From d3c217cdb6106f2082097dd9e76f200885c853cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 11:45:38 +0200 Subject: add polynomials with elementary w-integrals paper --- buch/papers/dreieck/main.tex | 18 +++--- buch/papers/dreieck/references.bib | 36 +++--------- buch/papers/dreieck/teil0.tex | 45 ++++++++++++++- buch/papers/dreieck/teil1.tex | 88 +++++++++++++++++++++++++++++- buch/papers/dreieck/teil2.tex | 109 ++++++++++++++++++++++++++++++++++++- buch/papers/dreieck/teil3.tex | 70 +++++++++++++++++++++++- 6 files changed, 318 insertions(+), 48 deletions(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex index 75ba410..b9f8c3b 100644 --- a/buch/papers/dreieck/main.tex +++ b/buch/papers/dreieck/main.tex @@ -3,19 +3,19 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Dreieckstest und Beta-Funktion\label{chapter:dreieck}} -\lhead{Dreieckstest und Beta-Funktion} +\chapter{$\int P(t) e^{-t^2} \,dt$ in geschlossener Form? +\label{chapter:dreieck}} +\lhead{Integrierbarkeit in geschlossener Form} \begin{refsection} \chapterauthor{Andreas Müller} \noindent -Mit dem Dreieckstest kann man feststellen, wie gut ein Geruchs- -oder Geschmackstester verschiedene Gerüche oder Geschmäcker -unterscheiden kann. -Seine wahrscheinlichkeitstheoretische Erklärung benötigt die Beta-Funktion, -man kann die Beta-Funktion als durchaus als die mathematische Grundlage -der Weindegustation -bezeichnen. +Der Risch-Algorithmus erlaubt, eine definitive Antwort darauf zu geben, +ob eine elementare Funktion eine Stammfunktion in geschlossener Form hat. +Der Algorithmus ist jedoch ziemlich kompliziert. +In diesem Kapitel soll ein spezieller Fall mit Hilfe der Theorie der +orthogonale Polynome, speziell der Hermite-Polynome, behandelt werden, +wie er in der Arbeit \cite{dreieck:polint} behandelt wurde. \input{papers/dreieck/teil0.tex} \input{papers/dreieck/teil1.tex} diff --git a/buch/papers/dreieck/references.bib b/buch/papers/dreieck/references.bib index d2bbe08..47bd865 100644 --- a/buch/papers/dreieck/references.bib +++ b/buch/papers/dreieck/references.bib @@ -4,32 +4,12 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{dreieck:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} +@article{dreieck:polint, + author = { George Stoica }, + title = { Polynomials and Integration in Finite Terms }, + journal = { Amer. Math. Monthly }, + volume = 129, + year = 2022, + number = 1, + pages = {80--81} } - -@book{dreieck:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} -} - -@article{dreieck:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} -} - diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex index bcf2cf8..584f12b 100644 --- a/buch/papers/dreieck/teil0.tex +++ b/buch/papers/dreieck/teil0.tex @@ -3,7 +3,48 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Testprinzip\label{dreieck:section:testprinzip}} -\rhead{Testprinzip} +\section{Problemstellung\label{dreieck:section:problemstellung}} +\rhead{Problemstellung} +Es ist bekannt, dass das Fehlerintegral +\[ +\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x e^{-\frac{t^2}{2\sigma}}\,dt +\] +nicht