From b7ee1c1a6836f30d2267cfc9e6dbfa206b2cb737 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 12 May 2022 18:19:49 +0200 Subject: Derive Laguerre-Polynomials from Laguerre-ODE, proof orthogonality with Sturm-Liouville --- buch/papers/laguerre/definition.tex | 160 ++++++++++++++++++++---------------- 1 file changed, 88 insertions(+), 72 deletions(-) (limited to 'buch/papers/laguerre/definition.tex') diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index 84a26cf..edd2b7b 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -4,11 +4,11 @@ % (c) 2022 Patrik Müller, Ostschweizer Fachhochschule % \section{Definition -\label{laguerre:section:definition}} + \label{laguerre:section:definition}} \rhead{Definition} -Die Laguerre-Differentialgleichung ist gegeben durch +Die verallgemeinerte Laguerre-Differentialgleichung ist gegeben durch \begin{align} -x y''(x) + (1 - x) y'(x) + n y(x) +x y''(x) + (\nu + 1 - x) y'(x) + n y(x) = 0 , \quad @@ -18,22 +18,27 @@ x \in \mathbb{R} . \label{laguerre:dgl} \end{align} -Zur Lösung der Gleichung \eqref{laguerre:dgl} -verwenden wir einen Potenzreihenansatz. +Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet, +weil die Lösung gleich berechnet werden kann, +aber man zusätzlich die Lösung für den allgmeinen Fall erhält. +Zur Lösung der Gleichung \eqref{laguerre:dgl} verwenden wir einen +Potenzreihenansatz. +Da wir bereits wissen, dass die Lösung orthogonale Polynome sind, +erscheint dieser Ansatz sinnvoll. Setzt man nun den Ansatz \begin{align*} -y(x) -&= +y(x) + & = \sum_{k=0}^\infty a_k x^k \\ y'(x) -& = + & = \sum_{k=1}^\infty k a_k x^{k-1} = \sum_{k=0}^\infty (k+1) a_{k+1} x^k \\ y''(x) -&= + & = \sum_{k=2}^\infty k (k-1) a_k x^{k-2} = \sum_{k=1}^\infty (k+1) k a_{k+1} x^{k-1} @@ -41,98 +46,109 @@ y''(x) in die Differentialgleichung ein, erhält man: \begin{align*} \sum_{k=1}^\infty (k+1) k a_{k+1} x^k -+ \sum_{k=0}^\infty (k+1) a_{k+1} x^k -- \sum_{k=0}^\infty k a_k x^k -+ n \sum_{k=0}^\infty a_k x^k -&= -0\\ -\sum_{k=0}^\infty -\left[ (k+1) k a_{k+1} + (k+1) a_{k+1} - k a_k + n a_k \right] x^k -&= ++ +(\nu + 1)\sum_{k=0}^\infty (k+1) a_{k+1} x^k +- +\sum_{k=0}^\infty k a_k x^k ++ +n \sum_{k=0}^\infty a_k x^k + & = +0 \\ +\sum_{k=1}^\infty +\left[ (k+1) k a_{k+1} + (\nu + 1)(k+1) a_{k+1} - k a_k + n a_k \right] x^k + & = 0. \end{align*} Daraus lässt sich die Rekursionsbeziehung \begin{align*} a_{k+1} -&= -\frac{k-n}{(k+1) ^ 2} a_k + & = +\frac{k-n}{(k+1) (k + \nu + 1)} a_k \end{align*} ableiten. -Für ein konstantes $n$ erhalten wir als Potenzreihenlösung ein Polynom vom Grad $n$, +Für ein konstantes $n$ erhalten wir als Potenzreihenlösung ein Polynom vom Grad +$n$, denn für $k=n$ wird $a_{n+1} = 0$ und damit auch $a_{n+2}=a_{n+3}=\ldots=0$. -Aus der Rekursionsbeziehung ist zudem ersichtlich, +Aus der Rekursionsbeziehung ist zudem