From e0fb3e7b5861b9199eb2d361311cd1b768f8bed4 Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Thu, 9 Jun 2022 15:53:28 +0200 Subject: Korrektur Feedback --- buch/papers/kreismembran/teil3.tex | 40 ++++++++++++++++++++++---------------- 1 file changed, 23 insertions(+), 17 deletions(-) (limited to 'buch/papers/kreismembran/teil3.tex') diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index bef8b5f..10338e7 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -6,7 +6,10 @@ \section{Lösungsmethode 2: Transformationsmethode \label{kreismembran:section:teil3}} \rhead{Lösungsmethode 2: Transformationsmethode} -Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion u nur von der Entfernung zum Ausgangspunkt abhängt. Wir führen also das Konzept einer unendlichen und achsensymmetrischen Membran ein: +Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. + +\subsubsection{Transformation und Reduktion auf eine algebraische Gleichung\label{subsub:transf_reduktion}} +Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ein: \begin{equation*} \frac{\partial^2u}{\partial t^2} = @@ -18,16 +21,15 @@ Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwen \end{equation*} \begin{align} - u(r,0)=f(r), \quad \frac{\partial}{\partial t} u(r,0) = g(r), \quad \text{für} \quad 0