From 74763d677a4612d8844332f21026e5d1306333ac Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 17:57:37 +0200 Subject: einleitung und herleitung DGL erste version fertig --- buch/papers/kreismembran/teil0.tex | 89 ++++++++++++++++++++++++++++++-------- 1 file changed, 72 insertions(+), 17 deletions(-) (limited to 'buch/papers/kreismembran/teil0.tex') diff --git a/buch/papers/kreismembran/teil0.tex b/buch/papers/kreismembran/teil0.tex index 6f5e907..bb8188d 100644 --- a/buch/papers/kreismembran/teil0.tex +++ b/buch/papers/kreismembran/teil0.tex @@ -4,24 +4,79 @@ % (c) 2020 Prof Dr Andreas Müller, Hochschule Rapperswil % \section{Einleitung\label{kreismembran:section:teil0}} -\rhead{Membrane} -Eine naheliegendes Beispiel einer kreisförmigen Membrane ist eine Runde Trommel. -Der Zusammenhang zwischen rund und kreisförmig wird hier nicht erläutert, was in diesem Kapitel als Membrane verstanden wird sollte jedoch erwähnt sein. -Eine Membrane, Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membrane} ein "dünnes Blättchen aus Metall, Papier o. Ä., ...". -Um zu verstehen wie sich eine Kreisförmige Membrane oder eben eine Trommel verhaltet, wird vorerst das Verhalten eines infinitesimal kleines Stück einer Membrane untersucht. +\rhead{Membran} +Eine Membran oder selten ein Schwingblatt ist laut Duden \cite{kreismembran:Duden:Membran} ein "dünnes Blättchen aus Metall, Papier o. Ä., das durch seine Schwingungsfähigkeit geeignet ist, Schallwellen zu übertragen ...". +Ein dünnes Blättchen aus Metall zeig jedoch nicht die selben dynamischen Eigenschaften auf, wie ein gespanntes Stück Papier. +Beschreibt man das dynamische Verhalten, muss zwischen einer dünnen Platte und einer Membrane unterschieden werden \cite{kreismembran:membrane_vs_thin_plate}. +Eine dünne Platte zum Beispiel aus Metall, wirkt selbst entgegen ihrer Deformation sobald sie gekrümmt wird. +Eine Membran auf der anderen Seite besteht aus einem Material welches sich ohne Kraftaufwand verbiegen lässt wie zum Beispiel Papier. +Bevor Papier als schwingende Membran betrachtet werden kann wird jedoch noch eine Spannung $ T $ benötigt welche das Material daran hindert aus der Ruhelage gebracht zu werden. -\paragraph{Annahmen} Für die Herleitung einer Differentialgleichung mit überschaubarer Komplexität werden gebräuchliche Annahmen zur Modellierung einer Membrane \cite{kreismembran:wellengleichung_herleitung} getroffen: +Ein geläufiges Beispiel einer Kreismembran ist eine runde Trommel. +Sie besteht herkömmlicher weise aus einem Leder (Fell), welches auf einen offenen Zylinder (Zargen) aufgespannt wird. +Das Leder alleine erzeugt nach einem Aufschlag keine hörbaren Schwingungen. +Sobald das Fell jedoch über den Zargen gespannt wird, kann das Fell auf verschiedensten weisen weiter schwingen, was für den Klang der Trommel verantwortlich ist. +Wie genau diese Schwingungen untersucht werden können wird in der Folgenden Arbeit Diskutiert. + + +\paragraph{Annahmen} +Um die Wellengleichung herzuleiten \cite{kreismembran:wellengleichung_herleitung}, muss ein Modell einer Membran definiert werden. +Das untersuchte Modell einer Membrane Erfüllt folgende Eigenschaften: \begin{enumerate}[i] - \item Die Membrane ist homogen. - Dies bedeutet, dass die Membrane über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. - Durch die konstante Elastizität ist die ganze Membrane unter gleichmässiger Spannung $ T $. - \item Die Membrane ist perfekt flexibel. - Daraus folgt, dass die Membrane ohne Kraftaufwand verbogen werden kann. - Die Membrane ist dadurch nicht alleine schwing-fähig, hierzu muss sie gespannt werden mit der Kraft $ T $. - \item Die Membrane kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. - Auslenkungen in der ebene der Membrane sind nicht möglich. - \item Die Membrane erfährt keine Art von Dämpfung. - Neben der perfekten Flexibilität wird die Membrane auch nicht durch ihr umliegendes Medium aus gebremst. - Dadurch entsteht kein dämpfender Term abhängig von der Geschwindigkeit der Membrane in der Differenzialgleichung. + \item Die Membran ist homogen. + Dies