nach $\dot{\vartheta}$ kann man jetzt die +Differentialgleichung +\[ +\dot{\vartheta}^2 += +- +\frac{2g}{l}(1-\cos\vartheta) ++\frac{2E}{ml^2} +\] +finden. +In erster Näherung, d.h. wenn man die rechte Seite bis zu vierten +Potenzen in eine Taylor-Reihe in $\vartheta$ entwickelt, ist dies +tatsächlich eine Differentialgleichung der Art, wie wir sie für +elliptische Funktionen gefunden haben, wir möchten aber eine exakte +Lösung konstruieren. + +Die maximale Energie für eine Bewegung, bei der sich das Pendel gerade +über den höchsten Punkt hinweg zu bewegen vermag, ist +$E=2lmg$. +Falls $E<2mgl$ ist, erwarten wir Schwingungslösungen, bei denen +der Winkel $\vartheta$ immer im offenen Interval $(-\pi,\pi)$ +bleibt. +Für $E>2mgl$ wird sich das Pendel im Kreis bewegen, für sehr grosse +Energie ist die kinetische Energie dominant, die Verlangsamung im +höchsten Punkt wird immer weniger ausgeprägt sein. + +% +% Koordinatentransformation auf elliptische Funktionen +% +\subsubsection{Koordinatentransformation auf elliptische Funktionen} +Wir verwenden als neue Variable +\[ +y = \sin\frac{\vartheta}2 +\] +mit der Ableitung +\[ +\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}. +\] +Man beachte, dass $y$ nicht eine Koordinate in +Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist. + +Aus den Halbwinkelformeln finden wir +\[ +\cos\vartheta += +1-2\sin^2 \frac{\vartheta}2 += +1-2y^2. +\] +Dies können wir zusammen mit der +Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$ +in die Energiegleichung einsetzen und erhalten +\[ +\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E +\qquad\Rightarrow\qquad +\frac14 \dot{\vartheta}^2 = \frac{E}{2ml^2} - \frac{g}{2l}y^2. +\] +Der konstante Term auf der rechten Seite ist grösser oder kleiner als +$1$ je nachdem, ob das Pendel sich im Kreis bewegt oder nicht. + +Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$ +erhalten wir auf der linken Seite einen Ausdruck, den wir +als Funktion von $\dot{y}$ ausdrücken können. +Wir erhalten +\begin{align*} +\frac14 +\cos^2\frac{\vartheta}2 +\cdot +\dot{\vartheta}^2 +&= +\frac14 +(1-y^2) +\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr) +\\ +\dot{y}^2 +&= +\frac{1}{4} +(1-y^2) +\biggl(\frac{E}{2ml^2} -\frac{g}{2l}y^2\biggr) +\end{align*} +Die letzte Gleichung hat die Form einer Differentialgleichung +für elliptische Funktionen. +Welche Funktion verwendet werden muss, hängt von der Grösse der +Koeffizienten in der zweiten Klammer ab. +Die Tabelle~\ref{buch:elliptisch:tabelle:loesungsfunktionen} +zeigt, dass in der zweiten Klammer jeweils einer der Terme +$1$ sein muss. + +% +% Der Fall E < 2mgl +% +\subsubsection{Der Fall $E<2mgl$} +\begin{figure} +\centering +\includegraphics[width=\textwidth]{chapters/110-elliptisch/images/jacobiplots.pdf} +\caption{% +Abhängigkeit der elliptischen Funktionen von $u$ für +verschiedene Werte von $k^2=m$. +Für $m=0$ ist $\operatorname{sn}(u,0)=\sin u$, +$\operatorname{cn}(u,0)=\cos u$ und $\operatorname{dn}(u,0)=1$, diese +sind in allen Plots in einer helleren Farbe eingezeichnet. +Für kleine Werte von $m$ weichen die elliptischen Funktionen nur wenig +von den trigonometrischen Funktionen ab, +es ist aber klar erkennbar, dass die anharmonischen Terme in der +Differentialgleichung die Periode mit steigender Amplitude verlängern. +Sehr grosse Werte von $m$ nahe bei $1$ entsprechen der Situation, dass +die Energie des Pendels fast ausreicht, dass es den höchsten Punkt +erreichen kann, was es für $m$ macht. +\label{buch:elliptisch:fig:jacobiplots}} +\end{figure} + + +Wir verwenden als neue Variable +\[ +y = \sin\frac{\vartheta}2 +\] +mit der Ableitung +\[ +\dot{y}=\frac12\cos\frac{\vartheta}{2}\cdot \dot{\vartheta}. +\] +Man beachte, dass $y$ nicht eine Koordinate in +Abbildung~\ref{buch:elliptisch:fig:mathpendel} ist. + +Aus den Halbwinkelformeln finden wir +\[ +\cos\vartheta += +1-2\sin^2 \frac{\vartheta}2 += +1-2y^2. +\] +Dies können wir zusammen mit der +Identität $\cos^2\vartheta/2 = 1-\sin^2\vartheta/2 = 1-y^2$ +in die Energiegleichung einsetzen und erhalten +\[ +\frac12ml^2\dot{\vartheta}^2 + mgly^2 = E. +\] +Durch Multiplizieren mit $\cos^2\frac{\vartheta}{2}=1-y^2$ +erhalten wir auf der linken Seite einen Ausdruck, den wir +als Funktion von $\dot{y}$ ausdrücken können. +Wir erhalten +\begin{align*} +\frac12ml^2 +\cos^2\frac{\vartheta}2 +\dot{\vartheta}^2 +&= +(1-y^2) +(E -mgly^2) +\\ +\frac{1}{4}\cos^2\frac{\vartheta}{2}\dot{\vartheta}^2 +&= +\frac{1}{2} +(1-y^2) +\biggl(\frac{E}{ml^2} -\frac{g}{l}y^2\biggr) +\\ +\dot{y}^2 +&= +\frac{E}{2ml^2} +(1-y^2)\biggl( +1-\frac{2gml}{E}y^2 +\biggr). +\end{align*} +Dies ist genau die Form der Differentialgleichung für die elliptische +Funktion $\operatorname{sn}(u,k)$ +mit $k^2 = 2gml/E< 1$. + +%% +%% Der Fall E > 2mgl +%% +%\subsection{Der Fall $E > 2mgl$} +%In diesem Fall hat das Pendel im höchsten Punkte immer noch genügend +%kinetische Energie, so dass es sich im Kreise dreht. +%Indem wir die Gleichung + + +%\subsection{Soliton-Lösungen der Sinus-Gordon-Gleichung} + +%\subsection{Nichtlineare Differentialgleichung vierter Ordnung} +%XXX Möbius-Transformation \\ +%XXX Reduktion auf die Differentialgleichung elliptischer Funktionen -- cgit v1.2.1