From 8e792d7a9df5de84e24147758a4875e280426d3c Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 20 Jul 2022 18:23:51 +0200 Subject: Begin writing intro, Einleitung & Annahmen --- buch/papers/kreismembran/teil0.tex | 19 ++++++++++++++++++- 1 file changed, 18 insertions(+), 1 deletion(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 1552259..804640e 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -5,6 +5,23 @@ % \section{Einleitung\label{kreismembran:section:teil0}} \rhead{Einleitung} +Eine naheliegende kreisförmige Membrane ist eine Runde Trommel. +Der Zusammenhang zwischen rund und kreisförmig wird hier nicht erläutert, was in diesem Kapitel als Membrane verstanden wird sollte jedoch erwähnt sein. +Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen". +Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. - +\paragraph{Annahmen} Für die Herleitung einer Differentialgleichung mit überschaubarer Komplexität werden gebräuchliche Annahmen zur Modellierung einer Membrane \cite{kreismembran:wellengleichung_herleitung} getroffen: +\begin{enumerate}[i] + \item Die Membrane ist homogen. + Dies bedeutet, dass die Membrane über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + Durch die konstante Elastizität ist die ganze Membrane unter gleichmässiger Spannung $ T $. + \item Die Membrane ist perfekt flexibel. + Daraus folgt, dass die Membrane ohne Kraftaufwand verbogen werden kann. + Die Membrane ist dadurch nicht alleine schwing-fähig, hierzu muss sie gespannt werden mit der Kraft $ T $. + \item Die Membrane kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. + Auslenkungen in der ebene der Membrane sind nicht möglich. + \item Die Membrane erfährt keine Art von Dämpfung. + Neben der perfekten Flexibilität wird die Membrane auch nicht durch ihr umliegendes Medium aus gebremst. + Dadurch entsteht kein dämpfender Term abhängig von der Geschwindigkeit der Membrane in der Differenzialgleichung. +\end{enumerate} -- cgit v1.2.1 From 741a16165ff886bd411445a23b5963750c636a30 Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 20 Jul 2022 18:58:36 +0200 Subject: Einleitung verbesserungen schreiben --- buch/papers/kreismembran/teil0.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 804640e..6f5e907 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -4,11 +4,11 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Einleitung\label{kreismembran:section:teil0}} -\rhead{Einleitung} -Eine naheliegende kreisförmige Membrane ist eine Runde Trommel. +\rhead{Membrane} +Eine naheliegendes Beispiel einer kreisförmigen Membrane ist eine Runde Trommel. Der Zusammenhang zwischen rund und kreisförmig wird hier nicht erläutert, was in diesem Kapitel als Membrane verstanden wird sollte jedoch erwähnt sein. -Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen". -Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. +Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., ...". +Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird vorerst das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. \paragraph{Annahmen} Für die Herleitung einer Differentialgleichung mit überschaubarer Komplexität werden gebräuchliche Annahmen zur Modellierung einer Membrane \cite{kreismembran:wellengleichung_herleitung} getroffen: \begin{enumerate}[i] -- cgit v1.2.1 From 74763d677a4612d8844332f21026e5d1306333ac Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 17:57:37 +0200 Subject: einleitung und herleitung DGL erste version fertig --- buch/papers/kreismembran/teil0.tex | 89 ++++++++++++++++++++++++++++++-------- 1 file changed, 72 insertions(+), 17 deletions(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 6f5e907..bb8188d 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -4,24 +4,79 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Einleitung\label{kreismembran:section:teil0}} -\rhead{Membrane} -Eine naheliegendes Beispiel einer kreisförmigen Membrane ist eine Runde Trommel. -Der Zusammenhang zwischen rund und kreisförmig wird hier nicht erläutert, was in diesem Kapitel als Membrane verstanden wird sollte jedoch erwähnt sein. -Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., ...". -Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird vorerst das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. +\rhead{Membran} +Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...". +Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften auf, wie ein gespanntes Stück Papier. +Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. +Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. +Eine Membran auf der anderen Seite besteht aus einem Material welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. +Bevor Papier als schwingende Membran betrachtet werden kann wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. -\paragraph{Annahmen} Für die Herleitung einer Differentialgleichung mit überschaubarer Komplexität werden gebräuchliche Annahmen zur Modellierung einer Membrane \cite{kreismembran:wellengleichung_herleitung} getroffen: +Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. +Sie besteht herkömmlicher