From 670555039265d83945b0d3e205aefb020425585b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Wed, 6 Apr 2022 08:00:09 +0200 Subject: Start definition.tex --- buch/papers/laguerre/definition.tex | 150 ++++++++++++++++++++++++++++-------- 1 file changed, 120 insertions(+), 30 deletions(-) (limited to 'buch/papers/laguerre/definition.tex') diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index 5f6d8bd..84a26cf 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -6,43 +6,133 @@ \section{Definition \label{laguerre:section:definition}} \rhead{Definition} - +Die Laguerre-Differentialgleichung ist gegeben durch \begin{align} - x y''(x) + (1 - x) y'(x) + n y(x) - = - 0 - \label{laguerre:dgl} +x y''(x) + (1 - x) y'(x) + n y(x) += +0 +, \quad +n \in \mathbb{N}_0 +, \quad +x \in \mathbb{R} +. +\label{laguerre:dgl} \end{align} - +Zur Lösung der Gleichung \eqref{laguerre:dgl} +verwenden wir einen Potenzreihenansatz. +Setzt man nun den Ansatz +\begin{align*} +y(x) +&= +\sum_{k=0}^\infty a_k x^k +\\ +y'(x) +& = +\sum_{k=1}^\infty k a_k x^{k-1} += +\sum_{k=0}^\infty (k+1) a_{k+1} x^k +\\ +y''(x) +&= +\sum_{k=2}^\infty k (k-1) a_k x^{k-2} += +\sum_{k=1}^\infty (k+1) k a_{k+1} x^{k-1} +\end{align*} +in die Differentialgleichung ein, erhält man: +\begin{align*} +\sum_{k=1}^\infty (k+1) k a_{k+1} x^k ++ \sum_{k=0}^\infty (k+1) a_{k+1} x^k +- \sum_{k=0}^\infty k a_k x^k ++ n \sum_{k=0}^\infty a_k x^k +&= +0\\ +\sum_{k=0}^\infty +\left[ (k+1) k a_{k+1} + (k+1) a_{k+1} - k a_k + n a_k \right] x^k +&= +0. +\end{align*} +Daraus lässt sich die Rekursionsbeziehung +\begin{align*} +a_{k+1} +&= +\frac{k-n}{(k+1) ^ 2} a_k +\end{align*} +ableiten. +Für ein konstantes $n$ erhalten wir als Potenzreihenlösung ein Polynom vom Grad $n$, +denn für $k=n$ wird $a_{n+1} = 0$ und damit auch $a_{n+2}=a_{n+3}=\ldots=0$. +Aus der Rekursionsbeziehung ist zudem ersichtlich, +dass $a_0 \neq 0$ beliebig gewählt werden kann. +Wählen wir nun $c_0 = 1$, dann folgt für die Koeffizienten $a_1, a_2, a_3$ +\begin{align*} +a_1 += +-\frac{n}{1^2} +,&& +a_2 += +\frac{(n-1)n}{1^2 2^2} +,&& +a_3 += +-\frac{(n-2)(n-1)n}{1^2 2^2 3^2} +\end{align*} +und allgemein +\begin{align*} +k&\leq n: +& +a_k +&= +(-1)^k \frac{n!}{(n-k)!} \frac{1}{(k!)^2} += +\frac{(-1)^k}{k!} +\begin{pmatrix} +n +\\ +k +\end{pmatrix} +\\ +k&>n: +& +a_k +&= +0. +\end{align*} +Somit haben wir die Laguerre-Polynome $L_n(x)$ erhalten: \begin{align} - L_n(x) - = - \sum_{k=0}^{n} - \frac{(-1)^k}{k!} - \begin{pmatrix} - n \\ - k - \end{pmatrix} - x^k - \label{laguerre:polynom} +L_n(x) += +\sum_{k=0}^{n} +\frac{(-1)^k}{k!} +\begin{pmatrix} +n \\ +k +\end{pmatrix} +x^k +\label{laguerre:polynom} \end{align} +\subsection{Assoziierte Laguerre-Polynome +\label{laguerre:subsection:assoz_laguerre} +} \begin{align} - x y''(x) + (\alpha + 1 - x) y'(x) + n y(x) - = - 0 - \label{laguerre:generell_dgl} +x y''(x) + (\alpha + 1 - x) y'(x) + n y(x) += +0 +\label{laguerre:generell_dgl} \end{align} \begin{align} - L_n^\alpha (x) - = - \sum_{k=0}^{n} - \frac{(-1)^k}{k!} - \begin{pmatrix} - n + \alpha \\ - n - k - \end{pmatrix} - x^k - \label{laguerre:polynom} +L_n^\alpha (x) += +\sum_{k=0}^{n} +\frac{(-1)^k}{k!} +\begin{pmatrix} +n + \alpha \\ +n - k +\end{pmatrix} +x^k +\label{laguerre:polynom} \end{align} + +% https://www.math.kit.edu/iana1/lehre/hm3phys2012w/media/laguerre.pdf +% http://www.physics.okayama-u.ac.jp/jeschke_homepage/E4/kapitel4.pdf -- cgit v1.2.1