From f4ce26a24fbb50621ca52316209bbffd25a60794 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sat, 2 Apr 2022 08:38:00 +0200 Subject: add missing exercise --- buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | 312 +++++++++++++++++++++ .../110-elliptisch/uebungsaufgaben/Makefile | 8 + .../uebungsaufgaben/anharmonisch.pdf | Bin 0 -> 19279 bytes .../uebungsaufgaben/anharmonisch.tex | 62 ++++ 4 files changed, 382 insertions(+) create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/1.tex create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/Makefile create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben') diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex new file mode 100644 index 0000000..8e4b39f --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -0,0 +1,312 @@ +In einem anharmonische Oszillator oszilliert eine Masse $m$ unter dem +Einfluss einer Kraft, die nach dem Gesetz +\[ +F(x) = -\kappa x + \delta x^3 +\] +von der Auslenkung aus der Ruhelage abhängt. +Nehmen Sie im Folgenden an, dass $\delta >0$ ist, +dass also die rücktreibende Kraft $F(x)$ kleiner ist als bei einem +harmonischen Oszillator. +Ziel der folgenden Teilaufgaben ist, die Lösung $x(t)$ schrittweise +dadurch zu bestimmen, dass die Bewegungsgleichung in die Differentialgleichung +der Jacobischen elliptischen Funktion $\operatorname{sn}(u,k)$ umgeformt +wird. +\begin{teilaufgaben} +\item +Berechnen Sie die Auslenkung $x_0$, bei der die rücktreibende Kraft +verschwindet. +Eine beschränkte Schwingung kann diese Amplitude nicht überschreiten. +\item +Berechnen Sie die potentielle Energie in Abhängigkeit von der +Auslenkung. +\item +\label{buch:1101:basic-dgl} +Formulieren Sie den Energieerhaltungssatz für die Gesamtenergie $E$ +dieses Oszillators. +Leiten Sie daraus eine nichtlineare Differentialgleichung erster Ordnung +for den anharmonischen Oszillator ab, die sie in der Form +$\frac12m\dot{x}^2 = f(x)$ schreiben. +\item +Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die +Geschwindigkeit verschwindet. +Leiten Sie die Amplitude aus der Differentialgleichung von +\ref{buch:1101:basic-dgl} ab. +Sie erhalten zwei Werte $x_{\pm}$, wobei der kleinere $x_-$ +die Amplitude einer beschränkten Schwingung beschreibt, +während die $x_+$ die minimale Ausgangsamplitude einer gegen +$\infty$ divergenten Lösung ist. +\item +Rechnen Sie nach, dass +\[ +\frac{x_+^2+x_-^2}{2} += +x_0^2 +\qquad\text{und}\qquad +x_-^2x_+^2 += +\frac{4E}{\delta}. +\] +\item +Faktorisieren Sie die Funktion $f(x)$ in der Differentialgleichung +von Teilaufgabe c) mit Hilfe der in Teilaufgabe d) bestimmten +Nullstellen $x_{\pm}^2$. +\item +Dividieren Sie die Differentialgleichung durch $x_-^2$, schreiben +Sie $X=x/x_-$ und bringen Sie die Differentialgleichung in die +Form +\begin{equation} +A \dot{X}^2 += +(1-X^2) +(1-k^2X^2), +\label{buch:1101:eqn:dgl3} +\end{equation} +wobei $k^2=x_-^2/x_+^2$ und $A$ geeignet gewählt werden müssen. +\item +\label{buch:1101:teilaufgabe:dgl3} +Verwenden Sie $t(\tau) = \alpha\tau$ +und +$Y(\tau)=X(t(\tau))$ um eine Differentialgleichung für die Funktion +$Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung +von $\operatorname{sn}(u,k)$ hat, für die also $A=0$ in +\eqref{buch:1101:eqn:dgl3} ist. +\item +Verwenden Sie die Lösung $\operatorname{sn}(u,k)$ der in +\ref{buch:1101:teilaufgabe:dgl3} erhaltenen Differentialgleichung, +um die Lösung $x(t)$ der ursprünglichen Gleichung aufzuschreiben. +\end{teilaufgaben} + +\begin{loesung} +\begin{figure} +\centering +\includegraphics{chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf} +\caption{Rechte Seite der Differentialgleichung +\eqref{buch:1101:eqn:dglf}. +Eine beschränkte Lösung bewegt sich im Bereich $xx_+$ die Kraft abstossend ist und zu einer +divergenten Lösung führt. +\label{buch:1101:fig:potential} +} +\end{figure} +\begin{teilaufgaben} +\item +Wegen +\[ +F(x) += +-\kappa x\biggl(1-\frac{\delta}{\kappa}x^2\biggr) += +-Ix +\biggl(1-\sqrt{\frac{\delta}{\kappa}}x\biggr) +\biggl(1+\sqrt{\frac{\delta}{\kappa}}x\biggr) +\] +folgt, dass die rücktreibende Kraft bei der Auslenkung $\pm x_0$ mit +\[ +x_0^2 += +\frac{\kappa}{\delta} +\qquad\text{oder}\qquad +x_0 = \sqrt{\frac{\kappa}{\delta}} +\] +verschwindet. +\item +Die potentielle Energie ist die Arbeit, die gegen die rücktreibende Kraft +geleistet wird, um die Auslenkung $x$ zu erreichen. +Sie entsteht durch Integrieren der Kraft über +das Auslenkungsinterval, also +\[ +E_{\text{pot}} += +- +\int_0^x F(\xi) \,d\xi += +\int_0^x \kappa\xi-\delta\xi^3\,d\xi += +\biggl[ +\kappa\frac{\xi^2}{2} +- +\delta +\frac{\xi^4}{4} +\biggr]_0^x += +\kappa\frac{x^2}{2} +- +\delta\frac{x^4}{4}. +\] +\item +Die kinetische Energie ist gegeben durch +\[ +E_{\text{kin}} += +\frac12m\dot{x}^2. +\] +Die Gesamtenergie ist damit +\[ +E += +\frac12m\dot{x}^2 ++ +\kappa +\frac{x^2}{2} +- +\delta +\frac{x^4}{4}. +\] +Die verlangte Umformung ergibt +\begin{align} +\frac12m\dot{x}^2 +&= +E +- +\kappa\frac{x^2}{2} ++ +\delta\frac{x^4}{4} +\label{buch:1101:eqn:dglf} +\end{align} +als Differentialgleichung für $x$. +Die Ableitung $\dot{x}$ hat positives Vorzeichen wenn die Kraft +abstossend ist und negatives Vorzeichen dort, wo die Kraft anziehend ist. +% +\item +Die Amplitude der Schwingung ist derjenige $x$-Wert, für den +die Geschwindigkeit verschwindet, also eine Lösung der Gleichung +\[ +0 += +\frac{2E}{m} -\frac{\kappa}{m}x^2 + \frac{\delta}{2m}x^4. +\] +Der gemeinsame Nenner $m$ spielt offenbar keine Rolle. +Die Gleichung hat die zwei Lösungen +\[ +x_{\pm}^2 += +\frac{\kappa \pm \sqrt{\kappa^2-4E\delta}}{\delta} += +\frac{\kappa}{\delta} +\pm +\sqrt{ +\biggl(\frac{\kappa}{\delta}\biggr)^2 +- +\frac{4E}{\delta} +}. +\] +Die Situation ist in Abbildung~\ref{buch:1101:fig:potential} +Für $x>x_+$ ist die Kraft abstossend, die Lösung divergiert. +Die Lösung mit dem negativen Zeichen $x_-$ bleibt dagegen beschränkt, +dies ist die Lösung, die wir suchen. + +\item +Die beiden Formeln ergeben sich aus den Regeln von Vieta für die +Lösungen einer quadratischen Gleichungg der Form $x^4+px^2+q$. +Die Nullstellen haben den Mittelwert $-p/2$ und das Produkt $q$. + +\item +Die rechte Seite der Differentialgleichung lässt sich mit Hilfe +der beiden Nullstellen $x_{\pm}^2$ faktorisieren und bekommt die Form +\[ +\frac12m\dot{x}^2 += +\frac{\delta}{4}(x_+^2-x^2)(x_-^2-x^2). +\] + +\item +Indem die ganze Gleichung durch $x_-^2$ dividiert wird, entsteht +\[ +\frac12m +\biggl(\frac{\dot{x}}{x_-}\biggr)^2 += +\frac{\delta}{4} +(x_+^2-x^2) +\biggl(1-\frac{x^2}{x_-^2}\biggr). +\] +Schreiben wir $X=x/x_-$ wird daraus +\[ +\frac1{2}m\dot{X}^2 += +\frac{\delta}{4} +\biggl(x_+^2-x_-^2 X^2\biggr) +(1-X^2). +\] +Durch Ausklammern von $x_+^2$ im ersten Faktor wir daraus +\[ +\frac1{2}m\dot{X}^2 += +\frac{\delta}{4} +x_+^2 +\biggl(1-\frac{x_-^2}{x_+^2} X^2\biggr) +(1-X^2). +\] +Mit der Schreibweise $k^2 = x_-^2/x_+^2$ wird die Differentialgleichung +zu +\begin{equation} +\frac{2m}{\delta x_+^2} \dot{X}^2 += +(1-X^2)(1-k^2X^2), +\label{buch:1101:eqn:dgl2} +\end{equation} +was der Differentialgleichung für die Jacobische elliptische Funktion +$\operatorname{sn}(u,k)$ bereits sehr ähnlich sieht. +\item +Bis auf den Faktor vor $\dot{X}^2$ ist +\eqref{buch:1101:eqn:dgl2} +die Differentialgleichung +von +$\operatorname{sn}(u,k)$. +Um den Faktor zum Verschwinden zu bringen, schreiben wir +$t(\tau) = \alpha\tau$. +Die Ableitung von $Y(\tau)=X(t(\tau))$ nach $\tau$ ist +\[ +\frac{dY}{d\tau} += +\dot{X}(t(\tau))\frac{dt}{d\tau} += +\alpha +\dot{X}(t(\tau)) +\qquad\Rightarrow\qquad +\frac{1}{\alpha^2}\frac{dY}{d\tau} += +\dot{X}(t(\tau)). +\] +Die Differentialgleichung für $Y(\tau)$ ist +\[ +\frac{2mk^2}{\delta x_+^2\alpha^2} +\frac{dY}{d\tau} += +(1-Y^2)(1-k^2Y^2). +\] +Der Koeffizient vor der Ableitung wird $1$, wenn man +\[ +\alpha^2 += +\frac{2mk^2}{\delta x_+^2} +\] +wählt. +Diese Differentialgleichug hat die Lösung +\[ +Y(\tau) = \operatorname{sn}(\tau,k). +\] +\item +Indem man die gefunden Grössen einsetzt kann man jetzt die Lösung +der Differentialgleichung in geschlossener Form als +\begin{align*} +x(t) +&= +x_- X(t) += +x_- \operatorname{sn}\biggl( +t\sqrt{\frac{\delta x_+^2}{2mk^2} } +,k +\biggr) +\end{align*} +Das Produkt $\delta x_+^2$ kann auch als +\[ +\delta x_+^2 += +\kappa+\sqrt{\kappa -4\delta E} +\] +geschrieben werden. +\qedhere +\end{teilaufgaben} +\end{loesung} + + diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile b/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile new file mode 100644 index 0000000..0ca5234 --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/Makefile @@ -0,0 +1,8 @@ +# +# Makefile +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# + +anharmonisch.pdf: anharmonisch.tex + pdflatex anharmonisch.tex diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf new file mode 100644 index 0000000..4b00f4d Binary files /dev/null and b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.pdf differ diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex new file mode 100644 index 0000000..a00c393 --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/anharmonisch.tex @@ -0,0 +1,62 @@ +% +% anharmonisch.tex -- Potential einer anharmonischen Schwingung +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{1} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\E{3} +\def\K{0.2} +\def\D{0.0025} + +\pgfmathparse{sqrt(\K/\D)} +\xdef\xnull{\pgfmathresult} + +\pgfmathparse{sqrt((\K+sqrt(\K*\K-4*\E*\D))/\D)} +\xdef\xplus{\pgfmathresult} +\pgfmathparse{sqrt((\K-sqrt(\K*\K-4*\E*\D))/\D)} +\xdef\xminus{\pgfmathresult} + +\def\xmax{13} + +\fill[color=darkgreen!20] (0,-1.5) rectangle (\xminus,4.7); +\node[color=darkgreen] at ({0.5*\xminus},4.7) [below] {anziehende Kraft\strut}; + +\fill[color=orange!20] (\xplus,-1.5) rectangle (\xmax,4.7); +\node[color=orange] at ({0.5*(\xplus+\xmax)},4.7) [below] {abstossende\strut}; +\node[color=orange] at ({0.5*(\xplus+\xmax)},4.3) [below] {Kraft\strut}; + +\node[color=gray] at (\xnull,4.7) [below] {verbotener Bereich\strut}; + +\draw (-0.1,\E) -- (0.1,\E); +\node at (-0.1,\E) [left] {$E$}; + +\draw[color=red,line width=1pt] + plot[domain=0:13,samples=100] + ({\x},{\E-(0.5*\K-0.25*\D*\x*\x)*\x*\x}); + +\draw[->] (-0.1,0) -- ({\xmax+0.3},0) coordinate[label={$x$}]; +\draw[->] (0,-1.5) -- (0,5) coordinate[label={right:$f(x)$}]; + +\fill[color=blue] (\xminus,0) circle[radius=0.08]; +\node[color=blue] at (\xminus,0) [below left] {$x_-\mathstrut$}; + +\fill[color=blue] (\xplus,0) circle[radius=0.08]; +\node[color=blue] at (\xplus,0) [below right] {$x_+\mathstrut$}; + +\fill[color=blue] (\xnull,0) circle[radius=0.08]; +\node[color=blue] at (\xnull,0) [below] {$x_0\mathstrut$}; + +\end{tikzpicture} +\end{document} + -- cgit v1.2.1 From f9842b34a2b78bc340b861cc57aa29ccfbb13fd1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 24 Apr 2022 15:35:47 +0200 Subject: Makefile fixes, lecture notes week 8 --- buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | 19 ++++++++++++------- 1 file changed, 12 insertions(+), 7 deletions(-) (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben') diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex index 8e4b39f..67d5148 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -28,9 +28,11 @@ for den anharmonischen Oszillator ab, die sie in der Form $\frac12m\dot{x}^2 = f(x)$ schreiben. \item Die Amplitude der Schwingung ist derjenige $x$-Wert, für den die -Geschwindigkeit verschwindet. +Geschwindigkeit $\dot{x}(t)$ verschwindet. Leiten Sie die Amplitude aus der Differentialgleichung von -\ref{buch:1101:basic-dgl} ab. +%\ref{buch:1101:basic-dgl} +Teilaufgabe c) +ab. Sie erhalten zwei Werte $x_{\pm}$, wobei der kleinere $x_-$ die Amplitude einer beschränkten Schwingung beschreibt, während die $x_+$ die minimale Ausgangsamplitude einer gegen @@ -66,13 +68,16 @@ wobei $k^2=x_-^2/x_+^2$ und $A$ geeignet gewählt werden müssen. \label{buch:1101:teilaufgabe:dgl3} Verwenden Sie $t(\tau) = \alpha\tau$ und -$Y(\tau)=X(t(\tau))$ um eine Differentialgleichung für die Funktion -$Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung -von $\operatorname{sn}(u,k)$ hat, für die also $A=0$ in -\eqref{buch:1101:eqn:dgl3} ist. +$Y(\tau)=X(t(\tau))=X(\alpha\tau)$ um eine Differentialgleichung für +die Funktion $Y(\tau)$ zu gewinnen, die die Form der Differentialgleichung +von $\operatorname{sn}(u,k)$ hat (Abschnitt +\ref{buch:elliptisch:subsection:differentialgleichungen}), +für