From b7ee1c1a6836f30d2267cfc9e6dbfa206b2cb737 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 12 May 2022 18:19:49 +0200 Subject: Derive Laguerre-Polynomials from Laguerre-ODE, proof orthogonality with Sturm-Liouville --- buch/papers/laguerre/eigenschaften.tex | 94 +++++++++++++++++++++++++++++++++- 1 file changed, 92 insertions(+), 2 deletions(-) (limited to 'buch/papers/laguerre/eigenschaften.tex') diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index b7597e5..c589c92 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -4,5 +4,95 @@ % (c) 2022 Patrik Müller, Ostschweizer Fachhochschule % \section{Eigenschaften -\label{laguerre:section:eigenschaften}} -\rhead{Eigenschaften} \ No newline at end of file + \label{laguerre:section:eigenschaften}} +\rhead{Eigenschaften} + +\subsection{Orthogonalität} +Wenn wir die Laguerre\--Differentialgleichung in ein +Sturm\--Liouville\--Problem umwandeln können, haben wir bewiesen, dass es sich +bei +den Laguerre\--Polynomen um orthogonale Polynome handelt (siehe +Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}). +Der Sturm-Liouville-Operator hat die Form +\begin{align} +S += +\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right). +\label{laguerre:slop} +\end{align} +Aus der Beziehung +\begin{align} +S + & = +\Lambda +\nonumber +\\ +\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right) + & = +x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx} +\label{laguerre:sl-lag} +\end{align} +lässt sich sofort erkennen, dass $q(x) = 0$. +Ausserdem ist ersichtlich, dass $p(x)$ die Differentialgleichung +\begin{align*} +x \frac{dp}{dx} += +-(\nu + 1 - x) p, +\end{align*} +erfüllen muss. +Durch Separation erhalten wir dann +\begin{align*} +\int \frac{dp}{p} + & = +-\int \frac{\nu + 1 - x}{x}dx +\\ +\log p + & = +-\log \nu + 1 - x + C +\\ +p(x) + & = +-C x^{\nu + 1} e^{-x} +\end{align*} +Eingefügt in Gleichung~\eqref{laguerre:sl-lag} erhalten wir +\begin{align*} +\frac{C}{w(x)} +\left( +x^{\nu+1} e^{-x} \frac{d^2}{dx^2} + +(\nu + 1 - x) x^{\nu} e^{-x} \frac{d}{dx} +\right) += +x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}. +\end{align*} +Mittels Koeffizientenvergleich kann nun abgelesen werden, dass $w(x) = x^\nu +e^{-x}$ und $C=1$ mit $\nu > -1$. +Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an, +deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den +Definitionsbereich $(0, \infty)$. +Bleibt nur noch sicherzustellen, dass die Randbedingungen, +\begin{align} +k_0 y(0) + h_0 p(0)y'(0) + & = +0 +\label{laguerre:sllag_randa} +\\ +k_\infty y(\infty) + h_\infty p(\infty) y'(\infty) + & = +0 +\label{laguerre:sllag_randb} +\end{align} +mit $|k_i|^2 + |h_i|^2 \neq 0,\,\forall i \in \{0, \infty\}$, erfüllt sind. +Am linken Rand (Gleichung~\eqref{laguerre:sllag_randa}) kann $y(0) = 1$, $k_0 = +0$ und $h_0 = 1$ verwendet werden, +was auch die Laguerre-Polynome ergeben haben. +Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb}) +\begin{align*} +\lim_{x \rightarrow \infty} p(x) y'(x) + & = +\lim_{x \rightarrow \infty} -x^{\nu + 1} e^{-x} y'(x) += +0 +\end{align*} +für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$. +Damit können wir schlussfolgern, dass die Laguerre-Polynome orthogonal +bezüglich des Skalarproduktes mit der Laguerre\--Gewichtsfunktion sind. -- cgit v1.2.1 From 155989e49b70a4598dbf3ff3277d9e320f226a83 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Fri, 13 May 2022 12:38:18 +0200 Subject: Add some information about Gauss Quadrature and application to Gamma integral --- buch/papers/laguerre/eigenschaften.tex | 25 +++++++++++++++++++++++-- 1 file changed, 23 insertions(+), 2 deletions(-) (limited to 'buch/papers/laguerre/eigenschaften.tex') diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index c589c92..b0cc3a3 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -5,9 +5,21 @@ % \section{Eigenschaften \label{laguerre:section:eigenschaften}} +{ +\large \color{red} +TODO: +Evtl. nur Orthogonalität hier behandeln, da nur diese für die Gauss-Quadratur +benötigt wird. +} + +Die Laguerre-Polynome besitzen einige interessante Eigenschaften \rhead{Eigenschaften} -\subsection{Orthogonalität} +\subsection{Orthogonalität + \label{laguerre:subsection:orthogonal}} +Im Abschnitt~\ref{laguerre:section:definition} haben wir behauptet, +dass die Laguerre-Polynome orthogonale Polynome sind. +Zu dieser Behauptung möchten wir nun einen Beweis liefern. Wenn wir die Laguerre\--Differentialgleichung in ein Sturm\--Liouville\--Problem umwandeln können, haben wir bewiesen, dass es sich bei @@ -95,4 +107,13 @@ Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb}) \end{align*} für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$. Damit können wir schlussfolgern, dass die Laguerre-Polynome orthogonal -bezüglich des Skalarproduktes mit der Laguerre\--Gewichtsfunktion sind. +bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$ mit der Laguerre\--Gewichtsfunktion +$w(x)=x^\nu e^{-x}$ sind. + + +\subsection{Rodrigues-Formel} + +\subsection{Drei-Terme Rekursion} + +\subsection{Beziehung mit der Hypergeometrischen Funktion} + -- cgit v1.2.1