From 7cf7e37298a732b1a900b5eed59c442461e43a6d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Jun 2022 21:02:10 +0200 Subject: add more problems to chapter 11 --- buch/chapters/110-elliptisch/Makefile.inc | 1 + buch/chapters/110-elliptisch/chapter.tex | 1 + buch/chapters/110-elliptisch/uebungsaufgaben/4.tex | 80 ++++++++++++++++++++++ buch/chapters/110-elliptisch/uebungsaufgaben/5.tex | 58 ++++++++++++++++ buch/chapters/references.bib | 9 +++ 5 files changed, 149 insertions(+) create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/4.tex create mode 100644 buch/chapters/110-elliptisch/uebungsaufgaben/5.tex (limited to 'buch/chapters') diff --git a/buch/chapters/110-elliptisch/Makefile.inc b/buch/chapters/110-elliptisch/Makefile.inc index ef6ea51..4e2644c 100644 --- a/buch/chapters/110-elliptisch/Makefile.inc +++ b/buch/chapters/110-elliptisch/Makefile.inc @@ -15,4 +15,5 @@ CHAPTERFILES += \ chapters/110-elliptisch/uebungsaufgaben/2.tex \ chapters/110-elliptisch/uebungsaufgaben/3.tex \ chapters/110-elliptisch/uebungsaufgaben/4.tex \ + chapters/110-elliptisch/uebungsaufgaben/5.tex \ chapters/110-elliptisch/chapter.tex diff --git a/buch/chapters/110-elliptisch/chapter.tex b/buch/chapters/110-elliptisch/chapter.tex index d65570b..21fc986 100644 --- a/buch/chapters/110-elliptisch/chapter.tex +++ b/buch/chapters/110-elliptisch/chapter.tex @@ -44,5 +44,6 @@ wieder hergestellt. \uebungsaufgabe{2} \uebungsaufgabe{3} \uebungsaufgabe{4} +\uebungsaufgabe{5} \end{uebungsaufgaben} diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex new file mode 100644 index 0000000..b48192d --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/4.tex @@ -0,0 +1,80 @@ +\label{buch:elliptisch:aufgabe:4} +Es ist bekannt, dass $\operatorname{sn}(K+iK', k) = 1/k$ gilt. +Verwenden Sie den Algorithmus von Aufgabe~\ref{buch:elliptisch:aufgabe:3}, +um dies für $k=\frac12$ nachzurechnen. + +\begin{loesung} +Zunächst müssen wir mit dem Algorithmus des arithmetisch-geometrischen +Mittels +\[ +K(k) +\approx +1.685750354812596 +\qquad\text{und}\qquad +K(k') +\approx +2.156515647499643 +\] +berechnen. +Aus $k=\frac12$ kann man jetzt die Folgen $k_n$ und $u_n$ berechnen, die innert +$N=5$ Iterationen konvergiert. +\end{loesung} + +\begin{table} +\centering +\renewcommand{\tabcolsep}{5pt} +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline + n & k_n & u_n & \operatorname{sn}(u_n,k_n)% +\mathstrut\text{\vrule height12pt depth6pt width0pt}% +\\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% + 0 & 0.500000000000000 & 1.685750354812596 + 2.156515647499643i & 2.000000000000000 \\ + 1 & 0.071796769724491 & 1.572826493259468 + 2.012056490946491i & 3.732050807568877 \\ + 2 & 0.001292026239995 & 1.570796982340579 + 2.009460215619685i & 3.796651109009551 \\ + 3 & 0.000000417333300 & 1.570796326794965 + 2.009459377005374i & 3.796672364209438 \\ + 4 & 0.000000000000044 & 1.570796326794897 + 2.009459377005286i & 3.796672364211658 \\ + N & 0.000000000000000 & 1.570796326794897 + 2.009459377005286i & 3.796672364211658% +\mathstrut\text{\vrule height12pt depth6pt width0pt}% +\\ +\hline +\end{tabular} +\caption{Berechnung von $\operatorname{sn}(K+iK',k)=1/k$ mit Hilfe der Landen-Transformation. +Konvergenz der Folge $k_n$ ist bei $N=5$ eintegreten. +\label{buch:elliptisch:aufgabe:4:table}} +\end{table} + +\begin{loesung} +Sie führt auf +\[ +u_N += +\frac{\pi}2 + 2.009459377005286i += +\frac{\pi}2 + bi. +\] +Jetzt muss der Sinus von $u_N$ berechnet werden. +Dazu verwenden wir die komplexe Darstellung: +\[ +\sin u_N += +\frac{e^{i\frac{\pi}2-b} - e^{-i\frac{\pi}2+b}}{2i} += +\frac{ie^{-b}+ie^{b}}{2i} += +\cosh b += +3.796672364211658. +\] + +Da der Wert $\operatorname{sn}(u_N,k_N) = \sin u_N$ reell ist, wird auch +die daraus wie in Aufgabe~\ref{buch:elliptisch:aufgabe:3} +konstruierte Folge $\operatorname{sn}(u_n,k_n)$ reell sein. +Die Werte von $\operatorname{cn}(u_n,k_n)$ und $\operatorname{dn}(u_n,k_n)$ +werden für die Iterationsformeln~\eqref{buch:elliptisch:aufgabe:3:gauss} +für $\operatorname{sn}(u_n,k_n)$ nicht benötigt. +Die Berechnung ist in Tabelle~\ref{buch:elliptisch:aufgabe:4:table} +zusammengefasst. +Man liest ab, dass $\operatorname{sn}(K+iK',k)=2 = 1/k$, wie erwartet. +\end{loesung} diff --git a/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex new file mode 100644 index 0000000..4a8c15c --- /dev/null +++ b/buch/chapters/110-elliptisch/uebungsaufgaben/5.tex @@ -0,0 +1,58 @@ +\label{buch:elliptisch:aufgabe:5} +Die sehr schnelle Konvergenz des arithmetisch-geometrische Mittels +kann auch dazu ausgenutzt werden, eine grosse Zahl von Stellen der +Kreiszahl $\pi$ zu berechnen. +Almkvist und Berndt haben gezeigt \cite{buch:almkvist-berndt}, dass +\[ +\pi += +\frac{4 M(1,\sqrt{2}/2)^2}{ +\displaystyle 1-\sum_{n=1}^\infty 2^{n+1}(a_n^2-b_n^2) +} +\] +Verwenden Sie diese Formel, um Approximationen von $\pi$ zu berechnen. + +\begin{loesung} +\begin{table} +\centering +\begin{tabular}{|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|>{$}c<{$}|} +\hline +n & a_n & b_n & \pi_n% +\mathstrut\text{\vrule height12pt depth6pt width0pt}\\ +\hline +\mathstrut\text{\vrule height12pt depth0pt width0pt}% +0 & 1.000000000000000 & 0.707106781186548 & +\mathstrut\text{\vrule height12pt depth0pt width0pt}\\ +1 & 0.853553390593274 & 0.840896415253715 & 3.\underline{1}87672642712106 \\ +2 & 0.847224902923494 & 0.847201266746892 & 3.\underline{141}680293297648 \\ +3 & 0.847213084835193 & 0.847213084752765 & 3.\underline{141592653}895451 \\ +4 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}822 \\ +5 & 0.847213084793979 & 0.847213084793979 & 3.\underline{141592653589}871 \\ +\hline +\infty & & & 3.141592653589793% +\mathstrut\text{\vrule height12pt depth6pt width0pt}\\ +\hline +\end{tabular} +\caption{Approximationen der Kreiszahl $\pi$ mit Hilfe des Algorithmus +des arithmetisch-geometrischen Mittels. +In nur 4 Schritten werden 12 Stellen Genauigkeit erreicht. +\label{buch:elliptisch:aufgabe:5:table}} +\end{table} +Wir schreiben +\[ +\pi_n += +\frac{4 a_k^2}{ +\displaystyle +1-\sum_{k=1}^\infty 2^{k+1}(a_k^2-b_k^2) +} +\] +für die Approximationen von $\pi$, +wobei $a_k$ und $b_k$ die Folgen der arithmetischen und geometrischen +Mittel von $1$ und $\!\sqrt{2}/2$ sind. +Die Tabelle~\ref{buch:elliptisch:aufgabe:5:table} zeigt die Resultat. +In nur 4 Schritten können 12 Stellen Genauigkeit erreicht werden, +dann beginnen jedoch bereits Rundungsfehler das Resultat zu beinträchtigen. +Für die Berechnung einer grösseren Zahl von Stellen muss daher mit +grösserer Präzision gerechnet werden. +\end{loesung} diff --git a/buch/chapters/references.bib b/buch/chapters/references.bib index fbbbf30..e8f3494 100644 --- a/buch/chapters/references.bib +++ b/buch/chapters/references.bib @@ -146,3 +146,12 @@ year = 2010, ISBN = { 978-1-4419-3090-3 } } + +@article{buch:almkvist-berndt, + author = { Gert Almkvist und Bruce Berndt }, + title = { Gauss, Landen, Ramanjujan, the Arithmetic-Geometric Mean, Ellipses $\pi$, and the {\em Ladies Diary} }, + journal = { The American Mathematical Monthly }, + volume = { 95 }, + pages = { 585--608 }, + year = 1988 +} -- cgit v1.2.1