From b0401ab665292e0cceae257048bb8eaf23d62884 Mon Sep 17 00:00:00 2001 From: "samuel.niederer" Date: Sat, 27 Aug 2022 12:19:02 +0200 Subject: replace DGL with Differentialgleichung --- buch/papers/kra/anwendung.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'buch/papers/kra/anwendung.tex') diff --git a/buch/papers/kra/anwendung.tex b/buch/papers/kra/anwendung.tex index 704de43..ee42b64 100644 --- a/buch/papers/kra/anwendung.tex +++ b/buch/papers/kra/anwendung.tex @@ -163,12 +163,12 @@ In Matrixschreibweise erhalten wir \subsection{Phasenraum} \subsubsection{Motivation} -Die Beschreibung eines klassischen physikalischen Systems führt in der Newtonschen-Mechanik, wie wir in \ref{kra:subsection:feder-masse-system} gesehen haben, auf eine DGL 2. Ordung der Dimension $n$. +Die Beschreibung eines klassischen physikalischen Systems führt in der Newtonschen-Mechanik, wie wir in \ref{kra:subsection:feder-masse-system} gesehen haben, auf eine Differentialgleichung 2. Ordung der Dimension $n$. Zur Betrachung des Systems verwenden wir dabei den Konfigurationsraum, ein Raum $\mathbb{R}^n$, bei dem ein einziger Punkt die Position aller $n$ Teilchen festlegt. Der Nachteil des Konfigurationsraums ist dabei, dass dieser nur die Positionen der Teilchen widerspiegelt. Um den Zustand eines Systems vollständig zu beschreiben, muss man aber nicht nur wissen wo sich die Teilchen zu einem bestimmten Zeitpunkt befinden, sondern auch wie sie sich bewegen. -Im Gegensatz dazu führt die Beschreibung des Systems mit Hilfe der Hamilton-Mechanik \ref{kra:subsection:hamilton-funktion}, auf eine DGL 1. Ordnung der Dimension $2n$. +Im Gegensatz dazu führt die Beschreibung des Systems mit Hilfe der Hamilton-Mechanik \ref{kra:subsection:hamilton-funktion}, auf eine Differentialgleichung 1. Ordnung der Dimension $2n$. Die Betrachtung erfolgt im einem Raum $\mathbb{R}^{2n}$, bei dem ein einzelner Punkt den Bewegungszustand vollständig beschreibt, dem sogennanten Phasenraum. Die Phasenraumdarstellung eignet sich somit sehr gut für die systematische Untersuchung der Feder-Masse-Systeme. @@ -224,7 +224,7 @@ Ausgeschrieben folgt \end{split} \end{equation} was uns direkt auf die Matrix-Riccati Gleichung \eqref{kra:equation:matrixriccati} führt. -Wir sehen das sich die Dimension der DGL reduziert, dabei aber gleichzeitig der Grad erhöht. +Wir sehen das sich die Dimension der Differentialgleichung reduziert, dabei aber gleichzeitig der Grad erhöht. \subsection{Fazit} Wir haben gezeigt wie wir ein Federmassesystem mit Hilfe der Hamilton-Funktion Beschreiben und im Phasenraum untersuchen können. -- cgit v1.2.1 From 1848a720c8e7b8d8bc43402355772513f26caa64 Mon Sep 17 00:00:00 2001 From: "samuel.niederer" Date: Mon, 29 Aug 2022 23:11:42 +0200 Subject: apply suggested corrections --- buch/papers/kra/anwendung.tex | 51 ++++++++++++------------------------------- 1 file changed, 14 insertions(+), 37 deletions(-) (limited to 'buch/papers/kra/anwendung.tex') diff --git a/buch/papers/kra/anwendung.tex b/buch/papers/kra/anwendung.tex index ee42b64..dbe1171 100644 --- a/buch/papers/kra/anwendung.tex +++ b/buch/papers/kra/anwendung.tex @@ -1,6 +1,5 @@ \section{Anwendung \label{kra:section:anwendung}} \rhead{Anwendung} -\newcommand{\dt}[0]{\frac{d}{dt}} Die Matrix-Riccati Differentialgleichung findet unter anderem Anwendung in der Regelungstechnik beim RQ- und RQG-Regler oder aber auch beim Kalman-Filter. Im folgenden Abschnitt