From a37eaf082bc34c696c40efe33cf868c41dd765a0 Mon Sep 17 00:00:00 2001 From: Andrea Mozzini Vellen Date: Mon, 8 Aug 2022 19:00:45 +0200 Subject: last commit --- buch/papers/kreismembran/teil1.tex | 22 +++++++++++----------- buch/papers/kreismembran/teil2.tex | 16 ++++++++-------- buch/papers/kreismembran/teil3.tex | 24 ++++++++++++++---------- 3 files changed, 33 insertions(+), 29 deletions(-) (limited to 'buch/papers/kreismembran') diff --git a/buch/papers/kreismembran/teil1.tex b/buch/papers/kreismembran/teil1.tex index f0d478f..a872ed1 100644 --- a/buch/papers/kreismembran/teil1.tex +++ b/buch/papers/kreismembran/teil1.tex @@ -23,7 +23,7 @@ Da es sich um eine Kreisscheibe handelt, werden Polarkoordinaten verwendet, so d \frac1r \frac{\partial}{\partial r} + - \frac{1}{r 2} + \frac{1}{r^2} \frac{\partial^2}{\partial\varphi^2} \label{buch:pde:kreis:laplace} \end{equation*} @@ -39,16 +39,16 @@ Daher ist die Membranabweichung im Punkt $(r,\varphi)$ $\in$ $\overline{\rm \Ome \end{align*} Um die Vergleichbarkeit der beiden nachfolgend vorgestellten Lösungsverfahren in Abschnitt \ref{kreismembran:vergleich} zu vereinfachen, werden keine Randbedingungen vorgegeben. -Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur zeit $t = \text{0}$: +Um eine eindeutige Lösung bestimmen zu können, werden die folgenden Anfangsbedingungen festgelegt zur Zeit $t = \text{0}$: \begin{align*} u(r,\varphi, 0) &= f(r,\varphi)\\ u_t(r,\varphi, 0) &= g(r,\varphi). \end{align*} \subsection{Lösung\label{sub:lösung1}} -Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der varibalen Trennungsmethode gelöst. +Nun wird das in Abschnitt \ref{sub:aufgabestellung} vorgestellte Problem mit Hilfe der Separationsmethode gelöst. \subsubsection{Ansatz der Separation der Variablen\label{subsub:ansatz_separation}} -Bezug muss an dieser Stelle von einer Separation der Variablen ausgegangen werden: +Hierfür wird folgenden Ansatz gemacht: \begin{equation*} u(r,\varphi, t) = F(r)G(\varphi)T(t) \end{equation*} @@ -64,26 +64,26 @@ Dies bedeutet, dass die Konstante negativ sein muss, also schreibt man $-\kappa^ T''(t) + c^2\kappa^2T(t) &= 0\\ r^2\frac{F''(r)}{F(r)} + r \frac{F'(r)}{F(r)} +\kappa^2 r^2 &= - \frac{G''(\varphi)}{G(\varphi)}. \end{align*} -In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also das: +In der zweiten Gleichung hängt die linke Seite nur von $r$ ab, während die rechte Seite nur von $\varphi$ abhängt. Sie müssen also wiederum gleich einer reellen Zahl $\nu$ sein. Also: \begin{align*} - r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) &= 0 \\ - G''(\varphi) &= \nu G(\varphi). + r^2F''(r) + rF'(r) + (\kappa^2 r^2 - \nu)F(r) = 0 \quad \text{und} \quad + G''(\varphi) = \nu G(\varphi). \end{align*} \subsubsection{Lösung für $G(\varphi)$\label{subsub:lösung_G}} Da für die zweite Gleichung Lösungen von Schwingungen erwartet werden, für die $G''(\varphi)=-\omega^2 G(\varphi)$ gilt, schreibt man die gemeinsame Konstante als $\nu=-\omega^2$, was die Formeln später vereinfacht. Also: \begin{equation*} - G(\varphi) = C_n \cos(\varphi) + D_n \sin(\varphi) + G(\varphi) = C_n \cos(\nu\varphi) + D_n \sin(\nu\varphi) \label{eq:cos_sin_überlagerung} \end{equation*} \subsubsection{Lösung