From a961142ba09e0e9a962aaba4d90e1613e0ff97b0 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Fri, 12 Aug 2022 15:06:08 +0200 Subject: 1. Ueberarbeitung --- buch/papers/0f1/teil2.tex | 21 ++++++++++----------- 1 file changed, 10 insertions(+), 11 deletions(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 9269961..15a1c44 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -6,12 +6,12 @@ \section{Umsetzung \label{0f1:section:teil2}} \rhead{Umsetzung} -Zur Umsetzung wurden drei verschiedene Ansätze gewählt.\cite{0f1:code} Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. -Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Libray in Python die Resultate geplottet. +Zur Umsetzung wurden drei verschiedene Ansätze gewählt \cite{0f1:code}. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. +Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Library in Python die Resultate geplottet. \subsection{Potenzreihe \label{0f1:subsection:potenzreihe}} -Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt. \cite{0f1:double} +Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt \cite{0f1:double}. \begin{align} \label{0f1:umsetzung:0f1:eq} @@ -34,23 +34,22 @@ Ein endlicher Kettenbruch ist ein Bruch der Form \begin{equation*} a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} \end{equation*} -in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen darstellen. +in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. Die Kurzschreibweise für einen allgemeinen Kettenbruch ist \begin{equation*} a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots \end{equation*} -und ist somit verknüpfbar mit der Potenzreihe. -\cite{0f1:wiki-kettenbruch} -Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies\cite{0f1:wiki-fraction}: +\cite{0f1:wiki-kettenbruch}. +Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies \cite{0f1:wiki-fraction}: \begin{equation*} \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots \end{equation*} -Nach allen Umformungen ergibt sich folgender, irregulärer Kettenbruch \eqref{0f1:math:kettenbruch:0f1:eq} +Umgeformt ergibt sich folgender Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, \end{equation} -der als Code \ref{0f1:listing:kettenbruchIterativ} umgesetzt wurde. +der als Code (siehe: Listing \ref{0f1:listing:kettenbruchIterativ}) umgesetzt wurde. \cite{0f1:wolfram-0f1} \lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c} @@ -138,7 +137,7 @@ Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix \end{equation} Und Schlussendlich kann der Näherungsbruch \[ -\frac{Ak}{Bk} +\frac{A_k}{B_k} \] berechnet werden. @@ -166,7 +165,7 @@ B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ \end{itemize} -Ein grosser Vorteil dieser Umsetzung \ref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. +Ein grosser Vorteil dieser Umsetzung als Rekursionsformel ist \ref{0f1:listing:kettenbruchRekursion}, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. %Code \lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchRekursion}, firstline=8]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file -- cgit v1.2.1 From 3a530cc844c8213dade9fcf70d3ea7715f5c2a1b Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Sat, 13 Aug 2022 15:21:13 +0200 Subject: 2. Ueberarbeitung, Referenzen --- buch/papers/0f1/teil2.tex | 21 ++++++++++----------- 1 file changed, 10 insertions(+), 11 deletions(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 15a1c44..587f63b 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -6,12 +6,12 @@ \section{Umsetzung \label{0f1:section:teil2}} \rhead{Umsetzung} -Zur Umsetzung wurden drei verschiedene Ansätze gewählt \cite{0f1:code}. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. +Zur Umsetzung wurden drei verschiedene Ansätze gewählt, die in vollständiger Form auf Github \cite{0f1:code} zu finden sind. Dabei wurde der Schwerpunkt auf die Funktionalität und eine gute Lesbarkeit des Codes gelegt. Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieben. Die Zwischenresultate wurden vom Hauptprogramm in einem CSV-File gespeichert. Anschliessen wurde mit der Matplot-Library in Python die Resultate geplottet. \subsection{Potenzreihe \label{0f1:subsection:potenzreihe}} -Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings ist ein Problem dieser Umsetzung \ref{0f1:listing:potenzreihe}, dass die Fakultät im Nenner schnell grosse Werte annimmt und so der Bruch gegen Null strebt. Spätesten ab $k=167$ stösst diese Umsetzung \eqref{0f1:umsetzung:0f1:eq} an ihre Grenzen, da die Fakultät von $168$ eine Bereichsüberschreitung des \textit{double} Bereiches darstellt \cite{0f1:double}. +Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:umsetzung:0f1:eq}. Allerdings ist ein Problem dieser Umsetzung (Listing \ref{0f1:listing:potenzreihe}), dass die Fakultät im Nenner schnell grosse Werte annimmt. Dies führt zu einer Bereichsüberschreitung des \verb+double+ Bereiches \cite{0f1:double}. Spätesten ab $k=167$ tritt dieser Falle ein. \begin{align} \label{0f1:umsetzung:0f1:eq} @@ -30,7 +30,7 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe. Allerdings is \subsection{Kettenbruch \label{0f1:subsection:kettenbruch}} -Ein endlicher Kettenbruch ist ein Bruch der Form +Ein endlicher Kettenbruch \cite{0f1:wiki-kettenbruch} ist ein Bruch der Form \begin{equation*} a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} \end{equation*} @@ -39,24 +39,23 @@ Die Kurzschreibweise für einen allgemeinen Kettenbruch ist \begin{equation*} a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots \end{equation*} -\cite{0f1:wiki-kettenbruch}. Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies \cite{0f1:wiki-fraction}: \begin{equation*} \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots \end{equation*} -Umgeformt ergibt sich folgender Kettenbruch +Umgeformt ergibt sich folgender Kettenbruch \cite{0f1:wolfram-0f1} \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, \end{equation} -der als Code (siehe: Listing \ref{0f1:listing:kettenbruchIterativ}) umgesetzt wurde. -\cite{0f1:wolfram-0f1} +der als Code (Listing \ref{0f1:listing:kettenbruchIterativ}) umgesetzt wurde. + \lstinputlisting[style=C,float,caption={Iterativ umgesetzter Kettenbruch.},label={0f1:listing:kettenbruchIterativ}, firstline=8]{papers/0f1/listings/kettenbruchIterativ.c} \subsection{Rekursionsformel \label{0f1:subsection:rekursionsformel}} -Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche zu finden. \cite{0f1:kettenbrueche} +Wesentlich stabiler zur Berechnung eines Kettenbruches ist die Rekursionsformel. Nachfolgend wird die verkürzte Herleitung vom Kettenbruch zur Rekursionsformel aufgezeigt. Eine vollständige Schritt für Schritt Herleitung ist im Seminarbuch Numerik, im Kapitel Kettenbrüche \cite{0f1:kettenbrueche} zu finden. \subsubsection{Herleitung} Ein Näherungsbruch in der Form @@ -135,7 +134,7 @@ Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix a_k \end{pmatrix}. \end{equation} -Und Schlussendlich kann der Näherungsbruch +Und schlussendlich kann der Näherungsbruch \[ \frac{A_k}{B_k} \] @@ -143,7 +142,7 @@ berechnet werden. \subsubsection{Lösung} -Die Berechnung von $A_k, B_k$ \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise aufschreiben: \cite{0f1:wiki-fraction} +Die Berechnung von $A_k, B_k$ \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise \cite{0f1:kettenbrueche} aufschreiben: \begin{itemize} \item Startbedingungen: \begin{align*} @@ -165,7 +164,7 @@ B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ \end{itemize} -Ein grosser Vorteil dieser Umsetzung als Rekursionsformel ist \ref{0f1:listing:kettenbruchRekursion}, dass im Vergleich zum Code \ref{0f1:listing:kettenbruchIterativ} eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. +Ein grosser Vorteil dieser Umsetzung als Rekursionsformel \eqref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code (Listing \ref{0f1:listing:kettenbruchIterativ}) eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. %Code \lstinputlisting[style=C,float,caption={Rekursionsformel für Kettenbruch.