From c2dc01cbbb34c70ae63fc97dd101dc6e6c3a23df Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Sat, 20 Aug 2022 16:14:55 +0200 Subject: corrections --- buch/papers/ellfilter/tschebyscheff.tex | 9 ++++----- 1 file changed, 4 insertions(+), 5 deletions(-) (limited to 'buch/papers/ellfilter/tschebyscheff.tex') diff --git a/buch/papers/ellfilter/tschebyscheff.tex b/buch/papers/ellfilter/tschebyscheff.tex index 5024bec..0a48949 100644 --- a/buch/papers/ellfilter/tschebyscheff.tex +++ b/buch/papers/ellfilter/tschebyscheff.tex @@ -17,7 +17,7 @@ Bemerkenswert ist, dass die Polynome im Intervall $[-1, 1]$ mit der trigonometri \end{align} übereinstimmen. Der Zusammenhang lässt sich mit den Doppel- und Mehrfachwinkelfunktionen der trigonometrischen Funktionen erklären. -Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-Polynome. +Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-Polynome, wobei das Equiripple-Verhalten schon sichtbar ist. \begin{figure} \centering \input{papers/ellfilter/python/F_N_chebychev2.pgf} @@ -37,7 +37,6 @@ Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Forder Die analytische Fortsetzung von \eqref{ellfilter:eq:chebychef_polynomials} über das Intervall $[-1,1]$ hinaus stimmt mit den Polynomen überein, wie es zu erwarten ist. Die genauere Betrachtung wird uns helfen die elliptischen Filter besser zu verstehen. - Starten wir mit der Funktion, die in \eqref{ellfilter:eq:chebychef_polynomials} als erstes auf $w$ angewendet wird, dem Arcuscosinus. Die invertierte Funktion des Kosinus kann als bestimmtes Integral dargestellt werden: \begin{align} @@ -92,7 +91,7 @@ Das Einzeichnen von Pol- und Nullstellen ist hilfreich für die Betrachtung der In \eqref{ellfilter:eq:chebychef_polynomials} wird $z$ mit dem Ordnungsfaktor $N$ multipliziert und durch die Kosinusfunktion zurück transformiert. Die Skalierung hat zur Folge, dass bei der Rücktransformation durch den Kosinus mehrere Nullstellen durchlaufen werden. -Somit passiert $\cos( N~\cos^{-1}(w))$ im Intervall $[-1, 1]$ $N$ Nullstellen, wie dargestellt in Abbildung \ref{ellfilter:fig:arccos2}. +Somit passiert $\cos \big( N~\cos^{-1}(w) \big)$ im Intervall $[-1, 1]$ $N$ Nullstellen, wie dargestellt in Abbildung \ref{ellfilter:fig:arccos2}. \begin{figure} \centering \input{papers/ellfilter/tikz/arccos2.tikz.tex} @@ -105,5 +104,5 @@ Somit passiert $\cos( N~\cos^{-1}(w))$ im Intervall $[-1, 1]$ $N$ Nullstellen, w } \label{ellfilter:fig:arccos2} \end{figure} -Durch die spezielle Anordnung der Nullstellen hat die Funktion auf der reellen Achse Equiripple-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet. -Equiripple bedeutet, dass alle lokalen Maxima der Betragsfunktion gleich gross sind. +Durch die spezielle Anordnung der Nullstellen hat die Funktion auf der reellen Achse Equiripple-Verhalten und ist dennoch ein Polynom, was sich perfekt für lineare Filter eignet. +Für $|w| <= 1$ ist die Funktion begrenzt zwischen $-1$ und $1$. -- cgit v1.2.1