From a5b1d13fd6d9d5df3d7289093e57cf67ae5cb81c Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Tue, 26 Jul 2022 15:04:22 +0200 Subject: Kapitel TODOs --- buch/papers/fm/01_AM-FM.tex | 4 ++++ 1 file changed, 4 insertions(+) (limited to 'buch/papers/fm/01_AM-FM.tex') diff --git a/buch/papers/fm/01_AM-FM.tex b/buch/papers/fm/01_AM-FM.tex index 2267d39..163c792 100644 --- a/buch/papers/fm/01_AM-FM.tex +++ b/buch/papers/fm/01_AM-FM.tex @@ -38,6 +38,10 @@ Dies sieht man besonders in der Eulerischen Formel x_c(t) = \frac{A_c}{2} \cdot e^{j\omega_ct}\;+\;\frac{A_c}{2} \cdot e^{-j\omega_ct}. \] Dabei ist die negative Frequenz der zweiten komplexen Schwingung zwingend erforderlich, damit in der Summe immer ein reelwertiges Trägersignal ergibt. +Nun wird der parameter \(A_c\) durch das Moduierende Signal \(m(t)\) ersetzt, wobei so \(m(t) \leqslant |1|\) normiert wurde. +\newline \newline TODO: Hier beschrieib ich was AmplitudenModulation ist und mache dan den link zu Frequenzmodulation inkl Formel \[\cos( \cos x)\] +so wird beschrieben das daraus eigentlich \(x_c(t) = A_c \cdot \cos(\omega_i)\) wird und somit \(x_c(t) = A_c \cdot \cos(\omega_c + \frac{d \varphi(t)}{dt})\). +Da \(\sin \) abgeleitet \(\cos \) ergibt, so wird aus dem \(m(t)\) ein \( \frac{d \varphi(t)}{dt}\) in der momentan frequenz. \[ \Rightarrow \cos( \cos x) \] -- cgit v1.2.1