},label={0f1:listing:kettenbruchRekursion}, firstline=8]{papers/0f1/listings/kettenbruchRekursion.c} \ No newline at end of file -- cgit v1.2.1 From 1a65f1e2cc20e1dfe5d0d88cf42ee7355c20b1ff Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Sat, 13 Aug 2022 22:27:32 +0200 Subject: 2. Ueberarbeitung --- buch/papers/0f1/teil2.tex | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 587f63b..06ac53e 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -11,7 +11,7 @@ Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieb \subsection{Potenzreihe \label{0f1:subsection:potenzreihe}} -Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:umsetzung:0f1:eq}. Allerdings ist ein Problem dieser Umsetzung (Listing \ref{0f1:listing:potenzreihe}), dass die Fakultät im Nenner schnell grosse Werte annimmt. Dies führt zu einer Bereichsüberschreitung des \verb+double+ Bereiches \cite{0f1:double}. Spätesten ab $k=167$ tritt dieser Falle ein. +Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:umsetzung:0f1:eq}. \begin{align} \label{0f1:umsetzung:0f1:eq} @@ -30,6 +30,9 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums \subsection{Kettenbruch \label{0f1:subsection:kettenbruch}} +Eine weitere Variante zur Berechnung von $\mathstrut_0F_1(;c;z)$ ist die Umsetzung als Kettenbruch. +Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe, ist die schnellere Konvergenz. + Ein endlicher Kettenbruch \cite{0f1:wiki-kettenbruch} ist ein Bruch der Form \begin{equation*} a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} @@ -44,6 +47,7 @@ Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies \cite{0f1:wiki-fract \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots \end{equation*} Umgeformt ergibt sich folgender Kettenbruch \cite{0f1:wolfram-0f1} +{\color{red}TODO Herleitung} \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, @@ -115,7 +119,7 @@ an, ergibt sich folgende Matrixdarstellungen: \begin{pmatrix} b_k\\ a_k - \end{pmatrix} + \end{pmatrix}. \end{align*} Nach vollständiger Induktion ergibt sich für den Schritt $k$, die Matrix \begin{equation} @@ -142,7 +146,7 @@ berechnet werden. \subsubsection{Lösung} -Die Berechnung von $A_k, B_k$ \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise \cite{0f1:kettenbrueche} aufschreiben: +Die Berechnung von $A_k, B_k$ gemäss \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise \cite{0f1:kettenbrueche} aufschreiben: \begin{itemize} \item Startbedingungen: \begin{align*} @@ -161,7 +165,7 @@ B_{k+1} &= B_{k-1} \cdot b_k + B_k \cdot a_k \end{aligned} \] \item -Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$ +Näherungsbruch: \qquad$\displaystyle\frac{A_k}{B_k}$. \end{itemize} Ein grosser Vorteil dieser Umsetzung als Rekursionsformel \eqref{0f1:listing:kettenbruchRekursion} ist, dass im Vergleich zum Code (Listing \ref{0f1:listing:kettenbruchIterativ}) eine Division gespart werden kann und somit weniger Rundungsfehler entstehen können. -- cgit v1.2.1 From 059dd7a0ec72d91ed7879201c10e0abfb8cea3ef Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Mon, 15 Aug 2022 20:10:10 +0200 Subject: 2. Ueberarbeitung, done --- buch/papers/0f1/teil2.tex | 31 ++++++++++++++++++++++++++----- 1 file changed, 26 insertions(+), 5 deletions(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 06ac53e..0c2f1e6 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -38,16 +38,37 @@ Ein endlicher Kettenbruch \cite{0f1:wiki-kettenbruch} ist ein Bruch der Form a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} \end{equation*} in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. -Die Kurzschreibweise für einen allgemeinen Kettenbruch ist + +Nimmt man nun folgenden Gleichung \cite{0f1:wiki-fraction}: \begin{equation*} - a_0 + \frac{a_1|}{|b_1} + \frac{a_2|}{|b_2} + \frac{a_3|}{|b_3} + \cdots + f_{i-1} - f_i = k_i z f_{i+1}, \end{equation*} -Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies \cite{0f1:wiki-fraction}: +wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant. +Ergibt sich folgender Zusammenhang: \begin{equation*} + \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}} +\end{equation*} + +Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: +\begin{equation} + \label{0f1:math:potenzreihe:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots +\end{equation} +Durch Substitution kann bewiesen werden, dass die nachfolgende Formel eine Relation zur obigen Potenzreihe \eqref{0f1:math:potenzreihe:0f1:eq} ist: +\begin{equation*} + \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z). \end{equation*} -Umgeformt ergibt sich folgender Kettenbruch \cite{0f1:wolfram-0f1} -{\color{red}TODO Herleitung} +Wenn man für $f_i$ und $k_i$ folgende Annahme trifft: +\begin{align*} + f_i =& \mathstrut_0F_1(;c+1;z)\\ + k_i =& \frac{1}{(c+1)(c+i-1)} +\end{align*} +erhält man: +\begin{equation*} + \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{z}{(c+2)(c+3)} + \cdots}}}. +\end{equation*} + +Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, -- cgit v1.2.1 From 2e1c6aecc9e99334b84a10e0da9597e03f2de3c4 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Mon, 15 Aug 2022 20:14:36 +0200 Subject: 2.Uerbarbeitung, bruch --- buch/papers/0f1/teil2.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 0c2f1e6..ef9f55e 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -65,7 +65,7 @@ Wenn man für $f_i$ und $k_i$ folgende Annahme trifft: \end{align*} erhält man: \begin{equation*} - \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{z}{(c+2)(c+3)} + \cdots}}}. + \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}. \end{equation*} Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch -- cgit v1.2.1 From 10a72bf8d66de28f3f1b5598c37c32d29a306893 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Tue, 16 Aug 2022 18:25:31 +0200 Subject: 3. Ueberarbeitung, Verbesserungen --- buch/papers/0f1/teil2.tex | 20 ++++++++++++-------- 1 file changed, 12 insertions(+), 8 deletions(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index ef9f55e..9b3a586 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -11,7 +11,7 @@ Die Unterprogramme wurde jeweils, wie die GNU Scientific Library, in C geschrieb \subsection{Potenzreihe \label{0f1:subsection:potenzreihe}} -Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:umsetzung:0f1:eq}. +Die naheliegendste Lösung ist die Programmierung der Potenzreihe \begin{align} \label{0f1:umsetzung:0f1:eq} @@ -23,7 +23,7 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums \frac{1}{c} +\frac{z^1}{(c+1) \cdot 1} + \cdots - + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}} + + \frac{z^{20}}{c(c+1)(c+2)\cdots(c+19) \cdot 2.4 \cdot 10^{18}}. \end{align} \lstinputlisting[style=C,float,caption={Potenzreihe.},label={0f1:listing:potenzreihe}, firstline=59]{papers/0f1/listings/potenzreihe.c} @@ -31,15 +31,17 @@ Die naheliegendste Lösung ist die Programmierung der Potenzreihe \eqref{0f1:ums \subsection{Kettenbruch \label{0f1:subsection:kettenbruch}} Eine weitere Variante zur Berechnung von $\mathstrut_0F_1(;c;z)$ ist die Umsetzung als Kettenbruch. -Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe, ist die schnellere Konvergenz. +Der Vorteil einer Umsetzung als Kettenbruch gegenüber der Potenzreihe ist die schnellere Konvergenz. +\subsubsection{Grundlage} Ein endlicher Kettenbruch \cite{0f1:wiki-kettenbruch} ist ein Bruch der Form \begin{equation*} -a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}} +a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}, \end{equation*} in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. -Nimmt man nun folgenden Gleichung \cite{0f1:wiki-fraction}: +\subsubsection{Rekursionsbeziehungen und Kettenbrüche} +Nimmt man nun folgende Gleichung \cite{0f1:wiki-fraction}: \begin{equation*} f_{i-1} - f_i = k_i z f_{i+1}, \end{equation*} @@ -48,7 +50,7 @@ Ergibt sich folgender Zusammenhang: \begin{equation*} \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}} \end{equation*} - +\subsubsection{Rekursion für $\mathstrut_0F_1$} Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: \begin{equation} \label{0f1:math:potenzreihe:0f1:eq} @@ -68,6 +70,7 @@ erhält man: \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}. \end{equation*} +\subsubsection{Algorithmus} Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} @@ -92,7 +95,7 @@ lässt sich zu \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p} \end{align*} umformen. -Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken: +Dies lässt sich auch durch die folgende Matrizenschreibweise \begin{equation*} \begin{pmatrix} A_k\\ @@ -112,6 +115,7 @@ Dies lässt sich auch durch die folgende Matrizenschreibweise ausdrücken: \end{pmatrix}. %\label{0f1:math:rekursionsformel:herleitung} \end{equation*} +ausdrücken. Wendet man dies nun auf den Kettenbruch in der Form \begin{equation*} \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}} @@ -166,7 +170,7 @@ Und schlussendlich kann der Näherungsbruch berechnet werden. -\subsubsection{Lösung} +\subsubsection{Algorithmus} Die Berechnung von $A_k, B_k$ gemäss \eqref{0f1:math:matrix:ende:eq} kann man auch ohne die Matrizenschreibweise \cite{0f1:kettenbrueche} aufschreiben: \begin{itemize} \item Startbedingungen: -- cgit v1.2.1 From 4a97506a4759a46f3263aee2c46d684aed0fb104 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Wed, 17 Aug 2022 01:35:28 +0200 Subject: 3. Ueberarbeitung, done --- buch/papers/0f1/teil2.tex | 35 ++++++++++++++++++++++++++--------- 1 file changed, 26 insertions(+), 9 deletions(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 9b3a586..64f8d83 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -41,37 +41,54 @@ a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}, in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. \subsubsection{Rekursionsbeziehungen und Kettenbrüche} -Nimmt man nun folgende Gleichung \cite{0f1:wiki-fraction}: +Will man einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ finden, braucht man dazu eine Relation der analytischer Funktion $f_i(z)$. +Nimmt man die Gleichung \cite{0f1:wiki-fraction}: \begin{equation*} f_{i-1} - f_i = k_i z f_{i+1}, \end{equation*} wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant. Ergibt sich folgender Zusammenhang: \begin{equation*} - \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}} + \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}. \end{equation*} +Geht man einen Schritt weiter und nimmt für $g_i = \frac{f_i}{f_{i-1}}$ an, kommt man zur Formel +\begin{equation*} + g_i = \cfrac{1}{1+k_izg_{i+1}}. +\end{equation*} +Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich folgendes: +\begin{equation*} + g_1 = \cfrac{f_1}{f_0} = \cfrac{1}{1+k_izg_2} = \cfrac{1}{1+\cfrac{k_1z}{1+k_2zg_3}} = \cdots +\end{equation*} +Repetiert man dies unendlich, erhält man einen Kettenbruch in der Form: +\begin{equation} + \label{0f1:math:rekursion:eq} + \cfrac{f_1}{f_0} = \cfrac{1}{1+\cfrac{k_1z}{1+\cfrac{k_2z}{1+\cfrac{k_3z}{\cdots}}}}. +\end{equation} + \subsubsection{Rekursion für $\mathstrut_0F_1$} -Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: +Angewendet auf die Potenzreihe \begin{equation} \label{0f1:math:potenzreihe:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots \end{equation} -Durch Substitution kann bewiesen werden, dass die nachfolgende Formel eine Relation zur obigen Potenzreihe \eqref{0f1:math:potenzreihe:0f1:eq} ist: +kann durch Substitution bewiesen werden, dass \begin{equation*} - \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z). + \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z) \end{equation*} +eine Relation dazu ist. Wenn man für $f_i$ und $k_i$ folgende Annahme