From 374bb4a4dbc16598329cb777600c531c8c848330 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 5 Jun 2022 11:24:46 +0200 Subject: fix trigo definition graph --- buch/chapters/030-geometrie/chapter.tex | 3 +- .../030-geometrie/images/einheitskreis.pdf | Bin 19706 -> 20005 bytes .../030-geometrie/images/einheitskreis.tex | 4 + buch/chapters/030-geometrie/uebungsaufgaben/3.tex | 169 +++++++++++++++++++++ 4 files changed, 175 insertions(+), 1 deletion(-) create mode 100644 buch/chapters/030-geometrie/uebungsaufgaben/3.tex (limited to 'buch/chapters') diff --git a/buch/chapters/030-geometrie/chapter.tex b/buch/chapters/030-geometrie/chapter.tex index f3f1d39..0b2842b 100644 --- a/buch/chapters/030-geometrie/chapter.tex +++ b/buch/chapters/030-geometrie/chapter.tex @@ -42,7 +42,7 @@ wie die Berechnung der Länge von Ellipsen- oder Hyperbelbögen auf die Notwendigkeit führt, neue spezielle Funktionen zu definieren. \input{chapters/030-geometrie/trigonometrisch.tex} -\input{chapters/030-geometrie/sphaerisch.tex} +%\input{chapters/030-geometrie/sphaerisch.tex} \input{chapters/030-geometrie/hyperbolisch.tex} \input{chapters/030-geometrie/laenge.tex} \input{chapters/030-geometrie/flaeche.tex} @@ -54,5 +54,6 @@ die Notwendigkeit führt, neue spezielle Funktionen zu definieren. %\uebungsaufgabe{0} \uebungsaufgabe{1} \uebungsaufgabe{2} +\uebungsaufgabe{3} \end{uebungsaufgaben} diff --git a/buch/chapters/030-geometrie/images/einheitskreis.pdf b/buch/chapters/030-geometrie/images/einheitskreis.pdf index 0b514eb..d708377 100644 Binary files a/buch/chapters/030-geometrie/images/einheitskreis.pdf and b/buch/chapters/030-geometrie/images/einheitskreis.pdf differ diff --git a/buch/chapters/030-geometrie/images/einheitskreis.tex b/buch/chapters/030-geometrie/images/einheitskreis.tex index c38dc19..a194190 100644 --- a/buch/chapters/030-geometrie/images/einheitskreis.tex +++ b/buch/chapters/030-geometrie/images/einheitskreis.tex @@ -41,6 +41,7 @@ \fill[color=blue] (\a:\r) circle[radius=0.05]; \draw[color=blue,line width=1.4pt] (\r,0) -- (\r,{\r*tan(\a)}); +\fill[color=blue] (\r,{\r*tan(\a)}) circle[radius=1.0pt]; \node[color=blue] at (\r,{0.5*\r*tan(\a)}) [right] {$\tan\alpha$}; \draw[color=blue,line width=0.4pt] ({\r*cos(\a)},0) -- (\a:\r); @@ -53,6 +54,7 @@ \draw[color=blue] (-0.1,{\r*sin(\a)}) -- (0.1,{\r*sin(\a)}); \draw[color=blue,line width=1.4pt] (0,\r) -- ({\r/tan(\a)},\r); +\fill[color=blue] ({\r/tan(\a)},\r) circle[radius=1.0pt]; \node[color=blue] at ({0.5*\r/tan(\a)},\r) [above] {$\cot\alpha$}; \draw[color=darkgreen,line width=1pt] (0,0) -- (\b:\r); @@ -61,9 +63,11 @@ \fill[color=darkgreen] (\b:\r) circle[radius=0.05]; \draw[color=darkgreen,line