From d3c217cdb6106f2082097dd9e76f200885c853cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 11:45:38 +0200 Subject: add polynomials with elementary w-integrals paper --- buch/papers/dreieck/main.tex | 18 +++--- buch/papers/dreieck/references.bib | 36 +++--------- buch/papers/dreieck/teil0.tex | 45 ++++++++++++++- buch/papers/dreieck/teil1.tex | 88 +++++++++++++++++++++++++++++- buch/papers/dreieck/teil2.tex | 109 ++++++++++++++++++++++++++++++++++++- buch/papers/dreieck/teil3.tex | 70 +++++++++++++++++++++++- 6 files changed, 318 insertions(+), 48 deletions(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex index 75ba410..b9f8c3b 100644 --- a/buch/papers/dreieck/main.tex +++ b/buch/papers/dreieck/main.tex @@ -3,19 +3,19 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Dreieckstest und Beta-Funktion\label{chapter:dreieck}} -\lhead{Dreieckstest und Beta-Funktion} +\chapter{$\int P(t) e^{-t^2} \,dt$ in geschlossener Form? +\label{chapter:dreieck}} +\lhead{Integrierbarkeit in geschlossener Form} \begin{refsection} \chapterauthor{Andreas Müller} \noindent -Mit dem Dreieckstest kann man feststellen, wie gut ein Geruchs- -oder Geschmackstester verschiedene Gerüche oder Geschmäcker -unterscheiden kann. -Seine wahrscheinlichkeitstheoretische Erklärung benötigt die Beta-Funktion, -man kann die Beta-Funktion als durchaus als die mathematische Grundlage -der Weindegustation -bezeichnen. +Der Risch-Algorithmus erlaubt, eine definitive Antwort darauf zu geben, +ob eine elementare Funktion eine Stammfunktion in geschlossener Form hat. +Der Algorithmus ist jedoch ziemlich kompliziert. +In diesem Kapitel soll ein spezieller Fall mit Hilfe der Theorie der +orthogonale Polynome, speziell der Hermite-Polynome, behandelt werden, +wie er in der Arbeit \cite{dreieck:polint} behandelt wurde. \input{papers/dreieck/teil0.tex} \input{papers/dreieck/teil1.tex} diff --git a/buch/papers/dreieck/references.bib b/buch/papers/dreieck/references.bib index d2bbe08..47bd865 100644 --- a/buch/papers/dreieck/references.bib +++ b/buch/papers/dreieck/references.bib @@ -4,32 +4,12 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{dreieck:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} +@article{dreieck:polint, + author = { George Stoica }, + title = { Polynomials and Integration in Finite Terms }, + journal = { Amer. Math. Monthly }, + volume = 129, + year = 2022, + number = 1, + pages = {80--81} } - -@book{dreieck:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} -} - -@article{dreieck:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} -} - diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex index bcf2cf8..584f12b 100644 --- a/buch/papers/dreieck/teil0.tex +++ b/buch/papers/dreieck/teil0.tex @@ -3,7 +3,48 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Testprinzip\label{dreieck:section:testprinzip}} -\rhead{Testprinzip} +\section{Problemstellung\label{dreieck:section:problemstellung}} +\rhead{Problemstellung} +Es ist bekannt, dass das Fehlerintegral +\[ +\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x e^{-\frac{t^2}{2\sigma}}\,dt +\] +nicht in geschlossener Form dargestellt werden kann. +Mit der in Kapitel~\ref{buch:chapter:integral} skizzierten Theorie von +Liouville und dem Risch-Algorithmus kann dies strengt gezeigt werden. +Andererseits gibt es durchaus Integranden, die $e^{-t^2}$ enthalten, +für die eine Stammfunktion in geschlossener Form gefunden werden kann. +Zum Beispiel folgt aus der Ableitung +\[ +\frac{d}{dt} e^{-t^2} += +-2te^{-t^2} +\] +die Stammfunktion +\[ +\int te^{-t^2}\,dt += +-\frac12 e^{-t^2}. +\] +Leitet man $e^{-t^2}$ zweimal ab, erhält man +\[ +\frac{d^2}{dt^2} e^{-t^2} += +(4t^2-2) e^{-t^2} +\qquad\Rightarrow\qquad +\int (t^2-\frac12) e^{-t^2}\,dt += +\frac14 +e^{-t^2}. +\] +Es gibt also eine viele weitere Polynome $P(t)$, für die der Integrand +$P(t)e^{-t^2}$ eine Stammfunktion in geschlossener Form hat. +Damit stellt sich jetzt das folgende allgemeine Problem. + +\begin{problem} +\label{dreieck:problem} +Für welche Polynome $P(t)$ hat der Integrand $P(t)e^{-t^2}$ +eine elementare Stammfunktion? +\end{problem} diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index 4abe2e1..f03c425 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -3,9 +3,91 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Ordnungsstatistik und Beta-Funktion -\label{dreieck:section:ordnungsstatistik}} -\rhead{} +\section{Hermite-Polynome +\label{dreieck:section:hermite-polynome}} +\rhead{Hermite-Polyome} +In Abschnitt~\ref{dreieck:section:problemstellung} hat sich schon angedeutet, +dass die Polynome, die man durch Ableiten von $e^{-t^2}$ erhalten +kann, bezüglich des gestellten Problems besondere Eigenschaften +haben. +Zunächst halten wir fest, dass die Ableitung einer Funktion der Form +$P(t)e^{-t^2}$ mit einem Polynom $P(t)$ +\begin{equation} +\frac{d}{dt} P(t)e^{-t^2} += +P'(t)e^{-t^2} -2tP(t)e^{-t^2} += +(P'(t)-2tP(t)) e^{-t^2} +\label{dreieck:eqn:ableitung} +\end{equation} +ist. +Insbesondere hat die Ableitung wieder die Form $Q(t)e^{-t^2}$ +mit einem Polynome $Q(t)$, welches man auch als +\[ +Q(t) += +e^{t^2}\frac{d}{dt}P(t)e^{-t^2} +\] +erhalten kann. +Die Polynome, die man aus der Funktion $H_0(t)=e^{-t^2}$ durch +Ableiten erhalten kann, wurden bereits in +Abschnitt~\ref{buch:orthogonalitaet:section:rodrigues} +bis auf ein Vorzeichen hergeleitet, sie heissen die Hermite-Polynome +und es gilt +\[ +H_n(t) += +(-1)^n +e^{t^2} \frac{d^n}{dt^n} e^{-t^2}. +\] +Das Vorzeichen dient dazu sicherzustellen, dass der Leitkoeffizient +immer $1$ ist. +Das Polynom $H_n(t)$ hat den Grad $n$. + +In Abschnitt wurde auch gezeigt, dass die Polynome $H_n(t)$ +bezüglich des Skalarproduktes +\[ +\langle f,g\rangle_{w} += +\int_{-\infty}^\infty f(t)g(t)e^{-t^2}\,dt, +\qquad +w(t)=e^{-t^2}, +\] +orthogonal sind. +Ausserdem folgt aus \eqref{dreieck:eqn:ableitung} +die Rekursionsbeziehung +\begin{equation} +H_{n}(t) += +2tH_{n-1}(t) +- +H_{n-1}'(t) +\label{dreieck:eqn:rekursion} +\end{equation} +für $n>0$. + +Im Hinblick auf die