From ed0a70c80e7a8c9915f53edbfeb4daf19e030dd8 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 8 Mar 2022 16:27:37 +0100 Subject: add some theory --- buch/papers/dreieck/Makefile | 9 ++ buch/papers/dreieck/Makefile.inc | 14 ++ buch/papers/dreieck/main.tex | 26 ++++ buch/papers/dreieck/packages.tex | 10 ++ buch/papers/dreieck/references.bib | 35 +++++ buch/papers/dreieck/teil0.tex | 9 ++ buch/papers/dreieck/teil1.tex | 261 +++++++++++++++++++++++++++++++++++++ buch/papers/dreieck/teil2.tex | 9 ++ buch/papers/dreieck/teil3.tex | 10 ++ 9 files changed, 383 insertions(+) create mode 100644 buch/papers/dreieck/Makefile create mode 100644 buch/papers/dreieck/Makefile.inc create mode 100644 buch/papers/dreieck/main.tex create mode 100644 buch/papers/dreieck/packages.tex create mode 100644 buch/papers/dreieck/references.bib create mode 100644 buch/papers/dreieck/teil0.tex create mode 100644 buch/papers/dreieck/teil1.tex create mode 100644 buch/papers/dreieck/teil2.tex create mode 100644 buch/papers/dreieck/teil3.tex (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/Makefile b/buch/papers/dreieck/Makefile new file mode 100644 index 0000000..f0cb602 --- /dev/null +++ b/buch/papers/dreieck/Makefile @@ -0,0 +1,9 @@ +# +# Makefile -- make file for the paper dreieck +# +# (c) 2020 Prof Dr Andreas Mueller +# + +images: + @echo "no images to be created in dreieck" + diff --git a/buch/papers/dreieck/Makefile.inc b/buch/papers/dreieck/Makefile.inc new file mode 100644 index 0000000..843da8d --- /dev/null +++ b/buch/papers/dreieck/Makefile.inc @@ -0,0 +1,14 @@ +# +# Makefile.inc -- dependencies for this article +# +# (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +dependencies-dreieck = \ + papers/dreieck/packages.tex \ + papers/dreieck/main.tex \ + papers/dreieck/references.bib \ + papers/dreieck/teil0.tex \ + papers/dreieck/teil1.tex \ + papers/dreieck/teil2.tex \ + papers/dreieck/teil3.tex + diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex new file mode 100644 index 0000000..75ba410 --- /dev/null +++ b/buch/papers/dreieck/main.tex @@ -0,0 +1,26 @@ +% +% main.tex -- Paper zum Thema +% +% (c) 2020 Hochschule Rapperswil +% +\chapter{Dreieckstest und Beta-Funktion\label{chapter:dreieck}} +\lhead{Dreieckstest und Beta-Funktion} +\begin{refsection} +\chapterauthor{Andreas Müller} + +\noindent +Mit dem Dreieckstest kann man feststellen, wie gut ein Geruchs- +oder Geschmackstester verschiedene Gerüche oder Geschmäcker +unterscheiden kann. +Seine wahrscheinlichkeitstheoretische Erklärung benötigt die Beta-Funktion, +man kann die Beta-Funktion als durchaus als die mathematische Grundlage +der Weindegustation +bezeichnen. + +\input{papers/dreieck/teil0.tex} +\input{papers/dreieck/teil1.tex} +\input{papers/dreieck/teil2.tex} +\input{papers/dreieck/teil3.tex} + +\printbibliography[heading=subbibliography] +\end{refsection} diff --git a/buch/papers/dreieck/packages.tex b/buch/papers/dreieck/packages.tex new file mode 100644 index 0000000..fd4ebce --- /dev/null +++ b/buch/papers/dreieck/packages.tex @@ -0,0 +1,10 @@ +% +% packages.tex -- packages required by the paper dreieck +% +% (c) 2019 Prof Dr Andreas Müller, Hochschule Rapperswil +% + +% if your paper needs special packages, add package commands as in the +% following example +%\usepackage{packagename} + diff --git a/buch/papers/dreieck/references.bib b/buch/papers/dreieck/references.bib new file mode 100644 index 0000000..d2bbe08 --- /dev/null +++ b/buch/papers/dreieck/references.bib @@ -0,0 +1,35 @@ +% +% references.bib -- Bibliography file for the paper dreieck +% +% (c) 2020 Autor, Hochschule Rapperswil +% + +@online{dreieck:bibtex, + title = {BibTeX}, + url = {https://de.wikipedia.org/wiki/BibTeX}, + date = {2020-02-06}, + year = {2020}, + month = {2}, + day = {6} +} + +@book{dreieck:numerical-analysis, + title = {Numerical Analysis}, + author = {David Kincaid and Ward Cheney}, + publisher = {American Mathematical Society}, + year = {2002}, + isbn = {978-8-8218-4788-6}, + inseries = {Pure and applied undegraduate texts}, + volume = {2} +} + +@article{dreieck:mendezmueller, + author = { Tabea Méndez and Andreas Müller }, + title = { Noncommutative harmonic analysis and image registration }, + journal = { Appl. Comput. Harmon. Anal.}, + year = 2019, + volume = 47, + pages = {607--627}, + url = {https://doi.org/10.1016/j.acha.2017.11.004} +} + diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex new file mode 100644 index 0000000..bcf2cf8 --- /dev/null +++ b/buch/papers/dreieck/teil0.tex @@ -0,0 +1,9 @@ +% +% einleitung.tex -- Beispiel-File für die Einleitung +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Testprinzip\label{dreieck:section:testprinzip}} +\rhead{Testprinzip} + + diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex new file mode 100644 index 0000000..255c5d0 --- /dev/null +++ b/buch/papers/dreieck/teil1.tex @@ -0,0 +1,261 @@ +% +% teil1.tex -- Beispiel-File für das Paper +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Ordnungsstatistik und Beta-Funktion +\label{dreieck:section:ordnungsstatistik}} +\rhead{Ordnungsstatistik und Beta-Funktion} +In diesem Abschnitt ist $X$ eine Zufallsvariable mit der Verteilungsfunktion +$F_X(x)$, und $X_i$, $1\le i\le n$ sei ein Stichprobe von unabhängigen +Zufallsvariablen, die wie $X$ verteilt sind. +Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte +des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe +zu finden. + +\subsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und +$\operatorname{min}(X_1,\dots,X_n)$ +\label{dreieck:subsection:minmax}} +Die Verteilungsfunktion von $\operatorname{max}(X_1,\dots,X_n)$ hat +den Wert +\begin{align*} +F_{\operatorname{max}(X_1,\dots,X_n)}(x) +&= +P(\operatorname{max}(X_1,\dots,X_n) \le x) +\\ +&= +P(X_1\le x\wedge \dots \wedge X_n\le x) +\\ +&= +P(X_1\le x) \cdot \ldots \cdot P(X_n\le x) +\\ +&= +P(X\le x)^n += +F_X(x)^n. +\end{align*} +Für die Gleichverteilung ist +\[ +F_{\text{equi}}(x) += +\begin{cases} +0&\qquad x< 0 +\\ +x&\qquad 0\le x\le 1 +\\ +1&\qquad 1 X_1\wedge \dots \wedge x > X_n) +\\ +&= +1- +(1-P(x\le X_1)) \cdot\ldots\cdot (1-P(x\le X_n)) +\\ +&= +1-(1-F_X(x))^n, +\end{align*} +Im Speziellen für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die +Verteilungsfunktion des Minimums +\[ +F_{\operatorname{min}(X_1,\dots,X_n)}(x) += +\begin{cases} +0 &\qquad x<0 \\ +1-(1-x)^n&\qquad 0\le x\le 1\\ +1 &\qquad 1 < x +\end{cases} +\] +mit Wahrscheinlichkeitsdichte +\[ +\varphi_{\operatorname{min}(X_1,\dots,X_n)} += +\frac{d}{dx} +F_{\operatorname{min}(X_1,\dots,X_n)} += +\begin{cases} +n(1-x)^{n-1}&\qquad 0\le x\le 1\\ +0 &\qquad \text{sonst} +\end{cases} +\] +und Erwartungswert +\begin{align*} +E(\operatorname{min}(X_1,\dots,X_n) +&= +\int_{-\infty}^\infty x\varphi_{\operatorname{min}(X_1,\dots,X_n)}(x)\,dx += +\int_0^1 x\cdot n(1-x)^{n-1}\,dx +\\ +&= +\bigl[ -x(1-x)^n \bigr]_0^1 + \int_0^1 (1-x)^n\,dx += +\biggl[ +- +\frac{1}{n+1} +(1-x)^{n+1} +\biggr]_0^1 += +\frac{1}{n+1}. +\end{align*} +Es ergibt sich daraus als natürlich Verallgemeinerung die Frage nach +der Verteilung des zweitegrössten oder zweitkleinsten Wertes unter den +Werten $X_i$. + +\subsection{Der $k$-t-grösste Wert} +Sie wieder $X_i$ eine Stichprobe von $n$ unabhängigen wie $X$ verteilten +Zufallsvariablen. +Diese werden jetzt der Grösse nach sortiert, die sortierten Werte werden +mit +\[ +X_{1:n} \le X_{2:n} \le \dots \le X_{(n-1):n} \le X_{n:n} +\] +bezeichnet. +Die Grössen $X_{k:n}$ sind Zufallsvariablen, sie heissen die $k$-ten +Ordnungsstatistiken. +Die in Abschnitt~\ref{dreieck:subsection:minmax} behandelten Zufallsvariablen +$\operatorname{min}(X_1,\dots,X_n)$ +und +$\operatorname{max}(X_1,\dots,X_n)$ +sind die Fälle +\begin{align*} +X_{1:n} &= \operatorname{min}(X_1,\dots,X_n) \\ +X_{n:n} &= \operatorname{max}(X_1,\dots,X_n). +\end{align*} + +Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir +die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht +übersteigen. +Es muss also eine Partition von $[n]=\{1,\dots,n\}$ in eine +$k$-elementige $I=\{i_1,\dots,i_k\}$ Teilmenge und ihre +$(n-k)$-elementige Komplementmenge $[n]\setminus I$ geben +derart, dass die $X_{i} \le x$ sind für $i\in I$ und $X_{j}> x$ für +$j\in [n]\setminus I$. +Daraus kann man ablesen, dass +\begin{align*} +F_{X_{k:n}}(x) +&= +P\biggl( +\bigvee_{I\subset[n]\wedge |I|=k} +\bigwedge_{i\in I} (X_i\le x) +\wedge +\bigwedge_{j\in [n]\setminus I} (X_i > x) +\biggr). +\intertext{Da die verschiedenen $k$-elementigen Teilmengen $I\subset[n]$ +zu disjunkten Ereignissen gehören, ist die Wahrscheinlichkeit eine Summe} +&= +\sum_{I\subset[n]\wedge |I|=k} +P\biggl( +\bigwedge_{i\in I} (X_i\le x) +\wedge +\bigwedge_{j\in [n]\setminus I} (X_i > x) +\biggr) +\\ +&= +\sum_{I\subset[n]\wedge |I|=k} +\prod_{i\in I} +P(X_i\le x) +\cdot +\prod_{j\in [n]\setminus I} +P(X_j > x) +\\ +&= +\sum_{I\subset[n]\wedge |I|=k} +F_X(x)^k +(1-F_X(x))^{n-k}. +\intertext{Die Anzahl solcher Teilmengen $I$ ist gegeben durch den +Binomialkoeffizienten gebeben, die Verteilungsfunktion ist daher} +F_{X_{k:n}}(x) +&= +\binom{n}{k} +F_X(x)^k +(1-F_X(x))^{n-k}. +\end{align*} +Für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die Verteilungsfunktion +der $k$-ten Ordnungsstatistik +\[ +F_{X_{k:n}}(x) += +\binom{n}{k} x^k(1-x)^{n-k}. +\] +Ihre Ableitung nach $x$ ist die Wahrscheinlichkeitsdichte und damit +wird es jetzt auch möglich, den Erwartungswert zu ermitteln: +\begin{align*} +E(X_{k:n}) +&= +\int_{0}^1 +\underbrace{x\llap{\phantom{\bigg|}}\mathstrut}_{\downarrow} +\underbrace{\frac{d}{dx}\binom{n}{k}x^k(1-x)^{n-k}}_{\uparrow} +\,dx += +\biggl[ +x\binom{n}{k}x^k(1-x)^{n-k} +\biggr]_0^1 +- +\int_0^1 +\binom{n}{k}x^k(1-x)^{n-k} +\,dx +\\ +&= +\binom{n}{k} +\biggl( +0^{n-k} +- +\int_0^1 x^k(1-x)^{n-k}\,dx +\biggr) +\end{align*} + + + + + diff --git a/buch/papers/dreieck/teil2.tex b/buch/papers/dreieck/teil2.tex new file mode 100644 index 0000000..83ea3cb --- /dev/null +++ b/buch/papers/dreieck/teil2.tex @@ -0,0 +1,9 @@ +% +% teil2.tex -- Beispiel-File für teil2 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Wahrscheinlichkeiten im Dreieckstest +\label{dreieck:section:wahrscheinlichkeiten}} +\rhead{Wahrscheinlichkeiten} + diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex new file mode 100644 index 0000000..e2dfd6b --- /dev/null +++ b/buch/papers/dreieck/teil3.tex @@ -0,0 +1,10 @@ +% +% teil3.tex -- Beispiel-File für Teil 3 +% +% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil +% +\section{Erweiterungen +\label{dreieck:section:erweiterungen}} +\rhead{Erweiterungen} + + -- cgit v1.2.1 From 3157b81b70673659b27edbd680af7ef5a4485a22 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 8 Mar 2022 16:53:48 +0100 Subject: add new files --- buch/papers/dreieck/images/Makefile | 8 ++++++++ buch/papers/dreieck/images/order.tex | 34 ++++++++++++++++++++++++++++++++++ 2 files changed, 42 insertions(+) create mode 100644 buch/papers/dreieck/images/Makefile create mode 100644 buch/papers/dreieck/images/order.tex (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/images/Makefile b/buch/papers/dreieck/images/Makefile new file mode 100644 index 0000000..02be1bb --- /dev/null +++ b/buch/papers/dreieck/images/Makefile @@ -0,0 +1,8 @@ +# +# Makefile +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +order.pdf: order.tex + pdflatex order.tex + diff --git a/buch/papers/dreieck/images/order.tex b/buch/papers/dreieck/images/order.tex new file mode 100644 index 0000000..826f48c --- /dev/null +++ b/buch/papers/dreieck/images/order.tex @@ -0,0 +1,34 @@ +% +% order.tex -- Verteilungsfunktion für Ordnungsstatistik +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\begin{document} +\def\skala{8} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\draw[color=red,line width=1.4pt] ({-0.1/\skala},0) + -- + plot[domain=0:1,samples=100] ({\x},{0.5*\x*\x*\x*\x*\x*\x}) + -- + ({1+0.1/\skala},0.5); + +\draw[color=red,line width=1.4pt] ({-0.1/\skala},0) + -- + plot[domain=0:1,samples=100] ({\x},{0.5*(\x*\x*\x*\x)}) + -- + ({1+0.1/\skala},0.5); + +\draw[->] ({-0.1/\skala},0) -- (1.1,0) coordinate[label={$1$}]; +\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={left:$F(X)$}]; + +\end{tikzpicture} +\end{document} + -- cgit v1.2.1 From 100498089783148753f2862c4dbfba04f110727f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Wed, 9 Mar 2022 09:42:50 +0100 Subject: add order statistics graph --- buch/papers/dreieck/images/Makefile | 4 +- buch/papers/dreieck/images/order.m | 79 ++++++++++++++++++++++++++++++++++ buch/papers/dreieck/images/order.pdf | Bin 0 -> 31044 bytes buch/papers/dreieck/images/order.tex | 81 +++++++++++++++++++++++++++++++---- 4 files changed, 155 insertions(+), 9 deletions(-) create mode 100644 buch/papers/dreieck/images/order.m create mode 100644 buch/papers/dreieck/images/order.pdf (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/images/Makefile b/buch/papers/dreieck/images/Makefile index 02be1bb..3907d13 100644 --- a/buch/papers/dreieck/images/Makefile +++ b/buch/papers/dreieck/images/Makefile @@ -3,6 +3,8 @@ # # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # -order.pdf: order.tex +order.pdf: order.tex orderpath.tex pdflatex order.tex +orderpath.tex: order.m + octave order.m diff --git a/buch/papers/dreieck/images/order.m b/buch/papers/dreieck/images/order.m new file mode 100644 index 0000000..d37a258 --- /dev/null +++ b/buch/papers/dreieck/images/order.m @@ -0,0 +1,79 @@ +# +# order.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +global N; +N = 10; +global subdivisions; +subdivisions = 100; +global P; +P = 0.5 + +function retval = orderF(p, n, k) + retval = 0; + for i = (k:n) + retval = retval + nchoosek(n,i) * p^i * (1-p)^(n-i); + end +end + +function retval = orderd(p, n, k) + retval = 0; + for i = (k:n) + s = i * p^(i-1) * (1-p)^(n-i); + s = s - p^i * (n-i) * (1-p)^(n-i-1); + retval = retval + nchoosek(n,i) * s; + end +end + +function orderpath(fn, k, name) + fprintf(fn, "\\def\\order%s{\n\t(0,0)", name); + global N; + global subdivisions; + for i = (0:subdivisions) + p = i/subdivisions; + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", + p, orderF(p, N, k)); + end + fprintf(fn, "\n}\n"); +end + +function orderdpath(fn, k, name) + fprintf(fn, "\\def\\orderd%s{\n\t(0,0)", name); + global N; + global subdivisions; + for i = (1:subdivisions-1) + p = i/subdivisions; + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", + p, orderd(p, N, k)); + end + fprintf(fn, "\n\t-- ({1*\\dx},0)"); + fprintf(fn, "\n}\n"); +end + +fn = fopen("orderpath.tex", "w"); +orderpath(fn, 0, "zero"); +orderdpath(fn, 0, "zero"); +orderpath(fn, 1, "one"); +orderdpath(fn, 1, "one"); +orderpath(fn, 2, "two"); +orderdpath(fn, 2, "two"); +orderpath(fn, 3, "three"); +orderdpath(fn, 3, "three"); +orderpath(fn, 4, "four"); +orderdpath(fn, 4, "four"); +orderpath(fn, 5, "five"); +orderdpath(fn, 5, "five"); +orderpath(fn, 6, "six"); +orderdpath(fn, 6, "six"); +orderpath(fn, 7, "seven"); +orderdpath(fn, 7, "seven"); +orderpath(fn, 8, "eight"); +orderdpath(fn, 8, "eight"); +orderpath(fn, 9, "nine"); +orderdpath(fn, 9, "nine"); +orderpath(fn, 10, "ten"); +orderdpath(fn, 10, "ten"); +fclose(fn); + + diff --git a/buch/papers/dreieck/images/order.pdf b/buch/papers/dreieck/images/order.pdf new file mode 100644 index 0000000..6d9c8c0 Binary files /dev/null and b/buch/papers/dreieck/images/order.pdf differ diff --git a/buch/papers/dreieck/images/order.tex b/buch/papers/dreieck/images/order.tex index 826f48c..083f014 100644 --- a/buch/papers/dreieck/images/order.tex +++ b/buch/papers/dreieck/images/order.tex @@ -12,22 +12,87 @@ \usetikzlibrary{arrows,intersections,math} \begin{document} \def\skala{8} +\definecolor{darkgreen}{rgb}{0,0.6,0} +\input{orderpath.tex} \begin{tikzpicture}[>=latex,thick,scale=\skala] -\draw[color=red,line width=1.4pt] ({-0.1/\skala},0) - -- - plot[domain=0:1,samples=100] ({\x},{0.5*\x*\x*\x*\x*\x*\x}) - -- - ({1+0.1/\skala},0.5); +\def\dx{1} +\def\dy{0.5} -\draw[color=red,line width=1.4pt] ({-0.1/\skala},0) +\def\pfad#1#2{ +\draw[color=#2,line width=1.4pt] ({-0.1/\skala},0) -- - plot[domain=0:1,samples=100] ({\x},{0.5*(\x*\x*\x*\x)}) + #1 -- ({1+0.1/\skala},0.5); +} -\draw[->] ({-0.1/\skala},0) -- (1.1,0) coordinate[label={$1$}]; +\pfad{\orderzero}{darkgreen!20} +\pfad{\orderone}{darkgreen!20} +\pfad{\ordertwo}{darkgreen!20} +\pfad{\orderthree}{darkgreen!20} +\pfad{\orderfour}{darkgreen!20} +\pfad{\orderfive}{darkgreen!20} +\pfad{\ordersix}{darkgreen!20} +\pfad{\ordereight}{darkgreen!20} +\pfad{\ordernine}{darkgreen!20} +\pfad{\orderten}{darkgreen!20} +\pfad{\orderseven}{darkgreen} + +\draw[->] ({-0.1/\skala},0) -- (1.1,0) coordinate[label={$x$}]; \draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={left:$F(X)$}]; +\foreach \x in {0,0.2,0.4,0.6,0.8,1}{ + \draw (\x,{-0.1/\skala}) -- (\x,{0.1/\skala}); + \node at (\x,{-0.1/\skala}) [below] {$\x$}; +} +\foreach \y in {0.5,1}{ + \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy}); + \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$}; +} + +\node[color=darkgreen] at (0.65,{0.5*\dy}) [above,rotate=55] {$k=7$}; + +\begin{scope}[yshift=-0.7cm] +\def\dy{0.125} + +\def\pfad#1#2{ + \draw[color=#2,line width=1.4pt] ({-0.1/\skala},0) + -- + #1 + -- + ({1+0.1/\skala},0.0); +} + +\begin{scope} +\clip ({-0.1/\skala},{-0.1/\skala}) + rectangle ({1+0.1/\skala},{0.56+0.1/\skala}); +\pfad{\orderdzero}{red!20} +\pfad{\orderdone}{red!20} +\pfad{\orderdtwo}{red!20} +\pfad{\orderdthree}{red!20} +\pfad{\orderdfour}{red!20} +\pfad{\orderdfive}{red!20} +\pfad{\orderdsix}{red!20} +\pfad{\orderdeight}{red!20} +\pfad{\orderdnine}{red!20} +\pfad{\orderdten}{red!20} +\pfad{\orderdseven}{red} +\end{scope} + +\draw[->] ({-0.1/\skala},0) -- (1.1,0) coordinate[label={$x$}]; +\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={left:$\varphi(X)$}]; +\foreach \x in {0,0.2,0.4,0.6,0.8,1}{ + \draw (\x,{-0.1/\skala}) -- (\x,{0.1/\skala}); + \node at (\x,{-0.1/\skala}) [below] {$\x$}; +} +\foreach \y in {1,2,3,4}{ + \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy}); + \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$}; +} + +\node[color=red] at (0.67,{2.7*\dy}) [above] {$k=7$}; + +\end{scope} \end{tikzpicture} \end{document} -- cgit v1.2.1 From 97931f8f854d0b18dc5c0cb3cb2fecae922f81a2 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 13 Mar 2022 11:05:56 +0100 Subject: add beta distribution graphs --- buch/papers/dreieck/images/Makefile | 8 + buch/papers/dreieck/images/beta.pdf | Bin 0 -> 100791 bytes buch/papers/dreieck/images/beta.tex | 214 ++++++++++++++++++++++++++ buch/papers/dreieck/images/betadist.m | 50 +++++++ buch/papers/dreieck/images/order.m | 40 +++++ buch/papers/dreieck/images/order.pdf | Bin 31044 -> 32692 bytes buch/papers/dreieck/images/order.tex | 52 +++++-- buch/papers/dreieck/teil1.tex | 273 +++++++++++++++++++++++++++------- 8 files changed, 567 insertions(+), 70 deletions(-) create mode 100644 buch/papers/dreieck/images/beta.pdf create mode 100644 buch/papers/dreieck/images/beta.tex create mode 100644 buch/papers/dreieck/images/betadist.m (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/images/Makefile b/buch/papers/dreieck/images/Makefile index 3907d13..c979599 100644 --- a/buch/papers/dreieck/images/Makefile +++ b/buch/papers/dreieck/images/Makefile @@ -3,8 +3,16 @@ # # (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule # +all: order.pdf beta.pdf + order.pdf: order.tex orderpath.tex pdflatex order.tex orderpath.tex: order.m octave order.m + +beta.pdf: beta.tex betapaths.tex + pdflatex beta.tex + +betapaths.tex: betadist.m + octave betadist.m diff --git a/buch/papers/dreieck/images/beta.pdf b/buch/papers/dreieck/images/beta.pdf new file mode 100644 index 0000000..c3ab4f6 Binary files /dev/null and b/buch/papers/dreieck/images/beta.pdf differ diff --git a/buch/papers/dreieck/images/beta.tex b/buch/papers/dreieck/images/beta.tex new file mode 100644 index 0000000..50509ee --- /dev/null +++ b/buch/papers/dreieck/images/beta.tex @@ -0,0 +1,214 @@ +% +% beta.tex -- display some symmetric beta distributions +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math,calc} +\input{betapaths.tex} +\begin{document} +\def\skala{12} +\definecolor{colorone}{rgb}{1.0,0.6,0.0} +\definecolor{colortwo}{rgb}{1.0,0.0,0.0} +\definecolor{colorthree}{rgb}{0.6,0.0,0.6} +\definecolor{colorfour}{rgb}{0.6,0.0,1.0} +\definecolor{colorfive}{rgb}{0.0,0.0,1.0} +\definecolor{colorsix}{rgb}{0.4,0.6,1.0} +\definecolor{colorseven}{rgb}{0.0,0.0,0.0} +\definecolor{coloreight}{rgb}{0.0,0.8,0.8} +\definecolor{colornine}{rgb}{0.0,0.8,0.2} +\definecolor{colorten}{rgb}{0.2,0.4,0.0} +\definecolor{coloreleven}{rgb}{1.0,0.8,0.4} + +\def\achsen{ + \foreach \x in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}{ + \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala}); + \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$}; + } + \foreach \y in {1,2,3,4}{ + \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy}); + \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$}; + } + \def\x{1} + \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala}); + \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$}; + \def\x{0} + \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$}; + + \draw[->] ({-0.1/\skala},0) -- ({1*\dx+0.4/\skala},0) + coordinate[label={$x$}]; + \draw[->] (0,{-0.1/\skala}) -- (0,{\betamax*\dy+0.4/\skala},0) + coordinate[label={right:$\beta(a,b,x)$}]; +} + +\def\farbcoord#1#2{ + ({\dx*(0.7+((#1-1)/4)*0.27)},{\dx*(0.15+((#2-1)/4)*0.27)}) +} +\def\farbviereck{ + \foreach \x in {1,2,3,4,5}{ + \draw[color=gray!30] \farbcoord{\x}{1} -- \farbcoord{\x}{5}; + \draw[color=gray!30] \farbcoord{1}{\x} -- \farbcoord{5}{\x}; + } + \draw[->] \farbcoord{1}{1} -- \farbcoord{5.4}{1} + coordinate[label={$a$}]; + \draw[->] \farbcoord{1}{1} -- \farbcoord{1}{5.4} + coordinate[label={left: $b$}]; + \foreach \x in {1,2,3,4,5}{ + \node[color=gray] at \farbcoord{5}{\x} [right] {\tiny $b=\x$}; + \fill[color=white,opacity=0.7] + \farbcoord{(\x-0.1)}{4.3} + rectangle + \farbcoord{(\x+0.1)}{5}; + \node[color=gray] at \farbcoord{\x}{5} [left,rotate=90] + {\tiny $a=\x$}; + } +} +\def\farbpunkt#1#2#3{ + \fill[color=#3] \farbcoord{#1}{#2} circle[radius={0.1/\skala}]; +} + +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\def\dx{1} +\def\dy{0.1} +\def\opa{0.1} + +\def\betamax{4.2} + +\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle; +\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle; + +\draw[color=colorone] \betaaa; +\draw[color=colortwo] \betabb; +\draw[color=colorthree] \betacc; +\draw[color=colorfour] \betadd; +\draw[color=colorfive] \betaee; +\draw[color=colorsix] \betaff; +\draw[color=colorseven] \betagg; +\draw[color=coloreight] \betahh; +\draw[color=colornine] \betaii; +\draw[color=colorten] \betajj; +\draw[color=coloreleven] \betakk; + +\achsen + +\farbviereck + +\farbpunkt{\alphaeleven}{\betaeleven}{coloreleven} +\farbpunkt{\alphaten}{\betaten}{colorten} +\farbpunkt{\alphanine}{\betanine}{colornine} +\farbpunkt{\alphaeight}{\betaeight}{coloreight} +\farbpunkt{\alphaseven}{\betaseven}{colorseven} +\farbpunkt{\alphasix}{\betasix}{colorsix} +\farbpunkt{\alphafive}{\betafive}{colorfive} +\farbpunkt{\alphafour}{\betafour}{colorfour} +\farbpunkt{\alphathree}{\betathree}{colorthree} +\farbpunkt{\alphatwo}{\betatwo}{colortwo} +\farbpunkt{\alphaone}{\betaone}{colorone} + + +\def\betamax{4.9} + +\begin{scope}[yshift=-0.6cm] +\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betaab -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betaac -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betaad -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betaae -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betaaf -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betaag -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betaah -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betaai -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betaaj -- (\dx,0) -- cycle; +\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaak -- (\dx,0) -- cycle; + +\draw[color=colorone] \betaaa; +\draw[color=colortwo] \betaab; +\draw[color=colorthree] \betaac; +\draw[color=colorfour] \betaad; +\draw[color=colorfive] \betaae; +\draw[color=colorsix] \betaaf; +\draw[color=colorseven] \betaag; +\draw[color=coloreight] \betaah; +\draw[color=colornine] \betaai; +\draw[color=colorten] \betaaj; +\draw[color=coloreleven] \betaak; + +\achsen + +\farbviereck + +\farbpunkt{\alphaone}{\betaeleven}{coloreleven} +\farbpunkt{\alphaone}{\betaten}{colorten} +\farbpunkt{\alphaone}{\betanine}{colornine} +\farbpunkt{\alphaone}{\betaeight}{coloreight} +\farbpunkt{\alphaone}{\betaseven}{colorseven} +\farbpunkt{\alphaone}{\betasix}{colorsix} +\farbpunkt{\alphaone}{\betafive}{colorfive} +\farbpunkt{\alphaone}{\betafour}{colorfour} +\farbpunkt{\alphaone}{\betathree}{colorthree} +\farbpunkt{\alphaone}{\betatwo}{colortwo} +\farbpunkt{\alphaone}{\betaone}{colorone} + +\end{scope} + +\begin{scope}[yshift=-1.2cm] +\fill[color=colorone,opacity=\opa] (0,0) -- \betaak -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betabk -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betack -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betadk -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betafk -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betagk -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betahk -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betaik -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betajk -- (\dx,0) -- cycle; +\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle; + +\draw[color=colorone] \betaak; +\draw[color=colortwo] \betabk; +\draw[color=colorthree] \betack; +\draw[color=colorfour] \betadk; +\draw[color=colorfive] \betaek; +\draw[color=colorsix] \betafk; +\draw[color=colorseven] \betagk; +\draw[color=coloreight] \betahk; +\draw[color=colornine] \betaik; +\draw[color=colorten] \betajk; +\draw[color=coloreleven] \betakk; + +\achsen + +\farbviereck + +\farbpunkt{\alphaeleven}{\betaeleven}{coloreleven} +\farbpunkt{\alphaten}{\betaeleven}{colorten} +\farbpunkt{\alphanine}{\betaeleven}{colornine} +\farbpunkt{\alphaeight}{\betaeleven}{coloreight} +\farbpunkt{\alphaseven}{\betaeleven}{colorseven} +\farbpunkt{\alphasix}{\betaeleven}{colorsix} +\farbpunkt{\alphafive}{\betaeleven}{colorfive} +\farbpunkt{\alphafour}{\betaeleven}{colorfour} +\farbpunkt{\alphathree}{\betaeleven}{colorthree} +\farbpunkt{\alphatwo}{\betaeleven}{colortwo} +\farbpunkt{\alphaone}{\betaeleven}{colorone} + +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/dreieck/images/betadist.m b/buch/papers/dreieck/images/betadist.m new file mode 100644 index 0000000..9ff78ed --- /dev/null +++ b/buch/papers/dreieck/images/betadist.m @@ -0,0 +1,50 @@ +# +# betadist.m +# +# (c) 2022 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +# +global N; +N = 201; +global n; +n = 11; + +t = (0:n-1) / (n-1) +alpha = 1 + 4 * t.^2 + +#alpha = [ 1, 1.03, 1.05, 1.1, 1.25, 1.5, 2, 2.5, 3, 4, 5 ]; +beta = alpha; +names = [ "one"; "two"; "three"; "four"; "five"; "six"; "seven"; "eight"; + "nine"; "ten"; "eleven" ] + +function retval = Beta(a, b, x) + retval = x^(a-1) * (1-x)^(b-1) / beta(a, b); +end + +function plotbeta(fn, a, b, name) + global N; + fprintf(fn, "\\def\\beta%s{\n", name); + fprintf(fn, "\t({%.4f*\\dx},{%.4f*\\dy})", 0, Beta(a, b, 0)); + for x = (1:N-1)/(N-1) + X = (1-cos(pi * x))/2; + fprintf(fn, "\n\t--({%.4f*\\dx},{%.4f*\\dy})", + X, Beta(a, b, X)); + end + fprintf(fn, "\n}\n"); +end + +fn = fopen("betapaths.tex", "w"); + +for i = (1:n) + fprintf(fn, "\\def\\alpha%s{%f}\n", names(i,:), alpha(i)); + fprintf(fn, "\\def\\beta%s{%f}\n", names(i,:), beta(i)); +end + +for i = (1:n) + for j = (1:n) + printf("working on %d,%d:\n", i, j); + plotbeta(fn, alpha(i), beta(j), + char(['a' + i - 1, 'a' + j - 1])); + end +end + +fclose(fn); diff --git a/buch/papers/dreieck/images/order.m b/buch/papers/dreieck/images/order.m index d37a258..762f458 100644 --- a/buch/papers/dreieck/images/order.m +++ b/buch/papers/dreieck/images/order.m @@ -26,6 +26,10 @@ function retval = orderd(p, n, k) end end +function retval = orders(p, n, k) + retval = k * nchoosek(n, k) * p^(k-1) * (1-p)^(n-k); +end + function orderpath(fn, k, name) fprintf(fn, "\\def\\order%s{\n\t(0,0)", name); global N; @@ -51,29 +55,65 @@ function orderdpath(fn, k, name) fprintf(fn, "\n}\n"); end +function orderspath(fn, k, name) + fprintf(fn, "\\def\\orders%s{\n\t(0,0)", name); + global N; + global subdivisions; + for i = (1:subdivisions-1) + p = i/subdivisions; + fprintf(fn, "\n\t-- ({%.4f*\\dx},{%.4f*\\dy})", + p, orders(p, N, k)); + end + fprintf(fn, "\n\t-- ({1*\\dx},0)"); + fprintf(fn, "\n}\n"); +end + fn = fopen("orderpath.tex", "w"); + orderpath(fn, 0, "zero"); orderdpath(fn, 0, "zero"); +orderspath(fn, 0, "zero"); + orderpath(fn, 1, "one"); orderdpath(fn, 1, "one"); +orderspath(fn, 1, "one"); + orderpath(fn, 2, "two"); orderdpath(fn, 2, "two"); +orderspath(fn, 2, "two"); + orderpath(fn, 3, "three"); orderdpath(fn, 3, "three"); +orderspath(fn, 3, "three"); + orderpath(fn, 4, "four"); orderdpath(fn, 4, "four"); +orderspath(fn, 4, "four"); + orderpath(fn, 5, "five"); orderdpath(fn, 5, "five"); +orderspath(fn, 5, "five"); + orderpath(fn, 6, "six"); orderdpath(fn, 6, "six"); +orderspath(fn, 6, "six"); + orderpath(fn, 7, "seven"); orderdpath(fn, 7, "seven"); +orderspath(fn, 7, "seven"); + orderpath(fn, 8, "eight"); orderdpath(fn, 8, "eight"); +orderspath(fn, 8, "eight"); + orderpath(fn, 9, "nine"); orderdpath(fn, 9, "nine"); +orderspath(fn, 9, "nine"); + orderpath(fn, 10, "ten"); orderdpath(fn, 10, "ten"); +orderspath(fn, 10, "ten"); + fclose(fn); diff --git a/buch/papers/dreieck/images/order.pdf b/buch/papers/dreieck/images/order.pdf index 6d9c8c0..98a5fbe 100644 Binary files a/buch/papers/dreieck/images/order.pdf and b/buch/papers/dreieck/images/order.pdf differ diff --git a/buch/papers/dreieck/images/order.tex b/buch/papers/dreieck/images/order.tex index 083f014..9a2511c 100644 --- a/buch/papers/dreieck/images/order.tex +++ b/buch/papers/dreieck/images/order.tex @@ -13,10 +13,25 @@ \begin{document} \def\skala{8} \definecolor{darkgreen}{rgb}{0,0.6,0} + +\def\n{10} +\def\E#1#2{ + \draw[color=#2] + ({\dx*#1/(\n+1)},{-0.1/\skala}) -- ({\dx*#1/(\n+1)},{4.4*\dy}); + \node[color=#2] at ({\dx*#1/(\n+1)},{3.2*\dy}) + [rotate=90,above right] {$k=#1$}; +} +\def\var#1#2{ + \pgfmathparse{\dx*sqrt(#1*(\n-#1+1)/((\n+1)*(\n+1)*(\n+2)))} + \xdef\var{\pgfmathresult} + \fill[color=#2,opacity=0.5] + ({\dx*#1/(\n+1)-\var},0) rectangle ({\dx*#1/(\n+1)+\var},{4.4*\dy}); +} + \input{orderpath.tex} \begin{tikzpicture}[>=latex,thick,scale=\skala] -\def\dx{1} +\def\dx{1.6} \def\dy{0.5} \def\pfad#1#2{ @@ -24,7 +39,7 @@ -- #1 -- - ({1+0.1/\skala},0.5); + ({1*\dx+0.1/\skala},0.5); } \pfad{\orderzero}{darkgreen!20} @@ -39,11 +54,11 @@ \pfad{\orderten}{darkgreen!20} \pfad{\orderseven}{darkgreen} -\draw[->] ({-0.1/\skala},0) -- (1.1,0) coordinate[label={$x$}]; -\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={left:$F(X)$}]; +\draw[->] ({-0.1/\skala},0) -- ({1.03*\dx},0) coordinate[label={$x$}]; +\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={right:$F(X)$}]; \foreach \x in {0,0.2,0.4,0.6,0.8,1}{ - \draw (\x,{-0.1/\skala}) -- (\x,{0.1/\skala}); - \node at (\x,{-0.1/\skala}) [below] {$\x$}; + \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala}); + \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$}; } \foreach \y in {0.5,1}{ \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy}); @@ -55,17 +70,25 @@ \begin{scope}[yshift=-0.7cm] \def\dy{0.125} +\foreach \k in {1,2,3,4,5,6,8,9,10}{ + \E{\k}{blue!30} +} +\def\k{7} +\var{\k}{orange!40} +\node[color=blue] at ({\dx*\k/(\n+1)},{4.3*\dy}) [above] {$E(X_{7:n})$}; + \def\pfad#1#2{ \draw[color=#2,line width=1.4pt] ({-0.1/\skala},0) -- #1 -- - ({1+0.1/\skala},0.0); + ({1*\dx+0.1/\skala},0.0); } \begin{scope} \clip ({-0.1/\skala},{-0.1/\skala}) - rectangle ({1+0.1/\skala},{0.56+0.1/\skala}); + rectangle ({1*\dx+0.1/\skala},{0.56+0.1/\skala}); + \pfad{\orderdzero}{red!20} \pfad{\orderdone}{red!20} \pfad{\orderdtwo}{red!20} @@ -76,21 +99,24 @@ \pfad{\orderdeight}{red!20} \pfad{\orderdnine}{red!20} \pfad{\orderdten}{red!20} +\E{\k}{blue} \pfad{\orderdseven}{red} + \end{scope} -\draw[->] ({-0.1/\skala},0) -- (1.1,0) coordinate[label={$x$}]; -\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={left:$\varphi(X)$}]; +\draw[->] ({-0.1/\skala},0) -- ({1.03*\dx},0) coordinate[label={$x$}]; +\draw[->] (0,{-0.1/\skala}) -- (0,0.6) coordinate[label={right:$\varphi(X)$}]; \foreach \x in {0,0.2,0.4,0.6,0.8,1}{ - \draw (\x,{-0.1/\skala}) -- (\x,{0.1/\skala}); - \node at (\x,{-0.1/\skala}) [below] {$\x$}; + \draw ({\x*\dx},{-0.1/\skala}) -- ({\x*\dx},{0.1/\skala}); + \node at ({\x*\dx},{-0.1/\skala}) [below] {$\x$}; } \foreach \y in {1,2,3,4}{ \draw ({-0.1/\skala},{\y*\dy}) -- ({0.1/\skala},{\y*\dy}); \node at ({-0.1/\skala},{\y*\dy}) [left] {$\y$}; } -\node[color=red] at (0.67,{2.7*\dy}) [above] {$k=7$}; +\node[color=red] at ({0.67*\dx},{2.7*\dy}) [above] {$k=7$}; + \end{scope} diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index 255c5d0..5e7090b 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -12,6 +12,8 @@ Zufallsvariablen, die wie $X$ verteilt sind. Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe zu finden. +Wir schreiben $[n]=\{1,\dots,n\}$ für die Menge der natürlichen +Zahlen von zwischen $1$ und $n$. \subsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und $\operatorname{min}(X_1,\dots,X_n)$ @@ -176,86 +178,243 @@ X_{n:n} &= \operatorname{max}(X_1,\dots,X_n). Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht übersteigen. -Es muss also eine Partition von $[n]=\{1,\dots,n\}$ in eine -$k$-elementige $I=\{i_1,\dots,i_k\}$ Teilmenge und ihre -$(n-k)$-elementige Komplementmenge $[n]\setminus I$ geben -derart, dass die $X_{i} \le x$ sind für $i\in I$ und $X_{j}> x$ für -$j\in [n]\setminus I$. -Daraus kann man ablesen, dass +Der $k$-te Wert $X_{k:n}$ übersteigt genau dann $x$ nicht, wenn +mindestens $k$ der Zufallswerte $X_i$ $x$ nicht übersteigen, also +\[ +P(X_{k:n} \le x) += +P\left( +|\{i\in[n]\,|\, X_i\le x\}| \ge k +\right). +\] + +Das Ereignis $\{X_i\le x\}$ ist eine Bernoulli-Experiment, welches mit +Wahrscheinlichkeit $F_X(x)$ eintritt. +Die Anzahl der Zufallsvariablen $X_i$, die $x$ übertreffen, ist also +Binomialverteilt mit $p=F_X(x)$. +Damit haben wir gefunden, dass mit Wahrscheinlichkeit +\begin{equation} +F_{X_{k:n}}(x) += +P(X_{k:n}\le x) += +\sum_{i=k}^n \binom{n}{i}F_X(x)^i (1-F_X(x))^{n-i} +\label{dreieck:eqn:FXkn} +\end{equation} +mindestens $k$ der Zufallsvariablen den Wert $x$ überschreiten. + +\subsubsection{Wahrscheinlichkeitsdichte der Ordnungsstatistik} +Die Wahrscheinlichkeitsdichte der Ordnungsstatistik kann durch Ableitung +von \eqref{dreieck:eqn:FXkn} gefunden, werden, sie ist \begin{align*} +\varphi_{X_{k:n}}(x) +&= +\frac{d}{dx} F_{X_{k:n}}(x) +\\ &= -P\biggl( -\bigvee_{I\subset[n]\wedge |I|=k} -\bigwedge_{i\in I} (X_i\le x) -\wedge -\bigwedge_{j\in [n]\setminus I} (X_i > x) -\biggr). -\intertext{Da die verschiedenen $k$-elementigen Teilmengen $I\subset[n]$ -zu disjunkten Ereignissen gehören, ist die Wahrscheinlichkeit eine Summe} +\sum_{i=k}^n +\binom{n}{i} +\bigl( +iF_X(x)^{i-1}\varphi_X(x) (1-F_X(x))^{n-i} +- +F_X(x)^k +(n-i) +(1-F_X(x))^{n-i-1} +\varphi_X(x) +\bigr) +\\ &= -\sum_{I\subset[n]\wedge |I|=k} -P\biggl( -\bigwedge_{i\in I} (X_i\le x) -\wedge -\bigwedge_{j\in [n]\setminus I} (X_i > x) +\sum_{i=k}^n +\binom{n}{i} +\varphi_X(x) +F_X(x)^{i-1}(1-F_X(x))^{n-i-1} +\bigl( +iF_X(x)-(n-i)(1-F_X(x)) +\bigr) +\\ +&= +\varphi_X(x) +\biggl( +\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} +- +\sum_{j=k}^n (n-j)\binom{n}{j} F_X(x)^{j}(1-F_X(x))^{n-j-1} \biggr) \\ &= -\sum_{I\subset[n]\wedge |I|=k} -\prod_{i\in I} -P(X_i\le x) -\cdot -\prod_{j\in [n]\setminus I} -P(X_j > x) +\varphi_X(x) +\biggl( +\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} +- +\sum_{i=k+1}^{n+1} (n-i+1)\binom{n}{i-1} F_X(x)^{i-1}(1-F_X(x))^{n-i} +\biggr) \\ &= -\sum_{I\subset[n]\wedge |I|=k} -F_X(x)^k -(1-F_X(x))^{n-k}. -\intertext{Die Anzahl solcher Teilmengen $I$ ist gegeben durch den -Binomialkoeffizienten gebeben, die Verteilungsfunktion ist daher} -F_{X_{k:n}}(x) +\varphi_X(x) +\biggl( +k\binom{n}{k}F_X(x)^{k-1}(1-F_X(x))^{n-k} ++ +\sum_{i=k+1}^{n+1} +\left( +i\binom{n}{i} +- +(n-i+1)\binom{n}{i-1} +\right) +F_X(x)^{i-1}(1-F_X(x))^{n-i} +\biggr) +\end{align*} +Mit den wohlbekannten Identitäten für die Binomialkoeffizienten +\begin{align*} +i\binom{n}{i} +- +(n-i+1)\binom{n}{i-1} &= -\binom{n}{k} -F_X(x)^k -(1-F_X(x))^{n-k}. +n\binom{n-1}{i-1} +- +n +\binom{n-1}{i-1} += +0 +\end{align*} +folgt jetzt +\begin{align*} +\varphi_{X_{k:n}}(x) +&= +\varphi_X(x)k\binom{n}{k} F_X(x)^{k-1}(1-F_X(x))^{n-k}(x). +\intertext{Im Speziellen für gleichverteilte Zufallsvariablen $X_i$ ist +} +\varphi_{X_{k:n}}(x) +&= +k\binom{n}{k} x^{k-1}(1-x)^{n-k}. \end{align*} -Für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die Verteilungsfunktion -der $k$-ten Ordnungsstatistik +Dies ist die Wahrscheinlichkeitsdichte einer Betaverteilung \[ -F_{X_{k:n}}(x) +\beta(k,n-k+1)(x) += +\frac{1}{B(k,n-k+1)} +x^{k-1}(1-x)^{n-k}. +\] +Tatsächlich ist die Normierungskonstante +\begin{align} +\frac{1}{B(k,n-k+1)} +&= +\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)} += +\frac{n!}{(k-1)!(n-k)!}. +\label{dreieck:betaverteilung:normierung1} +\end{align} +Andererseits ist +\[ +k\binom{n}{k} += +k\frac{n!}{k!(n-k)!} = -\binom{n}{k} x^k(1-x)^{n-k}. +\frac{n!}{(k-1)!(n-k)!}, \] -Ihre Ableitung nach $x$ ist die Wahrscheinlichkeitsdichte und damit -wird es jetzt auch möglich, den Erwartungswert zu ermitteln: +in Übereinstimmung mit~\eqref{dreieck:betaverteilung:normierung1}. +Die Verteilungsfunktion und die Wahrscheinlichkeitsdichte der +Ordnungsstatistik sind in Abbildung~\ref{dreieck:fig:order} dargestellt. + +\begin{figure} +\centering +\includegraphics{papers/dreieck/images/order.pdf} +\caption{Verteilungsfunktion und Wahrscheinlichkeitsdichte der +Ordnungsstatistiken $X_{k:n}$ einer gleichverteilung Zuvallsvariable +mit $n=10$. +\label{dreieck:fig:order}} +\end{figure} + +\subsubsection{Erwartungswert} +Mit der Wahrscheinlichkeitsdichte kann man jetzt auch den Erwartungswerte +der $k$-ten Ordnungsstatistik bestimmen. +Die Rechnung ergibt: \begin{align*} E(X_{k:n}) &= -\int_{0}^1 -\underbrace{x\llap{\phantom{\bigg|}}\mathstrut}_{\downarrow} -\underbrace{\frac{d}{dx}\binom{n}{k}x^k(1-x)^{n-k}}_{\uparrow} -\,dx +\int_0^1 x\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx = -\biggl[ -x\binom{n}{k}x^k(1-x)^{n-k} -\biggr]_0^1 -- +k +\binom{n}{k} \int_0^1 -\binom{n}{k}x^k(1-x)^{n-k} -\,dx -\\ +x^{k}(1-x)^{n-k}\,dx. +\intertext{Dies ist das Beta-Integral} &= -\binom{n}{k} -\biggl( -0^{n-k} -- -\int_0^1 x^k(1-x)^{n-k}\,dx -\biggr) +k\binom{n}{k} +B(k+1,n-k+1) +\intertext{welches man durch Gamma-Funktionen bzw.~durch Fakultäten wie in} +&= +k\frac{n!}{k!(n-k)!} +\frac{\Gamma(k+1)\Gamma(n-k+1)}{n+2} += +k\frac{n!}{k!(n-k)!} +\frac{k!(n-k)!}{(n+1)!} += +\frac{k}{n+1} \end{align*} +ausdrücken kann. +Die Erwartungswerte haben also regelmässige Abstände, sie sind in +Abbildung~\ref{dreieck:fig:order} als blaue vertikale Linien eingezeichnet. +\subsubsection{Varianz} +Auch die Varianz lässt sich einfach berechnen, dazu muss zunächst +der Erwartungswert von $X_{k:n}^2$ bestimmt werden. +Er ist +\begin{align*} +E(X_{k:n}^2) +&= +\int_0^1 x^2\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx += +k +\binom{n}{k} +\int_0^1 +x^{k+1}(1-x)^{n-k}\,dx. +\intertext{Auch dies ist ein Beta-Integral, nämlich} +&= +k\binom{n}{k} +B(k+2,n-k+1) += +k\frac{n!}{k!(n-k)!} +\frac{(k+1)!(n-k)!}{(n+2)!} += +\frac{k(k+1)}{(n+1)(n+2)}. +\end{align*} +Die Varianz wird damit +\begin{align} +\operatorname{var}(X_{k:n}) +&= +E(X_{k:n}^2) - E(X_{k:n})^2 +\notag +\\ +& += +\frac{k(k+1)}{(n+1)(n+2)}-\frac{k^2}{(n+1)^2} += +\frac{k(k+1)(n+1)-k^2(n+2)}{(n+1)^2(n+2)} += +\frac{k(n-k+1)}{(n+1)^2(n+2)}. +\label{dreieck:eqn:ordnungsstatistik:varianz} +\end{align} +In Abbildung~\ref{dreieck:fig:order} ist die Varianz der +Ordnungsstatistik $X_{k:n}$ für $k=7$ und $n=10$ als oranges +Rechteck dargestellt. +\begin{figure} +\centering +\includegraphics[width=0.84\textwidth]{papers/dreieck/images/beta.pdf} +\caption{Wahrscheinlichkeitsdichte der Beta-Verteilung +$\beta(a,b,x)$ +für verschiedene Werte der Parameter $a$ und $b$. +Die Werte des Parameters für einen Graphen einer Beta-Verteilung +sind als Punkt im kleinen Quadrat rechts +im Graphen als Punkt mit der gleichen Farbe dargestellt. +\label{dreieck:fig:betaverteilungn}} +\end{figure} +Die Formel~\eqref{dreieck:eqn:ordnungsstatistik:varianz} +besagt auch, dass die Varianz der proportional ist zu $k((n+1)-k)$. +Dieser Ausdruck ist am grössten für $k=(n+1)/2$, die Varianz ist +also grösser für die ``mittleren'' Ordnungstatistiken als für die +extremen $X_{1:n}=\operatorname{min}(X_1,\dots,X_n)$ und +$X_{n:n}=\operatorname{max}(X_1,\dots,X_n)$. -- cgit v1.2.1 From f5047d4d780e996a8b8f7738c1ac7c884a07f135 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Sun, 13 Mar 2022 23:26:58 +0100 Subject: new stuff about beta, test2 --- buch/papers/dreieck/images/beta.pdf | Bin 100791 -> 109717 bytes buch/papers/dreieck/images/beta.tex | 208 +++++++++++++++++++--------------- buch/papers/dreieck/images/betadist.m | 24 ++-- 3 files changed, 131 insertions(+), 101 