für $F(r)$\label{subsub:lösung_F}} -Die Gleichung für $F$ hat die Gestalt (verweis auf \ref{buch:differentialgleichungen:bessel-operator}) +Die Gleichung für $F$ hat die Gestalt (Verweis auf \label{buch:differentialgleichungen:bessel-operator} \begin{align} r^2F''(r) + rF'(r) + (\kappa^2 r^2 - n^2)F(r) = 0 \label{eq:2nd_degree_PDE} \end{align} -Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Besselfunktionen +Wir bereits in Kapitel \ref{buch:differntialgleichungen:section:bessel} gezeigt, sind die Bessel-Funktionen \begin{equation*} J_{\nu}(x) = r^\nu \displaystyle\sum_{m=0}^{\infty} \frac{(-1)^m x^{2m}}{2^{2m+\nu}m! \Gamma (\nu + m+1)} \end{equation*} @@ -104,7 +104,7 @@ Durch Überlagerung aller Ergebnisse erhält man die Lösung \end{align} Dabei sind $m$ und $n$ ganze Zahlen, wobei $m$ für die Anzahl der Knotenkreise und $n$ -für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie; siehe Abbildung \ref{buch:pde:kreis:fig:pauke}. $Jn(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. +für die Anzahl der Knotenlinien steht. Es gibt bestimmte Bereiche auf der Membran, in denen es keine Bewegung oder Vibration gibt. Wenn der nicht schwingende Bereich ein Kreis ist, nennt man ihn einen Knotenkreis, und wenn er eine Linie ist, nennt man ihn ebenfalls eine Knotenlinie (siehe Abbildung \ref{buch:pde:kreis:fig:pauke}). $J_n(\kappa_{mn}r)$ ist die Besselfunktion $n$-ter Ordnung, wobei $\kappa mn$ die Wellenzahl und $r$ der Radius ist. $a_{mn}$ und $b_{mn}$ sind die zu bestimmenden Konstanten. \begin{figure} \centering diff --git a/buch/papers/kreismembran/teil2.tex b/buch/papers/kreismembran/teil2.tex index 4fb139c..133ee31 100644 --- a/buch/papers/kreismembran/teil2.tex +++ b/buch/papers/kreismembran/teil2.tex @@ -34,7 +34,7 @@ Unter Verwendung der Integraldarstellung J_n(\kappa r)=\frac{1}{2\pi}\int_{\phi_{0}}^{2\pi + \phi_{0}}e^{i(n\alpha-\kappa r \sin \alpha)} \; d\alpha \label{equation:bessel_n_ordnung} \end{equation*} - der Besselfunktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu: + der Bessel-Funktion vom Ordnung $n$ \eqref{buch:fourier:eqn:bessel-integraldarstellung} wird \eqref{equation:F_ohne_bessel} zu: \begin{align} F(k,\phi)&=e^{in(\phi-\frac{\pi}{2})}\int_{0}^{\infty}rJ_n(\kappa r) f(r) \; dr \nonumber \\ &=e^{in(\phi-\frac{\pi}{2})}\tilde{f}_n(\kappa), @@ -69,10 +69,10 @@ verwendet werden, um die Hankel-Transformation \eqref{equation:hankel} und ihre Insbesondere die Hankel-Transformation der nullten Ordnung ($n=0$) und der ersten Ordnung ($n=1$) sind häufig nützlich, um Lösungen für Probleme mit der Laplace Gleichung in einer achsensymmetrischen zylindrischen Geometrie zu finden. \subsection{Operatoreigenschaften der Hankel-Transformation \label{sub:op_properties_hankel}} -In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Der Beweis für ihre Gültigkeit wird jedoch nicht analysiert. +In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation aufgeführt. Die Beweise für ihre Gültigkeit werden jedoch nicht analysiert, dies ist in Buch \textit{Integral Tansforms and Their Applications} \cite{lokenath_debnath_integral_2015} zu finden. \begin{satz}{Skalierung:} - Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: + Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt: \begin{equation*} \mathscr{H}_n\{f(ar)\}=\frac{1}{a^{2}}\tilde{f}_n \left(\frac{\kappa}{a}\right), \quad a>0. @@ -80,7 +80,7 @@ In diesem Kapitel werden die operativen Eigenschaften der Hankel-Transformation \end{satz} \begin{satz}{Parsevalsche Relation:} -Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann: +Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H}_n\{g(r)\}$, dann gilt: \begin{equation*} \int_{0}^{\infty}rf(r)g(r) \; dr = \int_{0}^{\infty}\kappa\tilde{f}(\kappa)\tilde{g}(\kappa) \; d\kappa. @@ -88,20 +88,20 @@ Wenn $\tilde{f}(\kappa)=\mathscr{H}_n\{f(r)\}$ und $\tilde{g}(\kappa)=\mathscr{H \end{satz} \begin{satz}{Hankel-Transformationen von Ableitungen:} -Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann: +Wenn $\tilde{f}_n(\kappa)=\mathscr{H}_n\{f(r)\}$, dann gilt: \begin{align*} &\mathscr{H}_n\{f'(r)\}=\frac{\kappa}{2n}\left[(n-1)\tilde{f}_{n+1}(\kappa)-(n+1)\tilde{f}_{n-1}(\kappa)\right], \quad n\geq1, \\ &\mathscr{H}_1\{f'(r)\}=-\kappa \tilde{f}_0(\kappa), \end{align*} -vorausgesetzt dass $[rf(r)]$ verschwindet wenn $r\to0$ und $r\to\infty$. +vorausgesetzt, dass $rf(r)$ verschwindet wenn $r\to0$ und $r\to\infty$. \end{satz} \begin{satz} -Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann: +Wenn $\mathscr{H}_n\{f(r)\}=\tilde{f}_n(\kappa)$, dann gilt: \begin{equation*} \mathscr{H}_n \left\{ \left( \nabla^2 - \frac{n^2}{r^2} f(r)\right)\right\}= \mathscr{H}_n\left\{\frac{1}{r}\frac{d}{dr}\left(r\frac{df}{dr}\right) - \frac{n^2}{r^2}f(r)\right\}=-\kappa^2\tilde{f}_{n}(\kappa), \end{equation*} -bereitgestellt dass $rf'(r)$ und $rf(r)$ verschwinden für $r\to0$ und $r\to\infty$. +bereitgestellt, dass $rf'(r)$ und $rf(r)$ verschwinden für $r\to0$ und $r\to\infty$. \end{satz} diff --git a/buch/papers/kreismembran/teil3.tex b/buch/papers/kreismembran/teil3.tex index 276f911..468ee24 100644 --- a/buch/papers/kreismembran/teil3.tex +++ b/buch/papers/kreismembran/teil3.tex @@ -6,25 +6,22 @@ \section{Lösungsmethode 2: Transformationsmethode \label{kreismembran:section:teil3}} \rhead{Lösungsmethode 2: Transformationsmethode} -Die Hankel-Transformation wird dann zur Lösung der Differentialgleichung verwendet. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. +Die Hankel-Transformation kann hier zur Lösung der Differentialgleichung verwendet werden. Es müssen jedoch einige Änderungen an dem Problem vorgenommen werden, damit es mit den Annahmen übereinstimmt, die für die Verwendung der Hankel-Transformation erforderlich sind. Das heisst, dass die Funktion $u$ nur von der Entfernung zum Ausgangspunkt abhängt. \subsubsection{Transformation und Reduktion auf eine algebraische Gleichung\label{subsub:transf_reduktion}} Führt man also das Konzept einer unendlichen und achsensymmetrischen Membran ein: -\begin{equation*} +\begin{align} \frac{\partial^2u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} - \frac{\partial u}{\partial r} \right), \quad 00 - \label{eq:PDE_inf_membane} -\end{equation*} - -\begin{align} - u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 00 \label{eq:PDE_inf_membane} \\ + u(r,0)=f(r), \quad u_t(r,0) = g(r), \quad \text{für} \quad 0