weise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. +Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. +Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. +Wie genau diese Schwingungen untersucht werden können wird in der Folgenden Arbeit Diskutiert. + + +\paragraph{Annahmen} +Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. +Das untersuchte Modell einer Membrane Erfüllt folgende Eigenschaften: \begin{enumerate}[i] - \item Die Membrane ist homogen. - Dies bedeutet, dass die Membrane über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. - Durch die konstante Elastizität ist die ganze Membrane unter gleichmässiger Spannung $ T $. - \item Die Membrane ist perfekt flexibel. - Daraus folgt, dass die Membrane ohne Kraftaufwand verbogen werden kann. - Die Membrane ist dadurch nicht alleine schwing-fähig, hierzu muss sie gespannt werden mit der Kraft $ T $. - \item Die Membrane kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. - Auslenkungen in der ebene der Membrane sind nicht möglich. - \item Die Membrane erfährt keine Art von Dämpfung. - Neben der perfekten Flexibilität wird die Membrane auch nicht durch ihr umliegendes Medium aus gebremst. - Dadurch entsteht kein dämpfender Term abhängig von der Geschwindigkeit der Membrane in der Differenzialgleichung. + \item Die Membran ist homogen. + Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. + \item Die Membran ist perfekt flexibel. + Daraus folgt, dass die Membran ohne Kraftaufwand verbogen werden kann. + Die Membran ist dadurch nicht allein stehend schwing-fähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. + Auslenkungen in der ebene der Membran sind nicht möglich. + \item Die Membran erfährt keine Art von Dämpfung. + Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. + Die resultierende Schwingung wird daher nicht gedämpft sein. + \end{enumerate} +\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. +Es lohnt sich das Verhalten einer Saite zu beschreiben da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. +Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. +%Wie analog zur Membran kann eine Saite erst unter Spannung schwingen. + +Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. +Wie für die Membran ist die Annahme iii gültig, keine Bewegung in die Richtung $ \hat{x} $. +Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte +\begin{equation}\label{kreismembran:eq:no_translation} + T_1 \cos \alpha = T_2 \cos \beta = T +\end{equation} +gleichgesetzt werden. +Das dynamische verhalten der senkrechten Auslenkung $ u(x,t) $ muss das newtonsche Gesetz +\begin{equation*} + \sum F = m \cdot a +\end{equation*} +befolgen. Die senkrecht wirkenden Kräfte werden mit $ T_1 $ und $ T_2 $ ausgedrückt, die Masse als Funktion der Dichte $ \rho $ und die Beschleunigung in Form der zweiten Ableitung als +\begin{equation*} + T_2 \sin \beta - T_1 \sin \alpha = \rho dx \frac{\partial^2 u}{\partial t^2} . +\end{equation*} +Die Gleichung wird durch $ T $ dividiert, wobei $ T $ nach \ref{kreismembran:eq:no_translation} geschickt gewählt wird. Somit kann +\begin{equation*} + \frac{T_2 \sin \beta}{T_2 \cos \beta} - \frac{T_1 \sin \alpha}{T_1 \cos \alpha} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2} +\end{equation*} +vereinfacht als +\begin{equation*} + \tan \beta - \tan \alpha = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2} +\end{equation*} +geschrieben werden. +Der $ \tan \alpha $ entspricht der örtlichen Ableitung von $ u(x,t) $ an der Stelle $ x_0 $ und analog der $ \tan \beta $ für die Stelle $ x_0 + dx $. +Die Gleichung wird dadurch zu +\begin{equation*} + \frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2}. +\end{equation*} +Durch die Division mit $ dx $ entsteht +\begin{equation*} + \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. +\end{equation*} +Auf der Linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervall-Länge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. Der Term $ \frac{\rho}{T} $ wird mit $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. Somit resultiert die, in der Literatur gebräuchliche Form +\begin{equation} + \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. +\end{equation} +In dieser Form ist die Gleichung auch gültig für eine Membran. Für den Fall einer Membran muss lediglich die Ableitung in zwei Dimensionen gerechnet werden. \ No newline at end of file -- cgit v1.2.1 From e37397bb3b3c9cf93dff1d1aaecb186ca10fc239 Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 5 Aug 2022 23:03:46 +0200 Subject: =?UTF-8?q?minikorrekturen=20m=C3=BCller?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/teil0.tex | 46 +++++++++++++++++++++----------------- 1 file changed, 25 insertions(+), 21 deletions(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index bb8188d..10cd476 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -5,32 +5,32 @@ % \section{Einleitung\label{kreismembran:section:teil0}} \rhead{Membran} -Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...". -Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften auf, wie ein gespanntes Stück Papier. +Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein ``dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...''