From 3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Tue, 2 Aug 2022 14:51:41 +0200 Subject: =?UTF-8?q?=C3=A4nderungen=2002.08.2022=20andrea?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/teil2.tex | 45 +++++++++++++++----------------------- 1 file changed, 18 insertions(+), 27 deletions(-) (limited to 'buch/papers/kreismembran/teil2.tex') diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index 6efda49..4fb139c 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -11,30 +11,30 @@ Er studierte auch Funktionen, jetzt Hankel- oder Bessel- Funktionen genannt, der Die Hankel-Transformation, die die Bessel-Funktion enthält, taucht natürlich bei achsensymmetrischen Problemen auf, die in zylindrischen Polarkoordinaten formuliert sind. In diesem Abschnitt werden die Theorie der Transformation und einige Eigenschaften der Grundoperationen erläutert. -\subsubsection{Hankel-Transformation \label{subsub:hankel_tansformation}} +\subsubsection{Definition der Hankel-Transformation \label{subsub:hankel_tansformation}} Wir führen die Definition der Hankel-Transformation \cite{lokenath_debnath_integral_2015} aus der zweidimensionalen Fourier-Transformation und ihrer Umkehrung ein, die durch: \begin{align} - \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx dy,\label{equation:fourier_transform}\\ - \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r}))}F(k,l) \; dx dy \label{equation:inv_fourier_transform} + \mathscr{F}\{f(x,y)\} & = F(k,l)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-i( \bm{\kappa}\cdot \mathbf{r})}f(x,y) \; dx \; dy,\label{equation:fourier_transform}\\ + \mathscr{F}^{-1}\{F(x,y)\} & = f(x,y)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{i(\bm{\kappa}\cdot \mathbf{r})}F(k,l) \; dx \; dy \label{equation:inv_fourier_transform} \end{align} -wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problemen am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: +wo $\mathbf{r}=(x,y)$ und $\bm{\kappa}=(k,l)$. Polarkoordinaten sind für diese Art von Problem am besten geeignet, mit $(x,y)=r(\cos\theta,\sin\theta)$ und $(k,l)=\kappa(\cos\phi,\sin\phi)$ findet man $\bm{\kappa}\cdot\mathbf{r}=\kappa r(\cos(\theta-\phi))$ und danach: \begin{align} F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}r \; dr \int_{0}^{2\pi}e^{-ikr\cos(\theta-\phi)}f(r,\theta) \; d\phi. \label{equation:F_ohne_variable_wechsel} \end{align} -Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, und es wird eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren: +Dann wird angenommen dass, $f(r,\theta)=e^{in\theta}f(r)$, was keine strenge Einschränkung ist, weil die \textit{Fourier-Theorie} besagt, dass sich jede Funktion durch Überlagerung solcher Terme darstellen lässt. Es wird auch eine Änderung der Variabeln vorgenommen $\theta-\phi=\alpha-\frac{\pi}{2}$, um \eqref{equation:F_ohne_variable_wechsel} zu reduzieren: \begin{align} F(k,\phi)=\frac{1}{2\pi}\int_{0}^{\infty}rf(r) \; dr \int_{\phi_{0}}^{2\pi+\phi_{0}}e^{in(\phi-\frac{\pi}{2})+i(n\alpha-kr\sin\alpha)} \; d\alpha, \label{equation:F_ohne_bessel} \end{align} wo $\phi_{0}=(\frac{\pi}{2}-\phi)$. -Unter Verwendung der Integraldarstellung der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} +Unter Verwendung der Integraldarstellung \begin{equation*} J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} \; d\alpha \label{equation:bessel_n_ordnung} \end{equation*} -\eqref{equation:F_ohne_bessel} wird sie zu: + der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu: \begin{align} F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) \; dr \nonumber \\ &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa), @@ -47,37 +47,28 @@ wo $\tilde{f}_n(\kappa)$ ist die \textit{Hankel-Transformation} von $f(r)$ und i \end{align} \subsubsection{Inverse Hankel-Transformation \label{subsub:inverse_hankel_tansformation}} -Ähnlich verhält es sich mit der inversen Fourier Transformation in Form von polaren Koordinaten unter der Annahme $f(r,\theta)=e^{in\theta}f(r)$ mit \eqref{equation:F_mit_bessel_step_2}, wird