From 670555039265d83945b0d3e205aefb020425585b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Wed, 6 Apr 2022 08:00:09 +0200 Subject: Start definition.tex --- buch/papers/laguerre/definition.tex | 150 +++++-- buch/papers/laguerre/images/wasserstoff_model.tex | 58 +++ buch/papers/laguerre/main.tex | 4 +- buch/papers/laguerre/packages.tex | 1 - buch/papers/laguerre/scripts/gamma_approx.ipynb | 431 +++++++++++++++++++++ buch/papers/laguerre/scripts/laguerre_plot.py | 39 ++ .../laguerre/scripts/lanczos_approximation.py | 47 +++ buch/papers/laguerre/scripts/quadrature_gama.py | 178 +++++++++ buch/papers/laguerre/wasserstoff.tex | 147 ++++++- 9 files changed, 1005 insertions(+), 50 deletions(-) create mode 100644 buch/papers/laguerre/images/wasserstoff_model.tex create mode 100644 buch/papers/laguerre/scripts/gamma_approx.ipynb create mode 100644 buch/papers/laguerre/scripts/laguerre_plot.py create mode 100644 buch/papers/laguerre/scripts/lanczos_approximation.py create mode 100644 buch/papers/laguerre/scripts/quadrature_gama.py (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index 5f6d8bd..84a26cf 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -6,43 +6,133 @@ \section{Definition \label{laguerre:section:definition}} \rhead{Definition} - +Die Laguerre-Differentialgleichung ist gegeben durch \begin{align} - x y''(x) + (1 - x) y'(x) + n y(x) - = - 0 - \label{laguerre:dgl} +x y''(x) + (1 - x) y'(x) + n y(x) += +0 +, \quad +n \in \mathbb{N}_0 +, \quad +x \in \mathbb{R} +. +\label{laguerre:dgl} \end{align} - +Zur Lösung der Gleichung \eqref{laguerre:dgl} +verwenden wir einen Potenzreihenansatz. +Setzt man nun den Ansatz +\begin{align*} +y(x) +&= +\sum_{k=0}^\infty a_k x^k +\\ +y'(x) +& = +\sum_{k=1}^\infty k a_k x^{k-1} += +\sum_{k=0}^\infty (k+1) a_{k+1} x^k +\\ +y''(x) +&= +\sum_{k=2}^\infty k (k-1) a_k x^{k-2} += +\sum_{k=1}^\infty (k+1) k a_{k+1} x^{k-1} +\end{align*} +in die Differentialgleichung ein, erhält man: +\begin{align*} +\sum_{k=1}^\infty (k+1) k a_{k+1} x^k ++ \sum_{k=0}^\infty (k+1) a_{k+1} x^k +- \sum_{k=0}^\infty k a_k x^k ++ n \sum_{k=0}^\infty a_k x^k +&= +0\\ +\sum_{k=0}^\infty +\left[ (k+1) k a_{k+1} + (k+1) a_{k+1} - k a_k + n a_k \right] x^k +&= +0. +\end{align*} +Daraus lässt sich die Rekursionsbeziehung +\begin{align*} +a_{k+1} +&= +\frac{k-n}{(k+1) ^ 2} a_k +\end{align*} +ableiten. +Für ein konstantes $n$ erhalten wir als Potenzreihenlösung ein Polynom vom Grad $n$, +denn für $k=n$ wird $a_{n+1} = 0$ und damit auch $a_{n+2}=a_{n+3}=\ldots=0$. +Aus der Rekursionsbeziehung ist zudem ersichtlich, +dass $a_0 \neq 0$ beliebig gewählt werden kann. +Wählen wir nun $c_0 = 1$, dann folgt für die Koeffizienten $a_1, a_2, a_3$ +\begin{align*} +a_1 += +-\frac{n}{1^2} +,&& +a_2 += +\frac{(n-1)n}{1^2 2^2} +,&& +a_3 += +-\frac{(n-2)(n-1)n}{1^2 2^2 3^2} +\end{align*} +und allgemein +\begin{align*} +k&\leq n: +& +a_k +&= +(-1)^k \frac{n!}{(n-k)!} \frac{1}{(k!)^2} += +\frac{(-1)^k}{k!} +\begin{pmatrix} +n +\\ +k +\end{pmatrix} +\\ +k&>n: +& +a_k +&= +0. +\end{align*} +Somit haben wir die Laguerre-Polynome $L_n(x)$ erhalten: \begin{align} - L_n(x) - = - \sum_{k=0}^{n} - \frac{(-1)^k}{k!} - \begin{pmatrix} - n \\ - k - \end{pmatrix} - x^k - \label{laguerre:polynom} +L_n(x) += +\sum_{k=0}^{n} +\frac{(-1)^k}{k!} +\begin{pmatrix} +n \\ +k +\end{pmatrix} +x^k +\label{laguerre:polynom} \end{align} +\subsection{Assoziierte Laguerre-Polynome +\label{laguerre:subsection:assoz_laguerre} +} \begin{align} - x y''(x) + (\alpha + 1 - x) y'(x) + n y(x) - = - 0 - \label{laguerre:generell_dgl} +x y''(x) + (\alpha + 1 - x) y'(x) + n y(x) += +0 +\label{laguerre:generell_dgl} \end{align} \begin{align} - L_n^\alpha (x) - = - \sum_{k=0}^{n} - \frac{(-1)^k}{k!} - \begin{pmatrix} - n + \alpha \\ - n - k - \end{pmatrix} - x^k - \label{laguerre:polynom} +L_n^\alpha (x) += +\sum_{k=0}^{n} +\frac{(-1)^k}{k!} +\begin{pmatrix} +n + \alpha \\ +n - k +\end{pmatrix} +x^k +\label{laguerre:polynom} \end{align} + +% https://www.math.kit.edu/iana1/lehre/hm3phys2012w/media/laguerre.pdf +% http://www.physics.okayama-u.ac.jp/jeschke_homepage/E4/kapitel4.pdf diff --git a/buch/papers/laguerre/images/wasserstoff_model.tex b/buch/papers/laguerre/images/wasserstoff_model.tex new file mode 100644 index 0000000..fe838c3 --- /dev/null +++ b/buch/papers/laguerre/images/wasserstoff_model.tex @@ -0,0 +1,58 @@ +\documentclass{standalone} + +\usepackage{pgfplots} +\usepackage{tikz-3dplot} + +\tdplotsetmaincoords{60}{115} +\pgfplotsset{compat=newest} + +\begin{document} + +\newcommand{\drawcircle}[4]{ +\shade[ball color=#3, opacity=#4] (#1) circle (#2 cm); +\tdplotsetrotatedcoords{0}{0}{0}; +\draw[dashed, tdplot_rotated_coords, #3!40!black] (#1) circle (#2); +} + +\begin{tikzpicture}[tdplot_main_coords, scale = 2] +\def\r{1.0} +\def\rp{0.2} +\def\rn{0.05} +\def\rvec{1.0} +\def\thetavec{45} +\def\phivec{60} + +\coordinate (O) at (0, 0, 0); +\tdplotsetcoord{P}{\rvec}{\thetavec}{\phivec} + +% Labels +\node[inner sep=1pt] at (0, -4.0*\rp, 1.0*\r) (plabel){Proton}; +\draw (plabel) -- (O); +\node[inner sep=1pt] at (-0.*\r, 1.0*\r, 1.3*\r) (elabel){Elektron}; +\draw (elabel) -- (P); +% Draw proton +\drawcircle{O}{\rp}{red}{1.0} + +% Draw spherical coordinates of electron +\draw (O) -- node[anchor=north west, yshift=4pt]{$r$} (P); +\draw[dashed] (O) -- (Pxy); +\draw[dashed] (P) -- (Pxy); +\tdplotdrawarc{(O)}{0.6}{0}{\phivec}{anchor=north}{$\varphi$} +\tdplotsetthetaplanecoords{\phivec} +\tdplotdrawarc[tdplot_rotated_coords]{(0,0,0)}{0.5}{0}% +{\thetavec}{anchor=south west, xshift=-2pt, yshift=-2pt}{$\vartheta$} + +% Draw electron +\drawcircle{P}{\rn}{blue}{1.0} + +% Draw surrounding sphere +\drawcircle{O}{\r}{gray}{0.3} + +% Draw cartesian coordinate system +\draw[-stealth, thick] (O) -- (1.8*\r,0,0) node[below left] {$x$}; +\draw[-stealth, thick] (O) -- (0,1.3*\r,0) node[below right] {$y$}; +\draw[-stealth, thick] (O) -- (0,0,1.3*\r) node[above] {$z$}; + +\end{tikzpicture} + +\end{document} \ No newline at end of file diff --git a/buch/papers/laguerre/main.tex b/buch/papers/laguerre/main.tex index 1fe0f8b..3db67d5 100644 --- a/buch/papers/laguerre/main.tex +++ b/buch/papers/laguerre/main.tex @@ -13,8 +13,8 @@ Hier kommt eine Einleitung. \input{papers/laguerre/definition} \input{papers/laguerre/eigenschaften} \input{papers/laguerre/quadratur} -\input{papers/laguerre/transformation} -\input{papers/laguerre/wasserstoff} +% \input{papers/laguerre/transformation} +% \input{papers/laguerre/wasserstoff} \printbibliography[heading=subbibliography] \end{refsection} diff --git a/buch/papers/laguerre/packages.tex b/buch/papers/laguerre/packages.tex index ab55228..4ebc172 100644 --- a/buch/papers/laguerre/packages.tex +++ b/buch/papers/laguerre/packages.tex @@ -7,4 +7,3 @@ % if your paper needs special packages, add package commands as in the % following example \usepackage{derivative} - diff --git a/buch/papers/laguerre/scripts/gamma_approx.ipynb b/buch/papers/laguerre/scripts/gamma_approx.ipynb new file mode 100644 index 0000000..9a1fee6 --- /dev/null +++ b/buch/papers/laguerre/scripts/gamma_approx.ipynb @@ -0,0 +1,431 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gauss-Laguerre Quadratur für die Gamma-Funktion\n", + "\n", + "$$\n", + " \\Gamma(z)\n", + " = \n", + " \\int_0^\\infty t^{z-1}e^{-t}dt\n", + "$$\n", + "\n", + "$$\n", + " \\int_0^\\infty f(x) e^{-x} dx \n", + " \\approx \n", + " \\sum_{i=1}^{N} f(x_i) w_i\n", + " \\qquad\\text{ wobei }\n", + " w_i = \\frac{x_i}{(n+1)^2 [L_{n+1}(x_i)]^2}\n", + "$$\n", + "und $x_i$ sind Nullstellen des Laguerre Polynoms $L_n(x)$\n", + "\n", + "Der Fehler ist gegeben als\n", + "\n", + "$$\n", + " E \n", + " =\n", + " \\frac{(n!)^2}{(2n)!} f^{(2n)}(\\xi) \n", + " = \n", + " (-2n + z)_{2n} \\frac{(n!)^2}{(2n)!} \\xi^{z - 2n - 1}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from cmath import exp, pi, sin, sqrt\n", + "import scipy.special\n", + "\n", + "EPSILON = 1e-07\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lanczos_p = [\n", + " 676.5203681218851,\n", + " -1259.1392167224028,\n", + " 771.32342877765313,\n", + " -176.61502916214059,\n", + " 12.507343278686905,\n", + " -0.13857109526572012,\n", + " 9.9843695780195716e-6,\n", + " 1.5056327351493116e-7,\n", + "]\n", + "\n", + "\n", + "def drop_imag(z):\n", + " if abs(z.imag) <= EPSILON:\n", + " z = z.real\n", + " return z\n", + "\n", + "\n", + "def lanczos_gamma(z):\n", + " z = complex(z)\n", + " if z.real < 0.5:\n", + " y = pi / (sin(pi * z) * lanczos_gamma(1 - z)) # Reflection formula\n", + " else:\n", + " z -= 1\n", + " x = 0.99999999999980993\n", + " for (i, pval) in enumerate(lanczos_p):\n", + " x += pval / (z + i + 1)\n", + " t = z + len(lanczos_p) - 0.5\n", + " y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x\n", + " return drop_imag(y)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "zeros = np.array(\n", + " [\n", + " 1.70279632305101000e-1,\n", + " 9.03701776799379912e-1,\n", + " 2.25108662986613069e0,\n", + " 4.26670017028765879e0,\n", + " 7.04590540239346570e0,\n", + " 1.07585160101809952e1,\n", + " 1.57406786412780046e1,\n", + " 2.28631317368892641e1,\n", + " ]\n", + ")\n", + "\n", + "weights = np.array(\n", + " [\n", + " 3.69188589341637530e-1,\n", + " 4.18786780814342956e-1,\n", + " 1.75794986637171806e-1,\n", + " 3.33434922612156515e-2,\n", + " 2.79453623522567252e-3,\n", + " 9.07650877335821310e-5,\n", + " 8.48574671627253154e-7,\n", + " 1.04800117487151038e-9,\n", + " ]\n", + ")\n", + "\n", + "\n", + "def pochhammer(z, n):\n", + " return np.prod(z + np.arange(n))\n", + "\n", + "\n", + "def find_shift(z, target):\n", + " factor = 1.0\n", + " steps = int(np.floor(target - np.real(z)))\n", + " zs = z + steps\n", + " if steps > 0:\n", + " factor = 1 / pochhammer(z, steps)\n", + " elif steps < 0:\n", + " factor = pochhammer(zs, -steps)\n", + " return zs, factor\n", + "\n", + "\n", + "def laguerre_gamma(z, x, w, target=11):\n", + " # res = 0.0\n", + " z = complex(z)\n", + " if z.real < 1e-3:\n", + " res = pi / (\n", + " sin(pi * z) * laguerre_gamma(1 - z, x, w, target)\n", + " ) # Reflection formula\n", + " else:\n", + " z_shifted, correction_factor = find_shift(z, target)\n", + " res = np.sum(x ** (z_shifted - 1) * w)\n", + " res *= correction_factor\n", + " res = drop_imag(res)\n", + " return res\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def eval_laguerre(x, target=12):\n", + " return np.array([laguerre_gamma(xi, zeros, weights, target) for xi in x])\n", + "\n", + "\n", + "def eval_lanczos(x):\n", + " return np.array([lanczos_gamma(xi) for xi in x])\n", + "\n", + "\n", + "def eval_mean_laguerre(x, targets):\n", + " return np.mean([eval_laguerre(x, target) for target in targets], 0)\n", + "\n", + "\n", + "def calc_rel_error(x, y):\n", + " return (y - x) / x\n", + "\n", + "\n", + "def evaluate(x, target=12):\n", + " lanczos_gammas = eval_lanczos(x)\n", + " laguerre_gammas = eval_laguerre(x, target)\n", + " rel_error = calc_rel_error(lanczos_gammas, laguerre_gammas)\n", + " return rel_error\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test with real values" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXgc57X48e8saVfMzJIFFpgxBjnmxCGHOU3SUNO0vbcp5ba36S2mt7/etmFq03DSxnHAcRwyM1toGWShxcy7O78/Zr22YohB8gjO53nmmd3Z1epsstbOmfO+51VUVUUIIYQQQgghhP4MegcghBBCCCGEEEIjCZoQQgghhBBCDBKSoAkhhBBCCCHEICEJmhBCCCGEEEIMEpKgCSGEEEIIIcQgIQmaEEIIIYQQQgwSQy5BUxTlZUVRahRFye2H15qjKMruE7YuRVGu7ocwhRBCCCGEEOKcKUNtHTRFUWYBbcA/VVXN7MfXDQQOANGqqnb01+sKIYQQQgghxNkachU0VVXXAg0nHlMUJUlRlJWKouxQFGWdoihp5/HS1wGfSHImhBBCCCGE0MuQS9BO43ngu6qqTgB+CDx9Hq9xE/Bmv0YlhBBCCCGEEOfApHcAF0pRFG9gOvCuoijHDnu4HlsK/OoUP1ahqurCE14jAsgCPh3YaIUQQgghhBDi9IZ8goZWBWxSVXXs1x9QVfU94L2zeI0bgGWqqvb2c2xCCCGEEEIIcdaG/BBHVVVbgMOKolwPoGjGnOPL3IwMbxRCCCGEEELobMglaIqivAlsAlIVRSlXFOUe4FbgHkVR9gB5wFXn8HrxQAywZgDCFUIIIYQQQoizNuTa7AshhBBCCCHEcDXkKmhCCCGEEEIIMVxJgiaEEEIIIYQQg8SQ6uIYHBysxsfH6x2GEG7t7e14eXnpHYYQgHwexeAin0cx2MhnUgwmO3bsqFNVNeRUjw2pBC0+Pp7t27frHYYQbqtXryYnJ0fvMIQA5PMoBhf5PIrBRj6TYjBRFOXI6R6TIY5CCCGEEEIIMUhIgiaEEEIIIYQQg4QkaEIIIYQQQggxSAypOWhCCCGEEEII/fX29lJeXk5XV5feoQxqVquV6OhozGbzWf+MJGhCCCGEEEKIc1JeXo6Pjw/x8fEoiqJ3OIOSqqrU19dTXl5OQkLCWf+cDHEUQgghhBBCnJOuri6CgoIkOTsDRVEICgo65yqjJGhCCCGEEEKIcybJ2Tc7n/9GkqAJIYQQQgghxCAhCZoQQgghhBBiyOns7GT27Nk4HA4AFi1ahL+/P0uWLOnzvCeffJLk5GQURaGuru6sXvt0r3XrrbeSmppKZmYmd999N729vQB89NFH/OIXv+iHdyUJmhBCCCGEEGIIevnll1m6dClGoxGARx99lFdfffWk511yySV8/vnnxMXFnfVrn+61br31VgoLC9m3bx+dnZ28+OKLAFx++eV8+OGHdHR0nOe7OU66OAohhBBCCCHO2+Mf5pFf2dKvrzk60pf/viLjjM95/fXXeeONN9z3586dy+rVq0963rhx487595/utS677DL37cmTJ1NeXg5oc81ycnL46KOPuOGGG875951IKmhCCCGEEEKIIaWnp4dDhw4RHx+vy+/v7e3l1VdfZdGiRe5jEydOZN26dRf82lJBE0IIIYQQQpy3b6p0DYS6ujr8/f0v+u895qGHHmLWrFnMnDnTfSw0NJTKysoLfm1J0IQQQgghhBBDis1mO+f1xfrL448/Tm1tLc8991yf411dXdhstgt+fRniKIQQQgghhBhSAgICcDgcF5Skbd26lTvuuOOcfubFF1/k008/5c0338Rg6JtK7d+/n8zMzPOO5xipoAkhxFDkdEJvO/S0Q3cb9LTi15QPh43gtPfdHL3gdIDqAIMJDEYwmF23j903gdEMZk+weIHFW9ubPcEg1/KEEEIMPgsWLGD9+vXMmzcPgJkzZ1JYWEhbWxvR0dG89NJLLFy4kL/+9a888cQTHD16lOzsbC677DJefPFFSktLT1vxOt1rPfDAA8TFxTFt2jQAli5d6m6v/9VXX/G73/3ugt+XJGhCCKE3hx3ajkJbDXTUQ3sttNdBR522b6/TjnU1awlZT5u2R+3zMuMAdvd3cIorYXNttgDwDDr15hUM3qHgEwlma38HIoQQQvTxne98hz//+c/uBO10DToeeeQRHnnkkZOOb9myhe985zun/JnTvZbdbj/l8erqajo7O8nKyjqb0M9IEjQhhBhoPR3QeBiay6G5zLU/YWup1KpbX2f00JIer2DwDIaAePDwBouPa++qdHn4gMWLPfn7GTNuwvHqmNF0QpXMDIoCqvNrFTbHCZW2Hi3WE5PAE/fdbdDZqCWSNYVaAtl7mvVePIPANxJ8o1z7Y7ejIDBR20tlTgghxAUYP348c+bMweFwuNdCOxd//OMf+y2W0tJS/vSnP/XLa0mCJoQQ/cHphNZKqCuG+gOufTHUHYDm0r7PNZi0BMUvBuIuAb9obfMO65uQefhoSdVZajzqBQmz+vmNfYOeDuhscFX+6qCtGloqtKSzpVK7Xb5Ne/xERg8t4QxM0BK2ANc+MEE7bjj3L1ohhBAjz9133613CABMmjSp315LEjQhhDhX3W1Qkw9H98LRfdpWU9C3mmTxhqBkiJ0CQbdBUBL4x7kSsdDhk4BYPLXNL/rMz+vthNYqaCqFhsPQcEirKjYchsNr+/63M1khOAVC0yEkDUJHQ2ga+MVK1U0IIcSwJwmaEEKcSVcLVGyHyt2uZGwv1B/EPf/L6g/hWTD+DggeBUGjtL1PxDlVv4Y9s81VIUuExJy+j6mqNmyy4ZBWfawt1BLekvWw9+0TXsMLQlK1/94RYyByLIRmyHw3IYQQw4okaEIIcYyqaglC2VYo36rtawpwJ2P+cVpykHWDtg/P0ipHkohdGEUBnzBti5vW97HOJqgtgtoCbd5bTR7kL4edr2iPG0wQkn48YYsYo/1/MV/4OjRCCCGEHiRBE0KMXA47VO2Gw2ugdIuWlHU2ao95+EHMJBh9tbaPHA82fx2DHaFs/tow0dgpx4+pKjQdgao9WmWzag/s/wR2v6Y9bjBDRDbETIGYyRA9Gfyi9IheCCHEAPrzn//Miy++iKIoZGVl8fe//x2rdeiPqpAETQgxcqiqNnfs0Bpt3tORDdDdoj0WnAppS46f0AenyHynwUpRtEYiAfEw+irtmKpqDUkqd2tNScq3wfaXYfPT2uO+0dr/25jJEDsVwrOHzzxAIYQYgSoqKvjrX/9Kfn4+NpuNG264gbfeeou77rpL79AumCRoQojhraUSij+DQ6u1pKyjTjsemAiZ12pdDxNmaZ0TxdClKMe7YaYv0Y7Ze6B6H5Rtg7ItWtKW9572mIcfxE2HhJkQPwPCsiQhF0KIIcZut9PZ2YnZbKajo4PIyEi9Q+oXkqAJIYYXpxMqd8L+ldp2dJ923DsckudCwmwtIfOP0TdOMfBMFoiaoG1TH9CONVdA6SYoWQeH12lDI0Fr9hJ3iSthmwlhGTK3UAghztYnPzn+fdtfwrNg8e9P+3BUVBQ//OEPiY2NxWazsWDBAhYsWNC/MehEEjQhxNDX1QIHv4TiVdrWXguKAWKmwrzHIWWh1q5dTriFXxRkXadtoCVsRzZo1dWSdVD0sXbcOxySLtWS+sQ54BWkX8xCCCFO0tjYyPLlyzl8+DD+/v5cf/31vPbaa9x22216h3bBJEETQgxNnY1Q+DHkva8NX3T2gtUPkudDyiLtxNozUO8oxWDnFwXZN2gbQFOZ1jTmwBdadW3PG4ACkeO0z1TyPIiaCEb5+hRCCLczVLoGyueff05CQgIhISEALF26lI0bN0qCdjqKorwMLAFqVFXNPMXjOcBy4LDr0Huqqv5qIGIRQgwjp0rK/GJhyv2QepnWtU9OnMWF8I+Bcbdpm9MBlbu0ZO3A57DuT7D2j9r8tVHztM9c8jzp7imEEDqIjY1l8+bNdHR0YLPZ+OKLL5g4caLeYfWLgTqT+QfwJPDPMzxnnaqqSwbo9wshhovOJldStqxvUjb1Aci4Rmt/L0MXxUAwGCF6orbl/Fi7QHBojdZ0pvhTyP23tg5b3HQtWUtZBIEJekcthBAjwpQpU7juuusYP348JpOJcePGcd999+kdVr8YkARNVdW1iqLED8RrCyFGAIddm1O25w0oXAGO7uNJ2ehrIEqSMqEDWwBkXK1tTidU7ICiFVD0Caz8ibaFpEPqYki/QhsWKZ9TIYQYMI8//jiPP/643mH0Oz3HAk1TFGUPUAn8UFXVPB1jEUIMBtV5sPsN2PcutFVrJ8QT7oTsG7VOfHKyKwYLg0FbwDxmEsz7b2g4BEUrtYRtw19g/f8D/1htnbbRV8vnVwghxFlTVFUdmBfWKmgfnWYOmi/gVFW1TVGUy4C/qKo66jSvcx9wH0BYWNiEt956a0DiFeJ8tLW14e3trXcYQ5q5p4XQmjWEH/0Kn7aDOBUjDYETORo+h/qgiagGs94hDhnyeRwcTL2tBNdtJaR2AwGNezCodro8gqkNmUZtyCW0+KZqXUaHOfk8isFGPpP9y8/Pj+TkZL3DGBIOHDhAc3Nzn2Nz5szZoarqKSfN6ZKgneK5JcBEVVXrzvS8iRMnqtu3b++fAIXoB6tXryYnJ0fvMIYeVdXWotr2EhR8AI4eiBgDY27R2p/LotHnRT6Pg1Bnk7YeX/5yrdGIowd8IrSqWtb1w3q4rnwexWAjn8n+VVBQQHp6ut5hDAmn+m+lKMppEzRdhjgqihIOVKuqqiqKMhkwAPV6xCKEuIi6WmDv27D9ZajJ17rhTbwbxt+hLQwsxHBj84cxN2lbVwvs/xTy34ftL8GWZyAwUUvUsq6H4FMOJBFCCDHCDFSb/TeBHCBYUZRy4L8BM4Cqqs8C1wEPKopiBzqBm9SBKuUJIfRXtUerlu37F/S2Q8RYuPJvkHktWLz0jk6Ii8PqC9nXa1tnExR8qM23XPMErPmD9u8i63rt34VvhN7RCiGE0MlAdXG8+RsefxKtDb8QYrhy2KFgOWx+Bsq3gckGWdfCxHu0YV1CjGQ2fxh/u7a1VEHee7D3HVj1GKz6L0iYBWNv1bpBWjz1jlYIIcRFJCu6CiH6V1cz7HwVtjwLzWUQmASL/gBjbtS6Mgoh+vKNgGnf0ba6Yq2qtuctWHYffOwDmddoyVrMlGE7X00IIc7HX/7yF1544QVUVeXb3/423//+9/UOqV9IgiaE6B9NpbDlOdjxCvS0QtwMWPyEtnivYfh3rBOiXwSPgjk/g9k/gdKNsOt1bWjwzn9qFzvG3gJjbga/KL0jFUIIXeXm5vLCCy+wdetWLBYLixYtYsmSJcOis6ScNQkhLkz5Dnj3LvjLWG04Y+oi+PZX8K2PIe0ySc6EOB8GA8TPgGuegR/uh6ueBp9w+PJ/4M8Z8Oo1WmdIR6/ekQohhC4KCgqYMmUKnp6emEwmZs+ezXvvvad3WP1CKmhCiHOnqlCyDtb+EQ6v1boxTvsOTLkf/KL1jk6I4cXDB8bdqm0Nh7Thj7teh3fuAK9Q7fj4O7SOkEIIoYM/bP0DhQ2F/fqaaYFp/Hjyj0/7eGZmJo899hj19fXYbDZWrFjBxImn7Fo/5EiCJoQ4e6qqreW09o9QtgW8w2DBr2HCXdpJpBBiYAUmuoZA/lj7t7jjH7DhL7D+z5CYAxO+BamXgcmid6RCCDGg0tPT+fGPf8yCBQvw8vJi7NixGI1GvcPqF5KgCSG+mdMJRR9riVnVHvCNhsv+F8bdDmar3tEJMfIYjJCyUNtaKmHXa9o8tXfvBK8QranIhLsgMEHvSIUQI8CZKl0D6Z577uGee+4B4Gc/+xnR0cNjFI8kaEKI03M6IG8ZrPuTtrB0QAJc+SRk3yhX6IUYLHwjYfaPYOZ/wsEvtaraxr9plbWUhTD525B4qcwHFUIMOzU1NYSGhlJaWsp7773H5s2b9Q6pX0iCJoQ4mapqi+h+9RuoLYTgVFj6AmQsBaP82RBiUDIYYdR8bWuphO1/15K1167VOkBOulfrAmnz1ztSIYToF9deey319fWYzWaeeuop/P399Q6pX8iZlhDiOFWFQ1/BF7+Cyl0QnALX/R1GXy1X34UYSnwj4dLHYNajUPABbH0ePv2p1gUy+0atqhaWoXeUQghxQdatW6d3CANCEjQhhKZ0i3byVrIO/GK0tt7ZN0rFTIihzGSBrOu0rXI3bHsB9rwJO/4O8TO17qujFsoFGCGEGETkzEuIke7oPvjy17B/pdaye/EfYcKdYPLQOzIhRH+KHAtXPQXz/wd2vQpbnoc3b9KGP059UFsA28Nb7yiFEGLEkwRNiJGqqQy+eBz2vQtWP5j7C5jyAFi89I5MCDGQPAPhku/B1O9AwXLY9DSs+KFWQZ9wF0y+T9YzFEIIHUmCJsRI092qrZm06Snt/owfaCdrtgB94xJCXFxGE2Req21lW7W/CRv/BhufhIyrteGPURP0jlIIIUYcSdCEGCmcDm1Y05e/gfYayLpBq5r5x+gdmRBCbzGTta3xiNZQZOc/Ifff2jy1S74PyXNBUfSOUgghRgRJ0IQYCQ5+CZ/+F9TkQcxUuPktiJYr40KIrwmIg4W/gdk/hp2vaMMfX78WwjK1SnvGNWA06x2lEEIMa9K2SYjhrLYIXr8eXr0Getrg+lfg7pWSnAkhzszqC9O/C9/bA1c/A047vPdt+Os42PwMdLfpHaEQQnD33XcTGhpKZmam+1hDQwPz589n1KhRzJ8/n8bGRh0jPD+SoAkxHHW3wqr/gmemQ+lmrWvbw9u0eSUyTEkIcbZMFm1x6wc3wS3vaEtwrPwJ/DnDNVy6Xu8IhRAj2F133cXKlSv7HPv973/P3LlzKS4uZu7cufz+97/XKbrzJwmaEMOJqmrzRp6cpE32H3sLPLILLnlE2uYLIc6fwQApC+HuT+CezyB+Bqz9I/xfFnz6GLRU6R2hEGIEmjVrFoGBgX2OLV++nDvvvBOAO++8k/fff1+HyC6MzEETYrioLdJaZR9eCxFj4IZXIWaS3lEJIYabmMlw0+tQUwjr/5825HHr8zDuNq2hSECc3hEKIS6yo7/9Ld0Fhf36mh7paYT/7Gfn/HPV1dVEREQAEB4eTnV1db/GdTFIgibEUNfdBmuf0FpkW7zgsv+FiXeDwah3ZEKI4Sw0DZY+Dzk/hQ3/B7tegx2vQPaN2vIdQgihM0VRUIbg1A5J0IQYqlQV8t+HlT+D1koYexvM+yV4h+gdmRBiJAlMgCv+onV+3Pg32P532PMmo0OmQ3oIhGXoHaEQYoCdT6VroISFhVFVVUVERARVVVWEhobqHdI5kzloQgxFzeXw5k3w7l3gGQR3r4Krn5LkTAihH99IWPQ7+P4+mPEDAht2ao2K3rkDqvP0jk4IMUJceeWVvPLKKwC88sorXHXVVTpHdO6kgibEUOJ0wvaX4PNfguqEBb+BKQ+AUf4pCyEGCe8QmPffbFbHM8O4V5ujlr8cRl+lVdmkoiaE6Cc333wzq1evpq6ujujoaB5//HF+8pOfcMMNN/DSSy8RFxfHO++8o3eY50zO6oQYKmoK4cNHoGwLJM6BK/4PAuL1jkoIIU7JbvaBnMdg6oNakiaJmhCin7355punPP7FF19c5Ej6lwxxFGKws3fD6t/DszOgbj9c/SzcvkySMyHE0OAZCJc+Bt/fC7N+BAe+1IY+vn07VOfrHZ0QQgw6UkETYjAr2woffBdqCyHzOlj0e5lnJoQYmo4laidW1Ao+hKzrtE6QQUl6RyiEEIOCVNCEGIx6O7XFX19aoLXRv+UduO4lSc6EEEPfiRW1Gd+Hwo/hyUmw/GFoKtU7OiGE0J0kaEIMNuU74LlZsOlJbT2z72yGlIV6RyWEEP3LM1BbGuSR3TD5Ptj7Nvx1PKx4FFqP6h2dEELoRhI0IQYLew98+Wt4aT70tGvzzJb8P/Dw0TsyIYQYOD5hsPj38MguGHcrbH8Z/jIWVv0c2uv1jk4IIS46SdCEGAyO5sILl8LaP8KYm+DBjZB0qd5RCSHExeMXrS14/fA2rdPjxr/BX8fCmj9qQ72FEGKEkARNCD057LDuT/B8DrRVw01vwtVPg81f78iEEEIfgYmw9Dl4aBPEz4Svfg1/HQdbX9BGGgghhMvdd99NaGgomZmZ7mPvvvsuGRkZGAwGtm/frmN0508SNCH0UncA/r4IvvgVpF0GD23W9kIIISA0HW5+A+75DIJHwYofwlOTYN+/wOnUOzohxCBw1113sXLlyj7HMjMzee+995g1a5ZOUV04SdCEuNhUFXa+Cs/NhLpiuPYluP4V8ArSOzIhhBh8YibDXR/DLe+CxRv+fQ88PxsOfK79PRVCjFizZs0iMDCwz7H09HRSU1N1iqh/yDpoQlxMnY3w0Q8gb5k2dGfp8+AbqXdUQggxuCkKpCyA5HmQ+y+todJr12p/Rxf8D0SO0ztCIUa0de/sp66sf+eKBsd4M/OGlH59zaFCKmhCXCxHNsGzM7WFWef+N9yxXJIzIYQ4FwYDZN8AD2+HxU9ATb42h/ff90LjEb2jE0KIfiEVNCEGmsMOa5/QOjT6x8HdqyB6gt5RCSHE0GWywJT7ta63G/4Cm56C/OXasZn/CbYAvSMUYkQZqZWugSIVNCEGUuMR+MdlsOYPkH0TPLBOkjMhhOgvVj+Y+wv47k7Iuh42PqmtobbpKbB36x2dEEKcF0nQhBgoue9pQxprCrRGINc8I4tOCyHEQPCL0pYoeWAdRE2AT38GT7o6PkojESGGrZtvvplp06ZRVFREdHQ0L730EsuWLSM6OppNmzZx+eWXs3DhQr3DPGcyxFGI/mbv1k4Otr0I0ZPh2hchIE7vqIQQYvgLz4Lb34ODX8KqX2gdH7c8Cwt/BzGT9I5OCNHP3nzzzVMev+aaay5yJP1LKmhC9KeGw/DSAi05m/4IfGuFJGdCCHGxJV0K96+Bq56CplJ4aR786x5oKtM7MiGE+EZSQROivxR+DMseBAW46U1ZdFoIIfRkMMK422D01bDh/2Dj36DwI5j2HZjxAxlyLoQYtKSCJsSFcvTCp4/BW7dAUCLcv1aSMyGEGCw8vOHS/9Ja86dfCev+BH+bADv/CU6H3tEJIcRJJEET4gJ4dNXC3y+DTU/CpG/D3Z9CQLzeYQkhhPg6/xi49gW49wttyZMPvgvPzYbD6/SOTAgh+pAETYjzdeBzJm7/gbZQ6nUvw+X/CyYPvaMSQghxJtET4Z5V2t/trmZ4ZQm8c4c2V00IIQYBSdCEOFeqqi06/dp1dHsEwn2rIfNavaMSQghxthRF+7v98FaY8xjsX6W15f/yN9DTrnd0QogRThI0Ic5Fdyu8czt8+WvIup6d4/8IwaP0jkoIIcT5MNtg9o/gu9shbQmsfULWTxNiCLn77rsJDQ0lMzPTfezRRx8lLS2N7OxsrrnmGpqamvQL8DxJgibE2ao7AC/MhcIVsPC3sPR5nEYZ0iiEEEOeXzRc9xJ8ayV4BWvrp728CCp36x2ZEOIM7rrrLlauXNnn2Pz588nNzWXv3r2kpKTwu9/9Tqfozp8kaEKcjaKV8MIc6KiD25dpbZoVRe+ohBBC9Ke4afDtr+DKv0HDQXg+Bz54BNrr9Y5MCHEKs2bNIjAwsM+xBQsWYDJpK4lNnTqV8vJyPUK7ILIOmhBn4nTCuv+Fr34L4Vlw0+vgH6t3VEIIIQaKwQjj74DRV8GaJ2DLs5C/XGvVP/Fu7XEhRB9f/eN5ao4c6tfXDI1LZM5d913Qa7z88svceOON/RTRxSMVNCFOp6sF3r4NvvoNZN+gdf2S5EwIIUYGqx8s/A08sAEismHFD+H52VC6We/IhBBn4Te/+Q0mk4lbb71V71DOmVTQhDiV+oPw5k3aftHvYcoDMqRRCCFGotA0uOMDrYr26WPw8kLIvgnmPw4+4XpHJ8SgcKGVrv72j3/8g48++ogvvvgCZQiev0mCJsTXHVqjrYmjGOCO9yFhlt4RCSGE0JOiQMbVMGo+rPsTbPwbFH4MOT+BKfeD0ax3hEIIl5UrV/LEE0+wZs0aPD099Q7nvMgQRyFOtP3v8NpS7arot7+U5EwIIcRxFi+Y+wt4aLPWUGTVY/DsDChZr3dkQoxIN998M9OmTaOoqIjo6GheeuklHn74YVpbW5k/fz5jx47lgQce0DvMcyYVNCEAnA5Y9V+w+WlIngfXvazNPxBCCCG+LigJbn0Xij6BT34E/7gcsm6ABb8GnzC9oxNixHjzzTdPOnbPPffoEEn/kgqaEF0t8MaNWnI29SG4+W1JzoQQQnyz1MXw0BaY9Sjkvw9PToQtz4HDrndkQoghTBI0MbI1lsBLC+DQV7Dkz7Dod2CUwrIQQoizZPHUWvA/uAmiJ2oVtRdyoGyb3pEJIYYoSdDEyHVkE7xwKbRWwW3vaevbCCGEEOcjOFn7Lrn+FW1h65fmwfKHZZFrIcQ5kwRNjEx73oZ/Xgm2ALj3C0icrXdEQgghhrpj3R4f3grTvwt73oQnJ8DOf4LTqXd0QoghQhI0MbKoKqz9Iyy7D2KmwL2fa1c9hRBCiP7i4aM1DLl/HYSkwQffhX9cBjUFekcmhBgCJEETI4fDDh9+D778NWTfqA1FsQXoHZUQQojhKmw03LUCrnoKaou0lvyf/xJ6OvSOTAgxiEmCJkaG7jZ48ybY+QrM/CFc8xyYLHpHJYQQYrgzGGDcbfDwdsi+Cdb/GZ6eAvs/1TsyIYa8u+++m9DQUDIzM93Hfv7zn5Odnc3YsWNZsGABlZWVOkZ4fiRBE8Nf61FtaMnBL2HJ/8Hcn2vzBIQQQoiLxSsIrn5Kq6iZbPDGDfD2bdBcoXdkQgxZd911FytXruxz7NFHH2Xv3r3s3r2bJUuW8Ktf/Uqn6M6fJGhieKsphBfnQ90BuPktmPgtvSMSQggxksVfAg+sh7m/gOLP4KnJsPkZcDr0jkyIIWfWrFkEBgb2Oebr6+u+3d7ejjIEL8rLgk9i+CpZD2/dAiYrfGsFRI7VOyIhhBBCG2I/8z8hYyl8/J+w8iew9x244i8Qka13dEKcs6YPD9JT2d6vr2mJ9ML/iqTz+tnHHnuMf/7zn/j5+fHVV1/1a1wXg1TQxPCU+2949RrwDod7PpPkTAghxOATmAC3/RuufQmay+D5HFj1X9DTvye6Qow0v/nNbygrK+PWW2/lySef1DuccyYVNDH8bHkePvkRxE6Dm9+QTo1CCCEGL0WBrOsg6VL4/L9h498gbzks+X8war7e0QlxVs630jXQbr31Vi677DIef/xxvUM5J1JBE8OHqsJXv4VPHoXUy+D2ZZKcCSGEGBo8A+HKv8G3PgGzFV6/Dt79FrRW6x2ZEENKcXGx+/by5ctJS0vTMZrzIxU0MTw4HbDiUdj+ktbOeMlfwCgfbyGEEENM3HSticj6/4N1/wsHv4D5/wPj75AOxEJ8zc0338zq1aupq6sjOjqaxx9/nBUrVlBUVITBYCAuLo5nn31W7zDPmZzBiqHP3g3L7oe8ZXDJ92HeL+VLTAghxNBl8oCcH0PmUvjw+/DhI8ebiAQn6x2dEIPGm2++edKxe+65R4dI+pcMcRRDW3ebtpZM3jJY8GuY/7gkZ0IIIYaH4FFw54dwxV/h6D54Zjqs+xM4evWOTAgxgCRBE0NXez28cgUcXgdXPwPTv6t3REIIIUT/Mhhgwp3w8FZIXQRf/Err9lixQ+/IhBADZMASNEVRXlYUpUZRlNzTPK4oivJXRVEOKIqyV1GU8QMVixiGmsrg5YVQkw83vQ5jb9E7IiGEEGLg+ITDDf+EG1+Hjnp4cR6s/Jm05BdiGBrICto/gEVneHwxMMq13Qc8M4CxiOGk7oCWnLXVaJ0aUxfrHZEQQghxcaQvge9sgQl3wean4KmpcOBzvaMSQvSjAUvQVFVdCzSc4SlXAf9UNZsBf0VRIgYqHjFMVOfB3xdrjUG+9bHW7UoIIYQYSax+sOTPWkt+kwe8di0sexA6znTaJYQYKvScgxYFlJ1wv9x1TIhTq9gJ/7gcDEbtSyk8S++IhBBCCP0ca8k/84ew9214agrkL9c7KiHEBRr0bfYVRbkPbQgkYWFhrF69Wt+AhC58mwvI3vsres3e7Bn9S7ryKoFKvcOira1NPpNi0JDPoxhM5PN4ERln4j0+itSiv+Hzzh3UBk+jeNR99HgE6h3ZoCKfyf7l5+dHa2urrjE89NBDrFy5kpCQELZs2dLnsb/97W889thjHD58mKCgIJ0i1HR1dZ3TZ09RVXXAglEUJR74SFXVzFM89hywWlXVN133i4AcVVWrTvd6EydOVLdv3z5Q4YrB6tBqePNm8I2EOz4Av8FTaF29ejU5OTl6hyEEIJ9HMbjI51EHDjts+ht89TswW2Hh77QmWrL8DCCfyf5WUFBAenq6rjGsXbsWb29v7rjjDnJzj/clLCsr495776WwsJAdO3YQHBysY5Sn/m+lKMoOVVUnnur5eg5x/AC4w9XNcSrQfKbkTIxQRSvh9RsgIEEb1jiIkjMhhBBiUDGaYMYP4MGNEJoByx+CV6+BxiN6RybEgJg1axaBgSdXin/wgx/wxBNPoAzRixMDNsRRUZQ3gRwgWFGUcuC/ATOAqqrPAiuAy4ADQAfwrYGKRQxRecvg3/dCeDbc9m/wlKEaQgghxDcKToa7PoYdL8Nn/w1PT4N5v4RJ92rrqgnRzz755BOOHj3ar68ZHh7O4sXn3ql7+fLlREVFMWbMmH6N52IasARNVdWbv+FxFfjOQP1+McTtfgOWfwdipsAt74DVV++IhBBCiKHDYNASslEL4cPvwSePahc+r3oSgpL0jk6IAdHR0cFvf/tbVq1apXcoF2TQNwkRI9COf2hfJolztEWoLV56RySEEEIMTf4x2iiU3W/Apz+FZ6bDpf8FUx/SuiIL0Q/Op9I1EA4ePMjhw4fd1bPy8nLGjx/P1q1bCQ8P1zm6sycJmhhctv8dPvo+JM+HG1/TJjkLIYQQ4vwpCoy7FZIuhY//A1b9F+S9D1c9BaFpekcnRL/JysqipqbGfT8+Pp7t27fr3iTkXMlAZDF4bH9ZS85GLdAqZ5KcCSGEEP3HNwJuegOufQkaDsFzM2Hdn7Tuj0IMQTfffDPTpk2jqKiI6OhoXnrpJb1D6hdSQRODw7YX4eP/1MbK3/gqmDz0jkgIIYQYfhQFsq6DhFmw4lH44lfa4tZXPwNhGXpHJ8Q5efPNN8/4eElJycUJpJ9JBU3ob+sLWnKWskiSMyGEEOJi8A6FG16BG/4JLZXw3GxY80dw9OodmRAjniRoQl9bX4AVP4SUxdqXhCRnQgghxMUz+ip4aAuMvhK++jW8OBeO5n7zzwkhBowkaEI/W57XkrPUyyQ5E0IIIfTiFQTXvQw3vKpV057PgTVPSDVNCJ1Igib0seU5bU2W1Mvh+lfAZNE7IiGEEGJkG33lCdW038ALl0o1TZyRtqyxOJPz+W8kCZq4+La+AJ/8CNKWwPX/kORMCCGEGCxOrKa1VmnVtNV/kGqaOInVaqW+vl6StDNQVZX6+nqs1nPrTC5dHMXFteOV48Mar/u7JGdCCCHEYDT6SoifoXV6XP1bKPoYrn4WwkbrHZkYJKKjoykvL6e2tlbvUAY1q9VKdHT0Of2MJGji4tnzFnz4PUieJ5UzIYQQYrDzDITrXoKMq+HD78Nzs2DOT2H698Aop5AjndlsJiEhQe8whiUZ4igujtz34P0HIWEm3PiaNAQRQgghhor0K+A7WyDtcm3dtJcXQG2R3lEJMWxJgiYGXsFH8O97IWYK3PwWmG16RySEEEKIc+EVrK2bdt3foeEwPDsTNvwVnA69IxNi2JEETQys4s/g3bsgchzc8g5YvPSOSAghhBDnK3OpVk0bNR8++zn8fTHUHdA7KiGGFUnQxMA5tBrevg1C0+G2f4HVV++IhBBCCHGhvEO16QpLX9CGOj47AzY/A06n3pEJMSxIgiYGxpGN8ObNEJgIt78PtgC9IxJCCCFEf1EUyL4BHtoMCbNg5U/gn1dCY4nekQkx5EmCJvpf+XZ4/XrwjYI7lmtrqgghhBBi+PGNgFvehiufhMrd8MwlsOMfIGtjCXHeJEET/as6D167VptMfOcH2jAIIYQQQgxfigLjb4eHNkLUeG1Jndevg5ZKvSMTYkiSBE30n4ZD8Oo1WpfGO5aDb6TeEQkhhBDiYvGPhduXw+I/QskGeHoq7HlbqmlCnCNJ0ET/aKmCf14Njh64fRkExOsdkRBCCCEuNoMBptwHD26A4FRYdp/WMKytVu/IhBgyJEETF66jAV69Gjrq4bZ/a10bhRBCCDFyBSXB3Sth3uNQvEqrphV8qHdUQgwJkqCJC9Pdqs05azgMN78JURP0jkgIIYQQg4HBCDO+D/et0aY9vH0bLHsAOpv0jkyIQU0SNHH+eru0VvpVe+D6f2htdoUQQgghThQ2Gu79Amb9CPa+A89Mh4Nf6R2VEIOWJGji/Djs8K+7oWQdXP0MpF2md0RCCCGEGKxMFrj0MbjnMzB7alMjVjwKPR16RybEoCMJmjh3Tid88DAUfax1ahpzo94RCSGEEGIoiJ4AD6yDKQ/C1ufhuZlQtk3vqIQYVCRBE+dGVeHTn8GeN2HOf2mdmoQQQgghzpbZBot/D3d+CPZueHkBfPErsPfoHZkQg4IkaOLcrP8zbHkGpn4HZv1Q72iEEEIIMVQlzIIHN8LYW2Ddn+DFS6E6X++ohNCdJGji7O16Hb54HLKuhwW/BkXROyIhhBBCDGVWX7jqKbjpDW1N1ednw8a/gdOhd2RC6EYSNHF29q+CD74LiXPgqqe1hSiFEEIIIfpD2uXw0GYYtQBW/Re8cgU0HtE7KiF0IWfZ4puVb4d374TwLLjxVa0TkxBCCCFEf/IOgRtf0y4EV+2FZy6Bna9q89+FGEEkQRNnVlcMr18P3mFw67/Aw0fviIQQQggxXCkKjLsVHtoIkWO1rtFv3QJtNXpHJsRFIwmaOL2WKnh1KRiMcPt72pUtIYQQQoiB5h8Ld3wAC34DB76Ap6dCwUd6RyXERWHSOwAxSHU2wWvXQmcD3PUxBCbqHZEQQogTqKqKw+HAbrfT29t70uZwOM64OZ1OVFV1b1+/D6C4mkEpitJnAzAYDBgMBoxGI0ajsc9to9FIfX09hw4dwmw2YzKZMJvN7s1kMmEymTDIfGZxJgYDTH8YkufCe/fB27fC2Ntg0e+05iJCDFOSoImT9XbBW7dC3X649V1tiIEQQoh+43Q66erqorOz85T7rq4uenp66O7udm8n3u/p6aG3t9edSPU35YQuvRfyO/bt23fGx81mMx4eHlgsFjw8PNzbsftWqxWbzebeH9uO3bdYLH1iFcNUaDrc+wWs+b223E/JWrj6WYi/RO/IhBgQkqCJvpwOWHYfHFkP174ESXP0jkgIIQY9u91Oe3s77e3ttLW10d7eTkdHh3v7+v2urq4zvp7BYDgpYfH09CQgIACLxeLeTqxInVihMpvNfapZp9oMBgOKorj3X6+QnejEqtqJFTen0+muxp1YmXM4HGzdupXs7Ow+Fb6vV/uOJZ0nJp/Nzc3u211dXTidztP+dzIajXh6euLl5dVnO/GYj48PPj4+eHl5ScVuKDNZYO4vYNRCWHY//ONyuOQRmPMYmDz0jk6IfiUJmuhr1c8hfzks/C1kXad3NEIIoSu73U5raystLS199m1tbX22zs7OU/78sQTiWMLg7++Pp6fnSZUgq9Xa57bZbB5UlaHTJW5n4uvrS3x8/AX9XlVV6enpcVcXj23H7p+Y/La3t1NfX097ezu9vb2nfA/e3t74+Pi49z4+Pvj5+bk3X19fzGbzBcUsBljsFHhgPax6DDb8RZuftvR5CMvQOzIh+o0kaOK4Lc/B5qdgyoMw7Tt6RyOEEAPK4XDQ1tZGU1MTzc3NfbZjyVhHR8dJP2cymdwn+UFBQcTFxeHt7d1nO1bFkSF4F0ZRFHcV0c/P76x/rqenh46ODncC3dra2mdrbm6mvLz8lP9/vby8+iRt/v7+BAYGEhAQgL+/vyRwg4GHN1zxF0hZrK3R+nwOXPpz7dzFYNQ7OiEumCRoQlP4MXzyY0hbAgt/o3c0QghxwZxOJ62trTQ2NtLU1ERjY6P7dnNzMy0tLSfNr7LZbPj6+uLr60tUVBQ+Pj7u+8duW61WSboGuWNDQP39/c/4PLvdTktLy0kJenNzM7W1tRw4cOCkapyPjw8BAQHupC0wMJCgoCCCgoLw8JChdhdV6iJ4aBN8+D347Oew/1O45hmtA6QQQ5gkaALKd8C/7oGoCbD0Bbn6JIQYMux2O01NTdTX19PQ0EBDQ0OfRMzhcPR5/rGqSFxc3ElVEl9fXznBHmFMJhOBgYEEBgae8nFVVWlvb3d/phobG92fsYMHD9La2trn+d7e3gQHB7sTtmO3AwICZP7bQPEK1ha33v2GdqH5mUvgsj9C9o3ammpCDEGSoI10DYfhjRvAJwxufgssnnpHJIQQfTidTpqbm6mrq6O+vt6djNXX19Pc3NynCubh4UFgYCBhYWGkpaXh7+9PQEAAAQEB+Pn5YTLJ1544e8fmrXl7exMTE3PS4729ve7PYn19vfszmp+f32deoslkIjg4mNDQUEJCQtx7f39/Sdz6w7HFreMvgWUPaE1EilbAkv8Dz1Mn30IMZvJNNZJ1NMDr14PqgFv/JQtRCyF01dPTQ11dnXs78YTXbre7n3csCYuOjiY7O9s9xCwwMBBPT08ZfiguGrPZTFhYGGFhYSc91tHR4f4s19bWUlNTQ0lJCXv37u3z8yEhIe7XCA8PJywsDJvNdjHfxvAREK+t3brxr/Dlb6B0C1z9FCTP0zsyIc6JJGgjVW8XvHULNJXCHcsheJTeEQkhRoienh5qa2vdW01NDbW1tTQ1NbmfoygK/v7+BAcHk5iYSHBwsHu4mJeXlyRhYtDz9PQkNjaW2Ni+86G6urr6fO5ramooKipi165d7uf4+/u7E7bw8HAiIiLw8/OTz/3ZMBhhxg8g6VJtcevXroXJ98G8x/WOTIizJgnaSOR0wvsPQukmuO5liJumd0RCiGHI4XBQX19PdXU1NTU17v2JiZjBYCA4OJioqCjGjRtHSEgIwcHBBAYGynBEMSxZrVZiYmL6DJlUVZW2tjaOHj3q3qqrq9m/f797CK+npyeRkZFERkYSERFBZGQkvr6+krSdTsQYuG8NfPE4bH4aDq3GO+5+IEfvyIT4RvLtNxJ98TjkvaddTcq8Vu9ohBDDwLGTy+rqanciVltb627SoSjKSYlYSEgIgYGBGI3SmEiMbIqiuNdlGzXq+IiWnp4eampqqKqqorKyksrKStatW+dO2ry8vIiMjCQqKoro6GiioqJkeOSJzFZY9DtIWQjLHmT8zh+BXyNc8gMwyimwGLzk0znS7HgFNvwfTLwbLvme3tEIIYYYp9NJY2Oj+yp/VVUVR48epa2tzf0cHx8fQkNDSUxMdM+tCQ4OloqYEOfIYrEQHR1NdHS0+1hPTw/V1dXuhK2yspLi4mL34yEhIe6fiY6OJiQkRBqRJObAgxuo+/vthH75ayj+DK55DgIT9I5MiFOSb8uR5NAa+Pg/tMmyi/8o7WeFEGfkcDioq6tzX70/lowdWxfq2PDEpKQk91yZsLAwPD2lG6wQA8VisZw0RLKrq4uKigrKy8spLy+nsLDQPaftWJIXGxtLXFwcUVFRWCwWvcLXj2cg+aN/SGjQnfDxD+HZGbDo9zDuNjkfEoOOJGgjRd0BeOd2CBqlzTuT0r4Q4gQOh4Pa2tqTkrFj3RPNZjPh4eGMGzfOnYyFhIRgNpt1jlwIYbVaSUpKIikpCdDmtDU0NFBeXk5ZWRllZWWsXr0a0C6sREREEBcX525iMmIuqigKZN8AsdO0ufgfPAz7V8IVfwWvIL2jE8JNztJHgo4GeON6MJjhlrfA6qd3REIIHamqSmNjIxUVFe6tqqrKnYxZLBbCw8OZOHGiuxlBUFCQDJMSYohQFMW9WPaYMWMA6OzspKysjNLSUkpLS9myZQsbN24EtGGRCQkJxMfHEx8fP/wTNv8YuOMD2PQkfPk/8Mw0uOopGDVf78iEACRBG/7sPfD27dBcDnd+pK0RIoQYUdrb293DnyoqKqisrHQvomsymQgPD2fChAnuDnGSjAkx/NhsNlJSUkhJSQG0RbYrKyspLS2lpKSEXbt2sXXrVgDCw8OJj48nISGBuLg4rFarnqEPDIMBLnnE1Y7/2/D6dTDpXpj/P2AZ5gmqGPQkQRvOVBU+/gEcWQ9LX4DYKXpHJIQYYHa7nerqavdclPLychobGwHtqnpoaCjp6enuzm+hoaHSRVGIEchsNhMXF0dcXBwzZ87E4XBQUVHB4cOHKSkpYfv27WzevBlFUYiIiCAxMZGkpCRiYmKGV8Of8Ez49ldaJW3Tk9p8/aXPQ9R4vSMTI9gw+hcmTrLxr7DrNZj1I23MtRBi2GltbXXPMcnLy2P9+vXuoYre3t7ExMQwceJEoqOjiYiIGJnNAYQQ38hoNLrnpM2ePZve3l7Ky8spKSnh0KFDbNiwgfXr12M2m4mPj3fPeQsODh76a7GZrbDwN9oQx2UPwkvzIecnMOM/tIWvhbjIJEEbrgo+gs/+GzKugZyf6h2NEKIfOJ1Oampq3AlZWVmZuzpmNBrx8vJi0qRJ7vbasoitEOJ8mc1mEhISSEhIYM6cOXR1dVFSUsLBgwc5ePCgu7W/r68vSUlJJCcnk5iYOLTXYXO14+fj/4Avfw3Fn8PS52R6iLjoJEEbjqr2aOOpo8bD1c9o46yFEENOT08PFRUVlJaWcuTIEcrLy+np6QG0BWpjY2OZNGkSMTExREREsH79enJycvQNWggxLFmtVtLS0khLSwOgsbGRgwcPcujQIQoKCti1axeKohAbG8uoUaMYNWoUoaGhQ+8ikWcgXPd3SFkMK34Iz1wCi5+AsbdIO35x0UiCNty0VMEbN4EtEG56E8xD+EqWECNMR0eHu8NaaWkplZWVOJ1OAEJDQ8nOznavfxQQEDD0TnyEEMNGQEAAEydOZOLEiTgcDsrLyykuLqa4uJjPP/+czz//HD8/P3eylpCQMHSGWCsKjLkR4qbBsgdg+UOw/xOtHb9noN7RiRFAErThpLcT3roFuprhnlXgE6Z3REKIM2htbeXIkSOUlJRw5MgRamtrAW24YmRkJNOmTSMuLo6YmJihPWxICDGsGY1Gd8ORefPm0dzczIEDByguLmbPnj1s374dk8lEYmIiaWlppKSk4O3trXfY38w/Fu78EDb+TRvyWDYNrn4KkufpHZkY5iRBGy5UFT78HlTuhJve0LoSCSEGlebmZncyVlJSQkNDA6CtOxYTE0NWVhaxsbFERUXJAtBCiCHLz8+PCRMmMGHCBOx2O0eOHKGoqIiioiL2798PQExMDKmpqaSlpREcHKxzxGdgMMKM70PSHHjvPnjtWpjyAMz7pYxSEgNGErThYuNfYe/bMOe/IO1yvaMRQnA8ITvWtrqpqQkADw8P4uLimDBhAvHx8YSHh0ureyHEsGQymdwdHxcvXszRo0cpKiqisLDQPRQyKCiItLQ0Ro8eTWRk5OAcvh0xBu5bDZ//ErY8C4dWa0sYRWTrHJgYjiRBGw72r9I6No6+Gmb9UO9ohBixWltb3cnY4cOH3R0WrVYr8fHxTJ06lbi4OMLCwmQhaCHEiHNsTbWIiAhycnJoampyV9Y2bdrEhg0b8PPzIz09ndGjRxMdHT24/laabbD4D1o7/ve/Ay9cCnN/DtMelnb8ol9JgjbU1e6Hf9+jDWm8+mnpMCTERdTR0eFeI+jw4cPU19cDxytkkydPJj4+XhIyIYQ4BX9/f6ZMmcKUKVPo6OigqKiIgoICtm3bxubNm/Hx8SE9PZ309HTi4uIGz9/R5Hnw0Cb48BH47BdQ/JnWNds/Ru/IxDAhCdpQ1tkIb90MRovWsdHipXdEQgxrPT09lJaWuhOyqqoqQFsvKC4ujvHjxxMfH09ERMTgOZEQQoghwNPTk3HjxjFu3Di6urrYv38/+fn57Ny5k61bt+Ll5cXo0aPJzMwkJiZG/7+xnoFww6uw+3X45MdaO/7L/wTZ1+sblxgWJEEbqhx2+Nc90HhE6zAkV22E6HcOh4PKykoOHjzI4cOHKSsrw+l0YjAYiImJIScnh8TERKKiomQOmRBC9BOr1Up2djbZ2dn09PRQXFxMXl4eu3btYtu2bfj6+pKRkUFmZqa+c9YUBcbdBnGXwLL74b17ofhTuOx/weavT0xiWJAEbaj6/L/h4Bfamhxx0/SORohhQVVVGhoa3IuvHj58mO7ubgAiIiKYOnUqiYmJxMbGDp31fIQQYgizWCxkZGSQkZFBd3c3RUVF5ObmsmXLFjZt2kRAQACZmZlkZmYSFqbT8kKBCXDXClj//2D17+HIJrjmWUiYqU88YsiTBG0o2v0GbHoSJt8PE+7UOxohhrSOjg4OHTrEoUOHOHjwIM3NzYDWJjojI4PExEQSEhLw8pIhxEIIoScPDw93Za2zs5OCggJyc3NZv34969atIywsjOzsbLKysvD19b24wRlNMPtHkDQX3vs2vHIFXPIIzHkMTB4XNxYx5EmCNtSUbdPWO0uYBQt/o3c0Qgw5DoeDiooKDhw4wMGDB6moqAC0L/6EhARmzJhBYmIigYGBg7PVsxBCCGw2G+PHj2f8+PG0tbWRl5fHvn37+Oyzz/jss89ISEhgzJgxpKen4+FxEROk6AnwwDr49DHY8Bc4+CUsfRFC0y5eDGLIkwRtKGk9Cm/fBr6RcP0rYJSFbIU4G42NjRw8eJADBw64hy0qikJUVBQ5OTkkJSURGRkp88iEEGII8vb2dneDrK+vZ+/evezdu5f333+fjz76iLS0NMaMGYPT6bw4AVm84Ir/g5SFsPxheH42zP8VTL5Pum2LsyIJ2lBh74F37oTuFrj9Pa17kBDilHp7ezly5AgHDhyguLjY3f7+2LDF5ORkEhISsNlsOkcqhBCiPwUFBTFnzhxycnIoKytj79695OXlkZubi8ViweFwMHbsWEJCQgY+mNTFWjv+5Q/DJz+C/Z/CVU+Bb8TA/24xpEmCNlR8+lMo2wzXvQxhGXpHI8SgU19f707ISkpKsNvtmEwm4uPjmTRpEklJSQQHB8uwRSGEGAEURSE2NpbY2FgWLVpEcXExn3/+ORs3bmTDhg1ER0czduxYMjMzsVqtAxeIdyjc8jZsf1kb9vjMdLjiLzD6yoH7nWLIkwRtKNj1Gmx7EaZ/FzKv1TsaIQaF3t5eSkpKKC4upri4mMbGRgACAwOZMGECycnJxMfHYzbLUGAhhBjJTCYT6enpVFdXM3HiRPbu3cuuXbv46KOPWLlyJaNHj2bcuHEDtxi2osCke7T+Af++F965XWvPv+j34OHT/79PDHmSoA12FTvgo/+AhNkw95d6RyOErhobG90J2eHDh91VsoSEBKZNm0ZycjKBgTL8VwghxKl5e3szffp0pk2bRkVFBbt372bfvn3s3bsXf39/JkyYwNixY/HxGYDEKXgU3Pu51op//f+DkvWw9AWImdz/v0sMaZKgDWZttfD27eAdBtf9XWvhKsQIYrfbKS0tdSdldXV1AAQEBDBhwgRGjRpFXFycVMmEEEKcE0VRiI6OJjo6moULF1JQUMDOnTv54osv+Oqrr0hJSWHChAkkJSX1b1XNaIa5P4dR8+G9++DlhTDrUW2T5m/CRc74BytHL7x7F3TUwz2rwCtI74iEuCja29spLi5m//79HDx4kO7uboxGI3Fxce6kLDg4WO8whRBCDBNms9m9vlpdXR07d+5k9+7dFBYW4ufnx/jx4xk3blz/rq0WOxUeWA8rfwJr/gAHPteqaUFJ/fc7xJA1YAmaoiiLgL8ARuBFVVV//7XH7wL+CFS4Dj2pquqLAxXPkPPZL+DIerjmOYgYo3c0QgwYVVWprq5m//797N+/n/LyckAbhpKRkcGoUaNITEy8uOvYCCGEGJGCg4NZsGABl156KUVFRezYsYOvvvqK1atXk5KSwqRJk0hMTOyfqprVF65+GkYt0Na4fXYGLPwtTLhL2vGPcAOSoCmKYgSeAuYD5cA2RVE+UFU1/2tPfVtV1YcHIoYhbe87sPlpmPIAjLlJ72iE6HfHGnwUFRWxf/9+WlpaAIiMjCQnJ4eUlBTCw8MHZrK2EEII8Q1MJhMZGRlkZGTQ0NDAzp072bVrF0VFRQQGBjJx4kTGjRvXP8u1ZFytzUN7/0H46PtaO/4r/wbeF2EpADEoDVQFbTJwQFXVQwCKorwFXAV8PUETX1e1Bz54BOIugQW/1jsaIfpNW1ubu0p28OBBent7MZvNJCUlkZOTw6hRowZmUrYQQghxAQIDA5k3bx45OTkUFBSwdetWVq1axZdffklWVhaTJk0iMjLywn6JbyTctgy2Pgef/Tc8Mw2ufBJSF/XPmxBDykAlaFFA2Qn3y4Epp3jetYqizAL2Az9QVbXsFM8ZOToa4O3btEWor/+HTBYVQ5qqqtTU1FBUVERRUREVFdpoZl9fX8aMGUNqaqq0wRdCCDFkmEwmsrKyyMrK4ujRo2zbts3dsj8qKopJkyaRkZFx/t9rBgNMfVDr3P3effDmjTDhW7DwN2Dx6t83IwY1RVXV/n9RRbkOWKSq6r2u+7cDU04czqgoShDQpqpqt6Io9wM3qqp66Sle6z7gPoCwsLAJb731Vr/HOyioTrL2/ZqAxj3sGvdbWn1T9Y5InIW2tja8vb31DmPQcDqdNDc3U19fT11dHV1dXQD4+PgQFBREUFAQ3t7eslj0AJHPoxhM5PMoBpuB+Eza7XaOHj1KRUUFnZ2dmM1mIiMjiYyMvKC504qzl4TDrxNT9j6dtggK0v+DVt9R/Ri50NucOXN2qKo68VSPDVSCNg34paqqC133fwqgqurvTvN8I9CgqqrfmV534sSJ6vbt2/s73MFhzR/hq1/DZf8Lk7+tdzTiLK1evZqcnBy9w9BVd3c3Bw4ccM8n6+rqwmg0kpiYSGpqKikpKf3b+UqclnwexWAin0cx2AzkZ1JVVQ4dOsSWLVvYv38/BoOBjIwMpk6dSlRU1Pm/8OG1sOxBaK2CnJ/AjP+QZZeGCUVRTpugDdT/4W3AKEVREtC6NN4E3PK1oCJUVa1y3b0SKBigWAa/g1/CV7+BrBtg0r16RyPEN2ptbaWoqIjCwkIOHz6Mw+HAZrORmppKamoqSUlJ0nVRCCHEiKEoCklJSSQlJVFfX8/WrVvZtWsX+/btIzo6mqlTp5Keno7RaDy3F06YBQ9ugBU/1M4Viz+Dpc9BYOLAvBExKAxIgqaqql1RlIeBT9Ha7L+sqmqeoii/ArarqvoB8IiiKFcCdqABuGsgYhn0msrgX/dASBpc8X/SVlUMWnV1dRQWFlJYWOhuhR8QEMDkyZNJTU0lJibm3L94hBBCiGEmKCiIxYsXM2fOHHbv3s2WLVv417/+hY+PD1OmTGHChAnn1v3R5g/Xvggpi+Cj/4BnZ8Ki38G42+W8cZgasBqpqqorgBVfO/aLE27/FPjpQP3+IcHeDe/eqS1KfeOrMgFUDCpOp5PKykp3UlZXVwdAREQEc+bMIS0tjdDQUJlPJoQQQpyC1Wpl6tSpTJ48meLiYjZv3sznn3/O2rVrGTduHFOnTiUgIODsXzDrOoiZorXj/+C7Wjv+K/4CXsED9yaELmQQq54+fQwqdsAN/4Rgmfgp9OdwOCgpKXEnZa2trRgMBuLj492VMj+/M04VFUIIIcQJDAaDewpAVVUVmzZtYtu2bWzdupXRo0czffr0s5+n5h8Dd3wAm5+CL34FT0+Dq56ClAUD+ybERSUJml72vgPbXoBpD8Poq/SORoxgPT09HDx4kIKCAneTD5PJRHJyMunp6aSkpPTPQpxCCCHECBcREcHSpUuZO3cuW7duZfv27eTl5REbG8v06dNJSUnBYDCc+UUMBpj+XUicA+99G964Hibeo62fa/G8OG9EDChJ0PRQnQ8ffg9ip8O8X+odjRiBOjs72b9/PwUFBRw4cAC73Y7VaiU1NZW0tDSSkpKwWCx6hymEEEIMS35+fsyfP59Zs2axc+dONm/ezFtvvUVQUBCXXHIJ2dnZmEzfcJoengnf/gq+/B/Y9CQcXgNLX4Co8RfnTYgBIwnaxdbVAu/cDhZvuP7vshi1uGja2tooKiqioKCAQ4cO4XQ68fHxYdy4caSnpxMXFydNPoQQQoiLyMPDg2nTpjF58mTy8/PZsGEDH3zwAV999RXTpk1jwoQJZ+6KbLZqC1mPWqDNTXtpPsz+sbTjH+Lk/9zFpKqw/DvQcBju/BB8wvWOSAxzzc3NFBQUUFBQQGlpKaqqEhAQ4G73GxUV9c1DKYQQQggxoIxGI1lZWWRmZnLw4EHWr1/PqlWrWLt2LZMnT2bKlCl4eZ2hmVzibK0d/8fSjn84kATtYtryLBR8APN/BfGX6B2NGKYaGhrIz8+noKCAiooKAEJDQ5k1axbp6emEhYVJ50UhhBBiEFIUheTkZJKTkykrK2PDhg2sXbuWjRs3Mn78eKZPn46/v/+pf9gWANe9BKmLtXb8z8yARb+F8XdKO/4hRhK0i6V8B6z6OaReBtMf0TsaMczU1taSn59Pfn4+1dXVAERGRjJ37lzS09MJDpYWvOKbqaqK2tuL2tNz8nbseG8vqt2Barej2nvB4UDttZ9w34nqdIDDCaoT1eEEpwPV6Tx+TFVBdf9SbdPuuPaKdjJhULSLCYqh732DEcVkPMXegGI0oZhNKCYTitkMrr1iMqNYzO7jiocHisWCwWJBsVi058kJjBBiEImJieGmm26itraWDRs2sH37drZv3052djYzZ84kKCjo1D+YdR3ETtWGPH74PVc7/r+Cd8jFfQPivEmCdjF0NsK7d4FPhNYKVU4CxAVSVZXq6mp3UnZsjbKYmBgWLFhAenr6ua2tIoYM1eHA2d5+fGtrw+G6bd2xg4bKStTOTpwdnTg7O3F2dqC6b3eidnXh7O527btQO4/fV7u79X57+lEUd9KmeFgwWG0YrB4oVhsGDw8U2wn3ra77np4YbJ7a3lO77z7u6YXR2wuDl7YpNpskgEKI8xISEsLVV1/NnDlz2LBhAzt37mTPnj1kZmYyc+ZMQkNDT/4hv2i4fTlseQY+fxyengpXPalV18SgJwnaQFNVeP870FoFd68Ez0C9IxJDlKqqVFVVuZOyhoYGFEUhLi6OyZMnk5aWhq+vr95him+gOhw4WlpwtrTgaG52bS04mptwtrbiaG3F2dqGo7Xl5H1bO2pn52lf2w+oPuG+YrVicCcMNneyYfT1xRAWiuJhRbF6YHDvPVAsriTFYtEqTRaLVnk6Vm0ym+HEKpXJ1Pe+UatkYTCiGA1aVctgAKMRFAOKwVUdO7aBlhy5g1ZAVV1VNhWczpPua9U4B6rD4d6rdrv2mN0BDrur0ufa9x673+uqBJ5YJexG7enB2dOD2u061t2Fs8uVxHZ1oXZ14Whqwu667+zqdCe9OJ1n9z/eYNCSNW9vDF6eGL28Mfj4YPT1weDtg8HHG6OPdvvYMaOfL0Y/Pwy+rv2ZGgUIIYY9Pz8/LrvsMmbOnOleS23fvn2kp6cza9YsIiIi+v6AwQDTvnO8Hf+bN2nDHRf+Fjy89XkT4qxIgjbQNj8NRR/Dwt9B9ES9oxFDjKqqVFRUuJOypqYmFEUhISGB6dOnk5aWhre3/JHVi+pwaAlWfT32hkYcjY04mo7tm7A3NuJobMLR1KQdcyVmZ6J4eGDw9cHo7aOdwPv4YI6IxOjjrZ3IuyoyBm8vjO7b3hi8vNi2bx/T5szBYLNpFZsh3ABmKNSaVFVF7e7WKpMdHTg7OrRKZUdHnyqno63NdbvDXfV0trXhaGmht7xce7y19RsrmMqx5NrPF6OfP0Z/f4z+fn1v+2u3TQEBGAMCMPr7a0m0EGLY8PHxYcGCBVxyySVs3ryZrVu3UlBQQEpKCrNmzSI6OrrvD4SNhm9/qTUP2fBXOLwWlj4PMZP1eQPiG8lf7YFUtg0++wWkLYGpD+odjRginE4nFRUV5OXlUVBQQHNzMwaDgcTERGbNmkVaWhqenrIQ5UBRe3uxNzRgr63DXleLo64Oe10d9rp6HA312Osbju+bmk5bQTF4eWkny64TZUt8PEY/vxM2Xwx+fhh9/bQTa19fDL6+GC5g/TnH0aOYZL7hRaMoilaltFqhH4YUO3t6cLa2uiupjuYWnC3NOFpaXFXWZhwtzThdt3vLy+nKzcXR1HTG5M7g56clbIGBGAMCMAUGYAwIxBgYgCkoGFNwEMbAIG3v769VQYUQg56Xlxdz585l+vTpbN26lc2bN/Piiy+SnJxMTk5O30TN5KE1qRu1EJY9AC8vhJn/qbXklyWfBh1J0AZKRwP861vgG6mN+ZW5B+IMnE4n5eXl7kpZS0sLRqORxMRE5syZQ2pqKjabTe8whzS1t1dLtKqr6a2pwV5Ti72m5vhWW4u9rg5HY+Mpf97g7Y0pKAhjUBCW+Hhs4ydgCgrUTmwDj5/8Gv0DMAb4X1CiJUYmg8WCISgITjfx/wycnZ1apfaEzd7YiKOhEUdDA/bGBhyNTfSWldG5dw+Oxiaw208RhMGVxAViDA7CFBKCKTgEU3Cwdjsk2H3b4Osr8+qEGARsNhuzZ89m6tSpbN26lY0bN/Liiy8yatQocnJyiIqKOv7k+Eu0dvwrfwJr/+hqx/88hKTq9wbESSRBGwiqCu8/BK1H4Z5PtbanQnzNsaQsLy+P/Px8WltbMRqNJCUlMXfuXFJTU7FarXqHOSQ4e3q0xKuqStsfPYq96ii91dXYq6rora7GUV9/8g+aTK6TzhDMcbHYJow/4WTUdSIaHIwxOFjm/4hBzWCzYbDZMH99DsppqKqKs7lZqxbX1WlJ3LEqcV099vp6HHV1dO7Yib22FrWn56TXUCwW7d9PaOgJWwhm121jZRWOtjaMMgxbiIvCw8ODmTNnMnnyZLZs2cLGjRt54YUXSElJIScnh8jISO2JVl+4+mlIWaR1eXxullZdm/Rtbd6a0J0kaANh499g/yew+AmImqB3NGIQOV1SlpyczOjRoyUpOwVVVbVqQFUVvZWV9Fa69lVV2lZZicPVxfJEBl9fzOHhmMLDsGZkYAoLwxSqnUyaQ0MxhYVhDAgY0vO0hDhfiqK456t5JJ55IVtVVXG2tmoV6BOG/vYeqzzX1NJdXEz7hg0429rcPxcM7P/VrzB4eWEKC8McHoYpNAxTeBjmsDBMYeGYI8IxhYdrQyulGidEv/Dw8GDWrFnuRG3Tpk08//zzpKamkpOTc7yZyOgrIWYKfPAwfPIjKPpES9x8I/V9A0IStH5XugU+/yWkXwmT79M7GjEInDin7MThi8nJyWRkZJCSkjLikzJHayu9FRX0lpfTU15Ob0UlveXl2lZRgbOjo8/zFasVc0QE5shIrHNyMEVEYA6P0E4AwyMwh4Vi8PLS580IMcwoioLR1xejr+83JnPO9nbstbX01tSwb/VqRgUFaZXso9X0Vh+le/Nm7DU1J83dVGw2zOHHErYI7d93RLj2bzsyEnNkpFSxhThHVquV2bNnM2XKFDZv3symTZt47rnnSE9PZ86cOVp7fp8wuOUd2PF3+PQxeHoaLPl/kHmt3uGPaJKg9aeOBvjX3eAfI/PORrhj3Rfz8vLIy8vrk5TNmzdvxCVlqtOJvbqantIyestK6Skr1/alZfSWleFobu7zfIOXF+boaMwxMXhOm+o+QTNHRmGOjNAqX/LvS4hBx+DlhcXLC0t8PF0dHQTl5Jz0HNXh0IZRHq2i92g1vVWV2pDko0fpPVpF97p12OvqTljAXGMMCjrhb0GklsRFR2GOisIcFY3RWy7KCHEqVquVnJycPolaYWEh2dnZzJ49m8DAQJh4NyTMhmX3a+eyhSvgsj/K8lA6kQStvxybd9ZeA/esAquf3hGJi0xVVSorK91JWXNz84iaU6Y6HPRWHaXnSAm9paX0lByh54i29ZaXo/b2Hn+yyYQ5MhJLTAzWrEws0dGYo6K1pCwqUoY7CTGMKUYj5rBQzGGh2Mac+jlqTw+9NbXYqypdQ5sr3UOcu/fvp2316pM6Vxr9/LRkLTralbRFYY6OwhITgzkqSuu2KcQIZrPZmDNnDpMnT2bDhg1s3bqVffv2MX78eGbNmoVvUBJ8ayWs/zOs+T0c2QBXPQXJc/UOfcSRBK2/bHlOm3e26A8QOU7vaMRF8vWkrKmpCYPBQFJS0rDsvqiqKo6GBnoOH6b78GF6DpfQU1KiJWGlpX2SMMVmwxIbi0dyMj5zL8UcE4slJhpzbCzm8HBZm0kIcVqKxYIlOgpLdNQpHz/2t6i3osK99VRU0FteQfeBA7StWXNSAmcKDcUcE6NdEIqOxhwTrSVvMTGYQkLkopAYMby8vFiwYAFTp05l7dq17Ny5k927dzNp0iRmzJiB1+xHYdQ8eO9+eG2p1jxk/q/AIkv8XCxyhtQfKnfDZz+HlMUw5X69oxEDTFVVqqurycvLY/v27axZs8a9Ttns2bNJS0sb8kmZ2ttLT2kp3QcP0nPosJaQlWgJ2YkLLStmM5b4OCwJ8XjnzMYSF4clLh5LfBym0FA54RFCDAhFUTAFBWEKCsKWnX3S46qq4qir0+a0llfQW17mGlpdRvvWrdg/+KDPEErFZtOStdgYLDGxWGJjMMfGYomNxRwRIReUxLDk6+vLkiVLmD59OmvWrGHz5s3s2LGDadOmMX36dDzuXwNf/A9sfgoOfQXXPA/R0vzuYpC/OBequ1Ubq+sZrHW+kRPSYaumpsZdKaurq0NRFPz9/Zk3bx7p6elDcvFoZ0cH3YcO03PoIN0HDx3fl5b2WSPJFBqKJSEB38sW45GQgMW1mSMjZVFbIcSgoyiKewkNxp08qsXZ04O9spKesjJ6SkvpLS3TbpeU0L5ufd/qm9mMJSoKS1wc5rjYPheizBER8jdQDHmBgYFcc801zJgxgy+//JI1a9awbds2Zs+ezYR5v8KUslCbxvPSfJj1Q5j1qCxuPcAkQbtQKx6FxsNw50cykXIYqq+vJzc3l7y8PGpqagCIj49nypQpjB49mm3btjFhwuC/muTs6qLn0CG6i4vpPnCA7uIDdB84QG95+fEnGY1YYmOxJCXiM28eHkmJWBKTsCQkyOR7IcSwYrBYsMTHY4mPP+kx1enEXlvrHrrdc6SUntJSeo4coX3rVtTOzuNPNpuxxMS4X8sSH6ddxIqPxxgcLKMIxJASEhLCjTfeSHl5OZ9//jmffPIJmzdv5tJLLyXjgfUYPv0prPkD7P9UFrceYJKgXYjdb8KeNyHnp9rK7GJYaGxsJC8vj9zcXI4ePQpATEwMixcvZvTo0fj4+Ogc4empdjs9R47QvX8/Xfv3awlZcTG9ZeXH21qbzXjEx2PLzsJv6TV4JCVryVhsLIrFou8bEEIInSkGA+Ywba02Jk/u85iqqthrauktPd4EqafkiFZ5W7++z4LeBlc3S0t8PJbEBC1xS0zEEheHYYgPgxfDW3R0NHfeeScHDhzg888/59///jcbwsOZP/9RklIXw4ffh2dnwrxfwpQHZHHrASAJ2vmqOwAf/yfEzdBKvWJIa2lpcSdlFRUVAERFRbFgwQIyMjLw8xtcXTlVVcVeW0t30X669xe5ErJieg4ePH6CYDBgiY/HmpaO35Ir8Bg1Co9RyVoiZpahCUIIca4URXF3oPScNKnPY+5OtiUlfbbO3btpWbGiz5w3U2QEHgmJ2nDxxAQ8EhOxJCZKsxIxaCiKwqhRo0hKSmLfvn189dVXvPrqqyQkJDD/2g+J3Po/8OlPoWiFNsXHP1bvkIcVSdDOh70b/nUXmDy0Eq9Bxp8PRW1tbeTn55Obm0tpaSkA4eHhzJ07l4yMDG1dkEFA7e2l+9BhuosK6SosoruwkK7CQhwNDe7nmEJD8UhJwWvaNDxSRmFNScGSlCQLuwohxEWiGI3HO0/O6DuqxtnVpVXbDh+m+9AhrQPuoUM0v/cezo4O9/MMPj6uhC3JPczcIzEBc0yMzHUTujAYDIwZM4aMjAx3Y7TnX/sX2dk3cum8hfiv/Tk8PR0W/wHG3iK9GPqJJGjn47NfwNF9cPPb4HfqFsBicOro6KCwsJDc3FwOHz6MqqqEhISQk5NDZmYmwcHBusbnaGvXErH8AroKCugqLKCn+IC7fb1iseCRnIx3Tg7WtFQ8UtPwSBmFKSBA17iFGCiqquJ0OHDYe3H0uja7HafDjsNu73PbaXfgtPfidDpxOhw4nQ6cDgeqw3H8mOu46lRRnU5Up0P7HU4nqKr7MVBdBQ/1hPvqSYsnA+4TkhMrH4qigGJAURQUg4Livu3aKwoGo1G7bzBiMBpQDAYMBiMGgwHFaMRoNLn2RgxGEwaTtjcajRhMJowmE0aT+fhts/n4MTmZH1QMVivW1FSsqX3n7GhDJmvoOXiwT8OmtvXraF62zP08xWLBkpCAR1ISluQkbWh6cpKMiBAXjclkYurUqYwdO5YNGzawadMm8vJUpo37KzOq/4F1+UNQ+DFc8RfwDtE73CFPErRzVbgCtjwLUx+C1EV6RyPOQnd3tzspO3jwIE6nk8DAQGbMmEFmZiZhYWG6xGVvaKArL19LxAry6c4v0Lonuk4AjYGBWNPT8b7zDjxS07CmpWJJSJB2z0J3TqeD3q5uers66e3uore7m56uTuxdXfT2dGPv7j6+7+7G3tuj7bu7sfd0Y+/pwd7bi72nG4drb+/txdHbg72nF3tvjysR05KxUyZFF4uioKCAciwBU/pcID4emnrCMRVUUFXnxYy0D0UxYDSbMZnNGC0WbW86fttktmC0WDBbPDBZLJg8XHuLR59jZg+ra/NwbVbMVu2YycMDi9WG0WyWYXnnSRsyqc1385o+vc9jjpYWrbnTwUN0HzpIz4GDdO7dqw2XPMZkwhIXh0dSknsYu0dyMpa4OEncxICwWq3MnTuXCRMm8OWXX7J++152es4kJ20WE/b/L8anp2pJWvoSvUMd0uRM71w0V8DyhyBijDYxUgxaPT09FBcXk5ubS3FxMXa7HV9fX6ZOnUpmZiYREREX9YTCXl9PV14eXXl5dObl0ZWXj72qyv24OSoK6+h0fK+6Emt6OtbRo2UdMdGv7L299HS0093ZQU9HBz2dHXR3dmr7jnb3sZ6uTnq7uujp7KSnS9t63be76O3qxHHCguRnRVGOn/S79xZXkmDG6uOrJQ0WD4wmMyaLK5kwuzbT8b3J7KoYGY0YTGYMJiNGk0mrLB3bG40oRiMGo1GrSBkNrmrVsWMGVyXrWNXKAAZFO+6qdOGqcl0oVVVRVadWsXPfdroreFrFzrV3ON2VPtXpwGG3ozqd7iqh0+HAabfjcDhOqBrasff2asftdldS24ujV7tt7+nR7h9Lil3Jr72nh56WFlp7tARaS557tKT5hCU2zobBaNSSNqsNi9WGxXW7pa2djn3bsdg8sXh6ao/ZPPHw9MRis2Gxum57emH18sLi6YVJkgo3o68vtrFjsY0d2+e4s6OD7sOHtarbgYN0HzxIV1EhrZ99dvyKgdmMR3wcluRkLXFLTsaakiJDJUW/8ff3Z+nSpUydOpVVq1axorCELX4/Yr6yntS3b0UZczMs+j3Y/PUOdUhSVD2vTJ6jiRMnqtu3b9fnlzsd8MqVULUb7l8LQUn6xCFOy263c/DgQXJzcykqKqKnpwcvLy8yMjLIzMwkOjpaOxHrR6tXryYnJ6fPMUdTE537cunKy6UzN/ekZMwSF4c1I8O1jcaano5xkDUhEYOP0+Ggq72N7vY2bd/WRldHu3a/TTtWcuAAgf5+dLe30d3RTndHB93tbfR0dGDv7fnG32EwGrFYbZhtx060j922aretNszHbnt4uE/KzSdWWqxWrQrj4aFVYCweUmEZYpxOhzth6+3uordLq5Jq1dITbndpmzupP5bMd2uJfENtLRaTkZ6ODro7OnA6vjnxM5rNeHh6uTZPPLy88fDyxurl5dprm4frvs3bB6u3N1ZvHyw2zxH9OTub5VQUD4/j1baUFDxSRuExahSmsLAR8d/uVN/Z4sKpqsr+/fv57LPPqKurI85PYVHzG0T4GuGqJyHpUr1DHJQURdmhqurEUz0mFbSztf7PcGQ9XP2sJGeDiMPhoKSkhNzcXAoKCujq6sJms5GZmUlmZibx8fH9npSdSOnqomPbNi0hy91H575cesvK3I9b4uPxHD/+eEI2Oh3jIG7TLwaeqqr0dHbQ2dJCZ1sLna0tdLW2avu2Vjrb2uhqbaGrvY2utlbtWGsrPZ0dZ3xdo9mMYjLjCAjE6jrB9Q0J005yTzzh9fTSKhonVjJcFQ6T2TIiTtLEmRkMRvdn5EJ8/WTY3turVWlPrNx2aslbd0c73e3t7mqudoFBO9ZSV+u+EHGmJE8xGLQE7oSkzebtg9XHF5uPLzYfH2w+vli9fbH5Hj9mNA2Pqp3BasU6ejTW0aP7HHe2t9N96BDd+4vdS6+0b9xI8/Llx3/W19fdYMojJdWdvBm9vS/22xBDkKIopKamkpyczM6dO/nqq694jpsZ113Gpa/eis+kW2D+r8Aia6qeLUnQzkb5Dlj9O8i8FsbcpHc0I57T6aSsrIzc3Fzy8/Npb2/HYrGQlpZGZmYmiYmJmAZgnpZqt9N94ACde/bSuXcPXXv3EXLgAEdcVWhTZAS2zCz8b7geW1YW1owMScZGAKfDQWdrCx3NTXS0NNPZ0kxHi5Z4dR6739qsJWSuJMzpcJzytRTFgIe3NzbXyaWnnz+BUTHayaaXj/vE08PTy3Ui6u2uKpgsFrk6LAY1be6bH56+5zdiQFVV7D3dfSrIXW3HL2T0ud3eRkdzE/XlpXS2ttLb1Xna17XYPPH09TuetPn6ue5re09fPzz9/PH088fm6zfkhmEavLywZWVhy8rqc9ze2EjPgQN0FRfTvX8/3fuLaf7gQ5xtb7qfY46KciVrKa7GVKna/DYZJilOwWg0MmnSJDIzM1m7di1bthjIM9zHzG0bmFo8E/PSpyF2qt5hDgmSoH2T7lb49z3gEwmX/z9pH6oTVVWpqqoiNzeX3NxcWlpaMJlMpKSkkJmZyahRozD385dm79GjdO7eQ+e+vXTt2UtnXh5qp/Ylb/Tzw5qdTXvKKNKWLMGWlYVJ5w6Qov/09nTT0dREe1MjHc2ufUsTHc3NdLQ009Hc6L7d1dpy6hdRFC3Jcp3wBUZGa1fvXVfxj21Wbx/txNDbFw9PTxRZ8FOIU1IUxT2U1ifw3P7e2nt76WptobOtVdu3ttDZ2qpdRGlt0S6utLbQ2lBPTckhOpqbT1ut8/DywtPX35W0+eHpF4CXvz9efgF4+rtu+wfg6RcwqJM5U0AApkmT+qznpqoq9spKuvbvd62zuZ+u/UW0rV0LrgtLioeHNkQyNQVrqtZN2JqagtHfX6d3IgYbm83GwoULmThxIqtWreKLIoUdLe3Mf/lhRk+/DGXOz8Bs1TvMQU0StG+y4kfQdATuWiETHXVQU1PjTsoaGhowGAwkJyczb948UlNT8eindb6c3d105eXTuXs3nXv20Ll7N/bqagAUsxmP0en4X3cdtuwsbNnZmGNjURSFQ6tX4yMViyHB6XTQ2dJCe1OjtjU29L3d3ERHcyPtTU2nHU544olZUHQMMb5Z2gmar3ZlXbutXXm3entjkDUShRgUTGYz3oFBeAcGndXzjw1FPlYVb29uorO5mfYTLs50NDdSX1ZKWd4+utpaT/k6Hl5eePkF4BUQiJe/tvf2D8ArMEjbBwTiHRB4wcNJ+4uiKJijojBHReEzZ477uLOnh56DB7W1OIuK6CoqpO3Lr2j+93vu55jCw7GmpeGRloo1LQ1rWpr2XSkXnUasoKAgbr75Zg4dOsTKT1bwbu0S4jaWszD/SiJveAIix+od4qAlCdqZ7PsX7HkDZv8Y4qbpHc2I0dDQQF5eHrm5uVRXV6MoCvHx8VxyySWkp6fj6XnhX2S9VVV07tpF5549dOzeTVd+Abg605mjo/GcOFHrnjUmG4+0NAwWywX/TjEwVKeTjpZm2hobaG9sOGFf3+dYR3MTqvPktucenl7uq96h8Ul4uq+Ea3vtSvjQHNokhDg/iqK4524GhEd+4/Ptvb3aMOemRtqPVd2bGmlvPnYRqJGq4kLaGxtP2bDHbLXhHRCoJZFf23sFBOETFISXfyBGnZZZMVgsWofh9HT3MVVVcdTVuZK2QrqK9tNdWEDbunXHq22entq8trRUrGnpWNPT8EhJwWCz6fI+hD4SExO5/4EHtflpn3/K801RjH/+N8ydPh6vuT8Eo3y3fp0kaKfTVAof/QdET4ZZP9I7mmGvpaXFnZRVVFQAEBMTw+LFixk9ejQ+FzCXS7Xb6Sos0hKyXTvp2LXb3VVRsVqxZWYSdNed2MaMwTZmDKYQWWBxsLD39tLWUE9bfR2tjdq+raGetoZ67X5DPe2NjaccimTz9dNOcAICCYlLwDsgEE//ALz9XfsAbTiS2dI/VVghxMhlMpvxDQ7BN/jM3x+qqtLd0U57YyNtjfXuCn5bY4P2t62xgYqiAtob609e7kBR8PIPwCcwCO/AYLwDg/AJCtbuBwXjExSCT1DQRWt6oigKppAQvENC8J45w33c2d2tdZEsLNSSt4ICWj5eQdNbb2tPMBiwJCRoVbbR6XikpWFNT8cUGHhR4hb6OHF+2povPmXLdsjf2Myc3DuZePPPMEZk6h3ioCIJ2qk47PDvb4PqhGtfAKP8ZxoIHR0d5Ofnk5ubS0lJCQDh4eHMmzePzMxM/M9zPLujtZXO3bvp2LmTzp276Ny71z13zBQRgee4sdjuvhvbuHFYU1NkMU+d2Ht7tcSrvpbW+jpta6inraGO1ro6Whvq6GxpPunnzFabdmISGEhMeqZ72JJ3oHaF2TtQG0o0XDqzCSGGD0VR3EsFBEXHnPZ5qqrS2dpCe2MDrQ0nXJiq1/5GNlZVUJa/l+729pN+1tPPH58gLVn0CQrWtuAQfIND8QkOwcvPf0CHHRo8PLBlZGDLyOjzfnorKukuLKCroJCuggI6du2k5eOP3c8xhYZqVbqM0Xikp2NNH405KlI6yw4zNpuNRUuuZvzk6Xzy71f5pNrKjueeY/H4WBKW/AfI1ABAErRTW/cnKNsMS1+AgHi9oxlWurq6KCoqYt++fRw6dAin00lQUBA5OTlkZGQQch7Vq97qGjp37qBj+w46du6ku6gInE4wGrGmpuJ/7bV4jh+Hbdw4zBERA/CuxNepTiftzU201tXSUlej7etrtcTLlZR1NDed9HNWbx/3CUV48ih8ArUTC++A40mYRz8McRVCiMFMURR3B8mQuITTPq+nq5PW+jra6uvdF7ta6mppra+lvqKMkr27TupgaTSZtGrbCUmbb0gIfiFhrvvB/X6BS1EULNFRWKKj8Jk3z33c0dREV2GhK2nLp7vANUTSNRzd4OenVdpciZt19Ggs8fHSRXIYCA0N5Y4H/oOC3Vv5dMUHvLKznYyCR1hww334JYzROzzdSYL2daVbYM0fIOsGyL5B72iGhd7eXoqLi9m3bx/FxcXY7Xb8/PyYNm0amZmZhIeHn/UVMlVV6SkpoWP7djpdCdmxdccUmw3b2DEEP/QQnhPGY8vOxuAla24MBIe9l9b6elpqq2murdYSsNpaWutrXPvak4bnmK029xXd0PgEfIJDXENygvENDsE7MAizh3R1EkKIs2Wx2giKiiEo6tTVOFVV6W5vp7Veu1jWUlfr+ntdQ0t9LUf27qStqRFcy8UAoCh4BwbhFxKKb3AoviFh+IaE4hcShl9oGD7BIf02F87o74/X1Kl4TT3eet3Z1aV1j8zPpyu/gK6CAhrfeAO1R5u7p9hsruGRWsJmzczAIzFRRsMMQYqiMHrcFEZljGPDshdZX2Cn6JV3mDlqFdOv/x7mETz/XxK0E3U1w3v3gl8UXP6/ekczpDkcDg4ePEhubi6FhYX09PTg5eXF+PHjyczMJCYm5qySMtXppLv4AB3bttGxfTsd27fjqKsDwBgYiOeECQTcegueEyZiTUuVP9D9xGHvpaWulpaaGpprq7Uv89pqWupqaK6toa2h/uQvdP8AfEJCCUtMZtSU6cevzgYF4xsSioenlwxVEUKIi0hRFNei3d6nrcQdv+BW47roVkNrnfa3v6Ion8KNa/s0WFIUA95BQfiFhuEXEq7tQ8PwCw3HLywcL/+AC/pbb7BasWVnY8vOdh9T7Xa6Dx6iqyBfS9zy8mlatgz19de1mCwWPFJTtYQtYzTWjAyso0ahjOAT/KHEbLGQc+NDjC3fz6dvPctXxWZ2P/ELLrvsckaNn6l3eLqQBO1EKx6F5gr41idgPb+FNEcyp9PJkSNH3AtId3Z2YrVaycjIICsri7i4OIzfMCxBdTjoKiikY+tWLSHbsQNnszYPyRQRgdf0aXhOnIjnxElYEuLlhP88OZ0O2hoaaK45SnNNNc011bTUHKW5VvtS/noCphgM2pyGkBDiMsfg+7UrqxdzYroQQoj+YzSZ8Q8Lxz8s/JSPOx0ObehkrfZd0XxsX1OtVeAaG/o832Tx0BK2sHD8XUmbX2g4/mER+IWGYTqPpEkxmbCmpmBNTYGrrwa0C7g9JUdclbZ8uvLyaFmxgqa3Xc1IzGaso0ZpyZprO9atWQxO/tEp3Piff+LgqhdYsTmf1z/4grQtG1h04334j7AmMpKgHZP7b9j7Nsz+CcRO0TuaIUNVVSoqKsjNzSUvL4/W1lbMZjOpqalkZWWRlJSE6QxDIVS7XZssvHWblpTt2IGzrQ0AS3w8vgvmuxKyiZijoi7W2xoWujvaaao+qiVhx/Y11a59Td/Oh4qCT6BW6YrNyMYvNAxf13AWv5AwvAODMMiYfyGEGHEMRqO7ShaTcfLj9p4ebaRFTTVNJ37fVB+lLHcvvd1dx5/sGj4ZEBaBX1iElhiGR+AfFoF/eAQenmc/LUExGPBITMAjMQG/JZcDrmYkZWV05eVpW34+LatW0fTuuwCEGo0cTk3VErbMTG2fIpW2QUVRSFp4Hw9OPMKm13/Lmupgnvzbn5k9bTLTLl18xnPK4WRkvMtv0lwBH/0AoibCrEf1jmbQU1WVmpoa9u3bR25uLk1NTRiNRkaNGkVmZiYpKSlYTvPHTnU46MovoGPrFtq3bqVz+w6cri5UloQEfC+/HM/Jk/CcNAlzaOjFfFtDjup00tbYQFN1Fc3VR2mqPuq6XUVTTTVdrS19nm/19sEvNIyQuESSJ0/HPzQcX9eXrm9wiFTAhBBCnDOTxXLaeXDHulE2HXV9N1UfpeloJU3VRzm0c+tJzaJsvn4EhEfiHx5xfB8RhX945Fk1iFIUBUtsLJbYWHwXL3bH0FtRQVduHvs/+QTv1tY+SZtiNuORkuJK2jKwZWXhkZwsUyZ0ZgqKY+Z3nyVr/cus/HIdX2w0snvPHi5bejNJSUl6hzfgJEFzOuH9B8HRC0ufl5b6Z1BfX09ubi65ubnU1taiKAqJiYnMnj2btLQ0bKdYeFKbQ1ZMx+bNtG/ZSse2bThbWwGwJCbie8USvCZPxjZxoiRkp+B0OGipraGpuoqmo1Xa3nW7ufponwVPFYMB3+AQ/MIiSJkyXRtSEh6hzQsIDcPq5a3jOxFCCDHSnNiNMjIl7aTHezo73BcXm45W0XS0ksajlZTm7iF/7Zd9nmvz9SMgIoqA8EgCIiIJiIxyJ3FnajCldZCMxhIdTZvVg4k5OVrSVl6uVdlyc+nMzaPlk09oeucd7WcsFjzS07BlZmHNzMSWmYElMVG6R15sioL/zHu4KWs+xW/+jBXVwbz66qtkjEpg4RXX4Ovrq3eEA0aykS3PwuE1sOT/IGj4Z+Tnqrm52Z2UVbkWd46NjeWyyy5j9OjReHv3PelXVZWewyV0bNlM++YtdGzZgqOpCQBzbCy+ixbiOWUqnpOlQnaM0+GgubaapqNVNFZV0lRdSVOV9iXVUluD0+FwP9dktmjj+sMjiR87QRsWEqaN7e/PzlpCCCHEQLPYPAmNTyQ0PvGkx3q7umiqOer+PjyWvJXs3Unems/7PNc7KJjAiEgtgYuIJjAyioDIaHxDQjCcYl0tRVGwxMRgiYnBd9EiQLug3FtWRmduLl25eXTt20fzsmU0HmtE4umJdXQ6toxMrFlZ2LIyMcfGylz4i8E/llEPvMpDW15iw6r3WV9sp/gvf+bSeQuYNHnyN/Y3GIpG9tlcdT58/ktIWQQT7tI7mkGjra3NvYB0aWkpAJGRkSxYsICMjAz8/Po2UOmtrqZ90yY6Nm2mffNm7NXVgNbUw3v2bDynTsVrymTMkZEX/b0MFqrTSWt9HQ1VFdqXTVWF+wunuaa6TxJm9rDiHxFJaFwiKVMuwT8i0j0+39s/cEAXGBVCCCEGA7PVSkhsPCGx8Sc91tPZQePRKu271P29WknhxrV9Fu82mkz4h2uJW2BkFPUtbVRFRRAQGXXSqBLFYMASF4clLg6/y11z2hwOekpK3FW2rn37aHzrLdRXXgG0ddpsx+azZWViy8rCFBYmSdtAUBTMU+8lJ3Ue2f/6Tz6u8GHlp5+yZ9d2lly1lKhh1qdAUU9slT3ITZw4Ud2+fXv/vJi9G16YC61V8NAm8B7Z1ZzOzk4KCgrIzc3l8OHDqKpKSEgIWVlZZGRkEBQU5H6uo7mZ9q1b6di0ifZNm+k5fBjQ1jPxdK1n4jV1Cua4uGH/R2r16tXk5OQArrH2Lc00VFXQWFnh/uLQqmJVOE7oHmXy8NCu9IVF4B8R2Wesvaef/7D/7yYGxomfRyH0Jp9HcbF9/Xu4obKcxqoKGioraK6u6nMx1Ms/gIDIKAIjowmMjCEwKprAyGh8g0POeCFU7e2l+8ABOvfto2tfLp15uXTvLwbX2p/GkGBsWdnYsjKxZmVjy8zA6O8/0G99ZHE6Ube9SN6qf7LSMZ02PJk8aRKXzp2L1Tp01lNVFGWHqqoTT/nYiE3QPvsFbPgL3PwWpC7un9ccYrq7u9m/fz+5ubkUFxfjdDoJCAggMzOTzMxMwsLCAHD29NC5azftGzfSvmkTXbm54HSieHriOXECXlOn4TVtKh6pqSOiutPb3UVjVSUNleXs2rgBP6uFxspyGqsq6e7oe+XOLyzCNeTCNWbedSXPKyBQkjDR7+SEWAwm8nkUg4nDbuezjz4gOTqKxspyGirLaagop6GijK72NvfzTB4eBEZEawlbVDRBUTEERsUQEBF52mZazq4uugsL6dyXS1fuPjr37nNfvAZtioctK0ursmVnY01Px3CKefviHDWW0LXse3xRqrCNMXh7ebL4siWMHj16SJxjnSlBG5lDHEvWw4a/asMaR1hy1tvby4EDB8jNzaWoqAi73Y6Pjw9TpkwhMzOTSNcwxO79xdSv+IT2TRvp2LYdtbMTjEZs2dkEP/AAXtOnYcvOHrataVVV1YYkVpa7/pBXuK7CldNaV9vnua1BIQRERpE2I0cbAx8ZTUBE1GnHvgshhBDi4jKaTFj9A0meOAU4vpzSsU6TDRVlrqStjPqKcir3F1C4YY37eYrBgH9YBEHRMQRFx2qJW3QsgZFRmK1WbGPHYhs71v18R2urNjRyXy5d+/bRsWMHLR9/7ArGiEdKCrasLGzZWVizsvFITpImJOcqIB7rXcu4fMfLjFn5Nz7qmMm7775LcnIyl112GYFDeO20kVdB62qGZy4BoxnuXwcew7+zncPh4NChQ+Tm5lJYWEh3dzeenp5kZGSQmZlJTEwMzoYG2jdton39eto2bsRRWwdore+9pk3D65LpeE6ejNHHR+d30796e7ppclXDGipcV9Qqy2msrOizdovFZjth4rE2JCIgIorc4oNcOn++ju9AiOOkYiEGE/k8isHmXD+TvV1d7qStobKc+vIy6ivKaDpaeXy4pKLgFxqmLTUQHXt8i4rB/LXhdr01NVrStncvXXv30Zmbi7NFWxJH8fTENno01uxsbNnZ2LKzMEVEDIlK0KDQeATH8ofZWtLKl8pMVKOFOXMuZerUqYO2iYhU0E604kfQUgn3rBrWyZnT6eTIkSPk5uaSn59PZ2cnHh4epKenk5mZSXx0NN27d9P+r39Rsn4D3QUFgDaPzGv6NLwuuQSvadOGTWOPztYW6ivK3MMZjv2xba6tgWMXKRQF3+BQAqOiiU7PJPBYIhYZjZd/wCn/SBpKSi/yOxFCCCHExWC2WglLTCYsMbnPcYe9l6ajVdSXl2pJW3kpDRVlHNm7C4drLhqKgl9IaJ+kLTgmjsBLpuNz6aWAq3NkaSmd+7RhkZ1799D42ms09GhL6Ljns2VnaUMjMzMxDuPW8hckIA7jnR8wbcffGf3p71lhn85nnznYt28fV155pXuE2FAxshK0vGWw9y2Y/ROIPmXCOqSpqkp5eTm5ubnk5eXR1taG2WwmLS2NjIwMYkwmujduou2JJzhwbNiiyYTnuHGEfP/7eM2YgXV0+pCdR+YeluhKwOrLXVe8KsrobGl2P89kthAQFU14ciqjZ811TwwOiIg841oqQgghhBBGk9mddJ3I6XDQVF1FfVkpdeVHqC8rpb68lJI9u3A6jidu/mHhBMfEERwTR1BMHMFjswlZvAijyYza00NX0X469+7Rqmz79tH25fE14SwJCVqyNiYbW/YYrKkpsqj2MYoCE+/GL3keNy1/hPzDH/FJ7QJeeOEFpk6dypw5c7AMkak5IydBa6mCD78PURNg1g/1jqbfqKpKVVWVOylrbm7GaDSSkpLC6ORkourq6N60ifann6G0ogIAS1wc/kuX4nXJJdqwRW8vnd/FuXE6HTTXVGsJWMXxK1cNleX0dHa6n2f19iEwKobkiVO0Lk3RMQRFxeAbHDpkk1AhhBBCDE4Go9HVFTKaUVOmu4877HZXxe0IdWWl1Jcdoa7sCAd3bEV1Ot0/GxARpSVusfEEpyYTMn8uEcGhONva3EMjO/fuo23DBpqXLwdA8fDAOnq0lrRlZ2EbMwZzVNTIHhrpH4tyxzIydr1G4srH+cw5nk2bVAoKCliyZAnJycnf/Bo6GxkJmqrCB9/VWutf87w2/2yIq6mpcS8g3dDQgMFgICkpiZlpaUSWHKH3o4/p2LWLarsdg6cnntOmEXTvPXjNmIElJkbv8M+Kw26nqbqKBtfwgfpjyVhleZ+W9d4BgQRGx5Ixex6BUTHaBN6oGGy+fiP7D5QQQgghdGc0mVzNRWJImXr8uL23l8bKcupcCVtdaQlVB/ZTtGmd+zlmq43g6FiCY+MIjosneMZ0omNiMbe1awnbnr107t3bZ302Y1CQNo9tjDafzZqVNex6CHwjRYHxt2NLnsuVH/2A7P3v8GHbFbz22mtkZ2ezcOFCvLwGb4FiZCRoO1+BA5/B4icgePBnzadTX1/vrpTV1NSgKArxMTFM8PcnorAIx7PPYa+tpRnwSE8n6FvfwmvGDDzHjR3U3RZPvLJUX15GXXkpDeWlNFRWHB8SAPiGhBEUHUNc9jhX69tYgqJj8PAcvP/AhBBCCCFOxWQ2ExKXQEhcQp/jPZ0d1JWVUldWQl2plrwd2LaZfV+ucj/HKyCQkNh4gmPjCZl+D0GR0Xh3dNGTn68lbXv20PbVV9qTFQVLYuLxpG3MGDxGjUIxjYA0wDcSbn6L+H3v8sCKn7LOkc76fVBcXMzixYvJysoalBfzh///mYbDsPJnkDAbJn1b72jOWWNjI3l5eeTm5nL06FEAooODmeXrR8Se3fDOu+Bw0Ovjg9cll+A9cyZeM2dgDh18C28fG5tdV3bENT77FInYCd2QEsZPcndFCoyKxmKVNUOEEEIIMbxZbJ5EpqQRmZLmPqaqKh3NTdQeOUxdaQl1ZUeoPVLCrk8+cDcmUQwGAiOjtaRv6rcIDA7Fp60Dw8FDdO3dR9uaNTQvW6Y912bDlpGhzWUbM0YbGula/3bYURTIvgFzwmwuXfGfZBT8kw/sV/Hee++Rm5vL5Zdfjp+fn95R9jG8EzSnA95/CAxGuPppGCLzjpqbm8nLyyMvL48K17yxcG9vpjmdhG/ajKWsDACP0el433sv3rNmYhszZtBcCVGdTpprqqkrPz7O+tg8sT7djU5IxIJdk20Do6KlUYcQQgghxAkURcHLPwAv/wDix4x3H3c6HDRWVVJbqiVutUcOU1GU32cNN6uPL6Fx8QRPvZMAHz982jqxlpXTs28fjf98lYbelwEwhYW5kzXbmGysGRnDa0FtnzC48TXC8pZxz8c/Yos9li8OwNNPH2H+/PlMmDBh0FTTBscZ/UDZ/DSUboSrnwG/aL2jOaPW1lby8/PJy8ujtFRr3R5isTCxsZGwzVvwbm7G4O2tVckeeGBQVMlUVaWtod49drq+rFTbV5Ri7+52P88nOITg6FjissdpHYtOsz6IEEIIIYQ4ewaj0T2/jemz3Me72tuoO1JCbelhal2J294vPsXe0+3+ucCYaIKn30aA1ROftg4sZZV07culdZVrKKXRiDU1FdvYMdr6bGPGYImPHzRJzHnLuAZDwmymrfwpqXtf5kPnlXz00Ufk5uZy5ZVXDooFrodvglZTAF/8D6ReDmNu1juaU2pvb3cnZSUlJQAEopBdWkr0vn34tLZhSU7C+7pr8Z41G8/x43RrpdrZ2uIuqWubVh3r7mh3P8crIJDgmDjGzFtEUHScuwWth6enLjELIYQQQoxEVi9vokdnEj06033M6XTQdPQotUcOu7ZDlBflU1hf536OV3IEwbMmEWCx4tPWiaOsgu73l6O+8SYARj+/E4ZFjsWWnTU012bzDISlzxGY9Rl3fPB9dvYGsKpsLk8//TSXXqotcG3QceTd8EzQHL2w7H5tIeor/qKNPR0kOjo6KCgoIC8vj8OHD6OqKn4OB5kHDhB98BD+3d14Tp2C9w9+gPes2Viioy5qfL3dXdSXlVJbVuIanlhKXWkJ7U2N7ud4eHkRHBNH2iWzT1jHIxabzxD8ByqEEEIIMQIYDEYCI6MIjIwiddoM9/HO1hZ30lZTcojaI4cpK8rH6XAAYMqMJyg0nACzBz6tHXiWlWN9agNG1xIBlqSk40Mjx47BIzkZxWjU5T2es1HzUb6ziQlfPE7ythf52LSEVatWkZeXx1VXXUWoTqPVhmeCtvZ/oWoP3PAqeIfoHQ2dnZ0UFhaSl5fHoYMHcaoqPt3dpB84QExpGUE2Gz45s/G+/368pky5KON9tasoVdp45dIjrupYCU3VR7VlCdAWdA6KiSV+zPjjiVhsHN4BQUO/vC2EEEIIIbD5+BKbOYbYzDHuY/beXhoqyrSEreQQNUcOcbjksDZyygpKdiL+AUEEmD3wbmnDc+M6vJe/j8XhRPH0xJaZiW3sWGxjx2DLzsYUHKzjO/wGVl+4/E/4ZSzl5uXfJbfRyIqji3nuueeYM2cO06ZNw3iRE87hl6BV7IS1f4TsG2H0lbqF0dnZSVFREbn79nHo0CGcqop3ZycpJSXElJURGRuHz9x5eM/JwSMlZcASnlN2/SktoaG8DHtvDwCKYsA/PIKQ/8/efQfYcdb3/n/PnN7P2T3bu3qX1S3JluVuYwzGdDABDCQBErhJ4DoJ95Lcm/IjN5CEQIhJ6MU2wQQwGEu2bMvYuEmyLclWl3ZX23s5vc38/phTd1eyZEvaou/LDDNnZs7sc1Znz5nPPM88T1MLS6+6NtttaxO+qmpUdZZcARFCCCGEEBeE2WKhsnkelc3z8ut0XWd8oJ/+9lP0t56iv+0k/W2nOBUbgyovVHlxu9z4VQuesTGcP70f73e/jT2VwVpfX1LLZl+yZOYNAdW8FeVTv2Pl7i/R8rtv8bDpZnbtynD48OFLXps2twJaKmY0bXRXGWOeXWLxeNwIZS+/zKn2djK6jjMaZVF7O439AzSsXInnfe/Hfc02zBfhBsR888TTbdmaMWMeC43n93H5AwQbm1l9821GEGtooqy+AYvVdsHLI4QQQggh5gYl2wO3r7KKhRs259dHx8cKNW1tp+hvPUlneBQajUBjs1jxKyY8Rw/g/t1ufNEkLhQcy5YVatlWr8ZSUzNNr6yIxQE3/h/cy9/Be375R7zWd5CHe2/hm9+8l2uvve6S1abNrYD2+N/A4DH40M/B4b8kPzIXyg6++CKnurrQAGckwvyOTlpiUZrXrcfzx5/BuXED6gW6UpDrxt7oUrU937XqSG9PoXmizUawoYkFG64k2NhMsMGoFXN6Z9Y4D0IIIYQQYvZyen00r1pD86o1+XXJeIyB9jajlq31JP2tpziVSaG5jHNhi2rCp0Xx7PoN3l8+iDeawOcvw1Vcy7Z8Oep09fhdewXK7z/Jiue+TvOTX+Vh/Rp27dI4dOgQd9xxx0WvTZs7Aa3td0a3+hs+DvOvu6g/Kh6Pc/TwYQ4++yytAwNkAEc0yoKODuZbbcy7chOej3/8gjRdjEfChdqwbHepg6fbSSXixg6KQqC6hmBjM0u2bqeiyRhV3l9ZjTJLxn0TQgghhBBzh9XuoG7xUuoWL82vy6RTDHacNgJb20n6Tp2gw9pKOukBwKQoeDuP433tJbzfTuBLpgk2z8O1uqiWraHh0vWDYLLAVX+Ce+nbeM9Dn+W19kM83HsT37z3XrZfey1btmy5aLVpcyOgJSPwy09BoAlu/L8X5UfE43GOHDjAwWefpW1khIyi4IhGmd/dzaJAGfOuvgrP5z73hscm0zRjoEFjkME2BtpPMXC6jdDgQH4fu8tNRVMLK669kYqmFoKNTQTrm2Q8MSGEEEIIMaOZzBaqWuZT1TI/v07LZBju7qS/9SR9rUZtW0/rCdrjRkWEShzP3t/i3b0TXyxBwGKnculy3NmmkfYVKzG5XRe34OXzUT7yK1a89AOad/4dD6c28fjjGkcOH+Ydd95J8CJ0gDI3Atquv4aRNvjIb8B64f6R4vE4h158kYMvvMDpcDgfyhYMDLC4ro4FN92Ee8sW1PMc5ysWDjHYXhg4cKDd6NI+32mHqlJWW0/d4mUEb2ymsqmFYFOz9J4ohBBCCCHmDNVkyvcUvmyb0QJO1zRGenvoaz1B36kT9J86Qd+p43RkQ5syfBrPwyfwPfhjfPEkwfJKqlauxr1mDY4rVmNtabnwrcgUBdZ9GPeim3nPw5/j1SMP85ueG7n337/BDTfexMaNGy/ouGmzP6C1Pg0v/gds+kNo3vqmDxeLxXj1qad47aWXOB2Po6kqjmiUhWNjLG1pYcHtt+O84opzGt8hVyuWG1ti8HQb/e2thIsGBHR4fVQ0tbD6prdQ0dRCRVMLZbX1mGdazzZCCCGEEEJcZEZFhTFe29Kt1wCF/hdyoa332BH6Wk/QkUgAGsqxl/Dsfx5fLIFfg6rGFqrWrMO9dg2OVasw+S5QHwyeapT3/YiVh39F86//Nw9FVrNjxw6OHHqNt7/jTgKBwAX5MbM7oCXC8MtPQ9k8uP6Lb/gw0XCYg489xqGDB+lIp9FUFWckwtJ4giWLF7Hw1luxz59/1mPEw2EGTrcWjc5eWiummkyU1TXQsHSFEcQam6lonofT55daMSGEEEIIIc5AUY0hofzVNSzefDVgdPs/1t9H36nj9J48Tu+hV+k73UZHKsnB2BDqMzvx7HoIXzRBmctD9YLFVK/fiGvtGmMwbfObiEFLb8fTso0P7Pq/vLz3UXacvpZ//7evc8tbbmPNmjVv+tx+dge0XX8Fo6fho4+cd9PG8MgI+x95hMNHjtAF6KqKKxJhmaazfOUK5t96K9aqqknPy1W7DmbDWH82kBXfK+bweCfXitU1YLZY3uwrFkIIIYQQ4rKnKAr+qmr8VdWloa2vl77WE/QcOUzvawfo6enkdDoNXcdRO47ive/b+FIZKoKVVC9dQfWVm3FdccX5D6Zt96G89SusXfUCLb/4c3453MJDDz3E4YOvcPs73oXX633Dr232BrRTT8Geb8GVn4amza+/PzDW28v+3/yGIydP0WNS0VUVdyzGKrOZFWvX0nLLLZg9nvz+yViUgdPt2RqxU9lmioUeFIvvFau4qSVfM+YKlEmtmBBCCCGEEJeQoiiTa9o0jdG+HnpPnaBn/8v0HH6NrsF+2tMROPgCpleewxtLEDBZqKxroHblFVRt3Ypj6bJzG0y7cROBT+3k9373L7y4eye7Wjfzja/9C2992ztYsXLlG3odszOgJULwyz+Csvlw3f86665Dra3s37GDo6dP02e1gqLgSSa4wuli5caNNF1/ParVSmhwgLajhxhoO5Vvpjja15M/js3lMnpQvM7oQbGyaZ4M8CyEEEIIIcQMpqgqgZo6AjWl97QN93TRe+QwXftepO/kcdpHhzk13ANP9WB+4tf44inKXR6qmudTu24DlVuvwlJbO3UljNmKes3/5Mrld7Lg5/fw864gD/7sZxw9sJe33Pk+HA7HeZV5dga0x74IYx1w906wTu5Bse/QYQ489ihHu3sYdBhd0PvTGda7rSzdtAlnUwODne20tbey5//7KwZOt5KIRIwnZ6tLK5pbWHbNdVQ0zaOyuQVPeYXUigkhhBBCCDHLKapKeV0D5XUNLL/+JsDo8n+oq4Pul/bS9fI++k+3cSIa4ljbEWg7guUn38Of1giWBaleuJj6K7cSvHJzaW/uwQUEP/4gd+/7Ic/seJCnjmdo/+d/4I53vZd5i5aeoTSTXbSApijKLcBXARPwLV3XvzRhuw34AbAOGALeq+t62+se+OSTsPc7sPmPoHETYLQ37d63jwNPPsmxwUFGsik1oGssUyBQFSSZjDHQ3sovv/2v6JoGgNlmo6KxmcWbr6ayeV52bLFmrPbzS7lCCCGEEEKI2Us1mYxO/BqbWX3HuwBjcO2BUyfpeO539Ly6n4GeLo5ERjm8/0XY/yK2r/8jZaqFiqoaapavpOHqa/AuX4Fp/e9xzdK3sOAXf81/H1f5wX0/4coldVz/zo9gOYc+KS5KQFMUxQT8G3Aj0AnsURTlIV3XDxXt9jFgRNf1BYqivA/4B+C9Zz2wnoGH/hjKF6Jt/0van36Gg08/zYmxUcazocyla1SERtDDIyRGh+kAOg6BuzxIZVMLCzZsznfc4a+uRlUvzgjgQgghhBBCiNnLZLZQvWgJ1YuW5NelEnF6Duyn67nf0XPsMAOD/fQMdnPgqW54aifOVJpyh5uq+iZqr7iSD9/k5JmnfsHzR+Dkl/+aO9/zQWrmLzvrz71YNWgbgRO6rp8CUBTlAeDtQHFAezvw19nlB4GvK4qi6Lqun+mg+lgXh9pqecm5nY6//hsSNjvoOiYtha23H3NoFLOu46lvoHL1mnwQq2hqweF54z2pCCGEEOL86LpORtPRdB1dp2RuTMY+WtG6wnbQtKLnkXt+Yf/Jxyw8nnhcdArbi4+lUfJYn7CfXlIu8vvo5Mpfuu/EMk3cV6dQvvwxi9cx8ZjF6yc/BwqvNX+c7PPIH3fyNh3jQf64+fWFx8bBi8uXW1U4FkU/iwnHyK0t3peibZQ8P1umoseTlpn6eUVFfV1jozG+cfS5c9jzzIpvdsnd+aIUrS2+G+b1tyslx1SU4mWlZD0oRcfL7Wusyy1n/5d/rjLhMcXPAVSl8HxQUJXS46q58mWXleJlJbePsb/x3MLzJj4u/XnG9uL91OLjZR+rCkXrlQn7Z9ephf1NE7abVKVkX+NxYVktOa5xrOL9TPn1pfubzFbq1m2kYf3G/L9hLDRO17PP0LXnRXpbTzAYGqWj7Si0HQVdx5vRmedP0VXdyH/+4H6uWXj28dIuVkCrAzqKHncCm860j67raUVRxoByYJAz6Ita+K/AHSi6ji0awz7cQVyxEfbUEq9bSspXTdpbgclswaQqmEMK6iEd85FWTKqKSQWzqqIqCmaT8Us3q8Yv3pz95ZtU4x84t5zfNmGd8Zj8cXP/oCal8By16Hn57WrxG6NwzNwbofj4uTeLKf9mkXvghBCzW/FJ7MQT7fM9ac9MOGHXtHM7Xm6/4n2NIPE6Pzv78zJa0Ql+0fOn2lebUPbSMhWXvXTfs22f6vVlzrRdO9vvYvLPOefnTvl6S/cHYOdvpvX9NttMPBEuPdEuOumFkpNxdcK+FJ2El5zIUxQKlKm3FR8bJpeB/M8oDRiFdYVj5rZRFDZKns/k4xRvz76S4gelv68Jy693mpQLAG9UaWDMPi4OqEUxsRA8i59fGlxLthcF43yIzi2XBGK9ZJ9JwXrK4D0hZBdtK74YAIW/9eLtuWOWXHzIHWfSMS4vuSBohDwVk7oZtWEzJlUhkBhlyeAhGsbaiaeHiYyFsMVOYq1bzJMnxs963BnfSYiiKL8P/D5AY3U9VyeW0KJXYTWZSft1BnSdDiXD8bjGAS3N6fERNHQy2TdiRjeuNmVyX45gfLmC8eUDhS+SGS5/5YLcFYbclQuyqT77Qc3kbaXPU/Lbcuun2j//wQ8lH/TFz83vT+FDvPT5Z9g3ty73wT/Fvrk5Z9xmbM192E58zsT1uWWKygATf07Rl80U+5Z8aQGJeJx9P9k16d+o+PGkf0dl6m1TfXlNteek572JLxs4l6uQU1zVnOo453C8qb+wpliX/T99iscTv6Ry2yceZ9IxJhyv8EU18bi5x3rJz9QnHAsKnx36hGOWrC/5kpzw83TjMyg/n3I/fdJxtYn7ZOfpdJqv7N1R+EIm9wVbKM/rHaPki3nK7YXjlHxBn2HfqdZfroo/Ayd+TqpFn8Uln6VQ+vmZ3Y/8/krpMafYv7Cs5L8H8vPcc9Szf54XylbYD3JhovQ7Jbd/MpnEbrOWvs6iY5/puBNfAxTKXrzvmb6TcuUv/g5Qp3jepMdFP4cz/AxKXnuubJSGnJLjZfctPuaE/aDws2emSZ/Os1Y4nMHtTkx3MS4R5QzLF8+k7zvO8L1Q8h0J2oQa3onfWRO/U7SikKpNtU/x95Sul3wPaXph/9L1+qTnFu9XcpGq6OdoJc/JXpxKgy0ODgI4yrZic26lPqNSbzZTYVEwKXAk0XXW3+XFCmhdQEPR4/rsuqn26VQUxQz4MDoLKaHr+n8A/wGwdt1a/bV39vOfz/+CdeNr2aKvIxCxsS6jsDGj8MGYjSSQcJoxVblwL/ITvKISa8B+1sLmfuGpjFa4kqpBWtPIZB8XrzP2Id90I60VmnEY++n55021r158zNz27BXJ3Lrceq1oX13PHZdJV0xLn1d6RbN4m5b9WbnXPLH5ycTHE6+almzXSq+w5I6fK2f+ja4XmpRMbrKiGW/mknWFE9KZTwEulw97cTa5K9+55h7kT+pKm3oogKpObu6hFB0jf4KsFO1TtH+uOYaSb9phPDeSCONze4ou2hj7lZRFLWqeUrRfcXOV/PGVwvHzTVSKmnm8XjOVqfZBKTRDUVWl5PeWa05TuBpZOGZ+u5JtdlL0OoqbtShF28/WTMY0xfZ8cxmm3q5M2G9ik5tcE5ji33Px9svN7t272b59+3QXQ4g8eU+KC0nXdcIjCYY6wwx2hhjsDDPYEWZsMIYdqLGoVNsgaDVa742qUY5XhQhsqOaaDe+EL5352BcroO0BFiqK0oIRxN4HfGDCPg8BHwaeA94FPHG2+88AVEXlM+s/w1sXvJW/feFv+UHvD1lVsYovrP4CvtMBxo8Mk+oOYwklcZwaRWsdo39nO3EFUl4bljo3vmXllK0ox2QvvHTjCx5M0mHIjKIXBcTi4Dapeh3QtUJNQ3HQK1T1F7YXX/XnTNvI1YYU7TdxXx327t3DuvXr88cplJ2S5gn59UWvrfRxySsvOc7UW6be/kZNPHeceCpZ2K5Msa6w9kzNVCY2i5m4Lb+slO6rUPqzi69yK2c7RlE5Jl7dpuhxSVOibKiaan3havtUbfdnzom3cfKxdbqLIYQQQswpmbTGcE/ECGMdYQa7jECWiKTz+1SWW6m1J1gWTFGZcgHQbRvktaYYNWvns2LlZlaYzi16XZSAlr2n7I+AnRjd7H9H1/XXFEX5v8BeXdcfAr4N/FBRlBPAMEaIOyfz/PP49k3f5tenfs2X936ZDzz+AT6w9AN8+q5P47IYv5DwQJSBlweInBhF64tiH41jH0uQODRE9091YhYTWpkde5OXwMog3vl+FNPMOdESheB8qarm34h+r4nltb7pLoYQQgghhLgAYuFkvjbMqB0LM9ITQcu2vTRZVMprXcy/ogKfI0NiqBtnb4rymAUiVk65BuhZNETj+iWsX/J2VEU97zJctHvQdF3/DfCbCeu+WLQcB979Ro+vKAq3z7+dbfXb+NeX/pUfHfoRO9t28j83/E9uaroJd4UT901NcFOT8fM0neFTYwwdGCTeNoYyFMfVF8HcHyW0p5dRIG4zoVQ6cc7zU35FEHu1a0ZdHRdCCCGEEEK8eZqmM9YfNcJYZzaMdYSIjCXz+zh9VoL1HppWlBOsd1Ne4yQ1NETHS0dxHR/Gk3SSxspRbw9tS4ZZsHE1Vzdf9abzw4zvJOT1+Gw+/vfm/83bF7ydv3n+b/jcU59jS+0W/mLjX9Dsa87vp6gK5Qv8lC/w59elEmkGDw0z+toQyc4Q5tEE7tPj0BFi6KkOkkDSbcFU7cKzOED56gosXtslf41CCCGEEEKINyYZT+drwwa7jDA21BUmnTS66FJVhUCNk7olAYJ1HoL1boINbhweK1o0xcDBDnr27UftMGPLWPApKof8bWTW2FiycS031V5zQSt1Zn1Ay1lVsYoHbnuAnxz9CV9/+evc+dCdfGT5R/jEqk/gMDumfI7FZqZmTSU1ayrz62JjCfr3DxA+NkKmJ4I1lMIeGiF9YpS+h1uJqQppnw1rffZ+tmXlqDa5d00IIYQQQojppOs6oaF4aa1YZ4jxwXh+H5vLTLDezfKr6ijPBrGyahcmS6EpYno0zuC+Nk7uP42n14JJV1FNSV4sO4a6xM0VG67kbRU3XLSWdnMmoIHRyccHln6Am5pv4p/2/hP/efA/efjUw9yz8R6ubbj2nH6JDp+Npm31sK0eMP6hx3siDO0fJHJyFPqj2Idi2EbixA8O0qkX3c/WnL2fbZ4P1XT+7U2FEEIIIYQQry+VyDDUna0NK6oZS8Yzxg4K+CudVDR6Wbq11qgVq3fj8tsmZQJd10l2hhg60MnYq924h60AjFuHeaGmHfvScjas28r7Arddktuf5lRAywk6gvz91X/PnQvv5O9e+Ds+++Rn2Va/jT/f+Oc0eBpe/wBFFEXBV+vGV+vOr9M0neHjo4y8Oki8bRxl2LifzdIfJfxiLyM6xO3G/WyOeT6CqytwFT1fCCGEEEII8fpy3dkXasSM5omj/dF899YWu4lgnZtFm6qNe8Xq3ZTXurGcpZWbntKInxpl9EAX0cND2KImMmi0Oto50diNZ0UVW1duZ7P/3Ze8T4o5GdBy1lev579u/y/uO3wf33jlG9zxizv42MqPcfeKu7Gbzz422tmoqkJwcYDg4kB+XSqRZvC1IcYODZPqDGEeS+I8PY7aEWLkqU56gITTuJ/NvchP+RWVOPxyP5sQQgghhBAA6WSG4Z5ISRPFoa4wiWihO3tv0E55nZuF6ysJ1nsor3fjLbejqK8fojLhJPEjI4y91kPq+BimtEpMSbDP/Ron5/dSuaqJaxfdwK2BBRfzZb6uOR3QACyqhQ8v/zC3NN/CP+79R/59/7/z0MmH+J8b/uc5N3s8p59jM1OztoqatVX5dYnxBAP7BwkdGybTHcEaSeE8NQqnRhl8pJWoqpDyWDHXefAsDlCxKojVabkg5RFCCCGEEGImKh3k2QhhQ11hRvui+TFezTYT5bUuFqyrNGrF6ozJ6jj3+KLrOqneKPEjQ4Rf6yfTGUVBYdA8wvPug7RV99G0cgk3zHsL7/UvmDG9t8/5gJZT5ariy9d8mfcseg9//8Lf89knP8vWuq38xca/oMnbdFF+ps1ro/7qOri6Lr8u0h9h6JUBIifH0PujOMeTWMeH0A8P0fPz44RNKhm/DWu9B9+yMoJLy7DYLpt/JiGEEEIIMYeU3CvWFcmHsalqxeavqyRYZzRR9AUd51QrNpGe1kicGiN2eIjooUH0sRQAx+ztvBA8wOnqIZYtu4KbW97NQv/CGRPKil12Z/4bazby07f9lAeOPMA3XvkG7/jlO/jw8g/ziZWfwGlxXvSf76p04brJlX+s6zqh9nFGDgwSaxvDNBjHPRTHNBwnc2CA05pOJNsJia3RQ2BFkOACH2aL9BwphBBCCCFmBl3TGR+K5wNYruOOsYFY4V4xm4nyOhcL1lcRrHO9oVqxqWTGE8SPjBA7Mkz8xAgkNVJqmn3OQzxffYDu6lGuXLSVO5s/xqLAohkZyopddgENjGaPH1r2IW5tuZV/3vfPfOvgt/jVyV/xuQ2f4+ammy/pP5qiKHibfXibffl1WjrD+IlRRl8dIn06hGM4jr0/ijIQJb2vj5OaTsRqgnKH0XPkinIqmryYrRLahBBCCCHExRWPpBjuDjPYGSnUjnVHSCcKPSj6KhwE69ws3lSdD2Lneq/Y69E1nVRX2AhkR4ZJdYUBGLNF+J3rZZ6vPMBgVZjr5l3Px5r/B0vKlsz4UFbssgxoOUFHkL+76u9416J38fcv/D2ff+rz/LT6p9yz8R4WBRZNW7lUswn/knL8S8rz6zLxFONHRhg7NITSGcY/msDaF4G+CKnnuzmiQcxmggoHznl+ypaWEWzwnLX3GiGEEEIIIc4kk9YY6Y0y1BXOB7Lh7jDhkUR+H5vLTLDOzdItNQTr3JTVuV63B8U3QouniR8fIX5khPjRYbRwCl3R6fIN8UTlczzn2k+yDG5uuZk/a/5fLCtfNqtCWbHLOqDlrKlcwwO3PcCDxx7ka698jXf/6t28d/F7+fQVn8Zn873+AS4Bk91C4IpKAlcUBtVOj8UZPzJC6MgI9u4QnvEkpp4I9ERIPNPJaxmdmN2MUunENd9P2UIfFQ3eN12NLIQQQggh5g5d1wkNxxnuytaIZe8VG+2NomlG+0TVpBCodlG70G/UiGW7snf5rRclCOm6Tro/mm+6mGwfB00nY9U5XtbJI/6neN6xH7vXxc3NN/N3zf/IyuDKWRvKismZepZJNfHeJe/llpZb+PrLX+cnR3/CI62P8EdX/BHvWvQuTOrMq4ky++yUbaqhbFMNkK3uHYgSOjpC+PgI3p4IZeEUancYusPEnupgf0YnbjejVDlxzfMTnOcj2OjG4bZO86sRQgghhBAXW655YqHDDqNWLD/AM+Aus1Fe56Z5ZZDyeqNGzF/txGRSL2rZtGSGxIlR4keHiR8dITNq1NTFyzUONp/g5zzKfusRypxl3NR0E19v+UNWV6xGVS5uuS41CWgT+Gw+vnDlF3jXonfxD3v+gb994W/56bGf8ucb/5z11eunu3hnpagK1ioX5VUuyrfVA0ZPNqmeCKFjI2gnRqnojWCOpSEb2sJPddCZ0YlaTahVTlzzfFQ0ewk2eHAHJo+0LoQQQgghZr5UMsNIT4Th7ghD3RGGu4z7xCKjRc0TnWbKal0s2lRNea2Lsjo35bUubJdo2Cdd10kPxPKBLNE6BhkdxaoSqsuwp+FV7k/9kg6lm4AtwI1NN/LHLZ9jbeXaGVl5cqFIQDuDxWWL+fZN3+ax9sf48t4v89GdH+Xm5pv5s3V/Ro27ZrqLd84Us4q1wUN5g4fy6xsB0GJpkp0hoqfG4MQojr4opmQG+iJovWHGn+6kM6MTNplQqxy4m70EG71UNHjwVzlQL/LVEyGEEEIIcW4yGY2xvhjDPZHsvWJGM8Xi3hNNZpVAjZP6xYH8PWLldS5c/kt/MV5LpEmcGCN+rLSWzFTpYGyVztO2vdwX+W9G0qN4VS83LLqB/9V8MxurN2JWL4/ocnm8yjdIURRuar6Jq+uv5ruvfpfvvPodnup4io+u+CgfWf6RS9It/8WgOszYFwawLwxQdrOxLjOWINkRItY2jnpqDF9/BCWtw1CM9GCU0Rd62J/WGUdBqXDgafJQ0eAh2OChrNaF1S5vJSGEEEKIiyXXjf1wt1ETNtxtNE0c6Y2iZYwkpijgq3QSrHOzaEMV5XVuympd+Cqm7wK7ruukeiLEj42QODZCon08W0tmwjrfx/DaDDtMv+WXAw8zEh/BlXFxfdP13Nx8M5trNmMxXZravJlEzqrPgcPs4FNXfIo7FtzBP+37J/59/7/zs+M/40/W/QlvaXnLnGj3avLZcPhsOFYEKcP4EEgPxkh2hkicDmFpHaN8IIqiAaEEyYNxRl7u59WMzmhGJ+O34WvwEmxwE6x3E6z3XLSbRoUQQggh5qp8hx3dEYZ7IoxkmyiO9EZIJ7X8fp4yO2V1LppWlFNW66asxkWg2jkjhl3KRFIkjo8QPzZC/PgIWsgYLNpS7cK1tZbuymF+ndrFjo6dDPYM4jA72F6/nZtbbuaququwmWzT/AqmlwS081DrruXL13yZDyz5AP+w5x/4i6f/gvsP3889G+9hVcWq6S7eBaWoCpZKJ5ZKJ661VUD2frbeCMnOEMmOEPb2EJVDMRQdSGWInxph+MgQRzM6L2R04jYzvvpcYDN6+ymrdmGyzP5AK4QQQgjxZui6TngkYYSw7L1iw9l5KlHosMPps1Je62L5VXWU1booq3NRVjOzWi/pGY3k6ZDRDf6xEWNcMh1UpxnbwgC2hX5OVwzwyMCj7GzbSc9rPVhVK1fXX80tLbewrW7brG2ZdjHMnH/ZWWRt1Vruv+1+Hjr5EF996at88Dcf5K3z3spn136Walf1dBfvolHMKtZ6D9Z6D1xprNMSGVJdYZKdIRydIZwdIWqLxsaIDUQY6hqn9WmdlzI6IR281U4jsGW7aA3WuXH6pLZNCCGEEHNPLoiN9BQC2HB2OVXUc6LDY6GsxsWSzTVGEKs1gpjdNfOa+Om60dIqcXyU+PEREifH0JMZUMHa4MV7fSP2xWW0O3t4sH0HO9t2cvq105hVM1tqt/DHa/6YaxuuxW11T/dLmZEkoL1BqqJyx4I7uLHpRr598Nt8/7Xv8/jpx/P3pznMjuku4iWh2kzY5vmwzSuMF5eJpEh1hkh2hrF3hnB1hqkPJQHQFYil0gwfG6b7lX4OZXTGM2BzWYxuXLMjzefaTFtmQDW9EEIIIcTr0bVs08Rs+DICWZSRntIaMYfXSlmNkyVX1lBW46Ss1kWgxjXjhzzKRFIkTo4a3eAfK+rco8yOc00F9oUBbPP9dKS6+HnrDna8tIMToydQFZWN1Rv52MqPcX3j9TNmjOGZTALam+SyuPjM2s9w58I7+ed9/8w3XvkGDx57kM+u/SxvnffWOXF/2vkyuSyYFpdhX1yWX5cZSxhNI4tDW3abrkLcZmZ0JE7f6RCtiQwhDVDAV+EwAlttIbx5KxyoqtS2CSGEEOLSy2Q0xvpjjPQY94UN90QZ6Y0w2hslnSrcI+b0WSmrcbF0Sw2BGpcRxmrc2N0zr0ZsKnpKI9E+ZtSSnRgl1W00W1RsJmwL/Hi2N2Bf6Mdc7qAn3MMv2n7FI7se4fDwYQDWVq7lC5u+wA1NNxB0BKf51cwuEtAukHpPPV/Z/hX29e3jy3u+zBee+QI/OvQjPr/h82yo3jDdxZt2+U5Ilht/oLqukxmOk+w0mkfaOsM4u8LU2FSwqehmhaTTQgiF/tPjHDowQCR78clsUQnUuCivc1FWa4S3sos4kr0QQgghLj/JeJrRvigjvUYAG+k1asPG+mNomp7fz11mo6zGRd2igNFRR7azjpnYNPFsdM3obTFxYoT4iVESreOQ1kBVsDZ68N7QhG2BH2u9B8WkMBgb5Jdt/82OF3bwysArAKwMruRz6z/Hzc03z+nbfi42CWgX2Lqqdfz4th/zm9bf8NWXvsrdO+/muobr+NP1f0qTt2m6izdjKIqCudyBudyBc3UFUNRzZEeIZGeIVFcYW3eEYEZjmccCVpW010bErDIUz9B9aIgjz/Xmj5kbbDEf2mqM9tsOz8xuMiCEEEKI6aHrOtHxJKO9UUb6jACWm4eL7qlXVAVfhYNAtZOWKyryPSb6q5wzqrOO85G/j+zEqNF08dQYWjQNgLnKiXtTtdHBR4sP1WbccjIaH+VXJ3/GjtYd7Onbg6ZrLAos4rNrP8vNzTfT4GmYzpc0Z8zOd9QMpyoqb533Vm5ovIEfHvoh3zr4Le74xR28b8n7+MPVfyhtb8+gpOfIddmeIzM6qf6ocU9btjMSc08EX0ZnngJKtR29zE7MZmYso9MbSnJibx+vZT9goHDTbS6wzZa23kIIIYS4MDJpjcSYzqmXBxjpixQCWW+UZKxwzmC2mQhUOald5CdQ5SJQ4yRQbYwjZjLP/ttWMmMJo3Ysey9ZZtzoI8Dkt2FfWo5tgR/7fD8mb+EcKZwM8+TJJ3mk9RGe636OtJ6mydvE76/6fW5pvoX5/vnT9XLmLAloF5HdbOcTqz7BOxa+g3975d+478h9/PLkL/mDVX/A+5e8H6tJAsLrUUwK1hoX1hoXrmxL0Xx3/11howfJrjC0j+PQdKoB1W9BXeQj5bYQUhQG4xn6B2IceaF3cm9JtS7Kql3ZtuHZ4OaxSFNJIYQQYpbJ14b1RY2midn5aG+U8aE4uqZzgoMAuPw2AtVOFm2sIlDtJFDlwl/txO23ocyh+9wzoSSJU2P5GrL0YAzIdn8/318IZOX2knOfWDrGbzt/y47WHfy287cktSQ1rho+tPxD3NJ8C0vLlsq50kUkAe0SCDqC/NXmv+IDSz7AV/Z+hS/v/TL3H7mfz6z5DLe03HJZdiTyZpR095+lpwqhLdc8UjkdwqvpeIEFTjOWFWVQbidqMzOa1hgcSTDSG+XoC70ki4KbzWXOh7WyaqMJQ6DGNec+tIUQQojZKBlPM9YfY7Q/G8D6jRA22hct+T43WVT8lU6CDR4WbqiiZ7idLdeum9XNEl9PJpIi2TpG/OQoiZNjpPujQLZjjxYfrk3V2Ob7sVS7Jp3TJDNJnu1+lkdaH+HJjieJpWMEHUHevfjd3NJ8C6srVksou0Tm5rtzhloYWMi9N97Lc93P8U/7/ol7nr6HHxz6AX+2/s+kI5E3SbGoWBs8WBs8QA1QGtqMmrYQqdYxTBmdciDoMGOtc2NZWYbmtxNRFYbDKYazbc9PvtTPocjkZg+BaqO5Q6DaSXxMJ5PSZPBtIYQQ4gLKpDXGB2PZABZjrD8bxPpiREYTJfu6y2z4K50s2lSNP/s97a9y4gnYS0LI7t2nqWzyXuqXclHlAlnilDGl+iJGT4sWFWuzF+faSuzz/Vhq3SimyeEqraV5sfdFdrTuYNfpXYSSIXw2H7fNu41bm29lXdU6TKoMeXSpSUCbBptrN/OTmp/w8KmH+deX/5W7d97Ntvpt/MnaP2FBYMF0F2/OKA1thqmaR4Z/1w0ZHQUI2kzU1LqxLglgua4ezW9nPJVhpC+W78Gp+8Qox17syx/z1I7deIMO/NVOAlXO7JdDtgcntzSXFEIIIaaSyWiEBuOMDRi1YblasbH+KKGhOHqho0RsLjOBKicNSwL4qpz4K43vW1+l47IaMzUTTpJoHc+GslFSvdkaMouKtcmLd2UTtvk+o6fFM9wzp+kaL/e/zCOtj/BY+2MMx4dxWVxc33g9tzTfwpW1V2JRZ1cPlHONBLRpoioqt8+/nZuab+LHh3/Mtw58i3f+6p28Y8E7+NQVn6LSWTndRZyTpmwemdaMjkiygS3VHSb8fI/RtSzGh15ljYu6OjfWzdVYat3oPitjQ3GefXIfNWVNjGSbVnQeGSFTNAaKzWnGX/RFkpsuty8UIYQQl6dMWiM0FM8HsLGBbG3YQMwIYUXd1VvsJvyVTiqbvSzaWI2/0pEPY7Oty/oLJTOWINE2RqJ1nETrGOm+okDW7MW7qgLbvLMHMjDuzzs0dIhHWh9hR9sO+qJ92E12rmm4hlubb+Wq+quwmWyX6mWJ1yEBbZrZTDbuXnE3dy64k28e+CYPHH2Ah089zF3L7uKjKz6K1zq3quJnIsWsYq11Y611FzoiyeikB6L5wJbsDhN9qZ/Icz3GDiYFS5WTRYpK4yI7ltVBLNUusKiEh+PGjcm9hRuUO4+OcPSF3pKfm2uSUXwV0F/pxBO0YzJJk0khhBCzQyqRYXwwZtSADUQZH8gGsYEY4eHSmjCL3YSvwkFlo4eF6yrxVRrff74KB07v5T2eaW6M2ERrIZBlhuOAcQ+ZtcmL84oKbPP8WOvcZw1kOcdHjudDWUeoA7Nq5qraq/jTdX/K9obtOC3Oi/2yxBsgAW2G8Nv93LPxHj6w9AN8/eWv862D3+Knx37Kx1d8nPcvfb9c1bjEFJOCpdplhK5cl/+aTno4Tqo72zyyO4yrTWH0oZPZJ4E56MBS66as1kVVoxvLldWYslf9kvG00Ywj16tUdjq+t49E0bAAiqrgLbfnQ5uvovDl5SmX8CaEEOLSyvWOODYQY3wwZgSwwRjjA3HGBmPEsl2159hdFrwVDqrn+fBtqsZXYXyH+Sqd0lNykdzA0Mm2MRJt4yTaxtFCxu9SdZqxNvtwb67F1uLFUjP1PWRTaR9vZ0frDna07eDE6AlURWVT9SY+sfITXNd4nQz3NAtIQJthGjwN/MO2f+CjKz7Kv7z0L3xl31f48ZEf86nVn+Jt898mN2pOI0VVsAQdWIIOWGUMrr37yd1ctXYzqXxNW4Rk+zix/QP555m8Viy1biw1Lly1bgItXkxrK/M3Luu6TjycmnQT9NhAlK7jo6QTmZIyeMrt+Iu+7LwVDnxBB96gHbM0mxRCCPEGJONpxgfjRgAbjDE+lFuOExqMkS5qvo8C7oANX9BB88pyvEFHIYRVOLA5L8/miK9HS2ZIdoRIto2TaBsjeTqEnv2ON/ls2Ob7sDV7sbX4MFc4z6vn6J5wDzvbdvJI2yMcGjoEwNrKtXxh0xe4selGyh3lF+U1iYtDAtoMtaRsCffecC8v9rzIP+/7Z7747Bf5/mvf5zNrP8O1DdfK1aeZQgGzz4bZZ8OxrPDhp0VTJLsjRm1bT4Rkd5j4sWHIfr8pNhOWGheWGhfWbHirbnRTM7/0qlbxVUuj7X40v9x7aqykO2EwxnXxBu35L0lvhcP44gw6pMMSIYS4jKWTGULDccaHjMBlBLA4oSFjOR5OlexvsZvwljvwVzpoXFZmfKdkg5inzC69F5+DzHiCRPu4EchOG0MAoemggKXKiXNNJbZmL9ZmL2a//byPPxgb5NG2R9nRtoOX+18GYHn5cj63/nPc3Hwz1a7qC/2SxCUiAW2G21izkftuu4/H2h/jay9/jc8++VlWV6zms2s/K13zz2Cq04J9gR/7An9+nZ7KkOqLkuqOkOwJk+qOEN3XV7ivTQVz0JkNbS4sNdlaN58Nl89GbdGxIFvzFkkZTU6ybf1zzU5OHxomOlba5MRsM+Ett+PN1rYZcwfecjuecvucHRNGCCEuB8l4mtBwnNBQdhqOlzyOTmiGqJoVPGV2vOV25jVUlHwv+IIObC6zXNQ7D3pGJ9VntKLJhbJMbjgAs4q1wY1nWx3WZh+2Rg/qG6xlHEuMsat9F4+0PcKe3j1ousbCwEJjbN3mW2jwNlzAVyWmi5yRzQKKonBT801c23gtvzjxC+595V7u3nk3W2q38Jk1n2F5cPl0F1GcA8Viyvcg6cqu0zXjhuBkj1HTZrRFL20iqbot+do2S3U2uFU4UMwqDrcVh9tKdcvk9uSpZIbxgexV0oEY40OxfPOVzqMjJU0nAexuSzasFUKbp9yOt9y4981ik+aTQggxHXRNJxpKEh5OEBqOEx6ZEMKG4ySKxu0EUE1GAPOU22laUY43WPz57sDls55XEzpRKhNOkjwdyk7jJDtD6EmjmYzqtWJr8mK9qg5bkxdLjeucOvQ4k3AyzJMdT/JI6yM81/0caT1Nk7eJT6z8BLc03yJDNM1BEtBmEYtq4d2L3s3t827nJ0d/wrcOfov3Pfw+bmi8gT9a80fM98+f7iKK86SoCuagA3PQASsr8uu1aIpkNrCleiKkeiOEn+2GdLYrLJOCpcJZGtyqXahFN19brCbK69yU17kn/Vxd14mFUowPGt0cjw/l5nGGusK0HRgkk9ZKnmN3WYzQVmbPf+m7y2z5x9KEUgghzp+u6yRjacIjufCVIDxSNB9OEB5JTPpMtthMxudwwEZVs7f0olqZ3egRUQLYBZEfQ7UjZNSQnQ7le1dEVbDUunCtr8ba6MHa5MXkt73p78NoKspvO3/LjrYdPN35NEktSY2rhg8t+xC3ttzKkrIl8p07h0lAm4XsZjsfXv5h3rnwnfzw0A/5/qHv80THE7x13lv55OpPUu+pn+4iijdJdVqwz/djn+/Pr9MzOunBaD6wpXoixE+OEn25v/A8lxlLVWloM1c5USd0HqIoCk6vFafXSvW8ybVvuau1oexN4sYV2gShIWMIgdOHhyfVwJksKu6AEdjcZfbCcsCGO2DMpRmlEOJyous6iUia8GgucCWIjCYIjyaI5ELYaILUhPuJFVXB5bPiDtipaPIwb01F/rPVU2Z8ptqc0gTxYsh1dZ/sCBWm7nD+AqnqsWJr9GDdVIO1yWN0d2+5MC1MEpkEz3Q9w87Wnezu3E0sHaPCUcF7Fr+Hm5tvZnXFavk3v0zI2dIs5ra6+eQVn+R9S97Htw9+m/uP3M9vWn/Duxa+i0+s+oQMdj3HKCbFCF9VrpL1mUjKCGzZ0JbqixJ5sRc91+OWAuYyO+ZsYLNUOY3gVu44Y5e9xsmBce/blAEue9KRv78hd6KRbWrTcWiYyFgC9NLnWe0mXIFcaLPh9hsnGi6/LTtZsbukJk4IMfOlkxkiY0kiowkiY0XBq3gaS5JJldZ8KQo4fcZnYFmNi4ZlZfmLWLmLWk6fDVVqvy6JTCRFsjNEqiNEsjNMsiOEFjE6TFEsKpY6N+7NtVgbPFgbPBekdqxYSkvxXPdz7GzbyROnnyCcCuO3+bl93u3c0nILayvXSg/elyEJaHNAwB7gcxs+x13L7uKbB77Jg8ce5Ocnfs57Fr+Hj634mHStOseZXBZME2vbcmO2ZWvb0n0RUr1R4oeGCqHJrGCpdBqhr9qJOTs3+V7/y0dRFOxuC3a3hYpGz5T7ZDKaccIynMhfPY5kryCHR4ymlNHx5KQQZzKruPzWQmjz5eZWXD4bTp+xTWrjhBAXmq7rpOIZouNJouNGwIrmQth4Ir8cHU+WjF+ZY7ao+c+uqhYfLn/uQpQNV8CG22/H6bWgyniW00JJQ/zkKKnOMMnOEMnOEJmRbEceCpgrHNiXlOXDmKXaiXIR/q3SWpq9fXvZ0bqDXad3MZYYw2PxcH3j9dzScgubajZhUWWogsuZnOHMIdWuav5q819x94q7+eb+b/Ljwz/mwWMP8v4l7+ejyz+K3+6f7iKKS6RkzLaVwfz6fE+SfdF8rdvEZpKKzWTUslUZzSNzy+p5Di5qMql4yx14yx1n3CcX4iKjyZKrzrmr0APtIdpGB0vH38ky20yloc1rzB0eK06fNd+E0+GxypVoIS5zqYQRumKhZDZ8Gcux7HJkzAhk0fEk6eTkzxvVnGtVYKWsxkX9kjLjcye7LhfKpNnhzKEl0qS6IiS7wqS6QiS7wswbUBnkIACmgM3ouOvKWiz1bqx1btSLeOFP0zVe7n+ZR1of4bH2xxiOD+M0O9nesJ1bW25lS+0WrCbrRfv5YnaRgDYHNXga+Nur/paPr/w49x64l++++l0eOPIAdy27iw8v/zBeq3e6iyimSXFPksW0aIpUf5RUb5RUX4R0X5TYa4NoewpXiBWH2Qhrlc7S4PYmOgc5lxCXu4HeuJJtXNGOjGWvZGfnA+0h2kNDk+7jAKM5kd1jxemx4vBY8qEtNy9e53BbZLBvIWaBTFojHkkRC6WMoBVKlixHJyxPvGc2x+Y04/TZcHqtRo2Xz4oze7HH6TM+NyR4zXxaPE2qO0yyK5wNZGHSg7F8Cw3Va8Va56bPF2HR1Suw1rkxuS9+GNJ1nQODB9jRuoNH2x+lP9qPzWRjW/02bm25lavrrsZuPv/xz8TcJwFtDmv2NfOlq7/EJ1Z+gm+88g3+48B/cP/h+/m95b/HXUvvwm2d3LufuDypTgu2Zh+25sL9Zrquo4VTpPqiRhPJfqPmLXpwEP3FdNFzzZgrjMBmrswGuEonJp/1gpzQKIqCzWnB5rRQVuM66765q+S55knRsdKr5dHxJL2nxs56wma2mXC4LcaUDW323Nxtwe4y5o7sss1lkRo6Id6ETEYjHk4Rj6RIRFLEw2niEeNxLJwiHk5m59nHoSTJKS7GAKiqgt1jMYYg8VjwBn3GxRlv6cWZ3LLpTXR9LqZHJpQk2R0m1W2MJ5rsDpMZiue3m7xWLHVunKsrsNQbnXiYPEYYe3X3bhyLyy5q+XRd59DwIXa27mRn2066I91YVAtb67byp+v+lO0N23FZzv5dJoQEtMvAfP98vrL9KxwdPso3XvkG//bKv/HDQz/kQ8s+xAeXfhCPdep7iMTlTVEUTB6r8cVWPOB2PrhFsuEtSqo/SuzVQbSiezIUqwlzpSMf2CwVTsyVDsxlZ+6c5M2y2Ez4Khz4Ks5cI5eTSmSyV9eNZk6xcKpwFT6cJB5KER1PMtQVJhZOTbrRP08Bm8OcD242pwW7y4zNZcHuzM5dFmxOc35udZixOy2YLHJyKOYGXdNJxtMkotkplma8Q+fQ77qN4BVNG+ErkiYRNR7nQthUNd85Jouavzji8FjxBh04PNkLJG5r4UKKx5jbHGbpWn6O0DWd9FCsMNxMd5hkdwQtVBhw21Rmx1rrwrKuCkutuySMXdKy6jrHRo6xs20nO9p20BHqwKyYubL2Sj695tNc23CtnGuJ8yIB7TKyuGwxX73uqxwaOsS9++/l3175N35w6Af5oCZNH8W5KA5u9gWBkm2ZcJJ0f5RUfyw7jxI/MYr2UuEeN0wK5nK7UetW6cRc4TDCW4Xjorb/n8hiM2GxOfAGXz/M6bpOOmk0qYrnruRHkvnl3NX/eDRNPJxktC+SP1E9G7NFNQKb0whzVkdhsjlM2XnRersZq8OExWbMrTazhDzxpmXSGql4hmQ8TTI7T8UzJGNpI3TF0sZyzFiXf5wNZLl1Ezv8Aej43RHAqNmyucz5CxhOn5VAjdO4sOEq1ExPXDZbVWlaeBnQ4ulCT8RF43/meyNWFaMDj4V+I4jVurDUXtx7xs7FiZET7GzfyY7WHbSNt6EqKhurN/KxFR/j+sbr5d5/8YZJQLsMLStfxr9e968cHjrMvfvv5RuvfIMfvvZD7lp2F3ctu0uCmnjDTG4rJrcV2zx/yXotniY9ECPVHyU9UAhw8cNDUFQxpXqsWCocmCscRoDLzk1+27ReFVcUJRvoTHjKzv1+AU3TSRbVFCRi2dqDSDq7bDxORtPEo2mi40lG+qLZk+E0WmaKM94JVLOCNRvYEmmNoRf3YbEbZbVmy5x7bLGZMVtVzFYTFqsJs61o2apisZkwW0yYrCpmsyo1ETOIltFIpzTSSY10KmPMkxnSyQyppEY6UVhO5ZYTU0zx3LIRxlLxzKQBkKeiKJRcQLDaTbj9Nspr3VidZmxO42KCzWmEMJvDzIFDr3DVNZuxOc1YbCYJWgI9o5EejGU7qSp0VpXvSRGj2byl2oVrYzWWGrcxrmeVE2WGNEdtHWtlR9sOHm17lBOjJ1BQ2FC9gQ8t+xDXN14vPWeLC0IC2mVsaflSvnrdVzkyfIR799/Lv+//d3506Ed8cNkHuWvpXfhsk8e/EuKNUO3mfLfFxfS0RnooZoS3QWOeHogSPTCIHiuqfTIrmMuNXinNFQ7MwcKkzuBx01S1MBzB+dJ1nUxKK629yNVsxNP52o5UPLstkaanM47ZqhqdqmQHv82dmJ/LSfhEJrOK2apisqiYLUaYM1tUTGYV1azml00WFZNZwWQxGXOTimpSUM3GetU0Ya4ay4qqGPvlpuxjRVFQVGNSVQUU43dprDcCM4oRGnL/9rkweW7vBR1dN5pQ6Xr2sWb8zsEI1rqW264XPdbQsuu1jLFey2jGcn4qPM6kNbSMRiatF+ZpjUx2WyZlhC4tbcwzaa1kvRHIMmSSGpr2+mF90r+fRc1fWCieHB4LFrspH+wttsk1sxZHbntu2/kHrOM9ynld0BBzh67pZEbiRo/B/VHSvZH8MrkLT9laMWujF8tGY5gXS437gt2/fCG1j7fzaNuj7GjbwbGRYygorKlcw19u+ktubLqRoCP4+gcR4jxIQBMsKVvCv1z7LxwdPsq9++/l3v338sNDP+R9i9/Hh5Z9SK4GiYtGMav5wbeLGxrquo4WSWUDW4zUYJT0YNy41+3IcOELHlDsZqOZZLndCG3l2fBWbkd1zt5xZBRFMQKR1YTLZzun5+zePcD27Wum3JbJGLUsqYSWrWnJZGtdNGM5W+OSTmUDQjKTDwmZ4uVUIUTE4ulCsMgHjEII0d9AqJirVLNihNlseDUVhdtc0LU6zMa6XPi1qlhyNZoWFbPFlK0BzS7bsjWfViNAldSOWlUZa0tcdLqmkxlNkBrI3o/ca3Qole6LFponAiafFXOVC/eiAJZqV75H4JlSKzaV0+OnebT9UXa27eTIsNFUd3XFau7ZcA83Nt1Ilatqmkso5jIJaCJvcdli/vnaf+bYyDG+deBbfOfV7/Djwz/mXYvexUeWf0Q+jMQloyhKoblkS2lNrp7RyYzGCzVug8aUaBsnun+g5D4Y1WkuCWzmcgem7Fy9zLrNNplUTE4Vm/PS/cx8DVNaJ5Obp7VsjZReWvOU2ze7rbgGS9eytVq6Xqj10nWylV/Ger2wfC6UXI1ctiaO/HJRjV1uUjBq9lQFNVu7V1rzp5Y+zoUws4qarTG8nN5rYu7RMxrpoXj+3uJ0f5TUgNFUvTiIqR4LliqjeaI5OxSLpco57feKnauOUAePthmh7PDwYQBWVazi8+s/z03NN1Htqp7mEorLxez4ixGX1KLAIv7fNf+PT17xSb518Fvcf+R+fnL0J7xjwTu4e+Xd1LnrpruI4jKmmIzmjuZyBywu3aanNNLDMdKDcaPp5FA2vJ0aI/pKf0l4U2wmI7iV2bPHs2Mqs2Mus2PyTe89b3OFqiqoqglmb0WmEJeVTCRFeiA6qdl5eigORTXiJp8Nc5XTCGLZ4VUsVc5Z2WqhM9SZryk7NHQIgFXBVXxu/ee4qekmatw101xCcTmSgCbOqMXXwt9d9Xd8cvUn+c6r3+HnJ37Oz47/jNvm3cbHV36cFl/LdBdRiBKKpdBkciI9pZEeyQW3wjzVHSb22lDJyQcmBbPfhqk8G+DK7JgCxtwcsM3KkxAhhADQkpl8ywPjIlbcWB6IlgyVQvZimKXSiWN5sDBsSoUT1WaavhdwAeRqyh5tfzQfylaUr+BP1/0pNzXfJBeixbSTgCZeV72nni9u/iJ/sOoP+N5r3+PBYw/yq5O/4oamG/jYio+xPLh8uosoxOtSLKpxlbdychs/PaOTGUsYtW/DcTLDcdLDcdJDcaIdodIOSwDFbsIcKA1tuWWT3zZrmvMIIeYmLZHOXoiKkxnOXowaMAKZNp4s2Vf1WDEHHThWBEt60DUF7HOqJUFHqIPHxh7j33/97yWh7M/W/Rk3Nt8ooUzMKHIWIc5ZlauKezbew8dXfpwfH/4xDxx5gMfaH2NTzSY+vvLjbKreJPdZiFlJMSn5mrKpaNEU6ZEEmZFscBuJkxlJGM0nj4+U3IMB2Y5LcqEtYMPkz82NaSb3PCmEmPl0TUcLJY1WAcO5IFZoGaBFUiX7qy4L5qAD+wJ/SS+45nLHrK8NO5tcRx+Ptj2av6dMQpmYDSSgifNW7ijnM2s/w90r7uanx37KDw79gE88+gmWly/nYyuNwRlVZeb2zCTE+VKdFqxOC9S5J23TdR0tnDJC22jCCG7Z5fRQjMSJUfRkpvRJZtVoQum3YfIZc3Nu2Wc1QpxNPp6FuFzlerLNjCRIj8bJDGdr+EcSRhAbjUO6+KZaMHltmMvtOJaVG50hFd1feznV6reOtfJY+2M82vYoR0eOAsY9ZX+27s/w9Hp45w3vnOYSCvH6Lp+/WHHBua1uPrrio3xg6Qd46ORDfPfV7/Knu/+UZm8zd6+4m9vm3YbVZJ3uYgpxUSmKgsljxeSxQuPk7bquo8fSxonVaILMaJz0WG45Qfz4CFooWdKBCRidmOQDnNdqBDivDdVn/CyTz3bZ9UQpxFyhpzUy48ns50GSTO6iTu5Cz2hics28w4y5zI6lxoV9WTnmMpvR1LrMjtlvR7FcvhdGT46eNEJZ+6McHzkOGF3if37957mx6cZ8Rx+7B3dPYymFOHcS0MSbZjPZePeid3Pngjt57PRjfPvgt/nis1/kay9/jQ8s/QDvXvRuGfRaXLYURUE5Sw0cFJ2sjSWKpiTp0QSZ8QSpnjBaKDX5iWYFk9cIcCavleCYQkjpRPVmQ1x2rtjPf5BhIcQbk/97Hjf+jvN/06MJ4+LMWAItnJp0UUZ1WTAFbFiqnNgXl2EKZAOY34a57PKqBXs9uq5zbOQYj7U/xmPtj3Fq7FR+8Oh7NtzDDU03SJf4YlaTv3ZxwZhUE7c038LNTTfzXM9zfO/V7/HVl77Kfx74T+5ceCcfWvYhat21011MIWYcxaye9R44yJ70hZKlJ37ZZW08Sao7gndEYay9dfLxLSpqtpbP5LGguo1l1WMxxpvzWFHdxvLlfBVeiLPR0xqZcAot93cYMiat5G8yUdoTYpZiNWHyGzXflmpXoUlz0Vy1zt17wS4EXdc5NHSIR9sfZVf7Lk6HTqMqKuur1vO+Je/j+sbrqXRWTncxhbggJKCJC05RFLbUbmFL7RaODB/he699j/uP3M/9R+7n5uab+cjyj7C0fOl0F1OIWUUxq5gDdsyBM4e43U/uZtvmq/JBbqoTyVR/FO3U2JQnkZBtWuk2QpzqsmSXLZhcuXVmVJcVk8uM6rSgmCXQidlLz2ho4ZQRvMLJwjyUnUdS+b+lKf9mlGzNl8+GKWDD2uQxarV91pK51GK/MZqusX9gP7vad7GrfRfdkW5MiolNNZv4yIqPcF3DdZQ7yqe7mEJccBLQxEW1pGwJX7r6S3x2zWf50eEf8eCxB/lN62/YVLOJ31v2e1xVd5V0KCLEhaKAajej2s1YKiYPJ1BMT2tkItnagFytQChpdEwQThnz4RjJ0+NGj3D61MdRbCZUl8U4SXUaoU0969yMYpWTVXHh6ZqOFkujRVNo0bSxHEnlp0zRsvE4jR4/w4WKXK2zy4K53IGp2WvUNOeaD3sKNc+KSb7DLqS0lmZf3z4ea3+MJ04/wUBsAItqYXPtZj55xSe5tuFauW1CzHkS0MQlUeOu4fMbPs8frP4Dfnr0p9x3+D4+/finafG1cNfSu7h9/u04zI7pLqYQlw3FrGL22cBne9198ye+4WT+xFaLptDCKWMeSZGJpsmEU6T6omixNHoic+YDqtkg6TCjOIy56jAX1tnNqHYTqt2Mkp+bUR3ZZatpTo3PJAy6rkNaQ4tn0OJp9OxcixmTXrSsxdLGftFUNoidOWwBYFKMiwjZiwmWgB17dtlo3ptt+purPZ7DXc/PRMlMkud7nmdX+y6e7HiS0cQodpOdq+uv5vrG69lWvw2P1TPdxRTikpGAJi4pr9XLx1Z+jN9b9nvsbN/JDw/9kL95/m/415f/lfcseg/vW/I+aUMuxAyjqAqm7MntudLTWmltRnGtxoRJj6VJjSTyj9HOUF1XXCaLatTe2c0oNhOK1YRqMxnrso8Vq2qsL1pWrCajdiQ7L0zGY0yK1O6dA13T0VMaeiqDniyda9m5p0sh/Fw3WiKDnsygJzKly8mMEcISGSN8xTOv/2+vKvlArziMmllz0IHJaUFxmKeuxXVZjPeI/LvOKNFUlGe6nmHX6V083fk04VQYl8XFNfXXcGPTjWyt2yoXbsVlSwKamBYWk4W3znsrt7Xcxkv9L/HDQz/kWwe/xXdf+y63NN/Ch5Z9iGXly6a7mEKIN0gxq4XhB87DGWtRipbzJ/ol87TRO1725D8XFs7UNPPMBc+GP7MKZmOumJXsvGi9SUExKWDKLWfDXW6dqoBqhFtMCihKdl12HwVQjLlC6eP88tl/UcZry851bYrHmp6fo+nomaJ1GWOupzVjOaOhp3XIaOjFj1Maelozwli6MJF5/V9sFSqjB08Wfq/WiQHaGErCkqspteVqTLPLNlOhdjUbyBSLKkFrFhtLjPFU51Psat/Fs93PksgkCNgC3NR8E9c3Xs+VNVfK8DxCIAFNTDNFUVhXtY51VevoCHVw3+H7+O/j/82vT/2atZVr+cDSD3Bd43VY1HO/ci+EmL0URQGLCZPFdN7hbiJdz9byJLOBLZmttUnmQkfRclJDT+eCnWYElFQ2vKRLw4keS0NaKwSd/LIRanJB6FxqAi8pBSNEqtnAmA2aJYHTrKLkQqddRfFY84E1H1QtJmPZouZrJPNzi1FbqVpNvPDSHjZv21LYJsHqstQf7efJ00+y6/Qu9vbuJa2nqXJW8c6F7+SGphtYU7kGsyqno0IUk78IMWM0eBq4Z+M9fOqKT/Hfx/+bB448wOee+hyVzkreu/i9vGvRuyizl013MYUQs4SiKChWE0xj9+UlNVl6oebKqO0CdB1dx3igUagBw8hTZ6UWat4U5QyP8zV2yiW/by/tBJNbakMuR61jrTx++nGePP0kBwYPANDsbebDyz/MDU03sLx8uQR2Ic5CApqYcTxWDx9e/mHuWnoXT3c9zX2H7+NrL3+Nb+7/Jre03MIHln6A5eXLp7uYQgjxuvLNGqe7IEJcRJqu8drgazzR8QSPn36c1jFjPMbl5cv5zJrPcF3jdczzzZNQJsQ5koAmZiyTamJ7w3a2N2zn1Ogp7jtyHw+dfIiHTj7EFRVX8P4l7+eGphukvboQQghxiaUyKfb07uGJjid4suNJ+qP9mBSTMXD04vdxXeN1VLuqp7uYQsxKEtDErDDPP4//deX/4rNrP8svTvyC+4/czz1P30PZnjLuXHgn7170bmrdtdNdTCGEEGLOCifDPNP1DE+cfoKnu4yeFx1mB5trNnP92uvZVrcNv90/3cUUYtaTgCZmFY/Vw4eWfYgPLv0gz3U/xwNHH+A7r36H77z6HbbVbeO9S97LltotMvi1EEIIcQH0Rnp5quMpnux4khd6XyCtpSmzl3FT801c23AtV9Zcid1sn+5iCjGnSEATs5KqqGyt28rWuq30hHv46bGf8rPjP2P3rt3Uu+t5z+L3cMeCOwjYA9NdVCGEEGLW0HWdoyNHebLjSXZ37ObQ0CEAGj2N3LX0Lq5rvI5VwVWYVBnMW4iLRQKamPVq3DV8Zu1n+OTqT7Lr9C5+cvQn/NO+f+JrL3+NG5pu4N2L3s36qvVyc7IQQggxhdz9ZE92PMnuzt30RnpRUFhdsZr/sfZ/sL1hu3TyIcQlJAFNzBkWk4VbW27l1pZbOT5ynAePPcivTv2KR1ofodnbzDsXvpO3LXibdNUvhBDisjcSH+Hprqd5quMpftf9OyKpSP5+sk+t/hTb6rdR7iif7mIKcVmSgCbmpIWBhfzFpr/gT9b9CY+1P8aDxx7kK/u+wldf/irXN17Puxa9i43VG+VeNSGEEJcFXdc5OXqS3Z27+W3nb9k/sB9N16hwVHBL8y1c23Atm2o2yf1kQswAEtDEnGY327l9/u3cPv92To6ezNeq7WzbSYOngTsW3MHb5r9NugIWQggx5yQzSfb27eW3nb9ld8duusJdACwtW8ofrPoDrmm4hqVlS+VipRAzzAUPaIqilAE/AZqBNuA9uq6PTLFfBjiYfXha1/W3XeiyCFFsvn8+92y8h/+x7n+wq30XPzv+M7728tf4t1f+jc21m3nHgndwbcO1Mq6aEEKIWWsgOpBvuvhcz3PE0jFsJhtX1lzJx1Z+jG1126hyVU13MYUQZ3ExatD+HHhc1/UvKYry59nH90yxX0zX9Ssuws8X4qxsJhu3zbuN2+bdRkeog1+e+CW/PPlLPvfU5/DZfLx13lt5x4J3sLhs8XQXVQghhDgrTdd4bfA1ftv1W37b+dt8r4vVrmpun3c72+q3sbFmIw6zY5pLKoQ4VxcjoL0d2J5d/j6wm6kDmhDTrsHTwB+t+SM+ufqTvNDzAj8/8XP+6+h/8ePDP2Zp2VLevuDt3Npyq3QsIoQQYsYYS4zxXPdzPN31NM90PcNwfBhVUVldsZrPrv0s2+q3sdC/UHpdFGKWuhgBrUrX9Z7sci9wpnp0u6Ioe4E08CVd139xEcoixDkxqSa21G1hS90WxhJjPHzqYX5x4hd86cUv8eU9X+aququ4ff7tXNNwDTaTbbqLK4QQ4jKi6zpHho/wTNczPN31dL6DD5/Nx9barVxdfzVX1V6F3+6f7qIKIS4ARdf183+SouwCpupV4QvA93Vd9xftO6Lr+qTRghVFqdN1vUtRlHnAE8D1uq6fnGK/3wd+H6CqqmrdAw88cN7lFeKN6k5282LkRfZE9jCeGcehOljrXMtG10ZabC1EIhHcbvd0F1MIAMLhsLwfxYwh78c3J5qJcjR+lEOxQxyKH2I8Mw5Ag7WB5Y7lLHMso8naJB18nAd5T4qZ5Nprr92n6/r6qba9oYB2NoqiHAW267reoyhKDbBb1/Wz3syjKMr3gF/ruv7g2fZbv369vnfv3gtXWCHOUUbL8ELPCzx06iEeb3+ceCZOo6eR5epyPnXtp2j2NU93EYVg9+7dbN++fbqLIQQg78fzpekah4cO80zXMzzT9QwHBg+g6Roei4fNtZuNWrK6qwg6gtNd1FlL3pNiJlEU5YwB7WI0cXwI+DDwpez8l1MUKABEdV1PKIoSBLYC/+8ilEWIC6K4CWTkygiPtT/Gr07+ih29O3jkF4+wvHw5b2l5C7e03EKls3K6iyuEEGIWGIoN8VzPczzT9QzPdj3LSMLo9Hp5+XI+vvLjXFV3FSuDKzGrMiqSEJeTi/EX/yXgvxRF+RjQDrwHQFGU9cAf6rr+cWAp8E1FUTRAxbgH7dBFKIsQF5zL4uKOBXdwx4I7+MWuXzBWY9yz9o97/5Ev7/0yG6s3ctu827i+6Xq8Vu90F1cIIcQMkcwkebn/ZZ7tfpbnup/j8PBhAMrsZWyt28rWuq1srtlMuaN8mksqhJhOFzyg6bo+BFw/xfq9wMezy88CKy/0zxbiUvOb/dyx/A4+vPzDnBo7xSOtj/CbU7/hi89+kb95/m+4uu5qbm6+mWsarsFlcU13cYUQQlxCuq7TOtbKs93P8mz3s+zt20ssHcOsmLmi8go+s+YzbKndwtJyGSxaCFEgdeZCXCDzfPP49BWf5lOrP8VrQ6/x8KmHebTtUZ7oeAKbyca2+m3c1HwT2+q24bQ4p7u4QgghLoLB2CDP9zzP893P83zP8/RF+wBo9jZzx4I72Fq7lfXV6+WinRDijCSgCXGBKYrCiuAKVgRX8PkNn+eV/lfY0baDx9of47H2x7Cb7Gyr38bNzTdzdf3VMnioEELMYtFUlH19+3i+53me63mO4yPHAfDZfGyq3sSVtVeypXYLde66aS6pEGK2kIAmxEWkKiprq9aytmot92y4h5f6X2Jn204ea3+MR9sfxWF2cFXdVVzfeD3b6rfhsXqmu8hCCCHOIqWleHXwVV7oeYEXel5g/8B+UloKq2plTdUaPrv2s2yu3cySwBJMqmm6iyuEmIUkoAlxiZhUExuqN7ChegN/sfEv2Nu3l8faH+OJ00/wWPtjWFQLV9ZcyQ1NN7C9YTtl9rLpLrIQQlz2NF3j2MgxXuh5ged7nmdf3z5i6RgKCkvKlnDX0ru4svZK1lSukRYRQogLQgKaENPApJrYVLOJTTWb+MtNf8mBgQPsat/FrtO7+Ktn/wpVUVlXtY7rG6/n2oZrqXXXTneRhRDisqDrOqfGTvFi74vs6d3Dnt49jCZGAWjxtfC2+W/jyporWV+1Hr/dP61lFULMTRLQhJhmqqJyReUVXFF5BX+2/s84MnyEXad3sat9F1968Ut86cUvsaRsCdsbtrO9YTvLypahKMp0F1sIIeYEXddpHW9lb+/efCgbjg8DUO2qZlv9Nq6suZKN1RupclVNc2mFEJcDCWhCzCCKorC0fClLy5fyx2v+mNaxVp7qeIonO57kPw78B/fuv5dKZyXXNlzL9obtbKzeiNVkne5iCyHErJHr+n5v315j6t3LQGwAgEpnJVtqt7CxeiPrq9dT766XC2JCiEtOApoQM1iLr4UWXwsfWfERhuPDPN35NLs7dvPQyYf4ydGf4DQ72Vy7mavrruaquqvk6q4QQkyg6RrHR46zt28v+/r2sa9vX76GrMJRwYbqDWys3siG6g00eBokkAkhpp0ENCFmiTJ7GW9f8HbevuDtJDIJXuh5gd0du3m662keP/04AIsDi9lWv42r669mZXAlZlX+xIUQl5dUJsVrQ6/xcv/LvNT3Evv69xFKhgCoc9dxVd1VrK9az7qqdRLIhBAzkpy9CTEL5Qa+3la/DV3XOTF6gqe7nubpzqf5zqvf4T8P/ideq5ettVvZWreVLbVbqHBWTHexhRDiggsnw7wy8Aov9b3Ey/0vc3DwIIlMAjAGh76p6SbWVa1jfdV6atw101xaIYR4fRLQhJjlFEVhYWAhCwMLuXvF3Ywnx3m++/l8YHuk7REAFgYWsqVmC1tqt7C2ai12s32aSy6EEOdH13W6I9280v+KMQ28wrGRY2i6hkkxsbRsKe9Z/B7WVq5lTeUayh3l011kIYQ4bxLQhJhjvFYvNzXfxE3NN+Xvvfhd9+94tvtZ7jtyH98/9H1sJhvrqtaxpXYLV9ZcycLAQlRFne6iCyFEiVQmxeHhw/kwtr9/P/2xfgAcZgerKlbxh6v+kDVVa1gVXIXT4pzmEgshxJsnAU2IOUxVVBaXLWZx2WLuXnE3sXSMfX37+F3X73iu+zm+vPfLAARsATZUb2BTzSY2Vm+kydsk92UIIS4pXdfpi/ZxYOCAMQ0e4LXB10hqScC4f2xDzQauqDCGJVngXyD32Qoh5iT5ZBPiMuIwO7iq7iquqrsKgN5ILy/0vMCLvS/yfM/zPNr+KABVzqp8WNtYvVHu2xBCXHDRVJRDQ4c4MHiAgwMHOTBwIF87ZlWtLC1fynuXvJc1lWtYXbGaSmflNJdYCCEuDQloQlzGql3V+Z4hdV3ndOh0PrA93fk0D518CDCuXK+rWpe/0V56PhNCnI+UluLEyAkODh7ktaHXeHXwVU6MnkDTNQAaPA1sqNnAyuBKVlesZnFgMRaTZZpLLYQQ00MCmhACMDobafI20eRt4j2L34Oma5wYPcGe3j3s69vHM13P5ANbhaMiH9jWVa1jvn++3MMmhAAgo2VoH29nT3gPz7/4PAcHD3J0+Gi+Z0WfzceK8hVsb9jO6orVrAiuoMxeNs2lFkKImUMCmhBiSqqisiiwiEWBRXxw6QfRdZ3W8db8QK97e/eyo20HAB6Lh1WVq/L3hqwMrsRlcU3zKxBCXGxpLU3rWCuHhw9zaOgQh4YOcWT4CLF0DADHmIOlZUt57+L3sjK4kuXB5dS766UGXgghzkICmhDinCiKwjzfPOb55vHuRe/Od3e9r29fvoe1b7zyDXT0fLhbXbE6P0mzSCFmt3g6zsnRkxwePsyR4SMcGT7C0eGjxDNxwLjHdUnZEt6x4B0sK19G5FSE99zwHunIQwghzpN8agoh3hBFUahz11HnruNt898GQCgZ4uDAQV4ZMMYo+vWpX/OToz8BjO7/VwZXsiK4In8lPegITudLEEKcwUh8hKMjRzk6fJTDw4c5OnyU1rFWMnoGAJfFxeLAYt616F0sK1/GsvJlNHubMamm/DF2d+6WcCaEEG+AfHIKIS4Yj9XDlrotbKnbAhj3opwYPcGrg69ycPAgBwcP8p8H/zPfMUCtq5YVwRUsDy5nadlSlpYtxW/3T+MrEOLyksgkODV6imMjxzg+cpzjo8c5NnKMwdhgfp8qZxVLy5ZyfeP1LClbwuKyxdS56+S+UyGEuEgkoAkhLhqTasqPw/bORe8EjK61Dw8fLoS2gYP57v3BCG1Ly42wlptXOCum6yUIMSektBQd4x2cGD3BydGTnBw7yfGR47SPt+drxWwmG/P989lau5WFgYUsCixiSdkSAvbANJdeCCEuLxLQhBCXlNPizPf+mDMaH+Xw8GFjGjLmj59+PL+93F7O4rLF+U5LFgUW0eJrwWqyTsdLEGLGSmaSnB4/Tet4ayGMjZ6kbbyNtJYGQEGh3lPPAv8Cbmy6MR/GGj2NJU0UhRBCTA8JaEKIaee3+9lcu5nNtZvz68LJMEeGj+Tvfzk2coz7Dt9HUksCYFbMNPuaWRRYxMLAQhb4FzDfN59ad62cZIo5Tdd1RhIjtI210TrWakzjxrwr3JVvQqxg3Ce6wL+Aa+qvYb5/PvP982nxteAwO6b5VQghhDgTCWhCiBnJbXWzvno966vX59eltTSnx09zbORYfnq5/2V+0/qb/D42k40WXwstvhbm+4wT0nn+eTS4G2TgWzGrjCXGOD1+mvZQuzEfb88/DiVD+f1sJhtN3iaWlS/jtnm30extzv8NSBATQojZRwKaEGLWMKtm5vnnMc8/j1tabsmvDyVDtI61cnL0JKfGTnFy9CQHBg7wSOsj+X1Miok6d11+MO7c1OxtpspVJR0eiEsuo2Xoj/bTGe6kM9RJR6iDznAnXaEuTodOM5oYze+roFDjqqHR28hbWt5Co6cxH8JqXDVSayyEEHOIBDQhxKznsXpYVbGKVRWrStZHU1Fax1s5NXqKtvG2fA3E3r69+YF0waiBqHfXU+/JTu7CvM5TJ7UQ4g1Ja2n6o/10h7vpifSUzLsj3XSFu/L3hYFxEaHGVUO9p54bmm6gydNEo7eRJm8T9Z56bCbbNL4aIYQQl4oENCHEnOW0OFlevpzl5ctL1uu6zkBsgPbxdtrG22gba6Mz1ElnuJM9vXuIpqMl+5fby6nz1FHjqqHGVUO1qzq/XOOqwWfzySDcl5m0lmYwNkh/tJ++aB99kT5jnl3uifTQH+3P95CYU2Yvo9ZVy+LAYm5ovKHkokC1q1rGDRNCCCEBTQhx+VEUhUpnJZXOSjZUbyjZpus6o4nRfGDLNT3rifRwZPgIT55+Mt9RSY7D7KDKWUWls5IKZwWVDmNesuyowG62X8qXKd6AeDrOcHyYgdgAg7FBBqODDMYHGYhmH8cG89tynXHk2Ey2/PtqfdV6atw11LpqjSDvNsK8vAeEEEK8HgloQghRRFEUAvYAAXuAlRUrJ23XdZ3h+DC9kV56Ij35qTfSy2BskFf6X2EgOjApxAG4LW7K7GWFyWHMy+3llDnK8Nv8+Kw+fDZjcpqdUjP3JqQyKcaSY4wnxhlNjDKWGGMsOcZofJThxDAj8RGG44X5cHy4pOlrjoJCmb2MoCNI0BlkgX8BVa4qqpxVVLuqqXIay1KTKoQQ4kKQgCaEEOdBURTKHeWUO8pZHlw+5T66rjOeHKc/2s9AdID+mDEfjg8zFB9iOD5MR7iD/QP7GUmMTKqJyTGr5pLA5rF6cFlceCweXNbs3OLKrz8eO07ZQBl2sx2H2ZGf7Cb7rOlEIqNliKVjk6ZoKmrM01EiqQjhVJhwMkw4FSaUDBFJRQglQ/nHY4mxSU1Vi1lUCwF7gHJ7OQF7gEZvY0l4DjqCBB1BKhwVBOwBaXoohBDikpFvHCGEuMAURcmHqoWBhWfdV9M1xhJjDMWGjNqdxCjjiXHGEsbyWHLMqPlJjDEQHaA11WoElGR4ylq6r//m61P+HKtqxW62YzVZsapWrCYrFpMlv2xVjccmxYSqqKVztfBYQUFHB4wgCuQf515PRsuQ1tNktAwZfcKyliaRSZDMJElmkoVlzVgu7jTj9ZhVMx6LB7fVjdvixm11U+uuLQm1uWWv1WvMbV78Nj9ui1tqu4QQQsxIEtCEEGIaqYqab1J5vpKZJOFUmEgyQigV4nd7fseSFUvytU7xdLxQC5UxHiczSVJaKh+QUlqKpJYklUkRSUXI6BkjZOmZwrJWWJeTCzcKpXNVUTGrZkyKCZNqwqSYSh5bVSseqycfDG0mmxEQi5adZme+9i+/bCnUCObCmPRqKIQQYi6SgCaEELOU1WSlzGQ0yQPot/dzdf3V01wqIYQQQrwZMjKrEEIIIYQQQswQEtCEEEIIIYQQYoaQgCaEEEIIIYQQM4QENCGEEEIIIYSYISSgCSGEEEIIIcQMIQFNCCGEEEIIIWYICWhCCCGEEEIIMUNIQBNCCCGEEEKIGUICmhBCCCGEEELMEBLQhBBCCCGEEGKGkIAmhBBCCCGEEDOEBDQhhBBCCCGEmCEkoAkhhBBCCCHEDCEBTQghhBBCCCFmCAloQgghhBBCCDFDSEATQgghhBBCiBlCApoQQgghhBBCzBCKruvTXYZzpijKANA+3eUQokgQGJzuQgiRJe9HMZPI+1HMNPKeFDNJk67rFVNtmFUBTYiZRlGUvbqur5/ucggB8n4UM4u8H8VMI+9JMVtIE0chhBBCCCGEmCEkoAkhhBBCCCHEDCEBTYg35z+muwBCFJH3o5hJ5P0oZhp5T4pZQe5BE0IIIYQQQogZQmrQhBBCCCGEEGKGkIAmhBBCCCGEEDOEBDQhhBBCCCGEmCEkoAkhhBBCCCHEDCEBTQghhBBCCCFmCAloQgghhBBCCDFDmKe7AOdCUZTbgdudTucn6uvrp7s4QuRpmoaqynUOMTPI+1HMJPJ+FDONvCfFTHLs2LFBXdcrpto2q8ZBW79+vb53797pLoYQebt372b79u3TXQwhAHk/iplF3o9ippH3pJhJFEXZp+v6+qm2yWUEIYQQQgghhJghJKAJIYQQQgghxAwhAU0IIYQQQgghZggJaEIIIYQQQggxQ0hAE0IIIYQQQogZQgKaEEIIIYQQQswQEtCEEEIIIYQQYoaQgCaEEEIIIYQQM4QENCGEEEIIIYSYIczTXQAhhJgzdB0ySUjFIJ2AdLxoShhTJgmZFGQS2XnSmNJJ0FKgpY31WmaKx2nQNdAzxmNdK8z1DMv6eqH/u4BulCU/n4KiAErpsqKAYgJFBTU7z02qydimmo1l1WxMJsuEx1ZjnckKqqWwnFtvtoHJZsxzk2nCsirXDoUQQly+JKAJIS4/ug6pKCRCEB835skQJMKQjEAynJ0i2XVhY/9UzFiXihUep2KQikAqG8Q4QyB6Q5RsADIXglFJgDIZYSa7zh2Lgz5APmwVz8FYnhTcJoS5XADUNdCKlzPZYKgZQVFLGwFS1y7g680y2cBiB4sTzHawOLJzZ3a9AywusDqNdVbX5LnNDVa3sWzNLtvcxnEU5cKXWQghhLhAJKAJIWandBJiIxAbzs5HIT4K8bEplscgMW5MuUCmZ87t5+RO8ktCgQMc/sI6i8MIDmaHUQtkyc7N9gmTtag2KTvl1uVrm3KBzHLeNUkv7t7N9u3bz+s5b1ouxOVr+tKFWsHiGsLccq4WMV+jmCitYUwnIB0rhN90vHQ5OpQNytFsSM5O50pRweoBW9Fk9xY9zi7bfaWTzVu6LLV8QgghLhIJaEKI6adpRqCKDEJ0ECID2eUhYzk6BNFhI4xFs6EsGT77MW1esPvB4TPm/qaiE3Fv0Yl50cl5cW1LrjZGTsTPTlUB1QiWFsf0lEHTjFCXjBq1mcmo8f5IhIpqRCOFx4lQdsqG9egwjLQX1qcir/MDFeO9Y/cbQd0RKCzbs48dAXCWgaOsMHcEjEAuhBBCnIUENCHExaHrxsluqAfCfRDuz059RugK9xXWRwbPXKNl94Gz3DjBdVdBxdLsCW/xSXB22Z4NY3af0QRQXB5UNRuuXUDFmz9eJp2tbR0rTBMf52ppc7W3492FZS115mNbPeAMGO9pZzk4g8bcVbwcNJZdQeO9LE0yhRDisiIBTQhx/rSMEa7GumC8E0K9xglqqNcIZKEeGO+ZuiZCtRhBy10J3jqoucJYdlVkT0rLC8vOcqlxEJeeyWwEf2fZ+T9X141aulzz23zNb7Ypbv7xkDENHMs22zxDrZ3Javw9uILZedGU+zvKzR1lUuMrhBBzgAQ0IcRkiRCMni5MY50w3pUNZF1GANPSpc8x2cBTDZ4aqF4JC28qPHZXFZ1EBqRGQMxdimJ0RmJzg7/h3J+XjBZCW3TQqFWOFDX3jQxApB8Gjhq1zpnEFD/blA1slYW/OU+1Mbmzf4ueamO7yXLhXrMQQogLSgKaEJejVBxG22G41ZiPni6anzau9BczWcFbC74GaNoKvjqj9svXYKz31krwEuLNsDqN6VxCXa758MSmwvnlAQj3Qs8BI9RN6mlTMWrkPNXgqS38DXtqwFtTWCfNK4UQYlpIQBNirkqEYegEDJ+CkVYjjI20GfPxLkq6gzc7wN9oTHXrC8v+JvDVG82ppOmUEDODkuukxAvl88++r5YxglyoB0J9hXtC802Su6Frr1FzN5HFVXQxpg689UWP6425zX1xXqMQQlzGJKAJMZtlUkaN1+BxI4wVT6Ge0n1dlVDWAs1XGfNAizH3NxlNnuRKuRBzj2oqNHM8m3SicO9orhnzeHehefPxw0awmzjOnyNg1KT7GozaP1+DEd78DViSo0Ztn3y2CCHEeZGAJsRskE4YoWvgiHEPSm4+dLK0xzhHGZQvgPnXGVfWyxdA2TwINBvdyAshxFTMNuNzItB85n3SyWxwy96POtZhBLixDqOmvvWpkuEvtgLscZbWyOeWA03GY2kaLYQQk0hAE2ImyaSNE53+16DvNeg/bISx4VOF+0gU1aj9qlgCi2+F4CIjiJUveGO9zgkhxLkwW41gFWiaeruuG0MPjBrB7fjex1kYtGXvb22HjheMIQqK2byFYFjWUlgOtBg1cdKZiRDiMiQBTYjpEhmC3gPQf8gIY32vGWEsHTe2KyajFqxyGSy/EyoWG6GsfAFY7NNbdiGEmEhRCmMS1qyiq9fJwu3bS/eJjRY6JRppL3RW1H8Yju2ATLLoeCajtq1sXulUPt+ofZMhOIQQc5QENCEuNl03mgX17M9OB4z5eGdhH1clVC2HDR835lXLIbhYgpgQYm5x+I2pZtXkbZpmdFoy0lbo0Gik1WjK3bnHGCw8R1GNGray+YUWBOULsuGtUQaqF0LMahLQhLjQQr3Qtc+Yul8xwlh0MLtRgeBCaLwSalYb44VVrQB3xXSWWAghpp+aDV2+eqMzo2K6bgzyPXwKhk9m56eMe3MP/KQ0vJmsRhPJ8gUQXGA0Aw8uMj57HYFL+5qEEOINkIAmxJtgSkeh9beFQNb1UrYLe0A1Q8VSWHSLEcZqVhs1Y9IttRBCnB9FAVe5MTVsKN2m68ZQAiU92Z405iceK2026aoohLXgIqOlQsUio/dJ6axECDFDSEAT4lzpunHFtuMFOP08dLzIVQNH4Jlst9OBFmjcDPXroW6dUTtmcUxvmYUQYq5TFGOoEHclNG0p3ZZJG/e5DR6HwWPZ6Tgc+iXERgr7Wd1GYKtYUrjft3IJ+BplDEghxCUnAU2IM0knjOaJp583QlnHC8ZVWgC7D+o30ua6gpat74K6tdKDohBCzDQmc3bIkfmw+JbSbZEhGDxaOnzJySdg/32FfcwOI7BVLoOqZVC51Fj21EiNmxDiopGAJkROKg5de6HtGWPqeBEyCWNboAUW3AANm4ypYgmoKu27d9OycPu0FlsIIcQb4CoH15bJtW6xERg4lg1uR4weJk8+Xhrc7H4jqFUuNYJb1Qrjsd17SV+CEGJukoAmLl9nDGSK0cPYho9D02ao3wiequkurRBCiEvBEYDGTcZULDIEA4eNwNZ/CPoOwcEHYW/R2G7+pmznT8uN0Fa13LjAJ80khRDnQQKauHxoGvQdNJqwnHzSaLpYHMg2fsLoOaxxs9ENtBBCCJHjKgfXVaU9TOo6jHVmx7I8aMx7X4WjvwFdM/axuo2wVr3S+K6pXmXUvJlt0/M6hBAzngQ0MbeNdxth7OQTcGp3obv7yuyYYy1XSyATQgjxxigK+BuMqfget2TUqG3rew16DxrjX+6/H/b8p7FdNRtN5atXGaGt5gojwEkvv0IIpjmgKYpyNfDBbDmW6bq+5XWeIsTZZVJGzdixHXDiceMLEoyuledfZ0zztoO3ZlqLKYQQYg6zOo3efOvWFdZpmjHwds9+I7T1HoATu4rubVOMniRrr4DaNRLahLiMveGApijKd4C3Av26rq8oWn8L8FXABHxL1/UvnekYuq4/DTytKModwJ43WhZxmYsOw/HHCqEsMWYMVNq4Ga54vxHKKpfLPQBCCCGmj6oWepRccWdhfagXul+Bnleg+2U49ZQx+DaQD211a7OBb63RXFKaRwoxp72ZGrTvAV8HfpBboSiKCfg34EagE9ijKMpDGGHt/5vw/Lt1Xe/PLn8A+NibKIu4nOi60SXysUfg6A7ofNFo6++qhGW3GwNDz9sONs90l1QIIYQ4O0+10TyyuInkxNB24nGjiSSAajFq1nKhrXatEeLkIqQQc8YbDmi6rv9WUZTmCas3Aid0XT8FoCjKA8DbdV3//zBq2yZRFKURGNN1PfRGyyIuA7puNAs5/BAcegiGjhvra1bDts/DopuhZo18QQkhhJj9JoY2XYfxLujal51egv0/gT3fMrbbvEZYq9+QndbL2JxCzGKKrutv/MlGQPt1romjoijvAm7Rdf3j2ccfAjbpuv5HZznG/wF26rr+7Bm2/z7w+wBVVVXrHnjggTdcXjHL6Bre8eMEB5+lYuA5HPE+dFRG/SsYqNjMYHATSVv5tBYxHA7jdsv9AWJmkPejmEnk/XiR6RrOaBee0HG848fwjh/BHW5Hweg9MuqoZdy7iHHvEsa9iwm7m0AxTXOhp5e8J8VMcu211+7TdX39VNumvRdHXdf/6nW2/wfwHwDr16/Xt2/ffimKJaaLrkPnXnj1QaOmLNRtNOeYtx2WvQ1l8W0EXOUEgEXTXVZg9+7dyHtSzBTyfhQzibwfp0EibDSL7NyDs2MPzs4Xqe7bbWyzuo2atYYrjTHe6jdcdrcCyHtSzBYXOqB1AQ1Fj+uz64Q4u8ETcPC/4MB/Gb1cmWyw8EZY+tdG80XpBl8IIYQ4O5vbGKctN1abrsNoO3TsgY7n4fQL8NQ/ADooqjGQdsOV0HglNG0Bb+20Fl8IYbjQAW0PsFBRlBaMYPY+jA5AhJgs1Aev/swIZt0vAwq0bDPuKVt6O9i9011CIYQQYvZSFAg0G9Oqdxvr4uPQuQc6XjCGpXnlvsL4bIFmaNpqhLWmLRBoMY4hhLik3kw3+/cD24GgoiidwF/puv5tRVH+CNiJ0XPjd3Rdf+2ClFTMDak4HPk1vPJjY+BoXTMG6rzp72DFO2V8MiGEEOJisnthwfXGBJBJQ99BaH8O2n8HRx8xvqMB3NWFsNZ8NVQslsAmxCXwZnpxfP8Z1v8G+M0bLpGYm/oOwUs/gAMPQGwEfI1w1Z/CqvcYH/hCCCGEuPRMZmNg7No1sPlTxoDag8eMsNb+rDG99t/Gvq5Ko/lky9XQvM0Y000CmxAX3JvqxfFSURTlduD2urq6T/zoRz+a7uKIc2RKx6gYeIaansfwjR9FU8wMBjfRU3MTI4FVRvv3WU56hBIzibwfxUwi78c5Qtexx3vxj75KYOQg/tGD2JLDACSsZYz6VzLqX8FIYDVxR9U0F/bs5D0pZpKz9eI4KwJazvr16/W9e/dOdzHE6+l+BfZ+G179b0iGIbgY1n0YVr0XXMHpLt0FJT1CiZlE3o9iJpH34xyl6zB0Etp+C61PQ9vTEBkwtgVajF6X519rNImcYWOxyXtSzCSKoszcbvbFHJFJw5FfwfP3Gj1FWZyw/E5Y+3vQsFGaQAghhBBzgaJAcIExrb/bCGwDR437yk/thoMPwr7vAgrUXgHzrjVCW8MmsNintehCzBYS0MSbEx2Gl74PL34LxjvB3wQ3/z2suQvsvukunRBCCCEuJkWByiXGdOUfQiYFXS/BqSeNwPbsv8Iz/2RcuG2+ChbcAPOvl/vXhDgLCWjijek7BC/ca4xblo4Z3eO/5f/BoltANU136YQQQggxHUwWYyDsxk2w/c8hEYK238HJJ+DELjj+qLGfv8kIawuuN84hLrNBs4U4Gwlo4tzputGr09NfMT5ozXajF8ZNf2gMdimEEEIIUczmgcW3GBPAcCucfBxOPA77HzDuWVctxmDZi26GhTdDcKHUronL2qzoJER6cZxmuk7Z8D6a2h/EN36YpMVPZ/1b6am5mZT18h5MWnqEEjOJvB/FTCLvR/F6FC2Fb+wwZcMvUza8D3ekHYCYvZqh8vUMla9n1L8CXbVckJ8n70kxk0gvjuKN0TQ4/JBRY9Z7ALz1sPWzsPZDYHFMd+lmBOkRSswk8n4UM4m8H8V5G+2A4zvh2KPQ+hSk42BxGb1CLrrZuI3CXfmGDy/vSTGTSC+O4vxkUkYvTM/8kzFYZdl8eNvXjW7yzdbpLp0QQsxKuq6TTqdJpVKk02nS6TSZTCa/PPFxJpOZNGmaNunx2SZd1yfNi5dz5ZpqnqMUNTXLLRfPVVVFUZSSSVVVBgcHGRgYQFXVSZPJZCpZPtNkNpsxm80lyxMni8WCxWJBVWf/2JqXPX8DbPi4MSWjRhf+x3YYge3IrwHF6Bl68VtgyVuNniSFmIMkoIkCTYNXfwZP/i2MtEHlcnjnt2H5O6TjDyHEZUHTNJLJJMlkkkQikV+euC6VSuXnUy3nglgujOXmF4qiKCUhZ2L4KQ5OE+fFy0A+2EwMXznFgW3ici4wFoe/3BSNRunt7T1jeCwOmBeCyWTKh7Xi4Ga1WkumietsNlt+Xjzltk/8fYhLxOrM1prdbNwD3/cqHPkNHH0Ydv2VMQUXw5JsWKtdCxLSxRwhAU0YH3wnHofH/xp6D0LVSnjf/dkeGeXDTojZQtd10lo6P2X0DCktVfI4o2XI6Bk0XSOtp40TZb2wTtd1NIpOtrP/afq5nUSriopCNgQoKipqYTm7zayaURUVk2IyJtWEWTEb4UIxYVbNWFQLZtWcX1aV1/8symQyxOPxkimRSEy57kxTKpU659+3qqolJ/y5ud1uLwkJxWGheN2ZaoaKa4+mqlXKBbGZ7lybk+m6PmVtYW4qrmGcasoF4YmBuDg4R6PRkmCdTCbP6TUoioLNZsNut+eniY8dDgcOh6NkOTeZTHJx84JQFKheaUzb7zGaQh59xKhVe/Zr8Mw/g7salr4Vlr0dGreASU5xxewl797LXec+4ypU29NGl7d3fgtWvFOCmRAXQEpLEU1FjSkdJZ6O5+exdIx4Jk4slZ2nYyQyCeLpOMlMknhmwjwdJ6WlSGaSJLUkyUySVCZlrMs91lLww+l+1W+eqqlYNStWzYotY8OiWbBrdmPS7dg0G1bNikWzYMlYMGfMmDNmVO31P7cUi4LJYsJkMWG2mo1aEp8Vl82F3WaccDvtTlx2Fy6HC5fdNam2JRfE5OT7wlAUJR9OLxVd10vC2sSgXrxuYtgfHR0tWXc2VqsVh8OB0+nE5XLhdDqnnFwuF263G7vdLjV258LfAJt+35hiI3D8MSOsvXIf7PkWOINGWFv6NqMLf9OF6WREiEtFAtrlavAEPPF/4dAvjQ+yW/8frPuo3GMmBEawCiVDhJIhxhPjxjw1TiQZIZwKG1MyTCQVKVmOpgthLJKKGIHpPJgVMzazDZtpwpRd57A4sKpWrCYrFtWSn+eWuzu6md8yP1/rlKuNyk25x6qiGjVWiopJNeVrs4pruVQl2xwuWxuW/6/o5HHivUr5+ja9UOuW0TIk40nisTjxWJxELEEyZjxOxVMk4glSsRTpRJpU3JjrmbN0XqUCFtDNOrpFR3NoZEwZYqYYaTVNUk2SNCVJkCCuxIkRI0qUqB4lrIdhqnNfHYhnp7HSTSbFhMPswGl24rQ4cZgdOMwOXBYXbosbp8U55bLL4sJj9eC2uHFb3XisHhxmxznVBIqLT1GUfOh+MzRNy4e1WCw25RSNRvPT4OBgvjZvKqqq4nK58pPb7c7PPR4Pbrc7v2yz2STMATgCxpA/q95j3Ld2YpdxbnPwQdj3PbD7jSaQy96OosnvS8wOs6IXR+lm/8KxJEdpab2Pmp7HyJisdNbfQUfD28mYndNdtFlJuuyd2dJ6mkgmQlgLE9EiRDIRolqUiJadZyL55agWJabFiGpRkvrrN3+yKTYcqgO7aseu2LGrdmyqDZtiK8wVm7FesWFVrdgUGxbFgk21YVWs+WWLYsGqWDEpb65G5lK9H3Vdn9RcrHiaeE/Wmb5niu8Zmmqaqmngm6m10nWdNGlSWoqUniKhJ0jqSVJ6thZSL5q0JAk9QUIz9ilejmtxEnqiZH4u7xkFJf9ecagOnKozP59q2WVy5R87Veebfn9cavL5eGa5ppvFfysT/6aKl6f6G8o1sZ3q/rni++hmQ3PYi0HNJAmMvEzFwLMEB1/EnImSNDkZqthCf+XVjARWwiz7mxJzi3SzL0DLwL7vwuP/F5IRWP8x2PZ5cFdMd8lmNemy99LKaBlGEiMMxYYYig8xFBtiOD7MUHyIkfiIMSVG8svhVPiMx7Kb7HhtXvw2Pz6bD6/Vi9fqxWP14LF68su5udvqxmMx5k6zE9MM7Djnzb4f0+k04XCYUChEKBSacjkcDhONRqc8YbRYLCVX/XNNuoprBIqbeV3KJm0XW0bL5GtOi2tWQ6kQ4eSE5VSY8eS4UTubKtTSRtPRs/4Mj8WD1+bFZ/Phs/rw2/0EbAH8Nn9huWhdwB7Aapq+VhHy+Xhh6LpOPB4v+Rucaj4+Pj7lPZQulwufz3fGyeVyzf2auHQCTu2m9/FvUD2yF5JhcFUanaCteKfRM+Rc/x2IGUe62b/cde6Dh/8Uel4x2mK/5ctQsXi6SyVEXiKTYCA6wEBsYMr5YHyQodgQo4nRKTursKgWAvYAAVuAgD1AXbCOMnsZfps/Pw/YA3ithUBmN9un4ZVOD13XicVijI+PMz4+nj+ZmziPxWKTnqsoSr5Jlc/no66uLt/MqnhyuVzYbLZpeHUzg0k15cP9G5XSUoSTRngbS4zl52OJMcaSY4Xl7NQV7mIkMUIoGTrjMd0WN2X2MgL2AGX2svwUsAcot5dT7iin3F5O0BHEa/NKE8wZSFGUfKcjFRVnvqiaC3K5v/Pc3/bY2Bjj4+MMDAxw4sSJSSHObDbj8/nw+/0EAoH8PLfscDhmf4Az22DRzRzptlG9dRMc22n0Wr3ve/DiN8HXCCveASvfbXREIsQ0k4A2l0WH4fH/A/u+D+4qo8v8Fe+Uq0Tikgonw/RGeumP9tMX7aM32ktfpI++qDH1R/sZS4xNep5ZMVPuKKfSWUmdu45VwVX5k8mSuaMcj8Uz+08g3oR4PM7Y2BhDQ0Ps3buX8fHx/ElZbj5VF+8ulwuv14vP56O+vh6v15u/z8Xj8eDxeHA6nZdtE6lLLX+hwR44r+eltBRjiTFG46OMJoxpOD6cr1Eejg0znBimM9zJgYEDjCZGyeiZSccxK2bK7GWUO8opc5QRtAepcFYQdASpcFSULF9OFzhmi+IgV1VVNeU+uYs1Y2NjJdPo6CgjIyN0d3dPulBjs9nyga2srIyysjLKy8spKyvD7XbPvs8HiwOW32FM8XE48rAR1p79Ovzuq1C1Ala/zwhrnurpLq24TElAm4s0DV7+Iez6a4iPwZWfgu1/DnbvdJdMzDGarjEQHaAn0kNPpIfucHd+uSfSQ2+4l1Bq8tX9cns5Va4q6tx1rK1cS6WzMn8CmJv7bX65mo9xQhWJRBgZGSk5mSo+uYrH4/n9Dx48iKIoeDwevF4v1dXVLF68GK/Xm59y4Ut6IZwbLKqFoCNI0BE8p/01XWM8MZ5vJjzVfDA2yPGR4wzHhknrk8O9x+Ih6AxS6aykyllFhaMiv1zprKTCWTFlCBTTS1GUfBPjmpqaKffJ9VQ5MjKSn4+MjNDf38/Ro0dLxq0zm80loa28vJxgMEgwGMTpnAX3ttu9cMX7jSkyBK/9N+x/AB79X/DYF2HetbD6/bDkNmNcNiEuEQloc03fIfjVZ6BzDzRuhtu+AlXLp7tUYpbSdZ3x5DidoU46w510hbvoCnXll7vD3ZN6KvRavdS6a6lz17GhagPVrmpqXDXGyZurikpHJRbp8jgvN6Bv7mRoqmli7Zfdbs/fP9LY2JhvnnTy5Em2b9+O2+2W8CXOSFVU/HbjvrX5/vln3VfTNUbiIwzGBhmIDTAYGzSWs02Q+6P97Ondw0B0YFKQU1Co+GkF1c5qqlxVVDmrqHYZy9XOaqpd1QQdQcyqnIrMJHa7nerqaqqrJ9ceaZrG2NgYw8PDJdPg4CDHjx8nkymEcofDkQ9ruamiogK/3z8za91c5bDxE8Y0eNwIagd+Av/9cbB6jPHVVr8PmrbKUETiopNPxblCy8BzX4cn/hZsXrjjXuOD5DJu9iXOja7rDMWH6Ah1cHr8NKdDp+kY7+B0yFieeH+Lz+ajzl3H4sBirmu8jnp3PTWuGmNy1+CyuKbplcxcmUym5Er0xGniWEoOhwO/309FRQULFy7E7/fnJ5/Ph90+dfOywcFBfD7fpXhJ4jKhKmq+KfFiznzvci7I9Uf7jSnWz4uHXsReYacv0seJ0RM80/UMsXRp8zmTYqLSWZn//Mh9llS7qql11VLrrsVpkZqLmUJV1Xxzx/nzS8N97nNuaGiIwcHB/HTs2DFefvnl/H4Wi4VgMEhlZSUVFRX5uc/nmznBLbgQrv/fcO0X4PSzsP9+eO2X8MqPINACa+6CKz4I3qlrIYV4sySgzQXDrfCLT8Lp54yxPm7/KrjOramLuHxEU1Hax9tpG2+jbayN1vFW2sbaOB06TSQVye+nKiq1rloavY28JfgWGjwN1LvrqffUU+euw22VbrOnkkqlGB0dnXRleXh4mNHR0ZJeD00mU/4kp7GxMb8cCATOGsCEmKmKg9zS8qUAVHRXsH3r9vw+uq4TSoXoi/TRG+mlN9przCO9dIe7eaX/FXZGdk6qifPb/Pla+Tp3XX5ZAtzMYjKZ8s0cFy1aVLItFosxMDDAwMAA/f39DAwMcOrUKfbv35/fx2q1UllZSXV1NVVVVflpWjsfUlVovsqYbv1HOPwr4xaSJ/4Gnvw7WHgTrP09Yy4tQ8QFJAFtNtN1eOn7sOMvQTVJrZkAYCQ+wonRE5waPcXJsZOcGjtF21gbfdG+/D4KCrXuWpq9zaypXEOjt5FGTyON3kZqXbXSBPEMcs17hoaGJk2jo6Ml+z5vDQABAABJREFU+9psNsrLy6mrq2PlypX5G+wDgcDsvLFeiDdJUZT8cBYLAwun3CejZRiMDZbc19od7qYr0sWJ0RP8tvO3JDKlNc7l9nLjQpLHuJCUu6BU766nwlkh97LOAA6Hg8bGRhobG0vW54Jbf38//f399PX1cfDgQYqHVAoEAlRVVVFdXU1NTQ01NTV4PNPQMZTVCavfa0xDJ+HlH8ErP4ZjO4wu+694P6z5PQguuLTlEnPSrBgHTQaqnsyaGGbx0a9TPryPEf8qjiz5DAm7jGl2qU3nQKyRTITuVDc9qR56U730JnvpSfUQ1gpjf9kUG1WWKqosVVSaK425pZIKcwVWdfrGR5rp0uk00Wh00hSLxSbVhDmdznzPacXLZrP5kp9AyMDAYia5GO9HXdcJaSGG0kMMp4cZTA8ylB5iKD3EYGqQkcwIOoW/UTNmgpYgFeYKguYgFZYKKswVVFgqCJgCEt5mIF3XSSQShMNhIpEI4XCYcDhc0rukxWLJd3aU63XWZrO97mfuhX5PKlqGsuG91PTsonxoLwoaI/5VdNXdylD5RnS5v1KchQxUPde89nP49Z9AKgY3/B/Y+Ptyw+o0uRQDsaa0FG1jbRwbOcbxkeMcGznGsZFjJTViboubef55LPAvYJ5vHvP981ngX0CVs+qy7n7+bHRdJxQK5ZvdFN8zEQ4XQq6qqvkeyoLBYL4JT3l5+Ywb4FUGBhYzyXS8H1Nait5wLx2hDjrDnXSEOugIddA+3k5nqJN4ptDjqVk1U++up8nbRLO3mSZfdu5tosJRMaP+tgUkEgn6+vro6emhu7ubnp4eBgYG8hfNnE4ndXV1JdPEniQv6nsy1GvUqu37Hox1gKcG1n0E1n5Y7lUTU5KBqueKVAwe/pxxk2rtGnjHf0DFotd/npg1IqkIR4ePcnj4MIeHDnNk+Ainxk7le0o0q2bm++azsXojCwMLWRhYKEHsdei6zvj4eP6+h+KpuHMOu91OMBhkwYIFJb2OBQIB6RFRiFnColpo8DbQ4G2YtC03LMjp0Ol8p0jt4+20h9p5vuf5kqaTDrMjH9aafc20eFuY559Hk7cJh9lxKV+SyLLZbJOaSSaTyZLQ1tXVxfHjx/Pby8rKqK+vp66ujvr6+pIhAi44TzX8/+ydd3gdV7W33zm9qvcuWV223HuJnTiJ0xvpAQIEkgAhQGiXy/1ol95r4AKBkJAe0kyKHcdO3LstV0lW7/VIp7eZ+f6Yo2M77raqPe/zbO+ZOaOZfaytmf3ba+21lnwFFn0JalfB9r/Cuh/B+z+Fsuth9gOQt1hdhqJyVqgCbaIw0AzP3wcde2HJV+Gyr6sLUic4g4FBDvYd5FD/IQ73HeZQ/yGanE1R95xEUyKliaUszFxIcXwxxfHF5MXmodeov/dT4fF4omsZji3HCjGr1UpycjKVlZUkJyeTnJxMUlISNptNFbkqKhcxGkGjhPu3pjI7bfZxn0myRJeni0ZnoyLaIgGV9vfuZ1XTKiT56MA+w5pBfmx+tAx5LZxrgnGVC8dgMJCdnU129lFB7vf7o2KttbWV+vp6qqqqAMUjoqmpKSr0srOzhz8ok0YLJdcopa8Odv5dsawdfA2SihWvp2n3gEGNeKxyalSBNhGoXwcvfgKkMNz9PJSsGOsWqZwj/rCfw/2H2d+7n329+9jfu59mV3P08wxrBqUJpVxXcB3lieWUJZSRbFHXFJ6KUChET08PXV1d0dLd3Y3HczQapdlsJiUlhcrKSlJSUkhJSSEpKQmrVX0pqqioHI9G0Chh/m3pzM+Yf9xnATFAk7OJhsGG48qu7l3HpQ1IMCUwKW4Sk2InKXWkJJgSRvvrXNKYTCYKCgooKCgAFC+KwcFBWltb2bx5M6FQiA0bNkRdI1NTU8nOziYnJ4fc3NzhTVWSOAmu+l8lXP+BV2DbX+DNrygpkWber4i12Mzhu5/KRYMq0MYzsgybfgvvfkeZdbnrGeWPXWVcI8syjc5G9nTviYqxWkdtNHR0iiWFyYmTuaXoFsoTyylPKCfOFDe2jR7HuFwuOjs76erqita9vb3Rl6tOpyMlJYWioiJSUlJITU0lJSVFtYipqKgMC0atMerFcCySLNHp6aR+sJ66gTqlDNbxRv0bx6UuSTAlUBhXqLilxx11TVfTA4wOgiBE80j29vaydOlSAoEAbW1tNDc309zcTFVVVTRyZHx8PPn5+eTl5ZGXl0dMTMyFN0JvVqxmU++Glm2w5Q/K+G7z76H8Zpj/WciceeH3UbloUAXaeCXghtc/r8y4lN8EN/0RjGp0tvGIL+xjf+9+9vbsZU/3Hvb07GEwMAiAXW+nIqmCT0z+BBVJFUxOnEyqNXWMWzw+kSQJh8NBR0cHnZ2d0fpYq1hsbCypqamUlpZGwy4nJCSoIetVVFRGHY2gIcOm5GJblLkoelyWZbq8XVHRdmTgCEcGjvDv2n8fZ3HLtGVGRVtxQjEl8SXk2HPQatQ1ryON0Wg8zsomiiLd3d00NjbS2NjIgQMH2LVrFwCJiYlRsZafn39hUSAFAXLmKsXRCFv/D3b9E/a/BNnzFKFWer3iJqlySaMKtPFIX52y3qznsBKlceGj6qLScYTD72Bn1052du3kg44PaH+mPWody4/N5/Lsy5mWMo1pydPIi81TwzifBEmS6O3tpb29nfb2djo7O+ns7CQYDALKOoHk5GQKCwtJT0+PJi41m9XF+SoqKuMbQRBIs6aRZk1jYebC6HFJlmhztVE7UEuto5bagVqOOI6wvnU9oiwCSnCSwrhCiuOLKU0opSShhOL4Yqx61TV7JNFqtdEca/Pnz0eSJDo7O2lsbKShoYF9+/axc+dOQHGJLCwsZNKkSeTk5KDTnedQOj4PVvwQln5DWaO29U/wwseU4wsfhan3gH6Y18epTBjUMPvjjdrV8PKnQNDAR56ASZePdYsueXp9vezo2sGOzh3s7NrJkYEjAJi0JrJ12SwtXsq0lGlUJlWqroon4VgxNhRpq7Ozk1BIiUyp1+tJS0uLJiFNS0sjJSXl/F96lzBqmH2V8YTaH8+OgBigbqCO6v5qahw1VDuqqe6vxhl0Rs/JsedQmlBKWWIZ5QnllCaWqmvbzoPz7ZOiKNLR0UFDQwN1dXU0NzcjSRI6nY68vLyoYEtKSjp/13pJhMMrYcOvoX0X2NIUi9qsT4LRfn7XVBnXnC7M/oQQaJdKouq0jjWUVP8ety2PAxXfwG9WXeHGArfopsZfQ42/hlp/Ld3hbkBJ+lxgLKDQVEihsZAcYw5+j19NDHwMQwlGnU4nLpcrWg+FNtZoNNGkokPFYrGoa8WGCTVRtcp4Qu2P548syzhEB23BNtqCbbSGWmkJtNAv9kfPidPGkW3IJsuQRbYhmxxDDrG6YQxwcREyXH0yHA4zMDCAw+Ggv78/mkTbaDRG82TGxcWdX4oWWSZuoIrcppeIH6gipLPSlnkdbZnXEzKov9+LCTVR9URg8x/hnf+CgmVw17/U8KujiC/sY3fXbrZ0bGFLxxYO9R8ClOTPM1JnMCt1FrNSZ1GWWIZOc7xV51KfIfb5fLS1tR1XhtaMabVa0tLSyMzMJCMjg4yMDJKSktT1YiPIpd4fVcYXan8cfgYDgxzuP8yhvkNKvsz+QzQONkbTs6RYUqhIrKAisYLJSZMpTyxXw/8fw0j1SYfDQV1dHUeOHKGuro5QKIRer6egoICSkhKKioqw28/DCta2E9b/UrGs6cww8+Ow4BGIzRr276Ay+qiJqsczsgxrfwAf/EwJBnLrX0BnHOtWXdRIssSh/kNsatvElo4t7O7eTUgKodPomJ4ynUemP8K89HmUJ5afIMguZSRJoqenh5aWFlpbW2ltbaW3tzf6eXJyMkVFRWRmZpKZmam6KaqoqKgMM7HGWOamz2Vu+tzoMW/Iy+H+wxzoO6CU3gOsbVkb/TzTlklFYgVTkqYwJXkK5YnlarLtYSY+Pp5Zs2Yxa9YsQqEQjY2N1NTUUFNTQ3V1NQAZGRmUlJRQWlpKSkrK2XmOZM5UJu17qhXXx+1/he1/U4Taoi+rIfovYtTR01giSfDW12D7X2D6R+GG36iRe0aIwcAgmzs2s6F1AxvaNtDn7wOgNKGUe8vuZV76PKanTFfDHh+Dz+ejtbWVlpYWWlpaaGtriwbxMJvNZGdnU1lZSVZWFhkZGcOf7FNFRUVF5YxY9BZmpM5gRuqM6DFX0KWItt4D7O/bH024DaAVtBTFFymCLWkKlcmV5MfmqwGthgm9Xk9RURFFRUVce+21dHV1RYXa2rVrWbt2LYmJiZSXl1NeXk5aWtqZxVpyCdzyOCz7L8WitvMfsOspmPUJWPQlsKeNyndTGT1UgTZWiCF49WHY96Jirr7y+2qkxmFElmVqHDWsb1vP+tb17O3ZiyiLxBhiWJixkMVZi1mQsYBEc+JYN3VcMJTIcygnTHNzM93dyto7QRBITU2lsrKS7OxssrKySEhIUNeNqaioqIxT7AY7s9NmMzttdvRYn6+P/b37qeqtYl/PPt5ueJsXa14EFJf+yuRKpiVPY2ryVKYkT8FuUANTXCiCIESDYC1ZsgSXy8Xhw4c5ePAgGzZsYP369cTHx0fFWkZGxunfrXE5cMOvFVH2wc+UxNc7/wGzH4CFXwRb8ih9M5WRRhVoY0HIBy98HGrfgSu+rfyhqYPdCyYkhdjZtZP3mt9jbctaOj2dAJQllPHJyZ9kSdYSJidNVt0WOequ2NTURFNTE83NzbhcLgAMBgPZ2dmUl5eTk5NDZmYmRqPqdquioqIykUk0J3JZ9mVcln0ZoLj7Nzob2dezj6qeKvb27OXxvY8jIyMgUBhfyLTkadG0Mdn2bHVi7gKx2+3Mnj2b2bNn4/F4omJt8+bNbNy4kdjYWCoqKqisrCQt7TRWsfhcuOn3sPjL8P7PYMsfYccTMOfTsOBRsKqTzxMddaQ62vgH4Zm7oHkzXP8rJXyqynnjDXnZ1L6J95rf4/3W93EGnRi1RhZkLOCzUz/LosxFJFvUGaWhnC5NTU00NjbS3NwcjTplt9vJzc0lOzubnJwcUlNT1UAeKioqKhc5GkFDQWwBBbEF3FR4EwDuoJt9vfvY07OHvd17eavhraiVLdGUqLhSpijulCXxJWpS7QvAarUyc+ZMZs6cidfrpbq6moMHD7JlyxY2bdpESkoKlZWVTJkyhdjYU0RvTChQXB8Xfxne/wls/K2yRm3hozD/c2rAuQmMKtBGE98A/PNG6DoAH/kbTL5trFs0IRkMDLK2ZS1rmtawuWMzATFArDGWpdlLuTzncuanz7/k15JJkhTN2TJkIQsEAoCymLm0tJTc3Fxyc3OJi4tTZ0VVVFRUVLAZbMzPmM/8jPmAYmWrG6hjd/dudnfvZlfXLlY3rQbAqrcyLXlaVLRNSZ6CUat6W5wPFouF6dOnM336dDweDwcOHKCqqop3332Xd999l7y8PCorKykrK8NsPkmAl6QiuO2vsPgr8N73leBzO56AZd+Eafeq8Q0mIKpAGy1CfnjuHug6CHc9C8VXjXWLJhTuoJu1LWt5p/EdNrZvJCyFSbemc3vx7VyecznTU6Zf0q6LkiTR3d1NY2MjDQ0NNDY2RgVZUlISU6ZMiQqymJiYMW6tykRHliQIh5FFEVkUIVLL4bAS/EiSkCUZZEn5bGh76LhylUj1oXoIQYgW4ZhtBAFBowGNBjRaBO2xtUb5TKdD0OkQtFplW52AUFE5LzSChqL4Iorii7ij5A4AOj2d7Ozaya6uXezq3sXvdv8OAIPGwNSUqcrat9TZVCZXYtAaxrL5ExKr1cqcOXOYM2cO/f39VFVVUVVVxeuvv85//vMfSkpKmDFjBgUFBSd6u6SUKlEfmzbD6v+B1x9R0jhd+T0oulJdTjOBUPOgjQaSCC99Ag6+Brf9DaZ8ZKxbNCHwhrx80PYBbze8zfrW9QSlIKmWVFbkrWBF/goqEivGfOA1lnl++vv7qauriwoyr9cLQEJCAnl5eeTn55OXl3d+uVdUxi2yKCL5/Mg+L5Lfj+T1Kds+H3u3b2dyURGSP4Ac8CP5/cj+AFJAqeVAACkYQA4GkYOhSB1EDkSOhUJHSzh84nY4DKHQWP8XnDta7VGxNlT0+tMXoxHBYEAwGtAYjQh6g3LMaEAwGNAYTQgmIxqTOVKbEIwmNOajtcZsRjCb0VgsyrUuscGRmgft0mDAP8Du7t3s6NrB9s7tHO4/jIyMUWtkavJUZqXNGjeCbaL2SVmWaW9vZ+/evezbtw+fz0dcXFzU6nbSiVdZVsad734HHA2Qv0QJSJcxbbSbr3IKTpcHTRVoI40sK6H0t/0fXPUDWPD5sW7RuCYshdnUvomVdStZ17oOX9hHkjmJq3KvYkX+CqYmTx1XoYBH82Hv9XppaGigvr6euro6BgYGAIiJiSE/Pz8qyOLi4kalPSpnjyyKSC4XotuN5HYfv+12I7oi2x6PUrzeE7e9XiSvFzliGT0nBAHBZEJjMERER0R8RIsejcGoCBODAUGvCBiiQsZwjLDRRQSPDkGnVaxXOu1REaTVKlYsQQOaIWuXFkEjKFYvhKOzuMLR9imVUsuyrDw7ZSK1BLIcOQ7IUsRyJyFLSq0ck0ASkcMishhWrHehsLIdDkeOi8ihYFRsRkVo8NjtIFIoiByIiNeQiBwSkcIihEQQtCBoEQTluyFE/h8ErfIdBa3y/SNl6DxF4JkQDCZF9BkMipiL/k6Gfi/Go8IwUjSRzzUmZR+9PmJZJFoTrSPHNCi/A0EAjRD5fUSOCwKCVohYHpVttJHPtZrIZwLoNAiR/XNlog6GVS6MwcAgu7p2sb1rOzs6d0QFm0lrYkbqDOalz2Ne+jxKEkpG/X1+MfTJcDjMoUOH2LVrFw0NDQiCQFFRETNmzKCoqAit9kPujOEg7Pw7rPsx+Pphyh2w/DtqDrVxgCrQxpL1v4Q134X5n4erfzDWrRm31DhqeP3I6/yn4T/0+nqJNcZyVe5VXJN/DTNSZozbhcgj+bAXRZGWlhbq6uqor6+nvb0dWZYxGo3k5eUxadIkCgoKSExMvORm5scCWZYVMTUwgDgwiDg4qGwPDiAODiINDiIOOhFdLiSnE9HpRHQ5kQadSB7PmW+g06GxWtFYLWgsFjRWK1qrFcFiidYaiwWNyYzGErHMmC1ozJF9k4ndBw8ya8GCo9YckxHBbFZE1kXSR2RJRg5JyEFRKSEJaWg7KEWPyUEROSwhBSXk8DHHQ8o+4aPbR4tybcTIviiDOHHekSOKAIJOo4g3nYCg00QL+sj2h+r2ng6y8rIR9Fo0Bg2CXovwoVpjjGwbtWgMWgRjxF1V5aJhMDDIzq6dbOvcxpb2LdQN1gEQZ4xjTtoc5mUogi3bnj3ibbkYBNqx9PX1sXv3bnbv3o3H48FutzN9+nRmzZp1olXNP6gku97yR2XyaMlXlbGpTnVDHSsmvEATBOEG4IbMzMxPP/3002PdnLMmtfM9yg7/hq6UJRwq+5LyB6ESxS262eHZwTbPNlqCLWjQUGGuYK5tLhXmCnTC+F9T5na7sdlsw3Y9v99Pf38//f39OBwORFEEFCtZfHw8CQkJ2O12NcricCCKaNxuNC4XGqcLjduF4HZHjkXqaHEheLwIknTKy0kmE7LFgmQ2K7XFgmw2K7XFjGRW9pViUs4zmZRzTCbQ6y94fcBw98dhQwZBAk0INOEPF+Ekx0AjKscF8dhjyvFzRdLIyFqQNSBF6qH9Y4uklY/bRzjxHFn40OeCfMz20Z+BY/ZPVsNRCyLHHEOGcBghEIgUP4I/gOD3o/H7o/saf+S4z4/Gr5yn8QeUY4EAQjCkWO6EyHo9hqx9AoKgQTKYwGJFNluQzVZkkxmMFmST0i8xKEU2mEBvBL0RAQ2CxIeKoPxuxci+eMxnYRmNJKCRzu13Jgsykk75XUm6Y4tyXD7muKiPHNcfu68U1MfkuGQwPEi1v5pqfzU1/hoGxAEAEnWJlJnKKDWXUmwqxqw5STCMC2TcPiMvEEmS6Ovro6Ojg/7+fgRBIDk5maysrBOEmsnXxaS6v5HcuxWvOYPaos/gSJg+Ri2/tFm2bNnEFmhDTCgLWu278OydkLsQ7n1JnaGIIEoiG9s38nLNy3zQ+gFhOUxZQhk3Fd7ENfnXkGBKGOsmnhMXOhsXDodpaWmhtraWI0eORJNDx8TEUFRURGFhIfn5+ZhMpmFq8cWNLEmIAwOEe3oId/codW8v4Z4exL4+wn19iP19hHv7EAcGTgxMAaDRoI2LQ5sQjy4uHm18PNqEBOVYXBza2NjIduzR7ZgYxSVwjBnJ2WFZVqxLkjeM5A0h+cLIvjCSL6wc8ynHosUvKp/7lf2zsURFLSlGnWJJMUQsLMYhS4v2qKXFoFH2I7Vy7BgLjf4Yi47m4rAengtyKITocinWXadTsfgORmpnxOI7MEh4wBGxCiuWYWlw8JTX1Fgsyt9CQgLa+Dh0CYnoEhPQJiZF6kR0SUnoEhLQxsfz/oYNLF26VLF6ftiKGbF6SkNWz4CIFBCPHg8ox4aOSwER2R+O1Mo5Z0IwaNCYdWjMejQWnbJt0SNEt49+prXq0ViVbdWCN3rIskyDs4Et7VvY3LGZrR1b8YV96AQdU1OmsihzEQsyFlCaUDos7pAXmwXtZPT397Nt2zZ2795NIBAgKyuLuXPnUl5efrz7Y+278NZXob8eym6Aq3+oJMJWGTUmvAVtiAkj0Np2wT+uh8QCuP9NMKlR83p9vbxS+wov1bxEu6edRFMi1xdcz42FN1IcXzzWzTtvzudh7/F4qKmpoaamhrq6OoLBIBqNhtzcXAoLCykqKiI5OfmicUkbLkS3m3BXF+GuLkJd3cp29zHbPT2E+/ogHD7hZzVWK7qkJGUAmZiINjEBXWISuqREtEODzIREtPGKABMmqIXyXPqjHBIRPSEkdwjJE1K2PRHx5Q0posujbIsRUUb4NO8LraAMek3K4Fcw69CYtNFjwtBnJi3CUG2MnGNUts9nnZPK8CKHw4p77sAAosNBuL8fsd+B6OiP7DsQ+/sJO/oR+/oJ9/efPHCMICDZrJjTMxTRlpyMLlmptUP7ScnoUlLQ2s49V5MsyYp48584GSD5I5MHfvHohEFkUmFoguF0EwaCSYvGqkdriYg2qx6NTa+IOJserc2gfG5TPhN0E/N5MR4JiSH29OxhQ9sGNrVv4nD/YQASTAkszFjI4qzFLMhYQKzxFHnBzsClINCGCAQC7Nmzh61bt9Lf34/dbmfOnDnMnDkTiyWSiigcgE2/gw9+ruwvfgwWPAJ6dVJ4NFAF2mjSVwd/uwoMFvjUu2BPHesWjRmyLLO9czsv1LzAmqY1hOUwc9PmckfJHSzLWYZeM/YWhwvlbB72sizT3d1NTU0N1dXVtLa2AkqC6OLiYoqKisjPz8dovHTzx0h+P6GODsIdHYQ6Ogl1dBDq7CAc2Q53diJFolQeizY2Fl1KCrrU1MgA8NiSFN3WnCxvzEWGLMmsf/d95k+djegOIbmDiC5FgInuoFJ7FDEmuUOntkBoOGpxsBy1KmgsEUuDRa+IrQ9ZIQSDRp1UuASRZRnJ5VKs0n29hPv6Cff1Ivb10bxvHyl6g2LF7u1B7OlFPomY01gsyt/x0N9ySjL6Y/b1qanoUlKGzUodtQb7hiYhjpmY8CjHRG/o6GeRv6FTiTrBrENr16O1G9DYDWhthsi2ckxrN6CNMSCY1ZQP50qvr5dN7ZvY2LaRTe2bGAgMoBW0TEuZxmVZl7EkawkFsQVn/f96KQm0ISRJ4siRI2zZsoX6+np0Oh0zZsxgwYIFR4OKDbTAqv9Woj7G58N1v4DCK8a03ZcCqkAbLTy98NflykLMT62GpMKxbtGY4Aw6ee3Ia7xQ/QKNzkZiDDHcVHgTtxffTn5s/lg3b1g51cNeFEWampqorq6muro6GnExPT2dkpISiouLSU9Pv2Re1pLHQ6i9nWBbG6G2NkJt7ZFaKaLDccLP6JKT0aWno09PR5+Wii4lNTJYGxrEpaC5BFw/ZVFCdIcQBwNIriCiKyK8ottBJGcQ0R0C6WQum6CxGpTZ/iErQMQSoLEesx/ZFky6S9IlUGX4+fDzUZZlpMHBqNtxtHR3E+ruJtzVTbhbKXIwePzFBEGxxKWlKc+D1DT06WlKnaE8J3TJyQi6kVm7LMsRi93QRIc7GJkIiUyARP4uRbfy9yiHTlyvKug1aGIigi3WGKkV8aaNNaKNU46pLpYnR5RE9vXu44PWD/ig9QOqHdUAZNoyWZK1hMuyLmN22uzThvK/FAXasXR3d7N582b27t0LwNSpU1m0aBGJiYnKCXXvwZtfg75aJcH11T8Ac/wYtvjiRhVoo4EswzN3QP37cP9/IHv2WLdo1Gl1tfL0oaf5d+2/8YV9VCZXcmfJnVyVexUm3cU5kD72YR8MBqmrq+Pw4cNUV1fj9/vR6XQUFBRQXFxMcXHxRZskWpYkwl1dBFtaCLW0KHVzC8HWVkItLScIMMFgQJ+ZqZSMjEhJVwZfGRnoU1IQDBf3us2hAZ84GEAcDEbqAKIzqBSXckzyhKI5naMIKIJqaMbebkBr11Pf2UzJ9DJFkNn1aGwGxd1QFVwqY8D5DoaHhFyoq1txY+7sJNzZRahLqcNdnYQ6OpHc7uN/UKtFl5qCPj1DmdhJT1fE2zHPmtGwpsuyjBwUj06kRP+mI3/rziCSU/lbP0HICaCxG9ANCbZYY1S86eKNaONNyjq5S2Ry73R0ejr5oPUD1reuZ0vHFvyiH6veyqLMRVyefTmLsxZjNxyfB/RSF2hDDAwMsGnTJnbu3IkkSUyePJnFixeTkpICIT988FMl4qM1SbGmld0w1k2+KFEF2miw5XF4+xtwzc9g7mfGujWjyp7uPfzz4D9Z07wGDRquyb+Gj5Z/lLLEsrFu2oizevVqUlJSOHz4MEeOHCEUCmEymSgpKaG0tJRJkyZhuEiEhixJhDs7CTY1KaWhUambmwm1th4/463Vos/IwJCdhT4rG31WFvrMDAyRgZI2MXHCrvM6W6SgiDgQiJbwgD8yOIscGwye1M1QY9UrM+oxBrQxRmXG/Zh9rV2Pxmo46XotdfChMp4Y6f4out2KW3RnJ6H2DkId7cp+e0fETbrzhDWp2sRE9JmZGLIyjwq3zCzlWZWRMaoTQydM0gwECA8OPR8iZSBwgogT9Bq08Ua0caaoaNPFm9AlmNAmXJoCzh/2s61zG2tb1rK2eS19/j50Gh1z0uawLHsZy7KXkWpNVZ+RH8LlcrF582a2b99OKBSitLSUJUuWkJGRAR174bXPQec+qLhFGd/akse6yRcVqkAbaTr3wV8uh0mXw93PXXCo7ImAKIm81/IeTx54kr09e7Eb7NxRfAd3l95NqvXiXnfn9Xo5fPgwBw4coL6+HlmWsdvtlJaWUlpaSl5e3omJIicQostFsL6eQH0Dwfp6go0NBBsbCTa3HJckWTCZMOTkYMjNRZ+TjSE7B312FoacHPRpaeMiquFIIcsysi9M2BFAdPiP1kMDqwE/kudDwUoiM+PaWCO6WMPRmfGh7Rijsk7lAgIOqIMPlfHEWPdHWRQJ9/QQam8/qWt1qL39+DVxGg26tFQMWdnKsyw7G31WNoacbAw5OWiH1uuM5ncYetYMHPOsGQgQdvgVIefwI3mPf9YIRm1UrOmGSqIZXaIJbZzpog/GI8kSVT1VrG1Zy3vN79HobARgcuJk8sV8Hlr2EDkxarTCY/F6vWzZsoWtW7cSCAQoKSnhiiuuICUxHjb+Gt7/KRhscM1PYcpHLolx7migCrSRJOiF/7sM/E54eKNiDr6ICYgB/l37b5488CRt7jaybFncV34ftxTegkVvGevmjRg+n+84USZJEvHx8dhsNq666ioyMzMnVG4yWZYJd/cQOFJLsK6eQEN9tBZ7eo+eqNMpIiwvD0NurlLycjHk5SmL9ifQdz5XpKCI2O8nHCliv18ZFDmUwZEcON76JRi0aOON6OIirklxpmO2I+JrhNeWjPWAWEXlWMZ7f5QlSRFwra0R9+xWQq0tBJtbCLa2HP8sRAlKpM/NVZ6JOTnKszAnB31uLrr4sVunIwVERbwd+6zq9xPu9xHu9x8ffVUrKNa2JEWwKbUZXZIZbZzxonSHrh+s573m93iv+T329e4DoDShlCtzr+Sq3KvIi80b2waOI/x+P9u2bWPjxo0Eg0GmTZvG0qVLiQ10wOufh9btULwCrvslxGaOdXMnPKpAG0neeBR2PgkffQUmLRvr1owY/rCfl2tf5ol9T9Dt66YyuZL7K+7n8uzL0WomrrXodPj9/qgoq6urQ5Ik4uLiqKiooKKigvT0dN5///1xPQABCPf1EaitJVB7hMCRSKmtRXI6o+doYmIwFhRgKCjAWJCPoaAAQ34+hqysi9YSJssykjtEuM9HuM9PuM93nCCT3MdHmxOMWnTxJkWExZsibkXGaD0eIrSN9wGxyqXFRO+PktcbXUcbbGom2NxEqLmZYFMzofb24/IoamNjlYms/HylHtrOzRnTYEayJCO5gtFnXLjPR7j36DNPDh7jPqkT0CeZ0SVb0CUrtT7ZjC7ZjMY4MsFXRpt/v/tv3OluVjetZk/PHgCK4ou4Kvcqrsq7ioLYgrFt4DjB6/Wyfv16tm3bhiAIzJ07l0UL5mOu+ies+R7ojHDj76D8xrFu6oRGFWgjxcHX4YWPwsJH4crvjXVrRgR/2M+LNS/yxP4n6PX1MjN1Jg9PfZg5aXPGfDA6EoRCIWpra6mqqqK2thZRFImNjY2KsoyMjOO+93gagEjBIMEjR/BX1xCorsZffZhAdQ1if3/0HE1sLMbCQoxFhRgLi5TtwknKmrCL8PcZFWG9xw9KhkTZcVYwAcX9cMg1KNEcdQ+aKOs6xlN/VFG5mPujFAwqlrfGJoLNkTW5jY0EGxoId3cfPVEQ0KenK5Nfkwow5EfqSZPQxseP6TNFSZFw9PkY6vUS7vEppd8Hx2g3TYwBfYoFfaoFXaTWp1jQWCbWBN6xfbLT08ma5jWsalzF7u7dyMgUxhVyXcF1XJN/DZk21UI0MDDA2rVr2bt3LyaTicWLFzOnMAn96w9D206Y8XFY8SMwnHsuQxVVoI0Mg63w+EJIyIdPrgLdxREIYghf2McL1S/w9/1/p8/fx+y02Tw89WFmp1180SklSaKpqYmqqioOHjxIIBDAZrNRUVHB5MmTycrKOuVLdKwGIGGHA//Bg/gPHiRQXUOg+jCB+gYQFcEhGI0Yi4owlhRjKi7GWFSEobBQCUM9zkXG+SAFRWVQ0esj3OONDDaUgcZxIkwjRNZjKAJMO+Tik6Assp/oCWcv5gGxysTjUu2PksdDsKmJQENk/W59g+JGXt+A7PdHz9PGxmKYNCkq2IyFRRiLChX38TF+TsthSfEm6PYqz9JuL6FuL+Fu73FWN43dEBVr+jQr+nQrulQLGsP49Kw5VZ/s9nazumk17zS+w+7u3QBMS57GNfnXcHXe1SSaE0e5peOLzs5O1qxZQ21tLTExMVy+9DIq+95As/HXkFQEt/0N0ivHupkTDlWgDTeSCE/eCO274aH1kDhprFs0bATEAM8dfo4n9j9Bv7+fuWlzeWjqQ8xKO2n/mbDIskxXVxdVVVXs27cPl8uFwWCgrKyMysrKsw70MRoDkHBPD/6DB/EdOBAVZeH2jujnuvR0TCUlGEtKMJUqtSE3F2ECByo5GVFrWI+XUHdkwNDjJdztQxwMHHeuNs6oCK9kZW2FPmlojcXFvUB+NAfEkiQjhiTEkEQ4JCGGRcIhCSksI4alaInui0e3JVE+WqQP78vIxxRJVnLBSbLiriXLMrIEyLKSfUBW+oZSR7bPgCAIyhp3QUDQEB0MD20LAggaAY1GOK4+ug0arQaNVkCjFdAes60UZV+r00SKsq350L5Wr0Gn16DTa9HohDEflA83l6pAOxWyJBHu6CBQX68EYqobquuOS0WiiYnBOGnSMd4OhRiLi9Eljf0ad1mSEQcCiljrUkRbqMtzvHATQJdgigo2fZpStAmmMV/jdjZ9ss3dxlsNb/Fmw5vUOmrRClrmpc/j2oJruTz7cmwG2+g0dhzS2NjI6tWraWtrIzs7m+umpZG29svg64fl34G5D8NFvDZ9uFEF2nDz/s9g7f/CzY/DtHvGujXDgiRLvNXwFr/d9VvaPe3MTZ/LZ6d+lhmpM8a6acOKx+OhqqqKPXv20NXVhUajobCwkMrKSoqLi885JP5wD0DEgQF8+w/g31eFr2of/v37Cff0RD835OVhKi/HVFGu1GVlYxJZbCSRZRnJGSTU5SXU5Y3O3Ia6vci+o9HKBIPmmDUSR9dM6BJN43b2dqQ5tj/KkkwoKBLyiwT9YYJ+kVBAKeHA0e1QQCQUPHosHJIIB8VIkaL7ocj+kCiTTpYU+wLRaI8XQwgyGo2MIIgIggSIQBgBCRkRkBAQkWVlG1kExIhgk5Ajx2RZOmZfUs6XZWRZihQ5us+x+8jHfCZHBKCk5KU74et/aOCpKMAPlch5giZ6TEADaEAQ0Gi10aLVadHqdErR69HqdegNyrbOoENvNKA3GdAbDRjMRgxmA0azSaktRoxWMyaLAb1Ji96olNEWgKpAO3vC/f2RdcK1BI4cIRhZMywODETP0SYmYiwuwlRcgrG4GGNJCcbCSWO6xm2IqHDr8BDqjJQOD+E+X/RvRTBo0WdYMWTY0GdY0WfY0KdaRjUx97n2yVpHbVSstbnbMGqNXJFzBTdNuom56XMv2jX4p0OSJPbs2cO7776Lz+dj7oypLB18EdORlVC4XBkb21LGupkTAlWgDSct2+CJFUpOiNv+elGEGt3euZ2f7/g5B/sOUppQymOzHmNe+ryxbtawIYoitbW17Nmzh5qaGiRJIiMjg2nTpjF58mQslvOPPnkhAxApEMB/4CD+/fvwVe3Dt6+KUFNz9HNDQQHmKZMxVVRgKi/HWFqK1nZxzdyJ7mDkZR4RYhFRJvuPCjGNVa+seUgxK3WysgZCG2MY89nYkUKWZUJ+Eb83RMAbJuANE/SGCfhCBH0iAV+Y4DFlaH+g34VeYyAYEVsnioiTI2gEZRBv0KAzatHptegMGnQG5ZhWH6kNWnR6xfKj1QkR0RQEQiAFkaQgcqSWxBBSOIAYDiKJQcRQEDEciNQhxJCyHQ4pn4WDAcLBIOFQCDFSh0PB4wIxjASCoEHQaCKiUINGo1GOCYLyfBcERVoJQsS6Fjkug6z8c4w1T2mrHBV0MkjS0X3pqCBUhN5Iv381gBYEHcJQ0erRaPRodDq0OgM6vRGtwYjeYERvMqE3GTGYTRgtZowWM2a7FUuMUsyxVoxmCwaTCb3JjN5kRHOaAaoq0C4MWZYRh4I81dTgr6lRXNqPHDnqKqnRYMjNxVhagqm0DFNZKcbS0nHjzi4FReXZ3uEh2O4m1O4h1OE+am3TCujTIqIt04ohy44+zTpi7uYXkjx9b89eVtav5K2Gt3AGnaRYUrih4AZuLLzxkgwu4vV6WbNmDTt37sRms3F1oZ7J+36IYLLDzX+CouVj3cRxjyrQhgv/IPxpkbL90AYwxY5dW4aB+oF6frXzV6xrXUeqJZUvzPgC1xdcj0a4OMzT3d3d7N69m6qqKjweD1arlcrKSqZPn05KyvDM7pzLwz7U1YVv9258u3fj3bMH/8FDEMnBo0tLU8TYlErMlVMwVVSgtduHpY3jATkkKVawyKxqqEupj42UqLHo0KVa0Kdaj1uIrrVN3PWdsiwTDkr4XEH8nhB+d0ipPeFIrRwLeIdqRYwFfGHkM1iodEYtRpMWg1mHwazDaNEx4OwnMycdg1GH3qTFYBqqtehNuqglRasDWQogiT7EkJ+Q30vA5yHg8RD0eQl4h2ofQa+HgM8b2fcS9PsI+X0EfT5kSTptG49Fo9WhNylCQGc0oouIAp3BECmR43o9OoNRsRTp9Wj1huO2lXpIYOjQavVootYmvWKB0unQanVotFoErQatVoeg1aLRaNHotIoIO1aIjRFDok0SRaWWxOi2KIaRwiKSGEYSRcRwGCkcRhSVY2I4jBgMEgwECfoCBH1Bgv4AIX+QUCAYqQORElTEbzAYFcVSWBHKUjiIJIWQpRCyFATCZ2z3sWi0BrQ6EzqDCZ3RhMFkwWCxYLRYcHrd5BUWYo21YbLbMFpsGC0WjFYrRkukWG3oLtJIsSOFLIoEm5sJ1NQqAaFqqgkcribU2ho9R5uYiKm0FFN5GcbSUkxlZRjy8sZFahRZkgn3+Qi1uwm2ewi1uQm1u4/mc9MK6NMVsWbIsmHIsqNLsQzLhNxwTBoExSDrWtbxWt1rbGzbiCiLVCZVclPhTVyddzWxxok9NjxXWltb+c9//kNHRwf5mSlc6/s3yf3bYdl/w+KvqC6Pp2HCCzRBEG4AbsjMzPz0008/PWbtKKp5nIz2Veye/iOcsaVj1o4LxSk6eWvgLTa5N2EQDFwZeyVL7UsxaCbuQHgIURTp7u6mvb0dl8uFIAgkJiaSlpZGQkLCsOcqc7vd2E5m1RJFdK2t6OvqMNTXo6+rRxtZYyDr9YTy8ggV5BPKzyeUl4d0EbkpagNgcIHRKWCM1HovCLLycpU0MkEbBO0yATsEbTJBO4gGTvASG49IYZmwH8IBEP0o234IB2TEQOR4pIQDEa+7U6DRg9agRCzWGkBjUGqlCGj1Hzquj/yMXrF6SeEQYb+fsN9H2O/DPeBAL0A4EED0+wgH/IgBv1L7/crxoB8pFDp1o6Jt06M1GNEaDGj1RjQGQ2TboGzrIrVej0Z/bG1AExFQGp1euY5Of9GtibwYkSUZMSQT9oUJ+0OEfWFC/iBhXwgxEEKMCD0xGEIKKlZQKRQReWIQpACyHASCSi0HQA5yJlOuoNWh1ZvQGk3oTCZ0ZqXWGo3ojGZ0JrNy3KRsayP7Gu3FEfp9uBC8XnRtbehaWtC3tqJraUXX3o4QCR4lGY2Es7MJ5eQQzs0hlJ2DmJY6PgbQMuj8YBwE06CAcVDANAgaMfLe0MoEYsAfJ0cKiMZzv80p39nniVN0st2zna3urXSEOtChY5plGgvsCyg0Fo4LK+ZoIMsy7e3t0Tyx0ywdXOd5AUfSbA6XPoqou3jz5F4Iy5Ytm9gCbYgxtaD1VMMf58PsB+Dan45NGy6QsBTmmUPP8Ic9fyAoBrm95HYemvoQCaaEsW7aBdPd3c2OHTvYu3cvgUCApKQkZsyYQWVl5bA+jD/M0GycFAzi378f7/YdeHfswLdrF5LHAyhBPCzTp2GeNg3z9OmYSkoQznGt23hElmXEfj/BNrdiFWt3E+zwIDmD0XO0cUZlkfgxC8V1ieZxF6hDkmR8riBeZxDvYBDPYCC67Y1se5xBfK4gIf/JFZfeqMVs12OyGTDb9ZhtkW2bPnrcZNVjsuowWfUYLTo0x6y9kGWZgMeD1zmA1zmIb3BQqZ1K7XUO4nM58bmc+F0ufC4n4WDgpG0B0BmMmGw2TDY7JqsNk82G0WrDZLVFLBg2TFarsm22HrVqWK3oTabTuq6pqHwYWZYJBUT8nhCBiIV41/a95GcX4h5w4x1w4R104nW68XvcijXW60EK+5FlP8hKrWwHQA5Etk89maAzmjDbY7DExGKJicEcE4slNi56TNmPxRobjyU2Dt1F8Nw9V+RgkEB9Pf6Dh/AfOKCUw4ejLpKCxaJY2ioqMFdOwTxlCvrc3HEhLGRJJtzrI9jqItTqJtjiItjuBlEZt2oTTBhy7BhzYjDk2NGnW8+4nm2k3G5lWeZQ/yFeqX2F/9T/B1fIRV5MHh8p/gg3TrqReNPYJTIfTdxuN6tXr2bv3r2k2LTc6n6KtOR4uOuZiyqg3nAx4S1oQ4ypQHvmLmjaCF/YA9aJF251X88+vrflexzuP8yizEV8ffbXyYvNG+tmXRChUIiDBw+yc+dOmpub0Wq1lJWVMWvWLHJH+AUjBQL4du/m4IsvkdLTg2/vXuSAMlg2FE7CMmsWltmzscyYgT49fcTaMVrIkky430+ozaUIsjY3wTbP0bViGgF9illZ9J2uLAA3pFvHRY6coD+M2xHAMxApgwE8jgDugQCewSCeAUWAncyl0GjRYYkxYIk1YIkxYrEbMMfoMdsNkW1FjFnsBnQnCUwyJLo8A/24Hf14BwfwDg7gGRzAO+CI1AN4Bx14nYNI4snFn9FixRwTg9l+tJjsMZhtduW4TTm279AhFl9+BSar7ZIcjKqML840GB4SdT5XEJ8rhDcyCeJzhfC5g/icQdyDHjwOJ97BQQJed0TI+UBSaln2odH4EfAjy17EkAdZOrmbpsFswRoXhyV2qMRjjYvDGhePNS4BW3wC1vgELLGxF/UEhRwOR0TbQWUd9IED+A8dQvb5ACWKpHnyZEyVUzBXVmKaPBn9MC0LuFDkkESw3U2wyUmw2Umg2RWdFBT0GgzZdgz5sRjzYzDkxJwQMGo01kX6wj5WNa7ipZqX2NOzB71Gz/Kc5Xyk+CPMTps9LsTvSFNTU8Nrr72Gz+dlmWYHC7VVaD7yN3Vd2odQBdqF0rAenrxeCSG66Eujf/8LwBV08dtdv+X56udJNifz9Tlf58rcKyf0A8LhcLBt2zb27NmDz+cjISGBmTNnMm3aNKzWkUmWKIfD+A8cwLN5C54tW/Dt2oUcDCILAuayMiyzZ2GeNQvLzJnoEia2RVKWlWhcwRbX0ZnLNvfRfGJD6wMybegzbcri7lQrgn703WTEsITb4cfV58ftCCjbjgDufmXb7QgQ9J04WDNadFjjjFhjDZHaiDXOiCXWgDXWqIiymJOLriECXi/u/j7c/X24+nvxOBQR5hnox+NwKIJswKEEuvgQGq0OS1wc1lhlcBgdMMbEHW8JiInBbI896zU6alAGlfHEsEe5DUl4hyzdzmOs20MTLYPK373X6UESfSB7kSUfsuwF2YtO70ej9YHsQxI9hINuwgHPCfcRBI1ieYtLwBofjy0hEVt8IraEROyJScp+QiImq21Cv0uPRQ6HCdTVRyMI+/btI1BTE82tqUtLwzx1quIJMm0qpooKNONgEkiWZcTBAMEmF8EmJ4HGQUIdHsWrViNgyLQpgi0vBmNeDB9s2ziqz8gjjiO8XPsyr9W9hivoIjcml9uLb+eWoluIMcSMWjvGAo/Hw8qVKzl06BDZ+gFuCb1CwvIvwsIvXhQB9oYDVaBdCJIEf1kG3j74/HbQm0f3/ueJLMu80/gOP9n+E/r9/dxVchePTH9kwubvkGWZhoYGtm7dSnV1NRqNhtLSUmbNmkVeXt6wry2TZZngkSNRQebdtg3J7QbAWFKCdd5cLPPmscvv57JrrhnWe482oidEqNUVEWRugq2uo8E7tAL6DJvykosIMn2KZdQSOodDIq4+P85eP65+RYgptQ9Xnx+PM3jC8haTTY8t3ogt3oQ93ogtwYQtXhFgQ0V/GuElyzJ+jxtXbw+uvt5I6cHd14vb0Yervx93fx8hv++EnzVarFjjE7DFx0cGdwnK7Hx8AtbY+MhMfTxGq3VEBnaqQFMZT4xVf4y6LA8GFUv5gCLclDoQrUOBSIoG2YMseQAPemMAvd6PoPEiSx7EkIugb5CAx3nCfXQGI7aEBOwJSdgTk7AnpWBPTCImKTmyn4zRMjKThqOB5PPhP3T4qGjbs4dQWxsAgl6Pqbwc87Qh0TZt3HiLSP4wgSYnwQYngYZBgq0uxS1SgIBNJnFqFsbCOIx5MWhMo7OO0R/2s7ppNS/WvMju7t2YdWauL7ieu0vvpii+aFTaMBbIskxVVRVvvvkmUsjH1dJ7zCwvRLj5D2CYuH8bw4Uq0C6Eqhfg35+GW/4Ppt45uvc+T1pcLfxg6w/Y2LaR8sRy/t+8/0dFUsVYN+u8CAaD7Nu3j61bt9Ld3Y3FYmHmzJnMnj2bmJjhnX0SnU48mzbj3rAez/oNhLu6ANBnZ2OdNw/r/HlY5s5Fl3jUxXWiDYhlUSbU6SHY7CTY7CLQ7ETsi4RrFkCXbFFcRLJtIx7uGJSHt3cwyGCvD2evD2ePD2efP7rtGTze+qTRCNgSjNgTTdgTIiWybYtXhNjprF4Akiji6uvF2duNsydSersjx3pw9fUQDhy/tkuj1SrCKyERe3witmNm0e2RmXVrQgJ6w3msWh9GJlp/VLm4Ge/9MegLH7W89ysWd1e/H3d/ZH8ggBQeSp0gguRBb/RhtATQ6X1oNB4k0U04MIjf3Y/X6TghsqnBbCEmKZmY5JRISSU2Usckp2C2x0woK1y4pwfvnj349uzBt3cv/n37o+79uvR0LDNmYJ45A8vMmRiLisZH1MiQSLDFTaBhkM6djVicGgjLoAFDlh3jpDiMk2Ix5sYg6EfetfVQ3yGePfwsbza8SUAMMCdtDveU3sNl2Zeh01ycgW8GBwd59dVXaWhooIgGbkxqxv7RpyA2a6ybNqaoAu18Cfnh97PAkgCfXjc+Ih2dBkmWeOrgU/xu9+/QaXQ8Mv0R7iq5a0ImUhwYGGD79u3s2rULn89HWloac+fOZfLkyeiHKSSzLEn4DxzEs2E97vUb8O3dC6KIxm7HOn8+1kULsS5YiCEr85TXGO8DENEdJNjsUnz1m1yEWl3IIWUAobHrMeTERASZEs5YYxz+l4MsybgHAgx2exns8THY7VPqHmU/HDxmQCOALc5ITJKZmCRTpDYTk6gIMUusEc0ZQi1Lkoi7v5/B7k4Gu7ui9ZAQc/f1KTmojsESG0dMsjL7bU9MPmYWXNm2xMVNiDUp470/qlxaTPT+KEsyXldQsdz3+XH2+XD1B6IWfGefHzF09FkiyxJmWxCzLYDe5EOr8SJLTkL+AfzuftyOHgKe410qdUYjscmpxKakEpuaRlxKGrGpacSmpBGbkoreOPZJqE+HHArhP1ytCLbdu/Du2Em4uxsAjd2OecZ0LDNmYpk5A9OUKWiMYz+JddnCJQSanATqBgjUDSgWNgnQCRhzYzAVx2MsileCjoygeB7wD/By7cs8X/08HZ4O0q3p3FFyBx8p+ghxprgRu+9YIUkS27Zt493Vq9CLXm6zbKPwE49DcslYN23MUAXa+bLh1/Dut+Fjr0PBZaN33/Og09PJtzZ+i60dW1mavZRvzf0WqdbUsW7WOdPZ2cnGjRvZv38/AKWlpcybN4+cnJxheVBKHg/ujRtxv7cW9wcfIPb3A2CqqMC6eBG2xYsxT52KoDs7oTKeBiCyLBPu8xNsHCTQ6CTY6CTcG3HD0wjoM6xKtKtcO4acGLRxxmF9+fg9IQa6vAx0eXFE6oEuL4PdPsTw0UGMRicQm2QmNsVCbLKZ2GQzMclmYpPM2BNMaM9iLVso4Gegq5OBrg4GOjsY7OpgoKsTZ08Xg93dSOLRdWeCoMGWmEhscmp0JtueFJnNTkohJin5ogmoMZ76o4rKxd4fZVnG6wxG3LAVL4DBHh/OXmXfPRA4zgVbb9JiTxAw2/zoDV40GhdieJCApx+Po4eBrs4TXKetcfHEpqQRl5ZOXFo68WkZxKdnEpeWPi7dJ2VZJtTWhm/nTrw7d+HdtZPgkToABIMBc2UlljlzsMyZjXnaNDSm0RWgJ+uTUiBMoMFJ4MgAgSMOQp1eADR2A6aiuKhg01pHJuhVWArzfsv7PHP4GbZ1bsOsM3Nz4c18tPyjZNuzR+SeY0lPTw8vPvsU3f2DXKHbxaKP/Q9CzpyxbtaYoAq088HTB7+dDjnz4N4XRuee58k7je/wvc3fIySF+Prsr3Nr0a0TymViaH3Zxo0bqaurw2AwMHPmTObOnUvcMOQHC3V24l67Ftd7a/Fu2YIcCqGJjcW2eDG2JYuxLlx4nNviuTCWAxBZlAl1uBUx1jBIoMkZXTumsegw5CqLog25MRgybcPiuiFLMi6HH0eHF0enh/4ODwOdiiDzH5t0WiMQk2wmLtVCXIpSxyYroswad2YrGEDI78fR2Y6jo52BznYcne0MdnUy0NmO29F/3Lkmq43Y1PToLHRscqROUUSZVjf20SRHg4t9QKwysbjU++PQGlrFY2DIe0CZtHL2+Y+LHGswaYlNMWNPkDGYvGi0LqTwAEFvP87eTgY6O3D39x13fXNM7HGiLSEjk/iMLOLTMsbVpFPY4cC3e7eShmb7dvwHD4IkKevYplZimT0b65w5imAzj+w6/7Ppk+JgAH+tA3+Ng8CRASWBtgD6TBum4njMZYnoM23Dkjj7w9Q6avnnwX+ysn4lkiyxPGc5n5j8CSYnTR72e40lwWCQ1196hv01jZQJddx8+z0Yyyf2ev7zQRVo58NbX4dt/wcPb4aU8ZmU2h1086NtP+L1uteZkjSFHy3+EbkxuWPdrLNGkiQOHTrExo0baW9vx2q1Mm/ePGbNmoX5Ah7SsiwTqK7G9e4a3O+9p7wMAH1ODvbLL8d2+TIsM2actZXsdIzmAEQWJYJtbkWM1StWsqHIitoEkyLG8mIw5sWiSzJf0MtDlmScfX762930dyhCbEiUHeuSaLLpiU+zEJ9mJS7FQlyahfhUC/YkE9oz5KMBxR1xsLsLR3sbjo6jpb+jHXdf73HnWuMTiEtNIy41Q5lNTk0jLi2DuNR0TCOY624icakPiFXGF2p/PDWiKB0Vb93e6ETXQLcXd//xa2Bt8Ubi0yzEJOsxmr1oNIOIgX7cA90MdCiTV8eJN0EgJimFhIxMEjKyiM/IIiEji8SsbCyxcWM+gSu6XPh27cKzbRvebRHBJooIej3madOwzJ+Hdf58zFOmDMt7+ljOtU/Kkkyw1UWgxoG/doBgsxNkZYmAqSQBc1kixqK4E8L5Xyjd3m7+dehfvFj9Iq6Qi1mps/jE5E+wKHMRGmF8L7c5W2RZZvO61ax+fyNJ9HPn8tkkLfrYWDdrVFEF2rnSVwd/mAPT74MbfjPy9zsPdnXt4psbvkmHp4MHKx/k05WfRq+ZGFaCUCjEnj172LRpEw6Hg4SEBBYuXEhlZeV5ry+TZRn/gYO43nkH56p3CDU1gyBgnj4d++XLsC1bhqGgYNhfTCM5ABkSZIF6RZAFG53IwUjI4xQzxoI4jJHwwdrY8/Prl2UZnytEX5ub/nYPfW1u+toVQRYOHM3JNTRAiE+3Ep9mJSHdSny6BbPt7GZpQ34//R1t9Le10N/eSn+rUjs62hDDR90RTVYb8RmZxKcfWxRBZjBNjAiqY4k6IFYZT6j98fwIBUVFtHX5GOjy4OjyKhNkXd7jnssmq574dGWCLCZJi97oQhYH8Dg6ledrZOIrFPAf/RmbncSsbBIzc0jMyiYhS6lt8YljJtxEt1sRbFu34tm8mcChwyDLaKxWxbq2YD6WefOUoCMX2MYL7ZOiJ4S/xoH/UB/+aocySaoTME2Kw1SWiKksAd15vo9Phjvo5uXal3n60NN0ejqZFDuJ+yffz3UF102YMd+ZqD+8nxdfeA5JErl1ehIlNz021k0aNVSBdq688DGofRe+sBvs42sdV0gM8fjex/nb/r+RYc3gR4t/xLSUaWPdrLMiFAqxa9cuNmzYgMvlIjMzk4ULF1JaWnpeYfJlWca/bx/Ot9/B9c47SvhfrRbrvHnYr74K+xVXnLfr4tkynAMQWZYJd3nxHxlQfOHrB48KslSLIsYKYjHmx6K1n7v7iihKDHR66W11K6XFRV+bG5/rqGui2a4nIcNGYoaVhAwriZk2EtKtGMxnN4sZ8vvpa2uhr7WZ3pYm+lqb6WttxtnTHT1HEDTEpaURn5FFYmb2MTO8mZjtF3demJFGHRCrjCfU/ji8DAVccgx5NXQedTUPeI6Z6LLpI89wW2QiLQCSA2dve+SZrDyj/W5X9GcMZgtJ2bkk5eSSlJMX2c7DbLOP+vcMOxx4t26NpLnZrEy4AtqkJGwLF2BdtBjrwgXnlXN0WN/ZYYlA4yD+Q/34DvUj9itCWJ9txzI5CfPkRHSJwzOxGJJCvN3wNv848A9qHDVk2jL59JRPc+OkG9FrJ75QG+jt5vm//ooOv5Gl2RJLPvGdYU+fNB5RBdq50LwVnrgKln4Tln59ZO91jvR4e/jSui+xt2cvtxbdytdmfw2rfvwtEv4woVCInTt3smHDBtxuN7m5uVx22WXk5+ef82yYLMv4Dx7E+cZKnO+8Q7ijA/R6rAvmE3PV1dguX4YuPn6EvsmJXOjDPtzvJ1A3oIiyuoHoGjJdklkJ+1uoWMm0Z2mpGiLoD9Pb6qan2UVvq5u+Vjd97e5oyGitTkNChpWkLBuJmTYSM5WXuSXm7O4jhsM4OtroaW6kt6mB3ogQG+zuAnnoHjrFrSY7l4TMiBjLzCYuLeOsEy+rnBvqgFhlPKH2x9Eh6gnR7qa/zRN1Te9r9xDyH+MJkWAkKctOUpaNhAwrtjiJoL8HR1sLvS1NkdJ4XKRJW3wCSTl5JGbnkpJXQEpuPvEZWWiH2fXwdITa2vBs2YJn4yY8mzYhDgyAIGAqL1eCey1apAT3Oov3ykj1SVmWCXd78R3sx7e/l1CbkjdVn27FPCUJ8+Qk9CmWYbnPB60f8Ke9f2J/337Srek8MOUBbi68GYN2/Kw7PB9CAT8r/+/77O3TUxwT4NYHv4nJOvoTBKOJKtDOFlmGv10FA83whV3jKoleVU8VX1r7JVwhF99b+D1W5K0Y6yadkVAoxI4dO9i4cWNUmC1dupT8/PxzvlawpQXnypUMvrGSYH096PXYFi7EvuJq7JdfjnaYc6KdLef6sJcCIoH6AWXxcY2DcCQHmcauxzQpThFkhXHo4s4+slXQF6a31UV3k4ueZqU4urzR6GFmu56kbDtJmTYSs2wkZduIT7WgOYs1YgCeAUdUiPU0N9LT3Eh/a3PUNVGj1RKfnklidi5JWTkkZeeSmJ1DXGo6Gu34D01/MaEOiFXGE2p/HFtkWcbtCERd2Ie8Jwa6vNEAJTqDhoQMG0lZNpKzlXeE0RpgsLOV3uZGpbQ009fWjBhSJhC1ej1J2bkk5xaQkpdPcl4ByTn5GC0XLkDO+J1EEf/Bg7jXr8ezYePR9Dg2G9b587AuWYJtyWXoU1NO+vOj1SfD/X58+3vx7e8l2KxYKnWpFsyTk7BUJqFPvbDxpSzLbGzfyON7H6eqp4oUSwqfmvwpbiu+DaN2bFMZXAiyJLHtmR/xzhE/KaYw933uv7BdxJ41qkA7Ww68Ci9+HG78HcwYPwsVXz3yKt/b/D1SLCn89vLfUhxfPNZNOi0fFmZ5eXlRi9m5EHY4cL71Fs43VuLbvRsAy6xZxNxwAzFXX4V2GCI8XihnetjLskyow0Og1oG/2kGgyQmijKDXKO6KRfGYiuLQpVjOypoohiR6Wl10NzrpanTS3ehioPuoGLPGGUnOsZOcYyclUlvjzu5hLUsSA10ddDfW091QR3dTA90NdXgHB6Ln2BISSc7JIyknT6lz80nIyLxkoiSOd9QBscp4Qu2P45NwSMTR4Y16V/S2ueltdUXdJAUB4tKsJOfYSM62k5xtJyHDjGegi57GeuXd0FhPT2M9Ppczet24tHRS8wtJLSgktaCI1IJJI54KQHQ6Feva+g24N2xQvGpQUufYLrsM27KlmCoqogmzx6JPioMBfPt78e7vI9g4CLJiWbNMT8E8NfmC1qzJssyWji38ae+f2NW9i2RzMp+c/EluL7l9Qgu12td+zvO7HcQaBT760GPEjaJn1GiiCrSzQZbhT4tAEuHhjTAOktKGpBC/2PEL/nXoX8xNn8vPl/x8XCcvFEWRPXv2sG7dOlwuF3l5eSxdupS8vLyzvoYcCuFat47Bl/+Ne8MGCIcxFhURc8MNxF53LfrMUyeNHgtOmlPFH1ZC9B524K/pR4qs8dKnWTAWJ2AqjsOYF4ugO70FS5ZkBrq9ihBrUARZb6sbSVT+Zi0xBlLyYkjNs5OUbSclN+asXRQlUaSvrYWuulq6GuqUl21TQzQHj0arJTErh5S8ScoMaW6+sh7hIp7JuhhQB8Qq4wm1P04chqxtPc0uelpc9LYoLvKegaMRJWOTzaTkxZCSq7xvErOshHxOupvq6W5QJvY662tx9fZEf+ZY0ZY2qYjUgkIM5pGxtMmyTKCmFve6dbjffx/fnj0gScratSVLsC29jN2SxGUrxs4DSXQF8Vb14NvTQ7DFBQIY82MxT0vGMjkJjeX8A6Vt79zOn6r+xPbO7aRZ0/js1M9y46Qb0Y6D8ez50PTqD3hmjwujwcDHPv0IScnJY92kYUcVaGdD2074y+Vw/a9g1idH5h7ngMPv4Cvvf4Vtndv4aPlH+fLML6PTjJ7P97kgyzKHDx9mzZo19Pb2kpWVxfLly89JmAXq6xl46WUGX3sNsa8PXUoKMTdcT+yNN2IqGb9Z5ocGIKEeryLIDvcRaHCCJCOYdZEkl4oo08acfjYr6A/T3eSis26QznqlBLzKjKbeqFVeinkxpObHkJoXg/UsE01LkoijvZ2u+lo662vpqjtCd2M94aDy4tWbzCTn5ivrC/ILSMktIDE7V10nNgFRB8Qq4wm1P058vM4gvS2KaOtuUrw33A7l3SEIEJ9uJSVHeTel5MWQlGUj4HXRXX+EroY6uuqP0NVwJBooShA0JGZlk1ZYQnphMWmFxSRl546IO3zY4cCzfr0i2NZvQHK5kHU67AsXYr9yObbLLz+vQCPD1r5eH969PXj3dBPu8YFWwFSSoFjWyhLOOIl7KrZ2bOXXO3/N/r79TIqdxCMzHuHy7MvHPL3COSPLdLz6Pzy9N4Css3DfJx8kIyNjrFs1rKgC7Wx444uw9zn4SjWYYkfmHmdJdX81j659lB5vD99e8G1unHTjmLbndDQ1NbF69WpaW1tJTExk+fLllJaWnp1w8Hhwvv02Ay+9rLgw6nTYly0l9rbbsC1aNOz5T4YTWZQINDg5snovSR4r4V7F8qRLtWAqTcBcmoAhJwZBe+r/B1e/n466ATrrnHTWD9Lb6o6uC4hPt5JeEENqQSyp+THEp1nPKrkzgKuvl44j1XTUVtN5pIauhrqoZUxnNJKaP4nUgiLSCgpJKSgkIT0z6v6hMrFRB8Qq4wm1P16ceJ1BupucyrrnJiddTS58ziCgBKBKzrGTWhBDWr7y/rLFG/G5nHTV1dJxpIbOI9V01NXij7hHKu+lQtKLSsgoLiWjuAxr3PC6tMmhEN5duzn05JPEHT5MqL0dNBrMM6ZjX74c+/LlGLKyhvWeZ902WSbU7sG7uxtvVQ+SM4jGqsMyPRXrrFT0aefuJirLMqubVvO73b+j0dlIZXIlX5zxRWanzR6BbzCCyDK9L3+Vp/ZL+LUx3P3R+89p8n+8owq0MxH0wi9KoPQ6uOVPw3/9c2BV4yq+tfFb2A12frPsN+M2e3xXVxdr1qyhpqYGu93O0qVLmTZtGtqzmAXzHTjAwHPP4fzPm0heL4b8fOI+chuxN92ELilpFFp/fkhBkUCNA9+BPnyH+5F9YWRBxlSkCDJTaQK6hJMH95BlmcFuH+21A9HiioTk1Rm1pObFkD4plrSIIDNZz856FfT7oi89RZBV43b0A0oUxZS8SaQVFkfdS+IzMtFMUHcHlTOjDohVxhNqf7w0GHKP7Gpw0tUwSFeDk+5mF2JIAsASa1DEWkEM6ZPiSMmxo9EJDHZ10nFEmUjsOFJNd0NdNPhUXGq6ItZKyskoKSMxK3tY3l3r1q3jsssuI3D4MK7V7+Jas4ZAdTUAxtJS7MuXE3PNCoyTJl3wvc4HWZIJ1Drw7OjCd7APRBl9lg3r7DQsU5PRmM5t4joshXn1yKs8vudxun3dLMpcxKMzHqU0oXSEvsEIIEkMvvgITx3SMKBJ5I677qG4eHzHYjhbVIF2JvY8C68+BPe/CXkLh//6Z8kL1S/wv1v+l8rkSn697NckmcefWHG73axZs4Y9e/ZgMBhYtGgRc+fOxWA4/donORjEuWo1jqefxrdnD4LZTMw11xD3kdswT58+bk3voiek5Dg50Iu/dgDCEoJZh7ksAXN5Its693PZ8qUn/JwsyfS1e2ivdSiC7MhgdIbRbNeTURhHelEcGYVxJGZazyqioizLuHp7aKs5RHv1QdqrD9PT1IAsKy/BuLR00gtLFNeRomKScwtUN8VLDHVArDKeUPvjpYsoSvS1uulqcNLZMEhXvZPBHsWTQ6vTkJJrJ21SLOmFcaQXxGKy6QmHQnTVH6G95hDt1YdorzkUDVJlMFvIKC4lq2wymWUVpE0qPq/328n6ZLC5Gdea93C9+y6+XbtAljEWFWFfcTUx11yDsaDgQv87zgvRE8K7uxvP9k7CXV7QabBMScI6OxVDfuw5jZv8YT/PHH6Gv+77K66gi5sm3cQXZ35xXI4zT4oYxvP8p3m6xkSXkMott97GlClTxrpVF4wq0M7EE9eAuwse2ak4VY8Bf9//d36585csyVrCLy77BSbd2YdZHw1EUWTr1q28//77hEIh5syZw5IlS7CcIaxuqKubgRdewPHC84g9vehzc0i4915ib755zELjnwnRFVTC4+7rJdCgRFzSxhoxVyRiKk/EmB+DoD0+ItSQhay12kFbtYO2Gkc0AbQt3khGsSLGMoriiEs9u4iNkijS3VhPe/VB2iIvK3d/HwB6o0lxBykpI72ohLRJxVhixtY1V2XsUQfEKuMJtT+qHIvXGaSzfpCOIwN01A3S0+yKBr2KT7OQPimWjOJ4MorisCeYlPdqVyftNYdoqz5I2+GD9LUqSat1egPpRSVklk0mu3wy6UUl6I1nHjedqU+GurtxrVqN8+238O2MiLXiYkWsrbgGY8G5pwm6UGRZJtTqxrOjE++eHuSAiC7Vgm1+OpbpqWiMZ29ZHAwM8td9f+XpQ09j1Bp5sPJB7iu7b2Ikuw4H8T/zMZ6tt9JENjfccAMzZ84c61ZdEKpAOx29R+D3M+GKb8PiLw/vtc8CWZb5w54/8OeqP7MibwU/XPxD9Jrx9YdSV1fHW2+9RW9vL4WFhaxYsYKk07giyrKMb/duHE8/jXPVahBFbEuWEH/fvVgXLhyX652GRJm3qjcaBleXYsE8ORFzeSL6TNsJosrtCPDuq5uwC6m0VjuiC6etsQayShPILIknsziOmCTzWbUhHArRWVdD26EDtBzcR3vN4ejaMXtSMhnFZWSWlJFRUk5yTp6aY0zlBNQBscp4Qu2PKqcjHBTpbnLSUTeolCODBH2Ki2NMkomMojgyipT3qD3RhCAIeJ2DtFUfpPXgfloP7aenUfEi0Wh1pE4qJKeikpzJU8koLkN3Es+ec+mToa5uXKtW4Xz7bXw7dwJgLCkh5vrriL3+evTp6cP2f3G2SEER394e3JvbCbV7EIxarDNTsc5LP6dE2I2Djfx8x895v/V9cmNy+eqsr7Ika8m49WaKEvITevpOnm+Kp07I44477qSsrGysW3XeTHiBJgjCDcANmZmZn3766aeH9doFdU+S3fIqm+f/jaBxdKP5SLLEK45XWOdax3zbfO5KuAuNMH7Ei8/no66ujt7eXkwmE4WFhSQmJp76D1iSMO7eg3XVKvRNTUgWM74FC/AtWYKYcvKkkWOJNgDWLgF7h4DJAQICAZuMO00pIdvx50thGW8PuDtl3J0QGIxcxwDWVLCmCFhTwWDn7CxkoRDurnbc7a24OlrxdHUgi8rLyZSQhD09C1t6Frb0TAw2+3B/fZWLELfbjc1mO/OJKiqjgNofVc4FWZLxD4K3GzzdyvtWVFYGoLeAJUV5z9pSQW9V3rFiIIC7sw1XRyvuthY8PZ0gywhaHba0DOxZucRk5mBJTkXQaM67T2ocAxh378K0fQeGhgZkQSBUWIh/7hz8M2Ygj0KS7uOQwTQAsc0Ctk4BQRbwJsoM5kh4UoCz1FkHfQd5uf9lusPdlJnKuDXhVtL0aSPZ8gtGI/op3/Nd/u2aRqeQxtRp04iNnZgeRMuWLZvYAm2IYbegiWH4VTlkzoS7nx2+657NrSWR727+Lq8ceYX7yu7ja7O/Nm5mLoLBIBs2bGDjxo1oNBqWLFnCvHnz0J/C31sKBBh85VX6/v4EoaZm9Lk5JH7iE8TeeCOa0X5onQHJH1YsZXt6CNQNRCxlZsxTkrFUJqFPPRotSZZlHB1emg/20XKwn7baAcSQhEYnkFEYR055Ip2eOlbctBThLCIsiuEQnUdqad6/l+YDe+moOYwYDiMIGpLz8skun0xm2WQyS8pVd0WV80K1WKiMJ9T+qHIhyJJMf4eH9toB2moGaK89unQgNsVMVmkC2aXxZJbERwNrBbxeWg/tp3n/Xlr276WnuREAo8VKVvlkgiYrV95+F/Fp5x+uPdjczODKlThff4NgYyOCXo9t6WXEXH8DtqWXoTGOboJo0RXEs70Tz9YOxMEg2jgjtkWZWGennZX7Y0gK8eyhZ3l87+P4w37uLrubh6c+jN0wjieG3d14/nQ1f/NejteQxKc+9QDJEzBP2oS3oA0x7ALt8Jvw3N1w17NQeu3wXfcMhMQQ31j/DVY1reKhqQ/x2amfHTfirKamhpUrV+J0OpkyZQrLly8/5cyE6HTiePY5+p96CrG3F9PkySQ+8AD2K5cjjCP3Ozks4a924N3Tje9QP4QltAkmLNOSsUxNPk6UhYMirdUOGvf10bSvN+q2GJ9mIbs8gZzyRDKK49AblO93ugGIJIn0NDbQfKCK5v17aTt0gFDAD4JASl4BOZOnkl0xhcyScoyWcw+jq6LyYdQBscp4Qu2PKsPJUPCt1sP9tFY7aK8ZIBQQQYDkbDtZJfFklyeQXhiLTq+8o72DAzQfqKJlfxVN+/cw2NUJQGxqGnlTZ5I3dQY5FVPOK3m2LMv49x/AufINBv/zJmJvLxq7nZjrriXuttswTZ48qmM7WZTxH+rDtaGNYKMTwazDNj8d24IMtLbTB3ID6PP18bvdv+Pftf8myZzEf8/9b67IvWIUWn6etO3C8cQd/FW+E509kU996gFixmlsg1OhCrRT8ezdSoLqLx0E7ejk3PKH/Xx53ZdZ37aex2Y+xv2T7x+V+54Jj8fDW2+9xf79+0lOTub6668nNzf3pOeGurrpf/JJBp5/HsnjwbpoEYkPPIBl7pxxIzRlSSbY7MS7uxvfvl4kbxiNVY+5MgnL9BQM2fZoW92OAE37e2ms6qX1sINwSEJv1JJdlkBORQLZ5QnEJJ58HdmHByCu/l6a9u6mce8umvbvjeZ5ScjIImfKVHIqppJVPhmzfWI9RFQmBuqAWGU8ofZHlZFEFCW6G12KYDvsoLNhECkso9NryIyItZzyhOMCc73z2qukmvQ07N1Jy/4qQgE/Gq2OzJIycqfOIH/aTJJz8895LCOHw3i2bGXw9ddwrVqN7PdjLCoi9rZbib3xxlFPiB1ocuL6oBX/wT7QClhnpmJfnIXuLNbE7+/dz3c2fYdqRzVX5FzBN+d+kxTL+FumAsDe5+l45b/5u+Ze4pPT+MQnPoHJNL6C7J0OVaCdDFcn/LIcFjwCV353eK55BvxhP59d81l2dO7gf+b/D7cX3z4q9z0dsixTVVXF22+/TSAQYMmSJSxatAjdSZJEh3t66P3LXxh47nnkcJiYa64h8YFPYRpHCzTDA368O7vx7OxC7Pcj6DWYKhKxTEvBVBSHoNUgyzK9LW7q9/bQWNVLb4sbAHuiibzKJPKmJJJZFI9Wf+b1gO+9u5qC5EQa9+6ice+uaIQpa1w8uZXTya2cTk5FJbaExBH93ioqoA6IVcYXan9UGU1CAZG2GgfNB/tpOdjPQJcXUN7tOREPmIbe/Vxx5TJACczVXn2Ixr07ady7i56mhsj5yRTMmM2kmXPIrqg8abCR0yG6XDjffIuBf7+Mf28V6HTYly0l9tZbsS1ejHCS8dVIEerx4l7fhmdnF0gy5slJ2JdkYcg+vftiSArxzwP/5PG9j6PX6PnSzC/xkeKPjKs4CVFWfYu6Ta/xL+E2cnLzuO+++046hh2PqALtZGz4Fbz7Hfj8TkgqHJ5rngZREvnyui+ztmUtP1j0A26YdMOI3/NMOBwOVq5cSV1dHVlZWdx4442knCSYR9jhoO+vf8Xxr2eQQyFib7qJpIcfwpCdPQatPhE5JOE72ItnRxeBIwMgg7EwDsuMFMwVSWiMWiRJprN+kPrdPdTv7sHV70cQIG1SLHlTksibkkR8+tmFvx/o6qR+13Ya9uygad9eZDGMVqcjs7SCvKkzyJs6g6ScvHFjTVS5dFAHxCrjCbU/qowlzl4fzQf7aT7QR2u1g5BfRNBAZnG88t6vTCQ2+ahro9vRT8PuHdTv2kZj1W7CgQA6o5HcKdOZNHMOBTNmY42LP6c2BI4cYeDfrzD42muIfX1ok5OIu/U24u+4HX1m5nB/5VMiOoO4N7Xj3tKO7BcxFscTszwHY87pvXmanc18b/P32Nq5lRkpM/j2gm9TEDs2eeFOiSTCvz5CVX0X/5avoqKigttuuw3NOIwY/mFUgfZhZBl+NxNsqfDJty78eme8ncwPt/6Q56qf4xtzvsG9ZfeO+D1PhyRJbNu2jTVr1iAIAldccQWzZ88+oTOLg4P0/f3vOP75FJLPR8wN15P82c9iyMsbm4YfgyzLhNrceHZ0KXlB/GG0cUass1KxzEhFl2BCDEu0VTuo29NDw95efM4gGp1ATlkCBdOTyatMwnwWftliOEx7zSHqd22nftd2+ttaAIhPz0SflMqi624kq3zyWeVgUVEZSdQBscp4Qu2PKuMFUZTorBtk/Zu7kQYsODoV61p8miUq1tIKYtFEcpyGg0FaDlRRt2s79Tu34errASCtsJiiOQsomjOf+PSzF1hyKIT7gw8YePEl3B98ALKMbckS4u6+S7GqjdK6fSkQxrOlA9f7rUjeMKbSBGKW52DIOrVFTZZlXj3yKj/f8XN8YR+frvw0D0x+YHzlTvM54C+Xs9GVzerQDObNm8fVV1897ifKVYH2YRo3wj+uhZsfh2n3XPj1zsBQEur7K+7nsVmPjfj9Tkdvby+vvPIKbW1tFBYWcv311xMXF3fcOaLbTf+TT9L/jyeRXC7s16wg+fOfxzhp0tg0+hikQBjv7m48WzoJdXpAp8EyORHLrDSMBbFIskzrYQe127to2NtL0BdGZ9SSNzmRgunJ5E5OxGA6s+nb53YpM2k7t9FYtYuAx4NGqyOrfDIF02dTMGMW8emZ6gBEZVyh9keV8YTaH1XGG0N9crDHGw0G1lYzgCTKGC06cioSKZiWTE5FQnSsIMsyPU0N1O/azpHtW+iqrwUgKTuXorkLKJqz4Jy8ZkLt7ThefJGBl15C7OlFn5FB3J13EnfbrehOk2N2OJECYdyb2nF90IbsC2MqT1SEWsapUxD0+nr56baf8lbjWxTFF/HjxT+mOL54VNp7VnQfRv7LFbxjWMEWTzZXXXUVCxYsGOtWnRZVoH2YVx6CQyvhK9VgGNnoeW/Wv8nX13+dFXkr+MmSn4yZ/64sy+zatYu3334bnU7HNddcw5QpU457oMjhMI7nn6f3d79HHBjAdsUVJD/yeUylpWPS5mMJtrvxbO3Au7sHOSiiz7BinZOOZWoyGLV0HBmgdnsXdbt68HtCGMw6CqYmUTAjhezSeHSGM89Oufp6ObJ9M0e2b6Hl4D5kScISG0fBjNkUTJ9NbuW0EyI9qQMQlfGE2h9VxhNqf1QZb5ysTwb9YVoO9dNY1UtjVR9+TwitXkN2WQKTIt42Q2H8AZy93RzZtpnabZtpPXwAZJm4tPSIZW0BaYXFZyXW5FAI15o1OJ59Du/WraDXE3PlcuLvvRfzjBmjYv2R/GHcG9pwbWhD9ouYpyQRc0UO+rRTj43fb3mfb2/6Nq6giy/O/CL3lt07ftamHX4T6bm7eSn2IQ45Ldx///2nDHg3HlAF2rH4B+HnJTD1TrjhN8PTsFOwrWMbD777INOSp/HnK/+MQXtuC02HC4/Hw+uvv051dTUFBQXcfPPNJ4Qida9fT9dPfkLwSB2WOXNI+epXMU+ZPCbtHUIOiXirevFs7SDY7FKsZVOTsc1LR5dppafJTe32Lo7s7MIzGERn0JBfmUTR7FRyyhPPKshHX2tLRJRtprNOmRVLyMiicM58CmfPI62gCOE0fszqAERlPKH2R5XxhNofVcYbZ+qTkijRcWSQ+j091O/pwe0IIGgEMorimDQ9mfypydjij+Y58ww4qNuxldptm2jevxdJFIlJTqV0wWJKF1521pa1QH09jueeY/DV15CcTkyTJ5Pw8Y8Rc/XVCOcYpOR8kLwhXBvacG9sRw6KWKalELMiD13syXO69fn6+M6m77CudR3z0+fzv4v+d/xEenz/pwTW/pQ/mb+AqLfx8MMPYzafOXrlWKAKtGPZ8QSs/BI88B5kzRyehp2EGkcN9791PymWFJ685klijWOTePjIkSO8+uqr+Hw+li9fzty5c49baxaoq6PrJz/B88F69Dk5pH7tq9iuuGJM/XbD/X7cm9vx7uxC8obRJZmxzk3HOjMFtzdM9dZODm/pxNnjQ6MTyK1IpGh2KnlTktCfISmjLMv0NjdSvXkDNVs34mhvBRS/8sLZiihLzDz74CfqAERlPKH2R5XxhNofVcYb59InZVmmp9lFXSS42FBUyPTCWApnpjJpRjLWYwSM3+2mbudWDm/6gKaq3ciSREJmNqULl1C68LKzSo4teb0Mvv46/U/+k2BDA7qUFOLvvZf4O+9A+6HlKCOB6Anh+qAV98Y2BEHAtiQL+2VZaE7ihSTLMi/VvsTPtv8Mg9bAt+d/mytzrxzxNp4RSYIXPkpb9S7+JtxFaWkZt99++7hcj6YKtGP5v2UQDsDDG2GEflmdnk7ue/M+JFniX9f+i3Rb+ojc53SEQiHWrFnDli1bSE5O5rbbbiMtLS36edjhoPf3f8Dx3HNoLBaSHn6Y+PvuRTMKMzUnQ5Zlgk1O3Bva8B3oAwHMFUlY56YjZFqp391L9ZYO2moGQFCiMJXMTaVgWjJGy5kXqva2NCmibPN6+ttbEQQN2RVTKJqzgEmz5mJPPD+/b3UAojKeUPujynhC7Y8q440L6ZP9HR7qdnVzZGc3/e0eBAEyiuMompVKwfTk44KOeZ2D1GzZSPWmD2g9tB+A1IKiqFizxZ8+L5osSXjWr6f/ySfxbNqMYDIRe/NNJHzsYxgLRj6KYrjfz+DbDfiqetHYDcRenYdlRgqC5sRxc+NgI99Y/w0O9B3g5sKb+cacb2DVj+zyoTPi7Yc/zGWDMId33UXceOONzJgxY2zbdBJUgTZE1wF4fAGs+DHMe3j4GnYMrqCLj7/9cdrd7Ty54klKEkpG5D6no6uri5dffpnu7m7mzJnDlVdeiV6viBg5FMLxzDP0/OGPSG43cXfeQfIjj4x6EsUhZFHCt68X14Y2Qq1uJfP93DSsc9Pp7PZxeHMHdbt7CAdEYpPNlM5Po3hu2ikTRx9LX1sLNZs3UL15vZKfTBDILp9CyfxFFM1ZgCU27oLbrw5AVMYTan9UGU+o/VFlvDFcfbKv3c2RHYpYG+jyImgEskvjKZyVQsH0FIzmo8HIXH29VG/6gMObPqCr/giCoCFv6nQqli5n0sy5Z8yz5q+uof+pf+J8/Q3kYBDbZZeR+OBnsIyC4Ag0ORlYWU+oxYU+00bcdfkYC+JOOC8khXh8z+P8bf/fyLBm8KPFP2JayrQRb99pObQS6fl7eSruMVo9Wh588EGSRikIy9miCrQh3voG7PgbPFYNluEXJCExxMPvPszOrp38cfkfmZ8xf9jvcSZ27tzJm2++iclk4qabbqK4+GiEHd++/XT8z/8QOHwY64IFpHzj65iKxyYCj+QN4d7aiXtzO5IziC7JjG1RBkyK4/D2Lg5u6MDV78dg0lI4K5XSeWmkTYo9o4na7ejn8IZ1HNywjp7GehAEMkvKKVmwmOK5C885h8mZUAcgKuMJtT+qjCfU/qgy3hjuPinLMr2tQ2KtC2evH61eQ/7UJErmppFTnhAN3Q/Q397GwQ/e48AHa3D39WK0WildcBkVS68gbdLpg4uE+/pwPPccjqf/hehwYJk1i8QHH8S6aOGIuu/JkoyvqofBtxoRBwOYKhKJuzYf3Ukmynd17eKbG75Jp6eTr8z6CveW3Tu2roUvfQrngXd53PggsXEJPPDAA+MqibUq0EDxSf15IeQthjueHN6GRfj59p/z5MEn+cGiH3DjpBtH5B6nIhwO8+abb7Jr1y4mTZrELbfcgs2mhEuVPB56fvs7+p96Cl1iIqnf+hb2q64ckz+a8IAf9wdteLZ3IockjIVx2BZm0CvB/g3tNO7tRZJkskrjKVuYTsHU5DNGYAz6fRzZtpmD69fSvG8vsiyRNqmIskVLKZq3EHvCyM2YqAMQlfGE2h9VxhNqf1QZb4xkn5Rlma5GJzVbOqnZ0UXAE8Zs11M0O5XSeekkZdui4y5JEmnZv48D779L7dZNhENBEjKyqFi6nPLFy7AlJJ7yPpLXy8BLL9H3tycId3VhKi8n8cEHsV+5/LRBzS74+4VEXOvbcK1rQZYg5ooc7EsyEbTH39MVdPHfG/6btS1ruTb/Wr6z4DuYdWMUpMPbD3+Yw2H9FJ4bmMr8+fO5+uqrx6YtJ+F0Am38yMiRprcavH1QPDK/mE3tm3jy4JPcWXLnqIuzwcFBXnjhBdra2li8eDHLli2LBgJxr19P57e/Q6i9nbg77yTlsS+jjTl95viRINTjxbWuFe/ubgAs01PQTU/hSN0gB56pwdnjw2TTM/WKbMoXZRCXajnt9SRJpHnfXg6uX8uRbZsJBfzEJKcy95bbKV209JwCfaioqKioqKioXAiCIJCWH0tafiwLby+iaX8fNVs72f9BG1XvtRKfbqVkriLWrHFGciunkVs5jcCnPFRv3sCB99ew/pl/sOG5f1I4ax6VV15D7uSpJ4gujcVCwsc+RvxddzH4+uv0/uUvtD36KIaCAhI/82lir7sOQT/8SaQFvZaYy3Owzkpl4I16nO804tvbTdytRRhzjo4r7QY7v172a/6272/8bvfvODJwhF8v/TXZMWMwLrMkwPW/ovT5+5idOZPNmzczadIkCgsLR78t58ilY0Hb+SS88QX4/E5IGt5fjMPv4LbXb8NusPPc9c+N6kxBY2MjL774IqFQiJtvvpny8nJAMYV3/ejHOFeuxFBQQPr3v4dl5shFrTwVwTY3rnUt+Pb3Iug0WGal4suLZf/2Lup29yCJMhlFcVQsyWDStJQzhsYf6Oxg/7rVHFj3Lm5HP0arlZJ5iylbvJTMkvIRnT06GeoMscp4Qu2PKuMJtT+qjDfGok/6PSGO7OymZmsnHXWDCALkTkmifFEGuRXHu0A6OtqoWvMO+9e9i9/lJC41nSlXXM3kZVdiiTl5NHBZFHG98w69f/4/AtXV6DMySPrsw8TefDPCCLrz+Q72MfDaEURnEOu8dGKvzkNjOv5+G9s28rUPvoaMzI8X/5glWUtGrD2n5aVPETqwkv+L+zreoMjDDz8c9TIbS1QXR4DXPgeH34Sv1Q9r9EZZlnl07aNsaNvAs9c9O2pBQWRZZuvWraxatYr4+HjuvPNOUlJSkGWZwVdepfsnP0H0ekl68EESP/PpUY/OGGgYxLm2hUCNA8GoxTIvnR6rnr0bO+hucmG06Cidl0754gwS0k8f7SccDFK7fTP733uH5v1VCIKG/OkzqVi6nILps8+4wHYkUQcgKuMJtT+qjCfU/qgy3hjrPjnQ7eXQxg4Obe7A5wxijTVQuiCdsgUZxCYfndwPh0LUbt1I1btv03poP1qdjqK5C5m6/BoyyypOukRFlmXc779P7x/+iH/fPgy5uSR9/vPEXHftiE1eS4EwzneacG9uR2s3EHfTJMwVxy8raXW18qV1X6K6v5rPTvssn6n8zOgntvb0wR/n0mUu4v8cCygoKOCee+4Z89D7qkAD+P1sSCiAe54f1ja9UP0C39/yfb4666t8rOJjw3rtUxEMBlm5ciVVVVWUlJRwyy23YDKZCPf30/Ff38T9/vuYZ8wg/fvfwzhp0qi0aYhA4yDOVU0E6gfRWPWY5qTRGJKo2tCBZyBAXKqFqVdkUzI37Yw5y3qaGtj33ioOrV+L3+MmNiWVycuuomLpFSO6ruxcGOuHvYrKsaj9UWU8ofZHlfHGeOmToijRtK+PgxvaaT7QhyxDVmk85YsyKJiafJw3UV9rM3vffYuD779HwOshMSuHGdfcSNmSZegNJyaSlmUZ99q19PzmtwSqqzEWFZH0hUewL18+YoIk2OLC8XItoU4PpopE4m+chPaYHHG+sI/vb/4+b9S/wdKspfxg8Q+IMYzycpuDr8MLH2Vb0dd5szbIihUrmDdv3ui24UOoAs3bDz/Nh8v/B5Z8ZdjaUz9Yz51v3MmM1Bk8vvzxUZkRGBgY4LnnnqOzs5Nly5axePFiNBoN7g0baf+vbyANOkn5yleIv+/eUXX3C7a6GFzVRKDGgcamRzszlcO9fg5v6yIcksgqjWfqFdnkViSeNI/GEKFggOpN69m76j901tVGZ40mL7uSnIrKUXdhPBPj5WGvogITsz+GQiFaW1vx+/1j3ZRxjclkIisrK5oyZSIwEfujysXNeOyTrn4/hzd3cHBjO+7+AGa7norFmVQszsAWb4qeFwr4qd60nl1vv0FPYz0mewxTl1/DtKuvO2leNVmScL39Nj2//R3BxkZMFRUkf/FRrIsWjYhQk0UJ94Y2Blc3I+gE4m8pxDI15ejnssyzh5/lZ9t/RoYtgz9c8QfyYvOGvR2n5aVPIh94nWdzfkBdazef+9znSBijNFOgCjSoXQ3/+gh8fCXkLx6WtgTFIPe9eR8dng7+feO/SbYkD8t1T0dHRwdPP/004XCY2267jeLiYuRgkO5f/Zr+v/8dQ+EkMn/xC0wlo5d7LdTpYXBVE/6DfWgsOpiSxJ5WDw0H+tHqNBTPTWXq5dkkZp7e19fZ082e1W+y771V+F1OEjKzmXrlNZQtWorZPvpBTc6W8fiwV7l0mYj9saGhAbvdTmJi4pi7m4xXZFmmr68Pl8tFfn7+WDfnrJmI/VHl4mY890lJkmk51M/+da007u9DEAQKpiVTuSyT9MK46PNRlmVaD+5j55uvUbdzGxqNltIFi5lx3c2k5p/oNSWHwwy+/ga9f/gDobY2zDNmkPKVr2CZMX1Evke4z0f/89UEm11YZqQQd9MkNMaja9N2de3iS+u+hCzL/P6K31OZXDki7TgpEVdHlzWP3zqWUVxczO233z569/8QahTHlq0gaCFz+JL6/W737zjUf4jfLvvtqIizuro6nn/+ecxmM/fffz/JyckE6hto/8pX8B88SPw9d5Pyta+hMZnOfLFhINTjxfluM76qHgSDFqYls6PNS8s7LRitOmZfn8/kJZlYYk69PkyWZZr37WX3Oyup37kNgMLZ85h29fVkV0xRB2sqKpcAfr+fvLw89e/9NAiCQGJiIj09PWPdFBUVlRFCoxHIrUgktyKRwR4f+z9o49DGdup2dZOYZaNyaRZFc1LRG7RkV1SSXVGJo7Od3W+9wf61qzm4fi1Z5ZOZed0tTJoxO+pxJOh0xN16C7HXX8fAyy/T+8fHabrnHmKuvYbkLz+GIStzWL+HLtFM8oNTcb7XjOu9ZgKNThLuKolGepyROoOnrnmKB1c/yAOrHuDnl/189IKHWBPhul9if+GjLMhbxvsHDjB//nyysrJG5/7nwKVhQXvyRvA54KH1w9KOze2b+czqz3BH8R38z/z/GZZrno59+/bxyiuvkJSUxH333Yfdbmfw5Zfp/MEP0RiNpP/wB9gvv3zE2wEgOoMMrmrEu7MLQadBLIpnZ5uH9iYXlhgD067MoWJxBgbTqbV/0OflwPtr2PPOf+hvb8UcE0vlFVdTuXwFMUkpp/y58ch4no1TufSYiP3x0KFDlJWVjXUzJgQT7f9qIvZHlYubidYnQ0GR2m1dVK1tpa/NjdGio3xhBpWXZ2OLP7rGy+9xs++9Vex++w1cvT0kZuUw95Y7KJm/GI32+PX+ksdD39+eoO+JJ0CSSPj4x0l88DNoRyCqYaBxkP7nqhGdAWKW52Jfmh1d5tLr6+Vzaz5HdX81/2/+/+PWoluH/f6n5MVPEDj4Nr81P0piUgqf+MQnxmSS8NK2oEkitO2EqXcNy+UG/AN8a8O3yI/N5yuzh28926nYvHkz77zzDrm5udx1110YgkHavvglXO+8g2XePDJ+8mP0qakj3g45JOL6oA3X+y3Iokx4Uhw72710burEnmDisruLKV2Qjk5/6sAfbkc/u99+g72r3yTg8ZBeWMI1n3+M4nmL0E2gdRUqKioqKioqKiON3qClfFEGZQvT6TgySNXaVva828ze91oonp3KtCtzSMy0YbLamH3Drcy89iaqN33A1ldf5M3f/ZxNL/yLOTffTvmSZWh1yjhLY7WS/IVHiLv9I3T/6lf0/eUvDPz73yR/4QvEfeQ2BO3pA7idC8a8WFIfnYHj1SM4VzXhr3WQcGcJujgTSeYk/n713/nyui/z7U3fpsvbxUOVD42OULr6hxir32RZQhcrm/0cPnx43E1+ja+ICyNB9yEIuiF77gVfSpZlvr3p2/QH+vnJ4p+MaL4zSZJYtWoV77zzDmVlZdx3331o2tpo+MjtuNasIeUrj5HzxN9GXJzJkox3dzedP9+Jc3UT4RQL27Ra/rOjB78oc8XHy7j3+/OYfFnWKcVZX2sL7/zpN/z1859k+2svkzt5Gvf87y+45we/oHzxMlWcqaiojCk+n4/LLrsMURQBWLFiBXFxcVx//fXHnff73/+ewsJCBEGgt7f3rK59qmvde++9lJSUMHnyZD75yU8SCoUAWLlyJf/v//2/YfhWKioqFwuCIJBRFMeKz0zmvu/Pp2JJJkd2dfPc97ex8g97aatxIMsyGq2WssXL+PjPfs+Nj30Tg8XCqj//lr994TPsfvsNQsFA9Jr69HQyf/pT8l58AUNuLp3f/jYNt9yKe+PGYW27xqwj4a4S4u8oJtTuoevXu/FWKe7aFr2F313xO26cdCN/3PNHvrfle4Sl8LDe/6TEpMPsB5je+iRJ8TGsXr06+vwfL1z8Aq1lq1Jnzb7gS71W9xrvtbzHF2d8kbLEkVPa4XCYV155hU2bNjF79mxuv/12/Bs20HjnXUg+H7lP/ZPEBx4Y8YiGgcZBuh/fS//z1YS1AgesBlbud+DXCFz96cnc/e25lM5PR6s9sR3KItb9vPKT7/KPxx7m8Ib3mXz51Xzy13/mhi//F+lFoxfIREVFReV0PPHEE9x6661oIzPHX/3qV3nqqadOOG/hwoW8++675ObmnvW1T3Wte++9l8OHD7Nv3z58Ph9//etfAbjuuut444038Hq95/ltVFRULmZikswsubOYj/9wIXNuyKe70cmrv9zNSz/ZyZGd3UiSjKDRUDRnAff96Nfc+l/fJSY5mff+/mf++vlPse21lwgdEzXXPGUKuf96msxf/xrJ66XlUw/Q8rnPE+roGLY2C4KAdUYqqV+Yjj7ZTP8zhxlYWY8syug1ev534f/ywJQHeKnmJb607kv4wr5hu/cpWfRltAYzV9pq6O/vZ+fOnSN/z3Pg4ndxbN0O1mSIz7ugy3hDXn6z6zdMS57GR8s/OjxtOwmBQIDnn3+e+vp6Lr/8chYtWoTjiSfo/sUvMZWVkfWH36NPTx+x+wOE+/0Mvt2Ar6oXLDoaYoxU1buwJRi5/GNllMxLQ3OKUPmyLHNkxxa2vfoinUdqMNtjmP+Re5h29XVYYmJHtN0qKioTm+++cYCD7c5hvWZ5RgzfvqHitOf861//4plnnonuX3HFFaxbt+6E86ZPP/eoZ6e61rXXXhvdnjNnDq2trYAykFm6dCkrV67kjjvuOOf7qaioXBqYbHpmX5fP9CtzOLylkz2rm3nnL/uJTTYz85o8SuamotFqyJ82k/xpM2k9uJ8trzzP+mf+wc7/vMq82+6i8oqr0er0CIJAzIqrsS1bSv+T/6T3j3+k7rrrSf7CIyTcdx+Cbnjkgi7RTPJDlQy+2YB7QxuhLg+Jd5eiseh5dMajJJuT+fG2H/PpVZ/m95f/njhT3LDc96RYE2HeZyn+4KfkZfyAdevWUVlZiWmUgu2diUvAgrZNcW+8QJ/WJw88Sa+vl6/M/sqI5Tvz+/08+eSTNDQ0cNNNN7Fo7lw6/+u/6P75L7CvuJrcfz09ouJMDks41zTT+csd+A720RVrZGW7j1pHgEW3F3Hfd+dTtiD9pOJMliRqt23iqa9/gdd//gP8LhdXfOqzfPoPT7Dg9ntUcaaiojIuCQaD1NfXk5eXNyb3D4VCPPXUU6xYsSJ6bNasWaxfPzxBrVRUVC5udAYtk5dkcs9357HiM5MxmHW8989D/Os7Wzm8uQNJlADIKp/MR/77+9z1vZ+RkJHFe0/8ib9/6SEOrl+LJCnufRqjkaTPfJqClW9gmT2L7h//hIbb78BXVTVs7RW0GuJumET8bUUE6gfp/uNeQt2Kx8A9Zffwi6W/4FDfIT6z+jM4g8M7YXcCCz6PYIrjKu1WvF4vGzZsGNn7nQMXtwXN0wv9dTDjYxd0mV5fL38/8HeuzL2SqclTh6lxxxMIBHj66afp7OzkzjvvZFJCAk0f+xj+vVUkP/oFEh8a2YWTgfoBHK8cIdzjw2k3sKXNQ9gtMvOGfKZekX3KqIyyJFG7fTNbXnqWnuZG4tMzuOZzX6Z04WUnRA5SUVFROR1nsnSNBL29vcTFxY36fYf47Gc/y5IlS1i8+GiOzpSUFNrb28esTSoqKhMPjUZg0owUCqYn01jVy7aVDax58hDb32xk9rV5FM9RLGqZJWXc8e0f0bh3Fxue/Sdv/f4XbH/tJRbd/TEKZsxBEAQMWVlk/+lPuN5ZRdcPf0jjnXcRf/fdJH/pi2jt9mFpr3V2GrpkM31PHaL7D3tIuKcUc0kCV+ZeiXGZkUfXPsrDqx/mz1f+GZth+CNMAmCKhYWPkrHmu0yZ9DO2bNnC7NmziY0de6PCxS3QWrcrdfacC7rM43seJySGeHTGo8PQqBMJBoM888wztLW1cfvtt5MbCtN4+x2ITieZv/0NMVddNSL3BRA9IQb/U493VzeiScuugESn28uUy7OZuSIXs+3kecyGLGabX36O3uZG4tMzuebzj1G6YIkqzFRUVCYMZrMZ/zHrMUaT7373u/T09PDnP//5uON+vx+zeeSCUKmoqFy8CIJA/tRk8iqTTivU8qfNJK9yOtVbNrDx+ad49affJ6O4jMV3f5ys8slRt0frooX0/Po3OP71L1yrV5P6zf/CvmLFsBgNjHmxpDwyjb4nD9L3jwPEXpOPbXEmS7KW8PPLfs5j6x7jc2s+x+PLH8eitwzD/85JmPsgbPkjVwTe5qA8nffee49bbrllZO51DlzcLo4t20Cjg4zzz5ZeP1jPy7Uvc3vJ7eTGnP3C8LMlFArx3HPP0dTUxC233EJWUxNN990HWg15zz4zYuJMlmU82zvp+sUOPLu7adIIvNXpx1AUz93/by6LPlJ0UnEmyzI1Wzfyz689whu/+jFiOMy1n3+M+3/5R8oXL1PFmYqKyoQiPj4eURQvSKRt27aNj33s3Dw1/vrXv/LOO+/w7LPPovlQwKeamhomT5583u1RUVFRGRJqd3xzNtc+PAWDScuaJw/xzHe2Uru9CzkSTKR0wRLu/8XjXPnpz+Ps6eL5736DV3/2fQY6lSAhWpuNtG/9N3kvvIAuOZm2L32Z1oceJtTdPSzt1MWZSH54KubJSQy+2YDjxRrkkMQVOVfw4yU/Zk/PHr7w3hfwh0doIs1ghcWPEde6hnmlGezdu5eOYQyQcr5c/AItrRL05z8T+Zudv8GkM/HQ1IeGsWEK4XCYF198kfr6em666SayDx2m7cuPYaqoIP/FFzGVlg77PQFCXR56/lyF4+VanGGZtYMhGvU6rnlkKtd9tpK4lJPPUrQe2s+z//MV3vjlj5BEkWsf+Qr3/+IPlC1ehkajCjMVFZWJyVVXXXXc2oPFixdz++23s2bNGrKysnjnnXcA+O1vf0tWVhatra1UVlbywAMPANDc3HxKi9eprvXQQw/R1dXF/PnzmTZtGt/73veiP7N27Vquu+66kfq6KioqlxAfFmo6g5ZVfzvASz/ZQVuNAwCtTkfl8hV88rd/YdHdH6d5fxX/eOxhNjz3T4J+JaKiecpk8l54npRvfB3Pli003HAjzrffHpY2agxaEu4pJWZ5Dt5d3fT8XxWiK8iKvBX878L/ZVvnNr647osExeCw3O8EZn4CYjJZ1P88ZrOZVatWIcvyyNzrLLl4XRzFMLTvuqD1Zzu7dvJey3t8YfoXSDAlDGPjQBRFXn75ZWpqarjuuuvI3bePzh/+COtlS8j6zW/QjEAUGVmUcX3QgnN1M6IA+/0ibX6JObcWMmVpFlrdyfV6X2sL65/9B3U7tmKL///s3Xd8VeX9wPHPOffe5GbvvQNhhxmWyB4u0LpwVUUs1jqq1Vqt1vanraN1W7XWvcGJioqWYUAQ2QQCYQRC9t7zrnN+f9wQQVYWuRnf9+uVV8I95zzne+Jjku99nuf7BDLn5t8zdOpMScqEEL3CrbfeyjPPPMOsWbMATlqg4/e//z2///3vj3t948aN3HrrrSe85mRt2e0n3uunuLiYxsZGkpOTWxO6EEK0ypFELS45mP2bitj4xSE+f3o78clBTLy4P4GRXpjc3Bn/q8sZOmUGP3zwFhuXfsTu1JVM+fVCBk2aimI0ErRgAd5TplBw733k3/kHauetJvwvD2Do4LotRVHwnRWHKdyLig/3UfrfnQT/Jpl5/eZh02z87ce/cXfq3Tw97WlMhk7eP9dkhql/wmPZHUwdfRXfbssiMzOTpKSkzr1PG7h0BE1RlFhFUT5XFOUNRVHu69TGi9PB1tDu/c90XefpLU8T6hHKr4f8ulND0zSNzz//nIyMDM455xwStu+g+NHH8Jk9m5h///uMJGe2skZK/5tGzXfZFDl0/ldhxWN0GL9+eCIjZ8WeMDmrq6xgxSsv8PYfbyV3907OvvI6Fj73CsnT50hyJoToNUaPHs306dPbvVHpE088wfDhwzsllpycHJ566qlOaUsIIX5JVRUGTYjgmocmMPHifhQcqGLJ3zfy/Xt7qa92bmTtHRjEebfdzZUPP4FXQCDf/PtJPvy/eynOOgiAe2Ii8R+8T/Btt1HzzTccuvCiTtvg2mNYMMG/ScZRa6X05TTs5Y1cknQJD4x/gNS8VO794d4zs5n1yGsgIIGUvNcJDAxkxYoVaJrW+fdppXYnaM1JVYmiKOm/eP1cRVH2KYqS2YqkKxn4RNf1hUD7F4qdSEuBkPHtunxF9gp2lu3ktlG34WHsvMXamqaxbNkydu3axYwZM+i/eTOlTz+N79y5RD3zNIrbiYtytJeu69RtKKD4uW005tWxpd7OIV93LvxTCjOuG4yn7/H3szY2sP6j93j9jkWkp65k5LkXcOPzrzH+4vmY3LvH/hBCCNGZFi5c2LJRtSuNHTuWkSNHujoMIUQvZ3QzMPqcOH79j4kMnx7D3g2FvPfgBjZ+eQhrkzMBiho4mKsfeYrZN91ORX4e7/35Tla8+gINNdUoJhMht91K/JIlqF5e5N74G4r+/g+0xo5vMu0e50vIomR0q4OS/+7EVtLAlYOu5J6Ue1iRvYIH1j2AQ2vfG2onZTDB9Psxluxi5gBvSkpK2LNnT+feow06MsXxLeAF4J0jLyiKYgBeBGYDecBmRVG+BAzAY7+4fiHwE/CJoigLgXc7EMvxcjeCTwT4Rbf5UpvDxnPbnqO/f38u7Hdhp4Wk6zrLly9n+/btTJkyhYEbfqLszTfxu+xSIh56CKWT/zhwVFuo+GQ/lgNVlGk6Oxo1hs9NZOSsGFTD8bm5ruvsWbuate+/SUN1FQMnTubsK6/DP/zMbowthBBCCCG6noe3G2fPTyJ5ejQbvzjIlm8Ok/FjIZMu60//MaGoqoHhM89hwIRJbPj4A7Z/9xUHNv7I9Bt+y6CzpuCRPIyEzz6l5OmnqXznXerXryfyX//Eo4OzCtyifQi5aTilr+1yTne8cRjXDb0Oq2bluW3P4W3y5i8T/tK5W1ANuxR+eJrB+1/Ez+8atm3b5rKCTe0eQdN1fS1Q8YuXxwGZuq4f0nXdCiwBLtJ1fZeu63N/8VEC3AD8Tdf1GUDnrojO3eSc3tiO/3Af7/+YnNoc/jDmDxg6cSrfhg0b2Lx5MxMnTGDwDz9Q8eabBFxzDREPP9zpyVnDjhIKn95KY2YVaQ0ODgV7ctEDYxl9TtwJk7OSw4f48P/u5duXnsEvNIxrHnmauXfeK8mZEEIIIUQv5xfiwZzfDOPSP43Bw8fE/17bzZfP7aCyqB4As5c30xfcxHX/fB6/sHC+ef4JvnjyH9RVlKOazYTffz+xb76B1tTE4auvoeLttztcaMMU7kXIb4ejGBVKX9mFNbeW3yT/hhuG3cBH+z9iyb4lnfHoP1MNMOMB1IpMRoUbOXToEFVVVZ17j1ZSOvLNUxQlHvhK1/Vhzf++DDhX1/XfNP/7WmC8ruu3neT6YcD/AWVAna7rfzzBOTcBNwGEhYWNWbLk9P8x3CyVnLVhAZn9biAv5ldteqZGrZGH8x8m0i2S20Jv67TMvLy8nF27dhEcHMzEbdvw/HED9XPmUHfxr9qVRJ6MaoWQPQo+RSoVDo0dTQ68khUCkzjhszgsFgo2r6ckfTtGdzNRE6YQNGjYGd0Uuzepq6vD2/sMbaAoRBv1xP7o5+dH//79XR1Gj5CZmUl1dbWrw2i1ntgfRe8mfbJ1dE2n4iCU7NTRHRA0EEKGKqhGpfm4RsmubeRvXIdqMBB91rSWvx2VhgZ8334Hc1oaTaNHU3PdtegdrK1gbICozSoGKxSM0WgI0Hi19FX2NO7hltBbGOgxsDMe20nXGbP1bhqsDv5jvZi4uDgSEhI6r/2jTJ8+fauu6yknOubSKo66rqcDl53mnFeAVwBSUlL0adOmnb7hjGWwAfpPu5r+bdyk+vltz1OXW8fDsx5maNDQNl17MmVlZbz66quEhYVxXuZBGn/cQPBttzHo1ls6NRGy5tVS+s4eHDVWMhodNCb48qtfD8Y3+Pg1dLquk/HD96z59F0aaqoZMes8Jl15LR7enbNDfF+RmppKq/qkEF2gJ/bHjIwMfHxc+3PnmWee4bXXXkNRFJKTk3nzzTcxn4FiTR1lNpsZNapzl2ufST2xP4reTfpkG8yAhhorGz7LZO9PRTQVuzF5/gASRgQ7/3adMYPKoqv533+fJzv1O/TyYubcdDt+oWHo555L+euvU/rMs/hWVhL9/HO4d7AiomOShdLXdhGz3ULQdUMYN+lVfv3Nr3m3+l0WT1pMjG9MJz04EP1PfN6/jH6hXpRVVTFlypTj9qs80zr7bvnA0d+h6ObXulbuJjC4QcSINl1WVF/EO3ve4fyE8zstOWtsbGTx4sUYDAZmlZbR+PXXhNx9FyG33dppyZmu69RtKqT4pTQaqi38ZNWJvmIA8+4YdcLkrDTnMB/+330sf/FpfENCueaRp5n1m1skORNC9Dn5+fk8//zzbNmyhfT0dBwOB62ZqSGEEL2dp68bMxcM4eK7R+PuYWT5y7v4+sWdVJc2ABAQHsn8Bx9l1m9uofDAPt7+461sW74MgOBFi4h9800cNTVkzb+C6q++7lAsBj93Qm4ajjHIg7K3dmM4ZOXfM/4NwO2rb6fOWtexhz1av5ngH8co0qmurubQoUOd13YrdXaCthlIUhQlQVEUN+BK4MtOvsfp5W12JmdG9zZd9nLay2i6xu2jbu+UMDRN49NPP6WyspJzfXyxf/ABgTfcQPCiRZ3SPoBmdVD+4T6qPsuk1OJgT4AH5z4wlsFnRR6XANptNtYteZd37/095fm5zL7pNq7++5OE93PdPg9CCOFqdrudxsZG7HY7DQ0NREZGujokIYToNiKT/Jl//1gmXdafgswqljy8iZ3f56JrOoqqMmL2+Sx46kWiBg/l+7f+y4cP/ZmashK8xo8j4bPPMA8eTMEf/0jR3/+Bbm3/ZtMGHzdCbkp27pX2fgahVX48NfUpDtcc5r4f7uu8yo6qCiOuYlDJV3iY3dm+fXvntNsG7Z7iqCjKYmAaEKwoSh7OYh+vK4pyG/AdzsqNb+i6vrtTIm0tuxUKtsPY37TpslprLV8d+oqL+l9EtE/bKz+eyMqVK8nMzGRWYiKmxx7H55xzCL3nuGV27WYva6T4zXS08ib2NTnwmhrN3AsTMZygCEjxoUy+fekZynKzGTJlBtOu+w0ePr6dFosQQnTY8vugaFfnthmeDOc9ftLDUVFR/PGPfyQ2NhYPDw/mzJnDnDlzOjcGIYTo4VSDyshZsfQfE0bq+3v54cMDHNxWyozrBuMX4oFvcCiX3Pd/7Fm7mtVvvsy7f/o9c353B0ljJxL39luUPPU0FW+9RVN6OlHPPoMpon1F6FRPE8E3DKXkpTTK397DmFtGcO+4e3l046O8sOMF7hh9R+c88IgrMK55nOEhGlv27qWhoQFPT8/OabsVOlLF8Spd1yN0XTfpuh6t6/rrza9/o+v6AF3X++m6/kjnhdpKRbvA3tTmDaqXZy3H4rBwadKlnRJGWloaP/74I6Pi4wl+6mk8Rowg8p+Po3TSHNaG9DIKn92KpayRbRoMvGk4Ey/uf1xy5rDbWP/Re7z/wF001tXyqz89yHm33iXJmRBCAJWVlXzxxRdkZWVRUFBAfX097733nqvDEkKIbsk7wJ0Lbh3OjOsGUZZby5J/bCJ9TZ5zNE1RGDp1Jr9+/Dn8wsL58slHWPXGyzh0nbD77iXq2WexZGaSdcmlNGzb1u4YDN5uBN8wFHSdsjd3c3n0pVw24DJe2/UaXx/q2FTKFoGJEDuR0bWrcDgc7Ny5s3PabaUOVXHsKoqizAPmRUVFLTrdL86ovGUkZb7GjxPfwOoe1Op7PFH4BHbdzn0R93V4bVhNTQ3bt2/Hz8ODmR9/AmYzFff+Cb0zKgdpELBXIShHpdKusdvTQfBZCkbz8TE3lJVwePVyGstLCRwwhJhJ0zGaO2/TbSEVoUT30hP7o6urOC5dupSVK1fy4osvAvDBBx+wefNmnnnmGZfFdDJSxVGIjpE+2bms9ToFm3Tqi8ErDCLHKbh5Of8e1RwO8n9aS8nOrXgEh5I4ey5m/0AMRUX4v/QfDBUVVC+8Acvo0e2+v7kSIjerWHwhJ8XKC2Uvkm3N5o6wO4hzj+vw80UU/I+B+1/kWc8/YVPcSElJ6dTifqeq4tgjErQjUlJS9C1btpz6pI9vcBYJuav1Myv3V+7n0i8v5U9j/8S1Q67tUIw1NTW88sorGFSV2atW4VZeQfyHS3CL63hH0ZrsFL62Cz2vjsNWDY9ZsYw+Nx5FPbazOOw2Ni79iI1LP8LDx5dZi26jf8r4Dt9fHE8qQonupCf2x4yMDAYPHuyy+2/cuJGFCxeyefNmPDw8WLBgASkpKdx+e+esRe5Mrv5etVVP7I+id5M+2fl0XWfPugLWf5IJwKTL+jPk7J/rIBzcuolv//MsDquVWb+5hSFTZmCvrCTvlltp3LGD0Hv/RNCCBe2+f8POUio+2ItHcjBcHMrV31yNXbOzZO4SQjxDOvZwTdXw5AC2RN3AV9lmFi1aRFRUVMfaPIqiKCdN0Lq2ZmRXyN0EbSytv/TAUoyqkbmJczt0a5vNxocffojFYmFa2k6MuXlEv/RSpyRn9moLec9sxZFbyx5Fof9tIxlzfsJxyVlZbjbvP3A3Gz5ZzIAJZ3P9ky9KciaEECcxfvx4LrvsMkaPHk1ycjKapnHTTTe5OiwhhOgRFEVh6OQornxwHKHxvqS+v4+v/p1GQ42zGEi/MeO47p/PE5bYn+UvPs23Lz2D5mEm9s038Jk9m5LH/0nRo4+iO9pX4MNzeAh+5yfQuKsMQ2o1z894nlpbLX9I/QN2zd6xhzP7waC5DCv6BKPRyLYOTMtsq96VoNUUQE1emxI0q8PKV4e+YkbMDALMAR26/erVq8nPz2dqVRXmTZuI/Ne/8Bzd8T1rrAV15D+1FUeVhf1+ZibfP47wRL/jzktPXcn7999FXUU5F959Pxf8/h5ZayaEEKfx0EMPsXfvXtLT03n33Xdxd29bBWAhhOjrfIM9uOiOkUy5cgD5B6r48JFNFByoBMAnKJjL//oIEy+7it1rV/Pen/9AZXkpUc88TeD111H5zrvk33knWlNTu+7tPTkKrwkR1K3NJ2qfD3+b+DfSStN4a/dbHX+wkVdhtpQyNMqXXbt2Ye1AFcq26F0JWu4m5+fo1idoqbmpVFmquDjp4g7dOicnhw0bNjDEaCRo2VeE3nMPvuee06E2Aeozyil8YTvWJjv5Cf5MvycFDx+3Y86xNTXx7UvP8N1/niWi/wCu+9e/SRp3VofvLYQQQgghRGsoqkLytGguu3cMJncDnz+9na3fHkbXdFTVwFmXX8P8Bx/BUl/H4r/8kZzduwj7858J+/N91K5cRc6CG7BXVrb9voqC/7x+mAcHUvXlQaY3jmd23Gxe2vESByoPdOyhEqeDdzijHNuxWq3s2bOnY+21Uu9L0IxmZ1nlVvos8zPCPMOYGDGx3be1Wq18/vnn+Lq5MWjJhwRcfTWBNyxod3tHVPyQR/nbe6iz6dRPimLSb5MxmI79T1ael8P7D9zF7rWrmXDplVz24D/wDgjs8L2FEEIIIYRoq+BoH+b/eSz9xoTy0+eH+PqlnTTV2QCIGTqcax55Gp+gYD597K+krfiGwOuvJ+rZZ2nKyODwlVdizc5u8z0Vg0LgVYMwRXlTuWQff465Gx83H/6y/i/YNFv7H0Y1wPD5xOV/SWCAX5dNc+wRRUJaW8Vx1LY/oSsGdox6rFXtVtor+Vv+35jjN4e5/u1ff5aZmUleXh5T160n0Gym8g93gsHQ7vbQwWc3hOUZKLVr5CdreMcdXzWmfN9uctauQDWaSJh1Ab4x8e2/p2gXqQglupOe2B9dXcWxJ5EqjkJ0jPTJrqXrOpWZULRdx+AOMZMUPIOdf886rFayVn5FdfYhQpNHE33WNNyysvB/6T+gKFTefhv2dtRwMFgg+icVRYNvRqXxn+pXuMDvAs71P7fdz+FZn8O4zbfzedAt7Ch3Z9y4cZ2yJ9qpqji2e6PqrqTr+jJgWUpKyqKTVt+xW+CHLBh/c6sr9Pw37b/o+Tp3zLyDGJ+YdsWWnZ1Namoqg6qqiKyqIvGLzzF1oMKL7tDIfT0dNa+aAiD+1pGMSjh2vZnN0sTqN//L4e9XED14GBf8/h68A1u/pYDoPFIRSnQnPbE/ZmRk4OPj4+owegSz2cyoUR1f19xVemJ/FL2b9EkXmA4l2TV892o62astTLwkkREzY1AUBW3WTNa+9wZbv/4CL6PKBb//E8rMmeTc+BtCXnyJ2DffwGPo0Dbf0ppcR8mLO5hfO5PDcbl8l/sdN0y5gYGBA9v/HHmvM9O+iTRlCiaT6Yz3o94zxbE8ExxWiBjRqtM1XePzzM8ZFz6u3clZy9RGg4EhK1cR/re/diw5s2lkPb0V9VA1ue4Ghtw7ltBfJGcVBXl88MDdpH+/gvEXz+fyBx+R5EwIIYQQQnRLoXG+zL9/LPHDg1n/SSbLX96FtdGOqhqYdt0iZv3mVg6nbWPJX++h0dOD2LffRvX2InfhjTTt3dvm+7lFeuN3TjxNu8u5x+1m/Nz8eGDdA9gcHZjqOPJqfEq3MCAugrS0NBztrDrZWr0nQXM0V1UxtW7IcUvRFvLq8jpUHGTlypVUVlYyZtVqgubMwXdu+6dJ6naNg09vxVTWSH6QBykPjMc7wHzMOTnpaXzwwN3UVVVyyZ8f4uwrr0PtyFRKIYQQQgghzjB3TxPn/nYYZ1+eRPaucj57ciu1Fc6qjSNmn8elf36Y2ooy3n/gLkrra4h7+20UT09yFtxA0779bb6f99lRuPfzw7q8kL8P/iv7Kvfxyq5X2v8Awy4D1cgo9xzq6uo4cKCDxUdOo/ckaFpzJqu2LmFZmrkUH5MPs2Jntet2WVlZbNq0iUGFhUQqCuH/97d27y6u2RwcfGoL5somiiO8GXv3GExuxz5H+vcr+PTRv+IdGMSvH32GhJFj2nUvIYQQx3ruuecYNmwYQ4cO5dlnn3V1OEII0SspisKImTHMvX0EteVNfPLPLZRk1wAQN3wkV//jKdw9Pfn44T9zuCCHuLfeRHF3J+eGG7C0MSFSVIWA+QPBqDJgbQAXxV/IqztfZU95O6swegVB0jkk5X6Et7c327dvb187rdQnE7Qaaw0rsldwfuL5mI3m057/SxaLhS+++AJfXWfo+h+JfPxxDL7t229MsznIfGor5koLxRFejPn9KNSjNp/WNY11S97hu5efI3pIMlc+/C/8QsPadS8hhBDHSk9P59VXX2XTpk2kpaXx1VdfkZmZ6eqwhBCi14oZHMglfxqDwaCy9KltZKWVAhAYGc3V/3iKsMQkvnr2nxzKO0zsW2+iGAxkL7gBy8GDbbqP0c+dgIv7Y8ur4/f11xFoDuSBdQ9gdbRzL7ORV2FoKGZErB/79++ntra2fe20Qu9J0PTmBE05fYL2bda3WBwWLu7fvumNK1eupKqqipRVqwlbcD1e41u/79rRNLuDA09uxbPKQmmkN6NvH4VyVHJmt1r5+vkn2Lj0I5JnzOGS+/4Ps5dUHxJCiM6SkZHB+PHj8fT0xGg0MnXqVD777DNXhyWEEL1aUKQ3l947hsAIL755eRdpq3MB8PDx5dL7HyJq4BC++fdTHMw7TOzbb4GikL1gAZZDWW26j+fwEDxHh2L9oYTH4v+PzKpM/pP2n/YFnXQOeAQyyroJXdfZtWtX+9pphV5TZt+/chcj0/7CjhF/pypg+Cnbe6LwCey6nfsi7mvztMTKykrS0tJIOnSI5MIiKu79ExjbXgxTd+j4r1EJsaoc9HagTdKPicXW2MDBbz+nvqiAqAlTCBs5tt1TKMWZIyV7RXfSE/vj0WX2n017lgPVnTuvP8kviTtH3HnS4/v27ePKK69k5cqVeHh4MG/ePEaNGsWTTz7ZqXF0BimzL0THSJ/sfjS7Tt5POrV5EJgE4aMUFFXBYbNycPnn1ObnEDf9HMJ8gwl45hlQVSrvugtHWGir76HYIXa9c0zqqYFLWGtZx13hdxHvHt/mePsfeIXIgv/xpPmPeHh6kZzc+r2Xf6lvlNk/BKTByFFjIH7SSdvaV7GPnOwc7h17L9OHTG9THBaLhZdeeglfm50R6btJ+vgj3Pv1a1MbAJpNY98TW/CxWqiI8WXKLcOPSb7K83NZ+s+HsFRUMO8P9zFgwtltvofoGlKyV3QnPbE/Hl1m383NDUMnFz5yc3M7ZRn/lJQU/vznP3PppZfi5eXFmDFjcHd375al/6XMvhAdI32ye9Jm6Gz4LJMdK3PxNQcy+8ahuJmNTJkyhS+efITs779jwKLb6P/+e+Rcv4Dwl14i7t13cIuNbfU9LEk1lP43jQf1W7jGcz+fNX7Gp7M+xWQwtS3YJF949WsGBBnYX9HI1KlTz8gASo9I0FqllWvQPs/8HJNqYm5i2ysupqamUlNdzYzUVCLvvqtdyZnDprHvic341lipivUl+XfHJme5u3fyxVOPYDCamP+3x4hI6sCeDUII0YPcO+5el9z3xhtv5MYbbwTg/vvvJzo62iVxCCFEX6SqCpMuS8IvxIO1S/az9KltzL1tBF5+Zn51z4N8+fSjrHj1BRwLb2bwW2+Sc/0CchfdRPyHSzD4+7fqHu5xvvhMj6V2VQ7/nPMgC3Jv47MDn3HFoCvaFmzkKAgeSEx9Gjsa+lNRUUFQUOdvd9WL1qBpzs+nWINmdVj56tBXTI+Zjr/Zv03NV1dXs2njRuKzs4kbNpSAq69uc4gOu8be5uSsJt6Xob9IzrJ2bOXTx/6Gl38gV//jSUnOhBCiC5SUlACQk5PDZ599xtXt+PkuhBCiY4ZNjeaCW0dQXdLI509vp77KgtHNjQvvfoB+KeNZ/cbL7M7cS/RLL2IrKCDvzj+g21q/t5nvjFjcYn0IX2tiuu9k/rvzvzTaG9sWpKLAyKuIrvwRgNzc3LZd30q9J0HT7M7P6skf6fvc76myVHFJ0iVtbn7NmjXoDgfDsw4T+cgj7RrO3PvCDvxqrNTG+TLk5hHHJmfbt/DFE38nKCq2uVJjeJvbF0II0XaXXnopQ4YMYd68ebz44ov4t/IdWSGEEJ0rblgQ824fQX2Vhc+faU7STCbm/eE+ksadReo7r7I7L4vwhx+m4aefKHr00Va3rRgUAq8YCBrcmX8NZQ1lLNm7pO1BDr+CECpwN0iCdnotUxxPPmtzaeZSwr3CmRAxoU1Nl5eXs337dvodOEDcwoUYg4PbHN6+D/biV1RPTZAHg24+tojJoe2b+eLJfxAUE8dlD/4DD+/ut/ZBCCF6qx9++IE9e/aQlpbGzJkzXR2OEEL0aRH9/VuStKVPb6O+yoLBaOKCO/7EwImTWfv+mxwwOAi8cSFVi5dQ8f77rW7bGOSB/9xE3PI0Fhmv5vX016m1trFcvm8kaugQotxqycvLa+PTtU7vSdBOU2a/wdbATwU/cUHCBRhauZn1Eanff4/Bbmd4VTUBV7ZxriqQ/X0u5rQS6twNDLxj1DEjZ4e2bebLJx8hODaey/4iyZkQQgghhOjbIvr7M+/3I2motrL06W3UVVowGI2cf/sfGdCcpFWeNQ7v6dMpfvQx6tavb3XbnilhmCK8uCh3Mg2N9byz5522BxidQow1k5KSEpqamtp+/Wn0ngTtNEVC0svScegOxoSNaVOzxcXF7EpPJ2nfPmJvvQXFza1N15dmlGP/NgurqhB/xygMbj/Hd3DrJr586hGCYxO47AFJzoQQQgghhACI6OfnTNJqrHz+jDNJUw0GzrvlD0QOHMK3/3kWfrsI9379yP/DXViyWrdHmqIq+J2XgFqtcZeyiHd2v0NFU0XbgoseS4wjC13Xyc/Pb/vDnUbvSdBOUyQkrTQNgOEhp94j7ZdWr1yJyW5nhA6+553XpmvrShooe3sPBkUhdGEy5kCPlmMHt27ky6cedSZnf/k7ZtmXQwghhBBCiBYR/fy48EiS1jySZnRz46I/PoBPYDDLXnwSn78/hGI0knfz73C0cq9I84AA3Pv7MzV7BAarwuu7Xm9bYNEpRFEEcEamOfaajarDilIZvPcZNo77D42ekccd/2/Jfymzl/FA5AOtvm9NTQ3btm0jeedOwufMwTZoUKuvdVh1/FerhOoKhwdpOBJ+PlaVlcmh/32JR3AoSXMvw+hubnW7onuRTS9Fd9IT++PRG1WLU5ONqoXoGOmTPVdDmU52qo7RDPEzFEyeCk2VFexd+gEmD0+GjZxAyAsvYU3qT9Xtt0Mr9tR0q4HYHw2sC9/FPwNe5a9RfyXAGNC6gHSNs9ddw4vK9Si+kQwf3rYBIOgrG1XvKIC9MH7CRAhMOOaQrus8+OGDTI+bzrRJJ7n+BN