From b4c0297a9cf2e2bc38fcb9110f7b5c89ae0fe9fa Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Thu, 28 Jul 2022 17:49:24 +0200 Subject: Kapitel bessel unterteilt --- buch/papers/fm/03_bessel.tex | 87 ++++++++++++++++++++++++++++---------------- 1 file changed, 55 insertions(+), 32 deletions(-) (limited to 'buch/papers/fm/03_bessel.tex') diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index edb932b..bf485b1 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -13,14 +13,18 @@ Somit haben wir unser \(x_c\) welches \cos(\omega_c t+\beta\sin(\omega_mt)) \] ist. + \subsection{Herleitung} -Das Ziel ist es Unser moduliertes Signal mit der Besselfunktion so auszudrücken: +Das Ziel ist es unser moduliertes Signal mit der Besselfunktion so auszudrücken: \begin{align} + x_c(t) + = \cos(\omega_ct+\beta\sin(\omega_mt)) &= \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) \label{fm:eq:proof} \end{align} +\subsubsection{Hilfsmittel} Doch dazu brauchen wir die Hilfe der Additionsthoerme \begin{align} \cos(A + B) @@ -54,70 +58,89 @@ und die drei Besselfunktions indentitäten, \label{fm:eq:besselid3} \end{align} welche man im Kapitel (ref), ref, ref findet. -\newline -Mit dem \refname{fm:eq:addth1} wird aus dem modulierten Signal -\[ -\cos(\omega_c t + \beta\sin(\omega_mt)) -\] -das Signal + +\subsubsection{Anwenden des Additionstheorem} +Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal \[ + x_c(t) + = + \cos(\omega_c t + \beta\sin(\omega_mt)) + = \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_c)\sin(\beta\sin(\omega_m t)). \label{fm:eq:start} \] -Zu beginn wird der erste Teil +\subsubsection{Cos-Teil} +Zu beginn wird der Cos-Teil \[ \cos(\omega_c)\cos(\beta\sin(\omega_mt)) \] -mit hilfe der Bessel indentität \ref{fm:eq:besselid1} zum -\[ - J_0(\beta)\cos(\omega_c) + \sum_{k=1}^\infty J_{2k}(\beta) 2\cos(\omega_c t)\cos(2k\omega_m t) -\] -\newline -TODO 2 und \(\cos( )\) in lime. -wobei mit dem \colorbox{lime}{Additionstheorem} \ref{fm:eq:addth2} zum +mit hilfe der Bessel indentität \eqref{fm:eq:besselid1} zum +\begin{align*} + \cos(\omega_c t) \cdot [\, J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\omega_m t)\, ] + &=\\ + J_0(\beta)\cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) + \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{Additionstheorem} +\end{align*} +wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) zum \[ - J_0(\beta)\dot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k\omega_m) t)+\cos((\omega_c + 2k\omega_m) t) \} + J_0(\beta)\cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k\omega_m) t)+\cos((\omega_c + 2k\omega_m) t) \} \] wird. Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term \[ - \sum_{n\, gerade} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) + \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t), \label{fm:eq:gerade} \] -\newline -nun zum zweiten Teil des Term \ref{fm:eq:start} +dabei gehen nun die Terme von \(-\infty \to \infty\), dabei bleibt n Ganzzahlig. + +\subsubsection{Sin-Teil} +Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil \[ \sin(\omega_c)\sin(\beta\sin(\omega_m t)). \] -Dieser wird mit der \ref{fm:eq:besselid2} Bessel indentität zu +Dieser wird mit der \eqref{fm:eq:besselid2} Bessel indentität zu +\begin{align*} + \sin(\omega_c t) \cdot [J_0(\beta) \sin(\omega_c t) + 2\sum_{k=1}^\infty J_{2k+1}(\beta) \cos((2k+1)\omega_m t)] + &=\\ + J_0(\beta) \cdot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{Additionstheorem}. +\end{align*} +Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = (2k+1)\omega_m t \), +somit wird daraus \[ - J_0(\beta) \dot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) 2\sin(\omega_c t)\cos((2k+1)\omega_m t). -\] -Auch hier wird ein Additionstheorem \ref{fm:eq:addth3} gebraucht um aus dem Sumanden diesen Term -\[ - J_0(\beta) \dot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{Teil1} - \cos((\omega_c+(2k+1)\omega_m) t) \} -\]zu gewinnen. + J_0(\beta) \cdot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{neg.Teil} - \cos((\omega_c+(2k+1)\omega_m) t) \} +\]dieser Term. Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert. -Zusätzlich dabei noch die letzte Bessel indentität \ref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1 J_n(\beta)\). -Somit wird Teil1 zum negativen Term und die Summe vereinfacht sich zu +Zusätzlich dabei noch die letzte Bessel indentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). +Somit wird negTeil zum Term \(-\cos((\omega_c+(2k+1)\omega_m) t)\)und die Summe vereinfacht sich zu \[ - \sum_{n\, ungerade} -1 J_{n}(\beta) \cos((\omega_c + n\omega_m) t). + \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). \label{fm:eq:ungerade} \] Substituiert man nun noch \(n \text{mit} -n \) so fällt das \(-1\) weg. -Beide Teile \ref{fm:eq:gerade} Gerade und \ref{fm:eq:ungerade} Ungerade ergeben zusammen + +\subsubsection{Summe Zusammenführen} +Beide Teile \eqref{fm:eq:gerade} Gerade +\[ + \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) +\]und \eqref{fm:eq:ungerade} Ungerade +\[ + \sum_{n\, \text{ungerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) +\] +ergeben zusammen \[ \cos(\omega_ct+\beta\sin(\omega_mt)) = \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t). \] -Somit ist \ref{fm:eq:proof} bewiesen. +Somit ist \eqref{fm:eq:proof} bewiesen. \newpage + +%---------------------------------------------------------------------------- \subsection{Bessel und Frequenzspektrum} Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Besselfunktion \(J_{k}(\beta)\) in geplottet. \begin{figure} \centering -% \includegraphics[width=0.5\textwidth]{/home/joshua/Documents/SeminarSpezielleFunktionen/buch/papers/fm/FM presentation/images/bessel.png} +% \input{./PyPython animation/bessel.pgf} \caption{Bessle Funktion \(J_{k}(\beta)\)} \label{fig:bessel} \end{figure} -- cgit v1.2.1