die also $A=0$ in \eqref{buch:1101:eqn:dgl3} ist. \item Verwenden Sie die Lösung $\operatorname{sn}(u,k)$ der in -\ref{buch:1101:teilaufgabe:dgl3} erhaltenen Differentialgleichung, +Teilaufgabe h) +%\ref{buch:1101:teilaufgabe:dgl3} +erhaltenen Differentialgleichung, um die Lösung $x(t)$ der ursprünglichen Gleichung aufzuschreiben. \end{teilaufgaben} -- cgit v1.2.1 From bc23a25ab1aaa67f78998d34d8bf75afbe70606d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 25 Apr 2022 21:54:35 +0200 Subject: fix typos --- buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | 20 +++++++++++++------- 1 file changed, 13 insertions(+), 7 deletions(-) (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben') diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex index 67d5148..694f18a 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -267,15 +267,21 @@ Die Ableitung von $Y(\tau)=X(t(\tau))$ nach $\tau$ ist = \alpha \dot{X}(t(\tau)) -\qquad\Rightarrow\qquad -\frac{1}{\alpha^2}\frac{dY}{d\tau} +\quad\Rightarrow\quad +\frac{1}{\alpha}\frac{dY}{d\tau} = -\dot{X}(t(\tau)). +\dot{X}(t(\tau)) +\quad\Rightarrow\quad +\frac{1}{\alpha^2}\biggl(\frac{dY}{d\tau}\biggr)^2 += +\dot{X}(t(\tau))^2. \] Die Differentialgleichung für $Y(\tau)$ ist \[ -\frac{2mk^2}{\delta x_+^2\alpha^2} +\frac{2m}{\delta x_+^2\alpha^2} +\biggl( \frac{dY}{d\tau} +\biggr)^2 = (1-Y^2)(1-k^2Y^2). \] @@ -283,7 +289,7 @@ Der Koeffizient vor der Ableitung wird $1$, wenn man \[ \alpha^2 = -\frac{2mk^2}{\delta x_+^2} +\frac{2m}{\delta x_+^2} \] wählt. Diese Differentialgleichug hat die Lösung @@ -299,9 +305,9 @@ x(t) x_- X(t) = x_- \operatorname{sn}\biggl( -t\sqrt{\frac{\delta x_+^2}{2mk^2} } +t\sqrt{\frac{\delta x_+^2}{2m} } ,k -\biggr) +\biggr). \end{align*} Das Produkt $\delta x_+^2$ kann auch als \[ -- cgit v1.2.1 From 05d75b0f467b2535db538ecaee461cf0c8b637d1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Jun 2022 20:17:16 +0200 Subject: add stuff for elliptic filters --- buch/chapters/110-elliptisch/uebungsaufgaben/2.tex | 61 ++++++++++ buch/chapters/110-elliptisch/uebungsaufgaben/3.tex | 135 +++++++++++++++++++++ .../110-elliptisch/uebungsaufgaben/landen.m | 60 +++++++++ 3 files changed, 256 insertions(+) create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/2.tex create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/3.tex create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/landen.m (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben') diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex new file mode 100644 index 0000000..9a1cafc --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex @@ -0,0 +1,61 @@ +\label{buch:elliptisch:aufgabe:2}% +Die Landen-Transformation basiert auf der Iteration +\begin{equation} +\begin{aligned} +k_{n+1} +&= +\frac{1-k_n'}{1+k_n'} +& +&\text{und}& +k_{n+1}' +&= +\sqrt{1-k_{n+1}^2} +\end{aligned} +\label{buch:elliptisch:aufgabe:2:iteration} +\end{equation} +mit den Startwerten $k_0 = k$ und $k_0' = \sqrt{1-k_0^2}$. +Zeigen Sie, dass $k_n\to 0$ und $k_n'\to 1$ mit quadratischer Konvergenz. + +\begin{loesung} +\begin{table} +\centering +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n & k & k' \\ +\hline +0 & 0.200000000000000 & 0.979795897113271 \\ +1 & 0.010205144336438 & 0.999947926158694 \\ +2 & 0.000026037598592 & 0.999999999661022 \\ +3 & 0.000000000169489 & 1.000000000000000 \\ +4 & 0.000000000000000 & 1.000000000000000 \\ +\hline +\end{tabular} +\caption{Numerisches Experiment zur Folge $(k_n,k_n')$ +gemäss \eqref{buch:elliptisch:aufgabe:2:iteration} +mit $k_0=0.2$ +\label{buch:ellptisch:aufgabe:2:numerisch}} +\end{table} +Es ist klar, dass $k'_n\to 1$ folgt, wenn man zeigen kann, dass +$k_n\to 0$ gilt. +Wir berechnen daher +\begin{align*} +k_{n+1} +&= +\frac{1-k_n'}{1+k_n'} += +\frac{1-\sqrt{1-k_n^2}}{1+\sqrt{1-k_n^2}} +\intertext{und erweitern mit dem Nenner $1+\sqrt{1-k_n^2}$ um} +&= +\frac{1-(1-k_n^2)}{(1+\sqrt{1-k_n^2})^2} += +\frac{ k_n^2 }{(1+\sqrt{1-k_n^2})^2} +\le +k_n^2 +\end{align*} +zu erhalten. +Daraus folgt jetzt sofort die quadratische Konvergenz von $k_n$ gegen $0$. + +Ein einfaches numerisches Experiment (siehe +Tabelle~\ref{buch:ellptisch:aufgabe:2:numerisch}) +bestätigt die quadratische Konvergenz der Folgen. +\end{loesung} diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/3.