width=1.4pt] (0,\r) -- ({\r/tan(\b)},\r); +\fill[color=darkgreen] ({\r/tan(\b)},\r) circle[radius=1.0pt]; \node[color=darkgreen] at ({0.5*\r/tan(\b)},\r) [above] {$\cot\beta$}; \draw[color=darkgreen,line width=1.4pt] (\r,0) -- (\r,{\r*tan(\b)}); +\fill[color=darkgreen] (\r,{\r*tan(\b)}) circle[radius=1.0pt]; \node[color=darkgreen] at (\r,{0.5*\r*tan(\b)}) [right] {$\tan\beta$}; \draw[color=darkgreen,line width=0.4pt] (\b:\r) -- (0,{\r*sin(\b)}); diff --git a/buch/chapters/030-geometrie/uebungsaufgaben/3.tex b/buch/chapters/030-geometrie/uebungsaufgaben/3.tex new file mode 100644 index 0000000..6a501fb --- /dev/null +++ b/buch/chapters/030-geometrie/uebungsaufgaben/3.tex @@ -0,0 +1,169 @@ +\def\cas{\operatorname{cas}} +Die Funktion $\cas$ definiert durch +$\cas x = \cos x + \sin x$ hat einige interessante Eigenschaften. +Wie die gewöhnlichen trigonometrischen Funktionen $\sin x$ und $\cos x$ +ist $\cas x$ $2\pi$-periodisch. +Die Ableitung und das Additionstheorem benötigen bei den gewöhnlichen +trigonometrischen Funktionen aber beide Funktionen, im Gegensatz zu den +im folgenden hergeleiteten Formeln, die nur die Funktion $\cas x$ brauchen. +\begin{teilaufgaben} +\item +Drücken Sie die Ableitung von $\cas x$ allein durch Werte der +$\cas$-Funktion aus. +\item +Zeigen Sie, dass +\[ +\cas x += +\sqrt{2} \sin\biggl(x+\frac{\pi}4\biggr) += +\sqrt{2} \cos\biggl(x-\frac{\pi}4\biggr). +\] +\item +Beweisen Sie das Additionstheorem für die $\cas$-Funktion +\begin{equation} +\cas(x+y) += +\frac12\bigl( +\cas(x)\cas(y) + \cas x\cas (-y) + \cas(-x)\cas(y) -\cas(-x)\cas(-y) +\bigr) +\label{buch:geometrie:uebung3:eqn:addition} +\end{equation} +\end{teilaufgaben} +Youtuber Dr Barker hat die Funktion $\cas$ im Video +{\small\url{https://www.youtube.com/watch?v=bn38o3u0lDc}} vorgestellt. + +\begin{loesung} +\begin{teilaufgaben} +\item +Die Ableitung ist +\[ +\frac{d}{dx}\cas x += +\frac{d}{dx}(\cos x + \sin x) += +-\sin x + \cos x += +\sin(-x) + \cos(-x) += +\cas(x). +\] +\item +Die Additionstheoreme angewendet auf die trigonometrischen Funktionen +auf der rechten Seite ergibt +\begin{align*} +\sin\biggl(x+\frac{\pi}4\biggr) +&= +\sin x \cos\frac{\pi}4 + \cos x \sin\frac{\pi}4 +&&& +\cos\biggl(x-\frac{\pi}4\biggr) +&= +\cos(x)\cos\frac{\pi}4 -\sin x \sin\biggl(-\frac{\pi}4\biggr) +\\ +&= +\frac{1}{\sqrt{2}} \sin x ++ +\frac{1}{\sqrt{2}} \cos x +&&& +&= +\frac{1}{\sqrt{2}} \cos x ++ +\frac{1}{\sqrt{2}} \sin x +\\ +&=\frac{1}{\sqrt{2}} \cas x +&&& +&= +\frac{1}{\sqrt{2}} \cas x. +\end{align*} +Multiplikation mit $\sqrt{2}$ ergibt die behaupteten Relationen. +\item +Substituiert man die Definition von $\cas(x)$ auf der rechten Seite von +\eqref{buch:geometrie:uebung3:eqn:addition} und multipliziert