in geschlossener Form dargestellt werden kann. +Mit der in Kapitel~\ref{buch:chapter:integral} skizzierten Theorie von +Liouville und dem Risch-Algorithmus kann dies strengt gezeigt werden. +Andererseits gibt es durchaus Integranden, die $e^{-t^2}$ enthalten, +für die eine Stammfunktion in geschlossener Form gefunden werden kann. +Zum Beispiel folgt aus der Ableitung +\[ +\frac{d}{dt} e^{-t^2} += +-2te^{-t^2} +\] +die Stammfunktion +\[ +\int te^{-t^2}\,dt += +-\frac12 e^{-t^2}. +\] +Leitet man $e^{-t^2}$ zweimal ab, erhält man +\[ +\frac{d^2}{dt^2} e^{-t^2} += +(4t^2-2) e^{-t^2} +\qquad\Rightarrow\qquad +\int (t^2-\frac12) e^{-t^2}\,dt += +\frac14 +e^{-t^2}. +\] +Es gibt also eine viele weitere Polynome $P(t)$, für die der Integrand +$P(t)e^{-t^2}$ eine Stammfunktion in geschlossener Form hat. +Damit stellt sich jetzt das folgende allgemeine Problem. + +\begin{problem} +\label{dreieck:problem} +Für welche Polynome $P(t)$ hat der Integrand $P(t)e^{-t^2}$ +eine elementare Stammfunktion? +\end{problem} diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index 4abe2e1..f03c425 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -3,9 +3,91 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Ordnungsstatistik und Beta-Funktion -\label{dreieck:section:ordnungsstatistik}} -\rhead{} +\section{Hermite-Polynome +\label{dreieck:section:hermite-polynome}} +\rhead{Hermite-Polyome} +In Abschnitt~\ref{dreieck:section:problemstellung} hat sich schon angedeutet, +dass die Polynome, die man durch Ableiten von $e^{-t^2}$ erhalten +kann, bezüglich des gestellten Problems besondere Eigenschaften +haben. +Zunächst halten wir fest, dass die Ableitung einer Funktion der Form +$P(t)e^{-t^2}$ mit einem Polynom $P(t)$ +\begin{equation} +\frac{d}{dt} P(t)e^{-t^2} += +P'(t)e^{-t^2} -2tP(t)e^{-t^2} += +(P'(t)-2tP(t)) e^{-t^2} +\label{dreieck:eqn:ableitung} +\end{equation} +ist. +Insbesondere hat die Ableitung wieder die Form $Q(t)e^{-t^2}$ +mit einem Polynome $Q(t)$, welches man auch als +\[ +Q(t) += +e^{t^2}\frac{d}{dt}P(t)e^{-t^2} +\] +erhalten kann. +Die Polynome, die man aus der Funktion $H_0(t)=e^{-t^2}$ durch +Ableiten erhalten kann, wurden bereits in +Abschnitt~\ref{buch:orthogonalitaet:section:rodrigues} +bis auf ein Vorzeichen hergeleitet, sie heissen die Hermite-Polynome +und es gilt +\[ +H_n(t) += +(-1)^n +e^{t^2} \frac{d^n}{dt^n} e^{-t^2}. +\] +Das Vorzeichen dient dazu sicherzustellen, dass der Leitkoeffizient +immer $1$ ist. +Das Polynom $H_n(t)$ hat den Grad $n$. + +In Abschnitt wurde auch gezeigt, dass die Polynome $H_n(t)$ +bezüglich des Skalarproduktes +\[ +\langle f,g\rangle_{w} += +\int_{-\infty}^\infty f(t)g(t)e^{-t^2}\,dt, +\qquad +w(t)=e^{-t^2}, +\] +orthogonal sind. +Ausserdem folgt aus \eqref{dreieck:eqn:ableitung} +die Rekursionsbeziehung +\begin{equation} +H_{n}(t) += +2tH_{n-1}(t) +- +H_{n-1}'(t) +\label{dreieck:eqn:rekursion} +\end{equation} +für $n>0$. + +Im Hinblick auf die Problemstellung ist jetzt die Frage interessant, +ob die Integranden $H_n(t)e^{-t^2}$ eine Stammfunktion in geschlossener +Form haben. +Mit Hilfe der