From 4a97506a4759a46f3263aee2c46d684aed0fb104 Mon Sep 17 00:00:00 2001 From: Fabian <@> Date: Wed, 17 Aug 2022 01:35:28 +0200 Subject: 3. Ueberarbeitung, done --- buch/papers/0f1/teil2.tex | 35 ++++++++++++++++++++++++++--------- 1 file changed, 26 insertions(+), 9 deletions(-) (limited to 'buch/papers/0f1/teil2.tex') diff --git a/buch/papers/0f1/teil2.tex b/buch/papers/0f1/teil2.tex index 9b3a586..64f8d83 100644 --- a/buch/papers/0f1/teil2.tex +++ b/buch/papers/0f1/teil2.tex @@ -41,37 +41,54 @@ a_0 + \cfrac{b_1}{a_1+\cfrac{b_2}{a_2+\cfrac{b_3}{a_3+\cdots}}}, in welchem $a_0, a_1,\dots,a_n$ und $b_1,b_2,\dots,b_n$ ganze Zahlen sind. \subsubsection{Rekursionsbeziehungen und Kettenbrüche} -Nimmt man nun folgende Gleichung \cite{0f1:wiki-fraction}: +Will man einen Kettenbruch für das Verhältnis $\frac{f_i(z)}{f_{i-1}(z)}$ finden, braucht man dazu eine Relation der analytischer Funktion $f_i(z)$. +Nimmt man die Gleichung \cite{0f1:wiki-fraction}: \begin{equation*} f_{i-1} - f_i = k_i z f_{i+1}, \end{equation*} wo $f_i$ analytische Funktionen sind und $i > 0$ ist, sowie $k_i$ konstant. Ergibt sich folgender Zusammenhang: \begin{equation*} - \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}} + \cfrac{f_i}{f_{i-1}} = \cfrac{1}{1+k_iz\cfrac{f_{i+1}}{f_i}}. \end{equation*} +Geht man einen Schritt weiter und nimmt für $g_i = \frac{f_i}{f_{i-1}}$ an, kommt man zur Formel +\begin{equation*} + g_i = \cfrac{1}{1+k_izg_{i+1}}. +\end{equation*} +Setzt man dies nun für $g_1$ in den Bruch ein, ergibt sich folgendes: +\begin{equation*} + g_1 = \cfrac{f_1}{f_0} = \cfrac{1}{1+k_izg_2} = \cfrac{1}{1+\cfrac{k_1z}{1+k_2zg_3}} = \cdots +\end{equation*} +Repetiert man dies unendlich, erhält man einen Kettenbruch in der Form: +\begin{equation} + \label{0f1:math:rekursion:eq} + \cfrac{f_1}{f_0} = \cfrac{1}{1+\cfrac{k_1z}{1+\cfrac{k_2z}{1+\cfrac{k_3z}{\cdots}}}}. +\end{equation} + \subsubsection{Rekursion für $\mathstrut_0F_1$} -Angewendet auf die Funktion $\mathstrut_0F_1$ bedeutet dies: +Angewendet auf die Potenzreihe \begin{equation} \label{0f1:math:potenzreihe:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \frac{z}{c\cdot1!} + \frac{z^2}{c(c+1)\cdot2!} + \frac{z^3}{c(c+1)(c+2)\cdot3!} + \cdots \end{equation} -Durch Substitution kann bewiesen werden, dass die nachfolgende Formel eine Relation zur obigen Potenzreihe \eqref{0f1:math:potenzreihe:0f1:eq} ist: +kann durch Substitution bewiesen werden, dass \begin{equation*} - \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z). + \mathstrut_0F_1(;c-1;z) - \mathstrut_0F_1(;c;z) = \frac{z}{c(c-1)} \cdot \mathstrut_0F_1(;c+1;z) \end{equation*} +eine Relation dazu ist. Wenn man für $f_i$ und $k_i$ folgende Annahme trifft: \begin{align*} - f_i =& \mathstrut_0F_1(;c+1;z)\\ - k_i =& \frac{1}{(c+1)(c+i-1)} + f_i =& \mathstrut_0F_1(;c+i;z)\\ + k_i =& \frac{1}{(c+i)(c+i-1)} \end{align*} -erhält man: +und in die Formel \eqref{0f1:math:rekursion:eq} einsetzt, erhält man: \begin{equation*} \cfrac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)} = \cfrac{1}{1+\cfrac{\cfrac{z}{c(c+1)}}{1+\cfrac{\cfrac{z}{(c+1)(c+2)}}{1+\cfrac{\cfrac{z}{(c+2)(c+3)}}{\cdots}}}}. \end{equation*} \subsubsection{Algorithmus} -Mit weiteren Relationen ergibt sich nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch +Da mit obigen Formeln nur ein Verhältnis zwischen $ \frac{\mathstrut_0F_1(;c+1;z)}{\mathstrut_0F_1(;c;z)}$ berechnet wurde, braucht es weitere Relationen um $\mathstrut_0F_1(;c;z)$ zu erhalten. +So ergeben ähnliche Relationen nach Wolfram Alpha \cite{0f1:wolfram-0f1} folgender Kettenbruch \begin{equation} \label{0f1:math:kettenbruch:0f1:eq} \mathstrut_0F_1(;c;z) = 1 + \cfrac{\cfrac{z}{c}}{1+\cfrac{-\cfrac{z}{2(c+1)}}{1+\cfrac{z}{2(c+1)}+\cfrac{-\cfrac{z}{3(c+2)}}{1+\cfrac{z}{5(c+4)} + \cdots}}}, -- cgit v1.2.1