5+/XXcLRZGBofQ7+abW32dpulsf3wzYVhwpIQx+fIBLccyN//E9hVfEZbYn8se+Dvunl6tbld0P7LppehOemJ/PHqjanFqslG1EB0jfbJnKxpdzZfP76BogxsX3zUK7wAzQwcm8ck/HqS4NI9h//d/lDz4IIPWryf8r39tVZsVDXs5O304r/n6s9NrJ3+b+LfWB5Q7joTCcvY0+DNlyhTUU1SSb6veM8Wxpcz+8Rlzdk02VZYqRoSMaHVzhw4dIis3l8F79hB1911tCiXtlV2E1ViwRPsQe1lSy+u5u3ey7JnHCUvoJ8mZEEIIIYQQrRSe6Jzu2FRr5cvn07A02okZksyc395O7u6dbC7LI2DhDVR+sJiKDz5oVZu+c+JBh79YbmHpgaXk1OS0PqDosUQ37qGpqYny8vL2PdRJ9KIE7eRl9o+sP2ttgqbrOqu+/RaPhgZGDxqMeWDrN4zevTSTwKwqmrxNJN7880bUlYX5fPnUo/iHR3DJ/Q9JciaEEN3EwoULCQ0NZdiwYS2vVVRUMHv2bJKSkpg9ezaVlZUujFAIIQQ4k7Tzbk6muriB/72WjubQGDp1JhMuvYrdqSs53C8W76lTKX7scZr27T9te8ZAM94TI+mfE05/Wywv7nix9cFEjyWGAqDz90PrPQnaKcrsp5Wm4WPyIdE/sVVN7d+/n/ySEobt3UfEHb9vdQi5W4tx31CA3WQg/s7RKEbnt7exrpal/3wIRVW5+N6/YfaS+c9CCNFdLFiwgG+//faY1x5//HFmzpzJgQMHmDlzJo8//riLohNCCHG06EGBTL16IDm7K1j3SSYAZ11+NYMmTWX9R+9Re+mFGHx9KbjvPnSr9bTt+UyPQXE3cG/dTSzPWs6+in2tCyQqhSAqMBuVTi8U0nsSNK25iuMJpjimlaaRHJKMqpz+cTVNY+Xy5XjX1jJq0iRMkccXHDmRxjorFR/vx6QqRNyUjNHbWY7fYbex7KlHqSkt4aI//gX/sPDWP5MQQogzbsqUKQQGBh7z2hdffMH1118PwPXXX8/nn3/ugsiEEEKcyJCzIxk5K4Zd3+exKzUPRVE453d3EjVoCP9751WUW36LJSODspdfPm1bBi8TPtNiiCj0Y5xlOC/seKF1QXgFoQYkEO1e1+kjaD2iSEirtIygHZuE1dvqyazKZGbszFY1s3v3bkqrqph48CBhDz7Y6tun/3cXEYBhchSesb7OkHSdla+9RO6eXZx/291EDRrS6vaEEKKvKXr0USwZezu1TffBgwi///42X1dcXExERAQA4eHhFBcXd2pcQgghOmbiJf2pKmnkh48O4BfiQezQIC68+wEWP/hHVq75jnPmzaXsv6/gPX06HsnJp2zLZ1Ik9RsKuLPqOq7KuZu00rTWLY2KHkvMvoNklnrR2NiIh4fH6a9phV40gnbijap3le1C07VWfZMdDgerli/Hr6qKMXPnYvD3b9WtD6zOIaSkHou/O+Hn/1xBcvOXn5L+/QomXHolgydPb/WjCCGE6D4URWlZTyyEEKJ7UFWF2QuHEBjpxXevplNeUIenrx8X3nU/lvo6dgZ6YQgJoeC+P6M1NZ2yLcVkwHd2PP4VHpzXNIV/b/t364KIHku09QBAp25Y3QtH0I5N0NJKnAVCkkNOnTkD7Ni+naqGBqbm5RH4z3+26rY1ZY00fnsYk0EhdlFyyy/xA5t+5IfFbzNw4mTOuvyaNjyIEEL0Te0Z6TpTwsLCKCwsJCIigsLCQkJDQ10dkhBCiF9wMxu54JbhfPL4Fr5+cSeX35dCSFwCk668jrXvvUH01fPxevp5Sp97nrB7/3TKtjxHh1K3Lo9F5Zcy33wXW4u3MiZszKkDaN6wWsFZKKSz9vXsEQnaURtVk5qaesJzYrMPkAisXbcezeDe8vrqktWEm8LZ9uO2U95D13W2rF1LQHkF5tGjWbthw2nj0nUdfaXCANVAfn8Hh3dtBKC+tIh9ny/BKyQcz2GjWbNmTWsfVfQwdXV1J+2TQnS1ntgf/fz8qK2tdXUY1NXVoWlaSyznnnsur7zyCnfddRevvPIK5513nsvjbGpq6lH/fXtifxS9m/TJ3it8vE7Wap3F/1xH/HQFxcsf78hoflj7P8aefRb6W2+RGRiALSnplO14RkHkVhMXVk3npR9e4trga095vqLZOFuFAIOFnTt3dtpsix6RoLVqo+o1myELpkybAQbTkev4y4d/YWb8TKaddZLrmuXm5rJmzRqG19Yy4dlnUFqxA/muLw7ia8/HFu7JuIWjURSF2ooyPrj/Dbz9A7jm7//Cy7+VO5KLHkk2vRTdSU/sj91ho+qrrrqK1NRUysrKGDx4MA899BB//etfmT9/Pu+99x5xcXF89NFHLo9TNqoWomOkT/ZumfElfPdqOo6cUGYtGMKY5GG8fc9t5Ib5ExYdTdhHH5P4+VJUr5NvdaXrOmWVu/h13lx+E/h/jJs0Dk+T56lvnDWahIpK0ht8O23D6t6zBu0EUxwP1xym2lLdqvVnW1d/j8FuZ8Ts2a1KzspyalHW5aMbVGJuHIaiKNiamvj8n3/H0tjIxff+TZIzIYToARYvXkxhYSE2m428vDxuvPFGgoKCWLVqFQcOHGDlypXHVXkUQgjRvfQfE8r4ixLZv7GYrcsP4xsSysyFN1OQuY/iX52HLS+P4iefPGUbiqLgd14CHlY3zi4fyYrsFae/cXQKMQ27sVgslJaWdsqz9J4EraVIyM+PdGSD6pEhI095qc1mY0/WIaILCgm5cN5pb+Wwaex7dRf+BgX/i/ph9HVOqUx99zVKsg8x944/ERIb367HEEIIIYQQQrTdmHPjGDAujE3LsijMrGLw5OkMmHA2m9evgfmXUbV4CXXr1p+yDbcYH0xR3lxQO5UvD355+ptGpxCj5wCdt2F170nQdMdxBUJ2lOzAx82HeL/4U166Nz0dKzAkNARDK6awbFuyjxirHS3OF//xzjLMWdu3sHPlt6TMvZjE0WPb+xRCCCGEEEKIdlAUhalXD8Q70MzKtzOwWRzM+s0tePj68lNtCYZ+/Sh84AEcNTWnbMcrJYzYhjDKDxeQX3ea6ozRYwmkCk+T2mkbVveeBE1zHFdiP600jeEhw0+7QfW271PxaGhgyEW/Ou1t8jLK8dpZimYyEH29c1+zxtoavnv5OYJj4pg0/9ftfgQhhBBCCCFE+7mZjcxaMJiaskZ+/OwgHj6+nHvzHVTk55E9YxL2sjKKH3nklG14jggBg8KcqrNYdnDZqW/oG4XiE0G0uV5G0I7zixG0WmstB6sOnnb9WW1tLYerq0gsr8B7/LhTnmtptHP47T34GhSC5g9A9TS1bEbdWFvLebfdjdHNrVMeRwghhBBCCNF2kUkBjJwVy+61+WSnlxM/cgwjz5nLzk3rsV5xKdVffEnDli0nvV71NOExLJjZtRP55sDX6Lp+8pspinOao+0Q5eXlNDQ0dDj+3pOg/WIEbVfZLnT00yZo239Yh64ojBiejHKaqis73t9LnK6jDArEZ3gIAHvXr2H/T+s46/KrCY1P7PhzCCGEEEIIITpk/IUJBEZ6sfrdDJrqbUy5ZgGBkdH8VJCFFhpCyTPPnjLx8koJw8PuTkxhENtLtp/6ZtFjiW7aA9Ap0xx7bYKWVpqGgsLw4OEnvUTXdXZs3UJgeTkJl112yuYri+vx3FeBw81AxJUDAagtL2PVG/8hYsAgxl54aec8hxBCCCGEEKJDjCYDsxYMoanOxtrF+zC5mznvtrtpqKlmX0oyjVu3Ur927Umvd+/nj+rvxrnVZ5++WEhU84bVSucUCuk9CdovpjimlabRz78f3m7eJ72ksKCACoeDgYqCKSrqlM1nLN5HgEHBd3YcqtmIrml89/JzOOx2zrv1LtRWlOYXQgjR/SxcuJDQ0FCGDRvW8trHH3/M0KFDUVWVLaeYBiOEEKL7Con1YezcBA5sKeHA5mLC+yUx4dIrycrPpioh1jmKpmknvFZRFbxTwhlZN4At+3+i0d548htFjsRN0QnzlBG0Yx01gqbpGjtLd552euOW775DdTgYOXPmKc8rzqrGP78Om4eRgEnORG7Him/I3rmdadfeSEB4ZOc8gxBCiC63YMECvv3222NeGzZsGJ999hlTpkxxUVRCCCE6w+g5sYQl+LJm8T7qKi2MnXcpPsEh7I+PpGnvXmqWLz/ptZ5jwgCFs8qGszpn9clv4uYFYUOJUUvIy8vD4XB0KObek6AdNYJ2uPowtdbaUyZodrudPdnZRJWUEHLuuadsev+Sfc7CIBckohgUKgryWPvem8SPHMPwWed16mMIIYToWlOmTDluI+rBgwczcOBAF0UkhBCis6gGlVkLhuCwa3z/bgYGk4lJ839NWUUpZYOTKH3+eXSb7YTXGgPMuPf347zas/ky8zTTHKPHEtOwG5vNRklJSYdiNnbo6i6iKMo8YF5UVBSpqaknPGdgQT4BNhs/paayoW4DAJbDFlLzT3x+WV4eTYpChLuZtRs2nPTe9QU6SZUG6syQWZuBvno3e5d+gK4o+Awfy5o1azr4dKInq6urO2mfFKKr9cT+6OfnR21tLQCbv8ihoqDj1a+OFhjpydiLYk97Xl1dHZqmtcRyhMPhoL6+/rjXXaGpqalH/fftif1R9G7SJ/u2kGSdnK0VLH09lYBEBXNgMLsaGgjKOMCmxx6nccrkE17n7akQbgmgIbOcpepSAowBJzwvrM6baEcWMJ3Vq1cTdZrlU6fSIxI0XdeXActSUlIWTZs27cQnVS6BRi+mTZtG6o+p+Nb6Mn/W/JPugfbuk09ibmxk6qLf4JWcfOL7ajo/PLQBT9VB4FVDGDQ4iA2fLqahpIi5d97LwIkn/g8p+o7U1FRO2ieF6GI9sT9mZGTg4+MDgMnNhKGT1/Oa3Ewt7Z+Kt7c3qqoed67BYMDLy6tVbZxpZrOZUaNGuTqMVuuJ/VH0btIn+zZ9qs6yhh0U7qxmxoXjifP3Yek/H6Jo5FBiV66k35/uQTWbj7/O5iBv/0/MrppIeVg5FydffOIblEWj730OL3cDHh4eHeprPSJBaxXNDs1l8k+3QXV9fT1ZNTUMqq3F86hF4b90YGMhUY12HKGeeAwKpPhQJj99uoRBk6ZKciaEEJ1s8vwBrg5BCCFEL6UoCjOuG8ySv29i1Vt7+NXdY4gePIx92VmElpVS+f77BN144/HXmQx4jwxj8qbR3Lv3RW4cdiOKohx/g6B+KGZ/YtwbO1zJsfesQdMcoBqpsdaQWZV5yvVn21evRlNVRo4afeJvMOCwaxQtO4S7qhB+WRIAq996BQ8fX2Yu/N0ZeQQhhBBCCCHEmeEdYObs+UkUHaohc0sJk69eQGNDPfkpIyh/5VUcJ5nO7pUShkkzkpAfyq6yXSduvHnD6mh7FpWVldTV1bU7zt6ToDUXCdlV6vymjQwdedJTd2zbRkBlFYmXnXzvsj2rcohxaOjR3rjH+3Fo22YK9u1h4mVXY/Y+eel+IYQQPctVV13FxIkT2bdvH9HR0bz++ussXbqU6OhoNmzYwAUXXMA555zj6jCFEEJ0goHjwgmO8WbTskOEJQ6g/9iJ7NetNNTVUv7GGye8xhTljRpm5tzqSafeEy16LDH1aUDHyu33ngStucx+WmkaqqKSHHzidWXFeXmU6ToD3d0xBpx4kZ+1yU7VqlyMikLYpUlomoN1i98mICKSYdNnn8mnEEII0cUWL15MYWEhNpuNvLw8brzxRi6++GLy8vKwWCwUFxfz3XffuTpMIYQQnUBRFSb+qh81ZU3s/qGAs6+6DrvNRs74UVS8/Q72srLjr1EUfMZGktQYy64927A4LCduPDqFSIpQFaVD0xx7T4Kma6A4E7T+/v3xMnmd8LRN33yDommMPmfOSZva+VUWsYqOOiAAtwhv9q5bQ1luNpOuuBaDsfcs2xNCCCGEEKKviRkSSNQAf7Z8k4VPUATDps/iYFMt9ZqDsv++csJrPEeFoqswqWw4qbmpJ244agwmHIR6KRQXF7c7vt6ToGkONFVhV+muk64/czgc7MnNJaq8gpCTVFZpqLFi+akQRVEI+1V/7DYb6z96j7DE/gwYP+kMPoAQQgghhBDiTFMUhQm/6kdjrY20VblMvPxqVNXA4ZRkqpYswZqXf9w1Bi8THkOCmFUzgWX7l524YY8ACB6Am6MOu93e7vh6T4KmOzikQq3t5BtU79+6jUaDgWFxsSgnKeW847MDxBjAfUQIxkAzO1cup6a0hLOvuh5F7T3fLiGEEEIIIfqq8EQ/EkeGsH1FDkY3X0affyGH66qoNrtR9sILJ7zGa2w4vnYvHPtrKWs8fiokANFjUS01aJrW7th6T8ah2UlTHQAnTdC2rl6Nm8XCiMsuO+HxqpIGDLvKQFUInpuItbGBnz77kNhhI4gf3nP2nhFCCCGEEEKc2vgLE7FbHGxdns3Yiy7D7OnFoZGDqf7ySyyHDh13vjkpAN3HwKyq8Xxz6JsTNxo1BkWzotsa2x1XL0rQHKSpDvzd/YnzjTvusN1uJ6uhnsSmJjwSE0/YxM5PDxBlUvGcEIHBx40tX31OY001k6+6/kxHL4QQQgghhOhCgZFeDJwYwa41edgsRsZdPJ+CmkrKfTyp+viT485XVAXflEjG1g1lb/buEzcaPRYVDa1JyuyDrpGmWBkeMvyEe5vl79mDQ1VJSDrxRqhN9TY8D1bhMCgEzo6jobqKLV8tZcD4SYT3l81ThRBCCCGE6G3GzU1AQWHTV1mMOmcuPkEhHOgfQ9WyZeg223Hne40JQ0Ul4KAJXdePbzB0CKqioFkkQaNas3FIsZ90euPhbdsAiB8z5oTHD/yQT6hBwW1ECKqniZ+WfojdamHSldeesZiFEEK43sKFCwkNDWXYsGEtr91zzz0MGjSI4cOHc/HFF1NVVeW6AIUQQpwxPoFmhk2LYt+GQmrKbJx1+dVU2K0UWRqoW7fuuPONwR40+NlIrI6ksL7w+AYNRhQ3L3T7SUrxt0KvSdAKdCsAiX4nnr6Yl5ODR2MjoaNPvJasekMhqqIQPC2G6pJi0v63nGHTZxMYGX3GYhZCCOF6CxYs4Ntvvz3mtdmzZ5Oens7OnTsZMGAAjz32mIuiE0IIcaaNOTcOk7uBn744yODJ0/H09SMvPIjqpZ+f8HxjjDeDGuPZWbLzhMdVVUU7weBaa/WaBE3TnQVCjOqJ9ykramoi1O5AMZmOO1aaW0Nggw27nxumUE9+/Og9VFVl4mVXndGYhRBCuN6UKVMIDAw85rU5c+ZgbN73csKECeTl5bkiNCGEEF3Aw9uNUXNiyUorozSnnsFTZlDs6U7Z2jXYKyuPOz8oKRI/hw+HDu87YXuqApp+/JKr1uo1uy47dGcpS1U5Puesrayk1s2NYd7eJ7z20KpcogwKXmdFUZpzmD3rUhk77xJ8AoPPaMxCCCF+9v1br1CSfXzVrI4IjUtk+oKbOtTGG2+8wRVXXNFJEQkhhOiOhs+IYef3eWxYepCzL5/J1q+WUuBtJvbrbwj89TXHnOsZF0AtWTRmV52wLVVRaH+R/R6SoCmKMg+YFxUVRWpq6gnPMTXUgzvs3rUbLfPYb0lVejoADpPbcddrDh3TLgWHSWWXNZP9L3yGweSGNTjipPcS4oi6ujrpJ6Lb6In90c/Pj9raWgCsNisOu6NT27farC3tn0pdXR2aph137hNPPAHAhRde2Kp2zqSmpqYe9d+3J/ZH0btJnxSn45ekU7Ctip/WV+MZGk6uXSPqnXfYGR117Ik6xKgaPsVurPh+BSbl2Bl6NpsVh+P4vKO1ekSCpuv6MmBZSkrKomnTpp3wnC0ZbkATo0aOYkLEhGOOfbVtO4qmMf2aq/GIjDzm2MHNRSiG/ShxfiTGGNmcfYizr7qe8eece2YeRvQqqampnKxPCtHVemJ/zMjIwMfHB4BzFt3msji8vb1RVbUlFoC33nqLFStWsGrVKjw9PV0W2xFms5lRo3rOnpw9sT+K3k36pDgdx9kaH+T8RP1BIxPnXsyqN/5DY2k+EyIiMQ88tqr7vt1rGFgaR8CwMIaHDD/m2NKtS8Ghtru/9Z41aDjfdTUohuOOFZSXEVBff1xyBlCQmoebqhA8PYYNH3+AV0Ago8+bd8bjFUII0X19++23/Otf/+LLL7/sFsmZEEKIM89gVBk3L5HyvDrMfsMwmEzkBvtT/fnnx53rkxBCvCWK3QW7jjumqkqH1qD1mgTNoZ14DZqmaZQoCuHu7sddU19twaOoHrtJxepvISc9jZGzz8fkbu6SmIUQQrjeVVddxcSJE9m3bx/R0dG8/vrr3HbbbdTW1jJ79mxGjhzJzTff7OowhRBCdIGklFA8fd04tL2apHFnURjkR8UJ9kQL6B+OAZXSg8cXkVJQ0JEiITial+L9cgStMCMDu9FIdGjYcdccWJNPqFHBfUQIe35YDYrCkKkzuiReIYQQ3cPixYuPe+3GG290QSRCCCFcTTWoDBwfTtqqXGZcN5W969dQYG8ket06fKZPbznPPcY5JV7Jtx7fhqpImX0ArXkn718maFlbtgAQ/4t5+7quU73RufdZwNmR7F6zmthhI/ANDu2agIUQQgghhBDdzqCJEWiaTkNNKD5BIeSHBlH9+RfHnKN6mqj3tRJZHURZY9mxxxQFrQMjaL0mQXM074Omqsc+Ul52Dm4WC+G/2KC66FA1IVYHdn93isoOUVNazLBps7osXiGEEEIIIUT3ExjpRWi8L3t/KmbI1BmUepgoPcGeaIYYTwY1Jhy3YbWqKOiyBg00/cRTHIsaGwi121F/sQYta3UuvgaFgLOj2J26AjcPT/qPPbb6oxBCCCGEEKLvGXxWBBUF9UQkOfODPB8zNd98c8w5wf2j8XN4cyjr2A2rFVVG0IATb1TdUFNDlbs7kf7+x5xrszjQ9lWiKeA2xIf9G39k0FlTpDiIEEIIIYQQgv5jQjEYVfL360QPGUZ+eBBVS5cec45XQiAADYePHVmTKY7NTlQk5PCGDQDEDDh234JDW4qJVEGN9yNzx0/YrRaGyvRGIYQQQgghBGD2MpE4Mpj9m4sYMnkW9QoUZh2kaf/+lnOMoZ5YjXa8SgzYNXvL65KgNXOcoEhI9p4M0HUSJk485tzCtc69z4KmRZOeupKAyGgikgZ2abxCCCGEEEKI7mvQWRFY6u2YPAbiZjaTG+x3TLEQRVWwhEH/+hgOVh086nUVHRVdb18px16ToJ1oDVpBWSl+DQ14R0e3vFZd2oh3WSMON5UGrwYK9u1h2LRZKEr7s1whhBA918KFCwkNDWXYsGEtrz344IMMHz6ckSNHMmfOHAoKClwYoRBCCFeIHhSId4A7mVsrGDBxCsUBPpQv+xLd/vNomXdCEPGWKHYV/FwoRFWdeUWfT9COTHE8UsVR13WKgXCT2zHn7V+bR6hRwXNUKBnrVqMoKkMmT/9lc0IIIfqIBQsW8O233x7z2j333MPOnTvZsWMHc+fO5eGHH3ZRdEIIIVxFVRUGjg8nZ3c5/VKmYtd18uwW6tatazknuH80BlRKMnOPus6Zj2ia1r77dizs7uOX+6CV7NuH1WQiKiqy5Rxd06nbUoyqKPhODGf3mlXEjxiFd2CQS2IWQgjhelOmTCEwMPCY13x9fVu+rq+vl1kWQgjRRw2aGIGuQ3WZHwHhkeSHBVC99POW4+6xzg2ryW9qee3I74z2jqAZ2x1tN9MygtZcxTFr82YA4keMaDknb28FYXYNLcSDwqL91FWUM+26RV0frBBCiONULTuItaC+U9t0i/TCf16/dl37wAMP8M477+Dn58f333/fqXEJIYToGfzDPIno58e+n4oYOn0W6xa/Q/G6tYRXVmIMCED1NFHnayGs0p9qSzV+7n4tUxz79giarh9XJCQ36zBGm42olJSW07K+z8PXoOB/diTpa1Zh9vKmX8p4l4QshBCie3vkkUfIzc3lmmuu4YUXXnB1OEIIIVxk0FkRVBY1EJIwDkVRyPXxoGb58pbjSrQHgxoT2FXqXIemqs58pL0JWu8YQdM1tObZJ0cStKL6ekJ0DYPZubeZw66hHqpCc1MxDvAi86UNJM+Yg9FkclXUQgghjtLeka4z7ZprruH888/noYcecnUoQgghXKD/6FB+WLKfnPQm4keOIX/LZup+2kjg1VcDEJIUTcOeHLYc2sfZ0ZNRFQXQ+/gImubA0bzXgKqqWOrrqXB3I8LPr+WU0txaIgwKerQP+7f9iMNmY9i02a6KWAghRDd24MCBlq+/+OILBg0a5MJohBBCuJKbh5F+o0M5sKWEwWfPoMmgkLt3d8txn4RgAOoPlwOgNI+g6Q5Hu+7XS0bQjqxAc46gHd6wAV1Vie3fv+WUsl1l+KsKHsnBrPvuHYJj4wlN6J7v1gohhOg6V111FampqZSVlREdHc1DDz3EN998w759+1BVlbi4OF5++WVXhymEEMKFBk0MZ9/GIjAkYTIaKXBYsBUVYQoPb9mw2qNYRdO1n9egOWztulfvSNA0B/bmaikGxUBOujOjPXqD6obMKvwBLcBCUeZ+pl57o1TlEkIIweLFi4977cYbb3RBJEIIIbqrqAEB+ASZObCpjLCYeKpq62lM24kpPBxFVWgM1ehXHs3hmsM/l9l32E/T6on1jimOvxhByy8pxruxEb/Y2J9PKWnErirs2bEG1WCQvc+EEEIIIYQQraKoCoMmhJO7t5KQAcnUmN2o3bat5bhXQiBxlkjS83ceNcWxfSNovSNB0xw4mgfDFBSKdZ1w48+Dg/XVFrwdGg5/N/b8sJqEUSl4+vm7JlYhhBBCCCFEjzNoYgToYLOHg6JQsHN7y7HQpFgMqBRn5v48gmbvxVMcFUWZB8yLiooiNTX1uOMmaxVac5GQVR9/QqO7O2663nJuXbbOCNVAri2fhuoqCA4/YTtCtFVdXZ30JdFt9MT+6OfnR21travD6BGampp61H/fntgfRe8mfVJ0Bs9QOJzh/LqoMJ/UlSvBaES1QSIGmg5WUWKuAzzYsmUz7gey23yPHpGg6bq+DFiWkpKyaNq0acefUFvE1gxQUQhqrpaSMnMmiVOmALD1zd0oSgVNSiEevn7Mu/YGDMYe8eiim0tNTeWEfVIIF+iJ/TEjIwMfHx9Xh9EjmM1mRo0a5eowWq0n9kfRu0mfFJ0h3L2QVW9n4OXlT5W5nllh4XgkDwNgz+YVRNcHE5TgBcU1jBoxnND4tlcB7j1THAGDopJ76BAGh4PYsWNbDltzne/OZuxZw6CzpkhyJoQQQgghhGizfqNDMZhUzH4JVHmaadix4+eDUe4MbIwnz1YDSJEQNBQMKBTW1hJktWL08ADA4dBwq7HSZNJostUTMzTZxcEKIYQQQggheiKTu4HQOB90QxRWk4HSrZtbjoX0j8bX4U1RnRXo6wlac5EQd7tKmbs7EUdNlynLrcVfhUa3egAikmSzUSGEED9buHAhoaGhDBs27LhjTz31FIqiUFZW5oLIhBBCdEfhCX401AUAUHhgX8vr/v3CAGiqdVZxbO8+aL0jQdM1NBQGFfqiGQzE9Pt5A+rS9ArcVYUqvRDfkFC8AwJdGKgQQojuZsGCBXz77bfHvZ6bm8v//vc/Yo/askUIIYQIT/RD14MwqEbKm+qxl5cDYAz1xGK0Yar3BEBvro3RVr0jQWseQYuudGayiRMmtByqP1AJQG5xuoyeCSGEOM6UKVMIDDz+zbs//OEP/Otf/0JRFBdEJYQQorsKS/RFUVS8/aOo9DTTmLYTcO6V1hDqIKIpBGj/FMfeUS1Ds+MAvG3+aBYLgQkJLYf0kgYcChSVZTLogmkuC1EIIcSpLV++nKKiok5tMzw8nPPOO6/N133xxRdERUUxYsSITo1HCCFEz+fl545PoBndHk+5x2Fqt27FZ8Z0ADzjAggvqge3PDStL4+g6Q40RcHhFkBY887dAA01VrxtGo3uNnR0IgbICJoQQohTa2ho4NFHH+Xhhx92dShCCCG6qbBEX6xNIei/2LA6bGAcRt2ZYul9ewTNganWnUYvH6ICg1peLtpfia8BSk2VGEwmQuMTXRikEEKIU2nPSNeZcPDgQbKyslpGz/Ly8hg9ejSbNm0iPDzcxdEJIYToDsIT/DiwKRiA4oJcdIcDxWDAM9YfBefU+L49xVF3YGr0xqZCYFhoy8uVu8sJUxRKG7IIS+iPwWhyYZBCCCF6guTkZEpKSlr+HR8fz5YtWwgODnZhVEIIIbqTsERfFNUTTw8/Kk31WDIzMQ8ciOpposq9eR+0Pj3FUdNwND+Kavh5iqM1x/nNOZS7jYikgS4JTQghRPd21VVXMXHiRPbt20d0dDSvv/66q0MSQgjRzYVE+6AaFTwC4qn0dKdh+46WY1bjkX3Q2peg9ZoRNHTnUKLBcGTfAQ1TtRWLGRotNUTK+jMhhBAnsHjx4lMeP3z4cNcEIoQQoscwmFRCY32oLY3GakqjbMtmAq+84phz9L49guZA148dQSvLq3NuUO3eAMgG1UIIIYQQQojOE5bgR32tc5uWgv0ZPx9o3p2lj09xtMMvErSSPRWYVYVqivAOCsYnSNYOCCGEEEIIITpHWIJv84bVBsrqqnFUVzsPHEnQ2lkkpHckaLoDvXmK45EErW5/BQB5pbuJ7C/rz4QQQgghhBCdJzzRz7lhtV8kVV5mGnfuch5oTtB0TWtXu70jQdM0jjyKanQuq9OLG9CA/OJ9sv+ZEEJ0Y7quuzqEbk++R0II0f14B7jj5eeGyTeBGg93ardudR5omeLYlxO0X4ygNdRY8bI6aDTb0NFk/ZkQQnRTZrOZ8vJySUBOQdd1ysvLMZvNrg5FCCHEURRFITzRD5s1FF1RKNyxrfl15/G+vQ+a5oCjyuwXH6zCz6BQbqxGNRgJS+jn2viEEEKcUHR0NHl5eZSWlro6lG7NbDYTHR3t6jCEEEL8QliCH5lbnbUuivKzndMam4fA2juC1jsSNN0BWnOZfaOR0nTnBtXlTYcJTUjE6Obm4gCFEEKciMlkIiEhwdVhCCGEEO0S3rxhtYfZhwq1Duvhwy1DaFJmv/lRFKMRS/aRDaq3ywbVQgghhBBCiDMiJNYHVVXwDIinystMw7btoDoTNCmz31xmX1FUjFUWrAaduqYKImX9mRBCCCGEEOIMMLoZCI7xBrdYLCYj5Vs3/7wGTWvf+urekaDpGkfKpdTV6M4Nqs2NgGxQLYQQQgghhDhzwhL9aKgNAKBg756WETTd0adH0BwcSdAqCqx4qgo1FOPlH4BvSKhrYxNCCCGEEEL0WuEJvmhaEKpioLSmEkNzZWJN7+Nl9o9McbQU2ADIr8ggImkgypExRiGEEEIIIYToZM4Nqw34+EVQ6eGOe50V6Ov7oGkOaN4HjUo7GpBbuEemNwohhBBCCCHOKJ8gMx4+Jtz8nBtWm+uagL5exVH/eYqjp12nyd2OpjukQIgQQgghhBDijFIUhbAEP6y2MHRVwVDtrIXRt4uEHLVRtb9BpcGtBkVVCevX37VxCSGEEEIIIXq98ERfmuqDANAb7Si6THFsmeJoUlTKm3IIiUvA5G52cWBCCCGEEEKI3i48wQ9F9cLD3RuLAgpKH0/Q9J9H0FQUsvK3EzlApjcKIYQQQgghzrzQeF8UBTwD4mkyqigo6H26iqP2cxVHuwrV9SVSIEQIIYQQQgjRJUzuBoKivVHcY7GpCioKjr4+gqbgDUCTm7NqihQIEUIIIYQQQnSV8AQ/GuoC0dFQ+nyCpjkw4FxvVuUoxsPHF7+wcBcHJYQQQgghhOgrwhJ9cTiC0PUjCVoPrOKoKMoQRVE+UhTlP4qiXNbuhnQNN9UDRVcor84mYsAg2aBaCCGEEEII0WXCE5wbVqsYnFMcHV08gqYoyhuKopQoipL+i9fPVRRln6IomYqi3HeaZs4D/q3r+u+A69oby5Ey+yoK9TXlMr1RCCGEEEII0aX8Qj1w9zKiKwZnFUe9fSNoxg7E8BbwAvDOkRcURTEALwKzgTxgs6IoXwIG4LFfXL8QeBf4m6IoFwJB7Y5Es+Nciqego0uBECGEEEIIIUSXUhSF8AQ/tF0GVBztnuLY7gRN1/W1iqLE/+LlcUCmruuHmoNcAlyk6/pjwNyTNHVrc2L3WXtjcZbZd6ZooBHeP6ndTQkhhBBCCCFEe4Qn+lK4S0XR6foE7SSigNyj/p0HjD/Zyc0J3v2AF/DESc65CbgJICwsjNTU1OPOScw+DIShAAZPH378aWO7gheirerq6k7YJztK13WsDrA4wKbp2DSaP3TsGtg1sDqcX2uArjs/tOZrNf3n1xVAVUBRQFWUY/8NGFQwqWBUFYzNX5t+8bXZ6Dwuurcz1R+FaA/pj6K7kT4pukJdjY6OjoJCQ2Nju/pcZydobaLr+mGak69TnPMK8ApASkqKPm3atONPsqyADGe1lJCYBE54jhBnQGpq6gn7m67rVDfaqKi3UtVoo7rBRlWjlaoGG1UNNqobbVQ1WKlpslNvsVNvtdNgcVBnsdNgdVBvtdPOactnjMmg4OlmxMvNgKd782c3I17uRnw9jPiaTfh5OD98PY7+2kiglxuBnm4YDb2jcGx3dbL+KIQrSH8U3Y30SdEVrI12lq/egYKCm5t7u/pcZydo+UDMUf+Obn7tzNKOTHFU8QuPOuO3E32XpumU1lkoqGqksLqJ9dk2Nn+3l7JaK6V1FsrqLJTWOj/bHCfPsHzMRvw9TfiaTXi5GwnxdscryIhXc8Lj5W7Ay92Ip5sBd6OKu9GAm1HF3ag2f3b+22RQMKoqBtU571lVFAyK4hwdUxVUpXlkTdfRNOdnh66j6zqO5n/bHBpWu/PDcvTXzZ+bbA4abQ7qjySPRyWRDRYH+VWNZBTaqGm0UWuxn/L75+9pItDLjWAvdwK93AjydiPIy40QH3dCfc2E+ZoJ9zUT7C3JnBBCCCF6HjcPI+BARaGdMxw7PUHbDCQpipKAMzG7Eri6k+9xHE2zoyjuKIDJw/NM3070YnaHRmF1E4fL68kub6CgqtH5Ud1EQVUjxTVNxyVehn2HCPJyI9jbnRAfdwaE+RDs7U6wt/M1Pw8Tfp4m/D1M+Hu64Ws29trkw6Hp1DY5RwhrGu1UNzq/rmiwUl5noaLeSnmdlfJ6CwdL69h82EpFg/W40UJFgWBvd8J83QnzMRPmZybK34PoAA+i/D2ICvAg1MeMQaZdCiGEEKLb0VBQu76Ko6Ioi4FpQLCiKHnA33Rdf11RlNuA73BWbnxD1/Xd7b1Hazk0OzpmVF1BNfbOP3xF59E0nbzKRg6W1rUkYkc+51Y0YD/q7Q6jqhDuZybSz4OUuAAi/D2I9DMT6e9BhJ8HmelbmTtrGqokCgAYVAV/Tzf8Pd1afY1D0ymvt1BSY6G4pomimiaKayyU1DRRXNNEYXUT23IqqWywHXOdUVWI8D+SuHkSH+RJbJAX8UGexAV54edh6uzHE0IIIYRoBb15o+r2Xd2RKo5XneT1b4Bv2ttue2iaDWfpAwXVaOjKW4tu7Egitr+4lv0ltWQW1zk/l9TRZPv5/xhvdyNxQZ4MifDlvGHhxDX/gR8X5HnaUZqS/YokZx1kUBVCfcyE+pgZFuV30vPqLXYKqhrJq2okv7KR/KM+r91fyie1lmPOD/A0tfx3jAvyol+IF/1DvekX4o3ZJD8nhBBCCHFm6ICKQnvLCSh6d6tEcAKKoswD5kVFRS167733jjseu/c5vjiUDGZvBoRE45Uc2fVBCpeyaTr5tRqHazSymz/yajWsR71zEeCuEOWtEul95LNKmKeKj5tz/VZ71NXV4e3t3UlPITrCYtcpadQpadAoadApbtAoadAortepaNJbfkgqQLCHQoS3SqTXkc8qUd4qnqaenWxLfxTdifRH0d1InxRdpeL9DRRFmNHcChl29vknPGf69OlbdV1POdExl1ZxbC1d15cBy1JSUhadqBJKXcX7cMi5D1q/fokMmjahy2MUXcdq19hdUM2u/GrS86tJz69hf3Fty9REH7ORYZEBTBvmy4Awb5LCfOgf6n1GprxJRaieocnm4HB5PZkldcd8rM6rx2r/ubBJlL8HgyN8GBzhy6BwXwZF+BAf5NVj1rpJfxTdifRH0d1InxRd5bMPfnJua2Q0dosqji7h0O2gOIcSVZm61OuU1VnYll3J1pxKtmVXkpZXjdXuHBoL9HJjWJQf0waGMCzKj2GRfsQEerR7REz0TmaTwZlwhfse87pD08mrbCCzpI69RbXOj8Iavt9X2rK5pLtRZWC4D0MifEmO9iM5yo+B4T64y3RqIYQQQpyEqivYu0kVR5dwaI7mpXiyBq2n03Wd7PIGfjxYzpbsCrZlV3K4vAFw7sM1LMqP6ybEMSYugBEx/kT4mSUZE+1mUJXmdWpezBwc1vJ6k81BZkkdGYU17C2qJaOwhuXpRSzZnAs4++KgcF+GRfkxvDlpGxDmg5sUKRJCCCH6vCMbVXeXMvsuoekOAGeKJglaj1NS08SPB8tZn1nGjwfLya9qBCDY243RsQFcNS6WMXEBDIvyk+IOokuYTQbniOxRRUt0XSe3opFd+dXszK8iPb+ar3YWsHhTDuAcaUuO8mN0XACjY/0ZHRtAqK/ZVY8ghBBCCBfqTvuguYRDs4PiXINmkD/gu716i70lIVufWcaBkjoA/DxMTEwM4uZp/TirXxCJwV4yOia6DUVRiA3yJDbIkwuGRwDOpC2nooGdedWk5VaxLaeSt9Yf5pW1zim40QEejI51Jmxj4gIZHOHTa/fAE0IIIYSTrjgHjtpbi7FXVHEMSf873+ZPwcvkR1y/KDziQro+SHFK5Y0a20sc7Ch1sLfcgV0HNxUGBBgYEqQyJMhArK+K2sMSMqkIJX7JpulkV2tkVmlkVjk4WKVRaXH+nDUbnH1+UKDKwEADcb4qxk4sQCL9UXQn0h9FdyN9UnSVkvfWURfhT6UpjzFTzj3hOb2+imNu/nOQr6DqCskjRxA9YkCXxyiOpWk6aXlVrMooYWVGMXuL6gFICPZiwaRQZgwOZUxcQI8vtCAVoURrFFQ1svlwBZuyKvjpUDkf7a8HbHi5GRgTH8j4hEAmJAYxPNoPUwdG2KQ/iu5E+qPobqRPiq7y8ZINzj2aFUPfreKoaY6WoUSZ4ug6mqaz6XAFy9IK+G53MWV1FlQFUuIDuf/8QcwcHEa/EHnnSvQ9kf4eXDQyiotGRgFQWmthU1YFG7PK+elQOU98tw9wbpo+sV8QU5KCOTsphPggT5nmK4QQQvRAHdmoulckaI6jioSopl7xSD2Gruuk5VWzLK2Ar3YWUFxjwcNkYMagUGYNCWXagFACvNxcHaYQ3UqIjzsXDI9oWctWXudM2H7ILGPt/lJW7CkGnGvYJieFMCUpmLP6BePn2fl7+QkhhBCikzUPHPXpIiGa7kAHKRLShfYW1bAsrYBlaYXkVDTgZlCZOjCEeSMimTU4FE+3XtG1hOgSQd7unJccwXnJES1bTfyQWcYP+0v5Ks1ZKVJVYFRsgPPNj8FhDAjzltE1IYQQoptyFglp3+/pXvFXtEPXfp7iKInBGVPdaOPz7fks3pTD3qJaDKrCWf2CuG1Gf84ZGo6fh7y7L0RHKYpCfLAX8cFeXDshDrtDIy2vijX7y/h+bwlPfLePJ77bR3SABzMHhTJjcBgTEgN7/HpOIYQQotdQFZni6NCcUxxVFFQZQetUuq6zJbuSxZty+HpnIRa7RnKUHw9fNJTzkyMI9nZ3dYhC9GpGg8qYuEDGxAVy1+wBFNc0sXpvCasySvhwSy5vb8jG083A5KRgohUbIxus+HvKtGIhhBDCdXQUnb5dZt+c9kfWlF5IBMGEnxWHm6dX1wfZy9RZddYX2FmTa6OgXsdsgLMijUyNMRLnK0nwEVKyV7iS1aGTUeFgR4mDtFIHFU06BgUGBxkYG2ZgdJgRHzeZBilcQ34+iu5G+qToKgWL16KEhJNlzOGsabNOeE6vL7OflumBXuqc4jh58mQ8fHy7PMbeIj2/mld/OMTyXUVYHRqjYv2587xY5g6PkHVlJyAle4WrzWn+rOs6b325mmK3KL7ZVcibuxt4J8PGhMRAzhsWwTlDwwnxkRFv0XXk56PobqRPiq7yyacbcaCgo/TxMvvNX6sGGd1pK13XSd1fyitrDrHhUDne7kauHh/LleNiGBQuya4QPYGiKCT4Gbhh2iDuPXcgewprWL6riG92FfKXz9P56xfpjEsI5FcjozgvOULWjAohhBBnikFxFgmhLxcJwVkkRNVBUdu/yWtfY7E7+HJHAa/+cIj9xXWE+5q5//xBXDkuFl+z/PEmRE+lKApDI/0YGunH3XMGsL+4jm92FbIsrYD7PtvFX7/czcxBoVw8KoppA0NxM8rPTSGEEKKzKIoUCcGhaQAoOqiqjKCdTnWjjQ825vDm+ixKai0MCvfh6fkjmDs8Uv5QE6KXURSFgeE+DAz34c5ZSezKr2bp9nyWpRWwPL0If08TFyRHcPGoKMbEBUjpfiGEEKKDnL9LlXYXCekdCVrzCBooMoJ2CjVNNl77IYs31mVRZ7Fzdv9gnrx8BJOTguWPMiH6AEVRGB7tz/Bofx44fzDrMsv4fHs+n23L5/2NOcQEenD5mBjmp8QQ7md2dbhCCCFEj6QYmhO0vjzFUdM09OZvgSoJ2nGabA7e2XCYl1IPUtVg4/zkcG6Z1p9hUX6uDk0I4SJGg8q0gaFMGxhKncXO/3YX8em2PJ5esZ9nV+5n+sBQrhwXy/SBIRgN8nNVCCGEaDVVbV6D1j69I0HTnUVCFFmDdgybQ+PjLXk8v+oARTVNTBkQwj1zBpIcLYmZEOJn3u5GLhkdzSWjo8kpb+DDLTl8vCWPVe9sIczXncvHxHDF2BhiAj1dHaoQQgjR7Smq6hw7a+cMtV6xD5pl+2/ZWHU1A2xhhM8Z1PUBdjOarrOp0MHSTCvFDTr9/VUuG+DGoEBZn9fZZE8V0Z10Zn90aDpppQ7W5NnZWeoAYEiQyoxYE6NCDagyLVqchvx8FN2N9EnRVfI+W4+vTzTbTFlMnTr1hEuJev0+aCvTjc4pjjp9fn+LHw+W8fevMsgobGBQuA+PXDaQmYNDZY3ZGSJ7qojupLP740zgLqCgqpGPt+Tx4eYc/r29iZhAD66fGMf8sTFS8VWclPx8FJ2lyeagvN5KbZONmkY7tU02apucn2ua7NQ22amz2LDYNCx2Datdw+po/mzXsDg0bHaN2joD3t7ON6sVnIMbiuLcR1dRwKAqmI0GzCYVs8lw1Ifz354mA36eJvw8nB/+nm4tX/uajTIdXLT46vs96Hbn396TJ0/GaGxbytUjErTTceiac4qjqwNxoZLaJh79OoPPdxQQE+jBc1eOZN7wSFS1L39XhBCdIdLfgztmJXHr9H6s2FPMm+sP84+vM3h6xX4uGxPNgrPiSQyRd6WFEG1T3Wgjv7KR/KpGimqaKKu1UFbn/CivszZ/baXOYj9lOyaDgre7EbPJgJtRxc2gOj83f+3nYcLNoFDhqCcowKO5sp6OroOOcz9YALum02RzUFZnp8nmoMnuoMmm0WRzYLE5k75T8TEbCfVxJ9zPTJiPmTA/M2HN/w71NRPuaybM14xB/jbr9VRVbSkQ0p7Zir0jQdM0UPpmgubQdN7fmM0T3+3DYtP4/Yz+3DK9P2aTTGcUQnQuo0HlvOQIzkuOID2/mjfXH2bJplze2ZDNtIEh3DApgSlSFVYI0azJ5iC7vIFDpXXkVDSQX9XYkpDlVzZSe4LEK8DTRLC3O8He7iRH+xPs7UawtztBXm74epjwMRvxMR/5bMTXbMLdqLbq545zVPeEM8paxWrXqGmyUdVgo7rRRnWjlepG57+dH1ZKai0U1TSxMauCktombI5j/zg3GRRiAjyJC/IkLsiL+CBP4oK9iAv0JDrAU7Y76iUUg8qRzETTTp3Yn0ivSNDszTVSlO6/nK5T7cyr4oGl6ezKr+bs/sE8fNFQeRdbCNElhkX58dT8Edx33iA+2JjDexuzuf6NTQwI8+aWaf2ZOzxCpvsI0UeU1DaRWVLHodJ650dZHQdL68ivbEQ76m8zX7ORSH8PogM8GJ8QSFSAB1H+nkQFeBDhZybIy61b/9xwM6otyWNraJpORYOV4pomSmosFFY3kVvZQHZ5PYfLGtiUVUG91dFyvqpAfJAXgyJ8GBTuy6Bw5+foAA+ZEdXDGIxGHH09QdP0vtVpqxttPPndPt7bmE2Itzv/vmoUc4dHyLvWQoguF+Ljzh2zkvjdtH58tbOAl9cc5M4Pd/D0iv3cPLUfl46Jwt0oI/pC9AZ2h0ZWWT17CmvYU1DDnsIaMgprKKuztpzjYTKQGOLFyJgALhkVTWKIF/1CvIkN8uxza1ZVVWlJ6IZGHn9c13XK6qzkVDgTtsPl9RwormNPQQ3L04taNjn2cjMwMNyHQRG+DI30ZVRMAAPDfWSqZDemGtWWNyf6bIJm1/vOCNrXOwv525fpVNRbuX5iPHfNGdDnfuAJIbofN6PKJaOj+dXIKFZmFPPi95ncv3QXz63az6LJiVw9PhZPt17xK0eIPkHTdDJL69iWXcmO3Cr2FNawr6gWi935x6abQSUpzJvpA0MZHOHLgDAfEkO8CPc1y2hPKymKQoiPOyE+7oyJCzzmWL3Fzv7iWvYW1bK3sIaMolq+Sivgg405gDNpGxnrz+jYAEbHBjAq1h9/TzdXPIY4AdXw8xuTel9N0I5M7+3NPw7qLXb+9uVuPtmax/BoP966YZxsNC2E6HZUVWHO0HBmDwnjx4PlvLA6k398ncGL32dyw6QErp8Yj5+nvKkkRHdT3WBje24l23Kq2J7jTMpqm5xrxPw8TAyN9OXaCXEMifRlSKQv/UK8MXXj6Yg9nZe7kVGxAYyKDWh5Tdd1cioa2JZTybbsKrblVPJS6kEczUM1iSFepMQFMKl/MJP6B7d6KqbofKrBgNI8gKRpjtOcfbzekaC1PTHtUXbmVXHHkh0cLq/n9hn9+f3MJPmhKITo1hRFafkjYWt2JS99n8nTK/bz6tpD3DQlkYVnJ+Dl3it+BQnRI1XUW9lwsJwfD5axMauCzJI6wLkOakCYD3OHRzI61p/RcQEkBnvJMopuQFEU4oK8iAvy4uJR0QA0WO2k5VazLaeS7TmVfLe7mI+25AEwJMKXyUnBTE4KISU+QArIdSHVaETBOfVXs1tPc/bxesVvx5YErZdNcdQ0nVd+OMST3+0jxMedxYsmMCExyNVhCSFEm4yJC+D1BWPZU1DDMyv389SK/by94TC3Tu/P1eNjZY2aEF2gzmJnU1Y5P2aWs/5gORmFNYBzqtzYhEAuGhHJ6LgARsT44y1vnvQYnm5GJvYLYmI/59+HDk0nPb+adZllrN1fyhvrs/jv2kO4G1XGJQQyOSmY2UPCSQj2cnHkvZt61O813XHqbSJORGlPbf6upijKPGBeVFTUovfee++444c33sThxqsZ0RBOwPmDuj7AM6CqSePVXRZ2l2uMCTNww1B3vN3k3avupq6uDm9vqZwpuoee0h8zqxx8st/K3gqNILPCxUkmzoo0oso79L1KT+mPvZWu62TXaGwvcbC73MGhag1NB6MKSf4qg4MMDAk0EO+nYuwja8b6Yp9ssuvsrXD2gd1lDgrqnX/3x/iopIQZSAk3EuUts7I6W+naPfg3+LHefICJY4bj7hN43DnTp0/fquv6Cfd96BFvkei6vgxYlpKSsmjatGm/PMjrP/3csY473gOt3FPMw5/upNGq8PglyVwxNkamFnRTzj1Vprk6DCGAntMfpwE36jo/HCjjie/28dquatYUu3H3nIGcMzRMft71Ej2lP/YmTTYH6zPLWJlRwuq9xRTXWFAUGBHtz+9GBTGpXzCj4/ruVLe+2ifPPerrvMoGvk0v4tv0IpZmVrI000a/EC/OT47g3GHhDInwlZ/BnWBjTh01e6oAGD1qBCHR/dp0fY9I0E5Jc6A3l9nv6VUc7Q6Nf3ydwVs/HmZIhC/PXzWK/qF9650eIUTfoCgKUwaEMDkpmOXpRTz5v33c/N5WRsb48+DcIYyJCzh9I0IISmqaWJlRwqqMYtYfLKPJpuHlZmDKgBBmDg5j+sAQgqRYhGgWHeDJbyYn8pvJiRTXNPHd7iKW7yrixe8z+ffqTOKCPLloRCSXp8QQE+jp6nB7LIPR2JKX6I6+WCREs6PpR0bQem6GVttk47YPtrNmfyk3TIrnvvMGyboMIUSvpygK5ydHMGdIGJ9uy+Op/+3n0v/8yCWjo7jv3EGE+ppdHaIQ3U5FvZXl6YUsSytgY1YFug7RAR5cOTaWmYNDGZcQKH9DiNMK8zVz3cR4rpsYT1mdhRV7ivlmVyH//j6Tf3+fydn9g5mfEsOcoWHSn9pIMRg5kpdodlubr+/5CZruQG9O0JQeumF1QVUjC9/azIGSOh67JJmrxsW6OiQhhOhSRoPKFWNjuWB4JC9+n8nrP2Txv93F3D6jPzdMSsDNKGskRN9W22Tjf7uLWbazgHUHyrBrOokhXtwxM4nzhkUwIMxbpqaJdgv2dueqcbFcNS6W/KpGPtmSx0dbcrl98Xb8PU1cPCqKK8bGMCjc19Wh9ggG088jaH2zzL7mwNGDR9DS86tZ+NZmGq0O3rphLJOTQlwdkhBCuIy3u5F7zx3E/JQY/vHVHh5bvpcPN+fy13lDmDYw1NXhCdGlLHYHqzJK+HJHAav3lWC1a0T5e/CbyYnMGxEh64XEGRHl78Eds5K4fUZ/1h8sY8nmXN7/KYc31x9mRIw/14yP5aKRkTKqdgoG08/7fWrtqOLY8xM03YFO8whaD9uqeuWeYm5fvJ1ALzfe/d14Bob7uDokIYToFhKCvXh9wVi+31vCw1/tYcGbm5k1OJS/XDCEeCkPLXq5zJI6lmzK4bPt+VTUWwnxcefqcbFcODKSUTH+kpSJLqGqCpOTQpicFEJFvZWl2/P5cHMOf/pkJ0/9bx8LJyVw1fhYfM2m0zfWxxhMBmiulK87+uIUR03rkWvQ3lyfxcNf7SE5yo/Xrk8h1EfWWQghxC9NHxTKpP7BvLk+i+dXHWDOM2u5bUZ/fjetHyaDTHsUvUeTzcE3uwpZvCmHzYcrMaoKs4eEceW4WM7uH4yhj5TCF91ToJcbN56dwMJJ8azLLOPlNQd5bPleXlidyTUT4lg4KV7WDB/FuVG1k6Zppzz3RHp+gqYfXcWx+//wsjs0/v7VHt7ekM05Q8N49opReLjJELEQQpyMm1Hlt1P7cfGoKP7+dQZPr9jP8vQinrhsOMOi/FwdnhAdklFYw5JNOSzdnk9Nk534IE/uO28Ql46OJsRHqi+K7kVRfh5V25VXzX/XHuSVtQd5Y10Wl4yOYtGURPqFSAVy1c3YMoLWN6c4aj8XCenummwObn1/G6v2lrBocgL3nTdY3hETQohWCvU18++rRjFveAR/+Tydi15cz81TE7l9RlKf3ddJ9EyapvP9vhJeWXuIjVkVuBlUzksO58qxsUxIDJQpjKJHSI7244WrR5NdXs9rP2Tx0ZZcPtySyzlDwvnjOQP79FZRRpMbCkemOPbJBM3eUiSkO/84szk0bn1/G6v3lfD3i4Zy7cR4V4ckhBA90pyh4YxPCOIfX+/hxe8P8t3uYv512XBGx8reaaJ7a7I5WLo9n9d+OMTB0noi/Mzcf/4gLh8TQ4CXm6vDE6Jd4oK8+PuvhnHHrCTe/vEwb64/zIqMYq4aF8OdswYQ3Af34TOYfk6xNK0vJmi6A+jeI2gOTefOD3ewam8Jj1w8jGvGx7k6JCGE6NH8PE08cfkI5o6I5M+f7uTS//zIwkkJ/HHOQJk2Lrqdinor7/2UzTsbDlNWZ2VopC/PXTmS85MjZC2l6DWCvd25e85Arj8rnudXHeCDjTks3ZbP76b148azE/vUz2aDmwm9ZYpj28vsK0cu7s4URZkHzIuKilr03nvvHXPMo6GQHza+QJ0ym5TqULwvGuKaIE9C03XeSLeyLt/OlQPdODdBKt30JnV1dXh7990hfNG99NX+2GjX+XifldW5dkI9FX6T7M6AgL7zh0B31Vf749FKGzSWZ9lYl2/HqsHwEAPnxZsYFKjKNEYXkD7ZtYrqNT7eb2VrsYMAd4VLkkxMijKi9oG+X19Yh+eWUtb4ZDM2MRCv2OHHnTN9+vStuq6nnOj6HjGCpuv6MmBZSkrKomnTph17sOwAP/ykgAKKqnLccRfSdZ2/fbmbdfnZ/GHWAO6YleTqkEQnS01N7VZ9TvRtfbk/njcLNhws595Pd/L4pgb+MGsAt0zvL+t8Xagv98fC6kZeWJ3Jh5tzURWFi0fH8JvJCSSFyXY6rtSX+6SrXHkBbMqq4JFvMng9vYr1Ze7cf/5gpgzo3fv+Fh8sZs/mrwFITIhn8ORpbbq+RyRop6Q50HXnO6Xd6dewrus8/u1e3tmQzW+nJPL7mf1dHZIQQvRqE/sF8fXvz+Yvn6fz1Ir9/JRVzjPzR0rpZ9Flyuos/Cf1IO/+lI2u61w9PpZbp/cnTPqg6MPGJQTy+S1n8dXOQv713V6ue2MT80ZE8tCFQwnspWsvDe5uoDvL6/fZNWh6S2rWfVK0F1Zn8t81h/j1hFjuO2+QTGUQQogu4GM28ewVI5nUL5i/fpnO+c//wNPzR/b6d2uFa1U32Pjv2oO89eNhLHaNS0dHcfuMJGICPV0dmhDdgqIozBsRyZyhYbyceogXvj/Aj5ll/P1Xwzg/OcLV4XU6o8l0pMp+u9ag9fwE7agy+4rSPdbTvfbDIZ5asZ9LRkfx8IXDJDkTQogupCgK88fGMDLWn9s+2MZ1b2zid9P6cdfsAVKQQXSqOoudN9Zl8eoPh6iz2Jk3PJI7ZyWRKPtACXFC7kYDd8xK4pxhYfzx4zRueX8bFyRH8NBFQ3tVtUfVaICWMvt9MkGzQzcaQftgYw7/+DqD85PD+delw1Fl/YMQQrjEgDAfvrj1bB7+ajf/ST3IpqwKnrtyJNEBMqohOkbXdT7bls9jy/dSVmdhzpAw7pozgEHhvq4OTYgeYVC4L0tvmcQraw/x3MoDbDhUzkMXDmXu8IheMbBhMKot+6BpWtsTtJ7/VqKuoWvdYx+0FXuKeeDzXUwfGMKzV4zCKO/UCiGES3m4GXjskuE8f9Uo9hXVcv5zP7BiT7GrwxI92O6Cai5/eQN3f5xGdIAHn986iVeuS5HkTIg2MhlUbp3en69+fzYxAR7cvng7N7+3lZLaJleH1mGKohwZQEPTtDZf3/MzCM0BSnOREMV1j5Nb0cBdH+1gWKQf//n1GNyMPf9bK4QQvcWFIyL56vaziQvyYtE7W/hP6kF6wjYzovuoarDy4OfpzPv3OrLK6vnXZcP57HdnMTLG39WhCdGjDQjz4dPfncV95w3i+32lzHlmbY9/I805g655imPfHEFzwJERNBcNoVnsDm79YBsAL10zGrNJ9t8RQojuJj7Yi49vnsi8EZH889u9/PHjnVjsbf/FKfoWTdNZvCmH6U+m8v7GbK6bGM/qP05jfkqMLGMQopMYDSo3T+3HN78/m+gADxa9s4XnVh5A03rmG2mKQQHtyBTHto+g9YI1aA4U3fkYiosmOT76dQY786p55doxUrFJCCG6MbPJwPNXjqRfiBfPrjxAbkUDL187pteWehYdsyO3ir99kU5aXjXj4gN56KKhDI6QqYxCnCn9Q3345OazuP+zXTyzcj+7C6p5av4IfMwmV4fWJkcPGvXRNWgOoHnEygXvZH21s4C3N2SzaHICc4aGd/n9hRBCtI2iKNw5awDPXTmSHXlV/OrF9WSW1Lo6LNGNWOwO/vntXi55aT0F1U08e8VIPvztBEnOhOgCZpOBp+aP4K9zh7BqbwkXv/Qjh0rrXB1Wmxw9ut6eMvs9P0HTHBwZCOzq/OxQaR33fbqL0bH+/OncQV17cyGEEB1y0cgoltw0gQarnYtf+pEfDpS6OiTRDWQU1nDRC+v5T+pB5qfEsPruqfxqVFSvqCwnRE+hKAoLz07g3YXjKK+zcNGL6/l+b4mrw2o1xaC0rHNuz3rn3pGg6V1fJKTJ5uCW97dhMii8cPVo2VtHCCF6oNGxAXx+6ySi/D1Y8OZm3v0p29UhCRdxaDovrznIRS+sp6zOwmvXpfD4pcN73NQqIXqTs/oH8+VtZxMd4MnCtzfz4veZPaLAk3p0Fcc+OYKmH7UGrQuH0P7vy93sLarl6StGEunv0WX3FUII0bmiAzz55HdnMXVACA9+ns7/fbm7xy5MF+2TXV7PFf/dwOPL9zJjUCjf3TmFWUPCXB2WEAKICfTks9+dxdzhkTzx3T5u/WAb9Ra7q8M6JUVVQO/jRUJQjlRx7Jp889OteSzZnMut0/sxfWBol9xTCCHEmePtbuTV61J45OsM3lifRZ3Fzj8vHY5BqvT1arqus3hTLv/4eg8GVeGZK0bwq5EynVGI7sbDzVngKTnKl8eX7yW/spF3bhyPn0d3HuE+MsWxLyZougOOjKB1wTTD/cW1/OXzdMYnBPKHWQPO+P2EEEJ0DYOq8ODcwfh6GHl25QFsDo2nLh+BUaaw90oV9Vb++HEaq/eWMKl/EE9cNkJmxAjRjSmKwk1T+hEf5MWtH2zjutc3dusk7cg8jPZUcVR6wjxORVHmAfOioqIWvffee8ccCylZxzdbDlPvGc34hkg8zj9zSVOTXefhDY3U2XQePssDf7P80u7r6urq8Pb2dnUYQgDSHzvTVwetfHLAxthwA78d7o5RRtLarDv3x+waB89vs1Bt1bligBsz44zONSOiV+vOfVK0zfYSOy9stxDro/LHsWa8TN3v/1/HR+msCyljSKCVkBFzjjs+ffr0rbqup5zo2h4xgqbr+jJgWUpKyqJp06Yde3BXGd9szkXRFXx8vTn7l8c70V+/SKewIZv3bxzPWf2Dz9h9RM+RmprKcX1SCBeR/th5pk2DgWsP8cg3GQQE+vDC1aNxM8qbcm3RXfvjsrQCHluVhr+HO5/cOIaRMf6uDkl0ke7aJ0XbTQOShxXzu/e38vJeE+/dOB4/z+41krbyw3QUFPz9/dvc73r+bxvNgYIBFQXUM/c4+4pqee+nbK6dECfJmRBC9AGLpiTyf/OG8L89xdz83laabG2fpiK6D4em8/jyvdy+eDvDIv348vZJkpwJ0YPNGhLGy78ew76iWq55/SeqGqyuDukYOjoKCno7ioT0ggTNDqgoKGdsDZqu6/z9qz34mE2y7kwIIfqQBZMSeOTiYazeW8Kid7ZIktZDVTfYuOGtzby85iBXj4/lg0UTCPUxuzosIUQHzRwcxn+vHcP+ojqueW1jt0rSdF1HRWlXFceen6DpDkB1jqCdoQRtVUYJ6zLLuHNWEgFebmfkHkIIIbqna8bH8a9Lh7Mus4wb3txMg7V7l3cWx9pfXMuFL65jw8EyHrl4GI9enCzTVYXoRaYPCuW/147hQHH3StJ0QEHB0ScTtOYy+woKqmro9Oatdo1HvsmgX4gXv54Q1+ntCyGE6P7mj43h6fkj2JhVzoI3Nnf7PXiE03e7i7j4xfXUWxwsXjSBa8bL73EheqPpg0J55boxHCip4+pXN1JZ7/okTcc5guZox76aPT9B0x2gqygAhs6v4PLOhsNkldXzl7lDMEmpZSGE6LMuHhXNc1eOYkt2Bb9fvL1dv3RF13l17SF+++5W+od689XtZ5MSH+jqkIQQZ9C0gaG8el0KmaV1XP/mJpdPST+yBq1vJmiaBorqnOTYyVMWyussPLfqAFMHhMiG1EIIIZg3IpKHLhzKqr0lPLRsNz1hq5q+Rtd1nlt5gEe+yeCC5Ag+/O1Ewv1kvZkQfcHUASG8dPVoduZV88DSdJf+jNZ1vQ9PcdQdzumNKCiGzp3i+PSK/TRYHTw4d3CntiuEEKLnunZiPIsmJ/DOhmxeX5fl6nDEUXRd5/Fv9/LMyv1cOjqa568ahdnU+csfhBDd16whYdwxM4lPt+Xx3sYcl8VxZIqj1o4ksUfsg3ZKmrNIiKKDYuy8H8J7i2pYvCmH6ybG0z/Up9PaFUII0fP9+bzB5FU28sg3GUT5e3BecoSrQ+rzNE3noWW7eXtDNr+eEMvDFw5DlQ3GheiT7piZxM68Kh5etpshEb6MiQtwSRyKTh8dQdPsOGukKKidNMXx6LL6d85K6pQ2hRBC9B6qqvDMFSMZGePPnR/uYFtOpatD6tMcms69n+7k7Q3ZLJqcwN8vkuRMiL5MVRWevWIUkf4e3PL+Vkpqm7o8Bq15DVo78rNekKDpDlCOTHHsnMdZmVHC+sxy/jArCX9PKasvhBDieGaTgdeuSyHM18yit7eQXV7v6pD6JJtD484Pd/Dx1jx+PzOJ+88fjKJIciZEX+fnaeLlX4+hutHGbe9vx+ZoR6bUEXpzmf12THHs+QmapnFko2q1ExI0i93BI1/voX+oN9dIWX0hhBCnEOTtzls3jMWh69zw5uZus/9OX2GxO7jl/W0sSyvgvvMGcdfsAZKcCSFaDI7w5Z+XDmfT4Qoe+2Zvl967ZQ1an6ziqDvQjxQJ6YQ1aO/8mM3h8gb+csFgKasvhBDitBJDvHnl2hTyKhu56Z2tWOyuLe3cVzRaHSx6Zysr9hTz0IVDuXlqP1eHJITohi4aGcUNk+J5Y30WX+zI77L7Himz354dWXp+BqI5pzgqnTDFsazOwvOrDjB9YAjTpKy+EEKIVhqXEMgTlzvfpb3n453tesdUtJ7doXHze1v54UAp/7p0ONefFe/qkIQQ3dj95w9mXHwg9366k4zCmi65pw59OEHTHbQUCelggvbcygM02hw8cMGQzolNCCFEn3HRyCjuOWcgX6YV8J81B10dTq+l6zp//XI3a/aX8ujFycwfG+PqkIQQ3ZzJoPLCNaPw8zDx23e3Ut1g64K7Himz3/Yre36CpjmnkqgoqB2Y4ljTZOOTrXlcOjqa/qHenRWdEEKIPuSWaf2YOzyCZ1bsZ0dulavD6ZVe+yGLDzbm8Ltp/bhqXKyrwxFC9BChPmZeumYMhdWN3Pnh9jO+ifXPI2h9cQ2aZkc/MsWxA2X2v9hRQKPNwTUT5Ie9EEKI9lEUhUcuTibM18ydS7ZTb7G7OqRe5dv0Ih5dnsEFyRHcM2egq8MRQvQwY+IC+MsFQ/h+XylLt5/Z9WhHioS0Jw/s8QmapjmnOKq6gsHUvhE0XddZvDGHoZG+JEf5dW6AQggh+hQ/DxPPXDGSnIoGHlq229Xh9BppuVXc+eF2RkT789T8EbLPmRCiXa6dEMeIGH8eW76X2qYzO9VR0embUxwdmh2U5lVohvYlaLvyq9lTWMOV42KlPK8QQogOG5cQyC3T+vPRljy+2VXo6nB6vLzKBm58ewvB3u68dn0K5na+ISuEEKqq8NCFQymttfDC6swzdh9d6cNVHDXd3jLH02AytquNxZty8TAZuGhkZOcGJ4QQos+6Y1YSI2L8ue/TnRRUNbo6nB6rpsnGwrc2Y7E7eOuGsQR7u7s6JCFEDzcyxp/Lx0TzxvosDpbWnZmb6PTdKY4OzQ7N+6Cp7ViDVmex8+WOfOYOj8DXbOr8AIUQQvRJJoPKc1eMxKHp3PXRDhxSer/NbA6NW9/fxqHSev776zH0D/VxdUhCiF7iT+cOwmw08NCyPWekYIjePMNPa8e17Rty6mKKoswD5kVFRZGamnrMsajCfFBCUFDYvS+D7MaSNrWdmmuj3upgoKnsuLaFOJ26ujrpN6LbkP7YPV05wMDr6RXc99YKLkh0c3U4Xaaj/VHXdd7abeWHPDsLh7lhzUsnNa/z4hN9j/yMFL80N0Fl8d5SnvloFaPDOjct0jQNBQWHQ29zv+sRCZqu68uAZSkpKYumTZt2zLHqig/Qc5xDiCNGjiBmeP82tf3MC+sYGObOjRdNlvVnos1SU1P5ZZ8UwlWkP3ZPU3WdosXbWZpexLVzxjE82t/VIXWJjvbHV9YeZE3eXm6d3o97zhnUeYGJPkt+RopfmuTQ2PLcDyzNdnDLJZM7dX3rJ0s2oqCAora53/WKKY5HhhAN7m3LN3cXVJOWV81V42IkORNCCHFGKIrCo79KJtTHnTuW7KDBKqX3Tyctt4p/fruP85PDuXu2lNMXQpwZJoPKQxcOJbeikVfXHurUtlvK7Lfj2h6foGm68xddezaqXrIpF3ejysWjos9EaEIIIQQAfp4mnr5iJIfL63l42R5Xh9OtNdkc3PXRDkJ93HnskuFSTl8IcUad1T+Y85PDeTE1k/zOLOjUvE9znywSYtcc7ari2GC18/n2fC5IjsDPU4qDCCGEOLMmJAbxu6n9WLI5l2/TpfT+yTz53T4Oltbzr8uG4+chv5+FEGfe/ecPBuDRrzM6r9EjRUL0tr/J1OMTNE13OKc46rQpQft6ZyG1FjtXjos9g9EJIYQQP/vD7AEMi/Ll/77cI1MdT+CnQ+W8vj6LayfEMTkpxNXhCCH6iOgAT343tT9f7yrkx4NlndOoQt+d4uho2QcNDG2Y4rh4Uw79QrwYGx9wxmITQgghjmYyqPzfvKEU1TTx6tosV4fTrdRZ7NzzSRqxgZ78+XwpCiKE6Fq/nZpIdIAHD325B7ujPcXxj6fo9M0pjpquOYcQ9dYnaPuKatmWU8VV42KlOIgQQogulRIfyPnJ4by85iDFNU2uDqfbeOTrDPIqG3nq8hF4uvWIItNCiF7EbDLw4Nwh7Cuu5d2fsjvcnqI2r0GjD05xdLSsQWt9grZ4Uw5uBpVLRktxECGEEF3v3nMH4dB0nvrfPleH0i2k7ith8aYcbpqcSEp8oKvDEUL0UXOGhDE5KZinV+ynvM7SscYUpQ9PcdTsPxcJaUWC1mRzsHR7PucMCyfQq+9sGCqEEKL7iAvy4vqz4vh4ax57CmpcHY5LVTfYuPfTnQwI8+YPswe4OhwhRB+mKAp/nTuE2iY7H2zM6VhjfXkEzVkkRIdWFglZnl5IdaONq8bFdEF0QgghxIndNj0JPw8Tj3yzB709ixR6ib99mU55nZWn54/s1E1ihRCiPZLCfDi7fzBLNufi0Drws7lvFwn5eYqjop7+cRZvyiU+yJOJiUFnPDYhhBDiZPw8Tdw5M4n1meV8v6/E1eG4xPJdhXy+o4DbZyQxLMrP1eEIIQQA14yPJb+qkTX72/+zWWnZB61PjqBpPydoyqkfJ7Okjk1ZFVwxVoqDCCGEcL1rJsSRGOzFI19nYOukqmE9RWmthQc+Tyc5yo9bpvdzdThCCNFi1pAwQnzcOzTNUTGoKO2Y3gi9IEGzOZxVHNE5bdL14eYcjKrCZWOkOIgQQgjXMxlU/nz+YA6W1rNkUwfXO/Qguq7zwNJd1FnsPD1/BCZDj/9zRAjRi5gMKvNTolm9t4SCqsZ2tXGkimN73nrr8T8RHc2Pfbr8VNN0PtuWz+zmjFgIIYToDmYNDmVCYiDPrDxATZPN1eF0iXWZZfxvTzF3zR5AUpiPq8MRQojjXDk2Fh1Ysjm3XdcrqupMtNoxa6/HJ2j25sV7p3v0zNI6yuutzBwcduaDEkIIIVpJURT+csEQKhusvPT9QVeHc8bpus5T/9tPpJ+ZGybFuzocIYQ4oZhAT6YOCOHDzTnt2rhaNagozevPNK1t1/f4BM2hOZxfnKZEytbsSgDGxAWc4YiEEEKIthkW5cclo6J5Y10WuRUNrg7njPp+Xwk7cqu4fWYS7q3cv1QIIVzhmvFxFNdYWLW37cVCFPWLPDMAAAqoSURBVNXQsgatzyVo9ubE7HQjaFuzKwn0ciM+yPOMxySEEEK01T3nDERV4V/f9d7Nq4+MnsUGesp6cCFEtzd9YAjhvuZ2FQtRDCpqc4bS1q1UekGC1pyRnubBt2VXMjo2QKo3CiGE6JbC/czcNDmRZWkFbMupdHU4Z8R3u4vYXVDDHTOTpDCIEKLbMxpUrhgbw9oDpW2e3aAa+vAI2pEpoadKuyrqrRwqq5fpjUIIIbq1307tR4iPO499k+HqUDqdpuk8s+IAiSFe/GpUlKvDEUKIVrlyXAwKsLiNlXYNfTpBOzJydooBtG2y/kwIIUQP4OVu5JZp/dh8uJJdedWuDqdTfbWrkH3Ftdw5awAGVWazCCF6hgg/D2YMCuOjLXlY7a1PtFSjAeVImtLXpjg6OH0Vx605lZgMCsOj/bomKCGEEKKdLh0TjYfJwPsbs10dSqexOzSeXbmfgWE+zE2OcHU4QgjRJteMj6WszsKKPcWtvkY1Glryk743gqY1P/opEtOt2ZUMjfTDbJJqUUIIIbo3X7OJC0dE8sWOgl6zL9oXOwo4VFrPH2YnocromRCih5kyIIQofw8+2NT6N85Ug6ElP+lzCVpLkZCTsDk00nKrZHqjEEKIHuOaCbE02hws3Zbv6lA6zObQeG7VAYZG+nLO0HBXhyOEEG1mUBWuGhfD+sxyssrqW3WNajT+PIJmb9ubbT0+QXM0Z6bqSUbQ9hTUYLFrkqAJIYToMYZH+zM82o/3N2a3ee1Cd/PJ1jxyKhq4e84AqaQshOix5qfEYFSVVhcLcRYJcdIdfSxB01pqhJz4F5hsUC2EEKInumZ8LPuL69h8uOeW3LfYHfx71QFGxvgzfWCoq8MRQoh2C/U1M3tIGB9vyaXJ5jjt+arJ+PMUR4e9Tffq8QnakSqOyknKhGzNqSTK34MwX3NXhiWEEEJ0yLwRkfiYjT26WMiHm3MpqG6S0TMhRK9w9fhYKhtsfLe76LTnqgYDRzK0vpegnaZIyLbsShk9E0II0eN4uhm5dHQ0y3f9f3v3Hxv1Xcdx/Plqrx3jN7SwsdEWJgVFFjchBTOjm5tJNcoSdToEkxlk0QQTM2OyxH+Mxhhj9K8tRvyRGcNG2P6YFWZInJipGQzYAAWCNiBtV4RZyg/HoGvv7R93hVJ7vStwd9/2Xo+kSb/ffu/yuuadu7zv8+P7b3r+e7ncccasbyB46o/ttCyYzYcX1Zc7jpnZDbvvPfU01U1m8+780xyra1JXt9mv1CmOI30v1332HU6eu+QGzczMxqW1KxvpG0jz/L6uckcZs52d/Zy+cJknPHpmZhNEVZVY09LIa8fP8M9TF0a/NlWNroyg5Z8Sec1jrzthQlzZtXKERdRef2ZmZuNZ823TaFk4m2d3d5BOj5/NQi729bP9WB/3Lapj1V115Y5jZnbTPLJ8Pqkq8eL+0XfZraquqdw1aOlsQzrSd3P7TvRya0017719WkkzmZmZ3SxrVzbSceYif27/T7mjFOy3+7s53wffeGhxuaOYmd1UdVNv4f13zsi7gVP1kPsvpyttimPk2BwE4PWOXu5pmEmqety/TDMzq1Cty26nbkotm3eNn81C2vZ3c9tkscIzWMxsAlrRNIsDnWfp6899P+aqmporM/yioqY4RpCOkRu0i339HOo+7+mNZmY2rt2SquaRFQ384cgpTp57p9xx8jp1/hK7jvewal7Ka8/MbEJa3jSLy/1pDnWfy3lNdU3N1RtVpxM6gibpLkm/lPTCkHNTJP1a0s8lrR3zk0aadDr7EoZNzT/YdY6BdLhBMzOzce+LLY0EsOW1znJHyWvbwZNEwMp5qXJHMTMrisHZAYP7XYykuibFlW32+4swgibpV5JOS/r7sPOtko5Kapf05GjPERHHImL9sNOfAV6IiA3A6jElB0gPENmXMPw7usF/2L2NM8f8tGZmZknSWDeZjzTPYcueDt4dyD2lJgnaDnSzdN507pg6vifpmJnlMnf6JBpm3zp6g1ZbgwanOKaLM8XxGaB16AlJ1cDTwCeApcAaSUsl3S1p27CfuTmedz4w+HXg2JIDxAAxOMVxWIf2+oleFs2dyszJtWN+WjMzs6RZt6qJU+cv8/KR0+WOktOJnrc50HmW1ffcUe4oZmZFtbxxFntP9BIj7CQPUJWqufJ7UXZxjIhXgDPDTrcA7dmRsT5gC/BwRPwtIj417CfXp0kXmSat4CzXSA+QjuwI2pD/TUSwr6OX5Y2e3mhmZhPDA0vmMG/GJDbvTu5mIb870A3Apz/gBs3MJrblC2bz1oXLdJ4ZeW1watLVTULSYxxBU66u7/8ulBYA2yJiWfb4c0BrRHwle/wlYGVEbMzx+Drg+8DHgV9ExA8kTQGeAi4Bf4mIzSM87nHg8ezhEuBo4S/PrOjqgfGz97VNdK5HSxLXoyWNa9KSpCki5oz0h5Kt4I2IHuCrw869DXw5z+M2AZuKGM3suknaGxEryp3DDFyPliyuR0sa16SNFzeygvdNoGHI8fzsOTMzMzMzM7sON9Kg7QGaJS2UVAs8CrTdnFhmZmZmZmaVp9Bt9p8DXgWWSOqStD4i+oGNwA7gCLA1Ig4VL6pZInn6rSWJ69GSxPVoSeOatHGh4E1CzMzMzMzMrLh8F0kzMzMzM7OEcINmloekVklHJbVLenKEvz8h6bCkg5JeltRUjpxWOfLV5JDrPispJHnXMiuaQupR0uez75OHJD1b6oxWWQr43G6UtFPSG9nP7k+WI6dZLp7iaDYKSdXAP8jcv6+LzOY4ayLi8JBrHgB2R8RFSV8D7o+IL5QlsE14hdRk9rppwHagFtgYEXtLndUmvgLfI5uBrcDHIqJX0tyIOF2WwDbhFViTm4A3IuKnkpYCL0XEgnLkNRuJR9DMRtcCtEfEsYjoA7YADw+9ICJ2RsTF7OEuMrecMCuWvDWZ9T3gh8ClUoazilNIPW4Ano6IXgA3Z1ZkhdRkANOzv88AukuYzywvN2hmo7sT6Bxy3JU9l8t64PdFTWSVLm9NSvog0BAR20sZzCpSIe+Ri4HFkv4qaZek1pKls0pUSE1+B1gnqQt4Cfh6aaKZFSZV7gBmE4WkdcAK4KPlzmKVS1IV8BPgsTJHMRuUApqB+8nMMHhF0t0RcbacoayirQGeiYgfS/oQ8BtJyyIiXe5gZuARNLN83gQahhzPz567hqSHgG8DqyPicomyWWXKV5PTgGXAnyT9C1gFtHmjECuSQt4ju4C2iHg3Io6TWR/UXKJ8VnkKqcn1ZNZFEhGvApOA+pKkMyuAGzSz0e0BmiUtlFQLPAq0Db1A0r3Az8g0Z15bYcU2ak1GxLmIqI+IBdlF77vI1KY3CbFiyPseCbxIZvQMSfVkpjweK2FGqyyF1GQH8CCApPeRadDeKmlKs1G4QTMbRUT0AxuBHcARYGtEHJL0XUmrs5f9CJgKPC9pv6ThHwRmN02BNWlWEgXW4w6gR9JhYCfwrYjoKU9im+gKrMlvAhskHQCeAx4Lb2tuCeJt9s3MzMzMzBLCI2hmZmZmZmYJ4QbNzMzMzMwsIdygmZmZmZmZJYQbNDMzMzMzs4Rwg2ZmZmZmZpYQbtDMzMzMzMwSwg2amZmZmZlZQrhBMzMzMzMzS4j/AdPOuJ3X+J0tAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "targets = np.arange(8, 15)\n", + "mean_targets = ((11, 12),)\n", + "x = np.linspace(EPSILON, 1 - EPSILON, 101)\n", + "_, axs = plt.subplots(\n", + " 2, sharex=True, clear=True, constrained_layout=True, figsize=(12, 12)\n", + ")\n", + "\n", + "lanczos = eval_lanczos(x)\n", + "for mean_target in mean_targets:\n", + " vals = eval_mean_laguerre(x, mean_target)\n", + " rel_error_mean = calc_rel_error(lanczos, vals)\n", + " axs[0].plot(x, rel_error_mean, label=mean_target)\n", + " axs[1].semilogy(x, np.abs(rel_error_mean), label=mean_target)\n", + "\n", + "for target in targets:\n", + " rel_error = evaluate(x, target)\n", + " axs[0].plot(x, rel_error, label=target)\n", + " axs[1].semilogy(x, np.abs(rel_error), label=target)\n", + "# axs[0].set_ylim(*(np.array([-1, 1]) * 3.5e-8))\n", + "\n", + "axs[0].set_xlim(x[0], x[-1])\n", + "axs[1].set_ylim(1e-10, 2e-7)\n", + "for ax in axs:\n", + " ax.legend()\n", + " ax.grid(which=\"both\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(-7.5, 25.0)" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5xcVfn/P3d2ZvtuNr3CpicQAglJ6F2aIiAoWBBRVERA/P5UDE0QBBsqFoqgNEEQBFEMJEAglBAIKZDe+6Zu7zv1/P44c2dnZ++dueWcZ7L4vF8vXkt2Z+eZe+fM2efztGMIIcAwDMMwDMMwDMPkn0C+XwDDMAzDMAzDMAwjYYHGMAzDMAzDMAxzkMACjWEYhmEYhmEY5iCBBRrDMAzDMAzDMMxBAgs0hmEYhmEYhmGYgwQWaAzDMAzDMAzDMAcJfU6gGYbxqGEYBwzDWK3o+X5tGMYawzDWGYbxR8MwDBXPyzAMwzAMwzAM45Y+J9AAPA7gXBVPZBjGCQBOBHAkgCMAzAJwqornZhiGYRiGYRiGcUufE2hCiHcANKR/zzCMcYZhzDMMY5lhGO8ahjHZ6dMBKAZQCKAIQAjAfqUvmGEYhmEYhmEYxiF9TqDZ8DCA7wkhZgD4EYAHnPySEOJ9AAsA7E3+96oQYp22V8kwDMMwDMMwDJOFYL5fgF8MwygHcAKAf6a1jxUlf3YxgDstfm23EOIcwzDGAzgMwKjk9183DONkIcS7ml82wzAMwzAMwzBML/q8QIPMAjYJIaZl/kAI8S8A/8ryuxcB+EAI0QYAhmHMBXA8ABZoDMMwDMMwDMOQ0+dLHIUQLQC2GYZxCQAYkqMc/vpOAKcahhE0DCMEOSCESxwZhmEYhmEYhskLfU6gGYbxDID3AUwyDKPGMIxvArgMwDcNw1gBYA2ACx0+3fMAtgBYBWAFgBVCiP9qeNkMwzAMwzAMwzA5MYQQ+X4NDMMwDMMwDMMwDPpgBo1hGIZhGIZhGOaTCgs0hmEYhmEYhmGYg4Q+NcVx0KBBYvTo0fl+GQzDMAzDMAzDMJ5ZtmxZnRBisNXP+pRAGz16NJYuXZrvl8EwDMMwDMMwDOMZwzB22P2MSxwZhmEYhmEYhmEOEligMQzDMAzDMAzDHCSwQGMYhmEYhmEYhjlI6FM9aFZEo1HU1NSgq6sr3y/loKe4uBijRo1CKBTK90thGIZhGIZhGMaCPi/QampqUFFRgdGjR8MwjHy/nIMWIQTq6+tRU1ODMWPG5PvlMAzDMAzDMAxjQZ8vcezq6sLAgQNZnOXAMAwMHDiQM40MwzAMwzAMcxDT5wUaABZnDuH7xDAMwzAMwzAHN58IgcYwDMMwDMMwDPNJgAWaAjo7O3HqqaciHo8DAM4991xUVVXhs5/9bI/H3XfffRg/fjwMw0BdXZ2j57Z7rssuuwyTJk3CEUccgSuvvBLRaBQAMGfOHNx2220KrophGIZhGIZhGGpYoCng0UcfxcUXX4yCggIAwA033IAnn3yy1+NOPPFEzJ8/H9XV1Y6f2+65LrvsMqxfvx6rVq1CZ2cn/vrXvwIAzjvvPPz3v/9FR0eHx6thGIZhGIZhGCZf9Pkpjunc8d81WLunRelzHj6iErefPyXrY/7+97/j6aefTv37U5/6FN56661ej5s+fbpr+3bP9ZnPfCb1/8cccwxqamoAyD6z0047DXPmzMGll17q2h7DMAzDMAzDMPmDM2g+iUQi2Lp1K0aPHp0X+9FoFE8++STOPffc1PdmzpyJd999Ny+vh2EYhmEYhmEY73yiMmi5Ml06qKurQ1VVFbldk2uuuQannHIKTj755NT3hgwZgj179uTtNTEMwzAMwzAM441PlEDLByUlJXk7W+yOO+5AbW0tHnrooR7f7+rqQklJSV5eE8MwDMMwDMMw3uESR5/0798f8Xjcl0j78MMP8bWvfc3V7/z1r3/Fq6++imeeeQaBQM+3cePGjTjiiCM8vx6GYRiGYRiGYfIDCzQFnH322Vi4cGHq3yeffDIuueQSvPHGGxg1ahReffVVAMAf//hHjBo1CjU1NTjyyCPxrW99CwCwc+dO24yX3XNdffXV2L9/P44//nhMmzYNd955Z+p3FixYgPPOO0/X5TIMwzCZRDqA/WuBRJzG3u5lQHs9ja36LUDDVhpbkQ7gwHq6+9i0U14fBR0NwK4PaWwl4sCej4FYmMZeZ5Nc/xTEo8DWt4B4jMbeno+ALrUD6GwJtwEH1gGJBI29XUvke0dB7Ub5eaMg3AbUbqC7jw3bgMYdSp+SSxwVcO211+Lee+/FmWeeCQC2Azquv/56XH/99b2+v3jxYlx77bWWv2P3XLGY9ca0f/9+dHZ2YurUqU5eOsMwDOOXaBfw55OAhi3AaTcDp83Wa+/te4AFdwFDpgDfeh0oLNNnq2Eb8PDpQLgZ+OLfgcM+m/t3/PD8N4CN84DDLgC+2PuIGaWs/Q/w3NeAon7ANe8D/Ubqs9XVDDx+HnBgLXDmHcBJ/6fPFgC8cw/w1i+AgROA774HBIv02dq/Fnj4NCAeBq6YA4w5OeeveCaRAJ69HNg4FzjyS8BFfwYMQ5+9DfOAZ74IFFYAV78DDBirz1a4DXjgOKB5F3D23cAJ1+mzBQCv3w6893tg5AzgG3P1rpHaDcBDpwKxTuCr/wLGf0qfLSGAZ74EbH8XmHYZ8LkH9NkCgI+fBv79XaBsMHDNB0DZICVPyxk0BRx99NE4/fTTUwdVu+Wee+7BkUceqeS17Ny5E7/97W+VPBfDMAzjgI//LsUZALz3B6CtVp+tcCuw8HdAsBg4sAZY+pg+WwDw5l1SnBUUAe/8Wq+tHYukOAOAdS/JLKEuhADe/rW8rnAz8MYd+mwBwLInpDgbOUPajbTrs9WyF3j3d0BBIVC/CVj1vD5bgFzziSgAA5h3o15bO96T4mzkDGDlP4B9K/XZSiSAV34EwAAircCHf9FnCwCWPiLFGSAFdlezPlvt9cD798s1snsZsOIZfbYA4PXbpDgrKJRrUyeb50txBkjxdGC9PluJhPw8B4uB9lpgwc+VPTULNEVceeWVqYOq88msWbMwbdq0fL8MhmGY/x0+ehIYfhRw9UIg2t4tMnSw5t9AtAO44r/A0COA9S/rsxULAxtfBaZfDpx1J7B3BbBvtT57K5+TmYofbQZCZcBHf9dna/dyYP9q4NO/klH2jfP0lsyt/Y9cI2f9TK6RDXP12do4T2azvvOOzLIue1yfra4WYPULwKxvAZ/+tbynOktGVz0n18YlTwBGgfw86GLvx1IwXfRn4IjPy0BMLKLP3kdPAdUnAd+YB3Q1AVve1Gdr1XNSVF/1NtB/tN59JNwKbFkAHHcNcOpsYMdCvSXTK5+T2awfbgQCQWDF07l/xyvb3wEatwEX3i+z/htekcEfBeRVoBmGUWwYxoeGYawwDGONYRiaQ1gMwzAMo5CuZilcJp4rBVP5UNkfo4tNrwH9DgVGzQImnwfs+gBor9Nja/u7MnMw+bPSQQVkdFoXW98CRp8ElA8Gqo+X2RJtthbIr4dfCEw4W76PuxbrsdWyB9i9VNo69HigYjiwfo4eWwCw5Q2gchQweDIw6Vxgz3J9GbtdH0pHf/J53WVruoSFEFJITPo0UHUIMOYUYN1/9dgC5GcNBjD+TPnemZ91HbTuA+o2AhPPkZ/tokr9+8jgw4Chh8vP99a3pJDSweY3ZMBg8nlp+8gbemwJIa9l7GlAxVBg1Exgu8595C0pAid9Rv4NaN2rLKub7wxaGMAZQoijAEwDcK5hGMfl9yUxDMMwjEN2vA+IhBQWhiGdxm1vK4ui9kAIoGYJcOix0ta4T0nbuoTF9vek8zH2VCmaBoyV9nXQtFNGoseeKv89+iSgdr2+ctFdi4FBk4DSAcC4MwAjIN83HZj3bOxpQCAAHHKsvvLNRBzY+g4w/gy5Rg49AUjE9L1vO5JrZNQsuT6qqvUJtMbtQEc9MPpE+e8xp8gSzs5GPfa2vgWMPFr2FB1yrPyets9actDc6JOAgiBQfSKwVdN6TCSAmmXAoUl3e9wZQDyib03uWCSznoccJ7N15UOBmqV6bB1YB7QfAMak7SN7PtInPnculpnxwlJgwlnye4ret7wKNCFpS/4zlPxPw181hmEYhtHAzkWyr2LULPnv6hNlL0LjdvW2WnbLCK1pa9gRUljs1dSHs3eFjLKHklOGR82Sjr4O8WlON6xOOt/VJ8mvO99XbyuRFLWHJp3u4ko5TGPfKvW2AOkgBkIywwrI/qmmnXoynw1bZU/dIUnn+5BZAAwZSNDBjkXA8GlyUI1hSCGjK8tkCoiRM+TXEdPl1z0fq7eVSMj1MHKm/HfFMCk+dQm0HYtkee+w5DyC0SfKgIWONVK3Ua4Rcx8ZPk1+1bmPDD9SCk/DkPdUV8CgJrmPmCK++kRAxPVMT41FZHba/KyVD5GZa0X7SL4zaDAMo8AwjI8BHADwuhBiccbPrzIMY6lhGEtrazU2XvvgyiuvxJAhQ3qcPXbDDTdg8uTJOPLII3HRRRehqakpfy+QYRiG0cP+NcDgSd0ixnTCD6xTb8t0akzHqrBMCgsdDrEQScfqqO7vjZoFtO0HmmvU29u/RmZiBk+W/x46BYAhB2uopmGrLFcbdUz394ZN1SvQhk7pnpJnCozdy9Xb2p/sERw6RX4t7ifXp45hGomEfN5RM7u/N3SKDCR0NKi3t3u5HMYw5HD5b3Nt7vlIva3GbUCkTa4Lk0OO0Zdl2r9G2ipIDlc337/9a9TbMveRQ5Lrv2xgUljoWCNx+bnqsY/MlEOVdKyR/WuAwnKgarT8t2lXxz5yYA0Q60oGQZIo3EfyLtCEEHEhxDQAowAcYxjGERk/f1gIMVMIMXPw4MF5eY25+PrXv45583o2hZ911llYvXo1Vq5ciYkTJ+IXv/hFnl4dwzAMo40D67odRgAYkhQYBzQ4VvvXyoxZur3hR+kRaC17gI66no6V6azWapiKdmCtFJvBQvnvwlJZDqVD6Jqvf2jafRw2VQ6EUO00CiEFxIhp3d8z76mO923fajk8wxS6gBRotRvU22reJQfWpNtKBSg0OMR7VyRFTEj+u3SAzGrt/ViPLUBmfkyGHCbFp+pyOSGA2nXy+VO2kmtTx/o/sBYIlgADxnV/b/iRetZj/RY5FKfHPpK8pzr2kf1r5X0MJOVN6QCgbIieSY7mZ2rIlO7vDZsqM5TRTt9Pn3eBZiKEaAKwAMC5eX4prjnllFMwYMCAHt87++yzEQzKSMhxxx2HmhoNEUeGYRgmf3Q1S4ct3bEqqgCqDtXjWNVtlKIlVNz9vWFHAK171AsLM3KfnkEYOKH7dahm/9qeggmQ91WHE1eXdKwGTez+3rCksNiveEpl2wG5TtKduKJyoHJk99EMKtm/Rl5X+hoZNElmhKJdam2ZDmq6QEvdRw0BivpN8lrSGXI4ULdJva19q3pmdIHu9aLaXuve5BpJ20fKhwIlA/QEeuo2AoPGd4sYQArruk3qDzY3P0/p+8ig8d2vQyVCyPs1JGMfGTxJCmDV1G6Qa2TAmO7vDTtCllQq2P/zelC1YRiDAUSFEE2GYZQAOAvArzw/4dwb1ZcoDJsKfPqXvp7i0UcfxRe/+EVFL4hhGIY5KDCjsoMP6/n9IVOk4FBN3aaeogIABiadncZtMlqsClM8mM8PyFKokv7qHdSuFqB5JzDjip7fHzxZTpuLRbozayqo3SAFUlFF9/dMx79+sxw+oYr6zfLrwHE9vz9wnB5hUbuuu4TSZPAkOUymfnO3gFJly3x+k/Khco2oDlB0tcjy2kHje35/4Dg5kTOR6Ck4/FK/SQ49ST+8OV2gjTxanS0z25gu0AxDljlq2Uc2dpdJmwwcD0AAjTuAwRMtf80T5pEL6dm6fofI8weVC919cmDM0Ck9vz/kMHkemhBqDzWv3SCvy8zoAmn7yBbfayTfGbThABYYhrESwBLIHjSNs2fpufvuuxEMBnHZZZfl+6UwDMMwKjGzO4MzovqDxkvBlEios5WISwd70ISe3x8wVn5t2KbOFiAdjKJKOcEunYETukWHKswzkTLF55DD5ARC1Wcm1W7obatyhBz2ovw+mgItU1iMlyJA5cCVeBRo2tW9JkzMLJDqbGTtBinI0gMDhiHtqx6SU5905gdarP9Yl8wiq6Rhe+/7OGCszJjUKS4XrU1mktKzdYBcI6rXfqRDrpHM9Z/aRxTba9gCVIyQJcsmgQIprJXvI0kxmLlHDp4s+wlbdqu1V7eht5jtXy2/NvrfR/KaQRNCrAQwXdkT+sx0qebxxx/HnDlz8MYbb8BQqdoZhmGY/NO4XTps/Q7p+f2qauk0tu0HKoersdW0U54llOlY9R8DwFB/OHDDFum0Zf7tGjRR/VlopjPff3TP75v/btrR3dvnFyGkYzgtI2gaKJDvmwLHqgf1m2W2oN+ont8fOF6WtXU0yMykCpp2yvKq/mN6ft/M3qkWnw1bewtPQL5vqodp1CWd+Uzn27y2+i2977FXhJDXNvqknt8vCMl7q7o0r3G7DIaUZqyD/tVAZ4PMHhZXqrHVsAWAsL+PqstuG7b2zh4D0r7qQ+9z7SONO9StkXhUfp4Ov7Dn90MlUpAq+KzlO4P2iWXevHn49a9/jZdeegmlpaW5f4FhGIbpWzQl/+AXZMQ604WFKszI9oAMZydUnOxnUhz5rt9i7VgNHAu07VN78LEpijIdq6pkNLpppzpbHQ0ymj5gTO+fDRgrMycqqd8ibQUKen7fFDb1Csu8zPuYeW2hEjkoQeV6BKTDa75H6fQfLbM08Zg6W/Wb5YCcTPE5QIOwaDsgB1tkZtCA5LUpXI+AfF+qqnsHQyj3kZL+cuKnjn3E6j4OGCcFVSKuzlbjdjkgJzNgpuM+tuy2DoYA8vOnINDDAk0BX/7yl3H88cdjw4YNGDVqFB555BFcd911aG1txVlnnYVp06bh6quvzvfLZBiGYVTSuL23qADSIrbb1dlq3iW/Vh3a+2cDxqh1rGIRaS/TiQOAfkn7KkftN26X2YPMLEH5EDlWXeV9NJ00u/vYuE1t2WHDVntHH5BCRpktU+haOI1Vh6oVFrGwHG7R30agiTjQonCNNO2Qo+AzexErR8oMpcr1nxIxFu9b1SFq3zMguY9Y3EdT/DYqFBZNNvuIWZqq8j52NctJsFaBnqpD5Bpp3avOXsO2ZMAs1PP7/UYBMNSuf/O5rPaR/mOUZNDyWuL4SeGZZ57p9b1vfvObeXglDMMwDBmNO4DJ5/X+vhnBVepY7ZTR4QqLksn+o+UwDVW01MihEpZOY/Lamnf17r3zip3QNQz1wiKXYxVpk4cDlys41kcIeZ/Gntr7Z5Uj5ddmxQItWCIPVc6k6lC154U11wAQNhm0Md2vx+p99WrPqjwtEAD6jVQcMLDJRALys93ZIDPIhWX+bYnkYI7xZ/b+mY7MT9NOeU5YSX9reyoPqzb3P6s1kh7oUVV2aLePBIvkvql6PwZsAj2ju6sMfKwRzqAxDMMwjFvCbTI6bOUQhIqTDsF2dfaadklHNLOcEpAOTtsBmflSQfPu7ue1smW+HlXYOVZAUqBpcKwyy6CAnuJTBV3NUvBZ3ceipJOsUlg07ZCi2qrnvepQaUvV4BpzbVsK3eqej1FB067u9yeTypHda1aVLcD6fTOvV9X6bzsAxDqtRUxJf9mbpjoTX3Wo9RqpHCnPP1SVQTaHclh91sx7qzoTT7mPGIHuQEs6pvhs8Te4hgUawzAMw7jFdPStskxA0iFWKGKad3X/4c+kcgQAoa5cyHSaKi0c1PJhMpOn6toSiWQU3cb5rqpWH/ku7geUVPX+WeUI+dWnY5XCvI92GYLKUWony7XstrdVdSiQiMrIvgpMZ9dq/VcMB2CoW4+JePLabNZIv0MU38caoGxwzxH76bYAdes/231MZZAV7iNNu+zvY+VIKRY7G9XYSq1/KxFjBnoUZcejnTJgZifi+2vYRypGWB//kdpH/K1JFmgMwzAM4xbzj6+ViAGkk6rK0QdyZxAAdfZasjhWBcFkxkJR5LujTo7StxMW/UYBXU1yPLgKmnZaZ30A9fcx5aDaCYtRajMILXu6ncNMUpkfRQ5x0y45wdSq5LYgJPsHVd3H1r2yX8l2jYyUj1E1lKR5t3VmBOj+DKq6j6lgiI29iuFqjxBo3mm/j5ifd1Vit7kGCITkgJpMVGeQzbVmtx/3GyXXiKqhJFn3ETWBnk+EQBMqG3o/wfB9YhiGUUTKIbAZo185Qh6cqmLfjUelk5Yt8g0odKx2y6EdoRLrn/cbpS6qnxK6NsLCFAAqs4N297F0kHQoVTnEzVlK5czvq8rExCKyXM7O0Tfvr6r72LpXvjeZ0ylNVAYoUoMtsqx/kVB3bS177N+z8mFSmKoSFuZrtlv/lcPlPqKCrhZZdptrH1FVLtqyW16X3QHiKtd/aj/Oso+IuOwvVUG23jkWaJLi4mLU19ez+MiBEAL19fUoLi7O90thGIbp+7TuBWBIh82KiuFyVHe4xb+ttv3SAbXKaAF6It92jr5pT5Ut04mxysQA3QJYlZNqCgsrAgFpT2UGzS6DACSzg81AuNW/rda9AIQDoavoPrbssR5GYlI5Un3JbbZMJKBwTWbJoAUC8jPftl+RrT1yUqnV0A5AltG1HZBBGhW2gCzCQsM+km0ASOUohVl/BwINULMmhZCfI7vgXKgEKBng+9r6/BTHUaNGoaamBrW1tfl+KQc9xcXFGDVK0bQchmGY/2Va9iT7VCx6EIC0KOpe2fPkB9OpthMWRRVymIDKyLfVqHaT8qFJ0Sishw24smU6VllKvAA1jlW0S07gs7uP5utQ5jTulk6cXQYhldXaJ99DX7Zy3MeS/kBBodoM2uAsh4dXDgd2LFRnC7B/31QOnOhqkUEVu2AIAFQMVZ+JtPscVQ4HIOTnze+0w9R9tBHW5UNkdlBlJr76ePufVwwFapaosdWaI9DTYx+Z5s9WZyMQD2vfR/q8QAuFQhgzJssfEoZhGIZRTcse+wgqkOYQ7AGGZHFknZASaNkyFiPUZhCqT7T/ecUwINYlsz9Wwzbc2goEpdi1swWocYjbHN5HVePoW/dld+LKh3Q/btAEf7ZSpaI2wsJIZnuVZSL3AePOsP95xfDkFMsOoLDUn622/UCo1F7Emu9n2wF/doDc9xGQ91HVZMWWPdltmeunZa9/gWZm/WwzyAXy2lQEKBLJklO7jBYgbXXUyexg5tllbmnZIwNhReXWP1e5j+QSuoCS/bjPlzgyDMMwDDmte2X5kR2VaY6VCltADmd/qBoHNZoUXhVDs9hS6RDvkffRLstUVCmdcxXCIlcm0vyZqlHjbfvl+2JH6j4qKJfL1RMJSIdShYMabpNZplwZBECdQ1wxzD7LVFwls4Mq7qOTz5qq+wi4C/T4xXzN2dZkxVA197GzUU4NtSsBN20B6vaRrKJ6CORkURX7iIM1oqBUmgUawzAMw7iF1LHaJ0fblw6yf0y5IsfKfI5cThygZmR7rvtoGOoGTjgRMeVDZXZQSV/Y/uxRdjODpup9C5VlL6etGCZfk1+cipj0x/qytz+7o28Y6gIU5nNke98qhslSWb/nDpq9TFkd/bRSab+07pMBD7ssE6DwPib3BnONW9oa1vOxfmjZk/0+qpws2uIwYNZR72uyKAs0hmEYhnFDLJzsZcqSQQuVSGdZhbPTuk/+wbfLMgHS+Wiv9Z/5MV9vNofY/JkKZ7/tQHYxCCRHjStyUM3ns8N0KNt99rVHO4Fwc/ZrM/vCVAm0cpsyUZMKRRMBHQldU3yqWP97swsm0x5VgML8mV97Zi9TtjLA0oGyBFhVdjDXfSwbrEigmeWUDjJoZPuIosynk5LzssEAhBRpHmGBxjAMwzBuSImYLNFhQE7vo3RQox1ApM2frVSfVjYHdUjPx/qytz/3fSxXeB8Liuwn5gHdvXB+7Tlx4szMjxIHNUc5JSDf03AzEGn3bwvILnTLFAld017O9a8wgxYqy55lUjURMyUGs6x/w5Brsl1RoMfJfeyo839eWKsboevzPgoh70/OfUTRGmndK6c0Wh1knrJlrn/v9ligMQzDMIwb2p0KtMFqzt3JVQYFdDvEqoRFtgxacT85GtyvgxoLy0OocwmL8iFq7qMpYrJNnlRVdujkPpr2lGR+HDqogH/RZK4xu8EuAFA6ADAC/tdjuFUGHZysESVZpn2576OqEt/Ufcy1jwxStI9kOWLCpHyIPNLDr71UiWOW9828br8Biq4mIB5xFjBTtY84EbrmYz3CAo1hGIZh3NCWdHBzOVbliiLfTsrXVJWUtR2QjnVZln63VM+PT8fKFArZHH1AvpZwsxR0fu3lvI+qRIyDTCSg7kwtJxk08z77dVLbD8jSzGz9boFkz6Tf9d/qoFQOUJf5cXQfFWUHzd+nyMQLIZ8j12dNQeYHgLRVWJ49ExkslCWcqoRuzvdtkLoy8Jx7lpmJ975GWKAxDMMwjBtSpUm5/kgP8e/EJeKyjyGnGFTUF9O2TzoXgYLsj1ORHXTsWCkSFm21ue9j6UA1mR8nvXyAmsxPLCz7mZw4qIAC8Zm8j7nOwCsf4stBBZCWrXaQQVOS+XGQiSwdmHxtfm0l33cnosmvrUibHH7jNMuqIoOcyxagaB9xeB/LBsvJkl3N/uy11zp4z8xAD5c4MgzDMAwN7U5LkwYnBwFEvdvqaAAgnPVpAWqEhSPHapDMWPjBcQbBFGg+r629NntmEEhmfgYqELrJTKTpzNtRNli+x34yP67vowLRlOs+mvZUvGdAbnvKAhQOyteCyeyhCjEYCGXviQSSmZ8D/jI/7Q6z/qp6MJ0M7TDt+RikkbIFOBPxgIIMcm3uz1pRuTwexMd9ZIHGMAzDMG5oq02ez1Wc/XHlChxipw6qmfnx7RDX5Y4Om6+n3a9j5WBIAqAmg5ZIOHOsADWZz4665AS+HG5W2SAAQgp5r6QyCLkyP6oyaA5FvJIMmsMyWPPa/AQNzJ7IXPfRtKeixLFscO5MZNkQ/0c/mJ8dpyWOfgVaR50zEV86UGEm3kEvH+DvfYskBzE5DVCwQGMYhmEYIpxMDAPUZCycOqiBAnlgb0eDd1uAjGZnO2/NpFRBP4ebIQmAv/vY1QSIuDPxWa5g1LhToauiXK7NYQatsFT2BfkV1u11zkSMmUHzlflJ3pdcmcjUffRxbeZnx6nz7TeD7DhbTRjoKSyX/YWdRPtImQqhm8xEFlflsKXyPjoMUHCJI8MwDMMQ4aSXCUibrEgg0AA5Oc+3Y9WQ2xkGpGOViALhFu+22muBon65M5EqhjI4mTxoUqLgPjoppwS6H+PH2TdLxJy+b37uoxDOhq0A8l7Huvwd/dBelzwvLpTDlnkf/Qg08z4OyP1YFZMVnQZ6VGTina5/w5Dr30+gJ5FwsY8MTk5h9FEG3pbMRObMVisolXaaiQR830cWaAzDMAzjBsc9OAoyP24Eml/HKh6V0xKdOFapcjmfwsKJM1xYBgRL/GW1XAtdHyWHgLwvTjOR5uO94kqgDfa3HjsbpTB3VAY4oPt3vOJkIAMgsydGoO8IXaBbWORCRWlqSlg4WZM+13+4WWarHe0jycf42bc66un2rNTQGqf7SJNnUyzQGIZhGMYNTh0Cs/nfr4NqFOQu3wH8Z9DcZhDSf8erPSf30TD8ZyycDtIAkhm0Jp+DO1z08gH+hUUgBBRV5H5sqd/76DKDAPhzvp3ex0BA2qMSuqWD5OMTCW+2hHAeoFAldIv6ZT9c2cRvoMf8XadCF/C//p3cx4Kg3JMpA2Y+9mMWaAzDMAzjlERCOkpOnI/iKgCGmgxCrvIdIOlY+bDlNoNgvj7P9hqcOVaAdKy6mrzbciMsSgcAEN7HccfCMovgRsT46Z3qTN7HXMMmAKBsoM/3zIWITwkLPwLNYakokJwsqqLE0WEmUiS8f7ajHUA87DDQo0igOcn6AEBpf0WBHjdZLT9ZXTf7iL+slrtMfP/k8QYRT6ZYoDEMwzCMU8LN0jFz4hAEAkBJlU8H1eE0NEC+JioHVUW5UGdDt/OZi5L+/sugzOfJactn5se0VebgPgYLZWbDVwbBYb8PkHRQfTj65lp2sv5VZZCdOMOAvAe+1n/y2pysEb+Zn5QthyW+gZDPTGSts5Jb8zWR9fIpmNDa4XIf8SU+G+T4/FCJA1v+AhQs0BiGYRjGKW4cK/NxfhzUjgZnDiMgHxfrBKKdHm15yKCRCYv+PoVFozy7KtcB3ID/zI+bKDuQzGoR3sd42McacSFi/ArdeCyZHXEaoPB7H+vlGsk1kASQgRfA+5p0I3QNw39fWGej8yyTacvr9E2nkzcB/6XSibjzigZAzT7idD8u9bf+WaAxDMMwjFPMP+5uSvP8ZiwcO1Y+G+7dCLRQCRAs9n5tsbAs/yl14ez4vY9uouyA9/uYclCdCgufh3531LsT8YB/YeHkXqZsNXmzZZa0uln/fjI/nS6FLuD92lwHenzuI26yTKUDgUTM+4RWN/uI2Vvr9dq6mgEI9+LTK26zdQBn0BiGYRhGO14cKz+lSZ2NLhwrn5mfDhdRfSDpNDb5tOUy8u01qu+23w3wfh/dinif094cD1sB/Au0jgYgEHQ2kCRYKM/V8nsfnYrPskHSltfBHR31Hpxvggyaac93Bs2piFdQ4ltQJEszc1EQBIoqfewjLsQgoChgRnMfWaAxDMMwjFPc9FeYj/PqEAjhrqRGhWNV5LDEC5DRb4pMDCDvgYgD4Vbv9twKXa/3MSUsHNorrvLuoLoZWgOoERYlDgeSAP4mArq9jyX9ZX9o2ONwF2qhC9D0DkY7Zemz29I8P4Ge0oHO14iffcRLwKyr2fuEVleZSO5BYxiGYRgaKCPf4VZZauRGDAI+HCuH46pNTGfHqy2ALqvlJoNW1E+eqeVZxJjCosrZ40uqvE+oTJ05RZT5cXMfgeSQHL/Ot0NhkSqXa/Juz6lgKuoHXxNa3V6bn0y8a6FrBii8XpsLoQv4W/+pfcRtia9He24nRgKe1wgLNIZhGIZxSkeDdN6L+jl7fMkA2csRj7q31enWiVOQQXPrWJFlEPxmflxkIgMBf9PeOhuBwgrnmciS/sk1EnNvKy/30YVA83M2X6pU1On6r5Jf/Tj7Tp3vQEAOFPGTiSyqdL5GSn0EetyKQfJAT5WCUlGC9W9mq53ex8JS2afLJY4MwzAMo5nO5FRFJ+eSAd1/zL1kmtyW7/iePuhipD/gLzvopcQR8GYvHpUCyI2w8FOa52byJtCd+aFYI+QZNB+lea4DFD6yI5EOeTaZqwCFj7P53K4RPxNaXWf9FQR6XO8jTR5tEa7/cIssoXW7j3CJI8MwDMNoxk0PAuBvIqDbYRPBIiBU5qM0yUWJF+DTsXJb4uijXMh8jW7LN/1kfpyWN5q2AG/OvtshCeaZWr560FwKCz+leW6y1X4mArrNxAD+AxRu1yPg8drcljhWQZZvUmXi/WQH6+V6djK0BvC5j7gUukBy/XOJI8MwDMPoxa3zUarCsXLhEPspKXNbmlRcBUTbgVjEg61GOeEvWOTs8b6ErstMDJA89NtHGaDbEi/Am9h16zQahneHWAj3GbTSAVJ4epms2NEg15jjbHWV/EohdAH/wsKVLR/Cwm2JY6BAlm96+azFY/L+u7m24ir5O14mtJpC1/HQmqru33NLh0uhC/jaj1mgMQzDMIxTXDvfPoZbuI18m/a8OFaRDllC5bYHDfDuELu6rqQtLyLGrYMK+CpNctWnAvjL/LjNRALehUWkHUhE3Zd4eZ2s6Pk+Nrm35faICcB/D+bBmok3H+tnz3IrdOMRWWLqFq/30U8GjSiDzAKNYRiGYZzi2iFQEfmucv47Xh0rrxkEwLuz48ZhNMs3qUqTSn2Oh3frxAEeha55LlmlO3uUJV6A98ynG1uhEqCgsG9k0NwGekp97COdDXJYRajE+e947cH0FDCokl+97pGusnU+pm96EfGcQWMYhmEYAtwcVAr4FzFuJr0BChwrDxk0r5kfN44O4ENYeMxEehnK4PbsOkDBfXRx5hTg/T66HcgApAmLJvf23N7HVPmmB1tup2ECaWdquSzf9DS0xsc+0uFy8iaQp0BPkzd7bvZjs3yTbB9JDsnxUL7JAo1hGIZhnBDpAGJd7v5AF1XKQQdeS5PcOKgArWNV7Mexchn5BryPGvca+Qbc2wu3yHPJ3KwRX6V5LktFAe8ixk8GzWu5nNv17/XQ4456AEb3e+GE1MHYLe5seSk59HsfXQdDPPZgetpHquRXz5l4t/uIx8minQ0ADPcVDYmYPNPSJSzQGIZhGMYJXia9pc7U8igsXAu0gdL5TsTd2wI89oV5vTYvwsJjqVwgJIeSOLblcdS4l8EuwUJZvumlNK+z0b2DSplB8zOy3Uvmx+uhxx318ncLgs5/x6uw8BIwCJUCBUXehYWnfcRHoMdLdtDt+2YOrfGyj3hajw0y+xYocGHL+9EnLNAYhmEYxgle+isAf6V5XiLfEO7P1PIiLLw6VvGYHBpBdR9Noeu2DBBw71h5uY+A94ETbku8APnaIm3up296HTaR/rtOiUeBSKvHDFqTu98BvGciAQ8CzYOI8TN901Mm3lwjYfe2AG/7iNtr62qW2Wqy/diD0PXRg8kCjWEYhmGc4CWDYD7ea+bHS4kj0O0EOsUUdMUOz5xKf6xbZ8fLpDfAn2Pl1okrJcygmY/33IPj9j5Wya9uhbWXaZipoQwe76Nr57vKeybSq/Ptev17yKCZj/ea+XF9bR7Xf1ezHNTiaiBJlfzqdv17qWgA/AV6vO4jnEFjGIZhGE14dax8Rb5d2jJFU5fLvpiuJllGFSx0/jteG+5TGQQvIsZDw72nUjmPjpUXEQN0nwXlBiGkU0spLNwOrfG6RrwKXa8ZtK5md71FgPcMsudAjwcRbw6tcbtnmfuI2/66rib5u26y1YXlchKp11JRT/fRawbN4z7ioZ+PBRrDMAzDOMGPQ+D2D3QiLp0xt46VOW7d7blTXU3uBiSYeHGIPWeZkg33kTb39rxkYgDvpaJe7Ll1GqMd8lwyt++b59I8D5kY057bTIyXIyZMW+EW9z2YXc3usseA9x5MX4Eel/cx0ub+7DrAR6Cn2f16NAxvAQo/+0hXs/s14msfaXL3e2CBxjAMwzDO8OoQeJka1tUMQHjIIFSm/b4LOpvcO6iAt2i0+dq8Zixclx16EBahUsAocO+gmmLVtWiqci90vZSlAv4yaG4dVNOeZ+ebSFh7CVD4GRJSUCTXmBu8fNa8ZnSLPun7iIc+XS+Z+FTAzOU+AhZoDMMwDOOMrmY5bc9NGSAgHblIqxx84BSvDqqfyLdbRwfw1vOTEhYu7XkRFqlJby4dVMOQYtfLCPXCcm9rxPN9JBJoXibmAfI+uha6Pkoc03/fCUJ4y6CFiqXI8iKsS6rclQEC3rKsXjO6qRJHt0LXxz7iWqA1ya8U+0gs4m1oTag4eXg6CzSGYRiG0YPZX+EWM6vl5iwcv5Fvr70jbvET+aZwrKIdQDzsLfNT3M9biaOnMsAq+VrdTM1LZeuIBJpX57vIi9D1WgZYJb+6EbvRDlk6S7n+vdgq6ifPYXQzfbPTa0+kxwyar32kyaUtwgCFV6ELeNtHwAKNYRiGYZzh2bHy4Ox4dQgKy+XB2K4dKw+9I4BHB7VJfjWdQKcUexCfqTIoD6KpyEvmx0efFuDOSfVa4mUenk4lLLxm0IyC7s+OY1tV3b/v2FaT/Oop8+NRWPgK9Li4l/nIxFPtI51NyVLRYne/50V8+t1HuMSRYRiGYTTh2bHyMBHNdFbcOjuBAFBU4cEh9nptVdJRcjNZ0SwVdTMNEEgTuh4EmltHH5D3w0uJoxcnzouw8JqJDASS4tOFg+q1DBCQmR/X/T4ezq4D/Aldz+ufSuiaoslDoMet+Ez1YLpcI1570LyW+PoJmHkJ9HjaRzwEKMACjWEYhmGc4Tfy7eaPtOk8eHXk3DhWiYS05zWDIOLuyjd9l4p6cKy8OnJkJY4eRrb7vjYX9zHamZwY6fF9i7bLA8qd0tnovZcJcHkfk4/1lPmpOsiFhcd9xDDcBygibXIv8LqPuJ2sSLkfU+8jYIHGMAzDMM4gdaya5Fe3ZYCAzFi4sRVOToz01DtSJb+6FRa+SkW9OFZV7u0V9/NWmudHWLjK/CQf69VJdSWq/WSZPGSQwy3eMzEAXQbNSxkstbAoKASCLssATXtUIsbL9M287Mce1z+XODIMwzCMJqgdq2AJECzyYM9lBs2PiPEqmrzcx0CB7LGjyqC5neKYKgOs8mAr+TtuSxy9lIoC7vti/IoYwL09L7ZCxVKMeCoV9XJtFe6Erq9SUR/30W2pKOB+H/F6xATg/dq8BEMKywEYdOKzL5Y4GoZxiGEYCwzDWGsYxhrDML6fz9fDMAzDMJb47cEB3JcmecmeAe4dAj9DErxMqPR6HwH3GYuUY+UlE1np7tDjWBcQj/jL/LiN6nu9j8Uuy678OqiAy/etxVu/D+C+nym1/r30DpprJOHs8X5LRQH3pdJe76NXEX+w7yNmD6bbjC5A14OJ/GfQYgB+KIQ4HMBxAK41DOPwPL8mhmEYhulJpA0QCdoMmh8R4+b8onxkR7w4cUDSIfZwbV6HhADOncZUv48XMViRtOVSWPtaI0SlopQZNCDZF0a0RooqAQi5P7ixdbBnIgEPmfim7t9zi7n+qfZIL+WbgRAQKvFgq5/7HkzkWaAJIfYKIZYn/78VwDoAI/P5mhiGYRimF34cq4KQLFd0KyzIHasq97YoSxwB9xMqu5plyZvbUdyA+6EkKUffw7UFk31CB+t9NO+B1yl2gLs16bUHDXBfdtjVLMveCoLebAEuRLwCgUYmYlz2YFKKeD8VDUByjbi9j5UeS0W9nU2Z7wxaCsMwRgOYDmBxxvevMgxjqWEYS2tra/Py2hiGYZj/cfw4VoC3iK3nEq/kAAinZVd+e3AAQsfKQ+bHjy3A+fvmpwwK8CYsfGUiW50fj+ArO+LyPka7ZLmo1xLfIrcDUJq8iQrAu4j3FOgJyp5DV8EXH6XSbqcPej043bQFOH/f/JSKmvYoBpKYtoC+KdAMwygH8AKA/xNC9LgCIcTDQoiZQoiZgwcPzs8LZBiGYf638SvQvPQ8+Il8i4TzsislPWhORUyr91JR057bzI+f+wg4d+T89LsB9OIzEZVCyKktgKa/LiV0q9zbArxlWT3fR5cHOvvJMgHeSnz9rP9Iq/MeTCV9ik4/a03ebZn2XPcEE+0jSfIu0AzDCEGKs78LIf6V79fDMAzDML3IRwaNKmLb1SwPpS0sd2/LPNCWosQL8CZi/GQiAZrsCOAhg9bkbz0C7oRFQZG/UlHHtnyUUwLu72Nnk/dMJGWJI+BtSI7fNeJ4/TfJ1xcocG/L832scm8LyM99dDnJMd9THA0AjwBYJ4T4XT5fC8MwDMPYkg9h4XmKo9vMT5P3UdyG4S5joULokk2MdJkd8dOnBbgT8YmEv6i+28mifu6j2x5M32ukH90aSYmYgzDzE4sAsU5vPZFA2j7iZo1UebMVLJZDOKiCIaT7SN8scTwRwOUAzjAM4+Pkf5/J82tiGIZhmJ6oKE1y04PjdVy7aQtw6Vh5tGXaI8sg9JNlebGIc3vkJY5+RLzD+xhphTxcvMqjLZe9gyrWiGOh67dUtMLd1DzKPkU/EyPN3yPriXRZduhnqqgZ6KHMoJFl4r2VOHoYWaMOIcRCAB5CdgzDMAxDCGV/kYoMQvrz5MJPiRdAfG1p0ejgIAf2/PSOuM2OtCRLRcu82XMj0FTdRyoR72Yog4pSUUCKWCdnm1EPCfE6VdS017TDuS3A/z7i5tr87CNuRLyK9R+PyGCYk/dCSS9r38qgMQzDMMzBT1eznKBWEPL2+25GVvsZ157+e1TZEU/Cosq7rfTncWLPq6gOFsm+K1cixuMobiCZQXAhqgHaPkVfGbR+Lmz57UFzMREwEffnfIfKABju1r9voetWxPjswXRbKu0VygCFm/UfiwDRDrpsdRIWaAzDMAyTCxXOh9OyK7+lSZ4cqypvtkx7VNkRNxmLaBcQDysozXN4beEW76LCtOV09H1fy6BRZkfcHHrs97MWCLgXTb7Lianuo8s10tnkbx9xlYlvkl8pslp+10hBSA5T6mtTHBmGYRjmoEeFYwU4c0D8Oh+eskx+xKeLQ19V9OAAzhwrvw6q+btuMj9esxWAvI8iAUTaHdhKXpvn6YNeMmh+rs2F8x1uAWB4myoKuJsI6OeICRO3osnXZ81FD6bvQE+V/Eq1j7gV8aFSecC7F1Lr38G1qdpHWKAxDMMwjGJUlCaZz+PEFuDdIQ4Vy9I8p06jkh40p6VJTUBhhTx01wtuhK7f87QAD9kRP7ZcCAvfIt6FLb+HiwPune/iSpmd8mTLLPF1ch8VON9uh1uQBXp8BkPc2IpHZYWAr33ERaDHz0ASwF0G2e9+DLgfSgIWaAzDMAyTG1LHymfk2/xdJ2IwFpZlgH5K88wx+05L85QIXaoMmsvMj6/76MH59lyalzz3zsl9jPmcKgq4LF/z0RMGuOv58dsTCbgfgEIe6CEozfPbN2j+LmXfLEDzWQPcBSiSsEBjGIZhmFz0RWHhyJYKMVgJJKJS7OW0p2DYBOCuVNRXX5iL0iRlTqOLzI9vh9iF8+33fYt2yExLTnvN3gfkAC4FWpP86ic7Qlni6DbQYwS8l4oCzsWn36MRgO5MJEWgx1MGjUscGYZhGObggro0ySiQ0WvP9hw6BH4PV07/XafXpiI7QuVYuSpx9NmD5ma4iyliAgX+7Lm6j1U+bLkcykAldM3HUJQ4qigVdRvoKarwXioKOO/BNK/f75CcRAyIduZ+rKp9hCqDxiWODMMwDKOYRILWsTIdVK/j2k17bvq0TIfFqy3Aee+Un/tYEAKCJbSlok5sJRIKhIWbHrRmf+8Z4HyNqHJQAedDGfwI3cIymTlyk0H2u/6d2Ip2ykwzZaDHjy3TnqsSR6p9hHg/BrjEkWEYhmEOKiJtcroeWWmeAsfKaVQ/Ffn24Vi5zfyocBrJekccluZFWgEIRZlIh++bHxEDOF8jqkpuAeeZHz+2DMP9+i/0uf6pha7T7Dj1PuJ3kAZAs0eaPZhO17/fUlEucWQYhmEYxaia4gW4cFBVON9tDmyZ0WGfvSMAobBwUZoXCAKhEn+2gNz2VGTr3JRd+R1IArgocWxKPp5qKIOCa3M6WTTckjyA3uNUUUC+b/FI7h5MFX2DbkpF/fbyAUkR42AfUVEq7TQ7KIR8b5WsEaflxD4OoDdtxcPO+nSTsEBjGIZhmGyo6FMJFiZL8xyWC/WlDJpT5zvlWPkszXOTsfBdKpqMmkdy3EslIt6l0O1LJY5OM2gqSkUB5yPbwy0K7qND0ZTaR6p82CIucSyqlBUEuVCyjzjsL42FZamoin2EIqMLpH22HdzLJCzQGIZhGCYbKpwPgNYhKCyXoiLXRLTUtRE437EuOQRAhbCgvI9AbsdKRQbBzej7LgXCwul6VNKn6FB8mqWiKrKsTodbqLiPQG57Ku5jQVBm/JyuEd/CwmEZIOWwIVX7sZsAhap9JFegJw0WaAzDMAyTDRUTygB3PT9+S5OKymXfXK6JaGZGj6K5X8UgAcB5Bk1FGWAqg5ZDoKnIMgHuhIVvEdMPiHXm7q8Lt/qfKmr2eJHdR6efNZ+TN01bAI1AM3/fsbDweW2F5cke3ByBnq4WIBACgkXebTkV8SrEIODuKBIVQhfgDBrDMAzDKEOFiAG6nZ1cKI3Y5sr8tALBYlmC6RXHDqoqoes086NAxBQ6LE1S0YMGuCjNU1Hi6NQhTtpSUSrqWMQrEE1O14iKTAzgvMTRtz0H+4iyUlEz0NOR/XHmZ83PGnGaiVcmdN1kWRUIXcDZ/p+EBRrDMAzDZEOZY+VgcEciDkTb1TmNThxiv7acjr5XFfl2PABCxSABM/PjtAeNIPMTj8rMl4oMApB7upyK+xgsllk4qgxasZs1QlXiqGgfcTK4I9IGOVWUSsQr2EcKXQQMALoppkr6FM01wgKNYRiGYdSg1LGicj4cZixUOKiAs3IhlRmEaLvMEmS1p8KxcnofFUzoA1zeRwVCF3AmLPzeR6ej71NnTlE636oGQDj8bKsQTU4y44CCzI/DDLIKEW/21x1MQte0p2wfcX4WGgs0hmEYhsmGirOSgGRpEpET57jEUUGfFuAsq6X62qLtue2psuWkxNFvqSjgTsQocxodZLVUiHgnGWQVQ2sAuR6d9tdRTnEsLJfDYPzgRFioDIYADjLIivYRJ/2llIEeVZNnucSRYRiGYRQTbpXiLODzT6YrB5W4v8gvTnqnKIWFKscqVeL4CRa6EQdC129Gy7SXM0ChsL8IyH4vEwnFa4SgDNC0R9bv6SKDpmKNOOkdVNWn6CTQo2qkPw8JYRiGYRjFqHKsnAwJUS7QnDhWPrMVpj2q0jwnEwFVjfQvCMnMGJnQdZBBUDUN0+nob2XX5ibzU+7TloPBNWafll9hESyUEwwdlQEquo9OAgaAwgzywSQ+CQM9yoIhDgM9abBAYxiGYZhsqMwyxbqAeCy7LUDh1DCCISFAsi8mVyZGtWOV5dpUOVaAQ2Hdpq6XL9Imh8XY2lLdp0gkLJwGKIyAv5H+QPfrzRY0ULlGnIgmVZ810hJH4gxyYbmzjG5Bkb+R/oAz0aRqsFFBMDlIic9BYxiGYRg1qHRQgeyiyXQICv1mENxEvqnK1xSM9DdtATkcK0VCF4Cjw3qVrxGCa3NzFANZBi0pdP2MawfSJis6+KwpWf8Oy5dVBUPi4ez9daoykU4yaKrKiQHnZeCq1qP5fNlsma9LhT0WaAzDMAyjCGVZJsKSmlAZAIOmTwtwXr6mRMSUJZ/PSeRbhT2nTqMiMQjQXJuTASiqRvoD8j46EoOKepmA7OVyqkU8ldB1Ipooe1mjnbKcmKxPMR/BEKIMchos0BiGYRgmG33RIQgEcjsE0Q5AxBU6HzlKk1SWUwJ0jpWjseYt/rMVgLPBHarLrrJmdFVnEBz0F6kS1YDD+6iq7NCJsFAo4p2sf7+TZwuTgR6yz5qTEsc+GDAz7fGQEIZhGIZRhPKofpY/0qYjROEQq+plAqSD6qTsqq9lEIA8lTjmuDajAAiV+LeXy2lUnUEIt8nMbTZ7SrOsWe6j2Z+mZPqgw94ppes/R5Y1VCpFuB8MI3fPm8pMZGEZXbbaUQ+ayvXvINCTBgs0hmEYhsmGyjHjQG7nO1Tm/6wkIHc/h6px1YDzfg7qDAJVaVJE0ZAQp1F9FX1aQO5rU52JFHE5KCebPZX3MWsGjXCNCKGu39NpBlnFdZn2su5Zig5pB6SIyRnoaVEnqgG6PkWnh6cnYYHGMAzDMHYkEtI5IXO+FZXvAC6cb5XiM5fTqMBWyEkPGuGQkFgYiEcUZ9ByCAsVDipAm0FzkkFWJSzMNeJoQh/BZEVzpD9lBlmZQMux/lVnq9Of085eXys5B3hICMMwDMMoQ2XJoWMRo9KxymbLjHxTZSwUiU8n/XUqne+iSmcixm+/D+BsjXQpysSY9shFfBYnVVUm0slYc5XvW1GO4RY6RAzVPpJLfKosFaXcIwsdDFIKt8oz7vyO9Ad4SAjDMAzDKKOvZhCA5PRBB06jSseKMjuY69oKCtU5VtF2mU21tKVSDDosuyK7jzquLcf6VyGYTHu5MpGFFVLw+yVXf53qckqAbh/JNaFS6bWZmU+b900IdcOGzP46J2JQRTmxkyME0mCBxjAMwzB26HCsckXaqXpHuhSXeAH29lSO9AecOY0qbQH29rSskU+i851DfCbi6jJogHT2c2YiFd5HEZflrlYoLbl12oOmqgw2VwZZcZ8WYG8vFgYSUdryTZXBkGyBngxYoDEMwzCMHSodq2AREAgS944Q9lcAWRyrLnVnJQHOJsupdKwAGoEWKk3aypH5UVri6GSQBoGwUFlODCSn5uUouVW2HnNcm+p+NyD7PqKqb9a0R9WDlivQo3I9mvbIhK4DYZ0GCzSGYRiGsUNln5bTkdUqnQ9HjpXK3hEbh1ilE2c+D+UUO/M5LW0pFBZmfx1VqWiusqtwKwCju/TMD7mEhfI1QpgdyVWaqvLazEAPaZY1RxlsqBQoCKmxBdivSZXZOtMe2WfNgbBOgwUawzAMw9hBLiwUO9+JaJayqxZ1I/0dZ5koM2iKI9+2TqPiNVLoYOCE6kmf2XqniioV9eAQZiKB3CWOSnv5ckyNVFlOnCvQo7ycuCJ7f53KUtFcPWhaPmsHSSY+AxZoDMMwDGOHFmGRq0+rXI2tnMJCYYlXruhwl8JMpGkvV1RfuWNllx1R6HwDSWFh46DGIrJcVOn7JrI7xMozkYQinrJUFMh9bcretyyBHrOcuFDRPlJYniPQo/I+EpaKms9DNmzFwZCoNFigMQzDMIwdOsqu7JyPaAcgEuqFhenUZBJuVefEBYsBo4A28k05xQ6gy6BlK7vSIWKA7A5xX+zlA3KXrykdEmIKixzrX9WEymyBHh1ZfyD7+6YsqERcBkudrQay20uDBRrDMAzD2EEpLHQ4qEAOx0qRLcPILj5VCwvKKY5OhIUR6B7w4dteluyIjgwCkH1NqrIVKJD3iNT5Js6gZcuyhkrl+WwqoPysOekdVPWepQI9VJlIykAPZ9AYhmEYRg3hVnV9WkAOx8ocNkHUOxVpVzP8wYRSfBZWyFKueMzenjLHqrL7ObPZUtGnBWTvnVLufJs9PwTON0Cb+TGzI1a9U4m4HHlOmWVVfh+JRbzt9M12dZn41NlkuTLxBFMc41Eg1qk2qATwkBCGYRiG8Y3KEi8geXg0kWNlllNlmz6o2mmkGo9dlCVjYfZpUU1fi7SpK10z7eUUugr7i4Dsa1LlGnGU+VFYLicSQLSz989MAaD6PlJkqwGH95Fq/SsslTbtUYpPu0CPjqASwENCGIZhGMY3WhwrwjHjgL09HY6VbeS7pfsxKsgmLCKKM5E5y65Ui/gszrfqs8Ioy2ABZ1lWlX1agPWaNK9XVQbZyZAQskCPJmFha69N3ecayB3oKSiURw2osgVY26MWuhmwQGMYhmEYO1QOEgC6HVSrsitdzf1kjlVZdqdRpWOVTViojrKb/XUHRflaa/djlNhy0oOmSOgC2acPqu7Tyup8mwJNVe9UoVzf2XrQ+mygx8z8ZMsgE+4jqoNKgLU91fcxV6AnAxZoDMMwDGOHjgyaiMuyGitbgIYpjlSOVRbnW4ctgMaxAqRIoSxfi7YDiUTvn6UyP4qn5lk534m4tEfZg6bUVpYztczrVZ75yXZcgUKh6yjQQ9A7FY+pLSc27WXr01X9ngE2gR7F+4hhIOdY/zRYoDEMwzCMHcodVCfCQvEAiGhH75/pcqyy9rtpiHxTlCYBxMIieW1RC2c/NUiGsFRU1cQ8IHsGTfVnLWt2RLHQNe1ly1artmUb6NFwLh8ARCz2kYjijC6QDPTYCF3l/Z6E+7FpjzNoDMMwDOMT1ZmfbOVCqh2rghBQUGTtEGhxrLJkEFQ7VtmEhZYMGqH4NB3ibKJJ5SHEgPX7prqcEiAuFc0ylCGiWOia9mzFp8KzwoC0yaI26z8QUldOHMqSiVQdMDCfK2swREcGjWA/Nu3ZnUuZAQs0hmEYhrEj3KZ2FH2ungeVfVoAUFhqHflOZRBUjtnPMh4+oiuDlk1YKHSsQqXWmUjTnuooO2A/3CJYou7Yh0BAOuCWIkbxpEMgTyWOWa5N+fRNu3JihaPogdzDLVQe+xAslILPKqObuo9U+4ji++hkH1G6/m32YwtYoDEMwzCMHZF22p4HlQ6qac/S0dfgfGcdWa1Y6GbLjmhxrMqtHatEIpkd0ZAdtBtuofK6AHthoaUMsEKeLZWIW9hTLXQdZFlVnwNotR5jESAe0TTcIotAU0lhWY5pmERDciKq9xEHJb6qB6DYBXoyYIHGMAzDMFbEo0A8rKfE0c6xUmkLsI9G63KsAGthobxUNIuDqsuxyloqpyHzY+c0kq0RHWWw2crlNExMtbOlpcQxh4jREeixE59UgR4dwZCiCrnvxqMW9jQMrQFsAj069pEsA1AyYIHGMAzDMFbo6MHJOlmunS7yrcWxylYupNixyjayWlvZFWGfFpDlPqoWaDYZCy0ljtkEmuIAhZMx+yGV5cs2E/q07CPmIBmrwR2UIl6TiEl/7h72dI3Ztwn0hMpkGbAq7PYRC1igMQzDMIwVOhzUUGnP5+5hr1WtqDDt2TlxgB7xaensK3assp1NFm6V162qTwuwL03SMjEyx3ALlVlPwH6ynK4MAkAjPs2zybJlIpU63zZnk2kRuuY+YvO+qd5HcvWyUgzJEUJ9yXnWQI+G+xjiHjSGYRiG8UdKxGjoebB09nVEvm1KarQ4VjbCwnSslDuN5TaDC3RlECzOJtNa4mhXKqrhPlra0plBzlgjsTCQiGpa/0RrxAwYZJ5NpjMYYjn6XlOWlaoHze4Q+lgYSMTUrn/DsO8v1ZWt5gwawzAMw/ggrMH5yDVZTrlDQNjcb1cuZDpWVNemxbEqAyDkgIsetjSN9AfshbWOISFUI9TtShxTWSYdvVNE97HQ5mwynSWOdqXSqrOsdiWOWgby2JxNpmPPArKXb+oqFbU6YDwDFmgMwzAMY4WO5v5gEWAE7CPfujI/meiaYgdYON+aHCu7ciEd2Tq70lSdWVaqzI9tGWw7AKP72lVgd2061iNgP6FSRybS7tBjnaXSdoeZK8+y2gV62uV+FixWZ8suQKFDDAKyfNNu/Svfj0sBCCDamfOhLNAYhmEYxgodzneqpMbOsdIh0GzEoBEAQiVqbZnPnY42xypb+ZqGTAxgn/lR+b4FCuRZZ3aj78mOYkiuR1XnaQH2a0RHGaBpz/azpiETA/QWTTquLVQCwOh9bUJA+aHYQPZe1kKFZ64BWdaIhs+aac8uiKVjzwIcjdrPq0AzDONRwzAOGIaxOp+vg2EYhmF6ocshCJXa9GlpKs2zKqkxy6BUOlZ2RwjomKoIJAcX2I0Z11HiiCyZHx1lhzZrREdU32qNUN5Hbc63TYmjLhEDWKwRDQLNMKyFRawLEAm6Xj5dpaLmc6ejI2AGJA9qJ+xlNZ87B/nOoD0O4Nw8vwaGYRiG6Y0u59tqImCsS/av6ChNsiqp0danhd7XpjM7QlqahCy9UwQOcbQDgNCzRkRC9gqmo+U+5ihxpOyv03ZtmetfVwbZQljoEIMpW1aBHh1nN5pZJptrIzuEW1NPsPncOcirQBNCvAOgIZ+vgWEYhmEs0dGDBuRwrKhK8zQ4VsESa1u6HKuskW8Nkw4Bm/I1xX1apr3MDIKOoR1A91lgVv11uu4jWflaljPedPQyAdbXZhSo7dMCrPcRnWJQJCwGoOgI9NgFQ3QFzErpRHzqs3aQlzg6wTCMqwzDWGoYxtLa2tp8vxyGYRjmfwUdQxIAG8dKl/NtM0xAh2MVCFiLJm2OVbYpjpr6i6zEp+o+LdOebS8TUe+UjvsYLAQCIZphKwDszybTWL6WmdU1P2uq14jlZ01jnxZgkR3UNLTGypauAEVhee/3TFs5cd8pccyJEOJhIcRMIcTMwYMH5/vlMAzDMP8r6HS+yRzUbNkRxc4HYD0RLazx2iyHJOh0Gi3uo2qHEYDlwcA6p9gBNFlWIHsGWUv5WsZ9TMTlGtWWHaH6rFmIeJ2fNcBiAJAGEW8OyekVoNA5JCTjusxy4v/VEkeGYRiGOWjR5nxT9o7Y9fxodBrJzrgqlYcbxyLd39PWp5XlCAHVtoDkIBmCaYDpz9crO6KhDNC0RznFMR4G4rHetigHyZB91jQKXYBu/Wcr39QytIla6LJAYxiGYRhvaHO+LYZbaBMxdiOrNUyxA4hLHC36wrSVQWWZPqjF+S6nzSAA1tkRbc63hUAzCuQ5gaptAdZrhHKQDFWWVbuIJ8zEW5U4FhTKMlmltsqBeASIR7u/R11ObEG+x+w/A+B9AJMMw6gxDOOb+Xw9DMMwDJNCa5bJQjCZP1NqK0s/hzbHyiIarcOxsio71HkodqYtQE+JF2BzHzWVOKb6FAn6iwD7DLKWPq0sa0TH0BqA8D5aTKjUlfmh7GUF7LOsuvYswGaN5K/EMajWsjuEEF/Op32GYRiGsSXSrtH5tuvToop864rqW2UHNTr6QM97qauXLxCwPr8u0gpUjlRrC7DunaLMjph9WlrWv00ZrGpRDViXb+q6jwVBoKDIOhNZOkitLcBmPRKWOMajsnxUx/tmdTC2zj0LkPZKquT/6xa6XOLIMAzDMB6JtGoq8SpP9sWkl9QQljhqdazsnG+dAi3t2nSVOJr2rJxGHdcWKgNinVIomWgr37TKIGg6XBywyY7o+qxZZH50rxGrc9AogyEAjYjXldEF7DPIuj5rAE0m3hyAwgKNYRiGYTyiXVikOwS6ShwtbGl1rKzK1zQ6qEBPJ1WXY2Xasxy2oqlPC7C+thDBGtHl6Jv27EocVZO1DJZquIXGPsVYV88BKOE2eYyB8j4ti2CI1jVSbp1BptqPqfdIC1igMQzDMIwVup3GHs53e9KxUjwkwdKWTsfKZvogmdDV6HzbZQd1lcECvUvzgiWylE4lqd4piwwaaYmjpmwd0PM+6joUHoDt6HtdWSag9/um05bVfdS1R1qO9KfaR3RmkFmgMQzDMIx3dDb3AxkRW03OR6qkxqIMUJdDbHdQr2pCFlF97eVr6X1aCekca10jGdem47qsDo8Oa8roAtbDLSJtmgSTKSzSMz8asyOZI9tT5cSEPZi6SpcBGxHTx8uJ85JB/gQcVM0wDMMw5Og6zBawnxqmwxbQW1joGiQAdDuoQvS0p7MMkGIAhGmPLFtnk/nUtkZK6e9jItH9PV1lsFb3UddAHqB3D5rO+2glmsKaevkKgkCw2FroUtxHQH8mnuIoBtNepvi0gAUawzAMw2Siu8Ql3QZAK9DCmh0rCCDa2f09bRP68hDVt7KltaSMIMsK9M5q6c5EQsghKCbaSxwz3zdDY/kaYUYXoClxNO1RrpFIW89Aj24Rn7kfB4vVlxMDXOLIMAzDMJ7RdQ4OQFviCBALC5uoPpWDGm7V7FgRDkkA6ER8Zs9PSuhqENZFhNeWLVut+sw1oPd4eN2ZSIBwjZTRXVuoFFLEd8l/C0FQck6UrbbqZbWABRrDMAzDZKLTQbU69FVXGSCQpTRPZ0lZ0p5Ox6qgEAgEaTORpA4q8nhtmnvQgO77F49JR1xHyW2wBICRUeKoKWAA2GeZyKYP6t5HrLKDOs+vS15bPAIkYpqDSgT9nqY9FmgMwzAM4wGtQxJsSvPIShx1OlYZ1xYLS8dKx300jN7RaF2lckDvARAk5WsZvVOflPI1oNuezl6+1AHjlMEQCxFPOX1Qx+fatGd5NAhB5lOn0A0WAUYgf/uxDSzQGIZhGCYTrWWANqO/tTlW5YSOVcbgDp0DSUx7vUpFNd7HaEf3cAvd52kBeRwkk/x/1WeumbbSbejMRALodfRDWPd9TOudIi9x1HSYs2kv8z4GguqPBjFtAWlrROOeZRjdn20TyvtoAws0hmEYhslEq/NtM/pbZ+Ync0KZUaDXsYrmyfnW7VgB3Y6czjJYu/I1suxImxRnAQ1uovn+mFkRncc+mM+bWZqq6z6GSgERlyV5gOazwvJR4phxdmNhmaZevozPms77CPTuwdSdrU4P9NjAAo1hGIZhMtF5mG2wOL8lNZGk86FrSALQuzRJt7NjotVBzbw2zedpAd3Xlurl0yXiM++j5j4toNsh1nkoNmBRBqszg5bRO0WRQTODIbEIkIhqLoPNGJKjY380bZk20r9q3SMzh4RoFLqZU0wtYIHGMAzDMJno7B0xe6dMhzgWkRF3yv4ibY5VRvmmzkwkYN2DpnMUPdBbWGjpnSroee5UtAOA0F+aZ6K7nBKgKV8DrEscta2RDBGvdZBMcgBKL1tU5cQ6Rbx5HzP3EapMvKajQQDr7LgFLNAYhmEYJhPdwiLdIdbufGT2TlE4Vpnla4SlebodqyiV05gW1deeicw8qJpC6Lb3/Eo5xZRKfIbbZLY8VKLelmFkrBGNg40Ai15WgkwkVYljYXnvMnBt5ZQWUyMtYIHGMAzDMJnoPPAY6OlYUUSHgZ69U2R9WgQljlQ9OL3KN1vlGPdAgSZ7addGkR1JRGU2F9A/SAPoLeJ1ljhSlcGmeqfS3rfCCj3lxEBGoEfjYCOg+4w3M9CjVcRkBHpIgiHpR4No7AnOHKRkAws0hmEYhslEt/OdXlJD0acF9LSnPTpMNSQk07HSWb5mUeKoyxaQ7K/L6HcjExYah61k9mBqL3FMWyPxmOz90TlsBej5WdP1ngE9jxCgEPHpvVNaM2gZJY7aRXzafYx1ASJBl2W1gQUawzAMw2Si09EHkuVCmdFh3X1hafZ0OR8FQXmANMX5RUBPERPrkhP0yHqnNN5HoGfZIUUmEuhZdqjLljnWnKzEMc35jurOjFv0TuneR6IZJY6kgR6NWc90W9pLzsvpxKDVwdgWsEBjGIZhmEx0lgECPacPUvS7ARlRfc3Xlpkd0ToeOzMTqcuxynS+CdZILxGj22lMc1J1Zn7SS/PCbQAMmgmVFL1MAE0wBLAucdQpYoCMa9NkK1gIBEI9S0UDIT1HgwBJEW9eF0FGF+hZdmsBCzSGYRiGyUS3iLEUFpr7OVKCUOOQEKC3Q6zVsSqXEzDjUZooO5AmLCjuI8FIf6B3VF/nsBUgI4OW/Kxp7dNq7y6BNe3rIPOzprOcGLDOslJmB6kCFNrvY5nF+YZEATMbWKAxDMMwTCYkJY5UjlWmsCCO6ut2UE07FP1upi1AbwYB6FmaRyksEgma/jrK+wgBRDsJy9fSMp+UIgaguTbdR4OY9nqIQY0Bg1CZLJGOx+izrDawQGMYhmGYTEj6izJLkwiERSys9zBboHdUX2smJu3adDtWweS5UxTTMIGeDmqYKjvYnnbmmk7RVA6y7EgoraQsonsUvcUZb1oz8VaTPgkyyLr7ZoGMQA9BBg2QGWvd15Y5DdYGFmgMwzAMkwlJDw51+VqaiKEqXwtrHFdt2gKSzrdmoRsI9C5N1S0sKKdhmnZ02zLtUfQymbZMO7qH1hQUAoEgcWle2hoxkgec67IFJPcRzXsW0D3WH6DZjwEZENEtdEMZpaI2sEBjGIZhmEy0l3iVA/GwLKmhdKx0TwMEko5VmtOo25ZpR3dzP9C7fFP7IJm03qlgiZySqcVWmtOou1QO6D0ARWvAIO3aUmeFabJnGD17MPPRp6Wrly+9DJZExGeUgeu+jwBNJj4QSAZfuMSRYRiGYdyh2yFIOTvt3Y6+ziEJAE2flmmPsgcHyBAWBGWHqcNsNZeKioQsS9WeiUkrcaReI7qHrfTIshKK+HhM9jXpthXrAhJxgs9aWokjyWctrQycIhMJZJQ46r42LnFkGIZhGOeYGQtKYaHT+TB7p3qUOBL1oFE5VtTCItqZPMyWoHzTvDaygIHmEi8Avc4B1H2Ys2mHTFikZZnI1r/ugEEePmtRqiEhaX1hJHtkGY/ZZxiGYRhXmM73J8WxCgS6hYXuc8kAeS3pJY4UTiNZ5DuZHdFdKgf0FE26J28Gi2SZLUWJF9B9H4UgyPyklzgmz1wz760We2V0IiZTWJCUE1NdG+WkTzMYklwjBYXyLDad9jiDxjAMwzAuoHL0TVuRdr3OB9DdF0YRHe4xSEP3FLsMB1W7Y5UhdEmERbv+Xj7D6C7fpJrQJxKyPC/cprnfLS0TaQpdXeXEQHcPGonQzRiSo3MfSR+SQybiqYatpPeyag6GAD17WW1ggcYwDMMw6VAKtChBiaNpj2pISGEpkIjJ3imK8+SAtDJACqGbPjGSMKpP5TRSlTgCUsBHNQuLHuWbmvvdgN5ZVrJAj+YyQNNejwya5uEu6UeDUA4J0f1ZC3EPGsMwDMO4Q/eZU0D32UwpYaHbsSrP6K8gyFh0NkqhRtYXo3kaINDdO0WRQcjsndItLEzxSZUdAYC2A8l/U5U4ai6nNO1FqAaSpGeQqcQn0Zj9wjIpzDobk7YI9ixzQiXJfeQeNIZhGIZxDmlzvxn51pz5SUX1ic4vAoC2/UnbununAvQOKnWWlSyDRnxtbft6/lsHoYzsiPY1Uk5f4hghKHE07ZlrJBCSnz9dmO9bah8hGiRD8llLG5JjAws0hmEYhkknVZqkuQcHoJniCKRF9dv1O1aZ2RHtvVPlaSJGt4OaMaHvk1R2lS7QQqVAoECfLXNNtCadb53ZkWChXPPmIBmS8jXCA78BOmGR3stKsWcBNFnWkDnptkP/odgAeMw+wzAMw7jFLN/R2oOTWZpHVZpElK0DgFYzO0LlEFPcx3Ig1gl0Nct/U2ZZycrXKNZI8loosqxAz2vTKQZTtohEvJn5CbfIgSsk10a1Z2WsEZIhOclro/is8Zh9hmEYhnFBaoQ6gfMdbpYOP0lJjTkNkMCJA2gcK9MeWfmaeW21yX8TON/tdQAEUXaEsJwSoClfM5/f7AujsBUPA51N8t8UJY6k95HgaBDAolSaQnxSDVspZ4HGMAzDMK6giHwHiwEYNGWAQHeWSffYeyCtd4SgNAnombEgdxoJB2lQ9E5RZhAAOhGfXppHJj4PyP5IrWeuEZYBAt0ihjQYcqDnv3Xai3Yk90iCabA5YIHGMAzDMOlQnBVm9k6RlXiV0k4oA4jL14jEZypjsU//mWsFhUAgmDZIg3BCH9V9bKXMjhCJz3QRr/vMtWCyd4pS6FIe+wAQXltaDybVHpkFFmgMwzAMk06E4MBjQP6RpooOh8pkj0pXC40YBGhLHM2zySgHF+h+zwxDvm9k2ZHStGMfqJxvgimO5vN3tSTLiQnK1wCaNRIISButhMEQyrMbAVoRT3E0iGkrByzQGIZhGCYdimmAgHSI2wim2Jm2AKC9liYSDdD1joRKk45VlK40qe2A/usCkiKeSuiWd/dO6baVyvwQlvi2U5WKZmTQdBMqpctWp87Ka6X5XAOE65/4PuaABRrDMAzDpBMmaBIHMjJolGVXVENCCHunKKPsAE12BEg6jeYaIXKI22v1r0cz80PR7wnQftbSS/N0r33THtlnjTDQk56J1H00CNAzE0l1H7PAAo1hGIZh0qHoQQDQ47BSqtH38Yh+W6nDo9tkD1WB7lLR5AAIgK6/KEpQTgn0FDFUJWUUJY7p9oIles9cM21RfdZC1PexvHv9Uw0AiocJ9izz8GiCoR2AvDbq+5gFFmgMwzAMkw5ViWN6WSPV6HsAKK7Ua8scgALoH5IA9Lw2yt4RkvK1dHtEIh6gE5/UtgC6cmKAZo2kXw/l+i/SvI8Ei2WgB9D/ngG0658zaAzDMAzjEopDWAGgpH/3/1NGbIv76bUFdGeaSByrcuv/12KLUDABtM4+tfg07ZFkR/J0HynEZ/o+QiksdO8j5pAcgHY9Uthz8Pws0BiGYRgmnTBRBq2HQCMqFwJoBFohoWNF6aCmO/rUUX3KwQUk4tPMshLfx9KBem2FiIVuav0bes9cA+gDPZRZ1tIBaXZ5SAjDMAzDHFxE2micb0qB1kNYaC5NAroFIYWjXzE8ze4nLIOWyiBUAAVBvbbS7x1l5pO6xLFsMJ0tkgxaVdIuRTkxdaAnT/sIlzgyDMMwzEEGVXN/cVX3/1P2aZE4VoTOd8WwNLu6z50qAAqS0+Qoy676V+u3lW7jk1zimB4Y0WKrpPv/STJoVfJrQUi/rdAnOBNfPjTNLg8JYRiGYZiDi3yUOOqmh2NVRWAwKTgHjtdvKt2xIsn8mP11FCImaav/aP22yoek2aUscSSadGgS0Oz6GgZS65+yxDER02+LOtATj8qvFPtIj0CP5vetIPd0WxZoDMMwDGMSi8gDj6mb+3XTozSJoMRx5/vy62Hn67dFGfkGaAcXmLb6jdJvKx3K/jpKoUvF8dfKr7qPmAC69xFTzOiEulS6dr38etgF+m2lCzTdZ64BOfvQWKAxDMMwjAnVwblAd2kSBdTN/cOPlF+rT9RvK5jmBFM4Vqm+GII1EmmVX3X3TZmYfTi6h00AtOVr5vUYms9bMznrZ8DnHwGO+qJ+W2ZGPEEg0KgzaFXJstsR0/Xboiw5B3JmqTV3nB681DR2YNP+NoQKApg6sh/6leqr3e2IxLCqphlt4RiqB5Zi3OByGJrefCEENh1ow876DlSWhHDkqH4oDunbkOrbwli7twWxhMBhwyoxrF+xNlvReAKrdzejri2CYZXFOHxEJQoC+j5Euxo6sOlAKwoLCrSvkbawXCMdkRjGDCrD2MH6/mAlEgIb9rdid2Mn+pWGMHWk3jVS2xrGur0tSAiBw4ZXYmilvjUSiSWwek8z6tsiGN6vGIcPr0RA0xoRQmBXQyc217aiKFiAI0f1Q0UxzRoZO7gcoweWat1H1u+Ta6SqNISpo/qhKKh3jazd2wIhBA4fUYkhFXrXyKrdzWhsj2B4VTEOG5axRsJJh5h6+qBu0kUMReT7qy8CXU00fTHpUDhWIcLBBW218iuVQDv2amD+7T0n2umCUqCZNiiEJyDLKKd+gcYWZYlj+v1L77XTxbfmA9EO/WWpAM3ekU6Otfg/J9AWbanDH+ZvwuJtDanvBQMGPn/0KNz0mcmoKlWXjq5rC+P+BZvx9OKdCMcSqe8fPrwSP/ns4Th+nLpRr4mEwPPLa/DIu9uwYX9r6vsVRUF86+Sx+O5p41AYVLfAt9S24RevrMcb6/dDiO7vnz5pMG4/fwpGD1L3h6sjEsPf3t+Bh9/Ziob2SOr7I6tK8KNzJuJz00YqdVQXbanDr+dtwMe7mlLfKywI4PMzRmH2uZOUr5Hfvb4RLyyr6bFGpo7sh9vOPxyzRqv7I5lICDy3dBfuW7AZNY2dqe9XFgfxnVPH4apTxiJUoG6NbNzfinte3YD563qukTMPG4LbPjsFhw5U94eyPRzDowu34Yn3d6CuLZz6/qj+JfjxuZNxwVEjlNkCgLc2HMAf39iE5TubUt8rLAjg0lmj8ONzJ6NSoVDb39KFP76xCf9cWoNIvHuNHHVIFW777OGYUa3OyY8nBP6xZCceXbgNW2rbU9+vKg3h6lPH4VsnjUFQ4RpZv68Fv3hlPd7eWJv6nmEAZx8+FD/57OEY1V/dGmlLrpG/vrsVLV3djkz1wFLMPncyPjM1mTmIJK/7k1bimE5InwBOUTZQ/vdJJFWaR1AGOPJoYOU/5FcKTvw+cPTXiASa2YNGeJ4chaighjTQk5ahphA06X2RnzRylN3+zwi0zkgcd85Zg2c+3IWhlUW48dOTMWt0f4SjCby2dj/+vngHFm6uwxNXHoPxQ/z/YZ63eh9ueH4F2sMxXHz0KJx35HD0Ly3EqpomPPzuVnzlrx/g1vMOxzdPGuPb1p6mTvzonyuwaEs9DhteibsvOgJTRvRDXWsYzy+rwb3zN+K9zXX4yxUz0a/En+MohMCDb2/Bva9vRHGoANeeNh4njh+EUIGBhZvr8OjCbTjvj+/iz5fPwMkT/Ef8VtU047pnlmNHfQdOmzQYl848BCOrSrCtrh2PLdqO//fsCny4rQF3fW6q72xaRySGW19cjX99tBsjq0pw63mHYfqhVeiKJjB39V488+EuvJdcI2MUCNB5q/fihudXojMSx6WzDsHZhw9Fv5IQVtY04+F3tuKLD72POy6YgsuPH+3b1u6mTvzfPz7Cku2NmH5oFa7/1ARMHFqB2tYwnl2yC/e8ugELN9Xhoa/N8C0uEgmBP725GX94YyPKCoO49rTxOGnCIBQEDCzcVIdHFm7DeX96Fw9dPgMnjBvk+9qW7WjED577uMcaGdW/BJsPtOHxRdtx/TMfYen2Bvz0/Cm+s2mtXVHc/p81PdbI0dX90RGO45XVe/H04p1YuKkOf7vyWCUC9D8f78bN/1qFcCyBS2YegnOPGIbK4iA+2tmEv767FZc+9D7u+twR+PIxh/q2tbO+Az947mMs3dGII0f1w68+PxWTh1ViX0sXnl2yC7+cux7vba7DQ5fPQGmhvz8diYTA7+dvxP1vbUFlcRDf/9QEnDBuIAzDwDsba/HYe9vwmT+8i0e+PktJkGLZjgZ87+mPsKe5C2cdPhSfP3oUhvcrxuYDbXhk4TZc8/fluPLEMbj1vMMQoCxxJBnW8T/CmXcAdZtobIUISxxnfRuYeC7NFEdAOt0U4gygFbpmLxgLNH9QZ5moOXU20NlIYyvHJEdDpIe2D3Jmzpwpli5d6vr39jZ34huPLcGG/a34zinj8H9nTuhV0rViVxO++cQSBAwDL157IkZWefsQCyFwz6sb8MBbW3DkqH743aXTegm+jkgMP3xuBeau3oe7PncEvnqc94139e5mfOPxJegIx3DrZw/Hl2Yd0iub9NKKPfjhcx/jyFFVeObbx3nOpMXiCdz679X4x5JdOG/qcPz0gikYXNGz3n9PUyeufHwJtta14+lvHYuZPpyrF5bV4MZ/rcSg8iL87tJpvTKO8YTA717fgPsXbMFlxx6Kuz53hOdM2q6GDnzriaXYeKAV3zt9PK45fXyvNbJ8ZyO+9cRSFAUD+M+1J2KIj1K9Rxduw89eXoujRlXhN5cc1WuNtIVj+L9/fIT56w7gV5+fii/O8u6Af7yrCd96YinC0Th+cv7huGTGqF736YVlNZj9wkrMqO6Pv33zGM/lbG3hGK57ejne2lCLz00bgdvOn4IBZT0zjjWNHbjy8SXY1dCJZ646DtMOqfJ6aXjxoxrc8M+VGNavGL+95CgcO7b3Gvnl3HX4y7vb8K2TxuDWzx7u2dbO+g58/fEPsb2uHdd/agKuOW18r8/Sku0N+NYTS1FRHMS/rjnBc6lePCHwszlr8fii7ZhZ3R+/vfQoVA/suZm3dkXxvWc+wlsbanHvF4/CRdO9DxFYvrMR33x8CWIJgTsvnGKZlX52yU7c9K9VOGHcIDz+jVmeM2nhWBw/fn4l/vPxHlx89Ej85LzD0T9jjeyob8c3Hl+CvU1d+OfVx+OIkd57HZ76YAduf2kNRlaV4N4vTuuVcYzFE7jr5XV4fNF2XHXKWNw8aS/w5EXAN+YB1cd7tmuydHsDHn1vGz7c1oi2cBSjB5bh/KNG4OsnjEZZURD4afLaftrs21Z9Wxh/XbgN89fux67GDlQUh3DS+EG46pSxOGx4pVJbiYTAf1bsxgvLdmPV7mbE4gkcNrwSl846BJ8/epTy8vNtde14+J0teGdjHerawhhaWYwzDxuK75w6VnnZdFc0jqc+2IH/rtiDzQfaEAoGcPSh/XHliWNw0oRBwHNfA9b+B/jOu929dj54b3Mdnnx/B5buaEB7OI7Rg8pwwVEjcMUJ1b6DIZnsa+7CY4vkGtnd1Il+JSGcOH4QvnPKOEwaplYoJRICL63Yg2eX7MKaPc1ICFlB9KVjDsHnpo1EYO2LwPPfAD73Z2Dal33b27S/FY8v2o63NtSiri2M4f2KcdbhQ3HVKeMwuKAd+PUY4PRbgFN/7NtWWziGJ9/fgVdW7cWW2jYUBQOYUS3XyAnj/QceM1m0pQ6Pv7cdy3c2oj0cx5hBZbhw2ghcccJoFBcYwJ395Vl5N9f4tnWgpQt/eXcr3lh/AHuaOlFVUoiTJgzC1aeOk76Kwn0kFk/gX8t3418f1WDNnhYIARw+ohJfOeZQXHDUCOUtCpv2t+Lhd7bivc11aOiIYHi/Epw9ZSi+ffJYDCpX27/aHo7hife345VVe7G1th3FoQLMrO6Pb540RvoqT30exuX/WiaEmGn1+3kXaIZhnAvgDwAKAPxVCPFLu8d6EWgb9rXiikc/RFs4hvu+Mh2nTbJPl27Y14ovPLgI44aU4/mrj3ftgETjCdz4wiq8sLwGXz7mUPz0gsNtHd1YPIFv/20pFm6uw4vXnOjJAXl3Uy2ufnIZ+pWE8MSVx2DCUPvN9b8r9uB7z3yEb540Bj/x4KS2Jx3vBRtq8b0zxuMHZ020FUON7RFc/OAitHRG8cr3T3b9x1MIgYfe2Ypfzl2PE8YNxP1fObqXA5fOL+auw0Nvb/XspG7Y14qvPboYnZE47vvK0Thlon3mb82eZnz+wUU4+tD+ePKbx7p2QhIJgbtfWYdHFm7DOVOG4g9fmm7b/xWNJ3Dl40vw/pZ6vPDdE3CUByEzd9Ve/N+zH2NIZREevWJW1jXyn4934/v/+BjfPnkMbjnP/RqpawvjyseXYM2eFtxxwRRcduyhtmuktjWMix54D0IAr3z/ZNeZXSEEHn5nK34xdz2OHzswa+ZPCIGfvrQGT7y/Aw9cdnR3KZsLVtU04xuPf4hoXOChy2fguLH2pVsra5rwxYc+wPRDq/DUN491/QcmHIvj/z37MV5ZtQ9XnjgGN31msm3paTgWxxWPfoiPdzVhzvdOwvgh7h2s19fux/eeWY5hlcV44spjegnBdJ5dshOzX1iF688Yjx+cPcm1rebOKK5+chne31qPH587Cd89dZztGjnQ0oWLHliEhBB45fqTs+4BVgghcO/8TfjjG5twxuQh+P2XpmVdI7f9Zw2e/GAHXjy9HtPf/x5w9UJg2FTX12hS1xbGjS+swvx1+zGgrBCnTxqC/qUhrNrdjMXbGjCqfwkeunwGptS/DgyeDAw7wrMtIQQee2877n19IzqicZwwbiAmDa1AfXsE89ftR3s4hh+dMwnXvDVD/oJPx2rtnhbc9K+VWFHTjDGDynDCuIEIFQTw/pZ6bNjfimNGD8D9lx3dK4Dnha5oHL+cux5/e387CoMBfGryUIzsX4Ktte14a8MBlBQW4HeXTsNZhw/N/WQOeG3NPtz+0hrsbe7C9EOrMO0QWUWxYP0B7GvpwqUzR+EXgQdRsPIZ4PqPgAFjPdva39KFW15cjfnr9mNQeRFOnzQ4VUXx4fYGVA8sxUOXz8DkYf57BhMJgccWbcfvXtuArlgCJ40fhAlDylHXFsb8dQfQFY1j9rmT8a2TxyhpGVi9uxk3PL8S6/a2YOygMpw4fhACBrBoSz02HWjDcWMH4OHjGlD5r68Alz4JHO59Sl9HJJZcIztQGAzgrMPkGtlyoA1vb6xFaWEB/vCl6Th9dLHM1vm8vnmr9+GnL63BvpYuHH1oFY46pAqdkTjeXH8AB1rD+Mqxh+KOC6YoaRnY19yFH7+wEu9srMXgiiKcNnEwKktCWLGrCUt3NGLsoDI8/LUZGL/nv8CoWcCgCZ5tJRLS9/rTm5sQiSVw0gS5Rva3hPHGuv0IxxK45bzD8I3Xp8lf8LmPfLyrCTe+sBLr97Vi/JByHD92IAIGsHBzHbbUtuOk8YNw31emK2kraQ/H8LM5a/Hs0l0oDRXgjMOGYlhlETYn10i/khD+8KXpWf0/N/x3xR7cOWctalvDmDW6P6aOrEJ7OIY31h9AXVsYXzu+Gj/t/BUKvvyUrUCDECJv/0GKsi0AxgIoBLACwOF2j58xY4Zww5Jt9WLq7fPErLteF2t2Nzv6nf98vFtUz54j7ntzkytb7eGo+MZjH4rq2XPE71/fKBKJRM7faWgLi2Pvni9Ov2eBaA9HXdn71/JdYtxNL4tz7n1b7G3qdPQ7t/9ntaiePUe8tmafK1sHWrrEZ//4rhhz4xzx9w92OPqdTftbxORb54pL/7xIRGNxx7bi8YS4879rRPXsOeLavy8TXdFYzt+JxRPiCw++J464bZ7YWd/u2JYQ3WvkmLtfF+v3tjj6nX98uENUz54j/jh/oytbnZGYuOapZaJ69hxx+39Wi1g89xppao+I43/ubY387f3tYvSNc8RF9y8Uda1djn7n1hdXidE3zhHvba51ZWtnfbs47Z4FYtKtr4j5a52tr2U7GsTYm14W1/x9maPPi0k8nhB3vORujYSjcXHhfQvFFA9rZOGmWnH4T+aKE37xhti0v9XR7zy9WK6RxxZudWWrpTMivvTQ+6J69hzx8NtbHP3O/uZOMf3O18S5v3/H0b1I5+8f7BBjbpwjLvjTu6LW4Rr54XMfi9E3zhELN7lbI7sbO8TZv3tbjL/5ZfGv5bsc/c6qmiYx4eZXxNcfXSziDj4vJtFYXNz4wkpRPXuOuOGfHzvag8LRuDjvj++In/z0JiFurxSi3tn9t+LDbfVi1l2vi4m3vCLue3NTr8/ukm314rifzxdTbpsnVuxq9GxHCLlmrvrbElE9e4644tHFvdZoY3tYXPf0clE9e45ovHuiEH+a5cveG+v2icm3zhUz73pdvLi8psdnN5FIiOeX7hKTb50rTr9ngeM1ZceOunZxzr1vi+rZc8RP/r1KHGjp+XzbatvE+X+Sf5te+ni3L1uxeELc/fJaUT17jvj0798R72+p6/HzrmhM3DNvvaiePUe88ZuvyjXSut+zvQ37WsTxP58vJt86VzywYHOvz+77W+rEMXe/Lo786ati9e4mz3aEEKKtKyq+9YRcI19/dLHYUddzD2xoC4vv/G2pqJ49R9wzb70vW0LIfWXCza+IY++eL/79UU2Pz24ikRD/+HCHmHDLK+I7v35E3sediz3b2lnfLs74zYLU39XMv3WbD7SKz/zhHTH2ppfF3FV7PNsxX/vvXtuQWiPLdjT0+HlnJCZ+/opcQ996Yokr38eKdzfWiul3viYO+8lc8Zd3tojOSM818t6mWjHjZ6+Lo+541bH/Ykdje1h87ZHFonr2HHHV35aI7XVtPX5e19olvvm4XENdd44Q4q9n+bI3Z8UeMeGWV8RxP58vXl65p8c+Eo8nxFMfbBcTbn5FnHPv26KpPeLL1qb9reL03ywQo2+cI3723zWivi3c4+cb97WIc+59W4y76WXxukv/OJNwNC5ufXGVqJ49R1xw30KxdHvvNfKzpI/7/m++IAAsFXYaye4HFP8BOB7Aq2n/vgnATXaPn1Q9VMQ7nTlIb6zbJybd+oo47Z4Frh2ya/++TIy76WWxqsbZpljfFhYX3rdQjLlxjnjy/e2ubL23uVaMvlH+8XFCIpEQDyzYLKpnzxFfeuh90dzpfOF2RWPi079/R8y663XHv7f5QKs46VdviMm3znXseJs8v3SXqJ49R/z2VWcbfjgaF99LOhK3/2e1K4dsZ327OOK2eeKSBxc5Ej5CCDFv9V4x8Rb3aySRSIjrnl4uxt30suNNsbE9LL7w4Hspx9uNIDHXyM3/Wun49f3+9Y2ievYc8c3HP+y1qWejIxwTp9+zQBz/8/miqcPZGlm9u0nMvEs6Eku31zu2JYQQ9725SVTPdu5cpYvcO15a42qN1DR2iON/8pz4/X33Or7/c1bsERNufkWc/bu3xb5mZ4EQIeR78I3HPhQTb3lFbNrvbI3sb+4U5/7+HTHuppfFC8ucCRiT+Wv3ierZc8Qv565z/Pp+++r6lMPmRvx3hGPi9N8sECf96g3REXa2ttbuaRbH3j1fHHHbPNfC7olF20T17Dniwbc2O3p8ZyQmvp10Rn89b52rz9qm/a3ijp98X4jbK0XCo/M9d5V0PE67Z4FYu8c+MLinqUOc+Ms3xMy7Xu8lPJyyv6V7zfz13a2215pIJFJOg9u/UemYgv6zf3w362v+cFu9mHTrK+Jz9y8UEY9O6qqaJjHjZ6+Jo+54Vby53v69aA9HxSUPLhLjb37Zs9hNXzO3vLgya6DjqQ+2iwdv+YoUFmF3voXJe5trxRHJ4HE28bWzvl0c//P54pi7X/csdvc0dYhP//4dMebGOeLRhfZrJB5PiNnPrxDVs+c4DqBkkkgkxK/mrhPVs+eIrz2yuJcjnM6izXVi4i2viBvue0pEXQaWTFbVyL89U2+fJ97daL+vtHZFxUX3LxQTbnnF8xqJxOLihn9+LKpnzxE/fO7jrOv60YVbRfVsKQa8Ygbhz/7d21kDg9vr2sQxd78uTvjFG56FTE1jhzjjNwvEhJtfEU99sN12jcTiCfH/nv1IVM+eI15cXuPJlhBC/OWdLWL0jXPE5x94TzRkWSPvbDwgxt/8svjKX9539bc+naXbG8RRd7wqZvzsNfFelr89zZ0Rcf6f3hWTbn1FbNjnTey2dUXF5UmRe9ecNVnXyMNvbxF/u+Xig1qgfQGyrNH89+UA7st4zFUAlgJYOmN4QPz2n2/m/IP77JKdYuxNL4vz/viOp02tsV1mtk67Z4FobLdfPELIDfT03ywQE255Rcxdtde1LSFEKhswb3X234/FE+K2f8s/stc9vdx1tFwIIVbsahRjb3pZfPWvH4hwNPsfzve31Imj7nhVHH3na+LjnY2ubQkhxI+S0fZ3Nh7I+rjmzoj46l8/ENWz54gHFmx25VSZ/DMpCO99fUPOxz75/nYx5sY54sL7Fmb9I2JHfVtYTL/zNUdR4i0HWlObn9co78+Tkd1cayQSi4ufJNfID59zljnI5OOdjWLcTS+L7/xtac5NceGmWjHltnni+J/PFxs9bGqxeEJc8Kd3xdTb52V1ZoWQn8tLHlwkqmfPEQ+97W2NLH7qp0LcXil+//KyrI9LJBLi8fe2pf6IePnDt7+lUxx952vinHvfFi05AiJbDrSKE3/5hjjsJ3PFgizOaDZ+/M8VYsyNc8TbG7J/1iKxuPjRcx+nskteHOj3t9SJ0TfOEd92ECV+a8MBccRt88Sxd8/P+R5bkUgkxHefWirG3vSyWLItewCgoU2ukdE3us9emix+4hYhbq8Uc5e7z6A99YHcVz53/8KsjofJ2j3NYuItr4grHl3sej1vr2sTJ//qTTH51rnirRzvuRDys/a1RxaLibe8IrbWtuV8fDqJRCKVPfr6o4tFW1duQf9Sshrlt6/l3o8z6Zm1zr2vNLaHxfE/ny9O+fWbOT9rmTR1RMQlf17kKuP94t/+IFb+5EjxWo792Ip/f1Qjxt/8sjjzt2+JmsaOnI9fs7tZTLj5FXHNU9n3LCs27W9JZWqziVyTaCwuPv+ArEbZ1eBOfEbTBMyNL6x0FCg1g7huq1GEkNklN3976lq7xHE/ny/O/O1brn2ntq5oKrv029c2OPqsmgGRbMLRjr+8syUVhHeynpfvaBDjktUobjHXyBG3zeuVNbYiEouLSx5cJKbcNk/sdrB+00mvfrn6yaWOgsfPJKtRHnrbWYAunflrZaLm1F+/2StrbMX+lk4x42evibN+95bj4KNJfVtYXJBM1PzjQ2eVZu/e/52+LdDS/5sxPCDOuPEhce/r1h+Q9nA0Vdbylb84W9h2LN5aLybc/Io4P0vpz7zVe8XU2+eJqbfPE4u3usscpNMZiYkL75PRHbvyw92NHeKLD8k/Ine/vNZzNEEkEmLZP38ljpj9nLjGpjwsGouLP7+1WYy96WVx+m8W9Ep1u6EjHBNn/e4tcfSdr9lmm1buahIn/+pNMfaml8VzS3Z6tpVIdEd3/vyWtQPf2hUVP0w6p1c+9qHrssF0zCjxZ/7wjqUzlkgkxJwVe8QRt80T0+54VXzgYPOzI7L0SfHAr2eLibe8YvuHdndjRypL9/OX13oSMCbmHwi7SGEsnhB/mL9RjLlxjjj7d2+LPU3uNup0dta3i2Pvni9m/Ow1W2ds6fZ6cfKv3hQTbn5F/MdHKVNi/p1C3F4pZs1+0jaT2dIZEf/3j49Sa8TtRp3O2xsOiLE3vSy+8KC9yPv3RzViym3zxHQfgRAh5Os+5963xWE/mWsbENlR1y4uun+hK0fDknhcfPD0XWLS7Bds10gkFhf3vr5BjL5xjjjn3rdd/zFPp7kzIk7+1Zvi2Lvn24qLpdvrxfE/n+8rECKEEPHXfipit1eJWT97zbEwTy99+obLNfNYMtru9I+6EGZ26XUx7Y5XxfKMMqts7GvuFFNvl5UGTv+GhKPx1L564wsrXAV9/t8/PhJjb3q5VylYNl76eLcYf7PMHDgt3xdClo2Ovellcd3Tyx2v633NneKce2XZ7b8/cp4RCEfj4px73xaz7nrd1Rq5f4GsGLj0z4tcBX3MSoM5K5yX6C3fITMHM120eAgh9+PDfyLbE5yukY5wTHzz8Q9TFTNu9pVr/75MjL/5ZVfBmxeXS5HrpsVDCCEWrN+fyqw7ZX9Lpzjvj7JE8unFzj+jHeGYOOM3C8Sxd893/F7H4wlx1xwpYL771FJXQtJtNYoQcs+U2aXsmdxMdta3i8N+Mld87RHngaXOSExc/aQso/3pS85aPISQn5tvP7FETLj5FVdrxEzUZPPhrXh7w4FUkMEpZqJm4i2viFddBG0i4a6sAi2vQ0IMwzgewE+FEOck/30TAAghfmH1+JkjCsRXfv40/ri+HKdPGozrzhiPqSOr0NwZxbzVe/GnNzfjQGsY3z1tHH541kTf5/W8sW4/rn16OSqLQ/jROZNw9uFDURwqwPIdjXjw7S14d1MdjhzVD/d9+WjfI7Ub2yO44rEPsbKmGV897lB8/YQxqB5Yit2NnfjHkl146oMdSAiBn14wBZfOPMS7oe3vAY9/BpuGnYeztl+Gw4dX4kfnTMTxYwchmkhg4SZ5TtyG/a349BHD8OsvHOn78N3NB9rwlb98gNauGK47Yzy+MGMUBpQVYsO+Vjz63jb8+6PdGFZZjD99ZTpmVPsb7xuNJ/B/z36Ml1fuxZmHDcG1p4/HlBH90NgRwX9X7MFf3t2K2tYwrjt9PK7/1ATfa2TBhgP4zt+WYWB5IX5w1kScPWUYCgsCWL6zEQ+8tRnvba7HkaP64YHLjvZ3ptNj5yHW2YQLor/E+n0tuPy4anzthNGoHlCKnQ0d+OeyGjz23jYEDAO/uHgqLpw20td1AcDv52/E7+dvwtSR/fCDsyfi+LEDEY4msGDDAdy/YDM2HWjD56aNwM8+d4SSNfKlh99HZySO6z81AZ+bPhIDygqxencz/vb+Dvzn490YUVWCP3xpmr81MvdGYPGDuP3QJ/DExhDOnTIMV582DlNGVKKhPYI5K/figQWb0dARwf87cyKuO3287ylSc1buwQ+eXYFB5YW44dxJOGPyUBQFA1i8rQEPLNiMxdsaMLO6P/745ekY4XF6rMmBli5c/siH2HSgFd84cQy+elw1Dulfgh0NHXh68U48vXgnggUG7r5oqr+z4da8CPzz61g28jJ8fst5OOqQKvzwrIk4ZswAhKMJvLXxAP4wfxO21rXj4ukjcfdFU1FS6O+g6zV7mnH5Ix8iGkvg+k9NwIXTR6CqpBBr97bgr+9uxZyVe3HogFLc/5WjMXWU96mPmDsb8Y+exuT2h3Dc2IF47OvZJ1bGEwK3/ns1nvlwJ74wYxR+cfFUV8MBEgmBy/66GKt2N2PO907KeYbkOxtr8d2nlqGqtBBPXDnL9WCYfy7dhRueX4nrPzUBPzhrYtbHtnRFcc1Ty7Fwcx1+eNZEXHfGeFcDJFq6ovj0799FsMDAK9efLKdWZuHx97bhjjlrMat6gKdjYe57cxN+89pGR5NvNx9oxRWPLkFTRwQPfnWG6+EAq3c348L738O5RwzDfV+envW+xOIJ/PS/a/DUBztxwVEjcM8lR7qalBuLJ3DRA4uwvb4dL15zQs73/O2NcoDYkMoiPOnhyI/nlu7Cj59fidnnTsZ3TxuX9bGN7RF884kl+GhXE+70cCxMQ3sEZ9/7NgZXFONf3z0h6z4hhMCf396KX81bj+PGDsBDl7tfIzf8cwVeWF6DR66YhdMnZz9ja0ttG6549EPUt0Vw/2XTccZkd4NoVtU046IH5Br5U441Eokl8OPnV+DfH+/B146vxu3nT3E1hCwWT+Dzf34fO+rb8fL1J+ecRP7amn343jMfYXi/3MOhrHhi0Xbc/tIa3PyZybjqlNxr5Nt/W4qlOxpx63mH4VsnuxusU98Wxjm/fxcDywrxn+tOtB2sBsg18sBbW3DPqxtw8oRB+PNXZ+TcdzL55dz1+PPbW3DfV6bjs0dm/zu5dk8LrnjsQ4Sjcfz1ilk4Zow7/8QwjINziqNhGEEAGwF8CsBuAEsAfEUIscbq8TNHFIgli97GYzUj8bvXN6It3PPU9BnV/XHzZyb7dvLTWbOnGbNfWInVu1t6fH9AWSGuPnUsvn7CGGUHQHdG4vjVvPV46oMdiCW635eAAXx66nDccPYk/wdAb5gHPPNFYMLZeHXan3D7f+QkonSqB5bixnMn49wjhvmb5iQEcEcVcNIPsHfWj3Hri6vxxvoDPR5SFAzgihNG45rTxik7ADqREPjrwq344xube62R48YOwA3nTFKzRlY+B1RVY1VgMma/sBJr9/ZcI/1KQvh/Z07AZcdV+5/m9NCpQFcT2q9ehp+/sg7PfLgTiYyP7oXTRuBHZ0/CIQPUHe47d9Ve3P7SGhxoDff4/sSh5fi/Myfi037XSBp7mjpx84ur8NaG2h7fLysswJePORTfP3OCbyGI/1wHfPQkEt9+Gw9tqsAf39iEzmi8x0OOGzsAN3/mMBw5qsqfrTQ+2tmIG19Y1eMQeQAYXFGEa08bh68eV63sAOi2cAx3v7wWzy7Z1WONFAQMXHDUCPzonEmejxFJsfQxYM7/AdO/ipdG34I7/7u2xwHhADBucBlu/sxhOGPyEH9rJBYG7hoCnHkHdh1+FW5+cRXe3VTX4yGlhQW48sQxuOrUsf4PCf/3tcCWN/GPk1/Fjf9ahcuPq8adF06xvIa6tjD+37Mf491NdbjmtHG44ZxJnq61prED5/9pIfqVhPCPq47HsH69J98KIfDEou246+V1mDC0Ao9/Y5an8fJCCNzw/Eo8v6wGv7h4qu0Zehv2teLqp5ZhV0MHfnHxVFziMTC4eGs9vvyXD3DShMF4+PIZls5VVzSOO+esxdOLd+Lsw4fij1+2n26bjXhC4GuPLsayHY149qrjbSffvrFuP374zxUIBgw8/o1jPB/j8OBbW/CreevxnVPH4sZzJ9uukeueXo4PtjbgO6eOxexzJnsK+tQ0duBz9y9CcShge4SHEHK67a9f3YBJQyvw+JWzPB31IYTAdU9/hFdW78UfvzQd59sEc1bvbsb3nvkIu5s68ccvTcO5R7ifkAsAC9YfwJVPLMEZk4bgga8ebSleOyIx3PnftfjHkl04/6gR+I1LkWvSHo7hiw+/j6217fjHVcfZ7vOvrtmHHz23AkWhAB79+izPfw/uX7AZ97y6AdedPh4/PNt6+vW+5i5c/4+P8OG2BtxwziRcc5r9dNtsbKltw+fuew/Dq4rx9LePsxwbb05qvOfV9Zg6qgqPXjETAz2Ml08kBL73zEd4edVe/OFL02yDwqtqmnH1U8tQ2xrGvV+chvOO9LhGNhzANx5bgnOnDMOfvjLd0qdKP8v2gqNG4DeXHOXJP4/GE7j0ofexeX8b/vnd422nqL68ci9mv7ASFcVBPHHlMZiYZUq2HQetQAMAwzA+A+D3kBMdHxVC3G332JkjCsTSt+YCE89Ga1cUb64/gB31HSgrCmJmdX8cOaqfGmdRCGDnB8ChxwGGASEElu5oxPIdjYjGExg/pAKnTByk/HwSk73NnXh7Qy32t4QxqKIQp0wYrM7pXjcHePYyYNJ5wJefRiSWwLubarF+XysKAgaOHNkPx4wZoMZZNB0rIDWOdcO+VizaUofWrhgOGVCCUyYM9rQ5OKG5I4q3Nso1Ul4UxDFjBvg6T6kXaWeBJBICS7Y34KNdTYgnBCYMKccpEwd7cjIs+dNMeXjij7cAkGLmrQ21qG0NY3BFEU6eMEipMEunKxrHu5vqsHF/K4IBA1NH9cNxYwYqP5/EZN3eFry/pR6tXTFUDyzF6ZOH+D5gPcU/vy6zP8kzrpo7onhzw37srO9EZYlcI4cPr1SzjyQSQM2Hch+B/IO2eFsDVtTINTJxaAVOnjBI3RrJoKaxA+9srENtaxhDK4twysTBvjN0KT78C/DKj4AZ3wDO/z26onG8s7EWG/e3ojAYwFGjqjBz9AA1Z2G11wH3jOtxxs+aPc34YGsD2sNyjZw6cbCyAA+euwI4sBa4bgnufnkt/vLuNpw3dTjuuHBKyuGJxhN4YVkNfvv6RrR0RvHTC6b4Pix82Y5GXPHoh6gsDuI3lxzV4yylVTXNuOe1DXhnYy0+NXkI7s1yZIATosljXt7eWIvrTh+Pa9POfWwPx/DQ21vw0DtbUVkSwn1fnt7rfEG3mMczTD9Unvs4brA891EIgQUbDuCXc9dj4/42fOfUsbjh7Em+/v4caOnCxQ8uQmN7BHdceAQunj4ytVftaujAfW9uxrNLd+Hw4ZX481dn+Kp+EULgJ/9Zjac+2IkLp43A7WnnPsbiCTy3tAa/eW0D2sMx/OLiqbj4aO9nFQLyvNYvPfwBBpQV4neX9jz3cVVNM34xdx0WbalXUv3SGYnja48uxtIdjfi/T03Ed04dm1ojzR1R/HXhVjz09lYMKCvEn74y3feB8k9+sAM/+fdqzKzuj99cclQqGJ1ICMxftx+/nLse2+rbcc1p4/DDsyb5+vtjHuHR3BnF3RcdgfOP7D5va3dTJ37z6ga8+NFuJdUvQgjc+MIqPLt0Fy4+eiRu++zhqb0qHIvj2SW78Pv5m9AVjePnF03F56b7q35ZtLkOVz6xBEMr5dmg6WfRLt/ZiF/NXY/F2xpw3tThuOeSI335sV1ReczLku0N+MFZE3HVKeNSgqilK4r7F2zGYwu3Y1B5IR746gxfZ54C8vzYO+esxbFjBuCeLxyV+uwKIfDqmn341bwN2F7fju9/agKuP2OCrzVS09iBzz+4CJ2ROO66aCrOP3J4yi/YVteOP8zfiH9/vAfTDqnCA5cd7flv60Et0Nwwc0SBWPr688CUi/QaWvU88MI3gYseAo76kl5b1JjXdtgFwBef1GurvR64J5nKVnCg4UFFIiEPhgRoru23k4GOBuAnB3I/tq+x9S1g32rghOv02/r7JcCm14DLXgAmnKnX1uKHgbk3AJc9D0w4S68taj54EJh3IzDr28B5v9Frq3E78IejgGAxcOt+vbYA4KnPAx31wFVvpUqqfvvaBhQEDMwaPQDFoQKsqGlCbWsY0w6pwi8unioPgVbA6t3NuObvy7GzoQOTh1Vg9MAy1DR1YPXuFlQUB3HDOZNw+XHVSgIIXdE4bv33ajy/rAZVpSEcfWh/ROMJLN/RiPZIHOcfNQI/Oe8wDFF0CPTcVXvx4xdWoi0cw4xD+2NAWSE27m/F9voOVA8sxU/Pn5Kz5Mwp+5q78L1nlmPJ9kaMrCrBESMr0dgexfKdjQgYBq44oRo/OmeSpwxMJkII/OnNzfjDG5sQDBg4ZswAFBYEsKKmCXVtERwzegDu/NwUJWeZAfKcxWv+vhw1jZ2pNbKzoQNr97agf2kIPzh7Er6a5QxKN3RG4rjxX/JQ+f6lIcyo7o9wLIFlOxrREYnjs0cOx50XHpESpX55acUe3PTCSnRG4zg6uUbW7m1BTWMnDhlQgl9dfKSyQ6D3Nnfiu08tx8e7mjCqfwmmjKhEfVsEH+1qQkHAwLdOGoPvnzlByRpJJAR+/8Ym3PfmJhQFCzBzdH8UBQP4aGcT6tvlGvn5xVPlIdAKWLajEd97ejn2NHfh8OGVOHRAKXY0dGDd3hZUlYZw86cPwyUzRylZI+3hGH78wkq8vHIvBpYVYtohVYjEE1i6vRGd0Tg+f/Qo3PyZycoC8S9+VINbX1yNrlgCM6r7o6okhHX7WrCroRPjh5TjzgumKFsjuxo6cO3Ty7GyphnVA0sxeVgF6tsiWL6zEaGCAK46ZSyu/9QEXxVSnyyB9vLfgOmX6TW08PfA/NuB468DzrFN6PVNlj4KzPl/wJSLgUse02urcQfwhyPl/3/SBFpHA/DrMfL/Ka7tF4cA4Rbg1logqChTYMfu5cCej4BZ39RrxyQtE6mdxz4D7HgPuPRvwOEX6rU17ybggweAs34GnHi9XlvUvPcH4PXbgOOuAc61bBlWx/41wIMnAEYBcHuDXlsA8Mg5QEEI+Pqc1Le21Lbhyfd3YPnORkRiCYwfUo6Ljx6J0yf5LN+0oCsqo+qvr92P/S1d8gDjyYPx5WMO9V/ia8HirfV4dskurN3bglBBAEeM7IdLZ47C9EP7K7dV2xrGkx/swKLNdWjpiuKQ/qU454hhuGj6SCWH+qYTTwi8smovXlqxBzvq21FeFMSxYwfia8dXY3g/RZnkNDbtb8WTH+zARzubEI0nMHFoBS6cNsJ/ia8FHZEY/vHhLryxfj8OtIQxpLIIp0wYjC8fe6j/El8LFm2pw3NLdmH9vlYECwwcNaoKlx9frUx0pnOgtQtPvr8D722uQ1s4hkMHlOL8o0bgvKnDlZWBm8QTAv9dsQdzVu7BjvoOVJaEcOyYAbjsuGr/ZeAWbNjXiic/2I6PdzUhFheYNKwCX5gxCieNH6RljTy9eCfeXH8Ata1yjXxq8lB8cdYhrnuynLBwUx3+uWwXNuzrrqL44qxD1FYtJdnX3IW/vb8dH2ytR3s4jkMHluIzU4fh/CNHKF8jsXgCL63Yg5dX7sWuxg5UFodwwriBuPz40Rhc4V90ZhNoemr0dBJp12+jKBnFCLdmf5wqmmuAubOBC+8HSqr02upKOsEF6jfxXkTa9NvIF+11uR+jCiG672WkDQiq67G05JGzgEQMmP5VIKin/DRvmJ/pSId+W4XJfYTqc1C/RQaWLnoYKNRT7pqCam8EgHDy/ol49sepItIOVPXstxo3uBw/vWAKifniUAGuOGE0rjhhNIm9Y8cO9F3C6JTBFUX4wVkTcw4nUUFBwMD5R42w7Z9SzYShFbjzwiNIbJUWBnHlSWNw5UljSOydMG4QThinJiuRiyEVxfjh2ZPww7MnabdVEDDwuekjfZcVOmXSsArc9bmpJLZKC4P41sljXQ/k8MpJEwbhpAk0a2RYv2L8+NzJJLaCBQFcfPQo3+XJXlArNSmIEgg0EyrH6oVvA+vnyL433XQlB1mIhH5bFGI6nX9fC/z3+1LQ6KaDUKBFO7vfr3BL9seqpHYDnS0ASBA44OaapPhsh5IR2DDRPvL3LwDr/gvsX63flhnoiRIIXepAT6QVKPQ5jIlhGIZhfNDHBJpBE/k2nTgqx2rnIvnVIHg7TMeK5D4SO1YfPwUsexxY+x/9ttprcz9GFelCl2JNVlXLrwfW6rfV2dj9/xSC3lyTFMIilpyOGiYo3RQCaNgq/z8Ry/5YFZDuI8SBnkh7d/aTYRiGYfJA3xJoRoDmj7XpBFNkK9rShj5QZAdTjhWBo58uJiiyWsXJWmeKDAJliWMkrZyMorSsPHnWy37L0y7U0ri9+/9JsjFmBo3Alrn+2wgGu6TfR4prMzPxlKKainAbZ9AYhmGYvNL3BBqFiDGdjjaCiWGdTb3t6sQUnZTOMEAjLKJdve3qwhRoAYI2zvTroXBW48nzrA6s02+rh7DQ/L4lErQljqaN1r36bfXIRBJcW6rEkXA/BvSXwcZjQKwTKHJ/ng3DMAzDqKJvCbRAgLY0r3W//sxPenaEJPKdpxLHdAdSB/Fot7CgEGhmD1oipt9pTM9EUmR1TXudBBPzWtLEi+73LdoBQKT9v2bS9xEqWwDNtZnrkCQTmbZHdmkuFzUFJ5c4MgzDMHmkbwk0qhLHVJ9Ku/5oNHV2hLLEkVKgpdsiyaCl9aDpdoipe9AoywB7rH/N71sPW4TX1l4rMzMUtjL/XxepfYQ4g6Z7HzE/X1ziyDAMw+SRvifQqEtqdJfmpduiiHx35anEsatJr60wcQahKy2TpV1YpGfQCEpFUyP9KT5radej+7PdI8tE2MsKod9emDhAka8Sx/SScJ22uMSRYRiGySN9T6BRNvcD+u3ly7Givo/aM2jEmUjKjF0PW5qvLf3MNWrnW/eapM6yRgj3EcprSyRoz5NLF/Ha95GkLS5xZBiGYfJIHxNoBfTn7mgvcaR0rOLdTne0XTpaOsmbiCHODpKWOGrOoMUj3WPaKSemUtgzn58q0EO6/gnXY7QdqV4+6hJH3fsxlzgyDMMwBwF9TKAF6LIjJQOS/0/kWJUOInCsks9fNlh+jXXqtRdpA0oHJv+fSKCVDiQSFq3yPQP02zNFWXGV/iEh5rWUDJDneOkegBJp616PVGWApYPosoOpfYQo0FMygK5vtmyw3FN0D1IK52E/LuIMGsMwDJM/+pZAI5vi2A5UDJP/rz07knSmyocQOPqmreQ5V9rLrtrTbBE5VuVD6aL6lNcWCAKlAwhKbpNikPLayGylrX+qNUK5jwRLgOJKurLs8qGQ/XW6Az1pa4RqP+YSR4ZhGCaP9C2BZgTohluUD0n+P0HkO1gim9KpRIyZsaCItJcOpJm+GU4TuiTZkbbuNUJR4lhYJp1GMqFLdW1tQJmZiSQqFS0frN+W2cuX2kcI1n9RORAqoxO6qX2EwB7VfhzmHjSGYRgm//Q9gRZp11tSk3KsCLNMReXSAdfu6GRkR3Q73+FW6egUlhNmIgmyI/GYLP+jzPwUVsg1on3SYVomMv3fOu0VVQChUroywPKhBOXEnYBI0N7HwjKiNZKRiaewVzYIgEEn4rnEkWEYhskjfU+g6S6pMR0rquhwuE06VaFSumETVFH9dKeRzPkeor93Kkp9H9vS7iOViCfM/BQmAxSk5cRtegM95Fmm9uR9LKXPspJdG0UGOfm+hXhICMMwDJM/+qBAg15Hjjw63J7MjpTTNfeTZn6S4pO8fFOjvfRySt22THtkAi0fa6Q8uUYIeqcKCoHifjIIEwvrs9VrH9EtPtOy1eR9igTvW1FFUnwS7JGhMtnvzDAMwzB5om/9FTIK5Fedf6RTkW+zpIYgY1FYlnQ+iB0rioxdUbI0j6I0KVTW3TuiVcSbYpCwBy3VX0SVZaUMUFBlWdN6+QC971uvgTxE1xYqpS+D1WkvkZDPnyrfpCjL5uwZwzAMk1/6mEBLvlydTmrqHByqkpr2PGRHCDI/iURGaR5Bc7/ZywfovTazDLC4HxAsJizxIrqPgBykYdrWRTwKxMPd7xvJsJVkvxugOdBjiniiQI85JIRkHyHMIJvir5Dw2rj/jGEYhskzfVOgUWRHyJydtOxIrFNv7xRl+Zr5HpH1F7VLx5tEoJlOI1X5plm+RmHLdL6T4+G13se0YAjZfUxmqwG9gR7z2ooq6TLIKRFD3ctKsB8XlhFNqGznDBrDMAyTd/qWQDP7Aigi31QOcfqQBICov46gNC/dsaKMfKeyIwQ9aGa5HOWY/XhYTpHURbhNBkJSo+8J7yPZxFSzxJFCfJYRTahs7f6sRdtlBlsX4VaZOS6qlP/Weh/NgFkFzT4STk5MZRiGYZg80rcEGkWJYyTtHByqyXKUUf10x4osO0LoWJE43+lOI4HznT4kBNAvLMyR/gBRJrKc9j5SiniK8k0hevagATIbr4v0iZHmv3WROpfM7NMlyLJyiSPDMAyTZ/qmQKPK/IQ09/yYZ66ZIgbQ63ybDmpBECgoohFolGe8FRE5jenZEd0lZYm4dLaLKmiEhZmJDJYAMIg+a5Q9aOVEwRDC3qlYGEjEembidQtrc38ECO9juf4BKGZFA8MwDMPkkb4p0HSKph5DQogcK7LhFu3dzkeh5nPXepSv5aFUlKK/yOydIisVTb53uofkFJbLcmLdfWGRtOwIyYTKtm5HH6ArcdQ93CUVDKHKfCbH3gcLgUCI6D7ykBCGYRjmf4c+KtAomvsJGu5TzkcFXYmj6ZzqLjtMCYsKmt6pVA9aWfe/tdnK7K8jcL57iE/N9kw7uh3iHmWAyRJH3YdHU5U4RtqkeAkW6d9Hwmll2VTXllojukV8Zi8f96AxDMMwn3z6mEBLnoOmO2IbCMoDbbU7qEnHKn1wwSfF+c7MIAD6+8LSe6e0ZgdbZQlgoIBAxGf0aaV/TwfhtAwCmfNtik8BxLo02mvPyFZrft9MO9ozkelCl+iMt9Q+onm4S4+puuVyfeiadGueucYZNIZhGCbP9DGBZkjxRFEGaBjdE9G02coolQP0O1bkzjdBxsI8c41qimN6GZRu57vHkASKQ7jTMgi6J1SmAhQVaZlPTfcyHpPOfY+JqbqFbvp9pJiGmS7idQd60tc/Rcl5mf4ARfqZawzDMAyTR/qWQAP096qk92lpd74zyilN+7pId6x0O9+ZkW9A3/uWcqzKaHqnwvm6jwQljuHWDPFJXb6p6X1Lt1VQKLPxn7QywB49aLoDPab41DzcJXPYCqDPXroYZBiGYZg80vcEmu6sVrqDqrukpkcPGoFAS3esqMQnRVQ/3RZAU1KWmYnU1TuVeSh2+vd02UuJT929U8kz10Il+rMj6RldMztO1e9J2oNGEehppbu2SKucOFsQSgv0aF4jRdyDxjAMw+SXPijQdDvf7T0j3+b3tNiizqClO1YEIiblWBFlR6ii+umDBEKlgIjLiZw66JFlIpji2EN8EvQpFlYkBZPm8s30bDVAUL6c3oNWJo9K0Bbosciy6ro2IXqWSmvPsrb3tAVoDPSkCV2GYRiGySN9T6CFSgki32mDNAB9Tmp65kd3D1qmY6W9NCljkACg0fnOcKy0C4uMLCtAc226SxzT+7QA/RMqMx19gCCDRphBTr+PAE35pu6gUqxLBiQKqfaRdov9WJO9SIaIZxiGYZg80fcEGkXPT/qQBECfvfSyq0CBnAxI5VhRjNkvJIp8ZzpWFOPh0zOR6a9BNenXFiySJYHaHP0Moav9jLdWi/uoKxiSNjEVoClxLMoQaNp7p9JLHHVnItOy1brLNwszgiHa1j8PCWEYhmEODvqgQNM9Nay153hsQH/vVMrZ0RjVp7QFZPTyEWYiAeIeNCKHODVZVGOAwqoMkGykP1UwhKrEkTATH2mVg0+ChUBBUJYW67o2KxFPNTGSqpeVe9AYhmGYPNP3BJr2EkfKkpq0BnjTnjYH1aIMMBEF4lFN9qxKvHRdm9mDQzUePr0HTXPPT6RNrvlA8gxAnWWHvURM8j4mEvrsUWVZM8WndhFvtY9oDFCkZ310CmvLXj6qo0E0ZyIz90iGYRiGyRN9T6BRnM2UXr4D6HV20vsdQhqd714Oqu5rs7qPuoRF2llhgN4sa+ZhthSleekOo05hYZVlBfRm7HqtEd0ZNILSvHhUlhQXVcp/U/TXFWUKNMJMZDyiN9BTlBEM0Z6J5zH7DMMwTH7pgwJNo/MdjwLxcG+nUWd2pFfkm8qx0i0s0pzGYLHsnaLowQHoHVRAr730kqt8XJvOjAXVIA2rHjRdn+teQ2vM8k2dGbTMNUJUBqhbfIZbe4pqnbYy1z/DMAzD5Im+J9B0ljhaTQMENIuYdMeKMjtC0PNjOlaGoXcoSaZjRWGrVyZS4+jvHtmRcoISx7Tx8OnfV026iC8IyT4qncEQo0AGCwC9mUiroTWA3h60oowsK2WpNKA5y2p+1koAGHr3yFDysHuGYRiGySN97y9RYbnMcuk4U8jW+dboWBVmlDhSNvcDNM43oD+qn+5YmX0xOnqnUtm6zCyrRge1kFrEE/YO9irf1OzoG4b8t85MZK+MLkG2Op89aIAee0L03CNTB4wTCV2GYRiGyRN9UKBpdHasRkjrsmXa6yViqBwr8z5qcFIzHSvTns5hK0UZtiDk4cA6bAGEIibz2nQOkskUnxo/a6lyYqL1H8kUuhoPj04FepI9aNrHwxPuI72y1RrXSLQTEAmL9a9xzD6XNzIMwzAHAX1PoOl0CFIljmZ/heaSml49aDpFjMWEPkCPs2/nWJFlEEyHWMO1WY30B/RmBzOvjaxPS2PvVGY5MaC/LyyzDBDQs/4z76P2Pq0M8UkxSIaixNGqJ0z3PsIZNIZhGOYgoO8JNJ3CIjM7YpbUaMtYtPfuL6IapKFTWFg6VuV6+4usnG+d15YagFIke5t0ZrUyr01nD1pmnxagxyG2WiO6+8IyHX1Ak4i3KScm20c0H9cRLJHnrZm2zNegmpTQTRefmofkFPIZaAzDMEz+6YMCjaDEsZfTSJQdMW0Jod6WrWOlM4NQ2f09rc53e+/yNUBTdiSjDFB3X4xlf5FmRz+9TwvQm4nsNQCFYNgEoHdCa6aIDwT0rf9UOXHaaHjKLJNOgWabQSMayMMwDMMweaLvCTSKqD7FmUKWfVplsjQwFlZvz9ZBJSjxMu1pHcWd4aACmtYI4bXFY7JPqsekz+SQHB3nTtmWiurMsmYOQNGYHSzKKAMENAd6Mkffa+zTsioD1BLoaev5WSMpFSUakpN5bQzDMAyTJ/qeQNPaF2PlWGnq+bHr0wL0ic/MbJ35fR22AMLMD2FU3y7LStaDozNAYTHYRZctOxGvrcS3tbdgAvSsSUoRnwoqZYhPEdcX6LG8jzqHNlGtkYw9kmEYhmHyRB8UaBqnD1o6Vpqi+nYiBtAnPnv0MpkDUKjK1zSP2bcUn7ocYiMjY6cpqm+X0QX0lW9SDdKw7EHTOfreYhomoO+zVlAo+xNNdJ3NZzlsRWefbj5KHDMDZkRZVoZhGIbJE31PoOme4pjpWOmK2Fo2wGsWFumOjs4BKJaOlebR35llgIA+EVOY1qdl2qPK1ukc2Z6ZZQ0UyL5FHQ6xpYjXFAwRIksGmeA+AvomVFqKeM17ZPq1BUvkV6pSaV29fIm4vAbOoDEMwzAHAX1PoOkuccz8A63LIbCbdAjoG9yR2QCvawCKpWNVluydiqm1ZeVYFeos37S7jzqd74xhK+k/U0nYIoOgqzTVTsTrcPRjYSARs8n8EH3WdGVZLUW85qxW+rXpHIBCWSptvn4eEsIwDMMcBPRBgaazxNHiHBzd2RHLyLemkkqrqL5W55ugpCxbGaCu8k3L7IgOWy3yK9W1Wa4RXcLCTsRH1A9AsRODgMZAT6bQ1TSh0rIHTfe1We0jhBlkHQeMW+1ZDMMwDJMn+p5A0z19rZdjpbm5n3I8fC/xSelYaRLWlkM7CDMIgD6hm5cSx4wpdrrOr4u0AYFQ73JiQP212ZXK6bAFWGdZdfVg2h34DWhc/xl7pM4MWqhMZulMCjX1RYYthC7DMAzD5Im+J9DMvhgtTmOrRYkXcQYBoOlBA5LTBzX2qfRwrDQJi1RpUtq1FQSBgiLiMliCQ7EBvVlWKxGvy/m2DBhoEk3ZMrq6hDWliAFs1ojia0sksvTXacogWwldQMMasRC6DMMwDJMn+p5AA/SKJqsSR6qSGl0OqulYUWV+Mse1m7YA9cIi5VhlZn40OsRWfVoUh2KbtgD19uJR2SNomUHWVU5pUQYIaMyOZA5AKaYtJ9a6RqwCPYqvLWrTp6UzE98rGKIry2reRz4HjWEYhsk/eRNohmFcYhjGGsMwEoZhzHT1yzr7wqyyI4B658p8/VYHLKu2ZTpWlL0jVpkYQJ/z3evaNPX8ZE6xA+R9jHVpEPFWxz5oykRaZXRNe1TBEF1lh1blxIDefcRKxEQ7ZLBEJRGLz7aufcTus6YzO2gVDAE0ZuI5g8YwDMPkn3xm0FYDuBjAO65/s7C821lQiV2WCSDunVJ8bVYZBEBfX4xlBkFXiaPNteksO6Qquwq3AUYy02Oia4qj3ZCEQk1lsHYDSQBC8amxL8wqEwloCPS0yvVREOxtS9tnjVLoUgk0GxHPMAzDMHkgbwJNCLFOCLHB0y8XaTqs1G5ICKCnNC9Y0tOxChbKwQmqxWBeMggWvXzpr0WlLcD6fdN5Dlo6OjM/RRlnrgWLpGhTvkbyUL5mla0DNIgYG/FZVKH+2swz16iyg3ZTFbXYsunT0rUfZy2VJhLxDMMwDJMHDvoeNMMwrjIMY6lhGEtra2vlN3VEvu0cK53lQlbOgI7eKeoMQlbHSkMGAaARFmafllUGAdDkfGfYMgw9wtq2fE3XFNP2LEKXMINsfjZUEWkHIOwzyDqOmci8roLCpIgnylZry0Rm248JBskwDMMwTJ7QKtAMw5hvGMZqi/8udPocQoiHhRAzhRAzBw8eLL+pw0E1HSvKkhorZ0DHWPNsGYRYl/rDoy0zaBpFTPrzp+xpEBbZMgiAniyrrYjXNWzF5j4KodgeYeaHMoNsWwaosQzWTsST9ntSlcHqHBJi8JAQhmEY5qAgmPsh3hFCnKnliXX0oNk53zr7wqycbx0N97YZhDRhUVKl0F6WARDKxWc7AKP7+dPtkWUQNAk0K6EL6CnftF0jpQAEEO3sLlNVYs9ijZjXqkNYZ/ZpAfI+tuxWbMtOoGkug81Ei4i3ubb0QE/mPfaD5T6iOWCWXk7MMAzDMHnioC9xtERHz0POyLeGvhirhnQdmR/bDAJhdjBUAsDQZCvjMFtAr4ixK1/TETSwzLLqXCMEfWFmObFddkR52aFNtlpHD5ptJlLj9E2qNWIXxNLRpxuPSdFHtWeFWzl7xjAMwxw05HPM/kWGYdQAOB7Ay4ZhvOr4l82eB5VlV7bOh8bJclaR76IKfdnBXhkLDZkf07HKFLqGoc9ppBYxvTIIukoc7bKsOu6jzbXp6AuLhYFErPe1BYuSQ3I0XJtllklDD5pdJlL3IJlMdFQZUGaQ7XpLtQV62nlACMMwDHPQkM8pji8KIUYJIYqEEEOFEOc4/uXCcungxSPqXlAu50NHX5hdDxrZCHUNmR+7DAKgTzTZOahkIl5jGSx5lpVguEu2kea6suOW91HHsJUca0RHVpcqO2juE6GMTFMq86nwfbMLGJiBHh2TPnlACMMwDHOQ0DdLHHUIC9veEY1N6XZRfS1T7Cwa4HVEvu0yCICmDJqd0C0DREL2Tqkil4hXnrGwGxKiSaAZBTKL1cOWjjWSZaS5rv5Su16+RFRm9FSRWiOVGbZ0ZlntRLymUtHMcmIdvYPZpirq2iOt7iPDMAzD5IG+KdB0lJSlIt8Zf6SDJUlbGs6dsssg6ChNsmqA15H5yeZY6SjNs3NQU06jBvFJ0V8kRHbxqStgkO81UliuXlhkKycG1N5L2yMtzBJHhftIIgHL4woAfULXbj0Cat83u4AZoGkAkM21MQzDMEwe6JsCTUdWy67nIRBICguFzk5qSIJFU7qOEkdSB9UmgwAkS5OoMmhmVkuh02jXg1YQlFMCVTqosS5AxO0zaFpKbm0CBoCmbLXVmtQ0+j6rsCAQnzqmwUY7IM9cs9hHdJWK2mU9AT37sa2IJzqXkmEYhmHyQB8VaITZESCZ1VLp6JtnrtmIpmgHkIgrtJfDQVV5beEW+ZWsNM9OfOrMsto5jRqELlUPmp2I1zIAIse1Kc/85BAWysWnRTmxGehR2u+ZrZxYR39drmAIVRmshhJH7kFjGIZhDiL6qEDTFfm2OahUdVYrV38FoN7ZJ4t85+od0TB9LZvTqPraAsHefVqAemFhl9EFpKMfjwDxqEJ7WYZNAITON/GQEED9GrE7T6tIcflmVhFfrifQY1lOrLGXlbrEl2EYhmEOAvqmQNNVdpXNsaIYSALoy1hY9oRpGKGetXytQs9YcztRnf56lNmyWyMVtA4qoHiN2IwZ15pBs5s+qNBWImFfmpcSFoozyHaOvuq+sGwiXpdooi4VtROEKveRRByIdXIGjWEYhjlo6JsCTVcPmt0Ur0LFTmO2/gotGQubyHcgoL4UKmv5mmIHNR6TjlXWqL7iHjTbNaIpy5rV+VacZbVaj8EiOd2RctKnyjVi9uqRZqtt1ojqvrCsIl5DgMKunDik4z5mKydWvR9nuY8MwzAMkwf6qEDT1F9kF/lWHbHN6qDqyFhkmVCm+rDebOVrZomXqrPJck0DBNSX5lll6wD1wiJ1H62GrWhyvq3uo2GozyDnEvGUYjD9MSrI1stUqPgQ+qwiXtMAIKtr09VfZ1dOrK2igQUawzAMc3DAAs3Ezvkw7VH2aaU/RgXZ+it0XFsgZNOnVa72bDJHWSbFZYB2a0T19MFsGYRUllWxsC62EIOA+oxFuFVOvSwI9v5ZUbnsr4spOoQ+qxjUNGwoW6BHSwbNZtgKoCGDTHhtRRXW5cSFhIEehmEYhskDfVOghUoAI6A+YmsrYhRPDcvWg6ajvy5bVF+LY2VnS7FD7KiXT7H4zCp0CSf0AeqcbyHsD3M2X4Pq4wqyBUPMx6gg1zRAlbbM57ISTKY9HaXSFBMq4zF59IPttWlY/3a2ihQHerIdDcIwDMMweaBvCjTD0DPW3NYhUF2alKO/AlB3baZjla13SnVpXjZb5mNU2QKsHauCEFBQpL40NZuw0FF2ZXfsQ/pj/BLrAhIxuv66XBldQJ29rAenJwM9qjOfVENCnKwRVdeWTQwCekp8qdZI6mgQm/XPMAzDMMT0TYEGJKPRKqP6OYRFtF1OhFNBSlgQDLfIJgbN71NGvs3HqCCXY6U6O5htSIhpi7K/TnmWKVsGjbBU1HyMCrL1F5mBHqoAhfJJn04CPYqz1bbvW4V6oZvNlvkYVbbSn5dhGIZh8kwfFmgaen6y9VcAah1iI2AzHl7x4IJcDfDKyzcdRL6VXVsOgabD+c42bEXEZTZKla1giU2fluJJn9kykYCGDFqLgyyr6gwaZWlelvWv8myycKu8roDFNq76EPpsJbemPap+N86gMQzDMJ9w+rBAU11SQ9wXY9cAH1LcF5OrAV71cIus/W6qo/q5Mj8KMxZC5HAaFZemOnJQVWUQcmUiFZf4hluzi0FA4bU5KM1TtUZiETnghDLQYzfYRbktJ0KXYGIkoL7ElzNoDMMwzEFG3xVoKktqYmEgEc093EKlQ2DnoKo+myzbIA1AT19MzgwaQQ+aaU+VrVSflp0txRmLbA5qsEiOIKdyUJVn0HIMJAHUCl2AJkDhJFsHqM0g291H1WeTUfegZT1zUFegh4eEMAzDMAcHfVegqSypcRIdBtRmLLJFa1WeTWZmR3L1oKnsnSLrQXPQO6XKQe1y0O8GqM182jnDhqE2O5hToKkug81W4qijxNfIcn6dwgBFrmydjgyy3X1UfTaZo2w1dQZN4R4ZKrUuJ2YYhmGYPNCHBZrKyHcux0px5Lsrl0BTmLEwnRjbM67KAAjZG6PEnpMMmsJrC5UBgQIbewqFReo+9rOxpWG4hZ3QBZKHHhMNSVB9NlnWSZ+KRYxZcmtVTgyo/azlytZRZtAApA6GV2IrV7a6TF2gR4jcQ5sAGqHLMAzDMHmgDws0ldFhB2WAAJ1DoHJqXqq/KFevigJhQe5Y5RK6CnunnAwkAWidb7JSUYWiKRaR5aJUvVNdLfa2AD0iPmeWVeH7lq0sT2V2MFcGubAcygI90Q55zhlVwIwFGsMwDHOQ0XcFmsqSmmzjqk1bAE0PGiAdYtXXRnE2melY2d3HgqAsJVIpLHJmEAhH+gM0JY6A2sxPV7P8muvaVLxvqWmANus/WKz2EHpHWSbCfs/0x/m252T9U+0jCktTc4305wwawzAM8wmn7wq0wjJ1Z5NFnGbQiISF0v46hwJNhSOXa6S/aY/KsVLZX+dkIAmgNvOTTcQrzbK2AgWFcviIFSqvLZcYNIxkgEKlQCPKMuU6c1BLD1qOa1N5H0Ol8gB4K1ReW679OFBAG+hhGIZhGGL6sEBLOkFRFcIil2OVh8i3ytKkwvLsfVqAGsfKyTQ01deW6z6KBBDt9G/LcSaSWHxS2FK5/p2MNFea+XRwH1UFenKeOagwE5mIZ590aNpTOUgjV1AJULSPODiXTGkGOYeIZxiGYRhi+rBAU1lSk8NpDJXKsisVDkEiLh1Cysh3VsGk8PyusJkdobo2B843oCjz47SXT0WfVhiIh7P3Tqk8myznfTTXiAJn34mIV9lf6qQHDVAb6KEog82VZTLtUWbrADX7SK7PGqA+g8wZNIZhGOYgou8KNKXCIsekQ8NQVwrlJDqstL/OYeRbRaTddKxIhYUDp1HFteVyvgsK5dlkSjORNhMjgaTQJRo2QZ1By0d2UOU+YncvzUCPivvo5LOmctKtk8mzgNo9Mue1EfUpMgzDMAwxfVegpUpqVDjfOc4KM3+mNIOQqwetTVHZFWGWybHzrVBYZBWDKq+tRQ6wCBZa/1yliM/Vp2X+LKywv44qO5JrqiigeLiFgx40QJ2wyHbsg7lGKD9rKoMhjj5rRHukqkCPELnXP8MwDMMQ03cFmsrJil0tsozLzrEC1JXU5MrWAWr763KVeCnNIBCWJgnhIDuo2PnOFWVXlfl0kkEoKgdEXFF/ncP7qLK/KNf6V/GexWNysqijEl8VGeTm7NcFKMzEO+zlU9Zf53SNqCxxJMggRzvl54gzaAzDMMxBxCdAoCnKoDlxrKgi36pLyhyJGKISR1X3MdIOQOSOsgPq3rdcUXZV0zcd9Wkpznw6Wo9UGWRV2WqHJbfpr8uvvVxrRNXh0XlZI9kEk8JSaacBCiqhyzAMwzDE9GGBlvzjrURYNDtzrJQ6BDnOQQPU9cVks1UQAoIlap3vQoLSJKelooC6ISG5nDhlJY4O+xQBde9bNlvBIiAQUncfA0FZLmqHqhJHp6Vy6Y/1Q65sNaChl5UqO55LxJv7sapy4hL7kf6AhoAZlzgyDMMwBw99WKCZjlWL/+dyMsVL1dlMTvqLVPfX5RSfFeoi36EyeSC1HarGmrvJIFBkIgF1U/PclMFSZNAAtQGKogrZj2WHqimOjkQModAFFK4Rh6PoAf/2EoncPWipQ+gV7MdOgiHKAj0O7iPDMAzDEPMJEGhEJY5Fis4UoixxNM9KynltFYocKwc9OKoGdziahqlYxBRnKfECpBBQWeJFMVnRHOlPFaBwVCpaAcQ6ZQ+ZX1uAw8wPUTCkkDKDrKg0NdKGnOXE5muhLDmPtss9zq8tgAUawzAMc1DRdwVasFiWXSmL2FL3oBFkR5z2VyhzrJxkIhU5jY4yCAoHyTgaEkIo0FJlsH7XiHmeFmGAwklGF/CfQXZ67APQndn2a89JgEJlD1q2ybOUwRDz58oqGpyuEaI9kmEYhmEI6bsCzTBoI7ZKe9CM7jJGS1uKsoNOnY9ihcLiYHKsCpK9TspKRR04qF2KAgbZRvoD6gZ3OHW+lQUoHNxH87Po9146CYYEi+QZdmQZNIX7SGEFEMiyhSsLhjjs01IVoHBU4qgog8wCjWEYhjkI6bsCDSDO/FTIUrB4VIGtyuw9OKmyK78OqoNMjPlzyiEJgELHisAhdnpWUnGlFIO+++scDiQBCLOsCodbOBG66a/Nsy2z35Ng/TsZ6Q+o7UHL9VkzS3L9XluX032EuMQRULf+c5UvMwzDMAwhfVygKXCsYhEg1pV9hDSgNmNB5qC6KHFUkflxNCRBUfkaZflmpB0QCRfXpsBpdJqJpFojhQonK+bMVivqC6NcI05GwwPJQE9E7jt+cJRlUnwfHfWyqgqY5dqPFZUvm+9btlJRhmEYhiGmjws0SsdKYT9HLscqVCJHkasq8co53EJV74jDc6AAutIkFeWbjh19RZlPpyP9Abr7SJmtVnkfA0H5ecpqT+E+4nT9KxHxDgMGfvvrHPegVaor8XWcQVbw2c5VTswwDMMwxHwCBJpfJ85pGZRChziXGDSMZHZQ1bU5dL6F8GmvJbcYVCl0c52VBKi5j26Ebvrj/djLtUYCAXmkgbISRydlgETOd7HCzE+ukf6Amky8k4EkgNq+sJyBnmI1/XVOxaeKYEgiLkWX02mwKvZj7j9jGIZhDjI+AQKNsAwq/fF+7DlxCJRemwPnW8SBaKd3W4m4HHt90N1HBVF9NxkEQI09Jwfnqpis6PTaTOfbT3+d05H+KjM/ju6jgkBPXvaRg/Dawi3+Aj0Rh1NFVfagsUBjGIZhDjL6tkBTUr7mMPJt9kSocHacOATFlMJCwaHfTqPsqjIITjIxQHKNEN1HVZkfJ8c+AGomK7paI8KfvdRIfwfnyQHEIoYwy5T+eM/2XAQolGQHjdx9Wqk14qNX0WkmUpXQdbqPMAzDMAwhfVugqRhu4XRCWWr0t8+ovlOHQIVjFW4FjED2kf6mLfPxXnHqWJn9daSZSIJx7aYtQI29XPcRUDNZMdwKGAUO+rQUCIuww5LbUIl8TSp60BzdRxWl0ub6zyU++/V8vFfcZAdV9LIW5Rjpb9oyX5tnWy6z1UqEroP7yDAMwzCE9H2BFg/L0imvOM6gETsERZXdDq1XTDGYswdHhWPlsAxKVX+d2wyCn7KrLjdZJvi7tkTChfOtqE+xuF/uNaLibDJXa0RRVousnJgwg5aIy0ymowxyPzUZZKfrEfB3L50GQ8z+OlXik2EYhmEOIvq4QDMdAj9lVw4dAhUOaqpPizLy7cCWitI8pw6qaU9Ff5GTs4uKK+WIfF+leW6nOPq4j9F2AMK58+07g9zs7D4qyaA5HNduPoYqy1RcmRx9ryDQ47hP0cf6N9eyo+ygojJwp8EQQFEm3uGa9L2POFz/DMMwDENIHxdoCjIWTkscQ6X+y66cOnGAuv46p2IQ8OcQOy1xBNQM7uhqBoqrnNkCaKL6Kvrr3N5HVRm0XBQrKM1zKnQBdSW+lMKioFBmdrKhIoPmNKNrPoYqy0RZ4gio6S91uv4ZhmEYhpBPiEDz43w3OzsHxyy78iViktHekqrcj1UxEc1NiRdAI2IANWVXjjM/CsRnuEUK9IJg9scFAvIgYr+2ALpBMm7vI0UwxHyMH1tCuOtBA/wLCyfXFSwGAiE1+4iTAIUSEeP2PhJl4v0GehIJZ0eDMAzDMAwxfVygKYp8O20S9+vspBwrh+U7iRgQ6/JujzKDEHZ4npz5GD+OVTwmy7zcZH58O98O+1T8Zj5TQtfhGgm3+Bt979RBVVHi6Gr9+xzcEQsDiShdgMKpiDEM4n1EwRmHbibPAnSZeL/3MdwCQLBAYxiGYQ46+rhAU5T5cep8F/ns+XHjWKlydqgyCOSOFWiFhVMnzq+wcHUf+0GONfcjLJyWOKpYjy7XP1kmhnof8XltbgM9Ig5EO7zbc1sq7fd9MwpkxjqnPZ+BHjf3kWEYhmEI6eMCTdFwCyfOMECfQQNoMj8FISBY4n8ARCAoS7hy4Xe4RVdT9/PkQkl/nRuBpkh8kmUsHF6bih7MriYgVCbXWy78lhO7KblVJSycZuJVlUpTBnqcrMdChUI311RRQJZ4Uu3HDMMwDENIHxdopkPgY5KXmxJHvxHbzib5lUKgCeF8kAbgf9S46aA6caz8luZ5cVB9Z9CqnD1WxX0EXI4193ht8aicGunk2pT0YDa5FLoqskwu7qPvbLXDa/Pbg+kqQOFzjcTCQKzTWd9sQVAKcL8ZZDcBM86gMQzDMJ9APiECjTKD5kcMuuwdAbw7INFOOTrciWNl2qPowQGSjxPeR997ykT6uLbOJpcljkRTHP1mR9zYMh/nVzS5uY9+zjj08lmjGBICqCvNozibzM1AEsB/iW+4xVn/JSCvLdIqjy/xAgs0hmEY5iClbwu0UEmy7IpoSIgSx8roLgXKht+zydw6HypKytz04ADeHTk311ZYDsDw/745Fbp+o/rhFsAIyExELkxH1vN9bJJfHa8Rv5kfl6WigI/13yS/Uh3F4LQMEFBTKl1YkXuqKJAW6PEYWPIk0Ih6+aj3SIZhGIYhom8LNLPsyrdD4DKD4HUiWlezfI6Ag9vuN6rvxkEF1GRHnEa+fWd+XDhWgYC/qH6qVJSoNM/M1jlZI6n76Nf5dvG+UQpd83e82gKcXVuwSI6+9/q+CeEuE68i0OPmPQO8X5tZlk2WiW9ydx8BmkAPwzAMwxDStwUa4E9YJOKyRMaNQyDiQKTdmz0vGQQKEWPa8yvQHDtxxI6Vn2uLtMn33E0mMtruo+yqyYWoNg+PJhJoRT5LfN2WigI0wsJvoCfSBkC4P67DTw+m60wk0WdNSRlslXNbgP890un7xjAMwzBE9H2B5sf59uJ8AP7sOS4V6ouRb4e2UsLCh2NlBJLli07sVRKWePl0iF2JGGqhq2D6INm1NcmsmJNx7YC/9e9m+A+QvDafPZhuPtcATamoac/XICXiQE9RJRAo8Pb7DMMwDKOJvAk0wzDuMQxjvWEYKw3DeNEwjCpPT+SnfM2186HAIXDqxBUEpXPp2/mucvb4ogr/2RFyx8rh8vWzRlw7334dYhcOaqgYKCj07hC7OU8O8JmtTiTLAAnvY3E/Z1NFAZ+Bnib51W35pp99y+199BwMaZJfKbLVibjcgygzaFzeyDAMwxyE5DOD9jqAI4QQRwLYCOAmT8+iIvLtVlhQOQR+ztTyEvn22l/nZlw7oKa/yPV99JllpcxYOL2PgM814qXEscXbGom0ASLhfo34+Ww7fc8ARSLeoT3KfSRQIDPNlAEKss+a3yE5LNAYhmGYg5O8CTQhxGtCiFjynx8AGOXpifyU1KQi3/2dPT7lNHoVFk0unW8/1+biHCgg2V+XAKId7m15FbpUjpWf4RZuMwh+o/puhYWva/NQKpqIySMcXNtqSj4HVQ9mk0sRryAT73of8bpGKAM9zfLw+ZCDA+jTbXkR8V4GGwF0gR6GYRiGIeJg6UG7EsBcqx8YhnGVYRhLDcNYWltb2/sBxf26/7C75WCOfAP+xnF3NknHuyDk7PF+SqHcOlahEiAQ7COZSA9ZJsBbFkEID8LCZ3+d08PFTVuAt3vppd/Nqy3TnptgSHG/7v3ALa4DFD56MN2WigL+AxRug0pe++sO9kAPwzAMwxChVaAZhjHfMIzVFv9dmPaYWwDEAPzd6jmEEA8LIWYKIWYOHjy49wOKq+QfWj8RW4rekXhMOi2uo/o+e3Cc4mcioNsyKMPwL5oo7yNA06doHi7uVliQ3UcfAQq3Ai1YBBQU+QtQuMlEllT5ELpN8qvr8k0P1xZuASAO4n3ER1bLbZbVbw8mCzSGYRjmIMXBSafeEUKcme3nhmF8HcBnAXxKCI+Hi5VUybKrSDtQ5LBUy4Qyg+Z2IINpr2Wve1uA+8i3+Vgv2Ui3QhfwX5rn1lasC4hFgGChO1teh4R4clBd9uAA8trqDri3Zdrz4nx7cfa9XJsvYdHk8tqq5GtMJJwPnzHpbAKMApqD2r2c3VVU6a/KwNV6rOr+vX4uq9bd7scAbaCHYRiGYYjI5xTHcwH8GMAFQggPjU9J/AqLgkJZcueEwnIAhkfHqkl+pRxu4caW6YR5KfPKi2PlxpaPYQJuR3Gb99GP0HV7bdQZNC89mG6FLuBdxKcOF69y/jslVQCE98+2m4mRfvoUPQk0wgyaivVPEejxUirKMAzDMETkswftPgAVAF43DONjwzD+7OlZ/AqL4irnjlUgkIxG+3Cs3DofVCVe5Bm0ft7uo9dSUcC7QHNjK1QiS/P8CF3KTKSn8jUiYVFc5W09RtplVp1q/bv9rIVKZcbNVwbNhT3KHrT0DJpbKAM9XkpFGYZhGIYIrSWO2RBCjFfyRKneqSb3v9vV5M6xAryLJk8Oaj8pRuJR58M+0u0VH+H88fnIoDXtcG/LS6moL2HR5N6JK+nvM4PmMqsVaZVnSLk9cLerxf17Bvhb/+ZzOKGkytt69HIfzcd2NgEOhzH2sOfmPhqGd9HkdR+hmnToN4PmpqIBoL2PDMMwDEPEwTLF0Tu+IraN7hwrwH8GzZWz07/n77qy1+R+2IT5e15shUrd9XcVe5w+6FXEAN77wtyuEa/C4v+z995hllzVtfiqeztP93RPzqMZ5ZwlgoQQAoQwCDA5+GEMRsaGB35Oz372c/bD2b9nm2dbxtjknCQBEkECJBCSRjmNJoee2GE6pxvq98euU123unKdvW936azv09fqnu577j21a9fea6+9T5ZEN8/AiSzDVoDs9t/emy6J7OijezTLWurvkyJPYjF9Kj3Rk7Xyk7USWZ0GKjPp1qrXM/R7Or8roWgAsk8xNQmagYGBgcEixtJP0NzAKmNfjFQFLVMPTl/j3yZFvZa+v6LcSj12eQKrNGhKojuSfr3pkfRBXFZpniuDTVHCcRPrlHtZq1LlTUwqOiJXicwkFXV+N6sfSWv/mSs/I87fC9i/e7h4WjLEElQ0ZOzBNAmagYGBgcEixtJP0PL2TqUJhgFZxla9t7RVhCz9bkCOxGIke6Jbr6dcS3Af1XppP1tnX8a1RuhrGhlgVtmhKxVNsVapjMznhWWZmKcqkWkHvGZKYvroa1ZJZWo/kiexsFJKRbP6kRH6mib5LJWy28hiJ3oMDAwMDAyEsPQTNMXYZgoIMsrXsiZoVsmZBJliLSB90pQ1+Mjc85NhH9uXI9OBts1I0LJU0KYzVmLaeoByitbQrP11WXrCANpLqX3sXAHYtfQTCDMN0nB+N+29ZtvZKvF5/Ej78nRHAWRNPvP4kawV5CxEj+rBTLsWYBI0AwMDA4NFiaWfoCnGNm1AUK/RuPDUgVXOADVNf4Uk861+X2KKHeCR5qUMUrMEVq2dNHwgbYCaRQYI5AhQR7L1MgHpqzHTw/S1a2W6v5NM0LImTVnkxG3LgFJLehuZm6AkMgvRMzWc7m+A7IkukP66ZZGKAg5BMZLub4D0fbPA/F6ktX+ToBkYGBgYLGIs/QQNyCapycKyAxTszI7RZMW062UOrEbSrwUIVtBG0u+jSgxSB43O76f5bJaVLbFwZYB96f5O2UgWVj9rgJr2uk05e9EplKBlrTKpv02DLPZvWdmInqxJzFJIdKUraJlsJI8fSSkVNTAwMDAwEEIxErQsAUGWs7uA7JMV87DDUsy3aGCVkdWfGqJqWBqpqFovcyUya0Cc0kby7GPqxCJHBS2rfE2q8jMzkn5iJJCt8pO1Wt25wpmsOJ3u7yTvtTyV+NSDjeoZJ6bm8COdfeltxMDAwMDAQADFSNCyBARZRpoD+QKCtMFwuZV6krIOCcnUOzWS7m8yywDVPqaUeU0NE2ueRiqq1pNMdIFsAXHqa9YLwEovl1O/L1FBy2ojeSSOWaRrWQiKPBU0798nxdRQtsFGsOT8SJZ9zHpwtPKpU2nv7eH0tm9gYGBgYCCEYiRoWRruM1fQMkpqpoaBrlXp/gbIVx3M0hdTnQaqsynWyioVzSFNSpvoAtn66/JW0LKQBmn3sVTONjVyehiAlV2al2b6pnpvae0/zxTTzgwJWkdfdj8iRfRMZ/AjpVI2+fL0CDLJABXRk2b6Zl5FQyZ/bBI0AwMDA4PFiWIkaFmC77wVtCwViyyMbZbge2YUsMo0+CANsiQWeQMrsX1ckaFakbXK1EdfZzJU0NLuI0DvL0slsiODDLBzBZ2NNZdisuLU0Pzfplqrj75mkR2mva/Velkr8ZmJnhTXzbazJxZZDv2eGaUpiWkmRgK0F/UKUJlK/je5FQ0p7T9LomtgYGBgYCCEgiRoWYaEOL8vIV+rVWliZKYKWsbEoiujDBBIl+xmDaxaO4DWrowVhKwJWsaBJJkrPyPJ/6Y6RwFtpsRiRfpEN88+Aun20u13S7mPrV1AqVVO4phlSIhkBW1mlCZGZiUosvQpZllLkuhx10pbQTtlJI4GBgYGBosWxUjQOvuA2my6hnvJHjQ30BdivqeGsiWDmQIrNQ2wL/16mZLPDL18aq25iXTTN7NWfrL0TmU9XByg/cgi8coa6APp1lP7mNYms07fnD6V/poB2aR50yNUrW7vSbeWZKKr1pPyI1nOb8zqj8stNBBGoifYwMDAwMBACMVI0LIytuV2OiMr1VrOUIYsAWqWoDEL852n3w2QCawAJ2hMKfGazsh8Z5HLTQ3R50pzcHTDWhmS+Ez7mEHiKFlBcxO0rBLfkeS/b9u03rLV2daya+kOT1ey1KzV6lT7mHHyJpBNvilK9Di/m4mgSFlBrkxTr20Wf2xgYGBgYCCAYiRomRKLU9kCqyxDGXIx385aaVj9qcHs1TogXWCl9iFr8plmH2fHgHpVNrHIcs1a2oGWzpTJ4CB9XZaxOpJ6il3WRDdHYiEhzZsdo/4nqcRi+lS2pLptGck3MyVoQhW0SckKmqAfyZPoGhgYGBgYCKAYCVqWc6eyTMxTSB0Q5KkgrABqc+ka7qeGgK6MFQQgXWCV97OlYb5zBfp99FUiQVPrpdnHSSdBy3LdulbS0I5U8s2M0zCzJrqtXUBbV/r10kp8XXvMY/8p/UiWqk8W+WaeSrwapJRm+mZWGWCWRHdykEiNtIONgPQV5DyEmYGBgYGBgQCKkaBlla9lkUEB6aV5eZjvtMFOvZ5d4ugejJ1wLYACq45eOrMtLdL2TmU9XBnIUUHLyLKnPVMua58WkP6zVecoocs1ACJlxSLrQIa00rzJHPuYpXdwajBbMgiQbaUhKPLaf5rpm3NTJAOUqqDlIkMyVtDMkBADAwMDg0WKYiRoWQKryUG5gGA6p8QLSL7erDPpLctnK7cCbd0ZAqs8iW4K+aaWRDdlIJfHRtJUYpTEUSJBc4fWZKjEtLSRjaSSAeY4cyrtIBmV6GaRimYiKPISPSnt0SrTUIzUa/XR16Tr5SEM2lWf7kjyv5kaynbNAFlFg4GBgYGBgQCKlaClCqwGBAOrIUe+k0HilXb0fZ4kBshQ+RnMt4/1SvKhDHl7mYCUyWeexKIv5T4OU+LT2pF+LfUek1Zj8hAGQDb7z2OPs6NAvZZ8LUCm8mPb5EdyET0J1wLos3WuSH8umVoLSL6em+hmuLdLJTo/LTVhlqMSOT2S3Eby2r+BgYGBgQEzCpKgOYxy0oCgXqMAM3PlJ6U0L2u/DyDLfKv1UgVWeSpo6rDepJWfHBKvtNM380i8gPS9U7kquikPPc47JCHtkJxcia5KrBNWI/NUItMSPXMTdLyHFNGTpxKZtoKc149IEz2wU9hIjmNPDAwMDAwMBFCMBK3cQgF40grC1DAAO19AMJOS1c9TrQDSM99ivVOD+aRJQIqgcRiAle0Q4lLZOdB8kSa6eXtwgPSJ7lKooGUhKMrtVI1Mi45ekhAmTXTzDHYBskkc89qIVCV+sRM9bd00bdXAwMDAwGARohgJGkCBhAqq45CHZQfSJ01LifnuSjERTZ05lSdABdJJ8zr7KNnKtF6fbAUhzcHYeSoIaSWOuStoKRKLWpUCdbHEwkkG0x6fAdDfpPIjOWSAANljZRKoziZcL8+wlbRkSF4/siq5PVamaR8kiR4jbzQwMDAwWMQoWII2mOx3FfOdS1KDdMFO1mC4vcdh9QUDq8mE+zgz6pxLliMZBNJ9tjyBVZqeH3ekecb10iZNeSoIbd1AqSV5Yi1ZQXMPIBYiKLKe3aWQxv5zV9Ay2L+kVNoqZatWA+n8sQ5SCUi5j+aQagMDAwODxYuCJWhpK2g5KxZpGNuswUfa85JciVeG84QAep/Tw8nOS8pdQVCJborKT57gO9U+5pR4qb9LU43JGnxbVrq+yKlhoKUj29AaIN30zbySWzfRTWH/WSsxQLrKT57DxYF0RI9t56vEt3bSNU9FhqzIXq1Os486pKJAykq8qaAZGBgYGCxeFCxBSxkQSFTQ6jWqIuQJCNLIDtX5blkkXgD9rV1PJinTFVil6R3J09if5vy6vKy+sq0kVYS5SRpIktUegXRnauUNUNMcnq6jogukq8bkqqCtTJ5US9r/3CTtea7rtjJdoptrH1cDs2N05l7sWtKKhpxEj4GBgYGBATMKlKA5gVUqVl+A+Z4ZpYQnb7AzmbQSkzOJSVP5yVtBaGkHWpelkB2e0hCgppEBWvPSsLRQQXuifcxpj0DK6mCOqaJqLSDZenn73Tr6SOKbVHY4lWMaJpC+Et/Smb1anWofNdjIspSyw7yJrnqdOLiHi2dM0NJOaM1L9BgYGBgYGDCjQAnaaqA6k4zVnxykwK/cmm2tNNK8vAEqkC6wyjOuHUgZWOWsIAC0l2mSplz7uJoqg0kGd+iQeAHJEgst+5hC4jg9PG/DWdcCkn22vIlFqZS8n6lWIUIkzz4uW51c4juZs1qdRpqX54gJha7VKRLdnAnasjQERU6ix53QmmAfa1WyESNxNDAwMDBYxChQgpay8pNHTtbRSw30qaojeRKLNXQgbhLkZr6zVNDySPMSVn4q05R850ksUgWNOXrCgHSJbt5+N4D2MY3EN881W7aGviZJmnQcCpx0cIeyo7wV5KQSXx3VOkCuyprajwhV4icHaciNGgiTab2EBIUOGzEwMDAwMGDG8zNBmxzMx7KXyk7QmCDY0RKgrqbgO8m5azp6R9TrxK41TBLF1s7s63WuTBbo5+0bBOYTi6SVnzz7WG6lgFMq0U0jcZw8CSxbm30t9T6T7mNLZ/aBJGq9VBVdHUlTgmQ3b6Lbtoz2JokfUb1jefxI0n10j88QTD6zHo2g0LkyoT1qsBEDAwMDAwNmFC9BS9KrlTewAhw2Okli4QRfuRKL1QDs+AA875lTQHppXt5Ap3ttsgB18qTz++uyr6WSz0QBsYZBAkkrP25ikbNiUZ2mYRJRqM6SxKt7Tfa1lqXdx5zViqT7mHeqKOCpfCa1/xxrWZasH+laRWfzVWaif292LN/xGUD6HkwtfiTBPk5o8CMGBgYGBgbMKE6Clipo1JBYLFudbC0VEOSpWCRNmlz5To7P1tZFrH5iqWjefVwDTCTZRxWg5qn8KGlewqAxb59K0orF1FB+iZfaF2VvYXAD/RwJWvtyoNyWMLEeyLcW4OyjQL8bkDKJ10H0JPQjkyeBUmtOG0k4WVTX0Brva0VBB9GzbPU8iRO5lrPX3Tn8iIGBgYGBATMKlKAp+VrMQ7peJ1Y/d2CVsPIzcRJo7wVaO3KslbDnR0e/m1ovUdCYs4Kg1qpMxld+3AqaQOWnXqffybMW4EhTEya6eSVeKuCM+2w6CIM0lZ+JE/mrFV2riXyoVaN/T0di0Z0w0Z2bop5IqQryxEna81IOl51U4qujJ7LcQgRH3D4CmhJdp4IWN9zFtf+c97aBgYGBgQEjipOgtffQQaxxAcHMCGDX9CQWiQPUnGxt0p6fiRPO7+dcr3tNwsBqKH9glTix0PDZko5snz5FEq/u9dnXApJXR3TIKVXAmbSCpsMmkyYWuuw/bkqfStBy9WmpJCbms+noG1R/n1Sal3cfuxJW0Nx7LWcS0702YVVLE9Fj1+Jl4BMnqBKZZ9iQgYGBgYEBM4qToFlWMjZax7AJ9fezY/H9HJMD+gKrpElMT87EontdigqapsQiNvkcIGldnkqkGtmedB/zXje1j3HDXXT18gHxAbGuCkISgqJe15ugxSWf48cp8G5py75WuTVZ5UfH0QjAfLU67vzGZhA9uf3I2vh9rFWINMtN9CRUUCjJbZ5qtYGBgYGBATOKk6ABVF2JCwh0TfFKyrRPnMgfDHetAmAJJhZr518rDHOTNJRCx7AVIEFAfFKPLClJYuHuY05pXvdaGtkeu97x/Gu5+xhHUCipqAbSILYSOUxVjdz76CQKE8ejf2/iRP6qJ5Cs8qNjIAlA161eiR/rr4PocW0k5t4ePwHA0lBBW5fAH2uQUwIp/PHJ/NJlAwMDAwMDZhQrQUvC2OoYkuD9+9iAYCB/gFpuofXGYwLU8eM04KN9eb71VD9HVM+Pei89G3KuJbiPQLLkU9ekN/X3UevZNu1l3mpF2ZFtxVbQBoC2nnxHIwDzQxmiKj86CQMgWQWtR4ONLEsg8dUxVVGtBUQnu24lMudna+8BWrucBCwCE8cpYSq35lsvCWE2ocuPJB2So2EfDQwMDAwMmFG8BC0uQNWVWCTpnapMA7M5R5or9KxLkFicoN/LK9/pXgvAjh5wofZRV+UnVpqkifnuWZ9gH5WN6ErQIj7bzChQncmfoAEJA+IT+vaxOkPvP2otQCbRVf+upYKWoPIzfsz53bx9igkqyNOnqBKZt7fUspzPFleJPKnHHrvX0gCg2Ynw33H9saZ9TEL05N1HAwMDAwMDZhQrQVu2lpKKqJ6f8WPUJJ6758cJGqOqWjom5rnrrY+voOmYmAckC4hVgJo30W3toCmXsQGxps/W4+xjZOXnJFUa2rrzreVWfiL20U1idEnzYgLU8WNAz8b8a6nrnsT+c1d+uulaRFV+bHueoMiLJPs4dgzo6M13ADcwn5hEJU2ujWhKrOMqaOPH9YyhT+VHctp/5woaABS1Vr3uED0mQTMwMDAwWNwoVoKmen6iKj9jxygYyDOuGpgPKFSAEQRd1TrAYb4T9I5oTdAikiZdzLd6jah9nJ2gSuRyDYlF93rq+ZmKmAioBjLkrkQKBqhAMvnm+DFguQZ7TJNY6OgdjLP/6VNAbU5PortsDR3oHHX0g+5EdyzKj2giQ4DkFTRdhAEQnezqqsSXSvPkSxgmB2g6qw4/YmBgYGBgwIiCJWiqqhUT7OgIhsutTl9Y1FpH6auOgKDHkV1FVQd1DJsA5pn6uMSipZOqCHmxfEPCAFXTPnpfM3A9TfvY1kX9gJGJrqaJeQAF8GPHwquDtu0QFDoCfUVQRATEY8eo360jZ08kEJ+guYSBpiqr9zXD1tNxzTp66T6K81mAJj8SU0FTlUgtFTTnNSL38Rj50bz9bgDZddQ+jh2hryZBMzAwMDBY5ChWgrZ8E32NDPY1BVZAPGM7pjFB615PfShh1cHKNPUDaZF4JagOTpygz69jXHXPxpjASu2jjsqP8xpRVYSxo/qCuO61MVUmjZXI5RtpsmbYWVDTp4DarJ4ELUmiO3ZE3z7G9WCqfdRR+VHvOZbo0bCPlpXcj+iqoM2Nh1cHp4aowqyLMABiErQT+vxxYqJHwz4aGBgYGBgwomAJmhNYKaY0COPH9VRiAHodFTwFYewoseM6DkV1A+KQYGfU+cy9W/Kv1dZF7znqs40f1xfoqAA1rDqos4IW1zto205isSn/WoBT1YrZx9ZlNGFPx1pAeGKhM9Ft76HqWGRioTFBi+vBVIG5lkRXET0h161ep/eiYx8B2qO4RHfZGqClPf9acdXB0X762rs5/1pdq4Bye4w/1pToAgkqaBoJMwMDAwMDA0YUK0HrXkuN4mGB1dwk9TKJVdCcAFVLlSku+HYCK12JxfLN0YHV2FE91TqA9siuhfeqaK2gxQSoU8M0nVBHgArQ64xG7ONov76AMa6C7MoAdREUMb2DY0c12uNG6gsLmxqpM7Fw+8JCrtvkANmrVoIiZh91rgVE+BElA9Rw3SyLrltcgqZr7H3PBmB2LHxq5PgxoNSipyfSwMDAwMCAEcVK0Erl6IrFmGaJS88GCtZqlfD1dAXfKvBUgagfboCqMSAOC6xUlUlXEuMGxCHXbVxNzFuWf61Wp6IZ9tm0J7qb6P2HVQdH+4E+DVVPYD6BDfts4xoTXSCaoKhV6N902WOs/R+mQF9Hlam9m+wt1B6V5FAX0bMherLo2DF99qgq7GGkgc5EF6D3HbaP1VmSreqo+gPx0tSxY1SJLZX1rGdgYGBgYMCEYiVoQHRiMXKQvq44TdNaGwDY4UGqzgpC9zpif0MDVI3MN0CBdVgQNzngVJm26llreUyvythRfVUfgILPkcPB/8axj3YtQlJ2WF+AGtc7ONoPwNLTpwU41cEQe5w4AcDWSFCoxCKCoNCVVADRicXIIfrap8n+ezYAlSlgZiT433VKRZVdj4bZfz/JErtyHsCtEOVH1LXURVDEET1jR/SREwYGBgYGBowoYIIWUUHTHVi5QWNAsFOvEdOuKyAolSm4CgusxvrpvDUdFQSAAsLpYRo+4ofufXSleRGJta4gDqDEMnQfVS+fRqmo93W9qExTsqsrQWtpIxsI3cdDtNctbXrW69tKyWB1buG/aU90VQUtIrHQmaD1bIjeR0Cf/SvbDiIN5qboPtTlR9q6qDcsyv6Xb8x/DInC8o3kB+v1hf8m7kcO6bvXDAwMDAwMGFHABG0TPaCD5EIjh6gKpUvi2OdU4k4dXPhvY0fozJ0V2/SsBVBwIVZBUIlFQLLrBla6Kj/rgJYO4NSB4H8/dWh+r3WgbysFw0E2MnbE6VPRdJhtb0TFQiUxWpPPiKrWqYP6gmGAXsuuBwfE6vPqssnutU4FOWAt23bsX+M+Lt8YXvkZOUTHJ3T06VlLXZORAD/iVv2361kLEPYjm8gPTgYcNeHaiKbr1rcFgDXvn7yo1+iz6VJPGBgYGBgYMKJ4CVrfaSQXmhxc+G8jhyj40NWDEBUQqGRDZ4LWtyVCmtevr+oDzL9W0GfTHVhZFl23oARt+hQNdtG9j5XJ4HH0pw5QwKytgqAStKAkxtlbnYnFim3A8P7gfxs5qDdAdROLABtR70FXYl0qO0lTQGIxNUzHC+hMLFacRklF0Dj6kUP02XUM/wHm90jKj0RKfDUnaOq1gtYbOQxYJX3yzZZ2eq0gPzJ2lI4P0LmPBgYGBgYGTChegrbSYZqH9y38NxVY6UJLO1XjgphvrsBq/ChQqzb+vF6j9Vaerm8t9VqnAoL9kUM0REHHAcQKK06L2UeNiYVKiAITi31697GjF2jvDamOaK4yAWRvo4cX2kh1joJU3ZVIICSx2E+9bm1d+tbr3RJciVQ2ovPeVhWroGBftx/pXEEVuaBKvGv/GitofVspEfNXkOemqBoq6Ud6Nuo5pFqh77TofdRp/wYGBgYGBkwoXoLmBlYhAYHOwAqg1wsLCEot81JBLWudRpIyf5A6ehiozQErz9C3Vs9GGhYQlOjqlsoBlFicCgr0D87/uy70hSRotk2VH50BqmUBq04HhvYu/LfhvUC5TW+CtnI7Scr8ssPRwwBsvddt+SaqgIRV0FZqTCoAer0gexx29nbVmRrXcmzAX420bf1+xLIc2W2IH2nrAbpW6luvbytVkP0qA+Uzddp/32kArBDCjMuPHAheS/27gYGBgYHBIkcBEzQVEPgCq9lxYOK4XiZarRcUWA3vJ8a/3KJvLRWADu3xreUEPzoDq1LJCYgDEt3BXcDqs/WtBVAgNzu6UHbIwXwrGxj2JU1TQ3SOks59BOi6+dcCgME9tJbOsd8qAPUTFByVyHIrJWlBAfGp/frvtVVn0nTImbHGnw/toURRZ/C9MoTomThB57Hp/mxhlZ/h/fS5dMkpAY8f2d34c0UirNJI9LR2EAERlKAN7gZWn6VvLYDse/wYUJlp/PmpA2QjOskQAwMDAwMDJjQtQbMs688sy3rCsqzHLMv6rmVZehoRWtqdoNEXWA3uoq9rztGyjIuVp5NcaG6q8een9utvSFfBzKBAYAXQZ/NXfirTVEHQnaCp4NofyA3toZHfOuWUnX00mMS/jxyJLkCVzdF+OvfJi6Hdeqs+gCdBO9D484Hn6Otqzfa/+ixg8LnGn81NUZCsu4IWRlAM7aFKjK4JpgDJDjv6FhIUah/XaLb/ldvJZ/jPy+PwI2ofF9i/c6/rrMQDwZXPqWFgapDJj9gLSTNlIzrllAYGBgYGBkxoZgXtb2zbvti27UsB3AHgD7W98srtCxOLAZWgnattmfnXs+cTQIBGSg88B6w5T+9aXasocPQz38P7gNYufdMpFVae7gSNnhHZQ3sB2PqZb3VdBnzB/slngbWa9xGgwNC/lrIZ7RW0M0ia6k2aalUK/nXv4/JNNBFzYFfjzwd2Ap0rgWWazrdSWHMuBfoNNuIkULoJAzdB893bQ3v0J7oA2YG/8jnI5EfWnkdnC3ptpDpLn1X3Wn1bSb4cVEFbtkYvGQI4++hL0FRyqDtBUwTcwM7Gn598Flh7vt61DAwMDAwMmNC0BM22ba9OaRmAgJnnGbH2fHoge4PGgZ1AqVW/NEklD96A4NR+miS5TnNAYFnAqrMWMt8DOykY1imDAih5qM40stEqQNUdWK3cTkHjiafnf1av02fjCKxWn0376B2UcOIpSm60S/OcRMV73UYO0lQ53YlFqUwB/cmnG38+sJNsVbeNrDmHbN3bF3niKfq67iK9a63YDsBqrKDV65RY6K76ALRfJ55p/NnATuoJ002GKDLn5LOetZ6jQ87XXaB3rVKZbHLQV4kceI78i26sOovkw96eN9ePaF5v9TkArMZ9rM6SzXAQPQYGBgYGBgxoag+aZVl/YVnWYQDvgs4K2voLqQneK3Mc3EVBic6eMMDpIWptDAhOOkHdWs2BFTBf+VGJhW0Dxx4HNlyif631F9PX40/M/2zgOQCW/oC4VKZg/6QnIB49TP0+HIHVmnOo523ixPzPjj9ByaBuG1lzHvW/ePdRJaK6q6wAsO7CxkTXtimx0C3vBeYlk95q5HEn0dVdiWztoEReJYAA3eNzE8B6zckgQK85eRIY99jIwHMkb+RIdAFgwONH1DXUnaABlBh5SaV6DTj+JI8f2eD4kWOPz/9sYCcRMrqHhLR1kd157X9oDw3OMRU0AwMDA4MlAtYEzbKs71uW9VTAf68HANu2f9+27S0APgvgQyGvcYtlWTssy9oxMDCQbGEVrKmA2LaBo4/xBDrlVgp2vAnaiWcAWMBazdIkANh4KQWNakrf2BFipzdcqn+ttecDVrkxsDqygxImnePTFdZdEJLoMgRW6jXVZ7NtClA5Av22Lkpkjj42/7MjD1Niv/5C/eutuwCYHAAmnMOBR/uBmVGeZFAlFt6k6cSTZCO6E10A2Hg5cPTR+e/V/2+8TP9arh95kr7W6+RTOPxIezfQu9Vn/09TEsNRHdxwKSW3U8P0/eBuOktu46X611L72OBHHqZkUOeAHIW15wX4Y5gKmoGBgYHBkgFrgmbb9its274w4L9v+n71swDeFPIat9q2faVt21euWbMm2cJrzqPEQgVWo4fp/LAtL8z+YaKw8TKg/6F5SeXRR6ha17ZM/1qbr6Sv/Q85az1GXzkStNYOCmqOOYluvQ7075h/D7qx7kIaLjF2jL4//AAdVcAREG+6nGzk8AP0/Wg/TZDkSNAACnyPPTZf+TzyMK2lc7CFgkr61HU79DP6uuVq/Wt1rSQJm9rHep3uu3UMiScAbLqCSInx4/T90UepWqe7TwuYtztF9Aw+R4kumx+5FDj80Pz3Rx4lkocj0d18lbPGw/T12GP0laOC1rmCplSqfazO0XVT70E31l9MvYPTI/T94QeA1mX6ZdkGBgYGBgZMaOYUR2/zwesB7Az73dRo7aDg98BP6PtDTvC49QXalmjAtmuB6WGSJ9UqtO7263jWWnchBaT9O+h7ziQGoMTvyA5nqMVeYGYE2MwQ6AO0jwCw/8f09cB9FJC3d+tfq20Z2cjhB+fXAviCxo2XkZxytJ/kZEcfo8/GstblVJ3b/0P6/tBPqW+KK/nc+kLg0P3zFabpU8Bp1/Cstely+qoSi/6H6HNxJDGdK6hH8KDyI06iu5UpQdv2EmD0EI3bn5sE+h/k8yMbLyPZrSJ6VBLD0YMGOMnng0RQnHiKelu3MN1r266loTzqnj5wH10zM8HRwMDAwGCJoJk9aH/pyB2fAHAjgI9offWzbqQAZ2oYOPBjoK2bpycMmA9G998LHHkEmBsHtr+UZ61yKwX2e++mYGfntyiI45AcAsBZr6SA+/ADwJ4f0M+4AtT1F1NQvP9HdG7dkUfmkzYObH0hJbpzk8Duu2j0vuq7043TX0Zfn/s2BYxz48A2piSmvZs+2957yEYO3EfkBIecDABOezFVlk48Bex1bOSMG3jW2nAJJRK77qLesMMP8q0FkB/Zfy/ZyIF76cgH3b11CsrWD9xLCW9tDjj9ep612ruJ7Nl7NyXWz30HOPMGnkQXoH0cO0IyR2UjW5gIs81X0VTb/T8CJgaIOOP0IwYGBgYGBprRzCmOb3Lkjhfbtn2zbdtHtC5w9quIRX38C8BTXwPOex1f8LHiNJLPPPZZ4IkvUEWLi/kGgAvfRP1Zj32Oqlrn/BzfWme+HCi3Ac98A3jsMxQg6568plAqUSLz3HeAB/+dJtid+UqetQDg/DdQ382O/wT23E3JaInpllhzNklvn/468OSXiTA4+yaetQC6bieeAh75JA3IYbWRV5CNPPJJ+nzrLgJ61vGs1doJnPdasscnvwzApuvIhbNuBGqzdK89eztw4Rv1DwhRWHMuHZPw2OeAJ75ElfKtL+JZCwAuejNV0B77LEmLz30t31pn30QVu2e+QZ/vtGuB5XqOvlyAljZKyJ69HXjo4/SzM1/Bs5aBgYGBgQEDmjrFkRUbLyd53l2/R1Pernwv73rXfITkXTs+AVz+i9Sbw4UL3wS0dALf/DWgoxc4//V8a7X30HoP3kq9RZf9N761AOCaD5Nc9Ad/QlJKrmodQK+99gLgu79PEx25beTSd1Jl5NHPABf8PCUbbGv9AtnG7R+hA5cveTvfWt1rgYveQsHw8SeBFwfO+9GHS95BFbvv/gHd45zDH7ZdS4nTt3+LKlpX/BLfWqUS8OIPk6TyiS8CL/gVnj5WhYvfTmTSbR+i8884CYNlq4kkuO8f6Ey0y36Bby2A/PH4MeBHf0kV1g1MlXEDAwMDAwMGMJWUFgFKJeCN/04B6kVv5ut3ULj4bTQ6+tRB4Prf5V2rsw945xeAu/8CuP5/UoDMiZ/7G5oIuOFi4Ir38K618TLghj+gARfX/x5ftQKg137jrcDdf0b9P1w9YQov+hCdfzY1BNz0l7xrda8BXvsPwGOfB174Ad5AHwBe/odUsW7poHuBE2e8DHj1X1Nl/E0f57WRciv5ke/8DpETus829OOK99Bh1RPHgWv/B+9aPeuAt38O+PHfAK/4E/IrnHjdPwGzY8DWF/PbyLZrgZf8Jh0Gf8Mf8K5lYGBgYGCgGZbtPah3kePKK6+0d+zY0ey3YWBgYGBgYGBgYGBgkBmWZT1s23bgaPTiShwNDAwMDAwMDAwMDAyWGEyCZmBgYGBgYGBgYGBgsEhgEjQDAwMDAwMDAwMDA4NFApOgGRgYGBgYGBgYGBgYLBKYBM3AwMDAwMDAwMDAwGCRwCRoBgYGBgYGBgYGBgYGiwQmQTMwMDAwMDAwMDAwMFgkMAmagYGBgYGBgYGBgYHBIoFJ0AwMDAwMDAwMDAwMDBYJTIJmYGBgYGBgYGBgYGCwSGASNAMDAwMDAwMDAwMDg0UCk6AZGBgYGBgYGBgYGBgsEpgEzcDAwMDAwMDAwMDAYJHAJGgGBgYGBgYGBgYGBgaLBCZBMzAwMDAwMDAwMDAwWCQwCZqBgYGBgYGBgYGBgcEigUnQDAwMDAwMDAwMDAwMFgks27ab/R4Sw7KsAQAHm/0+DBY1VgMYbPabMFjUMDZiEAdjIwZxMDZiEAdjIwZxOM227TVB/7CkEjQDgzhYlrXDtu0rm/0+DBYvjI0YxMHYiEEcjI0YxMHYiEEeGImjgYGBgYGBgYGBgYHBIoFJ0AwMDAwMDAwMDAwMDBYJTIJmUDTc2uw3YLDoYWzEIA7GRgziYGzEIA7GRgwyw/SgGRgYGBgYGBgYGBgYLBKYCpqBgYGBgYGBgYGBgcEigUnQDAwMDAwMDAwMDAwMFglMgmZgYGBgYGBgYGBgYLBIYBI0AwMDAwMDAwMDAwODRQKToBkYGBgYGBgYGBgYGCwSmATNwMDAwMDAwMDAwMBgkaCl2W8gCSzLuhnAzT09Pe8/++yzm/12DAwMDAwMDAwMDAwMMuPhhx8etG17TdC/Lalz0K688kp7x44dzX4bBgYGBgYGBgYGBgYGmWFZ1sO2bV8Z9G9G4mhgYGBgYGBgYGBgYLBIYBI0AwMDAwMDAwMDAwODRQKToBkYGBgYGBgYGBgYGCwSmATNwMDAwMDAwMDAwMBgkcAkaAYGBgYGBgYGBgYGBosEJkEzMDAwMDAwMDAwMDBYJDAJmoGBgYGBgYGBgYGBwSKBSdAMDAwMDAwMDAwMDAwWCUyCZmBgYGBgYGBgYGBgsEhgEjQDAwMDAwMDAwMDA4NFApOgGRgYGBgYGBgYGBgYLBKYBM3AwMDAwMDAwMDAwGCRwCRoBgYGBgYGBgYGBgYGiwRLIkGzLOtmy7JuHR0dbfZbMTAwMDAwMDAwMDAwYMOSSNBs277dtu1bent7m/1WDAwMDAwMDAwMDAwM2LAkEjQDAwMDAwMDAwMDA4PnA0yCZmBgYGBgYGBgYGBgsEhgEjQDAwMDAwMDAwMDA4NFApOgGRgYGBgYGBgYGBgYLBKYBM3AwMDAwMDAwMDAwGCRwCRoBgYGBgYGBgYGBgYGiwQmQTMwMDAwMDAwMDAwMFgkMAmagYGBgYGBgYGBgYHBIoFJ0AwMDAwMDAwMDAwMDBYJTIJmYGBgYGBgYGBgYGCwSGASNAMDAwMDAwMDAwMDg0UCk6AZGBgYGBgYGBgYGBgsEpgEzcDAwMDAwMDAwMDAYJGg2Ana1DDw6GeAQw/wr2XbwK67gCe/AlRm+Ncb3A08/ElgeB//WpVp+ly7vwfUa/zrHX4QeOxzwOQg/1rjx2mtIw/zr1WvAbu+Czz1NWBuin+9wT1k/0N7+deanXBs5Pt0L3DCtoFDPwMe/Szd49yYGAAe+bSQjdSBnd8iG6nO8a938lnyIyOH+NeamwQe/yKw9276nNw48BPg8S/I2Agg67cmTtJa/Tv416rXHb/1VbqG3FB+a3AP/1pzk/PPNm6/BcjayOQg+UgRG6kBz32H9lLCbw3sIr916gD/WpVp4Ikv0bNNym899nlg+hT/WmNH6V47+hj/WvUasPPbwNPfkImRT+6kzyZhIzNjwBNfBvbeo9WPtGh7pcWGwd3Af9wITDsP5+v/F3D9/+RZq14HvvyLwLO30fdrzwd+6dtA5wqe9XZ+C/jye4DaHFBqAd76aeDcn+NZa3oE+M9XAyefoe/PfwPwpv8Aykym88O/BH74Ufr/ZWuBX7wNWHsez1rHnwQ+9QZgynlYvvwPgZf8Js9atSrZyM476PsNlwDv/iafjTz9DeCr7wPqVaClE3jLfwHn3MSz1sQA8MmbgYFn6fsL30Q2Ylk8693958C9f0v/v2wt8N47gVVn8Kx1/EngP38OmB2j72/8c+DF/51nrVoV+PzbgT3fo+83Xgb84h1AezfPek9+BfjaLYBdA8ptwLu+DJx+Pc9aEwPAJ26cJ5QueSfw+o8BJSaO8Lt/APz0n+j/l28C3nMHsPJ0nrUA4Md/Q3YJAF2r6LqtO59nrRPPAJ96HTA5QN/f8AfAdb/Ns1a9Bnzp3fN+a/3F5Le6VvKs98xt5Ldqc0C5HXjLfwLnvoZnrclB4FOvB048Rd+f/wbgzf/JZ5P3fBT40V/S/y9bC7znW8Cas3nWOv4U8F+vAWZG6PtX/Alw7a/zrFWrAl/8BWDXd+j79RcBv3Qnn996+uvAV94377fe8QXgzJfzrDU1DPzHK4Ehhyy4+G3AG/6Vz0a+/8fAff9A/9+9nuJIrmfbkUeAT//8vI3c9JfAC3+VZ61aBfjc24C9P6DvN18N/MJXgY7lPOs9/gXgmx+k+Ke1C3j7Z4EzbuBZa+wo8MnXAUO76ftL30XPNg3xTzEraOqhYpWA930PuPjtwA//D7D/xzzrPfhvlJzd8AfA2z4LDO4C7vgNnrUmTgJf/wCw7kLgV+4lZ/jVXwbGjvGs963foGT3bZ+hBOaZbwAP/TvPWvt+RMnZxW8D3vtdADY5Yg5GrjoHfPX9QLkVeN/3gQveCPzgT4ED9+lfCwDu/2cKcl75Z5QsnXgGuOv3edYaOQR849eAjZcDv/JjYPVZwDc+AIyf4Fnv278JDO+lB+VLf5eY9geZbGTv3ZScXfYLFATYNSIrOJjN6iwFHm3dwPvvBs57HfDd/w30M1XS7vsHSs5e9VFKcI8+Btz1ezxrjRwCvvkhYOsLyY+sOhP40i/yVZtu+xA9yN75ZeAlvwU8/jngsc/yrLXz25ScXfEe4D3fBuYmKBHlqv7vv5eSswvfTL7EKgNfeS+P36pVKIGxSuQjL3oLrb3/Xv1rAfN+6+V/SETgyWcp+eXAyGHyW+svAm75ERFz3/hVvmfbd36HntVv/xzwst+nZ9uDt/KstfceSs4ueSfw3rsA2A6BxmCT1VmKf1o6gF++G7jg5ynwP/yg/rUA4Kf/l5KzG/+CEtwTTwPfYSLDRw4DX/9VYPNV5LdWnwN85Zf4/NY3P0hrvuOLwEv/J/DEF4FHP82z1q676Blw2X+jZ1t1hs9GKjPko9qXk42c+1rgzt/jU4n86K8pObvpr4A3fhw4sgO4+8941hrcA9z+68CWF5If6TsN+Nqv8NiIbdNaY0eAd30VuObX6bn26Gd0vb696P8DcDOAW88880w7ER77vG3/0XLbfurr9P3spG3/fxfb9r9ca9v1erLXSIrZCdv+y9Ns+1M/P//ad/8FrX/0cb1r2bZt3/4/bPtPVtn2wG76fmifbf/JStu+7SP61zr6GH2O7/8pfV+v2/an32jb/2ezbU+P6l2rXrftW2+w7X+40Lbnpuhnz9xG6z/6Wb1r2bZtP/QJeu1nv0Xfz03Z9t+dZ9sff6V+G5katu3/s8W2P/OW+Z9993/T+see0LuWbZMt/Olq2z51iL4/+RzZzLd/R/9a/Tvoc/zwr+j7et22/+tm2/7rM+je0Il63bb/34vpXq7M0M8e/xKt/9jn9a5l27b9wK302ru+R99Pj9j2355j2/9xk/61poZt+8832PYXfmH+Z3f+L9v+o975e10nvvp+2/7z9fM2cvxpWuuu39e/1oGf0j7e+/f0fa1m2//xKtv+q9Nte25a71q1mm1/7IW2/U9X2XZlln726Odo/ae/oXct2573W39/4by9P3sHv9965nb6fm7Ktv/2XHoPHH7ro1ts+zNvnv/Z9/6I8dn26+S3hg/Q94N76Nn2nd/Vv9Zhx2/d81H6vl637U++jmxyZlzvWvW6bf+/a2z7Hy6a91tPfJnPbz348Ua/NTNGNvKJV+tfy/Vb75r/2Z3/y7b/uM+2B3bpX++rt9j2n61r9Ft/3Edr6sbBn9E+/vhv6ft6nfaQw2/V67b9zy9w/JZjI499wfFb39S7lm3b9k/+kV57z930/cyYbf/VdroHdGPsOD1rvvSL8z/71m/RdRvco3+9r/wy2eTYMfr+2BP0bPvBn+tfa+89tI8/+Uf6vl637X9/uW3/3fnz1zEGAHbYIbnPkqig2bZ9u23bt/T29ib7g/s/RhWm815H37d1UWZ7/Ang0P1639xjnyOt8Et/Z76k+cJfI2bip/+od62ZMSrdXvw2YPWZ9LOV26maoN6HTjxwK1UPlKTLsoCX/S+Sez3xRb1rHX6AWJVrPgK0dtLPzn0tXcef/KPe/gDbJqZ0/UXAOa+mn7V2Ai/5DXof/Q/pWwsg/frsKHCDp2J27W9Q6V13pWlqmBicy34B6NtCP1tzNskOH/0MSVZ14mf/ArT1AC/4AH2vbGRygGxSJw7+lORI1/020NJOP7vwTcCa84AH/lXvWrYN/Oz/kRRDyWc6eoEXfRA49FPg2ON613v4v4DKJPkRhWs+Qp/z/n/Su9bEAMmELn/3vI2sOx+46M3Ajv/S3x/5wL+S7O/qX6HvSyXg+t8jafHTX9e71t67SY79kt8EWtroZxe/FVixnfyIbhz6meO3Pgy0LaOfnfNzvH5rwyXzsj/lt47sIMmSTjz+BWBmlJQhCtd8hCTTD31c71qTg+SfLn0XsOI0+tmqM+j+fviT+v3WA/9Cz+gXfZC+tyxqg5gaBJ78kt61Dv4EOPEkVWAa/Na5+it2tk1xx+ar5v1Wew/wol+j98Hmt353/mfX/DrJU+//mN61JgZInXHFexr91gVvpB7hyrTe9e7/J/Jb3mfbS3/H8Vtf07vWnu9Ti8BLfmPeRi56M8mydceR9RrFHaddA5zxMvpZew/w4g8D+35IvVs68cingMoU8DKPH3nJb5EKYMcn9K41chh46ivAlb8E9Kynn62/iHzyQ/+u/9n2s38FulYDV72fvrcs4PrfBcb6gWe+mfvll0SClgonnqZE7PJ3N+qEL34bBVgPf1Lveo9/gQxg6wvnf9bZR+s9ewcwO65vrae+Ss7wqvc2/vyKXwJqs9RToguzExQ8XfAG+jwKm64g6dyO/9S3FkAJX2sXcMk75n9mWcDVt5DjOvaYvrWOPEJB3FXvb9QJX/w2eg+6E4tHPg1suJQCK4XOPnpIP/llvTbyzDeof+OKX2r8+QtuIamX6pPUgdlx6hm59J2NWvItL6A+TN1J/COfAtp76YGsUCrRA/voo8CxJ/St1f8Q9Utd8YuNNnLZf6MA9ZFP6VsLID+y9cXkSxS615I86amvk2xJF574ItnIlQF+ZG5cr41MDQPPfRu46K1ElClsv47kSQ8z+JHOFbRvCqUycPX7KYkZ3K13vcc/RyTWpe+a/5llAVe9j/yW6m/Sgf6HHL/1yz6/9VaySZ2SUdsmv7Xxcp/fWgFc5PgtncHO018nm7z6/Y0/v/oWeubt/Ja+taZHqEf30ndSYKqw5WpKmh7X7Lce/qTjtzw2aVnkt448TP1iunD4ARqKcOX7FvqtcjsNn9AF26YhJKddC6y/cP7n3WuA815LzyKdMt/HPwfUKwF+6xeJAH1Gt9+6k9pjFPECANtfCqw+W5+ETeGxz1EyeOGb5n9WKtNnVc8iXdj3Q2DkIPkRLy59J8mzH9cY/9TrJAndft18UQEAetYRAf/YZ0m2rQtPfQWw6ws/29XvpwKG6u/WgfHjwK47yf5aO+Z/fvoNQO8WeqbnRPEStCe/QkbmNXSAgoNzXkOThnQ5jZHD9ND3Ol6Fi94MVKf1Plh23kFM8MbLG3++4RJg7QU0+U0Xdn+XHozehEnhorcAJ5/WNx2wViG24ZxXNzpDADjvZqDUqvez7bydbOS8mxt/3t5DP3v6a9T4rANDe4k9DdrHS95OzNKeH+hZCyD7X31OY6APkM2s2K63YrHrLiIG/PZvWfTZdD5YahW6d8+7uTHQByhAtcpaGCsXT36FejhUFV6hsw8465VEvujqezu5ExjYGe5HZkfpftSFnXeQfaw5p/Hnp72Y9PpPfVXjWt+iwPuStzX+3LLIjxx+gB50OlCZpmTwvNfNV88ULvh5AJZeP1KdA569napZfps87/VkkzpJs2e+Sb7w/Nc3/ryjl97D01/X168y8Bz5+EvfufDfLnwz+a199+hZC6B9Wns+sO6Cxp9vugLo3UrBvi7supMC/Qvf3PhzyyKS7vDP9E01rc6STV7whoU2ctFbAFjzA1h04IkvEcnof7Z19lFF7dnb9PmtE0/TYIQL37jw3y56KwXEe+/WsxZA9r/x8oWDVU67lgJincTSM98gG7nk7Y0/tyzyJYfu1zeJc26SbPL811NPvBfqmaDTJz97G5FK5/gGy3WvpWfbU1/TV/k/+gglg5cE+JGL3kw2cvCnetYCyI9svpqUZV5sewlVup7+hr61nr0dgO3cxx6UShST7Lsnt40UL0Hb8z2qZi1bvfDfzn8dBTsHNA0Lee7bzuu+YeG/bb4a6NlAQaUOzI7TkJNzX7NwOoxl0RTHww/oa4Tc832gow/Y+qKF/3bea+mrrgdL/w5gamhhMAzQtLAzXqb3IbbzW8C2a4MnkZ37GpL19GtqqFaB9dmvWvhvW14IdK6ct6O8mBklydV5NwfbyAVvoEEsuuRCO++gaWRbXrDw39S13K2JsTr0M7p3gyZRdq0kO9V1rwHkR7ZfFzxl6vzXAxPH9dmIsm1/UAUA26+n+/C5O/WsNTFAe3lOwGQ8y6KH9v4f66uO7Pke0LORKsh+uH5EE4l14D6qEp8f4EeWbyQb0elHDv2UAowg/79sFfmYXXfpWcu26b2ffj0lZH6c82qaWHz0UT3r7Xbetz+IA+hztffSMBYdmBykZ1fQPloWXc+995CqQweevZ1sctMVC/9NSUf3fF/PWsomgyZRLltNUkRdfsu26Xlzxg3BExTPex0NMzimyUaevZ1kakHP7TNeRkmALmJp7BhVG4OmVZdKwFk3ko3oUhrs/h6RVX6iE6DKj13X99zeew8RHkH237sZ2HSlPj9Sr9N9e+YrGqs+CmffBIweJoJGB3bdRTYSFP+ccQORoLr28dRBUixc8IaF/1ZuoefN7u/qq9g9ezuw6iyquvtxzmvIRvbmI7GKlaBNnKSx2GHjNE+/nsr8OTfNxf4f000cNAa1VALOeDmVk3WwmgfuIyY6yNAB4KxX0UQ7HYxVvU4PqDNuoDK7H31bgXUX6XuI7fshAAs4/aXB/37Gy6kSc+pg/rVG+2lyV9g+nn49HV2g68Gy+7skifAzOgA5jbNfRb+jg9Xcfy/ZQJj9n/lK+ncdkyrrdbL/M18ePHJ45XZg5Rn6bGT3d2mkctgY+HNuIsZfB/M9vJ/s7YyQ0c1nvoIeOjr9yLoLgeUbFv5buYXui71362E19/0QgB1u/2ffSNPDdEy8rVWAvT8kGwkaObzmXGDFNn0V5H0/JP9+2jXB/37mDSR/18V8772HKlrbrwv+9zNuIJmjjgrh8D6Srqme2aC1rJI+QmTXXeTjezct/LdyK13TPZrOPFQ2eeYrgv/9jBuomnH4Z/nXqlWJpDr7xmC/tfpsYPlmfTa56y6Sn4bZyDk3kXxfx4TdwV0UXIfto+pJ2/ej/GsBVCHYeBlJGv0ot1Iir6vKqqRpQYQBQP6sMkl9dnlRnSWbPOuVwX5r/UWU4Ovy//vuAVqXBZPhACW7Rx4mAjYvjj8BTJ4M38ezXklfdUkBd91JxYogMrxtGd0X2uJI53qE+pGXE1mio1e3Mk1V1LNfFWwjGy8lOfjefH6kWAmacjxhZ2K0dpLOXEfwUa8BB+4Nd7wA3VgzI3pYzYM/oQB189XB/77pcmLa92twvoO7gIkT0edGbL+OxvbqYKz2/ZAcfdiZYKqRVYezP+A48G3XBv97Ry9VhHQ431qFqhVRZ0ttfymx8OqcuTzYezexlpuvCv73zVeR/EWHjQw8S1XPbS8J/50zX05Jow4bOfhTYry9PSNenO7YyAEND+h9P6SvYX6ks49kxTr8SGWGqgeRfuQGYPyoHlbz4E9oOIK3r8iL064hVlPHZzv2OFU9w/yIZdHnPnifHhJr34+ArS+YHzLkx+nO+1DXN/d699DzJOy8J3Xf6wiIDzhj9LeHkFhdK8mH6rhuc1Pk28+M8P/brqUq8qn9+dfbezc9uzZeGvzvW19IibAum5wbD7/fLIs+9/4f6yNWT3tRuE2q66ljeJlKKsMC1O61RIroIOhmxylpCLNHgO57RSzkxYH7gGVrSAYbhG3XkqRYh/8//ABVtML20bKAbdeQL9VFUGy7ZqEsW+H066kao+O6qdfYHvLc7t1MLRI67rWpYUoIo86o23YtnTE3cTL/ent+QGderg45W3DbtQAsPfHP4QeoYBJm/6UyxSQ5D64uVoLW/yAxEesvDv+d7ddRlS2vFPDEU8RoRAVW6uLpYHUO/pRK3UFlaYAMYusLKSHICyXd8g4+8WPbtcS05z03o+K8RpjDAOiG616v56yfg/eRPGfdheG/s/VFZCN5JTXHnyRHH7WPp73YeV+aHixbrg539C1t9Nl0OF/l6MMSXfVv1en8wzvmpohljtrHtedTcn1Ig5798IOkV191ZvjvbL+OeuzySgGPPEz3UVSiq3yMLj+y5QXBlXGAJohtulJPwKjOXQpjhgH63DOj+YdpTI9Qr+e2CH+88VK69w9o8CPTI2TXUf5//cVkkzqu24H7yAdGHVq75QXU85FXwnP0EapYhVUigfl/09E/cvAn5CvCbLJtGZFLOvy/Cs6i7retL6ZJxYO78q01NUxVfeXjg7D+Yqqw6XhuH7qfFD1qwmEQtr2E9oYdpQABAABJREFU1sprIwfvp0OAw1QvwLyNHHog31q2TYnXaS8OP/y3bRlVtg7nXAuYf7+Rz+1riMTO24c/dowSlKhEd/NVRJrpuNcO3EfKluUbw39ny9X0bMur6lH+P8r+dfkR26bX2H5duI10raRhNjrin/33EiFwWsSz7bQXE4k12p95mWIlaIcfpEpSmKMHHGOx849S799BX7eEVLQAKv2v2JZ/rbkpOrQ2yhgAciiDu/JLeA4/QNWsqABVvZe8wcfxJykYCKv6AHTDbbmKBrLkxaEHHEY2wka2vpCkgHmTT/Ww2BLh6FecRg3OefdxdoKqcJuujP69rS+igRR55RL9D5HMQ43EDoKq9ubt1TryMAUDWyMcfalEn+2ghsSi/yGyxzBHD9CDpV7JXx1XNhbUx6ewYjsljP057X9yCBh8LpkfOfY4Na/nweEHaMBDkHRTQdcDWl2HzRH2XyoDm6/Qc9D40UcA2NH+v1Siqq8OSc3BnxLLHmWTW66mZP94TkJEJedRn23NOTR1Lu/9NjFAFZaotQDy/8efzF+NP/yAQ/itDf8d9SzKe7Cz8v9RfquljWw2L7Fk2/R+4/Zx6wtJCnjy2Xzr9T9Ektqo5/ba84gwz/vcHjlEY8tPiyADAfps/TvyJ5+Hf0ZHt4QpegBP8pnT/lVsGOX/W9opkc8bj9g22dm2COJFvZfpU5Q45sGh+6ny7R9q58WGS0jVk3cfTx2g4w+i7BGgmOToYxqSzwfovYcpeoD5Z1GO+Kc4CdrcFLGwcRdow6XkWPI+NI8+QgMe+iICVIAM4vBD+UrhJ56ihCEu+FaJQF4W6fBD9L6jgoHOFdQgefSxfGsdda5DUMO2F5uvopswT/I5N0kJ7MbL4teClX8f+x+ifoagPg7/ennt8dhjJIOIClABIjAADfb/6PxrhWH5BupXzLuP6sEU99m2vICmiuWpjk8N02tsifEj6qFzVIMf6dtKQyXCYFkOq5kzYFRHVcQm8Q5BkTch7H8ofh97N9EwJV2Jbty9velKqmrkrY737wBgxfutTVcQcZKn0jp+goY7xF03RYgczkkIHnogPkC1LLoH8h5/ooL3MOm+wsbLiRDJU2m1bfJ7cdds1RkkucxN4j5E/cxxfnLzVTQRsTKTfa3Rw8TWRwX6wPz9oeN+W3v+wqnLXpTK9Nnz+hGXxIrxJVuuJsVGHhup1+n+2Rqzj6vOpPM/854rd2QHta5siFB9AWSzxx7PN116eB8Rs7FxpPIjeeNIJ4nxTy/1otxKv5M3jkxSMAHIHufG8yWf9ZoT/8T4kXUXUnU8h/0XJ0E78TSx7HGb1t5NGtu8gdWRR8nZRSUxABlMzjKn6wTibuINFwOw8jmNualkSQxAv6PD0fdsiC65A/NOJY+zP/4kADu810Ghsw9YrSH5PP5keK+PFxsvpQfs5FD2tdRDLDZgVAlaDjZuZpQcXNBkPj82X5W/YnH8CarEBDUae6Gua54KgpvExOxj9xp6T3kT3SOPJLvXNl9Fe54n+VR+IWgymRfq/eTxI5ODlFSI+ZFHKGjyntkYhM1XEpGRN7Ho30GVmKCJil5suoKSXR02GbeXvZuA7nX51rJtWi/JddtwMVVi8iQWKomJ88nq/eS538aO0ICEKEYfoGf65ivz2+TRxyjRDes/U9hwMcUuAzmqWuq5GEdirTydZL55Pptt0/MjLvEEyP7zVj6PPUaVmLD+MwX1PMpzrtyp/dQ3G+f/SyW6bjr8yPqL5g+nDsOmK6hdYiDHIdLqmsfd26vOol72PH6kXqfrnsRG1l/sKKly9Hz2P0TV2jXnRf+eS1Dk8CODu2nYSNxnK7eSX8vhswqUoDk3ZVzwAdDGHnk4e1WrMk3ONInxuU7jyWxrARQoda2iBsgotC2jxCJPz8/JZwHYjQdPhmHjZfTQyzOB6tgTyQL9jZcCsPI9WFTClWS99Rflu2ZzUxRQJ7FH9X7yjD8+8TTZR9DxEl50riANep5AR9lXkiBu/cUkT8mTWBx/Mp6cAID1TjKcJ7E48TR9XZfEj1yWL9GdGqYzYuICRmA+gM3DDh9/gqp1cYnustVkS3ke0Op9RvV6Kmy8jB56M2PZ1zue1I+oymfO4PvYY+n8fx6bPPIIqT6S+JJ1F+TzW+PHgcmBZPfbhkso+cwz4OjYE8mSmL6t9AzMQ5q5JFaC67buQhrKk1UuZ9t0zZMQdKpnPs91O/4kJbpxSYxlARsvyWf/p/bT8LO4JAZwks9Kvn6+o48B686PT2JWbKcgPdc+Oj4vao6BwoZLKRnMWtWq18lG0vj/PH7k6KM05XZtTBJTKjl+JMezZngfJTGJ9vESkt3mOTP1+BPkH8st0b+35lySVOaKI53YKcl1W3cB+ceMuUaBErSnqeTctzX+dzdcQhPoso4/HtxFLKz/UM0gqJtBBX5ZcOxxMvS4ah3gsBF5AivHuSUKrC6lr1lZpOocycnWxTxUAEo+V55O8qSsOP4kTYLqWR//u+svBkYPZU8sTj5LNpIk0VUP8TzBx4ln4h/OCusvyrePypaTBIzq82e1/7lJCt6TrLVsFfXz5U3QejZESw4VNlxCCVbWxEL1gSS519Tv5HloKj+SBOsvzkf0HE9BmG24FICd3W/NjFEFOokf6V5DVaYTOZKKyUEaEJDkuvWsJ1IkT8/PscepWhc2LdKLdRcSy541sUgToKrfyXu/JXmOWhb9Xp4q0/GnKNFNst66C53EYne2tcaOUk9MkgRtxXZHLpeTEFl9TnwSA9B1G9iZvWKRxv+vdfY66/3mJrqXxv+uSizykFjHnnAS3ZgkBqBrW52mGCYLRg85SUwCP7LydEqu8tj/scdpLf9h2EFYdwFd56xFjOMJVV/e38nqR2w7uR8plSlJy0MqHX+SpIurz4r/3XUX0MCh0cOZlipWgrbu/GRJjApks16kk06ZOa6cCtBDdcX2+cQnLeo1SgiTGB9Axj52JLtczk10Y3rrAM8+ZnQaQ3tI2pFkHwHHaeS4sQZ2kuNNlOg6D5+szt4NdBI8xDr7iFjIao+1Cg1/SBKgArSPpw5k78MZ2ElBZ1SjvbuW8/mzspqqopskGAbooZmHQT3xVPJEV/1eVtmJetiuOSf+d7vX0qHgWRPdyjSd75Z4Hy+mwCNr79SJpykRiqvoAvN2m9WPqP1Pet3WXaCHoEiaWKw5L1+CdjIF+bLuQhr/nLXH4lgKv7ViG0mhstr/1DAdH5H02bbmPKpqZQ0aTz5D6oG4ah0wb5NZ7zflg5IEqDoSi+NPJgv0AQpQqzNELmXBiWcAWMEH9Pqx6gySJ2Z9to0dpWpdEnsE5pUvmROLJ+lzJUl01zqfP+vxJ8q21iZNLM6R9SOzo5kTC0p0W5PFdqvPoaQ462cbOURJUFL7X3vefAyfBSefoWsfNWhOYV0+groYCZpt0wM3qaNX7EiewKrUGj3y2AvFRmTByCFypkmCOLWWeo9ZcOIZ2p+gQzz96OyjakPWfVROOwlbBdBnG96XbbqcbZMjXZ1wHxU7nPW6DTxHpfTeBBVdgB4KWR390F4KyhInFsr+M6438By93ySJbs86qlpmDT6UNCZJMADQfTK0l6qzaVGr0mdL60fyED1tPXT2TBLkCeKG9gKwgTUhZ8QErWXXs0uT0vjj5ZvobLbMfsTxdUn9yNrzae+zSpPSJGjqfZ18NlvQODdJgXQaH+l9j2kx8Cz5rI7l8b9rWcQiZw5QlQw26T6eSxWHrEGjIuiSYNVZ9IzPer8pW07st87OXq2bHALGjyUnX9R7yhqknnzaSc4jBoQolFudxCKjj0y7j2vPo2B9/Fi29U48nXwfV50FwMruIxXZvDbpZzs/exIzMUCqscR+RCUWOa7b6rPCj/zxoqWNihiDORPdNPY/eTKHOmpn+lgrox8pRoI2OUCDC5LexMtWU9CYJ7BadWayUjFAhjO0N1sztXLaYYfv+aF+L6vTGNqTfC3AKRdndBonn6WzJJKUigHnQW5nC+TGj9H0nqSJ7rLVVCXKs4+rzkiW6AK0j4O7swWNAxkCVCBbFcG2ab2k+6jeV9YgbnA3sWtR4/y9WHMu9cVk0bOPHKREN6kf6d1KPQ95Kj9rzkmW6AKOxGtnthHB6uEn4Udsm/xd0rUsh43PHDA+S9chKRmy7kKgNpu95+Hk03TsQZIKMuAEjaOkbEgLdd8ktclVZwCwsp/PNLgreRIP0DXOmli4Et8UFTQgm51Upul6J/WRLW20l1krkYO76Ny6uKE1CqvPJklklqBR3dtJg0Z1ffMQIkmvGZCvYpHa/p2jgbLY5Ow4VXST2n9bF505l/XZdvJpUipFjWr3Yu155EOmR9KvlTZGUDFZVvsfeC5dHJnLj6Qk+l1iNcNze2qYhv4ltcf2HprknfGzFSNBU0a0MmFFC5hnNbNg8Ll0AerqswDY2QKCtIHV8s1UuRnIEFjNjpPxJa0MArSPg7uyBY1DuynwTiInAOarX1mM3XX0Ca+bZeVzGkO7HYYtIdacS0FjFtmJCsaizq3zYsV20lBneWhODtIZKUkdFED7MLQ7WwVhcJejv09IhqzOEXy4+5jQ/kulnOzwc+n2cfVZVE0fyzARdnA3ACu5jaw8nciTLAnaxAmqdCRdCyAWOWvAOLQ7JRmSk8Qa3J3yujnrZQl2XPlmwuCjtZP6MLOsVa8Dg3uSqwwAssmx/mxy6cHdVDntXpfs911JWQY7UX3jSfcRoHgic4C6M12iuypHQOySuAnvt45eOsMyyz5W58hPptnHVWdS1TMLQT2wk44zSiKVBjyJRYbndloyHKB7JQ/5mMmPZCBf0rTlADRIqnNlNnusOPLZNDHymrMdJVAGgnpoD9lz0kR3TQ4/4qo1EpIhALDq9MyEWUEStJSBFeAE33vSB421KskO06ylfjeT891FbG3c5DWFUomcVJbgQ72/NIHVmnNo/OvoofTrDe9Pl1Sv2EZN3lmMXe1HGue7KuM+VmfJRpJWBgGP7CQDaTC8j9jaJJITgGxk5enAcIZ9dG0kxWdbfRZVuLOcYTeYMtFdfTYyy07UfqSxydVnZ7PH2XGSWaw6Pfnf5GGHB56jPsck/TcAkSYrtmULPtT7S+Mj15xLFYQsvbPD+9Ktpa5vFvsH6HqnWs+5xsP706818BxJ7VZsT/43q87IFqCOHqahB6kqaE4QlmU9pTJIWkHuXEH/ncqwj8pvpfL/Z9A1S0s+2jYRpGnJFyDjc3s3DZDo3ZJuvSx+a+QgKRTSxAgrTwdgU99zWqSR0wMUqLd2UWyXFllsZM05tP9pbaRed/xI2n1ENvsffI6OV0gyIE1h1ZnZYtbhvUSGpK2g1SvZbET5kaRYvonul1x+JEVMsurMzM+aYiRow3vpIZbGQa08g2QnaSUFo4dpsEWqB6ZzE2Yx9rTBAOAkn1kcfcpKDOAJdlIau207CVqKALWljYLMLPt46gDJoJKytQDdhBMn0ksKhveRg0qVWDh7nuVGThugAtlZHeXUVqax/4ysZq1Kny0pMwzkk50M7SVGPylbC9C+jx1JP0xDPYgy+ZEsNpIyGAAo+JAiepQfSfvQrFWIDEnjRzr7SOKexY9Mn6JEMktAkEVBMbyPEuW48dFerDqTbCQt+ZiJxMphk0N70/lIgO6XLInu0L75v0+KVWeQqiFtxVrJ6dPsY99pdGBxlvttUMnpEwwtUFixLWMwnIHEcmOEDPY/tCed/y+VshMUg7tINZDGRlZuJ1XDRMqjhsaPERmSxo+s2AbAyu5HVp2ePNEF5v1IWgykVH0B+SrIQ3vSJUylEim3sviR4b10nybtGwfI/qdPZZIvFyNBG9qT/iHmspopjT1LgNreQxWOTInFQefGTIFVZ2WTFAztAWCl+2xZ93FykB5iaQIrIDurc+qAU4FL4aCySpPUXqRxvh29JCnIFHzsTXfNAHIapw6klxScOkBVzFRsbcbKz/hRYtXS2sjK07OzY2kYfbUWkD7YGc7gR7rX0VCRLMFHJj9yBtlyWnZ4aA8lJMvTPMQy+hFFmGXyI1mSCnVvpwwaV2zLGFilJLEAem+zY8DEyXR/l4WgU8fapLX/yjRdu7Skwcrt2e7t4X1UXWnrSrFWRuWLe2+nuG7lFtrLU1kk7ruz7ePUIFXy00ARiKkqyNsb/zYpZsfpPaZJmIDs9/bgLrpPkwy2UFA+Na39ZyGxWjuA5RuzJ2ip/cgZ9AxOK1/OYiOqxzxti8fkECU/ae1/xfZsBIUizNKQIa6CLr1NFiNBG96foYKQUeYynIGJAxzZYcrAqjpH7HySkfdeKKeRdtrVqQPkAJLKoACa4piFHVa/nyX4GN6Xnh0+dSD5oAkF9WBJeyOPOHLPtAFxluBjZoykcmkYTYDsv15JbyPD+ynwTvMQ691KrFPae00FK0nONvQiKzuc5SGWl+hJ40csi65bWj8yM0qjqtPa/4ptNDRlIuV5kYoMSdoTBjjvLQM7nNmPnJG9EglkCIhPz6gy2JeBfHF+P22wM3KQVAbL1iT/m/ZukuCnXWt4HwA7/XN7xXZg5HD6c96GMyhRVmWs/LjV8W3p/q5va/p9rNdovdQB6jb6mjqx2At09CVvuQCcfqYV6e+3LCQWQPHSaH96YunUgQxrbZv/2zTIkqABjh9JaY+1Ct0zaWNW14+kbF85ddAhExO2XADkc1q70hMUufZxf/o4Mm1bDpBLUl+MBG3kcPokpm9rtn6m4f2UkPRsSPd3K7ald76jhwHY6R19Vuc7cjhdZQRw+pkysBFuYJWh8jM3kY4dtu35oDENsrLDI4co0Olcke7vVmxP73yV88yyj0B6+z91AFi5Ld3flJyKW1rnqz5bFoJiaijdAdL1WjYyJCs7PLyfKqZJp7x518vywATk/MjoYZKZpkFLO8lGUidoGRJdgOx/4nh6dnhoLwArA/lyenpiaXIAqEymTz6VD09tJwfSqwwAhxBJeW8rm0pNiGynHqi0ny2LyqB7PRFLIxmIzrQqA4B8T9rPNXbEablI6yOV30pJGmRJdNV6af1IFhILIN9Tr2Qglg5miCO3ALCyxT8tHenjyJUZYwS7lsGPOPFPFqI/rX+0LMf+M5BKQDY/UpkkH5sULmGWci31LEzrR1CEBG1mlHrJ0mhCgewBgarEpGGHATK+iRMk7UgKZXxZmG8gQ2B1KH1gBWRjddRNn/oh5jiNNA+yyUEaZJLWabQ5bHJqp3HIIQBSBjortxPzl+YMr1GnPyLpiHHvWgAwciDd353an34fAbLhtMHHyEEAVvp7Wz3Q09j/+HEKdNKu1bnCkaZm8SPb0v0NQHY1ejgdO6zsN3Wim7WCnIHoAbIHH+X2dL2lwLwfSRt8jByioCrp5FnvetVpIg6SImt1UPlwicAKcO5tKfJF2WSKxGJmjKRyafexVKL+wdT7uJ/8SBqVAUA2MjWUjjTIQ2IBGZKmA+kTJoBsMu0xE3kqaEC65830SDaVQUs72UhqH3mQrnfqOHKrQ9ykiCOzSG4BT2KRgRDM6kdSk7jO72eNEdIQFOPHKY5Ma4+tnRRHZhikt/QTNBWgZkks+k5L73xH+9MbA+AJCFI0HKubPq3z7V5LY9TTOI1aFRg9kl5OBsyzY2nY4dF+p6zdkW4tdx9TGHvWfQSyscPK+abFytNpuEgam3QT3ZQ22b2eBuukYXXmpujhkGUfs8h3Rg6R5DZtMJwl+HD9SIbr1rc1PTuWx4/U5tI1pbuSq5TXrXczUrPDsxPA9HB2P5KW0R87QjaSJdABMly3w9k+W+8m5+8z+P+0wU57DxEHaQIrV2WQ5d4+zZEdpuhnVSqDNFI5wLOPKYJ95SMz3dtb0l0zIF+iC6S7blll4J191PecZq163YkRMsRavc4+pokRTu0HulbR+0yDLCSuS4ZvS7eW+hspEkv19Y4dTf43biVyW7q1lq0l8ivNPlbnaKhOphjhtPRx5MghIufStOUA834kzQAg149k+Gy9GfwIipCgjWSsxKi/SbtpY0eJMUkL12mkCFJHDtMhvcs3plvLshw24kDyvxk/RmXwTPu4mZiF6VPJ/yZzgJqhXDyWM4nPInHMGuirv0+K0X6S4aTpGwEc2WFKdnj8GH3NdN1Oy8YOZ0p0M1R+sia6QPogzrbJj2TdRyBl8HGIplOmldxmYYfzBMO9W6jSkYYdzk2Ypa3qZlQZqPeYxk7y2GTvlnQ+cnIgm8oAoGeNXaOBAkmRVWXQsxGAlS5AzaoyANLvI5CjOp7x3oaVPdhPs48Tx0k6KBUjjGQlQ1SMkCLWOpVRZQDQZ0tbHcxM9Cg/kobE7ScyNq3KoFSi9dISxnY9ux+ZG09pIxljBBXDp/Ij6tmW0f6flxLHrFI5gDZt/FjyhuPqLA1kyBMQpHG+Y0dJTpNmYoy7XkrZSV7j875GEowdyZboZmGH1U2YNtEFyGmM9idnh2dG6b88TiNVENdPf5e2ggCkDz7UQyjrPgIpg4+MLGNHLyUkafZRva88RE9S5m9mhPTvuYielPafZS0gvTQ1F2GWgR0ePZLNHy9b6/QXpakgqD7FLPe2+mxpKj/9NIAjLTsMzEthk8KVyuUJdo6lWC+jyqCljRQiWZjvrInu+LHksvPKDCW7WZNBIOV1O0j7n1ZOCZAfT2OPI3nIl4yJRZZr1tbltCZkUNlkqSAv30g2Uq8l+/25SSIrM8VaWSrI/fR3WWKEvpQxQi4/4sQV42n8SMYEraMXaOtOt49qH7I+t9NWkFGUBK3cnr6CANDNb9eTBwRuoJ/hAvUoSVmawOpI+iZShd5N6QIdN7DKI99JaOy2nd35Ak5AnCaxOEqSz46+bGvZteSSsjzJoPqbtEFc1n1UTiMp8th/WnbYtslRL89o/2mDj9F+Svzbu9Ov1buZEq6kzJ+6T3oz7GMWdnjsaI593JRyH9UDOk/wkdAma1Wq2mSxR8UOpwk+xo85fYoZPtuy1fScShWgHslmI8A8+ZI0IFDXOIsvUc+oVMF+xsAKcPrCUgZWWSoIgGPHdvLq4HgO/79sDSlmJAJUwPGRGSoImap1Ke9t23ZI3IzPtuUp45+xIxSwp1UZALSP9WrygRN5Yq0sJG6efcwSawEZ/YiKfxJet3o9e5XVshwbSUmGd/QCHcvTr9e7JX0PMpZIgmZZ1s2WZd06Ojq68B9HM/YgAJ5m6oQXaSxHYFUq09+lSdDyBqhTQ8nPQlMPhSzr9abcx5lRmsSYJ7FIXUHYmF5OA6Qvhbv7mOEB3eIMO0hbQcuc6G5Oxw6r95WFNHD3MWFgNTVEcpqeDPuo1ksTMOZ9iAHJH2RuJTIjO9y1Or0fybyPG6kyknQoyfhxmmCXJRhOKwOcOE4Em5QfycMOW5YjKU5LvmQIhgHy45XJ5Odc5SFf0jLfM2P0DMjst9KSBjkqCGltMg/5UipRb3CaSuRYjiR++SZSBFVnk/1+3kokkCFGyPjZejaQL0qKrIoewEOsJowR8viRlnaq/qdNLLLea8s30sTspAoitQeZYgRF9CTcx4kTjuQ2hx9J28uaJakGslWQsUQSNNu2b7dt+5be3oBm0fHjOapMKZ3GaI7ACqAgKanTsG1y1JmdhvN3iZm/48QgtfekX6srJTvsBqg52OE0N5ZK0LJAOY00+whQxTTTeimCj3rNSeIzfrZehx1Out7YUZpYmOawV4XutYBVTh7EuQGjUAV5/Fj2a5Y6iHN+L49NJvUjtSo9yPJU0OoV6g1LgvFjFEBkkWWnZYdHc1R91N+lSuJzsMOAU/kRCqzUMzGpnYwdobHfWSoInSvob1OTWFmfbZvp2ietDuZJdLsdn5B4H5Xfynrd1id/1qgYIY/KBkjuk0cOZ1cZuBXktD4ya4K2Pl0lciwnGQ6kUGLlSOLV3yXdx3ote78z4DwTbUrkk2DsiCPLTjn8DfDcawmv23gOUgnIprLJtY8AxlMM98ISSdAiMXEc6MnA1gKegCBlYpGZsdqQ/CaeHSMGNKvzTes0Jo5nY70BZxxxCmPPU2UCyNjnxpMPnMiVoGWsoHVnDfZTsDpTQyS/zGsjaZKmrM6wVCb7SsoOu4lujsRi4mTy6uD4iex+JC3RM3aUktWsCWHPxuRB3MQJqjLl9iNJ7+0c+5iWHVZ2m/Wz9WwgG0naO5J3veUbk5/NNDNKPi7r/aZ8edL18qgMLMupWAiSL5VJ6uVMAtWnmwXKlhNL3AXJl+lTQG02x1opY4TxHISxZZFNJj2/1I21MibWPRvo+Zi0Opjn2ZZWmjd+HICVPd7q2Zg80B8/7gx/y+pHMhAUWe2xxRl2ljjRzeuPN6eLEUYP59jHlP7YwdJP0MZPZA+G27pIU5rU+CZO0PCBNCeke6HK7kmYv7GcSUzqxCJHJRJwpv0kDOKUk+5em22tNOxwvZ6vytS5gpi/xAHqcacBNUOVCXAmayVkh1XQkHsfkwZWR7IHVYBDUCTdxxxSCcCx/4S9I/UaMYRZ/UjXqnS9IxPH6ZplqTIB6YK4vGRIr7QfSUFQuH4ka6CznoKXpL0jY8doNHwWlQFA13ziZLJ7O49UDshQQcsRoALzUtgkyEu+qL9LEuzX63S/ZfVbHX3k/5Pu4+gRemZk9f89KfZR+dJcPhLpErSspBLg2H/CxMKdvJmjggYkW69WdYj+jPvo9g6m6FNctgYot2Zbr2ddCsIgr+orS4KWw4+kIXpyE3SqOpjA/1emiTTLupZ6Rj2vKmhzk8QyZmVsAQrKkma1EyezDSNR6NlAjYJJmL+8AWraxu3xHJVIgIw98T46Rrosa2KRohTu9jJl3EfLShl85JCcALTW3ARVUGPXUglajgDV+zpxmDiZfS0gpfPNKxV1EpIkwf7koFNlyrhWyem5SryPA/n9yORAMuYvT08AkD6Iy1OJBxx/nHQfT1AlMu1ZWgppCQoVoGapMgG0L9WZZPf2RN4kRgUEKSSOWZN4wLm3Uw7SyHq/qXsnSYI2PUwDHLKSL5aVMiDOG6CuB2ZHKbaJXSsn+aKIvaSfLQ8ZDjgVtKRrHcveywqkIygmT5L/z7qPpRKtl4rEyrmPU0PJpo+7z9GcMULiSnxOP5I21rLK2Z+lyv6TyDfzxiMtbdQe8ryqoKlNy+M0etIEVnkDVOd9JjFA9Z6yGkR7N1VykgSotp2f+VYBaqLKz0mn3y2Dlh1I73yB7FUmIN20Kx3OF6AgPg4TORO0zhU0ajxJgFqvU1KQJ7FI43zHcrKM6iGRxCGq38mVWKxLR1DkTXSBhJ9N+ZGM93bXapqAl0S+WauQjeTxIz3r0ikalq3JXolMyw7r8JFAssQiL/nSvhxo7UquMsjTywTMV3WTqkPae7MrUdx9TPDczhugAhRfpKlY5/H/ruw8wXp5SdyOPrq3E1UinUnGeT5bmkRX272d4HmTZ/KywrI1ySvxeUnc7rWgyk+CvmA3RshKhqwFYCWzx8o0ESJ5VDappNLOvZZl+A+Qzh/n3UfA6Yt8PlXQ3OBDqII2eRLozhmgAskMUN3seRKLpGz07BhV9vIGqNXpZFPDJk7k+1xpnK/ax6zVOsA550RI4uX2PAgkFpaV3EamT5EcLNd125CcHZ7IITkEsgXDua7bhuTOd3IgP2EAJCQoBgBYJMPMAlUdTPQQc34nrz9Oyg5PnMxvj0D6ClpWpKlY5CVf3J6fBDYyfSqfygCgALU6k+zezjOdGPAw30lILE0kbuLEQpPfSnJvjx0DYGW3SctKnli4/c4aKj9JKv861BpAMkIwr8oAIJtMnKDpInET+hGrRENasqDcQjaSxB7zkoEArTU9nKwvOG+im6YSr4XoSUHiOljaCZrOClrSnp88gX7axKKlgypNWZHUaeTtCQDSab7zOt/2HuoFSeQ0VIKWI7FOGqDadv7kM5XzPen0RGbsdwCST7tSlci8FTQgeWKR9aECOOxwS8LEQoPz7UnofG1bQ2KhKvEJSIPJAZIAlluyr9e9JqUMRAc7nLCCnMePpGGHXZWBYGCVR2UAzPc8x8FVGeS4t5VfSPS8yZnouvd2kgqaJhI3aSVyciDnPjo+L8nU1PFjznTEjCoDgN5rogBV9ftosH+Je7trFcnfkvgtN7HI8dmWrU6metGhMkhFPh7PV4kEnBghTayV49m2bA3JTZOcKdoUwsxU0JJDx43VvZ4mIcX1hVVnqUlQB6uTKCAeJGPN2u8A0N8nuYndal2eJCalsecJUC0rRWKhnEaOYH/ZaqAyFc8Oz44DtTmShWVFWuebZx+B5BLfvINdgHRB3NRgvmSwVKIHhYScDJiv/MSxw6paocWPJE10c+wjkHwfdVSrJYmecgvZcxI/MjNKCgGpwCqvjwScxDpJMKzIFx33dpLE4kS+fXTvbcEK2sxI/JmiMyP57+00+zg5mG8tgPYxEfmiIUBNM8ku771dKhExlXQfgewqA4D2cWow/rxILTFrmlgr5z6q9ZL4ES1EjxM7JS0s5PEjrZ1EcCddq9SSz0ZUD2bS40Gw1BO0yUFiSTr6sr9G0kEJExqMr7UTaOsBJhOcJp63ggAkr/y4DipPYpGinyMvOwY4Q0kSOKjJk3RjZTnfR0EFLnF7qVjP3JWfVjnnm5hl18SOAcltMrf9J5waNjVIPTEt7dnXUgx9XLAzoaES2bmSZCtJWPbJnIkukJxld+0/50MMiPfH9bojOc+bxKQlKHLcb2nu7bwDGQDy54n6VDR8tqSBlW3rIQ261yTfx7wqA/Vep2Ke2+7wqxyfTQWAiRKLk5p8ZMKqJ5C/Bw1Idm/nVRkAZP9x1wygfexcma8SuWwNDaOJI/rzSpcBTzySxG/lHNoEkE0medbkHf4GJCdxq3O017nJx4R+RKnnsva7qbXqFSL7EmJpJ2hTQ86I6xwfww0IYljUSQ0PMYCCl0RshKaH2Nw4NW9GQTmxPOxA0vNiKjNkoHluYoDea6KH2ED+SmTSngeVeOdJdEsluOO44zClKYmZHY1nhyUraJVpmmSpg6BIwg5PDeVLKoDkBIUOP1IqOfYv5EeWOQxqHDusw48kZdmnTznT+XL6kWWrEya6Girx6t5OlBAezyfLA+g6TJ+K7+eQlDjOjpNiRereHj+mIUBVssO4BE3DvV1upUQ+qU3qCFAnB+JZfR3+P+k+6qhEAmRjSQmK3ERP0hhBkVh5iP4OGgCXlKDI7UdWA1PD8b+no50kqR9RNqSliJG0WqfBHoFkpIGDYiRoeeDqomNuZB0yEIAMUIr5Tlz50RBYJT0vxr2xcl63pPuYd6Q5kJwd1lFBAFJUfjTYf9KHpqpE5qlWu/sYc910VHSBFJUfHX4k4QNaR6ADOIGVUBDXvY4GBMT1BUwOkg/I2zcLxCcxU5psJOk+TmkIrACSXSV5QOuoji9bDcCOv24TJ2maa557uyutj5SS3Q5qqMQ4vkEiQQOcxCIJ+aKjOr6WkqE4G5kapEpkHpVB4n1UVSYN100s1nLsP84m3QQtp9/qWhW/j25PpIaiwtxEPIk7eZKUSi1tOdZKKPHV5UeSVuInB/QUFYBkya4Dk6AldRpqU7OeuaOQJCBwZSAa2AEgGavTvjzfjaUmQsXt47Tax7wJmsPqxLLDmioIQHLnmzuxSCC7qjuNtJ157TFhU7raxzzV6nIrOXCpIK57XbLKz+RgE/yIBvuP8yPVOadareEhBsRXLJQ/zlOtbmkndjjOHnX546QyQB0VNMCpasU8oCszNFlXx1pAAkLECT7yXLfWDqefIyH5oiXRHY6v/EjGCDoqkUCyGGFuylEZaHq2JYkR8u5j2zIicOLsX1eClrSCNpnzfFsgxT5q9CNxgb6avJz7XlP2n6CIkTeJ6VxB8v3E+6jhs8XZI0B7nfuaOc+qJKSBgwIkaDkf0J19yfo5pnUlaAnYMVcGoimwSlJBy+t8gWTssHIqeROLLocdjnNSumQg6rWioKMHTf19nD3OjNC0I10VtFjGaliPjSRpStfFMnavIxlcnAPW8dmSVgfVe8lTrQDmpUlR0GaPKSrxeavHQDJ2WJs/XgVUJuNl4JMaVAYA+b3YwEp9Nk0JWpLKT96kAkj2bNMWoK6kZ2RlKvr3dMjA01R+8lYi1XpJkmpAT6ILxNvk1FD+fbSsZDGC6/81qAxmRuKP7JjIeewJkFxBMTWYfzo3QH4k9rmmoeXC+/ex103DPpZKDmkmIBUFnH08FU3i2jZdNymix4MCJGg5N61Udlj9BAFqqYVYwjxQ7FiUQSjjzC3fSdhMquMhBggHVgkrPzqC75Y2R/OdILFo6cx+AKtCZwJ2WElSpJzG9Kl8g1YUkrDDOmUgQALSQAPR09pFD94k9tjRm2/sPZCs8qMt0U1RQc7rs4BkfkQX0ZNGUtPRl2+QAEB2ljiw0kQaxDLfOY+PcddLcByDrsSiM0FiUa/p8f+dfQCsBAHqENl/nkokkEy+r7MSCSSTOGohcRNUfrRVxxNIyirT1Kef2x5XxK8F6LORrpXAVNw1G5r/3VxrJazEq8PF82LZmvi+MNeP5I1/VhLRPRsxuGNuks54NAlaCtTr+lj9JNN+VICqw/natehpPzplUEDCAFWI+dYWWCXoeajOETuuJbFIUPnRwTICtI+12eix/rqcb+LKj64ELQXLnpv5SxDEzU3R+PS89m9ZyZqpp4fz2z5AfmR2lI7/CIOuQD8pgyrpR3QRPUl7p3RIzgGHsR2JlmZru24pZLe6Pltc0Kj73o5KLKZHANj511IkbhKbzGuPgKOgGIq2EW2JruPTY/tLhzSRLwkqyFNDACwNKoMEBIV7xFDeyk+ZJgHHTXHU6kcSEj06FD2ATJUVSEZiTQ7k74kHkhE9uvaxrZsq7M+LBG12lBIdLbKrJAnasL4KAhAdEKibvLMv31ot7XSgs5jzTZGgaQusIpyvrn0EkjF/OnT6ai0gei917WNHHx1VkaTyo8P+k0yonFbV6p58aynnG+XsdQXDABKdu6NrH5Mk1sr+cz/EnL9PEhBoq8QnWKvcll8qlJTE0lkdhO0kDyHQnaDFHeui69nW2ZcgQHX6nVs7cq6lEouoe1tTBRlI/mzTso8Oqx81jluRhXk/W5J9VBIvKfny1BDZkg6VARDtI3X6/86+ZJVILfa4gnoQRQi6BD1otSrZqw7ysbMv2j8CeqZzA8mIHncglS4S9/mQoOmqMgHJe6e0MN8JGFtlnFqc/YroYMe29faOzIxGa76nhymoyjMNCkgmTVI3nY597FoZ7zR0MahdKRKLvDaZ5EBP29ZXQeta5YxRjmCHp0ecxFGT841MdHUmaEkqP6c0sewJiB5dfqRUdgZ3RNhjdY4GW2hj2YeiJb7KH+dWNCStoOkKrJLc25qebS3tlAxF2WRlhvq4dD1rYgMrTfuYhvnW4pMTJha6An0gmcom7162LyeCLipAnR0HanN67u3OBLGWLpVBknvNjRF0JBYrkk261SEDTGP/eT9bR58zpyHiurlkuAY/0tGXgOjRRAYmqSBrzTUSkI8eLOEETWdglaCfY3pEj6NPcmMpY8nLfAPEtEQZX2WK5HS6khgg3ti1OV8rmtXRmaB1roivIMyMarpmSSpomu0/aq25SRrFrMX+nWsRxQ7PjOiregIJgzhdlfgEQ0LEg4++/OupZmqJtbpWkeY/agCErkQ38ZCcJiQW2gi6iHvb7WXVsJcdfdTPE0XQTQ1ptv8Im9Q1VRdIFljpIujUMyQq2Z0+RRXk1hwHcANEcMQlFrorkXEEna5EV+1j1LPGbbnQFSMkSNB0qmziSNzWrnyHtANE4kr6kST7qMuPJPHHk5oqaECyYpAHSzhBU1mtJlZ/ejh6cIc2GYgKUEfCf0enNC9Oq6ycl1RioeshVirT/iRxGlLOd3pE3zUDYpL4YaDUml8GCMRLfKc1P8SA+N4RHfbY2hU/1lkng5pImqepEunu40j478yM0OCS1s7868X1BSg/oqvKCsRLfHU8MNt76D6KWsu2NRNLiA+sOvryS7wAqnzOjoX/u3tvS5IvOu1fSr4cE6DqOvYESFZB09UTD8SrbNwJppoStDj5po6hTYBHmj0S/juSiUVl2ul31uhHIokeTT4ScKpaEX5E12wBgK5bdSZ6sq4uP5JGrWQStBTQmVgsW+04jZHw39GmL++jr3FsdFt3/olhQHxTriuD6tOwVtLASsNNDNC1T+J8dQUElanwwxptm+ynozf/WokqP84+6nhAxzkN3fvofc0g6KqguWOdoxKLEfqq5bqtpmA4rC+gVqXeWa0se4wf0eEfgfjx8M0genTYo2XF907NjlO/s86AIK6Cpiuwiuvn0NXLqtYC4m1Sx72t+qujhpLo6h0B4gPU2VE9x54AycgXXZJzwCFfoq6Z5nYSICZGOKVnrdYu6mWOSgbVHuvwW3H3mtbnaMLEQlusFTMAxbURIfJRl/139IKUWDG9rKUWPTFCR2+0H/GhAAmahk2Lq1joZD7auuliRxrfiMbAKkaap3Mfk4xj1VWaBuIDK8nEojJFZ27pcvRxY51nRvVcM8AJPqIeYsIJmlb7T5pY6LD/mM/mVsalguERPcEwkMCPjNBXrQRFjMRXiujRrWgAoj+bLhkU4AQEUfe2xup4ImneiFxiMXWKkri8A0kA2sfKZLh8U2ei60rzRsJ/R2eCFlf50UniKv8QWY3RdG9bVnw/k9sT35Z/PbWPYb2zOpPBRImuoB/RWUGLs3+3J74v/1pKiZWkLUcHGR63j/63l3/FJkF9yLznkgEeSUHIxumUQSXRfGt1vs5DLEy+yZGgSSYWcSyLVdJjI3GlcJ0PsSTyzZlRPZ8LoOuRhGXXKYOSqKAByaR55XZNQVzf/GsGQWcQ19pJZ+5JBXFx5+6w+JGY66bLj8QSPc6/6Qis2nvIJ8UlTVqZb6HAKu7erjvSNq2JRYyN6PIjcYmFbokXIJfoxsUjOskX9cwKu9/UsSe6SNxYgkKTLBWgfbRrVHEPgk6ix7XHmHtbbB91VuJj/MjcJJHhWmNkQT9Smw1XYvmwhBO0EedwWA3MhxtYhRiE+4DWWbEYCf933QGqXQ/vQ9ApTVL7E7aWbdO/dWhKLJJU0Dr6qMk191oJqyO6bET1RYZhdkxvgFqbDdd8S1bQVBCnq4IWK3HUHOgD4YGVbhuJY/5mRvRWIqMGQOj8bHGJbmWGpsrpIijipg/qDKwsi5K0qL4wnfaftDquU+IY5pNnRwHYGm2yL/66adtHFRCHrKczQG3tJNJIrIIWJ3F03ocuiRcQbv869xFIJjvUqTJQrxm4lvM+dPVXW+XoSqTuxCLOj5Ra9BZMwq6bznhErSftR6L8vwdLOEHTWYmJYSMUI6ItsUhSQevTtFZM5UdnYNXaSQ33oYHVNDEf2io/fXI6/dgETWOiC8Q7xBmNiW6cNImD+Qtlx8aJUNBp/7EVXc37GOpHHKcslVjolpMBCexfRxCnWPY4fyxEmOkMrADnQNu4BE3jsy1Kmjc9TJVYHYNkYgNUzYFV+/LwagUgGyPonAYIJEwsNK41NxFNvujqiXfvbQHCGIjvndI1WwBITuLqIno6lkeT4brJxziVjc6hNUC8H9Hmj3vk/Eh7gsqnB0s3QdNZQYhN0FRgJcR86+zBcbXKAoGVZUUnFmofdSe6oZpvhkQ3rBqjU+IIJEjQGCo/ocz3OCXeLRpkgKUy3UcSLCMwv49hNjLD4UdGwtcC9CaEsQlan5611EMzzP51SkVb2h35plSi2xdPmAH6ArmowKpeZ7LJsMTilF45JZCA+e7Ts157xD4C+oY2AfHMt85zoIBo0qA6S0m3zn0EwoNUnfFIewz5ojMeAZJVkHX2sqrXDFsL0EtQhCW6c5Mkt9Rp/1HSPF1Dm4D4HjTd91qcH9H5HE0iTfVg6SZoOntw4kqqbkCgYaQ5kID51phYxMk3Z0apkVoHOwZEJxYzDImuXSP2Lwiz43qrFYBMBUG9TuTUsDG9lUggumLR3qOHHQOiA2KdLCNA+1iv0NjewPU090Sq1wyCCoC0+pGQfaxVqBqpU04GRDw0NcppgBg/ou41jfY/MxbRpztCX3UGxKGB1ThIBihkkzrlO+VWoK0nnnzRFljFSEWnNdpkbGLBQRqMBP8bxz4C0W0QuvaxrZt6MEPXUiSWUOVHZyWyI0GiC0tf/BNF9HDEI97X9UOnWqN9OdlIoSvxI4l+fWknaLo2raWDDn2Mc74SzHd1lpgKbQYRJykY0bcWIFtBi5PmzU7oC4bbllEVKbYHrU/Peu3Lw/exOksJh85ePiBiH8f17SMQnVhor6AlkNRov9dGgv+do/ITVfUEGKQZAvsIJPMjWskX2+mRCsD0CPV7tHXrWa9jefhabIHVSPh6uvwIEB006pYmdTiBVWh1XLINYswhOjWcXQdEV9C0B6gqQYsYbqHrmpVKtF6sxFEn0RmioHCPxunTs5baxzDCeGaEbFZHTzwQLZXmqER6X9cPnYRxnI1oVytFEGa6paJJpph6YBI0IIE0TzHfGgOC2VGgXgtYy7m52zQFxEnYManASufkTSCZNE9XYuFqvqPYMei9kWNZxj5NazmvEyXN03XNgOgETfeDJU7zrbMSr6R5UYkuLH2BftQ+uj5LY1IBLBI/olsq3Udfo3owO/v0VZCjKmjSzPfsmF7ypa07wRQ7jcy3XSc5lx/1umwbhAq+dSGygsbQgwNEP9t0Vsfbk1THNSYW9Qodg+OH6onX9qwRlIoCwhW0vsbXXbCebj/SE57ochAUc+PBCoq5CUcq2qdnrbj+ah9MgqYQxVjNjlHJtW2ZnrWUYQVdpDnNMqj2mArC9EiBK2iaKz9RkhoV6JfKetbq6KUqWdChx7orCEn2UTfLHmaPumWA0olFZ1/8Q0wXg9rZR4FHoI3o9iMxRE8z/Ih2ie9I8L8v6cAqpi9MN/nSniSw6tO3FhC8l7onRippXuS9rXEf27ojpPuaCbq4xIJDZRNm/7OaSdwo+9fduqKIt6g+Ra2JbjOInpHgf9c5nRuIjrWmT5GaqbVL01rO+54LsH9pwsyHpZmg2bbeRmognrHV2YMTlUXrZr7bugFYi4v51t47GFBFsG264bQmaBEVNN3JYFQpXPe49iTOV3uiG7KPKijRTlAE2GRlRq+cGEDk1DDt+xhhI2ofdVXr4oieQlTQInoeOAKrINlVMypoWgOrqAraGLUTtLTrWStKvqx7H0ul6ICYZR8jeqsBBvJFsPITVUFr6dRzfBIQLTvULQNvaaNBSaH7eIqB6ImrRGpaL7aCrJvoibJ/J/bXpmiIsH/dcsrWLjqOoNAJWmWaytZijK3GYRNAtEHMag5Q1YMlNLHQ/GBpRgUtMPieIvmLVII2N6EvGAaiHaLuALXcQpKCuCEhuhC3j4DGfh9nHwNZds0N6eq1JHT6gCf4EPAjbcuoDyuU+db82ZpSQYsIdrTayHKSzQTJrrQnaDEVZI5nW1RioduPqNf1Q/c+qteKClB1rtXWTeRR0Oh73ZWfKBupVfROjATiKz869zEqQZvRvI/qtcLsX/tni+jB5PIjQfbvzk2QqiDrJsMFiR7VTlXoc9B0T/ECojXfbIFVgAHOae5BA6IlZXOT+hOL6kzwOFb1INXdXxfFjmn9bFH7OKFPAgtEV344EotI+2eQioZpvmcniGHSzrIHJbocQVxfjJxM8z4CIUSP5uBDHbAc5Ud0Vf2B+WA4MPgYo/tal5xYve+wwGpO47AhQDaxaHV8UlCfljrwW2tgFSFxZNvHgHtbN/MNxFd+dEscgZB7m6mCFhmg9ulZC3AC1KhEV+c+OvYfdG/rJnqAaHXI7IRmEiuiB1N3v7+yx6C1XHvUnFhH7qPQc1T38DcgegCcD0szQVNGojWJiWFsdT/EgJjASmOwE3XOw9yk3sQiqmIxM0afXVcPTqKHmJAuenZCf4AKBD/IdDtfIOazMSRoQDhB0datdyADICMDBOIr8bp1+up1/WD5bCF+pO5Ug3TvY71Cagk/ZkflHtDq5xyJRVRArHMiWuuykMCKI0DtjvYjuu1Rva4fHORLVPLJIXEEIshHS99zu7XLGX0vQPQA8Ymu7kokELKPXBU0YT8SGGuN0HXVJRVV/V5RyaD2HjSpSnxUzMrgR9q7g/cxAEs0QVPBh+aKRdTUPDHmW7M0Sb1WkENkCaz66GtY5UfnTRyl+WZxvnGJrpDEUTeDCoRLCpR8QVLiq/tzhfVgukSPToIiwka096BFVH5cP6KT6OkNvmZKqsdB9IRJfLVWK2LGY89O6Fc0AOEBQVuPvnHtAF2XSIkXQ2AVVPnkahUISnQ5ks+2kERXvQeWClpIgta+XB+JparjkfGIbsI4RJqnc/Im4CEDIyo/WhOLEPm+bTsVZAaCIozo0bmPLtEjlOi2dQdL99V6LPF4SFEB0E8ahD1rfFiiCRpDYNXeTXKP6tzCf5PsQZNkvjkDqyCZl24ZCIDQqWEcSYx6iAU9WOaY2OHAyo+6bjofmiFNue4DWsr+Ne9jVHO/60c0rtcWwY5p9yMRFQTdcmIgXOI7y0CYRQ2u0V2JLLfQ8IqgfazX+aR5YbJbnZ8NCE8sZhmY77Zu6q8LOhhesgeNg+gM20d32JBQG4TufQTCEwuOeKSti6R5QdNntUtFlcQxqMrKQeKGVJDnJgHYspUf3bGWONETFmtp9seRsRZDq0wU0ePDEk/QdG5alEPkYr4F9OVAfICqlR2LkBToZpDUelLMX8dyOjclSHbF0YMDBAdxcxN0sLpWlj2E1WGpRKoHS1gFTbONhMkOWSrxEUQPWyU+5MHS0qnXRtpDpoZx+OMo5lv3QB61XmB1UAVWQj6SJfgOIQ24Aisg/Nmmcx8jq+MciUXIPuoee6/WAsLVIbqT+DCJO0uiG9HPxCZxjOqdEjhmgsMeo+JI3UkMEEH0aB5aBtBns+shEnfNJG4kYTxJI/11SUWB50OCpoxd0zkIwHyQJvHQbF0GerCEPMRau/Q1wAPhFbRZjodYRFP63JS+syvc9UK0ylwVNO9rN6yneUhIVPBRmdK7FhCu+ebS6Xtf2wuO4DvM/jkq8WE9D7UqUJ3mCYZDfRbDPkr18kX54zkG+w8lKBg+m9vPETDFUXdPMBB+eDRLYBWXoGn0I6VSeGI9N8EQWHUJVhCkk/iwfWSoICj7r4QkTVpjrS4AVjj52LpMb6wVKhVliEfcfRTyI5JET9x8AZY2CCHCOKwnOABLNEFjkjh6X1uh7sg1tMuuIh4s2tnhOPmCQIAK8CUWkRJHnQ/NkMqPCr51yskspwk8LIhr5QhQpSq6EQkah0OMlTgK2H+FYa3I5n4GBjWMZWfZx4jpa5VJ/URPmMTXPZePQXYVFKDqngar1pOqIEQOZWBILFq7QshAzYoGQF4qCgTbpO5KPIDQ/moOJUoYicsVa7UtCycfWSqRQs9Rdx/DEjTd9h9GYmk+Tw6Y90kLiM4K2YhOn6VirdBEl6MS+bzoQdMtl8DCG1ldtNZOfWup9cICYo7Aqja3cPS9ZICq1mMJrKKaxDkSC5/MiyP4Vq8XGMRxsOzLgpv7WZrEY3owdTvE9pAHC2flx+9H5hj8iGU5FWRhosdvI1xyMiC8Eq9TPQGEk1gcU3VjK2hC0iSuc6CAhXtZnaM+Ld2frbUzOLCaZbD/tmU0WdQvX2aV+AolumFJDAuJG5JYcMQjQHhiwZLo9lACscBGGCvxoZVIBvsXU9mEVNDcRFd3Vasz5FkzLkeYBWBpJmgcAbEbEPgMwh3IoDsgiJiaxNGDAyxcj+O4giiJY4UjsIqQOJZa9Z2nBYSPdeZIYoDwG3lukmEfQ5r7XYJCZ7VasE8FoAdZIDs25Zy5plEGFdY7xTGQR60nIQNRa9WrC22kGZV4sQoy07AJIMQmOSpoPYI9OCFE5xzDPgIRKgPNfSrA/Ov5A2KOGEFS4gU4ZGBQv4+6tzliBL+NMBKdoYmu7kEaIYk1SwVNWiod0YPW0gGUWzWuFZegMVTiw4ge7XGd06cedAi9D0szQZubpMCqrDOwCmFsOQJUIFriqNtphDEtHIFV1HkZc5pH+gPh/RVcckpgoVyOgx0Dwh2i7qMRgPkHy4IKsvPQ1ln5CUvQ1ChiFmmGVCUyhOhx/YgU0cMRxKnPJsB8hxE9ts1HUEROw9QpuypTQCNmkyEBamWSjinRPUgGCAhQGVh2IIJ8YZI4qtduWIvB/7e0U4wjlViEVSLnxp3gW6ONhPVOcVQigXD5su7hb0C4jXAQPa1RRA/Tsy00rmOKtSQSXSBG4sjgj9Vrx6CpCZplWVsty/qGZVmfsCzrdxP/odo0XeeAAOHSJC6JY2hgNcYQoIYkTRwJWqnkJE2+fbRtpt6RkB60CsdAEsEHtHq9MGkeh1QUkEksSmV6uCyQQc1ShUZ7YBXS3M+i04+ROEomFmx+JIT5ZpEB+taqzgCwmRLdqB60pczYOgnaAmkqQ6LrMt8+EouN+Y6SOAoFVhw+0rKCn6P1Gj1HWewxpILGVYmUiEeA8AoyR/Ct4kT/XnIMWyk7RYrAXj7NPfFAeDzCoWgII3E5/UhgJZJJKg3wJmhOUnXSsqynfD+/ybKs5yzL2pMg6boIwFds234vgMsSLz43wSBxCcnY57ikSSGsTmVa/0NT7ZWY5juAsa3O0thUDoljZYqckheVaf1JtctYhbFjUhJHpil2QDhBwSJNDatESsmgGIK40Eq8871UBY3Fj4Qx38510+mT3YNRw+RkUlMcGRlbv026gRVH71SVZDVezHFIRZWN+AJUVh8pFFi5z1EhaV4Q+chR0QXo3q5O07l/XnAcjRNKGHPGIyEj1LUnaCE+UlKax5bohsUjE/LPGu29rFGEmVCVNQB5Kmj/BeAm7w8syyoD+BiAVwM4H8A7LMs637KsiyzLusP331oAPwPwPsuy7gZwZ+KVuUaIAgsdIltgFdKUXpmh84t0wn1oSlV+Am5kLqlomFa5Ms1QQQvRfLM+WAR70IAA+3cCLQ6bXLCPTA+W1ojmfg62FggneqQqyNVphmsWQvTMThCTq7OXDwge7uImg0xET63a+HPOgHiBP2YM9L2vr1Bh8CMtIRUEjn43IHgfAbCdAwUIJhYB1XGuXlZFZlYDEmsOwgyQlTiGtQro9iNhFbTZCZq4q33YXBCJxRiP1CsLDxjnOD7J3UdfvzOXVDoy+eSqxMdPcsycoNm2/WMAw74fXw1gj23b+2zbngPwBQCvt237Sdu2X+v77ySAXwLwR7Zt3wDgNYkX5wisWjqckdUhASqHFCSsd4rjJgaCEwuOwCqoguY6DanEgmEfpVmdMM13hWPMfkgP2twk3RslzWroIEkN270WUvnklDiGJbocCWFYBY3N/oP2UfPnAhA4NYxz2AoQnBCyBFaCBEXoUAaGSny5FbDKERIvhopdqDRPSOLI0RMPkM0tGNqkeoK5fKT/ujFU0EIrkcr+OWKtIPkyg/1HxQhtPXrbcoCYBE1ImsrR7+8maAFkIMBz3YL8yFKVOIZgE4DDnu/7nZ+F4U4AH7Ys618BHAj6BcuybrEsa4dlWTsGBgbohxyBlRpZHZZYcDAEfrYKYJbmBSRoLIFVgOabc0gCEJxY695H1dwfmqAxlPlDe6e4KsgClUggmPnmrNYBwT0PHA+WQKKH0Y/4Hyz1GsnZJCvIuv0xEBJ8MEocgQBJmVOJ0R1YtQY0pXNM1QWie6d0Ez2WFU2+aLf/gEQXYAqsIgLUVs098YBzb4cdjcNUsVgw3IKhl7WljSYsN3PMvm0LV9AYhjYB0RJHtiE5ATEyR8EEiCBxORI03z5W5+g52sQETeNonvSwbfspAG+O+Z1bAdwKAFdeeSV1Oc9NAt3r9L+hIEkNV2LR2uWM2qzOT0iybUraONhaIJhp4QqspgYXrqX+TetaERW0zpV61wKCm0k5Jh0CwQFqdY76Sdia+4MSXY4ELSCxcPexQ+9aYdMHOZg/l+gJSSy0ky9N2McgqTSLHwnyx0yJbuhwF4ZqNUD378RJ31pcFbSwoQyTQPdavWsBZHd+8pEzQfPbowqsJKc4chCdLR3AzEjjz7ieNaHDLSaAldv1rgU4FWShyk9rx8LP5Q4b4lIZ+PeRQU4MILAHk00qHUVQaP5slkVE7QI/wnUucZA9ciW6Ic/RAOiuoB0BsMXz/WbnZ3rBaeyh09eYmqm9BqjkDFxOQ+rBEtmDJsRYcVTQgGDmW1037ZUf57wMb+8UV99gVA8mxz4GPViqXBW0COaPI/kMakrnOsw8qLmfMxgGQogejn0MkPhyTcNsDfDHAFjOblTrhVbQmKR5QedgipEvTNetrcs5m0/AR4YSnQxEDxCyj4qgYOjTBYIlZVzki8SxPwA9T+xaY38pV1wXJs2TVKKwyQDDCAouHxlGPlrzFTZtawkOW4k6isoH3QnaQwDOsixru2VZbQDeDuA2zWswSvMCAgKujD0osWCTeIX04FRm9Bs6EDyh0nWIDM32QLBWnyX4DmBaKjMgp6HxUGwg+LqxJbohD2iOaYBA8HjsCjNBESjxZQg+guy/Mk29ORx9KkCj/bOxjCG9rFWGwUZqvdAKGldgFcC0sxAU3Qv3kWvSofLx/uZ+jgoyQLYQ5EfUv+lE0L3NVomJ6EETDVDBGI8E+X+O5DOoB5Orl0/ZvzfWYpScA8EEBVs8IjXpMEx2yKQyCJL4qn3ULif2KNoU2Hr5BHrQLMv6PID7AZxjWVa/ZVnvs227CuBDAO4C8CyAL9m2/XTWNULBJTsJlTgyZexA40Xicr7lNufQy4CKBVvwETJmXPvUMOU0AuRrLBW0IK3ytDNkhqEBGGjcSy6WPbS5n4tlD9pHpgQtSOLlHorNVfkJGcjAZSPevXQrukw+K6h3ULecEhCuoEUEVizJZ9AUR6bKT9iEPi6iM6x3imvYEOBL0LgqMap3KiBG4CB6WjrCh4RwVVkDEwsu8iVk2JBuH+nGCJ695K7EBz3bOHxkZC8rQyUSWGiTrH5EKK5rC7hus1yV+ORTHDP3oNm2/Y6Qn38bwLezvm4isBl7FzBzrPFnXIFVVAWNQ88bKM2bZXS+zsGoat84h60AchLHIGlehckegyoWXM7XskIYq2mgQ/NobCA4QVPf604sgg5YrlfpXD6O4Lu1K2AfmaSiQcw3V5W1pZ0GoCwgemZ5KvGBFTSm4zrEpdJRPTi6Ayunsh9UQZMiXzj9MdBok1yTPgH6DAvGjE8AXat51goizNS/6V4LaLxutSqNVeeqji+wESZFQxBBwVWJb2kHYAX7EY65CZG9fFx+xPNs4+qJBxA6xZTLZwFkkyre4ZJll9sAWAv9SAB0Sxz5YdtAbZbHabR0CAZWAc2kbvDBEewESfMYzkoCyDHYtcabi03zHcB81OtOEi8kzeM4cwoIHoDClegCIYwVp1RUSOIYFMS51ToOoidgSALHWTFADNGjeR9DiZ5pvgRt1iF6FNim2IU097NJk5ZFSGqYmG/vZ6tVnAllHElMwFAGzmFDgE8GzlRBVq+5oIIg2YPG1V+qpjh6fSSTHwEQOKGYqxITVEFj9ZEh5KOUoofLjwSdTcaV6AIhUmnGfQQaY2Su2QKKDPf7kQAsiQTNsqybLcu6dXR0dD7r1N3vA4Q7RNYHS1DQKMTYVmeZ9jEo+eSuoHlZHeYHS1DvFFdSDfichmP/HJ+tJYixYpQ41isUKCpwXbeg3hHXjzAFcUF+hKuXA/BV0Bjtvy0gsOKqoLV2EdFT9ycxHJLzsB4cph60ILkoZ+UTaGRsWYmergA/whxYSRAUgJOg+StoXIlFJ5HRDQOAuJ6jAVJpLsIMcEisgH3ksEe3B9NjI1yEMRARRzKR4dUZOlrFXWuKpLjlVr1rBVXQuKSigPA+ChdMWtqLU0Gzbft227Zv6e3t9Ux642LHpHT6EQbB1vMg1IPmOkT/jWzJSDO4WEYgZPog45AEoDEgdlkdLoJCSJoUmFhwTcMMGrai/IgU0cM4MQ+QC1ADJb5MPWhBTelqsAVHkzgQIqlhDAgWVHUtxkEyAc8ajsAq6KxIdomjl3zhjBHaAyZ9csUIAc/RyjTJjHX7rSA/wkl0BlYimfcxsPLDJfENSCy45PTAwsoPF4GrXl+BS3IOCBdMIggKKRI3AEsiQWsAewUtZGqM9rUiAlSpwR1cFbSgQwarMzyDNMpt9MAKZD64KmhBUlGhSmSNsfLTGiTx5ar8BCUWU85AG81uqaWdBqBIVtCCZFBSia5biWd6kAX1snLtI+DreWCaPCs9bCgw2GEaNlQOqqAxTdUFIp6jUhVkxueoZAUtiDRQUmkugiKI6GRLdOcaf8YVa7UEEBTslR8polN9No9NcsUjgRU0JjklEJKgMY30D1QrcRIUBaqgNYBrQpl6zcDeEc7m/qDEQqpxm6ny4zJ/HgPkSgZdzbdUBSGgd4qNsQoIrDgJCr/m27Yd2YkU881kj5a1cGoYeyUy6MEimOgCTH1hPqm0bfP1oAUSPczJoJSkJuze5qhElkqUpElIztVrSlfig3qn2BILT4Baq1IvH0sPTgBpwJXElJ3x9lJS6SASi63lIqiCJlj5qdeIWGVJPp39qnn9CFdcF9SDxpnoBkmlmRNdyQpaUXrQGuD24HBUEDqp38HbuM0lAwzsQVAOkSuwCmruZwr01esr1JicL0DXJ0i+w9ZfMb3wYGCWmziAZeckKPyNq7UK9QCJERRM95par2EfhStoXDYSFKBySnz9wXetQtMwufwxEED0aJYAApTEBBEUVSZJTWBgxSSDAhbaJGsFIagHk3lIToP/5+yd6vTZI2e/c1BAzOwjpYjOckAFgV2a562gMU3DBBb6SO59BHw2ydQTX2ohtVJQBY2LoAgagMKqaJOU+BaxgsZadg9oJq3O8bHsQIhBMEmTvMx3ve4wf4wVtIovIC4zJWgtgg8WV3bik2+ysuwBiYXuPhVgoTSJc0JToOabqZcJWCgpkEh0vdMHa3N8awEhAQEH0RNWiZTyx0wSR2BhgMr52YICK65hQwC9rlRg1doVMNyCSyqq9tEjl+OuoFUCkkHOVgH/eHiOSjywMEZw95FL4uUnsWYEK2icsZZgPBJUia8w+UjLWjhIjGuqLhDRg8aR6DrxVM3jR9graKYHLR2CGKsaU2IR1dzPFcgFHmYr9GDhki8ACz8bZwUtbGS7ZA+O9990YsE+Mgb6gVNMBSsIIomFL7HmqPxE+hEmVl/iUGwgOLCqzfGQEwAWnF/HGcQFShwZk8+WdohNug1MLLgDK1+ACsgw36z2r1j9ZlXQmPexXmmcPsj2HA3q95ykn+vudwYCiB6JBM13b3P6kaDnKFcFuTLdSHRyDQkJ9MdOPKK731OtV5QKWuOYfWnGlqmCVm6lUaiSmm8vO8B1xoNaC2g0wBrTPgKyjFWgNJWJ+Q46v4W7B01KBhg0xY6zghBaQRMiX9iInqBK5BRdM47gw9/cL+6PmXrQAEeaF0T0MAZWC3pHuOxf8N4Om1AsGViVWoFSmWc9sX0MsH+u8xQB+mwNia6A/S+QLzNVPYGFEl+Oqg8QQXRy+hFf5YetEu9T2XATxrDnbcS2+SrxZeF9LFIPWuOYfeUQhTTftVlmxtaXWHCcXwE0P0CtMskXgOB9VD/Xvpbz2fxN6Rz2WCqR7fkZK67gw/9gUc6KRU4ZMn2QLfhodgVtjqeCVm6lCZVBE1M50NIhWK0Q7EEDIioIQokF15lrar3AxEJQHSIpTWLbR38PGqcSJWgfGRO0cmsw+SJxFA/nsKEwe+RSa0gqesoBySfXkBAgwI849sJJ9CiCgrMnXj1TgipoHAg6BzAASyJBa0CRpHn+s8k45QuKHVPlYlbnG9I7xdWD5m9Kl7ARf5DKxrT4AwKmXiYAC8bsSydoqvLDgRbfZ5MMUG2br4IWOMWUM4iTJHpUBdlXiWSzf78/ZjyoNLC5f5pXZRBIUAjYv5p0yNE7ZVkBJJakxIuzghaSoHFVfsrtvkSXswfNl1jXq3zDhsJaBVirI974gLMnUn02X2LN5UcWVOKd/+eIEfyTdTknb0r3BBepgtYA6Z4H9t4pf2DFmKAB8wbI2twcoPlm3UdfgMoqA1RMi+MQXeaPk7ESrERWPZpvlx3jCOLCJI5SzJ9gBU0FH2I9mMxET+A+CrDsgEP0SFXQJHpH/NVBxusmTlA4NsnZgwM4wU6TpEkSBMWCs/I4SdyABE2igsaZxFgWFhwMXJvjI4zLbb59ZKygufGIz0bEK/ECUmnWaZitACyZ4wqAhf44BEs4QWMMGtUDhZP5VutJSpOAeQPkDKwCm/u5E13f6G+ARyrqapXVPjpfpdg4zh4c/0NTfUYWdiyoB4eT+Q7YR4BpAIqvuZ9z8iYQLM3jDIbr1fnmfrcSz5joSpyDBswTFAqsgVWA/bNOMfUx35wH3ocF31w2WW5b6Ec4+7TEiJ6QVgEuGym3BVfHJQgKzkBfva7E0CYgIEETkIr65wuwTrr12b9VpnP0tK8VVkFjuLcta2EbEKs/LmwFTeDB4koznECfs+fBO9aWc5BG2aexldDOS0lF/cbuSvM4ZbBqHxllIECwfJPTHoH59VgrkeoB7WNsWYeECAVW7oPFeaAoe2SV5vn8CFcyGFqJZ5R4SRx4Dyxk2UWqrIKMbeBxHYz3trL7OcZDsdV6fj/CGeh7z0plrUQGERSMlZ+gISFsw1Z8STznvQYETFbkJMPbHRLLOWaCtfITUEHjOvYHWOhHOIl3/+AOzqE1aj1/BZnVHxe5B4119LdK0BgfYkBAYlFhDKwEWU1VLvYHVqyVSKHhFv5m0gqjPQILb2Rudgzw2D9joltqwQJJAdcIXSC8gsYSoPokvm4Qx5VYdyzsHWRP0NRnk+iv8PegCSkaWJv7g5rSOeXLAQFqqZVn0qd/cAcnGajWW+BHGAkzIECJwliJX2D/XJUf35CQygxvUg0EEMZCFQtOH6mUOxKJRRDRw3WeHBDQg8aZoKl9dAolnGQgQPeVvyeYW9HgPUIgAEs3QZOQZnD24AALS+HVWR5ZHuD5bOqhycj8WVZAQCDYy1eboxPvOcruCySOzBU0SYfoTyzcBI3BJoMkBayfzcf8Vabp/mM5B8dfiWcmevx+pFZh9COC0qSwYybYiJ6AXj71c90IC6xYmW/vvcY4bEjZnnrWcBI9gCyJtUBBwfgcLbcBsObt37Z57d9fQWANUEMqaKzj4YXikQWVH+VHOHvQHDus150kXqoSz3iv+c84dJUoXIm1v4LGXGWFPZ98hmDpJWiVGQq+Sxya17AKGiMb7WWsWJlvXymcPbHwM1bMCVptztMXM9sEiZdQYsE6xU7Zv2ruZww+gIUOkdX+AyponGdOAc0jerj3EZj3jZyHmQceM8HpR3wSR1aVQQs9x9Q+co4ZBxyixy/xYpbTuxU0YfvnTnQBjwyckTC2LEp2604QV68CsPkC1Bb/PjJWIt2peX7CWKiCxpqg+e1fQGXgJjGMvdVAQA8aZyXSt4/siragChpjfKzWiMCSSNAWHFTd0sF0uneYLlpImiEicfQxf5wM2YJpmJxsBDw3Muc++isIzA3wkg8W/zmAnFJRoNEh1ut0xgkrGeJn/hgDfUCY6PH6EUaCYkEvK3dg5akgq6FNnD1o/kQX4F3PrVZXnEmfXIFVEEHBHaA6iYWI/XvvbeYeNCBAvswZI1Qa1+KsoPmHJHBWYoCFLRes/aU+opMz0AdkCAp/oss5DVO9rlgFzSdxrApU0BpUNgJET0wf2pJI0BYcVM0eoCp2rBnMN7M0yc98swYEfmmSUNAoUkEQYof9/UUiPWhNqKDVGSdvArRn9UpjlZVTlgoIV9A8UglWiaM/QBXwI/6eSM59tOsLB0Bw+i23gsAs8VKBlep5YG3u9/XgsBM9HQG9U0KBFXfvVLnVk+hKVyIlKgj+RJfxujVM+uSU+AZUfqwyz7CVUol6SaWGrTSzEsnuRwIkvpwKM6BxLwOwJBK0BnBOulKa7wVjxjlLqv4EjVkXvcAhCjDf9ToFx+wO0cPYsieD6rNVGn+uG0EOUWqQjGQFTcL5Ao2BVVEqaAsq8QIERTPGY7uHokolFoL3tkRgBfjsn8sf+xQN7Mx3wJh9MfkyM4lVavXsI3clMmDMPrfqRWKqNLCQxOKchuzGCJ7EguuaAY2JBfeRFguId8bnqFtU8BEUUr2snOcpBk0oDsASTNAYM3b/cAt25tvH6og290sy3+ohJqVVrjDq9H2SArVmibFiIfXQXJDoMidNXvtXa3LuI9AYWBUliFsgcRSU+FamqR+YYyAP4EtiBPwx0MjYcjHfQGPPD3dg5e95aIrEkdP+m1hB4xpFDzQmFjVmP6IUDW6VlfM5GtJOwtbz1tqYoHEfVK3WAHj3EWiU+EoQZt5jJmoCw4b8BIXE+XUSw1aAIlbQGNkxwNcXIMF8+52GFPMtITvxsWPsDtHD6nN9rpLT3O/aiOOoWANUqelTfu08d2LhqSBzTowEggkKNtbbGW7hP0+Os/Lj9yPsBIVXTsz0uYBGiS87y+6voDH6EaCx54E9sPKx+qzTAIUrkd4KGvuwlaBElzEeKXsraAKKBtjOMBIIDS0TqqCVWubVLmo99ueoQDwCNPYOchPvCz6bxD4KShz99sg9xbRSuASNMUAFfIytRIDaJOa7XnHYYSYT8CYW7My3r5mUcx8tq7Hywy5x9FVHJJtym1FBk5JvcgdWXoJChPmWkjj6mL9ahY+cANAwfZD7wO8g5ptVmuTpneIOrFRlWvmrphA9Aj6yXnOGrTDLriSk0gDtZV2qgubv5RY8l5W9l89THbFth8TiHhIiEI8AjfbPfS7rgsEdnERPmKJHoCdeouoPFLGCxhigAg5j5WGQAOYA1SspEBgS0hBYMa0FNI5j5WbHFkxxZGasgio/XNI8JblVNlJlfLAEBVblNp6JqUCjNKkZPWhcDzEADeOxuQmKBcd1CARWXoKCy/aB4Aoat414GVtWaZLnCAHxwKoZRI/AcAuJgSSAHNHjrY5XBQJUoHEvuWKEBWeFcSdoknGd4NAyAA0DULiPT3KJHs8gJelhQ5zHTFT9hDF3y0XhetCYH5oNkgLuxEJSUuAziHqVN7BqaZdnvsWacr0yWCVx5EysbaHAKkBSwCrN8EiTXIfIKBUFGvuZOD+bt7lfRCotPA22gWXn9CPeSjyzDDBorDO3H1nwrOGuoAkEVqUyqTMWBFacBIXyx9JSae4KWoAf4QxQAZnEwn/GocQ0zLrnGcq6ln+4BTdh7JXmcVdZneezt4ImFY+wT9Vtb7R91rV8w+ZCsPQSNG7G1ispqEolFhKSAuU0vGsxSpPK7Y1JBcBo7AE9D6xJfPvC4IMtIPAMnKhV6awwSeab/cHiH7MvKPHlOOxeodyGBePauc9TtO15+Q7nQwyYv6e5iZ6gc6DYp695A1Tmz7YgsRAKrDjH7AONpIEbWHEOUlJ+RBFmjD3I3nXYFT0B9i9WQZMgXzyJrlXiW69hGqZUy4WQVLosmKAtkEpL9KAJtVx4K5HsfbM+wiwESy9B43YaDeeOCGTsgE+axywp8I6HZw2sAqQZYmOdBRkr5ajYpg96rpvL/AlNw+Tu92yooAlLk0T8iJTsyvMgq0tUdOEjlTgT3QB/LMZ8Mw9AaehTZJbUSPagASGyQ2aComEtrudokFSUcR9LQeegSU1DFlBQeCtoLR18cvoGiaPAVF3vOuxSaW88wkxQBPWgsVbiSwsruqwtF9L+uAAJmmVZN1uWdevo6Cg1AXMy30HnjrA3k84JMN+toDPehKRJgVJRqQdLhTmw8t7IzA7RnfYzLcCgCj+gJR2itMS3LOhHyp6AQCzRFepBE60gBPQ8sPeyNjOxEJo+KCE7rFed0djMPcGBUlGpKY7cgwuke6e8FTRuwkBwH/2VHwnC2E9QcMXIpWZW4iVaLoR8VtlXiQ/BkkjQbNu+3bbtW3p7e4WkSVJT7DwOkZv5sKyFjC13olv3M1bMI6QlKpFACGPL1TvlYfW5qyOS7BgQ7BAlKpGAk6AxV37q/qZ0gYBAethKrcp7r3nHY0tIRQFB5rtjfi1lK2yJhb93hLk66Jc4cjLf3uvGTZip884aJI7CPlKC6AEESNyWxkSX0x5LrQF+REoqLTENVojodKV5FedIC0GJr2QvH3fLhd8fh/0az+qMkJQ4ijHfnsCKfWqYxwCl95E70RVjvjsW3sjcgVXdk6BxJRaW5Rtu0YwKmlDlh12a5wtQrRJjEu8JCNilGWWyvwaptJDEUSxBE+rBLAtODfMGVgB/YtHiDawEFA2AY/8FrETWfb2s7GeTCfn/Usv8PtaZiZ5yGx2/UK8JDAlphlRUSOJY8tg/NxmoXrthqi4nGdJOPf712rxdslfii5ag1Wty0iRu5rvFy/wJGHvD9EHuxlVJiZf/wcI8JCRwHKuA5ttNBoUSC/YHi3fYCrfEUbgHs0EqPcNcrRCUOAKN0wfZCTMfg6p+xgF/Jb7KPCSkwR9zJxbePsU62T878+1RNLAObfJcN+59lJyGCfjiESnC2Gm5qDPHCCVPBY1b0eMdksOujJIetuWtoDFLHNXnqFf5p+qq9cT8sZfoFCJ66rXIX1uCCVplXmbAgYYpjjNk6FyHOXtL4dwBKuBolT3TrrgljnbN6a1Tn034/C4uBB2wzGWTXqZF3cySlU9ull1srK1PvsPdy+o/d4dbBgXIsZresebcvXxeiSO7xCuoB4dbvubYCHsl3pNYcAf6QGNiLdGDA5BNik9xFO7BUT/jWgtwEl2BeKTUOv9M41b0eJ+j7LMFhIeEeI8QYK/EexJd7n0EGuORGrMM1jtIj5t4V/GikTimhH/6IDc7AAiWi9shOsVOreNK85iSmAW9I4JDQlQlhq2/QjnEKv8+AgsryNz2WK80NvdLMVbSEkfuRFetU2XeR8DnR+aY99Hjj9W142aHpZjvUtlTQeDuL/UGVsznewI+PyLQgwOQ7bNX0HyBlYiix3dcDffQMm8FgZV8KTcmFtzDhtQ67OcpChPG3koke++UN9GV8CNtjX6E9TnqqSBLT9UN+zWe1RnBztj6JAUSzJ+oxFFq+ppnIhp379QCSQHzkBB/7xSr8/XcyG61TmhIjlRi4bURscBK4pgJb6JbJImjz/4lzqW0bUGix3vduKuD/kEyAgGBCPPtlzhKVJAFEgvVp+sNiLkVPQuGlhVgGizgSyyqzESPV+LILJUutYAmZgvJwP1SUfc9MMCNtZohcRSI69Q60r2sYW+JZ3VGsE9f88hOJOQLgMP8SUgcvZIy7ulrXmkec4LmZT7UV/axtl7ny1xBUOtwT3pT60kesAnIBARee1TBPncFuUEGxSxxAeh62epngtOuRPxIVYDoCZriyDlZLoD55rq3gwIrdvmmd2KkhMRRYIoj4JPdCti/9LChWkUmHmmYdCtUQWsgKJgSC8vyERTMBF2ppVEZUmrhU/R4h5ZxJ7pAcySOtTm5KY6F60ETORhV9Wlx96kENTczV2MamD+JxEIwsKrO0Xp2nX/aj3fYhEgFrcov8QIWMt8igZWA/ZebuI/cpJIk8wc09o7UuAkzD/MtXYnnbkovtQCwHYkvdwU5YBqs5EHt3AkT4Exfk5D4evpLJSWO7AFq0JAE7imOnnhEguipzfGP2Qd8JK6gVJo7HgkijNmHRAkNf/MeocE+xbEMwCqixFFQmmTXeOULXokjdwMwsLAULtKDNucJiLkGaaggTqAHAXAqCB7ny2qP3gCVeSAJsJD5FpMmMUszXBupykzD9DLfdp05ifFq55llUEBj7wh7QOBhvotWiW8ICOaoOsIm3xTsCQbQeIQAsxJFfQ5bKEHzVtBEJI6eISGslfggPyIVjwicS6nWqUlUkP0EhaDEkbsFCHAqaMz+GAiQOEoRPUIV5MINCWEPdjwBar0KWMzOF5BpbgZ8TItALx8gd36XGtkuEaB6p9jVmLXzQfsoxnxLVdC8U0yZ1rMsupe9vXxSzrdepeCbC95ePu59BGSJHu+5O4ro4fLJQcd1cEuTAKeqKxhYcftjoNH+uSWOVgDzXRT7VxP6bJu/giZ5niKwUOIrRRiL9GD6KmhSUmmxlotmDS0TIHoUYQbI+ZGwX+FbnQG202DBbYAuO1YwiaNf8809xQ6QkTiq9aQqaN7BBVLyHQmJFxCgnZc+v0jA/sX2UdiPSEkcvX6Em+jxSxytEtiOPfFW4gGwDxvyJmi1qpA0yWv/UtIkQYljXYp8kbJ/jzSbXdHQjCEh3imOQkSnRBJfbm1sueDeR7sO93xDkXtNqife70cE/LEtVEHzthyF/Qrf6vpgWdbNlmXdOjo6Qj+QmuJYr8pJHLnPCgMczbfUFDtPsCPG2HoCfW7GCnCcotA0TBXEeddnWU8wsQisoDE7YDHCwFdB45ZBAcLSJMHjCoD5gIDzmnkr8YBgYuEwtqyVeG9zv4T9t3t6p7grCAHMt8TZfPUaAFuQxOWWeKl9rAslMR4/wp7oFpgwbpD4Sk3n9rZccMYIglOl3Uq8FNHjicdDsCQSNNu2b7dt+5be3uX0A+4by67TRbLrMoGVmMTRG1hJTnEUGMqgmnKrApOFGgICbomjdAXNPySH0/59PQ+c06eA+cBKTOLo7WWVTnSZ7V+K6GmQODInaMB8YKX8v0hiUZMjesR60HzTByUSXVsosVDSJHctoQRNKkAV7eWTUvR4CWPmnnhgPh4R6Qn2Ej3M+yg5VRcQrsR7/PEikTgurTH7rsRR8EEm0YPWjKZc9imOfsbK4pMmAR5JgUDwbfkYWwlpUl2IsVowfZDzIeaR5nFLM4AAiaOADBYghy/lR5RtSEkzuImeBokjc6ILzCcWLtFTEIljUGAlNn2NuwfNea40JE0C/aUSfsQ73Ii937MEmiwn2IMjTfR4pXmsPtmn6JGooKleVu6qJ9DYE8xNUDRlaBPzFEf12kWQOM7DSdBEpv3MyUm8RJv7hc5v8UscpZhvqQcLINvc3wxpns2cWCxg/hj3Ua0nVYlUzrdeF6hEFpjo8QdWnPsIBDDfRZE4eg5qFyN6vBLHAo3Zd+9toX0E4J7NxPmsAchOGqbYcR/7I6TocfdRoJcVoIqZ5HEFwPxzVGyKo4T9+4YNibSuKPu3mJ/bBZE4uhCpoPluZM4LVCpTACx2fpE/sBJkrNgTtHa5freGgECoguA9v0uK+eZOLBocIjM7BswHViLSJMHEohkSR7Epdt4AVcKP+CvxBSF6LMux/yZIpavM0weDmG/23ilPT7CY/QtUkK2yoMTRd1yH1HmK3JJzgD6bXZftiVeJtcgUx2YMLWOWSi9QRrUyt1x4BhKG/Qrf6gywBSto9Qr/SH9AtvLjbcoVZawEpUl2nb5nrfz4tMpSvXwuYyVwDlq9DvYGeMu3jyLssKDEEZAJCLxrSU5xtG3ns0lU4qvClXiJXlZ/YCUg8fVKkyQCK9vm/2xeokfkjEN/JZ5ZKgd4nqPMFWTVpy5+DpoQ0SNFGFsl2seqUKILyEgcA3vQuAlj4YnZakgOO2FctDH7CiKSsrn5UjgnWlRAIHx+iyRjJSlNcoMPxusmyXyLM1Yq0WU+cwrAwmErzAmaG6AKSTMAjx8RqMSLjscWqkT6hw1JVeJFmG9f5YdzHwGPNE+I+YbtBPuzvBLHIKKHnfn2ShwlpvgKPUclJY4Nx3VIDhuSqqB5E13BISGs+1iimLiB6JHo5XPskVUq7ell5T6XD3AkjoVK0CTOQfNXfiQYK29TLveYcS8bUSSJo2JaJBILwd6ppjBW0omutMRRQprkDQiYp8ECAUmTxHEFEgGqX+LIvI/+gEBqSIhEf1G5pfGzSRIUrBUtFVhJVSIF7zWv/UtI86yS7BRH5YtFhw0J+BFLspdPcIojAPcoKsmhZRKkkn+KKbuix0gc08NfsZDQfIs2N9c8vUwShxBLJWitzjRAAVZHNEHzMlZCzHe9Op/osgZWgtMw1XrSzf3izPec0wDPXLGTnJgHyEscRY7r8PsR7sSiTdCPeBI0u14cwkytJyYVFZwqDQhLHD29rGJTpYV6Wd0KmuQ02Bq/xBGYjxEkpsGWWht7+UT9iJE4poRK0CQCgjn+KXbA/I0s1TslFqAKSwqUNEm0giZwfhGAhc39ApICiVHE/vOLuJm/BeOxBaR5Ysy305TOHQwDAVI5ieBDiOhpcQ5YdpPPgjT3A57rJjAe29twD/D6LD/zzZ6gKX8s0e8mOFUaCCBfuKc4CvWgSSt6/MS7pFRapBIv9Rz1yA4BfuIR8PhjiZaLIiVotrTEUWBIiGKs3ASNWVImdVDvgsBKSJokUkHz945INPcLMVYLJI5C+yjB/KnASrTyI8V8l+crn9x9s005qFdw2FDDVF2hCrKYxFEosVA2qPZRRNEgOGylQb4mOWxLQJonelC1qkTaQsR7VbAHzXNwugiJJdnLWplPLkT9iMB0blWxk6jEF0riKHkOmptYMG+RmvajEjTu6kgzptiJSAqcoFGkEintEH2JNbcUxPtg4dxHSzjRVWSIuP1LED3leT8i1e8mOSRBqndE8rOJS2oEx+yXfIGV1FRdieb+UllQ4ih47A/g2L9HUsY9JAQAqjPO95I9kdyJbsmXxAskFlJEp58wlugLc/0IYzzuP/DeSBxTwhaQOEpLk5TEUTl71ulTLY16XsnzMqQC1GZMcSzUeGznulWmnLWkmO85geqIT5ohGhBwEz3Kj9T5K2iSQxKkJY6Wzx+L9rJKSHyFCDqX+RaUJkk394u2CswKxSMlwXvbuW4VJ0Er0rmsbutKE4aWsdt/C8SIHlE/4u/lE5oqHfWWeN+BbkgeVC0wHhuY1yqL9I4ohzjtfF/AwEq6B03EIQoy38r+FaspFaDWBcbs+yWOUj2YUkRPvSbUN9syf83U91wQr8SXKcmVDqxEellVJV6wL0yigiZdiVdKFFGCoib7HK3N0f9L+P+qE49ISs6letBEWwWEelklj6tRn00NW5EcWibijwtVQXO+ihwMKaVVVtI8id4RVR2RcIjSxxU4gVVTetAkKj9OEGeVeaus6ropG5GSJtkClZ8FiYWA/avEWmr6ml3ntQ+1VsMgDaGhTRL+WI0ZrwtIzpvROyXV3N+M3hGp5v5SWVDi5eyj7TzbJKc4SkhuAQ9hzBx8e8/vKmoFTbKXW0LR4/cjIkPLanR/G4ljMliWdbNlWbdOTk7QD8TO3RFKLJTzldCXA/OMlWjviFBgJS4pkDq/S7CXD/BU0AQYK1soQVOJruhwC+nEQsqP2B5WU+qsMMHjClw/wimVLvBB1S7zrVh2qX0U9sfqey74EzQR+xc8rgCQIYwBZzy85DlodWGiR3KKo+NHrBLvve1W4gWr/i5BYSSOiWDb9u22bd+yrKuLfiDF2NoSU5M8Q0Ik2DFgXvMt0rjarB40AYdYmwX79CmgsQdNgh0GZKaveaVJIhU0ySEJ/mMmpBKLZvgRyUp8QXvQmjHFkfO6SUocFxzXIeSPJYgeN0Gz5RILuy6k6HE+S1WgB029vjhhLDSdGxAmehz7l+iJBOSHDYkd11GACto8JKc4KoZAqJ9DqoIAyPSgWVYTHGJddoqjRIAKzN/ItYrMAxrwTHGUGrYiKXEUnj4oNfpeVZAl1gI8lXjJYSvSfkQysBKWJrH2hQlKHL3T10SmOPqnwXJ+NkeubAv1oJU8hLHE0TjA/EAqqcRadB8lKvH+4RaCUmnupFr0uA7vsScSEsdyMSpoLmyJBE1YmuQ9qJp70ptkU656fSmp6ALmW8AhSgzSABqnD0oEqID8+UUSvVNqip2SS0gOGxJpSq/KjdkHZAiKko8wK+SQEMmDUVVPJLM0yWW+FRnCmQxajQcDi/SOVGSIHlcGXhcaNqRILEGipyIgp1evXy9iJd5DqkokTd4D7yX2EZDxIw09aEISx0JW0CQCAsnEQknzCucQWwsaWPmrTNwBsbcHTVriKDE1SVCaJzZ9sBkSx7pMJdJlviWmwZZ8zf3SRI8UYyshF2qR61Nxq1pSPrIs99n8x56wSkWFh4S405AlpdJCFTSrJCcVXdDLKjkNU2JomUNQSLQAATJ+pGEarOBxHVG/wvsONEOkguaZ4ih2Dlq9mA5RUlLgD6wkJAUShycCjecXiVXQnCRGQgYlNSRkAfMt1IMp4Ue8Q3LEekekAoI2uUqkV+IFCFXQKvJTHMWYb4FKPDAv8ZU6zNmuCVUHmzEkRFoqLdSDpuTLRT1P0VU0FGlomXrWSIzZV/5Y3WsChFmtiBU07t4ptZaSgnBCMX9FdIiuxLEJgZXIkBCVoAmMNVcOkTsYlpQ4WtY8qy/Sg6kkjhJDEjx9MYDsmH1piaOYpKYZgZWEVNoZNiR1DqDUVFFAJokBGs8TZbd/5zpJTENuSNCEpvjaTiVezI8IET2W5amgSRDvtnBPvEO8i8R1QmeXikocPc9siZajckHG7LtQFTSJqUlKdijSOyI5HhtyY20btMpS0gzhMfuAUGJRwB40oLF3SmxIiAq+BQIrqQBVET0iUmnp5n7BHsymSJOEJOduYCUx6U1wiqNaT6pVwD9sS4ToEaoOWiWPPxboCQZkpNKAs5dCCZqazi0pla5KDS1zCOOakD0CHomj0LAtqedooSSOIhU0T1OulFbZrlHyKSZxFJi+BghPTVIPaIkKmj/4ELqRRcbaSvfXtUBUUuNKHC3m6oiwxKsZvSNilXglcSxoD5qYNMlTiS+cxNFL9AhV0CR6ub1nM8GWJSjE/IgQYWxZnl4+AWVUA2EsUImXmiotPQ0TaBJhLDDFVFVYQ7BEEzShkb0SDtE1CAnmT/XXKT2vgAFKTrGTdohSEkf3YMiaAMvYjMDKIShE7FH1+0iPBxYckiPWg6b8iARBUcRhQ8I9wS6JJVmJFyR6JHtZAZljJsSHrXj2UcL3A3JSaekeNOlzWaUkji6JJTlmX6BvXL1+XcqPxNvE0krQnPyseL0jdaEx+77qCLh7p4QDK8AzoU+iB02q7O5tyhWSFIhKk4QkNaVWALbMhCbJYSuAR+Io2DuibITbj0gfMyHd3C91XAcskMRLQk4vTFC4RKddMImjc29JVxBEpdJSPWiCCdqCCpqEHxEYpAHI9vJJHngPeAhjiQQt3m8srQQNjgyQM5AT7x3xBARSzJ9UYuGVFBTpRvbvI3uAqiQFTZA4ijSlCzNWlekmDFuRqiAL9o5I9WBKB1bSUxylgg81ZlxyzL7rRyTky3XZwEqiVcBP9IhVkCWl0kI9aLBkK2gq9gGECGOpJN7byydMGIu1HAkeVxP1dnjfgWbYEpLDZmhepXpHPGe8AfyBnOi5I4KJtVutk6ygSU1NcmyiLkRQSA4JUXtXnZFhGQHPPkpMgxXuHZH0I27lp4BTHMUJM0nmW0qaJzjcQnK4S5EDVOneKTceqcsrelhbLvzkNLP9w1NBk5BlA8LTYAWHlsX9Cu870A2BUcTimlfBHjTvuTsA2Cs/0ppvoDkVNAlJjXtQr/Q+CjHf0tMHi6ad91bQpHpHpCrIDX5ESuIiIU0qAbDk/IgrcSzgNFi3Ei/Yy12ZonU5A+IFw4aEpKL1Gj+p5EpFVe+UpMRRqvIjQFA0hegpqsSxCcfVRP0K7zvQDIkKml87L9WUKzlmX+xGFpYmATIBwYIKguQUR+EHixhBIXlQ+4zg+S3CDxbJRLeIfsQqw01iABmfLOVHrBL1cUucp9isxEL6HMCinScn2oPjq0SKVNCaFY9IDi0TSNBgO2P2i2z/Qq0CUW+H9x0wgJ1ldNYQlXjVZcbsl/03Mjfz3YweNIGgUdoheg+GZD8UuBlTHKUkjuq6zQrJ8iA4xbEkKJUW9iOSvSOu/QsOiRL3x0WUOApOX1OvX50RrMRL9Sl6hluIEWZS0webZP/S/phb0SDqj6WnwQpKfBO8/hJM0LiND7Rx0kNC7Jqcdr6I0iTvg8wqMctO/JVI7uumZCcFlRS45wBKVX6qELF9dy3IED3SvSOSUmmpc6D8vYMSe/m8kDhy72NJMEFTNlKTGzZUl1I0SEq8VE+w5HALCBHGHvsX+1xSQ5skJY7NmgYr4EcSPDeXXoImgYYETcIhCkszpBKLhmk/gtMHJRrSm9Y7UjCJYzOact3EghHN6MGpC0mly34/IsA0SjaJA8KSGuHekZpEJV66giw4DVZBYqquW62T8iMlQam0cL9zQwVNqk93TqDqaclLpWEL2b+0okewVSDJ22n2G1iUsEqykgIxh9iE6WviTItAnxYg7BCbMTVJivlWjK1ABbns653ihPgBs01IdCWleZIHfgOyQ3KKGKBKnycqeQ6aguhxBc04roOb6PH74yIOLStgPOJKHGvyUxwlSAOxClqCt9PsN5AElmXdbFnWrXOzs0ILlj1N4lIHGgr2jqjPJiJNqkJEmiTJWAE+aVKBKpHuwaiSiYXw1CSJCpr0eXLq3B3JabCSgZXkPgJOJZ5ZKg3I+hFRiePzgPmuVwQkjhYAS64nXrKXz++PRQhj6d6pZsQjkhJHwdYVQMb+7TrcM5c5kcDel0SCZtv27bZt39LW3gb2YABorKCJnYPWjAqawOWX3Ee1XlEZK5GpSc2QeElXfqoyVR9A8MFSkk90JQOCZlTQxAIroeZ+V9EgKM0T62VVBIVg74iEPwYaCQpRwqxglXhYcoRxQzwiEGeVyvKEca0ZEkcBvyXWuhKP5r+DxYgGiaNESbXmHJ4oJSkQlDiKB1YVmRurVBYMrJrJWBWod0TZv0QFDRC2f89xHYWTOAoTZoCgNKks96yxmihNkvBb0tKkuoDEEZCvIIv7kWZU4qV60AR64gEfYSw5xVFI4isllZb0xwkgQP8sQViWZ/qaoMRRjPkWlDhK7WMzKmhiU5NKHvmaYHMzICO7FZPUOJ/Flfgyw2v/7DbirUQKS0UlEjQxyXkzpElCNiI6bKgJEsfqrHCCVgVa2/nXsUp0NAggE4+4ip6iTR9shlRaUtEjeS6l7U7DrFQq6O/vx8zMjP61ai3Aq74EtHQA298LHBoASsP611G49I/peXbWrwIdfcCzz2p76Y6ODmzevBmtrcmTWpOgBaFpEkfhARAiDrEZFbQCShxhOw3w3MFwkZlvZ+8k9hGQt3/p3hFR5ltwSAJQTKm0InpEpEnN6GUVrqBJ+RGvfE1Scs7u+5U/rjd+z7aeiUe0wFX0kMqgv78fPT092LZtGyzd13BuChisA23dwNwEsP5c3ms34FyryiTQswHoWa/lZW3bxtDQEPr7+7F9+3bnpwXpQWuAVGAldu6IoEMsNUPiKBjoA/PnoHFD2iECsocnSjLfUkFcA6T9iADR4x4KLyQVNVJpDes1q7m/aAfeC0qlJWKQhvWEj5mQkjh6zyWjH/Cv14wKmlTLhdS5lN5KfLkVMzMzWLVqlf7kDPDEPrZnbUZYzmfzrq3lZS2sWrUqdZVx6SVoEmhouJSQCznGLjY1SUri2KTmfrHeEUFJAeAwjQKHYgOy9r+INN9aYZXlAoKGCpqwVFqi8llYaVJZLtF1AyvJg3oFr1tNDYCQJHoEIE1QuMNWuPdRBd9OgiY6bEhgaBPgVJmKRvQsPD6JJTlrgB3/K9qW4lkryx4ZiWMQmtKUXhUMrAoocVR7VxfYR0C+KReQmfSpPovYWGfB6VMuhJy95HmKbiW+CQfMikocBXswCydN8gaNgsNWvN9zQfLAbxdSfsQSJozhVJAlpgGCBqQBMutJKaMk4zqgCRLHOlCr8+8jmlFBq8uslQAFo6w1QTQgEJTmlUogNlpQmiR5nhwgPNZWqrlZJU11gWvWjCEhghIvQI6MkyZ6xIYNSUscBYc2NeOAWbEhCZ6jH7inOC6QSguQBmKEmQMbEJNKS44ZB2QqyP4eNBFFj6CiASjmkBAAYsOGXEQn8dPT03jpS1+KWo2qsTfddBP6+vrw2te+tuH3/vmf/xlnnnkmLMvC4OBgwCtZCypoYa/1rne9C+eccw4uvPBCvPe970WlQvt/xx134A//8A/jP1JRzkFrhJRDLOj0wXKr8BTHJjT3F62C1vAgE2I1xaRJJaDaBImjSC+rN7GQqCAIj8cWnb4mJfFqxhRH4Uq8xPldzZgGKzoNUxANUmmhCrJEy4W4xLHI8Yhwy4VUL6u61WJkh5/4xCfwxje+EeUy7fVv//Zv49Of/vSC37vmmmvw/e9/H6eddlr4i/mqdWGv9a53vQs7d+7Ek08+ienpaXz84x8HALzmNa/B7bffjqmpqejPlgBG4hgEy6KRvUCxJAVqPclSuBSD6k0s2tp41wJ8jK3gg0xaviZxWGlhe9CEz0FT/UXSUmlJokds9LfgeYrus0ZwAJDUPor2oD0f/IjQvV2dFbzXVIJWIMLY28vd2sm7FuA8R5UfkTiX1Tn2x2ePf3L703jm6Ji+tew6zu+r4I+uXz2/dgA++9nP4nOf+5z7/ctf/nL88Ic/XPB7l112WfR6DUNCol/r537u59z/v/rqq9Hf3++8hIXrr78ed9xxB9761rdGrxeDgnkyTbDKclpl6Z4HdcggIMPYumtJSUUlx9oKS/PqNVmJo9Q+SvW7uRDSODb0xUj1/AhIfMXHY1vzLDv7Z/P0jkhIpa0S5u2Rex+dr7aEVLoJ02Cl7jUXgr2s4r1TBZQ4NgwbEvTHEvaojtBQ/8+7mOxaAOheC7aPubk57Nu3D9u2bdOzXsohIZVKBZ/+9Kdx0003uT+78sorce+99+Z+N6aCFoSGcaxSAYGQxNEqzQc7EmspSDpE6fOLpGSHomP2Bc5KAmSlGQsajrmXExzrXBKs/HgJA0DOJgEBoqcJ0iSFIlfiJQg60R4cOOegCazj9SNS9l9YiaNUgubp9xQherx+RCAeCblmf3TzBXrXqs4BJ5+OfGYPDg6ir69P46LpCLNf+7Vfw3XXXYeXvOQl7s/Wrl2Lo0ePxvxl/OsvvQStiAfMAkIOEfPlaUA4sJIKCATPLxKbGuZ7kHGiobm5aAmaF9J+RKgvTKqCDE9VS4qg8P8/y1oe+29p510LEP5sXqJHakKfVA9mE86llEJTpHkSMlhzULU2iPoRS67qaXkqaCH20dnZmfp8scj1UhC4f/Inf4KBgQH827/9W8PPZ2Zm0NmZX9pqJI5BkB6PDQiWwq3g/2dZq0mBlVQFTSzRlbxmivmTlIo+H3pHCnYwasO9XSA/UvTASmwtnz1KSLOL6kdKwtNgAee6SQXfId9rX88jJy6SVBTw2bzQsCFAjqywwyWOK1asQK1Wy5WkPfjgg3j3u9/trJGsgvbxj38cd911Fz7/+c+j5CNgd+3ahQsvvDDz+1EomCfThAZpXsECqwajE3TAUoFVXSqxEJQmNSPRhS0nzbCFmsRdCEoc3f8XJHpEAgLBexuSiYXgmHHveoCA/Uv6/iZMw/SvzQ5BP6LIQKkpjhJrAZ5rJTRVV0FsGmYRiZ5m+Kzoe+3GG2/Efffd537/kpe8BG95y1vwgx/8AJs3b8Zdd90FAPjHf/xHbN68Gf39/bj44ovxy7/8ywCAQ4cOUcUrwEWGvdYHPvABnDhxAi960Ytw6aWX4k//9E/dP73nnnvwmte8Jt9Hx1KTOEqeX6Qg6hClme8iJhaQq6C5awsGqJJyMhGJo3cfhSQ1UmgICISIHsBU0PJAWipdVH8sHeg3EGbNZ/W1QtIniye6zv5Jta4oSPrjohFmouRcyLo+fPCDH8Q//MM/4BWveAUAhA7o+PCHP4wPf/jDC37+wAMP4IMf/CCCYq2w16pWq4E/P3HiBKanp3HRRReFvl96+SL2oEk4xJJkgibsEJsmcWRey3vNxBlbyUok9z56A52CVSIVxIaECD6kpa+b5FlQzZLmiVfQiiSVliZ6JAPiJvSguf8vJHGUWAsgOxQ78FuQMJN+rkn6EVHCONmvXX755XjZy16GWq3mnoWWBn/zN39D/zNyOPXf+nHo0CH83d/9Xe7XAZZkgiYAUYconFhIapWLXEGTrFg0i2UXZ74XBxunb43nQSW+aMFHU3uCCygVBYT2sUl+RAKiFbQmJRbifkQyriuYj1ykyeB73/tevctlxFVXXZX/RRwUzJNpQrMcosg5UAUthUs/WBoqdkXqHfHao7TEsWDuqGnMt2QlXjjRlSJ6Ag5h5VmvSVJRif5jtZ4EYVBoPyIYI0gTdE2TOBasl09S4itZiQ9bl28R4fWiscQ8WROa+6WmJvnXZVuvSYmFZIBaaGlSwRLdpjDfzfAjksy3oP2LBFZeaZKk/QtXfoo0tMm7RlGl0kWMR8RbLgSHhIiS003yx/7/51lMbi3xJElyvfi1lliChiYwLZJNuUbimBnNDKyKNDVJctIV0Gj/Ur0jkgdVKxQ1sCqyfKdoRI9kYAXM+0jpHjSpoNEOP5tJ73pFljiqClrB/EjTpmFCzv7pG961GhcWXsJU0BYnJIPvZjlEifWeL4FV4ZxUufErJ5omTZIYNiQoF22WNKloEsciN/c3rMW7VMN64j3BEvYviGZNgy2yxLHQFbQiVeKTSQ7f+973Yu3atQ1nj/32b/82zj33XFx88cX4+Z//eYyMjKRbbxHAJGhBaNo41oJJHItcQWsGYyuxlncNEeZbUnIrjEJLU58HgVWRmW+RPt3nA9EjAMle1iJLHJ8PQ5v8/8+zmOBayfCe97wHd955Z8PPXvnKV+Kpp57CE088gbPPPhsf/ehHE7xSs6qDwVgcu7vYIHojC0/7adaZWkWSAS5Yr2CfTdl84c6TUxCWOFplATKkCeOxgYJXmQr22RoXFlhCckhIE85Bk/IjknI56eNqmuZHijadu1lxnWC1LuJzXXfddVi5cmXDz2688Ua0tFB88cIXvhD9/f0J1ku0nB6Yc9CyLiF5XoZ0D5rkWThNasot2ph96clCov1FTeodkYCkxKuhl69gzLckY9usYStAsRQN3jWKOg1W+qBqqyRM9AgSxtLDhkwPWo61IuKR7/wucPxJvev1rAde/KFct9onPvEJvO1tb0vwm82vmnlhKmhBEGVapG/kJh1WWrgDlgvclCva3C9MULhrSVYQCjYkgRZxvhStWt1Mf9zEwIoDkhLHZkm8JCA6DVNyaBM8dihNvEtO5y6y/S/+/vu/+Iu/QEtLC971rnelXKP5ydqSqKBZlnUzgJsv2tIrtKCHHRYd62ymr2Vfq5mMVYESXWDe5ot8ULUEJAOrZgUERRtsJC05fz7INwsrlRaC+jzlVv61TC+rHohX0Jo1Vdq31qv/Uv96xx4H7DqyJEz/9V//hTvuuAM/+MEPYCWxsebnZA1YEp7Mtu3bbdu+pa2tTWZByR4c8elTTZq+JtmUW7Qx++LjsQUTC2/QUbgeNMlePungu6BTHKWJHtGAuEmVeOmhTSLTBwHxXtaSQILWrHNZi5agNbWXVbJ1RTCjSbnUnXfeib/+67/Gbbfdhq6urvSLLIKhZUsiQWuAkSblg6hDbNJI/8JV0J4vEkehALXwPWiSFTT+pQo9DbZpgZWpoOWG9Dlo0oSBOa4jx1oFPq5DfIpjvI284x3vwIte9CI899xz2Lx5M/7jP/4DH/rQhzA+Po5XvvKVuPTSS/GBD3wgxVqLA0tC4igOUc239DhWwalJTWvul54aVlA2TkRSU+Bz0CSJnmZV4osmcWymVLpI09eAJipRJHuCBSDpR8oelZKoxFE4HpGchlm4ISGCPishPv/5zy/42fve9770L7Q4Po6LpVdBk0DTAquCTV8rsjSpaYyVYGBVFpAUNyRoi8w75oUbfEhL5STv7YL5kaZW0ArGfDfN/gsW1kgSZg0JmmQlvmB+pMhDQsQr8YJ9iotsSEjBPJkmuAmaRCVGesx+QR1iMwMrduZbWuLofLYW4QStsL0jwlJRUYljwfxIkYke8cBKUipd4HPQJCWOLcIVtKZJHCUPqi7YdO6m9WlJJ2jcS8WvtQQTNMlzRwqs+S6aLrrQgZW0xFGwgiY5JES6QudKvAp2rwGeuKpgn+35MsVRAoUetgX5c9AkhoR4fb5kYlG4e+15QhhLS1Mll1oEip4lmKAJQFTi2KyAQJqxKto5aAU+qFoFqeISR8Hmfgk0bdiQZEBgKmj51pMMdpo1DVZaiSK4jxIoCVYixXvQmlSJl5wqXbRpsAGKHlvimSoucdSLLHtkErQgNGtqkkhgpb4WbYqjBffDFa6C1iSJYxHP3XHXKlglXrqXVfKg6qYNGyryFEfJabAFC1ClITokRPrYE0mJo6D9P4+mOHZ0dGBoaIgvSVsElay8sG0bQ0ND6OjoSPV3ZopjEJo2HlgyaJR2GkIP6XpVVgYIyCZoRZM4lop8DtrzoQdNeIojt1xUvIL2PJgGWzhFg4KwHykLV9CK7EfYe9AEq3WAMGHcSCpt3rwZ/f39GBgY4Flv7DjFda0TwIlZnjUUKlPA5CD9/3BJawzU0dGBzZs3e34SH+8vvQStaMx3uX3+/825IznXKwOoFu8cNGmJoxsQSEscua9bs8ZjC9h+i/T0tYL6kUJPcWxYmH8JZfct7dG/pwPiFWQInoOmlCFFlDiqrwXzIwDZpF0rnh/xVSJbW1uxfft2vvX+8Z3A8D7gkncAP/+vfOsAwLO3A3f9Av3/B+4D1p/Hu14MCqYF0ARJ5rvNc8K5KKvJv1TTDkYtGmMrLU2SHLMvLqlBMXvQWpd51i1yJb6gVSaJ9Zrlj9uWRf+eDkj2oBX5HDRpgqJZhLGk7LZohHGzfGRrV/Tv6UDTzmUNRvPfwWKE5I3V0jn//5LMt/T0HZFGcUmHKKlnF5zQ5F1PpILWjPHYgOg+StzXXqJHdBps0XpZvUGccIImuZZkD5pIYCU9DVkQbi+fQE9ww7oFGxIiHY+4PrJgFTTps8LU/rUJ+JFmVOIj0Px3sBghKSlomla5gJICUYdY4CmOqsJU1CmORexBa21SJb5ofsSyZBPrJjb3s0M9z8QraOYcNC0QHbNfsHPQwtZlW0N6IJvQWl60SviRZk3DDMYSTNAKJt8JWpd3EedLwQIrAKg5DaQSBywXWXZVr9JXkSmOBT4HrdDTYAvsRySnDxZ5GqxaQ6KC1pQeNEBW0SBdQStYrCUtcVTXS6QS36xhQwI2ouI6iQqauMQ3GkswQROAJPPdsG7RpiZJ38hz9LVnI/9aDQ5ecDy2REBg1+irdAVNiiEWIr6bRvSITl8rYIKm9k902AqKR/S4gVXBmO+mDRsqYDzStKFlAustW+OsVbAeNOlKfGWGvha2Eh8Ok6AFQVpSoIxCtJ+jgE25CssFErQiS5MkK2jlJjXlSiYW4oGVZH9pAaVJTat8FkwqXS1qgiaMZvmRwkochQLvnvX0tXCtK8KEcdVJ0CQkjqYHLQ8K2DsCAC3O4XWFY76bpFUWSdAKLCmoOxU0ifHYi2xqklY0q3ek0MOGBFnNojHf0v64Mk1fn4fT17SiVGCiR1TRI5gMAkD3Ome9IiujBNZTCZqIxFHSjxSxB01EOi8ocQHmE7TCOUTpISEOilZBk2as6k2SOBZtSIg7VVQ6sJLsHRFmviUTNOkpjkUjeqqCvSNWM3pHCkoYu+sWTeIouBYwX0FTLQOcEJXTS1fiBStopSbFrCFo/jtYjJBmvt0ETZJpL2DviEJrZ/zv5IXojVxgiaPkkBC1j2LnoAlOFfWuI3rMhGBgJT60qWBDQqTHY1dVBa1gEke1dWIHVRe5gtakYUMS6F5LXydO8q/VjEqk1HoKhaugxaP572AxQjxBa5dbr8jN/ZIQlSYJM9+iQ0KapfmWDKyE/IgiJopaiS/ysBX//7Os1azmfunpawV91pSlEjR1zFDB7m3J2AcAup0K2sQJ/rWa1boiOTBHehrsIjhPsWCeTBMkz0EDhAMrQTa6WUyLBER70Lz/L1lBE0jQypIVNGE0i+iRlCYVbRR3w7pFS9Ckp+o6EkfxHrTmT1/TCukKmjvFtMDDhiSwfAN9nZvkX6sk6SOb1BMsPsVRsnUlGMI1cx2QDAgKGFiJTjISTtDe8C/zjbncaNZYW9EeNAmJY4F70J4Pw4aKKHG84Q+A/h3AWa/kX6vI47EVJAKrpkxfk/IjSrosdA6aVQZQFYpHJAd3CPegbX8pcO1vAFf9Mv9aTZM4FqyCtsgq8UswQRNASbCXAwBaVAVN0EmJLCUscbz0nfxrKEiWv5s1xbFcsCmOau/EetCKPGxIshIvXEF70Qdl1gEg28sX+g0vpCto7L7Z60cK2INWaqHqZ1HH7EslFaUy8Io/klnr+TD87XkolW7+O1iMEO8dcQKresGm/TRr+poEJG9eacZKUuLYrKbcIjb3u1LpgvayLoKeAO2wBOVkTQusCjYkRBrS9l94iWPBYhGg2MooBfFz0JpvJwXzZJrQLGmSGifKiWYcVF20ByYgVxWhxUL+nwm2oMTR6wSLFoC7fkTI/pUfkRjr3IzAahE8MLWjyOOxFUyClg/qWkn4Y8CToBWU6Cking9DQlqkCWOhSnwElp7FipbChaVJ6twYTjTDIRbRMUoF3YC8xNGu01eJCpoXhesdKTLRY/yIFjwfxmNL+JFC96AJ+xHRqm4zpNKG6NGyltR6klhkRE/z38FiRNMCq2mBxZowxXERGLp2NE3iWLDAygv2zyb8YJY+B00NG6oIVuJF+2YL7EfEKwiC94LEZ2uGVFrsHDThqdJqHdGD2gt4ULUkng+VeAmYc9CWAKSlSR3L6avq/eGEqEMsMvNdYImjgpSkRkHK2YsNCREmejp66auIH3keHFQtgaYFVgXbS9GDqoWDUqVokE7QJG1SMtEtWlIBPD8q8RIQPfakaGP2heIq8cDq+t+jNS8RmELYlKlJBbuJAeEKWpMkBS0CUxy9ELUTCVZfeBrsz/0t0LsJOOtG/rWaIakpsh8p4njs93wbGNrNvw7QJImjEOrSCZpgi0czJI6FrqAVsBL/374OTJzkXwdYdBW0pZWgAZCt/AgFVh3LgVf9hcxaRR6PLQnRMftNkhQUTuKoIF1BE7KVZauAG/9cZq3nw0HVEmha74jAddt2Df0ngVIJZJN28fxIsypohTtPsYD+Q6HIlfgzbuBfQ8Fr84tgaFmBLTYHpCtokmiG5ruIjrFp1Z4iSxyZHaK0tEWa6JGEkUrrQVMO6kUx91JUmge5c9DcBE3Ij0gOCWkK0VPkCloBK/GSWGQVtOa/g8WIIp+7I+kQ1VqSEw+lIBl0N0viWNQKWlF70CQhWokXHrYiCfcZU+Dx2FIQO7+rST1oUv5R+Su1LidESVwzJETPWgVO0ETPQSvimH0JFDlBM70jeiDpmJrlEEvSFTTJvj6JNZ4PfsQw37lgxmPrg3QFTQriCZrjrwo7tKzIfkS4El+0ZFf0kPZ4LI53kQYiI3sFD2qUhjmoWg9Eg+4mSZOkK59F6x2xhIeEiML4ES0w47H1Qfx+k+pBcw6eF0/QJA68d2AOqs6HphxXgOLtqWXRZ1okn6uA2hsNeF4w35JrLQ5j14pmnYNWNMbKi6JJk4oszTOVeD0w47H1oSRsJ1LnoDVL4iiRoDWlglzAZ6hk5Ud62JA0rPKi8Y+L410sNhS5d8QcVK0Hoj1o3sBKYL0V2wUWCYBUxc70oOWHOahaD0SlogUneqQkjs06B03K/jddSV87V/Cv1YxWgQKafqGnOEqj1CJPmIVgiUUOUoHV84D5NtKkfGjWFEeJdW+5B5gY4F+nqRC0/yJX4o0fyQcTWOmD6PRBQShCSepz3fjnwCVvA1afKbBYE6Y4FjFDa8bQJqn1pFEqy5G4MVhiCRpgAqucMAdV64HoOWje/RO4bp0rZNjTpsFU0LRBsvJTRD9ipq/pg1tBk/ps0uegCT1zWtqATVfIrNUs+y8amjG0ib7hX08apfL84fBNRoEjhxwodIJmeke0oFk9aEXcSyk07Ry0Al6zZgQExh/rWUtqPWmUhJv7pc9BK+I1a8rQsgImFaYSrw9WedHknQXcXQ1wp0EVMH8VdYjPA+ZbZjHP/y4Sz7GUISVfKBXZj5jx2FrQrPHYRdzLUotQW0LBe9Ak0bTKT8FgKvH6UGqR98chKGDkoAGusReQsW3GQdVFdIyiFbSCSwqaAVP5yYemHFRdZD9ihoTkxiKavqYVRU7QRGMEc1C11rWk1pNGqQzYi+OZ3dTdtSzrfMuyvmRZ1r9YlvXmhH/E/K5Q7N4RI3HUA9EetIJLCsRhetByoxnMdxFt3wRW+iA1fc2FkB9R4+6LWK0wEkc9aFYlvojJrrgfCUfmd2FZ1icsyzppWdZTvp/fZFnWc5Zl7bEs63djXubVAP7Jtu1fBfDurO9FO9zAanFcJK0wB1XrgZE4GsShyNNgzUHVetC03pEC+pGScAVNSipd5ApaUySOBbR99xkjfVB1EfdSuJc1Anmo3f8C8M8APqV+YFlWGcDHALwSQD+AhyzLug1AGcBHfX//XgCfBvBHlmW9DsCqHO9FLwzzrXmtxWHsWiF6DpqROOpBk4aEFFLiaCrxWtC03pEC7qVUgiYdoLoJWgH9iOi5rAW0eYWmVeILGI8U4Rw027Z/bFnWNt+Prwawx7btfbS+9QUAr7dt+6MAXhvyUh90EruvBf2jZVm3ALgFAC7c1J317aaDqpwZh5hzqedBYCWyVsEDK2mIHVSthoQU0I+Y4zr0oFmBVRGJHqtcTNWL9DlokjASRz0Q7dMteDwiXYmPgO53sQnAYc/3/c7PAmFZ1jbLsm4FVeH+Juh3bNu+1bbtK23bvrK9vR26buR63cb//f5ufPXh/oA3pr+C9t2nj+Mff7Abo1MVba8ZhuHJOXzsnj34wbMnFv4jQ5n/m48dwd999znY/sCXwWk8e2wMf/TNp3BsdFrba4Zhaq6Kj92zB18JshGGoPvB/cP449uexui030b0M7YjU3P4/a8/iaeOjGp5vSjYto2P37sPn3vgEGp1/uRo94lxfPTbz2L3ifGI39Kzj9VaHX9z105864ljAUvo9yO3P34UH7tnDyZmq9peMwwnx2bwTz/YjXt3BxxarjmxsG0bX9pxGP/0g90L/QgDqfT44RH88W1PY2B8NtXffffp4/jod55FtabpnJyIoHH/4CR+72tP4vDwlJ61IgKr2WoN/3z3btz++NGA/dePRw6dwp/e/kzq/Y9ECPM9OVvF//7GU3hw/7C+tSLwyZ8ewKfuP4CKLhuJkDjuG5jA33/3ORE/Xq/b+Ng9e/DlHYfjfzkpIoie7z1zAn//vV0Ym9EUM0Ukg0dGpvFPP9iNe547qWetCNi2jdseP4q/++5zqOt6Hkb4410nxvH7X38Sx0dnNK0V3oM2NVfF//3+btz51HE9a8XggX1D+LM7nsHI1Jy+Fw2ZBjs6VcHvf/1JPH54RN9aMWiqhs+27QNwqmPS+P++vwv/ePceAMCq7jZcf87a+X/ULE06MjKNX/vsI6jWbTx7bAz/8gu8h0D+zleewPefPYHO1jJ++rs3YMWytvl/1Mx8f/vJY/jIFx4DAPR1teF91273rKW3l29qrooPfOZhHByawj3PDeCHv3U9SiU+Nuzj9+7H339vFwBg++pluOI0z+HNmlm4vQMTeOu/3Q8AmJ6r4a/efHHwWhqCVNu28d8//yju3T2Ibzx6BD/4zeuxvrcj9+uG4e6dJ/Hn33oWADBXreE912yP+YvsmKnU8I5//xkGJ+bw4IFhfO1XXwxrwbXSF4B+9Ds78R/37Ue5ZGF1dxtecLpHqa15Guy+gQn8988/CoCC9799yyVaXjcMv/7Fx/DTvUPo7WzFT373BnS3ex8XepnvLz/cj9/5yhMAgDU97Xj71Vs9S+ndx9HpCm759A6cGJvFz/YN4TsfeUmAjSzEj3cN4JZPPwwA6GptwUdecVb+N1MKDqzmqnX86mcexs7j4/jBsydw7/98Gdpbcn7+CGne5x84hL/9Lvm67o4WvMz7PNSME2MzeOu/3o9q3caJ8Rl87J2X63nhEOb7N7/0OO58+ji+/PBhfOcj12H76mV61gvwIw/sG8If3fY0AAro/vvLNdhIl+NT2hrfd61u492feBD9p6bxnaeO4zsfeQlaynzMv4qZLIvu0eu12Egw+XJ0ZBq/+pmHUa3b2HlsDLe++0oNS4XHPn92+zO48+nj6Ggt4Sf/8was6m7Pv14I7nzqOD7s+PHezlb88ktOz/+iIQna1FwV7//UDhwcmsK9uwdxz29dj3LemCkiHvnPnxzAP3yf/MiXfuVFuHr7ynxrRWD/4CTeduvPAADjMxX89Zs1PQ+tcqCNfOjzj+De3YP45mNH8d3/cR029nXqWS8Cuu/mIwC2eL7f7PxsUaFWt/G5Bw/j+nPWYP3yDnzxIR8jpDlB+8R9+1GyLPzcRevx/WdPYHhSY7bvw76BCXz/2RO48fx1mKnW8Mn7DzT+guYy/+cfPIRNfZ14wfaV+MR9+xvZV80s+3efPoGDQ1N40+WbcWh4Cg8fOqXldYMwPVfDx+/dh2vOXIWejhZ84r79jb+gWf76pR2HUS5ZuPmSjfjijsMYnPAwy5rHY+8dmMC9uwfx9qu2YHKuhjufCqj+aMT//cFunL56Gc7fsByfe/DQQob+gw8C7/iilrW+89QxDE7M4fWXbsSjh0Zw357B+X/UnMvPVmv40o7DuOmC9ehub8GXdvgqrZoraLf+eB+62sp4xXnr8K0njrFW0Z46Moqf7h3Cqy5Yh9HpCr7w4KHGX9DsR77w4CGcubYbl2zuxX/+5IBvLb2k0u2PH8WJsVm88fJN2Hl8HM8cG0v0d197pB99Xa244dy1+Ph9+/RU0UJ85E/3DmLn8XG8+YrNODk+i3t2BlQxs67l+/9a3ca//mgfLtvahzU97fj4vfvyrxWBrz96BNW6jTdcuhHfeuIY9g5M6HnhgArawPgs7nz6ON565WbMVev4+iMBaojUCPfH/3zPHqxf3oGrtq3AZx84pMdGXv2XwGv+Hth+XcOPf7x7AP2npvHaizdg98kJfIexamHbNr7ycD9ectZqbOztxKfuP6jnhUNig0/dfxCWBdx8yUZ8/9kTODGmofoToh46NDSFu545jhvPX4fZah2f+Mn+hX+rEV995AjWL+/Ai89YhX/78T49FesQf/zD5wZwcGgKb76CYqb79w7lXytE0TNbpZjphaevRG9nK/6d24880o+SBbzuko340o5+faqqAKLnkJPgvv2qLZiYreL2x49qWCj+eaY7QXsIwFmWZW23LKsNwNsB3KZ5jdzYcWAYgxOzeNPlm/Gyc9fi3t2DjXIEzYztj3cN4AWnr8R/v+EsVGo2vsMYEN/1NMka//wNF+KyLX24d/eg7zf0Md8D47P4yZ5BvOGyjXjtJRtxZGQaB4Y8chzNCdrdO09idXcb/vh156O9pYQ7tNwkwdhxcBhjM1W8/yWn4w2XbsLdO082Pmw1yq1s28Y3Hj2Cl52zFr90zTYAwAP7vHIcK/B/s+K7z5CNfPjlZ+Gstd3u9xwYmpjFE/2jeNMVm/GuF27FrhMT2H3SF5CtOQc45yYt633zsaM4bVUX/s/PX4SWkqXpgRSMn+wZxPhMFW+7agteevYa/GjXQKNkRWMF2bZt/HjXAK47aw0+8NLTMV2pBUuYNeHOp46jXLLw12++BOes68GP/X7EdSP5P9vh4Sk8cmgEb7x8E1590QY8d2IcJ70BmWY/cs/Ok9iyshN/8JrzUS5ZwfJUH2YqNXzvmRO46YL1eOuVmzE+U8XDBzUQRCGB1X27B9HWUsIfv+4CrO5uw22P6+Y559fbfXIcx8dm8AsvOA3vvHorfrJniFWKf9tjR3HZ1j785o3nAADu3aUh+QQQNH3tx85rv/tF23D19pX4NmMSU6nV8dCBYdx04Xq879rtOD42o0dW2d4DXPW+BTbyrSeOoa+rFX/7lkvQ29mKH+naxwA8fXQMR0dncPMlG/GqC9bjvj2DmNRBEIWQL/fvG8KlW/rwG688G3UbegLiEP9x984TsG3gf7/2fLzo9FW4WwcZEoKxmQp+vGsAr7l4A954+WYMjM/i6aPJCKJIhPjIe3cPoqe9BX/yugvQ096CbzymwY+EED1PHRnFqakK3vPi7XjLFZvxw+dOYnquln+9ENz2+FFcc+Zq/Or1ZwBAQKybEQEJ2g93kfT1V156Bi7e3MvqRxreStY/tCzr8wDuB3COZVn9lmW9z7btKoAPAbgLwLMAvmTb9tN63qq7cO6X+NGuAbSWLdxw7lpcf84aTMz6HrYame+jI9PYfXIC1521Bueu78GqZW2sGtYdB4ZxxpplWLu8A5dvXYEnj4xirhqUfObfx4cODKNuA688fz2uPXM1APgqFvp6R2p1Gz/aNYCXnr0WPR2teMHpq/DgAb4K2gP7hlEuWbhy20pccdoKTFdqjYmFxh60w8PTODE2i+vPWYOLNvWiq62Mn+3zJBaazy+6Z+dJXLhpOTb2deKG89bigf3DmKnwONL7nc/xojNW4eptJHd4op+nX6Jet/HwwVN48Rmrsay9BRds6sWOMBvR4UeeG8CytjKuOXM1rj9nDQYnZhurMRr9yN6BCRwdncF1Z6/BZVtXoLO1jMcY/chDB4Zxwcbl6O1sxeWn9eHRQ6eCk08NUDby/7P358G6LVleGPbbe3/Tmc+dhzcP9WrsoZqGbkAgaCQQEm3LtiwFkggrCLkdIcAyWA475EmWA2SMwEY2kukwQoMRIAwYGtrQqJuG7lbTUNTQVV31XtWb77vvjuee+XzTHvxH7pWZO3fmzpW5963gvnZGVJ3z7vm+L/eXO/fKtdbvt37rt3/uhsOODBegLdYFfuGdx/itn76Oy1sTfPGFffyj9/1O9DfvneB8VeC3fPo6fuPrVzFKE/zMEPUqju/2828/xg++dAnb0xF+5DPX8YvvHPTPtDuoSV/+4AgA8AMvXcKvf03Q6f7xh0+nXmuxLvDm/RP8ptev4oXLm3j5ymY7+I8dFgTt7337Ea7tTPH527v4HZ+/ibcfnuGjw6Fq+prjG3ePsViX+HWvXMavf03s40GCeMf4+kfH+OIL+5iNM/z6V68Ms0ccg5zf3/aZ6/hnP3cDq7zEL7w9xH1r+winizW+cfcYP/zqFbxydQsvXdl02/Ggqey+z9c+Osb1nSmev7SBH371Ct68fzJsTZM+150jrIoSv/XT1/FPv3ENgDiPew/yR1p25BF++LUr2JqO8JvfuDZMwtLB6FF2ZB+//rUrWBcVvvbRUf/5LOPwfIX3Dy7wT71+FZ+5uYNrO9MBAzSLHXnrEV6+solXrm7ht3/uBr525wiHT5EJJy8l9o1VVf3uqqpuVVU1rqrq+aqq/kz97z9ZVdUbVVW9VlXVHx7uUocbX797jDdu7GBrOsIPvCjqir7VcKyGU1+jDNpveP0KkiTB527vsik1oaMsK3zpg0P82toR/oGXLmGVl4bTOFzQ9MsfHWOcJfjsrR28fGUT13em+ErjQBpurvcen+F4vpYOxGdv7eDth6fDFWIb45feO8AXntvD9nSE731+DwDwy7qxGdBB/codsWbf/8I+xlmKH3z5ctNpHJDiWJQVvnH3RO6RL9zeQ1FWePfRea/PdY1ffOdArOFze3j12jY2xtlTK2h/59EZThc5fuDFfQDAr3v5Er760dFTCz6/fvcYn39uD5NRKu1I41kbUA32H9SI6m98/QqyNMFnbu3gm0NkXi1jlZf46p0j/OBLYo988cVLOF3kTSragImer390jO3pCK9e3cbnbu1iZzrCVz480uYazo68ef8Ui3WJ3yDtyC7evH/qdWzfvCcEZz5/exc7szG+9/m95jXGDgvt6mKV4837p/ihV8Q1fu/z+zi8WOOjw54UHoc89lc+PMTlrQlevrKJ73t+H+MswT987+kEFm/dP0VZAZ+7vQsA+I2vX8UvvXswjFhCmrWetW/eO8EXX9hHkiT4Yv2MfuPu03luKIj4wZcvYW9jjE9d38aXnxINf74q8J2Hp/ie58TZ9Btfv4K7R3N8OJigTHO8df8Et/dmuLI9xRdf3EeWJsPYccv+/8qHRyjKCj9c1/N+/wv7AyWj7Oyhr310hO99XuyRH371CqoKT01QhuzIZ2+JoOIzN3eG2SOWRM/jsyXuPJnjh+o6sO99fg93j+Y4OOsrzGNP9HzlziGev7SB6zszWa//JUbyK2aQv/6527tIkgT/1OtXm0ntPiPJWr7/N++dyDOe7MggyKdn/JOhJekZSZL8aJIkP75e949Yq6rCr3x8gi/cFobt6vYEexvjJjoyYOb7W/dPMM4SvHFjBwDwuVu7+Pb9s6cSWLzzSAQx9HB8sXZUG4jdgLK2v/zRET57axfTUYYkSfD69W2881hz9AfMfH+rNmyfuyUO9s/c3MG6qPDe4+EDi6Ks8MsfHePX1A/iy1e2sDsb4at3tANpwBq0r945wmyc4jM3xR757M0dvPv4XFM8HE4k5P2Dc8zXhVxH2pff7lQ8jB/fvHeCLzy3i1GWIktFguJpBWh00P1Avf+/5/l9rPIS7x/QHhmuCK0oK/HdajvywuVNTEYp3n5KduSt+6fYmY7w4uVNAOI5+Oa9k6eSMf/mvRMs8xI/+LJYRwp4m07SgImeu8f4wnO7SNMEaZrg1WtbePexLRgcIECjg/2WuG+fvrmD00WOjz0KZ2/dP8HWJMNzdWH4Z2/t4s0h1t/y3ShZ8vp10Vbm+57fBzAE8myvHfnlj47x/XUQszHJ8Pnbe/jyU0J+vmms/+dv7+F8VeDu0QD1I0bme12UeP/xuVzHz9zcQZYm+JWPe66jQ2zlW/dOcGtvhus7QnDp17x0CV/+8Gg4pT5tfOv+CcoK+HwdoH3fC/sA8NSSNt9+cIZP1WfFbJzhtWtbA1Hz2hRHsqF0Hn7/C/u4f7Lor0JoSSqdLNZ499E5vv8FWsc9jNLkqSE/b94/xbWdqRQhoQRR72FV+Gzake+t7cjX+56/DkbP1+4cy+Blf3OCN25sPzUEmezIZ2s/5vO3d/HodDmMvoNBcTxb5rh3vMBr9Tp+vk4ufWNIO+K6lH4zfHdGVVU/UVXVj43HE/+LPePe8QJPzlf4wnNikSmwaDpWwzkf375/iteubWNcqyt97vYuVkU5XGG0NijIpE17c3eGzUmGD6x1Yf2c1aqq8PW7xzKDBwCvXdvGu4/OlNMyaIB2glGa4LXrQsnqMzd35b8PPT46vMAyL/Hpm+KBTNMEn7m5i3eeEsXx6x8d4wu396QC18tXt7DKS3xMTsuAjSHpAKcM9itXtzBKk6cSoFVVhbcfnMkgEAC+cPvpBRbfuneKrUmGV2uVtleuiJ/vPx4+q/zuozMs1qW0I1ma4NWrW44Arf9eeev+Kd64uSPVBj93exeni7w/qmIZ1J6AgviXrmwhTdDMzg/UrmOVl/jWxyfSeQDIjjytRI8ItJ6/RIGW2JtveuzIt+6f4tM3d6Rq7Gdu7eKEEdh5hy1Aq5NOZOveuLmNSZY2EfyoudqJnqqq8P7BOV67phQCP3trF995+JQSNh+fYGc6kuv/6doJf2soJ1X7jh8cnCMvK+mgzsYZPnV9+6kliN4/OMfLV9Q6fs/zezier3F/CIELY5Ad/0J9/tJ3bNX3DjCKssLbj87wxg3Vh5YSRP1H29d6/+AcO7MRLtfq0xR89t//bfvxjgwGha2bjjK8eGWzaccHHG89OJGBp5h3B/eOF/0plRaf9d3ax3ztmrhvdFb1TvRYEhTLvMDHx3OLHXk66/jNj09wY3eKq3WgSz7GIHbECNBoj9Aztr85wfOXNr4rrS2eiQCtOYZ1UAHg9WvbTed74Mz3p7UHkm7yOw+HR37oO7xaPyRJkuDFy5sG7WGY4PPByRKnixyfuaXW8dVrWzhd5Hh8tmrOMRA16bVr21Jq+rVr2xilyTAPpDHeNh5IAHj+8gbu6LULA8rsv/v4HJ/SDj865CXyMyDF8Zv3BKL7qetiT05GKV65uoVvPxjekN47XuB0mcvMKyCc/YtV8VSUTN95dIZXr23LIObFKwJt+vCJ7Vnrv45A04681kr0DBOgVVWFtx407Qjdv6eR6Hnn0TnGWSKd6HGW4vb+hhGgDaOs+OGTC6yKsuG0vHptC/eOF7hY1SIEQwZoRqBFB7svi/3tB6f49E11rz97kxfYeYcVQTtDkig7MB1l7b3VZy7xHwCE0NMyLyUyCwCvXdvC4cX6qTyj7z4+w2vXt7X1F3bvrSESRAaCZrPjn7u9+9SoSR8+ucBLV9Q6vnpVzPs06ON3Di8wyVLc2hVo3eZkhBcubzyVRNsHB+dY5WXDjn/u9q5MdvcalkTPe4/P8crVLWnH6f6925ctY5nrTp3gekHb/58a4lmzjLKs8O0HZ80ArfafeqNojkTPdJRK1H9nNsaLlzcHCJraiZ67h3NUFRp25NWr27h7NH8qQiHvPD6XZyCg0Na37g/wbKcjK6JLgS4gULSnhVY3LuWpz/BP2CCnl4wnIAzAwflKFf1tXm7+jBzH8zU+Pl40HKvn98UGfhqNlt95dIbbezNsTlRg+cLlzaaDOlDmm9bxFS1j+Oo1OpDOmnMN4Fi9df8Un7ml1nEySnFzbzYMNcYY8mC/puZ74dIm7p8slODKgD2ZnpyvGplXCrAVfXM4iuM7D8/w8pUtTEbqc16/vo33Hg9/IJGz8IbmID1XO/1PA/mhg53G3sYYlzbHTWXRAefSnWhAJHruHF6omreN2n5sXOo114OTJY7na3xac5BoHe8N1XxUG+88EntE76nUSvQM9Gx/UNuRl6/a7AglKIZFIvWk0s5sjMtbk047crbMcXSxbjgfZNOfimP16BzP7W9gNlbf9+UrmxpVN3qy1rwf1Pf0hUaAVicRn0Lw//HRQu5dQKz/c/sbw9C8Nq80njWbY/Xq1S08PF2q4H+gcbpY4/HZCi9Z7fjw6/jR4Ry392eNPqBvXN/Bd55Coo3OIX0dKVh7t+8esSR6TDu+OxvjytYE7/cO0No+DwnGPK/tydevb+P9g4umuNoA4/HZEisjGfLZoRBkix155+EZXrm61dgjL13ZlDa391zaoLOhkei5voWqwlMpQ/n4aC4DT0D05dvfHA+T6DHtyKMzjNKkkXx55ao464unQF/Wx6+6AO3DJxfYmY2wvzmW/0aZdnlI3/o+4A98Gbj5Pb3mIoPyumbYdjdG2JpkTyWwePfxueTJ0iDHStEOh8l800PezBgagcVAVNFVXuLj43nj8AOA23sbT8VBffvhGa7tTLGn7ZHnL22gqmCnHfYYtEd0B/X6zhSbk0xbx+EojmaWFwBu7s3w4KRv4XB7kIOkZ17JqA69/xdrUcfy6rXmHnnpypY6kAZEPT98coGbu7OGE/3SlU1UlRY0vfQbhB25/GqvuageS0cCbuxMkSbafhxwvPPorOGMAcKO3LEh8b0TPeIz9UTPK6YdwTA263i+xvF8jZfN/b8766xvuV8n027vq2buO7Mxrm5PjDWJGBbK+fsH561myi9d2cKdJ/N+DoGFmvThgcWxMhNtA42qqnDXcKwAsa8Hmeuf+feAf1X1U7x7NMfV7Qm2tAbrL9b77M6TYZ8bKiPQbev1nSm2JhneeQoI2t3DeSPQBYSdfffx2TC917RBFE19/9N+6S1KYgQWy1zY8ZeNs/7lq1v9HX3Ls3bnyRyXt5p75PXr2yjKqn8gYww6F27tNQOLjXE2+DoCwHsWO/LyFbGOvUoMLFTpO7YAjezIwAmKZV7g0emy0Sg6SRLBhBviWfudfxT4l/6s/M+7h3Pc3t+QZUqAeM7XRdUTaPmE1KCp0T9a/eBAOKiJtslu1DSBRjPEK6/1notQgucvqU2bJAlu728M7lhVVYV3Htodq8W6xCNS7hko8/3e4wuMs6TxkKh1HHauj48EfP6CcSDd3Ot2rGLHe4/PZbBJgzLMEvkZqAZNIbpqPqKmSifCIY8dOqqqwp0nF439CAgH9WyZ43QxbO+jO3UyhGoJAJWpvDswgvbBwQWqCpYDafOp1KB9eHDROIwAix1JkkHtyAvafRtlKW7uDo8gr4sSHx5cyPonGi9c3sTjs5XqfTRQLev7j8+xayTMbtcOjFrHYewIZctfMPb/7f1Zpz0mx+rm7qzx789f2mzSnmOG5bvdP17INaDx8pVNrIqy37lhKe7/8MkFkgQNZ/+5SxttwZsBxsH5Cqu8xO09cx03htnHs11g+7r8zwcnS/lM0nipfmb7Od/tPU8Oth6gJUmCV64NEFhYhi3QJafxwemwybb7xwukCXCtrvcBRKItMetSo0Yz0fPx0aJFlQOEXe+NIFsE0j46vGj5FSqwGDpAE3v8prb/k0RQyfsnekhmX323B8eLRjAIiD1yushx2KvPoSXR8+QC01GKaztqjwiaKga3I+Tz3dpvPtsvXN4cxq/YuARsXZX/+eBk0bL9ZEc+fArsHH08YwEaBkEQ2o6V2FRDowh3j8TNMzNdt/eHR34OL9Y4XxUNqgqgDJ0yAMNkvj84OMcLlzeRafD5ZJTi8tYED0+HdazuSBpC87vd2hcB2tAqWR8ftbOTFFhIh2wgBO3dR4IqZ963aztTFVQ37lX8fXtyvsL5qmjtfzowHgxczH73aNFyIvY2xk8FQSYnSKcuA+JZe3Bi2SN9EeROOzLsOn50OEeSNA92oLYjR8POdf94gbysWt9N2hG5/4dBx98/OMfLWr0JIFgGk1GKR+RoDjQXJTxaCYq9WaeQA63x7f22TeiNxBg2sigrPD5b4vrutPEyYg980MshaNuROzUSTLW9gBC8ef7SxuA0ZPc6buLoYo2zIRofa+PByaIVoA2G/BiDAmfT3r1ydXvwAG2xFgjCc/tmouHpJL/uHy9wbWfaoDzPxhlu7s4G2P/0U9VEAmjdt1eubuHBybJfc2z5rKl/+uhw3rIHtI5DJ9HJ5zP3/wuXN2UtXPQw7Mj5Msf5qmjZkVZ9e9Rc7YTxh08u8PyljYYdn40z3NiZDW5HPq7tiPmsPbe/gfsni8ER5Acni9Y6Euvug6fU1oLGsxeg9RhFWeGjwwu8eLmZHb66PUWSPB3Hamc2wt7GuPHvTwNBo88zs5O0sZSzM1Dm++BCZhEa8+1MB0fQJIJwuflA3tqdYVWUeDJgU8m8KHH/pB1Y3NrbQJYm6vAbqAbtzmGbKgeIAO2xec+AXveNDoFWgFYfhkMnDWxZ3iRJ8NzTcP7q7KQZWF/dniIvKxzPh0MHL1Y5Hp0uW1TR6/U6Phw60XM4x83dWaNuEKjtyMC1rGRHzMwrOUwtO9I70dMOdJMkqe3IU0LQTDuyt4Gji7WzmJ2eC/OQfuHyJj4+6ks7bNrjg7MlykrYUX28fFWs0dCO1aOzNsoECBSzt0KlMSgpYzqozz0lVF0gaM113N8cY2c26hnotsfjsxXGWdI665/b3xg8iUj70bR1zz2lwOK+BUEABBI9HMW33o+1fblm7P8XTQZLn7nqISm3xjpe2ZpgMkoHPw/vHS8wHaW4tNncIy9c2ujfPN1Yx4f1OrrsSC8E2SJa9uh02UogAiKJPrTewscOO/L8pQ0UZTWoampVVVYk/tbeBsZZMrgdMcczEaDJPmirfk7W/ZMF1kU7OzzOUlzZmirkZ6Bx15KdAUQQ9fhsNWgDXclv3m87qAA0ZcVh6jnuHdu/27WdKR5JBG2ozPcFRmnSchrpuw6JIjw4FQ6S+fBnaYJLmxMcnFuCpj7znSyshk2s41JwxQeiOH5oEQQAFDIzNF307uFFax0Bsbb3T4bP8k4sh9/VHdr/S/QNJmh8ZFH+AoCd6Qibk+wpJHouGkXsNG7tz3Dv6Ok4f7cN+siVbUFTPTgzkiE97EhVVU47cn1nKp2MIRM9O9N2wuxWvf9dwe694zmubk8bKBMgHNS8r0PgcKyu7TTX/8bODFma9HN2LImex2crXN1ut6+5tTfDvaeVRLQ4VoBinAwx1kWJg/Ol7ElGI0lEsf9gCJpcxyWubE0bCAIg1nHoJCLtATMZ+7Tqe+8f288ogfwMS3EkH8wM0OQZ1cu2Nv2R02WOVV42qJtAnUTcH4h2q42Pj+a4tTdr7ZHnLwna4XEf2qFpR+p1Mve/QgcHWEdtvoPzFa5sTVuvvL03PMtDJRHblHNg2ETP6TLHfF20EhRZmvRPUHzi+qBNxv4XdwzJXbUYmxu708EdVAGftx2rG3vDZ9pdRpvqfw5M6fsezupiXeDoYt3KTgLCIEjHaiBJ/zt1kaZOpwTUfRwyQ3PP4UQAIrMm1zEd5tG5f7yw7sdr21OsihIn8+FoP3dlTaQdHRkysDhdrHGyyFvZSUDsySemo99z3KvX0Tz8yPlUdNH+476l2BsQB/uN3W66XMz46LCNRAIC+VwVJQ4HdP4oSDG/m0r0DBc0PTlfYV1UfjsyYKLn+cubFidafFeX/b/neEYJiet3SDftMTmoJlqXpgJVvH/cZx9bHKuzpby3+ri1v4FHtercUOPB6QKTrJ1Eef4pKLuK5FabKgeI56aXrbM4Vo/Plri60w50n0byi6Ttrxj3bWOS4fLWZHB2ggtBe/7SRp307rFHDNrho9MlRmmCfSOJQvM/6LOOxrNGZ5BeI03DV5caM9yBrlE+ETOMPSkRNMOObE5G2JmNeu7/dqLn4GxltyN7M3x8PB+07+mD0wX2N8ct1tHTUIiWga7ljLrR144wxjMRoDVHfGDhX+yha9DsjtXlTWEQBnWsjhYYZ0nrIRlnKfY3xxry0x9Bo8DSdvhd3xXIT1lWg9Ep7x/PrQ4SZYeGdL7vylqC9nxXtic4GLg30P3jdp0EoDKIj84Wg1EcH5wssD0dNRSrAMEV398cD0rpcPHEARHoDplRBurDz7aOJoIsR791BOAILKaDJl4k5dYR6ALoWfDdHPeOFtidtffI7myEcZao/T9Aoofsre2+Xd+dSns9FIJ273jRSmAB2rPmEFd4dLpsUYUAf2DHGq3Mt52aBAh724vlYSDxZVnhyflKoqP6uL03Q1UNm7Q5PF/h0ta4FSBf255iMkoHdaw6n9FdPYk4zHjsCnRlEnHYdQTsgcXQyM/5MsfpIpdJZX3c2BV75HGf89dIvjw6FeuYGsnYG0PQ8A37QT6Rff8PX4by6KyN6ALKjgzy3TwUR2DgBEWSYrEucLbMret4a38Di3WJowHPqMPztfSh9XF7f4YkGTZAo4SYzUe7sTvFg4FZd+Z4BgO0+KGMtmOxBzyMzpc5zpa5NWNyaWv4AO3+8Rw3dmctwwYIh/ixKTjRw9mhTWkN0HZEzc/hxUrN0VPx8NHpUtb36IOU34Z8+CmwMBEEoEZ+BgzQThdC2MUaWNSG9eHpcjCKo8vRBISTNOR3U3Qm+/5frMtBexHdO7EH8RL5GdAhU4ef3WkZEkF7cr5CUVa4admPl+pD6mhQ+tTCih4nSYIrW3pdJNmR+LkeSLTIbkdOFrmggUvno6cdsYhvAJCIjsseH12ssG9xCFr1vTGDbGOL4mgL0HqeUUZgdDxfIy8rKzWJ6OND7uXDi7Xcs83LSnBDD8gHGA86kog3dmZ4UitKDjUen9oRBIWgDec0UpJkf7PNKHpu4Pp2OhNs343Okn4JqSbF8dHZ0rr3J6MUV7YmA9GJFeoDwE7N29/Aw9NlP3TQGIfnqxZ6DAxkR1oBmqD8m3RuYAgwolmDRr6liyoNuOnjMePwYiV9aH1MRxkub04GLVXqjhnEOg6JDprjV1WA9rCGz23R95WtKQ4vVoPVc9DDZjNsPocgZnxskWamcWV7qtWg9c98U8bYFnw2pPYHynw/Ol22eOKAQH42xplqMD7AuHc8tyIIAFEch3P06eG3reP1RlZ/GBXHh6cL6+EHiMN+yP34qCOIuVIb16ECwrKs8OB4aQ1i9jbGGKWJQFkH6oP28ESgTBuTdsBwZXsy6H6UDrvl8CNnd8jA+p4DrQYMBHmAZ/tBhx1pCK4MgMQXZYWDM7sdISfGhUSKwKLt6OxMR5iO0n4IvoEgPDxd4NLmuFXvBvj7tTEm035NPQhC7VgN6OwLB7U9FyDOySGZEIoG2J6PULVh5ktQVRUOzu0I2tWtKUZpMjiCJhDt9rNHtcuDzVWfCbb7RoFFLzTSeLYfndoDNGAASplhq2iPXHYEFkMiyHlR4mSRWxM9FCAOmeh5dCKSsSZaDQy8jknaGehKBHnAOrQnjkAXqO3IgPu/y45c351hlfcpQ/mE1KANNR6ciIffhjLtb45RVsDZQFl9yirYjI2kJp0Ph/w8PFlYaQiAyGzIwGIAiqPMKlicb/puRxerQWpHSC7WZbQvbY5xNKBC38HZSgpLmOPylsjqD5V5JfjcTs2r6Zuny5ZBjB0PHUgkAOxtTAZFIh+ddSUoht3/Ty5WWBWlNbBI0wRXtieDImgPTrrWcYzTZT6Y1G+XHbm0NTyC/ODErsYFiETPQav1Q3+Koy1outJgGfS3IwfnQvzHto6jLMXubIRjS4JisS4wXxfWjG2SJLi20xP5MRzUw/O1dS5AOAQni9ypNumfq9m/iJJ2tmeUzpJBKY4XKystDxB74PHpcIkGUm3d33AHFvHfrY1ErovKiiCkqahLHTJAe3KxbtWf0bi6PcXxfD3YGUW2xYbWUfJtENqtRnG02QNAOPv96MRNm0XJpiuWPUnPREsUKXKcLIRfaQssSNyq3zo2E2ZPOp61G7tCgCkajEj4iZ5hxF2a48iBxAO1+vWAiZ7j+RppAmxP2gl7SqI/TZrjsxeg9amdOl04HavdOovaS0lHG1Iu1mJsdmdjpMmwCNrB2cpqaACR2Rg0832ywGycYnejvWl3Z/U6zteDzPWog0sNAPubk0EpXq5aAkAZoKHum61xJY3djRGyNKmpou3GkKGjqio8PHFTHPc3x4NK0T8+W2JrkjlRJkDVAPQdXXU7wPBG+8HpwlrbAkAWt9OB3HcoO+JOhgxVzydqkpbWTCgAXN2atJH4Hvb4/skCV7cnrfYBgGaPB7YjpjoijUtbEyuCJh19R8b2+k5P5Mf4bsfztZWWBGhCCbHOjivzbXGsdqYjTLJ00Jrbw4u1TCqY41rfdTTG0XyFSZZiNm7vGRlYDOQ0diVRAHKIh0QQlm4EYWdY23okA932fFe3J0iS4SiOVVU56WuASBr0cvSJiqZRHLcmWUtsAlDqv0Oto0QiXcmXndlAFEfx3TrtyN5M9FuM/m78RA+dJUOxPKqq6gw+n4Yd2dsYW0GdpyGuZo5nL0DrMR6cLHDDYUT3dIdggCF5uRZlpzRNsL85GczRX+YFTpe5NYMHiAfn6GJd86mHyXzf2G0r5gHA3ubAjpXn8BPUvGEDC9c6XjEVMXvPJT7H9t2SJMHubFTD5/0pjme1XKwzQNsYD4rEPO5AIi8NLJKjMnju+Z6Y362nSI4NPQaM/T/AkIefxY5sjDNMRulg63g0X6Os7A67uIYpDs6N1g99EN2ThZUCCxj2eIC5XP2VaOxv2Cm+9G82JIY+b8jakS7HihyCeCe1aUfoubE5VkkikOehbF1ZVji66KY4Hl6sBqv5OZmvsbvRFiQB1DoOJRRC54/Laby8NR1sHQHgyfkal11JFFlzO8x8hCrvWQLCUSbqwoaiOC7WJdZF5dz/VCfdn51QqzieL630RkCd9UOtIyWRnd/tKSR6dh1zkc19EKsIa4iWdSV6JqMUO7PRYKUh83WBVV5aqaKASBo8Pl0NVhd2PM877DEh8cMKDunjV1WAJihe3ZnvoRyrR6dLpImdlwsIqHswipdDdpfGZZ0KNUDm28W3B4TaGwCcLIbOfLud70GRSEc/D0BDLAbKBh1erDAbp9i0wOeAQBEa6whEr6VLdpfG/uYY83UxWG++x6cdSKTMqg27/10O0u5sjNPFGr0ULepRVZWg4TjWcehEz6NTgUTa9kiSiHraoWrenjAC3cW6xGJdDlLL+vjcHcQTEj+0HelG4tv3jGy0C7EYLkAT63iyWMvvbg4K0qPtj0FNos+xoSOAcLiGsnUnCxH8d1GTqmo423o8XztRzytbE2RpMkzmO0lwUj/rO477dmVgcanD85U8083RaofRc9Az4Q4sZqrvaczQki8nCzGXjZkDqAAgvqSh6bQfnK/8ge5QCJq0I9+dRM/JPHfakWt9UVaDKnp4scJ05PZjrm5PB0Pi1VnvtsfzdYHzWBq4MboSZr0pvoyj85kI0IZoVJ0XQurT5XwPnfl+dLbE5fogsI1Lm8MZbVWkaX/46eA4XQyTjX5y7uYAb08FNW8oBI1oKF0I2lC01HW9R3wUx6EoZQdnK6tgDY3d2Vgc/gNQHLtEOwBgr76OkwERZBcSuTMTe+TJQIeff/+PcDoQ5fB0mWNVlLjqsiNDB2hnS2cQA4j9P1SgK9G6jnUE0Ax2eyR6Ds9XuOxwovcGpjh2qSMCVMvafq6P56SY56qdmuHwokfNTwCCdrmvKIyR+T5d5NiaZBhZxCaAmho/kKNP1+yiOJLNHarAv2sd0zTpd/4ae55sCyUnzXF5WyQRh8jqV5VojeCiylFJxVA0r6P5GpuTzCpaAxgN5WOGluihs8cVWAwmipSowMJlfzYmGbYm2WDIJwWVXQHaw9MeioCaHamqCicd+78/g8Vo+L1wo3WA0T+256BA142gDW9HXN9tY5Jhc5IN3tNVH89EgCYbVY/HiM3Y0gPiyrLTZh6K5vXIIbtLQ9Q8DEWVcxdpAiJoAgTNbYjMd1cGr0nNo3/sR3HMHMqbgDA2R/P1IIdfl2IPoALds4Gc/cOLlZNiIeYb1bVM/WX2fSgTZdGHElzpquUTDtJwgcWT8xWyNHEeSLsbhKD1H0fygHAFFsNK3z/uKJoHxP0cai46RF17UgZouh3p8Wwfdjias3GKSZYKO0IOcY92HY9Ol9iZjqz1JkCNoFn2I9HXXIEFIdLRiIVsHZB4Hat9Ka7T07ECgCTF2SLHtiOoAKg9y1BsAb+DCgwYWFy41xEQGfihGCxkW7oQtHVRDVKXer4qsCpK53lIKOuQCJoLYQUGbD2TJBJB23Hsyd7qv9JHEM/B2SLvDiy2h6tdJhu977IjO1OhCBi7RzTxt2VeYlWU7kSPXMfI/W+g/qeLHDsW1WsaQv132Fq+rho0YLj9f+xosUJDlE/8Kg/QhhjyAXE4VlRjMGTm25WtBWqK48COlQsdVJlvzdnvITbxpKOQFxAO8VCZb5K4thVpAuJ+FuUwh19XPw8AUnr/bDnMHjnokJ0GNGpeY/3i7luXXDIwbE+5dVHisAOJBHTaYf9xUMvuuvbIznQk6hsaqlVx6/jEc0DQoTgUEvmoI9AFhj0gZC0fx47I5Ytbx1Ve4nSZOx3NJEmwuzEazI4ceZIh+5tCfdOsgfLVoPXORmvf7WyZo6zcFK/JKMXOdBR/vxs2P8Hpcu0MKoCBHavzbvtz7SlkvrsCi/0Bnxs6e1yBxZDU+FNJA7R/t83JCJuTbLgatPlKsitsY3+zZ+1yg+JYI5Eu5Kf3OjZFQs6WubWdDo0hazAPL0QS0RXI9O5pqSV6yId12REpUtcXQZYIWu7c+wCp/w63joCbcv50kHj3d7u0NWztvjl+1QRovkJeytgOFaB1FUQD5KAOg8T4kJ/thmPVrwbtYiWKNLuoeXtm7VRPx6orE7rf17Bp46BDjQgANscZkmRABO3crbwJCAPbQBCA6PvWJZcMKAd0iHUkw99FzduajnC+HGr/L53PNaAcp4sB5pMOu2P/D01xPPImQ4ajbx6crZAk7sNve6ohyD3tCO0zX6KnaUd6oP4eJEA5SM37dnSxxnSUWtVIgQESGxYHtcveXdrqUXNo1LKeLnLJrrCNK9vTwRrKny67AwvVMmK4GrQudOTygOq/J4t1rRhp3yMqQOvvNJLN7Aosrg6K/Pifm7Nlj9YzARTH4RA0MXzIz5DrSPbHJloDKDsSLXim+Vq0jl6Kb+/9rwLdzkRPzRYrBugxLIN4x3yyhdUAz3ZZVp1UaaCvBsL/vw+aHE88GTyRsR3LmoO+o6tIGRAG9mJVDNIY+/H5EpMsdR62u7YatFgE4ZzhWM2GQ9COLtadEPOQ4i5kjF3Ofpom2J6MBMVrgNFVSwDUNWimuEXkWh5drLAxtksKA5qjOcA6KjpT1/7PcL4cppD3yblbdhfQqKkDFA4feqiik1GKjXE2SFatqiq/HZkMF+genC+xvzF21iQ1atB6Pts+JBLQazAHsCPztRcJANp25NhDlRsmQEuAJJW1tC7nAxB2t6VIyp9M+zX1Zr7p3gyR/T6rn/Wtqd3+NGqXe46irHC6cKuvASIgjKdYG0jkIneiFYBCpIdcx23HOgLD9gY98tifS71r9xWjRyFo9rUkP6A/EplglZdY5mVnguLq9nAUX5+j3zvRrNnIY0+gCwyU6NFq0DoTPVsTlNUwyRdfgmLIBOnZSjAavAHagAJA5nj2ArSnmLEdqhcURd5dmSfa0OcDZCcPzoSD6srO0FwCQetHcZQcYA+CNjTF0TU264NqCGf/yIOyAgKNbCBoN783aq5lXuBsmXsQtDEuVoVBzYsbvnWUIjkDBBZdTWJpbE+HC3S7lDcBHUEbIEBjBJ9D2ZGLVYF1UXXakSETPWRHXKNhR3q26/AlzIBh7YhgNHTYkVqBzESLzlfdKNMgLSOStOFYddZObY77U5Pq308X684AjajeQ6AI5Fi51jJJksFafRCC0B1YCARtiNplEeh23LPtoQILxd4gNNs2ZInBAMNXyzdcYOFH0EiyPXodt6+Ln5//76n92LH/9zcnOJ4Ps0cuPHTK/omedoDWbUcGEMnRa9A8FEcAgyg5ni9zJAmw6WA0zMYZZuN0GD/mwu/HXBq4zZM5nr0ALXI88cglA5pD0HOcLnJUFToztvSwDhVYdAWeZITOBijuZyFoJjWvh2N1fLGSwgu2QQf+EDQcuvddh+32dCTWEQD+3XvAv/nTUXNJ2d1OBIFEGbQ90gNB60IitybDJQx8PV8AsY6DIT9nKye9F1C0qsZ3i01QnK+QJt3ZyaHsyBHD0Rwy0XN0sfYiWoApEhK7jv5kyO5GjaChvx3xUbW2HImei1XR6VgNkrFN0oZIQhc171IfUQZDxfFsmWOnw9GXzvcAe5kcqw0Hgg+IJNEQc3Ec1EubE+RlNUiSyBfoyv6ZQwRoEkFwr+P+5mSwGtgLdoKiJ8UXYv9PRm6qKNBTlGTrKvC/ugP85v+FXMeu77a3Mca6qDAfoPXM+arovmdSpG6AQJdlR/poIDTtsU9syEUfjxnnywJbk5ETjABEQDXEXKqWr9tGHs/XA/Tms49fNQHaUd2roeuAGEqOm+SaWQ7BAI7VyXztlPgFgHGWYjZOjV5QPRE0hmNVDeFYeSgWmzKw6G9Ej+dr7NRUG9fYnmkB2mQTGLnXoWsoQQZ/YNGkecXet7VTiQ4AsjTBbJziYqB1BLodpKFq0Mqywsmi2/km52mIZMhhHei6BElovkHsiAx03XuEEOSh7ltX4Ek2q9muo5/YStee3BtIJKSo90hnwsyFoC1zZ7YWUBnbXvSdIAStR82DQW8/9ThWshfdIAEax7EapmXKqRTt6A50AViVO0PHiee5mY2zmvY8HMWrK7De2xgNMldZVrhYFdhkID9DOPtdvbto9FaNnO0CaartEf/+H4YNkUsbYxtSRTx2Lh1B8/SuA0Tz9N4qjkhQlhXOVt0IMlFWh1jH82XeGegCtXDNAKVKvvYZgPKDo74b4+z8VROgPakV87oOiM1JNoij4xNkADTEYgAn9WTRTUMAxGF1NkDmmx5qX/+uVVFC+sORjtUyL3CxKry1TMAwAhAnnsJyoKbmDeB8KyPqr506GSiw7oLqARHsDrEfpaPpQX4GyV4vBVrddd/ooB0iGSICtO49sjEZ4WKArCvnoG200Og5fHZklKXYnGRNkZDY/cigOIoazBxVTyT+ZL5GVflrIoF2oseHoAFUKD4AgiYR/C7VsAkuVj0byicpitr57pprSEVSnmM1GcSxoiC7K7CmvRAllNCiinZTvACNVdJzcBA0IdKV96bmEXLUtY6KmjcM8tPlDAN9RRnUUAhaNxMCGChAW3YHuqNM0DeHoDj6VEWBus1ELMVXs8fnq/r8/S7ZkTNPoAsIX2AIBG2+FuvoEogChkhQdI9nMEDrgyB0O6gb4xHmQwRoDGrS1oCOlU+xCtB6avV0do4uBMWr6+HfmpCzU8O+adxc0kHtcOIIQRtqHf2B7mgwZxjodr7J6A1BFxViK93fbXOSDbL/j+drJAk6FbK2pyOs8rIlax46Thg0hEERtPN1Z3ICEGqf8yEohxw7MmCih2tHhmjXcXixwvZ0hLFDkAQQNrIoKy3RE9cHjbOOm4519CFogHiGezkEaQYkCr3uCggHkfVPElnL9N3KfJ+tumtwAAxWg0bJkS7H6tKAam+sAE0KPvUbKkDrQLU2JijKqvc5JfdjZ6A7IMVxvsaOx/7sDsROoFY5XQiyDNAG2JNny7xzHQFVFxk1UhWgna9yTEZpp229tDnp0Z5I2f5TWRPJQOIH2P/nnlo+oEbiB6oBB7qfNaUa+XTq0J6JAC1Jkh9NkuTH1+v4RTi6WHXSoACRlRqilolDTdoesAatq7kpjR1Cfnpmvk/mQrGni+JFzs48p74jkUGFFJvocqyGpXj51nF7OhpEZp+T5dppqG/GI59lWXnbPgC1IuBAtXx7G+6+ZIBeg9lvPsm399QNAuYe6YFE+gLd6XcRiR8o0VPWDh0LQV72px0KOlP3QUt09EVfO+LpZQa49+M5I2MrRGH6Uxzn6wLjLOl0rJo9LaMmq7PsNVrX4XxMR4K+OUiD5WV3LRMgEPchnOG5DCwYge5Avcm6Al1AaxnRc5wvc4yzBNORe49IulzPtVRIpHsdNycZJlk6CMVR1ER275GdgfpncgKLQRG0VdG5jgBR8/oi8SkWq8KbVGoo8sbMAzQCtK79T3MNhUSyKI5DJHpqO9JVFkV2ZJBm7ZbxTARoVVX9RFVVPzYeNzfBO4/O8D//r7+G/+fPvev9jJPFulMKFxAZt65aph//++/gv/8f/4KXXnLMydjKonT74fcP3j3Aj/zxn8WvfHzcOVdelDhfFV7u9s5sjDOdKqc5+ieLNf7An/8K/pOffccLefsUqwBgVhuH+bpGRwzH6mfefID/7p/6Bbz76Kzzczg0qHGWYjJKnYHFw9MFftsf/1n81a981DkXwA3Qxk5nuKoq/Dt/6Wv4P/zEr3j3CAf5oQzwIi9gozh+7c4R/s3//Ev46W896JzrdCHkYv3UPHdgUZQVfu9/9o/w7/31X+n8DMCv/AWYioDt8af+7tv4vf/ZP/JmFIk21PVsj7IUW5PMed/evH+CP/QXv4r/8hff75yLrtf3rPmo0v/RT38H/8qf/kUveqhqWbsCi24V05996yH+mT/x9/D2w+5nTVJFPUHTDvVvtLTrODhb4vf9uS/jP/359xh2xO/UbrbsSDOo/smv38O/+Kd+AR8dXnR+DifQdSV6BDXJn/nmZFD/k599Bz/2X3wJB6YqYi21P18VnQIJAN+x+ujwAn/ov/4q/uwvvGedi54FFvLDcKz+L3/n2/iX/x+/6CyW5yCR+xsTa7Nwc/zsWw/xz/1f/75zT9OZ2jUfN9B9cr7CH/yLX8Wf+Dvftu7pqhK0WP868iiOP/n1e/jR/9vPO/c0NVfuKtWQirye+3bnyQV+5D/8WfztX7lv/Ts9C13rmCSJcIg99UxlWeEP/cWv4j/4yW81e6Zpzv58VXSinkBNFWXQN7/84SF+z5/5Jfzcdx5Z/87Z/9wAbZWX+Ff+9C/ij//UW9a/V1UlEj0Mii/HjvyJn3oLv/+/+nL7uuq1vFgVnUEFoCd/u/fke4/P8T/7C1/Bf/VLH2rz6EG1H4kc1S2gOPv/j/zkt/B7/swvOVWJzxiJHi5V+m994x5+55/8Odx5Yn/WLga0Iw9OFvi3/8JX8Kf+7tvav37iatCaN+3P/sJ7+Mtf/gh/5Ce/5c0gnzECi82xoF3ZGur94w8O8Ud+8k18+cMj/PWvftz5OUcBtSOuwOI//Ntv4d1H5/i3/tyXO42Ram7avWm3TQRNC5r+1jfu4ye+9jH+6N96E1/64LDzc04YdI7NMTlWdWChzXV8scbv/c++hK/dOcJ/8YsfdH4Oh5oEiO/mklD/v//M23jn0Tn+93/tV7xZDlaAVlMcbQbk2w/O8P/+xx/hz/7C+/hzukGzDE4Gj4zsfFVaKY5/8L/+Kv6bbz0wHvr24NApAUKQ7ev4X/7i+/iZNx/iP//F9/Hm/ZPOz/G1mACUQbft//mqwB/722/hZ958iH//J77Z+TkcBA0ANqcj5egb40//vXfxV75yF3/kJ9/EMu8OrH2KbYDIOLuQ+J/7ziP8ib/zbfzSe0+cjhGN4wtSNeumAQJ2FdOqqvCH/+a38PbDM/xP//xXOufiJAwAjeJosSM/8bWP8Te/fg///t/4Jr5177Tzczi0MHLWLtZtBO3+8QL/1p/7Mr5656jpPFiGDHQDEz3kWPkdAn/Gdr4q8Ef/1pv4qW8+wB/+m99q/pEQNFbmm+hC3efdH/+pb+OvfPku/k//3zfbDnGiRBK6HCuAp0j6C28/xp/86e/gH77/BH/LsafPlwVrHYHuWpWqqvAf/OSbePP+KX7/f/Vl62vmDIoj7T2f3/DXvnoXf/Urd/Ef/fR38OZ92tPKsSrqren7bhwEjfb01+8e48//Q/ueFlQ5/z0D/DU/f/Knv4N3H5/j3/0rX7dem0TQfMjnxlg2IneNr9w5xF/5yl386b//bjNZqiV6FmteYFGU3cqKVVXh3/p/fRk/953H+PG/b0/enw2IoP2Zn38Pv/TeE/zHP/sO3nt83vr7Yl2iqrqpcgCJ5Hh8lIs1/qOfeRt/45fv4Y/97Tebf6yf7Yu1P9DlBhZ/5Ce/hf/PVz/G//lvv6l8Hr25OIMJBNQJCs/+/6lfuY8f//vv4ue+8xh/zxFYnzOo0nsbYyzWZWeSvCwr/Ht//Zv41r0T/MG/+FXray5kDaaf5XTm+W5/6Ut38Ne++jH+2N9+Cx8edCcU9fGMBWhoBJ2/8PYBdqYjlBXwc9+231AaHIdAZVHbm/a/ffsxAOD5Sxv4cw7jSePoYs2qrwDsCNoHB+f40geHePHyJj44uMAHHTc0xLESIiHtzPffffMhNsYZkgT4ue887vyc00W3YhVgZKM/9c8Ct39A/u0rd0QAeHV7gr/6lbtN58EYnIaLNJ/N0a+qCn/1y3fxuVu7OFnk+Pm3u7+bqMHxIAgdgfXf/Po9UZ83HeEX3+me66Ru7tilGLmhB7oGxfHh6QLvPjrH7myEL394hI+P5s7P4WbLu0RCfuqbD/DqtS2MsxR/+R93o5GcWqau/f9T3xRO3rWdKf7bdw66ExQM5TtArOXKEnxVVYWff/sxtqcjzNcF/sG7T5yfUVWCBuhL9GyMMyzWpTWI//m3HyNLE9zamzmdMBokDd+VLe8SCfnWvVN85+EZXry8iW/eO8GjU3c/K46CIGCpwdSu7afffCjrLH7+bY89XvoDXbn/yxHw8m8Cbn+//Ns//kDZkb/85Y86+8CpBtDd821NskaiZ5mXKKvuAxqgvlPdjhUF41e3J/il94w99tqPAM//IC7WfhrULsOxKssKP/cdsaeXeYl/2JgvqSX268z3AIHFz771EOMswe29Gf7CP7xjfQ3HsXI1C9fHN++d4K0Hp3jh8gbevH9qTbpxkJ/pKMNklHq/209/66Fco1+wnB9FbZs4yKcvYPql9w4AANd3pvjL//iudU+fL/1+DEcRcJkX+GtfFWfjwfkKX7YkZgmV99VObTPqwv7GL9/DJEsxHaX4Jd3GaonHOSNAU8qi7vnee3yO+ycL7G2M8YvvHFhZGGeeflqAuGdJ4g90f/Lr9/CZmzsoqwo/8bV28p58Bd867m34KY4/8cvi869uT43nGsDr/wzw3K9hUhy18gnHWBclfvGdA2xPhXjJ1z46qv+iIWgUoDHsiC/Q/dlvP8LGOMPV7Sn+guNsPF/yqKJA93370geHuH+ywPOXNvDlDw+tPv98VSBJ0Jkg9TGBaPw3uh3x+Ib6ePYCtHp8fDTHe4/P8Qd+2+vY3xzjZ9586HytlAL1bCLKOtiEEr5+9xivXt3Cv/A9t/CteyedfQ84SAyhTGcW5Odb9wRC8ft/6+sAoD0Y9rkAhoM6yayOflEf5v/iF2/j+1/Yd1ICaHACXUVxLIB/7S8Bn/1d8m9f+fAIaQL8O7/90zierzupV2fM7MyWI7D4+HiB02WOf/kHn8ckS/GNu2666GJdYJmXLAQNsDvEP/+dR/jii5fwu77vFn7pvSdWJJaGoMrx9uNirVEc6/v3pffFgfq//V2fA4DO+6bQujhqXlVV+Na9E/zQK5fxmZs7+OY9P4LmpziSZHt7Hb/y4RG2pyP8vt/yGu6fLHC3I/hUUrge2u04xdKSDHj74RkenS7x7/z2NzAbp/i7HXbkYlWgrPyow6a+/43xjbvH+OytHfzIZ67jG3dPOoNPzjp2Bbp0n37fb30NgKDEuoavSSyN2bgWkjFqWRfrAr/07hP87l/3It64sc1I9DACXUr05AD+jb8hApl6fOXDQ0xGKf7t3/YpPDhZ4qNDf4LCd9/M1g8cxTxAOCfroupEX//R+0+wOxvhf/KbX8PdozkenizUH/+l/xT4/n+VSXH0O1Zv3j/F47Ml/pe/8zOYjFL87Fvank6SGq0Tz4LP2eEgaF+7c4wvPLeH3/zGNXl2mYNT3L/LCCzIhtPZ+HWLTScbNhv571tXPfH5Msc/ePcA/9oPv4hXr21ZAzQKonz3bbemBnc971/+4BCbkwy//0dex/2TBe7pe6QeZ4x15AS6bz88w7qo8K//8EsAYLXpsgbHF6AxlI3//rcf4Te+fgU/8pnr+IfvGwkDgE1x5FB8Kcn2v/tdn0NeVvgH7x60XnO6EMh4V/IrTRPsTEed67jKS7x1/xT/9Kev4cXLm3jrQZs5oCi3HpbTzK+i/KX3n+DW3gy/54dfwncenjXX4Xf/eeDz/yKT4ugPLL565whnyxz/m3/hs0gT4O++VfsYWosVDloN6D0t3eNrd47wgy9fwg+/etnJwBC1rP5AF+i2I1/X7EhZAd/82L7/BXDh3iOTkUg6dCHxB2dLfPXOEX7sN7+KG7tTL1Cgj2c2QPvlOmj59a9exfc8t2d9MGiQFCi35sHmpH7jrjiE3rixg1Ve4v0OVOtsufZmJtM0EciP5ca+80jA5L/jCzexMc7w1S7HitGUENAcK8PRv3c8x9kyx/c+v48feuUKvv7RcWfwebr0oyObHYHuV+4c4Y0bO/j+F/cBAN952HHfGIpVgFuU4ds1JeXzz+3hM7d2OgM0Pg2wDtAshu39gwu8cWMHP/TKFZwucrx13/3dTub+GpxxliBLk9ohbiKfX3r/ELNxih/9vtuYjFK5Z2yDwxMHiJrXXsf7JwscXqzx2Vu7+OzNXXzz4/6BBQWLttqpdx+f45WrW/jBly8DUGiJbdB98323jXHWDNDq9fzaR2JP/KY3ruGzt3Y77xmndw7gtiNVVeEbd0/wPc/t4dM3d3A8X+PBiRvVOlt296kCuhM97zw6wyhN8M9/zy1kacKyI777NhtnImFgUG4/fHKBVVHie18QduQrHx517pEQRoMt0P3KnSN8z3N7+NztXQDdduRsWdQHaffBborkEJrmdawYgk/feXiGT93YwQ+8dElevznma3+dFiH8PscKAH7LG9fwxo1tfEdPgiUpAOVYdWWHAX/tVF6U+PrdY3z/C/t47do2Ds5XVuENjordTodtpfHm/VNsjDP8c5+/BQBWmz5f5dgYZ50iRYC/X+G7j86RlxW++MI+ft3Ll6Wt0EdZ73Ev8rMxRu6h5n3pg0N88cV9vH59GwDwnsWmnzGoohxqHjmkP/TqZTy3v2F1iC8k8uOrS+1WNl4XJT44uMBnb+3i1758GR8dznH/uA4+GxTHkuXoA92KgP/o/Se4vjPFP/v5GwBg9dXOGVRRQNTzddGJv/3gFKuixPc8t4dPXd+RPkdzLlID9Ae6vkQP2ZEvvriPqgJ+2bIn5+sCG4x7BnQHupTQ++2fv4mXrmzhHbIjGr19Ie2IP2jqWsf5qsCb90/xfc8LO3Ln8KJFUSRqq88f5KBab90/wZWtCX7Lp68DcCd6fPYYEHFF9x4R6/bFF/fxa1++rBKln+Q+aJQxffHyJl6+soX3Hp87HQIu397lWB2cLfHx8UI6VoB4MF3jnKE0Awhn3watvv3wDLf3ZtjbGOMLz+1aH0IaXARtNhIIQmVsijtPxDq+cGkTr1zdRF5W+PionbmjwaodGbsDtDfvCQf1latbSBOoh94yzpY5piNRG9I1XAgaBe1vXN/BF57bwzfuHjv3CJcqOquvxURjThZrPDlf4aUrm/jUDXHAvn/gDppOF7mXTpkkCTbGduTzg4NzvHxlC7NxhleubHUKrnDq3YCa4mXZj5QV/+ytXXz21g4OL7oDi9MFh+JIgUX7gHjv8RleubqFz9zcwThLOuuZTua5t7k4AExr2qE5qBj/+UsbeOXKVuc9o2v1Iz+1iqmx/z86nON4vpaJHgCdiSVOQTQlemx9AN9+eIaXr25hZzbGGzd2WEi8b0/ORhSgNfcjFVq/cGkDL1/dwtkyd9Z8VlXFEgnZGNM6Nr9bVVXSjrx+TazjdzrtyNrLngDaiR4uNWlb1iG4D+m3H57hU9e38fnbu0gSWJGmOSPzvTHOkKVJp2P1wcE5JlmK2/sbeOHSJu40BCeSYMeqy9F/59E55usC3/e8CizeMWxRUVZYrEuvY8VRdv32g1O8cWMbe5tjvHxlE1+3nI1cx0pQ89zf7b3aFrx8dQsvXN7Ek/NVyz5SDZo/0O2m5hVlhW8/OMUXntvDq1frAO1xe0+fLfzJX84e+da9U8zGKV6+soXP3tq17kdJFfUiyOPOvf/hkwvkZYXXrm3Ls/EDsrO1HSmQYFWUDIqj+O5dDvG7j8/xxo0d7M7GuLw1UXNpY5H7g0HAv//JsRe+4Tbee3zeKtvgqGECWl2k47uVZYV3Hgk78j3P7QHosiPM/dixju8fnGNvQ6zh85c2lB0x6gYBHoLchaB9894JirLC970g7EhVoVXPR/bYt/+3GXbkrQdneOPGDm7sTnFtZ4pv3LWtY87aIzseO0I+xctXtvDi5U3cP150sqv08QwGaGJzfHQ4x/Z0hN2NEV6+uoXThdsh4NbgSMdq3byxd+pg8NVrW3j9+jaSBN2Z9mUuD+2usT0dWTPfbz88w2v1Yffq1W2nygygqdh55pvWD5D0Ucmxqh+6Fy5v4MXLWwCAD57YnVThWIUU9ze/27oo8ehsidv7G5iOMrx8ZavTsTpl8O0BNzXv2w9OcXN3hr3NMT5zcwcnixwPHXU4x1IN0I8gAGhld6jw86XLm3jh8iYAdN83hoNK811YkM+Pjxe4vb8BQOzLbgSNj/xcrIpW7cN36gzQp2/u4LO3BGLhojIt8wLrovI7tQ7UYZkX+OhwjleubmFUO5ldFMcTRjAI1AiaBRm+ezjH9Z2p2I9Xt3DveOHsBScLon2Irtz/TTvyYb0fXr26jU/XAZot40qDI00O1NQ8S2D9zqMzvH6ttiPXtjppgCfs/Z9ikZctiiN9txcub+LlK2L/f+DY/8u8xLqo2HbERB1OlznOVwVu74tn+/rO1EuV9gUHQDvRwxVJkBlbh1DCwdkST85XeP36NmbjDFe2pnhgoa9dMCheSZJ4kZ8PDi7w/OUNZGmCFy5v4qPDuVbgL2rQpGPlQRV3N4SsuavGT+7pa1t4rd5r5r0Iday6Gti/df9MJjderTPt5uBQ5YA6sOiY6/3aQXzp8haevyRs7d3DeSPzXdYmxY+gUWBh3yMPTxdYFxVevLyJG7tTbIwzvPe4/d04wWeSJNiaZJ2I7pv3T/Dpm7vI0gSfubmDdx+dtdQzuYHFtgdBe7c+m169toVbe2Id7xGCVtuPvOQhkVIkp8PZ/+jJBV64LOZ56cqmtYZ/sS46WxXQ8AUW33lwho1xhhcvb+KNGzvIy8oSWPAQtC1PT9e7R3Ms1iVev76N/c0xNsaZto5qzBm1rNNRinGWeO3IS7Utf+HyZtufSVKZ9Jx51lI0anev4x2GHbmQSKR/PwLudSzLCt95cIpP39xBkiR45eqW1Y5crAoWyupDkN9/rBJmz13aQF5WVvtvG89ggCbGR4dzPLe/US+w2ESu7DdFt7EUR1rMG7szzOqH8e0OxILDk6X5zCi/qkSWhDbp7f0NPDxdOmFvRXH0ZL4pQKOUX+1gffTkAmki5qGH0SVKMl8XKMqKJZIAAAtjHR+eLlFVwK29GQDg9evbHiSS51htOxzUDzUDc7s+GFxiGhdMJ4KMuonG0Jq9dGULu7Mx9jfH0nmxDU4NGgBsTOpst0xaiV/uHc9xe1+s42vXtgXFzCG4wq3lI0d0Yey1+ycLkQyZjfHyVRHEu2Sgz5lGlPajiUR+eHCBqgJeqed5/tJGp4y6oIr613E2TrG0IGh3j+bS+aLv5kpQcNdxw2tHpri0NcHVbU9gwdz/ooVAOxny4cEFXrsuvtNzdaDrRJAXorn4tudAmo0zFGUFak1GduTOkzk2xhmubE3kM+dSq1LKm3GMBqJH3ayf6U/d2MZ3eiKRNF8DQavX1GfLfRRHusefqgOLW3szq2PFUbED/NS8D55c4KU6SfTCpQ2scpEYAwBqVE3P3dSTad/bGKOsRKNp2yB7Ss7HdJS2EDR2DY4n8308X+Px2VKiMDd2p1Ykn09N6l7H9x+f49beDBuTDM/VybCPjPODREKmDAQBcAcWlDx5/tImkiTBy1e3rAjakon8iOSv+7vdObyQiZRb+zOUFXBw1kxw03727UmayxXEE7vj1Wvb8sz6+Lhex4QCNPGfs54U3/NljoPzlUySvnS5I0BjPGtbnnW8dzzHrf2ZdPQBtBA7YjdwAwvXd5N25Po2kkQITd232JELRi2rSPR095T74OACL0o7sonDi7V6fW1HFusCozTBqEMQDyClz9yJHFES9vbeBl69toUkaSPxZ9KO9At0758scLEqNDsya9YE12POUMME/HbkvcfnePHKJrI0kXZEfN9PMMXx7tEcz5FjdUU8GLaME6Ay3xxqANB2COjmXd+dAhAH7APLg0GDy282i9IBsaku6uwwAPnzwbEd+Tlf5kgTvxElCsaqbNYyffjkArf2NjDOUtzcnWEySp2BBbcGx7WOZExu1AHaS1dEdtflNJ4tmI7V1J4tfHy2xPVdMdeteh1tjhGg1bsxHFQArYCZnPoX60PvxcubEnm1DS6CttEQZRD37GKV4+hiLbORr17bQlFW1iwQIO4bZ48Q6mWu5aPTJa7tiL1/dXuKLE1w35EB4tYNTjKiijbnel8GumIdn9vfEFlrxwhB0FZFu1G1sCNirlfIjjjQSE5TTkBrM9EK0MQzTHvy9v7MuY4AP7DYmo5aFMeDsxXyspIo6+29GVZ5iYMOlsH2pLsBPaDsiAS16pffORSHeZIktZPpTvRw13HmWEcZoO2SHelGB08X/lo+oO3UhhT3A3a6LqAYGBQ03dh1O1aswGLqdqyqqsKHB+d4qd7L5Kgqm64ojkkCL4og2zg4gs+Pj+aYjFJc2ZogSxPc3Ju1giZuDY6P4khrRnbv+s4MB+fLNvLDqMEB/OqD79U0cgDS1zBtUclEfny1U/S55MC9ctUeWCyZyI/Nt6BRVRUeHC9xsz6Hr20L2/7wtLknSVXRRx+X1DxHEP/uo3Nc3Z5gb2OMzckI+5tjlSitEzxrLhI5615HyQiqbfpLV7bw8fG8dc4s89KL+gBE+3cjkR8fL2Tyl87Ix0age8b0LWQNpuO+0XcjH+PGrv38mK/8taxAd2CxLkrcPZrLc/hFyQqi/U9IfOkNBgHle7vaz3x8NMflrQk2JlnNMpi07Ai3JtKX6CEfkO7bjR2R6DH9UDZVeuqnOJIded5hR1zj2Q3QDi+kMXvh8ibSBM7AgjLf/Ixt88Y+OFkiSxNc2RIP4I3dGR6cdjhWTErNdNRWlqMsFs2lMnduxGJr0q1GBCjDpxA0ojjOJR0gTRO8cGnDytkG+EjkKEsxydIWxUsdsOJguL4zwzIvnTzoU66D6qhBe3y2wtVt0fvodota0RxcJ0JRHJv37e7hHJc2x/J6X7hkoQTUg6iiPtQTgKpBqw0iAFkjSME7OSyupAE5+t49MrEb0YdagJalCa7vTHHfkTCQinmM2qlJZtv/zSDm+UubeHi6dPY0OV341VkBErdozlWWFT4+mstn7KWrpjNrzsUXWwHaB8SDGomktbm+M3NSHaqqYlMcbXbkcb2OZEcoUHMdDJyGzIBmR2QmVNWgkR2ZjTPc3J05kchQsRVXgKbsyBQH5ytng2NOLzPAVoNGMuP9itLJ8dUTfHbHyp/5BmrJdsdcB+crnK8Klfk26daJ+L/FusBs1K1QBqh74OrX+dGRYrIAwJWtCQ7Om7aBnGOfSMtkJM4NF8VRZ7LQz6pSe53GxTKXSZKusetBEO48ucDLtU24vjPDKE1adGtuDRrtdVcNml4LC4ig6ZHZ0Byidsq3joBgQ7gc/SfnK6yKUiY4yNaabTg4zcUBrdWHY0/eP1F0fECcV/dknbvYN2tmoDulPeKYS9bUa/u/qtBKiCzXvGetK9AFgPvHc2mHyNa29iOj7QPNBbgDi4e1H3p1S7MjxveqqorVrgDorp36+GiOoqzw0mVK9Ij716xDS7DIC+/eB9SZ6Ap27x4pRhAg1vLgzLQjNZ3Sl2j27EcTcLmxO8N8XbTszvkyl3XQXWNn5q7BrKoKHz5RaDU9B12sIH08ewFakuBkscbJIpdZrXGW4vLWxNnnhy8SYt9ED04WuFYjB4DI3NoibkA1N+XQrqajrEVLo8Pt6k7TsXIJd5wvc5ZjRZt6ZTQbvH+8kA4+IBxiV80PtykhIGheJsXxXk1ruLVbZ0DrB+SRI9g9Y9S70VzLvGyoT85XBc6WOa7W2cH9zTFm4xT3HN9NCgIwKY5mRu7wYoUr9VwA8PxlgfzYIP2LFY8qCtTqm1I1T9EbARV0ynW0HOgAT9IcUAiauf8fnS5xfUd9t5t7M9w/cawjE0EDxFqagRchPFe2RGBNDoubmupXdQLEOppBzMPTJdZFJe3IznSE2Th12hF+Lau9durh6QI3dtU63tidOmsi52sh6c9bx6y1H2kdr+3UCYr97nU8Y/SpArRaVomg1XbkZCEz8oC4b65gkJvoGWeiTsKsZaUkC+376ztiXtMxosFG4h01aFzpb5dD/PBkiZ3pSJ4vN/dmOLpYt/a+qB3hqYa5HFS6v/TckI2QAWHdzFZkvjkIQrfT+LHhWF3dnraocismnRLolhqnAO2mDNCm9b+3HWJuYHG2tEvf54VAm6/VeytLE9zan9VIrVaDRiqOTNqVy0H96HCOq9tTeU5f3pridJE3/IO8KFGUFQtB257aFaIBtRf0BAeAli2ar3hJG9ms1zHfo9OlROkA4Ln9GT4+1vYjlD3ZmHR/N6rBdFFFdbEiQJ0jpj7BMi/5SKQjObEuSjw8XeJWbVsnoxT7m+N2oBtQywe41/HByQJXtyeS5SDQ6kWDWkq9G7k1mC47ctewIzIJ3LIjBSthoETBOuyI5ode3Zm02B5UouCzI5NaWM6F6Jp2hM4Rk+bItcddbSbOljkW61LOsTkZ4fLWpLOuXh/PRICWJMmPJkny4+u1eCgf1w+A7uxc3Z46D2iuQ+Dqg/bgdNmY6/quoAsdXbSNRJhjlbYcq8dnTQeVnB6XY8VpAApoFEc5nXjIj+drXNqcyNdd3Z7iyZmdBnXKRCIBkQmzBbqzcSqRI3KsHjoUAbmZbxl8agEa7QU6GARne8OPoDEpjiYa8+R8hcvaOt7anWFVlDi0NMnkBoNAHeiSah4JhGh1H4CiVrgDC7/yF6Bq0EwETac4AvbMHQ1CHTg1mFNLb7In5yts1jQHQEOQHc4+N8s7G2etGjTaIzd21B7psiOSKu3ZI+5a1qXM/gPigHhyvrLWl3J7dwHiQGolegwErcl9b48LJi17ZiJoSYKyrHA8Xzf2/9XtqVO0iYug0XwtBO1kgStbE+kYSAfTYUc47QoATem2drppv/gCGR+l5tHpEte084McA/0ZWuUl8rJiZb53OzLfFBxRgm9jkmE6SmWzbkVN4iMIgLu+znSsrmxPWxQvWe/mqVMR87nFLR5YMt/6v9MIqR0pK2Wz9PHkYoWqAq5tqz19Y2cmfQ8asg+ax0mlQMdF8dJLNgDgcj2v3mSZWzcIiHPMFQzKUoN6/SiJaT4/5yueTfDVTj06M8+PDY3iSAia+E/unnR9twcnC0zqhD0AXKp/mucwe/9PRlisS2vroQcni0ZNPWD3Q2Vg4QkId7xI/FL6TIDwDfOywmMNsaakT99aVtOOUG+9w3Pdjoi67pBEj40qXVUV7h7OGyirDUGjEoUJw45sdyCfD06XGGeJ9HuVHYlL9OzORjhb2WswyRZe1RIU13emeHS6+uTI7FdV9RNVVf3YeNxsQLe/0XQInBnUumu8T1nO5Vg9PFlIGgCgZe4syA9BnX0pjnRDZ3Vn9U4EgeNYjSiIqf8hSbDKS5wtc1zaVIHr1e0JHp+vrFlF+m6+hseAWEsTQbh3vMDN3Zmkw8jMhSuwYFJF6YHVnVRCk8zAQhYnG4Nq+XzGhv5uZr8Pz9e4tKXWhdA0m5Mq+ysxjKisQdMojpRZoj2yMx1hOupGfjgO6qalBu1ileNsmTcOBlcNjXhvyP5vB01PzlfycAUU/cakTdGYr/yKVYBYx7VuQJNEJlj2N0074qjTqpEYX51Wl9jQjd3mOgL2wIIrUAF4qNK1o0eqX04knnkYUd3GWqtlPVmsUVXNdbyy3c6A0lB2hLcn2xTHeWMdr0skxf7duDRYaudBNHBK+PjafGxOMiSJm1Lz4GTRQKDJodOTRdyGr0C3Y0VnINGgAODS5kQ5qHWj6kXOqx3Z6ggsCEHQHaur2xM8OV+2svoAP7BwfbcHJ0vsbYzldbsy3xfsGhx3e4THp23Han9z3Gp+SxRH330jW+8KLEyWAiVo9WdIriMDsegSCSEEjZK/k1GKS5tjPDoz15EX6EqKo2W+oqxwYARoV7enOJ6v66CnDtAKHsURsIur0Tg4X+HK9kT6GJQ0enLevG9sBJn2v4Vif8+gWgO1/9QKLEqMs8R7bvgQtIcmk8WS6OHSKQF0ioSoBJ9Yv3GWYmc6MuwIP9FDCQobGkmqvM/pAdr2pIXEcxE0QNy3bns8k/fDmejhqsHOxqgq+3eT9tiwI8dz+9lojmciQDMHZQP3zMCig+LFqcEZU+2U1bFqPxg2BSlJg2LRhdqZb/oOupN6tcPZ4SIIippUz5ekOKo3yf6mHlhMZODWmktC9YzAwuJYHV6sWpkEoMOxYgYW5EA1ArTT9oNxsxP5yVm1fHQ4tpCfi1UDiZQHrMXZp/3F6ZW3oVMcawTteL7GJEvlAZMkCa7tTDspviy0wvLdKHgwA93zVWE17tyCaMCOIB+cr+TaAeqAta0j0YlZ6zhJYaYcbPvfh8Tz2j6I1+j9u6qqwsOTpXQqAT1B0ZHo4ayjhb75+HyJySiVzlOSJLhSO8+2ccFG4ttqsIcy0NXsyNYUhxcra+Y5CEEeZy3n6MnFWmZ2AQ2Jt+z/dVFimft7cAGaHamvmdbUl7FNkgTbk5GzdsrMfFPyRs/qz6VjxUHVR85WEJIirCE/+5tjeY9IbIgrMy7rKS3zHdYo09Xtpt0rq+Z3WwUEFjseiuNNLTC/smUXLLpgJm0U8tO2Y9Kx0vbZ3sYExwYSQ4+Bby1HmaBduehyJgPjsoWap2r5+omE3D9eIE3QoB1e25m2EkXLdelFBoHupsdPzlcoq+b5sSdbDuQaxZFHFQXsyV99Pt132t8i5MdEdbnUPDc6borWAMC1nVnrHF7lJQv12RhnSJMuJH7ROD9sSWDyLbjraAs8AWFH0qSZdNvb1HrCEcUx5yOR4vra381MJgLiHD5d5o1EeFiCYmxtYQUIn6bBiKv3pm5HqqoSZ2JPBPmxxQ/d35hY2Xe28QwGaIlyrDaajtWjU3tdGLfYHqDAQi10WVY4Mug7MuK2OPtcmXGAakfa1KTd2aiRtb20OWlQHfTBr8Gpa6cKlfl2IQjiOtrzzQOyM0rcQo2Ted5Q3NuejrAxzqyO1SovscrLoMy3vpbqgG06DzbKIcCX9Fcy++q7VVWFw/OVpFMAiqJiQ9Cozx5HaWymUxzrbOPJXCgX6sHktR13PRO3Bmc8Ep9nQyL1zJ2LEgCow4Uz38SC/Dw5XzYO2N0N0YTadt+Ib89xxmyHiNz/2p68tuNO9HCftckoxShNWoITq6K02hGb4EoIxXFqpTiucHVr0tgjl7cmylE3xsWSiaBJOnH9D4m6N02q9ARVJRIXrblC7IglGDmdrxs066vbEySJPUAL2o8GEk+OlS9pA7hrp6qqwsPTJoIme2JpaIxC0DhBU4ZVYaddHZwtsTHOGvt0f3OsnR9KxTEIQbN8N3p+dLtHTuNBn8Cio3ZEd1CzNMElPfisx5xdg0ZZ/bYjZ0vwSQRN2w5lWWE25u2RrUnmpHgdXqzkmQE4ELQgBGHUSRW9uj1tSKNf35m1np9lUWLMuGddDZZpHfVgkBLrx/O1ZIWsmCqOQLtWVB8HRoC2Mx1hZDk/+AiaO0CjzzST6SYDY5WXXhQeqPvXOeqZ1nVNpJ7oaQS69QihOLr6xwKCmnd5a9pQ8Gwg8ahFQgKRSNuelOfHVvf+J7vMWUtfDabOwNiqa8/1oCmklk8q3XYhaDvNhJmJxLvGMxigKQStEVjsTLFYl1Zje8HkpAMikNEDi7NVjqpqNnC9tuPOfFOzUk5Wf2KrQTtvokwAcGlr7KznOGfSOVTtCCFoicwqNZAfecDa+8sA3Cxv++E/WTQdqyRJcN0hlBDiWE0tARodDFe29AN2gsW6tCoCnq8K1j2zqQ+eLnPkZeXIgLrpaz7KLSCoMSbF8Xi+lsaZxrXtDgSNmaAgB1VXw6M9oh9CtF9sMH0IxdEm3PHkrBnoJongipsUFX2ukP2vD8oG7hqJnifnK4e4C+9Zo/l0O3K6aM91vcOOhAe6BhJ5tmyI1gBi/zsTFMxsoWrXoVQcyflvIvHdiR6OxDtA2fLmwWe2VhhlKa5sTa1iQ1yBKACYSAS5kD851wi4KWWnRpE4YJcKl4IkDNUw1Qi9bccOzlaNTDRAjhVlvoUd4daOdCFoT6znh/hdT3JQYMFxrLamIyc16ZGBRAJtwZS8ELV8nOCT1rrTsdKRyI0xLlaFQo8hREI4zjBQBxaWuc6WOdZF8/wgG/hEX0dSsWMhCCKIt/XGPLpYN+w5zXdsOI1rJvLTpWJqKzXY22gHaFLFkcnOcQUWT86XDQZGkiS4ZCRmq6riI2iO1jOAqscyGRhny7yRVOLOBYiA0mZHHp+JHrJWOzLX7UiYj7bKS+tZd3C2bOx9wETiVaKHG1SL67MEul1+aGP/hyV6ukRr9IQZ0KZ7qvpjno8G2OnLj85WSBI0nm1CIu3NpZrjmQzQKPpsZlFriVOLk7pY8TYRIA6RXDPAtPl1atNsnGE2TlsGDVAP8g6jTosy3zrqJxyr9gHrgkS5Pdfame9U1fI1qEl0wNocK1HLxznYN8ZZKxAi5EcfIrCwULwkgsBbR6CJ/BxdrLEzbSKRstDVJtzBRNAAkcHUv5s0MJYgxkZNDaEhbNR0jsqgOO6Z67hjl2UG+HVaNqqoTdCB1tG2J8+WBSY1ncc3pqMUyxZ9rUlxBIDLW2NroBuCxLQNbYLj+Rob46zxt6vbU5SVo3aQKYMO2OxIex0bjooxyJFjy+y3BFDajvrlzXEHgsxXwwQMO0JISgDFd3Psl3gH9BpMMaqqEkj8zLL/LbY/iHI+siBo3ADNURdG55HuoG5ORG8pXXJ9EVCD5hKzAkSCzxaYH+kUxyRhU5NUXaoNQbMhp+3AnCijLIpjh2N1NF83zioALUU/Cp44943W0Zawe3y2xFSjCAPK7unXVzCDQUAkbW337Inj/EiSph2i6+QiaIDjvlnOD5vk+qrgKR2Sb2WjHT6y7P+m3QuvQdvqojjWyI8+Lm9OGuu4LiqUFc+P8SFo29MRxloQK1UjDYpviB3pqonUkUhbb71QJB5w0A7P7YkeicTXdmTObfgtm0fbEDRx/ZctiR7djiiKY7xISFFWOFmssbfZ/G7CjqjXc+uPAWVHbAHa47MlLm9OGmj1/sakZoj5Q7RnM0CrnW/9S1+1ZO5ocNVYAFGHtixsDmrToLl4pGcBCNp0lKKsgFzLYByeN1UVAQUt21RiuP2LqLhfPR8q831pq/uAlXPVgS7HsTLh86qqcLJoO1b7m2NrbxhVy8RDIoGmiqOt7orW1XbfLpY8sRWAkB8tQCMDo4mEjLMUextjO4Kw5snu0lzitiuZfVuARsiPSXuSfVEYBltSRbXPsPU1I3Ee2zqKQJf3rJm1UxcrgTa0DtitiaYeBe31fDqx7eA/ulhZ1xGw25EFU3YXAMZZYgS6bSXZUV14bVvH0wAhjekoa9wzoF3TAtQImmUdQ2r5lNiQUnE8tAVoHUj8fJ2z6L1AO1u+zEusirLVQ3B/w25HJMoaUoMWE6A5Aotji6BVkiTYnY2ajlXN8eJSkwC7Q3BwtsRVEx2pKY4iEahRHBkB07ijdopQbV0cifaAngigJEyfzPcqL3GxKhp0ZKAdWNC9GzOQn651FD00p42zjhziM22+suLdM0DQdbuQSD0xlaUJ9jfG0SIhsheUbU9eWAJdC7WOu/+p76ktaLKJJNgQNFoWFvI5sdM3F+sC56uiHVhsjRt2b1Gf3SG1U7b7dmxJGBBSrwcHq4JvR1z7X9oRzcZSTzjd7lECgLuO+nv0cXC2bLCPAGFHVC2fpuLI2I8yiLEFuvVn7mt2RIm7tPc/j+Jorwk+JUGrlh0ZN+yxDNAyRhLR0VYHEAk6kxGnEj1+muOzF6AlIvO9t8l3rATFkecQTLIUaw+CAAgjY8t8n0n1tbjaKZvi3qW68No0oNKxCkHQKGpPVGChb9bLMvNtX0eugzoZpQ2qHPX+Mh2r3Zl9HUNUzSYZfTc137llHbsQtLOQwMJALKSBMRxiIcpgQ+v4FEc6/KsWxbG5/+m/TeO+qnvnsBA0ixqmrTkzPXs2HnUQEmnUoD2RdMrmd7u8NbHWMoWI1szGqVhDbRxZHBVfoicEiV9bEz3G/t8YW3v6hFBFSWZfR+LPV+39f3lrgrNl3qI9LdYlKnYtH1Ec6V9EoidNmt9NraMDQYu0IyeSPdG8bys9KcwAAIzjSURBVLsbo047wpnPtMchjpWtETqg02i77ztJSPMQi+6Ce9NB3d8cIy8rYRuSsNoRwF07Zas9tPWEC3GsSELdTEbSOprnvtnLKSjz3UFNeny2bAiEAMq+n2prkZcVC0EAaB3dtUyXWsyBSbRIiGz9YNkjR/NVI2EAiPu2zJuUyFUu1Ac5wyYKBojndZwljedvtxGgkSpshXGWsAPruQP1AdBiYFwyqN1c2XtAr52y3zczmW4LjLkiIYCdeQTY7UiSJNjdGFkDC1Yz8479b7Mje5sTnCxykQTWG94z7Ag1oXeJDY3SpMFykIHuymJHWO067AiatCOG/7RrMCDWEYkea6BrQSL3pa9mR4H18ewFaBCZb9OxogW3ZVEFxZH3VSej1EBi7A6BK0C7CMjY0kPUCCwsvb9IBt90UqmQMYSaJPdEkuLwYoVJljaM52SUYnc2sjqoXNlRQGzshmPlWMfdjWbmggY1ueY4xMqx0moHLYFCF4LG7ScH1M6YNpcMLMwAbWtiRxACKY4AUAIqQLtoU0V3Hft/seJzqZXMeLO+bjJKGwZ/ZzpCmqClaAbU685MhpgqjqoRdPO7Xdq0B7qyXQFTZt8cNqoPOYA2O8KVnQbaSLxr/7vsCB1kLIVWS6LHFihfktTU5loqVUW+GuyqoeIokEhdRnp3NsYoTfozGtKkUfNzYqnlA8Q62uzIPMKOSBXHdX/Higr42w7BuFHcT4mzPg5BVVU4OF+2EOh93e5pDWb51Dx77dTh+apFEZ6OUmRp0kQQgqhJJNzRnM/pWG2M7AFaQObbet8stoEcK30+gaDx9simozcZsSzM82N7Nm4Gumu+891JcbQkpmxS+SEJCpOKTONkscbOrClo1aydEv++zAOoorX6oCkIR/1bbfV1dqpowDra9r8DiQSaginLACTeJq4GKLtntSM6xTcgiNl0ID+LdYHTZW4JdIlSmSuqdJAdyew1aBcr7G82Ba1s+5FqglmCPL5Ej2UddSR+PVCix5pM3/yEB2jH83UrA2QrvKZxsc5ZThzQDiy6Mt+dyA9j004tgYXVsXI0W1RZdv9cWS1uoYLPRFIdzA2/t9l0HmhcrHJsMorYAbGOeuBJDq/NsTpd5K1C1RAEzVaDdmYRxugM0Ja8Oi2aT0fQFH2tjVi4apmAMMSiglBxLMsKp8vcmgEC2vs/ZD/aELQzSw+pNE2wt2FXIuJS5YB2HzSXAuqVLcF9N/dIGIJmvCZJcGKtaSEnzJI0CEGQHUi82eTdFaBR8TXnMJqagUUuhAxa+1/akeZ8MYGuTnE8umjTstM0caKDfRI9x3P7OvqQeI4TQY2UaU+uipJV7wO4HVSbEI34b7N2ijK2PPo40HYI5mtx38093bR7Yf2LgLrpsaN2xHSGkyTB1qTZbHqZl8jSpFGS4Bq0v0w00rWOZnF/TObb5ljZKPK2GrQysAbN5aACaKg4AiJYNem9AK8GjQJd0wlcrAss87KNRFp6wgmREC590xFYzPPWszob183TGyIhCVtIY2MyQlW19wglQ03EYnc2btDdQmqZugLd4zqw0Ietl9ky59XyAUK12baOxw7mwM5G01cjOzIKSFDYxNwAtOq0mvTl2o7kfCR+00FNPTxft1gzrkRPSKALtNshOZF4A0FbBtiRLoqjrTUPxS6uWlt9PGMBmnAKjiwUx65eBPMVryknQI5VO2PbqkHbdDlWIuuaeZoSAhrys/Y4VvRgGM5+iKMPCMOuELTEGt0DooeEzUENQxAcmW8Lgga0HeKgwMIRoLkOWJdICKcpMNBG0AjtMAOL/Y2JA4nJpQHyjVFKARqAJMXpUqiKtjPJbUUnIKxoeJSlSJO2SIit91dDeEAbXCl6oN6P2jqS82JSP4ni2/puATVoLpn9dqLHbUf6UBy77Igt0OVSRwAt0VPbEReF9pKF1w/ogiScmqRE7BHtLDq2iP+Iz7PXU4SoYY4d62ij+AqFPZO+GZDoGTcD3SBqktNBddg9o+ZBBWjxRemuukUp6jNf1aWs/EbVgGgya0cQ2kwWmt/MfHPXcSoDtOZ3O7a01gHqvmmrQtbehmS+qXbGjvxY6qUtjlURrOJoq0ETfS3N59WUkw+hOErVPOP5U61F7IGFvieXgRRfF/Jjsw17lLypKY5FWbFQT8AtbqHQaoN2WKsV0t5YBCRtiAZol4dfS1RJzeWgOAYEFgtHomeUJi27udsSyQlJUNhr0CQoYdgRWdpwIQLrEqkQyWEG1q4ExRNLoOtK9HCDeDo7TTtia60DtJlc0o4EJJVstNtTh+4CAJx/ImvQauTHPKCzNBGFgdYALcwhsIuE8DPffMeKstHdjtXlTXvmO0RIAyBxC0VNOl8VViqmmU2gwe0vA1gojo5aDBc1NaTY1SYSYuv9ReqbJsWrKIWQBp/imDaydxerHKlFNnx75nJQw9YRUDVoJ66MvANBDpHvBtoUX1tNJM1vCyzmK76ksIlEKtl8l4PZnO/cEdDZhu2ZPJqvWoke0ay8nTBQYisBCLJhR0Zp0roOlx2ZBwSDU0Me3lW/ppAUOxLPSfQkSYLZONNqWdM6KG9fq8uOiECXXxPcROJdiJQjQRFCcTRqWUMcK6eDOl9jOkpbdkxQk9qZb07fKelYGe0HXGdVg4KTiFrMVUDme8vRd+rwYtVC0IB2/ccqD0MiAVuAZg/MJfJTzxeS+U7r59GV+TaRn52ZsA06YlGUvDMKqIWzrHUxq1ZfS6Cm8tkQNIZ9pWtaGO03ZA9ZC4IAqHWsqiowsEidNWimgwrodk9856Li7X3AjXyeufa/8fplgEhIWgdF5v4nNUBbwkC/FqDe/30pjpbep0A7sCBmQwjF0QyaXOu4KQMRsiNi8Pe/3R86umgLWgGWRM86bB2BNqrltCPTERZrFcSHqMGqQLeZHMwLIWxkJmX3JCjxCaU4ni3btCuglsq0OFZB4hZZ0qAmnSxEdsvchF0ZW+6GbWe+7Y4VqduYjhU9WJx6N0A4qZKahEQErpZrNQsm1XxhgUVeVpID7ETQaiNgOqkhme+JQU0C3GIVjZ5A5lwBDnET+Slqx75pPMnAmNS8C6bsPaAoT1XdqLqrFgOw1KAFrKOYL22JhNhaRuxvjK01aMu8ZM9lNmpXFMfm+7enlHFqfjeiXfFosM3XVFWFxbpsBfFpnegxKb4UkHP3yDhLGkg8UR1adGJXoicA4ZDIT72WNuVNQKntmftfIcABiZ5SURxdAZdNuhsQh2aIGqaucnsiqaL2Q89cy3nAfTOR+GVeyN5ovrExtvcUcqGL7eJ+qkGLpzi66qWbNWuJFMsJCixsWX1LohRoK9EFUbxcFMcLV4DWRLxDMt8A1YU1n/VlLmiApoOapgm2JiNZ1wuIPmhshT5H7dTZsmgFg0A70JW1Uxx0UCIIzXV0IQhk49U6kqPPRbVGDgQtbyVlAc3ukUhIlWDEYJTQXIB7/5t2j/wACiBDRELEfFmr5+DxvFYDZIiECDvCR+JdYkO2Z82d6IlXH3Qplzd7mQkEDeC1KwAIQWvvEVtNpHi9kehhtn0Q19Sd6GlTpZt2JEQNNksTTEYpLpgJs81JhiSx176a45kL0CoIg287XGwOwTIXCmUh/YvMGjSXgQFsDgGfBqiQH3GjXI6VDTYHwtQAAUHpWBZNx8rmKAmJUrtjxVbDJMGJujF2Vw0a0K92ihxUQj7LssLZyh7E7+u9POoRQnkQrzMQNEerA3owTXpQEMVLNxBJ2qFi51jHAPluoO7NZ+x/G4LWSc1jG1ExFwXxkuLYOmAzeS36UDVo/j1pOr70GNjWxaSf6dfGVx/MWutod9THWOXt5unzkJ5rlKDIuxM9rnqKiwAEDRAtO9SWTpwMhW1DYU/ONwASb2M0AGgF1vMAp9a0xyGBBVGIW70fF27HSk/whRT3u/qguZpyNxzaRAvQAqS/bRTHUwuNHGj3IIqpHWlnvu3nh8kcCMl803xm5tvloAJtentV8YJqQCRSbbVTZ4u1NZlorrtsVM1qwm13UClAs9XgAEr6O0QNk64pBEGTyE+dsCrKiuUMA1pvPhP5WYo+raZtMV8fIrMPiOReex3tSOQ4SzEdpZbAgp/8mluC+BPn+dFM9AxRg+kKdBsBXZKAclFcFVOTskvDphcAWBI9a36gO3PYERejwaw9D6kJBuw1yLLu3LhvSZJgY9xujWMbz1yAVlbujvNCicVOlQtxCFaGQ2Az1HTomnU43P4yAB9By1JxQ1uOVQANkF4nPyJJncX6O7OxtVnihQNxsw3a2NSs1+lYbToC3QD1walBTRJZyrajQvObge5CHnzMh98w2OcruwiNVCJatO8bF/WkYt+ySmRjSKC9n7cnbfqNmCswsGghaI5Ad2NsrUELQ5CbFN8zmXAwqEVTewsB0TiaWctnHFhkR2bW/d9GkENEawCReTapeTZnttOOcKnS42aAduYK0ByJHtk4PcSOFE2Ko21/uZD4cJGQSjosJwsHZXDDjcTPxmlDYdI1Wn3QAmtwADulxhqgGYqAeRngWDlUw5QKqovilQNJijIQQXNJqJ87FFu3pk+hdmS+wtYka62PFEeah2e+AaodtGe+bYnZjUmzbrZExRI/AVQi1RZY2BzUzRpNIVSW/ARWfZ1TbMXeEsas4Q9JGAAdNZiOGjS1p2o/oeTfM5eK6Wld1mCyFFQ9XhNBC7GvSzOoXtqRfKA+PyJl9meGLadxPG9Tbml+PcG3rvcKB43cHGuJG22cOuxII6CLsCOblj1SlpWzbt1M9IQh8e4atC57LO1IYIJi02IjVd25xY6Ms9aeso1nIkBLkuRHkyT58XydC0cVdofTRnEM6YMD1A4BQyTBGVisS6vTZxuUefA5VvRvpiJTCJcaoPoiRXF0OVbkoJpZnFCZcUBlIs5qYYz2AWuvHVnUheUhYisrD4IAoFV4CqhGqiGUMt2AumrzbIpOQFigS4a9SqjBbI2IGfOldR8Rl0hI0B7xiK0AKgNq7pGQ/kpmguJiJTKg5vtdvWguHIGxbYzSpNEHjbJ/dopvW30wpJYJsKvBWqmiDjuyCEDizXYd545ejK5ET0hmHiCWgULi3YmedjKkqqogBFm1fhDznTucWVXLalnHUMq5VoM2ZTtWdsTCpmIHaFQog1LGcVKpMbAr892mJpkURzG4zodZKwp0O1ZtimMRTE2yBbpmUAH0z3xbHStKJlqe183xSCb0AGFHxkxqnqsx8NnS7aACKsm2zAuMs4R1JtJ62/Yj0FZBbVG8pIPKpfi2a9CWeYHFurTuf5HkLCXFMa+SgHtmDyxcpS9beoICCkFjJw2MkgZA2Vgbc2Z7OmrVoAUjyOaz7RR0a/oY60IEgxz1X4XE86l5AK17IgM0tgCQxY4ogSp/omcVkOjpUoO10SnV/l/LuYCwBIVJg+0M0CZZKwi3jWciQKuq6ieqqvqx0XikMt9WimMbQQtFmZpBjF0mE/A5BLxlbVOT7I6V+DeLYxWYCcrSBLIsJkmcDu7OTDQ2NTd3qEgIoAz9wkHZclJFV3wEwQzQXGpmgKCZmBnMheSkx1EeXM3CaX7bnuSuI2VnRXChEDQbSrtjoebF1KCRk1NVlVMkZMtC1yEhjdDaKSVu4ajlI+NpQX5CAiZ9UFbaFVi47Ehsg2VnoqeDKs1F4s0+gF3tN2x0NZXo4duRok6UVXA3sN+p+zjpQTz1bgytwaS1dCnyUqLHZkdClDeBOJGQLnELm2MlM7z12ivkJ6QxMM+xGmcpxlkiHIgkqVt2gOXoi2vNWmITXY7VtoWaF1KDA9gCC/s57A4s+AGhSw3TNt9sogltQVAcuQiaU9xiaf9u9IyQXxCCRCZJgukoba2jixY+HWWYZKmlBie+Bs1F8QIEErmo9yMgGn6z13HaDLhonC1yK9vJFAlZBPpNZkkDoNlYK4L8NCi+diTSRIrWAc3FJ6MUozQJpziu8gZVmls7aLUjjtY69G+tRA9XbMiBsh47KLf0/J0sVKALBCDxXRRH2578pFMcu5AffSiKY4hqmFro+bq0FsDT5m07+30cVDcdzdYZfRmYCRIF9/V/JKmzXk45xFoRe14iL6sgqhygMsMuZGVzkmGUJr0QhCwVBcbmOlrrIyw9fRaBDqoNQXM5+kAbQZsHUBylSIhBcZxZZPNF3yn7/g9xUulwnq8LFGVlPfRsdQChSIxSH1QImi2okM+aBfnhGuwsTaDHfZIq7aplXdqRyJCAUEciXcIYrkaoi3XBR+INJPKsw3nYnmaW3khhCYpRlmJdB2h5laAoKzvFdzZCUSMtNGKQSEAdmAvHIb3bFegG2izaj0E1aDLz3c7YWgO0UTMQWRfCseJkvgG7cAedfbb7Lh2IJK0Fh/jOx7RGTHUBlC7Hqi0P37+4/3xZOIKYpkMbmvm20a5cSCQgEPel9vqy4vWcAux9T4E6MWVNpjRtbAgSCdQOsfHdumjhQnV4Xc8VUYNmCaoBt4M61wK0ogy7Z/Rd9NGVTNRfT/cvpC7MFei6kE+z7xq/lrUdoFVV1ZHoaSJF66Jkq2HSfDY1zM1J1gqYidGkq8ECYfvfRRV1nfutRE8ooyE3979dPI7OL90eA/0ojp0B2uQTRHGUo1LUJGtx/4bo36VnbMMpjs3+XUtHLYire3gfSo1LJARoZxPEXGGZoFGagvZEUVVYF5VTxRFoIj/SseJmvmsVIaKLLnL7uiRJYpWjnwesI9AMLNQ6Wg5YCxK5CDTY09r5pn127pAZp/nNGrR5AMo6NimOHQ7uroXiexG4/3WZfbruLoOmB7sK0Q3d/+Izzhw1LRvjDGnSXkchu8vfI6NErbkUCbHVTm24a1mD1DA1O+JK3EhnwxI08WtZm7V8nRTfzkQPc0+mSlmRvqMr0AWaCYrQ/Wgi8UuHXZiNM4yzxGIjA5BIo1F7UObb4Vi5nEaFFGmOFdP5oPeblBqqwbE530qtUBX3h2S+gWZg0e1YZVgXlXx9CPLjoiZdOASqzL5poZnvTsfKWoPWpLtVVYVxyg10mwkpGqIljEXFzlI7FRag2ZEfm40FakqygSCEJChMFdOTrnUkMQxQo2q+o99VO2XznWhPkbMfg7K6kR8Htbv+7mVZIS/5Sp+S4mu0V8jLdn9c/fW0/1cFX2wFcO9/21xJkmBTBuKJSBqD/6zROur++bnH5+3brsP8bi5fzUQiw2tZRxZ77KlB+6RQHPVRdjhWO7MR1kWTmkcweKyK42Jt7+ukHKu28x0sksConTKzCUA4gjbSKI60b7uQH91JJQnRUMdKbw7pWpdNC80kRMUOaAYWMpPckZVp0K5CA936u9FevFg6REIMZSw5X4CEugzQRKfqzpqy3Y127RQFdNyDdpIpdLBLWl7y+rUC+2AkUtZJEIJmV8NMksSaoFjmfBosAKSaA0DKkU4EzajBDG4Kb7UjFgRZOhvtwILTXJzmArRAd5VjkqVWp8CV6JlkPCENoKZKl+K11A/NRXEEmj3liJYX0vAeMJF4+3ttNJMQVd00FXUwslF1T5GQVVE60cUWNWkQx8pOlaPXSxXHOlERjPxYeha6HCvxGuXshBb3m2jMxdJet2smOUMz3zaKo6upPEAy6BrFEQl/HcftdVzmBVZFaW0Sv2kgaIu8ZCvmAfbAYu6wsYBWFwYNiQxUMdXvWxcSOZtkqColahEiEmK2FaFxtlh3I2hLEuThC2kA9kDXpThM/0Y2NjQY3LAkQ7ro9WbyhGrQuGPTFlg4KLeAJu6SAGUSRnGcjlJxz4t2gObyeWMTPVNJIW+X6dgYcVOD0RDSTw6gGszmuUpsJncNWtH6d3M8gwFal2PVdggWERlbvX/X0tHQUz70xubuciDMMTERNI9jZYpbLNYl0oTPEx9lCWhP0JlkVx9sIz+x1CQyUPO1+3CxqYSFOFZAU32wy3nYnIxQGrVToTL7lKEm5TVXDY6rBm25LtgPPhm/EoriOM4S62G2ZaHrEBLJpU7pCYouZGXTcMIAbR3ZRrR5uHRmd60BWlhGWT9IpEiII7BoUfOCKY5NFUdXUE7Oku2+BdegaWqwrp5mpjKWuLYw6hTZSACg289N9BAFkF+DVid6NNqtKyi39bQKqUED6t586xJ5HVxR82rfsGVsu2wmOQSSmheKoI2zdg2OQ9AH0B0r1WB2xER+bHQhH0qrvyakD5RJ/aThSt5MRymSRNHWQjPfQinRDNDc58eGQXEMmWs2ajvfXXXnWxNjHR1JHtfYcFDzXDZWUPfVfgTCEASguf/PHaq8gFoLurw8oF2BoiK3KY42kRCZTK8nK4qwAM3sewpoIiG25KVmYyVVNEBsAmhSpbuUmGdGkpOo0twh2iO0a1ltQTVdg6Q4VmEUR5sd6WSNURmFrMHk+00SiV+ZdsR+NprqmeEUR1sN5tpKFRWvbyZ6XOMZDNDET7vMfltMIKa4H9DELRzIDx0MLWpSgLiFmfnudqwyK4IwHfGd71GmKI70/Vy1fEAz0KWNG4LEAHrm290fy+ZYhVBFgWZdWFctlMnrB8L7opBhJzrHxdLeeNpUWKIRUjtF+7GqA7QuJNLGJw9pCgw0A93OdTSUsWgu1+tdcwFaYOHghwMual4gxVFzSOneufopAs37For86IFuVVX1PXcj8XqgK5poh6g4Nm3WuUMVDhDr2KZlh2XmR1mCvGoiW1axIUuCIphOaUPiHffcVpc1D0iYAYTEF3ItQ4vSdYeYk/nWi/u5TYEB4TSaCIKLmkTXQOprJBLSB0HrcqxMuxdCRU7rpq8tBM2h/CnFMGRrhLA+aOLsadfgbE0yK1V0Y5y1svJsR98ioc4KdFcqaOJ+LzFfJhu10+gSqBJqhQaCFuoQa/eN2hfY7Bj9Gy19CIJGSLedKmpDR1Kkmq9GySW+SI6FKrrKMRunVudbX0dp77gtLSxIfFd5iUmJDKVKT0dpax1dglZ0DaaKIzfRY0XiPUgkoJ6REIqjs5bVoRegELTm/g8TbWonDFz2eDbOGloXrvHsBWj1w7VpgSlt/N3QzPfEQH4WDgQtSRJsWYy7q9bKNqRjRSIJDkcfEFmodu0UX9IcIIoj1Y6If+NmvmWAFlg7tdZqR0IDiyDHqhFYuJ1AMyspri1cDRMQzum6KLEqSmuz8CxNsDXJGkhkUXPSQ2ipQI2gwROgjUeWjFEEVTRXzjDgQNAMhTHx+rB1JONXVHqg60hQWOoUQzPK+mHaleixoiERapiExHclN2ajDEnSlDpeFULpkC82VGfmdQTNYUfciZ5AO1LSe7sSPc1eX/rrwwM0LdETgMSHBLqAsiOhDqqNmif7y1kDtKazElrcb3es7D07xTWMNBVHMXohaCGOVcF3rAB7j6CLVeHc07qIQ/h9E6yDUqudmjvq3QCxz000JURsBWg6jV2KkZRMJGpeUVbsYBAQ6EpbbMWdBJuO0/Y6BlLzmoJAbttAr6eAOi/5+xFoJyiKssL5qrBSHMlXoz2bl2UtGsVH0KzryEEiyd4NYEdsaJ1MDMn5wqjSbjvi3v/ztaHiyKb4toMm1fvUzUA609DIkHNjlCaNdcwLYddtsUNWB/0LjSqaJPwgfsNWptORHP/E16DZVOxsWRypUBaqGpaXWNc0F5czbTa5zIsS66JiO1ZJkjRqflx0SkBlvvWDhBA07hilKdZFXTtCgW7Hg6GjTOrgC6wd0eqZXIGrTUkrlJo0sWT/bGujemq1qXl8NUxxj3QanMsJ3DaURVeBDqqU2a+gmos7HdR25jnYQdVq+bqc6S2L1PEiMBmiqKIkttIVWDgojgF7RDe2RYcarC2LKYPPwMBiVZSd4ikp9SZb2QLdQCRS4+o77Ygl0bMMTvSksnZkWZ8xtj1mQ6tDHb8JiQ0Vyo44a1ltiZ4VX5CHrqsRoPXoX9SlILxhBD2hNWhmv0LAXQAPCOeO5LHLQRC02rFy0A4Bda9DKN2AcFL1dSzqJIfLjuly8qF90Gjfk80Duus/ReZbr0Hjz2UTCekKdGUSrF6LvKiCgpiZhY7ZhaDpznpw7ZSlBq2LUSFrp2SAVgVR88S18qhy4vpU8iYPDXRdCQNXoFurnpZlFWxHZDLEkhy0UxybyE9oosdmR8Qe8dWypvEIGhNBNmsNQ9p1AJS40aiia7fNAqgGU0Ormf3kxFztQLdLR2Hzk9QHTR9KZt+tjNUo1A6l5mmNURXFy+XsNBvpEfUhrOZBSY8Krr6L4tgOmrocMdsYZxqC1lHcb0q30rUBfARtZCCR3bUjbccqpJYPsAcWrlo+wAgsPPfZHHoNWlexMNAOLGgd2Q4qCZIglTVo7kB3hFw7FIDwQFdv1N5FzzCdB0ALdNlU0TrQLTQEzWE8tyYji4pjDwSNKI6W523msCNpwu95NJV2pPSKp5g0K1UTyUcik0SXh3fX/AyS6NHadXDsiO4khrcGsVAcHetiU9KKUoMtyiiZcZqPRmftiBHQrYoyyGm0Zb47hZh0imN967nqg0qIoO1Y2Rxis7Y6tFZ0wxC3kDa2A0HTa0dCnlOTMQN028zNSYbK+LdQm6A/D11KuaoGRyFo3Iw+4KbmOZGfXhTHdg3avHP/07qL1VxX9rpq1zAl2+mMdSE/ov+jqkELC9CETdBt5tnSTrkFmmUysSIhdoqjex0b7TqC7Eg7UOgqL1FCTBoSH1iD1qzBzJEk9j1CYMAyD68Jpvm46wgIv0Xf/yFJpUmWoSibrUi6dBRsVGnbeAYDNPHTlsm2ZTFDDY3MfOelVzxiw3CsaF5u3x2AnB3/QWYqYwFuhUnXyNJEIWhEcbQq2rSzYaHraK1B66Dm2alJoQZbFZOO0sQpNw0064tCxS3IuOdFpYqFXQ/ipFnMr1Ap5lzUBw2oe9eVzv1lcxK7AmPbaAS6sj+WjeLYpN8A4RRH8g8JQVvk7j2yPXPVoAUEaEkTQZuO7MqFtgLj0PoPmx1x3XOhyBcvyJMkCcZpKp+1Lnn4IRI9I03FkTLgNtqIzdkIDXxaDe89arBmwXtIPzlAOX6hVExTrAJQGVu7Y9XOfIfsL1vmu9OxaoiEiHvHdfZt1LzzZY40cQmgNAM0gY6EZb6tYisdtVM6NS/U0af3yfk862iOPjVoMrCwBGijmqZFDi1R87jDpuJ4sXQ7jToqFY78tPfIfC3OYdv9UBRH8d95UbEdfbquZi9SqnfrQH40FcfQdQSa9+1i5a4vkkjpuuw8Q23DBjJ0KQiTbWv2Uwzb/2YtVFdgoavBlpWYh99mgvZIc/9vTUZWpGqiPZvkI1D7Js6QzdDrQevoTlA0kfhQJJKulUaXPSYVU994xgK0CmVVYZI5ijMtDsGqEEaCKyFNMPuq0B0rN/KjUxyVo89f1ixNZdTd5VgRLNtEY0IRNEVNWhXuzHeSJHX2re1YsWvQWtSkrtqRtK2+FioSogUWnHVsIhZhMuO094qy8jZC16WLge6gxzoX1aDVMvvioXcgCI4ERZDjl/HEVlRvGRvyE4ig1bVaXTQvs/knXV8IyprpMvtVR1BtsyOBGTW9dsqHxG9ODIpjoGgNIJztUtaXukUZhkj0jHQVxxpB6wpCdEWyUEZDqwatw+aZtaxU/xeDoIVeZ5IkqvluPboCbVvNQ5hj1a6F8lFqpGMF6l8UmvnmOVa6aE1VVRHITzO77BP6mmpIEVGTuMPmWHXVP9v+nXvfzEbogN5Pzn5+6A3vQ9fR1naiS4hpOlaoVCjyM7Z8t4tOOj4FaBTE85O/QHv/+yjoOksnL0s26inmagefZ8tCKhm7Xr/UxIb6qJh2qzg2X78qql61rEKgqnSuowQlkhT0rqwnguaiHCo7UkgfOawGM2sllcR3cD3bav+v82oQO+JE4pln0jMWoIkGs07Y0KKkFeqg6tSkLgcVqB0rSy1TSM1PlipFOeFYeTLfBvITVoOWSBXHZQc1CWhL9MYikTJA61DgMSVKq6rqKRLSgUQ6ELSQInaJoJWVl75mZjFDqaJJIhw5ojh2ZWU2Ldm3dRFmaKYjnthKmiaNrCQQ366gqCqsy26HeDZuF2oHi1to61CUboTKlsUU/PcwRx+oKY4ehNbsaRWKoAF1bzIdQXPc82ESPQlWtYpjlx3JUlFj29z/gZRzS02wax03DMn0mECXEhShjhXQLhSfewIL3YFY52E1OCaCVlUVFh3B6EZtYyvoxf2hmW/TsbI7qERDWuWlZLyEBhY6en0uHVR3EqzRB2qIzHcHgqCPkD5oJiIG+J/1yUgh40UVXjul37OiFM63uwYtnuKo+000utbRFAkJaVQNiPPTvGeA+1nX6W7BYisWkZyLZW7tXQc0256ErmOaClVSrkDVOEuQJhoSn4epwZp2RPq8Hft/Tg3vKdETiMQ3+ym6a/lsCFrKrAkDSCOivY5OezxWdmRVlEFo3UQLyuV8Kzd7g92bk30F/4SMsqw6+bFAPwQhnJpky+KEBE0GguZ0rCzqgx1Bj3WuLAUls8kB6aLL2aii3PoineJY1HVRXfdtsVYc73VRoar4ThzQNDRdss5m00ogXK5dBhZlKeu1XPfNrAMI7YsCiD0pKY4dWXL69wtDlCHUYdEFGYAuBHlkRdC4gcVIW0ffQTYbp3IvifcIxC3ovhkUR6fxdNiRsF5hFMCUmlBR1zq2qaIhz3YDQeNQHHslelKl4kh2xHHPp4bgQyh1SkfifUqaZsP7ULSarqup4hiIvukIgud6Z1pAuS4jqEmaM0zPhhNdrO9P2ZDHjkfQugRJdMeKntfg2ilLEMNC0AIpjjKYZNagbYwzGeDSCFMfbNZO+ZLAOpUvL8IQtOk4NZDI7lo+XcUxtA+ULdC9cEiaA3rQI/67qPhIJNBGfnzCSpNMnWt5RA2aPgfQLaShI8ih9o5eayKRQBfbSdmRvKcdkWU6Xa1M1gWqRNWychM9VgStgyqq17KWAyJoXfdNR+KD1jFr7/8uYbyZxY7YxrMXoLGoSU0DGEdNKuGrqdmajHChURxDpbgBUYfDoThuWA7JRUB/GUBs7jvlVeDX/pt4d+cHAbihVrOIUYpbRCBoS08m20R+lBJXmIOqI5E+iuN5w5ELq9MiI7EuKumgumgFU0NJaxkY6NJ8ZSVk9rtFQiwIchGG/IyzFGUlFEl9PVy2ptkwYiuFX+3KNO6hSCQAZIZISFcmDWiuY0izXUBPUPD2/7xHoAvUCFrpp/ja7EhooidLE3y7vA38mn8D72x8L6aj1Ok4boybVKTQGky9Bs0nQkNqsFVFiZ5wOzKq7QitZYhDPNacQEAXSXCJWyiHYB1BzSOlOMCPFsqa0e/9H+Ht5/8HAMJVHBvPQwc6opz1IipAM9slyNoRl/qa5qCuiyou8635DKE1aEHqgwajwldGoTNDijKsTmtWS9HTHpGOvpNSJhA06tsIBNA3taCERlegS/uUXl8hVCQkM3yhbiaL/mzmZcWm5QGwNhgXFF/3OgJiT+UysAg7O3Q7cuEJmnRRnRg1WH3v0+d0sdSqCsh/8H+MN2/9dwDE1LI271tXUA00EbSgRM+k2QfQy2jQ7UioSEgoxdFxJpjjGQzQ3DL2toMkBkEAanlsj+LYxiRrNKr2GVvbGKWplPzukhGdji2HZB4YWGQJVmWK6p//D3E4utapdjU1ELTw4n6V+ebwwwFliGKyTlmaaOvopr5NappJg+LYIU5hG3oNmg9BM6mioY16AbEOpd6o2gObXxiIRSh1CmjKw3ciaJb9zxZboT5oNRoGuB0C07jHoCP6Le5E4h0qjjEGu7n/O7KSNjXMQFSXzvSuBIXNjnQ1f7aNcZZgXoyAH/2TOE73Op9TFxLPtiOpQuKXHjuyMRmhqtDIgobMBahETx2fBTkEusAOoPVBczmpLYpj3DkFKEGbLiQGAM4/8z/Euzd/B4AAeezA5KCe+SabHJz5tqg42gStgCYtO7oGrdCfB7cQk+1ehtQzzSwIWlf9s85oEDVoAXMZ901KmocgP6FqmKaD6jmriCJdIgk+pxo1aHn3szbWqKJCZj98HZsIWu6vQdMSFAHTtZD4+SrHxjhz7hFdTj4YQXYgaE7Kbf3Zi+/9PXj3ym8BEFPL2nzWXGe4LjZE7JCg/T9Km6JNjABNbzMRGzfQmHcgyNzk6zMYoLkXOE0t4hY91Nd8DYxJsppGKC0AANJEqdh10ahsPVS6qHy2oRfc+yDcjXHqyHxzqUlqHTlqmIAyDn0RtOXajQgQJaCRNYpo+A2I+0ZG3438pAYSGR5YjFKBaokArZsqChjUvI66RtvQD9plXktWOw6GLUMkZ74ugsRW9D5o4QhaGBIDNB1SUcvqqmkRr2uIWwQ227VSpV0Ux+moSUuNCSySBAWpwa7dTqrVjkRQpYtSoVRdTtzGuCmSsyoKZA6FVdvQKY4+O6ISPXWD5Ag6cdYTQdN7ZM1XRSe62ER+QhtVqyw9oJxHp4OqIbp5YK8wK4LWkQTTlRGphUZI7Yho9aHWMQRBC6c4KieQRnedb9tmhCJo5lxdz56OoIX376rtWL02XrEVzSEW/kGAuJqlBq0TQZMOrfjvCkkwVdSkkwHdFEeFRAa2tDCSWtTv1vXd9P2vAoseSPza3buOrk9nH00CEOTpSMjDk03wscb0NlT0ntA+aGbJhy/R00TQWFMBEHuymTDjUBw1exxhR2iP+XQUPrk1aFU3rclU0grNfE+1DegNLOq5yjKeUpOliXx/Z+Zby8rQWOZh4haqdqryZmydme8ImX1v7Qg5VrWzH++gauvYcZ2Cdx2PIDRq0Dz33ORBk0MVlDQYJSghDjEO/WYI5EcEaMLAuJo1bk5HsmEt0B0Y24au4kj3oyvQBTQELQKJzFK1biSzb72uLMUkS4dZR11syIWgGbVTMugPDizE78uOoNxmR7poJrYhxIZqal7eTbuajZvruOzImNqGHlhIO+LZ/xcy0dOdPLENQuJjHCsd7aDr6HKs9LOKHOKQuQBVlN7VFBhoqhOH0g5tDWa7hJhGqejLtyoUghbkoI4SK8WrS32NkmDr0ISUQU0ix6rL+dZrR8KpeWbis/vZG48SeR7GqGECKrDokmsHNKR0LWqr+wa6XYEF2Vhq01HBXSZgvdZWDVp3Emyi7angWr6WUmJ3klVvp6AojqF2pJmg6HLoZyNVRhEcWBjIj8+OjFJlj0O/29RIstLv7numrq0swxE0F1W0k+JIVNFIFUdTAdsXxPvGMxegVVU3PG1Ky4YX96sNuPA4gZTRU4dsN03LNrI0bSBorqJ02yEp5FDDHCtAFKSvPQ6B2SzUR8UwR7OWz08VBSwUxz4IWse6mIXawSqOkr5ZScPmWkvK7laaBLq4hgDkM01RVgmqJGUJAfQRydHRQV+fMZNCECu2IhA0Ckrs6zg16gB8xfW2oV9aVXVnvk0kPlZsqJno6ULQLImegEyo2P+ifoSFxK+VQxrcTy5NUVV1osdTlG4qycX2kxPr2H3PzVpWsiMh9jhNRMKMzvUsAPmZZElLJKGr1mDaowbNVERTCsL2z9DtsY9ObI4kSTA1n/UOG5skiUQsopFIS+a7q8Fynz5QgNorJLbicohtyYg+DcZ9CYuGuEUg8jMbN32GuWeP6MmbULTOSnHsELSi61vkFKCl4Q2W1+0AzZ2gUHsqD63lM5KDvhYceoNlsumhCPLSWMcuSpxQr1X7N2b/01ouuYmevEReVEgTsH1CQk3NtkMuH9Zeg8aaSl6rjsSf+yjnmj1e9uyDpqii3fbYN56JAC1Jkh9NkuTH8zxH6VH7mU0sCFqQQ6A24NLjEBBFSmZsowILKASt41pn46ZjBYQjaLRueVF51X5sCFpoJjpNeGIrm0ZgEZP5TjUVO5+gg6mStMxDA10N+fHc89lY0BPpOy3X3UG/bYwzUYMmm7QzHVQg3GEhY1tWlVfdz+TKCyczLKgAahVHD2raQtAiatD0xE5VdR9kplBBMCfdoIqKa+2+b3pPLP0zOEMgP/5nx3TaSDE1LNClwLr0tnEwA7RQBG1iSfR09ZMDtERPIJUPUAhabO1Ik5qUd2e+TXGLmMDCzHw79ljD9ktqUo/AwlP/TDY2qpbPkfnucqx0efiniSDY9nqwuIUhytD17OlnVVFWbGcYUPaO7rdPmVSnoJVVGMqU1n39GjU4HmqeKDXQELSQdTRKMHz1z4I2q1NF+XO56PUu8S3yyWJVTEOReD2ZGKo+6Nr/XW0fgLq8I7Cf3CgTdG+zdMblw9Lrm+sY5jeZok1dtXxTHYnMw9sVAFqA5mGNcc+kZyJAq6rqJ6qq+rHRaFQ/yB7kx8jYhmT19Q3LoTgCzS7u+mdwBiFoVVWxKI40FwkrxFDz8rLEikFxXJjBYMD3AlTWypeVcSFoQUikRnH0IQLtJpdhFC8d+fFSHMdN5zu04TcgHOKygqTWdPUKA9Q6lmWFvKwCayLrAK301yaZgW5oHc2ogaB1Ow9mQ84YFUfdIS09NQ99qdK2PmiuazWRT7n/Q6l5jEDXpOv4WAK2Ie9bIURyurLR7Rq0uITZmlHLaraZiBIbqu1IbO2IKRLSlfnWi9JDKWUuBM0lbqFTHKMU0Yxz1acgTPLdMQiaSfGar0XCzSmSUNfRrIsSqyLM3pkImk9B1eaQhvbvajionvpnvVF1KKqlK6AC/udBD0SKsgpCfcxrBfz7fzJS7KGQfnJAs6YMEPsxTdy+YaOfXDAS2UyO+5KDDZGQKhxBM5H4LrEJQInqVFUVnCR11bJyKI5FUQWhnuJajbZD626/clLbVBmghayjUYM296h1620pQvspmgw3P+X8E4Sg6aOqulWTrI5VZObbJxuu9zoC9Bq0gIxtItAKn3iEyj4YNTiBDWaB2rHyUBz7UryAOhOaV97N2iruj81862IrHQfDdNwMLEKdRuWgajVoTj66GVjU9zmgv9I4S5EjQ5WI9ziVN0cpkqTNlQ9LGIifRVV50Q5T6jgPRAHIaSsbga4ju2UgPzEiIbrMvkDQuvb/kEh8dxBkOlJRNWh1YOFDdFvrKHuuhSBoCo3xIbRmDdoqggabJM0aNDeCZhcbClnHNCWKY7hDYHVQOx0r1SMutjGqVHFkImjrmnYo6sRCAws+e2OSCRq5RNAC17HQ7sEqL2WfIdvQa62iETSTmuSgAY6yBJX23xUi+qDpgUXezVKYjkwVx5A9os57wF+3a6rmhaB1Yr62uIUrYQDUVD6Iv+fIwii+43YNWle9NCVPqqoKrkGT9XUFz/fS91QZkQwxkZ+Ldd5JlSa2U1FWNXU/BkFr1rK6xYY0imPgfgRIJIdfFjGpqdVRSKSxjr6zR29LEdwHzUQiPaq6wo74v8uzF6ChO2pvUZMCM9/kfKwLXWbcr9YDaDVogbSrXKtl6naIVfbNJ13vmgvgOVZ2JDIQQasNto/iSFRRXYkLCFXDVBRAX+87UwFKBBYB1BFJ8aq8zjTdH5l9iwys/9L2v47D3/C/FvM79n+SJA3BiZim2BJBqypvAbtYx+YeCUU9AZ6KYwv5iaCK6sbdd5BtTMz2CJFqsLVIiAie3dldQK+DiUCQa5EQtY7dFC1lR2IotxrFsfRTRVv95AK+V5IktXNVee2xq59iMIKmiYSEOKlmxrZLDRCo10ajtYbVoInPVchPKT/TNvRavrwIq8EBLGJHPpbCOGsgaCHz6fVygD850hBlCBVbMZIjXgfVEowFqTiO2kikjyra6IMWgaDp60if6bo2ADKwDgmqAVMpUdj0TUdrBECcY2+PP427v+H/iH9UfjqILjcdZch19UEfVVQ7s0Nr0GiP5DJA8/mFqgYtRiTHJn3vQ+IXa622tAfy4+0npzFDQssngCaCRoFQJ4I2MhC04EBXpVO4dmRVlHUz8xBgx7THHiSe+dnPXoDmq0EbN5vThTaYJaNUVeKhH2duSWgzixmXsRVoBSco0bNvvibCtiHFLeraEf86KnGL5TocQRtniXyQAfe6mAXGcTU4aFIcA6l5QVxqSw1al0gIYAk+A+YbZyneGr2Bi1s/JObvopRpNZhxbR8UquWniloojgEHX1rXKRalQpB99JsWEhkS6OoUx8qzjuN2H8CQIEY69pWfQmsL0NIk7DCSFEfPOqapEHBoI5HhgW5e9wHsToY0kcjQQBdQmVBfEsu0I1EiIXWgG0WpsWZs3XNTXYygVMZlvukc8KGLY8P2hzgfAAmaBGS+M5G8KSMoXnoPTcDvWOn051Dkx2xUzVXD1EdYYGGp5etYR1PcIqQGh+7xqhVY+NB1Qc0LBEcawaRPkAQQdmRVpnjwmd+DHKPAQNdEkMvOZLXe9iS0Bm1k7EffWaVTHGNFQvQEsj+ISRr2Mc6O8KjSMlgt4xI9U70lRtFNp6T5YvsptpB4H2vMsCMhsWdoDRrX/3vmAjSOY9WHmpekNE/llV83o+Z1hEMwSlMWNQloZt9iHH09sPDVC21Msoa4RWgtH6AOFyXH6nGsCkVpAcJFQjiNqoF2Ddo6kEtt1qCNMzddyGxyGaqGCQgHYMXsO6IjyLFqmEBNcWTQD4g2AoQLkgA1gqxRHN39u5oHia+JvG3oFMcSHgStRXEMQ37o9hZV5c+SZ83vFopEAkokhNbFl+gx7UgQgqbVIYjkRnfCwGzMG17LKhwQXxbV7MUU47BkqbD9sZQa07HqsrGjNGHVsdpGaO2UTnEsyu57ZhsTLRtN98Kb+c7jZcbFPP72M4AKLIS4RWC9j+noewRJbPshSH2w1QfNk0zUxC1CEbSJ7CHIO1cbFMdAQRL6XKIBqubi3cFnUZZRfpNt/3e2K9DQxNAaNF21GfBTRXVnPVYkREfQfC2RqLxDnaERga4ZoDnOVakEHhHoimtTSSwOe4PYTtTjM2RP6j00AYoFupFIcV1lcA2muud1wsxjR7j295kL0HxqPy2Z/cD6oqxB8fIjMYBOcQzPfKepUTvSlSnUeNdkLEIOWj0TtC7KzoOFHpq5RCzCkEhAQcyFh+YyCMUrUf3kfFl6U2Y/NLBQtXylt+ZBqg+SSEigih0gDC41x9Tnt41pzaMG4qmigBAJWTAKeKtKNVpfB1JFAXW4sAvY12odxb+HON/qtaJdR0c2zVSDLbrrGltzGVRRX50JzQGE07IBhaBxEDHdSZQUtIiMskz0dO3/UdagqMTUso7qQ106+0wkPib4NEVCQh0Ck1LTVTs1yuq9H1Fza2a+uUXp66LCOsKxGmmOFafFhUlNClpHy330JS7FddWZ7wATZCZHfJnvJEmadgRJOIJmUH47k8BaEiy0Bk0pdzYTFhwaeaiKI9AMJuWz17FHRlkiKYf69bLm0miE4pq77bMeiIfWoOkJKX3Orj6AaUIUR/FvvZB4jw9rJjlD9yPQ3P9ZrchpG2N9HSMSPaMs0Woi/SyYiQzQ6vdH1A7q983nF4rXFSLRE5FUYveT+8TWoFXdN2ljYqHURNXg+JW1zALLmMz3KG0e0t0bSGWjybEKQ+tMkZBuJAZQDnGM0yj6UKjAwnXfdMU7IFbcQiBoqg+UX2GMhoDqw1GmnOOgtqh54YHuKCUH1e9M6z1UYtaRbhEnQWEKTsQhaEmjBtPpPLQaVXfXAdiGfuh4a9DGmcymA+H7P9HtiCdwlftfX8fAPZIF2RGVoIhJ9ND+XxeVlypNFCedmhqKxAtkyi8PbwYtof2+AF0kRPx3mGOVyXso5u92CEjBN4aKaQaji3W306jTBvMiDEGg95MjLUVvPMiPjiD0rZ3iOFarvBa3CLhnes82wF+DBrS/SxA1ryVu0W1jyZ4PsY503zgshSIQiQSayA+HvTFOm9TlIDVMg5rqbfug12AG1qClqShzkYGFpxZW9A3MJBIpPoM9nRRXo+Hb/+IMLeV7wuxIu5Z11lUvbdayBtqRUZZiXfLWUfytqQYbShWlawX8CTMdKKgCKb5te+yR2f+k1qCVVdXpvEytqmEhjpWap/A8yK3aqcDu44DYcEWpCuA7M4WaRG/uCXpsQ6qv1eIWXetIWb257lgFoBXi2lLkpXa4OL4b9UxrIT+BQVNV8WpqJpqDKtsbhCCReg2aR9ZZ8ZpVYBEjtpIXFcuZntR0MCCyXYHsTVb5s7uW2sFgal4mkB9vuwKjUbWv9s82zMDWp2JKez8vBHUqJtCtKn/PwVYtax6BRBoqjl0HUdOOhO8RmZlnNLynBIVqHh3erkNk2nUEze88iJ/hCQqiHRYR8vDjUSIpXgC86DoxGOiehcxFaIEu9jIbux0r3VkPdVABErPiIQiAqvONQ9DqddESdt2BrkKryxJB6pR0rWag24UOmmsXGljrycGlp9ckqTjK1ggRYitUOrCs19FHx5cUx9AaNC3Q5SRHCE0hXyZUxVFcq7b/u2r5iO5W78lQBHmsn6sMuyKRn5h2HaNmPzlf4n+UpTUS2Z3Asg1zHefrbuVZKZBWB02h5/24Dib1Ob39FDU12F5iQ14kUpV3FIGJHl3dEvCL+KVpwrKJz16AhqSbmpepg8TXW8w2dJEEH8e2nbENz3wrBM0v+qEXGMfQAGndSB6+Kyihh5Q2WgyClqYCqaBr7TJSukRvTKNqynTzeM2qBs0XPFrnMhC07ka9TQTB1wLANsZpUlMz/Pdcl+iNQtD0GjRffYShJBcbWHBUHMeZCOJpP64jEOSGiqOHmjTJMuk4xCGRKtD1UZNsgW44DZBPldbbI8TUCIUg8S2RHE/Bu22kiUi+qKSU/f0tynlEEE+1rDG1I9P62VM1md3Jm8w41GOkv/WMra/nFF1TaDsMgBxUg5rky3xHIj9WalKXg6rtxzJW3KLgCyuZ+y/s2RG0cFqXRV76qaJ5XB8ovYcg4EcQpLNey5oHUxxHacOG6ddgG4SmKGpeCILWpjj6+skBGjUvFEFOVQ2mr20K/Y36yQGhfdAUEk+MIC+CVgsNAYHUPIsd6XquG+sYSBUFHBRHBsU3DkFr2lffOma6HQmsQUuSpFGDybEjnO3+zAVoQLczPc5SlLUBzOu+EDEiCfQZXRvQLLAMVbGj+UiQAeCLhPiyya656L3rouwMPsnYNRG0sMBCSN8rZ6drbRrUvDp4CqUmAapJM1d9MIb/rtegcREEneIY0/A7L3hOox7octAUc5BRquo92bUuOmcbEEFTlLhF6d//ijbSH0Gm0RnoalnMGEQ31eyIr8GsrZY1dB3TJCRAUyIhMXULZpuJIIpvhBpskhCjoUSSuPc/IfG9qNJ1LWtM7cjYqMn0I2jNQCTE1zHpxfNVt0iCLO6vnZ1gx6pmQwC8JFi/wKJel5xXt6ij/rG1UyH1z7oDXCEssNbrwMuS6Ph+fyYmiG9RHH019Vo9XihVlOYLefYITekjkqOrD3JEQlZ5j8CiNBBkD/1fpzjGIvFkS7qS6XSGKsVU9lQtO7LwIGg6S2FdhpWGAPUeCbEj9bNJ3y1GbIhb263XVlcRFN+pZkc4AlUZoxfusxWg1YemD+4FhFGKE0kQP8uamsRyrIp4x4orkgCYIiEEZ4c4VkRN8lMczb5TMQhaUvcmyxlGSq8L44hhmCOTAZpQj/KpfrUfpPC56L51BjEWBC24TovaFTAD3T5qmJlEfuClgtjEXUL3CCHInNYKonl68+AKco4CakeoPgKIFVsRPznF/bZ2HVHrWPFq0GxiQzFqsBKJ72iwTIevROIj0EGJoDFU7Gx1MFy+P6ASZjG1I7qKJIe9QXuC7kUINc8Ut/BRp/Vri6sdaWe+fciPTnEMc1DbjlXXd9MTBmXVj+JIP7sSn7r9TpOwht8j/ewoeOsIqERpVA2aLtDDQCLJ2Y+pQZN2hZHUoroued6H9J0ykoPePmj6/o8NLFoUX788fB6RoCCREELP9Ou3X1sTKQpD65pnuE/EzFTDDFEwpfe3ETR/oofe0ydB4bfHyj+OReLV/mdQfBlb8JkK0CpwHFTFX49xrBKN4hhOTQqvQTMDND81Lz6ICUF+lAKUJl0fWIOWoA50PdQkmm9tBE0xgcV8xTGeqsllXvgfJHOMtAeZT/FSgUVo/QcdDhyZfX0dYzKT9NFEzeu6VjOLuc7Dv1umUfNGHl72TGuhQUIHQc6RcW2+dSQU3df3xjZ0iqOv6aXpbPtQKet8JLbCROIlghxBL2oiaN1IfIuuFqFiKu0Ig3ZloiG+PWUOPRgE4mmHKvDtongpNAUAQ9NLjdaz57FDpkhCOMVRBb5citeqiKzBMfugMR2roqziaqcsycHuQEb9LTCGUUnSovI2BQaU7SZmSBZw3+Q914P4jiBGTzxGUxzNJKvH2c9Ljbrfkegxhx5MAoyG39r+D21XQNfKldkXfxOCbmVVIUnCaYdkgzhneGYg8UF2xKhl9de76T5kBBKZJlqg6y/rmdQqwHH9FMOQeH1PFYH9FMW1Ns+etIPtATRVpV3jmQrQaHBQrXVesjIdtpEmcdQkn+qjbQSrr/Uo7m+qr/Hg3rUG64cLoIifPmoS0D/zrSiOAkHrlhlXGdoY/rsOha+YYisqsKiCvheg6j9YIiE2al5EoEvIT5dBNGswY4qGSSKYI79uUlNjhA5oiHYdHQkKrYdKTDNnXQ32u0GVHqWJlPQHOCqOREsNT/QoBM1PcdSDOaAngsZ4dppOYvhcqg4houZBQ3449lxP9ITOZaoPrj1KtHo2eV3EUBwD5bGzZh+0mEC3oeLIqUGLRH6aqqYch1h9fjgNUJ2r3BocQPVViuvfpUoHutYxSQRFmBqnhzqoTYqXv0yBZPbXEXtEZwMBon8dp3aKEp2h+78hEsJJgo1Vm4kQ9Axoot0hCBqtRQwSv5IJu+46cl14Jo9gjDWQSEarHNOOhImEKLAGCKhBK8P7KQKq7hbgCaZxnuVnM0BjHEQc4QHXyFJVO8WiJvUo7if1NbaKYw95bFqboqY4chQqpVCCh2ZiG1SDtmZkrPQHlxzUkAOCvgodel17RJfolQdyCA0qUQff2lN4LZpYKyMRU/+RJgkqKJWm75ZISOHpFWYTZYhNUHCeHR1BE338Qudqvp6HOJQsdNscNJWkSjNk9vusY5o2xVY6BRzGmXYgx1CllZMphJH8BzqppxVlJaWduYNq0PKy9KrY6UFL7H4EeMJG5pjKPVOxmu/SsyWpSYGnsZ6w84k+ZamwQ9RkOjQBMB6pGjRuYLHMi6ganFbbFXYNmnCs+iA/OSfzrd/TQCdOT25wEDTaU0Rx7EXxYiTBRmkqKL6xYivy2fMnfoQyaCVFdUICGV0YBhAKld3tCtSzxqFKt+YzqHmTLO30T8apYLJEITEa8rNk2JHMtCMB05F/wk2y6ueij2FjGxSUA0yxoXEPsRWbHWFSfENl9mm+EDbdJxZB6+ytoWUEKIsTXpRe1055qEkj7dADCB4Op3jlGoLWWXjaEAkJR9BGWobAh/aZ2bcYWkyaJChLfy0TMJxjpYqp3a8lg7AqtObPAfSKNFWZRp+DmiRJQwEqBvkBIboMYQyd4sgRnjGHqT7YdbhMDel7n2qdbQgFqpJVvzkdZ1jU36koqyDJacBCcWRkCteMHm22kRpIZHANWsQ6lkw6pi4SksckeohSxkDiFWKg0XUCnjWAEj3EaOhel7EukhOxH+m+UR1nkLjFSNkgFoJmZHhDM7ak3AmgTgJ41qamKfrONet7U6XiyFXKjUXQ1Bmu2iVwqEmEoIXSDqleCBD33WeH9LqbUAdKIcolS9Kf9hQxQ8Jq0BRjBuC1eElTjeLYQySEU1NMqBQF8TF0dWqHkXsSdk0Vx/AatFGqmCkcmnaaQtayxiJoy6KQ69hZg5nG2xHyTxTDwYfE13uqpnEHB7qpCnS5IiGxfQBbSHzRfd90ET0fe8g6n8He8Cm6c87cZytAq0VCuh2rNjUphprHQdCIZrIsegQWNcrEqx3RKF4xKnaSq1xhXfocK7W5OU6mbVDmm2pBusZ4pMQtYhxUCiRU5rvjodcQtBgEAVC9R1hQdqZ6f8QU6CdIAK0uxifcoa8j/Rt36FKzYq6uAK2NIId+N13F0fecNqh5EU5mSA2anqBQzyYf+VGBLoMqbdBMosSGEiPR46VK1/esR7sCURvgr+UDhAMVc8gC1K6jQsF4dsxET3hNsPgplRWDHIJMvpfTg9BMKoWKW2SaY+Vrhi6ur+6n6EF0bUMgCGEIWl/1wab6Gq92KlQem641hJqkJ4ZC75mO/HBqmeh7E8UxZB2TJGlR8zgImmxX0LMGh/7NOVednK7oegPmUqqk4p6XVbdfSGsskZ+I76b372IhkaVoeB/qN+lIPEcNcGScH6FIPJ3BAAW63Ug8IBJuQkQvMNGT6TVovLOqoQYbiSBzRJtGWuJRUBzZUwFo1z/77PEnjuJYwd+/qJH5jqAmAUpq2UdNAtpGKYZOmTO5xtOxKO6vKl7xqDnMAk+eBHQV1SsJULUjHChc8Nd5haq2kSXKadT/2zqXpgDFaahpG6P6vvmk6OVrZaa7YkHb+kgTIZDDEXQgBSggUh6+/mi5jpwArTaAMSgrrc26qLzPaTNBEVOn1fz8LvXBBhIfJRIifnISPaMsbTRqj+onVyNonHs+G2e9Ej10bSRc0IWIqaSQrsQVgcRXvMDCRpUOnYveG1OnAjQRNK4impg7aDppg+gzvMhP7RzFqjhSrRC3wSwQpz7YErdgOlZ57VgFO8StAK37/frZEnzPZAkGz6601zHUIW5S3n02lso7yjLCQTUQBJrfNUYpqRWK/w4JrHVhGE6SSbfnMclm/QznIZFK+j50HXUkngQufGqYgCYSEpE0WDPtCIES0o70ojiSHfH3QesToK1yXsstvQYNCK/BbFB8C3/wmjJ8pWcqQKPRFeE3i6HjnG+i1HAe5KZxD3dQhUHkZbJ1hzimaFKn1PiCJj2Ykw9H4MOoEDR/UCL6d1G9W7gapkLQ/PLYugIap6GmbWQysPBn6fVDMiawEOuoBB18CHI/eXgTiewIBhu1fFXwXIA6yFZ5wQp0Cy3QjUEBaFRIWOqDTSWtsOx1kkAGrl6Kr0mPiLAjQplUOATd1NRm7RLQXbNpDnotOY0simOhaijDEWQltsKR2V/2TJgB4tkJpSbpVFUOxauFoAVhCOqeAzxkfkSOVQTFa5xqCMLaj6DRtRDiHSa2omwQp1EvnUvkEAdTHAOfPX3tkiR0HdXzIOvIOxHoZjIk8LbVznftEDN6EGY15byI7CdHiNaK4XuR8Awp9IVs/0ZfPw71v/7eFxFiK0BND9aQeV9P2IzJwrKNBhLPKNMxZfYDt79UUgbACrrGWYJ1bC1f2hYJ6aZvCkXLmJrgiWZHOL6Q8o/D693EZ2dao2o/vZ5zvjybARrLIVDdx0MdOVWUHkapicnYkkGUfXdYyE8cNY9eS9xfTsZJQNnxCBo1mPWLhCSN7ENMDQ6gPchd6yilZdUeiUF+SGzFS3fQegjFGGyBRCoEzce1N3v6xFAcZT8gZu2UdPRjMpMFT8VxpAe6jKDHHGaSgFeDppIhTzPR06DmRVJ8y1rYxZ9UykBy0+q7BSR66s+fM+pimn1zwpNKANUEV6wGs2aj9pjnmt4b46DSezkUR9NmhaMxyrHiBBZij1WyRUXoXGWFRp1jV720osH2oyZRcMGpwaEseahjlaWpPH85SVZ9//aR2Vdnj9/GLqRISNh+bjwPRYmJR9Fa0N0Q3QcNEMlmDpI/ylK5f4GwtdSVlFUdrd8vpHWM6YOmIz8cJJLk2nsh8Yx+WqbMfnAtq06V9pS+AFqip/DXvZpjnDXVYLO0mxFHf+prRzi+UB+xFUDVgQO8RDznbHrGAjQOgqCoefE1DzwVR4Bqp3rUjqQkpKH+2zWmFsQiyLEysnGszHdeomBk+mwjScQd46Ad+kEiBEzCA12Al2nRKY5kAKNqMmQNmidznaYSIY2hARKCwBF0oIOk1JCfkP2vEDROwqAOdNeqmDlKxbHiBbrjrMmVj0Fi9MFpMyEoMeHZO0AY+ILR8B6wID+RVFFODY6uGrnOIxI9GQVo9T1nZCXzXlRp8ZPTxmGIQJfeG+xYaXUuvBocdVYBcdSkPCBAG2ciGRjbqBcgeXj/+dEWbQp3rFaNGhz3+3UVxyKCUpYlMNax+wNCgyR96EJdigXjZ83EyOwDpqw5I7BIEqGGGVPLpyUoOIJA4yzBuoyjODZ6kTIC3alRyxe+js3aKS/FsVbnjlnH0HYdOipLc4eMUZpIH4/Ty3ScpUL0qQyn4gu/Savl89ih1LQjMX3QmOvYSphFJNJD7DHHJj5TAVoFoKoSHvJTxClIAUq4g0VNMhC04KL0pEbQZCM+92vJkBelRhcKmI+Ql7lE0PyBrjhI4pBIqb7GoN+M+zpWSfNB7nq49P5dfRA01fCb4RgVKrAI3Y+UWuTQYPUsJtVuhDh+MmOVU6aRi6CRGmboOqayUTXHMdJFEUKdzNbcXetosSPRCDIH+cn6UaWlQ8DI2Kq+OWWvPmhzBhI/0Rx7VUcQg0TyEmZmP8XYWtZ1UUYVidO8HHnslsx+cMY2lY5VznCWyFnPy24hgK5rzQtSOOu2sUnSdHZi+6CxkBgNQSurcNW8LE2DkMhQp1Qfel9AriovAFxEyOzT+2XpAONcJQQtiuJoSfz4Gn7rTeFDZlP7Uac4dviFpIYZuY4jbR25VNFYiuNUsyOc/d8X+WlQpRlqsJOa4shR5zYH7UdJ/WfWe0o7EqI2rCd6AtYxHolUCBpHDZbTdP6ZCtBocCiOq0IhP+HqgwHUJL0GLY+vQSPufJczrW+gNcO4u94vs0gMBEFHImMQBFKA9D70A9TgAFofNDYSGY/85DKw8FMC8gaCFokgMPazcm4qrGNq+QIQNFvGtKsXk23IdeQ4RqnKYgo0Jd5REjVonASF2v8xGTVyQFhiQw0EOTxhUNaqYb6DRVfqJCQySOLaoDj6aEwAZM2C/n7uoHYdnKBc1EdoarCh+1/LRsc4wzQvq+ahp0OgO1br3O9YjSTFMUIkQaPmcRRUW45VEIJWv7ch0ONXcRQ9tWLUMCGf8RXjDA91Sm3vJYoYwGMExSI/o0yTh2eomooArWTZEXOYlPck6b7vOksBCKM4Zlqgu45Zx8Czo4mgdTfFBlRfyiKCKhqOxDeftWAkPkskS4SjfEutTKKElCTaXbES962a+Igm3GstYcYRG+oX6PJZYJwk2bMVoLFk9tsOQWxgwaUmNXsfhB+yQE2p8Ww+uuE67zrEkaP3zzkUR/0g6YkgcOTX+8pjmw8yi5qnqTjGUEeK0i/dSp+t90ELThig+d26Awvl3BSRTbEBpeLom4uaXKprCw8silKIAfiuVZcDjslMmoNTeE2ZQrrWkJEmqIMmbqJHUzGNsCOEIPguc6QFn3FiK7UdWfudHR0xiKWKUk0wTyQk0+xxeB80PbCIRhA0AQgujRYIl8fWHSsO3WhSO5kx6LPqZyfsijfzTUh8hGOlN9XmBboKpQXiatCKSkPQvOiI+nsVKMkg0Wsm5bdP43SgFu7IVYDWVTdI1yJq+WKooso/IQShK1gYG4FFkJBM2rRh+ufZhkoqxathUkDNPfO5tt8cNgTZ1/AbGApBY4gN1f5Mzmjt0Xpv6+xhUhxjEj0WkRBOH7TYvpQEttCcforjJxVB4/TdKZU6UOjDSHQhLjVJNbmMR37Wub/vSNYwSv4MlTmSJEGWJoqa1OEEpql4bd5A0MK+W6I3qg5AEGIojiEHmR7oxvQKo88neXgOtUj1QQvvHUJ2YsVAO3T+egxNpQXze2hMFFirmoOIdSx4mUadZrIuuhuT2i/Y+LzO7K5ax/hET1LXoPFUHPXvFt6/i0+poe8tG61HOCsAMF8zKLeWdYxt18FJ9DTEhnrUsq7yslcNTlBgEZn5biBoLGqeQPKLCPRZl7LnJJlkwiwPP4NF/660rkHzq9j1p3gpBI1D/9T3YGiKSO/ZplRN3d+NppKiTcHITyoDrlVeSvpc1/XFUvPo9WXJS7Ka+z9mLpGs9q8jnVUxbR/os2WSlXHmZ7Xtj+m51mjx8l2onWqoI7NYCqkUfYpO9BQlSzyOlpnsSJzMfuA65nG1fA0EjaE1wFm6ZypAq+r/cRtVR9eg1ZEwm5rUpwZNe7i8mW+icpRiwwU7qPV8lEXiyJr3QdCkzH7pl9kfa5m+uHVE/V7/PVf9Lnh1ALYxShPZU8XXwFjv/REjTasf0pwCXnptlGKk4ez4rpV6kynEIByNEcXUfoM41hCDmB4s7c/zBxZNsaFwuhz1AeTWoIk6snjKLacGTbc5MeuoqNIMiqNGP+NQdG2jgaB5rnVqMBp8qnXm0BvexyJoOjWJI25BCmWhu7nlWLFsbCzF0dgzgdSk0KOKei1JahJjj8U7qFoNGoPiGNpuRh82hcquPd1uexLuEDfUMH3y8HrCLHKP5CXVZvvtOaDKEsJEQtS6cAXTJqNUa1cQ+mzr9Hr/s5amIjkd2/Ab4NdOqWRinB2h2m7ZzJkp6LZmBFita5X3jZfoaSXeI/eIWscOqnQL0WVPJa+1dk9YZQqj1H82PRMBWpIkP5okyY+XJV8evo/6mu4Q+CWrUyNjG07xAmqHIKh2JBxeBsQGX+Q8mJ/6mvRRsQPAypQ0a3DCncaWSAijlk9H0GIc4gUDiQQE4qsb9/B+cmqP+ILyqeYkFmVEwXxg7chklBn95ELXMWU39CTnARAZqj4iId5Ez4ieNZWgCHUy04TadTD3P1Oe3TYyLRj0ITE6gsYpCm/NVX/+Yu3P6hNdTV/HmGeb1GC9/RSzpqx4qBiG2v8RtSMNeezw2pFeNWgMWizVIxURQhqmaI7vPpiOVTilLGmsYxc1KZWUyLjMNzFmAKIXexyrgURCOIkfsyY4vAYtrUVr/GUNgELQqirMGdavlc5Vv5CGiSAHzJUmQiWXiUQCYk8tGLRs29Cl6Dl+YUYsrIgz2FrbzUCQo2vQ0qTR79Zby1pTHGNaWqhaVl6iR/d9kiQs+SIZPnqgy0DQJMUx4uyQCBojQcHJHT4TAVpVVT9RVdWPpXXEyekbsi7i0RFRlB7WYJYy333UB30bolmDFu5YAcIIyu70jAO9IQccs44Vrxi0qe4TTgMMoTg2A7TwWj5AGBpqtOgzwGYftFDkU1IcAxA0EVjHB9UcJBJQCQpVqB3q7Cs6sh9BU+0KOEF/axifz0r0FKpHYTRVmlWDJppccmTFbYP2IKeWVa8DWBdVcBCjU27FtXZTi8apOCRVoid8/1Og67tWXQ02jqYlfsYgaLpdkZSaTuSn6aDG9C9qqA8yg1chpBE0VauW0Lc/TSQ+GEGrs/TcXo7EaAD6URzXDARBz3yH1qCFioTQnohBmQB1z7koEwX9pNQZMmTip+KJPuktOIAIBDlLpQ3TP881sjRVAVporXStXAiAlXBLU6I4RohL1ZdWlhUrYde3nyLdc26/T93GhtoRVcvKE4/T6cvB5z00OxJFlQ69b4lsl/WrtAbNH+Hr8vBUgxZLcQyhJsUiCKp7ud8h0GvQYnpQAGLTLZnXqhoSxtfgcKmiU612qqzishcAj5pHxlnPvoXXZCh1LG/NTyb6hlSR3H4lEsKjiorXRoqEpE2HwMsRTwXtUDXUDH3WUpnc4NRONSldcetIo8uh1SmO0TVoqbb/A+2Ir8+OOTINvQmpQYtJ9CTGs8ZxxHQ57NCAUG/XEaKqG9sUHojrg9YI0EIytj2L++n54SRv8qJChXB0sBFYMBEEQBcbCkXQUnYfKECsRYyQgHh92rArHOp/7NBFQmTQ1IWgaQkDIKYGjZxvXgKNhJiKMpyapzN81oVfQVhX3AbiZM1zLdD13bc0gWwrEiW2QslBhh3KUhFgCcp50FSq3pNrR0yxoQjkX08qcaiiy+h7piForBo0tUdC5wIUxZfXrqNvwkwTbRrIjjxjAZrIWHUq2mibtW/tVBA1KTLzrXPMvSIJ0gCWUWITgMhSLRn9iwBFcYylJql15PWTA1TNT2jsqdeO6P9tG/TQ6wYwGPnRMrY+SsGYDpIyLoihjw/h9QsqU/jeNymOnD1ZVJAOQEyDZaI4+uyholZUrAyVd26GHaFAl+YPGYKCIxALX2A9rVUco6miBhWk87Xas7JmJE9sg9Q7Af8914vK9fm5I00g++bwhDAq6RzFOplCJCTorSpAq3jiQyPDQY2lJnH3DMljlxWC4YqG+iCrBk38jM3q09nDcayAWsSBaY/NkaVoqDhyKF6xQw/i5fPAQNDyyDIDQju4zx5R86qofnLqu/FqcFRSFghHY0zkh1MXya2tbl1r1lRi5vTvouRJMFW0XjayI0nCSzj3UR8MqccfZ6n0IUOfBLN9k1dsSDurYp47Ons4Mvv08X0SZg0k3sNQ+8T1QaOO89zMd9/+RSGNUdfMbLI59KJJboAme0jEcOETaAe6D/lJGg5qTIPZqiLlQmZgUR8mMUpEgEbN66pBq+cqyyo6aNL7ovgulSiOCokMXUfxk0Nx1PnrRemnzbbnagZoftqIyBpFBxZ1hrcseSqOACGf/URCRKKHgcQX/VQcufQbZUd4dQDmyLT977vOhoppREsLQBzMnGbmNN+6jE/0hDaqBiBp57FOpqDUxN0DHUHrpiapZxWIdwi4NmxMKFPVRpN9Q9FieeptZj+50KBJBBYFm+KYpXx73H5vKoOSFat2JN7uSIZDWUpEputsNGurgxUBR2HJEYnKRvTv0hMUnFYheisTIDywJkSYS69Pkz5IZM30kPRP3zqm0UkisgtlWWFZJyK71qZPPzmar1GPz2obFDfXRLMj66BET/g6AnUwyaxlTZKk8d1i9n9Iw3vO+fJMBWg0WH3QirJHDZrmBDKyCXqGKtj50BwCn5+k1wFwZDyt8yUJq3aE/q4HFuHUJL76GqmtiQxvTNapmY3u2vtKDbOKDqwzTfiDJQ9fltF0Sr0Pmq/ORG9y2Sd7x/1uJNyxyuP2P9ECysrvWJnqm6EBk5nv67oPqgatim54r2dsOUGTQP0ja9C0TKNfbEhRaGID3XA7ojuJ4ZRK0aian6CQ+z8SQVsX4ckNvQ8UK/NtioREoCN5WbEpXk2KY9BU0vYLRkUANSn370fr+1NRz8HdYzrlPNixql9fVjwF4UxXgotAPYGmqml3gCZ+riJt0LhmHchnj1EvLRveRwYWsn1HAIIWsUVayI/PZiaJcr5jKLcA6nPc7xcSKttHqEv4J5W3NcJQDe9lgMbwMaJRf5n4/O7UoNF+5moNZKlKqsawLxQS72eNfSIpjkD3ImdpIjMl8ZQaatbodyaIokU3Joa3CvA4tsqxKlmolG0kCdhOI2UTYtcxSfRG1Uw+eqQ8fEt9sGMtldpUKTnpsTL74vO6XztOTQQtdB3Fz1WwgxpXfwlABVy+/V/z1yWlKwL5kSIhTOSHaipixVbo967DpbGOFc+5MUea8hp+A5TFh6ybjaG7AYJ26FtHnSrNeTZtQxcb8jY2relBfSnnvEbVOoLcx46E147oCBor822g/qHWnDK2co8xagGJ4hguEqIcK05yhLZUTC0fvZ/uOcCrhSWbFSsPT6JRHCcudow0u8JB5iUSmccHFiEKqsr3Cd//dGl5TU310lK1BEXMiqrSAd7apCnf92nNpVF8y9JfC56m8bV8DZGQomA0TjfsSOizXSdJZaDrVaVO4tE6vV0Ho0a+T00wvb+owFYibyZ6wubSZfY5CDLn+zxzAVoFrriFCppi1Ne4ULhS64lz4hoZW3YNmjhIolQcAdntnKWaF2DcW3MlCKKKAiQSEl87wlFxVFRR4aSOs3AKTpYmMrjzWalRax3DEQSgbj/AFAlZ5VWcSIhR3O97dIhrr5CfuBo0jmRvo8C4Zx80P+qpHCNSNIuhi3LbFWTSIa3/OxJB5vRT1AOJ2HYdCRIZTHLtSN92HSyZfU3FN6ZRu47Eh96DJEkka4CT+R5EHltzrHzqg0lS9xKtqgiKY32tTARBp0rHOFa6TDnATyaKucPmMuXhOZTd2GEK9PjOnnYftMDAYiQUVEmJluNjlFUcxVFS8yqezL4UZcjD5wIEPV4kKJgIGhQ6ErqOZqN2Tg1aWVVRbCCJRNZ2hFPjC/RE0HSqqMfGisR7/XugHRlLkIFby9rPjqQJJC0V4FF8Y8VWdJn9nIXEfxIpjol/kSdZk3cd3L8o5RvELBEQKkXOfQILvxqgZtwZUse2QS0EAH/2gxSgYqlJsgaNQ3HUaqfimjkn8v3iWruzkkkCWTsVgyDQg0+/d42xRBDi6gjo1SwEbaT2U8FQRjSHNIjMjG1WH+iEpviyfe33p2xZ5wbFt6dIiG9VdNoIR7XONhqJHoYdaTqkYXPp18tp+A0oJDIWQVNoX/drqQ9g/3YdHJEcZUc4zc/N0YfiSO/PmZlv/VqByBq0EMcKCaqqQhUx11hzUEOoSdGOVaocXPrvzvmy+NoRXR6eQ3GMeV7kexvPHgOJrP/MReLNMTGTgwwHle5x+LMjfsr2HUwELZbiOE6FOrJqV+CvQVPK3oFz6eJbjPumq2GGJ4nET0LHuUhMrB1RLBhuoMv3fWxzAQFqsFrJRTxVukL91VgtaGIp58IXEsFZWXFo2Z+wAK0CkDIidhJwUBzv8MCCW5RLvNPYB19SanL/ZtVrp2JkxgHhTHHpmC3kJyLzze2DZlKTYh0rLoWBkJ91JIJAVBD6vWuIJpd92hWInxwlo74y+3IdmQmKUSrqWmStSHBmUqk4cuYClJPYpwbNh1ZQk8t15CErPkPfj35KDBWVA+FOZhpgR+ha6FCOVXGkYNJ3qSSS04dyXlZgHegKiS9qBC1oKrmOMY16AaK5iIQFp+eUuNbIwCJTNoz+u2ukCSFoCK+dkhQvHjUp5FxzvT8EUR6labSDSo5YUXApjvFuEwW65J/4aNomxbFL8dE2QssUyKEto+o3ya6UCFEcFhTHWOebrzWQJokM5mIESYC6vITTBy1RrZr61PJx+snRHoqtCyORHC4LJklUrVWoidSpokXpf9b0xHvo3qf3l5WGIPsYQT2QeHpeFuz2M/7PfKYCNDCkuIE2pSaG8sBF0HSUiP47ZOiZRt9b9Ro0jhywfWgImueVJHUcT01KlMw+U/WrqGIPB/GT6A4ccQtuMbP1ehOl2MNBfnQHNVxmX+0R3zrqWfm4PlCQcwEBBzoz092aL9Vl9n0JA0pQxMvD0+AcYuMskRTHmKx5liRyP7IQtCo+QAvpp9hEB+P2v6A41r9zKI56IBHbqJrjPEu6GnqpOALhe5nml+IrzCLxvqph3BYXScK3/ebQG8xyEm66zYquHdFru4Mcq/AgBlDoCBf5iRlpKmiwOYmtMGrCxLXFl1CEUUXT2g7F0ADVs7cKkdnPe4iEFJVUw/QHFtDO7FD7qiHzjLVRyZeIlkH16/NSCFR5zw5TbChwvlGaCFVRJhKZJNDsSFzwmZdcBI2+W7gtB5QPKuvIGWdjNMWRAjTZxoqXKO0az1aABrBCdqGsKG7KKA2vL0oT8B0riWr1u6lLhtpVswYtluIIzbHqfq1sMBuJoBFXOUT1q6oia0cCufqE3HCcPttIEnXPWQ6qVswcrmInfnLQvklPFcckSRrID0cAIi9LabDD+fbKAHsDXW3/50W4SIg+ONtrlCmqdDTFkYvoBjpStrkAcnZ4NqtgOtv2+cB29lWgG4cChLQ9Uc5NJE1FW7sohyBVfaR82zNJkkbNQ+h0o5oeHNKagVt/bJsLEEhOiGPFOddsI02BsgTbroji/kj0WV4rv21EnzEi9U1GTWVowqz1/rR+dpgOqhS3YCbDm9dKdkX0hfXWoOkIWsSSKhXTMAEU8XvoXOR885lVACUowmvOyb6WjFrAdsP7iCC+0Tjdk3wB34dsXasUg6tYQncNBC0mYWacq5zEvbIj4XMBeoDGS6Z3jWcuQONE7OPaacwj4GWAKI5ikX0PVyi1rjVX40H2O8OAagEQG1goapI/sFj1oCYlSR1wMSRHlXFH79oRwH+gU60Ipyjcdb3ch55q+WS/oohAF+D1ZmrIw0cGFlnCz0arTDdYr2/Npe9/BuUWICGZfplsTuKP9j+H0mWdItFqRxh0t5CaG9v7AVrH7tfqNWixCLJOc+GIhJA9BmL2PzW8L73vpXXLIxEH/fGKueehIgvUfB2Ia9RblDqCwHtWY+aiejrqg+anAYqf0SIhaVN8i1MLS2d2aN5mJB0rHhLJKbPwzSeEjvxJ1lZfyghGhK6GyU1clhHJPeWf8NoVKDp+uGgN0DzD9c9zjZAz23Wt83WYXyj2f9BUAHQkkx+gxdoR8k+4fdCadiRuHcmOcBIGQL9a1qJSiR5vwnkAJJ7sCAfR9Y1nLkDjDElxjM0Oa4dmSKYEiL+pnOJ+hdZVrD4LtqGrr3Ey36SYJ641tJYPbJEQvTC2T+0IIRbeonLp3MT2kwM7GycbQeaRgW79k9NEtSkPH+dkNva/r2lrqmSZASDpIW7hTRhQppuZxWyPxPG7fUzq/R8d6KYhKo7UbkD8dwxNBeAdZHoNWmwfNJFF5dag9Uv0kEMgqEU8imOfQm85b+Q9J9EbjoPb1yHIy5Ldy5ECXSCC4qg5gTxxi56OVZI0Agvf0aMHurF90LjUJH3DVxGBBdlMjhJtXxXHNDFUphn3jVsTbA6dTcQSCdFQ1ogtovwTZulAop3Z4Wh1c49wGUHrSOQnTcEWGenrg0qqNNPn7WNHGiwYTqJHUnzDkUjxfgEScFpa0N9j1zENtSOcz+z9Cf8EDqI4xquvhak4AtAOh7C59Pf7DyESSeBl32xDf7h44haqxiGGmkSZb+460qEcWzuyYsDm4vVpLWMb10+OaFf0e9eQ9IicB33b5gK4zjcZwDiREDFfWKNqvQYtvs2EP1OoinCJihRovkIziyNFcYzdI2smVVTWssYiPwl/HfVgbs2oFbGOBFK51nepsl9Rjxo0btuTUJGb1vsbFMegtwKobV7J6+sHEPLTTx6bS0EnNAXo0weN14NT34/RAVrJrx3p41i1qEmBSrShQ29f42eWiJ+0juHlGooeDPCoonlJvfLinh2q7eaKPnGSc9b5ZKDL7IOmzRGMoI1MBM2z/zU7FNNCgJK6ReVPFCVJ0qidiqZKM5FI6m8bM1dTxIzfT1EEumFzAc2EQ5L493RDbCg02Zw17YiP4ssZz1yAVjFeQyqOZdXDsWI6BDoEC0Q4BPQgc2rQDIneGJGQEJqLCHT7ymOL6/VRk3R0EAjPXus8bM57R6ngXcdkCoHmg85BEAD14MZQRQFhpLjy1mUlqCaxFMeQGjSR6RP/HYsgA/AaYEkzWfGymH0HZeX7JHpkcT+TEhNbO6WLhHB7vCkEOc5GSiUvT+SrRJvqtYhI9HD3o7LH/RIG4vdw+0roCDfJRGsDxKGmQtKfR01KelCT9LMnRGa/V+1Ixa8dGaVp7wCNnO8+ta2cQaJRrNpsfT9GOPpmX0uOP9P32aG+ltySjbyIa1QtFIRLvjy89udYlJVdU1z/OXb/pwmtI09kpG+Coimz//TEVhTFsWKpUjcTPRH+bqq1O2Bc6xAI2lyirL7r9X/+MxegcZZMz1BF3dQkwTLwQexLqVkV/sBCb3K5Lvz1GK4hCzy9jlUiucL6/NyRJML4VgxqUktOOLh2RHuQmQ8iUcpiMlz6UvizMvWDu+IVoZuDXr0u/IEu/VkYpdgC/YSNQJBEr6qdCpurQSljImhzZhFu3yFq0OIRtCRRdTGhVOk+IjlslLWkQu24WlY+xTEM6TGHQHS5FC3xk+tImaMZoAW9VcyfEoLGOwuaIiGh1youkCi/vsAiQXxxv5KHJ4VKnmMV0/Cb3l/oIiGMPb3M4wJdhaBRoMt39CO+moZY+BM/+p6IdfQBjfrPOKvUsxM2l574CelrGdsHjZKDxNDxPT9NBC1sLnpvCFUOiFcf1MUtuLWssUi8bHhf8oL4PnZED8pD6JsrRm219f2JVhPMSdxn/dYR0GvQ+M+2azxzARpnjDPRm6kowmuZAMoihan1rPL+GduQGjQOf902Qg6XcS2z36efHL9HD323fupr3JoHEmXgqK3ZRoixp0BiIVGAOIrjiiGzTw99RVTRSHQkRA1Tr0ELNWpNJNIzl0EhCHZYtM/n1I5MRqmscYitR+IHFupAF/8dNhftqYoRGDSp0vE1aFyKr+gnp6k4RgSfEiVi1iz0DXRj3gvUyHzdKoTzdrKxYu7Auer7RuqD/sBCe9ZC5bH1PmgMG9tXbCVLlaIvwKDm6Y2qI4NyrvqabjuiatC0xCdLyS1p/gwZqeYzAEyxlSIyYaAFMRxxCz3oj6E4Nmr5GIsTklR1vZfrF+rMqrizI5UIMi+wiLcjFAxSYOIVyWnYkbBhJnq4fdCAcL8JID8PbNEbff/HqsEOSZX+ZAZooxRLJsfbNpoZWx7y01dmH+Dww8mxoh4qceggDU7mux81SaNWeJFICkIihQS0g4jzVjLunIPEPp/2OzewWMUGFtpnsYPPuD5Q9H42pSzpR3EMQSzImC+ZGSpzhDqlhKCV0TVo/ANdV70T7w3d/9pned7aEBuK7IMWckiPsgTrXCvUjgjiuSq5eu2H/t/cEZIwc82fS6Gjp+sQtJB5H4KmfXx4AqB2OEsegpb1DHRl7QiT8q4nQ/rWoMX4DCFDqDjyFYTp+mIVqQGd4eOfq2+5hkh8Mu5Zpj9rQVMBIIojr7k40AzKwnN7tV1h2qGRZmPjzmCoEgwughYZWMtAt+Ql05tJ/shED1PFsSnaFDRVfX2Q/glnPzfFhsLmMoVkhqBKP3MBWsXcrCVRvHocDvRZvrkARBcWhmxAAeOLPiMcuptthPCwCYns0weNRkgxKNC3doSRTUsTFJHF0ECYsacHVYmEhAa6elDNyxQWkf3kaD6pJsjY/w2KY2j2rrGOPGMtRUKesiMl1a0iqdJJkgRQYuoWApHUPH0tuKI1ffqghdiREcns173uQh1N/eP5VNEhatAiHKuEzh4+NYlGqBlqIz++ZIr6PXQuEiIgahK3Nlu/zpCR1khkwawjJzsExNsgokj67XNENKENWYLBfPbI5scikYDe19KvrEi2P7ynpUogizYT3a8PPdfMkWWKmscJdPXrCa8vEj9DGUFAXGCdJUlQw3D9esLtSIqqApZMBDkkyW8O1fuOW4OmvTcaQeNrDWS6HYlMUJAd8e0RDvr+zAVonJEmtRpgFSckoL+FT0367gQWjSL0KJl97XdfYCERtDinUf98f9+cOtAdQn0t4EAvGQeJbTTX0eegNh2p4HXUfue8ldQzy0iRkKZR9DjEmUIikySCOtJwUD2BRWqIhPSQseW8U9gR9FBxVL971QelAxCLxGvzMoOYnImG2Edi/dU2JprYUCyjgYaPNUCvzaUdCZ1LsyM9ake4DsGogSKEOsTi9XNu3x3tRsX0nRpp/Ry9VLmeCBoFulx6cR/kM9PomzHvDx1KWIn3PNBX6yMSohhBntf3SBjorXI4yE/KNyHWMU6pfxd3HeP3SFsMjufPiN+DphLvyVSih3OpIQm61nszw44E2OhgVooexHNUHIcIdEuekjjQbx3lucq0IywfJOgKnpGRJETxiuP/NnmvPGcnlpo3CjxYlLhFXGDRpCZ5AgutmBkIPyBC6jl6144E1jyQI1VFi4Tw7xs5lfMVz5EyRwhaQa8R/efiCvSbqK5vjxASGU/lkL+zA924Wj59sLJXSSJ7qMTWoKnfeQd6PE1LfX4IVRqIy16HoDEqqRTfFF7/LM5r+yr6AZEOAQVoJc9e6vctOPNtqMOGUZPC5gLEeVFVFa8GrW+AlobVjjQcq8jkXmyj39CRpSnWNb2YRXGsLyhmPyatc9WPoKnrDPVllEJfxWCm9EbQaoojt+VQH+RHIWhh2gRAZKInUX4e158xr5U7Wj3egtQww+ai91bgKZHr3yu2p3FZK1pz/Wv53lB7bNiRqLynMT6RAVqa1M3pYhtVB0TtZtQc06fE9rtrjGujxOF4W0fAw0V9HKiRZOh8+su5ijZyc/dB0JjUon6Brvrd93aiohI1r49wAQ9B03jXT9kh7q+Gyf9uI2Mdg9Uwgw9l5ST2tSMhReXA00WQiSodG8QAgVTpkaJKx1JuafD7oMUlzELtiDlIJKSoeJnv8QAIGj0PvuL+EEEe2xDnKljNzdOAxIttJElY7Yh+XsQ6qGt2HXni+J039L6APHEL8Zo4R1/85DJ8+gTWmWHDQvZzTFCs1AeZQke6zQpmA5FdYdbC9kV+UtVmguXPZPHPtlk68DQpjnRt3BKi3jXBiTi/y5InGNgATGL3fxkXC9jGMxegcTPfsuFxVNStfg/N2PapHWFlSjKFWMTc/sT5H7ZrU5mVOGqSbuy5CEJ/qijnwaL+GIKaF+NA6PN1v1YhaHHFo83MN++7if0/AILmeT9RCEomFaNzLh9aZ65jD4ojZyQJ2I3W7e8PCJpadiRsLv3zeZQYJQYQi6ao37vHOBUF7EPUuz1te9wQ/4nM2BbSIWDY8x4OiHSsJOXXL7Nv+507FDOFIRKiZ74jnlOSx+Ym0EKZKPpQLV546HVfv0tvO8ER+qL5Ymv5AI3i6LkXfdaxdYb76JQJ34bYBlFFRcshPlXU/J0zpF3JwwOLaKp0EaDiOASCxjxXm3Ykzp6zRZ8CbL9tyECXyfAZwh4rO+J7B8OXC7qCZ2RQ5ptbYGx7Pw2uykw0DTBADRDQZM0RmwXVjSLPIV6si94Oqu+hbzeCDJ8r5CBTNWhxUHQIPcOUw45BtdRcvGsj/vp3swYtttZEzctzHr5bamtpgENqG1nAOpqOVGwW1Py96/V9qBgNBNmX6MmUAEpsX0r5WdxET2Qvm961I3XCgivQM27UPITNRXtqyVRc7UNNoveXFU80J+S5tr4/1RrMfpcCXaXEHPT24DGWojl+kQRAXV+cip0RNPkSbj0QXfoqXDXBZsAUvuikuMdtFdKrBq1+OTfx0/AhI1ksRa2GGUzxDd3/pI5cM6V8962ZMA6aCoC4Pq66d1+qNPlCJbtdQXygG6rozvLlwi7h2Rh0kHCzD+YIcQhkj6pIFcdR4AGdpUlNcYwUtwg4pOnP62iqqP67z0GlueJpV2TIQhpVV7Ey+wHfrSVuEZrVDzxYqH4jHkHmG0WlmBpJQQjI/JliK3HiFmJUjNekCWQNWl9qHhdBWw2hYso80FeFWMf+Kqaeg6j+uS55Dqk59LcEizb1eNZ6iYQwVRybyGfcPV8xkdC+NT9pkqhmtt5gsKdjlaokKzfhpq4zbK72Oj7dCI3OHi6C1o/iGPY8NKnSYXOR0ichCCFBTBTFMUulAESoSEjofKF2ZRRoj1vvJ5EQZp/WIcSGVkXJem9/O6Lqn0Nq0GKpotSompfo6SG2YtiRIcSGnrkAjfOVpUjCAIEF90EcoiidqzJDNT+9qUnMDNe6KKOyQPpcT1tsRX8PV/VLIWjfrcCC59yYIzTznVKCoieqxcmmZXI/xiUMwhA0lekTc4dOGO6slxWfrtaaLSDRo+SHY6nSYQcZ9SYT1xk0VfCQmcWi/zr6GQ3i5xCiTTFon25XQpGf0PtAe4orLKP/NersSDSKF7MWUFxn3BlcVhUK5p7p48jJBstMRFlfu6hG1Wkie5lyWuXQ/o9LNoufXEpZ75qfVGsYHrCOsQhaTi2HGP5Jn/no5WumXQn161rvT2pmCjPR0yf4zDT7zFqXxPoreyRQeyQEQYtpK0VIJDfJ2ovia9iRIc7VUf+P+O4OXg0a+tWg6Y4V8yCKdawaReJMx6ooy2jkJwhB07JGvRE05oOYR66j/h4ebSRFURa1NHzwVIH95OoALbJ/V2jGKkn6yuzTOvqvUzXkjFNMDXFQVTIkXn0wZCRJgrIEqmSARA+zb45qKBsYWARSM0ZpEiCK0B6h1GwA7Ma85tA/PhhB65UwC3qrfD8V97OSKX0cAnoeaufb9+6QlhbW9ydqz4Q0qo5phN6girIQ4bD935hLOqhxz174SFCBn7Cgl0TJ7BtZ/acdoOm1rX6KV791JjaR6IP2lGX2DbviZVb1XMdw5KdPokf7bhybpa9jZPNottiKnuiJpIqWJV8NtpnoCZurZUc88/0q7oOWyOL+KHGLgOyHWTsSDItmYZBqliZYE4IWNJMYDSUvzycoBC2yf1EAzN9XHlufg1vL1wtBC8hYjUyKY6j6oP47461ZbZRiZfbpvnFuuUQ+cx49wjWX/lmuQeu2YmZouwanuLlvoicERTBrWUOn053g0Bq0KDsC/v7Xn+2+CTOvaE3PhJley9pLZp+ZQNNNQfg9V8kR8X7+B8Tdcx1B8AiS6EJbMY5VGlY70oeaZLI3nnZ8liSCOr0ueBRHur4+z46klPls7ADITwjFi6aIpTiqPmj8uczfOSOU4ti7D2AdfHLb1/Sp+dRtJudSG/5IpEgI2RGuNgHgp0Na358iqJZ1CJEcaUc8l8v5+E9kgEaZ7yJSil5/CzdTGNtguclV5r0+VtIfCFNxRE/HKiTzPQTFMQ04yNJEr0ELniqoBk1SHCOpeaHUjDQRtRtcmpU5yA5ygnI9sOgTVAMcJLKmdBFi8JQdKUmV/i7UoPVFfkIPllGaRgtpAEahOPO1q+8C5VytY1y7DkCtfWzNT6y4RXwNGo9S07hnEc9OkiRyz4QgaDHJPVJxZNegDVCDwz9X+xkeendRhvXv6lMrzRa3aCAIEfu/VqjU5+4aSY/vpovkcFDaPrVT9F3Y4haBfVnb8wkkvix51xrDaKBBz+eqqFgBV187kmp2xJfo0f8cQ3EkJJKdMBsgQBuy4f0nMkBL6wxVEV2UHuBY1SuYR2b1dcPCk1NNNQMYE8Rov3veTn/PB2gw6+0nNwSCJpEfXqakDMh0m6Ophsm7ruWa12fEHEnAXPT6PlRR5RD4X9ssMA6eKmg/mmproY5Sok3GEglJodWghZtKfVvxEbRYimMYgjbK+snsh6Ba0o4UkYyGhj32vNZE0HqgurGZb6Lmsdp9NNYxbC7VcJyrmhfvfIj3aBSvgBq0mHYYaRrWB6qPY2XuGe/7G3+Ps69UI8/ZYzRdHxSfm0DuQxWl9yvBNM7+Fz/jEDR1rnLmaiY6w+Yy+7SGIGhRwWemKzH7X5/1uG+0jjnzDP9uig31RdCo3CMOQQubq3WG94/Pnr0Ajae+JhSghihK98o6mxnbiKhbGmBO5jtL2KpdthEiEkKvXef95dq9FEdDxbFPYMHxB4Q8fMnOUJmj2QeNt455GUeh0V/OpsH2QSLrOULoN+s8DmXNAtZRBYPfHXELMu75AI2queIWse06QhseZ2nSS7Wu4aJ6Ez3q4IqrQeN/t1aiJ+KEo1sVmyQqSr489hAZ23VRsp6FfmFFs3YkpLi/V+0IM9DVryf0tqlG1RH2OeYMTlS7Ak6yLiTx2J7LCCx8z4/elzXS+Q5JstL1xexHVf/Mk2oJsSPmkEhkHp6giKllJYYPF0HuEzTpNWise+b4nTsS8IW+GnYk0r8QCTPe8zMEVZrsCNe/7hrPXIDGGZT5ju5fFABPy7qYaGU5JcPOd77jI/SQLJIO60c1mNU2oM9RMrnycQX69JOxjoleKxI+VxqwjrTmJLYSTq8Iy+qkSTzlVn8Pt5YP4Bt3c4QUUydJIvY/UxSh76BM9zA1aD45YaKZxCHIoX1wRj3tSEPJi3mtq9iEmfY7l9HQB0EjuxVLs44VCQkOLKTy59NXeqP3qwSar/2Mdp1RapiQ6xjSK8z8nTNkAqEH5TdkJIlINOclL6kVwmhov1f8XOciiPcyWXo2ah+lYTVo9Io4iiOpmPISFM0zO3KPMBMUfcVWiJrHFYOj+WK2boMqzUn09LQjSaLW0Yeu9xUJkTXBTDvShyptijb9qqQ4cjMl1EOlbx80boQ/iEPMeO84TXup2IWIhNBLxUHSj+Llz9yJvy+Z3GTrZxCCxsy4UiPI/iIhvkyJGLF9+fSP5/HRk34Ur/otXDVMQOz/WKfPnLdrkLQy0F8FzDfSBFJsKMrR1x0Cz3Y2G7WH91PUbRbn9ZodCZsKgLpvPMeIki/9Ked+OqUKWoA4e0wj5r2qLyBT3KJHVr+BoDFeH2pHWu9HQHF/IzkRcSZq1KSQRBEQkdyQYivMWr6gT7e9P5EiITyZffGzbx80HqIbjyAAgpmignj/6+UcPYLPgomg9UlQtP08fv+uWDtCtaw8sSEK4uMD3ZyLoPUIdMX7Ey0Rz1/HWHq8qCPn7n/NjkSewbFMKdt4xgI0DsERWg1af2rSZMTbQHkP2iEdEFyucZ+59Ld4DyLpND59ildfkQQAQbUjWZqgqFWS+tCgxO+8QLeKVt60/+6+Nt0Axt833jqKn7E02NBM4ziLDyyaTikj0KVET4moPoANO+J5uPtSfNM0UdQ8Zqawj6x4YvzsfG39ongVR/U7t/YjtpavOW+cQ0x9AUMdgmAETZ494XW0cXaIX9uqq2HG1o6ECPQ0arkDv1x4/bP6O88jab+9KHmNevXr60Vx5IrWNM7s4OmQJUlQApkuKXY/AvW5GoggBz8vmg0Dwii+0SIhAWJDUnk5YiHDqdKazQqfrlnL+v9r7+xCJTmqOP7/99zdVdcIakwiJmjERVAf8iDxJaBC1ChiVFQiIkGjUTHga8QHBZGIID74BYkGI6ghCOISxRjzEgTBRAkmMQaX+LWLuvjxFDC7987xobu6a+bOTZ9TNXdm7s3/B8v0ne2aqumpPn3qfJVTngOFuaxEX2zFo+cdCeojs31F5YjjM6s/YcX49kHrckcKQ2oica+7LLYFP0p6uPhz0MqLhESU/fTf552hGPPMLGKcIQE1uSOh0LzJoEhV56CNNm9PaPsKdxWOnV9WiKNvgTZ40EoV2kQ0xLdK/nkeREyh0mWen/TdPGGttbmswKDs+XPQajzxcPeVhy+vatuTPuS8YpKU7oM2jShWS/KgRfcvKkrub4b8T5d3veujRLEaDJ/OHLRgsa1FfZUoVkULC8Q8vENudfkz2JsjvIzQvMh1HMI3y2XQ1Lw5aHm/sb52bae0zyGO7X63/m2A0twoua+HIiHeUOnhuES8NqS7Wnf++WVl9rP9FMOGntiXy0NuAce18dz7oREcEAbLd31Z57Ek3miVpEWkMXpurhkFNdzT3EN6dB+04cFVdB1zxWrku/UPkgoPWiTEMVmolhHi6PWgtQ+SggfRTL++sdUUW0ltXDHbmXJTYr2bqeLosXDl1Qf3OQttCI8oNPR03ydSCKDG+pasf96NfZchR1wW1+6cc0vYrmO0SMjcdSzpz1C+SJ40yfDjWyjM5PyUKgRT5/5FFQoq0N5v3hy0nLIctOG56lnfHV1G7oizPHytYZyZfPbI2NRfjSz3eq9r90HbaposH9/RoOuiJhrIa/isMYakS7Ht9fxUXsdZD9r4+YNxOtzVzL0WXeiWGvdKqsGW6qCRUOkjW7mhJ9pX+1pjZJ1nq/oTNpBk+S5XrAZFf7z62pxiVdBf70FzCdCmSonLW4x60HqhVF8N0xsSU5M7ksJRvQrqji2nSIjXEzm10qRaLjzee2x1C7R+b5qAxbW0SEjc0kh0X23fqzg2zDaqrvCyuvY6WsLCorUw+kpO18qRhG/fnPac7eJ90PxyZNiXslyOfOL1r8Bv//pfXHXiwnDbpBC0lu/x82fnf6yvISnduX9Rflwo87yKFdDeO95zd/c13A+eOVMV4th761aT20q0zwLA7+0GynSL/DquwoPWNMS57R13+xoPWprE7bX09LWrqZsmKFci4e2LmOT6icfgHIgemicPlfbM/ei2P4vaDwYKX5X0fJwRJp2zZrpCD9oy90E7lAu0ZPn2/ijzpOsa2USyZm+yIQfNt7Co2ag3Yo3uhdJ26T5o/r6AFL9evtA9fmzL3XbSNF0OWr0HbbzYSvv/5gzF2N1X/lmO85tWaQMKra5dk4gH7dz2FMe2JgV9xRQCEpg6k/kXtO6PIqHSO1MrzEFrX8fyWIFFIY7h7obQVI+BYlIrR+hum75LqQctbzL23QajUvlC91NXnwi3SaTk/qmzzH5N2GHUez1TMbLEk0/iXLeXo0c2pEVIae4I0D5XPQpujWI1U8UO4/eeBeXIPGT7LEjHYwwhjuGuhpBfp3GkOjSvIZ4syEErITU1pwctl1nRey2dXlLFMeklEfrqg94qjt0pNUZSb7Xuag8a4M6Rn63iWFIkBIMn0jHWGk98Wmt65YjrM+s/YrX4FKvOg1a4MeoQOz/eNldQ87YRhhBHx9gmtbkjfutHHppUch1zJcCb6FoT4vico+0CwfcgQpaDFu4qVKEvnTp1JjPvbh8TGvlCtyhUNGCNy8ODiiy8QYWgYZv0C+x/iGNfDbZ0u46AHJlP1C7bAHT2day/mgdJauNSjPr9FAv3QQts17GMUNEaGnYhjt4qjgHZP0+/xcvO1Gf5zo8LZV6JZ7IqxNE5Z2ZDk8oWaMu0fD8dRCbDAouYGuOGN8KhNjRvEnyGD4umsoUu0D1XA+fXGGS9EQ758+L4sTLDZWRhkeZ8ycztQ6W340VCyp4d7Kt1R56rpRveA/4osBpP/LwHbXxOO37X2BDWj9fiFNk9fFF7wOeaXkZxi/TDem7EI03lPmj58Uj7NMG8e/rMM2P59sRRs26D5bRAc3vQllRmP5aDFmfWEzl+Pkmcn9aHOHoUo9z6VuT1mQlfc4wNrPCgxWjYeuvaUOmySnRA/DqWFraIhKbmIY77XySkfd125gHs1RfgD3FcRpn9Evoy+84qjjUhXnkhjYgHYf7YSx467TE6JGpDHD3XZtbyHesrWsWxVu6QmQxznF8TvhYNFa0JuU3tI/pJxKg0T1ooRHPQShcVQLZR9dg+gFknzzka96ANRcyc+kwgomFX26TDTn33Wk2oaGofCZVO1Dhb3DmYNcWGdsmRUPPF46n/iM0jWb6tMMQxNfE8hJpMsQIKPWiBEMdJrliFe4q5p9P/FufyBcPXJg17T2TJw+h4JwjdOWir2qg6PUi8pr7dH5D15buOdSGOfoUgmoS+V3vApzS24UHD8X6SvCFA2X2drl/Ug1ZaGj5iaa8tEpLmtKdtunS1BjPAUWxoCRENNaQiIaRXntcrjTtmOOLKBcyO49111Qfjhp/qIiFhy3dQscqiAID9lytETIb1IY4V9875bZ9cmVmgFcrz/hnuCpcrX1j0hs+pLwdz8PqX64ReD3Iud5LhONZftqVF4DlclqfYvk59xWDn5Ei8v3y7johsKDL05AZklxyJ6aw5KQ1imUVCVuZBI/lykt8m+cPsveMk7yB5G8kPLKuvhu3irDwHrW3jsnx359bloPnLY281wx5XNUnDkQdDa+0ruY7Dsed3INFvQlzyuz27E4TecMrIRpCL2idGF7rdfxfvgxZslVuo9r+KYx4eUXcdXTloGIoPRK8Ls748+xc1zKp21eSgeQw9vSJVVpAk/wzXA33CKpkVUXZ6T/wyPMieezuTIyURDTX0RUKmvmszhDgWyNfu1RtOGQ2VnqdVGv1l9hM19872ju9+yBdo0a9GckZmjl9L7nHs7TCXYeP0XqaaEEdnmPZMiGOJLtMwpKCyfy2f/+YsvlXjQev3k/Pug5bJneMFHrRJrud5vluFl3VGPrt+s1z3CXdXXAyudKNqwC9HjtYUGwp64j24vjHJ20meJfnI3PvXkHyc5CmSNz/dZ5jZE2Z2w9zb7wbwQzP7KIB3eMbiT+5vPT9FuSMBBXV+g9kiq1MSwE7F6twSPGjeggxAe+PWWHi9/U2aPMQx3l9fJMS50AVaq379Pmi+9qV7rs1663wKcc22D6mLiOdnZSGO3b3dHsf76z/HWX2wJlQutYlcx21nyfRFRIwvW00mRyoEiSu0rntdhjHEa01eZ4jjsO/O+PnLUBq9C9/a0CSybDuZmtwRr0c5v8fKFhZN7y33RkSUQuQyzKfPAIVe/OB1PFrhiQRKQhxr5n/76g1x7EPAK57BKUd4dB+03INWkoPWEE8FdMpJxXVMbXam3uuYH5fpF+ecC92cEkPPJNPPV+WJT3KEY/J/9AR/iON3AHwNwHf7zyYnAL4O4E0ATgN4gORJABMAt8y1/7CZnV3wuZcCeLg73nGOZZSG7WQD6hJrXSEqHBTUUmVgCGEYPze/8WsKTkQe6MV5Wtn38V7LmhDHSChB7cIiFOLYP0hKFaN8MTh+/rKKhFz0vGOj525lbv0yBWI49s7niPW5hiZb6JYYeiJl9ns54gxFWkS6lhG5BRRaXeden3ZctTIrH6vLgzZUqFx1iGMyDsKZg5Zkfo3S6JXPs6FJcSLbpuTU5I54czKPbtXN57by7YqKhDCTYYFFTG2Io0eGXXTBIPNLvM8pxLdt77lXu4MKXabNHPD3tepcviIPGmNb5dR44qOG9Noy+5FtU3LKqsHmep5jgbZVv0BbphxxzRwzu5/ky+bevhLAKTN7AgBI3gngWjO7BcDbnf2fRrtIewhLDLeceZBUKATefcmAboVe+IP0VqSIQENd3HbE4lTaV/RGbJo6z08ShE9tj6/18xLVtd/Nu+H3MoqEuCyujb+M7eL+2jaXPO9Zo+fWlmWOLhSaJqbc1BD1XO7V3lMeOI9fP3akTBRGFLn6e3v35+x57swivLwvwK+snKuIaKghV95Cyf0FfTXB33BZvzkQ8yLVetD22/INdEVzpuWRKREaBkMcl7CIP7/j816/8LnDAq1oL8ZoyHrF/E+Nps7cgWYJ99r5HcMxz7Yp2XV4VoE8n0zY5ylGig2VGV4WH+/dV+z83e3L5FBNLmsrR8bPP1JRbGgIJ16eHGHaj2P0xHaBdreZvab7+z0ArjGzj3R/fxDA68zspj3avxDAF9B63L5lZreQPI7WM/c/AL80s+8taHcjgBu7P18J4HH/1xPPQC4E8K91D0JsNJojYgzNETGG5ogYQ3NEjPFSM3vRov9YWRVHM/s3gI/PvfckgA+NtLsVwK37ODRxiCD5oJm9dt3jEJuL5ogYQ3NEjKE5IsbQHBE11IQVngFwWfb3pd17QgghhBBCCCEKqFmgPQDgBMnLSR4FcB2Ak8sZlhBCCCGEEEI88/CW2f8BgF8BeCXJ0yRvMLNtADcBuAfAYwDuMrNH92+oQrhQOKwYQ3NEjKE5IsbQHBFjaI6IYtxFQoQQQgghhBBC7C9LK20vhBBCCCGEEKIOLdDEoYDke0k+SnJK8rVz//dpkqdIPk7yLesao9gcSH6O5BmSD3X/3rbuMYnNgOQ1naw4RfLmdY9HbB4k/0zy4U52PLju8Yj1Q/J2kmdJPpK99wKS95L8Y/f6/HWOURwstEATh4VHALwbwP35myRfhbaAzasBXAPgGyQnqx+e2EC+YmZXdP9+uu7BiPXTyYavA3grgFcBeH8nQ4SY542d7FAZdQEA30GrY+TcDOA+MzsB4L7ubyFcaIEmDgVm9piZLdrE/FoAd5rZU2b2JwCnAFy52tEJIQ4IVwI4ZWZPmNk5AHeilSFCCLEnZnY/gP/MvX0tgDu64zsAvHOVYxIHGy3QxGHnJQD+lv19untPiJtI/q4LTVHoiQAkL4QPA/Bzkr8heeO6ByM2lovN7O/d8T8AXLzOwYiDxda6ByCEF5K/AHDJgv/6jJn9eNXjEZvN080XAN8E8Hm0itbnAXwZwIdXNzohxAHmKjM7Q/IiAPeS/EPnQRFiIWZmJFU2XbjRAk0cGMzs6oJmZwBclv19afeeOOR45wvJ2wDcvc/DEQcDyQsxipmd6V7PkvwR2tBYLdDEPP8k+WIz+zvJFwM4u+4BiYODQhzFYeckgOtIHiN5OYATAH695jGJNdM9LBPvQltkRogHAJwgeTnJo2gLDJ1c85jEBkHyOMkL0jGAN0PyQyzmJIDru+PrASjSR7iRB00cCki+C8BXAbwIwE9IPmRmbzGzR0neBeD3ALYBfNLMdtY5VrERfInkFWhDHP8M4GNrHY3YCMxsm+RNAO4BMAFwu5k9uuZhic3iYgA/Igm0OtT3zexn6x2SWDckfwDgDQAuJHkawGcBfBHAXSRvAPAXAO9b3wjFQYNmCokVQgghhBBCiE1AIY5CCCGEEEIIsSFogSaEEEIIIYQQG4IWaEIIIYQQQgixIWiBJoQQQgghhBAbghZoQgghhBBCCLEhaIEmhBBCCCGEEBuCFmhCCCGEEEIIsSFogSaEEEIIIYQQG8L/Ad1UgYK0KofTAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABTRUlEQVR4nO3dd3hcV50//veZPppR79W2ZMc9dhwndgopJCEhhZCwEAIbWMqGLLAbdmH5sSwL/NiF5buw8IWlJZSEkiXUkEJCSILTEyd23OQuy5LVextNn3u+f8yM5CiyNJJm5s695/16Hj+SJXnukcee+9bnfM45QkoJIiIiIppm0XsARERERLmGAYmIiIhoBgYkIiIiohkYkIiIiIhmYEAiIiIimoEBiYiIiGiGlAOSEKJeCLFDCHFICHFQCHFn4uNfFEJ0CSH2Jn5dm7nhEhEREWWeSHUfJCFENYBqKeVrQoh8ALsBvB3AuwD4pJRfz9goiYiIiLLIluoXSil7APQk3p8QQhwGUJupgRERERHpZVE9SEKI5QDOAbAz8aGPCyH2CyF+IoQoTtfgiIiIiPSQ8hTb1B8QwgvgGQBfllL+XghRCWAQgATw74hPw31wlj93O4DbAcDj8Zy7Zs2apY49p0RiGo70TgAANtYW6jya9Dre50MwGkNTuRd5Dqvew0mrgYkQeseDAIBlJXkocNt1HtHSnRr2IxiJwe2wwh+KYXVVvt5DSrvj/T44rBa47Bb0T4RM93+OiLJj9+7dg1LK8tk+t6CAJISwA3gEwONSym/M8vnlAB6RUm6Y63G2bt0qd+3alfJ1jaB7NIALv/oXAEDbV6/TeTTpdfU3n8XRvgn84WMXYXN9kd7DSasfPHMCX33sCADgrtvOxdXrq3Qe0dJ95Oe70D7kx9rqAuxuH8Gzn75c7yGl3Vu/9Rzqit1YV12Abz11HCf/81oIIfQeFhEZjBBit5Ry62yfW8gqNgHgxwAOnx6OEs3bSTcBaF7sQCk3SahxoLFZzm3WJJQJC5bE92mW546IckfKTdoALgJwG4ADQoi9iY99FsCtQojNiE+xtQH4SBrHR5RF5rjLSilhUSMfTX2fmpSwQJFvmoiyYiGr2J4HZn0FejR9w6FcpMpP52b5PjU5XVkxO0siIWkmee6IKHdwJ22iBLPcYzWFKkjitAoSEVE6MSARJZjlHqtJTCcHk2MPEhFlCgMSzUuVe49ZmtFV7UEiIkonBiSiBLPcY6VKPUgi2YNkkiePiHIGAxLNa6GbiRqVWb5LtXqQ2KRNRJnBgESUYJYgqEmp0D5I8bdmee6IKHcwIBElmOUeG1/mr/cossPCChIRLdJzxwfm/DwDEs1LlXuPuZq01UhIbNImosX6U3PvnJ9nQCJKMMs9Nn7UiN6jyA7BJm0iWqSu0cCcn2dAovkpcu8xyz1WrQoS90EiosXpHGFAIkqJWe6xah1WG3/LChIRLYSUEl0MSESpMctKKLU2imSTNhEt3PBkGIFIbM6vYUCiealy7zHL96nSYbVTZ7ExIRHRAsw3vQYwIBFNM8k9VqWNItmDRESLMV+DNsCARCkwy9TTfMzSx6JUD1LiFcwszx0RZUfniH/er2FAIkowyy1WSgk14hHPYiOixekYDiDfZZvzaxiQiBLMco9V6bBansVGRIvRMeJHQ0nenF/DgETzUuXeY5adtONnsek9iuzgWWxEtBgdwwxIRCkzyz02JiUsinRpc5k/ES2Upkl0jARQz4BES2WW4DAfs3ybUgJWRUpI3CiSiBZqwBdCOKqhvtg959cxIBElmeQmG9PUWebPs9iIaKFODcdXsLGCRJQis9xiNQWn2JiPiChVHQxIlC5maV6ej1luspqm0mG18besIBFRqk4N+yEEUFvEKTailJhlJZSmVA8Sm7SJaGE6hgOozHfBZbfO+XUMSDQvk+SGeZnlJhtfxab3KLJDsIJERAvUMexHfcnc1SOAAYloillusVKqNMWW7EEyy7NHRJnWMeKft/8IYEAimmKWm2xMqR6k+PcZ03QeCBEZQigaQ+94EPXFDEiUBibJDcqIaRJWVVax8bBaIlqArpEApMS8u2gDDEhEU8xyj5USCh01wn2QiCh1HSMBAPMv8QcYkIimmGU7g5iUyq1iYz4iolRMbxLJJm2ilJnlJqtJhabYuIqNiBagc9gPh9WCynzXvF/LgESUYJZbrKZNH8FhdoL7IBHRApwa9qOu2J3SaQMMSDQvs6zumo9Zvs14BUnvUWQHK0hEtBCpLvEHGJCIppjlJhvjPkhERLPqGA6k1H8EMCBRCnjrMQ4pJaSEcgFJ4z5IRDSPsUAEY4FISkv8AQYkoilmqEIke3FUCUg8aoSIUtWRXMGWwiaRAAMSpUCVe48Zvs9kUFCnB4lN2kSUmukl/gxIRAtihntsLJEUVFnFltxJ2wzVPyLKrLahSQDA8jJPSl/PgESUYIZ7bPJ7UGcfJFaQiCg1bYOTKPM64XXaUvp6BiSal1l2mJ6PGb7PWCIhKZKPuMyfiFLWNuTH8tLUptcABiSiKWa4x2pTAUmNhCR4FhsRpah9aDLl6TWAAYlSoMq9xwzfpqapFZB4FhsRpcIfjqJvPMQKEtGimOAuqynXgxR/ywoSEc2lfSi+gm1ZKStIRAtmhkbfmKZaDxKbtIlofu3JFWwMSJROqtx7zNCknVzunspBjGbAjSKJKBVtyQpSGafYiBbMDPfYmGJN2jyLjYhS0T40iVKPAwUue8p/hgGJ5qXKvccM3+ZUD5JiAYlTbEQ0l5ODk1i2gAZtgAGJaIoZgqA2tZO2zgPJEjZpE1Eq2of8C+o/AhiQiKaYoQdp+iw2NRKSYAWJiOYRjMTQMxZc0B5IAAMSpUSRu48Jvs2Ycvsgxd+yB4mIziR5SC2n2IgWyQy32GQlRZVVbMkgGGMJiYjO4OTgwpf4AwxIlAIVfjgXYrp/x8g01c5iszAgEdHcFrMHEsCARAQgXokwwy12qgdJkSm2ZK8Vm7SJ6EzahvwozrOjMC/1Jf4AAxIRgHjFxQw32djUKjZFAtLUFJvOAyGinNU+NLmgI0aSUg5IQoh6IcQOIcQhIcRBIcSdiY+XCCGeEEIcT7wtXvAoKKcZPzbMTwhhiqnE5Pegyio2S+IVzAzhlogyo23Qv6BDapMWUkGKAviklHIdgO0APiaEWAfgMwCeklKuAvBU4vdEhmK2CpIi+ei0CpLxnzsiSr9gJIbusUBmK0hSyh4p5WuJ9ycAHAZQC+BGAD9NfNlPAbx9waOgnKbCEmoBYYqApCl2FpuVTdpENIe2oUlICTRVeBf8ZxfVgySEWA7gHAA7AVRKKXsSn+oFUHmGP3O7EGKXEGLXwMDAYi5LlDEWYY7VeppiZ7EJIeIrEM3w5BFR2rUOxFewNS5wk0hgEQFJCOEF8DsAn5BSjp/+ORkvNcz6SiWlvFtKuVVKubW8vHzBAyXKJIsQptiNWbWz2ID498oKEhHN5kS/DwDQWJ7hgCSEsCMeju6TUv4+8eE+IUR14vPVAPoXPArKaSrceoQwx1Siaj1IQHw6MWaC546I0q91cBI1hS7kOWwL/rMLWcUmAPwYwGEp5TdO+9RDAN6feP/9AB5c8CiIdGaxmKQHSVOrBwmIV5DMsMknEaVf64APjeUL7z8CFlZBugjAbQDeLITYm/h1LYCvArhKCHEcwJWJ35OJmCA3zEvAHAeeTh01otIUm0VwHyQiegMpJU4MTKJpEdNrAJByzUlK+Tzi95HZXLGoqxPliHgPkvETUnKqyarQFrDxgMSERESvNzARgi8UzUoFici0hBCmaLZKhjxVdtIGEgHJBOGWiNLrRHIF2yIrSAxINC8zNC/PxywbRSZ7cVRaxWYRnGIjojc6MRBfwdbEChLR4plumb9KTdoWsEmbiN6gdWASbrsVVQWuRf15BiSalwq3HrNUkKYPq9V5IFlkFZxiI6I3ah30YUWZZ9GrehmQiGCmw2qTTdrqJCSLhcv8ieiNTgz4FnXESBIDEhESG0WaoFYWU+yoEYBN2kT0RsFIDJ0jgUUdMZLEgETzU+DeYxECZlgpruQ+SDxqhIhmaB/yQ8rFr2ADGJCIAJinB0lT9KgRMzx3RJQ+S13BBjAgUQpUuPWYZxWbej1IrCAR0UytA4s/pDaJAYkIZjysVp2AZOFRI0Q0Q+vAJKoXeUhtEgMSEeKr2MwwTTO9k7bOA8kiq8Uc06NElD4tA74lTa8BDEiUAjNUVuZjMcdJI1OVFLtCh7Fxio2ITqdpEsf7fFhVyYBEtGRm6UFKHtqq0hRb/LBaEzx5RJQWXaMBBCIxnFWZv6THYUCiealw64lvFGn87zQZFGwqNWkzIBHRaY73TwAAVi1hk0iAAYkIgHmW+UeTh9Va1QlIFh41QkSnOdYXX8G2ihUkyjQV7j1m2SgyWUmxKjbFxqNGiCjpWN8EKgucKHTbl/Q4DEhEiK/6MlUFSbUpNhM8d0SUHi39PqyqWFr1CGBAIgKQ6EHSexBpoCnYgxSv/pnh2SOipUrXCjaAAYlSYIZDXOdjMclGkawgEZHK0rWCDWBAIgJgpmX+EhYRr4ipwiK4kzYRxR3rS88KNoABiVKgwg/nZlnFFpMSNota/62tFnCKjYgAAMf707OCDWBAIgKQPGpE71EsXUyTSk2vAZxiI6Jp6VrBBjAgEQEABEzSgxRTLyCxSZuIko73pWcFG8CARClQ4dZjEcIUU4maVC8gsYJEREB8qr2lPz0r2AAGJCIAgMUkJ8JHNU2pJf4AD6slorh0rmADGJAoFQrce0y1ik21gMSz2IgI6V3BBjAgEQEwz2G10ZhUr4LEgEREOO0MNvYgEaWPmZb5q9aDZLEIUzx3RLQ0R3rHUVPoQmHe0lewAQxIlAIVdtIWgGmm2JSrILEHiYgAHOmZwJrqgrQ9HgMSEZKr2Ix/k42yB4mIFBSKxnBiwIc1VemZXgMYkCgFJsgN8xJmWeavYAXJLA32RLR4J/onEdUk1rKCRJReZulBimoSVgWPGmEFiUhth3vGAQBrq1lBIkors1Qh4keN6D2K7LJwo0gi5R3pHYfDZsHyUk/aHlOxl1JaDBVuPcIkFaSYghUkG3uQiJR3pHcCqyvzYUvjT4hqvZISnYFZjhpRchWbxYKYJk3RZE9Ei3O4ZyKtDdoAAxKlQIUbjxDm+D6jmgarUCsg2ROBMMoqEpGSBiZCGPSF0rrEH2BAIgJgth4ktQJSsqTOaTYiNR3pTX+DNsCARATAPKvYYpqEzapYQEoEwkhM03kkRKSHIz3xM9jWVLGCRFlm/NgwP1aQjCsZCFlBIlLT4Z5xVBY4UeJxpPVxGZBoXiYorMzPND1IUrkepOkKkvGfPyJauMO9E2ndIDKJAYkIiVVseg8iDdSsILEHiUhVkZiGlv6JtE+vAQxIRADYg2RkVvYgESnrxIAPkZhMe4M2wIBEBCDRg2SCCkRMk7AoNsVmt3KZP5GqDnbFV7Ctr2EFiSgjzHJYbVTRjSIBIKaxgkSkmubuMbjtVqwo86b9sRmQiGCuKTbVjhqxs0mbSFkHu8axrqYgI72Xar2SEp2BRZjjwFMVjxphkzaRmjRN4mD3GDZkYHoNYEAiApCsIOk9iqWLahIW1QISm7SJlNQ2NInJcAzrawsz8vgMSEQALBZzNGlrUsUKEjeKJFJRc3e8QXtDDQMSUcZYTTLFFolpyu2DZGUPEpGSmrvG4LBZsKoy/Q3aAAMSEQDAao2vYjN6FSkak1PL3lVhT/QgRbmKjUgpzV1jWFuVP/UakG4MSETA1PEcRq8iRTUtYy8WuSpZQeI+SETqkFKiuWssY/1HAAMSEYDpm6yR+1iklIjE5NSqLlXYE9saRDnFRqSMzpEAxoPRjPUfAQxIRAAwtfu0kfdCSlZQ7Ir1IE03aXOKjUgVzV1jAIANtZlZ4g8sICAJIX4ihOgXQjSf9rEvCiG6hBB7E7+uzcwwiTLLDBWkZAXFblPr5x4bm7SJlNPcPQabReCsyvSfwZa0kFfSewFcM8vHvyml3Jz49Wh6hkWUXcmAZOQiRDixD5B6y/y5USSRapq7xrGqMh8uuzVj10g5IEkpnwUwnLGREOnIYoIm7WgiIKnWpM2NIonUMtWgnaEdtJPS8Ur6cSHE/sQUXPGZvkgIcbsQYpcQYtfAwEAaLkuUPslMYeQqxFQPkmoBiRtFEimlazSAockwNtUXZfQ6S30l/T6AJgCbAfQA+O8zfaGU8m4p5VYp5dby8vIlXpYovczQpB2OJqbYFNsHaWqjSAYkIiXs7RgFAGyuK8rodZYUkKSUfVLKmJRSA/BDAOenZ1hE2WUzQ5P2VAVJrYA0vcyfU2xEKtjXMQqHzYLVVZlr0AaWGJCEENWn/fYmAM1n+lqiXGaOVWxq9iBZOcVGpJR9HWPYUFMAR4ZX7NpS/UIhxC8BXAagTAjRCeALAC4TQmwGIAG0AfhI+odIlHkWEwSk6VVsagWkZAWJy/yJzC8a03CgawzvPr8+49dKOSBJKW+d5cM/TuNYiHRjhqNGpvZBUmyKjRtFEqnjWJ8PgUgMmzPcoA1wJ20iANMVJCMfVps8rFW1KTZuFEmkjn2dowCATRlu0AYYkIgAmKOCFI7Gx67aKjYhBKwWYejpUSJKzb6OURTl2bGsNC/j12JAIoJJmrQVrSAB8ecvwik2ItPb2zGKTXVFECLzPwiq90pKNAuLCY4ame5BUu+/td0ipr5/IjKnyVAUx/omMr5BZJJ6r6REszDFFJuiZ7EB4BQbkQKau8agSeAcBiSi7DHFFJvKFSSrhWexEZlccgfts+sKs3I99V5JiWZhioA01YOkXgXJZmUFicjs9naMor7EjVKvMyvXY0AigjkOq02exaZiBclmsXCZP5GJSSmxu30EWxqKs3ZN9V5JiWZhhsNqk2exqbbMH0hWkDjFRmRWnSMB9E+EsHUZAxJRVpliik3Rs9iA5DJ/4z53RDS3Xe3DAIBzl5Vk7ZrqvZISzcIcq9gSTdqKncUGAA6rBZEoK0hEZrW7fQT5ThtWV+Vn7ZrqvZISzcIUR40kl/krOMXmsFmmtjkgIvPZ1TaCzQ1FU9X+bGBAIoJJptg0LvMnIvMZD0ZwtG8CW7M4vQYwIBEBMEeT9vQqNgUrSFbL1PdPROay59QopATOzWKDNsCARARgevfpqKErSBqsFpGVM4pyjd1mmerBIiJz2d02DIsANjcUZfW6DEhEMMkUW0wqWT0CWEEiMrNd7SNYW10Ar9OW1esyIBHBJFNsMU3JFWwA4LAJ9iARmVA0pmFvx2hW9z9KUvPVlGiG6QqSzgNZgmhMKrmCDWAFicisjvROwB+O4dzl2W3QBhiQiABMHzVi6GX+mqbkCjYgvsyfFSQi83m1Lb5BJCtIRDqxmGGjyKhUNiDZWUEiMqWdrcOoK3ajpsid9Wur+WpKNIMZmrRD0RicNjX/S3OjSCLz0TSJV9qGsb2xVJfrq/lqSjSDKZq0oxocqgYkVpCITOd4vw/Dk2FsW5H9/iOAAYkIgFkqSJrSFST2IBGZy8utQwDAChKRnmwmCEgqV5DsVgs0OX0eHREZ386TQ6gtcqO+JE+X66v5ako0g8UEASneg2TVexi6SAbDCHfTJjIFKSVebh3GtkZ9ptcABiQiAIDVDKvYYmpXkACwD4nIJJL9R3pNrwEMSEQApitIRt4HKRRRuwcJAFeyEZnEzmT/0QoGJCJdmWEnbZUrSI7EDuIMSETm8HLrMGoKXagvyf7+R0lqvpoSzZDIR4hpxr3BhhVfxQYAEU6xERmelBI7Tw5he2MphNDv+CQ1X02JZhAQsFkEokaeYlN8FRvAChKRGbT0+zDoC+vaoA0wIBFNsVmNHZDCUQ0Oq6Kr2NikTWQazx0fBABc2FSm6zgYkIgS7BZjbzYYisbgtKv5X9rOJm0i03i+ZRDLS/N02/8oSc1XU6JZ2KwCUYPuo6NpEpGYnKqkqMbJChKRKURiGl5uHcLFq/StHgEMSERTbFbjVpCSlRPVK0hGff6IKG7PqVH4wzFcvLJc76EwIBElOawWw+7EHEpUTlStILEHicgcnj8+AIsALmjSb/+jJDVfTYlmEW/SNuYNNhkMnHY1m7STq9hYQSIytudaBnF2XREK3Xa9h8KARJRksxi3BykUjQGY7sVRTXJ7gxArSESGNRaIYF/HKN6UA/1HAAMS0RS7kXuQklNsiu6D5Er0XoUixnz+iAh46cQQNAlcvJIBiSinGHkfpGTlRNWdtF2JqcVgopJGRMbzfMsA8hxWnNNQrPdQADAgEU2xGXgfJFaQEgEpwoBEZFTPHx/E9sbSnHkdy41REOUAu4H3QZquIKnZpO1KvKAGOcVGZEgnByfRNuTHJTnSfwQwIBFNsVkshl/Flis/eWWbzWqBzSJYQSIyqB1H+gEAb15TqfNIpqn5ako0C5tVGHgfpHgwUDUgAfFpNlaQiIxpx9F+NJV70FCq7/Eip1P31ZRoBrvVuBWkZDBwK7oPEhAPSAFWkIgMZzIUxc7WYVy+ukLvobwOAxJRgpH3QUoGA7UDkgUhBiQiw3mhZRDhmIY3r2FAIspJRt4HKRmQXA51/0u77FYu8ycyoB1H++F12rB1eYneQ3kddV9NiWYw8j5IwTArSC67hT1IRAYjpcSOIwO4eGVZzvVQ5tZoiHRks1gQMehRFVMVJJUDks3KVWxEBnO4ZwK948Gcm14DGJBoHlIas6KyGA6bQMSgFaRAJAa7VUwd2qqi+Co2BiQiI9lxNL68/7LV5TqP5I3UfTWllCiUj+L7IBm1BykcU7p6BHCKjciI/nKkHxtqC1BR4NJ7KG/AgERz0hRKSDYD76QdjMSU7j8CACebtIkMZWAihNdOjeDKtbmzOeTpGJBoTgadcVoUu9WCiEH3QQpEYnA71A5IbrsVIVaQiAzjiUN9kBK4en2V3kOZFQMSzUmpCpKB90FiBSk5xcYKEpFRPH6wFw0leVhTla/3UGaVckASQvxECNEvhGg+7WMlQognhBDHE2+LMzNM0otC+Qg2qwVRTRqyMT0Q0diDZONO2kRGMR6M4MUTg7h6fSWEEHoPZ1YLqSDdC+CaGR/7DICnpJSrADyV+D2ZiEoVJLsl/p/UiHshBcOsICVXsRkx4BKpZseRfkRiMmen14AFBCQp5bMAhmd8+EYAP028/1MAb0/PsChXqBSQbIkl8kacZmMPUnyKTZMw7IHDRCr588E+lHmd2NKQuxNPS+1BqpRS9iTe7wWQm63otGgGLKYsmt0aryCFDbjUP8AepKkpRq5kI8ptwUgMTx/tx1XrKmGx5Ob0GpDGJm0Zr2uf8XYqhLhdCLFLCLFrYGAgXZelDFNpusKZuMGGDbibNvdBmn7+2KhNlNteaBnEZDiGq9fndk1lqQGpTwhRDQCJt/1n+kIp5d1Syq1Syq3l5bm3YybNTqUKkjMxxRYyYAUiGInBrfBBtcD0OXRc6k+U2x4/2It8pw0XNpXpPZQ5LfUV9SEA70+8/34ADy7x8SjHqNSD5LQnA5LxbrCcYov3IAHgSjaiHBaOanj8YB+uWFuRc4fTzrSQZf6/BPASgNVCiE4hxIcAfBXAVUKI4wCuTPyeTESpgJT4z2q0KTYpJQMSAI/DBgDwhxmQiHLV8y0DGAtE8LbNNXoPZV62VL9QSnnrGT51RZrGQjlIoXwEpy0xRWOwgOQPxyAl4HWl/N/ZlPISq/gmQ1GdR0JEZ/Lwvh4Uuu24eGXut9rkdn2LdKdSBSlZ7g0ZbIrGlwgEHqfaASn5/TMgEeWmYCSGPx/sxVs3VOX89BrAgETzUKpJ22bMHqRkQPIyIAEAJsMMSES5aMeRfkyGY7hhU+5PrwEMSDQPTaGElJxiM1oPUrJikuzBUZXHmZxiM1YFkEgVj+zvQZnXie2NpXoPJSUMSDQnhWbYpqfYDBaQOMUWlwyInGIjyj2+UBRPHenDdRurYM3hzSFPx4BEc1KpB2l6is1YFYhkxUT1KbbkKr5JrmIjyjlPHe5DMKIZZnoNYECieSgVkAy6D5IvFAEwPcWkKotFwOOwsoJElIMe2NOFmkJXTp+9NhMDEs1JoRYkw/Yg+VhBmpLntMHPJm2inNI/HsSzxwZw05banD57bSYGJJqTSmexOQw7xZZYxab4PkhAPCT62KRNlFMe2NMFTQLv2FKn91AWhAGJ5qRWBSm5D5KxKkiToSgsAsrvpA3EN4v0c4qNKGdIKfG71zqxpaEIjeVevYezIAxINCeVepBsFgGLAMIxYwUkXygKj8MGIYxTus4Uj9M2taqPiPR3oGsMx/p8eMe5xqoeAQxINA+VApIQAk6b1XhN2sGo8kv8kzwOK89iI8ohv9vdCYfNguvPNs7qtSQGJJqTQvkIQLwPyWhHjUyGo8qvYEvKc9q4io0oR4SiMTy4rxtXratEoduu93AWjAGJ5qRSBQmI9yEZroIUinEFW4LXYeNRI0Q5YseRfoz6I/grgzVnJzEg0ZxUatIG4nshGW2Z/2SIU2xJeU4rjxohyhG/fKUDlQVOvGlVmd5DWRQGJJqTahUkh9V4FaSJYIQVpASvM15BUukMQaJc1DHsx7PHB3DLeQ2wWY0ZNYw5asoalfZBApBo0jZWBWIsEDHk/H4mFLjskBLwcZqNSFf3v3oKAsC7z6vXeyiLxoBEc1LtB3Gn3XgVpLFABEV5DEgAUOCOV9LGAxGdR0KkrkhMw69e7cTlqytQU+TWeziLxoBEc1JtqsJlsyJgoGXioWgMwYjGClJC8u9hPMAKEpFenjjUh0FfCO/Z1qD3UJaEAYnmFFNsis3jNNY+OmOJSgkDUlyBK/73MMYKEpFu/nfnKdQUunDZ6gq9h7IkDEg0p5hiFSS3w1iHnSankgoYkABM/z2MBxmQiPTQPjSJ51sG8e7zG2A10MG0s2FAojlFFQtIRtuJmRWk15ueYmNAItLDz15qh80icIuBm7OTGJBoTrGYWgHJ7TBWD9KoPx4EivIcOo8kN3CKjUg/E8EIfvVqB647uxqVBS69h7NkDEg0J+V6kBI7MRtlewNWkF7P60qsYgsaZ5qUyCx+u7sTvlAUH7hohd5DSQsGJJqTej1IVmgShlnqz4D0elaLQL7Lxik2oiyLaRL3vtiGLQ1F2FxfpPdw0oIBieakYg8SAMP0ISUDUoGLO2knFbjsDEhEWfaXI/1oH/Ljgxebo3oEMCDRPFTbBynPEQ8aRlnJNhaIHzNi1K38M6HQbecqNqIsu+eFk6gpdOGa9VV6DyVt+KpKc1KtgpTnNFgFyc9jRmYqcNu4USRRFh3sHsOLJ4bwvguXm+qHNfN8J5QRMc0YvTjpkmewKbahyTBKvVzBdrpCtx2jgbDewyBSxvefPgGv04ZbzzP2ztkzMSDRnJSrICWn2ELGqEAMTYZQ6mFAOl2Jx4nhSQYkomxoG5zEowd68N7tDSg02ZmQDEg0J/V6kAxWQfKFUep16j2MnFLqcWDEH1Hu3y6RHu569gRsVgs+ZKLm7CQGJJqTshWkSO4HJCklp9hmUeJxIKZJbhZJlGF940H8bncX3rW1DhX5xt8YciYGJJqTavsgTVWQDDDF5gtFEY5qKPOwgnS6ZGAc4jQbUUb96LlWxKTERy5p0nsoGcGARHNSLSB5nPEKks8AAWnIFw8AJexBep3k3wf7kIgyZ9Qfxn07T+GGs6tRX5Kn93AyggGJ5qTaFFu+0wYhgAkDHFUxNBkCAE6xzTAdkEI6j4TIvO5+thWBSAwfvXyl3kPJGAYkmpNqFSSLRcDrtBlio8FkBamMTdqvU5qYcuQUG1FmDPpCuOeFNtxwdg3OqszXezgZw4BEc1KtggQkj6owQgUpHgBYQXq9Yk98qfGwjwGJKBO+//QJhKIxfOLKVXoPJaMYkGhOKi6VLjDIURUDE/EpJPYgvZ7TZkW+y8YKElEG9I4F8YuX2/GOLXVoLPfqPZyMYkCiOalZQTLGafA9Y0GUehxw2qx6DyXnlHocDEhEGfDdHS2IaRL/cIW5q0cAAxLNQ7WjRgAg32XHuAGatPvGg6gqNN/eI+lQ4nGwSZsozTqG/bj/1VO45bx6065cOx0DEs0ppl4+Shx2mvsVpN6xIKoKGJBmU+Z1Tk1BElF6/NfjR2G1CPz9m81fPQIYkGgeKlaQClzG6EHqHQ+ikhWkWVUVutA7FtR7GESmsefUCB7e143b39SoTOWaAYnmpGQPktsOXyia0w3qwUgMw5NhVLOCNKvKAhfGg1H4w7k/VUqU66SU+I8/HkaZ14nbLzXnrtmzYUCiOam2DxIQb9KWEpjI4d20+8fj00esIM0uOfXIKhLR0j3W3Ivd7SP45FvOgjdx2oAKGJBoTioGpEJ3fB+dUX/uroLqHY/f+NmDNLvkFEDy74mIFicUjeGrjx3B6sp8vGtrvd7DySoGJJqTigEpuTN1Li8TT974q1lBmlVlIjj2MSARLcmPnz+JU8N+fPa6tbBahN7DySoGJJqTij1IyZ2pc3kn5q6RAAAo0yy5UFMVpDGuZCNarK7RAP7nqRa8ZV0lLj2rXO/hZB0DEs1JxQpScmfqoRzeR+fUsB8lHgfyXXa9h5KTvE4b8p02VpCIluBLDx+EhMTnb1in91B0wYBEcwpF1VvmnzzsdDCHK0gdw340KLBR21JUcqk/0aLtONqPxw/24R+uWIW6YjVfaxiQaE4RBXeKdDus8DisGMrhgNQ+PMmANI/qQhe6RgN6D4PIcIKRGL740EE0lXvw4Ysb9R6ObhiQaE5hBStIAFDqdebsFFskpqF7NMiANI+Gkjx0jPj1HgaR4Xz7qeNoH/LjSzdugMOmbkxQ9zunlKhYQQLifUi5WkHqGQ0ipkk0lDIgzWVZaR5G/RGMGeDYGKJccaBzDHc924pbttbjopVleg9HVwxINKewogGpzOvAoC83K0jtw5MAwArSPJJ/Px3DrCIRpSIc1fDPv92HMq8Dn71urd7D0R0DEs0pHNXgsKr3z6TU48zZfZDaBuMBaRkrSHOqZ0AiWpDv7mjBkd4JfOWmjVMb5qosLXuGCyHaAEwAiAGISim3puNxSX/hmAa7VSAc03sk2VVR4MSQL4RoTIMtxwJiS78PXqeNu2jPI1lBOsWARDSvQ93j+O6OFtx0Ti2uWFup93ByQjoPVblcSjmYxsejHBCOanDYLJhULCHVFLmhSaBvIoTaIrfew3mdY30+rKzwQgi1drVdqHyXHSUeB9oZkIjmFIzEcOf9e1DsceDz16u559FscutHY8o5kZim5CqG5BEe3Tm4TPx4vw+rKrx6D8MQ6kvyOMVGNI+vPHoYx/t9+O93bkJxYqNcSl9AkgD+LITYLYS4PU2PaViaiXafDkc12HNsiikbahJVo1wLSCOTYQz6QlhVyYCUimUleTiZ6Nkiojd68lAffvZSOz508QpcouBxInNJ153vYinlFgBvBfAxIcQlM79ACHG7EGKXEGLXwMBAmi6bmzRpnoAUiUmlK0g9ObYTc8uADwCwqjJf55EYw6oKLzpHAvCHo3oPhSjn9I8H8enf7cfa6gJ8+prVeg8n56Tlziel7Eq87QfwAIDzZ/mau6WUW6WUW8vLzZ1SYyYKSKquYst32ZHvsqEnxypIh3vGAQCrGZBSkgySLf0+nUdClFuiMQ133r8Xk6Eo/ufWzXDarHoPKecs+c4nhPAIIfKT7wN4C4DmpT6ukWkm2TpISomwoj1IAFBT6EZ3jlWQ9neOodTjmKpw0dzOSkxFHutjQCI63df+fBQvtQ7hyzdtxMoK/sA1m3SsYqsE8EBiRY0NwP9KKf+Uhsc1LLNMsUVi8e9DxR4kAKgvcedcg29z1xg21BZyBVuKGkry4LBacLxvQu+hEOWMPzX34K5nWvHebQ34q3Pr9B5OzlpyQJJStgLYlIaxmIZZptiSu2irOMUGACvKPHju+CA0TcJi0T+QBMIxHO/34ap13KMkVTarBY3lHhxjQCICAJwY8OFTv9mPTfVF+PwNXNI/FzXvfBkmTTLFljyo1q7oFFtjuRehqIbusdzoQzrUM46YJrGhtlDvoRjKWZX5nGIjAjAejOCOn++Gw2bB9967hX1H81DzzpdhZqkgBSPxzSHz7Gr+J1pR5gEAtA7kxjLx/Z2jAICNDEgLsq6mAF2jAYzk6NExRNkQiWn42H2v4eTgJL7znnNybgPcXMSAlAFm6UEKJAKS26FmQGosTwak3Kg+vHJyGLVF7qk9mig1Z9fFA+X+rjGdR0KkDyklvvDQQTx3fBBfuXkjLmwq03tIhsCAlAFm2SgykDhexKVoBanc64TXaUNrDmw0KKXEKyeHsW1Fid5DMZyNtYUQAtjfMar3UIh08ePnT+J/d57CHZc24V1b6/UejmEwIGWASfLRdAVJ0YAkhEBTuScn9tBp6fdhaDKMbY0MSAuV77KjscyDfZ2sIJF6HtnfjS8/ehjXrK/Cp6/mZpALwYCUAWbpQUpWkNwOdf+ZrKspwMHucUidn9OdJ4cBANtWlOo6DqPaVFc01cNFpIpnjg3gH3+1F1uXFeObt2zOidW4RqLunS+DTDPFpngFCQA21BZiLBBBx7C+K9mePTaAmkIXlpXm6ToOozq7rhD9EyH05MiKRKJM290+gjt+vhsrK/Lxo/efp2wv6VIwIGWAWZq0k6vYVO1BAqZXjB3QscE3FI3h+ZZBXL6mghtELtLW5fGpyVcSlTgiMzvSO44P3PMKKguc+NkHz0eh2673kAyJASkDTFJAOm2KTd2AtLoqHzaLQHO3fgFpZ+sw/OEY3rymQrcxGN3a6gIUuGx4sWVI76EQZdThnnG854c7keew4ecf2obyfKfeQzIsBqQMiJkkIXGKDXDarFhbXYDX2kd0G8NTh/vgtFm4NHcJrBaBbY2leKmVAYnM62D3GG794ctw2iy4//btqC/hlPxSMCBlgN4NvekS4BQbAGDbihLs6RidmnLMpmhMwx8P9OKy1eVKV/LS4YLGUpwa9qNzJLfO1yNKh+auMbznhzvhcdjwq9svwPLERre0eAxIGWCWVWy+YBRWi4DLrvY/k+2NpQhHNew5NZr1a794YgiDvhDevrk269c2mwtXxlcAcpqNzGZn6xBu/eHLyHfZcP/t29HAxRxpofadL0M0k5zFNhGMIt9lg4DajcHnrSiBRUCX6Zk/7O1CvsuGy9l/tGSrK/NRXejCk4f79B4KUdr8qbkXt/3kFVTkO/Grj1zAabU0YkDKALOsYpsIRpDvsuk9DN0Vuu04u64IO470Z/W6Y/4IHjvQi+s2Vis/zZkOQghcubYSzx0f1GW6lCjdfvFyOz56325sqCnAb++4kOerpRkDUgaYpUl7IhhFvpPLQwHgmg1VONA1ltX+ld/s7kAgEsNtFyzL2jXN7qp1lQhEYnihZVDvoRAtmqZJ/NefjuBzf2jG5asrcN+Ht6PY49B7WKbDgJQBURMFpAI3K0gAcPX6KgDA4wezMz0T0yR++lIbzltejPU1hVm5pgq2N5Yi32nDn5p79R4K0aJMBCO4/ee78L2nT+DW8xtw123ncgFHhjAgZUA4ao4mpPFgBPkuVpAAYEWZB2uq8vHwvu6sXO+hfV3oGA7ggxetyMr1VOGwWXD1hio81tw7tc8XkVG0D03i5u+9iB1HB/ClG9fjKzdtgM3K23im8G82A8IxcwSkZJM2xb1zaz32doziYIY3jYzENHzryeNYW10wVbmi9Ll5Sy18oSj+fIhVJDKOHUf6ceN3X8CAL4Sff/B8vO+C5dxZP8MYkDLATBWkAlaQprxjSy2cNgvu23kqo9f59a4OtA358U9XncXDJTNg+4pS1Ba58bvXuvQeCtG8IjEN//noYXzg3ldRVeDCgx+7CBeu5Kax2cCAlAERE1SQNE3CF2IF6XRFeQ68bVMNfre7E/3jwYxcY2AihP/z2BGcv6IEV67l0v5MsFgEbt5Si+ePD6BjmJtGUu7qGg3glrtewl3PtuK92xrwh49dhGWl3AAyWxiQMsAMFaSJYBRSgocczvCxy1ciqkl87+kTaX9sKSW+9MghBCIxfOWmjSyfZ9B7tjXAIgTufbFN76EQvYGUEg/u7cK133oOx/p8+J9bz8GXb9rI7T6yjAEpA8wQkAYnQwCAMi8POjzd8jIP3nluHe7b2Y5jfRNpfezf7OrEw/u68fdvXoWVFd60Pja9XnWhG9durMavXu3ARDCi93CIpgz6Qvjofa/hzvv3orHcg0f+/mLcsKlG72EpiQEpA0ImmGIb8oUBMCDN5p+vXg2v04b/73f707bn1b6OUfzbg824aGUpPnb5yrQ8Js3tw29aAV8oip+/3K73UIgAAI8d6MHV33wWTx3ux2feuga/veNCnqmmIwakDIiYoYLki1eQSr3cfGymUq8TX7hhPfacGsXXHj+65Mdr6Z/A39zzCioKnPi/t5wDKxuzs+LsuiJcvrocdz3TirEAq0ikn45hPz7801fxd/e9hpoiNx75h4txx6VNfC3QGQNSBphhmf8QA9Kc3n5OLd67rQE/eOYE7tu5+ArEa6dGcMtdL8NqseAXH9qG8nxW7LLpU1evxlgggh8+26r3UEhBoWgM393Rgqu++QxePDGEf712LX7/0QtxVmW+3kMjAFyilAGm6EHyhSEEUJLHgHQmX7hhPbpHA/jXB5ox6o/g7y5tSnlZvpQSv3i5Hf/xx8OoLHDh3g+cx9UpOlhfU4gbNtXgR8+34l1b63kKOmWFlBJ/OdKPLz96GK0Dk7h2YxX+7fp1qC7kWWq5hBWkDDBDQBrwhVCS5+AurXNw2Cz4wW3n4oZNNfja40fxvp+8gqO98zdu72obxi13vYx/e/AgtjWW4oGPXojGcjZl6+Wz166BVQh87sFmSJMcNE25a3/nKN5998v40E93ARK45wPn4XvvPZfhKAexgpQBZtgHqWskgBqeDD0vp82Kb797M7atKMH/+dMRXPOtZ3HxyjK8ZX0V1tcUoNTjQCQm0TMWwGvto3isuQdHeidQ5nXiqzdvxC3n1XM5v86qC9341NWr8f8/fAgP7evGjZtr9R4SmVDb4CT++4ljeHhfN0o9Dvz7jevx7vMbYOcPoTmLASkDQiaoIHWNBtBUzimfVAgh8Nfbl+G6jdW458U2/P61TvzbH5pn+bp4Y/C/37ge7zi3DnkO/vfLFe+7YDke3teNzz3QjM31RZzupLQ5MeDDd//Sgj/s7YLDZsHHL1+Jj1zayHMuDYCv0Blg9CZtKSW6RgK4ZFW53kMxlGKPA/901Vn4xytXoXMkgCO9ExgLRGC3CpTnO7G+ppAbb+Yoq0Xg27eeg2u/9Rw+/r978Js7LuCmfLQkx/om8J2/tODh/d1w2az40MUr8LeXNKIi36X30ChFDEgZEIoYOyCN+CMIRGKoLeYU22IIIVBfkof6Ejb8GkldcR6+/s5NuP3nu/Gp3+zDt999Ds/CowWRUuLZ44P48fMn8eyxAeQ5rPjIJU348JtWcE85A2JAyoDJUFTvISzJycFJAMAy3uBJMW9ZX4V/eesa/OdjR1BT5Ma/vHUNe8RoXoFwDA/s6cJPXjiJln4fyvOd+ORVZ+G925ehxMOVwEbFgJQBEyFjbzrX0h9ficW9OEhFt1/SiK7RAO5+thVCAJ+5hiGJZtfcNYZfvdqBP+ztwkQwivU1BfjGuzbh+rNr4LCx+droGJAyYCJo7ArS8T4fXHYLp9hISUIIfPGG9dCkxF3PtCIQjuHz16/jlhcEABgLRPDQvm786tVTaO4ah8NmwbUbqnDr+Q04f0UJw7SJMCBlgNED0rF+H5rKvdzmnpRlsQj8+40bkOew4e5nW3FycBLfuXULCvPYZK8ifziKJw/34+F93Xjm6ADCMQ3rqgvwpRvX48ZNtfx3YVIMSGlmtQhDnw4upcTBrjFctrpC76EQ6UoIgc9euxZN5R587g/NuP47z+Eb79qM85aX6D00ygJ/OIpnjw3g4f09eOpwH4IRDVUFLtx2wTK8fXMtNtYV6j1EyjAGpDTLd9kwbuAK0qlhP4YmwzinoUjvoRDlhFvOa8DKinx84ld78K67XsLtlzTizitWcR8rE+oc8WPHkX48ebgfL7UOIRzVUOZ14J3n1uOGTTXYuqyYKxsVwv/haVbgsmPUH0EwEjPkPiqvnRoBAGxpKNZ5JES549xlxXjszkvwH48cwl3PtOKhvd34zFvX4G2bathzYmCBcAy72ofxQssQnj7ajyOJo4JWlHnwvu3L8Oa1FTh/eQn7zxTFgJRmFflOnBr2Y2AiZMh9cF46MYR8lw2rq7iCjeh0XqcNX33H2bh5Sx2+9MhB3Hn/XvzwuVZ87LKVuHp9FSsLBhCOatjXOYoXW4bw4olB7Dk1inBMg80isGVZMT577RpcsbYSTTwbkcCAlHZVhfFdUnvGgoYLSJom8ZcjA7j0rHI2aBOdwfkrSvDgxy7GA3u68N0dLfi7+15DU7kH77tgOd6+mQ27uaRvPIjX2kewp2MUr7WP4EDXGEJRDUIAG2oK8YGLluOCplKct7wEHidvh/R6/BeRZtVTASmg80gW7kDXGAZ9IVyxlg3aRHOxWgT+6tw63HROLR490IO7n23FFx46iK88ehjXbazGDZtqcOHKUjhtxptmN6r+iSAOdY/jcM8EmrvHsPfUKLpG46/DDqsFG2oLcNv2Zdi6vAQXNJYyyNK8GJDSrKowvndQ71hQ55Es3AN74ocpXs4VbEQpsVoEbthUgxs21aC5awy/fOUUHtrbjd/v6UK+04Yr1lbg8jUVuLCpDOX5PGoiHSZDUZwcnMSJAR8O9YxPhaJBX2jqa2qL3NjcUIQPXrwC5zQUYX1NAcMqLRgDUpp5nVbkO21TP7kYRTAS3yr/6vVVKMrj1vhEC7WhthBfvmkjPn/DOrzQMog/NffiiUN9+MPebgDAWZVeXNhUhnMainB2XRGWleSxb+kMwlENPWMBnBr2o3UgHoaSb3tO++HTbhVYVZGPy1aXY111AdZWF2BddQGrQ5QWDEgZsKrSO7Uawijuf+UUxgIRvHdbg95DITI0p82KN6+pxJvXVCIa03Cwexwvnog3Bd//6inc+2IbgPiWIBtrC7GmqgCN5R40lXvRVOFBuddp6pVxUkqM+iPonwihfyKIrpEAOkcC6Bzxo3MkgK7RAHrHg5By+s94nTY0lXuwvbEUTeUeNJZ70VjuQWOZl0d6UMYwIGXAupoCPLinG1JKQ7zQ+cNRfO/pE9i2ogTbG0v1Hg6RadisFmyqL8Km+iL83WVNiMQ0HO/z4UDXKPZ3juFAYlouEIlN/Zl8pw21xW5UF7pQXeRGTaEL1YVuVBQ4UZznQLHHgeI8O9x2a068voSjGsYCEYwFwhgLRDDqj0y9HQ1EMDARwsBEEAMTIfRPhDDoCyESk697DKtFoLrQhdoiNy5sKkNdsRu1xW7UFbuxstyL8nxzh0bKTQxIGbC+phC/ePkUWgcnDbFc9GuPH0X/RAjf/+steg+FyNTsVgvW1RRgXU0Bbjkv/jFNk+gdD+LEgA8n+n1oHZxE92gAPWNB7Oscw/BkeNbHctgsKM6zo8jtgNthRV7il8uefN8Gp80Ci0XAKsTUW6sFU+9rEohpGmJa/G1Uk4hpcuptMBKDPxz/FYhEEZh6P/52MhSFPxybdXwAIARQ6nGgzOtERYELqyrzUZ7vREW+M/HWhdpiNyrzndxriHIOA1IGXNRUBgB45uhAzgekJw/14d4X2/C+C5bh3GU8QoEo2ywWgZoiN2qK3HjTqvI3fD4YiaF3LIj+iRBG/GGMTIYx4o9g1B/G8GS8ahOIxBAIxzDqjyTCSzzMhKIaNBkPO5qc5eKnj0MANosFFkv8rdUi4LJbkOewTYUuj9OGMq9zKpB5HDYU5dlR6LajwG1HUZ4DhW47itzTH+OWIWRUDEgZ0FCah1UVXvzxQA8+ePEKvYdzRrvbh3Hn/XuwsbYQn712rd7DIaJZuOxWLC/zYHmZZ0mPI6VMVIzkVGiyWkT8V6LCRETTWNPMkHef34Dd7SPY2zGq91Bm9afmXvz1j15BRYELd9+21ZDHohBR6oSIhyGHzQKXPV4NctmtsFstDEdEs2BAypB3bq1DmdeBzz/YjGhM03s4U4Z8IfzL7/fjjl/sxqpKL379kQumdv8mIiKiOAakDClw2fHFt63H/s4xfPp3+xHROST1jQfx9ceP4rKvP41f7+rE375pBX5zxwXcvI6IiGgW7EHKoOvPrkHrwCS+8cQxtA5M4vM3rMOWhuKsXb97NICnjw7gTwd78WLLIGJS4sq1lfj01auxqpKH0RIREZ0JA1KG/cMVq9BY7sEXHjyIm7/3IjbWFuKaDVU4f0UJ1tcUIM+x9KcgGImhfciPk4M+nBiYxOGecexuH5nacXZZaR4+/KZG3Hp+PZaVLq3Rk4iISAUMSFlw/dk1uHx1Be5/tQN/2NOFrz1+dOpzFflOLCvNQ4nHgQJXfGmsy26FRUzvVRKTcmoZb3IfkqHJEAYmQhj0xZf5nq62yI2ty0twbkMRtjeVYnVlPjdZIyIiWoC0BCQhxDUAvgXACuBHUsqvpuNxzcTjtOFDF6/Ahy5egeHJMHa3j+Bo7zjah/w4NexH26A/sRttBOGYhtiMTUucNgvcDivcdivcDitKPQ6srsrHRV4nyrzxkNVU7sWKMg88TuZeIiKipVjynVQIYQXwXQBXAegE8KoQ4iEp5aGlPrZZlXgcuGpdJa5aVznn12mJ/Uos3KOEiIgoq9Kxiu18AC1SylYpZRjA/QBuTMPjKs9iEbBxjxIiIqKsS8dcTC2AjtN+3wlg28wvEkLcDuB2AGhoeP2J8dGYhpODkzgxMIkBXwiDEyGMByMIRjSEIjEEozEEI/FpJ4n4jrBSAhLxt1ri2GebxQKbVcBmEVPv263xLfPtiffdDiu8Dhs8Thu8zvhbj9OKEo8DlQUulHocPBOIiIhIcVlrVpFS3g3gbgDYunWrBIDjfRP4n7+04MnDfa878FAIwOuwwWm3wmWP7/rqsltgFQIQAhYBCMR3ho2/H6+w+KNRRDWJaEwiqmmIxiQimoZYTCKiSURiGvyhGMJz7ElkEUCp14m6YjfWVOXjrMp8nNNQjI21hTxTiIiISBHpCEhdAOpP+31d4mNzevpoP27/2W447RbcuLkG5y0vwVmV+ajId6Ikw1WccFTDZCgKXyiKyXAUk6Eohicj6BsPon88iL7xENqHJ/Gn5l788pV4caw4z463rKvC+y5chvU1hRkbGxEREekvHQHpVQCrhBArEA9G7wbwnrn+gCYlPvnrfWiq8OLnHzofZd7s7ubssFngsDlQ7HHM+XVSSgxMhPDyyWE8faQfD+3rxq92deDmLbX4/PXrUJQ3958nIiIiY1pyQJJSRoUQHwfwOOLL/H8ipTw4158Z80cQmwzj7vedm/VwtBBCCFQUuPC2TTV426YafOGGCO5+7gTueqYV+zpG8YsPb0N1oVvvYRIREVGapWUeS0r5qJTyLCllk5Tyy/N9/UQoiqoCV1aP3UiHwjw7/vnqNbjvw9vQNx7CHT/fjVA0Nv8fJCIiIkPRZblWKKJhQ22BYXd33tZYiq+/82zs6xzDvS+06T0cIiIiSjNdAlI4pqGuOE+PS6fNNRuqcelZ5fj+MycQjLCKREREZCa6BCRNStSXGDsgAcDtlzRi1B/B4wd79R4KERERpZFuOyKWeY2/AuyCxlKUeZ146nC/3kMhIiKiNNLtVFOPw/gHqlosAhetLMULLUOQ83+58qSUGPFHcGrYj1F/GMGIBk1K5LtsKHDZUVvsRqnHYdjeNCIiMg/dUkqe06rXpdNq24pSPLi3G53Dfr2HkpPGgxE8ur8HzxwbwCsnhzE0GZ7z6wvddqyuysf2FSXY3lSK85eX8OgXIiLKOt0Cktdp/AoSAKytzgcAHOmd0HkkuWVgIoTv7mjBL185hVBUQ22RG5euLse66gIsK/Wg1OuA02aBRQj4QlGM+iPoGPbjxIAPzV1j+M6OFnz7Ly0o8zpww6YavHfbMqys8Or9bRERkSL0m2IzSUA6qzIekI71MSAlPbyvG5994AD84RjesaUW7922DGfXFS5o6mwiGMELLYN4cG837tt5Cve+2Ia3bqjCP111FlZW5Gdw9ERERDoGJLfdHFNsHqcNpR4HukYDeg9Fd1JKfPOJY/j2X1pwTkMRvv7OTWgqX1zVJ99lxzUbqnHNhmoM+UK454U2/PTFNvz5YB/+9pJG3HnFKrhM8m+IiIhyj27NHTaLeRpxa4rc6BphQPr2U/FpsVu21uPXH7lg0eFoplKvE5+6ejWe/ufL8PZzavH9p0/gr37wIjrY90VERBmiW0CymCgg1Ra5la8g/eVIH7755DHcvKUW/3nzRtgz0Fhd6nXi6+/chB+9bytODflxw3eex/7O0bRfh4iISL+AZKKl3OX5TvjD6u6mPRGM4DO/O4C11QX4yk0bMx5+r1xXiYf//mLku2x4zw934rVTIxm9HhERqUe3gGQ1UUAqyrPrPQRdfXfHCQz4QvjqzRuz1he0rNSD33zkQpR5HfjwT3ehbXAyK9clIiI16BaQhIm2tinKM/6u4Is1FojgFy+344aza7Cpviir164qdOGeD5wPKSU+/LNdCChcxSMiovRiBSkNitzqVpDuf+UUfKEoPnJpoy7XX1Hmwf/cugUt/T589bHDuoyBiIjMhz1IaaDyFNvvX+vCucuKsb6mULcxXLyqDB+6eAV++lI7Xm4d0m0cRERkHjquYtPryumnakA62juBo30TuHFzjd5DwT9fvRo1hS586eFDiGk8GY+IiJaGFaQ0MMuu4Av15OE+AMA1G6p0HgngslvxmWvX4lDPOB7Y06X3cIiIyODYg5QGZtkVfKFeOjGENVX5qMh36T0UAMANZ1djXXUBvvd0CzRWkYiIaAn0W8VmnnwEt0O9gBSKxvBq2zAuaCrVeyhThBD4u8ua0DowiT8f6tV7OEREZGA6BiTzJKQ8h3pTbAc6xxCKatjemDsBCQCu3ViNumI37tt5Su+hEBGRgekSkMwTjeJUnGI71DMOANhUV6TvQGawWgTeeW49nm8ZROcIz2ojIqLFMdFaMv1YTXSuXKoOdY+jxONAZYFT76G8wV9trQMA/HZ3p84jISIio9InIKmXJ0znUM841lUX5ORUaW2RG9tWlOCxA+xDIiKixdFpii33bqqUOikljvf5sKrSq/dQzugt66pwtG+CZ7QREdGicIqNFmzAF0IgEsPyUo/eQzmjq9ZVAgCeONSn80iIiMiI2KSdJg6rOlmzYzje/NxQkqfzSM6sviQPZ1V68ezxAb2HQkREBsQepDSxWU34TZ1B+1AiIJXmbkACgAsaS7GrbQThqKb3UIiIyGBYQUoTu0IVpFPDfggB1BW79R7KnC5oKkUgEsP+zlG9h0JERAajzl09w1QKSF0jAZR7nXDacnv/p20rSiFE/EgUIiKiheAqtjRxKDTFNugLoSIH9z+aqdjjQGOZB/tYQSIiogViD1Ka2G3qVJAGfCGUeXM/IAHAxtpCHOga03sYRERkMOrc1TNMpSm2wYmwcQJSXRH6xkPoHw/qPRQiIjIQNmmniSoBSUqJockQyvMNEpBqCwGAVSQiIloQTrGliSo9SGOBCCIxaZgK0vqaAggBNHeN6z0UIiIyEFaQ0kSVA2sHJkIAgDKvQ+eRpMbjtKGu2I2WAZ/eQyEiIgNRY14oC1QJSIO+MACg3CAVJABoKveipZ8BiYiIUmfTewBmkYun2mfCWCAekArz7DqPJHUry7146cQQYppUJshmUziqoW1oEhPBKIrz7KgvyVOmJ4+IzIsBKU2sigSk8WAUAFDgMk5AaqrwIhTV0D0aQH0Onx9nJFJKvNAyhHtfPInnjg8idNpxLl6nDZetLscHL16BLQ3FOo6SiGjxGJDSxKLID8wTBgxIKyu8AICWfh8DUhr0jQfxrw8048nDfSjzOnHr+Q04p6EIBW47hn1h7GofwR/3d+OR/T246ZxafPGG9YaqOBIRAQxIaWNRpII0EYwAALwu4/zTWZYIRR0jfp1HYnyHusfxwXtfxWggjM9euwbvv3D5G46cece5dfjcdWvxg2dO4AfPnMDejlH8+P1b0Vju1WnUREQLp0jdI/NUCUjjgSg8DquhennKvE44bBZ0jgT0HoqhHe2dwC13vwQAeOCjF+H2S5rOeB6fx2nDJ9+yGr/82+0YD0Tw7rtfRtvgZDaHS0S0JAxIaWKkwLAUE8EI8g00vQYAFotAbZEbXQxIi9Y/HsTf3PMK3HYrfnPHBVhbXZDSn9u6vAS/vH07IjEN77/nFYwFIhkeKRFRejAgpYki+QgTwSjyDTS9llRX7EYnp9gWRdMkPvmbfRjxh3HPB85bcB/XWZX5+NH7t6JrJIBP/nofpJQZGikRUfowIKWJKlNsE6GIYQNS1ygrSItx3852PHd8EJ+7bh3W1xQu6jHOXVaCz7x1DZ483IcH9nSleYREROnHgJQmygSkYBQFbmNNsQFAXXEeBn1hBMIxvYdiKMOTYXzt8aO4aGUp3rutYUmP9cGLVmBLQxH+/ZFDGJ4Mp2mERESZwYCUJqr0IPlCUXgcxqsg1RS5AIBVpAX61pPH4AtF8fnr1y95M1SLReArN2/EWCCC7z/dkqYREhFlBgNSmlgUCUihiAaXffaVS7msIj8ekAZ9IZ1HYhz940H88pUO3HJePVZX5aflMddUFeCmc+rws5fa0TceTMtjEhFlAgNSmiiSjxCMxOCyG++fTXl+/Oy45GG7NL8fv3ASUU3DHZc2pfVxP3HlKsQ0ibueaU3r4xIRpZPx7nQ5SpWjRgKRmCErSMnDdRmQUjMZiuK+l0/h2o3VWFbqSetj15fk4dqN1fjNrg5MhqJpfWwionRhQEoTFQ6rlVIiGInBbcCAVOi2w24VGOAUW0r+eKAHvlAUf3Ph8ow8/vsvXI6JUBS/54o2IspRDEhpkjy83MxbvEQ1CU3CkFNsFotAmdfJClKKfrurE41lHpy7LDOHzW5pKMLG2kL8785TGXl8IqKlMt6dLkcll/lrJg5IySXyRpxiA+J9SAxI82sbnMQrbcN459b6jFVGhRC4eUstDveMo6V/IiPXICJaiiUFJCHEF4UQXUKIvYlf16ZrYEaTXMWmmbiEFIwYPCCxgpSSx5p7AQA3bq7J6HWuO7saFgE8tLc7o9chIlqMdFSQviml3Jz49WgaHs+QkqvYTB2QohoAAwekfCd7kFLwxKFebKwtRE2RO6PXqch34YKmUjy0r5vHjxBRzuEUW5okV7FpJp5jC05NsRnzn02p14EhX8jUz9FS9U8EsadjFFetq8zK9a7dWI22IT9ODPiycj0iolSl4073cSHEfiHET4QQmenoNIBkr0bMxPfeYDQekIy4ig0AitwOaBLwhbm0/EyeOtwPKYG3rM9OQLpsdQUA4OmjA1m5HhFRquYNSEKIJ4UQzbP8uhHA9wE0AdgMoAfAf8/xOLcLIXYJIXbFYuY7Dyt51IiZpwqM3oNUmBc/Q27MH9F5JLnr+ZZBVBW4sLoyPTtnz6e2yI1VFV7sONqflesREaVq3kO1pJRXpvJAQogfAnhkjse5G8DdAFBQv9p0KSLZgxQz8fRNIJzsQTLmFFtR4pDdUX8E9SU6DyYHSSmxs3UIb1pVntV9vS5fU4F7XjiJyVAUHqfxzvkjInNa6iq26tN+exOA5qUNx7imV7HpPJAMSk6xGbWCVJTnAACMBVhBmk1Lvw+DvjC2N2Y3PV7YVIpITGJvx2hWr0tENJellgL+SwhxQAixH8DlAP4xDWMypOl9kMybkIw+xVaUmGIbDYR1Hklueql1CABwQWNZVq+7ZVkxhABebRvO6nWJiOaypHq2lPK2dA3E6FRYxRZKLPN3WI0/xUZvtKttBFUFLtSXZHZ5/0wFLjvWVhVgV9tIVq9LRDQXY97pctBUD5KJK0jRWCIg2Yz5z6YgEZA4xTa7/Z2j2FRfqMu5guctL8Zrp0am/o0REenNmHe6HJS8qZg4HyGS2MPAbtAKkstuhctuwaifU2wzjfkjaBvy4+y6Il2uv3V5CfzhGI708tgRIsoNxrzT5TAT5yNEEj/d26zZrzCkS5HbgRFOsb3Bga4xAMDZdYW6XH9jbfy6B7vHdLk+EdFMDEhpMjUrYeISUjIgGbUHCQAK3DZMBBmQZtrfNQpgOqhkW0NJHrxOGw52j+tyfSKimYx7p8sxAokpNp3HkUlRg0+xAYDHacNkyHwblS5Vc9cYGkryprZCyDaLRWBddQGau1hBIqLcYNw7XY5JVpBMXEBCOKZBiOldw43I67TBF+JRIzMd6/NhdVV2ds8+k3U1BTjcM2HqzVaJyDgYkNLEuJEhddGYNHT1CAA8DhsmGZBeJxzV0DY4ibMqvbqOY31NAQKRGE4OTuo6DiIigAEp7aSJJ9kiMQ12A1ePgOQUGwPS6dqHJhHVJFZV6FtBWltdAAA40ss+JCLSHwNSmqgwxRbRJOwG3QMpyeu0copthuP9PgDAygp9K0hN5fHrtw6wgkRE+jP23S6HTO2DpPM4MikS1WCzGPufjMdpw2Q4BmnmJLtAx/omIMR0QNGL22FFbZEbJwZ8uo6DiAhgQEo7M993o5oGh4H3QAIAr8uGmCanjk2heAWpvjgPbof+Z+w1VXhZQSKinMCAlCY6nM6QdZGYhM3gTdpeZ/z4wYkgp9mSWgcm0VTu0XsYAICmcg9ODPhY4SMi3Rn7bpeDzNykHY5qsBu8guRxxAMSG7XjpJToHPZjWWluBKTGci/84Rh6x4N6D4WIFMeAlCbJjSJNnI8Q1TTjL/NPVJDYqB036o9gIhRFXbFb76EAAJrK4kHtJKfZiEhnxr7b5RBh/nyEiAn2QUpOsbGCFHdq2A8gftRHLqhPjKNzJKDzSIhIdca+2+WQ6aPYzBuRIjETTLE5443Ik2EGJADoGEkEpNLcCEhVhS5YBNCZGBcRkV4YkNJEjSZtzTRN2j6exwZguoJUX5wbAclutaC60M0KEhHpzth3uxxk4gISojEJh8EDksseryAFIwxIANAxHECpxzHVm5UL6ordU5UtIiK9GPtul0OSTdomzkeIatLQB9UC0wEpxIAEID6VVZcj/UdJdcV5rCARke4YkNJEhaNGABg+ICU3QwwwIAEAesaCqC5w6T2M16krdqN3PIgwN/MkIh0xIKWZmfdBAgCLwZutXImz5IIR3nwBoG88iKrC3ApI9SV5kBLoHmUViYj0w4CUJsLgwSFVBm9Bgs1qgd0qWEEC4A9HMRGMoqLAqfdQXqcmEdi4WSQR6cngt7vcwym23OeyW9mkDaB3LB5AqnJsii0Z2PoYkIhIRwxIaWL82JAao0+xAQxISX3jIQC5GJDi4+lPjI+ISA8MSGky3aRt7hKSGSpIbruVPUiYrtBU5FhAynfa4LJb0D/BChIR6YcBKU2mdtLWdRSZZzVBBclttyIQZgUpGZByrUlbCIHKAtdUhYuISA9Cj4qHEGIAQHvWL5wdZQAG9R4ELQifM2Pi82ZMfN6Mx8zP2TIpZflsn9AlIJmZEGKXlHKr3uOg1PE5MyY+b8bE5814VH3OOMVGRERENAMDEhEREdEMDEjpd7feA6AF43NmTHzejInPm/Eo+ZyxB4mIiIhoBlaQiIiIiGZgQMogIcQnhRBSCFGm91hobkKIrwkhjggh9gshHhBCFOk9JjozIcQ1QoijQogWIcRn9B4PzU0IUS+E2CGEOCSEOCiEuFPvMVHqhBBWIcQeIcQjeo8lmxiQMkQIUQ/gLQBO6T0WSskTADZIKc8GcAzAv+g8HjoDIYQVwHcBvBXAOgC3CiHW6TsqmkcUwCellOsAbAfwMT5nhnIngMN6DyLbGJAy55sAPg3zb65tClLKP0spo4nfvgygTs/x0JzOB9AipWyVUoYB3A/gRp3HRHOQUvZIKV9LvD+B+M22Vt9RUSqEEHUArgPwI73Hkm0MSBkghLgRQJeUcp/eY6FF+SCAx/QeBJ1RLYCO037fCd5sDUMIsRzAOQB26jwUSs3/RfyHfeUOsLTpPQCjEkI8CaBqlk/9K4DPIj69RjlkrudMSvlg4mv+FfHpgPuyOTYiFQghvAB+B+ATUspxvcdDcxNCXA+gX0q5Wwhxmc7DyToGpEWSUl4528eFEBsBrACwT8QPdq0D8JoQ4nwpZW8Wh0gznOk5SxJC/A2A6wFcIbn/RS7rAlB/2u/rEh+jHCaEsCMeju6TUv5e7/FQSi4C8DYhxLUAXAAKhBC/kFL+tc7jygrug5RhQog2AFullGY96M8UhBDXAPgGgEullAN6j4fOTAhhQ7yR/grEg9GrAN4jpTyo68DojET8p8WfAhiWUn5C5+HQIiQqSJ+SUl6v81Cyhj1IRHHfAZAP4AkhxF4hxA/0HhDNLtFM/3EAjyPe7PtrhqOcdxGA2wC8OfH/a2+iKkGUs1hBIiIiIpqBFSQiIiKiGRiQiIiIiGZgQCIiIiKagQGJiIiIaAYGJCIiIqIZGJCIiIiIZmBAIiIiIpqBAYmIiIhohv8He2jICechzzMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "targets = (11, 12)\n", + "xmax = 15\n", + "x = np.linspace(-xmax + EPSILON, xmax - EPSILON, 1000)\n", + "\n", + "mean_lag = eval_mean_laguerre(x, targets)\n", + "lanczos = eval_lanczos(x)\n", + "rel_error = calc_rel_error(lanczos, mean_lag)\n", + "rel_error_simple = evaluate(x, targets[-1])\n", + "# rel_error = evaluate(x, target)\n", + "\n", + "_, axs = plt.subplots(\n", + " 2, sharex=True, clear=True, constrained_layout=True, figsize=(12, 12)\n", + ")\n", + "axs[0].plot(x, rel_error, label=targets)\n", + "axs[1].semilogy(x, np.abs(rel_error), label=targets)\n", + "axs[0].plot(x, rel_error_simple, label=targets[-1])\n", + "axs[1].semilogy(x, np.abs(rel_error_simple), label=targets[-1])\n", + "axs[0].set_xlim(x[0], x[-1])\n", + "# axs[0].set_ylim(*(np.array([-1, 1]) * 4.2e-8))\n", + "axs[1].set_ylim(1e-10, 5e-8)\n", + "for ax in axs:\n", + " ax.legend()\n", + "\n", + "x2 = np.linspace(-5 + EPSILON, 5, 4001)\n", + "_, ax = plt.subplots(constrained_layout=True, figsize=(8, 6))\n", + "ax.plot(x2, eval_mean_laguerre(x2, targets))\n", + "ax.set_xlim(x2[0], x2[-1])\n", + "ax.set_ylim(-7.5, 25)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test with complex values" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAALYCAYAAAAXYuFPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9fcy2XZcXhP3WcT3vDAPDvMQMovNRxtaqaFUa0Vo/SkmMGDXSpImh8lnbTvyjpkVTDWK0iWJMtGJtm5hpag2KTU3apElraiUElVRMGKKgThOLZSDAgANakArMex6rf+z18Vtr732c53Xd9/Nc1/N67ve9n+vcx97rY3/91t77WHsfoqp4hmd4hmd4hmd4hmd4hmd4hmd4hvcLx3sr8AzP8AzP8AzP8AzP8AzP8AzP8F/08FyYPcMzPMMzPMMzPMMzPMMzPMMzvHN4Lsye4Rme4Rme4Rme4Rme4Rme4RneOTwXZs/wDM/wDM/wDM/wDM/wDM/wDO8cnguzZ3iGZ3iGZ3iGZ3iGZ3iGZ3iGdw7PhdkzPMMzPMMzPMMzPMMzPMMzPMM7h+fC7Bm+rYKI/PMi8o9+Zp6/WkR+2+fk+QzP8AzP8AzP8AzP8AzPwOG5MHuGr2UQkd8qIv+JiHzne+vC4VMXcUZ/E5H/rP37vs+p5zM8wzM8wzM8wzM8wzN8rPBcmD3D1y6IyA8B+OsBKIC/7X21+VLCv6Wq393+/cGeSUS+eOTZVXht/md4hmd4hmd4hmd4hmf4csJzYfYMX8fwKwH8dgD/PIBftUj/XhH510TkT4jIvy4iPxcAZITfICJ/RET+uIj8bhH5r1naN0XkN4rIfywiPy4i/6CITONDRH5IRJQXNPb27n8oIj8PwD8L4L9pb7n+U0v/ThH5J0Xk94nIHxaRf1ZEvustBReR3ysif7+I/C4Af1JE/nzT538gIr8PwG8RkcP0/3Er628UkW82/SP/W/R4hmd4hmd4hmd4hmd4hs8bnguzZ/g6hl8J4DfZv18sIj+npf8yAP8IgO8F8O9YPgD4GwH8twD8BQC+CeBvB/BHLe1/Zc/+ywB+ocn4779GKVX9MQB/F/KN18+ypH/cZP58AH8+gO8H8A+9hncL/z0AfwuAnwXgW/bsFwL4eQB+MYBfbf9+EUZ5vhvA/7rx4PzP8AzP8AzP8AzP8AzP8M7huTB7hq9VEJG/DsDPBfAvq+qPAvg9AP6Olu3/pqr/hqr+aQC/DuMN1g8C+CkAPxPAXwRAVPXHVPUPicgLgF8K4Neq6p9Q1d8L4H8B4Fd8Bn0FwA8D+DWq+sdU9U8A+MdM3i781SLyn9K/39PS/xlV/f2q+p/Ts/+5qv5Je/bLAPxTqvofqep/BuDXAvilzW2R8z/DMzzDMzzDMzzDMzzDO4fnwuwZvm7hVwH4f6jqT1r8X8Lszvj7/YctTP4YgO9T1d+C8ebofwPgj4jIj4jI92C8WfsGgB8nHj+O8WbrU8PPBvDTAfyoL7QA/N/t+S78dlX9WfTvv9LSf/+Chp99H+ayfAHg52zyP8MzPMMzPMMzPMMzPMM7h+fC7Bm+NsHOZf3tAH6hiPyEiPwEgF8D4C8Xkb+csv4g0Xw3gD8LwB8EAFX9Z1T1rwDwF2O4F/7PAPwkxtu0n0s8/ksA/sBCjT9pf386Pftz6Le2/D8J4D8H8JfQQuubqvrdj5R5E7qM/uwPYi7LtwD84Ts8nuEZnuEZnuEZnuEZnuGdwnNh9gxfp/DfAXDDWFT9fPv38wD8mxhnwjz8zSLy14nId2CcNfvtqvr7ReSvFJH/hoh8A2OB9acAnKp6A/AvA/j1IvIz7bKQvwfAv9gVUNX/GGPB9stF5EVE/k4A/EbrDwP4AZMNVT0B/G8B/AYR+bMBQES+X0S+zLNd/wcAv0ZE/jxbmP5jAP6PqvqtO3TP8AzP8AzP8AzP8AzP8E7huTB7hq9T+FUA/veq+vtU9Sf8H4Z74i+jM1T/EoB/GMOF8a8A8Mvt+fdgLJL+Ewz3vj8K4J+wtL8bY7H2HwH4bcbjn9vo8T/CeNP2RwH8JQD+n5T2WwD8+wB+QkTc3fLvB/D/BvDbReSPA/jNAP7Ci3L6rY7876+8qpgW/jkA/wKAfwPA/wdjAfp3v4L+GZ7hGZ7hGZ7hGZ7hGb7iIKpPj6ZneIZneIZneIZneIZneIZneIb3DM83Zs/wDM/wDM/wDM/wDM/wDM/wDO8cnguzZ3iGZ3iGZ3iGZ3iGZ3iGZ3iGdw7PhdkzPMMzPMMzPMMzPMMzPMMzPMM7h+fC7Bme4Rme4Rme4Rme4Rme4Rme4Z3Dc2H2DM/wDM/wDM/wDM/wDM/wDM/wzuGL+1k+f/iOl+/S7/rim4DYA5FMtN+6SuOweVzzzJniDsqetOEXevQMV/KlyXolXch+MN8j6ROvN/BY8vwMfHo+tei2rT6zvJT6Sl5323IqySWfS3HB70HVSoZGt+3Ks57r4af74SP7PF0W6yL3yib+XPtj+r3QP/6j27yl/JLxvU6d10y7zjM/X+m9kivU/oJaF2s5c331thcNxksePaXqLfidv+tP/6Sq/mw8GAL3Z2YN9yU73r2Orosx5rT+aNNZVaQXNtl2Xj1cdO434fYV/r2RD4eHsfSVWPtmG3Un30O25a1yN9jI6dqzPSrjHu8F/bXKan1wHutXgfEi6JZy97Zp7voXmP4l4b7IHu+v9GLcX8pf8JTA8EdpNCKP5r2yV1e4L8v8q99XdWHxrxj3v6rwi3/Rz9A/+sdub6b/0d/1p/9VVf2bPqNKbw7vsjD7ri++B3/N9/2yAYDHAbwcwCHQL16AL17suQAvx0i3oILRobynHGbAFQA0DK1yGjCMN/U6hfE/JGTpQcNHdKRZvBvw0KPEyZiYyktafkfptC73IL4gfv5X6nPmpZQ+xbvclt5pQ5Ys0pQXq8a3T24WfKMsVzrGb63xTfnXyLShdRmWvqpXtLToCyW/ZhM12sA7B9OSrwGzsNExg0C8hOMs07PHMw0+0SUlwXnkG/FDFIdoMXZH4a0lLoWXZlwob5QpaccQ0Jo3eGnIdV0OOfHiZYYGbVSVPfd/LPeg8jHtkKN4EZT4AbVhr3iREy/RLicOKF4s74ETL3IaDJhssXKQnMN1Cr1SR88LnBE/TE7JSzqL6eC0/vwFigM3vEDxRaFF4fUiBiPeBtRND5w4RCL+Qr8B4AWI9EMPyis4IBa3dDnwjT/39/w4XhG+6xvfxF/zA79i9JbjCPyFSNoBEegX9hs+BgmrvWMCgCrkptnxoTgPQOQYGc+RlqmaduVFcPtCgG9UOQVTCY8Tny1NZIuxHcuHHbjIOyp0WWdKNBHvtJMNobwrvO31KI1Xx31FrlR63pUepOMke1emjpUPyJmCAMoT+SssL/Zhhfv03PKs8Nzzb3E/JvvJf4/7wLQQkbZZRJga8SnN+WhMgw45r7G90NqzqKqG5YHHHp9x33XY4/7A3C/knHA/+Y78IFrXp/Bf4L7TrnDf8zHtYXboC9zCLqQNobxyUt243LRPrKPnTzkn1d1sB1wOiNcLFC848YV8y3DfeGmtj7Q3I2R5gUMVQlh/CHCA7EBgOxLf7dfnwP2vKvzkH7vh3/5Xf+DN9N/4c3/P935GdT4pvMvCDIAtlqSB/jDAZeEzMo8FDgc2mJOBGTxEaE0WO6uV97RftALoULDuo027agHYUsQtiw8HGELKLeOa1B9oz3tXLsU3tNPzVVjkWe2/LXc/t8ZVlzryHGFfV7N0To5F2TLUtFj8glpeWv6qVUtjWvVusQ6NrxQ91juQu1C660IGJ82TgEqy7vWznFXdzLRUJ8Jc1CBf4980yqYOkXJPjAVF0uqyvRxu1mHRbxb1lXKF2kWW9DwuJSpJg/Yy8JhWn7PvaHSKnaTzCxDyZuwYlaJmuJkHt4JOtK/pkYtwHImzItCXsRDTshuRWJ59tzWiCM4vjqzRw3QTgVol1BF6AAdsI46qofyyMl90eF3klRjgVcduB9Y2o8mi/j3rSPEFXq3yr9FpQ9vk9syvkbsKS3tLaRXnG3q8otupOK7M5SvCGgbex/1JUte64r5nk03bd27cfcrU4HpCsdVxgR3SeE24X7rwYuRvcL/gMY3ZrEclLmeR4RhT67z24jKFCz0qWl3hviarSW8Pp4jZE6rxwG7gVLHFouOikDUw4OY+pRKbBaflneU6LcpcJ+v5rsVIm7Eo22Q+F4adtWItVz3n4wbFTc/3VuKzhPdZmCmg5wlRwdjSVqjk9Apy5ELMRlZOf/pUzztzLujKmzNLx2kw7T30HBzkEOhpOc2wxze3O2DR7usqfYwtaWlmzIUHuacv0Hoxg4xx5APV6S1OLw0XOje5oLzOhjEFjVeri6vp4apupgXqSkd/pKQUJUw6LeTECrzVxag3XdOg0S7keN3JilZ7otb6Mr48Z+OJWDeAsVehacSE2E7GhPJz2aTmMjU02zl42ZR2YbximHQjTRkUwNHbKAs/aC16Rt6h8CkG82pDUXyTXUIuJM3eQRVwArELyTqOHT5rbwFEBacoDuvYAl+0JB3gw15Gmi1SDhy4mVxfGzjq2LQiDHagk0rooTgLrZtWRxAhnUHlG7y1vHA4vTw4oLhFeQ8Izmg/ib7uO6XeZs7rNLn+cuaGsZt6UL16C5yiAM7YWXVasXY6+5h6MOjLS/aneEuG8SbL3pyJT0UKjidAqbWX4/VpcT28t8A62wH9liHyAZskYUyUxOSeSpuBmO0NDdJpi4TALXHf45U2QsM2ypy0C3xkWsbUjle9VSIv0xqv3oSOD20wx2+2GyXvQsetvVnIXVZrFT1j9i4EHsnaZqyAk3AxcV/v4L4/axVrfUg5WWv26BZUr8vFhNa+4N0TkV9n+0oixZipyXTcTOZr2ijOpsyJx4mp/LaGcR86MMpx74TCMUkBnJK0CjFsGwVXqGGSQCTtgAKxOBp4LtleJjO26EyR0/DYlWT74nhmyBwbW4fVU+gQdsMXZ+LTSEDUbMaJI+yA1RUGdgtOQO2tIQ6cOA2PBy+3N47PCrcbglNNL9HBSYZWXo8AavmoPU+R+B22wHDfsZXfqikQi1PGfcGwj8/w5Yd3WpgpcJ7QlwP6nV+EK+Pww/Hp2egNuUBDmyFlL0zw9AkYvWGzgRo9jfOfYyIj7iZzGigcBIiEmt02BPjIOq5E1QE+Juv2L3B6sfU10bpq3QgujKK0tELLohzD2lyCjZX/7M84Go99HiU1vtQxmHBdackrRLt8G0n9RESrQaO+sNx7arSTnIXOqfzesklJa7ONUjdS44vZxF6MGYHQmfNK0KrNCMRcrNTyHlY+tfL6JH1okC4qvbFiEWnjbRirWlYvf82bvNNpxc2DS8oGj71IGlMvrRWjfPZczfXihI43RmaAxwRCKe9gekIgOtwAVYapU3+bVOS6nDPqghxvbGd06PyCTitBm3nd9Gb8jLzZhl47J854KQQr3zHJyTbQQu/1lG/UDgyjrfb7JVouZftCNsujJvct90ZJLILSlVHyr9jk55AcO5p9wbpw4LWXOW0GEB0aGLOvbyBtwWl24aD6Pbh3ywIXU1YbkQW7IRWPh8o5loJdx2NFcZmc5TRMPSqmFnuzwO6Ov0taWcgpdYACx5dyO847+UYuB48WXGTXzBXu9zC1wYq2YbcCOLSVQRBvPvrKqRtJjjvuJ0DP5WQ9upt6F9UKlmJWuJ946lNsNWxTQUzE1Sf/9hZohftkhQmPZyy3fY3AqKEjyWFelHdsbN0snhXPG4a8EaKqvrcysJwWNGlQiVYS94NTaf+0AydG+U8cEL3hOAYe+6JvLKEGGuYm16A9oM3eOJZ33E8dh3PiGZjqb9K8fDfjO1IORA6rKw381cBuBWyzE8aLFphkL2/IxXmlZdfG3MAcOrn+TvExw6ixb4+F47u5MqqekG/komwYzGOHSnRWy4xqB/dmkOpvBk6MVb+CESX+9mZVA7CgJ3nLvARtd3UMo9iBfhM2WaYd1o3hK3yE8jZaB7HVAuyKtvC5E7/UreW+dGW8I5nt8aCVKc+Kdl12Lbu5UjCq9boy2bkPFqqp1/wWbDxYFbu6I3Yjz9N7/qX0zBXVVvXzhCIN2jxJ82qNrt7rWYlWMh4zVWUHit5GSXsUC+u0mGhdjmo+8/JGCaKNfILidGbIuK2nmkgdGoQ07TWkd/fAoJqLU0uuNJ/1Xc6Y8KVrpLdf6CHdbTLeRQ1jXUTXvE7rrRJ145IegKspON75jLJstGHJs+IkiIYwdkFb8tqDGK8u03cSgofjcHWdTzmE7UtNvU+vaFs9cPqG1T0MnezcBd+7ee/p9CCtR/tb/Mi/slVXsi7kRMKdvnjfZrgimvaeCUQNnwe3Cm2MkwvM9DFI3aNliIfdtbwMZmRdhSam87T/5/YZiakzHhunCfcxGyAfE8FaAn+WtAv045LmNplQB+iW2hY0osP2Fdw/w4YI8e4hkRfIcWt6a68bWBmHTmqxgzgAkm+KCe21lS+qotCyF4RGPXQ5xR6xVRNzOXcZ9LZr4HMvO9W3JO6P9qo2q5IKLWhhXTCX+i9TH/1Y4Yx3hV/v8E7LXx1vpYDh7/9yAN+wNSK5BPgExHflS3oOM2KrgTc+mRkGOBd/3hEFgJzncF26KeQ84ZNfVZbbeFMR/M/o/B4frpBpcLTS0uxNFTlxtHKF290CkCdcdbynKik6e5DMe0kLGsyrkavXtIvs2Q69/AtaqhBrg5Qz6YTONyUXHZkt/dOuJNFOcoIhubJG+/UKYuV0dqOkvMEX1r+DRqpcLwNpqdr/LgwsVU10M6i58Gn01TPqWtBKY7QhNeVRvapKyDiRf08dO1gjXnU+o3xMK4XWTcmQ5XUiQcv6nzbbHrRJk3mzfLDfNwXOc+SHHuGeqLazcSPd8og2MK7R4L7tcqTkHXXqV3Akn1ujjboU5+GTAxk6Uae7UV6ou9Lk9ITfnp2K0m9uqlGvJwSnWH1526LT+lPFzXKc1pbnG335/Y1VLNAOfiVif0I2wg6o+ltwrelBwD+tv74MGSrDzfE8jhJf0Q6slnTZofHM/cfHur+JUbX2pknsCstpdmrla3Jg/YDrzFk4jqfKiVfS4nPVTNi2jJNcjhQdFrx6MbN8cFgbo7nJW83zog1lI6fX5yRXI/sWy6fyabR/8fkejVqQMduWC8P9pLa97HSg/jz+Mu6DFoOLukHSqnWAguX8F+MN00m0Psa5X5/UJ7h0Y7wnRqim3MCPoFGSJYYjppvp6ONGkfZCSaeb4d6Jgc9qddFxf9A77qe7n2LGfXc5HLTSaKm9gILPJ/E6IbgRxgOH5ZUiZ7I33gamY6WtctyWndHjBlZ/C7DyDfqbuk4ILHf5bEcVGHaO2q/Y6Gi/Okdl3D9Ni9G2iwH7QYJCcdO3//tI4f1cGX/qW2Mx9nJAzBVFeRcVNiE/6mQ4/f9j78Z4YrjAgB7YOQLAXvMavdpgH7d3aePrrlMH7YBI3R1qO1fFOCiGu4nje6c9smyGC8Fk6ETML+S4C0yBbmG5VSdQ3i0tEEa+rAWl5fG/jRaNlssL5923AkrdpNXvt1H18it6WsZEdSrf5NJzQVt0juSccPFlDuyuGNmWcrVmUIGwU7g3Hvc6z29dOXUScuNIOZU65R5+w6glHAePn3R1lNAx42KuYRpyWs1746nUfldo1YtMZOOtRLgMtkEkkguhUQ1ZOim8JOo4z1BoyB0uIEnrix0xN5F0IVQceuA8TKqe+MIXD0E7+FQXwnQtUZqBKdI9ZOg2Thn4rzNu/TrHYDzUYMhvrfBd5WGQRz87IaSj+Pk24drLOnPXGGshilt/sNMfXnfedwatmv4avKrLzTxpfCSILY6Ku2LPAzWX0qGQQO3sGcgbQCpuEFa6bsVNkGcdQo9kpi2WJeyCCyPwEMk3xWK44oBpOpJUMIvEPRtbdCtjGWLtd3FHjPK3fN7mDTc6HnPeHjpWF0z3Bzs8ZntjkLK1N41/6kxtRnqMczatTFQ/w+S3Ts9ZCVNL+VTykI76XCQ1q+VzbHNatHqtdiFPWDFtli/K6/yk/sWCNqrGMchs5ozl+aZlpqVNCEkcJSvnZi7P3ztiCKUJ4XFxb2nvy3RgviFgPFdQc/QyRxvYO32ZM7mLOiSsA6CGsbaoPkRw82FpjGO4KHDKEYszgd3uyjYjaKW4DCaWOzYK4abZIcNyh6JzolWTc5DXVbpSAicO1cR9f043WLoTHw9L/51YXu9ZkJCUtorf/glG/zqR5V377Xyc8HRl/ISgCuh55qIs3FISUNkA26Ok9/9wGi3qhqFDGiggwEeBAqp+ViDODCDp/Gdx3mrGqJSr0/ZF0iO00tIXOi15ES0bvHu0PXSbdy9vl8PziaWOjwj2B+pgW8P10NOJl/Q6XZCUWcRWTl34S8+0cJOMha7vpPdJV9PR5UzStSa35ZEZ5loUNswpIw013NAFbVaU2EPOu3OTLOJipmXtFyqTIM+t9Fb6sh5zFjAMidgEWKOqXL6/Fc/SeAfKNzCss5shNzpKfY5PaoDi/mSaVHKFRGWdW7lpGIV28u2NjhIbYS1KtVJPyUP2Iisdqxuut0XH1ag9lVI+nXPgzaEMAgRub925y8bJAlM3ZDnF4DxC5dbWiGtG3IsnnRdJk626CEtclHXaPXvT35xd4e8Vpt7D6rvle4u9YZvfeTtctPzRL/tAxEUZePbKdN1mRNcovQgzDuIS9yPZaVkH59xe6xW5pUwjL42GgVoEoG4HfE4jhpsd90ONwP0cC2yrxJUob3RND6Gp+q4NUG8iTMBe1BmRJy0WuH+G7s7CcT+345Ir03p9cRyFlnFxgfv9Fa+2vL7ZT3WVRxXbG/fF3CY5pZ2If9GpKwKPzYpuq9DkUtsvbRFbCqJtOl4M5Wf4jOH9XBlFgJvWV6iAD40w1DG5sAs5AryP7FRpjHzim53T02PCdgD6IsO1cXzQYQTvcYnIe2PGgCskh8sRYN+mMcq0NHmi31tjvku4MIRd7hVt1tUme3+4kNP135bnAR0TjCpAlfKG4H3NsTtPNcKkNYPpSk4AWsopk4Kl4PwxTYp3WbFeAE1v2rUVnbnoWq3YMQMZQaIdXbLV44JXGtA5L/+c3KhI10xbd95Ku9LJF1JC5Xejn5hyUnn8LdzgYXualjFdRyTd00J2Cg65kKLjGTmyfF5TXs/BP2jT/STTQIsiWyhGAd3FZ+zNVtrxL10TyUWS6zURNm6lpGoNHpmvujgm7VXH34eBwXvzrnT5DqmdtPwmIjqzZt5Gm6VA2I/pgo8qYZLbecfoV85baUuP5TJMfNdYsMTQjb3xsi3TdMOLfjvvCUE3/eOqfDvaCI/YjJXOCToMc5nHy7/Bvkp3lYnygOYirqXbxiv6CY+zhJw0sZCKddObwQ0dY2pmYvdLSWhcKNvtAA/tGUdqXmH5QOCxRqestARlSWMPGM9CF9ZH/Ql19qBFYCqQbtzp1p64yC7e7l4Z/9qirGoy7E32I3YZlORN5XLX9HAvjHSumwFKnqcHz+9ukFVulon1cPmRp7XBDmMY9d3F8URag4/8RkoxLk5567+PFN7p8g97vXuewO0Wt2pRckUBvj90miw3pC9uEIqyKxw7sxivqh08NAE4J26071L/hJwyNwmscFBEMcJFbanFG4lv2IuY6mMOPbm8odjthkQ9IjPwZOaKdqfjtCJ4Be1VQXfECx0nvuyT2Yz+9HwjaGo+0jl/SkwaRBZxz69j8fAqufxMJS6uCINp5RCxK3Kda6ubuOULuTvYNeC3OL3KZPP3Suk0XMOVwm+PmnaL1FwtbJc23gzB3DTAtHmToD8/La+oxn0/GvKSn2KcwzpEAD3CrVDgWFDl+E6z8+criDWe+w1ZKa/LFavc4ZE3nAa9fl7C6cfbziufaRPauKIHJ9dSyx6U17N/n3mq8+jDYjeEpZxlGz0auDP1Vw/W/wK7D15I+w79zGqKqM6LP1nk48CDZiEnsJ5c9PyykEdgKsvX5DVbVdMWOrJSRHpZts6D8XjS5/OGS3uzAwxpGShdsViwCHJ9yxXcb8sItrKW63npNsbZnbCqFM9CzgL3mwre9aeh0PGR5U9tMzKvhpGGfTGXd8X2iIMir3b3SVC8IJPI1OQr0aph38ggEsNiYM6iX/niBOZel564uu4wcTV9xf2b0QqGy6JK2lBBYh/8anqjH3h8ohRMYedOxzkyx/0j3goOHHQsF9fX6E/Kc4YOroVGKdXQnD8N4279L1DcTDJfOnLYebQ8QWd1oMjPzlhHTvvdB4nZPas7aHVddZkHYOeJ3YtkyFGpn0T4qOEjLxxfE95lYSaH4Hh5Ab7jG8AXqcIA3TotLFdut/NK4asNG8+Ud4wcMnTcq8qE2PJJdufycUq2BLIANxZjA9IPlnfMV6DNaKTRtryToE18Qv593uV1zZ32aHQXvHp9sEpArZvC60LHiAat1LpZ0jbJbJMfpXUj78YICY6jMbXIKbynCU914ZBSYLV2YLkSchMWXT0+s6D2zMdJ9fr2xVko7fZNEc9TrDTanCDEeRmPo1axItPE9WiTEB7LXFdVjm2K2G6gyAleMCcmmHGxCTpPhsI1BZ3WQEOrYSq1OwY83JM+r2nnzzRbuowd09iPND3CeYbOKaQLi31DJ2ht2UjgMOrGaf3s3Ug77YCH6Lgun9/SAzQGeXKoY1mqVi/Rlz1utRG908qg3k9SqVpvAqJ9g4n2plGdN+NckON2ucYedG5M6/k2zx9YJGVRNk9PpDysk1qyPd1mrHRkjGG+HcuvMLXbqqaTtqycXjd21jaEIWZJu5AT+TfYXoyT7DDV/izsTcfjbXltLMumXoGN/XHlhdoSaMQ660xMa/tVwdFLtDwIuWWRVfBKp/J4G7mbGg9lYppyCLu5SG4jU1UHfgHkZMLsF9QXlnVRsIBp3Tg4rY+ABBDd0npc4MsQR2cJgFjpWHHfzxrmZuHYeqou27bkC9rBPG8dTDwOZU2w35M4NtsOc6Q6zV4dY8EZfhJeUD8b61aGB6h9Dc3iihOqdi45cN/l2KdRzCYozsAIWwZvcd+QnFw7o7qjb6mm/TkxFp/uKHZGPkNLy5tuoG/A/a8oKPDhLvF4a3gnV0YBvuM7wjhXo09GYQMcIz1f17K7UX9VPv02tMnJhtoBcSSOsaBE+mDutIMmnxWDO8lt+tOvbgTv9a0peWMUV3lnV5rHaaewKF/UTXt2JWfFo9K2GptmEMvI9HjWo+Xf6qhkabKEuszb5MWjgMWappgzC+eaamPiWtTYls8tGLYhk6qOU/9sP4rBXfDaNhc/iO96dXcON1wsN6ZGbSz5Hl/XUUoZ0i0jMxUcsQLxvmivuKwbaU9SR220bq7v3mdIrJTKus8q+V8lOaTD2s2mCWR3XtYBuK/zg8GxewrC6ZT/qoOvKmXiY/2h2ZClbuyTtbJHRWzmndDgLm3Tt+vV8KPamwu+0vJvZC7tzYZ2GfqAvsLye/aFbTHTKTBp8qDNGHl3tHdK2OTymdO1rLl2c1jp+vkuNDl7LG869hR13EjX6zJ+N4sw/i2LeprtZ6Vd1ezKvOWKomKkf8g5+8UK9+dzsYl16ZI+4/FCD+MZOqq7NtZBma5/Em8GPT7ZhmUFKOX1xxK3QrJ7e7py1rJyayceV7mrce83Z3I4Sw4uX3ZZj/utysH7bid+hs8R3mdhdsj4htlxQG83AAzSGrsD0GosleMl+GDRWFxpnXlMecdPscOaEkmxCzNZxTGYuGN6R60+1mu5cTuaJ/V40OveADXaC6ze05Led8NCzmtpp6pY0Gr/MdGmn/heR23xyv9ysastsosvysL+74Fw2Z32Yiad9ufQpn6/GAdX5eN6jHFEUsqE3dO0pelw1dtN7qtR8PZKUPfr8j0P+9oP3lJ4liuXQ69hrPgcgmK446VOYmenpNGi0IZe2s8IeOcbV9OfVL7UMfOGTCrT2eTOtFVu0tI10cFnuNaMK5GPyJvXJLMRtev0yZjeIu/gz/FTNAzvSXr7v5sZdTWeNz0p/yMg8IrQ+mhZJPp/m8iY3zGotrHB5wgn8CobdL6Os57i44Qbsevb5MyYczUoL3jJLI7zzjZjzRaoVYNFXq6bSea9Jtb2tzBu2S50nthOdXNHD2CB+7KwVb0DXdCqlrlHXyPtdbRbDssmh6OPxzuzptayXqXJtYWXLugiTssrTXwavyuWBwb5M1+A9OGoY+x3/PI5k2ObEm2Ro24L+jmpUaaT5KvSdfuEkxUXfTEmOM88u7u6Lt+dTJXOc6nw2bDxpuwG4HYCpx44cRAuznJPSMXjkJtYnlWXtG5DAtsxPs/iV+LfDKvZ1ky2Clm+26Kes3ywzxAYvfg1+Pms4j7ZDAFOfIm4/5lDL8tr/n2k8G5nzGIV9PISTwCQK9F4HSvmMqKeZqThPmTE6os5N7ACuvK2ie7RtmsZb72FHvjziTZl+LWy4WqjySP2iMgIjPIhy0eylt2f5bB+uzgXq9HqIu9UN52vl2NF21kozL20xl+j45XLztyuXOfVku7dIJsC3kB0xmB9GMD5NovNtLVkkKmytHpfCrkglo7ieblAGfdxkHVFfJH9NnqgxIOZFuEg4yasuD0e0qqZiuhVo5Gb5dSrkP16Y3fLyFNQY0I0douOKM8hMPcTp0XQAP6deClyy7zJXFdO55Wj0cae6zFoTxyA3oZbssB2NhUvw5kQ7lDi9RpONOInCEyeALKgzav1/cL6ceDVa4TPr436G7V1qrlEFrkH8uwFn4EYHL6g8rorSp9TxvXN4r/9an0pca9X/1zAW0LIF/rH6bCOFK6L1J6CMgazm2evDZvBWQlj94CV9iLEeAapuFFwn+FhwuM+WNZYF1f6zypV1LC8MslBLS8nN/xdYqrMUB71vQoX9qYXotuQFZbvdZb0ZtnJcXFTnWvacaOtV9jrzLfQCumok9yCsUyLXqAWZ9xn+pVcnuNYIbsrmezyxig3HGnYfQi7a2bFaqdVt3NScza5Hfc1qqLT2n9lbFb5lf1cNxrYloJUzUNZokSE+Er9RuBuj/6ZFIXiJRDRS6ZY2YxwW7UxoQq8SMVjAITlKHicV+ADjLT+fuxFrmhhi9mx7DqMw83RXdz9Ms9K8znm2VaB5Iyy35Dn28LGQwPnA/tLz/AF/htd2L+ioPh4l3i8NbzPwiwMghQjzIGNt0+YnEYZ/AStKcw4M6cCyCy/6qRsNfpkwIfZ6hZHe81W5SIXIkJyix46lyfFbUOpmwujGHkvwl3XRmbU0lbn7VZyl0b+wfEd9UQ7eNe0vTek0b6cbKxC+6CQ79AzvIe8fnjCTVYowJO9ZDKtwZyaiiEibfedDIpFi/3X2YDyZCemqEVuWa5EXur5xZBNkynUeJ7FQi44iUs0iPjlEimdjaA4QzJe8Tbdzwqop2bdaGar9RWuKFruh9Dy184x6VzyOilgyjqhKJONRpv/lI4xZefqLc0hd8G1LJZCG9ZZePrhZa/6ctuUVtLZ9crrkvvV64JjqvTH9S/LjM0ra9cL2trLcoJVsLz01ntgomWOipXunDfasObZ4+SiPMRqWf8bLFvGV7Suzy6vXulrYYXlV532Ss6VrbLvUHnZyjEDJlo97LYK2fxxFnHpnaKLenVDa89aeesCp+uUyLQmZtm2qCC+KXaeEpeFBRepuXH6CzxXa/CtetQxTYaEdA5b1cvgsoFxsQrjWKdl3rFy9ndZLFfgH2uPkm6qjTElbES3GcxZ0j4ld8A3dB2PKy+EjhX/K5Zrqzt2d5xtx0yb9lYozm2WdVdoL2yV51PkBluWp/GNvJaHki7f5H+EoONt37dDeKc3ZoB+8YV96dZqMnY506COgU1xsy6+AHJjk4CdwztoSwdbovjg6duJCzkTUtMIi04tVa5S52exoRKDbsk7G/ZJtsx8sYo/QDvVI+vqP9szrvNlHDXvpY7cfkUOWRIHt1b3tXw66djLt7XqVDdocj2+mhQ4X2l5nTZ2zDQhb1KZjHoa1bwIJL9BM+cd5eNFm+84NtNKQ0xDjj1rca5KOgoQtL0efSezyDHas+kMiruxEAhuUJT35jFIhiKnVYO/7UrXIAmDo+I3Mo7JnE9OTqDcDBZDDnamwepc/OYuTaN3g+Bl2nBxozk6hVgb3DA+AiqS5zmOS1pYXtuvNFr/kDN96zb+xe1iJnechxg7q7HRbn34sLyHHd4+AJzi+6n+wehsEz+4n7dWWhlM89EG3h4MXm8I3CcW2Or4u8LUKd4GO9NiQVvkSc0b2Ajkh6KpLrwhBk5mT4L1y6FGHRx61AsdKqb2QdfkEU3Rb4HH2/gqzfmyYlLz8vNtWOD+hOUrnZm3zuVd4X6xTUz/gB0IHXddlhM39bgqe5avYlstAyYnirtvDQ2THrEZo3y+QbUqoI1pt0Fkm5KXhF3wvK6sQO1DzStblRjsrB2rvXidVpH9THRcNmGfjofCXMfJrjl+iWEY20TnKIb7bItP5I2QjvWH0Xrxxk255gGguaC5mW6u8wkpm7t5263gW1C8BB6PUhxKeBx1M+6RBKXdKG/cw2t2wW/C9UXStwCyawduhPtntKt7TlD/oDEkomYzal+HaLwlk2h1K7sODmmbPgH3v+Sg+HguiW8N7/TGzIyVKuTUsP4KAftLDTcPQlVLCxxNexp8jdHIY7TdIC+7FhkkAeqEylAmd+Ar2eqAejdOMJ3jZkkf6GwIi3tBk+WIwIbvaHkLL9KP80bdtLzNwAa7JsfL28vHcbYbLHfpyrgpj6gYknpezQZYtANXnKhm+XpymQjIpCPQ5aL0114+mWhTZn2L1dxQVFtfcNAVfgRgLMrKJXYqkCPNtpS87OY46iLGlxX8cFo3EjFsNK6SZlqFxHxHghdoTFQ3Go3ySeY1Wg2d81C6u2zUQG/DYgLkBjwnX+Hu5MYYiHoM98pWrx6ybnxyIdE3Th3uPqewo467jpgDCbnKHEHrOp5EOxZflTbzItxfFNBzLNjEpxs+3bFrjnGMK7CJlj96qgpzQTxx6IHzyKv3D3KSDJfQhjdcU27own5LvQ7lLUEMkLT4xZZZ36hRKffST9iIgs+M8DYo0xRMNqPiU6sA79+OMdL+AVWuP9PE1HjBbwtHruOOdX4bWrlJkvC7vwlnPe7Fi71hBaTFmZaiJR+HbjPY3ix0EqDgIsttYre2Kry8uf3OxIakTcYiOm2oScnbFGKd2U3dxlRRkj/hg17P2uqS+irhos+YexvFRl8bF6raLjOVqPC1HbDfcC8HwuPA7uBE5pXwBKMPF9z3vMp2yvlU+4NGq+KeJ+ySTdURuGhtT14R+Y1Dx7787bcHpluLY2raBb9x8FTH4YSAmwx38UPHcu20t7XDbfAs7ekfURlughV/QwWqP41fmdfxuGB32AWNc2bAy4jpC85D4e/R3P3d9cilove2jGfZKV2qc2bSgmiBF2TfZ1vwDF9ueLc3ZoCDuuYgTWQZgY33irgbGQvD0GUaT2HvTSnCSO5oL+RGmcAgQ3zuGD62kZNObIBWvFaMNnIuR9dr8i5oSxke1PFeXFcZrhqyuZ7UCR3Rr35P5e0zjAudQy9tcvu5Altk0O5uTHAA+LdhlvoXOalHNcxs0z0xemXx4ClmYerXTDuAfbvtLFn0MrGIMjTaKNQ55Z21y/R8O+nCUJtGVrQmpyXltfR+JoALr9QttFcF+EOkPo1IrGgTSGofpqgyMs0nQ+5qeEaciuOstcbLuKldrOgcsnT0i1pti76O6tr4KWcNZiy4HlhlArHL6vXCE9lJDk9hJzEbrNvYjK7zFdYt9Ch5N3rcw1Dtv6mi3kR7pdNVuIdPfQORSQk3lm7qvZpXWK1z+TPDbAdK+erga4PWAVmz4/VzxT4SVvAV6QkekZeJOpaHHaCyYWDo5YUykx2oBo7dJKfKCqzQwscTC63wYq+XwdJiiG2wXc6p7LNJpjrnAgY+JRgmLpidoB1vtXTHyl439aITwYTlJkdCLtkBKlngj2Fq1dHdJkstVHpq3+GGngtshW0WBn23N/5m3jfehteFtxTn7cPktLdhmXZEX/Ctwfz+6dtx/8sPvpj9+od3ui4ficjhAE3/AEIFAkd/wpMe0KBsvZ4HAv8uQdtfGZ078osNmK3RqENTS9ost7oU1ERFn/zUvEF7r0yrsMi4Mtb9luGSUVt1LQz/tryPqNYyvor20QRSsN90uGYwCMLg9VTtNMwz4/f0ZHfEBNLMoJFv1pcpx21WydM1KFcAL+o1unLjm7QUX5RJmTbOQTXdmDZ0GIaM8+c/M5LU2aqKAr+9iw0q8856laEXHfzMvIP+NC3j7ZnnMTleb9pooXQzGevlPJTrXKj8ud/JLZG3htnNj8w3eI/4uaBNnf02SOOnfuMW3xiWOo7+olk2L6/SrW1W/291aRlN+YjxzE7KXZ7xSf0/9k+CTGPBzXmH1Ca7DGDOP3b2qbs0uVQZzEGqkstzUSxqAbgThnp8YQdekzfS9Q7tKnETsl4zXn50O7gSqJR1I5fL1J/rlNF/av6VTd5VJQANaCUyZp9LwqlchVnSZpfWwLx1QV3rucDrdVmWzym17GAIq5B5skSFb+BVqxvGFahjhlRa/+d56BnK7xXu5yc+Sl5r/KojLcpMnp4A3+DIfCumgqabUnUGarpjI/EB2RuvL8fyM3SUqMOgbXah3xjMOM+3UarfDqnjSpC4JZJ4T7dk2j+/fTJvnfSbJKudyPzeN/JG3rx1ctzm+VFD6PrGfx8pvOsbMwDmxOq9M7ZZMijCncpDWfEXw6fV6Ptrgw2gl42TJt7PumnNPeUt7nXsogmZd3c7LevzloW+q/VGWpEqt++kTEG8brLYTHsZ6lbYMmlPuyDqtLssl7Q0a+iFFymTppj0hfvAQiYdfF4mo7r81QzVDbGUkPJJ5y0tb6eFt5cm8EttjvF3tUSgtuY6sq3cnHLQRR+km9OMISzJjOpjnENrO8HMxB6ctnPo+4Ll9sDgVm+U8sCuJ87aX6hXWjEXRsTNWifcfQ/GZZT20Dw/4fzOBW9B3rJ4UDqKLhLn8SY5xvfmWtg5A6a9UV1wL3sB4NccJ9+R44CMj1b7mI6Ucb7hQN7I6Oc7fBH4Vsgx9WpY4G/kOxBliZvWltkZq0GVPNuM8sZsp58XelXQrb3R0TZAcXvrroyzPKKfBvdGt6aLrvJf8bi3HXunijhtgs0VL068qvoLnV+9UW9Ykf3mXqGwKXct4bI97dnMfS0vpiWOj8uml1mlhX5q+NnxMtO02Osojdmq+ZZWsTtga/nWRRrKxx670SLqSIPWzcahtAAQmc5qskg/U3aTxDf/FIq/qWNcG/+G8MNNsdH6mx/GVL8Z+MD4NMgRBlWC1i/l8BelL2Jnw5DY7rcfevlvps8Rz8fvOAM90XrNJ96Nc3c3KAQv1nLpGC/F1h30LO3NSe09TlBnutLzXByLyYoz0vBbHtdTpI8Yvl3emL3fwswBIdwVJZ4XkKkOzJkN1pUdBETqeQEDHTg7WqAFmME62mQwMm+ecyPBTiiYnqmgnhcoGmHra+/XQnPePFtjKhF4c9V0g6Y8O1wp0uTeXZw9SMtZu45eX2XytOEb0SifTBXZ6+Jh2pWWu7FsZ7CKcanJcP/30d+MmbMtfG1auOrbSrQsyPiu5PBnJaZ+E4/JKMfB4ZQxlQdAuaWvsJbCfLVRUs4otHoPXpp53b/EF06siLAcYhWLV28TcZUEIifCLTrqKi8YinGkGAtsP09nZw5AeFEKVJQSpJmnZWH4ygyTeMgRF1N4fKhhF+o3vVjnMWERavvD+IpNpJzWLxmy37All8sRwFY3ITfKj3GOKw/uj3hw633QqyP69lsMoE0IFn128qO19JhubOwAHPupMxdsJxpxvp1Xy+fE5Xp1rg+XubEZfWAtJ/NTXFY/C6sd7m+gIMfZirap0GmDZjUTe6B8k1yLhL1d8MpydizwMYap3nrdTG0QfUVKv6GuXds1nllnD5xihY1DwXldKBEFyJjjcStfGVddp0fsAKkwiuv2ZuBibnAkbdgjL0PD1FKvXHyrm3Ro9FIbdslM67LpRZf1mzXuAxKXfiBo86J358VChNtosgPVZthTCE6oCg4xLNcbjW3/xIp/HMTfMzKWJ+6PNnqJ3yfOsAPhiyCMx91moOR1XqcAYnpEGaDjfNqVvYHJ8boLe8Ny64Uv4zIWtyjeV7OSV3DwDJ8/vI8ro9jgOA74txm6oZs6wD3DxnTMJ5CquScuZCQtj/aFTgV4Wl5Oo9/dcO3K95COS503tJ3gqh6b4bs7CBd5VzpPYSdHWxy1fCx3W74r2iJo4Uqyyqu1XhfMxu/L/tlnLlMJq+fMKnS/kp3cB8OqXueFJImOWshJOufscS20l1rUOl5oIG70dE5V5ZHt+5NLEU2/7i7a3xdqdLAZU8hNEd11prpTnpUjwq0w/i2aPIwzWhMv5CrzTZnpriIlHfbbKy9btdHGM6Xn81h9beBFmetVQrt0YVot3OvvbdFCkgs+T3rt+HjahFe17+5sRo8v5fT8bTwUHRb2pcfZ3nRXRn92Vb4eLnFypcdCp1X8ihZN793btK29WcnZ6qnrBI/HnGDtflielQXcPeM0pz+Km1f7IgN/fFUyV9z1nspcAfxEQrnZDlxx63155U5b/pZ5mOHFblywvODbUps7frYnYbDqVp/Ax6L3HvfTtT75d/fKmZY+fE0aVo2dttmCZm+u5KzkZh0w/NaPkPejNh8tKMYbs7f++0jh/T4wzQux6Am2dC+7pwYsPCPor2E81ox+JCvmHUtLzB33LkYn1JFK2lkFGeuoPY//XRbPRsEG7bTRdgO7wOBJzkrnKgSLdrkvZ2K1omWcpec7Wl5URyXdK99raNFoF/EtEIVcnepmbj7KIBmvH4NuXa7pxNGy6+nFI9roavasTGqsQPyc32alzE1FR3VqSfEdzHSr0HDP84oJVziS7dfgn2puMCbGXRydzq8KHn786dY4dk/F3oCNZ8PkSOjp18sLbN4vfg2z4qYJRYemW8ohB264jQPU4kbTzJmka4uAoMx458XCvk8tUD1xFDdYxSEybubCbdwUZvXHrjKjzgdOuauNkM7+dlJk3BB2w2muKjmZOSR1haLc6nhEPWd/dC9AJT287s4Cgm8I1vi5IPMKNgEBhuN5vqnyDrPgyTZDrW+WNw+Nto2F6Vl09Qs8Xg32K4y5kNN5Xbs+WvYNHk/2ppN3m/gALkqL9/QlacevR+pmwTfbAHOX6/o3+1KmkZdl7fjsCs90YVKAIje6iffjrtey3nKMdtxf1rmVid9cA1h2z8E3Ky1+LepxaSPYDigKdo86SHwlTvC3MCM2mIS7nssx7Dsjl+OiTs+4sh3vBIJDBqaKJG3UnbLTn926CI23EIf62avEu9Ma8MCBU88o6/hGGALL/e2SmB1wd0u/xl5x2hX4Iw49403nYW+vXOc1rXl5QKF6GgbaLbNU3qT1JhWwvRE949iFfwJl2IXxIZVuM7xrAGwzJMrv9vaNqP+VhfNNZ4I+Xng/V0Zz95OcYYzX2pcuLIRYZDAFhhMxwUg7HXa+IGv+6Nf7ukvh8rKPFqT/UIyrcB3nOyBPcmpcW/m2byXUy5tyeC27cmmZQHcFwq2809XHyLqeaDsLN/yt+YouPbS6yfLJpPO98m1pSZAEs1Yeqti+cMq8ss67rZs6exLhQlgP3RlG1LNnIhxvtEWs02ZWObClTVM266ytfH6dfM+pFhvX1kcNhz4SvIh3amr1qFxV8Ot9AXctcRM9no3+GBzmyan1OzOVMQVQiPXJQaXwBcORRtHKML61ZlMAdXwacuv44/Msg+9ptHlqbVS6H7DOa5Tzm25ej2MxOGhG2VnOoPWzkCfq9+BU6kdPvZo0+Od1zTeMM2lef34OjUpJLkDJ83Uhp1qll8Vk1lLddVyylIGNBQidrZfPXamEcB/Ba4VXkYWbjMfeYkx6+3neMlQjbwfvhRxPO2r+9QgcET1eh/vLuExrg7Wb4B2M3dYNqo4Vj/cF7PUY7v3sysg+PmfTseG8iET/lhOTf1CMC+9/vf0iXvFXOS+8fK0yuNF6mGyGrPN2O9Bwn6ZLi5AjN2wc4TGftawbhMsR2vJmm7AdyO2WnRyE3VNgwnJHcKG8vIHDvJe0Elt14JNyNx1nw3KpNzAVZm/8kh+18inN4bLb+NumM+JMm/XWsTxPNisO5Pfp3KW91nm1N0Pn0zbbwO6JjTYxXUMup3ndxok3/wxB0dG+6UZXO43Fa7bvojd/mKB4njH79NAWXN6pHBT9bIk9td851NMwWtx6X+Q11Oq0iPSMchgLHrdwCt0hn8vy3w3LiiHjhxt25favFa8N3yzvhR5N70nuRfpVuNqcuDeAp8nzVb5+gceD5ZtoJ1mNuqfda89N3pnXeEAmKl60+a4dy+ldjnc+k7nGz7pByy4mWij8zY8/553XkV4v4eAdy2RnEwRiH/IonmbWnk0TT4kJeW8iVVnUDZ1o4IFXDA/L8fNMrQySqZObl+TkYqQ3XsSbjfxUF8SyzyVJk8JL4aa71FrUXdBpYmXNRfXqCql7BJjhpn6ijUM+I53isw024Yg0/+/bQlw4YGDFE7B8q24aTYsw14fqhDcAwg50WkX5NmULjL+zzdBiby5pV3h2hamrNLZl7fFk5zjtAhd7PFre9b2D+8vPNdyhXWFmjMY7uA9gPuvki3d/2GCRo37k0xP8zfmkzKofr+wAje+Kv1pwAiwXqMDI4lb3rduYK3XTAapgdylxUX30dY32Um3vOyYjQ2Lv2YEhYLID4ycZJPikXqlIppBkWqHlGtbkJQTesx1Y0E52oBYXkqUK90ex+V7YBcd9riez45K0O+yuFrDia5blgpZwXwn3d7RFZ2o1tTIEamqtx5m21muerMMS/z5KUAhu73jR/OcM7/SBacDfrxYgHb8iWwzMYng13raV+RmwcGVk45zP+VfE7Yc0Wo4Xw84GkgzUzv0lyteNbgFhB/teE5QsSYZ78UK8zsuGMoyZNJJHae/JbXaB3UfZiA6yYinWZdiW75p2ou5pu3ot+ShRkszLtqKRkknnHe4WL8o1HdP9kM5VSXf/SL5ZF2noQkXStS8SUydbGGka79RDWzllbgNNnX3DNb4jK/mNFrHJyUnli5usTLny0WM4RIxd0lM1Xf1kvBk7/BIX5BkBwXDLc/0PCG6qeFEZh61tILgro48DCdqsRy+v0mTlJFpF3gI2HFrOoD0iPnT064oHrd3bpRq7tDdqJ7/l6yBw6S8GbppuKUq6iGnpddO794msx5QTNn0efw+GvjjKCTNhX+14MWnwcaDR8MYjfW0Su7MzupSrC1oRZGh5bAe9D3sxmZqap14e01V5Z0xNHLHyNh2jrhlH7+H+Im/JIKAJadNnUrbaK97QidBkRF3oIo/mn7Kh4/bH8hrCXGP5RmfvOc5vbDp1uTrXzZUd4HwhW2pezfqURb1GjyZYZ9yVVX2xaMJFqx1atLBdqHqo2rh3LCec5KHC+uR40GoHVGn4jUYbxbH51Ol4bG7nyPINvXJEn1HmerOi2MJSTnMLVMEpA4PKogoIyWkHxm2P4cJu9cxYPtwZ6yB8gdgtvOOe29iLcdx3GwLAb96uwFntjSflLb1Zj+M2XcZup2V7w7hvZVrS5jgJm0FqJZya66KkBbhFm7t7abqGRi1z+d4K/M/wqvC+1+XHSGTjNR4GgMlRCagjMtUYr5kOoLoGSpJrPKDs0iJsRFzHBa/CxFGygFDN0uYLUCueKMor9EIDG1gxk7W/HCf9l7aYdBJBdfvowMyPHVno2eTKKJSXi99phfj3uRMIvGFCjrSkyq5/WvNO5cMFLbJ3DR211aO0utJSr1PNMt/u4lI6iXUG5l3kVpfDucOwzsBRhoXTSmv7YUQP38hw9fxyJzcCDO6VGuyOeHgZIQH0PClwWl8o8lXMbNi016sK9Q0zMIeb6HShdEOcRU/jWHZMw4gM/Xkx8RLaZRsMd5GxaPKr6A89ADkLLTdPLFJ84SjpHuLuIH4VvZ8vOM3gHeHuYjdokUuhAniR3MH0N1WnaXnoAT2S1l0ZBX56zc8LnOEh53KzXT1+5DkEKF7GEnGUfxSt1rmV5wyt3hbUePvki8eGwHCjjfXujpm8rO450BjOiVvGBXNYuRi6/ej5I34A+gKcB3D7zgN4AeQGyE8p5JYTzStMFbcB0xtlU4Mhxqtpgb9T4Xpe12NhB7qOkbnjPqcxbizwuMRZR9Ih27qWu5ZPwG+XOpbPA5PLL40XIXhgjJfhyg7MXg3cPwG0ulrYgZXCHfdL4V1ui7dN6ahDV5ntTfwUVDfIJGY7kJSj8/AzLm6xA07vxQlXxfGEx2tSDMGqoBuvNdOQb+wcn32zym8ovEGQ0yVaJLnNCLnGSwzbqE75XJvgsI05hR5H1IFCcchJA1eif/CmgZgdOOSwT6041jOmDrxVq+MD1i5hB2xTkPD6ZrgvKjiPo5WXaf2zAgq/9H4sCM/AcpCdcx7uoAmRsEXAiSPSEgP9/PVHDs8zZp8Yli6CsZ3ewA/VcCzTCPx718m22gBkRbRihLidi2HbxVc6hcVpim1oe1jKodsBlnIf4AtQ+agqCs1FP1+5QbId7LRFzxVfwr25DGwl1jz36QthPrGGoOycssVrQmThtjJXlmdWKqTWfgAzWSSXJynleuhJ/ZYWU9bU0XO5+ZnOEJBcNqzSylOdMXJBk0ZajFaDbajbmLnbTVnM+WSJ6mD8FS5gKXuZaCHmHDSpWzSkKtFyOulPKdEHp5pIPdn9AxiGmePjyvtRa76wEM167GMh5nddx1XXJeJsobO8bALsDRmVz9/wgP473ladZRHmfZHnvD7hSZ3fbgB5f6IXcGDb4pn/nXA/O8897KtyW9qSNmtghVfO//YdwO07cwwdPyXXDjWfgvv37E0Tw2+JrvC4D4sr3O/ZeXBs4/cYdcW8PWmcL195yuZ3iS7GkesYY6/ZAdIjX0EZqUOKbHhzxRY7wIIta7zWmnX28ZzFbrhIGNttRrxVk0Sbjhuun7S6zu++uSrNDgjXBdmFKS+ospyVu7CfDY8NI0nuZAfIZgVEUD8rzcB143qJ4TGoXqO83jL1vFaeJyMsb/i1wlQNPE47kEtPqg9SOW1G0vqmh3tgjFTQOeROq80OLGzVZAfyLahKy69Vzts+k/LVBMXzjNkUROQFwO8A8AdU9W+9yhsNnbMpQnobIrGrr2F8y45+xzuAXBlt+IX7ocUd6KRAR8qltwP+V3Q+Z9Z3AKtriUUWRlDKj0zQY8pV66nLYSCVTV4sHnBer7+FrZtColZ9g9Djd+SyISy02vCbnu/8j67Lp92irWm70g3sUepnU8ImN3pQ8ctZyGjPsuuS5zfLnSYNiwkBmZ2uehlzasahTE7m8gVtdGfNiX7MGlwyG9Ux4upHk9OCxvgywyxWlsEu3eZ8GJUap1fQVl0j3eJO29+a9RpyHf3tTBjl0Hm4tfjHPWs3FkBPe3M0BJ8444ZJYLjwwPmYS8oweu6emLcl8s6rKr0lpInJaAM7lq05MfHd0iHTPi7qaTbQDzfEZnxDR6oL/0stFW6R8QZU80bHszTK4yE9d6gBvfEDB7w+VgAV2niUMNfaiv25qExXMFcmMyvsXtkbjEWZfgdw+wYgB3D81Mgo/798q3qJi45RC/vDWaPI1N+nvKtC9nG0Kh9BwRIDFyLu2Ru2VZNubAeYlqrCZee0vwDRPpTy6fJ5tCfTcQXJSjlU2WUXCiV/PZaxULjrSHJ5E63Yw7mb0DhJ4W4zAo99QeJvoFq/KV7oThtnfI2r24x4c5m2zfMGz4mhNtpMU+VF3XBhj81JMB67W2TuR4fLtmFsYrmX/Iy6ybpwXGePAIHqiRerKner91KdAhwFy0FvoBCumn7+6pzyquVNF/bAY4BsBvY2Qw9z79e4aGW4mssFrSzljrxn1F3aASl4P/Q74jbLwxrvrbj/1QTBTS+3xL424XO+MfufAPgxAN/zUG6hCZXU5z7S6aX0IlyZWinnhJkHzwV2rArt5k3aPVq0vLJSuRvNq9AMWwDmAzr1UOvmDi3HiWZps+7V66O0ZVJwz7DNQdQOUReJG/qt3E7qVpHlNNblkN4rECwGQpuxhNx5TlJFs+WuOk1FIsMopTxSjD7TpjyxS33reR1tvHyu4Ittp41fqvmWSMcY8wUG72i6CFG7Sh8S9SDGM/d2NSdc4vcY+jLIzjmYEfTrnI9CnfHT+s+L+mkDxIQnh0Jeig8dlxAf4m4xfi4r9czr80kOzKFQZVyUBb5iA5TXHf78qHeaUndb8TpRkus3NHKPdCeWA4pD3e3GJm6S5/deYoNrRXs5/C6D41btu/kzJpt++MTc0bZ4xSC6Gjssd5aYXC4Sd6NZFDj+DHC+AMcXCnxLhj8RffBtuTdUMMd+8FvCK3xqvFYLxhUfbXEu19ImbsISw69w/1693qH1CbtjKy8ECqOlHo6p6+wlEC7es2MrW0zAgFJLd+v1FXmn9KSt2M02wxc3Np69X9IGttACCZBpXep9ODGVC+yKrXQM8MdNx1mxwGPSKfDcdHZTMq6j5zdN6agtvtD0f+I2w8+bCQ7ycBHUM2Nn9IvUaUQH6kKGA7hoHpoRuP1Y2YFR3BfJOw0rHqeb4ApTh8uhlzZtBqyVoHmjo7eC3zuZdiLtjeKMhVaXK0UO4qyaX8HvnhUCXwgq0X7cMMzGc2EWQUR+AMDfAuDXA/h7HqYbxNER4PHKG4D3F4n0FfZXp+iMhx8/JRW4lgVt/yvreTtSJYvnrGMtp+U99l29y5n6nNR8HtZ1s9bjbrjIuyrfpHOXu1BnWY+rPCTsUo5HLbGb5tpeCx23ddM0uijfmknThNzu0vXE81VDneVRq6uqi9LsjEx9PIhzXYWqVXiz/MLM/Le0nGa548Rn6NjPu9VaqLQIV0DWOey6VBXTSyVnI+OcGl0LUrderTr9TTr1n3GIYZhPsbhNHPz8Vb59p7zUr4qDiv3HXUssBr/KOTz1xU3pMM9q7paKc6QFn0z3y/OHHuO5nYKAT0uS1t0T3fXATpqJ5kSsYVq6WyJpYbQ8m/D++sYgPiNht3XTQqDAabvMB7tUZccrn2EQGXGb1PHYmMb93Ulyx6B5TPW8AkC+BRx/xiZ+N0B+qniaV69coX93dACAviHDIXCT44VRk/NKLL/Ky38neyOY+kfB79fYAS5/O/e04uu4Etiuk4TMu+LVH3TyaL9FrZMe/UbXEnplsx2oAwJ+8UbaAZn7U1RCuqCl96VMuA9kn4xxL4viOk62omrRX0MHdk2Mt7Bkv9QxVcXwsfUcqZtIsengutJvJd4DryXW4cNmOHb0kYwAglI+/3aYbaCpHkE7b4qyHeBmZ/tib/EIjwevGY8dy1VOs4N2qi5wzHgRlmuhbTaD5M42A03uyBsunGLyJjuwqMdniCAi/wiAX4LR0H8EwK9W1T/4Vn6fa3n5TwP4+5Cb0Y8FyalJ/lfTn1yQ6WRsY1IhlTZDi0tLKfFVXhr9UmUWHdDirvdOLv+YyocpTGmk1mRwW/6u4zKsJiornXdhkfdSbjMoUz3qglbb3w3tMt+jOu4UlpYp+sbUay7r8bpQ1oPduLazVbtilTzdUO8FFxppWe5OVLoYzVy9+Ib59YwL86TJxHUYLiGlzUju6DOe6pabL/hY98hhzvLlxtjZrGjku506/asnIdJEU02wztxv1PKqLmSMd2Ce53T1Q2dpOlh+/qdeLsGpnm5xosXEG40268ZpS13cBYeLIFLq0zfnIpzWcchvJvIeK/zl956k39WYnHTCAo+rHWBd4q8CL38G+OJPnXj5U4qXP6U4btkHlXgzbZfLodTNLpBOVzbkMWzDsnz3aF9tb1ZyVnYAm/JctN+EqJfla6C0Y7TM47QbO+BJrsklvJGQDpTbvJtAGBOPuMwb8v54HttzGZdn1XY6dvy3DThV33Sqch2DOvZW9ozRNW/QqvObDXEtX7p5K2DeGxJ8lfg6Lu7twNyMBVMxY2qRoyS34AVj/Yq22gyum9Po2E7MclsbMC21h9N+5HCDvPnfJ4Z/QlX/MlX9+QD+rwD+oU9h9slvzETkbwXwR1T1R0Xkv32R74cB/DAA/LTv+OYqR/vpqy6dr8f3oEhHYwD+Pj+uKPa455UVXjfazpuNcjf27XnIgU6zXJkiss67mlD0wDtWsqiXVXC+rHMv30JM14nrUld5+4MN7WWYaEngq2kXOu74LF0JJ+qMURt44RSYj8bsdC5y8nwTpy09Mg08u+GNXVJxEnMg7F3M4qt+01Xlc2JuZKa3JWWrMrnklfdDUqd1b7VxGxW5tLS6EQDnCYiM3V92ERyuOv4miMYzEDvFbv8P2PXNjg9WXy770HwXJuaH6XLcXSWuYw4dNdLH1fTuKDg+CioQu5o5HbMPDAMiSNoBA0yb78NUx9uv+NBpyKGzEyLB94iWl0IbCz3uVFta5A536RVqNfQQ6lTc/8Y3g8NyjInmzOJU4Aue7CwGRzDDbAcOGseb81vSf2hPoHjrjxAZb8d8vP1pZOf1sTVXW/WsY9MDXRmJWQ8uvlJ53oCLu3aQXT0Qi7thZW/u2YxOu4uvwg73l3Zgg/FXtFHn3AkWdgCIMRltJE1Uw8neJqX+Wa7ssbzLSZdFwDdiTvsgd14Ukm/Kog+S3KClYenuh6fple5vVDeug5/d5Q+Bi5899k2kxBex8ZEjVUiuUhWTXQPhMeXNNlb45zic9hC3TY77wE0EB50Xc1slOKB6FlwUp5W0A2JuAAfOcB3N6VWlZUx1LA+pxssXYlSqZRsfzWb4kQHRc5LjtMeClpo97ak9ZTtwbxi+Z1B9vzNmqvrHKfoz8CBM7sLncGX8awH8bSLyNwP4aQC+R0T+RVX95ZxJVX8EwI8AwPf8jO/XQOnW96pbipTrYdmQFsMXBjHRzV1hAEyujOrjILJLfXfIBgUo3bHooQN8Qo4/3hgJBfKaZMsXbjfdkHU96LfoJk7lm84KdZ12I2w5Yao/leT28w21bhotG+aFjjzvKrR8sGhBG/nZoEVf6BOeq7qZ5VTjmP3Ts/PsKAyRzXiK2B5pBZapMsiFxY2kKysD7Nn49vqIn0L1rp43+xwvImPSTvTVJSb5q08k3bi3Q0Di/9GpqFHn4udG4MbT5MDcOLweyYflVBtu7voY2cwgCfHw8Qm1Of+4zjjbIMuQrn+utFf60Cu/DyapZbgFumugf7dnyPF+cIPiCIg5rZ69wgftaa49SWvXIJuRHrupdhLPDoL7uQW/QlpNTi5kTqu7QettonCHygN+hXSn9TY61a8cSRweej1mohn3v/nTv08BSVfG7BLWYQ7krS8SGC10nXyelzFa78/eh4HpSvHiG8fDbIG3DBt3/TU7HjHksI4XmOpnMZ1PF1use8fuhdwrOcjunJjSsa6HxfTiU+zNlrZjLclWbpRNkwh1G896aTOcfcE672O6sAMVYH3in2Ul3PSdrNCtVSLZEJnksI3U0rdHPHUuMII8xTv4Nvf2XPHEc5FqQ3yh1utmXggmsJ/I0xhTV2F6pWuXjH7gs6Mq43HtQ0ZebLxibQc8r8O6uwamHPamMD2EUvQMd/a0c4nl7qV1mL5DDmG52xfV3IgM23ZS25/NZpxQkdDl1BOQA6Ia6Ju3YZ6mV9oBWdmbpZyh58E2RA678GTYDO+E/m7tMDsg9vsjh7qY/WqDiPx6AL8SwP8XwC/6FF6fvLxU1V+rqj+gqj8E4JcC+C19Ubah3IKsL8oCSFreEl/xKAZ3IUeCSwGTYlB2cfrdgajn35bvjtwr2q4HQMZ1wWsCy3tyXtGvd4fOV3UzKfOKep0OcD9cN5s+pqu8CzkXAq5p9317pl4zXPaJRUY+P3DlXvZIs/r8YpnW6mYzpKbw2jHE43I5vhoTdy1JfukOAqC4ZgA9b2U4nQbhpiE8Yf20ARHrWGWwe4zn9T3qlVwHPyE9nFYm2jrZyPyL4lDdzLSu89noqrPgp4SO5U2OT0580UAz16wWrRNYlGpqeddyOfMex6m3XA0gsjf3bEgPSnK6i93dur6QO8lZym28HgyfYm8m2gv5HcuX9mZRV3ft6QprU8odm9hRo+flif8qw46vSW/EajzvMmO5zHwJzGte5YX0Nq+WR9fu7w0BL+zryi50O9CxnH+scH4Xd5fJeM44mNPOSY4ivasZ/4sd6J2UaQnHqhsk97m6+tyVw/P2ugncJrfIlCtLWrS6YF6z3A++Mvu08L0i8jvo3w9zooj8ZhH59xb/fgkAqOqvU9UfBPCbAPyPP0WRd/zA9DxpGLsd41fttDyBoIsGpNLu3/NnXI/spCydd0i1MHWDKeQiZs+lyuU3EzuDxDt5utRxQQvC10KLAJJZZ2yYUF4PgsfkYiOXsjwkd6Nj3eVUytsbehG2tBs9NjpO8VZPe1qpchWxwze5NiIcDOK51413he7yFN1ketsl8Ldryw1+rQaHd0idDxehs8i3dtS6m7oRzl90HGPoaLTMZrz1AeKbMr47DMTVwS7HXSCHTCG3FPvtcRn3bR12MNxdOAaboUC6ag5XltN2jcftW/btGPE3btbFREKH4n5otMNt8Yxr+x3XxgugceOXFRIHDtyI1mtZNW/E8qexJ26PnLbudI/E7F9Cbo8IVxrFgVNOvCRXayOx//kVy3lr2c3K42c43hYYy5FvdIWThzu6V0jHyYIjmmXeYqoPRobZ3l932M0derI3RULmsToG2ZQut2KolLzrMtTi8BhjufMAzvJxfGUzJvb3cL9jXa8M6q4eLxc6bHAkYEasbRl2Oi03DWHdpX1rdRFq887WVJ+1w5e3k0oK+lhsdVeqmOqtF064whiwLc7dorhMGsPtG8hiByTrtduFrp57MIXcdMnu1ejxuIIpX+eVSuX+cGrS0tVNww7o8KRwXBTwFfn1ag/BgNV0Nc8r4x33/PMVR8hW+KUfOM1jAGL3GWZdAVl+72funqjwF/v21qphOf+Dwm75VbNzB6DDq+FQwSm3wVv47We6paPZmxcdMm+wS0sCn9PeCvLzLCtaXdJ6G1f3yunimQ8WFMDt0941/aSq/oItf9W/4UE+vwnAvwLgH36rIp91YaaqvxXAb30oczMGIvXHmDgJuTE4DZ/v8LxEy8aO0cLSV/ZLpbppMZ2u5Di7yJs67txD4izCJCdpq/se0YbAKre7pbDOV64loSMb2Qfk+s9l+easlS9y4BedmRXxHRMzrXI2BpUFizMqeXUqw1LH7srouSNdL+u1urBo2sutZO7blTdHhCsr8krhIiS3y+G8R5dDtN0Fq9N6H3OD6AZOgVhI+NhUUXJxse+ttKGckzlB+p+oud3IMu/wjeeipvti1pX9Mlcgb9bhjsg7y0K0fvh7SPRzEKcMxBnfc0k3j2wvN2IC/kRD6jyM9wsk5Jxww+2fCTjiIPzIOyp7XHnMF/5f054Y1zX7lEVtYnLGREXtPJ2bX3dS9CmG10ryPU3qC9WNm+43hd73+K+3sdhNi5xYNiSSyeiXdXCvbEYH/mC9wf3EoL3OnibAIl/qX9Z2CzmykFE3I3sa8Sou+XfyLuReYfmEmZu6mhGn0S7Ld19nn6Smjopez+waWWwImj3tBQqc4L5AbUbpE2M0O1Bwv/K+kmtCi80oiYsNBul8peatdiAUnGwGq0Vb3aaB5mZPYHlvQMf96soo9N9ahWI2IuWrAi9c38hTTPE9t9ZP3PX6ZjaFkSDdtrX0bR8mZ9gBgdiCSFRxiiAWaHoCx1E2ugS5GeifW8nFn+vm5fNPkHj6SXz83NmQewhw0u28grQ3Tju2zvwGR8/lLuzpP6FRvvm9WNqItNxM633B5STtsJhHoX0j7n8l4f3OmInIf1VV/0OL/hIA/69P4fdub8wCvH1nlOOL3N1I8vfFZqDx/1qXJdpuNHo30/57msUC5WBASy70D8rpeVd8r0I5ENpoV8NIN3kfkbsr31W+Ha1s8t4b+tNh6istFu1T7KK2emDhF8b2UkefPK52YPcPYgIn5SCGZrZ45LRJH1nMmuZO+tCDDWSYkjgEnsNQmZnlXZnk1eKuTkCLiaYizLSennOKVjdtghj15E+UDUxvSFcsF1KRnjZppi11wWfXzMhqloxNWfYTZ3BOcmePHjKkk/puaseDY+qoJF+4V/CNW1z7QEyDQq8sSZ4xW7Uc180rAKqXdfcmCFwTc7zjcRm30mn7SH8cr1JO8riiZQaXOnqYeNlIaRPxh6ZARe4jBI3Uivhw+WR+NkFdi5fsNLQf0bnaDL9ifc7UeU9ZBDTuZruwlOnNHzuhLqMK4hFU5SDnJIE1F0pKS2PahVzQ4/I23ctHQ0BR7cAk1uSIPSjbV9riUmmreao6ur1h1BJPuWsHWkHpcSzwdC23FtD4WvUklmdHVMA2scYlUPWtoBgPOieneQ63Y0dcee84SXbGbeLQnfBYQGcCz8BYjTaTSrvCY3rtucbyEXtBtgvLGeVUioNradBeYPd7B8W7fsfsHxeRvxCjC/04gL/rU5i9oytjhjoYfZao0dn08JfvPQ7QDK0YNmVe8IOwLZ00WLkyDpBNEM99pWY8VePiBxRawtI8E0r8SEfH/lR5Nh4T7UIOp28rmeJd7iq0vCu53c1zKZeM+1LnjsqOplSoMHwXdZO0rLO10Y4WTc+g1UW9tgfTti0bU7SF1qZ8NBuoi6dugAYNt5f3I7/pyumCo2Ou8zedlAw9vfepRpBo1eIHlc95wQ4H+w1c3LYhxbs60TqvuAkLMfzht2aF6yJGGQXloR2yHvLz46XDqAw3SIl+Mz5ymo3troxjJ/NM10bbbj+QfW58ytn4isY9FYC9vYo2zw9mJ6akofOPkfoHV90QqvikwCYBcoydXbghtQ+jhs6D9vTdZTojpmGnvc4EwM3cK0fsVHuDaHWVfcE+Ix7lO3DDLeRKTCDeEirIKeapauAiBDgadls9wfFavW4lxx0cj7OjeXw6d7fAVMeLihtaNgOTIOkT55V4NRoqbGKmUHn84psKyBO8SY2Xy1SYdGczSP+Cx7183Z6wDUA040O2im1Hp7lXvoL7JFg7cdel0Oo2b/ABUDskZSr2hGl1oaP3V+JJctqLsNl4soGc5Kbw6KZCxZNZ/XA+6bTFECOHJ4sMxunOFrTE65C6MBWvB6sj6eNVAT3cHonZAc2LlqK/aF4OZXXnefiMJt8gnO7uSeuXcbhrvH1CGiKKF/XNKsNiw+mBs27XDsP18ZZNILipuy6m/T0x8PimfsvtKEy6Fxqt3PBiDea3XL4oAhMFitPwV3HDF4zdZm808LjZOaOt7ohpfw7VQgtI2l041g1X+ULLffQDhtsn2aa3B1X9735Ofu+2MFviqAL5flrsNsW2GJLZkCdWM5qD0E9yxIbQBlB83YwCehDASdGglqPo6PGGs8I6ErGXl9Xa9atmfFlO6LYxTuppbF+k6rgy5JNcWdP6c5ofDdKu84XccPcOWgHNfKt8LnPXP2gp0ZDF5XfatsJptLXfdGPEPnqiWuoqWcvU59JaGi9IyctuHEDbXVSBlLpJN5UpUL36BHB84zL7dOwgKsrkTIhvVM2hE+3IWeciohpyvOj+bU0eC32eo1axcrhpotmG/6b6BfH1uumTGndh8XReAPrwG4bc3DaMVkUK7c3eV4kZxdMMm58v8ImLn29wWrEB6OU7xOvZnRSd1i8uPmMhYZfp2zA8AT2s7f22LrG+HUu3oM0JhLfCi8kB/MatMR77xcxn0f+An0lj15lPsdA5BrJ38caWAoeDqGRjFRZO6XWfSblJ1m3GPEZmPK7RLa3ndREqA4+5fxKuTC6D1K+E5YrUv5pVwHKZ1uVqI33UZqyQY4XdXPbilj8Rz3KnjWzS8V75OK5FYakbpxu5S1rGamRdpE6Ez/kqaVM+aXL0onJQsbrpUZWpJ0YTYKPTZXdx2xs2pNpODVfGfMbYXcwU2t+ISEBx0GrGu4mrLzclF2+QwOnhMplvaBybT6vXI2BfSe54dkMMpeIqbwXOQRGVk0jjVuwwm3KTA4etOLOahn4hG4pDBTfUc2WB+/6WyTZyfAHpSMVIIlCIGh4r0uUx5Iw+5xuGL3gJN3THXyU8ZlqPx1nhsC9ucaw/EO6HXHg7CA7ckDZDzfH9Gb6K8K5vzBp2TGCNPtjIjI/oGKnDgGaX6QuRaVe082o7kyxTFs8StvrzTVxmHtv4Ds/vyWnarX4/JOee3JbUsJeb8FLngqHtwZL2MZVogn5Bu2Wg67TeT413vP1hWpbbeemmAjyq/IP/EONSwfmoiJ3ktsTmYtle2q7lmnGiedBUxVUuW2qbXNhAnN5b+PiI+UzXUSLjirZUV+uDk1y27LWaE0u4ZJpyIVEcmvzPbimRHvy15m956wmvfLPr+rpbioqZ5NJ8fGqO3grD3WOykqp7op3doVe7CkGedasuLJPOFxPP1wepfeoCjyM9cD8T7m2WLt8KXcmhByuswyZ+hb9rxS5oH7Ev/lMf17EHhrH5bNYm7y48WDcTU1n8pviE7U3P6M7lwUbuAge7yjlvoMlDB78WX5Zvq4e/6V7nBfKc1yh/y8xv1FDLL0VlLbhukuO/zkpamfJt3ELJqLs6o5pN3IoW8RaO30JPLt6CqSswHvf1bZ97RNzeaK3azPEkH2ngLOueuM94rUvczwZrG6ZlfGqxN77kcmo1vZW4JyZ5q1a5XMRqfyruh83y32Rv1OzNiEssxfwN4zH74X+YoJBPvfzjw4T3WZiJg/8Cff0vn+MymjJMhSczyYGzEL7RQEMMeKZcel8ryhcUc2dPiGptwbTr4M9DDR5cqdqSF+bil9DLM5Xvum46r0nu7sEi7+WwZfqVjhflKyxWRvsh2hkow5rt6n/HlwUv7PZ1xe24aX9wX6FivGr54vILGkrTHCDSmIvrsunbKC96t7T+tktaW5dFoOnQv49SzL11XqEo0/JbUGXjJ+bK2Ax4KAH/wKkzziXOmLcNg+5GTMz9Q2E3OI6nUX/F2Gm+qQtjaxORdNdJHY4l7dD/RdyY5vFsNz9XtOPD1rRLHUbW5CrI0OZ7sPi+XOz6rmjfaKADUzO6wo3Aq4NGhiB/E3WZRE02g3L2idwCNyouUm/e4eIKnBd4HNmlRIMJ2583T31WchymsJJbZU1yL+tmIxdzdVzS7sR1W9WmB5cEjedWbtTNwo5fpW1YzXLu1/rexi5oO3h3XRnnfTHimWPFNrN0cf7WhG95jQTnJJVouRlniuaYHcFvxY2PF7eB7xg12A9eMbqpfJmjH0Fh2o7lQ55Y3aDVjXqxxL/3VSvaL/TwN1kJCoz7dINwtMNc517WQ5P2FMAX2oLm5WEY5JdXAV1utTewMuoG97OFPK8WezMuGpnnxAfw4V0Zz3e6/ONzhw9xxmyEblBpkLfd2ZUhh2UtC+bVjG8n1kZ9MWhHHVizPZKJ1vXok9Gt4D5rXqjbH62M7t0w1c1a1lKu520GcWcnJrkLA/uwzs0AVcNwIXhRvsnA7iYYq7qZJgZLtE0+hceCsfYkLXRbg22N346ghJ9+mR+u3mroPEkd9FI2kcO10g1aG45+zbEXohpOL6M/nyciArrdSjTOB1RDnYY4zo1ZOtNq1FmenRp5h5J+w6LLPGzyEW6LNJjGQk7oLq1RvuHlL2QYkefglF3yMD4QbZfmHxgXFt/0rOcvjLuInWOzRdCBNe0pY41yWEMUN0Mrb6c1U2v1ckY/8UnGS0zC/L2buaTG+KzL8zE5sAnK3LMeC21s7HHDsTsPscfMqjADYVvtpEq8ROpG3jQ0Lsa+tOcFF8k9d6qsFZY3HOlYvgo7LOjukaV8jShkUAG0P3tA/3thSbLFxSqr101PX4aOx5u62dOZXZjqZgCleJ/ruu10XOH+VXk2eDzR6oIWZAcUNcHx2PAhBmyUU7OuSGK8tWmYWuX0BiXVJG1JyLaQtyLC3PekbIwxrfP1s1eiTmu5ZZwnGi6Bvgj1NNPalBZfLHn5mo7R/rYYeVFzkxSvEZcvqQvpFJwdRy1v7Q52Dg1p/7L9RhnC7R8CvwF4NJ15MrgNQS5yxznlhc2wd11xIo1wP+0N3RLZaM+wHYjNzzj790GD4pOvy/8w4V3PmKkbX8cgQSJUzOBsyqOwvJk+7WKywYEPrJxklMwHEdBIGRifcir0VDb5rOm88c2/1FFxv9e7jlE3Le5yet3ISm7mvWsEN/GVa1BnVWwFG4F7hk2Rbg4GQP67tAeXR0kmGb6+gOlySxuEcpsCrWiLcWUFZarvOgHICnEjkHK06koMpHckH0IK0BUepW6U5LKaZUHV6orLy8cstJShpcdjpbw5xtnoTyHypklxA+IKL+YfZa4g9DC4iGLsirJRpolJoT1iUjYuYaAFndOSqrHLKYDapfhjcXeEe8gN51isKTDOgLGStviTF0DHuTGmPWV4+4/D2idU7epjVXhre7zTqpgpjW6lUReAQuPwodOO+j79HVkc3ms649NOmI3KltLZpm7n35v0MRb9sL0VBo3BNlYCn3q8qeFyID2+6qRMzH9SRyjaedlWQKY1Obu9ueVQabhPR47WrpoXY7+Mb5lJuKGjePeUdF40Xl1uY1kZe/SyTa7Lt7OR0T8WdeHxgiPF88AYFhsltW7Ij2zyvuk+pkQ72YzJvYAiBff9rVM1qlkctWzt7Vf8FAJPBA7GMKfsITb6TbqUzxuE6aUB4sW4L/Y2xzfBuHyl38Dzez9KCxPX6efoy+ZRh+YjaOu4yMWYW8uxGTW+K3bKYZtWpIDRqck5qP2ChzKmJt6OBRwPOgDuJBjGedAGujouwPBYGx4Tlnfcn+wNDhTcB6DF3mBhb7LE0Vb2+xm+/PBuy0seaN3Ux6RH5rzwvJTGXaV72CSY5+BCxYKaf2NAV5mXBqbovM47ybwjp4crnZnXVDcrnS7Ke3cILoykYpa7ZHgx59EWYYO51HlFt5BzSbtsFFzovOivTe6+Xy403fWtBd2U1nTct1vTmeNa/5YRedURrLFleriK84JRIs7uh1Nbr+JEe5px7VWRbdJLamVT2DskztMEacrJOPdvof4u8dczcT5QvjP4SElv6ljdMO5xOde/We6pTW7oLMG7jNXYta0Ln4d0fjSUyUkWtuBGx1BRijc7ULhUtQqW885BIbjCYxoUO1xULsFCh1WcybmPNhC6h7+Xtqrn7b+vdLwQ/BqbcS/va2ivsHumXtTNnGVPy793ULYLq4nrDkjv6bixN7sGqnq3zl7wfa+jorOfbcbK7FwHmdt2NWAbX8bVHV/Pt7IDM0Ym7rG0wB6rJulyqW5OricwhuaiMcsrli72PqviccZX9qvaFlaFMfghexM6MV3H/WpvmNZ1PZsuHy0oBDd9+7+PFN7dlTHHp3cIBdoOKS/g0OPMy0dVzxujLWkj8O7Qipb5++aJdFrSSWvaVsdF+boe06NG63HfLZrKsJK7yLuTu6+bCx3fQLtlclG+iXRTN1DkTin/bWJK7JG6cfAraZW2k5Smbv1kom0yc4dwwYvjq/JFXkkxFo/vlUg3yGOnNd0C2SRn/uBF+ihXfMh1lztvUC2yAMStfycEctpbKDGToi538BrXEBsdat2wW2S6X6TL5EF1HLdm2X/86nn/Fo1fbwyp59GE2sTdZg7bCRZzZTzUuqTV1eG3dw2lzbVl5H3x5zL2SLk7+4593L2ojVZdpg65SDlV7tgRHm6d4zj34e6m1nUODNeYG2B5k5e7bmq5cOQNgfp++cwIUA6iV0xd4b6nl84XeQM3FoMiXhhMeNyydhvSy8F9/gEbUsb/RLu2a624r8Njx9BF+e7ZjM73Ee8KeTTvg7R3bUYQE4Hh1cS4h+ArpU8WeJrqXDP/sjzS4kXJwgKEqUtPBf4baJcF829Pudhe5jIsFPkpk2IQqXsbvRJteF+UutJiUwIHe3n9TTZ5PbiTVGA+3L0vR+sQN+LhaicYNx3GnEAq/gI4T+Ml7ppXacMOgM6UIU9EQ4BDx6dB0maMjO7Cnp91Sffog7Fcz9Cp02Y1kms1YSrUbEb0wfHjEMG3op+kHYi3kxifoj40HdDU+B7R57yu3DY57sugBSzvOdsqJTf7q12bDxDe8TtmnzW838LMECrPaZmxlEVcBoCJW5gdLkp9GB+ldoEtHcDWLVAb0GMmJVrJOF2hvFxzEdBz+Ty9COlym46T0aD4ldzlRGRh9Cc59nPlvy+of718hZbs39JwXZSvu91M7djqtetc6ngt1mjJwi3rpva6Kpf6W9+h7xKnvriwrPGrT/B0as8rr6ty1kyS1g1TdXVZy6GpvhVvGIVMZ1rjPLWR07K+Aq7oOOlUDFfWhxtjJV3i5kLYdb80weXvo93McJ1wFxGk8VYdZ84k9RhnIEyzMqHg8uWlGf6NINU8pybB+wy5+f0dCS397JYolZ2mDicOiI6LQCbaOLuQ/UfMRAmVd8jN0xYKKVcwj5qir7WJn1QbvPyAeH2n9sogpVGrWy4wyn9IsQPF3X3nyuhxwuMymeRuln8WeOxyLHFlM/gHD/kJr7zPNjnlmn0UGSu7Vgs7017i8aZ8KzvQbcYOY1c2456d+6y2qmpFedvm1coOlPJVXNzajCK3VfA9W7WSzFHp+NuzUwfjBjZwrEnrnqMqkKOOm5puQoUelE0CjmuxGXw5yjQ2bXHAR0oStUf6C2EoglNUDuJWQsdfkpsfL+EGcvxN3HdaX1CdENtkIntji47huneQjrRZ6MhotG4ztNiM/LwJlL+XtrI3FVMHHmfcbZfaZppfPAWTE5uWyAtHvL0Ow+zYRovFqs+jnROfvxtpLzitrs5iM86oq48ZVIHb8/KPTw+8W9qbO4DTBg+DTjcaAX4dTEIOfDRlfK3RYge365S8Mj4bjbWOK16bvIkzSSszbTEMbKOk0S70WBnf7YxrYRSv3v4uh2+zK7LhO5GxzQBoNnNHbrcEGIZCN4rPOvvMB7W+PW3bvrQACcEXwiZ1DCJtstEVi0WJV2DntcXONqFuNy/VXcs8uB113ycuSlWzkKuLX2U3EMOwQCQMYGRqE4syHyrl9cHHJczpEF/17EY6SXO3VEOnTpsCCy1aIKMZ5ROmTeOr+RQKjMXWTo7xZR0VaVDzPKH/l9xVxPtgtjPTUkkLLbUMVXaVO31s+TVhSTuP6cQnb6VKW7rbhHXadOzxWfpOLnCNdVX/B2xVVmmh7d4T96ZAZc5+R8epfBTpC5gtdpvO0WMcHgVlL+uS18KGlFHW6ibPF9FjYlrkqU81nbADVtOpdyDv8ZKLjZLS7UmfvAQoLmg3T3pamfiynQujzrT9Rg+kzWiBsW38PSp0UgNKw9S5FIwo22rGyobwOJ1shmDZB0ID4sVTn67DYHGF+46piA2YwFcxjLWONzVxsRliNlCtRsne6KLWmr1Bw3Jt0lQaHlMnJCsdtJ2XFm4jnPCT0GvaF7C9YXdKszefgvtfeuhf5Pz6hndbmMXA8AeOP/EO3XfM01iVOOPfRJsDvLisIBdeE3TFAE05u7zd53fWkXTqcf8tqdMlLdXPI+4h/Uxv2BKWu6Hd9ulFeYqchdwrWjfuHZSv8mZ8rejjrjMyPao7wFrzLgu0kDvRTnO7OZS0Kjdg1ft5dpOR1qxbcVecdOSd5J63DKlSRDEjlfZiKCOxS9jqqltUW5nGdIl0FtTLTbj5fVcSGG4clZaqS+gKX/FaGy6Fvug81Dvn0Jn3085wP7QdTTkbLVWO1FupTnibjB3hE0rfQ7dlj4ZiUNCbO3g9Dp1veuLF61l8UT52bk+cZCztyLjR+s2REry8YmwSEO04ynezuqm0nu4NP6YYihu+iLTq9nh6235KcDw++mR0h4sXca5nol1iuWWdxn6q1HBD072S8hX8ErMJilj8LXWeyl9pd+Vb1t0V/nL8ni0CgrBvQi6hVkGCpmhmK7hY5S7L0GWYXlEeBNSlzqv8Hed35e9QRVgmC9pC15XmzbPpbe0iUN10G1G6/mqlzZjZd4pU12IZqqluzpO6mG7sgClYXRsb7psewxEOcRuuALkRanlV7eKMY/DIK97HGDsUuTCe7A0K7scbLOZrm+aO7QX3rQL8Iosb0cbbZ9jV8afEGDJYHjZAmxeGOKaON3Fub5j2MJ1VFS9kb27SMNXqzvFY4g2e4KbeL90+ub3xd2ZnLDLH4su/QDZueEwXyRcobmFvknZcIHKzU2W+wNFmbz66K+O3S3jnWxmR4AQfN4RWCuA4KBFbY6VATKCC/0HAZ+4w3VgFMbuXYBjYEEUgOkgbkpYPJaFeTUvGSRXjti7O3oB8cuNAo6X45E67MHRRBOaLquPS1WRVHnjdNIPS4sFqQYtWVUUu59XRfqxTGBVVcudq5VvInTuZQ1ajVZskFVrtHbQIkuONtD2t05ZJgZa2n8uz7zfA7F5ylHrVSa00opp5Q27uFArJ1T6o+A01cuiq6yDkktgmsESa1/LHBEFyuKnfluiziTyX5iPBq9b5hmui0bkb4OBnboHqCzXEomY8y7NfB8uxDue0I0aF0LyqeLiTHMgPOY+463HogVPOMN6i6QwjdtsWiJdC7TyAG24fn+a2Eq6Kw0QzLSCUzqhx4qW4SA4XR5S8n2Cg3bdIZJ78KyBCYBd4te7wAxel8Jjc0HmRRhgPzEOy4iLZDMomnNf5abM3bKuusLzjcQjJ8m3xWKud48WQ6yEdUzhecKKGpX1hPmwTF7hfcbHpfGFvuk3g8rmt4jYrL5VeIbfIASAqoKvoxvgkQfwGbdwmzfUh1eaH4rVeUq6s81paneJo/bn7/M9kBzQBdxRwlIHjhZVUWu74grkry9R0hrEpV4mvb5gEPqtMdeObIP4mydsrbITJhSpOX7wg395VPJbEcnUsRyx8lGkVuHkTql0+fzjG5WxPqEoPrxw9Bm8dOR17EQssvuL+2t5AzrQ3juUAVE9AbEPP6ljMhozfow+la6NEVbk1QsHyLxqWD9pxf2NaEvG426YP/j5K8XRl/CxB6L8BWLxr2AG7/46BW/PCec2wEWRlWrEyDIydkw5N50670/nCMHC0T3mWfC9GyFS+e7yuwmtGorQyXBn+nj6131W0Nc4i7+SJUQj2oUxw3Gj2UKwT9QpZyNX6O6OtlXqjlTZqcsqPnEzMMwC4ySIdpex6TWKLwa15OU+IoMGYHzSFW98idyrgsORzx5+MPs0QoNNEsBTZjVwpkBvYdgZlmhOlItwFluna660WIl2i6XsyVmH3XM7cjXXoy6YW4cpI0x7Sg97umJyxsM3vrzGtlu1xj4+yn5BS/3nxCeX9bGE/+CeMpY5RMERxWa8AJu82Dvdw8cpmLONa/mxxf4uT+bpzxgUeHDInrXR6GPeN90GZ7qHmBDv38PhChyjD2nQXyFvaac7b8fhCx65QQ5HE7477K6O90p2yV76zte5ud92GTEp12pxGtTnLFT5zlzOcbXllkVkpKnBccGzaBEW4Clbt1zqyvYvqVNNz0Ucl/pNpMv2WLrzysU5STD3pkm+buzO562Du+bRpqC0PJJdfHfdH8Q2PZaTFRVULxVe0EnJZQ9/OI9piM8Te/I38flLNv5R2LNxkP1J4fsfsE0MM6DYFSz97nkgMijI1KOPKeDgquU9RMV7ZpWUzaEeE5Dq4kQGYx3PVq+PmZJh5xtega0vr6TPJFKbyaZmbzrIuJhiTqm1StKrHK4M/TYp6eR4oX7Z1+XOHtljcfFq7WlMW8yToSvdV0p22vizqXVqNOpWu671K6e3Iv+JPPWdRyKd6S9owAGW3mecWpr0PUXXTq2wBiVaR304hnciox02KxrDMY3zGYLR94ZzGzlwbPacgbnD0aUrSStAeS1qlRYBEWxUcskoUm6QUQ6l5KHzw9XdUwzAOuYOPfaVmQzue+YUnw7gSrZ71Zb+54Iy90VtceDL2Z+vbxk9yZeSFlpTpT+mXHg8bYfU34+JuILfevcKrHS5Sri1X7miLMizLEzqDKnMdchq1H8PK0deWb4Mbk0vbRUg7vtZvCj3vrvxd71UTr2wK0zKkXem4sW8ly84erMqp9KPudK119XDJvxu8RUFI2fhW48ood1tnuJjeD1TXpFe48qpvcCWmxlxO+d4AaiggF3AyF7E3JkGlU4eJiPYMbAdyiVOYwtuA19EDA7u9sXFWbAJVnBqmIr9l75XFm1jpiqht3uVHcxxTMb5N6bUow4bA7ZjZG3+DmK7zADC+s8aVtaZ17PbbiN1mZF2I6cz2RjAuIbF7GEPMQTblIwZFftbl6x7e15Xxbg7ESI4d2qWhk/qzHiwrwBvucM7OQS/cEUgu5bsMHW22QMwJvXwPyNmx68WnLNuN7StjUTWcHywM97a4nshN8mhZl5OXar22rNxW9SZUwFcyb6qbneFMJ/UF33XHYGNYJ3mVlu1yp72uShosbTITdFrzZloakjR+1Whn+0vJ44YeqMZ+sJM2gZQwUEVt0lNidzfNZSzE3Kzr0FgQJ7wgPqSZLv7ZWySa07jhEVrp+re/eNR6c+c5BTsLZ7TSdnr9nJxf1nG4K04Y8VRuLMLOkPMCwa28dXOXykF7UJswrV9/fBLtqOszznD4gk+QtMOQnziMunQd6nPLxcJrgsPrbuJJgyN3gi86vMR/iNb4+URSBHih7Bd6FUytc8YZjhptwcVGu5XJvHzRPik1R/14U1+0rDBjjzE1FGxYYt0iby9PT1jUzTZ76wprTL2jI8XvrNkv66Pb04flXjHe0WpL4jooY6MpR15GbBVp3ZLpRB+YslC72ya+4KUoSLyd29loexjn0PxcFumw6jOsE1wHR7Ok5W7pGMW3J+ZiKzeo3H44H9W6yeUUR+MZN+jSXxfMJ1UOrXjsi9cbUhe2GX4LMOA244S7uo+PV5+1nI77itBCiHYsGE9z/z/JTqD89ppwe/Mtv9E3dDxxiuYnXT5weL4x+9RghkfdYNLzEo4ceHzZB+OTtrzIbJmBEE+hsRWunrFZ22n3iFhVzFnkpXgZqQs5bGCL7V3JlfxdCthoV5OBTlsmzPcMzCa+lNOyxuTeEmcXiw2xLnTkgr9Cx6lPNcCf5aZhy5nPWsdsA+unZGCr3DozGWrlTUvLBVrRs9Nm3Y4D1knDFz9UXu4DXxdO00SSi9kNOU8gmLa0kZdHqC6IHeuaVRfpfaJSaEm3VR/iPLnjmCk5SfPZBk1gythlNxSDEKoL//ZM3OYVQsXq2U2e2pupw+r8JDfAIXyQ+QRiHMIWyzvOJBzRXuPtYV4uEv1Mhyl2WsWZeaMMppdq6mjt5bQaO8BC6WeRM2iXI/h+8AYuY2M293UMMsa2M5Oel7BIJrCz6lrcZnGNi5k373egznKB5QUX9Z4crBPh08YaOq1X6QTllOYqgvLew/0re8OLndUblo77j9o5luN5t7YKtexDDiktY/yt6mbS0QuskQzfLgpsCKUJC/pf5lOwporhOLsUV3fwkblucs3p4PTQYSjgNmw0AeGZNJXLb6K1xMqaznU1uaFSw3bH4zKnaWPMV0/BbjGGGNtj46aXY12o9ogVyTz+Rojf+61wf6T4G6XsoO5+OJZEhscYCOsXOlVM9Ura2QxbYsmQt8LjYTNci6QdmcY3J8epYQV0phVBuD2ecpK9GQtDyAFRL88bcf8ZXhXecXmpdWy0Bi/ug0AB905bzqlYXs1xNQbKqT6XgV9D2rtYBwOOc/5Kq1PebbzLKmh9X+6KT6edeDUcv9JxqcdVmOcMW2Ld6HSPVHXx8K06dp0uqCcdrwQ1C1/r1VpwS6/retTpxzbPI1kvWawGw6bH8q9Nk6yprFK6rjY8S/6lKiqLfuPuhW6Sxhsv98d33kueSJeOHI1tVDYQ0vg3XCYUsDusqrHX9g+Uh3XkZ+Wv0nNlni63/kPIlkLrOka80dXPRkjTV4peJ9XxNLF5bZhm4tS3qMqjaYXaRbg+Fn0ycF8D9+VkZpk8S29yi849f3bgKyz3+CP2ZqWcLMq4or2yGcvwIO7f43MXy+/JuehG/ZbIVd7LsjI+XmDsRH+h88ziPj5fPHhVqLZwwas03J3x2UBqaXM735Wd2yqAwph7dMTLHC1xZWfPGAuLCJVgWElWGEv4arTRh8JXs16HlHlm/D3ty2BhBwjbJ9yf4j3P2mZgogVdw9FsRzyTkJk6wuKNVj0Ns72B2zmj/cCuggrg1OPN/z5SeMfLPzboV5yd7T+rNw+dtuctYOLJmts5fJ+pJaVhs5ErCyBYqqw170LFMk/n+Z67Mi6KN8HcRNvkbKpmLt8mbyddyHmUdqXjXdqW9sjbvKleH417VDmysaUP8W2ufwqg7y5NtBp5Q42pbkixnR61uy53JmWTt8RpWPiEP93XanyaG0SZR95yaYgx1xOIS0BKOcX0yGVG+MGbG6C/+XS3RzE6ETtjBtdLcJ75VsUvrfB0d7MZriNKcobrSTj+WedwueJlR7oQnnavvzkUws/lZRHdZdAhJ2ldEasZHPBzCYe5H1ZakYzXnWXPaW/a7tFGexqtXYV8QCB2+5cbZc6btAr/GOurwyVmELhZXwhMbdiekj19YTOUMhb/2w3uL3ByHixN3a7TK3DxGts6kxhYE22Xu8Wv19gMT7rIW95KPMKXcLG/TdwVN8rzZnuje1p6PtkQG6sVy9f0fOa16ACijTZ4DMundMZyv+L+nqtK0RHFxkDcNFEFtB3QqTinZ3UfASOTNGMESmkTFWNjBAi3Qr95e+CTBsYAjr+JO2L36fso8zdlTAvDczkTu3PLatzi69/JDByEUjMlDrtVcFt1xHMEtotv+pBdSDtwphyrm4LHSLvgZRIroGpeDHoI4bEMF/RRL0POod4Gw2aomqsihtviqGeTFuV3D4/4UMCg9ev0IVA57ZMAVr5ixgWXGxHvHgS3u0Dx9QjveivjBI4EXj0eBrIAcObVliZ+XiyAQkHve+vEVEiMIoAj40uVjXZ2ZZze9nFw+a084eJxJbfpPBmjhXHyR9Mi62KCsJWDBOO5Mh4pL8m9ytt0Xi1Ie910Pba05acsyxd8H5nEkCCZyteJN7SotAtN7sjlvj/nzboaFlmanIzPBQ6XMjdOq9U63EjWvGFO3YjRmw9pctJb3/f+Kq1n5ws3srxmht0YbTZUbsreznbLlOup7p6Xxra/vZGSd1Ss68yycuwOihsUh6+mjJZdifwfYOccqDOcTGtywh01amtwuKniJWjHovNFAG20ycuvbx6cXiDmxuiTI5+QjH3TUT8avN4cJv81GpE6GoldGfk6/K0rI7PKlecYw/3zJSTxNXag2ioJXPF+scXFBaZe4VOpqlI3Jq/biAubcddGPGIzOq+og1YGDg33r9YkU9jZjIUchq4ZywXxtnVFe1k+ol2pSAXS7rHTeFUQ2eNz2IyCxxu5Pa1MEOLB+KWACF1zpPM8JiOrhprxOJO8gSnvBn/72PXLlVJCNrhOWG7YHBtuZAd6VbRxkHKG4+EJtYWLE1NHU4Ue+TmTG/IcVlopQGxz6jAdE499+cX2xvFYzLFwyD1MtgDm5ugbhQr/rhgAiJ444uhNYrljtVje07VUiU+oADo2M+VA1uJLbliq2uVQruU4Y6yeFjo6H3zYoMCHe/P11vCOCzMaPUJja2egYhBJxsUnZS0sALd8+JPOopUJ1YZ2zpswMuVlQ/KKTswXMuzlruO9zl51JfSFjtqFPShnyYvLtzLkLqfLWOlIBxUmHSl/PL4oA7v/d7WE+a/sYTe+pEx8WHPmVmndoHJBprMwjTbqKicOfrufYJ11zasWTCYxEv/leHAS1EXI9JaMeHnRiM7jbvQiLykyylPl8gSYr+Ef9ZCGS0yPssOrWQNe7R7n8pW2Jz29mZUSJXSmWmpNzR+rT3dDO60w6dhrnGjRaWs7cZ+LclLtMa1Ndaj+pNQA1Sp4Eeg6vzksaakvKqKes0ObPm1RxoXd4jEQC+ldeMwO6JJHvVlS0T8lEP19pyM/aHauDckHdJzLswwy94tZQMmeeS9s1YqN77pH3gYT5eVrKwNfONHHZKcpWC5VLZ+wrgpUytAHDFZYnjzUhW2tSIte5G0ot4V9zz3wTdkAlPSwBwD6qRWl/wI6tUmkOlAWzaTScLU2rO6BbXJfR2qXc2E/B6auZRAa1vhOLbY3i6KlHMk+5nWkTU63A1Ho8ZxvAVZBLKby4qlB4BeB+Js/d6d0nr4wVaIdtz1qvLdzL4duM/IoT82rGB/LLraKat1twDN8+eFjuDIyPqXvlHXqEc9OrlBbWNVx5gAlwSYXbvRmhEGHqcu8oPFy9sKDnsDtMm8r4kZOGcT3dOxGhKtgI/euKyOnd0O5oV3pXPR9Rd5e4HYRX9NxsRinurks30o+6VjlVJ2Wehd+WnSc04lVM2reF8JNZaPjINH6jN37VnOC0m+0vdHJOP9FJscbmk5bvodW7J65sJS3iFQ3ZMxo6BilGShFumL4iHM9NHV1N0ZI3kIYu/QYhRGVvKJY3CvH0wB39TvpzZ6YEY69I/HdyaybQxE3HIrJiZc1ArzQeDyUz7RlnZ0Yt14dSnKDN7UhdQPvJ0lLbjUkN/MOvjfTI2hxjjoQvwyf5QhelJ0MrL7Ezu/tJjmvCYbl5RxVtwMhi+ITmxzAJS/1ySEH0QcnXFzgRrcDnmncUJcdgW3CZKvK2wUXaukb/C1ykHIewfIJ+x7A7rAZnwn38UjeHR7T+JLVswk3kdBC/KKnKFA2unZt0PhOeNXJKX+6WjfFVjYESbe2EbqtG2l5FQNUwmY0/uUeEa8XtiGs84T/tCGnSvUqCI8BDFzkjqNGmeYlXa3jG5qEq0rVI4TrfvdsjDzPz7ZLUZqt2IzipeHx1Nnr0rH7MAYaclNn0exCCRf5bincHWW2A/n+bNC4y7rrdMh4C+jbXgOfnW/e6ag48Q3Y2z7xBaIyN1NuvJM7ombziMXAbnJ7FGsrDV9TqN3i6J4VJ86wAypvdGH/CsPTlfFTA9m6AuA0YgXDoBaDRXkLnivKe3ERxO7F6GPVsLMr1XCXATJxdnELsCeg93jVseel4irKxpU4LeUtngrEs+uowOyiwwaW5aLxbbR33fko76jXKndyyyE+u7ysSuTvBrroSHVMIBt8SI5w+Xr6XMKW1srAO/TdTbC1Z7GGbiTKZPJKrtTy99rZ7fZP/WZVHupjoH40seaFV01UihZjGG3vhtfzKeJttgH71p2puEGaKfENFdAVxjSZEnh75DgcRusgOblo86XrqWlYs08xoviA6G3tBfPo+NZL7BCLt73zOHET5JkKry+TFFdGm86QnAwcat8iU4xr9ena+gP5nTKfHOStaycOPXGTYWwPgX2PxvhG3Xn8wC1ogbwIelyXf4o753jZ1XQ4y/dtXh1i9iXTy2FxfPVO6rgujZaj7TZe7R2NF0evwEUQ5sRGH1sOtlULXIxFGuOxdS+WO7u+a6MlOzbZKqJt8YLdLntjM1r1zLQlcSGnQ1v3KLoob4fUK2xHryvHvy43bEYq57hyV45rtcDjVb9RnpQAWLkr1iDbvEJyx8ZAM+aP2ozSJkM5uSqf29Sg60C/YIuExeDKb+nUS2So7uPES6d+vbx4aWNh2IYf2ZXNWDTm482Sb1RpxNmlkPmTxcGwDwOPw6NAx1LNF6Cuk2P3IXmJh6i7+2e6Oi38LVjiPGxh513gkMOwPetLAfidijebWww5/g+B7TejHYtnX9YOuT74B7a/jA1F4/MiTOsn8LodwDjn9oFvZVSVpyvjp4YOhMvmXgGnT/amtIaEE29Z5r2nB7tMJm+yrAsjo0y70Sn4LJLX5dvHp3CRtqU1pV/lprLLy4B+T62O9Au5U99wC6IPlGeVrvTj0oB2nVLuVNYuh7fYQAbJ/yMzbexU9rQpzBn6jmhbR9Qfzc+OjV5lekeulDl2nTO3xQ27fFR9jCvpO7lQUoXwpwG4CXgysJiTTOVTk1l4tPS5a8gi3SYUfU4kmRrznRhj0mjZbTDHFU8pvd/4CbxENY+ftvOab3CyjDkgJzkqMXlQ+MLaXV1iKsOtgfBAeGuYOloHiobP/HuH3dLii3Cl8xXmZFoZ4LWTvAKPo79LlbMiEJGa566O6/g9HSdIu1dXRFSwreHiQ3a+520wMenD9mWFWdJ0BAoeL+U0WCzpC6zmUD7wfiF3RdvdtCte5RUWqfhCFpWhpDImtQKWrBIUGVUaLxfYPdmhhW2aSEjfcoZyQcUu7hUT2Z5mau8mmXchhwq8bl5Hy0arva6rDMfMUeUrm1FthNsBtxGKejbN87Mbfh9oym/RpOuSLpP+X3epPAzPk1Yi7mUaurLt+bjh9lyYfZ5Qds/6yPM8ltZ35jok5I1bOR0qZ8sob+3clbdSB+bh3idvRZEGbknbspQykM6Tjot4r5tNXa2gcXmuqxHtaLflY/DmxDs6TuyVDKPU50taNq5d+abKRuIclcXfrkM31JNuVDvdD82tyNZy6FTHk/27037uNgL47miCbmSTRkQdsy+e+mIrU8yFItrNbvdjM1omGK1uaILkb67qiSbO6S6TxlBlao5CRLKsSmLiqEQrsLdJli5AvE077OG4nSp1rJY8P1Iq4m/AYN95GTuvvhsc5wHMYB562nkCpz1pcjfq1Q2nu8qADPU4TzBKkrSubxpPP0h+SNauMK31OQl9c8F1ZgMhnPPUX161mcxrA7spCsALxxSVDaOpiJWis/N0H3fOPzvGDo+vbAo5CDeBQJlw54G9ZjnuYCoW7BvWyiLj5Mq4YLvit4zf03GHqSsiqvK7ej2oc7TX3KTLOlSmL3l5Q3dtMxbgs9DV30jUvBPuuZylHZj1XuqkjWBrdyx7mBCurHX5CpvWsIyTs56g9d08qqa6Sdg22rytcCS3uZgPZd+AK4qWd2uGy3MZwmUybGF1uy+uloXWXLWVl8NsMxLXE59B+/aDkafdrKzQnb1xPEbYG1DaYfJPcmoc5bMFleYCbsZy139wOdze2IdkxC4IOWW86VvZgfH+TO3bbuQK/kGDgj8j8PUO774wK4ENnsd9YC3zLmhFAOQhTX51vkalFve5gZJcnhdc0LoKxWefcXmnMx4t30U81b9ehDkt5jxL2haf6/WOnAfKcK9er8PCwL6GvhuR14Rej2VS+Aq5cAOgy7Rrep4+Ul34LIQexVwBBrNX1heghRdlscavbZ/naoRowyibUfCPcUpRc9GRBGVB1bnzrY9+PoDfuMU82Y1NV994ip2V8AmNyDiDdTNjlSevyBWw1VfADoYeNzsrdrBcda1NB3EXHqfNkwijzBo6HtZekV/GyYZblOMAXzmtkNwN9bZSl5sHxgWCI/ZLvYRnLCIPK727tPiJBzfWn8s+T/fcLGyA6z6lRX5/1PuwlF88z11m3+BikVPyKuLwIg39vsN+ialckVLzPYKLZXPsFTaDYWIJNa/B1GXdYC7ja/EYWX/TG/l79CFzo9hr7E2x4xt7s+SzydR19Lz36qv6Al7A94ypU3+Ps19ocslmEA//6eeNpbstmBRtZXO8S165oVVtFymq1NZU3oL7hFtcWB+WEjgVVsZL2+xA4j4guKm7J2b5HKcBlBsMYc+PACiUM2RikyXvgn4mOe3NQP6b84GmvbFiO/YfeuCGcX2+qOkgwKmjnAOl3b3SPkod9SRU3jy/NjZth3K5iTduAQ77YxRn/H2GryK828IsATcnODFKIi713Fg7N1TxJEEieNHZg3KmLDTwRCl52UAWv/xGNuXtbMGQUfOGXKalMJcvB3jWFZZhkos7tH0ygDt5L3SeFNnImeKL8nXXMhbQDXRJv0O79NljY9jrwxoj6uMykFHka8KmGWiVKwTug8vCsvZJnCk07SRzVkXuPhpdLAHdaDS+1bWxWWeeGBBtJF1MnsJm00Rr8Gm3PXW9nC/J4QKs5oEux4n8fd6OFkBuqliz8Ga38gSYqiV1ygPckZfkaoDXOdwHefJSaEfeWMxJEWc6HmNRCePvp+bBtP5Nsi6X80r8Zlq1aYnKUSZFsJ3nE4qXz3rWYAaGYhcIvXv/Gue1Rp/M9mJa4hp5ssfsMMfrNuSg9i/G7hK8n77GDqDGSzdzMUo61iIsgDfTOi6yju3RhCM7zH0EBycdKf4q20T08bhgWWPYbIp2/XOGOtuMFm8e35Vvk1uhQZpOOutY6oY7XcVbIbydN8RICWvArVv6lJ2WNM12jHrQgn/xX7aFoWO3GVUce1LkwtbezC1s1l0TC5c35xT6kTomqI8NSa3yCna4Lt4mOVjYFZBtb7lRmPSodsB1Yjx21aqNYBuiCvukSetXZCDdq8Lb6dQTh7zUThq4n3Uw3ozeSK7hPiruq7xgeIgc5hHyUYM8XRk/Nfi46s0ccWnpMqdXWhs0HXiDliZ/xbDn4fyeNuUNOGOJ67wzLQG/hLaZ6W75sH8TdiWXJjJbg8o6LeTek7MC97u0s/iH3C1nXpVoyWJH2zL7DXsr8kuF7pX9AR3LhPOifJfsp6z9gVuCR9jXK6JlsbDcL8L2eRcpZqA1OxJNyuWStk4I1GZTJW8Zb1XDPjkKt8HIk8avGsZqiMMFRDKn+mQAIC4sJxtsps2JAqjsrKPvg+b3fDptumL6bCrLl3nBcsFyRshd54BVCPTTzoBTp0lXRsl4xyteuJfJKU/7hOL2sx/+mfB4vv75tfYmh9SM5SDajRpZqS3E1DFuSFuEV9ubOe8jzci1u8Sae+W7E39zV9ph1xYPKcPipsUt7xWm7ur1Sq9VwgqY7tlApWybvBWbH7AhJKQumBYLqAvcd5sRm3qt8445xuKSKcYAfkRhkkm4mIioxWZwZoVfYsEYQ3hsi7A+D2Er4Df3OrW7v5d8bTyAaaMcK3uTeR3Vwr4g5yYK2Bu2pFTh6/WPoK4wOOj5tsszrIldSmJlz9PKYfnMrfHRfvTVBwU+tH6vCe9/K+NkMdWdbtMSLK/Hn4M6LVuRmORNUzqEVaS8BRT67XWdB02eioFZ4ODUXYJ2Ifde32pyL7M6AD1gAPY65m9dxVfEvW4IwN4id6dzt67yGtqWt0w2e/kmY7+x6hzfWM+tvWTDG/OGB+R0/ViugIyUjYUTdfLLajad8+3WoqN14xU6VFr38T/HFYE4imGW3HF1udQOPPUetLU8Yf+Ry4czb/8FH59PWsvpfVLHZIHHt1iBhqEy10PVIjcMstPagQOJr8OMvIe4LL+RK0s23B4R1zAe5jAS7oYiUD2jHH6GzA2wm+PhwnLgpkxr5bX6cofJAWvDccZ3WoNW3M0Rscjj/jrqNJ1uPjXker/icZwxMz0Yy4k69KKDeGlDoj+Wmdig7DZiiXU+A96ArPEN9UmFmo+er/Cp0fIEreR9AI8b5fzgirZj3KOYs5K7yXvXDq3qYompd+Ss0hmfqHyl/UD0y3qQ8nzGzQu5Oyw/MdXjxEdq3sCQ8mEs+u1jf8N2er7BfQdnNeyGYSq302Rfgt+uYjzv7IbvQ231IW1t6bHQGQ/o7lpbnJnOgeWtDUTyWXxw2ayNnFbtIrhpNoEI7ExWYnnagcFYzM/wQH5kOuiBuKmXa8Vt4GE7jYcc4xp7e7N10Buy8BCAtYUcOPyzKfZWKz+qLXYDo9sMiWmtl+/UcyxWIWabT4PEQXsq8CKAW6ePHG590v41De/rygiAu+cYy9bpbDZRr9HO0N8wBK2l4SA3lSVoBhzkiAPyVf0O0bgMDTQn2oXhqnllouW5RX/NP5XnUWN1RQtMtIyJ2uRIK9/KFaHokHg+y21hK5fpsWjPO+V7mNYtXqd1taZJms5tsC3f/LaVC8w6LiQv+lEzXBta6Q3ai8BaTduMdXdwDlyetqNHtNoqPY0Gle+iA/P5u9POAJS8YwaBvDcqcYCzsrHqctQMdbj4RB8c8f5mitEraMW9+vnkVpeb7+FYjp/dyLdpQ68a16hnc3wMU+lukBwf+6FWI2bkfUnltRWXKuuJF8ll7LipEXFuYdTzkHpMe72vDFM/o/5qiyrGcqHr8vnTCtGC9Iq02IFgGgO84pXMNoLjIiy3Y12jvbI3XNIVdh81/3YkPIDH1/amly/TtQtmWo9e2J/JDmxwsYuYRv4VduOB0MpbaTu2NZ0pMtVNp+10lzrfw/JdROtPbj/PK4u8U5D29xrLS6vorEf9Nl8fy2hpe314k6yHpZ1mm0C8Y4GyKUNihrQUsbTsLCN+RD4lbwazQM3SVTvgNgMYZ8d8i47PKI+zXWrn1ZzWz4YNSeOsW7oY8snegfNpY2Du775GZ17ACShiYVedStX0IBuCdIsUsxBuB8aW4cuyvZ7h84Z3dmU0YOE3Rv67gGYd/HxjV+bXMMyV1uM0cMXzz6AweXoV2guLu6Xd5MWct8Cm5D9tdFO4BPpGu0pjZXbGakFbdL6qGgOspfvTxQTGs09105XrhnuR9ki6mKJK2djIOvhWYjcQOjc4d5mW5kmDsp2KkeZG2HJXpTmt59CWxHcf2t82QRYqoKLzFnJD6eWtjmHhFS+ZzrzqRKjJ8TL5pEC4LmobTIe/eWexlSHi08xxLu8sx3nP5Rl5W7wtun0eoY1P9rk17fi/EK3hn/E74W/G7MIRyQs+oP6Ns7ydc7yYs4tNJL9aMyYleSTfJwwZ6KZbXLjXPRIm3M3JAqkzYXfE3eWIaLo+3WZkViV7Q3y7Nhc2ZMLjVd7pgNIO6BrWhQRZ2L2Ztuj9oL1Z6twzbWidVHuCrnl3xdkOZF0teHveLndpAFuwviGd72ScCYGl4f6Fjtxo0vrEtq7WJcS2X7Cc0Lly4Udq2Mx5JzMXomfqrrUKc66bMFoql8rThvF4dqRHBEZ3jhrjhCl0G6gNf9HuCGKbAYwLCdZY3nVc2ogp7pkzTYH6Jsvzao07TgN1QzLx1G5CDNzT2FDzd4onlbXqyNuWSTvc2H0bT8Y5NbdBguAdeV2uml1Q55a8T8hnPlv8eYNCnq6Mnxq8n3Vo8I/G+jOe8auPsObamLSggWqDtL1W06PhhpOQW0oYHecbb/FkomUm3WAtIdh/SNWRaV3HacJAtJVpxndHiB5xIVFZy0Wp1315V2ScdykXi7p5lRyD+YvyXelYjcniFs4r2kIvc97JMi5V995NjbU4FB3DoslZyGBXk35RpLAcHxOUHhMn6W0yGJ2n29NmJLmuSfFBbgbI5PiHqFOupo0WmKulGN+RwOccYq9Q8rrioa9AT3cTGcx9tzR3+zX2dNKLfuQ9idZdTfya+8NpabyOvR03ffRXxiLo0KSF+PX0B/RUc28Zu7NjH1Kimo9GewqiHHoiNotEjlE3p50rEKVLQYZZzvKOvdvj9HYerjLeBnnsvEJMvvmU4Spjb9X0oRnynaAKPRqmSqaFHagDoI5nzclLzon6LIZpZaa1DtFJuw2p7vB+Ro91TFqwnNCa9vUvbYY0ub3eWMcFL84HSmMdlfJeYdsOBxvufC6bUXRe4edO10ZfXvTv8Jh11IWOi3wRwoVQSr3esxnlJZLIrNOVzqh5y9rf9eSuT7qrKnAmxgzePSPxowrwOZnTVhtifBw01PCbxut5krkJHeeKzViekxIzSIKBdfESm70xRMI9cCQxlpONAdGqY+ph58YI68grQwTwD0e7jbFaAYpOjvtVj8AJL+OZed37w10GBWo36dqiUs0LQwQnbng5szw66Zj2ZCy4fKvPXNbDNfPAeZ54sTo9zYtiVKPT2pX6ckD1tEWC19XHdmU88b6ujCLy9wL4JwH8bFX9ybfyeVdXRjaY0fH7BJfcSUbG2VgJJ5FhnFw8CisptDyzDPeQInfG2Y5vhZblVrXGHwOnKx3rNKAam+7SUmgXcre0aHlpku6scFG+2eWjsd3x6nJbmuBROQlOVzrvdOzEY2duVZDp5yQHvV4nS70VC72bt0nuY6LQ1ryy1WmRXs5ftM6AHk09fZJazCyNVSHashD0iCKMYpHg8+YGCymTXCazhPDFw0EyFeWSV/BpLahSUybtaWnjzZQGbvkxWOsx5YB10FpV3uCLGqOFuxCqGfIjr79XxbjsAmPhJOO7Z270nRbICYO/3Ur3mKHVWFQeVFY/6O0uoQfd+OUXJjutRt7hBulv35zXbsb4QKBGDZdur72psyAPaQRp6WWY3KFoPKjHLVJxUEq8jF9tfCZcbLRHp0WhLXYONW+1WzV9Hs0z7ZVrea+aCX8vcHGLqT3tymb4z8u6uZDb6qZD1VbnhZ3b1iPagsV/v8JmXNm5SW5hrDVxZUMatf/sUKzdDhCW97dphfXUURY2BIu8rj/zCUoJNoXWk8zvT47VrIE9qBDxIsY6TmzcMSY0lWgvP2jVaH3DKzamDEOVeIUbellVDywdLu7uLq62UZfEvrEmMBvital5Lf/AWGBsrsGuw08XSrFbFh33x1myrLch98xNRYhpNUp84IXkpP9F2huxrmKWxLuOKl4EuE20HzOojs/VvFcQkR8E8DcC+H2fyusdv2N27Q7TpmcJOj5o3kRrXVU815oJ09/Le5/2FYGNgTQg2sgIulfIDdcZWfC+kNufra5y3oV7Ok/GYsPk1XIeoS1EEg92tzSG0b/i0yciznenYIjVye1zNl2yeOqJNW36aPRCbrqZ5BQegH3jhHiRXJlcGnqldNpUb5yHmie6ax2tLXTQzQu0+vaGb+ZinZ22drN1+VaaxJrR5feJke+OMpU199EqXdvvo+vR+wzSWaXSSnj8K2sf/Uii3tR01MjtY1cwrtaXUnINWSZRG+2n2L97xH2Sy7/boizyLuzCFbZ51nQfanknuRd87+WdO94y1NGycbG8kr3CY6V8F7CxxWNKXuFneeYT8Q5zssjrSdldm6D7NoPt2DZk9826uTJwi8eL/aLrDFwGkgtM94mBRifihGvvKwye2wasHVlFSg86Y6KeUgstY7fLiXZoWhP4lTXagyGGbB93ywbXkui4VeVKfF5kEtK4rLqKtES2A6NpEzjCboQoszfRj11abgp6VfYN0uwyo+XTTjg/iU0dPx1maI0X6jdWAyZH25hit9Tx6CU0pK06H0hxztrvday4//KBF2bAu9/K+BsA/H0A/i+fyuj9XBllbSfSldGmGhzvlnWitR9i3UhhrjI5VfPOrZ3RYtvPJ8i+G1MmXYV2NvoKp53zJgCwjnOWuW6wENJ5buxvy8NgwZOTe7SlvA8YRl3omEpsnvlzqtdS9kVDTHK4vNuGm/lFm4i7UcxZC81VmwBzha7yupLeBit9exvvMu7qtbX99KbAxxerJC1vdBptC758a1XUMN5cxBjXrVLqKSvAD2V7/2RDJeBq1VpeaqDYEaVpSMnWbofkThSuJqF7jlH32fe6EYw3UKJ2q5Wk376nHUQ9XHTsfIKcsXvM18LXa5Q1PvmJoPW3Zfmy5rS3an6DlrudHPZK5tTTaEGuNF52lB1dxRm7xYIDIrekhZ15eGtg10JBbR0f91ByWa+DWV1nUN5OG5NYwu5puCSAidhHVjsWEEEtMrky8kSIcAsTpeyjhXYxlvqDxbBf4fHWZqxo72DOymZM5dnYpEu8fFTnFbbt5BPdVDcTHo+H/gZ+XUELmQtcZEMaj1jn1pjF3ojM+nfaZd0EQM5yNzq3kXHdJtuxXraD8mmxGR5vEh3XI5dEXfS+EPgMb8dcPDBt3JJouB5y3SMDTJty80ZGh41cmjDuZ15X3LGcbme0gZQXOXn1DrwNaIKG/fE8xeVR7eyw9dfTGjbsjcu18jmWOzbzJbW3ISrs0Q2Kw2hPq5uD+i5fXnULOzBKdNt1hf+CBxH5JQD+gKr+u7sLbV4T3v1WxhIUdAOXDeLDDV8FjyV4kzuJKGLB0/fAg5bpyQ1AgOU5Lx9PK7n+yA3crnw842IdORQdm4ql/At32h0txwVYLng4Hpi81HljJ7txV+RHwWWuj8kWXNVroy2mQHWW08rLfK9dFQV+FW4aHkpn46Zor0N0VpTLc+GOmL7rzjvvQV67OtHDvp07udlwXZ05AfC8XmHRwavOhT13HpaijTasXBfV+zudDwxyX1S5q0nNkDzGr2Padrf+oX4rFqkETLS8YIz3RkFrcglXwl1EPI7hRhIuiG18SBpwL1vmNScXAfw6/twdVRzqv/38miatTRLiN8kV6PjIqJwRV7tKecj176EZrVVhukEO10U//q226ByLTG+TTw85niTqfUxSj9KdduNq7BAnUKjVd+3TNK4qcfFxEmCJqcmYJpduq5jpMRGwUvF7crFjjJ2BbrZ7DY+baSx55ajxQkvsl625sRkdUlxNjsjREo9N3irmrs6XYVG+zp/zasFuQV88FB0ZFjsehzF1vNYit/DqNt1xxPCK34IsGfS3rzZ2YLjEZHyBjzigTcwXNoTKErRcXLZWk8nTal88W5xnG3WZm20hENGRdc1LSS1faAvTOqnxPkLuSD9JVrEDkp8HyXUc58tt/Sy5Lwyt37gdUMOfsCZx76ItltJWDbuReKwsTwBVv6XxxAteotC2bTYWU+q3KHr5/ObdM20G6NIut63irvSjz7kctw+HcTz0BSo6rv1Ht90fKygE56d9YPp7ReR3UPxHVPVHPCIivxnAn7Og+3UA/gEMN8bPEt7RlXFhEAiIVv7h0/xwRRvxapSXtCyHbezEa/FsIVeB6epjpw0AapPVHd+lsWzzgF3YGtoH8hZ7s9JPXpE3Ei7ScaErT0p6PXelVDPtEfTYCZUWuZhFCNDWRFabqxnBZGRbzU8NkZfrdh0mlVaTuQ3j+ZpzLT/ZK2eefBGvlnfKv+y82Ub8Jqx/cHTvUric6syTbc7JRpJdcBa00tom31wMZYUJu8hgna4tTqvehCS0yBc/pQD4ZR3OVLtQzUWpT0zyzQ6/uXR+Ge8OkUo3l/k5jXQJ4ulYO8NBE5TPE6S1h8TYH/XDsi0dLW1hM5T/I5W2//ToPJ45n5CcrlOTi3W6rh7WYbXBDeO63CiZaTufe7j4GptRmMqGN6eFAtfClX5HUsOYu93uapLgcVmkNf5TX+Bu0yH5En+brF3elc3Y0VzJocQ8ZaRT/ksbMnXoWlndo7JudLa8G7UDj7ng0oUveFkn0YJ1SzRHvM/TXJi4/qVqlWySFYixvIz/JqZWm0TlePk0OA0B2hqBNa82g+yAjYFSOslzd+H5oKNeT7iXRGpYbIZ2bGfbNXqOWj37OWk+I/eRw+3T7NJPquov2CWq6t+wei4ifymAPw+Avy37AQC/U0T+KlX9ibco8r63MhbDwZ6tgsmlQK5oKVlhiyN6uqKVSl3mZKBBUHb+FN0gT5jEtGyYMGj51smlAd6Vzw0UG5dHaKvKc1jJucjewzZvN8wLHR6SQ2UOA3DJa2qVu6w/d16s2ukegyld149XpAvb8aAQetTTyI3jamLQaP3t0+SWc0HrhrPrWA14hunNcVCQMUZOrlaqhJt0oy1yus7RnwetAmbUhsQ6AW91KVkezxvx4p43JhCn8XUXFK+PI2gHp/5FMZ7G+G1jeeWH5x0Miytjk+sUfAZBrO6F6u5NgTFUuNVaORzLOX2BT7wwnbFcQ//lGy3rIGssT35zN646dazrE/d7tbXFSRI+aXNpbyxtNwb7s5XNuDN+754RX9Ev7PbDPemOvCl5o/+YnKLV60KpBwA/eC11rEy63KWuZDcr9r5CIe8pr32rzY121TBbVTY2RFZZGHtZ/rV6Ig9kRF7qEVaU5kFsbzQovN/nea7UL4042xOF4Chl1qn9GOdVq2vj2mbQTIY6Ad+FKJYYWAyQp1bd1lSkZ8RsM1IH9885dNz94H4WhyLoH+h97xoU73PGTFV/N4A/2+Mi8nsB/IKv8a2MiNaOPVMzoOyuVIwt5g7SDWqCZRrdKW8YardmOXK3RrKtcGZeNF9Zzep6dJVXJzFTXTEOrNguVZ4xczLk2y7ttI3XJTzekXspZxHfGvo7Ol7lXdq8Tftt7eM2vlDgYdrUY54srmkvJ1ME8N1WZ/ZRIbnIc9CWOplYTmiI1uTwbYtTYMNliz82QjwG6MV30qqPbwlDzbqE66K5a5xmdfxbMe6yJJLI4rQxxEypXKT4uTE7qI08k+RX5pOKueMJxFuOdCuh4jjtqVaN7kA5pKQLSu8aaq4l5OoYdeNy/KOgIONsvMQWeaf/tmuVHXlF7FZImkRYGTzv5wjZtxYd2s+YNXzeg9cGyx2fwzBwbTL9hjXPsuhFdp3t9YL1kvbyYW7Uh/Gq2bVHZ01lFgqQl1e1xQ/g8yT7NdhGatzN23SeGFxh+YqXtPbc0E72ZoNjE60uMpyUd1UO5kHoO54pEZKczqfEZSHnupOUs1ykc/LulUpp9OkAWNYRtXiDinAVlIqTU/8QQJdyjfastNWtd1yZP37ZdkbgvsYizNUOFdubKkDCxTzsjWEmwhakXgKFnP7b2EhirverQ+opufgci+l0COymXsWhR7hLgujElPZbJB33h3v+uB//MAvhl9gdUp0/BeNKfF/kqegwRRY/xa7wB8qNwB8zfLIr44cJ77MwY/DjmZf3XrD9zHg5FM044/kmWhAtZlqfOwritXgAlOs42VMpvBWofu2Ndn7zlYS7K++n8lkZpznALu8KgzfxVd10nXc6dpZL29XrkYgmyF0As9NKq5viXUF144Xp6cWW7MrHmgWtLiaASbx16+gHDbkOWZGSnrKKb31P62Wivms9tBVnISeijupYTEoTxNOVr/LiCVp1g6xa9DlCqTeZBGdWt2xRGanCVf+TRitq84eoPLROouB+rY431kHititfSLa8MdkAMHYpU5u8tl+ShmkBjO+KwYxomf2Xn/5mzc8ZiDksCRBX7YtpPBZlh82d/OyBUl6J34oTL+Jaqxl2P+d1JlbbmTiVTzCA02v8xeVHEx5zfAF27sos0mjTvvg0rYRiMzLvPZvhepe0TfG6ztEtkbjIa07ulvMGcNWx2KJerTyujdQnhq49y1ri8QI3Wf+Vzr08pRxt7D/Ey58vlGxwNuM+WpzaaqbNAkoRutdpLbcamLI1vOpXFGZ70nBRqOI4TBVJOhpmzGasPmEsL3yU5BL1Km/pclqby0knm8FyKJxaiySddiN4sgNBWzFn2clh6FoK0QZzlLu/98rOzf+NNOrAjsfOI86MWbipnyFDLI7UBqyCrtKHez6knJueOIRx388bavOSSN0dzeNsmgJiXwU7Je3Nt8ey58sNqvpDn8rj3eo5++hiNrZ4qiUvjcpp5Fte6qjbyx4a5oVO0uI+XbGBqvZkSTvFY6pT0qZS73RsYVlbD9Iu+W1o7+q4AOStjHu0F8QT7V2BOsd2NuVK6RW7V9TrRHtP1srQLskWT7bW6l54hPvjT4sems+W9cyTj6uZykV5lWWWSDXgay775gmW2sZBk6urvPawY0TqrDNtz8v/tD33jQe1y1HsUOvIL5F+Ajh1vP86dfwb+emfVuPMxTxp6qY0aVN69uYwvZLR+O9r8Ljy3OGxLuNLnKC0NS7qUv4aJ7vc+zZjxfByZCztzTpc0XZBd7F8yfCCqGfjMXml8yvKdyWnhL5Ye5T2NeXjyMUg7y7aV3IfQuoViE0ryMSoSccHdC5g3mkXCu1YXamshXKR9wG59VerZ+pYEx5f9UdFsz3ruaDndTsApA9E4WW46m/rnM/JPOzviVqHdgVTXGji2G738AbGn7a8qrjvdsF1TFpPcxvgNqTam48bzijz6/99pPB+l3/s6sG3/WJ3b8RzA0OnHak8vMi0xqDRqtDurIJ2WZJvd0csZwmY0GkVxfhCF7SuIZUPLe8yzmrey3tBi42OvDF0eZvktnzXoZyL89BpN3Vxt7wP6Di19QNy1/HS0Sp9ZCMk3k24tnJ0W6/1DJlMtMK02thODUqR6dUhpjMQ4Woi1nctUcTycnlDli0UTsttnZeHblFJgLyWOBcEcYOUpjGd3qLCXBU98aThJX56yV1W+vXHzmdI8xu5XGc++eRvPITcTeREuCKmCwvibWe4gBiT8d7JTm2dWb5h7tzdZtSre97lTuaIKdRcg+wc3+mY5jc95t1esLxRj1C82Glub6rBdXxoWnWYcL99yyW6hn7DmMpLXMX/qSExp3Y87ms5ueo4HJnHw8BvwvIwJGi0rSNd2IziL2UTGWFAlpyILW2Gws77ZOfXXo4r7C4aa+pIcBMKT3WDHJsUZ9zfYvkKj1nv1+LxULvKvdB5WT4OFxi7wv2pH6zwGFTPOzmr/sRyW1/odkPCbVnu2qqirhL/7jZwactqXnFs4+tqO5ZTGVUwcBXEq+ct5U8QzTGU+lByRozP6QWUo9K19nLvDO6TfGMiX1AULBMiwi3bL15yLAfy+vwhx9zyNeOZ9yC3v/HD3RFdRyjhUZTd86a98Td0h9RqYfdGr1HBMT76bNfyqxniQ4HxkWr3ivC6OLOaxfwoTvf8EEDPcZbM7aV5x4iYj8VJtJ8J97+MoPq+H5j+nOEDXJffEcg6tc1K2L1gt6CRFa2guE9YzyJgq3qwiyHfrDitA9vCTmmwdyP4uVwZEyQqr9fQFsOAVd1UANvJEa7XynY27F1n1nFFu+4Kc11d0s4XVqzKcCV3ksNG5iIIWVctq6ktQY1Qx5rrlcdB572nnQ01j6EyE1kopXVcUA24m6DUB+s28qT+oNBiQSvzGCLD5wYvz6fmDEEtyhdnjHibqQkfl6607PaYB7fz/JwfLl+5LgoQN1rdwuC6mfTbrSTcHP2Yhuvs8RPjrJdfwTz8/P1cnrrZDUN8yBFX3ufZsnFO4pCxAOOhfyKN8Yv4zqzGHmten5/XMx3G682BGlV6P/IWlNqXsh1QOwQyLtDiylhwUR6wNxubUeLMYUUrlDSTUvkyMl2/TiVe07aBwkN0xYR0nHCQhs49XLzE4wvabm963Uwqs9yel9POmv6IHru0mbbi02IPKyNyv+52gsYk/RU6l8rQmtj7Ee+00riHWvl2doAWOx6f7EDJW+XM9pTLy/p1Pp5D5o4xmYzxYJp7YUdq/1XEAiwugPKNGDU8po+A+VtNx99kXk/tOq/iJljc/x33c7F6CGmmChGNLg0druhjA8Yu8JC8zKRsIqpvrjGtXw4yzgSzC7sQdjvvU9K2+vX70HN8coVpLzv2+4fnGbNPDGM8XzcyDzC/9to7MhvcNa2P1HrV8+Bl3IV4rWRepC3jS4AlnS9oeznu3nj1RtpO3/OWefsVrda8rkaxFx002Y50Wp3ruzAmvpOOXVGabMxGovJqaq3zRlSr213nTfoF51Vd7GRF3kp79H5VDob4rDBp2Q3kuit0HSuv8JH3yV13Y9B0+Vq+CWOtKcGNXFZNjV/r7ruShTulckXW27XEy1QmAbRQkRqH5lJNkGPFhzV3Lz5P4M0fRlRyzuKT8oozlZb79Mgbx72DZ68TcErQJpX3m8i1nPtQ21NZNUsSvD6vKyPr0GNS03a0rq+7F0nNm7QL4Io8D9iMTbmL3mOWR0rVDL7bP7XBgr1QQse6qRc430q81rdj6IWdm0LD9Xt4XOwiTSaXOjNdFyu1Wh/qgt1mGH000Sp0m+jjr4zJjaI7W3W3UjHjb6O9+NAJ4g1RtzdFsaQIXgZIs3o6/4q6T+bS8tbDdl2FivHdZmzMqaXpup53BEVucDCytQ2JpmuTImFaaTZEsryjTx0l7lnzKjuu11ZXjBFAWYip6TwXXiNvxAXmGeJYmGkKwUtUpf1XshUP6ChD/6af2fqXT8H9Z3g4vOt3zHzHpKzDJ1c//76OTQJjGzyNlfS8AHxEJK2U9HRbgU2yUm4YF7LjOTJ9aHGn3eQ1+Tzqy3X5jZZ58OHzSOqG+wHaKS/FS16ar0z4dkHb5VPV3NWxPOf8mGki+YHy9TaBZLfa6VjmaqtySSeaeU0GTMPuXdfNqtyo8eIuK5oHsvtC0Y26Ry2PtPQpMK+pPXysGa9FGfi4c0xuFWN30seN1mVTr5Nga+3Vf7NpHbxjUJHxHS4eELXbqdTa11xClEyjDHfDU/zGRsWhYm+V7NZGNXyyA9jxFkqAQ+1tlZgrI7lbinofz3rxq+hPtZuubNtz6DiIVCRcIAGXp7gZRrocL/pB5Xesid1VPYcRtreKNznN3SUnCodjojWMhI6WVwDBCxQ3vFjeI8DojSFcexR65ASidLx4A2t1w7gf40paXlcrB2DOE7Pn1Qkv4/GFzXAsb+VYelAQ7o/4vNDzMpTxv8JJ5KhKsQ/aEE6j4nbcL7ar6bjF8tWjVV4qX+C+hxX+Aw/Zue38cMUPTS6Hq/K5zl2mtvgdWzXJ6rag9NlNMXbYTdi2tSGFaesQrbyTXt6Jph3cLKPHJxNZNhhpTJpdCJsRNiTlhLeC+pjN8S0TL/sNAO5RscsbvNOGOLQodHw03mUGL3cJHzh5+Jstw26xgSTiNiPLcCjZLxn2xdPO5vYY+a3oL+o3JPotuFm5AoQXA8wWHWGrho43d3WEY3mC/JFKmd0DIOOGRm/vkf+Ml6Cy7VgfI/h56m+H8L7X5aMBkCKdbGHG42gvT3lh5dOLMALki6uAHs5KKi0BVGBq377p37zh9G4U+4eE+tYWAwG9/tBN3t79vYzsPTQZwg1t18F/TpvGTptznKWO7mIauLnSg5V0WqlywwY8QrspX7Fr7C6hWuT2Juuh7ANM5ZFWd1m7PW8h8wle6dxzefZxltt295QqE0B3H+kbHcXdY6VEsajKKej+TnWR2Suu8pWYVI+8Eka+lk/bTMzPRBW+0srlfS8m+azzqBv/jlfWlY150tkf+42N/rYzeIcSQu6F9pcsvC/efAzFlziU33cNYe4SCYVN2jUWOwOWztBxLAwPn1rE5AA26RiQqYD68eUzFhThhqJ+vPsFPlM89IRCx2LR3TTtCPSo/7FrGnGjHW+N/Sj6K0MnsQVPwLNnU4X5E8E3FdwORNfh/kH+qqMNZ7vg6ds0r+udzViV5djZG3/oeCUL2sR1BQpeMa3rycOs3PB4gZPdZhS5lHcVdvZlJWeyGZzXoenYpDe2k3nt9qcRLGBn+rnVixp26SpP9VjaUDoeoxgmxxzPku5pG4VcmC8kitzKuxZVLK9YXs28K1xOgANa3tIGNMFnnQq/VgbeHOfxJq18UT/LDcVuE1B48TSMyxRujcaMSevbLbIZpnM1H2JX8Of7Lahnl4jfgFiUcdlFla7WJ9wP2rHpN/KC5Djtafg0aG8mVlTxMhwbo9LjfKLRQs70+FDAr8Af1uPFDYnhN+Dn0qRs6g2bEaeU9YTiJW58PPT8TB9J+fLCR7vE463hXd+Y+WCIQIM9XFFEMq8BXp0abxriyuDAeTtfqekT8LMOd/JOtEPHe3lX6mt/MJXhQdpXhJUtXu5g4n4Z7pXvrpIsd2XIdaeDIS4TKNbxKyO/esgGeEezoi+7h4twpWNLnFwbm551wlFnbQNjH6ybFvqnjKc2lEf6XZjPbY7u4sFywn73em20UqhtJE5b2E0rrW6gzkTg58ooQaumvQsWV0B145w6aqHNw+rjljDSPnaWWS1GFuJBb2b8uZZY0uQ5t/HEF7E5tgjzWgkVkovSzxJygtIxNtQHZeD0CzW6fVmVZStnkVQuKFkB5SXtPm9g7CI9LgvQ19uQzER5tTze69zH8g4HS5+pSSub0Wk5fVWeqW564kq3ns7B5XY5HZpXuBg8Gj6tcI8eHLJNel2422ic1T0HrjJTZ2hDqpIdC9G6jPl51uB11T9NrlK/YS1yvCYvtncydbQHDZkU8ehrQLa70zRBULBxhqbs3OEuqZVXDWTt+KWDrRjdM8avu6/aJG110QfZgbw5UjZ/0764V0zWBdMOm/Hm3vulB8X7fGD6ywjvfMZsn+6bOzw3nY2bG8ne3VB/S6ebYUVb3q1czBOl3lUrbcvb3VAWoc89CoDkGHqMlgFsRdPl7FQjei7fLkziGv3Dw6c17bIu7jFttFPyqvs8rNj9LIatbQazsNavKE9pg8i7KKhOpNt2uZPTeKUVXXZlL+zGxbKwIjn50c9G63l9gmrl8wlrXcQkYzeSeXi7C67lW3pxqttheldn5dPCJQV73BfA6TqtpS/nRZKjImMyRHoIhqE5om5gbZ+Z7IK3Uj6PixIvOcz1spZxvL0z3W1hqiKozjND8HCr9IPueFtoIBPteG/wgm1G65selfp4qLmzAzQrLJ1jzpsqux5+nmcxABTlDc8Oy7eh59WcZMWE71FaXNimB2g/BVMro2vaSacHbFXPtyTZ8Ak83vFd0TquyEYO89rQvinEmH/g4gXWsZyDuMDjHS4uG2YlcKOTi9dNDukdyBcfF9KcF2/W7/RoQzmd7M2l3uuVL0NKQ4NV4dVw/Qj8r4vHcFMPNkLzlGZvkLf2quWF4zO1yfDiluLODjvKkDbDbIjzMdTzDUHu6/kW1PLKSTZDh70BwoWyLLKnGvl44Xn5x2cL3cgqcAjtkm0MJ8fL7UMEnjT2PUx4w6PyEGzG0R2dEaNEF8mXgScVGx1fY/gm2gcMa5czsZ0x9G75InlRN48s/taKPGgvCm0ymXTaKf3AhKTPCK7qhruYLGhn3ldyW3zZmenJYqKwNZYADR4fU1eZST7rYjzYAI6sWtQUMoR6Au7vX+rXKNm4prg27hVhZDxPmGOboOQdjrVPuEsHu2oIzF3R1fb2M/e6cGEpfGFvuQDRceWzfyjUjSQPd1+UzJ5sinHXVi7KnLZfm3KEK48gvpijx1jkehUrD0V3FfVzF+m6c+KI87ysk1fzOFN3kA5vDD7/2w2cKHS6lfplJltmS5uxky8prjP1viQRbThZeU/2xifDnrPx4jFzz1ah0DtueN209C6nyb6Mr3R8wIZdnhW+h+Ur2pXcnQxKe7i8LjciF/zv0e54rMKGb3SVVUZBuVo/+tZKLtE6v9ju2L05KzvfDpyWl7/uPJWLQX8TIstmScl2xngNXQnAdc7Gcwg9pdjTzGvodLZKl2EzxjrGwXTGcvZwIG/14H2LdE0MMy1EzJ3OFI2zylav3ucHUvNY88+UjEYOzPXzgxCEM32zIUe40g+dXsSbb5wlE0m09jNsjqRHfAYFENsE9Kb3M8bc2h/dlfHbJbzfGTMh1wzfAeERQvkAlMHi8dnlJUevCqrvffHTmZSZDFoZkETHIKO7vFtaKk/I5kRSyctQ9LwTfwPtlHc1p6G8kFreyXAlm8lYlbpZKr6JN8MpLa+2eOUlUxuUEJNtesTxbpS630r4bqOipf8sNmxNW/R9UK4U2lr4akO18PLduf38gSuiyi1SFnPhPvlwI5cqypJW7CBJ4cU6yXzT5DQ1WBSonA0AkLcesE6dvHW66FyKqY95SpvUssukX6Qh06BKWq9ijytNGLToyO6HCAOuclixlFxXyUWGih9lUcqrCuDEKUdApmr66wtOOxzPtHNdPByi0DlwevdnLB/eE6aLcp6Wt9HGwt/+zDajART1z3yaky/tDWV9izcYUsdVBVHHa5g6xct4rXXTPwfAbVxKJ6UauWriYfPKy+ByGxxE8o6P1HTlqp0GLWb8beUJXrpQc6XjSs5ivMdjqu8rPea0Ch6Mx8uxsSjPVqcSWcihuHZepCOdlKrclcrNShXhFO9yW94rLOgXPs3DrzUs8S5DobWPb35oK2/vO8HnynhxFU9YPo+hYhdMj6HaAk9ae012PQTJOPelXo5xVf4oz2m8+/adXSoFjXNgAsFNTxym9Al/M+dcJa70F+h4wydH6HTSe8vTLg2Jz7OQnA8Z9Nvn8o93e+8XB1XhONHgg4xV4pO2uIV2+cGa9iLOspd5teRVzGNrL0fX5euh96dJx338itfWP/8BuT2s66Yqtaqb1+p0mUzGYitrQ3O3Ll6tDGVbAZauf885F7OOh3VtjDUjy7caWvMq05W0TwHg+4VRklmvJ547IOftVVXVXFjaiZckq52avT5It/GtG6ftC9zh5qchR2yHUULX0+ktLUUlL68P11GJ74k7tPTv1EzzG6s4P8tx3c/4d5BMwakH6eEfEHhDiImPTo/v4mJ/e9sI+gUOynIUc7e4GpOddie2D92VnK4TYcXVJL636TJwQrGnG3134cLe3JW7efyQnXtQxGRvLnSIpEex+5GHr8Fy/nlPh1UjL/G4xe8x7vaxY/tVO1yyXtiqlY73Gd0ROuu4Hw+zTpfFazvRO1O3LCaNTcbfPR4nbnfekdfeXC5thvNXxt6V3EobNsDw3H8X+2ATZTXgPIFiH9kOJO3HXfhwed/y7yOFd3RltM4oFAfqGSwF4hp7WKcohs8jtL3Fb6Qor1bCGu7SriyCZHrJu6Nt5ZPKqrPe6smTjwdoV16gXce74RHaezo/IrdWa83rSDftXi3yvlHuNm/XY5G2PLNw3W2Il7T4tY4TrbZ0P1e1IJyarddrDAOZK7m/4VtNXqg8GR23XUEkkqVUhI0LJ+BLOtokPnbPNeP5ZsddkTVis1tKvWL5PJ2PUZ1KcU01xA5zU32ep7+xErqNq9IKZHjUaH7c+jQ5Xjdj13JgRehoJRgujH7bly3q/MybADdofBDU6+bQdKFxdyb/0DROW4LZFczuATDKcMI/RK2q8cHSQwQ3jCujD9jV0q+Zc/WwG09qjbTEY80076vRTarN8LgsadtAMu8gr/fQYbTkPK5E6lst8Z9a9ad0DtmdUyctiQts63V3aatqXiW+Swzd6bhKewQX7e/dM8CPYGrXcYWPF7R35VhoEJPQ1+qrBO83EzPCY6fttuEq3mV2neNL9G1TaMWXDpQObMt+HR8/vqdT1HuAG0qn7e3icjmRXCKV2yewHvmQXoHJ4vUVj5XpzBnJVWgdxqTGitbtgL/J78UNUpEJ+9yVXR2rrTxiOrsr4yk8GzRLomkHtORF2Ay/vVHPan/ChV6G/fQ3YY6LrNfwiB2fkBn2pnpkuM3w5hDLc1P/zMuwC+cnAf+XH75d3pi9+xmzCVPZXVEyvnITLO+nxeIMlpR3doOkLAvXknKrLIkp/tKK4i4SY6bI3ZTPaCcAXgByL093f0FLn3WueXlATnlXxmsj98qVcZLb2w9zuNS56XiVtysiFF/Cyr28F2NdqHH6jv2FGNOZG/uadi7fnpY9+h86CyS7SKMtflUrnYV+9dkiTQSWE6SadzeI+hXFs6tJ0mrTI75LA79lUUpxpnFAYKJkQEuVmJV3o+h547p841VcAQG4s4LaGbSYU1B8nBWz65PNyB9UKhhfPqtwYJyL8yuX/TSYQulCD4kFWMxHTOcw8kyr7sro5yc+waWlYxp4kjQiekhp1HBl7FgTeCQZP1A7xNUmGDBje+9XOxvCtE3OpUu7wspH9dBwsY/AEqfyFvoup+sYtCi0ezuHbV1d4aK0vBOvV9oBZvpIj7trFxa68jqj6OjRu/2GldRr2jvx+7aqYyzJIVpeTCx5dSzf1VMnnDrVqrxrHZ1WOPNUF41ZH2MlbTNopjJsOrd4mgPHrNOIel352zVFd02vZovsgHgtjEtHjrBNtsgSc+GPvMlrYLvjbeIxnPaODXFJ/g0zAWxRRq8pzKbEggyKw67aV7I3gOJGOj7DlxvecWFWP85Zxr/UeAIsTUo8LjT0F4DWwbnTTloJIH7KX+njq9J2qF4jB9e0rDvr8VBYgNJ0LqGD9lVeacrJnbwXapVwx9Bd0vpDmswwEE5XHe8I4RD5WOX2qphuWy9GY0yilR91MUTLvHOxX6gf0nGhZaEVWZ3d2sspxeu7o0XctVxfHGTaQb9paABz/+28NW9tHHrZYx/CHTx4wlImCXSF8aK8c6ROgFWWSabLJm/XKHZy8tSA0kERg50Q8zJhIeUFoHoYr7GY4svYXpDzDCWdPO+p3kYaC7qDiueLQ5TeOfR+u+tHxd3VuI2PgAuKjXCbsWK5w7ZMdEx3ISzwUXuz1vnVdqB2bbqsYS6Hzx0zTjeCCibkKBgjnRaNtumxKR+HlZxgvkljyDCorDouBcw6L23ThbIVY1vVruqZ83Z7cyVHmLae4PVPHYQAuajDFd/LPGn8hMcGdXkPR2vcWvx6hvd1odqI6WwM2Z9Rr1USt8s8hDu3WccYztqfUQW0upg2GLTXRusNkuPW34b1cex8+y3BmY/vSxz95CDjtezaxGtgLtXRZEOaHiQ3bYb3Tqc1m0FShu2SQlHzvhX3v/ygeL4x++SgrfvHc3rXPTpXGvLuyhidT4hWmJbzGniU99luGHPGJySHO2gs0prOs5wel7WOzKAZNcbxkmWR9x5tCWwYspqrzivCXd6FHhP5Rd1M6Q+Ur8weBHVyvpxpkOHobkyPyKH48iVB5JWpXtNqtL+Y2yB1pIyL8t7XuZVP0dog3fMmC9X0DmMUbDVvuvKHhRdNSIpcA3dvqzbhYEohUSMyUs/TWeUZrzQe7JajkRabK23IuSSF31KVtxT6JMWXKKmzYQLZ+sP61Lgvi77yRnnj7YBymRWH3Vh5M4m+k+rZh0vMEa6KrtOJsQM63BkP4iW4ie2O2pvBm+aEzM1r5MXYdQ09xA+JZx28BP2BEzccNqZG3iXCPBASdxevO6lvDD3GRAGJv9riQAIH097B7vBuZLnNRsz2hgcd3SC6pEWj7UCNpiOx5vhUzamTt2m1a43XBn+73KWoK+zu44mJGx4rpUvXqwvd0OpC5ytbtSrvUi7bnl40at9LOYR1oz82jGRFJzwmu8J102UZ2ylv4LG5/jVRpbxMO8mQlqa13L1PFX2l1ZHWX7u2t/HM5YPbJzcCk15IZr2tYyyM35lsY1KTzPPmZWwZz+9Busu3pSG3qRK6ApBCyUyTUGnEFGI3jg/sH/jrxXF2o2py08w3FA9zW5DDMN4uVrmJLWE1+fBc5cSgFR0gf5hHBHS4Vx4wV0bJ93DuIXDqiRcZZb8dw939I4fnwuwTg3duBk1VQA5+AJT3u0I9z5lQVulG/iiJFUj5OmPUdFFAj4Y1Zee2gXeRg6o/xaN8VN4VLddNyOK8qzhm2iXO28DXJnfaRdqUT1DjK/cYJmUlpOXVRnDXDWUx5gLM2reD1o3lYJsP78mhrJu6Ecqrl+WbRJS8TUjZRg/VK4NI4zEyayorOZFNMXWU0mbycN5acTo1aKx9eCybIVMyDENnKZOYYtRBCymTy+pI0zGytrbIG0n7uYF8SxLjyRRJ3ma81c8z8OUdGnqM334ls/U/u4GLF5CntYyqf1tMgnZItkWYF0gRcv3sgqjtqtqK46A+MobeC3iH/RAlWsEZZ87sLIKMndJxVu/Fbg1Tu05/Gg2vCl5ur6/q/gTa/XfMlzopjUVZxdTxqI0HXwAtMFWOfDbbm5bGb/oYc8Le9DGMnCvSplCxAwtbdekS3eWWDj9jLtsI9tja2ioqX6FFS29qFdy/or1nMxa0Me+/Z6sas6XOS7tQoWrKy9iFjf6XuC+krM68CmGTS/GycbnDX8KnoNVFv2jt3e2cgsZbTBpWMlHTSoZmE9XGJpc/7LGLubI3tXylEN5RKG9o4e6KganJK1wTaWxCEnXZS8PNlt97MM5FS1RenBHzxV1Al3hJs04d2+2B24J6PhmGxnk2DADEPi2TizAdtymSzWAbeWBcgT9oB3bnNEMBnGbLBu2L3yKsikNeED3iVIi84KMGvyTl2yF88sJMRH4QwG8E8HMwWvBHVPV/+RjxPO5wGR+oXNIC8zbGyeNT2gUq32nb2PVvz9dybIAvy3Ml5JXxltax84p21wYPy+2AvZOr9OdeHWvj4WC+mrTckzvxkWX7XYVt3qWSi2jXuTEsXfCVut3XK0P3Edc2bqpjQ897oKrZezw3RK2L7p4oUUixyVYbvy2vfygacOMVXO7K6Z8DbX+y//e3fq1UZfHmiyxSej038UtIYjowbQL3NU7ZcG+/xg1ZdIicaBXcj/I2MG6n/oFp15s3KwBbLNMjngb5xO1zhMB1Dj0akyFgcmWc7MBFuIcb82tVmkBL6TACTAu9SxdtvgFzt5Bayr1I649egdVLWoaumLRuQhvqDb7WtNxGi0l+cRW+L7a5bG0y6ya+SutZrT3jTZW3dR/rXWyTU/NWwVfOer07ra7Q3uuxxrItMWUQ6dVx4eq480IJGU2P1fDVxJeq3tE4dz772uu8wt7wKjDGwlxX2+A4WQZcrciYplDeUkut365wviuRm3hDXyEGFVPc4g0haaWUxku1Ie7C7tqfyLiqb/Y9UDcfIHy02xXfGj7HG7NvAfh7VfV3isjPBPCjIvKvqep/cEXERr48j9c9Pk3MeJ8MBK2Nbm0WooLcBYA0C6tBU4HE48W4SJfTy9l0XvtVNZpaN6Hdrgj0fFevj8jpvC6ftbSJFz+wv3c3Mx6Q041JPH6E1pRYGijWlZ5vdV7StBbjP3fs17ITSVX9fvko7IimmfmOxT2FOcci76oPLaOjkt3oXMsZP8JIkQHiCXKl1ZoXWjLlucDFiNG82dA/lp1vz1KxXCgqSqPbs1PzxkRFup34cbPTnxltf1laOgQcF53Wpy/2nOTyLqyApzEDg/h2rlPJFRMS7oL1DIJNcOR8DGAuwp7cK4Z7F5WZaHPsL8AGnceONgpGT2smtkRex9Uti+R4mrehqRGLbepPr8ZUSvZfdxfIiyKtfj9Cu9Wx1OE++xIzbUws8beLe41dWqVf4fGmnvxlSwmvsWO6fjw/rKn30fcOX9fzTiMvxd/rGM2ehqx7oevT7es9fSPd3j4tdVorG59n0sTypdzA+GYrfDzroh8Gn0Hs7NTPRgcLoa91ShVdwCjTOaTppkucUPEGgH0AO6tEZLhMRhURIA3vRg3ep47vnN1cJbEPTWM47D/DVxM+eWGmqn8IwB+y339CRH4MwPcDuFyYbcegwHuPCYD79lS5nL88nQ3rFjQ6reR12zER22XnByQnxldkvgOxCx173WypH6C9kmueWHPSFfiw3Csd+4NeN6+wPFdZ79bNlPtiFrFozy3bnSVcnCH0/Hpe1Oukr9B/PcNV/lW2Nivs6VTeXnRgGJXHbqGZqdc5qDTaXUqHi1/NhWiyaohzktzdFvd93y1VHSwnUfAHiXMCbXImndWau16Vn+XhekTkEYwFEbt1Mm1uRY2HR5YUEilqaZXiaLQidF4ABKUAcilpcrx6LK9fBnKqn2zLt28H3Q/26rDpItk0UvLF2SKdb0KTiV+lzTZfwlFVROlHXXXt8TiwLMGNXVo9b5mLrmbCG0i6j/vZL7dv+/rjHbbdWajsnm1H/iP8dmFBG+PlQifvv/cCD+HysC9OFv0m0i6ZL/KQ/ZNdIToeSyvTxrjvTFF87yIe1VXRtLhh2qluemNuJb8uXJxP6w0+nd0SKkHTsaNwoZVqpt19kUsUG/nhj2h8xT6Tsiq6enGSl5/V8nBamd3Fk5c6Y1gabRGbV3b4JuZI05Y3O7GfMxZLz49Xw9wg04aks73iRew8twzcjzmi4uNfl6/PM2bLICI/BOC/DuDfvp/ZxxINTMlOHEP/qPEgpwm+XyHcfc/rMYU6wAsQ88Bj5YBpXrssx6NyMZdva9l8FsXP1rOLWaWFzV/p3fOmjnfkXNSHzzlijtsNOctaGK+t4VkZefrbd42KB0VJk+u8LX/PuzXoEReiZSGLip4K2aJFR2lydFM+tAbcWBD7M7uWsI5S+v48EhdvH0veXt7MLVweO9TJRwSE6Mr4am0d/YxYVUV6Y6P+3lRVvwzAx0XO38fTyj0HM+9YFrxhodax3VVvZNEoRC66qKE1+edbrkF7gq+xZyfOVg60A+6QuEZ5BF+uHhY76I2expu2twWbIHRc5B+OyXB84mvs67VRMRFSjfOC0ydW2hzLRa0m/PEGFqmD6zHZgSkuy7wdiuLX3KwTX64b7+t1Qkl16XKJz47Wy879vAwdoo30DS5qi/f0UqauI1obXKU3ltp0vPBELSoUPThjL1/n04fuSk7HFDQdZxXBZyKrzWh6LHQu/HreSVIFu6pLJejmqua9rmidCtuAvbRtyvWxvtNw7gd8rrfWXbc/smj8qX4cI+bSMeXCnBDu02Q2zh6Xcb2YAwiQr9ZXyA3MA4rZCF3G5B2U2jNwntrGbYbjvskdLo4jD+O+YJxTezvuf/lB8VyYTUFEvhvA/wnA/1RV//gi/YcB/DAAfOd3ftMeZjrvfsRki43owijWbjpGfc/L8cjfeMdLXnWwXyNwx1yO9yEzy83cy+F1ZfSb4AX2T7TrIbyXs83PashermIzeXmE70KtRzN9Cm1PWGb7FLmRuc4IL/Yq77N6hY4lbdfA/flqQqUbEbvJF8hd5FM7Vg7KhcojLe2d1yw7nqX+wHryFty0FyldUfokxq7MyLacLDq/y1rpLmYMdbEgTRPq36BRTalAHmI/xXc9nSo/CGHf9A4aX1DlItDxiF0W0z10dz9FL8lVYNz/ad9w3F/gIPWdeUZoKK2pRJmgL+ROeXUU6DGtq9w+Q57atHff3uDlYqL27veKFitMXdu5HkLzR7Ch8XoUU1+N9YxFD9BO2RZ1s7STu0bepLX1wOt02mXqct8alH/INR532T0vl/8Cu7lTKnR8mPp4hLapsnjLvQ9Xs6uq2ut59WQB3cIBKmwmoxWXyltd1x8N1UYoDwQlPSSvwI9xHo3INHX2qZSXcTsWbYT7LHaUjeSW6hhy/BucblM+cnguzCiIyDcwFmW/SVX/z6s8qvojAH4EAL7nZ34/Ne/oCRIXMlgnsrET8WS0RlHK61zrmGuDtfZr4II2yjkVPFUqi6F5rMcDvtJ/0mMjd8r7GtpdWOr4djnTvOpTaB+JJ46tjX2JS6PVZd6tHnhF3iKnznrE5NYboIgO+Exy17SZ1glJdtfjpCS2ZyvjrC5rRPSU0gT11osml86+sfEI46QRJbmOGX4uazA4fZPHbj70CyPGGwItO5jZQiNSDY/WW7pssekLJb9pT0yeGHHcjmUKH34Do8XdtdHlCk1gxOrGXVM04jmhF39rZHy8fIegnBsTay8B8TtNV6uLsQM6bgcrN4G5SwvyZkifsPQ3LVeBcf+bP/37iofQuv86kG5wX2E3mTGWe+VKtQM+kSPaaXxt7IC3TvbnVeF6Gfa2acIi1pGSLuX4eGDM8wz8KtD79aqOSU6xc5RXFnl7OSYb+Rrs3pWv/X0Yjz00THpUx+giGxFFJ620kWVlT3fYzjozH8bIyM9gZYskpM6VdhEntkJ+c71LxrX7hCsjZjh6bmrHsbs/A+NgL9OqvNQQVF6uj6UXzLLupLju3cs7eHNlKV22WG/sHa59iqnzkFxp5Q8FhGwEzG65d0SzGc43bQyM1ijdJo3U8aZL/abHIf/wexqMNl3cRz9yLPdPsERes22jmiQ+VeP5P2p43spIQcao+98B+DFV/adeRdyNHrV8vNb2Tu5jlAxQcYsr7i5ppz1eM2eaDz7veQ575YaoHSYVg0kg4KRdR2B2O+lyruRSXZS8LX2qG86zkDPl3ei0lbtQYSrflGG2kT1vcTvapC3TpRZhEtY0uOS1pLjIu6Plq42MupTvntxJx1bCKzzqxnCXyLOTPjlCG0fa5HplhA0qvW4xAeZGanmBqXzcr6Z6nEpEFVsuZsgFTVcqvu8mlRNv1tQrlJmvyzlCzkFg4G+uwqgSMExvUCgvz99h57oGrZ08M8PttXcztxQ/CyYKe0MGSLgqZl2MvKP+bmqe02bwecd2xPPA+aGfcF2+Tzj4syGc7tVY7EDGr9zDoQo9Fq6MPc5yuZs1uUt8pkczLsqUd0nLds7+w/ZmY6oCUydcLO5fjZZ5NTwWYF4HbPJiVbyOXyXzJn5lmxZyXkXbF0t3dHyYl871eteureRu5hIFBi8bUGc5F7RFj4s+ORV+gc+lTa5owfirmObJnXZbXp3bk9/kbTZXV3nXA5/zE7HllU1evyJfWM9pkFUdS96wN3P7jX2afDPluD+eNgpyCYg3YWYXfIF3xncuRwHUch/xa/AZn02ByfVNwMR9tpFv/37lM7wmfI43Zn8tgF8B4HeLyL9jz/4BVf1X7lIKUAcF/RRQZ8xd4YmWd1Uxg6Zy3pw1TgYt8t+TexFyl4WBMKd0JW8nvgD6rZxkv6W9J4fVvLcYvZS7oGE35yvaq6Gu/GMh7x5MCPDw7r7DYuiMy2bw3rTPK5vM7YG0PtLtcS9klSuYR8BV51notVeS5Nvtf5GlbV4A4ANep191rCQmOgQZsxigF400jXG+Lr754099sBW2nOHocke6L7ymUxhlAlxpleT0N0pi3FJ/bnvn2/UCemONW70abY8r54W5iI8cfMrgIJ3DldGNM7zeqHw0eJPX20K+efVJUDtRQZMhpUlSx/LlZFs187UFXFSQcI2lrK7jQvM5g/HyNwyFtzff1L1rvdZrbbKLdlsGVEwd3ZVPjSSv1bAquNHwmN+G38Xjhk0im+KtbAiVL3TaYF1v92JSmT0VbIfHF/ALgO4X475njK54bXGfdCzlI8+AO6Z75KFpS7tXlVsafEX6KhylMhdymt61fvi+Vk/LGtjNkYYbXcPQVYdcwr8PnElLS5Upd3IfV75fTU+q2VthObWwSIy7cr61FGI8Kda4Nb5/4NnzajfyD9qMEc8rmCTK4LS5qbejDYtAbwTdDpBGpV6HPXk77n8VQdfA/bULn+NWxt+G6/nrY3zcUNCOhW7iGnFC6zDIBFd9NPqOKj/yLAVIne9aLtMyk8ybcu9elz/puJsUVDlXtEuc63qzzpx5JfsVcq/kdNpJx562kPMI7TQxWFpOptWwOPd0nkJre1np4SKlESaqFiDt8/RJ3UsdN7OhpQ6YK7LsNNp/mC9ft6+NNxsWrgcxaD/JiHRanlRwp5xmfZV3qBg6pcHzj3WWfsN5heM2tTkXtKFHxmMiK2msg5fmdfbeRuLpkNidFFNcFbHDG8sURby9SkTzt19I10al27esXOU79KfLOWInVeBYNq5RhpU1PYcEkBOi6aapqniRsXhTGI69JUR34okITQYaiJZpEGM78ZvS6PXATMv9zPuGpRGvqAvGtvJ6yfWX7KLcZdklqxYx9Q78TcKVDVkVNzFHWrwRtr7vukwLPLR67bQc7393wdLvYmrHupVcNFzsdqHxvYvdKz68aHJ8Wti1u3JaeaaXy6WflKyTXuVZSx5Y4EpI2RzoanTcm/F3wZyLNqW5giTXHjN0JwNWhguQsvhm3q0tv4jHpNw7CmH3yh6VMgnlLYN+FMiz/v/Z+7+Q3ZqmTwyqWvudJCIYkUFG1AMF46GBjCJC0MQRRJCgSIzi30Ai0YiKooQ5UYIQY4LkQJTPmANBNIpiRCPRAT3wQJI5jCJERXCMaAaMB2IyefdVHnRX9a9+Vd1rXffez3Pf75en33c/99Wr619XV1dVr9WrV30CeIg37kA8vgy3KiImqhfgjnr4/dmFEjMUcMXku2mipdD9tTMTtqnruF333WMGjJ23+Y28a/pQ07Goj5jxQbf/a5XfvmP2MwpMlm47iIqI4ZuMsz2cFR0YgtsERWESefBtAlA4D/5WITuVxBdATMSuDLu7qTB2IWmqC+GuYA0ydDJtZEYZuzjhOUp5kIAysRMFGa3rn1Z1hbiacZF2ia3cpjftKPNu/Do+XBKspQ4y34J6kDGVkgho5QuwiRaNSdUNRmKfOMxPVjCmsd/KKiJ5YZRp8y6b9IyJThcT0RyoI2A1svp8DZmNZM6dUgEZceymMa+EzsqA5WTPAHdShomRtkFCUjFD29hWaFl8z4jWFjzgMZOpsDmQUWfyMLMI1GwkIePUr3FhuEMTlde8W7xOKbSQY9DRgLX1ToGYqL4k7vnaJf65hAuSAbXZ/iMROvyIj/EalxoHbGYGaONACmEnvl3u6yddWHgpZGjDb0C80TmXKGFDb4Dvh2qJTQL1hVhcqoko+v0r+4Lg7TLS3OcHqqd4g34x4UrG7WRk3Mf+WHJFVZ7jnvg2MYTLyR+f4g0DtP19yCcV9rkkRNnxvfH5AU+ks6/HwYSDHoTGnWWy3N/iw7g/2A8XAv0kjhfJmF7lmP9rDwh5wIe3KGa+7KtzPNptae9jaGcImvFk+etTvHFcfy0gbY9XCb9v5jfbhp+/QpHEx3UBnXW1OK24+RZ+XhdcdM9vzs2bQ37jTtbHqEfM+LrF7LfDP35OuXssemjHLSBGsOxEzW8hxC0FybDEBudkGeebevIj8et8WiSXo6PfyYH42snxEHbnjKvq3hLL+Mch6G0LBJkIOvP38QY++ty78eQBB2NIfJuS1oa6AdvJqQz0XEFpmvhdu6e88dqtT8OZwS209Y+2GFZ/yRmhBekqBmdMBnaU+eREZ8z7FF8Btc5d2CrkgRVxpfb+qLLIbqxTwARRgUie1iOeLO2HX2U9YrJYWMCVlCjlLToSiYEv8DwZMJF1F3ilASFx0P5g4Z0Hxc+z6dNCiUFTXlLm85Q5MhBI5CAhAmAUNP18HG82vxduEa9tczZFB9g+bWsbx3h+W65uZbobXsxzyS8WL9FNmsanlq3RSAKH7mnAOPhuflp1wr3jy/3lPm3TmJt+0AOwUk7xhre4X8QLdd3phus7sSlSCWtjHzEG4QsET++FBX0y2DQm6bjTxCnrZjl9m3Xc8sa6UuU7A9WA2+k473LhIksE7OzGDpJnSgef+GsDqxOa0DUFvispfeF2YzF8BHDWtSgk7YsJbIn9rfyi5XMXZmje4SjWAso86KhPhRUYq/PvtzLatZKLDpdsOCVuJpJOPatOiIiyTFITmNutjNLUd7DYGa2XdiV0o+CzThNu51gavtxGN3PS7+2LwU2/EggP3gY2cFgGOdRLB+BPB7vjaxuQHS6+5JGMKcvR4zZ8df6Ho7shoG7aNny2bScgWePzQFcjkNj9A5mSzY2ydiNZZLXhTaaO1wmOOStBdYdo6aLP5oWbAyaN4Yh6gp8O8CQg8sw5AR0mDu7wfAUWS6EszKR08pV1Z9MP6fhurzihUSSOD5nvCoztKuPpms6DQ+ZL5zKfu9n6bs1rOsZLRUT1wx8aXb7c9UgFfXDnHzAOhLo9E2pUlJyUGwMZPL8HQ7i9T10ndjaiiZFMJS4wLO5B53nOukhd6mNnB+v13Xb3MqI7f8x+/x2/CG2Oi9Oxo1+EO8WqA5+EeyfzKWZwO9XTO3Q7Je98buOW/Xfnnzq6tb8quDhxuayRN3DvbPAgSq+bTTxt5/j8Cb5AGah7dwILKcyYcDcBJl7aoHFwVcPnSpy2HFfB78eTyxB7+e4BNuOKCiyQ5pFQIKOfbonbUf2TKVlAnQd4AK7MJ2GaZVOd/h9sw+vj8MgrYhVvSPqq5bd3zH5G2TnCWYbzwFRmXhcPbHvvr9bPv4Ur4SAyIscIMv2DQ0a+3rTt76bPTGNbEBf5Sw76Xdnp5iRTO056aP6R+bELPCSzUlsH/zbDNMiLyGNSBn91yXwLT1zUk25IEY+4iQmH9AXr2xmWYGRsrLdiJJg1QFa1SzSC5kwa245IDrSmsde9p0WyoN58AgQvGMfoi+s0JywplieCTmLxsRTQ5uJnTiydQdNkta2jkCUCnW+bGwFzbi3xutvdFFEL39luIngC5rU4yqWXvOwlsbjTMfZ+uAcuQPw9Mt/mcomO79fYklfUF24fn97hspMdGOl5/sDb+tG+7KTIEI6hvquy9alNAs7+a7kEAC5+X8/0eQ5xzHia+TDfRPpmVHDaM+4pNjHZxu/fli6+P4BL8axN0mUrd/bg0I44BmhtQGxK4+sKLrnUUjZ8lNu4PzsZcapEHf0tI9bTYMM2VPK7xITOeq0uWUk3eS4nzoccUEnKdJy8C512QXEcsyVLuWFhuX8sD8eAZDcw45yOAaxm3PRqKsTMcT/NfS/S1un+MGYMJvj+3vqe2ugPqyKO1DcVvQbfES9WDJkihF7V30PWfAPRt8d/9Ibcr1N+Oy7/Jxb21pp/k5NFrJS6qdZn+/O5a48rbfBJfqzBbYMUOzD8OdvXvNXFh3GxdBGI+WxwOU61AAd/VsBRNzd2X0RmvWIbXUxB54le5R42qsCrBDfmCw0fxlXiq2BzjYy1dMGtbZqCIeyej+JFE6mnLD10vBzsvHNpnFYFT0ccdkTZB20N47MmczBkY2C5JOsKruVgBngtHVf0YXtog78OASFStpKU8g5EEvvOOEBXhifKjQWtD8MQ/SK8dTZjbHWc/TO9gDr2eTyL88+YvvfhWJY8P2kKuZL9aLIdEZV8PDaNf5GldwZDNQdchWrr7Cje3BW0xQ4c56jVyyIpn10y3uKu7I39L/uzbWF/Rbx4IdLskpXIQW9wWUfMVxkXyklG0exm+D0rGvpStu6hGc+jP8brjZ855hdUtt6a+mMi5b51sn1KYJUF4dhMQuhmfOY6YC+15gMk7vxqnsmZcD78rREa534akCwk50tp6qNfMtfpLtmYsy8IWNMKaOinxT3uXq7VUCdnxJfJdXnv6TDMiD5sbYyYYTNecv8W7Ef9/q9VPuuJmar+F0XkbxGRf2peenYy/aZ88jtm6yc/mR7zDTwLOx1d1wrswevGy6ZdXhCwfSTlqwWqiePLcQ6ZylbGA25hZIvmzvxSPvlGyf1v2kyOz7NLt0DWd0vbv1OniV+7FWPTr+d8csPbMlLisd0u4mXbV9tNlj3fU9nw5e9rbbORNkbt50+9cD9Y+3nW6IJZuF2mzLQDbFRBjPdsYLtiEZrsBrc72kg28Eh75xNBNT39q4OFx2RHMNYRSuObM1gH//Gyce8q5TbiCc/cwqJQVw/6/CHu56UuylwRutSGKkMdmqSXHMJG3beizYa/2sUQxu1s7BB/QKa01b4kw+/HjAQLOeStz2lktN38uOMLP97xdWxL75Q7F58AvTzVDeA9DA+5vNupB3Fg245gp/6dWNzFF76Gfj/ZzAO/f5Lj7uIm3sQJuQzbyWwNn04+jDcUQ8rhKBtclvJON8ltJx41DxzvdlmFDaKrw4bGMfuw8j7wTZKXYriN3GH9xt6wm3wzR813dwxxv/ITM5NPP/zjv2Zmf8/PIPQFnpgNI1rzZBqs5nozHyP4Mu461rPD5cAtdeJskrjt5IcAhvUMuyH2JErs6g3sowDDMj8JFhunGNWnMp54YduDRLpra+NJkweyb84yciMQucXdCZRxI3juCuvaoIJbtRqWp3FiYE4SbQZD314R2+Tc67NOUT1GjevM3npAA8KqQHRV4TuamaaIvWBLy41dcofte7bVJYaG/1hdM+ifb/XLuOq4IvJ6oRyxGXEEND+2XnyvvwVbtXEc8tKVrW0ocTMHcDE4zjFSGccfY93lc19oqqIvgWFYAd7fL/MDAmOrMzwds4nL97U+VJLdREeWf4ZVo4V9ZBss2xUjo7B02iIhDT1SD9KTspvOlViFfSKfyls3y3zDoKH5MBL2MZ2MO/+tcb3JFKc88ZRLMw2Vpr7hw3SPfvEmJhR/2MHvcE98BegDrB1wi15Pfp59EPfhBraLA+7e7LVk7IazOfw2cNN2xNOcdb8vY2Zk3BkPwOc4nxCU+aCtJxvHzk1YiDcRB0KOfEgHxx99ZXIYUupTfU39GfMN6i+EtUW0wV3vdrFSZ+dDDoUvRY/rK7WYtPhunvO58Gbf2h6P8kQMET+h12OEygtiZLxbBmIlXBUZWyrHSbxjO6P7Sdfr0Odvh3/8OuXzFmZovHht1uORscpyTMq4RNADiVVa5Y6IzxWVuBsgIuuO7gMDXHxyvXs1ItjC7QgDXL4pclqgMd9SGr5ZCKAFdEUogXa2Sm1vTM6ylfGEqwRCziRk/EE+bAo7PX8I91AK7tOCBioifIvwSJfH8ySvdbRw8A9026Rt4SZQhn3J4/4VpR9vl/JTPy6YiVmNs4UPt2bcPHkRtZs4utqKHsHB8WIxyQHHt8+2a8rBOaWHb28buOurVy8zudRPXLS4Z/USjfcoLpD5uj2dpS9a+iBZ737YErQP34+6pnEgnxoLyQDl+tILwuYbgtKMC3emiVVyiDesCLi8TsHMJaFyzBCKi6d4I3XqJFxpuvsDPvWHcP33g3jz2B93ix+OKawL7sOuWNPfHd/WTx7oMqmnuniHL7tQdvXJJzW+/MTnbd2AMb+DK8sfF5/aFgUa+FRJsmEQozg4qvUT1Pk0YCo5HllNzHAbGL3jxykA4q428GWAzNtFFdrxTegFBb5X16m8673pL1qsscf3yp9U1T8P9T8ysz96A/9vV9X/kIj8eRH5z5rZ//ujgnzSwkzzBMCnWum3iW9RWbAiOQLVGVh2ejnOnBxIC8dx2euE3W07BHjmk6CBFiYjre1sAvct30PQb3kRrImsBeWBb2pzonfJx06Gm6QnqojICcWGAYtYHFoDn2BZ1ndwD7CMcFG9gHeOPwAuws0udbctA8d6KzPg5J2r2ZHXrY6nkjuQPuBZJqCfG8giZcVbwKusAzw6mYiJ4pjRm2x0AkM+gESr19/H79LjdZhLE9xQvCkum74xYMslQ7wsfQBAcMPksBMNeS7B7o3TxtInFnVABuzjsc+lT3ze9IvNYnbZPNopJSfwxG2Yy9Rqzsoi7hzlSNtEJT29i7FKIjSOd/JOuahKPHHo/DG+atruUpyrmdRfkCDh9ka2+K4uosgnV1/4eA6bcHdmzLhC/X2Db8CWYPEGLorHvhrmKY7fNqdH/SIutN3J3L1JUOTAMdvEF44DnYw8/sln+hy85VP9sW70WPol+an24GMVty06vt2V6DUCprm5YlOJITSP4kj80sN86yuxkLabi7Pv2IAG9AN5DubB86dfhL6JGe67bXUtOcA82qzjr/0lsx/+wPRfNLM/vWtU1T8nIn+qafqzIvLfEJG/U4by/k4R+XtF5G/+qCCfuJWRgrEni7CVMZKvcjd9BcEIjAELpgV3m/09jPQNHbDvchef+QpPB8mzJfEFuv4j7syu/rVET9HH2w64p5NgkcxJ5gL/RMafgQsyFdjiTKUGJAVQpMW4zP/IVzNOZBUTCPVo5Os7PtjOsaLrr1/mAfVtc41+csJl0Yc01lKD5J3hDFyd/YVA0o0R9iXqeS4k+BcIRbh5S2FDG/YB+rxX5BNzcLT1/Z8+x8ew6HHSB/djL1J6VPO2R+9S3MnUFUw1YDXqIn4ylpuR09YUv1XnsRx+utbsT+BFf0x8m9xom/zM4jj8UJHDuC/RcULj99fcCikGW8V/Qpm2WZIscByRYKBtwN91NL1GwoTjiYPGBwzh7iDmKwK0ACbFG3GxeIyAhttdcrhQdZkjVkntZ9KNFJMr8QYDaHmM1vj95SYWHPX56Ce5dDKKpIcChRfj6vt8eef1fSAEWugXuH3jJ1N8QbqMi2NOW/CSHTHuSQ6h/nZygMwIW2QkPgbbsk07PuhTmc/0beKHEWng7mQKvqhXmiv8eDdt6YZtj+34xXzwutEcQ2dtSydlUYZzO03g1Z90499Ad9hh90c5huL2eMMuq/82GTdmsb8rZiyRlz/yuTRgLvku61WItWV+jJfOkyDHLolLZG6J9Jjx/Wf5/V+gDFe/c0g/gb7Zn3kCp6r/LRH5n/0Ir09bmLk9b7de+KSBSba+AQHt/odgVQW2v6x2bXBxLkWASuOr8F+42sioCpPppn8/fSsj9K9s04BKklEItuG71c2JT0cb+tCVW9gGV5s29uEnnh/lGzZx0PORN+lZAbbo8S4Bwqxlt1jqxDHq743TRRkHOApsezqbxCu3Ey1oS9ux2q1/ICNOZvMLxAd1RQPYB/VcX+/e8eTuZfKtjNq0j+64F8oi+U0cCx0YtU9c34IYbRoJAR/esY7pn98tm9y/m8k1x9AQ1gatC05sVBvbID9SFPrF11GVOIZ6gS9H2OmPyrtlxe9r0W0038YXogX883g2uDhO5PcT7iVFH1tfkBQgaaHTTyvS807GFpdYftCXp8I+p0VesLyQu8UFwKNPJVh0C1u/+CTudb7u4Btamb2680FYUCaohxvt+O78M9IiH1X4IG7xx8n5JdyS8zDfYoSAS7Dsy495CuDiDbIu3mzlJ3GXGDexC+PNNujbFGnV8Xnc+u2+TNOTMoXOxz0gXwmD4uKGITwoWDfz500+Exkf2R70L4Ebnj/tjtwfr6Kq/zIz+3/M6r9LRP7xH6H3aQszdrBtPbX5LKLoeKLvv9WvKNRH9cgXA+6TYNDwrQ+3K5zLktoe8uscPW5x6aZRlRHEcJ2w0+xoEZO3cA+lBLqnutjQ4SOTS2DZ4TvsQ+H5xdidLlq+KkmPqamBLYE3EdrUA94gEABBzcf13vVbyXA+tAN924eeli88kl59S5rUz+9kXI/YSGzxMf6RxsQWXxXhPTgobZntnUBkkwsMgy3D4/thVVQfy1CpknoN8w4VPwVsLLy4D8tz2RQybyf9yKS0kNUDfSeo+rsMkaMsXePTurrNRsIWVqd1JDmQjCxJcomnO1pH1po75x2tPq7pud0avaJPfTit2P/6t/EKbZR5w+fIl4zv1k9ywgwFXdKJR3ttV2cGco5Nd6W4KJ7ekzYupMLN6mGqIOFGrsJT9ypmPXZPJnHMcczcJkucmXXeQhlgoFOfxtwPtSvNqXQsv8eb205Bn4B+Gs+NlPlrkotvqrtv29oXOOjUYZFrE8f9QA3sX2ydD90QH1lP/Efa2cSb1o5t4Ya9aZm/6/5VNgwNChoyr5hBuvloMvarlE/9jtnfrap/tQxV/l9F5D/2I8Q++QPTlk+lsTmRfDXv//HkS2Ws+HdHwyTvpEF/5GOaHFKmnQOmFVpCdyUyy+TosA58V5JBGRfIEH+v2lwrPe6TrYwsY5TGsXrft3wPuKzj4987PgTb9YdxObFN/T3N351uEi8wnPSS3oY+td0F+8WH2lXipK5gTe0FF0tsUSEbRMHEkw2PMA0/H4/WFtYTGx+IOIZZGvid/AV2DioH6LANbJiw8BKGPxHRF9B1funuouOi+9Gkg+gK2q/DJtyloPTka/qn6I75yVprXGLrofrhXkvoUV+ng70m7mUWT9JUZT4V8ydnY1viumvqxwvPp2Iisa3y+3yi5qc9fpeXXKLR3+vew/TFOxXvd63DRSKBme3xPguMn0bMWIqvPtUzFAk+gnpP8uD4TT4CW0ZNxC6ZfGUBAxvEDbtJIvI3hSTFmyQHZFNp2z3JzPGm9cfkaJKMAvA73/rA7299Kvsu8Knt+1ncP2x7Gm9eG3qE27ofWyoLGDCjtk9IDPFhG6ASLPtQg1NSGbf4cqP6/H3SI/LFuqKM1Ifj4hndr+t7Xkj3LiBGiaxpn4kq4RooCfrX4m74Bu5ojKP/3eZ82zjbPPAJm/YTFdnWfJwUjN93Nziwt18ov4FuNLYxavBZftBmPXDnrgjXuflAoYxTLtP1QWmMia/XiCHrSRvHm3kasIp8D13MmPHyWPRBv/8rlac3sX4+X/sP/kx6n7qVkSPBsCPNF3iRQgudHnYuxi5NcyrFanTA0kz8xJe+UYT98MDd1GMuQxzkxKvc6MHgxd3cyajrbxdQ2FZ14qb2Tf/EJH2jtsi8wwM+Dpf48F/JY3AHW4Ik6XGbp4kk3bD8Su18YGBBxmieMhZqEniac+c8ukSH6QrJ2OFu+WiG7WQ2Eby7V5LJGcgxwOGnKAx1Y0i86R/TEsmTJmAnLczArOErC9bw7qgJHV9ulQ7JHLihk6Us5jtAjMmCueja1jiJjlfe4Pj/SB5kcbLhN8wStbWYW6DyXdzHDDn89bvX7F+8mji3pXjCEE/I5orE756qw8q34KXmx4B8sMCKM+5pJLs2seuKuaJTd3n36PgR2vT8SCQfla8TV2gspv7QbwSfhCvEF7qAPsekPjJH+8Z55GYWMmsTB7IciRTWyfehz7mT8S2/T7DsJ4s1HGBTn9ivYP+wDXHYp578JfNzUBrTmFpAK9kB0Cp+UCBGND4VfRuPD8OmRYhBbuJ8kC7JyXHgCW6RUaZuoJ42BxippOsf85Elo2nOyWItYjJ3NBz6R7rRA1/ePrxojWsv97ExfjTfdM5LEzF75bwUj9ZfL4XN/uQ9G6/vOAY0CeA4/JCT6u6Ps9+3DDtjhtdVTOy7d2J9OmWQzA7IBHVlQX/d+4JPuYiJfdbK52H5rA9M/+zyqU/MjH/rTZ0vJE9LxCkwmPT1zo9Wvodyw9cFveNTSpMMHPlumrbye0LU0dro9VbmHR8n5T4GaW8ELE3dIG74tMTw5xt0LuJ7tAdtOgRBIa1nmZA2tHcJRyfjvjk3vDV+OTO7iPrpSPCSZzYnHq7EdC4udk61jP2VdQNGVXPjZXSeQywZNL1AXm++8F0h6PvuOLGSVUGy1WV01EGTTo7ZahU30hzV+joEiLgWyuVsRvFv1iEaqK3t5/MTOZ+UhlrqjKbLt749wSzgZXKz96rVHzkf/NEMNfuyoHWYE7hAaGXeyKE0Ngl041ONgLne4qYOEizxPQbVu3IX9wAmkeWxYJ/K+5i1we14yebEww3uO10VkbIQRzo810sd8ThG3MQBXAMUn2IZPcmokvrb3DtmUq08DotuT+E66lUnp0qLfDvG4sNAnGKiCfQJ8yCXzUhWjDciEjel2vlNMROOVsw3/7NRdL4jPYSgyYd+bMgIqLZ/kCDmi7QVnFS1diUFIgsf1e0a+yrFTH5bmP1o8clq6Uo+Vj7gJmyKbERLT1c40GlB6BdOzLeBOZqBuklLZGfdi+9Fxs7zqTxguPp3FzjsAd1NTtIDPbn8QP6fwucd3DsC7/DtXnDq8vAO+4R7enGq0JaUnJW4saEVsO9kHZEw5Oj2eExC3DWn22P4TwlvarM8ebReSkTosXTznndqL/3tumM5GfFvxqzkpNEOJSi4+y6CbJqwSyBzLG8PPep6/8H54vjAnVj/LICzMVnvTvj2vcvwQRRlde8W8u8ae4ikH2db+ixbG2DPYNnedy0iRqhxlTLS7TQtuFxgDmit5v6iLojiLZ9zKXEsiOztrtfNjQA/6o/lwBcrrCue+9i24dP7YKkDw3xEtouqd0rrqrzc+XZs+2AcaNsYFMcEYE33MYP5HMce5fjpsXgTM3Yk3De4z+SYsZOdZHgUq7ChCUS3ZhU23wVmiANx8rIluip+wJO1mANj3awzmx+RVklPxzzOfPTQp9/Ke+Vz3zFLhaLYyZvRNXbmsTc/9v1uYHmbR855biNM5Uv1BLwh1kRuFZrDPPdzLtHLdFceBN0SJH9AN/5zn1S/Wd/J2NQ789nJ+LSEvyy4TyKn5qqQrdDFcmDJFgHadNkR3wGE/D1LNLz4Eg9wF+3s0heTlQQGrYOM+WVsieOZfduF8q18VgD6CYOL9NLXSOibCYbGE0qweSAG8TH+6y9xK8HMoDjrsR0GdMRG6R/wrO+WrOPtXyGTv/uEo+YnZWk8tdG5ffOl+UkkboHTeL9tJQw25RG55rsFq88mPkbjO3NWDOON0szN9O6wO4p5B21UvY7jq2lclkjT78d44Rfrpq4c1O0ltj3BuLaOXGIs/M8aeow3kw/ZDtdTIgxzCHWz01/406TIzW9E0DXe0qh1F1s+FDMOuMEH64yzo9XBUqAv2xOZ+c6EDVhs+qz8Y0cL+CxbB1Yq6X2vBOj+GK4zbMn1N7jsy8dc78UN3UH96Ms1w5b+MS7I6Dv/wiUTrLGQgDvezZqzGY6PL7BQj/58R6aS4o3xoGumIS8FvlKFTvCZT9maALCm8KRr+nlNilnAmvj6+8kG8WY9CRu0cn9etA90fa7F3y+DmAGT+is/MRORzzz846eWr3VcPhhIPmHG6wgs7cQTARt24zJyYGiTmp3UHV839DJZgW93MEDpH+E+WvyU/klfWK8NCPe347OFbfq+LezfnNYNbOK7oyXQftOHfnUuOenu8AgX9aqMa9SvEtC4A7arZtDTFp2mJFAGPMSckoDe8s1Glj/W3My5nZDWyMwBIAV7q0nnasxsSjCE4EaJShz60MlMY83vwhY9ak4Mdzc8l2juF3ARgQzHnxcfcDAJoz81XMk3B66sn3kQ8HALfN1DZL0/56c4nuxvWyJ5Xm/kDX/ZvNcVccBf1l/OwLgj/vQv2YPNPizc/gsHCvN2fd9NRPLBTYFLjsLZgjMohz7F3wkM45NsPdlRGFpegEG/0Z8msdiXwSrDD50ZpFGnZMM+D3jqzDpvI2P7LtvM0txp2gKx+g1eJydY2RSj4WI+1FR8XxcjOvAufh7oshi7kxBb2txf9judj/Em8uV1AQQV9jGNHNs685Fcb+WH+HnUpTIsOOu7u5dou1KfdKXPcTAt9C18cBQnHzwPKCZyXNPNb9bFS/L2RN7doe5XgI/7eGVgEekPCuietx0m0BcsX/wVuMflE7cyLo87AgDVE6zADMZMZ7WnecRz9AY3LRbYieycStenA18DKVs6bPMHR3jnv1J/TvJ2fDdst7AlcbmX8fZdDJZxJ1RHa0ekgXkkxhP6HykvydspDguRUkDnIR4nZJukqKV/wt3wDViRBncChoxNIHRw24xBx+dOjhPsoRgDbvji6VplH/+djNLAYqK6EXktthC1Kj62oxg9VQNQv/vaLauGqEvgYZ6uD4PEzX3YRyeFCzL94m6MXRLORvDlkZPPsZxs1fhy449ZkOTL139FyO/fOJWEa3exqsp9jHMd0EmsJcbjOHAm+EHceY3zVh7PWxnfiZGdD/1AQT3e+txd252va3C5v61gp+t3fGz9aW8qMa2mvdVNFzPuZGZaN6WAEU4svHYyPxxLPtVwK8wjKakO43xbdrsXcAxl0yVd6DEkmnFDLv241/+1ym/vmP1woaA4737Egs0DRrFf23skzq0SrO69mS0jXbhYfxIVal46fq5EZiROJP+TAKfUxvUG9zShe71WupgcPpaxY7bRa8HlJOZJ/x7oojpmyf1jeRGnC2Cbtu27gU0ZgYZsU1a1XbFwHySmTW6H32ULi0HdDfYUYIlWgU116I/K2GoiImN7ogk+vem2VyKZtGWHdePXVKqOy2+rMqPaMRp1cxNoaVwbHbAXb4lDvpr4poXSVIVOvn6iltfzEYUqxe5tKn7C+oLLF43q21hMJI7U13XEvsP6VhmUY9QHs7EV0gB3uh8d210+VDzgn+YKxoFot1YXuIVwjc+qcxzI4w18MAAkxydLDtgSmvhgApWCAOLKsvuY3xo/Uykrdegf00K+iCKS5vnSDXbfVkzs/CfiAl/Z1YsAD3ERlqcR0yQ6PtVUZB4VvsE9+LbNA9cWln1IqO6hT02wXFfpj8tvYFlXyZfd4IrU8JLAWb9s38y7xK7502Ffq01N9rhS+6BMK/nUDax4rIJ4I+hT0Q9kt5/CmF94acL1bY/+dN0SMusi4+YXiKFjxe9nlzQcL9LGuLa2LPp8mMfwBrIl5djq0sQ1FMN9w5Rf1UR0fHrg+26+f4Fior8tzH60QGyKMuw0B7IIwm7E5MxFkv2NP7PNNrQYd2wxlBaWT6Jpxx1w3bB7GbX0t8jU4DKf7VZGkiPxYbCk10yrjsmqWHEQ0hYek8L3iNTLUWht2rbJwk27HtqelCLTB2RYyA+p2Y1euwSjC65Y3+kHk2KG7eppe4hVXKQLuMenoDgfTeq7TqV/6DOsqLXQaidLpVW2hxjxYdzki/JR+yhi5xTLexo+4KQnMz/m3hdZY7Ja0F0Ii40u3Fn3J5wX4F4T16ZMF+v9nUJ3mhMlk/EpD13GYLSVkf1+HkMB3c5OKvcZYNm3F3/1DDfFDJkykBjYxRLnlmqqHyT1JFpdHBDUDeLWxd1ul0rFlUY30PYGrlC99I/qj4secE965Wl/438K7kngdzrwpj9m2BLX3y27uCDZ9k+45RVNFHHXn40t4Dh08SbFa952z3Eg+Rvbj5/kONf3YRpa+HKg1cmYiIOvKiv27Ai2PrLpX7qXw06EDYN9JBDz4/RjS7eflDLl1fJF7d/KL1G+xFbGUZccoESatiYqP+FFuO2DiibInGTa8eFcbeflC62DszozrbApR7xBbflOmhZAknV1w/8O5tH2wx0s0+qQmnejju2btul3V13BDBtZinmqbAeg/TbShA8fHbqHCgYoHyBdgxPbpHQ1oXwpMSNYPl2xs4FER2UPW8ra0674wyTTMT6Wf3Ri1fK2SPyGlQBMBxtClyzMJeQPEPJvC4yXXvXON9AqSTu0paP2VdbAM0+Bofc4maSGd7USL5bLx2bBDrpX6CpT8XftQGaAGL+6A8YfFrLdUSVlhpBDr+4H6rtLWuadkzYYM1GYJmj2pDrvJ37cuYs/PW5T0QaXErgtbsMIz0XzBTu6o1QaW0quy4z46h5XCBfZqBwXAifcrYzkmpbMhCsMkGlhOT1RKtbMPuUQry72YQJ1+tv64xMuyFJihi25OGboji+4ma2va8p2/Aj3RKbra9mFwQyRBYbBLhYD/WQ3mu1mfB7E4lUC+pCLoCcfh2roVq9xxP8cC03ztfmgferT2lZu84lU7vCq1k8WgNeMd0e9ce1+CBsDuvWpEn7ncSGNeMMyHSbCFygHE/6DKp+4MCspxTBu9yLkoBeMlY9UBIj/CNwVYONjgejsTWJy4gKA+aYtH6UfC5aTgsrXEwzNBDbOtmXGzqvBvfGxG71KIDJu+3TkJMdG5iPfN2FL/+5kQPkJLgW8jR9KScGGTql3AWcDG/31Jstt4bSVExTNyvAsyRL2omWOqysLwgjG2RiyMcmJESUTKWhJHsMyRxnfuM2RBuNQuTbfnqLp5Azxo5kC11Px9/xcOCvEMmqM6fRDqWMSMjtsJCNAp/Miq+vjv2nOue4VY/7gbzO51tlfcx8jOh8W2fxI+hqcEbQv8dMb48ES8DU1uXxhpCLfzesT90fesnaBOxLJOctMMqaOfNugCwpP1UJvAm1hS+Qc0hxadBBXmZbPGZYxYhXHF5u+FOJP6uMKGn7T2i6B/iEfdvJCMgap6jdxPsIcU5BZUGaeTM1cVm43qIvkRJjmze2TF/IDBZfjgRdua3go/ujMbxdDyI2E7XSyOGzn20TKlsnj1nLUrwIuXPd6WRzT+Nurinvy5QlXMp9MJPPlE6ONYEvM6PgK0bUKG7YAdE0kbqyyzGUBqCryffHRiAPrfV2PIW28AdwYCwXaMUfB0NTEIGaYScQQvbATAg4Z+F4GesXBYeXI8Doo42Vx0JCKQdybMx/mrlzevxlfLh+aL35YvslvWxl/tGCsS7s6sCKybhWYzC0tArNu0nJ4gFURsas57UtynI5AyPSSc1rRqHtKjFsXB1/kYxFE1wSELnIApfmYlQa/sb/QTjF/8WEy0Nj2n7qf+t8d6LMrO70K9f9N2BITT3K8IWMpnPToPbm3eG/A0kO9Lshv9DbacfA7S4I5VhKMjJu2bxGvsm2Fgi/Kn6QwYjvfDSnrKKdLxozvC5RtkUjDROodS6v9DT7cBh20GeyCr8L7IKREE1E82gz7YAQfwRJ5mqSACYnXwJwT8rV8iy/IfIHmodv5cNI9FnT+/GXcrUXc0YNFQVXXqyJGTyLfKZwczT7zdsRIOqYN2nWlRYvfxTYxkQuextrw+57IWeKzVMAn98a1i2C77URBx2Wc4+MJDOByvAl84BMxA3TDYTAVzbi7LwCzr65xranLA1yXa+ePkZZVvi/oQvE/3HbCxcKwp0LxMcnc0TFJC7Ho+wZWqP+8lbXIoU+/CgABAABJREFULHtYczdihNP8ZT1Hlx7opmzVtRu+UEooMqDZyaTgBrnOdmN7XK938aa48WYOum5UJXy5iQxfmNxA3mLj/YqQweOf+qdJsPJpBO/fS+K4/MDl7fIv9FW57YWHUU2/uLYjiugLOwSxy2AQXJi5KIsHGy/vivV2/JVK6zD/8MrnLMw0/RGR6ujbOhaeaGwwxYAWQudvdsX4951hUrDKd0qbIL/j2QSsHZ+2yZ3jgcS2fZMUtP2/k/MdvicApWvkkI/03pmsB7tKQa6D7XB3vG/0Fuv3xvF3Q4A0813LK+Ny4NcDLnWg5H+49ZGCbelPwc18UxDW2qcy9vDzNLxJVyZ1K1wi1GS4ia9FPT20N1+mWPy3bvVbhPhJXjV1XfoHxWzviOMFTWpcv63js37h3C6fEZ2M05B9OEC7Y3LpNGVbeGR/ktQTDGI+5iQ4grJ/DQDzj4bPEmnZH2gibZtstNkFKYU4gLhp/muq85OBPK+IiRJf9ItKNkPd3FDspn4thznZbXJF0IuvHfhw9/az6kxnENvD3saQN/qXJ4qs+7pWFwilTsSwftrKKCLpSWX8nn/LjHqH72mukwwdj85Mdnoofv+Aqwgr+/FTIT1V0lkOqpvmEY+D6Emv6emZX0uMKBaLiAGwygkXGVVaFzn4tZU+OxCTpv/kT1cPO76/lV+jfN5WRoUJExmvn1C2DCXbAs/IdLX7MQoE+zapYIeNDkLn5DkEcb7U8Zm9k/jG0NE7bK7vcOB6l8fuSO14tYH6JO+OwSGIPMJp2nZD/IuVzpRu2P8UGXEQuhebdzJyELbN3xvcbf6ZcDUjxM+8L19EzkZ5kgnaY04dZZJHOk+0+O8z7PaqiLQ6WbTpzbfEM7zEqsfx9/NKou2+pE19xPzQDhUxFiqIogDLR4rZWHwm3zkTEh2nNH6kLM1l3iEf0wX/O0KDZnGz6MSocgsd60w/aO9V8nVlmEEOkjEBo9/P4aw+ZSbexapu7ZkAbvykSf+bE+hb3qc5ehK34fsEuI3b75bGtrZtz0P+vZ7agHqon8p2ALMIscDo5sq7fDu4JmdqYVk3KAfMszbedO+KO2znuho5u6HBReFO7ITL/duMNaSx7OUzrgJCw7xOrQc7FLZygV/bIq1W81MYp4AWcFj/uuW3rYw/WPD07HGBFMoT4aDvEpNj6+CIgsu4yLwb58J7pLsSTVpxvd7lpQn40L+im13pcGXjb7tA+k7QvQ7tXdn17w73ZuZvUd/p3x3uA366aWxzuQY2gsvTcoAtAe0pHd3jruF67ujgk5aFVdnOw5MDFadStnzkeZkNXukx5lHmSciDqMKdRtMmAGrFXZmvbeCk+qzkNCDUhl5g6RDXBj97rW0qinzVEwENEQxWDbFjZT6dYv2vdfX6lEfw8a2LUxZcLvJT13dKSahKg8u3mIwhar4ZxJmT+e/ZeaDHPlUR1+8OLqMAWpDBJdetqzn6Arj+WYIQabQVXOhvbJU9zQ3G7eQktZTkNWhB5Yn/ZDaWmzCsPfbHVrvX4bY3ZJR8qM8HgtnKYHvQ1K5ZhbdyHAov6n8kTJUYQj709jXQXfvOBhkGfyLfPWjpBD7sTvbTyMiHq6VK04a6Tu5AReyV68W1aGomXC28k8AaM3/R1SVTkhl1AW4okJ0WG15xwiwTWCzDqrfr6isMQNwA85ix7evXKz/y6vNXKp/4HTMPltlgPPgOR69Ul7NheNCIxEh7PhiwlHC96vHKRPjY0hQTteIayJEXWHnvckaivnUe+67eXC58vAp8jXTBMm5lPsjQtaegLcD3AZ1DPE0yOsBj2rtEkWFOuFBPVQpArLbHPo7t6Bj5znSOdS4c7Dq+KXAC9EvgzlsjIl7wj2RxogeV8xBmzdYADXKAzBGMesyEFzIbXYB5dByGiWtTXiTFZpST0NEasM6nsVlDXHZGAb4ERikcN6ZDaxvNgU1vlvYAJPE8wu3Avw1kIdjyHbOtPUVhySjOxyWe+UnYSvzhSQrZE/r9WBzM7Zb4Tgf0butwkW8JIsCL5nqA7hJlxRGUerIbFvJ1ZcsqCqTw9HDDt/SOkuiURzIut/mlxh8j7smntnNw5/OUmk4+taH7oTlg5PdNyv2IU7nbBlmcCvHe8uE2+O5Y1O/iz86ZcWEHwnwPOU76FBfTfZI/dThPSsdwg4tP9I0BW5nukpNEHJooVpW96vuYeFCxjNtvFw0nxoyvW0zktydmP6WkALTuVltp8zp47c1iSUQ2d1YIdzN+JWZi0JD6+1iAL/+3h93UqYNHnzMbPxo4drjlBXYWhmXMQ5RhG35PA9RWji9eMHGJLnwgy227v6HBfFIis0mS0N7x6UaTS/cMGxm3TzuQqUEDTOB7XJL5RsQkEx9h2iSFzKNw2iSqrFPDhvJdjQO/3TGrM4utxxnLZsy0yWQRaTFdzxxHm9HiTuXjL4F3izL253g5qSqdSFC3/qHNLj8BTiYdvATjfycz/QVuvdGleJPbE3jpX6V18oujv1MnHRyZ6X2MRNiFsfU51XR6GW8uWvxnT6fgO+g7dsjBfaebN8iynzzCGshsjTzYdsfUYbHOpetf60cetL0rI/M9Ae1gUU/SAZzLUT0c57CUlyChHOzmWMorOjfbE0H4Cvuc86NtkEBVBOMNDfRXz7tM5Ksf5/+0fO7CTESWkc0gANsPFeqjeADarBBSQic0GeivyZiAG0ed65uJ8ADXfwRoeemASG8DvbCq3osoJ9gbOu2pYjsZvdrR3si2TUyOeqVy13bg/xYtLHc62ASvbZA8scJk5IQLvpRhI19EfeCWQain8XPcF/g9Ds5ah9kTejzNMAvW0Zo4ceCE0pbnLBfOBxUp36wZrBeAEd3tKVlOLNkOZVaKjCXXfWWEMjtu0XuGNXwaM5xg6iMOwgsXSeweVef2zNk1VdEX9n99VFpdN36Evkg88dSQyesq9l3eL2F7m1VEc1pFfkY3f090xWuiMc72grFJtBfbWJQV2MXK4hhMTdeXrS6CRvW2f8VBrBY+AbQt5FOHKLqeNLBu3c6a+bb7WoGIwBMq1yvNK56DXffQb/AQipQhDV0YidsMf9vWiJA7VfmyTzWqb0uD+9Qf+ymrgYbH2Hf+mOmyzg+46QkT+8Ub3Hf4lu15NPbtK7AOy5d3sJLp8NZW7h8+sU2v0zpf9KcsI6doN/1jOVBGw4Cp4FMnId4xlmR0HFcUbU8M2irj1EWMA5b5ZB9mBEsDwacP6VLkH5N1z5cvn7swg6AX/43AOS9isELDLbhCuJqPgd/9FUlwTOu0ldHXgkjLnWAFHq28JuNgW+oZHfq3b6efmU8HQMBl3Th5WQdPdG/5vgPL/QFTOBKTrMb7SLun8wdXdgnCE9hTojVLSmLKAMrWBjn5ysQ64Vaj3uAe7cgYVoEWZ4EZr8qPfoAywg4WlJV8iBVggm1otQkL3Q1tXuTL7cx1ZRUWYuCibEz88e6ZSXz6O86ffr+oNLazgVu8wNlhF2PdtIzDLtj+HrAatNiX83saaN8K8ac3d5aJ+S5ayXdfVFdZCVrjf4O5jxGFxK1fXEMWcAWX+zsbTSXZDh+Bj93vCtMu8zXFV+ov9wFxEdYXnU98djtHe5lt037CPfI9+VWF9s7nPC12rJYL2o3nB/iWI/HpRsD2UwHOZ+erb0D5AvuU0r9Opo0NHvkeijV8672WLmg2LTEHETJ3Al+3YUG0BBGsKcFilRgz3e5I0i9UfnvH7CeUsYB5ZvpxipbA0c7zHy4YYoJim/PRhYsJ3Po+zvxug44IxpP96L+abpz6V+yHQd7yBrm+OSzvGY1Nf0vCe6IFpCDmLAd+o9etbEi3TVRrYdjiPLl0d5ifynaii/22G9g7Pkjvrs7ygQw8JiPJBXjQRZdPlGSgHfANLsubCEnc3DDReLcnruBCRfP4lrgB7SzH1TyhsdAFJ/FzkWNOlvfh+y8ZT6L41qkrmGVUjfernN4LUuKg2+pLy0Cku8qCR3Yw6lCypTqKlRliMFf47/tl6DUdcc+DqMTL4JxKXQuGrmfqsJrpLLtf2W99LSPztaxMwdvFqpbHn8RP+ppjFCBwp9umzLmuRAsKiUSXliA+mXfDD/z6dpRX5HJbA/IoUnmHDIBCdY2PYf98NZ0KXM2+u3soWoRjmXd+kWD5iUxL69BWXoMEGdl3Fl9658t3sKRX9PVFN48SA4DdTHcc245uCQmnuMcyofwC49fIdfqEAcu3e5ieZLye8cXfnYrPr2gsqYdto1HkGFJDa3+Ef9BLfPMHCf0wpcGX+WRD9oWYTZm+/Dtc79j1Fy6fd1y+dMYGntsny7ydMWDnxTCWPCtwUWYUBfJ3ZBZTPu1Nga8pmCnglrHnNqDrAdr7V96x2Mh0VFrjFLg/JxnfxS2LoC5IKP2VrDfFiw/0uK07DyUQhCX9Kf0u+j3gHgvDnnA5cN3xocQEdzGYyNqC5+PByQUmCazouX1GCVZV8paWhqzyBVn1wgfoGtS3iQegKeJCZGyP4Q9Gku9+QlDv5BinUeWourapBOPgu93SkvyNrEDndspzXkTkWvBGQqYnhDqlQd64qKGjxxTkQF8TWxUvV9I1+frCNyK2iIq8XvmERj6x8cMB0Acg7S/CDGi2w21tc4MIf0zG4V8djiEbdF09ouNJWpYBKnjrOY3VGsexjqWB8fGOeYTGZ9On+niuLYH42BdjhHdJBOQ46ZnsObZOhVpxYkO/obtbv+8XA3V+HFeRAJDn+cuiTtwQi31usm/qn+OyLtj3NX3Egyz0AGsAWxZlOx8LuGlhPmEVYHFYj2OKuCxnh4d6L35xtRvIgLhPwh33L4mhTdtGN2VxyHViUPgwbYxXSKvhy7R4e7z6Qsxhv0PbDR+sC/OduOFiUQaQ7UKZZlzCBaV1Mia9atKNqoHM0/8lmT0u0ADqFCY+QC3z854mX/5xmejXXzg+LJ93XL5INmavewD1WA31mCRRXYNgaDduZwl3Bc2UsCSBQCalk2wgmJVtKvmGBC32QFIT0fQCescXnHiJbty/2k4xo/JhWvA7gqaSWClA39Ciy+WEMc3t2PaUbnJAXn/DZ6T86sTnE0tKbrpkAusIbFLyQ8bRAy7X0xjxgDFuIp5hVTKs59IishIiacajwcWANgIV+gxD1CwT0brf9oATwQbt5EOQbp58lp5cSB4DnBjkT4Zu8omJ9fQ1NN5ObJW0YBOZT390KRjneZHNnw/OvlKqffNBgvvifUZdOm/swwT2HQyOi4RM82COhAauXQPXk+X0DXGd44aJIGRxZWsfJqBK7SI53kwC3TH9Rnz5XWdfjHdjxHOQ54bHkFXVikuJYxMKiq/O8xIPh5G6nmV7pTnA8aRsVcZ5BbCl/12yjDxvfNvOz8V4nvwij/1uQrwq7e28FaEbMAe6HS7xQT+pQLsj2+3qVoAtamN/jLAwlsnfEp1eEOpPM7bh96F/SMvsgRyWpnrYEt/L6OKNt5dtnOTHuJ3zDs3gku+Q2Lh5h3kqyLjju2SEhwxi60Zu42v9nWaHle+5XV/TAhTi2m/lFy2fvJWRZmWp91UjWHaMbXskGQ0fKhBDqjPZBqtaTAmgyLTBu6ErD9q7WPWo6B53Swsn+yGY7ER+JOMpSL0RvBi+bGc68Hl4iFtK9Lr8ZMenS5D4d6k3yQYGFU76WSC8iZC+o9IMSrdNkEXZ8SmoKusONo6HCNyZXxdjOyLIp9QWhH3Ge58CN29HvBrdlD4Eribc0cRZROphopm2mnBwpLPFL35i4yHTGtX6U7LgoVJsAloxC9VJc9jM4lGeTAE9pfp7ZQ645kFbTyPZUPIAGWZbAJH9JWRSQdJmUnH2ilpatGlz29LEF3WZ+ztb4SdvMGVaBTfBkozJRnMHcLvlAM0bnlDluPAMWQCY5/7apj+A03q3UW+5hAlu350EV/o8/4bKT87W/dwpAO18sU+pg71f1DmWCZ9WxVZGqCMi4vp4hks7+XKRdUPOpNwM4JhXdNPILNrjGuHKBrb4dvYjnb/FOhWf1i0fKF28ZPvZ7fxAF7N7N9Kw3tDe2XYC28Ubr8bjNqRpUWW+Pn+ViA/YK8HGDg/vB44J9weLDR/ypctW+D+s8nlbGVOAgrfH8uMmGSbUfD/HrCx8cCLVu7wJef7VfEkdU9MlHus2yJBDZFzvXzytQ4DOk3Rl5/hSv3uZjwWcxLa/nZwdnZ1sXSDZyNHibHhvA/NPLibkzHdALBeUnypeybCa316H5IYXPWULjv8WaV8qftIJFckf8AR8J5ESn06vGwMudx07mSgBsHkRj0dPuDfjueUTQhEsXS92w5NsO2GHQ0kJ92Fy++laa2udNoOau6dzoG3CRmIXWRCIbpa38320dNsO1OXFvobXlJzFYF/cgFxWzJyWExljyPFmI54svWyhMLMCnWByLN4ljFU8dpEkad5uFlmSrX6lfpPMc6hT/Dnt2Qb/uo0Zd0oS1K7sgRGW/fpNoLrbmZSeAh2+t8Xb7YqeT+8WvxVMMy+c/25S6ekUJAjJlNBv2MI9yaVwTXlQd38beZ1fwHDMAFm0o4s+w2E1t7NPbfvHcnZ8bMOHSmIPT4RiGjMu60DpOsdQcDtd/1J/uhyO5cU4hzJscBc8OAHS+R3f9QkR44Yfdvm/SjH5bSvjj5ayxSN+kRXNQPfOQSFOL0702uG2pDRwVTffHDswxbhj0J/Cii/QRMdXBZ7wxZ+tzA8cwi0uJ0YbOiyTyMq5HpVNcG0d2FOaB15KdSzt1s4NKfRpSngd30rgicDg9N+EDZa8vWZT6MFGz5fnMPMC5LABpeTE8TCZpbayfRhocWJheKvSFxuROA9iKjBeEPg604trGNyQ71QMnoHIQdmA0DimXjODbqGSHMryhznLJOUo4Qo2GdCTqmh/r2Gyi/fmHHTiOOqHSvDGjAucXUkwrPdL/L6T076kBhcELfZZjSu/Q3cw+MjCVozBj7GKaJ+cIakYknXYDC8bU9L4yuIGJ+KzH54qkJYfLRipYs2jJYMrVzPszid0JdmA5CeEXQxi2uxXGvGTLdhq63yWMM78W/wiojW+LU2zzqcCTFko+fVtgG7KDnaH3+gVx7ZdBCIf0g2yT9OrupzAw/iRmUs7qO4W3bcmfMJJMFOOLMhyiYybWHN/AaebR2krLrk50RtYBZlVxpZD6fW6BkxnDfwa0Ak94O6tGTPwszKR+6pISiA+6vd/rfJ0fnzx8qlbGdWTqHWlDrwHK0xOJMJe/AbQWV9H04/chQOdFofS8qXLiJICxsP+lVclchxPjMrWi7t6c3kro/a/y/tX0icCrcPs5GGndZLzRyb9L+Qw2u0vKSHPIrRJzl1505kU/3hI/grcnRyIQElguy1yEwghp6/NaNuNLk8qj/bHOiNq+A4RL3JENjeLGn7d3E50sgLQ/9QnGTOQsoyoj5SAAi1M4DeidjJ49rQOVrEyH6uUK+h/fLoZZVRSeK8ry8kse6Fv//hiyBeouGovj6+EjFgp6fRF2biQ+AQpzLK7CWCVD9DnjkasAji8sbDWfGt0s7bAArYTDgGWjOnGY4O79fPOlRcNQevVj9Gkx68wtL6s49vEyFQOfrDlg20nXMt+gWPzMSzTIiv5bjeH3aKHF2hd/3f5A35KYLdAK4nM5E/v7pWcAHHTN/Qk6aYjr/M/geK0uvcFDzKK5Kl9N/YoY/dQSAlmW7q4t2Hn4Ii7e1vH+GJj28c3cMqeYJqfR4EhhmjdmpsH7KuXXygR/JXL537HjGIX3iksXyzXdVVMRK69v0mwuzo4Gl4bdoV95KPS9C8+5seO5OTd0RnojQ8CmMcF6Z5w72z+FCg24An2TfwE9hD+Z5VTjHyb0OH6lk+XlNzwMKkB6S2+D3G7y22OKJIeDiU+p0DQwb4pV5n3nn2VLGJDi+f2Q4M46SKVtv8N9na+Qjbp/s+0X1yjGIcxvnk191lJPDdZP8KobAf5qPe0KNMy4DXePJ+/R5u9wxXq/sF5PaLLT0wZd8rZ04ILJVZJVl3z3mdhKNRuB73ezTM59L8Jxq1ZbcojmTbtT92N35cpD7c7fvPv0e/tEpA7v896flE7/W7l499M56Yc1lZnPh3fDf27oStpBdhn4fUjfo6E8XlkRPcos8l6qbOxuXf7G/Rs5qDpRUeJ0x7NfyvAJid3w/S38tPK5y7MRMRHfDnVGWjy465piBBEGq9d9wmvoFXuycaJXZImpLW4m9IsIozqDBqNuwVINwF29SewO7pHGfe4pX87utR+zEH04bx/R+ZfqGC+yI62FA4qd0HH6m9MNkKtd4sWCJpleyXQanGRr0o6mb3lqxW38GW0Tm9wMmNnHynJhKO3C3GE9SaUkXFpL01efFrCTe/NgY0HLdB76kenR+hjeroWvm1DSEVwH5XBabMZl3zMrNt3vzw7G6RV5EX9DT0N//t6uRfWj29ldHnK0aFU4g76FILPW7/mNkE/BhoV+oKY8RLBE3m9sD9WkXInXXEFhmPoyK+JS/WQMWQPNssHCsjU1WH4sn1rte/0lBBwQb1LxqWA+AyBaDlZOPppiQwxBgSWEeezSd4ihmMPc7L4dh9anHc8NzZ+spSDb2v7wLhofuwnCHe3dbwdT5TZJG8zR7re792CiNtICaaST+bj/patxX0Hi27dbyRnmFENQHGq/tCNHs3duNtdZIL+rKmzL0c6pAqOZUp1hkWXnI7EF+CLusF5RzIH6VN/O77AeFxbRppOVbWZK+u4MGTMceFLl90c/gMrn7swKzNqWfl6MV9zHVE5vHpcmxVa2y1YB3Z7g+OK40VO3HrEIkOF9yrjZKsLiXzHOuUT0d8dbpXxNElY5h2tDvgkI+6DLnQ7edhfa2l6m1ZbvrrDuPtwNScfUMqTqq6+wb2ldUO3PGF5iMs3SfQAe7ppYNxujd0caCVYTtpunfiKhvgdr5YWk+X3lkAYZpsOJWHCkdXMv+k7A1b6d3oklpMOdqjV4STQLdVfpkQPw3kv5eUHYdhmcTy+iIxDN6Be38dbMWTYGWdZIIklta8j7wXXRatebMVlFpkyLVoj/uzjTSqtfW/4Sh5D/y5nhp24L0mfKeqmxs7F3M5n6fiuOuMV2F28oUXK3XZErhdfsJmfxecc/FXHN4U16q/RtSITtr3pu5GgdbR29DxTD1KHrcvpjpMcfXnJLeysurbs4kAXqyifYLvCuYHiJze6s5sZGlq+JIM2Mtv0IRfU5ZrtNtuvKvO2f00O0PKV7Lt8/NaijPz+BZ0tk+YLltuY/odRvsBWxn5qcoz0Uxz9vymnEPrNbcAntTfOJPG1XN/5PqaBMtcZs9ntyyo4TIAyeQ4T9pGdbrxjwe3oNg6h0LKqV4bxfc2Jpzawv0ZW+EsUrUHYSzmjJjVufpMjTbi22iMhbNpClZA0SleXDWwD56UcrW8SNyxaWhs6bFopaIrU7T8QQwIWcofjfDjY2ngfx1pavO1aQYbcC8S1Fne053p6ooYJk4oofJgr3oEiTs7nlaUkb6SiYJw5+YTBE7nJgG+KkQLjLyot61JsvYGXkwrJJy2qpAMo1mmWMMFw4YvjKxM3vd9FFgPZER9KsbWt1B3NCfKcuDy8rc1u5yQnS6C7hm62jqXX0YbWQfOo43DwG+xusuCWUTaPTiJJhQs83w3gcFzZx5z815P+4c3WC347HOuKTa349mkH/jC3nMgJCox5TfYZjdifVCyEi09wuO4LLSDZ1XdjHSS88+liqvPc9XlT4vzGplK3oF1NYjteOybk01mFPPi3W/Y9tqJ4bGMsezMReNryU9i0w0U3pJjuXb3w1TofsR3dHz2t/3LFhAb7D7d83nH50tmPWzecPoOnqEV2K3PCZSqYTBjQEsZ1jvMoanSIPd8scLFNbku0NIEY3/poFLG1LafbJBaI2yYJDyZw4G4cMPdvS0sq7NaRAJ+3ZU6MSOZfq3BQ7IKk64A9qzv3m+CzO8Ew4TZBv/0tB9wdLSGbc1jaOnPaGhQxu6PFv5HWhEXctGg48ZEqU0qQdskGioSwvB1uMorvcIFMHKCR1jjhUBeu+6pZF6ZFDsHMEm4c6oE6cb7RpsKZolId30HTGF8TkWsuDt1o83dxHhcTyQkh+GhfsYS/sVBi6FZF1kEfE8+3X+pY4ObhLF8MS/5skCFl4yEE8eQABhTmrmfVYWczHi0bXb4+pEhGiaesLdwicjdHQ21LphVfpMirImkrbuDqupbuECWd53lV/ATVea6j7ccCMPlyClw8b4ANl5QowvZJ9m0p/tDvUOnJl2/6x3LwojrwyB8nefyJuhtlbGecxGIearYF1EgTQ9JzLjqMSGRtNwWEtk/HUgZF0zXz+SC+63h1Xjtjvx2EDlZEXsBXh60n14ckp12HqamkLYV9vzZigJTtdz4116M3KJPe1GVda0XjC7pkavtXtuSTHamFW5aXiVwjT752OvlCxZ7Y7C9UVPU/KSL/CRmf6P6fm9l//qO0Pu+4fJEVlL2Ok9rjt2qqZ6NblgKkViXVAbfwlT1fWcaNpJBv8Y/MF/r3ZCujhoySy6Y/2N75FZaxANCEf7qVUUTyIpJ4KLd3cmya7mQusEIXfm0nwkIcYgjFrhy0H9AruHewUD++2nNyart4Ce3pPklJEg64fo3t7CHfZI9Ux7nLtNotSVCUYFP/ilNAJRMp9l3GbeirrB+G1KfF17Yv1I0LefsdTWzqe54y2cko/udH5xe/rIX1yJB1Ja0gt/l2xcDDxczEK1sXBy0zE/2GuotONTJ6dzWJGHNZ5ziYgD7AHuYWoC6JH+EHcK+MW+YKzyucJ0iU8GLRzr4IZUyqyropcaCtNHVq285BI9XFmAAu1dM3/br5yjI9TNRYxhL3oH7cysj+2CTfkHNQuAbWTYslg3sp87+7/nT+eJl+ubnHcaHo8m6MGxsMU934X178mBjtSLKki6zmjUA4AcB4dnxxXOP1VNoy2J3aWAr2EaZ9kpnGAO2Z47DLleB1ydx+IP0mRqatjCwjxjGKTargU9Xy6cw/4vf/GBdV/etE5G8QkX+dmf2zqvov/RF6n7qVcbeFoYclu8NgzbD8mwPM7g7zBp/tf8e34B66dxPLfmgCnGQuhfvOej7waGV8N2ljp3LDl3F/VFe/ZAlVQIdKQJz1EywnJ91iAnETLU507A11caKUWS6+cE2b8RSju4mQ3O6SA+vgG7qFzyGRS0/HG/a75LHwZRgRUfOnM363ESM3nCYr9c6jpX7nLYVOr+4DnbTo1IbyhAgysnoMMnRFOS3Kz5/UirY+VrotVLcGuQxbL40nhvnFCDz6fSopRPaTyDSN28W3VxMN+qEkJvke1I4pGRLVFUTseqpUSTf62AAwDmrGq88L6cluamziKbTzvGoXirNe/BWQKv5aMyA/9UyF57ZATtnIgX6QDihtfeiOFUxdEWmejEjVWfLllutroWYJT0lmhy1PObB/4EvTu4xTZvf3aUxehOv80Vce+IaxW84XlECTSlTqYueC/rHd+FPDzn9L7t+a48x1ScbjebqJGJ250WtbyLZxDIJVE2dwGgQM2NKNuebF5KFfTst2IBibRUTsqu1fufyEEPXB8reJyN9lZv+siIiZ/b9+hNjnbWVMgQMsCTyGzVnhe1vz3TQrdzy3WxkZl2d6Mug1G1u+0ow9OivMnxq+ePBImQRedsbfBZSO70nGDnfyDJlZBqLf4a7GyjecxmlSs0Pq/pJIbf9Oev1IeZcOwD86tEMqbHH8tmBNpN+CQo68eF6kb290CeXwANqAca5VthR00eBNJxp6ATnaBBf1CtW3X41CncNc7uaXr1vqG2OUvQRBkCVwG/EAN7bm2fSOvMA59k9hco9Mw9pVay9jCfwfCoAm6Y3/E43ytrtIbF1MT8yQDE2C2HqJDgodWcPT+YS8/Lln6s9ssYlvl6733vAJoMcqI1wX2eNNx4J7l8Z8jqWAjQagShZ+6ov4DNwVi2MrpgAuf2fqcFgRJ/Muc4Q+nFcFHQBDN9IOQPJzKGODwgds2EavgXdrn8QA6yc/ZzKe3E4Z3Cep5boYyPzqfSr7+bauhOsmTn60jSEvpNnPHQV/0oEiLx/WKN+zDCxjywt0TO6zvN62co+cK+r3OU9g8Ycfc2ZZjnpFPpLjRAfLuy4wfvnTsjSPUR6QUYRwO93gcG3GBEuS7wXXFHT0xmcSPqX82Dtmf1JV/zzU/8jM/ugh7l8lIn+tqv6XReSfEZH/nJn9Yx8V5PO2MlqjQxO4NTcXRdfah5++qyCeqCxchW+b+VHKK77wNxkoEdH1I/FtZEz5kMm6hYYTUCIMCs4QdZnQqzzRDcMSXwRp4wnT2wS6got8xPV6iFkNH+2ud6iuV9bNnY42ukhB/UfmKweMO1qTLweiExofa7+L+fEXBiAdKGAZnmEjCHZCqJR8OMm8SZC6ds5R7vhiQ9IbI3kgx2BmxAfmZ3eaFZK7NA8vrwWiSz4+2L9rBXAVQOYojMEWaSZcUojSzwjAuY3/quna3qgkU0PXoH3oCjMhV7bX/Q17lvfdQoMQzDFbBGNEp443y2b/ht+3BX/pPMLb5m9Z29PxseHGB64JhVFjHtMCTifeD1RPXlTk+5QRxdf1d9nP+ri1XtI8RgWZLOO1+nSZTNOYpkWW43+HtpCdyNEEZpuN4doUfKUp2TcMqUIde3GpiJlBMrpsoDyNY79B5qkl29egU2UE4qSDFPOLc1tTRUTyAoNkFNebrf5fryV72fZI5sqviqF7bP0rTP/iSl9Tx2KTD9jNK+daY+Z3A27pF66n11SGnGf+Q7+a+scysqvYdFxFM18ZcxC/uoHK1fkE3eGvC4ZK47NfhVVK8Ejmcqgrw0Lfvf2iejpOH/3FtXSR5gnzo3ozhUKWuH+C85/HqPn9lcsPHk7yF83sT29pq/45EflTTdOflbGW+peIyL9RRP71IvI/UNV/tRnfTnlWPnUr4wiwODNp1JV/wrG7cJ18yqxrrje420Sz8AW8wqfBT7LV/rUOlMtOtk6wQ9Mjq+D+YqBsJrv/Ke0/YdI+0s0EfDIGP9WRvENLwd9xh5r61udx2wNchu1wT7xwpfL2DShMLDBQafqT4VcePGDYgDGQeyLHCRmRjTjTwTbBtZMt0WW9q+QnjyTjMM5lpJjmFB1o34ciTJJLQTeGDYLJO7cxQ4X25Z18DED5IOwPxT7ehkh9K49zyz4iy3aFKHjXvinjqRBgNmPKlTX+8P2fxib9zxDVn36thvYplaPOAzwiPpGIfA+x9A/GLk6mnPaXEmCDl/rjxyRhmVg9SOV9V49zB83v1tazaDleO+HGlyWafkBOJzHjjkEoUyTPORq/m/jb+qP5tJgXX0k6NH+HX4YiinLAAWXF37rvDp2F11hxIfw96cbGtUuhrrsxIw3bcnsus4i0C2HzHiU5a8xMPtXLC4Lba/6Y74r5wteu9J3mxReeZPuctjm/Y9arFL3C/ZpMUIAvisljMGVC+2jnBekq+qh7XLbXUpesPpG8+EwAhJd8xj+Pi5n9mV2bqv5tIvI/nguxf1RVXyLyJ0Xkn/oIr0/eygh18ZC/cd+6rnqd7cSoZjBrigECvbwerGHjzOdQOMCKrZOwmE3ryUkkTgiawn7jUSG6d7jb9nejL/Onfr4lw0d5Py0PZSqmtKmbSL27Y/V3qAQTt01wLw7VSJ1WYURY6JvywLASvyd4d4bX6b4Z63aImObk0+p/B+/lauA2wQx5IW53PP4j3Twp7G+SvTV8t/ieUWQhfmpcriegpAQmw4rkxVlDT/McyRNnNsI55ytNJQM6FUqyyvX0F3SWFkBzHBz2QmEz7cdDX8NknArJ31pLhHFbaBOrPEi387mrPxCR+1TUmPS4ZGAiYd9FJlDeSc475XZbaUGsWzIom2+5tazHJL9h3Vad4Zkx0iBBkmsC3LKDYqcroP2kzzaZFr/q00tlPN0GeZM+kL81fLAjJWbYOJkRLilux7uApi7cgEUX4C++kV6DHRttYkpdT3SzTKLQjvmwm73L2MVH0LPTyoxB5i62clybtml+IBDUfVy+/En0nT/49cr/RET+OhH5X6vqXyUif5mI/MWPEvvUrYxrJta7QHGHEfbQp2KJCFyDSxvnGm1XvoMkKnAK5IZvS2vxNKh38zcaT5Fql4RyvYHdzp0HfEpSw/WO70NYGu6z0HdRXJu2u8K48rC+k5HpPr1+gO0SoKhTkE5/MYippGOjRc4BPjn1Jk9tD/PoCugN86quvSt+vHHIw3nqRkYMUDh1dzIq6obm6HY+THnsu2Q5QrjMX1RyIqwi8l3ntNdWF+hpTiedpmsqIkofvp6BNWxhEvMj/VV5kDCC20LUleisKA+4Hw3SXeKsKvJ65XqnWJ2//ezmuR1Jriu/1/TCkwMm7WtmH/MD3UM1vnCxECknlSTDi5wOGl56CVHjxEPVOSavVR8y2tqL5LqftJPWYT6LyHoitinj4ZsGrs2tm6iOgNMph8uLfGXaimFsBj4Gzx6nbjRRyJM/3mBT561rOEGtqsMXRMVldKMGUwihghVMaCeKYhjgIZ/JqzylSz7Hwm4wfAdO0k3mWRZi4I/9Jlu0JT0KHJ0/xxX7UBxYljk9nKa9bCawq9eW0G6BOL5puzaz0nUYD/rUwAWljrEFPV4CPsftttpRKweMX57BEAeQ73dZY6xrfHX6yHQ4zPSrqKvlLjXJ3DpzKDYFCJmJTzoxEu37kvi8Bc/dRBtlBpGyzCSUZlyMvbEhQN3XZBk/7Pd/lQIK/fXLPyAi/4Cq/uMi8pdE5D/80W2MIp/9geliNcvjxZrLt/9RTBxVzXWfkLNCa6wFG5YHNImvOxQeZhKj3K2Y8zxoZTt5dlx+y6iR8TRJTjIWAGq7k5HvAu3oJJlPMHd8udhN/05zk6fKXf2N8iN+66C6R3yiTi/n8l3ZQpeTCCU4HHu2Z/zNi0EWujvdC357Lt6FuZS8kYwiIBPkb20xyfMKjgG+HfZuPiYhgQb0p5WZaXFkpQSKbw9FUO8mSXtCAMgk0GEdCXaK4MaIgO+Xf2COBG8s/i2yqOP5zFiAecq6MDFUuJO83iURmwlIswDZ1bOt0CRyDJWsc6/jLXB8MiUi8f1NT341p6NJhJmox7w6HboRIkBGnmBm+joTrnj3xxes6VMCZyeafNALk3qp4+k2lnwLjCMuvFlcfO+Q8wX0bZPPuglFz4fZ9538kUjcyEjzF9JZnOslfib5SFcm6UbZ5XWHRdX5VsbZfPFJRwZPRKkfprDWTnpsaE3+yBeHi09z5ZsXZdjggmp2smPxMY/Jn4ulKGQ36TuLQmqmBWzc8CIdJL7ThmJqeidV06IISCS+g4QlmHRDjWQ0xlErr+7gYT3rvVkR+Z7rZaqb1HypadtNKd696jgG97RiEet/TfojSb9S+dHY9FG2Zn9JRP4DP4ve5y7MwtlRZiWNkatPAjo8Q0qOV9uAT2rXHZ8iTs/nrmz61+KesoRGjp2MJ5m3pQkudzK2gamhc2CxLlKMOBL4SP9+jcJ6eApLl/gVm9bo8K//U6knJjEuwno55V+HwjlTK+Mh8RHGtR4sydnZANlOKxPUS47Fv3e4fN3bpO+qdrI2sCJSk0Tgmy9DxPVoypnLVsbNFkoeg7u5TEne2yUdyae5npjQtbhTnRPT8TTsG4g2fWxkXgKJGY1SbCunAfetZzK7ynuvSE/elcwL5AccHrY0KsWQrNgqb4dL9ANgEoEFYYp70XUQimMVH7wCAqTuszynIOm6SY/IqG8n33T0J9kRpO7sTpJjn8AljXWjG8Yt9Cy18VZbNZDN5jfMQmZb/lpkLd6mTMED/ER3GmDIowCLdpmeGi6+kSIF7JgXq+swd1EQEfGn0GWIcOzZ15DdsF5Tf/H9MgMgXXxV1oetRZfLMpFxc8b1aJJeRCv5H+qGZFZq6+pp3uUu5v7hC18uE9ovyNwS6v42MOwGjdsvH6dpr1el8aXLV5fvYfnchRmU5f/mBIsgNurDJnKgMEoQsm/OETNw02zQNNEw7rLzZVlFpOBGW+KTHbiV5ELyxO2iBPNp+LZysNAnPqAOvjF37t8zPm3yQX9PfAvsHd9fqiT7q864C9TRfkO3xfXr6LSba/bKuOk0L8TFv+xoldq4D1KHo03E+C/L0bT52EfMB0ZlW6D/9d+4pUUlJx4U9BXgu36VoMW8Or4e1HTVS8CDtkx8U0feeItXp29TyXf1g66SjJZkxDZDeL9iTsbgBELsDHbizYJjYZ4VTXqv012FCRO7HFTkdc3tjCJi30Wua61Zr9fYhunbgfAu77wefXktPmNOrXPh1YzEyDLqlGutGSfteeiGXMOp6jxFIbYMXcuodTLG84PXYnXqnOeyZdg1GmBcOvVktt5XeUk6FnzoBoxz6spczYm/BQeXOSWjqBqT9LQjLEdHj823KEbXpp6mjMlG2Z53T3hNQJdLvjhqfvYn6Wrq5pr11ucc55XmeeXoeLPBlm4UZXIf7U/FvP5a9ZAZff7s8MrjvU/LboZaqH+x3VZWx6Y+4r9THoO2NabO17cuWrgmt481HLZsDLZC4BPasVVOMyyw41MRRfKWSQOZEl+D0wrDbebTU+01deFz92Vx0vQFtskyJeZo2zT+HEMj5fN8MsbEFq8XPbXzuegPHMGOSi7R2GBqQ7nAhSZdqqQO+27xkENkLNK++nH5f0zKl9nKGP91g3EjgjvEcdfHjQusDo0tKmVirHrmCz8mbNobzSJDhR+Bh7MiYOf2i25l1PZn5tMBaL50kjHpcUMnsdnRaspbsPD7DvYXK03uuE2w8alIMxZK9JJdNjS3Cy8P8iAjtvM2Bp4X6aXjj+pUIQnZyMwLuuApUg/ZgHpapM3fyRa4nXjxi+kIatSOY8Bysb/hNUyZJy7XLoASXwW8JJcHeK/DPiO+w5ll1PViN/YPZcRG2hKZRN7Z+KNipBAZizLeglm258NAX1csgOS6RL+p+AsZZtdaUL4sb8/zrO2BiAPBUj3b7xxkvxiLRI0FmbzGNfs+5MAFu8KkM1wcp8WgkkHPq9Fu9E1Dy6Z/jf76nLdrhUWPgflhoXqePH3qCgzqsjg83QiKBRG2mctrQSvGAOPXNwmm6MvV5z7Gbfwsii2n6qeUtvPXfSLKCONpImKXyTVby1MUnleuD69vtnd17h5l8BwmFl8vEX0t36liot/BbaD8yrSN+g5+QUTkQtvgbYAwrr4FdHujz7db2qItEuOLT+YcQmHsw+foqA+b9DHMysoxsemf9bqJp8HJ5pbbVF2nk8bfaUo2t1leF8gkLu/qVxt/qe4zN+YT2rKs+ThkXtuaBeAvnbGFfLc4vQmMuopYhjKhbqDR51vatiiwuL1kHVjCce4rlh+KTV+nfOrC7LyPPeuYH25hFs9jYfxbuU5ejcQAX1D5bvjsZN6Vgltk3OMWQo38O5lLYdxDf5nHNsE8ye7OgxxEA/KI7q89D1EMzC2KME1eGbgGuEbwGGy8joHRgly8OM6OOcoMroFLd7vwWGO8kw4iZ5JGP7Xy3ckROsC+IIPu3ZldfVesboFHPZY6DGY6QARsNFBJGbgLj2VjnmVHWPMBXh9PyCe22yFLB0PGBdjNi7hhLnnsQ3zQt2pehZrlm0qP/VORlwbztCDDhYDrwZ824VMleBkIhyl/t3ISMRpE4BXJnW9lxLrJSizLonExHU8QFh+LrGfB4fc2u/mV7QcSRLPF2mWaifQ6rAEMKB59yfIroc9F1+YvfFUgzSPfwuY6Ofk534IHuKmAEBGLTYKoYmIa+PPbfMr9wSyX/PEL+7yeOkWHyWetD2wPmfjhUu6CpfHzuYHbOtffwbTMtdk39QXQC2TENj8AAp/QgV7U9WnD1qI+Aw6eqhd6oznlTWjrcfG1jug33m45Ozze75o6gRsf/oQy3wjUJf6FcQ3sdta9PzF+3j9/yu36TNsthBYeU0Y/BMnFn/LD7Aqaeln44oiLPqZ+88J1g3sk2VcFDsxfQf3UT1KI25YKLf4yrFH76hP9pVijGItF4hMDJYbLuh7dmr7ryxYT+forx2flk4/Lj7OaVkgIC3PA+U0YnyTgFPi9ge1WRsbFKKpc9Ym24SvJhtcFzX/TiTYG/S39q7jlznxbecC3k7HD9UuOKxtYBydcdAqlMF+/ZLX90VZGWf284/NLlEdsWbceNyzD7EQ2bEcdOz58kNQTJRMM4rIWbE7sJSv1Uhgz/zcd+davRUIAuPx+AvbX/3rwhO08HoAicfLIFcmArI83b6ZKUh7ZZ7mbOWliMEuJGt4dTkmExLiZyriz7/MDt8hBIMYnjkUvLD/ZBcuWk4jZP6VxCtrTg3og9r1AsDUMHwCVYabxNJt3ut2meFvdh+aarVMADW7Denmtaza3Nw7dL6XqS9fizP+qzITwEpsnMo6k7hrblL5dEDY0ZF8Jnyy+4n2FPr9ey67MVhKv87th7s/h9EX/V8dbI7G02PpocVqkOB/HQR35fNaRII+5/5rX4Rh+ea0tW9809GPfVfSbv21osM1TV2xKw1Uderhj72dsI57zORZEBjdkDDo1+3wF1zn2cyuXHwARO14mx7VfdPbbt9xlfSV/6OPpixrf1uvfvQrntPxi5BbX8k1qUp+KuUHp0tP4uPe65DKGr3HZ6CaA2TyMw+b22deU+TX1+N11lR2u0tnrOgODui4uE/39sM8Y6wkbQtq0X+9DfFh6PK0b18ac0u9zvsTCf0LOTz6oTJuL49d9ftiE9QW2m6kOn+q+S17xqGZM97GPL84PcZ/xgtNUX6AbdJg6++/1Cx2+hO8eMrnPWH2Lue+wIL+qjDFxN4YxxCe7DXtYNxzmmUbOV0Ve4ifqrlNiIx7Elsrhh18vm7h+XaC/ECNsgch3kAkTO5X1hM7HKyY22klMuWVm1SV8qcJPL/9Qy6cel5/upIiMQU93XETMj7SXARBBcGGNFpO8midaa7bLTKAos4h4rYlvnLCIiRCg8vYKx1luf/D1/imezpW7sGiAbpTacv/oOvDHyzs+ha+seRe4yEdkbS8B2sc76TTGJsQH21GvHS2SNWBJpl+y0PDX8eEOAlDCXT4748r6q3Cd+SjCiKxAD9thPEm65t/x3pCswKWyjlfX2rc0tiCr27Ln2DL5puIJE/xzOUQkb9HR10hgLpXXfMclbblyGVG382/YCRuuiwF46emiNDJBkmf+VAPkkVkP3fBY8zdf2L+R/pxQ0ILkLS3O/K9vx4G/5Z0pWMkPGZbxqUBSRP63fX/BdePjZwtPtyv4m+JJICf9r3m3wWxkO68BYyJi379L+O9v38b2xesaWxp/J+N9MxGR6yVql8Q9frN5TD4ME/iOEsNVU0JmcxEWCx/fcuknwr1eIx59+yZ6qdi3ayTB39YeJVObT8g8uszEV9f7SWmcBOZhJ2jMa5dB5Po+9akm8t2WbVxz4vi30i4Re13ZhlaKu9TQ6qZexAVRuhH0Mrnwydlrnftt30ReM6uMmwwiMXfG7/yEyS6PifjBbF025DdfBULiHOwhhw6ZvkvczBJ5jbmvInaZ2KVivqUyfMvKAfjpRCT2MY802ZaPNj8hDhlDDpVvr/k+p4no723Ms5eJvubCSsStZj1xoqMSbRJcT91Mrn9u4n6z6e8JFxZY8X09UxhLA989b0iYxQLNRES+adivb7lTumsUdK75nuUce/lm830vWPBIiDRmsfucZGO65uH0GSoWNwvs0nEjwg++UT+0BOwHTlnFb/a9vsm4iXfNmXppwU2yiK6niO4nYmznGMq0YbAx3/G8/MSK4cMs5s0g0bHA/KZxUyni0XLt62mtoCzrd/juy/IOlm824zjctF0uECx3/vguv5VfofyUhZmq/ttF5O+Tcf/j7zezv+sRnonw8aEZgKvLuWExgjWiZUCsBJxWsF6Ens+ZTNrNfdh+WQpNjpOMp6YP9RcmfOFz6r97lQc52wnkkcw7GX7hwt09AnIis8P1ONl1HB2sw1J9PYWqyAqOdPy2eJm3SNI45NNYwPd6A9gTqoRnkpK4kXRMHpAcxh1c0RQcPBh29lXMk7duNHJj0hflO+Aq/PbksKGBXWqBdghYps54ERttNmXBU7o8GbQVSDvyobe4kKHSzTH15E9XwhHvagXAaPu+sdWPFFqg2Uy4fPFm37+LfJ+3p69LTF8zWVbxp1drkFaimVc2U24yHt6u53Bej8MifKuY2/HLpkwyFj9+K9yIliCtob8XGWRnO4p4LJN4PyTmUdR//4KTGDWeVIiJ2Mu3wZnn7THWSQZtzBRt1OG4rzH3LSWq8nqNpz++MJgLVeTrcT3u7aAcOOcNQmjwg0Vc+mdVXrdf15vJ8oW4zxdkMm/CmEjlIjvLQKBQ9uUvyfMItjPqy0R+L6LfX+tmNMzVeMLqTY4n0Pfv0xYQFnxbcg3og7Gn5roatqS/HwszURlyOQ9YqIacr3kj3Un+3tttLtLUFThg4EnNmL4LN26QuIzTL0Z/v48tEeOG+urZWiPObMwG3XgSFE+rZSye8FuFKuNzFfy+mf92kwGbQxsTmzdNLl02BjsaFOTTde9i9lVFXib2TeZTOcsCOLA3YSxOf/MWWf1u62AkEcFPxkTHcB4osH3lti9Zvrp8D8sPL8xU9ZuI/NdF5N8mIn9BRP4xVf2fmtn/4YSH7zKJuO81aMhBtASMJoAY1QwnGOHi4kMJr7tyqneoc/5TE7zoXdksWL4OgeluEYKgjwsEwie4xhW9+b2RsVx/s5+PiP5SBU31ASwbO7/LpwiLf+WgVlSCB/25DUZNxt1W2NaYis8BtbizWJh0hsCTFn9z3bc1eRA1E/k+nlLhLhw/otdm0mDfIBOCBUn03XMGpcRmNxioU06S/AnjS+Z3dUbzS2UdSnDqY8e3zPu9TLGGiIAuKwH5vvTk+rTfyYrJfurgNxArdGVrYbUbMxLM4R3XbNHQePKQnzK+XfxpGS5ezMaWQ5nXXy8xWJTZ9+8jOXqp6OubyJ/4XThXe10rkUGbdQc8nUracsjyIIpnW349Fhmv8cTsZWK//y76fd7x+GbrABadh5K8dCVpcxtmDIX57ynz1VgIymQok6R5JS9Zi9jf29z+ZrFVMJLBuWPDQYcgU0TfxtQ6ZNRLvoYG4E8tlv3aWjR+l7Uwu0xecsW2QH+S6GtrFf/Ok+uGuCcZwUcgVDzhdL8zfI76kx6ZftFtZsLFtlLXzUvG0w3u7s4Rc9CeOvEFeWpy2WTJKd/nU8b5ZEr/uVHX3zuAjBsTsBXOLgvaMQYykm9fGMj0ufLtinGObdksL/7F7fDTcPT3r/FE9vsAMtVJJ/YFZhoxHib4dGvs45u2/ztNugzUmCMo0+yfPzH2Eyy9vzK2Otul00/ik1dbCdl8wiYvGfFoOuGxg0TF/oQrVef18AxpqsQ4xoJsLWLD7qf818ufFEtseX7BwRpLxiWTTSbXpXFvbC1iZy7JJfzEeqKeZHyJjO3POtd+6zTIeD0BbpykGyG8K+a38ouVn/HE7N8gIv8nM/u/iIio6n9fRP4GETkuzNZdqGHu7GJN4Q6O4hlAuPKhoNbOnM1KwWxtmYDmnu9NAb7oAxC3hBAWC0TjbZ7HhJOTKylxoIfd4B5hN6ps+TSwBl0/kXh3ofcpBc2wa+8Hv8XFGKQ8gAawdjSbjI/vdME7VJ7/+rdccMudiuR3EWCgVuLzXt9xKsrLt1RYPDq4PAnywOCLDb8N6HPB+07zJBkTJhdgc0VGy/9i4eqvKbgsWn9v55DzfjCnEC3G3uWQ0X8luWI75+9lLMQwiOIDG+8T+hjuO4555wfmi+bp3R3aHvtDxybjNjS8Q+9PyczGE6nv38VeL7Hf/178iZkf7x4fjn69xl1teDrkpzEaJt/e9TvfxXPPMl39/oqnB3HQxTeRsT0RBuS7iOi32NakkejDhPItqBg0FsQSA204bMWTS1vJvJnI99eEv0S+D33ZfMcmnpR809ALf/y6EyDZKMOFULL64XPp5TKtyas6klab7w75qW+xHdDpXMQD57PSBcGPii8/Yd+HLJeAH3Tdzb770/pxU8aGbnx78Hxagk+V92WN65LBHRclAy7PBLbwixKLhdDD3Joaztl0PoHR/LTD8F21ydb17riXin0bz8bsu4jipxJKd2AhNccwFt2/H47ycjnkJSbXvPFhaWs1HryiZmJTzzq3PL5kPBVaOydApuRfLfv3qatYzM6FX7wL+F3E31mLd2XxEXksPG1tTfZt6r8Xkd9JvNPlMbHE3inH0PsaLwFbG2M55piPh03ffInMLZzDPl4CN73c106Oow8WuDF3/aZPNzfRptz2RcYYQJ/0+/BNHvs8nqizQNwvvjj7aTs5Prn8jDdz/uUi8n+D+l+Y11JR1b9VVf+8qv75v/SX/r/jmolkc9KYlKFgqPvj9uUnqe65yKSr+G4XwjpfHERMVJAv/RP6jbjxk2lBa8jEuAzbGRj70I1P7WQ+4nJixjkdyZjamc6Bj7KeGHTHt5OR2R2D5i9Tuu6mRiwcmBmE+0500K7wpxFsPHUEAKR7ST1d74mddO23KgfCnkd7YOL+l7mZ3o3Kc/s49kS4zTtIrtPrUokHjwUPAun8aB/EZOlm/UY2nRxVyJs2kcyoa49rNAa6Llvx2/uS/P7r/1cHJLZpLX7qdX8/DLeAa5YrFmleh8ROk+AyFm+dPhx+p1tPrJE3fP9s3OjQJGd54bn4NpRZkl4URl29/9juQ4j9V/zOk4KNzmS38LHZnTqhd3OmXI8ugBMxWVuryMxifqcYCLqJbqNuQHFl+PL4CujKTGZSjrqSxejlVQ9qB93AgqD1OeQcFNpx107Sr3qbrhtSs039FcVXYKfxHIQ5oOjcwUoyJxFhg2bqb4Yb4ze/N+e5kz9RjO20mfdSreYx8d+6FvYLdo197V8nGCpj0tRJp+hDIP/r5v3y+zlP43lh2IXoEsqwFs7uB3J/UU/Z9sFnqG+JXfbrXYs+l9xRQ/4ykjRIOC9czaibAKW1egxJ15+vWHzrzUf+faHyqx1+aWZ/ZGZ/2sz+9F/2l/0Lx0XQhcF/8y8B2AkFd1KMYDlnMMbdts86jg8JwTdsbgvwRQotbuM47uRoS84XnsnZ0L+T0cqPB8yM/jZ4WxIN7uP+/RLF3uRN4/lUVXeNyXG/soMV3w6RUGGOgfO+02XXthvOBOOEHejVO/fY8YNzhhYP7dy9EbSVsXMau+C2AS+EERllfGIkqBugC6/vrAUbo2347lhErYVtJnOjwJKYHUry+9e/QMo2xgUY9mp4bdCYjPPip8TSlGyuY6cXwY3UwQevLRyzeRvbB/5FgEos/DtdSbAkZObRjevUhLlgRgMRSe6sv17bkOF6yAdewZMgtofOP+/8vGWbxes2fVCMCOlmkN04xtANXCj5k8LkQDK2njiL5CdLrwwfNsJ0PzSvcheKbjjO+VNPlzHE17m1F+Gh8y50ZzdhK4ifFWcJ1+C/IH/QWROovSGTqs34gRNjE8OxN5Uicqt3XCBAbMHuDDF18ekWoF3AsyGTNbjZL8myIe8e9/vF/TX4DX0scktakDNcG07A/3C7opb96aVXW1+1KWjLv5VfvPyMhdn/XUT+lVD/V8xrDwuNdgRhqsucNJi4cLqRHJ+tgO64O74bp3mbtCoiIG4FWn6K+yvnesen4Rt17Zse8eG2Tf+OyeaBz3ZLiMt8kpFwb/v3KxXbVt7H7bqbYGFc2LnjHeHVNpwuvovvZGKLnhNu8sU7oXfD2Y1vzNWZI7ymDCGXLbmiQ94fE5rbhznJMpI7STIp0CW5il53fBy28SE73I6cw/ppkB6keXGGelKSP4sGiKk9h/C8Q0hTzoF2EQtnl/NHJtxu+5TUfCzq6cnYEMKP+TY/s1pBSId/5f5W/0QGTfqK0+pmMmsi451M10k8WbDF10Ti6P/gs8Z0VPZOtUQqRZFWq8074GYWchjI5fLHKZAh4xyClzPPga5f8FZbK0/nRUR02dBoG/WXykwRbWzJotvvVgj7T782lF/el2W7d7rXslGfzzGn5u/hFxV869KNhW6IPv9IKwRZ66VWN9C9mEeLnJ86KWJj2yH47nF1jZ+rktUx+jgAwk/O+Wo4a18+93sH5ddNQUcgo8vr/Vny26pPWRAeZULNBX24OZPaKBfxXcric1A0+e5BZ9lY4QM2Ebj+aQmTZJ+hsybg4SuErmcRGX4cxy981bITl3HpI8+L6I/IfCgIuK6EvWhzLrvObb5DJ1lX3kFd/4quvG/p0LAvWDrDeeffFyo/4x2zf0xE/jWq+q+SsSD7m0Tk3/8I0ySCdPwXDNEdu8MqGU95M02pAo4QcwFjvuBAnS/eZUFjN6yDc0DYYvDQvyQHEmdHnhhlQZRhG0FZ5hMst6EejWTCx/iFbuPji24akMJ3J/OG1R3sL1K0YXnqICUTHW57kAXmL0Df7Ra3JjibeC/Ckws/HAKSiUjgPBiBZ9dmTFv17nSOSct8Z2wc9zucu/ze5PoTEndJTSQOLBj/dL1TBfKm6KOkF+T9xCZdxm8z4HzP/kVkyoqHI/j3l1wekJHnyS4p29VjkWxDJvHTuPzWmS/YUE8KsiBdlbRFRqTzGbmdfdE4S0NBV2NMzCTeN/tQ8UVMdtZzq814P8tERL9dot++jQNAfve7uZVqdEB/97txmMF1iX675hH6S0/JgOOO8OTL71Ohn+dAoeOYavFTZnTSu17zvS0d2y1VxrfSfjdelrFLp0zOe9AdqjSJvWrJdrSXaQ3GnNvrZDl52Tw8YTTa71/ju2W+cPymIr+74nCdaJty6AX3002yPU+VReEhg1hmMt+B+Sbjfb9vbivzqO85p011zLXf6fq+mo4xCRl9/HDYUJZkNks34Rfn4hyPOhcdryxevxuHHYzj/BXsRcbpd1Mmm+PuC93g2+gmxiLpRgIw3JHKeu83/OLs99SffZ98L53vBopc8B5Y2EnItH7HmvuaT9vwW38i41ALsEfcEpymsscM/8SDP735Nj8D8fuXyDVfCnMD+J3CyYMDNhG2iT/f/fRFp8m0hZBR8vz0Gy0qY1HiZwJ4THktGV/TbuKI/G8aR/mP+IK6WvNJbPj+cby+28J4F6/DRVtYYw3xVuchHybjQJffWbS/vs3+Oq1L1sFbMKdMhkwmErE74bod4GMVmqtisz9088VMRtbvbmPafswDH4fGHX3198tE5Jxg/gGVH16YmdnvVfVvF5F/REZK8Q+Y2f/+Ea4HrQdZ9ZhLA5aDBo+F8W/gM+ruVQEIHJYCsmkG2/HpunHqX7EfBrlXSc/3RuY7Gp6DhOPayGT4g53CTnZvIxk7sBPuaex/6fLMWqUKNuPksc/o7JFPN5ioC6YNvl49QAe6rkAC/9o5tRE2AhrmCEZddvm6AZoHM2B3fVuF+W+Qif+eZPQPwyLMbhGRFqDwjse6E5v/oq5aH+OqRvjEkJGg7yEsgEGwjL+XxN1Y0RVEjV40QJniCuYAnTy6rqcnbirjoABZL8Kfnnq9VSC58QWbXutD0XJdcsVLHjoTEjj8A5NEFVkv6KwtSdEn8O0+htiLsRBdhhz45gcwzEHw76fNa2ORds3x0HRjwQLG9QpK9QRZsiBpq5bMbzw1MkV/vTdzkabqp4pe+eneXBz5S2DxaoW/FIb2wfPKr1moNze43lTW4UFhQtPnXDIXZ+CD0JZhrEZfBRhOmZNo6+ADETDJ1IEll10KOl28XjGPdM4jRfHTjY8uByixTAWe1NuyGxIL4f2eQCTTKmnhvObz4pTXpDD/53tO5rYgEjdzkmo2Yzy+nSVxo2Lp2ES/XZmvuk1qPFUJstOPxE2n8BvwZHfOZe4fuwWRcXCM+/OwQZv8f/dt8fSxBrpjh4GGD0Vj028Si/AX3PSyKYAf0JHsE/28G0ssZifYN5UXzEe3MQcZulp09YKt3N/WnHypjIXmtXSzvkNYi5KM47Af92uLLi7Mgpauf2grNvv3s9z+L1X+uGy3/CnfMTOzf1hE/uG3cJJTcRtyJwqT04O1TKNfMU0sbgO7HAJGxbQAd0Xe5VQnrAJfS/XFqow9txn2T6Fu6Wkd43o9ThY68Nnikl7fxrVn/WtpdZMCceGvdu0nGenvbf9+oYJy5y1GIBTrY9ZT1wxwIZDHRatktGkLtiBL7HD4Npy6vqadq6y7XhfgygqomCShsw66MA6pP834B+58IpVovTTmathcBC8M+ot22DbaEdkFm0D3FDL09QKZfifz46c0h1TirmXMbZRR4PfBfsvwurzefw98BrygLrPu/Q7deFoGCWVSBG4JTQKQQKQ4dSXE3NQ4mj/ofrTw0yHcI3fJfF9qHvzx7dtcpOn8ntCU69sl8u13kgxAL1mpzfTdc89TjKktPbGtuC7LnLx0nRT6bfDR13wa8+1aTwvmgsz8SY3IXAjJGtS4JW4UB1Y9rpJq0GYH6DU+jjwNYpzSKOtJuMha/LiMsk52G/MZPisD8bMMWb1UfIMvQuMegc5E/vtcaXwbSW7IgU8ipv0nXSjGT9YNHReOfjFsdjx18hMAQ8b5NFrnd6KGPfg8gSclqCsfD6cPuoLUesnh11HGC8ZPpl982aIJCbP+TsfT0d8vufw9QlNfeMHC3saAuh36aYjfL6GFT1hKyBzzwmU0WTqH+W46v9j2fcnkvsxvrIUoshaH4uOg1xqDeUz+usk0FId+UczG0yf0kTJjVRp7jeP440POZnPRDzKhbbsPUJXXdPw2n/TG0fRgg44brtN/v/zU06lJjw/O6mXxJNDE0g2b8W95oliEfxsCewyILYR0A+UlJJMzdV25LieguS2AHt2m42m1gZ500fWdGj/i9n+V8tXle1h+ysLsI4WPhFeR6Zw1w+CjXj9aNGONZpN1EBYEVMSNRRp4bwyCDqsi80OFwCmcfY2n+EjZHVX0Z/L1ukL/wlkGrCwn1EVCvEZ8vR0nKZKuGetD3BQw53XgW2gf+GA8EwE9eTvqtaO1YcNj8KsUTX9Wpcv4Nvop3UNnStcV6c+E3RM10axTIVgf1HiPCQKUL27SVjccF5hCrbid0WD5JrF9wufASGiXjC/snwcK/M4OytTJyPO+0zcvRDyIw7yOu/ezznoq33zCeW9ZZkwQsQ/BC/XK/sSWXq2Dwa0mqiLXfA9KRQS3PrGMku2jfWqNNsy+6duqf2xXi84tViB7PCoAI/32bfF6mahvC/RyXfMJ1TTeb/OWr999VxjY61pPEFSq308xAuZB+JQp26WLn1nckQ96KmOrlyfN33T+1pW0pm2wunyuVjny7+Wc7fJDxXUeFrOAzXTdaZ90zb9fJSaiJuZbL3XEIk8iUaY1XMnLhjxuVzGfp169Lr6gkZkExliNvtjcvhgylnm1nmi5flyUl4sVWzvmBT9JPpCmTG5Wc2Ed88qfbkRf67wKXzD72/kcFfcdOEG9q3MrpwsdMmpsx5NvEketx7SYW0L9KaO/Szk+fDWEMP8QctiNzSdk0z7Fv32lccPBtxjGzTn0R7LGzxd860nX6pt9t/W02GxtT8fHN85nzunXPF3VXjKfKA9GQ69rTmF//AbKytmGoa33StcYu7P2myA2aYWtmy0Zna+6bkTErti6KHPxhHknHmk/FjG6RPZvGLJePc6JrD6IpLg3bA7mNsyBoRvLuv+2fovIulFnMEfmb4zNsfiVJVPYuvPFG7U4F2Vso0ywv5VfvHzawmwUGmV+TlqqYOAAWxKXrn2D+0isI589GVMCKDJt8M7SZaFumt+mpfv+Mmy7KOsWJigHquMO9kG5G4NfsrCct2Kg7lxXk9AJ106D6XHNq6TTsk2OnK4i3J1tb3DRYNo1Gskg0PdYHMzrvMjGQNHaBfW1LIiAb9JN09+0UAG4dt5DEtfpSk8ydzcRUHEd3akbTe3LcIwE3/oqHj+UEYxofeFJpk8A5Wmj459V0kpZVmKi8BcXRfCv9/v+W5fgnfDqMNYYUf6+0ngaoJISLlhcrHij8FuibpvYFD+T0djqm/cPH7cHfDbeNN7eN5Ix/qnISuDXNr6kAbxTQHrja3b5QSOy1k9o07TNLCXJ1yLXzTMtQSM//URRwi/6/HcYMoFYWOF44ljqIrJsjMaedGIi8P3I9EyNZFzbutN4qsQTtsFH80ehv9FT31iQjd9DTbZwYYshb/dGs3eZ4oPECrHKBl+dSjOHS/MPprAr3S98mzKpQpvrS1GtsVsJhEq+SmX5axNNX6eIRSXQ8se4ma8/9YaFC8usY/ZzHPDfNg+5lxm30A4VZImHAVNO3F4aHUKZVOJGic0xy/Ng1dm2XRZUnUB72JrD0y6VGBOTNP9eKvkrIF+xvJM8fuHyaQuz2NonIsu5GlhOmLYkJxgErCx88lY42KKhPF5N+hi4Cw8l6LBrp3CCZ1zvny1vQt4Ryu76DocCXyfzsbgDFumf1nFg3cnU/LY6jKtQvcAedHSU45MKmNDbsqT3SnRDYjMuSe1K8GTqvF0Ug035exRY+nGf+K87MiwDyqLQD5y7FIza9gOv7XZLhKG29aQly9Thoj4Smyd6JX3sxmUk0pb7hMFUK3yiA3OrzHPc90ltaTx/ZJ6FrbhvbojhtgRs7xZk1yVxkAG+u6Sythgmw4FyshdUnJLtuH37U6AYi8U/JTnpSYyrYSoC24pcMMFdjmb+ZvQZu+KdqSXH2vqq6XdQIlvi2IvD5tdw0bOLOfGOGduoy7SbHzjPOuODO1Ld0197ZTSe24m2isS2zsbnxJbUoAU2uuv3DKYserrBEnHS1tNV52Ga9Nq9ZpD9jNL1vLU5zfdDEhO3ZNz8nS88oXGF51dE3D+BPK4/l0HWARdCOo2nobO8dioGvmkcUy808cWnyEkm/wA72yHb+caFpHb/jQsjk+IPxm+L/i/dTJOmJ8j4TnHohnSV+k+LJ/bzyC/ZNOsG6xeN7Rcs6RMZf+Dla21lFJE1yzVV4zHzO1lBc/pXFqJB0bXnOr3weeSzRFZga9BY+sdioS66pOmGL3aplZm7v1GHbdocwPu3HYZGJhEInKeEHgW5k/+zCttsk+iHyZVM4UyXt8n69c7ZJHVgkIdExXOHGC/a9sh9ojVc24ftYsSrzrfD7ezPwO5QDqCvgNuaAY/JwU5ifFCns54TwEZmkRz0SAdFN0LXNzJ3MibdKCpJYH6t4L7oGdDXOk5l3NBLreuKuF5PtD9Y4E5029ZOAhE/kVFU8jZG/JeMBuDxX+HJP9FTw8EFSCvGJes3DtoQTXfDY1o22+cWL9BNPBHTmRSvrVSKk8HBEx3Qnwps4XI7wkM/lqp4cbRzwQUG5k7oykA3BrghLyWlInVeJftU+oV6t2iI2OVw/k6MywF25e4wlW6OhIzkeTb+r5PTdD19juSbcdMWXxkDMrc+6qXztAh6H9DtYtZj8WSSF1OuGNyeh/PMZGwZvgZfNZHXPDFywDYdhHfRxPn4O7q+kEgBZekC38Ec81kD9+VjP2NV3i1ik68u3oAbNg200we+r+VeYgutj4v/bubUGpMNHy5s9zAGa+ti5RsyYc57ER2m7epp+l5kRFwlXLcbnWOATyCvivNlyx+EkPflU7cyqjvwdaU6utkex9LOgssdy6CzrinOpQ+TonfkgBQLC8XLxBf5NEBAi/uXZSRiCNploHf15vKdjPxbob6TMfVhQ4evaQdD8FvddLBygP2kkoKuSF5Q3SzKOvHbhZIs04jF1wVjYQBv9JfvpIWt0/VJh6bc3j41Xw5cuFhybQyeABz92NRDPg8yLD/LwkUXzWTru/nXyBG/L8JlObo6w5Z5Dpmlze0j0uOmbTkigi+Xi0h+siZCW7gs4aIuIrND5E4X7xaV/C4Vt4VzoaQxFl8TFt9Zmk/NQj6dh4SozHdDriq3oj4gLmC3GjE9IsS3htCosW8i8HQP6oIya7alRCvLhNvEhowrM6tr2DVQ9d2RdZz46hB0NPmHzinlCYK+Fw/w6cw5zwXNgndbqQI9w6abuWiX6ONM8o1A/CurneslrjUy922SSroN6wuBSVh9TNLiZgC4WSEPNThJkJybUR3lwqdNg0U+bbqTMeq6kvEUT4Iv0EZchYWVw8IcM5F04EvQmf/SUyDNfJLTUcrpGJfAvU8O8AKexZeLJD1yHHuBfMnOCjCU2J6oNWZ0Cy+qs4zMh+NPNE89tTJubP2km+j3b+UXL5/7jlnxK8viio1PLxuPzmEPLRYD2AhhiOt1dg6O38UjybxOOXYqm/7ZutDCljpPxAacGx/LuKHflg4GcXe/3+Df6maD8oTeU75v4X2EJyYP7/DFQOhw+FfkqHMG9eQAAxcmWK283NbVT20RSDfj1gTUBMvBCq9v5lD0b6dbSMY8N0KUwKFEga9zAiAgo0E99UUrHz8KOsQ78A2Zo44vtDe4RUar78VcSeJer8jnZ0To6uDneF2k59lpT66U6zL77e9+eSI2Dx0wmYeiXDQOm8mS6pqqgRzvrDR15+tduq6V6KLNdrb5jj9SP/Chi08Wukl1L2SjVmyUnDLJXRY+QXpthTPJdJLPQRvluSYwJ2nupxAz1Z6FnH/m06V0o4xlEChuQ9HusdpgS6ycx6tKQrAW2xO343oYb+9v9Gd2iN8jdjrW9XNDa8ENIiGG+27Z6A70Gz6U44viWPpJkpZvEoB9bu2G4lEZE/SLCNP5UrTDLg5gv6J/UybwhyyjEk7w7figzYF/aOtKerW+f3w9P03f6IL5HnTTbi39SuWYGP7hlE8+/EOkOAI4KhfrEQBTcppdYLnzDrdzyhfu+VG+nHA3pXGIRvUCWvpHsKdg3QTIx4H8I7Bv9O8ON1AO/StPHu4Sl47vqdzR6vDvJjo7xSciNXzxff4ONt5BQ16oNwFzbuwZ7y6/ULCDjjnhU5G6gJFDnfhg8EI7wrvt3liSgMOc4P337W/Wjd9Zpw6kZBBzPaKDcrl+S/+SzAaw/r2k1dQefQzbWrDusP6err9IHuOTxtYWbDxiFSDsdRhYEUlZL+omYD4YATmys+FcshSP2xPLYgzqTggXIkrf6nNDAxw8uCBEa+cDGcTcTuWJjEew2MIoriul98vw8yxGpyBSvIEc0Cx3IZ6UzrjZH5tNB4aoSjoSPWQkOZJ9L32lIXdbanyQO41l/7peUJz/SjIJf5PtR93iaSTfoDLRtJvGUEgDETX7xbSbYdrcS0APZeKzbgBEJCXAaXqprA+y+xMbkfDHKB8vlPCI+FGH4/El5xJuJ9E/QVsYesEcKF6XmCQsPrg99Ya0XjRmFF84P0g+1Wthc8BHJE6OFNEcB2D8Fp8mwEK7z3tsSjaHsGiPtt4zc1inlfXKtKuM7RgEH7AT3GbLT+t46+CE5T6Uvk/YOvaHGKpZxqobqU/ev3D57R2zn1HAWY2yHGPZUgiObjk0bUnFY+5UB7YA7D6A+aIDRAlT3G6SwuSkS5DXLAcSx/61uFXGXXsn8wmW23D7ACd6mCsVuswDZT7BMN8HMh/7d5DjlyyRNHQ8aTzTPQVIwjrYpHcTvh+xeDuuLFgxyZ+RMKlbIna6IT4pADWgqY58RNYxwd6mVMdCByKkOSVSx/oN2xbQY+LT1e9sHW17d0oj/R3+xjItxH0wtzMtjWjEARaD/JAR+Srx2csUGDtdfKSULXWTQYxDExcwqeNtgupzRGNr47Abh3Xammlz4p3YNgpItqNLfJVWplGHBFob2LTAzHLwFi3WO98Rz4tnOkwieHcy0l+SqYRqluU05y6Sk/Sc7sSTjKo5Fju9rRxpApNfZJ+zaWv7kMZLim5aXRlUvO7Lo6iTTAIfQZ/ZeDwZQzYtbq6zv05xXcJt9DdEvdrkANu4toP1fybldEHUTcmHsKAescOhR01xzURynX0sPxlCWF2nPHZ63frmbgy47yxTOk1Sso3i76vOPyO98/2j0M1uTFgXWnWT/Aby/Krlt4XZj5fTgR68pdDvDvt/i2PE363TbHCLs1kflfbrKMcxGW26cewfXzgFPcZF3ZwcZcenJdjTOMloBJsusuxWx7Pl28m8gdnK+JDHTy+NDtNdVAzEIjkwi+SXpZkUtzW0jOAj+DPsJfnO7HTorR47vT3VJQZfuJT4yoq3Bu3tlgmWUevvML8T7CzMw7fbJFAPVnjJ69y2hYUFz2wvSW5KVCSPyWYM4smA9jD8vlmGzbhVVwb6wQR3jFD8/EhJyJr+hFGoSDEAr8NCK5IvelJWcGYpCf5GdxM6GvM4uIwGutNchyd7vhXOwdpY5ePQ+Koae3CmMN15TXXZWLIt0Fv0wT+ujDJXVfA7WV0hqQYYJILtXHEb0/z+1vidn/LsbT1rxoH1kvWUcPJAnxP4bpPUd93JfFOOMMl5T5lM+l0Pyu+kZ13ABy2qXsinxnteSUkH3RiOz6LjVPf1heOnfuIHrnH7eMhIvreNGSwH3BTBeLfo+uFt07aQ77V0gvMVZWQXtdMrxrEOp8Q31w3rwvFIDoW/qBtjvtgON+PKdmCtMvuiL+umiXMgx5csJr89MfvRkow76hZWEW2GTiPPCqNHB3kr46IljOscDbeWnPhKwu0CV2oznDgKIJae1jEuiHVUmlKdcZOTPMB+BJd10dKSCtvKTDjbAxg6OZhfJ4M2194td/iuLO6TZifBYBx9lOq4dTGJoKAnkzg5a0tL1jjEKVtEOAWVm+6VYATtpzrSYr6elARt2/CJeb9oICwHzMSXaPH7F0rtGDDjfQxdeCVwhZIXgrmAAkeFo2gY9JJu+COoFm368mRDSGDXjc2gDm/6bOaFuQZAZnCGqy1gXzMB+pFJRcZXnhaBQZQnJfPdrSnU+B6TSRz7Xp6yafxcJygiXI3inqjNL5fFtbKQNk7qcn9ct/4eDSZkQ7PLMdquv2SjwXr+ynNDI56hTeHciLFVTSdEppuRwDd+u0/BobP6m+eziKwtW9gf1oWuTwyseUXj2ekChxFlNIH3OnW2re+zxVxB2sVBZz+S5u8BVvPlXICvQmdf3lWT8RHmqTffQtjJ7NOkGYbkQ9P4g4wDd+kmaDe6yTfyGFZT//P2b83b96YcvFgI3cLg7vrHMcJ1ZYmxAF9NfOPUba9fqRtr26BK0/eq1+g76o5wU/8cx7elg9sImiBD4PKclHWqqONynHPeyby1kV/Xv6QbBd2QX/mt/LLl847LFwmHmupwapeKpC+wY0wd1WWtZpK3bKXH3pI8ZtnKiD8CNrtXvJOV1lUzCCCZvNgDSU3GiWHAqpPRHWebUAWitFs6mvlbElXhOowBx5zUP+/7Jngx3eTwZA1LvgDwJ7pMG50cjQHD/mqFx+zQ11JSZL0pbH847l2kRj1JMe19QR1LHj/LzStIoBhQKWOPMuJfv06BO81TXTi4DUV5XpDOsQ88743rtvgq88X+YWAN+W0sjOJ251J88G18RsipqKsXCCBiaTviqOPpZMuHaOaj9FdEFLdUqsnLZWbcgA+u8rFbk9gx/w1G6XXV7MzjKRn0QSVk1diS50/RAH7+LU8gG31gJ8v4i6wxDRlYJiDm2yslJzYBwu914VHmpJrQgeU+jLnRPDUJPitYRR+Yb5oLIDPrJilC+jmG8xhg09wgvoOP0dxYwOXpOfx+gWlwW/F9Lhr6DeyPZvzd0/OIO9h/WfXij1WWc4y21flxA2WSwdzCROwbXKPpZpZ144sY7B/WWUYcNrPMxwTyHCPWzfiiPxaT+BC207VvCza2FE6iydaBblnMvzJs6v/EjQN2XuN3ygd9Pnp/LpFkg+jraNtj0SvypbnAWya3MgrELp2wm1MZYwBcj69sv8zHY6ZAPcbkJSlmCsHiqYwuh30DWmlSfMHykbD0Bcsnb2WkUd7cMeSqESwHER4bXhw84WMAn/kyLeJV+AIAy7wpHd1SDu1F5nfo6L6/zKPDPS1AymXtLj6cWxP3S81DTgw4oYAg1wXbhCu9DTIbppsAfCwhyN0+aeREi8miOQNs8NGGpB5sadcxCAzOt5vXHZ+UFAFumBvS2s0jPfAVSTco0hMscXjcmrWUFAki8Rpti9OSDxWcEU1M0iEiLCUHWBVwQdg+nq5dMPOzi8y0Vhb3gVKegnROhOvjX9Jn6GX+9nGCo/QRPvw++I04xbGV08XL29vyyb46r2XZsZ7fp6o2seZF3maf5osBT3TQgZVPH14yL+Yp0UP6KgBb27xe5lWXoMui183BBcYy0/hCSeRPbdzMjQKmtzO5JGOfhG59DNaNZGp8SHZsVhrG/RwYSx92XNAgBtZV5lp34jcyO63iX9cUyXyYry6+STdKuimn/GGf3BrWfEXcVJ+nxhoKr5KfhLutXyJxOqsvnNDWFerYLpLsLEwc5C91nCeoC5F1uKxCWzP/lm42MgrptbnZhnySDrO7SB+vjsW3SpVRp7av5etNZS12v2r5Ugnhx8vnbWXU4YpzUHBPMbybTevBx8+LgJWFT93KqMtRJgdKrjxV1752E2k/9rx1som/JJk9FMXTugYnShMQEtE3+G5xuTMK/WUZiH6HWxpZth3/htwT3CTHrl83/H7RstHf4VLf10bHbWK/keGFeXvntHa2x0bU8eA+Ae6rNu9pYYfYzrSO9TaBbegnk9Qepq1Lwxf7Z2M+i0j9dIfWv3Zsw+xx89d/G8C3fbA9X28X+i0yFniSE410KqMsePfdHy7kt9Pi06gufLqiZLzUR/fbkEwgz24cdo6ie78pMiDHnLjqp7pB3WF1JVY52XIZnQ/IcZqTVAxlQpkxDm5uYmabnfEUbyK8E6MOfoMtpXyYu+ujy7ibD51PtUZFB91xqbZBMu7onPwPTiHUTcxlghc4/EM1wXP/0MdWHcu68Y28AF4BFhtLyCFd72zIrxdfGGMMnzDofIBZ7UeqEbzCb388N+eDn1Sa+UPdcS8p9ld0g/JQPfg0pb0hCfphv+YLvbJ9sTkREd0k0vY2jsUMg3oo/Xe/f5Hvktr/r1Z+e8fsB0u34MnOVgNm+Y1Dtk1NAzdNMUmWq7IhRXyPMlIdZFVxhzZq2sDuSqsbLhtaHBcf4e9wGxkeydbhfrA/b+F+htM48eQIx82sfzbXiatUx2oSoxvThrfBXzblJO6TJITw0xBu7NKwfVbuFpv4XooI9Yv5HFxEoe12czNWoWDgn5+GSOp8t3hMeQRHkOjfTM2AboKlOZJgKeiO33aQUcdddYdLcshqC1xfvB388Kmo5IHrnp6hkua1oS9Nes0LSIfPMqXEVDdzJv1onFCab5A2K/wTTDaBb9t/FgC/+UVzA6RqaZHM6T23jif9VlkLyCMP7XS1L9rRIz0ume/5tv6K/eS8luhRyH8ofpWD6jw+IjD2AlPu5Ie8Y5hFo48zF99gKxw+MRLxb7UlyrQIT9sEka9YWvhhoq8isR0wZEy4+bf5ZygMZGA+IvMJtWS+6H/5Bk1XkG/qnxZfnmIGtLU3eqhenn5JbiOtV90gHW67qA7/+KnVTqbgy/KzXpv2tEgVHz+nOX9fSxDe+vhbqUVV/0ER+dfO6r9YRP5pM/urP0rvU7cyjiQfg4g2xqTxExthuZODddTziUZ8tH6OglL5NpdF8qRkAy/9EwiWjUwtAxRyExji94Evkmn5nPrrTmIDW/q/47G7RsVj00d3R5108WVKN54UfHYLiiddS2Nh+Tq+t6DQfjKJcnGXi0Pgh3whjyfhaoNfYH2eUF0Br9jfriNPbJ9tiGTG7YrtkfYoM9ZNYPEDuIdPFkSgbBMqhDWJb3MxX5DXy4V1s7EtZaMbXueM96sW0MfnqtbfCvXQB/ZJ13esZLXHE57ryjQd1kTs2+qIyow3acG2+FjXL4w/rOeL6mVBpEmfuT/S0kL7jnYuZQIx3yb5auvayHyIayeZ2D+wL0ptmsda6O9GZhHykSe/IjdtXWGf07T7OmX3tIK77ddCDZob+WkVHiyiEyDym+yQ8icnUgcAX8EfJ9pZ//EEHBcuzuqCaqubNZ6++FqwMAdM6rbBRvxtna6BK+vjDdujUpuu/ub52fPp9JpgnRbL2/HRjGsiVTfw/hnzOc3PVL/hW+IE+eS8KLNtjvLP92Jm/17/rap/r4j8f36E3ud+x4z8jMKsnw+9CTZv1eCJbVSr2zqAFvqwLqBs6W4CU1ea/hk+Ajzx7QLQ/LuLGx+Skdk0emWZtu0o2AMhDX+wTp50EsEewn9KYdk6R8sFnb00iQDS2uE2MHx4zZ3eyuJ8FyxPtsynQTKD7uAW5kdz6SgL/Ub4zge0+Cka97jdgQYFVwG302Ek6M1qmWk2MolIvssaq2/HWYOfkpeWli04AQ+qmZZqIvBjxWmRXCE1J5/K72mB4yh2WHG9+JNJwwlQXprMcq7xtyUH4C2ZnQfgJrmID/F613cj32KjWMeYyNujGtwtn67s5r+KpCc7vCC9ma9dPS5S/d0QkPpzE4u3sE09LYKw3cgPdAId2oq/OcG3fiOz6vEaxSZbv+fHvq57CtTyv9Hr7hrvpmj9LMmRFp+zvvXRHX9tbHhnv40uEDfRaeqFH/NFftbDVr77GMJ2ZgT7pctHEt+fWHS8tPw3ishf/yN0PndhJiJuSStPmJljLPHRMSihWXMNLkEWWsbLTOSCLYaTvEnGfRSMQAyjOoOmJKKD7Zztrv5OJDrxIZFOuNi/bgjaRYcCiU3/HnXjqNdfp6R4S8GyyLJz8qibFnG2od45f9wyzXTL+Kj0d4TnGBjjOo7kevDZBM/2XUWkxfJP2nb1fPwl7daGyP5S0GV7LPLDQsbgKHriU+TF/miVGemk9QFvYyEZy1ZGdFAqy+BmcLVUJ7opiJv43fd1Z7lfDCb0+dJ9kI8f6c2Fn1PQ54uIXFpthQci3uua+O6gLvi4spjwIo1v+iVfxklMkQEGTnU8JTCod32b9rsIWzqJsZORBA7kvH0NBWdY6F8zn6PT8J21NOegzp/+2M4HEfH3wjv73yb4d34C+fL85vgEJK353Yrd+QkuZHI7H1N8AfpUFLKROd4jU5KZO9PIFe1Xj7t72jj8vgbjRP7SKi/1Z/tBY+crIkW3zRxr/SLXUWamg7AdH5GhG831ZGh67p9Kxd3FORV4B+3KbaIks1Y9pXfMSK98aiXSSbqJMVm+fo31uI7vw6oA7AWwYbinCfLJxbKf+qTy14rI/9PM/okfIfK5C7OUJYgsy0Dnp7mOqHABSZWPM1LMKwdwiBS+vsWSzTCJwUng/BkTqtix1iC1ce6nBVoJDE1hH3wMhAR8khHfpVDG7eRRatLS1Mt4oNWWT/AX7APedlscgLhto49yR3ZH138z7I7uoa4i958kuLOxnd3wAujwBO3WTlhv3UeWdzLiUfSYSIvU7SSAGzLf6RV9zUbGsigr8oKM7k9YNy2+0tZFIz1beW+ruGYl2I+UoM8GAeVazNRh8cmZ37hzEijMtdqHLwY4d2AoA9tk6vNqT3ZHfNf4r3o64OKAy3xYH2VrFLXXp4INryQj1jUn6zs6IumY7xZlM9dFJN9UkkY3Hb7/6fzGnd9xvpvfXb2l28F0sHcykS7Slrsdjkh/Ay0aJc9f9ldI09s2McNOsaTzg4d68NzU07Y6XtAd+tP2784ONmPw0nwtcketC7xiN9147Mba68xn07Z8A9BqaLeL0I4vyJz55hiCfF4+Nb3dY6IC7FcuP7Yw+5Oq+ueh/kdm9kdeUdU/JyJ/qsH7s2b2D83f/z4R+e/9kBTy2QszD5Yx2ut3uVumIvVo4IWVfrdG2uA2RpYCoeX6ydG3ZdO/FvdhsGGK+9uKb8jZLFAZt3UcjHsIJCeZjwHoDR6/SPGFutc3ztBBA5AWuMeyC9QHkVi+E2zJ42zT2MmlG/C7mwOdnciyoyKXgzVtO/rtmDRt4x6MlfbuvlBXTGR9K63wnTXe3rah50fcp2Pat4ndSWYLekhrrXcwoAJsynId1wBHW9z1Lhtsb/xo4XfL5rV8WAfpxyUpuLr07nhRX06tPZ2wTNKJW/b7Ar80xhyL6Nh65xtPpBT4Vp+6/ODkb2u8QjebR/Roo8n+BfhMRtsYiXIQTC1u791sZYNeMf3OV7HPqX2o15PpPijYPffZ7QL4IZ1jCFbJTxvR/3q7SHl4Hf21JWcXJhpyVVfeN139ZVxcLHa6x/6kA9lgOqI/Dd0oyYjt18Jp391v+rOtY/+gT+yPEZdvMEdsYpkbvqmBZEDY6F8DG6cwdnWay0/0OuqWZAzcHR+XSxdukRnafsjvf/3yF83sT+8azezPnJBV9Xci8u8Wkb/mRwX5AlsZR1kOdnrYcCKjPoxOF6CJGD1Gq8flS1h0wnWOpsshzLblrJFvlVUEaCW+Qnw0gZSgf/TqGyU1fKFLrcy3fA64ZeGEdZZ1A6tN+0mPgm0UZFp2J72dipGDpno6beuGD28xPAZQ5pt+nEuYvcntaUlJ73Ssu16St21YHhPcjtiYdMkWcJ864qIei1xAP7U14xx0aQ7UgOlBZCjJt5PgGJTth2STrBuWY/B1PqAIJThxmT3oNSf7udNwRdFJiulbZZ7ZpcGwUFo+pEP2sNOYx8Ju1RWCs7gK1aaQlnaZf6x434EQHJO9EjQLmGWTgAtOxX2qYXbpMYQmrdtOiTfifV64S+Qe1xd7ZcukzngjInZpDGvCfRSrcvyJhAn9k/9wWsgH528rYx6Sx/5YVv8SAGePKBPThg5Uva72IhP9jeFl3wZdAFarW+ivuu3TLCPyvPGLTAJzAhyG9O7tmgpF5uxzZtvEDd9mGbboEZTj914YtyhKQEbq444vonodfUnqj/cP/CDHn+S7OaYg3xfgbWBDfs0y8NH6AnTlRq+p3PUPcWd8QRuMui5dhYwK2Dr+85q+2t+VHfD+7izJBHzERF6acTGOjZuH7ovnQEAfvnSxe5BfsPwZEfk/mtlf+FFCX2YrY/wXnN8IKMuiedvObitjVDjAgPPLfCXBKvKVbI/JEZNTddhuK6Nz+0W3MkKXWeYdrUR3Apd1Y+ewutJdP/B9S8Y7lj/BafCc7gL9kU/p0Cr8XS9rfj/uQjfIT3HgN+u8PY4XbeOBDQVttnO255PsB9jtMcBY4BQpYTkmTvSH9/4j7MmeE1+tcgBc5qsVP/2uQTDmn4mUD0onWFiUxWRu5HcR0tMySbiXyPi4KMqO/uWjm/k7nfqpikAfb/P6x2JDlwr/RMuJjenkRR6bSSv4wBbJ4btJ8Y2ug1uqO98OdnU8yKetgfQhauD5cotJupn8CBaLisxtSKAb0bwlUTc+Tpp5xgCFb6Mr+HlcnLGuCPc4Lzs55YEv381Xaa5RW3r3zok/pBWgHW1akSVbbxZwwnXAfUn2G0mHG9zSF8QNIz/zFZHtibPtggblYj1De9EF1eXbnk+3WHJ/FqV5B6z0b9MHjnVlF8ZuXlzUZzqVscxB2nq+YPOCrdXzRb8RVxeuQF2dzyZGfrWiIp/9jtnfJD9hG6PIJy/Mtt97aWGzb6jbUqStl+QTcXeOF37stjJ29cL70L2T/RwXPx1wI/9O5lKaoPOov+zAD/LclaOMTo879RMchInc74//aNFj9T6ZsPzzqOIDwG3OcEt8XX73RMdUprM3thur7NPxzICf2GkXgMtXfVI70zqKn5KKvEDZ0hUIdNje8F/XDHTjuMvQOchfknGTF9RxJbY6aoVV5Bt1XpwZBGaA7WR6qwCT8jQMhMuCRr335Zl0eaTX4qL/j/SjaRtGwLgpKUQ5QndZKPOMIW2xBL7RVnHbG3kbe5ZEKwN3MYWTVd7yxIktbqH1/VBtDKQhaFd/KgW3jQOd32CknT0+9G0d2lM+nkDv+suJYtfnNOLkG48+ZFPnbZlpV9AOFxY7LS7Uk+w3fBEWaT/KccgeA3fHB21ZMq5gXamd5jLHGcRVaep3fJmmNO1JV7CLQUHPSrism1bG2aO0KwDopDGhYIz937V/tfKJCzMz+4/8LFqftjDzd8Yw5Id3mHdybXpkP/Uq9merzOuIK/vtIYybggtXJ9COrzRjz4uHiYO40d/izUTKjL02zbtAw3xPMna4fmmDW7Z0NXy7AGIiSRedrAn3rn9e7gI0wXNekPq369uT8sHA/xTWTaWcwsgDtAsajX4LKc31hOusujFgvhiccE5JTMFR10wbtwyecX2rhsZvnYzxjmHcKSaZRLIcy15tNS4uogp0xWZ9UqObQkOPsxXeH4v3v3AChxCT9iUgv63++ZYUHdc1dWD1VyJYDlz10xKBVvTHXG/Tt0mti8h6Uqbe9xWUVej9uHcLJghmsdWP7a5sMQxY/2CtDeNZhN1tD/1dtJ8icGD7evRLgR/whS2MvLVIBD59AjFjPIHDcZwf1XVEjE+pfzLjzZRR0I6AL/nBZaE+TXX5XM18Eg1AbP2+Qv9cNxxPgW/xOeS7vQ8lJnZzEkqKIciHcTZ+MdEC2OTuw26qP0NaxS8i3ybmtP714PeL+CefSjg0pEXml23ZZtXBR6V9fF62xs3NAW0vZLoGLBJm08GzXO/6l2xb6zmwOJ580zC2JyItlANxBWQE2ka4bM+uGyHY3VbjF5LQKlO84+VbClXCj78ky5hwZeCueTwmWrJXss3VroA7lQhtAxeMZ2dEX6FMO/3jUD5tYcZHjYvIsBj44riapAAbhtN4T+M4nWgFgWgrvMNZz6OPIWFg3OSATdKLmu6Ml2PxhGn+BJlyoAcalid3kT/6R9cpwCbn3fApfL0/TeCKhIL5dmOIjgkCaifrSlQOMnZOgaPC6V0rkOk162W7wQPctn4qHWyKgmfYnYw4Hk5LiW7KMQk2WFJU797F2o2X0+M7polNU8fApwSHw9zRGnK9Zv+gU3xi3MaO4jUE5IfbHlHmtL9n7udPfGW9G+PGe5no7Fg6lCMmP/ylrWx45+KlmU+MoT9RY6dwYXh2eE19FZnvh81Fl79LpvMlEdXXrC/yF2xlVBn+dXnjnxABNVNL9g4fjVYReFdrCJkWLc12xKwiwBX2R5r/ppixfHe5oSYCYwi4TnwqMuaS0mQBRYef1JlUida5v/MFIjneTD7xWiD2h2OVMi7xgf5p0Y0UX5FUyXMw3m1J6ukXZbAVboy9pPegyn0BJ8S+zvtrFdaADx+HXgIo8m3aio/V6o+DLJvXrh+2uhALR+DDvhthy5xy08MthhBvqFoXJSKxBdawjwCf+gcCqAIu9sFl1vv+lXeBMVZt+ud2g7CBCzYYKkQZRep7hy6zNjLzZ1w2MoYedfFJ9bDB2WmVEPKJjIvPa8YmeHLezSmZ8VRl+lPNtBwbTiv+CV7/t/KgfOpWxrEAYQ+HAAVj/SQLwbteo67HQyvQedWyooCBXOxYi6NtpE2bq+hO+7HcLQBu+D7mQwgn3Lv+BgHdBNxNeXeyt0nECfaUuDPzd46EP7V1dbz+Du5TO3jKf4NbwFkXRj+7xbDS36Ytgv1JP8xUc2OHi4G+o4ck/GXp7cOf4ooUbHumMvwkAnlFhgTya02CRKzIfKlIuvXHOg3YOnMUgyrRZegww/hPHFlBerGU8NX2dwps5wP94WIyc5Z6fD62sU8FuslfxV9dCcuGZ0craIRvo0kMtDp/ZgjP81+pf+xDsQBu72MnwG4eMm4rq/iAjLqSzRLtch1p3fkYELnMjQ4X5UfgTkbWwWbBxXXeGtfCPvEbzFdI7y5zylsy7la3nc9BHmM6x2/WzV2qVUxqUy82iH3t8Lh/WOcFNI0ttiVb2NknwPI7nG7eJUfU/I/5JhumedzaOsiY+2SSbtZQO21SJxlhpnQyJiEnH5jL2RUp9NVAPomFaHKBN4eNfXr5Y7Jy/OStjFAXGSGbt4d4uXEO1U/Oq3jrh6q9YJKN3Q2WJ8oBdy8jbg85wHJnqA+nctu/A5Inqu2CbMebrtvm+iPYm362fdrgWAfzpLwD+9HyIzx+pC9N8GzLIel4tpgiNqfAuS15QbZd6LNMu98hR7PgOUmREomN4trFPC/IkG+3qFvwVVdGcOCLVCQO4gC+uJUtpgfAroQI6xYx3esL7kVtHyg+VrzYKXB0wiLCKr6nZZBQLH0Ght9hjkQE34lyp4e4lm4Udkl0tMwtP+F8VBPfflG4xkGQFsW5mmgtNkmumdXzNslogw/TFt/u84pkW/ZGR+G/6XPaPhQ+1J+OT4frhXfI3MmIJtXgPoqZD2PVlu8D8ruGPmfa8Dr9tnoY1Z1MW1jSW3o/+IHvTnw043YHWO9wu75y/HFf7LzSvCQ+T/nW+dzMKbiudMOtvB/X+Iz11xL/duEbfC3B8YI/fXD6xEcb2K9cvryAz8oX2Mo4pn0Oh2BJ5YuM1TWNKxrNa21HAVNWLI1TH8nB7taFx+KwbriNo6/923dJ5ZBsylnGrci96p7j/kgQfAp7wDWqb3GpfGgN9BTpRqc8/hgo3pWJcTm5aYvDUm67W1wlGW9gExDKqHjZ4r/KNpRwK+eUBJuuJNvRNgGsnFhqIoanCyIs06Bi3QwOulyXuaUQ60SQMxZtYNMiC4QMdzjfBeP+Ep/UNXenuD1TRcxMLlrU1UXDSCbGLkqTbr30UwtufbhU4EteUjra3fZ3R3GBBTZxoIwBmuBtAgIA6TQW5NM7Ed4OF9suWxkrWyTdnWIXc6NTFfdv219NP2P+NnS3Mp5wD/51C3uIh97+2KdiTHFcijUtLSVcWXyPPtUyLCo7+bIbmd8MfVkmk7oI2LMqbbfTHaZTik3deO4+hL3ju7EbbjPKUaLOtqN57HEeuC28xfcAGwmdisQ7wyKSXtqb+HwwVn6Chf4KBjPiAsQE8m3t51lQDpQf+VwCvjj1/suW394x+wmlbGU0GVuA3NhlfQA19vjTQioTXHSHESrwATigEXcROU6HwYuk90qYrdO2hWcgR3bY690BdkitA7vtn2wLd3dHKzkobyIntJW5o3sSZBPYnuBiAGvnHrbx1sVT6bbrPe3fIVKWAEOwp5exS+HA8BixCSKH/iWZi+1meH4noPK1xPd1yeH+ygpeK5PzNk3H+4ZcmGQo0IEjwuN9yG6Omcx3uUBihW+MHQKsMF2xfARx1w64l77W+zomY3vIZp74qKz3d7Lh4PwUgdO8GNZsvCMW7ymYXN/ymKTdhfQ9tOsyeMXIPrylJQ5RSWOoyV/btYwl5j0utGgbZHr36RLR8TLc8gX4nkaxHaALWyaXwCg7wLMvYzlg76dxnca7fYqIMsLf6su16moDy3yltTvUB7C+iTc7GbcyneLA7ujyDnZT3oEVyePZoqAe3/DHPAav5Z6iXdtKJZSeKDX1bdzq/CALSTLt2k55SeBu2k9tt/kP9SGN7w4X6unQKSVcpsu6woVkNz4bvfNHmcv3KK9F28zykf/ch4QrItcrz9UdXxMZux0WrGEsdlzw+9gP7eLYb+UXL5/7HTMV6VZaxW8YwcbpVyIizRxWsh/mc3jXC2lVgz+XM9/1+7SwaOuN49zOD2i8lbfji21Y3zGtw3cr4/GD1TfIWzkambelDsnPKW6eP4lcWxpd/xCtB20YBJ39PlHLjr2FPb3Hx7AsR3PgTbQeEkDmmwOsHfm2Mm5wU1CE7XYIWw4+CXwL+9FJa79tEPkO6O5pl/9e2xgX7PJEc9FW8BzX5iJv4nrXPlBi26Hy9U0pY7p3FKPWJyvs90u8ae29xowuXhQZgb4xbIe7obXDyzLCxU2s2scxl7Hq8SPFFsm+fbcAOM27EywD4Bh0cmxi1a0/BZyim5+ZqD70x229uVGS/Db7RSFfjvWGzxZ2U29jBss9G2JRbAA7t+F2N869HjSvHlewjjja6EarjIjb8t30z3138uWbOBaw/BQRt2GDnHjDs9uanH9jLCJYjjez3h7W5rDM5yuWXzT5+vXK5y7MRJYi4y43BUFOonG27hxvgGIwThbYy7Fx7By4drgxQRO4IkjqH/Nt6yK5/9rUd3142L/SzgH0HRnf5cu44KSZzJOgbyL5NKWuHOympTtxWKz2ZNE7Xnj5qZO7gTsF12Fzq1L2w9/hzitDRf6tJYKe9XS8vK2P5jbTgZnkNtAr7mzjgDJgFe5EZr4dH4cddgLZAD4t6+aXG1byRUum9JFPDowJ10JXyvoJ9hb2VvmyzAvemcX7YlMGf8BkZqKCT9UsdOx88Omb417zRXWV+dTsh4Kztj/Xtar86ssJ1tt8dwUTb3B9C6EvFIt/TgMCckgawXRdANfSwK4YErhxeudGxkY3jJvtrJMxJ5PhC8LuvIH6IUSkqWOSh1O43Jwk2JYP9tcOsEp/WQ7wG50cHT7Gm+KG0C+CPPhUWjpYIg+7zE4PZG/LnetkX57k49wBr4ms/ncdeEn2qQTrJxV6G/Mpp/26jBg/J04cia/BOuEifrBrcHmsTWCMUEaFI/47Bbe4u/gzj54HGRIuzHc/afQ1cSPOoT1irBL8LMzyJSXWOCOMRwZxu7F93Bo/ugQxgra/f+kSBvKHXz53YYaxaE7S2DZIEzy2MrIDELAXmni2ocW4rUMDvryVsRSgi1sZq4z5GGQj3J2MzGe7lVHbn8WZKdQ7h91uZQRVlsndFNZj4XtEetC2080TWh/kyzLf+oAfcWR3uJsxaGXEOcY56gm32C86cCMZDWw2L47aMeHfaO9897Ab6whClhhYc+c4BWmUKX2fhYVtfnO9PfIeZKbkwHWjItvtWr4Y4jaPtSloTsXlrYx5jBTuzOIOQMfDrSt1+2LGvXYyvlOKMej8/zJSy4LK+p7baC9P3GIrHyzQuJ34KsWTZQbjWm93in+Kb2+TUz3gKuF2Ou18euLDfYU/zRws617NVS/bmxvN71P89J/G/QC+hQfCasY9FV5PlHKiQ7rY+cU7X3bnf0+L3dtyt1CGtjjcA30r47IP6n6LpC12La0dfpvDbequODjW3Q64ThvXILcyzXrSjfM84UKdbzKUmHjga9C/ND81twm1qWPz5zm2MtdFWMrpdA+rjEvbHtPhJV+wfHHxHpfPWZhN5eFdrVPSu5xOtxp7wI5wd6fmtGIenG7HpwS3jedtA9KpvmVaYXExZS0zkKHj6wvbDv4B/zuY03bEJIcSLAYZIRk56DCtk8ynoITBj8Z3m0ixzF3Z8Ol0fIzlRz1SJqBws+K2ZAcdlB4mNyjbh3C7dtLO7dzlK92YpADFq9ZejnFXVNMiZ/VvcO7uqnd9EIkvV4GMLgcF+vQXP/ysQUfiA9cgB/JJMlpTV4C1wL2I7g+dmuyLCVylzHr1iwjrH8J2qby9GzNf4EnR29bQwmeCHSSZ8vWc+cw2Q74YbwiXn46hj0HfzXw9GzWCfeIXhWCnzOkp4VPcrl36tQe2teXgN25xT3ROcUYz2P2qbsG+s5ZKPLTPER575Ifxx+WLv34N+/wOX2a18W2nxT3aFMvmf5ke8mfcBEN/Y53Gtsy60TUuPS4YxQa36HXDN6D56TTKwHw38wJppXkB/s3IlyPuBf5URBLsoANnO4D8mc4XLb8tzH6wWDPJDIKiG2yZ7VY+dBkgEXAcdwVy37aBp9WLSfrSfZqcqW7bzBJhke7ig3zhEJMi/Kpv7xAeM3Tmuy+9XgXGgODDWz2UYyPzke+bsKV/dzKg/ASXPqoN+kdHZCJ1i+SO5xPd0PW0VYZoKTEfcqEw4MjT6Ffm6qeOFNgG1/J2ibstohjUwo7ucDsRMjWJUKWwVVEouUC7cGam63f5wK+AkYmkwcbxTbSBFstrmU/SBRKLAG9gj3OpB+9xifiTMQyuKuN7oD6GJmoOi8GVafnP9bsuIuc2R8eFrl3x3RxbJD8coNHoydenZkpi0JdP2U119YtgQ/GWaQX16Y/RrzNuocX20cSqFW9I5s7pFNw+hrQOK/HZ4NJY1bimVWYHucGVQkvAtrO6gm74MmhvAhUu/o5bE4lPocVqg+uF9SY2lD5I7d+OXyuqP67Rvl5iFdQLLGwxTOOHUwxxge5bfLFK493xRdik4yu32+VepecTH2EWEb2BlVeON2L5A89VRo8pgOAxwGziju3tJ72mOFfiRN5+iLQk+ue+XBcm+e4Uq51H2tKOsO67p7ZUw1+qyPiUh7mPdz/iv3P8cT2H30f9/lZ+0fJ5x+WLFEc/AgLN7vRoG2Yk4AWt8nVzzXwcHfDj1NKdk/UoFROi8sYtLIMv8llBVExE6dCSzAdklKZwUGwOUUgOC/kwGWjkbSsl9qLTYb53E5Xpds7tA7As4ztylASDTA7B8GYy6/VROfElME9cOAjmAGpNHQm/FjIf6S4ytqUI4HpyaYTrxsT2CXOs0J51DlSlD6nTcL1Vcg5Or/juFnxiYzcf1XJyG4s00AvLhP3r5sX8jyGs04RxUF4IkpyZtkoczOGiRdtrLqTGkw29JBZOnlhcl/Nd75NFnb4rdMFWR1UD1fviDlRx5eVE1HXJ8HZBYRQ6WmxjOeUxpkp3ouGY+Wt10v1++ML2qRmKsRirTVyRGP+0jb2TccKi38f+pbvy6a+SzKSC5HPg/cdW5jx1wozIVzufdEEQd+m7xSV/3D2oPM1Jt52E2/lDjOOWddO9angsG//bxow7utr3L9XRfxm1u04R9nBqrIhkH3M4VdMXLSVW3fHt+Li8jT9GG/NFCaVIFZa2J2qnG8ljglsXeV6INO+tddstYSHofNMNwjB0lNEW7rwx6U+U0v2+yVi1mVMh1At8HL8Txri2nlx5IoB+SyzPC+ifiMkLcVFGn9nsA30yuh5V4t1Vd73ue65kGx/0+79S+W0r4w+WLglGo23rjIAz9tbJQtIE9EzyjxPfdxcAg08fUE/2Y1ncWz6npjs7PS0AOcFu+38n5zt8PwDbtt3ts+Jvsh1wyX/lHwebs+ZaaueAAzCZj5X2VsBwpLpQtA5PqpfOcUf3fO2BDlJQiWhCPcJgOenukr4BvhTUvtBMMqxuwQKveeJlEhsUM42WtskF/cl8sIeLzxpvXDxNmG2dF2tUT/2vHjUlS5KP0kd9aNLNhJWMezEt+cEyExZfXEr6u35He1qkiSQD2fin5b94y4+mtoAlfP8Jo0i4zKfWH+MmmS311w2CZWRaKpVegoWyaBHdE24zr3guv4ObCtMSqQthEbJhot35X4ZraMbioqN5UyLp7/DYgNgfN3VeCOHvu62M3ZgYXGv5tv66uXZoK3xh7BEtPVG74cunAzLt0heKIbtupCPr5dn4xUmv7Tzdx7XsMbPtWmOhK/bkNpO8hXvssMiiXoSbOKdAUONPmBzphg8FEfn4Z1J+tfLbwuwnFA5ccXpMNmiH5UQFYbT/Abhr8nRJ3z5wuelukBpZOj4DFE7UOi1o+LrD7nDguvN9vCB7oouPLL6aFcHtS9zUT+PrBxkTzAcXiy3um3Qe+4VbeZ97mAK5k/+O5F1fm+C7xY15KMk2O9htcre5nj+8+YYMbTJIi7Qj/26hhTi5v12QW0M9YP10Ll+QMR8OliuNlHCFnlr7Ym6tcyzoOumAvUabytjKErgO50/T/ORHlQWnP7Awm8S2phgnjjWTovP7KvCO1Fz8gP7ZtkryiI9g8MmzvyuWcDMcn7C7jRmIK9S/qfB8oyN3lP3gE8+wdAPkFPpkJvmmIRFA3Hd8uct4F7MIJfE9gz+j5XwPvGOB8ADWZWtx78o7cemjsaex9Q+XU07wTowQ/lbkPQ3k80LQ1ncDn6vCltzx4BeKbznJTDf2bt+Pm/WXLv9b+HYyJj6vqkg4uKnktWlxF+dVzqfPWQZ0Oe7fXfZLX/m+2Y/Y1S9dIDT+oZfPPy4/ymbEO2fWrbuwGbe5RBIwkBIsBZs0UQ6LoPKtBw9GUOfFUQ7fWvlgfzjw3QRB1sUj2zwFiV3bRwLMU70+wX2nHBY+9bTB57hbOKrfdRO3GTwOxuzwTyJ1/dOHqnwgA/OJqxAdlw1zkkpsON7cyXAn77ZOcw/bVGT/GLOD1yYYIp8eL/oWdUv1Vi4xislgNyYUhDPvuFkadCz4Dvlhe6LgUzYTURsPkCMwlwPif1pZuiQDg4UEJybVlwPspcLLx6PUxedscE/GuVk45SQQ+nfBzABcxflykDHM9X4NW2V8Zz/gjT9O7Hd2/MTvE14x7ab0Mfasm4LwBPYO9wle417e8cePYjvFiO1OYaqzHq0DOhHo2lTyLnuRt27yukve8tU7WFi4lJhv4RwLLsdx/N6B0FPvcpoLyQgxEXd7FN+thFv+0kAmWOttt9GV+n/x3Wt0rXOPZnqqVm4O/lZ+6fKp75iVd7RVYk9/JG8Qa5tHUJWogDPw7SBGgcjbcbImPpwPNJEIeRLf8r0MR3NaJnlyd/25m2hd3S+TY2lhqL8nugV24xx7RvTzJNeO7w1oG0Swfnj83h6vznSaPppIfTeR+9rJFdgbXk1rWQAcCvNNdx134rBUGJQ29ln7B0HQ6wy0SRI4EOb+NotXrJcgSE4Fxs+SAJbHz2y8q1XuSjZ8jfh0sFvbsLYN5VA/otgDN8X+5JsuPi4fYrjWtnjF1earWdB+BW2CjfrUoH3wuHz0ySBoSaIxDqRvlPlcx05KHYcpuE7aadjRHlTinV+my3MhaOGF5Dv0yDdtv2SZZNHSGzlYJsTt5m9uyzIWWO1xmW+nG//RynuoI3xLl2U6OLOSfEN78bid/W5s+ja+fGQuCPi6h3K0BeZz0RX9RbJb327NAgf4bBdW4a8yrNFx6208dVzkw/3j3wl2anLjj8OWE21dNocymYlgHJh9WP2jeIR0zW6O3rf8m2W6Mux6QoWHOU0yh/cNg2041SqDEu5ahL3Cpfq3NjmGfNXSmdYfavnEd8yWoUUiJxSMAlbCQGOG0BaS5HSUBqjDbSY8O+DikHmh9ZCvJa/1bFHyDt+O1m5BhqUNOBu2W9hmkSsix5e0H32wGvluhLIb3LsSfvahLEmeDu5WlvtReTJux3IKbAfibycf6Ohn3dr2B2WL2yzKtnSteuZtUsewUN/Rb4McyB8x19JL2SJSD1EAmXUeUOL19KI1LqyUWdenaBfxxcM9+OPR3qZR9+77QhCejqkAvI3FoPxAYb+fHCf5Sd4qmDqdJxzfKDHSj3dy0OH4k6lm+jlmFD4s1ruxCp3Qybd1ccDh2S8yLahzsXdh+QLO3zf8sfP9GbGqFIhJP+JTC988gX8o9rxN4zQmm0X0o+InU7O/lHU9dgBhrMexJt9ZFjydTEr2pqTexndrqoMWG/tVqeO3lcvpQX/SQWedbpLMm/jT/cU4ogs3+ZH4m2ErPcAVa2h4n5Zmy4JPsL7wNdVttv+Q5//lyw8nUF+jfOJWRg6Kw7rwuHyRLok/ZfwL1gos/aVVRwlOia97p7YLx8WCEd/0zZjCp6l3fN7Bbcrtgoad9Dsy7mQ+8d30x/nG5Sb52G5ZQVgHboZw25+b0vJNweIUwTeJGJcMsm0vss02E1kLzyZJYQkL39beVv/wXS+EtQ63yAi4IMnAVVnbJ6qu6m9bf31gkl4pODnddPrVfP9TwGVsbXXA5iPvGRbapkIUdKWAE4ugFDABFbYbxqGcyTfluk6ayFfVfc98aOIwsp6MqZ8AuWbXxB20VP0bOD9++Efy+37B901CHLCE8YaTSSunVV9zQ+cunslnmo1xzEiZDrKEmKDuYw7xhvFT17V2oUHt4kCNN1AwrsUUI110PlXSNF/kHsSBR/5YmutKfKWB9bIzPlL56clPqXd8d7CaaSvw6rx+2wdvZz3fxOV0gnIzRi0drXwUbAPlT7Ai8Q5sq4/mSS3C+njyqc/FnYPML4AduNl3r9dF8kfnFeoY8pLNdf55dn7FI1Bct9i1hTvCh4KMFKt0wQo2w3xcCzr6TpgOmfjmm9M2VIuIrBtqjo98/Ylb1kFeoGU+KWZM2PQE7ouW305l/MEygiDFTxXB4/LxzmRsZWwcD0/wtaVQC2yHy3wUDLhsocQ+UPLJWxlLfiC1f+2k7WRu+ncKMsy3gIETu+ODierOyXIpTldk3XXb4e7kuGu7o7XRRUuXyxv9K44/IeCmQi3jW3RzkoFto5NRqX8NzC2/k41hwJFsF2hfT2R+yUv87c+Ba1nBD+1ERMuWjjwPiK4IBF+t20NOfDjIOS/XQdI7BT4VScfNa5azu2uZ4j3glnZ6EjaO0p9dvfI7ZL7oClGpW3AKvehlsZVRSyB/s7Dj77YgTWHUnRlvbXQ4wNeCOxc9aawQdtnW8nWuHaRfxat+X7Nv3PwtuK6S+JH5tXk6yZwWCTQnq+/WBBvWwfH0OPf3bTy9triN/WhTUaEF1kmGO596slmez3e4NEZeZ59afCwP6DtPurpt93e62dgwXuMcwD+RFa73iYwNrWRHjWztDYhir7IuJLjsy4/xh/KlSOm8n1cTFx7odejmAS7okz9/sNJBpT413w4rdCEO8ImKfLIr4a4YsuKHRn0txjBm1IXiFyy/Lcx+rKTTF9kJSq6vyQ73QrYWQkeLijv2ZiXnfA1+bxzuk1LeA1URf5H71mGfAtmRaYVFObZ8NkF5S3MnU5s5AC+VfKdVCefOYe9g+fpJfwB7WGefZe74RtvBG4SeM9P223mdLCcZb9DfLqlvli6Y3MhM8yZjyvpGS4OjXUfb8bS+HcY28dU63itI8fHxWBrNaqbNdxDH/NBFl/mEz8KMxxacw5IcGteX30O+KiDH9Df+oekrjZd/QHrJiNsVoz5pXTN4j/aXfNNFV2f7h0trRDThJi/05Ua4W39N+o9Ri5VnPXqeJQlchZOCed7R7xxDCJfhk7wTZnfASccXk83GT3L/UDdbf8zz4YE/3vrJZv7yE7fWf7Eejdq4f1DKt+CY7uaaicBW5F72o8wPS1oQON+NaDv+5frDOFBc+9b3ZZ6PZSSZHNevpQUbyTzqDaeuf4exQdhyam7Qskyz8x9Jphu+4Ls7ORacxbcYnVt6YtXQGvbifj+3Jb9PuB2thAu+3GVbvn31n+PcJX8AC7M/JuVrbGWE9RYGwdTmpQleATI9X5jchA2TM5qwmLBT8o4yrVNvqlUirEJ9nYpPspbHhNw/uT2KOGUqDS7Hs5PMWzng0u0Wlg3uU9hoeoeP0iUO+pj/nmC7ZOHIlzKFFNGrbIWcO/7dAD0JlifcXdBlexaR2MoXuHlLx9yst2S+kTHtlXdmgQtEdskcC6yIMOXGCZx8BsPOPwq05raTslCauHGAeHIQq9MKuuGtJuOPHy289Lr28MN+/kkbA3PIagsH/+IdTocd4ADjOpLxdCs8kMocybk4C90MnEtl9mUe8iEm65h8/4bZwv3hJ2ahAhO7QK9u3+503HdPHRn69qRJ9qm1bjMbRHtmezLCjZhxZb4eCnBxZE6ccFfdeQKv4surzIWvZL6pIfoAcaC03cSfrn8NLPMpZRdPZcW3HW672DvxRZ/aESR/nGK1X2r8kTGskrpOsACSZ+5DmR2BfLnTSHw6n4qAfGm+U/ZE5iDR2IjLXw66Afgko89jIGpRh3gzZTTuLPv9Hd/iGzV+lxuETit8EGB28QZ7lRY32JJpLUVBmyjIt3SDSh1PvUwwVinhCuGuJ2U2/eqkNflqOIVBaz08mDFm8l27KSy6kuPXFy1/ACI+KZ+6lZGDwggINKPTV+N7Tx608MvoMgLqIixrwgLfmPMc5JJcu+gz7R74Ih+v59i7CBnJzLjbo2JZN9CO/WNwrwzdpEttouVyaBoDqbp4MiYuxy4IkQwtLNaxj8QHYU3ykGIwamWQrPeSPCSbtdxYjuHMvI6nsXcNTYAVkXCoziOeZGFHGbcEF5d/OnITGdstF4PbMdjIrEGbecGk4/5taRvoFQYcaOFdyCIzbvFQD1agkLBtozr3b+gGTxNkV5XvhhrcGcY9+6OOWwxFZB2ooRleIDDGtG+2MkYXA28o9xvx+Qb6WFsTHTfTui6LVElF5Hdw6MeHg3SyAXwaNn/HYgwni2a7kvwUrfpUUogA7s7/ilS+YHIGVDq/KCLrZT2KIelkX5yvUM+2psQXVIY/mFZGL/1V142jb5zRnU/F3xsXlf2VUIwEGSNXZdqoyk3/Cl/UY5m/Gfjo2yhgmCw9d+/eich63wpzeVtfkEq4TcwvMp98uSx3xfG1LDARF2WEp4tJ5gle7n93upp4GH+M+pfGXjgGQryRHG/id2frjW6Yb+rv/J+qf7XRFylgxCGUweJtOl2MkQneim5iS+HEewnQUpAxFlKAn/ydy+gRQOJwJ7Ppt8G3x4IMbrbiTUKl77ylrkOs0vndMghzKYZ86cWZyf6G9x9Y+cStjJIM+lF9622bywUMcAvdfT0m50M+6AdvtzJuunK3gGnloDZ0sne4KcEsToLk6uiQih7hHsoj2FPQYFBKEpIZURLA9JTqO94mkFxiG9La8EX4kMHyte0TCgx07JVKZ3Mpx3+jADs7YF157c5en87bdvR1tuRFVkfjSnVr9KygF7w8Rg91ufTOvoPf+8JACDLpaovL8TLTknHxnYsOXXwx0QpajKtufQL9rdsiL824qT+I6gvLoDEWeLjwvN6a0dF7wMrZwdCnJ2ealDnyDdDQFLT1qbB/04DAs3ijQkpbQFlBlS8u+B62Zb5kKdg/5os+pejCgFbWY+G74dP5Qaxzu1K9hXW+Tbx8r383fPnag9jE17t32gqvTf9Epb2P1PLu6hP3+P2uTZ1d+Ilv6xI1XQpau/gTi1Wsp/bATuIYK3NjN5kWdKn0h/g0c9W/IRbzIuTpMr7oUV5IEU0ToRsjOSaN3QfLCNgfZ3+DMSRLlg6ZkhFD6vFLfmNrwSIt9EAYX6JRJfz96uZ6r3iU13b6fJny28Ls5xSjCm9LebKwSMDT4AwmnwKS19Fnmcjhw4dpeuxByFEvPjQdH2wlue/fmT/271QC9obu6aOQWz6Me6ARKAz7ABeGvMBs2xhux+fB2LzTv9IOuLeB+MRns0jZlWOigokHxjsfzyRPsyA7JBsY76qcVvvnusHAdOKnjs4LGIRlXa0gqHhAiwIdkdBxJDAc2CTX0xIEA2T8XkHQ9CUevzWSDEnbSRauJLrmT/IAN4Kry+G0BRZb13rnTMXiKZzjxMJMx9bGFbRNOFH4oUJ+M0qcXku+HG3Qcemk2+VjIYHZ8Mm+bU7Ea/6eNAvfDS76+gwbm5ZAxonLSRb7gs4fNfFmgQCCO/e4HZ5lZj9Q/ALP/Y/48o72XdnJeOK78f+3BYLl1i82PLfv1p3qT3zzju+7fv0d/K5/h75ZBzfLC30fj+GN72ZY/gZnxQE+XQzdyBy+u+vjqY1pNX4/9WXSUoQHmc3WQmc8wcyxKd1QJtzww94GMnO8wfh5UQxMuzJEYNfEjBuw9f9LPy2b5Q9AxEfl0xdmUTqn60pWatutPmAGjJg0HiPj4R8J7RQwGnnufCO+37X4PMnYM4hvbb7F5IRXerXscLtkA8m+EwRvcR+oYAt7wN025XzkPb5Jrw9nuibzW3R2PBpcB2cdKsG2dCBImEh49ThGeDWnIHgc5zawT6tWRjMGbGTtA9gRR8esjXcE5mKiDdDOxZvj6RQNBPY/6ViFt/SUu6Gkk1XlwCjtQsrlrTvmUrpTHt7kbZLZz+D7ZfkFbV0LOyVY8ffLXkH3oqXFpRbw410zX178YPTbPv5luNkH2bv8DPtBPgm/OtVbnxoGM5wOHza1TUxFZLz/4cmTtsnlaZ6qrEXCMd7QJebzqH+A+447RzomD5KnNPehfye+MKc7/3uMAzSn34phrY88l+0CguGc7EGOkyqz/3rAt4s3s15vHC5rQxlV2IY1jQ3rFceL2+oY2B63e9q9wXW8vMPBNmPpMWQvB9rr0Pkm3qhJXWwRO4gRARPyMl2MSfW9X4xD6ZuWIOO6Ebf6Nb5VubxXOrn3R33/b+VR+aSF2UwW3HPwkUi+gZqeLOExrmuWQ0JYJua4MBY6EGiZFrDy1OOtyOM0yPsrecZR3QRrjhx2dshtPfFdZI8yE53uM3HKtLpje3ci3slxQt7wKboDB8dtp2C8TZgeBLBjsoVtDW2TTaJwkjkFim6QvDVfP33e4E432RbywqQGzVNgzLgpeRJnNK8Z7vGXkifHsfo493d241lga8/NQR/Et5t/+I5D0g3UzWZgC9jwKhILK8Dd1dXWlsnhJjOs+rsGIOfayWdpMSUT9wLdXPxOWYM72HsdYT8WoHXqJ2co2Q2Oa711jnd6UQkiemWf6klauF80pVn3mxflePyDT81PM7T0AeeGQfuokxLK+1sLlv1Z0s3GpyxcTbhCuuH5a1RPvq35ThX82fo2bNvxfYxLen3Kl3+3uCcZD+1t+QDsXUE5Imbc4U6fgweslHsNx1Vq7kM9aMba8Vt8rPKB+vYddW4zk/QReKTVyI8xxYRiCPIR1mHuj82+tDAG0wvqKHP55ErwJT9f9JhjiOPlhRl0tlnk5XijOWbAu9Sq+Krpeh960MGYsmAVYL90+eLiPS2f98SMJlezLpHYPNg35iqsRsqdNUWKVu+ucCDYeK4bMc4Bw++m7j6QvQm2idFGHR2tuwVZKph0bAjfJS6lW08WhwyL/WM+nBg1/HdOu6PPMr4j22Ncgv2wzwibxHplseNbsrsnQZmvKjWe7DXBLlxO+DIuLLKQ1kUi3+mCaC0/spNxtJVgDLgmHtgAFomkIGlr8TNBPKiJrIDnuAqLHxGJF7pHcISFmYisJ20qcQKkLfp+lzNtQ4G+p6dlc+uMw2N9PHmDdpV4mqbcvzeLL4jylc19WJPtAkZERvIl6FOBluNqtrvFJ41uujb4MF8UK79Niu8S3+KSnRVfhz7zXb+h1D+MNzzvT7HK6yefmjrQ+8Wnfr+Dw0T7Xb63xXFv+vchvd/J8FRGluGuf5zD8Fifxp55tbizdbNY3/Kh+dfJ3PI54Xbzy1wuO/eX+TAv8OMdbsx1zbhyg+tPy2IY1Y64cbCHu5QuRs5FEi6yRDNsPtBpxSpceDmc/02LNlm4fJDUVyxffd34tHz+VkY/FjklcroM1Rc0sylNFLfTmJgQhIDWSnU8qSFaBpPykHwWf0bx/OhEN3dv2j4dAvvbuLvyRtA30lUn0+7p3u0R+A2tNA5O52G/8ESs4vQe69FucVs+THdTrwsN6QeC5XOGvj3xLlB37Y0sOZ9cgowbGLYg39guIoRbT1TFwIMRy5ZyU/9twQq3wb9kN/UV6YQLPMZRwchnM/Q47jLfDVMTg2OGyzaUKdiiYyICh3EYBNHZjndmPRG4ROYdUAs5zINzcHrJOH3MYshi4RhP2NwjrvcJdOJe4UzHou6bum5G3Y/O/3lF04RY3y1bvhyPz8+YuR64cRPMASvuYjhF2M3nE9/N+8KPFiQugvrwL1q7JL+TsY2Ljtz5wEe4BLfVTYP7A37fRFb4Jpdwi/vAH6Ne0ZV0WyRvx7DrG6n8qFcYj+PpmA7WyOjXHTYvLIiI82H4+A099pP9dNUX7uzAUz6dbtKUAX9LfBTiQI8L7HX5QtOMG9A8MO6r02dipI4R4cZYXJYHoMCu+lKdJb7u6xesRvzAG37xGm34DI4xvJURt7yv94X92H7X5cB5BSwu2NyX+o27B7Pic4vJlxfxafnchZl7Yi/LMtY2QJjgu3dlBgDANrR2uCqS7mIa0ToVpQnsdTzKvN4dXYzyo/tM6xRgmC+3d3yzEFJ15c0N37z9p+F7KEmvxKsCzz+7/jWwBfeOxwH3Vj7m8w4umXkrww4/telxK+mtTGXe5KYC3AWzHe0mIHkD9rna0QsMlgPqsj/HTvrr7sKizB4RXfzOth30qFfLcijSUrmuXG+/WSaSAyAGQV6UBTwEVRFJ2y3F5DKJhZqIwDfHJi5soxzbKxcfhI06bGXxLSwemL9N+JoEPC8j8TbJPnYRi88ZKF5rEkNETTFDgvbw7cCH4410uAS79cfLTrWplx0ICAt8VsyAyYFzErva+EW+D5nnp6bupsTd1727/qGMeK373dSPfn+Dq6SzLd/G9t6VEXXR4aYxvKPd6WpX3vDd1l3eyMSLsrKQI77bQ2BExoIj8aA4cKcXtl/UzWlMiA8es7/t/7yWx1OLHKmOhzyJioDvNpF40h4XHNd9LXYm8amLMowZyf24j6K5jI98chzIvC81wl1+fvxY7WvL+oS58nvK6OcF/L/DXhSbfiu/fPnchZmKpIhQ7tL5BUvviCXcEgH8hs8y4nw8K+D4hKaFmpiflNXwPZRyXKy4HM03OrjcBLotn5u7iYUXwfpNHHZuhSe3Md9ODm/awSrwPfB+hx/2J8EoybELsgl3Vp7idvI67gl+pzsV4b3oZTwpcKT+NqRXnYPITXH6WEeqW7uxKUuz5x+IsXpDxp0s2rTrCn6+t168josjlw3orO0fs6OY5EO7zvqaD+Wtvpxgkhx54WXTvIC+yFxQ6aqDPvIXvByWaan40cYroM4FnmiuTz7r5EUVDVyHwYNBvP6xEje+sEQnWZMSCYyPQxlEgldoK4dwqEj/9CzPk3TjAOf+xEV/hXYw2pr40vlj9nuJj6xQJZVGwnW+eDJlWq3VPjGfUke5sLzpU+1N3KR3wj2dDHz0x1UVpXR+8odhG6dbcFHvb5TQ08YfG/1tsI/zoKN5q9cb2AS9w73pT3ulBo2eb7JtTe3rxvxovcKJ5Nibfw/Y8U0xjbiDMSLg0JeDrxaB2DTpc/uKMbrx80sX3h4nLyp+WNpABvT7Of5c0Yd1fcWmj/v9X63cTfZfqKjqXy0i/00R+StE5Pci8h83s3/0o/Q+fyvjLGsrghvU1HFTX9tdFHIpnwgIKw4V22EWrjTR2Ek63R3fjOJ0Et+oZ2/BRzsXL29S79Q1fE647LM7MjuZW3h2mAe+Oz7ch2hnhA0s4rRiHnRz17+1dREd6viP425PBOvopiBwwAXYIBZ8l2Mf79EsmtriCvTXQDSVdReOn+RU3ON1lUQrBZ8U7KYcfHcR0Whc8/Y4fxd0I0vcWY3JX0FCN/g9somjHayH7Elr7BsU/EZOegIFalCny3wg98nHEC/YmhBYBNFrbpGMj42KiMZHWb3nC9ec9lxIja5mvnEEfgTqGYzNon+X5DaE9SdpH4+AqPyaHFoaJ/STBOtz0jLsNmZcmc+iM2G19simDi1oZedkYFjLx2B9yZx2R8S4SpEZ+8dz0snnpx2a+EbxdvAbia6izKupMuzrd37xtJWRcU98i+/mv+/gIp7N9s6nCsF7THZYq7BOi/ujsmw6+Bz6ELg3tOICyyA4JpY7pplaJ3P0j2MLyIsyCsPGfCS5mI82fBp7D5nhw8mxBarIuInj7hujafnU5YMsz4sUf3a4y3+vcfWPWa96vJOGdgM+lOOA+yI8lEPsBbA2+zPfW/Nt9C5PvFvMN/wGLm5LH24H6jJO6l2uF/y+fO0yu/5Z5e8Wkf+Smf0vVPXfMev/lo8S+zJbGdM2lNm2jrp3WImAyzHdBLZteDBKdQ3ngJ64BIZJd8sXSoBoxkUHVmIT9G+3lVGlCWzSw3J7r5tD/4Rgd3y74MZ8O3GRtjbtKOOuv90lduYH3KKLbV+aWa0EdidjQxvj1x1skmMq0Mhez7jrmjvW1W4bQZ7KJZlWJ8wOF22oG7PUR3soQzU8trkx723brldu0/Ylcw1SKHs+grhuLUFea4E0yoV8NbetBy46tp0QbTwR8Up058LK65q/TyYi8g1kxq2LeNS+t3+7QC+z7gvXj57KOMWU3OHVVOOAv59I8Dj0HkOcvKbG5VOZGdkP+0XEZUzTGm+yf16I7ZprA+uXWt2UH5lu4FIXEOVxrFK6IH39R/2iCPRBq3+OOeRyvuG7ymIbce+2yW18F8vD8Cw/Lg5bPruFI+F2tHcyu61nX7f3qbz4aw2exqTdqut/H+im1SPpIvPhRWaDj31lmZMNvRYNv3j1sEwnH1HPOnZk69tVUrwRgbovkAAvLcw0x4zLWblMSnGAY8a1/H7a0q7wW1YMWDffxqEfa65+3srnUfk88UxE/kXz918pIv/kjxD75K2Md17WS91SyN8b2jmaAatrxaHVqSjh4EldTw+dqBLjr/q6/Ml+Wgf8Dm/WzTuwnVP9AVmCD9Lbtb2Li4H8LjGQh3qdtB5/QBSCTkq4/CIlIdtA4jcTCA9l6mTIurNHeijl0fjSKEH0r+NnReZV3Yz2XZCF60vPnGrPbJNwg6+PReAq4UKH0thbrna4oRDayrirg4yoGyUZc/7hWw0BVytsbRv1b+m9BN7q6MnAqPvWRsf1p2aI+9HCOw9KYV/uc/LQdsbVZ7h7o00mcfLlg65SvYdlOY4xYqswW/3b0E00mvo7sWlLW4AWE3joU2/pdribhc1tzNi0bWG5/cTnsNjajeNx0dUYXsSblm5Oyk2knjrLMk4aXX870L6UaHSAtNI/P2WVZer8cSk0VzlGYLuuH9L5Yw7c68bKur7iQO6VIN/beAP1OBRkypRkrr49LswFHcrE8eYi3Or3u630E3fazYB/yfVDnv+XL2onq/tFy39aRP4RVf17ZKyb/00/QuyTtzK6EnVZDm7/mAmrqYraWpxhGrRI5Q/reoDw983SdoJ5vfUcPiMSbubbdaPdljFlz2Ku/m2J7myfYVERWi/tStbNJih8kG9B3TZIXfQS3dNxxqV/DEuyFUQOdgoyHfgWtju+T6KZb6FkXaAXdlpH3VjltePNwf4EM4Tsg2MncxNsxVE1H0x+n7jQCMN48V27tO0xvdgtSTfrvdUlb3r3LPqg0Z7lNfq9dKO6tpqIB7sJywdujMsWf4PdnI/43TP+QLTzxS0rY7Hm18f7A2NrigdhhHfZTARgXcb1gWq862oiOhZjQfODd07TGHRG6LYltvkGF53wqSL1kdSCYf9TUkfP4NT9fL9lvfrU3VZG5z+F63yQgFy64pw/4rm9GZjiTdNvguXO7GNV5dP6xV6kk7hHv3jy5bf+mGntYE/92/HdwXV87vz+Tm/s55VgyZ8aw7q/auKANfitPEpjwPx5gAotS9dbWjivO5mYD7eh/03XGr4dLAyMv3uqgLulzfHGb1Ap1nXhQYzgeJO2sYuMWAX9XAcxSVkcjWsuUJY//PX0Xwp8rwQLCy+nFzEE4o3HgilrvH+cbs79sSx/UlX/PNT/yMz+yCuq+udE5E81eH9WRP6tIvKfMbP/kar+jSLy3xaRP/NRQX5oYaaq/1UR+XeKyF8Skf+ziPxHzeyffkwAnVg4pWWpaiJ21f39HovrF50Zt/chWwetFZf5ts4c+CT6HABN8KMTgcullTEEaHA1gxxflBbuX+97tzIe+HpzYr0LcF1ywA57F1RY5k6mDV+b/21ldJkcVo9qbHGfyH7L1y8fAvSefpP07sagLWQJd3xZZmSD8Urw/TYPViRY118WWQ82ps6H+0QkG5ehgUvBhwM32ISSDq6kctyWAoFQZARD2FLoATHagmQOml4uNaq/gE/GueaCyhMDxB13Ul8ZRxedgFWntRZrHz0yH+dtGaY0/ujL54JjGtW9T9Xwg2k720yykvZiy+TEuYh+knkTbxq/gaVdeMCHvp1vh7tbjCxTghuH3aKs8d1odzEjO77gU7WDeVJ+gk9lvR7xd37xiezMVw58H/pFkWb8N7Js39Pu+pTizUj4IeWPBZCfUKiM3xX2uck3Muzy5cZAO90X85wS+1bkjtGWVhND+GYRwI7+NPGnHS+/0bXjg/D03ra3WQIJWvlUR4k4MKY53iTExdOUivp3XQbviOX+LV8+6riV0etDRit8L18Mcsz4Ab//q5QfXzf+RTP701vyZtuFlqr+d0TkPzWr/0MR+ft/RJAffWL2vxKRv8PMfq+q/xUR+TtE5L/wHomDt8DgLN0NFTc7iYC96pLrwCeeEvnsYYdAc3B7N2lTj/dVQY5WppOjvEugT2ojMieAmHAK8NrD3vHF5qDzAH43l466Ir3uZGQ5irOE30b1FnbWGbbjnUpa/GfnvOWL1zewTKslchpPFnID6z5PN3wz+7n1bTuvNMGe5awLkySDNmyonWmtZCbDdq6A50raQom4ROsiuXjLIX/EMy3q4G6pAq6JiRrhqiXctfXEF1cuO71/5gE3LdTy1paEK/kJ3LcfeNdAQSE5qQO7oEQofAEvzspcZ8WzH1HRZutfJ2NZnCHtzig9wRQpx4Tnd7YaowU+TptlZF/G/UXy7Ce2/urEdzOvWrmY2AM+rVyHtpNuhGC53vYJ2rJva/iKHHVzy3cHR3F+f0N2SrnZbWNu6CHzEr7rX9tfZtnwrf1viIRMNrYnbuKAFgXj76a/ifb8rXDLBP0g0c3bFZEvx0/25Q1s8DrEn9I+Ywa925jcycRToLOehtGHpEXWdzCJVsEVo5iRcXPMWLjh9+NmDm5v/5rlE1+B+ydF5N8sIv8bEfnrReSf+BFiP7QwM7P/JVT/dyLy73mLADkktG+/g1C945qE2YnRnVBhJwIUyfkHH8uwLd8iIxWT9MTMCLpsZUwyburOiMVsSuhm097x/Rm2XO5OP8HBH1r/GgNrg9u1G9vGWejTlslbmXf1VjZL9Ue6ctgi4wPsrl87o32c0HAgw/bVlubzCXYn864d2vy9idrNiUsHeyDu8h8W7X2iUrfuqY9HBFuDXUQGwZf37K9rvo117qLLtMCT5YNB6Gla3PWcQRRf0pb8dAyPvB/B1hac83G6sYBDmCHXt9m/HwrQp4URL+gbOywLAx94pfYHuHd8HX+TD/dXjnFtn6gWGVs/AXGusdcEi35jA9/yddiTP2ZeJPOJzxaX6TKtD8Sqk4zvfALlLlY94rvRS/Wx+Nuaaw1u8z3HMp43cuT2zLeVscOzYaFR3/Ht6FAMqW3Paa+8Ttr+1OIxg+o8VVUkZf8UU/BanuaWYYnv1cSMgIMbdYJtHL8AFuNAutEHT+LW9sQVQ/D7aHwz7ocOfPq1yueJ+LeIyN+nqr8TkX9GRP7WHyH2M98x+5tF5B98H21ModiVOL2lutOTupBJPgu2hASswrVdDJy4irgXJAxNMNr4isTHqL7F3snY4e7qp/7tCuE+Cq4Oq6CvzmG9QesodCNj4XuXACTczSiS0Kf+lcJytHIZtOXvHyGftn+NuL2MTKTBLQHMeriuDnatqa8GHWlwTfML507gQXDOXZkjyKyUYFAvGARN4SSsgRGBx13LDFLxJYs0sbHglg9Ji5kQK+SCI4dLoDYR4W/CwDdkxBKuTlqX+PhnvgrBE3HHv1ecvjjUAosuW6d1LVgP1JaeoInJ3OIy75r+wEvWWx/pHQZfvvyxwS3jxqn4QIIvdzSst8L47fXCd8aiTkwQI95JM5K57SLxUUnHr2+TabzIfrCJkR2aAB9Ebfng9Scxg2XexZCzlBn2qT8+DC2RzPCuBx+Dzo/f+VTU5ans5AceEatYUPKpcRloRv828nL/FHOn0gM8LMdE6dMOFXfTH824wYb5Qv9SfCHc9v20XXxxdHWBhXSTYTMtKwu0tegaEynHtfXPzMjVACwsqFQGLLabwdMp8Pshri+aYssXxAnDBZkGrseJeGpGcYDjjSrGjEGX48BvpRYz+9+KyF/zs+jdLsxOL7yZ2T80Yf6sjI+q/XcPdP5WmavIv/wv/yvHRRNJt7xlhcF1iGKuR7GYIys4hoFPXKjjXcry9AEWc27Ysa98TvBtATm8O5L4JlB5clx+8EU+7FS7oMEyAeksREMLYR8691JcjRisNrSiTWtbklMyzQSr9bdhO6LFj+yk7QjbyMztG1j2YNZ9KJr5cmlhOchsiIRu6DAMnkedncS1VxhSjAHxLYuYZkwiCN7oClGzjM07gTF/6c7kJTloXrQgioBTcbvth1E88IWQGBRlPEW6NrCStzaq5Da9ZG0xtCxHetdAJIJoyHjZEXe9JqQZVmQcgwyLy3xYiKVFmqoftT+SiYuOfd4V9Pt/xZ/4K4cklJwZ/vCxdbtzpwpzQUG5JiIKmdBIxrBNMizIhv435ti17D1ZXbc4KH5xyXyKGQZ8Vn2RNIJln8pxDvvH8wy3TrX9PfnjC9qwv1Q/+cVt287HQlvL54D7appuafkfGAOW90P928jxoticZTTia0e9pfjK+QTLUvzxEqT2gRZptAgzpuW4nFuIVr54RCDCm8jrygseu14pX2JaCrjKdHd8RAQXSINP9ceM2y2uVnyZejST6xvAYhxgOjIXYU1dHfdauLxl3WPGwOSt86/gqy3uZvu7L/5kyTFgYTfFF/+Y2R/CQ70n5XZhdnrhTUTk/8/e38fs23TrQdCxzuv3vv3a7a7Nbmn33i0ttEUkBDS1wcSEopVWkVSNjUU0acA0JkSTxrYEKFgTKUQJyMcfuDVKqFaQCKWkhGY3RPhDqtmofGmirfTDkn5sKtDu7o/3uc/lHzNrrWOtWXNe133/nve97+fZ1zz5Pfc15zlr1po1M8cxM+ecc4rIbwTwXwbwn1fdL6PO001+AAB+1s/8PkrHM5vRGmomWmcagLVe1NXNOhm4jEtP1rGFskPRnBf3316P2RWpWyftAPWO3qsBQ6urpG2P1u/yLGl3aVqd9f7i9H1efpvTPKr3jp5LO2vaOzZm2UqwD8hSk9vrvePZxcY76be+6OU2Jq7pr2yYwpFXM+nihnjVLxIK17RXcVlko2cOA+o2lDoBDZ438h2vjHd667sBLAuxU69Mr5IddqR9yGWb1GVjhZTyqjZSOYe9ZyNrf8vWRq2yjwXG/e/+6d+rFVNT69hiDmM7yaYTfItcya9yiNa0VVj4xx0ekGz6MilLPNDoLYPARbSx8R7PcV53ZS9w8h6mXuHiPb2Xeqrsa2y8l9ejieSB8iW82qdt9V5g3UOc8Ya0jyE9hUu+vMJ9vArL62spXdo0gpJ8b2+HXvCN5RO9rOL+mKzTGHVrI283lDVe+abgMQp2H75QY/dWWY9j8o89zavXk6wtrkmKCwRiJ+8a35SDqA6puzw+YHgtGHzQ8LmnMv5aAL8NwF+rqn/hVcI8yhu5jQ5kS0qzMy1f101knHpcIl9lHZj3FJlglfKcCgRIJ4AtJhdzqomrXks17dIoH0raNs6X7McDslftk20UrDa3AgwOFzZeEflWz8XAhG9f6r3nx1cMNh6yuZXVVdaaUld3HHIzge2lH4O+OUJIjeDCDmnSlvxZzK9rltV5Ut0yWKTyjm6iqNtOPHfyRawIx6lXKbmllZkn5+QEM0guPRUz8or90OtEyru0przdLX7Nto8QyU3f8F59y1uSrVmvkK940sM2xUSM3+uySZdhGk3uNPK1b4v5thRVL1/49aS0gBOsDwTylhbfqgggtlDGYIDfQXhbIHyuIYHIwMnAlGhj1tdtC2HF1LQIRnmxXmuPyu228Et03oYH0g/iKrbZTOY8LP09Hqju6GwuelNwPVQMiofsqncn+xpcZNm2fA/icdLD8kU2Zd+VZ9ZFwuOalvVu8NKuJWzfpe1sFFa+livhcf1dbG7TWjxh+ShQnNToyEZpm3woaHKY7mWrX7m8tUw68yUbgzNW7qq7RZat8gvfFFnqbsxz9o6vOGAH7qtPXHRijxAPWDjj6Z3jN4gzJoIp4344q+OBcT1wVwn3TVZgh3gED9TdILbtXIoe39Lu8XNyCMYEzX0VvLDbDf5hguInzxOzO+EfA/BTAPzgfJz7B1X1v/uwdOGTAVyVYEpP88fGuVPyVsYKFr6VsRAO/I+k9AIC5hUfViy/1LspHxFFJ9vp9fgOSEm26uWISC6fsM21gCXfHUHufMMXGCjb/nPV8auCqreWtyO2R9KW+OtslpV055/u0w37fFDKR+S1NIq97ENp+Vr6m/tEJy817cN2bQb3G9n26ZXQPS6v5PRCdeLkxGral6xND99b7Y7TquxbYFlWkltKPB3UgbxdhGSDQKO8/BJ2kpV14nSjJmDbE4Xu8artkWzWed98prSVMfz26tA0yb5fRafzUxQF4HfNvOnxk7BayZLzusaN2jiKkTNxGoiTyPJ9tZIdgLnNMXPVsgWNcWO53PHcrLE6+eF+UstbuarY2ck+1rfXMnB+Hd7WeXDFmI6Lq867NtbyNIdl1Giy5ZHybfKya69J28ZLO0m+6dKmv3nSknzZtb+tr3Xr1zZey8P3CdeAMknrgKJrN7syFJvr5Fnof/nj23mxLTDGdNJiHdtRbBppAk8NPg4uO+c377Md6SAOQZyEKwhecJtJV9mOCEE51CPzTdwb+dxSWot/Ju5/p8IHN+/R8LmnMv7Sz5InsEr+lBwPUh4xJ9958+q7MUNWSjz0pL+exlCp+WAnKagk0to886rtpSVCvt8BdhcqgOLCr52dNe2Dei9Jq+rlQYA0A4hd3pUgLvS1eru09HTnsg8XG7eTMikpavmYCDZkmPPWh+uA819kG0JT0GKB9nr2fE1bIO7Un9vBZOfq5sojxMngnl5g2KxqhCGRV9HrzUYzEa2+se0bjSxWWSZIt4n1SvarFFkh2Vo+J0Z6gXuRtbTQh2WNwLHI0haWZBOTtRG7kqy67Nu3tORVo4r76a+lcedt8HjK1H5U024xdcc36V44N+ETcrzlBLlzf6PX/iw+6vTe7ZNNWraplqHYafF7i1PVN4vsDsMbv6b8DLarjTWvLt+OQ7q02KR9tHw7PVk6xQKPdzKU9ipbqRd2MbKv6m3rXle5q3jVvG2fK1flI+7tKZU0Y4CmRCVvYY4osp4lY5/7gm2mRUCJfFk2TOk5Q+aFWNDK6RN2CxZ+kZp2xo8kW7ccTn0zryPpPRvZBven7A28w+T8+FsZvybhyzyV8VVh9IGGPOPUj9E86Rx2e9JtOeRJl/o3bix/79CqIbs8wpo6wINF0yf0cVPNeVMWDBxZL2hbJJWvtYFlkF4gd/EKbg/IbkNNy3kBy/tkFq/lQ3bNCpkXvllkHyhfGqmQa1fZCUzsiFnYrY0bf3L5S5FIT0nblG8h+KRPk42jbJqeBrSkuJFlK/OAgdKC9MwETgze1mkiUMuRng5OY7jNTt/YRzCt+8V7Q6N8PkeUID6bHFnaITstlZO6soBJEawHrHf4Jp2kyCSYyFPnaWIUd+bOBAmZ5Zwkbdsp+aOf/BRKxJFrXE+ylue4b1tNjGR977/5yhqRIso1t6bU75eNe/OdMjlnU5kT5nndZG/TDlHM9woUkHMSPKd9S5CJx7VzENTPcuUnSzo//jxb5Mxj9P3CGdaiSU/CcizQDxuIecVUXIxaM4NoS2HY5KdBcl9xu0Cy2HCVuyjRBEmmPq6cuJPd4S/FE7ZTNV3JpqjO+xvsvoeLj+Bx5Z89Hj+uN5XPfl/xgOQyt36ceBwTrnGxXQBNuBx/+fK9LZWBYxLbDQlHGcuXkMqn5NeM5UlftTnxD10039BfwyfHY1tsARDfFlyfSHm9eEux/k5l9/8b7p+uZ+AEYXeJM9+g8EBOawhg8cwJQtjN5TMe4BMYhi4tvzl/K58tgkXZD3vvzXnGMH5+7JpkfAJmuG/YjswZAsXtIN7xrY30OZVUBx8vkEu/8uHdJmbRZAmEFOOELUawtLG1oHlZeU2DWEXZrpDzVd8PaLftyONp21FsvAK34yJOBfTyUXm7tJUkvT/s9BBQsmwiArrgfME6OsIlPa6i2FGqYeHm5OJi8yJbbOhIqyrqJj05PgHPl76qdy703PFrrQP2qxF5Mosc62k8Q2d1AuyNY7e2hmwSoE9KCOuZF+WiHwnJAjLPbG/swGlUsej1p1xUdqG+HHVIeiktIDgOe+ctVg9tAH+Uft5vQyH9zvzqx8WHXh7czImjlcomWTOJn0w4M7jRiILfQ3DinI1IEMfUWxs5CkkuEytvS5q2tMBl4wnY+s5YJD+OM3wIPnnxxCFn0pu2LmKe4ug2nXh7MH8GMOqR2wdPykQVehwJjxmv+ahJl2UH2QSOajq1hR0QLoPajN1xQpmEHdz9GICpz2nhtXuYykEUdEqenXAZhU+yJd8sW/CqlLByk/BNK3/nmh12SqRfyveILNm4xeMr2dT3V0FbBGrt6EQKNPtW9VoHs5+IzQCAS78uNtL9Lm3g8ZwUzIKcafJQ9FbHFZ+NacpmUfDe3zKhS74B+2bUYLQLmqSwdOuLKYuQlUY2FslQ8j4nLxhK6OLzOHWW0tI7cDbhGb/z07JR1eIYy/o9X+IQd2HK5/S87D2w28Ryb0aHHQ4VPOH5cJlEcZsHe5jym3/HEjhAuC+aeUDqe8cffOazP3/wKxXebWIG5D6XBuIaA9t032GDr4rfSS8cL7L1d0HlGrSmqk/oNnoWvcOoe2lrSETUpb0ju+h5IH2awO3Sb/xaQ3vvy5aVi/I1AM9tKA/GetluQtumx2qHc03VI2u+a2N73MYrWbVJac3vgvyC4EotLLaseoXu1W90IaY344oTcqSw3p2rM4i+dlM/7GPri7zFI+fBkx2Ly0LukCAjz0tyWSyvS71JFul+fS+MV25r2uwCpadqZnEQqE1gPe7/WDaVltIGso5DQKwtTVl8OaHH1I1h2ODiBbYtN7v0zjfFjoVv2MY7ZVh+S07b4EIra31NqBVuZm2MQRVjVszJoeWMTbiLuV15mvbd8tsd2QVju/uN7F3srmGp3zt6KHV+Eti34xRvrm+5v2JdSh+FFfpdWGBcS/MnXXSsX++7sIHqM0+6F83UtQmPd+Wr22CKXl6s4j7VbRtE0iuUHd+LODuLsTuZUiZ+LOt4XctrKWXlOcb5YT9tNV+wvPBC41eetPLJwIeUOJD1eBk7rsKHDs8nZp8ZrAPXSRa/3xVdDD1YpaXBKVNPrHLZMkAVlqwj6Kwn1/VywHdP3C6bbVy2MjYhgxtByYWZVVbThQvZKxLYyFyR/KJ3d78Jl0cT872lTnBZzq3OKqObvC9kL9/t2NmRKrS3+a6tF7LKJXg1kF7ISrl/IevbFW0QUAh4zbqkpcHCuqJKBElPx8wVaXUvEeWQjRVMdT3CcdLjTY5tUMzDO4zUecKT7bd8ZZEdkcO2E057JX3wmd4fECDeI2O9dtw+2SHwvwf5wo/XZ8Iv9yCAaKySRl7xBC5Oj3xDUABHwRBBXoiTKhDDlYSLVq98wuHS3ifu7nClxOKJ3IqLC86nvveg7AbIdfN7xIlDGmK44sjte090feXikuYVuOgiOzx+IJ8qe8U3VfE9/qkibFeiaqBvMx3uC8AjQt3ZOtv+wzY1etOM6o5vtrxu8TqK7dIEqOZM6an9qqfwgPT3lv567z5xAsdH+6Wv2JndltdBv9125pesM3HIwjdIv/0j0cD4ppnJyirruxN8C3mk8V0OEmnjFMp8Yq/pzthMXJMmfRynp2rYy97MN2pH5BuXafbVRwvhnq98eNetjBk8mSVm3DrXMgGz6LyX3iOipBbvQHqCZPSdkVfzik4Tqh2IAcZW9mJkUADIcWUjeWVjld2W4RGyLW5/zDe97LVvrm3sLj+s90phR0QkcmlquTHe15H23l0b5RGFd2TvCVj3Ktz2UHU0dXlXUqO92JMtlsjLG+L/7yZlqjo+tulGNGQvbE0QmqqkUwxdvhTP9MT3Y1C2qw3Z/DCH9v8rILQ9RH0SRWmFM54rlV4eIk+E7PgX21q0pB2wRRMocD6Av+yNoVcOev9A42ndSH/66qlPwoikh+wcMLx1y8gOj7Ob4bhvT4p0PNFcT9StciFbaWFrceoQGjrJ0BpPasm/OMTNb8uYBtgS7yVNO669WjixYOrdGmFOLFm9igc2RUN3fUPdj4TP4Zsvk6u6YUr6y34tCnk4s4COJXgkLHoZYKeeOabpZMUStH3nEY7UEi+yWy4t99hGqXmycfbm830HCf+f7d3pZVlBPgJf6P3Ako4z6+MrDzhnzAt5K35e0EPijDHL4M+a2BZ3hcEH80BwpHHGjXzhpzjO8h1F9nBZBXDi5gXgxcHPwP1neFV4v4mZ2jOsiWxO2AJobBuMr6oD6V0YS5synZ0zjwDtpv9ZV/MiH98dJaEnL1LKkvWSdisbZahmVWw03M3lyzZusfRCtssrpe0wuujl8ta0KatiI7u67d5XNlNepcpmW9nJylIHS7pqUyWvNm8taQVtnbR5XxFSVwb+nWV1kS151zpIPKmLLxe9R6RdbSrPjgspyrZ866TFbKuyNlnaEmXZBojS524H36e8aUJj944jtngo5nHxidwQkyPkbR1y5O0htyOXL7YNBjFLkbX4QfeF9GJOBDu9LsuTOlnfVbt5nc3364igb0XW32XTE3LA3zmTKftZIc9wM6ZGgWPikJaqSYDTct6WGTsnaVptABDvRWLqNE5BwbNyr+KTHlnVYmfB1AXbqAg73ygekJUq28eX8pEv6kSzYkbNCxd621Dtojp4KK96n5Ns9C6cUW24yCvLKnDwPbmUrfnUeUtrs5BVrEeQfdWVobFx0cHf8vMZHscp3zr2KBO+nPfEidQfGzvYl9yGtGB7TQs4lme+0fFem9s4Ji1eJ6l8K7/keN1mznqHXx3LFZBb1ps/dVL4pth8cF7I348UGZwysp2TMNKbZfOpuukzKVP2WHhgVmOz6yJ4QH3S+VHDZ736/IHCu25lDMDp0DNaaE27gmoejS1gl0AI64vWZoNm2VYv1q2MOe0qqwnhXj8pqR66WN9aZZvVn0f11nB5tH648G643P6Hpnxd2m7yeSfDy62SD+bhKUteKVrvVdmH9OwybmzeENt9RUXXti2o/99b8MXg4bp6NeXLg8eRj5HX6DNpoQOZ2LLJ0cs8Xog8rWQmA22yZJbTNhK+j0CBpLe847VsJTnmdbJTSPag+FFl7anVVCpqS0OrnrQKilVne1w+4uVvftpWP3adnsTVCflrQ51JF2/ntBy5BrP63mLPGVHHqRZT/Tc9NfV1Xp7b8Q3pYW5CtvGKq9I707WsJe1OtivLa/hnWy9s2xWm3msotXyP5vUKvllkXsMDF36sOLji8WvyauQqZ1RZJuPOjg7juzgvvkm5n/AX5b5ebM28zmvhkAuey3qsT9Hd1IcUfFqj4W/Kl/y6Pvky3cQ/4PSEfVPPDo95W3otj2Mp2bxMrCyN8PrStHHqje3vlOdBW9hLvsw3i+xMyyc65u9rnvjo75i9DhA+bnjXwz9ScB4jItM5dJvL1PXo+YgYQoesYpc2/4zbQ9ZM4JvrMGRmICGawEs72WkXvw9R0rbxndpi41a20VNtvBsekS3xbivJXb33fHFFbPfSXpHxK/R62G0/7Gxc9N6XDT1kJDk0590Q8NrUSU3digHnu7T6SadQLUTKJhe94jauT+SWp1eeyYzP7YdxtO9eFojtLkEedCS+hKcyOc1cNPId2zQATL2EIlH8aeMB+NHq8fQrnmw52QJ+5HBaLdWwL05QDFnfugj4FqRBmOoTCLcL8RTLZT0fAHrGk7P5PkSadCG2J9qE7IAmmw+ob7ux1dPP5mdvmJtKJh5Q+3/7eCGnXXmg3K96LK21/2mSUU2/srWxMXU269+bfs7ZFNktbrjaYlMj66cREkWiiXcAYd3RBuI9hvSyfr9C3KM8d8c3Hjqb7+hZjm7f+aaTXS5d4XFv4zavlC7jbzzFVAjFu/Kmd4vtooFIt82+TEI8Q36CRpdC755vov+N/O2TEit2gwX6tiDaLFwolbtwiJc3cDQcrKnLm02jj2Qsh2FjkbWt47xLQ21buusl3J++StDkWK9uM8s6dqs6B8ZWfOIfwmvDcj/Eg2RHcTKWm10x6eLt7piyxhkIO1L7+pjhI78C95rwvsflL6O6iAvsOzZBfAxiSVYB/oqej5l35MO8pijfy0HemrBwIK2VGoZVPVtZeHkY7DpZttku1ZXWLVk1spxWcO2bNl9Z87paeey2Wya9rVBjs6BcnNHi10vivrr35ryk+7PVmwmmI8lrG5MCanMP2ct1UOvsIm3eolJt3kzuqJMuE7bSFqJuldKLb9PoTMz5Dl8cxcY6CeMXlmkHWrpnZJm3rbBL8uQqryaSfElr8aPoTbJStpa4Xl1kD5QtlE6wljbrrVsXkx6zc9p/EwXv/LN3FATDxze36zNWTmXoro0jmpWmLYSWVA2Arjij8MCQjQItnCFFtlswq+njT5FtMLnxkbd7y+sOV7Xfk7zHIXQp8xwV5x7fCNbyLgVp/vJ9tr3zC/UHLu/DXNVhxB3/J32dzTvZbXkSSNzPl+KtzRxP72DlnULb8nrTsO8Nzht1C2GS1bU8yY6qV7CMgJu0mFj+qJ+lxBXx6RNg1hv5ZuUXsqlsG8yHVsRuitHFjSdMK5Isn6QbnDKHipLTHsmOjKegfAUYT6uE86Wt5/T0yuz6dNjULnhAXE/dPWFwZvnmXR1bzhB7t3jmc1TZr8lewQ8ePuZWRictWgMSEpJGdslGXah+xFoEvuqoRSIDQ9ZTJ+NflqyXj+9vSMVlm8WxR2SXvBpZ5sEEtPT33nbEnGlJy4OEpIxCJTuuauKbdYFEXXY5OavGGzMXfamthWxqlyWD1BYI7Jf0nU2LjXlFUVMSbWVj/Gnb4Ar7tXq19w2Tm2+jW/VcFs8nP4K1xtZ4rXq2UXZ+XWS12Earka43bUgrK6ZY8urIOfQqrVZ2sua7s9yzJ1bicSHb7YAQT8/2i+JQTXmxnpsIrXIqDhusQTEO+qh6ozyDrLMsBJD5BO4VELOGZUY/y7PgZJ3Awev9IfCp+HtXds8Z+gq9Ne0lljPGbKnwPldhFyfcWHBxF+8M3eEGNnhcgaDD4/J3Wz7W29nY4lXIXOpF9k0t38pzwS8u29my8+M2LC1/DVsbtdgIbL+7avZvxg8tn5aGGb2kunPdIVFzph6WFqr8TsJU+ASo6vG+LFJkiS+FbALHha7HLouE1cJOiviwaeiNg5oibd6euObFmDomX5avTZTsW50zPm2+lYmVoGL3mlfUCdkE4xtk2ZnXTbCVtcOhPmxQ4OtyOMnH2cpoQaOTqcWFhnS2otqBLW0T1JmBNrJiQo4S+RtlPvFx8GV9Nlncpb2SBa62oVi8flCTzGyJ5xHZzsaUtpHt9NS0rR3fBtld+eKebuvgnp5rv+qM54Hj1q+1ACT7SPm2euleenm5kWUrbYCZnuom2b2N4zKR/hwcCuth2fKEzdO6f5R4NIgqnYo1bQvirqQmbnMittSgguzzRzcnAU/ysaECr1oiIMTzOjgvqUfQx0DD9Arp9W0oooAEKca7A3NA4EQdxHjM7S7HlGWbWM8YLJxevthyqCUNxWcdyPJxUSJjtYnj1DV9fqPyvSrULqDzw9LIm7DsXsZjmixZB+fHP4b75Z6WvBZbkh7D6p4zuAaEZSVMsqyNox7BY2ziIVv65Ws45JKbmnhS9BobN7Ky6ql5Vd/c3VJYOWRj87J1scvrUT2ObSse17+tjdXYglcOa2wz+ZCTMp4OmTmwrvYstum1zWCble7RNyqp6SUsT43a4mU7uwZ32eQmyq/xk7q1Y/t0iLqsWabUADX4RklP4RAhm6NH22KbwrZ8Z1mdOGwnRWos8Le8Zr8pr2mqYXfgMxxr/VAp+418ci7bvHLGSdsP+0+e+PtjqJxx0g4JegJHnOEnEH/g8BZa+ojh3Y/LX04EjGPRRpeguJGgdHLW4pNswQsjWAJV70+J9BEvm3onnt1BKa3bXO3o46qA0B4g3ch2NkKRju5OpHJPNv2YaaT6Jst61sXG5FdEtbSBZavenWxHKvS7tbGWr+hdCLiGKxs8TiQC2fqVf4TeWlGNns4+ks11b6xt6XK+/jRSZWk3bfv0G4X5a3rk+or6IzJmkiwvbKenXWSjE21wYDoePwgylLPeoyzj8fH48WQr3kWbHiWSJFn7xhiMlHwoRiQ47OJtKoK6PZFWhMETsiF7Iz0AUvwgXznBesMPGz192Z7I7zfc/MCT8fdGZB0fGp2TOTD5mo02oBhbaWxAcfscBvQJjaSmG5ij8PObMZL6gppinnhInYwwdTQpIXyQjMHLBI1kLW/LdzaQHR6vXEWFINW9bLlfl6J3eAzgke3wSU9XvrX4KbSY2eGxrKhRucl9k8pQbCYRvqfA3jeNWQvPsSnmF+kEi6xgmXQKJ2psqr8fsRGM5VZp1uaKXxYshsSkDBiTICkOSOA2//IYR3NaMyU4pMhyvtY2XU81WHNc6F/ljFmpqT2y/YRbOvM2bNc5Rks84E/BwibnAWq7ZmfGfcy8JLoU2SwkO9LG5DMfBDXtpnbHHAGssv4lAZsMOXwFZ3iV0CJabIMsE7wpezh2z7yYM+hQD+cqy4v0Dpr+4FsZnxOzzwsDvCtJ4jpeB7Yt6l1cS/dsuNVkuagQuid30tZ7j+m5a/9Gz0OyrwkS4nfJGZu0jX6/X3hjd2+RJQGp9x6RrUplzXdJ09oge/+6Hbqxq8i2ejXF5zyFkupFvnnAfrcdLE/e+IlYJqDOkvRkietmEmK1WUr5Ii3Hq+lpaOV6LZ6ro9Z2ngxZWrYjkfOiF9O1kU+QGcvG97+qHfzyt9VRHtPld8a4fvMWFMCeuB1u5Un3qTxFNmxWGjjwAKKuyMZqrem9Qf06ECT/5YTyCZKKscvvBkSEZEVKes5XI/8H+n2+18wiGtmha+hJGNNgziM8YMPDiikcr3r2ZVijVzzWhQWPO167KJPcs7kpX2fXbiNCZ6P/lAsbWz25/7a+6WyszaTF/Yy/PtZoZBVIu807S2TLTUnQ1usW/F3sJHPCFt2nbbkJS3lbzmhsXrIibEuXfcdG1sPxygNJT+GQeC9OUx1wPolDqs1FlvGW0+ZJGh3eMdPy7opD8kRLvNwmq6l8nNfBWI4Th0jmUFC+qb7Lu2tyIrnugwXB2py/quGdtzI2MytforiWEpL244ubLSsx0KyyMjWPrVR++mMF3wWM1+Py+8GDxUvau+fXd+Wbcb5xQUhJ1tQ1MnvfbDK90LMz5K1HE7f3H5Gteje2dzJLWgU9mb1Tb6Z3IYV92vy3tjIKRgJto8iy7Sprl9cmLG/5aKxSxsqoZUGET/mOtOfoldYtuVTVhqYN5rroyRQwcgrf8ARjJLDJxlq2WcDgdNv+NxE+7+OPfEfWZ+iTQvwzLyM5/ygzjDDrFpPIYxAoE3LYbaQ/7NC5zXTVU2VFMN8PVP82kOcxV2kPf+cMiJMdYzIWq7A6XfoZDMgTr6lnxdTZ+Y55b2lnK1BYO1W6n6xs3sXJnMH55jyYM6KN9nwz8CfbvHDKBS5yXqzXrmzL1+X3Cvy9V6NXWG/lXvSS/pYzGpnqG+3S3pO9wv2NjXl7ovY2sF4qzCPcHJlp1lvt6WxmYGQ9O12cFkUPgMsJFjXdGCNs0lc9bKv/XfE45VOwPftRvZyMOcsin5wApLhm4iYtQBLyLBySMS+Xj03t8HjHGWZ/4LOlI96YW9UxZWPr4JDl75kluwmR0pZG4RMUA7tjzeqc9pyev+uBZn3z72GLgF+Xmc8HD+83MbP6XYClQSuRtHUxgbtYdyz5znx4q0UnWwcEANJRwckm/1nillYCh1rZLjQAW8lrka5jhyvZneo5ptj6pgukt8pStrMD37H5kXCPfK5stCzkQvyejZJvxtuFZaTRyNZvHd3XK0Rg2UmypM3x1qW7sqX4A5Xh5BXKlhVvWF4g8lu3jCzDyYaQmTiHbDecC2Lk/LkuEgEygRW19Wj9+kSJT20E8tOuZULmhFnT6hIPUp5xDSIXTxvkunzHhvTxhIxXWYHY7uIES/ED+UnY4QeTjDi/Syac9ksk54DSZjQ+txMNTFXcA7NlEPtoGy9ZQZC2PD6Mxynt2/Russ1X3MaObx7Tsxz69IhNn4PHxhmN7JYzdnZ06Xa4/4hv7nLGRSYP8U1uPe6Dyhl3uOqSB65C0TdHRohBtjYK8qX07lmXlnOqOzHq35S6qNzILljv/BA38sIZ55/5wnpptLk8sQn+iNS+ODnzO9K9yhknaaockSdWB+FrF7f8HePJh/F+MhJn1Lwsbd3KyGlvLivxhG365uay3Wj5AwVVPA//+MxgoKnc+kevLgPe8WO8V0ZdS+GfWcoITDMlKWl3sgL4sfyGOwZiGvc83w1L35MdxQt4S/IF+5f36ED5vkG2A90ubTfnXPQUsES53dq8mUSy7DIwqbI1bUPW9Z6U+7U4bUHaD1JOMksGYusrfxn7qh4KybCxTAwKvXynYbzAS3ltfLMSYXWSFuJT7N9Z4IlF3I+VzCK7TQsnDK6YpJa2cbgs3avbMjJ5lTgMYubKouvkFcVONvKW9Hve47zA21Ior1lWS1tlLXmsWAbp82rujQZUgvyOGb87IMLfHQvZlJZIl1dK7d02lj1K2jeHZZJVtjKiw2OOM6Ymxy+yFX+3IGP3LnCRD2bghrbgkWJ5l7ji/g7LW2zLBicbK98knOzw6SB1gvyEfabf4aJUG1Hij+JxsSvVfVN2e1d14QjilBV/+zIEcGD1DeNRul8zhfvxvt7ANp+wb2yqsjnvyhFVT/3NehX8nvxq47ze2LzmXY3ltCv+5l0WmtqryfHCWn54rdSXV3wOm9d8kx2z6KHndFnfQUDv3x0Ava8WZRrNjSeElUPucEbisYhLkbUkfOhH5RdBxv3YcqgRN1kgTa7sSH/L7pb45ox3zHTsnEiy+Njh6/JA7323MhZwXzB3AQaafNUJT5lQ1Bc/F70JWMR/LYDNeosirdlsDpzQkrptOxeAu5DXa2TrGOgB2W3b3uTTpq8TvCvZbkbH92UfX/Tcy4zL184kI6dOdq+3y+e+7IW30W6LnAPEtYR92kVPM8nNE6PpRSkgJ13asHLdWtKXKN9TsieGzUrpg1BX2UzUdTWPVwzH36PkYyc1wgYuXlR6ogWAj+nv3t3iQ0FiVZPv00mOUvIoT/UkEez4e5Bv0oTO/+XtLnl7JOczT+HCSS+OZ5KP/JDKWd93+LK2MmLq6NZi62LOgqkLLgTYMXarNd40qsgdIdr2BWc0sq0dRynTBlNfg22dje2nTbDqqpOHtTzFxnt4PH8sT36KbIv7fK/icRfu5PWIzTX4KIKGEwknC39elmFjL+Oxtvev7au4uJQvA2XLJ4k/it7+xMiGQ2p8m1YLZ+iqlyY7CszJUORTFxcT7pfF0nQPudTidk3cX2QDbeqBTuv3z7gY9FTNbQ4OkaPyTdhXd1fY98IcU4+w3eId/kaa2N3ABzgJkA/6EMWhZnN+z5ixnPM6QBPXxBP1fegPGD6Dlj5SeJ+JmSIcOCc6sWNpkGv0qxGP/h7km/ITACe8F9Vjk1sbrAfrhApeleWQ9yiFsOQotJAgk1ejJ3zQ2UXqQXlfpb0gkYfS1tDIahe/kL179PGFjSZ7Sb5VzyvK251M2dbJRZxtFKukB2WXrYvJN+RZtqktn/bV2egxGokkuQYVCPIRud5eYwTaXB9H4FNTt07FpJfiTH4S5Jm2/JEs+Z/J1fTwi9JAjAksr1FXmYhNNk2yis1he+gRxy3KeyH1uJdkPV+eGJ3rgAB2fL6ROukBiJzPuKeAyBkTQx33b0TkY9uK2XCmfOO4fPX0sfXxyw6GqYbBFY8pXvpLpG2wnPuVAkE0qQEt/eqSbzosR8bn1UOZM16DbUt8+ZQA6y1aL7Ctyq568r034XGTdsH9Gshm1SZtI7fdurjj01Y24+SWI4mL+yQV6yhtx1NJkmUZHC8Kwvi09WkBo5oHy7Zc2uRdZM1kJew2vcukq8mHsTw4xOLSlo+HZjwZqbuXmDOsPDbxMJcnztASl3mIJeUrhMdp90SyK0+czOZD1J8CJiwXWxSreBx/XRaZB9KuDBDuT1vt/WaduB48cM4JGRrOGHF/X/nbgPzPsIb3e2K2qd/d1hPfSsKTGuqU/sMBgvZyX4C1YGJH2v5CSXfgjB5k+Uv3rVou3wJ+TZzKluzCY7LJN8n4jR4uv642imB53y/ZVNVUor6S7WwkwPe0HUe5jZJt7pTtfNPYuIRNvmL/ZwJrdPZ5VaYC0mCxI1zJSR+zWdby7fwI6fOteqvJVFl5S4sdX5xleUsIK+Di77ewDFk+JjkO18iyTpr8dKvkm2WbJ3K06mnkymmXrSWcN9uETjYTrJOzvV8grDfScl5O1FTeG1U5y+a0ETf4Gvlm2U8e16U+XhUutjL6d8NmIRwzhUWj03WYumC5RNpdg69Y7lvnuQ9QXx82hk04MtZVDtkdcd/NE3f9c6SVS9nKEQ9j+SsmhsL3zK+dW93nWe8ec1Zeu2tjNXXjuxRv6tN/zMIJ257uNbL13sYOAdYt6TvbAGTcr8Zu9DBeEa/o5cSK+snOlnt+rXnNGzweWouhi97KPwl/k9KKz/n3cQD1yVgn69/xogmhYV+kpR0TEvkKxUF6GH+PhjPcRuk5I+KkA2Vb+lE5Iz+R47y6CVzlAb5/k2imx1EXAbtR3scJz62Mnx3og6H1Tr2sNW0l9lVefGmj0SM5D180IdBIhNJ+GKwJQnktGSFWcvy2uN7lZezFB/TnQQJ9JFy9i7a08VIFy1aaLkgz2CjxVpYAm1ca1/Krp13y6fTcIx1L66uE0trueVn76PLdDnY0fnMawVz9b2SkRKveNj3psWGp0qqXhPr4oHPXtWKbSpfWVv5aOybRub+06qmymWDEbS+dad7nd7MSiSoTU+SV4vR72FNlaZsKdf/1hW769thWb84rBgHrUcdCvoonVALYk7S5Ust6RW3iSE/e0raVE3Ivreuf22Q8zTntmPfkM981WBqL1SvRfurrGvfaOKX3HKnvyipbA/fntIhU7RApenJ2lzZSSa05+/eiEk6aLPOOLLLJxjuYeonlaHjgIvD3wDzfgmMLVjd+XbAP/e8lbTJm1btiaqOnYGq+Z2OHVe9WNu72dbLzr/vqeuLUytnfwgOaEmS7+AHxJYewbPGrNrIJRzf55Id2NinTuWjBsjTR6cpNByWtvMB4S3rMZr9e8Fni98DUbFPOa9znbeNxui/jvN2XwFQq3/EIV0k80dpzhpLNdrou2QFDIk5rPMA+HpO/WAg8syxO+lTLBwwK4Px6zMze7ztmmj+i6F1MAxRV4UgS3WSdlCU+s3yss0BS3D9UOhEmgQzieG+EGWNiVyYipC6nnfH6ccrCufOaOtKntEU2fIbVgBLvbFz1PmZzp2cn2/XXfDjLJq9X2hh5Zem7W2d2xL6kVYrLer/mUYntso5KiRu96SOorL7kk54GWEiOslxlHqtuaSTaPAx0AZHGQURWox9Y2mpH9B1JPmfi1tJ1s2wiPYrzt1qsb6YTtOgeoPHOuyCl8f3+G9nAnpCL0w/DJiffQuSg8tmTrqTX85ne8W0sBjZ5tRRKJ2eJQuRcZS1fpb3/EuQ7kse2FAEgFrdywPTEQMPfadNzfj9HwRO72GrzmUEVeqzYZ/essaxbGTmP2XeYM2raivvFBnN8xYnAAssrd2w+iKRuudOuf4O2BpvJrV4peikwpraya/Hu4eJjXEU2Y9Vbg25kt3YgivyqbekVoi/0Li2W8Cmn3eC+NHo8AndM9WvWmcuS+YZCxXXOwG3U1cb5V4w0pn0qwq9gInEI6/D2RbKaD6OKLfvWIDQ5xRfueHLD2Ab4+1i2eDTuBMayf4TLi+AEljUdfp30VhnQFsnEA7Ctf4HHML6ZsoqJ2aTDy2dyKB97NjxW4wb7tndg+SjikM+HfGjC6lgU44U0THvOud09fFN5rnKGlUtw4pNz1ZlOZjxAZfgycP/bGT64eY+Gdz+VMTr7iPtpVuZgXhL3zp6BP2TjmpGg5zVlZSML1iv0jwze2ax0oo/J7dLyUrMooKz3WGVTESiioLzu6U0/JsRx+SitVr1s8wTy7WmRhWCklFeLHYtpZI/biHxt1SNR9xs9PI+/epl7/BSfgIy8bCVqtXUtj2ZllfTqjWSjJH5ejkMoESckJ9E1z07P0NXla2lzGaTmV4hwDKSCNC0fWWQjfc53yMa9ET/oPh9ZH6usYTqnhZRtgxLEGkQZxeCXmaXI2irlmJbFSiJmXjfWA3vp2mT5Xt3aGEcQG9FnvWci3xtts1n15m+dxTtjmLJIaW/HJGYEtIqnHSuzmO8v3A5beR3pb8KycST0q4NPhqQsOIAGlHTsHXNAM7AVKc/vqHHojDtW+yQ7593hM4NOXkSY8Qa7k40JF6NfpB+GtxtMarfW38NjSptwcSPrZa9wUaCscgYXYcE6uinA4zzANmvRuZEDyEelP6dxmtncYLdwfLaTtVI29QcB7OCHiU+IVpabbCnPwjfcPruQDrKofBN6zW/CBUt1TyCoyHktmF+u+YSL0pMexjkg16ektBqyc9LScYYJp0nYlOX0R8NNEeeJ1lnuM8YWzpCwS7hMcE8nbGcsBuLJ1shrYGqUITDV7K9PxY7ZngQnPh0+dZ33Nnwj/ERtls+4STPfGJan94iFPwdgenUODT72zOeDm/dw+FhbGRPhNnHDkQoUXVrWZK3ZgaABlpKVsuxF2isMvX9kfblAY9urbYI7Ytvq7WR3aXaEu9GTiK7JK+nd3PP4ha4366E0V/eSdCHOh/PK+wIoL43rzSBDa1r7zbx3YWPoVU9hJFIJKsuqi/NNJyDJacOOXHonf09fbcyyWd+6jSMHtlGLG2v5tLyjHpOKRY9oqSpNY2u2Q4qsOmHm8lWbndTLPRYVPykx2xh6NXzQ2Lg++VPXW9+ZO5I/aGujXzdfc1pbtZ2TWgXgE8c3hn2DXO5za9DuHg0mW85geUmtO/XXK9m4V2R3ejqbc6WnsOL86MGtTRvKADZ4XMvXxLeY2uJTYzOV6x6/9H4t6Tc2L/lccdPO5isbk15Z/djYWHHSh+0bvXmDxep5KbKRQVdL3B5Zb4NtvALS5d9xiOXF29/tnv1qskwphSQl137G41qnK4eAbaoekEa21dP5JstGdOWmvLBYF+tOd2VaWN3WCWii03OVY3nhhZWrAvfN3rCRy3+muD9Vc1niAZy+gMiyz/DtD++3lRGjYSyk5kuEdjJSidcMkuz8MTuGHQQxn16HmOpmSxoBnaeFTyAblXtbSvk8SUpLNlZZsjmVb0l4rfch2fl7J8tpV9/UxBu9nX5kva8pz109jc1tEARbWnnm325335Vv1usbzebvZCulbbjZ3+Nq/Zn11G1m1IVSeZszGMBkG8KIJwbM751siup8ojbLR+XOL1QzOYSDXDaGOxikFWlNT/YJPWHitDzJsfrl9+NoC0u8o2V65pMooSdSWtJ6vkFmaSsKP7njuLzAX0LX8g0aiffIbIuhbbexp0ue1vwK3rpYbaQJFiLtQaush5/odebymG1330u5ExhrhdurRD+cgzrHcgIrbg2eFtFhdWnwDY7M9sFPs8y0yDp37tKrQnZiWIs5qV/0/JXyJb7p9WbZdKnisWDB/WWL4UW4xNSa785GwtRH8fju9suq9MoOutG+t022bX3T4rv2fr3HGYyxnHZLcpkXOK1WWalpw8ZlW+VSpp5DrCt5N1E4Vi82UU6+00BO2LRuXM+4z/KMx84R1rWpHxnOWvkGhuaJDz/xch4gWd5S6Hg880mcYfhpvIL4a/juf4/JH5DIj9L60fTCNoY8Ftw/gz8Kdo/vjcnkAXU9tlXxSPkiL7RNWZETouOJmXOG8814v9kPn6L3jj900A9u34PhfbcyVhRLUSlEs0vXXDPcS9sCtMmzz8/SVKyUJu2lLN3byyrsEJCErx0ZXNjMNrbb9d4q25UPAdYP23hhT+ubec1JAdek+4ieR2TTOKSS2VXIzWwjaCzTyVIJVdPqfqtnGzZH50/ZVNw7DS2nnRnQCh/AH7behyqbnwIl8/xXvBPA1iATbJGLJ3JBykyeTpKJzDktT7DmkyLXUfXmyRhIT5ZV/7fKBkkf5cCNGDAE0bqOOTm0p/k3y39e5ydjNuGysvLgwN4jiHfL7Jh+hdA9842n9ffdPj8sTbACoGM530cViD5UOIR/ac27hqvu0Ni18k2T2aN8Y+bfSfsoVz0k28l0ae9U9qXeYttrbbwX3zWHHmM3YQGS4puuXWxsuscZso3csbHJKPl10Vs8rQI9qv5aK6sBaTfE/BkjlkYP5Wuy/Q7J4IDs94L7l3yjqeqWSQNhueVp+AvD2MIZgcfBVbU5+XtelTPcjvkdMJTrjtEx8avfk+SnVvW+fz9SQo9P6BCTzFhgowmb6U15nYkzTNbfLwP8PeMo48ee+LzXvFFE/ioA/ziA7wLwRwD8zar6H701v3edmMWikzoxCcQHppB5bDIafGbZ0vFtCGOdrA4BBxGSEPfInHQlrw5Mpb/fyuYeDhTbvQxayiPI5enIZ6cXd2T7ou/TdkDb6HwVQVLaqnfxTZP3VfkeKhPbf/SmZlldE12V15f+SI+nrXnxQRqNnk6WbojfnwN/Spub+viRJj9UPqn3qmyT92Oy9P0vsxG5vMsrnzvZokdIFlBK28hqkZX8OlM+et6O0896ZScLzbKeFxPjPVlewTRZzO/PRJxlb0X25uin5V22eeIjxdOTOsQHuuvAQKCe75cT1sbNuO9tesZldo7ARYkJkMXR9Yz4/5AtHEFtRZPWHG9lUTEoMpNqS4d1FXNK+09pG+y6p8fii801751ssWnB5xlfsW2ftuZV8fee3pTfHb3ZLr24F797Tsl4vOWMnd6q5zK+Tlx2NsuSdrSGdVdDZwdXTrSgwOMElAnXTC4Nn1iPKCQZoUtaj2vNp6Rd8l7xd8QqD7AemixJlo288oeU6z3Pj56mBYbmMhwpbcFUqe8050ngIbHb4pA4Lp8nWztZf2du2mhbEm1CyrK3xAGZbw6ovzs9DgX5wIHm+u8Q/pcAfouq/isi8rcA+K0A/u63ZvaOpzICOFY/tvGZNt0XrFv97H8CQGjro+Q0PFhdPrmbMaS8tJzTLgtpF4DraeeP8YdyaAB38cWi8AG9E+weaa/mm23aRo+n3dm2k616cVE+SrfkNQv4NlkUPxdmaGU1G93l2+Ygja8Uy6Wdnvr3skZLvpdbFyk95Ru7wTSa6E7W862+CRLjLYmHvwDNZegGBHmSFfGZb7FxdOtA56onvRyOfI8nJIO0eQWT40Px2O3CE5cubcTjiRfbifxtmkY2rV4iVlCjPPGEjU/O8gndfBI3Bkhx/HFMsmLriuvVORgxv6qO7S7KWx4/gwGpIcVWRok498kFy1mz9avcOSpngPLKVo8T5ypOu15kDllkGbvv8U2yONtUsSNwQkt51/Ls4j3frDh4WYt3ZFnva3lgy3ONbGtj1bPB41pnKXaHT1vcf5PN97B8I/2QL9a0a7YOlJ2ylE9whPZ5Vc441rTeE2THGTN6MIZyLqAJT8SjrDGR4LQJ54O2loW7emrjwhmaF83cXlq48jgifmw4w9LyabYDnxmPzb6Zjg9eogUxywtKHOE8AJ9UHjjJN8EDwzeZM1iPTcxAdmXc/7hhwPBn8NLnhV8O4F+dv38QwO/HV3FiBsBGjcioYshg6KfO1Pf2iENtRIEsSyH66LgnvEeGSdBIicxbtpZJSVvt6vQusr3ey1D0XiataTvZ+XubFaVVil+SU+MbHxc/7Jteb05bKMjKUWW7UG2U1cZHZcOAxsZKk4uNZQS0F230XsiWpLZ1MSfVVi62klh8HpucyHYdFEiJW7ogiBlnHUmvuoOMbA0S4qSo0KMI0os9YUF0VtiQJXIRhb0zJiS7TNL831n8kk9E9HJBPW10Ob5nREg+bGTTt2oQAw7QSqpqECqmbByvHMTrhCw6n7hpEC7Lmi98kKAeP3DiRjZ+GUFqO664DyxH4JO0uQ60Lyl4gHmha2zMPzvMuQpTT8U2ltt254q/beJrvnHRV/FNsbHhgW14BOvu8M19n5Z8imz03Wu9r+HTLe7vZEtTfVj2Xjyk76Zbs492fEk/hqnoz35cmpys+e6+uWbd2LA5OEM3+Wbz0tMnx7rMN2s+plcdF3lguEzKkPOquG+4l/IuWM7YPtau8oQt6zp9SOoTIvcNxTEx1vUElscCm4ZeId6b928bG0EcEU/NeHHubPROPyggfmDIZy7IffzwPSLyQxT/AVX9gQdl/x0Avw7A7wHw6wH8ws8x5P23MvLqKSJuL3ALkXNaeaxx0NYS79B72baHI3jat0cq1gkhkNJC0MpegbOYDUWWxxbLSmsp35ZQO6LeyQKLbNXLeqT4BjVttWFTvi7wJPLymOS7fn2rrCyyQj+SLzjBTldKG4pluV/2zl+MQVvDpFzb1L0TrHT3Vtk8CauTsm0XWv5yXuaB/P0ZpfSypD3mqqxwXiTr+iBjpZHvH7mKEsFSeSy+38qYt6nUj3OGbCXYLGvXjmJHlfWTs+z9AZnlqwRLsrLIGsGuegSKw33TyCKO5bf7n4qeN4f9o9v5lK7ifjh6TEQjvXMGD95N1jMtfYQqbeUMNpH0NHzjuFF0LJzxmglMSZoe6FVcLHj8Glxc+IYVl7/cxlscfEX5Ot8kvxZfLHb0zSZfk0ir9R6l8ctdHbBsLR+Xp8lvj9VN/DWyVW/9UexPBkojtNGbcV283uO+gD2bcP7guJR4aUvz78ITbV5Vl67d2uPBAzXfkU5dKGGqpTnyTo0qy+44jrLtMdmReYDzdbylMvB298QD82/awi5sSxytv+pV50heELzR/Rvp5W32Vt5bkv3gE7PPWy/8YVX9FbubIvIHAPz85tbfBeBvAfCPiMjfDeD3AviJzzHkXU9lHK1ooF6tbmtgMZGQx2WNbBLgUtoF0GN1ZqyABXDl4/IzQi/zISlZd8TxgGy1kcvXdot7RLDJtzVmo7fLN9l8Z2XykY9tdjqXAUM3Gazk9qCsa5OICd8i2ZakBavfBLaMlvVS7foku5RDWFaQbe7qeDRWWpQIvdZ/UIiv3jO9fuqj2dG1NLeJSK/EV+BmUoi46/FtI7knx+plSVv1Unk6PYNMpNjYy/rRx5rJuJtoidjkkp4sJb2hh7cNBqkSESbZuSpZbGRSXZ9owd9h8CdxehY5krdrJHsU2Xjh214GpxMaP/fwj2U1wOo9P82Nvs3YzfgbqZfTCOuIP8Wz/kvMSfGeb2z1enaky8/ALIH7thfH9FyVL8snrrN4p3vihm0ZTbKc9wZztjjYlOmejS2WXwT+HEBKXHRd4n61q5avlusRvyr9KfjU+qhtD9r70W1WVIelUUnBtsU4z2/E0xH4wnlpTp5sUvDaZXz8OTiE0/KiV1fOzBUrHucS5jziA84SspLzsbxgmFcnlCQXXGF4LCRLdlneaQt65Mv8Ex9wBuxpmU26Qt+8RxyRZWnS5eXLNtoHocdpkHGgR/IHbVkMzjgLN1Gcti6G7Ad/xwz4tm5lVNVffSfJXw8AIvLLAfwNn6Pr/bYy2kSIgU7njTmyGVEiJ9B98LBtXidk9LRObMJRlIj3V3EQBKDR9Ic96wdRaUyRilBBtnBugO1E1U52gaM6SG9saY/eB9aJ04Xs0rSrTVrKi7W8VbZ1u+RLmnzT27j6RkOgsbEvbynhhY27+uz0eht8pV5ggHTVm4hxq0cW2SC/OcCzLjOvJSKfsnFCo0YeM0PZlm8vKzLtkgD2mtfYCTZk48mX2ayNjRFncnSiExu8ENFCgZoX1rT2bpbpOei+b4+RIHkYwWJN6/c1Xva2o5D9HbBpU8jSFkMoRBFx4dMSAShvdRx5Jdm5NcVtZJJ9UNbu2cdHBfaOGW+x/MygCj3Klipr//SIqm5l1JJY/XEXcUadlPGIkrrtFeYwPpuHIknwjdA9zKdwZodKLt/CA8uNmZfCZVOPlHs2Zz9ik1auZFubrm2ul7Y2Nnj2qN4tPnd6Pa1hIU+oC3a/gm/8pGe+13FDyxkleENo0nIbdFOkTVsxNbYfBg+oSP7MhcjKA45dpIfy5idBVe+IBw8MvrGeYvgrka13F23yYWw/SbZMwOZW9LCZJlqEx4q8MGU+ShxhZYTZXcrr2B3p+B3fcd/qi5+iWTxzVfBN5QGseAzD4zOlte2LnDa/sxw47YePeF4a3yibGM+yh0/CFIfWrfUfNIQLv+NBRH6eqv5pETkA/HaMExrfHN5vK6N3kHlhcqdfmPd09g6xC0TWzL02eXLZA75y2W8TFJLNdhhoRatOf6IM9YfbzHn1aW0rY3nFrdjI5et8VfSYCxq9W9lavkbvVflS2q7XNjYuSST/7Ui82hx616eggmvZnFhXm1o9xRd1OdAqiFcBFx8LXS56y0BycVO1v9NT/WhUXmSltVFcNpHohWzUm5RrJJviWZYJt1hMpFiJepKq56p+yIeljy0dkic0RtCUd5ARnPQiH03lzx/1hG/xMPmdrG0PcXnpZM1Ofu/LZJHKe6MyrbJnmhzeyFeRl5JcyN4kyFiK7I3KO3z1GXtGDNxEHAct+JiSeID3+2y3MnL2LGsOF9zFxYo53FDSu8acJ11bcN8mZTseILM6DBr3hC9d2rzMK0p5OuxmzM4IlC9UHEnf0KK/b8LyO3pTek7c5JE4NPmU+3LhjMYXKwDb5VzvnrTzTZdXkcUOyz0u3hYWzijpM97qmujCZpCsFDHP238Xm/3+SCT+WEW4CPDJlKe3BbXI56g47/diAsR1LaTnqPd4Kzbpyd8PG/87iBdEYtsgEE+Yatzk45CpfCquTciieNrwjbdG5whMm9OpjDjxiXjO5APLV1n3MfhURhC2x2TOZSUmZcEhdLDJ5+D+1zv8TSLyt83f/yyA//XnZPauh3/4qh3uT3T9iRc0T+A2silfKdcvZOuk2z+O6UbD7UiFIHJMsm8Irc31Poei50qv1t8d4e30VHkCwpT2Trnvpb0uryab23Yzkevy1C3pNDXpXKuuvlpIlgnWRphdebWRDbJq8yZiyBlmoqsDpEXWfUMThytfsKzFG1kpfhDJskaypjduh/1MJJWQeWDCsjzJgk08rI/aKiTl29noedV7HGcfdHEzSm3wESToNk47fLUUAGz7iGB9bw1a/EtH3CsAe5pFBL36Imw9iqx0sj4QoFXmIivymVtaykRqvR8/V7zaYLf1s9ReS42/CheLnipb+iefDLl8IHrhn5BdunLFhJrm0ub+3i5U+RbLO5mKvxe4eGWjB8OknWyXfxcWWV3bg6z5Vr0pvx0eU67hu4YjahmqtOMGil+bWig2OE7ykzC6q5Lxo1/opYlQ+WFl0mSj5vKW8mQ8zvl0HFF5IN03tWnHQ5G1MiQXZM7Y6THZeK8WQNqux4taU7axw7OVjd7SjoJviCcMpwmPmUPyMfz0zUvaBsmyaVvkjJtsfHz63MjCOcz4hmU/blDkbbzfQc2q/zCAf/jLyu99tzIyGnkDV2+BOuP2GN4nSWOENwmPeobds0Hxsh0mlGdZlEH8yEuFPki9GeTbdheFpE5qJz2ZbH9aIOmpLjFZ1lVtoLQoehaYS3pXWX5CtzTtRu+2fCXrxaYrvTsbzVs6AUPtSWMReKR8hYx2fnR/GsXbFpZhif/uZcnG5BtdkoVtZRuKOYSdQ+0m+zpOLgwRu4M4Lj+ljROz6AGG5yoyacNI0X3fyUapEoE6oWquP1gfDV1BQnaZZHk7IB2hdtBWHUjdjjgczzYD8AlibO2jyYmvCua/s3cnwkvvbNn7AwqM96/EZW2lMT7gybJzkuSyVX9ZuTRblGSF9dpfWpmlLSzAGWmnH0Uxj8K36/XUxjMmcp4GVH9vCNRYx1ZGy0u8P8xKm+12Yvsx2oku2K6L7MDU6GCjBptJ0xY3Ct90ZQDcRutgwVXGUXk7YuBK6HXlLZaTb+7ajJWrmrTdgSKO5amMG9lOT1W7s6nB49qStPFFlYVk93W+CaMaPJZdWpZBgHQpYX4XLfDJnOtPdqsOwisvePKVJhuB4J67nEG43/nHfV7KpxOvoqkb4JNjSDlvIec