From 155989e49b70a4598dbf3ff3277d9e320f226a83 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Fri, 13 May 2022 12:38:18 +0200 Subject: Add some information about Gauss Quadrature and application to Gamma integral --- buch/papers/laguerre/Makefile.inc | 3 +- buch/papers/laguerre/definition.tex | 5 ++- buch/papers/laguerre/eigenschaften.tex | 25 ++++++++++- buch/papers/laguerre/gamma.tex | 76 +++++++++++++++++++++++++++++++++ buch/papers/laguerre/main.tex | 3 +- buch/papers/laguerre/quadratur.tex | 78 ++++++++++++++++++++++++++++------ buch/papers/laguerre/references.bib | 45 +++++++------------- 7 files changed, 187 insertions(+), 48 deletions(-) create mode 100644 buch/papers/laguerre/gamma.tex (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/Makefile.inc b/buch/papers/laguerre/Makefile.inc index aae51f9..12b0935 100644 --- a/buch/papers/laguerre/Makefile.inc +++ b/buch/papers/laguerre/Makefile.inc @@ -9,6 +9,7 @@ dependencies-laguerre = \ papers/laguerre/references.bib \ papers/laguerre/definition.tex \ papers/laguerre/eigenschaften.tex \ - papers/laguerre/quadratur.tex + papers/laguerre/quadratur.tex \ + papers/laguerre/gamma.tex diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index edd2b7b..d111f6f 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -18,8 +18,9 @@ x \in \mathbb{R} . \label{laguerre:dgl} \end{align} +Die klassische Laguerre-Diffentialgleichung erhält man, wenn $\nu = 0$. Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet, -weil die Lösung gleich berechnet werden kann, +weil die Lösung mit der selben Methode berechnet werden kann, aber man zusätzlich die Lösung für den allgmeinen Fall erhält. Zur Lösung der Gleichung \eqref{laguerre:dgl} verwenden wir einen Potenzreihenansatz. @@ -117,6 +118,8 @@ L_n^\nu(x) \sum_{k=0}^{n} \frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} x^k. \label{laguerre:allg_polynom} \end{align} + +\subsection{Analytische Fortsetzung} Durch die analytische Fortsetzung erhalten wir zudem noch die zweite Lösung der Differentialgleichung mit der Form \begin{align*} diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index c589c92..b0cc3a3 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -5,9 +5,21 @@ % \section{Eigenschaften \label{laguerre:section:eigenschaften}} +{ +\large \color{red} +TODO: +Evtl. nur Orthogonalität hier behandeln, da nur diese für die Gauss-Quadratur +benötigt wird. +} + +Die Laguerre-Polynome besitzen einige interessante Eigenschaften \rhead{Eigenschaften} -\subsection{Orthogonalität} +\subsection{Orthogonalität + \label{laguerre:subsection:orthogonal}} +Im Abschnitt~\ref{laguerre:section:definition} haben wir behauptet, +dass die Laguerre-Polynome orthogonale Polynome sind. +Zu dieser Behauptung möchten wir nun einen Beweis liefern. Wenn wir die Laguerre\--Differentialgleichung in ein Sturm\--Liouville\--Problem umwandeln können, haben wir bewiesen, dass es sich bei @@ -95,4 +107,13 @@ Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb}) \end{align*} für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$. Damit können wir schlussfolgern, dass die Laguerre-Polynome orthogonal -bezüglich des Skalarproduktes mit der Laguerre\--Gewichtsfunktion sind. +bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$ mit der Laguerre\--Gewichtsfunktion +$w(x)=x^\nu e^{-x}$ sind. + + +\subsection{Rodrigues-Formel} + +\subsection{Drei-Terme Rekursion} + +\subsection{Beziehung mit der Hypergeometrischen Funktion} + diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex new file mode 100644 index 0000000..e3838b0 --- /dev/null +++ b/buch/papers/laguerre/gamma.tex @@ -0,0 +1,76 @@ +% +% gamma.tex +% +% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule +% +\section{Anwendung: Berechnung der Gamma-Funktion + \label{laguerre:section:quad-gamma}} +Die Gauss-Laguerre-Quadratur kann nun verwendet werden, +um exponentiell abfallende Funktionen im Definitionsbereich $(0, \infty)$ zu +berechnen. +Dabei bietet sich z.B. die Gamma-Funkion bestens an, wie wir in den folgenden +Abschnitten sehen werden. + +\subsection{Gamma-Funktion} +Die Gamma-Funktion ist eine Erweiterung der Fakultät auf die reale und komplexe +Zahlenmenge. +Die Definition~\ref{buch:rekursion:def:gamma} beschreibt die Gamma-Funktion als +Integral der Form +\begin{align} +\Gamma(z) + & = +\int_0^\infty t^{z-1} e^{-t} dt +, +\quad +\text{wobei Realteil von $z$ grösser als $0$} +, +\label{laguerre:gamma} +\end{align} +welches alle Eigenschaften erfüllt, um mit der Gauss-Laguerre-Quadratur +berechnet zu werden. + +\subsubsection{Funktionalgleichung} +Die Funktionalgleichung besagt +\begin{align} +z \Gamma(z) = \Gamma(z+1). +\label{laguerre:gamma_funktional} +\end{align} +Mittels dieser Gleichung kann der Wert an einer bestimmten, +geeigneten Stelle evaluiert werden und dann zurückverschoben werden, +um das gewünschte Resultat zu erhalten. + +\subsection{Berechnung mittels Gauss-Laguerre-Quadratur} + +Fehlerterm: +\begin{align*} +R_n += +(z - 2n)_{2n} \frac{(n!)^2}{(2n)!} \xi^{z-2n-1} +\end{align*} + +\subsubsection{Finden der optimalen Berechnungsstelle} +Nun stellt sich die Frage, +ob die Approximation mittels Gauss-Laguerre-Quadratur verbessert werden kann, +wenn man das Problem an einer geeigneten Stelle evaluiert und +dann zurückverschiebt mit der Funktionalgleichung. +Dazu wollen wir den Fehlerterm in +Gleichung~\eqref{laguerre:lagurre:lag_error} anpassen und dann minimieren. +Zunächst wollen wir dies nur für $z\in \mathbb{R}$ und $0