From 03881a82e1a30cfaea1709f4f3f50c5cd9dfd0ea Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 25 May 2022 17:40:27 +0200 Subject: algebraische Erweiterungen --- buch/chapters/060-integral/erweiterungen.tex | 109 ++++++++++++++++++++++++++- buch/chapters/060-integral/rational.tex | 2 +- 2 files changed, 106 insertions(+), 5 deletions(-) (limited to 'buch/chapters') diff --git a/buch/chapters/060-integral/erweiterungen.tex b/buch/chapters/060-integral/erweiterungen.tex index d5c7c72..7039cc0 100644 --- a/buch/chapters/060-integral/erweiterungen.tex +++ b/buch/chapters/060-integral/erweiterungen.tex @@ -27,7 +27,7 @@ erfüllt. Voraussetzung für diese Aussage ist, dass es die Zahl $\sqrt{2}$ in einem geeigneten grösseren Körper gibt. Die reellen oder komplexen Zahlen bilden einen solchen Körper. -Wir verallemeinern diese Situation wie folgt. +Wir verallgemeinern diese Situation wie folgt. \begin{definition} Ist $K$ ein Körper, dann heisst ein Körper $L$ mit $K\subset L$ ein @@ -124,15 +124,116 @@ Ein Polynom in $\alpha$ kann also immer auf die Form~\eqref{buch:integral:eqn:algelement} gebracht werden. -XXX Quotienten +Es muss aber noch gezeigt werden, dass auch der Kehrwert eines Elements +der Form~\eqref{buch:integral:eqn:algelement} in dieser Form geschrieben +werden kann. +Sei also $a(\alpha)$ so ein Element, dann sind die beiden Polynome +$a(x)$ und $m(x)$ teilerfremd, der grösste gemeinsame Teiler ist $1$. +Mit dem erweiterten euklidischen Algorithmus kann man zwei Polynome +$s(x)$ und $t(x)$ finden derart, dass $s(x)a(x)+t(x)m(x)=1$. +Setzt man $\alpha$ für $x$ ein, verschwindet das Minimalpolynom und +es bleibt +\[ +s(\alpha)a(\alpha) = 1 +\qquad\Rightarrow\qquad +s(\alpha) = \frac{1}{a(\alpha)}. +\] +Damit ist $s(\alpha)$ eine Darstellung von $1/a(\alpha)$ in der +Form~\eqref{buch:integral:eqn:algelement}. + +% Transzendente Körpererweiterungen +\subsubsection{Transzendente Erweiterungen} +Nicht alle Zahlen in $\mathbb{R}$ sind algebraisch. +Lindemann bewies 1882 einen allgemeinen Satz, aus dem folgt, +dass $\pi$ und $e$ nicht algebraisch sind, es gibt also +kein Polynom mit rationalen Koeffizienten, welches $\pi$ +oder $e$ als Nullstelle hat. + +\begin{definition} +Eine Zahl $\alpha\in L$ in einer Körpererweiterung $K\subset L$ +heisst {\em transzendent}, wenn $\alpha$ nicht algebraisch ist, +wenn es also kein Polynom in $K[x]$ gibt, welches $\alpha$ als +Nullstelle hat. +\end{definition} + +Die Zahlen $\pi$ und $e$ sind also transzendent. +Eine andere Art, diese Eigenschaft zu beschreiben ist zu sagen, +dass die Potenzen +\[ +1=\pi^0, \pi, \pi^2,\pi^3,\dots +\] +linear unabhängig sind. +Gäbe es nämlich eine lineare Abhängigkeit, dann gäbe es Koeffizienten +$l_i$ derart, dass +\[ +l_0 + l_1\pi^1 + l_2\pi^2 + \ldots + l_{n-1}\pi^{n-1} + l_{n}\pi^n = l(\pi)=0, +\] +und damit wäre dann ein Polynom gefunden, welches $\pi$ als Nullstelle hat. + +Selbstverstländlich kann man zu einem transzendenten Element $\alpha$ +immer noch einen Körper konstruieren, der alle Zahlen enthält, welche man +mit den arithmetischen Operationen aus $\alpha$ bilden kann. +Man kann ihn schreiben