From 3ccdc3ec4dcc7d33b16fc1469b0c95c0e8def66d Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Tue, 2 Aug 2022 14:51:41 +0200 Subject: =?UTF-8?q?=C3=A4nderungen=2002.08.2022=20andrea?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- buch/papers/kreismembran/teil3.tex | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) (limited to 'buch/papers/kreismembran/teil3.tex') diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 7d5648a..014b6e6 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -40,7 +40,7 @@ bekommt man: \tilde{u}(\kappa,0)=\tilde{f}(\kappa), \quad \tilde{u}_t(\kappa,0)=\tilde{g}(\kappa). \end{equation*} -Die allgemeine Lösung für diese Transformation lautet, wie in Gleighung \eqref{eq:cos_sin_überlagerung} gesehen, wie folgt +Die allgemeine Lösung für diese Gleichung lautet, wie in Abschnitt \eqref{eq:cos_sin_überlagerung} gesehen, wie folgt \begin{equation*} \tilde{u}(\kappa,t)=\tilde{f}(\kappa)\cos(c\kappa t) + \frac{1}{c\kappa}\tilde{g}(\kappa)\sin(c\kappa t). @@ -60,7 +60,7 @@ Es wird in Folgenden davon ausgegangen, dass sich die Membran verformt und zum Z \end{equation*} so dass $\tilde{g}(\kappa)\equiv 0$ und \begin{equation*} - \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa} + \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa}. \end{equation*} Die formale Lösung \eqref{eq:formale_lösung} lautet also \begin{align*} @@ -68,7 +68,7 @@ Die formale Lösung \eqref{eq:formale_lösung} lautet also &=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}} \end{align*} -Nimmt man jedoch die allgemeine Lösung mit Summationen, +Nimmt man jedoch die allgemeine Lösung durch Überlagerung, \begin{align} u(r, t) = \displaystyle\sum_{m=1}^{\infty} J_0 (k_{m}r)[a_{m}\cos(c \kappa_{m} t)+b_{m}\sin(c \kappa_{m} t)] @@ -78,7 +78,7 @@ kann man die Lösungsmethoden 1 und 2 vergleichen. \subsection{Vergleich der Analytischen Lösungen \label{kreismembran:vergleich}} -Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. +Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine, dato che abbiamo assunto che la soluzione è rotationssymmetrisch. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der $0$-ter Ordnung. -- cgit v1.2.1 From 05e358bb076c0680521b0a6d66b9fc8b3ea1af40 Mon Sep 17 00:00:00 2001 From: tim30b Date: Sat, 6 Aug 2022 14:58:59 +0200 Subject: korrekturen in andrea teil --- buch/papers/kreismembran/teil3.tex | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) (limited to 'buch/papers/kreismembran/teil3.tex') diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 014b6e6..276f911 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -78,7 +78,8 @@ kann man die Lösungsmethoden 1 und 2 vergleichen. \subsection{Vergleich der Analytischen Lösungen \label{kreismembran:vergleich}} -Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, und in einer unendlichen Membran gibt es keine, dato che abbiamo assunto che la soluzione è rotationssymmetrisch. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. +Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. +Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, welche unter der Annahme einer rotationssymmetrischen Lösung nicht vorhanden sein können. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der $0$-ter Ordnung. -- cgit v1.2.1 From a37eaf082bc34c696c40efe33cf868c41dd765a0 Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Mon, 8 Aug 2022 19:00:45 +0200 Subject: last commit --- buch/papers/kreismembran/teil3.tex | 24 ++++++++++++++---------- 1 file changed, 14 insertions(+), 10 deletions(-) (limited to 'buch/papers/kreismembran/teil3.tex') diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 276f911..468ee24 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -6,25 +6,22 @@ \section{Lösungsmethode 2: Transformationsmethode \label{kreismembran:section:teil3}} \rhead{Lösungsmethode 2: Transformationsmethode} -Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. +Die Hankel-Transformation kann hier zur Lösung der Differentialgleichung verwendet werden. