From e0fb3e7b5861b9199eb2d361311cd1b768f8bed4 Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Thu, 9 Jun 2022 15:53:28 +0200 Subject: Korrektur Feedback --- buch/papers/kreismembran/teil1.tex | 95 +++++++++++++++++++++++--------------- 1 file changed, 58 insertions(+), 37 deletions(-) (limited to 'buch/papers/kreismembran/teil1.tex') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index aef5b79..38bcfe4 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -7,13 +7,14 @@ \section{Lösungsmethode 1: Separationsmethode  \label{kreismembran:section:teil1}} \rhead{Lösungsmethode 1: Separationsmethode} -An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmetode gelöst. +An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmethode gelöst. +\subsection{Aufgabestellung\label{sub:aufgabestellung}} Wie im vorherigen Kapitel gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: \begin{equation*} - \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u + \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. \end{equation*} -Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so dass sich der Laplaceoperator ergibt: +Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so dass sich der Laplaceoperator \begin{equation*} \Delta = @@ -23,78 +24,98 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d \frac{\partial}{\partial r} + \frac{1}{r 2} - \frac{\partial^2}{\partial\varphi^2}. + \frac{\partial^2}{\partial\varphi^2} \label{buch:pde:kreis:laplace} \end{equation*} +ergibt. -Es wird eine runde elastische Membran berücksichtigt, die den Gebietbereich $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. +Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist. -Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eigespannten homogenen schwingenden Membran. +Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran. Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\ (r,\varphi,t) &\longmapsto u(r,\varphi,t) \end{align*} -Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} gilt: +Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} \cite{prof_dr_horst_knorrer_kreisformige_2013} \begin{equation*} - u\big|_{\Gamma} = 0 + u\big|_{\Gamma} = 0 \quad \text{für} \quad 0 \leq \varphi \leq 2\pi,\quad t \geq 0 \end{equation*} +gilt. + Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt: \begin{align*} u(r,\varphi, 0) &= f(r,\varphi)\\ - \frac{\partial}{\partial t} u(r,\varphi, 0) &= g(r,\varphi) + u_t(r,\varphi, 0) &= g(r,\varphi). \end{align*} + +\subsection{Lösung\label{sub:lösung1}} +\subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}} Daher muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: \begin{equation*} u(r,\varphi, t) = F(r)G(\varphi)T(t) \end{equation*} -Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetz in der Differenzialgleichung ergibt: +Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich: \begin{equation*} - \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)} + \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. \end{equation*} -Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Grunden suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen: -\begin{gather*} - T''(t) + c^2\kappa^2T(t) = 0\\ - r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 = - \frac{G''(\varphi)}{G(\varphi)} -\end{gather*} +Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen: +\begin{align*} + T''(t) + c^2\kappa^2T(t) &= 0\\ + r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. +\end{align*} In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also das: -\begin{gather*} - r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) = 0 \\ - G''(\varphi) = \nu G(\varphi) -\end{gather*} -$G$ kann in einer Fourierreihe entwickelt werden, so dass man sieht, dass $\nu$ die Form $n^2$ mit einer positiven ganzen Zahl sein muss, also: +\begin{align*} + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) &= 0 \\ + G''(\varphi) &= \nu G(\varphi). +\end{align*} + +\subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}} +Da für die Zweite Gelichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt die gemeinsame Konstante als $-\nu^2$, was die Formeln später vereinfacht. Also: \begin{equation*} G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi) + \label{eq:cos_sin_überlagerung} \end{equation*} -Die Gleichung $F$ hat die Gestalt -\begin{equation*} - r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \quad (*) -\end{equation*} -Wir bereits in der Vorlesung von Prof. Müller gezeigt, sind die Besselfunktionen + +\subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}} +Die Gleichung für $F$ hat die Gestalt +\begin{align} + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 + \label{eq:2nd_degree_PDE} +\end{align} +Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Besselfunktionen \begin{equation*} J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} \end{equation*} -Lösungen der "Besselschen Differenzialgleichung" +Lösungen der Besselschen Differenzialgleichung \begin{equation*} x^2 y'' + xy' + (x^2 - \nu^2)y = 0 \end{equation*} -Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung $(*)$. Die +Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung \eqref{eq:2nd_degree_PDE}. Die Randbedingung $F(R)=0$ impliziert, dass $\kappa R$ eine Nullstelle der Besselfunktion $J_n$ sein muss. Man kann zeigen, dass die Besselfunktionen $J_n, n \geq 0$, alle unendlich viele Nullstellen \begin{equation*} \alpha_{1n} < \alpha_{2n} < ... \end{equation*} -haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergit sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass +haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergibt sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass \begin{equation*} - F(r) = J_n (\kappa_{mn}r) \quad mit \quad \kappa_{mn}=\frac{\alpha_{mn}}{R} + F(r) = J_n (\kappa_{mn}r) \quad \text{mit} \quad \kappa_{mn}=\frac{\alpha_{mn}}{R} \end{equation*} -Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. Durch Überlagerung aller Ergebnisse erhält man die Lösung -\begin{equation} - u(r, \varphi, t) = \displaystyle\sum_{m=1}^{\infty}\displaystyle\sum_{n=0}^{\infty} J_n (k_{mn}r)\cos(n\varphi)[a_{mn}\cos(c \kappa_{mn} t)+b_{mn}\sin(c \kappa_{mn} t)] -\end{equation} -Dabei sind m und n ganze Zahlen, wobei m für die Anzahl der Knotenkreise und n -für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei kmn die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. -An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche und Diskussion mit Prof. Müller wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. +\subsubsection{Lösung für $T(t)$\label{subsub:lösung_T}} +Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. + +\subsubsection{Zusammenfassung der Lösungen\label{subsub:zusammenfassung_lösungen}} +Durch Überlagerung aller Ergebnisse erhält man die Lösung +\begin{align} + u(r, \varphi, t) = \displaystyle\sum_{m=1}^{\infty}\displaystyle\sum_{n=0}^{\infty} J_n (k_{mn}r)[a_{mn}\cos(n\varphi) + b_{mn}\sin(n\varphi)](n\varphi)[c_{mn}\cos(c \kappa_{mn} t)+d_{mn}\sin(c \kappa_{mn} t)] + \label{eq:lösung_endliche_generelle} +\end{align} + +Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$ +für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. + + +An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. -- cgit v1.2.1 From 7aef721d37d440a7ac22b93aa3b998b8f15dbade Mon Sep 17 00:00:00 2001 From: tim30b Date: Thu, 28 Jul 2022 17:58:37 +0200 Subject: kapitel -> abschnitt --- buch/papers/kreismembran/teil1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/kreismembran/teil1.tex') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index 38bcfe4..39ca598 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -10,7 +10,7 @@ An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmethode gelöst. \subsection{Aufgabestellung\label{sub:aufgabestellung}} -Wie im vorherigen Kapitel gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: +Wie im vorherigen Abschnitt gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: \begin{equation*} \frac{1}{c^2}\frac{\partial^2u}{\partial t^2} = \Delta u. \end{equation*} -- cgit v1.2.1 From 3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Tue, 2 Aug 2022 14:51:41 +0200 Subject: =?UTF-8?q?=C3=A4nderungen=2002.08.2022=20andrea?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/teil1.tex | 54 +++++++++++++++++++------------------- 1 file changed, 27 insertions(+), 27 deletions(-) (limited to 'buch/papers/kreismembran/teil1.tex') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index 39ca598..377ba48 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -30,37 +30,33 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d ergibt. Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. -Es wird daher davon ausgegangen, dass die Membran aus einem homogenen Material von vernachlässigbarer Dicke gefertigt ist. -Die Membran kann verformt werden, aber innere elastische Kräfte wirken den Verformungen entgegen. Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran. +Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran. Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} u: \overline{\rm \Omega} \times \mathbb{R}_{\geq 0} &\longrightarrow \mathbb{R}\\ (r,\varphi,t) &\longmapsto u(r,\varphi,t) \end{align*} -Da die Membran am Rand befestigt ist, kann es keine Schwingungen geben, so dass die \textit{Dirichlet-Randbedingung} \cite{prof_dr_horst_knorrer_kreisformige_2013} -\begin{equation*} - u\big|_{\Gamma} = 0 \quad \text{für} \quad 0 \leq \varphi \leq 2\pi,\quad t \geq 0 -\end{equation*} -gilt. +Um die Vergleichbarkeit der beiden nachfolgend vorgestellten Lösungsverfahren in Abschnitt \ref{kreismembran:vergleich} zu vereinfachen, werden keine Randbedingungen vorgegeben. -Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt: +Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur zeit $t = \text{0}$: \begin{align*} u(r,\varphi, 0) &= f(r,\varphi)\\ u_t(r,\varphi, 0) &= g(r,\varphi). \end{align*} \subsection{Lösung\label{sub:lösung1}} +Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der varibalen Trennungsmethode gelöst. \subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}} -Daher muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: +Bezug muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: \begin{equation*} u(r,\varphi, t) = F(r)G(\varphi)T(t) \end{equation*} -Dank der Randbedingungen kann also gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich: +Dank der Randbedingungen kann gefordert werden, dass $F(R)=0$ ist, und natürlich, dass $G(\varphi)$ $2\pi$ periodisch ist. Eingesetzt in der Differenzialgleichung ergibt sich: \begin{equation*} - \frac{1}{c^2}\frac{T''(t)}{T(t)}=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. + \frac{1}{c^2}\frac{T''(t)}{T(t)}=-\kappa^2=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. \end{equation*} -Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $k=-k^2$. Daraus ergeben sich die folgenden zwei Gleichungen: +Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^2$. Daraus ergeben sich die folgenden zwei Gleichungen: \begin{align*} T''(t) + c^2\kappa^2T(t) &= 0\\ r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. @@ -72,14 +68,14 @@ In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rec \end{align*} \subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}} -Da für die Zweite Gelichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt die gemeinsame Konstante als $-\nu^2$, was die Formeln später vereinfacht. Also: +Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-\omega^2$, was die Formeln später vereinfacht. Also: \begin{equation*} G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi) \label{eq:cos_sin_überlagerung} \end{equation*} \subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}} -Die Gleichung für $F$ hat die Gestalt +Die Gleichung für $F$ hat die Gestalt (verweis auf \ref{buch:differentialgleichungen:bessel-operator}) \begin{align} r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \label{eq:2nd_degree_PDE} @@ -90,19 +86,9 @@ Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, \end{equation*} Lösungen der Besselschen Differenzialgleichung \begin{equation*} - x^2 y'' + xy' + (x^2 - \nu^2)y = 0 -\end{equation*} -Die Funktionen $F(r) = J_n(\kappa r)$ lösen also die Differentialgleichung \eqref{eq:2nd_degree_PDE}. Die -Randbedingung $F(R)=0$ impliziert, dass $\kappa R$ eine Nullstelle der Besselfunktion -$J_n$ sein muss. Man kann zeigen, dass die Besselfunktionen $J_n, n \geq 0$, alle unendlich -viele Nullstellen -\begin{equation*} - \alpha_{1n} < \alpha_{2n} < ... -\end{equation*} -haben, und dass $\underset{\substack{m\to\infty}}{\text{lim}} \alpha_{mn}=\infty$. Somit ergibt sich, dass $\kappa = \frac{\alpha_{mn}}{R}$ für ein $m\geq 1$, und dass -\begin{equation*} - F(r) = J_n (\kappa_{mn}r) \quad \text{mit} \quad \kappa_{mn}=\frac{\alpha_{mn}}{R} + x^2 y'' + xy' + (\kappa^2 - \nu^2)y = 0 \end{equation*} +Die Funktionen $F(r) = J_n(\kappa r)$ lösen die Differentialgleichung \eqref{eq:2nd_degree_PDE}. \subsubsection{Lösung für $T(t)$\label{subsub:lösung_T}} Die Differenzialgleichung $T''(t) + c^2\kappa^2T(t) = 0$, wird auf ähnliche Weise gelöst wie $G(\varphi)$. @@ -115,7 +101,21 @@ Durch Überlagerung aller Ergebnisse erhält man die Lösung \end{align} Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$ -für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. +für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie; siehe Abbildung \ref{buch:pde:kreis:fig:pauke}. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. + +\begin{figure} + \centering + \includegraphics[width=\textwidth]{chapters/090-pde/bessel/pauke.pdf} + %\includegraphics{chapters/090-pde/bessel/pauke.pdf} + \caption{Vorzeichen der Lösungsfunktionen und Knotenlinien + für verschiedene Werte von $\mu$ und $k$. + Die Bereiche, in denen die Lösungsfunktion positiv sind, ist + rot dargestellt, die negativen Bereiche blau. + In jeder Darstellung gibt es genau $k+\mu$ Knotenlinien. + Die Radien der kreisförmigen Knotenlinien müssen aus den Nullstellen + der Besselfunktionen berechnet werden. + \label{buch:pde:kreis:fig:pauke}} +\end{figure} An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. -- cgit v1.2.1 From 05e358bb076c0680521b0a6d66b9fc8b3ea1af40 Mon Sep 17 00:00:00 2001 From: tim30b Date: Sat, 6 Aug 2022 14:58:59 +0200 Subject: korrekturen in andrea teil --- buch/papers/kreismembran/teil1.tex | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) (limited to 'buch/papers/kreismembran/teil1.tex') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index 377ba48..f0d478f 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -7,7 +7,7 @@ \section{Lösungsmethode 1: Separationsmethode  \label{kreismembran:section:teil1}} \rhead{Lösungsmethode 1: Separationsmethode} -An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Kapitel wird sie mit Hilfe der Separationsmethode gelöst. +An diesem Punkt bleibt also nur noch die Lösung der partiellen Differentialgleichung. In diesem Abschnitt wird sie mit Hilfe der Separationsmethode gelöst. \subsection{Aufgabestellung\label{sub:aufgabestellung}} Wie im vorherigen Abschnitt gezeigt, lautet die partielle Differentialgleichung, die die Schwingungen einer Membran beschreibt: @@ -30,7 +30,7 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d ergibt. Es wird eine runde elastische Membran berücksichtigt, die das Gebiet $\Omega$ abdeckt und am Rand $\Gamma$ befestigt ist. -Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran. +Es wirken keine äusseren Kräfte. Es handelt sich somit von einer kreisförmligen eingespannten homogenen schwingenden Membran nach den Annahmen von \ref{kreimembran:annahmen}. Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Omega}$ zum Zeitpunkt $t$: \begin{align*} @@ -56,7 +56,10 @@ Dank der Randbedingungen kann gefordert werden, dass $F(R)=0$ ist, und natürlic \begin{equation*} \frac{1}{c^2}\frac{T''(t)}{T(t)}=-\kappa^2=\frac{F''(r)}{F(r)}+\frac{1}{r}\frac{F'(r)}{F(r)}+\frac{1}{r^2}\frac{G''(\varphi)}{G(\varphi)}. \end{equation*} -Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. Aus physikalischen Gründen suchen wir nach Lösungen, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^2$. Daraus ergeben sich die folgenden zwei Gleichungen: +Da die linke Seite nur von $t$ und die rechte Seite nur von $r$ und $\varphi$ abhängt, müssen sie gleich einer reellen Zahl sein. +Laut Annahme iv) in \ref{kreimembran:annahmen} erfährt die Membran keine Dämpfung. +Daher werden Lösungen gesucht, die weder exponentiell in der Zeit wachsen noch exponentiell abklingen. +Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^2$. Daraus ergeben sich die folgenden zwei Gleichungen: \begin{align*} T''(t) + c^2\kappa^2T(t) &= 0\\ r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. @@ -118,4 +121,4 @@ für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membr \end{figure} -An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass die beste Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. +An diesem Punkt stellte sich die Frage, ob es möglich wäre, die partielle Differentialgleichung mit einer anderen Methode als der der Trennung der Variablen zu lösen. Nach einer kurzen Recherche wurde festgestellt, dass eine weitere Methode die Transformationsmethode ist, genauer gesagt die Anwendung der Hankel-Transformation. Im nächsten Kapitel wird daher diese Integraltransformation vorgestellt und entwickelt, und es wird erläutert, warum sie für diese Art von Problem geeignet ist. -- cgit v1.2.1 From a37eaf082bc34c696c40efe33cf868c41dd765a0 Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Mon, 