. +Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften wie ein gespanntes Stück Papier. Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. -Eine Membran auf der anderen Seite besteht aus einem Material welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. -Bevor Papier als schwingende Membran betrachtet werden kann wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. +Eine Membran auf der anderen Seite besteht aus einem Material, welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. +Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. -Sie besteht herkömmlicher weise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. +Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. -Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. -Wie genau diese Schwingungen untersucht werden können wird in der Folgenden Arbeit Diskutiert. +Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten Weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. +Wie genau diese Schwingungen untersucht werden können wird in der folgenden Arbeit diskutiert. -\paragraph{Annahmen} +\subsection{Annahmen} Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. -Das untersuchte Modell einer Membrane Erfüllt folgende Eigenschaften: -\begin{enumerate}[i] +Das untersuchte Modell erfüllt folgende Eigenschaften: +\begin{enumerate}[i)] \item Die Membran ist homogen. Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. \item Die Membran ist perfekt flexibel. - Daraus folgt, dass die Membran ohne Kraftaufwand verbogen werden kann. - Die Membran ist dadurch nicht allein stehend schwing-fähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. - \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. - Auslenkungen in der ebene der Membran sind nicht möglich. + Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. + Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass auslenken. + Auslenkungen in der Ebene der Membran sind nicht möglich. \item Die Membran erfährt keine Art von Dämpfung. Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. Die resultierende Schwingung wird daher nicht gedämpft sein. @@ -38,18 +38,18 @@ Das untersuchte Modell einer Membrane Erfüllt folgende Eigenschaften: \end{enumerate} \subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. -Es lohnt sich das Verhalten einer Saite zu beschreiben da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. +Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. %Wie analog zur Membran kann eine Saite erst unter Spannung schwingen. Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. -Wie für die Membran ist die Annahme iii gültig, keine Bewegung in die Richtung $ \hat{x} $. +Wie für die Membran ist die Annahme iii) gültig, keine Bewegung in die Richtung $ \hat{x} $. Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte \begin{equation}\label{kreismembran:eq:no_translation} T_1 \cos \alpha = T_2 \cos \beta = T \end{equation} gleichgesetzt werden. -Das dynamische verhalten der senkrechten Auslenkung $ u(x,t) $ muss das newtonsche Gesetz +Das dynamische Verhalten der senkrechten Auslenkung $ u(x,t) $ muss das newtonsche Gesetz \begin{equation*} \sum F = m \cdot a \end{equation*} @@ -69,14 +69,18 @@ geschrieben werden. Der $ \tan \alpha $ entspricht der örtlichen Ableitung von $ u(x,t) $ an der Stelle $ x_0 $ und analog der $ \tan \beta $ für die Stelle $ x_0 + dx $. Die Gleichung wird dadurch zu \begin{equation*} - \frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2}. + \frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2}. \end{equation*} Durch die Division mit $ dx $ entsteht \begin{equation*} - \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. + \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. \end{equation*} -Auf der Linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervall-Länge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. Der Term $ \frac{\rho}{T} $ wird mit $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. Somit resultiert die, in der Literatur gebräuchliche Form +Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. +Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. +Somit resultiert die in der Literatur gebräuchliche Form \begin{equation} + \label{kreismembran:Ausgang_DGL} \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. \end{equation} -In dieser Form ist die Gleichung auch gültig für eine Membran. Für den Fall einer Membran muss lediglich die Ableitung in zwei Dimensionen gerechnet werden. \ No newline at end of file +In dieser Form ist die Gleichung auch gültig für eine Membran. +Für den Fall einer Membran muss lediglich der Laplace-Operator $\Delta$ in zwei Dimensionen gerechnet werden. \ No newline at end of file -- cgit v1.2.1 From 152b3d55898b7aebbd4fd0182a9c45914514a7d8 Mon Sep 17 00:00:00 2001 From: tim30b Date: Fri, 5 Aug 2022 23:34:51 +0200 Subject: beginn mit besseren referenzen auf annahmen --- buch/papers/kreismembran/teil0.tex | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 10cd476..ad41406 