From c07a2bbc5bceb34658e148562a483270f19061bf Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Tue, 23 Aug 2022 22:33:14 +0200 Subject: Added Berechnung der rationalen Funktion --- buch/papers/ellfilter/elliptic.tex | 47 +++++++++++++++++++++++++++++++------- 1 file changed, 39 insertions(+), 8 deletions(-) (limited to 'buch/papers/ellfilter/elliptic.tex') diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex index 26d90f1..81821c1 100644 --- a/buch/papers/ellfilter/elliptic.tex +++ b/buch/papers/ellfilter/elliptic.tex @@ -1,6 +1,6 @@ -\section{Elliptische rationale Funktionen} +\section{Rationale elliptische Funktionen} -Kommen wir nun zum eigentlichen Teil dieses Papers, den elliptischen rationalen Funktionen \cite{ellfilter:bib:orfanidis} +Kommen wir nun zum eigentlichen Teil dieses Papers, den rationalen elliptischen Funktionen \cite{ellfilter:bib:orfanidis} \begin{align} R_N(\xi, w) &= \cd \left(N~f_1(\xi)~\cd^{-1}(w, 1/\xi), f_2(\xi)\right) \label{ellfilter:eq:elliptic}\\ &= \cd \left(N~\frac{K_1}{K}~\cd^{-1}(w, k), k_1\right) , \quad k= 1/\xi, k_1 = 1/f(\xi) \\ @@ -32,7 +32,7 @@ Die Idee des elliptischen Filter ist es, diese zwei Equiripple-Zonen abzufahren, \centering \input{papers/ellfilter/tikz/cd2.tikz.tex} \caption{ - $z_1=N\frac{K_1}{K}\cd^{-1}(w, k)$-Ebene der elliptischen rationalen Funktionen. + $z_1=N\frac{K_1}{K}\cd^{-1}(w, k)$-Ebene der rationalen elliptischen Funktionen. Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert. Als Vereinfachung ist die Funktion nur für $w>0$ dargestellt. } @@ -43,7 +43,7 @@ Im Durchlassbereich werden wie beim Tschebyscheff-Filter die Nullstellen durchla Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole und Punkte mit $\pm 1/k$ durchlaufen werden. Aus dieser Sicht kann der Sperrbereich vom Tschebyscheff-Filter als unendlich langer Übergangsbereich angesehen werden. % Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equiripple-Verhalten im Durchlass- und Sperrbereich aufweist. -Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funktion und die Frequenzantwort des daraus resultierenden Filters. +Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine rationale elliptische Funktion und die Frequenzantwort des daraus resultierenden Filters. \begin{figure} \centering \input{papers/ellfilter/python/elliptic.pgf} @@ -85,14 +85,45 @@ k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg), N = 2L+r. \end{equation} Die Herleitung ist sehr umfassend und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut. -$k_1$ jedoch gar nicht berechnet werden, um die elliptisch rationale Funktion zu erhalten. -Um ein elliptisches Filter auszulegen, kann die Ordnung $N$ und der Parameter $k$ gewählt werden. +\subsection{Berechnung der rationalen Funktion} + +$k_1$ muss jedoch gar nicht berechnet werden, um $R_N$ in der Form einer rationale Funktion erhalten. +Die Ordnung $N$ und der Parameter $k$ können frei gewählt werden. % $k_1$ muss dann mit \eqref{ellfilter:eq:degeqsol} oder mit numerischen Methoden berechnet werden. Je kleiner $k$ gewählt wird, desto grösser wird die Dämpfung des Filters im Sperrbereich im Verhältnis zum Durchlassbereich. Allerdings verliert das Filter dabei auch an Steilheit. -Wenn $k$ und $k_1$ bekannt sind, können die Position der Pol- und Nullstellen $p_i$ und $n_i$ in einem Raster konstruiert werden, wie dargestellt in Abbildung \ref{ellfilter:fig:cd2}. -Durch das Rücktransformieren mit der $\cd$-Funktion gelangt man schlussendlich zu der elliptischen rationalen Funktion. %TODO check +Wenn $k$ und $N$ bekannt sind, können die Position der Pol- und Nullstellen $p_i$ und $n_i$ in einem Raster konstruiert werden, wie dargestellt in Abbildung \ref{ellfilter:fig:pn}. +\begin{figure} + \centering + \input{papers/ellfilter/tikz/pn.tikz.tex} + \caption{ + Pole und Nullstellen in der $z = \cd^{-1}(w, k)$-Ebene für die Rücktransformation zur einer rationalen Funktion. + } + \label{ellfilter:fig:pn} +\end{figure} +Dabei muss aufgepasst werden, dass insgesamt nur $N$ Nullstellen und $N$ Pole gesetzt werden, da bei der transformation mit dem $\cd$ mehrere Werte auf einen abgebildet werden und mehrfache Pole und Nullstellen nicht erwünscht sind. +Wegen der Periodizität sind diese in der komplexen $z$-Ebene linear angeordnet: +\begin{align} + n_i(k) &= K\frac{2i+1}{N} \\ + p_i(k) &= n_i + jK^\prime. +\end{align} +Durch das Rücktransformieren mit der $\cd$-Funktion gelangt man schlussendlich zu der rationalen Funktion +\begin{equation} + R_N(w, k) = r_0 \prod_{i=1}^N \frac{w - \cd \big(n_i(k), k \big)}{w - \cd \big(p_i(k), k \big)}, +\end{equation} +wobei $r_0$ so gewählt werden muss, dass $R_N(w, k) = 1$. + +\section{Elliptisches Filter} + +Um ein elliptisches Filter auszulegen werden aber nicht die Pol- und Nullstellen der rationalen Funktion gebraucht, sondern diejenigen der Übertragungsfunktion $H(s)$ der komplexen Frequenz $s = j\Omega + \sigma$. +Der Bezug zum quadratischen Amplitudengang \eqref{ellfilter:eq:quadratic_transfer} ist dabei +\begin{equation} + |H(\Omega)|^2 = H(s) H(s^*), +\end{equation} +wobei $*$ die komplexe Konjugation kennzeichnet. +Die genaue Berechnung geht einiges tiefer in die Filtertheorie, und verlässt das Gebiet der speziellen Funktionen. +Der interessierte Leser wird auf \cite[Kapitel~5]{ellfilter:bib:orfanidis} verwiesen. % \subsection{Schlussfolgerung} -- cgit v1.2.1