die inverse Fourier Transformation \eqref{equation:inv_fourier_transform}: +Wie bei der Entwicklung der Hankel-Transformation können auch für die Umkehrformel Analogien zur Fourier-Transformation hergestellt werden. Vergleicht man die beiden Transformationen, so stellt man fest, dass sie sehr ähnlich sind, wenn man den Term $J_n(\kappa r)$ der Hankel-Transformation durch $e^{-i( \bm{\kappa}\cdot \mathbf{r})}$ der Fourier-Transformation ersetzt. Diese beide Funktionen sind orthogonal, und bei orthogonalen Matrizen genügt bekanntlich die Transponierung, um sie zu invertieren. Da das Skalarprodukt der Bessel-Funktionen jedoch nicht dasselbe ist wie das der Exponentialfunktionen, muss man durch $\kappa\; d\kappa$ statt nur durch $d\kappa$ integrieren, um die Umkehrfunktion zu erhalten. -\begin{align*} - e^{in\theta}f(r)&=\frac{1}{2\pi}\int_{0}^{\infty}\kappa \; d\kappa \int_{0}^{2\pi}e^{i\kappa r \cos (\theta - \phi)}F(\kappa,\phi) \; d\phi \\ - &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) \; d\kappa \int_{0}^{2\pi}e^{in(\phi - \frac{\pi}{2})- i\kappa r \cos (\theta - \phi)} \; d\phi, -\end{align*} -was durch den Wechsel der Variablen $\theta-\phi=-(\alpha+\frac{\pi}{2})$ und $\theta_0=-(\theta+\frac{\pi}{2})$, - -\begin{align*} - &= \frac{1}{2\pi}\int_{0}^{\infty}\kappa \tilde{f}_n(\kappa) \; d\kappa \int_{\theta_0}^{2\pi+\theta_0}e^{in(\theta + \alpha - i\kappa r \sin\alpha)} \; d\alpha \\ - &= e^{in\theta}\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa, -\end{align*} - -von \eqref{equation:bessel_n_ordnung} also ist, die inverse \textit{Hankel-Transformation} so definiert: +Von \eqref{equation:hankel} also ist, die inverse \textit{Hankel-Transformation} so definiert: \begin{align} \mathscr{H}^{-1}_n\{\tilde{f}_n(\kappa)\}=f(r)=\int_{0}^{\infty}\kappa J_n(\kappa r) \tilde{f}_n(\kappa) \; d\kappa. \label{equation:inv_hankel} \end{align} -Anstelle von $\tilde{f}_n(\kappa)$, wird häufig für die Hankel-Transformation verwendet, indem die Ordnung angegeben wird. -\eqref{equation:hankel} und \eqref{equation:inv_hankel} Integralen existieren für eine grosse Klasse von Funktionen, die normalerweise in physikalischen Anwendungen benötigt werden. -Alternativ kann auch die berühmte Hankel-Transformationsformel verwendet werden, +Anstelle von $\tilde{f}_n(\kappa)$, wird häufig einfach $\tilde{f}(\kappa)$ für die Hankel-Transformation verwendet, indem die Ordnung angegeben wird. +Die Integrale \eqref{equation:hankel} und \eqref{equation:inv_hankel} existieren für bestimmte grosse Klassen von Funktionen, die normalerweise in physikalischen Anwendungen vorkommen. + +Alternativ dazu kann die berühmte Hankel-Integralformel \begin{align*} f(r) = \int_{0}^{\infty}\kappa J_n(\kappa r) \; d\kappa \int_{0}^{\infty} p J_n(\kappa p)f(p) \; dp, \label{equation:hankel_integral_formula} \end{align*} -um die Hankel-Transformation \eqref{equation:hankel} und ihre Inverse \eqref{equation:inv_hankel} zu definieren. +verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre Umkehrung \eqref{equation:inv_hankel} zu definieren. + Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. -\subsection{Operative Eigenschaften der Hankel-Transformation\label{sub:op_properties_hankel}} +\subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}} In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. \begin{satz}{Skalierung:} @@ -88,7 +79,7 @@ In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation \end{equation*} \end{satz} -\begin{satz}{Persevalsche Relation (Skalarprodukt bleibt erhalten):} +\begin{satz}{Parsevalsche Relation:} Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann: \begin{equation*} @@ -103,7 +94,7 @@ Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: &\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\ &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa), \end{align*} -bereitgestellt dass $[rf(r)]$ verschwindet als $r\to0$ und $r\to\infty$. +vorausgesetzt dass $[rf(r)]$ verschwindet wenn $r\to0$ und $r\to\infty$. \end{satz} \begin{satz} -- cgit v1.2.1