From 1bdb803ced744bcfe7cf81c89a740fcbcf6bdc70 Mon Sep 17 00:00:00 2001 From: Nao Pross Date: Tue, 30 Aug 2022 22:42:54 +0200 Subject: kugel: Minor corrections --- buch/papers/kugel/applications.tex | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) (limited to 'buch/papers/kugel/applications.tex') diff --git a/buch/papers/kugel/applications.tex b/buch/papers/kugel/applications.tex index 15a57d5..10bf153 100644 --- a/buch/papers/kugel/applications.tex +++ b/buch/papers/kugel/applications.tex @@ -32,7 +32,6 @@ at their location (figure \ref{kugel:fig:eeg-electrodes}). To see how this will relate to the spherical harmonics, we will first quickly recap a bit of physics, electrodynamics to be precise. - \subsubsection{Electrodynamics} In section \ref{kugel:sec:construction:eigenvalue} we have shown that the @@ -88,7 +87,7 @@ using the spherical harmonics. To solve this new interpolation problem, we will start with a blatantly engineering assumption: the human head is a sphere of radius $R$, with the value -of $R$ begin the average radius of a human head (which is around 11 cm). So, we +of $R$ being the average radius of a human head (which is around 11 cm). So, we will assume that the potential distribution on the head can be written as a finite linear combination of spherical harmonics: \begin{equation*} @@ -110,7 +109,7 @@ minimization problem: \sin \vartheta \, d\vartheta d\varphi, \label{kugel:eqn:eeg-min} \\ &\text{under the constraints} \quad V(p_j) = \phi_j - \quad \text{ for } \quad 1 < j < M. + \quad \text{ for } \quad 1 \leq j \leq M. \label{kugel:eqn:eeg-min-constraints} \end{align} \end{subequations} @@ -203,4 +202,4 @@ quite unwieldy. \subsection{Measuring Gravitational Fields} -\subsection{Quantisation of Angular Momentum} +% \subsection{Quantisation of Angular Momentum} -- cgit v1.2.1