From 5da2fa5a5e6a2fa2b8a23745b8c300d15a06669d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Sat, 23 Jul 2022 15:19:20 +0200 Subject: Restruct paper, correct typos, add positive conclusion, add more citations and references, small changes to plots --- buch/papers/laguerre/quadratur.tex | 98 ++++++++++++++++++++++++-------------- 1 file changed, 62 insertions(+), 36 deletions(-) (limited to 'buch/papers/laguerre/quadratur.tex') diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index a494362..841bc20 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -3,20 +3,21 @@ % % (c) 2022 Patrik Müller, Ostschweizer Fachhochschule % -\section{Gauss-Quadratur +\section{Gauss-Quadratur% \label{laguerre:section:quadratur}} +\rhead{Gauss-Quadratur}% Die Gauss-Quadratur ist ein numerisches Integrationsverfahren, welches die Eigenschaften von orthogonalen Polynomen verwendet. -Herleitungen und Analysen der Gauss-Quadratur können im +Herleitungen und Analysen der Gauss-Quadratur können im Abschnitt~\ref{buch:orthogonal:section:gauss-quadratur} gefunden werden. Als grundlegende Idee wird die Beobachtung, dass viele Funktionen sich gut mit Polynomen approximieren lassen, verwendet. Stellt man also sicher, -dass ein Verfahren gut für Polynome funktioniert, +dass ein Verfahren gut für Polynome funktioniert, sollte es auch für andere Funktionen angemessene Resultate liefern. -Es wird ein Polynom verwendet, -welches an den Punkten $x_0 < x_1 < \ldots < x_n$ +Es wird ein Polynom verwendet, +welches an den Punkten $x_0 < x_1 < \ldots < x_n$ die Funktionwerte~$f(x_i)$ annimmt. Als Resultat kann das Integral via einer gewichteten Summe der Form \begin{align} @@ -29,25 +30,35 @@ berechnet werden. Die Gauss-Quadratur ist exakt für Polynome mit Grad $2n -1$, wenn ein Interpolationspolynom von Grad $n$ gewählt wurde. -\subsection{Gauss-Laguerre-Quadratur +\subsection{Gauss-Laguerre-Quadratur% \label{laguerre:subsection:gausslag-quadratur}} Wir möchten nun die Gauss-Quadratur auf die Berechnung von uneigentlichen Integralen erweitern, -spezifisch auf das Interval $(0, \infty)$. +spezifisch auf das Intervall~$(0, \infty)$. Mit dem vorher beschriebenen Verfahren ist dies nicht direkt möglich. -Mit einer Transformation die das unendliche Intervall $(a, \infty)$ mit -\begin{align*} -x -= -a + \frac{1 - t}{t} -\end{align*} -auf das Intervall $[0, 1]$ transformiert, -kann dies behoben werden. -Für unseren Fall gilt $a = 0$. +% Mit einer Transformation +% \begin{align*} +% x +% = +% % a + +% \frac{1 - t}{t} +% \end{align*} +% die das unendliche Intervall~$(0, \infty)$ +% auf das Intervall~$[0, 1]$ transformiert, +% kann dies behoben werden. +% % Für unseren Fall gilt $a = 0$. Das Integral eines Polynomes in diesem Intervall ist immer divergent. -Darum müssen wir das Polynom mit einer Funktion multiplizieren, -die schneller als jedes Polynom gegen $0$ geht, -damit das Integral immer noch konvergiert. +Es ist also nötig, +den Integranden durch Funktionen zu approximieren, +die genügend schnell gegen $0$ gehen. +Man kann Polynome beliebigen Grades verwenden, +wenn sie mit einer Funktion multipliziert werden, +die schneller gegen $0$ geht als jedes Polynom. +Damit