aus, +erhält man +\begin{align*} +\eqref{buch:geometrie:uebung3:eqn:addition} +&= +{\textstyle\frac12}\bigl( +(\cos x + \sin x) +(\cos y + \sin y) ++ +(\cos x + \sin x) +(\cos y - \sin y) +\\ +&\qquad ++ +(\cos x - \sin x) +(\cos y + \sin y) +- +(\cos x - \sin x) +(\cos y - \sin y) +\bigr) +\\ +&= +\phantom{-\mathstrut} +{\textstyle\frac12}\bigl( +\cos x\cos y ++ +\cos x\sin y ++ +\sin x\cos y ++ +\sin x\sin y +\\ +& +\phantom{=-\mathstrut{\textstyle\frac12}\bigl(}\llap{$\mathstrut +\mathstrut$} +\cos x\cos y +- +\cos x\sin y ++ +\sin x\cos y +- +\sin x\sin y +\\ +& +\phantom{=-\mathstrut{\textstyle\frac12}\bigl(}\llap{$\mathstrut +\mathstrut$} +\cos x\cos y ++ +\cos x\sin y +- +\sin x\cos y +- +\sin x\sin y +\bigr) +\\ +& +\phantom{=} +-\mathstrut{\textstyle\frac12}\bigl( +\cos x\cos y +- +\cos x\sin y +- +\sin x\cos y ++ +\sin x\sin y +\bigr) +\\ +&= \cos x \cos y ++ +\cos x \sin y ++ +\sin x \cos y +- +\sin x \sin y. +\intertext{Die äussersten zwei Terme passen zum Additionstheorem für den +Kosinus, die beiden inneren Terme dagegen zum Sinus. +Fasst man sie zusammen, erhält man} +&= +(\sin x\cos y + \cos x \sin y) ++ +(\cos x\cos y - \sin x \sin y) +\\ +&= +\sin (x+y) + \cos(x+y) += +\cas(x+y). +\end{align*} +Damit ist das Additionstheorem für die Funktion $\cas$ bewiesen. +\qedhere +\end{teilaufgaben} +\end{loesung} -- cgit v1.2.1 From d3c217cdb6106f2082097dd9e76f200885c853cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 11:45:38 +0200 Subject: add polynomials with elementary w-integrals paper --- buch/chapters/010-potenzen/polynome.tex | 239 ++++++++++++++++++++++++++++++-- 1 file changed, 224 insertions(+), 15 deletions(-) (limited to 'buch/chapters') diff --git a/buch/chapters/010-potenzen/polynome.tex b/buch/chapters/010-potenzen/polynome.tex index 5f119e5..981e444 100644 --- a/buch/chapters/010-potenzen/polynome.tex +++ b/buch/chapters/010-potenzen/polynome.tex @@ -13,20 +13,30 @@ Operationen konstruieren lassen, sind die Polynome. \index{Polynom}% Ein {\em Polynome} vom Grad $n$ ist die Funktion \[ -p(x) = a_nx^2n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0, +p(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_2x^2 + a_1x + a_0, \] wobei $a_n\ne 0$ sein muss. Das Polynom heisst {\em normiert}, wenn $a_n=1$ ist. \index{normiert}% +\index{Grad eines Polynoms}% Die Menge aller Polynome mit Koeffizienten in der Menge $K$ wird mit $K[x]$ bezeichnet. \end{definition} Die Menge $K[x]$ ist heisst auch der {\em Polynomring}, weil $K[x]$ -mit der Addition, Subtraktion und Multiplikation von Polynomen ein -Ring mit $1$ ist. -Im Folgenden werden wir uns auf die Fälle $K=\mathbb{R}$ und $K=\mathbb{C}$ -beschränken. +mit der Addition, Subtraktion