bedeutet, dass die Membran über die ganze Fläche die selbe Dichte $ \rho $ und Elastizität hat. + Durch die konstante Elastizität ist die ganze Membran unter gleichmässiger Spannung $ T $. + \item Die Membran ist perfekt flexibel. + Daraus folgt, dass die Membran ohne Kraftaufwand verbogen werden kann. + Die Membran ist dadurch nicht allein stehend schwing-fähig, hierzu muss sie gespannt werden mit einer Kraft $ T $. + \item Die Membran kann sich nur in Richtung ihrer Normalen in kleinem Ausmass Auslenken. + Auslenkungen in der ebene der Membran sind nicht möglich. + \item Die Membran erfährt keine Art von Dämpfung. + Die Membran wird also nicht durch ihr umliegendes Medium abgebremst noch erfährt sie Wärmeverluste durch Deformation. + Die resultierende Schwingung wird daher nicht gedämpft sein. + \end{enumerate} +\subsection{Wellengleichung} Um die Wellengleichung einer Membran herzuleiten wird vorerst eine schwingende Saite betrachtet. +Es lohnt sich das Verhalten einer Saite zu beschreiben da eine Saite das selbe Verhalten wie eine Membran aufweist mit dem Unterschied einer fehlenden Dimension. +Die Verbindung zwischen Membran und Saite ist intuitiv ersichtlich, stellt man sich einen Querschnitt einer Trommel vor. +%Wie analog zur Membran kann eine Saite erst unter Spannung schwingen. + +Abbildung \ref{TODO} ist ein infinitesimales Stück einer Saite mit Länge $ dx $ skizziert. +Wie für die Membran ist die Annahme iii gültig, keine Bewegung in die Richtung $ \hat{x} $. +Um dies zu erfüllen muss der Punkt $ P_1 $ gleich stark in Richtung $ -\hat{x} $ gezogen werden wie der Punkt $ P_2 $ in Richtung $ \hat{x} $ gezogen wird. Ist $ T_1 $ die Kraft welche mit Winkel $ \alpha $ auf Punkt $ P_1 $ wirkt sowie $ T_2 $ und $ \beta$ das analoge für Punkt $ P_2 $ ist, so können die Kräfte +\begin{equation}\label{kreismembran:eq:no_translation} + T_1 \cos \alpha = T_2 \cos \beta = T +\end{equation} +gleichgesetzt werden. +Das dynamische verhalten der senkrechten Auslenkung $ u(x,t) $ muss das newtonsche Gesetz +\begin{equation*} + \sum F = m \cdot a +\end{equation*} +befolgen. Die senkrecht wirkenden Kräfte werden mit $ T_1 $ und $ T_2 $ ausgedrückt, die Masse als Funktion der Dichte $ \rho $ und die Beschleunigung in Form der zweiten Ableitung als +\begin{equation*} + T_2 \sin \beta - T_1 \sin \alpha = \rho dx \frac{\partial^2 u}{\partial t^2} . +\end{equation*} +Die Gleichung wird durch $ T $ dividiert, wobei $ T $ nach \ref{kreismembran:eq:no_translation} geschickt gewählt wird. Somit kann +\begin{equation*} + \frac{T_2 \sin \beta}{T_2 \cos \beta} - \frac{T_1 \sin \alpha}{T_1 \cos \alpha} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2} +\end{equation*} +vereinfacht als +\begin{equation*} + \tan \beta - \tan \alpha = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2} +\end{equation*} +geschrieben werden. +Der $ \tan \alpha $ entspricht der örtlichen Ableitung von $ u(x,t) $ an der Stelle $ x_0 $ und analog der $ \tan \beta $ für die Stelle $ x_0 + dx $. +Die Gleichung wird dadurch zu +\begin{equation*} + \frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0} = \frac{\rho dx}{T} \frac{\partial^2 u}{\partial t^2}. +\end{equation*} +Durch die Division mit $ dx $ entsteht +\begin{equation*} + \frac{1}{dx} \bigg[\frac{\partial u}{\partial x} \big\vert_{x_0 + dx} - \frac{\partial u}{\partial x} \big\vert_{x_0}\bigg] = \frac{\rho}{T}\frac{\partial^2 u}{\partial t^2}. +\end{equation*} +Auf der Linken Seite der Gleichung wird die Differenz der Steigungen durch die Intervall-Länge geteilt, in anderen Worten die zweite Ableitung von $ u(x,t) $ nach $ x $ berechnet. Der Term $ \frac{\rho}{T} $ wird mit $ c^2 $ ersetzt, da der Bruch für eine gegebene Membran eine positive Konstante sein muss. Somit resultiert die, in der Literatur gebräuchliche Form +\begin{equation} + \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. +\end{equation} +In dieser Form ist die Gleichung auch gültig für eine Membran. Für den Fall einer Membran muss lediglich die Ableitung in zwei Dimensionen gerechnet werden. \ No newline at end of file -- cgit v1.2.1