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/3.tex new file mode 100644 index 0000000..a5d118f --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/3.tex @@ -0,0 +1,135 @@ +\label{buch:elliptisch:aufgabe:3}% +Aus der in Aufgabe~\ref{buch:elliptisch:aufgabe:2} konstruierten Folge +$k_n$ kann zu einem vorgegebenen $u$ ausserdem die Folge $u_n$ +mit der Rekursionsformel +\[ +u_{n+1} = \frac{u_n}{1+k_{n+1}} +\] +und Anfangswert $u_0=u$ konstruiert werden. +Die Landen-Transformation (siehe \cite[80]{buch:ellfun-applications}) +\index{Landen-Transformation}% +führt auf die folgenden Formeln für die Jacobischen elliptischen Funktionen: +\begin{equation} +\left.\qquad +\begin{aligned} +\operatorname{sn}(u_n,k_n) +&= +\frac{ +(1+k_{n+1})\operatorname{sn}(u_{n+1},k_{n+1}) +}{ +1 + k_{n+1} \operatorname{sn}(u_{n+1},k_{n+1})^2 +} +\\ +\operatorname{cn}(u_n,k_n) +&= +\frac{ +\operatorname{cn}(u_{n+1},k_{n+1}) +\operatorname{dn}(u_{n+1},k_{n+1}) +}{ +1 + k_{n+1} \operatorname{sn}(u_{n+1},k_{n+1})^2 +} +\\ +\operatorname{dn}(u_n,k_n) +&= +\frac{ +1 - k_{n+1} \operatorname{sn}(u_{n+1},k_{n+1})^2 +}{ +1 + k_{n+1} \operatorname{sn}(u_{n+1},k_{n+1})^2 +} +\end{aligned} +\qquad\right\} +\label{buch:elliptisch:aufgabe:3:gauss} +\end{equation} +Die Transformationsformeln +\eqref{buch:elliptisch:aufgabe:3:gauss} +sind auch als Gauss-Transformation bekannt. +\index{Gauss-Transformation}% +Konstruieren Sie daraus einen numerischen Algorithmus, mit dem sich +gleichzeitig die Werte aller drei Jacobischen elliptischen Funktionen +für vorgegebene Parameterwerte $u$ und $k$ berechnen lassen. + +\begin{loesung} +In der ersten Phase des Algorithmus werden die Folgen $k_n$ und $k_n'$ +sowie $u_n$ bis zum Folgenindex $N$ berechnet, bis $k_N\approx 0$ +angenommen werden darf. +Dann gilt +\begin{align*} +\operatorname{sn}(u_N, k_N) &= \operatorname{sn}(u_N,0) = \sin u_N +\\ +\operatorname{cn}(u_N, k_N) &= \operatorname{cn}(u_N,0) = \cos u_N +\\ +\operatorname{dn}(u_N, k_N) &= \operatorname{dn}(u_N,0) = 1. +\end{align*} +In der zweiten Phase des Algorithmus können für absteigende +$n$ jeweils die Formeln~\eqref{buch:elliptisch:aufgabe:3:gauss} +angewendet werden um nacheinander die Werte der Jacobischen +elliptischen Funktionen für Argument $u_n$ und Parameter $k_n$ +für $n=N-1,N-2,\dots,0$ zu bekommen. +\end{loesung} +\begin{table} +\centering +\begin{tikzpicture}[>=latex,thick] +\def\pfeil#1#2{ + \fill[color=#1!30] (-0.5,1) -- (-0.5,-1) -- (-0.8,-1) + -- (0,-1.5) -- (0.8,-1) -- (0.5,-1) -- (0.5,1) -- cycle; + \node[color=white] at (0,-0.2) [scale=5] {\sf #2\strut}; +} +\begin{scope}[xshift=-4.9cm,yshift=0.2cm] +\pfeil{red}{1} +\end{scope} + +\begin{scope}[xshift=-2.3cm,yshift=0.2cm] +\pfeil{red}{1} +\end{scope} + +\begin{scope}[xshift=0.35cm,yshift=-0.3cm,yscale=-1] +\pfeil{blue}{2} +\end{scope} + +\begin{scope}[xshift=2.92cm,yshift=-0.3cm,yscale=-1] +\pfeil{blue}{2} +\end{scope} + +\begin{scope}[xshift=5.60cm,yshift=-0.3cm,yscale=-1] +\pfeil{blue}{2} +\end{scope} + +\node at (0,0) { +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n & k_n & u_n & \operatorname{sn}(u_n,k_n) & \operatorname{cn}(u_n,k_n) & \operatorname{dn}(u_n,k_n)% +\mathstrut\text{\vrule height12pt depth6pt width0pt} \\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% +%\small +0 & 0.90000000000 & 0.60000000000 & 0.54228232286 & 0.84019633556 & 0.87281338478 \\ +1 & 0.39286445838 & 0.43076696830 & 0.41576897816 & 0.90947026163 & 0.98656969610 \\ +2 & 0.04188568608 & 0.41344935827 & 0.40175214109 & 0.91574844642 & 0.99985840483 \\ +3 & 0.00043898784 & 0.41326793867 & 0.40160428679 & 0.91581329801 & 0.99999998445 \\ +4 & 0.00000004817 & 0.41326791876 & 0.40160427056 & 0.91581330513 & 1.00000000000 \\ +5 & 0.00000000000 & 0.41326791876 & 0.40160427056 & 0.91581330513 & 1.00000000000 \\ +%N & 0.00000000000 & 0.41326791876 & 0.40160427056 & 0.91581330513 & 1.00000000000% +N & & 0.41326791876 & \sin u_N & \cos u_N & 1% +%0 & 0.900000000000000 & 0.600000000000000 & 0.542282322869158 & 0.840196335569032 & 0.872813384788490 \\ +%1 & 0.392864458385019 & 0.430766968306220 & 0.415768978168966 & 0.909470261631645 & 0.986569696107075 \\ +%2 & 0.041885686080039 & 0.413449358275499 & 0.401752141098324 & 0.915748446421239 & 0.999858404836479 \\ +%3 & 0.000438987841605 & 0.413267938675096 & 0.401604286793186 & 0.915813298019491 & 0.999999984459261 \\ +%4 & 0.000000048177586 & 0.413267918764845 & 0.401604270565476 & 0.915813305135699 & 1.000000000000000 \\ +%5 & 0.000000000000001 & 0.413267918764845 & 0.401604270565476 & 0.915813305135699 & 1.000000000000000 \\ +%N & 0.000000000000000 & 0.413267918764845 & 0.401604270565476 & 0.915813305135699 & 1.000000000000000 \\ +\mathstrut\text{\vrule height12pt depth6pt width0pt} \\ +\hline +\end{tabular} +}; +\end{tikzpicture} +\caption{Durchführung des auf der Landen-Transformation basierenden +Algorithmus zur Berechnung der Jacobischen elliptischen Funktionen +für $u=0.6$ und $k=0.9$. +Die erste Phase (rot) berechnet die Folgen $k_n$ und $u_n$, die zweite +(blau) +transformiert die Wert der trigonometrischen Funktionen in die Werte +der Jacobischen elliptischen Funktionen. +\label{buch:elliptisch:aufgabe:3:resultate}} +\end{table} + + diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/landen.m b/buch/chapters/110-elliptisch/uebungsaufgaben/landen.m new file mode 100644 index 0000000..bba5549 --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/landen.m @@ -0,0 +1,60 @@ +# +# landen.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +N = 10; + +function retval = M(a,b) + for i = (1:10) + A = (a+b)/2; + b = sqrt(a*b); + a = A; + endfor + retval = a; +endfunction; + +function retval = EllipticKk(k) + retval = pi / (2 * M(1, sqrt(1-k^2))); +endfunction + +k = 0.5; +kprime = sqrt(1-k^2); + +EK = EllipticKk(k); +EKprime = EllipticKk(kprime); + +u = EK + EKprime * i; + +K = zeros(N,3); +K(1,1) = k; +K(1,2) = kprime; +K(1,3) = u; + +format long + +for n = (2:N) + K(n,1) = (1-K(n-1,2)) / (1+K(n-1,2)); + K(n,2) = sqrt(1-K(n,1)^2); + K(n,3) = K(n-1,3) / (1 + K(n,1)); +end + +K(:,[1,3]) + +pi / 2 + +scd = zeros(N,3); +scd(N,1) = sin(K(N,3)); +scd(N,2) = cos(K(N,3)); +scd(N,3) = 1; + +for n = (N:-1:2) + nenner = 1 + K(n,1) * scd(n, 1)^2; + scd(n-1,1) = (1+K(n,1)) * scd(n, 1) / nenner; + scd(n-1,2) = scd(n, 2) * scd(n, 3) / nenner; + scd(n-1,3) = (1 - K(n,1) * scd(n,1)^2) / nenner; +end + +scd(:,1) + +cosh(2.009459377005286) -- cgit v1.2.1 From 7cf7e37298a732b1a900b5eed59c442461e43a6d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Jun 2022 21:02:10 +0200 Subject: add more problems to chapter 11 --- buch/chapters/110-elliptisch/uebungsaufgaben/4.tex | 80 ++++++++++++++++++++++ buch/chapters/110-elliptisch/uebungsaufgaben/5.tex | 58 ++++++++++++++++ 2 files changed, 138 insertions(+) create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/4.tex create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/5.tex (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben') diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex new file mode 100644 index 0000000..b48192d --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex @@ -0,0 +1,80 @@ +\label{buch:elliptisch:aufgabe:4} +Es ist bekannt, dass $\operatorname{sn}(K+iK', k) = 1/k$ gilt. +Verwenden Sie den Algorithmus von Aufgabe~\ref{buch:elliptisch:aufgabe:3}, +um dies für $k=\frac12$ nachzurechnen. + +\begin{loesung} +Zunächst müssen wir mit dem Algorithmus des arithmetisch-geometrischen +Mittels +\[ +K(k) +\approx +1.685750354812596 +\qquad\text{und}\qquad +K(k') +\approx +2.156515647499643 +\] +berechnen. +Aus $k=\frac12$ kann man jetzt die Folgen $k_n$ und $u_n$ berechnen, die innert +$N=5$ Iterationen konvergiert. +\end{loesung} + +\begin{table} +\centering +\renewcommand{\tabcolsep}{5pt} +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline + n & k_n & u_n & \operatorname{sn}(u_n,k_n)% +\mathstrut\text{\vrule height12pt depth6pt width0pt}% +\\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% + 0 & 0.500000000000000 & 1.685750354812596 + 2.156515647499643i & 2.000000000000000 \\ + 1 & 0.071796769724491 & 1.572826493259468 + 2.012056490946491i & 3.732050807568877 \\ + 2 & 0.001292026239995 & 1.570796982340579 + 2.009460215619685i & 3.796651109009551 \\ + 3 & 0.000000417333300 & 1.570796326794965 + 2.009459377005374i & 3.796672364209438 \\ + 4 & 0.000000000000044 & 1.570796326794897 + 2.009459377005286i & 3.796672364211658 \\ + N & 0.000000000000000 & 1.570796326794897 + 2.009459377005286i & 3.796672364211658% +\mathstrut\text{\vrule height12pt depth6pt width0pt}% +\\ +\hline +\end{tabular} +\caption{Berechnung von $\operatorname{sn}(K+iK',k)=1/k$ mit Hilfe der Landen-Transformation. +Konvergenz der Folge $k_n$ ist bei $N=5$ eintegreten. +\label{buch:elliptisch:aufgabe:4:table}} +\end{table} + +\begin{loesung} +Sie führt auf +\[ +u_N += +\frac{\pi}2 + 2.009459377005286i += +\frac{\pi}2 + bi. +\] +Jetzt muss der Sinus von $u_N$ berechnet werden. +Dazu verwenden wir die komplexe Darstellung: +\[ +\sin u_N += +\frac{e^{i\frac{\pi}2-b} - e^{-i\frac{\pi}2+b}}{2i} += +\frac{ie^{-b}+ie^{b}}{2i} += +\cosh b += +3.796672364211658. +\] + +Da der Wert $\operatorname{sn}(u_N,k_N) = \sin u_N$ reell ist, wird auch +die daraus wie in Aufgabe~\ref{buch:elliptisch:aufgabe:3} +konstruierte Folge $\operatorname{sn}(u_n,k_n)$ reell sein. +Die Werte von $\operatorname{cn}(u_n,k_n)$ und $\operatorname{dn}(u_n,k_n)$ +werden für die Iterationsformeln~\eqref{buch:elliptisch:aufgabe:3:gauss} +für $\operatorname{sn}(u_n,k_n)$ nicht benötigt. +Die Berechnung ist in Tabelle~\ref{buch:elliptisch:aufgabe:4:table} +zusammengefasst. +Man liest ab, dass $\operatorname{sn}(K+iK',k)=2 = 1/k$, wie erwartet. +\end{loesung} diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex new file mode 100644 index 0000000..4a8c15c --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex @@ -0,0 +1,58 @@ +\label{buch:elliptisch:aufgabe:5} +Die sehr schnelle Konvergenz des arithmetisch-geometrische Mittels +kann auch dazu ausgenutzt werden, eine grosse Zahl von Stellen der +Kreiszahl $\pi$ zu berechnen. +Almkvist und Berndt haben gezeigt \cite{buch:almkvist-berndt}, dass +\[ +\pi += +\frac{4 M(1,\sqrt{2}/2)^2}{ +\displaystyle 1-\sum_{n=1}^\infty 2^{n+1}(a_n^2-b_n^2) +} +\] +Verwenden Sie diese Formel, um Approximationen von $\pi$ zu berechnen. + +\begin{loesung} +\begin{table} +\centering +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n & a_n & b_n & \pi_n% +\mathstrut\text{\vrule height12pt depth6pt width0pt}\\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% +0 & 1.000000000000000 & 0.707106781186548 & +\mathstrut\text{\vrule height12pt depth0pt width0pt}\\ +1 & 0.853553390593274 & 0.840896415253715 & 3.\underline{1}87672642712106 \\ +2 & 0.847224902923494 & 0.847201266746892 & 3.\underline{141}680293297648 \\ +3 & 0.847213084835193 & 0.847213084752765 & 3.\underline{141592653}895451 \\ +4 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}822 \\ +5 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}871 \\ +\hline +\infty & & & 3.141592653589793% +\mathstrut\text{\vrule height12pt depth6pt width0pt}\\ +\hline +\end{tabular} +\caption{Approximationen der Kreiszahl $\pi$ mit Hilfe des Algorithmus +des arithmetisch-geometrischen Mittels. +In nur 4 Schritten werden 12 Stellen Genauigkeit erreicht. +\label{buch:elliptisch:aufgabe:5:table}} +\end{table} +Wir schreiben +\[ +\pi_n += +\frac{4 a_k^2}{ +\displaystyle +1-\sum_{k=1}^\infty 2^{k+1}(a_k^2-b_k^2) +} +\] +für die Approximationen von $\pi$, +wobei $a_k$ und $b_k$ die Folgen der arithmetischen und geometrischen +Mittel von $1$ und $\!\sqrt{2}/2$ sind. +Die Tabelle~\ref{buch:elliptisch:aufgabe:5:table} zeigt die Resultat. +In nur 4 Schritten können 12 Stellen Genauigkeit erreicht werden, +dann beginnen jedoch bereits Rundungsfehler das Resultat zu beinträchtigen. +Für die Berechnung einer grösseren Zahl von Stellen muss daher mit +grösserer Präzision gerechnet werden. +\end{loesung} -- cgit v1.2.1 From 3d742539c034e5b9569722e95395fd5ede33d770 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Jun 2022 21:19:31 +0200 Subject: some improvements in tables --- buch/chapters/110-elliptisch/uebungsaufgaben/2.tex | 8 ++++-- buch/chapters/110-elliptisch/uebungsaufgaben/4.tex | 33 +++++++++------------- buch/chapters/110-elliptisch/uebungsaufgaben/5.tex | 7 +++-- 3 files changed, 24 insertions(+), 24 deletions(-) (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben') diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex index 9a1cafc..dbf184a 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/2.tex @@ -21,13 +21,17 @@ Zeigen Sie, dass $k_n\to 0$ und $k_n'\to 1$ mit quadratischer Konvergenz. \centering \begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} \hline -n & k & k' \\ +n & k & k'% +\mathstrut\text{\vrule height12pt depth6pt width0pt}% +\\ \hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% 0 & 0.200000000000000 & 0.979795897113271 \\ 1 & 0.010205144336438 & 0.999947926158694 \\ 2 & 0.000026037598592 & 0.999999999661022 \\ 3 & 0.000000000169489 & 1.000000000000000 \\ -4 & 0.000000000000000 & 1.000000000000000 \\ +4 & 0.000000000000000 & 1.000000000000000% +\mathstrut\text{\vrule height0pt depth6pt width0pt}\\ \hline \end{tabular} \caption{Numerisches Experiment zur Folge $(k_n,k_n')$ diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex index b48192d..8814090 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex @@ -4,22 +4,6 @@ Verwenden Sie den Algorithmus von Aufgabe~\ref{buch:elliptisch:aufgabe:3}, um dies für $k=\frac12$ nachzurechnen. \begin{loesung} -Zunächst müssen wir mit dem Algorithmus des arithmetisch-geometrischen -Mittels -\[ -K(k) -\approx -1.685750354812596 -\qquad\text{und}\qquad -K(k') -\approx -2.156515647499643 -\] -berechnen. -Aus $k=\frac12$ kann man jetzt die Folgen $k_n$ und $u_n$ berechnen, die innert -$N=5$ Iterationen konvergiert. -\end{loesung} - \begin{table} \centering \renewcommand{\tabcolsep}{5pt} @@ -44,8 +28,20 @@ $N=5$ Iterationen konvergiert. Konvergenz der Folge $k_n$ ist bei $N=5$ eintegreten. \label{buch:elliptisch:aufgabe:4:table}} \end{table} - -\begin{loesung} +Zunächst müssen wir mit dem Algorithmus des arithmetisch-geometrischen +Mittels +\[ +K(k) +\approx +1.685750354812596 +\qquad\text{und}\qquad +K(k') +\approx +2.156515647499643 +\] +berechnen. +Aus $k=\frac12$ kann man jetzt die Folgen $k_n$ und $u_n$ berechnen, die innert +$N=5$ Iterationen konvergiert. Sie führt auf \[ u_N @@ -67,7 +63,6 @@ Dazu verwenden wir die komplexe Darstellung: = 3.796672364211658. \] - Da der Wert $\operatorname{sn}(u_N,k_N) = \sin u_N$ reell ist, wird auch die daraus wie in Aufgabe~\ref{buch:elliptisch:aufgabe:3} konstruierte Folge $\operatorname{sn}(u_n,k_n)$ reell sein. diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex index 4a8c15c..fa018ca 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex @@ -6,9 +6,9 @@ Almkvist und Berndt haben gezeigt \cite{buch:almkvist-berndt}, dass \[ \pi = -\frac{4 M(1,\sqrt{2}/2)^2}{ +\frac{4 M(1,\!\sqrt{2}/2)^2}{ \displaystyle 1-\sum_{n=1}^\infty 2^{n+1}(a_n^2-b_n^2) -} +}. \] Verwenden Sie diese Formel, um Approximationen von $\pi$ zu berechnen. @@ -27,7 +27,8 @@ n & a_n & b_n & \pi_n% 2 & 0.847224902923494 & 0.847201266746892 & 3.\underline{141}680293297648 \\ 3 & 0.847213084835193 & 0.847213084752765 & 3.\underline{141592653}895451 \\ 4 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}822 \\ -5 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}871 \\ +5 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}871% +\mathstrut\text{\vrule height0pt depth6pt width0pt}\\ \hline \infty & & & 3.141592653589793% \mathstrut\text{\vrule height12pt depth6pt width0pt}\\ -- cgit v1.2.1 From e69e3df9a1e10de9e3122d694da2e923dad711a2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 5 Jul 2022 18:04:48 +0200 Subject: elliptic stuff complete --- buch/chapters/110-elliptisch/uebungsaufgaben/1.tex | 1 + 1 file changed, 1 insertion(+) (limited to 'buch/chapters/110-elliptisch/uebungsaufgaben') diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex index 694f18a..af094c6 100644 --- a/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/1.tex @@ -1,3 +1,4 @@ +\label{buch:elliptisch:aufgabe:1} In einem anharmonische Oszillator oszilliert eine Masse $m$ unter dem Einfluss einer Kraft, die nach dem Gesetz \[ -- cgit v1.2.1