From 2625b1234dd68a9cc3ce50675ac0b1cb80eca275 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Tue, 19 Jul 2022 16:31:48 +0200 Subject: Correct typos, improve grammar --- buch/papers/laguerre/gamma.tex | 55 ++++++++++++++++++++++++------------------ 1 file changed, 31 insertions(+), 24 deletions(-) (limited to 'buch/papers/laguerre/gamma.tex') diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex index b76daeb..2e5fc06 100644 --- a/buch/papers/laguerre/gamma.tex +++ b/buch/papers/laguerre/gamma.tex @@ -8,8 +8,8 @@ Die Gauss-Laguerre-Quadratur kann nun verwendet werden, um exponentiell abfallende Funktionen im Definitionsbereich $(0, \infty)$ zu berechnen. -Dabei bietet sich z.B. die Gamma-Funkion bestens an, wie wir in den folgenden -Abschnitten sehen werden. +Dabei bietet sich z.B. die Gamma-Funkion hervorragend an, +wie wir in den folgenden Abschnitten sehen werden. \subsection{Gamma-Funktion} Die Gamma-Funktion ist eine Erweiterung der Fakultät auf die reale und komplexe @@ -26,10 +26,12 @@ Integral der Form \label{laguerre:gamma} . \end{align} -Der Term $e^{-t}$ ist genau die Gewichtsfunktion der Laguerre-Integration und -der Definitionsbereich passt ebenfalls genau für dieses Verfahren. -Zu erwähnen ist auch, dass für die verallgemeinerte Laguerre-Integration die -Gewichtsfunktion $t^\nu e^{-t}$ genau dem Integranden für $\nu=z-1$ entspricht. +Der Term $e^{-t}$ im Integranden und der Integrationsbereich erfüllen +genau die Bedingungen der Laguerre-Integration. +% Der Term $e^{-t}$ ist genau die Gewichtsfunktion der Laguerre-Integration und +% der Definitionsbereich passt ebenfalls genau für dieses Verfahren. +Weiter zu erwähnen ist, dass für die verallgemeinerte Laguerre-Integration die +Gewichtsfunktion $t^\nu e^{-t}$ exakt dem Integranden für $\nu=z-1$ entspricht. \subsubsection{Funktionalgleichung} Die Gamma-Funktion besitzt die gleiche Rekursionsbeziehung wie die Fakultät, @@ -62,7 +64,8 @@ leicht in die linke Halbebene übersetzen und umgekehrt. \subsection{Berechnung mittels Gauss-Laguerre-Quadratur} In den vorherigen Abschnitten haben wir gesehen, dass sich die Gamma-Funktion bestens für die Gauss-Laguerre-Quadratur eignet. -Nun bieten sich uns zwei Optionen diese zu berechnen: +Nun bieten sich uns zwei Optionen, +diese zu berechnen: \begin{enumerate} \item Wir verwenden die verallgemeinerten Laguerre-Polynome, dann $f(x)=1$. \item Wir verwenden die Laguerre-Polynome, dann $f(x)=x^{z-1}$. @@ -92,7 +95,8 @@ und Nullstellen für unterschiedliche $z$. In \eqref{laguerre:quadratur_gewichte} ist ersichtlich, dass die Gewichte einfach zu berechnen sind. Auch die Nullstellen können vorgängig, -mittels eines geeigneten Verfahrens aus den Polynomen bestimmt werden. +mittels eines geeigneten Verfahrens, +aus den Polynomen bestimmt werden. Als problematisch könnte sich höchstens die zu integrierende Funktion $f(x)=x^{z-1}$ für $|z| \gg 0$ erweisen. Somit entscheiden wir uns aufgrund der vorherigen Punkte, @@ -101,7 +105,8 @@ die zweite Variante weiterzuverfolgen. \subsubsection{Direkter Ansatz} Wenden wir also die Gauss-Laguerre-Quadratur aus \eqref{laguerre:laguerrequadratur} auf die Gamma-Funktion -\eqref{laguerre:gamma} an ergibt sich +\eqref{laguerre:gamma} an, +ergibt sich \begin{align} \Gamma(z) \approx @@ -157,11 +162,12 @@ und als Stützstellen die Nullstellen des Laguerre-Polynomes $L_n$. Evaluieren wir den relativen Fehler unserer Approximation zeigt sich ein Bild wie in Abbildung~\ref{laguerre:fig:rel_error_simple}. Man kann sehen, -wie der relative Fehler Nullstellen aufweist für ganzzahlige $z \leq 2n$, -was laut der Theorie der Gauss-Quadratur auch zu erwarten ist, -denn die Approximation via Gauss-Quadratur -ist exakt für zu integrierende Polynome mit Grad $\leq 2n-1$ -und von $z$ auch noch $1$ abgezogen wird im Exponenten. +wie der relative Fehler Nullstellen aufweist für ganzzahlige $z \leq 2n$. +Laut der Theorie der Gauss-Quadratur auch ist das zu erwarten, +da die Approximation via Gauss-Quadratur +exakt ist für zu integrierende Polynome mit Grad $\leq 2n-1$ +und hinzukommt, +dass zudem von $z$ noch $1$ abgezogen wird im Exponenten. Es ist ersichtlich, dass sich für den Polynomgrad $n$ ein Interval gibt, in dem der relative Fehler minimal ist. @@ -347,7 +353,8 @@ m^* \end{align*} Allerdings ist die Funktion $R_{n,m}(\xi)$ unbeschränkt und hat die gleichen Probleme wie die Fehlerabschätzung des direkten Ansatzes. -Dazu müssten wir $\xi$ versuchen unter Kontrolle zu bringen, +Dazu müssten wir $\xi$ versuchen, +unter Kontrolle zu bringen, was ein äussersts schwieriges Unterfangen zu sein scheint. Da die Gauss-Quadratur aber sowieso nur wirklich praktisch sinnvoll für kleine $n$ ist, @@ -367,8 +374,8 @@ aus dieser Grafik nicht offensichtlich, aber sie scheint regelmässig zu sein. Es lässt die Vermutung aufkommen, dass die Restriktion von $m^* \in \mathbb{Z}$ Rundungsprobleme verursacht. -Wir versuchen dieses Problem via lineare Regression und -geeignete Rundung zu beheben. +Wir versuchen, +dieses Problem via lineare Regression und geeignete Rundung zu beheben. Den linearen Regressor \begin{align*} \hat{m} @@ -391,7 +398,7 @@ In Abbildung~\ref{laguerre:fig:schaetzung} sind die Resultate der linearen Regression aufgezeigt mit $\alpha = 1.34094$ und $\beta = 0.854093$. Die lineare Beziehung ist ganz klar ersichtlich und der Fit scheint zu genügen. -Der optimalen Verschiebungsterm kann nun mit +Der optimale Verschiebungsterm kann nun mit \begin{align*} m^* \approx @@ -423,7 +430,7 @@ dann beim Übergang auf die orange Linie wechselt. \caption{Relativer Fehler des Ansatzes mit Verschiebungsterm für verschiedene reele Werte von $z$ und Verschiebungsterme $m$. Das verwendete Laguerre-Polynom besitzt den Grad $n = 8$. -$m^*$ bezeichnet hier den optimalen Verschiebungsterm} +$m^*$ bezeichnet hier den optimalen Verschiebungsterm.} \label{laguerre:fig:rel_error_shifted} \end{figure} @@ -433,8 +440,8 @@ Es stellt sich nun die Frage, wie der relative Fehler sich für verschiedene $z$ und $n$ verhält. In Abbildung~\ref{laguerre:fig:rel_error_range} sind die relativen Fehler für unterschiedliche $n$ dargestellt. -Der relative Fehler scheint immer noch Nullstellen aufzuweisen, -bei für ganzzahlige $z$. +Der relative Fehler scheint immer noch Nullstellen aufzuweisen +für ganzzahlige $z$. Durch das Verschieben ergibt sich jetzt aber, wie zu erwarten war, ein periodischer relativer Fehler mit einer Periodendauer von $1$. @@ -511,7 +518,7 @@ Diese Methode wurde zum Beispiel in Diese Methode erreicht für $n = 7$ typischerweise Genauigkeit von $13$ korrekten, signifikanten Stellen für reele Argumente. Zum Vergleich: die vorgestellte Methode erreicht für $n = 7$ -eine minimale Genauigkeit von $6$-$7$ korrekten, signifikanten Stellen +eine minimale Genauigkeit von $6$ korrekten, signifikanten Stellen für reele Argumente. Das Resultat ist etwas enttäuschend, aber nicht unerwartet, @@ -519,7 +526,7 @@ da die Lanczos-Methode spezifisch auf dieses Problem zugeschnitten ist und unsere Methode eine erweiterte allgemeine Methode ist. Was die Komplexität der Berechnungen im Betrieb angeht, ist die Gauss-Laguerre-Quadratur wesentlich ressourcensparender, -weil sie nur aus $n$ Funktionasevaluationen, +weil sie nur aus $n$ Funktionsevaluationen, wenigen Multiplikationen und Additionen besteht. -Also könnte diese Methode z.B. Anwendung in Systemen mit wenig Rechenleistung +Demzufolge könnte diese Methode Anwendung in Systemen mit wenig Rechenleistung und/oder knappen Energieressourcen finden. \ No newline at end of file -- cgit v1.2.1