From 6e787a660b0a1a456d42d8a420dfe790431dfc40 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Thu, 2 Jun 2022 01:28:17 +0200 Subject: working on presentation --- buch/papers/ellfilter/elliptic.tex | 23 ++++++++++++++++++++++- 1 file changed, 22 insertions(+), 1 deletion(-) (limited to 'buch/papers/ellfilter/elliptic.tex') diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex index 88bfbfe..96731c8 100644 --- a/buch/papers/ellfilter/elliptic.tex +++ b/buch/papers/ellfilter/elliptic.tex @@ -69,7 +69,15 @@ Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den ellipti \label{ellfilter:fig:elliptic} \end{figure} -\subsection{Degree Equation} + +\begin{figure} + \centering + \input{papers/ellfilter/python/elliptic.pgf} + \caption{Die resultierende frequenzantwort eines elliptischs filter.} + \label{ellfilter:fig:elliptic_freq} +\end{figure} + +\subsection{Gradgleichung} Der $\cd^{-1}$ Term muss so verzogen werden, dass die umgebene $\cd$-Funktion die Nullstellen und Pole trifft. Dies trifft ein wenn die Degree Equation erfüllt ist. @@ -82,6 +90,19 @@ Dies trifft ein wenn die Degree Equation erfüllt ist. Leider ist das lösen dieser Gleichung nicht trivial. Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. +\begin{figure} + \centering + \input{papers/ellfilter/python/k.pgf} + \caption{Die Periodizitäten in realer und imaginärer Richtung in Abhängigkeit vom elliptischen Modul $k$.} +\end{figure} + +\begin{figure} + \centering + \input{papers/ellfilter/tikz/elliptic_transform.tikz} + \caption{Die Gradgleichung als geometrisches Problem.} +\end{figure} + + \subsection{Polynome?} -- cgit v1.2.1 From 8ced517966a5996ad659b155b7e0372107bbf116 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Tue, 2 Aug 2022 23:54:02 +0200 Subject: improved Einleitung --- buch/papers/ellfilter/elliptic.tex | 14 ++++++++++---- 1 file changed, 10 insertions(+), 4 deletions(-) (limited to 'buch/papers/ellfilter/elliptic.tex') diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex index 96731c8..861600b 100644 --- a/buch/papers/ellfilter/elliptic.tex +++ b/buch/papers/ellfilter/elliptic.tex @@ -31,13 +31,13 @@ Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktio \end{figure} Auffallend ist, dass sich alle Nullstellen und Polstellen um $K$ verschoben haben. -Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{ellfilter:fig:fundamental_rectangle} können für alle inversen Jaccobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden. +Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{ellfilter:fig:fundamental_rectangle} können für alle inversen Jacobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden. Der erste Buchstabe bestimmt die Position der Nullstelle und der zweite Buchstabe die Polstelle. \begin{figure} \centering \input{papers/ellfilter/tikz/fundamental_rectangle.tikz.tex} \caption{ - Fundamentales Rechteck der inversen Jaccobi elliptischen Funktionen. + Fundamentales Rechteck der inversen Jacobi elliptischen Funktionen. } \label{ellfilter:fig:fundamental_rectangle} \end{figure} @@ -80,7 +80,7 @@ Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den ellipti \subsection{Gradgleichung} Der $\cd^{-1}$ Term muss so verzogen werden, dass die umgebene $\cd$-Funktion die Nullstellen und Pole trifft. -Dies trifft ein wenn die Degree Equation erfüllt ist. +Dies trifft ein wenn die Gradengleichung erfüllt ist. \begin{equation} N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} @@ -96,9 +96,15 @@ Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. \caption{Die Periodizitäten in realer und imaginärer Richtung in Abhängigkeit vom elliptischen Modul $k$.} \end{figure} +%TODO combine figures? \begin{figure} \centering - \input{papers/ellfilter/tikz/elliptic_transform.tikz} + \input{papers/ellfilter/tikz/elliptic_transform1.tikz} + \caption{Die Gradgleichung als geometrisches Problem.} +\end{figure} +\begin{figure} + \centering + \input{papers/ellfilter/tikz/elliptic_transform2.tikz} \caption{Die Gradgleichung als geometrisches Problem.