From 2cbc79a82e39702dd78919ac704fae01f50efb12 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Mon, 30 May 2022 00:33:47 +0200 Subject: split main into section files --- buch/papers/ellfilter/einleitung.tex | 56 ++++++++++++++++++++++++++++++++++++ 1 file changed, 56 insertions(+) create mode 100644 buch/papers/ellfilter/einleitung.tex (limited to 'buch/papers/ellfilter/einleitung.tex') diff --git a/buch/papers/ellfilter/einleitung.tex b/buch/papers/ellfilter/einleitung.tex new file mode 100644 index 0000000..37fd89f --- /dev/null +++ b/buch/papers/ellfilter/einleitung.tex @@ -0,0 +1,56 @@ +\section{Einleitung} + +% Lineare filter + +% Filter, Signalverarbeitung + + +Der womöglich wichtigste Filtertyp ist das Tiefpassfilter. +Dieses soll im Durchlassbereich unter der Grenzfrequenz $\Omega_p$ unverstärkt durchlassen und alle anderen Frequenzen vollständig auslöschen. + +% Bei der Implementierung von Filtern + +In der Elektrotechnik führen Schaltungen mit linearen Bauelementen wie Kondensatoren, Spulen und Widerständen immer zu linearen zeitinvarianten Systemen (LTI-System von englich \textit{time-invariant system}). +Die Übertragungsfunktion im Frequenzbereich $|H(\Omega)|$ eines solchen Systems ist dabei immer eine rationale Funktion, also eine Division von zwei Polynomen. +Die Polynome habe dabei immer reelle oder komplex-konjugierte Nullstellen. + + +\begin{equation} \label{ellfilter:eq:h_omega} + | H(\Omega)|^2 = \frac{1}{1 + \varepsilon_p^2 F_N^2(w)}, \quad w=\frac{\Omega}{\Omega_p} +\end{equation} + +$\Omega = 2 \pi f$ ist die analoge Frequenz + + +% Linear filter +Damit das Filter implementierbar und stabil ist, muss $H(\Omega)^2$ eine rationale Funktion sein, deren Nullstellen und Pole auf der linken Halbebene liegen. + +$N \in \mathbb{N} $ gibt dabei die Ordnung des Filters vor, also die maximale Anzahl Pole oder Nullstellen. + +Damit ein Filter die Passband Kondition erfüllt muss $|F_N(w)| \leq 1 \forall |w| \leq 1$ und für $|w| \geq 1$ sollte die Funktion möglichst schnell divergieren. +Eine einfaches Polynom, dass das erfüllt, erhalten wir wenn $F_N(w) = w^N$. +Tatsächlich erhalten wir damit das Butterworth Filter, wie in Abbildung \ref{ellfilter:fig:butterworth} ersichtlich. +\begin{figure} + \centering + \input{papers/ellfilter/python/F_N_butterworth.pgf} + \caption{$F_N$ für Butterworth filter. Der grüne Bereich definiert die erlaubten Werte für alle $F_N$-Funktionen.} + \label{ellfilter:fig:butterworth} +\end{figure} + +wenn $F_N(w)$ eine rationale Funktion ist, ist auch $H(\Omega)$ eine rationale Funktion und daher ein lineares Filter. %proof? + +\begin{align} + F_N(w) & = + \begin{cases} + w^N & \text{Butterworth} \\ + T_N(w) & \text{Tschebyscheff, Typ 1} \\ + [k_1 T_N (k^{-1} w^{-1})]^{-1} & \text{Tschebyscheff, Typ 2} \\ + R_N(w, \xi) & \text{Elliptisch (Cauer)} \\ + \end{cases} +\end{align} + +Mit der Ausnahme vom Butterworth filter sind alle Filter nach speziellen Funktionen benannt. +Alle diese Filter sind optimal für unterschiedliche Anwendungsgebiete. +Das Butterworth-Filter, zum Beispiel, ist maximal flach im Durchlassbereich. +Das Tschebyscheff-1 Filter sind maximal steil für eine definierte Welligkeit im Durchlassbereich, währendem es im Sperrbereich monoton abfallend ist. +Es scheint so als sind gewisse Eigenschaften dieser speziellen Funktionen verantwortlich für die Optimalität dieser Filter. -- cgit v1.2.1