und Multiplikation von Polynomen eine +algebraische Struktur bildet, die man einen Ring mit $1$ nennt. +\index{Ring}% +Im Folgenden werden wir uns auf die Fälle $K=\mathbb{Q}$, $K=\mathbb{R}$ +und $K=\mathbb{C}$ beschränken. + +Für den Grad eines Polynoms gelten die bekannten Rechenregeln +\begin{align*} +\deg (a(x) + b(x)) &\le \operatorname{max}(\deg a(x), \deg b(x)) +\\ +\deg (a(x)\cdot b(x)) &=\deg a(x) + \deg b(x) +\end{align*} +für beliebige Polynome $a(x),b(x)\in K[x]$. In Abschnitt~\ref{buch:orthogonalitaet:section:orthogonale-funktionen} werden Familien von Polynomen konstruiert werden, die sich durch eine @@ -35,12 +45,14 @@ Diese Polynome lassen sich typischerweise auch als Lösungen von Differentialgleichungen finden. Ausserdem werden hypergeometrische Funktionen \[ -\mathstrut_pF_q\biggl(\begin{matrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{matrix};z\biggr), +\mathstrut_pF_q\biggl( +\begin{matrix}a_1,\dots,a_p\\b_1,\dots,b_q\end{matrix};z +\biggr), \] die in Abschnitt~\ref{buch:rekursion:section:hypergeometrische-funktion} definiert werden, zu Polynomen, wenn mindestens einer der Parameter $a_k$ negativ ganzzahlig ist. -Polynome sind also bereits eine Vielfältige Quelle von speziellen +Polynome sind also bereits eine vielfältige Quelle von speziellen Funktionen. Viele spezielle Funktionen werden aber komplizierter sein und @@ -53,6 +65,7 @@ Dank des folgenden Satzes kann dies immer mit Polynomen geschehen. \begin{satz}[Weierstrass] \label{buch:potenzen:satz:weierstrass} +\index{Weierstrass, Satz von}% Eine auf einem kompakten Intervall $[a,b]$ stetige Funktion $f(x)$ lässt sich durch eine Folge $p_n(x)$ von Polynomen gleichmässig approximieren. @@ -69,6 +82,189 @@ ebenfalls als Approximationen dienen können. Weitere Möglichkeiten liefern Interpolationsmethoden der numerischen Mathematik. +\subsection{Polynomdivision, Teilbarkeit und grösster gemeinsamer Teiler} +Der schriftliche Divisionsalgorithmus für Zahlen funktioniert +auch für die Division von Polynomen. +Zu zwei beliebigen Polynomen $p(x)$ und $q(x)$ lassen sich also +immer zwei Polynome $a(x)$ und $r(x)$ finden derart, dass +$p(x) = a(x) q(x) + r(x)$. +Das Polynom $a(x)$ heisst der {\em Quotient}, $r(x)$ der {\em Rest} +der Division. +Das Polynom $p(x)$ heisst {\em teilbar} durch $q(x)$, geschrieben +$q(x)\mid p(x)$, wenn $r(x)=0$ ist. + +\subsubsection{Grösster gemeinsamer Teiler} +Mit dem Begriff der Teilbarkeit geht auch die Idee des grössten +gemeinsamen Teilers einher. +Ein gemeinsamer Teiler zweier Polynome $a(x)$ und $b(x)$ +ist ein Polynom $g(x)$, welches beide Polynome teilt, also +$g(x)\mid a(x)$ und $g(x)\mid b(x)$. +\index{grösster gemeinsamer Teiler}% +Ein Polynome $g(x)$ heisst grösster gemeinsamer Teiler von $a(x)$ +und $b(x)$, wenn jeder andere gemeinsame Teiler $f(x)$ von $a(x)$ +und $b(x)$ auch ein Teiler von $g(x)$ ist. +Man beachte, dass die skalaren Vielfachen eines grössten gemeinsamen +Teilers ebenfalls grösste gemeinsame Teiler sind, der grösste gemeinsame +Teiler ist also nicht eindeutig bestimmt. + +\subsubsection{Der euklidische Algorithmus} +Zur Berechnung eines grössten gemeinsamen Teilers steht wie bei den +ganzen Zahlen der euklidische Algorithmus zur Verfügung. +Dazu bildet man die Folgen von Polynomen +\[ +\begin{aligned} +a_0(x)&=a(x) & b_0(x) &= b(x) +& +&\Rightarrow& +a_0(x)&=b_0(x) q_0(x) + r_0(x) && +\\ +a_1(x)&=b_0(x) & b_1(x) &= r_0(x) +& +&\Rightarrow& +a_1(x)&=b_1(x) q_1(x) + r_1(x) && +\\ +a_2(x)&=b_1(x) & b_2(x) &= r_1(x) +& +&\Rightarrow& +a_2(x)&=b_2(x) q_2(x) + r_2(x) && +\\ +&&&&&\hspace*{2mm}\vdots&& +\\ +a_{m-1}(x)&=b_{m-2}(x) & b_{m-1}(x) &= r_{m-2}(x) +& +&\Rightarrow& +a_{m-1}(x)&=b_{m-1}(x)q_{m-1}(x) + r_{m-1}(x) &\text{mit }r_{m-1}(x)&\ne 0 +\\ +a_m(x)&=b_{m-1}(x) & b_m(x)&=r_{m-1}(x) +& +&\Rightarrow& +a_m(x)&=b_m(x)q_m(x).&& +\end{aligned} +\] +Der Index $m$ ist der Index, bei dem zum ersten Mal $r_m(x)=0$ ist. +Dann ist $g(x)=r_{m-1}(x)$ ein grösster gemeinsamer Teiler. + +\subsubsection{Der erweiterte euklidische Algorithmus} +Die Konstruktion der Folgen $a_n(x)$ und $b_n(x)$ kann in Matrixform +kompakter geschrieben werden als +\[ +\begin{pmatrix} +a_k(x)\\ +b_k(x) +\end{pmatrix} += +\begin{pmatrix} +b_{k-1}(x)\\ +r_{k-1}(x) +\end{pmatrix} += +\begin{pmatrix} +0 & 1\\ +1 & -q_{k-1}(x) +\end{pmatrix} +\begin{pmatrix} +a_{k-1}(x)\\ +b_{k-1}(x) +\end{pmatrix}. +\] +Kürzen wir die $2\times 2$-Matrix als +\[ +Q_k(x) = \begin{pmatrix} 0&1\\1&-q_k(x)\end{pmatrix} +\] +ab, dann ergibt das Produkt der Matrizen $Q_0(x)$ bis $Q_{m}(x)$ +\[ +\begin{pmatrix} +g(x)\\ +0 +\end{pmatrix} += +\begin{pmatrix} +r_{m-1}(x)\\ +r_{m}(x) +\end{pmatrix} += +Q_{m}(x) +Q_{m-1}(x) +\cdots +Q_1(x) +Q_0(x) +\begin{pmatrix} +a(x)\\ +b(x) +\end{pmatrix}. +\] +Zur Berechnung des Produktes der Matrizen $Q_k(x)$ kann man rekursiv +vorgehen mit der Rekursionsformel +\[ +S_{k}(x) = Q_{k}(x) S_{k-1}(x) +\qquad\text{mit}\qquad +S_{-1}(x) += +\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}. +\] +Ausgeschrieben bedeutet dies Matrixrekursionsformel +\[ +S_{k-1}(x) += +\begin{pmatrix} +c_{k-1} & d_{k-1} \\ +c_k & d_k +\end{pmatrix} +\qquad\Rightarrow\qquad +Q_{k}(x) S_{k-1}(x) += +\begin{pmatrix} +0&1\\1&-q_k(x) +\end{pmatrix} +\begin{pmatrix} +c_{k-1} & d_{k-1} \\ +c_k & d_k +\end{pmatrix} += +\begin{pmatrix} +c_k&d_k\\ +c_{k+1}&d_{k+1} +\end{pmatrix}. +\] +Daraus lässt sich für die Matrixelemente die