From f07871bd3ce9cfc41ecfc29b66c07d4377b8f9a7 Mon Sep 17 00:00:00 2001 From: canuel Date: Fri, 26 Aug 2022 16:59:18 +0200 Subject: added the chapter about spherical harmonic expansion and corrected some errors --- buch/papers/kugel/spherical-harmonics.tex | 183 ++++++++++++++++++++++-------- 1 file changed, 138 insertions(+), 45 deletions(-) (limited to 'buch/papers/kugel/spherical-harmonics.tex') diff --git a/buch/papers/kugel/spherical-harmonics.tex b/buch/papers/kugel/spherical-harmonics.tex index b3487be..f51a772 100644 --- a/buch/papers/kugel/spherical-harmonics.tex +++ b/buch/papers/kugel/spherical-harmonics.tex @@ -111,7 +111,10 @@ that satisfy the equation \surflaplacian f = -\lambda f. \end{equation} Perhaps it may not be obvious at first glance, but we are in fact dealing with a -partial differential equation (PDE) \kugeltodo{Boundary conditions?}. If we +partial differential equation (PDE)\footnote{ + Considering the fact that we are dealing with a PDE, + you may be wondering what are the boundary conditions. Well, since this eigenvalue problem is been developed on + the spherical surface (boundary of a sphere), the boundary in this case are empty, i.e no boundary condition has to be considered.}. unpack the notation of the operator $\nabla^2_{\partial S}$ according to definition \ref{kugel:def:surface-laplacian}, we get: @@ -283,7 +286,7 @@ representation} which are \end{equation*} respectively, both of which we will not prove (see chapter 3 of \cite{bell_special_2004} for a proof). Now that we have a solution for the -Legendre equation, we can make use of the following lemma patch the solutions +Legendre equation, we can make use of the following lemma to patch the solutions such that they also become solutions of the associated Legendre equation \eqref{kugel:eqn:associated-legendre}. @@ -317,7 +320,7 @@ obtain the \emph{associated Legendre functions}. \end{equation} are known as Ferrers or associated Legendre functions. \end{definition} -The constraint $|m|