} \end{figure} -- cgit v1.2.1 From d4e52d5bd83bed95d7712c34e14ccde3ff72810e Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Tue, 9 Aug 2022 23:54:32 +0200 Subject: Improved plot color choices --- buch/papers/ellfilter/elliptic.tex | 53 +++++++++----------------------------- 1 file changed, 12 insertions(+), 41 deletions(-) (limited to 'buch/papers/ellfilter/elliptic.tex') diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex index 861600b..8c60e46 100644 --- a/buch/papers/ellfilter/elliptic.tex +++ b/buch/papers/ellfilter/elliptic.tex @@ -6,47 +6,26 @@ Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1)\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ &= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k) \end{align} - - -sieht ähnlich aus wie die trigonometrische Darstellung der Tschebyschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} +Beim Betrachten dieser Definition, fällt die Ähnlichkeit zur trigonometrische Darstellung der Tschebyschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} auf. Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz. Die Ordnungszahl $N$ kommt auch als Faktor for. Zusätzlich werden noch zwei verschiedene elliptische Module $k$ und $k_1$ gebraucht. +Bei $k = k_1 = 0$ wird der $\cd$ zum Kosinus und wir erhalten in diesem Spezialfall die Tschebyschef-Polynome. - - -Sinus entspricht $\sn$ - -Damit die Nullstellen an ähnlichen Positionen zu liegen kommen wie bei den Tschebyscheff-Polynomen, muss die $\cd$-Funktion gewählt werden. - +Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{buch:elliptisch:fig:ellall} können für alle inversen Jacobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden. Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktion, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd}. \begin{figure} \centering \input{papers/ellfilter/tikz/cd.tikz.tex} \caption{ - $z$-Ebene der Funktion $z = \sn^{-1}(w, k)$. + $z$-Ebene der Funktion $z = \cd^{-1}(w, k)$. Die Funktion ist in der realen Achse $4K$-periodisch und in der imaginären Achse $2jK^\prime$-periodisch. } \label{ellfilter:fig:cd} \end{figure} -Auffallend ist, dass sich alle Nullstellen und Polstellen um $K$ verschoben haben. - -Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{ellfilter:fig:fundamental_rectangle} können für alle inversen Jacobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden. -Der erste Buchstabe bestimmt die Position der Nullstelle und der zweite Buchstabe die Polstelle. -\begin{figure} - \centering - \input{papers/ellfilter/tikz/fundamental_rectangle.tikz.tex} - \caption{ - Fundamentales Rechteck der inversen Jacobi elliptischen Funktionen. - } - \label{ellfilter:fig:fundamental_rectangle} -\end{figure} - -Auffallend an der $w = \sn(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen. -Die Funktion hat also Equirippel-Verhalten um $w=0$ und um $w=\pm \infty$. -Falls es möglich ist diese Werte abzufahren im Sti der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist. - - +Auffallend an der $w = \cd(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen. +Die Funktion hat also Equirippel-Verhalten um $w=0$ und um $w=\pm \infty$. %TODO Check +Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist. Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den elliptisch rationalen Funktionen die komplexe $z$-Ebene betrachten, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, um die besser zu verstehen. \begin{figure} @@ -60,20 +39,10 @@ Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den ellipti \end{figure} % Da die $\cd^{-1}$-Funktion - - -\begin{figure} - \centering - \input{papers/ellfilter/python/F_N_elliptic.pgf} - \caption{$F_N$ für ein elliptischs filter.} - \label{ellfilter:fig:elliptic} -\end{figure} - - \begin{figure} \centering \input{papers/ellfilter/python/elliptic.pgf} - \caption{Die resultierende frequenzantwort eines elliptischs filter.} + \caption{$F_N$ und die resultierende Frequenzantwort eines elliptischen Filters.} \label{ellfilter:fig:elliptic_freq} \end{figure} @@ -90,6 +59,10 @@ Dies trifft ein wenn die Gradengleichung erfüllt ist. Leider ist das lösen dieser Gleichung nicht trivial. Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. +$K$ und $K^\prime$ sind voneinender abhängig. + +Das Problem lässt sich grafisch darstellen. + \begin{figure} \centering \input{papers/ellfilter/python/k.pgf} @@ -108,8 +81,6 @@ Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. \caption{Die Gradgleichung als geometrisches Problem.} \end{figure} - - \subsection{Polynome?} Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann. -- cgit v1.2.1 From 16f447cb8a9df0d271f29b1aecb24532948bea8c Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Wed, 10 Aug 2022 23:52:40 +0200 Subject: working on elliptic rational functions --- buch/papers/ellfilter/elliptic.tex | 76 ++++++++++++++++++++------------------ 1 file changed, 41 insertions(+), 35 deletions(-) (limited to 'buch/papers/ellfilter/elliptic.tex') diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex index 8c60e46..793fd6c 100644 --- a/buch/papers/ellfilter/elliptic.tex +++ b/buch/papers/ellfilter/elliptic.tex @@ -1,15 +1,15 @@ \section{Elliptische rationale Funktionen} -Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen +Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen \ref{ellfilter:bib:orfanidis} \begin{align} - R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \\ + R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \label{ellfilter:eq:elliptic}\\ &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1)\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ &= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k) \end{align} Beim Betrachten dieser Definition, fällt die Ähnlichkeit zur trigonometrische Darstellung der Tschebyschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} auf. Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz. Die Ordnungszahl $N$ kommt auch als Faktor for. -Zusätzlich werden noch zwei verschiedene elliptische Module $k$ und $k_1$ gebraucht. +Zusätzlich werden noch zwei verschiedene elliptische Moduli $k$ und $k_1$ gebraucht. Bei $k = k_1 = 0$ wird der $\cd$ zum Kosinus und wir erhalten in diesem Spezialfall die Tschebyschef-Polynome. Durch das Konzept vom fundamentalen Rechteck, siehe Abbildung \ref{buch:elliptisch:fig:ellall} können für alle inversen Jacobi elliptischen Funktionen die Positionen der Null- und Polstellen anhand eines Diagramms ermittelt werden. @@ -24,21 +24,25 @@ Die $\cd^{-1}(w, k)$-Funktion ist um $K$ verschoben zur $\sn^{-1}(w, k)$-Funktio \label{ellfilter:fig:cd} \end{figure} Auffallend an der $w = \cd(z, k)$-Funktion ist, dass sich $w$ auf der reellen Achse wie der Kosinus immer zwischen $-1$ und $1$ bewegt, während bei $\mathrm{Im(z) = K^\prime}$ die Werte zwischen $\pm 1/k$ und $\pm \infty$ verlaufen. -Die Funktion hat also Equirippel-Verhalten um $w=0$ und um $w=\pm \infty$. %TODO Check -Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist. - -Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den elliptisch rationalen Funktionen die komplexe $z$-Ebene betrachten, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, um die besser zu verstehen. +Die Idee des elliptischen Filter ist es, diese zwei Equirippel-Zonen abzufahren, wie ersichtlich in Abbildung \ref{ellfilter:fig:cd2}, welche Analog zu Abbildung \ref{ellfilter:fig:arccos2} gesehen werden kann. \begin{figure} \centering \input{papers/ellfilter/tikz/cd2.tikz.tex} \caption{ $z_1$-Ebene der elliptischen rationalen Funktionen. - Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen passiert. + Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert. } \label{ellfilter:fig:cd2} \end{figure} -% Da die $\cd^{-1}$-Funktion - +Das elliptische Filter hat im Gegensatz zum Tschebyscheff-Filter drei Zonen. +Im Durchlassbereich werden wie beim Tschebyscheff-Filter die Nullstellen durchlaufen. +Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole durchlaufen werden. +Aus dieser Sicht kann der Sperrbereich vom Tschebyscheff-Filter als unendlich langer Übergangsbereich angesehen werden. +% Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist. +Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe bewegt ist der Übergangsbereich monoton steigend. +Theoretisch könnte eine gleiches Durchlass- und Sperrbereichverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde. +Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen. +Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funktion und die Frequenzantwort des daraus resultierenden Filters. \begin{figure} \centering \input{papers/ellfilter/python/elliptic.pgf} @@ -48,43 +52,45 @@ Analog zu Abbildung \ref{ellfilter:fig:arccos2} können wir auch bei den ellipti \subsection{Gradgleichung} -Der $\cd^{-1}$ Term muss so verzogen werden, dass die umgebene $\cd$-Funktion die Nullstellen und Pole trifft. -Dies trifft ein wenn die Gradengleichung erfüllt ist. - -\begin{equation} - N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} -\end{equation} - - -Leider