From 07724dd7774994996b3dc1b2955ef9a30cb59a44 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Thu, 16 Jun 2022 21:47:35 +0200 Subject: more complete chapter 1 --- buch/chapters/010-potenzen/loesbarkeit.tex | 68 ++++++++++++++++++++++ buch/chapters/010-potenzen/polynome.tex | 93 +++++++++++++++++++++++++++++- 2 files changed, 160 insertions(+), 1 deletion(-) (limited to 'buch/chapters') diff --git a/buch/chapters/010-potenzen/loesbarkeit.tex b/buch/chapters/010-potenzen/loesbarkeit.tex index 692192d..f93a84b 100644 --- a/buch/chapters/010-potenzen/loesbarkeit.tex +++ b/buch/chapters/010-potenzen/loesbarkeit.tex @@ -20,8 +20,21 @@ für ein Polynome $p(x)$ und eine Konstante $c\in\mathbb{C}$. % Fundamentalsatz der Algebra % \subsection{Fundamentalsatz der Algebra} +In Abschnitt~\ref{buch:polynome:subsection:faktorisierung-und-nullstellen} +wurde gezeigt, dass sich jede Nullstellen $\alpha$ eines Polynoms als +Faktor $x-\alpha$ abspalten lässt. +Jedes Polynom liess sich in ein Produkt von Linearfaktoren und +einen Faktor zerlegen, der keine Nullstellen hat. +Zum Beispiel hat das Polynom $x^2+1\in\mathbb{R}[x]$ keine +Nullstellen in $\mathbb{R}$. +Eine solche Nullstelle müsste eine Quadratwurzel von $-1$ sein. +Die komplexen Zahlen $\mathbb{C}$ wurden genau mit dem Ziel konstruiert, +dass $i=\sqrt{-1}$ sinnvoll wird. +Der Fundamentalsatz der Algebra zeigt, dass $\mathbb{C}$ alle +Nullstellen von Polynomen enthält. \begin{satz}[Gauss] +\index{Fundamentalsatz der Algebra}% \label{buch:potenzen:satz:fundamentalsatz} Jedes Polynom $p(x)=a_nx^n+\dots + a_2x^2 + a_1x + a_0\in\mathbb{C}[x]$ zerfällt in ein Produkt @@ -34,6 +47,7 @@ a_n für Nullstellen $\alpha_k\in\mathbb{C}$. \end{satz} + % % Lösbarkeit durch Wurzelausdrücke % @@ -148,3 +162,57 @@ Für Polynomegleichungen vom Grad $n\ge 5$ gibt es keine allgemeine Lösung durch Wurzelausdrücke. \end{satz} + + +% +% Algebraische Zahlen +% +\subsection{Algebraische Zahlen} +Die Verwendung der komplexen Zahlen ist für numerische Rechnungen +zweckmässig. +In den Anwendungen der Computer-Algebra hingegen erwartet man zum +Beispiel exakte Formeln für eine Stammfunktion. +Nicht rationale Zahlen können nur exakt verarbeitet werden, wenn +Sie sich algebraisch in endlich vielen Schritten charakterisieren +lassen. +Dies ist zum Beispiel für rationale Zahlen $\mathbb{Q}$ möglich. +Gewisse irrationale Zahlen kann man charakterisieren durch +die Eigenschaft, Nullstelle eines Polynoms $p(x)\in\mathbb{Q}[x]$ +mit rationalen Koeffizienten zu sein. + +\begin{definition} +Eine Zahl $\alpha$ heisst {\em algebraisch} über $\mathbb{Q}$, +wenn es ein Polynom +\index{algebraische Zahl}% +$p(x)\in \mathbb{Q}[x]$ gibt, welches $\alpha$ als Nullstelle hat. +Eine Zahl heisst transzendent über $\mathbb{Q}$, wenn sie nicht algebraisch ist +über $\mathbb{Q}$. +\end{definition} + +Die Zahlen $i=\sqrt{-1}$ und $\sqrt{n\mathstrut}$ für $n\in\mathbb{N}$ +sind also algebraisch über $\mathbb{Z}$. +Es ist gezeigt worden, dass $\pi$ und $e$ nicht nur irrational +sind, sondern sogar transzendent. + +Eine Polynomgleichung $p(\alpha)=0$ mit $p(x)\in\mathbb{Q}[x]$ +hat eine Rechenregel für $\alpha$ zur Folge. +Dazu schreibt man +\[ +p_n\alpha^n + p_{n-1}\alpha^{n-1} + \dots + a_1\alpha + a_0 =0 +\qquad\Rightarrow\qquad +\alpha^n = -\frac{1}{p_n}\bigl( +p_{n-1}\alpha^{n-1}+\dots+a_1\alpha+a_0 +\bigr). +\] +Diese Regel erlaubt, jede Potenz $\alpha^k$ mit $k\ge n$ durch +Potenzen von $\alpha^l$ mit $l