deletions(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/images/beta.pdf b/buch/papers/dreieck/images/beta.pdf index c3ab4f6..cd5ed80 100644 Binary files a/buch/papers/dreieck/images/beta.pdf and b/buch/papers/dreieck/images/beta.pdf differ diff --git a/buch/papers/dreieck/images/beta.tex b/buch/papers/dreieck/images/beta.tex index 50509ee..f0ffdf0 100644 --- a/buch/papers/dreieck/images/beta.tex +++ b/buch/papers/dreieck/images/beta.tex @@ -23,7 +23,8 @@ \definecolor{coloreight}{rgb}{0.0,0.8,0.8} \definecolor{colornine}{rgb}{0.0,0.8,0.2} \definecolor{colorten}{rgb}{0.2,0.4,0.0} -\definecolor{coloreleven}{rgb}{1.0,0.8,0.4} +\definecolor{coloreleven}{rgb}{0.6,1.0,0.0} +\definecolor{colortwelve}{rgb}{1.0,0.8,0.4} \def\achsen{ \foreach \x in {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}{ @@ -47,24 +48,24 @@ } \def\farbcoord#1#2{ - ({\dx*(0.7+((#1-1)/4)*0.27)},{\dx*(0.15+((#2-1)/4)*0.27)}) + ({\dx*(0.63+((#1)/5)*0.27)},{\dx*(0.18+((#2)/5)*0.27)}) } \def\farbviereck{ - \foreach \x in {1,2,3,4,5}{ - \draw[color=gray!30] \farbcoord{\x}{1} -- \farbcoord{\x}{5}; - \draw[color=gray!30] \farbcoord{1}{\x} -- \farbcoord{5}{\x}; + \foreach \x in {1,2,3,4}{ + \draw[color=gray!30] \farbcoord{\x}{0} -- \farbcoord{\x}{4}; + \draw[color=gray!30] \farbcoord{0}{\x} -- \farbcoord{4}{\x}; } - \draw[->] \farbcoord{1}{1} -- \farbcoord{5.4}{1} + \draw[->] \farbcoord{0}{0} -- \farbcoord{4.4}{0} coordinate[label={$a$}]; - \draw[->] \farbcoord{1}{1} -- \farbcoord{1}{5.4} + \draw[->] \farbcoord{0}{0} -- \farbcoord{0}{4.4} coordinate[label={left: $b$}]; - \foreach \x in {1,2,3,4,5}{ - \node[color=gray] at \farbcoord{5}{\x} [right] {\tiny $b=\x$}; - \fill[color=white,opacity=0.7] - \farbcoord{(\x-0.1)}{4.3} - rectangle - \farbcoord{(\x+0.1)}{5}; - \node[color=gray] at \farbcoord{\x}{5} [left,rotate=90] + \foreach \x in {1,2,3,4}{ + \node[color=gray] at \farbcoord{4}{\x} [right] {\tiny $b=\x$}; + %\fill[color=white,opacity=0.7] + % \farbcoord{(\x-0.1)}{3.3} + % rectangle + % \farbcoord{(\x+0.1)}{4}; + \node[color=gray] at \farbcoord{\x}{4} [right,rotate=90] {\tiny $a=\x$}; } } @@ -74,23 +75,26 @@ \begin{tikzpicture}[>=latex,thick,scale=\skala] -\def\dx{1} +\def\dx{1.1} \def\dy{0.1} \def\opa{0.1} -\def\betamax{4.2} - -\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle; -\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle; -\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle; -\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle; -\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle; -\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle; -\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle; -\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle; -\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle; -\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle; +\def\betamax{4.9} + +\begin{scope} +\clip (0,0) rectangle ({1*\dx},{\betamax*\dy}); +\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betabb -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betacc -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betadd -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betaff -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betagg -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betahh -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betaii -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betajj -- (\dx,0) -- cycle; \fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle; +\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle; \draw[color=colorone] \betaaa; \draw[color=colortwo] \betabb; @@ -103,11 +107,15 @@ \draw[color=colornine] \betaii; \draw[color=colorten] \betajj; \draw[color=coloreleven] \betakk; +\draw[color=colortwelve] \betall; + +\end{scope} \achsen \farbviereck +\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve} \farbpunkt{\alphaeleven}{\betaeleven}{coloreleven} \farbpunkt{\alphaten}{\betaten}{colorten} \farbpunkt{\alphanine}{\betanine}{colornine} @@ -124,88 +132,102 @@ \def\betamax{4.9} \begin{scope}[yshift=-0.6cm] -\fill[color=colorone,opacity=\opa] (0,0) -- \betaaa -- (\dx,0) -- cycle; -\fill[color=colortwo,opacity=\opa] (0,0) -- \betaab -- (\dx,0) -- cycle; -\fill[color=colorthree,opacity=\opa] (0,0) -- \betaac -- (\dx,0) -- cycle; -\fill[color=colorfour,opacity=\opa] (0,0) -- \betaad -- (\dx,0) -- cycle; -\fill[color=colorfive,opacity=\opa] (0,0) -- \betaae -- (\dx,0) -- cycle; -\fill[color=colorsix,opacity=\opa] (0,0) -- \betaaf -- (\dx,0) -- cycle; -\fill[color=colorseven,opacity=\opa] (0,0) -- \betaag -- (\dx,0) -- cycle; -\fill[color=coloreight,opacity=\opa] (0,0) -- \betaah -- (\dx,0) -- cycle; -\fill[color=colornine,opacity=\opa] (0,0) -- \betaai -- (\dx,0) -- cycle; -\fill[color=colorten,opacity=\opa] (0,0) -- \betaaj -- (\dx,0) -- cycle; -\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaak -- (\dx,0) -- cycle; -\draw[color=colorone] \betaaa; -\draw[color=colortwo] \betaab; -\draw[color=colorthree] \betaac; -\draw[color=colorfour] \betaad; -\draw[color=colorfive] \betaae; -\draw[color=colorsix] \betaaf; -\draw[color=colorseven] \betaag; -\draw[color=coloreight] \betaah; -\draw[color=colornine] \betaai; -\draw[color=colorten] \betaaj; -\draw[color=coloreleven] \betaak; +\begin{scope} +\clip (0,0) rectangle ({1*\dx},{\betamax*\dy}); +\fill[color=colorone,opacity=\opa] (0,0) -- \betaea -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betaeb -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betaec -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betaed -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betaee -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betaef -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betaeg -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betaeh -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betaei -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betaej -- (\dx,0) -- cycle; +\fill[color=coloreleven,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle; +\fill[color=colortwelve,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle; + +\draw[color=colorone] \betaea; +\draw[color=colortwo] \betaeb; +\draw[color=colorthree] \betaec; +\draw[color=colorfour] \betaed; +\draw[color=colorfive] \betaee; +\draw[color=colorsix] \betaef; +\draw[color=colorseven] \betaeg; +\draw[color=coloreight] \betaeh; +\draw[color=colornine] \betaei; +\draw[color=colorten] \betaej; +\draw[color=coloreleven] \betaek; +\draw[color=colortwelve] \betael; +\end{scope} \achsen \farbviereck -\farbpunkt{\alphaone}{\betaeleven}{coloreleven} -\farbpunkt{\alphaone}{\betaten}{colorten} -\farbpunkt{\alphaone}{\betanine}{colornine} -\farbpunkt{\alphaone}{\betaeight}{coloreight} -\farbpunkt{\alphaone}{\betaseven}{colorseven} -\farbpunkt{\alphaone}{\betasix}{colorsix} -\farbpunkt{\alphaone}{\betafive}{colorfive} -\farbpunkt{\alphaone}{\betafour}{colorfour} -\farbpunkt{\alphaone}{\betathree}{colorthree} -\farbpunkt{\alphaone}{\betatwo}{colortwo} -\farbpunkt{\alphaone}{\betaone}{colorone} +\farbpunkt{\alphafive}{\betatwelve}{colortwelve} +\farbpunkt{\alphafive}{\betaeleven}{coloreleven} +\farbpunkt{\alphafive}{\betaten}{colorten} +\farbpunkt{\alphafive}{\betanine}{colornine} +\farbpunkt{\alphafive}{\betaeight}{coloreight} +\farbpunkt{\alphafive}{\betaseven}{colorseven} +\farbpunkt{\alphafive}{\betasix}{colorsix} +\farbpunkt{\alphafive}{\betafive}{colorfive} +\farbpunkt{\alphafive}{\betafour}{colorfour} +\farbpunkt{\alphafive}{\betathree}{colorthree} +\farbpunkt{\alphafive}{\betatwo}{colortwo} +\farbpunkt{\alphafive}{\betaone}{colorone} \end{scope} \begin{scope}[yshift=-1.2cm] -\fill[color=colorone,opacity=\opa] (0,0) -- \betaak -- (\dx,0) -- cycle; -\fill[color=colortwo,opacity=\opa] (0,0) -- \betabk -- (\dx,0) -- cycle; -\fill[color=colorthree,opacity=\opa] (0,0) -- \betack -- (\dx,0) -- cycle; -\fill[color=colorfour,opacity=\opa] (0,0) -- \betadk -- (\dx,0) -- cycle; -\fill[color=colorfive,opacity=\opa] (0,0) -- \betaek -- (\dx,0) -- cycle; -\fill[color=colorsix,opacity=\opa] (0,0) -- \betafk -- (\dx,0) -- cycle; -\fill[color=colorseven,opacity=\opa] (0,0) -- \betagk -- (\dx,0) -- cycle; -\fill[color=coloreight,opacity=\opa] (0,0) -- \betahk -- (\dx,0) -- cycle; -\fill[color=colornine,opacity=\opa] (0,0) -- \betaik -- (\dx,0) -- cycle; -\fill[color=colorten,opacity=\opa] (0,0) -- \betajk -- (\dx,0) -- cycle; -\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakk -- (\dx,0) -- cycle; -\draw[color=colorone] \betaak; -\draw[color=colortwo] \betabk; -\draw[color=colorthree] \betack; -\draw[color=colorfour] \betadk; -\draw[color=colorfive] \betaek; -\draw[color=colorsix] \betafk; -\draw[color=colorseven] \betagk; -\draw[color=coloreight] \betahk; -\draw[color=colornine] \betaik; -\draw[color=colorten] \betajk; -\draw[color=coloreleven] \betakk; +\begin{scope} +\clip (0,0) rectangle ({1*\dx},{\betamax*\dy}); +\fill[color=colorone,opacity=\opa] (0,0) -- \betaal -- (\dx,0) -- cycle; +\fill[color=colortwo,opacity=\opa] (0,0) -- \betabl -- (\dx,0) -- cycle; +\fill[color=colorthree,opacity=\opa] (0,0) -- \betacl -- (\dx,0) -- cycle; +\fill[color=colorfour,opacity=\opa] (0,0) -- \betadl -- (\dx,0) -- cycle; +\fill[color=colorfive,opacity=\opa] (0,0) -- \betael -- (\dx,0) -- cycle; +\fill[color=colorsix,opacity=\opa] (0,0) -- \betafl -- (\dx,0) -- cycle; +\fill[color=colorseven,opacity=\opa] (0,0) -- \betagl -- (\dx,0) -- cycle; +\fill[color=coloreight,opacity=\opa] (0,0) -- \betahl -- (\dx,0) -- cycle; +\fill[color=colornine,opacity=\opa] (0,0) -- \betail -- (\dx,0) -- cycle; +\fill[color=colorten,opacity=\opa] (0,0) -- \betajl -- (\dx,0) -- cycle; +\fill[color=coloreleven,opacity=\opa] (0,0) -- \betakl -- (\dx,0) -- cycle; +\fill[color=colortwelve,opacity=\opa] (0,0) -- \betall -- (\dx,0) -- cycle; + +\draw[color=colorone] \betaal; +\draw[color=colortwo] \betabl; +\draw[color=colorthree] \betacl; +\draw[color=colorfour] \betadl; +\draw[color=colorfive] \betael; +\draw[color=colorsix] \betafl; +\draw[color=colorseven] \betagl; +\draw[color=coloreight] \betahl; +\draw[color=colornine] \betail; +\draw[color=colorten] \betajl; +\draw[color=coloreleven] \betakl; +\draw[color=colortwelve] \betall; +\end{scope} \achsen \farbviereck -\farbpunkt{\alphaeleven}{\betaeleven}{coloreleven} -\farbpunkt{\alphaten}{\betaeleven}{colorten} -\farbpunkt{\alphanine}{\betaeleven}{colornine} -\farbpunkt{\alphaeight}{\betaeleven}{coloreight} -\farbpunkt{\alphaseven}{\betaeleven}{colorseven} -\farbpunkt{\alphasix}{\betaeleven}{colorsix} -\farbpunkt{\alphafive}{\betaeleven}{colorfive} -\farbpunkt{\alphafour}{\betaeleven}{colorfour} -\farbpunkt{\alphathree}{\betaeleven}{colorthree} -\farbpunkt{\alphatwo}{\betaeleven}{colortwo} -\farbpunkt{\alphaone}{\betaeleven}{colorone} +\farbpunkt{\alphatwelve}{\betatwelve}{colortwelve} +\farbpunkt{\alphaeleven}{\betatwelve}{coloreleven} +\farbpunkt{\alphaten}{\betatwelve}{colorten} +\farbpunkt{\alphanine}{\betatwelve}{colornine} +\farbpunkt{\alphaeight}{\betatwelve}{coloreight} +\farbpunkt{\alphaseven}{\betatwelve}{colorseven} +\farbpunkt{\alphasix}{\betatwelve}{colorsix} +\farbpunkt{\alphafive}{\betatwelve}{colorfive} +\farbpunkt{\alphafour}{\betatwelve}{colorfour} +\farbpunkt{\alphathree}{\betatwelve}{colorthree} +\farbpunkt{\alphatwo}{\betatwelve}{colortwo} +\farbpunkt{\alphaone}{\betatwelve}{colorone} \end{scope} diff --git a/buch/papers/dreieck/images/betadist.m b/buch/papers/dreieck/images/betadist.m index 9ff78ed..5b466a6 100644 --- a/buch/papers/dreieck/images/betadist.m +++ b/buch/papers/dreieck/images/betadist.m @@ -5,24 +5,32 @@ # global N; N = 201; -global n; -n = 11; +global nmin; +global nmax; +nmin = -4; +nmax = 7; +n = nmax - nmin + 1 +A = 3; -t = (0:n-1) / (n-1) -alpha = 1 + 4 * t.