From 7d01dd49954a2f6c1c2b662af1c01f3928ddb827 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Mon, 25 Jul 2022 10:06:45 +0200 Subject: Add missing explanations, correct typos, mention sign change of LP earlier --- buch/papers/laguerre/quadratur.tex | 19 +++++++++++-------- 1 file changed, 11 insertions(+), 8 deletions(-) (limited to 'buch/papers/laguerre/quadratur.tex') diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 841bc20..0e32012 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -16,7 +16,7 @@ verwendet. Stellt man also sicher, dass ein Verfahren gut für Polynome funktioniert, sollte es auch für andere Funktionen angemessene Resultate liefern. -Es wird ein Polynom verwendet, +Es wird ein Interpolationspolynom verwendet, welches an den Punkten $x_0 < x_1 < \ldots < x_n$ die Funktionwerte~$f(x_i)$ annimmt. Als Resultat kann das Integral via einer gewichteten Summe der Form @@ -66,10 +66,11 @@ gegen $0$ konvergiert als jedes Polynom. % $L_n$ ausweiten. % Diese sind orthogonal im Intervall $(0, \infty)$ bezüglich % der Gewichtsfunktion $e^{-x}$. -Um also das Integral einer Funktion $g(x)$ im Intervall~$(0,\infty)$ zu berechen, +Um also das Integral einer Funktion $g(x)$ im Intervall~$(0,\infty)$ zu +berechen, formt man das Integral wie folgt um: \begin{align*} -\int_0^\infty g(x) \, dx +\int_0^\infty g(x) \, dx = \int_0^\infty f(x) e^{-x} \, dx \end{align*} @@ -77,7 +78,7 @@ Wir approximieren dann $f(x)$ durch ein Interpolationspolynom wie bei der Gauss-Quadratur. % Die Gleichung~\eqref{laguerre:gaussquadratur} lässt sich daher wie folgt % umformulieren: -Die Gleichung~\eqref{laguerre:gaussquadratur} wird also +Die Gleichung~\eqref{laguerre:gaussquadratur} wird also für die Gauss-Laguerre-Quadratur zu \begin{align} \int_{0}^{\infty} f(x) e^{-x} dx @@ -89,8 +90,8 @@ für die Gauss-Laguerre-Quadratur zu \subsubsection{Stützstellen und Gewichte} Nach der Definition der Gauss-Quadratur müssen als Stützstellen die Nullstellen -des verwendeten Polynoms genommen werden. -Für das Laguerre-Polynom $L_n$ müssen demnach dessen Nullstellen $x_i$ und +des Approximationspolynoms genommen werden. +Für das Laguerre-Polynom $L_n(x)$ müssen demnach dessen Nullstellen $x_i$ und als Gewichte $A_i$ die Integrale von $l_i(x) e^{-x}$ verwendet werden. Dabei sind \begin{align*} @@ -104,7 +105,7 @@ l_i(x_j) \end{cases} % . \end{align*} -die Lagrangschen Interpolationspolynome. +die Lagrangeschen Interpolationspolynome. Laut \cite{laguerre:hildebrand2013introduction} können die Gewichte mit \begin{align*} A_i @@ -122,7 +123,9 @@ des orthogonalen Polynoms $\phi_n(x)$, $\forall i =0,\ldots,n$ und dem Normalisierungsfaktor. Wir setzen nun $\phi_n(x) = L_n(x)$ und -nutzen den Vorzeichenwechsel der Laguerre-Koeffizienten aus, +nutzen den Vorzeichenwechsel der Laguerre-Koeffizienten +(ersichtlich am Term $(-1)^k$ in \eqref{laguerre:polynom}) +aus, damit erhalten wir \begin{align*} A_i -- cgit v1.2.1