From f8ac7479589ae069c7a509cf9908f8e3dddd8451 Mon Sep 17 00:00:00 2001 From: Joshua Baer Date: Wed, 3 Aug 2022 19:45:04 +0200 Subject: bessel labeled --- buch/papers/fm/03_bessel.tex | 65 ++++++++++++++++++++++++++++---------------- 1 file changed, 41 insertions(+), 24 deletions(-) (limited to 'buch/papers/fm/03_bessel.tex') diff --git a/buch/papers/fm/03_bessel.tex b/buch/papers/fm/03_bessel.tex index 760cdc4..eec64f2 100644 --- a/buch/papers/fm/03_bessel.tex +++ b/buch/papers/fm/03_bessel.tex @@ -24,6 +24,7 @@ Das Ziel ist es unser moduliertes Signal mit der Besselfunktion so auszudrücken \sum_{k= -\infty}^\infty J_{k}(\beta) \cos((\omega_c+k\omega_m)t) \label{fm:eq:proof} \end{align} + \subsubsection{Hilfsmittel} Doch dazu brauchen wir die Hilfe der Additionsthoerme \begin{align} @@ -46,18 +47,18 @@ und die drei Besselfunktions indentitäten, \begin{align} \cos(\beta\sin\phi) &= - J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos(2k\phi) + J_0(\beta) + 2\sum_{k=1}^\infty(-1)^k \cdot J_{2k}(\beta) \cos(2k\phi) \label{fm:eq:besselid1} \\ \sin(\beta\sin\phi) &= - J_0(\beta) + 2\sum_{k=1}^\infty J_{2k+1}(\beta) \cos((2k+1)\phi) + 2\sum_{k=0}^\infty (-1)^k J_{2k+1}(\beta) \cos((2k+1)\phi) \label{fm:eq:besselid2} \\ J_{-n}(\beta) &= (-1)^n J_n(\beta) \label{fm:eq:besselid3} \end{align} -welche man im Kapitel (ref), ref, ref findet. +welche man im Kapitel \eqref{buch:fourier:eqn:expinphireal}, \eqref{buch:fourier:eqn:expinphiimaginary}, \eqref{buch:fourier:eqn:symetrie}. \subsubsection{Anwenden des Additionstheorem} Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal @@ -66,26 +67,31 @@ Mit dem \eqref{fm:eq:addth1} wird aus dem modulierten Signal = \cos(\omega_c t + \beta\sin(\omega_mt)) = - \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_c)\sin(\beta\sin(\omega_m t)). + \cos(\omega_c t)\cos(\beta\sin(\omega_m t))-\sin(\omega_ct)\sin(\beta\sin(\omega_m t)). \label{fm:eq:start} \] + \subsubsection{Cos-Teil} Zu beginn wird der Cos-Teil \[ - \cos(\omega_c)\cos(\beta\sin(\omega_mt)) + \cos(\omega_c t)\cdot\cos(\beta\sin(\omega_mt)) \] mit hilfe der Besselindentität \eqref{fm:eq:besselid1} zum \begin{align*} - \cos(\omega_c t) \cdot \bigg[\, J_0(\beta) + 2\sum_{k=1}^\infty J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] - &=\\ - J_0(\beta)\cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) - \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem}} + \cos(\omega_c t) \cdot \bigg[ J_0(\beta) + 2\sum_{k=1}^\infty(-1)^k \cdot J_{2k}(\beta) \cos( 2k \omega_m t)\, \bigg] + &= + (-1)^k \cdot \sum_{k=1}^\infty J_{2k}(\beta) \underbrace{2\cos(\omega_c t)\cos(2k\omega_m t)}_{\text{Additionstheorem}} \end{align*} wobei mit dem Additionstheorem \eqref{fm:eq:addth2} \(A = \omega_c t\) und \(B = 2k\omega_m t \) zum -\[ - J_0(\beta)\cdot \cos(\omega_c t) + \sum_{k=1}^\infty J_{2k}(\beta) \{ \cos((\omega_c - 2k \omega_m) t)+\cos((\omega_c + 2k \omega_m) t) \} -\] -wird. +\begin{align*} + J_0(\beta) \cdot \cos(\omega_c t) +(-1)^k \cdot \sum_{k=1}^\infty J_{2k}(\beta) \{ \underbrace{\cos((\omega_c - 2k \omega_m) t)} \,+\, \cos((\omega_c + 2k \omega_m) t) \} + \\ + = + (-1)^k \cdot \sum_{k=-\infty}^{-1} J_{2k}(\beta) \overbrace{\cos((\omega_c +2k \omega_m) t)} + \,+\,J_0(\beta)\cdot \cos(\omega_c t+ 2\cdot0 \omega_m) + \,+\, (-1)^k \cdot\sum_{k=1}^\infty J_{2k}(\beta)\cos((\omega_c + 2k \omega_m) t) +\end{align*} + Wenn dabei \(2k\) durch alle geraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert erhält man den vereinfachten Term \[ \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t), @@ -96,22 +102,32 @@ dabei gehen nun die Terme von \(-\infty \to \infty\), dabei bleibt n Ganzzahlig. \subsubsection{Sin-Teil} Nun zum zweiten Teil des Term \eqref{fm:eq:start}, den Sin-Teil \[ - \sin(\omega_c)\sin(\beta\sin(\omega_m t)). + -\sin(\omega_c t)\cdot\sin(\beta\sin(\omega_m t)). \] Dieser wird mit der \eqref{fm:eq:besselid2} Besselindentität zu \begin{align*} - \sin(\omega_c t) \cdot \bigg[ J_0(\beta) + 2 \sum_{k=1}^\infty J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] - &=\\ - J_0(\beta) \cdot \sin(\omega_c t) + \sum_{k=1}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{\text{Additionstheorem}}. + -\sin(\omega_c t) \cdot \bigg[ 2 \sum_{k=0}^\infty(-1)^k \cdot J_{ 2k + 1}(\beta) \cos(( 2k + 1) \omega_m t) \bigg] + \\ + = + (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \underbrace{2\sin(\omega_c t)\cos((2k+1)\omega_m t)}_{\text{Additionstheorem}}. \end{align*} Auch hier wird ein Additionstheorem \eqref{fm:eq:addth3} gebraucht, dabei ist \(A = \omega_c t\) und \(B = (2k+1)\omega_m t \), somit wird daraus -\[ - J_0(\beta) \cdot \sin(\omega_c) + \sum_{k=1}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c-(2k+1)\omega_m) t)}_{\text{neg.Teil}} - \cos((\omega_c+(2k+1)\omega_m) t) \} -\]dieser Term. -Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert. +\begin{align*} + (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \{ \underbrace{\cos((\omega_c - (2k+1)\omega_m) t)} \,-\, \cos((\omega_c+(2k+1)\omega_m) t) \} + \\ + = + (-1)^k \cdot -\sum_{k=- \infty}^{-1} J_{2k+1}(\beta) \overbrace{\cos((\omega_c + (2k+1)\omega_m) t)} + \,-\, (-1)^k \cdot -\sum_{k=0}^\infty J_{2k+1}(\beta) \cos((\omega_c + (2k+1)\omega_m) t) +\end{align*} +dieser Term. Zusätzlich dabei noch die letzte Besselindentität \eqref{fm:eq:besselid3} brauchen, ist bei allen ungeraden negativen \(n : J_{-n}(\beta) = -1\cdot J_n(\beta)\). -Somit wird neg.Teil zum Term \(-\cos((\omega_c+(2k+1)\omega_m) t)\) und die Summe vereinfacht sich zu +Somit wird neg.Teil zum Term +\[ + (-1)^k \cdot \sum_{k= \infty}^{1} -1 \cdot J_{2k+1}(\beta) \cos((\omega_c+(2k+1)\omega_m) t). +\] +TODO (jetzt habe ich zwei Summen die immer positiv sind? ) +Wenn dabei \(2k +1\) durch alle ungeraden Zahlen von \(-\infty \to \infty\) mit \(n\) substituiert vereinfacht sich die Summe zu \[ \sum_{n\, \text{ungerade}} -1 \cdot J_{n}(\beta) \cos((\omega_c + n\omega_m) t). \label{fm:eq:ungerade} @@ -122,7 +138,8 @@ Substituiert man nun noch \(n \text{mit} -n \) so fällt das \(-1\) weg. Beide Teile \eqref{fm:eq:gerade} Gerade \[ \sum_{n\, \text{gerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) -\]und \eqref{fm:eq:ungerade} Ungerade +\] +und \eqref{fm:eq:ungerade} Ungerade \[ \sum_{n\, \text{ungerade}} J_{n}(\beta) \cos((\omega_c + n\omega_m) t) \] @@ -140,7 +157,7 @@ Somit ist \eqref{fm:eq:proof} bewiesen. Um sich das ganze noch einwenig Bildlicher vorzustellenhier einmal die Besselfunktion \(J_{k}(\beta)\) in geplottet. \begin{figure} \centering -% \input{./PyPython animation/bessel.pgf} + \input{papers/fm/Python animation/bessel.pgf} \caption{Bessle Funktion \(J_{k}(\beta)\)} \label{fig:bessel} \end{figure} -- cgit v1.2.1