^2 +t = (nmin:nmax) / nmax; +alpha = 1 + A * t .* abs(t) +#alpha(1) = 0.01; #alpha = [ 1, 1.03, 1.05, 1.1, 1.25, 1.5, 2, 2.5, 3, 4, 5 ]; beta = alpha; names = [ "one"; "two"; "three"; "four"; "five"; "six"; "seven"; "eight"; - "nine"; "ten"; "eleven" ] + "nine"; "ten"; "eleven"; "twelve" ] function retval = Beta(a, b, x) retval = x^(a-1) * (1-x)^(b-1) / beta(a, b); + if (retval > 100) + retval = 100 + end end function plotbeta(fn, a, b, name) global N; - fprintf(fn, "\\def\\beta%s{\n", name); + fprintf(fn, "\\def\\beta%s{\n", strtrim(name)); fprintf(fn, "\t({%.4f*\\dx},{%.4f*\\dy})", 0, Beta(a, b, 0)); for x = (1:N-1)/(N-1) X = (1-cos(pi * x))/2; @@ -35,8 +43,8 @@ end fn = fopen("betapaths.tex", "w"); for i = (1:n) - fprintf(fn, "\\def\\alpha%s{%f}\n", names(i,:), alpha(i)); - fprintf(fn, "\\def\\beta%s{%f}\n", names(i,:), beta(i)); + fprintf(fn, "\\def\\alpha%s{%f}\n", strtrim(names(i,:)), alpha(i)); + fprintf(fn, "\\def\\beta%s{%f}\n", strtrim(names(i,:)), beta(i)); end for i = (1:n) -- cgit v1.2.1 From 18e46179f2da76a3147d3f3b466206c6b5405859 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 14 Mar 2022 08:20:28 +0100 Subject: describe link between Jacobi-weights and Beta-distribution --- buch/papers/dreieck/teil1.tex | 411 +----------------------------------------- 1 file changed, 1 insertion(+), 410 deletions(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index 5e7090b..4abe2e1 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -5,416 +5,7 @@ % \section{Ordnungsstatistik und Beta-Funktion \label{dreieck:section:ordnungsstatistik}} -\rhead{Ordnungsstatistik und Beta-Funktion} -In diesem Abschnitt ist $X$ eine Zufallsvariable mit der Verteilungsfunktion -$F_X(x)$, und $X_i$, $1\le i\le n$ sei ein Stichprobe von unabhängigen -Zufallsvariablen, die wie $X$ verteilt sind. -Ziel ist, die Verteilungsfunktion und die Wahrscheinlichkeitsdichte -des grössten, zweitgrössten, $k$-t-grössten Wertes in der Stichprobe -zu finden. -Wir schreiben $[n]=\{1,\dots,n\}$ für die Menge der natürlichen -Zahlen von zwischen $1$ und $n$. +\rhead{} -\subsection{Verteilung von $\operatorname{max}(X_1,\dots,X_n)$ und -$\operatorname{min}(X_1,\dots,X_n)$ -\label{dreieck:subsection:minmax}} -Die Verteilungsfunktion von $\operatorname{max}(X_1,\dots,X_n)$ hat -den Wert -\begin{align*} -F_{\operatorname{max}(X_1,\dots,X_n)}(x) -&= -P(\operatorname{max}(X_1,\dots,X_n) \le x) -\\ -&= -P(X_1\le x\wedge \dots \wedge X_n\le x) -\\ -&= -P(X_1\le x) \cdot \ldots \cdot P(X_n\le x) -\\ -&= -P(X\le x)^n -= -F_X(x)^n. -\end{align*} -Für die Gleichverteilung ist -\[ -F_{\text{equi}}(x) -= -\begin{cases} -0&\qquad x< 0 -\\ -x&\qquad 0\le x\le 1 -\\ -1&\qquad 1 X_1\wedge \dots \wedge x > X_n) -\\ -&= -1- -(1-P(x\le X_1)) \cdot\ldots\cdot (1-P(x\le X_n)) -\\ -&= -1-(1-F_X(x))^n, -\end{align*} -Im Speziellen für im Intervall $[0,1]$ gleichverteilte $X_i$ ist die -Verteilungsfunktion des Minimums -\[ -F_{\operatorname{min}(X_1,\dots,X_n)}(x) -= -\begin{cases} -0 &\qquad x<0 \\ -1-(1-x)^n&\qquad 0\le x\le 1\\ -1 &\qquad 1 < x -\end{cases} -\] -mit Wahrscheinlichkeitsdichte -\[ -\varphi_{\operatorname{min}(X_1,\dots,X_n)} -= -\frac{d}{dx} -F_{\operatorname{min}(X_1,\dots,X_n)} -= -\begin{cases} -n(1-x)^{n-1}&\qquad 0\le x\le 1\\ -0 &\qquad \text{sonst} -\end{cases} -\] -und Erwartungswert -\begin{align*} -E(\operatorname{min}(X_1,\dots,X_n) -&= -\int_{-\infty}^\infty x\varphi_{\operatorname{min}(X_1,\dots,X_n)}(x)\,dx -= -\int_0^1 x\cdot n(1-x)^{n-1}\,dx -\\ -&= -\bigl[ -x(1-x)^n \bigr]_0^1 + \int_0^1 (1-x)^n\,dx -= -\biggl[ -- -\frac{1}{n+1} -(1-x)^{n+1} -\biggr]_0^1 -= -\frac{1}{n+1}. -\end{align*} -Es ergibt sich daraus als natürlich Verallgemeinerung die Frage nach -der Verteilung des zweitegrössten oder zweitkleinsten Wertes unter den -Werten $X_i$. - -\subsection{Der $k$-t-grösste Wert} -Sie wieder $X_i$ eine Stichprobe von $n$ unabhängigen wie $X$ verteilten -Zufallsvariablen. -Diese werden jetzt der Grösse nach sortiert, die sortierten Werte werden -mit -\[ -X_{1:n} \le X_{2:n} \le \dots \le X_{(n-1):n} \le X_{n:n} -\] -bezeichnet. -Die Grössen $X_{k:n}$ sind Zufallsvariablen, sie heissen die $k$-ten -Ordnungsstatistiken. -Die in Abschnitt~\ref{dreieck:subsection:minmax} behandelten Zufallsvariablen -$\operatorname{min}(X_1,\dots,X_n)$ -und -$\operatorname{max}(X_1,\dots,X_n)$ -sind die Fälle -\begin{align*} -X_{1:n} &= \operatorname{min}(X_1,\dots,X_n) \\ -X_{n:n} &= \operatorname{max}(X_1,\dots,X_n). -\end{align*} - -Um den Wert der Verteilungsfunktion von $X_{k:n}$ zu berechnen, müssen wir -die Wahrscheinlichkeit bestimmen, dass $k$ der $n$ Werte $X_i$ $x$ nicht -übersteigen. -Der $k$-te Wert $X_{k:n}$ übersteigt genau dann $x$ nicht, wenn -mindestens $k$ der Zufallswerte $X_i$ $x$ nicht übersteigen, also -\[ -P(X_{k:n} \le x) -= -P\left( -|\{i\in[n]\,|\, X_i\le x\}| \ge k -\right). -\] - -Das Ereignis $\{X_i\le x\}$ ist eine Bernoulli-Experiment, welches mit -Wahrscheinlichkeit $F_X(x)$ eintritt. -Die Anzahl der Zufallsvariablen $X_i$, die $x$ übertreffen, ist also -Binomialverteilt mit $p=F_X(x)$. -Damit haben wir gefunden, dass mit Wahrscheinlichkeit -\begin{equation} -F_{X_{k:n}}(x) -= -P(X_{k:n}\le x) -= -\sum_{i=k}^n \binom{n}{i}F_X(x)^i (1-F_X(x))^{n-i} -\label{dreieck:eqn:FXkn} -\end{equation} -mindestens $k$ der Zufallsvariablen den Wert $x$ überschreiten. - -\subsubsection{Wahrscheinlichkeitsdichte der Ordnungsstatistik} -Die Wahrscheinlichkeitsdichte der Ordnungsstatistik kann durch Ableitung -von \eqref{dreieck:eqn:FXkn} gefunden, werden, sie ist -\begin{align*} -\varphi_{X_{k:n}}(x) -&= -\frac{d}{dx} -F_{X_{k:n}}(x) -\\ -&= -\sum_{i=k}^n -\binom{n}{i} -\bigl( -iF_X(x)^{i-1}\varphi_X(x) (1-F_X(x))^{n-i} -- -F_X(x)^k -(n-i) -(1-F_X(x))^{n-i-1} -\varphi_X(x) -\bigr) -\\ -&= -\sum_{i=k}^n -\binom{n}{i} -\varphi_X(x) -F_X(x)^{i-1}(1-F_X(x))^{n-i-1} -\bigl( -iF_X(x)-(n-i)(1-F_X(x)) -\bigr) -\\ -&= -\varphi_X(x) -\biggl( -\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} -- -\sum_{j=k}^n (n-j)\binom{n}{j} F_X(x)^{j}(1-F_X(x))^{n-j-1} -\biggr) -\\ -&= -\varphi_X(x) -\biggl( -\sum_{i=k}^n i\binom{n}{i} F_X(x)^{i-1}(1-F_X(x))^{n-i} -- -\sum_{i=k+1}^{n+1} (n-i+1)\binom{n}{i-1} F_X(x)^{i-1}(1-F_X(x))^{n-i} -\biggr) -\\ -&= -\varphi_X(x) -\biggl( -k\binom{n}{k}F_X(x)^{k-1}(1-F_X(x))^{n-k} -+ -\sum_{i=k+1}^{n+1} -\left( -i\binom{n}{i} -- -(n-i+1)\binom{n}{i-1} -\right) -F_X(x)^{i-1}(1-F_X(x))^{n-i} -\biggr) -\end{align*} -Mit den wohlbekannten Identitäten für die Binomialkoeffizienten -\begin{align*} -i\binom{n}{i} -- -(n-i+1)\binom{n}{i-1} -&= -n\binom{n-1}{i-1} -- -n -\binom{n-1}{i-1} -= -0 -\end{align*} -folgt jetzt -\begin{align*} -\varphi_{X_{k:n}}(x) -&= -\varphi_X(x)k\binom{n}{k} F_X(x)^{k-1}(1-F_X(x))^{n-k}(x). -\intertext{Im Speziellen für gleichverteilte Zufallsvariablen $X_i$ ist -} -\varphi_{X_{k:n}}(x) -&= -k\binom{n}{k} x^{k-1}(1-x)^{n-k}. -\end{align*} -Dies ist die Wahrscheinlichkeitsdichte einer Betaverteilung -\[ -\beta(k,n-k+1)(x) -= -\frac{1}{B(k,n-k+1)} -x^{k-1}(1-x)^{n-k}. -\] -Tatsächlich ist die Normierungskonstante -\begin{align} -\frac{1}{B(k,n-k+1)} -&= -\frac{\Gamma(n+1)}{\Gamma(k)\Gamma(n-k+1)} -= -\frac{n!}{(k-1)!(n-k)!}. -\label{dreieck:betaverteilung:normierung1} -\end{align} -Andererseits ist -\[ -k\binom{n}{k} -= -k\frac{n!}{k!(n-k)!} -= -\frac{n!}{(k-1)!(n-k)!}, -\] -in Übereinstimmung mit~\eqref{dreieck:betaverteilung:normierung1}. -Die Verteilungsfunktion und die Wahrscheinlichkeitsdichte der -Ordnungsstatistik sind in Abbildung~\ref{dreieck:fig:order} dargestellt. - -\begin{figure} -\centering -\includegraphics{papers/dreieck/images/order.pdf} -\caption{Verteilungsfunktion und Wahrscheinlichkeitsdichte der -Ordnungsstatistiken $X_{k:n}$ einer gleichverteilung Zuvallsvariable -mit $n=10$. -\label{dreieck:fig:order}} -\end{figure} - -\subsubsection{Erwartungswert} -Mit der Wahrscheinlichkeitsdichte kann man jetzt auch den Erwartungswerte -der $k$-ten Ordnungsstatistik bestimmen. -Die Rechnung ergibt: -\begin{align*} -E(X_{k:n}) -&= -\int_0^1 x\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx -= -k -\binom{n}{k} -\int_0^1 -x^{k}(1-x)^{n-k}\,dx. -\intertext{Dies ist das Beta-Integral} -&= -k\binom{n}{k} -B(k+1,n-k+1) -\intertext{welches man durch Gamma-Funktionen bzw.~durch Fakultäten wie in} -&= -k\frac{n!}{k!(n-k)!} -\frac{\Gamma(k+1)\Gamma(n-k+1)}{n+2} -= -k\frac{n!}{k!(n-k)!} -\frac{k!(n-k)!}{(n+1)!} -= -\frac{k}{n+1} -\end{align*} -ausdrücken kann. -Die Erwartungswerte haben also regelmässige Abstände, sie sind in -Abbildung~\ref{dreieck:fig:order} als blaue vertikale Linien eingezeichnet. - -\subsubsection{Varianz} -Auch die Varianz lässt sich einfach berechnen, dazu muss zunächst -der Erwartungswert von $X_{k:n}^2$ bestimmt werden. -Er ist -\begin{align*} -E(X_{k:n}^2) -&= -\int_0^1 x^2\cdot k\binom{n}{k} x^{k-1}(1-x)^{n-k}\,dx -= -k -\binom{n}{k} -\int_0^1 -x^{k+1}(1-x)^{n-k}\,dx. -\intertext{Auch dies ist ein Beta-Integral, nämlich} -&= -k\binom{n}{k} -B(k+2,n-k+1) -= -k\frac{n!}{k!(n-k)!} -\frac{(k+1)!(n-k)!}{(n+2)!