From efa82f7edc7345c29c2d44674d8c8d8ad8741548 Mon Sep 17 00:00:00 2001 From: Nicolas Tobler Date: Sat, 13 Aug 2022 19:32:21 +0200 Subject: corrections --- buch/papers/ellfilter/tschebyscheff.tex | 25 ++++++++++++++----------- 1 file changed, 14 insertions(+), 11 deletions(-) (limited to 'buch/papers/ellfilter/tschebyscheff.tex') diff --git a/buch/papers/ellfilter/tschebyscheff.tex b/buch/papers/ellfilter/tschebyscheff.tex index 8a82c5f..639c87c 100644 --- a/buch/papers/ellfilter/tschebyscheff.tex +++ b/buch/papers/ellfilter/tschebyscheff.tex @@ -1,8 +1,8 @@ \section{Tschebyscheff-Filter} -Als Einstieg betrachten wir das Tschebyscheff-Filter, welches sehr verwand ist mit dem elliptischen Filter. -Genauer ausgedrückt sind die Tschebyscheff-1 und -2 Filter Spezialfälle davon. -Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ für das Filter relevant sind: +Als Einstieg betrachten wir das Tschebyscheff-Filter, welches sehr verwandt ist mit dem elliptischen Filter. +Genauer ausgedrückt erhält man die Tschebyscheff-1 und -2 Filter bei Grenzwerten von Parametern beim elliptischen Filter. +Der Name des Filters deutet schon an, dass die Tschebyscheff-Polynome $T_N$ (siehe auch Kapitel \label{buch:polynome:section:tschebyscheff}) für das Filter relevant sind: \begin{align} T_{0}(x)&=1\\ T_{1}(x)&=x\\ @@ -27,7 +27,7 @@ Abbildung \ref{ellfilter:fig:chebychef_polynomials} zeigt einige Tschebyscheff-P Da der Kosinus begrenzt zwischen $-1$ und $1$ ist, sind auch die Tschebyscheff-Polynome begrenzt. Geht man aber über das Intervall $[-1, 1]$ hinaus, divergieren die Funktionen mit zunehmender Ordnung immer steiler gegen $\pm \infty$. Diese Eigenschaft ist sehr nützlich für ein Filter. -Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Voraussetzungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert. +Wenn wir die Tschebyscheff-Polynome quadrieren, passen sie perfekt in die Forderungen für Filterfunktionen, wie es Abbildung \ref{ellfiter:fig:chebychef} demonstriert. \begin{figure} \centering \input{papers/ellfilter/python/F_N_chebychev.pgf} @@ -61,9 +61,9 @@ Die invertierte Funktion des Kosinus kann als bestimmtes Integral dargestellt we } } ~dz - + \frac{\pi}{2} + + \frac{\pi}{2}. \end{align} -Der Integrand oder auch die Ableitung +Der Integrand oder auch die Ableitung von $\cos^{-1}(x)$ \begin{equation} \frac{ -1 @@ -73,13 +73,13 @@ Der Integrand oder auch die Ableitung } } \end{equation} -bestimmt dabei die Richtung, in der die Funktion verläuft. +bestimmt dabei die Richtung, in welche die Funktion verläuft. Der reelle Arcuscosinus is bekanntlich nur für $|z| \leq 1$ definiert. Hier bleibt der Wert unter der Wurzel positiv und das Integral liefert reelle Werte. Doch wenn $|z|$ über 1 hinausgeht, wird der Term unter der Wurzel negativ. Durch die Quadratwurzel entstehen für den Integranden zwei rein komplexe Lösungen. Der Wert des Arcuscosinus verlässt also bei $z= \pm 1$ den reellen Zahlenstrahl und knickt in die komplexe Ebene ab. -Abbildung \ref{ellfilter:fig:arccos} zeigt den $\arccos$ in der komplexen Ebene. +Abbildung \ref{ellfilter:fig:arccos} zeigt den Arcuscosinus in der komplexen Ebene. \begin{figure} \centering \input{papers/ellfilter/tikz/arccos.tikz.tex} @@ -98,9 +98,12 @@ Somit passiert $\cos( N~\cos^{-1}(w))$ im Intervall $[-1, 1]$ $N$ Nullstellen, w \input{papers/ellfilter/tikz/arccos2.tikz.tex} \caption{ $z_1=N \cos^{-1}(w)$-Ebene der Tschebyscheff-Funktion. - Die eingefärbten Pfade sind Verläufe von $w~\forall~[-\infty, \infty]$ für $N = 4$. - Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert. + Die eingefärbten Pfade sind Verläufe von $w\in(-\infty, \infty)$ für $N = 4$. + Je grösser die Ordnung $N$ gewählt wird, desto mehr Nullstellen werden passiert die zu Equirippel-Verhalten führen. + Die vertikalen Segmente der Funktion sorgen für das Ansteigen der Funktion gegen $\infty$ nach der Grenzfrequenz. + Die eingezeichneten Nullstellen sind vom zurücktransformierenden Kosinus. } \label{ellfilter:fig:arccos2} \end{figure} -Durch die spezielle Anordnung der Nullstellen hat die Funktion Equirippel-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet. +Durch die spezielle Anordnung der Nullstellen hat die Funktion auf der reellen Achse Equirippel-Verhalten und ist dennoch ein Polynom, was sich perfekt für linear Filter eignet. +Equirippel bedeutet, dass alle lokalen Maxima der Betragsfunktion gleich gross sind. -- cgit v1.2.1