From 1d78360ee72a8d0d6cd4b440a2244624c284887f Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Sun, 24 Jul 2022 17:12:49 +0200 Subject: update paper --- buch/papers/kra/riccati.tex | 93 --------------------------------------------- 1 file changed, 93 deletions(-) delete mode 100644 buch/papers/kra/riccati.tex (limited to 'buch/papers/kra/riccati.tex') diff --git a/buch/papers/kra/riccati.tex b/buch/papers/kra/riccati.tex deleted file mode 100644 index df2921d..0000000 --- a/buch/papers/kra/riccati.tex +++ /dev/null @@ -1,93 +0,0 @@ -\section{Riccati - \label{kra:section:riccati}} -\rhead{Riccati} - -\begin{equation} - y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) -\end{equation} -% einfache (normale riccati gleichung und ihre loesung) -% (kann man diese bei einfachem federmasse system benutzten?) -% matrix riccati gleichung - - -Die zeitkontinuierliche Riccati-Matrix-Gleichung hat die Form -\begin{equation} - \label{kra:riccati:riccatiequation} - \dot{U(t)} = DU(t) - UA(t) - U(t)BU(t) -\end{equation} - -Betrachten wir das Differentialgleichungssystem \ref{kra:riccati:derivation} - -\begin{equation} - \label{kra:riccati:derivation} - \dt - \begin{pmatrix} - X \\ - Y - \end{pmatrix} - = - \underbrace{ - \begin{pmatrix} - A & B \\ - C & D - \end{pmatrix} - }_{H} - \begin{pmatrix} - X \\ - Y - \end{pmatrix} -\end{equation} - -interessieren wir uns für die zeitliche Änderung der Grösse $U = YX^{-1}$, so erhalten wir durch einsetzten - -\begin{align*} - \dt U & = \dot{Y} X^{-1} + Y \dt X^{-1} \\ - & = (CX + DY) X^{-1} - Y (X^{-1} \dot{X} X^{-1}) \\ - & = C\underbrace{XX^{-1}}_\text{I} + D\underbrace{YX^{-1}}_\text{U} - Y(X^{-1} (AX + BY) X^{-1}) \\ - & = C + DU - \underbrace{YX^{-1}}_\text{U}(A\underbrace{XX^{-1}}_\text{I} + B\underbrace{YX^{-1}}_\text{U}) \\ - & = C + DU - UA - UBU -\end{align*} - -was uns auf die Riccati-Matrix-Gleichung \ref{kra:riccati:riccatiequation} führt. -Die Lösung dieser Gleichung erhalten wir nach \cite{kra:kalmanisae} folgendermassen -\begin{equation} - \begin{pmatrix} - X(t) \\ - Y(t) - \end{pmatrix} - = - \Phi(t_0, t) - \begin{pmatrix} - I(t) \\ - U_0(t) - \end{pmatrix} - = - \begin{pmatrix} - \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ - \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) - \end{pmatrix} - \begin{pmatrix} - I(t) \\ - U_0(t) - \end{pmatrix} -\end{equation} - -\begin{equation} - U(t) = - \begin{pmatrix} - \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) - \end{pmatrix} - \begin{pmatrix} - \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) - \end{pmatrix} - ^{-1} -\end{equation} - -wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. - -\begin{equation} - \Phi(t_0, t) = e^{H(t - t_0)} -\end{equation} - - - -- cgit v1.2.1