From e1f5d6267540ea8dc758696fb08cb7540362cf8f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Mon, 18 Jul 2022 17:34:37 +0200 Subject: First complete draft of Laguerre chapter --- buch/papers/laguerre/quadratur.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) (limited to 'buch/papers/laguerre/quadratur.tex') diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 7cbae48..4ca6913 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -48,13 +48,13 @@ darum müssen wir sie mit einer Funktion multiplizieren, die schneller als jedes Polynom gegen $0$ geht, damit das Integral immer noch konvergiert. Die Laguerre-Polynome $L_n$ bieten hier Abhilfe, -da ihre Gewichtsfunktion $e^{-x}$ schneller +da ihre Gewichtsfunktion $w(x) = e^{-x}$ schneller gegen $0$ konvergiert als jedes Polynom. % In unserem Falle möchten wir die Gauss Quadratur auf die Laguerre-Polynome % $L_n$ ausweiten. % Diese sind orthogonal im Intervall $(0, \infty)$ bezüglich % der Gewichtsfunktion $e^{-x}$. -Gleichung~\eqref{laguerre:gaussquadratur} lässt sich wie folgt +Die Gleichung~\eqref{laguerre:gaussquadratur} lässt sich wie folgt umformulieren: \begin{align} \int_{0}^{\infty} f(x) e^{-x} dx @@ -81,7 +81,7 @@ l_i(x_j) % . \end{align*} die Lagrangschen Interpolationspolynome. -Laut \cite{hildebrand2013introduction} können die Gewicht mit +Laut \cite{laguerre:hildebrand2013introduction} können die Gewichte mit \begin{align*} A_i & = @@ -97,7 +97,7 @@ des orthogonalen Polynoms $\phi_n(x)$, $\forall i =0,\ldots,n$ und \end{align*} dem Normalisierungsfaktor. Wir setzen nun $\phi_n(x) = L_n(x)$ und -nutzen den Vorzeichenwechsel der Laguerrekoeffizienten aus, +nutzen den Vorzeichenwechsel der Laguerre-Koeffizienten aus, damit erhalten wir \begin{align*} A_i @@ -135,7 +135,7 @@ n L_n(x) - n L_{n-1}(x) &= (x - n - 1) L_n(x) + (n + 1) L_{n+1}(x) \end{align*} umgeformt werden und da $x_i$ die Nullstellen von $L_n(x)$ sind, -folgt +vereinfacht sich der Term zu \begin{align*} x_i L'_n(x_i) &= @@ -145,7 +145,7 @@ x_i L'_n(x_i) (n + 1) L_{n+1}(x_i) . \end{align*} -Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein ergibt sicht +Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein ergibt sich \begin{align} \nonumber A_i @@ -168,7 +168,7 @@ Der Fehlerterm $R_n$ folgt direkt aus der Approximation = \sum_{i=1}^n f(x_i) A_i + R_n \end{align*} -und \cite{abramowitz+stegun} gibt ihn als +und \cite{laguerre:abramowitz+stegun} gibt ihn als \begin{align} R_n & = -- cgit v1.2.1