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -17,30 +17,30 @@ Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offene Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten Weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. Wie genau diese Schwingungen untersucht werden können wird in der folgenden Arbeit diskutiert. - + \subsection{Annahmen} Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. Das untersuchte Modell erfüllt folgende Eigenschaften: \begin{enumerate}[i)] \item Die Membran ist homogen. - Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. - Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. + %Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + %Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. \item Die Membran ist perfekt flexibel. - Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. - Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + %Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. + %Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass auslenken. - Auslenkungen in der Ebene der Membran sind nicht möglich. + %Auslenkungen in der Ebene der Membran sind nicht möglich. \item Die Membran erfährt keine Art von Dämpfung. - Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. - Die resultierende Schwingung wird daher nicht gedämpft sein. + %Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. + %Die resultierende Schwingung wird daher nicht gedämpft sein. \end{enumerate} \subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. -%Wie analog zur Membran kann eine Saite erst unter Spannung schwingen. + Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. Wie für die Membran ist die Annahme iii) gültig, keine Bewegung in die Richtung $ \hat{x} $. -- cgit v1.2.1 From 617271699ec4a2ad9a0b8ca9940cc19a21901382 Mon Sep 17 00:00:00 2001 From: tim30b Date: Sat, 6 Aug 2022 15:00:32 +0200 Subject: referenzen und equation fix --- buch/papers/kreismembran/teil0.tex | 28 +++++++++++++++++----------- 1 file changed, 17 insertions(+), 11 deletions(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index ad41406..6f55358 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -19,30 +19,36 @@ Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschi Wie genau diese Schwingungen untersucht werden können wird in der folgenden Arbeit diskutiert. -\subsection{Annahmen} +\subsection{Annahmen} \label{kreimembran:annahmen} Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. Das untersuchte Modell erfüllt folgende Eigenschaften: \begin{enumerate}[i)] \item Die Membran ist homogen. - %Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. - %Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. + Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. \item Die Membran ist perfekt flexibel. - %Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. - %Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + Damit ist gemeint, dass die Membran ohne Kraftaufwand verbogen werden kann. + Die Membran ist dadurch nicht allein stehend schwingfähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass auslenken. - %Auslenkungen in der Ebene der Membran sind nicht möglich. + Auslenkungen in der Ebene der Membran sind nicht möglich. \item Die Membran erfährt keine Art von Dämpfung. - %Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. - %Die resultierende Schwingung wird daher nicht gedämpft sein. + Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. \end{enumerate} \subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. +\begin{figure} + + \begin{center} + \includegraphics[width=5cm,angle=-90]{papers/kreismembran/images/Saite.pdf} + \caption{Infinitesimales Stück einer Saite} + \label{kreismembran:im:Saite} + \end{center} +\end{figure} - -Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. +Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. Wie für die Membran ist die Annahme iii) gültig, keine Bewegung in die Richtung $ \hat{x} $. Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte \begin{equation}\label{kreismembran:eq:no_translation} @@ -73,7 +79,7 @@ Die Gleichung wird dadurch zu \end{equation*} Durch die Division mit $ dx $ entsteht \begin{equation*} - \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. + \frac{1}{dx} \left[\frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0}\right] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. \end{equation*} Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. -- cgit v1.2.1 From 2cf30b784f1cf73cd4ae8c9924435f236f351470 Mon Sep 17 00:00:00 2001 From: tim30b Date: Wed, 10 Aug 2022 21:51:06 +0200 Subject: =?UTF-8?q?Korrekturen=20von=20M=C3=BCller=20umgesetzt?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/teil0.tex | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 6f55358..a0a4152 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -5,18 +5,18 @@ % \section{Einleitung\label{kreismembran:section:teil0}} \rhead{Membran} -Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein ``dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...''. +Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein ``dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen \dots''. Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften wie ein gespanntes Stück Papier. Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. Eine Membran auf der anderen Seite besteht aus einem Material, welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. -Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. +Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert, aus der Ruhelage gebracht zu werden. Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten Weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. -Wie genau diese Schwingungen untersucht werden können wird in der folgenden Arbeit diskutiert. +Wie genau diese Schwingungen untersucht werden können, wird in der folgenden Arbeit diskutiert. \subsection{Annahmen} \label{kreimembran:annahmen} @@ -48,9 +48,10 @@ Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man s \end{center} \end{figure} -Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. -Wie für die Membran ist die Annahme iii) gültig, keine Bewegung in die Richtung $ \hat{x} $. -Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte +In Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. +Wie für die Membran ist die Annahme iii) gültig, keine Bewegung entlang der $ x $-Achse. +Um dies zu erfüllen, muss der Punkt $ P_1 $ gleich stark entgegen der $ x $-Achse gezogen werden wie der Punkt $ P_2 $ in Richtung der $ x $-Achse gezogen wird. +Ist $ T_1 $ die Kraft, welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte \begin{equation}\label{kreismembran:eq:no_translation} T_1 \cos \alpha = T_2 \cos \beta = T \end{equation} @@ -81,7 +82,8 @@ Durch die Division mit $ dx $ entsteht \begin{equation*} \frac{1}{dx} \left[\frac{\partial u}{\partial x} \bigg|_{x_0 + dx} - \frac{\partial u}{\partial x} \bigg|_{x_0}\right] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. \end{equation*} -Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. +Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt. +Wenn $ dx $ als unendlich kleines Stück betrachtet wird, ergibt sich als Grenzwert die zweite Ableitung von $ u(x,t) $ nach $ x $. Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. Somit resultiert die in der Literatur gebräuchliche Form \begin{equation} -- cgit v1.2.1 From a1a811ef08f16f61382f4f7eecc45fd71bd1e1d6 Mon Sep 17 00:00:00 2001 From: tim30b Date: Mon, 15 Aug 2022 00:50:56 +0200 Subject: gegengelesene Fehler angepasst --- buch/papers/kreismembran/teil0.tex | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index a0a4152..c6dac06 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -10,7 +10,7 @@ Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigen Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. Eine Membran auf der anderen Seite besteht aus einem Material, welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. -Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert, aus der Ruhelage gebracht zu werden. +Bevor Papier als schwingende Membran betrachtet werden kann, wird jedoch noch eine Spannung $ T $ benötigt, welche das Material daran hindert, aus der Ruhelage gebracht zu werden. Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. Sie besteht herkömmlicherweise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. @@ -36,8 +36,8 @@ Das untersuchte Modell erfüllt folgende Eigenschaften: \end{enumerate} -\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. -Es lohnt sich das Verhalten einer Saite zu beschreiben, da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. +\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten, wird vorerst eine schwingende Saite betrachtet. +Es lohnt sich, das Verhalten einer Saite zu beschreiben, da eine Saite dasselbe Verhalten wie eine Membran aufweist, mit dem Unterschied einer fehlenden Dimension. Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. \begin{figure} @@ -49,7 +49,7 @@ Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man s \end{figure} In Abbildung \ref{kreismembran:im:Saite} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. -Wie für die Membran ist die Annahme iii) gültig, keine Bewegung entlang der $ x $-Achse. +Wie für die Membran ist die Annahme iii) gültig, es entsteht keine Bewegung entlang der $ x $-Achse. Um dies zu erfüllen, muss der Punkt $ P_1 $ gleich stark entgegen der $ x $-Achse gezogen werden wie der Punkt $ P_2 $ in Richtung der $ x $-Achse gezogen wird. Ist $ T_1 $ die Kraft, welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte \begin{equation}\label{kreismembran:eq:no_translation} @@ -85,7 +85,7 @@ Durch die Division mit $ dx $ entsteht Auf der linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervalllänge geteilt. Wenn $ dx $ als unendlich kleines Stück betrachtet wird, ergibt sich als Grenzwert die zweite Ableitung von $ u(x,t) $ nach $ x $. Der Term $ \frac{\rho}{T} $ wird durch $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. -Somit resultiert die in der Literatur gebräuchliche Form +Damit resultiert die in der Literatur gebräuchliche Form \begin{equation} \label{kreismembran:Ausgang_DGL} \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. -- cgit v1.2.1