From 166573a69495056cfeaf76624373a74326374170 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Wed, 27 Jul 2022 19:28:06 +0200 Subject: Reorganized Kapitel --- buch/papers/fm/01_AM-FM.tex | 47 --------------------------------------------- 1 file changed, 47 deletions(-) delete mode 100644 buch/papers/fm/01_AM-FM.tex (limited to 'buch/papers/fm/01_AM-FM.tex') diff --git a/buch/papers/fm/01_AM-FM.tex b/buch/papers/fm/01_AM-FM.tex deleted file mode 100644 index 163c792..0000000 --- a/buch/papers/fm/01_AM-FM.tex +++ /dev/null @@ -1,47 +0,0 @@ -% -% einleitung.tex -- Beispiel-File für die Einleitung -% -% (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil -% -\section{AM - FM\label{fm:section:teil0}} -\rhead{AM- FM} - -Das sinusförmige Trägersignal hat die übliche Form: -\(x_c(t) = A_c \cdot \cos(\omega_c(t)+\varphi)\). -Wobei die konstanten Amplitude \(A_c\) und Phase \(\varphi\) vom Nachrichtensignal \(m(t)\) verändert wird. -Der Parameter \(\omega_c\), die Trägerkreisfrequenz bzw. die Trägerfrequenz \(f_c = \frac{\omega_c}{2\pi}\), -steht nicht für die modulation zur verfügung, statt dessen kann durch ihn die Frequenzachse frei gewählt werden. -\newblockpunct -Jedoch ist das für die Vielfalt der Modulationsarten keine Einschrenkung. -Ein Nachrichtensignal kann auch über die Momentanfrequenz (instantenous frequency) \(\omega_i\) eines trägers verändert werden. -Mathematisch wird dann daraus -\[ - \omega_i = \omega_c + \frac{d \varphi(t)}{dt} -\] -mit der Ableitung der Phase\cite{fm:NAT}. -Mit diesen drei parameter ergeben sich auch drei modulationsarten, die Amplitudenmodulation welche \(A_c\) benutzt, -die Phasenmodulation \(\varphi\) und dann noch die Momentankreisfrequenz \(\omega_i\): -\newline -\newline -To do: Bilder jeder Modulationsart - -\subsection{AM - Amplitudenmodulation} -Das Ziel ist FM zu verstehen doch dazu wird zuerst AM erklärt welches einwenig einfacher zu verstehen ist und erst dann übertragen wir die Ideeen in FM. -Nun zur Amplitudenmodulation verwenden wir das bevorzugte Trägersignal -\[ - x_c(t) = A_c \cdot \cos(\omega_ct). -\] -Dies bringt den grossen Vorteil das, dass modulierend Signal sämtliche Anteile im Frequenzspektrum inanspruch nimmt -und das Trägersignal nur zwei komplexe Schwingungen besitzt. -Dies sieht man besonders in der Eulerischen Formel -\[ - x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. -\] -Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reelwertiges Trägersignal ergibt. -Nun wird der parameter \(A_c\) durch das Moduierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde. -\newline -\newline -TODO: -Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\] -so wird beschrieben das daraus eigentlich \(x_c(t) = A_c \cdot \cos(\omega_i)\) wird und somit \(x_c(t) = A_c \cdot \cos(\omega_c + \frac{d \varphi(t)}{dt})\). -Da \(\sin \) abgeleitet \(\cos \) ergibt, so wird aus dem \(m(t)\) ein \( \frac{d \varphi(t)}{dt}\) in der momentan frequenz. \[ \Rightarrow \cos( \cos x) \] -- cgit v1.2.1