ersichtlich, dass $a_0 \neq 0$ beliebig gewählt werden kann. -Wählen wir nun $c_0 = 1$, dann folgt für die Koeffizienten $a_1, a_2, a_3$ +Wählen wir nun $a_0 = 1$, dann folgt für die Koeffizienten $a_1, a_2, a_3$ \begin{align*} -a_1 -= --\frac{n}{1^2} -,&& -a_2 -= -\frac{(n-1)n}{1^2 2^2} -,&& +a_1 += +-\frac{n}{1 \cdot (\nu + 1)} +, & & +a_2 += +\frac{(n-1)n}{1 \cdot 2 \cdot (\nu + 1)(\nu + 2)} +, & & a_3 = --\frac{(n-2)(n-1)n}{1^2 2^2 3^2} +-\frac{(n-2)(n-1)n}{1 \cdot 2 \cdot 3 \cdot (\nu + 1)(\nu + 2)(\nu + 3)} \end{align*} und allgemein \begin{align*} -k&\leq n: -& -a_k -&= -(-1)^k \frac{n!}{(n-k)!} \frac{1}{(k!)^2} -= -\frac{(-1)^k}{k!} -\begin{pmatrix} -n -\\ k -\end{pmatrix} + & \leq +n: + & +a_k + & = +(-1)^k \frac{n!}{(n-k)!} \frac{1}{k!(\nu + 1)_k} += +\frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} \\ -k&>n: -& +k & >n: + & a_k -&= + & = 0. \end{align*} -Somit haben wir die Laguerre-Polynome $L_n(x)$ erhalten: +Somit erhalten wir für $\nu = 0$ die Laguerre-Polynome \begin{align} L_n(x) = -\sum_{k=0}^{n} -\frac{(-1)^k}{k!} -\begin{pmatrix} -n \\ -k -\end{pmatrix} -x^k +\sum_{k=0}^{n} \frac{(-1)^k}{k!} \binom{n}{k} x^k \label{laguerre:polynom} \end{align} - -\subsection{Assoziierte Laguerre-Polynome -\label{laguerre:subsection:assoz_laguerre} -} +und mit $\nu \in \mathbb{R}$ die verallgemeinerten Laguerre-Polynome \begin{align} -x y''(x) + (\alpha + 1 - x) y'(x) + n y(x) +L_n^\nu(x) = -0 -\label{laguerre:generell_dgl} +\sum_{k=0}^{n} \frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} x^k. +\label{laguerre:allg_polynom} \end{align} - -\begin{align} -L_n^\alpha (x) +Durch die analytische Fortsetzung erhalten wir zudem noch die zweite Lösung der +Differentialgleichung mit der Form +\begin{align*} +\Xi_n(x) = -\sum_{k=0}^{n} -\frac{(-1)^k}{k!} -\begin{pmatrix} -n + \alpha \\ -n - k -\end{pmatrix} -x^k -\label{laguerre:polynom} -\end{align} +L_n(x) \ln(x) + \sum_{k=1}^\infty d_k x^k +\end{align*} +Nach einigen mühsamen Rechnungen, +die den Rahmen dieses Kapitel sprengen würden, +erhalten wir +\begin{align*} +\Xi_n += +L_n(x) \ln(x) ++ +\sum_{k=1}^n \frac{(-1)^k}{k!} \binom{n}{k} +(\alpha_{n-k} - \alpha_n - 2 \alpha_k)x^k ++ +(-1)^n \sum_{k=1}^\infty \frac{(k-1)!n!}{((n+k)!)^2} x^{n+k}, +\end{align*} +wobei $\alpha_0 = 0$ und $\alpha_k =\sum_{i=1}^k i^{-1}$, +$\forall k \in \mathbb{N}$. +Die Laguerre-Polynome von Grad $0$ bis $7$ sind in +Abbildung~\ref{laguerre:fig:polyeval} dargestellt. +\begin{figure} +\centering +\includegraphics[width=0.7\textwidth]{% + papers/laguerre/images/laguerre_polynomes.pdf% +} +\caption{Laguerre-Polynome vom Grad $0$ bis $7$} +\label{laguerre:fig:polyeval} +\end{figure} % https://www.math.kit.edu/iana1/lehre/hm3phys2012w/media/laguerre.pdf % http://www.physics.okayama-u.ac.jp/jeschke_homepage/E4/kapitel4.pdf -- cgit v1.2.1