From 2625b1234dd68a9cc3ce50675ac0b1cb80eca275 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Tue, 19 Jul 2022 16:31:48 +0200 Subject: Correct typos, improve grammar --- buch/papers/laguerre/quadratur.tex | 19 ++++++++++--------- 1 file changed, 10 insertions(+), 9 deletions(-) (limited to 'buch/papers/laguerre/quadratur.tex') diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 27519d8..a494362 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -6,19 +6,19 @@ \section{Gauss-Quadratur \label{laguerre:section:quadratur}} Die Gauss-Quadratur ist ein numerisches Integrationsverfahren, -welches die Eigenschaften von orthogonalen Polynomen ausnützt. +welches die Eigenschaften von orthogonalen Polynomen verwendet. Herleitungen und Analysen der Gauss-Quadratur können im Abschnitt~\ref{buch:orthogonal:section:gauss-quadratur} gefunden werden. Als grundlegende Idee wird die Beobachtung, dass viele Funktionen sich gut mit Polynomen approximieren lassen, verwendet. Stellt man also sicher, -dass ein Verfahren gut für Polynome gut funktioniert, -sollte es auch für andere Funktionen nicht schlecht funktionieren. +dass ein Verfahren gut für Polynome funktioniert, +sollte es auch für andere Funktionen angemessene Resultate liefern. Es wird ein Polynom verwendet, welches an den Punkten $x_0 < x_1 < \ldots < x_n$ die Funktionwerte~$f(x_i)$ annimmt. -Als Resultat kann das Integral via eine gewichtete Summe der Form +Als Resultat kann das Integral via einer gewichteten Summe der Form \begin{align} \int_a^b f(x) w(x) \, dx \approx @@ -44,11 +44,11 @@ a + \frac{1 - t}{t} auf das Intervall $[0, 1]$ transformiert, kann dies behoben werden. Für unseren Fall gilt $a = 0$. -Das Integral eines Polynomes in diesem Intervall ist immer divergent, -darum müssen wir das Polynome mit einer Funktion multiplizieren, +Das Integral eines Polynomes in diesem Intervall ist immer divergent. +Darum müssen wir das Polynom mit einer Funktion multiplizieren, die schneller als jedes Polynom gegen $0$ geht, damit das Integral immer noch konvergiert. -Die Laguerre-Polynome $L_n$ bieten hier Abhilfe, +Die Laguerre-Polynome $L_n$ schaffen hier Abhilfe, da ihre Gewichtsfunktion $w(x) = e^{-x}$ schneller gegen $0$ konvergiert als jedes Polynom. % In unserem Falle möchten wir die Gauss Quadratur auf die Laguerre-Polynome @@ -67,7 +67,7 @@ umformulieren: \subsubsection{Stützstellen und Gewichte} Nach der Definition der Gauss-Quadratur müssen als Stützstellen die Nullstellen des verwendeten Polynoms genommen werden. -Das heisst für das Laguerre-Polynom $L_n$ müssen dessen Nullstellen $x_i$ und +Für das Laguerre-Polynom $L_n$ müssen demnach dessen Nullstellen $x_i$ und als Gewichte $A_i$ die Integrale $l_i(x)e^{-x}$ verwendet werden. Dabei sind \begin{align*} @@ -146,7 +146,8 @@ x_i L'_n(x_i) (n + 1) L_{n+1}(x_i) . \end{align*} -Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein ergibt sich +Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein, +ergibt sich \begin{align} \nonumber A_i -- cgit v1.2.1