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. \subsubsection{Transformation und Reduktion auf eine algebraische Gleichung\label{subsub:transf_reduktion}} Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ein: -\begin{equation*} +\begin{align} \frac{\partial^2u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} - \frac{\partial u}{\partial r} \right), \quad 00 - \label{eq:PDE_inf_membane} -\end{equation*} - -\begin{align} - u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 00 \label{eq:PDE_inf_membane} \\ + u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 0 Date: Mon, 15 Aug 2022 00:50:56 +0200 Subject: gegengelesene Fehler angepasst --- buch/papers/kreismembran/teil3.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'buch/papers/kreismembran/teil3.tex') diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 468ee24..a9dcd95 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -17,7 +17,7 @@ Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ei + \frac{1}{r} \frac{\partial u}{\partial r} \right), \quad 00 \label{eq:PDE_inf_membane} \\ - u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 0 Date: Mon, 15 Aug 2022 13:41:03 +0200 Subject: korrektur 15.08 --- buch/papers/kreismembran/teil3.tex | 22 +++++++++++++--------- 1 file changed, 13 insertions(+), 9 deletions(-) (limited to 'buch/papers/kreismembran/teil3.tex') diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index a9dcd95..d143ec7 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -60,19 +60,23 @@ so dass $\tilde{g}(\kappa)\equiv 0$ und \tilde{f}(\kappa)=Aa\int_{0}^{\infty}r(a^2 + r^2)^{-\frac{1}{2}} J_0 (\kappa r) \; dr=\frac{Aa}{\kappa}e^{-a\kappa}. \end{equation*} -Aus der Laplace-Transformation und unter Verwendung der Skalierungseigenschaft ergibt sich, dass +\noindent Die formale Lösung \eqref{eq:formale_lösung} lautet also +\begin{align} + u(r,t)=Aa\int_{0}^{\infty}e^{-a\kappa} J_0(\kappa r)\cos(c\kappa t) \; dk=AaRe\int_{0}^{\infty}e^{-\kappa(a+ict)} J_0(\kappa r) \; dk. + \label{form_lösung2_step1} +\end{align} +\noindent Aus der Laplace-Transformation und unter Verwendung der Skalierungseigenschaft \cite{noauthor_laplace_nodate} ergibt sich, dass \begin{align*} - \int_{0}^{\infty}e^{-px} J_0(\kappa x) \; dx = \frac{1}{\sqrt{\kappa^2 + p^2}}. + \int_{0}^{\infty}e^{-px} J_0(\kappa x) \; dx = \frac{1}{\sqrt{\kappa^2 + p^2}}, \end{align*} -Die formale Lösung \eqref{eq:formale_lösung} lautet also -\begin{align*} - u(r,t)&=Aa\int_{0}^{\infty}e^{-a\kappa} J_0(\kappa r)\cos(c\kappa t) \; dk=AaRe\int_{0}^{\infty}e^{-\kappa(a+ict)} J_0(\kappa r) \; dk\\ - &=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}}. -\end{align*} +\noindent \eqref{form_lösung2_step1} kann somit vereinfacht werden in: +\begin{equation*} + u(r,t)=AaRe\left\{r^2+\left(a+ict\right)^2\right\}^{-\frac{1}{2}}. +\end{equation*} -Nimmt man jedoch die allgemeine Lösung durch Überlagerung, +\noindent Nimmt man jedoch die allgemeine Lösung durch Überlagerung, \begin{align} u(r, t) = \displaystyle\sum_{m=1}^{\infty} J_0 (k_{m}r)[a_{m}\cos(c \kappa_{m} t)+b_{m}\sin(c \kappa_{m} t)] @@ -84,6 +88,6 @@ kann man die Lösungsmethoden 1 und 2 vergleichen. \label{kreismembran:vergleich}} Bei der Analyse der Gleichungen \eqref{eq:lösung_endliche_generelle} und \eqref{eq:lösung_unendliche_generelle} fällt sofort auf, dass die Gleichung \eqref{eq:lösung_unendliche_generelle} nicht mehr von $m$ und $n$ abhängt, sondern nur noch von $n$ \cite{nishanth_p_vibrations_2018}. Das macht Sinn, denn $n$ beschreibt die Anzahl der Knotenlinien, welche unter der Annahme einer rotationssymmetrischen Lösung nicht vorhanden sein können. Tatsächlich werden $a_{m0}$, $b_{m0}$ und $\kappa_{m0}$ in $a_m$, $b_m$ bzw. $\kappa_m$ umbenannt. Die beiden Termen $\cos(n\varphi)$ und $\sin(n\varphi)$ verschwinden ebenfalls, da für $n=0$ der $\cos(n\varphi)$ gleich 1 und der $\sin(n \varphi)$ gleich 0 ist. -Die Funktion hängt also nicht mehr von der Besselfunktionen $n$-ter Ordnung ab, sondern nur von der nullter Ordnung. +Die Funktion hängt also nicht mehr von der Bessel-Funktionen $n$-ter Ordnung ab, sondern nur von der nullter Ordnung. -- cgit v1.2.1