als +\[ +K(\alpha) += +\biggl\{ +\frac{p(\alpha)}{q(\alpha)} +\;\bigg|\; +p(x),q(x)\in K[x] \wedge p(x)\ne 0 +\biggr\}, +\] +aber die Vereinfachungen zur +Form~\eqref{buch:integral:eqn:algelement}, die bei einem algebraischen +Element $\alpha$ möglich waren, können jetzt nicht mehr durchgeführt +werden. +$K\subset K(\alpha)$ ist zwar immer noch eine Körpererweiterung, aber +$K(\alpha)$ ist nicht mehr ein endlichdimensionaler Vektorraum. +Die Körpererweiterung $K\subset K(\alpha)$ heisst {\em transzendent}. % rationale Funktionen als Körpererweiterungen \subsubsection{Rationale Funktionen als Körpererweiterung} +Die unabhängige Variable wird bei Rechnen so behandelt, dass die +Potenzen alle linear unabhängig sind. +Dies ist die Grundlage für den Koeffizientenvergleich. +Der Körper der rationalen Funktion $K(x)$ +ist also eine transzendente Körpererweiterung von $K$. % Erweiterungen mit algebraischen Funktionen \subsubsection{Algebraische Funktionen} +Für das Integrationsproblem möchten wir nicht nur rationale Funktionen +verwenden können, sondern auch Wurzelfunktionen. +Wir möchten also zum Beispiel auch mit der Funktion $\sqrt{ax^2+bx+c}$ +und allem, was man mit arithmetischen Operationen daraus machen kann, +arbeiten können. +Eine Körpererweiterung, die $\sqrt{ax^2+bx+c}$ enthält, enthält auch +alles, was man daraus bilden kann. +Doch wie bekommen wir die Funktion $\sqrt{ax^2+bx+c}$ in den Körper? -% Transzendente Körpererweiterungen -\subsubsection{Transzendente Erweiterungen} +Die Art und Weise, wie man Wurzeln in der Schule kennenlernt ist als +eine neue Operation, die zu einer Zahl die Quadratwurzel liefert. +Diese Idee, den Körper mit einer weiteren Funktion anzureichern, +führt über nicht auf eine nützliche neue algebraische Struktur. +Wir dürfen daher $\sqrt{ax^2+bx+c}$ nicht als die Zusammensetzung +einer einzelnen neuen Funktion $\sqrt{\phantom{A}}$ mit +einem Polynom betrachten. + +Die Wurzel $\sqrt{ax^2+bx+c}$ ist aber auch die Nullstelle des Polynoms +\[ +p(z) += +z^2 - [ax^2+bx+c] +\in +K(x)[z] +\] +mit Koeffizienten in $K(x)$. +Die eckigen Klammern sollen helfen, die Koeffizienten in $K(x)$ +zu erkennen. +Die Funktion $\sqrt{ax^2+bx+c}$ ist also algebraisch über $K(x)$. +Einen Funktionenkörper, der die Funktion enthält, kann man also erhalten, +indem man den Körper $K(x)$ um das über $K(x)$ algebraische Element +$y=\sqrt{ax^2+bx+c}$ zu $K(x,y)=K(x,\sqrt{ax^2+bx+c}$ erweitert. +Wurzelfunktion werden daher nicht als Zusammensetzungen, sondern als +algebraische Erweiterungen eines Funktionenkörpers betrachtet. diff --git a/buch/chapters/060-integral/rational.tex b/buch/chapters/060-integral/rational.tex index 4cd7d7f..ae64c34 100644 --- a/buch/chapters/060-integral/rational.tex +++ b/buch/chapters/060-integral/rational.tex @@ -157,7 +157,7 @@ p(x),q(x)\in\mathbb{Q}[x] q(x)\ne 0 \biggr\}, \] -bestehenden aus allen Quotienten von Polynome, deren Nenner nicht +bestehend aus allen Quotienten von Polynome, deren Nenner nicht das Nullpolynom ist, heisst der Körper der {\em rationalen Funktionen} \index{rationale Funktion}% mit Koeffizienten in $\mathbb{Q}$. -- cgit v1.2.1