Rekursionsbeziehung~\eqref{dreieck:eqn:rekursion} +kann man für $n>0$ unmittelbar verifizieren, dass +\begin{align*} +\int H_n(t)e^{-t^2}\,dt +&= +\int \bigl( 2tH_{n-1}(t) - H'_{n-1}(t)\bigr)e^{-t^2}\,dt +\\ +&= +-\int \bigl( \exp'(-t^2) H_{n-1}(t) + H'_{n-1}(t)\bigr)e^{-t^2}\,dt +\\ +&= +-\int \bigl( e^{-t^2}H_{n-1}(t)\bigr)' \,dt += +-e^{-t^2}H_{n-1}(t) +\end{align*} +ist. +Für $n>0$ hat also $H_n(t)e^{-t^2}$ eine elementare Stammfunktion. +Die Hermite-Polynome sind also Lösungen für das +Problem~\ref{dreieck:problem}. diff --git a/buch/papers/dreieck/teil2.tex b/buch/papers/dreieck/teil2.tex index 83ea3cb..c5a2826 100644 --- a/buch/papers/dreieck/teil2.tex +++ b/buch/papers/dreieck/teil2.tex @@ -3,7 +3,110 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Wahrscheinlichkeiten im Dreieckstest -\label{dreieck:section:wahrscheinlichkeiten}} -\rhead{Wahrscheinlichkeiten} +\section{Beliebige Polynome +\label{dreieck:section:beliebig}} +\rhead{Beliebige Polynome} +Im Abschnitt~\ref{dreieck:section:hermite-polynome} wurden die +Hermite-Polynome $H_n(t)$ mit $n>0$ als Lösungen des gestellten +Problems erkannt. +Eine Linearkombination von solchen Polynomen hat natürlich +ebenfalls eine elementare Stammfunktion. +Das Problem kann daher neu formuliert werden: + +\begin{problem} +\label{dreieck:problem2} +Welche Polynome $P(t)$ lassen sich aus den Hermite-Polynomen +$H_n(t)$ mit $n>0$ linear kombinieren. +\end{problem} + +Sei jetzt +\[ +P(t) = p_0 + p_1t + \ldots + p_{n-1}t^{n-1} + p_nt^n +\] +ein beliebiges Polynom vom Grad $n$. +Eine elementare Stammfunktion von $P(t)e^{-t^2}$ existiert sicher, +wenn sich $P(t)$ aus den Funktionen $H_n(t)$ mit $n>0$ linear +kombinieren lässt. +Gesucht ist also zunächst eine Darstellung von $P(t)$ als Linearkombination +von Hermite-Polynomen. + +\begin{lemma} +Jedes Polynome $P(t)$ vom Grad $n$ lässt sich auf eindeutige Art und +Weise als Linearkombination +\begin{equation} +P(t) = a_0H_0(t) + a_1H_1(t) + \ldots + a_nH_n(t) += +\sum_{k=0}^n a_nH_n(t) +\label{dreieck:lemma} +\end{equation} +von Hermite-Polynomen schreiben. +\end{lemma} + +\begin{proof}[Beweis] +Zunächst halten wir fest, dass aus der +Rekursionsformel~\eqref{dreieck:rekursion} +folgt, dass der Leitkoeffizient bei jedem Rekursionsschnitt +mit $2$ multipliziert wird. +Der Leitkoeffizient von $H_n(t)$ ist also $2^n$. + +Wir führen den Beweis mit vollständiger Induktion. +Für $n=0$ ist $P(t)=p_0 = p_0 H_0(t)$ als Linearkombination von +Hermite-Polynomen darstellbar, dies ist die Induktionsverankerung. + +Nehmen wir jetzt an, dass sich ein Polynom vom Grad $n-1$ als +Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$ schreiben +lässt und untersuchen wir $P(t)$ vom Grad $n$. +Da der Leitkoeffizient des Polynoms $H_n(t)$ ist $2^n$, ist +\[ +P(t) += +\underbrace{\biggl(P(t) - \frac{p_n}{2^n} H_n(t)\biggr)}_{\displaystyle = Q(t)} ++ +\frac{p_n}{2^n} H_n(t). +\] +Das Polynom $Q(t)$ hat Grad $n-1$, besitzt also nach Induktionsannahme +eine Darstellung +\[ +Q(t) = a_0H_0(t)+a_1H_1(t)+\ldots+a_{n-1}H_{n-1}(t) +\] +als Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$. +Somit ist +\[ +P(t) += a_0H_0(t)+a_1H_1(t)+\ldots+a_{n-1}H_{n-1}(t) + +\frac{p_n}{2^n} H_n(t) +\] +eine Darstellung von $P(t)$ als Linearkombination der Polynome +$H_0(t),\dots,H_n(t)$. +Damit ist der Induktionsschritt vollzogen und das Lemma für alle +$n$ bewiesen. +\end{proof} + +\begin{satz} +\label{dreieck:satz1} +Die Funktion $P(t)e^{-t^2}$ hat genau dann eine elementare Stammfunktion, +wenn in der Darstellung~\eqref{dreieck:lemma} +von $P(t)$ als Linearkombination von Hermite-Polynome $a_0=0$ gilt. +\end{satz} + +\begin{proof}[Beweis] +Es ist +\begin{align*} +\int P(t)e^{-t^2}\,dt +&= +a_0\int e^{-t^2}\,dt ++ +\int +\sum_{k=1} a_kH_k(t)\,dt +\\ +&= +\frac{\sqrt{\pi}}2 +\operatorname{erf}(t) ++ +\sum_{k=1} a_k\int H_k(t)\,dt. +\end{align*} +Da die Integrale in der Summe alle elementar darstellbar sind, +ist das Integral genau dann elementar, wenn $a_0=0$ ist. +\end{proof} + diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index e2dfd6b..888ceb6 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -3,8 +3,72 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Erweiterungen -\label{dreieck:section:erweiterungen}} -\rhead{Erweiterungen} +\section{Integralbedingung +\label{dreieck:section:integralbedingung}} +\rhead{Lösung} +Die Tatsache, dass die Hermite-Polynome orthogonal sind, erlaubt, das +Kriterium von Satz~\ref{dreieck:satz1} etwas anders zu formulieren. + +Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die +orthonormierten Polynome +\[ +\tilde{H}_n(t) += +\frac{1}{\| H_n\|_w} H_n(t) +\qquad\text{mit}\quad +\|H_n\|_w^2 += +\int_{-\infty}^\infty H_n(t)e^{-t^2}\,dt +\] +bilden. +Da diese Polynome eine orthonormierte Basis des Vektorraums der Polynome +bilden, kann die gesuchte Zerlegung eines Polynoms $P(t)$ auch mit +Hilfe des Skalarproduktes gefunden werden: +\begin{align*} +P(t) +&= +\sum_{k=1}^n +\langle \tilde{H}_k, P\rangle_w +\tilde{H}_k(t) += +\sum_{k=1}^n +\biggl\langle \frac{H_k}{\|H_k\|_w}, P\biggr\rangle_w +\frac{H_k(t)}{\|H_k\|_w} += +\sum_{k=1}^n +\underbrace{ +\frac{ \langle H_k, P\rangle_w }{\|H_k\|_w^2} +}_{\displaystyle =a_k} +H_k(t). +\end{align*} +Die Darstellung von $P(t)$ als Linearkombination von Hermite-Polynomen +hat die Koeffizienten +\[ +a_k = \frac{\langle H_k,P\rangle_w}{\|H_k\|_w^2}. +\] +Aus dem Kriterium $a_0=0$ dafür, dass eine elementare Stammfunktion +von $P(t)e^{-t^2}$ existiert, wird daher die Bedingung, dass +$\langle H_0,P\rangle_w=0$ ist. +Da $H_0(t)=1$ ist, folgt als Bedingung +\[ +a_0 += +\langle H_0,P\rangle_w += +\int_{-\infty}^\infty P(t) e^{-t^2}\,dt += +0. +\] + +\begin{satz} +Ein Integrand der Form $P(t)e^{-t^2}$ mit einem Polynom $P(t)$ +hat genau dann eine elementare Stammfunktion, wenn +\[ +\int_{-\infty}^\infty P(t)e^{-t^2}\,dt = 0 +\] +ist. +\end{satz} + + -- cgit v1.2.1 From 54ab4af72ff10d4e5b739ac0e9d727482b9d5a15 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 12:43:02 +0200 Subject: fix typos --- buch/papers/dreieck/main.tex | 2 +- buch/papers/dreieck/teil0.tex | 4 ++-- buch/papers/dreieck/teil2.tex | 17 ++++++++++------- buch/papers/dreieck/teil3.tex | 5 +++-- 4 files changed, 16 insertions(+), 12 