} -= -\frac{k(k+1)}{(n+1)(n+2)}. -\end{align*} -Die Varianz wird damit -\begin{align} -\operatorname{var}(X_{k:n}) -&= -E(X_{k:n}^2) - E(X_{k:n})^2 -\notag -\\ -& -= -\frac{k(k+1)}{(n+1)(n+2)}-\frac{k^2}{(n+1)^2} -= -\frac{k(k+1)(n+1)-k^2(n+2)}{(n+1)^2(n+2)} -= -\frac{k(n-k+1)}{(n+1)^2(n+2)}. -\label{dreieck:eqn:ordnungsstatistik:varianz} -\end{align} -In Abbildung~\ref{dreieck:fig:order} ist die Varianz der -Ordnungsstatistik $X_{k:n}$ für $k=7$ und $n=10$ als oranges -Rechteck dargestellt. - -\begin{figure} -\centering -\includegraphics[width=0.84\textwidth]{papers/dreieck/images/beta.pdf} -\caption{Wahrscheinlichkeitsdichte der Beta-Verteilung -$\beta(a,b,x)$ -für verschiedene Werte der Parameter $a$ und $b$. -Die Werte des Parameters für einen Graphen einer Beta-Verteilung -sind als Punkt im kleinen Quadrat rechts -im Graphen als Punkt mit der gleichen Farbe dargestellt. -\label{dreieck:fig:betaverteilungn}} -\end{figure} - -Die Formel~\eqref{dreieck:eqn:ordnungsstatistik:varianz} -besagt auch, dass die Varianz der proportional ist zu $k((n+1)-k)$. -Dieser Ausdruck ist am grössten für $k=(n+1)/2$, die Varianz ist -also grösser für die ``mittleren'' Ordnungstatistiken als für die -extremen $X_{1:n}=\operatorname{min}(X_1,\dots,X_n)$ und -$X_{n:n}=\operatorname{max}(X_1,\dots,X_n)$. -- cgit v1.2.1 From d3c217cdb6106f2082097dd9e76f200885c853cb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 11:45:38 +0200 Subject: add polynomials with elementary w-integrals paper --- buch/papers/dreieck/main.tex | 18 +++--- buch/papers/dreieck/references.bib | 36 +++--------- buch/papers/dreieck/teil0.tex | 45 ++++++++++++++- buch/papers/dreieck/teil1.tex | 88 +++++++++++++++++++++++++++++- buch/papers/dreieck/teil2.tex | 109 ++++++++++++++++++++++++++++++++++++- buch/papers/dreieck/teil3.tex | 70 +++++++++++++++++++++++- 6 files changed, 318 insertions(+), 48 deletions(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex index 75ba410..b9f8c3b 100644 --- a/buch/papers/dreieck/main.tex +++ b/buch/papers/dreieck/main.tex @@ -3,19 +3,19 @@ % % (c) 2020 Hochschule Rapperswil % -\chapter{Dreieckstest und Beta-Funktion\label{chapter:dreieck}} -\lhead{Dreieckstest und Beta-Funktion} +\chapter{$\int P(t) e^{-t^2} \,dt$ in geschlossener Form? +\label{chapter:dreieck}} +\lhead{Integrierbarkeit in geschlossener Form} \begin{refsection} \chapterauthor{Andreas Müller} \noindent -Mit dem Dreieckstest kann man feststellen, wie gut ein Geruchs- -oder Geschmackstester verschiedene Gerüche oder Geschmäcker -unterscheiden kann. -Seine wahrscheinlichkeitstheoretische Erklärung benötigt die Beta-Funktion, -man kann die Beta-Funktion als durchaus als die mathematische Grundlage -der Weindegustation -bezeichnen. +Der Risch-Algorithmus erlaubt, eine definitive Antwort darauf zu geben, +ob eine elementare Funktion eine Stammfunktion in geschlossener Form hat. +Der Algorithmus ist jedoch ziemlich kompliziert. +In diesem Kapitel soll ein spezieller Fall mit Hilfe der Theorie der +orthogonale Polynome, speziell der Hermite-Polynome, behandelt werden, +wie er in der Arbeit \cite{dreieck:polint} behandelt wurde. \input{papers/dreieck/teil0.tex} \input{papers/dreieck/teil1.tex} diff --git a/buch/papers/dreieck/references.bib b/buch/papers/dreieck/references.bib index d2bbe08..47bd865 100644 --- a/buch/papers/dreieck/references.bib +++ b/buch/papers/dreieck/references.bib @@ -4,32 +4,12 @@ % (c) 2020 Autor, Hochschule Rapperswil % -@online{dreieck:bibtex, - title = {BibTeX}, - url = {https://de.wikipedia.org/wiki/BibTeX}, - date = {2020-02-06}, - year = {2020}, - month = {2}, - day = {6} +@article{dreieck:polint, + author = { George Stoica }, + title = { Polynomials and Integration in Finite Terms }, + journal = { Amer. Math. Monthly }, + volume = 129, + year = 2022, + number = 1, + pages = {80--81} } - -@book{dreieck:numerical-analysis, - title = {Numerical Analysis}, - author = {David Kincaid and Ward Cheney}, - publisher = {American Mathematical Society}, - year = {2002}, - isbn = {978-8-8218-4788-6}, - inseries = {Pure and applied undegraduate texts}, - volume = {2} -} - -@article{dreieck:mendezmueller, - author = { Tabea Méndez and Andreas Müller }, - title = { Noncommutative harmonic analysis and image registration }, - journal = { Appl. Comput. Harmon. Anal.}, - year = 2019, - volume = 47, - pages = {607--627}, - url = {https://doi.org/10.1016/j.acha.2017.11.004} -} - diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex index bcf2cf8..584f12b 100644 --- a/buch/papers/dreieck/teil0.tex +++ b/buch/papers/dreieck/teil0.tex @@ -3,7 +3,48 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Testprinzip\label{dreieck:section:testprinzip}} -\rhead{Testprinzip} +\section{Problemstellung\label{dreieck:section:problemstellung}} +\rhead{Problemstellung} +Es ist bekannt, dass das Fehlerintegral +\[ +\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^x e^{-\frac{t^2}{2\sigma}}\,dt +\] +nicht in geschlossener Form dargestellt werden kann. +Mit der in Kapitel~\ref{buch:chapter:integral} skizzierten Theorie von +Liouville und dem Risch-Algorithmus kann dies strengt gezeigt werden. +Andererseits gibt es durchaus Integranden, die $e^{-t^2}$ enthalten, +für die eine Stammfunktion in geschlossener Form gefunden werden kann. +Zum Beispiel folgt aus der Ableitung +\[ +\frac{d}{dt} e^{-t^2} += +-2te^{-t^2} +\] +die Stammfunktion +\[ +\int te^{-t^2}\,dt += +-\frac12 e^{-t^2}. +\] +Leitet man $e^{-t^2}$ zweimal ab, erhält man +\[ +\frac{d^2}{dt^2} e^{-t^2} += +(4t^2-2) e^{-t^2} +\qquad\Rightarrow\qquad +\int (t^2-\frac12) e^{-t^2}\,dt += +\frac14 +e^{-t^2}. +\] +Es gibt also eine viele weitere Polynome $P(t)$, für die der Integrand +$P(t)e^{-t^2}$ eine Stammfunktion in geschlossener Form hat. +Damit stellt sich jetzt das folgende allgemeine Problem. + +\begin{problem} +\label{dreieck:problem} +Für welche Polynome $P(t)$ hat der Integrand $P(t)e^{-t^2}$ +eine elementare Stammfunktion? +\end{problem} diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index 4abe2e1..f03c425 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -3,9 +3,91 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Ordnungsstatistik und Beta-Funktion -\label{dreieck:section:ordnungsstatistik}} -\rhead{} +\section{Hermite-Polynome +\label{dreieck:section:hermite-polynome}} +\rhead{Hermite-Polyome} +In Abschnitt~\ref{dreieck:section:problemstellung} hat sich schon angedeutet, +dass die Polynome, die man durch Ableiten von $e^{-t^2}$ erhalten +kann, bezüglich des gestellten Problems besondere Eigenschaften +haben. +Zunächst halten wir fest, dass die Ableitung einer Funktion der Form +$P(t)e^{-t^2}$ mit einem Polynom $P(t)$ +\begin{equation} +\frac{d}{dt} P(t)e^{-t^2} += +P'(t)e^{-t^2} -2tP(t)e^{-t^2} += +(P'(t)-2tP(t)) e^{-t^2} +\label{dreieck:eqn:ableitung} +\end{equation} +ist. +Insbesondere hat die Ableitung wieder die Form $Q(t)e^{-t^2}$ +mit einem Polynome $Q(t)$, welches man auch als +\[ +Q(t) += +e^{t^2}\frac{d}{dt}P(t)e^{-t^2} +\] +erhalten kann. +Die Polynome, die man aus der Funktion $H_0(t)=e^{-t^2}$ durch +Ableiten erhalten kann, wurden bereits in +Abschnitt~\ref{buch:orthogonalitaet:section:rodrigues} +bis auf ein Vorzeichen hergeleitet, sie heissen die Hermite-Polynome +und es gilt +\[ +H_n(t) += +(-1)^n +e^{t^2} \frac{d^n}{dt^n} e^{-t^2}. +\] +Das Vorzeichen dient dazu sicherzustellen, dass der Leitkoeffizient +immer $1$ ist. +Das Polynom $H_n(t)$ hat den Grad $n$. + +In Abschnitt wurde auch gezeigt, dass die Polynome $H_n(t)$ +bezüglich des Skalarproduktes +\[ +\langle f,g\rangle_{w} += +\int_{-\infty}^\infty f(t)g(t)e^{-t^2}\,dt, +\qquad +w(t)=e^{-t^2}, +\] +orthogonal sind. +Ausserdem folgt aus \eqref{dreieck:eqn:ableitung} +die Rekursionsbeziehung +\begin{equation} +H_{n}(t) += +2tH_{n-1}(t) +- +H_{n-1}'(t) +\label{dreieck:eqn:rekursion} +\end{equation} +für $n>0$. + +Im Hinblick auf die Problemstellung ist jetzt die Frage interessant, +ob die Integranden $H_n(t)e^{-t^2}$ eine Stammfunktion in geschlossener +Form haben. +Mit Hilfe der Rekursionsbeziehung~\eqref{dreieck:eqn:rekursion} +kann man für $n>0$ unmittelbar verifizieren, dass +\begin{align*} +\int H_n(t)e^{-t^2}\,dt +&= +\int \bigl( 2tH_{n-1}(t) - H'_{n-1}(t)\bigr)e^{-t^2}\,dt +\\ +&= +-\int \bigl( \exp'(-t^2) H_{n-1}(t) + H'_{n-1}(t)\bigr)e^{-t^2}\,dt +\\ +&= +-\int \bigl( e^{-t^2}H_{n-1}(t)\bigr)' \,dt += +-e^{-t^2}H_{n-1}(t) +\end{align*} +ist. +Für $n>0$ hat also $H_n(t)e^{-t^2}$ eine elementare Stammfunktion. +Die Hermite-Polynome sind also Lösungen für das +Problem~\ref{dreieck:problem}. diff --git a/buch/papers/dreieck/teil2.tex b/buch/papers/dreieck/teil2.tex index 83ea3cb..c5a2826 100644 --- a/buch/papers/dreieck/teil2.tex +++ b/buch/papers/dreieck/teil2.tex @@ -3,7 +3,110 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Wahrscheinlichkeiten im Dreieckstest -\label{dreieck:section:wahrscheinlichkeiten}} -\rhead{Wahrscheinlichkeiten} +\section{Beliebige Polynome +\label{dreieck:section:beliebig}} +\rhead{Beliebige Polynome} +Im Abschnitt~\ref{dreieck:section:hermite-polynome} wurden die +Hermite-Polynome $H_n(t)$ mit $n>0$ als Lösungen des gestellten +Problems erkannt. +Eine Linearkombination von solchen Polynomen hat natürlich +ebenfalls eine elementare Stammfunktion. +Das Problem kann daher neu formuliert werden: + +\begin{problem} +\label{dreieck:problem2} +Welche Polynome $P(t)$ lassen sich aus den Hermite-Polynomen +$H_n(t)$ mit $n>0$ linear kombinieren. +\end{problem} + +Sei jetzt +\[ +P(t) = p_0 + p_1t + \ldots + p_{n-1}t^{n-1} + p_nt^n +\] +ein beliebiges Polynom vom Grad $n$. +Eine elementare Stammfunktion von $P(t)e^{-t^2}$ existiert sicher, +wenn sich $P(t)$ aus den Funktionen $H_n(t)$ mit $n>0$ linear +kombinieren lässt. +Gesucht ist also zunächst eine Darstellung von $P(t)$ als Linearkombination +von Hermite-Polynomen. + +\begin{lemma} +Jedes Polynome $P(t)$ vom Grad $n$ lässt sich auf eindeutige Art und +Weise als Linearkombination +\begin{equation} +P(t) = a_0H_0(t) + a_1H_1(t) + \ldots + a_nH_n(t) += +\sum_{k=0}^n a_nH_n(t) +\label{dreieck:lemma} +\end{equation} +von Hermite-Polynomen schreiben. +\end{lemma} + +\begin{proof}[Beweis] +Zunächst halten wir fest, dass aus der +Rekursionsformel~\eqref{dreieck:rekursion} +folgt, dass der Leitkoeffizient bei jedem Rekursionsschnitt +mit $2$ multipliziert wird. +Der Leitkoeffizient von $H_n(t)$ ist also $2^n$. + +Wir führen den Beweis mit