trifft: \begin{align*} - f_i =& \mathstrut_0F_1(;c+1;z)\\ - k_i =& \frac{1}{(c+1)(c+i-1)} + f_i =& \mathstrut_0F_1(;c+i;z)\\ + k_i =& \frac{1}{(c+i)(c+i-1)} \end{align*} -erhält man: +und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man: \begin{equation*} \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}. \end{equation*} \subsubsection{Algorithmus} -Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch +Da mit obigen Formeln nur ein Verhältnis zwischen $ \frac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)}$ berechnet wurde, braucht es weitere Relationen um $\mathstrut_0F_1(;c;z)$ zu erhalten. +So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, -- cgit v1.2.1 From 9d52cc84df44e8479cafdd7b0d7f264aeb0c8a10 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Wed, 17 Aug 2022 21:38:44 +0200 Subject: letzte Korrektur --- buch/papers/0f1/teil2.tex | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 64f8d83..fdcb0fc 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -41,13 +41,13 @@ a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}, in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. \subsubsection{Rekursionsbeziehungen und Kettenbrüche} -Will man einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ finden, braucht man dazu eine Relation der analytischer Funktion $f_i(z)$. -Nimmt man die Gleichung \cite{0f1:wiki-fraction}: +Wenn es eine Relation analytischer Funktion $f_i(z)$ hat, dann gibt es einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ \cite{0f1:wiki-fraction}. +Nimmt man die Gleichung \begin{equation*} f_{i-1} - f_i = k_i z f_{i+1}, \end{equation*} wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant. -Ergibt sich folgender Zusammenhang: +Ergibt sich der Zusammenhang \begin{equation*} \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}. \end{equation*} @@ -55,7 +55,7 @@ Geht man einen Schritt weiter und nimmt für $g_i = \frac{f_i}{f_{i-1}}$ an, kom \begin{equation*} g_i = \cfrac{1}{1+k_izg_{i+1}}. \end{equation*} -Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich folgendes: +Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich \begin{equation*} g_1 = \cfrac{f_1}{f_0} = \cfrac{1}{1+k_izg_2} = \cfrac{1}{1+\cfrac{k_1z}{1+k_2zg_3}} = \cdots \end{equation*} @@ -76,19 +76,19 @@ kann durch Substitution bewiesen werden, dass \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z) \end{equation*} eine Relation dazu ist. -Wenn man für $f_i$ und $k_i$ folgende Annahme trifft: +Wenn man für $f_i$ und $k_i$ die Annahme \begin{align*} f_i =& \mathstrut_0F_1(;c+i;z)\\ k_i =& \frac{1}{(c+i)(c+i-1)} \end{align*} -und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man: +trifft und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man: \begin{equation*} \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}. \end{equation*} \subsubsection{Algorithmus} Da mit obigen Formeln nur ein Verhältnis zwischen $ \frac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)}$ berechnet wurde, braucht es weitere Relationen um $\mathstrut_0F_1(;c;z)$ zu erhalten. -So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch +So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} den Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, @@ -112,7 +112,7 @@ lässt sich zu \cfrac{A_k}{B_k} = \cfrac{b_{k+1}}{a_{k+1} + \cfrac{p}{q}} = \frac{b_{k+1} \cdot q}{a_{k+1} \cdot q + p} \end{align*} umformen. -Dies lässt sich auch durch die folgende Matrizenschreibweise +Dies lässt sich auch durch die Matrizenschreibweise \begin{equation*} \begin{pmatrix} A_k\\ @@ -137,7 +137,7 @@ Wendet man dies nun auf den Kettenbruch in der Form \begin{equation*} \frac{A_k}{B_k} = a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{\cdots}{\cdots+\cfrac{b_{k-1}}{a_{k-1} + \cfrac{b_k}{a_k}}}}} \end{equation*} -an, ergibt sich folgende Matrixdarstellungen: +an, ergibt sich die Matrixdarstellungen: \begin{align*} \begin{pmatrix} -- cgit v1.2.1