deletions(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex index b9f8c3b..fecaf93 100644 --- a/buch/papers/dreieck/main.tex +++ b/buch/papers/dreieck/main.tex @@ -15,7 +15,7 @@ ob eine elementare Funktion eine Stammfunktion in geschlossener Form hat. Der Algorithmus ist jedoch ziemlich kompliziert. In diesem Kapitel soll ein spezieller Fall mit Hilfe der Theorie der orthogonale Polynome, speziell der Hermite-Polynome, behandelt werden, -wie er in der Arbeit \cite{dreieck:polint} behandelt wurde. +wie er in der Arbeit \cite{dreieck:polint} untersucht wurde. \input{papers/dreieck/teil0.tex} \input{papers/dreieck/teil1.tex} diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex index 584f12b..65eff7a 100644 --- a/buch/papers/dreieck/teil0.tex +++ b/buch/papers/dreieck/teil0.tex @@ -33,9 +33,9 @@ Leitet man $e^{-t^2}$ zweimal ab, erhält man = (4t^2-2) e^{-t^2} \qquad\Rightarrow\qquad -\int (t^2-\frac12) e^{-t^2}\,dt +\int (t^2-{\textstyle\frac12}) e^{-t^2}\,dt = -\frac14 +{\textstyle\frac14} e^{-t^2}. \] Es gibt also eine viele weitere Polynome $P(t)$, für die der Integrand diff --git a/buch/papers/dreieck/teil2.tex b/buch/papers/dreieck/teil2.tex index c5a2826..8e89f6a 100644 --- a/buch/papers/dreieck/teil2.tex +++ b/buch/papers/dreieck/teil2.tex @@ -16,10 +16,10 @@ Das Problem kann daher neu formuliert werden: \begin{problem} \label{dreieck:problem2} Welche Polynome $P(t)$ lassen sich aus den Hermite-Polynomen -$H_n(t)$ mit $n>0$ linear kombinieren. +$H_n(t)$ mit $n>0$ linear kombinieren? \end{problem} -Sei jetzt +Sei also \[ P(t) = p_0 + p_1t + \ldots + p_{n-1}t^{n-1} + p_nt^n \] @@ -44,7 +44,7 @@ von Hermite-Polynomen schreiben. \begin{proof}[Beweis] Zunächst halten wir fest, dass aus der -Rekursionsformel~\eqref{dreieck:rekursion} +Rekursionsformel~\eqref{dreieck:eqn:rekursion} folgt, dass der Leitkoeffizient bei jedem Rekursionsschnitt mit $2$ multipliziert wird. Der Leitkoeffizient von $H_n(t)$ ist also $2^n$. @@ -53,10 +53,12 @@ Wir führen den Beweis mit vollständiger Induktion. Für $n=0$ ist $P(t)=p_0 = p_0 H_0(t)$ als Linearkombination von Hermite-Polynomen darstellbar, dies ist die Induktionsverankerung. -Nehmen wir jetzt an, dass sich ein Polynom vom Grad $n-1$ als +Wir nehmen jetzt im Sinne der Induktionsannahme an, +dass sich ein Polynom vom Grad $n-1$ als Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$ schreiben -lässt und untersuchen wir $P(t)$ vom Grad $n$. -Da der Leitkoeffizient des Polynoms $H_n(t)$ ist $2^n$, ist +lässt und untersuchen ein Polynom $P(t)$ vom Grad $n$. +Da der Leitkoeffizient des Polynoms $H_n(t)$ ist $2^n$, ist zerlegen +wir \[ P(t) = @@ -86,7 +88,7 @@ $n$ bewiesen. \label{dreieck:satz1} Die Funktion $P(t)e^{-t^2}$ hat genau dann eine elementare Stammfunktion, wenn in der Darstellung~\eqref{dreieck:lemma} -von $P(t)$ als Linearkombination von Hermite-Polynome $a_0=0$ gilt. +von $P(t)$ als Linearkombination von Hermite-Polynomen $a_0=0$ gilt. \end{satz} \begin{proof}[Beweis] @@ -100,6 +102,7 @@ a_0\int e^{-t^2}\,dt \sum_{k=1} a_kH_k(t)\,dt \\ &= +a_0 \frac{\sqrt{\pi}}2 \operatorname{erf}(t) + diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index 888ceb6..556a9d9 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -7,7 +7,8 @@ \label{dreieck:section:integralbedingung}} \rhead{Lösung} Die Tatsache, dass die Hermite-Polynome orthogonal sind, erlaubt, das -Kriterium von Satz~\ref{dreieck:satz1} etwas anders zu formulieren. +Kriterium von Satz~\ref{dreieck:satz1} in einer besonders attraktiven +Integralform zu formulieren. Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die orthonormierten Polynome @@ -42,7 +43,7 @@ P(t) H_k(t). \end{align*} Die Darstellung von $P(t)$ als Linearkombination von Hermite-Polynomen -hat die Koeffizienten +hat somit die Koeffizienten \[ a_k = \frac{\langle H_k,P\rangle_w}{\|H_k\|_w^2}. \] -- cgit v1.2.1 From 4220519090661503f243902aa58f48343920e89c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 12:47:03 +0200 Subject: index entries added --- buch/papers/dreieck/main.tex | 2 ++ buch/papers/dreieck/teil1.tex | 1 + buch/papers/dreieck/teil3.tex | 2 ++ 3 files changed, 5 insertions(+) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex index fecaf93..d7bc769 100644 --- a/buch/papers/dreieck/main.tex +++ b/buch/papers/dreieck/main.tex @@ -11,6 +11,8 @@ \noindent Der Risch-Algorithmus erlaubt, eine definitive Antwort darauf zu geben, +\index{Risch-Algorithmus}% +\index{elementare Stammfunktion}% ob eine elementare Funktion eine Stammfunktion in geschlossener Form hat. Der Algorithmus ist jedoch ziemlich kompliziert. In diesem Kapitel soll ein spezieller Fall mit Hilfe der Theorie der diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index f03c425..45c1a23 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -34,6 +34,7 @@ Die Polynome, die man aus der Funktion $H_0(t)=e^{-t^2}$ durch Ableiten erhalten kann, wurden bereits in Abschnitt~\ref{buch:orthogonalitaet:section:rodrigues} bis auf ein Vorzeichen hergeleitet, sie heissen die Hermite-Polynome +\index{Hermite-Polynome}% und es gilt \[ H_n(t) diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index 556a9d9..c0c046a 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -11,6 +11,8 @@ Kriterium von Satz~\ref{dreieck:satz1} in einer besonders attraktiven Integralform zu formulieren. Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die +\index{orthogonale Polynome}% +\index{Polynome, orthogonale}% orthonormierten Polynome \[ \tilde{H}_n(t) -- cgit v1.2.1 From 05d75b0f467b2535db538ecaee461cf0c8b637d1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Jun 2022 20:17:16 +0200 Subject: add stuff for elliptic filters --- buch/papers/dreieck/teil0.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex index 65eff7a..f9affe7 100644 --- a/buch/papers/dreieck/teil0.tex +++ b/buch/papers/dreieck/teil0.tex @@ -38,7 +38,7 @@ Leitet man $e^{-t^2}$ zweimal ab, erhält man {\textstyle\frac14} e^{-t^2}. \] -Es gibt also eine viele weitere Polynome $P(t)$, für die der Integrand +Es gibt also viele weitere Polynome $P(t)$, für die der Integrand $P(t)e^{-t^2}$ eine Stammfunktion in geschlossener Form hat. Damit stellt sich jetzt das folgende allgemeine Problem. -- cgit v1.2.1