vollständiger Induktion. +Für $n=0$ ist $P(t)=p_0 = p_0 H_0(t)$ als Linearkombination von +Hermite-Polynomen darstellbar, dies ist die Induktionsverankerung. + +Nehmen wir jetzt an, dass sich ein Polynom vom Grad $n-1$ als +Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$ schreiben +lässt und untersuchen wir $P(t)$ vom Grad $n$. +Da der Leitkoeffizient des Polynoms $H_n(t)$ ist $2^n$, ist +\[ +P(t) += +\underbrace{\biggl(P(t) - \frac{p_n}{2^n} H_n(t)\biggr)}_{\displaystyle = Q(t)} ++ +\frac{p_n}{2^n} H_n(t). +\] +Das Polynom $Q(t)$ hat Grad $n-1$, besitzt also nach Induktionsannahme +eine Darstellung +\[ +Q(t) = a_0H_0(t)+a_1H_1(t)+\ldots+a_{n-1}H_{n-1}(t) +\] +als Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$. +Somit ist +\[ +P(t) += a_0H_0(t)+a_1H_1(t)+\ldots+a_{n-1}H_{n-1}(t) + +\frac{p_n}{2^n} H_n(t) +\] +eine Darstellung von $P(t)$ als Linearkombination der Polynome +$H_0(t),\dots,H_n(t)$. +Damit ist der Induktionsschritt vollzogen und das Lemma für alle +$n$ bewiesen. +\end{proof} + +\begin{satz} +\label{dreieck:satz1} +Die Funktion $P(t)e^{-t^2}$ hat genau dann eine elementare Stammfunktion, +wenn in der Darstellung~\eqref{dreieck:lemma} +von $P(t)$ als Linearkombination von Hermite-Polynome $a_0=0$ gilt. +\end{satz} + +\begin{proof}[Beweis] +Es ist +\begin{align*} +\int P(t)e^{-t^2}\,dt +&= +a_0\int e^{-t^2}\,dt ++ +\int +\sum_{k=1} a_kH_k(t)\,dt +\\ +&= +\frac{\sqrt{\pi}}2 +\operatorname{erf}(t) ++ +\sum_{k=1} a_k\int H_k(t)\,dt. +\end{align*} +Da die Integrale in der Summe alle elementar darstellbar sind, +ist das Integral genau dann elementar, wenn $a_0=0$ ist. +\end{proof} + diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index e2dfd6b..888ceb6 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -3,8 +3,72 @@ % % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % -\section{Erweiterungen -\label{dreieck:section:erweiterungen}} -\rhead{Erweiterungen} +\section{Integralbedingung +\label{dreieck:section:integralbedingung}} +\rhead{Lösung} +Die Tatsache, dass die Hermite-Polynome orthogonal sind, erlaubt, das +Kriterium von Satz~\ref{dreieck:satz1} etwas anders zu formulieren. + +Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die +orthonormierten Polynome +\[ +\tilde{H}_n(t) += +\frac{1}{\| H_n\|_w} H_n(t) +\qquad\text{mit}\quad +\|H_n\|_w^2 += +\int_{-\infty}^\infty H_n(t)e^{-t^2}\,dt +\] +bilden. +Da diese Polynome eine orthonormierte Basis des Vektorraums der Polynome +bilden, kann die gesuchte Zerlegung eines Polynoms $P(t)$ auch mit +Hilfe des Skalarproduktes gefunden werden: +\begin{align*} +P(t) +&= +\sum_{k=1}^n +\langle \tilde{H}_k, P\rangle_w +\tilde{H}_k(t) += +\sum_{k=1}^n +\biggl\langle \frac{H_k}{\|H_k\|_w}, P\biggr\rangle_w +\frac{H_k(t)}{\|H_k\|_w} += +\sum_{k=1}^n +\underbrace{ +\frac{ \langle H_k, P\rangle_w }{\|H_k\|_w^2} +}_{\displaystyle =a_k} +H_k(t). +\end{align*} +Die Darstellung von $P(t)$ als Linearkombination von Hermite-Polynomen +hat die Koeffizienten +\[ +a_k = \frac{\langle H_k,P\rangle_w}{\|H_k\|_w^2}. +\] +Aus dem Kriterium $a_0=0$ dafür, dass eine elementare Stammfunktion +von $P(t)e^{-t^2}$ existiert, wird daher die Bedingung, dass +$\langle H_0,P\rangle_w=0$ ist. +Da $H_0(t)=1$ ist, folgt als Bedingung +\[ +a_0 += +\langle H_0,P\rangle_w += +\int_{-\infty}^\infty P(t) e^{-t^2}\,dt += +0. +\] + +\begin{satz} +Ein Integrand der Form $P(t)e^{-t^2}$ mit einem Polynom $P(t)$ +hat genau dann eine elementare Stammfunktion, wenn +\[ +\int_{-\infty}^\infty P(t)e^{-t^2}\,dt = 0 +\] +ist. +\end{satz} + + -- cgit v1.2.1 From 54ab4af72ff10d4e5b739ac0e9d727482b9d5a15 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 12:43:02 +0200 Subject: fix typos --- buch/papers/dreieck/main.tex | 2 +- buch/papers/dreieck/teil0.tex | 4 ++-- buch/papers/dreieck/teil2.tex | 17 ++++++++++------- buch/papers/dreieck/teil3.tex | 5 +++-- 4 files changed, 16 insertions(+), 12 deletions(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex index b9f8c3b..fecaf93 100644 --- a/buch/papers/dreieck/main.tex +++ b/buch/papers/dreieck/main.tex @@ -15,7 +15,7 @@ ob eine elementare Funktion eine Stammfunktion in geschlossener Form hat. Der Algorithmus ist jedoch ziemlich kompliziert. In diesem Kapitel soll ein spezieller Fall mit Hilfe der Theorie der orthogonale Polynome, speziell der Hermite-Polynome, behandelt werden, -wie er in der Arbeit \cite{dreieck:polint} behandelt wurde. +wie er in der Arbeit \cite{dreieck:polint} untersucht wurde. \input{papers/dreieck/teil0.tex} \input{papers/dreieck/teil1.tex} diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex index 584f12b..65eff7a 100644 --- a/buch/papers/dreieck/teil0.tex +++ b/buch/papers/dreieck/teil0.tex @@ -33,9 +33,9 @@ Leitet man $e^{-t^2}$ zweimal ab, erhält man = (4t^2-2) e^{-t^2} \qquad\Rightarrow\qquad -\int (t^2-\frac12) e^{-t^2}\,dt +\int (t^2-{\textstyle\frac12}) e^{-t^2}\,dt = -\frac14 +{\textstyle\frac14} e^{-t^2}. \] Es gibt also eine viele weitere Polynome $P(t)$, für die der Integrand diff --git a/buch/papers/dreieck/teil2.tex b/buch/papers/dreieck/teil2.tex index c5a2826..8e89f6a 100644 --- a/buch/papers/dreieck/teil2.tex +++ b/buch/papers/dreieck/teil2.tex @@ -16,10 +16,10 @@ Das Problem kann daher neu formuliert werden: \begin{problem} \label{dreieck:problem2} Welche Polynome $P(t)$ lassen sich aus den Hermite-Polynomen -$H_n(t)$ mit $n>0$ linear kombinieren. +$H_n(t)$ mit $n>0$ linear kombinieren? \end{problem} -Sei jetzt +Sei also \[ P(t) = p_0 + p_1t + \ldots + p_{n-1}t^{n-1} + p_nt^n \] @@ -44,7 +44,7 @@ von Hermite-Polynomen schreiben. \begin{proof}[Beweis] Zunächst halten wir fest, dass aus der -Rekursionsformel~\eqref{dreieck:rekursion} +Rekursionsformel~\eqref{dreieck:eqn:rekursion} folgt, dass der Leitkoeffizient bei jedem Rekursionsschnitt mit $2$ multipliziert wird. Der Leitkoeffizient von $H_n(t)$ ist also $2^n$. @@ -53,10 +53,12 @@ Wir führen den Beweis mit vollständiger Induktion. Für $n=0$ ist $P(t)=p_0 = p_0 H_0(t)$ als Linearkombination von Hermite-Polynomen darstellbar, dies ist die Induktionsverankerung. -Nehmen wir jetzt an, dass sich ein Polynom vom Grad $n-1$ als +Wir nehmen jetzt im Sinne der Induktionsannahme an, +dass sich ein Polynom vom Grad $n-1$ als Linearkombination der Polynome $H_0(t),\dots,H_{n-1}(t)$ schreiben -lässt und untersuchen wir $P(t)$ vom Grad $n$. -Da der Leitkoeffizient des Polynoms $H_n(t)$ ist $2^n$, ist +lässt und untersuchen ein Polynom $P(t)$ vom Grad $n$. +Da der Leitkoeffizient des Polynoms $H_n(t)$ ist $2^n$, ist zerlegen +wir \[ P(t) = @@ -86,7 +88,7 @@ $n$ bewiesen. \label{dreieck:satz1} Die Funktion $P(t)e^{-t^2}$ hat genau dann eine elementare Stammfunktion, wenn in der Darstellung~\eqref{dreieck:lemma} -von $P(t)$ als Linearkombination von Hermite-Polynome $a_0=0$ gilt. +von $P(t)$ als Linearkombination von Hermite-Polynomen $a_0=0$ gilt. \end{satz} \begin{proof}[Beweis] @@ -100,6 +102,7 @@ a_0\int e^{-t^2}\,dt \sum_{k=1} a_kH_k(t)\,dt \\ &= +a_0 \frac{\sqrt{\pi}}2 \operatorname{erf}(t) + diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index 888ceb6..556a9d9 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -7,7 +7,8 @@ \label{dreieck:section:integralbedingung}} \rhead{Lösung} Die Tatsache, dass die Hermite-Polynome orthogonal sind, erlaubt, das -Kriterium von Satz~\ref{dreieck:satz1} etwas anders zu formulieren. +Kriterium von Satz~\ref{dreieck:satz1} in einer besonders attraktiven +Integralform zu formulieren. Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die orthonormierten Polynome @@ -42,7 +43,7 @@ P(t) H_k(t). \end{align*} Die Darstellung von $P(t)$ als Linearkombination von Hermite-Polynomen -hat die Koeffizienten +hat somit die Koeffizienten \[ a_k = \frac{\langle H_k,P\rangle_w}{\|H_k\|_w^2}. \] -- cgit v1.2.1 From 4220519090661503f243902aa58f48343920e89c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Tue, 7 Jun 2022 12:47:03 +0200 Subject: index entries added --- buch/papers/dreieck/main.tex | 2 ++ buch/papers/dreieck/teil1.tex | 1 + buch/papers/dreieck/teil3.tex | 2 ++ 3 files changed, 5 insertions(+) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/main.tex b/buch/papers/dreieck/main.tex index fecaf93..d7bc769 100644 --- a/buch/papers/dreieck/main.tex +++ b/buch/papers/dreieck/main.tex @@ -11,6 +11,8 @@ \noindent Der Risch-Algorithmus erlaubt, eine definitive Antwort darauf zu geben, +\index{Risch-Algorithmus}% +\index{elementare Stammfunktion}% ob eine elementare Funktion eine Stammfunktion in geschlossener Form hat. Der Algorithmus ist jedoch ziemlich kompliziert. In diesem Kapitel soll ein spezieller Fall mit Hilfe der Theorie der diff --git a/buch/papers/dreieck/teil1.tex b/buch/papers/dreieck/teil1.tex index f03c425..45c1a23 100644 --- a/buch/papers/dreieck/teil1.tex +++ b/buch/papers/dreieck/teil1.tex @@ -34,6 +34,7 @@ Die Polynome, die man aus der Funktion $H_0(t)=e^{-t^2}$ durch Ableiten erhalten kann, wurden bereits in Abschnitt~\ref{buch:orthogonalitaet:section:rodrigues} bis auf ein Vorzeichen hergeleitet, sie heissen die Hermite-Polynome +\index{Hermite-Polynome}% und es gilt \[ H_n(t) diff --git a/buch/papers/dreieck/teil3.tex b/buch/papers/dreieck/teil3.tex index 556a9d9..c0c046a 100644 --- a/buch/papers/dreieck/teil3.tex +++ b/buch/papers/dreieck/teil3.tex @@ -11,6 +11,8 @@ Kriterium von Satz~\ref{dreieck:satz1} in einer besonders attraktiven Integralform zu formulieren. Aus den Polynomen $H_n(t)$ lassen sich durch Normierung die +\index{orthogonale Polynome}% +\index{Polynome, orthogonale}% orthonormierten Polynome \[ \tilde{H}_n(t) -- cgit v1.2.1 From 05d75b0f467b2535db538ecaee461cf0c8b637d1 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Andreas=20M=C3=BCller?= Date: Mon, 27 Jun 2022 20:17:16 +0200 Subject: add stuff for elliptic filters --- buch/papers/dreieck/teil0.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/dreieck') diff --git a/buch/papers/dreieck/teil0.tex b/buch/papers/dreieck/teil0.tex index 65eff7a..f9affe7 100644 --- a/buch/papers/dreieck/teil0.tex +++ b/buch/papers/dreieck/teil0.tex @@ -38,7 +38,7 @@ Leitet man $e^{-t^2}$ zweimal ab, erhält man {\textstyle\frac14} e^{-t^2}. \] -Es gibt also eine viele weitere Polynome $P(t)$, für die der Integrand +Es gibt also viele weitere Polynome $P(t)$, für die der Integrand $P(t)e^{-t^2}$ eine Stammfunktion in geschlossener Form hat. Damit stellt sich jetzt das folgende allgemeine Problem. -- cgit v1.2.1