From c2dc01cbbb34c70ae63fc97dd101dc6e6c3a23df Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Sat, 20 Aug 2022 16:14:55 +0200 Subject: corrections --- buch/papers/ellfilter/elliptic.tex | 30 ++++++++++++------------------ 1 file changed, 12 insertions(+), 18 deletions(-) (limited to 'buch/papers/ellfilter/elliptic.tex') diff --git a/buch/papers/ellfilter/elliptic.tex b/buch/papers/ellfilter/elliptic.tex index 39f9b8d..fc9d5b6 100644 --- a/buch/papers/ellfilter/elliptic.tex +++ b/buch/papers/ellfilter/elliptic.tex @@ -40,7 +40,7 @@ Die Idee des elliptischen Filter ist es, diese zwei Equiripple-Zonen abzufahren, \end{figure} Das elliptische Filter hat im Gegensatz zum Tschebyscheff-Filter drei Zonen. Im Durchlassbereich werden wie beim Tschebyscheff-Filter die Nullstellen durchlaufen. -Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole durchlaufen werden. +Statt dass $z_1$ für alle $w>1$ in die imaginäre Richtung geht, bewegen wir uns im Sperrbereich wieder in reeller Richtung, wo Pole und Punkte mit $\pm 1/k$ durchlaufen werden. Aus dieser Sicht kann der Sperrbereich vom Tschebyscheff-Filter als unendlich langer Übergangsbereich angesehen werden. % Falls es möglich ist diese Werte abzufahren im Stil der Tschebyscheff-Polynome, kann ein Filter gebaut werden, dass Equiripple-Verhalten im Durchlass- und Sperrbereich aufweist. Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funktion und die Frequenzantwort des daraus resultierenden Filters. @@ -52,7 +52,7 @@ Abbildung \ref{ellfilter:fig:elliptic_freq} zeigt eine elliptisch rationale Funk \end{figure} Da sich die Funktion im Übergangsbereich nur zur nächsten Reihe von Polstellen bewegt, ist der Übergangsbereich monoton steigend. -Theoretisch könnte eine gleiches Durchlass- und Sperrbereichverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde. +Theoretisch könnte eine gleiches Durchlass- und Sperrbereichsverhalten erreicht werden, wenn die Funktion auf eine andere Reihe ansteigen würde. Dies würde jedoch zu Oszillationen zwischen $1$ und $1/k$ im Übergangsbereich führen. \subsection{Gradgleichung} @@ -85,22 +85,16 @@ k_1 = k^N \prod_{i=1}^L \sn^4 \Bigg( \frac{2i - 1}{N} K, k \Bigg), N = 2L+r. \end{equation} Die Herleitung ist sehr umfassend und wird in \cite{ellfilter:bib:orfanidis} im Detail angeschaut. -Für das Auslegen von elliptischen Filtern müssen $k$ und $k_1$ mit \eqref{ellfilter:eq:degeqsol} oder mit numerischen Methoden berechnet werden. -Die Position der Pol- und Nullstellen können dann konstruiert werden, wie dargestellt in Abbildung \ref{ellfilter:fig:cd2} und mit der $\cd$-Funktion zu der elliptischen rationalen Funktion transformiert werden. - -% \begin{figure} -% \centering -% \input{papers/ellfilter/tikz/elliptic_transform1.tikz} -% \caption{Die Gradgleichung als geometrisches Problem.} -% \end{figure} - -\subsection{Schlussfolgerung} - -Die elliptischen Filter können als direkte Erweiterung der Tschebyscheff-Filter verstanden werden. -Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann. -Im elliptischen Fall entstehen so rationale Funktionen mit Nullstellen und auch Pole. -Somit entstehen bei den elliptischen rationalen Funktionen, wie es der name auch deutet, rationale Funktionen, also ein Bruch von zwei Polynomen. - +Um ein elliptisches Filter auszulegen, kann die Ordnung $N$ und der Parameter $k$ gewählt werden. +$k_1$ muss dann mit \eqref{ellfilter:eq:degeqsol} oder mit numerischen Methoden berechnet werden. +Je kleiner $k$ gewählt wird, desto grösser wird die Dämpfung des Filters im Sperrbereich im Verhältnis zum Durchlassbereich. +Allerdings verliert das Filter dabei auch an Steilheit. +Wenn $k$ und $k_1$ bekannt sind, können die Position der Pol- und Nullstellen $p_i$ und $n_i$ in einem Raster konstruiert werden, wie dargestellt in Abbildung \ref{ellfilter:fig:cd2}. +Durch das Rücktransformieren mit der $\cd$-Funktion gelangt man schlussendlich zu der elliptischen rationalen Funktion. %TODO check +% \subsection{Schlussfolgerung} +% Die elliptischen Filter können als direkte Erweiterung der Tschebyscheff-Filter verstanden werden. +% Bei den Tschebyscheff-Polynomen haben wir gesehen, dass die Trigonometrische Formel zu einfachen Polynomen umgewandelt werden kann. +% Im elliptischen Fall entstehen so rationale Funktionen mit Nullstellen und auch Pole. -- cgit v1.2.1