416fvcNLKTYFx7rNkK012GLOJMyzOOw6s7JUzkh7Ln2QPL2fgOYTfz602xxb99JkRn1gFdo/t/IbLowIyzvMECwXLBfbdyRs9xbJJWXBGg+XGhUKcAWQs93iRhR21n/nmSFz0ccPn0NJHCu98XH70SMcpIkFRDOJmbqLJUsJUJ+6Rr1heahnPDiiza0qWFV4CnnklTE7YXBjL3pOYduqRcTdhJunx8rGKjm0aG7XkxXq6J0VpbFFk69hDyKA6gBg278vH9SIocdYrq16rH1dZSZ9IQyJVa+NWT+ObpY4XIsWcqBgRcN1zOiMP8o6Uj+NygQ5PgiC4LLvYmIwik4XjpZDsUx0nVsH7QD6ZbkxcqA8KqC7CxnQaokSdMMEey5YWm9AaMQE8bD2SLD/BEn8XbbyrZROiIWqnC9r/DyfyqcNIGvSu1dRzS3qQ4rZSOTSfZPNQ7B/mlJDFTGsvbEc+2sjGoOTmH/HMW2UAO3wjypBlrQzxZIs/K5C3sMTHRG1yGO8ZsOy49smfqtW0APX+twfp39kd746UD1fy8fdTFjBcLGTgfU6iK4GXM1LSpHvF1OjrWo2lxwMZF71jLHhsrb3yT8YRjTIsidFwVbW5ybfY6LZI/L3CwQXL+X7l41KePZYj12kj638Jcu23bapaOMTzEuAI3LDE7uIdn+6wnBEpgR2lTZhItnc2tn/Fs1EbrHdYbnh8TOc3nBGTu9kqN+VzfKAKjMNsRgrjDEtoC182ruI64PepQPhrOpjv0g4HwE/RjbzYQSSL4AHWm2QdjyvfBLabncw3hzKW87bA8A13uRvpFYny+6EcfjM4Q8HYPYp40LvBdhCHvdNr74DFKIR5QHHz4/E126yVM2ZexhnLros5CSTOjG2PwSUfNrzTE7MvO7zvxKwEByOLLDxKHVSDAOvWxkWCKmuAeYBMHdTXyeGyOklAsaTlHwauvfkz3tuc8trauBVd9d7La5OJp93o6sp3Yda13gs9q43F5/dkN/d5Ytkpq/e79wtS6jSA4LQxMN7JLkTfGcS3E1HkON/PXaMSMEpck81VtutmdZsGy9by1cm/1LSst8jWscnwZcga0clcgeXyAsW1RW/IrjbnNq3LPY9DU54hq41srLRyecNGLb6ISRg/2RuTtixr5ee0wF42+zVkKznXY6BvXypBL8Dovx7DY/jkIAXmErULPVD0uFhrvjTgTRFa/J2V9BiWk94LPVdY3uZ7gb9us9AFKWkfxedOb62zTXwJF2kXlLzkgQa7a/m2eq9ktde7wfmrtNnPtOhzgeWRnm1cW+94N0iSSIpJxT9b3K6bKgmfS5tvy5eEe1lMPR3u99wV5WuqJGT5niDxTdigJY85gZXVxDXf+zxgynhy6HpSGfi4+ySKmCjbjht1ioj7hQdgi5OM+2abuv7hm+AZPihqcITFh6ztxPiQQYGvyytw7zsxS0QRq+ktqnmHnI/0F4DjFR3ayqIYbK7wJ1sq67y/gk+seq7AvU17Wb5UBC5JSsvgvOjdjSuqHo4r/MFhW4aGJLZdr+rvyre9UPRe5G+ivY2jQEs+LCQX5Us2kHOkud/oXfXpheymtLreX92lRU/5a/dTWyrlsOJ5McvBH1UX5RvbXrTXS3IxLuABwb6mK7kCWZb33i/7/UWTrExjK2ECSBOLWBGsf4PwmbCYrFDTWnz6xvf6T9nueHx+4nUAsYXStq+Y7mLnAZLVuRKaZE+XTYd56IybjUnWJnSnky5/v+zwtHFE/jG3OcZq8WcQdF3Vp9bv21JMDoQAAQAASURBVMw87dDlg2Nw37eWH53DT5+zJq2ApnOrpyT1jV3/5bdpeNSTsLsCO5Dzq7he9VyEKJ1Q/BrLt7hYQ4P7VWTZUnihd2P8fRtZ9g167nHVJc/typfqrMd9bd/rakLHAzuuQknbYLnjcVt/m5bRpdUSd4k6Qct5xVPGlTOysaxm4pk/sSOcc4wuerzVs4mEv7QTYOAb26ixRRxInBeTj9DHnBDY3fCA1JMJ5z3bWs4csvANf3+SsbtsiUTk5ZMi3yFSdPj9geVuv/MN5WnYTVx1uC+GTTcJe8zGQzXyJg58hm9v+DBPzISXO43vrLPZQNz6oSVdZh2GXnQtjSMVtu1Kd+fK17wfCf6SDpKdVhb6s1w3WS7CXcB32TXtgsE17YXsNmxkN9je2nj5EdSN6JJWYey0z6Sxca/uboLOqjYam/8fyK+rE6XiXeopskZ93lzDgPXpljZ6eqBtZSFFz65oRIRJjy73I9ATnNTPx/A4fetrsY9Wl6ue6JqJgPkJmX2zK/SuK5+uWyIf+ATH0vKph5p0ot6jCQ7bw7LL+2Vl2yE8LedNBD3lD5ZFrICmCdyUHdsZ53fLMJ+MCZXPbX4DQTciktoxbVt3LEe8c4aC2RbR6aza/6xKeRY2cX/bz67679QTzV+Bg6aVHS4q1id5rOchLJ++aWR1I7sNLabu9JYLlPbR2q/vVl/KNZxRIO0BhSDfKJbKeUAvAPg3ucSmxj2Rd8fnX+q40HuVhbVXfl85fQLiUu/KCWOX0Vobqc3NxLQLFNapYpukJsEVL8UxcwjWRbSwiXEybFZyE51sW2QhgcdmU2B8xWOzbWpQwmdavAq+0MIhZ8gCKS0a2YPzIaxWrNvH80m59E2yiceOv7T1nP0W2H4mPzu2W9okO47dZ1l7z9h440YLoh86PLcyfm6gEaKvPgVjBmFHPBEcoVh03GANiV4UAHYUmej7BMjDJqF496Ak4k1azstCRqxZPinxLLvoTTamgt8n2yK75HUhu4tvBx2Ulb9HVWTb7iP5t3DaRECN0gsb8z1dyWyr937aZFO1mRM7u5Eoz5qtfe7K5L+biYlwvNqRV0BFsKx6psmT5HiSXeJrWvE+y++YrTbzKVPLNo8j6zkQr4+6Xi9PWf2UfGzycaC1eRzQEdv1zA/5yPtcPt7ON0iUJouHHSdvNvMAZO7Tl7Cd08qR87pBs54Sj/fGFHLQu26L7JmPZ0Z+X8BPeCRZ890BxaeyDZL1fNbpXMui19qfrW+MpOGs7XH5NE5NoyaftPWqrnGxADDv/ZT80/od0ODiI1i+OeZSW9+ErJCs58sYVN4l3mLMFWfUtJ2ejd4K2RWP210gJe2Wqyxa7ZixbKNsbax6rT9bHZYv7aX38bbb2wumdlhe/drteqh4XPkGBcuTXo8KIJpwv+IxPC7ueJ94SUnbYCqX4ZIzDiRcNIz1blBkD/JV3uqnhUOw6EnH54OwW3L5LR+fOB2K2+Fq6P7A1CQ7ecBtSuVDxmOJtFa2e5wRx+Vreu+t4nE9pv/GvtEzvyfWcEb65MqGb3jXyIcNH9y8R8O7f2Daf1TA5uhCdJnp6il56UQjYCWnSuxtpAJ91HlX923aQs7b8oEGFRd6d7r3pJBdddfG5n69fam32rcR3m7JbPTe8+O9kB+MZu9dPRRNx+M/EmjEsZbvCi0KoV5OlGs+utZX6jSN7CaeJ3CrbBmaFCIssk1a7j2HNPel5sN6NMeXvENWSF/EBbaSOVRlG4X++bWCN7ySiZR+TgbBNmaC5adXi/28p1+ZuIFu9dWIl2WxlbXyNU/KPJ8sC+jcwqhRlkTI+TCSV4c64YmLy+0Y8Cvc8wX3WS4K30wWBHnUpyVtsSZxEy6BomzHXE9+vKtncUfo67YytuXr8q6/N2n5Xg330jI+P9IirnjuVWlp2NBIbvnzvp26Ri/yuiYkbW3e5xNlXrC8C+4cTUOoOF5+O1LZ4H5tbUXP4ptrzqh6Y+Fuxo9I1+H6iu0RPxwXqvd5gkJ5ER4bp5gc47+dhOiHVAnbpp5mCM6nayltWbyqetPva85I99zWwHK+z6dO2nZMS3+QvsoZMelCwzdIej8L979DQZ5PzL6kYJ05gYz4KorH508XoN4Yk7IgtBgczzj3wkU/oRom4RMypgNJGHwm+PHqKpuYgpARDlChRxrZBdoWXxU9O70su7PxDr9cynaXvED3ZZdMGpt3NvqlTVqvlQvf9HW/0Xtxby2fboSsfHlVt7dxLjv4U+U5SE2kiDLJDOIYjD0JQoqstV9MWTWZ8TcmNJFnfio8wd+7Ty5v6Ami4JMKmZx4Kx83G36XYCFXJicZhGkYwVs86iQl9OvaTlLeOo8ktntnr9fJ056qRT6HbwGZcf/NEzr1LYXgvJxsz4grYNtUXK/SEfdFVnSe7gWOR/mzbGxlHPc6PdX3rwwsJshbswwYdbbKhL8U5wyA+b5PdEKXFUrLsz3SWzF1xZzUsTiL0vetEzCWdzY3egpOskz2zSqbMIfKa5dS+WZzfxRTr/D3Hlft0nY8t4QH+GYvq3d90+lJsvKK8rXYvekbpf4yZoKruJmUkQK+ly4bTpaCLbivkSOXnyYrSVaFvom26jVsq6dYpsmP8w9PlOZEIHWmZuJU9Fj69DROmSNismF5GVYHf0RcJwbz9r56vy5OGS6q8GRmpk1YHqclmp0VU4/kmyJrnOJ4zPG5xZBs9i2I83j9mBzewXLNsrFtEhB9mdskz7fj/jO8KrzzcflAuy3FI0jkHI/aV74chCMJ3LxrVxClIPxDOF71jnzWb8Dk75dVkl9kS5wHDLKTdd9U2V5vh+FXNt6TTRgPtO+LSU1abbSfTHQbsq3bOtv6u7Axxc1xDWn25ROyW/f51r86FxMaG4OsJN96oHxdQYesJBtTfhtZnTZyW0gTQ7rnxwqXvNIRxZJVRt7jqj+gmJ2mbhuMpEya4u981bzNaCZCgLadwL79wnkRKSKOEbbs0lY/QZrQHUUPb2kBmNiq7IyTa9O2mpoWSAOCw8kXsOON4/wKHjzcl/0UKFgGHmETy95oEHLz+8CypaX2i0eDt9lZQ2V0KKrjkCbmAXLediujxbmxMIeUvsF1YWnTTgvGjVLW1CUo6wUXK7Ynm0lvfXGGsuehcsJFKscWj2VfvmRv9U35a1lv8aqWr/is2lh5rsXY6tdqK3KaZCPZr3TzysaU90ybXnsn/Zm7SoMqNiz3qogI0rteta2xnsXmjazEt7Y8Eyl5AajH2C+/vRGVLuSreDk9f6LE4vVI+4z7XKTx/6OxcfwauB91Xk4xlEjrXZ63XpMdUmRti7pv4xak0wdXHsjYa3EF8hMoxu0Zv+IMw26eoN2mDw6c+HQQjzkPVtxX13skvSDOyFie9CbOGHq5TP3hYR8oPJ+YfX7gLSC+hkOrSdGsMqo6MKa0S+5JDzi/CpRJZn4nLZJ3OZLNxaareIguNj+6lbGLL3Zuy4dLm7u8UuI36qmy1Rf3wuqbKdjIJnJe8m8mWjtZs5LzSH81EWXWq17HlVj56VOysejlQzbSZAqRb9qG0sRtWJcnNVOWnpqlQfaFXlBeeZ/+2kJ98KUAPzHze14XG5sRv2u+mSS5SoO805M+ii+y5JuDP95paZNNusiOpminG5Ks1vJpyst8bRMvJmth30CL3knICqRv0Pg2lJCt75A5mVPaTlZwFtlz+IbSbl6Jeiy0s7oVDAKfCG8rD3ietRXWLYXNFsOqa6MXuMa6bP/UI51Nu/gsH6/GCfEL4UzCnAKBr8L9Gk84gmUSl4QaHpAmWcq7wbpavhQv95KeapcUPUB8c+5KLwe7N/ukA0DB/+17xxNjtnzalo/PE01Vj2Rl1WWyBm2EoRlbc16GA3yvNLmkl9NLwtQob5XNrlGASlgX9IxfXK9mWWn0Zny2RRp1G4T4Jqfdywrp9ZMLk9+aida8n46Wd71WXl7Eyu8or3zD+EtPsiYeH4lDz5Sm4n5cJxsnZwyuylie9bLNZ+IMyPl5uP/tDor4uOFXPLzbxIwBiS86VBmQ1e0gfsIW4ruKnhHJTkzwj37O++MY/QacDdlJr0IcvDBvj6QMH5pQlc1o45QXb9GpRXBZNrGOXZo471FvZWXV0+aF/p7JJj0Xeq9kF70bv2Xf9IZe+0ZbWW86TNxd2prXVq+mtMKylWzv2FhXppatiiU+7tdeNeJ526OWvErexbUhK0XPqjd9dHpm7CToNg/iMne0WxuNYOjekgbIBOrkG3UQWxlN7/Sv0NG/9R7gNg9ZdZtN9mZ22CSFSdzK5yRZVlvdRkU6RWySppMqbVMZ21HGyYx2L29pwZykSZJNNmIQvMzysuxBeg/Q6qnLKunhldnPCIbHh+S8Ci5G0ou4eoVvMJVwfyZd+n6YVHDEjuBHOvo+dWeZnKDwyV9rc86W8NgMamQ7TG5wcYvHF+WrW/TLwcjXnNDp3ZSPbWY77nKGrGmXvBa8snsrdi/1m+4xdney6n/XUxgz7te/GY2nkewbXGE5BSFZypkZrd/SHmXY4j7rtcnOljMCN7kGBVmWJwfLJJ8WjKps74v4mz5gPfE1+kzgpckwtvPhGybrfIM4tdDMcR5APunWsNw+nCXEKTzRsbz8qVPLNx0ey8Ti8cTKfhtn2LuAHe5b+fI2SMXhE6uVMw5V3GZZ0om88179fMxHDFbOr0N4t4kZk4aRwFilKyhqR7s5WDdM0crCJ2VQ+HPqSlaenk7hEWAOGEiv2VxEPW/Sy3kxAKsiTkaq5bkgskXWytDoWfxqtzlSbGy3RabyRVRAJFn0ouq9kFVQ2kpoGJilpXw+QVCdhBwClXD6E7eEiC3O2mLfKAQ4uNJLoUql5DqRolf3fi1ZQVmvLU+EY3OzF/AyX3oql4hb5n2ibgUO3xJheZMf7S+RZCLQQ3N1iXlyXS3lbSmjmxRd3FBKGY5SfwfVWez/79PGiVN2olaQ1VHsvB28EllleXJ4Flk6SXE25sN9EydbsV7ephInK478TFYQWw4B+LdrjECB8sI22SzzyRZvbax6WDZOFItBSd7KeMa7aUX2s7a0zO2KmBOeijdjcEi4PyojEgQYTFyUlIcumEqTNMJyoNBJwVR78uWyIFlLSzCR+IaxvSl+lV3xKsp3n6sKrxEeMz5VLF/wqLOxhoLVc4003ao8p+jKl/3Ktcsd1DmDq7Szu2Jho5cpg9sCAIgKlHBRCy5G/mQYYxY/drFRfW9iKezOxukda0c2P0j1l9t9XlxT1PqtJh1jhB9cbM7WmnVdKJRYrLJJCPFA4HHlEPjineF4dAOTtcHbTE98Y5iqMHwD/VPC3xFujSwsrZcXrtfw/ZiyMX/OPGgHhLge2p5ofDNk1XVZCXu+YTy2tOMpWWwnjy2FVv60HXHiPmN5+tyKxKSzl52TMChuOC+46oNPfJ4Ts88N1mmsude79mP0Dr2bVp0QK+h6PuiJdkl7QViDAIMt+YlaJYI8/M35Kv+QtUw1YXpy18R35rd6Ozt24cIXXdqFYDd5LSR1R2/msr1RW73chphUyQGtLBeK8qqeW2V13Q7UZL27EQQ9CYVI37g6SbBNRe9uBdU01V7Fq5yS9PLB0Up6KF8nhypb4vS0y+7xU6YI63bFrEcX36CWF0QoVZaI7qiDq0JG2casJ398UxEnhpns9NdMl7cJxkCD67s+IbRBQbs9caaI7TKhB+j0Rhn8CaQPQJQGCQLhLS2k98sLe6AY/YriNFFJfU5xd7uhXKS5h4uv4YwF9zs9FVN2sve4qWDqzsZt+RruucLQKut/Esbeyas3cfHNLt7XoV7KtjbdwUW6k+939Zfisvqi4iQn3drBCVfPxra5kOYdBKx31ZPHQ55UyIbWZsZyzUkNu9jGrnzzd66HsrBnuzC4dISLLsp4TGnryb8sm25JlT0DM5fyr5xh5YvWQnhvYoTHlW8yHmsp34r74/p40nWQXxm7gYzlrgsK55uFQ5hvss31kyrP8O0P77yVkYZgBqhEvJbOEGc7ebO4XahoL9voEucrAXR0J10s0g0YtzZ6hxcqH9ZAkza5SldtvNQb6apsmxf/KIOixTdY9SabuTwXZN0F5V+N4vYl8nuyy/0SWt/oHb0B5JdFZH+mPFZPjnanrk9IZlHfDUSUVhqXxn+nVwV/z7RKZevIZyaRE/nsZzNPk43i/5t5zfLlUyjhBBokRsRsWyZ1Eg5voaQV2lgxNGIkcjXu5m0bRfaguh8fpB5Ch233nNd95XLm76djzfwPAdloetTTcvn4qGP/7eUNubjP2xKbtPQXSRYpnwPqpzIusl07eU3giZYPJryBzNy54c2NO7OxrNhWOkXc8fgWr3a4SKm2uSa+yWXY8sBdjHqbZ99SvntcVfHpCie1yGzx+Mvkqny3ld2nhPffJW/F5hAnt3rPxZ2ewhlrFhvPNnyzvL+csHSXz1RK5ZWlfNrHCx4rcQbjvnVPkRNAeQVE1dOlJ2blyb+dTGh5qz3Nl4zdrpvSpndm7a/Ek6iEqfQECIrxbbVp27JIRn97ztDCGWMbYs1jldUsO/3KaQ+3iTHc6uScXBIYPsp6Jt6AncJrJzoa7it8a+MB28Jo+D+3ZyauCl790OH5xOzzQreFxQHh6uucKW2XMadTlKWTRa//NLAU28KokDIZXFXaKIJs1G3i+7LXKdfQEOajai99uMuLZCuhPtJftcguMnax2JhXSMsAbKe45tXJ1rD45oG0F7J5PfMiJFmzMQcvjvTxyGgPTK7GyPbepIzlpI5hetmRNkYgEgIko+jkozxB9F7NqU56WW4S7BsjOyZn7tkxWeQJX6Q/irwPMmDvGUzZNGlZZW+zIDwI8LgScbsvw19B0nSUcZKtBM0TOko787J4+saN/zshnR7k7TGfFWZ95nolYKCu5++NcSOsgRvAbOB82EftGfcwtXLEVrblsItQB+ezzpeTPK6yTbJ4HR63uHgnVGy7kr2HxyXpZSt6BVct6sg3D8u2fLMzqkTdN1lhihXeq3i8NXb6nIcKMtt7HXp0nJ12C8CwTSifvmh8P/jmAveLBYHlhpsZcxlHkhmS0zDfZBM1e5oW1IY6Jb/ywl7o4V0aMWFT54TRRgMjTZfhPj9R4idauQz5MyktprZ8Mw5higW3LOsLaDPtQbLjAKc1bY4HltviYctVxD/byf9HCMMNX4vwzu+Y0dCV0Qs0v3FkIEZzkKpp0couXVrphyCRovDsATq3vxSWXgojLssEWedcigsbHyGQep9tZj0FrMFxG99UtyYjH9dbSYx5qsqybxabCTXV5AjckO7LMkCofmVDUh3UARD7ouhxZHZhXMsCtJW1HE1fyDGnbcBOcpnifQctK6XV5kw4Fmc9/N6JIPsnbzesxJ23iLSy1J3LmkiK84mIfMKjE1nKN1ZZWa+RIW/p4Huhh1datcjGJMiuWTFupfydjeJ66Z0zzH35dP/mekfaG6UVyfEb22gkOmWPkjbymr+T7Lm8DB7vC+RTG03WynBgfZHcDj2xieKbgwFU876n44NpMpx3vFK0x+UzFhEepwMtOrxa8DhM5MoXNL1USmSLOTVtxG0Hxm5wvRtsh2yOL5OK8m4Xv7qX9LDNkvG4lukuZ8jqV5DejO2rXx/mKtJXf1ffVL2LTRRn+B/3C8Ze4G/lpjopyr9nfzrKjYLXSe6CB9LtklU+tn72j8I/0tpc8q1mzN82Ucx6Vtn6uRLjATuY5BLLU14xcRKSZQjojsR3X3g8Y7k/rSLf5FNz+XTFPe6brOGxHSJ1tHic0474iU8SuH+TBo8XLL/HNzE5vBXcT+XZyPqi3gcOz8M/PjMMoCzo3gya829C5vI0y3NpJintQRCJCKdQNaHK1rxBE0vsZfs1phK/ILq7ZF3SzqIsod0iUonuQu8SmpuX3YIzrMS9lddrmynPVvfDstoXtrG53vATu7j+uSFcTnanrE/qNXeLxZisudrEpLCcpFX0Ussdt4R+F708ual6FtkyMK26Dvoey9AVgG9kgTlkW/Xm1cv9impZ3SOb0niG4lzN6ds1k1RdnwL8dIxXdtMK6pTl07wE+fsyceohlnygKPezrJ3UJQA9NWNZ+BYkobQx2Jjpm49OM8kLaLsmeIL2huC4mDvFJV5JoLRVYtMTRuD+XvsrT+h4otGYmPim7LxIljtnMDd1eYVNUuPEQknuTlgesl1UCs8zr/jnnt7XcEatk9fw3OK3O7J1FfTq8zNmU3qtYAO6W16InDc2NrhfG05n16OysueBKrossJHeemIv2CeLeXWipeUgqTVt+Gh97+sIkCyYzDhoaXPvSE+kHLvsXhwqkvG4cgwWLLeDPRjbkWRXrmK9HOdvRnZb8dej9i3Pkw4jqQdW8bXKPVj5hnZTVNw/aNs781zedp8nZc93zL4z4X0mZoror46eE0lPG1FYmgKadIjHkm0dpMdoF+sjmpLNTMtqPSIlYxPipTweMJDs9jhfAsZcPrRlS/dkTaslvoi+Iq2HN+h5jewyQFjKZ4QzNxN0eqXIemYP2JzqoHDSg+VzWelkN+Sb2vb4y5OGNvgRUXMQl7Zp1HHJBNaa1pfUNdlYm6BwQWiQbkdKV1Jc9EvUl5GvEdtRZLm6xWxWAPatFWolQVyFjOmdMk15TXmCFN6OYvcCB4KE3I8ky36N1cd5BLPa6qmlO+c+foojtrRk4tZJqCWtt317ajbuQcvHnnWc3pVlcznjGGj+2KjJqsv64GSmDaIe//zIfnxG4D7SjSKRcdG3MqZJGVwwYeijnFFxY4sjzCH7ctzDtkWObSjYtpV9Cx5z+axrCenY6S02tnY9wDcqE3ZKXg/JXqXdxR/1DaebNnI++fj8jZEJjzntRrbymljbLth9WV5Nfxfc92Yu6Zo3g1K+/cIdY95oPAKQoypnRLq4qF4JfDKh4aJjUGMT93RbG49JDsUZQ6dNB8lWzuAQODmxjSZk1Y6Rr7qdBwL3hyw8H2B8GHr4LHjMdmNVHrC0wAkI/GTcofeMbYgVjwtnQFF4QKN8Su+tISZscDs5L+abkfZTmnR+4PB8YvZ5QVAI1W8ErGhGEh5dwd4Bs2C3e5IH6pHhtCNgvFcm+V7eytE3x9guISmulPcy50p6w65lUsJ6yo+6TcP1lDIseq8GJinxRg+oXkraxVatPozxTbK52tjJ2qznSm8dQNS0F7JRf7qU13/Xv27TRnbRU0YMu/Y1wXG3wum0S3bYiX9ArfsubSXU9a80suqyNhkqZkuWHaSHROS+tYRIT0rxgVGeui0l2ez/BBDFQXfqimdatbQ46Y6tJZPU/V5exRx1QiuxEoMLlLhvh4Hdn/GkN+zK8ZANnfYOQGwx5JXSXu/w/Y10CJAmZfm9tCwb+ca1mJQ17fPRsGnXgRvzu2GzkgK7Zi3stjJaPPVJigtSm+W2ZRmlY9kr33RFmPeszW9xv2JqPSqfdHRwnAu7yl7h8U5PLUPCX9O7Kfe6gLbJl/Rmv5a8CwZlv2YbW2xOmfTlXXgu+XGt5/F+eeDq9u+Ck/vyUeYzMRJ292nv6Q35jOtnSr8+NRPwiYRSbAh1kurPbhruBd/EScKSMFWLXaD3crNdx/QH2yRsS6om9bzt2lFk+Skb54OyC2HBfYxj7WF6oAlT+UPRHe7zE7ryJY+Er1X2JjE5si2Glj5wn8ub9Wa+0aQrcN/sYtzXxDe9XsP9jzzxsYnyVz98oK2MFAhcDYxVTIoAmJ50pHzpR50cBLiPvBbZYlLKT9pIpC2dcNhIdnT5sl6+uHFNF662bXTNNK1g7ohgUbLeu3pJuu0ePDepNl/JlqedF+/J53LxZGn6dy+r+61B1l4orpyGn5rJOjH2hJ2/dZRPER8ltvwtLsBKnK5HS7wpGrdb8k2elBGBLnpj8iHTj06KAtjL0VG/9IQORLasV4qeZIemtIMUagcZaZnkRzwmYS7refGqX9g/An+njAgo2WHpYwvIKJ8dJ490UqLJHknvGRNcWgHtZIWP0je9og/JrscidzbSai4sTxuc8NPDM94Ncb1vDbtG6nfpd04bODkHhd6osPDA6M9yEb/Sa9lag74jK9YWvHM0eRUFssrWhcp7Q4yKV85197ij4GCyUTY2d2ktXPHATk+j1/9Wjqg25WrN9yWu2T8tcfdsY3dvk80uVxs5rg3fZCzPOJfyYoprZaPP8XZ3qfm7XSOTqksrlvFWRsLjyCsvToFkPS/p0pLe+Zv5LbYYBrZzPsOcfC+KlSdkSVbj6RbbzOXjxbWM5fPkwnmyYthh/6ufNqm4GPdy+djGgseUNm1tZKyfT7+usZw5kxfPiAccu89W1g4MSXxjess2xw8ZFHhOzL5dgbadKMUFk3hsRVUtDgcyPmJZa15lz0DAz4ip8j04phgAjTztjbICPc02yPQhZUrMwM+yKcNCGDTeDRKgOOtNeddMUGQR1x7SuyvfrryPyHLSZIOSbGSwm1jllUpdy3M1KdMgnGpzzSvZLCHr6Wt12uRp0ZzLF9vqaDBIedUtK0uzace746LdM+JAk9ch1s+I0CCJfFe9msqX9/KL6/Fr1KDCDg1bXTb8Gkcoa+gB6wERtSImg3Z/6PHV0znpi+OEJ+EwqdITNyFZX42kQUY6YnmWh+O2TXBMNmkroN6TjZe9bStLHGO/yh58TDPJ7vVoSWv1l98xEAFuGN8yqza+LUhqB92Ue8XueTXh84xX3Ke0QmnttF3eJsfxiqlhTOEbJPOtRMRFjY2cnZCs46A8JJsc1OBvvV9/7zjDtxt25dvxSdVTLzV6OjseLd+OF1SKUFOfgfv6kG+yno2hSY+u5aH4gvy8ONX5gvTytmqdq2JXuB94bHlEXvV9ssxNjMfRI4XysUlgKwvDXyQb7TAGoX+Gh7Z45xiv3htiwsB5EX5ZmhXLeXsiWtlwcsZy322RJivTXsZFYUwNnOSTCw/2jS1kafAWL5odc2EPMiZCN5mc7JiPDe6b3pUzhGwOGzPu72QT10Dn+8W8pf0Dh+epjJ8XrCOllUhFvIQy+7hSfPbG7WlbcYLjvGHPkRXpWJ46WFYFZNETNpmNHY+IdjauxBY2knAprxa9CditDMk3OW0/iJ/ukEaWye8RvYhBSCpfM9gwO5Is8WaXlk8LVJWxt8HTjkKZ7PbplhUmLelrLisaWSlx15uNrCSIVAfZ8ZL/h+RcSBAnJ2F5Cbm8qilEMEKEWMNw+PhOCwAdVMcvbEvSq1mWiz/9GrJzEuDlM7Kssjo5f8hKkbXhc2wxpPi0Och2SB/I9cDvL0BNj/o9f7KFvJXEyLiWz7K+0ZMh3/5BzYG3JgKStj6mrZiu13zM2y0tL7KZy28DBspzyVuY8PM2lU88yQRvSwFtmRyyN+V3QU5/18zKxLJfzpYW/owvHaOkOo5FM3fxkWrEAyOqEEmdPTiFOQOUF5ru5pwRcZ2V3fYMt2te08BjKbixbGVkvCnYHUpkkfX0BfcZf5fTFOk328j3FtVVD6exMlWbUh/EwlWdzY+UT5B5LnPoGb6GLHgsknlCISSbMdNhy8snkQkQFZdw2LKR5Nd6gFMt4rbNcb6z1cVTQ8mynJeUOOHxiDEed2mj/HxKNj99y9sTK87b05tRpiOVR5C3GCrqtkG3QBj3xv+rLE+0DlQMJc5A5jnmjBXLYxuhYfWN8C24aqS1yZJj6rHDfcbPOYkknBfA8VmAeSqulSUO2+CtjizL2xPtm2RuE5i7ziQbXKJT75m2UOaJ2fltwP1nuBfe94mZAPH267yWxq4FhdKoOt/zrMTGWL1sEJfEZUqrVaRbtUxM2xTJkhVwXsy5uN+z5T6esP4q38/VexVkb0cND29xaQy52spYkqLzwKJXys02c32FjdSmKxNOAMxmqd+ObCKvTL5a8lUi0TrhKvkSISWrDZSNMDeyix3I9+K22eQ9wSdeXU/I9tjTJYpHj2rSAqDJB7/4bZMgEAmh5rXoofvAVrYSu30jpurNtnR6zwJnjIdBykLxyCuWB3nwYAOBWP0N34TNZzqx0UlXaMDE7QZrXl9eKMflP4jHKe64v9dyd+v1got7nF/S0iRttXmvl2/f44hW76zwezjfxuna4psuXssn+fcS38m+yWbCIyk3G70dtofs9eDSjxCqeGyym/L4larXdNd8G9loceoqhfSuE/iSr+MEEi9Ikq0YM6M1jgtZvucuyhMlxxxO73ZnPrV7KW3hgShyXahct7SHLNl7geU72Rb3CY/zQp+910cTGcZu5TKaXsPzM+GvyQYeM/7WbeorV2XZgvuXspVvWLbW78cLz+Pyv4xAvJee8th1Bfz9mwxZEIfPhU2pQ9YMI1qPUubvW+WqjUynOTQYsJlgGM/DMKE4l5Ptaw9AKaGILOVIeorV9/J9KFBh0nYXaZP0skCaOLc2N+WrSNBc6m/YFsO+GI9l6hWeL+1lMwmkW4UkrA236nX+j31N71PKUr6L2hek9wpYITc96WSRZYXsiL3sIR/73D1JAvVwQ8jGd2HGiVTGiT5pUE2E7x/qZLtneYSPgCvE4yQJpLj58TBb1Wwye+cqokT5jnCs2wyS5cV1AdKq6dHqpWOLZx6Y5YyVS96yM8p3kH2ANdXwl/nRbBI56b2C8FE+rp9P7ppPzbxctjK+9q23hj0WzDtHxuYYNkfniK2MBlDWsCtnNPhcqWGHOQtnUGYHFk7hIXYKDSWlstddJF0wWSmyWwy7iGPvm8zD2TdV72LHSrnt7zYkPRMjZVM8vih9/blNVfNio7b+6axeuSr6xCp+rZfvr1uEV73RtHs+WYwwAcduJOxmPTL/x1g+9BLmSv7NsoHvbEcM9EELWjERsLziwBLmgZhchmx8DJmhQcN2EA4z3xCWy6LnjK3n0yf+V7DgsPGXmG0KCL2zxu+jyayG0GsYy4dvmFzBYctDyWbHYyWO1MI19GRPT5Klbenum6z3AN1TficNHzt8TSZmX8rCp4j8D0REReR7HhYq/qudi9MNsJAm7SZTH9dMoKUM2yex6v+L/Jt0i2xhasbKZbCx5CeX0QdvDT2PdJYG71/dxyR8U8v3SF6M1a/qPpLrJqjgFUpfo9cSLYW6p7mOUB4L7UPZOyZ5fG2UO8v8XsiuKfaykbuRTJc335MkG74RSWPLRrbGJbVXWf4FOTqBQ9OEh0CB4iHvK5e25UMUQi9oW/p4ImeEeYZesN6I2710VD7GS9j+/oZmWTuFMeTPIhvDaJO1l8J5wsa+ye8dnDgUtFUmjmXmeJa1bZYxKHp1qLjPs4Fz/ns5x2dTztNOkL4fxP9H1zJnvAqvHsUNvrnFDQodr0B3nXInErKvAkPK86J8iwXlwkN8syjcy175Vqjvv6nFvUZoOyl7RRB9vZ0aP17Da5owdSNJeJqbmNAYds8ZMQFjPRJZc7r5j3dexOSJJ0eVGyzd3ILo+gKX8+Qh43fOnycPGb9C9kz3AHu/jMqT3gfTMkniJ1gV90HpVx7wb09Wm0rcZA/P72xlDY8PnI7lB2G5cUeWJRsnz2UeOP0e58X1+SGDYvLGG/99oPDZT8xE5BcC+OsB/LHHpWbHUixEJHPUZqcw2nsZY6Uo0vqKFYOpZMDwtZgCuAuGddseTbTqTfnTldmR02DAy1Hwnq/bk7ZKCm35qt1UHrqXDo0oaavsEjpyutBbibZOHAr6xs9qMy5sLsulLKuWbrGRK7CY8BrfpLzFCcgptLyH4e8q2mhi52dmvUQmEedVx7qVJF6raYZVtDUjqbEUTFyS73dx1nvU8rayGnFPq/GuG+aTLyffLCuI98ZclvPapI2nWxp6JNuRjzq2l7RXWc+XZX2l2PTyymrWeys2B7Gdrncna++YuR4Ah0iQtU+MGpuR3+EYOk02vxd3o62OUm30tEP2UKy+eVMYuL/9fAkmSc69SXZok7+NVmWlckZOW3GjvhvlDxMcj0Gykbj2Mr/IUYacjqsaWatFOZZbfn9xteSb2ea9Ho77Zg9EfJk08bIt5f05fLPFfbOFMDPiMrO4P3jac8iqty5LOxdXPaktZPxdeUBK0TUmLdUmk60YWgtUcJKzkZLvgu1076j3+CZxUOxmoPImG3W1w/IFvzavU69uZQ+yg5+IWV4JQ7flD70uK/l9r4P8USeOjKn+7+hkA4/j6VeH+4zlbOOOb3jSFmWzyaJPwi5k7f201WbmjGyH5ZPebXNdprf49YE++H5B8XxiFuEfAvDb8JYFrTLhsb+ckSKT5IhnVRVIH9ovn/SqR1JOZQLA2/jawgrQHujQpg/NWtL2KZOZq96S16WNnN9d31yEJu1Wb82QbHTZ6v9GT5VtDWBLGr/ufVOutnoVyzsIKX2jtypL7Vfp0iqrReReW8l6dw1mDgcJcEHAv5iITIJGhOk+l71UjG+LcdncR9KTJQ0C5O0VYXO0Gk9rT5uQ81q/01VXOeHuHoSb07Kv0uCCZIJQM9GFLed8sfyET3gelD00r/KK8hYee8E7Vkl51dNWfEdF6iynETvSS+WrLJ0C5vZYdY2TJY+lTb0iMJbbNQP6E8CpkFMTIHTYFjXkG95SVm/BtozHprzvkykiVbbH9vZwjtdgFAfp9S4Z7WQ38fRdtAvZV/PNK2RzefZYntK3sp1etblIEnZsfwDXVfc8QK3wggeWFnup93EuDmxnz6Ymd+FHSU6pXtU0SDf8Yk5IWL3Ra2Xmd6yk6KpP/PmAI1HaEp6wdsq2uI98DYFt6duNR/bdss1bmFdynoyp4Ztpk049voURLe6rxSXKeBDfMGbbpCvxjZ6TF07C8so3496Byjd8jf08ZPlAkWf49obPemImIr8OwJ9Q1X9Drnr7SPubAPwmAPip3/zu0e5JJHhQSw+ecSXCQOrhSK+Osx2TnbWIZcMoLQ0Y3D4FlJcXK6lyWlNZ7WAxTytreUte9tvHhB3IS/xc7ONQ71H5tjJd+TZ6lixeIXtf78b/b5Xd+WIXb4LWehEAOt8suRj0ZBuZjNcj8FtRa5NFT/uqIrVnofSR1kck+6dqdk/gk7WDZZF62LxQ7k3fpHzNppQPra7avnbEoIQnCaM8MUH0ydTUk4kcmazL4GLIIsmO6+MI+krOfpyy0rtnFB/5xrYWK4OdtGWVkJ58FVlMPWzjiJ+eNstq0svvVKQVUk+LEqfypq2Z9F4feCvnYyHh/jcC99PEiVcB7Oepo6EpoOe84UvrFVQsWhq4Y5wBaahkKFh0Jywoedmf+S6YHvDJ1nmLpi/bl51WPYEjkm4vYcs3e1WXsiVek+7C5/DNIy0nu06v9Vhgf2ywPCENpyu+8Y84vIUHMPtl0cvNM3D/zrgiXRqJ6tPl5WlzE0Qyhnpqf2doPxAQme94InOGcHekf+6Dmda08SQFWnY5FPv9mnNGmXwRfvsnQpBxP3AzMJCfejmeiXpHOOZWRChxwsTFA/mTNiKBixn3g2+GqXFQB4qdGffhsvHEMbYU+mJbwxm+oOblJ7xOevZ8Y2mPlBcWPR8+fE2emN2dmInIHwDw85tbfxeAvxNjG+PdoKo/AOAHAOBn/YzvVSPMdZugOBbjQGwvqGnLYHKQ4wQQHonOTrw93pfTelzSyuZGdNgpYYcqIIfkFceKdaRXU/nMjiUplY+uc7zILr7hzDhtRzqtb7JNV+WrvkmyTMyNjTwZyB9LFdRK2JavGmLbIIsdrWxN25I8txMtaekY+0tST+wFgNq2gaXskooTQ1eeNH7t7s+4EzJNbmq7ESQTfXuI3Y1DJChfvscTJ+H78TuIlWTBZDWPdU/bYagJi63iid87ql4qR5IFbdfTEyJCk5as12xi2bwKS0Q20/pq4yTbQe4o95XsWFdL7ZAP/ndLevOTQdYrctKKKJc3lyeV19IL5jfX4h/n9ehWRsb97/7phPuUQRowzxGfUoMR2ne13cpIecmU83yt0u9NJI5oJ75LQ/YycgB6G/+++Glj75OcwPETgHxB0FAndRVj8hGYC+TkwmV53iZ39ZTQtyqW/rzF8qtyv5Vv2A5KvOOBqIP7mGo2SfXFa8o3rwnzTf3r6Sbe2CQr3ecCZazOeRVQwkVa0yf5JvNNXhzXlM52C/D9tG1QAD80iNOprFsIpbiOfESuCYykyZJ/ooPTbNIalvd6J36l7dVVNvyQ9RDfqNCWQeOBjMfGA1WW7Wbc58lfwmNk/I144LgvfGmWjXd7Q/bWyPrTuqSXP5PS6eUtjME3Vjb/9qaX6wOHd5qYicivB/A7APzlAH6lqv4Q3fs7APytAF4A/PdV9fffy+/uxExVf/XGkL8SwC8BYE/Lvh/A/1VEfqWq/sn7RQGMpCPPQtJmQ0nLkzAnYALe/EpSc8qVFAEKKta4pWS6Jtf6W+iiFAKqejBA3eXEDVt0efmSjX28TlKWZroliU38Itw9frq72NRRTRsDKiuPsS7lIXS/Brvnk6fqsI2sFMdf+kYv7pW86oE2KajbMto/kbPE/WizWZYnHPzh0iCL+G3pQibu84ek09M0zsf1a6SZecUHnDl9/F5tDtnVZvX+biuTllfyifc1IizbHqOIAcb866RIpFQPtsjXrUg0+TEbqVrcRinNbdpYyZq3u/hHPwV5RXSWPx/AcRab7YXuTjYfqRyyUXbzL5fX4vVEMDtS2k8Gw9uDfex5RDQ9cVDB+C4kzai5qhm7U28o/XlsSSudfhn1ZnlKWThiL6sCfPFTBV98cw5mXgB8Ee8IJHzvsuiubfBpxcXO5j48zAMPVOyjfLOU/WLiuJVN8U09SP6dJmWzHy127Ow0PZDVJ4vq4G+ZehmPF72Lvayn8ABN6JgPGJt5XMQY6q96VCy3bGb5pOCkIKdNEzTSM/BCvHyGG+a7xDeMe4SLvsMh4T5SWv/2GPOn4aLpNR0pn7oFfvVB+FXpn73/m08hjKrL/DCKSxM1CVtAeNzzzR734+nWCH5oxwOyvBNj6OWnbkXWbKJ65YU5f9rHPLB48QMFxXse4vFvA/ivAfif80UR+U8A+A0A/goA3wvgD4jIL1fVl6vM3ryVUVX/LQA/jwz4IwB+har+8GMZ1IhYxk7KdVug8n2Fn4wcLKGZyCdCBxaPSZo9FUuak2wwn+HPOG2J7QDZSOZDQxbIx8vzD6F8qlO4vI2bDKtMrzS+2Mkm+y1sSHOxuZRdKL47tv+uLCXR5Bsl2erECz1VVhrZSrAXeiJOgzTSn+dyvLVkpu0GI5bDVpY1jERM1F1adYJdPcuTrr3eXjaRMYzIgxSh+amSEaXdjMVgrjGNscihMMKzPDDTx4rpvDdtDiKMfNL7gTzegdLWEtNlepQGF/OeTwZHnj6AoDqJb5blAU18FyzivOILJj4n1Eh7o4GCaGxL4ZOxxrtfcwBhPndZRHqva5r8ARA9w8ZZBn6PQKx8qrAJbxyfz359Y1Cq4ygu4fO0Zk7OfLGOcT+cPuNhmHMGqLHAN6ddm1aw3C4GZ4TJAuAU4OUbAG7AOZ+e3QDoN4DzW4CcWPzVYaoDo+F+g8NslxZb9hjT3Gtky9cI2u15HV1c4bEu5VvtqJyx8AA2PFDzomv5SVmPv6634OBdHuCL9UnZJR73WfQc0W9p97s8YbuL5bPle4NbuSkt0qWGSXgsUT6faM0nS0rls34dfEO4Lrz1D/Pjz5r1TItrWi5vzM0nPi3cxFv0KmfEBMO3FDq2BVeZHsNjmxSld8bcN8xd8x5tE+TJEMhvWW/FctNzkr1wPjlIz052yJ3p3pYzJNJWm407gweeoQuq+v8EgOaVrl8H4J9S1R8H8O+KyB8C8CsB/GtX+b3Ld8ysoeWnjhMQ5hYX8Qkag2QwSKXacTsDqi5Lu9LsB7d4yIqg2eIRE7w0hi3gnGys4wPW6zZGXI9s78KnrOcoCUjg3tYSLx8T41Le1Wb7ufiGzK42J1khAmc95a/nRNs0lm2ROz0628EjskKynCHHa+Jp5PCbXupNy21pgE7l87Ib+1VfCN0n6VTXRqpCEtZiV7+K6xXE06aQ5VyiCBanCSI31zRAGGU5ql6EnUES9V/IDm4TmqBh3iOCIMK0a7wfPj2t0nwqod2vfrXVUD7hEKDJzUx7o7yl6Fq+TSM8ATrpnS/bMjl0iOc7/83f/baUVe9NiGBF0/ZDiNK2FN6qGKTOej7xoABCW2lqm3plaLqC9RfHiIrH3ApJecJ9zy8aprUM8cS9SY7p1J+NP6qItx0FPv0E8IUoPong+BYgLxjbGBmD7/CA3tnKyH2Mt853/LM7+Mpc3PEA9+fOxiRPsu7jhm/YRq1cxXp2PMBGEE5WTllC8k0FKEoiWYUWPdu/xVjBmIjwowTJ/9vbaJGFB8LmpW6SH2krY7oX122reJWVxAO5fJmPZzmFemDZTZBPU6T3x+YM+CBZSbg4sc71MN6K4yg83zwpTTwA0jO5OG9pzzYnPJbAXDsZ8XbE5ItxDwV7rbx5i6DFK+5rxnbPe8cZA6PtOPxPtJB33JFNPFA5Q/I2ejvUw2z+hJIX88AyjvlIQTFfSP5I4fsA/EGK/3/ntcvwpU3MVPUXv1IAIoL8IU51QK3Vr/V3IWf/ISvvB1nNFZ1K5PToP1JJkY0kMUQk01sb6eIVmWC1+eqelotsx5VNbd6F5O99oyaV8SJtp/dSlokeuC7Da8q3uyE0saqDBkd3Tru5z23rKi/wGISfYMX9HQnnMjSypHdZvStppdhsQO1DX7I57jVpjYxKWosfubbTvVjx5HjYfPCAYRI/2xSJw2YmrNxDq6yWfOmpVRgBeyE6lR1ZT2zTOeN9h7otxWXDjpv5yvVEGl7drjVvJzz6/F9smwrrgeuNLSymNyaDkLq1sQ4Y2Eb116A4/tZQn9AQ648Sl9lyxtuC+7WPXmDD7iPFS14uSz32AuvkBbh9K37LS9bz6i3fm3sP8U2912JIvlb9mP7eCS47/93VW/K9zwNKdXsxs75nZSfmehrs9vsXPNDmfYcHNKdN+CzrvZjkNnxT0oLTAuBthQe9Pxn3yYYiy1i3cEjBqZqW8dixW6c9C3fkfHOZQjZNQFnW+Sb7pj6BC1vX8vLJkoDmyVXlqlLeOIkRwLJdPON+xWPHVMLjyhn+zTLZy0orC4/nI/zX7YnZZi6P+sRZZv196K2MAD7zHbPvEZEfovgPzHekAQBX522o6j//OYpreJcnZh40Os/ogNYCAJHxSdV8WiIBsxZQV7ovc9uhxnM11zQbIA9fTb67JBrvqNVXhWSoSMRWbUSxseqAYqwoNgILMZesofCVupbE64Uia5fM/tn39lv96K9VVd2qeaXXfrd6ih+jvD0ZX5dPQ0krq/VCJrxSTg9Memxk8etCgC6e47blY2kmKY9Vz1621sL47VtLzAbPXz0tA3m2RRMwq85xMykW/1/pVWbjIrsOZmQjazY6D9MWQEMF345IxQ8iZzKtE5Aox2EEN2WPRTbk7RtsTmgK2HH2Y3IG5G2AsXUltqGcya/Cfga8jH5kPq+Azq2Mix5V8EdOxf3FJytOkifZmKxlW6XUvT0FWnvU60KMsQwtxStDRMYTCMVspCuIppZScB860b3I9khANsk8C7NJuMNFVQAvwO0E5OUEJHZkWLnubvH2rRPMc2tSL/LCNzmh22j3G+xuHdFdr5xRskl6WE6QuKoVlCYvK0PNlyvgXuOrWL4py4Ah7W1sZBceSLLa5u9pNzUadlBzReGTDWcAgXGGscs7YabD+tTEK8NHxlre0WGDdPtteivuh4DhoRWX48Q35V2xcejGGXo0y4Jk65O5+GxIxwOzPOYTK6/Ek6J00u7Mnw9d8neyyFfBAcwDGuln/TGmGpf4rg6ltHKW+MoZdnz98QrZOBK/6jVfEUdQ+eLQj4hj4QF83KD43HfMflhVf8U2+815G3fCnwDwCyn+/fPaZXifCbA50P9hfow9UHn0LSOtIZYxs4Buyj/eI5OSviXJYpuQPh6mJoyVPp/tk97uOo0nro1a7/Mg1G270tXIGlb69U6UL1jHbgYbF/yT05iehwm2SXi3fGTovcRN22GVl35t4suEqjWwia6cug08cctp1/KWh8FQlb2NzWqTk62MvhArlaX2u3Zod+dF3+JCJC4kJaDBxjDIfRMkGqt6TIK2Ggnwy89EkkkmfhuJxYLQvEd6bL/+mgcTe2wn8VVOkg0kqbLztw0+cE5SNTmSFS4zlkEKE6ykf0HOnNYGDGNbzLkMdrIeWU4Ye0vw76tZnG8e604JQBIep7DwADWwIuHjvo1dPjZtCibayck4gVEBOYHbF8DxMn5LNKdeli+o2Og56evT9rZlqzZpq0tkvbS1sYhv34HbXdj5tZOtaRYsv5BosNwkTonvjm3Lm25ctPA7nHGVNqFmba5L8gthZCxftpip4RlSn676apy5KF1vGovhdcaDwOgxWZJF1vDPh1JUhjgMadw9Et7HxMHaQsV0PzAE8X6ySLyjKyntCf8EiQ38KnbLmWTMfuMMS2s27zE1sH3ojQ8/h2zmDOMcK+tOdug5cXOZylVW/nldkcpXfWNx4xqfsF008w8TVN/+79sTfi+A3yAiP0VEfgmAXwbg/3JP6P2emDlwjC6qkFHzRzr8Oie3iRZAIKWTKAR+9Pz8vy9GlrwGWVaEYeOMLBvy8BFuATgj4CN9VW0Nm1GJYABtSiqUjzRx01MH31X2nl7s41ejsC5tKnuVLYOC9O5Xk/bKj8u9rWxnPFdiZ2POfWuHjVpN0yVqUYOytHJVwpBbti6ixNP9eKeAZYf2mhcu4lrauMnqkjYRvhjx8jtmPPmwtLFS6dcLQVtv5qdX1UYBTficbEL2Vsvndkwy9Ilg5CUz7tsGp2yQvpUn9NR2xFtrNMVtsFCIkFawgwRpFdQGAcJpG7/aNSJ7v071tW5xmQQsCJtSnorxvsqQv30GRauvLEicsDvBJONWM0JU44wl0+CBSJrC1Ypv6l6y4wwzAMnppWtO7CuyFWOu3BfuaHFwywOUfZuW8m/xuaRB0cPlrZ9vWXigyqLEN3ld84DkexrpXX9danY90ryXTZ5r/UCaXY8uekZzKHnVRpETL/lSCROW83ZEAJC0u6akpXLU9iyiSTbrWTF14QGQrPQ8UPHY8yJ70ntt6SlOxt+V9+jpz4XeyKtgm2Nf4CMsLjRBSicgml62qT5ty3i8YirxnHOiwCZPqyySXsP9m5wXsvYuGvZ6obkMNKGOd6lpYY/jpY6eYQ0i8l8F8I8C+LkAfp+I/N9V9deo6r8jIv97AP8PAF8A+NvuncgIvOvEbP6pQOtDyA5D6WpDKpWIPbuj5FuIYm1sxM5Hk1ZKvNiobKPJSi7CI+VbylOE6qRE6+9HQvXFlW/qhSbtpV5O1Pm1+KaddAHZN5z4wjerIaveRbrWQesMXa4safNeFUq78Vbn17SFJdt4N9AAJpE8E7Ozb9uLMrmSrIF3einai2uTRqX32+uhIEEeicSnzXmcVSZ7ankTyVJePOlKtjIB0daZ2G5Y3jOY8YN8HuMSXk0d/9YJDVrfiOjYqpgmaSSnodfuBZQ170YU4own4+Er03ubMjz5S3aSn8JmpKdmbwk2aaFhXTSo1ABm4rWxXAfrswVj7smmvrvjjIT7OyC3+Ewl+faK++bcnKaNC5WPysPx5V6Hi+SbK5xctkE2aXeccVkGDne5eCNL7u/yqhlpbQuUc8/F8477WPN9rv4WjxtsDzBv2lITOj+T7OXOB+kOBhnxQzTvlEk8YP/ra/AoaROfYGIMxVk2HcAhseDmso6jgNDhG5yXpxO6V3lg/mYe4PxFeJJnpw9OXBRgmcBNOwODO9m8XTyw3PDXtpDPU3Fb3EeKj/zoW5RT9qD3mBfOaG1k/gnZo7Uxc9UhoPJ9BcK378nXHbX6zwH45zb3/l4Af+9r8nsnXytwnsOJL2dsY5y3CB3yntEFKwKkPE6iHUsEbhTwsDRO7JqyXNJWkmATuCyslwPbyEkfaVhFNstvZKh8rV67tSvvvECuW2Wv9IJkZePXeqEWqivbjujvOuQVeq+ki1/b6lv2jvRpO9mleNN3KW2Jd5TqDyVS2odq0LfnDUVGVkGiq9EK62Y8zgZ0JfJkpaaOkraseFenyVdZmTSiA2gbixEnLG3e5hGysW1k934aACe1tNVRQk883TtJnmyhCWwcxjcqxYg4r1SGbCV+Ll8AeV4h9bLTlpx07LNmEhfQuwdWdqHfqb5eG6wfM05z3xb41r6J7b67vTb4lK2GoSQbxSydQ9cslr5/gftuttm4MQtYcX8dt5PN90JjO+PxknaXx/TNVraKNHxjYTvP2vDNVaiy68nI1G66PbXVN/6u4h0DrJJSEt2KLJOaiqm7ulycpSW/O1xFJrU8kIwCvXemAa990gu9IRQTKeYBxgbC7jlBAuEwMLaTLvjl2Dj1SEx4Rl7q/3IH3fCA5888kA9Zsnx50uYLeTrGpmHjWfLlnQsNNhceOPwU3tPTHg1njPeU48kdEFsh05OvJGv5Wt7BGenzKkXvUWysi4/BP9zN8sLfxwsaneLjbGV8U3ifJ2beX5WQbXaXSa7+LY7ZW307CBFLpEW6oVl03hFPMtRKssdanN1Lx9i70aCElr/4JVv81KnLTGQ1S1Yky8+x00MWyXkt5dOsp+J72ipiZeXy3ettkn/qhexihpTfEumWrpB8weWTJAtt/FrKt8heWVl9c0S6vFKuSxnkYGGWLaUz0Oc2ebGlJfTMY+aPnFZS5bM/1Meow35NvhJR2y3s9ixb/Xb3JB9fvJMdRzGfaVuGHFpWW9Xv22pcPBHM2zRkXgu7SJYIFRDIYUcDj9CdJhh6NZUHUrbhkB4FP1UKvTyZC711W0qOC/j44mHTjXx1pLSxxdDujaOcYyBgK6qmJwj1pO/ajH83tiGVaawWH15/L7gZ9i6ywPEmiqZPjnDlYvYtx+FoWPZkyg5gCjwOWecBzG+O2cAUdN8uCN+JMvg2x4QxcX95erRsZZQkuwBhdVdNy1sfL0QrDyR8anBxF2dXp/JRWsMySQKPlW/hqs0hVVU2683Y1g0LkxlN/akPtiXrSVhEDZsLkGbVLKAJ58U6qaVLj5RziSseI8VTg8JjPJDT8k4G0z0+43IuuH8UrnLOmIdDWLu2HQSW0k6gXe0YsozzjF2Yv/nE14NtrrgvzDd5+x0M56i8SfZA4gHusqO6LK/BVUfKB/6NLyDyGXmcBZ873O94QD2t6ello+5uxBM3ednIEgcIcl5us1IZOr38OsDcFsmy1BbegvrfsaAYD3y+BuH9nk62CD0vSr2t6+TB2KJrKRXo6ZeW+1eySU/NUVKO49eOfEsOa/my7FXaRW5r8yaUew/b/EBeLLfY/AobV9k6yaH7F0YuslrvNvkW0gw9tbYbi50zc9rlFMgqKyVtGm3cqf2SVup9ZNO2adNTlzXwJGvpdsoEuNZ+ll1trHv2UxUU24OIs5ognXzNE1H5+u0xIb/YQeMwyzM9zfNthVY+bnPlPa9mFdTTt34NArUPTbtejJVP1uP+0pNsPZMeLy+N+/zUL9crOW3z7y1h9MmNdIuLqYHnSruQ3eO80p/KDjm/NS+uoIr70YNfjcf1vqY//vuqfG38S5Dd2nwVr/nO+/3TnZ0SvbSx6rmqv9auhQsuZHOn3Mu1Yxordxw+4vdkSbrhgbYGI3ax9YK35bFsTJxX2Vg+0UV21x2rXhCWsixjbZrwNNhdcT+urVvNa1qec+65avVNHFxiepgrqr1nLh/XkwZWC3ThyIT7hU8My+MEyXORjYM8Ct9MPrVyx1M0lmWuYp8rrSnYUzm+/xXZzvg1CO/4jtkJQMboQA+oLd+c6ssoBmgwqBAgLe1N/IhT9uNeDI1HDx5iJAv+7QLzpw20je2liJlSkuMoLV1usDqehiVZnflPWbpvtwwZSnHbIiX9dI9lheLux26g0Mh2SZaB1YM2Cv+QKiuLrEOarLLL6vui11rHJKF6j2Qtr/rQLsrHT7s05VUnAEtIW3G1rHhbQxkZxjtmNX4ha8bMNjvspLSTtOGyTKa933R2Ty4vn37I5faneU44yJM00FM04bRRJ04SrocHHYpwCU0ALZ5krXxlwEBppZRnmGU2BummbStCe/gVeVXT40HikbbKsh5A9KR4bMMxm5Is7MOl9BTOtzAp7P2H0DvLIFGeLGt1K/E0c17iVdnPDhc4Y53/VbjvuFnTMthV8IlCacECTQAM54OWb4wr0iOq+QSvK2KlouiE+1MPF1xc8fgqrcfttwH2RrbD6sWwHQ9QN0Zx41aW6/4O33A2O5ucB6buNG/gsrfl1TXe2Uhl3PJAGtyjYDcSdjMGhZFhXOYBJCwPHqB2Sbr80ycpbeiVYqvFbaJW+eYovgk8Nj2B1/GUzfDQ6oFxP+rAMUYBPiDD8sr5sI+Cb+KIeIuHrFQZTzvaDeNx4HzIrFieMZa3OQpQ8LjiPi0IamA5Fs446ZCSSIsuvnw25Sw2IslCV7+GTflE3g8dPtiWxLeG9/2OGRQ4bsBxQKwJz94us+f7iqmDaIkDtA1FIk57o+rWxWWygJIXHW+TiBSZNGtaA2e2ebu1RDFeSE6yjV5LK1m2Ekq7XREE7YuNa14bl6QbgkaWkizc+6CN/KNuZXyNrPnRtrAsvmI9/PiFM0qykomCw1In7MRc+VJli147nXQVlaxnCkgqL8hGIlvhtJNcIWVCU7qUp6UuRctm3tyn3lHkaXsyQCmtlG0pmCQhiG+qsFZ+v8p0hM289x1MmNOmdDqVGLLotEnZ7TOtpZF5X5wwmZwTOUm2w2THLTvlK2rsmOUNos59hieON/5m2dxKcvN8z1QG8x2ofGzjJyZZiXxMjp+yHSIkG1tY7N+tlPctYcxfCjDyfU7oPpk8IBdpZ7l8KyO16Y4zUGVtIsEYZFoEy7zQOxyZtWIqfa5lg1fiPMBYEeE1PJAWZ2paUP9mBZ0sCmfUcDGh6cpXR3Set5S0Ve+Oq1bzV5sbHtiXjwwoGBZ6A51S+7WJ0KZOav7iwBmWpK7ANj3EA6V8E898sUnEGzMvXIl0h4OYHuYqybKWtmw5DEzQxUafWKlMTA3dGfdjq59die2K+SkZUHkgOENYtuCi+Sxtabe8Z/pbyqtwhk+Mio2dTaiHJdWnhDl9/hzJSHtz2xWfyOd8gq4AVL7JIeBdHrxwB08vdC9xFYIHht6wsT0R9yOF58TsM4JirEba5+gNfAWJIXzFUmiyY1kQbrYEwhMpB1m5JpwiG3mTbEQbobIOU4lgo2LYeX3Mvrlm4nXOp9pyobdeW1Zn7/jmSnaXrrXjwf49yhcOT6TeEppSW0I6FS35iv8mW8jS8oTVB207Yz2vvvRcili5jDTRTO+AC5Vv+e6X2SgU56dH9uSMVk9lZ7OwLfRkkJ8Smh6LOolqqpMYvORVTiOJlJeyPXNSxXrTPdiYJdJa3qIAzqI39MSL1KxHYauaMdBhYiZZKsvh72VwnhbnAUW2EeWl9DhcBE6wcf0M4lYANkkjG7n+1vfrYrXUXyCvstVXMxxzGj1Wh+XNW1rSRKmG2jdZZv6qPMAyGRfXyZ+K1UGvn/HdsUK1t3mx0fC/17sLVz29RZENtldcvMLfNp+L+BIe4YzmWvseW62/bd1nLK+6lsnePR6odjJ2d22quw+Kz7ay9ZuUtEU2Pb1ijCv4nCeX6uVrv/+IwEs5Cr9ULCe9FcudIwh/K98EbuQna477zhmBbVJwP69PEO5TOSqHCMv69cBF5znzJWPtzGOkjSdcaQeBcJnyZJT5J+qg4blSvsDjGacne+MvbXef8ZvbOMuXsHs8LbPyuS9c75SddZ9lEQvhiYeGnTcc8Lm9fPStjPq5H5j+MOF9/SyAylwN9bdLFXm/xaQ8nWzJ8Ro07+L2fNROicsyWiLKcq4HiJPCSCiynrKSL0okK8VxEgnZUR6FxmQ0/6HMmnzZlkVoc831buKd7C6t5iTptzZlaPKqNg5fWAKJ8m4GJu5MLt8ElNZXnU0pPjMAtQUEqCa1BL7ZjvitJR6ylNqcqtR4TLIYbGnt23fU1F2PlMKKRPdiAszvGZhsRFO556TF8/c97opVL8ct7bQFQSpKv+06EESR9E5bg9PD5/7+ldp15LTTN06+3mVZD5yMx5aW+CjnSBeTI5M9XE9MfKA64+fIw23kMRqdyGUnZ5nPND4Yaqc1RlqFyDn1ko1ef0Ts04YbpxN1e5LNVH88ZspbduyDz7sR6ANhgsL6fkvchuYjvUcflMB9w/oCMmr5qgFspG3tJiVlPJx8UPuudyQlaQWoUQ29svGUiQoXOtyw9kg4Z7DaiosJ62STNrpJwsWktxpRbGeZ5gFLdhXbeE+vy+YM0nem6e8qW+sJPQ9UYR53dGlh74hlbBs+nhgqJb9UFiVf6MwvkkpurlTGkOU0qVIbHgh3KFGTIm/bHlhgnKGO5RHESs6TMsP/6dTAGXWdhiMgPcl3kjnATzwknLS0HZZDo1/aqcED2ypOZqzzE3hFATl9qzkMJ8V8FJMZIdnYfRG4DD1j4sM4q6UMXr6drKUd5Rz6XuLTJo7lSHGZjhl+HHyTj9o37GZ+iVMbIadzBL/bFnpG2ztq4/poQQHV883/PlJ4p62MCnk5oXxEzwTudNocMLY5WnuYSwwjhZQcxzXHbQX0qBtuJKUXur7ulJHY3gKzjXVFjkG+EnobMlFFfORRAVOa9PryVbFREadVsT9KdjXI1MtpbfuMlITMKynjo6Spaa0MilyeorfascgmGwVj5CkpbSpvyodqUzXKJ8vtrV9HvNMr4ce51c1kR31SI3FZm3CEQ5K9qt4WZOoVkxWl+hSoIp2oZWlT3t53aFI17ZIj8gJsSyGlyoYlY21ljfVGa1fPNz0ZmnbEOwhCvkLIgsk5iBaCsqWFtgkKbWmZumM/P7x8PH7zE6eEJkYAoIrDTzgMWUszTsUy2dNJywYddioWpo/YDj7JzAYefDyxy5ouiUFKPlnRrsUEKevl7TDn/C6aHeaBWT67L7F1cbZp37opIWf1ebhOs1Fm2oqVjwfG1OhHmvsvFCqH44JAoZMH/IkZ7TDIOEoNzV8M3exGsE5GF7kvnDYiicZZCkP9zzB14oDt1OB1lqTX8MlOI6aj68qD+vU352f4xek6vgHdk028YOTdSu44o7FRCodc5RscIS5rWG560lMaVq4ofgwesKdnzAlpezxh6Yjp4g9DvcQZsw3VJ0eJx4teupWaa35yJUu/UKUTdS2N8ZE9IULgr3OCYyc1JRUcE8v9HWEycsi6xwlT50fm/TFLyNpWxth+OCQMYwDDxdjSzf9GWnPqxBwfp9Bi2tSfnvRPjgy1ZLPATy20tCKxtRyAf78MGBRuefkHpcl3huduo4xr/pTJbbSj8hE43uK+6Ym0ZvthPlU+jddkY5JtuM82r1wFb+afZn2JlZfa5DhkirYzer73AOEZvqzwblsZl+UhRi5Q1+TJ0fxfEJ1Q2hIqyVT9F8FW8Q0bjSi2ZMX51QmQJSmEpPxDVpMWE2WNpkW5iz4jNf+rtFX3K9MS9r2O6Ou9TlYovg26+upK7kJvvhDAZowqNb1kubivsfZAxHOlt24x5CdcNR6kGn0pkT+M4zW2j1BeKV/KK5Mz68myaZXVZbOeXDyF1VN8jl23ae17OAkdSE+1kfUefB1AWnIlqXxENGDbYSBRPp6E5S2LJw1OLMcr2ZyWD+JI5pd2okbYokmWByhxHHcZuJiO5Jucv8yBoJEwE/Hwa8Tfdlz+0FeffK8rSk3cVtl5csZJfQJUvGf/cwzkvGs/bPjHavCezRd8s0zO7uGi9PdajuD7ZOMWfzdY6HHZ2LQJLLeV6cqw47yallZS2uy3+Jt5QOhH/exJK0u/FUjv62UcrGHF14TPkmVrDxfiF2DlgYqpSzMk7M43MnYfsiuDZn3JJivDyrGRNvpa2q7opY18NeVl2F15IOJWZx3f1LwP0ZSX+8D9xno57Zme7uV+Q0/MWh4ILHc8hmF9pAV6Wa5PTek3suSj+LTLI3zT15kV0xbfunB7E+5/B8PXZCvjuz0x67YVCjAftzdDEwNUR2khsjPmm/d5yVHRPqWpejdm9ps9KWtJNsXvGISXLJPCOSydeu42qZ2xF+MaF3lAttq8iCyDk/XWlvDv6W3y15K2xrPiHVkUn3cFuvTNBGjhmkVcu9uAWFMMTH3H06Jek15gpLWtJFFHmorARJ4KPi84OFdio8HDUnTKPw0ugDQhMEJdVkF5e88ia8SNnA/oiRdt8fD0nD9lawvDvnVFxtYLFdqKJyQ/02L6dcTnh0WFnpTNctpBGZjlOgTxbsCUXU9LxEZWYadk+SEjLmtEDJI/3W9+rL35zbbruB4mbpTyhewx0dTqYsiJ19shMm0S38Jofj5Sbb0u+LvF3OgJZ3vcJKQt3JDgSOC7zqv0SLC7gcAQTF4xPF4aW8H9DrwYwySrXeCiAZBL+3flqxhp93aY2uS9YPUjfLO7f4HlWtJubb7gtb2pK+NYm1o+W9ISHMd0qVLPi4cpBa8TFzGHoDSVgosQHxGMaJUlngv9jN/Z/rR+QfpyDwpZNjncL44zSFi9ygZnxNMjTstPmQTl8CTixNh5wZhd+YVwkvCfyzfiunDVygNms/oTKteZeM2wcpaHtkryO1y8PTOf1MickWX56Vb2sW2/vIf7O76ZfEqy/HSNd0RYvF7ze5oX6z5k+OjbLR8M7/TETIFvfTGazjduwO3WbN8wxCYEZECzIEDaWyfzIsvWvMMQBx+77itjVVeVNyBgOyC+X1tEMinWfEDXGyK7CssR8fV3NetCNhWh2BhAi0yUnezW2F72ysZFFnMPfZdwJ9zYeFd4sVF3KT1d2qaS/LcZIGBtzuJlBNLpjDuLNbpIli16p6KxpcneIeDB726YpumK79bU3v7FvjIQ8S7IgxlKz+ReV0xF6F0itzmnGfnolI0Jh69cLpN2XqlkAk5uA2zy5KUJm2JgkCeXR0lrEyUgvwuBaSOviPKkjH2jgL8rEIMpTf9Yjw0eeDCRV1Nn/j5JKwQskm2wp2gAYiP5ZxCgv1RDSmZDi2Y50vDx5CJZa0p7CHFyjO7SYp41QmoMjHHxPTLpJwedjQctzTV4XOddC6ZWrroKtfAkmjO/k0eVfSX/cLhGq2u+uZtxVMpd21auikXPZcfI1liWReuTHQ+wzTtXLvRywTetLPGNbSVscd+ynVsfZRKGLVIxlu95TlMZMg9oK7vmo345N23GMs0FJIz1960S3uZ8zKax/Tkw1vJNO05TuZhvAlMjHtiaMXfI3qYsY7tPymzxbcsZEc+4H7s2mCOOxYYV961+jiSLxGt8AmbIhvtrXMw9Mrd93mmj7x5UvzYfmH6fidmpwI//BPCNG4RenhltYDZ921aTBpeRxQCHSQsymjWn9dEIkLYUugg/CTvPOI7Z0qZWKi5awVQRj33TeMMGwSxLBbVtN1WWfbEE46g6aHDUzLY9Irtss1lGPtd51fcnalZcvsXmTb4edVkpdd/JcsZkY8m3l6WbhlCYEJoGZ3nkJV15PG0essiV7GzDeYWTtxMorVRZWqOIGHiPIuRjkCGajqkHip7ijtgKN36nY91Fx/tqM55P0WI3SLI5tmWUvKh9mT+MtOhVkfQEyuwfeQl8y6GVRfI7ZvkkLNAphmP74nL0PPmcDo1N+UdeQfZWJkt3q2kpnvb8U772O95Pi1VXs/NWZQWpjnx1FYIDZ3nyh3QEvr1X0dto72DE71uasNVO9ECY3avuiuD7EP5hq9ASOKq6bmWkp3ksGwsdkX0GA/o5gSK9i0TZaWS7NASx/3MXrXjF9vLfwlXFwgUmK6YyjnQcwosouJJt9Oyq2Lf3XzUB803DNxWPF5s3+Fuxu92twLIUF75mmjaygBTfFPyErjtpWNYUmiXcyaCpvLG45uIF93Mdxj2pzSalXb5HBk3vKSf8RcYQX9Ca/UmQ33Gu2yBDViByJiwTVM4I7pOSlwCFb5AnFgmvuiPv86Qr8YBoko1uqAUL5zH1NJG6kazUExE128yfFAHZkN6/I3uTHgTvSYkfdjCJ+VWKXmjhAbhemTxgdh1yJiw3rhpyQrLjuqWNcnzg8DV5YvYupzIqFEozW18PiAUWMNG12zGkyILSIqfPbakAso6ZmHBGTGbChmlSVu1IaRe9XdAln1SGSykKVU/1FctepL0nu4SmfIqmTu7o6fLIslrim8SNxUu7qm2BfycybtJ6/eoi3dmUc5eNbB0gaCLm9cTEkrZcuVp0z5PBTCBGGnFP0z1JdsZTnxFdVzKrbIpTfa5bVFBkufpp0ghNen0QwOWdMlE+GpovnSzKVJ+gQfll77ktBLUM8fsovlllkWTTNkeSPdQmZidskraTRZE1PT4ImPmFn+J+jDOzP0OPIK+m2qbH14fRrxpZ7neUeGnhF6tXPRTM/sYcUgDKfzLO1P68qI1OvqDBhqsak2uDT4mUomo2bfDpSs/a0ktaKl/F7hru6V3S3+MXuSrfivuc3/I7tSHN9Z1yKiWsdZD0qttostf8y/czZi6nkF5yYp44rSbnC/WJVMpOkDil4nH+UPSKoVUWSZYZ/yS5WIzrZHkitWJqxxmsNrBwwTLkBUDmG8N9xurxelVgKD+NQrIxZPPWyGxz8MrEYyW73Cb7cDQ/cSO71A6aGj49Wp4rehBtdM83fOrinKR5fplDjXfzboq34/4zvC68y8QMquN4yp/4CegXX+RbpzHdaOQOc7PNq02OtECk3QsV7eArYcgJ4JxoP8Y+kCnWwC/a0YNmNRooDk5cxgkb2VmGXdu3tC3hULwzvQ5ErtiX1XSDmAdk3VU7G7tLpXwhO+HrokryITKRl0+HLkcbeQCgtf464bZ8s31JSpLyHjdmm1CusH4SJjXtItvZYfp1vbcURwtZlXEK+VUWYd22V2/LnpeWyUKe0FgvEapPJz6pxDFSx4dLTTb6ZxBdJiffTkLbHNMgQE+X1Skbpy2aLE/uFP6B6jq4oPcAZAIM6zWCHmnPNOkUWHyW1Y9YNptZNq+0xsRy1E9+B8GORQ7H22qq/d9OdLQrKS3En6S9KajGvyjegoupTzoflKy6zl1lQX2lAQIFyoCf2yxWO7c2ZtxPemsomLrkVSmkyF4Ud816i6lFdnXv6u+9ya2d6eeFzVXuqnyX7U7X8jIeB8o0dZocNzaHcf15v65+lFW24qTpk6YOBobWeIPbm0nmguWl0jK2ZRxdJiky+EZzBj7u4snPKmsToLBBqH/muW9duEPILpyBpNff1fKyddjMuEvlhck2eDx3T/BWdH6aJRTXkqdhMWN5HJ45cD4+BzAnZV7eOKZepuzQc0IRaStnjIlTPshj5TkkvuGtjNC6tTF2U1idHOlx+1djWqbn+eZ/Hym80+Ef83s0xwG53fyqAnnriURTiC0PHI+GM94NE1DLdCR0WSehwUJxKY5ntrSall365igwvVwAInkNG2pWohjH6hNYC9u8UzhlE9LV+CqyyGqVRcTTonTJ18rcynJUV99oZ/OFjfaEx5MysdWypv0emm3m8rBs7PsgW3TV09Tn8JOu99I2wvibnzhJtktt60wQslykNd90xUjFmY0+bX9JWzrMNsq/1qeldb1Mqnx0euRrE5W0xQVA3iYZdSqgidQsOx+1P/LMsk4qwk+NsuywwY5mnoMJt3EI1Jegb2I2zQlNaft2xHJe8S0+BA8eRtM4hFcftcTzcflxZL+li5fSbUsLDzp45fnW5jusj3wib672OJJ/XLkhtrAckEnUdsx+7YCPBYHMrXC188+omhHTCtX5Htc0ljpH4KC0sjCO4D5KYRn31rRSrnFaxHXTy7iYsJyxzm2MuJY9wayuziv0YCwwG+F6dlsZKx4H34x/DQ1syl1kS/lq4i3fkHzlm4p1bGPN2+dH068sW7kr9DVtj9POdqNLge1exf1ez6IPCB5gfDPOqO21GwVQfx55Z1yMv2bjwA3b5siW1O3k9oO7pujKGWKYSvocGdI29PgMh13yLyRBEBOWCPkzKXC7DVPTu7SMv56vTeyU4iFrcumQC2HcVLfRbOC0EF7kivuGx3XSyFgO6DymHn4oR3weIA75qHqtPLfEN1pwPx8gkp+Mse+EJqCdHpk8YJx9pC3tH3tqFhP7r3p4l4mZCCC3IzYua/PeADDeJ7B4HQh4gzaYitWjsZIq8/cAVWURVcg5rjt2iX20N6FXeiG86ucmEEQWaZdtHDX9TKvG5GVMzwdNXgZLl2x+LNS0fJhFauKNHffLR79r2ksbg7yqbJvXVnPM05a8+G9DhL3N8yO3nFYwiTtcpKhkGUTOROiLBSlfgLf6he78s6Y1PZloNZMvFLA4T1Ik8grC1bjnTqRskm+a8lqZXY+STeETIw33h8kiZEfGUc6Ul/ly2pG2mbgebW1m4hrkfXr+MgnYVPt1hN6oh3Mha2sTbqP7MK882/drxpxeUx3EhHLIyjzKOU7zinc2fOWY9B7JRqXBdKyi2gejA/bG//P7HIBo0PJnrZ3W2UO6bpG4r5I1aSubRCJQn4yuHchbHEQZ6arH21IBo0aW07Q4QkZdlaeigNZ7F7jYyl6lvZBd8nkVHhf5R/kGwd1deT0vroPkG+Jhlm1xv5aHOoRhe8KnLLHH/ZlCkTAvtRmLa/TPnZ7A4xVvuzhjuafZ4v6qN+FnwfIt3yS32lMkTmu8eUbZGa+8Tg3bO9ynanS9WVfaMWFPvgjDM8/RP9odwbjv+SqSr5wzKnZr1gvo/JZafgoniObmfqc6GmU94zMp0zc73E9PCblOqM2J4/78O7UIeLIafg4bBW/7TMp3KCi+Nsflv89WRhHg0zcAYDxG5O0t82kWYESkjg2jPfebDEFpAVm2PTrGnAp50YELLzoq8pyylI3p8fFo1Rtjx+1WRqcFlrUfAqjO1ePEdHkAHH4gWb7G0kpEV9QlvZa2ysKHFmmLCye8kq1mpnwWg1ZZ2xo2fLO64nrrTGiuvtnboXRT3TfbtLAPUo4GOdJqcQSvADbvFaR78FGJD8DJs76FS6pN++0vIzcmm2njJAVPWwcOpWJ8sKQaJEk2u6fd74VwaFDjPlNON+6P9YiVrNLgw0gSmlxtBGv5+ulV029OzBqDj3Gdt5bECuNIG/v/DX8OOd1mhSbZMSnLvnBCVZ4oZh+NLS202qoK+4i15W022bYXJ02elE1Z/6DoJP5bslGTje5De9Ik5Skb5oqpjpbJT9nG38C414bYVqj53zTPbvGWJgXFvbkxOGgri+krnFPHCfC2dcf9RZYmg4bdOq1xmNGQnVjuadzE1UnpydEG9+tWRi3Jr3DxwjXXaZX0cIJqwyavJdg94hsqgusT0uumuM1ygceRP/+OtFeyub2Nn5pkvX4lWTLSGi6yZxPuZ71CJYx2oT4oqRyy5I1If50WeX1jaoynpFWWnRB5Oa4mvAp7c9r4axOb8S2wM01Cwg+A70Yo+Bu7GpRwEW6TuYP5DaBJ2Lx3s5kEal7zQA3fBj63EZa00TjPhAMZy0/H2OUzKXriICxnPLbt7gmfiZvGScDM3y8J50VyXh3uV71ja7q636NhZpyLg6HG/2+QcUQ+YlL2sZ+YfX3C+21lNHL81gvs0+N6O4BP06SJA3oQG0k0m4UTFP4cOVaNY6Q9+TNj8sxbBdDjmFtKpt65kjzMFb8eGWUAdPzht+QVviXSZe2UKMsnpQUvbYS3atp5TetZsDKvc7qiN/xaymPl1vjtfir5Lcf1lziDKOtttzIm34SwQPMgRsg1pYxDIC6IavgGpMOaktANlp3A3ts8WD/KPuu1XVmfeaXyVsYUyKGrHMSbulAb5pOtgNj+onMbpCRfKeU1Txekgh+kV5JveMVzlLfqjZOuJCY7c5nTZGXKut75/yE7yhPbOEByoYu3EA4VQb71aU5Ne6S0Qod+5C0sgOJ20Mol8ilhecvHevgGb1dkvQI+WRGef0x+zrn1xCaco0562SgzMNq2HYEdNsfvm/lnomT6VhAkbYexrY1mW/XNIZmKb0TNb/qejWLsVMA5aiL1UW5ls8EDSJ3BBpJUSbrgxvy/j2fn4oQZABDu54Ykds2SjoK6PO27yHqniX6yO8laXuu9iDMXpTRUfM4n9/VIW+NKbvT7DWd0QTltTbbjro0ewYarkHnc2rpwWuS8lu2J5KtO7x7LS/lU4I9DTLUDo40fwrHCoFP18lZHEF/SQggrMR7IzabxzoYHhPINPTp9HPlknJy4yBjserMOaODT0Gl9dGKMyRPuszifIjtwf06E0GGo9bMZP2wCk7HZbQ4vl3eOpWDquj3RfaPAzf2quCkmLxjun77lkHlA3K+ZPzJn1C3stPgIpG3pYzJn2D70fMLcgq7qNlkZPrGsZr6J7Ynz/bGAuREn/w3fjLvmp/BPwX188KAf612xt4b3mZjNFqwK4OWEg8GBvKpTyb8MOkE/ExBWWYU/th3ZixOFMjqAAZn10oyj3GP4ZBh1GzY2uqzmolwGJqF7PWRhvIu8ilGFN/p8Xyl7t3yV+RtfbW2qBm5ldfXfhV4b2/mlSQz9mHSpfR7GrTZXvbB843eNt6qq3pJv3b6Xt0kqyVBaJ6EiW+KWVhrZo9h1pMGKIt4DtN9KskhphfLNZZ5609OwIjvz5m2IbCNfty2Ve73sGyUsOn0bTrWjbp0x0ox6Obd+dllrd25vLm+YrRTJ9wS6DoIgtJVlXrdBHoA0KRN+gQeft6XFn5S5k0qIC+r/Q3napNuFLM+FHhfJnOFcbw+X9l4epDf8kk1ueGBrYn9/w0UVQ1fE2ed7lde9tDU8JPto87jAxYc4RDa/KX5XLvUbR9yQFCA+X6JFfvV8xf3UTBN/aIlv7JTlJwz7pNpBWM7b6KTUmuFmkiu4LxvZKFfHGQX3U2EYR1fcF7tOsp4f2Rp6iUPchilrW/86m5Fl+akeoJAjy+6w3DnkDu7vbIytjVTeRVbdxtBzzokV2ShVb8Trju2b9LjvcVr9OSQ+QzXSvs8mu0eCAuPwwK9BeLcnZjiOsXo6J2YKAc4DPlM50JCkwroqPxmyuAeWVU3bX8bKpgSpHyUuBq0zi0IMvJq5YDKZnxNItjHdlybjHPzOIr9P6zAjJNsMOORCthTh9bKo/qBQ/eqJkf17Ra5VUWcQkCf7nT11ax/Z6JelKaE0egtBtqYi10m06ilaZQV55bzNcd8svEvZIKHYzACdtguy7PybJwU8+Kc49T2TAeUdL20H2fg/FWC+Q+X9V6oepDjIRiFZ/mBzLhtNeMwG2xJE21JW2TIRmv3W9Lqt87ql4/cdDk8z3k1wmxGrpKFX8wqq+4T1nouNUa88mMHcziJRXuHDPbgN2MRrOPawp7KKsaVlD1X3gw7glvmoSAGsj7+X4W0EyfdmBiMu9q6mAuesByJqG2/obbQzXSaHF3is1Uy6cMA7qL2TXJcx2H63O3WWlHMflzCvvdfJrsXo9XD5Nqazrksb7YLQ3/wz4otfyeZapkfa3I4zFow2UA1dLXffw/2CdY3m1cSJ5QsPJIy3iK4ml7LItImxe+WTivt5AlZx33Fj6svvMN3DRcJ1fu8KE/tEbehVsDzKeZAsmnRJp46nViDcZz9QU1quHe5mnd/3yuUaeZ1+zbdgkm9sO+LAxfUj0bFjgvjFtjA6H8y4642t6jdM7ma/Mi/SdkjD8mPnt/mAwmyvdWAfkh6+kZRW7JCyjxpU8Xxi9jlBAD9r7UWjhdtEzU8DwOyoklZLBRnMbR8y6E8kmmjWjWyP4GX+532tJN/OnRSxRRE63jcopHQpa8i6CcsdzTdLNMcv9MqV7J0O2G6ZvBQIvTWxbCNT5DPAoKPIfNTGRmgZTFTP3pfd3ayusC0kqvow8GXZemcN/KQsZJmM+/I5qZk/rF9I3K/p470MtlFpwLuSxojTSqilMbvVfo9/QmV1EqS8D48bQcY/3lrif9O+fibJIGmeMIGI20YU/gSuyNa03YqoEXboAJXRbCo+s/Ipks50StjiYxv05Je9l/rQuVqKWDE14r6HV/ugkC9e5m4JmSMDGftqLO4jI2tgMrf7ESArUF+OsgU3bi8AxgQNRiPqW9T1EzKwKP2QPEztJg+cNgbnRjuyJNvjn4FwKd+OK0iMucqv3Qve+R9I24V7ctV25m1ZOWOLqJzHJaZuzJjbpvuFwTvEJazyDu63ALhY097oeYDv6prYohWPH8T9eB9p8M0h+/IJyYdsa06Dxyh4FhOJo8jH78CwhPP16RVhOdsYeDvT+juCFbtDl4Gd+X/oP2GfSbF7jKnGIYbl/n4cLzgS5jMPrBxhT91iQtalDw4he6lO6pZJcHxOxkbaOOU43h3eTdD4NMZj+uetwPGdCc8nZp8bbkf8Pex0RCPVfDDC6GSZ8KTOnJicTpQRhxDRY/N3NtKCocOOhmi9U4unF06rNumriFoiW8JeA/M22zIGA5SuG0hs4hWWeYHQ9+Rv7Or0cHGSzXVA0JXXBzmabezqpD5Rl6KZqzv2AKCdlBXZsFnH+w6evCExlpUcz59vmIWQXhQCHwDrBFIqcVpJzVtYcDc+3kmyg0tA7wDk8tQVW8snugofhQyfoEkTz1svzKZ+RdcmQdvygd4bA3c7gZ1YZddNj5edZZDJywiSFfFxx/Ye3CprNtW0YeOtlN/eGzMiruXJR9fT5Ezqe1+0Ujpcl+L8foD4uxFGtijlyf1A/L+ZD03IxmrpEfE7WNUGmixZoUQBvLyM70ne5qvsN8C2zKg92fO+gdEn5+RMXsKJKtZPqB9xt1NAD0BVxsLq7BeOdQXL18W/WYyS1g2QNa0Xe4fHzah82aVR3FcxdR2kk6w0skL36H7SQ/eqXRW6Wa8XvSvvdBG/J1YQaFw7OFbKW9+ZE47EfT9rrviKbfks3L/gn+XIe49rqq9FtMG+SK+1mZS0jY3AcLY9oUrvfmUsz/ZUDn097mcbN7iPwH3ByjfJFsJMxy/XOXWkrYs5r4TdYtsGB0au+Iv0bmZw2cRUK7NNlhbcV9JrsvmbZP5ULNmoqexxT7G8dyzhZynlW8ub9QwZcdkb4b5M5I0ncwP3ly7zDN/W8H5bGQ0p5tMxFYytjXYwgQKOfor65mpBXMQExScWNMPwFitQKPSQPKFgMiuY2m6pTQQ19ajJEgPs8q2yJW1lvo6cO3u25dnk1ZZPmkndLjTpOvsuBybVJmgt/pJ276tGe5LV1maXbdJSKyqgVGql3pOo46uBTLWxTsKqb2p5e5LXEg89dcKzynb3eCXT9CqlK0+JlgleJpyUD2/P8H80SavpPQ9Neljegq0ujj+aiI7TVr1xOEcmRtdbbDokr3Smo/P1nJOls/GN5UeDj1TH5h9NZWdZ6752OpfrtvLa4L3oPaZPbDHkEH7HwAYtQwsfjy905U3hPF0nFHOSJhinGgxf6M28PjUS3kaX03Gq7ss5J206DpS6YfDKaX6k0xKsI/MWRlBv4RWgC7wKawj3H5SteLw02px1sQ+9L0q8ouASL7hvsi23dHk1ercTsirc8I1Jp++sbfTsZKsf24lmvbtsQ38A95ctKCsPhKwmPF6wvGjOPJ1l7+I+1rDjmDz5qdhccK7B8mwzpU9doOJk+U2HhKxdoOJz5oiBuVl27VKMqVw2fqoFX9iK8px5Msj15Fw1y6y8YEinJSJw3xcAlSeS69M7w30Vw3J+Okd83vjGZAcMFt8sfIO0WJUmZZMH4tCQivMyXjX4yOFrspVR9sd5fxuVivwZAH/0O674OnwPgB9+byO+AuHpp8fC00+PhaefHgsf0U9/sar+3EcTP3H/Kx2efnosPP30WHj66bHwEf30Ktz/TgUR+Zcw/PXW8MOq+mu/LHs+J7zLxOwjBhH5IVX9Fe9tx0cPTz89Fp5+eiw8/fRYePrp2xOefn0sPP30WHj66bHw9NNj4emnn5zh4559+QzP8AzP8AzP8AzP8AzP8AzP8JMkPCdmz/AMz/AMz/AMz/AMz/AMz/AM7xyeE7MIP/DeBnxFwtNPj4Wnnx4LTz89Fp5++vaEp18fC08/PRaefnosPP30WHj66SdheL5j9gzP8AzP8AzP8AzP8AzP8AzP8M7h+cTsGZ7hGZ7hGZ7hGZ7hGZ7hGZ7hncNzYvYMz/AMz/AMz/AMz/AMz/AMz/DO4Tkxe4ZneIZneIZneIZneIZneIZneOfwnJg9wzM8wzM8wzM8wzM8wzM8wzO8c3hOzJ7hGZ7hGZ7hGZ7hGZ7hGZ7hGd45PCdmz/CTLojI/1FE/jtvlP1FIvLnReT2Zdv1DM/wDM/wDM/wDM/wDD95w3Ni9gxfySAif0REfnROkv6kiPwTIvJd3yY9v9riqvrHVPW7VPXlS9bzG0XkZZaH/33vl6nnGZ7hGZ7hGZ7hGZ7hGT5meE7MnuGrHP5GVf0uAH81gP8kgL/jfc357PCvzUkf//v3aiIR+fTItavw2vTP8AzP8AzP8AzP8AzP8O0Nz4nZM3zlg6r+SQC/H2OCBgAQkb9GRP5PIvIfiMi/ISK/qpMVkb9URP5lEfn3ReSHReR/KyI/e977XQB+EYB/YT69+m0i8otFREXkk4j8N0Tkh0p+v1lEfu/8/VNE5B8QkT8mIn9KRP5xEflpbynjfHL3t4vIvwngR0Tkl047/lYR+WMA/mUROUTkt4vIHxWRPy0i/6SIfPeU/8U1/VvseIZneIZneIZneIZneIZvT3hOzJ7hKx9E5PsB/BcB/KEZ/z4Avw/A/xjAzwHwWwD8H0Tk53biAP4+AN8L4C8H8AsB/A4AUNX/NoA/hvlkTlX/J0X2XwDwl4nIL6Nr/00Av3v+/vsB/HKMCeMvBfB9AP6ezyjq3wTgbwDwswF8Ma/9tdPuXwPgN85/fx2AvwTAdwH4x0oenP4ZnuEZnuEZnuEZnuEZPkh4Tsye4ascfo+I/DkAfxzAnwbwP5zX/1sA/kVV/RdV9VTVHwTwQwD+SzUDVf1DqvqDqvrjqvpnAPyDGJOXu0FV/wKAfx5jwoQ5QfuPA/i9IiIAfhOA36yqf1ZV/xyA3wngN1xk+dfMJ3z27w+X+/+Iqv5xVf1RuvY7VPVH5rW/GcA/qKr/H1X98xhbO39D2bbI6Z/hGZ7hGZ7hGZ7hGZ7hg4TnxOwZvsrhv6KqPxPAr8KYEH3PvP4XA/j1PMkB8J8F8AtqBiLyF4nIPyUif0JE/iMA/xvK55HwuzEnZhhPy37PnLD9XAA/HcC/Tjb8S/P6LvxBVf3Z9O8vLff/eCPD174XwB+l+B8F8AnAX3Qnj2d4hmd4hmd4hmd4hmd45/CcmD3DVz6o6r8C4J8A8A/MS38cwO8qk5yfoap/fyP+OwEogL9SVX8WxtM24ezvqP9BAD9XRP5qjAmabWP8YQA/CuCvIBu+ex5W8tbQ2cLX/j2MSamFX4Sx5fFP3cnjGZ7hGZ7hGZ7hGZ7hGd45PCdmz/B1Cf8zAP8FEfmrMJ56/Y0i8mtE5CYiP1VEftV8F62GnwngzwP4D+e7ab+13P9TGO9rtUFVvwXgnwHwP8V4n+0H5/UTwP8CwD8kIj8PGO++ici3892u/x2A3ywiv2R+OuB3AvinVfWLO3LP8AzP8AzP8AzP8AzP8M7hOTF7hq9FmO+H/ZMA/h5V/eMAfh2AvxPAn8F4gvZb0bf3/xGA/xSA/xDjwJB/ttz/+wD89rkd8bds1P9uAL8awD9TJkF/O8aBJH9wbpP8AwD+soti/Gea75j9py/S1/C/AvC7APyrAP5dAD8G4L/3CvlneIZneIZneIZneIZneKcgqs+dTc/wDM/wDM/wDM/wDM/wDM/wDO8Znk/MnuEZnuEZnuEZnuEZnuEZnuEZ3jk8J2bP8AzP8AzP8AzP8AzP8AzP8AzvHJ4Ts2d4hmd4hmd4hmd4hmd4hmd4hncOz4nZMzzDMzzDMzzDMzzDMzzDMzzDO4fnxOwZnuEZnuEZnuEZnuEZnuEZnuGdw6f3UPrdP+eT/oLv/wY+QXEAUAgECkDxAsE5r72oPPw13JFOmmv5PucoW8nvVNCpWef/38+SHIZd5iv9QDZ9LF+ZTaB2FdYpxT+ezdWmKMv7hGhz72XTqu0jt7n3r78//G//6A+r6s99NP1/7Ofc9Pu+/4YbBDJNtV7zopgMMP6d5RvvQqW1K6qCk3pexSmFsLs8iCiOkQMOedupxJL8vfb9Pv5AUEDlFfW4VHv11T0bH1fzlvYVHHvPN2+0S+Vxs8hX/Ujh9TZV774tPOKbt+t4fBS1Su58E+jzyjYxRd5eor2vvoxxyj1f9S2it+lVbfMzbLpnR/we4XPPYf9//Vs//irc/06FX/PX/Qz99//sy5vl//V/88d/v6r+2i/RpDeHd5mY/bzv+yb+0d/zy/Czjxf8tGM4UlXxEwB+XAVfQPAT54E/r5/w4g/1KghEXKGzU+bufqr4BO8LvaUUIiduAAQnbqK4OUHfBxvWDNQmn2V52KAaAxJACaCmTTQRPRVQud0t+z7O3pGsJ3XYVZZtFACYdp0AVA/gYuCQfbOzaZWqNlVfVZWiIJsEkPvtpLc218Hqq11o6q/IamkZPvXQR20Uzyfyel35ojwKwTkGpCLpvteYZtleT9/nqt7H2quV7By+k86mWiednlyeva+ubTQ9YVP4ipdz9vUXvumHft1g5n7cFq7eVn81bb7ft/DHbPyv/9L/2x9thLfhF3z/J/zTv+/n46cD+GkyFuC+0PGxvb9wHjgh+EKBHz0FJ/Xnru+/QPCFHvgx/YSB5MDLxIwxYTvwhR74AgeiXkb4przgG/IFfrr8OH6qfOF6kAZSd9rOnb5fQ8V5KXyjkynGBJU3suQ+fG1j9lXundGO2OZso5KnwqZTB5eC2t0l5sx6CK695kjG/aP6ppTXEUMN0R71TSnnpU3rRPJg31Q97PQFG2o5w6+BE3u/uicUZaB/vy3A8WzgxlFkdcG2OioIvOIp2SXmPGCjaT1w4qB2wjat/Gntd+1l1Y+qzVhrg/W5vc7FmuSrPEpQym1Xf6nO+N6r6g+uta2/0o6qb6r13nq7dnThm87G/9xf8v9+Fe5/p8IP/9kX/J9///e/Wf4bv+APf8+XaM5nhXeZmJ0Q/LnzGzgV+Jmzef/IKfiEMSmzydmLHrRyWklk7aCVwAepjEnZy2y4J4CbU9SgQNFzEnrk/mgYA0qNTkg4LUtWZd1XBceU9fLonGzgGB2IZbc2dr6JDinTNyYraVRR11eTEhwz4amYQ9WjG3dsgqx6lwFC3BPhrNkugSSbho/MVyeOkeMDvmks3NYfzM5NFjbAUmV45vY6gOysxEEpubxL8Im6QEQS0Idf77XVSVAKyPRcPJ8OW/sqrc8pxG0K8L6QvdNezSMHDlizOzflvSwfLO1If7xGlm2kAaVAcAjmIJ/JS/b1t/im0p409df7JpfP+szYX3C4r+7XH5TvR3kVB+ypz1vq73GEzOELVfzYHFKcOPDnT8ELbvix84YXAN+itumqzxisW9+3sn/z+AIvCgCKn4ITL3LgxA1j78UNp35jZlInuKNWz1T+V+BG1/cl6iOe/K7obFNFniLF4pfksrftoceNjN2jhgNTa5vNdXikPC3l6EcvMH/3XLwGSSlFNflm7RUR1Ft5d9cGl4KXGT+xtsud71J5kwkCgFlpRfKzKR/zOPv1Oky/gtv43jemxHYR7cvXt5N4smvcm+04i1TXBtw3D2LOpY2zKYyrtdWJ1wHX6+qjbOx9zrgft5IGp9XSdb6y1KUeicfWUc6j9cejhb7+uP3s2x71e412tNf7ON58vKB40VpLX83wLhOzb+mBP/vyTfyI3PAj+mNQEZwqMSHxhniCu0uZPuCsXSONoZUGemM1VfWAiuAFJ1QHLHzCC76A4JMOXYcA0BOQqUWqXnWrHFiUbJTcdcKmw23i+IvyEw2dgD2o+0VtiBjlAQARBrT7vmG9TgmWtwDxkXEbbITOs9hk4Gy+MdkR52cF5ptqY5Qpw8zpBLeXna1CFFD1tqI6V3Rhw57YDidL/bFvrE54tanUH6xKh29OreXL9Re+iDGS4gYISJahLvRqkrX7t+H/Ktv4hv2q5ouxRAZr2ydkPm2M1uCyApxafEP5cnyRbftFb+OIzv4GwSknDSjH0w/dlW/aCCufaPYzMAfqe9+Ay2d9ynw1h4YiGAs2mG1f6sR/bet736z98co3S5+adT/qD5BTt/UX7eYY7dU13EjV23xT28Jrwwngx07BiwA/rie+APAtvY0nXxjTpQG8BffFe8acTg3dh4xJ6oFvjdQCfMKJF3nBix7eJk9/AjUG9DL7/AsOfAvnxIiDsPsepvZ9P3ACqa3wBA4Y+CVcPj2d+4DxNDD0ln51x0ZuhSdO4p/RlhJXJUyFD5q5/k+MLaMqdfB30XakGUqTb7D4JhZ5RDTznhQ9qj55zb56jW/mYkvqZ2j6RixqWlaOOZ7yPherEh5PDrH7SnqXhRAxLBePn+GZ1TdJb/DJMXMZk9GQ9UlM014TV837voAg2OhtfFPrRGJ0N5585v5nC2y9bwoPmOa5i2fY/Jhvap+yFjfunTjmE2KuP/NV9s2K5Z424fMDvmnaq9mkE19q/1TzRao/5nFBquvL+nsN3ny8oDB++OqHd5mYvegNf/aL78LPOv4CbnL6sOZM2+QUmJsNI15JxQA6E4ER5VwzhMycThmrfy96w7fGmw4Y66svU5Pipi+4iW2OgY+IOW/TsLOpI74YuPNmkmqz/R9zpZLWVhWxham16co3DBLFV96Bk8nJj5aXE7UNdJjYmvLe901AdDyby3rboOGr0RnJpgd9tfWN7OqP9eYSsM3uCy1bMZT1dtKkqchi3tMkt/dr3WpirjhVcchLqq+0HVHTn1J6bvc7O677hSY9o77GYPfAQVqTTTXola9e2+ayTXxXVHD4djrWU8sUsXt2POqbWj6LPVp/7KvzS/INlvK9PigEP4Zv4gt9AfCN+dxK8C0IvnCs3+F+xlFfpdaoB+4fB8ZC3zdxQmUM5l9oUqIAVIBTPrme3OKu6zBPrWrfXwqeIgf1yYE5tzH5mTafi97X8E34avyjweHVNjtVZxsuqwI4RRqb9m0nb6sqvZnac+cbUbZQMZ5i5/bu/3TYhlf5xvyjRQ8/5159k1rOtOn1eDxkmavSApQu7iAsqIsxj489bAkzO52euCyYk/5kjJWufa51cGUje+bweLEJWHyTAvuKbHqNb7q+fFiMfJX8rkg2dn2KTT1f6ZvOV4Zuh2SM+/Lrb/VNvvdW5H+G14Z328r44+cnvMgNp44h2Qvm9gJvhuIrBNzorLlw/IT4HmHDH8vDKNy2rqje8C39hC/0mOkEn+TAbe7jVdG5XYZ27qrZzbDymI0C9ZUfQayKeXeecSdQsfcMxhO+sfrBD7NHOOayxiO+sW0b7ldgbA3SGODYqouVznxzyPCCb2WcNsXiFa3u0JaOV9ef22T66woiPG42q8R7hICQX8uKUwKqO74pNkf98VYXuM+AbFNn80lxly1tYax8SSvLNj3qV4C2eEytAgB6861wVIUbmwVobEpx5H7R+dV/eBmyXYfGGl31a9VbfcV9SIHXtbkrmyCwrY3VV6fOZYR5r26l+WzfqFB/HHrGqjcA3MZC1ivr77N9o7k/xmD5deFFBS/4BGCs3L6oPfWOAfdipw5s8CHU1G2+DcyZ5VFb1jlxo4HIwJmDFiqMFWaZXu0felbQvK8T9R9xqwdAWTMAcdy3HQlv4RuozvtzwUPYN0Jp2Sbb2DoaSry3xbg/29LDvsl9ajwZU8e9qD+2IwaiPXaHr4Zdhw/etetXGxsDf+Op8K7+LK0Nba3+7DnZWidR5mxztEPnr8XGCN5/YeXD4lds2oK3G433koa+tc0pMk9wnZicoyLjL9a2cBZf9H3ZbFLn8Nrmqk1XfcpxsLbPe77x8kVfBnS+6iKtr+o2wF2f6nz1kG+w9uWYjFm/4Dp5rP5s07rblBYWrn2Tx0couX+8cC4bTr+a4X0mZir40Zdv4j+A4pu3b83NWqOrx5NTAWignlt/uWewTrIyt3GM+OhOBuYnBN/Smzfon9AT38CJm4x3FFR+HN8Qy4e7YqM32TiN1Lgn3qIPQM6xS2dJO9Pr3D6i850byNzxNbYS8Va5M5X32jdnsVEGEoaNQNhcYPBFxxZDeyo1xxRBKrx1Ku0Mv++banP4Zr4LVeo32ajzgBQ95qP5mKBBzY779Vd9U9vcUn+cl2Zf2cJAqpaNXycbTXKa0HlOa2e70c5Xi41sR9wzAGaNo92cOBS0nQGLX32wI4CctmAQ7WYt0gN+tTpza2ygEe99Wj1Wv4avpk1qZYt246TxyjYXNh1QjbXsc9LZ8BUVduZ1buvvy/GN93soRNVtFB1P991XpS9v6+9zfTPxRrnuXhlUBT+mn0Yeau87HNHeEXVa27tY+SsuLGWijTiHQvUFggMyMfVbk2tsAvRS9TyIqWHT7Pl1Rr6RFYytu4d1QDkA5ffdYpL6Fr6BIPnqbNPmuMw2eSQ9Z9ohoUJ48oBvFr5R99S+/pgzMRdbF6yb7Wbi/ulPQff96lrP8NWphO07Hje/SvFrY2Mtn2K2bwH83eGlTsKvpx26cKdfdLLcFmyCfuIlt7kJXicEyzbtZmwFBBYAmvD3sn1WG6d7jItupc0lm4Dr8plfp6+ifT7gm6YvG0cqTkgpX9Tfha+Ii7+8+jObXqh8r6s/6xdef6IP9+WTy28890GDQvGiH9e+14R3mZh9oQf+fz/xM/Dpmy9z9RSYwy4YrYjajv7D43FCjI7fCgc370gmy9si51LBAcFtbl38psh430znyqncJol8AZVPeHEkzms3ouqrhxYPvTr1IukVsjG2B6kPTEf+J2ziY/v5Y2unzjwiLeavKG/YlPPOes1Gc82QDRvryETmUSm+rUUFmk5AJN94DYYduf5W33T1N+yX7BveVjb1joG6rWTdZloFJLZCxdENZNNV/UFy3E93ijbn9SmxRSDWVL2AxY+8QqVIW1pUgfn+4843pidOBAy/KrUTcPuUeM8ghqLH3P7DNoNsErIRbuPON0b+wze5DVYb+cQtK5/ZFLvvFTydFoz2yv0m9z9JZbC4uo3ZN9XGtK1I7GnF8NUBnb6KNrKtP4SN7JuKVe6rC9+kvkw+GTZF2s433G64/nY4YOR/zzdD20Ht5vVBAXyBTwNHqJ35IsQWrwRysP8zHifcoG2Qhm0qh1ebb1HH8I0drsyHC4Ve9mXDNwm7zSYAOgd2O9xI5Tuh+snb3pgM8Rb2PRZkLgJsdGZ6rLbCNzseMNyoeo45MbP3vm5k8zUXJz0Qf8IaHzi48Cv5Jvw2/Gon951iuyXCV4FRG99s6q/66hEeF7aR+0bDxWazPZHcYWr0wXAL4/Hduuf2eo7rLzKmZYc/IYk2Z5Mf1QZT2VfO/yN+hTnVRixtbrxjKrb0JUp9ORZ/69b/jm+Y51ItPuibFJfA/ZvQE8GlPtHyD/ONSvSNXf31/ZFsmg3gZXLkzerK6g+fUl7ZxpVv8qseF5xRfMPlGwZ87E8fP98x+4ygKvhCBTe8gLcC8ROqc66IGfaPF2dnE7dtNRQf90I20s68ESuShyg+4cWfnuWHunVLn5Adw0aVuW40HwmHnCS9QoNjkw2sN6IyuIsGbyuV6aAGnRiESdyzvCPzI9k4fCPFN9XGkI3VX9s6ElMtGzAr5hbLaXcMh+g5ntBQf5KRw1KpExHZ1p+txiXfqFM51RTSE0arY/PVCFQ+Jz0hX13UH3L9cZsDBHLytpx1C4/934ENVn88gR3lHfnKhW/CRru39pO5Bc6IRaOvmEdvphNG+tlGs2uMEWIAwr7BbJNso7JvSt2HjePJgkzy9UG1TPqntm4FfiFfqSpEjsGjkMU3+YjkeeBP6xu2keqA+pjM9sxPidhXvO2D66/zjTnC4mdbf+GbEyC94xq8BQVOdL4JvZidIGzscSDSml1XvgF429HrgmI95tx9K0hxtxOSHgrbFpyu/yYc0cBJ0z3qU2f5QW00L7CY3myTOn47HqPHY8HR1L8N0UzK9Myt4Yhtg7yta2Ss2PkmbAxb7ZWAU+K9XS39N2SH5AF4/cdg0nDfDmaxcBSbim+qjcSnYzCeuYn7htcfBu7bxNHbucilr7j+fFxuvqk2ch2ar7T41fE4SmYvQVj95fISz3nbnr7UwGag6YNFb+DMg3XvuD9uqI7louhra5vTuahUMZXrRIzYYJNhufYr22i1Mss3tM3+RnjEbc71SJZlm4JvxH113zdTj1hrGuVV0izzvwPx/h/zqY3/TLbnm4LljW/29Un1N30Fbwc69RyLb6pNjD9WtzDf4RHfsE+tToBU4Gf4toX3mZjN//2I/lSc+AuAddRzriIYnvmDodltT8ROAR1taEzwp6zdAwBO62FMysaDfcXLHPT8hNqKwCCYALIhY4eErXoVx2mNOwrnssodsbFJuQuYhXbSlAQAWRpF8U3x1bRJdJBz8g3bWOwQMt5pw/+nTlZGFAERZTKiI6+kZ2Zjg6Xkm1meR3wTNsV9xXzPAAHWbrVyeWVpN5bX0fmG48nmPCC1MqWLHOo9jfIx+HJ5t75BxHWuat1vc7YVDnPCEfHcMGe+Bt7DM7NPxaRy8c2sM/+WnPv8qs1NqOdJkEo2nHzlq5Fmn/tm9RUQmHGKDTzu9Eey0dqNyMAF0d4mOEkXvIH0fYwwQyGwE33XNieuJ/qCtPXnvlHyayqf+SpjhLLemd7r7wHfcPwt4QVHsXvm53jV9F9wHQq134m/nM+p0TZmvmatcD4i0FOivRLOJP+Uejg5fYPHzlVNu/N8rGeSHpus2jfY/Abgk6a7vpk2vphvpq9S/RefOx5hDkYTJsmc/Ate5lOF0PQK30ybMXcYLDwOWpydPM71FXUi7qsXHLAPjEcJSv01vqnlDx64wn3OZ/zl+rtXJ1Bb9BqYqo9i6izvzq9WBvaNGEdbIjXEnd+LTQBI/tPAWsYrAJD5w/HrAb9m38S4IWzSuUfoTOULX2Ecjl19JR3fEC5e+Sa1V0k+HrmMd7rs1F/fau0cWXyMK76RZMPeN7XN7esv+glw8piGZB/im7u+iTYn08lef4oPGxTAy0c28BXhXSZmAPAFDpzngW+dB24HAO/umC2GHKyAdVfReO12JJn7bWFTCjGBEhxOZ6r4e9A2whcVKG74gu4DMXgcnWnkJTjn8ctms3UbshGC2CZotqw22mprgCOfhHXtG/+hVj6dHTp8YwSRt2Z2vlHPyyBYya7T82Fx9g2Vj+4HDHb1x3C/8c2ix8+aCj9tfVP8luovnqBE/dGogeuPfBVrmVY+jay9FFEnBybgz/eGYkAYeavZ6HaHr5TKx4RPkE/lAw2iLM8D9lVAe28jcqPj3lVCVqSpz/DN+FNkr9prwsxoYzex74/EHnYvo5c3nhop5ev/p/rLvso+zr4xU0LP6Du3+SWs09ur9/td/cms++j27hvAVl/JVw+214o3h9Wf+YYGJhFC9qS8/B61bWUfc90XO1obXxkUgm/pAe/R3jd0ixt9+442G1+6jDa7pCd/jO1jwy8vEtsGxetl9I3DLF7ab9++/YqaV7XgBhDte8UcP5VRBS8iYFz8AoP30peUHvIN42Z6u5Nko30Dwa8C9YmPYmypyltbc9or34TNGx4HiCOtT0mk9cFxcKRh/hcq8HduvA7S0LmtP7860waP+//a+sP0wkvn1wRzjOtwG5XK1+GGEm48hKmkl98Bc3/LPHlaj/m+ENnleKSp73e4cRdTN31XPcewVWS05Zva0exRvsj7JIwlNXPsYWOSx8dH+d7pdaL+dEkguOnclC7uGXB9RQ61/mTWweO+qTb29XfgwAuOWX+O18U3YJuKr2JS9Zhv2GZNdfIZ4P8dCs+tjJ8RBMBNFD/l9i2AV0RKQ+PH07p0CniHGi/FS5Kkm3GN8iX6BI76yFYohQ2ESNYwoGxjgO93j6sJ7JNN9v6SdaQAF8fp9F5V1wm5bIdf1wkY5hv24+qrxjf+aDtA+f/P3t/EatNs7WHQWr2f42PiPxwcMMSWggRCICGBZGWSASAMisDgAQwBBSSsDBBBBBnZn/iRUKSgIAISTD7BDEswAMkMPMCWyIBBEF8iUISNxI/4iQmyPbCd2PF33n33YlC1Vl1r1arq6u773nu/59ulc95n9921al11rZ+qrq7uNkyWwPsixK6L3n64AYS7LrD41+VHbvAtcPrOLiJYPXOYIjfeJjP7ea78gGtYtD+QHNtTN3jcev8goraFBwfChlFb6MwDftXeV4Yl71+pj1s8dGuETjvFVbbt5pakMTbblhhfwGddyM38FctODyEqn5dPeNRnVOIAneBvPGVc9dxk+ab8Wu6mb7i9mOSi/TBXcYK5x+ExlTyAedDsp89fpfGogyrg71hEriKMo3wzxjzti36XD6yy41bsru1EF8PUSPxTYzHHIn5lTvNY2S5V5HcS27Zm9g9qZxhhiaD5cJo3yPJrKe3twLojAfukd1GLxo14kRsiogfN8r7KNt91dx7BN/bKFeGzxaySbL4z46YtuPTjOI6RPu8TEW+uNZXVi8adttrlDSbYOt5EbjymNomN40CNFDfHA147+zGc98+NYV4U2RbzRpRtdvJ4fDQbp9La3XQhgt3TtCCri28KoM8beU7FwTvHpGNGG3AF8L3RTg/aavz1Y9HW5TbBf1m3VB9z40vBb9v74Nm1chePnP+1R089N5A1LZe1vLbGjbdffN6QzH5l62kbGfdp3geOUkxzbojaHK7HdC3vf1QRou+Xf9wpGwv9nh8/Eelg5Jwfi79ow9V0dDM9i3LRATnU1ee4LO3VQNjD1HUjoTchh8MjZHDg0hDHuORebngsEEwS+zSS7zFpqhPyw0arPeamzStq72x7gWIcBSemq3Ls7UdEwFV2NusPEdt8ow0+7XjO1TyR+LXy0m5uv0QWdPqLUN+jeCHVVhDx3zKp1AG2l2UnO/LHrIfakk7+cGIU46jJsDuB23u9/djJ5rh6jOgLTAzPVvc8dm1EX7CfFRe7c+NUHXDVEclk4Y1UnOhZsx85tqTj4th+OEhG+43b8PbT+kf2G+Py9rw6PL8LU4yHee7Oc7kW/yh6htkzrnn+QfX1LtJ2Ami+Y/Ug+IxD3244hrxh8ilJjNdOzZqi2wb1hRv1fFjlPhrngiYn21/i+L/xBSj6DLVy9SC/6Ih14+gTUfSo2rSxPHM2qrtR28oFMSVkF2XuPbnScnnTs2I/IoILQr+dv5flEDA5r+7+ZlGR5g0iEgp1Y0xCPna/tfj1eab9ZR/jjuNlh8lfgGHe95gWcg60CNFEGicbt9zDpPb08j1XrdH4OMWMm1hQJubCcm9WfRu99EAPzI/imOTr5hhxnoZ61X5cfa7hmelxoNt2zUk+HWGMXB2PVZ9ffj1elv9pd8yEtrrR/Lcfb/Rja9NN3JRIXFcxXfIoLRBTfeC9talX9OY+UuuCZv2nbVxiImkJTKi+qbG2tJPU14S0ZC02WLRXj2ZTXK490u97EfX9ibIYDPotk5QbqOunnxwwlgmmT7vtnefddMdke0zKlQY6U+NxzE20Hw/tZ9+5GXDj+gdtiUACO8XNsf0KV9i/YD+K/WuS7h5FtAm17VteuvqhzesYeIzHSW+rnniW66qb2n4WU9Hn+gF7Eo+OV28DtIm7l8VE+ImDjFeT5XaR0u4cjbnJ+1f46GJKPFcPxJTEhX5nDDXZIGhuNIjHxI/mMcX2IgQKOMwm0X4sMFC9AVcXuBnG1HoR4fbdMoKpAhOJ1Cer3B2iOBHAcy0/q/2NvaSPrHps23qZOL8Tkd5HxpcIbKTPIHOTFbxzn8U+G4Ziqt6GUVbvk+HnSPBD2Og7lo9Ur6Mn480f7eArkcmoZ+fdxsNdL9BGedLsp5hzbmLeYNIdDyt5n0insGJcla2MlnMsq+ilQIhfijbwst5+0vLk0H4F084o2+JId5/swR993vDb/eIEuMcMbUmr32LK+81GO73VbZQPQdSN1Rb7Wd7AC78kb0SMsD1R79FF2YcUxjfeao5tuXwPdXEMaXM2yuu6Y+gftf6Rs4meV1sTvXF5Ycem85xoPy53rDDfuM+cRL0H9mtcIe5mk43Kzg3hvb0sSzkQr8eNGTZGkmEc51O/VLaLLlHl9vsury+f84wZE+30RiS/IqqBUIr4/wpufxNy66N1Lz1K+HTmncm5pLS22j562K7HGGQ1MBS6oK6C0SPHNdxynA0F5MLGy+oKV/aFduzvSE/HDb4WO9YNSVZXKFtdTQQjTAHGKjcOY+ND6y7bj9rzBpe5GWFMZY/th7ICoq1/0WNhILcCg6cEPQGzJLzigGQXvyLhQ6rRJogrxxT7F/UiRunqZpMt9a54PzxbsSx6PHehPwc+57iq8t7naouVKwFZZ88gW/474GrB54Zc4Z0JEdpYgizEo2Rc9ZiucOP7dG1wFqp5n8jyLZHm1PrqehF7hu5IS2Pd45yNGfpGUCGm9zD5sLfnkT5E3t5huolepqB2wMhRL07A/Jjht3W3+3S6e2R39vd9JfjUSdyd4XkxWDmmEEW4/Y2I7M2Oml/Lqwc2Sm1SeX1Yf6L9MG9muPzFvh8H8NtJ9XnEelH2kMYbamm8BtszdfjP269ZXutu9YI95mOp//Ge47cKKlI8F0vksbWLqHxMaaWdNipv0YjjD+aNOIZ4TF3bScnzYn+sLT+oLMRubpt2zE99xNGQx4nPBa7wzdK1+/WFT1LzPvRfel4FZBF3j8FzM7KftwkKSb3jFWM3jjWZ/bS/mf36eEQu5vb7ukVIvl/+cacwEb3xe/m2JpU7VJqe2VbayX21HmXd1b/o0Eb2WmU81tVlgfPolHinTNAbuTnlQ8gGQH34Xlo1l/CICG47c4e5bdnStjwmZrLBGYNEZX3/4C4Ta3/6AMY3hMW2UG9ZoYkbDEvnRerrueve5iYrbTVZ25lxQ4Eb8dycsV9J8PoWTb7GDQVuJGJmswmDXqF6DyLlMTv2g5cM+gvzcPCbaL+eV6L6QLM9L9Fe6a4W3Wqdkc/FQcLH1NieGa/tWZ72LIDzG3t9eP2Is8k3e+EWl8z2q9xkOaO1G/ymtlS46vUSXbHfgc/pOeOh4DKfM66ovQU18TGB9vuYegI3oHfyeMO07NhH1G2vXyfa4hvHAu5xLqveP/BvzW07tS0+mPelxkY5z0TCdQwSYnpYcitzpoBR7HTLE5YXGTDDqrZyWY91p4beMYobKb2PVi66fAXHgEn1REzkcpvaoPaCy92y8rbIzcYB04OyM/sFrqL9sDCVcR/9jriNTXtt6FFtpB+YtjhCWW7xrOND5kfn7Of1NNb8uEaEvk6AkQFjtQtg7nAhN7DVWl/OwUOblLJx3U1SfdnnVO5yW7ql0PlRwl2jkJQtl3MwL3LI2dJiEuvGOEGu9oA5ckPGTbOZzluQG8XM8Hf5462+ndH3dw91V+3X4jHHNLQfw6cF5I3ewH4xH6uiyI3O/0bcxP4RNZ8Q8vlUiLrnbr9UkZJDP6Mw8z9DRP8JIvoVEf3fieg/LyJ/82p7n/RWxuLC78L0q8dG26YpyyKwDky4LoBvHhu4vp1unqSDxmaRVI7LBKQNzKapXjn5pErwqtadNovm+Da0NYwavnudlCLmEnh1W4boilHonzuuA5AscqMYAxfK1c6AScMV7yoKkX5nDGWJNmLeYf/9NW56rkrC3aTHrK+z1RdEXOYmYnTJLeGKmn9G+2W84rEOXkQ4WAXZFYzhWAcJIdDpeNSHiPfU5wQmDD2PEUccynrM+nak0t+t9g/8ZleE1eewrQpirxgl4fEMN7GucSVE7QGXOsWq1Xeub7G8ZL85NyOMgvYbctXbT3NZZz9d9Tjkao2bLr+eLEJkzyo1ad92eYdc0kfs08BHbcxAWYhf3cpXLn42Eu7zRrkQKT67ExHvZXIrVF5XwIneqKecxhykMRjr1vox71NZALO65OsqAh0zDVPkZsgV5EWhTk+xwaO+Upxpl/rcW+oPC/bLuBlgZJbwzLlyV9pVlxZ6s8VC9zbRwKtiUnaPuaEunpkFXq2fj+McZF2eMB1V1j5bwWGMmHOjevXtfUKQU7Ui2qQ2V7xE6I0mstJw+scaZ7E/yIvpWKw2aU/227uweVRX2wZMIR8PMRKMayoWPvmAehTxTiXvb1Ltk+Xu0N8jbqJsb4PYB6yrC1h7fZPkmCu7oDqyn4vHgf1qXtiDnv1C3v+oIvSpz5j9RSL6MyLyzsz/XSL6M0T0X7/a2CddmDH9St7qa+K4fkNkpzfe6U39lAT21Jbj9rceE7m1LPaB0prCfcDmhaQTofaaUqqBFff8amNCTG/VWetEjppDM8XduhEIuXMl4Kqs9Ilkd4MzE3IBa57uQWynN6Br50ZcYeJQ2faAvMekXEFdewXymBuPkaG3gClyJX4ft0vYFOx3gZtl+wnV2k3K2S9iBD2Y3NzLRhASQBWQRYwef84rTuqwP+XuVF11DhilHrs+uIFDf8nisR+8ImZdcfd6a6RJ3STFXlagruMqmPQMN4ixHEW/qZGmF/spV5n9PFdovxk3rTXkCuJe2Kgu9tva94XAXqn9Jlyd5cblH5eXzxSmB70Rme4+H2jOsZedS9ti6mCmpfgSo83Ynze+uF2ANXi4GFa54rrtiojam9DUO4P9YzzrgSh7nGIqiw9tO/2Ofhd7yE2cyXuOv2ijqZ3alnxu+BltwKQvNdipbBsk95bgDhmN7QdZKE3HIOuGAZ/Ly5slm1uXi2jIKzTur25JN8t2fjSyH1GZuLe87zEFT05yqFtcJZhb2LAw5qb/CdvF7eFJEalvH9zrRdlAFnCIU5rwKgGq60PMG0G21nPjkV16xDlO6y+OA0OuIJ81Hwk2mMZUqa13qPZm0E6v42qG6a79zHPiS3JiPkZM1HOV5KrcB8F3l2Lqu2gRkf8NHP7zRPSfvtPep33HTIjonZj0m0FvJFS+uaGR35yjbX+q7iPkJnFE7J+aEiLNvLbdgGv4C8MAVPf0M6RZe3Uq3o5vzlnumrW2/LxNZYuDt01lOEZi/4Jsra96d4eZOozYP2IO3JTfdTtWW6NmG1Za/Iq1a1sfoH/K8kOQxypqNmLbmz3nBo9n9qtc1briZLV3ar/r3OCt+R1emyuit+2bbNyeQ6ks8urtF21CxC55q6xY85za/ojXxhXq1T35NQF3GMm+jcKV1w0GsradlxO9ff9yXhNuiGwlN/oNSbsTxKYX9ZAaeJkbxIwm9H5TPzTaxS739iP1jfb3bqr4NDcSMDILSc2LNkmpTrNTlFVe2fy16Wl9uMpNFvdnik6mW9S7yxtSlnSipLEfr7NcLtC6VE749ph0NVx/16nOLn6RCc/7iXVry7Yy1Qu0xg/5HENkuS3mVCKuuy/UkmztS7Wpbc02TO1fwrHNbAYvQMExs8PYeHV+VtvXt8wKtVwuVPO+xDudXlaLUBhv7GLWzxeVK+9GDJ2sGKX93OxXMSlXohNS8BVAa7KM9qPATeVKx3w9QL3iMZndwAblpxaDikLbMB+ofehyW+BGZWOu2+uCjfsAc2YTXdji9qIk7YPK+vGnXQAYrsBNzDk4VrlcCFyjDrWQzS0CJqKwbXCQ24xXkCMieg+8Zvmmj6nyR/mkjCJEuzWem03Y9GTcoM9dth/ojHGR28+P43keaLkqjlWtrVFMfeWiz8JeLn+ImX8Ljn9TRH7zQjv/BSL6X9wB8mkXZjttZYuE6J0yph+Pd9q2vTmLeKe2V6bXfzcIUt1OYMGxFxe3gNavn1OpsNmWFdZnY5ve+odQ0Etb/b6RYmLiOvAjxuLkQjvXZ2000+9tklAwiddbFe5Wv27bqLJbwNhkOeFGg1QxKld1auK4atw8iOszPyArXB/s5vYV+Y5XXuLGMDLRJm1AYhbT23PlMRIXjLa9MrHfKjf7zH5UHx9XXI63xH5DbqpeaZhK/3ofs9fbiuotLJziNfGbMmESm9cZNyEubJLDTDv0zwaDkd4jXqP9dusi7VwvzrR/Ka+eK6mYxGFa8bmGcRRTQlRtL2B7Hxed/fbEfqvcBIx9riqLWJrnmh/lPocr9G03Y+TqGjcxps4V/SBwy3XKH8YGG7dl8qbb0F2sKE4BnNTsbzFHgR/LG3WrYh0HsgmW2ZDKXeZNxMYbzvjhtpWmYSxvM8RxgIMNVeGuk2LbOt64eVCTZbS/EOlr4rnGlWK2vKHc7NJhbN1keqvjpTDTI+T9jivjpmG0MQNig1nqjpgwzlVuSGjKTZ0vO/sJ6R08IpJtzA0V/yhNV1nzdel97oAby6lJDDLxICabb4th1LkH1Yt0+Bx2MmboNzC7cY6Kr8QxxPTWA+YfZZ4l0sm2Cwa1icZUs306T8E+4dZMEptbqR4O9tR18V3KBHTIjWBM1ZxjMRJ4rRiVKwo2yPKN8xvln+pYKeJ8TuNTF1zcWIX2C7lq20f28/2d26+8t/Wt45Ht4r7Zr3C0UbEtchP9s80Rgl6N+zSmvm4RIvdc4IXyN0Tkj41OMvNfIqI/nJz6DRH587XOb1B52e+fuwPk0y7MdMh8JyaR8nLijd/o3W0pJDJXcMfF83dbOvFbS3SbhiYKDRaCY11xI9IkmOnV0cbLvutxilFMlkXf7qUY2d74yEFWtzJSnZDQXtMF6NlTLkbcRIwEej1GTUDIjU5yS/N+tcg9i3WKm4hRTHYTsdUO+45IyhVgJFwxGvuNZLLmNxlGos5+gavMflWq1QVuNiH6SRMl8Io20Uuo9gwfcHXR9kI42WgDsx4rN4KY0V8hFXc8Q/9yn1uzfUn84n1OI1q5qdtk27Z9xHUmZ3iMe/ATG6BFDFP0G33Rjbcf5BPj5Ro3Pa+NGyaiB9hP/aazXx30p/Y7wU2O+VwRInqnN8PJITbyuNprDKr963m1C7VVUiapYu14j/GrNqwTT/u4cLCh35rc7M/peGMRZi24nEplcqYfryaKua76O1PF1Xyn54YdRqdXpOU2PWbkBu9WBlmixpVd3Lb6kavVnFrs5zF6+61x09mPy0KDcpVzg37jXIN2qTt2zH5sJzNu9NMJ2r8c4zE3WJeqv7YPXId8vFeMkMtzf+3Hm6K3vFmWZaeN39w4YHkDdstEm1AdAUrOw3zsd16Y7AI3NbmRvmH2p9TnJtwkGMkwtdzWuBpxQxZT5WU7xWIb7ZUTGJtUlosP6J12Nozeb+S0/UZ+UxdbRBcNfN0yP6Rqy8R+etzZr3Hj7Jdwk+ebr1tu3jGbFhH547PzzPyPEdGfIKL/sMg9sj7vwswmWGTOrWGrP+JEiRzhHH5iTZvatAWbtdOezjU9uiq7g6zX6/WYDjj2yGAyZmHa2t7FY7TghrYsELhxEfXkenNusqTRMMFtdOm5cttviAJXV7jJMRKVyUhuv9r2ov1mes3HNJ8lPibdf9mdE2kWjvZDv5HAhZDUVUG2F8s4X7C1/baVJOvPFds3T8KeBZ8T5DXKF9sjZrJBYax3JabqpgqTif6Fb5r0ticKTx9djIvY1zZBQNnmN1y3gET7AQ43NlznRvnu/dXHckkWbaV52X4nucll10uJg81iQ7E+iMlWojvdusm5TRK4HgoR4Vab3Y7BhnZh4mMyvtwp6o1jwk6lqTZxDrlbkpxKGOf2rkPbDm55BOTwrWrlIk1Itx713EQfbTwSEYls0B/Plfd3zfuKqY1dI64iNxRk0X6td9F+K9wYOlhUajlU28i5ab/hE5Uav4R1w3gTufG4mu1X/Ia49cLljTopblv/PCaxGPH2sPPQQ/XPdk6oPRiS5w37F2LJj3lUtxT2cULWRstP0fY5N5rxqW6Xn/jcgJt+HGh4yB2PuYkxpWfLTokWyzuRPSrRFr3I8m0eU1V2Yr+lfAPRgZ9+eJCfP9hdU7BJ61Fvz8ZVPk9Zyzdfrwi99sJsVpj5HyWiP01E/wER+bt32/vUZ8zitGrXW+vw25ozQAIlslZx4NukE7FkoAl+RW9/GZy/1EKLYrBJFiC2jxi65voL1Fz3Kjc5bsRSxzpD3rYpiQ1a2geicYCe5QZ/b8nLTwTX7Wc9SfQ27ZFDHShGmFuL7Vh12tbLoCPrX/u2DaxeWf2+v177ke1HvPayW8pNG5yjvzb5ue2P9M78laleeAvWU0w9N4gRW8n1rHNjN/Fq2XqDmP1UdtV+M70r+UanVP5zFk3PzH6KG/9trd7HeKY8pHFF9a824VUtoY/SLops+tX+E3JliF9oCNHjxF7baBh8/XicjTd5XHl5kxV2mG1ylmJCX4t6e+thH3xu67lB6zPBdkTT0xaj/LciZ3lxbj+i9gruFW78s5Xtd+RqxA1Je723buMmlQu7QHS7twMd/EhtzeT7v+I3QmwT3Zg3nF4hV6f1qR8LZnr9pL6Q3+dQz0E2sS/HQnFeEm2c2X7EDTNckic+19qL87JQJHKZXcDOuAF+AK/uFtmJXDv9eNPHFAWuGs/ZLCOPZceV1pP2Hl28AD4ebxj8HsfTfhy5km++i5X/ERH9koj+Yl1M+OdF5B+/2tgnbmUsRVcdRLbyXbP9QYzTDxiAMVm2nQHqaP5tSExCtqGc6nYJkC2v/ayvLCVxTtlKSG4g277URFNZn8oIMJU3JpH4utYHJv/F+YCj1+u50a+3+3M5V2VAJJMV1Mu4xdL35z437W9Ncd5+rdbD1cS6/g7aiBtLSHULTNO+r9uPqWxjqz/tXJLweArX2wTTK67qznhtx2u8RlnDT3UrY+dziNHXj35y1D/P+bHtmaTwulPrH/icx5jb5IzP5bxCu9WeTGVbWJ8zckw5V9e4iTFVuNiIaS8+t3su/CQPuK3+Gute4ybLN+eKCNH7rgsUbVGk4NyJWfN+4mdgl7i+TBBXrIeY26ytdi+hTM7bKr7v02i8keRc9ZVkfXk2VqkevKwoi2DtIkhlvX/PpnFNr8ZVeSh4xo3qEuuNNlc+Q7LZ5LnnasZNwCSRq2NuGqZ2Xu/86vG78JQb5a543V41FPkHYNr1QalhvmpLq2xnZjaoNar9BM51uQz1Yl0bq471tJa9TVhK3tAP08cchBdCvT0hp9ocwOfvhgN/n+WccvHNVD5D0eKmffal8dOPA/14ytTmcfkYMZJ1flNzvX5oGu8xrnDj8mTH1ZibGcZiv+KfhasDP+r6B3UdpoyrUf96+33lsvvtKh9WROTf8cz2Pu3CrA0S5Xb7zkSPne3tQRzcrnPiMBCws0f9ZhMcqzsSEdFO9uYaqnuMy/77qkeIWoMCLTS9sa5A3RGunUJ/xB/jK8VlVz2c65npDRjb8xw5V2oDlW1cCdG+2bNeyNUzuMFjxqXtI/uR3oFSrta5iXdkWd5c3RlXekGHeqL9Wn0hkq1V2IXK66Z1wGEQ1kQIohR4XbU9eRv4u0Bi25U8xsqNc9CQ+EXNOxhUjmyfymoLOPQR0e5fgT3jascXg5zihjpep1zZYJXbr+PqJjc+prTgK79VdsyVEwX7XeEm5/Vs0Rd3e1/iXYj4rcbTTsxoYW9vqcftxSWSxGvksknbpZDoBdDmavnxBvSGvNFhki3IQmsBIz7R1O4HceWHaHevMo9cx1eR58dCRLQLsb3ifoWb3t+FCk8zrtpEbo6JqLffiJsUEzVMQmxv+MTRIavLJPVNqo3XHRbUhMo4F2N/xJXXWPvjeoi5HMeq+WIcibiLcgr5+Mj2ZZtw7ZM0TdrLiHk0yXcX2eHZqJILJmOXK01P7zdCUp+BW8EUudp3PH+EKcYyctXyPlN51r28HaPF0ZSbLi+y60N8e/MIU/ObPu7L4nFc2JtzQ4HzVfv5WCbK7PdVi9DnbWV8dvnEtzLi9i4i/eDnW50EMAm9cR/OTP2+ZyIi/f6JW2Gpx5qQmizZXEOoTJ5xy4BOyKIe6Y5bXZMlTMHsn0kCTIayHlvYie4DxudqEj2M7Y650bqNx54rPzVr9do0RicyW9XLt7hBWeNKX6ub2E9/ibKiWOuzWyvcNJ217wmvRGP7OdniqN5+FO50CnCjk0l77sL3t2EMvDJ3GI94RRvodIiI7OPoTq+AXnRUan6yBxwrPpdhbnVh7U5if9rqfntY2utVblprZ7nJee24GvTP9CKP5gsN1zVuAKPPHsRStmc1nxOwX+QqYIr9PckNHs++aDUqQvrSpc1+KNOAApJrH/Sjs3l+YiIYF7xPkj0oP5KV2t/yL1uMU+ViJKvnne9jXRYKlrJje+tg7R+5/pFdBOw1x+rLf8Q0tTY7vQ5j3992J3eFG0RfFImUyc5en/dRzP4eVZIXYo6px2q/NW70jqqAbMtHenGGuSjapNkC82/rJWJ0911c3vc+pndWmt/UsctQSH3bnvaw6tJzjhuBHLvV7vu3/K3w2ufFrfZfrO+b6dHYZzfeRBuWtjZbrIzzlIybHpPvX7n7Q6RZ1HZMaVugp+eq9U8qV43XZDydxAn2z7dSMhDBmKg+kXLj8iLVO1yN14Yp4yY5JsjldvduIxGhN8j7GTcqiwsDLQ8gr56rLIe0v1s87rS5T718tSLE9Lg0Mn298ol3zNqmFP2FdqFHdcaNmR5SvsDeEjK4jiVrqhMO3YrQWm8JmlNZouqozmGLW7ZJQK63r0sYZdQGBkznAkG62XHUo8mgBU7Tcx9jbd248XqxCyZrXG1UVtD4lN5CDZOuvtnkqp2ktvX0c+yHx0P7MdrPJ13k6khv9AXkRoeII4xX/XOvts98ru/fDpNE5fk6ryhr313Q2I11B9w0f22Ded5f1eN97oztd1qzX8aV03OSm3meq2/em3ID9rQ7ir39znKDsrudPVd2eiuDvGHZ6FFfm6Z5f5cdng3q84a5jm1/qpfKXC8uktyGfSxRXSY7+LKZeV7s+WGyV5nUu1NCZXq/Wf+ImHbGVwy0vNFGPr0r8da+r6ao0C3VR8H+vn9Jf+srumfcYP+MC37YRE5kK3en9PlA5rqNbMzNLC/W29wpN0S+v94mxU/2ikkIucK6tb+7VDttlnPU5zJ/30GP22466B8T4sKzWrZ8HE/sqYs9uj1vGJNwPLOncEmxG1G9K9WmrDiOz3xBtA9S7sTjHCfLG9E//THba+7LwuVGwrstEpNumbWtaF5WMYqday/KOctNHOekkEJcuWJ52DdMMZcPuTEuxtzMbD+zH9csx7zbbh/f1owbIqY3SnM5xOOMG7SnkH/u7iuWz9rK+OzyKRdmmi5bAqvOVIOsJLOd3ngLr2xuA5Z6D+vf/Gbn2tpfrIuOJkSAwd3q7fTosRDFxJHUNddoMyrS1Otuc2NtWFZReO5WPeqZYsS2GmZb0XOYYt2EK+RJiNx2gwvcjO0X+zfClHBFq/ZLuIm8wluW5lwFTHGiGvR2yS7pHx6/yvZsrwImyLm5LIetJTpQLek9xPzmYjfeH+i38o369zrbj7nKYtlvQ5Fb3DTb46ucM0xjrqSufbzKfs1Wq6VtP9P8z27FnIlpkx22N5G9svlMbot5AvOxXWyobvAdxtpDvyPT+0va6Xdv7/S7+J3+/h9/h96I6LflB/2txy/pbz7+DXVLYulfw+UxlYuJrWES3Moo8PKSWd5o/WveIkT7MTdpPiaxTy2orcoWoQ30jLkBj6Vp7A+4IWsdFpVAj/lP5OqQmzdCvznK+7kfwcKkcSXU97fxga8jdzEIjKmefDtbHpMSbOLqSqlRfGqvd8tAVvARBXKybgdFzW2zvOHHqsZU5q+NnfK9s42LrxHp4kS84+FlV8fII27weK/Tj7LYthPzm+MKP0R/lhvU4zAtzQFK2Y0rAlnM5XSKm95+LYYiNw4TSRdW3+U15fO2Mrq3L+nrUcvf5Q1KZYWuW8Vny5v2nbKd6oc1q//sVEajtr2gylJJghuXwZDYbzvTFYiCgRK9oJ9LH7Yurlr6Ln+U1ndi20ZGFQditM1ttX1R2aCn6JphbMOUyZLyUAN2H3EDsvV3nSRFTJe4oSBrXFHZ1g3c6Pwzw4hc7RKGwbPc4NgMLUX7RW72itEGc52OdP7a3jSqbaAvZP0zvcAr9o+PeB3YnmpMtS0tWjvvX++vI9uTw9rbPrEJ2H6Dfj2Eprb3x7AIcoWbJKYKpuoJ9ZnBmf0aNyGm5NjnlvMNoNJXOZv9JnnOcUNtMnmVG3c3HZ3yRNEJtaos/ah+udULUS6bykTay/KH/JDnR/OImx4HWSL9+Co+C1QvDgf+jcdkNi3//zduf5f+0NvfoZ3e6F97/C76W/K7SC+0mi+pv6uP6uSZldB6UabbBsnF6nFObW/sXOHGZCnjquqt7T2EaK+xEP055SbJqXnse276vKh3afwdKs37knC1zE3MqWbPqhnevIrc7EGWhAMXsb9tyanZD2Ig5rrFvKHPoo3igqr9NtPe7t7h7hKMRcwbFp8HeWOH46O8IfUAX/+jWBuvnpuY25Qy5OosN2WMbrLWXK23Sb1jFbjazSZr3OAxXtxl3GSyliuE6qcTfM5o2z6B8wNuon+i/TJuULblrq9ZhL6fMesKM78R0W8R0V8VkT8xrSwteVRfq/+vSUxKIDzq9iANaPcBVZb6xXmug1q57rcvsqsT17ykYyER0c5lC4reCneDGNeJISQSp5fEfbBw3wVk2b6qLlVpG4O56BWPUdvadfuEKA9e7y5eD4muiEeM4bhyY6vnzO0jg4EbqZ1vPBI9pHxhDDFd5ibK2u7TcvlwZD+mAVfOfie52Ue89vZTbvAjrpu1VRkCfyVpsmWQhI8UZ/6JNkFeo+2PeEW/IV111/487KF502qyjWOVRZuMeT2yfRJTtieCu3jUmcqQm2ATxHSKm0FMWX5xAyEOwEksx5iKueoMNwmv2nGR8n7Szn6Hsdz70RVunOyF8oC8X14qUZ6p2qk8tM5MJPuDftTw0W8ItZfmzccBy6mVGCYC3K2/e90KRzi+FFADu1CxMTT0Sxb6A9vfpd//9iv6vfzbxMy070R/8O3v0d98/H30Lkz6rEhbIClO0n32QOpiZZ0g6bbYB3k/20U8JhLjZgfMI27SnApcqeyj8qgflhYqCla4Yc2LlVcCjF3eDz76QFmzn+dKpNiPjKsL3FDIG0neH3ETZZ3fEMZg4yrmY/csMdpkljek2cRmyKlNFGO9IGcqd818F0AvjgNJ3ohcERHttQ9cn/WqY4r5a8YNE/Gul74b7Sxlo13gdchNwHiHG4ypYvt6hnWLbMZVic8ZN1y5aX5FluuIqD57OOAmiSnN/Tvt9ObmFhjLvf3y+V+jdWS/yE0XUy5pfbXC9JDvZ8xi+SeI6K8Q0e8/qijE9E5+gqzBoCsQTELMb/Xr7sVJmxPWCTAGFnH7Rk6NZFtZkLL6yrD88CCto5g2kMXkRkO9oy+jR1kG2Qd5jFpKEm2YWINZZTs9sX+IkTpuoixJLkvC9sX5IvtGdlFGuN3gOdxg/1btVwbqmf3ucRNlnd8E2faQds2q3GTxY7FMRD/VVbNUzwE3U4ymIZc1DLITUdvyS0SE22yiLBHXyeUxr+1rqCNeacKrqNc3XJN49IPiPW66uHBcicnawDWIZSGdTK/lqiNuIq8tHptPea7yeHx/IjcdxpNFqL6VUXBLYZ0XCJc7WLLTQ37Qb9dX5//gR9ksVGdlWU7tbKgxSLqZy/dR9Zb4fKvgvP1tKdrsQKrYjv+eEP219z9A+rzwr+gH/d39B/2d/Zf02/KDHvX5DtqZHgyYCe9WV/tL25mw25s2i/1xAtlhRHYDRhb059z+iMlzxQ2T4QWuJtywSDLODfx75zaZ1pwK9sNStpqp/YRk5+L7H8QN0Vi2xWQ/3ozyFZntW66L3EjgRn23UQPb9bq8Ufq7yU5Mb+UrG9A/ncQXce1DzW21rdlYJaaHnd7p4ycVE9NeL8DFyX4UNxhTbZQsb2VsH6QO9qtc2WcWTozjDRdur1zLNxvtxPJmT4rYeENcxcXZrxm6xUU23himaL+lfPP1SslT3xdmVpj5jxDRf5yI/iki+q+uyOAHHgkm2vYTcd1yV2rZQ9owsBIR6SqX5dwqy62peoHT9JZzXI+J8PWhukWNah3/diSvF7dMOozkZWsGcW8p3euBDcwQABqjUrHE/g31LnATZTW4uXLjxxhunxWgkpDYOvEcbkb2I+Sq2lMSTJn97nDTbE8wwJAlb+RK0H6arJU6apcaIkLCzf7N9tR4XeRmxutKXJREb91ycaG53XwhcJFxY6vMd3itxCpXGLy4dQgniuhz6CdXucniwt74B4Ort30pJS7G3FzxucZrPVkbEd6a/VzK1JVYwEitPJOb8BWxU0UqVsFjbmd22eixFz994/KdI+I6nQEfNVsQW2uGE/rV5416Tqg9Y0Mt92EcYmwwQ5oRvbArbf6d/Rf0199/LxEz/Wrf6G/vv7SYEGzUjQMCbeuErlwA6V3CqLfD2AABN95ntW71KseV1dNfXd5v3tNt+zziBvTugEPtRSzwd8Nnfgf2I+QKrCN1Er9f5Aa34q5x034TbnWP/MauW2rfIjcYSbv1ty3k6A7/iFl3tKBe9BPmdt5iu/77gDmQLiZhPKkvMEE+qv+qz2PfR/454kb1lB0Z7GTJ9PTcNMz3uYmYLf8QPAWW2E/9YYUbr0ec7Wd+Y0IL9rO2VNTFVMG8O5/zc2OcPq3nm+/y6vKsO2b/AyL600T0+0YVmPlPEdGfIiL6PX/497S7I/W/QlwnaiCjSdX91juqrXlAxfgMj8qVQboFk14EoW7OjlO963WJiLhObuzcXifs1ITyfcOtfyOMK9w4PSC3FZqBG+VKiKU8GCpB/pnc4KQwxRT7J+A3C/Y7w80Is/7NgIt3jxHyuyvq2zqcmyyBTy5wc6d/emYjqduTULatnqkejJXzcXGS1zo5Va7YfZeu+oXMuTrPTVLXxUW7Z7RsvydzI4YD+6L3gepxwlXE9QxuZvabFcz7v+/f+vdZ3s/KLkQ/yRu9y1buurDQG/+gX26P1mNB3NweW2f8HeMGehX9u36jEbk8yjmaF8uui43+9f0X9K/uv6S/w3+PNhb61/Zflr5QuXMQfVRIiOuFp+LiqnSntuqPK9rYpy7nIC3Bf30uKnsf3HhDwf7SY1Ise8W8wg3r1VKtJXvrLlPduJ6Oze0y2/Ts1O6sQ3+NK+EP4saYsZjTX7aJ3/hJMxk3MbZ9/LItMjiYTlb7m/lY629pf7O3h6o99aomla3H7hlkaQuGkvBqi2TRBskYqX3GTy6UeDzmhp7ITfQbprYHJrcf27kjbhxwan5zNt84+4nWz+3nuaqLRzX+XMJObX8u33zV8v2MWS3M/CeI6K+JyL/AzP/BUT0R+U0i+k0ion/Tv/sfkLYX1KYB7dBcg8N5DI1EFlz8Ec64tMxUP8LnX40wm07p3+UOb5PlcWh0mNr4Av2CZW+RGnlOMvbPf0FmxgV3sjhJacfIld3BRm5cglG5Y24yjL39sj5Iu9toxVtT/O2C2tI6N81+8fzcfmVFF4ZsyequcBOSeMpra0sOMY5s3Y6ZpK62xbaAR+ef1vMJpnKc9e+Y13rxw1Qnb2A/ifampOjzE15PH8tH3MBr12v/dVGIHYzMfm4YG/Y37ghY4YbI+w1sEvJ1JdqPQDa264+PuZrF1HHBvP9v+ff8/fLYoX1uOMtr4je7A15e7l36+yvZ6wbcXnd7dqjl49jntros+j/L3LJzO5eUfphvv/w9ISIpQ+hfp99Dzm6Qf5sN23F0aN2iR0Td6/L9FtMR1JWc2rZfjeq2u9d+u+lO1LZI9VSQSrkODcYbXCwqyPQSW3NBHPPBD8F+xFTfvO+e4Esg9v31NqkfdhbNScgbpbKtP3vZiun64xGgP2b90xhkO+KujQYjyLrbwCABfrNR+UzAo50tsub7ff92yzlCaqHW/HgOYBCxxMGcS2/bp4uVNbbPe0RMtbd0hpt+LlUl6niTWWurfcY82/oT/UZRHXEDOOO8BdVnLly3fb5xffwGFk9G9lNU7snWOA5040Lzz8eR/b5oEfl+xgzLP0JE/0lm/o8R0e8mot/PzP8zEfnPjASEiKQjsDqdy4V4LEQ8Ih2DG37qztcj9cuajCXqqQ8WN9l2EakPG9uWJ97Ih3/SL/0LVg6z/uGrcrtJe8fNCGMt7txostXD7CfAkKYyrgI3vs3tov38lpa+DzP7JXon+45xe0Ffd5BE7d8zfkOh7ZDM7bmSXtbVlZmerndtWwvpEOLPR1nvdjzApK3Bhyxj8l7kxvXOeI11RwNf9LnSruNqwk2MKQG9UieJg/lewEQT+/mukUS9c3uKIFeb3XUfyeIzGrLP7ee5CmhvxNSolDsBb01ZnMyybusUemN95UTD2ZuiXEgjTI44JfMdsjcgxhjFXMAcJ4HtnNSpZTv24wBOmWj3Ntv3dodY69oFkJAbB7pXwXX5KsvtiHGAicRzVXkveao9szPiKhLTdoL0emfc6DzVuufutgmJ4GtS/PjgX2J0ZL+QU0Pe8FPcEFcys99WfRYvHshaa/orxqR/mHME8oifw/e89nkCelH9pr1MA6X9XCNys++w9Y+ICF+tT8l46zC5hEr6CSQ7b+4sJLTTxpU/y11Y18fyfoKb6HNAsr1lN/oNk9Ttla2+X4iuzzUynD3BTW8/z5XrvzT7EZULZWafb0ZctfV9rryx89+eG3w7LULO7feVy56T/7Mrty/MROTPENGfISKqd8z+a7OLMi22pcVNfnBvNxzXvzd7kDGW0lZbIS712vYvDnqanK4KdnpTWcCsNaV+wNHO41MPfUn75xIFW5KVFW5UL8DkisvwO2644XCgBoCJbXulvlp2yg2Utg5aylbr9ROlgf2wv4w2adiG9ovcSOiv/intldS9/fR4RM9Jv4myHGW9XjfQal3BZ50G3CR+g0furkLkpuvfyLcbRrFB5Rw3KsESGZ7ngdbJzLfLLEqE2h75A26inva3zGUP7BfzgLr2er5pehBVsx8F23tLWy/QfiFXOfudyDf+TuJ6Kc9TwoyDwD41v7zVb5+wcVgXxEyixQYTEX6iYot95mZDexak9mOH3Kb+uxHcwZBRLg8xiVwaV01qo5jjay+k/SLE9gp4naBBFnRc0XC8meQN7R/jRJQovvGQABNxxVS3aiFXzOK0df1b4EZlEQB+DsLaGtjPc9XudFloCE25wbyBfqS61G+O7EfEVkefa+znsKCXmv9h/6yHaJMVXiGnRL9h457tDYht30rPjW3kE1RfPtPRZCX4Tc6rLZolftNaDZhifrKtqsrVSW5C//zdrtxvunxs/3p76VblM9xEjDi3um0/YdJPqJO0/hmSA25iaTm09W/rq32ZIkTwGfWfd/mcD0yLvnmKSPY2JBLhqpc/ZiZ6JxiOYTC2TQD23JpuTdK6VLcP9LJC5XWhIi3xZ7KWUlnqF9lra9zevtekQTZg1AVQhv5BD2oLdYV4z7nwxxEj2cPkjC1HrojpiBvFqA/iSu3clJuA8V0aV/pA+ZgbHnMjUVYHd7TfETcz+zULDu2XcCPiJWc+N7N9J5v4jf4S/VUE+zeOKXy7ZOn7se1lgRv8Rk5qgwE33l/Htu+5Cbzu3tfxbZho6xk3Wb5pE9jmNzk3Zdvdkd+I6sn8NeXG+2tnv2L8U9z4fBPsdyLfgEMuF6H24pumK+Qr1pogJxu9q4cwctfyvvZRot85O1C9CK1THmnfJtK29EU8egfIcUfQ1kJsaP/2OstDPc6GVLZu60WGi3Uuq/SYr0hQK+gF5hBj2r963Nqlzr/b9/s2+85o89GB/U5x02JDZXdKuCIYq8B+ROXtgZkvGFcTbnaJmBnqtvy0MxFhjnU+t1VekUc/Vu2dbLOvdNyM8nHOa1vCSHjdS382rvenwlzDmGUM561i9rH/cLK9bSOv+osbq8BvNtKxVy3Zc9Pa5oBpjRuMi/ZMWByrWjxyxdTuXfX2w/mC2u8hAy44H8cx8t1Y5fqnXOk3BfcwT9nN9nP7HXPT2Y+grTDX2ENu/i6vKU+9MBORf46I/rnjmu0BTnVu/Z2I8uO60mFv32lLxoRDKJkEHEt2DLinegNGwbo1oHlFb/tbsrp23A5lmZuIsaYzvsONT8GqR5a5iZgDV5e4ibLt7NCPnma/jJseo7EGXBVRnAqdsUn5u23ZK5gtfGLfQ3/dR4oFn7dpdc/0D+u2V/Q2XG2H0Kq/2v0j4OsENxL95q3jCg9n+SbjCldq59zAZwgSv4mrwNF+OTdNb2q/yNUCN5HXIVcL9jtfynfLFKfFgk0arNN9+wZT4yzPG14K65LTK6STNXwtArRlE+Rpdzo9OFbhFvDYt3hZpXr1rpm3IeQN8RuixrgCpiOuJry2uzvj/nmuVu3XZNuGTgcqqdvsp6v4Mae23H5sP+QmcnVkv3SsymIf7ekwNiDS1bUOInnkexR2Kgi1bXXS0IkIbey3Mvb2Q/tqLe7rKobhS3x6TPbSGLNf/bnimupJMSlXyk2GyXOFfOsFkNT5keZ9rpgYuYr2g3GgH38TXuMY6eSO7Kd+LrTxW+jN22vsJxmNGFNX8v5Hle9nzG6X3TyI2+o0zhHqn7hdiOusCQOCqQwa8S2MhJMsqCv2F4WVBtXjMXUYyXwVVudyPSOMRO012bgyi3r22ugaNxFz4+osNw1JCewN9nRHTHNuIsY1+2XcRIzIlVu4X+IGjxP7LXITebUz8JxG0dNW5XeQnfWv40Z/lzYwMa35qy/c+odcjfQe+Y1eYEiRUh7QX4cY7VkZtjeRqT056j3gRgu+eh77PuIqiykvs6Vc9dxwi4sRZuOKj7mJMcXg89TiEahc5mZkv8jVUb7B11OvFqH2YHlbUW4x6LaWIa4SVuSejkBZVpz1LgYT4TM3emyaakzGzzYghpiPjR/MZ7VPxrOry74/1Mab9hkGj0lzrEjPTfMdNhtlmBpX5TJcgJsePw+4orpK3zDtwp0sjbjKMFJmv8hVmyD353r7KT7lhkD2yH7Re9WPcvs1rtB+GhtMwQYgK8DrLvWxh5n9QHYP+brn1edyC1lp9mlhXC1g8bx1tkd7Wi4PflPmANuYV5gvuPFFedQ+VF/YReOCnaxJTuKv8dq2JI7sp7Lxkc22y4qI1T9hDEGudmmvQ0FcY/sFroLfzOznudJz0vlUZj/PlR9vDu1HLf/jZwfcHO6LFiGi7++Y3ShCupWx7P/fwdMtaKqntJ0bDG+HYZNVB98J624hMzDUpS75YzIayRpGxNxh3DpvH2P0sjHZC5W9ysvciJ0sGPcr3EReqX0nRpu3Py5wg1dRJ7gJM89ucuLtt8ANYr7MjceM9iOnF1cIRxgX/OZ2/yTxMcC7GFOol0VhJ3qdvya87i2c27eIwJ6oN1wdOIy84DdLGFFWiPWlPsDVGX9N/WaVmxhTGVdovw/lBmTPFtGtjLnv6OSFCPIX6CYq26FbnMX4RZyNKE76aHdaULbT2/MjQS8R2Xetov1jXiyym3FLOnmW3SZcerEx5CbagcS9u5thjBSW+hHfI/u3sVj7u0u5bNXnaISY5CQ3S/ZbyBvRfnbRErmK+SpyE3nVrZuVxy3lZmY/tXXOq1C5A42y+0pcWf9qOyNeF/qnfrbz3t6xyFvoXyKrTcOVg7vDvPu6M4wupnZdyKj+SU02m4e1tqiLKeVGkKtVbhLMDP6peqW+nMTsdxSPJ+3XuKHe58B+4uzHltcwzzmi8Lj63KOz3zo3aJOvXGafY/k5lU+6MONCoL2hqDoAtVuuo6+qmxeuyDLIilB7RgMcvrbqvjBfk36m1z3gL73eqWzApPXaMWLSbUYv4ibKGje1X5o4NGlWy5GM9T6XG7K6lmR0RD+w32u5IVuByu23eVnA6F91RaCHCLcFptwYFxmv0L+w5a6snEZeFYIQ3I4ptgW3ZPPB+7xmtvfxqO1ntm9b7PpBY52b/OUcIR5TrsQmWh/FTZT18Yj2I4ib13LTy54rQlTeyqgXoiGuYGnZ+Ch1o120TvXviNPlfe9nZH1pE03T0+kdYCR4RrfDBP4d7c855nKB2LY47dbfc9xEzCzSvusjmV6sy44r9W/DFLmacOO2b8mMK/DvwTgQZQXsZ5Pygd4ZN7EuU+Oq6aXGDXLV+ZyldPM5Ap8TsGfMG3ox7mxSuWiT5UH/Dv21DFZMQptstLPnJsYJ5oL2EpAw/pC4/hzZPsNYTK56pMkSkVAYx4Er94WxkFOL9J1YrhLVF9BvnP10jKQWj30ubx7RcfUs+wWu0H6063jZ5/KUqxOx/LW3Mv76lE/cysi2wMCkDmwuYA+JmzvVyZnWPZQlkKVWv8i2YCxvnOJcb530oJ4jvRg7HGQjJmIdYnxbOknfJ3pucZP1TxpPtiAusMJJfsvA67mBbTwK8Kz9XsJNHUxrI5n9Mm5aDlbZhrk9wD7gJvTnVP+oqbZ8G9pSTMxU7d22MA15pXO2j9xoX4m8PVvdVifOrVa5Qb1ncoZy5eLRZF/PTZQ1HojcdXSLKb7ETWv7fC5uwXmu2KQ16MbjqMt81mKj3THXu1VWF3TFrYrNwkQiAq+57vUi0SOM2ppuMVRdO040a74iYssjzqepXHjYhQa3uc8Zbuyiyk4CpgFXxC23iVUsvRJgco/zsQVuMl/h2l+NbncBU9uV1lR7Dh24ivZT3Ge4wbps/cH+ajzImv1gfFKfw4UOHEOwfw+IXycL3Mz6h3ljFFPav+b/sOWbNGegXm5zc2KwUePmrO19TAnETN3QqLkLbIZjuuotzXlMytUO4+kRNwTmbv7ZfND8c2A/1btH+wWfI2YXy8fc9LxO7QdcNS64G6vwk0CNx5yb5Vz8BYsQf7+V8VaRlnQ1AKT+Dmna35GN550s22oTBo6AIEfHp7alhWhVTzu2O8HLGFv9honsAo2oNMqM29BexI2M27W9/Kx1/eqkTd4+hBtq3MDMoL1Io3E17N8BNyQy5vWAG9rJTe6O/MaVvZ1zA+OE1/P9i7y2yQjK2p9ChFsvbQI80ptgPmN7grrMsFN5d+a2NwtGTLe5kZ4Lhyv0j6DtV3MTMaaYPpCbKIs+tV7wpU+tSGwr2B/P78CHwBjSNDSs+JvA30UFl7cQYvwGvV1sYIu7uLruTmbARKLv7QQ8CUZ9hlcA6RluYl3/PE3CVbQxBRvDccfVRG/HYzy2thftJ7n9Cldj+824oUQHdsv5t7TnfGM8FExiebP1A+6kRFk8FmsBZBs3rsx4HcSUnl7hVaj5YMPEHTe3bA/23gW/BMgpJqIWN2Vxip3flLpbF48zbqLtdZUN9Wbc4PFOA/vJRfsFnEf246QfmEMsf9DW3dVd8ZsRxu78Fyv798s/rhchosfuJzZERP0Pa4WJCFeXYApvvzAeBoVC5O4uzCDYjpJFXBAjFir6l+F0g0D70935O6E3Ysi48ceKqfx7lauXczMoZ+zXA2kJ1LhJMQ24We3vkBvgFQdyWZE90Gn/AV6X2skxEeC6GKrQlpBtD3FXZapoLP+AVjYmethrvs/anjrbu5wxaexV3MSyMdFDxO5+HNnvFdxkp64UzftRSfNvUBqP+2zTZOsxbsbsEfvO6JHsnOidydZj89kZUTZFowdp9kjaipikYVrjJscMqW2Q98eY2mS05QLaI7MjbqjnJkJlJ0H+UuaofzWjMdGe2m+Rm1g35P36BNSC/VZQtzPSHed5P5Pt+jfwV+sfb8Tt3vGwIKayOJznthQTHi/ZXnmVLu3HtvuhdsQVL3OTH2u7MuAKuQkY46rDHW6i7AX79ZgY/r3AzWFMfY0i9P0dsyeUzd76QkRk+zjMn5JjdE84lCrbthe0V6BaZfRTaYndv/Kb6ndUQK9TW74NorLU9rOlmG3Lg5Rz8QvsPtp6WT3YX8hNGXI3EKTQPz1IuPokbnz/Gk9Eif0m3JAkXMB2qGNuJjY55IbGvCLEKju1/ZAbb/tzvLK3F+FzF5XnwOuMm35rkVIq4bdjv0HADwmYFrk5sn2WMxyGJ3Iz85vHzjCJzOynDT+Xm1g34+pK0e8OOnp2Duo4cK/HnMp2uOzqFSuz+2d3XGV6ZaqX9hFG1bv1zwOO+ld1CPX5TOpd+WNu6JCbPu9zLwTNtvGHQ5273LRFD3cX0TAecVV42sVvDTzLTazrcm57f+SC/aKsj31XpD3blcVVlF2Li6x/ZH0Q2vyHgbv4VpilNl6UdZju2t7uaJTniQ1XgilyFcfIHNMRNyWZYkxJsP0Wuus0CTuunstNIisr9vPPKXvI97hJZb9oEeLvl3/cLQ9dOTAvgmRggxNOAMaDCMGvOLCJazuZTIAH6+THVhrSujBgAkbb99xhE1jhTjAJ9seyc1d04v4yblS8y9TRJogpYn41N8F+Ac/Yfgk3QS/+5Pt6hpuZj63zGvHYRdvQlwd6R/05y6vrH8HksbzJLeqVITfYdB3O9BzOoweyDlewieeK5txEn0v7qrhGfhPr3+XmjP0ILtReyw0ex+yy5XDnReCtWY5L7o6n9hdfM+aRrh/4j14QiHnhAMdcr8dYMx3Ibt2kLZHVo8oJbsvOMUW9Z7kRWElPsMFPDH7Rc/V8btpkl3pZbBnsl3G1yk3klQn7XLma2M8dCQFKkJWsDQ5jYrSJymgbo/71fejq4mnIG5LFIBPp81W+Oc+FnOQ1iyltSV+Xr21I2r+Qrzp8+vcqN0L64WTEiFp2zfsCqbSbMzC9gpvok9jO2H59TD+bm7Yb5Eri/y5ny6e9lVFvzvYXT/o3liS5MZHsQuZ2LnhCbaayRx5lJ5MuMVCoR48lYKaAWayt428+xGTT/o7b1/Tux1lu9HjETcOvmH3/xzapoo7XV3KDetbtN5YFHZh0osglblb8Zsxravsk+a7p7Vqnq7zGInvDdMxNsP0pXkNc7FEWMF2yveS2T2VfwU3QM7Ufkb9gjLkKWrvLDZyPcdLtalsoZUVTV/G1/fIS6KYNP4+Q9NHJxu2L6Nvod5AHcSIlOpnq9cz1zjDWyR1iqnbgTlZzjhg/OhmXl3CDCFWWG8a9barjDpMMubrPjX8aq9zByPIGkbMfEVzUnOEGeRVi2LKYjq9D+1VZ7mXF6uJzkVvtH0H/kJkg6+L3Qv+ESF8bIUwWBwW6tz1BziEW6C+DpsGFcLS9FTxumMszTxsJC5zfSCSxfeCmYcR8VS71/fxoxk3uryptb3HVvltO3V7ODR6LSH25feVqZL8oe5Mb/TxP7q+TQe8LlO/vmN0pQlReb66vIsWT44TlkldNUOZYQtRmMb2DoxP741pXQBZuoXdbS9KVbY/RWnJb1kZBiFvlAkbT7TGN9DaMiANf34t6V7gaBD9whfb7UG4W7Rcx9HfvwtbFZT/KuBlhxOO+bqoHcYo82fYneF22fcTUY8xtr8c5phwj+eOX2f6juMH+BFyql0HP1H5Ez+EmHidcnSxCJUfoRKb9fpw3sI3GB5FuIhU72/tOxyXl2waX9M7qAqaiFx1An14JmGDSpJRiHs3fgPk8bihgNEmYyKndPoobCphfYT+ZYRpwM7Mfc86dHjeT9v1zdaPebkwd5I3Yv+o3UvPGFnMs5gLjMfa3YZTIjYDoYm7Tv7VLu114sMMkTm5sk8aVYlrlhghXvITw7mLPlYtBF6v3uenvRPu2ds37QjS0X5S9yU1mA++vX7OIED2+X/5xr+Aef721r6vWeGchrvr6Y6n1k+t5CbfyCbePsP0Xt0o4vcQTveTa6l7OgHdHmNvr1sGvZQWjqF42xB/Ojc81TdZxwR/PDd20Xz0uOiTI3uRmQdZsm9YlxzNrkpUxr1/G9sZrTfyHtl/QO7FJm+C1QW7Z9kQk/GTbL8RFz02UVftVKaYuTlbseY+bmIvJ2e/4jndedpggnMmp7lg/gkpEJExb7b8QEQMfDA17rmEL1amcOvdvvLul3O/wt/rOluUcbp9hoNq+nZdncMP29tPcV5CripjhMwwR0wu42YlpC/6tdxQz+4lxw4O4GmP0mM7kHOUGYqH2AWPSxW+tsws5PdFftbXWlo4TPOD1eByw75DWBdBsjGxce5sQNb/xOWfsC4dzOG6PMDDVTwK5sQo+RzLw1xQjyC5x42KKCBinnbaww6XZD8szuUEbWO6GV1NLFger9rvIjdpA+8d0Pe9/TFl5TcrPo3zaWxl3gVu5k2dc1o6rO9u5LRyjsXw49sfZloFE72lMRxjjrW3lJsqe5eoJ3KSyiHESDK/kJj1etJ9kv7+AmzOyse7Lbb/A65HfjJ7bzOJlZvsjvbO6qewiVx/JzQjPEOOZOHklN/F4I3/Ftl7sO0hCY3opOYfHsH2aSGDCFLYJcp2yB350wuzuMI4wjY4zqq0uztRwglU5YLRAfZG+EJVtg1L8RjHf4YaF9sBVq+tt2HOFmFDPAleXuakfHAb7EZFdXHT2U64s3mZ6D7gactPbj5ns4mKYNzrM3LBHPUfcDJ8JW+mfEBHTzriE2TA6+6b9HXAz8oWIE48d55VHO9/09D434cZ1foBpOd8IMW+knz9I7ef69xxurMrQx6jYL9m2u2y/k9xYKMM5roupX7UIfd8xu1k4edMTkSaR8XHfzrnj2e+rsrFkGDn8u6pn9Hf221fg5oijz+JmBZsWobZF4Ej2DjdHsp9l+1fyGjG3N3Idt7mKcQXzqBzZ/iO5eYbeZ3Mzst+ZdrCF+gFQGcwC4iSCKNTVY5w04ThSjg2Z6GQUz5e22jXETM9ZjNtAtkwq9RmpMrnB7ahvHpMQEdzh4KvcdM+VcFc356phUskxV0/gxslGTJGrUldcU6vcRMyD7dMdNwzhkNlvxDPGkL9niN3pXxox4ma9fyJU78YxYLYOGcZ62UH9dj3U23Mz5BUxpZj9Nlb/ZVSPqVCwys0I04CbgJnBP31mQ5+ryNz24pvcSIt75y5SNL7GfgfciPY3gBIK3HyXV5VPvGPGNZ+WEUsHI/MtPBZ1j1Z3VbYF4QlZItg+4OseyV7BeEv2m5uvyc1J2V97bm7IzjDizoqvwI0bZb9CPL6KmysjtOiLEHA61hqyY8DuXwuhf+V1iXRyUompz/Zo17SiHuMnOuZ6FzDW49Iv3z9mIuY6rQNMRGWSZy/akKJBtxDhSy7ucpNxVfCWydjGZSshV0zthRb1rYyRqwvcaK2R7Y/sx+SPbVovF7ghsEHKTXlOx2LDbFTtCfZD2PrsGsM502v9qXaVErv6txDUvelzVhqVKWYRKhc/FVeK40k+Z28HrO33PtcwttgcYLrJTRZTxs8wZ7CtddjWxhvc2CWZkG3pLP2VugWZLScwxGP89EzzuUX7LXJTPofUPhsBA9SXLd/fMbtTpDpUdTqyf/ENVLWeO2T74YysBcmqrAVErHssexXjZ8l+c/Mibk7KjjH2/flZcnNDdsaNOCVfgxs62b/XxuNr+te1vVCEwjNm1Npk0l1OdYoQ9MW6gsdWUdok3WYxICttwmGTkKjnQO8Uo/QYi446Ja0TLxJx56l+bwxfAf9Mbty5wJXO2PSbd6ZHMVau5IncjDBXsoAr8vajogS5ojvcxL8dNw2DCBF+Y0qi/SLGzOdUyy4E0GnfERenuO7wqn+xiE3GM4wiHkfT27h5Vlxo2UUvzuqZwOuruYmyWA+5oXgsKHvMTcMvgYsqX4/FXlfK9BDPVfe8XfA52Uf2u8mN89evvpWR3fjycy6fdsfMfc+m/glrCOsNmR0Sg0hLtrp1stweLl7NM9mBHkvgl2Sv9+/p3DxL9pubpbr3uKFvbmayFzH+jvC5i3pO92+xPNx79uukgaldGLrODqfvro9NptYRnZxInWCU50a0RzjBaW/QG/U2nptgDKbhKCO4Ph1kdaIkOom7wQ3Kdr2JXNW61roes5tQFmzR905wM7Bf6btQe6lA5CqRHXB1mhvx55nn3LTjA9sH0gX1aq+gf3g50jBhOd8/08zq+xmu0D84fsS3gXbhMdBrTjeJKW5c7OLbUBwpN6Ynw3SWm3asd7VVL4dVJ+RmY1wUQIydQK93hRvp7Uck5T7Qov2IiLrtlqv26445wfV1y/cds7tFthY+NdFm22/aLdg8T7Q3UAXZmliFiGQvLxspWxJ2kvq2KtXRyWZ6q0JbRRrodV0E2aP+lUb9uZdxcyQrEKYY33KPG9Q142aFV8Ul8sHczGQ59A8OPpQb0NNxgxjlA7mZ+U2dC6k9T3ETzt3iJmL8Gcfjy7nJm5mWcmnUP9Pn50Ec2u8T5Din6sVIaWOXoq9Nv8RtAdJtVLlej6nDHDEKdT7aulV+KXd62NswTICK3djOneXG1d37vEGOq6bHtk8yUdlCCJiEA1deT6c3YGzH3n4ISUQxtXqSyBp6aW2P9E4xBl7JHffcaOy07Yha1aPL4lcGsqV/eqHXtq2pXIeZ5rzG/rr8jluTQ932XbmKUduWVnck22GUEUYoQsS17yUWdPs0Vhlz03DgAsI5biJmPVPU5FyJMD0Uf7UnxQtY381Oz5l8o/VLSK7Zz+a8xEP7neKGPObv8jHlk1+XX4p3fl9PBvWOZHUg2nemXba6Z1mIeaO3bbeEaQPEk/TO6qV6soMXc3Moi+MUTCafonfw9xFGxYXCiOvDuImy4UR6btWeo3YPMGblEKMk51YwPpPXMNJM7Tn4Oz0+w81Mz69BPD6VmwPZlbK21aR9RFgx4VE20SulbWURYXoIk4jukmDaeKetvnIaJ6AjvccoPaYxP22ipYKNhrbiXc5vqe/kevUowzzABFzFD6a3RXG/9Ulgsnest8d4aD8r8YKpyuJKBGCizn6r3PRo8WIx46bobM129kti0F1ooaxrddyHjKlT/qrPNRLTJojTLwb07ZJN4HNM67ZPMbKiItrUt4QouyM7ty87XPdiWTHVbZ/k7RcBOHsPAva8/QKvif28vuv2u5bnvnYR0re9//zL52xlFKbH3n9LoS1ZDI7x1JGsrqRIeUhzF677dLmu0OzpivhROdZ7om44dqHCBF+cP5a9o7eThSUYDnXjpPCU3llZwbiK6ZXcrNqvEz6w54Hs0zBG7sK518VjJjTARLTMza9FPE6KxmPc6aXlWfF4x/arRQS3MmpjOg60Y1i6bnVhmxnaJYUp5W6Y5n6i+s413kja++OpvPiCm55M7xCj1zqLfZVlVAKTK9y0Z5PUmd5uwijk3hLIOabehG1rZfEz7C8+L1vvbmQT1RWME66i37H1B2yQTET10H0OYIUbxIzHFEu7ADm0XxQODukn0m2yXf7rjyMEOewfHof+1dugTFTuuMS8AdwIcJ7ZRJwcGY5j21PALDXE23OV7UyLcfwl4yZi7D6dcMRNh7nZg4M/NDWKGbgib+6oemq/jhuvR+dhxX5RUeTmmv38ryv55uYg8NLC9Jhm4p9P+bytjLQVB7dbwUKyY5Lrj/G2sV/RyuqSWxXQbSwaWFvcK2VDQhmsh3r9feNjjEF22j/AVAbJcf/ucDOV1f7ZjA8wSdtccJebTPYQI+BoW02kXHTTgewzuRnJcngyR8g65Sb1r+Am9bmkbrDn+PjJ3GQxlZbenkfcXIvHhf59VDwe5Jv4sVPLVU+Mx9PcXHzIWuwbPNsE5xZ04TflQnvOhctkRVfPS/g1nI+daOPWdnnhBdol0etsuIW6MdbTA7jAqf/VbyWBsH8ZCZv8Ejcju0RuYhwhCpdTyzFi2mlzXB1zEzGP7OdjY4+x0HEFsnt7JmmNm+hzq/Yr/bPaTB7TfiSr9iwYvU22U7IcZIf+2l7tWdttbYvVNQMSbjH2ucb7TYmwrbUlvd7e9ojR968916dcAKYlbsq56J/H3ESM8DQlR67YcO1xHE9iqsfYYnnOTYgpaf0phVvVTi/aL4w3wX4yi+WlXPw1i9D3HbPbBd+qpG/S0jxpyTYeW104ppGsDYPk3vIE57WGTm7s1vVUL8EfixgxPw76h4+FO26G/bvDzUH/4O1A9uV3nTAINvEx3OgxR66krIx3mF7JDfQvyrLDIfYbbtt9CTdD2QGPaE9qvL6Sm5k9zfExDwx9rNfrzt3kpsF5fjwucxP614oQ168Tr8bjK7ghSu4SLBaJXCpQzBuxLqOPOndp7ZhQmURJrGyl9AXnV3HLUo4x2N/BhjHEa+qOiZg2tZmAbMXsn2da4CZitAlmz9MYU/V3QdmGCWN0hZsM45grHxuxcOCKKq495Eb0yUOMErk4sh/Df3tMnayzH/a/f+MmTY8xT4LPLflrqyFExLKRhAUerbt340BfjvoX89UQI/inPVtGYSyaYBqOVSe5SWPK/tiIjKsmu0vOz5r9WlnON8YVE0nbYebeljnSSwk32NFhLJPjJvJ6Ne9/VPm+Y3az2JfUo6cfHU8bxYPcQCJkib3UL6ux6NBi567oPVlXk2iSFV/HzYKsJsyAC7nptj9ljZxZWZ9wE/WOMA3buqD3jCzr3NWSnTYSEzAIPoGbs7KntjI+US8eH9lzz+x5pvwaxaO3id5tIvrsXDWP+1EJrzMethFiw02ikqmI42d3/Oh5oZL3H7Zgh52YYJr1c2IXH/++kZ0JbtYUzDrxsRwyyw0zjJGrFCMca21GFpiUR3GYsH8JjkOMR9x4zHoHj4NsW1RSP9ErslUc8e8ZN739uLNfYvswDvQ8TmQ7vSf8s+ufENFGO0v5BADo7Xwu7e+Am+gLpzBVTZ3PaayOfO7AbwjrHuBIMZd3EBApV2A/wbvL+seq39y1X30/wh1ujuy3GsuX8v53OVu+xIWZrXTFAbk65WKLoW4iq3oE1wKoq5c9+Luud71umSwgplD7I7mJpVtm6TGtTaCfz83RpLDnal3vGW5yTEz9WbJc2OxJH47R42zHY3te0Duoe8ae5+w313tYE6rOMdHLuJnlqn4C9DG56gw3q0Vo9eUfUSMeZ/L421t3rvmdnyjpSrRHeIbL/g2T07+5ahUhdrIb+TtNYcLkIB1hHPE2wGV+phso2+R9dvdrXjL/xv5O/BnsxXXVAbnyL4W5Y79e95H9uNpPOvvNZSXgki4GDvymSVLP6+TiyK58yqQ+Pkk39LnDGJtxfIRx5nMR00zvEcYjbsKhLQJIbanlm+7a6SPsp/JgPw864jrDzahOBulsTH1eKc8Uf29lvFyEatAxUXnzDL4Otc1cy9ZYhsWAKmS+0o7xdaJDWZ0QwttuWt0qWlclTuvN6objDmP9Q6cJJd5Bz0dyE2R1RXAHbopsqeQnhJ/AjdPzBPs9iZsjWbXnFOMRNzNe9UT19R4jdbKKie3n69zctedZbuI4t8SNYnSYgKsg+3JuJrlKbvv6Ijfh+JgbulT0woyR22B/ApwS6wJOV7fyQUzE1gGpd/eqTrJXXZCQ7thmkMUt7YsYnV4eygrB5Mo981H+w1wm8I3xV3DjZYkJJqJVp3IEGHdDMO7fHW6cbGOF2rZmnIT6V6QjV2e4CY/TJbLtgGsw2otiOvtx2zFRWWz/Be7Il930vobXr+RzbU2kjZ+/03zuiJuZ/Tjaz/DrVugF+13hJsh++a2M3xdm94q9jUeaA5hD1qShzm4OgXfZiKg5E5eH89nXzWT3eox6THYn87woqxdHTHKolwayCtxka5QYpsqNJNzY3Mz00ljvRW5QdrdzXlZ2rcuNq4/gpiYRHew6PYpD/eajuFFMA1nHTfD1y9zMeIX+EWnSVYy9rOxtcBBGDNe4GcpWn0F7CgW/0fib2S+NxyvcFFmZ2PPDuBn6TbGfPutzLVctchN9jnz89b5O54voZJSIgy6bKDAT7XpB1eoqzk5WWl3tY+OL6p2CJltkqE0GTc+BXmV0Ulcol3V+x0TuddyIKcmpt7gh1ONl1Yb4nCKrgUFWLx5wbH4mNyired8WGupCF0tuPx0wn80NVb9pMVuPR7LBnv5ivxzvWJcJjmmJm1Vec78553M4jt+Jxxlm9bkt4dG4IZ/b4uMvz+FG9Z73uZZvnsdN3r/6wrpgv8IVW3waLmq+e5ubNC6+ZhFqzyb+3MvnXJgJ2ySgOW09Zc6pHtiOyy/FeUTIjrWul63thrrluE7J8AJAX+PsZGkgO9MrhHu4Ubav648Vk8lCQBtv1H73ss/ixnJm02/UFNmy6t0eJG4D0QdyE/TYFqmEq2vcrPEauZn63NTXr3OT6wUdDmPgVQccoO5Z3PSyDZO3Z7gIDfY74hUxnfJ1Z4taD7j6WG7G9hvnqtdxk/lc7+vnilB9a1YQZ+H2Mg49J7GPlB6XPBXzYsOp8yqTVR7qT3vUs6I3rQtWM19RHHBeMVGQhQkrbue6xY3AREUxOa4s0xMJe66IiPaGiSjhKtO7yE2sj+ONuZfUy2cGWbTfTrZgcp6bI17FxVHHzRm/AZqJqONVDriZYRzzyq0PCz7nOnfD59K6A15N/4SbOA9L9V7iBmW5XXAc+Jy9HEl/psW4iLqXeG320yPXv4H9HFe3uZlg/C4vK5/3jJnLcupMbPFAwm7bjgVoPaeZvOSfUNcdg8PqfxhygVcC9VFf0zPVS9zJr2FUCZ0w4EyCYGCAJPUSbrhyo3rJA3QN6S3/8rfV/Shuok1UNHKV9G9db8arjXkdNx2vQ4zB129x41kq/x3bbySLc+3r3Ixt761BvezI153EnNcVbpr9lP8BVyE/2STq2dwkfuPvdEloqzFS8gA72XvcjDAecLNcuPVO2p0tYX9M1qckzDpZ3BYqEFNkuvxbMOvvkLuq6FjvEcaBrGLVE6WJwoFnkF2eKnZ/Ljcqi7XbWfVXaXc0oGW7awp+fZebdq7Yp7WBENmhzOyHXJ3jJuKIsmVBBMfidreH3bw9Hnd6L/CK42nWPwr2jP3zvHqfa/3zvFZ1JHrn8gKv63HR8n7GjdTA9bbHWD3HzZzXwIKMfU6vUdjawucf73OjBxLshxmj4yrp3yguznMztv3XK/xpWxmZ+b9DRH+Syi7cv0ZE/5iI/H+vtvd5F2buexC6GkxugkiCgREbKHLd6sFE1l30WRsQbdi0+4Pb30d6uzLH2Dy9DgQSZGvFXaNNrwpmei9zE+vW42AT15SbURzo7cpNbgb201dOp8ovcIPn3DYuaX6by0a/qX3JfL0rF+1Hx/br1WY2Ps9NZxMwi/s8iusfyNYD+wSCBWkcDsa2n2J0LcXvpVXZTvg13Ix93bdjD5q7/iomWfS5gd6ujOzHlZu59ErBDwK73BGOJymnl+X4+4IHCHALioZ6DzBmsjbpFmzP36nt9cPkc0HvETfznBpbSKZdVX/85MddbjpMro2Zst5+z+Kmt1/LSXEhuWv8KJfHUm0dQ+osr1GPj4sWz4dhQWR+2d+5fCavuPie8OpkuWHqwR7qHR4msuRsHQX65Oy5Gqo9xHiUb8aYMr0e07O4mdv+6xShMy+Xenr5Z0Tkv0FExMz/ZSL6bxLRP361sc95+YeQPavUSluNWim277XKtuQ+1Eq67YFtFWlNViBIzusd1y2rIhZSlCbwVHbO1SVusH+2PnOmf6V6ueDmk7J5XcEfOK4yz2VdO0+xX5Hd4UPDuNq5JIt6iRZ9PcHYYW4v0/B+tMBN+sNZ++W8ivNtGg7CnaxTy4CpkwyytNBfsUEYn1tYkn0iNy4PENmdsZgH5rLPzgO+Ll6I+Zx5rYhQ24Y5xEmncw4s9Z7C2SY7x/XPY1Q/i5ju5KsVvZO6xlU7HPa981Gh5Y/LXsmpKVfHetp4c17vnFehtiUkjD1nbNAppmVe79je82r0LmO8yutaXLTKZ3h9VlzksmIHM++LsmfmrOf9RrniD7PfrXzzBcqje1vqxxQR+dtw+HvoJmufdsfMJlzo08kKpj/fjiUuwcfjYdt6m34m2xIaJoNLemlS1z3AH7dxxLpjTLH+JW5qArDVlvpfntig1xsw3eGmzFbdscDBh9mv47X50b4jxPA8S5D1E9L63MItv0FZ6N8dboQOZMfHkVfZyVacO0wzWTEmW48iV3j2dDwyTMZD7pzIdjF3g5tUlnKuetkX5gE8BfZLx5iLw47Yd3R4gFPKS1fgeLyvUuu2SZXvUpB1ouXOLG7U8X52DmMqq5hcXM371z1bfZubKAuGc7b3svg61/LM5Oa4GvK6xA05XvVFX0QcXHTBJtaRBW5g+5yE19V23IS76XKqf2Nu3GtyjddWFce9Sz7n/FWM1xgXY1mxlx4pnC4XnPG5YVzU8qK4OB/LMLtgz9XQb5Iccpsb5zdt0rNuv+O4uJPn7i7OvbKUF3l9Hj5m/qeI6D9HRH+LiP5Dd9r6GlsZYTLGRLh40d6Okx1XWWqnh3XjikO8BZ3J7jDxcV+2X5DtjpO60YUknB/1b4mrgewQ4w4YuUnpvbSZLO3P5yYex4m5DWIHelKuFmXteNI/h2mZG0ixz+IGfXuxfxk3q7J2vMpN1lYi654p0fir/bvCTZoHoH23QjiwAeaBy9xMZNM8MMg3yM0wD+zXuIm8dpgo5/FMsZXcGhtOQQXh+93s3x1bXZwYkTvvZWstk0Wbsu0Sn8l6vQuyOLM66F/BtYX6d7mZcDVqq8tPPVed/To9tMxNl5f5QNb8m89zg3cSJtzotaKL0TP9G3Bjh/WYqYwbIvWPu7yGR0RMYJlXbipMNLH9qs8dxcWkf4dxcYebzm8O4gL8RpzsDW4G/UVsVuFsXDyVm1D317f8IWb+LTj+TRH5TT1g5r9ERH84kfsNEfnzIvIbRPQbzPxniOi/RET/ratAPvUD03HS4JKAHcfz/ti3Oa7rno9IZhVetn8GZKfxLe6Z3h5H+7ssamnmZ1e344ayZ4XmXF3H6LkayfYYVW8cgFb1jjF39jvsn+fG2e8GN+EU+VntNzeumQNu3HGncz0PzLi569u93njhuIZxxutO0t7pkeUB1wzHH6Z54Aw3Y64WfHuhCOnrnclPBGInE5yu7h7rSq2UbG1NY7DJFe7aRMZOZxg7vb5dZ8K9sZWE5BSj8/873DCFZ7mbTTn6foJjyNUNbkpdz00sRz6KB/jm0Ux2iHHoRzk38zgKz0qd4TUexy1op3iFc8bzOC5m+cnrBJ6fbPuj/NSfK9xw6tszvQFz13bgyp2kYcG46DAdcYPHT7XfcVyc44Z+NmW/t5Xxb4jIHxudFJE/vtjOnyOiv0A/vwszpuGD6C+7FalX++qVxeHzEs7FlwQ8D1G7SITEoAiOML2uIFdjnj7HftRxNawPmF5uv8DVNze0zI3YfzUWPsq3x7VG9nsNV2P7fWoeOOPbaw32F5ZnGxRtyberJ2WSr4Z4JnqGx2lrtSpeWJGf9LXGUK+E+s0fRE4sUieYe1keYMoaQ0ybhz/Te4gRFzfOcePbqvZbIWgBM1/kRqXXyrrtr8RFa4eIbctaFhdHcQLx/kVsj1vwukWzQ71wmMSF39J8jhs3hUN1N+znuTprP6a4/X8IZYGbKc4vVESIHp+0lZGZ/50i8n+th3+SiP4vd9r7pO+Y+atwvUjH1WidN3UPPQ6OYRuwintZ+9u+otH+rQcYUG3VhENl/2/Uu4QR++eI4ZGoe9ZLqAbQs7hxiho+Iuq/OO+4iWr5udyk9muCI26m9rvLDfYP6CrC/WrbrwU3I71P4qb82zCb7AI3caw6zBnw95ybWH1gvyvcZD5H5AQHojUe4VXXszxwlhs4PrLfpeFPKM37h/k4wMS/vR3q69UX+4idPLL/CCPKJrO9RroCFSJ7jb3Z32PW9q9w444DJm9/Lv8fxn4Yi2UegkfcRN+xdk5yExtwXJ3gJoRG+PEkNyd87kh2xfaIeeavRGSLBKd4ZfI2mdi+Ez1j+8DzCq9mq5vc4L/R9qe4ccBCuye5iWpas3zJ56xvT8hzaL+vXD7xGbN/mpn/XVTuP/6/6MYbGYk+8+Uf7uHi8i/rf6rjszoVlsExBy/rZNFhTW/xUFuNAI8UPCZqe4wF2mMijvvBT2HEaOaKqZ3HYw1Q02v9CyPvkt5xXT8yZNxIx03ErLa9x02om2xFbdycsN9ZvYg52l6znNrvm5tL3AgeM+o99m3390rOAIP03Czaj25wk8qO80DkRvDEUn8XMYZj1oOB/aLYapEk72MfmWG3E/oszBjUtQrQ8mODuZNdoNVGdHJqx+DvDHptFf7IR0E9gSz2AetqLJRzTLLvFTN7zLDKvV/kxunVPinGWrlVTbipx/oWAMV0lxuURfu1OzpBb+QmsR9ydZYbxJHbb4GbGcazsge2X+E12sT7NuglIqEDzCL20o+ZnnyeMsZ42fZqzx1lgauT3OhxZvslbjSWpcaU9JjOcpNhbHnuhM8Frqxc4KaLqS9cyss/Pu2tjP+pZ7b3iW9lpGJsDUqKnnGz3cPzTC1T4ASweuDO/viKnhUM6Ph40gISRpY9RNGVSFnB7GyAGJULwIH2Qy6fbj8O52H0jZhW7bek96DulCvF/QncDP2GqZvtX9Z7UDdyY+eD39iboJhO+7YM/h4Wzv9O/QYwxj6MMJwtaR4A+2GO7Oy30vYNjFP7XRulRaKNIdcRfBewm5X6unZPUcpqcqkqRLRRe4EBvvWuXIaXZ5vbeKMrrEO9CcY4VkXZ8txJmbiZXip6O4x6HGRVT9tatM6Nl0U9wFXGDSE3HhNV7u5yo7IMGMtkE/RGbtCeYL86N73MDdHMflu7cMi4mWGEukuyA9tf4TX6jfM5sH3D0WMsF/Por9H2cNVwGqO/kFi2vaA/e9tf5SbzG8/VgBsXyxzsd4+bKNvy3HaQ56L9QJaIYixf4YbMP7/Lq8vnXZiFJQER7rcH4XGppEsaYTmIbsn6KYY/Ep0QLerF2DqNEbnhsj7STYoyrl7ITdwq1HMFgf8h3IBaHmHC6ufs9zxeVS+1EyvcJHrPcsP696HffBw3a35TuDrDjTu35Ddn456W7PfMeOztdyNHXuTm2H53SsNndwrisekGIGYHqvPtyEfi37XpdkLaMXSl/yTDOkbpiGWvp3K7hBlwFT3NGFNurCNNlkLdQ24mGLv+neAm41X1RJsc2zPYb0nvcd3efuvc3OF1bvvzvEa/OdZrATC0CVZzREE8LmOM3Lzc9mNujuNkwM1KnFzkxp07k+cW7XeWmznmr1cet8emr1E+7RkzW0DApClJPVe4/SZ4LM0BT8tWPwz1xf4zl51iPlM3FiGKUeAwfRA3sW7kqrffB3GD9qN+qrhmv+dy81rZWV1/zu1Hp8DFh/hNL/s0v0n1zurGc5/tN8eyvf0+npujuL9ShMi/dU7tEHTKDHfEpxMSOD+EqX3Ev9EnM8FVjLaCXyvxPPaduB53+AjuVAz0TjB7PZLLu9MJxoSnqOeImxmvbiGhxkbKjZVgv4t6j+1Hjosl+2Ulif11288xz/uHbSW2z3hN++sxjfSdwogn+QSveLFzy/ahT4dxshDLWZzc4CbankjO22+A6ww3vu7XvmMm9KnPmD21fO4zZliEysgfR9mlK2C+IUu4aOBlMy/EhH1azxxjbMkviFZZGdUeKr3JTZCNXCEXTHAr/Kaes/aLepcC9MnczGSj33Sy1/WkWvWHT/GbTDb4c2jS2e8UN3QjHgf+ejj6PJubIMu+Ogk1THd87plxf6VIHPjL3/ich+qa2wBOxqfYL2C61KsMo9sWNGn2yC63uIl1FzEdYqR1rlbs14Id6vKp/jFT/3r5M7JdXeBq1s4ZG0TBE7a/o7f0T3k+uLhKZcOPL7f9gmx67gm2Z2x8bvuem2ysum8/a3vE1YJor/fYfne4+fzyec+YPbt8+jNmdfgp/8WvqhO5NwJqfTsOf8e6nWzQ27eLSwq6Xzepqw9Uaj5YxbjQP+5wQWDugOmM3pvcRMyOq2A/2v048ExuZrIRE5Hn6qO4mcpGv0l5vaan8xtcTpMX+s0JzAVPi7Gp35zgpj2fdh7jNO5P9u+5vo5xr493L+TIJ3IzjXs9vlS4k5UQGxF3jxNOxrpEa33M8Kf+Mfg7rRuAdBOcAeZoQzy1V0XL3EQ9wZ9jWfGdI64O/K7nKvB0RhZP7eH8CW4kq+sCYILhsH9jvWdsv+ZzlBbRN6KM4vSIG6q/fRXbP5ubLqbWbN9zk8T8ZW6i7KL9Mln8/VXcfJeXlU+8YxaOozNlf3OQGyWNkezRZMImjzxva3YcMZ6VTc9BsAjUeRU3M57u9u+ZsrEgVx/JzQjj0J4LsrO6K3qtwov95oxsVlZi7CP9Zib7Udw42cHEepWbM/46wxTPXRygZcYJ2IGJ6sptmWDyHqrHugEa3ihyskGnrRDriwkEqgxlE4yJbN+3AUYiL+vqo09e5GbEVexfwDnFeJebiY8e6U0nnhe4STEjjqFNrnKzIBvrX+Y1zMSF/d2QA9vH42lMWd01jO74M7lJ4yKRTXB+LDeJ/eiqz93jJj7R/9XK/sXxrZZPfMYsTIKE6HCbTgyO2OgZ2S4Da93qhpOBY6p3pifDOJJl+0/DtEO9eJvkmdzMZO/ofRY38Tjar9vMfQLjHW7kq3ADXMQR5g7Gu/EYHkSO1YeyU25uyGZxj2V6QfdCbuLdKif6ST53Ku5Hpb4WnMIEwzVXzttrmuskwi1Uy6gu9Vtx4gQrlJGeKHuIkUYYKX8Xy8DVXsfNgKvQX4cpTAI/i5sufaVtnedmjPmYm+kQc+BzT7P9kSzWPYqLSX+i7U/7XGjY/OaVcXFH9sj28PfHcFP+exQXLh5Df5/FzVe+7hH5vA9MP7t84lsZw7/x788un40lZiz9Lfv7o3F8NIYz5Sti+irlM7lBP+pG44+Hk+KI5z6jHOn9ilydaUNffiD+51htdJyeC9epV2FOH8Y/cYzzmKN2Uz1QX3ekndI7O77I1VfgJpZd5mnko7h5VnlmXJjfAM/PiovTvMbyhLh4Cjd4/klx8RncdJhC48/m5iuX72fMbhX2L//Qy/TuGYgTV+hnZd1EkcNSQTw+ofcOxtHkR6hFi13QvpCbKJu19dHcdPVpbL+P5OZZss/U81W5GWE9kj1TzsjqsuQz4v4VvOISqB5/ls/ZjCFgOltwQS5yjcezc9kxNr8qmy0QrMqiTVbwUw0BAWpHsoCDw/EU0whj1JVgOuzfq7kBPMiNDX1JWx03R3ozjLH+7OeB/WYYj2RP+eCJ/lmTijHILmFewXQW45Pi4rReOE5jCvHM+hePv2BctAqLeuH4iJuvXMoHpq8OTF+rfKk7ZkJSHlAfHM+buyBrSSvIyvpe2qdjHASp7B7Ty7nJ6nIiOwneT7XfR3NzU/bper4yN1nSn+SBM+U0RnqOb7/MnjEPyCf6HE3st1r2Cb8Cf4zy4qxuNrHLjnc4MdsiPGsrbiGNspOJWf/ZAcnfUpwen8GY6InbiWf9+whuQonvT0ntOXoustM7wxg1J/1DEBP7LfmcqOwLeY2y8PclXl+BMcYF/HYrLs5y446fmUNuYPywuLjIzXf5sPL53zE7cREU2xC+KRvvQiE+d5hcFJ25cDuDEZJVJ7s6GXoGNyg7GsSpt99LuYmyI/uNfrur9ySvH+o3UfYrcjPx7dOLIXe4WfTtozxwQul5vwH7nckDT+UmlhlXawr8gB8nC8u4B3VHuJyaM3oW9a6I4b8RUzz3NG4mcktcLao80nVGNtM5sp8QJa+kXdNzFl7EdqaZq/Fiwlf7F7ma4XpBPK6IUaL2VANPjuUlTB/ATZQ9tF8U+4Q89wXK98s/bhZdjcXX0nPY3BqP43izJDvIN0xsjt3JhmCYHT8FI8pCYrDXWyOmj+ImcqGwwoT/Q7mJskf2u6sXywVev7kZ6A2+XX66xk3031O8jnxb65/p37P95mweeDY3M/tRaPtEEesL2D8cuw9s40RpoW45JdCvKuQmKzyQvaM3MCRRVkCWElmwOZ3gJthwGaPU/5ge6DBi+hBuOHAjIFu7mNiv1LnGTYyN4/7N7EcJr+hzi7wecjPgddS/VV4tAfCS3p6bMz4XZDNMTjbJWZe4OSNbuUrs12TzHPJUblbs52TX7HeHm6t5/yOK0PcHpu8XWfhtdvyquncw3dWbyY6wfRQ3R/VX9ZzVexfzs/SeqftR/fs5coO/fZRvH8munL+q96rs6NwKV6/2m1WuZkVo7Aezvq7W7b5rFibxGY6o44reZVmm7u0CinmW/1f0hjrd1rAOY8VCRP2zqPU/ytmHcHNUFyeek7Yyvc/GyEk9K4nPoe2xgWfxuiKDfzuf41zmGfF4JIsYzBexXiD7Fdwc+Rz+9pHcxH8zn3tyzriE+QuV75d/3C11Pyxun+meh6HBVjBpv/TLYrls79nk8pGvOdmCFgaFiGmq9+BzAHG70yVuMlxB7xI3C5i64xE3Gaao9+hTCZl9+SY3KLtiv64s2i+bTJzw11M2GPUvw5T2b2yTTs9ke94ZjMbNANM8psjxeoarW/nmSkxxXrc/Bslb+cbL3ss3T1ostbw/7mMsZ/gpFUJdN7eSIpvGZNQ7yUCH8Rz5Yv+3OynO/5/FjXBycdYhHnCl/j2Qfy43sYSWGWWl9GnJfif9ZoiYfEsnc7m7Dk/fxX41ziayEWO3tU3c81v3uLkhy+iDH8TNUQlcefvRx3HjZJP50eX8fIfX7/IR5fO2MhLVnMukAcnu/uzgWIvUVjj8ncn2o3MbsTToOllu51E2fPm92w410itEFPoTj6MsblM65IZ8/9yWpgM96fuYtX/CRNtY9pCbmf1OcEOxf3e5wf7RQPaAm87nduAq+sZ+IDvxG2eDEa9n/Mb3OPQPYurIPylghv4tY0RuIoaBrPcb8u2u+uvdfHM2pka8pRhh9N7F6S0+xUPZGTdHvM650f/cK3pR6XZ+dnmDDnDC3xLrJsdR/6osCiKuVHaAsR53/cswZbLP4iaVpV5WoF0a1KUXczPJV7OceoabPiajLA1ley64P6ak/iu4GclGbrIxhBJZ5Waql9a5OfQb9nqgvIybI9luHIdy6HP0RG5Az6r9Vvp3gxs7/xWLfL+V8V4R8h9LjucGx+bHkp8/bCueE2h1Jpu1Iy/AdFYWjzk5j3XutDV628/K8cx+Z9pRXHjuWTzH387iwpK92eoZvnHGBmdjKJYj31/FdYXHFRt8EKbX5JszOGDkTo9vYjorG3PE2YJ5/6j9q+ey4xGWK7J3cAzbTsagj+LmDlejendxnMF0Ru8rMUk88BPnl+F41jg+y8XPxKS48NxncJMd44nZ22PP6L0Tfx9lv6PjlXj8AqUML98XZvfKzr3jjS4u4LQrAr8dtOWadcsABzhOYtRznNVNZHtci3pnOLJzM66CrOz+eNg2U/js/aTdrNyy30TvWW5muA70TLmatXvHBrPy6+ivs7pnuDqJ8bn55gSuYW5KGvpQ+90d9Lh//fWK7jN1O9mZQfU0v0DvQd19gmufYHolxhkmIs/VM/VOZeUAM2D6SPvhl3a7bWbs//xMe1oqiRip2fOl9ouyP8N4nGH6HRePA7kvUr7vmN0sTFQMLtSMHR/cXphAD2XDcbzF3EAcyGYYYz9GmBb6191GXpWdcZVMcg9lQa/r00z2pP2mXL3KflGPYh6V2N9ML+hJtwGstHtkg5leOsBMwQ5mAAEAAElEQVQ44TV9IcAdf41/X7FJthJ4on+HNnhGTGWYz/prhmmkdyT7lex3p5y1w2Ub8pzLl+mlsd6dvCGyCfOHcBNlT3D1Um7wGDDFwSle5L+Umyg7Ce4ut0HDT+XmSJahDfH1UPDp3MxknxiPNKn7HY8vikf6skXo+8LsfskmBfFfouIUoj8yHI9lhh9HPZrkDH+XEiTZh/ocpno80rOCEetxLluOVRdgitzo8RVu0jZi/xNs8QOaQ/sFrq5iXPotsZ/icAnJYz/kJmLO+jeyYSYrE72xXcTcPVCe6Jy1dcdfo89FXcPfRjGV6D3iJp4bckX3Y+qOv6LPnYkp9Muz/orcPNV+F8vI70Z/d3XHeSPyMfTvJC8uy97RG9vAuiM/m/39Cm7SPHGkN9R5JjfpREtj9EB2xo2rf8f2RCRbCOG13PZcbgb9s3yx9fbkA9kzGD8rHju8T5BdjscP4EaP44XTZ8VjNlZ9l6eXT7kwYyHi9MpbE1onQUsOIVqb8+OssgKKk5a4NUEUxwzTXYyIyR/2mOr52csclvWuguYcR9S/ZL/xZPSs/eIb5PrkM7JfhvNI7wHmaftrsnO90U8mSZUSv7G6HxtTqU3w32ifC9zkNhjHVMQkFXZ3MffimOq5iQXO7fjbut7n2+9CEap3Odb97kzeWLbbV5Q9Uz6Km2W9C3UvywpMTnnQ7ii/YVmIr1MYYcY83Mq4iPFlvCJ3AaNdCB3F4884pl4ejx+M8aitV+m9g/GDy/cds7slmUxy9/srSfYXYtOan4Epfusmq/kRuIQI3/QmYS9cp/UL2G+OKa3xMytxkB/7Suz6/KL6bkFcc/9FXB+KCX6aR/0H4UrsN8P1WfY74mpZw7Ma+p1SfscvUnPrf3eXbL4o9dLCSV4ZlU+bLE64+zWZwH6X76JF6NfnrYy3v8bGzH+Umf+3zPyXmfn/zMz/xJKgMAkxkZSvu5dvSW1kKzjJ6o7llvpvPMb67lwi6/pAXi/LZph4ZxLxmJb1HtSdHTOrPuWoYqKCybiS8v9ncjPlKuNGuKyES8/VUO8BxiNZLFvkZt8aps5+PVdDPU/2uVf5jcaR2gD/33GD7VzVuyIrW8OBNoH/W9y/khtXF/ygxpSLe4q+/SJuoqz03CgmlyPjMzVPjqmh/ZArjPErxfiRdkz9sceJ52Rat5MN5+JxKiuFnEt6h7KLGIXaQpNQofzLcXNR7xVuKifl/yGXR6462RvcOEziuYn/pzgW+zzzKp9r51Q2wRwxUo4p8jjXG/Qs2Z4+1Od6bi7GI30EN5LLZnWHss/kZjFOvmDZiS///yuVZ9wxeyeif1JE/kVm/n1E9C8w818Ukb88lcKH9vHV+Rz+hd/tLhEe13Zk97JpXTjGItTrFSZ7IZTK6m6A03qTuswhEKG/ppO9rMP0Qm6cbMKXcTTC8QxuDmSj/RgxnenfHW5eLbuDW8y4iX6UcQP+09lrEeOpeIyxTN4+BvMuN9D2Fb9xGJUj/fdV3ETZwI2dq30iIqJHw/gqbmZxH9u6PEjvRMTwLJzp5qqbSfRtcnjO6jL0sWytbrGBsgUofkMKsZcq9YeKyTpZje/5Ab0Jxmb/I1nQW2VYG9Fjw3GTG/xWZ8aN2mTGjfVLueLEfi/kJnzo2nzPjnmSN65wQwFj5Qq5CfYyJ8viCjA/2+da/6LsAHPkFfhRb2hznJnPrWOM/rMUj0/wuTE3Cz5HH83Ngv0+hZs+Z3zpIt9bGa2IyL9CRP9K/ftfZea/QkT/IBGNL8yk5jILBMhxeJEWZIbHAs51Vrbq11GqLkDQJi1+cPtN1LOsN6nLg7r4u06SIg7C41dxE2URE+WYnsrNIma0n/320dwcyYa6p/rH5BYvlmQZ/gkxxbFudvwKbrjpVp8WrH9B7yW/QW6k4SHq80/K1Yu5ocBNG5xr1Vdyg3WxLTh/tHNrWCzvM3UaHE5e5jbWbcf67/gVZD7/6hG3aiO9JzH2skcENowO21luwq6Ty9x08CZcfTQ3emz+vWA/mvlNrNtzlXJjiY2oX838aJ9bxNw1AHWv+NxJHlO9Q3hfw+dew008Pmm/l3ITc8bV5P9dzpSnPmPGzP8QEf37ieh/f1hX/6g+f+nZA42XmAfPyARZnDJkFyWn/XKEcQGz4YgYz2B4IjcOk9aP8mfKDW6G9ntV3ljgZiYrRH618Ez/rhSVy7iZ6b7SvzN4AgRnr7vcrGIecTM57vSu+utqf6DowuQw7lftdxbHBFPMkdcLeyw4Ybhi/0M7bOE8Tl64x/Hs2EjzRniCQAIOfKZX6qmP4Eb5SLmJGO/oHcic5YbqxBH9/VWx4d5qOOEmgjjk9QTmM+MNE/EI8xFGxPWp8XjR5w6w2s6Rkc99GjdRdtHnXspNrPTMScFzi9D3HbOuMPPvJaL/JRH9V0Tkbyfn/xQR/Skioh9/4A/67yFcmdDD3zbpPSPPQXZBfhpbM/kE4xBzFmBH7c9UywVu6r+GcYQp/LScdw7st2TPC/bLYCzZL9Y56XOu7qps7F+G+Yxe/QH/nQgu++dI7+jE7LczvCb+edkmEcuMpxHGGVcr9svsNPr7gv2GsTyAwjMcJwrm/bc/+Ae7u7eXYmNQd8lnVa8kfcyOF/SuYO1ks5wa7Bvz00u4wYI5J+B2/8a/jzAejI1T2Un9jpsjXQM9p3nNzmVvmc5yW4bxBT6Hk2un98AWH+JzV+PxjM9NSppvMqOO7HdW7zPjcWWcuIJRVV7JxV+ofF+YQWHmX1C5KPtzIvK/yuqIyG8S0W8SEf3uf9sfFcb94FqHTzpCretWFJcAkyVSVr2h2cy8Uc/y5HMkO8McGo/cTLnKMJ7hJmKEQSdy5eAecRPLgIslbmb2O8tNgmlJdtHnTvcvk8XjxWLc4MTqiNczGDn8DbKdvx5hv8PNHo4XSooxctUJTDAuxvJo/B/Cztq96nMTXJ3KM/lmUjDv//KP1Lx/FuegxLoZ7pGAqryVU88AjbExy6mzvHhC5ez4SDYdEz+Km1neiAomsjOVd3g9tF8sFzA2gfMYTWA2Rkre5nc8fpF4PLIffU48fuXy6/RWxtsXZszMRPQ/JaK/IiL//WU5om6CkX/bbFBixp59zTweh7qH25iOViZmuCZ6l77AXo85Yp5xlU3kLnJzxFUne6bc5WaA6RQ3M0x3MD5T9kpiRL/BcoLXJYzZ33Qhpp7F6wpXqzF1hpszvGZwVmPqTizPbBAxZTF1lufYJjZxpo+zsuJnZ/LGyGZnc+oMY5ZTR/V3IffQfbTDrKxgHLSVPs/8LB+NdSd65nnDczO134HeQ587Y79ZMxHjCW5O2TP4zVPtOSs/i3ic+A0l9hzl1CP7dXoXMM64iccviUd/chp/3+Vl5Rl3zP4RIvrPEtG/xMz/x/rbnxWRvzCVmhk4O5c500qwjo5PJG6L49UJ4xm9s+PYVoZpdYC5w80M05HsGVxn7TlStcrNq+33DNkzE3Etd/vwCkyhrc5Gr4jlFW6OYuosN/F4havtoK1X+lyGaVSeMSgLqBRK2gQwAsfRLqmdqgEFf+T5BArqCjFgGuhN5RcxR0yxvykuhonWTW6i7Ojj9J2P9rx6rgblKjfxeGi/ia1XuGG6gBH7lmBeeXtdxLikd1AXsTi5iY919nxCPGZiHxaPC9wQgezAx2JbKS46H49pWx8Vjze5yez3hYt83zErRUT+d3TFWviswcEVOU/OeTDrSFxTB4HERMM323VbAm5g7DBNLgQdpog1YDgdTjGPdwoOZDNMg3MzvdOqWDfY7xQ3kuS8MxjPkHtR9gije0veyG9ClWWMo1PRlpKYd7K639kozmcujgHZGOaUnsEUq161feJzrhzdaY72exI38eRh/nlGqd9i65o1n+aA8xhAw82hOo8qJoVD7TYhGc0fEWN27GDghDnqWS4R00lZB2MwCdQSOxCOx/Y75masKk5qz9mvO57YL9Zdt9+63uNyxp6vxfjzjsecm+EQ+EnxmPH4+ng85mas6sB+X7B8te+RXS1PfSvjamEi/yyHtD+vzs1s0r2YFLn+Jy4iOOVPKOk2h0HbbP8he21/NzEccHUK0wRDhhFfnNQtCE4uAl9uP8rtJzTg/UJZst+KLsU4k+X+p5USfaSzQbxoPWH7yOsZHLO23O8ywDVTuMhVys2kf46rs7Y/Yb/ZhXaHC86fjZOX2e9iOZMPl0rMR88qN/PH9IL+RjlcOJqpRa6eiOmpXD2z3MD1KvvFcsaesbgFmq9iz59DPD6x3LHf77h4fHER+X75x70i1H0oNbsq2w6c1U6PlkfiRDjquyDbra9kFwXYTtR7pAcacR/TnMgeuWKXwDO9mS2SADddA1l8G9Qt+0W8GeaRLNQ9xU2V77azjbi54nNRNukPXqBnGGd3TNypWE/vzFyxvdQXHS/kPYn1ZPA32uiImwGmOAlY4mZ2gayYoj1XbK+YiKY8dW+SnGHCmBo9c7GY555qvyvjn+b9AU67+DwzSRHAi7lyxE+WB+MxyI5gHMWko4yJupddXczHnPj8qGS5zQ17V7iaYBzZ78ieqf1GevFc5ueL9oslwzjlauRHsYERxnr+ZfZc4OaqPaflTDyOxs94/Ox4JMrteSanvjoeD/xmBeNT4/FO3v/A8r2V8WZxD1zCYM3gXO4VqolTssrCpGXo3KiHazP25fegl6jt101kDUeCsXsDnuohkB9gFJVTPKBLAjcUMEduUozhYphn/YO6AvrsLT0Lsqn9RlxRwBQv3IEbZz+qmDYv03ETcYx8TLwe7Q9n3BxgnPIaZCWTlQB7FhcE/Q56GdpKbT/CTM32FhdRb+JzzESyn4gpbWKRV0FZ9nXPcNPFFGJEuRHmoDfFHLiJGPmIm3gc81zgJsqaX43sF48FuhF5zWLqZEnz/lFMDnC6nzDnzGISbNvl/Rt5oxsHAKPzu0SPswtBXeQGZDtMA25cPkv8ruMG9ErowyGvWJfm3ESMM/t1sRFiM3KzZD8KxwOMHVeDvNHFFf4rB7KZPRcxIjdZ3nfcIEZKeM1kPyIesbmVeFzl5gvG4ywunhKPi/a7E4+Ok+/ysvJpF2aYtNDujI4XjrGuyjOewyDJ/gXdjH+Dw5leasedXmp6U4zS6obcM8aW1NX2L3ETMe6h7oQb9zcmDZRb1btiv9j2GfvVNunR9JzmZsKrs0nk5gDj8PjI9tV/bNJ+gHHYv1rP5V5ZtH0tHDHygt4RrzSWxXhM/4XznU0A0yluZhix7xmOgJHDMdrvLjfxeNl+Mc9pQwt6TsXFicLyhLxxAifRwA4qux/ILmI8LUsD2fofk9UL8QvcoP2XZTXniMeUjiEDvbe5ibIjn0WuPoIb7N+RrCQYX8ENHchy7mN39B5y8+scj6/mJsrejcdncBPqft3y/br820UnMlIPutut4eof6da6ukrtth3VduPMYbgqEnFFHNTrEaw7wgj9O1zFywq03emJGCX8zQFjrHvEDR5HTKGtaD/HFdTvuKFz9otlaj9oq/Mbmthv0L+rdw6WV+SHDQwwxv6FvjpeJzEVdU0xBl9A9+h8LuhYiqkbvNpgchSP1PvrECP2d4WbAadpPEaMM26yPDcpZ+wX/z5jvzvlsI8DXYf+PZKVgf2x7ZneI4xH/j2xYcZ1F1ev5AZl639S+yf1lzCe5eZAb7TfcJzL+neHm1X74bkjjHe5OZKtylfs+R2PoOez4/GC/TrZV8Xj3eT/4vK9lfFOEfIfhZW2KmDnKfk7tOFkD+TceZ28UNB7JCtwPKk/03soF4P1qH9ZGyHxLfcPZVHvBdkpvkx29vdIlgf9y9pi6ux3yW/qv0O9C7KZnlQWy6z+APPtmDrglcPvt2PqDDcH/t8LeNkpxllMHcn2Kvt4PMA79DlJZEM5zU2U5UG9A5sslSTv6+9Ps398k2QgLM1tK3qv2H+UNzjUH/mO0HO5OZKdxe+sjWdyk8VuzDlJDhI5n49nGKeyB/ZLZUcY73BzJHvCnt/xeCCrv39UPJ60Xydb/316PH7hIvT98o/bJX7M1SYFFyYEQ9mZAG4R4RMOqLJ4fEZWJsf6W/bTkZ7BuUvcYLIOsi6BTmSPcB3KrmA+Y78k8T6bm1XZ9PgFskNuPiCmLsni8SfEVOfbHxRTp2QnuGay6fFIZrXuhZIuFDxbV2w7w3EkNymnh/7M/mfKR02O2P0zL7PYOKtzFhuzBp8ZG2fKxbnfaYx3VGbczMp3PK6X73j8Li8un76V0Rl69qX3WH8mm53H4/CGrM7XZlcf8ZtDM71HGA++N7Xcv2zifZebgez0DURn7DeTPcKsf6/ab8bVE7l5Wv/Oyk7a4U+KqameTBbLs3nFMvPtT4qprm8j2Q+MqUM9FyeX6QLK0XfcZiXr/1WcM/vfKXe4eyamr8jVUZzN2p7JnlmoWyk3fd/JfoQ977S9D9q+i0nPX2nrK8Uj0XMuXr8iV3fi8bOL0M/gObi18nkv/wgfl3XlaPUmrrpKck7l8Hg0AYiTkkz2TKKX5HhUN8N8pu6Iq9EkDvs64mbSV4vTEeZsIjzi5m5/I6gj+x0N8le5WfWbs7KjuivHd3i96p/x74lN7BXiI50zjGe4yQarQV33xtFR28/gZqWtZ/lcVlZwrsTUlTL6ZMMsb0QbnunjkeysjyNsqxhnbZzp35H9Z7Izro58ZwXjCOeZ/s3i+Y7ts7Zm3GSYR+2u2P7OODcqR/acLXKc9bmr9szKs+JxlZtXxmMm/xXicTZmPDsev2j5/sD0nYLOJ95PeLbKK+HclQmUHs6CRdrPHYYMx2yVfjWgM0xJuwx1uxX+I4yrmOJpON/dMdvDby/i5rT9BHCt2G8VUyxn+nNVNvOFyZ0UyeqG5pb0zjAq54u2jytZcSvzFNcTuXGYwvnsomyZq5vcuKoHNrlsv0FOSTERubtbR5iWikCbR3fJruZQ9rindanv46lnKs74KNg/1TuSzTAv1l3CNdMzw/gF7JepzPLKFRyn4uZM/wLGQ3vGMrJRhnEm+yJ7dn7zax6PUwwHx539znKDdT8rHr9QEaLvl3/cKUyTgIPJEeNv2d83MZg68RcXabKcYXoSrjg5QxwdpgzXCzAhroyrj+LmDCZLYh/AzYcUCf/G38NP3fUA1Hta2lrFJIADbSTeX1Y/0nkZR/7Ta7i6wA0q6+bLwNUt+41wLWCKh5fDZwHDnT5KDIDTDYxPXXbRu7nmFZj0P3fjLilnmuya+QL2SzE9s7yCuy/iY6+059Nc9YlcPc1V8QLtdmNP5upnc63z+a/LZ+Z/koj+e0T0D4jI37jazqd+xyxSmK5SzG7n4nE6Iz0Pyy4a4yQSV1nw3xWMI0wHGPFtQVsi271NaHQc7x6c4WZSl+nzuJkV/ixunsRrV7IZ8aA/DH+nSfbZ/VvkdYvNgJ90F84fwA0hBv0pYpqVF3GTqsGYuhsni3ERMUWurg5/7o4G6LY2s5ic4Q5cbCdk4wJT9A+HaaT3ip4gG/V2etAvY349kgW9M0yHmGd6KHB1hhsih9PyNtTVj9wLBe4Qa8Lrkv3w/ACTK1VW8Bjqu6alHY8w3hnHtxFOxTgYiyOmTG/H3Zm8wf5n19+JbMcNYjzCMfG5zp7YxoV4tDnPaFv2aq6KuOBc14eVXDXi6mquGrX5XdLCzH+UiP6jRPT/vtvWp21l5JFT1/PoVOlgpLK7F3GOOnFETfbq4F0CFy8av6quWy6H3/xK9KYYw7GJjdrE5KEBw+F3DR7k5mLSxQFIg7a7q7DCzch+i9zEgvbLEvpHcXPG5w4nfTSpmw0MOAAncgzd7bh4gr9i/GW8jgYGwxT95gI3KeYFblyRhsnutEa/yfTQ+NhxE45n3EQ9HVeIU5s443MjDrj+HO2Z5ObLY7OQ324FuhzvO/yW9QdkI5fTnDOL/UTWvUESc9uCbMdlHKui7ACjO8a62QusRrIYC9HvLnITee22AYP9DrmhJjvjxvku9kG52enQfrQHrkbcnPEbrSI9Rj6QtXFqhnHk60R+KxzUJQY/oTJe6rF+dHrUPycb+Uy4QXuanifEYyoz4Waa97XSouwsHpHXI26ins5+0MaH5irQk+aqQTwOx+QvUj755R//LBH9aSL683cb+vSXf+D44MYLHXDUQYTcZEQL+kzItWk8Sv2BmdxX1SmpO8VFzcFdAAS5Mxh1BUUxxliYYXJ9lfbbFW40+VjdWrl7FibiyriRICu97ArGDK/aL8M15SbqDfY7xc0Es5Nd6C/i7+oGGyCvG8qFxJT6buKvl/vHE14BY8SkdYnI5YKz3FBSF7macRMxoV6K+eaO7VWWc26yPmY+pwXtF+9EOr0HGBkqmF9RHlNYIt4zhaX5g+tjyA9d3qB2jLJpjkny1YqPdsfoL3qxuCob+q2/DWUH/ZuNN3TAjct9ynFiuEvcRNmA5UgWMQqNY2PKDdpkhFFteMBNmq/YH0+5QZ/DvHHCbzKMR3pHGDvZ0F+XN27GI9rT3Vlf8ZuD/g2fb1qRBYzoY0eyh9yEttF+P5tcRf3xajx+5fJZz5gx858kor8qIv8nvvxcRiuf97p8cCS7zU/kvZN9fV0lcIkPjrV+9sXyrq410Nd1EyENEJjtWFsHr9tmOocxnVFRk8U7Q/HWtgaTG1wuctPJYhnhymyCdcMLGc5y0/UPfGa4VSjjhsf9u8TNGV5X+jviBkXYH7u44HbcxVTir7f8JuhwsolvCyVtSevDZW6w7oCrdPWeah+wP1qyfHPX9tEetW66rYzBPnAOdS3lucV8Y6voPMA0st/ZIk6tx5H4bGf/iZ+5iVtoNvXRyCXqhX6nPjrK+xFSlmOinsy/oV08jj66yg1OzBWXcRP1hE643S0UeD1jP/0zyij+UTwHvV0+zuoexcbEfg6f8op1AyYsXT4+wNjZM2A86+vYn7P2RFlnzxFXmEuxEayb6FmNRwHZTN9qPDr5LJcFjEfxiO1t0SbPyFUX7HcrV63GY8Dx1YoI3b0w+0PM/Ftw/Jsi8pt6wMx/iYj+cCL3G0T0Z6lsY3xK+RrPmIn/vftbE1s4r8cWPKN2Ell1QsbqktQb6cVb2VhW9A7qdhOFkCCm/QvJ8Q43GQf4u5uQz2RH/470nMEY+HFlJgtcWvJflb2L+YZsTJrDuiNfWbTBKYwzH01sEuFb/SP/PuM3sYR6qR9RmDAI9SvuR3pf5a8gb3F8lZtJvjm0H7x9dUb3YUl2SljOwnic9GGE07oSf8v6OPFTLBzbOpBDSjuZUcm2JUK7rr0YR4vcRJzq68h35KprI+HatbnqdyOZWX3UC/brpmEZH1E205HYueMm1h9MtNOxeKQr2HOay1d8PWK+ac/Ox0ZtQF+77WQX49EuUrK2QHamM5rJyY7KQTy6LkT73c1VUXbRfhR0r3CT/ZbG45HsFyo3X/7xN0Tkj41Oisgfz35n5n8vEf3biUjvlv0RIvoXmfkfFpH/3xUgn/+MGeWOP5zEDIoLgGwGKL6yrmpJPc7MmV44bnTug6gzTOG4G9TjqBITyqh/oaTPlUy4iRjdOJNwxfjH0TMqs3LCfkiWZPZb6R8NuMnaibIL9hz6zUh2VGYYV7iRUOeE7S+Vgey06ezZj9kx6lr1scCN5oG02coZR9kVTKs4BrLOJBBTNtie8bkrA+nIfqOJ5mpB7AO/M9OcyeV0QOkM8Mn8NPPRuD1pCGGWj+PfE/9OucrGOSIazVeGXB1hPCgz+8VnXNyiRaZ3ZD8cb0ayWFBvko9X1S6NbVfteZBzDn09yl6xJ+acKn9oT9BzOLm/Go8JjxpvjOcDV0cq78Qj6k25umo/ChXOxuMBN9N5Z9R/ZQz5HVRE5F8ion+zHjPz/5OI/tjP8q2M5izmOELORYRCxIeC3iThhygbHWuPAcH+B1Qblxse2IEEY4cL/o6YwjEDHxJx7RFT6C+WiKHjYiKLg9VeKnC8QsS2kbpdfOY54uaM/bB+XNEShoeJMj9KZDM9RAlXc26G9ozflEG/Oeofhb/3A4xH3KDcKjexf5Qd+1OGO5UNfoNncF/Vqu1Rrzue+FzgJl7RuwmjiM8RM24yP4oY9bejPEDk/pY9YprESeZzrhMn4rHLvX2OPFtYVcziSnrIU/vv1LvkDOfAB+23kW8hrmyBxY0ZfbNW/yjWZ9xQMEvkasJN3CrmMBGcG/GS/Tbwnan94DwjZumHgVR36N9yboi4HjS035Ab1DuyX6LX/R7aOrSnth8ulDrdI4wr9ow8AU57filw1c1LJGlrdDzCH2Gd5GZqz1E+1rauxGPA1HHVzTUWctXVeAznDceAm2xe6dStcPMFS3d38GdaPv3lHymTMZlpiY565LQzWQgssSwE5/bR6HpwjMFwRs4OQpR09cVX1/JMbkbyeiIuv0ZMq9zMMGUYR3cqdbP+jJuZTc7gmB0f9e9Idlb3Kjc6GujFz5HsQtJ3snf8hsTfQTnD60znGW4qJnG/4cXQRM/otxVcC7ItG5SK6VaxFZ8bnTtl+2C/qwP0QW7sJvWqa6GP5o5n8mLMswN+0gvK+FuUndU9+n3Bd1IfnWGKZRYb2cRwwXdS+2WyM/vF+hk2/HshbyzHM4JZjY3Mpy6MN0v2PNI987GjWIg+NfKxgd+k8ZfJXpinLHPzDK4W9URfZ6Jlvzmdq1biEbmaxcUE1/L5L1q+wgemReQfutvG53xgWohY7wI4B+Dg7BOSu+Q+W4qIdcnv7R2OuoPWpnqXW+mOBS4Oe0z9slS6ghSrLuidd539FibExZxewDLITpoNyf28/aybjqsnczMtwX+7C9Yzsgd1p8ehWYndBG4kxtgJjEf2DHUFz+Ev3fuaqfebgwnEHMj4VORGMXEnm3DVNYbVeax65nNKhfsJMLkcmdnvwOeu2o+5MxHPiT8uQsR6p+JgQjJEmkwK0c+m0at6gpmXywxXX7WpPRLyDjnlpmsKMR0tYKCaLKXEPJkJZuWM/RJZia8in+mJ5ar9kovDKTcjPSsdnWA8tOcZjNF+8W7JCFPmN6s2rPaz0LozHeryzQTTzCZ0EH8Hsmfi8TBXDez3ZXIVxh8t5qovWoT4S1yYPaN87lsZw8ifUjpyxptzBNWlCwvR/zmp+yzdR5iICjU41xPCrVXJhPHMasiZIuS2BDhukrudh/vLod07heFff7f9A7n5SgUcesjN9ELjZkl4xVdIT/1GJLPa88oKNxRi7ApXZ3KVw9QuvroY23GvHq/H19mCExHDNcB0o3TPO1J/zMlvo7pEEz9bkMXfjvp4hnu2/5zEFXUEJ03HJlh3OcQ1jElssG9LaNL/M/ZLZJWrIU8DTCnGiarhy0n0/BE3K5iyMvGxzp7Pwqh+M7gIcfbM9FywH1PddR/1dI3neqOPneWmU3HGnhHIqO6vW66SA65WcH2Xp5cv8bp8Sx5CfSJZPT7KeLHU80zk9jFrk2lCG+E4wjjCNDnG15/jxZEbhFe5GcmuFGgvYnJ6RnelXmw/Inhl7TO4yeouYFjCPJPNylmMcXJFgZuM57MYz/Ba9VmMDf0mKDmDcQUT0TE3egr9cVZWbL/AjTtHbS7VZNtF26U4ieUCVz2mkzpD2wr58kuJ8Dj6WTgncNxNzsD+HaYjHCdiknmACzEFjN1zO9rWGW7OYMJqBqJxkdprlPdXuElwsRCx+/Ag/CnUFiqDXvs0SMx1R3pH3BB19or908d1RfUfcDPCeMqeB74eZW39S8h/0PGsPVcw1ra7nBq46XwM9JpPzvLxmXgkWuPqbDxiH2aYMoyLuarT81Vy1dW8/0EldunnWj7vwmy2t/0qu6PAOaq/ou9ZFj/CiEG20tazuFqpO8L0UdyM6mf17nBzppzFfLXuaskSbtT10RhXML1C7yqOq7rv2F7LaEIx0/UMvUdllaszRYi2fZJOnq2P/Z+zeQm+wPLpdyUnudzppc/hZlpH+p9ceTauyR3CuDhpE9RXYxpwJVQvREb65GtgZKLhy0A4Vn42plmbiT07THjiWeWLx+PPIVd9ySL0vZXxVpHJhVlS9xX6XbY8q+OV3vnZmHAk1HIG00dG7pVJ7Z2ScfMRsivlK9roo+1zF0csXyHOM7/5CrguNs3dG3EH5Y5+6AMnP68e3+ZgwuUIV4rhmfY/wsRtTav7YPsrF1KwjxJ+rufiNis+wnQX14wrwHTUxKdhrP/J7MkDmY/CRHTBnl8hHrPyOzRXfcnypa8c18snfmC6MCgEt2TxXaPZMZEtH9j3mY5kk7q2JcItOzRZofqKeG1CECMkk2dhpNa2rR7Vvw+5EXo+Nw6Lnxl8GjdR1v0+l3WYyLd1i5sTsv2/z+PG8dHZBOruz9PrDk9y02EE7Oe5oVa+Qkw9mxs8Tu1XT17hJvRPD9dyFTZ+otS3r0T7z/KGqTvyb3EteagrssH+l2Qp/ORNW8oT7X+ZG8wbBOql/t8CZcEmdJKb2D/kCvW2BtzPaa5LPmEx5yaqSLgZ2S82ED9BoSDrJzec3vipjCNuVuyZ+tjcnm4cxx4t6J3y2nEz5rW3J9Q9bc+DmNKf6Fh2OsfpuHpSPNKN/j2Lm9SPoix96fJ9x+xuqU6uDq4JzBW4/c5RTtpxKgvH8SFXDFBKZBnqmu7k2P2e9e0ERjvmcO6zuBFrvg/YJ3MTMaXHmezAflHWPasHdW5zc0L20J4DPVl/8HhmE6fnyf468zlS2Tj5gb9P2WSi59BvPiOmDjAfcpNgtW8vviimjKfVXJU2tlCEOvsTNToy3Uc5J9URJ31B9sj+p2UzzHCO64+Hsgf2P8dNMkmJOQpiw9kgweX0ZvY7w03EHPVm8SEDXvcc8ym/yfoX9XCPsbQpVbwNSBy5GWBc4mYhLyJGd0wDbgbxF/WexqjnYs5FvVEPhf4N+LkcjyNuBrKdngOuprIzjFr3M3PVKKZWctV3eVn5xNflExFJNXRxDVzBqTW9YHQiV5ND1flb1UDtOVkNBmk/xDFkiPGof0R+5fqM7BO5ibIe00QSEoVJw/GMm+zTCbPi7HdS1g8I97hZlg3c9LLnuBn5SS/ay/Jicj3L662Y2mc2mXFDnxNTF7jhiuWOz/Uxte5zt7lZB5kXofK6/Fiq/dvhCUU3cK7Y/7JsKqT/3Mwbq5OjBfuPFF/JqZdlXU1vv9P5+JncZDJU+hfm6vWUTgzCjECazXuMJ7nJAC00d+hz4ipfxzj9gvKCbNS7Ola9kpvYxvQzP+NyJ6feylUr3PRCA9mvXb4/MH2zMFGZFWCGS3KaHcfVCvy4li7TQFLgbstA0q5lVe98cSXRyboPjkqvFxuK7YivG49Fddsx+zfvfBQ3URYrxG0bCTfILfZuyGvkJsHsSrRflqRG9kOTZfY7y82qbMdNlB1gTrkJ/Z1hdG2VHyzZHvVv5q+pP7JvAyEO+yfBJkTnuAnHnd8kg/tSTInvxk1uuMpyfQulbO30LN9YKIO/4mA59LlXcBPrXSg8wunsn+hetv9k/jKLjaxtPH1WNpyTUd9obbzJc+pE74CbLlVeio3kHNrvrGzoH0LKdjXisaadzj8JMGUYFrhxelAHtMv2Hz3H3XHcCrdkv4hrEBcSZZVDpu5OjxvGR74udKw34se6iCnBO7XfUfyd5AbbkjvcnMlVWGY+p7iw/qtyVdb2xVyVxtkXKUL0vZXxdnkkjhT+FqJ+dT/5MG3698E5bVfsoKBRn4y33JcxxDLDFI4ZoiQOOBzqvpKbDteEqyPZy5hGbR9giufzduVp3HyYrLO9n5zrR5NjfcEKtfQ+8zyM3YRj0K6MMD2Bm3hszwsctBW5Gt5VfIrthXhn93Pmry4baB64Y69wvMpNAFNjLsGxUkZbMoWucxvz4uTcUVuH8fHk2DjCdDRGnjqX6O7WvmSACY6Zkpxzx37htylXGa+DMfJQ75nxZlbloB0Gbk5jnJzv8kb2eyK7NMdZwTWo+2H2Ozo/wITcrPj66Vw1wheOf7a56qsWIUq3b/8Myye+lbG6JaxMq+EjtaOLe+8pI6mkNLVlYEqueoT8pz+sReYwKPHYY7uVvDlGjXdmghXyeq7q/Ahuoqz1f8CVtchMMrMntnuSm3hqZj+8YYhn1ux3jpszmJf1dLIeYzmUXHuwQVxylp1TP1rDeGATGts+mr5rag82WS0d5nAauRr4Z8MUlg53uPx9pu1n9qPeX7GIcH2Y/4LeeHqBm2X7rRSh9jbe4KOyS+jT6jTA1y3bzMTh1txYtgOJ5xRzbG2L4VSzP5NfZMo8aIBZuWUKGgZcSgx2tEs5XqN/jpGJ4Ntgan8e21e8bMN/ZL85N7G/0X6qrcPFVL5obHWZOMpK3pVje/q6aL/hTo5UNsEoi75+gDHzda1Fma9jkRL7Nsc55esTjB2mJuvaT5otGILsyNdPxqPUn47HyKRczVUX7Pezy1Xf5SXl0+6YbUIkIejijY/uGBvo7sQkTjxJSv5MOxIp2GZ6/fHe9ERf747nGBmF9ApNS/i+y5SbqHg/x03EzMwQy56rGTcdJsQcP5fwVex3kptVzBlXywN8rLuzO5z2L1ywbvv+3P7BqOK32NHUXzs9Eo6XuUl+QFEBVAf5JnLFmGNu2L5bNYn2W4xlIaLtsZ/T22HGH9a5mdpvsTARbSI9jL33WZysTJ9TZfHd3MVz63xBa/Z2FSLaAmEcfRJ1760TBaM/pqCXQRdTjMHWq9hf1EMUfFJ/w1a6OIJzkStXX3lDjtj/hUOTa+jAfvucG1ei/YZXVtRmsvWfLXKViDj7IcaEG8ToqOFmP6kYIwNuwpz4ke9EjhEvAFKMHVfQKotZTzGaPaUtOpvsAcZxPAb7REwx2IHI9K6rw3SCmwNfd/7L4vsvvT2Rq+u5KtT9hFyVxd8sV4lUboa56muXxGV+luXztjKig7srfA7shmNml1Sb99VjCYM3HtvFRT3B7Oc1IuDgid7M6kn8HC5QDDFWMEK+X/sJbrKtg6e5SUpXF7gacZOdg8FUu7DGTawLXNnfJ+ynbWX2m+oN2Bcx59OwAz1Dm8hC/+C442ZR71H/OnxBP1Hur0xkS/W7dGMPZ3pn3HCCEVuccUPhb/Xt5Nked3wnpnDWhj/OMFL/jGbU22GEv+f5ZoUbOLbOXSgCkwimskAT7Q+40zcHZsGU2D99lgTlUA/54+zZrk4WMUGpLpT7Dv6b2IwDLldvFr974CZgZv0tcoWYIuYBJsZFwoPYiNuthtwkJeYCPyaGdkMun+YNtC0dcJPZDwBavUw2frNPMQ70zOwZ25nmnHCOidz2n87HJr4+jUf9ObPnLB4VR4zjCaYpNyd9vctcqjOx5889V43egumaAL3YthARp9vGvnA5yCk/l/JJb2WU8IFpGfydHNeJAjp2nbZY3Q2Oudbw26y4/lbzla4oOFUHOFpvWsL1v1JDOsdYjvEmfhVgOYkpyapVj7a8xk08Lr9sDI1OcaxgWrNfOc4whsR4mist0X4M/6UFbqL9ZKFuJotcJBi7hHjCF5Qb8WhWbe8x1yZzoBM88Jv6kbR/+JCbuHnDc2WxfJqrZOQyrlZtj4wmGg9zywSjjZxUuWLgasXnqMNosWzfxRrhmGCaGz8vQvBWRrQ/p/Zn81fUF8lssz2ULX0czcQOQAoRPgHvGB52G3BxLtvyVfTRI4Ajrupfgt4XuBly1eLKMLuZJY8niYuxkXJlW7Tmss1+gasslmbcxAiRUUM5N8v2q8cbUVu7OMQYs1q993YBI+ZyyjDuiT11LiUN02ysavEY9CzkRcs5WnHUReAqG6vG3GCbdUznRW66+IvHP/dchTgCxkmuKnPj6Edn8H10Yfp++cfNkj6cekY+yHa35sMEg8O5kmQhGNhVv1dg/hL1zjA2KfgznemdLzzkqufGywkJh+cOnsDVc+wHjT3JfjWfp7iO7De3td+LmsuGpPKMPukEHNphODj2zwGms3iSpqxJnO93OEYYfZy4plexRUwTrua2fzJXsQ2cUzzBfi72rnB1Y+xrz5ghJD+Jz/Pi+NjJ4jadunWof4V3XnzszzAlMNBZui3dgrWqEddJxIm+fz4p2bYcJ7khMFz/3Bkpq/YDWDEvdv2bcYWpTyfLktdlUCJyYD+Jbhm4mWGKXPGYG9xOKQVYR1RMI06TjDBS2K53YM+I0YV32xZXMO7lImK0tZ4w7yb9ncVj8LHZ1kUGkLpjfdnHznDjHEHwHydb4m/OTQpMm17JVRKOrfIn5apZPu1yVQvWK7nq08vdufsXKZ+6lZEI4knqfyC7dF+nx0kFQ/WwNcESNkxqMll/n1plpTz7NtE7w0xRr6vrMdpxSL5FJ7dDET8YoN4FjMxwz2w/5qbrn3FD7SIt3rlc4GZoP8GGcq7O2M+4umA/Rp9L9M7sOeeVp7J4Ando5j4259WN18iNbhs8Y/swsdNKUptetj3hfVuqAyNR/3xZwmu0PVR0O+/OcCNdg/a3JNs+j2zfcQV+7b4VdibPVSkLfbSfyYLPRYwObPFtG4ZXuIk+h7PTq4M1PGPmYt/OG1jQBf1FblI7+MImmMmG2K/n++eComz8IdQloCdUZSIilrDzu+Urv7W+CNjcaKeOj/Z3WGxMcAEh/bUFa59rB/BB3R3GkCwvTvQYV3A44ib2iUl9NtSF/OW4cXp9m539Ik8jXonshgRXfbQF++nFB4ZnlZEjjBLqOnsm3xob+DrSXjDiIOIxWl9wHNCmp/aExA/cTBfZ4eLD2U6IZGuw9FEmaxl9fRRTJhsNBpiDbPlJeZXGUdxXqfFIYL+VXGVKztmvNbOYq6iNffNcNcOY8dowp7nqYtr/LufKp72VkR7F0XR1xm4Qczu2UbImA1tN0+TAUpMdtwiqnlbyyFiWuZ0T3i05DGUFgppzzC20ysROXP+KLE1ktV2L3w3qQv/so88L/VM9wkK8Q+DB8pWtTA1k24O0TKxL3sbzOjf2cLlxldhzxs3IfrSXW1s7EbPnaoWbzn7I1QE3Xf+u+k3lpkxcGjfLfhMxktZtvm0TqyvcMNeBAOPzAjeGrPiR2x6z4jfc6pYGjrgB2c4mBsBxpd8as5XHBW5KvWA/+2cBYxLLipFZ6udFMvtNfA65spnJSW4iZkXmZgOLRYT4XacrYnCOYp8Ap+dyEhsJzqEddn/MO9SlxIZC1VfUHk1dFhvumLi+awAxhv4BN9Y/xRS5MR8VwFg3XLHHFG1qegNXTESy+7rIVYyNGa+lwZ304swm5yNuEtu3bXaBG/DvzJ5jXgXTPfg7Ob0dN+pzYL+ml+w8jmu8glF6jHYno+KIeghlU4xxHPD2Q27Qnnk81kbNnhhTvu/mr5k9db6g9XeMqQVusph6aHPhJRXKU+dj0L/IDTrFIB57bqLsmv3u5KrmuAu5ahBTGa8u36j90lz1RYvQ91bGu4WFiGT3EzNCu2fHAr8ItTUJDBwiexWqtJouOPSY6xoy2DLKRr3MAis0PUZEWCb1TS+TULuuKYHLTpLgRk+9c0dtnbs9l3fMTTv2dfVCw2rWO0wdN6iXASM3Dd5+x9z4gvYrx4fcEFFqP2he3/TpuVrjJrXfETdHGNX2lZuprNpexDymAjmwfcIrBz0CssDzGHOwvcC+8wu86g9RT/lhd5OAyI0QLgD3sXyGGxfLUDnlSta5Qb0S7XfC57z9dGqjXC3aD2QxJ/b2G3MTMUaurhQWxd7sbSdibCjuuii02bzCx2S5k9NwOd9h8azzIH6FOr2d/aNezFzQDdVL0uzQ+Q6ON+EiXGe/THqnVIgeg3HOcQN51LjxdWf5irntFDHZjNfKlXLTuPL9c2s2kauMV24XAFn89vYjYknyhnjZNh9FjGVRwuKo6nT2m3FDfkz0vJKTpUWMphcwap2RPVWPHnuMmAsS+5HnWecaBuihF/chHmP/gj1dPMLfGa/e1wfcNIQu/u7Eo7PnLC7C2GSNTnKVQTsbj6yLemu5Cvvn84tWGsQje9mOG2xrYL8vXX4GEFfKJz9jVrxQV33bKld2TC0bkpAuB7aV+FaXw1YFBtl2Dl2OQNYd1kDAlWl2xxFjvCMu9XyPKWKmLslRkG2YjrkZYlTuXH89NyPMyFVJEt5+R9xQ4Kaz3xE3+g9gpvhn/TQAdvcMNywB8xE3iAvhRNvLRDbYviJpGB2mBV5rdmdqEyEnazwDrwe25zrId3pquyqb86p8+BYRk1GScMMJN6l/LnDjYtkGsoyrJpraM3CDgc+hf0fcuAhL7MfiuTK5JC7EtPcx1dtvzE3MxZGrLC2slGHeEOAWudx7O2j+4i6XLeQNVj0BV5Y39Jxux0OMYHN2dyFUb+1j7Y8EzBIxqjis+LJIeTGDDPJk5MaCTC/IJ9x0Nmm/2vEGGLG+RDny9tujXuAq5lRm57Mu12mXmFL7CbHx14+RoX87efth/KX2m3ATucM7HS6n1hojjOEzNgx3Qwzjqj2dz9WuQh6xtrRuN1fhPB73EGNA7Go8rvp6x03nr8DNLB4BU8+N1kN/JO/rlasrucpxcyYeO71E53JViyEinsfjATdONrPfly5fHuBS+bytjNJWc1us7y5Yu2PnoOIGBldXiOpejDEATFQb2Y6AgilOvFDPRG+HsckKEfEeMSUYucUktsddfy5yE49lIEvKQtsi0O7oKKao+xo3peoCN1E4s1/W1iu5ibOI6DfLsv4Q9/+fiwvyesBWQpTwfIDRbQ+5w2u7qNAqbWCHOzu0zk3pX+j8GZ+j3WFiHBQ729M5blw55sb5DR6CX4tQYr8gi34DI3rp38x+PTfR55z9Iu2LhfHzCMZx48fhhDTdMavN8Dw2OAp2P0BH9qY3VvHbWntR1AvzpFov9I/3drFNOk+KNq1wBfRK1bPAjf2BsDuufPG+Q0QPwEhzDjBuONgA81BsoNy5IMeNfyYtLCiw/cdPfomIZGa/oLrz34n9KOFmFgtwbPOJEcbg62k7SUxm9nQ0SfgBGzJMyRwnxKP6HE/8RvuXYRLah/YLnUvsN/DXZ8TjWV9fzFVpuWC//AfMBQNfJ48xi8c7uerX5Lrny5fPu2P2gMHHnZlkOdcAE8VJmcRgHcvaBwqZiAT2zFep+AG/qd7ZLCUOXJP+uUGWk7gkOeDqBMaOq162zQ1bJ3pMiPkaNx2mBVnj6hX2O8HNFX8dy2J9CoFxjhvTo3oFLtJWMTL13wwcbWdY4HUnGXSLbUA4w43r30TvrLiPgAJXLm4T9Z2em9zEPNBEwX71ZG+/iV4+4XNdkXAU2zpZpOZ9KV3K8kabQPd9bPmo1Oz61M2+6xG3U1KvetW/JU5EUK83RJ0MtcsCod1h0pzk+OGkfxz9zsN3W5VwrDJcR9wgRgp6DvIGxFWHERdQ4kS0a3b35xP7FTVsjWX2rBscW38Y2grcSAU2cAOvmdv2udZi8EGOknX8gy1wVq+zCaqF+CVyeu286YE8eISxOKzDKohR2kURbiE1X0eCoq+HD3BT8HVQOY1Hhj4RU7v7Av3F/nTczDDKHrhZj0fTw2TPKqb+ejJXKa/jeIxx/6Rc5frY24+flKu+/CNcZ4a3L1w+5ztmRLaSxHTR0plTCpwLt5mjrJ7h4KFtUj+WPYcT/t7DKnu8FY7/aoZlTKKLXK1gRK5msrhiCZjsEHHd4Qa7d2Q/qPoS+41w7XuoJ1N7TvV2ddlDvpFgukHfJlPSbb+YYzyBaYHXN1cf/z7gtSuB8xvFx1zgaiaY2W9W9wImk1VMJLaNZYzjdSVONi61UWcFjNsy3SRCXE4Rqi8I7HBYArP+i5DbCucuNEIfTNT9LbY6jHPegjH6qL8TELfHhasFh5phgtphSvTq8zPlpVIr3PQY7b8ud0NVim6UbJsFXc5+cWIabsx2W75igq1bMRSTOO5QNMwXdn/xh5j8N68Se8Id4CIb74AzxB2cqg05XtlR037X+q67Qhv6gsMowZ4HGNGvKkibuLPU3Xl1ku12ESS5Dd03xOMW7Rm8ZxqPxM6esIsQZBuuDeMP9HYjeojHyM00HtFeQsQslM3D7PztXKUC83h8Wq6Cb74IUW+/aa5yKg9z1Zcr96YDX6Z83lZGW+mKnsx+InN07IXruexioXo9HhseqW8XmKyCcQ/1FEa3EhswdBitog/IDtMJbrpzDBPiyE1SEBNFruQmN4jpVfY7y43Yn2VwnXFzZM8FXvXBANTrzt+Pi/wiesIr2LqduuFzR3EBcHOMiIuew83A9sZVx83IdwNXZ/UeHdfBOOUmHqPPbk/kBo+vXgw+krsFqEJXayvv2hUG3eVZOJCLMxjMT1upIDoZkWBDta+b+MCkngnGqqQgJji2yanD1UKIq11E62Z5QvUqJ0vc6HlPSdGT5e56zLEu5b6hXEltb9dtYVxZsIY9JuSm+qhdYwpwo/0JV2XtelRj31942QWQclMFeq6AmyzvIVccuQJuIK7a81whVnC3geONKLPBJtLZs8s3GY/aJIn5FaujUd8f4xsxtkZcaS8Ly3wMfT/EVANr9hSi9pVp51eT+Ov8la7Ho3Wh+Xtmz1yPNB/TKqvx2GEcxOOzctVhPM65QXVdrtqGzH9+EaKvf0tvrXzSVsa68qtOiVyKdIEdZd2fUdYKrqgw2UUIwzFG+z7R2+lJ9M5k8cDVFWiLe8zwz6GeQ8xygiuxP3tZpn4pkibHJ3h9YN3dc3PHfkd6ZxjDQvmQR500YNvZBc1Qb+C1e5RoJrvQP2x45nORV3cxEPSs6F2KC6K5z2Hlhbg4y82Iq6nPRdlgv7N6j3jFg+hzVhbi4gY38NGMBO9CEYIPTOvFL3UTnvYGNnL+wOgbRO2mhgjc3AWfZSJ5EJFtOwPczqcBoOrtMPmJmOrVY419nRAL+W2PTicTyS7hhnSMM2uS2G3Xk6A3ckNr3LieVUxEoe7uzrm7ZmELIes2z5Qbj9Fvie3jWSempa36t2vMmmw2kaa31drBJjk37bjlbvcGPtAl3Oxbdr806O1tm7pNLolfKX3jbM5DqrKQ3DAeYI48Vrvolk9x3EG8BV8XCfQ+MR6FpfFa+5fFn94R9mktz4N349F8He3p+odcBExDbirHV+JRcxX40b1cNYtH5OYgHjVXqWycD32xEteRfq7l0+6YlQG6JrDJnGSlrVwOZxlRh/jz+tT/TO8RxpFs9nuKOWmQG8RDPSu6r3CFpzSojzCdsWfU5fiA0anDC2XFfjO9M4zd70JuVSY778H534fcvZhX+zvY2mGSUP+DeI2r1vpnKnvE44Heo7rLXMX6if3O6J0JhW1InaKz9rvIDW4TuzL+MZE9Wxyfj8BrwC2ci7Ry/K/Ohyq27oYLe9z+ggLbTXIfYscJ9ARTGdfaoemFPKpvzDPM2BjqFSK82NiCP3AQwHbwBRCOm6wD1LhKMVHgavc6cYvlDBN1teIFKlxDuIuK3n4MvOjY4fs/9qO0b6qH4ycsFBO8qj005j77EqMD39Yn3s/iOsmxjw0w184bNzp3GNgz+nrcqvrMeNzQfnYx1JcYY/NcdC8eiYg25Yb9hXJn+5irYO3Lx2O/C2w5HvVU9HXDHF0u5KrwRsjL8Rh9X3OVYv45vDL/16B83ss/LLELtS0TkFnwNmvcIiCS/1ubc6sy6Ed47EZlGKrtp0W9ijmri8e7YgKc1nfApRg3/e0J3MxkTa+06Nd/d4IDLE/mJi7XGVfAC3LTcYVZ9Ygb7dIFXo0Oaf/qxaOzJwDUumbPWJd8Fkz1nsTo+ht4dRy0U53tcVRY0Tv0uYWYUv4yXoGalKszGLvjCa+2y1dyrijoRkzP5Ab/1bhQDAx/ZFxt8PtTuCELy9HkalqE6uub9aDptsc88E7xECfEFdiBFWKd2dvbDlWHNl255A0M+/CYBPuJHKod0pwDdeFv29qk26UMSMDk+kvNB/e6HSzNizHntP6hzxZ+6/QcXTrhqmDy9rdPQkjFJUJuy53G7U74sbyB3zX78UbN5qLnCOwLXDE5+0Wb1I9STPIxyKL9kCtpenQnmRgfuuUsXOZgzsxsgr6NcVp51Yv0DnOM/XQbILSPON60zWpPlI3xZ801/3TxOOJxOR5rtQ2ewUKsaE+tq29v1XjU9o7iMcbQMB6JaKvc2GMEAMFxA3qYyx3su/FIRPYqkKq+PB9bdW4QRhLiEeeSMH4exqPYf+bx6GwDf29kz0d+2SLHVX4O5RMvzGo2ZoIHOdHJ6x8xQbsLuuyYan7RlVMbgsiyLH4YhWt44MSZaFFvVdglAAkOIvV/HpOldxGPiag/fgY3VdYeWk1lq95Hxag8KlesiewJ3ICscbOTPz6yHxGJMNjviJsB5pEs6nWy8LHY+q2Xcox1oZGdS4KMsnhxccTrhf6lGLVN8jy2eITkfcnnou0Tbgop1d5gX8J4hBGiu9DE/so9bmJcWB8SbtTniM7bb8DNEq+PPbWfrfbixZRNWs/Yb6DX2a/pubaVX4jfcRZePlAvhlPIUYq+Mogrs4P5Ts1PVYu/u1HvZVQ9e30ew7bVl+RSzgdMpqhuEZJdHEaPg0IHSluCH4reGua9IsNPRpAe62TtUV4E4eI55aYSSHAcfZakTfQk52on/xFme6OqjlVgPxOqbdl7GBw3o7zYuNL+OXuxdPYl4Eq50dggw3jAjU6UB/YTbs9N6UWZ1d2p5CfMoW6sUj9q7Xs/IvOxvfbXMIOPtRhUXo99rs0puF6sVB8zX1dZmAMYpr2qy+Jx5mNH8Vhttte8AVuLMR6Lb7ONVS1fvSIe2eJxf5TxRp8rjvFYyg5cTeJRJzEJV52PITfqYyoWuIrxmPrYS+KR6qJyscGXv2P2/YzZjSJSnycC5yCChEzkT9CgkiTHIIqTDEgyWkGTQZkw6+QqqB/aOc4cctyG0KDoXmYc6DRRQgsMq5hR3TA4FrhBfEqXCNQsaYn1d03KRLZXnDJMUf0xgZTyhz8hV4a1VTL1m4D9gg9M7TdSHgYa+KlxVQe6YL82dVAtsP1lB59D9Uv2HGOMYAWbV6evvNlWGiJLssYj1zsFHLgMPeoUzrDpQBaawFf/6jdZ2uBMdkdd4h2r9DmuGLTx/ODnLKZwlVQ8N4Qip+0XFY64CvYjyA3S2w8//N0+a4ED8wVuYhUffC4eTxUh4kfZpMM2Gav9wUkgotb5GQHvcMzc/FVfYW5bLpsCk+XWBG1E5VkMzCkazyzteZ1Mb8CI13/2SnCGCwnSrVN13Nsbxk3bktoWvnRAxOQ1ZvT5kSNu9CfDSIGrSqDKCmDe9HzFtInAxUPkxh8fcuMwFv9lhkmujS9hCxqLtWXjgEBsgD3d6+EHXJlbJxjLexggd6uz6T8mq3dzWmxY/FqI49yjbQ0UEueDGTctLx7z2nysts5kvG6Mmy0pzD1oHI+U6MF0nsWjxV+MRzH+snhE+7l4rFz1c7h1bkhCPHKLx7eDeOxfAgIXksF+U24iRuq5cj5H43jUsaDBgng8yKen4xHmVo2Hr1m++nXjavm81+XX28KCy6PuIw7VlcETSuBLS4rh2OruZXW+vc6XSPQ2dNgGUCaB7GSJ/CtexdpqKbjpVfzUog/wM2z5cE798P3L9kvjKpHHdJcb/Gq8tC6oHgGuQBcLYFJuwpYLzxW5uo4AHOukyNjp3Q/Ifo/+B9lPTyVbdowrfNYD7wBXLVKzILeOFl5Jf0NuupdIjzFGXk2oYHI+x9Ah28pYJxjWVrW1+YX2Fe+MyMB+0eeo+YyWujLpbnY5n9P41AER44IgBqgNTDjcudFwHo+C3OyAaQ9cwaq7s9XIfuhzNOImj0dyNgo+V2cxxhXUZ2xLUwVyFZdJj7ihGicSMGX2u1wqd5iPOeRncyRynwfgilXqeXvts8Vc4EOobGsUtaHUVegi61JJeNMb7+IxaQrAMQQxhlwumPOZyhRO2qq+QF0klpNtgg4H8nHEDWK048ZN65T+jhghtz322mbjSp1A76B14+uMm2A/IXJ6/TgX7Fl/wA9va98x7/DD+3Cm1+ruCVcc7OUGPWr9YSK/7RP8EO5YFPw+L3L4WDzvCTdyglfnc9BuxaVb2vD5wMYfYBTQm3FDyFMWFyqCsgzj4Eo87m6uwSSdj53ihjw33ucG8agXPxiPyA2+1Zq8z63lDPLxiPOMlXg0Gya5apZPV+NRm9ccC+18ydLS0s++fOrr8i0rmDNKIDYkLvMaPSafJwXa0omIXngQteRtAjCix1u7qEfP14YjDpdRdLAU8BLVqXoFVtmEOkz254bnAjd8hxvgSHOJ4dBEIL6eFsSkiqDdtsWjnkRuQtB4XGLd1J81KZZ8AbxGrqL9wkXEyH6NmwSj+006rtybt6KNLAdDxtfJgLXLgKnKIuaZjzneqHVEfzP7ARfqc2g7ov4cg964/BRe32v2C8eeGxpwA3glxFTn62EwCPbsti9M4rHlgdpvMIOtWopQuzOq9gtc4SBK9NR4jPYrq5Yz+xHEAcAIE8ElbijBpH+A/WKzS0WoXORhv+vfrHhMpwTBVhxO7K8eI+9wBS1MbYusNLtztan1ueLggEP1QosAMcTv5rlXHGonP+lpfLDjG7mBrVSr3MS/s+366OVbPFcxEflnujAHC9QZcXNgv44b3aFBRBTijFuSgRSAPisDng5waY7SEu1X/cZqoM9tITb0fP0N8+LmxgwQwrqrPhf7h5gZ76RXjPqMm+YenfgHW/Y2P9A7w2XxWX15awGL8SgxHp0tIR5hHDnnc9rfwgWH+Z+PR3seZh6PqOuyz0FFsN80HlGPcdPsafKO1/PxaMfoBht9lw8on/a6fHo8qExf1CHY7evWeQ1HObyYaqJt0gI13QWR+IkHzo/9xM9NxyBwuNXtXqMd6mLQOkx1BQpWI0qC8ZgsZzy4HbDnwr3JKpshl1Ftzo0e61uG8AILdWH/Hl4x5jdibs/RaP51narAKZyjHiMmOsWWYeKR/eJP7oeCsbsDkHDVXbQhpojLJcAwc93qncjKjeCKV63OCUa6hDFgCMna/jbXZThuvAizp62Lv8zn2p+4qu1xci+rH4uttnJDB85kDTu3c52PheP9ClcCgz8ZN2qSyI0AJPilNa3tKsfo+zKxJ2+WTyx/Ka76H/MlDvGQcuO7m+YqxWh3RtRRBr69WkSIf6qzQ7xDtXF5TgjbRtzoDHjMHCYv4Q/wb63e5SEBPkXGdqCmN8sbDuPG5WUiDOfrH2ofzF/d48TIDSM3Ca4hN+EH7jHF2GfN7RpvuAggiEsCN83POByn9sMCvmrchFO+LuQUZqJ3/Mi0AObgs5EbG6tmXIEfPQBjSVi+LvYvcrMjN+TGjBb7Gmczn5vwGn1uUx+rz1/vnoCi18d+73NZ7FNvz5nPYceZSB41CC1X6an6h+NKKL0A1xpa9ygeox9t8IYL/XYYdL1/vD9wo4sk1M4v+Vy0HxbWhQmNwYN4jLiysVaA16V8WrnRT0FUA9npjcr878sWpm6R9mdaPu91+V2wl+2HbVZYXQJ4lpiYsT1KEp/mO1iZdee1jjlh/UE8DtjPUGOvnhcid1cvxlxIsm3/tNbFQIt7hrWhqhu3PDGcsmYYjqXJjbhB7uJkBDDRQ1qycJigw/Z7/QNWtcRV7ZO75ewwCeDATZeQ3CBLuf0GMSpoT5xAJ1zlCTjBROIHRjzJVC9+G1/9BaX3ladh1N8MI3AjdSCIuGx6FT6mxn3TXm/bChkHto4r9LldWhhVQe7sB/YNq+hjTLUtt691jIn191gX1DZuwCYEttXq01y1O0z67IDhcg3tHhPmAQ037O8Geily4/2o9SbolZCrMl+/UJg0zsMF0EP9QX0+5ImoDvOckI8jHJsT/8Y8IZhHzA4hFyIO/Dt+Z7A5iI8xPcuQF9W/HUbfJ/tl3xMcA1zxG0NuPBWPkYpeweVwnDw6NxLbYmvHMefQhDcMFdSjdd254N/duIb9LdxozvG+kviR+zvhlBNMhgvzMXlMeIchzYsexNDnOh4PMOM8Jfoc4nS5FfVCY0OfkwFfE4wTn3M4lFcdLFz8VUzDvAj2TeMx6oEf8Jtl9TuHNItHLOZz4A8jn+u++SWJfRpXNr1TymE87OYKMR/j5yu7eUqwXeQKMQlekJfO2Z3XB/Ucf7US4+9nWj7trYy2CugchHOHwRIDhTDu2AK25HgMnBj4IMtCxFs7lyW3dgVhely863E2iEhoTJOKRp9OgnAA4yDXDRTkt6ZEzPWPjptkALVxePeTU3cxsbeHidtFKblJvvGEGOoruws3yeA24KZgAq60vR3r13Y3ntsPXxcLk/ol++HAAPSJDm4qu4fFAMShGGuHTQ++mhY5tc4NfIygHwLbYuFlXj3P9bzsdVVMml67rYoDKg22LUzsl8Rm5M3XCfZUP7FXHxPZd29GCVcnJxk39stohfPoGAZE4KZgHOCJ2OJPFFY5pcVfx02I5TYZa4fOj2ybnmJ2rTk/cue7ifQgV6EdutsZi+Xx8NuD3CRB/NvNRMBPscNQNu7zYDzG/ORiQ6yPvGMfA/dJXDqMiEXb2LY+D0jogjuWwD35l1cRtfjGeM5siHji64bx0OXF2Lf6H8sbEONWHzB0OYc9j84m3GbcetsE9bp8HOcEgEmDR7nBPoTnqNLxEwuT54o3wNj63zCFpORiI+OGqPObHfLBoc8pRvY2YPjb+Vz9UV9OsnHxhz203V3whN9d7EefowUeQ7uKWXnQbaDRfghrd4B7n0tf6R/yAi5YtUTYzlWbmX0Rcz3weVrjFblBn0vi0cZa9HXkips9Fa8ksiP74TmMC+Qm5lNtW8sWDKYYtfNbNPgXKwntP8fyaW9l5Ee5/994rFty4FZuTOD+xQ/Ns8xVbB9+klR28XdldHuQOdrDHFSqPtVro+dWcTDohUBjon6VBDCXFVp461DFancPDS8m/jYw2V0xPa+JYAvcGGbkRjmhFvxavWKyCdNjp/KWJpAhHCQbDnv5h/0fA5rbB2WRU/0FEpm+qc2SHQnZ3QKwZ1xBY6a6vfLhuUKse8WlmAj+xba0r1niQ78R/5xMabrZs5s8MhHtXO+iUF2p5nbXhInc3lSu28jQfojRcFT9OEgYJujEDiOZECyK6Ct5wX5KasXsn4PD7ZccBkzPlbMn+rrKSrhY2usDzcxlwlLeX1wg7dwwqd8jVx03aLO4DSw8q/MQb67YJ2242qzYhMk9nIYTJsWEGGHiWR47FMAhpS0d7Jnbts4ZJlI/An7a68ear7MxXvuPfhEaBJuIUH05gTi72rMaV4oI8XuNU9fH6g9VR4dTf0eetY+PZpdiFi4vA8ICvhInwO4FDM5HIwYOz5XoeR+35iv1AX39P1N7YF/0mDQqYQu/UIiNxB+yRaNYsrzIVLaSQV5kx80OVLDLcSWUQI+LObAf8GjtEhG9t3FC0IfCv7hFuHpzm0dH+wmlNmnjKTaQYLIFKNUN2xNpd9jU7zk0Saz2a8eWW6wCjnM0tx/aOuMxHgM38oAXUGleZCbemOThRXQa0DBjXICvp2Nv/U+WB5jIto6ALxHY1OXyiCluQApzOItP5rDFV/yiTvwXX7bm5i1Uuam5ncNeCPA580O7uIVxLRxbb2X3WLD/RIS3ugTOlW2MDXOZLyA34WUrgrprzoA8l47VeLHn5rviMGpcsNrsu7y8fN7LP97LhVkzNpNsWzvPZPt/y28xISWDEQYFOqpQeZMNtqOJx1YhW+ZgmxFWLYprJ7I7Zpgoo7PGVQyHr/2tz5t1mLBo21udZJXoJdEVMCLYxhC4clkvYEL6dvxdJ9T1/w9pzeAgXo/b6mHFZAMotb9RL9qvm3xFjK1Obz+oi3p0UKoT+/I5hPoCXE2eR6s+mf3Ml9q51H7RLW0A4sYVS/N1bTvzdZrgRF9H+xFwpQnZDfw+6fK2VYzifT1i0vZP269UZbvIVhzx2aY6o+GCgeuXSEUIPh5KrQ5yNYs/Ap3GR4Ipsa8VvbjZtmA/wNVtGwOMkauQm7yv68UCyIXurNsPRvJRiflJf3N3SRL7XSkiNpni0UW9/p3ZwQo3Drb6PleFqnyE6vWs72P3au4EB5b4wL9TxLldSO3CHofDCH4Q9HSYIq4ZV26xhVpeVFQbnFdiRlyF3BbfjjvFpD5b22fAVRaGwGYYR10RclwFf+RDHFi5+Qw9qI2v+rPLz5GbDNeJcxl3o3Eu1o3cwLHj1X6k2r9tPqmOORNe9uLmA9b4AJdhEDiVYLJ5TYhXId802NjlRSJ/YTbJ2zZeIFdwXszndP6CmJKc5/Ji4CaOt0OejjCRr6c84VgWebJ/YQyRBUwOV/iXwH4HQ8mXKHfGpy9UPvflHxrEGxPJTps5RXW6fSOpd3ptGx0khTI0cnE6JgsQ3YJniRodU/dP6wR1h5VNXQWCBMfb5p1+23So9QOOYqpNuO80MdmD03YXAfdx64QF+6GZYdvKBILeatIAijT2Nm66LIshV2HCqD9FrnTw1Yf+HzgZkzx4DZMQ01aC123zKrwWqoL9tEkpa47tdcy7f3Pbrp3lxlsjGmxGxVFgGwDbSzdqc0xh5Y8JyEvtV7jRSQEOCjBJeOxkX3J0E4C6JUYfOOay3WRzdYqMjLjqPiPRuPH2i4NE8DFcUWQC32IiKSurfiID38ShGmuNuImvl9U6m1RGHGg/HEDsokLjkwyTmYw15tU4MMEiGWOSut20+przI5x4mv2Uq2o/3M6xEzEDJlLzLPi6fujV9Ia7wDvkAVw8Ym62srjD3NT7unuLpv4MkybHVcWqfmS2G9nv6IJvUBjjxuwPufcBD0ugLoWt+DeuCxJ6YVpENtnLbyinY4Rxw9VHYRKM/GBdZh/7iNEWoACT+nGwC/KnF0eqx3xH9pbrVC/2W8cqlbU3GwNG5EovvBDnJimmZiCuGLnlNuXKuJlwFe1nC0HJ+Cp1fOXduGPNk3qhgnqwmB9B/5EbxcnUYzQeuZ2nduFiY77FL+TfXWCrtTSuuryfHKssxJa6p5sDEPm8qLGPehC/5cH2r01L6vZGJmlbnYe8KjfUxgp7CUjkVfVVOdyCh3YAzIZJt+/ZiybA50yPNsMtB2mJc4Doc+lFRuBI296lTBeUz42Jefd1kRuLG+7zoh1jXES97P01Yqo527Jr9UV2vlrHF9WDVyOaP/SnePGaYYr2Q9+A2MUL/y9ZhOjncfV4XD7tjpk8HsXZ4gBhq9JcbqHWjygwJiAiItZbuRCgAtvKcJIqBBdk5V/ROlo0KeuFYgwae0YItzgQ2XeREJOQe32pfpvGsO6ACS6ABHgoMcpEj3ci3soKyNsbBDbZCr5tj8KEI0I64xOi/gUf2YReB/cdkozsBZd2ByaGZj+YUNugxrpNTm+DQxKpGNvWRcUJ29+c/QBPxSiYmIlKsmfdCrc3PxK8U1VwiPlS6U/bIqAJteV5tYvx57ipOOrWT8NUmxMim3SwYrLETZCoqXGlvEb7xW1EMrafaHI2DolIYIuM+VDFpL4t3FbmmNxE0D44CYNx7uuoU1zcCZFdtEWubNDRQetN2+RmV7Nf5dBIbpgy++k25nah+PD228F+tQ02ntTHavzZ2/yoPttYMYnaTxdJYMDk4Ot79XW1KeYmIhLwr/a+CGibmeyCcYd8hb6+MdGjftuo2tDlgZirzK/W7HepiJC8v8Mlneqp9odVeqn/Wh6sxfqv3y7cd6I3nVzo762PqNv9beNA0+POSzyuXOIEESeUprv6r8ZU6YDHAq++7jDRIDbcVnRyi42OK8DG8U7JthPtW45pVGAcsPjKuIr2q1x19sPJKeagHfRluCJXwJE7Z9xEjPCqe/Qrtd+2t50Var84wTdOEkxIvla3Y5DPZEnsBThiizE7pDeMfXgw2cb7qjTSxkz0Xi8m7KIiweR4gr9hO6PlSesW+iesxNa7jw2T5nHQq/sV953obfO2ygrmoxgnuOUSLwD1ggO5AK5kI9Jn1VpOhRiOXNn4H7mCsRfzZJ0zqI81PcCV4ayYFLIAJt0SHbnCi1jHE/zfFpRaTjFMRaDpUXKc/WotXTRxeL9muTw2fbHyORdm+07yd/91kh8/iN+2eoGxFcdzTqPJsTpXGGjtokgnj1WuL36CQftO9P5uDryL2MRZfvwgYqbtR70I2rYyIcOFXWp/R0yWIBymBgNGh/L/x+4x6YSB657xjYm2N6Ifb/UCgv2Fo3Jlq7BEwvapWNDluWFYlWyDXOUHMMnjUe5uipDwRrLvdULKhasfb21iri+VqHesWtBTG6y5YTKUTJY0Ik7jDHkSIfrpvTfztpH8eCtb4aodaeNiP2sWcAm1ZKgV2mhYeOomTzBI7HvhZt9JdiH56b34kQjJ21bu0NQLH/nFD6K3N2LBidKbdRDtRyS0c2Y/wLViv4pNuZL6CmW1H729Eb+91Qv+ykPIbDyxX5sgEJGECTsOVuJxiewkv2oTdNnqvv4aa2XVHOxnF9mlXb0gWrJf5C7mAcMktP/0k10sydtbvf7ZjKu2ulgnHBQx5RbTwRrPtkUlaniUq5/eDd9ORPTTT0Xsrfo25qVtI7trVJ+BNf71gjbDhBNbxKRmDQtZpHngUSa48p7E31HZhejv/bZt48UFrc6X4cJJ3tv7yOXHGzFzsAu+/nqDl1qEGCFqdt/rJLiuKIsucuGkJMo+Wv6xMYOZpI5hDpPGuU5mMF/j5EknX5bb9jKZVgg1f/RvbtT+NF8WopKvmcw/eNNxjAumNzaqum2D8YJHcZHQ/oBdDG9vPrdHWaGy+LGXHL8/dpvUyS9+UbiKnFhOpOioAdPDcotoPBMR8ea+kZXierQFmZ3Ydu3Ij8ITa4y/MdkOFSLIiW289TbY2yTYXqwEtnfbCC1BWVMu9t8fEPswztVxrLuw1UVRjSG9CGVq3Khv6oWnymwJJs1HGIfwfyEi+dVPJlbypNqT6uIjYCJqC2HMxT/13NvWOK843RZSsx81nhGXciV7icdHi0dipm17a5gQD1F55rG2vevcg5nox1bG4reJLOYFuCAzH0OuNHep/RRT5v+44Etc5lrG00a0v7W6bv4HPJntdGG2/vv+IJK9hmb7NI28QT41HBBHLIWrvc5J3ZjxBcsXh7dannJhxsz/KBH9D4nojYj+JyLyT08FRMpdBn7UuQ0TbXUFeYMkqJMxtl+i3tYe/hvvLnR3OB5t1eXxsOfd6I2I6J34xy/qBQa0ae0hAOpfXDfC1K1m4B0NKQGsL0TZhWh/lLuKP6qJdqa2nU8Hf+AKaSOduDPwhtxA/YgJk/vjUS8WpeL6qfCHkwXdeqJcxffYO/s1TA6X1N8FjpFr2DIgIu0CtnIlOjEmKe9wCVuJ7G/LRmA/AYCRK6HAE/y4S524lN/lp3eSnx4N/74XtT+IiLb6MggdvFUb6A60bSP7Oa6ov/hBn9p3kp9+sgHLnkUUHQAf3o/SVdQGMXJlFaK98EKRCHiqk+H3d6L39/YyFL37oRjsrqvSLe2Yvf2GPmXcJDzpgIp54aef2iRIJzlv9XOw2wbPElSsOLE2KlpycLmJOdyVovZ/vANjuclzJe+P6tNE8oPcFiD3OvjONh7TNsA6tF/FKo8dbLiXidmVAVonnm9UdhvWWHQXj/vubN4ultlyW9lOTmUyznB3XDuB/UDdkOMs7+Od7LAApw1J8JeyWKUT5pL/Ch6diO5toiqU+4j++/5ufiB1simPh1twtAtvkuabRAUHyuqYUftTamk8aRPQxnD8DOPA+6NMrrWPIkQ/3poM0hxy0P54Lz6td+Z/IqJf/KJccIr4XB3Ge9tWh/zjXeW6cMh6MY7PBu2tn1rXyepF2ra1b5bpKs+Dyd/ZiPYLOVYnuiRt61jdeeD6F+9q7eps1GK/vq5cZCf66SewJ1su0kk5uzlAy8MCfqp5o4x7u8ttloPwbaJhgu+4q/FI7+/mn1zdU+pFsS5WVCBkC+skJL96J5Gd9PlvVm71/yLQn4R3xASLJDZPoeoDNZbFdjftXT62OY0uOOnixbsQ/eDmexEHthMeHZB68WPx+MB43Eh0cK8Le4wXoZr3iGz+R49HjTOID+Upu4B1/9Z/HrsbU/bHo92FU3v/+EXRyUT2ehumdvdW3ev9vX+29Lu8pNy+MGPmNyL6HxPRf4SI/mUi+j8w8/9aRP7ySEZ0IiTljpB9/YjrJM1etrHDlhD2QTtsXP/FAaIOro+9DKj7XgebMnEVfdZg/0H80FWlX1D3Sl7rdNB1iClMEOyuy94mqjXBF2zvbUVQhHh/qxevWxuELHHonZad9Pml9EoWseLtf/1XE/KOk+dHCWRcnWIqqyxvbyWX68rSXvcGMCZ8HXg0CXCOSSdBmFTCdjy7oP7pneTxqElQbEW3DPQ/bOVLdBVIBxnVbzOUqscGjsEkxSYrYLtu5e69/v+n0hUYnIVKAhai+nwBt/7ZRRrgOrKfvsEPBzE3ka6J+P1B9NNPxD+9k9jWPWp3WX68EdNbW5XDdpArv98jcBWxgR9pH3XwlDJxpF/9RPR4J4E7nrKVlVOxO1KPwtW+wVZnye1HTO51Vfp7hwn+r3cmKj75VZlslJxUqd/q6r7dbGWit7qyam5dK9vEJvEjxGCYg/3c3TsYlH/1E8l7tZ9u1d1/QfTjR5lYETU/j/YjyJdxAo64MkxuAvQwTPK+k/zqV2XCgW/hWy1StjLS40H0ix/md0LULo50wl0nAvT+oH2v296ZquwvygX5Vj/hoZNBzUMcuGeuk14qXD52op/eaX+8111VZVLGUvKI0afcqewDxgxY+ee3N6JfVH0b2EWfW9KLvz1wVp9LtYuZX/3UJnT17ga/bcXeWurdZdv+rnz99FOR2/e682Qj/oXAh+zxQ+TcJqfd3UqyBR4bBx5154TypPkVLxJVHnG9v5dYf9T+v23E2w4c1xV40a2kNcY15kXaYlLN96IXVNpXEZJNLzh+uAshe/Oe3i3A8VWKj/HbZi9KKH2C8dXmIdLGCdxKrzGrvoDxVuV1e3Rx9RqbeBGiPqETc23zV7+q49w76WcP+G0n+kXdScBlou+uXRTDO3Cjz0u97cQ/3iyPEK4q74/m8PX5JHdBVi80dPHK7spSaZd+QbYTpNgWv7hdcb2/2wWV4Odt1I/wTrUbjwCT5my1Y72okvf3dgdf49HaIiLhMmdx41Phnt8ftOtcqs6vhKjuuKn1sD2XI4l0t4XtKqr+4OKx3gm0ixrdcUTUYkigbV0M13kPb4Vj9R28y4a49OIb7VcX1ewC9PGoF2F1PrmXnVC2C0qfh7cLRZh7PWpfv8vLyzPumP3DRPR/E5H/BxERM//PiehPEtHwwkydT4iI3x5lhYKo+BU6MBGFr4UuwBH3j03qdDKmAYCJvQ6QLELy4xd1YltvH+tkAAdH264HitK7DejEOBnTiWarUwZbvTUvpBNsqRMtfsCtbN3vwVLv8rUmLZmM7n6Q1hnhIgtKfQ5GfmrbPuWxl9+krq7YgL0TyVu9eHuj+uBb0DeyYZgcqIxeGCumHTBqIrYBXFctf5BsexnEmOskOsFkuCpp+rNNNoCkOMk2zvaWmGFSYkUH7B9SJoy2X1wvYuuFmunhBfvFxBgmVcTg6/Xi/v3R+vcutk1PiMtnK+LEXt+Qktkvrvr6CoAp+PouZYuWDjbv722Qqb8xEdEPJtnLpJG3yrHUC+wV+x0Viy+yPKCTY5248cYktBEbRmqTLUZOpE1wN6Ju4cHoiDkJfsM6iutRsNgg+NM7iW45rZh0sk2PvTyPR0T21lh8bf6odD6eYIJnhsqEqOUBeveTr6Wicm9M9E7hmdndXKVw8DAfpveHLWy0Z3prPmb4TYwE3/cH5v3d4pR3smd4ibb63DN5Wb0jXidybZGj3inRu6p6B8FyLGLQiyDktiwokVDJp7a1fq93SOvEnsnHqO0GKUQxXqwQlXFV3oi3epHpFsfgggoXOqw58EG9sBK4CCEiEibZ3gomnLAmi1V6p1HUZ+UHyY+ac+rFheXBtzeI8Qar2A92IthWxh2O63bxh77p2aKj/lbGKze+7lWW6qInP8qEfqPSHl7sZyl3F5s824RfT5uPUs0Ju91B6xazCHmXNomGSXrZzqrjIsMdQio2hju17dnD2r9NL+KqC2xC9kwfv/W5XRCT2lZg22BdVNdth8z26SPlSwQwqf1s/vCoi+/1UQa1Pc5pItfmY8ATaTz6i0d+28oCn/ocLvJrjlD/wYsqooLphxC9c5NlavbrMElru7bL+97H49tGLHXhcdvqgg0R0V4uiggwidgz2OUOVdlWKfrmUMVE4reuaxv4t+WY3c93lZu3t2KDx0bEOL/dWxvKT7hj/VXLZz1jxsz/bSL6LxLRX68//VkR+QtX2+t24l0o/yAR/X/g+F+uv7nCzH+KmX+LmX/rJ/rtqt0PoLZX2QuWf08RDpOSOvHjOiCVO9vlvK78eWdr52xAi7eNHcYwCUjrQcKzySgcb1t761VYiSyQpH/OACa1w4l8hyf8gRcjJi9wzK3tpH1NNK59HfQ7DmiCMdZvg5D1Uf/e2C7CuMrqyqjUAcae99Di7BccadA3N4nSATqrz8Eug+7Zahe2v7TQMMCUYlSu2nYXsdcvN5n2bA/NfbvDvMiV6uN6Ui+69HmxPQlmWCXVWHWcWzlpPz2PfkS+TzbYxbtAzrcTPUfH8XemFteZbH07rfpUeZENXAAJ5ibFrvEiuU/NMHX+1Gzg7ADn2xvr1hIy5v1f0W+bT2B8FoskuuLHkYl7O3T5MrMTkb2pVeOCqduqU+hD/2UbAuybUHURQNyLo6g9N0V9/+oqFkW/s/yqx/UDwC6cutwOuXlvsuUOs79YjvZzxxifurCBseHyfrhSGuUNDrJE7Rls/Df0p7MfUpXFr9rFjZHBfk5X+6YXcblTobbXMYPe1H5VPvYPFVHk0seC874khrr+2b8Q3zH2sS2M/1F+DjmWLe8He7gKZLxa/2Ceos9Bd9k4tJXO4Rh8m8M5okFe1BzF1q7N4cRz5e/k1DmAtWvO3mPq0mOJJTdGRkz6r0EOPrwYj12q0oONyL2sS4Ks2inLc2jfEI8eI+iMuXiUN/Bi/asW4ev/v1/+WRH599X/X74oI3rOhdlSEZHfFJE/JiJ/7Bf0y7adQQsTyczq6ITZanP83a1Ss2KwAVV0lR5WwcvWAMCVOX/AvLZSH3BFnPphSF1V2gMT6X73wcWP0ByzVRI/3iIuXFVCnKhPE2T7MdGtiWEFE+CyCYuEAUZsa0s5GxKuDjxZsjuFgwbcSEtObkVxb+djid9IwcSuilwSXcF4YD/F2a1u2cjbD+oIKR4cJWPHSZhI1zszZTIkZbACvV3T2aCOlTNuRhcJiMnlg3ZccsLuuJR4kTBbfIkTytH5wfzA1dtbBcUloNulG8tZoxImPBlHA5dtkOBNo9XGBdN6wbz/u+iXDpqHAW+lVbx1S6PZion8K3EaV1Zm/Ko23RKFJcqhvfHOodkJmw05aNhWnNgIxL3AljkA1S18qVJpf9uY4SdiVYMJ29/uYs85Plls6IWCxXbrC098XWodUT1gm7atMvQnTFZjmxbH3H7rtlQx98Ix9qn4Sv+cjN7phEktcpLEvouNeK7DNSlJfLrYt2aGrHfteW5gvAEbdv1TGxscbQfGvXqHKWudiOobCEM8YswAhPyCFeXqf8K4gnO43L4RFRyL/SfEsuSYYjF5HE+k5i4/V3LxCDlckqa8Dgm5Kc5nXEd7fC5fJ1xBQzGftiZ6H/rewvix5RkXZn+ViP4oHP+R+tu4cFlRFFglKhcf3FZg3CpZL58ecx8IemjtbtxWx/TvbSPa3uxNfhYvODjlHTmc3DiMbrUr/IZvWvyhb++pbxfUB/+xD8OVrwkewUpBHrHo/9+29qZMeyMctWfdiMmeddMJib6ghIA7xDTikut/3ODBYeBWm5V/y9aT+hxGfU5JX2ZhzxfYRIbaAGT6qCWzIabAmUFhey5GbFvHZj7V7PrWXlagXGzIDZNLqFftF1fK9JmOHxXbjx9kH7nlzW1fFFJMVQdyoxPAONGPREU7WWy337m+YZSVI30Do96xgjudLf4UC3CVcpL8nuUN7Uv9215gw0z8izd7U5jUZyVF7YV+goMjQ18zbjDe/R+xIsQ2mT+zPhP4VrAJY44EtTV/DlWkEw7A6wZ/7rnaWh7Qt2eeLsxEbz+oba3CnKg+1H6X/z97fxuyTdOtiUHH6ut+3j1J0GTiGLbEASMaEREHHEWEEJMMIqIERWIUxRhwNBpRUSJxfkkQNCaIIChbnR+CSBTFgCIxA/ozJIOgRhCCEETj1yBjonsys5+7lz+qVtWxVq2qrj7P8/p4nveuvd/nvursWr2OOtZHVXdXV7d3ai1Pv9X3U6T6ivhzr2IHpOcoy9Qtb5R8e7Tc7z8Gjb5xRYurvpup/PStv1fWZMXnHw7RgWeTq7m29fcN40WZNTbejr5qwfLfcQA//dRzjslVrty4llDUcqyNye7c5Aea3EYV8fegqq/Im8XV0VdPku2VL0izi4rmE5WP6gsNCy3x4rzhxsujy4JiqsTYUV/9ZRwEIRuTgHZe29HT/idN70G+UE8WSYvjbz2vvNF49q1wr1K3VDcf0cSKNi6+JdyYbOS25UrK4yKed6nvaVHctPgJtvdzr3ouk2l+JY4z13+Cx+dofbWxlsc5i8dvWTwi9Iv8+637J+8KrtBhRZfL4XZOmwdVLM3n3g6fu+1Y46r2iXE1WdspWQAbv7O58VDYZlWPvc8ngFrMVP+R461v5+9O431SoR3Tken9IkWf/N/z5e8Wkf+diPxpEfnDz5zoFe+Y/RMA/pUi8tehXJD97QD+/SsBOQTyO78B5ID85luZvEqfYDvna2tqsXBI+Mm3ZZrjAESB79q3Mj6Osnb3d35T1ufX9fB9giiQb99qgEsPlCyJxKBaYkKfyL29tfeA5DiAnwT6MyC/+anOZRV6lLXxFtzy7c1vAc+TpYgJ8InN6gKk7+i0AaEsM5NvqIFr25iXSVi5i/ebztVxAL/5iQZI+x3wSZ0xJYlOBH1DBUoUBwC8Afq9vu8n5aLsLwnkD9VlFVq3rrbBql6EyDeyWeOJ9MWLrBlXbaBR9A/a2kCrZROD07aSp/tP9iTW7Gcv8TNXb4Qr5eqG/Q6UOLJ3P2ryV6DsMorelrmStpFEVcDfX4qYIleMlbnSs3DVeD8hKJNqeTvqv290GoqzQyqmN89NlgeMk0gWc8UbCdiL2M1+AL5JH0D/Ut+UAEDxIc4Lb34y6HcDDHkgywmWmmKxyc0h5d2rn+omNnWyIO2Ff7KZ/d38CJ2rOMGaYeJYU5LXE1Drb/9MghxSfP04ypPPv5T0ZVUOgfxO9cU2CQr3bM8TKto2ZdDjAH566z7CdmiT0LCNdDZ5UAXO6vv2voRN9Cn/yVu/YeE+FXHWpVyqbZdBYb98o/zsfAXt3I5vw2Q2NEzHzyVPuDFQuqzlGC0bO4gtf/z2rbz78+0bXcy+Qd5sHKsXsuyzPPG0GDkA+5aTfHur70/+DP3ut7h325zzU6j2rs83iJ5l63LGJNWfSb7l9jjpVK026vHbPoz9rdqh7YoA2hK+YqJ+2WdepJ7n/FZ9qtpIvv1EXMk4CbW4eivjgHwruFTOthGP9b/lqyrXPlnQzmMxZzfjaHfFb9/qe0VH8wXeil5oLtIm3QaR/ep7vUBnbngeE2SbcH1PvM2XxDbSkro5jgBv3yod5gudN+G+26lt90i6SGmyLbcB7oahcUVPTFtuPhT63eLgBL7XMRak+40+fyDo/Wm8H2Wudb7VnRP7WDeMPy7Po9vK3gmTb20zEpGfgPOtcvUHdZMjm7sYJoxcESZAIT/X+UK7+fzWd0LleQ37kdmvcVUvqFHky/uobzh+6p88anHO34E1X1eFom4aoyg8qwL/P3zd8twF1h8RkT9L9d9T1d+zioj8GQC/m8j9KQD/TQB/X0Xw9wH4BwH8nY8CefrCTFV/FpG/G8A/grIVxZ9W1f/DWkogljQOGjCGi7ISGMPdc9ONnk+mW+e7u9qogXSUT23UCyNhR7cAzS5+DIeg3emIN+ZdnQbRJtvq1M96YaFHT9DyG5ok8p1USXDRJLXdJaULDwUg7VYlTzh8u9qwJ+SWzEvgW3C7SSm9zzTlKsEEKFQF7T6YP4QeYer7qFISVH0fHIfg4A+CtrtNNlkNg70NthWX/85qWX7guQqGdX0zHSfw9lbez24XleRL7YbD0X2LLxapf0/Zj3Zbgpa7XMe3b31wE+l3hVvcSffFNplAaj+/C5jZr9uqc8U+xfajSaw1sMGXL6xTbrrdnK8z3sx+xo/Cn+c4ulHPypXtrGeFc9Ps5oz1IT4pCaXnBfKpOvh5HgRt8wH7XhT7FFAG+lnOdHyg5SiPAXViL7Ep+ZTQ78V25fNE5WbE0TYiulOkTDZa+pP+u02+jwOCuoTxOIBvwKE0IQHqk5jK+RHsIJLyD6DHBepmQD/xKC7djsRRO3qUHVZxnuXGHfunXbi7cWRyAUQ53+FqNwveumO7nDXi6tvia5mg/vRT+cwGxXK/ISkeU+SJxybLVXoWrvjGAACJPLcJtLYL1rI8uOg77OPNJpN9jyuOZYzL+OCL27iShrGYPRHtJ6VPb2846MKpxXYb8xO/6mcqs5ySXsoFC96GGB3GnHgOV7S3UykXxscb5CdpO0Z2e4bvYLmLIL7JQvFpT3WubmDYuBv8QmwucJ7At2/Fnu489H4lXxwzphN9bK59tZVKzuYxdjlWOCcdAtWjXiTzuGS2s+8KEs7UX99oXoV+cf8W7Bhx8AqOqsOt9lCF/OY31X4xHleY6hl+ot95bMwwOc76WA9oubFnSxpr26PdPDCbvXX7NUzl3zJDKzcj9KcjWQb8tcqTm3/8OVX947ODqvontjCI/LcB/M+eAfKS75jVF932X3Y7BPKb3/Tkyss22mBXrvTLb/kgwk7ihlgL9HbHjXZTs6cJpwAof9uLwO2unqIul3ujQaAHhj0dUdM1wdRw2bFOWE/CNJD33FICTuvkui3Z4UGfcAhxVSZbbWSn/1pSOWjyyG2LXfouhvRUg+8C8pMgvmiqbflbHW1oHCZKrFvaT2r8iQCoEwORYgutSya/vUFOu8jpXJU7W29j8jr8kh6J9nNcCdnP2mgfqxpV2iZ5ZeJ/9Lu+2o/ZxZF7IjJ50uJ8/cp+zKSgPslD813RMBFqO4xJ/6ZZS/QWgzyY9nhL/dfZz9r3AQmHQL5XaRpABCdwlI/K92+p8CB5pPZDDZWp/dpAFPxZ6mRaBTjQt0Ynnu1JjLwJzqMMPMK8vWU+5bmxJ5PjIBm4q3209fpifbZ3FG2Cb7aEAN/eygYuQi9gt8m22YxyE9mjpEAlrnz/48YSvQ3gnszWb+mI8Sjom8rcKYfUVQHadykUaTsf8oTD4rBP8lH8psV6zQGg87Cd7F+eMNtTU8qb/WPA1pZ8mifF5wkRbU/69HxrE3MX9/Z0oGEST2wcx8zP7ELcVlMgwWRccR9PRfmW27e+AsQmiTxuZZM6s3XkyTCptHFJ2Nek5uMMkwhg326q9jvrd9naeGJPg/mJpU1Y+aZOy6Mobc1+hqTtAhzyiOHksfs8IYfCxnx8+wY9dczb2QSYC3Nl4x6/y8vjkWHmc/H8wOqtDwdEabda23XQYp/l2L5tzJCmt+0UmV2MN4zMW/AF65PNl+qYIkD7dMJ04xH796D+HrX9+T3EiXSMGTeWFw7tn6GxnKroN8Tqrp5iuYFv1g4Ya9633E/b5buxemY/u7F+VN5pS3z+xhs4HkU8x2w/4+cMfqOT8SfaD+j2EgFg79AesM/x2AV+icezik7s1/yoclXnw8L2/Krlk+CJyL9EVf9vtfrvAvBPPnO+l1yY3S5yAD/VO4MxcbQ7FcVxdOY8bSBHd5Y6A29bzNtsMX4bTY8+IKuWyVwbGMzhkzue4nE0ZO2RMihJogciynnL3XzUZB4m8PatF2t/ah/0rbyFu2DxiaJhcsvKDHP9T8Bo476gDrDHW+ELdcDhpW2n+runWeInrnTgBvD2Q/+7Hao42qOsmvh++tZ4LE841HPN3NmSCKsTjwNXPFma2E+AesdPUGb332Df4GuDx2lLWixR0gSy2c+4qie1u5+ovm4X4Jn92rENXxcBpGLkCy4l3qyfvIzIuGNff9u3X/ex+jSmfbONboyg1r/1+Gsc8g2IYSljYr/KgXs/DoL2PTFnz/qNFql3Vzn+qr0OW/4K1AtHtp+4dxD4YpYxDVwl3DTs7cKg3qE1rjgXnQr5qZ7L7nrGpzErX7cJsnG/8nXDqoBbXhU3pThPt7vydhEpS5/bRJbsb8fd5Lrqssk08efu9sfvFpnPnoDbUvpU2FOcfnGAfqydABXjW/BRGjPo5pZ/KlzlecIP1Nwhnec3wsQx+r1ucd3sT9wxhoaRynn6i2+F72N4t7RhMq6azwZMp5Z3XTi3RW4Y4zeyx3mWp/Y8VrsbU6C6cUX245zDnxzg7fnjJH7CTeTRdhlsM3oXV/S3avcjs5/Lx29eb5zEu3qnsefyepPz+4n22N4wWp9soGb7tXkKRj0I3FlOjRgjr208o/Oyjc+zLD/kOHFLYsl+8eJBteQVHhPjRVmKCT1fA2VcOw83hrgPW59anjiZbr5IixdaqPZrx9F9oWGuZDZ7KZ23ArSL2eMnx42gY3TcOAz1nN8MM/q5ebkp39gwTFbnfHJItV/Va59aqJgO443bs/0iVza+uM9E/Sih/P0i8sdQGPynAfxHnznZJ12YAe3xek0eCtA3VqwdB4+M52gzZzpGd4itLuzENpjat38UcBdhoq2ufH6ekEnQ6TABpNz1hTEB4k/By1XUBkKQXvGTUxonByyS/K2TOmMT+EQiUi4e2oAZuKCllWo4qBsOV6SLxuF2EUeTw3bjtCbKJm6J842Eoz1oUHUv15ob3bRf6xtPihSJr771jrQlC4wJ3dePw0PY+dv0NHgdj9a6tNiqwvEu12Tp17P2i3fS3O6zh9QLR+0Ts3h3lJXQu3fKmGMayDA1Mib1o9uzpRYF+vuMNDnMcpHlhWF5Uut5zlvDMO6OV+7f1omYPUkHai7SLnvU/yS+3paoZr6elVUeAFFtF/72tEqBYWJ9o5R0ewQbyYBjeIJjwrz0FrVOeVHN1wCfI61u+12dqN8XsmP2TpLVaUIUMcW+K/Ee7KDWP/pX6VqpbOpQzNwmWPTtTqH02/obMWZcGc5pXiRMkSthTOWY6lvjSniiJwjBjtF+IG7oSX47C99MEG8/Nw7wxZHFCeVq93UFzjGWcxhfAw+Py07R+AHFUWI/iHvI528QWhxKaNudn+NMImaXUyln2/EW68wroA1QB+bGm+MYeWU9NgY0dw+5mw86+wbeWlwYy53D1rbeXIaG10IOvyKi2JYMEsc1d3OGuAFo3gJyqMqV2YTmd42rBij4SztGYwgAd5HMc4Bor4aTHYf8K2IG6kegO6/dbwJGU9EuvOC5ipjiPJNxRfu9Bfxfseh1k3dRq/offOX5PufCDCg7/ADtqTBssHYXQHBOpxTUUv9bRMjx2t+WsKQkKtsW1Qbj82wvtdpk2i4MlSdMPGA0TKwXLZg4WbcBOp28SvmQrm2TL4DIW/+uzlt9kZUwAXX7VeaH7l54bnqAC/NRW44YtffDXXgcbSt/pSTUNgMQ6VTb8WPFjfQ5J/3XOYLZ+zvdAZO6cxfKxMUmMSVvHK0fpscGVh5A2wM4mhSw31zaj1ooUHbuM0yikPqEofhO/4ZKW24qJbkCZDc3+HOS7vYcMIqg7YTJpU5Wmq8LYC8lQ+nDAvYpBsMEAHL0wcm4oXfxevH2U/Ip980bfpKohXylgaHgOLvJE3vqMQ6YbhAzW7KPka/zZsWDPRUUf6gXjpUbe6IFdMxsv5ardOBmL1fB5yp7KlCfyGrlBtUuApSPzloesO8vOftJvSCpXIi3376vt5m3f4IktH2y6QkX4ltFpCzN1KSPdXvw1keld+C0fiD4sJxTbVSX4raLDM4X8ENB+bmMMYq6hM0+yGs5nt7DEIC+c0YY2Q6K7qMt1g9vlzZu8NL3EM8VU+P2+1mPHZ0rCdyAuQmYRWqcqdOr1Z78Xq3l+57bKeaMK8spfNPzrv2Aiqna75B+vOWcw+lomGC2P7ov4G2IDfuALoD6tL5yc3A+rpjrhYbNAdw4xv7KMU1jceOKxgQLeR7mW14xXm3Zrp22zj3aEnX7dMeR+Bxjbv2ptm7pt457bd6CFifN9s1vKq+QNi605WpnTcxy9M+J4Eh9jnm0vpke73P0Du5BtnfcqL9oVNT7ZdLncMcb+VyV/U4+5+Kx9K+NgJZDjH+60Gg5FDV/H2Q/oM49tNzUsf58t5xJeUBDXDS/sXNT/NE43+adLQaNV7tg37Dfm7j8Kt/qHE7h/cbigm3C/kx5wHH1SN7/oGL3MX8N5ZOemNUBGjQ4oTpcu7PVJwKt2pxjXOFhkycAaB8yrBO+kui0Zc0S39Upm566LIknkDaR4YRc62gO3TFqTbLuQtGcXutQao5zqlvyoWGZzSnWJz+p9dzUhGuRbrLofAzccGAxRkjgSvogP/T3aIOtcSMIXNW2OvDa7SfEVeRG3HIY7UvwVHHWBO4SbGY/O6Gzn7SE3SZtwvazCcGEm6q3LzWozerA4GwAP0B2bsjXm6N2bhqIGca3N+frrLf5vNmL7pDp97PZFub79W/RfuFfLtCS+Evsx/0tNyrNnlQCRlWUpxVWrxdEYu9fCfrEhO3bDISWB4qPETdtMlV9gTC1Rlanu+h6anmpX6jO9pTIjSRPLNh+HWO9lKJYlq6IPyhs9qNlcMyVhmUnLZKrr7f38MJko3OD4OuLXMVLVpgL4/WRIgKtu5i2J3/WR1AfLQ8CfbKd5ByXj4xjFL4azjQvFllVCuDvZ3k6VdNE8Z2I8a3rZYycn7XbweKq+SjZf8yLdtGhAMVG3wnW7E/xzEtbq6xhbDjSvFi4sglyxg1AuTu+TxjGqpJyjpwbfk9Pdcg5ZSLa87PAfJbHPdLDE++TuApLQls+Zm5YluK/fYPK5ZzuN3azo9ivnv9IbM91xw3FvuXfyuMQ+zOfC5uADLzS+NLmLXWZs8WJ87mQj/FGuUDRcisyn+P+Ea/tu2czn1Ofv4Y5Du174z7gHsa1wefa8u9JPCLYvnJjF/rSxpAwH2z5V8lvUJ6u8xyAfS5ywznD+Umwp/XtkL4Sn8dpkP2aDQonZTV8tJ/ljMBNWNI7xFQTla7HXtGwnPKVy5cHuFc+7YmZe/dB0AOcH9dKn9i6WZpQ1eSLkKtLE1SXcAUIF3w9WVibPnlFT8x8q9GAS6u0v9vg4wo9mmccnMjbZEjotNKP04SsQxGPxc5LXHluKo6W5AKRIOgicO9oEC/2m9A5G76Ghw3lcdrPSvKSYQR6sjLeDuIlcOPrfGeMuQx4CGLjKrGfK/HJAS9FRU+ujKlzZQMFndt4jo69wsh9sX476PW88cKvG3iwJ9Dt5+KPdQ0w+U5jx+hsZjNeCfIKtKWO1gfn69Qhjr0Yh44miilBv2ADG8Xd6ybutXMU47H1LSxfEuIqsV/kSkntkKuEeKuVYcesRrZSvbfpK37IJxM/wipXiY/HYdnuo0X8k2wjUgbbks+2QYH823IX2alfmEd/EYo/1hv0lANdF/Oo0Y78OL625xzQ+pHcnU/zFYEjH+FXTJyPNm6IB+UbcJ6bOM61J7qRGz6flcPw9NhwY0TMOUyUcdJyNtsmG19Zd8VL+T7mDQvXnoPqD/GdceYGKMTSXCOOr+OYEezF90gl9osvXsi3FVBnD/uHMsDM5/hdb8ereFkRigPrB/mBsdhuIglssGp5SdCTULM1+xxGn2u/haXHM58z1JRjO0m1H2a/GTetfjjX6vFo5+1jr+cKaMs++f1uxiTw+Zjuhd/yOYcJg88hcNPmUxyP3H/SYy6nxOPAjctzdi7iMXID9DlJy6/Rj75g0esmv4TyaU/MYoJyicQNioh/jKXFrvSmNL5C0Tb1sybKx2V0Vj/xwwW2oYMRWAq6LUcJOcmfWwIWwhq5yVRFbsplXd7Yfjp93e8YaJj4/AkmTiIzbGwMx33SxNmP7kA1HbVhvPjI7Gdlap5gv+aj6NwM9hOauGTnF7pgtX8JY2bPDGPm6yc1ekPbMG24Oqy7W4ojBX35KveFcQFkey6bSVpQ79IGvwHaQCVBoGHKLsrcv5GrTd+GTQY7DnZDO5+jvh20C6IJppSXFkxj+8BNs197r8IG1SLc1ZD9BAmeB3ydf27c1Kep0bfvFkGbGPRl2+F8PPC3CZ4m9co/x7VxEHy1v09F/TqoM4qyjJQuPAD4DSMYB2YYQw4cxooe+82/29Jv40DqE0U7pkOsOIzmtDOM7mIwYDJuuEvGH9v5TfrS1qjGShgzRm4iZs4xPt8o8eSxBUyqZS8moPuoHbd/V9xEnLP4Eenu7nwOOa8zbmwXP9eXSew/43M2kY4cs91drhO6CRr64GL/wueynO1is5xX+UKReZjlmCuf4y93XPlcYluILuIR3cfi2HLYsyx5zudCzLh8FfOcon2ugUNkmLPZNI/z3GU+jVDJ/61Pv5ILn69ePu+JWd2FrDzeB4D2VlVzGNH+PkwpCruFKOj+VNqaLNBuGdu3YU5LVGiyfYeZvv66Tep5OUrTK10v0NoOGC0i6h0ToG7IYN984pcx24eJqxoakNuP9NKrrc1v3KQY6f2YxqPnRuzNbgu0s6uD9c+ifsBEk9KZ/ZibIUnxAEaYTLPZoG1jzbjKb47HblFvP/DxxH6Om36K0Y/spXICYtyo9jtuhin2l+8OAnWS05c48d0vfi8JjNGos9fpIkYb8EVafwpmWmpnJzkP769Q52NNocjg26L9nTl3XudzqD4GaPAxsTtwypgKhrZMq40o3p48wPflUFk8hqdAqs3XRQV6EEazGetpJ6X4ZPtVXiVgGnNVtB9x1eLCeBfPVbMf9eFAiYkzyTd2F9vEp7nK+3qWq7w9u73aVs6Oq3tFAZzfzMb1G3F1Oq3ftYwJtjyP787GicSwO5j2TTPcE+zqK1VW7PAbWmwUvWjvjjS9Wsca5pL12kXcQZhIb8tlJtvais9PFvuWC+rrPH1OXd9joTHjFjencWMWQODOZOvFB69GqMvLcBpM6cMl7YInxvOMm4yrYyKL6hFxXJOAqcb6ibpBivnNKb2/fAGf6WVuMvvRhUWPG+IuPmVtsWEKeE5TqdYOq+iNsZ9gXPFofoMoWzG/kSyN2yW39TxpX6YpmLVcIHKufsTnuC0vFax/ty4LSjzSRapw/m2+3zFt+VyGUTr1oA2N1OZ/y3i09zgR4hFbPjfU21LBzKdCPFp/LB4bN9YZA2n5NGDatF/jtXGjnZs2wHzd8uMdsyeKCsp7ADb4lV/9xFQV2t6+BLW1AZdPqPUJnNqp/HFRtySkrGfuTnrK0d+psBlw1GuH+0kL5sOdGO29L8R/yiS+7Wil4pep2OTLEmWbcNV+aeBGNrkxXgmMuw6jiz073k0yYtIFV01vS278EpZxk+vl3XGLPT2PU/tBcUL27dculiwFcd9HP3L9UqBtPct4HVdUpx302mAsAERxIvA42FMwtWeC0XNzeJ9rbeskhm1CF7/unRyMPK7sqfTfIf7Mno6bzp6EeASk3blV43HCVdHTfUEPb0+OR38toThV+ndYLd9MuFLHleLUB+2X+DbCcds1rR+3gTSxH0AXIfD2vMFNH9xrW/VtT97Vrd0luFlE+oBPd7n7zR3TT1yegVt7l4hCwPtGnxT1HMqwiQ/Kx2r2tnNmGL8dfCJv77j1/rDLn/0n3DRS9GXNijKzoHdtwNwETEtuTPE3kh3iKOOqAennEcX51lyjxgbFPuPKuIn2JIw9L5JewqizPKmm125UhF01d/QyNwv7IXBT/CaOiUEvccPva6q2KXe3p/O5BcYbPmevJrYbqOZjLGv5g8c1hHjMeJzGY7XfN7YXen5qn5zhUwdba4hHJi5MH5bcpLYP8Vjv1Chh3IrHt/D3js9Zm8HnMh+rWWI2FnM8VlmZ5dPb8Wj2lSFH9PnRFy5xPP2Flk96Yibe4PYb/eOPJfX0mJvNuOOWI8KcsE8u+RziZd2pV5giDg7IVqckLYSJVKvhaoN5wGT1GVcIbSMmmJJIRqn2uaBA6u3SEdNCryTHLutIgmrClaM3+tIdru7YzxyIZHiAIVVtgoxQF/iGDpNMMIZy6WOhfyEk3GV6HWAj5tTvtuIx87GAo8nqcE2AisnUK8tKP+50rDAtuZr4CQFSFnFcfZT9MGCyPxwmSUInnmuHG1a6y9XNovT0DqbCdGnH1dS/LepSzlA3W4TdPu58HO2UHIPdpvUkhkXQn2j0no7xnMV2xOjswhx3/3UTRPTJGN/1VcdNPYVucAOEvkrCFTxXDXPxZ0GYx1FAtPGUFG5zEzD2WLLYF2cvSMCsaE97+ucOjDAbI+5ys7JfnyO02G881vdjWzxwHikYtfp709tTX68TKMdNaxff473AHDg0jF5v343yNfFYfczxRpt0vQn5GGOjYTWLx0DtMIfb9TmOR/I5++lWPDoeN3yOUoCLR+Yq+NxWPBoud27M7XcZF54bqYFtmJZTzc8uNK780sunfcdM69aj7o6ZGxGpLrRUypJXCNh+NaHNu10CPvudSjnhg1DRVn3N9da6qg/uFLKGtqTHRjC7W6MVk9adwgyjoi93ehk3pJdlaRlHtImeNBG2hCVB1upDf60msdqX40VMFUfnSqb2U277Avs5riI3Ih2zcaPaM2J9SUmD3l63vw3j2ROuQR54vIGRZUNMtacfh7ilcOVwX7aR6rVEnPK6tmeU9T7Xz+0mwwfttgfA7WjVbLDBlVWzeGRuGq/ElZRhUM/RfjrIBq4ejEfH62DPbj/eraxs83225aWDTaDNx+7nqrX9XD7aLYL2nTH9TrYgzNEubQdF013929nB4aT3IQb/prwR83G9W19ySgVzXugNfA2xz3oJo8LWjXW7tNwGlF1n7Vz87gjnnA1uRLW/fspc2eyK+wOtc+KAach10rbPt+MWv53XC27OkHOYG845NRe48cb1r++gXsYFI+ZBbqLPtWOESWzzpqrIHjwxRh5PTzRuiz3LCg873vQeE254LE7mAKnP2ZgoLEuih1R7aZ9r8Jzo2Xh0si+IR+Oa5wDZOLfDzUU8Wuq7jMdovw2fSzG+VzxO7DeNR+bVxWPVb3rxo3xE+cR3zKRPOFoykJ4AQ13TOstaxQ5qc3i7+LHSloJx0qVH2VO9WgMl6h0wmd6us2Oy5TAec9q/Q17HjYT+NVgalisSJwp3zBJBX2bmMY7cTDBFzAFT5Cq3X+jfW+jflJu5/SJXXq96+w4+F/TYenjjxt7PaHrDMkcwrw9gnPYv8Mq2HpaWJHqXcYGc5x1/5SUs7f0mGfSmvs28DnoiJuZqI99Y9YxcRfv1Yxjst+BqJjuJe7fpRma/4whcwcs6+z3DDbf1XO0XAb4dnts2cwGE61kcodpBCKfzpdJW6Tgv4fK+0xytHfTvi2r5blHj2iZnprfbe+AnYq44OmXHgLm31ZrLChftCaPDPImNwI2m3BAo+1tKf+wO/Rj75oDExcG8miEsfhexn+Qcnrg2Hpv90G0Q7KfWDeLK22vFzcJ+K64qYUpLrweMnI8rjoaR/aDy6jC/icfofJ0wh/eZu49J48a+2ZX6WBvcLY9wXLwyHsn3FaONhnjssu3c1kGLxzZmbHITx2KEeJQ3Wm6pI1e2fLzifzQe81wVfKz1V/r36OwiLL4jBupfjEc7X4zHwX5YxyPxaPn0Sxe9bvJLKJ/3xAz28qfauOCG+nGOWBzN6oKS5FLZGg08xrQ5o/kry5LwUm+P7Ylej9FjrsmZ9Fidx712fiF9r+SGZVsOPny/DsbhMTPGl3GT2K9xYz8O9iM9u/a7w02UVYFIXQffZImbhtGegpqsTOwZZI81r4xRWO5uXLT+oF1oZHb7MF5bHqBzRZ9zsoT5ldzEuDiAFheKsgRsZr9VXDzDTegnf/AeKHHqY+o9uem+DKBPgu6UGgN+syCaUNRGpV5RHoQziyu+YSOkB70tDHe1kzVSwbAVdrsTf6D31+wPihV+3wXomJK4sn532Q5E6VhTgN6RUu1PZ/dyDsWRdD0QL2f/FEzElUQfIK4qxjbna/M/GkPYfg1jbj/HjYjb+K49/ZnYb8xt9EPbzGDGjedDgp84e4l1mzZkaBhNLz3tq++7Wd6ASrffQdy4BAteVVf1Ukwi+FyL/QmPxp/k9rTeFMycczqvMR4HHrX4jS7i0bhl3uw+nHsnu9mzctNikH2IeKwxcclNjEfyLTsffXavPKVN4lF8dYhHP4fTwM067tm3y1O3Xrfc6z4xktivcdzmR5N4ZC524lHaCfia/esWvW7ySyif9sRMjz7I28DGj1ztTkFfyVGDqJ2h1/sHQ00WAM66ZIAeZQP0mF+bLO82bn6X6iWMTi+1HWTVJglAX75msme9K2bBS0skqo7sMfhD3ERZG2BRl2a0/nWu3FIpSk59MvkkN1HW7Heg6M3sZ0nCuOJE9ipupvbrXDn70eB11qzn9CY+F/sHtM1Dp7wCOa+z/kHC0qfqg+fS5xgj2XrF66Xta/+mvK59rvCKVl/FxcrnIjepLMfFxOcG+1VQV/bb5ibKap98jD53lo9fg+zZZL39nuPmrMeHWybbRQGcdSljP3/5G66PHbhNOGzSEOOKl71muaDnqz6jMFlbttMmL7QLJ1TaDeN2IU4+emrvf/PZisHFVZ/V15vVgtO2OQyY3M06O/eJtkzY9IDsX+w9yzmLZYLRisyV+Q5oQmlcKdqy+34xn3EjxI2O9ptxw7wK8WizSeamAiyn6Lmu2RP9KWjKDdnvjN/TQY9nZa5otYbP5Wz77q/tiXezJ3FD+Tn6GGNMfS5yw5hrQjLf7vkL7cZmObf0k4HazuIx8lh1+3jsu3Xa+NNsTVAHX683RQy0vPl8hTpmoLVdxGOLC7aJj8fGDW2c1P0mxCOPAwM3NR5ZT/PVjJsOksfXwQbs65ar0PWWpYvizrXmRpqaNJ+ucpUZ7pGbcR9cfrxj9kwRgbZdnqRPBES6g7ZHu71uiTCb6MS2fBukxFKfQHlZFCB1acLwZXtqaxiXeleyARNvx9wmXzwoHiz7Qm6irBI30rnSljEZM/qgoS/k5sJ+bWAO9rNE4uz3Sm6irBI3EjFa/0Kib/UL2TgYb8bFiten4+LY5OYZ20des2WejFFew81lvtHIzcJ+gauHuMFGTA1xYTtojXGhAdNz3BQ9UhWrPDBKC4Bv1bfU5zbfR4Q+Vtk2Uev+0PogCN+LQpgU0kSNc6qtZLTlQIaVP0ugSjgqRkQuJ7kAaLbo70seZUmUUOP6qQjX/XraktKOi7xIk9hmU3EYmBtk9ieuGiYgWRZYmwi9V1sn7g5T42bmd+gTROLVnkI5WYtDjn22ydkOer3Gv/2RcBPt18aUnpC6Lxg3b4eTteX1Nv7wEjQLvYKfnhBzfxvPwX7Wv4FH6o/10fm6UB+87TtX5Accj6B4jLZP/MbH4xHiUZyvq0i/0GeTaR0DKtSut/ury0+X8Ri5wpQrZ8/2fqBhKo3nuWo/HgcfI5vgBbmKx9N1PAJXfrTMVT/Ku5fPe8esTTgs8fWEldXbpICO2TM3nlwClvxIuLU1nean/W5Ba80OL9xqoTe0d7KW2AOmFkgOYw0W6b9Z4vNLZx7gJspSshKJ3HCdMAtxVUl8GTfUNLNf/HtqP3kxN/AYPVcRowOX+NxKNnADrfa/jotUtraNS1hGn7PzjnHh9BqPzTf3eY0YtclVTGqfs7jixv55DTdR1i9hoeOpPWMsP8aN9/0xptqAalxd+hwhJUzPchMxP1zceUFO1yd5cgjFILX2Heh2sD7SclPul/HEdGnLqRbfDAr9KTdhjDbFUO/6+uQNdUIVJrHkK/HvbgfrN25yM2JqeZJ1RZ5mcdVioRLCy/No4izgvHGVC0y+cmNYIzeqVCd1IR9l33TqseyoubQfj78DN3azhvzInT/5dEUb5wC/vbrlHPK5XR9rT3Ncfsgwjrl84BjAeJHFFwddQ+43rMfHY9Tl/C/6uhA3h3jTyevj0XFlhd4p7w6mTu/9XHUjHh/NVa3a7beOxydz1Y/yruVzvmMG9A04yMtOnqTI8N3jXmigcrLksKOsd0S3UYVIhwF1Y0Emy/UpxibaM6drm8hqJmeJQNeyDDXlJsq64F73jzFx84KrJ5GXcYNr2Xv2Q2v7MDe47t84B3jQb2TRdoPXgZs2cNzg5o7eK16R+DYNZtu+3VREXjdlE4yt2NJqM6Ldoc1ko57jOW5GP/L2650cMS19TvzPd7mJNunNHh+d1SbPGs6hgVs6LCEOWST2EXDz3vCvZ+6EoPXSJs/qmkwxRr9zNxuqj3rYJqt+giN1spTqqU8+2P7+TsuUmwFT3HMqaQ/Yueu3PenwCZQlUvV4xg3BpP7Odfb33gI3DpeEsZDk20kA+w4X+4OG4JBb9vPHGePJ3/HaeXBsayLjxDrBeMfH4nEf+95P/LdLvc8XmUk8ssKLMsRj5Mb5mPtxGn9jHxOMd+MxsaeE7rZFqS/KVZfx+KpcRfJX8fhIrtrxg08t0wT3yyqf+I4ZWjJ3dxLsqr1cPXmHyWYl9TxN1tonYwfoMP/hApaDMNErOxgX9ZaI1R/OACphspuHT3FDbVudsICr4Xc+t0aunuGGudjhJhYhHQdoEEz0gOqRmwyz4pKbYX4yh3kpO+COA/im7YfB3ux1ymDWNdhRT59Meb3e9pnP8dp7r8ctndzlpv695XPR9pN8wzEh9SWEAce7cOPPpVGW7ZdgmuUQ53OJnmk8prk42O+RAVDKO2ZQoO1QbX08MbVh+7QCO290ZJLlPrn+uklPiYVTtecNDXOPcCVbdjCr2EHLi0xvhtF+ivZnTM13yAEs71e9tomE05Vxk/ldxewwwrd1XNWL8vKR4q6zfDus4iD7Na7oiZW3Z1XEem2jC7M1ccPctSVe/Ft7wgso2U9C//n1GKO15RyrV4zu8zQxLhJu1HGjcBPYGNsHYYxc8Tb1jNHOwxgD5mhPPk+7n0PfDTzbSex8OeYhHs/ATcLPPB5tWTQG+7UOL7hxeqK/ZvEY207isX2AG8Vv+rt5qPlHO4l3clXMTzficStXWfxd5Cr2m8bVI7nK4gKh/Vcs1c9/DeXTdmUEPQLW+p9wM9DvREPJPD1ldEok9ST59YTb22qUPegY67nCqOhLEC8wpRMKkh3i7gY3jlfGlOAaBoaIKQ7s1Gzo4gU33D9H6wU3MUE7TMfCfkm58jl3bMHNFcY7shqOPRQXksvGScMUc4Ip+hHrHWw/tJW8T4ryEs1kW/fpJKAeO13nbsRFGBSHyZQl+Q1u4t96k5sUc/1heMq1az/4XKUzPVnJ/Cax30PF8j7HqU1W7O+Axe3eFu2EJMfGPC9BtMZG4bYeTPLGkCcNo6DcwY44on9n440pOfK25Vz9CdqpddMPw3SDG3c3X25wVeNq6B8RqYtxTgFnT11wZa8EQ2CvZAWMSd5osurs558KJfabcZPUU/vNuBFx3NjTO9cHxsjjXjYWk94lRjpX9PXGRebr6mE5x8/8M/gY2y9iHDBBpr5erjMuuMkwWv3BeDyZqw1fb7nBMKxyFbBnP0m42s1VGlSvuErj8blc9aVLtMkvtHzeE7PqhMPHV0H+zXUZ/Y59pL3LSr8JyWZ1d24x2bL1KCevTM4pSTDbsZjU72DyowxhwjU3GUY+v1shNcHRMNe2zWasNyaJRO8VZuPpiptn7Odw0N879ptys4HxruxJmNO+LjA7O0j4VwGE7ZcvMQbbOx43fY4xNxuZbI2N9l26BSZXNzk61y43se2AiY4tba9e1upnONcONzEu7LfhYv6O/QhHi92A6YobYJOrG4Xzvvst6HUfScXCDvXfrK0yl6bLGthVd8tfPW+0c87sT/UhRp295sclHgu+1M9NmKr8mpuqOMmRgx74nNN+GNoGroL9jCvmxftSkZ/l7vbvhT1HXLRM2wXknCuEv6djb5WPeqfcYIF5ByP5DcvGeBwwi7ffLV+nNs2eJn/DngNGmcRfYt9L+8Hz+Ew8OnuKl9vydQ9vK1e1xecX8fh0rsLIlcN4wc1uroq0/yjvUz7xwoyWSwD10SntRHSAdtepAwg5W3k0X6vV69SdyzuThkDjtgpOLrxzWq7X69lc4iPhMGOOsjVxMKa2JGCTm4gxRmjjQhbcSOifeK6c/Ta44cGbMQ/UTbiJ9rS2Kvfsd+Vz4Y2PBTfXGB+RBTyvEeMVr/FOV0/W4gaRa4y8M1hdCnPD52aYm9/YqfkFph1eWQ8m9rzwuQGj+L7bYHxpv4bT692Ki1qPsdxscgSugv1Sbma+LgXhQ9wk9puluVVRkb57HZ0gTvJtEjWLDZeALuKq5Ssf0mNOhQxp0p1LWXGit+kRfzySxXYgRXEMaSLGhYkP3Ki3RVherlbZyDmpP1ufiCvnKxUThGS1SDOmaIPG1cDNYvxhWfvDfm+fJPG4Ild8kiv7DcciptZeA6/yFEYnm2Gc2JN93eerijH6Op3qWXsOmOpPnHMsFNJYxoSb0PaZeByOtTr7WMwLd3PV4/H40lw12C+pT3ntbYcxA1+8fHmAe+XzljJ+s+04awmBMwTSpC5J2x1ZdsSyhStC40Q2cfCol2MiTiBWGNNgsa+5J0noqn+D3idk/V0nocfva65i/zI9O/bLZH0ikbC8oOPa4mYYJNaY7/TvEdmhfqPtqEdcW5pS3MYo6L4wDIJ3ueGB79B++Hb/4Hl6VDZiUvWHn7DfVc6YYgSG9ybYflf9i/mE7dfKC+y3XQTQb/18bkJh5SomJ+edyabv/S36ONjb4RIvO8O8wrXClLXlwylXknN1MzYcLjsWlj3OuMntR87Pg+JOfwPmeGef/ZC58YPvgqvMfjNMtT4sJ9/pD9VvY4wHb2I0Va2/iezSngrPVbosI5w7wxREB9+Hl+Xcdp0XZH5swVVcxXTHfjk3CaZJ/2JMvV+uItngc0OdTmYxtcxVX7QI8OMds2dL8eFi5RYfPDGqxwU+kLg+5g2tshpkfb2v65a+vlZ4wjHRWw+7uAwY2+9NVp2s7x8GjEDYPajpO4LsmhvPT4gmKVpm3HD/ZIaJOjSTfdx+OTcpV2S/foZjm5vB5/hEbL+Um9p0gfGerPhBY4bx0vZ1q1zjRrlL5YdLzGR71tt58npzv4kY/Z3WJksg93md34V/yPZ2TLtvt62cU24yvRP71fPPuYmYaavjow+W9+3XCbqy32VcBPs9cl1WziVo+afDWMcGep88C5kdOP/UpZ8i231sd31Yb8at61PQG8YfOcrltPlBeZovC/sHLtRz5biJ9t/hJulP5CrLOX6Spw/axOOI3AjLYWG/mnMcN+Jlt+035ImRmyGOXAxfjXMjxo5zolcBkcDNLC+mGLuPsz39RUni63Yo2GzmY6m/Mq+1gdJvtkonynYlvWxxQ3ozHxu4Oq64iXO6kKt2uIl6Q858z1zlYipyg8DFkKu8D8Rc9Wje/7Ci101+CeUTt8tHe1RtwVKSbLG8Jd2zDeTUVrosqix/UFKO8jSuTwIk6PGTk7ZUyAaGmV6S1QxjOG+RlZ4MHEakGE228URJdIubyKugfjV+rTfrX8fMPE/0XHFTT9HewVnab41R1HMV19hvcxN9jnlO7JdzU9vKns8ZN+cgmyTrWuelT3u2T9b/G6/nNa+Z7SXYyM4948bxWEHy0mP2o/Yh0i1uImbPFTDxuQ3bj/lFLriJ/jqz3xU30Z7+opP9xtlv0+dm9tvm5kjsh8eKbRqh9sjhQFvK2u3fubOLXfLE1jb1b+cP/TuHboeyqpdTmzS+7NtS4tpCg94gG/V6PV4W0H4xID7XNZ4cRvIz2qkuxgY06iWMwb8jj1Y/BRP/rrhqbIB99ErvEKNzbty8vH6I+BTc4wYJN9FvbnDjYr/m4xZGPFbFDVDMpxJfH7hJMU58PdoeIfaJq8GeLh9L61/GTcs5Mx+b2iTpH/VhFo+ccw3jFje3fX3NTYzHVa5ac/M5uWoVU9FvxlwFJzvmKnzdopabfvnlk5YyCuy7Qar2IqNtq1odpdzKcPX2UUmbBFkbG0NaICV19Lan1GGFL//53Qe6dWcTro4RrV4wRj29RL2XGGOik76UUQOmJTd18GibYOiF3hk33LbiKLuAda68/SI3AWMXrTw/wI1a/rthv4Ebb0+nJ3K1w80Gr4w5bdsfiI5+g35cjcSl7Xv/AABvte2JsmPYDq8X/SvtyccGXi9imZbpqj2meoCbdGkMcdU/Gp7ZPmCMXFl83+RmwAgAjqsLbhgj0Ljq593Ue2m/G9wkPne7CMqI081N3KJPIii0bRIhjBtdFujyrY88QRZqG/Li0oa8VbflhaB3yPsBI/uOcA4FfDwfQVYjZgxPGRrGg4aNhJuIMV2C144Fbo4ga6KRG4R6sN8lNywb7DdwwxjRucpjAbfsN3DTdI5c+XyMvktlomfwdbZfkr+cbKzHvDjpb8w50Z6tizrnCsTrMv5YNvGbyKXzbc6L6MX5GNDuCq242fV1w8s4WFaP0N/NXDXj5qNzVZuWvkOucrux/ijvVj51V0ZR7e8r2QSqHQ9bMIj0F/Ltb/rieVyW5KRb5qdAqQe0te9t3ZxDaElTxehwIOqtfytq3yYYQ71lSfDd8nBn/QY37fG8PMIN1dE7pTLnqnETuILjivvelG1yE2TrgX37yZ79Br0Lbp7hdZCtf1/5jbhT1/4ZN6MNRm4os6a87vdP6h+mo1y0Xseykt3beSquFTcdcxbLud9Y86l/Eiaej4F84TW291z1mEpimTC2dnb4oCXN23qf5Cbh6pGi1Kemy+JVKffx4M/9V7StyP3mGdxH+q3pqR+gV603BCk3ttlU8LODMFk7QZDteqLvcC43WZiP8UWu8c+yQkunVJvvDUuT60VZn9AuMAaumKOCqaIQy6mS9K9ydbieQWiXhsx+W9y0c/XGzb+Jq6bDOn5MlgmKUzVw44mZcMNIyX56+HEDIa5Mboox2M/LureAp5jHccChhS2j677g7VmaK8mVA33JXZyLJP0zPSZr/aM20SauP5UQNw7UK4fGjbs4mHMT49GVZn/yV+pvyW+dY4/vwVxF3PyactWXL3rd5JdQPvXCjHd5gozf7Bm+4dOl/eQgPOotLSZF7FifhrTkQLIShZzsHGMPytD2qo4+QPdkKHTsQW7kEW7Gekv2iFxJg2q82j9TbiKGDW7GY0K4xnPv2a8sIZthzPXOMb5ENmnreVT/zZbkvHEg2MpVD/XP+ydkbnveeNGfVNNJ4FrvHPPpprk0ik3881E99zF2TNF+Y5yMA/ms3MPMkXHNDdtkar+bpd0xDkjiVWTar5ATB36OPKf246MsTzzbPLW1Yf8mQidx5euUc0I+Lit3fZaa9VchbnlOnCi73D67QAgyQ73qaedO+jecR8XJxvOvx5wgayWxn9vKP5bQhyjsuRrtl54n0eF26Gvxks2QrzG2py92vsHwHPsLX0/HSCGMC19AnJz7k2s7SS7rz+v1aOwvnzPaK5Q4bg8yuuZmlQujz61z45yrX1yuqsuBX5mrvnT5cWH2RBH0bxdpjbfqaH1r6HaYSn3CZutu6kVViRxKlHYsOlM8bwhYziRpvlT7p+I4YbWpHl9fY1TUiyr++ZD6ZfuP4yZidlvJZlw5bsK5JIB9kJsoaxu8uGMibQY5s58dLfZr1nyYm13MIzcbyS6zQR2czizxpxhRbFAdKPscwOP9Ix8zaLWe+asv2t7dEa0fi23ninrn3GQ+p9zIBpukf6ks+atbUnabm6Tv0X7M3bJ/2t/F0329aTze4GZtvweKoCyFUQAiPm8oek7dmQMs/H24s+tiIcpK72ygAoZJ0WlexdkCo5JsnidZr7T3TETR37HS0HSWQnYxSs/dadugt41z6vtjv/UxcZS9g3E4d5RzfiM9NmTkdeBqKzY2MN3pH2EUxjjz9Sv7bfh6SzUZxiYr7jchn1vaYAfThv0aFuMGwCmyZb8dHFy24m/G1d1c9QL75ZgezFV0w/QlueoLlx/vmD1b3uANrfYOT69rqLda+7EPFMm6nVCfQxn0zERtkOSXQXf1bGGUvHqEAP4obuy83FwmzWf2y26RZ3puYySuWO8R2gauFISJ3pfb17uJObSN9ntOD1yHhv4hHqP+Tp17R+9Gf2sCX8VyUevtt/bXOcYtXjMXnGKkxrPyREzl73pN7Acbg7v93GX1K3xul5sovsinyxLfUTBdVYflulk+jrJp201uXSXLG1m7id4tzBuxMXQx6Y+b1N7gZsVVnjcC9kn/Sk6d2++OPbftJ/Dvnx6BGyx8NImNO/bry/0KhivZNlk8uq8z5qd8PVbrb8M1w679AP8e0Qvt5+rxHJM5zkt83UrGzZWvBz1fNVe1f+7mqllZ5KovXVbj9i+ofN4Ts2jgkCgggWMOiOR89k/qnIkzxXO732TSVsbD5uSp3hWGSZ11Df2H54brr+TGHVPCEjFe4LfyKm5iibq4HvsbMa/aXunlY8/Y/im/WdhkaoOrc29gXGFuv09sn2Ikdbt6IsarumY8TPLNe8dUW42zY79J/TO4aZuz1Pqj4/Ms70/zMccnHU65k/zfKbfx3HLP/owx1iPmJrcRGzNdO3ouuYmYd+wfdd0ZT3e5obYxNvj8yj/Ei/xoP6y5iXovMTJnFaMm29TH0+/MNXa54bax9Fjt+Fj+Km+k859X2m/D11f+e4ebpf2Q9/VS1wO5aip7dxx4Ya6axkWUm8j+KO9fPm+7fKlOaR5RB3+3Xl2TZYLW1k60kHWepHPZtstYIivwGNvSEvtp0LvG2CPyGmMLlrDFtmE8P4Cb2Lbv0JZz4wJetS9NeDE3oOZul7iUK0/PFa93uNmWHTLh6/xmSNYZxjqRueuvaTzuxBTm3DSMDVMYsG5hRC93Yor1UP0jYmqLm9q2cUP2O3f1vpSbzcnVRWkbVnBMKvoFWxKTjg/47fQv8wa8bDtX+CTAUIfnYxpXk9iImP1uaJv2j7FheuRxbmZx1dwl9idy82BO3eYmyhJXU26U9G5yc5VzUowS2gJoG4LUv4tsJ8e5ocnKi7i58ptFTLFvCMInZx7hJrZt57vwOXLRYb5Hc4273OiMG/b1Ba+pz+Ga1yuMy3jERHYVU1adyW5wc64wz+z3FUsLxF9++byljEfYbp4TH6iOXo/LOi5lN+sK9GU68VhW38G0qu+0ZVwb5/WD94u4WWH6TG5u2C/6kb4XN1cYdQPjg9zEpTUrjFM/ebJ/UZYx3Y2pV3LzFWPqNjeP2O8uN4xr67xE6m4R9I2aFn105YKfZR9Zb5Td6SPDeCb2GYeb9Fz370O5QTh+R+/k2E5eHHBFvRmPmd4F5kteH7WfVWJsND00fb7AuOTmDsbYv3As5SbKTjDdwpjpveKV9V5h3uXmSu8d2UfjcWNs4v5+VK665AZe9qsvZfzxjtmThXcOklq3tyc6t+L8w/KfmtBMVoIst03qvC32UlbR99OwPjygBzuy9Nuyf5rIvoqbzCYDV8hxvCc3u/b7SG42ZN/TbxwOmWDE+/ZvKSvzmLrWu+KG+v9LjKkVN1l/b+i9xU1oe5UTqfmtwk8L5nZ6UWwQ1ls2/GJ548O5QbGTt/Ez8fuisZjaY6X3yn54LG+k/Wu/JbFRFXHef7d8zBiTc/VvXSaywZ4Pz3Gy/m3kNs/E145Hxw3WbV9mv5XsB3MTTPb1il43+SWUT9yVEe2ReZu4Eqm2zFG5Tm1vyeJCFhPZpC0m9R1ZdyfqShab/Uv0vJSbKLtoO+Pq5dw8Yb935eaG3k/3m2f694jsou0zvDIXL40p7NvkV8HNbkxR/W5RoO/KuOjjS2MjnBc7sq/OG9jEnGB8hptL+6/6B9/2UZu8cixuvJAsc5UtI3tJbGDev4yruGQyxfgINyvZXXvW/qx8HZN6ys0VRsxlQceYqx09nxWPr+Lml5qrHsn7P8r98olLGX0ihdZ/LWCDA8S27ZHqTDY7VyYL//elLEjfTb187FIWc9mpHryYmxWmz+SGZTNMn8HNO8q+1G+Yjo/qH2PKZLlfj+j9NcdUlGVYr+Tmbkxxu90icBdm8oI+uthIcCvVXfs4wajHZMYly9/kMvM7zTBR4yU3d+J5Zn/GhISrRE87VeBx6F/EtBsbmV7myroRbJItvx1soNTmAW5c/wKmDHP0m22M1NFn88Yte7KsKXjA16eYat3xbqcnvamP4SY3F3n/5fF4hfnXlqu+cPmxlPHJovZf8y7xNm9bemqo29/kJHH7z2HbUcmOlRNolBfvf0IYV3pSvdjD2OsdU++8DJhSrjT8/RQ343mtvW+zYb+Z3tbHB3glbjL7vYKbVp7C+IGyzkcqN9FvsNB7A2M82ZRXSvYeR/Ab3Yuxd+VmwdVtbiLGC264fzHuQdyEU7/W5+zkCQ8ZV48W1jVMHGu9UbDCiZzLGc5lzuEJVyKLR/OGtG7k5zVZO69eczOMA8bTqn/IuRrKwv5OKAaJHzCn9nMydowmilP7ESYXkwrH1cpHX8JN8m/G1R2MU3tu5I1hnszYAq+DPWMno/2S/gz9A2Ga2O+OPdtJJ7K3x/FZ/AV/5XI3Hme+/kvIVZn9pueF5+bLlh8XZs+VcueErCwY7uTEb3Ew5xqc8VTflmWjrUpQiFOWtQH6bn/puRK9U4wY+zPWPR/taH3+7M7NzVZ6H+AmyvY6XTgaLpI0ToVkX8VN7PvKfq/iZkhMXHkBr6v+cdnixiV84kZvcHOBcclNwqsbTWZ+oyHGbnJzxdUdblr7ejE0XDSF/q1s4s6Z+Rz9dvrW/kxJjnzI5xKMaVxIxxgxvWTMO4zjyXEB9AwukuGshXeTy9q733l7dRpvmMCpbPWXmY/G2Egncvab+rrGv1fchGPxxpM7FsQzrhwu+zfp3wpWnBgux/Ekb8SnELMJ4uDfzOVMNrSdxcoWN6SHf7uMqwuMMb81jMucGmQjdoGz6WDPzP/DOVP7Rbzs6xv94xPHnPosNzEeb9mT6tvxCMT7Zpdzja+Wq9Inq6R3ys1XLIovDnC/fM52+QLoYdGp/YvlFpzNIWgb9NIY/cMPgKpCjloXhdrtAJbViSx6QPXE0o8L74uq/lztzoHphdc7YGz1se1U1gasVpcyNeK2ypPd2D/SGzHqJjdVFiZrk7ODZJv9Opl6h5uDuIn2W8la/1r/8RpuMNmyd1d21jbhddk/edBvBozET8bNUnbSv03Z5jfVN7TauhzWdkw6rD1uAq/R9ne44RjruAzTwp5XfnPT53pbGTBBtfmNXOS5gZtg+7b5xiU3if0qrnhxuF0EbcLRJjRK9ToOyBv6khu2cRZHoY89l09kXe5O/k0ww/rrfJR0Ea5M1vQOehgjLfFE6Dv3N17EiGJ4b2/GTaxr4Mnnp/H40MGZ/fj8O9zE/i3sF7lyfpTxOrPfk9wMfYi+E7mZyMafMt5Wss5vol4s7KkYeTT7TXDsxGNqv1iibJj/PcrNEuNNe059LOFqO1dl9lv5jdDhDOMkHrdy1SIOLnPVFy0G+9dQPvUds1L6JHEcUDKv5X/Et81ko2fzP0JBRadSO2htOetKMH7EGPR62UlbrtefYtA2TK1p6O8VN1zaxexMdoKJuSLZbftFbnbst5Kt9ouP2J/iJtb1AdmsbWy+sP1tjFfc0IAhuMmNVdsIc19WQ4IXFrJJwhU3Sf/SyfQNbtJBsfKjoNjdtb0PnIdkh7FWAHUH13nO6+m/p/a7isfMfslpbhWevDNOhHqcNDic4dgEZyob9WpolxVLlxmmpK6zNjNc/PcQC7lbtcKT2ng4YHJ5cpj1UnNBjv3Obyuu6Pc2x5zFc8SzSoUL22/Zb5Kv0i5k9sva7Ph6LQ7jHV+fcLa056J/WvNja7Iju8ypOb7lucPf2v6TY17aM9G9Zc+J/bh6ivcrWfB6masCFuN1GRfJb9u5KvRrimnH13+Ul5bPXcoInzyyANoqu8kAGAakdgG0GByzeWyqbxVEVzgjptnx2OaqPMoNtyee4vxu234PJJhLzDHBMNbdsovxatC58tVN21/K7erNkqhivLO7KhdxweddDYwmG+5v9Dt02V3f7O/Z+fm3qwlLkF3F9tKPVv29Khe2j5gcV4/4nGHL7oDuxNbMfg+U2fsR0zxyo4/D5H4n9/Fv8QJ0dxxI2ggmsXYnH1+1vcp1EZcQprtjVWwbuZphWvRvuLjY6O+0THKB7NiP9LsnC7v5+ArbBcapj2Xyj2K8smdo50y9mY+nTw0f4Wwj51zGYxYfr/axUN+KxyxXIamz3IX9bnOT6Fi+u7aS/Urliz/V2y2ft11+nXC49y3i06tIcrgz6BL7TDYej7IHxjvCoOTHP7Ksa4jUidPzRMwRo9U5yAVtC9TL/sb+zfRE2RWvhCkmS15jzXQMSyy4SKKHwc8wZ7KMacMX7tgv/r3Fa6w/IJtyE/p72T86NixhecT2XBKep7ZnX6E6/x3vEj/F6xXGyA368ebLMmJ6me0v7IfQVkDvoBmuR/Jcxg2fFw/Y72Yx93Mc1H/s/QvhPkgQPEL8HnQ84prxsTiOcMz5KB/P+MlsGOsznVxPuGFZ3pCgcWWYZvUZRupv6t+MKeDi87D9gE0fJYxbY1UsM8zw7ZXatnJcy25zs+ofSj650uPsmemtmFcYI64p5omfDfHImHbGqlqfvbf2bDxO2wL78XjFDRLZRTwOeT3I3rZf7O+NeIz9a2WDmxVXkZuvvuvhV8e3Wz53u/z6J//bfEBR1vEiNLJqHajbsdh2UXcBEdsivOyaHJ9hGvRcyWYYs+BIMOkx5ypuLfsQNzNMSX/SWMj0cPURbqJsxXWbmziJuat3o+0zsik3q0GE2p6JPR0XfM5X9G+WzFf9UQw7TV3qmWHO+jPhKnLjSoLZ0fwK2yeTW038NdpT4gC6q3en7Wa+yex3uwiANwLGutH/HvL+3Zy6M+Gw41eTlQzXs/Eb64tJfjqpzzBluOCPnYLp0rHphHqGOZPNMNyNjYWeLHYesl88fDG+ZBsvTC94snHOZO9iXOSciPHO5PqOPR+Kx0cvAEJbRfdXDVy5cf3mfOHWjYAFZtXRj6b2i/B37Gf1XfvRuXe5uZwbBz0P5f2PLNFPfqHl6yxlzNrA+4e7c8J3MCT4KB/L6lwoqSor5eMEKJOf6kn0brc9kv5PMEFC2xdyE2XDvgNu0pjFxJb9YtsrjJM64t+v5iboeUb2Vv8ujrn6bGJGWLf0vpgb5zd0fEj2D/jrnZjKyoD/nfxmKhv6n+ldYf6ImIqYJrAuyywXJPTn/n3Rx+hnK9k26Zu0ZR91HEQbRhz8w6TfU73UZpnbPLRrbqwij8uueM38YcUNx+SU18x+hiMZp6Ps1H5XmDb8KMUU22qoT/o3xXghu+PrjRv29aS/Wf8CtG3Z2L+teFxx44R6fTseJ1xZo0ufw4SbROl2TG3ab9o/mWB6MFc5XAtusjj/UV5fPu/C7EBfngcUh0g8xSVCrte/9QnZppdFD6R3udpAzo0P0lOPrzAi6F3Jmk6lY9y/7C7eu3CTJMNZ2yU3x+u4GfqHse1Hc3OFMePqJX4TeLWi8bzo/vshMRVlQ39seV62g9xdXnmp31VMMTeZXu7fq/1mJpvF0EkYmav34iaLqbR/WR/uFFpa84h/X8YGJucKufzKhkDIIyvZw8tKlEWXzXL5CuMqNga/W9n/AHDmsTDTqyw7s9GVb0y4iTjM37P+8bK62L8VNyv7DdzM/GjCjVtejDFGI8Zp7Ec/uZNzEHhc2KS1xTgOvDQeuazOtRGP0xxzwc1sTOScOtVzh5t6oD1k+KhcFWIK2M9VA0bkXM1y1cN5/6PKV8e3WT7tHTN7t0usrvDLLLT+zo4X6yTLx5ayFEgcDPboVw0Hn8uqSr8nel+GMdQzTJdcvYibKMs7e7nlXh/NDcmm9vtgbi4xfhA3dpy3L26Hgh+9Z0xdykZMD3KzerfwipvUt1dcvRM3ab6JsjNML+ImygowvqcUuLpdBONTyyxv0G9xnB3GXZZnPTslk43Hgl2msgvMDVa0xQ4OPj7xFeTV9KnSNld3MMbYeJSbyPlMtrY9k+aD3CZXSz/SpM5xScdmcTXDeMeelxinZCQY4ziZ6XgkHm9gWuqOYje40eRcQPCxDOcExxTnK3PVFVe7GDODLLi5HY9fuSg+9R0zEflPAvhPAPgO4H+uqn/Po+f6vHfMauFJS/MXm0BZG2tCziRAdy4JPruSFQxfRo+DV/qxWHH/bOndxdjaZwNQhilyhffjJspGYjjhfxQ3UdYV5uqDuVnKrvr3jn7jG/qqw3hD7yPcxN+mE4hXcpNgZm4cJZEr1nND70u5Wdgv0/sMN1E2cjOon9jvquhAVGggcBNG1pvOTULb+NsVluF8PLBL+JP9IWIMMTj4Hctf2GZaErvc4SbdofCBOPQnCOfJ7LfDTT0w2G9GTBJzzn4yNB/jOcGY4jLZLC5nbUN9hjFiGfLxAmMakzuOJMm4+aJ4TPPGi+LxDjfZ0k3DFC84nonHp3NVxPZsPMbxJtH7VDx+9fJJF2Yi8jcB+FsB/OtU9S+KyF/zzPk+5wPTwDDJb1foivYy/MnOFup2InMc+7q5+eQJf26uc6KEYLyzCD/BaneT7cV103tUvdoDxb0QmuhpGIX6EzC64JHOjZv0KdoLpEtuGOMmN4yBMTZeeID6YG5mshHTR3Gz8jlLvszTTFYx56bJCnFTBbM4iU9bEesv6t8Z5Fa2R/27+Ta1HTC9kJt0eWISUylXH8yNyZredlFHmB1XWMdF5nN2LHLDGONyQ+aKc9MjJXuXRBKcU/tj3UfHZZBjvTKTtbbP2D+pu0kO6w19cpgTbqLsHW5cTrX2EuqZnshN0CnPchP1ymu4iXzc5ib2T+Z6Z34TuVnaPuZjOp7xGmVbLN/k5orXq3hs53plPD7JTfSxoX8visc73MQ5Tuo3O/G4wkjCt+Nx5jchHr9y+cQnZn8XgP+yqv5FAFDV/+czJ/vUpYxct8mkBXFcy6o1wN0kodanstmEIqkL47mStQBjvbSMzhJjJjtgtLYBcwsO8bJYyLZlTjNujlHPFTfZUjABxq3wmZsga81exc2W/a5kV/a7yc22z2Xc3JAdbG+Yow0ybmImt+pC70MxddAgMZGdTRiaD7ySm+gLSf+cb0eurM0dbmp94GYWjyDZoGc2gbDyEDdZPdjPzpnFozjQN0u1Teo7MSZfZf+JbKonnusR+89iI9r/0bwBCplX2/8ON1Hvjv0wiY2odzcfX+XUif22uIl65QnZFUYqW9zcwBhld8fTZ+Ix9ZtH49HaGjf6BDcI3HxCPF7G1J14jNzgNfZLYyra79db/oiI/Fmq/56q/t6m7F8P4G8Qkf8SgH8ewH9OVf+JR4F8mV0Zp49qyZHa8QtZV5m05bqGc1/peUbv0L+JrIZ/r2Tfixu+A+G42uUmJJEdjHcxT+13U+9tbj5QFrHuTjCXVaSnv613u3+JztS3Qb5NAu8SUzL+lC4pjOqC/B29l7bftF/TMXblfWIq4SE718PlPWLDfAdks13ZZ/RetZWO6eH+ae/TS3JqEhPvyc12bMgD9su44fYC58wP5Y2P4OaZOc4C4zMx9RXj8TY3se0r4jHT+wXi8WluEGLqKh6/annu4vHPqeofnx0UkT8D4HeTQ38K5VrqrwbwbwLwbwDwPxSRf7nqY5ezn/eOGQWvlfjtHPcNn4sS3wvThezAVGi30qth1jK0HWalc4zL/kVMURaeq1XQPMPNGYM+6OL2Tjaz36u4ieWG/SKGp7h5RvYZboAhEe+Wj4op5zd3ZYPeFTeXvHK5iKmrc69klzljJStrbq70PuVzKz3yRDxOiiK/qBvyRpxMLE7Y2tbJxDbORM8zsqmL0gTntqwdu5Pbgh4NStLvmE1kB24WGJ+RbdyY/fAgN5nfzIRn3MR2E9mXcvOsz+3E/l2fu5DdwvhrjcdQf6p/+Jx43IqpSTx+9fKeSxlV9U9M9Yr8XQD+J/VC7B8XkRPAHwHw/3pE16c/MYt3G9yjVgkXQuHuFx9r23WTF7l6uCsVz8vLE6ayQH/Em237zGVDr2R6ZufJMCdt2nmztg9w8xSv0X4R78qeCz1Rth2e2SSz34zXG/17hpuhf+ht0/6xzyUTC4uXqDf2b+h/hnGCOe1ftF/EeCWrI6aM14GbiHFl+2xkSbjJ4sTk34UbLGSz/p2beu9gnGAe2s5kb5Ys72exfokTGJesznBmsTFZnjPzO2f/TO8Cs7ND7azKhiwetCFhxCZGV1b9cyDg7Xclu+OjSdvIVSqriSx6Wyd77OmdybbqXdks5yTnSvs30bOUvWi7HAce6d9nxOOj3HxSPN7yOSsz2Sv7meyj3KzafsVSc8Anlf8pgL8JwP9KRP56AL8B8OcePdnXeMcMGCYFW8mN2urh61tfN2c8u7KTYEhPzLIW/LuY43mvMFL7FONKdsZNTFjAEsds4F7WWQ/Xb9hzlshSjI/aLx5+xud2ZTnDrjDPbJIcG2x0ZfsMU4JjdgMl05PahPXe5XVzQoS7GGfVGTexvorHTRxO77G232U8Lux3m5uLD5mnJcv7M5w79V2ckhw32dlAfsXlHf/OzpthSs6tEfOruYl6BXPZCVcv5ybWJ1wpnyCOAa/Qm9WZpx3ZQdkHYGRZWbTdted7xWPU80w8PjEW34rHR/U+mlNfEY/PcnOF8SuVmf+8f/nTAP60iPyTAP4SgP/Qo8sYga/yxIwSnYtNHe/eDHdzwjHXSCZ1BPvFu0QKv0sO17nwXewJRgn9c5gjRsY26d8KU8pNDeAUU4YjYmRMJn+Bo8lecNPqd+2XcPXu9sv6F+t3eJ20TbmJccB1s2/W3ySmHrZ9hgNjHYYpHosY7eeq39n+DleZnhlG5mrlj3bebEC8iOUtbs4JpoyrRNUON1xu26/2cWW/zGV2Cuf9ad5Y8bHy75WfAaNfImDYtcOO3juyxrVOzkWyRN/z3My4ivaP3GT19+KG62w/9TL8567eW9xc5Y1ZbovgXsnNDdn2Lp79dseeG9xwXtyOxySJfEY8Dn6ziscHuHkoHqOeLxKPicl+FACq+pcA/Adedb5PvTCzLaMBNOu3pHn1CDZ6Eclmgxkfc986qQ6ZnM7JKnpy43O3u9gRI58nw8z1mAjQca361zAyd5kezDFl3KSYE66YmygrK24yrhZ6pxitb0lSiYkkHQgYI+mdcjXDGM99h9dENvYh4yb2x7UNA6GzFw2ktzGG8658TuO54G0y+E10qgk3ETNi/SJnOG5mGCOMSa6aYbQyjcfgc44L5HV3Kv6BMWaYWe+L7fdI0ayP2lzy2r9jXcdPEzicZDezIefZYYczko16Wln5Dv2d5cWr/q1y6jK37+QNVK4WevjCmXMFiLdt+z2CccFVGhtkv3ghJHhAL7VtXM3yxsx+CeZZ/64wYiHrMEZuAka35PNRe84whrx4Nx75HJ8Rj9lF/m48Lu2XYH7Ufl8pHr9qEeBTPzD9yvJ5SxnfMC5hEvQ7O4q2O4wdR6zbuaIxQtt0PTH68fS8GGXdi/YhSJYYZ8feJhhBgTLp3yVXK4yT/rX6TBaTtoTJ2mzZb9G/JTdJInVLRlnNXW6uuNqUXfpc6F/K8x2MC24GLhTjmvVd29N5L+NxhZHPFycMd3jdwXSjfylXO7I7XG3KpnkgYposq1q+N5FheoX97pa4HNPOx/ZfxUbMG7GPbLNMD0iWuZzICh9j2TsxGXA4R2NMCDl10geJlR1uLjClNmVZzhsr2ZvcDERHbjJ7mn9HvEF2ytXFWPy0/bKccxcjK/4Me96JxxnG0MGvEo9bm0v9NsYjd2YSj0/l/o8oXx7gXvm8J2bwvjDs1iVJAM0mGVL/rEbJlnBZG35Slz2+VWtLiZ8vxlx7SWI6YqT+uXw1w0g6VIJs6J/DveDGYTS9mnATsGbb3/Id71X/3s1+XM/sFwcM3ONmlqOn3AQdU59LzoHYNunPFsYAOPXtKtT8P2Kc9Y9tf6F3SOqEB/CYouglN7G+w9UEy6x/DgzmdpvaPsMUcSzsmfWvtQsD6JKbSf/e035bRXwsMreGcSunRpxsw1l+inWBWwGRybo4Cfq2YjLYtv0b9UaM0e/i8diZTYz8O/+c1Qf/XvAqFVNqv117yoSbmd6MoxDLAuTLCRP9K/sN/b1rP1nLvoc9s3+dquPa9u8djwNHnxyP07j4hHic2Q94x3gU/9sspr5ykcdf6/pS5VMuzJrDhADO7i41h5AQKGFyAvUTCGh/pG4Oq9yW61wMU5ZAQ0UCjsGJJdd7hZEDwrZUTXc7zAAm3AwYtWyhGvVGbkyv4xmT+ob9Mm4YxJb9Qj27IJxufrLBTazvcnPH5wbZ+m+UvYPRuipHP5ewTYiPeBE5jYtNvWk8cgnnMqx2zOx1hxvD+BJuGAcrucFNZvuMm4hxiCnmJ7Ff3Nlzxc2V/VhvdkOIuZna725pjyGVbNMZE5GKs9cBX2+SAohy3beNelxdAFWyVCWAZed6fD3DbH+XWGO9Um060Ss5RjXFCqjc50ZEoGfV2zBNuNrgZma/O9xk9qusXeuN3EReUeuyx82IsbIjgNzhZmW/KJvY8xbG8xrj1OewZ8/b8XjW+g0f+1LxGDF/aDyONvhS8Qhpf/0o71ueujATkf8qgH8nyi4k/ycA/2FV/fNbwnFXPe2TBaDUIXATEkWLk7bmm+vD5GVT1uHxvu6xaD+nuwBgvSSreAyjrZNtd5FC25Qr1vsiboZlY1dcZf++mJsoKwmmz+DmadkXcJP5zZeJqehHP2LK6/niMZVifqS8GZhKuNYT1jXHqhpwauhj+T+xyYko4dKAO+qpl7BWj7Kujx1T0XNWfka9GWbDKFVv8TvJ9cQ6YxbGrN0WN7lR1bAkTX0s3OUm8qogrva4GXlN7HeHm6Gt/b3BTcQo9afBfje5kQtegz1n3KRxUe0pzZ5KGDe4aba/F4+8gkcR4uLtRjxecfNZ8bjiRrie2G/FzWU8kv2+ajx+5VJp+DWUZ5+Y/aMA/l5V/VlE/isA/l4A//kdwWx5WfP7WpdwvPmhBL8MbbM7vitZiq2OAwgnGTGld5bD349ibO0iJq4nXL2amygbccT+ZuedtX1X+30CN4/KvrvffKWYSvrr3uX6EVNDf7Pzzto+gjGT3bbfjdLGTfFKS1VaG5lx0ETytorQz6DHnWyjj+IwSecn6k257bLctx29K8zPcBMxM6a73ESMQue7w03kNdpvqZcbZ/ZzcvvcuPhFP/gK+40+FvU+5nP2JOi2PZMkcBWP3p4LjBHnLy0eE25i/Rluxnh8wH6x/TvH41cvPzb/AKCq/0uq/mMA/j1bgoItI6++Oh75j23vyDZMG+VK76rcwXiJS/0xRf439N5X47f6t9nh9+Lm0n6fxM3TvE7KK/3mQ/pn/O/GVGh3h5uHeH0g1l/JTfS5O5iinuDqc70XGNPy6oF44hMa2mzjjG1fjLfhkmuMU8wvxnSHm4d5faAwV3e4iRhvlYv20znaHW7eeTJ6h5uHxoEHysPcPBOPq0QWcf0S4nGDm19dPH6F8uPCbCh/J4B/aLfx8MQMxQ/i7+mELyE/+3lmo7TtSq+/eeGOCbD9hPcOxkx3xLSUJa4e0kvqr7hybRdcrRQ/g3HAdMVN1Bv86iluNttO3Hguu/LPi9Luwr1H/1a+sCOb+OdtbmL9xoDy0rjYEbop29o+EMtbvD5jvwfKNO9f6J6VO34W65HbVPYZvc/IvldsbDb6RXGziI1dPVuyK27Yr7N5ygfz+lDeeAefW+mZ6v0CY/GncXOl9wtw85XLb80TMxH5MwB+Nzn0p1T1H65t/hSAnwH89xfn+ZMA/iQAfPsr//D4BXGtyW1FrIR/oyzVsag7FXZM8rYRT+rgOxPBmxhbkUXbTa7S/l7pXWFmrsLhVd3h2tGziTG132aAOvslfnWbm6yetF3KrvTsFvYbpd/CuV/Sv1w8xxRlBcNmLQ9zs8vVozG10Psu3Fhbst8yli8wbvNqKlc5cdMnOe+//eE/DBxa5eV5nJd20HlsC6BRYFhr9KjelWx5l6Q1UGD+FXtAIe8TGytuAI9RgjK234bel3GzyhsA9An7rXn1EavRXqLwa8c6xkH1IPs+PqdXmBfKIo+fF4/v43M+h96Mx3fjJsou7PeO8RjHl2nO+FHetVxemKnqn1gdF5G/A8C/A8Dfojp/dqSqvwfg9wDgD/21f1SnT10eSepJkA8JcuWAgv7epHgRYBmn74Ix7sC4hWl3srTBTYbZcSOfx008vR1fYroxkXyEm0vMj/RvJhsxZnWQvYT8phIkr+7fjaJAuSnDASh0miu9wD6vSOqYcFP9h6FNffsjuFnY3XH1KDebGNO4l/2ucd7/nT/6R7VhewXOpezFJCI9J02wXx4b6tuvzucMHSZkj+aNO9xETFHHZ3FzxVucvD4dG5r3M6tH2Vl5d5/bwDzz/cbdTZ/bwvhAPH4Fn2Nwj8TjbYwP2O/l3GSyGznjK5RV7P2CyrO7Mv7bAPw9AP5GVf39O7L2UqGqzwPZltUWE24ivmhbTrSQZePVidBJssOX4YMs1we9OxivZOOHA1lv5UopoLa5SfRm3Fz171O5ibLVfjNuntH7CDfvIfsQNxQHjQ/m6qO5iXW20UfyGrg5A55hk5AoG/Ukep/lRiXIWs7asd8dvTv9Y64yzHeKUN63EwiGra+bwwoJ1rpAwm6EBHaQ9ZOoMW8QEe00yQTkpl5BtgW16fWYAMLRMHYAvLV1aX/BTYbpWW7ijRQAfN6P5QYkm/n3HjfXPtf77uIq4+YMmEn9HZ+7j3HSvxXmK59rvH5yPAafezpnvFc8vowbKjs+9ww3l/E4t58MYL9QUfz2LGW8KP8NAL8D4B+tO+b8Y6r6H7uUEgAHTZKcF9aicNuJLrcnD8e2ZAEfECSrgv5UgXHxxM30vnnZRzEOxxnXCtOsf6/gZoUpwxEr78TNsOV4xKQYl8ra4ffi5qJ/H+U3aV6a2OsZvbf9RkOd2y4wbfH6Kr+J52JYH+Q3DpfSRiEbXL2Mm424f2h5LZDmffsOUI8NDTiVcGrAGdo6WXF9UO5D/PvS7/b1rrf8lzmvEWOWN6Lej+AGQLrk7iO4ISwNI/v3BNMVN7rkJvYv44P+3omrTG7FIyI3GHld9Q/qbZb5NlWXPvcZ8Qg4/GNOfYIbqdtfvCIeX8ZN7N87cjOLx4GbKCuP5/2PKnGM/IWWZ3dl/Fc8IV3+ke78QhlD60EBcU3+Ys4SYyttG+rt0xBSE1jIVNkacmnoOkq+CXWpN8T/VLZhotJ+SzC1nydc3eQm5ZUwKcJdE+aVjl/a7xFuJlw5TELc9DPmXL2Cmxv9e73f9KTqZOncAzeQ4U7z6/1GITWGetvRJnYCAaD6gE1u+U3GFcVUFmPvGVMOU+TGn8OsWP5f6sTrldxE2W6/3seYfyLYvfJxseGhKnWB9S1l3yU2gmzA5OpfhZvY9qO5abFZfhQIrbh577wxciViuPuo6OJ3iOeeR17GzWX/pGEt2SPmYxoHvpjPpXHxHtxksp8Zjyuf+wrcwPfhR3m/8spdGbeLAtADyVKEnjjKhy/VPrMH+0K5OZ49clUnW6TlEEBRP+83ysLJ+iQqh52747C0VkeCgp9wnJneK4yywhgTfcBUH22f7Rhexs0ge1bZGqSOK4HjAuq5Erbfy7iJsjpgatw0WIwJc713uXnY5571G44LbwOLKY+5cwHVvvLmhf2LNsGGTbhs6b3rNwdxRX6ScpPUVd8pphzm8qPnpldEA1f1I6av4WYmm9vP1R8tbaOEjlPV1xk3Ks52Eau5bAOm6LIynvddZI/3k303bj6K16e5obblBM0Ptf73Uu97cZNggiR1/US/EeOIgrb9hrXsM9xksl80ph6X/e3j5it/Y1qAH0sZnypS/qfFR8w33NKb6ADrL5QDd75uftYvzpd6TaJH16vSJx/t4+6Gsf7WMXu97evtKeZdjHUCKSwbuAl1++m13ADqHnsj9G+0X+TK2e8l3JS2kSu2X8rNpv1ucXPT9qv+Ps7N6CePx9QzNmGf+0IxZXqfjqnHuVn7zSfGlHjO78bU7SIoy75Ui9K2dCGpS+sk/K53V23h67f0rGTrpfO7yK7694zsBUarP83Ne/LK/UOvmwOab34aN/XfI9QFmxhfxc1KVnKMwESW678Gv3lxTP22c/OVy1e+crxRPufCDGiPSSXU43FOdG5JlvavmzvBSb193TycZ6q3qhYZMc4wO4wZ5gXGhktYD2POMTY9Ssce5Cbib3qE6xUTNrnRUbaplq53F6Pj5sJ+XfYC44bezLZcdvq38oWZ30z7l9nk2Zi6wDjD7HzuSZvc4Sa3QVJ/MqYgqGPXo/66F1Nd1redxdQdblZcae2ryP2YeqgwAdHwKe4Yd/t26G1tdvyIbIbhVbI6/ih39D7DTfw7crWhd8t+K9kLPXZRAaX3hrUfk4Xsu3ADf2Ej6vmKspcYJ5iftj0fCxjjCR+151O2f+943OUmyl7FYzzXBPPTccH1u/H4XtxkP36t8tWvG3fLp12YQcKNGwFO9WZffhk9+tKFQTT+TclypXe4uRTqGcY7rjvDdaVnxY3ygcrNQ5iMGxK+xU2Qjfamf/YxBXwRU1afYkxsv42p8srnc3qTkzzqF2n/Jrw+4jcpriSmViHGT5/uxnJ23ldx9aqYejrf0HlWMbU6z6ztU/nG/ibbZXqW3NwpHz6ur6LDyk1QG/a/lp147SqBvHtZRRKSelJewg3/pv64Kzo78L5FSPelancX5bXcXJYVxuQC5EPKJB5d/z4wHjMsXy0eBYB+Qjz+0kp9+PdrKJ94YWYs9hmdBD8bLtCtOZHflsDyxGI1/rYnOH3Vdap35fTxpkKcwLIeO7+7y3aBcePnoVn8gbmyi+BdbgizdPOs4OWn3Jht6l1u3BO4HNMlRu4P+w/1f6o3ytDxK39NbcD1mQ0i5qv+hdOv6sDCX3djKvs5jamLsuLqyk9mNrhQd4nxZfmGRC65yW55cFaS4dw73EwxbvwsDtejkzrF/JbmnXPe1O/6X5Oag7E7mpPe291PZBuuNCpz2XctzA1hZe5Wsq/kZlViDH7IbCyxAdsvy/vcxl7+fW9uZrJ8jojpUvaOngcwSvC1Ja6J3qe4iSWcc8D0gdw0LAmmj4jHH+VTyqe9Y6ZH/QMAUJxehXaQS+pZjunnDM6UPZI2bUL/qp80db2ZYDiltaVHVBL+2MUY3+OIere5YawVgMQGC254jFHAvcMy6I36Mm4ixlm+WNkv2L5ND5v9bnITMWoHNHDlMM4xD1zZjyYXTztbnpDk36UNdvoXuXmFv7Lchu0v/WbprxEsxmPIubrNzYfkm5vcDPbruBpXF9xEjPfzDefIib6r0vK+1zX20efjUde8bSrrGtR/BXCsv1LvTv9agOsQk2Peu8PNvD9b/ZMEU8LVu3ITZQf7VZHw3sEdbsZ8ddP20X5ss8HHxf35Um62ZP27qFBAD8lT1kfEo1MG2EWPirj7Ntdp5j18LnBlQJzKj+CGZRf2m5b3iceH8v4HFntF7pdePnUp42U9To6CI2po75qsHIjPeaX3DuYR4r68TNrM5DJuMln1eWWqY6VrR88OxhHaWn52LMO20ruLOePqAmPzuZX9FOOEdKd/8bj199H+vdJf+be7sbxqG22wy02G51l/vcg3y/Nlx35N+ebREmcTr4zfGc5JTA7L5F6lF1SfxkwVms6QNvRcYJRQ35LNMNPF7I7eJWZgzo0EoSv7HcF+V3p3265kEdptyU5wPsvNbv8Yazs+yRzvHY9Ln0swZdxM2zzAzZbPbdrvI30uG5w+ipuvXJYD4i+nfP6FGd0B4zt05R9fn8rW7ePdBDmcy7Ud9PrzDnrD8QGzbLRNv95+U88KI5DXUz2b3BwbeleYs7YZVx/NzdJ++9xEn4s4XH8S2a3+sQ0M893+RYx3/fWKm0dsEmWt3OTGJeLEX1t5h3zjj93JN0/E1B1/Ddw8Z79J27tlQ/fQdiWryfFsEiEsIF72Koeu9G7LVoFmh9PbkOVexI1qYrdBVgM39idh2unvU9xE2cDNYE95TO+l36xktcdd2y2HG135HMmu9FxinunB3G+az6nnVaKziJeLuN7D9oPP3eDqFdxkso6rzH6UQ67694q4MPvJzH4mRyd6N27wpcuPzT+eLTZx2HHunfozsvw0I7ub8Cq9dzHypO6zuIn1O1z92uz3WbK/Bm7u4Pq1+fYzsvz3V7XfnWJ5fyYfj63qO20FNKlIJifvpXcpGyY6h8LdmJqVd8XIFx4XmN6Vm3gscBXj4RG972G/qWz0OerEe2KOKg8kPscNHtTzLK+Dz0XgG1y9gptYn+aMB7l6Ba9T+y369B7cfNWiwI/t8p8s/SN8/reH3hV6VFYSWcCvr7+pdzWR2sI4wanwmN6dG5MN660jV6vycm5ieQf7fRivv43czHaDucgDlxcndOyzfPvlfvPqPPCe9rtRhA2dN8DyPc9VW4HfWGV64VkmNVHP1fulK4xLWZ7MSAZrHAtnGB7mJmKMPpb1jyaC78ZNlB3OlbXX0X9vcjP+9Iz99nVF/383XsN5lhurtdPkDvihccE+174BlJzildysckjU1Ype63mvuMDI1Z24eCaH/CgfUz71A9PxN7dkKy7h4qU5cRBbySZt3XkALL8FNJOd6H0II8tO4/SDuYmyE67u6H2am0xngily9e7cvED2t4qbVbnJjas/Ghcv8O243HSKcZfXu3ngvbjJ9DxaBPQkRkl3rKPXD0G7C3rVVkIKlRuyR6zfkZVez9rC191N+CvZp7iheuyf3NDzjE24fxt6o/1UlSj8IG6i7NJ+mT0X/VNAmIv38rkVr8cNXp+Ki2d4Df3D+3ET/bPclNrg5qm4uCc7td9tvc/mG3zp8mMp47MlLtOzfyX8ntXZS3dlY1vQv0jaItRfpXenf1woThymj+BmhYll+bzP6N3lhmVXmKLse3Lz3rK/Jm4Q2nKbj+Lmo337EdmIaycP3NHzqOwz5QCG5SbLDUE0+HIy8s5suJKd9XFX7y2M8fjimGrwmSf0Lrm60b/BJ5/gJjqxe6fohh6t9dl4/gpumm+s7HdXLze90vOk7aNP3+HV2j8VFxeyd+OC23xaXCQ5ZFvvTOdCdicuuP4RcfGVSwL/l1g+6cJMJ05L3pTWMf79rCwAt2+syWZ3wLf0TnTdwTiT1Q/mRoC+r7b9NmSjG3on7Z/hJsX0Qdy8VHbS/tfCjS5kh0HkDjdXmFeyCr9G5BnffjGv0wHwE33uBUsZAa03Ze3ZX9HTtY3+2hdVKrRuStHailDz0lJIth+s+bPx2/Vyvfyg1V0XeicxpbBJkVS6On5rIUn/+t9e71PcRIyBK5Bsti+240Y+gJvhsxFc1wrTfPJa78u4kRmmBGMBR5hH/2yFfLC/2rGP2c7meI2y0vVyXMgM4zIuIo5929sJFPtx4bjBpH/PcGOy0xyyERcfwc07xcUj3CwGpk8vAvx4YvZ0keCYw0c/Z2WSVJ+RnR7Hwilv6o1tBRPZqof1fiY3EXNryz98MDdRdnp8Q/Yr8LqSFcFwk+CSmz6Q7ZUP6J9kuD7KbxayDddX8hslsQdz5Cu4iSVuX3u3iJZJhgriB2dsuiMiUD0JsLTpWTkO+rss6THcIgLFSawLANITfNDpCTsllvfpuix/SyvDaG2lNc5lTa8ksqi9dZhvc8MYAzfKXNjUjJZtfUFuFCeFQuSqY77HDeih7QY3pOcS44bPRdnezMfFFa+yyWuPC+Mk8kp9dHmiSijtktkazOIxt73JyoBxk5sYJ6/khmVr25ZDvjA367h4L262BpEf5cnyee+YHQBw1mRkkyRx8xDYBYqbYMQJxwtkIX1nJVtKEreb3taLud7YNpUlPbY9alzi8JHcZLJtR6Bgv4/kxtWD/RDkPpKbh2Wx4AYPcIPOxVfonwa/gfj+vSs3M9mF30RM785NwNvO9USOfJabadw/PjjLUeXVBv5GQruYEAHsxX/Vcr+8v0ZRJxWuLVpbaTrQLkz6RDzRAx3aQgG7Sy9LvaNsbyter8z7B9e/d+Qm1FsIbugB0K4xXsvNWXHsyCoEgRt9hJvS7lXcyNJv9mR7f/Z5XfVvkAUgx5xXMK/CPKtPI6k9r+039ZuF7dfcbPjrLjcZr8cX4Qb1nbcLnxu5eh9uvnRR9eP4L7h88nfM+sivYg4m7XirSybr68/ISjxOa3Q1HrvQ+xDGiay4ujYw+oHcRFmPydvvSvYhjBuyg/3wuP0+i9eH9ExknWnki/iNjWDSGqD5jTLee9xc6V21/TJ+I152FWOf5XMya3uz2GTCZsESTiwytheWJQCtbeb34VxTPTq2jXRO9U71BL/P9FJ7179XcxPrMh6/1BMqL+GG6wkmq/v+Ecag4GluNNQHTHM9oCYjN3uy3fb7mNf9C3VZyWYYA88zzJu2n/rNwvbX593k9YqbYHsZMF3EY5JDXsJNcmxPNsO8i3HNzbP5/73Lj6WMz5Zq4MYjT85Wv+2WXVlFuyEdxR/ScwdzaKs64nDHV3rvlCdkad7gMe3Y7wluprJmP2DO1Z3yUbx+hN9kMQZ8Pb+5+jbKb6PfPBpjd/Q8mSMfKm7knJzwEqeOv5u/37B/kZPrtjul3k13ZftcFw5wV3RoQO2eyjnPBH+CCRv6LzEuDt7pnxCuzI9W5Rm/+QjbZ6d8xvZPc0M835bl8gVsPwzG2I+Tj7Bfa/eg/SI3X738uDB7srR3zDggat1d9VPdTSwFbqnWIIs92bqEyMWTbsjOMPLPT8nGbVuRTGremZtmHt82zT0fzI2zHxL7xd2Tpv17hpsHZD/ab/hkE3vu9+8Jn7vjNymveAk37+c3r4tHP5ZSW72WfRefq2Jjjrxf/De79DmcR3JsWQ92gADZOyKviI2VXnfeWg9cT7l5NDYyvUtuQnsJXD0bG/HYjJvL/p3Pc3MpO+Hmjp5Z/5QEZrZvx57pH7of3MUcbX9H7yttH3+09wJn3Cj87t8zjE/zGpPhg/n4lfZD9JvzNdw8mPc/qvx4YvZMEbRtk92jVba6oq2Jtrq/s75uK0doupAdv6q+MvANjMH5Re5gDgNqwBS5QpRlvU9wk7YlrvxE+/24WfXPJawr+72Um9fJvpvfSPSbBcZLbh6Px6XfXOhdcRMvpD7Pb16Yq9wArG7PjTFHBtmHucHS57IcebeIBLyt2Avmdu5Y16EukN7H6kwa+BjrOuQr7X9e6A2+M7S1l/PR3mHKrmKnGDW2tHo/7y43aNwETMeKK+11O6VyNXJ1j5vUfgD6+6Y79hvzhi71rrlZ2s9xlXCzwrji9YbtH4kLq5vfSNqfBWaLqW3b45LXme1bPNIcZ87jONfYj92cG5bdipOQUzP78fXlI9zEmBI+tpnnACUQGVf3uBnb/ijvXT7viRk0eLGV9PbIujwg0jC4Eyida3UL5wFcy1MwCcndm4hJEbPUg3p3MGW3SgijUv2OwocxXnBzxdVLuEkwuZM+6Ucv4YavyJiLBaaP5EZD3ZV38m0nG7hJ/SYel8f0bpeZ3/TD7xb3U9mZbz9KQnI++t3Pe3WoDzaUfqwfkrzO3Kq3/z29vj+xrX8Xw9twilEKps4IH3+QmwWmJTftG0r1mPq2z3CTy2oQ3bQf6Srn7WPVHW6u7JdyM8M4xczn3LN979lN2we/Kf2RcCzDyLav/9yy/ZrXgef0ifeCV/tP2ODhGW6i3+zZPkLO4+QZboaYupHnHLgL+w02IaE8ph7N+x9QFMD567hw/EJLGetuSVY/KPfGgBRg+DI6+/Id2QNwj8QbJt2S9XqfwYgqq142JBXT0778/lHctDo8N40r6cdezk2UhZP1mIird+Ymyjr7Ndl35CaVtb77gaBj/CLccIw5WfLtDW6eiUePibga7Pe+3KR5IF44Nh4JaswDL+Rmz373y1Hvzmo9X5mT9vP53dCA48jbirNb4t+uj9GGSl0Y9dpL8DOMIhHjKDv374iR6sHvHuXG10/vWw9ww/VXcFN8NvGlG9xEXoue7pO73AwYrROp/RJubmC8I3tt+z1/7baneL20/RzzNa/XGFPbP8Hro9z0ttogDLZf2bPlVOvDzH773Mzt9xg3z+S5eUx94fLF4e2WT1vKKDbYC9okqX0kj9r1or7+5FfV3bsOQu3NwQ+pVYV/4rLSexOj+y3crckm2xXTyNVruXFNHSaMXH2a/TCxX/3PjKsXchPbD/b7CtwA4/I2+UrckGzK1RU3j8fj4NsAcUUYYQMUd8irfZc80AbfarPUfis9T+Sq0D7NTQ+UAj0sYc/uREc+Jm0VcMchbFL1dekTsJZeo0k39fq28Vw5t82kDmOoq5+MPcNNPO6+lbviZsA09u8ONyvMjOOSG25bY4E/h3rLfom/R/ttcbPAeFv2lu03+htTlqWNS4yrOPlc27eDS9vfjZOF7QeMc3saWXaup+03wbjrc73xq/JctN/XKz/eMXu61KgyQ0udE2k/LnYAnGSsLuCnbuOX0b1s2VVMSIHpj9krcUx0PfHf+AV2j9HXB4xi/Q+YIrZkgnVYp17ATZTV+s0dMkbgho61LGRdeRE3QfZR+xUNxOuT3DjZZj/Dw/a7wQ0h/e3hxoiJGDkPXHODC26iz41cRW4S+wHwHwR+kpsgi0ft17h6DTfO53Z9+06R0oeOLM+pvOwqtrW6zLjkfmuASXVb3qXu4Kin1/vHebMTF7qiX41+Jg2npHUA1ajX3EQ9EbMIszPLOQk3EWMhHPogNxmvI1cb3ET7Qeok9D43Q2w0rm5ys8B4WxZwtn+EV9c/+wxHiIslr6HrPk7m8fhxtu95Mbf9NTeR1xgn29y0vpDORZw8gvGu/Upd6gVW5eqFeW5k4Ud5j/JJF2ZaHEd8eLqXs9vSxrPVu4Oi+ketCz0irweLC3VZaW3ZFc+JLKFqOUT935neBj7BLBgee+uZLTOJyw+6rGNQ0e9u3OFmxavFItcrLmMs8uq4an+/gJsgm2Oay7bibPY8NyyLk5fAWjGb3uAGr+KGBptP5kbPuNzMcxNlnXu7dXRrbjz+a5/Lucr75/OAdl3PchNtryOmkiMzWeqvUZXlgQe4cT53st+gtfX2u1tK3hfqs9gY0OolL9okRxw/SGQ7jj5hQTuX102TKAB6Ck30i8/ae2uj3jXGs8q2CwbO5QFDj0Gzt/1tx63tmhtccUP2FxGc1X7j1Mpz02U7Rj3Rxuy73Mx4jU9Pdrhh+5X+k+wz3Jz2seN73ETMK5/L2nYcD9h+wauXZc7WvJb+iWurZ3+KfxmPZ8/dq5gabX/Nq9rfrdkruJnZfo+bs+Ipv/qlmo9yM8aUt9/c57o/d67qPPNBbvKY+sLlq+PbLJ/3xKzeFhdKSO6+Rb1IM59TdpYhmY1tBX3+oBxkFlhigZbJKslWbOaTstYLUNuQcKUN3FXPGyWDmi/3ZEeubnEjOTexf23QO+a8itPLXD3JzUSWx2Q71yjruVKVid7HuVFVINrPuPo0bsy3P5+bwbcDN1E2cmXlihtschNl7SmT8+00D+zZ7xY301w12m+U7QMx54FXcqMKyBtNntI8cH8AFABvUvkRzvtc975TlpIHnE62+HjnwN5ju+6jxh3iBr0hpy4wvr15+9sYwhNtb/8Ro8kWP3sBN8H+b4EribIu53iMesBxdYcbCdz0sZe4qRezV9w4/3ZcPcnNW+DG/AbX3IyYr8biIIuOQ5ufbNg+5TXK3o+Lsgyy69U3UM654HVme+c3WVxc88pxUWSf5UZS2xeuFtywPeHjYoip29zEmMrtd+Vzy7i4wU0WU1+5/FjK+GRpj1onlu7HrY5Wt2Ma6qlsS3xWV7hqKovexjLGll4Mf68wKr8gQgNFrmdenuUm0yOBp5ks18GHn+Qms4mQu+hFWy5rXu9wE2X7JNm58SDLiL29GB//vc8N673h2wHXLb3B9hk3M9++5hUAzibvfftxbvrfPQ/446t8Y4PSa7iZ5gGzxwN54BXcbNkPnpu7pTwxs6LEF9c71tyG1JYpkTpZW8jaRJtSSW0w03uN0dUlnrf219qkeuqXB2t/2rLWZ7mJGHlok37+mWzzh8AVc7Old8lNbBft52Wb/QRQlfoq8SPcMI5J/9o5rXrRv01ufK6TNjT0i7RnfC7rXxYXRXaIixbbPRfktt/0ualN1LeZyDof3IyLfW7GHFLionA185tZDnkNN9FvMNgvk3X2G3LIE9xM7Pcli4KnWb/o8nnfMWvJof/YHwzXUtZPTE7SWxbXoe8tpLJ0Zm6WyVLoCdWH81xiDAky6BE5ex+GU8T+8QAhgJ7jhhJT2TU3/tz0Bw+ME9lexJ1n3TboAhC54Q9aZnZb9i9wFZcU3uPGdaj3sc3TlcDoQhbwTzee5eZB3w53vYT+y362F1NcAq/Rt5fcRJt4+8ZsG2V9dc2r6VIAwztcE9mYB57mZpEHBqe5ygMhZz7DTbSf/ZbZ79GSvlwe6v3O9MW53An6JOtalqcbeqk3w9h0Xsr2eJNENi/9vCu9q5JiFOpzzK2pLCG6Y5Ood8lrn00Vv/M+nsta1krGrVvc9Pro3joIZPa77a9BherZb+5dYNzVm2awwCufa5AMY8RrbW+Rt46LPNPsxcXtWA45pPy0kiWN7xAXY/H2m8uOc6CnuSHZr14EgOgvA+tV+ZQLM0F3jJ4QS8DKkBDvO/2erF9GENv2x7rRYQX39Ix6s2KDVDb3acNQ5arvwvO+3KSYg6w9Mrdk7sSe4SbyoCtuRj0tPsMdv0vZJWYZ2rnEfiGrONsdrcGPLsuLfDvaryKz6HPNbunt/ckHP1kMQlG2X0xfXwo8Fo+mZ3hCPvh2/8OZGUHPbW5242+Ube8XLCYRUfYaY2gW67I7iVicd3qOgtPQPnL9Z7IqeZ5opU5KvLft641Ruy97hav239m9a7ibLbg0jAOia0wHgFOQXjzM9Ax6l6LeBu0C246OoOsTXTuocdawWXZ8zp81tnnYb8jW19zMbX8te/a4uGqvQHuPVrxNnonHUdbQ9HJI7jdAeXJv48dKz/D7bV7DmDiVF0DP9pRqJy5y7Xs5w9qjtp/KLuw36H/C536UvIjIPwTgX1WrfxWAP6+qf+zR833aUsajva9Q/o3OEu9grW7YXrV1dXPgqrNd7DgvjAOWDLJ39V637euTuU0v/c5aXEr0Mm5aJ32JfWBcdlF9helpbo68j7fsN5HdrftJu7fXjs894uvvYb9MVjrQp/XOfDvFFbgpJd5Fzv0q3vm7nzP2uOIbRzt67nFzwZXd8JCOOb6Anp3reW5GTDM/2i+K41AvH3IqGu5rrq2PMmtbJxitffsP6gUQ8XehN3TDtZ3JZuL87qm1LROqHoFtSqUoF5pPcBMxzrhqmmXEdLTjr+Nm0Jv1J+WqHhSu6y1udn1OuEHgxq1+GOpdliHntp5gjC1SjJP+kt8UXvv7WDMcBw0EeqkXaZn53B1eeemQgL56s7pMeJCbLss2SriKxTAJwKtZXsFNpur19rvDzWbcf5VyXjd5j6Kq/177W0T+QQD/n2fO98kfmMaQ4GxQ6pO2vO5O1ZzlSha9Xpt3fy6N+pMWUlAnR3GkvcLIeq8x2tOX3j+f0AN//Xb+C7lpJ2//iIS2lasW/O7jOF33e3MT+3dtv1dxYxI6cjOTdRgt2c/td48bXwesrl3FUk9P7qC/nuJmKlvO7w738aRzs+Xrz3ATBxiKt0/jJtar/Y7eXDKuUj96FTd5/JXjSec2ighxW99z8g1oGIDWurQ6y3o+tE3w7P0KW7DYjgNu+Xfv+UoPWqsmIQx7LitOtrfvbt/b8muGbSyUQM8D3HiMaJg6VwC/ydPyGgD/mqG0i9lXcONlayqIfhftJyg3JYwroSnotl72OcI88LrmxvT4WEjq3J9tXpOrgZv9ky4GWzVy5XPtXW7A87rwudahwV9nGPd9jmOoYBz95hluWLZ9fkPWPhd9FopmvxU3eTxS20zWdGzbj7h6ITdO9sG8/1Hls5cyShl8/jYAf/Mz5/nc7fJRlnepTUDCF8utBVqyU5iDrL5u7oLIyaJ/rZ1eyi7BRZMuO3eUTfR6jAu9GUbltpUXkm07dH0UN00WxJXdtaxSddIgmMl+DDf98ROa/Qau3oUb9qPKzaasSuLrD3CzzWuCMfqNor9L5GcMT3AzlfXnEZKd229Hb/9swX2f67i8r380N++Vq57hhnwucJPfSr4uB+V964MSP31ZE+UcUH8H2Y5TiEsRs1vdCrt2RLXzcWpfBFf0rvR0Lo+gd0+2ty2TB224VLRNfnla9Tw3AXOQ7TYZuSppvkpUXPLO3ER7HlIxJbLdfr0PJvsKbpTOm3HTMKPEhvMxyhvFnly/yyvx+CCvbwWk79+Fz/m42ON1DyPHAQo3C59jWbwDN9Fvmq0TWfM5K0I59W6uusJYctXjOUPegRvg4bT/MaVS9MnlbwDw/1DVf+qZk3zOO2bSHaQNEiUqYelNa7t+mJMfTU5qW3dsqCvcu0YC2PIDa2s3pv1d6Gu9cql3gfFAu0tVTmpp+qO5ibLEFW8pHWT7xZF8CDeuBckq2Q837fcMN7zdNjZkO28R4z1urnkljILuR4NsmKSpNgWPcbPgFQt7umU3d7nRm9yQbMDk7an+XO/JzTJX2bnu5ar35obdfreI8Hb5z8fkvK1Sn8ecapOkI+TU19owzxuGyZYetYkOfYqgCMoLuNFF25Groy6XGjEBfvx5NTe5341cVW5q46P5572YfIQb8yNjoS2xqz/0iWvtT6ij+hyZlnC8F6/3fc4wPaL3bm4r4/Yvx+csZxRUj/jcDYzEVcvd5HPej/oY8XJuBtk+Jny9onjyyvGPiMifpfrvqervWUVE/gyA303k/pSq/sP1738fgP/BMyCAz1zKCKU5hTSD84MQtDQInn8M9bztWG9biKKfyG0lWsNUDrJv0MsQnsFYus2YPpObsU8jV1oHQ2tVAtrdrfkobkhLeRrEHdCWRB/Su8AcuXETVdcq2K+1tVH8/TBGX/dLD9owlGJkez6mN8c8xh+8IHEjt7np5TZG4eN0MZTZE6iN34ebda6y+NrPVe/PTdSwW5SW1JWzHaGF9VOBoa0E3J4TliU90nEfvaHvzsv0jrIH/VjyFU24UOyt7ozl6PtxY21NoN8Y4a3Lm9X9EPAO3JAs2cvwuJHIZAUlt6md6S43V7zmftTt17lxsgh6WZlVms+FGydX3EwxJrL2102f2+Nmxevn+tw+NyS76XNWkYd9bj8umCsJlurcsH/2nLHUe5ebCcZfaflzqvrHZwdV9U+shEXkG4B/N4B//bNAPvU7ZuUL5Yo2HWyGt7solsFsomJ/A/wCfH9MXOrHsZLtv3fZPjrzh1ytPteb6fHnmmEsX5zvGHpi7Ho/nhuWPZs+7s9JSb7ziHfnhrmIXMU91voGCve42ee1cGMblWeYen97n3sfMoz73Mx4zTDm+8/lPmbn7Od6hJvc59b2NL11ECBuvL8+Ho8ZxtNWqFRM3rcjVz1PvJqbXNbir3NT9PS3m1+Vqx7n5l4RKA7hLfu1LpfhesdZJmyEswMiWSSySm2NO54U1d0G6V2LXO8M40zvSpb9nyaAh8es5CBX3MjB9YybrnfOq5KfmY1C/yA4K33RJq/hhurm3lImiW0DkNo/y/gHbM9BVByPcLPCqMh4ZPtd+avJOsz0vtKjPjf27+N87rF4vO9zZYxE8LlXckMYzya86XPyjtxgar+RG8OIRHai9xY3Ga/40uWTH+j9CQD/R1X9vzx7os/blbE6k7ZJQ/GRvo2+jvXqSKUtT1Yy2WohLVr6evQaVEefJIkA/PX2tvyryno9XJ9jzGV927f4JXi3lETrb+/Bja/P+1dtRUseLC2VOhzm9+TmoP4VuS7rplwfyM0bov2iLJDb8zlubvUvYIz2NPZaApbXcHPp687H2J62VKTLHrLiRrGywYqbiGm0p4+DO/F4h5uVbOMGdcIgxaesrdaB+jO4eaS0pYx3cirpajstwqYtfUnb2bgq3tMvRAX2xPoQujjuc+SF3pUNT4fJ4WCMorSZRCmHyZKfQctbNApsc3PYYxWzf/OVPuFlTDOMqO37mGgX78Cp9K7VNjfRvz1XjhuuH7wTX5koiyj5NzpGx9UGN0Ns6Ivsh+Fc5Vj/vefjHpNXNtHa7+dyDgxN01O4QbNfXHLnbaJjjKHLYuD1YqxyeUPb+NRlKzdt/FzYxNXXsbzMN/W1CTvXYRc8zue6/XqM5dz03HTPfnlMGVdnW17ZriObH2HNTcQYuLozVpWY+sJFPxXf344XLGMEPvmJmc1F0RJDTaSg312d28b6KFuSTk0+p9Qdzs7mmAKgXWKTs7dzpXqu9Fbdwo+Fx7YQ1Bc6SbbitkR1vCM327J0p7lAfEbvDW5WeqieY/ogbhL7WZs+iNfkeunrexhvyw4YvT3fjZs7spf2XOmh8iyvXzkeq1x1JfsJdgH77tyksvdL28hkU3fTJfRPnTHYxX3vYp9Q2T+qR/lNSt5vk34p77dw3l/aoR0izA2TOlKOgBFgrH3SZHw0Tc3GgrneC4ydpJGbiLGdSVkFxncTPa/X3OzbD5ASd5WbQ/h7gdplEn++lVMX9otc8XKuK/u1d8Ri/0xpeBJdVimYnrnfoPqB2ed23rBDtZ3rU7uIRJsLaa00/ws2GbjRa9uvfSHkevG57ZAi0LnC2m+A4J/7vsBtBCcOh9/m+nZBUy7mcm6o7xf22/bXYD8F2o3KbW4GjJGrOTevyvsfUhSQT9ouHwBU9e941bk+bfMPe5ek/db+0tA61kOCxrjzTJNUkhDQEwO7S0kiwx3ga71zzNdt+8CgqYCkf78S44YsB+3L9G5ys5KN5CS2f3du2n+8/XZy16p/V21v85r62Adwc0c2Je0ON1d6f8Tje8XjnVLmWjr8ttLd/y6BPtgpwdQ3qjzA3/Q5aPexA33+HKRT3PlYhY4pykWMwm3RZaJ+P3fbHCNHYGWCfe0nTkxsLqgOg93gzNYJ3cM4sd/Snv5C1WuhSeNS7wxjad+/0zYrc/uJw84Hu1+o06iD/kzWJC3oH8+pdkGhQYQnPwj9iDahb3WZBrm2/SqWy4Vu15fROHA1wdgx3R9vfF5XlAvEwJUE+134a/9rbr87cxzmylRHr9qNqTlXD+SbH+Xdyidvl1+KTxFjHYtjVu93PHpaO2yv1/OAquCtPbIu+g/x36Pb09snCHcx7uixi0wd+nMH42tl2zA4TGJi22tu7mJetT0E7d2Hu7LvxWvI4WTPj+Xmjj0/ipu5bPkrxuOq/PbE49i/dvf0BfH4DMbbRcoSMO6HEsLyDkdp2JayNlE/XixxqtaLs5Ic3o4+6Tos74eYpFebnN6OsdcZYxZXKaakf12vXXwApwi0tt3nJsc844qLXbqO/bMJIfC96b3PTeR1hsnzGGV9fw/RZj99kBvdsN+cm6R/JGxP1+3CP8Po+ycNo8Lzei0775/5jbVovBMmLytONvpvx6gP2b639cvVO1dFasaNnUvpfOyv+7GcxxRrauaU2F+TlXSsep39er33TdtKHE1lxclmMXZWTHdjmdt+6fK5SxlfVj5tKeNbWKva17fKom6N4bLoTFYVKB8HPPFW17DY3Y63+sSurJ2f6/UgAb7TsMQYRW/0L57jPbh5SBaeq8/gJpYr+30YN5nfkD3zdw/el5tLWY/2cb2PcAOW7X6T2/MK40rv8/37yHj0irCOKczj8aO4uVME/R0z3i1U2zYO7fIkTMi4vfaTVVwScdYNF8oYIG25FtDfkWjLe+h0rCfqZcx9+srHOint3Qw7Ef1x1HdJ2rlqXVv/C/7GjdomMNfc6AJTzpXvu+nomMqRt8DVHW5GXvtTs+ZSFUv0qyNgBvrzz6OtFe+497mJbW3Su+amY+qyxlW0vQkrncVs78/lYxRdlLTKJq+J31RiGTNjQvulatS+JbwdsphiWbaIx3QuMNa62a7megGGm0wpN2YTggvEZbk3uGG/cXEy4Urt3cKi3DC2SzqtSzCV7XeTm4hZMNpP+hlMr81rjZuZ/Q5wvzNu9DLffOnyxeHtls9ZyghL4PSbC0ylutJx8voLWYtdezLmd3bzQS9B1kU9qL6hdyab92fSv1Bezc2jsqXl1+LGjng9E9l35CZfZlZkFeG9ha/iN6TntuyLuImyHRfLXnET9b44pp6RfSE3gyy3DbJzbljvs/27W2yCUU/Fy3PseDvGdYF/eaDzIyxHeV3gP6bq9AjqTM9mNJpjIr2mZ+y5OvxA50dAG0mhTqyFsUQ7lYmVgnAQ96neAWOOybhq723ZLXK3pKk+VYmmLXc4m4Lb3Ay2Dv5tdpTQX2sm0b8rprgUbtC7xw3BKMeJmx4h3h6j/ei4iuuvItoyyvZzapBd9w/BX6nOuAQQ6dNra8vf1kwYbhV+7yi3513bn2Tr/iSvMDXJX62lRoPVP9W12uXG7OvtKS6PqDs24gIfH+x3g5tJTOX2077hiYwewgB7uq66hlieczNgfijvf1wRvrvxCy6fuCtjCYfxseqYLHrdB/i1bA+0U3nQsRc4edmHLvScdKyHqtyW7UXwWP+ekc15LRij7GP9+23nJpc98GvkJped9w+h7Ultu8Rr4vHXyc37x+N9bu6WtjOcnVvgnxTIOBGKE9t+V9fHxls5CEg/ftY5SJdFm4md6Mq7Xiz00kRIA0bNZQ+ECdpEtm/iUj5NMOUmymbcOIwI41zlAxgmY7F/5eld5aoS9BA3kdfaOPr/G51oKVsxKcTx/hA3iezIjSSyo40e9xs7Qf8EQOZXl7xOMEnKq78IbzeuhTNE9Rsp8nf613BEjGR7i4voc5fcwHNzPMhN5PVo3b7yG4oL8DJI0E6aD3Dj9ErLc7n9Yl7rmIC+zLLFfZIz73AT/fHLli8PcK982uYfb0dPBmlyu6xvyNK24Ic5tVZHlF29FCxV9hGMLZY/WPaR/j0j+6vl5hnZXyU3z8i+kpuP5/UHN3ioCIBvUi47bcKhgNulNU4auG2s2zzHTTgO/+7MWyJrfXhTNMW39SLojbLwsgc/fYn9dctEFW915vo0NxGjetkjPDFxsmHpKnP1NDdRFiQb7Mdcsf3MR3FHj+sfXN+j7MHLPqFwO1UO9sv1RMy9rbi6FdXy/lXWh9u8iudViFfHo8MhPW/wMUWbS73S9lovhtgmKSbjRt+HGy9bdEy5an9LjmmiN8UYlqVDeInh6WQliYs5V7bMcrTfLjc5JsVnfyjst6V83nb5lIAAc5TuqMXPYj22f0BW3GneQZb7GGWp7TOyK4zt3O/Vv99Sbp6R/cHNO3LzjOyvgZsP8LmL/m0XAUTKN9Gc3lgnXW/h+CAbccEm1MrdKbKKckcb5b0zHfr0hN5L2YJreFdIy3/cdOfwuGd6n8eYc2U8ekzvyQ3Jkn5vT28/XMTCjp4Z5rf2uzo8aFyN9gNhZAVvoMlwolepDyU+Fpgf5tVjfms+V5XZVTl0zBu39NzBqO7dsO5zjMmf/H24QV3SKYQp+lxob/+Ve3qyXNVucin3j+JRRvvJyn72Z3ep29yUm3R8+8DniC9bFPu7h33x8mm7Mh7HOX1sCsB9nb41IMfrX0bPZH3dTUBa25neXs/1rPQKsrvjadup3h2MX4Wb2PYrcBP791W42ZF9hJvI6/v3L5fdsf17cTOT/WVx0xoMba/1vi83HiPb5E4RKN7krNOMcgJb5uvraFO0+qYWdKutIeTj9e/aJzsuKMuQRj39XYr7GMflqbyEEO24tr+NS5O1XRnfmxuui/0skatK2CHuXK/mRiseAXPF9tOl/R7jhm0/4yZiMq4U9gQtxr4c/QPAHjMa5swGXcPIzR6vY/9Yj/WYMbYdAmXkYrSJx7zncx6jUFv2OUHNOSfaUkDzuStuPObHY3nMGdHnuv34gv0Zbk5ViOtvwo1Y3fuc2Q8K6JHpeZKb+iSQ/dXnsq9XBPrjHbNnigB4E63btqK5enzMHesmW9r2wa2dV6ztpG5/y1h3g4b0RiqZXq5nmLUrYD1XGPlcCcaeYj+Qmw2MaPb7PG6m9ku5iRh9MD/MDddT+93jNbf9RZx8lO372Z+3/ZPcrGw/cnPf9qnel3PT685+9oRnppfrL+cmYiSu2MFuFNuV0eEc6nlu63WadmrgI9TfwhI0m7CUZWP9zLmeGxi123mIK8Jl9Tdu63bqU9iOIe/NDZtQJS637C3sDvospz7NDdcDxkNoCRcBNvupAvzR5jU3HrNjeMUNHbc4eov9cT5Hcs3npM6tdcsmnpvH+meTa6u/OV47uANaedyziWHK9e75J1ByjlvK+NZbq3ZMa27WmKbcDP3rR6LPsf0Grp7gpr/ThnaTzBqX5bJkP5nYz2QrQa/gxp4gqpac3/qn/R3hL1t+XJg9W4r3Ff/iO4nlr7Req23y0IJC3UxCOFosrGo02b0hrrNHSw08zsxu9UTAkWEUBgvSI/2kaV2Bfse8YqS07IP7g7iJGBtX2kdKmvx8KDcT+w1cJdywPbsmz1Xp2g1uFrwWjAvZF9i+Y96xvdd7z/YMSCe8xliOv9/g9QW2Z252bH+pd8GNoI4P29x4kM5+V3GC9+JmZr9E8FZRN5mJZ5npZnERw2l9NdmRH95RDpC2dOesv/F8aKbX7Okxh7bihY6YN8iG/ty9Xt5RkZpWx6VDr+bG+zfbX3u/m6LI1Qu5aSdQSLQfdw7S3/3pLk9cbXDDxyjWo94h9jkGXf+rbMwblT3Vilm0cLsc55hM42bVP4rD0D87jd1Q4feTev9sCC+fYr8aq5qsHU95nWNsvkg2OzjHMcaBKzhM0W+a4A1uWlvh+tlu2JSbCt5+gy+8gJvmanaEbpKZ/SyEuoTnyoh9BTeH5UspvW3IZMxJP8r7lM+5MBMzMj1Qbf6sobE6Of6zBbiUNDaTE1hQ6VAverWfW1HvwPXgmIyQOWZar8zb+Q59yeozjMDkRsAHcRNlaRAaQvWjuUnsFxN95CZibMmKdPi2N7hpsvF8F7ITPRkVw49J/+xO18r2K73XtvdTx4xXr2tu+0u9K24I0yttv9J7xU0YaTe4YT2YxslHcxMxLrnaKCUvKVMztpny04/38ym8FyZy7Ykjc1ku0Pjj9FP5TO/Ev5ueooImUNF3CL90+aPa5xxBLfROMG5xE36rjft3rPqdc4UQfwu9T3OTxcVoP3sXiHcx3OUmnl/cv00FnSu3n9WjrL+w7mNk/GxP799CVq76p2n/7FpRCCN3iz+uPsZ0rJ8te7dfKVewzss5XD1TwdX12dNPH5Irf9XGVVtyq82gHQAAXv9JREFUOInljJuIuXNF+db0mI/ZOV/MzSxGl/aLI/A7cJP76xcvvzS8k/JJSxm13qEpbs/OUwbvvk7bOTzGddsHBRZkmHqQvNK2qqVN1ysl3so/UJTHxpkeC4ijYuwJsL93eEi/u2iTLMYU1zUz5h7AZQ3yIUJ3ePSl3HBxAwtzxS/Lq6VVOxbs92HcrO3HvVxx4zDS8SFZTbkZcc0wFq9PeIX5nF+upmR7nhQ8avvIq+vfilcEv+lzo2D7Oa/9nQuyfeB5n1f3DKJhumv7mG+U+sUTg4/jJrb1cXJYf+1uKg30Yn7yTtxEn3u0CBRv8r3p7z5ZY8PqZn+ruz5E2Z5jel1DPYwJzc8O+LcoMswTvTSxVcDdhc8wYdU/sqH51Xtxw7LSzj7KWldE7F2u9+SGMIm3X+yPnb5wVez3GDceY4Zrbr9ENhkzLI5GbvyYyIXbDv2/aXurF5n+1OUc/M/a8uW8Dv0Hcm5WtkfSvvlW/aXnxcKKl5VLvbxz4l1uIq+Gi/NgnquE7Pdabpb2k5XfmP3eh5tZjvwyRfFj849ny9vB9/KL2Xnd7AHUuxcWLv1vfwehTkb6+h9aRtSzJedNpWPF+U60L9sThq6nSx/tQ6dCW9tWzIr6JNBmd7WHNskivXFJlRu8bGJXoyh+6f1ZbrwsE2OYyh8K9RiZK+laPoObHfutuGGMvP6audrjhnH0/mUYbUgeeFXrdNCX2t7z6pZlJLYvLxBPeCWMU16dHu08m5D9V0ZeYyyPtn+M14be+l5/ilzNuOF849beE1fuTM9wM/G5LM9xvhGYP5qoJvaj+ku46WfOcnG4L3y/SH/HzHGJEBsAUvsjytpkxexg8Tz2seMuP5xSY0n7EQznJr6gAWP0h8iPdP6lt+/fcRrjV6Xcf//GfqRn85dXcNN9NnDF/QttbQe4ztWrufF6Y16MskBfivpNKW/c4Ga0NXOV+Q3bj2R5XItsyMirf58QnmeUpY/2y8jrbv8KMBED4XmNOw9q41UB5feIuk2UfJKpWfM66mljQD2RLWU8JMhmY6JprsfsZtTxKDfMawvCzlW3H2OyvE9b0r+Em0wWuf1k5NUwmXu9lJuA+SuXH5t/PFlsvWpz0OaVFihoAcgpD3BxPZW1dN3OZcfFB0AHRNMp1f5VddYbkvWAUWiSNvTXY2o4WLYjAM3zXPhNudGsbxNeqd41VHmxYxr6W1tRwrTB40O4ySal7iQL+wVuos+lfrLNTcSY+GvGzahh/LH9s7D9hJu+lHHB65Qbjzfq9Zg1ON2cm8z2W7xyc4XnopM02n7qN7nth5wx2PMON9kAse83wv1rne9cvQ83eRxY/7z90ix6WezmTXwJ3fQ1V3A+ioEflmWbCZ+H+Ik2tMmpy7EXObVPpuB+sWVY0VdsqaK0X9b+LfV/vBELYvsnuHGY43m5f8G0R1W0lVMDNylm4gbUfm6/MQa9/bzeXW5wyRXo+Gg/buufKfrzznjVcK4uxHOjB/vHfhd5xZxXTWyS+1ySN7L+T3LbEBdRNnLFf7nc9hg3sX0WJ/O8WH9/NTeTcdxzhby/6ML6Ym4yP/my5ceF2eNFYAN0vSNTf7Qtmw/hcKW6svNsyjatGmT5yY/APkJtsrKrN2IsqnAc/bw9oPuylAoJnLBVAV5DdIb+yYobPMaNkwVQ7o6cg6xUaGe9g/Mx3PRk6JNjtV9LRBf2u8PNwFXkJkyo2X5b/ipe1nitOtqWtRr99Xnbd14ZMxqmzmu3Hy+j0ju234nlNuBkPocQF/VCU/qHPA3oe9i+nDrJGexz78lNlDWubFANOePduUkw3i1F99lwX+UN9lEo6kdSY2yUc/EOZy1GTbY1FahbgMTLxHO9V/w4jMDg3103YxLMMCqAs22K9TpulPTwmOi5WWASoU1p7nIT6nQe1ttNeM2VyZ7kR6lNGjfzuLJjACZ5fw9TNp6OvPZcp+jPipvsRt5Y8pr0r7QqrTvGC165rQCS+JE8iLGm0PtxAb8G6mlugmzb9KKWuT3JfjUu7uTUVb4ZeH3Ufi4uan8kyN7gprcV/CjvXz5t849vUpzNPVaVHnoKAEOd2kaHjm1xzpe4tGN0X1sX53J66bwbGKeyqpADPrDCXYw3CoKXc+PqSrj8F+ej7NvA1Xtxo0EWjpvhSca2/S64GbhacRPtd9YX+LveNvzoCTnI5/gYyvpwXir0Ml7lns+BuTGYrR5xPMGrLRtUO7aSRSsK4LCJ6yu4iRinOUMbGR/CTfSbOsCWuIBr+2HcDL59v7zJc3kDOIe4O5hbF6+ABC6BInu2cz+fUzHEK4LvhEkS5wlbGqf9/RC3FfYTNhx8Ev2irEy8tfdftXOl1f51/LFJOhb+7d4XXvgOao7huBJQTg32G7iitqrlJh+meuMYkvscElnDZP0X9Hylg/2oP1W41/us1/pjvJbxlJZEAwM3a/+8mqf07h1ufEUYmyrvZE/bvXSwiRngibzR7a11mfQEU42LzhXnuhiPfjy9P4djTNEHa39DXDT70bmY8z6e3uEm8mq+eNN+gZsxd9/hxte/blEj4xdfPm3zD3uZsRRtv7c2zfm4zm35fP33VLbKuScebXPiGgT11z29ehNj0r8U09yp3o2bKNtwjbIICeF9uelt/HCZcXXXfvG83PaKGz9om35x/4KWonpZk4+Wdv13/XrU9tr+NWz9jmDP2vGdKqW/+fnLu/Eq6rnUNVfDuan+lM8p6run5bh/AuM978O4QY/Hmf0QuHovbnLZe0XqeUdd+d8jLpbtFmk5NOCEdJ2wiZwWqQP87OxK78qGCX/Vh31ur7KUXxsmJyvznLqNMXKlzWaG6W2a23xMKsnu6F35oG/vuRHYZV20X+BKu6wOHO9yw7iu7ffGxzJM1B/zudY/MXRKsUynE/ul681GiDWvq/4ZXppex9zW1HXZNg4422vNOYI5r1cYywltW3rjKn7nznh2pyduOA/0t6FWen3/Yl9b3kdYZUX267bVdjq2nwSMgP/7mpsZxjAfi7lXLO0l9nNnV+7sht4Zxi9aFPhxYfZkeTtOKPlJu2tiTnH0uiW/bAezXdkWPFYRhS2P4n2Aomymp9WPmd6kbavz4+kuy1+cF9hOWPoh3Ni20cPuV0BpLPWEh3QeP5Abrt+133tyw3WznwRurK3DOO3fBTcTXm3ZwkzWkjn7WLdnnswHjC/kVUmRt2ftT8pV//uVPpdh9Fx5+30EN9bfI+NqsB8arg/hJsjeLYecyzhaxX7/oPBGH0Me4UmF3QXn6U7WNvpdhpEvNA0TMLH/kNt6nwoeQMV2e5Mb3ESMCVfBZoP9SXbg6hB8byyv9F7ZzzvNMjYcV+MHBOzs9u8+N/GYtx+wiI2Z/VgWfVn6ft4Y/QYw7xp5jPWr/pV3BPtS8c7bft5QoD6hFJwJx1cYff1sK2/KZludK8n6t4gpAzobX3diuT0RRd3oyM4juf3GfFPPRVyZ9h37RVy5/ZTs1y1n/eu7Xucx5e23z80M45ctX/mB3o3yae+YvYl/8VrrH85ZQv2NEmN7FQs9WOwut93LllhnWVt6obakY6I3wejqUS/JnguMbfwh2YOWkhw1pNugecHNETDf4cbxCkC061UhzBbhR9ez5CbBzB8IvcONtW2yu/ZLuHEY73LDmNXLHkIf8jSFjJF51YXeyM1N28f+8c2J5mPo9myYsv4da24Yk9O7wjy0tQvyypXq3PaAmyAp+RTj2NMbMM64mtnvghvG+Aw37R2y2ibGo+NqxQ3Gto2rOxit4c0iUvM+Et5Zd3pcG85D1jjtAiD6juVToN/MAMvGthOcPT/1aYsErkeMfhLMbW1XTgXKJ1LcrrdBLxKburo6vTFGIxeScNXOU8k6tfsgc8PcLe0XuIrcuP7dsN+B/vmJ2/YD+RRG+8WYXNov6LEnQeVvdXqLLsn1gGMbZQagpf08LuC44mPQ/uRfpC9v4wurJivESGITK8U/Qx8Qee04Yqy7C2FR5wsHxosFkJ7oN3ZuG1/9Kwhz28d63zHa8ngfx+NFaLeZpPbjyvmg/drxif0KDn9R9ib9bLN5GbBnv9jfGFNfufzYlfHpUszcl1h4s7s6r+OmQOiyfXAD+o5NFtQS2lobvx0t6Y3LSWq9YSLMvL360buV6mWMwh2o/207TdVfWj9X3ASMrU5c3eWGZW0725YEJ3ozbrr9euJ7lBsJvLZ+ECN73HifG+x3xc3C54blYfbWNGezmU1WfmM+ySfh/i76F/2IJyMviSkrNBqk/jr4p/S+VZq0XqDhFjeRlcDVBTcOI/rQLmJ6ws59j8aUGy8uuIkxRX7Ak/i2NGqid+BmwFzpMp2tfxv5xp19t9ATpoWPEuJe5+VTjlt1bQ/C1bbDT5Ze9aVzrM1yWL9R0PpMFyZinFNdtNvBYyyjzNGOe4y8fE8dq/TkivPVwE3EWPT087JE4KpyoxWT9SHDdEjginKd4MJ+EmxA9tPA1R37lTbMVR+Dhs87RPtRcPa8SFyp/4PtN/Y3xIs7vZBv6HBRjYnfWLJp+WgWF/Wvgw63s1GMvNHnPXpOZdsX5e2BQxJjinrh2B5tZrx2jI5r96vlMlRurMvcoi8NbMiD3xzEFaXPgEPbxZHjGP5cPV+eZOuaJ6Lt61jliAoYbZntI/Zr/xCvMf7E2Q9trpFxNdrPuPLcCMrnGviG3cx+P8r7lpdcmInIfxbAPwDgX6yqf25H5qgJTetAUGLdvqpgg0IdtOtL+d1F2OvKnb3+hfI4kHOdjpue6txQ0hsSjf+KutaPgJ44aMAIkZBgBD32HuumsR+XxkXOTcSorS4SzqMZxgU3loQYow3a9bc1N1Tfst8GN4n9Ok/dfiL8QdzMnh5jbj8N9QtuAsacmz3ZGTftXJDRF5L+Nb9p5/Mv4MuM1ynGkRuvt99TdrafxZQNzHRu2eImYhx9vW2hrRHjPN8MXNFjynhxMMc48xu5Yb8xprz91LXN8xxjpDiJeQA2gVjbb5V/7pbDFg7VfHWEF5g67qghcus/4C01H9vOmUK884VGnX7gze4Y69Fy5ln56fmKJvxDTu3fM3Lx2vTW/jn/PhPZjunQsy5lPKh/1oe+YZXTy/mrYTwpNrT1r9iw26Dx6Lg6nX9r29xAKO/LMN4o/60RY2Y/9nd5wH5lmVnnqvfv2n553vCYsGW/nXxl/es2sPeipI1FzEXHweNAzquCfK7+Vj5ObyTXZYPMRcVoG11wfvomZVdQnydbFuv6bSwYeDVNluu8rOV9W4HQvslFshIwvTmuMBw320M8N83nbI4AW4nEuc6O1XlKPQ37nM333lw8Ws4I/QtjIkL/Yj52/UXoHwARrZue2I2Gmf3K756rEBfMjXRuYg6xDJ/b74uXH0/MShGRPwrg3wrg/7wvo3g7+mJQN0RVv7Gxudfro+YwcNukAVISMtBtY9uDZnrKuctgrIq+pS7pTWVFYB/9bMFuyzTquQ73TgYFpQh9x2fWXwuG/t2Ya24iZubKuOkYzQa8vt1x4/oL2ISeuZpy41Z7e/th4IbsGe0ncbe13H6qWpazkP1sp6e1bK8fAzcT+yVczW1wwU2fn5TkrmX995wbrW37sWn/MGIs9eCvK24UdcmvLLjhtprqnXJD/ls41qmsLfvk9fsWJ4NvZ1xdcAMkXIlNaFdxgaqnY4J2nme5Sq+4CXo6V2a/cy7r7CdTbqI9L+2X1O8WAfBNFG1q5PpcJpOqgvIlk3rBhLLF/tsib7QP29c+HvV9xTPTU/PGd+05EqhLfITfgdsZb+Z5gye1Ap+PVTCOAyiTvBOVHxsHBGgXS8l4A8vHKTfabda4Ia7AcRVisOZ9rdwIxI1Nnted8Sbnppqwzg/Jfujxe4gO9otcnaF/e+ONjw2Tje/s7thvWJYOGz065i5bpL7HGGxcdJ53fU7tHd3mN51ns8836x8sp7I9+7nKx7uLz7V3rKsjnYk9Z7yaTWw5OMcj6r9v5HN9Mxe2fcXU9NznJh2rmh912wuKfd7I57z9QBdlPWfIA9w4zAqc0X6Rq2A/oMZnZj/HlbZXd3a44bqzH/Xvy5aSrD4bxUvKK56Y/dcA/D0A/uE7Qu1phcKycnVCm+74ul2x82DavV3RnwbUn2rClnoufx47b717I/7XdlPBZBmjtWz17rgiJNu7UX/ody5X/SvRWf+6w43Y3x2zTLlhjPW4EDeuv50CW8agWHAzwWwY9+xniSZyQ3orVyrAG9lvzivL+v413QM3VGgNet6/9uceNwBQt8g+aDnljJs+AVAHLu1fsEHn9qwTrIWsHWnr7OfctNZmP7precmN9B1RxbAs/MagFh7tZIrOBBKu6NCEmxhTQnrtcG5PNPu1ZbotjkivcVXtKcI5YMINYXCTNRqAHTdOth4Ru5t6OG4GXPXv0p/cBquYulv6khzSBZucCM7Tbl+YrrO9W5LHBr3vE+xgv7f+VX6sz4f5LOh9QvF22MtXWU412/JEocgeQwwWdXYjsZ/LZoLMFflop2k7px5UB50nw8+p0pa/ubwYYmN/vKH+tWbi7Ycev95+NSpEIXq0c7D9Gq/L8Yb7QfZCuVhoLDMRif1ibBxkQctrTZuEpZrBBjyuta5o13sZvw0P+03BcHSIxQ+kh7vLOy3vl/pBXLU5gMMceaW5lJAfCdqTO8MEcA6zDWuEZLse9+29TW4iT3beHkHabNDfMfN5f7Rf75A8wE0HRlyF/rFv5farF7N12aELyXAutTzXGsR4ZOGKSUP/Knlvsf2XK9ry+S+9PHVhJiJ/K4D/q6r+b2Ww8kIOtpzC5licKL2zx2PDiWxQoAH/IMfu59Iu0vTa2t5wjE9PGNvOfHGAibgGjIyrDiRJ/5SThtqdqz1uYv9ybnwQ9ySQcaPuXP10edsZNxGjHxAnGFvCe8Z+V7Kj/VYe3O9erfpH3YLnJtM78kp+FLgRO6qATfZu90+AvufbTLYOkg2Kb8/FMJmtrmPZ65Va59id+Y1NsqAWJ6PfMFf0U+jfGmPnaoyZtf2A1ZZQ5dpSJ/YLeiaxzFztxQVhilwxtln/NvLNnWJPv/h87oOpWj7d+rMeOFCffB82ERljw/gQ/zMg0abWvviRQiEKnDjoYiDhcpKvhGzI7dvfERMif+oxAWg3vFTwne3QnhbdGW9yjJbD5v2ldo2rcppTI1eh7y/jxv892q/8VXLP6XbNG8eBffvtcJPbbxw/4mjix/HQtj2V6HrbFF4pJgPmoVvosW889+NanwgRw/XCbdY/uH+pRnMAD8Bj7P1D0FN6V74V1vU1Kf6m5cANbnMTix+rMNhR7AZ6Yj/eqdf76z1uWG//O9jPnWJmv/D9Tz5X9UqeH2XnHqDWGOuYkfjJj/Le5fLCTET+DIDfTQ79KQD/BZRljJdFRP4kgD8JAH/F7/4VeKtLRnriBYoLjklZgNa2X9DYGtvi0OYw/aV2BcLHdJ0eLXdiy4dGxZ17R+8b6COlG7K96PgFdoLsg1TcNu07GNH6k3MTZU2x9FupXdZ0V1wq5W427zr1Cm4sISnKXbWWS3gpTkPnuTKe7COot7jZ4JV1Wuup/QKvjGmH1y1uLuw52iTyqu0j02n81W2Vd3lt531BXLxRPMa4gKJc3JAPGsZdX59x42wCn0Ns50XzmxlXU/sRN99QBvl7GDuvZj8IyAcNTecqtd9E7zyW59xw/apw3v8X/O5f3i/MFGgX2xB812LVNyhOOQFVvB2Kw94kosmB9YknN40PNb2ekDYhU+BQqTufKk7ebTCZrKZjU/3PN/yM35HvOCH4HfwBfiPf8Qf4hr+ob/iL5xv619zLXWiP0d+o01PKeCQFR3/6E2STnNMggeJKOlftY8Fh+WbkyvSA2h+oE1NRqOOKOB648fFtOydyXPWnfaF/9vqb06OD/VRQbiKpEK+Vm9mY4bgp277vcxPysWr9WLp5Se435YZDeWqhfK4Yv9xfrXpE8B0+78/Gqqa3KZeKUduJD7ElseXp9FHtaT7Jvh39lccfuxwYxpCYj2E2Us9ju/ip/2u5SXCyPZ/kpkEKNhn7V3ryVm/4SRgjoUL22+cGgMu/4xygvseX2o+5Qm23b79Tz7Y5SlmkSfFIfpPOAdx4OtrvS5cvD3CvXF6YqeqfyH4XkX8tgL8OgD0t+5cC+N+IyL9RVf/vyXl+D8DvAcAf+Vf/EX071DlEec9G21pmS7A8vraxSuHv3tVjB9ePftejHA53bcT6EXGSngu9smqLPnhJO+Yxob663Orig+Vtcd5djLO2btB0XPWFRHXKAHu5mzG9ghsve8d+3W72jGKLq01uMvt12YX9QO8aaOSqZ07m1WTfaKqbcXMXMx/rvPYBhzGj9el0mOAmLgu9L4iLtuysaSccgffG1YY9Ob4zbuZxUS7KOGcYQrP9vv2eiYv+ZFFbrLbuD6x5rtb2u8tNrO8Uzvu/+6/5q/WbdN+ynFJ0S/nEgJZd0cq7G+XC7Juc7h2eN6c+8HH4d1PjciNB51QhYTv5Ez6+x7xox1QVvxHF7xzf8YfkD/C7P/2zEAj+gn7Dn//5D+H/jb8CJ/VUBH0CKrbkjfQcHd8h3LsYkxlG37+eu/sA3zBwWyGbE1fc94aJHGD0s/HOPefFN6d3fDLlLqSC/Zgr+94UKo+not44sSVhd7jRm9yE/gnb72zLxfqvFINBVkL/KJ2VOGvHFW/uvL30bBT6K2QTsTblSRDz+gb19nTnDjYZ8m+X6T2lvBjGSP95AH7KWPMT5YThEyyv5GY2zsnpMB3B9u3iFjwOzLnh42/cFjpyM7Wfevvhnv3eqrOvMOVcXdvvS5fflguzWVHV/z2Av8bqIvJPA/jju7sySri3YDtQ1bOHJUnmpOapSrLswBLalkBrk6LkXPaoVwfZlV7r86It1f0yOMBcXhgz+sxI1JDzeWJ/rzDKUta46N+/GLmyQbC14CT5Im5YdmY/z9XpZN+0WO+e/dbcRFkZ+jezX6+/CbXSfnHLsv5ccsHrRv8Cd1lc9G3etc+Egu0Z43vzWt65omSqngvGT2hexs08Lqi98r3NuLTzEfttYg7Lvvbsl3H1Gm5y2XvF8r5SF7SxXng/RCFy4A0nRE70bxT1C023Q1mVRr3As7Mxd61e/3MocNLz4Iy7LC+WX6vNRfEb+Rl/7U9/Hv+ib7+PE2/4/37/Cb8vv0HLCXQumWGqP6jGfnVmukyGqfjlQfW+vC7ydMWVxwSgchUxzblx/k6IMhzuXHUIlEG2tHWT+D5cXmB6HTdESThm5/QxN8SgO4uGM3IfWCqOF/zrOvbtvGUzrOhLlK+chO+vceG5UUJneONHwK/95BgwGdqP4MaPcfwEL74KE7nRfnjJzYgr68+1/QRIuPJjZM4VNjHNueklnPcrFsWPzT+eKSJad+cqy4Fs2D2lXwjYxwb5TtY5uFHdzADmSrbV7hi0nISgAOSs//oV4pnsqJdTRNQT64wpYKw4+rnqpE/642ffP04mVxh9fc0Nn7frKS/jaj8gfkh7lptzZb+6bmG8wwRnP+Pqnv0iN3NeR24ye9ow0H0W4N36+N6Yt/3MJiM3z9oeOJpkPSYCxfekP3sx9TyvHI9KPqaeq8uY2rffNUY+Xo9l9ntHbqJsj0ftT6saV91+OTf7cf9IXNwr/Xs8ttub1M9c2NO9cvzEN/m5xlKd8KDHlfPh9ktd1qPRhl1WUY+r0I0S9v/rvFjOW1j+Df4Af9Xx+/hDx8/4y+Uv4hDgZ/3L8Vd/+338c99/g9/Xn0iPv6DnTQjKcihbLaL4XrUM/WuYFNHGfVMCJDbknFNzqoQYrP2C0G2Qsj1m7UP3oytuFHBPwNleuf3Obj/iyqbWMacKtL0Lq46ru9wQjgtuAG0Xa7lNVnHlcznf1FegcZ7LesxdVHAOsZ/ZpK5GUG0bR5X++kWYKllONZtQ/8TjULL4Xs5BxVTi+pAz+Nz3G9yo5/UmN3a87RZZubKbC93nTmorPXYn3ET79f7EWwJ7+aZwddd+MaZmuPpb57lv07kI49csirIW+pdfXnZhpqr/sjvty4DrBwK7LrOgOGiJkyV7n9x7Wqg+i+Y6SoGFfl4AZfMAQXNwXiuWDSL8Hgbo+HzAYffug5WtLWf35kfzfPOlBKMNEjM9K24Io9pEIHI1WW+sfSIjR/8wZcbVfW5YttsPU240tV/jTf27Sre5iccaV/mgyPZkH1MAcdmU7SbXMNZzX/XPvReSYbzTv9CfQ/qym7NNUjn9rv21+cKV3gvMNuiUwVeJK36XJefGYUQffvf07tpe+xIsrU8MKlcpNyGm3gJXd7gZYqqu8VcAx3HDfkCblGb2u8VNUr9bBPadHf7NvrVTd4CT8jHcN45BWeCMuQ1wyx7ju2kC1HdBbFInTnb0M4797rPlKYTgn9W/DPJzyWXfceAv6G/wz33/DX6WA98Il7Op2PI8bXnDRo3vKjj0gN/0Q5pNgW5BtnfjaoubPK7s3Z+mt94kORV1B0RJ9URuAL+UsWP2sW91mwxncSSNq9LWlsKW70cJzrozo7ffBjcDJs8V57bITYyrK78B9a/Y28ZT+8HH707esPfjLPfNtuk/ap+Ow54219u/0s92qtYxX1PMrDnDUepnyo1vW4rZE/UGPXODwE3MbYZBkdjvBjdxnCs5phx9o3nnib4bYRnHdRjHd3OqXUjOuIl+xGe2hxlNNrEfRC+5WXGVccMYfh2XPL+M8jlPzCZ/laU6PUCk3mmKyY+dp7jUWTev6C14ac7R2gsFB21rIPl5o16Ev5G2tb+UJuq1F8Jn0LZsoz8hqOcS0Adu1emZ6419yDF7rpQGIGJH1OFSYg08YUr5WHETMT5qPz7LWO5xk/Oa2c9YYXsKaZv6jZlSvGxmA4XiUD+FeKntQZNL6ZgKjrF/Ljgmela8zmMq8mh3q7V+Q2bkZqirwm+P83rbC9C3HG53JfNYzuz3GDe+9Kcro/1kwlXsG78Y9gw3M4z7pT6FMaQtNuy5ty1dLMgeyW0S+LDoPYLc4frntzRI8yL7LMxngX9ev+HPf//LoCL4C99/wu/rN8KpbUwTdw7rXznH2eqHzxMVG9fTWAhc7XITzyXNz/wkzi/vWufFa9/hOAvcUFy1VTOtfx2R6T9cbDzGDWP0sT9yY3nS8cp66yS/nauN4/1cLVuJ3XC5nzfixkljf4sfldYn3RioeqRfJPd3qng0qwgu8oaPqfEyQNqRkbe+CYhhloEb5q2fWyHqL/3Z51bcRH+1XhQcJ3hXRuOq7ZZoN1Bkj5u1z3Vu0jmAa32m79Wy/djHVtxwPbNfluc8pscz/4eU3/Z3zJ4th7aFe2gOJDZgnpQMtd01yZJbS4zttkd1rbPXexY6+0enVQB8hy2dqt85dxizgVDTOpxsv7C0UnfTsVuAqHcjK8bWPy1DtFYy7Ax+6jnTu8BoY4PVNefGBonIlahAcVr2Dlzd4UZCPbFf4CbDyFyhDWzHY9xEXmVhP4cjsd+V3op53r+iVx+y/UQv2b4PIRh8buyf91dbxvqI7QUZZp7U2A8l7vVEuascueG6mu0V17Zf+QLxmtpeQ84I3MR8M7XfHW5823KmM7ffWf1vGctmv5jnbnAz4fVOKVGqtDMl7zYJvNWc0zaDkQ2cSW5zvoPKh0NR2n4vu6mgLVSlHNT18EVKr9tTh7+gb/h9/Qm/f/6EQ4B/XssU6qg7SzbfQfV3EajaC/VnWwJt3iA46W752IcyF4wYdahvcePiqktbDNgU9YDgZ/3e83PEFLlqsE1vqcfYH8bxkBftXPb0vPe03I45oXXK+n1hvwk3KVcaMFJc1f5af8x+PSZ7nuTSdrYDgmzPG7qbN4jHuS/QB7bR51KWWw0TVJre/mPPG0rj3LmVN0b/jHV+TnrAvk9Ivyqg0t/55BwLw6T1w9eiA6+jz13HcvG87/XJ7FnnoJ6rujcprFcdxy43I6Zr+/XzHITYciP70SU3sDKLx3mey+33RYvixztmTxeLNzO3FAf8iR5tH+i7H10tubM77UBd4nNUWa0uZXen1NoD7cvoKhD53vRA/Xa2g16uq186w8esb03v0fujDWP9mrvNEWqQ2WA904OF3hVG5kobNx0jEq6kCvelU9+f5mbbfpUr241utJ8lqdF+M71gGy14rSmPuGCuRvsBtokNccF19rkDfZmGehuw77zO9n1pwhv7HPMIrbyav/ZdUs96cub5ju2HmGq2L78czNUB0hswmQ0O5nnf9jsYe/SptydzFewH40r90PoQNw5zueveuQr2Oxb2g7bt/l9lP5a9WwTAN7FvT/U5yQlpW3kbb20pY3Xanp/QnmgUnP0juJYXDhdXNAmqx0Wk+n6/K2zv0rrt/INerr9Vnsu5T/yMNxwoy6CKf5ft/rnvlje06um4TnyTslX42bD1Y5xHzL47GAGsuTmKj7fzEMYyDrTnCHUSKI0rzouD3ohRuq05p6bcHMEGYjm1g5TKygnmKrdfj2f7dlY5xpfqGVfdtiatrn/tvCRrmqxPbbyx+FWUC0DObXWcK5i0xqjF8z1eS1ueP/QlmIKzLck760l7/+xcXdbGo1P7e1cFc7fBvu2pv42rMt9jzlWk53IFUHMbKjec9weutrgxzKVBG4trW1tebBeNNQqg+n3k5qjcKCCWj2FPjG/aj7jM7Gdn+ibBBitunA9KX5p5yU2G2dvvS5dfAsaN8mkXZiUZ9NGyTIL6tsiiZ3vZEejv6JSk0O/a9cG8J9q+vKG3tzb9HZLimVoHq36HQWGCbSiKerUf4K+9m/P3IQzk3bZUzBr1F4IB1AG9RgsnvkRPH9gW3ARZIdl2HrEmVaYt3et1u+Oi6EvfjO1HuIn8ZPazpZRC9SZ3Yb81NwatdRx9l7tu+85VN4Jhilyx/ZhXSnkDZgjcPTb+dpBULt3d0SvbR16dDZjZ0/kg+xxPRLq/9lJe0gaU9W7bPompOvEzFto5yOc6N+ImS3bQb+/9CDeRV/I5dPte2c/tICulv/oMNyRbfrcnLIq+QyHS97DMfs1fG0Z6ivYQNzmvd4uIfVog5sUW0XWyZrHEcdV9BeY7rp/jTr+t1uLV8pe4bb8NR8c56gXFBusR26bd/NPWgvDd8OYsfhwQ6U+O7OnZYUsXa3weNIZ4vUnOIfszB1vcBD1mj47NMHP+XnPj7NPiQbe5Gcd5Gy3Kf42rnq88Nz2/nPXbqVL7Y6ssAHuaZBNQ99Ss5Zw87w9+Ay7W9xqnEnnsXJW48P7Y8saF7VuusK1Oqe/m8/a+rNmy3V5peaMy6/SiXrD0CziXF4LP5bY3JvrFrGESlJVTEHuKrY19IbwQGm9q39/ISv1TOytujGe7cVJOqFKWK/Ynd6fLPz0pTriRjuPNOLWbiQ3zipuImXNan48dIRYuuTESjVeVwX5rbhiz2Y94/VHetXzeEzM3WT7rC9/lpW+bCNh3S5pz8GDSJjR8wqze785xwrWpwTe1v70TYqHXfVcqtkWA1aNzwMR9q2dGu7uh5ZG0nSLTc4XRw2B+NB6s51IadHVsnXF1k5veFq7tnv34aEHxDeh3smZ6xUt3zDZMR/sRlmi/lKtZH/xvnkcNskEq9HnZP4S2JOveyavYeWLd32aouHiwdX1PcFz43JW/Nu4vfS5wFeKeY+4ON0N/iKt6MzJwVf9Vr2Ns8Tw3LFv+OBvoA9Em/Q91Nhv9cfSjXW4yzHeL4q0+sbMpNveFl3b6fNW27XATmLhciPX4v8UtByqbsyhOOWAfFo79TXuZxoa2Cygh3NpuOijJVnG6SBQ69QnFN7FnBmPczvuXYARNJHe5abnNt3oTLW/+qbd/Os6leYNzeWkw46bfrKVYRIzvujmHnO0pRccU/Eakfnah+IuifshbD6ie6Pz2JyZpabmz+9HMbxhjif2C6k057yGRQG1bc7T2ZY5rXk1WnV6gTuK1f6eL3z6y/KYk246GfKXt0U6S+a5wOb3lovxAxwQo3oJDGb5xLKazVq7e1A7uxIX1p/z9DT0eD9F6c4JvTFxxIw6nQvqFogJuuWiGizFhtB+a/TqHZWHlNTfMYourHftFroL9vnT58cTsuWITnzJY18faUHyT7y0gsjuz0c0t2QJ9wtLvRfiE3R9PH4B+xwHBd0kcdanXJgW+PpY+APUVyn0wbjsU8d147UFXErgs9O5wE2WTCUT91e7WMVcNcz3pOeHqPjc55qNxY3c1Z/bzXJ3tTufcEvzkzy5++7Qu47VPAN9IDs2eFbN7muJ5tbbO59rES0Jb08nn2uf1yva8Vf7gc1KWONjE/EDnNGKK5UrvqrSJJ8pToZnP9bbdX3tMPc9Nq9sY1o5GnytPIM9a37ffhd4JN1v2S7jy3Jz03ye4eUERAb7J9yE2zP5dI0ir1GWv/d2ZMonqSyztwr7XObLVP4nQsgzRJvR2cyi/XB39SoA2SfX5qXqu9DNwzmn9TZ7KACX4mv8L533/fsuIMXDl8lNfIsxcscRRFz7ZmMB66o3/+gYX31y45gZ0LiGbsP32uOG61GXrRe7EQU8PEm602MWW4tkmKm0pLvsN7L1GPx75GMzGjGu/sbeQTunHjSGNNglzABurYj7ObO/1HrB34iyn2TLPeNVVL08LxtDfJhHmAN23JfwXaR3hvMaMvdfV/YYwKdpTzDSmjCvx49O1TcaYajdJ6gU8v86g8DlV68qTNKZm9tvkZsz7GOzX47WfMc5xei/r2d0YEblaczP63Fctih8XZk8WiTaW8u7ENzdw2GVEVvd3OoF+IdfSqZ3L3uFpx8/2V/8K+kxPTIF8iWX1KNtxWABJwCS2Jj5gBsKShqWeFTd87NzjSkF3c01zZ6Cb7BluMvvBYYpcjfbr7BxNbs2Nx6zu2DHIdj0+AVrynttvaEvclB+0rfXvN7F8MvELM4vsaM/7tm+pt8WYNsD2QWzRfHLU+3dH7yqm+Px1t0F+ykAX2zY5j1z1p53PcEN1XpJoth+46oP2yn6eq7vc8LlO2n8gsV/gytvviqvH7YfQ550iMD+Ll/n9q41pfqJltS0mLR/wssf6n+jvzqaSTYXy+I11aTKFSx/7/X3MbOo8w+TeX4JAVLk3xf6Bm3ku75ffpc3ZMEWuxqnW2J/2DTZF854VNzmmuf32uAn1ar8T0m7kTbkRfrpc+y7AQeOcSa/sdzUmDHpTbsZbW8YNgk2AOAcwjOJlUz1W7zu4Fv9K7OvO6qOhc2PI2CtDH27FEPPXx8IUEynLYspKf8LEODxXIzekV/v7hcUPYu7LcipfyPEYUv54xH5zrrQueR4xsWyv96O5/VZcjXPFWP+yRQGcv45N/T9vKaMrWnbkgqJPIIDm5a7e7+lYsYHNJ5dSFyg1JkejQYdxzPXGxHpdd+8Oub+0X6BZW6AtuWvv+QDwE+srjMxNDF/rg7b++wsUtEmNRFmbzHDmeYibKGunn9sv8gjCv2s/nerlf0dMTUx8+6o+keUE7rXTWUu93SoN/VUe+me2X/eXjxV93fbRxn046pM339ci631y1+euMNbj0gc9P4B6rvr0qx5PMe1zE9uaPuYpG5rb75n9Glf9fuV9bsS3b77mcflzmQS3oWNT++1xk2O+W+z9KT956Oh5QhjyFcVSjFtw3cyS+D+XQxQnbSs9j1//l7T/WQ/8ZLZL9JLnF8bkLx5kiKsoz3p5BUTggvoSueo7u/XfZ37FXK248XpH+41L+Ha48f0wpLn97IyZH6G3lfJuk5/s9zZzbmJJ5hrIuOH/Wn7v5+VYYCuyzay1H1Myf+3nbRyI0kXsaF9mOzvGGKT/p/Ul9jobx/3qpYLZNibJ9DKueUwxJrRfSjt+Y23kJp5HKsZyAeRtM16geHvGc3E/1/Yzzbnf5PYb/SgbhRDaNkwJV3Gf0vE8o8992fLjidmzpdyVOPAd3+r7ZWUd+PdkuYWleB6sbGFedZiaSP0uN33Cr8HtVe1OtLTkkgce4Df292HgMfYQONADW4qaviOQ+GRosn1nv77wwusdcay5YYz97kv5jlDn6qQnUln/6uZRULHPSLKeu9x4jNYHsx8CV9EXTPZM7Pc4N2Trmr3aMlrx9rO7tpn9xv5FbuhuVL31y/6qpgfGs5+i7POa6a0sVZ1+KRHzWieH0jGZE/vtA4oeHzMr2/vkPtp+tHV//8FzZTsMQsy+z3HT6uUDgu1dk5o65v2tJ2euBBYnP6PfSb0bF1lMbdoP1/Z7iJvovw8M0ALUd8zM/m5rhCFf8Z1wnqj4WEfAidZHbm3jwGmb+dT+9OVzNk1hPWNdCCf/O/aBJ3f9v31MIH/XnpNEDgDfAzekRwHQhiHT8SaTrVz1HNSPmaeav1ve78+wFSLHBTf2d+fConNtv95WIQM3vFGC7QxXfLw/I+zcRBz+O2NNF7lvaj+6QTVw4zDdj2dbImro2KdOgbMl29ByXdNT1+HmPld+sVdEALSnZibb3x3qH2lgf3U+aP2lvGNt3VhVuWnnGmxS/u4XGmcfTx2m/mapHzM6JnuXSwZMdafCwQZ5TJVd+U+8NYYLI2POMBtcjHvC9h3t19oOfjTGlLNfXXXTuepz4+fs97Prn5NN7PejvH/5tAuzN5S7p79z/EHZXUwU3+RsW4LyAAP4QGsDBbuRwE/sxAYFc/AoizpZsRXDpqcPJgDCBXjByecCEGRZL9ogMGJCTVBd1oyhNY0cFdds4hKTXeyfx0h6wyT4CIHn+6dN+oQ2TMBokzj5yLlhWbqPJXDruiNXR5D9VttE+z3GzVwvD+K2sYIgt9+1v3qMduKmV7vsm5PlpUE7vOZcAMXWs23PT/DSEsIk3AdpbW/xSgndD5olpt5AceIwVXsQV34w7ph2uZnahDZlUJQc1S4Gn7LfFTdz+yn87q2vs999fx1z5L0iKJ9DOTX2EWMuD9kni7MeG97Dhs9dJPyc4CcuY66zqZBZuMT62fyOYz/3O3VcugsnBb1zhWYkBXDqdxx0ScrjYJ7L8zw5zxvaMHJOHW1gvyhORcXUZaMNnrGfk1Wldyg796g8fqv8n9A6OXVbJSSx3+cAcRfXt3beK9l+IZGNxbG/5VzVj3SdN96ahYvemPd9nFCuU7gWM17bFvBCvq8+p57om29c5as057BevcrH6rz7TQKvxI0SAWN+GuPCypDr0nzTZd9gPli5Qn+P13IGxzKIK2CVU72P7dpv5Kr43xAXD9hvHF8z+/m2M9t/yfLjidlz5cCJ3xzf8dPxvW7nfpJj9oRiLlO+F1GOCrQtNej3BLw7lXP1cDJJXoJiYXLQbz5ZK3gk9hh5csIYSW+D1fV2x/Z38vqAWn9VCTtYdcl47+igkOnc9DpPMBjTyNUJj7U7eckj0r96D/9+XvxYcM5Nt9HAVeifnTXaL3IV15ff54a4WNivJ2D7t9+BY0wRY+5z47TXydpo3wYLbpH7nB0/2laXXY80Dnm7dY+xTB6jDQij2lOaPB7nGAEQJu83JaYOdH3upkjAFLmytv1O457PwTHQ+8ua+65ho8/Zvcr2jhdhums/XNjPx+lJNrtjv643s98ON4z5jfpzt5RNXhKcbbmqPd3laUVH5XNO7KO3WT/UZdu23wDUfWes8qOU66qoXSwcOMH5yuzACLK8aEea7NF5b38p9bM9cWD713gWzjlnlwlczezfMSoGrqrfmg1QLQEB7faZ2SDKdh/lllNZ4kpExqWoQrlcLQbLxl09NpoDdz0UhyNXfSzO/bvX+xOn0QbS/tdt4EYv6Voap3Xnv46PMAdudKjX9vzS9SwuVOtTMntNpJQjyir6axQ9OpbctDzi9AJ6BNmY920upQoR+0afkP3qWGVdoNw22ivwSozZk6TWXyebxZQ2TAe6z/mxStscSBFjbPSb/p7ZaD8RuI1yMlmjpMWUmd7ltsx+83Hc/5XYL3I1YHws739M0b7s7BdePunCzJ6OfcdP8r0uY0R/xC99FzIeW43y/tFXS+ZUtzswlgBaaFRZlPPYdP2A4HsL/SJ7agjdeh67CDAdIt0PBKgfHYwYew513yUD6OKyFL6EKF+V70tA2kcUMZ5LtAeq50ZTjIyLC3Nu/yu79RXy3w5pdS9aA56+37HNTW2rZ87V3H426emWsnb3uan1w2NuPic8VEX79aUo/PFNUPvoc6Wt9AEBNhxNuAn1s3fJxYUAOKVPEyKPvESvPwnqGPt0LPG5o+uVoDfDbLyWdbBS7m7zfKAy9FYnKPYUl32OB1yeLlzpvcoZdlPk1LMR0bmq/GiPc1s2aD5XZJUGSs/VLjfR56CAHv0ZD/tct5+dR4kri4I+ZWGuWG/bYCeNxytu8GRRHPiO/qyc+sh5kXzUxUbsE5h3ukBaxGDRbfej+825Fr/ou+BJHRPe6uT2TfpkMsvH46dCePOJ2DbkjdrCvotkN52y/qL1t597/oHyyZhBVulLhvs4Z5tnnCrl09n63Q0YA69B1tlvyg1jtDGk8MB5EaAsIGZDATQs9w+88mdRuM8pV+Tfo17DdGJlA7fUup6HbzMwFybQPnA85YZzDoiVMadGWQj6RRltbjHIih8HSlxMxgGyWX8Fg/KGm8UkeaMa2T7EXm4uJTFleVL62aa5DaPtT+18ZPmGZe0j5XZRBtjNtYRX4XG8XmQHv/G5KtqvE9G/NZbbryzVpLzPr5yE8cbbLxvHKS5CPF776xiPX7Io6icwPr6IyB8D8N8C8IcA/AzgP66q//ij5/ukCzPBzzjwE4DfOX7uEwPpj5DtDuIRgqM5R/WavkyQlvi0QAPEJkV0waYoOzCJSP2yfb/rfqq0pVJFb7l7Yx9HBNRNGI6QGF3dkrfrHzWm/p4KvB2lY6p1TyUF+Mv23D+Wtfh23FAg+f7ALWVsXBHJjLnwKI2bU0pCgtKSHaHB6gY3qOdXADhoi1rqr9nM268eqwOboC/2us2N9JQ/5Yr02qDR7Xc2vd8OpG2tXpbrFXuemQ2an9DAVv+Y8gi4tuVjktFv3HDePkx8KuoyDWlxYXwV2b5T2Vm3857pjYNT41XKcgkkftNiwV5uJp/revvA5250EFe73Iy25+UuZk9tg93Bk/AL+yFwtcVNxGxcsf0iV8F+xecm9gNwHJ27Y8LVPje9v/Gmzk4RAN/qhMx2WgX1kW7OuuWacXmeuLwPlzdc7FtOAumRyrMCJdMfrU9vjQfgZyh+gm0EUKY6s+XFHWOSc5Kcynmy2LD8eGrZmv7Uo7etZ2xcDfEcuek5tdi8Y4pcSfVDXv0jDXTxZxXge7tIP4hXJV79zZ5ovy45LvNEnQYyN21b8EqytIrp0DoWCb5TrBRe+yTY+tf6xtwQpl5f2e9M7Ne544+9v4lZvN7sVAmyPreNF3RC9uy+LvBL7OyTOu0pL4iLiqZ9FxanW8bb8maS29oKBMojvFwvxiMvR7R3XFt/qL/mN3yD8BvFxUlc1Pt5I1fomFqeDPaz10K6rftKmYyroqfjepN+47Vd+FM8dq6qDW7Zj20Ax5WY35D9+gYpip9Ijwau4ji+Yz+rx6Wacd7p7YevXT7vidnfD+C/qKr/CxH5t9f6v+XRk33KhVkJKmkDX/HHsBSHJgYAJed69a621K+OWLxkzZKk1Eh2sm55INpFmaUKEXWPmMvQrbBH24A9ZheTIIwWmX3YOdqAQphqf9nLLeG2Og3z/F2e3r/AVcXUuEHnRtqVVx1goHQuoDVt6wcqR+7dM2mTkzbIA/WDjNL7t+SGRm6yX7yjGbmSfnU92A/wW9Pe5iZidFz1J27tI7Jak1jwz4P0SjMx8yhtNBExHhN71uTcZOH7k2Imzm1jl+Y32lvbt8I6ZrTZXOO1uRpvryy9f23wwRiPCa88YJqgTWJt+U+x0ehzzKuCbGCc2MBGA1kaj5hh7OUtcIVmewnczOwXuNKV3jwuCld0JupvkYn263qj/UT4vNJ47/a7yU1tW+p4uNhksO2ZJrQSAeVplhxd10H8GFdC+ViYz2QMaZM30eZ3NtU5auZv4SOdlW/V/nYhIKZfqu9KwCgcZ9pSqdnwaLNyu5Fk3No3g0rP+I2pZsN680nlxBHi2ZJN44Zzl7Cn2dOAnlNbXmy5zZ409V3geGUJT/jKTdHMfgqhxw1H5azXu2zjtV39JPazs9rT62Z1rXx12chrH0EqBuYmxKCI51VsY41gvzj+8OqZ1kuaHMPiqtkezcIHxVWpGyP9mYe3J/Go/Tx9gt7zac8bpT/tYgNweR0ub2jj0c4N6U8Ymz2HeDQTKN4os7j3XRvOHksiwKH1Ul3gZIVym3FDBoPl/5YDhnhE65fFl51XcdCVnZbXRlousTmpVH883HzIxkB+Z5Ht5zPMnv2Mq7YZyGA/rXki6iFe6zje7GncZfaL8Uj245knJKzaCHOrH8UVBfAvrH//lQD+mWdO9jlPzBR4Q9kR62gBUQ6w6flNHAAtEMvf5i62Q5WCJxR9OpfI9rRZtt1FvfvB2bvKl5cugZ4sx3MNnWshpO104o5nf1MAAIB8d2+hGWr+2x0T6q90bOWuifYJeHsCoUGWUAjLEpd14HAviIZzXXNj7QijceX6umc/m0goTVhuc+PK2S8aNdqP6qlsqEcuJLaO9qwZlD7Cm543+k3Vc9T+eT+iiUsdjMaYIkS1zkvw+n9DB9J47Lz6SYA/Q5lQdNuL42r8u+eF3j/PVSYXfmvc+G/6dD+xSVa3vWC0X48L35/yR4+TFTcRn+Mq+hwAyJnbz2nXQVZdLRtUN7kJZ8hYviqCsrSK+el3zwUQXoYy9wXzu2wL8HHMKJ7TP8Ui/aV8OeuTs3Kkv3Bvk72i9wi97Zbl3/v7ucN9liGnmlU6pvZmbHsyFf3ubPHt4nrKU6/bzRueGAMhL5J/d67gcop9Iy/y2u2nrSfXuZ++Q1bHHxG/UUMpJ7z9isAbBOWj44Er66/9TTdJp3gAF++iaPy2OIpcodejzasly99iHqkub8RNWaCoHyTO7Tn4nE3OKZf4jzQXDg5RvGm54LALV2OH+9PyvtWp9+NmP5O/q38p+Um/kUbtBfXzSHZxWjbY+K58SdGQBa6kchXmAAOurstw9OPfHVda/fatzo/Y17S19VwN9oPxyv67GotqjblK7CcCfEP5BDg/0dXA1Mx+b7A9XtdziI7Jzz1S+33lMoytH1b+0wD+ERH5B1DM8G9+5mSfcmF2QvD737/hJ/kDvH37jjfpG8raRVr8qnqttqcjRn9Py/3OlVpjllV1dw6K/ThdSUVQ7tr1rVP7xZk2LeqGAzdZUT9UgGQNk4Dr1NJk68RFxL4av+Zm5KLXT3SdAvgLqZYcPDdR1g60S+iJXuaG1/4TFcM232v7MYve9sbVWdcm2cXlFTeDXuJm8DmbALLfsO1ltP1cb+BG4Zxbgfrh09peZMCcTTFW/Yt+0yZ4hDHl1Z4cVIXGTfFJLxunRabXvXu34MaKPc2LftN5pWlEiBOw7ZPCk5EZNxGj0IRhJsux3Nx1Yj/HFT0tuPbX7jeZ/VJumr+WmWDnxseu4zhg1MhN0v5uEVF8k59bHvH56hzyVytKeQE9Bg2T3Y3O837nwy5Q3gB8lwOwZevoG9TzxR7nfTt1xNjsr0DfzKDKz2Q5HwMQfIdqeb/M3tTpNo3jTbhwmXDDOcPyvs8DoywIY3sSD8HPEHxT9ZNZxI/ojvbz3OS5vHEtxpHALj57PqLzVX/+Xi9g7Ykd97cr0jQ/dV7700rO5RBbJUOyLq6i/fiiEXXi3i/2zdd7DFL/0POGrWUZ84akvLKva+2N7199h1fKDZG+lBFteaXJxryhlbvvEHCe7v2XCa+dS+uvi2nlFRP1+7XSx4xuGd+/ZgOU1ymM2x1uALSLKePUcVXjQKofHuGTTbaMv3ETYsyuis6mdsENY7RKhilwdeBsS5jNfrM857giPFNuAkbjiu2XzT2+XFHFkx+Y/iMi8mep/nuq+ntWEZE/A+B3E7k/BeBvAfCfUdX/sYj8bQD+uwD+xKNAPmcpowr+4PxWg7I+0m7JrXhMedeHH6v751lt8EB/dMxbrcZH8u5mBHhSJPj5FKgU17QXZd2X4EnycFM6bVi7Xvb5GsqSY8raGrp+50Wm3ID757ixqQ8vzwjHZM1Nl+lTNPuGWXwuGbkBhJJvtx/Ec7XClPIYZDlR6AU3cL/k9rNJy9R+iGkq2jP4nDtL4DUkRtCxTNaj973xS0rYT9qldDsb74oX8nPtQ0EQ9TqOELnncu2v0Z72lKJzP8ZJrsv7fewVczXjZsw3XZNNaryk2S/qyX0u4s14HbnpKMqyKrTJfrRf5MZf4HXtK/v1ej96RIyT/t0t5UKXc53lCY97lie9HfrNnN42i8muzZbCAeVCw7C8oW+bXZryGDCL5xFj91/OG+OzSv9U0tZ7WMcoZ1Iu57x+xY2dzefbbIzsxfDzUiyFPV3kM/uxOI4IK/uBZLsG1AtRHTCBxozIZl9qOuZyuHyyzsfXXGkYI6P9sriKHF3nDXdx56R0wquvD6sTat6wDUD4AnfIqY1HgG/FvDXPjDm1y85sT+z1ti1OSi7rF46+iP8P+poJ3kJ+n5s48rhPbFRMB2Gy2FXEpYN9HVPMsQLPz2XOQG6/kauzXcAmBLW2fF7myq83ueJmHE/VYf7i5bknZn9OVf/4/NQ6vdASkf8egP9Urf6PAPx3ngHyae+Y2fr2bPIIjINv/B2hfQyQcapBg0BPvejDXynf6oeu+QVJO0N0WAEC9nmJrl3nWTQZ1BZsivpyc9A7csADYr9Pc7h+skbPVZNVmxxGmS5aNkEZMeUTD+YqYpoVbVmCuYmYmt56R1lU3b3aGTcxrbRJ3S37GZaIizVEbtKeonvhrK2GGg8DfOFuGvmjlzGG7F+765Zj5Pu+0V/jXW8+6tkYfSG72299tydlqd9RTzKuMkzjQBK5Gv2E6+YT/aXrDBX3dzVlGWtzruYx1d9TON0NoxU30adzrjyufivIH53H1L0iqEvYF/Kz3O3rfdLbnuzIBKfLsV7PgTPgsJtZOhA4zImSnMQ5JTvGv/VFZdYj0P86Q3H82+UGTpbLmhvm0M59AFA924YRdhmUWfCKm9U4HsdX+9u1Fdu4pU9cPVd9HBy5GTGB/l5yRe0HTEPbmAE9nlmc+b/W+Tjj8nR6+vu6B/r3wkZUHPtJm+ojY06d8TpidFmuvibwBvsERccsAZNxEHN3zB873ESMMZosHxSe+vtcfbSfzXEUrFFvcsMYTzpu/bablsfwjqAGbuDO1VAr2lxpj5te4njEvf5RhvLPAPgbAfyvAfzNAP6pZ072ad8xgyj+0vmGn1Xxhw6b7pf/2gvA9utb/bdP5oAyTRnXas+WrLErChQ/A22bfDu7bcJw6Ik3OdvLuLx0puDiF8l9ovZOHieFfAxtWSH3T233O7FXtWsoVUVZ/4yrPjGAwzwboNq5ZJS1QU9NN6QEuAq9KC1QuiDodduqYOzflf1W3NhgDJTdNGFbzqvW7a2xyRV/lyq/4+kHZN+/wfbi9Wb9a5jbeYpvOYwTWe5Dl0WIE98/7zf9u0XtSUDFzFvlliGJfI4xycgNf3CSZZvfDLFsNrGY6heJtuuZVMzGbTwvIDhtwwHpE4reh1w2csNtmw3qJORomCo+9jnq79x+ffcrYywOujP7MX6TVbvjjQKyfyh35Ga4YLebG4n9ZlzNuOH+8QRyvyje6lJG9jOeknVrrnJqyTl2N1joeJbbrF5yGOqGAKV3J/oW2UM8D3oJY5pjer5i/GwXi6yYN8rkSQA9oPi52cFylHF/zY0Gbha8EjdtzKC+t0mrCiBH82meQMcnVqmeylX/BtbpYiOT5SdfzFX55ENd5q8Hfq5yx4DpaiyW9t+jYtoZx1P7hf76jwVneSPokVHWso/7HEDQM0yo1fvcCbooC3k/z7GEkTY1GfNEfPljMcepuizvnwLYFvBHRel8TntfvZ66ayNhHMaqBTcxp/Z3GftFi72+wt8z05q7u55kvJHI4ywfrzHaD81vKqajYeoXZ8bNbMw4Xd5PxqoFNzEe2X6P5f2PK/rcUsZnyn8EwH9dRL4B///2ru1Vt+So/6rXt8+cOTMT8qBGyAzq66CCGIKQB8WIjDqYZ0VBfPBFIYFIMMmfEIh5MBDEF8GACCqC4CWCLz4oakyEeCOIt6CYwQclyTl777XKh+7qqurV67L3OXPWd86uH8yc/X1f9+rqX3VX9aW6Fx4C+LnHedghE7OEvD38YrrCgzTWBiNxvuIk5XpiQAcJasD89cWAdjE/ASjGjvO/EwgjJ1zxCXL/zgiNVCaM5R1r8ix2q4oMJU3K8ZMjL6Puy/nfuPyPyMusB61HpDpkkPqZcsnXd4mrZWNgy+2vmtYUJcwkx/ery5T15prXXObQk8lztaG/Djf6rDKAIM4ycGpeDN5y5fVny7Uy9R1su6vRyrhUrt91zRN//ZtNXv/mlz43MM9RQ9rn2V3rzcqdTH6sI7TXy0/IL6v05076jq9eoCDlVJm5SWtlLPXjduJjFwVK3sqNyiSfT+Xpoom2bQsmI5PnxspYpGTfznQnT57N7nr5et075lwJNzUteMbVMjdt/9OFDqCsnK5w43m0LcVK6CfVLVc9bjyvPu9eEPJ1+fkVJfaev+XBS2tTrT1e7r9t7XWAZc9mpEYvBN3Z79vyZZva2mNrf2URQn9rFqRIgxRHMBIn+MuR9nHT2mMZyK3nVblOsMNOtfsjskE4uRBo3s2NfCbhgjw387x9ruRqbya5Lp+dj7T12dZf4/Novx+f6a/hdWjy2rNdNvW6TeVyzos2ebXc6E5PtpPyaUhTfXY+z8Xm13yb4rJN1Z40Mc/GYZu6J+/XNHomj7PmbU5tdWtT5bnqb3QsBfN7y42XcSptWcY12n8JE4bk27b3xW0rVdi0wtWSvtb0N+cq38roF2rZpNXxw7q/Wbbllpt2sutDq29j+Z8WeF7Bp1Uy858B+N4n9bxDJmZEjAfDQ7yQrnOHoDJoRGuygHZ4KmaqfdO9XdOwZ50Aa0gSrnjAJZ/KxMw/mUuokK4s6bOokcPK1ZNpLqO9pt6u8pbnlH/qOo4JaieweV9Tc5PZBlft+pwOaISbpn5kc7Nk01R1XqZvp89kTTX93JXcVH9N/YxMlaHCVQLAyfPKlb89+vNrYfY3r89O/dxL6cR+2XbRyCy53c19unPieDXc9Bxmy+vcdZRdyySrjll+/+oHL+PAKKvo2jpQdTHnRsvp82q5sdInmfkRQKw7kCCq/0qOVD72uPIBGvPVcO33a1yRfoV8IJ54gtwYaa/1loSt/swD0Ndfy9UGN01e3SUrXIltctz4+s6l9lyp4+7brhk3RE3emztoKv2RKTWvg9AUMznriHupP8/Xsr1ty3KPAMCp7vjXapX2ncDuubXcJXtFtOkjqFs/7+f04gepQwKRyL2Tmw5Xs3LMc3r6TjX9PBQw707Lp3k/6tkrSUvFplh73JbjeDX6tGlb+5SIwazXG7Q2Z5EbW27t2/Jfn5u5H5/rb1EnUAtqzzdu29R8sVX/tSlr5dq+rjyqbdC0NZVsI8/ydsJCxUbzPt1rJVsZbVj9vBy0eR03cz/HlMoX6zrR+ml9uX7P5d2V2haSy9u3qa39nfm5G+rP85ovI7H600umln3inCvv56r+FrmxY4/MTf7YngY8IzBw4HvMniiO2TGjCS8Nlzl2eWKkQXbNdPucAPciU8JyyI93YezCGuztSCNDd8lYTGzGCSMG+Yb1Fhy72mBvFKzlOmOjv/ubeHSFHDavGdto/WQgnTDVu8KMYYTu2kgf2+RGnGPDla5NrfMqtx+hDuiNTHVwsq2/lptV/ZHaqaX6eW6UE70y3G++L+nPcVM+79IfFJ7Xfv3sGNMzP5/Srsm42S+MYDaoQgafiad+uyFfh6nZy2tNnh24tTLPZGSbj8pCg4Sx6Ir0jNdGZ9ZtLnGFNW4aGVG/I4ykg1BZh088zWRY09+T4GZq6pd1NRmZGNIde31K6y5P2Wer1ripN8pZuW6BoVjgkdTSreqQLJdqj12otc0rQgNl8F52fCQ3ZY5l0J8vnSk2x+qFtm0qsG5jbN6MYifZXMRAEp6X5SLi2sYXy224qTqkppwOVwJrN2vEStMHmXMbGohgydnqV85eOZvCUFu6YI9N2jwByD9U+8RQxkmftoeb1XIka9OulvRHtn5Nffu+KqNnU43YM9stIfrd+llf5fqJrZ8ufOWFprn9YprbnJk+y3enYp/aWw4Xdd/ty7J7JwuFvlwGQESoNwFj289N9SXo+7iZtQXS8Eqxwol8Xv2lsc+V644tb/S3xk1bP6s/x5VJW31XeVDXlpeE1ZYz9NbgLW7Y2BUicF7iOl/wYaGMTxSHTMxONOHl0yM8SI/wyulRfWfS1Fzh6kMC2vAg37FyJ7SrpjlsJXdgwsQ5eOZEEyaMuJdy/K44pxfSWG8gukfX9aWq2Tjzcrnoh0CogfHr6mthN6eSMF/8MeUVQTGi7EPQiFFfULnJTSsjqRPupbW/AXnXgEGYmDCYGdN8G9xzlba46ehPIL9p/ZqwABJDSG51icv/bDu6jf6Uq/m+iM+r+pvlbdLm/NQpV3+FS2t0b+rX8trqPnMjbV8dH5BXBOd5O4NjNGfVnIQacrfEa09GUcpUvIRMygA9nK7PoprXl9P2HDOoabja6hd590nqp2GB8mT78t+b6O9JcKODJwaVc6cyLGhDo5b054Ne59xsyWi56Yfe3gyJGA/oCiOAi1LnkQlXSBg5l77eJ7k8p99/bZ3z4lvCyHm4JWHsE6dqNwkTLsy701SC/TZV1pOXQuF6NpWgK+I5hImLNMDYhHnKev5uf2O5ojb8q5dXfWAbfis3JU7I57lwQ26k3PUwz9bfzG2qGzASqkwTq4W6CTdiI93NfIDTiedmLuNS6HzXHre8GtuWfzO2zvgtPesjtrzvX/r1zeXYiUYdX0D0IZOfHMq4aEfIlNOEV27pvuWG6u95oujtvu5d5TPWhFVerR1gLXEvN72+nOWbZosG8hyGjEX6tsq+VFvejbuXm16fWtLfUHuO5aqvP42yKGnrS8/3cmN8U+Cp4KAzZoz7dIWX0iVOZQY+EZX3J+Wm6EOatNOomZKQorLybjqxHpmVJl2cMihfrgHGBY2lQU44kdzGk134AF1xTKRdiFw3K5+NjAlcvUddfWQbOqbdvNbByExF3lS6A5tyYFIzJlDa4GZRRn9mpYYlkJGpyGz3FLXT6jRHHGwNQmm5arlZ1F97C6YNRVVebViZDXtJaI91i5bYTKz2cGPbnBy6hddf9VI8a3OSNsf3U375JxmtMoAavmHrh9o05MIMHVQzKGn4wC5eRWPlTKBOYcaiPaoGm0sYi+oEtS0MRiPCMBfZ5iF3NlzD/i686nOSWYBBcYLJrniiGaS59plMKKHWpfKTtrixujcZGfCubXJ9d1N/0D7yuNzYvNmcSHlTmSz6dqMvv/X6o2pDHp+b+m672ldtgv1IxLjAhBO4rJvn92Sp7vs2VcIGCVwuo8BMD3XwTHlyPDHVIKCJdbdVdgDkgicUbjf9TWM31C7LYgdB3htHMG2WbZ7yugPy9ROi83uaTDm1N+y3qRpi6f1N5YphJqclL+d2Zn0XWFIAlNTGbred1q+VWpQLKFx/brhR3yT2G1Wm6jMgPqPhahc3xjfXcvQK9EVuoBNVkUl4xY5yqy0HTFopH7N2AzDInDVkACmprVO7Ic/t6MK0hUGSwre5PEYpzzWhhdJ0bLspQxtT4ro/7XLjnss1jW9zOiHpcVPbTUOma59b3HT6cm5Kk5Op2lThCuj7gdpurFAELLTP3e2m+uJGf4UrvZhDZcp9aq6/WofK1R5uHMVN/c4LDIAjlPH2SDThnRdfx0W5aEMa7xXbPRMA6JHM+i8BgNyeM82azEjihFOdmOVrR/NK24AJ92hCvpghvytCSiA0O1S23PJvbtqNjNWoA6gdC7p17dLLHT5cny8mKNFYLiWBD6Uyg7h5F9mSkU1nn8tseZWLIiRegJF37yaCW7krvhvJPm+Jm1bGUq4Nu8ESV26wolwNRLhG3h2tMokBu43+jE6wwlWWUXQtDga1PioHldLG+oLWfv2K83VSyrBsdOZ1i1dpv0QA01jylYmjGYQw4F4aC1MHqZ91NfXvMpnza8hbvJaJB1DyyupkcXCiX8ohx27g79rnWPU7FB4tV3Mr4GXzMpp2Ryg3kZUwN+MUc44N/cmnJ8JNqbb5nepO51x/rm07/Y1Pjpssmu/3NwSB8SKuMJSwoetskcHMmHCBRX6Mnch9krs2VT6PxeZz2YkT+89GjlPRrYT1Lteqz49eesC+rfSeZXboxKa2Y7h8kQu5cMReuftsKpVoELWVjitXhh+A1cltLUtCKttX+W7LaLkBjD22UQgdbgDfzvQZ5ogCA2zO4t2EGznDLOUQyS73Dm6ER27TLpfLTV79xvgmsqlLWyftvwNgDjYs1G9WXxnUl2damYt9H0Bga3PErzk7UmxBaZ9212+7fc77crWxQNWFtzl9bto+JdwkoHjIG3BjZJa+PNBUmggbrrScE+UdQ264afsUg8rZSrucuYObVsY1/ZXnDUSVN8tN/bNpczZseQ837L47czAjQhkfA/dowruGhyCa8C3DFRIBDyfCo7J6ds2Eb/CAS3Gots3VzuCNav2xgCENecIEwonzhFB+GzDWcMWEERepNMFiEShhodzS0Ywc+SxDacoMpMR6vbS7dYhgbxqUvK5PIU9+8tvmTTlk8kr9aUnG1hFQXQW05dasjDr5a/PKS74ZE0bkVwlQWtLJnBvZbBL7JdzIU1serYw2rAPgGvJqfAtGACckDbvawU37uYaEFosr+hTDaLlxXJGRufj9tNBu6n4o5dX7/GxbP5h2Ip/F6KrLmXq8rtaPIBdZ5E8ThiQySVrdRXBydGUU5yxcNHlb3WO9T+XznHrhzsQlVG1JppmMhhuY0MwbcFNlNDLJS+ZrmHXL1S5u0LR18vpb4obmMoudaPXHXFbSu/rrcWNlsjLu4KbR302RALyY8oT65dK4HvGEr3HC1XSJkQhXTLie8rXalVtjN4S3CSmHfDNwyfeyjSsvQBlxgZFz+OIln6DxD/KsfEPjAMJFWbhwOhOBVz4P8PaKgBr+JIltmyWTl5q8TOXsDmU7QROZcsk/y3DAQA1x79pu+MUpsWe2PsnIROxlRhn0jSCkEp+7hxv5m4C6m+u5afuzX2S0xwjacvLzqPpIOf7Q42ZJRinf6mCgVqbc16q+mJ1O5n7c9KO2XHifIZZDQuNmu/4zOaRd7Kuf168uIFhec7vJ5fqr0lAWoHSCBKPLqZZD/fpyw01XpvyHXJvv23auoJxkqjLVz3Ou8hl4VC85iU3d25dre+X670B+GiVn3lLlpnBBWq6zv6UvSyDIXm56XMnC79C0Oemf8t9iOyLV5UymLTnaPnXmiB2zxwAhn+l6B0a8khgT8rmz+zThGgmXTJgmlNVO2bIWE4n6uW65OifmBw+EEr6X5FNuxvImdTLGQTLY1XtbLswANyfUkIgsg3RsycImfx7s2XMbgKyMlfqwdjAdTJMpV72KrfsaN5JX4oTtamU1J0RVftFPHmSW3QyGrG27XYM93FSrDn/gXd8bQ34FtchEBMeV8NxylZqce7jp6Q8QR124cmklB5f2QV5/wmsxgNSIJIeQpW56maMmnOnEuGdq6mB5bX+b18+27amGsqLKJG1TDXH9zkkmZVmDX/4in8rpXr6a9SnRp105tfVT5yATLc8N4No5ml1by9MKN22fyjJJO9AdI8uVNo8tbmxbV563udHfpK0LV63+KkdVf2vc9GSyXC1xo/qcyXgDEPJA4z4I91M5sM75xNBlQn57FxM4aWBzz6aKbONEeMT52iYAuGZ39yiuWeIptBcwcR0QX9Do+mrVQym56rB+Lm2x1/eLzbSsaA9We+bqUyAXj0gIc2p8FZmnkRKR85pnWTtpZbLyuLRkbZXuWtcyWT0Yl/CnNW6sjFSlZrQhihaSX3jNPJnfW51wSVe+S/ZG3oYbOwmrfq6W532Ohm+1suX0SWbWjid5FmqfpC1uDK9WH8vc6N+DCWXscuMcj7az2iPMz3pEQ3aie3Zj7n/k7KnoqroLLHBTfvN9SFPo8QGVj2HsFcuTW5k8N64/1S/WufHtVfU1uD5q5JM0ZdW2je/ycpXxkunL29z07E1ff1QaUZ5syVPm3NS0RiYkq9Ftbnytno+Jz7njsDNm7xq+gQeU8BLlreRTusbXwHjICY8oIYHxcLRHGo2TA4x7NCavOhK3LljOM8iEbKwGVMOotANoOfZz2+AJeueZOAm98BizZ7Ge/WBAJwRN3tIJUk5SZfYdTW/R6pYD23nErYpMk0lLrn4Ee9DU5s3Z83mrcimJCWtZ40a/UY14nkVzjSaFq5pWy6h5izHJG51TZWWLmx5Xff1ZrvqhmvO8vXL1fSxSX+/uvHQzXsuoW751A+wd9dPUZYJOouucqg1vqzt7bn7Q7xfmZIYpsTfg6XNDVSbV89DJpUOfHjdSksrs22da5QbN51zS5GTSw91kntHqr62f15HkXdbfsr2xiy2t/lTCRiddboRHbevzIeYyNz2ZbwbGAzBeTANeoHzxxz0acUETvs7AFfKK9OUEEEl/nvf9qQzOL5FwzQOuON+nKy8bBieMtb9Zqe0OkeyGzG3sUr+yfOzp+96mysBJU7ZpxUKONY9K1LOpAHIIN/XqYTVkbaoPFJv7vba+wMCMkczZ707aRZvDMiCdt52ZTWXo4taK3QAkGkYC4ha46dhUAtw7MpdtnYTN2ycttYWejFs2B+Yq/WVuJFdiWRRd46axG/Ifs9s58+V4uyGRIlVmw00yNbGtS0/Hz7kRtG29vszZld4rRycccvlEe4HG0PhIK2PLjVpK326kL8vOKHXyej8+Oa586anal5ty02snyeivHeOIXJP5zXLTtm21EnN/6p+7JGMr3ZnhOQllJH6c2JTbFkr0VQD/+tQLXsc3AXjraCGeAQRP+xA87UPwtA/nyNO3MfM3700cdv+ZRvC0D8HTPgRP+3COPN3I7j8tENEfIvN1W7zFzG88KXkeB4dMzM4RRPRXzPyeo+U4dwRP+xA87UPwtA/B09uD4HUfgqd9CJ72IXjah+DpbiJtJwkEAoFAIBAIBAKBwNuJmJgFAoFAIBAIBAKBwMGIiZniV48W4BlB8LQPwdM+BE/7EDy9PQhe9yF42ofgaR+Cp30Inu4g4oxZIBAIBAKBQCAQCByM2DELBAKBQCAQCAQCgYMRE7MOiOjDRMRE9DhXbz63IKJPENE/ENHfEtHvEtE7j5bpXEBEbxDRPxLRl4nol46W5xxBRK8R0Z8S0d8R0ZeI6INHy3TOIKKBiP6GiH7/aFmeZ4TdX0fY/XWE7d9G2P79CLt/dxETswZE9BqAHwbwb0fLcsb4HIDvZObvBvBPAD56sDxnASIaAHwawI8AeB3ATxDR68dKdZa4BvBhZn4dwPcB+PngaRUfBPD3RwvxPCPs/i6E3V9A2P7dCNu/H2H37yhiYjbHLwP4CPzL1QMGzPzHzHxdPv45gFePlOeM8F4AX2bmf2bmSwC/CeADB8t0dmDm/2Tmz5e//w/Z+bz7WKnOE0T0KoAfA/BrR8vynCPs/gbC7q8ibP8OhO3fh7D7dxsxMTMgog8A+Aozf/FoWZ4h/CyAPzhaiDPBuwH8u/n8Hwinswoi+nYA3wPgLw4W5VzxKeQJw3SwHM8twu7fCmH3PcL23xBh+1fxKYTdv7M4HS3A0wYR/QmAb+389HEAH0MOZ7nzWOOJmX+vpPk4cmjCZ5+mbIHnA0T0MoDfBvAhZv7fo+U5NxDRmwD+m5n/moh+4GBxnmmE3d+HsPuBp4Gw/csIux+4cxMzZv6h3vdE9F0AvgPAF4kIyGEanyei9zLzfz1FEc8CSzwJiOhnALwJ4P0c71wQfAXAa+bzq+W7QAMiukB2zJ9l5t85Wp4zxfsA/DgR/SiA+wDeQUS/wcw/dbBczxzC7u9D2P1bI2z/ToTt30TY/TuOeI/ZAojoXwC8h5nfOlqWcwMRvQHgkwC+n5m/erQ85wIiOiEfin8/slP+SwA/ycxfOlSwMwPlEfCvA/gfZv7QweI8Eygrp7/IzG8eLMpzjbD7ywi7v4yw/fsQtv9mCLt/NxFnzAK3wa8AeAXA54joC0T0maMFOgeUg/G/AOCPkA81/1Y45i7eB+CnAfxgaT9fKKuDgUDgfBF2fwFh+3cjbH8gsIHYMQsEAoFAIBAIBAKBgxE7ZoFAIBAIBAKBQCBwMGJiFggEAoFAIBAIBAIHIyZmgUAgEAgEAoFAIHAwYmIWCAQCgUAgEAgEAgcjJmaBQCAQCAQCgUAgcDBiYhYIBAKBQCAQCAQCByMmZoFAIBAIBAKBQCBwMGJiFggEAoFAIBAIBAIH4/8BrWeAsMFwHx4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "targets = (11, 12)\n", + "vals = np.linspace(-5 + EPSILON, 5, 100)\n", + "x, y = np.meshgrid(vals, vals)\n", + "mesh = x + 1j * y\n", + "input = mesh.flatten()\n", + "\n", + "mean_lag = eval_mean_laguerre(input, targets).reshape(mesh.shape)\n", + "lanczos = eval_lanczos(input).reshape(mesh.shape)\n", + "rel_error = np.abs(calc_rel_error(lanczos, mean_lag))\n", + "\n", + "lag = eval_laguerre(input, targets[-1]).reshape(mesh.shape)\n", + "rel_error_simple = np.abs(calc_rel_error(lanczos, lag))\n", + "# rel_error = evaluate(x, target)\n", + "\n", + "fig, axs = plt.subplots(\n", + " 2,\n", + " 2,\n", + " sharex=True,\n", + " sharey=True,\n", + " clear=True,\n", + " constrained_layout=True,\n", + " figsize=(12, 10),\n", + ")\n", + "_c = axs[0, 1].pcolormesh(x, y, np.log10(np.abs(lanczos - mean_lag)), shading=\"gouraud\")\n", + "_c = axs[0, 0].pcolormesh(x, y, np.log10(np.abs(lanczos - lag)), shading=\"gouraud\")\n", + "fig.colorbar(_c, ax=axs[0, :])\n", + "_c = axs[1, 1].pcolormesh(x, y, np.log10(rel_error), shading=\"gouraud\")\n", + "_c = axs[1, 0].pcolormesh(x, y, np.log10(rel_error_simple), shading=\"gouraud\")\n", + "fig.colorbar(_c, ax=axs[1, :])\n", + "_ = axs[0, 0].set_title(\"Absolute Error\")\n", + "_ = axs[1, 0].set_title(\"Relative Error\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAJICAYAAAAUzce/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXhc153/8fe9d3hGM2KWjDKzEzuOY8dhbNIkhbTd0pa523Z/3W6522653W6ZtiknbdImaaBhO+TEMTODbMmyGIfnnt8fdzQgMAjssfN9Pc88M3PxXDmgj88536MppRBCCCGEEEIIce7p57oBQgghhBBCCCEsEtCEEEIIIYQQIkdIQBNCCCGEEEKIHCEBTQghhBBCCCFyhAQ0IYQQQgghhMgREtCEEEIIIYQQIkfYznUDTqa4uFhNnDjxXDcjS6ijFyMIEXuIYG8PdmXHqPYTMFzQvBPyJ4CnkISp2Hm8m4qAi2Kfc9zb1dfXh9frHff7nKlcbFcutglys1252CbIzXblYpsgN9uVi20CadeZyMU2QW62KxfbBLnZrlxsE0i7zkQutglys10bNmxoVUqVDLlTKZWzr8WLF6tc88ofV6ujn35WPf2jn6vvvPH16ve3f1zds/sepXpOKPVFv1Iv/0IppVQiYaopn3lYff2RXWelXc8888xZuc+ZysV25WKblMrNduVim5TKzXblYpuUys125WKblJJ2nYlcbJNSudmuXGyTUrnZrlxsk1LSrjORi21SKjfbBaxXw2QgGeJ4pjTrTUcHFKDRE+0Bh8/aEemx9usapXlOmnvC56SZQgghhBBCiPOPBLQzpDQFgKZZAU1DozfWC3Y3aDpE+1LHlgVcNHdHzlFLhRBCCCGEEOcbCWhnKtmDZvQHNM2wetA0zepFi/amDi3Lc9HULT1oQgghhBBCiNMjAe0MqWRA05I/Or1/iCNYAS2SEdD8Tk5IQBNCCCGEEEKcJgloZ6p/DpqmgVJomm4NcQRw+qA/rAGlfhc94TjBaPwcNFQIIYQQQghxvpGAdoZU6idmYM1B0zN60LxZPWjlfheAzEMTQgghhBBCnBYJaGcoPcRRw5qDljHE0V0IoY7UsWXJgCbz0IQQQgghhBCnQwLamUoNceyv4pgxxNFbAn2tqUPL/NYC1TIPTQghhBBCCHE6JKCdoUE9aJlDHL3F0NcCyirFXypDHIUQQgghhBBnQALamcqq4mgNceyL9ZEwE1ZAi4dSa6H5XTZcdl160IQQQgghhBCnRQLaGeovEtLfg9af2PrifdYQR4CgNcxR0zTK/S5O9EgPmhBCCCGEEOLUJKCdof4hjnrqR2dt6In2pANaxjy0Ur+LE13SgyaEEEIIIYQ4NQloZyprDlr6vTfaaw1xBGseWlKZ38WJHgloQgghhBBCiFOTgHaGVNYcNOsTJHvQPEMEtDwnJ7rDqGThECGEEEIIIYQYjgS0MzWoB81iDXHsD2jpIY7lARfhmEl3OH4WGymEEEIIIYQ4H0lAO0P9PWj90Uwlf4S9sV5weMHuHTQHDWQtNCGEEEIIIcSpSUA7Q9lVHEFLBrZBa6ElleXJYtVCCCGEEEKI0yMB7UydbA4aWJUcBxQJATghi1ULIYQQQgghTkEC2hlKFQlR/UMcwWW4rCGOYPWgBdNDHMtkiKMQQgghhBDiNElAO1MDioSgFHmOvAFDHNMBze0w8LtsNEtAE0IIIYQQQpyCBLQzpAYENAX4HL7BQxwzyuqX+V00SUATQgghhBBCnIIEtDM1aIijIs+elzHEsQTMOIQ7U6eU+V0yB00IIYQQQghxShLQzpQG6Jk9aBp5jjx6o8mAllqsui11SqnfKUMchRBCCCGEEKckAW0k9NQMNEBZQxxjGXPQIKuSY7nfRXNPBNNUCCGEEEIIIcRwJKCNgKZrqQXRFOCzD5iDBoNK7cdNRVtf9Cy3VAghhBBCCHE+kYA2ErqOluoMU/gd/vQQxyEDmixWLYQQQgghhDg1CWgjoBmQqhaChs/hI5wIE0vEwFNkbc4otV+aXAutuUcCmhBCCCGEEGJ4EtBGQtdSVRxNFD67D8Cah2ZzgCswzGLVUslRCCGEEEIIMTzbuW7A+UjLKhJiVXEE6I32UugqTK+FllSaJ0MchRBCCCGEGEtR06Q3YdIbT6TeexImvYkEfXGTnkSC3rhJoTJYda4bewYkoI2ErqVWrFaoVEBLV3IsyRriaDd0in0OCWhCCCGEEOJVLaFUKkj1JINVdzxBTzxBXzJc9cSt9954+ntfIpEKXD0J69jIaVZIfw/GOD/V2JKANgKakVkkhPQQx2hGqf3WfVnnlObJYtVCCCGEEOL8FDeVFZaSwaqnv7cqbgWnnrjJNuXiyX3HUgHLOs763J08PpgwT+t+HkPHZ+j4DAOfzXqvdjnwGQZeQyfPZuBLvnuTx+XZso/vP//5Z9eM809nbElAGwmdjB40soY4AtZi1X1rs04p8zulB00IIYQQQpxVMVMlA5TVW9UfrjJ7rlLbM3qouuPpzz1xk5B56mCl4SSvqZ08wyDPZpBnGOTbDWrcDvIMHZ/NwN8fpJL782w6eYaBN/neH7gMTTvl/S5UEtBGwJqDNsQQx8y10IJtYCZAt7pUy/wutjV0n5P2CiGEEEKI84upFH3JENUfpLqSvVDd8QRblJO1B4+nglV/b1VmyOqNJwidxjBAHfDbrJ6n/pBUZLcx0W1Y25M9VXlG9jF5mZ8NnXXPPccVK1aN+8/mQicBbSR0DTL+EsHnGDjEsQRQEGwHn7UuWpnfRVtfhFjCxG5I8UwhhBBCiAuVUoqgadITN7PCVXcyTHXHs4NXd+Yr2WPVHU9w8mjlxqg/gd8wkr1RVogqddiZ4u4fApgMUcmQ5U+FrHS48tl0PLqONgY9Vq/iTq8xJQFtJHQNLWF9VIDX5gWgN9a/WHWx9d7XkhXQlIKWngiV+e6z3GAhhBBCCHG6won0ML8DykBr78kKU12poGWFqa6Mff3b46fouNKBgM3qffInA1Ot22F9N6xt/tQ+A79NT28zDDa/+ALXXH75mAQrkVskoI2AZugQTf/LYOgGPrtvQA8aA9ZCs0rtN3WHJaAJIYQQQoyT/t6rrli616or8xVL91Rl9lylersSiQHVAfNgy4FB98kz9KwQVea0U+d1JQOUngpemSHM3x+0DAOPMbpeK4eGhLMLlAS0kdChv8+5/19fn8OXXcURstZCqyqwQllDR4hFtQVnp51CCCGEEOehmKkGhKt4Klz1B63ueILOeILuWHYA644niKmTd195DD1VrMJvMyjMmG/V30PVv+/Irp0sX7gg1ZMVSA4X1CUciXFyVgOapmleYA3wJaXUQ2fz3mNJ07WMMvvWB5/dlzHEMdmDlrEWWk2BB4D69uBZaqUQQgghxLmhlKI3YaaDVKw/UMXTwWpAj1aDyiPx4g4644lTlmK3aRCw2chPBqp8u0Gt20EgGaD6t/ltBvk2W6onq3+fXT/9cLV6d5xL8n2j/ZEIcdpGFdA0Tfs/4GagWSk1J2P79cAPAAP4lVLqG8ldnwb+Mpp75gRdG9SD5nf402X23QWg6Vk9aF6njWKfg6MS0IQQQghxHlDJKoKd8QSdsTid8QQdyd6qjuT3rtgQoSt5zKmKsvfPqeoPUOUkmFKQZwWpVLhKDxMM2PtDlg23rsnwPnHBGm0P2l3Aj4Df9W/QNM0AfgxcAxwDXtE07UGgCtgJuEZ5z3NO07WsddDAGuLYEkwGMt0AT1FWDxpATaFHetCEEEIIcVbFTWWFrHicrliCjniCtcrO/mMtdCYDlvWeDmL9209W6MKhaeTb0z1TJXY7Uz2u7F6sAb1Z/fvybMagda5Wr17Nqpm14/zTECL3aeoUY3RPeQFNmwg81N+DpmnaMqwhjNclv38meagP8AKzgBBwm1Jq0F+uaJr2XuC9AGVlZYvvvvvuUbVvrPX29jJ1rx+9O8o/dv0PxWoJEz64kt+2/JbD0cN8seqLAFy87iMEPZXsmPOZ1Lk/2xLmQKfJty/3jEu7fL7c637PxXblYpsgN9uVi22C3GxXLrYJcrNdudgmkHadiVxsE+Rmu8aqTUpBBOhFow+NXvTke/rVN+izdUyIk/c0eVD4MPGi8KGGffdhZn13MLZl1XPxzw+kXWciF9sEudmuK664YoNS6qKh9o3HHLQq4GjG92PAUqXUhwE0TXsH0DpUOANQSv0C+AXARRddpFatWjUOTRy51atXU1JaTDDSYW3QNFatWsXzLz3PgcMHSLX38AS8iRiZ7V8f2cMraw6wfMXKMV8LbfXq1eTazwpys1252CbIzXblYpsgN9uVi22C3GxXLrYJpF1nIhfbBLnZrqHaFDFNOmLWMMH2WNz6HLfe22JxOpLbUr1byR6tkxW+sCd7s/KTQwYr7VavVYHNRiDZg1Vgtz4X2Az2bNzAtcsvJWAzsJ3BfKzxlIt/fiDtOhO52CbI3XYN56xXcVRK3XW27znmMuag9X/Ic+TRE+1BKWWNifaWwPEtWafVFnpImIrjnWFqi8a+F00IIYQQZ49Siu64NWQwFbSS7+2xOB3xBHuUh59s3p+17WQFMNy6RoHdRqHdKoAx3euiIPk5YLNCViqIJbfn240zXmi4WzMpckgxbyFy0Xj8m9kA1GR8r05uu2BoWQHN4rP7iKs44UQYt81tBbTg4DloYFVylIAmhBBC5I6oadIZS9AezwhYw/RyWdus3q3EMJ1aGpBvM3BiUJUwKXPameFzUWizUZDszbKCWPJzMny5x3iEjRDi/DMeAe0VoE7TtElYwexO4M3jcJ9zR9fQkn/51f/f5TxHHgC90d5kQCuGcBfEo2BzAKRCmRQKEUIIIcZPf89WWzJotfW/ovHU9/ZYIut770l6tZy6RoEtHaame10UJgNWf7AqsBvJbemhhIamWUOrFi8+i08vhDjfjbbM/p+BVUCxpmnHgC8qpX6tadqHgcewyuz/n1Jqx6hbmkt0zZqtm6E/oPVEeyjxlKQXqw62gr8SgHK/C7uhcbRDApoQQghxuqKmaQWqWJz2aEbgGhC06lUekRe20x4bvvqgS9coSg4hLLLbmORxUpgKV1bgygxaBSMYPiiEEKMxqoCmlHrTMNsfAR4ZzbVzmWZokOpBSy9UDdAT67F2pBarbkkFNEPXqMp3Sw+aEEKIV63+3q1U4IrFac0IXpnb+4NXz0l6twpsBkUOK3CVk2BakT8dwBzpIFZot46TsCWEyHUyO3QkBsxBU9Fo1hBHICOgDZ6HJotVCyGEuJCEEyatsTitUStstURjqc9t0eztbSfp3XIme7f6A9bEgNW7ldnjlQ5eVoXCzAqEq1evZtUMWUdLCHF+k4A2Apqe2YMGia6u9BDHQT1o2QGtttDDw9uOn6WWCiGEEGfOVIqOWIKWWDJoZYatWJzdysN3NuxNhbLh5m+5dY1ih51iu41Kp515ee50AHNkBK5kCPMY0rslhBAS0EbCSPegKRSJzk58lX7AmoMGgKfIeu9rzjq1ttBDZzBGdziG32U/Wy0WQgjxKhdMmFYPVjJktWa8t0RjWdvaonGGilw6UOSw4cZggqGz0OWh2GGj2G6n2GGjxGGjONnDVeyw4TWMs/2YQghx3pOANgJWD1r/+AyNeEcHeROrgIwhjq4A2NzQ05R1bm2y1P7R9iCzKwNnq8lCCCEuQFHTpCUapyUapzkaS703J99bM773DdPL5TP0ZMiyMcHt4KKANx2y7FbQ6g9hBfaMyoQLpDKhEEKMBwloI5ExxBEg0dlJns2NoRnpHjRNg0A1dB3NOrVGApoQQoiTSChFeywdup5VdrYfOWEFsVic5ogVuFqiMTriiSGvkW8zKHHYKHXYWZDnodRhTwWtkuSQw+LkEENZd0sIIXKLBLQR0DImJCusgKZpGj6HLx3QAPJroHPogCaVHIUQ4tWlN56gKRrjRCQ2oMcru/erddDwQi8cPI5b1ylzWqGrzuvk0gIfpckQVpoMXqXJEObUJXQJIcT5SgLaSBhWQNPRAUWiswuAPHsevbHe9HGBamjalnVqwG0n4LZLQBNCiAtEXzJ4NSV7tpoiMZqiMZqT7ycicU5EY0MOMbRrWipcVTjtzM9zU+qwp3q/Sh02Dm7ayGtWLMdrk/lcQgjxaiABbQT6e9A0TQdNJ9HRAViLVWf1oAVqrXXQYiGwu1Obaws91LeHzmqbhRBCnJm+eIITycDVnAxg/T1gJ6JxTiS/DxW83LpGmdNOucPO3Dw3Vzv8ye/J4OW0wle+zThl1cKgZko4E0KIVxEJaCPRH9DQQddJdHYCkO/MpyPSkT4uv8Z672qA4qmpzbWFHnYd7z5brRVCCJEhnDBpisY4HukPW1b42qo8/HDT/tT3oUrHu3SNMoedcqed2XlurnTkpb6XO+2UJj/nSbl4IYQQIyQBbQT6e9B0TQdDSwW0Ek8Jh5sOpw8MVFvvXfVZAa2m0MMTO0+QMBWGLv8DF0KIsdITT9AYsQJWYyTK8dTnGMeT39tjgwtruHQNPwYTlWKm182qwozglezxKnfY8J9Gj5cQQggxGhLQRsLI7EEzUgGt1FNKS7AFU5lWeAv096Adyzq9ptBNNGFyojtMZb4bIYQQJ6eUoi2WoCkSTYatwcHr+DC9XkV2GxVOO5VOB4v9Xiqc9uTLQZnTRrnDTsBmsGbNGlYtktLxQgghzi0JaCOR2YOma6k5aCXuEuIqTke4gyJ3EfgrQdMHVXKszajkKAFNCPFqp5SiNRanIRyjIRKlMRxLBq508GqKxoik1p+06EBZMmxN87q4vDCPCqeDylQAs1PmsOOSMvJCCCHOIxLQRiCrSEjGHLRSTykALaEWK6AZdsirGLQWWmZAu2Ry0dlruBBCnAPBhEljJJoKYC8oF/fvqqchY9vA8OXQtFTIWuT3WMHLlQxeDjsVLjsldjs2GSYuhBDiAiMBbSQyioQoXSfR3Y0yzVRAaw42M6NwhnVsoGbQEMfKfDe6Zi1WLYQQ5zNTKVqicRrCUY5FYjSEo+ngFY5yLBIdNOdLw0lZew9VLjtz8txcV+ynyuWg2umgymUNPSyyy1wvIYQQr04S0EYgs0iIpmtgmpjd3eketGBL+uD8Gji6Lut8u6FTme+WgCaEyHmhhElDJMrRkBW2GsIxjiVDWGPYmgMWU9m9X15Dp9rloMppZ4HfQ1UyeFUlt+19aS1XL191bh5ICCGEyHES0EYic6Hq5N/wxjs6KJpgVW1sDjanjw1Uw477wUyAnl7HxloLTQKaEOLcipgmDeEY9eEIR8NWEDsajlIftt6bo/Gs4w0Nyh12ql0OFge83OJMB6/+91NVOjwoHWNCCCHEsCSgjUDmHDQz+UtIorMT56RJFLoKaQ5lBrQaMGPQe8IqGpJUU+Dhqd3NCCHEeIorOByKUJ8MXv2v/u9N0VjW8TYNqpwOalwOri7yU+NypF7VLgdlDpn3JYQQQownCWgjkblQdfL3lIGl9lPya633zqNZAa22yENrb4SecIw8l/1stFoIcQEyleJENMbhUHTIIHacAOqlXanjDQ0qkwHs8sI8al0OatzW91qXg3KnHUPmfgkhhBDnjAS0Ecicg5bQ+3vQugAroA0a4gjJSo5LU5unlvoAONDSx4Ka/HFvsxDi/BUxTY6Go6kQdiQU4UjI+l4fjhDOqICoAxVOOzUuB8sLfJhNx1kxoy7VC1bpdEgPmBBCCJHDJKCNRKoHTaO/Cy1zLbSdbTvTx6YWq84utV+XDGj7m3sloAkh6IzFORLuD2DW++FQlCOhCI2RGJllONy6zkS3gykeJ1cW5THB7WSiy8FEt5Mqlx2Hnl73a/WJQ6yqkOU8hBBCiPOFBLQR0PqLhGiGlc9stqwhjm2hNmJmDLtuB6cP3AVDLlbtMHT2Nfec5dYLIc6F/sWYDwQjHMwKYdbnznh2KfoSh40JLgfL8n1McFvha6LbyQSXgxKHTUrQCyGEEBcoCWgjkbkOmlIYgUAqoJV4SlAo2kJtlHvLreMD1YPWQrMZOhOLPRxo7j2bLRdCjLPOWJyDoQgHk0Es8703YaaOs2lQ7XIw0eVkQanH6gVLBrEJLgdem3GSuwghhBDiQiUBbSQyqjiiFEZ+froHzZ1eCy0d0Gqh49Cgy9SV5rGjseusNFkIMXb6EgkOh6IcCEY4FIxwIBRms/LR+vy2rEWZdawQNsXj5KJyL5M9Tia7nUz2OKmWuWBCCCGEGIIEtBFIFQlBQ2FiFOSn5qD1L1adVWo/vwYOPQtKpdZNA5hS6uPR7ccJxxK47PK35ULkElMpGiIx9vWF2R8Msz8YYX8wwqFQhOOR7NL0FU47BShuKslnktvJFI+TSW4nE9wOnBnzwYQQQgghTkUC2kgM0YMWO1IPWEMcgexS+4FqiPZAuAvc+anNU0t9mAoOtfYxs8J/1povhEgLJ0wOhSLsDYbZ3xdhfzDMvmCEA8EwoYzqiAU2g6keFysKfExxu5jksYLYRLcDr2GwevVqVk2vOYdPIoQQQogLgQS0EcgsEqKwAlp4y1YACl2FGJoxoNR+RiXHjICWWclRApoQ46s9Fmd/nxW+9iV7xPb1hakPR1MVEjWgxuVgqsfJ8oJi6jwupnqc1HlcFDnkP5dCCCGEGH/yG8dIZJbZVwpbcg6aUgpd0yl2F2cHtPxkQOs8CuVzU5snFXvRNdgnhUKEGDOt0Ti7+0Ls7guzt/8VDGfNDXPqGlPcThb4PbyuvIA6j4s6r4tJbiceQ4YkCiGEEOLckYA2ApkLVSulMAoKUbEYKhhE83op9ZTSEsoc4tjfg5ZdydFlN6gtlEqOQoxEdzzBnr6wFcZ6w+zuC7OnL0xrLJ46Jt9mMM3r4obigNUb5nVR53FS7XJgSJl6IYQQQuQgCWgjYaTL7PfPQQOId3Ti8HopcZdQ31OfPt5bAjYXdNUPutTUUh/7JaAJMay+RIJ9fRF294WSgSzMFuWn/bltqWO8hs50r4triv3M8LqY4XUzw+uiVNYLE0IIIcR5RgLaCGgZRUKUMlMBLdHZCdVVlHpK2dC8IeMEbci10MCq5LhmbwvxhIlNhlaJV7GEUhwMRtjRG2JXsmdsT1+YI6H0HDGnrlHncTGLOJdPnsB0r4sZXhfVLge6BDEhhBBCXAAkoI1Eqsy+AajsgIZVar8r0kU4HsZlc1nnBKqtOWgD1JXmEUso6tuDTC7xnYXGC3Hu9cQT7OwNsaM3xM7eMDt6Q+zuC6WqJhoaTHG7mJfn4fVlhczwWUFsgsuJTdesiokTys7xUwghhBBCjD0JaCOgZZXZB6OgAEgHtFSp/VALNXnJ+WeBGtj3+KBrTU1WctzX3CsBTVxwlFIcDUfZ2Rtme28oFcqOhKOpYwpsBrN8bt5aWcwsn4s5Pjd1XpesHyaEEEKIVyUJaCORVWY/Y4hj/2LVbmux6pbggIDWewLiEbA5U5eaUuIFrFL7180+S+0XYhwklGJ/MMLWniBbe4Js6wmxsy9Ed9wErBL2k91O5uV5eFNFIbN8bub43FQ47TJPTAghhBAiSQLaCGRWccQ0MfzWGmYDe9CaQ0OU2u86BkVTUpvzXHYqAi6p5CjOK3FTsS8YZmtPKBnIQmzvDREyrTDm1nVm+1zcVlrAbJ+b2T43M3wuvIZxjlsuhBBCCJHbJKCNRGaREBJoNhu63581Bw2sHrSU/FrrvfNIVkADa5ijrIUmclXcVOwNhtmS7BXb2hNkR296vpjH0Jnjc/OWykLm5XmYl+emzuOSMvZCCCGEECMgAW0kMouEKGsujVGQnwpofocfp+HMXqy6qM56b90PU67MutyUEh9/WX8U01TouvxSK84dpRSHQ1E2dvexsTvIGuXj2HNbCSfDmNfQmZucLzYvz828PA9TPE4JY0IIIYQQY0QC2ghomga6NQcNlaw6l5+fmoOmaRol7pLsgOYrBacfWvcOul5dmY9gNMHx7jBV+e6z8gxCAHTE4mzqDrKxO8jG7j429wRpjyUAq2dsAvD2AWFMytkLIYQQQowfCWgjpWvJIY4ZAa2lNbW71FNKSyhjiKOmQXEdtO0bdKmpyeqN+070SEAT4yZqmuzsDad6xzZ1BzkQigBWAY9pXhfXFQdY5Pew2O9lmsfF88+uYVVd1bltuBBCCCHEq4gEtBHSdM0qEpLsQbPl5xPdtz+1v8RTwp72PdknFdXB4ecGXau/1P7+5l5WTS8dv0aLV5WmSIx1XX1s6OpjQ3cf23pDRJJDFUscNhb7PbyxopBFfg/z8zzk2aSAhxBCCCHEuSYBbaSSPWiketAKUnPQwOpBe+7YgDBWXAdb74ZILzjTa54V+ZwUeh0caJFCIWJkTGUV8ljX2ce6LutVn1xrzKVrzMvz8I6qYhb5PSzye6mW0vZCCCGEEDlJAtoI9fegqf45aAX5mMEgZjSK7nBQ6i4lGA/SG+3F50iGseJkoZC2/VC5IOt6U0t97GnqOYtPIM5n4YTJ5p5gKoyt7+qjM27NHSu221ia7+Vfq4pZku9ljs+NQxZ9FkIIIYQ4L0hAGylDs6o4Yq37lF6suhO9rDRrLbR0QJtmvQ8R0GZV+PnL+qMkTIUhlRzFAH2JBOu7grzY2cuLHb1s7gkSS/7lQJ3HyU0lAZYEfCwJeJnodkjvmBBCCCHEeUoC2ghp/UMcrd+R0wGtsxN7WWnWWmiTA5Otgwong6YPWclxVqWfYDTB4bY+ppT4Bu0Xry598QSvdPfxYkcvL3ZagSyuwKbB/DwP760pYWnAy0UBL4V2+ddYCCGEEOJCIb/ZjVT/EMeMOWhAah5aiTvZg5ZZat/mhPwJQwa02ZV+AHY0dktAexXqiyfYomy8cKCRFzt72ZIRyBbmeflgTSmXFvi42O/FK8U8hBBCCCEuWBLQRkjTNTR0UMkhjgX5AKm10Pp70E4ET2SfWFxnLVY9QF1pHnZDY0djF7fMrxy/houcEDcVm3qCPNvew7MdPWzo7iOOD/vRFhb6PXyotoxL831cFPDgNSSQCSGEEEK8WkhAG6lBVRzzgXQPmsfuocBZwLGeY9nnFU+DQ8+BaUJG4QaHTWdaWR47G7vPQuPF2aaU4kAowpr2Hp7r6OGFjl56EiYa1pDFD9aUkld/kH9dsUwCmRBCCCHEq5gEtBHSkkVC1BBz0PrV+mup76nPPrFoKsRD0H0M8muzds2u9PPkrmaUUlLk4QLQEo3xfEdvKpQ1RGIA1LocvLasgJUFeVxW4KMgOYds9dG9Es6EEEIIIV7lJKCNlK4lQ5Q1xFF3OtE8nqyANsE/gZeOv5R9Xn8lx9a9QwS0AH9Zf4ym7jAVAfc4Nl6MB1MpNvcEebKtm6fautnSEwIg32awvMDHxwryuLwwjwlu5zluqRBCCCGEyFUS0EZK19A1A2UqEjETw65j5AdSc9AAavNqefDAg4TiIdy2ZODqXwutdT9MvTrrkqlCIQ3dEtDOE12xOM+09/BUezdPt/XQFoujA4v9Xj49qZxVhX7m5bkxpEdUCCGEEEKcBgloI9S/UDVAX3cEf5EbIz+feGc6oE3wTwCgvrue6YXTrY3eEnAFhqzkOLPCj6bBzuPdXD2rbPwfQpwxpRS7+8KpXrJXuvtIKCiwGVxR5OfqIj+rCvOk9L0QQgghhBgR+S1ypFIBTRHsiuIvcmMvLSPW1JQ6pNZvDWGs78kIaJoGRXXQtm/QJb1OG5OKvOxo7DobTyBOU8xUvNTZyyOtXTze2pWaSzbH5+YjtWVcVeRnkd8jvWRCCCGEEGLUJKCNkGakqzj2dUYAsFdVEVy/PlXko78H7Uj3keyTi6fBwWeGvO6sSj+bj3aOY8vF6QglTNa09/BIayePt3bTGU/g1jVWFfr5xEQ/VxblUeF0nOtmCiGEEEKIC4wEtJHK6EHr60oGtOpqzN5ezK4ujPx8vHYvRa4i6rsHVHIsngpb/gSRHnDmZe2aXRngoa3H6QrGCHjsZ+lhBEB3PMGTbd083NLJ0209hEyTgM3gmiI/N5UEuLzQj8fQT30hIYQQQgghRkgC2gj1z0HTNEVfZxQAe3UVANFjDbiTZfcn+CcM3YMG0LoPqhZl7UoVCjnexaVTisfvAQRglcL/Z2sXj7R08XxHLzGlKHPYeEN5ATeV5LMs34ddl6GLQgghhBDi7JCANlLJMvuGTUv1oDmqqwGIHTuGe85swJqH9nzD89nnFvVXchw+oO1s7JaANk56lcafGtu4v7mD5zt6MYGJbgfvqS7hxpIAi/wedJlPJoQQQgghzgEJaCOk6RoauhXQOtNDHAFiDcdSx03wT+D+/ffTF+vDa/daGwsngWYMWSikyOek3O9iR2P3+D/Eq0hfPMFjbd3cf6KDp/CT2HOUSW4HH5tQxmtK85npdcni4EIIIYQQ4pyTgDZSRjKg2TX6uqwhjkZeHnogQPRYOqDV5iUrOXbXM7NoprXR5oSCCUOW2gerUIhUchy9mKl4ur2be5s6eLKti5CpqHTauYEIH7loHvN8bgllQgghhBAip0hAGyFN19DR0A2NYHKII4CjqorYsYbU99RaaD0ZAQ2seWit+4e89uxKP2v2thCOJXDZjfF5gAuUUoqtvSH+2tTO30500B5LUGS3cWdFEa8tzefigJdn16xhfp7nXDdVCCGEEEKIQSSgjVTGEMdQME48msDmMLBXVxPZlx66WJNXAzBEJcc6OPAMJOJgZP8xzK70kzAVu5t6WFCTP95PckFoisS4t6mdv57oYE9fGIemcV1xgDeUF7Cq0C+FPoQQQgghxHlBAtpI6RpasgcNoK8rSqDEjb26mt7Vq1GmiabreOweSt2lgys5ls6GRATaD0DJ9KxdsysDAOxo7JKAdhIxU/F4Wxd/aGxjTXsPJnCx38u3plVzS2k++Xb5x1sIIYQQQpxf5DfYEdKM/oBmfe/riiQDWhUqGiXe2oq9tBSAGn8N9T0DetDK51rvx7cOCmjVBW7yPXa2Hu3iLUvH+0nOP4dDEf7Y2MbdTe20RONUOu18bEIZry8vZLLHea6bJ4QQQgghxIhJQBup5BDHVEDrHFhqvyEV0Cb4J7D66Ors80umg+GApq0w7/VZuzRNY2FNPpuOdoznE5xXoqbJP1u7+UNjK8929KID1xT7+ZeKIq4s8mNIsQ8hhBBCCHEBkIA2QtqAIY7Brv7FqjNK7S9aCFiVHNvD7fRGe/E5fNYFDDuUzrQC2hAW1hawem8L3eEYfpd9nJ8mdzWGo/y2sY0/NLbRFotT5bTz6Unl3FlRSIXTca6bJ4QQQgghxJiSgDZSySGOmqYwbHp6LbTKSsBarLpffyXHIz1HmF00O32N8rmw51FQCgb0AC2qLUAp2HK0kxV1JeP8MLlFKcX67iC/PNbCwy2dmAquK/bztspiLi/Mk94yIYQQQghxwZKANkL9C1UrpfDmO+jrtgKa7nJhlBRnr4XmT6+Flh3Q5sOmP0DPcfBXZl1/Xk0ATYONR149AS1imjzQ3MmvjrWwtSeE36bznuoS3llVzAS3zC0TQgghhBAXPgloI5Uc4oip8OY76euMpnY5qqqz1kLrL7U/qJJjZqGQAQHN77JTV+p7VcxDa4vG+b+GFn7b0EZrLE6dx8k3p1XzurICvDZZB04IIYQQQrx6SEAbof45aMo08QQctDf2pfbZq6sJbdqU+u62uSnzlA1eC618jvXetA2mXz/oHotqC3h0exNKKbQLcFjfsXCUnx9t5g+N7YRMk6uL/LynuoSVBb4L8nmFEEIIIYQ4FQloI5UsDoICb8DJ0Z3tqV326iq6H30UFY+j2awf8QT/BI70DOhBc+ZB4eSTFArJ5+5XjnKwtY8pJb5xeYxzYW9fmB/Vn+BvJ6zewdvLCvhQbRnTva5z3DIhhBBCCHE+UMrENGOYZgRTRVFm1Pqc9W59Vqr91BfMIRLQRkjT+wOahjffSTScIBqO43DZrFL7iQSxpqZU2f1afy1PHnly8IXK58LxLUPeY1FtAQCb6jsviIC2sauPH9Y382hrF25d551VxbyvppRql1RjFEIIIYTIdaYZR6loVvhJfVZRlNpDW7stGZYG78/cNugYNfgcZUZJmBHr2IHnq9hpt1vT3g7cMX4/mDEmAW2kUgFN4Q1YASPYFcXhsqVL7R87lgpoE/Im0BnppCvSRcAZSF+nfB7sfADCXeAKZN1iSomPPJeNjfUdvG5x9fg/0zjZ1B3kW4eO80x7D/k2g09MLONdVSUUOeQfPyGEEEKIU1EqkRFOIsleoUa6e7Zb3xMRsnuPBn7O+D5EwMoKS8MEMKWiKJU4ZVs3bz7182iaDV13ousOdM2BpjvS35Mvm+FFdxSia9b3Qcdo/cemt2Udk7F/48ajo/9DOIvkN+SRyuhB8+RbFQb7uiLkl3myAlq//kqOR7qPMK9kXvo65cnPTdth4vLsW+gaC2ry2VTfOT7PMM529Yb4jvKyfsNeCu0Gn59SyTsqi6TwhxBCCCHOK+meowiJrEA0RABKvhKD9kcywlRGGBpwrcQQ1xyut+iVV07/GfrDiqY5soJQZqCx2/OtY4bZn7lNywxKhhNdc7Bt2y4WLlySdZ42VJDS9DH6kzk9mtZ5Vu83WhLQRig1xNFUeAPpgAZgLy8HwyDakK7kODV/KgD7O/dnB7SK/oC2bVBAA2vB6h89vY/eSByf8/z449ofDPOdQ0080NyJGxufnlTOe6pL8EkwE0IIIcQImWYc0wyng0winPweTn7uDzjhIQLR4BA1bIAaMI8pYYZ5ZvWpe45OTkPXXei6E0N3WmHFcGYEFyd2mzf1OR1m0t+NAd937T7A3DkL09sMZ/b1B4Sks1GATdM08vMvGvf7XOjOj9/4c1GySIiWnIMG1hBHAM1mw15enlVqvzqvGo/Nw+723dnX8ZWBt8QKaENYVJuPqWDrsU4unVI8Dg8ydupDEb57+AR/bWrHZeh8dEIZc4/s5eaJC89104QQQggxhqywFEkFpqywZEYwk4EpYYaTn8PpUJQIJ0NUOBWeEmaYhHmc9et/lAxOmde1visVH0WLdQzDNWz40XUHNlvegG1W2Dl6tIlJk+oG7esPRJnHDn1tJ5pmG/OAtGfPakpKVo3pNUVukIA2QplFQhwuA5tDp68zktpvr67OGuKoazrTC6ezp33PgAtpVqGQpqELhSyoyQesQiG5GtB64wn+58gJfnG0BU2D91SX8OEJpZQ47Kyu33PqCwghhBBiVKxqdv09SSESiVAy4IRImKGMUJQMT2onBw9tzd6eDEzp8BRO9SBl91KNLixpmgMjFW5c6LoLw3ACcQzDg91egG709za5kp8zep8Ml7Vdd2X0GvV/d2UEpcxANvJfeRsaVjNp0qoRny/EmZKANlLJgKZhrVHmDTjp60ovVm2vrqLv2eeyTplWMI2HDj6EqUz0zLG35fNg7Y8hHgVbdkXDfI+DySVeNtXn3oLVplLc3dTO1w8epyUa5/XlBXxmUgWVUpVRCCGEQCmFUnFise5kwAml3rNCUyI05HsikRmsQlZASp0bIZEKYiMLTIcOgabZrYCTCkGudHgy3MOEJSv8DApLyV6l4cJSfw+Wpg095WH16tUsXLhqdD90IS4AZy2gaZr2WuAmwA/8Win1+Nm693hIz0Gz3j0BR3YPWlUV8ZYWzHAY3WWt7zWjcAb37LmHht4GavJq0hcrnwtmDFr3WJ8HWFRbwNO7m3NqweqXO3v5/L4GtvaGuMjv4bdzJ7HI7z3XzRJCCCFOizVEL0QiEUwGpmT46Q9Rqe/hZCAKJYfnZYardIDKDF+ZPVlKJRjw97WnpGkGuu5OBhp3KjwZhhu7PR+nUYGhu5NhyI1uuDGS+1NByHAn96UDlJERrl544RVWrbp62LAkhDh3RhXQNE37P+BmoFkpNSdj+/XADwAD+JVS6htKqfuB+zVNKwC+A5zXAS3Vg6asr958Jy31Pand/eX1Y42NOCdPBmB6wXQA9rbvzQ5oFfOt9+NbhwxoC2vzuXfDMY60BZlYfG5D0NFwlP860MiDzZ1UOu38ZNYEbivNz5ngKIQQ4sKglEoGnWBGj1NGoEptDyZ7mkKY5h5273lq0DH9oSq9PYRS0VM3YoB0b1NG+EmGIoejMBWmMoPRkfompk6ZlQ5KmWEq+bk/fPVfS9ft4/ATHfgsw/dkCSHOrdH2oN0F/Aj4Xf8Gzfq3/cfANcAx4BVN0x5USu1MHvK55P7zWqoHLckbcHK4qy3Vy5VZar8/oE0tmIqu6ezu2M1VE65Kn1w4GeyeYQuFLJ5gLVi9/kjHOQtoUdPkx/XN/ODICTTgkxPL+GBtKV5D/uMuhBCvVv29UPFEX6r3aWBwSiSC6X1mdsBKBS4zlApOiUQwNYcK1Bm2yEFzsw/D8GSEKDcOZ2kyAPVv91jhqH+bngxHyXCV1ROV0YM1kuB09OhqamtXnfF5QohXL02pM/2P34ALaNpE4KH+HjRN05YBX1JKXZf8/pnkod9Ivp5QSj15kuu9F3gvQFlZ2eK77757VO0ba729vfh8PjzNULnR4OmOv1L7pttp3a04sVkx4w4Nw66hd3ZS8h+fofvOOwmtujx1/tcav0aJrYT3lr4367oLN/4/lGaweeHXB93TVIqPPh1kQamNd891nrRd42GXMvgVHhowuIQo/0KIYu30/rkZz3aNVC62CXKzXbnYJsjNduVimyA325WLbYILv13WHKUwEEm+0p9V6nPyXaU/q6xjk9tUCE2LAkOvzTQ8G+AAnBnvztR3beA2LftYLeNYBn2209cXzLk/wwv9n6uxlIttAmnXmcjFNkFutuuKK67YoJQack2C8ZiDVgVkLtd9DFgKfAS4GghomjZVKfWzoU5WSv0C+AXARRddpFatWjUOTRy51atXs2rVKsJ72mnduAOn3cGqVavY62niic07WTR3CQXlXpRpsvcr/8UEu53yjGd4ZM0jbGnZwqDnCl8F63/DqhXLwRj8N3SXHdvA9sauwecNaNdY6orF+cqBRv54vJ0al4M/TqvmqiL/GV1jPNo1WrnYJsjNduVimyA325WLbYLcbFcutglyp13W0L4IiUQfiUSQl15aw8KFlcQTQWtbPJjshepLvgeJZ3y2julLH5/cPtxCt0Oxeo88GIYXm+FJfi7EsHkxDA8nmjqpra1Lbs98udENT3IInyej18pzVobu5cqfYaZcbBPkZrtysU0g7ToTudgmyN12DeesFQlRSv0v8L9n637jLqPMPpCxWHWUgnIvmq7jnDaNyO7sdc+mF07n0cOP0hXpIuAMpHdUXwwv/cQa5li1aNDtLplcyD93NHG0PUhNoWd8ninDk23d/PueozRHY3yotpRPTCyT4YxCCDEMpcxUOIrH+0gkeonHe5Pvfcntye+J3mSA6iMR7yWeuS/eSyIRBMys66/fMPy9DcObEZC8yTLl+bhcVdY2myfrGJvhzfjuxbD1b0sHrVPNTWppXs3UqatG/4MTQggxyHgEtAYgowIG1cltF5YhioQAWZUcndOn0/3Pf2ZVX5xemCwU0rGXi8svTl+vZon1fuyVoQPalCIAXj7UPq4BrSsW5wv7G7mnqZ0ZXhe/mTOJBf7xD4RCCHG2WaEqHZSUOkh7uz0jQA313psVrNLBq4/TmS+laUayV8qX7I3yYbPl4XSWY7P5kvu8qeBkGB727D7MvHkXDxnEDMONlrlsixBCiPPeeAS0V4A6TdMmYQWzO4E3j8N9zinN6C8Ski6zD9DXlRnQpmHecw/xEyewl5cDVql9gD3te7IDWqAa8irh6DpY+r5B95tWmkeBx85LB9t43eLqcXgieL6jh4/sqqc5GuPjE8r4t4llOHX5H78QIrf0DwGMx3usV6In9TnRvy3em7Xd2mf1XvUHKitUZdu0efD9NM2WDFLpYGWzB3C5q61AlRmsbD5shi+1zUid48NmeNF11xlXvd27ZzVFRZef+kAhhBAXhNGW2f8zsAoo1jTtGPBFpdSvNU37MPAYVpn9/1NK7Rh1S3NNqgfNene4bNhdBsHOdNle1wwrjIV3704FtGJ3MUWuIna372aQmovh2Lqhb6drXDK5iJcOto3lUwBWhcZvHWrix/XNTPE4eXjRNOk1E0KMC2vh3jDhSFM6NGWEqIGhKjtcJYNXvOe05lMZyaBks+Vhs+VZw/7c1RmBKRm2ksFq186DLFh4aaoHywpZPnTdIUuJCCGEOGtGFdCUUm8aZvsjwCOjuXau0wYENLDmoWX1oNXVARDZs5e8jImJ0wuns7dj7+CL1iyFnQ9ATxPklQ/afcnkIh7dPrbz0PYHw3xwxxG29oZ4W2URX5xaKXPNhBDD6h8WGIt1E493EYt3EY93E491E493Z3wfOmwlEr0oleCFF052Fz0drAwfhi0Ph7MUj21KKmzZjLz05+TLCl39371nvMbT7l2rKci/+NQHCiGEEOPorBUJueD0BzTSAc1X4KS7NZT6buTlYa+qIrJncKGQP+z8AzEzhj2zolV1ch7a0XUw65ZBt7xk8tjOQ7v/RAef3HMUp65x15xJXF8SOPVJQojznmlGrTCVDFVW0BoQsmJdxOM9WQHM+tzDwAIW2TRsNn/yZYUll6sqI3DlcaS+mWnT5mcHrIzAZRhe6bESQgjxqiUBbYRSc9Ay5oQXVfrY8XwDylSpHjbnjBmE92T3lk0vmE7MjHGo6xDTCqald1TMA8NhDXMcIqDVlfoo9DpGPQ8tYpp8eX8j/9fQysV+Lz+fPYFKl2PE1xNCnH2mGU+GrE7i8U5iseQrGa5iyeCVMA+xfsNPiSfDVSzWhWmGTnptXXcmA1YAu92Pw1GM1zPF2mb3Y7cFUp9ttv7v1rFWuDr53NWjR1dTXbVq7H4YQgghxAVEAtpIDdGDVljlJR416W4LESixerhc06fR+8wzmOEwussFZBcKyQpoNidULICjrwx9S11j6aTCUc1DawhHeff2w2zqCfK+mhI+N7kSuy5/Uy3EuaKUmQxOHcTiXcRiHVbAinUQi3URiyffU9s7icU7ice7T3pdqzfKD+joWhUezyQrRPX3btkzP6dDls3mxzCcZ+fhhRBCCDGIBLQRGmoOWmGlF4C2hr5UQHNOnwGmSWT/AdxzZgMwwT8Bp+Fkd/tuXjPlNdkXrlkC634J8SjYBvdqjWYe2vquPt65/RChhMmv50zkppL8MzpfCHFyiUSYWKydaKydWLSDWLJnK57q3erv6UoGrngXsVgXJxsyaPVMBbDb8rHb83F7JmK356e+979sqW0BbLa81Pyr1atXs2jRqrPzAxBCCCHEqElAGyljiB60CiugtTf2MXlBCWD1oAFE9uxJBTSbbmNq/lT2dOwZfN2aJbD2R9C0FaovGrR7pPPQ7jnezr/vOUqVy859C6Yyzes67XOFeDWyera6iUbbicWsl/W5wwpgsXZi0XaisQ5isXYSZiur10SGvZ5h+NKBypaP21VlhaqMbZmBy27Px2bzn3GhCyGEEEKc3ySgjVB/D5oyFZFgH06PF4fLhr/YRXtjb+o4e00NmttNeEChkBmFM3iq/qmsRayB7EIhQwS0M52HllCKrx04zk+ONrOiwMcvZk+kwC5/7OLVxzSjyZ6tNitUJYOXFbY6UuGrP4jF450olRjyWobhxW4vwGEvxOEoxOudyommPiZPno/dYW232wsyglYAPbMgkBBCCCHEMOQ39ZFKBjQdnfbGY1RMnQ5AYaWPtsb04qeaYeCcVkdkQKGQWUWzuG/ffRzrPUZNXk16h78CAjXJ9dA+OPi2yXloaw+ceh5aOGHykV31/KOlk3dWFfOVqVUy30xcUBKJINFoK9FoW/I9+Yq1ZWyz3uPxrmGuomO35+NwFGG3F+DxTCE/cBF2R2EyhBVhdxTisBdgTwYvwxjcA93SvJqJE1eN6/MKIYQQ4sInAW2EUnPQNJ32hsyA5qV+exuJuIlhsyqZuaZNp+fxx7N6yxaULgBgc/Pm7IAG1jDH+peHvfeyKdY8tMOtfUws9g55TFcszju2H2JtZx9fmlLJ+2tLR/O4QpwVSikSiV4ikeaMoNU6IIS1kTCPsnpNkEQiOOR1bLYADkcRDkcxPt90HPZLU9+tsFWE3V6Iw1GAzRY4ZdVBIYQQQoizRQLaSCXnoOm6QXvjsdTmoiovpqnoPBGkqMoHgHPGdDr/+lfizc3Yy8oAmBKYgs/uY3Pz5sGFQqqXwPb7oKsBAlWDbr2yzprf9uy+liED2vFIlDdvOcj+YISfzprAbWUFY/LIQoyUUop4vJNIpDkZvpqJRFqIRJuJRpqT79Z30wwPcQUdRzJYORzFaEylsnIWDkdxKnj173M4itB1WTZCCCGEEOcnCWgj1N+D5s3Lp6OxIbW9qNIKZW2NvamA5ppu9a5F9uxJBTRDN5hXMo/NLZsHX7zmYuv92DoI3DZo98RiLxOKPKzZ08Lblk3M2nckFOGOzfvpiCX447zJrCzMG81jCnFSSplEY+1EIyeSwavFCmHRFmtbtCUZwFpRKjrofMPw4XSW4nCU4A8swOkoweEstd4dxanAZbcXZBXLWL16NdPqVp3FJxVCCCGEODskoI1UMqB58vI50pguAJJf5kHXNdob+iCZs5zTrEqO4d178K1cmTp2QckCfrrlp/RGe/E5fOlrl88DmxvqX4LZgwMawOXTSrh3wzEi8QROm/WL66GgFc5CCZO/LZzK/LwzK8MvRCbTjKJUK52d6wlHjhOJNBEJNxGONFmfI01Eoy1DFtKw2fJxOktwOkrxFCzB6SjDkfzeH8CczlIMQ/4ZFUIIIYTIJAFtpJJzydz+AJ17GzETCXTDwLDpBMo8WYVCDL8fe2UlkT3ZZfUXlC5AodjaupVLKy9N7zDsUHsJHHpu2NuvrCvhd2uPsOFwB5dOLaZR6Xx8036iyuTehVOZ7XOP7fOKC0oiEU6FrHAyeFmfj2eEr1YANmxMn2cYXpzOClzOcrwFy63eL2cZTkcpTmcJDofVGyYLHQshhBBCjIwEtBHSdA008Hj9JOJxulpOUFBeCUBRpZfmI91ZxzunTx9Uan9u8Vx0TWdL85bsgAYwaSU89WXobQFfyaD7L5tShN3QWLO3hZIKH1/Bh6EU9y2YykwJZ69qSilisQ7C4QbC4UbC4WOEwg2p75HIcWKxjkHn2Wx+nM5yXM5y8nyzcLoqOHy4i/nzVuF0WdttNhkyK4QQQggxniSgjYau4fJZv7B2NDakA1qVl/0bmomG4zhc1o/YOX0avc8+ixmJoDut3gWfw0ddfh2bmjcNvvaky633w8/CnDsG7fY6bVw0oZDHD7VyT8BEAX9bOJXpsgD1BU8pk2i0hVD4GOFQMoRFrAAWClnvphnKOscwvLhclbhcVQT883G6rF4wp7Mcp7MCp7MMm21wwZn6I6spKlpxth5NCCGEEOJVTwLaKGiGhtNjzR1rbzjK5EXWpLPCZKGQjuNByib5AXDNmAGJBJF9+3HPmZ26xoLSBTx08CESZgJDTxdBoGI+OP1waOiABrB4WhHf7e3Cl0jwBXolnF0g+nvAQqH69Ct8NNkD1kA43DSo4IbNlo/bVYXXO5miohW4XFWpQOZ2VWGz5WcviC6EEEIIIXKSBLTR0DVshh23P0D78XQlx8JKqyeirbE3HdDmzAUgtGVzVkCbXzKfe/bcw/7O/UwvnJ6+tmGDCcutgDaEnniCBxwxlEvn3U4fNaH2sX46MY5MM04k0kgwI4QlzI28vO671udEb9bxDkcpLlcVeXlzKS25HperOhXAXK6qIXu/hBBCCCHE+UcC2ihouoYyFYWVVbQ3pNdC8xe7sdl1q5Jjkr2qEltZGaGNm+Atb0ltX1i6EIAtLVuyAxpY89D2PgqdRyE/vZh1OGHy9m2HOBSNUrKnh6MFsLRynB5SjJhpxgiHjxEMHrJeocOEglYYC0casqofapoDKMTpnEF+/kW43bXWy1WD212DYci8QiGEEEKIVwMJaKOha2AqCiurObBhXXqzrlFY6aWtMd0LomkansWLCG7cmHWJKl8Vxe5iNjdv5g3T35B9/cn989CegwVvBqzhb/+2u54XO3v58cxa1rYc5cldJ7i9wj4+zyhOSilFNNqaDGEHCYYOpQJZKFSPUvHUsTZbPh53LX7/PMrcN+F2T8DtrsHtrsXpLGfNmmdZMH/VuXsYIYQQQghxzklAGwVN11AJRUFlNcGnHyfc24vLZ80/K6z0Ur8je9ihe9Fiuh95lFhjI/ZKq8tL0zQWlCwYulBIyUzwFFvDHJMB7Yf1zfy9uZP/nFzBHeWF2KeFuXfDMQ51GYPPF2MmkYhY4atvP33BQ4SCh+gLHiQYPJQ1HFHXHbjdE/F6p1FSch1ezyQ8yZfdXnAOn0AIIYQQQpwPJKCNhpHuQQNobzxG5bQZgFUoZPfaJkK9Udw+BwCeRdZwxuCGjQQq02MSF5Qu4Mn6J2kNtVLsLk5fX9dh0goroCnFY23dfP3gcW4rzecjtaUArJhajKbBttbBiwWLM5dIRAgGD9LXty/9Cu4nGDwCmMmjNFyuSjzuSVRU3IbHPQmPZzIezyRcrgo0TcKyEEIIIYQYGQloo5A5Bw2yA1pRslBIe0MfVdOtgOacNg3d6yW4cQOB19ycus6C0gUAbGnewlUTrsq+yaSVsOPv7G7cxwcPhJmX5+Z7M2pTFfkKvA7mV+eztSV73TVxcqYZJxQ6TE/vLvp69w4ZxDTNSPWGlZbehM9bh8c7FY97IoYhFTOFEEIIIcTYk4A2Gsk5aIHScnTDRkdjulBIf6n9tsZeqqZbQ9s0mw33ggVWoZAMMwtn4tAdbG7ZPERAu5wOWx5v39eB1+7lrrmTcBt61iFXzSjle0900twdptQvwWGgWKyb3t7d9Pbuord3NwlzHWuePY5pRoChg5jXW4fHMxFdd57j1gshhBBCiFcTCWijoWuQUOiGQX55Be0ZAc2b78ATcNB0sJt5V6RPcS9eROsPf0SiuxvDb5XgdxgO5hTPYcOJDYNuoQom8cnZX6DRtHH/nElUOB2DjrlmdhnffWIvT+5q5s1La8f+Oc8TSinC4UZ6erbT07szFcrC4fQSCHZ7IVBGddW/4PPNwOebidc7WYKYEEIIIYTICRLQRqF/iCNAYWV1VkDTNI3Kunwa93WilEoNSfQsWgxKEdq8Gd/Klanjl1Qs4Rdbf0FXpIuAM5Da/vvj7TySv4Qv1t/F4lXfG7Id08vyKHFrPLGz6VUV0CKRZrp7ttHdvZWenm10d28jFusvzKLj8Uwm4F9IVeWb8eXNIM83E4ejlDVr1lBXt+pcNl0IIYQQQoghSUAbjWSREIDCyioObnwFM5FAN6wiEZVT89m/vpnu1jCBEmsdK/e8uWCzEdywMSugLatYxs+2/IxXml7h6glXA7C7L8QX9jewytbL+w7dBc3vhvI5g5qhaRqLSg2eOdBGXySO13nh/bFGo+309Gynu3sr3T3b6OneRiR6IrlXx+eto7j4Svx588jzz8HnnS7zxIQQQgghxHnnwvtN/izK6kGrqsFMxOlqbqKgwioaUlmXD0Djvo5UQNM9HlwzZxIasB7a3JK5eGwe1jau5eoJVxNKmLx/xxF8hsH/zpyA/pSC/U8MGdAAFpbZeOxImGf3tnDD3IpxeuKzQymTYPAgnV0b6OrcQGfXBkKhw6n9Hs9kCgqWkeefgz9vLnl5szAMz7lrsBBCCCGEEGNEAtpoJOegAalQ1t54LPW5sMKLy2uncV8nMy9Nl9X3LFpEx913o6JRNIc1p8yu27m4/GLWHl8LwFcONLK7L8yf5k2mtMgP5XNh3xNw2b8N2ZS6fJ18j50ndp447wJaIhGmu2cbXZ0b6OraQGfXRuLxTsCaMxYILKKq8g3k+efhz5uDzZZ3bhsshBBCCCHEOJGANgoD56ABtDccY8ripan9FVMDNO7rzDrPvXgR7b/9LeGdO3EvWJDavqxyGWuOreH+hoP8pqGb91aXcGWRVUiEuuvg+e9DqAPcgxc8NnSNK2eU8vTuZuIJE9uASo+5JBbrprNznfXq2khPz3aUigFW71hpybUEAovJz1+M2z0xNX9PCCGEEEKIC50EtNEwNIhba2a5fD48gXzaGxuyDqmaVsChLa30doTxFVhzojyLFgHWgtVZAa1iGQo7XzjYSq3Lx39MzugJm3YdPPcdOPA0zLljyOZcO6uMv21s4JXDHSybUjSGDzo6iUSQzs4NdHSspaNjLd092wETXXeQlzeX2pp3EggsJhBYhMNReK6bK4QQQgghxDkjAW0UNF3DTPagARRV19J86EDWMel5aJ1MW1IOgK24GMeECQQ3bqToXf+aOnZSYBJa8Z00xx3cPbsaT2YvWNVicBfC3seHDWgr6kpw2HQe39l0TgOaUgm6u7fS1vYsCfNR1jx7GKViaJodv38+kyZ+iIKCZfj9CzAMKW8vhBBCCCFEPwloo6GnqzgC1Myey4t//ROhnm7cedbQxKJqHw6XkRXQANyLFtG7ejXKNNF0K4jtD0Zo81yNL/QKK/LnDriXAVOvtgqFmAnr+wBep43LphbzxM4TfOHmWWd1aGA02kpb23O0ta+hvf15YrEOQAcmUFvzrxQULCM/f7EU8xBCCCGEEOIkcnei0nlA0zVUIh3QaucsAKU4umNrapuua1RMzR80D82zdAmJjg7Cu3YBYCrFv+85iksHZ9td7G7fPfiG066DYBs0bBy8L+naWWUc6wixu6lnVM92KkqZdHVt5sDB77HulVt57vml7Nz1KTo61lJcdAVzZv+AlStewdA/x9Sp/4+iohUSzoQQQgghhDgF6UEbDSO7B618Sh0Ot5v67VuYdsllqe2Vdfkc2d5GsDuKx29VbfRdZu3ve+453LNnc/fxdl7q6uMrk4v44eFu1h5fy+zi2dn3m3IlaDrsewxqLh6ySVfNLEPTtvH4jhPMrPCP6eOaZpzOznW0tD5OS8sTRCJNgE4gsIDJk/6NouJV5PlmoWmS+4UQQgghhBgJ+U16NAYMcTRsNqpnzuHIts1Zh/XPQzu+vzO1zVZcjGvOHHqffY7eeIKvHTzOJQEv76mtZXrBdNY2rh18P08h1CyFvY8N26SSPCcXTyjk4W2No3mylEQiQkvrU+zc+f94/oVL2LT5rTQ2/hV/3lxmzfwOK1e8wkWL/8qkSR/GnzdHwpkQQgghhBCjID1oo5BZZr/fhLkLOLjxFbpbmvGXlAJQMiEPm0OnYV8nUxaVpo71rVxB689+zs/2H6UtFuf3UyahaRrLKpfxx11/JBQP4ba5s29ady089WXoPg7+odc7u3l+BV94YAd7T/QwrezM1wxTKkFHx0scb/o7LS2Pk0j0YbPlUVx0JSUl18lwRSGEEEIIIcaJdHeMxoAeNIDauQsAOLJ9c2qbYeiUTx68Hpp3xQq63F5+2tjOjcUBFgW8AFxScQkxM8aGExsG33Paddb7vseHbdb1c8rRNXho6/Ezepyenl3s2/91XnhhBZs2v42WlicoLb2RBfN/w4rL1jF79vcoLb1OwpkQQgghhBDjRALaKGhGdpEQsErte/MLqN+2JWt7ZV0+bQ29hPtiqW3uefP4062vJwR8OmPNs0Vli3DoDl5oeGHwTUtngb/6pAGtNM/F0klFPLS1EaXUsMcBRCInOHLk57z88o2se+Vmjh69izz/XObM+SErLlvHrJnfoKhoJbruOOl1hBBCCCGEEKMnAW00huhB0zSN2jnzqd++JSscVU0rAAXHdnektjXEEtx/6ZVcv/FlprnTAchtc3NJ5SU8c/SZwQFL06DuGjjwDMTCwzbtpnkVHGzpG7Kao1KKjo6X2Lbtw7zw4gr2H/gWuuFh+rQvc9nytcyf93PKSm+UNcqEEEIIIYQ4yySgjcJQc9AAaufMJ9jVSevRI6lt5ZP9uLx2Dm1pSW377uEmlK7ztvv+mCq33+/Kmitp6G1gb8fewTeecTPE+uDg6mHbdsOccgxd46Gt6WIh8XgPR4/9npfX3cDGTW+hveNFaqrfwbJLnuTii+6luvpfcDgKz+AnIIQQQgghhBhLEtBGY4geNIDaufMBqM+o5qgbOhPnFXF4WxuJhMnevjD3HG/nHSV5lHW00ffcc1nXuLzmcjQ0nj769OD7TloJrgDsfGDYphX5nFw6pYiHth6np3cPu/d8kedfWM7evV9C153MnPFNLlv+InV1/4nHM2lkzy+EEEIIIYQYUxLQRkEzdFRcoeJm1nZ/cSkFFVXUb8+ehzZ5QQnRUJzGPZ3875ETuAydj02faJXbX/Ns1rHF7mLml8znmfpnBt/Y5oDpN8GehyEeHbZ9r53Vwmtrv8e6dTdy/PhfKCm5losu+hsXX3Q/lZWvwzBcI394IYQQQgghxJiTgDYKjto8MBWRg12D9tXOmc/RndtJxOOpbTUzC7E5dDZua+aB5k7uLC+k2GHDt3IFoS1bSHR2Zl3jytor2dW+i+O9Q1RjnHUrhLvgUHawU0rR2voM6ze8gfzQx5gYqOdY/F9YfukLzJ71HQL++WiaNibPL4QQQgghhBhbEtBGwVVXgOYwCG1rHbRvwtwFxMIhmvan55DZHAa1s4v4S3c3MaV4V3UxAL6VK8E06XvxxaxrXFFzBcDQwxynXAGOPNh5P2AFs7b251m/4XVs2fpuIpEmpk37Ig81/Yhfbrocu71gjJ5aCCGEEEIIMV4koI2CZtdxzSwktLN1ULn9mtnz0DSdg5teydpePa+Il6ptrHC7meKxhhi65s7FyM8fNMxxYmAikwOTeeboUMMcnTD9etj9MJ3t6zDVt9i8+e1EIieYMeO/WXbJU9RUv43r50zkWEeIzUc7x/TZhRBCCCGEEGNPAtoouecUY/bFiRzKHubo8vmYMH8hu55fjTLTc9S2Vtrpc+lcmdHpphkGvstX0rN6NSoWy7rOlbVXsr5pPV2RwcMoQ9NWsG1CjA2b3wScYNq0L3Lpsqeoqnwjum4H4Lo55ThtOn/f1DB2Dy2EEEIIIYQYFxLQRsk1vQDNrhPaPniY4+yVV9LT2sLRndsAaxjib5vbqQgr/Os7so7Nu/56zK4u+tauzdp+Rc0VJFSC5xrSVR7j8T4OHPguL7V+g9ZiB5Ni09C1r1NT/TZ0PXvtMr/LzrWzy3lwSyPRAcVMhBBCCCGEELlFAtoo6Q4D1/QCQjtaB62JNuXiS3B6vOxY8xQA67r62Nob4vUuH51NQTqa+lLHepcvR8/Lo/uRR7OuMad4DiXuEp6ut+ahtbat5uV1N3D4yE8oKb2eZZ0XM3nrPjRsw7bx9kVVdAZjPLOneaweWwghhBBCCDEOJKCNAffcYsyeGNH67qztdoeTacsuY+/LLxANBfnlsRbybQbvnlsFwMHN6UWrdYeDvKuvpueppzCj6dL5uqazqmYVm48/x9btH2XLlneh6y4WL7qHObO/j2vGG6GvhUDX7mHbt2JqMcU+J/dtODbGTy6EEEIIIYQYSxLQxoBrRiHYtCGrOc5eeRXxSITnX3qJR1u7eEtlEaXFHkon5HFoS/bx/huux+zpoe/5F7K2X17g5+PF7bQ0/5NJEz/K0iX/ID//Imtn3bVgc1HSkn1OJpuh89oFlTyzp5n2vuHXTRNCCCGEEEKcWxLQxoDutOGqKyC0vQ2lsoc5Vk6fSX55BXcfPEpCwdsqiwCYvLCEE4e66WoJpo71LluGHgjQ/U9rmGMiEWLX7v8k3vhDOk07zxtXMnnyx7LnmTl9UHcNpc0vQCLOcG5fVE0soXhoa+MYPrkQQgghhBBiLElAGyPuOcUkuiLEjvVmbdc0jdkrr+JlXzHz3HYmuK1wNX1pOZoGu9c2pY+128m75mp6n3qa7vYtrHvltTQ2/oUJte+jPu9OHj62kWAsyCBz34Aj1gmHVg/bvlmVfmZW+Llvo1RzFEIIIYQQIldJQBsj7pmFYGgEt7UM2udbupITpVUsak3PAfMVuKiZVcTutccxM4qL+G+4gb4Z3azf9Ebi8W4WLvgtU6f+P26ccguheGjoNdGmXUfM5oWtfzlpG+9YVMWWo53sb+496XFCCCGEEEKIc0MC2hjRPXZc0wvpW3cCM5i9ltkzCQOAkuf+mTUEcualFfR2RDi6qx0ApUxOlL1Ex7sSuNr9LF3yEIWFywFYULqACm8FDx98ePDNbU5aSi6DXf+AyPDh65YFlega/G2jFAsRQgghhBAiF0lAG0OBayegInG6n6rP2v5gcyeziMHhfRzdsTW1fdK8YlxeO7teOE4iEWTb9o9wuP4n5B+fQsG34tgSntSxuqZzw6QbeLHxRdrD7YPufaJsFcSCsHuIAJdUmudi5bQS/r6pgcSAJQGEEEIIIYQQ554EtDFkL/fivaic3peOE28NAXAwGGFbb4jXT6rGE8hn3QP3po437DrTl5ZzZOcR1q9/Cy0tj1E39T+ZPvnL0BOid82arOvfOOlGEirBE4efGHTvrsAMyK+FrXeftI2vW1zN8a4wz+0bPBRTCCGEEEIIcW5JQBtj/msmoBkaXf88BMCDzR0A3FpexEU338aRrZto2r83dXzdJV6qLvsuvb07mTv3x9TWvgvvkiXYSkrouv+BrGtPK5jG1PypPHxoiF4yTYd5b4SDq6GnafD+pGtnlVPkdfDndfXDHiOEEEIIIYQ4NySgjTHD7yBvZTWh7W1EDnfxYHMnSwJeKl0O5l9zAy6vj5f+bhXziMU6OXLi/bjyG+ja9XFKiq8FQDMMArfdRu+zzxI7cSJ1bU3TuHHSjWxq3kRD7xDVGOe9EZQJ2+4dvC/JYdN53eJqntrVTHN3eGwfXgghhBBCCDEqEtDGgW9lNbrfwaYnDrGzL8wtpfkAONweFt7wGg6sf4njh7awcdNb6evbR4Htvzm+fTot9T2pa+TfcTuYJl1/vz/r2jdMugGARw89OvjGxXVQuQi23nPS9r3x4hripuKvG6RYiBBCCCGEELlEAto40B0GgWsn8k8VQQNuLslP7Vt4wy04PE62b/8gweB+5s39OXOW3oph19n5wvHUcY4JE/AsXUrnffehTDO1vTqvmgUlC4au5ghWL1rTVmjeNWz7Jpf4WDa5iLtfqc8q8S+EEEIIIYQ4t2znugEXKs+iUp5sOc7CzgRFnVEoswPg8vqYfYeJ8jQxofIrFBWtBKDuolL2vHScS26djMtrHZv/utfR+O//TnDdOryXXJK69k2Tb+JrL3+NHW07mF00O/vGc+6Ax/4TNv8Jrv2vYdt355IaPnb3Zl440MqKupIxfnohhBBifCmlUkvX9L+bpkk8Hh9y38D3s7UtGAzS2to6Jtcby3a2t7ezf//+s/qzONW248ePs3HjxpxoS+a2w4cPY2b8Zfm5/meq//Px48fp6OgY0bnj9bm9vZ36+vqzft9TfS4pOb9+15WANk4aozH2u+CTx03afr+L0g8vQHfZOHr0/1CerZzYVEpiXxuTp1nHL7i6lt1rm9j+bAMX3TARgLxrr0H/aoDOv96bFdBunHwj313/Xe7bex+zlw0IaL4SmHY9bPkzXPl5sDmGbN91s8sp8Nj587p6CWhC5KiBv2RmvgZuG+6YSCRCV1fXGZ83nsc0Nzezffv2MbvXUD+r4d5Ptu/IkSPEYrERn386x4zk/NbWVhobG8/Z/Yd6DwaDbNmy5Zz9jE7m2WefPen+c2HdunXnuglD2rp166kPOsv27NlzrpswpCNHjgBWPYB+/Z/P1bZIJEI4HB7RueP1OZFIEI1GT/t4XddPecxYfDYMg/OJBLRx8nJXHwBXXjqB+O/20v6XvagbTrBv/zcoLbkBlT+LbU89zkWvuYPCyiqKqnzUzi5k6zPHWHB1DTa7ge50EnjNa+i85x7iHR3YCgoA8Dv8XDvxWh459AifuuhTeOye7JsvfgfseRj2Pgqzbh2yfS67wR2LqrnrxcO09EQoyXOO549DjKP+X2hM0xyT98xXR0cHBw8eHHLfcK8zOXakxx87doze3t5z2pbMn71SilAoxKZNm056zFDbTnbMWFm7du2YXWus7Ny581w3Acj+BUYpRWNj46BfajLfR7pvNOdHIhG6u7vP+Pz+X3zGo43Nzc2UlZXlzM+o//3w4cNMnjz5lPfIfB/vbbt27WLmzJnn/Jf5gds2bdrEokWLzmlbBu576aWXWLZs2Tlt01Db1qxZw6pVq8g1q1evzrl25WKbwGrX+UQC2jh5qbOXPENnwfQSgjfGaHlqLfXbvkKebyazZn2LyTURdj23mtW//QW3/ceX0DSNBdfU8uD/bGbvuhPMWl4JQP7rX0fHH/5A9z8eovBtb01d//a623nwwIM8dvgxbqu7LfvmU68CfzVsuGvYgAZw55JafvX8Ie7beIz3Xz5lHH4KY6v/F+iTvRKJxCmPaW1tZdeuXaO6RuYxYxWOent72bZt24jOH09btmwZ1+sPR9M0dF1P/VKW+YrH43R2dg7aPtzxQ72GOtZms532+QN/aTxx4gQVFRVZ24Y6bqjv43nM3r17mT59es60B2D9+vUsWbJkVNcZ6he94X75G+oaQ8nlXyxyrV252Caw/j+xYsWKc92MLO3t7cybN+9cN2OQQ4cOUVtbe66bkcXlchEIBM51M4Q45ySgjZOXu/q4KODF0DS8l1aws/cPqJhJne2rGIYHb76HZa97E2t+/2sObnyFKYuXUD29gOIaH5ufqGfmsgo0XcM1fTquuXPp/OtfKXjrv6R+sVhUuohJgUnct+++wQFNN2DRW2H1N6DjMBRMHLKNU0t9LJlUyJ9eruc9KyZj6NbfIMfj8ZO+YrFY6nMikTjp68iRI/T29p7yuJO9MgPRWNm+ffsZn2MYBrquD3pl/rJ/Ou+6rqeCQOZ20zRTfyN9ptc703NO513TNLZs2cLChQvPOOiMxbEnk4u/HOZimwB6e3tZvHjxuW5GFp/PR2lp6bluhhBCCJGTJKCNg/ZYnD19YW4vLQDgeNNf6XVso6rpA/St7sKpN+NZUMrC629m21OPsfq3v2TCvIXY7HYWXlPLE/+3kyPb25g4rxiwioU0ffGLhLdswTV/PrFYjHA4zC3lt3DX1rt4cfuLtLW1sWPHDmKxGNFolGh8LlGWEb33t8TKF1nbkq/MgLUgGKGzL8x/f30tmFYgGgu6rmMYBkopOjs7MQwj69W/3zAMHA7HoP3DHT9UQBpu+3DHbNq0iYsvvviMrzHecvEX/CNHjjBhwoRz3QwhhBBCiFcNCWjjYF2nNf9sab6XSKSZ/fu/Tn7+UuqWf5z23p2037MHZSrcC0pYeufbeegn3+fRP/2e6nkLCcaCxIqP8o9/1FO5L49QKESor4/um28i/re/Ef3HP7JC1NVczeP3Pg7Atm3bBrRkCY6GKI6uPTgcDux2Ow6HA4fDgdfrxWazUWEYPLy9majTyU3zq7HZbNhsNux2e+rzcC+73T5smOoPNLkYOg4cOJAaiiaEEEIIIUQukYA2Dl7q6sWhacxy2di69TPE42H6+m7nkccfpdvTTaevhb4HniP0YAyFgkmz2HCong2HrLKk2ECL2Igd8uLN8+B2uykNBFB791F2+214S0pwOp04nU7+uPeP7OraxTuK38HyS5anApjdbsd+4HG0e94CN/8JZtw0bHsbA/v47hN7+ciCZUwp8Z2ln5IQQgghhBBiIAloY0QpRVNTE0eOHOGfPVAWjfC7X32QmbPWcOjQQo4d3Y7H48Hv9xOoLaa4KY6zCwqnleOp87P6Vz9i4qy53PTBj6Nj4/efXUtFeT43vc+aWBxrbGT/NddSOG8uZbel55z1FffxyBOPcMh2iNvLbs9u1LTrwVcOG3570oD2pqW1/PDp/fzuxcN8+dY54/LzEUIIIYQQQpyaBLRR6l/PZ/v27bS3txPTDeovu4krzC5mztqMzTaJG67/HkVFpbhcrtR5Km7Scf9+gutP4FIBVlx3K8/f93uOXHIpM5ZfzsJra3np/oMcP9BFxZQA9spK/NddS+df/krJBz+I7vUCsLRiKVW+Kl7oeYFP8snsxhk2WPgv8Pz3oPMo5NcM+QzFPic3z6/g3g3H+NR108lz2cft5yWEEEIIIYQY3vhXPriArVu3jp/85Cc899xzBAIBXvOa17DiX9+LqencOj0MdDFv7lepqqrNCmcAmk2n4I468m+dQnhPBxOOTmHylMU8+euf0NPeyrwranDn2Xnp/gOpMuqFb387Zk8PnX/7e+o6uqbzhulvYF9kH3vah1jccdHbQCnY8JuTPss7Lp1IXzTBvRuOjfrnIoQQQgghhBgZCWijUF9fj9/v55Of/CRvf/vbWbx4MdtiJjpQ2Poz/HnzyM9fOuz5mqbhW1ZJybvnYAZjXKxfwwTHLB77yQ+w2TUuunEijfs6ObqrHQD3/Pm4Fyyg/fe/R2UUCrmj7g4cmoM/7f7T4JsUTIDpN8L630AsNGxb5lXns7A2n9+tPYJpju+6WkIIIYQQQoihSUAbhba2NkpKSvD50oU1Xu7sY5orhhbeS+2E95xyPScA5+R8Sj+6COfkfBbmX8nEljq2PvgIsy+rIq/QxUv3H0z3or3jHcTq6+nNWBE94AywxLuEhw48RHu4ffANLnk/hNph+30nbcc7Lp3IodY+1uxrOb0fgBBCCCGEEGJMSUAbIaUUbW1tFBUVpbZFTZMN3X3UJTbhctVQUnztaV/PFnBS/M7Z5L92CiXuGvJedNL61G4uvmkiLfU9HNxkhaa8q6/CXllJ+2/uyjr/cv/lRM0o9+69d/DFJ66A0lnw8s+s4Y7DuGFOBaV5Tv7v+UOn3W4hhBBCCCHE2JGANkJ9fX1Eo9GsgLatJ0TIVEyKrqG29l/R9TOrwaJpGr5LKsl/70y6E23EVrdRsL6R2lIXLz94ENNUaDYbhW9/G8H16wlu3JQ6t9xezvLK5dy9+25iidjAC8PS90HTNqhfO+z9HTaddyyfyHP7WtnR2HVGbRdCCCGEEEKMngS0EWprawPICmgvdVkLVM82GqmseN2Irx2YXE7hO2awtuUfBE90sjCaYGJ3hF1PWOuk5b/+9RiFhbT+5CdZ571l5ltoCbXw+JHHB1907hvAlW/1op3EW5ZOwOsw+OWzB0fcfiGEEEIIIcTInLWApmmaV9O032qa9ktN095ytu47XoYKaGvbmilXjcypuQXD8Izq+rVzFzD59kv5x8Ef013eQ7VDx/f0EVr/vg9l2ih617/S9/zzhLZsSZ2zvGo5E/0T+cPOP6TmrKU4PLD47bDrIavk/jACbjt3LqnlH1uP09A5fFERIYQQQgghxNgbVUDTNO3/NE1r1jRt+4Dt12uatkfTtP2apv1HcvPtwL1KqfcAt4zmvrmgra0NwzAIBAKpbTt7OpmoHaGm+q1jco9FN95K3fLlPPrST+m8VNEQU4RebqLpW69glK7AKK2m5cc/Th2vazpvmfkWtrdtZ0vLlsEXvPjdgIJXfnXS+75z+UQAfiNz0YQQQgghhDirRtuDdhdwfeYGTdMM4MfADcAs4E2aps0CqoH+rpsE57m2tjYKCgrQdetHGE0kaEq4mezx4nAUj8k9NE3jmvd+mNIJk1nztx/RO0vj6Z4YWo2f3hdO4Fn+OeKdVfSu3Zw655Ypt5DnyOOuHXcNvmB+Lcy4CTb+FqJ9w963usDDzfMq+PO6erpCsWGPE0IIIYQQQowtbdBQuDO9gKZNBB5SSs1Jfl8GfEkpdV3y+2eShx4DOpRSD2madrdS6s5hrvde4L0AZWVli+++++5RtW+s9fb24vP5WLduHW63m7lz5wJwXJ3g35jO+9jCFdqEMb1npKeL3ff9EU3XsXnehCuQx7RLNAoPKPIaNdB0Okvj9E02COfDw10P88+uf/KfFf9JhaMi61qBzp0s3PwZ9k19Dw3VNw97zyPdCb74YpjXT7Nz02THiNve//PKJbnYJsjNduVimyA325WLbYLcbFcutgmkXWciF9sEudmuXGwT5Ga7crFNIO06E7nYJsjNdl1xxRUblFIXDblTKTWqFzAR2J7x/XXArzK+vxX4EeAFfgP8FHjL6Vx78eLFKtc888wzKpFIqK985SvqscceS23/8667VdnTm9SzzUfG5b4nDh1Q//v216ufvf/d6ofveUjtfKFRKaVU8w9/qQ7c8Tl15DOr1dFPP6uafrBBnXjhgFr+u0vVZ579zNAX+9U1Sn1vjlLx6Env+ZZfvqQu/uoTKhyLj7jdzzzzzIjPHS+52CalcrNdudgmpXKzXbnYJqVys1252CalpF1nIhfbpFRutisX26RUbrYrF9uklLTrTORim5TKzXYB69UwGeisFQlRSvUppd6plPqAUuqPZ+u+46G7u5tEIpFVIGRvZwMA0/wVw502KqUTJ/Paf/8coZ5WiP+DF+/bRbg3RuE77iRW/zjtB35B/m1TUQlF9MEGfr/nq0x9IZ9j2/ehzAG9pMs/Dl31sOPvJ73ne1dOprknwt83NozLMwkhhBBCCCGyjUdAawBqMr5XJ7ddMAZWcDTNCIdCEVxanFLHma19diZqZs/jpo/8O5FgA90n/s6au3di+HwUvetdOLdsRDcaKPv4IkreOw/H7EIu614If2ii6duv0PXEEeKtyaqM066Hkhnwwg9OunD1irpi5lYF+OmaA8QT5rg9lxBCCCGEEMIyHgHtFaBO07RJmqY5gDuBB8fhPudMf0ArLCwEoKtrE02qhFqnVdhjPNUtvZRr3v0hzNghdq7+NfvWN1L4treSyM/nxLe/DYBzcoCqN83nL9ev5XtVv8fMN+h5up6m76yn+adb6H3lBIlFH4cT22H/k8PeS9M0PnzlVI60BfnH1sZxfS4hhBBCCCHE6Mvs/xlYC0zXNO2YpmnvUkrFgQ8DjwG7gL8opXaMvqm5o62tDbvdTl5eHgDt7c9zQitnijdwijPHxryrr+fKf/0AZuwgj/zwGwQjJr23vIbwlq30PJZepPptC97BU4GXuWfxGsr/Ywn+6ydiBmN0/n0/xx+spjnxfXoefIF4e3jYe10zs4wZ5Xn86On9mAOHSgohhBBCCCHG1KgCmlLqTUqpCqWUXSlVrZT6dXL7I0qpaUqpKUqpr41NU3NHW1sbRUVFqd6ylva1NFPOZK/3rLVh4XU3sez17yEePsgf//NzBC9ajLOujubvfw8VjQJQ66/luonXcc+ee+hzhfGvqqHsE4sp/ehC8q6sRbmr6Wq5iqZvvcKJH2yk+8kjxJr6sha51nWND10xlQMtfTy6vemsPZ8QQgghhBCvRmetSMiFpD+gAcRiXRzpaSSOjYnukZejH4lLX3crdcveTG/bPnY/cD+Bj3yY2JF6Ov7y19Qx7577boLxIL/d8VvAGrboqPQRuGYCZZ+8lPK8TxCofBHNYdD9VD0n/mcjTd98hY6/7SO4rRUzFOfGuRVMLvHyw6f3ZYU3IYQQQgghxNiSgHaGTNOks7MzFdA6Ol7iBKUATHI7z3p7bvrwnRTU3EaotYF/PPYA2pKLaP3xj0n09gIwrWAa10+8nj/s+gNtobbsk50+bJfeRl77f1N6m0HFfy4l/7ap2Kt8BLe00P7HXTT+11rafr6V/y4tQm8K8tSOE2f9GYUQQgghhHi1kIB2hsLhMEqpVEBr73iBZt1amHriOQhohk3ntZ+4E4f/Ntobj7PGqegM9tL285+njvnggg8SSUT49fZfD77AJR8Apx/WfBMjz4FvaQXFb51F5RcuoeT988hbVYNKmFTv7OQXeKn54z5af7uDnueOET3WM7iEvxBCCCGEEGLEJKCdoWAwCKQrOLa3v0CXcwFOXaPSaT8nbSqs9FJ9yUTs3jcQjZm8NGsie/9yN5GDhwCYFJjELVNu4Z7d99DUN2AembvACmm7HoSm7anNmqHjnBggcO1Eyj68kIrPXcLuJcU8paJ0N/TQ9fAhmn+0mcYvr6X1N9vpWXOUSH03SsrxCyGEEEIIMWIS0M5QKGStJVZUVEQo1EAodJhWYzK1Lgf6OJfYP5n8yTD9kjlozjfgyi9h3YRSXvzSZ1Nzxt4///2YmPxi6y8Gn5zRizYcw2vn8lunc3ehzkd8Mco/czGFd07Hs6CEeHuYrkcP0/KTLTR8cS3NP9tC5yOHCG1vxRi+QKQQQgghhBBiAAloZygYDOJ2u/F4PHR0vADAcbPgnAxvzKRpGpe/ZQaBklLs/jdTUVLJxkg3j3zxMyTiMap8VdxRdwd/3/d3jvYczT55mF60geyGzseuqmNHYzdP1HfgWVBKwW11lH/yIio+u5TCN8/At7QcTEXvCw20/WEXk1YbHP/GOtr+vJue5xuIHO7CjCTG+achhBBCCCHE+UkC2hkKhUKp+WfB4GHQ7ByJaOekQMhATreNa989h3Cvjnf6B6iL6+zes52/fvk/6evs4L3z3ouhG/xsy88Gn3wavWgAr11YxZQSL997Yi+JjPlnRp4Dz7wS8l8zhdIPLqDqS5dS8oH5tE43cdTkET3cRddDB2n52VYav/QiTd9dT/vdu+l57hiRg52Y4fhY/ziEEEIIIYQ479jOdQPON6FQiAkTrKIgSsXp1ooJmeZZL7E/nLKJfla8oY41f97LvGs+zYK7Ps42Xed3/+8j3PiRT/GmGW/itzt+y9tmvY3phdPTJ/b3oq35ptWLVj5nyOsbusa/XTOND/9pE//Y0shrF1YNeZxm13FO8NM5SbFg1UwAEt0Rog29xBp6iTb0EjnURXBzS+ocW7Ebe6UXR5UPe5UPe7kXw5cbP1chhBBCCCHOBgloZyAajRKJRFI9aAqTE5QD56bE/nBmr6yipb6HrS8cZ8mlb+LSZ//I9mWl3Pu1z7Pw1tfyN3se313/XX5+zc9Ti20DVkB76afwzH/Dm/407PVvnFPBjPL9/M+Te7lpXgV24/Q6Yg2/E7ffiXtmUWpbojeaCmyxhl6iR3sIbW1N7dd9duzlXuxlHuzlXmxlHuxlXnSnceY/GCGEEEIIIXKcBLQz0N7eDqQrOCqV4AQVwLkpsT8cTdNYeed02hr72NiwiIs8q1nZFmLfiivYdP/feePE6fxx0jqeb3ieFdUr0ie6C+DSj8IzX4Wj66BmyZDX13WNT147nff8bj1/23iMN15cO+K2Gj4HxvRCXNMLU9sSfTFijb3ETgSJNfURa+qjb10TKpauEGkUulKhzV7mwVbqwV7iRrNLcBNCCCGEEOcvCWhnoLu7GyDdg6YSnKAcQ4NqV24NxTPsOje8by5/+forbF/8URY+8R8svelGaj7wcZ7+v59xW0MVvwt9m0s+egl2I2N5gGUfhHW/gCe/BO94GIapTHn1zFLmVwf4wZP7uHVBFa4xDEaG145RV4CrriC1TZmKREeYWFOQ2AkrtMVOBAnv6YD+uXAaGPlObCVWWLOVeLCVuLGXetB99uzeQiGEEEIIIXKQBLQzMG3aNFauXElZWRlgBbQmSqlxObDruffLvzffyQ3vm8v939vE9uX/ju1732P6g3+j+ls/5M/f+wIzXjrOL3s+zjv/7eu48/zWSQ4vXP7/4JFPwf4noe6aIa+taRqfvn4Gb/7Vy/z2xcO87/Ip4/osmq5hK3JjK3Ljnp0eIqniJrGWEPGWIPHmYOpz36GurB43zWVgTwa2gh6NYGELtkIXtiI3ulv+NRBCCCGEELlBfjM9Q7quo+vWnCurB600p+afDVQ+OcDV75zFY7802TH5Trxf+CK1v/ol7/36T/n0d95M2abD/OaTH+Dqf/0AdUuXW71Mi94Oa38ET34ZplwF+tBzzC6dWsyq6SX8+Jn9vPHiGvI9Z78XUbPpOCq8OCq8WduVqUh0RwcFt8j+Toq6ddr37U4dq3ts2IrcGEVWYLMVurAVW+/S8yaEEEIIIc4mCWijoMwEx1UJK3I4oAFMXVxKT/tUXrwPthxtIXD/A+Tf9lre+a4v8oE/v5Vb9/n5x/e/wdSLL+Gqf/0AvsIiuPLzcN+7YPu9MO8Nw177P26YwQ0/eI4fP7Ofz9406yw+1clpuoYt34kt3wkZQyUB1jy5mmWzLybRFiLeFibebr1Hj3QT2tICKuM6DgNbkQtbkQujP7wVuDAKrGvLnDchhBBCCDGWJKCNQpdpI4iHSTlSYv9kFlxdQ09biG2rr+aVXz3IqkuXMbtsNssXXMef/I/xDc+H2PnAw9z1yQ+y4s1vZ+4Vt6KX/w88/VWY9VqwDf2MM8r93LGomt++eIS3LZtITaHnrD7XSCgbVo/bgF43sIZMxjvCxNvDJFpDxNvDxNvCxE4ECe1qh4TKOl732TEKXNgKnBj5yfeM71JtUgghhBBCnAkJaKPQELfCSC4PceynaRqXvWEa3Q0d7FU34/vsz7jkF5/nE4s/wTNHn+FvBev52rd/yFO/+jFP/uonbHv6Ca6+9v2Ur/kQvPIrq3jIMD5xzTT+saWR7z2xl++/ccHZe6hxoNl07CUe7CUemJ69r3/YZKIzTKIjQrwjTKLTeo819hHa2QbxAQHOY7MCW74To/8V6H85MPIcaKe5TIEQQgghhLjwSUAbhYZEHpBbJfZPRtc1rv/Ixfz9C0+yqf1SfD/4K3P/7Y18aMGH+NYr32LTtN287nNfY/eLz7Lm97/mjz+/h3k1l7P8yW/jmX8neAqHvG5lvpt3Lp/Ez589wLtXTGJ2ZeAsP9nZkTVscuLg/cpUmL0x4p1hEh1h4h0REskQF2sJEt7XgYqaAy4Kus+BEXBQHtPp7D5gBbeAE8PvTH3WbBLihBBCCCFeDSSgjUJjwhoiV5tjJfZPxuYwuOULV3LvJx7g+V35eJ/YypuuehN/3/93vrnum1xaeSkzl1/O5IUXs/beP7Lx0X+wm+ks+d9Psujfford6Rryuh9YNYW7X6nnaw/v4o/vXvqqLKyh6RqG34Hhd0Ctf9B+pRQqnCDRFUm+osT7P3dHsTdC38YTqHBi0Lm6154ObgEnRp51Hz3Pkf7staPlYDVRIYQQQghx+iSgjULYNHAQw3WeDVFzeuzc+rmV3Pe5p3j8r4pbair47NLP8o5/voNfbv0lH130UZweD6ve9h7mXnk9z33/Uzy/qYXNH30Xy9/0TmatvAJdz55bFXDb+cQ10/jCAzt4fOcJrptdfo6eLndpmobmtqG7bdjLB89/27F6NatWXYoZiZPoiqZCnBXgkp87I0SPdGMG44NvoIPutcKakQxuep7d+u5zoGdslx45IYQQQojcJAFtFEzUqQ/KUb7qUm68s4J//KmJf/xgE7f++1JeM/k13LXjLm6ZcgsTAxMBKKqu4bVf+TFH/3sFz7ZO5bGf/g8bH3mAlW95JxPnL8q65puX1PKHl47w34/sYtX0Epw2KZAxErrThl5qw146fMEVFTNJ9ERJ9EQxk++J7ozv3RGiDT2YvTGG+sdU99jSvW8+O7rPYRU8SX623u1ogzvzhBBCCCHEOJKANgpKKfTzOKSVXL+KVWu/yepD8OD3NvDWD7yPZ44+w1df+iq/vPaX6WGK3mJqbvogb37sc+y57r95/pmN3PffX2DCvIWsfMs7KZ04GQCbofP5m2fx1l+v4zcvHOb947x49auZZtetkv+FQw857acSCrMvlg5zyRDXH+jMniiR9jBmb3Tw/DhgCgYNz76YDnFeeyq8GclQp3vtVm+d147utskwSyGEEEKIUZCANgoK0M7jgAYw8T8/zrK3vIeX9Jt49mcaH3rtv/PNY1/k/v33c1vdbekDl7wX7ZVfM+P475j67WfY8tTjvHTf3fz+0x9l6sXLuOSOOymbNIUVdSVcPbOUHz61j9sXVZ27BxMAaEbGvLhTMKMJzN4Yid4oZm8MszfG/m17mFBaSaI3htkbJd4WIlrfjdk3dM+cNcwyGd68VnjTPTYMrx3dY0f32pLv1nfDa5O15IQQQgghMkhAG4WE4rzuQQPQnU6mfO+rxN74DjbO+RB9DxSx6uKb+Pb6b7OiegXF7mLrQJsTrvsa3P1mbJt+w+KbPsTsy69m46MPsvHRB9j/ylomL17Cstvv5LM3zeLa76/hO4/t4cbic/t84vTpDgO90MjqlesI7mb+qsE9ocpUmMFYMtBZ4S3RG8Psi2WFvFhHmERfHBUeYs5ckmbXU0EuHdyyv2cGO8NjH5fnF0IIIYTIBRLQRkEBmnZ+BzQAR20tE7/0H6hPfY6tq77ArJeupaHuOF9/+et8d9V30wdOvxGmXgPPfB1m347LX8Glr38zi2+6lU3/fIgND9/PHz/7CSYuWMw76y7hlxuOMeuSkw/BE+cnTdcwfFbxkdOJSyqhMEPJANcXxwzGSATTn82+GGYwjtkXI9YeJnyKUDfZ0Dn+0rp0sPNYwytTL0//Z3v6s0d664QQQgiR+ySgjYKpFBfKbBv/dddStmE98//0RXa95ltctedtPBP7M09Pfpora6+0DtI0uPFb8ONL4InPwx2/AsDp8XLJ7W9k0Q2vYfPjj7D+H3/DuXkDr/PV8vDLC3jrzVdgnGeVLsXY0ox0oDtdKmFaoS0jyCWSQe7InoNUFQYwg3ESfTESHRErAAbjQw+97GfTrNCWFeIyAt6AbVpG6JO5dUIIIYQ4GySgjYLi/C4SMlDZpz5FaMsW5jzxWfbe8R2uOPBm/nLPU1z8sYvJc1iLclM4GS77OKz5Jix6G0xamTrf4faw5NbXsfC6m9nyxCM8//d7KT/wID/66Hquev0bmLH8cmx2GZ4mTo9m6KllAQZq0w4wd9X0QduVqVDRhBXsQvFUaLM+xzGDcVQoGfpCcWsR8eN91vboyUtWai7DCmsuG5orGdxchvXdbSPQoNG3vmnQfs2VPMeQgCeEEEKIU5OANgqm4oLpQQPQHA6q//eHHHrdHcx++qvEb/oMc3dfxU9/8jc+9dG3off3IFz2b7Dlbnj4U/CBF8DIDl12l4uLXnM786+7mfd87kdUN23hsZ/+D8/96S4WXncz8665AY8/cA6eUFzoNF1LBaIzpeImZjieHej6w1x/sAsnt4XjJNrDxMLWZxVOUIJOx+59w7fNYaC704FNd9us0JcKc7asEJi132UDm/aqXABeCCGEeLWRgDYKJud/kZCB7GWlVP/v/1L/trezZOvv+MfCa/HuqOH333+GN3/4cuxOA+xuuOFb8Oc3wks/geUfG/paDgdXrVjAl16czltqwkzq2soLf/kDL//9L8y6/EoW3XArRdU1Z/kJhRiaZtPPeBhmP2UqnntqDZcuviQZ2OKYoYQV6ML94S6BGUruC8etZQ+a098ZvMpBNkNDdyYDntOwwpszGeIytg88xtkFsZagFQCdBppdl6AnhBBC5DAJaKNgWnX2LziehQsp/+IXOP65z3PHtKl8Y/Yupu64jHu/s45bPrwIb8AJ06+HaTfA6m/ArNdCwYQhr1WTp/PO5ZP49QuHuO0DH2flv3Sz8ZEH2LHmKbY++U9qZs1l3jU3ULdkGYZNhj+K85Oma5h2Trku3XCUUqiomRHmrECX9TmSfA/HMSMJzHCCRHcEsyWBCicwI3GID/4LoxoMTqzdkN6gg+ZMhjmXYX12GWhOIxXiUiFv4H5n8t1hvWsyt1QIIYQYcxLQRkEBF+qvJ/mvex3hnbvouOt3fOBzH+XTM3/D1Xvfzr3fXM+NH5hHSU0e3Pht+Mkl8PAn4C33WkVEhvCxq+t4cEsjn39gOw986DKufd9HuezOt7HtmSfY+uQ/efgH38ITyGfOFdcw76rrCJSWn+WnFeLc0jQtFYAIOEd8HRU3MSPpEKfCcbas38yculmY/QEvYvXsqWTIUxGr0IpqC6e2q9ipuvOSbMlePUd/eLOhOfTUNuuZbGhOPRnqrM+eFogc7koFRescGcYphBBCgAS0UVGo836h6pMp+8x/EDl0kOA3f8pbP3s7P7Z9nzce+iR/+/YGrnr7LKYuroErPw///DRsuxfmvX7I6+S57Hz+5ll85M+b+N3aw7xz+SQ8gXyWvvb1LLnlDg5v3cSWJx7llQfuY90D9zJp/iLmXXMjkxdehG5IWXQhTpdm0zFsOnjTvdHBevAsLD2j66iEmQpwZiSj9y6SDHjR7HcVSR4XtXrzYl3RrP3WcIO0SgxaNmwdfGNdywh7ekaAM1JBbtA2p26FQUeyZ8+R+V0HmwzpFEIIcX6RgDYKprpwe9AANLud6h/8gMNvfjNzv/co8z9Yy1/mfIv3HP8yj/1yO20NE1ly47vRtv3VCmlTrgRv0ZDXunleBfdtPMa3H9vDtbPLqcp3W/fQdSYtWMykBYvpbm1h29OPs+3px3jg2/+FJ5DPzBVXMOfyqyiunXgWn1yIVzfN0NE8OvoYLAqulIKESgY9K8RtWPsKC2bPz9qWCngZYa9/v9kbI5axj/hp9vABaCQDm54R4pLf7RnBz25QeFyjRztq7benw59uTw7p7L+GXZchnkIIIcaNBLRRUMCFvjSS4fdT87OfcfiNd/L+37XykTf18c+5P+etlf/O+kcO03qsl6tv/B+cv1sFj38WbvvZkNfRNI3/unUO137/Wb5w/3Z+9faLBv2ttr+4hOVveAuX3P5GDm56hZ1rnmLTow+y4aG/UzZ5KrNWXsWM5SulAqQQ5xFN08CmZfXshQvANa1gxNdUieRyCtF0wLO+m6nPKpLAjPV/N9PH9x8TSWD2RIllnFMY1ek6cPj0G2JoyZCX7rXT7BlDPO16eqin3QqB/WHQes/eptv17P0SAIUQ4lVJAtoomGrYaVcXFEd1NTU/+TFH3vZ2vvVIOe++aT17Fq9hRe1reOGv+/nLcRfXL/gsJVu+DPPeYPWkDaGm0MMnr53GVx/exSPbmrhpXsWQxxk2G3UXL6Pu4mUEu7vY/fxqtq95imfu+jlrfv9rpixewqyVVzJxwWJZV02IVyHN0FKLiI+l1c+sZuXyFUOEugQqYqJi/aEwGepi1nFmJPtzoi+G6ghnnTNUAZdT0jU0u85EdI6veyUV+Kywp2eHwAHb9GFCYOrdrssQUCGEyFES0EbBhAt6Dlom9/z5VH77WzR87ON8w17Gp42fsfSGJbz2k4t47BfbuG/1Ii4veRMzH/wofOBFcPmHvM47Lp3I/Zsb+OKDO7hsajGBUwyh8vgDLLrxVhbdeCvNhw+y89mn2PncavatexGn10vdkkuZcenl1MyeK/PVhBCjo4HuMMAx9v8tUaZCxcxUkFMxqxiLivb39GVuy97fcOQY/hJ/xrHWsE8VCyePTR8/kv8laZk9d0MEv1Tvn10Hu45m08k/qtFjb0gHQJueDonJY7SM81LbLvRhJ0IIMQYkoI3ChVzFcSj+a68l8YXPw5e/wsdtPv7D+2nuu/VvvOGzS3j81zt4es8baHQXs+LRL+O47btDXsNm6Hzj9nnc8qPn+cY/d/H12+ed9v1LJ06mdOJkVrz5ndRv28zuF9aw96Xn2f7ME3gC+Uy75DJmLL+cyrrpaPqr6U9GCJHrNN2q1InzzMPf5tVHmb1q+imPU0pBXFm9dv3DO2NmKugNGQyzQuOAABmOY3YniKVCo4mKW72Bxeh07T145j8IQ8sIcqcR7Abut+toNmOIbda7LQiJnmhqG4ZUBhVCnH8koI2CyatjiGOmgje9iXhbOxf/6Eccd4b4QvEX+J8r/odbPraAVx46xIZHrqDxySauLX6KshVXDXmNOVUB3r1iMr949iA3z6tk+dTiM2qDYbMxaeFFTFp4EbFohEOb1rPnhWfZ/vTjbH7sIfwlpdQtuZS6pcslrAkhXjU0TQO7FYDG8796ylQ8+8waLrtkOSpupkNgf/iLmxAbsD3rODPje0aIjPT3DKbDYP/n0+0ZnIjB8WdfTm/QGD7YJUMdtuRn24CQmNqupXoOBx036BpaOhzqEg6FECMjAW0UlNJeVT1o/Yo/9EES7W3c8qc/83v3k/yu7He8ffbbWXrLZGrqfDzxk07u+6PJko7dKN/Q/1f9xDXTeHLnCf7fvVt57N9W4nOO7B9Fu8PJtKXLmbZ0OZFgkAPrX2L3i8+y6Z8PseHh+/EWFDL14mVMW3op1TPnyDBIIYQYJU3XUAYY3rMzB7i/Emgq1EWHCHzJQLdr2y6mT6kbPgjGs0Oi2WcFQuLJfXETFbPuNXB5iDOmWUtfTEKn8cWXTxICNSvQDQqG2d+tkKgNHRJt+uAQaUg4FOJ8JQFtFKw5aK8+mqZR9tnPEm/v4K3//Ce/tn+Hjf85l0Vli6icWcqdH5/Amh8+wsuPGHhKoGdBmLxCV9Y1XHaDb71uHq//+Vq++ehu/uu1c0bdLqfHw6yVVzJr5ZVEgn0c3PgK+9a9yI41T7Ll8Ydx5fmZetFSQi4fsegy7I7/z959h0dVpn0c/57pfdJ7rxB6L6GEDgqKgqhYUMGODeuuuquur+7q2l0r2EBARURREAEJCNI7SAklgZBAElInPZnz/nEmk4QiEEMKPJ/rGmfmzDknzyAk88v9nPtp+ILAgiAIQtOo6QQqaVRg+PN9i/L+wNInqFG+rlwtK2sCnhbg6jyukmtfrzzzPulpRwny86xzjtqw6Sytcu/HKcf/5UvcVdQLcmiUzqA1IS/IoSL70C6l6U7doKeRXPu5qod1q4PqOvu4g+Apz2uOU4uwKAgNJQLaX3A5tNk/G0mtJviV/5BaWszkJb8x03Q/4f/4EW+jN/ro7gwbvYiwpW+RnDuVuf/aQNJN8cR29693ju4RXtzeN5JP1hzmig6B9Ik+8xpqDaE3mWnbL4m2/ZKoLC8jdfsWUtb/zv51a6goLeG95YsIa9+RqK49ieraA6v3hU2zFARBEC5tklpCUv/1pjHbko/QPinugo+Ta6qGZwlwp4fFmn3ks4TJmqCpvC7J4Cytqh8+q2SorvP4r1YRa7iqiahPqQLWBEDX9sBCFTlH/3CHutrQWD8gnik41ntec1zNNY/qU4Lj5frhTWg1RED7C2T58qyg1ZB0OsLffod9UyZx04LtfGK7g2lPzketUiMlPUmblMH4ZD1Fsu5dfpm+m7RdJ+k/IRZ9nc6Nj4+IZ/neEzzx7XaWPDwAk67x/0pq9QblmrSefamuquSnOV9iqS7n0OYNHNqyEQDfiCiiu/YgqmtPAqJjxXVrgiAIQrNyB8QGNJY5H7uTk4lN6vyn+8hOuTbY1QuMsmvbKc9rAmB1TSCsc0z1Kc/PEAjV5VCVU1o7pfWU/RqtcbZKqp1aqq5TGawJhWqpNkyqVQTkqTiZudcdGmuPqb+fpK4fOM927j87h2hsI4AIaA0myzJOLt8KWg2VXk/8R5+y9ZZxjPpiP197TuPGe94CjR7GTcfr/f5cE/IWm9r9H5t/PsLRPbkMvDGeqM6+ABh1al4d34nrP1rLvxfv5YWr//pUxz+j1mixhUaQlJTEoEl3kXssnUNblKC2fsE3rJv/FSa7B5GduxPVrQfhHbqgN5ku6pgEQRAEoSWSVBLSRVp64kz+SE4mKanbGV+TZaWiV1MBdAfCOmGuboVQCYmnB8fTntccXy3XBlHXsXJ5Nc7qKrTFUHnMURs0q+V6xzc6tXSGIHd6gAwqVJGTurtOMLzQAHnKMX92DnWdAHm5f/htAiKgNZgTmYvbKau1UBmNdP7sG36/fgTt3/6FVeb/MOCWJ8GvLQejJxF7YDq9rhxK5JMT+HXmXhZ/sJOYbn70vz4Ok01Hz8jaqY5D2/ozIM63ScYtSRLeIaF4h4TS46pxlDqKSN2+hUObN3Bw0zp2r1yGSq0mKK4t4R06E96pC/5RMahUotGIIAiCIDQlSaqpSHHRqopnsyc5maSk7md8zd3EprpuRfD08CdXnRIGq08JjedxjlP3U1Upy0rUP/epX+ciBEgVtWFNXT/AhZapOLFzq2t7nWDo3ueUiqGrmnlaCNRIymymmsfq2tDoDpMq6fSqZ83XqPt6K6xIioDWQLJchYyEdFlPcqyltpjpOXshK28YTtBLn7FX502b66dwLPhKYuXDsOQZ/O4ewHV/687WJUfYuOgwR/fm0v+6WOJ6BfDEyHhWpWTz+DxlqqOHSdfk78FosdI2cSBtEwfirK4mY/8eDm3dRNqOraz55kvWfD0Lg9lCaPuORHTsSnjHztj9App8nIIgCIIgtAz1mtg0ce8xpeLY5U/3aViAPKVKWLOPs25IdJ2r7rFOmcrjJaitutpzVDpxljlrx1DtWq+x2lnvHBclSNZQS1jbtq7P6yKgNZAsO3EiXfZTHOvS2z3pMutb1t40hujnXiNDYwHvABj7HrzXB+ZPQT15Gd2viCCqiy8rZu5h2Wd72L/xBEk3teGNCZ255r01PPv9bt658c+/4VxsKrWakLbtCWnbHibeRklhAUd2bSdtx1bSdmwjZf3vAHgEBBLeoQvhHTsT1r4TepO5WcctCIIgCIJQo6kD5M7k47RJanfBx7mnsFafJQSeKRDWhMB6j2uCaN0QKHO0PLXx3+xFJAJaA8lyFYj62Wl8vcOI+ngGe6ZMIuGZ59HfNBGSkuCqd+Crm2DZczDyJbwCzVzzWDd2rUxn7YJDzHl+Pb2uiuKhQTG8tjyFYQn+XNWpcVolNwaTzU6bvgNo03cAsiyTm5FO2o5tpO3cyh+/rWD70kVIKhX+UTGEJnQgJKE9wfHtxPVrgiAIgiAI51BvCutFuOaxPDm10c95MYmA1kCignZ27UO7c/j159n+2D/oPGs2J4ND8L79duh5F6z7H0T2h/hRqFQSHQeFEtHBh5Wz97H6mxR8gswM8rLxzHc76RHhSaDd2Nxv5zSSJOEdHIp3cChdR42huqqKzJS9pO3cxtHdO9n80/ds/OFbJEmFf1Q0IQkdCG3XQQQ2QRAEQRAE4ZxEQGsgWa52NQkRCe1MxrQbz5v/PMzaf39Kn/+8grOoCJ97XkA6sg4W3Av3rAZ7CAA2HyOjH+jE4W05rP4mhe4Zldj0Kp6auZVP7uuDuoWnYLVGUzsdEqgsLyMzZR9H/9hF+h872br4BzYtnI8kqfCLjCa0XQdCEzoQFN8Wg9nSzKMXBEEQBEEQWhIR0BpICWgSrbAxTJN5sNejTLpxG6XfbmXwe+9TXViE/92fIH2cBPMmw20/gVr5KyhJElFdfAlt58WWJWnwcxoVu0r54MOt3HNnZ9Sa1tMvU6s3ENa+E2HtOwFQWVFO5v59HP1jZ73AhiThExpOcHxbguITKC8sQJblVtltSBAEQRAEQWgcIqA1kIwS0EQF7exUkopbfCfxyS1VlH+7h1GzZlF1Moegm/+LauE9kPwSDPlHvWO0OjW9xkQR3yuAD97chG57Pp//Yy3Dbm5LaIJXM72Tv0ar0xPWviNh7TsCtYHt2L7dZOzbw57VK9m+dDEAhxfNJzhOCWzB8W3xjYhCrRH/TAVBEARBEC4X4pNfA8lOUUE7HzqVjneGvMuNpTdQbncwdvHPHD2ZS8gVN6D+7TUI7QVxI047zsPPxL3P9mHKy7/RLbecH97eRlg7b/peG413cOueFnhqYHM6qzl59AgrFi7A7KwiY/8e9q9fA4BGrycwOo6g+LYExMQTGBOH2cOzOYcvCIIgCIIgXEQioDVYTQVNOBdfky//G/oek6omUe4ZyPXztpCWF0HowAS08++Eu1eBZ8Rpx9mNWp68ozM3frCWm7290B0q4KsXN9CmbyA9R0dh8WziBUcuEpVKjW94JH7tu5CUlARAUW4OGfv2cGzfH2Ts28OG7+chO50AWH18CYyJJyAmjsCYOPwjY9AaDM34DgRBEARBEITGIgJaA8lyNU5UqEQJ7bzEe8Xz5qA3ubf6XqS7Yrn+8yOkfm8gtLcKw1e3wORfQHt6x8buEV7cPzSWN5el8J9x7QjOrGRncjopG07QeVgYXYaHoTNcen+NrV4+xPfpT3yf/oDSeCTr8CEyD+zj+IH9ZB7Yz/51qwGQVCp8QsMJiIkjIDqOwNh4vENCUakav02tIAiCIAiCcHFdep9sm4i7SYi4Bu289Q7szYuJL/LUb0+hfaQP181IIfUXO0Hd92MLfByufveMxz0wOJZ1h07yzyV7+GFqPyYmhbD++4NsWpTK7t+O0ePKSBL6B6FWX7r1TK3eQHCbBILbJLi3lRTkk3lgP8cP7uf4gf2krFvDzuVL3Pv7R8cQEK2ENv+oGOx+/qIBiSAIgiAIQgsnAloD1QQ0UUG7MFdGXUl2STavbX4N09+u5eoZ+zi2poKKwu/wDu6O1P22045RqyTevqELV7y9mvu+3MIPUxMZPqU9nYYW8vu3B1g1dz/blh+l55URxPYMQNXC2/I3FpPdg+huPYnu1hMAWZbJP57hrrAdP7CfrYt/oLqqCgC92YxfRDR+kdH4R0bjFxGNZ1CQqLQJgiAIgiC0ICKgNZA7oDX3QFqhSe0mcaLkBDP2zML42N2M/iqE7B9/ovyZ5wn8Xwyq6H6nHeNnM/DWDZ25ecZ6nl2wm9cmdMI/wsbYaV1I23WS9T8cYtlne9i0OI0eoyOI6eZ/2QS1GpIk4RkYjGdgMG37DwKgqrKSnCOpZKUeJOvwQU4cPsi2JT9SXVkJKE1I/MKjakNbZDTeIWGic6QgCIIgCEIzEZ/CGkhU0BpOkiQe7/E4hRWFvPvHh1jueJIR4cFk/+8jKm6bQujn89BEtT/tuMQYHx4cHMtby1PoFeXFhO6hSJJERAcfwtt7c3hbDusXHmLpjD/YvDiNHldGEt3FF+kyC2p1abRaAqJjCYiOdW+rrqoiNyOdrMO1oW33yuVsW/IjoCy87RMWiX9kNPmVVRwL9Mc3LByd0dRcb0MQBEEQBOGyIQJaAykBTSWuQWsglaTi+b7P46hw8O+N/8F2xUsMDHicjOde4fD11xP6yWwMHTqddtyDQ2LZmJrLswt2kRBoo32wHahd6Dqykw8HtmSx8cfDLPl4F94hFnqOjiSyo89lHdTqUms0+IZF4BsWQbuBQwCQnU7yjmeSdfgAJ1zBbf+61ZQVOziyahkAdj9/fMIi8Q1XjvUJi8QjIEBMkRQEQRAEQWhEIqA1kEw1TiTEZ/6G06g0vDLwFe5fdj/PrnmW15JeI/GVhzn6zOukTpxI0H9exXbFFfWOUask3r6xC2PeWc3dMzez8IF+eJl17tcllURsd3+iu/qRsvEEG388zOIPduIdbKbriHBiuvk19dtsFSSVCq+gYLyCgmmTOBBQrmn75ccfiAkKJOdIKtlph8k+ksqhzRuQZaXlv0anxyc0rH5wC4/EaLE259sRBEEQBEFotURAayBloWrRZv+v0qv1vDX4Le765S4eW/kYbyS9QeI/r+fYq7M5Nu1RSrZuw//xx5B0tSHMx6Lng5u7cd2Ha3lgzhY+v70nmlM6OKpUEvG9AojtrgS1zUuOsPSTP1j/wyHMETLViU7UWnEF4Z+RJAm91V6vEQlAZUU5uelHyT6SSs6Rw2SnpXJw0zp2rfjFvY/FyxufsAi8Q8LwCQnDOyQMr+BQ9CYxTVIQBEEQBOHPiIDWQDLVyIBKTHH8y8xaM+8Pe5+7f7mbR5If4Y0BrzHwvkOc+Oo38mbOpGzHDoLffANtYKD7mE6hHrw4tj1PzNvBq0v28bcr2p7x3Cq1ivjegcT1DODwjhw2L04lc1MZM1N+p/OwMBL6BV2S66hdTFqdHv+oGPyjYtzbZFmmpCDfXWXLcd0f3b3D3ZAEwOrti3dIqOsW7roPQ28yN8dbEQRBEARBaHHEJ9OGkp2igtaIbDobHw7/kLt+uYtHVj3Km/3+w0BHOqaAw2Ru3Mfha8cR9N9XsSQmuo+Z0D2UHen5fLjqEB1C7IzuGHTW80sqiajOyjVqP32VTFWmiTXzDrBpcSodkkLoMDAEk0131uOFPydJEmYPT8wenkR06ure7nRWU5B1gpPpRzl5NI2Tx45y8ugR0v/YRVVlhXs/i5c33q5Km3dIKN7BymODxdIcb0cQBEEQBKHZiIDWQLJcJRaqbmQ2nY0Ph33IXUvv4pHVT/HmoH8ywPEU+oByjm0K4OiUO/GZej8+996LpFKmJ/5jdDv2ZBbx+Dc7iPGz0CbA9qdfQ5IkLAESSTd05fihAjb/nMamn1LZsiSN+J4BdBoSinewCAWNRaVS4xkQhGdAEDHde7m3O53VFGZnczI9TQlv6Uc4mX6EHct/pqq83L2f2dML7+BQvIJD8QoKxjMoBK+gYGRZbo63IwiCIAiCcNGJgNZAsuwUbfYvArvezkfDPuKupXfx8PrneXPYUwxY+BQRo/04fugKct55l9Kt2wh69RU0np7oNCrev6kro11NQ364vx92k/a8vlZAlJ0r7+tI3vFidvyazt61mez5PZOwBC86DQ0ltK0Xkvj/e1GoVGo8/APw8A8gulttcJOdTgpzst2BTQlvaexeuZzKslL3fpJGw9HF892Bzcu1/ptnUIi4zk0QBEEQhFZNBLQGqqmgiYDW+GpC2p2/3MnD29/irSGP0//nFwjs4o+x2z848dLLHB57DUH/+Q/m3r3wsxl4/+au3PDROh76aiszJvVAfQHtNT0DzAycGE+vq6LY9dsxdq5IZ+Hb2/EKMtNpSChxPfzR6EQr+aYgqVTY/fyx+/kT1bWHe7ssyxTn55GXkU5uxjF2bFiHWS2RdegAKevWuLtKApg9PPEMCsYrMES5D1Lu7b7+qNTi/6MgCIIgCC2bCGgNJCpoF5ddb+fj4R8rIS3lS94acD/9Vr2LZ1d/DHPmkPHYYxy5/Xa8p0zG94EH6BbuxT/HtOOZBbt4Y+l+HhsRf8Ff02DR0n1UBF2GhpGy6QTblh1lxcy9/D7/AAl9g2g/MBibj/EivFvhXCRJwuLphcXTi9B2HcnTGklKSgKgqrKSghOZ5LrCW17GMfIyj7F/w++UFRW6z6FSa/DwD8AzKBgP/0A8AoLwCAjEMyAQq4+vWM9NEARBEIQWQQS0BpLlKpxoUCFatV8sNSFtyi9TeOjYz7za/UYGb/ocoy2IyPnfcuLf/+Hkx9MpXvM7Qf/9Lzf1imBnegHvrjhAQpCNKzoEnvuLnIFaq6JNn0DiewdwbH8+u5LT2bb8KFuXHSGivTftk0IIa+slFr5uITRarbvByKlKiwpdoS2d3EzlPv94Jmnbt9ZrUqJSa7D7+eMREKjc/IPwdD22+fqj1ohvlYIgCIIgNA3xqaOBZLkaGa24Rukis+vtfDzsY+5bfh/TTq7j+YShXJ38MiprAIEvPI9l4AAyn36Gw9dei/9TT/HcteNIySrika+2EeRhpHOoR4O/tiRJhMR7EhLviSOvjN2/ZbB7dQap72zH7muk/cBg2vQJxGA+v2vehKZntNoIjrcRHF9/GQbZ6cSRn0v+8UzXLYP845nkncgk/Y9dVJaXufeVVCpsvn7uqptnnRBn9/NHoxPdPwVBEARBaDwioDWQjJji2FQ8DB58PPxjHlrxEM9krqcwqhu3/PgImP2wDrkCQ/sOZP7tbxx/7jksq1bx4d+e4do5e5jy+SYW3N+XEM+/3jTC4mmg11VRdL8igoNbs9i54hhr5h1g3feHiOnmR0K/IAKj7SKwtxKSSoXVywerlw+hCR3qvVazplv+8UzyT2SSl5mhBLgTmexdnUx5SXG9/c2eXtj9AiiTQZuVjt3XH7t/AHY/fyxe3mLqpCAIgiAIF0QEtAZyNwkRbfabhFlr5r0h7/Hkqid55cgy8kNimTrvDqRJP6AN7Uno9I/J/eILsl97ndKdE5jx2N8Zt1XF5M828c29fbAZGqfKpdaoiOsRQFyPALKPFvHHbxns23CcfeuO4xlgIqFfEG16B2KwiKpaa1V3TbfgNgn1XpNlmdKiQnd4K8g6TsGJExRkH8dxJI31KXvrNSxRqTXYfHyVwObrj83VAMXDLwCbnz9Gq02EekEQBEEQ6hEBraFcTULU4sNVk9Gpdbw68FX+te5ffJQynwI/P/4+ewKqO35B8o3D+7bbMPfuTcbjT1D+5DRmDhrBbY5+TJ29lU8mdUejbtzrBX1DrQycGE/fcTEc2HyC3b9lsGbeAdYuOEh0F6WqFhzrIa5Vu4RIkoTJZsdksxMU16bea8nJyfTvl0hhTjYFWScozDqhBDjXfcrhg5TWaVoCoDUY3V0r7X4BtY99/bH5+qEziiUDBEEQBOFyIwJaAznlKmRUqCTRJKQpaVQanuvzHHadnU93f0qhh4n/mzUO7eRfwBaIoU0bIr6dx8kPPiDno4/5wryRl7Kv4p+eRl4c2/6iVCu0ejVt+wbRtm8QJ4852L06g/3rj5Oy8QRWbwPxvQOI7xWAh5/4sH2pU2u07oW5z6SitISC7CwKTriCW7br/sRx0nZuq7dIN4DebMbm44fN1w+rty82Xz/luY/y2GSzuxdtFwRBEATh0iACWkPJTpxIYnpSM5AkiWndp2HX23lzy5s4qOC1mWMx3rYIzN6odDp8H3wQ69ChZPz9af65/jNWHNvO54YnuG1U54s6Nu9gCwOuj6PvNdEc3JrNvvXH2bQolU0/pRIYbSe+dwAx3f3RG8U/vcuRzmjCNywC37CI016TZZnSwgJXcDtBYXYWhTnZFOVkUZB1gqO7d1JRWlLvGLVWi9Xb56whzurj00TvTBAEQRCExiI+JTZQ7ULV4rfXzWVyh8nY9Db+tfZfTCkv4J2ZV+E16UcwegJgSEgg8uuvyP7oYwa89z6FT93JbxmPQ7TfRR+bRqcmvpdSOXPklbN/w3H2rs0k+ct9/PZ1ClGdfIjvE0hoG09UjTz1UmidJEnCZPfAZPcgMPbM6/iVlxS7gluWO8AV5mRTlJ3F4W2bKc7LPfWkaE1mMpYtrBPifLB4Kw1SrN4+ogonCIIgCC2MCGgN5F6oWjQJaVbXxV2Hp96Tp1Y9wU3lufxv1liibv0R9FYAJJ0Ov6n3o08axIZ7HyHk1X9yskMXKhMS0Ppd/KAGYPHU03VEOF2Gh5GVVsS+tZns33SClE1ZmOw64noG0KZ3QJOMRWjd9CYzvuGR+IZHnvH1qspKik5mU5ST7Q5y+3ftRKtRceLQAQ5sXEt1VVW9Y9QaDRYvbyyuwGb19nE99sbq7StCnCAIgiA0sSYNaJIkjQWuBGzADFmWf2nKr9+YZKpFBa2FGBo+lE9GfsYDv9zNLeU5vPnlVfS4+UfQmd372Nsn0PGHeUy//1+M3raYA6OuwP+RR/C88QYkddO0QZckCf8IG/4RNhLHx5K6K4e9a4+zY/lRti09gt4DrGWpxHb3x+ZjbJIxCZcWjfb0a+AqfJNJSkoClPXfSgoLcOSepPBkNo6TORTlnqQoJxtH7kkyD+wjZf2a00KcSq2EOKt3/SBXU4WzePtgtnuIECcIgiAIjeC8A5okSZ8Ao4EsWZbb19k+EngLUAPTZVn+99nOIcvyAmCBJEmewH+B1hvQnNWiSUgL0tG3I7Ovnsd9P93CXaVZPD9nDFdNXARag3sff08r173xLPf+ux33bV8AL75IwYIFBDz/HMZ27Zp0vGqtiugufkR38aOksIKUTSfYvDyFdQsOsW7BIfwjbcR29ye6qx8WT32Tjk24dEkqlXsJAf+omDPuIzudlBYVUnQyR7nl5ihBzvX4xMEUpRJXWVnvOJVaXVuJ8/LG4u2DxdPLdfPG4uWN2dMTrd5wxq8rCIIgCILiQiponwHvAl/UbJAkSQ38DxgGpAMbJUn6ASWsvXzK8XfIspzlevyM67hWS6Yap5ji2KIEW4KZec0Cpi2cyNOONNLnjOLeG39G0tYGnDh/KzcMCOFp852MK9zDrZu/I/W6CXjefBO+Dz6I2mJp8nGbbDo6DQ4lT3WQru17cWBzFimbTrD6mxRWz0shKMaD2B7+RHfxxWjVNfn4hMuLpFK5r4U7a4hzrQdXE+IcrvBW8/jEoQMc3LSeqsqK047Vm81IOgPZq5dh9fLGXCfEmT29sHh5YfbwQq0RM/AFQRCEy9N5/wSUZXmVJEkRp2zuCRyQZfkQgCRJc4GrZVl+GaXaVo+ktDz8N7BYluUtDR51CyDLNVMcRUBrSWw6G++P/Y4XfryF9/N3c3TuMJ6//md0utoW97Geat6/uTtTvoCMG7rwYs4q8mbOoujnJfj//e9YRwxvtu6cNh8jXUeE03VEOHnHi5WwtvEEK2fvY9Xc/YS28SSmuz9RnX3Qm8Ri2ELzqLsenH9k9Bn3kWWZ8pJiHLknceTlUpyX636cun8flWWlHNm1g+L8XJzV1acdb7J71AlvXpg9vesHOi9vjDYbKlXTTFEWBEEQhKYiybJ8/jsrAe3HmimOkiSNB0bKsjzF9fwWoJcsy1PPcvyDwCRgI7BNluUPzrDPXcBdAP7+/t3mzp17QW/oYnM4HFgsFpzOBdzODQyX4CaprLmH5R5XS9Nc45JlmXVH32a2fICO1XpuDHsWi8Zeb0xrjlXy8c4KuvureciegX32HLTp6ZS3bUvRdddRHRTYpGM+25+VLMuUF0BBmkzBEagsBkkFZn+whkjYgkFjuDiBUvy9On8tcUzQMsdVd0yyLFNVWkJlSTGVxQ4qix1UFDuoLHG4nhdTUeKgqqT49BO5ulTWvWlqHhvrb1dpz/0LjZb4ZwUtc1wtcUzQMsfVEscELXNcLXFMIMZ1IVrimKBljmvQoEGbZVnufqbXmjSgXaju3bvLmzZtaoxTNZrkZOWC+4MH/0vSkQHcHRbCM9FnXpS2OcbV0jT3uBYvfoBnjq/AR63nzVGf0da3Q70xTf/tEC/+tIeJvcJ4cXQb8ufMIfudd3GWlOB500R8p05FbbM1yVjP589KlmWyUos4uDWLg1uzKcwuRZIgMMaDqM6+RHXxxerVeNf4NPf/v7NpieNqiWOCljmuhozJWV1NcX4ejjxXRS43F0deLo68k5Tk51Gcn09xQR4l+fnIsvO043VGI2YPT0x2T/d1eHVvJg9PdvyxhyEjR6FqosZB5+tS+X/YFFriuFrimKBljqsljgnEuC5ESxwTtMxxSZJ01oD2Vyf5HwNC6zwPcW275LmnODb3QIQ/NWrUO4Qtf4aHUr/l1kU38XzivzBhd78+pX8UOY4KPlh5EB+Lnmm33opt9Giy33yLvJmzKFz4I74PP4zH+HFN1u3xz0iShH+kDf9IG32uiebksWIObc3i0LZs5Zq1b1LwC7cS1cWX6C5+ePibzn1SQWgFVGq1u3vkn3E6qyktLKQ4P08JbgX5OPJyXSEuj+KCPLKPpJK2YyvlZ6jK7Zz5EUab7bTwZrZ7YvasH+p0RlOzTYcWBEEQLl1/NaBtBGIlSYpECWY3ABP/8qhagZqAJn44t3zthrzI3DXePLrrPZ5c8wxDLEn0c/ZDo1L++j85Mp7c4nLeXp6Ct1nHpL4RBL7wPJ43XM/xl17i+D//Sd5Xcwn4+98xdT/jLzqahSRJ+IRY8Amx0HNMFPknSji0LZtD27Ld3SC9gsxEdfYlooMPfuFWJJX4+ypc2lQqtTtAnUtleRklBflKcMvPY9uGDQT5+bifl+TncTL9KMX5eTirq047Xq3VYrJ5YLIr1+OZ7J61jz08XduUhitGq000PhEEQRDOy4W02Z8DJAE+kiSlA/+UZXmGJElTgSUonRs/kWV590UZaQsjy9U4UYkKWivhk/gI03VWXln3InNJ5r6ld/Nq0uvY9XYkSeKlazqQW1zJcwt3YzdqGdslGENCAuEzZ1K0eDEnXv0vaTffgu2KUfg+8gi60NBzf9Em5uFvcjcYceSVcWhbDoe2ZbF5cSqbFqVisukI7+BNRAcfQtt6odU3f0VQEJqTVm/A7heA3U9ZKP5YSQWJZ5gCIzudlBU76gU3R34eJQX5lBYWKCGvIJ/so2mUFuSfto5cDYPV5gptrjDnemy2e2K02zHbPdyBT2swil8ACoIgXKYupIvjjWfZvghY1GgjaiVklK5j4udn66HtMYWntWbaLHuM/5M3cP3CCbw1+G3iveLRqFW8O7ELkz7ZwKPfbEenUXFFh0AkScJ2xRVYBg3i5PQZnJwxg8Kly/CaOBHve+5G43nu39I3B4ungY6DQug4KISy4krSdp0kdWcOB7dks2dNJmqNiuB4TyI7ehPewadRr1sThEuNpFJhtNowWm34hIb/6b413StLCgooKcynpCBfeVyQV29bduohSgrzKS8+Q/MTQKPTu6txpVXVlO/d7q7IGW12TFYbRpvddbOh1Yn1EgVBEC4VYr5FAzlrFqoW66C1Lp1vpM3+A3x66F2mBai4ZdHNvJD4L0ZGjsSgVfPJbT249ZMNPDhnKxqVxPB2ym/WVUYjvg9MxWPCBHLefYfcmTPJnz8fn3vuxvPmm1HpW+6HI4NZS3yvAOJ7BVBd7SQzJZ/UHSc5vDOHlXNOwpz9+IRaiOjgQ0RHH/zCxFRIQWgoSZIwmC0YzBa8goLPuX9VZaW7CldSkE9JYYFSpSssoNRVmSvIOEbqts2UFBaccUkCUKqBRpsdo9WGyVYnvLmqdkabXdnuCnZ6k1lU6ARBEFooEdAayCkrPyTF59jWJ9uvP0kdOjN3/mSmBQXx+KrH2XRiE4/3eByzXs+nt/fglunruX/2Fj66tTuD4v3cx2r9/Qj817/wvOUWsl57jaxX/0vul1/i99BD2MaMQVK17EmvarWKkDZehLTxIvG6GPKOl5C6I4fUnTnuqZBGq5bQBC/CErypKjv/Lq+CIFw4jVZ7zuYnNd3HZKeTspJiSgsLKC0spKSowP24tKiAksJCJewVFpCTfoTSwkKqKsrPeE6VWoPRFdiU4Pbngc5otbW47paCIAiXKhHQGsjpWp5A5LNWqu0YfK+bxSdf3czbAcF8tu8rdmTv4LWBrxFqC+WLO3oxcfo67p65mU9v60FiTP0PT4a4OMI+/JDidevIeuVVMp58ipOff47fI49g7tevVfxmWpIkvALNeAWa6ToinFJHBUd253Jk90mO7M5l//oTAORt3UhYO2/C2nnjH2FFpW7ZIVQQLlWSSoXRYsVoscJ5ru5SWV6mhLnCAkqLagNcqet5TajLSj1EaWEBZcWOs57LYLG6A1txeQXle7djtNrc2w1WZWw12wwWq2iMIgiC0ADiO2cDVddU0EREa73ihqO9+VsenTuRbhYbT2uPMuHHCbyQ+ALDwocxc3IvJn68jsmfb+Tz23vSK8r7tFOYe/cmYt43FC5aTPYbb3D0zrswdu+G30MPYerRoxneVMMZLTr3VEjZKZN1pIiVP25GVaJyV9f0Jg2hbb0Ia6dU2MweLXdqpyAIytRHra8Bm6/fuXcGqquqKHMUuYKcUpmrDXi11bqK7CxSt22m1FFEdWXlWc+nN5ndwc1gtbnuXUHPUhPqXPeu7Vq9uCZWEITLmwhoDVSzEKqY4tjKRfaH234iadY4vs44zuPRHZiWPI2JbSbyaPdHmTWlF9d/uJY7PtvIF5N70S389KYgkkqFffSV2IYPI2/ePE6+/wFpt9yKOTER34cfwtihQzO8sb9GUkn4R9jway+RlNSNsuJKju7J5cgfSoXtwOYsALyCzIS28SKkrSdBsR7oDOJbiiC0ZmqN5ryWKXBPu5RlqsrLKXUUUlpURFlRkRLkHK7HjkLXfRGlhYXkZaRTWlRERWnJWc+t0erOEursGK3W2oqdRQl1BqsNg8nc4qeYC4IgnC/xaaqBaipoIp9dAgI7wuRfCJ55DZ/v3sDrPccxa+9sdmTv4NWBrzL7zt5c/+FabvtkA7Om9KJTqMcZTyPpdHhNnIjHNdeQN2cuJz/6iNTrJmAZMgTfBx/EEB/XtO+rERnMWmK7+xPb3R9Zljl5zMGR3bkc3ZPLrlXH2P7rUVQqZRHtkDaehLTxwj/ShlojPjAJwqVMkiS0BgNagwGbz/lV6aC2UlfmCm7ugOcoorSo0H1fWlREztE0JfA5ipCdzrOMQ4XBYsGpUpOxbKHSqMU1zVJvtmC0WNyPle0W1z4W1BptY/1xCIIgNAoR0BrIfQ1aK7jWSDgPXpEw+Re0X47nybVz6J70IM8e+4UJCyfwjz7/YPadA5nw4VpumbGeLyb3ovNZQhooHR+977gdjwkTyP3ic3I/+ZTDY8diGzUSn/vuQx8T03Tv6yJQFsi24hNipeuIcKoqqsk8VED63jzS9+SyaVEqG39KRaNXExzr4Q5s3kFm0R1SEATg/Ct1dclOJ+WlJUqAq1udKyqizFFIaVEhRw4fQmc0UVJYQG7mMcocRWddyqCG1mB0hzWDxVrvsRLulEBXE+6Mru06o1irThCEi0MEtAZyd3Fs5nEIjcjiB5N+hK9uZsiKN4hLepynivfw+KrHuSr6Kmbc/hBTPtvFzdPX89ntPege4fWnp1NbzPjedx9eEydy8pNPyZ01i8LFP2MdMQKfe+/BEB/fRG/s4tLo1IS28SK0jReMjaasuJKM/fkc3ZtL+t480nadBMBo1RIS70lIWy9C2nhi8zY288gFQWhNJJXKvYQBAWfep2bqZV1OZzXlJSXuil25w0FpscP9uKy4iDKHgzLXttyMdOVxUeFZFx0HUKnVtRU5s9ldsTs17BWkHSZjv7877OnNFtE8RRCEPyW+QzRQTQVNFAQuMQYb3PQNfHc3ocmv8lnv+/ioYx8+2vkxm09s5p/jn+f/5pdy6ycbmDGpB32iT28cciq1hwd+0x7B6/bbyP38c/JmzqLo55+xDhuKz733YkhIaII31nQMZi1RXXyJ6uILQFFumVJd25dL+p48UjYp169ZvQ0Ex3kQFOtJcJwHVm+D+G20IAiNTqVS13a/vACyLFNVUe4Kbkp4qwlxZQ4H5a7Hpa7HJQX55B47Slmx47Sq3YFF39V7rtHrMZgt6E1mJeSZlXu9yaw8NpnRWywYTBb0rucGiwW9yYLOZESlEkseCMKlTAS0BnKKLo6XLo0exn0CZj+0697j/oSx9B36IX9b+xyPrr6Lm/tPZsma9tz26QY+vrU7A+J8z++0np74Pfww3rfdRu7MWeR+8QVFS5dhGTQIn/vuvchvqvlYvQy07RtI276ByLJMXmYJR/fmkrFfWTB779rjAFg89QTFehAU60FwnCd2PzF9SBCE5iNJktIFU2/A6nX2derOxOmspry4mLJiB7+vXElCfJy7KldeXExZSTHlxcWUFzsoL3HgyMvlZPoR92vIf74GpRLszO57JeydGuZc4c8V9mrCn9YgvrcKQksnAloDOV1dHMX3uEuUSgWj/gMeofDLs3QpSGfe+Om8vHs6X+z9mITYDkip45ny+Sbev7krQ9r6n/ep1R4e+D4wFa/bJpE3axYnP/uc1Osm4JHQlmKDEVOvnpfsD09JkvAKMuMVZKbT4FBkp0xuZjEZKfkc25/P0T257N+grL9msuuUsBarVNk8A02X7J+LIAiXFpVKrSwlYLVh9g8ksnO38z5WdjqpKCtTKnTFDspLit1VufLiYspLHLXPS4opczjIP3Hc/VpFaemfnl9SqdCbLciSivQlC2pDnLmmmmepDYDu8GdGZzKhN5nR6sVsB0G42ERAa6BqsVD1pU+SoO8D4BkJ8+/E8tlV/N9NX9M/uD8vrH2BKq//EKQdxz2znLxzY1dGtg+8oNOrrVZ87r0Xz1tuIW/OHI5/PJ0jt92GoWNHvKdMxjp06CXfNlpSSXgHW/AOttAhKQRZlsk/UcKx/flkpOSTsT+PA64pkUarlqAYD4LiPCjNl3E6ZVRijrEgCJcYSaVCbzKhN5nOe/26upzV1ZS7KnS1Qc5BmbtiV0xZcTFHDh3EZDFTVlKMI/ek8lpxMVWVFecen9GEzmR2jbM2vLmfG095Xuex3mQSVTxBOAcR0BrI6V4HTXyDueS1HQ23L4LZN8CM4Yy87jM6XfUtf1/9dzZVzcQrqj1Tvy7k9eqBXNUp6IJPr7ZY8LnzTnZFRNDpZC4nZ8zg2IMPoYuMxHvKZOxjxiDpdBfhjbU8kiThGWDGM8BM+wHByLJMQXapK6zlcywlj4NbswGYvnIVAZE2AqI9CIy24x9pE+uwCYJw2VOpa6t3f+ZMDVUAqioq6lftSmqCXQnlJcVUlJa4A2B5STHlJSUUZWeR49peUVLqXiv2bCRJhc5kVAJbnbCXX+Sg+tAeEfKEy574NNNA7oDWzOMQmkhQF7hzOcy+Hr68jsAr/8uMETOYs3cOb2x+E3PUGzy2KIXS8tu4vmdYw76GVovnDdfjMX4cRb/8Qs706WQ+/QzZb7+D16234jHhOtTWC7vIvbWTJAkPPxMefiYSEpXwW5hTyq8/rsNTF0DmwQI2/nQYZKXg6R1iITDKTkCMncBoD6xehmZ+B4IgCK2LRqdDo9Nd0BIIdcmyTGVZqTvQlZeUUFFSG+bqhbya5yUlFJ3MwZF7kr0ZRykvKWlwyDtTmKt5rjMYXcHPhM6o3ERHTaElEn8rG6i2gtbMAxGajj0E7vgZ5t0BPz6C6uRBbhr2Av2D+/P31c+wXfqG5zbsJL3oCR4d0qPBX0bSaLBdcQXWUaMoXvM7Jz/6iKxXXyXnf//DPm4cXrfcjC6sgSHwEmDzMeIRITEwSVmmoLy0ihOHCsg8qNz2rDvOzpXHAKXxSEC0ncBoJbB5B5tRqcWvVQRBEC4WSZLc4cfqfWHNVWqqerIsU1le5g5vp4a5+s+LKXcFvqLck0qzFddrZ1vYvC6NVoeuTnjTmVwhzlgT4oxkHj/BltIiV7CrfV1rNLrCoUlcmyc0KhHQGkh2V9DEP8bLit4KN8yBJX+Dte/CyYOEXfsRX4z6jC92z+KNzW/xadr97J0/mQ/H3onqL1xDJkkSln6JWPolUrprN7lffE7enDnkzZqFZchgvCdNwti9+2X/A0Fv1BDWzpuwdsqSB85qJznpDjIPFnD8YAGZBwrc17Fp9Wr8Iqz4R9rxj7DhH2nDbNc35/AFQRCEU0iSpAQmgxH+fMnRs5Jlmary8toqXmkJ5aXKfUVpqXJfcoZtpaUUnczhpOv1irJSqisrydiw+hxjVrnDm3JfJ+jVqdjpakKd0eje7n4uqnqCi/gb0EDVuLo4NvM4hGag1sAVr4J3LPz8FEwfguqGOdzW/lYGhgzgth8fY13RuwybvZaZV/+bIOtZVlS9AMb27Qh+5RX8Hn2MvNmzyZ87l7RlyzEkJOB12yRsI0deNtepnYtKrcIv3IZfuE3pFCnLFOWWcfxQAccPFHD8cCHbfjmC06k0+rF6GfCPtLludnzDLGi0Yo0hQRCE1kySJLQGA1qDAYvXudcs/TO/Ll9G7x496gW7irJSJdyV1AS8mrBXG/Rqpm66n5eVnnMJBahT1asX+OpU9VwVv6z0Y+ySK9EZjWhdgbYmHNY8V2u1l/0vclsjEdAaqGahavF3/jLW6y7wawvfTIKPB8G4GUTGDWf5jXO5+4c3WZ//JVfMv4rHejzCxLbXo5L++tQ6rb8ffo88jM89d1Pw/Q/kfvEFGU88SdZ/X8Nz4kQ8rp+AxrNh1w1cqiRJwuZtxOZtJK6HEparKqrJPlLEidRCjh8q5PjhAg5sVqpsKpWET6hFqbBFKZU2sSabIAjC5Uul1mCy2THZ7H/pPLLTqUzdLC2hoqSUijLXfd3qniv8KdfpldSr6uWWlrr3q66sBODoml/PMXY1OoMrsBmV0KZ13esMBrQ1AdD93IjOYHKFPEPt1E/Xc41WJ34eNgER0BrIKaY4CgCR/eGuZJh7E8yeAEOeRdNvGjOueYy3Vyby/u5X+M/Gl1h06CdeSHyOGM+YRvmyKqNRaSgy4TqKV68m97PPyX7zTXI++AD71VfjOXEihvi4RvlalyKNTk1gjAeBMR7ubcUF5Zw4XKjcUutfy6Y3a/CPsOEXYXNV56xiaqQgCIJwQSSVyj2NsaFTN2tUV1WyYtkyenTtSmVZqSvU1d5Xnva8TAmErm0l+XlUlJVRUVZKZWkJ1VVVF/AelBCnNRhqw53rPjs3l1XHDru3nTkYul4zGkXgOwsR0BpINAkR3DzC4I4l8MMDsPwFyNwOV7/HgwP7EGF/l8d//oTdzp+4buF1TO4wmTs73ole3Tgf7iWVCsuAAVgGDKBs/37yZs6k4LvvyP/qK4zdu+F5w41Yhw9DJaY/npPZrieqsy9RnX0BcDpl8jKLOXFYqbCdOFzI0T9S3bNTzHYdvq6w5htmpars3NNWBEEQBKExqDVaNAYjdj//RjlfdVVlbZArLTkl2JXWm6ap7FPqDnyVZWWUFBZQUVpKcVEhuft2X1jgqxvejK5KnsFU57ERrd7gflw7hdPgrvJpa14zGC+Ja/ha/ztoJjVTHEU/OAEAnQnGTYfATrDsn5BzAG74kqs6R+Jhuod7ZrfFGLCID3d8yJLUJfyjzz/oEdDwTo9nYoiLI/Bf/8J32jQK5n9H3ldfkfHYY6i9vfEYNw7P6yegDQ5u1K95KVPVWUQ7oZ/S4r+yvJqco0VkpRWRdaSQ7LQiUnfmgCubHVu5Bt8wq7vK5htuxWgR4VgQBEFo2dQaLUar9pzr551LTSfO6qpKKsrKqKy5Js9drSutDXxlZbWVvpqqn+t5SeFx1/MyKsvKqKoov4D3olFCXZ3wZo5JgDOs+9dSiYDWQDUVNFGWFdwkCRIfBP92Siv+jwfBtR8zIG4YsycPZfJndlT6LjgMC7ljyR1cE3MND3d7GC/DX5zncAqNpyfek+/A6/bbKF7zO3lz53Jy+nROfvwxloED8Zx4I+Z+/ZD+QofJy5VWf/rUyIqyKnKOFvH78m3YtB5kHyni8PYc9+tWbwN+YUpY8wu34RtmxWDWNsPoBUEQBKFpqDVajBYtRkvjrN/qdFZTWVZeJ7S5KnnltZW+uq/VBLvKslIqysuQ1K2r+ZcIaA3kRFTQhLOIGQJ3rYCvboEvx8OAx+mc9De+uy+R2z7Tkr4zjKGJ21l48DuWH1nOQ10fYlzsuEYfhqRSYenfD0v/flRmZJD39dfkz/sWx113ow0NxfP6CdjHjRNNRf4inUFDUKwnPsckkpLaAcrabNlHishKU6psWUeKOLg1232MzceAb5gVnxArPqEWfEOtmOxiHr4gCIIgnIlKpXYtPm5q0PHJycmNO6CLTAS0BhJdHIU/5RUFU5bBosdg1atwdD1h42Yw/96+3PXFZhat7Madg/tz0DmTf637F/NT5jNKO+qiDUcbFITfww/je999FC1bRt6cuWT99zWy334H67BheFw3HlPPnqKq1kj0Rg0h8Z6ExNeG37LiynqhLfuog4NbakOb0arFJ9SKT4gS2HxCLdj9TKjEha6CIAiCcFkRAa2BnHI1ILo4Cn9Ca4Sr/wdhfeCnR+GD/nhc9ylfTO7F4/N28PGvGdzY82FeSjzKG1te47XS10hbm8aDXR7Ew+BxUYYk6XTYrrgC2xVXUJ6SQt7cryhYuJDCn35CGxKCx7hrsV9zDdqAv752m1CfwawltK0XoW1rp7RWlFaRk+4gJ10JbDlHi9i+/CjOauUXQBqdCu9gCz6hVnxDLfiEWPEONqPRta6pGoIgCIIgnD8R0Bqopl+b+OW2cE5dbobAzvD1rfDZaAxD/8lbEx4gxNPI+8kHySzwZc518/m/X/7B/JT5LE1bysNdH+aa2GsaZe20s9HHxhLw7DP4Pf4YRUuXkT9vHtlvvU32O+9i7peIx/jxICpqF5XOqCEo1oOgWA/3tuoqJ3nHi8k56iDnqIPso0WkbDzB7lVKy39JAo8Aszuw+YQqjUxMNtGMRBAEQRAuBSKgNVB1TZOQZh6H0EoEtFfWS/thKiz9B6oj63hy7HuEepp49vtd3PFJOVPixnJ/0v28tP4lnlv7HF/t+4qnej5FV/+uF3VoKoMB+5jR2MeMpuLIEfLnz6dg/ncce/AhfK0WTmzegsf4ceijoy/qOASFWqNSgleIFfoo22RZpuhkmRLY0ovIOeogIyWf/RtOuI8zWrXurpPewWa8gy14BZqb6V0IgiAIgtBQIqA1kNNVQhNTHIXzZrDBdZ/D+g/hl6fhgwFMHDedwEndmfrlFp4/6eTzdv58NvIzFh1exBub32DSz5MYETGCad2mEWQJuuhD1IWFKdeqTZ2KY/VqDnzwIbkzZ5L76acYu3TBY9y1WEeMQG1tnK5MwvmRJAmbjxGbj5GoLr7u7aWOCnLSHeQeK+bkMQcnjznYveoYVZU1XWZBa4GyfTvxDrHgHWTBK9iM3ceIJMr/giAIgtAiiYDWQGKhaqFBJAl63wMh3ZVW/J+OYtCgvzHv7inc/PFaJny4llev68RVna5kUOggPtv9GZ/u+pTko8lMajeJye0nY9I2rIPRBQ1To8GalEQB0KF9ewq+/578ed+S+cyzHP/Xi1iHDMZ+9dWYExORLoEFIVsro0VHaBsvQtvUXtfmdMoUZpe6A9ve7ankpDs4uC3bPTdbo1fjFWjGJ9iMV52qm1izTRAEQRCan/hk1UCy65OOyGdCg4R0h3t+gx+nwa8v0vbQSl7uNonpx0J4cM5WUk4U8cjQOO7rfB/Xxl7L65tf56MdH7EgZQEPd3uYK6OuvKjXp9Wl8fHBe/JkvO64g7IdOyj4/gcKf/qJwkWLUXt7Yx99JbarrsKQkCDaxLcAKpWEh78JD38T0V39KLEeISmpD5Xl1eRmFHMyw8HJdAcnMxwc2pbDH2sy3ceabDq8gsx4BprxqrkFmcW6bYIgCILQhERAayCnLIMEKvGBVGgogx3GTVfWTfvpMQalb2PQNR/wjE8Y7/x6gP0ninh9QmcCzAG8MuAVJraZyL83/Ju/r/47s/fMZlr3afQI6NFkw5UkCWOnThg7dcL/qSdx/PYbBQu+J2/2HHI//wJ9bAz2q6/GNmYMWn//JhuXcH60ejX+kTb8I23ubbIsU1JYoVTb0ovJzXCQm1nMnt8zqSqvdu9ntOnqBTavQBNegRYMFhHcBEEQBKGxiYDWALIsuxeqFvFM+EskCTpPhJCelH02Aes3N/Hv7lNIGDWF538+xPgP1vLxrd0I8TTR2a8zs6+czY+HfuTtLW9zx5I7SApJ4uFuDxPt0bQNPCSdDuuQIViHDKE6P5/Cn3+m4PsfyPrva2S99jrmPr2xXXUV1qFDUVssTTo24fxJkoTZrsds1xOW4O3eLjtlivLKyM0oJi+zhNxMB7mZJexdm0ll3eBm1SqBLcBcW3kLElMlBUEQBOGvEAGtAWS5Ghllepm4Bk1oFD4xbOn6HwZWJiOtfZdJfr/Tbuwr3L64hLH/W8MHN3eje4QXKknFVdFXMTx8OLP2zGLGzhlc+8O1XBNzDfd3vh9fk++5v1YjU3t44HnDDXjecAMVaWkU/LCQgu+/J/Opv3Fc908sAwdiu/JKLEkDURkMTT4+4cJJKgmbtxGbt5GIDrXbZVnGkVdObkYxuZnKLS+zmL3rj1NZdkpwC6w/VdIz0IzRqhXTYAVBEAThHERAawAloClEF0ehscgqLYz4P4gaBAvupfsv17KizxNM2N6FGz9ex3NXtWNizzAkScKgMTClwxTGxY7jox0fMXffXBYdXsSkdpO4rd1tmLXN015dFx6O7wNT8Zl6P6XbtlG4aDGFixdTtHQpKpMJy9Ah2K64Akvfvkg6UWVpbSRJwuplwOplILx9nYpbTXBzBbaaALfvlOCmN2nw8DdRLjvZXJaKZ4AZD38Tdl8jao1Yc08QBEEQQAS0BhIVNOEiih0K962FHx/GZ+2L/BLSmyc97uPp73ax/Wg+L1zdHoNWDYCnwZMnez7JxDYTeWvrW3yw/QO+3vc1d3e8m/Fx49GpmycESZKEqUsXTF264P/Uk5Rs2EDhokUU/rKUwh8WorbbsQ4fju3KKzH16I6kVjfLOIXGUS+4tasf3IrzlYpb3vES8k+UkHeimJNpsG7BodrjVRJ2XyMe/iY8/U14BJjwDDDj6W8S17kJgiAIlx0R0BpAqaCJZCZcRGYfmDATts9Fs/gJ/ivfx/B2D3P3Jpm9x4t4/+ZuBHsY3buH2kL578D/MilhEm9seYOXN7zM57s/597O9zI6ajQaVfP9U5fUasx9+mDu04eAZ5/FsWYNhT8touCnn8j/5hvUvj7YRo7CNmokxs6dkVSiknKpkCQJi6cBi6eBsDrBLTk5mb69+pF3ooT843XDWwlH/jiJs0p272uwaPEMcAU3fzOeAUqAs3kbUKnF3xVBEATh0iMCWgPIcjXOmgqaCGrCxSJJ0PlGiEhEWnAfIw6+yIaoIVx37AbGvFPKOzd2ITHGp94hHXw7MGP4DNZmruXtLW/z7Jpn+WTXJ0ztPJWh4UObrDX/2Ug6HdZBg7AOGoSztBTHypUU/vQT+V99Rd7MmWh8fbEOH451xHBM3bqJytolTGfU4B9hwz/CVm+70ylTdLKUvOMltcHteDGHd+RQWlS7JIBKI2H3rQluRux+Jjz8lHuTTSeudRMEQRBaLRHQGqBuBU1McRQuOo8wuPUHWP8+fsue51fTNv7FXdwyo4InR7bhrgFR9T6MSpJE36C+9Answ69HfuWdre/w6MpHaevVlge7PkhiUGKL+PCqMhqxjRyJbeRIqh0OHMkrKVqyhPx588j78kvU3t5Yhw3FNmIEph49xILYlwmVSgledl9TvQYlAGXFle7AVhPecjOLSd2Zg7O6tuqm1aux+xnx8FPWg3M/9hNTJgVBEISWT3ziaQBZrqamwb6YYCM0CZUK+twP0YNRz7+L546/zGjvwdy5eAI70gt4ZXxHzPr6/5wlSWJI+BCSQpP46fBPvLftPe5ddi9d/Lpwb6d76R3Yu0UENQC1xYJ99JXYR1+Js7gYx2+/UbhkCQXf/0D+3K9Qe3piHToU64gRmHv1bO7hCs3EYNYSEGUnIMpeb7uz2klRbjkFWSXkZ5WSn1VCQVYJWUeKOLglC7k2u6E3adzVtrrhze5nauJ3IwiCIAhnJgJaAyhTHGsqaC3jA65wmfBrC3f+CqvfoNvKV/jdupXH/7iFq94p4L2buxMfYD3tELVKzVXRVzEqYhTfpnzLxzs/5q6ld9HZtzP3drqXPkF9WkxQA1CZze7KmrO0FMfq1RQt+YXCRYvI/+YbVHY7trZtKKyowNKvHyqT+GB9uVOpVdh9jdh9jYS1q/9adZWTwpxSClzBLT+rlIKsEjIO5LN/4wmoE97UesjduFkJbf5KFc/mY8Dua0RvEpU3QRAEoWmIgNYAdac4tpyPtcJlQ62FgU8gtbkS4/f3827G2/xavJ47/nc7D13djwndQ894mFat5YY2N3BN7DV8l/Id03dO5+5ld9PRtyP3dbqPvkF9W1RQA9c0yGHDsA0bhrO8nOI1v1O0ZAlVS5dybN1DSHo95j59sAwZjHXQIDQ+Puc+qXBZUWtUSkfIgNOXnqiqqKYguza87dl+EEklceSPXPauPV5vX71Zg91HCYE2Vxi0+xqx+Zgw23VIYr67IAiC0EhEQGuAugtVt7DPs8LlxL8dTF4Ga99h0IqX+VnzOM/Mv4X1B6/nX9e0x6Q78z9vvVrPDW1u4NrYa1lwYAEf7/yYe5bdQ0efjtzT6R76BfdrcUENQKXXYx08COvgQewfPoweFitFy5fhWP4rjuRkjksSxk6dsA4dgmXwEPRRkc09ZKGF0+jUeAdb8A62AFCoP0xSUlcAKsqqlMpbtnIrzC6lMKeUE6mFHNiSjeysLb2ptSpsrvBm91ECXE3lzeZtRK0Vk+EFQRCE8ycCWoM4a6c4ihqa0JzUGuj3CFL8FVgW3M9bx95j2a51TD46lRduGU6s/+lTHmvo1DomxE9gbMxYFhxYwPSd07lv+X108OnAPZ3uoX9w/yZ8IxdIrcbcqyfmXj2R//Y3yvfvp2j5chzLfyXrv6+R9d/X0EVGYh0yGMvgIRg7dxLt+4ULojNo8Amx4hNy+r+h6monjtwyd3Bzh7icUtL35lJV4azdWQKLp75eeFOaoCiP9UbxY1gQBEGoT/xkaACnXAWii6PQkvjGI01eAuveZ9Dyf9HbcT9v/u96Eq6exrXdwv/00Jqgdk3MNXx/8Hum75zO/cvvp513OxJViQyUB7bIiloNSZIwxMdjiI/H9777qMzMpOjXX3Es/5WTn33OyekzUPv4YB2UhGXwYMx9+qAyGJp72EIrplar3J0mTyXLMiWFFUpwyymtF+KUpQIq6+1vMGux+Riw+ShVN6u3EZu38tzqZRDVN0EQhMuQCGgNIdetoAlCC6FSQ9+pqNtcifb7h3km7TO2ff8bb+x5hrsnXHXWKY81tGot4+PGc3XM1Sw8uJCPdnzER46PWLFwBXe0v4ORESObdcHr86UNDMTrppvwuukmqgsLcaz6DcevyylctJj8b+YhGQyYe/XCPHAAlgED0YUEN/eQhUuIJEmY7XrMdj2BMR6nvV5RVlUb2nJqp05mHyni0LbsessFIIHZrkfWOKk8vBubtxLibN5GrN4GLJ56sVi3IAjCJajlf9pqgWS5qrZJSAuuLAiXKa9I9LctoHr7V8T++BTtUqYw779X0+nml0kICzjn4VqVlmtjr2VM9BjeWPQGa6vX8rff/sa7W99lUrtJjI0Zi1FjbII38tepbbba9v0VFZSs34Bj5Ur37QT/QhcTjWXAQCwDB2Lq2gVJK7r1CRePzqDBN9SKb+jpUyedTpni/HKKTpZReLKUwpwyinJKOXLwOBkp+aRsOFFvyQCVSsLipVeqbj4GbN6uCpyrGicW7BYEQWidREBrgLpNQsTvLoUWSZJQd74Bc9xwTnz7BDce/IYjM1azuOvzjLzqxvP60KZVaelp6cljAx9jVfoqZuycwUvrX+KD7R8wsc1EbmhzA3a9/ZznaSlUOh2W/v2w9O+H/PTfqTicimPVSopXrSJ35kxyP/kElcWCOTERy4ABWAb0R+Pr29zDFi4jKpWE1cuA1ctAUKyHe3tychZJSYlUVzlx5JUpwe1kGYU5pRS67tN2nqSksKLe+dRaFVYvQ72qm9VbOb/V24DJKrpPCoIgtEQioDVAvTb74meb0JKZvPC/ZTqFe25CN38qo7bey9p93xA36S28/cPO6xQqSUVSaBJJoUlsObGFGbtm8O62d/lk1ydcF3cdtyTcgr/Z/yK/kcYlSRL6qEj0UZF433Yb1Y5iStatdVXWVlG0ZAkAhnbtsAwcgGXgQAzt2yOp1c08cuFyptac/do3gMqKandwU6pwSgWu8GQZJw4XUl5SVW9/lUbC4lkb2KyeeneAs3gZsHqKa+AEQRCagwhoDVA3oIkujkJrYGs7COsTm9g+9590OzCDivd7caDrNGKufETpBHmeuvp3pat/V/bl7uPT3Z8ya88svtz7JVdFX8Vt7W4j0t46W9urLWasQ4diHToUWZYp37cPR/JKHKtWkfPBh+S89z5qT0/M/fphTuyLuW9ftH5+zT1sQahHq1PjFWjGK/D0Nd8AKkqrKMotU24nlXuH6/nR3ScpLqyot3A3gMmuc1f13MHN20BZvkx5aZXoQikIgnARiO+sDSDLztqAJvKZ0EpIWiOdbnmFg3tvInfeQ/TY8iIn9nyF14R30Eb2uaBzxXvF8+/+/2Zq56l8vvtzvjvwHd+lfMfA0IHcmnAr3f27t9prXyRJwtCmDYY2bfC5526q8vIoXvM7jpUrKV6zhsKFCwHQx8VhTkzE3C8RU7duzTxqQTg3nVFTb923UylTKMvrBbeaIJd9tIjD23OorqpdQuDgz6vQGdT1q25edaZRermugxM/KAVBEC6ICGgNIMtV7i6O4seO0NpEt+lE8BPLmDP7fQYefh3t5yMpiL8e+1Uvgdnngs4VYg3h6d5Pc0+ne5izdw5f7/uaO47eQVuvttyScAsjI0aiVbfuphsaT093oxHZ6aR8714ca9ZQvOZ38mbNIvfTT5H0ejyiozh56DDmxET0cbGtNqAKly9lCqWy4PaZyE6ZkqIKHLnlrPttM2EB0RTl1Ya4zIMFp0+jVEtYPPVYPA1YvFz3HnosXkoXSqunAb1ZI/69CIIg1CECWgPIOOs0CRE/VITWx6DTcONtD7Bi+5UsXfAcE/fOo/zgIrTDn0PV/XalZf8F8DZ6M7XLVKZ0mMJPh35i5h8z+fvqv/PG5je4oc0NXBd3HZ4Gz4v0bpqOpFJhSEjAkJCAz5134iwpoWTTJorXrCFryS9kvfIKABpfX6W6lpiIuW8fNN7ezTxyQfjrJFXtEgL2NIkuSadfx1p3GqW7CpdbjiOvjMyUAorzs3A668+j1GhVmF0hzuqphDezh14JcK4gpzOKECcIwuVDBLQGqNtmX8zcEFqzQZ2iOBn9MS/OXcjItNfos+hRKjZ+im70qxDe94LPZ9AYGBc3jmtjr+X3jN+Z+cdM3tn6Dh/t+Igx0WO4pe0tRHlEXYR30jxUJpOr4+MA9vTpQ2J8PMW//07xmjU4VqygYMECAPQJbbH07YupV29M3bqiMp25yYMgtHbnmkbpdMqUuqpwjrwyHHn179P35VGcX15vOQEAjV6thDdXkDO7qm/u6pwrxAmCIFwKxHezhqhzDZrIZ0Jr523R89zkcXyzqSff/jiDR7NmEvjpKOR216K3XtGgc0qSRGJwIonBiRzIO8CsPbP44cAPzNs/j37B/bgl4Rb6BPa55H4jrg0MxGPcODzGjUOurqbsjz0Ur1lD8erVnPz8C05OnwFaLcZOHTH36o25T2+MHTsi6XTNPXRBaBKqOlU4/0jbGfdxVjspKayovR4ur5xiV4AryivnZIZrSYFTQpzOoEbSOynauc09jdLsoVeqca57vUlU4gRBaPlEQGuA+hU08Y1eaP0kSWJCjzD6RD/J418l0f3YF9z3x4/0lH4Ew0Ho+yDoGlb1ifGM4bm+z/Fg1wf5et/XzN07l7uX3k20PZrr21zPVdFXYdaeuetcayap1Rg7tMfYoT0+99ytTIfcvIWS9esoXreenPfeI+d//0MyGjF17Yq5T29MvXpjSGgr2vkLlzWVWuWqihkIiDrzWovVVU6KC8prK3C55Tjyy0ndn05pUSXZR4ooLao87TiNVoWpTmAzn/LY7KHDbNej1ojlBQRBaD4ioDWA0sVR+eYt4plwKQn1MvH53UlM/y2M4b8M4inNl4xMfhm2zoJhL0C7axq8+J+XwYt7Ot3DHe3vYPHhxczeO5uX1r/EW1veYkzUGG5sc+MlNf3xVCqTyb1QNkB1QQElGzdSvG49xevWkvXf15T9bDZMPXsoFbbevdDFxIjf+AvCKdQaFTZvIzbv+g1NnMkZJCX1AKC6UglxxflKeCuuc3Pkl3PicAHF+RX1OlPWMFq17vB2tkAnqnGCIFwsIqA1gCxXu7s4imvQhEuNWiVx98BoBsT5cs+nvnxatJvXymYTMu922PAxjHgRghveVl6n1nF1zNVcFX0VO3N2MnfvXL5N+Za5++bSK6AXN7S5gaTQJDSqS/vbk9pud6+9BlCVnU3x+g0Ur1tLybr1OJYtV/bz8cHcswemHspNFx0tPhQKwnlQa1XYfIzYfM7clRJQ1j0srqoX4Oo+Lsor5/jhQsocDa/GCYIgXKhL+xPQRSIWqhYuB20DbTzb28Af8tUM+bUNk/QrefTEt+g/Hgztx8OQf4BneIPPL0kSHX070tG3I4/1eIz5KfP5et/XPJL8CP4mfybET+Da2GvxMV5Y6//WSuPr627nD1CRnk7JunUUr11HycaNFC5aDIDaywtT9+5KYOvZA31sLJJKTMcShIaQJAmDRYvBosUn5MyNTeCvVePUeji+egNmuw6TXY/ZrgQ3U917mx61Vvw7FgRBIQJaA9QLaCKfCZcwjUriwaRYhiX489g3dr7M6MVrwcmM2DsPac8P0Otu6P8oGP9aC30vgxdTOkzhtna3sSp9FXP2zuGdre/w/vb3GR4+nBva3EBn386XVeVIFxKCbvx4PMaPR5ZlKo8coWTjRmVa5MaNFP3yC6BU4ozdu7urbPr4eHENmyA0sr9SjTuw5zBWs4Hi/HJOpjsoKapEPmWpAQC9WeNqoFIb5EyuhipKmFOea3Xi37cgXOpEQGuAugFNEhU04TLQNtDGgvsT+SD5IA/8aiLW0I+PQpcQ8vu7yvVpA56AHlNA89e6EWpUGgaHDWZw2GAOFxzmq31f8f2B71l0eBExHjGMjxvP6KjRjfSuWg9JktCFh6MLD8dj/HgAKtKPuQNbycaNOJYrUyJVViumrl0xuQIb1dXNOXRBuGycrRpXYkkjKamj+3nNUgMlBRUUF5RTUlhBcX65+3lxQQV5x/MoKazAWX16kNMZNa6wVlOB09d7XhPodAbxEU8QWivxr7cBZKpFkxDhsqNVq3hgSCxDE/x5fN52+u0dz11xo3hMmoVuyd9gw0cw9J+QMLbBjUTqirRH8lTPp3iwy4MsPryYefvn8e8N/+aNzW/Q0dAR2wkbXfy6XFZVtbp0IcHoQoLxuGYsAJXHjythbYMrsK1cCYCvXk9a1y6YunbD2LULxk6dUVsuva6ZgtBa1F1qwBfrWfeTnTJlxZUUF1RQ4gpuxQVKkFOel5N5sICSgjNPrdTq1adNozTZdZhsyq00T6a4oByjVYdKTAcShBZFBLQGEE1ChMtZ20Ab392XyEerDvHW8hTmau7nnZ4TGZD6FtI3t0FITxj+IoT1apSvZ9KaGBc3jnFx49hzcg/fpnzL9/u/Z9LPk4iyRzE+bjxjosbgYfBolK/XWmkDArCPGYN9zBgAKrOyKN20iZQfFmLMOkHO+++D0wkqFfo28Zi6dsPUtQvGbt3Q+vs38+gFQTiVpJIwWnUYrTr4k+vjZFmmvKTqlPBWG+aKC8rJSiuipCCHqor6Qe7QkjVIEhgsWkx1A5xVVy/MGW1KwNObRedKQWgKIqA1QP0mIYJw+dGqVdw/KIaR7QP42/ydTFpVRWLUf3lr8B58NrwKnwyHtmNg8LPgG99oX7etd1ue8X6GHiU9KAktYd7+ebyy8RXe3PwmwyKGMT52PN38u4kPEIDWzw/tFVdQZDLRLSmJaoeD0u3bKd28hZItW8j/9lvyZs1S9g0Oxti1K6ZuXTF26Yo+NkY0HhGEVkKSJAxmLQazFu+gP9+3oqzKPb1y49qtRIbGUlJYUXsrKCfveLEyvbLq9OmVKrUSGk023RnCnB6TzRX0bDq0BrX4XiwIDSQCWkPI1SAWqhYEon0tzL2zN3M3HuXlRXtIPBLM44O/5XbpJ9Rr34a9P0GnG2Hgk3+p4+Op9Co9I2JHcE3sNezL3ce8/fP48dCP/HToJyJsEYyNGctV0Vfha/JttK/Z2qktFiyJiVgSEwGQKysp27uP0q1bKNm8heJ1aylcuBBQ1mIzdu5UOy2yY0dUBkNzDl8QhEagM2jQGTTYfU3Y0iU6JIWccb+aqlxNmKsX4gprr5vLPlJEaWEF8ulZDo1WhdFWW4Uz2fWYrFrl3la/OicanwhCfSKgNUDdKY4ingmXO5VKYmKvMAa38eMf3+/ixV/S+C6oL69edx0Jh2Yoa6ft+Bq63QYDHgNrQKN+/XiveJ7u/TSPdHuEX9J+YX7KfN7c8ibvbH2HxOBExsaMJSkkCa1a26hft7WTtFqMHdpj7NAer1tvVTpFpqdTsnkzpVu2UrJlM9mrflN21moxJLTF1LkLxs6dMHbqhCYwUPx2XBAuUXWrcp4Bf37NqtMpU+aorBPmyikurKC0TqgryC4l82DBGdeTA9Do1ZisWiplJ8V/7MBk1bqnd5psOox1nhssWnHNnHDJEwGtAZQpjq4mIeJ7hCAAEGA38NGt3fl5VybPfr+b0Z/s4dY+E3ns7ruwrH8DNn+qdHzsdTckPgQmr0b9+iatibExYxkbM5bUglS+P/g9Pxz4gWnp0/DQe3Bl1JWMjRlLG682jfp1LxWSJKELDUUXGorH2LEAVOfnU7J1qyuwbSFv7lxyP/8cUNZtM3bu7A5shnbtUBnP3oJcEIRLk0oluath3sF/vm91tZPSQiXM1XSwLC2qoLRI2XYsrYyik2VkpRZS6jjzcgQ118y5A5xVi9FW87g2zJlc27R6UZ0TWh8R0BpALFQtCGc3sn0gfaJ8ePWXvXy+NpVFO/U8O/oJRvd9EGnlv2HNW7DpE+j7IPS+B/Rn72LWUBH2CB7q+hBTO0/l94zfWXBgAV/v+5ov93xJW6+2XB1zNVdGXnnZNxY5F7WHB9ZBg7AOGgS4pkXu20/p9m3K9WzbtlO0dKlrZzWG+Hh3YDN26oQ2PFxU2QRBcFOrVVg89Vg8z9zBMjk5m6SknoDSxbK8pMod4krqBLmSIqVCV1pUSVZaEaVFFVSUnXlJEY1OVS+wuQOcVYfRVuexqM4JLYgIaA0gujgKwp+zm7S8OLYD47uF8syCnTwwZytfxfjwwtWvE5X4MKz4P1jxIqx/X1nouvtk0Db+NU5qlZr+If3pH9Kf/LJ8Fh1exIIDC/j3hn/z2qbXSApN4uroq+kb3BetSkyBPBdJq8XYvh3G9u3gppsAqMrNVcKa61aw4HvyZs8BlIBn7NSptsrWoQNqa+MHckEQLj2SqnZdOTj30iBVldW1Aa7wlDDnCneOvDKy0wopLarEeYbqHBIY3dW52vCWnSOzS3VM2WbRYrAorxtMWiTxQVC4CERAawAZJ4gKmiCcU+dQD76/vx+z1qXx3yX7GPnmb9wzMIr7xn2B4cQ2+PUFWPJ3WPs/6PcIdL0VNPqLMhYPgwcT205kYtuJ7Mvdx4IDC/jp0E8sTVuKp96TkZEjGRM1hvY+7UXV5wJovLzqV9mqqyk/cLC2yrZ9u3tNNiQJfUw0Nj8/8o6fwNChPYa4OCStCMeCIPw1Gq0aq5caq9e5f9knO2XKS6tcwa2CksLK06p0pUUV5Bx1UFJYQUWpTNbOfaedp2a6pcHsCnUWLYaae4vWFehcYc6s3Ks1okOucG4ioDWALFfhFAtVC8J5UaskJvWNYFSHAP7vpz28/esBFmzL4Pmr2zHo1u/h8Cr49UVY9Bj89nptULsIFbUa8V7xPNnzSaZ1n8aaY2tYeHAh3+7/ljl75xBhi2B01GhGR48m2HKOCyqE00hqNYb4OAzxcXhOmABAdWEhpTt3ugObftNmjq/5Xdlfp8PQti2GDh0wdmiPoUMHdBERos2/IAgXjaQ6/yYoAL8uX0Gvbn0pdbgCnKPC1RilklJHJWVFFZQ6KsnNLKbsQD5ljsozdrYE0BnU7hBXN9C5g9wpj7V6sVzB5UgEtAaQZSdIyh+dqGwLwvnxsxp464YuXN89lGe+38Xtn25kVPsA/jGmB4F3LIFDybDyP7D4cVj9OiQ+DN0mgfbiNZ7QqrQkhSaRFJpEUUURS9OWsvDgQt7d9i7vbnuXrn5dGR09muHhw7Hr7RdtHJc6tc1Wr8V/8ooV9I2OpnTnTsp27qJ0185667KpLBYM7dopga29Etw0QUHiQ4ogCM1CpZYwe+gxe5zfDA+nU6a8RAlwZQ4lvLkf14Q6RwWO/HKyjzoodZx53TkAtVZVpyJXpzpn0ZGbIXPIno3BPfVSi94krqO7FIiA1gCyXFXbxbGZxyIIrU3fGB8WP9Sfj1cd4p1fD7ByfzaPDI3jtsSBaKOSlIrayv/Az0/C6jeg38NKi/6LGNQArDor18Zey7Wx15LhyOCnQz+x8NBCXlj7Ai+vf5mk0CSujLySfiH90KsvzjTMy4YkoQsLQxcWhv3KKwHX1MiDB5XAtnMHZTt3cfLzL6BSacut9vbG2L59vUqbxqtxO4EKgiA0BpVKUqpgFh3nc/2cLMtUllUrFTpHJWWuKl3dMFcT8gqySigtqqSyXGmKkrlpZ/2TSaA3aTBadBjMGgyn3Cvbte7r+5RKogaVWsxaaElEQGsI2YmMGgnEb3QFoQH0GjVTB8dydedg/vnDbv5v0R6+2nSUf4xOYEDcQIgaCId/cwW1p5SglvgQdLsddKaLPr4gSxB3dryTKR2m8EfuH/x48EcWHV7E0rSlWLQWBocNZlTkKHoF9hLNRRqJpFZjiIvDEBeHx7hrAXBWVFC+d2+9Sptj1Spq5g5pg4IwdOiAISEBQ7t2GNoloPH0bM63IQiCcMEkSUJn1KAzarD7nt8xVZXVrFi6is7tu7vDXFmx6+aovS/KLSPnqBL0qiudZz2f3qQ5PbjVTMM0199Wc68Woe6iEQGtAZxyFUgqxF9LQfhrQr1MzJjUneV7svjXT39w6ycbGNrWj2euTCAisj9E9ofUNbDy30ozkdVvQuKDqKpjm2R8kiTRzrsd7bzb8Wj3R9mQuYHFqYtZnracHw7+gIfeg2HhwxgVOQqnfPYffELDqHQ6jB07YuzY0b2t2lFM2R+7XZW2nZTt2kXRkiXu1zVBgRgSEjC2a6cEt4QENL7n+YlHEAShldBo1WhNEr5h598Zt7KiWglvjtoQV1onzJU5KigrrqQ4v5yTxxyUOSqpqjj7zzadQV0nsCnTL7PznGwqST1zyDNrUWvFp+fzIQJaQ8hOZLRieqMgNAJJkhia4E//OB8+XZPKO8tTGPbGSu7oF8kDg2OxRCRCxEJIW6sEtV+eoY/GCpoHoceURl/w+mw0Kg19g/vSN7gvz/Z+ljXH1rA4dTE/HvqRb/Z/g11tZ+OGjYyKHEUHnw6iun6RqC1mzD17Yu7Z072tuqCAsj17KNu9m7Ldf1D2xx84li13v67x83OHNUN7Jbhp/P3F/yNBEC4rWp0a7Xl2uqxRVVHtrsyVnhLuyhzKtvJipfNl3vFiigtg/f5DZx+DXl0vtOnNtdMsax/XhDsNepMWvVFz2S1n0KQBTZIkM7ASeE6W5R+b8ms3JplqZEmPSr68/rIIwsWk16i5Z2A013YJ5pUl+/hw5SHmbznGkyPbcG2XYFThfeDW7+HIegq+fxqfFf+nLHrd7TboMxVsgU02Vp1ax6CwQQwKG0RJZQmr0lcxc+NMvtr3FbP2zCLYEszIiJGMihxFnGecCAIXmdpux9y7N+bevd3bqh0OyvfsoeyPPyjdvVsJbatWgVP5bbDa29s1NdIV3BLacda2a4IgCJcpjU6NRafG4nl+oS45OZn+iQNOD3XFrgqdo4rSYuW+zFFBfnYp5cWVlJdUnfWckgR6U00TFE1tdc5UG+IMlprntfu05g6Y5xXQJEn6BBgNZMmy3L7O9pHAW4AamC7L8r/Pcaonga8bONYWQ3ZWIaMWHRwF4SLwsxn473WduLl3OM/9sJvHvtnOzHVpPDcmgS5hnhDWi10dniGpra8y5XHd+7DhI+h0o3Kdmnd0k47XpDUxMnIkhjQD3fp249cjv7L48GI+2/0ZM3bNIMoexcjIkYyIGEGUPapJx3Y5U1ssmHr0wNSjh3ubs6SEsr37KPtDqbKV7d7Nyd9/h2rlYntfk4m0Dh0wtIlH36YthrZt0EdFIel0zfU2BEEQWh21VnVBXS+htvNleXFV7ZTLEuW+vKSq3vPi/HJyjxVTVlzbLOVMVGrJXZWzRLWuX8CdbwXtM+Bd4IuaDZIkqYH/AcOAdGCjJEk/oIS1l085/g6gE/AHcPEWN2oiMk5kVEhikqMgXDSdQz2Yf29fFmw7xr8X7+Wa937n2i7BPDmqjbKDfzsY9zEM+jv8/g5snQVbZ0LCWGUttcCOf3r+i8Gqs3J1zNVcHXM1uWW5LEtbxuLDi3l/2/u8t+09YjxiGBo+lGHhw4j1iG21v9lrrVQmE6auXTB17eLe5iwvp3zfPsp27+bQr79iKiwk76uvkcvKlB20WvTR0RjatEHfJh5Dm7YY2sSj9vBonjchCIJwCarf+fL8VVc5KSuuE+zq3Gq2lRdXUqUtuUgjvzjOK6DJsrxKkqSIUzb3BA7IsnwIQJKkucDVsiy/jFJtq0eSpCSUXqMJQKkkSYtkuXVeVS+LJiGC0CRUKolru4YwvF0A7604wPTfDvPz7uOMDFfRq281Rp0avCJh9Osw8ElY9x5snAG750PMUOg3DcL7KvMjmpiXwYsJ8ROYED+BE8UnWHZkGcvSlvHRjo/4YPsHhNvCGRo2lGERw0jwShBhrZmo9Hp3I5KiwEC6JSUhV1dTkZZG+d69lO3ZS9nevRSvWUPBggXu4zSBgRjatFGqbPHKvTYkRCywLQiC0ITUGhVmux6z/c+rdcnJyU0zoEYiyec5594V0H6smeIoSdJ4YKQsy1Ncz28BesmyPPUc57kNyDnbNWiSJN0F3AXg7+/fbe7cuef3TpqIw+HAZJrNTLqSLA3hU6mguYcEKOOyWCzNPYzTtMRxtcQxQcscV0sbU1aJk7l7K9iSVY2nXuLaWC2JwRpUdcKNptJBUMbPhKT/gK6ygAJbPEdDryHHpydI6os2tvP9syqsLmRHyQ62l2xnf9l+nDjxUnvRydSJLuYuhOvCUUmN9yG/pf0/hJY5Jjj3uFSFhWjS09EcTUeTno42PR318eNIrp+jToOBquBgqkJCqAoNoTIkhKqgIPiLUyRb4p9XSxwTtMxxtcQxQcscV0scE4hxXYiWOCZomeMaNGjQZlmWu5/ptSYPaBeie/fu8qZNmxrrdI0iOTkZb59veSs3jlXSQPb3b/ppVGeSnJxMUlJScw/jNC1xXC1xTNAyx9USxwTw4fzlLMo0sP1oPm0CrPz9irYMiDullXplqTLt8fd3ID8NPCOh933Q5SbQnXvh0AvVkD+r/LJ8VhxdwdK0pazNXEuVswo/kx9Dw4YyNHwoXf26olb9tVDZEv8ftsQxQcPG5SwrozzlAGV791C+Zy9l+/ZRvncvzuJiZQeVCl1UJIa4OPTuWzza4KDzrpq2xD+vljgmaJnjaoljgpY5rpY4JhDjuhAtcUzQMsclSdJZA9pf6eJ4DAit8zzEte2SJ8tOZEmFSlyDJgjNIt5LzV3X9OXHHZm8smQvt36ygf6xPvz9ira0DbQpO2mN0PNO6H4H7P0Rfn8XFj8OK/5P2dbrbrAGNOv78DB4cE3sNVwTew1FFUWsTF/J0tSlfJvyLbP3zsbL4MWQsCEMDRtKj4AeaNViUeyWRmUwYOzQHmMHd/8sZKeTyvR0yvbudU+TLN2+g8JFi2uPM5vRx8bWCW2xGOLixLVtgiAIwl8KaBuBWEmSIlGC2Q3AxEYZVUsnV4sujoLQzCRJYkynIIa382fm2jTe+fUAV7z9G+O7hvDo8HgC7K5+RCo1JFyt3I6sh7XvwOo3lMpaxwnQ536l4Ugzs+qsjI4azeio0ZRUlvDbsd9YmrbUvc6aRWuhX3A/BoUOol9IP2w6W3MPWTgLSaVCFxaGLiwMhg93b692OChPSaF8fwrl+/dTvn8/RUuWkP91bXNjjZ/faaGNysrmeBuCIAhCMznfNvtzgCTAR5KkdOCfsizPkCRpKrAEpXPjJ7Is775oI21BZLkaJEl0cRSEFkCvUTOlfxTju4Xw7q8H+GJtGgt3ZDClXxT3JEVj0df5NhfWS7nlHlLa82+dBdu+hOjBylpq0YObpaHIqUxaEyMiRjAiYgRlVWWsz1zPiqMrWHF0BT+n/oxG0tA9oDuDQgcxKHQQgZamWwNOaDi1xYKpSxdMXWq7SMqyTFVWljuwle/fT9n+FEpmzkR2BTM/lYqDkZHuwFYT4LTBwaIpiSAIwiXofLs43niW7YuARY06olZAphpZVreEz3GCILh4mHQ8MzqBSX0jeGXJPt5dcYC5G4/w0JBYru8Rhk5T54OsVxRc8Sok/Q02faKsozbrWvBrp0x97DhBmSLZAhg0BgaGDmRg6ECedT7Lzpyd/Hr0V1YcWcHLG17m5Q0v09arrRLWwgYR7xkvOkK2IpIkofX3R+vvj6V/f/d2uapK6SS5fz/7li7FWl5B2a7dFC3+2b2PymRCFxuDPjoGfUwM+ljlXhMQIP4OCIIgtGJ/ZYrjZUt2VivXoImff4LQ4oR6mXjnxi5M7hfJS4v28Oz3u/n4t8M8MiyWqzoFo677D9fkBQMeg74PwM55Spv+hQ/Csn9Ct9ug+2TwCD3r12pqapWazn6d6ezXmWndpnG44LBSWTuygve3v897298jyBxEUmgSg8IG0c2/W3MPWWggSaNBHx2NPjqaYqORUNfF7c7iYsoPHKBs/35lqmRKCo5VqyiYP999rMpsRhcTrYS2aBHcBEEQWhsR0BpAphonokmIILRknUM9+Oqu3iTvy+aVJft45KvtfJB8iMdGxDO0rV/9D6oavdLdsfNESFsD6z+ANW/Bmreh7WjodQ+E9WkR0x/rirRHEmmP5I72d5BTmsOq9FWsOLLC3WTEqrMSp4nDcchBv6B+eBg8mnvIwl+kMpsxduqEsVOnetur8vKoOHiQ8gMHKE85QPmBAzhWrqLg27MEt5hY9K7HIrgJgiC0LCKgNYAsVwOigiYILZ0kSQxq48fAOF9+2pnJ60v3c+cXm+gS5sHjI+LpG+1z6gEQ0U+55R+BjdNh8+fwx/cQ0EEJau3Hg9bQPG/oT/gYfbg29lqujb2WksoS1mauZcWRFSw/vJy//fY3VJKKTr6dGBAygP7B/YnzjBMfyi8hGk9PNN27Y+pev2NzVV4eFQcOUH7wYG1wS14pgpsgCEILJgJaA8iyMsVR/NgShNZBpVI6Po5sH8C8zem8tSyFiR+vp3+sD4+PiKdjiMfpB3mEwbAXYOBTsPNrWP8hfH8/LP1H7fRHe3BTv5XzYtKaGBI2hCFhQxhcORif9j6sSl/FqvRVvLXlLd7a8hYB5gAGBA9gQMgAegb2xKhpGdfcCY1L4+mJpkcPTD161NvuDm41FbeDB08PbiYTuqgodFGR6KOilfvoaHShLWfaryAIwqVIBLQGkGUnMqqWNttJEIRz0KpV3NgzjGu6BDNrXRr/W3GAq95dw6j2ATw6PI4YP+vpB+lMSiDrOglSf1OC2m+vw+o3oc2V0GMKRA5o6rdy3lSSio6+Heno25GpXaaSVZLFb+m/sSp9FQsPLeTr/V+jV+vpGdCTASFKYAuyBDX3sIWL7M+CW3lKijJd8uAhKg4domTjJgp/WFi7k1qNt48PR9u3Rx8ViS4q2nUfhdp6hn9DgiAIwgURAa0BZLkKWVyDJgitlkGrtOa/vkco0387zPTfDrFk93Gu7RrCg4NjCfM2nX6QJClBLHIA5KUq0x+3zoI9P4B3LCEeA6C0Exg9m/z9XAg/kx/j4sYxLm4cFdUVbDq+iVXHlOrab+t/4//W/x8xHjHuqZCd/DqhVYkFsi8XGk9PND17Yu7Zs972akcxFampVBw6SPmhQxxbv56KtFQcq1bVW6dN4+uLLjr6tOCm8fcX0yUFQRDOU6sLaJWVlaSnp1NWVtYsX99utyNJj3CP1kwlVezZs6dZxnEqu93O4cOHCQkJQasVH6YE4XxYDVoeGRbHpL4RvLfiAF+sS2PB1mOM6xrC1MExhHqdIagBeEbA8Bdh0NOwewFsmkHMwRnw2mzoME6pqgV1OfOxLYhOraNvcF/6BvflyR5PklqY6p4K+cXuL/hk1yeYtWZ6B/YmMTiRxKBEUV27TKktZozt22Fsryzq/kdyMl2SkpTlAI4epeLwYcoPHqTi0GHKDx2kYOGPOIuK3MfXTJfUR0ehi4xCFx2FPioKXWgokk7XXG9LEAShRWp1AS09PR2r1UpERESz/DauqKgISTpOFt6UY6StpWVct1FYWEhFRQXp6elERkY293AEoVXxMitrqN05IIr3kw8ye8MRvt2SznXdQ7gv6U+CmtYInW+EzjeyaeEndJe3wc5vlMpaUFclqLW/tsWsqfZnJElyd4Wc1G4SRRVFbMjcwOqM1aw5toblR5YDSufIxKBE+gX3o5t/NwyaltcwRWg6kkaDPjISfWQk1sGD3dtlWaY6J0eZJnn4kHu6ZPGGjRR8/0PtCTQadCEh6CIilFtkpPuxxs9XVN0EQbgstbqAVlZW1mzhrJaMjNSiJjhKkoS3tzfZ2dnNPRRBaLX8bQaeu6od9wyM5v3kA8zZcJR5m9MZ3y2UqYNjCPY4e9ByWKMg6Q4Y/i/YPhc2zoDv74Mlf4fON0H3O8AnpgnfzV9j1VkZEj6EIeFDkGWZwwWHWZOxhjXH1vD1vq+ZtWcWerWe7gHdSQxKJDE4kUhbpPhALQDKzySNry8aX1/MvXvVe63edMmDh5THqakUr12LXF5eew6TCV1EOPoIV2iLjHCHN3GtmyAIl7JWF9CAFvABQG7mr39mzf/nIgiXhgC7geevbs89SdG8n3yQuRuOMm/zUSZ0D+W+QX8e1DDYodfd0PMuSF0Nm2bAhg9h3f8gPFFpONL2qhbZqv9sJEkiyiOKKI8obkm4hdKqUjaf2MyaY2tYk7GGVza+AhshyBzkngrZK7AXFp2luYcutECnTpesITudVB0/TkVqKuWu0FZxOJXSnTsp/PlncDprz+Hjgy4iHF1EBPo61be618MJgiC0Vq0yoLVGX3/9Nc899xySJNGpUydmz5592j5PP/00X3zxBXl5eTgcjmYYpSAIdQXajbxwdXvuGRjNe8kH+GrjUb7edJTre4Ry/6AYAu1/EtQkCSL7K7eiE7DtS9jyBcy/EwyPQ6cblM6Q/glN94YaiVFjpF9wP/oF9wPgmOOYEtaOrWHR4UV8s/8b1JKa9j7t6R3Ymz5Bfejo0xGtWlwfK5ydpFKhDQpCGxSEuW/feq85KyqoPHrUFdoOuwOcI3klBTnfuvfzkyQO1JsyWRvgNAEBSCpVU78tQRCECyYCWoPIgHTebfZTUlJ4+eWXWbNmDZ6enmRlZZ1xvzFjxjB16lRiY2Mbb6iCIPxlQR5GXhzbgXuTYnhvhSuobVSuUbtnYPTZr1GrYfWH/tMg8WGlVf+Wz2HTJ7D+AwjpoQS19teCztwk76exBVuCmRA/gQnxE6h0VrItaxvrMtexLmMdH+/8mA93fIhRY6S7f3d6B/ZGU6FBlmVR9RfOm0qnQx8djT46+rTXqgsLqUhLoyI1lf3JydhlKE89TMnmzcglJe79JL0eXVgo2rBwdGFh6MLDXPfhSnhTq5vyLQmCIJyVCGgXaMaMGXzyyYdUoaGwsIjYyEhWrFjxp8d8/PHH3H///Xh6Ku23/fz8zrhf7969G328giA0nmAPI/93TQfuTYrmveSDfLMpnbkbj3J15yC6m5znPoFKBVEDlVvxSdg+RwlrP0yFn/8GHcZDt0mtogPk2WhVWnoE9KBHQA8e6PIAhRWFbDy+kXUZ61iXuY7fjv0GwEdff0TvoN70DlRuAeaAZh650FqpbTaMHTpg7NCBYquV4KQkQGlUUpWV7b7GreLwYSqOHqXySBrFq1fXv95Nq0UbGuoObtqwMHRh4crjoCAkjfi4JAhC02nV33GeX7ibPzIKG/WcCUE2/jmm3Vlfnzx5MpMnjyC9yodbrhzLtGnTuP7669m3b99p+06bNo1bb72V/fv3A5CYmEh1dTXPPfccI0eObNRxC4LQdEI8Tbx0TQceHBzLx78dYvb6I3xXWc2agi3cNyiadkH2c5/E7A19p0Kf++HIOiWobZ8Dmz+FgI7Q5WZoP17ZrxWz6WwMCRvCkLAhAGQ6Mvk8+XPybHmszVjLT4d+AiDCFkGfoD70DuxNj4AeWHWiCYTw10iShNbfD62/H+Ze9dd1k51OqrKyqEhNo+JIGpVHjlCRdoSKI0coXr8eubS0dmeNBl1wMNpwV2irG+KCg8UyAYIgNLpWHdCaj8yLT/yN3gOTGDNmDGPGjPnTvauqqkhJSSE5OZn09HQGDBjAzp078fDwaJrhCoJwUQTYDTw7OoH7kqL55+yVrNyfzU87Mxncxo/7B8XQLfw8Fq2WJAjvo9xG/tvVpn8mLH4CljwN8aOULpAxQ0Hd+r9lB1oC6W3pTdKAJJyyk5S8FGU6ZOY6FhxYwJy9c1BJqtrr1wL70NG3Izq1+BAsNB5JpUIbEIA2IOC0LpOyLFOVnU1lWhoVdYJbxZE0Sjdtxlln2iRqNdqgoDNX3kJCUOn1TfzOBEG4FLTqn/Z/Vum6mL788juOHTnKs6+/DXDOClpISAi9evVCq9USGRlJXFwcKSkp9OjRo6mHLgjCReBt0TM+Tsf/3ZLIzLWpzFh9mHHv/06fKG8eGBxDn2jv87veyugBPe9Ubsd3wbbZsOMr2PMDmP2g0/XQ+Wbwa3PR31NTUEkq4r3iifeKZ1K7SVRUV7A9e7s7sE3fOZ2PdnyEQW2gk18negb0pGdAT9p5txMNR4SLRpIktH5+aP38MJ3yc1qWZapzc5XQluaqvrkC3KmLcyNJaAID8LDayFy+HG1IqHINXEgoutAQVHa7uA5TEIQzatUBrTls3bqVt9/+jJlLlqFydYP66quv/vSYsWPHMmfOHG6//XZycnLYv38/UVFRTTFcQRCakN2oZergWO7oF8ns9Uf4aNUhJk5fT5cwD+5LimFIGz9UqvP8QBbQHka+BEOfgwNLYeuXsO59+P0dZRHsLjdB+3FgPI8qXSuhU+vOeP1aze2dre8AShfJLn5d3PsmeCegVYnAJlx8kiSh8fZG4+2NqWv9a0VlWaY6P981XTLNXXkr2bWTol9XUH3yZL39VVYr2tAQdCGhyn1oqHIdXGgo2sBAJK34Oy0IlysR0C7QRx99RF5eATdfORpQkdizB9OnT//TY0aMGMEvv/xCQkICarWaV199FW9v5bqSzp07s23bNgCeeOIJZs+eTUlJCSEhIUyZMoXnnnvu4r4hQRAanUmnYUr/KG7uHc68zel8sPIgd36xiRg/C3cNiGJs52B0mvNs963RQZsrlZsjG3Z+rYS1nx6Fn/+ubO98E0QPAtWl1YXu1OvX8sry2HRikzuwvbXlLQBMGhNd/Lu4K2xtvNqgUYkfb0LTkiQJjacnGk9PjJ06ubenJCfTKSmJakcxlcfSleUCjrru049SnpKCY8UK5LpruKlUaAMDXYEtxF11qwlwovomCJc28RPsAr3//vvIpHFCCgNJR6z53IvNSpLE66+/zuuvv37aazXhDOCVV17hlVdeaczhCoLQjAxaNTf3DueGHqH8tDOTD1Ye4ol5O3jtl31M7hfJjT3DsBou4LfkFl+lqUjv+yBzuzIFcufXsHs+WAOVtdU63wQ+l+ZSHZ4GT4aFD2NY+DAATpaerBfY3tj8BgAWrYWu/l3p4d+DHoE9aOPZBvUlFl6F1kdtMaOOj8cQH3/aazVNSyqPHqXiiBLcKl0h7ryrbzUhLihIVN8EoZUTAa0hlGXQBEEQzotGreLqzsFc1SmI31Jy+GDlQV5atJd3lh/gpt7h3JEYgZ/t3L/scZMkCOqs3Ib/C/b/rFTV1rwNq99QpkB2nKBMgbyEeRu9GRExghERIwDIKc1h0/FNbDi+gY3HN7IqfRUAVq2Vbv7d6BHQg24B3Yj3jBcVNqFFqdu05NTr3gCcxcVUpB+jMv2oa6mA86i+hYSgDQlGGxysdKEMCUEbHIzGz08s2C0ILZz4CdUgMiAymiAIF0aSJAbE+TIgzpcd6fl8uOoQH606yCerD3Nt12DuHBBFtK/lwk6q0UPC1cqt6DjsnKdU1X5+CpY8TQfPTuCVpUyFbKULYZ8vH6MPIyNHMjJSWcYkqySr3jVsyenJAJi1Zjr7dqarf1e6+XejvU979GrRbU9ouVRmM4b4OAzxcae9Vq/6djTdFeLSqTxyBMeqVVRn59Q/QKtFGxSIh9GkNC8JVoKbNjgYbUgwGh8fEeAEoZmJgHaBZFl2PRLxTBCEhusY4sH/JnYlNaeY6asP8c2mdL7adJRhbf25e2AU3cK9Lvyk1gBlbbW+UyFrL+z8GvOGmTD/TtCaoM1o6Hg9RCVdEi37z8XP5MeVUVdyZdSVABwvPs6WE1vYkrWFzSc2u5uOaFVaOvh0wKfMB80xDZ19O2PRXWBQFoRmcs7qW1kZlRmZVB47plwDd+wYlceOUfLHnjNOn5R0OrRBQe6KmzY4GJ2rEqcNDkbtfZ5daQVBaLBL/yf0RSKjzDISBEH4KyJ8zLw4tgMPD43ji99T+XxtGr/8cYIuYR5M7hfJyHYBaNQN+G22XxsY8g/WqfqRFGWAHV/D7u+U6prZV5n+2HGCMh3yMvlmFmAO4IqoK7gi6goA8svy2Zq1lc0nNrMlawvLCpfxy7JflPb/nvF08+9GV/+udPXrirexdS8YLly+VAYD+qhI9FGR9banJCeTlJSEs7TUHdoqjh2jMv2Y+3nZ7t1U5+XVO04yGFxhLQhdnRCnDVamVKo9PESAE4S/SAQ0QRCEFsDHomfa8HjuHhjNvM3pfLLmMFNnbyXYw8jtiRFM6BGK7UIaitSQVBDeV7mN+g+kLFVC2qZPYf0H4B0DHSZAx+vA6/Ja/sPD4MGgsEEMChsEwJJfl2BrY2NL1ha2nNjCN/u/YdaeWQBE2CLo5t/NfQuyBDXn0AWh0aiMRvQxMehjYs74erWjmMoMV2irE94qjqVTun0HzoKCevtLJhPaoEC0gUFKJS4wEG1w7WONnx+SRnz8FIQ/I/6FXDDZ/Uj8fkgQhMZm1muY1DeCm3uHs3zPCaavPsyLP+3hzWUpTOgeyu2JEYR6mRp2co0e2o5WbqX5ygLYO76G5Jch+SUI6aFU1hLGgi2wMd9Wq6BX6ekT1Ic+QX0AqKyuZPfJ3e4pkb+k/sK3Kd8C4G/yp4tfFzr7daazX2fReES4ZKktZtRxcRjiTr/+DaC6qIjKjAwq02unT1ZmZFCZkUnZrl2nVeBQq9H4+ymBLSioNsgFBaLOzMRZUoLK1MDvcYJwiRA/TZrAI488wooVKwAoKSkhKyuL/Pz80/Z7+umn+eKLL8jLy8PhcDTxKAVBaEnUKonh7QIY3i6AnekFzFh9iC/WpvLZ74cZ0S6AKf0j6Rrm2fCpREYP6HqrcitIV5qL7JqnNBf5+W8Qngjtr4G2Vyvt/S9DWrXWHcDuaH8H1c5qDuQfcE+J3Jq1lZ9TfwaUxbM7+HSgs19nuvh1oaNvR2w6WzO/A0G4+NRW61mXDwBwlpRQefw4lccyqMzMcIW3DKoyMindtJnCE4uguhoAH2Df8y+g9vBAGxSEJijwzEHOy0tMoxQuaSKgXTDZ9V/pvCtob7zxhvvxO++8w9atW8+435gxY5g6dSqxsZfmGkaCIDRMhxA7b97QhadGteXztanMXn+ExbuO0ylUuU5tVPsAtA25Tq2GPQT6PazcclJg13zY9a2yGPaiJyByALS/VmkyYmpA85JLhFqlJt4rnniveCa2nQgojUe2Zm1lW9Y2tmZtZcbOGVTL1UhIRHtEuwNbZ9/OhFpDxYdK4bKjMpnQR0WhjzrzFGq5qoqq7GwqMzLYsXw5MXYPJcRlZlCRmkrx72uRS0rqHSPp9crUyaAgtMFBaGoeByrPtf7+Yi04oVUTAe0CzZjxCZ9++hGV6HAUFhITGemujp2POXPm8Pzzz5/xtd69ezfWMAVBuAQF2A08ObINDwyO4dvN6XyyJpUH52zF36bnpl7h3NgzDF/rX2wX7xMLSU/CwCcg6w8lqO2aDz88AD9Og+jBSliLvwIMokIUYA5gVOQoRkWOAqCksoSdOTuVwJa9lSWHlzBv/zwAvAxedPbt7J4ameCdgE6ta87hC0KzkzQaJWwFBlJWVIRPUlK912VZxllQ4AptmUolruZxRgZlK5KpzjllKQFJQuPnhzYgQAlvAQFoAwPQBAS67gPEcgJCi9a6A9rip+D4zsY9Z0AHGPXvs748efLtTJ48jCPVIdw+ejTTpk3j+uuv7jCV3gAAVsBJREFUZ9++faftO23aNG699Vb387S0NA4fPszgwYMbd8yCIFxWTDoNt/SJ4KZe4STvz+Kz39N4fel+3vk1hSs7BDKpbwRdwjz/2heRJPBvp9wGPwsZW2H3fNj1HaQsAbUeYocp16zFjbjk11g7XyatiV6BvegV2AsAp+zkYP5BtmVvY1uWcvv16K8A6FQ62vm0o5NvJzr6dqSjT0f8zf7NOXxBaHEkSULt4YHawwNDQsIZ93GWlVGZmUmVK7TVXANXefw45Xv2KIt5l5fXP0irRevnhyYwAG2d4KZ1BTpNYKDoSCk0m9Yd0JrRS088QZ+BSYwZM4YxY8ac1zFz585l/PjxqNXqizw6QRAuByqVxOA2/gxu48/BbAcz16Yxb3M6C7Zl0CnEzq19IrBWy+c+0blIEgR3VW5DX4D0jUpl7Y8FsPdHZY21uJHKYtmxw0RYq0MlqYj1jCXWM5br4q4DIKc0h+3Z293TIr/c8yWf7f4MUNZu6+TbiQ4+Hejo25EE7zN/IBUEoZbKYEAfGYk+MvKMr8uyTHV+vhLgjh9Xwtzx41RmHqfyeCalW7dSuCQLKivrHSfp9WgDAvAwGMj4eckZw5zaam2KtyhcZlp3QPuTStfFI/Pll99z7MgR/vXG2wDnXUGbO3cu//vf/5pspIIgXD6ifS08d1U7HhsRz3db0vl8bRqPfrMdqw5urdrLTb3CCfIw/vUvpFJBWC/lNvJlSPtdCWt7FioVNo0RYocqzUXiRohpkGfgY/RhSNgQhoQNAaCiuoJ9ufvYkbODHdnKbWnaUgDUkppAbSCr1612h7ZwWzj/396dx1dV3/kff33vktwsN/u+7xsBAiSIsgVXEKMypaWdttRRptoZ+9PSvZ2q7bRjxzptZ6zaKih1BbVYxYLiQgQVZCcQsgCB7GQnCyH7+f1xbm4SAkgg5N6Ez/PxOCY5S/zcQC73fT/f8/0alAzNEuJiKaUw+fpi8vU9bxdO6+ujp77eHtx6TlbrAa7mJG1FxZzesYOe2lro6xtyncHDQw9rISHn7cbJrJRipMZ3QHOAffv288QTa3j+vVwMtrHL69at+8LrCgsLaWpq4tprr73SJQohrmKervrwx2/MiubTow38z4bdPJ17jD9/XMLNacF867oYrokdpRnQDEaInatvtz4OZZ/B4bf16fsLNoDRBeJvgLTbIXkRuF3msMsJysXowuTAyUwOnMzXU78OQGNHIwfrDnKg7gBbj2zlHyX/YF2R/m+N1cXKlIApTA6crH8MmIyPxceBj0CI8U8ZDJiDgjAHBeE2ZcqQY0dzc5manT0wocngAHdy4POOoqLh98MBBqsVc0gwpqBgTCHBmIODMQWH6MsNBAdjCgmR4ZRiCAloI/Tss6toamrhrsW3olBcNzOLVatWfeF1a9eu5atf/eqwX76MjAz2798PwI9+9CNeeeUV2tvbiYiIYMWKFTzyyCNX4FEIISY6pRRzEgPomW4hfspMXvq8lHW7ytl06CQpIVaWXxvDndPCcHcZpX8GjCZ9tsfYebDoMajYCYff0gNb8SYwmCB2PqTdjrlLgtoX8bP4MT9yPvMj5zOlZQrz5s/jePNx8uryOFB3gIP1B3km7xn6NP3d/Giv6IHQFjiFJN8kzAaZxU6I0TR4QhOYds5z+rq66KmpGRhGebJG/7rmJD01tXQWF9NTXw/a0OHnysUFU3CwLbSFYAoOxhwcNBDk+ic2kdkprwoS0EboqaeeAKqoMsRhMZqIcbu4GdPOF7T6wxnAY489xmOPPXb5RQohxCCRfu78dFEqD96QxNsHKlnzWSk/e/Mgv91UwD9Nj+Dr10SRGDyK91EYDBA1S99u+S+o3AsFb+mBbcMDXIcBqmbr96yl5oA1ZPT+3xOUQRmI94kn3ieeJYlLAH3GyPyGfA7UHSCvLo/Pqj5jQ8kGAFyNrqT5pzHJfxLpAemkB6QTZY2Sd+iFuMIMLi64REbiEhl53nO07m59OGVNDd01tfTUnKS7poYeW5g7k5dHT00NWlfX0AuVwhQQYAtywVh7eqgvKta7c7Z95uBgGVI5AUhAu0SjcNu9EEKMKTcXI8uyovhKZiS7S5t4YXspL39eyprPTjAzxo+vz4piYXoIrqZRnMhIKYiYoW83/hJOHqRs0/8R3bofNv4ANv4QIq+B1Nv0qfv940fv/z3BuZvdyQrJIiskC9AnQqg+Xa3fx2a7n+314td5qeAlQB8aOcl/0pDQFuweLKFNiDGmzGZ7J+58dwbbJzapsXXg+jtxtXqQ6y4rw1JZQd3HHw+7VoZUjn8S0EZsIJrJX2shxHiklCIrxo+sGD/q29J4Y08Fr+4s44G1+/F1N/PlzEi+NjOK2IBRno1RKQidwvG4bxA9/1moKxy4Z23zf+hbUJoe1FIWQ9g0/RpxUZRShHmGEeYZxsLYhQB093VTcqqEQ/WHONRwiPz6fP6a/1d6tB4A/C3+TAqYRLp/OpMC9PDm7+bvyIchhGDoxCakpJzznNzcXObNnKl332pq6amtufghlWYzpsBATEFBZ22B+vIDts1gtUqQcwAJaEIIcRUL8HTlvvnxfHtuHJ8eq+eVz8tY/clxntlawnXx/nz9mmhuSgvGxTTKswYqBUGp+pb9Y2g6AYUboWgjfPJ72PY4eIUPhLWYOWCUey9Gymwwk+yXTLJfMl/iSwB09nZS1FjEofpD5Dfkk1+fz7aKbWi2NyBDPUJJD0jXu2220GZ1kanEhXBGBnf3Cy4xAOiTm/TPUGkbUtlTV0dPbS3dtbV0HjvG6e3b6WttHXatsliGBrfAcwc6g4csrzKaJKCNmAxuFEJMPAaDYm5iIHMTA6lt6eC13eW8urOcf39lLwGeLnzF1lWL9LtC9zb4xsC1/6Zvpxv0xbAL/wH7XoJdz4LFGxJv0cNawg3gKoHhUrkaXfWFsQMHZqo73X2aww2Hya/PJ78hn0P1h+xT/QPEeMWQ5p9mHxrZ1dd1rm8thHBCymTCbFsK4EKLrfS1tw8JbnpXbmA7k59PT20u2pkzw641eHhgCgrC18VM5T82DuvEmYKCMAUGYrBYrtwDnUAkoF0iDRniKISYmIK8LNx/fSLfyU5ga3EdL39eyp8/PsbTHx9jXmIg/3xNFDekBGEyXqG1uDz8IeOf9a2rHUq26GGtaBMcfE2fvj8uWw9rSYvAGnxl6riKeJg9htzPBnCq45TeYbMFtt0nd7Px+EYAFIr4t+JJ9Usl1T/V/tHDLO+iCzFeGdzdcYmOxiU6+rznaJpGX1vbkODWXVtLT60e7NqOHOHM3r301NainbXwN4DB2xtzUOA5O3GmQNv+wAAMrhc3Cd9EJQFNCCHEORkNigUpQSxICaLq1BnW7ipn3a4y7n1xD8FeriydEcFXMiOJ9r+CL8pd3PUglrIYenugfIc+FLJwAxzZDDwA4TMgaaG+MHbIFLlvbZT4WHyYHT6b2eGz7ftq22vJr89n496NtHu2s6N6h33mSNA7bfbQZgtu3q7ejihfCHEFKKUwWq0YrVZc44dP6mRfM65/khNbcOupraWnbmig6ywpoaeuDnp7h30fg7c3psAAW2g73xaE0XNivikkAW3EbEMctYt/AVBWVsa3vvUtTp06RW9vL7/97W+59dZbh513991388477xAUFMShQ4dGq2AhhLhsYT5urLwpif93fQIfFdbyys4yns49xpNbjjErzo9lWZEsnBSKm8sozgB5NqNJvxctZg7c8huoydfvWSt+F7b8Rt+sYXpQS1oIcfPBfKEBPWKkgtyDCIoKQpUosrOzAahrr6OgsYCChgIONxxmf91+Np3YZL8m3DOcNP+0Id02mYhEiIltyCQnyUnnPU/r66O3sXEguNXV0Vtfrw+1rKujp7aOM7v30FNXd86OnHJ315ceuFCQCwocNkmKs5OAdolGMsTx17/+NV/5ylf4zne+w+HDh7n11ls5ceLEsPPuuusu7r//fpYvXz6apQohxKgxGQ3cPCmEmyeFUN18hr/tqeC13RV8b90BHrLkc/vUMJZlRTI53PvKzvylFISk69v8H0Fbrd5RK34XDr4Oe54Hk5se0pJu0e9f8w6/cvVcxQLdAwl0D2RexDz7vqaOpiGhraCxYMg9bcHuwaT6p5Lml6Z/9E8j0C1QZosT4iqjDAY9YAUEYElLO+95mqbR19w8ENyGbHqg6yws5PS2bfSdPj3serevfhUWLLiSD2VUSUAbodWr1/D888/RhQvtLS3Ex8ayZcuWC16jlKKlpQWA5uZmwsLCznnevHnzzhnchBDCGYV6u3H/9Yn8W3YCO4438PruCt7YU8HLn5eREmJlWVYkd2aE4+vhcuWL8QyCad/Qt55OOPEJFL8HxZv00AYQMlm/Zy1poT6Fv+EK3UMn8LX4cl3YdVwXdp19X0tXC0WNRfbAVtBQwMflH9tnj/S3+Ns7bEl+SaT4phDlFYVByZ+TEFc7pRRGHx+MPj64JiZe8Fz7ZCeDtnrjFRzdcQWM64D23zv/m8LGwlH9nil+Kfx45o/Pe/yee77FPfcsoqQnim/nLGblypUsW7aMoqKiYeeuXLmS5cuX88gjj3DzzTfzxBNPcPr0aT744INRrVkIIRzJYFBcFx/AdfEBPHL7JN4+UMXru8v55YbDPLqxkJsmBbMsM5I5CQEYDGPQITG56jM9JtwAi/4b6opsQe09ffr+rY+BRxAk3WwbCpkts0KOAS8Xr2ETkbR3t1PUZAttDQUcbjzMjqod9nXa3ExuJPkmkeKXYv+Y6JuIm0mGrgohzu1ck5305uY6rqBLMK4DmmPo7/T99kc/ZHZ2Njk5OeTk5FzwildffZW77rqL73//+2zfvp1vfvObHDp0CIO8eyuEmGC83cx8c1Y035wVzeGqFl7bXc7f91fyj7xqwn3cWDojgojuvrErSCkIStG3Od+D9kY4+oHeVTu8QZ/G3+gCMXMIV3HQEAn+w298F1eGu9mdaUHTmBY0zb6vq7eLY6eOUdhYSFFTEYWNhWws2ci67nUAGJSBaK9oUnxT9E6bXwopfikEuAU46mEIIcSoGtcB7UKdrivp5Zffoqq8jMf+7/8AvrCDtnr1at59Vx9ic+2119LR0UF9fT1BQUFjWrcQQoyltDAvHrl9Ej9ZlML7h2t4bXc5//fRETQN1lfs4EszIliUHoKH6xj+U+TuB1O+om+93VC2Qw9rxe+S2PARPLEKfGMh4UZ9i50LLhNzljBn5WJ0sc8C2U/TNKpOV+mhrVEPbXn1eUMmI/G3+BNEEHv37CXFVw9t0V7RGA3ja2iTEEKM64DmCPv2HeCJJ9bw7Lsf2ztg69atu+A1UVFRfPjhh9x1110UFBTQ0dFBYGDgWJQrhBAOZzEbyZkaRs7UMCqa2vmfv33C3qYz/OD1A/zi74dYlB7CP02P4Np4f4xjMQSyn9GsB7DYuXDLb9ix6VVm+bfpHbb9L+sLZBtdIPo6SLhJD2yByTKNvwMopQj3DCfcM5wbom6w72/ubKa4qdge2vaU7eHFwy/S06cPkbQYLST6Jg4ZHpnom4iXi5ejHooQQnwhCWgj9Oyzz9HU1MI9ty3CqBTXZmWxatWqC17zP//zP/zrv/4rf/jDH1BKsWbNGpRSVFVVsWLFCjZu1Bf+/NrXvkZubi719fVERETwy1/+knvuuWcsHpYQQoyJCF937khw4ffz57O3rIk39lTyTl4V6/dVEupt4c5p4XxpejgJQWN/T1iHWyjMzIaZ/wrdHVC2XQ9rRz+AzT/XN+9I2/1tN0HsPLDIC31H8nb1HnJfW25uLrPnzqakucQ+PLKosYj3S9/nb0f+Zr8u1CPUHtwSffSP0d7RmA1mRz0UIYSwk4A2Qk899UegnlIVj5/ZRLjli2cnS0tL49NPPx22PywszB7OQL9XTQghrgZKKWZE+zEj2o+Hc9L4oKCG9XsreWZrCU/nHmNqhDf/ND2C26eGjc0skGczWyB+gb7d8hs4VQZHP9TD2sE3YM8aMJgg6tqBwBY8SbprTsBsNJPsl0yyXzK3x98O6EMka9prKG4qpripmCNNRyhuKuazys/sE5KYDWbivOP00GYLb0m+SQS4Bcj0/0KIMSUBbcTG10J3Qgjh7CxmI7dNCeO2KWHUtnbw9v4q1u+t5OG38/n1Pw6zIDmIL82IYEFyEC4mB02u5BMFmf+ibz1dUP75QHftg0f0zRpqC2s36jNDuvk6plYxjFKKEI8QQjxChqzX1t3bTUlziR7aTumh7fOTn7OhZIP9HB9XnyGhLdEnkXifeNzN7o54KEKIq4AENCGEEE4jyGphxdw4VsyNo6C6hfV7K3hzXxWbD9fg624mZ2oYd04LZ1qkj+O6GiaXgXvXbvoltFQPhLX+mSGVQV9rLW4BxF8PEVn6dcKpDO62DdZ/b1t/t+1I0xHWH1nPmZ4zACgUUV5R9uGR/eEtwhoh67YJIS6bBLRLpAEy4EEIIa6c1FAvfr44jR8vTGHb0XrW761k3a5yXtheSpSfO3dkhHFHRjgJQZ6OLdQrFKZ/U996e6BiF5RsgWNb4JM/6GuvmT0gZo4+ZDJugUw24uTOvrcNoE/ro7K1Ug9upwaC24dlH9oX23YzuZHgk0CCTwLxPvEk+CTQ1NOEpmkyTFIIcdEkoI2YDHEUQoixZDIaWJAcxILkIFo7unn30EnePlDFk1uO8sRHR5kU5sWdGeHkTA0jxNvi2GKNJoi+Vt8W/Aw6muH4Njj2kR7ajrynn2cN04dBxi/QP3rKsivOzqAMRHpFEukVyQ3RAzNJnuk5Q8mpkiEdt60VW3nz6Jv2c3736u+I94kn3ieeRN9Ee3jzt/hLcBNCDCMBTQghxLhhtZj5cmYkX86MpLalg3fyqnlrfyW/2VjAf20qYFasP3dkhLEoPRRvdyeYkc/iDam36RtAU+lAd614Exx4Rd8fPBnis/XuWvR1YHZzWMliZNxMbkwKmMSkgElD9jd1NHH01FE27dqEIdDA0VNH+bDswyGzSfq4+tjDWv/HBJ8EfC1y/6IQVzMJaCM20EGT97yEEMJxgrws3D0nlrvnxFJS18bbB6p4a38VP1l/kIfeyic7OZA7p4VzfUoQFrOTLFbsGw0z7tK3vl6oPjAQ2Hb8GT57AoyuEDVrYDik1ufoqsUl8LX4khWSxWnrabJnZQP6bJINHQ0cPXWUY6eOcfTUUY42HWVjyUZau1vt1/pZ/OyTkQwOcN6u3g56NEKIsSQB7RJpI7gJrbS0lLvvvpu6ujr8/Px46aWXiIiIGHbez3/+c1544QWamppoa2sb3YKFEGICiwv05MEbk3jghkQOVjbz931VbMjTJxexupq4JT2EOzLCuDbOH5PRSSZxMBghfLq+zf0+dJ2G0s/0sFayRZ8ZkkeYbbJC7QJ93bXY+RCQKPevjVNKKQLcAghwC2BW6Cz7fk3TqG2v1QPboPD296N/p72n3X5ekFuQHth89U5bnHcccT5xsvC2EBOMBLQRG/k9aD/4wQ9Yvnw53/rWt/joo4/46U9/yosvvjjsvJycHO6//34SExNHo1AhhLjqKKWYEuHDlAgffr44le3HGnhrfyXvHjrJG3sqCPB0YWF6CLdNCSMrxg+jwYmCjosHJN6kbwCtJ6Ekl/rt6wit3AsFb+v7PUNsYc22+UY7rmYxKpRSBHsEE+wRzOzw2fb9fVofJ0+fHBLcjjQd4fWi1+no7bCfF+gWSJx3HLHescT7xNuDm9zjJsT4JAFthFavfpHnn3+BTlw409JCfGwsW7ZsueA1hw8f5ve//z0ACxYs4M477zznebNmzTrnfiGEECNnNCjmJAYwJzGA/7wznS2FtbyTV80beyp4aUcZQVZXbp0cSs7UUKZFOuE9P9YQmPpVippCCJ0/H5qOw/Gt+layBQ6+pp/nEz3QXYudq18nJgSDMhDmGUaYZ9iQ9dt6+3qpaqviWPMxSppLKDlVQklzCRtKNnC6+7T9PKuLlXjveOJ84oYEuFCPUEc8HCHERRrXAe3kf/0XnQWFo/o9XVNTCPnZz857/J57vsk99+RQ3B3Fv9++mJUrV7Js2TKKioqGnbty5UqWL1/O1KlTWb9+PQ888ABvvvkmra2tNDQ04O/vP6q1CyGEODeL2ciiyaEsmhzK6c4ePiqs5Z28Kl7ZWcaaz04Q5m1hsm8PPvGnmBrh7XxdB6XAL07fZtylj7OvKxwIbAVvwz7byIyA5IHuWswccPdzaOli9BkNRvuMktmR2fb9/UMlS5pLhgS33PJc1h9Zbz/PzeSGv8Gfd7e9q3fbbFukVyRmgxNMriPEVW5cBzTH0G8+e+zHP2ROdjY5OTnk5ORc8IrHH3+c+++/nzVr1jBv3jzCw8MxGp3khnUhhLjKeLiayJkaRs7UMFo7uvmgoIZ3DlTzQVEt7z35KZF+biyeHMZtU0KZFOblfGEN9MAWlKpv19yrTzhyMm8gsO1/BXY9CygImTzQYYuaBRa5X2miGjxU8tqwa4ccO9VxaiC4NZewu2Q3e2v28o+Sf9jPMSkTUV5Rw4ZLxnjH4GaSmUWFGCvjOqBdqNN1Jb308ltUl5fxv088AfCFHbSwsDDWr9ffuWpra+Nvf/sbPj4+Y1myEEKIc7BazCyZFsGSaRH84/0tnPZN4J28ap7dVsKfPz5GbIAHt00J5bYpYSQFezpnWAN9wpGwafo2+wHo6YKqvQOBbeczsP1PoAwQOhWiZ+vdtahrwc3H0dWLMeBj8WG6ZTrTg6cDkHs6l+zsbNq72znectzebSs5VcLRU0fZUr6FXq3Xfn2oRygxXjHEescS4x1j/zzYPdh5fy+EGKfGdUBzhH378vjTE2v4y6ZcDAZ9JrB169Zd8Jr6+nr8/PwwGAw8+uij3H333WNRqhBCiBHwMCsWZ0bylcxIGk938V7+Sd7JG1gQOy7Qg1vTQ1k0OYS0UCftrPUzuejdsqhZMP9H0H0GyndC6adw4pOBwNbfYYuZo4e26OtkSORVxt3sziT/SUzyH7qOW1dvF2UtZfaO24mWE5xoPjFsZkk3kxsxXjHEeMcQ66WHt1jvWKK9oqXrJsQlkoA2Qs8++1eamppZkbMIs1LMyspi1apVF7wmNzeXn/70pyilmDdvHk8++aT9WEZGBvv37wfgRz/6Ea+88grt7e1ERESwYsUKHnnkkSv4aIQQQpyLn4cLX5sZxddmRlHX2sm7h6rZdOgkT+Ue5U9bjhLl586iySEsSg91znvWzmZ2g7j5+gbQ3QGVu/WwduIT2P0c7HgKUBA8ydZhm61/9AhwaOnCMVyMLvp0/r4JQ/ZrmkbdmTpONJ/gePNxTrSc4HjLcfLq8nj3+Ltog2a7DvEIGei62UJcnHccQe5BGJSTLHchhBOSgDZCTz31OzR1hhNaNKGuZoJcv/hm2qVLl7J06dJzHusPZwCPPfYYjz322GiVKoQQYhQEWl355rUxfPPaGBraOnn/cA2bDp1k9bbj/OXjEsJ93LhlUgi3Tg5hepQvBmeauv98zBa9axYzR/+6pxMq90KpLbDtexF2/kU/Fpg6ENZi5oBnkOPqFg6nlCLIPYgg9yBmhs4ccqyjp4Oy1jI9uDWf0MNb83HePvb2kNkl3UxuRHtF2ztu/SGus69zrB+OEE5JAtolGQf/+AohhBh1/p6ufHVmFF+dGUVzuz7ByKZD1by0o5TnPj1OkNWVhekhLEwPYWaMn/Msiv1FTK4Qfa2+zfuhfg9b9f6BDtuBtbDLNlokIIkkcyz41uhDKH2iZOFsAYDFZCHJN4kk36Qh+zVNo/5M/UDHrfm43nWrz+PdE0O7br97/XdDhktGe0UTbY0m1DMUk0Fetoqrg/xNvyTyD5EQQlztvN3NfGlGBF+aEUFrRzcfFday6eBJXttdzgvbS/HzcOGWScEsTA/l2jh/XEzjJKyBfg9b5Ex9m7sSenug+oC9wxZUsg3efE8/1yvcdr/btfoWlAaGcfRYxRWnlCLQPZBA98BhXbfO3k5KW0o50XyCLQe2gB+caD7BOyXv0NbdZj/PZDAR4RlBjFcMUV5RenCzbTJkUkw0EtBGbOBdHnnDUAghBOizQd6REc4dGeG0d/WQW1THpkMneXt/Fa/uLMdqMXF9ShA3p4UwPzkQT9dx9s+v0QQRM/Rt9gN8suVDslODoGwHlG2H0u1w6G/6ua7eEHWNLbRdp88sabY4tn7htFyNrvaum8sJF7LnZgN6162ho4HSllLKWso40XLC/nF79XY6eweGQ1qMFiK9Iom2DoS2/hDnb/F3/ntEhTjLOPsXwlnIL7oQQohzc3cxcevkUG6dHEpHdy/bjtSzOf8kHxTU8Nb+KlyMBmYn+HPLpBBuSA0m0Orq6JJHThn12R9DJsPMf9UXzj5Vpoe1/sB2ZLN+rtEFwmcMdNkir5Gp/cUXUkoR4BZAgFsAM4JnDDnWp/VR2147JLSVtZRx9NRRcstz6dF67Od6mD3swyTP7rx5u3qP8aMS4uJIQBsxTW+daV98phBCiKubxWzkprRgbkoLpqe3jz2lTWw+XMN7+SfZUnQQpQ4yI8qXmycFc3NaCDEBHo4u+dIoBb7R+jb1q/q+0w1Qbuuwle2Az56AT/4AKH0YZLRtSGTULPCOcGj5YnwxKAMhHiGEeIQwK3TWkGM9fT1Ut1Xroa21jBPN+sdz3e/m4+pDlFeUPmzSGjWk++ZhHqe/i2JCkIB2GaSPJoQQ4mKZjAauifPnmjh//mNxKgXVrWw+fJLN+TX818ZC/mtjIcnBVntYSw938rXWvoiHP6Qs1jeArnao3DPQZRs88Yh3lB7Uom0dtsAUffFtIUbIZDAR6RVJpFfksGNdvV1UtFbYO26lraWUtpSyo3oHbx97e8i5fhY/oqxRRHlF0XOqh9Mlp4m0RhJljcLbdRwsrSHGNQloI6Yx0mi2detWHnzwQfLy8li7du2QKff/+te/8utf/xqA//iP/+Bb3/rWsOtff/11HnnkEQoKCti5cyeZmZmX9QiEEEI4llKKtDAv0sK8ePDGJMob23n/cA2bD5+0L4wd6m3h5rRggnt6md3bh3m8zAh5Pi7uEDtX30CfeKTmkO0+ts+gJBcOvqYfc/WCiEyIsE1UEpEJFhmOJi6Pi9GFOJ844nzihh1r726nvLVcv+ettYzy1nLKWsrYUb2D2vZaNm7baD/X6mK1h7VIa6T+uZf+eaBboIQ3cdkkoF2Skf3iRUVFsWbNGh5//PEh+xsbG/nlL3/J7t27UUoxY8YMbr/9dnx9fYecl56ezvr167n33nsvu3IhhBDOJ9LPnbvnxHL3nFgaT3fxUWEtm/NPsm53OR3dffz54PvckBrMzWnBzE0ah5OMnIvRBGEZ+jbrPv0+tsYSqNgF5Z9D+S7Y+hhofejDIlNtYW2m3mXzj5fZusSocTe7k+yXTLJf8rBjmz/aTNy0OD202cJbeWs5+Q35vF/6Pr1ar/1cN5Mb4Z7h9u5bf4CLtEYS6hGKUTrD4iJMgGf4sbV69cs89/xaujDR0dJKXGwMW7ZsueA1MTExABjOmnb4vffe46abbsLPzw+Am266iXfffZevfe1rQ85LTU0dvQcghBDCqfl5uLB0RgRLZ0RwpquXp97cQpUK5MPCGt7cV4mL0cA1cX7ckBLEDanBRPq5O7rk0aGUHrr84wfuY+to0YdF9oe2Q2/CnjX6MTe/gaUAIq/RZ4sU4gpwMbiQ4JtAgm/CsGPdfd1Ut1UPDW8teifuk8pP6Orrsp/bv1RAhDXC3n3rD3HhnuG4GF3G8mEJJzauA9q214qpL2/74hNHICDSk7lfSTrv8Xvu+Wfu/tdvcKTTn+/esZiVK1eybNkyioqKhp27cuVKli9fft7vVVlZSWTkwBjpiIgIKisrL+8BCCGEmDDcXIzMCDbx/eyp9PT2sbu0iY8Ka/mgoIZHNhzmkQ2HSQr25IbUYG5MDSIj0hejYQJ1lSxeEL9A3wD6+qC+WA9rFTuhfCcUv6sfU0ZmeMRA+w16YIvIkkW0xRVnNpiJ8tK7ZbOZPeRY/2yT/cMl+0NcRWsF+2r3cbr7tP1chSLUI1TvtnkNdN36A53VxTrWD0040LgOaI6iKcVjP/4hc7IXkJOTQ05OjqNLEkIIMcGZjAZmxfkzK86fn92ayvH603xYUMNHhbU8u7WEp3OP4efhQnZyIDekBDMvKQCrxezoskeXwQBBKfo2w3bPdnsjVOyG8s/pObgZ9r0MO5/Rj3mGDHTZImZC6FRZk02MmcGzTWaFZA05pmkaTZ1N9uA2uAP3YemHNHU2DTnf29XbHtbCPcOJsEbQcKaB+NZ4QjxCMBsm2O/6VW7MAppSygD8J+AF7NY07a+X+z0v1Om6cjReeelvVJeX8dSf/gRwyR208PBwcnNz7V9XVFSQnZ092gULIYSYgGIDPFgxN44Vc+NoPtPN1uI6Piqs5aPCWtbvrcRsVMyM9eOGlGBuSA0i2n+CThvu7gdJN0PSzRwwziV77hyozde7a+U79W5bgW2GPoMZQtIhPFOfeCQ8U+5lEw6hlMLP4oefxY+MoIxhx1u7WqloraCyrZKK1goq2iqoaK2gsLGQD8s+pKdPX+vtyfVPYlRGQjxC7AEuwhox8LlnhMw6OQ5dVEBTSj0H3AbUapqWPmj/QuB/ASOwStO0317g29wBRAANQMUlV+xg+/Yd4on/fZZnNn1kv6ds3bp1l/S9brnlFn72s5/R1KS/S7J582YeffTRUatVCCHE1cHbzUzO1DBypobR09vHvvJTfFBQw0cFtfzqncP86p3DJAR5ckNqEDekBDM9ygfTeJ8V8nyMJr1TFjpVX0QboLVGv4+tcrfebTvwKux6Vj9m8dEX0u4PbOEz9CUChHAgq4uVVP9UUv2Hz0PQ29dL3Zk6NmzbQEB8gD28VbZVklueS0NHw5DzPcweQwLb4C6c3PvmnC62g7YG+BPwQv8OpZQReBK4CT1w7VJKvY0e1s5OGXcDycBnmqb9RSn1BvDh5ZXuGM8++xKnmk6xImcRLkpxTVYWq1atuuA1u3btYsmSJTQ1NbFhwwYefvhh8vPz8fPz4xe/+AVZWXrb+6GHHrJPGLJixQruu+8+MjMzefPNN/nud79LXV0dixcvJiMjg/fee++KP1YhhBDjj8loICvGj6wYP366KJXShtN8VFjLhwW1PPfJcf7ycQk+7maykwLJTg5iXlIgfh4T/AWaNRhSb9M3gL5eqCsaCGyVe2Dr72wzRgK+sQOBLSITQiaDydVx9QsxiNGgd8wSLYlkJ2YPO97e3W7vvFW2VdoD3InmE3xS+QmdvZ32cxWKIPegIaEtwjNCv//NGoG/xV+6bw5wUQFN07StSqmYs3bPBI5qmlYCoJRaC9yhadqj6N22IZRSFUD/VDa9Zx8fL5566lH6jBZKewOIcnPB1/zFP8KsrCwqKs7dNLz77ru5++67h+0fHPqWLFnCkiVLLr1oIYQQV61ofw/+ZXYs/zI7ltaObrYdqeeDgho+Lqrj7/urUAqmRviQnawHtinh3hgm0kQj52IwQnCavk233YrQ2QZV+wZC24lP4ODr+jGjix7S7EMjZ4BfnAyNFE7J3exOom8iib6Jw45pmkZDRwMVrRWUt5YP6b59Xv05G45tQEOzn28xWgjzDCPcM3zIxwjPCMI8w/Bx9ZEAdwUoTdO++CzAFtDe6R/iqJRaCizUNG2F7etvAtdomnb/ea53B54A2oFCTdOePM953wa+DRAcHDxj7dq1Q457e3uTkDB8mtOxomlVdONKBUEE0Yenurif35XW29uL0Wjk6NGjNDc3O7ocu7a2Njw9PR1dxhDOWBM4Z13OWBM4Z13OWBM4Z13OWBNcfXX1aRonWvo4WNdLXl0vJc19aIDVDOmBRqYEmJgcYMTTZfiLr6vlZ+XaUY+1tRivFn2zth7F2Kd3H7pNVlq8kmjxSqLVmkirNZFuF68rXtNocca6nLEmuLrq6ta6aexppL6nnoaeBuq762nsbaSxp5GGngba+9qHnO+iXPA3+eNn8sPf5I9nryeh7qH2r90N7k4R4Jzxz3DBggV7NE3LPNexMZskRNO0duCeizjvGeAZgMzMTO3sSTMKCgqwWh031WhLCxiNRugFi5sF60V00MZCa2srVqsVi8XCtGnOsxZMbm6u00184ow1gXPW5Yw1gXPW5Yw1gXPW5Yw1gdTVeLqLbUfqyC2q4+PiOrZXdaIUZET6kJ0URHZyIJNt3bWr9mfV2wN1BVCxG3Plbvwr9uB/Yi30dxy8oyB8GoRNh/DpEDqV3B37rs6f1SVwxppA6hqstauVqrYqfTtdRUVrhf3zfW37aO1q1VsxNh5mD73z5jHQgevvwoV5huHt6j0mdTvrn+H5XE66qAQiB30dYdt3FVCD/iuEEEKMf34eLtyREc4dGeH09mkcrGwmt6iWLUV1/PHDYv7wQTH+Hi7MTwokqLeHqae78J3o966dzWjShzqGTIbMf9H3dbRA9QGo2msbIrkXDr9lv2SmWzg0ztEX0g6brl/rMkEWFxdXHauLlWS/ZJL9ks95fONHG4nLiKOyrZKqtioq2yrtn++q2TVk7TcAq9lqD2uDh1H2f361rv92OQFtF5ColIpFD2ZfBf55VKpyapqMORdCCDGhGQ2KjEgfMiJ9ePDGJBraOtl2pJ4tRbVsKaqlqb2bZw6+r3fXkoOYnzTQXbvqWLwgdq6+9TvdANX7oHIf7XmbcT++FfJsMz4rIwSl6oEtfLoe2oLSwHSVhV0xIbkb3EnxSyHFL2XYMU3TaOlqOWd4K28tZ0f1Ds70nBlyjdXFag9soR6hepjzCCPUM5Qwj7AJu4TAxU6z/yqQDQTYJvt4WNO01Uqp+4H30GdufE7TtPwrVqkQQgghHMLf05U7p4Vz5zS9u7bm7Y9o9ojk46Ja/vBBMb9/vxhfdzOzEwKYlxTI3MQAQr3dHF2243j4Q8KNkHAjh7QsfWhVS/XQLlvhO7DvRf18o6u+PlvY9IHgFpCkT2YixAShlMLb1RtvV2/S/NOGHdc0jVOdp+zhbXCIO9F8gs+qPhsW4NxN7oR5htnD29kfA9wCMKjxt6TIxc7i+LXz7N8IbBzVipyehiZDHIUQQlyljAZFvI+R7OwkVt6URH1bJ58erefj4jq2HannnbxqABKDPO1h7ZpYf9xcrvKw4RUKXoshZbH+tabBqVI9rFXthar9cGDtwPpsZg99LbewjIF13SS0iQlMKYWvxRdfiy+TAiYNO24PcKerqG6rpqqtiurTAx/z6vNo7hw6UZ7ZYCbUI5QbXW8km+wxeiSXzzlmuBh3RhbNtm7dyoMPPkheXh5r165l6dKl9mMLFy5kx44dzJkzh3feeWfE1wshhBCOFODpar93TdM0impa2WoLay/uKGX1J8dxMRmYGePH3ES9w5YSYp2Qw5JGRCnwjdG39H/S9/X1QcORgS5b1T7Y/Tz0dw3M7hCcPjS0BaaA0eygByHE2BkS4PyHBziA092nhwS3/jDneca5ZnD8IhLQxkBUVBRr1qzh8ccfH3bshz/8Ie3t7fzlL3+5pOuFEEIIZ6GUIiXEi5QQL749L54zXb3sPNHItuI6th6p49FNhTy6qZBAqytzbcMhZycEEGiVRaABMBggMFnfpn5V39fXC/VHoHq/bTKS/bD/Fdj5jH7c6ArBk4Z224LSZGFtcVXyMHuccw243NxcxxR0iSSgjdDq1Wt57vm/0YWBjtZW4mJi2LJlywWviYmJAcBgGD4G9oYbbvjCvzQXul4IIYRwVm4uRuYnBTI/KRCAk80dbDtSx1bbhCPr9+mTP6eFejEvKZB5iQHMiPHF1STD+OwMRghK0Td7aOuDxhJbaNuvh7ZD62HP87ZrzPpEJPbQlqGHOPNVfF+gEOPIuA5oW9Y8Q21pyah+z6DoOBbc9e3zHr/nnmXcde93OHbGjf93x2JWrlzJsmXLKCoqGnbuypUrWb58+ajWJ4QQQoxXId4WvpwZyZczI+nr08ivamHrkTq2FtexalsJf/74GBazgawYP2YnBDAnIYC0UK+rc3bICzEYICBB3ybbbnvQNGg6MdBpqz4Ahf8YmIhEGfXhkLahkV7NGnRmguv4GvolxNVgXAc0x9AAxWM//iHzFiwgJyeHnJwcRxclhBBCjCsGg2JyhDeTI7z59wUJtHX2sONYA58creezY/X8dlMhAL7uZq6N92d2QgCz4wOI9neX+9fORSnwi9W3SUv0fZoGzRVDQ9vRD+DAK0wH2PdTfeKR0KkQOsW2xtsUcPdz4AMRQozrgHahTteV9PKLa6kuL+PZp54EkA6aEEIIcZk8XU3cmBbMjWnBANS2dPCZLbB9erSejQdPAhDu48achACuS/Dnuni5f+2ClAKfSH1Ltb2ZrGnQepKDm19kckCfHtpOfAIHXxu4zit8YEHu/s0nRu/cCSGuuHEd0Bxh3758nvy/p3lm44f2e8LWrVvn4KqEEEKIiSXIy2Jfe03TNI7Xn+bTo/V8crSeTYeqWbe7HICUEKt9OGRnj+bgqscBpcArlIaAmZCdPbD/dD2cPDh0O/I+aL36cVcvfQbJwaEtKFUmIxHiCpCANkLPPvsKTY2nWJGzCFdlYGZWJqtWrbrgNbt27WLJkiU0NTWxYcMGHn74YfLz9TW9586dS2FhIW1tbURERLB69WpuueUWHnroITIzM7n99tsveL0QQggx0SmliAv0JC7Qk29eG0Nvn8ahymY+PaZ31/qn8zcqmH70M304ZEIAUyN8cDFJ1+eieARA/AJ969d9BmoLBoW2PNj3EnSf1o8bTBCQPLzbJkMkhbgsEtBG6Kmnfk2POZjybg/i3V3xvIiZprKysqioqDjnsW3btp1z/69+9auLul4IIYS42hgNiqmRPkyN9OHfshPo6O5lT2kTr3y4l4ruPv73wyP88YMjuJmNZMb4MivOn2vj/ZkS7o3JKIHtopndIHy6vvXr64Om43pY6w9uxz+GvLUD53hFDLqnrX+IZLTevRNCfCEJaCOmTxIihBBCCOdgMRuZnRBAd4UL2dlzaG7vZntJAztKGth+rIHfvaffJ+7hYiQr1o9rbYFtUpg3RpkhcmQMBvCP17f+yUgA2uqgxhbYqm3hrfhd0Pr0465eelALTten/A9O15cOcPFwzOMQwolJQBNCCCHEhOLtbmZheggL00MAaGjrZEdJox7YShp41DZDpNXVxMxYP66N92dWnL9M6X85PAPB83qIv35gX1e7bYhk3rmHSKLAL84e2ALqNGiM1rttMiGJuIpJQBsBTeu/+VgN+q8QQgghnJm/pyuLp4SyeEooALWtHewoaWT7Mb3L9mFhLQDebmauGRTYkoOtEtguh4s7RMzQt359fXDqBNTk27ZD+lawgXQ0yH8UXDwhKE0PbiHptm5bKli8HfZQhBhLEtBGRGaHEkIIIca7IKuF26eGcfvUMABONnfYh0NuL2lg8+EaAPw8XOyB7do4fxKCPGUNtstlMOhdM7+4gan/ATrb2PPey8wIdx0Ib/nrYc/zA+f4RA0aImkbJukXB4Yvng9AiPFEAtol0KR3JoQQQkwYId4DU/oDVJ46o4c1W4dt0yF9DbYATxeuidPD2jWxfhLYRpOrJ61eyTAje2CfpkFL5aBOmy24Fb83MP2/yaJ31/oDW/9HmUlSjGMS0EZkaAdNnpOFEEKIiSfcx42lMyJYOiMCTdOoaDpj765tP9bAP/KqAb3DlhXjy8xYPbClhnrJpCOjSSnwjtC3pFsG9nd3QH3R0GGSRe/q97f18wyB4DR9qGRQqr4FyqQkYnyQgDYC9lvQRthB27p1Kw8++CB5eXmsXbuWpUuXArB//36+853v0NLSgtFo5Oc//znLli276OuFEEIIcWUppYj0cyfSz52vZEWiaRplje18fryRnbbtvXx9SKTV1cSMGF9mxvpxTaw/k8PlnqkrwmyB0Kn6Nlhb7dBOW20B7FoNPWcGzvGNGQhtgbbgFpAoC24LpyIBbUQu7R60qKgo1qxZw+OPPz5kv7u7Oy+88AKJiYlUVVUxY8YMbrnlFnx8fC7qeiGEEEKMLaUU0f4eRPt78JXMSACqm8/Yw9rO4408VqRP628xG4i1wv6eYmbG+jEt0hc3F7lf6orxDBo+k2RfLzSd0MNabQHUHtY/HtkMfT36OcoI/gm2TlvawEe/WLm/TTiEBLQR0Vi9+jWee/7vdKHobG0lNiaGLVu2XPCqmJgYAAxnTRmblJRk/zwsLIygoCDq6uqGBbTzXS+EEEIIxwv1duOOjHDuyNDvYWto62TXiUY+P97IRwfL+N8Pj6BpYDYqpkT4MDPWj5mxfsyI9sXLYnZw9ROcwTiwblvqbQP7e7qg4ehAYKstgOoDcPgt7G/ImywQkESK5gem/QPhzTtC7nMRV9S4DminNhyjq+r0F584Ai5hHvjkxJ/3+D33fIXl932f4+2KB+64jZUrV7Js2TKKbO+WDbZy5UqWL19+Uf/fnTt30tXVRXz8+f/fQgghhHB+/p6uLEwPZWF6KPOtdUy7ZjZ7S5tswyIbeHZrCU/nHsOgIC3Mi5kx/vbQ5ufh4ujyrw4mF/0eteC0ofu7TkNdkR7Y6vTg5lO+Dz7IHTjHxTpwX9vgjptn4Jg+BDFxjeuANvb0d1Q0pXjsxz9k/oIF5OTkkJOT8wXXXVh1dTXf/OY3+etf/ypdMiGEEGKC8XYzsyAliAUpQQC0d/Wwv+wUO2yB7eXPS3nu0+MAxAd6kBWjd9eyYvyI9neXmSLHkosHhE/XN5sdublkX5MBdYVDO24FG2DvXweudQ8YmIwkMNn2MQU8AqTjJkZkXAe0C3W6rqRXX3yZ6vIynn/6KYDL6qC1tLSwePFifvOb3zBr1qwrUq8QQgghnIe7i4nrEgK4LiEAgM6eXg5WNPP58Ub2lDax8WA1a3eVA/rU/pnRfmTG+JIZ48ekMC/MRnkzd8y5+UDULH3rp2lwum5QaLN9zHsNOpsHXet7VmizfbSGSnAT5zSuA9pY0zSNffsO89Qf/8QzG9/HaOt2rVu37pK+X1dXF0uWLGH58uUyM6MQQghxlXI1GcmM8SMzRl+7q69P42hdG7tONLLnRBO7Sht5N19fi81iNpAR6WMPbdPlPjbHUco2MUkQxGUP7Nc0aD2pd9zqigY+Hn4LzqwZOM/VyxbWBnXbApPBK0Jf0FtctSSgjYjGs8++SlNjEytyFmExGMjKzGTVqlUXvGrXrl0sWbKEpqYmNmzYwMMPP0x+fj6vvfYaW7dupaGhgTVr1gCwZs0aMjIyeOihh8jMzOT2228/7/VCCCGEmHgMBkVSsJWkYCtfvyYagJqWDnafaGJ3aSO7TzTx9MfH6N2ioRQkB1vJihnosoX7uDn4EVzllAKvUH2LXzCwX9PgdL0tsA0Kb8Wbh67hZvaAwKThXTefaJlV8iohAW2EnnrqP+lyiaayy0SKhwXXixhmkJWVRUVFxbD93/jGN/jGN75xzmt+9atffeH1QgghhLg6BHtZWDwllMVTQgE43dnD/vJT9tC2fm8FL+4oBSDU26J35KJ9yYzxJSVEFtB2CkrpE4l4BkLs3KHH2huHdtvqCqHkYzjw6sA5Jou+ZpstsAXU9UB9OPjGglFe0k8k8qc5IrZJQvoXqpbnOiGEEEI4gIeridkJAcy23cfW09tH4clW9pQ2setEI7uON7LhQBUAnq4mpkX5MC3Kl+m2j8LJuPtB9LX6NlhHM9QVD+26lX0OB18nHSD/t2Aw6+u4BSZBQP+WCP6J4OrpiEcjLpMENCGEEEKIcc5kNJAe7k16uDffui4GTdOoPHXGHtj2lJ7iTx8doc+2xFeYp2JufR7To32YHuVLfKAnBumyOR+LN0Rm6dtgnW3see9VZkR5DgS3mnwoeAe03oHzvMKHhrb+z60hMkGJE5OANgJa/8KF0joTQgghhBNTShHh606Er7t9Ae22zh7yyk+xt6yJzfuO8d7hk6zbrc8W6WUxkRHly4woX6ZH+5AR6YNVJh9xXq6etHolQkb20P09ndB4HOqLbdsR/eP+V6CrdeA8F6ttuGTy0ODmG6uvESccSgLaSGjakC8lpgkhhBBivPB0HZjeP91Qyfz58ympP83e0ib2lp1ib2kTf/ywGE3TmytJQVamR+tDImdE+xIX4CFrsjk7kysEpejbYJoGrdVDQ1t98fD73JQR/GIHdd0Gdd/cfMb0oVzNJKAJIYQQQlyFlFLEB3oSH+jJlzMjAWjp6OZA+Sn2luqdtn/kVfPqTr3L5uNuZlqkPiRyerQvUyN98HSVl5LjglLgFaZvg5cEAOhstYW2QcGtvhiOvA993QPneQQNhLX+zpt/InhHyrIAo0x+q0Zk6BBHeQ9JCCGEEBOJl8XM3MRA5iYGAvqabCX1bewpbbKHti1FdQAYFCSHeJER6cO0SB8yonyID/SUGSPHG1crhE/Xt8F6e+BU6dDQVlcM+ev1yUv6mSzgFwf+CcSedgGfKn3SEv8EffITMWIS0C6B9sWnDLF161YefPBB8vLyWLt2rX1R6tLSUpYsWUJfXx/d3d1897vf5b777ht2/euvv84jjzxCQUEBO3fuJDMzcxQehRBCCCHEhRkMioQgKwlBVpZlRQHQfKab/eWn2FPaxL6yJt7Jq+LVnWWAPoxySoQ3UyN97MEtyMviyIcgLpXRBP7x+pa8aGB//3pu/aGt4ai+1R4msvE4lL0xcK6bnx7UAhJt3ytR/9ovDszy9+J8JKCNyEijmS4qKoo1a9bw+OOPD9kfGhrK9u3bcXV1pa2tjfT0dG6//XbCwsKGnJeens769eu59957L7lyIYQQQojR4O1mZn5SIPOTBrpsxxtOs7/sFPvL9e3ZrSX02KaMDPO2kBHlw9QIPbRNjvDG3UVego5bg9dzi5k95NC2jz5g/pQYW2g7Yvt4DI5+CPtfHvxNwCfS1mmzhTb/eD3IeUVc9UMm5bdjBJQysXr1W6xe8zrdmkZXaysxMTFs2bLlgtfFxMQAYDjrL5uLy8AsOZ2dnfT19Z3z+tTU1MsrXAghhBDiCjEYBu5l+9KMCAA6unvJr2pmf3mzLbQ1sfHgSQCMBkVSsNXeYZsa6UNCkKzXNRFoBhMEJOgbC4ce7GwdCGwNR/V73hqOQvnL0NU2cJ7JAn62zp29+3Z1DZkc1wFt06ZNnDx5clS/Z0hICIsWLTrnMaPRjRUrHuAb//5jSlvbefDO21i5ciXLli2jqKho2PkrV65k+fLlF/z/lZeXs3jxYo4ePcrvfve7Yd0zIYQQQojxxmI2MiPajxnRAy+o69s6OVA+0GX7x1lDIyM9+vi8o1CGRk5UrlYIm6Zvg2katNUMDW0Nx6D2MBRthL6egXOvkiGT4zqgOdJjP/4hCxYsICcnh5ycnEv+PpGRkeTl5VFVVcWdd97J0qVLCQ4OHsVKhRBCCCEcL8DTlRtSg7khVX+dc/bQyG2Hy4cMjQz1tpBhu5dNhkZOYErpC2dbQyBmztBjvd3QVDpwn1vDkfMPmfSO0EPb4O6bXzz4Ro/pwxkN4/pv+fk6XVfa2hdeoLq8jJf+/DTAZXXQ+oWFhZGens62bdvsk4gIIYQQQkxUZw+NzPWpZ9bsueRXtdi7bPvLm9h0SB8tZVCQEOTJlAgfpkR4MyXCh5QQKxaz0cGPRFwxRvOgIZNn6WwdGC7Z33VrPAaH3hg6y6QyEpL0HSB7rKq+bOM6oDnCvn37ePIPv+fZjZsxGvV7ytatW3dJ36uiogJ/f3/c3Nxoamrik08+4Xvf+95oliuEEEIIMW7oQyP1hbH79Q+NzKtoJq/iFFsKa3ljTwUAZqMiOcTK5HAfpkZ4MznCm6RgK2bj1T3JxFXB1QphGfo2mKZBe6Me1mzBra19fN1CJAFthJ555hlONTWxImcRbgYDmZmZrFq16oLX7Nq1iyVLltDU1MSGDRt4+OGHyc/Pp6CggO9///sopdA0jR/84AdMnjwZgBUrVnDfffeRmZnJm2++yXe/+13q6upYvHgxGRkZvPfee2PxcIUQQgghHOrsoZGaplHV3MHBilMcqGjmYEXzkPvZXE0G0sK8mBrhw+Rwb6ZGehMbIOuzXTWUAg9/fYucCUBbbq5jaxohCWgj9PTTT3PGxUJ1ZzfpVjeM6ot/2bOysqioqBi2/6abbiIvL++c1wwOfUuWLGHJkiWXXrQQQgghxAShlCLcx41wHzcWpocCemgrbWjnQMUpDlY0k1fRzGu7y1nz2QkAPFyMpId724dGTonwJsrPHXURr+OEGGsS0C5B/2po8isthBBCCOF4SiliAjyICfDgjoxwAHr7NI7VtdmHRuZVNPPX7aV09RwH9PXc9MDmrQ+RjPQmxMsioU04nAQ0IYQQQggx4fSvt5YUbGWpbX227t4+ik62crByILT95eOBmSMDra5MDvcmPdyb9DAvJkd4o2nahf43Qow6CWhCCCGEEOKqYDYa9PAV7s3XZkYB+qLaBdUttk5bMwcrT5FbVIsts2F1genHd5Ie7kV6mH5thK+bdNrEFSMB7RLIEEchhBBCiInBYjYyLcqXaVEDM0ee6erlcHUL+VXNvL+7iNrWziGdNm83sx7Ywr1JD/Nmcrh+T5tBJiIRo0ACmhBCCCGEEIO4uQxM9x/VeYLs7Ll0dPdSXKMPjzxU2cKhymae/+QEXb19AFhdTaSFeQ0MkQz3ktkjxSWRgHZJ9HdPpLUthBBCCHF1sJiNthkgfez7unr6OFLbyiFbaDtY2cyLO0rp7NFDm7uLkbRQL/uwyvRwLxICPTHJOm3iAiSgXYKR3iq6detWHnzwQfLy8li7di1Lly4dcrylpYW0tDTuvPNO/vSnPw27/vXXX+eRRx6hoKCAnTt3kpmZeRnVCyGEEEKI0eBiMjApzJtJYd4sy9L39fT2cazutK3T1kx+1dAp/11NBlJDvUgP92JSmDdpoV4kh1ixmI2OeyDCqUhAu1QjaJ5FRUWxZs0aHn/88XMe/8UvfsG8efPOe316ejrr16/n3nvvHWmVQgghhBBiDJmMBpJDrCSHDMwe2duncbz+tK3T1syhqmbe2lfFSzv0xbWNBkV8oAdpoV6khXmRFupNWpgXfh4ujnwowkEkoI3Q6tWrefb55+nVNDpbW4mJiWHLli0XvCYmJgYAg2F4O3vPnj3U1NSwcOFCdu/efc7rU1NTL7tuIYQQQgjhGEaDIiHIk4QgT+6cpq/Tpmka5Y1nOFzdzOGqFvKrWvj8eCN/319lvy7U20JaqBeTwgaCW6SfzCA50Y3rgFZc/J+0thWM6ve0eqaSlPSL8x6/5557+Mp9/0Z1+xkevOM2Vq5cybJlyygqKhp27sqVK1m+fPl5v1dfXx/f//73eemll/jggw9GpX4hhBBCCOH8lFJE+bsT5e/OwvRQ+/7G010crmqxB7fD1S1sGTztv6uJ1DAvvPs6qfUsJy3Ui6RgKy4mua9tohjXAc2RHvvRD7n++uvJyckhJyfnkr7HU089xa233kpERMQoVyeEEEIIIcYjPw8X5iQGMCcxwL6vo7uXopOtHK5usXXbmvm4sof3S/MAMBsVCUHWId221FAvvN3MjnoY4jKM64B2oU7XlbTuxReoLi/j1Wf+DHDJHbTt27ezbds2nnrqKdra2ujq6sLT05Pf/va3V6x2IYQQQggxvljMRqZG+jA10se+76MtW4hJzyLf1mU7XNXCx8V1/G1vhf2cCF83PbDZ7mlLC/MizNsiQySd3LgOaI6wb98+/vLHP7B602b7PWXr1q27pO/18ssv2z9fs2YNu3fvlnAmhBBCCCG+kEEp4gI9iQv0JGdqmH1/bWuHfWhkflULBVUtbD5cg2YbIunjbiYlxEpKiBdpoV6khFpJCpZZJJ2JBLQReuaZZzjV2MQ9ty3CYjCQmZnJqlWrLnjNrl27WLJkCU1NTWzYsIGHH36Y/Pz8C16zYsUK7rvvPjIzM3nzzTf57ne/S11dHYsXLyYjI4P33ntvNB+WEEIIIYSYAIKsFoKSLWQnB9n3ne7sofBkK4ermjlc3UJBdSvrdpVzprsXAIOCmAAPUkO9SLWFt5RQK+E+MiGJI0hAG6Gnn36aFrMrTd09pFvdL+qarKwsKioqLnjOXXfdxV133WX/enDoW7JkCUuWLLmkeoUQQgghxNXNw9XEjGhfZkT72vf19WmUNbZTUN1CwclWCqtbOFjRzD/yqu3nWC0mUm1hLSXEi9RQffkAdxeJEFeS/HQvwUgXqhZCCCGEEMKZGAyKmAAPYgI8WDR5YBbJ1o5uimtaKahupfBkC4XVrazfW0lbZykASkG0n7u9y6Z33byI8HVz1EOZcCSgCSGEEEIIIQCwWszMiPZjRrSffV9fn0blqTMUVLdQeFIPbgXVrbx3+KT93jYPFyOh7hrvNx0kxTZUMjnEitUiM0mOlAS0SybjcYUQQgghxMRnMCgi/dyJ9HPn5kkh9v3tXT0U17RRWN1CQXULOwrL2XCgipc/L7OfE+nnpg+PDLGSHOJFcognMf4emIyybtv5SEC7RHK/pBBCCCGEuJq5u5jIiPQhwzb9f653PfPnz6e6ucPeZevvun1YUGNfbNvFaCA+yJPkYE97aEsKlklJ+klAuwSa3IQmhBBCCCHEMEopwnzcCPNx4/qUYPv+ju5ejta2UVzTSlFNK0UnW9l5vJG/76+yn+PpaiIp2JPkECvJwVaSbB/9PV0d8VAcRgLaJZGEJoQQQgghxMWymI2kh3uTHu49ZH9LRzfFJ/XQVnyylcKTrWw6dJJXd5bbzwnwdLV32VJC9HXbkoKteLhOzCgzMR/VGBhJ83Xr1q08+OCD5OXlsXbtWpYuXWo/ZjQamTx5MgBRUVG8/fbbI7peCCGEEEKI8crLYiYzxo/MmIFJSTRNo66tk6KTeqet2NZxW7tzYO020O9vS7aFtWTbpCRxAZ64mMb3/W0S0C7BSPtnUVFRrFmzhscff3zYMTc3N/bv33/J1wshhBBCCDGRKKX0BbetFuYmBtr39/VpVDSdofBkC8U1eretuKaV3KI6emw3uJkMirhADz202YLbmc7xNfpNAtoIrV69mmefe55eNDpbW4mJiWHLli0XvCYmJgYAg+HS0vzlXi+EEEIIIcR4ZzAoovzdifIfOptkV08fJfVtQ7ptBypO8Y5t0e27Jrlwh6OKvgTjOqD94kgFh9rOjOr3TPd04z8TI857/J577uGf7v0Opzo6+ffbF7Ny5UqWLVtGUVHRsHNXrlzJ8uXLL/j/6+joIDMzE5PJxE9+8hPuvPPOy30IQgghhBBCXDVcTAZ94ewQryH7T3f2cKS2jROH9zqoskszrgOao2jAoz/6Addffz05OTnk5ORc8vcqLS0lPDyckpISrr/+eiZPnkx8fPzoFSuEEEIIIcRVyMNVXwbg1LHxNQptXAe0C3W6rqTXX3yBqrIyXv7LnwEuq4MWHh4OQFxcHNnZ2ezbt08CmhBCCCGEEFepcR3QHGHfvn08+79/5IV337ffE7Zu3bpL+l5NTU24u7vj6upKfX09n376KT/60Y9Gs1whhBBCCCHEODK++n1O4JlnnuFUYxN3LV5IRkYGK1as+MJrdu3aRUREBK+//jr33nsvkyZNAqCgoIDMzEymTp3KggUL+MlPfkJaWhoADz30kH3K/fNdL4QQQgghhJhYpIM2Qk8//TQNJhc6+vpI8XC7qGuysrKoqKgYtv+6667j4MGD57zmV7/61RdeL4QQQgghhJhYpIN2KbSRLVQthBBCCCGEEBdDAtolGF9L3QkhhBBCCCHGCwlol0x6aEIIIYQQQojRNS4DmqY5toel4ZzxzNE/FyGEEEIIIcTlGXcBzWKx0NDQIGHkLJqm0dDQgMVicXQpQgghhBBCiEs07mZxjIiIoKKigrq6Oof8/zs6Omg1GOnToNfV7JAazqWjowMfHx8iIhyzeLcQQgghhBDi8o1ZQFNKRQH/BzQCxZqm/fZSvo/ZbCY2NnZUaxuJ3Nxc/uIbSXNvLxtTkxxWx9lyc3OZNm2ao8sQQgghhBBCXIaLGuKolHpOKVWrlDp01v6FSqkipdRRpdRPvuDbTAbe0DTtbmBcJ4k+bRyODRVCCCGEEEI4vYvtoK0B/gS80L9DKWUEngRuAiqAXUqptwEj8OhZ198N7ADeUErdDbx4eWU7Vh8aBuWM04QIIYQQQgghxrOLCmiapm1VSsWctXsmcFTTtBIApdRa4A5N0x4Fbjv7eyilfgA8bPtebwDPX1blDtQnC1ULIYQQQgghroDLuQctHCgf9HUFcM0Fzn8XeEQp9c/AifOdpJT6NvBt25dtSqmiy6jxSggA6sHpQpq9LifjjHU5Y03gnHU5Y03gnHU5Y03gnHU5Y00gdY2EM9YEzlmXM9YEzlmXM9YEUtdIOGNN4Jx1RZ/vwJhNEqJp2iFg6UWc9wzwzJWv6NIopXZrmpbp6DrOJnVdPGesCZyzLmesCZyzLmesCZyzLmesCaSukXDGmsA563LGmsA563LGmkDqGglnrAmct67zuZy5LiqByEFfR9j2CSGEEEIIIYS4BJcT0HYBiUqpWKWUC/BV4O3RKUsIIYQQQgghrj4XO83+q8B2IFkpVaGUukfTtB7gfuA9oAB4TdO0/CtXqtNw1uGXUtfFc8aawDnrcsaawDnrcsaawDnrcsaaQOoaCWesCZyzLmesCZyzLmesCaSukXDGmsB56zonpWmao2sQQgghhBBCCIGstyyEEEIIIYQQTkMC2ggopRYqpYqUUkeVUj9xdD0ASqnnlFK1SqlDjq6ln1IqUim1RSl1WCmVr5R6wNE1ASilLEqpnUqpA7a6funomvoppYxKqX1KqXccXUs/pdQJpdRBpdR+pdRuR9cDoJTyUUq9oZQqVEoVKKWudYKakm0/o/6tRSn1oBPU9T3b3/NDSqlXlVIWR9cEoJR6wFZTviN/Tud67lRK+Sml3ldKHbF99HWCmr5s+1n1KaUcMgPZeer6ne33ME8p9aZSysdJ6vpPW037lVKblVJhjq5p0LHvK6U0pVTAWNZ0vrqUUo8opSoHPXfd6uiabPu/a/u7la+UemwsazpfXUqpdYN+TieUUvudoKYMpdSO/n+jlVIzx7KmC9Q1VSm13fb6YYNSymuMazrna1BHP7+PlAS0i6SUMgJPAouANOBrSqk0x1YFwBpgoaOLOEsP8H1N09KAWcC/O8nPqhO4XtO0qUAGsFApNcuxJdk9gH4vp7NZoGlahhNNTfu/wLuapqUAU3GCn5mmaUW2n1EGMANoB950ZE1KqXDg/wGZmqalA0b0iZwcSimVDvwrMBP9z+82pVSCg8pZw/Dnzp8AH2qalgh8aPva0TUdAv4J2DrGtQy2huF1vQ+ka5o2BSgGfjrWRXHuun6nadoU2+/jO8BDTlATSqlI4GagbIzr6beGc79W+EP/85emaRsdXZNSagFwBzBV07RJwONjXNM569I0bdmg5/m/AesdXRPwGPBLW00P2b4ea2sYXtcq4Ceapk1G/7fwh2Nc0/legzr6+X1EJKBdvJnAUU3TSjRN6wLWoj+JOJSmaVuBRkfXMZimadWapu21fd6K/iI63LFVgaZrs31ptm0OvwlTKRUBLEZ/UhPnoZTyBuYBqwE0TevSNO2UQ4sa7gbgmKZppY4uBH2dSzellAlwB6ocXA9AKvC5pmnttommPkYPH2PuPM+ddwB/tX3+V+BOR9ekaVqBpmlFY1nH2c5T12bbnyHADvSldpyhrpZBX3owxs/xF/g3+Q/Aj8a6nn5O+lrhXDV9B/itpmmdtnNqnaQuAJRSCvgK8KoT1KQB/d0pbxzwHH+eupIYeEPpfeBLY1zT+V6DOvT5faQkoF28cKB80NcVOEHocHZKqRhgGvC5g0sB7EMJ9wO1wPuapjlDXX9E/4e7z8F1nE0DNiul9iilvu3oYoBYoA54XunDQVcppTwcXdRZvsoY/8N9LpqmVaK/81wGVAPNmqZtdmxVgN4NmquU8ldKuQO3MnQ9TUcL1jSt2vb5SSDYkcWMI3cDmxxdRD+l1G+UUuXA1xn7Dtq56rkDqNQ07YCjazmH+21DQp9zkiFfSejPEZ8rpT5WSmU5uqCzzAVqNE074uhCgAeB39n+rj+OY7rY55LPQAPjyzjwOf6s16Dj6vldApq4YpRSnuhDAR48611Nh9E0rdc2HCACmGkbcuUwSqnbgFpN0/Y4so7zmKNp2nT0Yb3/rpSa5+B6TMB04GlN06YBp3GiIQpKXw/yduB1J6jFF/0fyFggDPBQSn3DsVXp3SDgv4HNwLvAfqDXkTWdj6ZPcezwDruzU0r9HH1I0cuOrqWfpmk/1zQtEr2m+x1Zi+2NiJ/hBEHxHJ4G4tGH/FcD/+PQanQmwA99aNoPgddsXStn8TWc4E04m+8A37P9Xf8ettElTuBu4N+UUnsAK9DliCIu9Bp0PDy/S0C7eJUMfRcgwrZPnINSyoz+i/GypmljPVb7C9mGxm3B8ffvzQZuV0qdQB82e71S6iXHlqSzdWH6h5i8iT7M15EqgIpBXc830AObs1gE7NU0rcbRhQA3Asc1TavTNK0b/X6J6xxcEwCapq3WNG2GpmnzgCb0+5ecRY1SKhTA9nHMh1eNJ0qpu4DbgK9rzrlmz8uM8fCqc4hHf6PkgO15PgLYq5QKcWhVgKZpNbY3LfuAZ3H8czzoz/Prbbck7EQfWTLmk6qci224+D8B6xxdi823GLgX7nWc488PTdMKNU27WdO0Gehh9thY13Ce16Dj6vldAtrF2wUkKqVibe+UfxV428E1OSXbu12rgQJN037v6Hr6KaUClW2mMaWUG3ATUOjImjRN+6mmaRGapsWg/536SNM0h3c6lFIeSilr/+foN7c7dKZQTdNOAuVKqWTbrhuAww4s6WzO9M5qGTBLKeVu+328ASeYUAVAKRVk+xiF/mLnFcdWNMTb6C96sH18y4G1ODWl1EL0odm3a5rW7uh6+imlEgd9eQeOf44/qGlakKZpMbbn+Qpguu35zKH6X6zaLMHBz/E2fwcWACilkgAXoN6RBQ1yI1CoaVqFowuxqQLm2z6/HnCGYZeDn+MNwH8Afx7j///5XoOOr+d3TdNku8gN/X6JYvR3A37u6HpsNb2KPjShG/2J/x4nqGkOeus4D30I037gVieoawqwz1bXIeAhR9d0Vn3ZwDuOrsNWSxxwwLblO9Hf9wxgt+3P8O+Ar6NrstXlATQA3o6uZVBNv0R/cXoIeBFwdXRNtrq2oQfrA8ANDqxj2HMn4I8+u9cR4APAzwlqWmL7vBOoAd5zkp/VUfT7svuf4//sJHX9zfZ3Pg/YAIQ7uqazjp8AApzkZ/UicND2s3obCHWCmlyAl2x/hnvRZ152+M/Ktn8NcN9Y13OBn9UcYI/tufRzYIaT1PUA+mvlYuC3gBrjms75GtTRz+8j3ZTtwQghhBBCCCGEcDAZ4iiEEEIIIYQQTkICmhBCCCGEEEI4CQloQgghhBBCCOEkJKAJIYQQQgghhJOQgCaEEEIIIYQQTkICmhBCCCGEEEI4CQloQgghhBBCCOEkJKAJIYQQQgghhJP4/+HYCVaYZfIwAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# TODO: Macht kei Sinn!