stellen wir sicher, +dass das Integral immer noch konvergiert. +% Darum müssen wir das Polynom mit einer Funktion multiplizieren, +% die schneller als jedes Polynom gegen $0$ geht, +% damit das Integral immer noch konvergiert. Die Laguerre-Polynome $L_n$ schaffen hier Abhilfe, da ihre Gewichtsfunktion $w(x) = e^{-x}$ schneller gegen $0$ konvergiert als jedes Polynom. @@ -55,20 +66,32 @@ gegen $0$ konvergiert als jedes Polynom. % $L_n$ ausweiten. % Diese sind orthogonal im Intervall $(0, \infty)$ bezüglich % der Gewichtsfunktion $e^{-x}$. -Die Gleichung~\eqref{laguerre:gaussquadratur} lässt sich wie folgt -umformulieren: +Um also das Integral einer Funktion $g(x)$ im Intervall~$(0,\infty)$ zu berechen, +formt man das Integral wie folgt um: +\begin{align*} +\int_0^\infty g(x) \, dx += +\int_0^\infty f(x) e^{-x} \, dx +\end{align*} +Wir approximieren dann $f(x)$ durch ein Interpolationspolynom +wie bei der Gauss-Quadratur. +% Die Gleichung~\eqref{laguerre:gaussquadratur} lässt sich daher wie folgt +% umformulieren: +Die Gleichung~\eqref{laguerre:gaussquadratur} wird also +für die Gauss-Laguerre-Quadratur zu \begin{align} \int_{0}^{\infty} f(x) e^{-x} dx \approx \sum_{i=1}^{n} f(x_i) A_i \label{laguerre:laguerrequadratur} +. \end{align} \subsubsection{Stützstellen und Gewichte} Nach der Definition der Gauss-Quadratur müssen als Stützstellen die Nullstellen des verwendeten Polynoms genommen werden. Für das Laguerre-Polynom $L_n$ müssen demnach dessen Nullstellen $x_i$ und -als Gewichte $A_i$ die Integrale $l_i(x)e^{-x}$ verwendet werden. +als Gewichte $A_i$ die Integrale von $l_i(x) e^{-x}$ verwendet werden. Dabei sind \begin{align*} l_i(x_j) @@ -76,7 +99,7 @@ l_i(x_j) \delta_{ij} = \begin{cases} -1 & i=j \\ +1 & i=j \\ 0 & \text{sonst} \end{cases} % . @@ -97,6 +120,7 @@ des orthogonalen Polynoms $\phi_n(x)$, $\forall i =0,\ldots,n$ und \int_0^\infty w(x) \phi_n^2(x)\,dx \end{align*} dem Normalisierungsfaktor. + Wir setzen nun $\phi_n(x) = L_n(x)$ und nutzen den Vorzeichenwechsel der Laguerre-Koeffizienten aus, damit erhalten wir @@ -122,39 +146,41 @@ Für Laguerre-Polynome gilt Daraus folgt \begin{align} A_i -&= + & = - \frac{1}{n L_{n-1}(x_i) L'_n(x_i)} -. \label{laguerre:gewichte_lag_temp} +. \end{align} Nun kann die Rekursionseigenschaft der Laguerre-Polynome +\cite{laguerre:hildebrand2013introduction} +% (siehe \cite{laguerre:hildebrand2013introduction}) \begin{align*} -x L'_n(x) -&= +x L'_n(x) + & = n L_n(x) - n L_{n-1}(x) \\ -&= (x - n - 1) L_n(x) + (n + 1) L_{n+1}(x) + & = (x - n - 1) L_n(x) + (n + 1) L_{n+1}(x) \end{align*} umgeformt werden und da $x_i$ die Nullstellen von $L_n(x)$ sind, -vereinfacht sich der Term zu +vereinfacht sich die Gleichung zu \begin{align*} x_i L'_n(x_i) -&= -- n L_{n-1}(x_i) + & = +- n L_{n-1}(x_i) \\ -&= - (n + 1) L_{n+1}(x_i) + & = +(n + 1) L_{n+1}(x_i) . \end{align*} -Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein, +Setzen wir diese Beziehung nun in \eqref{laguerre:gewichte_lag_temp} ein, ergibt sich \begin{align} \nonumber A_i -&= + & = \frac{1}{x_i \left[ L'_n(x_i) \right]^2} \\ -&= + & = \frac{x_i}{(n+1)^2 \left[ L_{n+1}(x_i) \right]^2} . \label{laguerre:quadratur_gewichte} -- cgit v1.2.1