Problemstellung ist jetzt die Frage interessant, +ob die Integranden $H_n(t)e^{-t^2}$ eine Stammfunktion in geschlossener +Form haben. +Mit Hilfe der Rekursionsbeziehung~\eqref{dreieck:eqn:rekursion} +kann man für $n>0$ unmittelbar verifizieren, dass +\begin{align*} +\int H_n(t)e^{-t^2}\,dt +&= +\int \bigl( 2tH_{n-1}(t) - H'_{n-1}(t)\bigr)e^{-t^2}\,dt +\\ +&= +-\int \bigl( \exp'(-t^2) H_{n-1}(t) + H'_{n-1}(t)\bigr)e^{-t^2}\,dt +\\ +&= +-\int \bigl( e^{-t^2}H_{n-1}(t)\bigr)' \,dt += +-e^{-t^2}H_{n-1}(t) +\end{align*} +ist. +Für $n>0$ hat also $H_n(t)e^{-t^2}$ eine elementare Stammfunktion. +Die Hermite-Polynome sind also Lösungen für das +Problem~\ref{dreieck:problem}. diff --git a/buch/papers/dreieck/teil2.tex b/buch/papers/dreieck/teil2.tex index 83ea3cb..c5a2826 100644 --- a/buch/papers/dreieck/teil2.tex +++ b/buch/papers/dreieck/teil2.tex @@ -3,7 +3,110 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Wahrscheinlichkeiten im Dreieckstest -\label{dreieck:section:wahrscheinlichkeiten}} -\rhead{Wahrscheinlichkeiten} +\section{Beliebige Polynome +\label{dreieck:section:beliebig}} +\rhead{Beliebige Polynome} +Im Abschnitt~\ref{dreieck:section:hermite-polynome} wurden die +Hermite-Polynome $H_n(t)$ mit $n>0$ als Lösungen des gestellten +Problems erkannt. +Eine Linearkombination von solchen Polynomen hat natürlich +ebenfalls eine elementare Stammfunktion. +Das Problem kann daher neu formuliert werden: + +\begin{problem} +\label{dreieck:problem2} +Welche Polynome $P(t)$ lassen sich aus den Hermite-Polynomen +$H_n(t)$ mit $n>0$ linear kombinieren. +\end{problem} + +Sei jetzt +\[ +P(t) = p_0 + p_1t + \ldots + p_{n-1}t^{n-1} + p_nt^n +\] +ein beliebiges Polynom vom Grad $n$. +Eine elementare Stammfunktion von $P(t)e^{-t^2}$ existiert sicher, +wenn sich $P(t)$ aus den Funktionen $H_n(t)$ mit $n>0$ linear +kombinieren lässt. +Gesucht ist also zunächst eine Darstellung von $P(t)$ als Linearkombination +von Hermite-Polynomen. + +\begin{lemma} +Jedes Polynome $P(t)$ vom Grad $n$ lässt sich auf eindeutige Art und +Weise als Linearkombination +\begin{equation} +P(t) = a_0H_0(t) + a_1H_1(t) + \ldots + a_nH_n(t) += +\sum_{k=0}^n a_nH_n(t) +\label{dreieck:lemma} +\end{equation} +von Hermite-Polynomen schreiben. +\end{lemma} + +\begin{proof}[Beweis] +Zunächst halten wir fest, dass aus der +Rekursionsformel~\eqref{dreieck:rekursion} +folgt, dass der Leitkoeffizient bei jedem Rekursionsschnitt +mit $2$ multipliziert wird. +Der Leitkoeffizient von $H_n(t)$ ist also $2^n$. + +Wir führen den Beweis mit vollständiger Induktion. +Für $n=0$ ist $P(t)=p_0 = p_0 H_0(t)$ als Linearkombination von +Hermite-Polynomen darstellbar, dies ist die Induktionsverankerung. + +Nehmen wir jetzt an, dass sich ein Polynom vom Grad $n-1$ als +Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$ schreiben +lässt und untersuchen wir $P(t)$ vom Grad $n$. +Da der Leitkoeffizient des Polynoms $H_n(t)$ ist $2^n$, ist +\[ +P(t) += +\underbrace{\biggl(P(t) - \frac{p_n}{2^n} H_n(t)\biggr)}_{\displaystyle = Q(t)} ++ +\frac{p_n}{2^n} H_n(t). +\] +Das Polynom $Q(t)$ hat Grad $n-1$, besitzt also nach Induktionsannahme +eine Darstellung +\[ +Q(t) = a_0H_0(t)+a_1H_1(t)+\ldots+a_{n-1}H_{n-1}(t) +\] +als Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$. +Somit ist +\[ +P(t) += a_0H_0(t)+a_1H_1(t)+\ldots+a_{n-1}H_{n-1}(t) + +\frac{p_n}{2^n} H_n(t) +\] +eine Darstellung von $P(t)$ als Linearkombination der Polynome +$H_0(t),\dots,H_n(t)$. +Damit ist der Induktionsschritt vollzogen und das Lemma für alle +$n$ bewiesen. +\end{proof} + +\begin{satz} +\label{dreieck:satz1} +Die Funktion $P(t)e^{-t^2}$ hat genau dann eine elementare Stammfunktion, +wenn in der Darstellung~\eqref{dreieck:lemma} +von $P(t)$ als Linearkombination von Hermite-Polynome $a_0=0$ gilt. +\end{satz} + +\begin{proof}[Beweis] +Es ist +\begin{align*} +\int P(t)e^{-t^2}\,dt +&= +a_0\int e^{-t^2}\,dt ++ +\int +\sum_{k=1} a_kH_k(t)\,dt +\\ +&= +\frac{\sqrt{\pi}}2 +\operatorname{erf}(t) ++ +\sum_{k=1} a_k\int H_k(t)\,dt. +\end{align*} +Da die Integrale in der Summe alle elementar darstellbar sind, +ist das Integral genau dann elementar, wenn $a_0=0$ ist. +\end{proof} + diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index e2dfd6b..888ceb6 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -3,8 +3,72 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Erweiterungen -\label{dreieck:section:erweiterungen}} -\rhead{Erweiterungen} +\section{Integralbedingung +\label{dreieck:section:integralbedingung}} +\rhead{Lösung} +Die Tatsache, dass die Hermite-Polynome orthogonal sind, erlaubt, das +Kriterium von Satz~\ref{dreieck:satz1} etwas anders zu formulieren. + +Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die +orthonormierten Polynome +\[ +\tilde{H}_n(t) += +\frac{1}{\| H_n\|_w} H_n(t) +\qquad\text{mit}\quad +\|H_n\|_w^2 += +\int_{-\infty}^\infty H_n(t)e^{-t^2}\,dt +\] +bilden. +Da diese Polynome eine orthonormierte Basis des Vektorraums der Polynome +bilden, kann die gesuchte Zerlegung eines Polynoms $P(t)$ auch mit +Hilfe des Skalarproduktes gefunden werden: +\begin{align*} +P(t) +&= +\sum_{k=1}^n +\langle \tilde{H}_k, P\rangle_w +\tilde{H}_k(t) += +\sum_{k=1}^n +\biggl\langle \frac{H_k}{\|H_k\|_w}, P\biggr\rangle_w +\frac{H_k(t)}{\|H_k\|_w} += +\sum_{k=1}^n +\underbrace{ +\frac{ \langle H_k, P\rangle_w }{\|H_k\|_w^2} +}_{\displaystyle =a_k} +H_k(t). +\end{align*} +Die Darstellung von $P(t)$ als Linearkombination von Hermite-Polynomen +hat die Koeffizienten +\[ +a_k = \frac{\langle H_k,P\rangle_w}{\|H_k\|_w^2}. +\] +Aus dem Kriterium $a_0=0$ dafür, dass eine elementare Stammfunktion +von $P(t)e^{-t^2}$ existiert, wird daher die Bedingung, dass +$\langle H_0,P\rangle_w=0$ ist. +Da $H_0(t)=1$ ist, folgt als Bedingung +\[ +a_0 += +\langle H_0,P\rangle_w += +\int_{-\infty}^\infty P(t) e^{-t^2}\,dt += +0. +\] + +\begin{satz} +Ein Integrand der Form $P(t)e^{-t^2}$ mit einem Polynom $P(t)$ +hat genau dann eine elementare Stammfunktion, wenn +\[ +\int_{-\infty}^\infty P(t)e^{-t^2}\,dt = 0 +\] +ist. +\end{satz} + + -- cgit v1.2.1