From c5a26d2d7bde694d08bff948c48b2615a7e2e973 Mon Sep 17 00:00:00 2001 From: samuel niederer Date: Sun, 24 Jul 2022 12:16:02 +0200 Subject: add current work --- buch/papers/kra/riccati.tex | 93 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 93 insertions(+) create mode 100644 buch/papers/kra/riccati.tex (limited to 'buch/papers/kra/riccati.tex') diff --git a/buch/papers/kra/riccati.tex b/buch/papers/kra/riccati.tex new file mode 100644 index 0000000..df2921d --- /dev/null +++ b/buch/papers/kra/riccati.tex @@ -0,0 +1,93 @@ +\section{Riccati + \label{kra:section:riccati}} +\rhead{Riccati} + +\begin{equation} + y'(x) = f(x)y^2(x) + g(x)y(x) + h(x) +\end{equation} +% einfache (normale riccati gleichung und ihre loesung) +% (kann man diese bei einfachem federmasse system benutzten?) +% matrix riccati gleichung + + +Die zeitkontinuierliche Riccati-Matrix-Gleichung hat die Form +\begin{equation} + \label{kra:riccati:riccatiequation} + \dot{U(t)} = DU(t) - UA(t) - U(t)BU(t) +\end{equation} + +Betrachten wir das Differentialgleichungssystem \ref{kra:riccati:derivation} + +\begin{equation} + \label{kra:riccati:derivation} + \dt + \begin{pmatrix} + X \\ + Y + \end{pmatrix} + = + \underbrace{ + \begin{pmatrix} + A & B \\ + C & D + \end{pmatrix} + }_{H} + \begin{pmatrix} + X \\ + Y + \end{pmatrix} +\end{equation} + +interessieren wir uns für die zeitliche Änderung der Grösse $U = YX^{-1}$, so erhalten wir durch einsetzten + +\begin{align*} + \dt U & = \dot{Y} X^{-1} + Y \dt X^{-1} \\ + & = (CX + DY) X^{-1} - Y (X^{-1} \dot{X} X^{-1}) \\ + & = C\underbrace{XX^{-1}}_\text{I} + D\underbrace{YX^{-1}}_\text{U} - Y(X^{-1} (AX + BY) X^{-1}) \\ + & = C + DU - \underbrace{YX^{-1}}_\text{U}(A\underbrace{XX^{-1}}_\text{I} + B\underbrace{YX^{-1}}_\text{U}) \\ + & = C + DU - UA - UBU +\end{align*} + +was uns auf die Riccati-Matrix-Gleichung \ref{kra:riccati:riccatiequation} führt. +Die Lösung dieser Gleichung erhalten wir nach \cite{kra:kalmanisae} folgendermassen +\begin{equation} + \begin{pmatrix} + X(t) \\ + Y(t) + \end{pmatrix} + = + \Phi(t_0, t) + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} + = + \begin{pmatrix} + \Phi_{11}(t_0, t) & \Phi_{12}(t_0, t) \\ + \Phi_{21}(t_0, t) & \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + I(t) \\ + U_0(t) + \end{pmatrix} +\end{equation} + +\begin{equation} + U(t) = + \begin{pmatrix} + \Phi_{21}(t_0, t) + \Phi_{22}(t_0, t) + \end{pmatrix} + \begin{pmatrix} + \Phi_{11}(t_0, t) + \Phi_{12}(t_0, t) + \end{pmatrix} + ^{-1} +\end{equation} + +wobei $\Phi(t, t_0)$ die sogennante Zustandsübergangsmatrix ist. + +\begin{equation} + \Phi(t_0, t) = e^{H(t - t_0)} +\end{equation} + + + -- cgit v1.2.1