8 Aug 2022 19:00:45 +0200 Subject: last commit --- buch/papers/kreismembran/teil1.tex | 22 +++++++++++----------- 1 file changed, 11 insertions(+), 11 deletions(-) (limited to 'buch/papers/kreismembran/teil1.tex') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index f0d478f..a872ed1 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -23,7 +23,7 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d \frac1r \frac{\partial}{\partial r} + - \frac{1}{r 2} + \frac{1}{r^2} \frac{\partial^2}{\partial\varphi^2} \label{buch:pde:kreis:laplace} \end{equation*} @@ -39,16 +39,16 @@ Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Ome \end{align*} Um die Vergleichbarkeit der beiden nachfolgend vorgestellten Lösungsverfahren in Abschnitt \ref{kreismembran:vergleich} zu vereinfachen, werden keine Randbedingungen vorgegeben. -Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur zeit $t = \text{0}$: +Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur Zeit $t = \text{0}$: \begin{align*} u(r,\varphi, 0) &= f(r,\varphi)\\ u_t(r,\varphi, 0) &= g(r,\varphi). \end{align*} \subsection{Lösung\label{sub:lösung1}} -Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der varibalen Trennungsmethode gelöst. +Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der Separationsmethode gelöst. \subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}} -Bezug muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: +Hierfür wird folgenden Ansatz gemacht: \begin{equation*} u(r,\varphi, t) = F(r)G(\varphi)T(t) \end{equation*} @@ -64,26 +64,26 @@ Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^ T''(t) + c^2\kappa^2T(t) &= 0\\ r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. \end{align*} -In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also das: +In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also: \begin{align*} - r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) &= 0 \\ - G''(\varphi) &= \nu G(\varphi). + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) = 0 \quad \text{und} \quad + G''(\varphi) = \nu G(\varphi). \end{align*} \subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}} Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-\omega^2$, was die Formeln später vereinfacht. Also: \begin{equation*} - G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi) + G(\varphi) = C_n \cos(\nu\varphi) + D_n \sin(\nu\varphi) \label{eq:cos_sin_überlagerung} \end{equation*} \subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}} -Die Gleichung für $F$ hat die Gestalt (verweis auf \ref{buch:differentialgleichungen:bessel-operator}) +Die Gleichung für $F$ hat die Gestalt (Verweis auf \label{buch:differentialgleichungen:bessel-operator} \begin{align} r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \label{eq:2nd_degree_PDE} \end{align} -Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Besselfunktionen +Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen \begin{equation*} J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} \end{equation*} @@ -104,7 +104,7 @@ Durch Überlagerung aller Ergebnisse erhält man die Lösung \end{align} Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$ -für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie; siehe Abbildung \ref{buch:pde:kreis:fig:pauke}. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. +für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie (siehe Abbildung \ref{buch:pde:kreis:fig:pauke}). $J_n(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. \begin{figure} \centering -- cgit v1.2.1 From a1a811ef08f16f61382f4f7eecc45fd71bd1e1d6 Mon Sep 17 00:00:00 2001 From: tim30b Date: Mon, 15 Aug 2022 00:50:56 +0200 Subject: gegengelesene Fehler angepasst --- buch/papers/kreismembran/teil1.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) (limited to 'buch/papers/kreismembran/teil1.tex') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index a872ed1..f6ba7d1 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -83,7 +83,7 @@ Die Gleichung für $F$ hat die Gestalt (Verweis auf \label{buch:differentialglei r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \label{eq:2nd_degree_PDE} \end{align} -Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen +Wie bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen \begin{equation*} J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} \end{equation*} -- cgit v1.2.1