ist das lösen dieser Gleichung nicht trivial. -Die Rechnung wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. - -$K$ und $K^\prime$ sind voneinender abhängig. - -Das Problem lässt sich grafisch darstellen. - +Damit die Pol- und Nullstellen genau in dieser Konstellation durchfahren werden, müssen die elliptischen Moduli des inneren und äusseren $\cd$ aufeinander abgestimmt werden. +In der reellen Richtung müssen sich die Periodizitäten $K$ und $K_1$ um den Faktor $N$ unterscheiden, während die imagiäre Periodizitäten $K^\prime$ und $K^\prime_1$ gleich bleiben müssen. +Zur Erinnerung, $K$ und $K^\prime$ sind durch elliptische Integrale definiert und vom Modul $k$ abhängig wie ersichtlich in Abbildung \ref{ellfilter:fig:kprime}. \begin{figure} \centering \input{papers/ellfilter/python/k.pgf} \caption{Die Periodizitäten in realer und imaginärer Richtung in Abhängigkeit vom elliptischen Modul $k$.} + \label{ellfilter:fig:kprime} \end{figure} - -%TODO combine figures? -\begin{figure} - \centering - \input{papers/ellfilter/tikz/elliptic_transform1.tikz} - \caption{Die Gradgleichung als geometrisches Problem.} -\end{figure} +$K$ und $K^\prime$ sind durch die Ortskurve $K + jK^\prime$ aneinander Gebunden und benötigen den Zusatzfaktor $K_1/K$ in \eqref{ellfilter:eq:elliptic}, um die genanten Forderungen einzuhalten. +Abbildung \ref{ellfilter:fig:degree_eq} zeigt das Problem geometrisch auf, wobei zwei Punkte auf der Ortskurve gesucht sind. \begin{figure} \centering \input{papers/ellfilter/tikz/elliptic_transform2.tikz} - \caption{Die Gradgleichung als geometrisches Problem.} + \caption{Die Gradgleichung als geometrisches Problem ($N=3$).} + \label{ellfilter:fig:degree_eq} \end{figure} +Algebraisch kann so die Gradgleichung +\begin{equation} + N \frac{K^\prime}{K} = \frac{K^\prime_1}{K_1} +\end{equation} +aufgestellt werden, dessen Lösung ist gegeben durch +\begin{equation} %TODO check +k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg), +\quad \text{wobei} \quad +N = 2L+r. +\end{equation} +Die Herleitung ist sehr umfassend und wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. + +% \begin{figure} +% \centering +% \input{papers/ellfilter/tikz/elliptic_transform1.tikz} +% \caption{Die Gradgleichung als geometrisches Problem.} +% \end{figure} -\subsection{Polynome?} +\subsection{Darstellung als rationale Funktion} Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann. -Im gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole. +Im Gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole. Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen. Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar. -- cgit v1.2.1 From efa82f7edc7345c29c2d44674d8c8d8ad8741548 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Sat, 13 Aug 2022 19:32:21 +0200 Subject: corrections --- buch/papers/ellfilter/elliptic.tex | 22 +++++++++++++--------- 1 file changed, 13 insertions(+), 9 deletions(-) (limited to 'buch/papers/ellfilter/elliptic.tex') diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex index 793fd6c..89a2d7a 100644 --- a/buch/papers/ellfilter/elliptic.tex +++ b/buch/papers/ellfilter/elliptic.tex @@ -3,10 +3,10 @@ Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen \ref{ellfilter:bib:orfanidis} \begin{align} R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \label{ellfilter:eq:elliptic}\\ - &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1)\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ + &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ &= \cd \left(N~K_1~z , k_1 \right), \quad w= \cd(z K, k) \end{align} -Beim Betrachten dieser Definition, fällt die Ähnlichkeit zur trigonometrische Darstellung der Tschebyschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} auf. +Beim Betrachten dieser Definition, fällt die Ähnlichkeit zur trigonometrische Darstellung der Tsche\-byschef-Polynome \eqref{ellfilter:eq:chebychef_polynomials} auf. Anstelle vom Kosinus kommt hier die $\cd$-Funktion zum Einsatz. Die Ordnungszahl $N$ kommt auch als Faktor for. Zusätzlich werden noch zwei verschiedene elliptische Moduli $k$ und $k_1$ gebraucht. @@ -29,8 +29,9 @@ Die Idee des elliptischen Filter ist es, diese zwei Equirippel-Zonen abzufahren, \centering \input{papers/ellfilter/tikz/cd2.tikz.tex} \caption{ - $z_1$-Ebene der elliptischen rationalen Funktionen. + $z_1=N\frac{K_1}{K}\cd^{-1}(w, k)$-Ebene der elliptischen rationalen Funktionen. Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert. + Als Vereinfachung ist die Funktion nur für $w>0$ dargestellt. } \label{ellfilter:fig:cd2} \end{figure} @@ -39,7 +40,7 @@ Im Durchlassbereich werden wie beim Tschebyscheff-Filter die Nullstellen durchla Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole durchlaufen werden. Aus dieser Sicht kann der Sperrbereich vom Tschebyscheff-Filter als unendlich langer Übergangsbereich angesehen werden. % Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equirippel-Verhalten im Durchlass- und Sperrbereich aufweist. -Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe bewegt ist der Übergangsbereich monoton steigend. +Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe bewegt, ist der Übergangsbereich monoton steigend. Theoretisch könnte eine gleiches Durchlass- und Sperrbereichverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde. Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen. Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funktion und die Frequenzantwort des daraus resultierenden Filters. @@ -61,8 +62,8 @@ Zur Erinnerung, $K$ und $K^\prime$ sind durch elliptische Integrale definiert un \caption{Die Periodizitäten in realer und imaginärer Richtung in Abhängigkeit vom elliptischen Modul $k$.} \label{ellfilter:fig:kprime} \end{figure} -$K$ und $K^\prime$ sind durch die Ortskurve $K + jK^\prime$ aneinander Gebunden und benötigen den Zusatzfaktor $K_1/K$ in \eqref{ellfilter:eq:elliptic}, um die genanten Forderungen einzuhalten. -Abbildung \ref{ellfilter:fig:degree_eq} zeigt das Problem geometrisch auf, wobei zwei Punkte auf der Ortskurve gesucht sind. +$K$ und $K^\prime$ sind durch die Ortskurve $K + jK^\prime$ aneinander gebunden und benötigen den Zusatzfaktor $K_1/K$ in \eqref{ellfilter:eq:elliptic}, um die genanten Forderungen einzuhalten. +Abbildung \ref{ellfilter:fig:degree_eq} zeigt das Problem geometrisch auf, wobei zwei Punkte $K+jK^\prime$ und $K_1+jK_1^\prime$ auf der Ortskurve gesucht sind. \begin{figure} \centering \input{papers/ellfilter/tikz/elliptic_transform2.tikz} @@ -87,10 +88,13 @@ Die Herleitung ist sehr umfassend und wird in \ref{ellfilter:bib:orfanidis} im D % \caption{Die Gradgleichung als geometrisches Problem.} % \end{figure} -\subsection{Darstellung als rationale Funktion} +\subsection{Schlussfolgerung} +Die elliptischen Filter können als direkte Erweiterung der Tschebyscheff-Filter verstanden werden. Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann. -Im Gegensatz zum $\cos^{-1}$ hat der $\cd^{-1}$ nicht nur Nullstellen sondern auch Pole. +Im elliptischen Fall entstehen so rationale Funktionen mit Nullstellen und auch Pole. Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen. -Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar. +% Da Transformationen einer rationalen Funktionen mit Grundrechenarten, wie es in \eqref{ellfilter:eq:h_omega} der Fall ist, immer noch rationale Funktionen ergeben, stellt dies kein Problem für die Implementierung dar. + + -- cgit v1.2.1 From bc0c70fdd1bd92d48fc38b17877d6d8515253225 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Sun, 14 Aug 2022 15:42:31 +0200 Subject: corrections --- buch/papers/ellfilter/elliptic.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) (limited to 'buch/papers/ellfilter/elliptic.tex') diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex index 89a2d7a..67bcca0 100644 --- a/buch/papers/ellfilter/elliptic.tex +++ b/buch/papers/ellfilter/elliptic.tex @@ -1,6 +1,6 @@ \section{Elliptische rationale Funktionen} -Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen \ref{ellfilter:bib:orfanidis} +Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen \cite{ellfilter:bib:orfanidis} \begin{align} R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \label{ellfilter:eq:elliptic}\\ &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ @@ -80,7 +80,7 @@ k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg), \quad \text{wobei} \quad N = 2L+r. \end{equation} -Die Herleitung ist sehr umfassend und wird in \ref{ellfilter:bib:orfanidis} im Detail angeschaut. +Die Herleitung ist sehr umfassend und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut. % \begin{figure} % \centering -- cgit v1.2.1