From efa82f7edc7345c29c2d44674d8c8d8ad8741548 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Sat, 13 Aug 2022 19:32:21 +0200 Subject: corrections --- buch/papers/ellfilter/jacobi.tex | 73 +++++++++++++++++++++++----------------- 1 file changed, 43 insertions(+), 30 deletions(-) (limited to 'buch/papers/ellfilter/jacobi.tex') diff --git a/buch/papers/ellfilter/jacobi.tex b/buch/papers/ellfilter/jacobi.tex index 3940171..fae6b31 100644 --- a/buch/papers/ellfilter/jacobi.tex +++ b/buch/papers/ellfilter/jacobi.tex @@ -13,7 +13,7 @@ Zum Beispiel gibt es analog zum Sinus den elliptischen $\sn(z, k)$. Im Gegensatz zum den trigonometrischen Funktionen haben die elliptischen Funktionen zwei parameter. Den \textit{elliptische Modul} $k$, der die Exzentrizität der Ellipse parametrisiert und das Winkelargument $z$. Im Kreis ist der Radius für alle Winkel konstant, bei Ellipsen ändert sich das. -Dies hat zur Folge, dass bei einer Ellipse die Kreisbodenstrecke nicht linear zum Winkel verläuft. +Dies hat zur Folge, dass bei einer Ellipse die Kreisbogenlänge nicht linear zum Winkel verläuft. Darum kann hier nicht der gewohnte Winkel verwendet werden. Das Winkelargument $z$ kann durch das elliptische Integral erster Art \begin{equation} @@ -95,37 +95,40 @@ Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem Elliptischen integral = \sn(z, k) = - w + w. \end{equation} -\begin{equation} %TODO remove unnecessary equations - \phi - = - F^{-1}(z, k) - = - \sin^{-1} \big( \sn (z, k ) \big) - = - \sin^{-1} ( w ) -\end{equation} +% \begin{equation} %TODO remove unnecessary equations +% \phi +% = +% F^{-1}(z, k) +% = +% \sin^{-1} \big( \sn (z, k ) \big) +% = +% \sin^{-1} ( w ) +% \end{equation} -\begin{equation} - F(\phi, k) - = - z - = - F( \sin^{-1} \big( \sn (z, k ) \big) , k) - = - F( \sin^{-1} ( w ), k) -\end{equation} +% \begin{equation} +% F(\phi, k) +% = +% z +% = +% F( \sin^{-1} \big( \sn (z, k ) \big) , k) +% = +% F( \sin^{-1} ( w ), k) +% \end{equation} -\begin{equation} - \sn^{-1}(w, k) - = - F(\phi, k), - \quad - \phi = \sin^{-1}(w) -\end{equation} +% \begin{equation} +% \sn^{-1}(w, k) +% = +% F(\phi, k), +% \quad +% \phi = \sin^{-1}(w) +% \end{equation} +Beim Tschebyscheff-Filter konnten wir mit Betrachten des Arcuscosinus die Funktionalität erklären. +Für das Elliptische Filter machen wir die gleiche Betrachtung mit der $\sn^{-1}$-Funktion. +Der $\sn^{-1}$ ist durch das elliptische Integral \begin{align} \sn^{-1}(w, k) & = @@ -150,12 +153,22 @@ Mithilfe von $F^{-1}$ kann zum Beispiel $sn^{-1}$ mit dem Elliptischen integral } } \end{align} - +beschrieben. +Dazu betrachten wir wieder den Integranden +\begin{equation} + \frac{ + 1 + }{ + \sqrt{ + (1-t^2)(1-k^2 t^2) + } + }. +\end{equation} Beim $\cos^{-1}(x)$ haben wir gesehen, dass die analytische Fortsetzung bei $x < -1$ und $x > 1$ rechtwinklig in die Komplexen zahlen wandert. -Wenn man das gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen. +Wenn man das Gleiche mit $\sn^{-1}(w, k)$ macht, erkennt man zwei interessante Stellen. Die erste ist die gleiche wie beim $\cos^{-1}(x)$ nämlich bei $t = \pm 1$. Der erste Term unter der Wurzel wird dann negativ, während der zweite noch positiv ist, da $k \leq 1$. -Ab diesem Punkt verläuft knickt die Funktion in die imaginäre Richtung ab. +Ab diesem Punkt knickt die Funktion in die imaginäre Richtung ab. Bei $t = 1/k$ ist auch der zweite Term negativ und die Funktion verläuft in die negative reelle Richtung. Abbildung \label{ellfilter:fig:sn} zeigt den Verlauf der Funktion in der komplexen Ebene. \begin{figure} -- cgit v1.2.1