Rekursionsformel +\[ +\begin{aligned} +c_{k+1} &= c_{k-1} - q_k(x) c_k(x) \\ +d_{k+1} &= d_{k-1} - q_k(x) d_k(x) +\end{aligned} +\quad +\bigg\} +\qquad +\text{mit Startwerten} +\qquad +\bigg\{ +\begin{aligned} +\quad +c_{-1} &= 1, & c_0 &= 0 \\ +d_{-1} &= 0, & d_0 &= 1. +\end{aligned} +\] +Wendet man die Matrix $S_m(x)$ auf den Vektor mit den Komponenten +$a(x)$ und $b(x)$, erhält man die Beziehungen +\[ +g(x) = c_{k-1}(x) a(x) + d_{k-1}(x) b(x) +\qquad\text{und}\qquad +0 = c_k(x) a(x) + d_k(x) b(x). +\] +Dieser Algorithmus heisst der erweiterte euklidische Algorithmus. +Wir fassen die Resultate zusammen im folgenden Satz. + +\begin{satz} +Zu zwei Polynomen $a(x),b(x) \in K[x]$ gibt es Polynome +$g(x),c(x),d(x)\in K[x]$ +derart, dass $g(x)$ ein grösster gemeinsamer Teiler von $a(x)$ und $b(x)$ +ist, und ausserdem +\[ +g(x) = c(x)a(x)+d(x)b(x) +\] +gilt. +\end{satz} + \subsection{Faktorisierung und Nullstellen} % wird später gebraucht um bei der Definition der hypergeometrischen Reihe % die Zaehler- und Nenner-Polynome als Pochhammer-Symbole zu entwickeln @@ -77,11 +273,24 @@ numerischen Mathematik. % Wird gebraucht für die Potenzreihen-Methode % Muss später ausgedehnt werden auf Potenzreihen -\subsection{Polynom-Berechnung} -Die naive Berechnung der Werte eines Polynoms beginnt mit der Berechnung -der Potenzen. -Die Anzahl nötiger Multiplikationen kann minimiert werden, indem man -das Polynom als +\subsection{Berechnung von Polynom-Werten} +Die naive Berechnung der Werte eines Polynoms $p(x)$ vom Grad $n$ +beginnt mit der Berechnung der Potenzen von $x$. +Da alle Potenzen benötigt werden, wird man dazu $n-1$ Multiplikationen +benötigen. +Die Potenzen müssen anschliessend mit den Koeffizienten multipliziert +werden, dazu sind weitere $n$ Multiplikationen nötig. +Der Wert des Polynoms kann also erhalten werden mit $2n-1$ Multiplikationen +und $n$ Additionen. + +Die Anzahl nötiger Multiplikationen kann mit dem folgenden Vorgehen +reduziert werden, welches auch als das {\em Horner-Schema} bekannt ist. +\index{Horner-Schema}% +Statt erst am Schluss alle Terme zu addieren, addiert man so früh +wie möglich. +Zum Beispiel multipliziert man $(a_nx+a_{n-1})$ mit $x$, was auf +die Multiplikationen beider Terme mit $x$ hinausläuft. +Mit dieser Idee kann man das Polynom als \[ a_nx^n + @@ -95,10 +304,10 @@ a_0 = ((\dots((a_nx+a_{n-1})x+a_{n-2})x+\dots )x+a_1)x+a_0 \] -schreibt. +schreiben. Beginnend bei der innersten Klammer sind genau $n$ Multiplikationen -und $n+1$ Additionen nötig, im Gegensatz zu $2n$ Multiplikationen -und $n$ Additionen bei der naiven Vorgehensweise. +und $n$ Additionen nötig, man spart mit diesem Vorgehen also +$n-1$ Multiplikationen. -- cgit v1.2.1