möchten wir uns an einem Beispiel anschauen wie wir mit Hilfe der Matrix-Riccati-Differentialgleichung (\ref{kra:equation:matrixriccati}) ein Feder-Masse-System untersuchen können \cite{kra:riccati}. @@ -187,45 +186,23 @@ Abbildung~\ref{kra:fig:phasenraum} zeigt Phasenraumtrajektorien mit den Energien \end{figure} \subsubsection{Erweitertes Feder-Masse-System} -Wir interessieren uns nun dafür, wie der Phasenwinkel $U = PQ^{-1}$ von der Zeit abhängt, -wir suchen also die Grösse $\Theta = \dt U$. -Ersetzten wir in der Gleichung \eqref{kra:equation:hamilton-multispringmass} die Matrix $G$ mit $\tilde{G}$ so erhalten wir +Die Lösung der Gleichung \eqref{kra:equation:hamilton-multispringmass} beschreibt sowohl die zeitliche Entwicklung der Position als auch der Impulse. +Um das System im Phasenraum zu untersuchen, reicht uns aber auch die zeitliche Entwicklung des Phasenwinkels $U(t) = P(t)Q^{-1}(t)$. +Nach Satz~\ref{kra:satz:riccati-matrix-dgl} erhalten wir für Ableitung von $U$ \begin{equation} - \dt - \begin{pmatrix} - Q \\ - P - \end{pmatrix} - = - \underbrace{ - \begin{pmatrix} - A & B \\ - C & D - \end{pmatrix} - }_{\displaystyle{\tilde{G}}} - \begin{pmatrix} - Q \\ - P - \end{pmatrix}. -\end{equation} -Ausgeschrieben folgt -\begin{align*} - \dot{Q} = AQ + BP \\ - \dot{P} = CQ + DP -\end{align*} -\begin{equation} - \label{kra:equation:feder-masse-riccati-matrix} \begin{split} - \dt U &= \dot{P} Q^{-1} + P \dt Q^{-1} \\ - &= (CQ + DP) Q^{-1} - P (Q^{-1} \dot{Q} Q^{-1}) \\ - &= C\underbrace{QQ^{-1}}_\text{$I$} + D\underbrace{PQ^{-1}}_\text{$U$} - P(Q^{-1} (AQ + BP) Q^{-1}) \\ - &= C + DU - \underbrace{PQ^{-1}}_\text{$U$}(A\underbrace{QQ^{-1}}_\text{$I$} + B\underbrace{PQ^{-1}}_\text{$U$}) \\ - &= C + DU - UA - UBU + \dt U &= K + 0U(t) - U(t)0 - U(t)MU(t) \\ + &= K + U(t)MU(t), \end{split} \end{equation} -was uns direkt auf die Matrix-Riccati Gleichung \eqref{kra:equation:matrixriccati} führt. -Wir sehen das sich die Dimension der Differentialgleichung reduziert, dabei aber gleichzeitig der Grad erhöht. +eine Riccati-Matrix-Differentialgleichung. +Die Matrix $U(t)$ beschreibt, wie man die Impulse $P$ zur Zeit $t$ aus den Positionen $Q$ berechnen kann. +Die Berechnung der Position $Q$ zur Zeit $t$ aus den Anfangsbedingungen ermöglicht die Matrix $Q$. +Die Inverse $Q^{-1}$ rechnet dann von den aktuellen Auslenkungen zurück auf Auslenkungen zur Zeit $t=0$. +Die Matrix-Riccati-Differentialgleichung löst also das Problem die Impulse aus den Positionen zu berechnen, wenn man die Anfangsinpulsverteilung kennt. + +Durch die Beschränkung auf den Phasenwinkel wird die Dimension der Differentialgleichung \eqref{kra:equation:hamilton-multispringmass} reduziert, dabei aber gleichzeitig deren Grad erhöht. \subsection{Fazit} -Wir haben gezeigt wie wir ein Federmassesystem mit Hilfe der Hamilton-Funktion Beschreiben und im Phasenraum untersuchen können. -Ausserdem haben wir gesehen, dass sich bei der Entstehung der Riccati-Gleichung \eqref{kra:equation:feder-masse-riccati-matrix} die Dimension auf Kosten des Grades reduziert wird. \ No newline at end of file +Wir haben gezeigt wie wir ein Federmassesystem mit Hilfe der Hamilton-Funktion Beschreiben und im Phasenraum untersuchen können und wie dabei die Matrix-Riccati-Differentialgleichung in Erscheinung tritt. +Ausserdem haben wir gesehen, dass dabei die Dimension auf Kosten des Grades reduziert wird. \ No newline at end of file -- cgit v1.2.1