From d3c217cdb6106f2082097dd9e76f200885c853cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 11:45:38 +0200 Subject: add polynomials with elementary w-integrals paper --- buch/papers/dreieck/teil3.tex | 70 +++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 67 insertions(+), 3 deletions(-) (limited to 'buch/papers/dreieck/teil3.tex') diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index e2dfd6b..888ceb6 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -3,8 +3,72 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Erweiterungen -\label{dreieck:section:erweiterungen}} -\rhead{Erweiterungen} +\section{Integralbedingung +\label{dreieck:section:integralbedingung}} +\rhead{Lösung} +Die Tatsache, dass die Hermite-Polynome orthogonal sind, erlaubt, das +Kriterium von Satz~\ref{dreieck:satz1} etwas anders zu formulieren. + +Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die +orthonormierten Polynome +\[ +\tilde{H}_n(t) += +\frac{1}{\| H_n\|_w} H_n(t) +\qquad\text{mit}\quad +\|H_n\|_w^2 += +\int_{-\infty}^\infty H_n(t)e^{-t^2}\,dt +\] +bilden. +Da diese Polynome eine orthonormierte Basis des Vektorraums der Polynome +bilden, kann die gesuchte Zerlegung eines Polynoms $P(t)$ auch mit +Hilfe des Skalarproduktes gefunden werden: +\begin{align*} +P(t) +&= +\sum_{k=1}^n +\langle \tilde{H}_k, P\rangle_w +\tilde{H}_k(t) += +\sum_{k=1}^n +\biggl\langle \frac{H_k}{\|H_k\|_w}, P\biggr\rangle_w +\frac{H_k(t)}{\|H_k\|_w} += +\sum_{k=1}^n +\underbrace{ +\frac{ \langle H_k, P\rangle_w }{\|H_k\|_w^2} +}_{\displaystyle =a_k} +H_k(t). +\end{align*} +Die Darstellung von $P(t)$ als Linearkombination von Hermite-Polynomen +hat die Koeffizienten +\[ +a_k = \frac{\langle H_k,P\rangle_w}{\|H_k\|_w^2}. +\] +Aus dem Kriterium $a_0=0$ dafür, dass eine elementare Stammfunktion +von $P(t)e^{-t^2}$ existiert, wird daher die Bedingung, dass +$\langle H_0,P\rangle_w=0$ ist. +Da $H_0(t)=1$ ist, folgt als Bedingung +\[ +a_0 += +\langle H_0,P\rangle_w += +\int_{-\infty}^\infty P(t) e^{-t^2}\,dt += +0. +\] + +\begin{satz} +Ein Integrand der Form $P(t)e^{-t^2}$ mit einem Polynom $P(t)$ +hat genau dann eine elementare Stammfunktion, wenn +\[ +\int_{-\infty}^\infty P(t)e^{-t^2}\,dt = 0 +\] +ist. +\end{satz} + + -- cgit v1.2.1 From 54ab4af72ff10d4e5b739ac0e9d727482b9d5a15 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 12:43:02 +0200 Subject: fix typos --- buch/papers/dreieck/teil3.tex | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) (limited to 'buch/papers/dreieck/teil3.tex') diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index 888ceb6..556a9d9 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -7,7 +7,8 @@ \label{dreieck:section:integralbedingung}} \rhead{Lösung} Die Tatsache, dass die Hermite-Polynome orthogonal sind, erlaubt, das -Kriterium von Satz~\ref{dreieck:satz1} etwas anders zu formulieren. +Kriterium von Satz~\ref{dreieck:satz1} in einer besonders attraktiven +Integralform zu formulieren. Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die orthonormierten Polynome @@ -42,7 +43,7 @@ P(t) H_k(t). \end{align*} Die Darstellung von $P(t)$ als Linearkombination von Hermite-Polynomen -hat die Koeffizienten +hat somit die Koeffizienten \[ a_k = \frac{\langle H_k,P\rangle_w}{\|H_k\|_w^2}. \] -- cgit v1.2.1 From 4220519090661503f243902aa58f48343920e89c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 12:47:03 +0200 Subject: index entries added --- buch/papers/dreieck/teil3.tex | 2 ++ 1 file changed, 2 insertions(+) (limited to 'buch/papers/dreieck/teil3.tex') diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index 556a9d9..c0c046a 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -11,6 +11,8 @@ Kriterium von Satz~\ref{dreieck:satz1} in einer besonders attraktiven Integralform zu formulieren. Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die +\index{orthogonale Polynome}% +\index{Polynome, orthogonale}% orthonormierten Polynome \[ \tilde{H}_n(t) -- cgit v1.2.1