\n", + "n = 8\n", + "ms = np.arange(4, 5)\n", + "xi = np.linspace(EPSILON, 20, 201)[:, None]\n", + "z = np.arange(6, 16)[None]+0.1\n", + "c = scipy.special.factorial(n) ** 2 / scipy.special.factorial(2 * n)\n", + "\n", + "\n", + "_, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(12, 8))\n", + "ax.grid(1)\n", + "for m, color in zip(ms, ['r', 'b', 'g', 'c', 'm', 'y']):\n", + " e = np.abs(\n", + " scipy.special.poch(z - 2 * n, 2 * n)\n", + " / scipy.special.poch(z - m, m)\n", + " * c\n", + " * xi ** (z - 2 * n + m - 1)\n", + " )\n", + " # ax.semilogy(xi, e, color=color)\n", + " ax.semilogy(xi, e)\n", + " ax.set_xticks(np.arange(xi[-1] +1))\n", + " ax.set_ylim(1e-8, 1e5)\n", + " _ = ax.legend([f'z={zi}' for zi in z[0]])\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "767d51c1340bd893661ea55ea3124f6de3c7a262a8b4abca0554b478b1e2ff90" + }, + "kernelspec": { + "display_name": "Python 3.8.10 64-bit", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/buch/papers/laguerre/scripts/laguerre_plot.py b/buch/papers/laguerre/scripts/laguerre_plot.py new file mode 100644 index 0000000..cd90df1 --- /dev/null +++ b/buch/papers/laguerre/scripts/laguerre_plot.py @@ -0,0 +1,39 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +"""Some plots for Laguerre Polynomials.""" + +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +import scipy.special as ss + +N = 1000 +t = np.linspace(0, 12.5, N)[:, None] +root = str(Path(__file__).parent) + +fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4)) +for n in np.arange(0, 10): + k = np.arange(0, n + 1)[None] + L = np.sum((-1) ** k * ss.binom(n, k) / ss.factorial(k) * t ** k, -1) + ax.plot(t, L, label=f"n={n}") +ax.set_xticks(np.arange(1, t[-1])) +ax.set_xlim(t[0], t[-1] + 0.1*(t[1] - t[0])) +ax.set_ylim(-20, 20) +ax.legend(ncol=2) +# set the x-spine +ax.spines['left'].set_position('zero') +ax.spines['right'].set_visible(False) +ax.spines['bottom'].set_position('zero') +ax.spines['top'].set_visible(False) +ax.xaxis.set_ticks_position('bottom') +ax.yaxis.set_ticks_position('left') + +# make arrows +# ax.plot((1), (0), ls="", marker=">", ms=10, color="k", +# transform=ax.get_yaxis_transform(), clip_on=False) +# ax.plot((0), (1), ls="", marker="^", ms=10, color="k", +# transform=ax.get_xaxis_transform(), clip_on=False) +# ax.grid(1) +fig.savefig(f'{root}/laguerre_polynomes.pdf') +# plt.show() diff --git a/buch/papers/laguerre/scripts/lanczos_approximation.py b/buch/papers/laguerre/scripts/lanczos_approximation.py new file mode 100644 index 0000000..3c48266 --- /dev/null +++ b/buch/papers/laguerre/scripts/lanczos_approximation.py @@ -0,0 +1,47 @@ +from cmath import exp, pi, sin, sqrt + +p = [ + 676.5203681218851, + -1259.1392167224028, + 771.32342877765313, + -176.61502916214059, + 12.507343278686905, + -0.13857109526572012, + 9.9843695780195716e-6, + 1.5056327351493116e-7, +] + +EPSILON = 1e-07 + + +def drop_imag(z): + if abs(z.imag) <= EPSILON: + z = z.real + return z + + +def gamma(z): + z = complex(z) + if z.real < 0.5: + y = pi / (sin(pi * z) * gamma(1 - z)) # Reflection formula + else: + z -= 1 + x = 0.99999999999980993 + for (i, pval) in enumerate(p): + x += pval / (z + i + 1) + t = z + len(p) - 0.5 + y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x + return drop_imag(y) + + +""" +The above use of the reflection (thus the if-else structure) is necessary, even though +it may look strange, as it allows to extend the approximation to values of z where +Re(z) < 0.5, where the Lanczos method is not valid. +""" + +print(gamma(1)) +print(gamma(5)) +print(gamma(0.5)) +print(gamma(0.5* (1 + 1j))) +print(gamma(-0.5)) diff --git a/buch/papers/laguerre/scripts/quadrature_gama.py b/buch/papers/laguerre/scripts/quadrature_gama.py new file mode 100644 index 0000000..37a9cd8 --- /dev/null +++ b/buch/papers/laguerre/scripts/quadrature_gama.py @@ -0,0 +1,178 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +"""Use Gauss-Laguerre quadrature to calculate gamma function.""" +# import sympy +from cmath import exp, pi, sin, sqrt + +import matplotlib.pyplot as plt +import numpy as np +import scipy.special as ss + +p = [ + 676.5203681218851, + -1259.1392167224028, + 771.32342877765313, + -176.61502916214059, + 12.507343278686905, + -0.13857109526572012, + 9.9843695780195716e-6, + 1.5056327351493116e-7, +] + +EPSILON = 1e-07 + + +def drop_imag(z): + if abs(z.imag) <= EPSILON: + z = z.real + return z + + +def gamma(z): + z = complex(z) + if z.real < 0.5: + y = pi / (sin(pi * z) * gamma(1 - z)) # Reflection formula + else: + z -= 1 + x = 0.99999999999980993 + for (i, pval) in enumerate(p): + x += pval / (z + i + 1) + t = z + len(p) - 0.5 + y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x + return drop_imag(y) + + +zeros = np.array( + [ + 3.22547689619392312e-1, + 1.74576110115834658e0, + 4.53662029692112798e0, + 9.39507091230113313e0, + ], + np.longdouble, +) +weights = np.array( + [ + 6.03154104341633602e-1, + 3.57418692437799687e-1, + 3.88879085150053843e-2, + 5.39294705561327450e-4, + ], + np.longdouble, +) + +zeros = np.array( + [ + 1.70279632305101000e-1, + 9.03701776799379912e-1, + 2.25108662986613069e0, + 4.26670017028765879e0, + 7.04590540239346570e0, + 1.07585160101809952e1, + 1.57406786412780046e1, + 2.28631317368892641e1, + ], + np.longdouble, +) + +weights = np.array( + [ + 3.69188589341637530e-1, + 4.18786780814342956e-1, + 1.75794986637171806e-1, + 3.33434922612156515e-2, + 2.79453623522567252e-3, + 9.07650877335821310e-5, + 8.48574671627253154e-7, + 1.04800117487151038e-9, + ], + np.longdouble, +) + + +def calc_gamma(z, n, x, w): + res = 0.0 + z = complex(z) + for xi, wi in zip(x, w): + res += xi ** (z + n - 1) * wi + for i in range(int(n)): + res /= z + i + res = drop_imag(res) + return res + +small = 1e-3 +Z = np.linspace(small, 1-small, 101) + +# Z = [-3/2, -1/2, 1/2, 3/2] +# target = +# targets = np.array([gamma(z) for z in Z]) +targets1 = ss.gamma(Z) +targets2 = np.array([gamma(z) for z in Z]) +approxs = np.array([calc_gamma(z, 11, zeros, weights) for z in Z]) +rel_error1 = np.abs(targets1 - approxs) / targets1 +rel_error2 = np.abs(targets2 - approxs) / targets2 + +_, axs = plt.subplots(2, num=1, clear=True, constrained_layout=True) +axs[0].plot(Z, rel_error1) +axs[1].semilogy(Z, rel_error1) +axs[0].plot(Z, rel_error2) +axs[1].semilogy(Z, rel_error2) +axs[1].semilogy(Z, np.abs(targets1-targets2)/targets1) +plt.show() +# values = np.array([calc_gamma]) +# _ = [ +# print( +# n, +# [ +# float( +# f"{np.abs((calc_gamma(z, n, zeros, weights) - gamma(z)) / gamma(z)):.3g}" +# ) +# for z in Z +# ], +# ) +# for n in range(21) +# ] + + +# target = ss.gamma(z) +# target = np.sqrt(np.pi) + +# _, ax = plt.subplots(num=1, clear=True, constrained_layout=True) +# for i, degree in enumerate(degrees): +# samples_points, weights = np.polynomial.laguerre.laggauss(degree) +# values = np.sum( +# samples_points[:, None] ** (z + shifts[None] - 1) * weights[:, None], 0 +# ) / ss.poch(z, shifts) +# # print(np.abs(target - values)) +# print(values) +# ax.plot(shifts, values, label=f"N={degree}") +# ax.legend() +# plt.show() + + +# def count_equal_digits(x, y): +# for i in range(1, 13): +# try: +# np.testing.assert_almost_equal(x, y, i) +# except AssertionError: +# break +# return i + + +# Z = np.linspace(1.0, 11.0, 11) +# # degrees = [2, 4, 8, 16, 32, 64, 100] +# d = 100 +# X = np.zeros(len(Z)) +# for i, z in enumerate(Z): +# samples_points, weights = np.polynomial.laguerre.laggauss(d) +# X[i] = np.sum(samples_points ** (z - 1) * weights) +# # X[i] = np.sum(np.sin(z * samples_points) * weights) +# Y = ss.gamma(Z) +# # Y = Z / (Z ** 2 + 1) +# ed = [count_equal_digits(x, y) for x, y in zip(X, Y)] +# for x,y in zip(X,Y): +# print(x,y) + +# _, ax = plt.subplots(num=1, clear=True, constrained_layout=True) +# ax.plot(Z, ed) +# plt.show() diff --git a/buch/papers/laguerre/wasserstoff.tex b/buch/papers/laguerre/wasserstoff.tex index caaa6af..0da8be3 100644 --- a/buch/papers/laguerre/wasserstoff.tex +++ b/buch/papers/laguerre/wasserstoff.tex @@ -6,24 +6,137 @@ \section{Radialer Schwingungsanteil eines Wasserstoffatoms \label{laguerre:section:radial_h_atom}} +Das Wasserstoffatom besteht aus einem Proton im Kern +mit Masse $M$ und Ladung $+e$. +Ein Elektron mit Masse $m$ und Ladung $-e$ umkreist das Proton +(vgl. Abbildung~\ref{laguerre:fig:wasserstoff_model}). +Für das folgende Model werden folgende Annahmen getroffen: + +\begin{figure} +\centering +\includegraphics{papers/laguerre/images/wasserstoff_model.pdf} +\caption{Skizze eines Wasserstoffatoms. +Kartesische, wie auch Kugelkoordinaten sind eingezeichnet. +} +\label{laguerre:fig:wasserstoff_model} +\end{figure} + +\begin{enumerate} +\item +Das Elektron wird als nicht-relativistisches Teilchen betrachtet, +das heisst, +relativistische Effekte sind vernachlässigbar. +\item +Der Spin des Elektrons und des Protons +und das damit verbundene magnetische Moment +wird vernachlässigt. +\item +Fluktuationen des Vakuums werden nicht berücksichtigt. +\item +Wechselwirkung zwischen Elektron und Proton +ist durch die Coulombwechselwirkung gegeben. +Somit entspricht die potentielle Energie der Coulombenergie $V_C(r)$ +und nimmt damit die folgende Form an +\begin{align} + V_C(r) + = + -\frac{e^2}{4 \pi \epsilon_0 r} + \text{ mit } + r + = + \lvert\vec{r}\rvert + = + \sqrt{x^2 + y^2 + z^2} + . + \label{laguerre:coulombenergie} +\end{align} +Im Falle das der Kern einen endlichen Radius $r_0$ besitzt, +ist die $1/r$-Abhängigkeit in Gleichung \eqref{laguerre:coulombenergie} +als Näherung zu betrachten. +Diese Näherung darf nur angewendet werden, wenn die +Aufenthaltswahrscheinlicheit des Elektrons +innerhalb $r_0$ vernachlässigbar ist. +Für das Wasserstoffatom ist diese Näherung für alle Zustände gerechtfertigt. +\item +Da $M \gg m$, kann das Proton als in Ruhe angenommen werden. +\end{enumerate} + +\subsection{Herleitung zeitunabhängige Schrödinger-Gleichung} +\label{laguerre:subsection:herleitung_schroedinger} +Das Problem ist kugelsymmetrisch, +darum transformieren wir das Problem in Kugelkoordinaten. +Somit gilt: + +\begin{align*} + r + & = + \sqrt{x^2 + y^2 + z^2}\\ + \vartheta + & = + \arccos\left(\frac{z}{r}\right)\\ + \varphi + & = + \arctan\left(\frac{y}{x}\right) +\end{align*} + +Die potentielle Energie $V_C(r)$ hat keine direkte Zeitabhängigkeit. +Daraus folgt, dass die konstant ist Gesamtenergie $E$ +und es existieren stationäre Zustände + \begin{align} - \nonumber - - \frac{\hbar^2}{2m} - & - \left( - \frac{1}{r^2} \pdv{}{r} - \left( r^2 \pdv{}{r} \right) - + - \frac{1}{r^2 \sin \vartheta} \pdv{}{\vartheta} - \left( \sin \vartheta \pdv{}{\vartheta} \right) - + - \frac{1}{r^2 \sin^2 \vartheta} \pdv[2]{}{\varphi} - \right) - u(r, \vartheta, \varphi) - \\ - & - - \frac{e^2}{4 \pi \epsilon_0 r} u(r, \vartheta, \varphi) + \psi(r, \vartheta, \varphi, t) + = + u(r, \vartheta, \varphi) e^{-i E t / h}, +\end{align} +wobei $u(r, \vartheta, \varphi)$ +die zeitunabhängige Schrödinger-Gleichung erfüllt. + +\begin{align} + -\frac{\hbar^2}{2m} \Delta u(r, \vartheta, \varphi) + + V_C(r) u(r, \vartheta, \varphi) = E u(r, \vartheta, \varphi) - \label{laguerre:pdg_h_atom} + \label{laguerre:schroedinger} +\end{align} + +Für Kugelkoordinaten hat der Laplace-Operator $\Delta$ die Form + +\begin{align} + \Delta + = + \frac{1}{r^2} \pdv{}{r} \left( r^2 \pdv{}{r} \right) + + \frac{1}{r^2 \sin\vartheta} \pdv{}{\vartheta} + \left(\sin\vartheta \pdv{}{\vartheta}\right) + + \frac{1}{r^2 \sin^2\vartheta} \pdv[2]{}{\varphi} + \label{laguerre:laplace_kugel} \end{align} + +Setzt man nun +\eqref{laguerre:coulombenergie} und \eqref{laguerre:laplace_kugel} +in \eqref{laguerre:schroedinger} ein, +erhält man die zeitunabhängige Schrödinger-Gleichung für Kugelkoordinaten + +\begin{align} +\nonumber +- \frac{\hbar^2}{2m} +& +\left( +\frac{1}{r^2} \pdv{}{r} +\left( r^2 \pdv{}{r} \right) ++ +\frac{1}{r^2 \sin \vartheta} \pdv{}{\vartheta} +\left( \sin \vartheta \pdv{}{\vartheta} \right) ++ +\frac{1}{r^2 \sin^2 \vartheta} \pdv[2]{}{\varphi} +\right) +u(r, \vartheta, \varphi) +\\ +& - +\frac{e^2}{4 \pi \epsilon_0 r} u(r, \vartheta, \varphi) += +E u(r, \vartheta, \varphi). +\label{laguerre:pdg_h_atom} +\end{align} + +\subsection{Separation der Schrödinger-Gleichung} +\label{laguerre:subsection:seperation_schroedinger} -- cgit v1.2.1 From b7ee1c1a6836f30d2267cfc9e6dbfa206b2cb737 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 12 May 2022 18:19:49 +0200 Subject: Derive Laguerre-Polynomials from Laguerre-ODE, proof orthogonality with Sturm-Liouville --- buch/papers/laguerre/Makefile | 6 +- buch/papers/laguerre/Makefile.inc | 4 +- buch/papers/laguerre/definition.tex | 160 ++++++++------- buch/papers/laguerre/eigenschaften.tex | 94 ++++++++- buch/papers/laguerre/images/laguerre_polynomes.pdf | Bin 0 -> 16239 bytes buch/papers/laguerre/scripts/gamma_approx.ipynb | 224 +++++++++------------ buch/papers/laguerre/scripts/laguerre_plot.py | 103 ++++++++-- .../laguerre/scripts/lanczos_approximation.py | 47 ----- buch/papers/laguerre/scripts/quadrature_gama.py | 178 ---------------- 9 files changed, 361 insertions(+), 455 deletions(-) create mode 100644 buch/papers/laguerre/images/laguerre_polynomes.pdf delete mode 100644 buch/papers/laguerre/scripts/lanczos_approximation.py delete mode 100644 buch/papers/laguerre/scripts/quadrature_gama.py (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/Makefile b/buch/papers/laguerre/Makefile index 606d7e1..0f0985a 100644 --- a/buch/papers/laguerre/Makefile +++ b/buch/papers/laguerre/Makefile @@ -4,6 +4,8 @@ # (c) 2020 Prof Dr Andreas Mueller # -images: - @echo "no images to be created in laguerre" +images: images/laguerre_polynomes.pdf + +images/laguerre_polynomes.pdf: scripts/laguerre_plot.py + python3 scripts/laguerre_plot.py diff --git a/buch/papers/laguerre/Makefile.inc b/buch/papers/laguerre/Makefile.inc index 1eb5034..aae51f9 100644 --- a/buch/papers/laguerre/Makefile.inc +++ b/buch/papers/laguerre/Makefile.inc @@ -9,8 +9,6 @@ dependencies-laguerre = \ papers/laguerre/references.bib \ papers/laguerre/definition.tex \ papers/laguerre/eigenschaften.tex \ - papers/laguerre/quadratur.tex \ - papers/laguerre/transformation.tex \ - papers/laguerre/wasserstoff.tex + papers/laguerre/quadratur.tex diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index 84a26cf..edd2b7b 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -4,11 +4,11 @@ % (c) 2022 Patrik Müller, Ostschweizer Fachhochschule % \section{Definition -\label{laguerre:section:definition}} + \label{laguerre:section:definition}} \rhead{Definition} -Die Laguerre-Differentialgleichung ist gegeben durch +Die verallgemeinerte Laguerre-Differentialgleichung ist gegeben durch \begin{align} -x y''(x) + (1 - x) y'(x) + n y(x) +x y''(x) + (\nu + 1 - x) y'(x) + n y(x) = 0 , \quad @@ -18,22 +18,27 @@ x \in \mathbb{R} . \label{laguerre:dgl} \end{align} -Zur Lösung der Gleichung \eqref{laguerre:dgl} -verwenden wir einen Potenzreihenansatz. +Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet, +weil die Lösung gleich berechnet werden kann, +aber man zusätzlich die Lösung für den allgmeinen Fall erhält. +Zur Lösung der Gleichung \eqref{laguerre:dgl} verwenden wir einen +Potenzreihenansatz. +Da wir bereits wissen, dass die Lösung orthogonale Polynome sind, +erscheint dieser Ansatz sinnvoll. Setzt man nun den Ansatz \begin{align*} -y(x) -&= +y(x) + & = \sum_{k=0}^\infty a_k x^k \\ y'(x) -& = + & = \sum_{k=1}^\infty k a_k x^{k-1} = \sum_{k=0}^\infty (k+1) a_{k+1} x^k \\ y''(x) -&= + & = \sum_{k=2}^\infty k (k-1) a_k x^{k-2} = \sum_{k=1}^\infty (k+1) k a_{k+1} x^{k-1} @@ -41,98 +46,109 @@ y''(x) in die Differentialgleichung ein, erhält man: \begin{align*} \sum_{k=1}^\infty (k+1) k a_{k+1} x^k -+ \sum_{k=0}^\infty (k+1) a_{k+1} x^k -- \sum_{k=0}^\infty k a_k x^k -+ n \sum_{k=0}^\infty a_k x^k -&= -0\\ -\sum_{k=0}^\infty -\left[ (k+1) k a_{k+1} + (k+1) a_{k+1} - k a_k + n a_k \right] x^k -&= ++ +(\nu + 1)\sum_{k=0}^\infty (k+1) a_{k+1} x^k +- +\sum_{k=0}^\infty k a_k x^k ++ +n \sum_{k=0}^\infty a_k x^k + & = +0 \\ +\sum_{k=1}^\infty +\left[ (k+1) k a_{k+1} + (\nu + 1)(k+1) a_{k+1} - k a_k + n a_k \right] x^k + & = 0. \end{align*} Daraus lässt sich die Rekursionsbeziehung \begin{align*} a_{k+1} -&= -\frac{k-n}{(k+1) ^ 2} a_k + & = +\frac{k-n}{(k+1) (k + \nu + 1)} a_k \end{align*} ableiten. -Für ein konstantes $n$ erhalten wir als Potenzreihenlösung ein Polynom vom Grad $n$, +Für ein konstantes $n$ erhalten wir als Potenzreihenlösung ein Polynom vom Grad +$n$, denn für $k=n$ wird $a_{n+1} = 0$ und damit auch $a_{n+2}=a_{n+3}=\ldots=0$. -Aus der Rekursionsbeziehung ist zudem ersichtlich, +Aus der Rekursionsbeziehung ist zudem ersichtlich, dass $a_0 \neq 0$ beliebig gewählt werden kann. -Wählen wir nun $c_0 = 1$, dann folgt für die Koeffizienten $a_1, a_2, a_3$ +Wählen wir nun $a_0 = 1$, dann folgt für die Koeffizienten $a_1, a_2, a_3$ \begin{align*} -a_1 -= --\frac{n}{1^2} -,&& -a_2 -= -\frac{(n-1)n}{1^2 2^2} -,&& +a_1 += +-\frac{n}{1 \cdot (\nu + 1)} +, & & +a_2 += +\frac{(n-1)n}{1 \cdot 2 \cdot (\nu + 1)(\nu + 2)} +, & & a_3 = --\frac{(n-2)(n-1)n}{1^2 2^2 3^2} +-\frac{(n-2)(n-1)n}{1 \cdot 2 \cdot 3 \cdot (\nu + 1)(\nu + 2)(\nu + 3)} \end{align*} und allgemein \begin{align*} -k&\leq n: -& -a_k -&= -(-1)^k \frac{n!}{(n-k)!} \frac{1}{(k!)^2} -= -\frac{(-1)^k}{k!} -\begin{pmatrix} -n -\\ k -\end{pmatrix} + & \leq +n: + & +a_k + & = +(-1)^k \frac{n!}{(n-k)!} \frac{1}{k!(\nu + 1)_k} += +\frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} \\ -k&>n: -& +k & >n: + & a_k -&= + & = 0. \end{align*} -Somit haben wir die Laguerre-Polynome $L_n(x)$ erhalten: +Somit erhalten wir für $\nu = 0$ die Laguerre-Polynome \begin{align} L_n(x) = -\sum_{k=0}^{n} -\frac{(-1)^k}{k!} -\begin{pmatrix} -n \\ -k -\end{pmatrix} -x^k +\sum_{k=0}^{n} \frac{(-1)^k}{k!} \binom{n}{k} x^k \label{laguerre:polynom} \end{align} - -\subsection{Assoziierte Laguerre-Polynome -\label{laguerre:subsection:assoz_laguerre} -} +und mit $\nu \in \mathbb{R}$ die verallgemeinerten Laguerre-Polynome \begin{align} -x y''(x) + (\alpha + 1 - x) y'(x) + n y(x) +L_n^\nu(x) = -0 -\label{laguerre:generell_dgl} +\sum_{k=0}^{n} \frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} x^k. +\label{laguerre:allg_polynom} \end{align} - -\begin{align} -L_n^\alpha (x) +Durch die analytische Fortsetzung erhalten wir zudem noch die zweite Lösung der +Differentialgleichung mit der Form +\begin{align*} +\Xi_n(x) = -\sum_{k=0}^{n} -\frac{(-1)^k}{k!} -\begin{pmatrix} -n + \alpha \\ -n - k -\end{pmatrix} -x^k -\label{laguerre:polynom} -\end{align} +L_n(x) \ln(x) + \sum_{k=1}^\infty d_k x^k +\end{align*} +Nach einigen mühsamen Rechnungen, +die den Rahmen dieses Kapitel sprengen würden, +erhalten wir +\begin{align*} +\Xi_n += +L_n(x) \ln(x) ++ +\sum_{k=1}^n \frac{(-1)^k}{k!} \binom{n}{k} +(\alpha_{n-k} - \alpha_n - 2 \alpha_k)x^k ++ +(-1)^n \sum_{k=1}^\infty \frac{(k-1)!n!}{((n+k)!)^2} x^{n+k}, +\end{align*} +wobei $\alpha_0 = 0$ und $\alpha_k =\sum_{i=1}^k i^{-1}$, +$\forall k \in \mathbb{N}$. +Die Laguerre-Polynome von Grad $0$ bis $7$ sind in +Abbildung~\ref{laguerre:fig:polyeval} dargestellt. +\begin{figure} +\centering +\includegraphics[width=0.7\textwidth]{% + papers/laguerre/images/laguerre_polynomes.pdf% +} +\caption{Laguerre-Polynome vom Grad $0$ bis $7$} +\label{laguerre:fig:polyeval} +\end{figure} % https://www.math.kit.edu/iana1/lehre/hm3phys2012w/media/laguerre.pdf % http://www.physics.okayama-u.ac.jp/jeschke_homepage/E4/kapitel4.pdf diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index b7597e5..c589c92 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -4,5 +4,95 @@ % (c) 2022 Patrik Müller, Ostschweizer Fachhochschule % \section{Eigenschaften -\label{laguerre:section:eigenschaften}} -\rhead{Eigenschaften} \ No newline at end of file + \label{laguerre:section:eigenschaften}} +\rhead{Eigenschaften} + +\subsection{Orthogonalität} +Wenn wir die Laguerre\--Differentialgleichung in ein +Sturm\--Liouville\--Problem umwandeln können, haben wir bewiesen, dass es sich +bei +den Laguerre\--Polynomen um orthogonale Polynome handelt (siehe +Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}). +Der Sturm-Liouville-Operator hat die Form +\begin{align} +S += +\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right). +\label{laguerre:slop} +\end{align} +Aus der Beziehung +\begin{align} +S + & = +\Lambda +\nonumber +\\ +\frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right) + & = +x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx} +\label{laguerre:sl-lag} +\end{align} +lässt sich sofort erkennen, dass $q(x) = 0$. +Ausserdem ist ersichtlich, dass $p(x)$ die Differentialgleichung +\begin{align*} +x \frac{dp}{dx} += +-(\nu + 1 - x) p, +\end{align*} +erfüllen muss. +Durch Separation erhalten wir dann +\begin{align*} +\int \frac{dp}{p} + & = +-\int \frac{\nu + 1 - x}{x}dx +\\ +\log p + & = +-\log \nu + 1 - x + C +\\ +p(x) + & = +-C x^{\nu + 1} e^{-x} +\end{align*} +Eingefügt in Gleichung~\eqref{laguerre:sl-lag} erhalten wir +\begin{align*} +\frac{C}{w(x)} +\left( +x^{\nu+1} e^{-x} \frac{d^2}{dx^2} + +(\nu + 1 - x) x^{\nu} e^{-x} \frac{d}{dx} +\right) += +x \frac{d^2}{dx^2} + (\nu + 1 - x) \frac{d}{dx}. +\end{align*} +Mittels Koeffizientenvergleich kann nun abgelesen werden, dass $w(x) = x^\nu +e^{-x}$ und $C=1$ mit $\nu > -1$. +Die Gewichtsfunktion $w(x)$ wächst für $x\rightarrow-\infty$ sehr schnell an, +deshalb ist die Laguerre-Gewichtsfunktion nur geeignet für den +Definitionsbereich $(0, \infty)$. +Bleibt nur noch sicherzustellen, dass die Randbedingungen, +\begin{align} +k_0 y(0) + h_0 p(0)y'(0) + & = +0 +\label{laguerre:sllag_randa} +\\ +k_\infty y(\infty) + h_\infty p(\infty) y'(\infty) + & = +0 +\label{laguerre:sllag_randb} +\end{align} +mit $|k_i|^2 + |h_i|^2 \neq 0,\,\forall i \in \{0, \infty\}$, erfüllt sind. +Am linken Rand (Gleichung~\eqref{laguerre:sllag_randa}) kann $y(0) = 1$, $k_0 = +0$ und $h_0 = 1$ verwendet werden, +was auch die Laguerre-Polynome ergeben haben. +Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb}) +\begin{align*} +\lim_{x \rightarrow \infty} p(x) y'(x) + & = +\lim_{x \rightarrow \infty} -x^{\nu + 1} e^{-x} y'(x) += +0 +\end{align*} +für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$. +Damit können wir schlussfolgern, dass die Laguerre-Polynome orthogonal +bezüglich des Skalarproduktes mit der Laguerre\--Gewichtsfunktion sind. diff --git a/buch/papers/laguerre/images/laguerre_polynomes.pdf b/buch/papers/laguerre/images/laguerre_polynomes.pdf new file mode 100644 index 0000000..3976bc7 Binary files /dev/null and b/buch/papers/laguerre/images/laguerre_polynomes.pdf differ diff --git a/buch/papers/laguerre/scripts/gamma_approx.ipynb b/buch/papers/laguerre/scripts/gamma_approx.ipynb index 9a1fee6..44f3abd 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.ipynb +++ b/buch/papers/laguerre/scripts/gamma_approx.ipynb @@ -28,13 +28,13 @@ " =\n", " \\frac{(n!)^2}{(2n)!} f^{(2n)}(\\xi) \n", " = \n", - " (-2n + z)_{2n} \\frac{(n!)^2}{(2n)!} \\xi^{z - 2n - 1}\n", + " \\frac{(-2n + z)_{2n}}{(z-m)_m} \\frac{(n!)^2}{(2n)!} \\xi^{z + m - 2n - 1}\n", "$$" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -86,35 +86,36 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "zeros = np.array(\n", - " [\n", - " 1.70279632305101000e-1,\n", - " 9.03701776799379912e-1,\n", - " 2.25108662986613069e0,\n", - " 4.26670017028765879e0,\n", - " 7.04590540239346570e0,\n", - " 1.07585160101809952e1,\n", - " 1.57406786412780046e1,\n", - " 2.28631317368892641e1,\n", - " ]\n", - ")\n", - "\n", - "weights = np.array(\n", - " [\n", - " 3.69188589341637530e-1,\n", - " 4.18786780814342956e-1,\n", - " 1.75794986637171806e-1,\n", - " 3.33434922612156515e-2,\n", - " 2.79453623522567252e-3,\n", - " 9.07650877335821310e-5,\n", - " 8.48574671627253154e-7,\n", - " 1.04800117487151038e-9,\n", - " ]\n", - ")\n", + "zeros, weights = np.polynomial.laguerre.laggauss(8)\n", + "# zeros = np.array(\n", + "# [\n", + "# 1.70279632305101000e-1,\n", + "# 9.03701776799379912e-1,\n", + "# 2.25108662986613069e0,\n", + "# 4.26670017028765879e0,\n", + "# 7.04590540239346570e0,\n", + "# 1.07585160101809952e1,\n", + "# 1.57406786412780046e1,\n", + "# 2.28631317368892641e1,\n", + "# ]\n", + "# )\n", + "\n", + "# weights = np.array(\n", + "# [\n", + "# 3.69188589341637530e-1,\n", + "# 4.18786780814342956e-1,\n", + "# 1.75794986637171806e-1,\n", + "# 3.33434922612156515e-2,\n", + "# 2.79453623522567252e-3,\n", + "# 9.07650877335821310e-5,\n", + "# 8.48574671627253154e-7,\n", + "# 1.04800117487151038e-9,\n", + "# ]\n", + "# )\n", "\n", "\n", "def pochhammer(z, n):\n", @@ -149,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -183,27 +184,32 @@ "### Test with real values" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Empirische Tests zeigen:\n", + "- $n=4 \\Rightarrow m=6$\n", + "- $n=5 \\Rightarrow m=7$ oder $m=8$\n", + "- $n=6 \\Rightarrow m=9$\n", + "- $n=7 \\Rightarrow m=10$\n", + "- $n=8 \\Rightarrow m=11$ oder $m=12$\n", + "- $n=9 \\Rightarrow m=13$\n", + "- $n=10 \\Rightarrow m=14$\n", + "- $n=11 \\Rightarrow m=15$ oder $m=16$\n", + "- $n=12 \\Rightarrow m=17$\n", + "- $n=13 \\Rightarrow m=18 \\Rightarrow $ Beginnt numerisch instabil zu werden \n" + ] + }, { "cell_type": "code", - "execution_count": 60, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXgc57X48e8saVfMzJIFFpgxBjnmxCGHOU3SUNO0vbcp5ba36S2mt7/etmFq03DSxnHAcRwyM1toGWShxcy7O78/Zr22YohB8gjO53nmmd3Z1epsstbOmfO+51VUVUUIIYQQQgghhP4MegcghBBCCCGEEEIjCZoQQgghhBBCDBKSoAkhhBBCCCHEICEJmhBCCCGEEEIMEpKgCSGEEEIIIcQgIQmaEEIIIYQQQgwSQy5BUxTlZUVRahRFye2H15qjKMruE7YuRVGu7ocwhRBCCCGEEOKcKUNtHTRFUWYBbcA/VVXN7MfXDQQOANGqqnb01+sKIYQQQgghxNkachU0VVXXAg0nHlMUJUlRlJWKouxQFGWdoihp5/HS1wGfSHImhBBCCCGE0MuQS9BO43ngu6qqTgB+CDx9Hq9xE/Bmv0YlhBBCCCGEEOfApHcAF0pRFG9gOvCuoijHDnu4HlsK/OoUP1ahqurCE14jAsgCPh3YaIUQQgghhBDi9IZ8goZWBWxSVXXs1x9QVfU94L2zeI0bgGWqqvb2c2xCCCGEEEIIcdaG/BBHVVVbgMOKolwPoGjGnOPL3IwMbxRCCCGEEELobMglaIqivAlsAlIVRSlXFOUe4FbgHkVR9gB5wFXn8HrxQAywZgDCFUIIIYQQQoizNuTa7AshhBBCCCHEcDXkKmhCCCGEEEIIMVxJgiaEEEIIIYQQg8SQ6uIYHBysxsfH6x2GEG7t7e14eXnpHYYQgHwexeAin0cx2MhnUgwmO3bsqFNVNeRUjw2pBC0+Pp7t27frHYYQbqtXryYnJ0fvMIQA5PMoBhf5PIrBRj6TYjBRFOXI6R6TIY5CCCGEEEIIMUhIgiaEEEIIIYQQg4QkaEIIIYQQQggxSAypOWhCCCGEEEII/fX29lJeXk5XV5feoQxqVquV6OhozGbzWf+MJGhCCCGEEEKIc1JeXo6Pjw/x8fEoiqJ3OIOSqqrU19dTXl5OQkLCWf+cDHEUQgghhBBCnJOuri6CgoIkOTsDRVEICgo65yqjJGhCCCGEEEKIcybJ2Tc7n/9GkqAJIYQQQgghxCAhCZoQQgghhBBiyOns7GT27Nk4HA4AFi1ahL+/P0uWLOnzvCeffJLk5GQURaGuru6sXvt0r3XrrbeSmppKZmYmd999N729vQB89NFH/OIXv+iHdyUJmhBCCCGEEGIIevnll1m6dClGoxGARx99lFdfffWk511yySV8/vnnxMXFnfVrn+61br31VgoLC9m3bx+dnZ28+OKLAFx++eV8+OGHdHR0nOe7OU66OAohhBBCCCHO2+Mf5pFf2dKvrzk60pf/viLjjM95/fXXeeONN9z3586dy+rVq0963rhx487595/utS677DL37cmTJ1NeXg5oc81ycnL46KOPuOGGG875951IKmhCCCGEEEKIIaWnp4dDhw4RHx+vy+/v7e3l1VdfZdGiRe5jEydOZN26dRf82lJBE0IIIYQQQpy3b6p0DYS6ujr8/f0v+u895qGHHmLWrFnMnDnTfSw0NJTKysoLfm1J0IQQQgghhBBDis1mO+f1xfrL448/Tm1tLc8991yf411dXdhstgt+fRniKIQQQgghhBhSAgICcDgcF5Skbd26lTvuuOOcfubFF1/k008/5c0338Rg6JtK7d+/n8zMzPOO5xipoAkhxFDkdEJvO/S0Q3cb9LTi15QPh43gtPfdHL3gdIDqAIMJDEYwmF23j903gdEMZk+weIHFW9ubPcEg1/KEEEIMPgsWLGD9+vXMmzcPgJkzZ1JYWEhbWxvR0dG89NJLLFy4kL/+9a888cQTHD16lOzsbC677DJefPFFSktLT1vxOt1rPfDAA8TFxTFt2jQAli5d6m6v/9VXX/G73/3ugt+XJGhCCKE3hx3ajkJbDXTUQ3sttNdBR522b6/TjnU1awlZT5u2R+3zMuMAdvd3cIorYXNttgDwDDr15hUM3qHgEwlma38HIoQQQvTxne98hz//+c/uBO10DToeeeQRHnnkkZOOb9myhe985zun/JnTvZbdbj/l8erqajo7O8nKyjqb0M9IEjQhhBhoPR3QeBiay6G5zLU/YWup1KpbX2f00JIer2DwDIaAePDwBouPa++qdHn4gMWLPfn7GTNuwvHqmNF0QpXMDIoCqvNrFTbHCZW2Hi3WE5PAE/fdbdDZqCWSNYVaAtl7mvVePIPANxJ8o1z7Y7ejIDBR20tlTgghxAUYP348c+bMweFwuNdCOxd//OMf+y2W0tJS/vSnP/XLa0mCJoQQ/cHphNZKqCuG+gOufTHUHYDm0r7PNZi0BMUvBuIuAb9obfMO65uQefhoSdVZajzqBQmz+vmNfYOeDuhscFX+6qCtGloqtKSzpVK7Xb5Ne/xERg8t4QxM0BK2ANc+MEE7bjj3L1ohhBAjz9133613CABMmjSp315LEjQhhDhX3W1Qkw9H98LRfdpWU9C3mmTxhqBkiJ0CQbdBUBL4x7kSsdDhk4BYPLXNL/rMz+vthNYqaCqFhsPQcEirKjYchsNr+/63M1khOAVC0yEkDUJHQ2ga+MVK1U0IIcSwJwmaEEKcSVcLVGyHyt2uZGwv1B/EPf/L6g/hWTD+DggeBUGjtL1PxDlVv4Y9s81VIUuExJy+j6mqNmyy4ZBWfawt1BLekvWw9+0TXsMLQlK1/94RYyByLIRmyHw3IYQQw4okaEIIcYyqaglC2VYo36rtawpwJ2P+cVpykHWDtg/P0ipHkohdGEUBnzBti5vW97HOJqgtgtoCbd5bTR7kL4edr2iPG0wQkn48YYsYo/1/MV/4OjRCCCGEHiRBE0KMXA47VO2Gw2ugdIuWlHU2ao95+EHMJBh9tbaPHA82fx2DHaFs/tow0dgpx4+pKjQdgao9WmWzag/s/wR2v6Y9bjBDRDbETIGYyRA9Gfyi9IheCCHEAPrzn//Miy++iKIoZGVl8fe//x2rdeiPqpAETQgxcqiqNnfs0Bpt3tORDdDdoj0WnAppS46f0AenyHynwUpRtEYiAfEw+irtmKpqDUkqd2tNScq3wfaXYfPT2uO+0dr/25jJEDsVwrOHzzxAIYQYgSoqKvjrX/9Kfn4+NpuNG264gbfeeou77rpL79AumCRoQojhraUSij+DQ6u1pKyjTjsemAiZ12pdDxNmaZ0TxdClKMe7YaYv0Y7Ze6B6H5Rtg7ItWtKW9572mIcfxE2HhJkQPwPCsiQhF0KIIcZut9PZ2YnZbKajo4PIyEi9Q+oXkqAJIYYXpxMqd8L+ldp2dJ923DsckudCwmwtIfOP0TdOMfBMFoiaoG1TH9CONVdA6SYoWQeH12lDI0Fr9hJ3iSthmwlhGTK3UAghztYnPzn+fdtfwrNg8e9P+3BUVBQ//OEPiY2NxWazsWDBAhYsWNC/MehEEjQhxNDX1QIHv4TiVdrWXguKAWKmwrzHIWWh1q5dTriFXxRkXadtoCVsRzZo1dWSdVD0sXbcOxySLtWS+sQ54BWkX8xCCCFO0tjYyPLlyzl8+DD+/v5cf/31vPbaa9x22216h3bBJEETQgxNnY1Q+DHkva8NX3T2gtUPkudDyiLtxNozUO8oxWDnFwXZN2gbQFOZ1jTmwBdadW3PG4ACkeO0z1TyPIiaCEb5+hRCCLczVLoGyueff05CQgIhISEALF26lI0bN0qCdjqKorwMLAFqVFXNPMXjOcBy4LDr0Huqqv5qIGIRQgwjp0rK/GJhyv2QepnWtU9OnMWF8I+Bcbdpm9MBlbu0ZO3A57DuT7D2j9r8tVHztM9c8jzp7imEEDqIjY1l8+bNdHR0YLPZ+OKLL5g4caLeYfWLgTqT+QfwJPDPMzxnnaqqSwbo9wshhovOJldStqxvUjb1Aci4Rmt/L0MXxUAwGCF6orbl/Fi7QHBojdZ0pvhTyP23tg5b3HQtWUtZBIEJekcthBAjwpQpU7juuusYP348JpOJcePGcd999+kdVr8YkARNVdW1iqLED8RrCyFGAIddm1O25w0oXAGO7uNJ2ehrIEqSMqEDWwBkXK1tTidU7ICiFVD0Caz8ibaFpEPqYki/QhsWKZ9TIYQYMI8//jiPP/643mH0Oz3HAk1TFGUPUAn8UFXVPB1jEUIMBtV5sPsN2PcutFVrJ8QT7oTsG7VOfHKyKwYLg0FbwDxmEsz7b2g4BEUrtYRtw19g/f8D/1htnbbRV8vnVwghxFlTVFUdmBfWKmgfnWYOmi/gVFW1TVGUy4C/qKo66jSvcx9wH0BYWNiEt956a0DiFeJ8tLW14e3trXcYQ5q5p4XQmjWEH/0Kn7aDOBUjDYETORo+h/qgiagGs94hDhnyeRwcTL2tBNdtJaR2AwGNezCodro8gqkNmUZtyCW0+KZqXUaHOfk8isFGPpP9y8/Pj+TkZL3DGBIOHDhAc3Nzn2Nz5szZoarqKSfN6ZKgneK5JcBEVVXrzvS8iRMnqtu3b++fAIXoB6tXryYnJ0fvMIYeVdXWotr2EhR8AI4eiBgDY27R2p/LotHnRT6Pg1Bnk7YeX/5yrdGIowd8IrSqWtb1w3q4rnwexWAjn8n+VVBQQHp6ut5hDAmn+m+lKMppEzRdhjgqihIOVKuqqiqKMhkwAPV6xCKEuIi6WmDv27D9ZajJ17rhTbwbxt+hLQwsxHBj84cxN2lbVwvs/xTy34ftL8GWZyAwUUvUsq6H4FMOJBFCCDHCDFSb/TeBHCBYUZRy4L8BM4Cqqs8C1wEPKopiBzqBm9SBKuUJIfRXtUerlu37F/S2Q8RYuPJvkHktWLz0jk6Ii8PqC9nXa1tnExR8qM23XPMErPmD9u8i63rt34VvhN7RCiGE0MlAdXG8+RsefxKtDb8QYrhy2KFgOWx+Bsq3gckGWdfCxHu0YV1CjGQ2fxh/u7a1VEHee7D3HVj1GKz6L0iYBWNv1bpBWjz1jlYIIcRFJCu6CiH6V1cz7HwVtjwLzWUQmASL/gBjbtS6Mgoh+vKNgGnf0ba6Yq2qtuctWHYffOwDmddoyVrMlGE7X00IIc7HX/7yF1544QVUVeXb3/423//+9/UOqV9IgiaE6B9NpbDlOdjxCvS0QtwMWPyEtnivYfh3rBOiXwSPgjk/g9k/gdKNsOt1bWjwzn9qFzvG3gJjbga/KL0jFUIIXeXm5vLCCy+wdetWLBYLixYtYsmSJcOis6ScNQkhLkz5Dnj3LvjLWG04Y+oi+PZX8K2PIe0ySc6EOB8GA8TPgGuegR/uh6ueBp9w+PJ/4M8Z8Oo1WmdIR6/ekQohhC4KCgqYMmUKnp6emEwmZs+ezXvvvad3WP1CKmhCiHOnqlCyDtb+EQ6v1boxTvsOTLkf/KL1jk6I4cXDB8bdqm0Nh7Thj7teh3fuAK9Q7fj4O7SOkEIIoYM/bP0DhQ2F/fqaaYFp/Hjyj0/7eGZmJo899hj19fXYbDZWrFjBxImn7Fo/5EiCJoQ4e6qqreW09o9QtgW8w2DBr2HCXdpJpBBiYAUmuoZA/lj7t7jjH7DhL7D+z5CYAxO+BamXgcmid6RCCDGg0tPT+fGPf8yCBQvw8vJi7NixGI1GvcPqF5KgCSG+mdMJRR9riVnVHvCNhsv+F8bdDmar3tEJMfIYjJCyUNtaKmHXa9o8tXfvBK8QranIhLsgMEHvSIUQI8CZKl0D6Z577uGee+4B4Gc/+xnR0cNjFI8kaEKI03M6IG8ZrPuTtrB0QAJc+SRk3yhX6IUYLHwjYfaPYOZ/wsEvtaraxr9plbWUhTD525B4qcwHFUIMOzU1NYSGhlJaWsp7773H5s2b9Q6pX0iCJoQ4mapqi+h+9RuoLYTgVFj6AmQsBaP82RBiUDIYYdR8bWuphO1/15K1167VOkBOulfrAmnz1ztSIYToF9deey319fWYzWaeeuop/P399Q6pX8iZlhDiOFWFQ1/BF7+Cyl0QnALX/R1GXy1X34UYSnwj4dLHYNajUPABbH0ePv2p1gUy+0atqhaWoXeUQghxQdatW6d3CANCEjQhhKZ0i3byVrIO/GK0tt7ZN0rFTIihzGSBrOu0rXI3bHsB9rwJO/4O8TO17qujFsoFGCGEGETkzEuIke7oPvjy17B/pdaye/EfYcKdYPLQOzIhRH+KHAtXPQXz/wd2vQpbnoc3b9KGP059UFsA28Nb7yiFEGLEkwRNiJGqqQy+eBz2vQtWP5j7C5jyAFi89I5MCDGQPAPhku/B1O9AwXLY9DSs+KFWQZ9wF0y+T9YzFEIIHUmCJsRI092qrZm06Snt/owfaCdrtgB94xJCXFxGE2Req21lW7W/CRv/BhufhIyrteGPURP0jlIIIUYcSdCEGCmcDm1Y05e/gfYayLpBq5r5x+gdmRBCbzGTta3xiNZQZOc/Ifff2jy1S74PyXNBUfSOUgghRgRJ0IQYCQ5+CZ/+F9TkQcxUuPktiJYr40KIrwmIg4W/gdk/hp2vaMMfX78WwjK1SnvGNWA06x2lEEIMa9K2SYjhrLYIXr8eXr0Getrg+lfg7pWSnAkhzszqC9O/C9/bA1c/A047vPdt+Os42PwMdLfpHaEQQnD33XcTGhpKZmam+1hDQwPz589n1KhRzJ8/n8bGRh0jPD+SoAkxHHW3wqr/gmemQ+lmrWvbw9u0eSUyTEkIcbZMFm1x6wc3wS3vaEtwrPwJ/DnDNVy6Xu8IhRAj2F133cXKlSv7HPv973/P3LlzKS4uZu7cufz+97/XKbrzJwmaEMOJqmrzRp6cpE32H3sLPLILLnlE2uYLIc6fwQApC+HuT+CezyB+Bqz9I/xfFnz6GLRU6R2hEGIEmjVrFoGBgX2OLV++nDvvvBOAO++8k/fff1+HyC6MzEETYrioLdJaZR9eCxFj4IZXIWaS3lEJIYabmMlw0+tQUwjr/5825HHr8zDuNq2hSECc3hEKIS6yo7/9Ld0Fhf36mh7paYT/7Gfn/HPV1dVEREQAEB4eTnV1db/GdTFIgibEUNfdBmuf0FpkW7zgsv+FiXeDwah3ZEKI4Sw0DZY+Dzk/hQ3/B7tegx2vQPaN2vIdQgihM0VRUIbg1A5J0IQYqlQV8t+HlT+D1koYexvM+yV4h+gdmRBiJAlMgCv+onV+3Pg32P532PMmo0OmQ3oIhGXoHaEQYoCdT6VroISFhVFVVUVERARVVVWEhobqHdI5kzloQgxFzeXw5k3w7l3gGQR3r4Krn5LkTAihH99IWPQ7+P4+mPEDAht2ao2K3rkDqvP0jk4IMUJceeWVvPLKKwC88sorXHXVVTpHdO6kgibEUOJ0wvaX4PNfguqEBb+BKQ+AUf4pCyEGCe8QmPffbFbHM8O4V5ujlr8cRl+lVdmkoiaE6Cc333wzq1evpq6ujujoaB5//HF+8pOfcMMNN/DSSy8RFxfHO++8o3eY50zO6oQYKmoK4cNHoGwLJM6BK/4PAuL1jkoIIU7JbvaBnMdg6oNakiaJmhCin7355punPP7FF19c5Ej6lwxxFGKws3fD6t/DszOgbj9c/SzcvkySMyHE0OAZCJc+Bt/fC7N+BAe+1IY+vn07VOfrHZ0QQgw6UkETYjAr2woffBdqCyHzOlj0e5lnJoQYmo4laidW1Ao+hKzrtE6QQUl6RyiEEIOCVNCEGIx6O7XFX19aoLXRv+UduO4lSc6EEEPfiRW1Gd+Hwo/hyUmw/GFoKtU7OiGE0J0kaEIMNuU74LlZsOlJbT2z72yGlIV6RyWEEP3LM1BbGuSR3TD5Ptj7Nvx1PKx4FFqP6h2dEELoRhI0IQYLew98+Wt4aT70tGvzzJb8P/Dw0TsyIYQYOD5hsPj38MguGHcrbH8Z/jIWVv0c2uv1jk4IIS46SdCEGAyO5sILl8LaP8KYm+DBjZB0qd5RCSHExeMXrS14/fA2rdPjxr/BX8fCmj9qQ72FEGKEkARNCD057LDuT/B8DrRVw01vwtVPg81f78iEEEIfgYmw9Dl4aBPEz4Svfg1/HQdbX9BGGgghhMvdd99NaGgomZmZ7mPvvvsuGRkZGAwGtm/frmN0508SNCH0UncA/r4IvvgVpF0GD23W9kIIISA0HW5+A+75DIJHwYofwlOTYN+/wOnUOzohxCBw1113sXLlyj7HMjMzee+995g1a5ZOUV04SdCEuNhUFXa+Cs/NhLpiuPYluP4V8ArSOzIhhBh8YibDXR/DLe+CxRv+fQ88PxsOfK79PRVCjFizZs0iMDCwz7H09HRSU1N1iqh/yDpoQlxMnY3w0Q8gb5k2dGfp8+AbqXdUQggxuCkKpCyA5HmQ+y+todJr12p/Rxf8D0SO0ztCIUa0de/sp66sf+eKBsd4M/OGlH59zaFCKmhCXCxHNsGzM7WFWef+N9yxXJIzIYQ4FwYDZN8AD2+HxU9ATb42h/ff90LjEb2jE0KIfiEVNCEGmsMOa5/QOjT6x8HdqyB6gt5RCSHE0GWywJT7ta63G/4Cm56C/OXasZn/CbYAvSMUYkQZqZWugSIVNCEGUuMR+MdlsOYPkH0TPLBOkjMhhOgvVj+Y+wv47k7Iuh42PqmtobbpKbB36x2dEEKcF0nQhBgoue9pQxprCrRGINc8I4tOCyHEQPCL0pYoeWAdRE2AT38GT7o6PkojESGGrZtvvplp06ZRVFREdHQ0L730EsuWLSM6OppNmzZx+eWXs3DhQr3DPGcyxFGI/mbv1k4Otr0I0ZPh2hchIE7vqIQQYvgLz4Lb34ODX8KqX2gdH7c8Cwt/BzGT9I5OCNHP3nzzzVMev+aaay5yJP1LKmhC9KeGw/DSAi05m/4IfGuFJGdCCHGxJV0K96+Bq56CplJ4aR786x5oKtM7MiGE+EZSQROivxR+DMseBAW46U1ZdFoIIfRkMMK422D01bDh/2Dj36DwI5j2HZjxAxlyLoQYtKSCJsSFcvTCp4/BW7dAUCLcv1aSMyGEGCw8vOHS/9Ja86dfCev+BH+bADv/CU6H3tEJIcRJJEET4gJ4dNXC3y+DTU/CpG/D3Z9CQLzeYQkhhPg6/xi49gW49wttyZMPvgvPzYbD6/SOTAgh+pAETYjzdeBzJm7/gbZQ6nUvw+X/CyYPvaMSQghxJtET4Z5V2t/trmZ4ZQm8c4c2V00IIQYBSdCEOFeqqi06/dp1dHsEwn2rIfNavaMSQghxthRF+7v98FaY8xjsX6W15f/yN9DTrnd0QogRThI0Ic5Fdyu8czt8+WvIup6d4/8IwaP0jkoIIcT5MNtg9o/gu9shbQmsfULWTxNiCLn77rsJDQ0lMzPTfezRRx8lLS2N7OxsrrnmGpqamvQL8DxJgibE2ao7AC/MhcIVsPC3sPR5nEYZ0iiEEEOeXzRc9xJ8ayV4BWvrp728CCp36x2ZEOIM7rrrLlauXNnn2Pz588nNzWXv3r2kpKTwu9/9Tqfozp8kaEKcjaKV8MIc6KiD25dpbZoVRe+ohBBC9Ke4afDtr+DKv0HDQXg+Bz54BNrr9Y5MCHEKs2bNIjAwsM+xBQsWYDJpK4lNnTqV8vJyPUK7ILIOmhBn4nTCuv+Fr34L4Vlw0+vgH6t3VEIIIQaKwQjj74DRV8GaJ2DLs5C/XGvVP/Fu7XEhRB9f/eN5ao4c6tfXDI1LZM5d913Qa7z88svceOON/RTRxSMVNCFOp6sF3r4NvvoNZN+gdf2S5EwIIUYGqx8s/A08sAEismHFD+H52VC6We/IhBBn4Te/+Q0mk4lbb71V71DOmVTQhDiV+oPw5k3aftHvYcoDMqRRCCFGotA0uOMDrYr26WPw8kLIvgnmPw4+4XpHJ8SgcKGVrv72j3/8g48++ogvvvgCZQiev0mCJsTXHVqjrYmjGOCO9yFhlt4RCSGE0JOiQMbVMGo+rPsTbPwbFH4MOT+BKfeD0ax3hEIIl5UrV/LEE0+wZs0aPD099Q7nvMgQRyFOtP3v8NpS7arot7+U5EwIIcRxFi+Y+wt4aLPWUGTVY/DsDChZr3dkQoxIN998M9OmTaOoqIjo6GheeuklHn74YVpbW5k/fz5jx47lgQce0DvMcyYVNCEAnA5Y9V+w+WlIngfXvazNPxBCCCG+LigJbn0Xij6BT34E/7gcsm6ABb8GnzC9oxNixHjzzTdPOnbPPffoEEn/kgqaEF0t8MaNWnI29SG4+W1JzoQQQnyz1MXw0BaY9Sjkvw9PToQtz4HDrndkQoghTBI0MbI1lsBLC+DQV7Dkz7Dod2CUwrIQQoizZPHUWvA/uAmiJ2oVtRdyoGyb3pEJIYYoSdDEyHVkE7xwKbRWwW3vaevbCCGEEOcjOFn7Lrn+FW1h65fmwfKHZZFrIcQ5kwRNjEx73oZ/Xgm2ALj3C0icrXdEQgghhrpj3R4f3grTvwt73oQnJ8DOf4LTqXd0QoghQhI0MbKoKqz9Iyy7D2KmwL2fa1c9hRBCiP7i4aM1DLl/HYSkwQffhX9cBjUFekcmhBgCJEETI4fDDh9+D778NWTfqA1FsQXoHZUQQojhKmw03LUCrnoKaou0lvyf/xJ6OvSOTAgxiEmCJkaG7jZ48ybY+QrM/CFc8xyYLHpHJYQQYrgzGGDcbfDwdsi+Cdb/GZ6eAvs/1TsyIYa8u+++m9DQUDIzM93Hfv7zn5Odnc3YsWNZsGABlZWVOkZ4fiRBE8Nf61FtaMnBL2HJ/8Hcn2vzBIQQQoiLxSsIrn5Kq6iZbPDGDfD2bdBcoXdkQgxZd911FytXruxz7NFHH2Xv3r3s3r2bJUuW8Ktf/Uqn6M6fJGhieKsphBfnQ90BuPktmPgtvSMSQggxksVfAg+sh7m/gOLP4KnJsPkZcDr0jkyIIWfWrFkEBgb2Oebr6+u+3d7ejjIEL8rLgk9i+CpZD2/dAiYrfGsFRI7VOyIhhBBCG2I/8z8hYyl8/J+w8iew9x244i8Qka13dEKcs6YPD9JT2d6vr2mJ9ML/iqTz+tnHHnuMf/7zn/j5+fHVV1/1a1wXg1TQxPCU+2949RrwDod7PpPkTAghxOATmAC3/RuufQmay+D5HFj1X9DTvye6Qow0v/nNbygrK+PWW2/lySef1DuccyYVNDH8bHkePvkRxE6Dm9+QTo1CCCEGL0WBrOsg6VL4/L9h498gbzks+X8war7e0QlxVs630jXQbr31Vi677DIef/xxvUM5J1JBE8OHqsJXv4VPHoXUy+D2ZZKcCSGEGBo8A+HKv8G3PgGzFV6/Dt79FrRW6x2ZEENKcXGx+/by5ctJS0vTMZrzIxU0MTw4HbDiUdj+ktbOeMlfwCgfbyGEEENM3HSticj6/4N1/wsHv4D5/wPj75AOxEJ8zc0338zq1aupq6sjOjqaxx9/nBUrVlBUVITBYCAuLo5nn31W7zDPmZzBiqHP3g3L7oe8ZXDJ92HeL+VLTAghxNBl8oCcH0PmUvjw+/DhI8ebiAQn6x2dEIPGm2++edKxe+65R4dI+pcMcRRDW3ebtpZM3jJY8GuY/7gkZ0IIIYaH4FFw54dwxV/h6D54Zjqs+xM4evWOTAgxgCRBE0NXez28cgUcXgdXPwPTv6t3REIIIUT/Mhhgwp3w8FZIXQRf/Err9lixQ+/IhBADZMASNEVRXlYUpUZRlNzTPK4oivJXRVEOKIqyV1GU8QMVixiGmsrg5YVQkw83vQ5jb9E7IiGEEGLg+ITDDf+EG1+Hjnp4cR6s/Jm05BdiGBrICto/gEVneHwxMMq13Qc8M4CxiOGk7oCWnLXVaJ0aUxfrHZEQQghxcaQvge9sgQl3wean4KmpcOBzvaMSQvSjAUvQVFVdCzSc4SlXAf9UNZsBf0VRIgYqHjFMVOfB3xdrjUG+9bHW7UoIIYQYSax+sOTPWkt+kwe8di0sexA6znTaJYQYKvScgxYFlJ1wv9x1TIhTq9gJ/7gcDEbtSyk8S++IhBBCCP0ca8k/84ew9214agrkL9c7KiHEBRr0bfYVRbkPbQgkYWFhrF69Wt+AhC58mwvI3vsres3e7Bn9S7ryKoFKvcOira1NPpNi0JDPoxhM5PN4ERln4j0+itSiv+Hzzh3UBk+jeNR99HgE6h3ZoCKfyf7l5+dHa2urrjE89NBDrFy5kpCQELZs2dLnsb/97W889thjHD58mKCgIJ0i1HR1dZ3TZ09RVXXAglEUJR74SFXVzFM89hywWlXVN133i4AcVVWrTvd6EydOVLdv3z5Q4YrB6tBqePNm8I2EOz4Av8FTaF29ejU5OTl6hyEEIJ9HMbjI51EHDjts+ht89TswW2Hh77QmWrL8DCCfyf5WUFBAenq6rjGsXbsWb29v7rjjDnJzj/clLCsr495776WwsJAdO3YQHBysY5Sn/m+lKMoOVVUnnur5eg5x/AC4w9XNcSrQfKbkTIxQRSvh9RsgIEEb1jiIkjMhhBBiUDGaYMYP4MGNEJoByx+CV6+BxiN6RybEgJg1axaBgSdXin/wgx/wxBNPoAzRixMDNsRRUZQ3gRwgWFGUcuC/ATOAqqrPAiuAy4ADQAfwrYGKRQxRecvg3/dCeDbc9m/wlKEaQgghxDcKToa7PoYdL8Nn/w1PT4N5v4RJ92rrqgnRzz755BOOHj3ar68ZHh7O4sXn3ql7+fLlREVFMWbMmH6N52IasARNVdWbv+FxFfjOQP1+McTtfgOWfwdipsAt74DVV++IhBBCiKHDYNASslEL4cPvwSePahc+r3oSgpL0jk6IAdHR0cFvf/tbVq1apXcoF2TQNwkRI9COf2hfJolztEWoLV56RySEEEIMTf4x2iiU3W/Apz+FZ6bDpf8FUx/SuiIL0Q/Op9I1EA4ePMjhw4fd1bPy8nLGjx/P1q1bCQ8P1zm6sycJmhhctv8dPvo+JM+HG1/TJjkLIYQQ4vwpCoy7FZIuhY//A1b9F+S9D1c9BaFpekcnRL/JysqipqbGfT8+Pp7t27fr3iTkXMlAZDF4bH9ZS85GLdAqZ5KcCSGEEP3HNwJuegOufQkaDsFzM2Hdn7Tuj0IMQTfffDPTpk2jqKiI6OhoXnrpJb1D6hdSQRODw7YX4eP/1MbK3/gqmDz0jkgIIYQYfhQFsq6DhFmw4lH44lfa4tZXPwNhGXpHJ8Q5efPNN8/4eElJycUJpJ9JBU3ob+sLWnKWskiSMyGEEOJi8A6FG16BG/4JLZXw3GxY80dw9OodmRAjniRoQl9bX4AVP4SUxdqXhCRnQgghxMUz+ip4aAuMvhK++jW8OBeO5n7zzwkhBowkaEI/W57XkrPUyyQ5E0IIIfTiFQTXvQw3vKpV057PgTVPSDVNCJ1Igib0seU5bU2W1Mvh+lfAZNE7IiGEEGJkG33lCdW038ALl0o1TZyRtqyxOJPz+W8kCZq4+La+AJ/8CNKWwPX/kORMCCGEGCxOrKa1VmnVtNV/kGqaOInVaqW+vl6StDNQVZX6+nqs1nPrTC5dHMXFteOV48Mar/u7JGdCCCHEYDT6SoifoXV6XP1bKPoYrn4WwkbrHZkYJKKjoykvL6e2tlbvUAY1q9VKdHT0Of2MJGji4tnzFnz4PUieJ5UzIYQQYrDzDITrXoKMq+HD78Nzs2DOT2H698Aop5AjndlsJiEhQe8whiUZ4igujtz34P0HIWEm3PiaNAQRQgghhor0K+A7WyDtcm3dtJcXQG2R3lEJMWxJgiYGXsFH8O97IWYK3PwWmG16RySEEEKIc+EVrK2bdt3foeEwPDsTNvwVnA69IxNi2JEETQys4s/g3bsgchzc8g5YvPSOSAghhBDnK3OpVk0bNR8++zn8fTHUHdA7KiGGFUnQxMA5tBrevg1C0+G2f4HVV++IhBBCCHGhvEO16QpLX9CGOj47AzY/A06n3pEJMSxIgiYGxpGN8ObNEJgIt78PtgC9IxJCCCFEf1EUyL4BHtoMCbNg5U/gn1dCY4nekQkx5EmCJvpf+XZ4/XrwjYI7lmtrqgghhBBi+PGNgFvehiufhMrd8MwlsOMfIGtjCXHeJEET/as6D167VptMfOcH2jAIIYQQQgxfigLjb4eHNkLUeG1Jndevg5ZKvSMTYkiSBE30n4ZD8Oo1WpfGO5aDb6TeEQkhhBDiYvGPhduXw+I/QskGeHoq7HlbqmlCnCNJ0ET/aKmCf14Njh64fRkExOsdkRBCCCEuNoMBptwHD26A4FRYdp/WMKytVu/IhBgyJEETF66jAV69Gjrq4bZ/a10bhRBCCDFyBSXB3Sth3uNQvEqrphV8qHdUQgwJkqCJC9Pdqs05azgMN78JURP0jkgIIYQQg4HBCDO+D/et0aY9vH0bLHsAOpv0jkyIQU0SNHH+eru0VvpVe+D6f2htdoUQQgghThQ2Gu79Amb9CPa+A89Mh4Nf6R2VEIOWJGji/Djs8K+7oWQdXP0MpF2md0RCCCGEGKxMFrj0MbjnMzB7alMjVjwKPR16RybEoCMJmjh3Tid88DAUfax1ahpzo94RCSGEEGIoiJ4AD6yDKQ/C1ufhuZlQtk3vqIQYVCRBE+dGVeHTn8GeN2HOf2mdmoQQQgghzpbZBot/D3d+CPZueHkBfPErsPfoHZkQg4IkaOLcrP8zbHkGpn4HZv1Q72iEEEIIMVQlzIIHN8LYW2Ddn+DFS6E6X++ohNCdJGji7O16Hb54HLKuhwW/BkXROyIhhBBCDGVWX7jqKbjpDW1N1ednw8a/gdOhd2RC6EYSNHF29q+CD74LiXPgqqe1hSiFEEIIIfpD2uXw0GYYtQBW/Re8cgU0HtE7KiF0IWfZ4puVb4d374TwLLjxVa0TkxBCCCFEf/IOgRtf0y4EV+2FZy6Bna9q89+FGEEkQRNnVlcMr18P3mFw67/Aw0fviIQQQggxXCkKjLsVHtoIkWO1rtFv3QJtNXpHJsRFIwmaOL2WKnh1KRiMcPt72pUtIYQQQoiB5h8Ld3wAC34DB76Ap6dCwUd6RyXERWHSOwAxSHU2wWvXQmcD3PUxBCbqHZEQQogTqKqKw+HAbrfT29t70uZwOM64OZ1OVFV1b1+/D6C4mkEpitJnAzAYDBgMBoxGI0ajsc9to9FIfX09hw4dwmw2YzKZMJvN7s1kMmEymTDIfGZxJgYDTH8YkufCe/fB27fC2Ntg0e+05iJCDFOSoImT9XbBW7dC3X649V1tiIEQQoh+43Q66erqorOz85T7rq4uenp66O7udm8n3u/p6aG3t9edSPU35YQuvRfyO/bt23fGx81mMx4eHlgsFjw8PNzbsftWqxWbzebeH9uO3bdYLH1iFcNUaDrc+wWs+b223E/JWrj6WYi/RO/IhBgQkqCJvpwOWHYfHFkP174ESXP0jkgIIQY9u91Oe3s77e3ttLW10d7eTkdHh3v7+v2urq4zvp7BYDgpYfH09CQgIACLxeLeTqxInVihMpvNfapZp9oMBgOKorj3X6+QnejEqtqJFTen0+muxp1YmXM4HGzdupXs7Ow+Fb6vV/uOJZ0nJp/Nzc3u211dXTidztP+dzIajXh6euLl5dVnO/GYj48PPj4+eHl5ScVuKDNZYO4vYNRCWHY//ONyuOQRmPMYmDz0jk6IfiUJmuhr1c8hfzks/C1kXad3NEIIoSu73U5raystLS199m1tbX22zs7OU/78sQTiWMLg7++Pp6fnSZUgq9Xa57bZbB5UlaHTJW5n4uvrS3x8/AX9XlVV6enpcVcXj23H7p+Y/La3t1NfX097ezu9vb2nfA/e3t74+Pi49z4+Pvj5+bk3X19fzGbzBcUsBljsFHhgPax6DDb8RZuftvR5CMvQOzIh+o0kaOK4Lc/B5qdgyoMw7Tt6RyOEEAPK4XDQ1tZGU1MTzc3NfbZjyVhHR8dJP2cymdwn+UFBQcTFxeHt7d1nO1bFkSF4F0ZRFHcV0c/P76x/rqenh46ODncC3dra2mdrbm6mvLz8lP9/vby8+iRt/v7+BAYGEhAQgL+/vyRwg4GHN1zxF0hZrK3R+nwOXPpz7dzFYNQ7OiEumCRoQlP4MXzyY0hbAgt/o3c0QghxwZxOJ62trTQ2NtLU1ERjY6P7dnNzMy0tLSfNr7LZbPj6+uLr60tUVBQ+Pj7u+8duW61WSboGuWNDQP39/c/4PLvdTktLy0kJenNzM7W1tRw4cOCkapyPjw8BAQHupC0wMJCgoCCCgoLw8JChdhdV6iJ4aBN8+D347Oew/1O45hmtA6QQQ5gkaALKd8C/7oGoCbD0Bbn6JIQYMux2O01NTdTX19PQ0EBDQ0OfRMzhcPR5/rGqSFxc3ElVEl9fXznBHmFMJhOBgYEEBgae8nFVVWlvb3d/phobG92fsYMHD9La2trn+d7e3gQHB7sTtmO3AwICZP7bQPEK1ha33v2GdqH5mUvgsj9C9o3ammpCDEGSoI10DYfhjRvAJwxufgssnnpHJIQQfTidTpqbm6mrq6O+vt6djNXX19Pc3NynCubh4UFgYCBhYWGkpaXh7+9PQEAAAQEB+Pn5YTLJ1544e8fmrXl7exMTE3PS4729ve7PYn19vfszmp+f32deoslkIjg4mNDQUEJCQtx7f39/Sdz6w7HFreMvgWUPaE1EilbAkv8Dz1Mn30IMZvJNNZJ1NMDr14PqgFv/JQtRCyF01dPTQ11dnXs78YTXbre7n3csCYuOjiY7O9s9xCwwMBBPT08ZfiguGrPZTFhYGGFhYSc91tHR4f4s19bWUlNTQ0lJCXv37u3z8yEhIe7XCA8PJywsDJvNdjHfxvAREK+t3brxr/Dlb6B0C1z9FCTP0zsyIc6JJGgjVW8XvHULNJXCHcsheJTeEQkhRoienh5qa2vdW01NDbW1tTQ1NbmfoygK/v7+BAcHk5iYSHBwsHu4mJeXlyRhYtDz9PQkNjaW2Ni+86G6urr6fO5ramooKipi165d7uf4+/u7E7bw8HAiIiLw8/OTz/3ZMBhhxg8g6VJtcevXroXJ98G8x/WOTIizJgnaSOR0wvsPQukmuO5liJumd0RCiGHI4XBQX19PdXU1NTU17v2JiZjBYCA4OJioqCjGjRtHSEgIwcHBBAYGynBEMSxZrVZiYmL6DJlUVZW2tjaOHj3q3qqrq9m/f797CK+npyeRkZFERkYSERFBZGQkvr6+krSdTsQYuG8NfPE4bH4aDq3GO+5+IEfvyIT4RvLtNxJ98TjkvaddTcq8Vu9ohBDDwLGTy+rqanciVltb627SoSjKSYlYSEgIgYGBGI3SmEiMbIqiuNdlGzXq+IiWnp4eampqqKqqorKyksrKStatW+dO2ry8vIiMjCQqKoro6GiioqJkeOSJzFZY9DtIWQjLHmT8zh+BXyNc8gMwyimwGLzk0znS7HgFNvwfTLwbLvme3tEIIYYYp9NJY2Oj+yp/VVUVR48epa2tzf0cHx8fQkNDSUxMdM+tCQ4OloqYEOfIYrEQHR1NdHS0+1hPTw/V1dXuhK2yspLi4mL34yEhIe6fiY6OJiQkRBqRJObAgxuo+/vthH75ayj+DK55DgIT9I5MiFOSb8uR5NAa+Pg/tMmyi/8o7WeFEGfkcDioq6tzX70/lowdWxfq2PDEpKQk91yZsLAwPD2lG6wQA8VisZw0RLKrq4uKigrKy8spLy+nsLDQPaftWJIXGxtLXFwcUVFRWCwWvcLXj2cg+aN/SGjQnfDxD+HZGbDo9zDuNjkfEoOOJGgjRd0BeOd2CBqlzTuT0r4Q4gQOh4Pa2tqTkrFj3RPNZjPh4eGMGzfOnYyFhIRgNpt1jlwIYbVaSUpKIikpCdDmtDU0NFBeXk5ZWRllZWWsXr0a0C6sREREEBcX525iMmIuqigKZN8AsdO0ufgfPAz7V8IVfwWvIL2jE8JNztJHgo4GeON6MJjhlrfA6qd3REIIHamqSmNjIxUVFe6tqqrKnYxZLBbCw8OZOHGiuxlBUFCQDJMSYohQFMW9WPaYMWMA6OzspKysjNLSUkpLS9myZQsbN24EtGGRCQkJxMfHEx8fP/wTNv8YuOMD2PQkfPk/8Mw0uOopGDVf78iEACRBG/7sPfD27dBcDnd+pK0RIoQYUdrb293DnyoqKqisrHQvomsymQgPD2fChAnuDnGSjAkx/NhsNlJSUkhJSQG0RbYrKyspLS2lpKSEXbt2sXXrVgDCw8OJj48nISGBuLg4rFarnqEPDIMBLnnE1Y7/2/D6dTDpXpj/P2AZ5gmqGPQkQRvOVBU+/gEcWQ9LX4DYKXpHJIQYYHa7nerqavdclPLychobGwHtqnpoaCjp6enuzm+hoaHSRVGIEchsNhMXF0dcXBwzZ87E4XBQUVHB4cOHKSkpYfv27WzevBlFUYiIiCAxMZGkpCRiYmKGV8Of8Ez49ldaJW3Tk9p8/aXPQ9R4vSMTI9gw+hcmTrLxr7DrNZj1I23MtRBi2GltbXXPMcnLy2P9+vXuoYre3t7ExMQwceJEoqOjiYiIGJnNAYQQ38hoNLrnpM2ePZve3l7Ky8spKSnh0KFDbNiwgfXr12M2m4mPj3fPeQsODh76a7GZrbDwN9oQx2UPwkvzIecnMOM/tIWvhbjIJEEbrgo+gs/+GzKugZyf6h2NEKIfOJ1Oampq3AlZWVmZuzpmNBrx8vJi0qRJ7vbasoitEOJ8mc1mEhISSEhIYM6cOXR1dVFSUsLBgwc5ePCgu7W/r68vSUlJJCcnk5iYOLTXYXO14+fj/4Avfw3Fn8PS52R6iLjoJEEbjqr2aOOpo8bD1c9o46yFEENOT08PFRUVlJaWcuTIEcrLy+np6QG0BWpjY2OZNGkSMTExREREsH79enJycvQNWggxLFmtVtLS0khLSwOgsbGRgwcPcujQIQoKCti1axeKohAbG8uoUaMYNWoUoaGhQ+8ikWcgXPd3SFkMK34Iz1wCi5+AsbdIO35x0UiCNty0VMEbN4EtEG56E8xD+EqWECNMR0eHu8NaaWkplZWVOJ1OAEJDQ8nOznavfxQQEDD0TnyEEMNGQEAAEydOZOLEiTgcDsrLyykuLqa4uJjPP/+czz//HD8/P3eylpCQMHSGWCsKjLkR4qbBsgdg+UOw/xOtHb9noN7RiRFAErThpLcT3roFuprhnlXgE6Z3REKIM2htbeXIkSOUlJRw5MgRamtrAW24YmRkJNOmTSMuLo6YmJihPWxICDGsGY1Gd8ORefPm0dzczIEDByguLmbPnj1s374dk8lEYmIiaWlppKSk4O3trXfY38w/Fu78EDb+TRvyWDYNrn4KkufpHZkY5iRBGy5UFT78HlTuhJve0LoSCSEGlebmZncyVlJSQkNDA6CtOxYTE0NWVhaxsbFERUXJAtBCiCHLz8+PCRMmMGHCBOx2O0eOHKGoqIiioiL2798PQExMDKmpqaSlpREcHKxzxGdgMMKM70PSHHjvPnjtWpjyAMz7pYxSEgNGErThYuNfYe/bMOe/IO1yvaMRQnA8ITvWtrqpqQkADw8P4uLimDBhAvHx8YSHh0ureyHEsGQymdwdHxcvXszRo0cpKiqisLDQPRQyKCiItLQ0Ro8eTWRk5OAcvh0xBu5bDZ//ErY8C4dWa0sYRWTrHJgYjiRBGw72r9I6No6+Gmb9UO9ohBixWltb3cnY4cOH3R0WrVYr8fHxTJ06lbi4OMLCwmQhaCHEiHNsTbWIiAhycnJoampyV9Y2bdrEhg0b8PPzIz09ndGjRxMdHT24/laabbD4D1o7/ve/Ay9cCnN/DtMelnb8ol9JgjbU1e6Hf9+jDWm8+mnpMCTERdTR0eFeI+jw4cPU19cDxytkkydPJj4+XhIyIYQ4BX9/f6ZMmcKUKVPo6OigqKiIgoICtm3bxubNm/Hx8SE9PZ309HTi4uIGz9/R5Hnw0Cb48BH47BdQ/JnWNds/Ru/IxDAhCdpQ1tkIb90MRovWsdHipXdEQgxrPT09lJaWuhOyqqoqQFsvKC4ujvHjxxMfH09ERMTgOZEQQoghwNPTk3HjxjFu3Di6urrYv38/+fn57Ny5k61bt+Ll5cXo0aPJzMwkJiZG/7+xnoFww6uw+3X45MdaO/7L/wTZ1+sblxgWJEEbqhx2+Nc90HhE6zAkV22E6HcOh4PKykoOHjzI4cOHKSsrw+l0YjAYiImJIScnh8TERKKiomQOmRBC9BOr1Up2djbZ2dn09PRQXFxMXl4eu3btYtu2bfj6+pKRkUFmZqa+c9YUBcbdBnGXwLL74b17ofhTuOx/weavT0xiWJAEbaj6/L/h4Bfamhxx0/SORohhQVVVGhoa3IuvHj58mO7ubgAiIiKYOnUqiYmJxMbGDp31fIQQYgizWCxkZGSQkZFBd3c3RUVF5ObmsmXLFjZt2kRAQACZmZlkZmYSFqbT8kKBCXDXClj//2D17+HIJrjmWUiYqU88YsiTBG0o2v0GbHoSJt8PE+7UOxohhrSOjg4OHTrEoUOHOHjwIM3NzYDWJjojI4PExEQSEhLw8pIhxEIIoScPDw93Za2zs5OCggJyc3NZv34969atIywsjOzsbLKysvD19b24wRlNMPtHkDQX3vs2vHIFXPIIzHkMTB4XNxYx5EmCNtSUbdPWO0uYBQt/o3c0Qgw5DoeDiooKDhw4wMGDB6moqAC0L/6EhARmzJhBYmIigYGBg7PVsxBCCGw2G+PHj2f8+PG0tbWRl5fHvn37+Oyzz/jss89ISEhgzJgxpKen4+FxEROk6AnwwDr49DHY8Bc4+CUsfRFC0y5eDGLIkwRtKGk9Cm/fBr6RcP0rYJSFbIU4G42NjRw8eJADBw64hy0qikJUVBQ5OTkkJSURGRkp88iEEGII8vb2dneDrK+vZ+/evezdu5f333+fjz76iLS0NMaMGYPT6bw4AVm84Ir/g5SFsPxheH42zP8VTL5Pum2LsyIJ2lBh74F37oTuFrj9Pa17kBDilHp7ezly5AgHDhyguLjY3f7+2LDF5ORkEhISsNlsOkcqhBCiPwUFBTFnzhxycnIoKytj79695OXlkZubi8ViweFwMHbsWEJCQgY+mNTFWjv+5Q/DJz+C/Z/CVU+Bb8TA/24xpEmCNlR8+lMo2wzXvQxhGXpHI8SgU19f707ISkpKsNvtmEwm4uPjmTRpEklJSQQHB8uwRSGEGAEURSE2NpbY2FgWLVpEcXExn3/+ORs3bmTDhg1ER0czduxYMjMzsVqtAxeIdyjc8jZsf1kb9vjMdLjiLzD6yoH7nWLIkwRtKNj1Gmx7EaZ/FzKv1TsaIQaF3t5eSkpKKC4upri4mMbGRgACAwOZMGECycnJxMfHYzbLUGAhhBjJTCYT6enpVFdXM3HiRPbu3cuuXbv46KOPWLlyJaNHj2bcuHEDtxi2osCke7T+Af++F965XWvPv+j34OHT/79PDHmSoA12FTvgo/+AhNkw95d6RyOErhobG90J2eHDh91VsoSEBKZNm0ZycjKBgTL8VwghxKl5e3szffp0pk2bRkVFBbt372bfvn3s3bsXf39/JkyYwNixY/HxGYDEKXgU3Pu51op//f+DkvWw9AWImdz/v0sMaZKgDWZttfD27eAdBtf9XWvhKsQIYrfbKS0tdSdldXV1AAQEBDBhwgRGjRpFXFycVMmEEEKcE0VRiI6OJjo6moULF1JQUMDOnTv54osv+Oqrr0hJSWHChAkkJSX1b1XNaIa5P4dR8+G9++DlhTDrUW2T5m/CRc74BytHL7x7F3TUwz2rwCtI74iEuCja29spLi5m//79HDx4kO7uboxGI3Fxce6kLDg4WO8whRBCDBNms9m9vlpdXR07d+5k9+7dFBYW4ufnx/jx4xk3blz/rq0WOxUeWA8rfwJr/gAHPteqaUFJ/fc7xJA1YAmaoiiLgL8ARuBFVVV//7XH7wL+CFS4Dj2pquqLAxXPkPPZL+DIerjmOYgYo3c0QgwYVVWprq5m//797N+/n/LyckAbhpKRkcGoUaNITEy8uOvYCCGEGJGCg4NZsGABl156KUVFRezYsYOvvvqK1atXk5KSwqRJk0hMTOyfqprVF65+GkYt0Na4fXYGLPwtTLhL2vGPcAOSoCmKYgSeAuYD5cA2RVE+UFU1/2tPfVtV1YcHIoYhbe87sPlpmPIAjLlJ72iE6HfHGnwUFRWxf/9+WlpaAIiMjCQnJ4eUlBTCw8MHZrK2EEII8Q1MJhMZGRlkZGTQ0NDAzp072bVrF0VFRQQGBjJx4kTGjRvXP8u1ZFytzUN7/0H46PtaO/4r/wbeF2EpADEoDVQFbTJwQFXVQwCKorwFXAV8PUETX1e1Bz54BOIugQW/1jsaIfpNW1ubu0p28OBBent7MZvNJCUlkZOTw6hRowZmUrYQQghxAQIDA5k3bx45OTkUFBSwdetWVq1axZdffklWVhaTJk0iMjLywn6JbyTctgy2Pgef/Tc8Mw2ufBJSF/XPmxBDykAlaFFA2Qn3y4Epp3jetYqizAL2Az9QVbXsFM8ZOToa4O3btEWor/+HTBYVQ5qqqtTU1FBUVERRUREVFdpoZl9fX8aMGUNqaqq0wRdCCDFkmEwmsrKyyMrK4ujRo2zbts3dsj8qKopJkyaRkZFx/t9rBgNMfVDr3P3effDmjTDhW7DwN2Dx6t83IwY1RVXV/n9RRbkOWKSq6r2u+7cDU04czqgoShDQpqpqt6Io9wM3qqp66Sle6z7gPoCwsLAJb731Vr/HOyioTrL2/ZqAxj3sGvdbWn1T9Y5InIW2tja8vb31DmPQcDqdNDc3U19fT11dHV1dXQD4+PgQFBREUFAQ3t7eslj0AJHPoxhM5PMoBpuB+Eza7XaOHj1KRUUFnZ2dmM1mIiMjiYyMvKC504qzl4TDrxNT9j6dtggK0v+DVt9R/Ri50NucOXN2qKo68VSPDVSCNg34paqqC133fwqgqurvTvN8I9CgqqrfmV534sSJ6vbt2/s73MFhzR/hq1/DZf8Lk7+tdzTiLK1evZqcnBy9w9BVd3c3Bw4ccM8n6+rqwmg0kpiYSGpqKikpKf3b+UqclnwexWAin0cx2AzkZ1JVVQ4dOsSWLVvYv38/BoOBjIwMpk6dSlRU1Pm/8OG1sOxBaK2CnJ/AjP+QZZeGCUVRTpugDdT/4W3AKEVREtC6NN4E3PK1oCJUVa1y3b0SKBigWAa/g1/CV7+BrBtg0r16RyPEN2ptbaWoqIjCwkIOHz6Mw+HAZrORmppKamoqSUlJ0nVRCCHEiKEoCklJSSQlJVFfX8/WrVvZtWsX+/btIzo6mqlTp5Keno7RaDy3F06YBQ9ugBU/1M4Viz+Dpc9BYOLAvBExKAxIgqaqql1RlIeBT9Ha7L+sqmqeoii/ArarqvoB8IiiKFcCdqABuGsgYhn0msrgX/dASBpc8X/SVlUMWnV1dRQWFlJYWOhuhR8QEMDkyZNJTU0lJibm3L94hBBCiGEmKCiIxYsXM2fOHHbv3s2WLVv417/+hY+PD1OmTGHChAnn1v3R5g/Xvggpi+Cj/4BnZ8Ki38G42+W8cZgasBqpqqorgBVfO/aLE27/FPjpQP3+IcHeDe/eqS1KfeOrMgFUDCpOp5PKykp3UlZXVwdAREQEc+bMIS0tjdDQUJlPJoQQQpyC1Wpl6tSpTJ48meLiYjZv3sznn3/O2rVrGTduHFOnTiUgIODsXzDrOoiZorXj/+C7Wjv+K/4CXsED9yaELmQQq54+fQwqdsAN/4Rgmfgp9OdwOCgpKXEnZa2trRgMBuLj492VMj+/M04VFUIIIcQJDAaDewpAVVUVmzZtYtu2bWzdupXRo0czffr0s5+n5h8Dd3wAm5+CL34FT0+Dq56ClAUD+ybERSUJml72vgPbXoBpD8Poq/SORoxgPT09HDx4kIKCAneTD5PJRHJyMunp6aSkpPTPQpxCCCHECBcREcHSpUuZO3cuW7duZfv27eTl5REbG8v06dNJSUnBYDCc+UUMBpj+XUicA+99G964Hibeo62fa/G8OG9EDChJ0PRQnQ8ffg9ip8O8X+odjRiBOjs72b9/PwUFBRw4cAC73Y7VaiU1NZW0tDSSkpKwWCx6hymEEEIMS35+fsyfP59Zs2axc+dONm/ezFtvvUVQUBCXXHIJ2dnZmEzfcJoengnf/gq+/B/Y9CQcXgNLX4Co8RfnTYgBIwnaxdbVAu/cDhZvuP7vshi1uGja2tooKiqioKCAQ4cO4XQ68fHxYdy4caSnpxMXFydNPoQQQoiLyMPDg2nTpjF58mTy8/PZsGEDH3zwAV999RXTpk1jwoQJZ+6KbLZqC1mPWqDNTXtpPsz+sbTjH+Lk/9zFpKqw/DvQcBju/BB8wvWOSAxzzc3NFBQUUFBQQGlpKaqqEhAQ4G73GxUV9c1DKYQQQggxoIxGI1lZWWRmZnLw4EHWr1/PqlWrWLt2LZMnT2bKlCl4eZ2hmVzibK0d/8fSjn84kATtYtryLBR8APN/BfGX6B2NGKYaGhrIz8+noKCAiooKAEJDQ5k1axbp6emEhYVJ50UhhBBiEFIUheTkZJKTkykrK2PDhg2sXbuWjRs3Mn78eKZPn46/v/+pf9gWANe9BKmLtXb8z8yARb+F8XdKO/4hRhK0i6V8B6z6OaReBtMf0TsaMczU1taSn59Pfn4+1dXVAERGRjJ37lzS09MJDpYWvOKbqaqK2tuL2tNz8nbseG8vqt2Barej2nvB4UDttZ9w34nqdIDDCaoT1eEEpwPV6Tx+TFVBdf9SbdPuuPaKdjJhULSLCYqh732DEcVkPMXegGI0oZhNKCYTitkMrr1iMqNYzO7jiocHisWCwWJBsVi058kJjBBiEImJieGmm26itraWDRs2sH37drZv3052djYzZ84kKCjo1D+YdR3ETtWGPH74PVc7/r+Cd8jFfQPivEmCdjF0NsK7d4FPhNYKVU4CxAVSVZXq6mp3UnZsjbKYmBgWLFhAenr6ua2tIoYM1eHA2d5+fGtrw+G6bd2xg4bKStTOTpwdnTg7O3F2dqC6b3eidnXh7O527btQO4/fV7u79X57+lEUd9KmeFgwWG0YrB4oVhsGDw8U2wn3ra77np4YbJ7a3lO77z7u6YXR2wuDl7YpNpskgEKI8xISEsLVV1/NnDlz2LBhAzt37mTPnj1kZmYyc+ZMQkNDT/4hv2i4fTlseQY+fxyengpXPalV18SgJwnaQFNVeP870FoFd68Ez0C9IxJDlKqqVFVVuZOyhoYGFEUhLi6OyZMnk5aWhq+vr95him+gOhw4WlpwtrTgaG52bS04mptwtrbiaG3F2dqGo7Xl5H1bO2pn52lf2w+oPuG+YrVicCcMNneyYfT1xRAWiuJhRbF6YHDvPVAsriTFYtEqTRaLVnk6Vm0ym+HEKpXJ1Pe+UatkYTCiGA1aVctgAKMRFAOKwVUdO7aBlhy5g1ZAVV1VNhWczpPua9U4B6rD4d6rdrv2mN0BDrur0ufa9x673+uqBJ5YJexG7enB2dOD2u061t2Fs8uVxHZ1oXZ14Whqwu667+zqdCe9OJ1n9z/eYNCSNW9vDF6eGL28Mfj4YPT1weDtg8HHG6OPdvvYMaOfL0Y/Pwy+rv2ZGgUIIYY9Pz8/LrvsMmbOnOleS23fvn2kp6cza9YsIiIi+v6AwQDTvnO8Hf+bN2nDHRf+Fjy89XkT4qxIgjbQNj8NRR/Dwt9B9ES9oxFDjKqqVFRUuJOypqYmFEUhISGB6dOnk5aWhre3/JHVi+pwaAlWfT32hkYcjY04mo7tm7A3NuJobMLR1KQdcyVmZ6J4eGDw9cHo7aOdwPv4YI6IxOjjrZ3IuyoyBm8vjO7b3hi8vNi2bx/T5szBYLNpFZsh3ABmKNSaVFVF7e7WKpMdHTg7OrRKZUdHnyqno63NdbvDXfV0trXhaGmht7xce7y19RsrmMqx5NrPF6OfP0Z/f4z+fn1v+2u3TQEBGAMCMPr7a0m0EGLY8PHxYcGCBVxyySVs3ryZrVu3UlBQQEpKCrNmzSI6OrrvD4SNhm9/qTUP2fBXOLwWlj4PMZP1eQPiG8lf7YFUtg0++wWkLYGpD+odjRginE4nFRUV5OXlUVBQQHNzMwaDgcTERGbNmkVaWhqenrIQ5UBRe3uxNzRgr63DXleLo64Oe10d9rp6HA312Osbju+bmk5bQTF4eWkny64TZUt8PEY/vxM2Xwx+fhh9/bQTa19fDL6+GC5g/TnH0aOYZL7hRaMoilaltFqhH4YUO3t6cLa2uiupjuYWnC3NOFpaXFXWZhwtzThdt3vLy+nKzcXR1HTG5M7g56clbIGBGAMCMAUGYAwIxBgYgCkoGFNwEMbAIG3v769VQYUQg56Xlxdz585l+vTpbN26lc2bN/Piiy+SnJxMTk5O30TN5KE1qRu1EJY9AC8vhJn/qbXklyWfBh1J0AZKRwP861vgG6mN+ZW5B+IMnE4n5eXl7kpZS0sLRqORxMRE5syZQ2pqKjabTe8whzS1t1dLtKqr6a2pwV5Ti72m5vhWW4u9rg5HY+Mpf97g7Y0pKAhjUBCW+Hhs4ydgCgrUTmwDj5/8Gv0DMAb4X1CiJUYmg8WCISgITjfx/wycnZ1apfaEzd7YiKOhEUdDA/bGBhyNTfSWldG5dw+Oxiaw208RhMGVxAViDA7CFBKCKTgEU3Cwdjsk2H3b4Osr8+qEGARsNhuzZ89m6tSpbN26lY0bN/Liiy8yatQocnJyiIqKOv7k+Eu0dvwrfwJr/+hqx/88hKTq9wbESSRBGwiqCu8/BK1H4Z5PtbanQnzNsaQsLy+P/Px8WltbMRqNJCUlMXfuXFJTU7FarXqHOSQ4e3q0xKuqStsfPYq96ii91dXYq6rora7GUV9/8g+aTK6TzhDMcbHYJow/4WTUdSIaHIwxOFjm/4hBzWCzYbDZMH99DsppqKqKs7lZqxbX1WlJ3LEqcV099vp6HHV1dO7Yib22FrWn56TXUCwW7d9PaOgJWwhm121jZRWOtjaMMgxbiIvCw8ODmTNnMnnyZLZs2cLGjRt54YUXSElJIScnh8jISO2JVl+4+mlIWaR1eXxullZdm/Rtbd6a0J0kaANh499g/yew+AmImqB3NGIQOV1SlpyczOjRoyUpOwVVVbVqQFUVvZWV9Fa69lVV2lZZicPVxfJEBl9fzOHhmMLDsGZkYAoLwxSqnUyaQ0MxhYVhDAgY0vO0hDhfiqK456t5JJ55IVtVVXG2tmoV6BOG/vYeqzzX1NJdXEz7hg0429rcPxcM7P/VrzB4eWEKC8McHoYpNAxTeBjmsDBMYeGYI8IxhYdrQyulGidEv/Dw8GDWrFnuRG3Tpk08//zzpKamkpOTc7yZyOgrIWYKfPAwfPIjKPpES9x8I/V9A0IStH5XugU+/yWkXwmT79M7GjEInDin7MThi8nJyWRkZJCSkjLikzJHayu9FRX0lpfTU15Ob0UlveXl2lZRgbOjo8/zFasVc0QE5shIrHNyMEVEYA6P0E4AwyMwh4Vi8PLS580IMcwoioLR1xejr+83JnPO9nbstbX01tSwb/VqRgUFaZXso9X0Vh+le/Nm7DU1J83dVGw2zOHHErYI7d93RLj2bzsyEnNkpFSxhThHVquV2bNnM2XKFDZv3symTZt47rnnSE9PZ86cOVp7fp8wuOUd2PF3+PQxeHoaLPl/kHmt3uGPaJKg9aeOBvjX3eAfI/PORrhj3Rfz8vLIy8vrk5TNmzdvxCVlqtOJvbqantIyestK6Skr1/alZfSWleFobu7zfIOXF+boaMwxMXhOm+o+QTNHRmGOjNAqX/LvS4hBx+DlhcXLC0t8PF0dHQTl5Jz0HNXh0IZRHq2i92g1vVWV2pDko0fpPVpF97p12OvqTljAXGMMCjrhb0GklsRFR2GOisIcFY3RWy7KCHEqVquVnJycPolaYWEh2dnZzJ49m8DAQJh4NyTMhmX3a+eyhSvgsj/K8lA6kQStvxybd9ZeA/esAquf3hGJi0xVVSorK91JWXNz84iaU6Y6HPRWHaXnSAm9paX0lByh54i29ZaXo/b2Hn+yyYQ5MhJLTAzWrEws0dGYo6K1pCwqUoY7CTGMKUYj5rBQzGGh2Mac+jlqTw+9NbXYqypdQ5sr3UOcu/fvp2316pM6Vxr9/LRkLTralbRFYY6OwhITgzkqSuu2KcQIZrPZmDNnDpMnT2bDhg1s3bqVffv2MX78eGbNmoVvUBJ8ayWs/zOs+T0c2QBXPQXJc/UOfcSRBK2/bHlOm3e26A8QOU7vaMRF8vWkrKmpCYPBQFJS0rDsvqiqKo6GBnoOH6b78GF6DpfQU1KiJWGlpX2SMMVmwxIbi0dyMj5zL8UcE4slJhpzbCzm8HBZm0kIcVqKxYIlOgpLdNQpHz/2t6i3osK99VRU0FteQfeBA7StWXNSAmcKDcUcE6NdEIqOxhwTrSVvMTGYQkLkopAYMby8vFiwYAFTp05l7dq17Ny5k927dzNp0iRmzJiB1+xHYdQ8eO9+eG2p1jxk/q/AIkv8XCxyhtQfKnfDZz+HlMUw5X69oxEDTFVVqqurycvLY/v27axZs8a9Ttns2bNJS0sb8kmZ2ttLT2kp3QcP0nPosJaQlWgJ2YkLLStmM5b4OCwJ8XjnzMYSF4clLh5LfBym0FA54RFCDAhFUTAFBWEKCsKWnX3S46qq4qir0+a0llfQW17mGlpdRvvWrdg/+KDPEErFZtOStdgYLDGxWGJjMMfGYomNxRwRIReUxLDk6+vLkiVLmD59OmvWrGHz5s3s2LGDadOmMX36dDzuXwNf/A9sfgoOfQXXPA/R0vzuYpC/OBequ1Ubq+sZrHW+kRPSYaumpsZdKaurq0NRFPz9/Zk3bx7p6elDcvFoZ0cH3YcO03PoIN0HDx3fl5b2WSPJFBqKJSEB38sW45GQgMW1mSMjZVFbIcSgoyiKewkNxp08qsXZ04O9spKesjJ6SkvpLS3TbpeU0L5ufd/qm9mMJSoKS1wc5rjYPheizBER8jdQDHmBgYFcc801zJgxgy+//JI1a9awbds2Zs+ezYR5v8KUslCbxvPSfJj1Q5j1qCxuPcAkQbtQKx6FxsNw50cykXIYqq+vJzc3l7y8PGpqagCIj49nypQpjB49mm3btjFhwuC/muTs6qLn0CG6i4vpPnCA7uIDdB84QG95+fEnGY1YYmOxJCXiM28eHkmJWBKTsCQkyOR7IcSwYrBYsMTHY4mPP+kx1enEXlvrHrrdc6SUntJSeo4coX3rVtTOzuNPNpuxxMS4X8sSH6ddxIqPxxgcLKMIxJASEhLCjTfeSHl5OZ9//jmffPIJmzdv5tJLLyXjgfUYPv0prPkD7P9UFrceYJKgXYjdb8KeNyHnp9rK7GJYaGxsJC8vj9zcXI4ePQpATEwMixcvZvTo0fj4+Ogc4empdjs9R47QvX8/Xfv3awlZcTG9ZeXH21qbzXjEx2PLzsJv6TV4JCVryVhsLIrFou8bEEIInSkGA+Ywba02Jk/u85iqqthrauktPd4EqafkiFZ5W7++z4LeBlc3S0t8PJbEBC1xS0zEEheHYYgPgxfDW3R0NHfeeScHDhzg888/59///jcbwsOZP/9RklIXw4ffh2dnwrxfwpQHZHHrASAJ2vmqOwAf/yfEzdBKvWJIa2lpcSdlFRUVAERFRbFgwQIyMjLw8xtcXTlVVcVeW0t30X669xe5ErJieg4ePH6CYDBgiY/HmpaO35Ir8Bg1Co9RyVoiZpahCUIIca4URXF3oPScNKnPY+5OtiUlfbbO3btpWbGiz5w3U2QEHgmJ2nDxxAQ8EhOxJCZKsxIxaCiKwqhRo0hKSmLfvn189dVXvPrqqyQkJDD/2g+J3Po/8OlPoWiFNsXHP1bvkIcVSdDOh70b/nUXmDy0Eq9Bxp8PRW1tbeTn55Obm0tpaSkA4eHhzJ07l4yMDG1dkEFA7e2l+9BhuosK6SosoruwkK7CQhwNDe7nmEJD8UhJwWvaNDxSRmFNScGSlCQLuwohxEWiGI3HO0/O6DuqxtnVpVXbDh+m+9AhrQPuoUM0v/cezo4O9/MMPj6uhC3JPczcIzEBc0yMzHUTujAYDIwZM4aMjAx3Y7TnX/sX2dk3cum8hfiv/Tk8PR0W/wHG3iK9GPqJJGjn47NfwNF9cPPb4HfqFsBicOro6KCwsJDc3FwOHz6MqqqEhISQk5NDZmYmwcHBusbnaGvXErH8AroKCugqLKCn+IC7fb1iseCRnIx3Tg7WtFQ8UtPwSBmFKSBA17iFGCiqquJ0OHDYe3H0uja7HafDjsNu73PbaXfgtPfidDpxOhw4nQ6cDgeqw3H8mOu46lRRnU5Up0P7HU4nqKr7MVBdBQ/1hPvqSYsnA+4TkhMrH4qigGJAURQUg4Livu3aKwoGo1G7bzBiMBpQDAYMBiMGgwHFaMRoNLn2RgxGEwaTtjcajRhMJowmE0aT+fhts/n4MTmZH1QMVivW1FSsqX3n7GhDJmvoOXiwT8OmtvXraF62zP08xWLBkpCAR1ISluQkbWh6cpKMiBAXjclkYurUqYwdO5YNGzawadMm8vJUpo37KzOq/4F1+UNQ+DFc8RfwDtE73CFPErRzVbgCtjwLUx+C1EV6RyPOQnd3tzspO3jwIE6nk8DAQGbMmEFmZiZhYWG6xGVvaKArL19LxAry6c4v0Lonuk4AjYGBWNPT8b7zDjxS07CmpWJJSJB2z0J3TqeD3q5uers66e3uore7m56uTuxdXfT2dGPv7j6+7+7G3tuj7bu7sfd0Y+/pwd7bi72nG4drb+/txdHbg72nF3tvjysR05KxUyZFF4uioKCAciwBU/pcID4emnrCMRVUUFXnxYy0D0UxYDSbMZnNGC0WbW86fttktmC0WDBbPDBZLJg8XHuLR59jZg+ra/NwbVbMVu2YycMDi9WG0WyWYXnnSRsyqc1385o+vc9jjpYWrbnTwUN0HzpIz4GDdO7dqw2XPMZkwhIXh0dSknsYu0dyMpa4OEncxICwWq3MnTuXCRMm8OWXX7J++152es4kJ20WE/b/L8anp2pJWvoSvUMd0uRM71w0V8DyhyBijDYxUgxaPT09FBcXk5ubS3FxMXa7HV9fX6ZOnUpmZiYREREX9YTCXl9PV14eXXl5dObl0ZWXj72qyv24OSoK6+h0fK+6Emt6OtbRo2UdMdGv7L299HS0093ZQU9HBz2dHXR3dmr7jnb3sZ6uTnq7uujp7KSnS9t63be76O3qxHHCguRnRVGOn/S79xZXkmDG6uOrJQ0WD4wmMyaLK5kwuzbT8b3J7KoYGY0YTGYMJiNGk0mrLB3bG40oRiMGo1GrSBkNrmrVsWMGVyXrWNXKAAZFO+6qdOGqcl0oVVVRVadWsXPfdroreFrFzrV3ON2VPtXpwGG3ozqd7iqh0+HAabfjcDhOqBrasff2asftdldS24ujV7tt7+nR7h9Lil3Jr72nh56WFlp7tARaS557tKT5hCU2zobBaNSSNqsNi9WGxXW7pa2djn3bsdg8sXh6ao/ZPPHw9MRis2Gxum57emH18sLi6YVJkgo3o68vtrFjsY0d2+e4s6OD7sOHtarbgYN0HzxIV1EhrZ99dvyKgdmMR3wcluRkLXFLTsaakiJDJUW/8ff3Z+nSpUydOpVVq1axorCELX4/Yr6yntS3b0UZczMs+j3Y/PUOdUhSVD2vTJ6jiRMnqtu3b9fnlzsd8MqVULUb7l8LQUn6xCFOy263c/DgQXJzcykqKqKnpwcvLy8yMjLIzMwkOjpaOxHrR6tXryYnJ6fPMUdTE537cunKy6UzN/ekZMwSF4c1I8O1jcaano5xkDUhEYOP0+Ggq72N7vY2bd/WRldHu3a/TTtWcuAAgf5+dLe30d3RTndHB93tbfR0dGDv7fnG32EwGrFYbZhtx060j922aretNszHbnt4uE/KzSdWWqxWrQrj4aFVYCweUmEZYpxOhzth6+3uordLq5Jq1dITbndpmzupP5bMd2uJfENtLRaTkZ6ODro7OnA6vjnxM5rNeHh6uTZPPLy88fDyxurl5dprm4frvs3bB6u3N1ZvHyw2zxH9OTub5VQUD4/j1baUFDxSRuExahSmsLAR8d/uVN/Z4sKpqsr+/fv57LPPqKurI85PYVHzG0T4GuGqJyHpUr1DHJQURdmhqurEUz0mFbSztf7PcGQ9XP2sJGeDiMPhoKSkhNzcXAoKCujq6sJms5GZmUlmZibx8fH9npSdSOnqomPbNi0hy91H575cesvK3I9b4uPxHD/+eEI2Oh3jIG7TLwaeqqr0dHbQ2dJCZ1sLna0tdLW2avu2Vjrb2uhqbaGrvY2utlbtWGsrPZ0dZ3xdo9mMYjLjCAjE6jrB9Q0J005yTzzh9fTSKhonVjJcFQ6T2TIiTtLEmRkMRvdn5EJ8/WTY3turVWlPrNx2aslbd0c73e3t7mqudoFBO9ZSV+u+EHGmJE8xGLQE7oSkzebtg9XHF5uPLzYfH2w+vli9fbH5Hj9mNA2Pqp3BasU6ejTW0aP7HHe2t9N96BDd+4vdS6+0b9xI8/Llx3/W19fdYMojJdWdvBm9vS/22xBDkKIopKamkpyczM6dO/nqq694jpsZ113Gpa/eis+kW2D+r8Aia6qeLUnQzkb5Dlj9O8i8FsbcpHc0I57T6aSsrIzc3Fzy8/Npb2/HYrGQlpZGZmYmiYmJmAZgnpZqt9N94ACde/bSuXcPXXv3EXLgAEdcVWhTZAS2zCz8b7geW1YW1owMScZGAKfDQWdrCx3NTXS0NNPZ0kxHi5Z4dR6739qsJWSuJMzpcJzytRTFgIe3NzbXyaWnnz+BUTHayaaXj/vE08PTy3Ui6u2uKpgsFrk6LAY1be6bH56+5zdiQFVV7D3dfSrIXW3HL2T0ud3eRkdzE/XlpXS2ttLb1Xna17XYPPH09TuetPn6ue5re09fPzz9/PH088fm6zfkhmEavLywZWVhy8rqc9ze2EjPgQN0FRfTvX8/3fuLaf7gQ5xtb7qfY46KciVrKa7GVKna/DYZJilOwWg0MmnSJDIzM1m7di1bthjIM9zHzG0bmFo8E/PSpyF2qt5hDgmSoH2T7lb49z3gEwmX/z9pH6oTVVWpqqoiNzeX3NxcWlpaMJlMpKSkkJmZyahRozD385dm79GjdO7eQ+e+vXTt2UtnXh5qp/Ylb/Tzw5qdTXvKKNKWLMGWlYVJ5w6Qov/09nTT0dREe1MjHc2ufUsTHc3NdLQ009Hc6L7d1dpy6hdRFC3Jcp3wBUZGa1fvXVfxj21Wbx/txNDbFw9PTxRZ8FOIU1IUxT2U1ifw3P7e2nt76WptobOtVdu3ttDZ2qpdRGlt0S6utLbQ2lBPTckhOpqbT1ut8/DywtPX35W0+eHpF4CXvz9efgF4+rtu+wfg6RcwqJM5U0AApkmT+qznpqoq9spKuvbvd62zuZ+u/UW0rV0LrgtLioeHNkQyNQVrqtZN2JqagtHfX6d3IgYbm83GwoULmThxIqtWreKLIoUdLe3Mf/lhRk+/DGXOz8Bs1TvMQU0StG+y4kfQdATuWiETHXVQU1PjTsoaGhowGAwkJyczb948UlNT8eindb6c3d105eXTuXs3nXv20Ll7N/bqagAUsxmP0en4X3cdtuwsbNnZmGNjURSFQ6tX4yMViyHB6XTQ2dJCe1OjtjU29L3d3ERHcyPtTU2nHU544olZUHQMMb5Z2gmar3ZlXbutXXm3entjkDUShRgUTGYz3oFBeAcGndXzjw1FPlYVb29uorO5mfYTLs50NDdSX1ZKWd4+utpaT/k6Hl5eePkF4BUQiJe/tvf2D8ArMEjbBwTiHRB4wcNJ+4uiKJijojBHReEzZ477uLOnh56DB7W1OIuK6CoqpO3Lr2j+93vu55jCw7GmpeGRloo1LQ1rWpr2XSkXnUasoKAgbr75Zg4dOsTKT1bwbu0S4jaWszD/SiJveAIix+od4qAlCdqZ7PsX7HkDZv8Y4qbpHc2I0dDQQF5eHrm5uVRXV6MoCvHx8VxyySWkp6fj6XnhX2S9VVV07tpF5549dOzeTVd+Abg605mjo/GcOFHrnjUmG4+0NAwWywX/TjEwVKeTjpZm2hobaG9sOGFf3+dYR3MTqvPktucenl7uq96h8Ul4uq+Ea3vtSvjQHNokhDg/iqK4524GhEd+4/Ptvb3aMOemRtqPVd2bGmlvPnYRqJGq4kLaGxtP2bDHbLXhHRCoJZFf23sFBOETFISXfyBGnZZZMVgsWofh9HT3MVVVcdTVuZK2QrqK9tNdWEDbunXHq22entq8trRUrGnpWNPT8EhJwWCz6fI+hD4SExO5/4EHtflpn3/K801RjH/+N8ydPh6vuT8Eo3y3fp0kaKfTVAof/QdET4ZZP9I7mmGvpaXFnZRVVFQAEBMTw+LFixk9ejQ+FzCXS7Xb6Sos0hKyXTvp2LXb3VVRsVqxZWYSdNed2MaMwTZmDKYQWWBxsLD39tLWUE9bfR2tjdq+raGetoZ67X5DPe2NjaccimTz9dNOcAICCYlLwDsgEE//ALz9XfsAbTiS2dI/VVghxMhlMpvxDQ7BN/jM3x+qqtLd0U57YyNtjfXuCn5bY4P2t62xgYqiAtob609e7kBR8PIPwCcwCO/AYLwDg/AJCtbuBwXjExSCT1DQRWt6oigKppAQvENC8J45w33c2d2tdZEsLNSSt4ICWj5eQdNbb2tPMBiwJCRoVbbR6XikpWFNT8cUGHhR4hb6OHF+2povPmXLdsjf2Myc3DuZePPPMEZk6h3ioCIJ2qk47PDvb4PqhGtfAKP8ZxoIHR0d5Ofnk5ubS0lJCQDh4eHMmzePzMxM/M9zPLujtZXO3bvp2LmTzp276Ny71z13zBQRgee4sdjuvhvbuHFYU1NkMU+d2Ht7tcSrvpbW+jpta6inraGO1ro6Whvq6GxpPunnzFabdmISGEhMeqZ72JJ3oHaF2TtQG0o0XDqzCSGGD0VR3EsFBEXHnPZ5qqrS2dpCe2MDrQ0nXJiq1/5GNlZVUJa/l+729pN+1tPPH58gLVn0CQrWtuAQfIND8QkOwcvPf0CHHRo8PLBlZGDLyOjzfnorKukuLKCroJCuggI6du2k5eOP3c8xhYZqVbqM0Xikp2NNH405KlI6yw4zNpuNRUuuZvzk6Xzy71f5pNrKjueeY/H4WBKW/AfI1ABAErRTW/cnKNsMS1+AgHi9oxlWurq6KCoqYt++fRw6dAin00lQUBA5OTlkZGQQch7Vq97qGjp37qBj+w46du6ku6gInE4wGrGmpuJ/7bV4jh+Hbdw4zBERA/CuxNepTiftzU201tXSUlej7etrtcTLlZR1NDed9HNWbx/3CUV48ih8ArUTC++A40mYRz8McRVCiMFMURR3B8mQuITTPq+nq5PW+jra6uvdF7ta6mppra+lvqKMkr27TupgaTSZtGrbCUmbb0gIfiFhrvvB/X6BS1EULNFRWKKj8Jk3z33c0dREV2GhK2nLp7vANUTSNRzd4OenVdpciZt19Ggs8fHSRXIYCA0N5Y4H/oOC3Vv5dMUHvLKznYyCR1hww334JYzROzzdSYL2daVbYM0fIOsGyL5B72iGhd7eXoqLi9m3bx/FxcXY7Xb8/PyYNm0amZmZhIeHn/UVMlVV6SkpoWP7djpdCdmxdccUmw3b2DEEP/QQnhPGY8vOxuAla24MBIe9l9b6elpqq2murdYSsNpaWutrXPvak4bnmK029xXd0PgEfIJDXENygvENDsE7MAizh3R1EkKIs2Wx2giKiiEo6tTVOFVV6W5vp7Veu1jWUlfr+ntdQ0t9LUf27qStqRFcy8UAoCh4BwbhFxKKb3AoviFh+IaE4hcShl9oGD7BIf02F87o74/X1Kl4TT3eet3Z1aV1j8zPpyu/gK6CAhrfeAO1R5u7p9hsruGRWsJmzczAIzFRRsMMQYqiMHrcFEZljGPDshdZX2Cn6JV3mDlqFdOv/x7mETz/XxK0E3U1w3v3gl8UXP6/ekczpDkcDg4ePEhubi6FhYX09PTg5eXF+PHjyczMJCYm5qySMtXppLv4AB3bttGxfTsd27fjqKsDwBgYiOeECQTcegueEyZiTUuVP9D9xGHvpaWulpaaGpprq7Uv89pqWupqaK6toa2h/uQvdP8AfEJCCUtMZtSU6cevzgYF4xsSioenlwxVEUKIi0hRFNei3d6nrcQdv+BW47roVkNrnfa3v6Ion8KNa/s0WFIUA95BQfiFhuEXEq7tQ8PwCw3HLywcL/+AC/pbb7BasWVnY8vOdh9T7Xa6Dx6iqyBfS9zy8mlatgz19de1mCwWPFJTtYQtYzTWjAyso0ahjOAT/KHEbLGQc+NDjC3fz6dvPctXxWZ2P/ELLrvsckaNn6l3eLqQBO1EKx6F5gr41idgPb+FNEcyp9PJkSNH3AtId3Z2YrVaycjIICsri7i4OIzfMCxBdTjoKiikY+tWLSHbsQNnszYPyRQRgdf0aXhOnIjnxElYEuLlhP88OZ0O2hoaaK45SnNNNc011bTUHKW5VvtS/noCphgM2pyGkBDiMsfg+7UrqxdzYroQQoj+YzSZ8Q8Lxz8s/JSPOx0ObehkrfZd0XxsX1OtVeAaG/o832Tx0BK2sHD8XUmbX2g4/mER+IWGYTqPpEkxmbCmpmBNTYGrrwa0C7g9JUdclbZ8uvLyaFmxgqa3Xc1IzGaso0ZpyZprO9atWQxO/tEp3Piff+LgqhdYsTmf1z/4grQtG1h04334j7AmMpKgHZP7b9j7Nsz+CcRO0TuaIUNVVSoqKsjNzSUvL4/W1lbMZjOpqalkZWWRlJSE6QxDIVS7XZssvHWblpTt2IGzrQ0AS3w8vgvmuxKyiZijoi7W2xoWujvaaao+qiVhx/Y11a59Td/Oh4qCT6BW6YrNyMYvNAxf13AWv5AwvAODMMiYfyGEGHEMRqO7ShaTcfLj9p4ebaRFTTVNJ37fVB+lLHcvvd1dx5/sGj4ZEBaBX1iElhiGR+AfFoF/eAQenmc/LUExGPBITMAjMQG/JZcDrmYkZWV05eVpW34+LatW0fTuuwCEGo0cTk3VErbMTG2fIpW2QUVRSFp4Hw9OPMKm13/Lmupgnvzbn5k9bTLTLl18xnPK4WRkvMtv0lwBH/0AoibCrEf1jmbQU1WVmpoa9u3bR25uLk1NTRiNRkaNGkVmZiYpKSlYTvPHTnU46MovoGPrFtq3bqVz+w6cri5UloQEfC+/HM/Jk/CcNAlzaOjFfFtDjup00tbYQFN1Fc3VR2mqPuq6XUVTTTVdrS19nm/19sEvNIyQuESSJ0/HPzQcX9eXrm9wiFTAhBBCnDOTxXLaeXDHulE2HXV9N1UfpeloJU3VRzm0c+tJzaJsvn4EhEfiHx5xfB8RhX945Fk1iFIUBUtsLJbYWHwXL3bH0FtRQVduHvs/+QTv1tY+SZtiNuORkuJK2jKwZWXhkZwsUyZ0ZgqKY+Z3nyVr/cus/HIdX2w0snvPHi5bejNJSUl6hzfgJEFzOuH9B8HRC0ufl5b6Z1BfX09ubi65ubnU1taiKAqJiYnMnj2btLQ0bKdYeFKbQ1ZMx+bNtG/ZSse2bThbWwGwJCbie8USvCZPxjZxoiRkp+B0OGipraGpuoqmo1Xa3nW7ufponwVPFYMB3+AQ/MIiSJkyXRtSEh6hzQsIDcPq5a3jOxFCCDHSnNiNMjIl7aTHezo73BcXm45W0XS0ksajlZTm7iF/7Zd9nmvz9SMgIoqA8EgCIiIJiIxyJ3FnajCldZCMxhIdTZvVg4k5OVrSVl6uVdlyc+nMzaPlk09oeucd7WcsFjzS07BlZmHNzMSWmYElMVG6R15sioL/zHu4KWs+xW/+jBXVwbz66qtkjEpg4RXX4Ovrq3eEA0aykS3PwuE1sOT/IGj4Z+Tnqrm52Z2UVbkWd46NjeWyyy5j9OjReHv3PelXVZWewyV0bNlM++YtdGzZgqOpCQBzbCy+ixbiOWUqnpOlQnaM0+GgubaapqNVNFZV0lRdSVOV9iXVUluD0+FwP9dktmjj+sMjiR87QRsWEqaN7e/PzlpCCCHEQLPYPAmNTyQ0PvGkx3q7umiqOer+PjyWvJXs3Unems/7PNc7KJjAiEgtgYuIJjAyioDIaHxDQjCcYl0tRVGwxMRgiYnBd9EiQLug3FtWRmduLl25eXTt20fzsmU0HmtE4umJdXQ6toxMrFlZ2LIyMcfGylz4i8E/llEPvMpDW15iw6r3WV9sp/gvf+bSeQuYNHnyN/Y3GIpG9tlcdT58/ktIWQQT7tI7mkGjra3NvYB0aWkpAJGRkSxYsICMjAz8/Po2UOmtrqZ90yY6Nm2mffNm7NXVgNbUw3v2bDynTsVrymTMkZEX/b0MFqrTSWt9HQ1VFdqXTVWF+wunuaa6TxJm9rDiHxFJaFwiKVMuwT8i0j0+39s/cEAXGBVCCCEGA7PVSkhsPCGx8Sc91tPZQePRKu271P29WknhxrV9Fu82mkz4h2uJW2BkFPUtbVRFRRAQGXXSqBLFYMASF4clLg6/y11z2hwOekpK3FW2rn37aHzrLdRXXgG0ddpsx+azZWViy8rCFBYmSdtAUBTMU+8lJ3Ue2f/6Tz6u8GHlp5+yZ9d2lly1lKhh1qdAUU9slT3ITZw4Ud2+fXv/vJi9G16YC61V8NAm8B7Z1ZzOzk4KCgrIzc3l8OHDqKpKSEgIWVlZZGRkEBQU5H6uo7mZ9q1b6di0ifZNm+k5fBjQ1jPxdK1n4jV1Cua4uGH/R2r16tXk5OQArrH2Lc00VFXQWFnh/uLQqmJVOE7oHmXy8NCu9IVF4B8R2Wesvaef/7D/7yYGxomfRyH0Jp9HcbF9/Xu4obKcxqoKGioraK6u6nMx1Ms/gIDIKAIjowmMjCEwKprAyGh8g0POeCFU7e2l+8ABOvfto2tfLp15uXTvLwbX2p/GkGBsWdnYsjKxZmVjy8zA6O8/0G99ZHE6Ube9SN6qf7LSMZ02PJk8aRKXzp2L1Tp01lNVFGWHqqoTT/nYiE3QPvsFbPgL3PwWpC7un9ccYrq7u9m/fz+5ubkUFxfjdDoJCAggMzOTzMxMwsLCAHD29NC5azftGzfSvmkTXbm54HSieHriOXECXlOn4TVtKh6pqSOiutPb3UVjVSUNleXs2rgBP6uFxspyGqsq6e7oe+XOLyzCNeTCNWbedSXPKyBQkjDR7+SEWAwm8nkUg4nDbuezjz4gOTqKxspyGirLaagop6GijK72NvfzTB4eBEZEawlbVDRBUTEERsUQEBF52mZazq4uugsL6dyXS1fuPjr37nNfvAZtioctK0ursmVnY01Px3CKefviHDWW0LXse3xRqrCNMXh7ebL4siWMHj16SJxjnSlBG5lDHEvWw4a/asMaR1hy1tvby4EDB8jNzaWoqAi73Y6Pjw9TpkwhMzOTSNcwxO79xdSv+IT2TRvp2LYdtbMTjEZs2dkEP/AAXtOnYcvOHrataVVV1YYkVpa7/pBXuK7CldNaV9vnua1BIQRERpE2I0cbAx8ZTUBE1GnHvgshhBDi4jKaTFj9A0meOAU4vpzSsU6TDRVlrqStjPqKcir3F1C4YY37eYrBgH9YBEHRMQRFx2qJW3QsgZFRmK1WbGPHYhs71v18R2urNjRyXy5d+/bRsWMHLR9/7ArGiEdKCrasLGzZWVizsvFITpImJOcqIB7rXcu4fMfLjFn5Nz7qmMm7775LcnIyl112GYFDeO20kVdB62qGZy4BoxnuXwcew7+zncPh4NChQ+Tm5lJYWEh3dzeenp5kZGSQmZlJTEwMzoYG2jdton39eto2bsRRWwdore+9pk3D65LpeE6ejNHHR+d30796e7ppclXDGipcV9Qqy2msrOizdovFZjth4rE2JCIgIorc4oNcOn++ju9AiOOkYiEGE/k8isHmXD+TvV1d7qStobKc+vIy6ivKaDpaeXy4pKLgFxqmLTUQHXt8i4rB/LXhdr01NVrStncvXXv30Zmbi7NFWxJH8fTENno01uxsbNnZ2LKzMEVEDIlK0KDQeATH8ofZWtLKl8pMVKOFOXMuZerUqYO2iYhU0E604kfQUgn3rBrWyZnT6eTIkSPk5uaSn59PZ2cnHh4epKenk5mZSXx0NN27d9P+r39Rsn4D3QUFgDaPzGv6NLwuuQSvadOGTWOPztYW6ivK3MMZjv2xba6tgWMXKRQF3+BQAqOiiU7PJPBYIhYZjZd/wCn/SBpKSi/yOxFCCCHExWC2WglLTCYsMbnPcYe9l6ajVdSXl2pJW3kpDRVlHNm7C4drLhqKgl9IaJ+kLTgmjsBLpuNz6aWAq3NkaSmd+7RhkZ1799D42ms09GhL6Ljns2VnaUMjMzMxDuPW8hckIA7jnR8wbcffGf3p71lhn85nnznYt28fV155pXuE2FAxshK0vGWw9y2Y/ROIPmXCOqSpqkp5eTm5ubnk5eXR1taG2WwmLS2NjIwMYkwmujduou2JJzhwbNiiyYTnuHGEfP/7eM2YgXV0+pCdR+YeluhKwOrLXVe8KsrobGl2P89kthAQFU14ciqjZ811TwwOiIg841oqQgghhBBGk9mddJ3I6XDQVF1FfVkpdeVHqC8rpb68lJI9u3A6jidu/mHhBMfEERwTR1BMHMFjswlZvAijyYza00NX0X469+7Rqmz79tH25fE14SwJCVqyNiYbW/YYrKkpsqj2MYoCE+/GL3keNy1/hPzDH/FJ7QJeeOEFpk6dypw5c7AMkak5IydBa6mCD78PURNg1g/1jqbfqKpKVVWVOylrbm7GaDSSkpLC6ORkourq6N60ifann6G0ogIAS1wc/kuX4nXJJdqwRW8vnd/FuXE6HTTXVGsJWMXxK1cNleX0dHa6n2f19iEwKobkiVO0Lk3RMQRFxeAbHDpkk1AhhBBCDE4Go9HVFTKaUVOmu4877HZXxe0IdWWl1Jcdoa7sCAd3bEV1Ot0/GxARpSVusfEEpyYTMn8uEcGhONva3EMjO/fuo23DBpqXLwdA8fDAOnq0lrRlZ2EbMwZzVNTIHhrpH4tyxzIydr1G4srH+cw5nk2bVAoKCliyZAnJycnf/Bo6GxkJmqrCB9/VWutf87w2/2yIq6mpcS8g3dDQgMFgICkpiZlpaUSWHKH3o4/p2LWLarsdg6cnntOmEXTvPXjNmIElJkbv8M+Kw26nqbqKBtfwgfpjyVhleZ+W9d4BgQRGx5Ixex6BUTHaBN6oGGy+fiP7D5QQQgghdGc0mVzNRWJImXr8uL23l8bKcupcCVtdaQlVB/ZTtGmd+zlmq43g6FiCY+MIjosneMZ0omNiMbe1awnbnr107t3bZ302Y1CQNo9tjDafzZqVNex6CHwjRYHxt2NLnsuVH/2A7P3v8GHbFbz22mtkZ2ezcOFCvLwGb4FiZCRoO1+BA5/B4icgePBnzadTX1/vrpTV1NSgKArxMTFM8PcnorAIx7PPYa+tpRnwSE8n6FvfwmvGDDzHjR3U3RZPvLJUX15GXXkpDeWlNFRWHB8SAPiGhBEUHUNc9jhX69tYgqJj8PAcvP/AhBBCCCFOxWQ2ExKXQEhcQp/jPZ0d1JWVUldWQl2plrwd2LaZfV+ucj/HKyCQkNh4gmPjCZl+D0GR0Xh3dNGTn68lbXv20PbVV9qTFQVLYuLxpG3MGDxGjUIxjYA0wDcSbn6L+H3v8sCKn7LOkc76fVBcXMzixYvJysoalBfzh///mYbDsPJnkDAbJn1b72jOWWNjI3l5eeTm5nL06FEAooODmeXrR8Se3fDOu+Bw0Ovjg9cll+A9cyZeM2dgDh18C28fG5tdV3bENT77FInYCd2QEsZPcndFCoyKxmKVNUOEEEIIMbxZbJ5EpqQRmZLmPqaqKh3NTdQeOUxdaQl1ZUeoPVLCrk8+cDcmUQwGAiOjtaRv6rcIDA7Fp60Dw8FDdO3dR9uaNTQvW6Y912bDlpGhzWUbM0YbGula/3bYURTIvgFzwmwuXfGfZBT8kw/sV/Hee++Rm5vL5Zdfjp+fn95R9jG8EzSnA95/CAxGuPppGCLzjpqbm8nLyyMvL48K17yxcG9vpjmdhG/ajKWsDACP0el433sv3rNmYhszZtBcCVGdTpprqqkrPz7O+tg8sT7djU5IxIJdk20Do6KlUYcQQgghxAkURcHLPwAv/wDix4x3H3c6HDRWVVJbqiVutUcOU1GU32cNN6uPL6Fx8QRPvZMAHz982jqxlpXTs28fjf98lYbelwEwhYW5kzXbmGysGRnDa0FtnzC48TXC8pZxz8c/Yos9li8OwNNPH2H+/PlMmDBh0FTTBscZ/UDZ/DSUboSrnwG/aL2jOaPW1lby8/PJy8ujtFRr3R5isTCxsZGwzVvwbm7G4O2tVckeeGBQVMlUVaWtod49drq+rFTbV5Ri7+52P88nOITg6FjissdpHYtOsz6IEEIIIYQ4ewaj0T2/jemz3Me72tuoO1JCbelhal2J294vPsXe0+3+ucCYaIKn30aA1ROftg4sZZV07culdZVrKKXRiDU1FdvYMdr6bGPGYImPHzRJzHnLuAZDwmymrfwpqXtf5kPnlXz00Ufk5uZy5ZVXDooFrodvglZTAF/8D6ReDmNu1juaU2pvb3cnZSUlJQAEopBdWkr0vn34tLZhSU7C+7pr8Z41G8/x43RrpdrZ2uIuqWubVh3r7mh3P8crIJDgmDjGzFtEUHScuwWth6enLjELIYQQQoxEVi9vokdnEj06033M6XTQdPQotUcOu7ZDlBflU1hf536OV3IEwbMmEWCx4tPWiaOsgu73l6O+8SYARj+/E4ZFjsWWnTU012bzDISlzxGY9Rl3fPB9dvYGsKpsLk8//TSXXqotcG3QceTd8EzQHL2w7H5tIeor/qKNPR0kOjo6KCgoIC8vj8OHD6OqKn4OB5kHDhB98BD+3d14Tp2C9w9+gPes2Viioy5qfL3dXdSXlVJbVuIanlhKXWkJ7U2N7ud4eHkRHBNH2iWzT1jHIxabzxD8ByqEEEIIMQIYDEYCI6MIjIwiddoM9/HO1hZ30lZTcojaI4cpK8rH6XAAYMqMJyg0nACzBz6tHXiWlWN9agNG1xIBlqSk40Mjx47BIzkZxWjU5T2es1HzUb6ziQlfPE7ythf52LSEVatWkZeXx1VXXUWoTqPVhmeCtvZ/oWoP3PAqeIfoHQ2dnZ0UFhaSl5fHoYMHcaoqPt3dpB84QExpGUE2Gz45s/G+/368pky5KON9tasoVdp45dIjrupYCU3VR7VlCdAWdA6KiSV+zPjjiVhsHN4BQUO/vC2EEEIIIbD5+BKbOYbYzDHuY/beXhoqyrSEreQQNUcOcbjksDZyygpKdiL+AUEEmD3wbmnDc+M6vJe/j8XhRPH0xJaZiW3sWGxjx2DLzsYUHKzjO/wGVl+4/E/4ZSzl5uXfJbfRyIqji3nuueeYM2cO06ZNw3iRE87hl6BV7IS1f4TsG2H0lbqF0dnZSVFREbn79nHo0CGcqop3ZycpJSXElJURGRuHz9x5eM/JwSMlZcASnlN2/SktoaG8DHtvDwCKYsA/PIKQ/8/efQfYcdb3/n/PnN7P2T3bu3qX1S3JluVuYwzGdDABDCQBErhJ4DoJ95Lcm/IjN5CEQIhJ6MU2wQQwGEu2bMvYuEmyLclWl3ZX23s5vc38/phTd1eyZEvaou/LDDNnZs7sc1Znz5nPPM88T1MLS6+6NtttaxO+qmpUdZZcARFCCCGEEBeE2WKhsnkelc3z8ut0XWd8oJ/+9lP0t56iv+0k/W2nOBUbgyovVHlxu9z4VQuesTGcP70f73e/jT2VwVpfX1LLZl+yZOYNAdW8FeVTv2Pl7i/R8rtv8bDpZnbtynD48OFLXps2twJaKmY0bXRXGWOeXWLxeNwIZS+/zKn2djK6jjMaZVF7O439AzSsXInnfe/Hfc02zBfhBsR888TTbdmaMWMeC43n93H5AwQbm1l9821GEGtooqy+AYvVdsHLI4QQQggh5gYl2wO3r7KKhRs259dHx8cKNW1tp+hvPUlneBQajUBjs1jxKyY8Rw/g/t1ufNEkLhQcy5YVatlWr8ZSUzNNr6yIxQE3/h/cy9/Be375R7zWd5CHe2/hm9+8l2uvve6S1abNrYD2+N/A4DH40M/B4b8kPzIXyg6++CKnurrQAGckwvyOTlpiUZrXrcfzx5/BuXED6gW6UpDrxt7oUrU937XqSG9PoXmizUawoYkFG64k2NhMsMGoFXN6Z9Y4D0IIIYQQYvZyen00r1pD86o1+XXJeIyB9jajlq31JP2tpziVSaG5jHNhi2rCp0Xx7PoN3l8+iDeawOcvw1Vcy7Z8Oep09fhdewXK7z/Jiue+TvOTX+Vh/Rp27dI4dOgQd9xxx0WvTZs7Aa3td0a3+hs+DvOvu6g/Kh6Pc/TwYQ4++yytAwNkAEc0yoKODuZbbcy7chOej3/8gjRdjEfChdqwbHepg6fbSSXixg6KQqC6hmBjM0u2bqeiyRhV3l9ZjTJLxn0TQgghhBBzh9XuoG7xUuoWL82vy6RTDHacNgJb20n6Tp2gw9pKOukBwKQoeDuP433tJbzfTuBLpgk2z8O1uqiWraHh0vWDYLLAVX+Ce+nbeM9Dn+W19kM83HsT37z3XrZfey1btmy5aLVpcyOgJSPwy09BoAlu/L8X5UfE43GOHDjAwWefpW1khIyi4IhGmd/dzaJAGfOuvgrP5z73hscm0zRjoEFjkME2BtpPMXC6jdDgQH4fu8tNRVMLK669kYqmFoKNTQTrm2Q8MSGEEEIIMaOZzBaqWuZT1TI/v07LZBju7qS/9SR9rUZtW0/rCdrjRkWEShzP3t/i3b0TXyxBwGKnculy3NmmkfYVKzG5XRe34OXzUT7yK1a89AOad/4dD6c28fjjGkcOH+Ydd95J8CJ0gDI3Atquv4aRNvjIb8B64f6R4vE4h158kYMvvMDpcDgfyhYMDLC4ro4FN92Ee8sW1PMc5ysWDjHYXhg4cKDd6NI+32mHqlJWW0/d4mUEb2ymsqmFYFOz9J4ohBBCCCHmDNVkyvcUvmyb0QJO1zRGenvoaz1B36kT9J86Qd+p43RkQ5syfBrPwyfwPfhjfPEkwfJKqlauxr1mDY4rVmNtabnwrcgUBdZ9GPeim3nPw5/j1SMP85ueG7n337/BDTfexMaNGy/ouGmzP6C1Pg0v/gds+kNo3vqmDxeLxXj1qad47aWXOB2Po6kqjmiUhWNjLG1pYcHtt+O84opzGt8hVyuWG1ti8HQb/e2thIsGBHR4fVQ0tbD6prdQ0dRCRVMLZbX1mGdazzZCCCGEEEJcZEZFhTFe29Kt1wCF/hdyoa332BH6Wk/QkUgAGsqxl/Dsfx5fLIFfg6rGFqrWrMO9dg2OVasw+S5QHwyeapT3/YiVh39F86//Nw9FVrNjxw6OHHqNt7/jTgKBwAX5MbM7oCXC8MtPQ9k8uP6Lb/gw0XCYg489xqGDB+lIp9FUFWckwtJ4giWLF7Hw1luxz59/1mPEw2EGTrcWjc5eWiummkyU1TXQsHSFEcQam6lonofT55daMSGEEEIIIc5AUY0hofzVNSzefDVgdPs/1t9H36nj9J48Tu+hV+k73UZHKsnB2BDqMzvx7HoIXzRBmctD9YLFVK/fiGvtGmMwbfObiEFLb8fTso0P7Pq/vLz3UXacvpZ//7evc8tbbmPNmjVv+tx+dge0XX8Fo6fho4+cd9PG8MgI+x95hMNHjtAF6KqKKxJhmaazfOUK5t96K9aqqknPy1W7DmbDWH82kBXfK+bweCfXitU1YLZY3uwrFkIIIYQQ4rKnKAr+qmr8VdWloa2vl77WE/QcOUzvawfo6enkdDoNXcdRO47ive/b+FIZKoKVVC9dQfWVm3FdccX5D6Zt96G89SusXfUCLb/4c3453MJDDz3E4YOvcPs73oXX633Dr232BrRTT8Geb8GVn4amza+/PzDW28v+3/yGIydP0WNS0VUVdyzGKrOZFWvX0nLLLZg9nvz+yViUgdPt2RqxU9lmioUeFIvvFau4qSVfM+YKlEmtmBBCCCGEEJeQoiiTa9o0jdG+HnpPnaBn/8v0HH6NrsF+2tMROPgCpleewxtLEDBZqKxroHblFVRt3Ypj6bJzG0y7cROBT+3k9373L7y4eye7Wjfzja/9C2992ztYsXLlG3odszOgJULwyz+Csvlw3f86665Dra3s37GDo6dP02e1gqLgSSa4wuli5caNNF1/ParVSmhwgLajhxhoO5Vvpjja15M/js3lMnpQvM7oQbGyaZ4M8CyEEEIIIcQMpqgqgZo6AjWl97QN93TRe+QwXftepO/kcdpHhzk13ANP9WB+4tf44inKXR6qmudTu24DlVuvwlJbO3UljNmKes3/5Mrld7Lg5/fw864gD/7sZxw9sJe33Pk+HA7HeZV5dga0x74IYx1w906wTu5Bse/QYQ489ihHu3sYdBhd0PvTGda7rSzdtAlnUwODne20tbey5//7KwZOt5KIRIwnZ6tLK5pbWHbNdVQ0zaOyuQVPeYXUigkhhBBCCDHLKapKeV0D5XUNLL/+JsDo8n+oq4Pul/bS9fI++k+3cSIa4ljbEWg7guUn38Of1giWBaleuJj6K7cSvHJzaW/uwQUEP/4gd+/7Ic/seJCnjmdo/+d/4I53vZd5i5aeoTSTXbSApijKLcBXARPwLV3XvzRhuw34AbAOGALeq+t62+se+OSTsPc7sPmPoHETYLQ37d63jwNPPsmxwUFGsik1oGssUyBQFSSZjDHQ3sovv/2v6JoGgNlmo6KxmcWbr6ayeV52bLFmrPbzS7lCCCGEEEKI2Us1mYxO/BqbWX3HuwBjcO2BUyfpeO539Ly6n4GeLo5ERjm8/0XY/yK2r/8jZaqFiqoaapavpOHqa/AuX4Fp/e9xzdK3sOAXf81/H1f5wX0/4coldVz/zo9gOYc+KS5KQFMUxQT8G3Aj0AnsURTlIV3XDxXt9jFgRNf1BYqivA/4B+C9Zz2wnoGH/hjKF6Jt/0van36Gg08/zYmxUcazocyla1SERtDDIyRGh+kAOg6BuzxIZVMLCzZsznfc4a+uRlUvzgjgQgghhBBCiNnLZLZQvWgJ1YuW5NelEnF6Duyn67nf0XPsMAOD/fQMdnPgqW54aifOVJpyh5uq+iZqr7iSD9/k5JmnfsHzR+Dkl/+aO9/zQWrmLzvrz71YNWgbgRO6rp8CUBTlAeDtQHFAezvw19nlB4GvK4qi6Lqun+mg+lgXh9pqecm5nY6//hsSNjvoOiYtha23H3NoFLOu46lvoHL1mnwQq2hqweF54z2pCCGEEOL86LpORtPRdB1dp2RuTMY+WtG6wnbQtKLnkXt+Yf/Jxyw8nnhcdArbi4+lUfJYn7CfXlIu8vvo5Mpfuu/EMk3cV6dQvvwxi9cx8ZjF6yc/BwqvNX+c7PPIH3fyNh3jQf64+fWFx8bBi8uXW1U4FkU/iwnHyK0t3peibZQ8P1umoseTlpn6eUVFfV1jozG+cfS5c9jzzIpvdsnd+aIUrS2+G+b1tyslx1SU4mWlZD0oRcfL7Wusyy1n/5d/rjLhMcXPAVSl8HxQUJXS46q58mWXleJlJbePsb/x3MLzJj4u/XnG9uL91OLjZR+rCkXrlQn7Z9ephf1NE7abVKVkX+NxYVktOa5xrOL9TPn1pfubzFbq1m2kYf3G/L9hLDRO17PP0LXnRXpbTzAYGqWj7Si0HQVdx5vRmedP0VXdyH/+4H6uWXj28dIuVkCrAzqKHncCm860j67raUVRxoByYJAz6Ita+K/AHSi6ji0awz7cQVyxEfbUEq9bSspXTdpbgclswaQqmEMK6iEd85FWTKqKSQWzqqIqCmaT8Us3q8Yv3pz95ZtU4x84t5zfNmGd8Zj8cXP/oCal8By16Hn57WrxG6NwzNwbofj4uTeLKf9mkXvghBCzW/FJ7MQT7fM9ac9MOGHXtHM7Xm6/4n2NIPE6Pzv78zJa0Ql+0fOn2lebUPbSMhWXvXTfs22f6vVlzrRdO9vvYvLPOefnTvl6S/cHYOdvpvX9NttMPBEuPdEuOumFkpNxdcK+FJ2El5zIUxQKlKm3FR8bJpeB/M8oDRiFdYVj5rZRFDZKns/k4xRvz76S4gelv68Jy693mpQLAG9UaWDMPi4OqEUxsRA8i59fGlxLthcF43yIzi2XBGK9ZJ9JwXrK4D0hZBdtK74YAIW/9eLtuWOWXHzIHWfSMS4vuSBohDwVk7oZtWEzJlUhkBhlyeAhGsbaiaeHiYyFsMVOYq1bzJMnxs963BnfSYiiKL8P/D5AY3U9VyeW0KJXYTWZSft1BnSdDiXD8bjGAS3N6fERNHQy2TdiRjeuNmVyX45gfLmC8eUDhS+SGS5/5YLcFYbclQuyqT77Qc3kbaXPU/Lbcuun2j//wQ8lH/TFz83vT+FDvPT5Z9g3ty73wT/Fvrk5Z9xmbM192E58zsT1uWWKygATf07Rl80U+5Z8aQGJeJx9P9k16d+o+PGkf0dl6m1TfXlNteek572JLxs4l6uQU1zVnOo453C8qb+wpliX/T99iscTv6Ry2yceZ9IxJhyv8EU18bi5x3rJz9QnHAsKnx36hGOWrC/5kpzw83TjMyg/n3I/fdJxtYn7ZOfpdJqv7N1R+EIm9wVbKM/rHaPki3nK7YXjlHxBn2HfqdZfroo/Ayd+TqpFn8Uln6VQ+vmZ3Y/8/krpMafYv7Cs5L8H8vPcc9Szf54XylbYD3JhovQ7Jbd/MpnEbrOWvs6iY5/puBNfAxTKXrzvmb6TcuUv/g5Qp3jepMdFP4cz/AxKXnuubJSGnJLjZfctPuaE/aDws2emSZ/Os1Y4nMHtTkx3MS4R5QzLF8+k7zvO8L1Q8h0J2oQa3onfWRO/U7SikKpNtU/x95Sul3wPaXph/9L1+qTnFu9XcpGq6OdoJc/JXpxKgy0ODgI4yrZic26lPqNSbzZTYVEwKXAk0XXW3+XFCmhdQEPR4/rsuqn26VQUxQz4MDoLKaHr+n8A/wGwdt1a/bV39vOfz/+CdeNr2aKvIxCxsS6jsDGj8MGYjSSQcJoxVblwL/ITvKISa8B+1sLmfuGpjFa4kqpBWtPIZB8XrzP2Id90I60VmnEY++n55021r158zNz27BXJ3Lrceq1oX13PHZdJV0xLn1d6RbN4m5b9WbnXPLH5ycTHE6+almzXSq+w5I6fK2f+ja4XmpRMbrKiGW/mknWFE9KZTwEulw97cTa5K9+55h7kT+pKm3oogKpObu6hFB0jf4KsFO1TtH+uOYaSb9phPDeSCONze4ou2hj7lZRFLWqeUrRfcXOV/PGVwvHzTVSKmnm8XjOVqfZBKTRDUVWl5PeWa05TuBpZOGZ+u5JtdlL0OoqbtShF28/WTMY0xfZ8cxmm3q5M2G9ik5tcE5ji33Px9svN7t272b59+3QXQ4g8eU+KC0nXdcIjCYY6wwx2hhjsDDPYEWZsMIYdqLGoVNsgaDVa742qUY5XhQhsqOaaDe+EL5352BcroO0BFiqK0oIRxN4HfGDCPg8BHwaeA94FPHG2+88AVEXlM+s/w1sXvJW/feFv+UHvD1lVsYovrP4CvtMBxo8Mk+oOYwklcZwaRWsdo39nO3EFUl4bljo3vmXllK0ox2QvvHTjCx5M0mHIjKIXBcTi4Dapeh3QtUJNQ3HQK1T1F7YXX/XnTNvI1YYU7TdxXx327t3DuvXr88cplJ2S5gn59UWvrfRxySsvOc7UW6be/kZNPHeceCpZ2K5Msa6w9kzNVCY2i5m4Lb+slO6rUPqzi69yK2c7RlE5Jl7dpuhxSVOibKiaan3havtUbfdnzom3cfKxdbqLIYQQQswpmbTGcE/ECGMdYQa7jECWiKTz+1SWW6m1J1gWTFGZcgHQbRvktaYYNWvns2LlZlaYzi16XZSAlr2n7I+AnRjd7H9H1/XXFEX5v8BeXdcfAr4N/FBRlBPAMEaIOyfz/PP49k3f5tenfs2X936ZDzz+AT6w9AN8+q5P47IYv5DwQJSBlweInBhF64tiH41jH0uQODRE9091YhYTWpkde5OXwMog3vl+FNPMOdESheB8qarm34h+r4nltb7pLoYQQgghhLgAYuFkvjbMqB0LM9ITQcu2vTRZVMprXcy/ogKfI0NiqBtnb4rymAUiVk65BuhZNETj+iWsX/J2VEU97zJctHvQdF3/DfCbCeu+WLQcB979Ro+vKAq3z7+dbfXb+NeX/pUfHfoRO9t28j83/E9uaroJd4UT901NcFOT8fM0neFTYwwdGCTeNoYyFMfVF8HcHyW0p5dRIG4zoVQ6cc7zU35FEHu1a0ZdHRdCCCGEEEK8eZqmM9YfNcJYZzaMdYSIjCXz+zh9VoL1HppWlBOsd1Ne4yQ1NETHS0dxHR/Gk3SSxspRbw9tS4ZZsHE1Vzdf9abzw4zvJOT1+Gw+/vfm/83bF7ydv3n+b/jcU59jS+0W/mLjX9Dsa87vp6gK5Qv8lC/w59elEmkGDw0z+toQyc4Q5tEE7tPj0BFi6KkOkkDSbcFU7cKzOED56gosXtslf41CCCGEEEKINyYZT+drwwa7jDA21BUmnTS66FJVhUCNk7olAYJ1HoL1boINbhweK1o0xcDBDnr27UftMGPLWPApKof8bWTW2FiycS031V5zQSt1Zn1Ay1lVsYoHbnuAnxz9CV9/+evc+dCdfGT5R/jEqk/gMDumfI7FZqZmTSU1ayrz62JjCfr3DxA+NkKmJ4I1lMIeGiF9YpS+h1uJqQppnw1rffZ+tmXlqDa5d00IIYQQQojppOs6oaF4aa1YZ4jxwXh+H5vLTLDezfKr6ijPBrGyahcmS6EpYno0zuC+Nk7uP42n14JJV1FNSV4sO4a6xM0VG67kbRU3XLSWdnMmoIHRyccHln6Am5pv4p/2/hP/efA/efjUw9yz8R6ubbj2nH6JDp+Npm31sK0eMP6hx3siDO0fJHJyFPqj2Idi2EbixA8O0qkX3c/WnL2fbZ4P1XT+7U2FEEIIIYQQry+VyDDUna0NK6oZS8Yzxg4K+CudVDR6Wbq11qgVq3fj8tsmZQJd10l2hhg60MnYq924h60AjFuHeaGmHfvScjas28r7Arddktuf5lRAywk6gvz91X/PnQvv5O9e+Ds+++Rn2Va/jT/f+Oc0eBpe/wBFFEXBV+vGV+vOr9M0neHjo4y8Oki8bRxl2LifzdIfJfxiLyM6xO3G/WyOeT6CqytwFT1fCCGEEEII8fpy3dkXasSM5omj/dF899YWu4lgnZtFm6qNe8Xq3ZTXurGcpZWbntKInxpl9EAX0cND2KImMmi0Oto50diNZ0UVW1duZ7P/3Ze8T4o5GdBy1lev579u/y/uO3wf33jlG9zxizv42MqPcfeKu7Gbzz422tmoqkJwcYDg4kB+XSqRZvC1IcYODZPqDGEeS+I8PY7aEWLkqU56gITTuJ/NvchP+RWVOPxyP5sQQgghhBAA6WSG4Z5ISRPFoa4wiWihO3tv0E55nZuF6ysJ1nsor3fjLbejqK8fojLhJPEjI4y91kPq+BimtEpMSbDP/Ron5/dSuaqJaxfdwK2BBRfzZb6uOR3QACyqhQ8v/zC3NN/CP+79R/59/7/z0MmH+J8b/uc5N3s8p59jM1OztoqatVX5dYnxBAP7BwkdGybTHcEaSeE8NQqnRhl8pJWoqpDyWDHXefAsDlCxKojVabkg5RFCCCGEEGImKh3k2QhhQ11hRvui+TFezTYT5bUuFqyrNGrF6ozJ6jj3+KLrOqneKPEjQ4Rf6yfTGUVBYdA8wvPug7RV99G0cgk3zHsL7/UvmDG9t8/5gJZT5ariy9d8mfcseg9//8Lf89knP8vWuq38xca/oMnbdFF+ps1ro/7qOri6Lr8u0h9h6JUBIifH0PujOMeTWMeH0A8P0fPz44RNKhm/DWu9B9+yMoJLy7DYLpt/JiGEEEIIMYeU3CvWFcmHsalqxeavqyRYZzRR9AUd51QrNpGe1kicGiN2eIjooUH0sRQAx+ztvBA8wOnqIZYtu4KbW97NQv/CGRPKil12Z/4bazby07f9lAeOPMA3XvkG7/jlO/jw8g/ziZWfwGlxXvSf76p04brJlX+s6zqh9nFGDgwSaxvDNBjHPRTHNBwnc2CA05pOJNsJia3RQ2BFkOACH2aL9BwphBBCCCFmBl3TGR+K5wNYruOOsYFY4V4xm4nyOhcL1lcRrHO9oVqxqWTGE8SPjBA7Mkz8xAgkNVJqmn3OQzxffYDu6lGuXLSVO5s/xqLAohkZyopddgENjGaPH1r2IW5tuZV/3vfPfOvgt/jVyV/xuQ2f4+ammy/pP5qiKHibfXibffl1WjrD+IlRRl8dIn06hGM4jr0/ijIQJb2vj5OaTsRqgnKH0XPkinIqmryYrRLahBBCCCHExRWPpBjuDjPYGSnUjnVHSCcKPSj6KhwE69ws3lSdD2Lneq/Y69E1nVRX2AhkR4ZJdYUBGLNF+J3rZZ6vPMBgVZjr5l3Px5r/B0vKlsz4UFbssgxoOUFHkL+76u9416J38fcv/D2ff+rz/LT6p9yz8R4WBRZNW7lUswn/knL8S8rz6zLxFONHRhg7NITSGcY/msDaF4G+CKnnuzmiQcxmggoHznl+ypaWEWzwnLX3GiGEEEIIIc4kk9YY6Y0y1BXOB7Lh7jDhkUR+H5vLTLDOzdItNQTr3JTVuV63B8U3QouniR8fIX5khPjRYbRwCl3R6fIN8UTlczzn2k+yDG5uuZk/a/5fLCtfNqtCWbHLOqDlrKlcwwO3PcCDxx7ka698jXf/6t28d/F7+fQVn8Zn873+AS4Bk91C4IpKAlcUBtVOj8UZPzJC6MgI9u4QnvEkpp4I9ERIPNPJaxmdmN2MUunENd9P2UIfFQ3eN12NLIQQQggh5g5d1wkNxxnuytaIZe8VG+2NomlG+0TVpBCodlG70G/UiGW7snf5rRclCOm6Tro/mm+6mGwfB00nY9U5XtbJI/6neN6xH7vXxc3NN/N3zf/IyuDKWRvKismZepZJNfHeJe/llpZb+PrLX+cnR3/CI62P8EdX/BHvWvQuTOrMq4ky++yUbaqhbFMNkK3uHYgSOjpC+PgI3p4IZeEUancYusPEnupgf0YnbjejVDlxzfMTnOcj2OjG4bZO86sRQgghhBAXW655YqHDDqNWLD/AM+Aus1Fe56Z5ZZDyeqNGzF/txGRSL2rZtGSGxIlR4keHiR8dITNq1NTFyzUONp/g5zzKfusRypxl3NR0E19v+UNWV6xGVS5uuS41CWgT+Gw+vnDlF3jXonfxD3v+gb994W/56bGf8ucb/5z11eunu3hnpagK1ioX5VUuyrfVA0ZPNqmeCKFjI2gnRqnojWCOpSEb2sJPddCZ0YlaTahVTlzzfFQ0ewk2eHAHJo+0LoQQQgghZr5UMsNIT4Th7ghD3RGGu4z7xCKjRc0TnWbKal0s2lRNea2Lsjo35bUubJdo2Cdd10kPxPKBLNE6BhkdxaoSqsuwp+FV7k/9kg6lm4AtwI1NN/LHLZ9jbeXaGVl5cqFIQDuDxWWL+fZN3+ax9sf48t4v89GdH+Xm5pv5s3V/Ro27ZrqLd84Us4q1wUN5g4fy6xsB0GJpkp0hoqfG4MQojr4opmQG+iJovWHGn+6kM6MTNplQqxy4m70EG71UNHjwVzlQL/LVEyGEEEIIcW4yGY2xvhjDPZHsvWJGM8Xi3hNNZpVAjZP6xYH8PWLldS5c/kt/MV5LpEmcGCN+rLSWzFTpYGyVztO2vdwX+W9G0qN4VS83LLqB/9V8MxurN2JWL4/ocnm8yjdIURRuar6Jq+uv5ruvfpfvvPodnup4io+u+CgfWf6RS9It/8WgOszYFwawLwxQdrOxLjOWINkRItY2jnpqDF9/BCWtw1CM9GCU0Rd62J/WGUdBqXDgafJQ0eAh2OChrNaF1S5vJSGEEEKIiyXXjf1wt1ETNtxtNE0c6Y2iZYwkpijgq3QSrHOzaEMV5XVuympd+Cqm7wK7ruukeiLEj42QODZCon08W0tmwjrfx/DaDDtMv+WXAw8zEh/BlXFxfdP13Nx8M5trNmMxXZravJlEzqrPgcPs4FNXfIo7FtzBP+37J/59/7/zs+M/40/W/QlvaXnLnGj3avLZcPhsOFYEKcP4EEgPxkh2hkicDmFpHaN8IIqiAaEEyYNxRl7u59WMzmhGJ+O34WvwEmxwE6x3E6z3XLSbRoUQQggh5qp8hx3dEYZ7IoxkmyiO9EZIJ7X8fp4yO2V1LppWlFNW66asxkWg2jkjhl3KRFIkjo8QPzZC/PgIWsgYLNpS7cK1tZbuymF+ndrFjo6dDPYM4jA72F6/nZtbbuaququwmWzT/AqmlwS081DrruXL13yZDyz5AP+w5x/4i6f/gvsP3889G+9hVcWq6S7eBaWoCpZKJ5ZKJ661VUD2frbeCMnOEMmOEPb2EJVDMRQdSGWInxph+MgQRzM6L2R04jYzvvpcYDN6+ymrdmGyzP5AK4QQQgjxZui6TngkYYSw7L1iw9l5KlHosMPps1Je62L5VXWU1booq3NRVjOzWi/pGY3k6ZDRDf6xEWNcMh1UpxnbwgC2hX5OVwzwyMCj7GzbSc9rPVhVK1fXX80tLbewrW7brG2ZdjHMnH/ZWWRt1Vruv+1+Hjr5EF996at88Dcf5K3z3spn136Walf1dBfvolHMKtZ6D9Z6D1xprNMSGVJdYZKdIRydIZwdIWqLxsaIDUQY6hqn9WmdlzI6IR281U4jsGW7aA3WuXH6pLZNCCGEEHNPLoiN9BQC2HB2OVXUc6LDY6GsxsWSzTVGEKs1gpjdNfOa+Om60dIqcXyU+PEREifH0JMZUMHa4MV7fSP2xWW0O3t4sH0HO9t2cvq105hVM1tqt/DHa/6YaxuuxW11T/dLmZEkoL1BqqJyx4I7uLHpRr598Nt8/7Xv8/jpx/P3pznMjuku4iWh2kzY5vmwzSuMF5eJpEh1hkh2hrF3hnB1hqkPJQHQFYil0gwfG6b7lX4OZXTGM2BzWYxuXLMjzefaTFtmQDW9EEIIIcTr0bVs08Rs+DICWZSRntIaMYfXSlmNkyVX1lBW46Ss1kWgxjXjhzzKRFIkTo4a3eAfK+rco8yOc00F9oUBbPP9dKS6+HnrDna8tIMToydQFZWN1Rv52MqPcX3j9TNmjOGZTALam+SyuPjM2s9w58I7+ed9/8w3XvkGDx57kM+u/SxvnffWOXF/2vkyuSyYFpdhX1yWX5cZSxhNI4tDW3abrkLcZmZ0JE7f6RCtiQwhDVDAV+EwAlttIbx5KxyoqtS2CSGEEOLSy2Q0xvpjjPQY94UN90QZ6Y0w2hslnSrcI+b0WSmrcbF0Sw2BGpcRxmrc2N0zr0ZsKnpKI9E+ZtSSnRgl1W00W1RsJmwL/Hi2N2Bf6Mdc7qAn3MMv2n7FI7se4fDwYQDWVq7lC5u+wA1NNxB0BKf51cwuEtAukHpPPV/Z/hX29e3jy3u+zBee+QI/OvQjPr/h82yo3jDdxZt2+U5Ilht/oLqukxmOk+w0mkfaOsM4u8LU2FSwqehmhaTTQgiF/tPjHDowQCR78clsUQnUuCivc1FWa4S3sos4kr0QQgghLj/JeJrRvigjvUYAG+k1asPG+mNomp7fz11mo6zGRd2igNFRR7azjpnYNPFsdM3obTFxYoT4iVESreOQ1kBVsDZ68N7QhG2BH2u9B8WkMBgb5Jdt/82OF3bwysArAKwMruRz6z/Hzc03z+nbfi42CWgX2Lqqdfz4th/zm9bf8NWXvsrdO+/muobr+NP1f0qTt2m6izdjKIqCudyBudyBc3UFUNRzZEeIZGeIVFcYW3eEYEZjmccCVpW010bErDIUz9B9aIgjz/Xmj5kbbDEf2mqM9tsOz8xuMiCEEEKI6aHrOtHxJKO9UUb6jACWm4eL7qlXVAVfhYNAtZOWKyryPSb6q5wzqrOO85G/j+zEqNF08dQYWjQNgLnKiXtTtdHBR4sP1WbccjIaH+VXJ3/GjtYd7Onbg6ZrLAos4rNrP8vNzTfT4GmYzpc0Z8zOd9QMpyoqb533Vm5ovIEfHvoh3zr4Le74xR28b8n7+MPVfyhtb8+gpOfIddmeIzM6qf6ocU9btjMSc08EX0ZnngJKtR29zE7MZmYso9MbSnJibx+vZT9goHDTbS6wzZa23kIIIYS4MDJpjcSYzqmXBxjpixQCWW+UZKxwzmC2mQhUOald5CdQ5SJQ4yRQbYwjZjLP/ttWMmMJo3Ysey9ZZtzoI8Dkt2FfWo5tgR/7fD8mb+EcKZwM8+TJJ3mk9RGe636OtJ6mydvE76/6fW5pvoX5/vnT9XLmLAloF5HdbOcTqz7BOxa+g3975d+478h9/PLkL/mDVX/A+5e8H6tJAsLrUUwK1hoX1hoXrmxL0Xx3/11howfJrjC0j+PQdKoB1W9BXeQj5bYQUhQG4xn6B2IceaF3cm9JtS7Kql3ZtuHZ4OaxSFNJIYQQYpbJ14b1RY2midn5aG+U8aE4uqZzgoMAuPw2AtVOFm2sIlDtJFDlwl/txO23ocyh+9wzoSSJU2P5GrL0YAzIdn8/318IZOX2knOfWDrGbzt/y47WHfy287cktSQ1rho+tPxD3NJ8C0vLlsq50kUkAe0SCDqC/NXmv+IDSz7AV/Z+hS/v/TL3H7mfz6z5DLe03HJZdiTyZpR095+lpwqhLdc8UjkdwqvpeIEFTjOWFWVQbidqMzOa1hgcSTDSG+XoC70ki4KbzWXOh7WyaqMJQ6DGNec+tIUQQojZKBlPM9YfY7Q/G8D6jRA22hct+T43WVT8lU6CDR4WbqiiZ7idLdeum9XNEl9PJpIi2TpG/OQoiZNjpPujQLZjjxYfrk3V2Ob7sVS7Jp3TJDNJnu1+lkdaH+HJjieJpWMEHUHevfjd3NJ8C6srVksou0Tm5rtzhloYWMi9N97Lc93P8U/7/ol7nr6HHxz6AX+2/s+kI5E3SbGoWBs8WBs8QA1QGtqMmrYQqdYxTBmdciDoMGOtc2NZWYbmtxNRFYbDKYazbc9PvtTPocjkZg+BaqO5Q6DaSXxMJ5PSZPBtIYQQ4gLKpDXGB2PZABZjrD8bxPpiREYTJfu6y2z4K50s2lSNP/s97a9y4gnYS0LI7t2nqWzyXuqXclHlAlnilDGl+iJGT4sWFWuzF+faSuzz/Vhq3SimyeEqraV5sfdFdrTuYNfpXYSSIXw2H7fNu41bm29lXdU6TKoMeXSpSUCbBptrN/OTmp/w8KmH+deX/5W7d97Ntvpt/MnaP2FBYMF0F2/OKA1thqmaR4Z/1w0ZHQUI2kzU1LqxLglgua4ezW9nPJVhpC+W78Gp+8Qox17syx/z1I7deIMO/NVOAlXO7JdDtgcntzSXFEIIIaaSyWiEBuOMDRi1YblasbH+KKGhOHqho0RsLjOBKicNSwL4qpz4K43vW1+l47IaMzUTTpJoHc+GslFSvdkaMouKtcmLd2UTtvk+o6fFM9wzp+kaL/e/zCOtj/BY+2MMx4dxWVxc33g9tzTfwpW1V2JRZ1cPlHONBLRpoioqt8+/nZuab+LHh3/Mtw58i3f+6p28Y8E7+NQVn6LSWTndRZyTpmwemdaMjkiygS3VHSb8fI/RtSzGh15ljYu6OjfWzdVYat3oPitjQ3GefXIfNWVNjGSbVnQeGSFTNAaKzWnGX/RFkpsuty8UIYQQl6dMWiM0FM8HsLGBbG3YQMwIYUXd1VvsJvyVTiqbvSzaWI2/0pEPY7Oty/oLJTOWINE2RqJ1nETrGOm+okDW7MW7qgLbvLMHMjDuzzs0dIhHWh9hR9sO+qJ92E12rmm4hlubb+Wq+quwmWyX6mWJ1yEBbZrZTDbuXnE3dy64k28e+CYPHH2Ah089zF3L7uKjKz6K1zq3quJnIsWsYq11Y611FzoiyeikB6L5wJbsDhN9qZ/Icz3GDiYFS5WTRYpK4yI7ltVBLNUusKiEh+PGjcm9hRuUO4+OcPSF3pKfm2uSUXwV0F/pxBO0YzJJk0khhBCzQyqRYXwwZtSADUQZH8gGsYEY4eHSmjCL3YSvwkFlo4eF6yrxVRrff74KB07v5T2eaW6M2ERrIZBlhuOAcQ+ZtcmL84oKbPP8WOvcZw1kOcdHjudDWUeoA7Nq5qraq/jTdX/K9obtOC3Oi/2yxBsgAW2G8Nv93LPxHj6w9AN8/eWv862D3+Knx37Kx1d8nPcvfb9c1bjEFJOCpdplhK5cl/+aTno4Tqo72zyyO4yrTWH0oZPZJ4E56MBS66as1kVVoxvLldWYslf9kvG00Ywj16tUdjq+t49E0bAAiqrgLbfnQ5uvovDl5SmX8CaEEOLSyvWOODYQY3wwZgSwwRjjA3HGBmPEsl2159hdFrwVDqrn+fBtqsZXYXyH+Sqd0lNykdzA0Mm2MRJt4yTaxtFCxu9SdZqxNvtwb67F1uLFUjP1PWRTaR9vZ0frDna07eDE6AlURWVT9SY+sfITXNd4nQz3NAtIQJthGjwN/MO2f+CjKz7Kv7z0L3xl31f48ZEf86nVn+Jt898mN2pOI0VVsAQdWIIOWGUMrr37yd1ctXYzqXxNW4Rk+zix/QP555m8Viy1biw1Lly1bgItXkxrK/M3Luu6TjycmnQT9NhAlK7jo6QTmZIyeMrt+Iu+7LwVDnxBB96gHbM0mxRCCPEGJONpxgfjRgAbjDE+lFuOExqMkS5qvo8C7oANX9BB88pyvEFHIYRVOLA5L8/miK9HS2ZIdoRIto2TaBsjeTqEnv2ON/ls2Ob7sDV7sbX4MFc4z6vn6J5wDzvbdvJI2yMcGjoEwNrKtXxh0xe4selGyh3lF+U1iYtDAtoMtaRsCffecC8v9rzIP+/7Z7747Bf5/mvf5zNrP8O1DdfK1aeZQgGzz4bZZ8OxrPDhp0VTJLsjRm1bT4Rkd5j4sWHIfr8pNhOWGheWGhfWbHirbnRTM7/0qlbxVUuj7X40v9x7aqykO2EwxnXxBu35L0lvhcP44gw6pMMSIYS4jKWTGULDccaHjMBlBLA4oSFjOR5OlexvsZvwljvwVzpoXFZmfKdkg5inzC69F5+DzHiCRPu4EchOG0MAoemggKXKiXNNJbZmL9ZmL2a//byPPxgb5NG2R9nRtoOX+18GYHn5cj63/nPc3Hwz1a7qC/2SxCUiAW2G21izkftuu4/H2h/jay9/jc8++VlWV6zms2s/K13zz2Cq04J9gR/7An9+nZ7KkOqLkuqOkOwJk+qOEN3XV7ivTQVz0JkNbS4sNdlaN58Nl89GbdGxIFvzFkkZTU6ybf1zzU5OHxomOlba5MRsM+Ett+PN1rYZcwfecjuecvucHRNGCCEuB8l4mtBwnNBQdhqOlzyOTmiGqJoVPGV2vOV25jVUlHwv+IIObC6zXNQ7D3pGJ9VntKLJhbJMbjgAs4q1wY1nWx3WZh+2Rg/qG6xlHEuMsat9F4+0PcKe3j1ousbCwEJjbN3mW2jwNlzAVyWmi5yRzQKKonBT801c23gtvzjxC+595V7u3nk3W2q38Jk1n2F5cPl0F1GcA8Viyvcg6cqu0zXjhuBkj1HTZrRFL20iqbot+do2S3U2uFU4UMwqDrcVh9tKdcvk9uSpZIbxgexV0oEY40OxfPOVzqMjJU0nAexuSzasFUKbp9yOt9y4981ik+aTQggxHXRNJxpKEh5OEBqOEx6ZEMKG4ySKxu0EUE1GAPOU22laUY43WPz57sDls55XEzpRKhNOkjwdyk7jJDtD6EmjmYzqtWJr8mK9qg5bkxdLjeucOvQ4k3AyzJMdT/JI6yM81/0caT1Nk7eJT6z8BLc03yJDNM1BEtBmEYtq4d2L3s3t827nJ0d/wrcOfov3Pfw+bmi8gT9a80fM98+f7iKK86SoCuagA3PQASsr8uu1aIpkNrCleiKkeiOEn+2GdLYrLJOCpcJZGtyqXahFN19brCbK69yU17kn/Vxd14mFUowPGt0cjw/l5nGGusK0HRgkk9ZKnmN3WYzQVmbPf+m7y2z5x9KEUgghzp+u6yRjacIjufCVIDxSNB9OEB5JTPpMtthMxudwwEZVs7f0olqZ3egRUQLYBZEfQ7UjZNSQnQ7le1dEVbDUunCtr8ba6MHa5MXkt73p78NoKspvO3/LjrYdPN35NEktSY2rhg8t+xC3ttzKkrIl8p07h0lAm4XsZjsfXv5h3rnwnfzw0A/5/qHv80THE7x13lv55OpPUu+pn+4iijdJdVqwz/djn+/Pr9MzOunBaD6wpXoixE+OEn25v/A8lxlLVWloM1c5USd0HqIoCk6vFafXSvW8ybVvuau1oexN4sYV2gShIWMIgdOHhyfVwJksKu6AEdjcZfbCcsCGO2DMpRmlEOJyous6iUia8GgucCWIjCYIjyaI5ELYaILUhPuJFVXB5bPiDtipaPIwb01F/rPVU2Z8ptqc0gTxYsh1dZ/sCBWm7nD+AqnqsWJr9GDdVIO1yWN0d2+5MC1MEpkEz3Q9w87Wnezu3E0sHaPCUcF7Fr+Hm5tvZnXFavk3v0zI2dIs5ra6+eQVn+R9S97Htw9+m/uP3M9vWn/Duxa+i0+s+oQMdj3HKCbFCF9VrpL1mUjKCGzZ0JbqixJ5sRc91+OWAuYyO+ZsYLNUOY3gVu44Y5e9xsmBce/blAEue9KRv78hd6KRbWrTcWiYyFgC9NLnWe0mXIFcaLPh9hsnGi6/LTtZsbukJk4IMfOlkxkiY0kiowkiY0XBq3gaS5JJldZ8KQo4fcZnYFmNi4ZlZfmLWLmLWk6fDVVqvy6JTCRFsjNEqiNEsjNMsiOEFjE6TFEsKpY6N+7NtVgbPFgbPBekdqxYSkvxXPdz7GzbyROnnyCcCuO3+bl93u3c0nILayvXSg/elyEJaHNAwB7gcxs+x13L7uKbB77Jg8ce5Ocnfs57Fr+Hj634mHStOseZXBZME2vbcmO2ZWvb0n0RUr1R4oeGCqHJrGCpdBqhr9qJOTs3+V7/y0dRFOxuC3a3hYpGz5T7ZDKaccIynMhfPY5kryCHR4ymlNHx5KQQZzKruPzWQmjz5eZWXD4bTp+xTWrjhBAXmq7rpOIZouNJouNGwIrmQth4Ir8cHU+WjF+ZY7ao+c+uqhYfLn/uQpQNV8CG22/H6bWgyniW00JJQ/zkKKnOMMnOEMnOEJmRbEceCpgrHNiXlOXDmKXaiXIR/q3SWpq9fXvZ0bqDXad3MZYYw2PxcH3j9dzScgubajZhUWWogsuZnOHMIdWuav5q819x94q7+eb+b/Ljwz/mwWMP8v4l7+ejyz+K3+6f7iKKS6RkzLaVwfz6fE+SfdF8rdvEZpKKzWTUslUZzSNzy+p5Di5qMql4yx14yx1n3CcX4iKjyZKrzrmr0APtIdpGB0vH38ky20yloc1rzB0eK06fNd+E0+GxypVoIS5zqYQRumKhZDZ8Gcux7HJkzAhk0fEk6eTkzxvVnGtVYKWsxkX9kjLjcye7LhfKpNnhzKEl0qS6IiS7wqS6QiS7wswbUBnkIACmgM3ouOvKWiz1bqx1btSLeOFP0zVe7n+ZR1of4bH2xxiOD+M0O9nesJ1bW25lS+0WrCbrRfv5YnaRgDYHNXga+Nur/paPr/w49x64l++++l0eOPIAdy27iw8v/zBeq3e6iyimSXFPksW0aIpUf5RUb5RUX4R0X5TYa4NoewpXiBWH2Qhrlc7S4PYmOgc5lxCXu4HeuJJtXNGOjGWvZGfnA+0h2kNDk+7jAKM5kd1jxemx4vBY8qEtNy9e53BbZLBvIWaBTFojHkkRC6WMoBVKlixHJyxPvGc2x+Y04/TZcHqtRo2Xz4oze7HH6TM+NyR4zXxaPE2qO0yyK5wNZGHSg7F8Cw3Va8Va56bPF2HR1Suw1rkxuS9+GNJ1nQODB9jRuoNH2x+lP9qPzWRjW/02bm25lavrrsZuPv/xz8TcJwFtDmv2NfOlq7/EJ1Z+gm+88g3+48B/cP/h+/m95b/HXUvvwm2d3LufuDypTgu2Zh+25sL9Zrquo4VTpPqiRhPJfqPmLXpwEP3FdNFzzZgrjMBmrswGuEonJp/1gpzQKIqCzWnB5rRQVuM66765q+S55knRsdKr5dHxJL2nxs56wma2mXC4LcaUDW323Nxtwe4y5o7sss1lkRo6Id6ETEYjHk4Rj6RIRFLEw2niEeNxLJwiHk5m59nHoSTJKS7GAKiqgt1jMYYg8VjwBn3GxRlv6cWZ3LLpTXR9LqZHJpQk2R0m1W2MJ5rsDpMZiue3m7xWLHVunKsrsNQbnXiYPEYYe3X3bhyLyy5q+XRd59DwIXa27mRn2066I91YVAtb67byp+v+lO0N23FZzv5dJoQEtMvAfP98vrL9KxwdPso3XvkG//bKv/HDQz/kQ8s+xAeXfhCPdep7iMTlTVEUTB6r8cVWPOB2PrhFsuEtSqo/SuzVQbSiezIUqwlzpSMf2CwVTsyVDsxlZ+6c5M2y2Ez4Khz4Ks5cI5eTSmSyV9eNZk6xcKpwFT6cJB5KER1PMtQVJhZOTbrRP08Bm8OcD242pwW7y4zNZcHuzM5dFmxOc35udZixOy2YLHJyKOYGXdNJxtMkotkplma8Q+fQ77qN4BVNG+ErkiYRNR7nQthUNd85Jouavzji8FjxBh04PNkLJG5r4UKKx5jbHGbpWn6O0DWd9FCsMNxMd5hkdwQtVBhw21Rmx1rrwrKuCkutuySMXdKy6jrHRo6xs20nO9p20BHqwKyYubL2Sj695tNc23CtnGuJ8yIB7TKyuGwxX73uqxwaOsS9++/l3175N35w6Af5oCZNH8W5KA5u9gWBkm2ZcJJ0f5RUfyw7jxI/MYr2UuEeN0wK5nK7UetW6cRc4TDCW4Xjorb/n8hiM2GxOfAGXz/M6bpOOmk0qYrnruRHkvnl3NX/eDRNPJxktC+SP1E9G7NFNQKb0whzVkdhsjlM2XnRersZq8OExWbMrTazhDzxpmXSGql4hmQ8TTI7T8UzJGNpI3TF0sZyzFiXf5wNZLl1Ezv8Aej43RHAqNmyucz5CxhOn5VAjdO4sOEq1ExPXDZbVWlaeBnQ4ulCT8RF43/meyNWFaMDj4V+I4jVurDUXtx7xs7FiZET7GzfyY7WHbSNt6EqKhurN/KxFR/j+sbr5d5/8YZJQLsMLStfxr9e968cHjrMvfvv5RuvfIMfvvZD7lp2F3ctu0uCmnjDTG4rJrcV2zx/yXotniY9ECPVHyU9UAhw8cNDUFQxpXqsWCocmCscRoDLzk1+27ReFVcUJRvoTHjKzv1+AU3TSRbVFCRi2dqDSDq7bDxORtPEo2mi40lG+qLZk+E0WmaKM94JVLOCNRvYEmmNoRf3YbEbZbVmy5x7bLGZMVtVzFYTFqsJs61o2apisZkwW0yYrCpmsyo1ETOIltFIpzTSSY10KmPMkxnSyQyppEY6UVhO5ZYTU0zx3LIRxlLxzKQBkKeiKJRcQLDaTbj9Nspr3VidZmxO42KCzWmEMJvDzIFDr3DVNZuxOc1YbCYJWgI9o5EejGU7qSp0VpXvSRGj2byl2oVrYzWWGrcxrmeVE2WGNEdtHWtlR9sOHm17lBOjJ1BQ2FC9gQ8t+xDXN14vPWeLC0IC2mVsaflSvnrdVzkyfIR799/Lv+//d3506Ed8cNkHuWvpXfhsk8e/EuKNUO3mfLfFxfS0RnooZoS3QWOeHogSPTCIHiuqfTIrmMuNXinNFQ7MwcKkzuBx01S1MBzB+dJ1nUxKK629yNVsxNP52o5UPLstkaanM47ZqhqdqmQHv82dmJ/LSfhEJrOK2apisqiYLUaYM1tUTGYV1azml00WFZNZwWQxGXOTimpSUM3GetU0Ya4ay4qqGPvlpuxjRVFQVGNSVQUU43dprDcCM4oRGnL/9rkweW7vBR1dN5pQ6Xr2sWb8zsEI1rqW264XPdbQsuu1jLFey2jGcn4qPM6kNbSMRiatF+ZpjUx2WyZlhC4tbcwzaa1kvRHIMmSSGpr2+mF90r+fRc1fWCieHB4LFrspH+wttsk1sxZHbntu2/kHrOM9ynld0BBzh67pZEbiRo/B/VHSvZH8MrkLT9laMWujF8tGY5gXS437gt2/fCG1j7fzaNuj7GjbwbGRYygorKlcw19u+ktubLqRoCP4+gcR4jxIQBMsKVvCv1z7LxwdPsq9++/l3v338sNDP+R9i9/Hh5Z9SK4GiYtGMav5wbeLGxrquo4WSWUDW4zUYJT0YNy41+3IcOELHlDsZqOZZLndCG3l2fBWbkd1zt5xZBRFMQKR1YTLZzun5+zePcD27Wum3JbJGLUsqYSWrWnJZGtdNGM5W+OSTmUDQjKTDwmZ4uVUIUTE4ulCsMgHjEII0d9AqJirVLNihNlseDUVhdtc0LU6zMa6XPi1qlhyNZoWFbPFlK0BzS7bsjWfViNAldSOWlUZa0tcdLqmkxlNkBrI3o/ca3Qole6LFponAiafFXOVC/eiAJZqV75H4JlSKzaV0+OnebT9UXa27eTIsNFUd3XFau7ZcA83Nt1Ilatqmkso5jIJaCJvcdli/vnaf+bYyDG+deBbfOfV7/Djwz/mXYvexUeWf0Q+jMQloyhKoblkS2lNrp7RyYzGCzVug8aUaBsnun+g5D4Y1WkuCWzmcgem7Fy9zLrNNplUTE4Vm/PS/cx8DVNaJ5Obp7VsjZReWvOU2ze7rbgGS9eytVq6Xqj10nWylV/Ger2wfC6UXI1ctiaO/HJRjV1uUjBq9lQFNVu7V1rzp5Y+zoUws4qarTG8nN5rYu7RMxrpoXj+3uJ0f5TUgNFUvTiIqR4LliqjeaI5OxSLpco57feKnauOUAePthmh7PDwYQBWVazi8+s/z03NN1Htqp7mEorLxez4ixGX1KLAIv7fNf+PT17xSb518Fvcf+R+fnL0J7xjwTu4e+Xd1LnrpruI4jKmmIzmjuZyBywu3aanNNLDMdKDcaPp5FA2vJ0aI/pKf0l4U2wmI7iV2bPHs2Mqs2Mus2PyTe89b3OFqiqoqglmb0WmEJeVTCRFeiA6qdl5eigORTXiJp8Nc5XTCGLZ4VUsVc5Z2WqhM9SZryk7NHQIgFXBVXxu/ee4qekmatw101xCcTmSgCbOqMXXwt9d9Xd8cvUn+c6r3+HnJ37Oz47/jNvm3cbHV36cFl/LdBdRiBKKpdBkciI9pZEeyQW3wjzVHSb22lDJyQcmBbPfhqk8G+DK7JgCxtwcsM3KkxAhhADQkpl8ywPjIlbcWB6IlgyVQvZimKXSiWN5sDBsSoUT1WaavhdwAeRqyh5tfzQfylaUr+BP1/0pNzXfJBeixbSTgCZeV72nni9u/iJ/sOoP+N5r3+PBYw/yq5O/4oamG/jYio+xPLh8uosoxOtSLKpxlbdychs/PaOTGUsYtW/DcTLDcdLDcdJDcaIdodIOSwDFbsIcKA1tuWWT3zZrmvMIIeYmLZHOXoiKkxnOXowaMAKZNp4s2Vf1WDEHHThWBEt60DUF7HOqJUFHqIPHxh7j33/97yWh7M/W/Rk3Nt8ooUzMKHIWIc5ZlauKezbew8dXfpwfH/4xDxx5gMfaH2NTzSY+vvLjbKreJPdZiFlJMSn5mrKpaNEU6ZEEmZFscBuJkxlJGM0nj4+U3IMB2Y5LcqEtYMPkz82NaSb3PCmEmPl0TUcLJY1WAcO5IFZoGaBFUiX7qy4L5qAD+wJ/SS+45nLHrK8NO5tcRx+Ptj2av6dMQpmYDSSgifNW7ijnM2s/w90r7uanx37KDw79gE88+gmWly/nYyuNwRlVZeb2zCTE+VKdFqxOC9S5J23TdR0tnDJC22jCCG7Z5fRQjMSJUfRkpvRJZtVoQum3YfIZc3Nu2Wc1QpxNPp6FuFzlerLNjCRIj8bJDGdr+EcSRhAbjUO6+KZaMHltmMvtOJaVG50hFd1feznV6reOtfJY+2M82vYoR0eOAsY9ZX+27s/w9Hp45w3vnOYSCvH6Lp+/WHHBua1uPrrio3xg6Qd46ORDfPfV7/Knu/+UZm8zd6+4m9vm3YbVZJ3uYgpxUSmKgsljxeSxQuPk7bquo8fSxonVaILMaJz0WG45Qfz4CFooWdKBCRidmOQDnNdqBDivDdVn/CyTz3bZ9UQpxFyhpzUy48ns50GSTO6iTu5Cz2hics28w4y5zI6lxoV9WTnmMpvR1LrMjtlvR7FcvhdGT46eNEJZ+6McHzkOGF3if37957mx6cZ8Rx+7B3dPYymFOHcS0MSbZjPZePeid3Pngjt57PRjfPvgt/nis1/kay9/jQ8s/QDvXvRuGfRaXLYURUE5Sw0cFJ2sjSWKpiTp0QSZ8QSpnjBaKDX5iWYFk9cIcCavleCYQkjpRPVmQ1x2rtjPf5BhIcQbk/97Hjf+jvN/06MJ4+LMWAItnJp0UUZ1WTAFbFiqnNgXl2EKZAOY34a57PKqBXs9uq5zbOQYj7U/xmPtj3Fq7FR+8Oh7NtzDDU03SJf4YlaTv3ZxwZhUE7c038LNTTfzXM9zfO/V7/HVl77Kfx74T+5ceCcfWvYhat21011MIWYcxaye9R44yJ70hZKlJ37ZZW08Sao7gndEYay9dfLxLSpqtpbP5LGguo1l1WMxxpvzWFHdxvLlfBVeiLPR0xqZcAot93cYMiat5G8yUdoTYpZiNWHyGzXflmpXoUlz0Vy1zt17wS4EXdc5NHSIR9sfZVf7Lk6HTqMqKuur1vO+Je/j+sbrqXRWTncxhbggJKCJC05RFLbUbmFL7RaODB/he699j/uP3M/9R+7n5uab+cjyj7C0fOl0F1OIWUUxq5gDdsyBM4e43U/uZtvmq/JBbqoTyVR/FO3U2JQnkZBtWuk2QpzqsmSXLZhcuXVmVJcVk8uM6rSgmCXQidlLz2ho4ZQRvMLJwjyUnUdS+b+lKf9mlGzNl8+GKWDD2uQxarV91pK51GK/MZqusX9gP7vad7GrfRfdkW5MiolNNZv4yIqPcF3DdZQ7yqe7mEJccBLQxEW1pGwJX7r6S3x2zWf50eEf8eCxB/lN62/YVLOJ31v2e1xVd5V0KCLEhaKAajej2s1YKiYPJ1BMT2tkItnagFytQChpdEwQThnz4RjJ0+NGj3D61MdRbCZUl8U4SXUaoU0969yMYpWTVXHh6ZqOFkujRVNo0bSxHEnlp0zRsvE4jR4/w4WKXK2zy4K53IGp2WvUNOeaD3sKNc+KSb7DLqS0lmZf3z4ea3+MJ04/wUBsAItqYXPtZj55xSe5tuFauW1CzHkS0MQlUeOu4fMbPs8frP4Dfnr0p9x3+D4+/finafG1cNfSu7h9/u04zI7pLqYQlw3FrGL22cBne9198ye+4WT+xFaLptDCKWMeSZGJpsmEU6T6omixNHoic+YDqtkg6TCjOIy56jAX1tnNqHYTqt2Mkp+bUR3ZZatpTo3PJAy6rkNaQ4tn0OJp9OxcixmTXrSsxdLGftFUNoidOWwBYFKMiwjZiwmWgB17dtlo3ptt+purPZ7DXc/PRMlMkud7nmdX+y6e7HiS0cQodpOdq+uv5vrG69lWvw2P1TPdxRTikpGAJi4pr9XLx1Z+jN9b9nvsbN/JDw/9kL95/m/415f/lfcseg/vW/I+aUMuxAyjqAqm7MntudLTWmltRnGtxoRJj6VJjSTyj9HOUF1XXCaLatTe2c0oNhOK1YRqMxnrso8Vq2qsL1pWrCajdiQ7L0zGY0yK1O6dA13T0VMaeiqDniyda9m5p0sh/Fw3WiKDnsygJzKly8mMEcISGSN8xTOv/2+vKvlArziMmllz0IHJaUFxmKeuxXVZjPeI/LvOKNFUlGe6nmHX6V083fk04VQYl8XFNfXXcGPTjWyt2yoXbsVlSwKamBYWk4W3znsrt7Xcxkv9L/HDQz/kWwe/xXdf+y63NN/Ch5Z9iGXly6a7mEKIN0gxq4XhB87DGWtRipbzJ/ol87TRO1725D8XFs7UNPPMBc+GP7MKZmOumJXsvGi9SUExKWDKLWfDXW6dqoBqhFtMCihKdl12HwVQjLlC6eP88tl/UcZry851bYrHmp6fo+nomaJ1GWOupzVjOaOhp3XIaOjFj1Maelozwli6MJF5/V9sFSqjB08Wfq/WiQHaGErCkqspteVqTLPLNlOhdjUbyBSLKkFrFhtLjPFU51Psat/Fs93PksgkCNgC3NR8E9c3Xs+VNVfK8DxCIAFNTDNFUVhXtY51VevoCHVw3+H7+O/j/82vT/2atZVr+cDSD3Bd43VY1HO/ci+EmL0URQGLCZPFdN7hbiJdz9byJLOBLZmttUnmQkfRclJDT+eCnWYElFQ2vKRLw4keS0NaKwSd/LIRanJB6FxqAi8pBSNEqtnAmA2aJYHTrKLkQqddRfFY84E1H1QtJmPZouZrJPNzi1FbqVpNvPDSHjZv21LYJsHqstQf7efJ00+y6/Qu9vbuJa2nqXJW8c6F7+SGphtYU7kGsyqno0IUk78IMWM0eBq4Z+M9fOqKT/Hfx/+bB448wOee+hyVzkreu/i9vGvRuyizl013MYUQs4SiKChWE0xj9+UlNVl6oebKqO0CdB1dx3igUagBw8hTZ6UWat4U5QyP8zV2yiW/by/tBJNbakMuR61jrTx++nGePP0kBwYPANDsbebDyz/MDU03sLx8uQR2Ic5CApqYcTxWDx9e/mHuWnoXT3c9zX2H7+NrL3+Nb+7/Jre03MIHln6A5eXLp7uYQgjxuvLNGqe7IEJcRJqu8drgazzR8QSPn36c1jFjPMbl5cv5zJrPcF3jdczzzZNQJsQ5koAmZiyTamJ7w3a2N2zn1Ogp7jtyHw+dfIiHTj7EFRVX8P4l7+eGphukvboQQghxiaUyKfb07uGJjid4suNJ+qP9mBSTMXD04vdxXeN1VLuqp7uYQsxKEtDErDDPP4//deX/4rNrP8svTvyC+4/czz1P30PZnjLuXHgn7170bmrdtdNdTCGEEGLOCifDPNP1DE+cfoKnu4yeFx1mB5trNnP92uvZVrcNv90/3cUUYtaTgCZmFY/Vw4eWfYgPLv0gz3U/xwNHH+A7r36H77z6HbbVbeO9S97LltotMvi1EEIIcQH0Rnp5quMpnux4khd6XyCtpSmzl3FT801c23AtV9Zcid1sn+5iCjGnSEATs5KqqGyt28rWuq30hHv46bGf8rPjP2P3rt3Uu+t5z+L3cMeCOwjYA9NdVCGEEGLW0HWdoyNHebLjSXZ37ObQ0CEAGj2N3LX0Lq5rvI5VwVWYVBnMW4iLRQKamPVq3DV8Zu1n+OTqT7Lr9C5+cvQn/NO+f+JrL3+NG5pu4N2L3s36qvVyc7IQQggxhdz9ZE92PMnuzt30RnpRUFhdsZr/sfZ/sL1hu3TyIcQlJAFNzBkWk4VbW27l1pZbOT5ynAePPcivTv2KR1ofodnbzDsXvpO3LXibdNUvhBDisjcSH+Hprqd5quMpftf9OyKpSP5+sk+t/hTb6rdR7iif7mIKcVmSgCbmpIWBhfzFpr/gT9b9CY+1P8aDxx7kK/u+wldf/irXN17Puxa9i43VG+VeNSGEEJcFXdc5OXqS3Z27+W3nb9k/sB9N16hwVHBL8y1c23Atm2o2yf1kQswAEtDEnGY327l9/u3cPv92To6ezNeq7WzbSYOngTsW3MHb5r9NugIWQggx5yQzSfb27eW3nb9ld8duusJdACwtW8ofrPoDrmm4hqVlS+VipRAzzAUPaIqilAE/AZqBNuA9uq6PTLFfBjiYfXha1/W3XeiyCFFsvn8+92y8h/+x7n+wq30XPzv+M7728tf4t1f+jc21m3nHgndwbcO1Mq6aEEKIWWsgOpBvuvhcz3PE0jFsJhtX1lzJx1Z+jG1126hyVU13MYUQZ3ExatD+HHhc1/UvKYry59nH90yxX0zX9Ssuws8X4qxsJhu3zbuN2+bdRkeog1+e+CW/PPlLPvfU5/DZfLx13lt5x4J3sLhs8XQXVQghhDgrTdd4bfA1ftv1W37b+dt8r4vVrmpun3c72+q3sbFmIw6zY5pLKoQ4VxcjoL0d2J5d/j6wm6kDmhDTrsHTwB+t+SM+ufqTvNDzAj8/8XP+6+h/8ePDP2Zp2VLevuDt3Npyq3QsIoQQYsYYS4zxXPdzPN31NM90PcNwfBhVUVldsZrPrv0s2+q3sdC/UHpdFGKWuhgBrUrX9Z7sci9wpnp0u6Ioe4E08CVd139xEcoixDkxqSa21G1hS90WxhJjPHzqYX5x4hd86cUv8eU9X+aququ4ff7tXNNwDTaTbbqLK4QQ4jKi6zpHho/wTNczPN31dL6DD5/Nx9barVxdfzVX1V6F3+6f7qIKIS4ARdf183+SouwCpupV4QvA93Vd9xftO6Lr+qTRghVFqdN1vUtRlHnAE8D1uq6fnGK/3wd+H6CqqmrdAw88cN7lFeKN6k5282LkRfZE9jCeGcehOljrXMtG10ZabC1EIhHcbvd0F1MIAMLhsLwfxYwh78c3J5qJcjR+lEOxQxyKH2I8Mw5Ag7WB5Y7lLHMso8naJB18nAd5T4qZ5Nprr92n6/r6qba9oYB2NoqiHAW267reoyhKDbBb1/Wz3syjKMr3gF/ruv7g2fZbv369vnfv3gtXWCHOUUbL8ELPCzx06iEeb3+ceCZOo6eR5epyPnXtp2j2NU93EYVg9+7dbN++fbqLIQQg78fzpekah4cO80zXMzzT9QwHBg+g6Roei4fNtZuNWrK6qwg6gtNd1FlL3pNiJlEU5YwB7WI0cXwI+DDwpez8l1MUKABEdV1PKIoSBLYC/+8ilEWIC6K4CWTkygiPtT/Gr07+ih29O3jkF4+wvHw5b2l5C7e03EKls3K6iyuEEGIWGIoN8VzPczzT9QzPdj3LSMLo9Hp5+XI+vvLjXFV3FSuDKzGrMiqSEJeTi/EX/yXgvxRF+RjQDrwHQFGU9cAf6rr+cWAp8E1FUTRAxbgH7dBFKIsQF5zL4uKOBXdwx4I7+MWuXzBWY9yz9o97/5Ev7/0yG6s3ctu827i+6Xq8Vu90F1cIIcQMkcwkebn/ZZ7tfpbnup/j8PBhAMrsZWyt28rWuq1srtlMuaN8mksqhJhOFzyg6bo+BFw/xfq9wMezy88CKy/0zxbiUvOb/dyx/A4+vPzDnBo7xSOtj/CbU7/hi89+kb95/m+4uu5qbm6+mWsarsFlcU13cYUQQlxCuq7TOtbKs93P8mz3s+zt20ssHcOsmLmi8go+s+YzbKndwtJyGSxaCFEgdeZCXCDzfPP49BWf5lOrP8VrQ6/x8KmHebTtUZ7oeAKbyca2+m3c1HwT2+q24bQ4p7u4QgghLoLB2CDP9zzP893P83zP8/RF+wBo9jZzx4I72Fq7lfXV6+WinRDijCSgCXGBKYrCiuAKVgRX8PkNn+eV/lfY0baDx9of47H2x7Cb7Gyr38bNzTdzdf3VMnioEELMYtFUlH19+3i+53me63mO4yPHAfDZfGyq3sSVtVeypXYLde66aS6pEGK2kIAmxEWkKiprq9aytmot92y4h5f6X2Jn204ea3+MR9sfxWF2cFXdVVzfeD3b6rfhsXqmu8hCCCHOIqWleHXwVV7oeYEXel5g/8B+UloKq2plTdUaPrv2s2yu3cySwBJMqmm6iyuEmIUkoAlxiZhUExuqN7ChegN/sfEv2Nu3l8faH+OJ00/wWPtjWFQLV9ZcyQ1NN7C9YTtl9rLpLrIQQlz2NF3j2MgxXuh5ged7nmdf3z5i6RgKCkvKlnDX0ru4svZK1lSukRYRQogLQgKaENPApJrYVLOJTTWb+MtNf8mBgQPsat/FrtO7+Ktn/wpVUVlXtY7rG6/n2oZrqXXXTneRhRDisqDrOqfGTvFi74vs6d3Dnt49jCZGAWjxtfC2+W/jyporWV+1Hr/dP61lFULMTRLQhJhmqqJyReUVXFF5BX+2/s84MnyEXad3sat9F1968Ut86cUvsaRsCdsbtrO9YTvLypahKMp0F1sIIeYEXddpHW9lb+/efCgbjg8DUO2qZlv9Nq6suZKN1RupclVNc2mFEJcDCWhCzCCKorC0fClLy5fyx2v+mNaxVp7qeIonO57kPw78B/fuv5dKZyXXNlzL9obtbKzeiNVkne5iCyHErJHr+n5v315j6t3LQGwAgEpnJVtqt7CxeiPrq9dT766XC2JCiEtOApoQM1iLr4UWXwsfWfERhuPDPN35NLs7dvPQyYf4ydGf4DQ72Vy7mavrruaquqvk6q4QQkyg6RrHR46zt28v+/r2sa9vX76GrMJRwYbqDWys3siG6g00eBokkAkhpp0ENCFmiTJ7GW9f8HbevuDtJDIJXuh5gd0du3m662keP/04AIsDi9lWv42r669mZXAlZlX+xIUQl5dUJsVrQ6/xcv/LvNT3Evv69xFKhgCoc9dxVd1VrK9az7qqdRLIhBAzkpy9CTEL5Qa+3la/DV3XOTF6gqe7nubpzqf5zqvf4T8P/ideq5ettVvZWreVLbVbqHBWTHexhRDiggsnw7wy8Aov9b3Ey/0vc3DwIIlMAjAGh76p6SbWVa1jfdV6atw101xaIYR4fRLQhJjlFEVhYWAhCwMLuXvF3Ywnx3m++/l8YHuk7REAFgYWsqVmC1tqt7C2ai12s32aSy6EEOdH13W6I9280v+KMQ28wrGRY2i6hkkxsbRsKe9Z/B7WVq5lTeUayh3l011kIYQ4bxLQhJhjvFYvNzXfxE3NN+Xvvfhd9+94tvtZ7jtyH98/9H1sJhvrqtaxpXYLV9ZcycLAQlRFne6iCyFEiVQmxeHhw/kwtr9/P/2xfgAcZgerKlbxh6v+kDVVa1gVXIXT4pzmEgshxJsnAU2IOUxVVBaXLWZx2WLuXnE3sXSMfX37+F3X73iu+zm+vPfLAARsATZUb2BTzSY2Vm+kydsk92UIIS4pXdfpi/ZxYOCAMQ0e4LXB10hqScC4f2xDzQauqDCGJVngXyD32Qoh5iT5ZBPiMuIwO7iq7iquqrsKgN5ILy/0vMCLvS/yfM/zPNr+KABVzqp8WNtYvVHu2xBCXHDRVJRDQ4c4MHiAgwMHOTBwIF87ZlWtLC1fynuXvJc1lWtYXbGaSmflNJdYCCEuDQloQlzGql3V+Z4hdV3ndOh0PrA93fk0D518CDCuXK+rWpe/0V56PhNCnI+UluLEyAkODh7ktaHXeHXwVU6MnkDTNQAaPA1sqNnAyuBKVlesZnFgMRaTZZpLLYQQ00MCmhACMDobafI20eRt4j2L34Oma5wYPcGe3j3s69vHM13P5ANbhaMiH9jWVa1jvn++3MMmhAAgo2VoH29nT3gPz7/4PAcHD3J0+Gi+Z0WfzceK8hVsb9jO6orVrAiuoMxeNs2lFkKImUMCmhBiSqqisiiwiEWBRXxw6QfRdZ3W8db8QK97e/eyo20HAB6Lh1WVq/L3hqwMrsRlcU3zKxBCXGxpLU3rWCuHhw9zaOgQh4YOcWT4CLF0DADHmIOlZUt57+L3sjK4kuXB5dS766UGXgghzkICmhDinCiKwjzfPOb55vHuRe/Od3e9r29fvoe1b7zyDXT0fLhbXbE6P0mzSCFmt3g6zsnRkxwePsyR4SMcGT7C0eGjxDNxwLjHdUnZEt6x4B0sK19G5FSE99zwHunIQwghzpN8agoh3hBFUahz11HnruNt898GQCgZ4uDAQV4ZMMYo+vWpX/OToz8BjO7/VwZXsiK4In8lPegITudLEEKcwUh8hKMjRzk6fJTDw4c5OnyU1rFWMnoGAJfFxeLAYt616F0sK1/GsvJlNHubMamm/DF2d+6WcCaEEG+AfHIKIS4Yj9XDlrotbKnbAhj3opwYPcGrg69ycPAgBwcP8p8H/zPfMUCtq5YVwRUsDy5nadlSlpYtxW/3T+MrEOLyksgkODV6imMjxzg+cpzjo8c5NnKMwdhgfp8qZxVLy5ZyfeP1LClbwuKyxdS56+S+UyGEuEgkoAkhLhqTasqPw/bORe8EjK61Dw8fLoS2gYP57v3BCG1Ly42wlptXOCum6yUIMSektBQd4x2cGD3BydGTnBw7yfGR47SPt+drxWwmG/P989lau5WFgYUsCixiSdkSAvbANJdeCCEuLxLQhBCXlNPizPf+mDMaH+Xw8GFjGjLmj59+PL+93F7O4rLF+U5LFgUW0eJrwWqyTsdLEGLGSmaSnB4/Tet4ayGMjZ6kbbyNtJYGQEGh3lPPAv8Cbmy6MR/GGj2NJU0UhRBCTA8JaEKIaee3+9lcu5nNtZvz68LJMEeGj+Tvfzk2coz7Dt9HUksCYFbMNPuaWRRYxMLAQhb4FzDfN59ad62cZIo5Tdd1RhIjtI210TrWakzjxrwr3JVvQqxg3Ce6wL+Aa+qvYb5/PvP982nxteAwO6b5VQghhDgTCWhCiBnJbXWzvno966vX59eltTSnx09zbORYfnq5/2V+0/qb/D42k40WXwstvhbm+4wT0nn+eTS4G2TgWzGrjCXGOD1+mvZQuzEfb88/DiVD+f1sJhtN3iaWlS/jtnm30extzv8NSBATQojZRwKaEGLWMKtm5vnnMc8/j1tabsmvDyVDtI61cnL0JKfGTnFy9CQHBg7wSOsj+X1Miok6d11+MO7c1OxtpspVJR0eiEsuo2Xoj/bTGe6kM9RJR6iDznAnXaEuTodOM5oYze+roFDjqqHR28hbWt5Co6cxH8JqXDVSayyEEHOIBDQhxKznsXpYVbGKVRWrStZHU1Fax1s5NXqKtvG2fA3E3r69+YF0waiBqHfXU+/JTu7CvM5TJ7UQ4g1Ja2n6o/10h7vpifSUzLsj3XSFu/L3hYFxEaHGVUO9p54bmm6gydNEo7eRJm8T9Z56bCbbNL4aIYQQl4oENCHEnOW0OFlevpzl5ctL1uu6zkBsgPbxdtrG22gba6Mz1ElnuJM9vXuIpqMl+5fby6nz1FHjqqHGVUO1qzq/XOOqwWfzySDcl5m0lmYwNkh/tJ++aB99kT5jnl3uifTQH+3P95CYU2Yvo9ZVy+LAYm5ovKHkokC1q1rGDRNCCCEBTQhx+VEUhUpnJZXOSjZUbyjZpus6o4nRfGDLNT3rifRwZPgIT55+Mt9RSY7D7KDKWUWls5IKZwWVDmNesuyowG62X8qXKd6AeDrOcHyYgdgAg7FBBqODDMYHGYhmH8cG89tynXHk2Ey2/PtqfdV6atw11LpqjSDvNsK8vAeEEEK8HgloQghRRFEUAvYAAXuAlRUrJ23XdZ3h+DC9kV56Ij35qTfSy2BskFf6X2EgOjApxAG4LW7K7GWFyWHMy+3llDnK8Nv8+Kw+fDZjcpqdUjP3JqQyKcaSY4wnxhlNjDKWGGMsOcZofJThxDAj8RGG44X5cHy4pOlrjoJCmb2MoCNI0BlkgX8BVa4qqpxVVLuqqXIay1KTKoQQ4kKQgCaEEOdBURTKHeWUO8pZHlw+5T66rjOeHKc/2s9AdID+mDEfjg8zFB9iOD5MR7iD/QP7GUmMTKqJyTGr5pLA5rF6cFlceCweXNbs3OLKrz8eO07ZQBl2sx2H2ZGf7Cb7rOlEIqNliKVjk6ZoKmrM01EiqQjhVJhwMkw4FSaUDBFJRQglQ/nHY4mxSU1Vi1lUCwF7gHJ7OQF7gEZvY0l4DjqCBB1BKhwVBOwBaXoohBDikpFvHCGEuMAURcmHqoWBhWfdV9M1xhJjDMWGjNqdxCjjiXHGEsbyWHLMqPlJjDEQHaA11WoElGR4ylq6r//m61P+HKtqxW62YzVZsapWrCYrFpMlv2xVjccmxYSqqKVztfBYQUFHB4wgCuQf515PRsuQ1tNktAwZfcKyliaRSZDMJElmkoVlzVgu7jTj9ZhVMx6LB7fVjdvixm11U+uuLQm1uWWv1WvMbV78Nj9ui1tqu4QQQsxIEtCEEGIaqYqab1J5vpKZJOFUmEgyQigV4nd7fseSFUvytU7xdLxQC5UxHiczSVJaKh+QUlqKpJYklUkRSUXI6BkjZOmZwrJWWJeTCzcKpXNVUTGrZkyKCZNqwqSYSh5bVSseqycfDG0mmxEQi5adZme+9i+/bCnUCObCmPRqKIQQYi6SgCaEELOU1WSlzGQ0yQPot/dzdf3V01wqIYQQQrwZMjKrEEIIIYQQQswQEtCEEEIIIYQQYoaQgCaEEEIIIYQQM4QENCGEEEIIIYSYISSgCSGEEEIIIcQMIQFNCCGEEEIIIWYICWhCCCGEEEIIMUNIQBNCCCGEEEKIGUICmhBCCCGEEELMEBLQhBBCCCGEEGKGkIAmhBBCCCGEEDOEBDQhhBBCCCGEmCEkoAkhhBBCCCHEDCEBTQghhBBCCCFmCAloQgghhBBCCDFDSEATQgghhBBCiBlCApoQQgghhBBCzBCKruvTXYZzpijKANA+3eUQokgQGJzuQgiRJe9HMZPI+1HMNPKeFDNJk67rFVNtmFUBTYiZRlGUvbqur5/ucggB8n4UM4u8H8VMI+9JMVtIE0chhBBCCCGEmCEkoAkhhBBCCCHEDCEBTYg35z+muwBCFJH3o5hJ5P0oZhp5T4pZQe5BE0IIIYQQQogZQmrQhBBCCCGEEGKGkIAmhBBCCCGEEDOEBDQhhBBCCCGEmCEkoAkhhBBCCCHEDCEBTQghhBBCCCFmCAloQgghhBBCCDFDmKe7AOdCUZTbgdudTucn6uvrp7s4QuRpmoaqynUOMTPI+1HMJPJ+FDONvCfFTHLs2LFBXdcrpto2q8ZBW79+vb53797pLoYQebt372b79u3TXQwhAHk/iplF3o9ippH3pJhJFEXZp+v6+qm2yWUEIYQQQgghhJghJKAJIYQQQgghxAwhAU0IIYQQQgghZggJaEIIIYQQQggxQ0hAE0IIIYQQQogZQgKaEEIIIYQQQswQEtCEEEIIIYQQYoaQgCaEEEIIIYQQM4QENCGEEEIIIYSYIczTXQAhhJgzdB0ySUjFIJ2AdLxoShhTJgmZFGQS2XnSmNJJ0FKgpY31WmaKx2nQNdAzxmNdK8z1DMv6eqH/u4BulCU/n4KiAErpsqKAYgJFBTU7z02qydimmo1l1WxMJsuEx1ZjnckKqqWwnFtvtoHJZsxzk2nCsirXDoUQQly+JKAJIS4/ug6pKCRCEB835skQJMKQjEAynJ0i2XVhY/9UzFiXihUep2KQikAqG8Q4QyB6Q5RsADIXglFJgDIZYSa7zh2Lgz5APmwVz8FYnhTcJoS5XADUNdCKlzPZYKgZQVFLGwFS1y7g680y2cBiB4sTzHawOLJzZ3a9AywusDqNdVbX5LnNDVa3sWzNLtvcxnEU5cKXWQghhLhAJKAJIWandBJiIxAbzs5HIT4K8bEplscgMW5MuUCmZ87t5+RO8ktCgQMc/sI6i8MIDmaHUQtkyc7N9gmTtag2KTvl1uVrm3KBzHLeNUkv7t7N9u3bz+s5b1ouxOVr+tKFWsHiGsLccq4WMV+jmCitYUwnIB0rhN90vHQ5OpQNytFsSM5O50pRweoBW9Fk9xY9zi7bfaWTzVu6LLV8QgghLhIJaEKI6adpRqCKDEJ0ECID2eUhYzk6BNFhI4xFs6EsGT77MW1esPvB4TPm/qaiE3Fv0Yl50cl5cW1LrjZGTsTPTlUB1QiWFsf0lEHTjFCXjBq1mcmo8f5IhIpqRCOFx4lQdsqG9egwjLQX1qcir/MDFeO9Y/cbQd0RKCzbs48dAXCWgaOsMHcEjEAuhBBCnIUENCHExaHrxsluqAfCfRDuz059RugK9xXWRwbPXKNl94Gz3DjBdVdBxdLsCW/xSXB22Z4NY3af0QRQXB5UNRuuXUDFmz9eJp2tbR0rTBMf52ppc7W3492FZS115mNbPeAMGO9pZzk4g8bcVbwcNJZdQeO9LE0yhRDisiIBTQhx/rSMEa7GumC8E0K9xglqqNcIZKEeGO+ZuiZCtRhBy10J3jqoucJYdlVkT0rLC8vOcqlxEJeeyWwEf2fZ+T9X141aulzz23zNb7Ypbv7xkDENHMs22zxDrZ3Javw9uILZedGU+zvKzR1lUuMrhBBzgAQ0IcRkiRCMni5MY50w3pUNZF1GANPSpc8x2cBTDZ4aqF4JC28qPHZXFZ1EBqRGQMxdimJ0RmJzg7/h3J+XjBZCW3TQqFWOFDX3jQxApB8Gjhq1zpnEFD/blA1slYW/OU+1Mbmzf4ueamO7yXLhXrMQQogLSgKaEJejVBxG22G41ZiPni6anzau9BczWcFbC74GaNoKvjqj9svXYKz31krwEuLNsDqN6VxCXa758MSmwvnlAQj3Qs8BI9RN6mlTMWrkPNXgqS38DXtqwFtTWCfNK4UQYlpIQBNirkqEYegEDJ+CkVYjjI20GfPxLkq6gzc7wN9oTHXrC8v+JvDVG82ppOmUEDODkuukxAvl88++r5YxglyoB0J9hXtC802Su6Frr1FzN5HFVXQxpg689UWP6425zX1xXqMQQlzGJKAJMZtlUkaN1+BxI4wVT6Ge0n1dlVDWAs1XGfNAizH3NxlNnuRKuRBzj2oqNHM8m3SicO9orhnzeHehefPxw0awmzjOnyNg1KT7GozaP1+DEd78DViSo0Ztn3y2CCHEeZGAJsRskE4YoWvgiHEPSm4+dLK0xzhHGZQvgPnXGVfWyxdA2TwINBvdyAshxFTMNuNzItB85n3SyWxwy96POtZhBLixDqOmvvWpkuEvtgLscZbWyOeWA03GY2kaLYQQk0hAE2ImyaSNE53+16DvNeg/bISx4VOF+0gU1aj9qlgCi2+F4CIjiJUveGO9zgkhxLkwW41gFWiaeruuG0MPjBrB7fjex1kYtGXvb22HjheMIQqK2byFYFjWUlgOtBg1cdKZiRDiMiQBTYjpEhmC3gPQf8gIY32vGWEsHTe2KyajFqxyGSy/EyoWG6GsfAFY7NNbdiGEmEhRCmMS1qyiq9fJwu3bS/eJjRY6JRppL3RW1H8Yju2ATLLoeCajtq1sXulUPt+ofZMhOIQQc5QENCEuNl03mgX17M9OB4z5eGdhH1clVC2HDR835lXLIbhYgpgQYm5x+I2pZtXkbZpmdFoy0lbo0Gik1WjK3bnHGCw8R1GNGray+YUWBOULsuGtUQaqF0LMahLQhLjQQr3Qtc+Yul8xwlh0MLtRgeBCaLwSalYb44VVrQB3xXSWWAghpp+aDV2+eqMzo2K6bgzyPXwKhk9m56eMe3MP/KQ0vJmsRhPJ8gUQXGA0Aw8uMj57HYFL+5qEEOINkIAmxJtgSkeh9beFQNb1UrYLe0A1Q8VSWHSLEcZqVhs1Y9IttRBCnB9FAVe5MTVsKN2m68ZQAiU92Z405iceK2026aoohLXgIqOlQsUio/dJ6axECDFDSEAT4lzpunHFtuMFOP08dLzIVQNH4Jlst9OBFmjcDPXroW6dUTtmcUxvmYUQYq5TFGOoEHclNG0p3ZZJG/e5DR6HwWPZ6Tgc+iXERgr7Wd1GYKtYUrjft3IJ+BplDEghxCUnAU2IM0knjOaJp583QlnHC8ZVWgC7D+o30ua6gpat74K6tdKDohBCzDQmc3bIkfmw+JbSbZEhGDxaOnzJySdg/32FfcwOI7BVLoOqZVC51Fj21EiNmxDiopGAJkROKg5de6HtGWPqeBEyCWNboAUW3AANm4ypYgmoKu27d9OycPu0FlsIIcQb4CoH15bJtW6xERg4lg1uR4weJk8+Xhrc7H4jqFUuNYJb1Qrjsd17SV+CEGJukoAmLl9nDGSK0cPYho9D02ao3wiequkurRBCiEvBEYDGTcZULDIEA4eNwNZ/CPoOwcEHYW/R2G7+pmznT8uN0Fa13LjAJ80khRDnQQKauHxoGvQdNJqwnHzSaLpYHMg2fsLoOaxxs9ENtBBCCJHjKgfXVaU9TOo6jHVmx7I8aMx7X4WjvwFdM/axuo2wVr3S+K6pXmXUvJlt0/M6hBAzngQ0MbeNdxth7OQTcGp3obv7yuyYYy1XSyATQgjxxigK+BuMqfget2TUqG3rew16DxrjX+6/H/b8p7FdNRtN5atXGaGt5gojwEkvv0IIpjmgKYpyNfDBbDmW6bq+5XWeIsTZZVJGzdixHXDiceMLEoyuledfZ0zztoO3ZlqLKYQQYg6zOo3efOvWFdZpmjHwds9+I7T1HoATu4rubVOMniRrr4DaNRLahLiMveGApijKd4C3Av26rq8oWn8L8FXABHxL1/UvnekYuq4/DTytKModwJ43WhZxmYsOw/HHCqEsMWYMVNq4Ga54vxHKKpfLPQBCCCGmj6oWepRccWdhfagXul+Bnleg+2U49ZQx+DaQD211a7OBb63RXFKaRwoxp72ZGrTvAV8HfpBboSiKCfg34EagE9ijKMpDGGHt/5vw/Lt1Xe/PLn8A+NibKIu4nOi60SXysUfg6A7ofNFo6++qhGW3GwNDz9sONs90l1QIIYQ4O0+10TyyuInkxNB24nGjiSSAajFq1nKhrXatEeLkIqQQc8YbDmi6rv9WUZTmCas3Aid0XT8FoCjKA8DbdV3//zBq2yZRFKURGNN1PfRGyyIuA7puNAs5/BAcegiGjhvra1bDts/DopuhZo18QQkhhJj9JoY2XYfxLujal51egv0/gT3fMrbbvEZYq9+QndbL2JxCzGKKrutv/MlGQPt1romjoijvAm7Rdf3j2ccfAjbpuv5HZznG/wF26rr+7Bm2/z7w+wBVVVXrHnjggTdcXjHL6Bre8eMEB5+lYuA5HPE+dFRG/SsYqNjMYHATSVv5tBYxHA7jdsv9AWJmkPejmEnk/XiR6RrOaBee0HG848fwjh/BHW5Hweg9MuqoZdy7iHHvEsa9iwm7m0AxTXOhp5e8J8VMcu211+7TdX39VNumvRdHXdf/6nW2/wfwHwDr16/Xt2/ffimKJaaLrkPnXnj1QaOmLNRtNOeYtx2WvQ1l8W0EXOUEgEXTXVZg9+7dyHtSzBTyfhQzibwfp0EibDSL7NyDs2MPzs4Xqe7bbWyzuo2atYYrjTHe6jdcdrcCyHtSzBYXOqB1AQ1Fj+uz64Q4u8ETcPC/4MB/Gb1cmWyw8EZY+tdG80XpBl8IIYQ4O5vbGKctN1abrsNoO3TsgY7n4fQL8NQ/ADooqjGQdsOV0HglNG0Bb+20Fl8IYbjQAW0PsFBRlBaMYPY+jA5AhJgs1Aev/swIZt0vAwq0bDPuKVt6O9i9011CIYQQYvZSFAg0G9Oqdxvr4uPQuQc6XjCGpXnlvsL4bIFmaNpqhLWmLRBoMY4hhLik3kw3+/cD24GgoiidwF/puv5tRVH+CNiJ0XPjd3Rdf+2ClFTMDak4HPk1vPJjY+BoXTMG6rzp72DFO2V8MiGEEOJisnthwfXGBJBJQ99BaH8O2n8HRx8xvqMB3NWFsNZ8NVQslsAmxCXwZnpxfP8Z1v8G+M0bLpGYm/oOwUs/gAMPQGwEfI1w1Z/CqvcYH/hCCCGEuPRMZmNg7No1sPlTxoDag8eMsNb+rDG99t/Gvq5Ko/lky9XQvM0Y000CmxAX3JvqxfFSURTlduD2urq6T/zoRz+a7uKIc2RKx6gYeIaansfwjR9FU8wMBjfRU3MTI4FVRvv3WU56hBIzibwfxUwi78c5Qtexx3vxj75KYOQg/tGD2JLDACSsZYz6VzLqX8FIYDVxR9U0F/bs5D0pZpKz9eI4KwJazvr16/W9e/dOdzHE6+l+BfZ+G179b0iGIbgY1n0YVr0XXMHpLt0FJT1CiZlE3o9iJpH34xyl6zB0Etp+C61PQ9vTEBkwtgVajF6X519rNImcYWOxyXtSzCSKoszcbvbFHJFJw5FfwfP3Gj1FWZyw/E5Y+3vQsFGaQAghhBBzgaJAcIExrb/bCGwDR437yk/thoMPwr7vAgrUXgHzrjVCW8MmsNintehCzBYS0MSbEx2Gl74PL34LxjvB3wQ3/z2suQvsvukunRBCCCEuJkWByiXGdOUfQiYFXS/BqSeNwPbsv8Iz/2RcuG2+ChbcAPOvl/vXhDgLCWjijek7BC/ca4xblo4Z3eO/5f/BoltANU136YQQQggxHUwWYyDsxk2w/c8hEYK238HJJ+DELjj+qLGfv8kIawuuN84hLrNBs4U4Gwlo4tzputGr09NfMT5ozXajF8ZNf2gMdimEEEIIUczmgcW3GBPAcCucfBxOPA77HzDuWVctxmDZi26GhTdDcKHUronL2qzoJER6cZxmuk7Z8D6a2h/EN36YpMVPZ/1b6am5mZT18h5MWnqEEjOJvB/FTCLvR/F6FC2Fb+wwZcMvUza8D3ekHYCYvZqh8vUMla9n1L8CXbVckJ8n70kxk0gvjuKN0TQ4/JBRY9Z7ALz1sPWzsPZDYHFMd+lmBOkRSswk8n4UM4m8H8V5G+2A4zvh2KPQ+hSk42BxGb1CLrrZuI3CXfmGDy/vSTGTSC+O4vxkUkYvTM/8kzFYZdl8eNvXjW7yzdbpLp0QQsxKuq6TTqdJpVKk02nS6TSZTCa/PPFxJpOZNGmaNunx2SZd1yfNi5dz5ZpqnqMUNTXLLRfPVVVFUZSSSVVVBgcHGRgYQFXVSZPJZCpZPtNkNpsxm80lyxMni8WCxWJBVWf/2JqXPX8DbPi4MSWjRhf+x3YYge3IrwHF6Bl68VtgyVuNniSFmIMkoIkCTYNXfwZP/i2MtEHlcnjnt2H5O6TjDyHEZUHTNJLJJMlkkkQikV+euC6VSuXnUy3nglgujOXmF4qiKCUhZ2L4KQ5OE+fFy0A+2EwMXznFgW3ici4wFoe/3BSNRunt7T1jeCwOmBeCyWTKh7Xi4Ga1WkumietsNlt+Xjzltk/8fYhLxOrM1prdbNwD3/cqHPkNHH0Ydv2VMQUXw5JsWKtdCxLSxRwhAU0YH3wnHofH/xp6D0LVSnjf/dkeGeXDTojZQtd10lo6P2X0DCktVfI4o2XI6Bk0XSOtp40TZb2wTtd1NIpOtrP/afq5nUSriopCNgQoKipqYTm7zayaURUVk2IyJtWEWTEb4UIxYVbNWFQLZtWcX1aV1/8symQyxOPxkimRSEy57kxTKpU659+3qqolJ/y5ud1uLwkJxWGheN2ZaoaKa4+mqlXKBbGZ7lybk+m6PmVtYW4qrmGcasoF4YmBuDg4R6PRkmCdTCbP6TUoioLNZsNut+eniY8dDgcOh6NkOTeZTHJx84JQFKheaUzb7zGaQh59xKhVe/Zr8Mw/g7salr4Vlr0dGreASU5xxewl797LXec+4ypU29NGl7d3fgtWvFOCmRAXQEpLEU1FjSkdJZ6O5+exdIx4Jk4slZ2nYyQyCeLpOMlMknhmwjwdJ6WlSGaSJLUkyUySVCZlrMs91lLww+l+1W+eqqlYNStWzYotY8OiWbBrdmPS7dg0G1bNikWzYMlYMGfMmDNmVO31P7cUi4LJYsJkMWG2mo1aEp8Vl82F3WaccDvtTlx2Fy6HC5fdNam2JRfE5OT7wlAUJR9OLxVd10vC2sSgXrxuYtgfHR0tWXc2VqsVh8OB0+nE5XLhdDqnnFwuF263G7vdLjV258LfAJt+35hiI3D8MSOsvXIf7PkWOINGWFv6NqMLf9OF6WREiEtFAtrlavAEPPF/4dAvjQ+yW/8frPuo3GMmBEawCiVDhJIhxhPjxjw1TiQZIZwKG1MyTCQVKVmOpgthLJKKGIHpPJgVMzazDZtpwpRd57A4sKpWrCYrFtWSn+eWuzu6md8yP1/rlKuNyk25x6qiGjVWiopJNeVrs4pruVQl2xwuWxuW/6/o5HHivUr5+ja9UOuW0TIk40nisTjxWJxELEEyZjxOxVMk4glSsRTpRJpU3JjrmbN0XqUCFtDNOrpFR3NoZEwZYqYYaTVNUk2SNCVJkCCuxIkRI0qUqB4lrIdhqnNfHYhnp7HSTSbFhMPswGl24rQ4cZgdOMwOXBYXbosbp8U55bLL4sJj9eC2uHFb3XisHhxmxznVBIqLT1GUfOh+MzRNy4e1WCw25RSNRvPT4OBgvjZvKqqq4nK58pPb7c7PPR4Pbrc7v2yz2STMATgCxpA/q95j3Ld2YpdxbnPwQdj3PbD7jSaQy96OosnvS8wOs6IXR+lm/8KxJEdpab2Pmp7HyJisdNbfQUfD28mYndNdtFlJuuyd2dJ6mkgmQlgLE9EiRDIRolqUiJadZyL55agWJabFiGpRkvrrN3+yKTYcqgO7aseu2LGrdmyqDZtiK8wVm7FesWFVrdgUGxbFgk21YVWs+WWLYsGqWDEpb65G5lK9H3Vdn9RcrHiaeE/Wmb5niu8Zmmqaqmngm6m10nWdNGlSWoqUniKhJ0jqSVJ6thZSL5q0JAk9QUIz9ilejmtxEnqiZH4u7xkFJf9ecagOnKozP59q2WVy5R87Veebfn9cavL5eGa5ppvFfysT/6aKl6f6G8o1sZ3q/rni++hmQ3PYi0HNJAmMvEzFwLMEB1/EnImSNDkZqthCf+XVjARWwiz7mxJzi3SzL0DLwL7vwuP/F5IRWP8x2PZ5cFdMd8lmNemy99LKaBlGEiMMxYYYig8xFBtiOD7MUHyIkfiIMSVG8svhVPiMx7Kb7HhtXvw2Pz6bD6/Vi9fqxWP14LF68su5udvqxmMx5k6zE9MM7Djnzb4f0+k04XCYUChEKBSacjkcDhONRqc8YbRYLCVX/XNNuoprBIqbeV3KJm0XW0bL5GtOi2tWQ6kQ4eSE5VSY8eS4UTubKtTSRtPRs/4Mj8WD1+bFZ/Phs/rw2/0EbAH8Nn9huWhdwB7Aapq+VhHy+Xhh6LpOPB4v+Rucaj4+Pj7lPZQulwufz3fGyeVyzf2auHQCTu2m9/FvUD2yF5JhcFUanaCteKfRM+Rc/x2IGUe62b/cde6Dh/8Uel4x2mK/5ctQsXi6SyVEXiKTYCA6wEBsYMr5YHyQodgQo4nRKTursKgWAvYAAVuAgD1AXbCOMnsZfps/Pw/YA3ithUBmN9un4ZVOD13XicVijI+PMz4+nj+ZmziPxWKTnqsoSr5Jlc/no66uLt/MqnhyuVzYbLZpeHUzg0k15cP9G5XSUoSTRngbS4zl52OJMcaSY4Xl7NQV7mIkMUIoGTrjMd0WN2X2MgL2AGX2svwUsAcot5dT7iin3F5O0BHEa/NKE8wZSFGUfKcjFRVnvqiaC3K5v/Pc3/bY2Bjj4+MMDAxw4sSJSSHObDbj8/nw+/0EAoH8PLfscDhmf4Az22DRzRzptlG9dRMc22n0Wr3ve/DiN8HXCCveASvfbXREIsQ0k4A2l0WH4fH/A/u+D+4qo8v8Fe+Uq0Tikgonw/RGeumP9tMX7aM32ktfpI++qDH1R/sZS4xNep5ZMVPuKKfSWUmdu45VwVX5k8mSuaMcj8Uz+08g3oR4PM7Y2BhDQ0Ps3buX8fHx/ElZbj5VF+8ulwuv14vP56O+vh6v15u/z8Xj8eDxeHA6nZdtE6lLLX+hwR44r+eltBRjiTFG46OMJoxpOD6cr1Eejg0znBimM9zJgYEDjCZGyeiZSccxK2bK7GWUO8opc5QRtAepcFYQdASpcFSULF9OFzhmi+IgV1VVNeU+uYs1Y2NjJdPo6CgjIyN0d3dPulBjs9nyga2srIyysjLKy8spKyvD7XbPvs8HiwOW32FM8XE48rAR1p79Ovzuq1C1Ala/zwhrnurpLq24TElAm4s0DV7+Iez6a4iPwZWfgu1/DnbvdJdMzDGarjEQHaAn0kNPpIfucHd+uSfSQ2+4l1Bq8tX9cns5Va4q6tx1rK1cS6WzMn8CmJv7bX65mo9xQhWJRBgZGSk5mSo+uYrH4/n9Dx48iKIoeDwevF4v1dXVLF68GK/Xm59y4Ut6IZwbLKqFoCNI0BE8p/01XWM8MZ5vJjzVfDA2yPGR4wzHhknrk8O9x+Ih6AxS6aykyllFhaMiv1zprKTCWTFlCBTTS1GUfBPjmpqaKffJ9VQ5MjKSn4+MjNDf38/Ro0dLxq0zm80loa28vJxgMEgwGMTpnAX3ttu9cMX7jSkyBK/9N+x/AB79X/DYF2HetbD6/bDkNmNcNiEuEQloc03fIfjVZ6BzDzRuhtu+AlXLp7tUYpbSdZ3x5DidoU46w510hbvoCnXll7vD3ZN6KvRavdS6a6lz17GhagPVrmpqXDXGyZurikpHJRbp8jgvN6Bv7mRoqmli7Zfdbs/fP9LY2JhvnnTy5Em2b9+O2+2W8CXOSFVU/HbjvrX5/vln3VfTNUbiIwzGBhmIDTAYGzSWs02Q+6P97Ondw0B0YFKQU1Co+GkF1c5qqlxVVDmrqHYZy9XOaqpd1QQdQcyqnIrMJHa7nerqaqqrJ9ceaZrG2NgYw8PDJdPg4CDHjx8nkymEcofDkQ9ruamiogK/3z8za91c5bDxE8Y0eNwIagd+Av/9cbB6jPHVVr8PmrbKUETiopNPxblCy8BzX4cn/hZsXrjjXuOD5DJu9iXOja7rDMWH6Ah1cHr8NKdDp+kY7+B0yFieeH+Lz+ajzl3H4sBirmu8jnp3PTWuGmNy1+CyuKbplcxcmUym5Er0xGniWEoOhwO/309FRQULFy7E7/fnJ5/Ph90+dfOywcFBfD7fpXhJ4jKhKmq+KfFiznzvci7I9Uf7jSnWz4uHXsReYacv0seJ0RM80/UMsXRp8zmTYqLSWZn//Mh9llS7qql11VLrrsVpkZqLmUJV1Xxzx/nzS8N97nNuaGiIwcHB/HTs2DFefvnl/H4Wi4VgMEhlZSUVFRX5uc/nmznBLbgQrv/fcO0X4PSzsP9+eO2X8MqPINACa+6CKz4I3qlrIYV4sySgzQXDrfCLT8Lp54yxPm7/KrjOramLuHxEU1Hax9tpG2+jbayN1vFW2sbaOB06TSQVye+nKiq1rloavY28JfgWGjwN1LvrqffUU+euw22VbrOnkkqlGB0dnXRleXh4mNHR0ZJeD00mU/4kp7GxMb8cCATOGsCEmKmKg9zS8qUAVHRXsH3r9vw+uq4TSoXoi/TRG+mlN9przCO9dIe7eaX/FXZGdk6qifPb/Pla+Tp3XX5ZAtzMYjKZ8s0cFy1aVLItFosxMDDAwMAA/f39DAwMcOrUKfbv35/fx2q1UllZSXV1NVVVVflpWjsfUlVovsqYbv1HOPwr4xaSJ/4Gnvw7WHgTrP09Yy4tQ8QFJAFtNtN1eOn7sOMvQTVJrZkAYCQ+wonRE5waPcXJsZOcGjtF21gbfdG+/D4KCrXuWpq9zaypXEOjt5FGTyON3kZqXbXSBPEMcs17hoaGJk2jo6Ml+z5vDQABAABJREFU+9psNsrLy6mrq2PlypX5G+wDgcDsvLFeiDdJUZT8cBYLAwun3CejZRiMDZbc19od7qYr0sWJ0RP8tvO3JDKlNc7l9nLjQpLHuJCUu6BU766nwlkh97LOAA6Hg8bGRhobG0vW54Jbf38//f399PX1cfDgQYqHVAoEAlRVVVFdXU1NTQ01NTV4PNPQMZTVCavfa0xDJ+HlH8ErP4ZjO4wu+694P6z5PQguuLTlEnPSrBgHTQaqnsyaGGbx0a9TPryPEf8qjiz5DAm7jGl2qU3nQKyRTITuVDc9qR56U730JnvpSfUQ1gpjf9kUG1WWKqosVVSaK425pZIKcwVWdfrGR5rp0uk00Wh00hSLxSbVhDmdznzPacXLZrP5kp9AyMDAYia5GO9HXdcJaSGG0kMMp4cZTA8ylB5iKD3EYGqQkcwIOoW/UTNmgpYgFeYKguYgFZYKKswVVFgqCJgCEt5mIF3XSSQShMNhIpEI4XCYcDhc0rukxWLJd3aU63XWZrO97mfuhX5PKlqGsuG91PTsonxoLwoaI/5VdNXdylD5RnS5v1KchQxUPde89nP49Z9AKgY3/B/Y+Ptyw+o0uRQDsaa0FG1jbRwbOcbxkeMcGznGsZFjJTViboubef55LPAvYJ5vHvP981ngX0CVs+qy7n7+bHRdJxQK5ZvdFN8zEQ4XQq6qqvkeyoLBYL4JT3l5+Ywb4FUGBhYzyXS8H1Nait5wLx2hDjrDnXSEOugIddA+3k5nqJN4ptDjqVk1U++up8nbRLO3mSZfdu5tosJRMaP+tgUkEgn6+vro6emhu7ubnp4eBgYG8hfNnE4ndXV1JdPEniQv6nsy1GvUqu37Hox1gKcG1n0E1n5Y7lUTU5KBqueKVAwe/pxxk2rtGnjHf0DFotd/npg1IqkIR4ePcnj4MIeHDnNk+Ainxk7le0o0q2bm++azsXojCwMLWRhYKEHsdei6zvj4eP6+h+KpuHMOu91OMBhkwYIFJb2OBQIB6RFRiFnColpo8DbQ4G2YtC03LMjp0Ol8p0jt4+20h9p5vuf5kqaTDrMjH9aafc20eFuY559Hk7cJh9lxKV+SyLLZbJOaSSaTyZLQ1tXVxfHjx/Pby8rKqK+vp66ujvr6+pIhAi44TzX8/+ydd3gdV7W33zm9qvcuWV223HuJnTiJ0xvpAQIEkgAhQGiXy/1ol95r4AKBkJAe0kyKHcdO3LstV0lW7/VIp7eZ+f6Yo2M77raqPe/zbO+ZOaOZfaytmf3ba+21lnwFFn0JalfB9r/Cuh/B+z+Fsuth9gOQt1hdhqJyVqgCbaIw0AzP3wcde2HJV+Gyr6sLUic4g4FBDvYd5FD/IQ73HeZQ/yGanE1R95xEUyKliaUszFxIcXwxxfHF5MXmodeov/dT4fF4omsZji3HCjGr1UpycjKVlZUkJyeTnJxMUlISNptNFbkqKhcxGkGjhPu3pjI7bfZxn0myRJeni0ZnoyLaIgGV9vfuZ1XTKiT56MA+w5pBfmx+tAx5LZxrgnGVC8dgMJCdnU129lFB7vf7o2KttbWV+vp6qqqqAMUjoqmpKSr0srOzhz8ok0YLJdcopa8Odv5dsawdfA2SihWvp2n3gEGNeKxyalSBNhGoXwcvfgKkMNz9PJSsGOsWqZwj/rCfw/2H2d+7n329+9jfu59mV3P08wxrBqUJpVxXcB3lieWUJZSRbFHXFJ6KUChET08PXV1d0dLd3Y3HczQapdlsJiUlhcrKSlJSUkhJSSEpKQmrVX0pqqioHI9G0Chh/m3pzM+Yf9xnATFAk7OJhsGG48qu7l3HpQ1IMCUwKW4Sk2InKXWkJJgSRvvrXNKYTCYKCgooKCgAFC+KwcFBWltb2bx5M6FQiA0bNkRdI1NTU8nOziYnJ4fc3NzhTVWSOAmu+l8lXP+BV2DbX+DNrygpkWber4i12Mzhu5/KRYMq0MYzsgybfgvvfkeZdbnrGeWPXWVcI8syjc5G9nTviYqxWkdtNHR0iiWFyYmTuaXoFsoTyylPKCfOFDe2jR7HuFwuOjs76erqita9vb3Rl6tOpyMlJYWioiJSUlJITU0lJSVFtYipqKgMC0atMerFcCySLNHp6aR+sJ66gTqlDNbxRv0bx6UuSTAlUBhXqLilxx11TVfTA4wOgiBE80j29vaydOlSAoEAbW1tNDc309zcTFVVVTRyZHx8PPn5+eTl5ZGXl0dMTMyFN0JvVqxmU++Glm2w5Q/K+G7z76H8Zpj/WciceeH3UbloUAXaeCXghtc/r8y4lN8EN/0RjGp0tvGIL+xjf+9+9vbsZU/3Hvb07GEwMAiAXW+nIqmCT0z+BBVJFUxOnEyqNXWMWzw+kSQJh8NBR0cHnZ2d0fpYq1hsbCypqamUlpZGwy4nJCSoIetVVFRGHY2gIcOm5GJblLkoelyWZbq8XVHRdmTgCEcGjvDv2n8fZ3HLtGVGRVtxQjEl8SXk2HPQatQ1ryON0Wg8zsomiiLd3d00NjbS2NjIgQMH2LVrFwCJiYlRsZafn39hUSAFAXLmKsXRCFv/D3b9E/a/BNnzFKFWer3iJqlySaMKtPFIX52y3qznsBKlceGj6qLScYTD72Bn1052du3kg44PaH+mPWody4/N5/Lsy5mWMo1pydPIi81TwzifBEmS6O3tpb29nfb2djo7O+ns7CQYDALKOoHk5GQKCwtJT0+PJi41m9XF+SoqKuMbQRBIs6aRZk1jYebC6HFJlmhztVE7UEuto5bagVqOOI6wvnU9oiwCSnCSwrhCiuOLKU0opSShhOL4Yqx61TV7JNFqtdEca/Pnz0eSJDo7O2lsbKShoYF9+/axc+dOQHGJLCwsZNKkSeTk5KDTnedQOj4PVvwQln5DWaO29U/wwseU4wsfhan3gH6Y18epTBjUMPvjjdrV8PKnQNDAR56ASZePdYsueXp9vezo2sGOzh3s7NrJkYEjAJi0JrJ12SwtXsq0lGlUJlWqroon4VgxNhRpq7Ozk1BIiUyp1+tJS0uLJiFNS0sjJSXl/F96lzBqmH2V8YTaH8+OgBigbqCO6v5qahw1VDuqqe6vxhl0Rs/JsedQmlBKWWIZ5QnllCaWqmvbzoPz7ZOiKNLR0UFDQwN1dXU0NzcjSRI6nY68vLyoYEtKSjp/13pJhMMrYcOvoX0X2NIUi9qsT4LRfn7XVBnXnC7M/oQQaJdKouq0jjWUVP8ety2PAxXfwG9WXeHGArfopsZfQ42/hlp/Ld3hbkBJ+lxgLKDQVEihsZAcYw5+j19NDHwMQwlGnU4nLpcrWg+FNtZoNNGkokPFYrGoa8WGCTVRtcp4Qu2P548syzhEB23BNtqCbbSGWmkJtNAv9kfPidPGkW3IJsuQRbYhmxxDDrG6YQxwcREyXH0yHA4zMDCAw+Ggv78/mkTbaDRG82TGxcWdX4oWWSZuoIrcppeIH6gipLPSlnkdbZnXEzKov9+LCTVR9URg8x/hnf+CgmVw17/U8KujiC/sY3fXbrZ0bGFLxxYO9R8ClOTPM1JnMCt1FrNSZ1GWWIZOc7xV51KfIfb5fLS1tR1XhtaMabVa0tLSyMzMJCMjg4yMDJKSktT1YiPIpd4fVcYXan8cfgYDgxzuP8yhvkNKvsz+QzQONkbTs6RYUqhIrKAisYLJSZMpTyxXw/8fw0j1SYfDQV1dHUeOHKGuro5QKIRer6egoICSkhKKioqw28/DCta2E9b/UrGs6cww8+Ow4BGIzRr276Ay+qiJqsczsgxrfwAf/EwJBnLrX0BnHOtWXdRIssSh/kNsatvElo4t7O7eTUgKodPomJ4ynUemP8K89HmUJ5afIMguZSRJoqenh5aWFlpbW2ltbaW3tzf6eXJyMkVFRWRmZpKZmam6KaqoqKgMM7HGWOamz2Vu+tzoMW/Iy+H+wxzoO6CU3gOsbVkb/TzTlklFYgVTkqYwJXkK5YnlarLtYSY+Pp5Zs2Yxa9YsQqEQjY2N1NTUUFNTQ3V1NQAZGRmUlJRQWlpKSkrK2XmOZM5UJu17qhXXx+1/he1/U4Taoi+rIfovYtTR01giSfDW12D7X2D6R+GG36iRe0aIwcAgmzs2s6F1AxvaNtDn7wOgNKGUe8vuZV76PKanTFfDHh+Dz+ejtbWVlpYWWlpaaGtriwbxMJvNZGdnU1lZSVZWFhkZGcOf7FNFRUVF5YxY9BZmpM5gRuqM6DFX0KWItt4D7O/bH024DaAVtBTFFymCLWkKlcmV5MfmqwGthgm9Xk9RURFFRUVce+21dHV1RYXa2rVrWbt2LYmJiZSXl1NeXk5aWtqZxVpyCdzyOCz7L8WitvMfsOspmPUJWPQlsKeNyndTGT1UgTZWiCF49WHY96Jirr7y+2qkxmFElmVqHDWsb1vP+tb17O3ZiyiLxBhiWJixkMVZi1mQsYBEc+JYN3VcMJTIcygnTHNzM93dyto7QRBITU2lsrKS7OxssrKySEhIUNeNqaioqIxT7AY7s9NmMzttdvRYn6+P/b37qeqtYl/PPt5ueJsXa14EFJf+yuRKpiVPY2ryVKYkT8FuUANTXCiCIESDYC1ZsgSXy8Xhw4c5ePAgGzZsYP369cTHx0fFWkZGxunfrXE5cMOvFVH2wc+UxNc7/wGzH4CFXwRb8ih9M5WRRhVoY0HIBy98HGrfgSu+rfyhqYPdCyYkhdjZtZP3mt9jbctaOj2dAJQllPHJyZ9kSdYSJidNVt0WOequ2NTURFNTE83NzbhcLgAMBgPZ2dmUl5eTk5NDZmYmRqPqdquioqIykUk0J3JZ9mVcln0ZoLj7Nzob2dezj6qeKvb27OXxvY8jIyMgUBhfyLTkadG0Mdn2bHVi7gKx2+3Mnj2b2bNn4/F4omJt8+bNbNy4kdjYWCoqKqisrCQt7TRWsfhcuOn3sPjL8P7PYMsfYccTMOfTsOBRsKqTzxMddaQ62vgH4Zm7oHkzXP8rJXyqynnjDXnZ1L6J95rf4/3W93EGnRi1RhZkLOCzUz/LosxFJFvUGaWhnC5NTU00NjbS3NwcjTplt9vJzc0lOzubnJwcUlNT1UAeKioqKhc5GkFDQWwBBbEF3FR4EwDuoJt9vfvY07OHvd17eavhraiVLdGUqLhSpijulCXxJWpS7QvAarUyc+ZMZs6cidfrpbq6moMHD7JlyxY2bdpESkoKlZWVTJkyhdjYU0RvTChQXB8Xfxne/wls/K2yRm3hozD/c2rAuQmMKtBGE98A/PNG6DoAH/kbTL5trFs0IRkMDLK2ZS1rmtawuWMzATFArDGWpdlLuTzncuanz7/k15JJkhTN2TJkIQsEAoCymLm0tJTc3Fxyc3OJi4tTZ0VVVFRUVLAZbMzPmM/8jPmAYmWrG6hjd/dudnfvZlfXLlY3rQbAqrcyLXlaVLRNSZ6CUat6W5wPFouF6dOnM336dDweDwcOHKCqqop3332Xd999l7y8PCorKykrK8NsPkmAl6QiuO2vsPgr8N73leBzO56AZd+Eafeq8Q0mIKpAGy1CfnjuHug6CHc9C8VXjXWLJhTuoJu1LWt5p/EdNrZvJCyFSbemc3vx7VyecznTU6Zf0q6LkiTR3d1NY2MjDQ0NNDY2RgVZUlISU6ZMiQqymJiYMW6tykRHliQIh5FFEVkUIVLL4bAS/EiSkCUZZEn5bGh76LhylUj1oXoIQYgW4ZhtBAFBowGNBjRaBO2xtUb5TKdD0OkQtFplW52AUFE5LzSChqL4Iorii7ij5A4AOj2d7Ozaya6uXezq3sXvdv8OAIPGwNSUqcrat9TZVCZXYtAaxrL5ExKr1cqcOXOYM2cO/f39VFVVUVVVxeuvv85//vMfSkpKmDFjBgUFBSd6u6SUKlEfmzbD6v+B1x9R0jhd+T0oulJdTjOBUPOgjQaSCC99Ag6+Brf9DaZ8ZKxbNCHwhrx80PYBbze8zfrW9QSlIKmWVFbkrWBF/goqEivGfOA1lnl++vv7qauriwoyr9cLQEJCAnl5eeTn55OXl3d+uVdUxi2yKCL5/Mg+L5Lfj+T1Kds+H3u3b2dyURGSP4Ac8CP5/cj+AFJAqeVAACkYQA4GkYOhSB1EDkSOhUJHSzh84nY4DKHQWP8XnDta7VGxNlT0+tMXoxHBYEAwGtAYjQh6g3LMaEAwGNAYTQgmIxqTOVKbEIwmNOajtcZsRjCb0VgsyrUuscGRmgft0mDAP8Du7t3s6NrB9s7tHO4/jIyMUWtkavJUZqXNGjeCbaL2SVmWaW9vZ+/evezbtw+fz0dcXFzU6nbSiVdZVsad734HHA2Qv0QJSJcxbbSbr3IKTpcHTRVoI40sK6H0t/0fXPUDWPD5sW7RuCYshdnUvomVdStZ17oOX9hHkjmJq3KvYkX+CqYmTx1XoYBH82Hv9XppaGigvr6euro6BgYGAIiJiSE/Pz8qyOLi4kalPSpnjyyKSC4XotuN5HYfv+12I7oi2x6PUrzeE7e9XiSvFzliGT0nBAHBZEJjMERER0R8RIsejcGoCBODAUGvCBiiQsZwjLDRRQSPDkGnVaxXOu1REaTVKlYsQQOaIWuXFkEjKFYvhKOzuMLR9imVUsuyrDw7ZSK1BLIcOQ7IUsRyJyFLSq0ck0ASkcMishhWrHehsLIdDkeOi8ihYFRsRkVo8NjtIFIoiByIiNeQiBwSkcIihEQQtCBoEQTluyFE/h8ErfIdBa3y/SNl6DxF4JkQDCZF9BkMipiL/k6Gfi/Go8IwUjSRzzUmZR+9PmJZJFoTrSPHNCi/A0EAjRD5fUSOCwKCVohYHpVttJHPtZrIZwLoNAiR/XNlog6GVS6MwcAgu7p2sb1rOzs6d0QFm0lrYkbqDOalz2Ne+jxKEkpG/X1+MfTJcDjMoUOH2LVrFw0NDQiCQFFRETNmzKCoqAit9kPujOEg7Pw7rPsx+Pphyh2w/DtqDrVxgCrQxpL1v4Q134X5n4erfzDWrRm31DhqeP3I6/yn4T/0+nqJNcZyVe5VXJN/DTNSZozbhcgj+bAXRZGWlhbq6uqor6+nvb0dWZYxGo3k5eUxadIkCgoKSExMvORm5scCWZYVMTUwgDgwiDg4qGwPDiAODiINDiIOOhFdLiSnE9HpRHQ5kQadSB7PmW+g06GxWtFYLWgsFjRWK1qrFcFiidYaiwWNyYzGErHMmC1ozJF9k4ndBw8ya8GCo9YckxHBbFZE1kXSR2RJRg5JyEFRKSEJaWg7KEWPyUEROSwhBSXk8DHHQ8o+4aPbR4tybcTIviiDOHHekSOKAIJOo4g3nYCg00QL+sj2h+r2ng6y8rIR9Fo0Bg2CXovwoVpjjGwbtWgMWgRjxF1V5aJhMDDIzq6dbOvcxpb2LdQN1gEQZ4xjTtoc5mUogi3bnj3ibbkYBNqx9PX1sXv3bnbv3o3H48FutzN9+nRmzZp1olXNP6gku97yR2XyaMlXlbGpTnVDHSsmvEATBOEG4IbMzMxPP/3002PdnLMmtfM9yg7/hq6UJRwq+5LyB6ESxS262eHZwTbPNlqCLWjQUGGuYK5tLhXmCnTC+F9T5na7sdlsw3Y9v99Pf38//f39OBwORFEEFCtZfHw8CQkJ2O12NcricCCKaNxuNC4XGqcLjduF4HZHjkXqaHEheLwIknTKy0kmE7LFgmQ2K7XFgmw2K7XFjGRW9pViUs4zmZRzTCbQ6y94fcBw98dhQwZBAk0INOEPF+Ekx0AjKscF8dhjyvFzRdLIyFqQNSBF6qH9Y4uklY/bRzjxHFn40OeCfMz20Z+BY/ZPVsNRCyLHHEOGcBghEIgUP4I/gOD3o/H7o/saf+S4z4/Gr5yn8QeUY4EAQjCkWO6EyHo9hqx9AoKgQTKYwGJFNluQzVZkkxmMFmST0i8xKEU2mEBvBL0RAQ2CxIeKoPxuxci+eMxnYRmNJKCRzu13Jgsykk75XUm6Y4tyXD7muKiPHNcfu68U1MfkuGQwPEi1v5pqfzU1/hoGxAEAEnWJlJnKKDWXUmwqxqw5STCMC2TcPiMvEEmS6Ovro6Ojg/7+fgRBIDk5maysrBOEmsnXxaS6v5HcuxWvOYPaos/gSJg+Ri2/tFm2bNnEFmhDTCgLWu278OydkLsQ7n1JnaGIIEoiG9s38nLNy3zQ+gFhOUxZQhk3Fd7ENfnXkGBKGOsmnhMXOhsXDodpaWmhtraWI0eORJNDx8TEUFRURGFhIfn5+ZhMpmFq8cWNLEmIAwOEe3oId/codW8v4Z4exL4+wn19iP19hHv7EAcGTgxMAaDRoI2LQ5sQjy4uHm18PNqEBOVYXBza2NjIduzR7ZgYxSVwjBnJ2WFZVqxLkjeM5A0h+cLIvjCSL6wc8ynHosUvKp/7lf2zsURFLSlGnWJJMUQsLMYhS4v2qKXFoFH2I7Vy7BgLjf4Yi47m4rAengtyKITocinWXadTsfgORmpnxOI7MEh4wBGxCiuWYWlw8JTX1Fgsyt9CQgLa+Dh0CYnoEhPQJiZF6kR0SUnoEhLQxsfz/oYNLF26VLF6ftiKGbF6SkNWz4CIFBCPHg8ox4aOSwER2R+O1Mo5Z0IwaNCYdWjMejQWnbJt0SNEt49+prXq0ViVbdWCN3rIskyDs4Et7VvY3LGZrR1b8YV96AQdU1OmsihzEQsyFlCaUDos7pAXmwXtZPT397Nt2zZ2795NIBAgKyuLuXPnUl5efrz7Y+278NZXob8eym6Aq3+oJMJWGTUmvAVtiAkj0Np2wT+uh8QCuP9NMKlR83p9vbxS+wov1bxEu6edRFMi1xdcz42FN1IcXzzWzTtvzudh7/F4qKmpoaamhrq6OoLBIBqNhtzcXAoLCykqKiI5OfmicUkbLkS3m3BXF+GuLkJd3cp29zHbPT2E+/ogHD7hZzVWK7qkJGUAmZiINjEBXWISuqREtEODzIREtPGKABMmqIXyXPqjHBIRPSEkdwjJE1K2PRHx5Q0posujbIsRUUb4NO8LraAMek3K4Fcw69CYtNFjwtBnJi3CUG2MnGNUts9nnZPK8CKHw4p77sAAosNBuL8fsd+B6OiP7DsQ+/sJO/oR+/oJ9/efPHCMICDZrJjTMxTRlpyMLlmptUP7ScnoUlLQ2s49V5MsyYp48584GSD5I5MHfvHohEFkUmFoguF0EwaCSYvGqkdriYg2qx6NTa+IOJserc2gfG5TPhN0E/N5MR4JiSH29OxhQ9sGNrVv4nD/YQASTAkszFjI4qzFLMhYQKzxFHnBzsClINCGCAQC7Nmzh61bt9Lf34/dbmfOnDnMnDkTiyWSiigcgE2/gw9+ruwvfgwWPAJ6dVJ4NFAF2mjSVwd/uwoMFvjUu2BPHesWjRmyLLO9czsv1LzAmqY1hOUwc9PmckfJHSzLWYZeM/YWhwvlbB72sizT3d1NTU0N1dXVtLa2AkqC6OLiYoqKisjPz8dovHTzx0h+P6GODsIdHYQ6Ogl1dBDq7CAc2Q53diJFolQeizY2Fl1KCrrU1MgA8NiSFN3WnCxvzEWGLMmsf/d95k+djegOIbmDiC5FgInuoFJ7FDEmuUOntkBoOGpxsBy1KmgsEUuDRa+IrQ9ZIQSDRp1UuASRZRnJ5VKs0n29hPv6Cff1Ivb10bxvHyl6g2LF7u1B7OlFPomY01gsyt/x0N9ySjL6Y/b1qanoUlKGzUodtQb7hiYhjpmY8CjHRG/o6GeRv6FTiTrBrENr16O1G9DYDWhthsi2ckxrN6CNMSCY1ZQP50qvr5dN7ZvY2LaRTe2bGAgMoBW0TEuZxmVZl7EkawkFsQVn/f96KQm0ISRJ4siRI2zZsoX6+np0Oh0zZsxgwYIFR4OKDbTAqv9Woj7G58N1v4DCK8a03ZcCqkAbLTy98NflykLMT62GpMKxbtGY4Aw6ee3Ia7xQ/QKNzkZiDDHcVHgTtxffTn5s/lg3b1g51cNeFEWampqorq6muro6GnExPT2dkpISiouLSU9Pv2Re1pLHQ6i9nWBbG6G2NkJt7ZFaKaLDccLP6JKT0aWno09PR5+Wii4lNTJYGxrEpaC5BFw/ZVFCdIcQBwNIriCiKyK8ottBJGcQ0R0C6WQum6CxGpTZ/iErQMQSoLEesx/ZFky6S9IlUGX4+fDzUZZlpMHBqNtxtHR3E+ruJtzVTbhbKXIwePzFBEGxxKWlKc+D1DT06WlKnaE8J3TJyQi6kVm7LMsRi93QRIc7GJkIiUyARP4uRbfy9yiHTlyvKug1aGIigi3WGKkV8aaNNaKNU46pLpYnR5RE9vXu44PWD/ig9QOqHdUAZNoyWZK1hMuyLmN22uzThvK/FAXasXR3d7N582b27t0LwNSpU1m0aBGJiYnKCXXvwZtfg75aJcH11T8Ac/wYtvjiRhVoo4EswzN3QP37cP9/IHv2WLdo1Gl1tfL0oaf5d+2/8YV9VCZXcmfJnVyVexUm3cU5kD72YR8MBqmrq+Pw4cNUV1fj9/vR6XQUFBRQXFxMcXHxRZskWpYkwl1dBFtaCLW0KHVzC8HWVkItLScIMMFgQJ+ZqZSMjEhJVwZfGRnoU1IQDBf3us2hAZ84GEAcDEbqAKIzqBSXckzyhKI5naMIKIJqaMbebkBr11Pf2UzJ9DJFkNn1aGwGxd1QFVwqY8D5DoaHhFyoq1txY+7sJNzZRahLqcNdnYQ6OpHc7uN/UKtFl5qCPj1DmdhJT1fE2zHPmtGwpsuyjBwUj06kRP+mI3/rziCSU/lbP0HICaCxG9ANCbZYY1S86eKNaONNyjq5S2Ry73R0ejr5oPUD1reuZ0vHFvyiH6veyqLMRVyefTmLsxZjNxyfB/RSF2hDDAwMsGnTJnbu3IkkSUyePJnFixeTkpICIT988FMl4qM1SbGmld0w1k2+KFEF2miw5XF4+xtwzc9g7mfGujWjyp7uPfzz4D9Z07wGDRquyb+Gj5Z/lLLEsrFu2oizevVqUlJSOHz4MEeOHCEUCmEymSgpKaG0tJRJkyZhuEiEhixJhDs7CTY1KaWhUambmwm1th4/463Vos/IwJCdhT4rG31WFvrMDAyRgZI2MXHCrvM6W6SgiDgQiJbwgD8yOIscGwye1M1QY9UrM+oxBrQxRmXG/Zh9rV2Pxmo46XotdfChMp4Y6f4out2KW3RnJ6H2DkId7cp+e0fETbrzhDWp2sRE9JmZGLIyjwq3zCzlWZWRMaoTQydM0gwECA8OPR8iZSBwgogT9Bq08Ua0caaoaNPFm9AlmNAmXJoCzh/2s61zG2tb1rK2eS19/j50Gh1z0uawLHsZy7KXkWpNVZ+RH8LlcrF582a2b99OKBSitLSUJUuWkJGRAR174bXPQec+qLhFGd/akse6yRcVqkAbaTr3wV8uh0mXw93PXXCo7ImAKIm81/IeTx54kr09e7Eb7NxRfAd3l95NqvXiXnfn9Xo5fPgwBw4coL6+HlmWsdvtlJaWUlpaSl5e3omJIicQostFsL6eQH0Dwfp6go0NBBsbCTa3HJckWTCZMOTkYMjNRZ+TjSE7B312FoacHPRpaeMiquFIIcsysi9M2BFAdPiP1kMDqwE/kudDwUoiM+PaWCO6WMPRmfGh7Rijsk7lAgIOqIMPlfHEWPdHWRQJ9/QQam8/qWt1qL39+DVxGg26tFQMWdnKsyw7G31WNoacbAw5OWiH1uuM5ncYetYMHPOsGQgQdvgVIefwI3mPf9YIRm1UrOmGSqIZXaIJbZzpog/GI8kSVT1VrG1Zy3vN79HobARgcuJk8sV8Hlr2EDkxarTCY/F6vWzZsoWtW7cSCAQoKSnhiiuuICUxHjb+Gt7/KRhscM1PYcpHLolx7migCrSRJOiF/7sM/E54eKNiDr6ICYgB/l37b5488CRt7jaybFncV34ftxTegkVvGevmjRg+n+84USZJEvHx8dhsNq666ioyMzMnVG4yWZYJd/cQOFJLsK6eQEN9tBZ7eo+eqNMpIiwvD0NurlLycjHk5SmL9ifQdz5XpKCI2O8nHCliv18ZFDmUwZEcON76JRi0aOON6OIirklxpmO2I+JrhNeWjPWAWEXlWMZ7f5QlSRFwra0R9+xWQq0tBJtbCLa2HP8sRAlKpM/NVZ6JOTnKszAnB31uLrr4sVunIwVERbwd+6zq9xPu9xHu9x8ffVUrKNa2JEWwKbUZXZIZbZzxonSHrh+s573m93iv+T329e4DoDShlCtzr+Sq3KvIi80b2waOI/x+P9u2bWPjxo0Eg0GmTZvG0qVLiQ10wOufh9btULwCrvslxGaOdXMnPKpAG0neeBR2PgkffQUmLRvr1owY/rCfl2tf5ol9T9Dt66YyuZL7K+7n8uzL0WomrrXodPj9/qgoq6urQ5Ik4uLiqKiooKKigvT0dN5///1xPQABCPf1EaitJVB7hMCRSKmtRXI6o+doYmIwFhRgKCjAWJCPoaAAQ34+hqysi9YSJssykjtEuM9HuM9PuM93nCCT3MdHmxOMWnTxJkWExZsibkXGaD0eIrSN9wGxyqXFRO+PktcbXUcbbGom2NxEqLmZYFMzofb24/IoamNjlYms/HylHtrOzRnTYEayJCO5gtFnXLjPR7j36DNPDh7jPqkT0CeZ0SVb0CUrtT7ZjC7ZjMY4MsFXRpt/v/tv3OluVjetZk/PHgCK4ou4Kvcqrsq7ioLYgrFt4DjB6/Wyfv16tm3bhiAIzJ07l0UL5mOu+ies+R7ojHDj76D8xrFu6oRGFWgjxcHX4YWPwsJH4crvjXVrRgR/2M+LNS/yxP4n6PX1MjN1Jg9PfZg5aXPGfDA6EoRCIWpra6mqqqK2thZRFImNjY2KsoyMjOO+93gagEjBIMEjR/BX1xCorsZffZhAdQ1if3/0HE1sLMbCQoxFhRgLi5TtwknKmrCL8PcZFWG9xw9KhkTZcVYwAcX9cMg1KNEcdQ+aKOs6xlN/VFG5mPujFAwqlrfGJoLNkTW5jY0EGxoId3cfPVEQ0KenK5Nfkwow5EfqSZPQxseP6TNFSZFw9PkY6vUS7vEppd8Hx2g3TYwBfYoFfaoFXaTWp1jQWCbWBN6xfbLT08ma5jWsalzF7u7dyMgUxhVyXcF1XJN/DZk21UI0MDDA2rVr2bt3LyaTicWLFzOnMAn96w9D206Y8XFY8SMwnHsuQxVVoI0Mg63w+EJIyIdPrgLdxREIYghf2McL1S/w9/1/p8/fx+y02Tw89WFmp1180SklSaKpqYmqqioOHjxIIBDAZrNRUVHB5MmTycrKOuVLdKwGIGGHA//Bg/gPHiRQXUOg+jCB+gYQFcEhGI0Yi4owlhRjKi7GWFSEobBQCUM9zkXG+SAFRWVQ0esj3OONDDaUgcZxIkwjRNZjKAJMO+Tik6Assp/oCWcv5gGxysTjUu2PksdDsKmJQENk/W59g+JGXt+A7PdHz9PGxmKYNCkq2IyFRRiLChX38TF+TsthSfEm6PYqz9JuL6FuL+Fu73FWN43dEBVr+jQr+nQrulQLGsP49Kw5VZ/s9nazumk17zS+w+7u3QBMS57GNfnXcHXe1SSaE0e5peOLzs5O1qxZQ21tLTExMVy+9DIq+95As/HXkFQEt/0N0ivHupkTDlWgDTeSCE/eCO274aH1kDhprFs0bATEAM8dfo4n9j9Bv7+fuWlzeWjqQ8xKO2n/mbDIskxXVxdVVVXs27cPl8uFwWCgrKyMysrKsw70MRoDkHBPD/6DB/EdOBAVZeH2jujnuvR0TCUlGEtKMJUqtSE3F2ECByo5GVFrWI+XUHdkwNDjJdztQxwMHHeuNs6oCK9kZW2FPmlojcXFvUB+NAfEkiQjhiTEkEQ4JCGGRcIhCSksI4alaInui0e3JVE+WqQP78vIxxRJVnLBSbLiriXLMrIEyLKSfUBW+oZSR7bPgCAIyhp3QUDQEB0MD20LAggaAY1GOK4+ug0arQaNVkCjFdAes60UZV+r00SKsq350L5Wr0Gn16DTa9HohDEflA83l6pAOxWyJBHu6CBQX68EYqobquuOS0WiiYnBOGnSMd4OhRiLi9Eljf0ad1mSEQcCiljrUkRbqMtzvHATQJdgigo2fZpStAmmMV/jdjZ9ss3dxlsNb/Fmw5vUOmrRClrmpc/j2oJruTz7cmwG2+g0dhzS2NjI6tWraWtrIzs7m+umpZG29svg64fl34G5D8NFvDZ9uFEF2nDz/s9g7f/CzY/DtHvGujXDgiRLvNXwFr/d9VvaPe3MTZ/LZ6d+lhmpM8a6acOKx+OhqqqKPXv20NXVhUajobCwkMrKSoqLi885JP5wD0DEgQF8+w/g31eFr2of/v37Cff0RD835OVhKi/HVFGu1GVlYxJZbCSRZRnJGSTU5SXU5Y3O3Ia6vci+o9HKBIPmmDUSR9dM6BJN43b2dqQ5tj/KkkwoKBLyiwT9YYJ+kVBAKeHA0e1QQCQUPHosHJIIB8VIkaL7ocj+kCiTTpYU+wLRaI8XQwgyGo2MIIgIggSIQBgBCRkRkBAQkWVlG1kExIhgk5Ajx2RZOmZfUs6XZWRZihQ5us+x+8jHfCZHBKCk5KU74et/aOCpKMAPlch5giZ6TEADaEAQ0Gi10aLVadHqdErR69HqdegNyrbOoENvNKA3GdAbDRjMRgxmA0azSaktRoxWMyaLAb1Ji96olNEWgKpAO3vC/f2RdcK1BI4cIRhZMywODETP0SYmYiwuwlRcgrG4GGNJCcbCSWO6xm2IqHDr8BDqjJQOD+E+X/RvRTBo0WdYMWTY0GdY0WfY0KdaRjUx97n2yVpHbVSstbnbMGqNXJFzBTdNuom56XMv2jX4p0OSJPbs2cO7776Lz+dj7oypLB18EdORlVC4XBkb21LGupkTAlWgDSct2+CJFUpOiNv+elGEGt3euZ2f7/g5B/sOUppQymOzHmNe+ryxbtawIYoitbW17Nmzh5qaGiRJIiMjg2nTpjF58mQslvOPPnkhAxApEMB/4CD+/fvwVe3Dt6+KUFNz9HNDQQHmKZMxVVRgKi/HWFqK1nZxzdyJ7mDkZR4RYhFRJvuPCjGNVa+seUgxK3WysgZCG2MY89nYkUKWZUJ+Eb83RMAbJuANE/SGCfhCBH0iAV+Y4DFlaH+g34VeYyAYEVsnioiTI2gEZRBv0KAzatHptegMGnQG5ZhWH6kNWnR6xfKj1QkR0RQEQiAFkaQgcqSWxBBSOIAYDiKJQcRQEDEciNQhxJCyHQ4pn4WDAcLBIOFQCDFSh0PB4wIxjASCoEHQaCKiUINGo1GOCYLyfBcERVoJQsS6Fjkug6z8c4w1T2mrHBV0MkjS0X3pqCBUhN5Iv381gBYEHcJQ0erRaPRodDq0OgM6vRGtwYjeYERvMqE3GTGYTRgtZowWM2a7FUuMUsyxVoxmCwaTCb3JjN5kRHOaAaoq0C4MWZYRh4I81dTgr6lRXNqPHDnqKqnRYMjNxVhagqm0DFNZKcbS0nHjzi4FReXZ3uEh2O4m1O4h1OE+am3TCujTIqIt04ohy44+zTpi7uYXkjx9b89eVtav5K2Gt3AGnaRYUrih4AZuLLzxkgwu4vV6WbNmDTt37sRms3F1oZ7J+36IYLLDzX+CouVj3cRxjyrQhgv/IPxpkbL90AYwxY5dW4aB+oF6frXzV6xrXUeqJZUvzPgC1xdcj0a4OMzT3d3d7N69m6qqKjweD1arlcrKSqZPn05KyvDM7pzLwz7U1YVv9258u3fj3bMH/8FDEMnBo0tLU8TYlErMlVMwVVSgtduHpY3jATkkKVawyKxqqEupj42UqLHo0KVa0Kdaj1uIrrVN3PWdsiwTDkr4XEH8nhB+d0ipPeFIrRwLeIdqRYwFfGHkM1iodEYtRpMWg1mHwazDaNEx4OwnMycdg1GH3qTFYBqqtehNuqglRasDWQogiT7EkJ+Q30vA5yHg8RD0eQl4h2ofQa+HgM8b2fcS9PsI+X0EfT5kSTptG49Fo9WhNylCQGc0oouIAp3BECmR43o9OoNRsRTp9Wj1huO2lXpIYOjQavVootYmvWKB0unQanVotFoErQatVoeg1aLRaNHotIoIO1aIjRFDok0SRaWWxOi2KIaRwiKSGEYSRcRwGCkcRhSVY2I4jBgMEgwECfoCBH1Bgv4AIX+QUCAYqQORElTEbzAYFcVSWBHKUjiIJIWQpRCyFATCZ2z3sWi0BrQ6EzqDCZ3RhMFkwWCxYLRYcHrd5BUWYo21YbLbMFpsGC0WjFYrRkukWG3oLtJIsSOFLIoEm5sJ1NQqAaFqqgkcribU2ho9R5uYiKm0FFN5GcbSUkxlZRjy8sZFahRZkgn3+Qi1uwm2ewi1uQm1u4/mc9MK6NMVsWbIsmHIsqNLsQzLhNxwTBoExSDrWtbxWt1rbGzbiCiLVCZVclPhTVyddzWxxok9NjxXWltb+c9//kNHRwf5mSlc6/s3yf3bYdl/w+KvqC6Pp2HCCzRBEG4AbsjMzPz0008/PWbtKKp5nIz2Veye/iOcsaVj1o4LxSk6eWvgLTa5N2EQDFwZeyVL7UsxaCbuQHgIURTp7u6mvb0dl8uFIAgkJiaSlpZGQkLCsOcqc7vd2E5m1RJFdK2t6OvqMNTXo6+rRxtZYyDr9YTy8ggV5BPKzyeUl4d0EbkpagNgcIHRKWCM1HovCLLycpU0MkEbBO0yATsEbTJBO4gGTvASG49IYZmwH8IBEP0o234IB2TEQOR4pIQDEa+7U6DRg9agRCzWGkBjUGqlCGj1Hzquj/yMXrF6SeEQYb+fsN9H2O/DPeBAL0A4EED0+wgH/IgBv1L7/crxoB8pFDp1o6Jt06M1GNEaDGj1RjQGQ2TboGzrIrVej0Z/bG1AExFQGp1euY5Of9GtibwYkSUZMSQT9oUJ+0OEfWFC/iBhXwgxEEKMCD0xGEIKKlZQKRQReWIQpACyHASCSi0HQA5yJlOuoNWh1ZvQGk3oTCZ0ZqXWGo3ojGZ0JrNy3KRsayP7Gu3FEfp9uBC8XnRtbehaWtC3tqJraUXX3o4QCR4lGY2Es7MJ5eQQzs0hlJ2DmJY6PgbQMuj8YBwE06CAcVDANAgaMfLe0MoEYsAfJ0cKiMZzv80p39nniVN0st2zna3urXSEOtChY5plGgvsCyg0Fo4LK+ZoIMsy7e3t0Tyx0ywdXOd5AUfSbA6XPoqou3jz5F4Iy5Ytm9gCbYgxtaD1VMMf58PsB+Dan45NGy6QsBTmmUPP8Ic9fyAoBrm95HYemvoQCaaEsW7aBdPd3c2OHTvYu3cvgUCApKQkZsyYQWVl5bA+jD/M0GycFAzi378f7/YdeHfswLdrF5LHAyhBPCzTp2GeNg3z9OmYSkoQznGt23hElmXEfj/BNrdiFWt3E+zwIDmD0XO0cUZlkfgxC8V1ieZxF6hDkmR8riBeZxDvYBDPYCC67Y1se5xBfK4gIf/JFZfeqMVs12OyGTDb9ZhtkW2bPnrcZNVjsuowWfUYLTo0x6y9kGWZgMeD1zmA1zmIb3BQqZ1K7XUO4nM58bmc+F0ufC4n4WDgpG0B0BmMmGw2TDY7JqsNk82G0WrDZLVFLBg2TFarsm22HrVqWK3oTabTuq6pqHwYWZYJBUT8nhCBiIV41/a95GcX4h5w4x1w4R104nW68XvcijXW60EK+5FlP8hKrWwHQA5Etk89maAzmjDbY7DExGKJicEcE4slNi56TNmPxRobjyU2Dt1F8Nw9V+RgkEB9Pf6Dh/AfOKCUw4ejLpKCxaJY2ioqMFdOwTxlCvrc3HEhLGRJJtzrI9jqItTqJtjiItjuBlEZt2oTTBhy7BhzYjDk2NGnW8+4nm2k3G5lWeZQ/yFeqX2F/9T/B1fIRV5MHh8p/gg3TrqReNPYJTIfTdxuN6tXr2bv3r2k2LTc6n6KtOR4uOuZiyqg3nAx4S1oQ4ypQHvmLmjaCF/YA9aJF251X88+vrflexzuP8yizEV8ffbXyYvNG+tmXRChUIiDBw+yc+dOmpub0Wq1lJWVMWvWLHJH+AUjBQL4du/m4IsvkdLTg2/vXuSAMlg2FE7CMmsWltmzscyYgT49fcTaMVrIkky430+ozaUIsjY3wTbP0bViGgF9illZ9J2uLAA3pFvHRY6coD+M2xHAMxApgwE8jgDugQCewSCeAUWAncyl0GjRYYkxYIk1YIkxYrEbMMfoMdsNkW1FjFnsBnQnCUwyJLo8A/24Hf14BwfwDg7gGRzAO+CI1AN4Bx14nYNI4snFn9FixRwTg9l+tJjsMZhtduW4TTm279AhFl9+BSar7ZIcjKqML840GB4SdT5XEJ8rhDcyCeJzhfC5g/icQdyDHjwOJ97BQQJed0TI+UBSaln2odH4EfAjy17EkAdZOrmbpsFswRoXhyV2qMRjjYvDGhePNS4BW3wC1vgELLGxF/UEhRwOR0TbQWUd9IED+A8dQvb5ACWKpHnyZEyVUzBXVmKaPBn9MC0LuFDkkESw3U2wyUmw2Umg2RWdFBT0GgzZdgz5sRjzYzDkxJwQMGo01kX6wj5WNa7ipZqX2NOzB71Gz/Kc5Xyk+CPMTps9LsTvSFNTU8Nrr72Gz+dlmWYHC7VVaD7yN3Vd2odQBdqF0rAenrxeCSG66Eujf/8LwBV08dtdv+X56udJNifz9Tlf58rcKyf0A8LhcLBt2zb27NmDz+cjISGBmTNnMm3aNKzWkUmWKIfD+A8cwLN5C54tW/Dt2oUcDCILAuayMiyzZ2GeNQvLzJnoEia2RVKWlWhcwRbX0ZnLNvfRfGJD6wMybegzbcri7lQrgn703WTEsITb4cfV58ftCCjbjgDufmXb7QgQ9J04WDNadFjjjFhjDZHaiDXOiCXWgDXWqIiymJOLriECXi/u/j7c/X24+nvxOBQR5hnox+NwKIJswKEEuvgQGq0OS1wc1lhlcBgdMMbEHW8JiInBbI896zU6alAGlfHEsEe5DUl4hyzdzmOs20MTLYPK373X6UESfSB7kSUfsuwF2YtO70ej9YHsQxI9hINuwgHPCfcRBI1ieYtLwBofjy0hEVt8IraEROyJScp+QiImq21Cv0uPRQ6HCdTVRyMI+/btI1BTE82tqUtLwzx1quIJMm0qpooKNONgEkiWZcTBAMEmF8EmJ4HGQUIdHsWrViNgyLQpgi0vBmNeDB9s2ziqz8gjjiO8XPsyr9W9hivoIjcml9uLb+eWoluIMcSMWjvGAo/Hw8qVKzl06BDZ+gFuCb1CwvIvwsIvXhQB9oYDVaBdCJIEf1kG3j74/HbQm0f3/ueJLMu80/gOP9n+E/r9/dxVchePTH9kwubvkGWZhoYGtm7dSnV1NRqNhtLSUmbNmkVeXt6wry2TZZngkSNRQebdtg3J7QbAWFKCdd5cLPPmscvv57JrrhnWe482oidEqNUVEWRugq2uo8E7tAL6DJvykosIMn2KZdQSOodDIq4+P85eP65+RYgptQ9Xnx+PM3jC8haTTY8t3ogt3oQ93ogtwYQtXhFgQ0V/GuElyzJ+jxtXbw+uvt5I6cHd14vb0Yervx93fx8hv++EnzVarFjjE7DFx0cGdwnK7Hx8AtbY+MhMfTxGq3VEBnaqQFMZT4xVf4y6LA8GFUv5gCLclDoQrUOBSIoG2YMseQAPemMAvd6PoPEiSx7EkIugb5CAx3nCfXQGI7aEBOwJSdgTk7AnpWBPTCImKTmyn4zRMjKThqOB5PPhP3T4qGjbs4dQWxsAgl6Pqbwc87Qh0TZt3HiLSP4wgSYnwQYngYZBgq0uxS1SgIBNJnFqFsbCOIx5MWhMo7OO0R/2s7ppNS/WvMju7t2YdWauL7ieu0vvpii+aFTaMBbIskxVVRVvvvkmUsjH1dJ7zCwvRLj5D2CYuH8bw4Uq0C6Eqhfg35+GW/4Ppt45uvc+T1pcLfxg6w/Y2LaR8sRy/t+8/0dFUsVYN+u8CAaD7Nu3j61bt9Ld3Y3FYmHmzJnMnj2bmJjhnX0SnU48mzbj3rAez/oNhLu6ANBnZ2OdNw/r/HlY5s5Fl3jUxXWiDYhlUSbU6SHY7CTY7CLQ7ETsi4RrFkCXbFFcRLJtIx7uGJSHt3cwyGCvD2evD2ePD2efP7rtGTze+qTRCNgSjNgTTdgTIiWybYtXhNjprF4Akiji6uvF2duNsydSersjx3pw9fUQDhy/tkuj1SrCKyERe3witmNm0e2RmXVrQgJ6w3msWh9GJlp/VLm4Ge/9MegLH7W89ysWd1e/H3d/ZH8ggBQeSp0gguRBb/RhtATQ6X1oNB4k0U04MIjf3Y/X6TghsqnBbCEmKZmY5JRISSU2Usckp2C2x0woK1y4pwfvnj349uzBt3cv/n37o+79uvR0LDNmYJ45A8vMmRiLisZH1MiQSLDFTaBhkM6djVicGgjLoAFDlh3jpDiMk2Ix5sYg6EfetfVQ3yGePfwsbza8SUAMMCdtDveU3sNl2Zeh01ycgW8GBwd59dVXaWhooIgGbkxqxv7RpyA2a6ybNqaoAu18Cfnh97PAkgCfXjc+Ih2dBkmWeOrgU/xu9+/QaXQ8Mv0R7iq5a0ImUhwYGGD79u3s2rULn89HWloac+fOZfLkyeiHKSSzLEn4DxzEs2E97vUb8O3dC6KIxm7HOn8+1kULsS5YiCEr85TXGO8DENEdJNjsUnz1m1yEWl3IIWUAobHrMeTERASZEs5YYxz+l4MsybgHAgx2exns8THY7VPqHmU/HDxmQCOALc5ITJKZmCRTpDYTk6gIMUusEc0ZQi1Lkoi7v5/B7k4Gu7ui9ZAQc/f1KTmojsESG0dMsjL7bU9MPmYWXNm2xMVNiDUp470/qlxaTPT+KEsyXldQsdz3+XH2+XD1B6IWfGefHzF09FkiyxJmWxCzLYDe5EOr8SJLTkL+AfzuftyOHgKe410qdUYjscmpxKakEpuaRlxKGrGpacSmpBGbkoreOPZJqE+HHArhP1ytCLbdu/Du2Em4uxsAjd2OecZ0LDNmYpk5A9OUKWiMYz+JddnCJQSanATqBgjUDSgWNgnQCRhzYzAVx2MsileCjoygeB7wD/By7cs8X/08HZ4O0q3p3FFyBx8p+ghxprgRu+9YIUkS27Zt493Vq9CLXm6zbKPwE49DcslYN23MUAXa+bLh1/Dut+Fjr0PBZaN33/Og09PJtzZ+i60dW1mavZRvzf0WqdbUsW7WOdPZ2cnGjRvZv38/AKWlpcybN4+cnJxheVBKHg/ujRtxv7cW9wcfIPb3A2CqqMC6eBG2xYsxT52KoDs7oTKeBiCyLBPu8xNsHCTQ6CTY6CTcG3HD0wjoM6xKtKtcO4acGLRxxmF9+fg9IQa6vAx0eXFE6oEuL4PdPsTw0UGMRicQm2QmNsVCbLKZ2GQzMclmYpPM2BNMaM9iLVso4Gegq5OBrg4GOjsY7OpgoKsTZ08Xg93dSOLRdWeCoMGWmEhscmp0JtueFJnNTkohJin5ogmoMZ76o4rKxd4fZVnG6wxG3LAVL4DBHh/OXmXfPRA4zgVbb9JiTxAw2/zoDV40GhdieJCApx+Po4eBrs4TXKetcfHEpqQRl5ZOXFo68WkZxKdnEpeWPi7dJ2VZJtTWhm/nTrw7d+HdtZPgkToABIMBc2UlljlzsMyZjXnaNDSm0RWgJ+uTUiBMoMFJ4MgAgSMOQp1eADR2A6aiuKhg01pHJuhVWArzfsv7PHP4GbZ1bsOsM3Nz4c18tPyjZNuzR+SeY0lPTw8vPvsU3f2DXKHbxaKP/Q9CzpyxbtaYoAq088HTB7+dDjnz4N4XRuee58k7je/wvc3fIySF+Prsr3Nr0a0TymViaH3Zxo0bqaurw2AwMHPmTObOnUvcMOQHC3V24l67Ftd7a/Fu2YIcCqGJjcW2eDG2JYuxLlx4nNviuTCWAxBZlAl1uBUx1jBIoMkZXTumsegw5CqLog25MRgybcPiuiFLMi6HH0eHF0enh/4ODwOdiiDzH5t0WiMQk2wmLtVCXIpSxyYroswad2YrGEDI78fR2Y6jo52BznYcne0MdnUy0NmO29F/3Lkmq43Y1PToLHRscqROUUSZVjf20SRHg4t9QKwysbjU++PQGlrFY2DIe0CZtHL2+Y+LHGswaYlNMWNPkDGYvGi0LqTwAEFvP87eTgY6O3D39x13fXNM7HGiLSEjk/iMLOLTMsbVpFPY4cC3e7eShmb7dvwHD4IkKevYplZimT0b65w5imAzj+w6/7Ppk+JgAH+tA3+Ng8CRASWBtgD6TBum4njMZYnoM23Dkjj7w9Q6avnnwX+ysn4lkiyxPGc5n5j8CSYnTR72e40lwWCQ1196hv01jZQJddx8+z0Yyyf2ev7zQRVo58NbX4dt/wcPb4aU8ZmU2h1086NtP+L1uteZkjSFHy3+EbkxuWPdrLNGkiQOHTrExo0baW9vx2q1Mm/ePGbNmoX5Ah7SsiwTqK7G9e4a3O+9p7wMAH1ODvbLL8d2+TIsM2actZXsdIzmAEQWJYJtbkWM1StWsqHIitoEkyLG8mIw5sWiSzJf0MtDlmScfX762930dyhCbEiUHeuSaLLpiU+zEJ9mJS7FQlyahfhUC/YkE9oz5KMBxR1xsLsLR3sbjo6jpb+jHXdf73HnWuMTiEtNIy41Q5lNTk0jLi2DuNR0TCOY624icakPiFXGF2p/PDWiKB0Vb93e6ETXQLcXd//xa2Bt8Ubi0yzEJOsxmr1oNIOIgX7cA90MdCiTV8eJN0EgJimFhIxMEjKyiM/IIiEji8SsbCyxcWM+gSu6XPh27cKzbRvebRHBJooIej3madOwzJ+Hdf58zFOmDMt7+ljOtU/Kkkyw1UWgxoG/doBgsxNkZYmAqSQBc1kixqK4E8L5Xyjd3m7+dehfvFj9Iq6Qi1mps/jE5E+wKHMRGmF8L7c5W2RZZvO61ax+fyNJ9HPn8tkkLfrYWDdrVFEF2rnSVwd/mAPT74MbfjPy9zsPdnXt4psbvkmHp4MHKx/k05WfRq+ZGFaCUCjEnj172LRpEw6Hg4SEBBYuXEhlZeV5ry+TZRn/gYO43nkH56p3CDU1gyBgnj4d++XLsC1bhqGgYNhfTCM5ABkSZIF6RZAFG53IwUjI4xQzxoI4jJHwwdrY8/Prl2UZnytEX5ub/nYPfW1u+toVQRYOHM3JNTRAiE+3Ep9mJSHdSny6BbPt7GZpQ34//R1t9Le10N/eSn+rUjs62hDDR90RTVYb8RmZxKcfWxRBZjBNjAiqY4k6IFYZT6j98fwIBUVFtHX5GOjy4OjyKhNkXd7jnssmq574dGWCLCZJi97oQhYH8Dg6ledrZOIrFPAf/RmbncSsbBIzc0jMyiYhS6lt8YljJtxEt1sRbFu34tm8mcChwyDLaKxWxbq2YD6WefOUoCMX2MYL7ZOiJ4S/xoH/UB/+aocySaoTME2Kw1SWiKksAd15vo9Phjvo5uXal3n60NN0ejqZFDuJ+yffz3UF102YMd+ZqD+8nxdfeA5JErl1ehIlNz021k0aNVSBdq688DGofRe+sBvs42sdV0gM8fjex/nb/r+RYc3gR4t/xLSUaWPdrLMiFAqxa9cuNmzYgMvlIjMzk4ULF1JaWnpeYfJlWca/bx/Ot9/B9c47SvhfrRbrvHnYr74K+xVXnLfr4tkynAMQWZYJd3nxHxlQfOHrB48KslSLIsYKYjHmx6K1n7v7iihKDHR66W11K6XFRV+bG5/rqGui2a4nIcNGYoaVhAwriZk2EtKtGMxnN4sZ8vvpa2uhr7WZ3pYm+lqb6WttxtnTHT1HEDTEpaURn5FFYmb2MTO8mZjtF3demJFGHRCrjCfU/ji8DAVccgx5NXQedTUPeI6Z6LLpI89wW2QiLQCSA2dve+SZrDyj/W5X9GcMZgtJ2bkk5eSSlJMX2c7DbLOP+vcMOxx4t26NpLnZrEy4AtqkJGwLF2BdtBjrwgXnlXN0WN/ZYYlA4yD+Q/34DvUj9itCWJ9txzI5CfPkRHSJwzOxGJJCvN3wNv848A9qHDVk2jL59JRPc+OkG9FrJ75QG+jt5vm//ooOv5Gl2RJLPvGdYU+fNB5RBdq50LwVnrgKln4Tln59ZO91jvR4e/jSui+xt2cvtxbdytdmfw2rfvwtEv4woVCInTt3smHDBtxuN7m5uVx22WXk5+ef82yYLMv4Dx7E+cZKnO+8Q7ijA/R6rAvmE3PV1dguX4YuPn6EvsmJXOjDPtzvJ1A3oIiyuoHoGjJdklkJ+1uoWMm0Z2mpGiLoD9Pb6qan2UVvq5u+Vjd97e5oyGitTkNChpWkLBuJmTYSM5WXuSXm7O4jhsM4OtroaW6kt6mB3ogQG+zuAnnoHjrFrSY7l4TMiBjLzCYuLeOsEy+rnBvqgFhlPKH2x9Eh6gnR7qa/zRN1Te9r9xDyH+MJkWAkKctOUpaNhAwrtjiJoL8HR1sLvS1NkdJ4XKRJW3wCSTl5JGbnkpJXQEpuPvEZWWiH2fXwdITa2vBs2YJn4yY8mzYhDgyAIGAqL1eCey1apAT3Oov3ykj1SVmWCXd78R3sx7e/l1CbkjdVn27FPCUJ8+Qk9CmWYbnPB60f8Ke9f2J/337Srek8MOUBbi68GYN2/Kw7PB9CAT8r/+/77O3TUxwT4NYHv4nJOvoTBKOJKtDOFlmGv10FA83whV3jKoleVU8VX1r7JVwhF99b+D1W5K0Y6yadkVAoxI4dO9i4cWNUmC1dupT8/PxzvlawpQXnypUMvrGSYH096PXYFi7EvuJq7JdfjnaYc6KdLef6sJcCIoH6AWXxcY2DcCQHmcauxzQpThFkhXHo4s4+slXQF6a31UV3k4ueZqU4urzR6GFmu56kbDtJmTYSs2wkZduIT7WgOYs1YgCeAUdUiPU0N9LT3Eh/a3PUNVGj1RKfnklidi5JWTkkZeeSmJ1DXGo6Gu34D01/MaEOiFXGE2p/HFtkWcbtCERd2Ie8Jwa6vNEAJTqDhoQMG0lZNpKzlXeE0RpgsLOV3uZGpbQ009fWjBhSJhC1ej1J2bkk5xaQkpdPcl4ByTn5GC0XLkDO+J1EEf/Bg7jXr8ezYePR9Dg2G9b587AuWYJtyWXoU1NO+vOj1SfD/X58+3vx7e8l2KxYKnWpFsyTk7BUJqFPvbDxpSzLbGzfyON7H6eqp4oUSwqfmvwpbiu+DaN2bFMZXAiyJLHtmR/xzhE/KaYw933uv7BdxJ41qkA7Ww68Ci9+HG78HcwYPwsVXz3yKt/b/D1SLCn89vLfUhxfPNZNOi0fFmZ5eXlRi9m5EHY4cL71Fs43VuLbvRsAy6xZxNxwAzFXX4V2GCI8XihnetjLskyow0Og1oG/2kGgyQmijKDXKO6KRfGYiuLQpVjOypoohiR6Wl10NzrpanTS3ehioPuoGLPGGUnOsZOcYyclUlvjzu5hLUsSA10ddDfW091QR3dTA90NdXgHB6Ln2BISSc7JIyknT6lz80nIyLxkoiSOd9QBscp4Qu2P45NwSMTR4Y16V/S2ueltdUXdJAUB4tKsJOfYSM62k5xtJyHDjGegi57GeuXd0FhPT2M9Ppczet24tHRS8wtJLSgktaCI1IJJI54KQHQ6Feva+g24N2xQvGpQUufYLrsM27KlmCoqogmzx6JPioMBfPt78e7vI9g4CLJiWbNMT8E8NfmC1qzJssyWji38ae+f2NW9i2RzMp+c/EluL7l9Qgu12td+zvO7HcQaBT760GPEjaJn1GiiCrSzQZbhT4tAEuHhjTAOktKGpBC/2PEL/nXoX8xNn8vPl/x8XCcvFEWRPXv2sG7dOlwuF3l5eSxdupS8vLyzvoYcCuFat47Bl/+Ne8MGCIcxFhURc8MNxF53LfrMUyeNHgtOmlPFH1ZC9B524K/pR4qs8dKnWTAWJ2AqjsOYF4ugO70FS5ZkBrq9ihBrUARZb6sbSVT+Zi0xBlLyYkjNs5OUbSclN+asXRQlUaSvrYWuulq6GuqUl21TQzQHj0arJTErh5S8ScoMaW6+sh7hIp7JuhhQB8Qq4wm1P04chqxtPc0uelpc9LYoLvKegaMRJWOTzaTkxZCSq7xvErOshHxOupvq6W5QJvY662tx9fZEf+ZY0ZY2qYjUgkIM5pGxtMmyTKCmFve6dbjffx/fnj0gScratSVLsC29jN2SxGUrxs4DSXQF8Vb14NvTQ7DFBQIY82MxT0vGMjkJjeX8A6Vt79zOn6r+xPbO7aRZ0/js1M9y46Qb0Y6D8ez50PTqD3hmjwujwcDHPv0IScnJY92kYUcVaGdD2074y+Vw/a9g1idH5h7ngMPv4Cvvf4Vtndv4aPlH+fLML6PTjJ7P97kgyzKHDx9mzZo19Pb2kpWVxfLly89JmAXq6xl46WUGX3sNsa8PXUoKMTdcT+yNN2IqGb9Z5ocGIKEeryLIDvcRaHCCJCOYdZEkl4oo08acfjYr6A/T3eSis26QznqlBLzKjKbeqFVeinkxpObHkJoXg/UsE01LkoijvZ2u+lo662vpqjtCd2M94aDy4tWbzCTn5ivrC/ILSMktIDE7V10nNgFRB8Qq4wm1P058vM4gvS2KaOtuUrw33A7l3SEIEJ9uJSVHeTel5MWQlGUj4HXRXX+EroY6uuqP0NVwJBooShA0JGZlk1ZYQnphMWmFxSRl546IO3zY4cCzfr0i2NZvQHK5kHU67AsXYr9yObbLLz+vQCPD1r5eH969PXj3dBPu8YFWwFSSoFjWyhLOOIl7KrZ2bOXXO3/N/r79TIqdxCMzHuHy7MvHPL3COSPLdLz6Pzy9N4Css3DfJx8kIyNjrFs1rKgC7Wx444uw9zn4SjWYYkfmHmdJdX81j659lB5vD99e8G1unHTjmLbndDQ1NbF69WpaW1tJTExk+fLllJaWnp1w8Hhwvv02Ay+9rLgw6nTYly0l9rbbsC1aNOz5T4YTWZQINDg5snovSR4r4V7F8qRLtWAqTcBcmoAhJwZBe+r/B1e/n466ATrrnHTWD9Lb6o6uC4hPt5JeEENqQSyp+THEp1nPKrkzgKuvl44j1XTUVtN5pIauhrqoZUxnNJKaP4nUgiLSCgpJKSgkIT0z6v6hMrFRB8Qq4wm1P16ceJ1BupucyrrnJiddTS58ziCgBKBKzrGTWhBDWr7y/rLFG/G5nHTV1dJxpIbOI9V01NXij7hHKu+lQtKLSsgoLiWjuAxr3PC6tMmhEN5duzn05JPEHT5MqL0dNBrMM6ZjX74c+/LlGLKyhvWeZ902WSbU7sG7uxtvVQ+SM4jGqsMyPRXrrFT0aefuJirLMqubVvO73b+j0dlIZXIlX5zxRWanzR6BbzCCyDK9L3+Vp/ZL+LUx3P3R+89p8n+8owq0MxH0wi9KoPQ6uOVPw3/9c2BV4yq+tfFb2A12frPsN+M2e3xXVxdr1qyhpqYGu93O0qVLmTZtGtqzmAXzHTjAwHPP4fzPm0heL4b8fOI+chuxN92ELilpFFp/fkhBkUCNA9+BPnyH+5F9YWRBxlSkCDJTaQK6hJMH95BlmcFuH+21A9HiioTk1Rm1pObFkD4plrSIIDNZz856FfT7oi89RZBV43b0A0oUxZS8SaQVFkfdS+IzMtFMUHcHlTOjDohVxhNqf7w0GHKP7Gpw0tUwSFeDk+5mF2JIAsASa1DEWkEM6ZPiSMmxo9EJDHZ10nFEmUjsOFJNd0NdNPhUXGq6ItZKyskoKSMxK3tY3l3r1q3jsssuI3D4MK7V7+Jas4ZAdTUAxtJS7MuXE3PNCoyTJl3wvc4HWZIJ1Drw7OjCd7APRBl9lg3r7DQsU5PRmM5t4joshXn1yKs8vudxun3dLMpcxKMzHqU0oXSEvsEIIEkMvvgITx3SMKBJ5I677qG4eHzHYjhbVIF2JvY8C68+BPe/CXkLh//6Z8kL1S/wv1v+l8rkSn697NckmcefWHG73axZs4Y9e/ZgMBhYtGgRc+fOxWA4/donORjEuWo1jqefxrdnD4LZTMw11xD3kdswT58+bk3voiek5Dg50Iu/dgDCEoJZh7ksAXN5Its693PZ8qUn/JwsyfS1e2ivdSiC7MhgdIbRbNeTURhHelEcGYVxJGZazyqioizLuHp7aKs5RHv1QdqrD9PT1IAsKy/BuLR00gtLFNeRomKScwtUN8VLDHVArDKeUPvjpYsoSvS1uulqcNLZMEhXvZPBHsWTQ6vTkJJrJ21SLOmFcaQXxGKy6QmHQnTVH6G95hDt1YdorzkUDVJlMFvIKC4lq2wymWUVpE0qPq/328n6ZLC5Gdea93C9+y6+XbtAljEWFWFfcTUx11yDsaDgQv87zgvRE8K7uxvP9k7CXV7QabBMScI6OxVDfuw5jZv8YT/PHH6Gv+77K66gi5sm3cQXZ35xXI4zT4oYxvP8p3m6xkSXkMott97GlClTxrpVF4wq0M7EE9eAuwse2ak4VY8Bf9//d36585csyVrCLy77BSbd2YdZHw1EUWTr1q28//77hEIh5syZw5IlS7CcIaxuqKubgRdewPHC84g9vehzc0i4915ib755zELjnwnRFVTC4+7rJdCgRFzSxhoxVyRiKk/EmB+DoD0+ItSQhay12kFbtYO2Gkc0AbQt3khGsSLGMoriiEs9u4iNkijS3VhPe/VB2iIvK3d/HwB6o0lxBykpI72ohLRJxVhixtY1V2XsUQfEKuMJtT+qHIvXGaSzfpCOIwN01A3S0+yKBr2KT7OQPimWjOJ4MorisCeYlPdqVyftNYdoqz5I2+GD9LUqSat1egPpRSVklk0mu3wy6UUl6I1nHjedqU+GurtxrVqN8+238O2MiLXiYkWsrbgGY8G5pwm6UGRZJtTqxrOjE++eHuSAiC7Vgm1+OpbpqWiMZ29ZHAwM8td9f+XpQ09j1Bp5sPJB7iu7b2Ikuw4H8T/zMZ6tt9JENjfccAMzZ84c61ZdEKpAOx29R+D3M+GKb8PiLw/vtc8CWZb5w54/8OeqP7MibwU/XPxD9Jrx9YdSV1fHW2+9RW9vL4WFhaxYsYKk07giyrKMb/duHE8/jXPVahBFbEuWEH/fvVgXLhyX652GRJm3qjcaBleXYsE8ORFzeSL6TNsJosrtCPDuq5uwC6m0VjuiC6etsQayShPILIknsziOmCTzWbUhHArRWVdD26EDtBzcR3vN4ejaMXtSMhnFZWSWlJFRUk5yTp6aY0zlBNQBscp4Qu2PKqcjHBTpbnLSUTeolCODBH2Ki2NMkomMojgyipT3qD3RhCAIeJ2DtFUfpPXgfloP7aenUfEi0Wh1pE4qJKeikpzJU8koLkN3Es+ec+mToa5uXKtW4Xz7bXw7dwJgLCkh5vrriL3+evTp6cP2f3G2SEER394e3JvbCbV7EIxarDNTsc5LP6dE2I2Djfx8x895v/V9cmNy+eqsr7Ika8m49WaKEvITevpOnm+Kp07I44477qSsrGysW3XeTHiBJgjCDcANmZmZn3766aeH9doFdU+S3fIqm+f/jaBxdKP5SLLEK45XWOdax3zbfO5KuAuNMH7Ei8/no66ujt7eXkwmE4WFhSQmJp76D1iSMO7eg3XVKvRNTUgWM74FC/AtWYKYcvKkkWOJNgDWLgF7h4DJAQICAZuMO00pIdvx50thGW8PuDtl3J0QGIxcxwDWVLCmCFhTwWDn7CxkoRDurnbc7a24OlrxdHUgi8rLyZSQhD09C1t6Frb0TAw2+3B/fZWLELfbjc1mO/OJKiqjgNofVc4FWZLxD4K3GzzdyvtWVFYGoLeAJUV5z9pSQW9V3rFiIIC7sw1XRyvuthY8PZ0gywhaHba0DOxZucRk5mBJTkXQaM67T2ocAxh378K0fQeGhgZkQSBUWIh/7hz8M2Ygj0KS7uOQwTQAsc0Ctk4BQRbwJsoM5kh4UoCz1FkHfQd5uf9lusPdlJnKuDXhVtL0aSPZ8gtGI/op3/Nd/u2aRqeQxtRp04iNnZgeRMuWLZvYAm2IYbegiWH4VTlkzoS7nx2+657NrSWR727+Lq8ceYX7yu7ja7O/Nm5mLoLBIBs2bGDjxo1oNBqWLFnCvHnz0J/C31sKBBh85VX6/v4EoaZm9Lk5JH7iE8TeeCOa0X5onQHJH1YsZXt6CNQNRCxlZsxTkrFUJqFPPRotSZZlHB1emg/20XKwn7baAcSQhEYnkFEYR055Ip2eOlbctBThLCIsiuEQnUdqad6/l+YDe+moOYwYDiMIGpLz8skun0xm2WQyS8pVd0WV80K1WKiMJ9T+qHIhyJJMf4eH9toB2moGaK89unQgNsVMVmkC2aXxZJbERwNrBbxeWg/tp3n/Xlr276WnuREAo8VKVvlkgiYrV95+F/Fp5x+uPdjczODKlThff4NgYyOCXo9t6WXEXH8DtqWXoTGOboJo0RXEs70Tz9YOxMEg2jgjtkWZWGennZX7Y0gK8eyhZ3l87+P4w37uLrubh6c+jN0wjieG3d14/nQ1f/NejteQxKc+9QDJEzBP2oS3oA0x7ALt8Jvw3N1w17NQeu3wXfcMhMQQ31j/DVY1reKhqQ/x2amfHTfirKamhpUrV+J0OpkyZQrLly8/5cyE6HTiePY5+p96CrG3F9PkySQ+8AD2K5cjjCP3Ozks4a924N3Tje9QP4QltAkmLNOSsUxNPk6UhYMirdUOGvf10bSvN+q2GJ9mIbs8gZzyRDKK49AblO93ugGIJIn0NDbQfKCK5v17aTt0gFDAD4JASl4BOZOnkl0xhcyScoyWcw+jq6LyYdQBscp4Qu2PKsPJUPCt1sP9tFY7aK8ZIBQQQYDkbDtZJfFklyeQXhiLTq+8o72DAzQfqKJlfxVN+/cw2NUJQGxqGnlTZ5I3dQY5FVPOK3m2LMv49x/AufINBv/zJmJvLxq7nZjrriXuttswTZ48qmM7WZTxH+rDtaGNYKMTwazDNj8d24IMtLbTB3ID6PP18bvdv+Pftf8myZzEf8/9b67IvWIUWn6etO3C8cQd/FW+E509kU996gFixmlsg1OhCrRT8ezdSoLqLx0E7ejk3PKH/Xx53ZdZ37aex2Y+xv2T7x+V+54Jj8fDW2+9xf79+0lOTub6668nNzf3pOeGurrpf/JJBp5/HsnjwbpoEYkPPIBl7pxxIzRlSSbY7MS7uxvfvl4kbxiNVY+5MgnL9BQM2fZoW92OAE37e2ms6qX1sINwSEJv1JJdlkBORQLZ5QnEJJ58HdmHByCu/l6a9u6mce8umvbvjeZ5ScjIImfKVHIqppJVPhmzfWI9RFQmBuqAWGU8ofZHlZFEFCW6G12KYDvsoLNhECkso9NryIyItZzyhOMCc73z2qukmvQ07N1Jy/4qQgE/Gq2OzJIycqfOIH/aTJJz8895LCOHw3i2bGXw9ddwrVqN7PdjLCoi9rZbib3xxlFPiB1ocuL6oBX/wT7QClhnpmJfnIXuLNbE7+/dz3c2fYdqRzVX5FzBN+d+kxTL+FumAsDe5+l45b/5u+Ze4pPT+MQnPoHJNL6C7J0OVaCdDFcn/LIcFjwCV353eK55BvxhP59d81l2dO7gf+b/D7cX3z4q9z0dsixTVVXF22+/TSAQYMmSJSxatAjdSZJEh3t66P3LXxh47nnkcJiYa64h8YFPYRpHCzTDA368O7vx7OxC7Pcj6DWYKhKxTEvBVBSHoNUgyzK9LW7q9/bQWNVLb4sbAHuiibzKJPKmJJJZFI9Wf+b1gO+9u5qC5EQa9+6ice+uaIQpa1w8uZXTya2cTk5FJbaExBH93ioqoA6IVcYXan9UGU1CAZG2GgfNB/tpOdjPQJcXUN7tOREPmIbe/Vxx5TJACczVXn2Ixr07ady7i56mhsj5yRTMmM2kmXPIrqg8abCR0yG6XDjffIuBf7+Mf28V6HTYly0l9tZbsS1ejHCS8dVIEerx4l7fhmdnF0gy5slJ2JdkYcg+vftiSArxzwP/5PG9j6PX6PnSzC/xkeKPjKs4CVFWfYu6Ta/xL+E2cnLzuO+++046hh2PqALtZGz4Fbz7Hfj8TkgqHJ5rngZREvnyui+ztmUtP1j0A26YdMOI3/NMOBwOVq5cSV1dHVlZWdx4442knCSYR9jhoO+vf8Xxr2eQQyFib7qJpIcfwpCdPQatPhE5JOE72ItnRxeBIwMgg7EwDsuMFMwVSWiMWiRJprN+kPrdPdTv7sHV70cQIG1SLHlTksibkkR8+tmFvx/o6qR+13Ya9uygad9eZDGMVqcjs7SCvKkzyJs6g6ScvHFjTVS5dFAHxCrjCbU/qowlzl4fzQf7aT7QR2u1g5BfRNBAZnG88t6vTCQ2+ahro9vRT8PuHdTv2kZj1W7CgQA6o5HcKdOZNHMOBTNmY42LP6c2BI4cYeDfrzD42muIfX1ok5OIu/U24u+4HX1m5nB/5VMiOoO4N7Xj3tKO7BcxFscTszwHY87pvXmanc18b/P32Nq5lRkpM/j2gm9TEDs2eeFOiSTCvz5CVX0X/5avoqKigttuuw3NOIwY/mFUgfZhZBl+NxNsqfDJty78eme8ncwPt/6Q56qf4xtzvsG9ZfeO+D1PhyRJbNu2jTVr1iAIAldccQWzZ88+oTOLg4P0/f3vOP75FJLPR8wN15P82c9iyMsbm4YfgyzLhNrceHZ0KXlB/GG0cUass1KxzEhFl2BCDEu0VTuo29NDw95efM4gGp1ATlkCBdOTyatMwnwWftliOEx7zSHqd22nftd2+ttaAIhPz0SflMqi624kq3zyWeVgUVEZSdQBscp4Qu2PKuMFUZTorBtk/Zu7kQYsODoV61p8miUq1tIKYtFEcpyGg0FaDlRRt2s79Tu34errASCtsJiiOQsomjOf+PSzF1hyKIT7gw8YePEl3B98ALKMbckS4u6+S7GqjdK6fSkQxrOlA9f7rUjeMKbSBGKW52DIOrVFTZZlXj3yKj/f8XN8YR+frvw0D0x+YHzlTvM54C+Xs9GVzerQDObNm8fVV1897ifKVYH2YRo3wj+uhZsfh2n3XPj1zsBQEur7K+7nsVmPjfj9Tkdvby+vvPIKbW1tFBYWcv311xMXF3fcOaLbTf+TT9L/jyeRXC7s16wg+fOfxzhp0tg0+hikQBjv7m48WzoJdXpAp8EyORHLrDSMBbFIskzrYQe127to2NtL0BdGZ9SSNzmRgunJ5E5OxGA6s+nb53YpM2k7t9FYtYuAx4NGqyOrfDIF02dTMGMW8emZ6gBEZVyh9keV8YTaH1XGG0N9crDHGw0G1lYzgCTKGC06cioSKZiWTE5FQnSsIMsyPU0N1O/azpHtW+iqrwUgKTuXorkLKJqz4Jy8ZkLt7ThefJGBl15C7OlFn5FB3J13EnfbrehOk2N2OJECYdyb2nF90IbsC2MqT1SEWsapUxD0+nr56baf8lbjWxTFF/HjxT+mOL54VNp7VnQfRv7LFbxjWMEWTzZXXXUVCxYsGOtWnRZVoH2YVx6CQyvhK9VgGNnoeW/Wv8nX13+dFXkr+MmSn4yZ/64sy+zatYu3334bnU7HNddcw5QpU457oMjhMI7nn6f3d79HHBjAdsUVJD/yeUylpWPS5mMJtrvxbO3Au7sHOSiiz7BinZOOZWoyGLV0HBmgdnsXdbt68HtCGMw6CqYmUTAjhezSeHSGM89Oufp6ObJ9M0e2b6Hl4D5kScISG0fBjNkUTJ9NbuW0EyI9qQMQlfGE2h9VxhNqf1QZb5ysTwb9YVoO9dNY1UtjVR9+TwitXkN2WQKTIt42Q2H8AZy93RzZtpnabZtpPXwAZJm4tPSIZW0BaYXFZyXW5FAI15o1OJ59Du/WraDXE3PlcuLvvRfzjBmjYv2R/GHcG9pwbWhD9ouYpyQRc0UO+rRTj43fb3mfb2/6Nq6giy/O/CL3lt07ftamHX4T6bm7eSn2IQ45Ldx///2nDHg3HlAF2rH4B+HnJTD1TrjhN8PTsFOwrWMbD777INOSp/HnK/+MQXtuC02HC4/Hw+uvv051dTUFBQXcfPPNJ4Qida9fT9dPfkLwSB2WOXNI+epXMU+ZPCbtHUIOiXirevFs7SDY7FKsZVOTsc1LR5dppafJTe32Lo7s7MIzGERn0JBfmUTR7FRyyhPPKshHX2tLRJRtprNOmRVLyMiicM58CmfPI62gCOE0fszqAERlPKH2R5XxhNofVcYbZ+qTkijRcWSQ+j091O/pwe0IIGgEMorimDQ9mfypydjij+Y58ww4qNuxldptm2jevxdJFIlJTqV0wWJKF1521pa1QH09jueeY/DV15CcTkyTJ5Pw8Y8Rc/XVCOcYpOR8kLwhXBvacG9sRw6KWKalELMiD13syXO69fn6+M6m77CudR3z0+fzv4v+d/xEenz/pwTW/pQ/mb+AqLfx8MMPYzafOXrlWKAKtGPZ8QSs/BI88B5kzRyehp2EGkcN9791PymWFJ685klijWOTePjIkSO8+uqr+Hw+li9fzty5c49baxaoq6PrJz/B88F69Dk5pH7tq9iuuGJM/XbD/X7cm9vx7uxC8obRJZmxzk3HOjMFtzdM9dZODm/pxNnjQ6MTyK1IpGh2KnlTktCfISmjLMv0NjdSvXkDNVs34mhvBRS/8sLZiihLzDz74CfqAERlPKH2R5XxhNofVcYb59InZVmmp9lFXSS42FBUyPTCWApnpjJpRjLWYwSM3+2mbudWDm/6gKaq3ciSREJmNqULl1C68LKzSo4teb0Mvv46/U/+k2BDA7qUFOLvvZf4O+9A+6HlKCOB6Anh+qAV98Y2BEHAtiQL+2VZaE7ihSTLMi/VvsTPtv8Mg9bAt+d/mytzrxzxNp4RSYIXPkpb9S7+JtxFaWkZt99++7hcj6YKtGP5v2UQDsDDG2GEflmdnk7ue/M+JFniX9f+i3Rb+ojc53SEQiHWrFnDli1bSE5O5rbbbiMtLS36edjhoPf3f8Dx3HNoLBaSHn6Y+PvuRTMKMzUnQ5Zlgk1O3Bva8B3oAwHMFUlY56YjZFqp391L9ZYO2moGQFCiMJXMTaVgWjJGy5kXqva2NCmibPN6+ttbEQQN2RVTKJqzgEmz5mJPPD+/b3UAojKeUPujynhC7Y8q440L6ZP9HR7qdnVzZGc3/e0eBAEyiuMompVKwfTk44KOeZ2D1GzZSPWmD2g9tB+A1IKiqFizxZ8+L5osSXjWr6f/ySfxbNqMYDIRe/NNJHzsYxgLRj6KYrjfz+DbDfiqetHYDcRenYdlRgqC5sRxc+NgI99Y/w0O9B3g5sKb+cacb2DVj+zyoTPi7Yc/zGWDMId33UXceOONzJgxY2zbdBJUgTZE1wF4fAGs+DHMe3j4GnYMrqCLj7/9cdrd7Ty54klKEkpG5D6no6uri5dffpnu7m7mzJnDlVdeiV6viBg5FMLxzDP0/OGPSG43cXfeQfIjj4x6EsUhZFHCt68X14Y2Qq1uJfP93DSsc9Pp7PZxeHMHdbt7CAdEYpPNlM5Po3hu2ikTRx9LX1sLNZs3UL15vZKfTBDILp9CyfxFFM1ZgCU27oLbrw5AVMYTan9UGU+o/VFlvDFcfbKv3c2RHYpYG+jyImgEskvjKZyVQsH0FIzmo8HIXH29VG/6gMObPqCr/giCoCFv6nQqli5n0sy5Z8yz5q+uof+pf+J8/Q3kYBDbZZeR+OBnsIyC4Ag0ORlYWU+oxYU+00bcdfkYC+JOOC8khXh8z+P8bf/fyLBm8KPFP2JayrQRb99pObQS6fl7eSruMVo9Wh588EGSRikIy9miCrQh3voG7PgbPFYNluEXJCExxMPvPszOrp38cfkfmZ8xf9jvcSZ27tzJm2++iclk4qabbqK4+GiEHd++/XT8z/8QOHwY64IFpHzj65iKxyYCj+QN4d7aiXtzO5IziC7JjG1RBkyK4/D2Lg5u6MDV78dg0lI4K5XSeWmkTYo9o4na7ejn8IZ1HNywjp7GehAEMkvKKVmwmOK5C885h8mZUAcgKuMJtT+qjCfU/qgy3hjuPinLMr2tQ2KtC2evH61eQ/7UJErmppFTnhAN3Q/Q397GwQ/e48AHa3D39WK0WildcBkVS68gbdLpg4uE+/pwPPccjqf/hehwYJk1i8QHH8S6aOGIuu/JkoyvqofBtxoRBwOYKhKJuzYf3Ukmynd17eKbG75Jp6eTr8z6CveW3Tu2roUvfQrngXd53PggsXEJPPDAA+MqibUq0EDxSf15IeQthjueHN6GRfj59p/z5MEn+cGiH3DjpBtH5B6nIhwO8+abb7Jr1y4mTZrELbfcgs2mhEuVPB56fvs7+p96Cl1iIqnf+hb2q64ckz+a8IAf9wdteLZ3IockjIVx2BZm0CvB/g3tNO7tRZJkskrjKVuYTsHU5DNGYAz6fRzZtpmD69fSvG8vsiyRNqmIskVLKZq3EHvCyM2YqAMQlfGE2h9VxhNqf1QZb4xkn5Rlma5GJzVbOqnZ0UXAE8Zs11M0O5XSeekkZdui4y5JEmnZv48D779L7dZNhENBEjKyqFi6nPLFy7AlJJ7yPpLXy8BLL9H3tycId3VhKi8n8cEHsV+5/LRBzS74+4VEXOvbcK1rQZYg5ooc7EsyEbTH39MVdPHfG/6btS1ruTb/Wr6z4DuYdWMUpMPbD3+Yw2H9FJ4bmMr8+fO5+uqrx6YtJ+F0Am38yMiRprcavH1QPDK/mE3tm3jy4JPcWXLnqIuzwcFBXnjhBdra2li8eDHLli2LBgJxr19P57e/Q6i9nbg77yTlsS+jjTl95viRINTjxbWuFe/ubgAs01PQTU/hSN0gB56pwdnjw2TTM/WKbMoXZRCXajnt9SRJpHnfXg6uX8uRbZsJBfzEJKcy95bbKV209JwCfaioqKioqKioXAiCIJCWH0tafiwLby+iaX8fNVs72f9BG1XvtRKfbqVkriLWrHFGciunkVs5jcCnPFRv3sCB99ew/pl/sOG5f1I4ax6VV15D7uSpJ4gujcVCwsc+RvxddzH4+uv0/uUvtD36KIaCAhI/82lir7sOQT/8SaQFvZaYy3Owzkpl4I16nO804tvbTdytRRhzjo4r7QY7v172a/6272/8bvfvODJwhF8v/TXZMWMwLrMkwPW/ovT5+5idOZPNmzczadIkCgsLR78t58ilY0Hb+SS88QX4/E5IGt5fjMPv4LbXb8NusPPc9c+N6kxBY2MjL774IqFQiJtvvpny8nJAMYV3/ejHOFeuxFBQQPr3v4dl5shFrTwVwTY3rnUt+Pb3Iug0WGal4suLZf/2Lup29yCJMhlFcVQsyWDStJQzhsYf6Oxg/7rVHFj3Lm5HP0arlZJ5iylbvJTMkvIRnT06GeoMscp4Qu2PKuMJtT+qjDfGok/6PSGO7OymZmsnHXWDCALkTkmifFEGuRXHu0A6OtqoWvMO+9e9i9/lJC41nSlXXM3kZVdiiTl5NHBZFHG98w69f/4/AtXV6DMySPrsw8TefDPCCLrz+Q72MfDaEURnEOu8dGKvzkNjOv5+G9s28rUPvoaMzI8X/5glWUtGrD2n5aVPETqwkv+L+zreoMjDDz8c9TIbS1QXR4DXPgeH34Sv1Q9r9EZZlnl07aNsaNvAs9c9O2pBQWRZZuvWraxatYr4+HjuvPNOUlJSkGWZwVdepfsnP0H0ekl68EESP/PpUY/OGGgYxLm2hUCNA8GoxTIvnR6rnr0bO+hucmG06Cidl0754gwS0k8f7SccDFK7fTP733uH5v1VCIKG/OkzqVi6nILps8+4wHYkUQcgKuMJtT+qjCfU/qgy3hjrPjnQ7eXQxg4Obe7A5wxijTVQuiCdsgUZxCYfndwPh0LUbt1I1btv03poP1qdjqK5C5m6/BoyyypOukRFlmXc779P7x/+iH/fPgy5uSR9/vPEXHftiE1eS4EwzneacG9uR2s3EHfTJMwVxy8raXW18qV1X6K6v5rPTvssn6n8zOgntvb0wR/n0mUu4v8cCygoKOCee+4Z89D7qkAD+P1sSCiAe54f1ja9UP0C39/yfb4666t8rOJjw3rtUxEMBlm5ciVVVVWUlJRwyy23YDKZCPf30/Ff38T9/vuYZ8wg/fvfwzhp0qi0aYhA4yDOVU0E6gfRWPWY5qTRGJKo2tCBZyBAXKqFqVdkUzI37Yw5y3qaGtj33ioOrV+L3+MmNiWVycuuomLpFSO6ruxcGOuHvYrKsaj9UWU8ofZHlfHGeOmToijRtK+PgxvaaT7QhyxDVmk85YsyKJiafJw3UV9rM3vffYuD779HwOshMSuHGdfcSNmSZegNJyaSlmUZ99q19PzmtwSqqzEWFZH0hUewL18+YoIk2OLC8XItoU4PpopE4m+chPaYHHG+sI/vb/4+b9S/wdKspfxg8Q+IMYzycpuDr8MLH2Vb0dd5szbIihUrmDdv3ui24UOoAs3bDz/Nh8v/B5Z8ZdjaUz9Yz51v3MmM1Bk8vvzxUZkRGBgY4LnnnqOzs5Nly5axePFiNBoN7g0baf+vbyANOkn5yleIv+/eUXX3C7a6GFzVRKDGgcamRzszlcO9fg5v6yIcksgqjWfqFdnkViSeNI/GEKFggOpN69m76j901tVGZ40mL7uSnIrKUXdhPBPj5WGvogITsz+GQiFaW1vx+/1j3ZRxjclkIisrK5oyZSIwEfujysXNeOyTrn4/hzd3cHBjO+7+AGa7norFmVQszsAWb4qeFwr4qd60nl1vv0FPYz0mewxTl1/DtKuvO2leNVmScL39Nj2//R3BxkZMFRUkf/FRrIsWjYhQk0UJ94Y2Blc3I+gE4m8pxDI15ejnssyzh5/lZ9t/RoYtgz9c8QfyYvOGvR2n5aVPIh94nWdzfkBdazef+9znSBijNFOgCjSoXQ3/+gh8fCXkLx6WtgTFIPe9eR8dng7+feO/SbYkD8t1T0dHRwdPP/004XCY2267jeLiYuRgkO5f/Zr+v/8dQ+EkMn/xC0wlo5d7LdTpYXBVE/6DfWgsOpiSxJ5WDw0H+tHqNBTPTWXq5dkkZp7e19fZ082e1W+y771V+F1OEjKzmXrlNZQtWorZPvpBTc6W8fiwV7l0mYj9saGhAbvdTmJi4pi7m4xXZFmmr68Pl8tFfn7+WDfnrJmI/VHl4mY890lJkmk51M/+da007u9DEAQKpiVTuSyT9MK46PNRlmVaD+5j55uvUbdzGxqNltIFi5lx3c2k5p/oNSWHwwy+/ga9f/gDobY2zDNmkPKVr2CZMX1Evke4z0f/89UEm11YZqQQd9MkNMaja9N2de3iS+u+hCzL/P6K31OZXDki7TgpEVdHlzWP3zqWUVxczO233z569/8QahTHlq0gaCFz+JL6/W737zjUf4jfLvvtqIizuro6nn/+ecxmM/fffz/JyckE6hto/8pX8B88SPw9d5Pyta+hMZnOfLFhINTjxfluM76qHgSDFqYls6PNS8s7LRitOmZfn8/kJZlYYk69PkyWZZr37WX3Oyup37kNgMLZ85h29fVkV0xRB2sqKpcAfr+fvLw89e/9NAiCQGJiIj09PWPdFBUVlRFCoxHIrUgktyKRwR4f+z9o49DGdup2dZOYZaNyaRZFc1LRG7RkV1SSXVGJo7Od3W+9wf61qzm4fi1Z5ZOZed0tTJoxO+pxJOh0xN16C7HXX8fAyy/T+8fHabrnHmKuvYbkLz+GIStzWL+HLtFM8oNTcb7XjOu9ZgKNThLuKolGepyROoOnrnmKB1c/yAOrHuDnl/189IKHWBPhul9if+GjLMhbxvsHDjB//nyysrJG5/7nwKVhQXvyRvA54KH1w9KOze2b+czqz3BH8R38z/z/GZZrno59+/bxyiuvkJSUxH333Yfdbmfw5Zfp/MEP0RiNpP/wB9gvv3zE2wEgOoMMrmrEu7MLQadBLIpnZ5uH9iYXlhgD067MoWJxBgbTqbV/0OflwPtr2PPOf+hvb8UcE0vlFVdTuXwFMUkpp/y58ch4no1TufSYiP3x0KFDlJWVjXUzJgQT7f9qIvZHlYubidYnQ0GR2m1dVK1tpa/NjdGio3xhBpWXZ2OLP7rGy+9xs++9Vex++w1cvT0kZuUw95Y7KJm/GI32+PX+ksdD39+eoO+JJ0CSSPj4x0l88DNoRyCqYaBxkP7nqhGdAWKW52Jfmh1d5tLr6+Vzaz5HdX81/2/+/+PWoluH/f6n5MVPEDj4Nr81P0piUgqf+MQnxmSS8NK2oEkitO2EqXcNy+UG/AN8a8O3yI/N5yuzh28926nYvHkz77zzDrm5udx1110YgkHavvglXO+8g2XePDJ+8mP0qakj3g45JOL6oA3X+y3Iokx4Uhw72710burEnmDisruLKV2Qjk5/6sAfbkc/u99+g72r3yTg8ZBeWMI1n3+M4nmL0E2gdRUqKioqKioqKiON3qClfFEGZQvT6TgySNXaVva828ze91oonp3KtCtzSMy0YbLamH3Drcy89iaqN33A1ldf5M3f/ZxNL/yLOTffTvmSZWh1yjhLY7WS/IVHiLv9I3T/6lf0/eUvDPz73yR/4QvEfeQ2BO3pA7idC8a8WFIfnYHj1SM4VzXhr3WQcGcJujgTSeYk/n713/nyui/z7U3fpsvbxUOVD42OULr6hxir32RZQhcrm/0cPnx43E1+ja+ICyNB9yEIuiF77gVfSpZlvr3p2/QH+vnJ4p+MaL4zSZJYtWoV77zzDmVlZdx3331o2tpo+MjtuNasIeUrj5HzxN9GXJzJkox3dzedP9+Jc3UT4RQL27Ra/rOjB78oc8XHy7j3+/OYfFnWKcVZX2sL7/zpN/z1859k+2svkzt5Gvf87y+45we/oHzxMlWcqaiojCk+n4/LLrsMURQBWLFiBXFxcVx//fXHnff73/+ewsJCBEGgt7f3rK59qmvde++9lJSUMHnyZD75yU8SCoUAWLlyJf/v//2/YfhWKioqFwuCIJBRFMeKz0zmvu/Pp2JJJkd2dfPc97ex8g97aatxIMsyGq2WssXL+PjPfs+Nj30Tg8XCqj//lr994TPsfvsNQsFA9Jr69HQyf/pT8l58AUNuLp3f/jYNt9yKe+PGYW27xqwj4a4S4u8oJtTuoevXu/FWKe7aFr2F313xO26cdCN/3PNHvrfle4Sl8LDe/6TEpMPsB5je+iRJ8TGsXr06+vwfL1z8Aq1lq1Jnzb7gS71W9xrvtbzHF2d8kbLEkVPa4XCYV155hU2bNjF79mxuv/12/Bs20HjnXUg+H7lP/ZPEBx4Y8YiGgcZBuh/fS//z1YS1AgesBlbud+DXCFz96cnc/e25lM5PR6s9sR3KItb9vPKT7/KPxx7m8Ib3mXz51Xzy13/mhi//F+lFoxfIREVFReV0PPHEE9x6661oIzPHX/3qV3nqqadOOG/hwoW8++675ObmnvW1T3Wte++9l8OHD7Nv3z58Ph9//etfAbjuuut444038Hq95/ltVFRULmZikswsubOYj/9wIXNuyKe70cmrv9zNSz/ZyZGd3UiSjKDRUDRnAff96Nfc+l/fJSY5mff+/mf++vlPse21lwgdEzXXPGUKuf96msxf/xrJ66XlUw/Q8rnPE+roGLY2C4KAdUYqqV+Yjj7ZTP8zhxlYWY8syug1ev534f/ywJQHeKnmJb607kv4wr5hu/cpWfRltAYzV9pq6O/vZ+fOnSN/z3Pg4ndxbN0O1mSIz7ugy3hDXn6z6zdMS57GR8s/OjxtOwmBQIDnn3+e+vp6Lr/8chYtWoTjiSfo/sUvMZWVkfWH36NPTx+x+wOE+/0Mvt2Ar6oXLDoaYoxU1buwJRi5/GNllMxLQ3OKUPmyLHNkxxa2vfoinUdqMNtjmP+Re5h29XVYYmJHtN0qKioTm+++cYCD7c5hvWZ5RgzfvqHitOf861//4plnnonuX3HFFaxbt+6E86ZPP/eoZ6e61rXXXhvdnjNnDq2trYAykFm6dCkrV67kjjvuOOf7qaioXBqYbHpmX5fP9CtzOLylkz2rm3nnL/uJTTYz85o8SuamotFqyJ82k/xpM2k9uJ8trzzP+mf+wc7/vMq82+6i8oqr0er0CIJAzIqrsS1bSv+T/6T3j3+k7rrrSf7CIyTcdx+Cbnjkgi7RTPJDlQy+2YB7QxuhLg+Jd5eiseh5dMajJJuT+fG2H/PpVZ/m95f/njhT3LDc96RYE2HeZyn+4KfkZfyAdevWUVlZiWmUgu2diUvAgrZNcW+8QJ/WJw88Sa+vl6/M/sqI5Tvz+/08+eSTNDQ0cNNNN7Fo7lw6/+u/6P75L7CvuJrcfz09ouJMDks41zTT+csd+A720RVrZGW7j1pHgEW3F3Hfd+dTtiD9pOJMliRqt23iqa9/gdd//gP8LhdXfOqzfPoPT7Dg9ntUcaaiojIuCQaD1NfXk5eXNyb3D4VCPPXUU6xYsSJ6bNasWaxfPzxBrVRUVC5udAYtk5dkcs9357HiM5MxmHW8989D/Os7Wzm8uQNJlADIKp/MR/77+9z1vZ+RkJHFe0/8ib9/6SEOrl+LJCnufRqjkaTPfJqClW9gmT2L7h//hIbb78BXVTVs7RW0GuJumET8bUUE6gfp/uNeQt2Kx8A9Zffwi6W/4FDfIT6z+jM4g8M7YXcCCz6PYIrjKu1WvF4vGzZsGNn7nQMXtwXN0wv9dTDjYxd0mV5fL38/8HeuzL2SqclTh6lxxxMIBHj66afp7OzkzjvvZFJCAk0f+xj+vVUkP/oFEh8a2YWTgfoBHK8cIdzjw2k3sKXNQ9gtMvOGfKZekX3KqIyyJFG7fTNbXnqWnuZG4tMzuOZzX6Z04WUnRA5SUVFROR1nsnSNBL29vcTFxY36fYf47Gc/y5IlS1i8+GiOzpSUFNrb28esTSoqKhMPjUZg0owUCqYn01jVy7aVDax58hDb32xk9rV5FM9RLGqZJWXc8e0f0bh3Fxue/Sdv/f4XbH/tJRbd/TEKZsxBEAQMWVlk/+lPuN5ZRdcPf0jjnXcRf/fdJH/pi2jt9mFpr3V2GrpkM31PHaL7D3tIuKcUc0kCV+ZeiXGZkUfXPsrDqx/mz1f+GZth+CNMAmCKhYWPkrHmu0yZ9DO2bNnC7NmziY0de6PCxS3QWrcrdfacC7rM43seJySGeHTGo8PQqBMJBoM888wztLW1cfvtt5MbCtN4+x2ITieZv/0NMVddNSL3BRA9IQb/U493VzeiScuugESn28uUy7OZuSIXs+3kecyGLGabX36O3uZG4tMzuebzj1G6YIkqzFRUVCYMZrMZ/zHrMUaT7373u/T09PDnP//5uON+vx+zeeSCUKmoqFy8CIJA/tRk8iqTTivU8qfNJK9yOtVbNrDx+ad49affJ6O4jMV3f5ys8slRt0frooX0/Po3OP71L1yrV5P6zf/CvmLFsBgNjHmxpDwyjb4nD9L3jwPEXpOPbXEmS7KW8PPLfs5j6x7jc2s+x+PLH8eitwzD/85JmPsgbPkjVwTe5qA8nffee49bbrllZO51DlzcLo4t20Cjg4zzz5ZeP1jPy7Uvc3vJ7eTGnP3C8LMlFArx3HPP0dTUxC233EJWUxNN990HWg15zz4zYuJMlmU82zvp+sUOPLu7adIIvNXpx1AUz93/by6LPlJ0UnEmyzI1Wzfyz689whu/+jFiOMy1n3+M+3/5R8oXL1PFmYqKyoQiPj4eURQvSKRt27aNj33s3Dw1/vrXv/LOO+/w7LPPovlQwKeamhomT5583u1RUVFRGRJqd3xzNtc+PAWDScuaJw/xzHe2Uru9CzkSTKR0wRLu/8XjXPnpz+Ps6eL5736DV3/2fQY6lSAhWpuNtG/9N3kvvIAuOZm2L32Z1oceJtTdPSzt1MWZSH54KubJSQy+2YDjxRrkkMQVOVfw4yU/Zk/PHr7w3hfwh0doIs1ghcWPEde6hnmlGezdu5eOYQyQcr5c/AItrRL05z8T+Zudv8GkM/HQ1IeGsWEK4XCYF198kfr6em666SayDx2m7cuPYaqoIP/FFzGVlg77PQFCXR56/lyF4+VanGGZtYMhGvU6rnlkKtd9tpK4lJPPUrQe2s+z//MV3vjlj5BEkWsf+Qr3/+IPlC1ehkajCjMVFZWJyVVXXXXc2oPFixdz++23s2bNGrKysnjnnXcA+O1vf0tWVhatra1UVlbywAMPANDc3HxKi9eprvXQQw/R1dXF/PnzmTZtGt/73veiP7N27Vquu+66kfq6KioqlxAfFmo6g5ZVfzvASz/ZQVuNAwCtTkfl8hV88rd/YdHdH6d5fxX/eOxhNjz3T4J+JaKiecpk8l54npRvfB3Pli003HAjzrffHpY2agxaEu4pJWZ5Dt5d3fT8XxWiK8iKvBX878L/ZVvnNr647osExeCw3O8EZn4CYjJZ1P88ZrOZVatWIcvyyNzrLLl4XRzFMLTvuqD1Zzu7dvJey3t8YfoXSDAlDGPjQBRFXn75ZWpqarjuuuvI3bePzh/+COtlS8j6zW/QjEAUGVmUcX3QgnN1M6IA+/0ibX6JObcWMmVpFlrdyfV6X2sL65/9B3U7tmKL///s3Xd8VeX9wPHPOffe5GbvvQNhhxmWyB4u0LpwVUUs1jqq1Vqt1vanraN1W7XWvcGJioqWYUAQ2QQCYQRC9t7zrnN+f9wQQVYWuRnf9+uVV8I95zzne+Jjku99nuf7BDLn5t8zdOpMScqEEL3CrbfeyjPPPMOsWbMATlqg4/e//z2///3vj3t948aN3HrrrSe85mRt2e0n3uunuLiYxsZGkpOTWxO6EEK0ypFELS45mP2bitj4xSE+f3o78clBTLy4P4GRXpjc3Bn/q8sZOmUGP3zwFhuXfsTu1JVM+fVCBk2aimI0ErRgAd5TplBw733k3/kHauetJvwvD2Do4LotRVHwnRWHKdyLig/3UfrfnQT/Jpl5/eZh02z87ce/cXfq3Tw97WlMhk7eP9dkhql/wmPZHUwdfRXfbssiMzOTpKSkzr1PG7h0BE1RlFhFUT5XFOUNRVHu69TGi9PB1tDu/c90XefpLU8T6hHKr4f8ulND0zSNzz//nIyMDM455xwStu+g+NHH8Jk9m5h///uMJGe2skZK/5tGzXfZFDl0/ldhxWN0GL9+eCIjZ8WeMDmrq6xgxSsv8PYfbyV3907OvvI6Fj73CsnT50hyJoToNUaPHs306dPbvVHpE088wfDhwzsllpycHJ566qlOaUsIIX5JVRUGTYjgmocmMPHifhQcqGLJ3zfy/Xt7qa92bmTtHRjEebfdzZUPP4FXQCDf/PtJPvy/eynOOgiAe2Ii8R+8T/Btt1HzzTccuvCiTtvg2mNYMMG/ScZRa6X05TTs5Y1cknQJD4x/gNS8VO794d4zs5n1yGsgIIGUvNcJDAxkxYoVaJrW+fdppXYnaM1JVYmiKOm/eP1cRVH2KYqS2YqkKxn4RNf1hUD7F4qdSEuBkPHtunxF9gp2lu3ktlG34WHsvMXamqaxbNkydu3axYwZM+i/eTOlTz+N79y5RD3zNIrbiYtytJeu69RtKKD4uW005tWxpd7OIV93LvxTCjOuG4yn7/H3szY2sP6j93j9jkWkp65k5LkXcOPzrzH+4vmY3LvH/hBCCNGZFi5c2LJRtSuNHTuWkSNHujoMIUQvZ3QzMPqcOH79j4kMnx7D3g2FvPfgBjZ+eQhrkzMBiho4mKsfeYrZN91ORX4e7/35Tla8+gINNdUoJhMht91K/JIlqF5e5N74G4r+/g+0xo5vMu0e50vIomR0q4OS/+7EVtLAlYOu5J6Ue1iRvYIH1j2AQ2vfG2onZTDB9Psxluxi5gBvSkpK2LNnT+feow06MsXxLeAF4J0jLyiKYgBeBGYDecBmRVG+BAzAY7+4fiHwE/CJoigLgXc7EMvxcjeCTwT4Rbf5UpvDxnPbnqO/f38u7Hdhp4Wk6zrLly9n+/btTJkyhYEbfqLszTfxu+xSIh56CKWT/zhwVFuo+GQ/lgNVlGk6Oxo1hs9NZOSsGFTD8bm5ruvsWbuate+/SUN1FQMnTubsK6/DP/zMbowthBBCCCG6noe3G2fPTyJ5ejQbvzjIlm8Ok/FjIZMu60//MaGoqoHhM89hwIRJbPj4A7Z/9xUHNv7I9Bt+y6CzpuCRPIyEzz6l5OmnqXznXerXryfyX//Eo4OzCtyifQi5aTilr+1yTne8cRjXDb0Oq2bluW3P4W3y5i8T/tK5W1ANuxR+eJrB+1/Ez+8atm3b5rKCTe0eQdN1fS1Q8YuXxwGZuq4f0nXdCiwBLtJ1fZeu63N/8VEC3AD8Tdf1GUDnrojO3eSc3tiO/3Af7/+YnNoc/jDmDxg6cSrfhg0b2Lx5MxMnTGDwDz9Q8eabBFxzDREPP9zpyVnDjhIKn95KY2YVaQ0ODgV7ctEDYxl9TtwJk7OSw4f48P/u5duXnsEvNIxrHnmauXfeK8mZEEIIIUQv5xfiwZzfDOPSP43Bw8fE/17bzZfP7aCyqB4As5c30xfcxHX/fB6/sHC+ef4JvnjyH9RVlKOazYTffz+xb76B1tTE4auvoeLttztcaMMU7kXIb4ejGBVKX9mFNbeW3yT/hhuG3cBH+z9iyb4lnfHoP1MNMOMB1IpMRoUbOXToEFVVVZ17j1ZSOvLNUxQlHvhK1/Vhzf++DDhX1/XfNP/7WmC8ruu3neT6YcD/AWVAna7rfzzBOTcBNwGEhYWNWbLk9P8x3CyVnLVhAZn9biAv5ldteqZGrZGH8x8m0i2S20Jv67TMvLy8nF27dhEcHMzEbdvw/HED9XPmUHfxr9qVRJ6MaoWQPQo+RSoVDo0dTQ68khUCkzjhszgsFgo2r6ckfTtGdzNRE6YQNGjYGd0Uuzepq6vD2/sMbaAoRBv1xP7o5+dH//79XR1Gj5CZmUl1dbWrw2i1ntgfRe8mfbJ1dE2n4iCU7NTRHRA0EEKGKqhGpfm4RsmubeRvXIdqMBB91rSWvx2VhgZ8334Hc1oaTaNHU3PdtegdrK1gbICozSoGKxSM0WgI0Hi19FX2NO7hltBbGOgxsDMe20nXGbP1bhqsDv5jvZi4uDgSEhI6r/2jTJ8+fauu6yknOubSKo66rqcDl53mnFeAVwBSUlL0adOmnb7hjGWwAfpPu5r+bdyk+vltz1OXW8fDsx5maNDQNl17MmVlZbz66quEhYVxXuZBGn/cQPBttzHo1ls6NRGy5tVS+s4eHDVWMhodNCb48qtfD8Y3+Pg1dLquk/HD96z59F0aaqoZMes8Jl15LR7enbNDfF+RmppKq/qkEF2gJ/bHjIwMfHxc+3PnmWee4bXXXkNRFJKTk3nzzTcxn4FiTR1lNpsZNapzl2ufST2xP4reTfpkG8yAhhorGz7LZO9PRTQVuzF5/gASRgQ7/3adMYPKoqv533+fJzv1O/TyYubcdDt+oWHo555L+euvU/rMs/hWVhL9/HO4d7AiomOShdLXdhGz3ULQdUMYN+lVfv3Nr3m3+l0WT1pMjG9MJz04EP1PfN6/jH6hXpRVVTFlypTj9qs80zr7bvnA0d+h6ObXulbuJjC4QcSINl1WVF/EO3ve4fyE8zstOWtsbGTx4sUYDAZmlZbR+PXXhNx9FyG33dppyZmu69RtKqT4pTQaqi38ZNWJvmIA8+4YdcLkrDTnMB/+330sf/FpfENCueaRp5n1m1skORNC9Dn5+fk8//zzbNmyhfT0dBwOB62ZqSGEEL2dp68bMxcM4eK7R+PuYWT5y7v4+sWdVJc2ABAQHsn8Bx9l1m9uofDAPt7+461sW74MgOBFi4h9800cNTVkzb+C6q++7lAsBj93Qm4ajjHIg7K3dmM4ZOXfM/4NwO2rb6fOWtexhz1av5ngH8co0qmurubQoUOd13YrdXaCthlIUhQlQVEUN+BK4MtOvsfp5W12JmdG9zZd9nLay2i6xu2jbu+UMDRN49NPP6WyspJzfXyxf/ABgTfcQPCiRZ3SPoBmdVD+4T6qPsuk1OJgT4AH5z4wlsFnRR6XANptNtYteZd37/095fm5zL7pNq7++5OE93PdPg9CCOFqdrudxsZG7HY7DQ0NREZGujokIYToNiKT/Jl//1gmXdafgswqljy8iZ3f56JrOoqqMmL2+Sx46kWiBg/l+7f+y4cP/ZmashK8xo8j4bPPMA8eTMEf/0jR3/+Bbm3/ZtMGHzdCbkp27pX2fgahVX48NfUpDtcc5r4f7uu8yo6qCiOuYlDJV3iY3dm+fXvntNsG7Z7iqCjKYmAaEKwoSh7OYh+vK4pyG/AdzsqNb+i6vrtTIm0tuxUKtsPY37TpslprLV8d+oqL+l9EtE/bKz+eyMqVK8nMzGRWYiKmxx7H55xzCL3nuGV27WYva6T4zXS08ib2NTnwmhrN3AsTMZygCEjxoUy+fekZynKzGTJlBtOu+w0ePr6dFosQQnTY8vugaFfnthmeDOc9ftLDUVFR/PGPfyQ2NhYPDw/mzJnDnDlzOjcGIYTo4VSDyshZsfQfE0bq+3v54cMDHNxWyozrBuMX4oFvcCiX3Pd/7Fm7mtVvvsy7f/o9c353B0ljJxL39luUPPU0FW+9RVN6OlHPPoMpon1F6FRPE8E3DKXkpTTK397DmFtGcO+4e3l046O8sOMF7hh9R+c88IgrMK55nOEhGlv27qWhoQFPT8/OabsVOlLF8Spd1yN0XTfpuh6t6/rrza9/o+v6AF3X++m6/kjnhdpKRbvA3tTmDaqXZy3H4rBwadKlnRJGWloaP/74I6Pi4wl+6mk8Rowg8p+Po3TSHNaG9DIKn92KpayRbRoMvGk4Ey/uf1xy5rDbWP/Re7z/wF001tXyqz89yHm33iXJmRBCAJWVlXzxxRdkZWVRUFBAfX097733nqvDEkKIbsk7wJ0Lbh3OjOsGUZZby5J/bCJ9TZ5zNE1RGDp1Jr9+/Dn8wsL58slHWPXGyzh0nbD77iXq2WexZGaSdcmlNGzb1u4YDN5uBN8wFHSdsjd3c3n0pVw24DJe2/UaXx/q2FTKFoGJEDuR0bWrcDgc7Ny5s3PabaUOVXHsKoqizAPmRUVFLTrdL86ovGUkZb7GjxPfwOoe1Op7PFH4BHbdzn0R93V4bVhNTQ3bt2/Hz8ODmR9/AmYzFff+Cb0zKgdpELBXIShHpdKusdvTQfBZCkbz8TE3lJVwePVyGstLCRwwhJhJ0zGaO2/TbSEVoUT30hP7o6urOC5dupSVK1fy4osvAvDBBx+wefNmnnnmGZfFdDJSxVGIjpE+2bms9ToFm3Tqi8ErDCLHKbh5Of8e1RwO8n9aS8nOrXgEh5I4ey5m/0AMRUX4v/QfDBUVVC+8Acvo0e2+v7kSIjerWHwhJ8XKC2Uvkm3N5o6wO4hzj+vw80UU/I+B+1/kWc8/YVPcSElJ6dTifqeq4tgjErQjUlJS9C1btpz6pI9vcBYJuav1Myv3V+7n0i8v5U9j/8S1Q67tUIw1NTW88sorGFSV2atW4VZeQfyHS3CL63hH0ZrsFL62Cz2vjsNWDY9ZsYw+Nx5FPbazOOw2Ni79iI1LP8LDx5dZi26jf8r4Dt9fHE8qQonupCf2x4yMDAYPHuyy+2/cuJGFCxeyefNmPDw8WLBgASkpKdx+e+esRe5Mrv5etVVP7I+id5M+2fl0XWfPugLWf5IJwKTL+jPk7J/rIBzcuolv//MsDquVWb+5hSFTZmCvrCTvlltp3LGD0Hv/RNCCBe2+f8POUio+2ItHcjBcHMrV31yNXbOzZO4SQjxDOvZwTdXw5AC2RN3AV9lmFi1aRFRUVMfaPIqiKCdN0Lq2ZmRXyN0EbSytv/TAUoyqkbmJczt0a5vNxocffojFYmFa2k6MuXlEv/RSpyRn9moLec9sxZFbyx5Fof9tIxlzfsJxyVlZbjbvP3A3Gz5ZzIAJZ3P9ky9KciaEECcxfvx4LrvsMkaPHk1ycjKapnHTTTe5OiwhhOgRFEVh6OQornxwHKHxvqS+v4+v/p1GQ42zGEi/MeO47p/PE5bYn+UvPs23Lz2D5mEm9s038Jk9m5LH/0nRo4+iO9pX4MNzeAh+5yfQuKsMQ2o1z894nlpbLX9I/QN2zd6xhzP7waC5DCv6BKPRyLYOTMtsq96VoNUUQE1emxI0q8PKV4e+YkbMDALMAR26/erVq8nPz2dqVRXmTZuI/Ne/8Bzd8T1rrAV15D+1FUeVhf1+ZibfP47wRL/jzktPXcn7999FXUU5F959Pxf8/h5ZayaEEKfx0EMPsXfvXtLT03n33Xdxd29bBWAhhOjrfIM9uOiOkUy5cgD5B6r48JFNFByoBMAnKJjL//oIEy+7it1rV/Pen/9AZXkpUc88TeD111H5zrvk33knWlNTu+7tPTkKrwkR1K3NJ2qfD3+b+DfSStN4a/dbHX+wkVdhtpQyNMqXXbt2Ye1AFcq26F0JWu4m5+fo1idoqbmpVFmquDjp4g7dOicnhw0bNjDEaCRo2VeE3nMPvuee06E2Aeozyil8YTvWJjv5Cf5MvycFDx+3Y86xNTXx7UvP8N1/niWi/wCu+9e/SRp3VofvLYQQQgghRGsoqkLytGguu3cMJncDnz+9na3fHkbXdFTVwFmXX8P8Bx/BUl/H4r/8kZzduwj7858J+/N91K5cRc6CG7BXVrb9voqC/7x+mAcHUvXlQaY3jmd23Gxe2vESByoPdOyhEqeDdzijHNuxWq3s2bOnY+21Uu9L0IxmZ1nlVvos8zPCPMOYGDGx3be1Wq18/vnn+Lq5MWjJhwRcfTWBNyxod3tHVPyQR/nbe6iz6dRPimLSb5MxmI79T1ael8P7D9zF7rWrmXDplVz24D/wDgjs8L2FEEIIIYRoq+BoH+b/eSz9xoTy0+eH+PqlnTTV2QCIGTqcax55Gp+gYD597K+krfiGwOuvJ+rZZ2nKyODwlVdizc5u8z0Vg0LgVYMwRXlTuWQff465Gx83H/6y/i/YNFv7H0Y1wPD5xOV/SWCAX5dNc+wRRUJaW8Vx1LY/oSsGdox6rFXtVtor+Vv+35jjN4e5/u1ff5aZmUleXh5T160n0Gym8g93gsHQ7vbQwWc3hOUZKLVr5CdreMcdXzWmfN9uctauQDWaSJh1Ab4x8e2/p2gXqQglupOe2B9dXcWxJ5EqjkJ0jPTJrqXrOpWZULRdx+AOMZMUPIOdf886rFayVn5FdfYhQpNHE33WNNyysvB/6T+gKFTefhv2dtRwMFgg+icVRYNvRqXxn+pXuMDvAs71P7fdz+FZn8O4zbfzedAt7Ch3Z9y4cZ2yJ9qpqji2e6PqrqTr+jJgWUpKyqKTVt+xW+CHLBh/c6sr9Pw37b/o+Tp3zLyDGJ+YdsWWnZ1Namoqg6qqiKyqIvGLzzF1oMKL7tDIfT0dNa+aAiD+1pGMSjh2vZnN0sTqN//L4e9XED14GBf8/h68A1u/pYDoPFIRSnQnPbE/ZmRk4OPj4+owegSz2cyoUR1f19xVemJ/FL2b9EkXmA4l2TV892o62astTLwkkREzY1AUBW3WTNa+9wZbv/4CL6PKBb//E8rMmeTc+BtCXnyJ2DffwGPo0Dbf0ppcR8mLO5hfO5PDcbl8l/sdN0y5gYGBA9v/HHmvM9O+iTRlCiaT6Yz3o94zxbE8ExxWiBjRqtM1XePzzM8ZFz6u3clZy9RGg4EhK1cR/re/diw5s2lkPb0V9VA1ue4Ghtw7ltBfJGcVBXl88MDdpH+/gvEXz+fyBx+R5EwIIYQQQnRLoXG+zL9/LPHDg1n/SSbLX96FtdGOqhqYdt0iZv3mVg6nbWPJX++h0dOD2LffRvX2InfhjTTt3dvm+7lFeuN3TjxNu8u5x+1m/Nz8eGDdA9gcHZjqOPJqfEq3MCAugrS0NBztrDrZWr0nQXM0V1UxtW7IcUvRFvLq8jpUHGTlypVUVlYyZtVqgubMwXdu+6dJ6naNg09vxVTWSH6QBykPjMc7wHzMOTnpaXzwwN3UVVVyyZ8f4uwrr0PtyFRKIYQQQgghzjB3TxPn/nYYZ1+eRPaucj57ciu1Fc6qjSNmn8elf36Y2ooy3n/gLkrra4h7+20UT09yFtxA0779bb6f99lRuPfzw7q8kL8P/iv7Kvfxyq5X2v8Awy4D1cgo9xzq6uo4cKCDxUdOo/ckaFpzJqu2LmFZmrkUH5MPs2Jntet2WVlZbNq0iUGFhUQqCuH/97d27y6u2RwcfGoL5somiiO8GXv3GExuxz5H+vcr+PTRv+IdGMSvH32GhJFj2nUvIYQQx3ruuecYNmwYQ4cO5dlnn3V1OEII0SspisKImTHMvX0EteVNfPLPLZRk1wAQN3wkV//jKdw9Pfn44T9zuCCHuLfeRHF3J+eGG7C0MSFSVIWA+QPBqDJgbQAXxV/IqztfZU95O6swegVB0jkk5X6Et7c327dvb187rdQnE7Qaaw0rsldwfuL5mI3m057/SxaLhS+++AJfXWfo+h+JfPxxDL7t229MsznIfGor5koLxRFejPn9KNSjNp/WNY11S97hu5efI3pIMlc+/C/8QsPadS8hhBDHSk9P59VXX2XTpk2kpaXx1VdfkZmZ6eqwhBCi14oZHMglfxqDwaCy9KltZKWVAhAYGc3V/3iKsMQkvnr2nxzKO0zsW2+iGAxkL7gBy8GDbbqP0c+dgIv7Y8ur4/f11xFoDuSBdQ9gdbRzL7ORV2FoKGZErB/79++ntra2fe20Qu9J0PTmBE05fYL2bda3WBwWLu7fvumNK1eupKqqipRVqwlbcD1e41u/79rRNLuDA09uxbPKQmmkN6NvH4VyVHJmt1r5+vkn2Lj0I5JnzOGS+/4Ps5dUHxJCiM6SkZHB+PHj8fT0xGg0MnXqVD777DNXhyWEEL1aUKQ3l947hsAIL755eRdpq3MB8PDx5dL7HyJq4BC++fdTHMw7TOzbb4GikL1gAZZDWW26j+fwEDxHh2L9oYTH4v+PzKpM/pP2n/YFnXQOeAQyyroJXdfZtWtX+9pphV5TZt+/chcj0/7CjhF/pypg+Cnbe6LwCey6nfsi7mvztMTKykrS0tJIOnSI5MIiKu79ExjbXgxTd+j4r1EJsaoc9HagTdKPicXW2MDBbz+nvqiAqAlTCBs5tt1TKMWZIyV7RXfSE/vj0WX2n017lgPVnTuvP8kviTtH3HnS4/v27ePKK69k5cqVeHh4MG/ePEaNGsWTTz7ZqXF0BimzL0THSJ/sfjS7Tt5POrV5EJgE4aMUFFXBYbNycPnn1ObnEDf9HMJ8gwl45hlQVSrvugtHWGir76HYIXa9c0zqqYFLWGtZx13hdxHvHt/mePsfeIXIgv/xpPmPeHh6kZzc+r2Xf6lvlNk/BKTByFFjIH7SSdvaV7GPnOwc7h17L9OHTG9THBaLhZdeeglfm50R6btJ+vgj3Pv1a1MbAJpNY98TW/CxWqiI8WXKLcOPSb7K83NZ+s+HsFRUMO8P9zFgwtltvofoGlKyV3QnPbE/Hl1m383NDUMnFz5yc3M7ZRn/lJQU/vznP3PppZfi5eXFmDFjcHd375al/6XMvhAdI32ye9Jm6Gz4LJMdK3PxNQcy+8ahuJmNTJkyhS+efITs779jwKLb6P/+e+Rcv4Dwl14i7t13cIuNbfU9LEk1lP43jQf1W7jGcz+fNX7Gp7M+xWQwtS3YJF949WsGBBnYX9HI1KlTz8gASo9I0FqllWvQPs/8HJNqYm5i2ysupqamUlNdzYzUVCLvvqtdyZnDprHvic341lipivUl+XfHJme5u3fyxVOPYDCamP+3x4hI6sCeDUII0YPcO+5el9z3xhtv5MYbbwTg/vvvJzo62iVxCCFEX6SqCpMuS8IvxIO1S/az9KltzL1tBF5+Zn51z4N8+fSjrHj1BRwLb2bwW2+Sc/0CchfdRPyHSzD4+7fqHu5xvvhMj6V2VQ7/nPMgC3Jv47MDn3HFoCvaFmzkKAgeSEx9Gjsa+lNRUUFQUOdvd9WL1qBpzs+nWINmdVj56tBXTI+Zjr/Zv03NV1dXs2njRuKzs4kbNpSAq69uc4gOu8be5uSsJt6Xob9IzrJ2bOXTx/6Gl38gV//jSUnOhBCiC5SUlACQk5PDZ599xtXt+PkuhBCiY4ZNjeaCW0dQXdLI509vp77KgtHNjQvvfoB+KeNZ/cbL7M7cS/RLL2IrKCDvzj+g21q/t5nvjFjcYn0IX2tiuu9k/rvzvzTaG9sWpKLAyKuIrvwRgNzc3LZd30q9J0HT7M7P6skf6fvc76myVHFJ0iVtbn7NmjXoDgfDsw4T+cgj7RrO3PvCDvxqrNTG+TLk5hHHJmfbt/DFE38nKCq2uVJjeJvbF0II0XaXXnopQ4YMYd68ebz44ov4t/IdWSGEEJ0rblgQ824fQX2Vhc+faU7STCbm/eE+ksadReo7r7I7L4vwhx+m4aefKHr00Va3rRgUAq8YCBrcmX8NZQ1lLNm7pO1BDr+CECpwN0iCdnotUxxPPmtzaeZSwr3CmRAxoU1Nl5eXs337dvodOEDcwoUYg4PbHN6+D/biV1RPTZAHg24+tojJoe2b+eLJfxAUE8dlD/4DD+/ut/ZBCCF6qx9++IE9e/aQlpbGzJkzXR2OEEL0aRH9/VuStKVPb6O+yoLBaOKCO/7EwImTWfv+mxwwOAi8cSFVi5dQ8f77rW7bGOSB/9xE3PI0Fhmv5vX016m1trFcvm8kaugQotxqycvLa+PTtU7vSdBOU2a/wdbATwU/cUHCBRhauZn1Eanff4/Bbmd4VTUBV7ZxriqQ/X0u5rQS6twNDLxj1DEjZ4e2bebLJx8hODaey/4iyZkQQgghhOjbIvr7M+/3I2motrL06W3UVVowGI2cf/sfGdCcpFWeNQ7v6dMpfvQx6tavb3XbnilhmCK8uCh3Mg2N9byz5522BxidQow1k5KSEpqamtp+/Wn0ngTtNEVC0svScegOxoSNaVOzxcXF7EpPJ2nfPmJvvQXFza1N15dmlGP/NgurqhB/xygMbj/Hd3DrJr586hGCYxO47AFJzoQQQgghhACI6OfnTNJqrHz+jDNJUw0GzrvlD0QOHMK3/3kWfrsI9379yP/DXViyWrdHmqIq+J2XgFqtcZeyiHd2v0NFU0XbgoseS4wjC13Xyc/Pb/vDnUbvSdBOUyQkrTQNgOEhp94j7ZdWr1yJyW5nhA6+553XpmvrShooe3sPBkUhdGEy5kCPlmMHt27ky6cedSZnf/k7ZtmXQwghhBBCiBYR/fy48EiS1jySZnRz46I/PoBPYDDLXnwSn78/hGI0knfz73C0cq9I84AA3Pv7MzV7BAarwuu7Xm9bYNEpRFEEcEamOfaajarDilIZvPcZNo77D42ekccd/2/Jfymzl/FA5AOtvm9NTQ3btm0jeedOwufMwTZoUKuvdVh1/FerhOoKhwdpOBJ+PlaVlcmh/32JR3AoSXMvw+hubnW7onuRTS9Fd9IT++PRG1WLU5ONqoXoGOmTPVdDmU52qo7RDPEzFEyeCk2VFexd+gEmD0+GjZxAyAsvYU3qT9Xtt0Mr9tR0q4HYHw2sC9/FPwNe5a9RfyXAGNC6gHSNs9ddw4vK9Si+kQwf3rYBIOgrG1XvKIC9MH7CRAhMOOaQrus8+OGDTI+bzrRJJ7n+BN5+/XXcLRZGBofQ7+abW32dpulsf3wzYVhwpIQx+fIBLccyN//E9hVfEZbYn8se+Dvunl6tbld0P7LppehOemJ/PHqjanFqslG1EB0jfbJnKxpdzZfP76BogxsX3zUK7wAzQwcm8ck/HqS4NI9h//d/lDz4IIPWryf8r39tVZsVDXs5O304r/n6s9NrJ3+b+LfWB5Q7joTCcvY0+DNlyhTUU1SSb6veM8Wxpcz+8Rlzdk02VZYqRoSMaHVzhw4dIis3l8F79hB1911tCiXtlV2E1ViwRPsQe1lSy+u5u3ey7JnHCUvoJ8mZEEIIIYQQrRSe6Jzu2FRr5cvn07A02okZksyc395O7u6dbC7LI2DhDVR+sJiKDz5oVZu+c+JBh79YbmHpgaXk1OS0PqDosUQ37qGpqYny8vL2PdRJ9KIE7eRl9o+sP2ttgqbrOqu+/RaPhgZGDxqMeWDrN4zevTSTwKwqmrxNJN7880bUlYX5fPnUo/iHR3DJ/Q9JciaEEN3EwoULCQ0NZdiwYS2vVVRUMHv2bJKSkpg9ezaVlZUujFAIIQQ4k7Tzbk6muriB/72WjubQGDp1JhMuvYrdqSs53C8W76lTKX7scZr27T9te8ZAM94TI+mfE05/Wywv7nix9cFEjyWGAqDz90PrPQnaKcrsp5Wm4WPyIdE/sVVN7d+/n/ySEobt3UfEHb9vdQi5W4tx31CA3WQg/s7RKEbnt7exrpal/3wIRVW5+N6/YfaS+c9CCNFdLFiwgG+//faY1x5//HFmzpzJgQMHmDlzJo8//riLohNCCHG06EGBTL16IDm7K1j3SSYAZ11+NYMmTWX9R+9Re+mFGHx9KbjvPnSr9bTt+UyPQXE3cG/dTSzPWs6+in2tCyQqhSAqMBuVTi8U0nsSNK25iuMJpjimlaaRHJKMqpz+cTVNY+Xy5XjX1jJq0iRMkccXHDmRxjorFR/vx6QqRNyUjNHbWY7fYbex7KlHqSkt4aI//gX/sPDWP5MQQogzbsqUKQQGBh7z2hdffMH1118PwPXXX8/nn3/ugsiEEEKcyJCzIxk5K4Zd3+exKzUPRVE453d3EjVoCP9751WUW36LJSODspdfPm1bBi8TPtNiiCj0Y5xlOC/seKF1QXgFoQYkEO1e1+kjaD2iSEirtIygHZuE1dvqyazKZGbszFY1s3v3bkqrqph48CBhDz7Y6tun/3cXEYBhchSesb7OkHSdla+9RO6eXZx/291EDRrS6vaEEKKvKXr0USwZezu1TffBgwi///42X1dcXExERAQA4eHhFBcXd2pcQgghOmbiJf2pKmnkh48O4BfiQezQIC68+wEWP/hHVq75jnPmzaXsv6/gPX06HsnJp2zLZ1Ik9RsKuLPqOq7KuZu00rTWLY2KHkvMvoNklnrR2NiIh4fH6a9phV40gnbijap3le1C07VWfZMdDgerli/Hr6qKMXPnYvD3b9WtD6zOIaSkHou/O+Hn/1xBcvOXn5L+/QomXHolgydPb/WjCCGE6D4URWlZTyyEEKJ7UFWF2QuHEBjpxXevplNeUIenrx8X3nU/lvo6dgZ6YQgJoeC+P6M1NZ2yLcVkwHd2PP4VHpzXNIV/b/t364KIHku09QBAp25Y3QtH0I5N0NJKnAVCkkNOnTkD7Ni+naqGBqbm5RH4z3+26rY1ZY00fnsYk0EhdlFyyy/xA5t+5IfFbzNw4mTOuvyaNjyIEEL0Te0Z6TpTwsLCKCwsJCIigsLCQkJDQ10dkhBCiF9wMxu54JbhfPL4Fr5+cSeX35dCSFwCk668jrXvvUH01fPxevp5Sp97nrB7/3TKtjxHh1K3Lo9F5Zcy33wXW4u3MiZszKkDaN6wWsFZKKSz9vXsEQnaURtVk5qaesJzYrMPkAisXbcezeDe8vrqktWEm8LZ9uO2U95D13W2rF1LQHkF5tGjWbthw2nj0nUdfaXCANVAfn8Hh3dtBKC+tIh9ny/BKyQcz2GjWbNmTWsfVfQwdXV1J+2TQnS1ntgf/fz8qK2tdXUY1NXVoWlaSyznnnsur7zyCnfddRevvPIK5513nsvjbGpq6lH/fXtifxS9m/TJ3it8vE7Wap3F/1xH/HQFxcsf78hoflj7P8aefRb6W2+RGRiALSnplO14RkHkVhMXVk3npR9e4trga095vqLZOFuFAIOFnTt3dtpsix6RoLVqo+o1myELpkybAQbTkev4y4d/YWb8TKaddZLrmuXm5rJmzRqG19Yy4dlnUFqxA/muLw7ia8/HFu7JuIWjURSF2ooyPrj/Dbz9A7jm7//Cy7+VO5KLHkk2vRTdSU/sj91ho+qrrrqK1NRUysrKGDx4MA899BB//etfmT9/Pu+99x5xcXF89NFHLo9TNqoWomOkT/ZumfElfPdqOo6cUGYtGMKY5GG8fc9t5Ib5ExYdTdhHH5P4+VJUr5NvdaXrOmWVu/h13lx+E/h/jJs0Dk+T56lvnDWahIpK0ht8O23D6t6zBu0EUxwP1xym2lLdqvVnW1d/j8FuZ8Ts2a1KzspyalHW5aMbVGJuHIaiKNiamvj8n3/H0tjIxff+TZIzIYToARYvXkxhYSE2m428vDxuvPFGgoKCWLVqFQcOHGDlypXHVXkUQgjRvfQfE8r4ixLZv7GYrcsP4xsSysyFN1OQuY/iX52HLS+P4iefPGUbiqLgd14CHlY3zi4fyYrsFae/cXQKMQ27sVgslJaWdsqz9J4EraVIyM+PdGSD6pEhI095qc1mY0/WIaILCgm5cN5pb+Wwaex7dRf+BgX/i/ph9HVOqUx99zVKsg8x944/ERIb367HEEIIIYQQQrTdmHPjGDAujE3LsijMrGLw5OkMmHA2m9evgfmXUbV4CXXr1p+yDbcYH0xR3lxQO5UvD355+ptGpxCj5wCdt2F170nQdMdxBUJ2lOzAx82HeL/4U166Nz0dKzAkNARDK6awbFuyjxirHS3OF//xzjLMWdu3sHPlt6TMvZjE0WPb+xRCCCGEEEKIdlAUhalXD8Q70MzKtzOwWRzM+s0tePj68lNtCYZ+/Sh84AEcNTWnbMcrJYzYhjDKDxeQX3ea6ozRYwmkCk+T2mkbVveeBE1zHFdiP600jeEhw0+7QfW271PxaGhgyEW/Ou1t8jLK8dpZimYyEH29c1+zxtoavnv5OYJj4pg0/9ftfgQhhBBCCCFE+7mZjcxaMJiaskZ+/OwgHj6+nHvzHVTk55E9YxL2sjKKH3nklG14jggBg8KcqrNYdnDZqW/oG4XiE0G0uV5G0I7zixG0WmstB6sOnnb9WW1tLYerq0gsr8B7/LhTnmtptHP47T34GhSC5g9A9TS1bEbdWFvLebfdjdHNrVMeRwghhBBCCNF2kUkBjJwVy+61+WSnlxM/cgwjz5nLzk3rsV5xKdVffEnDli0nvV71NOExLJjZtRP55sDX6Lp+8pspinOao+0Q5eXlNDQ0dDj+3pOg/WIEbVfZLnT00yZo239Yh64ojBiejHKaqis73t9LnK6jDArEZ3gIAHvXr2H/T+s46/KrCY1P7PhzCCGEEEIIITpk/IUJBEZ6sfrdDJrqbUy5ZgGBkdH8VJCFFhpCyTPPnjLx8koJw8PuTkxhENtLtp/6ZtFjiW7aA9Ap0xx7bYKWVpqGgsLw4OEnvUTXdXZs3UJgeTkJl112yuYri+vx3FeBw81AxJUDAagtL2PVG/8hYsAgxl54aec8hxBCCCGEEKJDjCYDsxYMoanOxtrF+zC5mznvtrtpqKlmX0oyjVu3Ur927Umvd+/nj+rvxrnVZ5++WEhU84bVSucUCuk9CdovpjimlabRz78f3m7eJ72ksKCACoeDgYqCKSrqlM1nLN5HgEHBd3YcqtmIrml89/JzOOx2zrv1LtRWlOYXQgjR/SxcuJDQ0FCGDRvW8trHH3/M0KFDUVWVLaeYBiOEEKL7Con1YezcBA5sKeHA5mLC+yUx4dIrycrPpioh1jmKpmknvFZRFbxTwhlZN4At+3+i0d548htFjsRN0QnzlBG0Yx01gqbpGjtLd552euOW775DdTgYOXPmKc8rzqrGP78Om4eRgEnORG7Him/I3rmdadfeSEB4ZOc8gxBCiC63YMECvv3222NeGzZsGJ999hlTpkxxUVRCCCE6w+g5sYQl+LJm8T7qKi2MnXcpPsEh7I+PpGnvXmqWLz/ptZ5jwgCFs8qGszpn9clv4uYFYUOJUUvIy8vD4XB0KObek6AdNYJ2uPowtdbaUyZodrudPdnZRJWUEHLuuadsev+Sfc7CIBckohgUKgryWPvem8SPHMPwWed16mMIIYToWlOmTDluI+rBgwczcOBAF0UkhBCis6gGlVkLhuCwa3z/bgYGk4lJ839NWUUpZYOTKH3+eXSb7YTXGgPMuPf347zas/ky8zTTHKPHEtOwG5vNRklJSYdiNnbo6i6iKMo8YF5UVBSpqaknPGdgQT4BNhs/paayoW4DAJbDFlLzT3x+WV4eTYpChLuZtRs2nPTe9QU6SZUG6syQWZuBvno3e5d+gK4o+Awfy5o1azr4dKInq6urO2mfFKKr9cT+6OfnR21tLQCbv8ihoqDj1a+OFhjpydiLYk97Xl1dHZqmtcRyhMPhoL6+/rjXXaGpqalH/fftif1R9G7SJ/u2kGSdnK0VLH09lYBEBXNgMLsaGgjKOMCmxx6nccrkE17n7akQbgmgIbOcpepSAowBJzwvrM6baEcWMJ3Vq1cTdZrlU6fSIxI0XdeXActSUlIWTZs27cQnVS6BRi+mTZtG6o+p+Nb6Mn/W/JPugfbuk09ibmxk6qLf4JWcfOL7ajo/PLQBT9VB4FVDGDQ4iA2fLqahpIi5d97LwIkn/g8p+o7U1FRO2ieF6GI9sT9mZGTg4+MDgMnNhKGT1/Oa3Ewt7Z+Kt7c3qqoed67BYMDLy6tVbZxpZrOZUaNGuTqMVuuJ/VH0btIn+zZ9qs6yhh0U7qxmxoXjifP3Yek/H6Jo5FBiV66k35/uQTWbj7/O5iBv/0/MrppIeVg5FydffOIblEWj730OL3cDHh4eHeprPSJBaxXNDs1l8k+3QXV9fT1ZNTUMqq3F86hF4b90YGMhUY12HKGeeAwKpPhQJj99uoRBk6ZKciaEEJ1s8vwBrg5BCCFEL6UoCjOuG8ySv29i1Vt7+NXdY4gePIx92VmElpVS+f77BN144/HXmQx4jwxj8qbR3Lv3RW4cdiOKohx/g6B+KGZ/YtwbO1zJsfesQdMcoBqpsdaQWZV5yvVn21evRlNVRo4afeJvMOCwaxQtO4S7qhB+WRIAq996BQ8fX2Yu/N0ZeQQhhBBCCCHEmeEdYObs+UkUHaohc0sJk69eQGNDPfkpIyh/5VUcJ5nO7pUShkkzkpAfyq6yXSduvHnD6mh7FpWVldTV1bU7zt6ToDUXCdlV6vymjQwdedJTd2zbRkBlFYmXnXzvsj2rcohxaOjR3rjH+3Fo22YK9u1h4mVXY/Y+eel+IYQQPctVV13FxIkT2bdvH9HR0bz++ussXbqU6OhoNmzYwAUXXMA555zj6jCFEEJ0goHjwgmO8WbTskOEJQ6g/9iJ7NetNNTVUv7GGye8xhTljRpm5tzqSafeEy16LDH1aUDHyu33ngStucx+WmkaqqKSHHzidWXFeXmU6ToD3d0xBpx4kZ+1yU7VqlyMikLYpUlomoN1i98mICKSYdNnn8mnEEII0cUWL15MYWEhNpuNvLw8brzxRi6++GLy8vKwWCwUFxfz3XffuTpMIYQQnUBRFSb+qh81ZU3s/qGAs6+6DrvNRs74UVS8/Q72srLjr1EUfMZGktQYy64927A4LCduPDqFSIpQFaVD0xx7T4Kma6A4E7T+/v3xMnmd8LRN33yDommMPmfOSZva+VUWsYqOOiAAtwhv9q5bQ1luNpOuuBaDsfcs2xNCCCGEEKKviRkSSNQAf7Z8k4VPUATDps/iYFMt9ZqDsv++csJrPEeFoqswqWw4qbmpJ244agwmHIR6KRQXF7c7vt6ToGkONFVhV+muk64/czgc7MnNJaq8gpCTVFZpqLFi+akQRVEI+1V/7DYb6z96j7DE/gwYP+kMPoAQQgghhBDiTFMUhQm/6kdjrY20VblMvPxqVNXA4ZRkqpYswZqXf9w1Bi8THkOCmFUzgWX7l524YY8ACB6Am6MOu93e7vh6T4KmOzikQq3t5BtU79+6jUaDgWFxsSgnKeW847MDxBjAfUQIxkAzO1cup6a0hLOvuh5F7T3fLiGEEEIIIfqq8EQ/EkeGsH1FDkY3X0affyGH66qoNrtR9sILJ7zGa2w4vnYvHPtrKWs8fiokANFjUS01aJrW7th6T8ah2UlTHQAnTdC2rl6Nm8XCiMsuO+HxqpIGDLvKQFUInpuItbGBnz77kNhhI4gf3nP2nhFCCCGEEEKc2vgLE7FbHGxdns3Yiy7D7OnFoZGDqf7ySyyHDh13vjkpAN3HwKyq8Xxz6JsTNxo1BkWzotsa2x1XL0rQHKSpDvzd/YnzjTvusN1uJ6uhnsSmJjwSE0/YxM5PDxBlUvGcEIHBx40tX31OY001k6+6/kxHL4QQQgghhOhCgZFeDJwYwa41edgsRsZdPJ+CmkrKfTyp+viT485XVAXflEjG1g1lb/buEzcaPRYVDa1JyuyDrpGmWBkeMvyEe5vl79mDQ1VJSDrxRqhN9TY8D1bhMCgEzo6jobqKLV8tZcD4SYT3l81ThRBCCCGE6G3GzU1AQWHTV1mMOmcuPkEhHOgfQ9WyZeg223Hne40JQ0Ul4KAJXdePbzB0CKqioFkkQaNas3FIsZ90euPhbdsAiB8z5oTHD/yQT6hBwW1ECKqniZ+WfojdamHSldeesZiFEEK43sKFCwkNDWXYsGEtr91zzz0MGjSI4cOHc/HFF1NVVeW6AIUQQpwxPoFmhk2LYt+GQmrKbJx1+dVU2K0UWRqoW7fuuPONwR40+NlIrI6ksL7w+AYNRhQ3L3T7SUrxt0KvSdAKdCsAiX4nnr6Yl5ODR2MjoaNPvJasekMhqqIQPC2G6pJi0v63nGHTZxMYGX3GYhZCCOF6CxYs4Ntvvz3mtdmzZ5Oens7OnTsZMGAAjz32mIuiE0IIcaaNOTcOk7uBn744yODJ0/H09SMvPIjqpZ+f8HxjjDeDGuPZWbLzhMdVVUU7weBaa/WaBE3TnQVCjOqJ9ykramoi1O5AMZmOO1aaW0Nggw27nxumUE9+/Og9VFVl4mVXndGYhRBCuN6UKVMIDAw85rU5c+ZgbN73csKECeTl5bkiNCGEEF3Aw9uNUXNiyUorozSnnsFTZlDs6U7Z2jXYKyuPOz8oKRI/hw+HDu87YXuqApp+/JKr1uo1uy47dGcpS1U5Puesrayk1s2NYd7eJ7z20KpcogwKXmdFUZpzmD3rUhk77xJ8AoPPaMxCCCF+9v1br1CSfXzVrI4IjUtk+oKbOtTGG2+8wRVXXNFJEQkhhOiOhs+IYef3eWxYepCzL5/J1q+WUuBtJvbrbwj89TXHnOsZF0AtWTRmV52wLVVRaH+R/R6SoCmKMg+YFxUVRWpq6gnPMTXUgzvs3rUbLfPYb0lVejoADpPbcddrDh3TLgWHSWWXNZP9L3yGweSGNTjipPcS4oi6ujrpJ6Lb6In90c/Pj9raWgCsNisOu6NT27farC3tn0pdXR2aph137hNPPAHAhRde2Kp2zqSmpqYe9d+3J/ZH0btJnxSn45ekU7Ctip/WV+MZGk6uXSPqnXfYGR117Ik6xKgaPsVurPh+BSbl2Bl6NpsVh+P4vKO1ekSCpuv6MmBZSkrKomnTpp3wnC0ZbkATo0aOYkLEhGOOfbVtO4qmMf2aq/GIjDzm2MHNRSiG/ShxfiTGGNmcfYizr7qe8eece2YeRvQqqampnKxPCtHVemJ/zMjIwMfHB4BzFt3msji8vb1RVbUlFoC33nqLFStWsGrVKjw9PV0W2xFms5lRo3rOnpw9sT+K3k36pDgdx9kaH+T8RP1BIxPnXsyqN/5DY2k+EyIiMQ88tqr7vt1rGFgaR8CwMIaHDD/m2NKtS8Ghtru/9Z41aDjfdTUohuOOFZSXEVBff1xyBlCQmoebqhA8PYYNH3+AV0Ago8+bd8bjFUII0X19++23/Otf/+LLL7/sFsmZEEKIM89gVBk3L5HyvDrMfsMwmEzkBvtT/fnnx53rkxBCvCWK3QW7jjumqkqH1qD1mgTNoZ14DZqmaZQoCuHu7sddU19twaOoHrtJxepvISc9jZGzz8fkbu6SmIUQQrjeVVddxcSJE9m3bx/R0dG8/vrr3HbbbdTW1jJ79mxGjhzJzTff7OowhRBCdIGklFA8fd04tL2apHFnURjkR8UJ9kQL6B+OAZXSg8cXkVJQ0JEiITial+L9cgStMCMDu9FIdGjYcdccWJNPqFHBfUQIe35YDYrCkKkzuiReIYQQ3cPixYuPe+3GG290QSRCCCFcTTWoDBwfTtqqXGZcN5W969dQYG8ket06fKZPbznPPcY5JV7Jtx7fhqpImX0ArXkn718maFlbtgAQ/4t5+7quU73RufdZwNmR7F6zmthhI/ANDu2agIUQQgghhBDdzqCJEWiaTkNNKD5BIeSHBlH9+RfHnKN6mqj3tRJZHURZY9mxxxQFrQMjaL0mQXM074Omqsc+Ul52Dm4WC+G/2KC66FA1IVYHdn93isoOUVNazLBps7osXiGEEEIIIUT3ExjpRWi8L3t/KmbI1BmUepgoPcGeaIYYTwY1Jhy3YbWqKOiyBg00/cRTHIsaGwi121F/sQYta3UuvgaFgLOj2J26AjcPT/qPPbb6oxBCCCGEEKLvGXxWBBUF9UQkOfODPB8zNd98c8w5wf2j8XN4cyjr2A2rFVVG0IATb1TdUFNDlbs7kf7+x5xrszjQ9lWiKeA2xIf9G39k0FlTpDiIEEIIIYQQgv5jQjEYVfL360QPGUZ+eBBVS5cec45XQiAADYePHVmTKY7NTlQk5PCGDQDEDDh234JDW4qJVEGN9yNzx0/YrRaGyvRGIYQQQgghBGD2MpE4Mpj9m4sYMnkW9QoUZh2kaf/+lnOMoZ5YjXa8SgzYNXvL65KgNXOcoEhI9p4M0HUSJk485tzCtc69z4KmRZOeupKAyGgikgZ2abxCCCGEEEKI7mvQWRFY6u2YPAbiZjaTG+x3TLEQRVWwhEH/+hgOVh086nUVHRVdb18px16ToJ1oDVpBWSl+DQ14R0e3vFZd2oh3WSMON5UGrwYK9u1h2LRZKEr7s1whhBA918KFCwkNDWXYsGEtrz344IMMHz6ckSNHMmfOHAoKClwYoRBCCFeIHhSId4A7mVsrGDBxCsUBPpQv+xLd/vNomXdCEPGWKHYV/FwoRFWdeUWfT9COTHE8UsVR13WKgXCT2zHn7V+bR6hRwXNUKBnrVqMoKkMmT/9lc0IIIfqIBQsW8O233x7z2j333MPOnTvZsWMHc+fO5eGHH3ZRdEIIIVxFVRUGjg8nZ3c5/VKmYtd18uwW6tatazknuH80BlRKMnOPus6Zj2ia1r77dizs7uOX+6CV7NuH1WQiKiqy5Rxd06nbUoyqKPhODGf3mlXEjxiFd2CQS2IWQgjhelOmTCEwMPCY13x9fVu+rq+vl1kWQgjRRw2aGIGuQ3WZHwHhkeSHBVC99POW4+6xzg2ryW9qee3I74z2jqAZ2x1tN9MygtZcxTFr82YA4keMaDknb28FYXYNLcSDwqL91FWUM+26RV0frBBCiONULTuItaC+U9t0i/TCf16/dl37wAMP8M477+Dn58f333/fqXEJIYToGfzDPIno58e+n4oYOn0W6xa/Q/G6tYRXVmIMCED1NFHnayGs0p9qSzV+7n4tUxz79giarh9XJCQ36zBGm42olJSW07K+z8PXoOB/diTpa1Zh9vKmX8p4l4QshBCie3vkkUfIzc3lmmuu4YUXXnB1OEIIIVxk0FkRVBY1EJIwDkVRyPXxoGb58pbjSrQHgxoT2FXqXIemqs58pL0JWu8YQdM1tObZJ0cStKL6ekJ0DYPZubeZw66hHqpCc1MxDvAi86UNJM+Yg9FkclXUQgghjtLeka4z7ZprruH888/noYcecnUoQgghXKD/6FB+WLKfnPQm4keOIX/LZup+2kjg1VcDEJIUTcOeHLYc2sfZ0ZNRFQXQ+/gImubA0bzXgKqqWOrrqXB3I8LPr+WU0txaIgwKerQP+7f9iMNmY9i02a6KWAghRDd24MCBlq+/+OILBg0a5MJohBBCuJKbh5F+o0M5sKWEwWfPoMmgkLt3d8txn4RgAOoPlwOgNI+g6Q5Hu+7XS0bQjqxAc46gHd6wAV1Vie3fv+WUsl1l+KsKHsnBrPvuHYJj4wlN6J7v1gohhOg6V111FampqZSVlREdHc1DDz3EN998w759+1BVlbi4OF5++WVXhymEEMKFBk0MZ9/GIjAkYTIaKXBYsBUVYQoPb9mw2qNYRdO1n9egOWztulfvSNA0B/bmaikGxUBOujOjPXqD6obMKvwBLcBCUeZ+pl57o1TlEkIIweLFi4977cYbb3RBJEIIIbqrqAEB+ASZObCpjLCYeKpq62lM24kpPBxFVWgM1ehXHs3hmsM/l9l32E/T6on1jimOvxhByy8pxruxEb/Y2J9PKWnErirs2bEG1WCQvc+EEEIIIYQQraKoCoMmhJO7t5KQAcnUmN2o3bat5bhXQiBxlkjS83ceNcWxfSNovSNB0xw4mgfDFBSKdZ1w48+Dg/XVFrwdGg5/N/b8sJqEUSl4+vm7JlYhhBBCCCFEjzNoYgToYLOHg6JQsHN7y7HQpFgMqBRn5v48gmbvxVMcFUWZB8yLiooiNTX1uOMmaxVac5GQVR9/QqO7O2663nJuXbbOCNVAri2fhuoqCA4/YTtCtFVdXZ30JdFt9MT+6OfnR21travD6BGampp61H/fntgfRe8mfVJ0Bs9QOJzh/LqoMJ/UlSvBaES1QSIGmg5WUWKuAzzYsmUz7gey23yPHpGg6bq+DFiWkpKyaNq0acefUFvE1gxQUQhqrpaSMnMmiVOmALD1zd0oSgVNSiEevn7Mu/YGDMYe8eiim0tNTeWEfVIIF+iJ/TEjIwMfHx9Xh9EjmM1mRo0a5eowWq0n9kfRu0mfFJ0h3L2QVW9n4OXlT5W5nllh4XgkDwNgz+YVRNcHE5TgBcU1jBoxnND4tlcB7j1THAGDopJ76BAGh4PYsWNbDltzne/OZuxZw6CzpkhyJoQQQgghhGizfqNDMZhUzH4JVHmaadix4+eDUe4MbIwnz1YDSJEQNBQMKBTW1hJktWL08ADA4dBwq7HSZNJostUTMzTZxcEKIYQQQggheiKTu4HQOB90QxRWk4HSrZtbjoX0j8bX4U1RnRXo6wlac5EQd7tKmbs7EUdNlynLrcVfhUa3egAikmSzUSGEED9buHAhoaGhDBs27LhjTz31FIqiUFZW5oLIhBBCdEfhCX401AUAUHhgX8vr/v3CAGiqdVZxbO8+aL0jQdM1NBQGFfqiGQzE9Pt5A+rS9ArcVYUqvRDfkFC8AwJdGKgQQojuZsGCBXz77bfHvZ6bm8v//vc/Yo/askUIIYQIT/RD14MwqEbKm+qxl5cDYAz1xGK0Yar3BEBvro3RVr0jQWseQYuudGayiRMmtByqP1AJQG5xuoyeCSGEOM6UKVMIDDz+zbs//OEP/Otf/0JRFBdEJYQQorsKS/RFUVS8/aOo9DTTmLYTcO6V1hDqIKIpBGj/FMfeUS1Ds+MAvG3+aBYLgQkJLYf0kgYcChSVZTLogmkuC1EIIcSpLV++nKKiok5tMzw8nPPOO6/N133xxRdERUUxYsSITo1HCCFEz+fl545PoBndHk+5x2Fqt27FZ8Z0ADzjAggvqge3PDStL4+g6Q40RcHhFkBY887dAA01VrxtGo3uNnR0IgbICJoQQohTa2ho4NFHH+Xhhx92dShCCCG6qbBEX6xNIei/2LA6bGAcRt2ZYul9ewTNganWnUYvH6ICg1peLtpfia8BSk2VGEwmQuMTXRikEEKIU2nPSNeZcPDgQbKyslpGz/Ly8hg9ejSbNm0iPDzcxdEJIYToDsIT/DiwKRiA4oJcdIcDxWDAM9YfBefU+L49xVF3YGr0xqZCYFhoy8uVu8sJUxRKG7IIS+iPwWhyYZBCCCF6guTkZEpKSlr+HR8fz5YtWwgODnZhVEIIIbqTsERfFNUTTw8/Kk31WDIzMQ8ciOpposq9eR+0Pj3FUdNwND+Kavh5iqM1x/nNOZS7jYikgS4JTQghRPd21VVXMXHiRPbt20d0dDSvv/66q0MSQgjRzYVE+6AaFTwC4qn0dKdh+46WY1bjkX3Q2peg9ZoRNHTnUKLBcGTfAQ1TtRWLGRotNUTK+jMhhBAnsHjx4lMeP3z4cNcEIoQQoscwmFRCY32oLY3GakqjbMtmAq+84phz9L49guZA148dQSvLq3NuUO3eAMgG1UIIIYQQQojOE5bgR32tc5uWgv0ZPx9o3p2lj09xtMMvErSSPRWYVYVqivAOCsYnSNYOCCGEEEIIITpHWIJv84bVBsrqqnFUVzsPHEnQ2lkkpHckaLoDvXmK45EErW5/BQB5pbuJ7C/rz4QQQgghhBCdJzzRz7lhtV8kVV5mGnfuch5oTtB0TWtXu70jQdM0jjyKanQuq9OLG9CA/OJ9sv+ZEEJ0Y7quuzqEbk++R0II0f14B7jj5eeGyTeBGg93ardudR5omeLYlxO0X4ygNdRY8bI6aDTb0NFk/ZkQQnRTZrOZ8vJySUBOQdd1ysvLMZvNrg5FCCHEURRFITzRD5s1FF1RKNyxrfl15/G+vQ+a5oCjyuwXH6zCz6BQbqxGNRgJS+jn2viEEEKcUHR0NHl5eZSWlro6lG7NbDYTHR3t6jCEEEL8QliCH5lbnbUuivKzndMam4fA2juC1jsSNN0BWnOZfaOR0nTnBtXlTYcJTUjE6Obm4gCFEEKciMlkIiEhwdVhCCGEEO0S3rxhtYfZhwq1Duvhwy1DaFJmv/lRFKMRS/aRDaq3ywbVQgghhBBCiDMiJNYHVVXwDIinystMw7btoDoTNCmz31xmX1FUjFUWrAaduqYKImX9mRBCCCGEEOIMMLoZCI7xBrdYLCYj5Vs3/7wGTWvf+urekaDpGkfKpdTV6M4Nqs2NgGxQLYQQQgghhDhzwhL9aKgNAKBg756WETTd0adH0BwcSdAqCqx4qgo1FOPlH4BvSKhrYxNCCCGEEEL0WuEJvmhaEKpioLSmEkNzZWJN7+Nl9o9McbQU2ADIr8ggImkgypExRiGEEEIIIYToZM4Nqw34+EVQ6eGOe50V6Ov7oGkOaN4HjUo7GpBbuEemNwohhBBCCCHOKJ8gMx4+Jtz8nBtWm+uagL5exVH/eYqjp12nyd2OpjukQIgQQgghhBDijFIUhbAEP6y2MHRVwVDtrIXRt4uEHLVRtb9BpcGtBkVVCevX37VxCSGEEEIIIXq98ERfmuqDANAb7Si6THFsmeJoUlTKm3IIiUvA5G52cWBCCCGEEEKI3i48wQ9F9cLD3RuLAgpKH0/Q9J9H0FQUsvK3EzlApjcKIYQQQgghzrzQeF8UBTwD4mkyqigo6H26iqP2cxVHuwrV9SVSIEQIIYQQQgjRJUzuBoKivVHcY7GpCioKjr4+gqbgDUCTm7NqihQIEUIIIYQQQnSV8AQ/GuoC0dFQ+nyCpjkw4FxvVuUoxsPHF7+wcBcHJYQQQgghhOgrwhJ9cTiC0PUjCVoPrOKoKMoQRVE+UhTlP4qiXNbuhnQNN9UDRVcor84mYsAg2aBaCCGEEEII0WXCE5wbVqsYnFMcHV08gqYoyhuKopQoipL+i9fPVRRln6IomYqi3HeaZs4D/q3r+u+A69oby5Ey+yoK9TXlMr1RCCGEEEII0aX8Qj1w9zKiKwZnFUe9fSNoxg7E8BbwAvDOkRcURTEALwKzgTxgs6IoXwIG4LFfXL8QeBf4m6IoFwJB7Y5Es+Nciqego0uBECGEEEIIIUSXUhSF8AQ/tF0GVBztnuLY7gRN1/W1iqLE/+LlcUCmruuHmoNcAlyk6/pjwNyTNHVrc2L3WXtjcZbZd6ZooBHeP6ndTQkhhBBCCCFEe4Qn+lK4S0XR6foE7SSigNyj/p0HjD/Zyc0J3v2AF/DESc65CbgJICwsjNTU1OPOScw+DIShAAZPH378aWO7gheirerq6k7YJztK13WsDrA4wKbp2DSaP3TsGtg1sDqcX2uArjs/tOZrNf3n1xVAVUBRQFWUY/8NGFQwqWBUFYzNX5t+8bXZ6Dwuurcz1R+FaA/pj6K7kT4pukJdjY6OjoJCQ2Nju/pcZydobaLr+mGak69TnPMK8ApASkqKPm3atONPsqyADGe1lJCYBE54jhBnQGpq6gn7m67rVDfaqKi3UtVoo7rBRlWjlaoGG1UNNqobbVQ1WKlpslNvsVNvtdNgcVBnsdNgdVBvtdPOactnjMmg4OlmxMvNgKd782c3I17uRnw9jPiaTfh5OD98PY7+2kiglxuBnm4YDb2jcGx3dbL+KIQrSH8U3Y30SdEVrI12lq/egYKCm5t7u/pcZydo+UDMUf+Obn7tzNKOTHFU8QuPOuO3E32XpumU1lkoqGqksLqJ9dk2Nn+3l7JaK6V1FsrqLJTWOj/bHCfPsHzMRvw9TfiaTXi5GwnxdscryIhXc8Lj5W7Ay92Ip5sBd6OKu9GAm1HF3ag2f3b+22RQMKoqBtU571lVFAyK4hwdUxVUpXlkTdfRNOdnh66j6zqO5n/bHBpWu/PDcvTXzZ+bbA4abQ7qjySPRyWRDRYH+VWNZBTaqGm0UWuxn/L75+9pItDLjWAvdwK93AjydiPIy40QH3dCfc2E+ZoJ9zUT7C3JnBBCCCF6HjcPI+BARaGdMxw7PUHbDCQpipKAMzG7Eri6k+9xHE2zoyjuKIDJw/NM3070YnaHRmF1E4fL68kub6CgqtH5Ud1EQVUjxTVNxyVehn2HCPJyI9jbnRAfdwaE+RDs7U6wt/M1Pw8Tfp4m/D1M+Hu64Ws29trkw6Hp1DY5RwhrGu1UNzq/rmiwUl5noaLeSnmdlfJ6CwdL69h82EpFg/W40UJFgWBvd8J83QnzMRPmZybK34PoAA+i/D2ICvAg1MeMQaZdCiGEEKLb0VBQu76Ko6Ioi4FpQLCiKHnA33Rdf11RlNuA73BWbnxD1/Xd7b1Hazk0OzpmVF1BNfbOP3xF59E0nbzKRg6W1rUkYkc+51Y0YD/q7Q6jqhDuZybSz4OUuAAi/D2I9DMT6e9BhJ8HmelbmTtrGqokCgAYVAV/Tzf8Pd1afY1D0ymvt1BSY6G4pomimiaKayyU1DRRXNNEYXUT23IqqWywHXOdUVWI8D+SuHkSH+RJbJAX8UGexAV54edh6uzHE0IIIYRoBb15o+r2Xd2RKo5XneT1b4Bv2ttue2iaDWfpAwXVaOjKW4tu7Egitr+4lv0ltWQW1zk/l9TRZPv5/xhvdyNxQZ4MifDlvGHhxDX/gR8X5HnaUZqS/YokZx1kUBVCfcyE+pgZFuV30vPqLXYKqhrJq2okv7KR/KM+r91fyie1lmPOD/A0tfx3jAvyol+IF/1DvekX4o3ZJD8nhBBCCHFm6ICKQnvLCSh6d6tEcAKKoswD5kVFRS167733jjseu/c5vjiUDGZvBoRE45Uc2fVBCpeyaTr5tRqHazSymz/yajWsR71zEeCuEOWtEul95LNKmKeKj5tz/VZ71NXV4e3t3UlPITrCYtcpadQpadAoadApbtAoadAortepaNJbfkgqQLCHQoS3SqTXkc8qUd4qnqaenWxLfxTdifRH0d1InxRdpeL9DRRFmNHcChl29vknPGf69OlbdV1POdExl1ZxbC1d15cBy1JSUhadqBJKXcX7cMi5D1q/fokMmjahy2MUXcdq19hdUM2u/GrS86tJz69hf3Fty9REH7ORYZEBTBvmy4Awb5LCfOgf6n1GprxJRaieocnm4HB5PZkldcd8rM6rx2r/ubBJlL8HgyN8GBzhy6BwXwZF+BAf5NVj1rpJfxTdifRH0d1InxRd5bMPfnJua2Q0dosqji7h0O2gOIcSVZm61OuU1VnYll3J1pxKtmVXkpZXjdXuHBoL9HJjWJQf0waGMCzKj2GRfsQEerR7REz0TmaTwZlwhfse87pD08mrbCCzpI69RbXOj8Iavt9X2rK5pLtRZWC4D0MifEmO9iM5yo+B4T64y3RqIYQQQpyEqivYu0kVR5dwaI7mpXiyBq2n03Wd7PIGfjxYzpbsCrZlV3K4vAFw7sM1LMqP6ybEMSYugBEx/kT4mSUZE+1mUJXmdWpezBwc1vJ6k81BZkkdGYU17C2qJaOwhuXpRSzZnAs4++KgcF+GRfkxvDlpGxDmg5sUKRJCCCH6vCMbVXeXMvsuoekOAGeKJglaj1NS08SPB8tZn1nGjwfLya9qBCDY243RsQFcNS6WMXEBDIvyk+IOokuYTQbniOxRRUt0XSe3opFd+dXszK8iPb+ar3YWsHhTDuAcaUuO8mN0XACjY/0ZHRtAqK/ZVY8ghBBCCBfqTvuguYRDs4PiXINmkD/gu716i70lIVufWcaBkjoA/DxMTEwM4uZp/TirXxCJwV4yOia6DUVRiA3yJDbIkwuGRwDOpC2nooGdedWk5VaxLaeSt9Yf5pW1zim40QEejI51Jmxj4gIZHOHTa/fAE0IIIYSTrjgHjtpbi7FXVHEMSf873+ZPwcvkR1y/KDziQro+SHFK5Y0a20sc7Ch1sLfcgV0HNxUGBBgYEqQyJMhArK+K2sMSMqkIJX7JpulkV2tkVmlkVjk4WKVRaXH+nDUbnH1+UKDKwEADcb4qxk4sQCL9UXQn0h9FdyN9UnSVkvfWURfhT6UpjzFTzj3hOb2+imNu/nOQr6DqCskjRxA9YkCXxyiOpWk6aXlVrMooYWVGMXuL6gFICPZiwaRQZgwOZUxcQI8vtCAVoURrFFQ1svlwBZuyKvjpUDkf7a8HbHi5GRgTH8j4hEAmJAYxPNoPUwdG2KQ/iu5E+qPobqRPiq7y8ZINzj2aFUPfreKoaY6WoUSZ4ug6mqaz6XAFy9IK+G53MWV1FlQFUuIDuf/8QcwcHEa/EHnnSvQ9kf4eXDQyiotGRgFQWmthU1YFG7PK+elQOU98tw9wbpo+sV8QU5KCOTsphPggT5nmK4QQQvRAHdmoulckaI6jioSopl7xSD2Gruuk5VWzLK2Ar3YWUFxjwcNkYMagUGYNCWXagFACvNxcHaYQ3UqIjzsXDI9oWctWXudM2H7ILGPt/lJW7CkGnGvYJieFMCUpmLP6BePn2fl7+QkhhBCikzUPHPXpIiGa7kAHKRLShfYW1bAsrYBlaYXkVDTgZlCZOjCEeSMimTU4FE+3XtG1hOgSQd7unJccwXnJES1bTfyQWcYP+0v5Ks1ZKVJVYFRsgPPNj8FhDAjzltE1IYQQoptyFglp3+/pXvFXtEPXfp7iKInBGVPdaOPz7fks3pTD3qJaDKrCWf2CuG1Gf84ZGo6fh7y7L0RHKYpCfLAX8cFeXDshDrtDIy2vijX7y/h+bwlPfLePJ77bR3SABzMHhTJjcBgTEgN7/HpOIYQQotdQFZni6NCcUxxVFFQZQetUuq6zJbuSxZty+HpnIRa7RnKUHw9fNJTzkyMI9nZ3dYhC9GpGg8qYuEDGxAVy1+wBFNc0sXpvCasySvhwSy5vb8jG083A5KRgohUbIxus+HvKtGIhhBDCdXQUnb5dZt+c9kfWlF5IBMGEnxWHm6dX1wfZy9RZddYX2FmTa6OgXsdsgLMijUyNMRLnK0nwEVKyV7iS1aGTUeFgR4mDtFIHFU06BgUGBxkYG2ZgdJgRHzeZBilcQ34+iu5G+qToKgWL16KEhJNlzOGsabNOeE6vL7OflumBXuqc4jh58mQ8fHy7PMbeIj2/mld/OMTyXUVYHRqjYv2587xY5g6PkHVlJyAle4WrzWn+rOs6b325mmK3KL7ZVcibuxt4J8PGhMRAzhsWwTlDwwnxkRFv0XXk56PobqRPiq7yyacbcaCgo/TxMvvNX6sGGd1pK13XSd1fyitrDrHhUDne7kauHh/LleNiGBQuya4QPYGiKCT4Gbhh2iDuPXcgewprWL6riG92FfKXz9P56xfpjEsI5FcjozgvOULWjAohhBBnikFxFgmhLxcJwVkkRNVBUdu/yWtfY7E7+HJHAa/+cIj9xXWE+5q5//xBXDkuFl+z/PEmRE+lKApDI/0YGunH3XMGsL+4jm92FbIsrYD7PtvFX7/czcxBoVw8KoppA0NxM8rPTSGEEKKzKIoUCcGhaQAoOqiqjKCdTnWjjQ825vDm+ixKai0MCvfh6fkjmDs8Uv5QE6KXURSFgeE+DAz34c5ZSezKr2bp9nyWpRWwPL0If08TFyRHcPGoKMbEBUjpfiGEEKKDnL9LlXYXCekdCVrzCBooMoJ2CjVNNl77IYs31mVRZ7Fzdv9gnrx8BJOTguWPMiH6AEVRGB7tz/Bofx44fzDrMsv4fHs+n23L5/2NOcQEenD5mBjmp8QQ7md2dbhCCCFEj6QYmhO0vjzFUdM09OZvgSoJ2nGabA7e2XCYl1IPUtVg4/zkcG6Z1p9hUX6uDk0I4SJGg8q0gaFMGxhKncXO/3YX8em2PJ5esZ9nV+5n+sBQrhwXy/SBIRgN8nNVCCGEaDVVbV6D1j69I0HTnUVCFFmDdgybQ+PjLXk8v+oARTVNTBkQwj1zBpIcLYmZEOJn3u5GLhkdzSWjo8kpb+DDLTl8vCWPVe9sIczXncvHxHDF2BhiAj1dHaoQQgjR7Smq6hw7a+cMtV6xD5pl+2/ZWHU1A2xhhM8Z1PUBdjOarrOp0MHSTCvFDTr9/VUuG+DGoEBZn9fZZE8V0Z10Zn90aDpppQ7W5NnZWeoAYEiQyoxYE6NCDagyLVqchvx8FN2N9EnRVfI+W4+vTzTbTFlMnTr1hEuJev0+aCvTjc4pjjp9fn+LHw+W8fevMsgobGBQuA+PXDaQmYNDZY3ZGSJ7qojupLP740zgLqCgqpGPt+Tx4eYc/r29iZhAD66fGMf8sTFS8VWclPx8FJ2lyeagvN5KbZONmkY7tU02apucn2ua7NQ22amz2LDYNCx2Datdw+po/mzXsDg0bHaN2joD3t7ON6sVnIMbiuLcR1dRwKAqmI0GzCYVs8lw1Ifz354mA36eJvw8nB/+nm4tX/uajTIdXLT46vs96Hbn396TJ0/GaGxbytUjErTTceiac4qjqwNxoZLaJh79OoPPdxQQE+jBc1eOZN7wSFS1L39XhBCdIdLfgztmJXHr9H6s2FPMm+sP84+vM3h6xX4uGxPNgrPiSQyRd6WFEG1T3Wgjv7KR/KpGimqaKKu1UFbn/CivszZ/baXOYj9lOyaDgre7EbPJgJtRxc2gOj83f+3nYcLNoFDhqCcowKO5sp6OroOOcz9YALum02RzUFZnp8nmoMnuoMmm0WRzYLE5k75T8TEbCfVxJ9zPTJiPmTA/M2HN/w71NRPuaybM14xB/jbr9VRVbSkQ0p7Zir0jQdM0UPpmgubQdN7fmM0T3+3DYtP4/Yz+3DK9P2aTTGcUQnQuo0HlvOQIzkuOID2/mjfXH2bJplze2ZDNtIEh3DApgSlSFVYI0azJ5iC7vIFDpXXkVDSQX9XYkpDlVzZSe4LEK8DTRLC3O8He7iRH+xPs7UawtztBXm74epjwMRvxMR/5bMTXbMLdqLbq545zVPeEM8paxWrXqGmyUdVgo7rRRnWjlepG57+dH1ZKai0U1TSxMauCktombI5j/zg3GRRiAjyJC/IkLsiL+CBP4oK9iAv0JDrAU7Y76iUUg8qRzETTTp3Yn0ivSNDszTVSlO6/nK5T7cyr4oGl6ezKr+bs/sE8fNFQeRdbCNElhkX58dT8Edx33iA+2JjDexuzuf6NTQwI8+aWaf2ZOzxCpvsI0UeU1DaRWVLHodJ650dZHQdL68ivbEQ76m8zX7ORSH8PogM8GJ8QSFSAB1H+nkQFeBDhZybIy61b/9xwM6otyWNraJpORYOV4pomSmosFFY3kVvZQHZ5PYfLGtiUVUG91dFyvqpAfJAXgyJ8GBTuy6Bw5+foAA+ZEdXDGIxGHH09QdP0vtVpqxttPPndPt7bmE2Itzv/vmoUc4dHyLvWQoguF+Ljzh2zkvjdtH58tbOAl9cc5M4Pd/D0iv3cPLUfl46Jwt0oI/pC9AZ2h0ZWWT17CmvYU1DDnsIaMgprKKuztpzjYTKQGOLFyJgALhkVTWKIF/1CvIkN8uxza1ZVVWlJ6IZGHn9c13XK6qzkVDgTtsPl9RwormNPQQ3L04taNjn2cjMwMNyHQRG+DI30ZVRMAAPDfWSqZDemGtWWNyf6bIJm1/vOCNrXOwv525fpVNRbuX5iPHfNGdDnfuAJIbofN6PKJaOj+dXIKFZmFPPi95ncv3QXz63az6LJiVw9PhZPt17xK0eIPkHTdDJL69iWXcmO3Cr2FNawr6gWi935x6abQSUpzJvpA0MZHOHLgDAfEkO8CPc1y2hPKymKQoiPOyE+7oyJCzzmWL3Fzv7iWvYW1bK3sIaMolq+Sivgg405gDNpGxnrz+jYAEbHBjAq1h9/TzdXPIY4AdXw8xuTel9N0I5M7+3NPw7qLXb+9uVuPtmax/BoP966YZxsNC2E6HZUVWHO0HBmDwnjx4PlvLA6k398ncGL32dyw6QErp8Yj5+nvKkkRHdT3WBje24l23Kq2J7jTMpqm5xrxPw8TAyN9OXaCXEMifRlSKQv/UK8MXXj6Yg9nZe7kVGxAYyKDWh5Tdd1cioa2JZTybbsKrblVPJS6kEczUM1iSFepMQFMKl/MJP6B7d6KqbofKrBgNI8gKRpjtOcfbzekaC1PTHtUXbmVXHHkh0cLq/n9hn9+f3MJPmhKITo1hRFafkjYWt2JS99n8nTK/bz6tpD3DQlkYVnJ+Dl3it+BQnRI1XUW9lwsJwfD5axMauCzJI6wLkOakCYD3OHRzI61p/RcQEkBnvJMopuQFEU4oK8iAvy4uJR0QA0WO2k5VazLaeS7TmVfLe7mI+25AEwJMKXyUnBTE4KISU+QArIdSHVaETBOfVXs1tPc/bxesVvx5YErZdNcdQ0nVd+OMST3+0jxMedxYsmMCExyNVhCSFEm4yJC+D1BWPZU1DDMyv389SK/by94TC3Tu/P1eNjZY2aEF2gzmJnU1Y5P2aWs/5gORmFNYBzqtzYhEAuGhHJ6LgARsT44y1vnvQYnm5GJvYLYmI/59+HDk0nPb+adZllrN1fyhvrs/jv2kO4G1XGJQQyOSmY2UPCSQj2cnHkvZt61O813XHqbSJORGlPbf6upijKPGBeVFTUovfee++444c33sThxqsZ0RBOwPmDuj7AM6CqSePVXRZ2l2uMCTNww1B3vN3k3avupq6uDm9vqZwpuoee0h8zqxx8st/K3gqNILPCxUkmzoo0oso79L1KT+mPvZWu62TXaGwvcbC73MGhag1NB6MKSf4qg4MMDAk0EO+nYuwja8b6Yp9ssuvsrXD2gd1lDgrqnX/3x/iopIQZSAk3EuUts7I6W+naPfg3+LHefICJY4bj7hN43DnTp0/fquv6Cfd96BFvkei6vgxYlpKSsmjatGm/PMjrP/3csY473gOt3FPMw5/upNGq8PglyVwxNkamFnRTzj1Vprk6DCGAntMfpwE36jo/HCjjie/28dquatYUu3H3nIGcMzRMft71Ej2lP/YmTTYH6zPLWJlRwuq9xRTXWFAUGBHtz+9GBTGpXzCj4/ruVLe+2ifPPerrvMoGvk0v4tv0IpZmVrI000a/EC/OT47g3GHhDInwlZ/BnWBjTh01e6oAGD1qBCHR/dp0fY9I0E5Jc6A3l9nv6VUc7Q6Nf3ydwVs/HmZIhC/PXzWK/qF9650eIUTfoCgKUwaEMDkpmOXpRTz5v33c/N5WRsb48+DcIYyJCzh9I0IISmqaWJlRwqqMYtYfLKPJpuHlZmDKgBBmDg5j+sAQgqRYhGgWHeDJbyYn8pvJiRTXNPHd7iKW7yrixe8z+ffqTOKCPLloRCSXp8QQE+jp6nB7LIPR2JKX6I6+WCREs6PpR0bQem6GVttk47YPtrNmfyk3TIrnvvMGyboMIUSvpygK5ydHMGdIGJ9uy+Op/+3n0v/8yCWjo7jv3EGE+ppdHaIQ3U5FvZXl6YUsSytgY1YFug7RAR5cOTaWmYNDGZcQKH9DiNMK8zVz3cR4rpsYT1mdhRV7ivlmVyH//j6Tf3+fydn9g5mfEsOcoWHSn9pIMRg5kpdodlubr+/5CZruQG9O0JQeumF1QVUjC9/azIGSOh67JJmrxsW6OiQhhOhSRoPKFWNjuWB4JC9+n8nrP2Txv93F3D6jPzdMSsDNKGskRN9W22Tjf7uLWbazgHUHyrBrOokhXtwxM4nzhkUwIMxbpqaJdgv2dueqcbFcNS6W/KpGPtmSx0dbcrl98Xb8PU1cPCqKK8bGMCjc19Wh9ggG088jaH2zzL7mwNGDR9DS86tZ+NZmGq0O3rphLJOTQlwdkhBCuIy3u5F7zx3E/JQY/vHVHh5bvpcPN+fy13lDmDYw1NXhCdGlLHYHqzJK+HJHAav3lWC1a0T5e/CbyYnMGxEh64XEGRHl78Eds5K4fUZ/1h8sY8nmXN7/KYc31x9mRIw/14yP5aKRkTKqdgoG08/7fWrtqOLY8xM03YFO8whaD9uqeuWeYm5fvJ1ALzfe/d14Bob7uDokIYToFhKCvXh9wVi+31vCw1/tYcGbm5k1OJS/XDCEeCkPLXq5zJI6lmzK4bPt+VTUWwnxcefqcbFcODKSUTH+kpSJLqGqCpOTQpicFEJFvZWl2/P5cHMOf/pkJ0/9bx8LJyVw1fhYfM2m0zfWxxhMBmiulK87+uIUR03rkWvQ3lyfxcNf7SE5yo/Xrk8h1EfWWQghxC9NHxTKpP7BvLk+i+dXHWDOM2u5bUZ/fjetHyaDTHsUvUeTzcE3uwpZvCmHzYcrMaoKs4eEceW4WM7uH4yhj5TCF91ToJcbN56dwMJJ8azLLOPlNQd5bPleXlidyTUT4lg4KV7WDB/FuVG1k6Zppzz3RHp+gqYfXcWx+//wsjs0/v7VHt7ekM05Q8N49opReLjJELEQQpyMm1Hlt1P7cfGoKP7+dQZPr9jP8vQinrhsOMOi/FwdnhAdklFYw5JNOSzdnk9Nk534IE/uO28Ql46OJsRHqi+K7kVRfh5V25VXzX/XHuSVtQd5Y10Wl4yOYtGURPqFSAVy1c3YMoLWN6c4aj8XCenummwObn1/G6v2lrBocgL3nTdY3hETQohWCvU18++rRjFveAR/+Tydi15cz81TE7l9RlKf3ddJ9EyapvP9vhJeWXuIjVkVuBlUzksO58qxsUxIDJQpjKJHSI7244WrR5NdXs9rP2Tx0ZZcPtySyzlDwvnjOQP79FZRRpMbCkemOPbJBM3eUiSkO/84szk0bn1/G6v3lfD3i4Zy7cR4V4ckhBA90pyh4YxPCOIfX+/hxe8P8t3uYv512XBGx8reaaJ7a7I5WLo9n9d+OMTB0noi/Mzcf/4gLh8TQ4CXm6vDE6Jd4oK8+PuvhnHHrCTe/vEwb64/zIqMYq4aF8OdswYQ3Af34TOYfk6xNK0vJmi6A+jeI2gOTefOD3ewam8Jj1w8jGvGx7k6JCGE6NH8PE08cfkI5o6I5M+f7uTS//zIwkkJ/HHOQJk2Lrqdinor7/2UzTsbDlNWZ2VopC/PXTmS85MjZC2l6DWCvd25e85Arj8rnudXHeCDjTks3ZbP76b148azE/vUz2aDmwm9ZYpj28vsK0cu7s4URZkHzIuKilr03nvvHXPMo6GQHza+QJ0ym5TqULwvGuKaIE9C03XeSLeyLt/OlQPdODdBKt30JnV1dXh7990hfNG99NX+2GjX+XifldW5dkI9FX6T7M6AgL7zh0B31Vf749FKGzSWZ9lYl2/HqsHwEAPnxZsYFKjKNEYXkD7ZtYrqNT7eb2VrsYMAd4VLkkxMijKi9oG+X19Yh+eWUtb4ZDM2MRCv2OHHnTN9+vStuq6nnOj6HjGCpuv6MmBZSkrKomnTph17sOwAP/ykgAKKqnLccRfSdZ2/fbmbdfnZ/GHWAO6YleTqkEQnS01N7VZ9TvRtfbk/njcLNhws595Pd/L4pgb+MGsAt0zvL+t8Xagv98fC6kZeWJ3Jh5tzURWFi0fH8JvJCSSFyXY6rtSX+6SrXHkBbMqq4JFvMng9vYr1Ze7cf/5gpgzo3fv+Fh8sZs/mrwFITIhn8ORpbbq+RyRop6Q50HXnO6Xd6dewrus8/u1e3tmQzW+nJPL7mf1dHZIQQvRqE/sF8fXvz+Yvn6fz1Ir9/JRVzjPzR0rpZ9Flyuos/Cf1IO/+lI2u61w9PpZbp/cnTPqg6MPGJQTy+S1n8dXOQv713V6ue2MT80ZE8tCFQwnspWsvDe5uoDvL6/fZNWh6S2rWfVK0F1Zn8t81h/j1hFjuO2+QTGUQQogu4GM28ewVI5nUL5i/fpnO+c//wNPzR/b6d2uFa1U32Pjv2oO89eNhLHaNS0dHcfuMJGICPV0dmhDdgqIozBsRyZyhYbyceogXvj/Aj5ll/P1Xwzg/OcLV4XU6o8l0pMp+u9ag9fwE7agy+4rSPdbTvfbDIZ5asZ9LRkfx8IXDJDkTQogupCgK88fGMDLWn9s+2MZ1b2zid9P6cdfsAVKQQXSqOoudN9Zl8eoPh6iz2Jk3PJI7ZyWRKPtACXFC7kYDd8xK4pxhYfzx4zRueX8bFyRH8NBFQ3tVtUfVaICWMvt9MkGzQzcaQftgYw7/+DqD85PD+delw1Fl/YMQQrjEgDAfvrj1bB7+ajf/ST3IpqwKnrtyJNEBMqohOkbXdT7bls9jy/dSVmdhzpAw7pozgEHhvq4OTYgeYVC4L0tvmcQraw/x3MoDbDhUzkMXDmXu8IheMbBhMKot+6BpWtsTtJ7/VqKuoWvdYx+0FXuKeeDzXUwfGMKzV4zCKO/UCiGES3m4GXjskuE8f9Uo9hXVcv5zP7BiT7GrwxI92O6Cai5/eQN3f5xGdIAHn986iVeuS5HkTIg2MhlUbp3en69+fzYxAR7cvng7N7+3lZLaJleH1mGKohwZQEPTtDZf3/MzCM0BSnOREMV1j5Nb0cBdH+1gWKQf//n1GNyMPf9bK4QQvcWFIyL56vaziQvyYtE7W/hP6kF6wjYzovuoarDy4OfpzPv3OrLK6vnXZcP57HdnMTLG39WhCdGjDQjz4dPfncV95w3i+32lzHlmbY9/I805g655imPfHEFzwJERNBcNoVnsDm79YBsAL10zGrNJ9t8RQojuJj7Yi49vnsi8EZH889u9/PHjnVjsbf/FKfoWTdNZvCmH6U+m8v7GbK6bGM/qP05jfkqMLGMQopMYDSo3T+3HN78/m+gADxa9s4XnVh5A03rmG2mKQQHtyBTHto+g9YI1aA4U3fkYiosmOT76dQY786p55doxUrFJCCG6MbPJwPNXjqRfiBfPrjxAbkUDL187pteWehYdsyO3ir99kU5aXjXj4gN56KKhDI6QqYxCnCn9Q3345OazuP+zXTyzcj+7C6p5av4IfMwmV4fWJkcPGvXRNWgOoHnEygXvZH21s4C3N2SzaHICc4aGd/n9hRBCtI2iKNw5awDPXTmSHXlV/OrF9WSW1Lo6LNGNWOwO/vntXi55aT0F1U08e8VIPvztBEnOhOgCZpOBp+aP4K9zh7BqbwkXv/Qjh0rrXB1Wmxw9ut6eMvs9P0HTHBwZCOzq/OxQaR33fbqL0bH+/OncQV17cyGEEB1y0cgoltw0gQarnYtf+pEfDpS6OiTRDWQU1nDRC+v5T+pB5qfEsPruqfxqVFSvqCwnRE+hKAoLz07g3YXjKK+zcNGL6/l+b4mrw2o1xaC0rHNuz3rn3pGg6V1fJKTJ5uCW97dhMii8cPVo2VtHCCF6oNGxAXx+6ySi/D1Y8OZm3v0p29UhCRdxaDovrznIRS+sp6zOwmvXpfD4pcN73NQqIXqTs/oH8+VtZxMd4MnCtzfz4veZPaLAk3p0Fcc+OYKmH7UGrQuH0P7vy93sLarl6StGEunv0WX3FUII0bmiAzz55HdnMXVACA9+ns7/fbm7xy5MF+2TXV7PFf/dwOPL9zJjUCjf3TmFWUPCXB2WEAKICfTks9+dxdzhkTzx3T5u/WAb9Ra7q8M6JUVVQO/jRUJQjlRx7Jp889OteSzZnMut0/sxfWBol9xTCCHEmePtbuTV61J45OsM3lifRZ3Fzj8vHY5BqvT1arqus3hTLv/4eg8GVeGZK0bwq5EynVGI7sbDzVngKTnKl8eX7yW/spF3bhyPn0d3HuE+MsWxLyZougOOjKB1wTTD/cW1/OXzdMYnBPKHWQPO+P2EEEJ0DYOq8ODcwfh6GHl25QFsDo2nLh+BUaaw90oV9Vb++HEaq/eWMKl/EE9cNkJmxAjRjSmKwk1T+hEf5MWtH2zjutc3dusk7cg8jPZUcVR6wjxORVHmAfOioqIWvffee8ccCylZxzdbDlPvGc34hkg8zj9zSVOTXefhDY3U2XQePssDf7P80u7r6urq8Pb2dnUYQgDSHzvTVwetfHLAxthwA78d7o5RRtLarDv3x+waB89vs1Bt1bligBsz44zONSOiV+vOfVK0zfYSOy9stxDro/LHsWa8TN3v/1/HR+msCyljSKCVkBFzjjs+ffr0rbqup5zo2h4xgqbr+jJgWUpKyqJp06Yde3BXGd9szkXRFXx8vTn7l8c70V+/SKewIZv3bxzPWf2Dz9h9RM+RmprKcX1SCBeR/th5pk2DgWsP8cg3GQQE+vDC1aNxM8qbcm3RXfvjsrQCHluVhr+HO5/cOIaRMf6uDkl0ke7aJ0XbTQOShxXzu/e38vJeE+/dOB4/z+41krbyw3QUFPz9/dvc73r+bxvNgYIBFQXUM/c4+4pqee+nbK6dECfJmRBC9AGLpiTyf/OG8L89xdz83laabG2fpiK6D4em8/jyvdy+eDvDIv348vZJkpwJ0YPNGhLGy78ew76iWq55/SeqGqyuDukYOjoKCno7ioT0ggTNDqgoKGdsDZqu6/z9qz34mE2y7kwIIfqQBZMSeOTiYazeW8Kid7ZIktZDVTfYuOGtzby85iBXj4/lg0UTCPUxuzosIUQHzRwcxn+vHcP+ojqueW1jt0rSdF1HRWlXFceen6DpDkB1jqCdoQRtVUYJ6zLLuHNWEgFebmfkHkIIIbqna8bH8a9Lh7Mus4wb3txMg7V7l3cWx9pfXMuFL65jw8EyHrl4GI9enCzTVYXoRaYPCuW/147hQHH3StJ0QEHB0ScTtOYy+woKqmro9Oatdo1HvsmgX4gXv54Q1+ntCyGE6P7mj43h6fkj2JhVzoI3Nnf7PXiE03e7i7j4xfXUWxwsXjSBa8bL73EheqPpg0J55boxHCip4+pXN1JZ7/okTcc5guZox76aPT9B0x2gqygAhs6v4PLOhsNkldXzl7lDMEmpZSGE6LMuHhXNc1eOYkt2Bb9fvL1dv3RF13l17SF+++5W+od689XtZ5MSH+jqkIQQZ9C0gaG8el0KmaV1XP/mJpdPST+yBq1vJmiaBorqnOTYyVMWyussPLfqAFMHhMiG1EIIIZg3IpKHLhzKqr0lPLRsNz1hq5q+Rtd1nlt5gEe+yeCC5Ag+/O1Ewv1kvZkQfcHUASG8dPVoduZV88DSdJf+jNZ1vQ9PcdQdzumNKCiGzp3i+PSK/TRYHTw4d3CntiuEEKLnunZiPIsmJ/DOhmxeX5fl6nDEUXRd5/Fv9/LMyv1cOjqa568ahdnU+csfhBDd16whYdwxM4lPt+Xx3sYcl8VxZIqj1o4ksUfsg3ZKmrNIiKKDYuy8H8J7i2pYvCmH6ybG0z/Up9PaFUII0fP9+bzB5FU28sg3GUT5e3BecoSrQ+rzNE3noWW7eXtDNr+eEMvDFw5DlQ3GheiT7piZxM68Kh5etpshEb6MiQtwSRyKTh8dQdPsOGukKKidNMXx6LL6d85K6pQ2hRBC9B6qqvDMFSMZGePPnR/uYFtOpatD6tMcms69n+7k7Q3ZLJqcwN8vkuRMiL5MVRWevWIUkf4e3PL+Vkpqm7o8Bq15DVo78rNekKDpDlCOTHHsnMdZmVHC+sxy/jArCX9PKasvhBDieGaTgdeuSyHM18yit7eQXV7v6pD6JJtD484Pd/Dx1jx+PzOJ+88fjKJIciZEX+fnaeLlX4+hutHGbe9vx+ZoR6bUEXpzmf12THHs+QmapnFko2q1ExI0i93BI1/voX+oN9dIWX0hhBCnEOTtzls3jMWh69zw5uZus/9OX2GxO7jl/W0sSyvgvvMGcdfsAZKcCSFaDI7w5Z+XDmfT4Qoe+2Zvl967ZQ1an6ziqDvQjxQJ6YQ1aO/8mM3h8gb+csFgKasvhBDitBJDvHnl2hTyKhu56Z2tWOyuLe3cVzRaHSx6Zysr9hTz0IVDuXlqP1eHJITohi4aGcUNk+J5Y30WX+zI77L7Himz354dWXp+BqI5pzgqnTDFsazOwvOrDjB9YAjTpKy+EEKIVhqXEMgTlzvfpb3n453tesdUtJ7doXHze1v54UAp/7p0ONefFe/qkIQQ3dj95w9mXHwg9366k4zCmi65pw59OEHTHbQUCelggvbcygM02hw8cMGQzolNCCFEn3HRyCjuOWcgX6YV8J81B10dTq+l6zp//XI3a/aX8ujFycwfG+PqkIQQ3ZzJoPLCNaPw8zDx23e3Ut1g64K7Himz3/Yre36CpjmnkqgoqB2Y4ljTZOOTrXlcOjqa/qHenRWdEEKIPuSWaf2YOzyCZ1bsZ0dulavD6ZVe+yGLDzbm8Ltp/bhqXKyrwxFC9BChPmZeumYMhdWN3Pnh9jO+ifXPI2h9cQ2aZkc/MsWxA2X2v9hRQKPNwTUT5Ie9EEKI9lEUhUcuTibM18ydS7ZTb7G7OqRe5dv0Ih5dnsEFyRHcM2egq8MRQvQwY+IC+MsFQ/h+XylLt5/Z9WhHioS0Jw/s8QmapjmnOKq6gsHUvhE0XddZvDGHoZG+JEf5dW6AQggh+hQ/DxPPXDGSnIoGHlq229Xh9BppuVXc+eF2RkT789T8EbLPmRCiXa6dEMeIGH8eW76X2qYzO9VR0embUxwdmh2U5lVohvYlaLvyq9lTWMOV42KlPK8QQogOG5cQyC3T+vPRljy+2VXo6nB6vLzKBm58ewvB3u68dn0K5na+ISuEEKqq8NCFQymttfDC6swzdh9d6cNVHDXd3jLH02AytquNxZty8TAZuGhkZOcGJ4QQos+6Y1YSI2L8ue/TnRRUNbo6nB6rpsnGwrc2Y7E7eOuGsQR7u7s6JCFEDzcyxp/Lx0TzxvosDpbWnZmb6PTdKY4OzQ7N+6Cp7ViDVmex8+WOfOYOj8DXbOr8AIUQQvRJJoPKc1eMxKHp3PXRDhxSer/NbA6NW9/fxqHSev776zH0D/VxdUhCiF7iT+cOwmw08NCyPWekYIjePMNPa8e17Rty6mKKoswD5kVFRZGamnrMsajCfFBCUFDYvS+D7MaSNrWdmmuj3upgoKnsuLaFOJ26ujrpN6LbkP7YPV05wMDr6RXc99YKLkh0c3U4Xaaj/VHXdd7abeWHPDsLh7lhzUsnNa/z4hN9j/yMFL80N0Fl8d5SnvloFaPDOjct0jQNBQWHQ29zv+sRCZqu68uAZSkpKYumTZt2zLHqig/Qc5xDiCNGjiBmeP82tf3MC+sYGObOjRdNlvVnos1SU1P5ZZ8UwlWkP3ZPU3WdosXbWZpexLVzxjE82t/VIXWJjvbHV9YeZE3eXm6d3o97zhnUeYGJPkt+RopfmuTQ2PLcDyzNdnDLJZM7dX3rJ0s2oqCAora53/WKKY5HhhAN7m3LN3cXVJOWV81V42IkORNCCHFGKIrCo79KJtTHnTuW7KDBKqX3Tyctt4p/fruP85PDuXu2lNMXQpwZJoPKQxcOJbeikVfXHurUtlvK7Lfj2h6foGm68xddezaqXrIpF3ejysWjos9EaEIIIQQAfp4mnr5iJIfL63l42R5Xh9OtNdkc3PXRDkJ93HnskuFSTl8IcUad1T+Y85PDeTE1k/zOLOjUvE9znywSYtcc7ari2GC18/n2fC5IjsDPU4qDCCGEOLMmJAbxu6n9WLI5l2/TpfT+yTz53T4Oltbzr8uG4+chv5+FEGfe/ecPBuDRrzM6r9EjRUL0tr/J1OMTNE13OKc46rQpQft6ZyG1FjtXjos9g9EJIYQQP/vD7AEMi/Ll/77cI1MdT+CnQ+W8vj6LayfEMTkpxNXhCCH6iOgAT343tT9f7yrkx4NlndOoQt+d4uho2QcNDG2Y4rh4Uw79QrwYGx9wxmITQgghjmYyqPzfvKEU1TTx6tosV4fTrdRZ7NzzSRqxgZ78+XwpCiKE6Fq/nZpIdIAHD325B7ujPcXxj6fo9M0pjpquOYcQ9dYnaPuKatmWU8VV42KlOIgQQogulRIfyPnJ4by85iDFNU2uDqfbeOTrDPIqG3nq8hF4uvWIItNCiF7EbDLw4Nwh7Cuu5d2fsjvcnqI2r0GjD05xdLSsQWt9grZ4Uw5uBpVLRktxECGEEF3v3nMH4dB0nvrfPleH0i2k7ith8aYcbpqcSEp8oKvDEUL0UXOGhDE5KZinV+ynvM7SscYUpQ9PcdTsPxcJaUWC1mRzsHR7PucMCyfQq+9sGCqEEKL7iAvy4vqz4vh4ax57CmpcHY5LVTfYuPfTnQwI8+YPswe4OhwhRB+mKAp/nTuE2iY7H2zM6VhjfXkEzVkkRIdWFglZnl5IdaONq8bFdEF0QgghxIndNj0JPw8Tj3yzB709ixR6ib99mU55nZWn54/s1E1ihRCiPZLCfDi7fzBLNufi0Drws7lvFwn5eYqjop7+cRZvyiU+yJOJiUFnPDYhhBDiZPw8Tdw5M4n1meV8v6/E1eG4xPJdhXy+o4DbZyQxLMrP1eEIIQQA14yPJb+qkTX72/+zWWnZB61PjqBpPydoyqkfJ7Okjk1ZFVwxVoqDCCGEcL1rJsSRGOzFI19nYOukqmE9RWmthQc+Tyc5yo9bpvdzdThCCNFi1pAwQnzcOzTNUTGoKO2Y3gi9IEGzOZxVHNE5bdL14eYcjKrCZWOkOIgQQgjXMxlU/nz+YA6W1rNkUwfXO/Qguq7zwNJd1FnsPD1/BCZDj/9zRAjRi5gMKvNTolm9t4SCqsZ2tXGkimN73nrr8T8RHc2Pfbr8VNN0PtuWz+zmjFgIIYToDmYNDmVCYiDPrDxATZPN1eF0iXWZZfxvTzF3zR5AUpiPq8MRQojjXDk2Fh1Ysjm3XdcrqupMtNoxa6/HJ2j25sV7p3v0zNI6yuutzBwcduaDEkIIIVpJURT+csEQKhusvPT9QVeHc8bpus5T/9tPpJ+ZGybFuzocIYQ4oZhAT6YOCOHDzTnt2rhaNagozevPNK1t1/f4BM2hOZxfnKZEytbsSgDGxAWc4YiEEEKIthkW5cclo6J5Y10WuRUNrg7njPp+Xwk7cqu4fWYS7q3cv1QIIVzhmvFxFNdYWLW37cVCFPWLPDMAAAqoSURBVNXQsgatzyVo9ubE7HQjaFuzKwn0ciM+yPOMxySEEEK01T3nDERV4V/f9d7Nq4+MnsUGesp6cCFEtzd9YAjhvuZ2FQtRDCpqc4bS1q1UekGC1pyRnubBt2VXMjo2QKo3CiGE6JbC/czcNDmRZWkFbMupdHU4Z8R3u4vYXVDDHTOTpDCIEKLbMxpUrhgbw9oDpW2e3aAa+vAI2pEpoadKuyrqrRwqq5fpjUIIIbq1307tR4iPO499k+HqUDqdpuk8s+IAiSFe/GpUlKvDEUKIVrlyXAwKsLiNlXYNfTpBOzJydooBtG2y/kwIIUQP4OVu5JZp/dh8uJJdedWuDqdTfbWrkH3Ftdw5awAGVWazCCF6hgg/D2YMCuOjLXlY7a1PtFSjAeVImtLXpjg6OH0Vx605lZgMCsOj/bomKCGEEKKdLh0TjYfJwPsbs10dSqexOzSeXbmfgWE+zE2OcHU4QgjRJteMj6WszsKKPcWtvkY1Glryk743gqY1P/opEtOt2ZUMjfTDbJJqUUIIIbo3X7OJC0dE8sWOgl6zL9oXOwo4VFrPH2YnocromRCih5kyIIQofw8+2NT6N85Ug6ElP+lzCVpLkZCTsDk00nKrZHqjEEKIHuOaCbE02hws3Zbv6lA6zObQeG7VAYZG+nLO0HBXhyOEEG1mUBWuGhfD+sxyssrqW3WNajT+PIJmb9ubbT0+QXM0Z6bqSUbQ9hTUYLFrkqAJIYToMYZH+zM82o/3N2a3ee1Cd/PJ1jxyKhq4e84AqaQshOix5qfEYFSVVhcLcRYJcdIdfSxB01pqhJz4F5hsUC2EEKInumZ8LPuL69h8uOeW3LfYHfx71QFGxvgzfWCoq8MRQoh2C/U1M3tIGB9vyaXJ5jjt+arJ+PMUR4e9Tffq8QnakSqOyknKhGzNqSTK34MwX3NXhiWEEEJ0yLwRkfiYjT26WMiHm3MpqG6S0TMhRK9w9fhYKhtsfLe76LTnqgYDRzK0vpegnaZIyLbsShk9E0II0eN4uhm5dHQ0y3f9f3v3Hxv1Xcdx/Plqrx3jN7SwsdEWJgVFFjchBTOjm5tJNcoSdToEkxlk0QQTM2OyxH+Mxhhj9K8tRvyRGcNG2P6YFWZInJipGQzYAAWCNiBtV4RZyg/HoGvv7R93hVJ7vStwd9/2Xo+kSb/ffu/yuuadu7zv8+P7b3r+e7ncccasbyB46o/ttCyYzYcX1Zc7jpnZDbvvPfU01U1m8+780xyra1JXt9mv1CmOI30v1332HU6eu+QGzczMxqW1KxvpG0jz/L6uckcZs52d/Zy+cJknPHpmZhNEVZVY09LIa8fP8M9TF0a/NlWNroyg5Z8Sec1jrzthQlzZtXKERdRef2ZmZuNZ823TaFk4m2d3d5BOj5/NQi729bP9WB/3Lapj1V115Y5jZnbTPLJ8Pqkq8eL+0XfZraquqdw1aOlsQzrSd3P7TvRya0017719WkkzmZmZ3SxrVzbSceYif27/T7mjFOy3+7s53wffeGhxuaOYmd1UdVNv4f13zsi7gVP1kPsvpyttimPk2BwE4PWOXu5pmEmqety/TDMzq1Cty26nbkotm3eNn81C2vZ3c9tkscIzWMxsAlrRNIsDnWfp6899P+aqmporM/yioqY4RpCOkRu0i339HOo+7+mNZmY2rt2SquaRFQ384cgpTp57p9xx8jp1/hK7jvewal7Ka8/MbEJa3jSLy/1pDnWfy3lNdU3N1RtVpxM6gibpLkm/lPTCkHNTJP1a0s8lrR3zk0aadDr7EoZNzT/YdY6BdLhBMzOzce+LLY0EsOW1znJHyWvbwZNEwMp5qXJHMTMrisHZAYP7XYykuibFlW32+4swgibpV5JOS/r7sPOtko5Kapf05GjPERHHImL9sNOfAV6IiA3A6jElB0gPENmXMPw7usF/2L2NM8f8tGZmZknSWDeZjzTPYcueDt4dyD2lJgnaDnSzdN507pg6vifpmJnlMnf6JBpm3zp6g1ZbgwanOKaLM8XxGaB16AlJ1cDTwCeApcAaSUsl3S1p27CfuTmedz4w+HXg2JIDxAAxOMVxWIf2+oleFs2dyszJtWN+WjMzs6RZt6qJU+cv8/KR0+WOktOJnrc50HmW1ffcUe4oZmZFtbxxFntP9BIj7CQPUJWqufJ7UXZxjIhXgDPDTrcA7dmRsT5gC/BwRPwtIj417CfXp0kXmSat4CzXSA+QjuwI2pD/TUSwr6OX5Y2e3mhmZhPDA0vmMG/GJDbvTu5mIb870A3Apz/gBs3MJrblC2bz1oXLdJ4ZeW1watLVTULSYxxBU66u7/8ulBYA2yJiWfb4c0BrRHwle/wlYGVEbMzx+Drg+8DHgV9ExA8kTQGeAi4Bf4mIzSM87nHg8ezhEuBo4S/PrOjqgfGz97VNdK5HSxLXoyWNa9KSpCki5oz0h5Kt4I2IHuCrw869DXw5z+M2AZuKGM3suknaGxEryp3DDFyPliyuR0sa16SNFzeygvdNoGHI8fzsOTMzMzMzM7sON9Kg7QGaJS2UVAs8CrTdnFhmZmZmZmaVp9Bt9p8DXgWWSOqStD4i+oGNwA7gCLA1Ig4VL6pZInn6rSWJ69GSxPVoSeOatHGh4E1CzMzMzMzMrLh8F0kzMzMzM7OEcINmloekVklHJbVLenKEvz8h6bCkg5JeltRUjpxWOfLV5JDrPispJHnXMiuaQupR0uez75OHJD1b6oxWWQr43G6UtFPSG9nP7k+WI6dZLp7iaDYKSdXAP8jcv6+LzOY4ayLi8JBrHgB2R8RFSV8D7o+IL5QlsE14hdRk9rppwHagFtgYEXtLndUmvgLfI5uBrcDHIqJX0tyIOF2WwDbhFViTm4A3IuKnkpYCL0XEgnLkNRuJR9DMRtcCtEfEsYjoA7YADw+9ICJ2RsTF7OEuMrecMCuWvDWZ9T3gh8ClUoazilNIPW4Ano6IXgA3Z1ZkhdRkANOzv88AukuYzywvN2hmo7sT6Bxy3JU9l8t64PdFTWSVLm9NSvog0BAR20sZzCpSIe+Ri4HFkv4qaZek1pKls0pUSE1+B1gnqQt4Cfh6aaKZFSZV7gBmE4WkdcAK4KPlzmKVS1IV8BPgsTJHMRuUApqB+8nMMHhF0t0RcbacoayirQGeiYgfS/oQ8BtJyyIiXe5gZuARNLN83gQahhzPz567hqSHgG8DqyPicomyWWXKV5PTgGXAnyT9C1gFtHmjECuSQt4ju4C2iHg3Io6TWR/UXKJ8VnkKqcn1ZNZFEhGvApOA+pKkMyuAGzSz0e0BmiUtlFQLPAq0Db1A0r3Az8g0Z15bYcU2ak1GxLmIqI+IBdlF77vI1KY3CbFiyPseCbxIZvQMSfVkpjweK2FGqyyF1GQH8CCApPeRadDeKmlKs1G4QTMbRUT0AxuBHcARYGtEHJL0XUmrs5f9CJgKPC9pv6ThHwRmN02BNWlWEgXW4w6gR9JhYCfwrYjoKU9im+gKrMlvAhskHQCeAx4Lb2tuCeJt9s3MzMzMzBLCI2hmZmZmZmYJ4QbNzMzMzMwsIdygmZmZmZmZJYQbNDMzMzMzs4Rwg2ZmZmZmZpYQbtDMzMzMzMwSwg2amZmZmZlZQrhBMzMzMzMzS4j/AdPOuJ3X+J0tAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "targets = np.arange(8, 15)\n", - "mean_targets = ((11, 12),)\n", + "zeros, weights = np.polynomial.laguerre.laggauss(12)\n", + "targets = np.arange(16, 21)\n", + "mean_targets = ((16, 17),)\n", "x = np.linspace(EPSILON, 1 - EPSILON, 101)\n", "_, axs = plt.subplots(\n", " 2, sharex=True, clear=True, constrained_layout=True, figsize=(12, 12)\n", @@ -216,14 +222,18 @@ " axs[0].plot(x, rel_error_mean, label=mean_target)\n", " axs[1].semilogy(x, np.abs(rel_error_mean), label=mean_target)\n", "\n", + "mins = []\n", + "maxs = []\n", "for target in targets:\n", " rel_error = evaluate(x, target)\n", + " mins.append(np.min(np.abs(rel_error[(0.1 <= x) & (x <= 0.9)])))\n", + " maxs.append(np.max(np.abs(rel_error)))\n", " axs[0].plot(x, rel_error, label=target)\n", " axs[1].semilogy(x, np.abs(rel_error), label=target)\n", "# axs[0].set_ylim(*(np.array([-1, 1]) * 3.5e-8))\n", "\n", "axs[0].set_xlim(x[0], x[-1])\n", - "axs[1].set_ylim(1e-10, 2e-7)\n", + "axs[1].set_ylim(np.min(mins), 1.04*np.max(maxs))\n", "for ax in axs:\n", " ax.legend()\n", " ax.grid(which=\"both\")\n" @@ -231,46 +241,11 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-7.5, 25.0)" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd5xcVfn/P3d2ZvtuNr3CpicQAglJ6F2aIiAoWBBRVERA/P5UDE0QBBsqFoqgNEEQBFEMJEAglBAIKZDe+6Zu7zv1/P44c2dnZ++dueWcZ7L4vF8vXkt2Z+eZe+fM2efztGMIIcAwDMMwDMMwDMPkn0C+XwDDMAzDMAzDMAwjYYHGMAzDMAzDMAxzkMACjWEYhmEYhmEY5iCBBRrDMAzDMAzDMMxBAgs0hmEYhmEYhmGYgwQWaAzDMAzDMAzDMAcJfU6gGYbxqGEYBwzDWK3o+X5tGMYawzDWGYbxR8MwDBXPyzAMwzAMwzAM45Y+J9AAPA7gXBVPZBjGCQBOBHAkgCMAzAJwqornZhiGYRiGYRiGcUufE2hCiHcANKR/zzCMcYZhzDMMY5lhGO8ahjHZ6dMBKAZQCKAIQAjAfqUvmGEYhmEYhmEYxiF9TqDZ8DCA7wkhZgD4EYAHnPySEOJ9AAsA7E3+96oQYp22V8kwDMMwDMMwDJOFYL5fgF8MwygHcAKAf6a1jxUlf3YxgDstfm23EOIcwzDGAzgMwKjk9183DONkIcS7ml82wzAMwzAMwzBML/q8QIPMAjYJIaZl/kAI8S8A/8ryuxcB+EAI0QYAhmHMBXA8ABZoDMMwDMMwDMOQ0+dLHIUQLQC2GYZxCQAYkqMc/vpOAKcahhE0DCMEOSCESxwZhmEYhmEYhskLfU6gGYbxDID3AUwyDKPGMIxvArgMwDcNw1gBYA2ACx0+3fMAtgBYBWAFgBVCiP9qeNkMwzAMwzAMwzA5MYQQ+X4NDMMwDMMwDMMwDPpgBo1hGIZhGIZhGOaTCgs0hmEYhmEYhmGYg4Q+NcVx0KBBYvTo0fl+GQzDMAzDMAzDMJ5ZtmxZnRBisNXP+pRAGz16NJYuXZrvl8EwDMMwDMMwDOMZwzB22P2MSxwZhmEYhmEYhmEOEligMQzDMAzDMAzDHCSwQGMYhmEYhmEYhjlI6FM9aFZEo1HU1NSgq6sr3y/loKe4uBijRo1CKBTK90thGIZhGIZhGMaCPi/QampqUFFRgdGjR8MwjHy/nIMWIQTq6+tRU1ODMWPG5PvlMAzDMAzDMAxjQZ8vcezq6sLAgQNZnOXAMAwMHDiQM40MwzAMwzAMcxDT5wUaABZnDuH7xDAMwzAMwzAHN58IgcYwDMMwDMMwDPNJgAWaAjo7O3HqqaciHo8DAM4991xUVVXhs5/9bI/H3XfffRg/fjwMw0BdXZ2j57Z7rssuuwyTJk3CEUccgSuvvBLRaBQAMGfOHNx2220KrophGIZhGIZhGGpYoCng0UcfxcUXX4yCggIAwA033IAnn3yy1+NOPPFEzJ8/H9XV1Y6f2+65LrvsMqxfvx6rVq1CZ2cn/vrXvwIAzjvvPPz3v/9FR0eHx6thGIZhGIZhGCZf9Pkpjunc8d81WLunRelzHj6iErefPyXrY/7+97/j6aefTv37U5/6FN56661ej5s+fbpr+3bP9ZnPfCb1/8cccwxqamoAyD6z0047DXPmzMGll17q2h7DMAzDMAzDMPmDM2g+iUQi2Lp1K0aPHp0X+9FoFE8++STOPffc1PdmzpyJd999Ny+vh2EYhmEYhmEY73yiMmi5Ml06qKurQ1VVFbldk2uuuQannHIKTj755NT3hgwZgj179uTtNTEMwzAMwzAM441PlEDLByUlJXk7W+yOO+5AbW0tHnrooR7f7+rqQklJSV5eE8MwDMMwDMMw3uESR5/0798f8Xjcl0j78MMP8bWvfc3V7/z1r3/Fq6++imeeeQaBQM+3cePGjTjiiCM8vx6GYRiGYRiGYfIDCzQFnH322Vi4cGHq3yeffDIuueQSvPHGGxg1ahReffVVAMAf//hHjBo1CjU1NTjyyCPxrW99CwCwc+dO24yX3XNdffXV2L9/P44//nhMmzYNd955Z+p3FixYgPPOO0/X5TIMwzCZRDqA/WuBRJzG3u5lQHs9ja36LUDDVhpbkQ7gwHq6+9i0U14fBR0NwK4PaWwl4sCej4FYmMZeZ5Nc/xTEo8DWt4B4jMbeno+ALrUD6GwJtwEH1gGJBI29XUvke0dB7Ub5eaMg3AbUbqC7jw3bgMYdSp+SSxwVcO211+Lee+/FmWeeCQC2Azquv/56XH/99b2+v3jxYlx77bWWv2P3XLGY9ca0f/9+dHZ2YurUqU5eOsMwDOOXaBfw55OAhi3AaTcDp83Wa+/te4AFdwFDpgDfeh0oLNNnq2Eb8PDpQLgZ+OLfgcM+m/t3/PD8N4CN84DDLgC+2PuIGaWs/Q/w3NeAon7ANe8D/Ubqs9XVDDx+HnBgLXDmHcBJ/6fPFgC8cw/w1i+AgROA774HBIv02dq/Fnj4NCAeBq6YA4w5OeeveCaRAJ69HNg4FzjyS8BFfwYMQ5+9DfOAZ74IFFYAV78DDBirz1a4DXjgOKB5F3D23cAJ1+mzBQCv3w6893tg5AzgG3P1rpHaDcBDpwKxTuCr/wLGf0qfLSGAZ74EbH8XmHYZ8LkH9NkCgI+fBv79XaBsMHDNB0DZICVPyxk0BRx99NE4/fTTUwdVu+Wee+7BkUceqeS17Ny5E7/97W+VPBfDMAzjgI//LsUZALz3B6CtVp+tcCuw8HdAsBg4sAZY+pg+WwDw5l1SnBUUAe/8Wq+tHYukOAOAdS/JLKEuhADe/rW8rnAz8MYd+mwBwLInpDgbOUPajbTrs9WyF3j3d0BBIVC/CVj1vD5bgFzziSgAA5h3o15bO96T4mzkDGDlP4B9K/XZSiSAV34EwAAircCHf9FnCwCWPiLFGSAFdlezPlvt9cD798s1snsZsOIZfbYA4PXbpDgrKJRrUyeb50txBkjxdGC9PluJhPw8B4uB9lpgwc+VPTULNEVceeWVqYOq88msWbMwbdq0fL8MhmGY/x0+ehIYfhRw9UIg2t4tMnSw5t9AtAO44r/A0COA9S/rsxULAxtfBaZfDpx1J7B3BbBvtT57K5+TmYofbQZCZcBHf9dna/dyYP9q4NO/klH2jfP0lsyt/Y9cI2f9TK6RDXP12do4T2azvvOOzLIue1yfra4WYPULwKxvAZ/+tbynOktGVz0n18YlTwBGgfw86GLvx1IwXfRn4IjPy0BMLKLP3kdPAdUnAd+YB3Q1AVve1Gdr1XNSVF/1NtB/tN59JNwKbFkAHHcNcOpsYMdCvSXTK5+T2awfbgQCQWDF07l/xyvb3wEatwEX3i+z/htekcEfBeRVoBmGUWwYxoeGYawwDGONYRiaQ1gMwzAMo5CuZilcJp4rBVP5UNkfo4tNrwH9DgVGzQImnwfs+gBor9Nja/u7MnMw+bPSQQVkdFoXW98CRp8ElA8Gqo+X2RJtthbIr4dfCEw4W76PuxbrsdWyB9i9VNo69HigYjiwfo4eWwCw5Q2gchQweDIw6Vxgz3J9GbtdH0pHf/J53WVruoSFEFJITPo0UHUIMOYUYN1/9dgC5GcNBjD+TPnemZ91HbTuA+o2AhPPkZ/tokr9+8jgw4Chh8vP99a3pJDSweY3ZMBg8nlp+8gbemwJIa9l7GlAxVBg1Exgu8595C0pAid9Rv4NaN2rLKub7wxaGMAZQoijAEwDcK5hGMfl9yUxDMMwjEN2vA+IhBQWhiGdxm1vK4ui9kAIoGYJcOix0ta4T0nbuoTF9vek8zH2VCmaBoyV9nXQtFNGoseeKv89+iSgdr2+ctFdi4FBk4DSAcC4MwAjIN83HZj3bOxpQCAAHHKsvvLNRBzY+g4w/gy5Rg49AUjE9L1vO5JrZNQsuT6qqvUJtMbtQEc9MPpE+e8xp8gSzs5GPfa2vgWMPFr2FB1yrPyets9actDc6JOAgiBQfSKwVdN6TCSAmmXAoUl3e9wZQDyib03uWCSznoccJ7N15UOBmqV6bB1YB7QfAMak7SN7PtInPnculpnxwlJgwlnye4ret7wKNCFpS/4zlPxPw181hmEYhtHAzkWyr2LULPnv6hNlL0LjdvW2WnbLCK1pa9gRUljs1dSHs3eFjLKHklOGR82Sjr4O8WlON6xOOt/VJ8mvO99XbyuRFLWHJp3u4ko5TGPfKvW2AOkgBkIywwrI/qmmnXoynw1bZU/dIUnn+5BZAAwZSNDBjkXA8GlyUI1hSCGjK8tkCoiRM+TXEdPl1z0fq7eVSMj1MHKm/HfFMCk+dQm0HYtkee+w5DyC0SfKgIWONVK3Ua4Rcx8ZPk1+1bmPDD9SCk/DkPdUV8CgJrmPmCK++kRAxPVMT41FZHba/KyVD5GZa0X7SL4zaDAMo8AwjI8BHADwuhBiccbPrzIMY6lhGEtrazU2XvvgyiuvxJAhQ3qcPXbDDTdg8uTJOPLII3HRRRehqakpfy+QYRiG0cP+NcDgSd0ixnTCD6xTb8t0akzHqrBMCgsdDrEQScfqqO7vjZoFtO0HmmvU29u/RmZiBk+W/x46BYAhB2uopmGrLFcbdUz394ZN1SvQhk7pnpJnCozdy9Xb2p/sERw6RX4t7ifXp45hGomEfN5RM7u/N3SKDCR0NKi3t3u5HMYw5HD5b3Nt7vlIva3GbUCkTa4Lk0OO0Zdl2r9G2ipIDlc337/9a9TbMveRQ5Lrv2xgUljoWCNx+bnqsY/MlEOVdKyR/WuAwnKgarT8t2lXxz5yYA0Q60oGQZIo3EfyLtCEEHEhxDQAowAcYxjGERk/f1gIMVMIMXPw4MF5eY25+PrXv45583o2hZ911llYvXo1Vq5ciYkTJ+IXv/hFnl4dwzAMo40D67odRgAYkhQYBzQ4VvvXyoxZur3hR+kRaC17gI66no6V6azWapiKdmCtFJvBQvnvwlJZDqVD6Jqvf2jafRw2VQ6EUO00CiEFxIhp3d8z76mO923fajk8wxS6gBRotRvU22reJQfWpNtKBSg0OMR7VyRFTEj+u3SAzGrt/ViPLUBmfkyGHCbFp+pyOSGA2nXy+VO2kmtTx/o/sBYIlgADxnV/b/iRetZj/RY5FKfHPpK8pzr2kf1r5X0MJOVN6QCgbIieSY7mZ2rIlO7vDZsqM5TRTt9Pn3eBZiKEaAKwAMC5eX4prjnllFMwYMCAHt87++yzEQzKSMhxxx2HmhoNEUeGYRgmf3Q1S4ct3bEqqgCqDtXjWNVtlKIlVNz9vWFHAK171AsLM3KfnkEYOKH7dahm/9qeggmQ91WHE1eXdKwGTez+3rCksNiveEpl2wG5TtKduKJyoHJk99EMKtm/Rl5X+hoZNElmhKJdam2ZDmq6QEvdRw0BivpN8lrSGXI4ULdJva19q3pmdIHu9aLaXuve5BpJ20fKhwIlA/QEeuo2AoPGd4sYQArruk3qDzY3P0/p+8ig8d2vQyVCyPs1JGMfGTxJCmDV1G6Qa2TAmO7vDTtCllQq2P/zelC1YRiDAUSFEE2GYZQAOAvArzw/4dwb1ZcoDJsKfPqXvp7i0UcfxRe/+EVFL4hhGIY5KDCjsoMP6/n9IVOk4FBN3aaeogIABiadncZtMlqsClM8mM8PyFKokv7qHdSuFqB5JzDjip7fHzxZTpuLRbozayqo3SAFUlFF9/dMx79+sxw+oYr6zfLrwHE9vz9wnB5hUbuuu4TSZPAkOUymfnO3gFJly3x+k/Khco2oDlB0tcjy2kHje35/4Dg5kTOR6Ck4/FK/SQ49ST+8OV2gjTxanS0z25gu0AxDljlq2Uc2dpdJmwwcD0AAjTuAwRMtf80T5pEL6dm6fofI8weVC919cmDM0Ck9vz/kMHkemhBqDzWv3SCvy8zoAmn7yBbfayTfGbThABYYhrESwBLIHjSNs2fpufvuuxEMBnHZZZfl+6UwDMMwKjGzO4MzovqDxkvBlEios5WISwd70ISe3x8wVn5t2KbOFiAdjKJKOcEunYETukWHKswzkTLF55DD5ARC1Wcm1W7obatyhBz2ovw+mgItU1iMlyJA5cCVeBRo2tW9JkzMLJDqbGTtBinI0gMDhiHtqx6SU5905gdarP9Yl8wiq6Rhe+/7OGCszJjUKS4XrU1mktKzdYBcI6rXfqRDrpHM9Z/aRxTba9gCVIyQJcsmgQIprJXvI0kxmLlHDp4s+wlbdqu1V7eht5jtXy2/NvrfR/KaQRNCrAQwXdkT+sx0qebxxx/HnDlz8MYbb8BQqdoZhmGY/NO4XTps/Q7p+f2qauk0tu0HKoersdW0U54llOlY9R8DwFB/OHDDFum0Zf7tGjRR/VlopjPff3TP75v/btrR3dvnFyGkYzgtI2gaKJDvmwLHqgf1m2W2oN+ont8fOF6WtXU0yMykCpp2yvKq/mN6ft/M3qkWnw1bewtPQL5vqodp1CWd+Uzn27y2+i2977FXhJDXNvqknt8vCMl7q7o0r3G7DIaUZqyD/tVAZ4PMHhZXqrHVsAWAsL+PqstuG7b2zh4D0r7qQ+9z7SONO9StkXhUfp4Ov7Dn90MlUpAq+KzlO4P2iWXevHn49a9/jZdeegmlpaW5f4FhGIbpWzQl/+AXZMQ604WFKszI9oAMZydUnOxnUhz5rt9i7VgNHAu07VN78LEpijIdq6pkNLpppzpbHQ0ymj5gTO+fDRgrMycqqd8ibQUKen7fFDb1Csu8zPuYeW2hEjkoQeV6BKTDa75H6fQfLbM08Zg6W/Wb5YCcTPE5QIOwaDsgB1tkZtCA5LUpXI+AfF+qqnsHQyj3kZL+cuKnjn3E6j4OGCcFVSKuzlbjdjkgJzNgpuM+tuy2DoYA8vOnINDDAk0BX/7yl3H88cdjw4YNGDVqFB555BFcd911aG1txVlnnYVp06bh6quvzvfLZBiGYVTSuL23qADSIrbb1dlq3iW/Vh3a+2cDxqh1rGIRaS/TiQOAfkn7KkftN26X2YPMLEH5EDlWXeV9NJ00u/vYuE1t2WHDVntHH5BCRpktU+haOI1Vh6oVFrGwHG7R30agiTjQonCNNO2Qo+AzexErR8oMpcr1nxIxFu9b1SFq3zMguY9Y3EdT/DYqFBZNNvuIWZqq8j52NctJsFaBnqpD5Bpp3avOXsO2ZMAs1PP7/UYBMNSuf/O5rPaR/mOUZNDyWuL4SeGZZ57p9b1vfvObeXglDMMwDBmNO4DJ5/X+vhnBVepY7ZTR4QqLksn+o+UwDVW01MihEpZOY/Lamnf17r3zip3QNQz1wiKXYxVpk4cDlys41kcIeZ/Gntr7Z5Uj5ddmxQItWCIPVc6k6lC154U11wAQNhm0Md2vx+p99WrPqjwtEAD6jVQcMLDJRALys93ZIDPIhWX+bYnkYI7xZ/b+mY7MT9NOeU5YSX9reyoPqzb3P6s1kh7oUVV2aLePBIvkvql6PwZsAj2ju6sMfKwRzqAxDMMwjFvCbTI6bOUQhIqTDsF2dfaadklHNLOcEpAOTtsBmflSQfPu7ue1smW+HlXYOVZAUqBpcKwyy6CAnuJTBV3NUvBZ3ceipJOsUlg07ZCi2qrnvepQaUvV4BpzbVsK3eqej1FB067u9yeTypHda1aVLcD6fTOvV9X6bzsAxDqtRUxJf9mbpjoTX3Wo9RqpHCnPP1SVQTaHclh91sx7qzoTT7mPGIHuQEs6pvhs8Te4hgUawzAMw7jFdPStskxA0iFWKGKad3X/4c+kcgQAoa5cyHSaKi0c1PJhMpOn6toSiWQU3cb5rqpWH/ku7geUVPX+WeUI+dWnY5XCvI92GYLKUWony7XstrdVdSiQiMrIvgpMZ9dq/VcMB2CoW4+JePLabNZIv0MU38caoGxwzxH76bYAdes/231MZZAV7iNNu+zvY+VIKRY7G9XYSq1/KxFjBnoUZcejnTJgZifi+2vYRypGWB//kdpH/K1JFmgMwzAM4xbzj6+ViAGkk6rK0QdyZxAAdfZasjhWBcFkxkJR5LujTo7StxMW/UYBXU1yPLgKmnZaZ30A9fcx5aDaCYtRajMILXu6ncNMUpkfRQ5x0y45wdSq5LYgJPsHVd3H1r2yX8l2jYyUj1E1lKR5t3VmBOj+DKq6j6lgiI29iuFqjxBo3mm/j5ifd1Vit7kGCITkgJpMVGeQzbVmtx/3GyXXiKqhJFn3ETWBnk+EQBMqG3o/wfB9YhiGUUTKIbAZo185Qh6cqmLfjUelk5Yt8g0odKx2y6EdoRLrn/cbpS6qnxK6NsLCFAAqs4N297F0kHQoVTnEzVlK5czvq8rExCKyXM7O0Tfvr6r72LpXvjeZ0ylNVAYoUoMtsqx/kVB3bS177N+z8mFSmKoSFuZrtlv/lcPlPqKCrhZZdptrH1FVLtqyW16X3QHiKtd/aj/Oso+IuOwvVUG23jkWaJLi4mLU19ez+MiBEAL19fUoLi7O90thGIbp+7TuBWBIh82KiuFyVHe4xb+ttv3SAbXKaAF6It92jr5pT5Ut04mxysQA3QJYlZNqCgsrAgFpT2UGzS6DACSzg81AuNW/rda9AIQDoavoPrbssR5GYlI5Un3JbbZMJKBwTWbJoAUC8jPftl+RrT1yUqnV0A5AltG1HZBBGhW2gCzCQsM+km0ASOUohVl/BwINULMmhZCfI7vgXKgEKBng+9r6/BTHUaNGoaamBrW1tfl+KQc9xcXFGDVK0bQchmGY/2Va9iT7VCx6EIC0KOpe2fPkB9OpthMWRRVymIDKyLfVqHaT8qFJ0Sishw24smU6VllKvAA1jlW0S07gs7uP5utQ5jTulk6cXQYhldXaJ99DX7Zy3MeS/kBBodoM2uAsh4dXDgd2LFRnC7B/31QOnOhqkUEVu2AIAFQMVZ+JtPscVQ4HIOTnze+0w9R9tBHW5UNkdlBlJr76ePufVwwFapaosdWaI9DTYx+Z5s9WZyMQD2vfR/q8QAuFQhgzJssfEoZhGIZRTcse+wgqkOYQ7AGGZHFknZASaNkyFiPUZhCqT7T/ecUwINYlsz9Wwzbc2goEpdi1swWocYjbHN5HVePoW/dld+LKh3Q/btAEf7ZSpaI2wsJIZnuVZSL3AePOsP95xfDkFMsOoLDUn622/UCo1F7Emu9n2wF/doDc9xGQ91HVZMWWPdltmeunZa9/gWZm/WwzyAXy2lQEKBLJklO7jBYgbXXUyexg5tllbmnZIwNhReXWP1e5j+QSuoCS/bjPlzgyDMMwDDmte2X5kR2VaY6VCltADmd/qBoHNZoUXhVDs9hS6RDvkffRLstUVCmdcxXCIlcm0vyZqlHjbfvl+2JH6j4qKJfL1RMJSIdShYMabpNZplwZBECdQ1wxzD7LVFwls4Mq7qOTz5qq+wi4C/T4xXzN2dZkxVA197GzUU4NtSsBN20B6vaRrKJ6CORkURX7iIM1oqBUmgUawzAMw7iF1LHaJ0fblw6yf0y5IsfKfI5cThygZmR7rvtoGOoGTjgRMeVDZXZQSV/Y/uxRdjODpup9C5VlL6etGCZfk1+cipj0x/qytz+7o28Y6gIU5nNke98qhslSWb/nDpq9TFkd/bRSab+07pMBD7ssE6DwPib3BnONW9oa1vOxfmjZk/0+qpws2uIwYNZR72uyKAs0hmEYhnFDLJzsZcqSQQuVSGdZhbPTuk/+wbfLMgHS+Wiv9Z/5MV9vNofY/JkKZ7/tQHYxCCRHjStyUM3ns8N0KNt99rVHO4Fwc/ZrM/vCVAm0cpsyUZMKRRMBHQldU3yqWP97swsm0x5VgML8mV97Zi9TtjLA0oGyBFhVdjDXfSwbrEigmeWUDjJoZPuIosynk5LzssEAhBRpHmGBxjAMwzBuSImYLNFhQE7vo3RQox1ApM2frVSfVjYHdUjPx/qytz/3fSxXeB8Liuwn5gHdvXB+7Tlx4szMjxIHNUc5JSDf03AzEGn3bwvILnTLFAld017O9a8wgxYqy55lUjURMyUGs6x/w5Brsl1RoMfJfeyo839eWKsboevzPgoh70/OfUTRGmndK6c0Wh1knrJlrn/v9ligMQzDMIwb2p0KtMFqzt3JVQYFdDvEqoRFtgxacT85GtyvgxoLy0OocwmL8iFq7qMpYrJNnlRVdujkPpr2lGR+HDqogH/RZK4xu8EuAFA6ADAC/tdjuFUGHZysESVZpn2576OqEt/Ufcy1jwxStI9kOWLCpHyIPNLDr71UiWOW9828br8Biq4mIB5xFjBTtY84EbrmYz3CAo1hGIZh3NCWdHBzOVbliiLfTsrXVJWUtR2QjnVZln63VM+PT8fKFArZHH1AvpZwsxR0fu3lvI+qRIyDTCSg7kwtJxk08z77dVLbD8jSzGz9boFkz6Tf9d/qoFQOUJf5cXQfFWUHzd+nyMQLIZ8j12dNQeYHgLRVWJ49ExkslCWcqoRuzvdtkLoy8Jx7lpmJ975GWKAxDMMwjBtSpUm5/kgP8e/EJeKyjyGnGFTUF9O2TzoXgYLsj1ORHXTsWCkSFm21ue9j6UA1mR8nvXyAmsxPLCz7mZw4qIAC8Zm8j7nOwCsf4stBBZCWrXaQQVOS+XGQiSwdmHxtfm0l33cnosmvrUibHH7jNMuqIoOcyxagaB9xeB/LBsvJkl3N/uy11zp4z8xAD5c4MgzDMAwN7U5LkwYnBwFEvdvqaAAgnPVpAWqEhSPHapDMWPjBcQbBFGg+r629NntmEEhmfgYqELrJTKTpzNtRNli+x34yP67vowLRlOs+mvZUvGdAbnvKAhQOyteCyeyhCjEYCGXviQSSmZ8D/jI/7Q6z/qp6MJ0M7TDt+RikkbIFOBPxgIIMcm3uz1pRuTwexMd9ZIHGMAzDMG5oq02ez1Wc/XHlChxipw6qmfnx7RDX5Y4Om6+n3a9j5WBIAqAmg5ZIOHOsADWZz4665AS+HG5W2SAAQgp5r6QyCLkyP6oyaA5FvJIMmsMyWPPa/AQNzJ7IXPfRtKeixLFscO5MZNkQ/0c/mJ8dpyWOfgVaR50zEV86UGEm3kEvH+DvfYskBzE5DVCwQGMYhmEYIpxMDAPUZCycOqiBAnlgb0eDd1uAjGZnO2/NpFRBP4ebIQmAv/vY1QSIuDPxWa5g1LhToauiXK7NYQatsFT2BfkV1u11zkSMmUHzlflJ3pdcmcjUffRxbeZnx6nz7TeD7DhbTRjoKSyX/YWdRPtImQqhm8xEFlflsKXyPjoMUHCJI8MwDMMQ4aSXCUibrEgg0AA5Oc+3Y9WQ2xkGpGOViALhFu+22muBon65M5EqhjI4mTxoUqLgPjoppwS6H+PH2TdLxJy+b37uoxDOhq0A8l7Huvwd/dBelzwvLpTDlnkf/Qg08z4OyP1YFZMVnQZ6VGTina5/w5Dr30+gJ5FwsY8MTk5h9FEG3pbMRObMVisolXaaiQR830cWaAzDMAzjBsc9OAoyP24Eml/HKh6V0xKdOFapcjmfwsKJM1xYBgRL/GW1XAtdHyWHgLwvTjOR5uO94kqgDfa3HjsbpTB3VAY4oPt3vOJkIAMgsydGoO8IXaBbWORCRWlqSlg4WZM+13+4WWarHe0jycf42bc66un2rNTQGqf7SJNnUyzQGIZhGMYNTh0Cs/nfr4NqFOQu3wH8Z9DcZhDSf8erPSf30TD8ZyycDtIAkhm0Jp+DO1z08gH+hUUgBBRV5H5sqd/76DKDAPhzvp3ex0BA2qMSuqWD5OMTCW+2hHAeoFAldIv6ZT9c2cRvoMf8XadCF/C//p3cx4Kg3JMpA2Y+9mMWaAzDMAzjlERCOkpOnI/iKgCGmgxCrvIdIOlY+bDlNoNgvj7P9hqcOVaAdKy6mrzbciMsSgcAEN7HccfCMovgRsT46Z3qTN7HXMMmAKBsoM/3zIWITwkLPwLNYakokJwsqqLE0WEmUiS8f7ajHUA87DDQo0igOcn6AEBpf0WBHjdZLT9ZXTf7iL+slrtMfP/k8QYRT6ZYoDEMwzCMU8LN0jFz4hAEAkBJlU8H1eE0NEC+JioHVUW5UGdDt/OZi5L+/sugzOfJactn5se0VebgPgYLZWbDVwbBYb8PkHRQfTj65lp2sv5VZZCdOMOAvAe+1n/y2pysEb+Zn5QthyW+gZDPTGSts5Jb8zWR9fIpmNDa4XIf8SU+G+T4/FCJA1v+AhQs0BiGYRjGKW4cK/NxfhzUjgZnDiMgHxfrBKKdHm15yKCRCYv+PoVFozy7KtcB3ID/zI+bKDuQzGoR3sd42McacSFi/ArdeCyZHXEaoPB7H+vlGsk1kASQgRfA+5p0I3QNw39fWGej8yyTacvr9E2nkzcB/6XSibjzigZAzT7idD8u9bf+WaAxDMMwjFPMP+5uSvP8ZiwcO1Y+G+7dCLRQCRAs9n5tsbAs/yl14ez4vY9uouyA9/uYclCdCgufh3531LsT8YB/YeHkXqZsNXmzZZa0uln/fjI/nS6FLuD92lwHenzuI26yTKUDgUTM+4RWN/uI2Vvr9dq6mgEI9+LTK26zdQBn0BiGYRhGO14cKz+lSZ2NLhwrn5mfDhdRfSDpNDb5tOUy8u01qu+23w3wfh/dinif094cD1sB/Au0jgYgEHQ2kCRYKM/V8nsfnYrPskHSltfBHR31Hpxvggyaac93Bs2piFdQ4ltQJEszc1EQBIoqfewjLsQgoChgRnMfWaAxDMMwjFPc9FeYj/PqEAjhrqRGhWNV5LDEC5DRb4pMDCDvgYgD4Vbv9twKXa/3MSUsHNorrvLuoLoZWgOoERYlDgeSAP4mArq9jyX9ZX9o2ONwF2qhC9D0DkY7Zemz29I8P4Ge0oHO14iffcRLwKyr2fuEVleZSO5BYxiGYRgaKCPf4VZZauRGDAI+HCuH46pNTGfHqy2ALqvlJoNW1E+eqeVZxJjCosrZ40uqvE+oTJ05RZT5cXMfgeSQHL/Ot0NhkSqXa/Juz6lgKuoHXxNa3V6bn0y8a6FrBii8XpsLoQv4W/+pfcRtia9He24nRgKe1wgLNIZhGIZxSkeDdN6L+jl7fMkA2csRj7q31enWiVOQQXPrWJFlEPxmflxkIgMBf9PeOhuBwgrnmciS/sk1EnNvKy/30YVA83M2X6pU1On6r5Jf/Tj7Tp3vQEAOFPGTiSyqdL5GSn0EetyKQfJAT5WCUlGC9W9mq53ex8JS2afLJY4MwzAMo5nO5FRFJ+eSAd1/zL1kmtyW7/iePuhipD/gLzvopcQR8GYvHpUCyI2w8FOa52byJtCd+aFYI+QZNB+lea4DFD6yI5EOeTaZqwCFj7P53K4RPxNaXWf9FQR6XO8jTR5tEa7/cIssoXW7j3CJI8MwDMNoxk0PAuBvIqDbYRPBIiBU5qM0yUWJF+DTsXJb4uijXMh8jW7LN/1kfpyWN5q2AG/OvtshCeaZWr560FwKCz+leW6y1X4mArrNxAD+AxRu1yPg8drcljhWQZZvUmXi/WQH6+V6djK0BvC5j7gUukBy/XOJI8MwDMPoxa3zUarCsXLhEPspKXNbmlRcBUTbgVjEg61GOeEvWOTs8b6ErstMDJA89NtHGaDbEi/Am9h16zQahneHWAj3GbTSAVJ4epms2NEg15jjbHWV/EohdAH/wsKVLR/Cwm2JY6BAlm96+azFY/L+u7m24ir5O14mtJpC1/HQmqru33NLh0uhC/jaj1mgMQzDMIxTXDvfPoZbuI18m/a8OFaRDllC5bYHDfDuELu6rqQtLyLGrYMK+CpNctWnAvjL/LjNRALehUWkHUhE3Zd4eZ2s6Pk+Nrm35faICcB/D+bBmok3H+tnz3IrdOMRWWLqFq/30U8GjSiDzAKNYRiGYZzi2iFQEfmucv47Xh0rrxkEwLuz48ZhNMs3qUqTSn2Oh3frxAEeha55LlmlO3uUJV6A98ynG1uhEqCgsG9k0NwGekp97COdDXJYRajE+e947cH0FDCokl+97pGusnU+pm96EfGcQWMYhmEYAtwcVAr4FzFuJr0BChwrDxk0r5kfN44O4ENYeMxEehnK4PbsOkDBfXRx5hTg/T66HcgApAmLJvf23N7HVPmmB1tup2ECaWdquSzf9DS0xsc+0uFy8iaQp0BPkzd7bvZjs3yTbB9JDsnxUL7JAo1hGIZhnBDpAGJd7v5AF1XKQQdeS5PcOKgArWNV7Mexchn5BryPGvca+Qbc2wu3yHPJ3KwRX6V5LktFAe8ixk8GzWu5nNv17/XQ4456AEb3e+GE1MHYLe5seSk59HsfXQdDPPZgetpHquRXz5l4t/uIx8minQ0ADPcVDYmYPNPSJSzQGIZhGMYJXia9pc7U8igsXAu0gdL5TsTd2wI89oV5vTYvwsJjqVwgJIeSOLblcdS4l8EuwUJZvumlNK+z0b2DSplB8zOy3Uvmx+uhxx318ncLgs5/x6uw8BIwCJUCBUXehYWnfcRHoMdLdtDt+2YOrfGyj3hajw0y+xYocGHL+9EnLNAYhmEYxgle+isAf6V5XiLfEO7P1PIiLLw6VvGYHBpBdR9Noeu2DBBw71h5uY+A94ETbku8APnaIm3up296HTaR/rtOiUeBSKvHDFqTu98BvGciAQ8CzYOI8TN901Mm3lwjYfe2AG/7iNtr62qW2Wqy/diD0PXRg8kCjWEYhmGc4CWDYD7ea+bHS4kj0O0EOsUUdMUOz5xKf6xbZ8fLpDfAn2Pl1okrJcygmY/33IPj9j5Wya9uhbWXaZipoQwe76Nr57vKeybSq/Ptev17yKCZj/ea+XF9bR7Xf1ezHNTiaiBJlfzqdv17qWgA/AV6vO4jnEFjGIZhGE14dax8Rb5d2jJFU5fLvpiuJllGFSx0/jteG+5TGQQvIsZDw72nUjmPjpUXEQN0nwXlBiGkU0spLNwOrfG6RrwKXa8ZtK5md71FgPcMsudAjwcRbw6tcbtnmfuI2/66rib5u26y1YXlchKp11JRT/fRawbN4z7ioZ+PBRrDMAzDOMGPQ+D2D3QiLp0xt46VOW7d7blTXU3uBiSYeHGIPWeZkg33kTb39rxkYgDvpaJe7Ll1GqMd8lwyt++b59I8D5kY057bTIyXIyZMW+EW9z2YXc3usseA9x5MX4Eel/cx0ub+7DrAR6Cn2f16NAxvAQo/+0hXs/s14msfaXL3e2CBxjAMwzDO8OoQeJka1tUMQHjIIFSm/b4LOpvcO6iAt2i0+dq8Zixclx16EBahUsAocO+gmmLVtWiqci90vZSlAv4yaG4dVNOeZ+ebSFh7CVD4GRJSUCTXmBu8fNa8ZnSLPun7iIc+XS+Z+FTAzOU+AhZoDMMwDOOMrmY5bc9NGSAgHblIqxx84BSvDqqfyLdbRwfw1vOTEhYu7XkRFqlJby4dVMOQYtfLCPXCcm9rxPN9JBJoXibmAfI+uha6Pkoc03/fCUJ4y6CFiqXI8iKsS6rclQEC3rKsXjO6qRJHt0LXxz7iWqA1ya8U+0gs4m1oTag4eXg6CzSGYRiG0YPZX+EWM6vl5iwcv5Fvr70jbvET+aZwrKIdQDzsLfNT3M9biaOnMsAq+VrdTM1LZeuIBJpX57vIi9D1WgZYJb+6EbvRDlk6S7n+vdgq6ifPYXQzfbPTa0+kxwyar32kyaUtwgCFV6ELeNtHwAKNYRiGYZzh2bHy4Ox4dQgKy+XB2K4dKw+9I4BHB7VJfjWdQKcUexCfqTIoD6KpyEvmx0efFuDOSfVa4mUenk4lLLxm0IyC7s+OY1tV3b/v2FaT/Oop8+NRWPgK9Li4l/nIxFPtI51NyVLRYne/50V8+t1HuMSRYRiGYTTh2bHyMBHNdFbcOjuBAFBU4cEh9nptVdJRcjNZ0SwVdTMNEEgTuh4EmltHH5D3w0uJoxcnzouw8JqJDASS4tOFg+q1DBCQmR/X/T4ezq4D/Aldz+ufSuiaoslDoMet+Ez1YLpcI1570LyW+PoJmHkJ9HjaRzwEKMACjWEYhmGc4Tfy7eaPtOk8eHXk3DhWiYS05zWDIOLuyjd9l4p6cKy8OnJkJY4eRrb7vjYX9zHamZwY6fF9i7bLA8qd0tnovZcJcHkfk4/1lPmpOsiFhcd9xDDcBygibXIv8LqPuJ2sSLkfU+8jYIHGMAzDMM4gdaya5Fe3ZYCAzFi4sRVOToz01DtSJb+6FRa+SkW9OFZV7u0V9/NWmudHWLjK/CQf69VJdSWq/WSZPGSQwy3eMzEAXQbNSxkstbAoKASCLssATXtUIsbL9M287Mce1z+XODIMwzCMJqgdq2AJECzyYM9lBs2PiPEqmrzcx0CB7LGjyqC5neKYKgOs8mAr+TtuSxy9lIoC7vti/IoYwL09L7ZCxVKMeCoV9XJtFe6Erq9SUR/30W2pKOB+H/F6xATg/dq8BEMKywEYdOKzL5Y4GoZxiGEYCwzDWGsYxhrDML6fz9fDMAzDMJb47cEB3JcmecmeAe4dAj9DErxMqPR6HwH3GYuUY+UlE1np7tDjWBcQj/jL/LiN6nu9j8Uuy678OqiAy/etxVu/D+C+nym1/r30DpprJOHs8X5LRQH3pdJe76NXEX+w7yNmD6bbjC5A14OJ/GfQYgB+KIQ4HMBxAK41DOPwPL8mhmEYhulJpA0QCdoMmh8R4+b8onxkR7w4cUDSIfZwbV6HhADOncZUv48XMViRtOVSWPtaI0SlopQZNCDZF0a0RooqAQi5P7ixdbBnIgEPmfim7t9zi7n+qfZIL+WbgRAQKvFgq5/7HkzkWaAJIfYKIZYn/78VwDoAI/P5mhiGYRimF34cq4KQLFd0KyzIHasq97YoSxwB9xMqu5plyZvbUdyA+6EkKUffw7UFk31CB+t9NO+B1yl2gLs16bUHDXBfdtjVLMveCoLebAEuRLwCgUYmYlz2YFKKeD8VDUByjbi9j5UeS0W9nU2Z7wxaCsMwRgOYDmBxxvevMgxjqWEYS2tra/Py2hiGYZj/cfw4VoC3iK3nEq/kAAinZVd+e3AAQsfKQ+bHjy3A+fvmpwwK8CYsfGUiW50fj+ArO+LyPka7ZLmo1xLfIrcDUJq8iQrAu4j3FOgJyp5DV8EXH6XSbqcPej043bQFOH/f/JSKmvYoBpKYtoC+KdAMwygH8AKA/xNC9LgCIcTDQoiZQoiZgwcPzs8LZBiGYf638SvQvPQ8+Il8i4TzsislPWhORUyr91JR057bzI+f+wg4d+T89LsB9OIzEZVCyKktgKa/LiV0q9zbArxlWT3fR5cHOvvJMgHeSnz9rP9Iq/MeTCV9ik4/a03ebZn2XPcEE+0jSfIu0AzDCEGKs78LIf6V79fDMAzDML3IRwaNKmLb1SwPpS0sd2/LPNCWosQL8CZi/GQiAZrsCOAhg9bkbz0C7oRFQZG/UlHHtnyUUwLu72Nnk/dMJGWJI+BtSI7fNeJ4/TfJ1xcocG/L832scm8LyM99dDnJMd9THA0AjwBYJ4T4XT5fC8MwDMPYkg9h4XmKo9vMT5P3UdyG4S5joULokk2MdJkd8dOnBbgT8YmEv6i+28mifu6j2x5M32ukH90aSYmYgzDzE4sAsU5vPZFA2j7iZo1UebMVLJZDOKiCIaT7SN8scTwRwOUAzjAM4+Pkf5/J82tiGIZhmJ6oKE1y04PjdVy7aQtw6Vh5tGXaI8sg9JNlebGIc3vkJY5+RLzD+xhphTxcvMqjLZe9gyrWiGOh67dUtMLd1DzKPkU/EyPN3yPriXRZduhnqqgZ6KHMoJFl4r2VOHoYWaMOIcRCAB5CdgzDMAxDCGV/kYoMQvrz5MJPiRdAfG1p0ejgIAf2/PSOuM2OtCRLRcu82XMj0FTdRyoR72Yog4pSUUCKWCdnm1EPCfE6VdS017TDuS3A/z7i5tr87CNuRLyK9R+PyGCYk/dCSS9r38qgMQzDMMzBT1eznKBWEPL2+25GVvsZ157+e1TZEU/Cosq7rfTncWLPq6gOFsm+K1cixuMobiCZQXAhqgHaPkVfGbR+Lmz57UFzMREwEffnfIfKABju1r9voetWxPjswXRbKu0VygCFm/UfiwDRDrpsdRIWaAzDMAyTCxXOh9OyK7+lSZ4cqypvtkx7VNkRNxmLaBcQDysozXN4beEW76LCtOV09H1fy6BRZkfcHHrs97MWCLgXTb7Lianuo8s10tnkbx9xlYlvkl8pslp+10hBSA5T6mtTHBmGYRjmoEeFYwU4c0D8Oh+eskx+xKeLQ19V9OAAzhwrvw6q+btuMj9esxWAvI8iAUTaHdhKXpvn6YNeMmh+rs2F8x1uAWB4myoKuJsI6OeICRO3osnXZ81FD6bvQE+V/Eq1j7gV8aFSecC7F1Lr38G1qdpHWKAxDMMwjGJUlCaZz+PEFuDdIQ4Vy9I8p06jkh40p6VJTUBhhTx01wtuhK7f87QAD9kRP7ZcCAvfIt6FLb+HiwPune/iSpmd8mTLLPF1ch8VON9uh1uQBXp8BkPc2IpHZYWAr33ERaDHz0ASwF0G2e9+DLgfSgIWaAzDMAyTG1LHymfk2/xdJ2IwFpZlgH5K88wx+05L85QIXaoMmsvMj6/76MH59lyalzz3zsl9jPmcKgq4LF/z0RMGuOv58dsTCbgfgEIe6CEozfPbN2j+LmXfLEDzWQPcBSiSsEBjGIZhmFz0RWHhyJYKMVgJJKJS7OW0p2DYBOCuVNRXX5iL0iRlTqOLzI9vh9iF8+33fYt2yExLTnvN3gfkAC4FWpP86ic7Qlni6DbQYwS8l4oCzsWn36MRgO5MJEWgx1MGjUscGYZhGObggro0ySiQ0WvP9hw6BH4PV07/XafXpiI7QuVYuSpx9NmD5ma4iyliAgX+7Lm6j1U+bLkcykAldM3HUJQ4qigVdRvoKarwXioKOO/BNK/f75CcRAyIduZ+rKp9hCqDxiWODMMwDKOYRILWsTIdVK/j2k17bvq0TIfFqy3Aee+Un/tYEAKCJbSlok5sJRIKhIWbHrRmf+8Z4HyNqHJQAedDGfwI3cIymTlyk0H2u/6d2Ip2ykwzZaDHjy3TnqsSR6p9hHg/BrjEkWEYhmEOKiJtcroeWWmeAsfKaVQ/Ffn24Vi5zfyocBrJekccluZFWgEIRZlIh++bHxEDOF8jqkpuAeeZHz+2DMP9+i/0uf6pha7T7Dj1PuJ3kAZAs0eaPZhO17/fUlEucWQYhmEYxaia4gW4cFBVON9tDmyZ0WGfvSMAobBwUZoXCAKhEn+2gNz2VGTr3JRd+R1IArgocWxKPp5qKIOCa3M6WTTckjyA3uNUUUC+b/FI7h5MFX2DbkpF/fbyAUkR42AfUVEq7TQ7KIR8b5WsEaflxD4OoDdtxcPO+nSTsEBjGIZhmGyo6FMJFiZL8xyWC/WlDJpT5zvlWPkszXOTsfBdKpqMmkdy3EslIt6l0O1LJY5OM2gqSkUB5yPbwy0K7qND0ZTaR6p82CIucSyqlBUEuVCyjzjsL42FZamoin2EIqMLpH22HdzLJCzQGIZhGCYbKpwPgNYhKCyXoiLXRLTUtRE437EuOQRAhbCgvI9AbsdKRQbBzej7LgXCwul6VNKn6FB8mqWiKrKsTodbqLiPQG57Ku5jQVBm/JyuEd/CwmEZIOWwIVX7sZsAhap9JFegJw0WaAzDMAyTDRUTygB3PT9+S5OKymXfXK6JaGZGj6K5X8UgAcB5Bk1FGWAqg5ZDoKnIMgHuhIVvEdMPiHXm7q8Lt/qfKmr2eJHdR6efNZ+TN01bAI1AM3/fsbDweW2F5cke3ByBnq4WIBACgkXebTkV8SrEIODuKBIVQhfgDBrDMAzDKEOFiAG6nZ1cKI3Y5sr8tALBYlmC6RXHDqoqoes086NAxBQ6LE1S0YMGuCjNU1Hi6NQhTtpSUSrqWMQrEE1O14iKTAzgvMTRtz0H+4iyUlEz0NOR/XHmZ83PGnGaiVcmdN1kWRUIXcDZ/p+EBRrDMAzDZEOZY+VgcEciDkTb1TmNThxiv7acjr5XFfl2PABCxSABM/PjtAeNIPMTj8rMl4oMApB7upyK+xgsllk4qgxasZs1QlXiqGgfcTK4I9IGOVWUSsQr2EcKXQQMALoppkr6FM01wgKNYRiGYdSg1LGicj4cZixUOKiAs3IhlRmEaLvMEmS1p8KxcnofFUzoA1zeRwVCF3AmLPzeR6ej71NnTlE636oGQDj8bKsQTU4y44CCzI/DDLIKEW/21x1MQte0p2wfcX4WGgs0hmEYhsmGirOSgGRpEpET57jEUUGfFuAsq6X62qLtue2psuWkxNFvqSjgTsQocxodZLVUiHgnGWQVQ2sAuR6d9tdRTnEsLJfDYPzgRFioDIYADjLIivYRJ/2llIEeVZNnucSRYRiGYRQTbpXiLODzT6YrB5W4v8gvTnqnKIWFKscqVeL4CRa6EQdC129Gy7SXM0ChsL8IyH4vEwnFa4SgDNC0R9bv6SKDpmKNOOkdVNWn6CTQo2qkPw8JYRiGYRjFqHKsnAwJUS7QnDhWPrMVpj2q0jwnEwFVjfQvCMnMGJnQdZBBUDUN0+nob2XX5ibzU+7TloPBNWafll9hESyUEwwdlQEquo9OAgaAwgzywSQ+CQM9yoIhDgM9abBAYxiGYZhsqMwyxbqAeCy7LUDh1DCCISFAsi8mVyZGtWOV5dpUOVaAQ2Hdpq6XL9Imh8XY2lLdp0gkLJwGKIyAv5H+QPfrzRY0ULlGnIgmVZ810hJH4gxyYbmzjG5Bkb+R/oAz0aRqsFFBMDlIic9BYxiGYRg1qHRQgeyiyXQICv1mENxEvqnK1xSM9DdtATkcK0VCF4Cjw3qVrxGCa3NzFANZBi0pdP2MawfSJis6+KwpWf8Oy5dVBUPi4ez9daoykU4yaKrKiQHnZeCq1qP5fNlsma9LhT0WaAzDMAyjCGVZJsKSmlAZAIOmTwtwXr6mRMSUJZ/PSeRbhT2nTqMiMQjQXJuTASiqRvoD8j46EoOKepmA7OVyqkU8ldB1Ipooe1mjnbKcmKxPMR/BEKIMchos0BiGYRgmG33RIQgEcjsE0Q5AxBU6HzlKk1SWUwJ0jpWjseYt/rMVgLPBHarLrrJmdFVnEBz0F6kS1YDD+6iq7NCJsFAo4p2sf7+TZwuTgR6yz5qTEsc+GDAz7fGQEIZhGIZRhPKofpY/0qYjROEQq+plAqSD6qTsqq9lEIA8lTjmuDajAAiV+LeXy2lUnUEIt8nMbTZ7SrOsWe6j2Z+mZPqgw94ppes/R5Y1VCpFuB8MI3fPm8pMZGEZXbbaUQ+ayvXvINCTBgs0hmEYhsmGyjHjQG7nO1Tm/6wkIHc/h6px1YDzfg7qDAJVaVJE0ZAQp1F9FX1aQO5rU52JFHE5KCebPZX3MWsGjXCNCKGu39NpBlnFdZn2su5Zig5pB6SIyRnoaVEnqgG6PkWnh6cnYYHGMAzDMHYkEtI5IXO+FZXvAC6cb5XiM5fTqMBWyEkPGuGQkFgYiEcUZ9ByCAsVDipAm0FzkkFWJSzMNeJoQh/BZEVzpD9lBlmZQMux/lVnq9Of085eXys5B3hICMMwDMMoQ2XJoWMRo9KxymbLjHxTZSwUiU8n/XUqne+iSmcixm+/D+BsjXQpysSY9shFfBYnVVUm0slYc5XvW1GO4RY6RAzVPpJLfKosFaXcIwsdDFIKt8oz7vyO9Ad4SAjDMAzDKKOvZhCA5PRBB06jSseKMjuY69oKCtU5VtF2mU21tKVSDDosuyK7jzquLcf6VyGYTHu5MpGFFVLw+yVXf53qckqAbh/JNaFS6bWZmU+b900IdcOGzP46J2JQRTmxkyME0mCBxjAMwzB26HCsckXaqXpHuhSXeAH29lSO9AecOY0qbQH29rSskU+i851DfCbi6jJogHT2c2YiFd5HEZflrlYoLbl12oOmqgw2VwZZcZ8WYG8vFgYSUdryTZXBkGyBngxYoDEMwzCMHSodq2AREAgS944Q9lcAWRyrLnVnJQHOJsupdKwAGoEWKk3aypH5UVri6GSQBoGwUFlODCSn5uUouVW2HnNcm+p+NyD7PqKqb9a0R9WDlivQo3I9mvbIhK4DYZ0GCzSGYRiGsUNln5bTkdUqnQ9HjpXK3hEbh1ilE2c+D+UUO/M5LW0pFBZmfx1VqWiusqtwKwCju/TMD7mEhfI1QpgdyVWaqvLazEAPaZY1RxlsqBQoCKmxBdivSZXZOtMe2WfNgbBOgwUawzAMw9hBLiwUO9+JaJayqxZ1I/0dZ5koM2iKI9+2TqPiNVLoYOCE6kmf2XqniioV9eAQZiKB3CWOSnv5ckyNVFlOnCvQo7ycuCJ7f53KUtFcPWhaPmsHSSY+AxZoDMMwDGOHFmGRq0+rXI2tnMJCYYlXruhwl8JMpGkvV1RfuWNllx1R6HwDSWFh46DGIrJcVOn7JrI7xMozkYQinrJUFMh9bcretyyBHrOcuFDRPlJYniPQo/I+EpaKms9DNmzFwZCoNFigMQzDMIwdOsqu7JyPaAcgEuqFhenUZBJuVefEBYsBo4A28k05xQ6gy6BlK7vSIWKA7A5xX+zlA3KXrykdEmIKixzrX9WEymyBHh1ZfyD7+6YsqERcBkudrQay20uDBRrDMAzD2EEpLHQ4qEAOx0qRLcPILj5VCwvKKY5OhIUR6B7w4dteluyIjgwCkH1NqrIVKJD3iNT5Js6gZcuyhkrl+WwqoPysOekdVPWepQI9VJlIykAPZ9AYhmEYRg3hVnV9WkAOx8ocNkHUOxVpVzP8wYRSfBZWyFKueMzenjLHqrL7ObPZUtGnBWTvnVLufJs9PwTON0Cb+TGzI1a9U4m4HHlOmWVVfh+JRbzt9M12dZn41NlkuTLxBFMc41Eg1qk2qATwkBCGYRiG8Y3KEi8geXg0kWNlllNlmz6o2mmkGo9dlCVjYfZpUU1fi7SpK10z7eUUugr7i4Dsa1LlGnGU+VFYLicSQLSz989MAaD6PlJkqwGH95Fq/SsslTbtUYpPu0CPjqASwENCGIZhGMY3WhwrwjHjgL09HY6VbeS7pfsxKsgmLCKKM5E5y65Ui/gszrfqs8Ioy2ABZ1lWlX1agPWaNK9XVQbZyZAQskCPJmFha69N3ecayB3oKSiURw2osgVY26MWuhmwQGMYhmEYO1QOEgC6HVSrsitdzf1kjlVZdqdRpWOVTViojrKb/XUHRflaa/djlNhy0oOmSOgC2acPqu7Tyup8mwJNVe9UoVzf2XrQ+mygx8z8ZMsgE+4jqoNKgLU91fcxV6AnAxZoDMMwDGOHjgyaiMuyGitbgIYpjlSOVRbnW4ctgMaxAqRIoSxfi7YDiUTvn6UyP4qn5lk534m4tEfZg6bUVpYztczrVZ75yXZcgUKh6yjQQ9A7FY+pLSc27WXr01X9ngE2gR7F+4hhIOdY/zRYoDEMwzCMHcodVCfCQvEAiGhH75/pcqyy9rtpiHxTlCYBxMIieW1RC2c/NUiGsFRU1cQ8IHsGTfVnLWt2RLHQNe1ly1artmUb6NFwLh8ARCz2kYjijC6QDPTYCF3l/Z6E+7FpjzNoDMMwDOMT1ZmfbOVCqh2rghBQUGTtEGhxrLJkEFQ7VtmEhZYMGqH4NB3ibKJJ5SHEgPX7prqcEiAuFc0ylCGiWOia9mzFp8KzwoC0yaI26z8QUldOHMqSiVQdMDCfK2swREcGjWA/Nu3ZnUuZAQs0hmEYhrEj3KZ2FH2ungeVfVoAUFhqHflOZRBUjtnPMh4+oiuDlk1YKHSsQqXWmUjTnuooO2A/3CJYou7Yh0BAOuCWIkbxpEMgTyWOWa5N+fRNu3JihaPogdzDLVQe+xAslILPKqObuo9U+4ji++hkH1G6/m32YwtYoDEMwzCMHZF22p4HlQ6qac/S0dfgfGcdWa1Y6GbLjmhxrMqtHatEIpkd0ZAdtBtuofK6AHthoaUMsEKeLZWIW9hTLXQdZFlVnwNotR5jESAe0TTcIotAU0lhWY5pmERDciKq9xEHJb6qB6DYBXoyYIHGMAzDMFbEo0A8rKfE0c6xUmkLsI9G63KsAGthobxUNIuDqsuxyloqpyHzY+c0kq0RHWWw2crlNExMtbOlpcQxh4jREeixE59UgR4dwZCiCrnvxqMW9jQMrQFsAj069pEsA1AyYIHGMAzDMFbo6MHJOlmunS7yrcWxylYupNixyjayWlvZFWGfFpDlPqoWaDYZCy0ljtkEmuIAhZMx+yGV5cs2E/q07CPmIBmrwR2UIl6TiEl/7h72dI3Ztwn0hMpkGbAq7PYRC1igMQzDMIwVOhzUUGnP5+5hr1WtqDDt2TlxgB7xaensK3assp1NFm6V162qTwuwL03SMjEyx3ALlVlPwH6ynK4MAkAjPs2zybJlIpU63zZnk2kRuuY+YvO+qd5HcvWyUgzJEUJ9yXnWQI+G+xjiHjSGYRiG8UdKxGjoebB09nVEvm1KarQ4VjbCwnSslDuN5TaDC3RlECzOJtNa4mhXKqrhPlra0plBzlgjsTCQiGpa/0RrxAwYZJ5NpjMYYjn6XlOWlaoHze4Q+lgYSMTUrn/DsO8v1ZWt5gwawzAMw/ggrMH5yDVZTrlDQNjcb1cuZDpWVNemxbEqAyDkgIsetjSN9AfshbWOISFUI9TtShxTWSYdvVNE97HQ5mwynSWOdqXSqrOsdiWOWgby2JxNpmPPArKXb+oqFbU6YDwDFmgMwzAMY4WO5v5gEWAE7CPfujI/meiaYgdYON+aHCu7ciEd2Tq70lSdWVaqzI9tGWw7AKP72lVgd2061iNgP6FSRybS7tBjnaXSdoeZK8+y2gV62uV+FixWZ8suQKFDDAKyfNNu/Svfj0sBCCDamfOhLNAYhmEYxgodzneqpMbOsdIh0GzEoBEAQiVqbZnPnY42xypb+ZqGTAxgn/lR+b4FCuRZZ3aj78mOYkiuR1XnaQH2a0RHGaBpz/azpiETA/QWTTquLVQCwOh9bUJA+aHYQPZe1kKFZ64BWdaIhs+aac8uiKVjzwIcjdrPq0AzDONRwzAOGIaxOp+vg2EYhmF6ocshCJXa9GlpKs2zKqkxy6BUOlZ2RwjomKoIJAcX2I0Z11HiiCyZHx1lhzZrREdU32qNUN5Hbc63TYmjLhEDWKwRDQLNMKyFRawLEAm6Xj5dpaLmc6ejI2AGJA9qJ+xlNZ87B/nOoD0O4Nw8vwaGYRiG6Y0u59tqImCsS/av6ChNsiqp0danhd7XpjM7QlqahCy9UwQOcbQDgNCzRkRC9gqmo+U+5ihxpOyv03ZtmetfVwbZQljoEIMpW1aBHh1nN5pZJptrIzuEW1NPsPncOcirQBNCvAOgIZ+vgWEYhmEs0dGDBuRwrKhK8zQ4VsESa1u6HKuskW8Nkw4Bm/I1xX1apr3MDIKOoR1A91lgVv11uu4jWflaljPedPQyAdbXZhSo7dMCrPcRnWJQJCwGoOgI9NgFQ3QFzErpRHzqs3aQlzg6wTCMqwzDWGoYxtLa2tp8vxyGYRjmfwUdQxIAG8dKl/NtM0xAh2MVCFiLJm2OVbYpjpr6i6zEp+o+LdOebS8TUe+UjvsYLAQCIZphKwDszybTWL6WmdU1P2uq14jlZ01jnxZgkR3UNLTGypauAEVhee/3TFs5cd8pccyJEOJhIcRMIcTMwYMH5/vlMAzDMP8r6HS+yRzUbNkRxc4HYD0RLazx2iyHJOh0Gi3uo2qHEYDlwcA6p9gBNFlWIHsGWUv5WsZ9TMTlGtWWHaH6rFmIeJ2fNcBiAJAGEW8OyekVoNA5JCTjusxy4v/VEkeGYRiGOWjR5nxT9o7Y9fxodBrJzrgqlYcbxyLd39PWp5XlCAHVtoDkIBmCaYDpz9crO6KhDNC0RznFMR4G4rHetigHyZB91jQKXYBu/Wcr39QytIla6LJAYxiGYRhvaHO+LYZbaBMxdiOrNUyxA4hLHC36wrSVQWWZPqjF+S6nzSAA1tkRbc63hUAzCuQ5gaptAdZrhHKQDFWWVbuIJ8zEW5U4FhTKMlmltsqBeASIR7u/R11ObEG+x+w/A+B9AJMMw6gxDOOb+Xw9DMMwDJNCa5bJQjCZP1NqK0s/hzbHyiIarcOxsio71HkodqYtQE+JF2BzHzWVOKb6FAn6iwD7DLKWPq0sa0TH0BqA8D5aTKjUlfmh7GUF7LOsuvYswGaN5K/EMajWsjuEEF/Op32GYRiGsSXSrtH5tuvToop864rqW2UHNTr6QM97qauXLxCwPr8u0gpUjlRrC7DunaLMjph9WlrWv00ZrGpRDViXb+q6jwVBoKDIOhNZOkitLcBmPRKWOMajsnxUx/tmdTC2zj0LkPZKquT/6xa6XOLIMAzDMB6JtGoq8SpP9sWkl9QQljhqdazsnG+dAi3t2nSVOJr2rJxGHdcWKgNinVIomWgr37TKIGg6XBywyY7o+qxZZH50rxGrc9AogyEAjYjXldEF7DPIuj5rAE0m3hyAwgKNYRiGYTyiXVikOwS6ShwtbGl1rKzK1zQ6qEBPJ1WXY2Xasxy2oqlPC7C+thDBGtHl6Jv27EocVZO1DJZquIXGPsVYV88BKOE2eYyB8j4ti2CI1jVSbp1BptqPqfdIC1igMQzDMIwVup3GHs53e9KxUjwkwdKWTsfKZvogmdDV6HzbZQd1lcECvUvzgiWylE4lqd4piwwaaYmjpmwd0PM+6joUHoDt6HtdWSag9/um05bVfdS1R1qO9KfaR3RmkFmgMQzDMIx3dDb3AxkRW03OR6qkxqIMUJdDbHdQr2pCFlF97eVr6X1aCekca10jGdem47qsDo8Oa8roAtbDLSJtmgSTKSzSMz8asyOZI9tT5cSEPZi6SpcBGxHTx8uJ85JB/gQcVM0wDMMw5Og6zBawnxqmwxbQW1joGiQAdDuoQvS0p7MMkGIAhGmPLFtnk/nUtkZK6e9jItH9PV1lsFb3UddAHqB3D5rO+2glmsKaevkKgkCw2FroUtxHQH8mnuIoBtNepvi0gAUawzAMw2Siu8Ql3QZAK9DCmh0rCCDa2f09bRP68hDVt7KltaSMIMsK9M5q6c5EQsghKCbaSxwz3zdDY/kaYUYXoClxNO1RrpFIW89Aj24Rn7kfB4vVlxMDXOLIMAzDMJ7RdQ4OQFviCBALC5uoPpWDGm7V7FgRDkkA6ER8Zs9PSuhqENZFhNeWLVut+sw1oPd4eN2ZSIBwjZTRXVuoFFLEd8l/C0FQck6UrbbqZbWABRrDMAzDZKLTQbU69FVXGSCQpTRPZ0lZ0p5Ox6qgEAgEaTORpA4q8nhtmnvQgO77F49JR1xHyW2wBICRUeKoKWAA2GeZyKYP6t5HrLKDOs+vS15bPAIkYpqDSgT9nqY9FmgMwzAM4wGtQxJsSvPIShx1OlYZ1xYLS8dKx300jN7RaF2lckDvARAk5WsZvVOflPI1oNuezl6+1AHjlMEQCxFPOX1Qx+fatGd5NAhB5lOn0A0WAUYgf/uxDSzQGIZhGCYTrWWANqO/tTlW5YSOVcbgDp0DSUx7vUpFNd7HaEf3cAvd52kBeRwkk/x/1WeumbbSbejMRALodfRDWPd9TOudIi9x1HSYs2kv8z4GguqPBjFtAWlrROOeZRjdn20TyvtoAws0hmEYhslEq/NtM/pbZ+Ync0KZUaDXsYrmyfnW7VgB3Y6czjJYu/I1suxImxRnAQ1uovn+mFkRncc+mM+bWZqq6z6GSgERlyV5gOazwvJR4phxdmNhmaZevozPms77CPTuwdSdrU4P9NjAAo1hGIZhMtF5mG2wOL8lNZGk86FrSALQuzRJt7NjotVBzbw2zedpAd3Xlurl0yXiM++j5j4toNsh1nkoNmBRBqszg5bRO0WRQTODIbEIkIhqLoPNGJKjY380bZk20r9q3SMzh4RoFLqZU0wtYIHGMAzDMJno7B0xe6dMhzgWkRF3yv4ibY5VRvmmzkwkYN2DpnMUPdBbWGjpnSroee5UtAOA0F+aZ6K7nBKgKV8DrEscta2RDBGvdZBMcgBKL1tU5cQ6Rbx5HzP3EapMvKajQQDr7LgFLNAYhmEYJhPdwiLdIdbufGT2TlE4Vpnla4SlebodqyiV05gW1deeicw8qJpC6Lb3/Eo5xZRKfIbbZLY8VKLelmFkrBGNg40Ai15WgkwkVYljYXnvMnBt5ZQWUyMtYIHGMAzDMJnoPPAY6OlYUUSHgZ69U2R9WgQljlQ9OL3KN1vlGPdAgSZ7addGkR1JRGU2F9A/SAPoLeJ1ljhSlcGmeqfS3rfCCj3lxEBGoEfjYCOg+4w3M9CjVcRkBHpIgiHpR4No7AnOHKRkAws0hmEYhslEt/OdXlJD0acF9LSnPTpMNSQk07HSWb5mUeKoyxaQ7K/L6HcjExYah61k9mBqL3FMWyPxmOz90TlsBej5WdP1ngE9jxCgEPHpvVNaM2gZJY7aRXzafYx1ASJBl2W1gQUawzAMw2Si09EHkuVCmdFh3X1hafZ0OR8FQXmANMX5RUBPERPrkhP0yHqnNN5HoGfZIUUmEuhZdqjLljnWnKzEMc35jurOjFv0TuneR6IZJY6kgR6NWc90W9pLzsvpxKDVwdgWsEBjGIZhmEx0lgECPacPUvS7ARlRfc3Xlpkd0ToeOzMTqcuxynS+CdZILxGj22lMc1J1Zn7SS/PCbQAMmgmVFL1MAE0wBLAucdQpYoCMa9NkK1gIBEI9S0UDIT1HgwBJEW9eF0FGF+hZdmsBCzSGYRiGyUS3iLEUFpr7OVKCUOOQEKC3Q6zVsSqXEzDjUZooO5AmLCjuI8FIf6B3VF/nsBUgI4OW/Kxp7dNq7y6BNe3rIPOzprOcGLDOslJmB6kCFNrvY5nF+YZEATMbWKAxDMMwTCYkJY5UjlWmsCCO6ut2UE07FP1upi1AbwYB6FmaRyksEgma/jrK+wgBRDsJy9fSMp+UIgaguTbdR4OY9nqIQY0Bg1CZLJGOx+izrDawQGMYhmGYTEj6izJLkwiERSys9zBboHdUX2smJu3adDtWweS5UxTTMIGeDmqYKjvYnnbmmk7RVA6y7EgoraQsonsUvcUZb1oz8VaTPgkyyLr7ZoGMQA9BBg2QGWvd15Y5DdYGFmgMwzAMkwlJDw51+VqaiKEqXwtrHFdt2gKSzrdmoRsI9C5N1S0sKKdhmnZ02zLtUfQymbZMO7qH1hQUAoEgcWle2hoxkgec67IFJPcRzXsW0D3WH6DZjwEZENEtdEMZpaI2sEBjGIZhmEy0l3iVA/GwLKmhdKx0TwMEko5VmtOo25ZpR3dzP9C7fFP7IJm03qlgiZySqcVWmtOou1QO6D0ARWvAIO3aUmeFabJnGD17MPPRp6Wrly+9DJZExGeUgeu+jwBNJj4QSAZfuMSRYRiGYdyh2yFIOTvt3Y6+ziEJAE2flmmPsgcHyBAWBGWHqcNsNZeKioQsS9WeiUkrcaReI7qHrfTIshKK+HhM9jXpthXrAhJxgs9aWokjyWctrQycIhMJZJQ46r42LnFkGIZhGOeYGQtKYaHT+TB7p3qUOBL1oFE5VtTCItqZPMyWoHzTvDaygIHmEi8Avc4B1H2Ys2mHTFikZZnI1r/ugEEePmtRqiEhaX1hJHtkGY/ZZxiGYRhXmM73J8WxCgS6hYXuc8kAeS3pJY4UTiNZ5DuZHdFdKgf0FE26J28Gi2SZLUWJF9B9H4UgyPyklzgmz1wz760We2V0IiZTWJCUE1NdG+WkTzMYklwjBYXyLDad9jiDxjAMwzAuoHL0TVuRdr3OB9DdF0YRHe4xSEP3FLsMB1W7Y5UhdEmERbv+Xj7D6C7fpJrQJxKyPC/cprnfLS0TaQpdXeXEQHcPGonQzRiSo3MfSR+SQybiqYatpPeyag6GAD17WW1ggcYwDMMw6VAKtChBiaNpj2pISGEpkIjJ3imK8+SAtDJACqGbPjGSMKpP5TRSlTgCUsBHNQuLHuWbmvvdgN5ZVrJAj+YyQNNejwya5uEu6UeDUA4J0f1ZC3EPGsMwDMO4Q/eZU0D32UwpYaHbsSrP6K8gyFh0NkqhRtYXo3kaINDdO0WRQcjsndItLEzxSZUdAYC2A8l/U5U4ai6nNO1FqAaSpGeQqcQn0Zj9wjIpzDobk7YI9ixzQiXJfeQeNIZhGIZxDmlzvxn51pz5SUX1ic4vAoC2/UnbununAvQOKnWWlSyDRnxtbft6/lsHoYzsiPY1Uk5f4hghKHE07ZlrJBCSnz9dmO9bah8hGiRD8llLG5JjAws0hmEYhkknVZqkuQcHoJniCKRF9dv1O1aZ2RHtvVPlaSJGt4OaMaHvk1R2lS7QQqVAoECfLXNNtCadb53ZkWChXPPmIBmS8jXCA78BOmGR3stKsWcBNFnWkDnptkP/odgAeMw+wzAMw7jFLN/R2oOTWZpHVZpElK0DgFYzO0LlEFPcx3Ig1gl0Nct/U2ZZycrXKNZI8loosqxAz2vTKQZTtohEvJn5CbfIgSsk10a1Z2WsEZIhOclro/is8Zh9hmEYhnFBaoQ6gfMdbpYOP0lJjTkNkMCJA2gcK9MeWfmaeW21yX8TON/tdQAEUXaEsJwSoClfM5/f7AujsBUPA51N8t8UJY6k95HgaBDAolSaQnxSDVspZ4HGMAzDMK6giHwHiwEYNGWAQHeWSffYeyCtd4SgNAnombEgdxoJB2lQ9E5RZhAAOhGfXppHJj4PyP5IrWeuEZYBAt0ihjQYcqDnv3Xai3Yk90iCabA5YIHGMAzDMOlQnBVm9k6RlXiV0k4oA4jL14jEZypjsU//mWsFhUAgmDZIg3BCH9V9bKXMjhCJz3QRr/vMtWCyd4pS6FIe+wAQXltaDybVHpkFFmgMwzAMk06E4MBjQP6RpooOh8pkj0pXC40YBGhLHM2zySgHF+h+zwxDvm9k2ZHStGMfqJxvgimO5vN3tSTLiQnK1wCaNRIISButhMEQyrMbAVoRT3E0iGkrByzQGIZhGCYdimmAgHSI2wim2Jm2AKC9liYSDdD1joRKk45VlK40qe2A/usCkiKeSuiWd/dO6baVyvwQlvi2U5WKZmTQdBMqpctWp87Ka6X5XAOE65/4PuaABRrDMAzDpBMmaBIHMjJolGVXVENCCHunKKPsAE12BEg6jeYaIXKI22v1r0cz80PR7wnQftbSS/N0r33THtlnjTDQk56J1H00CNAzE0l1H7PAAo1hGIZh0qHoQQDQ47BSqtH38Yh+W6nDo9tkD1WB7lLR5AAIgK6/KEpQTgn0FDFUJWUUJY7p9oIles9cM21RfdZC1PexvHv9Uw0AiocJ9izz8GiCoR2AvDbq+5gFFmgMwzAMkw5ViWN6WSPV6HsAKK7Ua8scgALoH5IA9Lw2yt4RkvK1dHtEIh6gE5/UtgC6cmKAZo2kXw/l+i/SvI8Ei2WgB9D/ngG0658zaAzDMAzjEopDWAGgpH/3/1NGbIv76bUFdGeaSByrcuv/12KLUDABtM4+tfg07ZFkR/J0HynEZ/o+QiksdO8j5pAcgHY9Uthz8Pws0BiGYRgmnTBRBq2HQCMqFwJoBFohoWNF6aCmO/rUUX3KwQUk4tPMshLfx9KBem2FiIVuav0bes9cA+gDPZRZ1tIBaXZ5SAjDMAzDHFxE2micb0qB1kNYaC5NAroFIYWjXzE8ze4nLIOWyiBUAAVBvbbS7x1l5pO6xLFsMJ0tkgxaVdIuRTkxdaAnT/sIlzgyDMMwzEEGVXN/cVX3/1P2aZE4VoTOd8WwNLu6z50qAAqS0+Qoy676V+u3lW7jk1zimB4Y0WKrpPv/STJoVfJrQUi/rdAnOBNfPjTNLg8JYRiGYZiDi3yUOOqmh2NVRWAwKTgHjtdvKt2xIsn8mP11FCImaav/aP22yoek2aUscSSadGgS0Oz6GgZS65+yxDER02+LOtATj8qvFPtIj0CP5vetIPd0WxZoDMMwDGMSi8gDj6mb+3XTozSJoMRx5/vy62Hn67dFGfkGaAcXmLb6jdJvKx3K/jpKoUvF8dfKr7qPmAC69xFTzOiEulS6dr38etgF+m2lCzTdZ64BOfvQWKAxDMMwjAnVwblAd2kSBdTN/cOPlF+rT9RvK5jmBFM4Vqm+GII1EmmVX3X3TZmYfTi6h00AtOVr5vUYms9bMznrZ8DnHwGO+qJ+W2ZGPEEg0KgzaFXJstsR0/Xboiw5B3JmqTV3nB681DR2YNP+NoQKApg6sh/6leqr3e2IxLCqphlt4RiqB5Zi3OByGJrefCEENh1ow876DlSWhHDkqH4oDunbkOrbwli7twWxhMBhwyoxrF+xNlvReAKrdzejri2CYZXFOHxEJQoC+j5Euxo6sOlAKwoLCrSvkbawXCMdkRjGDCrD2MH6/mAlEgIb9rdid2Mn+pWGMHWk3jVS2xrGur0tSAiBw4ZXYmilvjUSiSWwek8z6tsiGN6vGIcPr0RA0xoRQmBXQyc217aiKFiAI0f1Q0UxzRoZO7gcoweWat1H1u+Ta6SqNISpo/qhKKh3jazd2wIhBA4fUYkhFXrXyKrdzWhsj2B4VTEOG5axRsJJh5h6+qBu0kUMReT7qy8CXU00fTHpUDhWIcLBBW218iuVQDv2amD+7T0n2umCUqCZNiiEJyDLKKd+gcYWZYlj+v1L77XTxbfmA9EO/WWpAM3ekU6Otfg/J9AWbanDH+ZvwuJtDanvBQMGPn/0KNz0mcmoKlWXjq5rC+P+BZvx9OKdCMcSqe8fPrwSP/ns4Th+nLpRr4mEwPPLa/DIu9uwYX9r6vsVRUF86+Sx+O5p41AYVLfAt9S24RevrMcb6/dDiO7vnz5pMG4/fwpGD1L3h6sjEsPf3t+Bh9/Ziob2SOr7I6tK8KNzJuJz00YqdVQXbanDr+dtwMe7mlLfKywI4PMzRmH2uZOUr5Hfvb4RLyyr6bFGpo7sh9vOPxyzRqv7I5lICDy3dBfuW7AZNY2dqe9XFgfxnVPH4apTxiJUoG6NbNzfinte3YD563qukTMPG4LbPjsFhw5U94eyPRzDowu34Yn3d6CuLZz6/qj+JfjxuZNxwVEjlNkCgLc2HMAf39iE5TubUt8rLAjg0lmj8ONzJ6NSoVDb39KFP76xCf9cWoNIvHuNHHVIFW777OGYUa3OyY8nBP6xZCceXbgNW2rbU9+vKg3h6lPH4VsnjUFQ4RpZv68Fv3hlPd7eWJv6nmEAZx8+FD/57OEY1V/dGmlLrpG/vrsVLV3djkz1wFLMPncyPjM1mTmIJK/7k1bimE5InwBOUTZQ/vdJJFWaR1AGOPJoYOU/5FcKTvw+cPTXiASa2YNGeJ4chaighjTQk5ahphA06X2RnzRylN3+zwi0zkgcd85Zg2c+3IWhlUW48dOTMWt0f4SjCby2dj/+vngHFm6uwxNXHoPxQ/z/YZ63eh9ueH4F2sMxXHz0KJx35HD0Ly3EqpomPPzuVnzlrx/g1vMOxzdPGuPb1p6mTvzonyuwaEs9DhteibsvOgJTRvRDXWsYzy+rwb3zN+K9zXX4yxUz0a/En+MohMCDb2/Bva9vRHGoANeeNh4njh+EUIGBhZvr8OjCbTjvj+/iz5fPwMkT/Ef8VtU047pnlmNHfQdOmzQYl848BCOrSrCtrh2PLdqO//fsCny4rQF3fW6q72xaRySGW19cjX99tBsjq0pw63mHYfqhVeiKJjB39V488+EuvJdcI2MUCNB5q/fihudXojMSx6WzDsHZhw9Fv5IQVtY04+F3tuKLD72POy6YgsuPH+3b1u6mTvzfPz7Cku2NmH5oFa7/1ARMHFqB2tYwnl2yC/e8ugELN9Xhoa/N8C0uEgmBP725GX94YyPKCoO49rTxOGnCIBQEDCzcVIdHFm7DeX96Fw9dPgMnjBvk+9qW7WjED577uMcaGdW/BJsPtOHxRdtx/TMfYen2Bvz0/Cm+s2mtXVHc/p81PdbI0dX90RGO45XVe/H04p1YuKkOf7vyWCUC9D8f78bN/1qFcCyBS2YegnOPGIbK4iA+2tmEv767FZc+9D7u+twR+PIxh/q2tbO+Az947mMs3dGII0f1w68+PxWTh1ViX0sXnl2yC7+cux7vba7DQ5fPQGmhvz8diYTA7+dvxP1vbUFlcRDf/9QEnDBuIAzDwDsba/HYe9vwmT+8i0e+PktJkGLZjgZ87+mPsKe5C2cdPhSfP3oUhvcrxuYDbXhk4TZc8/fluPLEMbj1vMMQoCxxJBnW8T/CmXcAdZtobIUISxxnfRuYeC7NFEdAOt0U4gygFbpmLxgLNH9QZ5moOXU20NlIYyvHJEdDpIe2D3Jmzpwpli5d6vr39jZ34huPLcGG/a34zinj8H9nTuhV0rViVxO++cQSBAwDL157IkZWefsQCyFwz6sb8MBbW3DkqH743aXTegm+jkgMP3xuBeau3oe7PncEvnqc94139e5mfOPxJegIx3DrZw/Hl2Yd0iub9NKKPfjhcx/jyFFVeObbx3nOpMXiCdz679X4x5JdOG/qcPz0gikYXNGz3n9PUyeufHwJtta14+lvHYuZPpyrF5bV4MZ/rcSg8iL87tJpvTKO8YTA717fgPsXbMFlxx6Kuz53hOdM2q6GDnzriaXYeKAV3zt9PK45fXyvNbJ8ZyO+9cRSFAUD+M+1J2KIj1K9Rxduw89eXoujRlXhN5cc1WuNtIVj+L9/fIT56w7gV5+fii/O8u6Af7yrCd96YinC0Th+cv7huGTGqF736YVlNZj9wkrMqO6Pv33zGM/lbG3hGK57ejne2lCLz00bgdvOn4IBZT0zjjWNHbjy8SXY1dCJZ646DtMOqfJ6aXjxoxrc8M+VGNavGL+95CgcO7b3Gvnl3HX4y7vb8K2TxuDWzx7u2dbO+g58/fEPsb2uHdd/agKuOW18r8/Sku0N+NYTS1FRHMS/rjnBc6lePCHwszlr8fii7ZhZ3R+/vfQoVA/suZm3dkXxvWc+wlsbanHvF4/CRdO9DxFYvrMR33x8CWIJgTsvnGKZlX52yU7c9K9VOGHcIDz+jVmeM2nhWBw/fn4l/vPxHlx89Ej85LzD0T9jjeyob8c3Hl+CvU1d+OfVx+OIkd57HZ76YAduf2kNRlaV4N4vTuuVcYzFE7jr5XV4fNF2XHXKWNw8aS/w5EXAN+YB1cd7tmuydHsDHn1vGz7c1oi2cBSjB5bh/KNG4OsnjEZZURD4afLaftrs21Z9Wxh/XbgN89fux67GDlQUh3DS+EG46pSxOGx4pVJbiYTAf1bsxgvLdmPV7mbE4gkcNrwSl846BJ8/epTy8vNtde14+J0teGdjHerawhhaWYwzDxuK75w6VnnZdFc0jqc+2IH/rtiDzQfaEAoGcPSh/XHliWNw0oRBwHNfA9b+B/jOu929dj54b3Mdnnx/B5buaEB7OI7Rg8pwwVEjcMUJ1b6DIZnsa+7CY4vkGtnd1Il+JSGcOH4QvnPKOEwaplYoJRICL63Yg2eX7MKaPc1ICFlB9KVjDsHnpo1EYO2LwPPfAD73Z2Dal33b27S/FY8v2o63NtSiri2M4f2KcdbhQ3HVKeMwuKAd+PUY4PRbgFN/7NtWWziGJ9/fgVdW7cWW2jYUBQOYUS3XyAnj/QceM1m0pQ6Pv7cdy3c2oj0cx5hBZbhw2ghcccJoFBcYwJ395Vl5N9f4tnWgpQt/eXcr3lh/AHuaOlFVUoiTJgzC1aeOk76Kwn0kFk/gX8t3418f1WDNnhYIARw+ohJfOeZQXHDUCOUtCpv2t+Lhd7bivc11aOiIYHi/Epw9ZSi+ffJYDCpX27/aHo7hife345VVe7G1th3FoQLMrO6Pb540RvoqT30exuX/WiaEmGn1+3kXaIZhnAvgDwAKAPxVCPFLu8d6EWgb9rXiikc/RFs4hvu+Mh2nTbJPl27Y14ovPLgI44aU4/mrj3ftgETjCdz4wiq8sLwGXz7mUPz0gsNtHd1YPIFv/20pFm6uw4vXnOjJAXl3Uy2ufnIZ+pWE8MSVx2DCUPvN9b8r9uB7z3yEb540Bj/x4KS2Jx3vBRtq8b0zxuMHZ020FUON7RFc/OAitHRG8cr3T3b9x1MIgYfe2Ypfzl2PE8YNxP1fObqXA5fOL+auw0Nvb/XspG7Y14qvPboYnZE47vvK0Thlon3mb82eZnz+wUU4+tD+ePKbx7p2QhIJgbtfWYdHFm7DOVOG4g9fmm7b/xWNJ3Dl40vw/pZ6vPDdE3CUByEzd9Ve/N+zH2NIZREevWJW1jXyn4934/v/+BjfPnkMbjnP/RqpawvjyseXYM2eFtxxwRRcduyhtmuktjWMix54D0IAr3z/ZNeZXSEEHn5nK34xdz2OHzswa+ZPCIGfvrQGT7y/Aw9cdnR3KZsLVtU04xuPf4hoXOChy2fguLH2pVsra5rwxYc+wPRDq/DUN491/QcmHIvj/z37MV5ZtQ9XnjgGN31msm3paTgWxxWPfoiPdzVhzvdOwvgh7h2s19fux/eeWY5hlcV44spjegnBdJ5dshOzX1iF688Yjx+cPcm1rebOKK5+chne31qPH587Cd89dZztGjnQ0oWLHliEhBB45fqTs+4BVgghcO/8TfjjG5twxuQh+P2XpmVdI7f9Zw2e/GAHXjy9HtPf/x5w9UJg2FTX12hS1xbGjS+swvx1+zGgrBCnTxqC/qUhrNrdjMXbGjCqfwkeunwGptS/DgyeDAw7wrMtIQQee2877n19IzqicZwwbiAmDa1AfXsE89ftR3s4hh+dMwnXvDVD/oJPx2rtnhbc9K+VWFHTjDGDynDCuIEIFQTw/pZ6bNjfimNGD8D9lx3dK4Dnha5oHL+cux5/e387CoMBfGryUIzsX4Ktte14a8MBlBQW4HeXTsNZhw/N/WQOeG3NPtz+0hrsbe7C9EOrMO0QWUWxYP0B7GvpwqUzR+EXgQdRsPIZ4PqPgAFjPdva39KFW15cjfnr9mNQeRFOnzQ4VUXx4fYGVA8sxUOXz8DkYf57BhMJgccWbcfvXtuArlgCJ40fhAlDylHXFsb8dQfQFY1j9rmT8a2TxyhpGVi9uxk3PL8S6/a2YOygMpw4fhACBrBoSz02HWjDcWMH4OHjGlD5r68Alz4JHO59Sl9HJJZcIztQGAzgrMPkGtlyoA1vb6xFaWEB/vCl6Th9dLHM1vm8vnmr9+GnL63BvpYuHH1oFY46pAqdkTjeXH8AB1rD+Mqxh+KOC6YoaRnY19yFH7+wEu9srMXgiiKcNnEwKktCWLGrCUt3NGLsoDI8/LUZGL/nv8CoWcCgCZ5tJRLS9/rTm5sQiSVw0gS5Rva3hPHGuv0IxxK45bzD8I3Xp8lf8LmPfLyrCTe+sBLr97Vi/JByHD92IAIGsHBzHbbUtuOk8YNw31emK2kraQ/H8LM5a/Hs0l0oDRXgjMOGYlhlETYn10i/khD+8KXpWf0/N/x3xR7cOWctalvDmDW6P6aOrEJ7OIY31h9AXVsYXzu+Gj/t/BUKvvyUrUCDECJv/0GKsi0AxgIoBLACwOF2j58xY4Zww5Jt9WLq7fPErLteF2t2Nzv6nf98vFtUz54j7ntzkytb7eGo+MZjH4rq2XPE71/fKBKJRM7faWgLi2Pvni9Ov2eBaA9HXdn71/JdYtxNL4tz7n1b7G3qdPQ7t/9ntaiePUe8tmafK1sHWrrEZ//4rhhz4xzx9w92OPqdTftbxORb54pL/7xIRGNxx7bi8YS4879rRPXsOeLavy8TXdFYzt+JxRPiCw++J464bZ7YWd/u2JYQ3WvkmLtfF+v3tjj6nX98uENUz54j/jh/oytbnZGYuOapZaJ69hxx+39Wi1g89xppao+I43/ubY387f3tYvSNc8RF9y8Uda1djn7n1hdXidE3zhHvba51ZWtnfbs47Z4FYtKtr4j5a52tr2U7GsTYm14W1/x9maPPi0k8nhB3vORujYSjcXHhfQvFFA9rZOGmWnH4T+aKE37xhti0v9XR7zy9WK6RxxZudWWrpTMivvTQ+6J69hzx8NtbHP3O/uZOMf3O18S5v3/H0b1I5+8f7BBjbpwjLvjTu6LW4Rr54XMfi9E3zhELN7lbI7sbO8TZv3tbjL/5ZfGv5bsc/c6qmiYx4eZXxNcfXSziDj4vJtFYXNz4wkpRPXuOuOGfHzvag8LRuDjvj++In/z0JiFurxSi3tn9t+LDbfVi1l2vi4m3vCLue3NTr8/ukm314rifzxdTbpsnVuxq9GxHCLlmrvrbElE9e4644tHFvdZoY3tYXPf0clE9e45ovHuiEH+a5cveG+v2icm3zhUz73pdvLi8psdnN5FIiOeX7hKTb50rTr9ngeM1ZceOunZxzr1vi+rZc8RP/r1KHGjp+XzbatvE+X+Sf5te+ni3L1uxeELc/fJaUT17jvj0798R72+p6/HzrmhM3DNvvaiePUe88ZuvyjXSut+zvQ37WsTxP58vJt86VzywYHOvz+77W+rEMXe/Lo786ati9e4mz3aEEKKtKyq+9YRcI19/dLHYUddzD2xoC4vv/G2pqJ49R9wzb70vW0LIfWXCza+IY++eL/79UU2Pz24ikRD/+HCHmHDLK+I7v35E3sediz3b2lnfLs74zYLU39XMv3WbD7SKz/zhHTH2ppfF3FV7PNsxX/vvXtuQWiPLdjT0+HlnJCZ+/opcQ996Yokr38eKdzfWiul3viYO+8lc8Zd3tojOSM818t6mWjHjZ6+Lo+541bH/Ykdje1h87ZHFonr2HHHV35aI7XVtPX5e19olvvm4XENdd44Q4q9n+bI3Z8UeMeGWV8RxP58vXl65p8c+Eo8nxFMfbBcTbn5FnHPv26KpPeLL1qb9reL03ywQo2+cI3723zWivi3c4+cb97WIc+59W4y76WXxukv/OJNwNC5ufXGVqJ49R1xw30KxdHvvNfKzpI/7/m++IAAsFXYaye4HFP8BOB7Aq2n/vgnATXaPn1Q9VMQ7nTlIb6zbJybd+oo47Z4Frh2ya/++TIy76WWxqsbZpljfFhYX3rdQjLlxjnjy/e2ubL23uVaMvlH+8XFCIpEQDyzYLKpnzxFfeuh90dzpfOF2RWPi079/R8y663XHv7f5QKs46VdviMm3znXseJs8v3SXqJ49R/z2VWcbfjgaF99LOhK3/2e1K4dsZ327OOK2eeKSBxc5Ej5CCDFv9V4x8Rb3aySRSIjrnl4uxt30suNNsbE9LL7w4Hspx9uNIDHXyM3/Wun49f3+9Y2ievYc8c3HP+y1qWejIxwTp9+zQBz/8/miqcPZGlm9u0nMvEs6Eku31zu2JYQQ9725SVTPdu5cpYvcO15a42qN1DR2iON/8pz4/X33Or7/c1bsERNufkWc/bu3xb5mZ4EQIeR78I3HPhQTb3lFbNrvbI3sb+4U5/7+HTHuppfFC8ucCRiT+Wv3ierZc8Qv565z/Pp+++r6lMPmRvx3hGPi9N8sECf96g3REXa2ttbuaRbH3j1fHHHbPNfC7olF20T17Dniwbc2O3p8ZyQmvp10Rn89b52rz9qm/a3ijp98X4jbK0XCo/M9d5V0PE67Z4FYu8c+MLinqUOc+Ms3xMy7Xu8lPJyyv6V7zfz13a2215pIJFJOg9u/UemYgv6zf3w362v+cFu9mHTrK+Jz9y8UEY9O6qqaJjHjZ6+Jo+54Vby53v69aA9HxSUPLhLjb37Zs9hNXzO3vLgya6DjqQ+2iwdv+YoUFmF3voXJe5trxRHJ4HE28bWzvl0c//P54pi7X/csdvc0dYhP//4dMebGOeLRhfZrJB5PiNnPrxDVs+c4DqBkkkgkxK/mrhPVs+eIrz2yuJcjnM6izXVi4i2viBvue0pEXQaWTFbVyL89U2+fJ97daL+vtHZFxUX3LxQTbnnF8xqJxOLihn9+LKpnzxE/fO7jrOv60YVbRfVsKQa8Ygbhz/7d21kDg9vr2sQxd78uTvjFG56FTE1jhzjjNwvEhJtfEU99sN12jcTiCfH/nv1IVM+eI15cXuPJlhBC/OWdLWL0jXPE5x94TzRkWSPvbDwgxt/8svjKX9539bc+naXbG8RRd7wqZvzsNfFelr89zZ0Rcf6f3hWTbn1FbNjnTey2dUXF5UmRe9ecNVnXyMNvbxF/u+Xig1qgfQGyrNH89+UA7st4zFUAlgJYOmN4QPz2n2/m/IP77JKdYuxNL4vz/viOp02tsV1mtk67Z4FobLdfPELIDfT03ywQE255Rcxdtde1LSFEKhswb3X234/FE+K2f8s/stc9vdx1tFwIIVbsahRjb3pZfPWvH4hwNPsfzve31Imj7nhVHH3na+LjnY2ubQkhxI+S0fZ3Nh7I+rjmzoj46l8/ENWz54gHFmx25VSZ/DMpCO99fUPOxz75/nYx5sY54sL7Fmb9I2JHfVtYTL/zNUdR4i0HWlObn9co78+Tkd1cayQSi4ufJNfID59zljnI5OOdjWLcTS+L7/xtac5NceGmWjHltnni+J/PFxs9bGqxeEJc8Kd3xdTb52V1ZoWQn8tLHlwkqmfPEQ+97W2NLH7qp0LcXil+//KyrI9LJBLi8fe2pf6IePnDt7+lUxx952vinHvfFi05AiJbDrSKE3/5hjjsJ3PFgizOaDZ+/M8VYsyNc8TbG7J/1iKxuPjRcx+nskteHOj3t9SJ0TfOEd92ECV+a8MBccRt88Sxd8/P+R5bkUgkxHefWirG3vSyWLItewCgoU2ukdE3us9emix+4hYhbq8Uc5e7z6A99YHcVz53/8KsjofJ2j3NYuItr4grHl3sej1vr2sTJ//qTTH51rnirRzvuRDys/a1RxaLibe8IrbWtuV8fDqJRCKVPfr6o4tFW1duQf9Sshrlt6/l3o8z6Zm1zr2vNLaHxfE/ny9O+fWbOT9rmTR1RMQlf17kKuP94t/+IFb+5EjxWo792Ip/f1Qjxt/8sjjzt2+JmsaOnI9fs7tZTLj5FXHNU9n3LCs27W9JZWqziVyTaCwuPv+ArEbZ1eBOfEbTBMyNL6x0FCg1g7huq1GEkNklN3976lq7xHE/ny/O/O1brn2ntq5oKrv029c2OPqsmgGRbMLRjr+8syUVhHeynpfvaBDjktUobjHXyBG3zeuVNbYiEouLSx5cJKbcNk/sdrB+00mvfrn6yaWOgsfPJKtRHnrbWYAunflrZaLm1F+/2StrbMX+lk4x42evibN+95bj4KNJfVtYXJBM1PzjQ2eVZu/e/52+LdDS/5sxPCDOuPEhce/r1h+Q9nA0Vdbylb84W9h2LN5aLybc/Io4P0vpz7zVe8XU2+eJqbfPE4u3usscpNMZiYkL75PRHbvyw92NHeKLD8k/Ine/vNZzNEEkEmLZP38ljpj9nLjGpjwsGouLP7+1WYy96WVx+m8W9Ep1u6EjHBNn/e4tcfSdr9lmm1buahIn/+pNMfaml8VzS3Z6tpVIdEd3/vyWtQPf2hUVP0w6p1c+9qHrssF0zCjxZ/7wjqUzlkgkxJwVe8QRt80T0+54VXzgYPOzI7L0SfHAr2eLibe8YvuHdndjRypL9/OX13oSMCbmHwi7SGEsnhB/mL9RjLlxjjj7d2+LPU3uNup0dta3i2Pvni9m/Ow1W2ds6fZ6cfKv3hQTbn5F/MdHKVNi/p1C3F4pZs1+0jaT2dIZEf/3j49Sa8TtRp3O2xsOiLE3vSy+8KC9yPv3RzViym3zxHQfgRAh5Os+5963xWE/mWsbENlR1y4uun+hK0fDknhcfPD0XWLS7Bds10gkFhf3vr5BjL5xjjjn3rdd/zFPp7kzIk7+1Zvi2Lvn24qLpdvrxfE/n+8rECKEEPHXfipit1eJWT97zbEwTy99+obLNfNYMtru9I+6EGZ26XUx7Y5XxfKMMqts7GvuFFNvl5UGTv+GhKPx1L564wsrXAV9/t8/PhJjb3q5VylYNl76eLcYf7PMHDgt3xdClo2Ovellcd3Tyx2v633NneKce2XZ7b8/cp4RCEfj4px73xaz7nrd1Rq5f4GsGLj0z4tcBX3MSoM5K5yX6C3fITMHM120eAgh9+PDfyLbE5yukY5wTHzz8Q9TFTNu9pVr/75MjL/5ZVfBmxeXS5HrpsVDCCEWrN+fyqw7ZX9Lpzjvj7JE8unFzj+jHeGYOOM3C8Sxd893/F7H4wlx1xwpYL771FJXQtJtNYoQcs+U2aXsmdxMdta3i8N+Mld87RHngaXOSExc/aQso/3pS85aPISQn5tvP7FETLj5FVdrxEzUZPPhrXh7w4FUkMEpZqJm4i2viFddBG0i4a6sAi2vQ0IMwzgewE+FEOck/30TAAghfmH1+JkjCsRXfv40/ri+HKdPGozrzhiPqSOr0NwZxbzVe/GnNzfjQGsY3z1tHH541kTf5/W8sW4/rn16OSqLQ/jROZNw9uFDURwqwPIdjXjw7S14d1MdjhzVD/d9+WjfI7Ub2yO44rEPsbKmGV897lB8/YQxqB5Yit2NnfjHkl146oMdSAiBn14wBZfOPMS7oe3vAY9/BpuGnYeztl+Gw4dX4kfnTMTxYwchmkhg4SZ5TtyG/a349BHD8OsvHOn78N3NB9rwlb98gNauGK47Yzy+MGMUBpQVYsO+Vjz63jb8+6PdGFZZjD99ZTpmVPsb7xuNJ/B/z36Ml1fuxZmHDcG1p4/HlBH90NgRwX9X7MFf3t2K2tYwrjt9PK7/1ATfa2TBhgP4zt+WYWB5IX5w1kScPWUYCgsCWL6zEQ+8tRnvba7HkaP64YHLjvZ3ptNj5yHW2YQLor/E+n0tuPy4anzthNGoHlCKnQ0d+OeyGjz23jYEDAO/uHgqLpw20td1AcDv52/E7+dvwtSR/fCDsyfi+LEDEY4msGDDAdy/YDM2HWjD56aNwM8+d4SSNfKlh99HZySO6z81AZ+bPhIDygqxencz/vb+Dvzn490YUVWCP3xpmr81MvdGYPGDuP3QJ/DExhDOnTIMV582DlNGVKKhPYI5K/figQWb0dARwf87cyKuO3287ylSc1buwQ+eXYFB5YW44dxJOGPyUBQFA1i8rQEPLNiMxdsaMLO6P/745ekY4XF6rMmBli5c/siH2HSgFd84cQy+elw1Dulfgh0NHXh68U48vXgnggUG7r5oqr+z4da8CPzz61g28jJ8fst5OOqQKvzwrIk4ZswAhKMJvLXxAP4wfxO21rXj4ukjcfdFU1FS6O+g6zV7mnH5Ix8iGkvg+k9NwIXTR6CqpBBr97bgr+9uxZyVe3HogFLc/5WjMXWU96mPmDsb8Y+exuT2h3Dc2IF47OvZJ1bGEwK3/ns1nvlwJ74wYxR+cfFUV8MBEgmBy/66GKt2N2PO907KeYbkOxtr8d2nlqGqtBBPXDnL9WCYfy7dhRueX4nrPzUBPzhrYtbHtnRFcc1Ty7Fwcx1+eNZEXHfGeFcDJFq6ovj0799FsMDAK9efLKdWZuHx97bhjjlrMat6gKdjYe57cxN+89pGR5NvNx9oxRWPLkFTRwQPfnWG6+EAq3c348L738O5RwzDfV+envW+xOIJ/PS/a/DUBztxwVEjcM8lR7qalBuLJ3DRA4uwvb4dL15zQs73/O2NcoDYkMoiPOnhyI/nlu7Cj59fidnnTsZ3TxuX9bGN7RF884kl+GhXE+70cCxMQ3sEZ9/7NgZXFONf3z0h6z4hhMCf396KX81bj+PGDsBDl7tfIzf8cwVeWF6DR66YhdMnZz9ja0ttG6549EPUt0Vw/2XTccZkd4NoVtU046IH5Br5U441Eokl8OPnV+DfH+/B146vxu3nT3E1hCwWT+Dzf34fO+rb8fL1J+ecRP7amn343jMfYXi/3MOhrHhi0Xbc/tIa3PyZybjqlNxr5Nt/W4qlOxpx63mH4VsnuxusU98Wxjm/fxcDywrxn+tOtB2sBsg18sBbW3DPqxtw8oRB+PNXZ+TcdzL55dz1+PPbW3DfV6bjs0dm/zu5dk8LrnjsQ4Sjcfz1ilk4Zow7/8QwjINziqNhGEEAGwF8CsBuAEsAfEUIscbq8TNHFIgli97GYzUj8bvXN6It3PPU9BnV/XHzZyb7dvLTWbOnGbNfWInVu1t6fH9AWSGuPnUsvn7CGGUHQHdG4vjVvPV46oMdiCW635eAAXx66nDccPYk/wdAb5gHPPNFYMLZeHXan3D7f+QkonSqB5bixnMn49wjhvmb5iQEcEcVcNIPsHfWj3Hri6vxxvoDPR5SFAzgihNG45rTxik7ADqREPjrwq344xube62R48YOwA3nTFKzRlY+B1RVY1VgMma/sBJr9/ZcI/1KQvh/Z07AZcdV+5/m9NCpQFcT2q9ehp+/sg7PfLgTiYyP7oXTRuBHZ0/CIQPUHe47d9Ve3P7SGhxoDff4/sSh5fi/Myfi037XSBp7mjpx84ur8NaG2h7fLysswJePORTfP3OCbyGI/1wHfPQkEt9+Gw9tqsAf39iEzmi8x0OOGzsAN3/mMBw5qsqfrTQ+2tmIG19Y1eMQeQAYXFGEa08bh68eV63sAOi2cAx3v7wWzy7Z1WONFAQMXHDUCPzonEmejxFJsfQxYM7/AdO/ipdG34I7/7u2xwHhADBucBlu/sxhOGPyEH9rJBYG7hoCnHkHdh1+FW5+cRXe3VTX4yGlhQW48sQxuOrUsf4PCf/3tcCWN/GPk1/Fjf9ahcuPq8adF06xvIa6tjD+37Mf491NdbjmtHG44ZxJnq61prED5/9pIfqVhPCPq47HsH69J98KIfDEou246+V1mDC0Ao9/Y5an8fJCCNzw/Eo8v6wGv7h4qu0Zehv2teLqp5ZhV0MHfnHxVFziMTC4eGs9vvyXD3DShMF4+PIZls5VVzSOO+esxdOLd+Lsw4fij1+2n26bjXhC4GuPLsayHY149qrjbSffvrFuP374zxUIBgw8/o1jPB/j8OBbW/CreevxnVPH4sZzJ9uukeueXo4PtjbgO6eOxexzJnsK+tQ0duBz9y9CcShge4SHEHK67a9f3YBJQyvw+JWzPB31IYTAdU9/hFdW78UfvzQd59sEc1bvbsb3nvkIu5s68ccvTcO5R7ifkAsAC9YfwJVPLMEZk4bgga8ebSleOyIx3PnftfjHkl04/6gR+I1LkWvSHo7hiw+/j6217fjHVcfZ7vOvrtmHHz23AkWhAB79+izPfw/uX7AZ97y6AdedPh4/PNt6+vW+5i5c/4+P8OG2BtxwziRcc5r9dNtsbKltw+fuew/Dq4rx9LePsxwbb05qvOfV9Zg6qgqPXjETAz2Ml08kBL73zEd4edVe/OFL02yDwqtqmnH1U8tQ2xrGvV+chvOO9LhGNhzANx5bgnOnDMOfvjLd0qdKP8v2gqNG4DeXHOXJP4/GE7j0ofexeX8b/vnd422nqL68ci9mv7ASFcVBPHHlMZiYZUq2HQetQAMAwzA+A+D3kBMdHxVC3G332JkjCsTSt+YCE89Ga1cUb64/gB31HSgrCmJmdX8cOaqfGmdRCGDnB8ChxwGGASEElu5oxPIdjYjGExg/pAKnTByk/HwSk73NnXh7Qy32t4QxqKIQp0wYrM7pXjcHePYyYNJ5wJefRiSWwLubarF+XysKAgaOHNkPx4wZoMZZNB0rIDWOdcO+VizaUofWrhgOGVCCUyYM9rQ5OKG5I4q3Nso1Ul4UxDFjBvg6T6kXaWeBJBICS7Y34KNdTYgnBCYMKccpEwd7cjIs+dNMeXjij7cAkGLmrQ21qG0NY3BFEU6eMEipMEunKxrHu5vqsHF/K4IBA1NH9cNxYwYqP5/EZN3eFry/pR6tXTFUDyzF6ZOH+D5gPcU/vy6zP8kzrpo7onhzw37srO9EZYlcI4cPr1SzjyQSQM2Hch+B/IO2eFsDVtTINTJxaAVOnjBI3RrJoKaxA+9srENtaxhDK4twysTBvjN0KT78C/DKj4AZ3wDO/z26onG8s7EWG/e3ojAYwFGjqjBz9AA1Z2G11wH3jOtxxs+aPc34YGsD2sNyjZw6cbCyAA+euwI4sBa4bgnufnkt/vLuNpw3dTjuuHBKyuGJxhN4YVkNfvv6RrR0RvHTC6b4Pix82Y5GXPHoh6gsDuI3lxzV4yylVTXNuOe1DXhnYy0+NXkI7s1yZIATosljXt7eWIvrTh+Pa9POfWwPx/DQ21vw0DtbUVkSwn1fnt7rfEG3mMczTD9Unvs4brA891EIgQUbDuCXc9dj4/42fOfUsbjh7Em+/v4caOnCxQ8uQmN7BHdceAQunj4ytVftaujAfW9uxrNLd+Hw4ZX481dn+Kp+EULgJ/9Zjac+2IkLp43A7WnnPsbiCTy3tAa/eW0D2sMx/OLiqbj4aO9nFQLyvNYvPfwBBpQV4neX9jz3cVVNM34xdx0WbalXUv3SGYnja48uxtIdjfi/T03Ed04dm1ojzR1R/HXhVjz09lYMKCvEn74y3feB8k9+sAM/+fdqzKzuj99cclQqGJ1ICMxftx+/nLse2+rbcc1p4/DDsyb5+vtjHuHR3BnF3RcdgfOP7D5va3dTJ37z6ga8+NFuJdUvQgjc+MIqPLt0Fy4+eiRu++zhqb0qHIvj2SW78Pv5m9AVjePnF03F56b7q35ZtLkOVz6xBEMr5dmg6WfRLt/ZiF/NXY/F2xpw3tThuOeSI335sV1ReczLku0N+MFZE3HVKeNSgqilK4r7F2zGYwu3Y1B5IR746gxfZ54C8vzYO+esxbFjBuCeLxyV+uwKIfDqmn341bwN2F7fju9/agKuP2OCrzVS09iBzz+4CJ2ROO66aCrOP3J4yi/YVteOP8zfiH9/vAfTDqnCA5cd7flv60Et0Nwwc0SBWPr688CUi/QaWvU88MI3gYseAo76kl5b1JjXdtgFwBef1GurvR64J5nKVnCg4UFFIiEPhgRoru23k4GOBuAnB3I/tq+x9S1g32rghOv02/r7JcCm14DLXgAmnKnX1uKHgbk3AJc9D0w4S68taj54EJh3IzDr28B5v9Frq3E78IejgGAxcOt+vbYA4KnPAx31wFVvpUqqfvvaBhQEDMwaPQDFoQKsqGlCbWsY0w6pwi8unioPgVbA6t3NuObvy7GzoQOTh1Vg9MAy1DR1YPXuFlQUB3HDOZNw+XHVSgIIXdE4bv33ajy/rAZVpSEcfWh/ROMJLN/RiPZIHOcfNQI/Oe8wDFF0CPTcVXvx4xdWoi0cw4xD+2NAWSE27m/F9voOVA8sxU/Pn5Kz5Mwp+5q78L1nlmPJ9kaMrCrBESMr0dgexfKdjQgYBq44oRo/OmeSpwxMJkII/OnNzfjDG5sQDBg4ZswAFBYEsKKmCXVtERwzegDu/NwUJWeZAfKcxWv+vhw1jZ2pNbKzoQNr97agf2kIPzh7Er6a5QxKN3RG4rjxX/JQ+f6lIcyo7o9wLIFlOxrREYnjs0cOx50XHpESpX55acUe3PTCSnRG4zg6uUbW7m1BTWMnDhlQgl9dfKSyQ6D3Nnfiu08tx8e7mjCqfwmmjKhEfVsEH+1qQkHAwLdOGoPvnzlByRpJJAR+/8Ym3PfmJhQFCzBzdH8UBQP4aGcT6tvlGvn5xVPlIdAKWLajEd97ejn2NHfh8OGVOHRAKXY0dGDd3hZUlYZw86cPwyUzRylZI+3hGH78wkq8vHIvBpYVYtohVYjEE1i6vRGd0Tg+f/Qo3PyZycoC8S9+VINbX1yNrlgCM6r7o6okhHX7WrCroRPjh5TjzgumKFsjuxo6cO3Ty7GyphnVA0sxeVgF6tsiWL6zEaGCAK46ZSyu/9QEXxVSnyyB9vLfgOmX6TW08PfA/NuB468DzrFN6PVNlj4KzPl/wJSLgUse02urcQfwhyPl/3/SBFpHA/DrMfL/Ka7tF4cA4Rbg1logqChTYMfu5cCej4BZ39RrxyQtE6mdxz4D7HgPuPRvwOEX6rU17ybggweAs34GnHi9XlvUvPcH4PXbgOOuAc61bBlWx/41wIMnAEYBcHuDXlsA8Mg5QEEI+Pqc1Le21Lbhyfd3YPnORkRiCYwfUo6Ljx6J0yf5LN+0oCsqo+qvr92P/S1d8gDjyYPx5WMO9V/ia8HirfV4dskurN3bglBBAEeM7IdLZ47C9EP7K7dV2xrGkx/swKLNdWjpiuKQ/qU454hhuGj6SCWH+qYTTwi8smovXlqxBzvq21FeFMSxYwfia8dXY3g/RZnkNDbtb8WTH+zARzubEI0nMHFoBS6cNsJ/ia8FHZEY/vHhLryxfj8OtIQxpLIIp0wYjC8fe6j/El8LFm2pw3NLdmH9vlYECwwcNaoKlx9frUx0pnOgtQtPvr8D722uQ1s4hkMHlOL8o0bgvKnDlZWBm8QTAv9dsQdzVu7BjvoOVJaEcOyYAbjsuGr/ZeAWbNjXiic/2I6PdzUhFheYNKwCX5gxCieNH6RljTy9eCfeXH8Ata1yjXxq8lB8cdYhrnuynLBwUx3+uWwXNuzrrqL44qxD1FYtJdnX3IW/vb8dH2ytR3s4jkMHluIzU4fh/CNHKF8jsXgCL63Yg5dX7sWuxg5UFodwwriBuPz40Rhc4V90ZhNoemr0dBJp12+jKBnFCLdmf5wqmmuAubOBC+8HSqr02upKOsEF6jfxXkTa9NvIF+11uR+jCiG672WkDQiq67G05JGzgEQMmP5VIKin/DRvmJ/pSId+W4XJfYTqc1C/RQaWLnoYKNRT7pqCam8EgHDy/ol49sepItIOVPXstxo3uBw/vWAKifniUAGuOGE0rjhhNIm9Y8cO9F3C6JTBFUX4wVkTcw4nUUFBwMD5R42w7Z9SzYShFbjzwiNIbJUWBnHlSWNw5UljSOydMG4QThinJiuRiyEVxfjh2ZPww7MnabdVEDDwuekjfZcVOmXSsArc9bmpJLZKC4P41sljXQ/k8MpJEwbhpAk0a2RYv2L8+NzJJLaCBQFcfPQo3+XJXlArNSmIEgg0EyrH6oVvA+vnyL433XQlB1mIhH5bFGI6nX9fC/z3+1LQ6KaDUKBFO7vfr3BL9seqpHYDnS0ASBA44OaapPhsh5IR2DDRPvL3LwDr/gvsX63flhnoiRIIXepAT6QVKPQ5jIlhGIZhfNDHBJpBE/k2nTgqx2rnIvnVIHg7TMeK5D4SO1YfPwUsexxY+x/9ttprcz9GFelCl2JNVlXLrwfW6rfV2dj9/xSC3lyTFMIilpyOGiYo3RQCaNgq/z8Ry/5YFZDuI8SBnkh7d/aTYRiGYfJA3xJoRoDmj7XpBFNkK9rShj5QZAdTjhWBo58uJiiyWsXJWmeKDAJliWMkrZyMorSsPHnWy37L0y7U0ri9+/9JsjFmBo3Alrn+2wgGu6TfR4prMzPxlKKainAbZ9AYhmGYvNL3BBqFiDGdjjaCiWGdTb3t6sQUnZTOMEAjLKJdve3qwhRoAYI2zvTroXBW48nzrA6s02+rh7DQ/L4lErQljqaN1r36bfXIRBJcW6rEkXA/BvSXwcZjQKwTKHJ/ng3DMAzDqKJvCbRAgLY0r3W//sxPenaEJPKdpxLHdAdSB/Fot7CgEGhmD1oipt9pTM9EUmR1TXudBBPzWtLEi+73LdoBQKT9v2bS9xEqWwDNtZnrkCQTmbZHdmkuFzUFJ5c4MgzDMHmkbwk0qhLHVJ9Ku/5oNHV2hLLEkVKgpdsiyaCl9aDpdoipe9AoywB7rH/N71sPW4TX1l4rMzMUtjL/XxepfYQ4g6Z7HzE/X1ziyDAMw+SRvifQqEtqdJfmpduiiHx35anEsatJr60wcQahKy2TpV1YpGfQCEpFUyP9KT5radej+7PdI8tE2MsKod9emDhAka8Sx/SScJ22uMSRYRiGySN9T6BRNvcD+u3ly7Givo/aM2jEmUjKjF0PW5qvLf3MNWrnW/eapM6yRgj3EcprSyRoz5NLF/Ha95GkLS5xZBiGYfJIHxNoBfTn7mgvcaR0rOLdTne0XTpaOsmbiCHODpKWOGrOoMUj3WPaKSemUtgzn58q0EO6/gnXY7QdqV4+6hJH3fsxlzgyDMMwBwF9TKAF6LIjJQOS/0/kWJUOInCsks9fNlh+jXXqtRdpA0oHJv+fSKCVDiQSFq3yPQP02zNFWXGV/iEh5rWUDJDneOkegBJp616PVGWApYPosoOpfYQo0FMygK5vtmyw3FN0D1IK52E/LuIMGsMwDJM/+pZAI5vi2A5UDJP/rz07knSmyocQOPqmreQ5V9rLrtrTbBE5VuVD6aL6lNcWCAKlAwhKbpNikPLayGylrX+qNUK5jwRLgOJKurLs8qGQ/XW6Az1pa4RqP+YSR4ZhGCaP9C2BZgTohluUD0n+P0HkO1gim9KpRIyZsaCItJcOpJm+GU4TuiTZkbbuNUJR4lhYJp1GMqFLdW1tQJmZiSQqFS0frN+W2cuX2kcI1n9RORAqoxO6qX2EwB7VfhzmHjSGYRgm//Q9gRZp11tSk3KsCLNMReXSAdfu6GRkR3Q73+FW6egUlhNmIgmyI/GYLP+jzPwUVsg1on3SYVomMv3fOu0VVQChUroywPKhBOXEnYBI0N7HwjKiNZKRiaewVzYIgEEn4rnEkWEYhskjfU+g6S6pMR0rquhwuE06VaFSumETVFH9dKeRzPkeor93Kkp9H9vS7iOViCfM/BQmAxSk5cRtegM95Fmm9uR9LKXPspJdG0UGOfm+hXhICMMwDJM/+qBAg15Hjjw63J7MjpTTNfeTZn6S4pO8fFOjvfRySt22THtkAi0fa6Q8uUYIeqcKCoHifjIIEwvrs9VrH9EtPtOy1eR9igTvW1FFUnwS7JGhMtnvzDAMwzB5om/9FTIK5Fedf6RTkW+zpIYgY1FYlnQ+iB0rioxdUbI0j6I0KVTW3TuiVcSbYpCwBy3VX0SVZaUMUFBlWdN6+QC971uvgTxE1xYqpS+D1WkvkZDPnyrfpCjL5uwZwzAMk1/6mEBLvlydTmrqHByqkpr2PGRHCDI/iURGaR5Bc7/ZywfovTazDLC4HxAsJizxIrqPgBykYdrWRTwKxMPd7xvJsJVkvxugOdBjiniiQI85JIRkHyHMIJvir5Dw2rj/jGEYhskzfVOgUWRHyJydtOxIrFNv7xRl+Zr5HpH1F7VLx5tEoJlOI1X5plm+RmHLdL6T4+G13se0YAjZfUxmqwG9gR7z2ooq6TLIKRFD3ctKsB8XlhFNqGznDBrDMAyTd/qWQDP7Aigi31QOcfqQBICov46gNC/dsaKMfKeyIwQ9aGa5HOWY/XhYTpHURbhNBkJSo+8J7yPZxFSzxJFCfJYRTahs7f6sRdtlBlsX4VaZOS6qlP/Weh/NgFkFzT4STk5MZRiGYZg80rcEGkWJYyTtHByqyXKUUf10x4osO0LoWJE43+lOI4HznT4kBNAvLMyR/gBRJrKc9j5SiniK8k0hevagATIbr4v0iZHmv3WROpfM7NMlyLJyiSPDMAyTZ/qmQKPK/IQ09/yYZ66ZIgbQ63ybDmpBECgoohFolGe8FRE5jenZEd0lZYm4dLaLKmiEhZmJDJYAMIg+a5Q9aOVEwRDC3qlYGEjEembidQtrc38ECO9juf4BKGZFA8MwDMPkkb4p0HSKph5DQogcK7LhFu3dzkeh5nPXepSv5aFUlKK/yOydIisVTb53uofkFJbLcmLdfWGRtOwIyYTKtm5HH6ArcdQ93CUVDKHKfCbH3gcLgUCI6D7ykBCGYRjmf4c+KtAomvsJGu5TzkcFXYmj6ZzqLjtMCYsKmt6pVA9aWfe/tdnK7K8jcL57iE/N9kw7uh3iHmWAyRJH3YdHU5U4RtqkeAkW6d9Hwmll2VTXllojukV8Zi8f96AxDMMwn3z6mEBLnoOmO2IbCMoDbbU7qEnHKn1wwSfF+c7MIAD6+8LSe6e0ZgdbZQlgoIBAxGf0aaV/TwfhtAwCmfNtik8BxLo02mvPyFZrft9MO9ozkelCl+iMt9Q+onm4S4+puuVyfeiadGueucYZNIZhGCbP9DGBZkjxRFEGaBjdE9G02coolQP0O1bkzjdBxsI8c41qimN6GZRu57vHkASKQ7jTMgi6J1SmAhQVaZlPTfcyHpPOfY+JqbqFbvp9pJiGmS7idQd60tc/Rcl5mf4ARfqZawzDMAyTR/qWQAP096qk92lpd74zyilN+7pId6x0O9+ZkW9A3/uWcqzKaHqnwvm6jwQljuHWDPFJXb6p6X1Lt1VQKLPxn7QywB49aLoDPab41DzcJXPYCqDPXroYZBiGYZg80vcEmu6sVrqDqrukpkcPGoFAS3esqMQnRVQ/3RZAU1KWmYnU1TuVeSh2+vd02UuJT929U8kz10Il+rMj6RldMztO1e9J2oNGEehppbu2SKucOFsQSgv0aF4jRdyDxjAMw+SXPijQdDvf7T0j3+b3tNiizqClO1YEIiblWBFlR6ii+umDBEKlgIjLiZw66JFlIpji2EN8EvQpFlYkBZPm8s30bDVAUL6c3oNWJo9K0Bbosciy6ro2IXqWSmvPsrb3tAVoDPSkCV2GYRiGySN9T6CFSgki32mDNAB9Tmp65kd3D1qmY6W9NCljkACg0fnOcKy0C4uMLCtAc226SxzT+7QA/RMqMx19gCCDRphBTr+PAE35pu6gUqxLBiQKqfaRdov9WJO9SIaIZxiGYZg80fcEGkXPT/qQBECfvfSyq0CBnAxI5VhRjNkvJIp8ZzpWFOPh0zOR6a9BNenXFiySJYHaHP0Moav9jLdWi/uoKxiSNjEVoClxLMoQaNp7p9JLHHVnItOy1brLNwszgiHa1j8PCWEYhmEODvqgQNM9Nay153hsQH/vVMrZ0RjVp7QFZPTyEWYiAeIeNCKHODVZVGOAwqoMkGykP1UwhKrEkTATH2mVg0+ChUBBUJYW67o2KxFPNTGSqpeVe9AYhmGYPNP3BJr2EkfKkpq0BnjTnjYH1aIMMBEF4lFN9qxKvHRdm9mDQzUePr0HTXPPT6RNrvlA8gxAnWWHvURM8j4mEvrsUWVZM8WndhFvtY9oDFCkZ310CmvLXj6qo0E0ZyIz90iGYRiGyRN9T6BRnM2UXr4D6HV20vsdQhqd714Oqu5rs7qPuoRF2llhgN4sa+ZhthSleekOo05hYZVlBfRm7HqtEd0ZNILSvHhUlhQXVcp/U/TXFWUKNMJMZDyiN9BTlBEM0Z6J5zH7DMMwTH7pgwJNo/MdjwLxcG+nUWd2pFfkm8qx0i0s0pzGYLHsnaLowQHoHVRAr730kqt8XJvOjAXVIA2rHjRdn+teQ2vM8k2dGbTMNUJUBqhbfIZbe4pqnbYy1z/DMAzD5Im+J9B0ljhaTQMENIuYdMeKMjtC0PNjOlaGoXcoSaZjRWGrVyZS4+jvHtmRcoISx7Tx8OnfV026iC8IyT4qncEQo0AGCwC9mUiroTWA3h60oowsK2WpNKA5y2p+1koAGHr3yFDysHuGYRiGySN97y9RYbnMcuk4U8jW+dboWBVmlDhSNvcDNM43oD+qn+5YmX0xOnqnUtm6zCyrRge1kFrEE/YO9irf1OzoG4b8t85MZK+MLkG2Op89aIAee0L03CNTB4wTCV2GYRiGyRN9UKBpdHasRkjrsmXa6yViqBwr8z5qcFIzHSvTns5hK0UZtiDk4cA6bAGEIibz2nQOkskUnxo/a6lyYqL1H8kUuhoPj04FepI9aNrHwxPuI72y1RrXSLQTEAmL9a9xzD6XNzIMwzAHAX1PoOl0CFIljmZ/heaSml49aDpFjMWEPkCPs2/nWJFlEEyHWMO1WY30B/RmBzOvjaxPS2PvVGY5MaC/LyyzDBDQs/4z76P2Pq0M8UkxSIaixNGqJ0z3PsIZNIZhGOYgoO8JNJ3CIjM7YpbUaMtYtPfuL6IapKFTWFg6VuV6+4usnG+d15YagFIke5t0ZrUyr01nD1pmnxagxyG2WiO6+8IyHX1Ak4i3KScm20c0H9cRLJHnrZm2zNegmpTQTRefmofkFPIZaAzDMEz+6YMCjaDEsZfTSJQdMW0Jod6WrWOlM4NQ2f09rc53e+/yNUBTdiSjDFB3X4xlf5FmRz+9TwvQm4nsNQCFYNgEoHdCa6aIDwT0rf9UOXHaaHjKLJNOgWabQSMayMMwDMMweaLvCTSKqD7FmUKWfVplsjQwFlZvz9ZBJSjxMu1pHcWd4aACmtYI4bXFY7JPqsekz+SQHB3nTtmWiurMsmYOQNGYHSzKKAMENAd6Mkffa+zTsioD1BLoaev5WSMpFSUakpN5bQzDMAyTJ/qeQNPaF2PlWGnq+bHr0wL0ic/MbJ35fR22AMLMD2FU3y7LStaDozNAYTHYRZctOxGvrcS3tbdgAvSsSUoRnwoqZYhPEdcX6LG8jzqHNlGtkYw9kmEYhmHyRB8UaBqnD1o6Vpqi+nYiBtAnPnv0MpkDUKjK1zSP2bcUn7ocYiMjY6cpqm+X0QX0lW9SDdKw7EHTOfreYhomoO+zVlAo+xNNdJ3NZzlsRWefbj5KHDMDZkRZVoZhGIbJE31PoOme4pjpWOmK2Fo2wGsWFumOjs4BKJaOlebR35llgIA+EVOY1qdl2qPK1ukc2Z6ZZQ0UyL5FHQ6xpYjXFAwRIksGmeA+AvomVFqKeM17ZPq1BUvkV6pSaV29fIm4vAbOoDEMwzAHAX1PoOkuccz8A63LIbCbdAjoG9yR2QCvawCKpWNVluydiqm1ZeVYFeos37S7jzqd74xhK+k/U0nYIoOgqzTVTsTrcPRjYSARs8n8EH3WdGVZLUW85qxW+rXpHIBCWSptvn4eEsIwDMMcBPRBgaazxNHiHBzd2RHLyLemkkqrqL5W55ugpCxbGaCu8k3L7IgOWy3yK9W1Wa4RXcLCTsRH1A9AsRODgMZAT6bQ1TSh0rIHTfe1We0jhBlkHQeMW+1ZDMMwDJMn+p5A0z19rZdjpbm5n3I8fC/xSelYaRLWlkM7CDMIgD6hm5cSx4wpdrrOr4u0AYFQ73JiQP212ZXK6bAFWGdZdfVg2h34DWhc/xl7pM4MWqhMZulMCjX1RYYthC7DMAzD5Im+J9DMvhgtTmOrRYkXcQYBoOlBA5LTBzX2qfRwrDQJi1RpUtq1FQSBgiLiMliCQ7EBvVlWKxGvy/m2DBhoEk3ZMrq6hDWliAFs1ojia0sksvTXacogWwldQMMasRC6DMMwDJMn+p5AA/SKJqsSR6qSGl0OqulYUWV+Mse1m7YA9cIi5VhlZn40OsRWfVoUh2KbtgD19uJR2SNomUHWVU5pUQYIaMyOZA5AKaYtJ9a6RqwCPYqvLWrTp6UzE98rGKIry2reRz4HjWEYhsk/eRNohmFcYhjGGsMwEoZhzHT1yzr7wqyyI4B658p8/VYHLKu2ZTpWlL0jVpkYQJ/z3evaNPX8ZE6xA+R9jHVpEPFWxz5oykRaZXRNe1TBEF1lh1blxIDefcRKxEQ7ZLBEJRGLz7aufcTus6YzO2gVDAE0ZuI5g8YwDMPkn3xm0FYDuBjAO65/s7C821lQiV2WCSDunVJ8bVYZBEBfX4xlBkFXiaPNteksO6Qquwq3AUYy02Oia4qj3ZCEQk1lsHYDSQBC8amxL8wqEwloCPS0yvVREOxtS9tnjVLoUgk0GxHPMAzDMHkgbwJNCLFOCLHB0y8XaTqs1G5ICKCnNC9Y0tOxChbKwQmqxWBeMggWvXzpr0WlLcD6fdN5Dlo6OjM/RRlnrgWLpGhTvkbyUL5mla0DNIgYG/FZVKH+2swz16iyg3ZTFbXYsunT0rUfZy2VJhLxDMMwDJMHDvoeNMMwrjIMY6lhGEtra2vlN3VEvu0cK53lQlbOgI7eKeoMQlbHSkMGAaARFmafllUGAdDkfGfYMgw9wtq2fE3XFNP2LEKXMINsfjZUEWkHIOwzyDqOmci8roLCpIgnylZry0Rm248JBskwDMMwTJ7QKtAMw5hvGMZqi/8udPocQoiHhRAzhRAzBw8eLL+pw0E1HSvKkhorZ0DHWPNsGYRYl/rDoy0zaBpFTPrzp+xpEBbZMgiAniyrrYjXNWzF5j4KodgeYeaHMoNsWwaosQzWTsST9ntSlcHqHBJi8JAQhmEY5qAgmPsh3hFCnKnliXX0oNk53zr7wqycbx0N97YZhDRhUVKl0F6WARDKxWc7AKP7+dPtkWUQNAk0K6EL6CnftF0jpQAEEO3sLlNVYs9ijZjXqkNYZ/ZpAfI+tuxWbMtOoGkug81Ei4i3ubb0QE/mPfaD5T6iOWCWXk7MMAzDMHnioC9xtERHz0POyLeGvhirhnQdmR/bDAJhdjBUAsDQZCvjMFtAr4ixK1/TETSwzLLqXCMEfWFmObFddkR52aFNtlpHD5ptJlLj9E2qNWIXxNLRpxuPSdFHtWeFWzl7xjAMwxw05HPM/kWGYdQAOB7Ay4ZhvOr4l82eB5VlV7bOh8bJclaR76IKfdnBXhkLDZkf07HKFLqGoc9ppBYxvTIIukoc7bKsOu6jzbXp6AuLhYFErPe1BYuSQ3I0XJtllklDD5pdJlL3IJlMdFQZUGaQ7XpLtQV62nlACMMwDHPQkM8pji8KIUYJIYqEEEOFEOc4/uXCcungxSPqXlAu50NHX5hdDxrZCHUNmR+7DAKgTzTZOahkIl5jGSx5lpVguEu2kea6suOW91HHsJUca0RHVpcqO2juE6GMTFMq86nwfbMLGJiBHh2TPnlACMMwDHOQ0DdLHHUIC9veEY1N6XZRfS1T7Cwa4HVEvu0yCICmDJqd0C0DREL2Tqkil4hXnrGwGxKiSaAZBTKL1cOWjjWSZaS5rv5Su16+RFRm9FSRWiOVGbZ0ZlntRLymUtHMcmIdvYPZpirq2iOt7iPDMAzD5IG+KdB0lJSlIt8Zf6SDJUlbGs6dsssg6ChNsmqA15H5yeZY6SjNs3NQU06jBvFJ0V8kRHbxqStgkO81UliuXlhkKycG1N5L2yMtzBJHhftIIgHL4woAfULXbj0Cat83u4AZoGkAkM21MQzDMEwe6JsCTUdWy67nIRBICguFzk5qSIJFU7qOEkdSB9UmgwAkS5OoMmhmVkuh02jXg1YQlFMCVTqosS5AxO0zaFpKbm0CBoCmbLXVmtQ0+j6rsCAQnzqmwUY7IM9cs9hHdJWK2mU9AT37sa2IJzqXkmEYhmHyQB8VaITZESCZ1VLp6JtnrtmIpmgHkIgrtJfDQVV5beEW+ZWsNM9OfOrMsto5jRqELlUPmp2I1zIAIse1Kc/85BAWysWnRTmxGehR2u+ZrZxYR39drmAIVRmshhJH7kFjGIZhDiL6qEDTFfm2OahUdVYrV38FoN7ZJ4t85+od0TB9LZvTqPraAsHefVqAemFhl9EFpKMfjwDxqEJ7WYZNAITON/GQEED9GrE7T6tIcflmVhFfrifQY1lOrLGXlbrEl2EYhmEOAvqmQNNVdpXNsaIYSALoy1hY9oRpGKGetXytQs9YcztRnf56lNmyWyMVtA4qoHiN2IwZ15pBs5s+qNBWImFfmpcSFoozyHaOvuq+sGwiXpdooi4VtROEKveRRByIdXIGjWEYhjlo6JsCTVcPmt0Ur0LFTmO2/gotGQubyHcgoL4UKmv5mmIHNR6TjlXWqL7iHjTbNaIpy5rV+VacZbVaj8EiOd2RctKnyjVi9uqRZqtt1ojqvrCsIl5DgMKunDik4z5mKydWvR9nuY8MwzAMkwf6qEDT1F9kF/lWHbHN6qDqyFhkmVCm+rDebOVrZomXqrPJck0DBNSX5lll6wD1wiJ1H62GrWhyvq3uo2GozyDnEvGUYjD9MSrI1stUqPgQ+qwiXtMAIKtr09VfZ1dOrK2igQUawzAMc3DAAs3Ezvkw7VH2aaU/RgXZ+it0XFsgZNOnVa72bDJHWSbFZYB2a0T19MFsGYRUllWxsC62EIOA+oxFuFVOvSwI9v5ZUbnsr4spOoQ+qxjUNGwoW6BHSwbNZtgKoCGDTHhtRRXW5cSFhIEehmEYhskDfVOghUoAI6A+YmsrYhRPDcvWg6ajvy5bVF+LY2VnS7FD7KiXT7H4zCp0CSf0AeqcbyHsD3M2X4Pq4wqyBUPMx6gg1zRAlbbM57ISTKY9HaXSFBMq4zF59IPttWlY/3a2ihQHerIdDcIwDMMweaBvCjTD0DPW3NYhUF2alKO/AlB3baZjla13SnVpXjZb5mNU2QKsHauCEFBQpL40NZuw0FF2ZXfsQ/pj/BLrAhIxuv66XBldQJ29rAenJwM9qjOfVENCnKwRVdeWTQwCekp8qdZI6mgQm/XPMAzDMMT0TYEGJKPRKqP6OYRFtF1OhFNBSlgQDLfIJgbN71NGvs3HqCCXY6U6O5htSIhpi7K/TnmWKVsGjbBU1HyMCrL1F5mBHqoAhfJJn04CPYqz1bbvW4V6oZvNlvkYVbbSn5dhGIZh8kwfFmgaen6y9VcAah1iI2AzHl7x4IJcDfDKyzcdRL6VXVsOgabD+c42bEXEZTZKla1giU2fluJJn9kykYCGDFqLgyyr6gwaZWlelvWv8myycKu8roDFNq76EPpsJbemPap+N86gMQzDMJ9w+rBAU11SQ9wXY9cAH1LcF5OrAV71cIus/W6qo/q5Mj8KMxZC5HAaFZemOnJQVWUQcmUiFZf4hluzi0FA4bU5KM1TtUZiETnghDLQYzfYRbktJ0KXYGIkoL7ElzNoDMMwzEFG3xVoKktqYmEgEc093EKlQ2DnoKo+myzbIA1AT19MzgwaQQ+aaU+VrVSflp0txRmLbA5qsEiOIKdyUJVn0HIMJAHUCl2AJkDhJFsHqM0g291H1WeTUfegZT1zUFegh4eEMAzDMAcHfVegqSypcRIdBtRmLLJFa1WeTWZmR3L1oKnsnSLrQXPQO6XKQe1y0O8GqM182jnDhqE2O5hToKkug81W4qijxNfIcn6dwgBFrmydjgyy3X1UfTaZo2w1dQZN4R4ZKrUuJ2YYhmGYPNCHBZrKyHcux0px5Lsrl0BTmLEwnRjbM67KAAjZG6PEnpMMmsJrC5UBgQIbewqFReo+9rOxpWG4hZ3QBZKHHhMNSVB9NlnWSZ+KRYxZcmtVTgyo/azlytZRZtAApA6GV2IrV7a6TF2gR4jcQ5sAGqHLMAzDMHmgDws0ldFhB2WAAJ1DoHJqXqq/KFevigJhQe5Y5RK6CnunnAwkAWidb7JSUYWiKRaR5aJUvVNdLfa2AD0iPmeWVeH7lq0sT2V2MFcGubAcygI90Q55zhlVwIwFGsMwDHOQ0XcFmsqSmmzjqk1bAE0PGiAdYtXXRnE2melY2d3HgqAsJVIpLHJmEAhH+gM0JY6A2sxPV7P8muvaVLxvqWmANus/WKz2EHpHWSbCfs/0x/m252T9U+0jCktTc4305wwawzAM8wmn7wq0wjJ1Z5NFnGbQiISF0v46hwJNhSOXa6S/aY/KsVLZX+dkIAmgNvOTTcQrzbK2AgWFcviIFSqvLZcYNIxkgEKlQCPKMuU6c1BLD1qOa1N5H0Ol8gB4K1ReW679OFBAG+hhGIZhGGL6sEBLOkFRFcIil2OVh8i3ytKkwvLsfVqAGsfKyTQ01deW6z6KBBDt9G/LcSaSWHxS2FK5/p2MNFea+XRwH1UFenKeOagwE5mIZ590aNpTOUgjV1AJULSPODiXTGkGOYeIZxiGYRhi+rBAU1lSk8NpDJXKsisVDkEiLh1Cysh3VsGk8PyusJkdobo2B843oCjz47SXT0WfVhiIh7P3Tqk8myznfTTXiAJn34mIV9lf6qQHDVAb6KEog82VZTLtUWbrADX7SK7PGqA+g8wZNIZhGOYgou8KNKXCIsekQ8NQVwrlJDqstL/OYeRbRaTddKxIhYUDp1HFteVyvgsK5dlkSjORNhMjgaTQJRo2QZ1By0d2UOU+YncvzUCPivvo5LOmctKtk8mzgNo9Mue1EfUpMgzDMAwxfVegpUpqVDjfOc4KM3+mNIOQqwetTVHZFWGWybHzrVBYZBWDKq+tRQ6wCBZa/1yliM/Vp2X+LKywv44qO5JrqiigeLiFgx40QJ2wyHbsg7lGKD9rKoMhjj5rRHukqkCPELnXP8MwDMMQ03cFmsrJil0tsozLzrEC1JXU5MrWAWr763KVeCnNIBCWJgnhIDuo2PnOFWVXlfl0kkEoKgdEXFF/ncP7qLK/KNf6V/GexWNysqijEl8VGeTm7NcFKMzEO+zlU9Zf53SNqCxxJMggRzvl54gzaAzDMMxBxCdAoCnKoDlxrKgi36pLyhyJGKISR1X3MdIOQOSOsgPq3rdcUXZV0zcd9Wkpznw6Wo9UGWRV2WqHJbfpr8uvvVxrRNXh0XlZI9kEk8JSaacBCiqhyzAMwzDE9GGBlvzjrURYNDtzrJQ6BDnOQQPU9cVks1UQAoIlap3vQoLSJKelooC6ISG5nDhlJY4O+xQBde9bNlvBIiAQUncfA0FZLmqHqhJHp6Vy6Y/1Q65sNaChl5UqO55LxJv7sapy4hL7kf6AhoAZlzgyDMMwBw99WKCZjlWL/+dyMsVL1dlMTvqLVPfX5RSfFeoi36EyeSC1HarGmrvJIFBkIgF1U/PclMFSZNAAtQGKogrZj2WHqimOjkQModAFFK4Rh6PoAf/2EoncPWipQ+gV7MdOgiHKAj0O7iPDMAzDEPMJEGhEJY5Fis4UoixxNM9KynltFYocKwc9OKoGdziahqlYxBRnKfECpBBQWeJFMVnRHOlPFaBwVCpaAcQ6ZQ+ZX1uAw8wPUTCkkDKDrKg0NdKGnOXE5muhLDmPtss9zq8tgAUawzAMc1DRdwVasFiWXSmL2FL3oBFkR5z2VyhzrJxkIhU5jY4yCAoHyTgaEkIo0FJlsH7XiHmeFmGAwklGF/CfQXZ67APQndn2a89JgEJlD1q2ybOUwRDz58oqGpyuEaI9kmEYhmEI6bsCzTBoI7ZKe9CM7jJGS1uKsoNOnY9ihcLiYHKsCpK9TspKRR04qF2KAgbZRvoD6gZ3OHW+lQUoHNxH87Po9146CYYEi+QZdmQZNIX7SGEFEMiyhSsLhjjs01IVoHBU4qgog8wCjWEYhjkI6bsCDSDO/FTIUrB4VIGtyuw9OKmyK78OqoNMjPlzyiEJgELHisAhdnpWUnGlFIO+++scDiQBCLOsCodbOBG66a/Nsy2z35Ng/TsZ6Q+o7UHL9VkzS3L9XluX032EuMQRULf+c5UvMwzDMAwhfVygKXCsYhEg1pV9hDSgNmNB5qC6KHFUkflxNCRBUfkaZflmpB0QCRfXpsBpdJqJpFojhQonK+bMVivqC6NcI05GwwPJQE9E7jt+cJRlUnwfHfWyqgqY5dqPFZUvm+9btlJRhmEYhiGmjws0SsdKYT9HLscqVCJHkasq8co53EJV74jDc6AAutIkFeWbjh19RZlPpyP9Abr7SJmtVnkfA0H5ecpqT+E+4nT9KxHxDgMGfvvrHPegVaor8XWcQVbw2c5VTswwDMMwxHwCBJpfJ85pGZRChziXGDSMZHZQ1bU5dL6F8GmvJbcYVCl0c52VBKi5j26Ebvrj/djLtUYCAXmkgbISRydlgETOd7HCzE+ukf6Amky8k4EkgNq+sJyBnmI1/XVOxaeKYEgiLkWX02mwKvZj7j9jGIZhDjI+AQKNsAwq/fF+7DlxCJRemwPnW8SBaKd3W4m4HHt90N1HBVF9NxkEQI09Jwfnqpis6PTaTOfbT3+d05H+KjM/ju6jgkBPXvaRg/Dawi3+Aj0Rh1NFVfagsUBjGIZhDjL6tkBTUr7mMPJt9kSocHacOATFlMJCwaHfTqPsqjIITjIxQHKNEN1HVZkfJ8c+AGomK7paI8KfvdRIfwfnyQHEIoYwy5T+eM/2XAQolGQHjdx9Wqk14qNX0WkmUpXQdbqPMAzDMAwhfVugqRhu4XRCWWr0t8+ovlOHQIVjFW4FjED2kf6mLfPxXnHqWJn9daSZSIJx7aYtQI29XPcRUDNZMdwKGAUO+rQUCIuww5LbUIl8TSp60BzdRxWl0ub6zyU++/V8vFfcZAdV9LIW5Rjpb9oyX5tnWy6z1UqEroP7yDAMwzCE9H2BFg/L0imvOM6gETsERZXdDq1XTDGYswdHhWPlsAxKVX+d2wyCn7KrLjdZJvi7tkTChfOtqE+xuF/uNaLibDJXa0RRVousnJgwg5aIy0ymowxyPzUZZKfrEfB3L50GQ8z+OlXik2EYhmEOIvq4QDMdAj9lVw4dAhUOaqpPizLy7cCWitI8pw6qaU9Ff5GTs4uKK+WIfF+leW6nOPq4j9F2AMK58+07g9zs7D4qyaA5HNduPoYqy1RcmRx9ryDQ47hP0cf6N9eyo+ygojJwp8EQQFEm3uGa9L2POFz/DMMwDENIHxdoCjIWTkscQ6X+y66cOnGAuv46p2IQ8OcQOy1xBNQM7uhqBoqrnNkCaKL6Kvrr3N5HVRm0XBQrKM1zKnQBdSW+lMKioFBmdrKhIoPmNKNrPoYqy0RZ4gio6S91uv4ZhmEYhpBPiEDz43w3OzsHxyy78iViktHekqrcj1UxEc1NiRdAI2IANWVXjjM/CsRnuEUK9IJg9scFAvIgYr+2ALpBMm7vI0UwxHyMH1tCuOtBA/wLCyfXFSwGAiE1+4iTAIUSEeP2PhJl4v0GehIJZ0eDMAzDMAwxfVygKYp8O20S9+vspBwrh+U7iRgQ6/JujzKDEHZ4npz5GD+OVTwmy7zcZH58O98O+1T8Zj5TQtfhGgm3+Bt979RBVVHi6Gr9+xzcEQsDiShdgMKpiDEM4n1EwRmHbibPAnSZeL/3MdwCQLBAYxiGYQ46+rhAU5T5cep8F/ns+XHjWKlydqgyCOSOFWiFhVMnzq+wcHUf+0GONfcjLJyWOKpYjy7XP1kmhnof8XltbgM9Ig5EO7zbc1sq7fd9MwpkxjqnPZ+BHjf3kWEYhmEI6eMCTdFwCyfOMECfQQNoMj8FISBY4n8ARCAoS7hy4Xe4RVdT9/PkQkl/nRuBpkh8kmUsHF6bih7MriYgVCbXWy78lhO7KblVJSycZuJVlUpTBnqcrMdChUI311RRQJZ4Uu3HDMMwDENIHxdopkPgY5KXmxJHvxHbzib5lUKgCeF8kAbgf9S46aA6caz8luZ5cVB9Z9CqnD1WxX0EXI4193ht8aicGunk2pT0YDa5FLoqskwu7qPvbLXDa/Pbg+kqQOFzjcTCQKzTWd9sQVAKcL8ZZDcBM86gMQzDMJ9APiECjTKD5kcMuuwdAbw7INFOOTrciWNl2qPowQGSjxPeR997ykT6uLbOJpcljkRTHP1mR9zYMh/nVzS5uY9+zjj08lmjGBICqCvNozibzM1AEsB/iW+4xVn/JSCvLdIqjy/xAgs0hmEY5iClbwu0UEmy7IpoSIgSx8roLgXKht+zydw6HypKytz04ADeHTk311ZYDsDw/745Fbp+o/rhFsAIyExELkxH1vN9bJJfHa8Rv5kfl6WigI/13yS/Uh3F4LQMEFBTKl1YkXuqKJAW6PEYWPIk0Ih6+aj3SIZhGIYhom8LNLPsyrdD4DKD4HUiWlezfI6Ag9vuN6rvxkEF1GRHnEa+fWd+XDhWgYC/qH6qVJSoNM/M1jlZI6n76Nf5dvG+UQpd83e82gKcXVuwSI6+9/q+CeEuE68i0OPmPQO8X5tZlk2WiW9ydx8BmkAPwzAMwxDStwUa4E9YJOKyRMaNQyDiQKTdmz0vGQQKEWPa8yvQHDtxxI6Vn2uLtMn33E0mMtruo+yqyYWoNg+PJhJoRT5LfN2WigI0wsJvoCfSBkC4P67DTw+m60wk0WdNSRlslXNbgP890un7xjAMwzBE9H2B5sf59uJ8AP7sOS4V6ouRb4e2UsLCh2NlBJLli07sVRKWePl0iF2JGGqhq2D6INm1NcmsmJNx7YC/9e9m+A+QvDafPZhuPtcATamoac/XICXiQE9RJRAo8Pb7DMMwDKOJvAk0wzDuMQxjvWEYKw3DeNEwjCpPT+SnfM2186HAIXDqxBUEpXPp2/mucvb4ogr/2RFyx8rh8vWzRlw7334dYhcOaqgYKCj07hC7OU8O8JmtTiTLAAnvY3E/Z1NFAZ+Bnib51W35pp99y+199BwMaZJfKbLVibjcgygzaFzeyDAMwxyE5DOD9jqAI4QQRwLYCOAmT8+iIvLtVlhQOQR+ztTyEvn22l/nZlw7oKa/yPV99JllpcxYOL2PgM814qXEscXbGom0ASLhfo34+Ww7fc8ARSLeoT3KfSRQIDPNlAEKss+a3yE5LNAYhmGYg5O8CTQhxGtCiFjynx8AGOXpifyU1KQi3/2dPT7lNHoVFk0unW8/1+biHCgg2V+XAKId7m15FbpUjpWf4RZuMwh+o/puhYWva/NQKpqIySMcXNtqSj4HVQ9mk0sRryAT73of8bpGKAM9zfLw+ZCDA+jTbXkR8V4GGwF0gR6GYRiGIeJg6UG7EsBcqx8YhnGVYRhLDcNYWltb2/sBxf26/7C75WCOfAP+xnF3NknHuyDk7PF+SqHcOlahEiAQ7COZSA9ZJsBbFkEID8LCZ3+d08PFTVuAt3vppd/Nqy3TnptgSHG/7v3ALa4DFD56MN2WigL+AxRug0pe++sO9kAPwzAMwxChVaAZhjHfMIzVFv9dmPaYWwDEAPzd6jmEEA8LIWYKIWYOHjy49wOKq+QfWj8RW4rekXhMOi2uo/o+e3Cc4mcioNsyKMPwL5oo7yNA06doHi7uVliQ3UcfAQq3Ai1YBBQU+QtQuMlEllT5ELpN8qvr8k0P1xZuASAO4n3ER1bLbZbVbw8mCzSGYRjmIMXBSafeEUKcme3nhmF8HcBnAXxKCI+Hi5VUybKrSDtQ5LBUy4Qyg+Z2IINpr2Wve1uA+8i3+Vgv2Ui3QhfwX5rn1lasC4hFgGChO1teh4R4clBd9uAA8trqDri3Zdrz4nx7cfa9XJsvYdHk8tqq5GtMJJwPnzHpbAKMApqD2r2c3VVU6a/KwNV6rOr+vX4uq9bd7scAbaCHYRiGYYjI5xTHcwH8GMAFQggPjU9J/AqLgkJZcueEwnIAhkfHqkl+pRxu4caW6YR5KfPKi2PlxpaPYQJuR3Gb99GP0HV7bdQZNC89mG6FLuBdxKcOF69y/jslVQCE98+2m4mRfvoUPQk0wgyaivVPEejxUirKMAzDMETkswftPgAVAF43DONjwzD+7OlZ/AqL4irnjlUgkIxG+3Cs3DofVCVe5Bm0ft7uo9dSUcC7QHNjK1QiS/P8CF3KTKSn8jUiYVFc5W09RtplVp1q/bv9rIVKZcbNVwbNhT3KHrT0DJpbKAM9XkpFGYZhGIYIrSWO2RBCjFfyRKneqSb3v9vV5M6xAryLJk8Oaj8pRuJR58M+0u0VH+H88fnIoDXtcG/LS6moL2HR5N6JK+nvM4PmMqsVaZVnSLk9cLerxf17Bvhb/+ZzOKGkytt69HIfzcd2NgEOhzH2sOfmPhqGd9HkdR+hmnToN4PmpqIBoL2PDMMwDEPEwTLF0Tu+IraN7hwrwH8GzZWz07/n77qy1+R+2IT5e15shUrd9XcVe5w+6FXEAN77wtyuEa/C4v+z995hllzVtfiqeztP93RPzqMZ5ZwlgoQQAoQwCDA5+GEMRsaGB35Oz372c/bD2b9nm2dbxtjknCQBEkECJBCSRjmNJoee2GE6pxvq98euU123unKdvW936azv09fqnu577j21a9fea6+9T5ZEN8/AiSzDVoDs9t/emy6J7OijezTLWurvkyJPYjF9Kj3Rk7Xyk7USWZ0GKjPp1qrXM/R7Or8roWgAsk8xNQmagYGBgcEixtJP0NzAKmNfjFQFLVMPTl/j3yZFvZa+v6LcSj12eQKrNGhKojuSfr3pkfRBXFZpniuDTVHCcRPrlHtZq1LlTUwqOiJXicwkFXV+N6sfSWv/mSs/I87fC9i/e7h4WjLEElQ0ZOzBNAmagYGBgcEixtJP0PL2TqUJhgFZxla9t7RVhCz9bkCOxGIke6Jbr6dcS3Af1XppP1tnX8a1RuhrGhlgVtmhKxVNsVapjMznhWWZmKcqkWkHvGZKYvroa1ZJZWo/kiexsFJKRbP6kRH6mib5LJWy28hiJ3oMDAwMDAyEsPQTNMXYZgoIMsrXsiZoVsmZBJliLSB90pQ1+Mjc85NhH9uXI9OBts1I0LJU0KYzVmLaeoByitbQrP11WXrCANpLqX3sXAHYtfQTCDMN0nB+N+29ZtvZKvF5/Ej78nRHAWRNPvP4kawV5CxEj+rBTLsWYBI0AwMDA4NFiaWfoCnGNm1AUK/RuPDUgVXOADVNf4Uk861+X2KKHeCR5qUMUrMEVq2dNHwgbYCaRQYI5AhQR7L1MgHpqzHTw/S1a2W6v5NM0LImTVnkxG3LgFJLehuZm6AkMgvRMzWc7m+A7IkukP66ZZGKAg5BMZLub4D0fbPA/F6ktX+ToBkYGBgYLGIs/QQNyCapycKyAxTszI7RZMW062UOrEbSrwUIVtBG0u+jSgxSB43O76f5bJaVLbFwZYB96f5O2UgWVj9rgJr2uk05e9EplKBlrTKpv02DLPZvWdmInqxJzFJIdKUraJlsJI8fSSkVNTAwMDAwEEIxErQsAUGWs7uA7JMV87DDUsy3aGCVkdWfGqJqWBqpqFovcyUya0Cc0kby7GPqxCJHBS2rfE2q8jMzkn5iJJCt8pO1Wt25wpmsOJ3u7yTvtTyV+NSDjeoZJ6bm8COdfeltxMDAwMDAQADFSNCyBARZRpoD+QKCtMFwuZV6krIOCcnUOzWS7m8yywDVPqaUeU0NE2ueRiqq1pNMdIFsAXHqa9YLwEovl1O/L1FBy2ojeSSOWaRrWQiKPBU0798nxdRQtsFGsOT8SJZ9zHpwtPKpU2nv7eH0tm9gYGBgYCCEYiRoWRruM1fQMkpqpoaBrlXp/gbIVx3M0hdTnQaqsynWyioVzSFNSpvoAtn66/JW0LKQBmn3sVTONjVyehiAlV2al2b6pnpvae0/zxTTzgwJWkdfdj8iRfRMZ/AjpVI2+fL0CDLJABXRk2b6Zl5FQyZ/bBI0AwMDA4PFiWIkaFmC77wVtCwViyyMbZbge2YUsMo0+CANsiQWeQMrsX1ckaFakbXK1EdfZzJU0NLuI0DvL0slsiODDLBzBZ2NNZdisuLU0Pzfplqrj75mkR2mva/Velkr8ZmJnhTXzbazJxZZDv2eGaUpiWkmRgK0F/UKUJlK/je5FQ0p7T9LomtgYGBgYCCEgiRoWYaEOL8vIV+rVWliZKYKWsbEoiujDBBIl+xmDaxaO4DWrowVhKwJWsaBJJkrPyPJ/6Y6RwFtpsRiRfpEN88+Aun20u13S7mPrV1AqVVO4phlSIhkBW1mlCZGZiUosvQpZllLkuhx10pbQTtlJI4GBgYGBosWxUjQOvuA2my6hnvJHjQ30BdivqeGsiWDmQIrNQ2wL/16mZLPDL18aq25iXTTN7NWfrL0TmU9XByg/cgi8coa6APp1lP7mNYms07fnD6V/poB2aR50yNUrW7vSbeWZKKr1pPyI1nOb8zqj8stNBBGoifYwMDAwMBACMVI0LIytuV2OiMr1VrOUIYsAWqWoDEL852n3w2QCawAJ2hMKfGazsh8Z5HLTQ3R50pzcHTDWhmS+Ez7mEHiKFlBcxO0rBLfkeS/b9u03rLV2daya+kOT1ey1KzV6lT7mHHyJpBNvilK9Di/m4mgSFlBrkxTr20Wf2xgYGBgYCCAYiRomRKLU9kCqyxDGXIx385aaVj9qcHs1TogXWCl9iFr8plmH2fHgHpVNrHIcs1a2oGWzpTJ4CB9XZaxOpJ6il3WRDdHYiEhzZsdo/4nqcRi+lS2pLptGck3MyVoQhW0SckKmqAfyZPoGhgYGBgYCKAYCVqWc6eyTMxTSB0Q5KkgrABqc+ka7qeGgK6MFQQgXWCV97OlYb5zBfp99FUiQVPrpdnHSSdBy3LdulbS0I5U8s2M0zCzJrqtXUBbV/r10kp8XXvMY/8p/UiWqk8W+WaeSrwapJRm+mZWGWCWRHdykEiNtIONgPQV5DyEmYGBgYGBgQCKkaBlla9lkUEB6aV5eZjvtMFOvZ5d4ugejJ1wLYACq45eOrMtLdL2TmU9XBnIUUHLyLKnPVMua58WkP6zVecoocs1ACJlxSLrQIa00rzJHPuYpXdwajBbMgiQbaUhKPLaf5rpm3NTJAOUqqDlIkMyVtDMkBADAwMDg0WKYiRoWQKryUG5gGA6p8QLSL7erDPpLctnK7cCbd0ZAqs8iW4K+aaWRDdlIJfHRtJUYpTEUSJBc4fWZKjEtLSRjaSSAeY4cyrtIBmV6GaRimYiKPISPSnt0SrTUIzUa/XR16Tr5SEM2lWf7kjyv5kaynbNAFlFg4GBgYGBgQCKlaClCqwGBAOrIUe+k0HilXb0fZ4kBshQ+RnMt4/1SvKhDHl7mYCUyWeexKIv5T4OU+LT2pF+LfUek1Zj8hAGQDb7z2OPs6NAvZZ8LUCm8mPb5EdyET0J1wLos3WuSH8umVoLSL6em+hmuLdLJTo/LTVhlqMSOT2S3Eby2r+BgYGBgQEzCpKgOYxy0oCgXqMAM3PlJ6U0L2u/DyDLfKv1UgVWeSpo6rDepJWfHBKvtNM380i8gPS9U7kquikPPc47JCHtkJxcia5KrBNWI/NUItMSPXMTdLyHFNGTpxKZtoKc149IEz2wU9hIjmNPDAwMDAwMBFCMBK3cQgF40grC1DAAO19AMJOS1c9TrQDSM99ivVOD+aRJQIqgcRiAle0Q4lLZOdB8kSa6eXtwgPSJ7lKooGUhKMrtVI1Mi45ekhAmTXTzDHYBskkc89qIVCV+sRM9bd00bdXAwMDAwGARohgJGkCBhAqq45CHZQfSJ01LifnuSjERTZ05lSdABdJJ8zr7KNnKtF6fbAUhzcHYeSoIaSWOuStoKRKLWpUCdbHEwkkG0x6fAdDfpPIjOWSAANljZRKoziZcL8+wlbRkSF4/siq5PVamaR8kiR4jbzQwMDAwWMQoWII2mOx3FfOdS1KDdMFO1mC4vcdh9QUDq8mE+zgz6pxLliMZBNJ9tjyBVZqeH3ekecb10iZNeSoIbd1AqSV5Yi1ZQXMPIBYiKLKe3aWQxv5zV9Ay2L+kVNoqZatWA+n8sQ5SCUi5j+aQagMDAwODxYuCJWhpK2g5KxZpGNuswUfa85JciVeG84QAep/Tw8nOS8pdQVCJborKT57gO9U+5pR4qb9LU43JGnxbVrq+yKlhoKUj29AaIN30zbySWzfRTWH/WSsxQLrKT57DxYF0RI9t56vEt3bSNU9FhqzIXq1Os486pKJAykq8qaAZGBgYGCxeFCxBSxkQSFTQ6jWqIuQJCNLIDtX5blkkXgD9rV1PJinTFVil6R3J09if5vy6vKy+sq0kVYS5SRpIktUegXRnauUNUNMcnq6jogukq8bkqqCtTJ5US9r/3CTtea7rtjJdoptrH1cDs2N05l7sWtKKhpxEj4GBgYGBATMKlKA5gVUqVl+A+Z4ZpYQnb7AzmbQSkzOJSVP5yVtBaGkHWpelkB2e0hCgppEBWvPSsLRQQXuifcxpj0DK6mCOqaJqLSDZenn73Tr6SOKbVHY4lWMaJpC+Et/Smb1anWofNdjIspSyw7yJrnqdOLiHi2dM0NJOaM1L9BgYGBgYGDCjQAnaaqA6k4zVnxykwK/cmm2tNNK8vAEqkC6wyjOuHUgZWOWsIAC0l2mSplz7uJoqg0kGd+iQeAHJEgst+5hC4jg9PG/DWdcCkn22vIlFqZS8n6lWIUIkzz4uW51c4juZs1qdRpqX54gJha7VKRLdnAnasjQERU6ix53QmmAfa1WyESNxNDAwMDBYxChQgpay8pNHTtbRSw30qaojeRKLNXQgbhLkZr6zVNDySPMSVn4q05R850ksUgWNOXrCgHSJbt5+N4D2MY3EN881W7aGviZJmnQcCpx0cIeyo7wV5KQSXx3VOkCuyprajwhV4icHaciNGgiTab2EBIUOGzEwMDAwMGDG8zNBmxzMx7KXyk7QmCDY0RKgrqbgO8m5azp6R9TrxK41TBLF1s7s63WuTBbo5+0bBOYTi6SVnzz7WG6lgFMq0U0jcZw8CSxbm30t9T6T7mNLZ/aBJGq9VBVdHUlTgmQ3b6Lbtoz2JokfUb1jefxI0n10j88QTD6zHo2g0LkyoT1qsBEDAwMDAwNmFC9BS9KrlTewAhw2Okli4QRfuRKL1QDs+AA875lTQHppXt5Ap3ttsgB18qTz++uyr6WSz0QBsYZBAkkrP25ikbNiUZ2mYRJRqM6SxKt7Tfa1lqXdx5zViqT7mHeqKOCpfCa1/xxrWZasH+laRWfzVWaif292LN/xGUD6HkwtfiTBPk5o8CMGBgYGBgbMKE6Clipo1JBYLFudbC0VEOSpWCRNmlz5To7P1tZFrH5iqWjefVwDTCTZRxWg5qn8KGlewqAxb59K0orF1FB+iZfaF2VvYXAD/RwJWvtyoNyWMLEeyLcW4OyjQL8bkDKJ10H0JPQjkyeBUmtOG0k4WVTX0Brva0VBB9GzbPU8iRO5lrPX3Tn8iIGBgYGBATMKlKAp+VrMQ7peJ1Y/d2CVsPIzcRJo7wVaO3KslbDnR0e/m1ovUdCYs4Kg1qpMxld+3AqaQOWnXqffybMW4EhTEya6eSVeKuCM+2w6CIM0lZ+JE/mrFV2riXyoVaN/T0di0Z0w0Z2bop5IqQryxEna81IOl51U4qujJ7LcQgRH3D4CmhJdp4IWN9zFtf+c97aBgYGBgQEjipOgtffQQaxxAcHMCGDX9CQWiQPUnGxt0p6fiRPO7+dcr3tNwsBqKH9glTix0PDZko5snz5FEq/u9dnXApJXR3TIKVXAmbSCpsMmkyYWuuw/bkqfStBy9WmpJCbms+noG1R/n1Sal3cfuxJW0Nx7LWcS0702YVVLE9Fj1+Jl4BMnqBKZZ9iQgYGBgYEBM4qToFlWMjZax7AJ9fezY/H9HJMD+gKrpElMT87EontdigqapsQiNvkcIGldnkqkGtmedB/zXje1j3HDXXT18gHxAbGuCkISgqJe15ugxSWf48cp8G5py75WuTVZ5UfH0QjAfLU67vzGZhA9uf3I2vh9rFWINMtN9CRUUCjJbZ5qtYGBgYGBATOKk6ABVF2JCwh0TfFKyrRPnMgfDHetAmAJJhZr518rDHOTNJRCx7AVIEFAfFKPLClJYuHuY05pXvdaGtkeu97x/Gu5+xhHUCipqAbSILYSOUxVjdz76CQKE8ejf2/iRP6qJ5Cs8qNjIAlA161eiR/rr4PocW0k5t4ePwHA0lBBW5fAH2uQUwIp/PHJ/NJlAwMDAwMDZhQrQUvC2OoYkuD9+9iAYCB/gFpuofXGYwLU8eM04KN9eb71VD9HVM+Pei89G3KuJbiPQLLkU9ekN/X3UevZNu1l3mpF2ZFtxVbQBoC2nnxHIwDzQxmiKj86CQMgWQWtR4ONLEsg8dUxVVGtBUQnu24lMudna+8BWrucBCwCE8cpYSq35lsvCWE2ocuPJB2So2EfDQwMDAwMmFG8BC0uQNWVWCTpnapMA7M5R5or9KxLkFicoN/LK9/pXgvAjh5wofZRV+UnVpqkifnuWZ9gH5WN6ErQIj7bzChQncmfoAEJA+IT+vaxOkPvP2otQCbRVf+upYKWoPIzfsz53bx9igkqyNOnqBKZt7fUspzPFleJPKnHHrvX0gCg2Ynw33H9saZ9TEL05N1HAwMDAwMDZhQrQVu2lpKKqJ6f8WPUJJ6758cJGqOqWjom5rnrrY+voOmYmAckC4hVgJo30W3toCmXsQGxps/W4+xjZOXnJFUa2rrzreVWfiL20U1idEnzYgLU8WNAz8b8a6nrnsT+c1d+uulaRFV+bHueoMiLJPs4dgzo6M13ADcwn5hEJU2ujWhKrOMqaOPH9YyhT+VHctp/5woaABS1Vr3uED0mQTMwMDAwWNwoVoKmen6iKj9jxygYyDOuGpgPKFSAEQRd1TrAYb4T9I5oTdAikiZdzLd6jah9nJ2gSuRyDYlF93rq+ZmKmAioBjLkrkQKBqhAMvnm+DFguQZ7TJNY6OgdjLP/6VNAbU5PortsDR3oHHX0g+5EdyzKj2giQ4DkFTRdhAEQnezqqsSXSvPkSxgmB2g6qw4/YmBgYGBgwIiCJWiqqhUT7OgIhsutTl9Y1FpH6auOgKDHkV1FVQd1DJsA5pn6uMSipZOqCHmxfEPCAFXTPnpfM3A9TfvY1kX9gJGJrqaJeQAF8GPHwquDtu0QFDoCfUVQRATEY8eo360jZ08kEJ+guYSBpiqr9zXD1tNxzTp66T6K81mAJj8SU0FTlUgtFTTnNSL38Rj50bz9bgDZddQ+jh2hryZBMzAwMDBY5ChWgrZ8E32NDPY1BVZAPGM7pjFB615PfShh1cHKNPUDaZF4JagOTpygz69jXHXPxpjASu2jjsqP8xpRVYSxo/qCuO61MVUmjZXI5RtpsmbYWVDTp4DarJ4ELUmiO3ZE3z7G9WCqfdRR+VHvOZbo0bCPlpXcj+iqoM2Nh1cHp4aowqyLMABiErQT+vxxYqJHwz4aGBgYGBgwomAJmhNYKaY0COPH9VRiAHodFTwFYewoseM6DkV1A+KQYGfU+cy9W/Kv1dZF7znqs40f1xfoqAA1rDqos4IW1zto205isSn/WoBT1YrZx9ZlNGFPx1pAeGKhM9Ft76HqWGRioTFBi+vBVIG5lkRXET0h161ep/eiYx8B2qO4RHfZGqClPf9acdXB0X762rs5/1pdq4Bye4w/1pToAgkqaBoJMwMDAwMDA0YUK0HrXkuN4mGB1dwk9TKJVdCcAFVLlSku+HYCK12JxfLN0YHV2FE91TqA9siuhfeqaK2gxQSoU8M0nVBHgArQ64xG7ONov76AMa6C7MoAdREUMb2DY0c12uNG6gsLmxqpM7Fw+8JCrtvkANmrVoIiZh91rgVE+BElA9Rw3SyLrltcgqZr7H3PBmB2LHxq5PgxoNSipyfSwMDAwMCAEcVK0Erl6IrFmGaJS88GCtZqlfD1dAXfKvBUgagfboCqMSAOC6xUlUlXEuMGxCHXbVxNzFuWf61Wp6IZ9tm0J7qb6P2HVQdH+4E+DVVPYD6BDfts4xoTXSCaoKhV6N902WOs/R+mQF9Hlam9m+wt1B6V5FAX0bMherLo2DF99qgq7GGkgc5EF6D3HbaP1VmSreqo+gPx0tSxY1SJLZX1rGdgYGBgYMCEYiVoQHRiMXKQvq44TdNaGwDY4UGqzgpC9zpif0MDVI3MN0CBdVgQNzngVJm26llreUyvythRfVUfgILPkcPB/8axj3YtQlJ2WF+AGtc7ONoPwNLTpwU41cEQe5w4AcDWSFCoxCKCoNCVVADRicXIIfrap8n+ezYAlSlgZiT433VKRZVdj4bZfz/JErtyHsCtEOVH1LXURVDEET1jR/SREwYGBgYGBowoYIIWUUHTHVi5QWNAsFOvEdOuKyAolSm4CgusxvrpvDUdFQSAAsLpYRo+4ofufXSleRGJta4gDqDEMnQfVS+fRqmo93W9qExTsqsrQWtpIxsI3cdDtNctbXrW69tKyWB1buG/aU90VQUtIrHQmaD1bIjeR0Cf/SvbDiIN5qboPtTlR9q6qDcsyv6Xb8x/DInC8o3kB+v1hf8m7kcO6bvXDAwMDAwMGFHABG0TPaCD5EIjh6gKpUvi2OdU4k4dXPhvY0fozJ0V2/SsBVBwIVZBUIlFQLLrBla6Kj/rgJYO4NSB4H8/dWh+r3WgbysFw0E2MnbE6VPRdJhtb0TFQiUxWpPPiKrWqYP6gmGAXsuuBwfE6vPqssnutU4FOWAt23bsX+M+Lt8YXvkZOUTHJ3T06VlLXZORAD/iVv2361kLEPYjm8gPTgYcNeHaiKbr1rcFgDXvn7yo1+iz6VJPGBgYGBgYMKJ4CVrfaSQXmhxc+G8jhyj40NWDEBUQqGRDZ4LWtyVCmtevr+oDzL9W0GfTHVhZFl23oARt+hQNdtG9j5XJ4HH0pw5QwKytgqAStKAkxtlbnYnFim3A8P7gfxs5qDdAdROLABtR70FXYl0qO0lTQGIxNUzHC+hMLFacRklF0Dj6kUP02XUM/wHm90jKj0RKfDUnaOq1gtYbOQxYJX3yzZZ2eq0gPzJ2lI4P0LmPBgYGBgYGTChegrbSYZqH9y38NxVY6UJLO1XjgphvrsBq/ChQqzb+vF6j9Vaerm8t9VqnAoL9kUM0REHHAcQKK06L2UeNiYVKiAITi31697GjF2jvDamOaK4yAWRvo4cX2kh1joJU3ZVIICSx2E+9bm1d+tbr3RJciVQ2ovPeVhWroGBftx/pXEEVuaBKvGv/GitofVspEfNXkOemqBoq6Ud6Nuo5pFqh77TofdRp/wYGBgYGBkwoXoLmBlYhAYHOwAqg1wsLCEot81JBLWudRpIyf5A6ehiozQErz9C3Vs9GGhYQlOjqlsoBlFicCgr0D87/uy70hSRotk2VH50BqmUBq04HhvYu/LfhvUC5TW+CtnI7Scr8ssPRwwBsvddt+SaqgIRV0FZqTCoAer0gexx29nbVmRrXcmzAX420bf1+xLIc2W2IH2nrAbpW6luvbytVkP0qA+Uzddp/32kArBDCjMuPHAheS/27gYGBgYHBIkcBEzQVEPgCq9lxYOK4XiZarRcUWA3vJ8a/3KJvLRWADu3xreUEPzoDq1LJCYgDEt3BXcDqs/WtBVAgNzu6UHbIwXwrGxj2JU1TQ3SOks59BOi6+dcCgME9tJbOsd8qAPUTFByVyHIrJWlBAfGp/frvtVVn0nTImbHGnw/toURRZ/C9MoTomThB57Hp/mxhlZ/h/fS5dMkpAY8f2d34c0UirNJI9LR2EAERlKAN7gZWn6VvLYDse/wYUJlp/PmpA2QjOskQAwMDAwMDJjQtQbMs688sy3rCsqzHLMv6rmVZehoRWtqdoNEXWA3uoq9rztGyjIuVp5NcaG6q8een9utvSFfBzKBAYAXQZ/NXfirTVEHQnaCp4NofyA3toZHfOuWUnX00mMS/jxyJLkCVzdF+OvfJi6Hdeqs+gCdBO9D484Hn6Otqzfa/+ixg8LnGn81NUZCsu4IWRlAM7aFKjK4JpgDJDjv6FhIUah/XaLb/ldvJZ/jPy+PwI2ofF9i/c6/rrMQDwZXPqWFgapDJj9gLSTNlIzrllAYGBgYGBkxoZgXtb2zbvti27UsB3AHgD7W98srtCxOLAZWgnattmfnXs+cTQIBGSg88B6w5T+9aXasocPQz38P7gNYufdMpFVae7gSNnhHZQ3sB2PqZb3VdBnzB/slngbWa9xGgwNC/lrIZ7RW0M0ia6k2aalUK/nXv4/JNNBFzYFfjzwd2Ap0rgWWazrdSWHMuBfoNNuIkULoJAzdB893bQ3v0J7oA2YG/8jnI5EfWnkdnC3ptpDpLn1X3Wn1bSb4cVEFbtkYvGQI4++hL0FRyqDtBUwTcwM7Gn598Flh7vt61DAwMDAwMmNC0BM22ba9OaRmAgJnnGbH2fHoge4PGgZ1AqVW/NEklD96A4NR+miS5TnNAYFnAqrMWMt8DOykY1imDAih5qM40stEqQNUdWK3cTkHjiafnf1av02fjCKxWn0376B2UcOIpSm60S/OcRMV73UYO0lQ53YlFqUwB/cmnG38+sJNsVbeNrDmHbN3bF3niKfq67iK9a63YDsBqrKDV65RY6K76ALRfJ55p/NnATuoJ002GKDLn5LOetZ6jQ87XXaB3rVKZbHLQV4kceI78i26sOovkw96eN9ePaF5v9TkArMZ9rM6SzXAQPQYGBgYGBgxoag+aZVl/YVnWYQDvgs4K2voLqQneK3Mc3EVBic6eMMDpIWptDAhOOkHdWs2BFTBf+VGJhW0Dxx4HNlyif631F9PX40/M/2zgOQCW/oC4VKZg/6QnIB49TP0+HIHVmnOo523ixPzPjj9ByaBuG1lzHvW/ePdRJaK6q6wAsO7CxkTXtimx0C3vBeYlk95q5HEn0dVdiWztoEReJYAA3eNzE8B6zckgQK85eRIY99jIwHMkb+RIdAFgwONH1DXUnaABlBh5SaV6DTj+JI8f2eD4kWOPz/9sYCcRMrqHhLR1kd157X9oDw3OMRU0AwMDA4MlAtYEzbKs71uW9VTAf68HANu2f9+27S0APgvgQyGvcYtlWTssy9oxMDCQbGEVrKmA2LaBo4/xBDrlVgp2vAnaiWcAWMBazdIkANh4KQWNakrf2BFipzdcqn+ttecDVrkxsDqygxImnePTFdZdEJLoMgRW6jXVZ7NtClA5Av22Lkpkjj42/7MjD1Niv/5C/eutuwCYHAAmnMOBR/uBmVGeZFAlFt6k6cSTZCO6E10A2Hg5cPTR+e/V/2+8TP9arh95kr7W6+RTOPxIezfQu9Vn/09TEsNRHdxwKSW3U8P0/eBuOktu46X611L72OBHHqZkUOeAHIW15wX4Y5gKmoGBgYHBkgFrgmbb9its274w4L9v+n71swDeFPIat9q2faVt21euWbMm2cJrzqPEQgVWo4fp/LAtL8z+YaKw8TKg/6F5SeXRR6ha17ZM/1qbr6Sv/Q85az1GXzkStNYOCmqOOYluvQ7075h/D7qx7kIaLjF2jL4//AAdVcAREG+6nGzk8AP0/Wg/TZDkSNAACnyPPTZf+TzyMK2lc7CFgkr61HU79DP6uuVq/Wt1rSQJm9rHep3uu3UMiScAbLqCSInx4/T90UepWqe7TwuYtztF9Aw+R4kumx+5FDj80Pz3Rx4lkocj0d18lbPGw/T12GP0laOC1rmCplSqfazO0XVT70E31l9MvYPTI/T94QeA1mX6ZdkGBgYGBgZMaOYUR2/zwesB7Az73dRo7aDg98BP6PtDTvC49QXalmjAtmuB6WGSJ9UqtO7263jWWnchBaT9O+h7ziQGoMTvyA5nqMVeYGYE2MwQ6AO0jwCw/8f09cB9FJC3d+tfq20Z2cjhB+fXAviCxo2XkZxytJ/kZEcfo8/GstblVJ3b/0P6/tBPqW+KK/nc+kLg0P3zFabpU8Bp1/Cstely+qoSi/6H6HNxJDGdK6hH8KDyI06iu5UpQdv2EmD0EI3bn5sE+h/k8yMbLyPZrSJ6VBLD0YMGOMnng0RQnHiKelu3MN1r266loTzqnj5wH10zM8HRwMDAwGCJoJk9aH/pyB2fAHAjgI9offWzbqQAZ2oYOPBjoK2bpycMmA9G998LHHkEmBsHtr+UZ61yKwX2e++mYGfntyiI45AcAsBZr6SA+/ADwJ4f0M+4AtT1F1NQvP9HdG7dkUfmkzYObH0hJbpzk8Duu2j0vuq7043TX0Zfn/s2BYxz48A2piSmvZs+2957yEYO3EfkBIecDABOezFVlk48Bex1bOSMG3jW2nAJJRK77qLesMMP8q0FkB/Zfy/ZyIF76cgH3b11CsrWD9xLCW9tDjj9ep612ruJ7Nl7NyXWz30HOPMGnkQXoH0cO0IyR2UjW5gIs81X0VTb/T8CJgaIOOP0IwYGBgYGBprRzCmOb3Lkjhfbtn2zbdtHtC5w9quIRX38C8BTXwPOex1f8LHiNJLPPPZZ4IkvUEWLi/kGgAvfRP1Zj32Oqlrn/BzfWme+HCi3Ac98A3jsMxQg6568plAqUSLz3HeAB/+dJtid+UqetQDg/DdQ382O/wT23E3JaInpllhzNklvn/468OSXiTA4+yaetQC6bieeAh75JA3IYbWRV5CNPPJJ+nzrLgJ61vGs1doJnPdasscnvwzApuvIhbNuBGqzdK89eztw4Rv1DwhRWHMuHZPw2OeAJ75ElfKtL+JZCwAuejNV0B77LEmLz30t31pn30QVu2e+QZ/vtGuB5XqOvlyAljZKyJ69HXjo4/SzM1/Bs5aBgYGBgQEDmjrFkRUbLyd53l2/R1Pernwv73rXfITkXTs+AVz+i9Sbw4UL3wS0dALf/DWgoxc4//V8a7X30HoP3kq9RZf9N761AOCaD5Nc9Ad/QlJKrmodQK+99gLgu79PEx25beTSd1Jl5NHPABf8PCUbbGv9AtnG7R+hA5cveTvfWt1rgYveQsHw8SeBFwfO+9GHS95BFbvv/gHd45zDH7ZdS4nTt3+LKlpX/BLfWqUS8OIPk6TyiS8CL/gVnj5WhYvfTmTSbR+i8884CYNlq4kkuO8f6Ey0y36Bby2A/PH4MeBHf0kV1g1MlXEDAwMDAwMGMJWUFgFKJeCN/04B6kVv5ut3ULj4bTQ6+tRB4Prf5V2rsw945xeAu/8CuP5/UoDMiZ/7G5oIuOFi4Ir38K618TLghj+gARfX/x5ftQKg137jrcDdf0b9P1w9YQov+hCdfzY1BNz0l7xrda8BXvsPwGOfB174Ad5AHwBe/odUsW7poHuBE2e8DHj1X1Nl/E0f57WRciv5ke/8DpETus829OOK99Bh1RPHgWv/B+9aPeuAt38O+PHfAK/4E/IrnHjdPwGzY8DWF/PbyLZrgZf8Jh0Gf8Mf8K5lYGBgYGCgGZbtPah3kePKK6+0d+zY0ey3YWBgYGBgYGBgYGBgkBmWZT1s23bgaPTiShwNDAwMDAwMDAwMDAyWGEyCZmBgYGBgYGBgYGBgsEhgEjQDAwMDAwMDAwMDA4NFApOgGRgYGBgYGBgYGBgYLBKYBM3AwMDAwMDAwMDAwGCRwCRoBgYGBgYGBgYGBgYGiwQmQTMwMDAwMDAwMDAwMFgkMAmagYGBgYGBgYGBgYHBIoFJ0AwMDAwMDAwMDAwMDBYJTIJmYGBgYGBgYGBgYGCwSGASNAMDAwMDAwMDAwMDg0UCk6AZGBgYGBgYGBgYGBgsEpgEzcDAwMDAwMDAwMDAYJHAJGgGBgYGBgYGBgYGBgaLBCZBMzAwMDAwMDAwMDAwWCQwCZqBgYGBgYGBgYGBgcEigUnQDAwMDAwMDAwMDAwMFgks27ab/R4Sw7KsAQAHm/0+DBY1VgMYbPabMFjUMDZiEAdjIwZxMDZiEAdjIwZxOM227TVB/7CkEjQDgzhYlrXDtu0rm/0+DBYvjI0YxMHYiEEcjI0YxMHYiEEeGImjgYGBgYGBgYGBgYHBIoFJ0AwMDAwMDAwMDAwMDBYJTIJmUDTc2uw3YLDoYWzEIA7GRgziYGzEIA7GRgwyw/SgGRgYGBgYGBgYGBgYLBKYCpqBgYGBgYGBgYGBgcEigUnQDAwMDAwMDAwMDAwMFglMgmZgYGBgYGBgYGBgYLBIYBI0AwMDAwMDAwMDAwODRQKToBkYGBgYGBgYGBgYGCwSmATNwMDAwMDAwMDAwMBgkaCl2W8gCSzLuhnAzT09Pe8/++yzm/12DAwMDAwMDAwMDAwMMuPhhx8etG17TdC/Lalz0K688kp7x44dzX4bBgYGBgYGBgYGBgYGmWFZ1sO2bV8Z9G9G4mhgYGBgYGBgYGBgYLBIYBI0AwMDAwMDAwMDAwODRQKToBkYGBgYGBgYGBgYGCwSmATNwMDAwMDAwMDAwMBgkcAkaAYGBgYGBgYGBgYGBosEJkEzMDAwMDAwMDAwMDBYJDAJmoGBgYGBgYGBgYGBwSKBSdAMDAwMDAwMDAwMDAwWCUyCZmBgYGBgYGBgYGBgsEhgEjQDAwMDAwMDAwMDA4NFApOgGRgYGBgYGBgYGBgYLBKYBM3AwMDAwMDAwMDAwGCRwCRoBgYGBgYGBgYGBgYGiwRLIkGzLOtmy7JuHR0dbfZbMTAwMDAwMDAwMDAwYMOSSNBs277dtu1bent7m/1WDAwMDAwMDAwMDAwM2LAkEjQDAwMDAwMDAwMDA4PnA0yCZmBgYGBgYGBgYGBgsEhgEjQDAwMDAwMDAwMDA4NFApOgGRgYGBgYGBgYGBgYLBKYBM3AwMDAwMDAwMDAwGCRwCRoBgYGBgYGBgYGBgYGiwQmQTMwMDAwMDAwMDAwMFgkMAmagYGBgYGBgYGBgYHBIoFJ0AwMDAwMDAwMDAwMDBYJTIJmYGBgYGBgYGBgYGCwSGASNAMDAwMDAwMDAwMDg0UCk6AZGBgYGBgYGBgYGBgsEpgEzcDAwMDAwMDAwMDAYJGg2Ana1DDw6GeAQw/wr2XbwK67gCe/AlRm+Ncb3A08/ElgeB//WpVp+ly7vwfUa/zrHX4QeOxzwOQg/1rjx2mtIw/zr1WvAbu+Czz1NWBuin+9wT1k/0N7+deanXBs5Pt0L3DCtoFDPwMe/Szd49yYGAAe+bSQjdSBnd8iG6nO8a938lnyIyOH+NeamwQe/yKw9276nNw48BPg8S/I2Agg67cmTtJa/Tv416rXHb/1VbqG3FB+a3AP/1pzk/PPNm6/BcjayOQg+UgRG6kBz32H9lLCbw3sIr916gD/WpVp4Ikv0bNNym899nlg+hT/WmNH6V47+hj/WvUasPPbwNPfkImRT+6kzyZhIzNjwBNfBvbeo9WPtGh7pcWGwd3Af9wITDsP5+v/F3D9/+RZq14HvvyLwLO30fdrzwd+6dtA5wqe9XZ+C/jye4DaHFBqAd76aeDcn+NZa3oE+M9XAyefoe/PfwPwpv8Aykym88O/BH74Ufr/ZWuBX7wNWHsez1rHnwQ+9QZgynlYvvwPgZf8Js9atSrZyM476PsNlwDv/iafjTz9DeCr7wPqVaClE3jLfwHn3MSz1sQA8MmbgYFn6fsL30Q2Ylk8693958C9f0v/v2wt8N47gVVn8Kx1/EngP38OmB2j72/8c+DF/51nrVoV+PzbgT3fo+83Xgb84h1AezfPek9+BfjaLYBdA8ptwLu+DJx+Pc9aEwPAJ26cJ5QueSfw+o8BJSaO8Lt/APz0n+j/l28C3nMHsPJ0nrUA4Md/Q3YJAF2r6LqtO59nrRPPAJ96HTA5QN/f8AfAdb/Ns1a9Bnzp3fN+a/3F5Le6VvKs98xt5Ldqc0C5HXjLfwLnvoZnrclB4FOvB048Rd+f/wbgzf/JZ5P3fBT40V/S/y9bC7znW8Cas3nWOv4U8F+vAWZG6PtX/Alw7a/zrFWrAl/8BWDXd+j79RcBv3Qnn996+uvAV94377fe8QXgzJfzrDU1DPzHK4Ehhyy4+G3AG/6Vz0a+/8fAff9A/9+9nuJIrmfbkUeAT//8vI3c9JfAC3+VZ61aBfjc24C9P6DvN18N/MJXgY7lPOs9/gXgmx+k+Ke1C3j7Z4EzbuBZa+wo8MnXAUO76ftL30XPNg3xTzEraOqhYpWA930PuPjtwA//D7D/xzzrPfhvlJzd8AfA2z4LDO4C7vgNnrUmTgJf/wCw7kLgV+4lZ/jVXwbGjvGs963foGT3bZ+hBOaZbwAP/TvPWvt+RMnZxW8D3vtdADY5Yg5GrjoHfPX9QLkVeN/3gQveCPzgT4ED9+lfCwDu/2cKcl75Z5QsnXgGuOv3edYaOQR849eAjZcDv/JjYPVZwDc+AIyf4Fnv278JDO+lB+VLf5eY9geZbGTv3ZScXfYLFATYNSIrOJjN6iwFHm3dwPvvBs57HfDd/w30M1XS7vsHSs5e9VFKcI8+Btz1ezxrjRwCvvkhYOsLyY+sOhP40i/yVZtu+xA9yN75ZeAlvwU8/jngsc/yrLXz25ScXfEe4D3fBuYmKBHlqv7vv5eSswvfTL7EKgNfeS+P36pVKIGxSuQjL3oLrb3/Xv1rAfN+6+V/SETgyWcp+eXAyGHyW+svAm75ERFz3/hVvmfbd36HntVv/xzwst+nZ9uDt/KstfceSs4ueSfw3rsA2A6BxmCT1VmKf1o6gF++G7jg5ynwP/yg/rUA4Kf/l5KzG/+CEtwTTwPfYSLDRw4DX/9VYPNV5LdWnwN85Zf4/NY3P0hrvuOLwEv/J/DEF4FHP82z1q676Blw2X+jZ1t1hs9GKjPko9qXk42c+1rgzt/jU4n86K8pObvpr4A3fhw4sgO4+8941hrcA9z+68CWF5If6TsN+Nqv8NiIbdNaY0eAd30VuObX6bn26Gd0vb696P8DcDOAW88880w7ER77vG3/0XLbfurr9P3spG3/fxfb9r9ca9v1erLXSIrZCdv+y9Ns+1M/P//ad/8FrX/0cb1r2bZt3/4/bPtPVtn2wG76fmifbf/JStu+7SP61zr6GH2O7/8pfV+v2/an32jb/2ezbU+P6l2rXrftW2+w7X+40Lbnpuhnz9xG6z/6Wb1r2bZtP/QJeu1nv0Xfz03Z9t+dZ9sff6V+G5katu3/s8W2P/OW+Z9993/T+see0LuWbZMt/Olq2z51iL4/+RzZzLd/R/9a/Tvoc/zwr+j7et22/+tm2/7rM+je0Il63bb/34vpXq7M0M8e/xKt/9jn9a5l27b9wK302ru+R99Pj9j2355j2/9xk/61poZt+8832PYXfmH+Z3f+L9v+o975e10nvvp+2/7z9fM2cvxpWuuu39e/1oGf0j7e+/f0fa1m2//xKtv+q9Nte25a71q1mm1/7IW2/U9X2XZlln726Odo/ae/oXct2573W39/4by9P3sHv9965nb6fm7Ktv/2XHoPHH7ro1ts+zNvnv/Z9/6I8dn26+S3hg/Q94N76Nn2nd/Vv9Zhx2/d81H6vl637U++jmxyZlzvWvW6bf+/a2z7Hy6a91tPfJnPbz348Ua/NTNGNvKJV+tfy/Vb75r/2Z3/y7b/uM+2B3bpX++rt9j2n61r9Ft/3Edr6sbBn9E+/vhv6ft6nfaQw2/V67b9zy9w/JZjI499wfFb39S7lm3b9k/+kV57z930/cyYbf/VdroHdGPsOD1rvvSL8z/71m/RdRvco3+9r/wy2eTYMfr+2BP0bPvBn+tfa+89tI8/+Uf6vl637X9/uW3/3fnz1zEGAHbYIbnPkqig2bZ9u23bt/T29ib7g/s/RhWm815H37d1UWZ7/Ang0P1639xjnyOt8Et/Z76k+cJfI2bip/+od62ZMSrdXvw2YPWZ9LOV26maoN6HTjxwK1UPlKTLsoCX/S+Sez3xRb1rHX6AWJVrPgK0dtLPzn0tXcef/KPe/gDbJqZ0/UXAOa+mn7V2Ai/5DXof/Q/pWwsg/frsKHCDp2J27W9Q6V13pWlqmBicy34B6NtCP1tzNskOH/0MSVZ14mf/ArT1AC/4AH2vbGRygGxSJw7+lORI1/020NJOP7vwTcCa84AH/lXvWrYN/Oz/kRRDyWc6eoEXfRA49FPg2ON613v4v4DKJPkRhWs+Qp/z/n/Su9bEAMmELn/3vI2sOx+46M3Ajv/S3x/5wL+S7O/qX6HvSyXg+t8jafHTX9e71t67SY79kt8EWtroZxe/FVixnfyIbhz6meO3Pgy0LaOfnfNzvH5rwyXzsj/lt47sIMmSTjz+BWBmlJQhCtd8hCTTD31c71qTg+SfLn0XsOI0+tmqM+j+fviT+v3WA/9Cz+gXfZC+tyxqg5gaBJ78kt61Dv4EOPEkVWAa/Na5+it2tk1xx+ar5v1Wew/wol+j98Hmt353/mfX/DrJU+//mN61JgZInXHFexr91gVvpB7hyrTe9e7/J/Jb3mfbS3/H8Vtf07vWnu9Ti8BLfmPeRi56M8mydceR9RrFHaddA5zxMvpZew/w4g8D+35IvVs68cingMoU8DKPH3nJb5EKYMcn9K41chh46ivAlb8E9Kynn62/iHzyQ/+u/9n2s38FulYDV72fvrcs4PrfBcb6gWe+mfvll0SClgonnqZE7PJ3N+qEL34bBVgPf1Lveo9/gQxg6wvnf9bZR+s9ewcwO65vrae+Ss7wqvc2/vyKXwJqs9RToguzExQ8XfAG+jwKm64g6dyO/9S3FkAJX2sXcMk75n9mWcDVt5DjOvaYvrWOPEJB3FXvb9QJX/w2eg+6E4tHPg1suJQCK4XOPnpIP/llvTbyzDeof+OKX2r8+QtuIamX6pPUgdlx6hm59J2NWvItL6A+TN1J/COfAtp76YGsUCrRA/voo8CxJ/St1f8Q9Utd8YuNNnLZf6MA9ZFP6VsLID+y9cXkSxS615I86amvk2xJF574ItnIlQF+ZG5cr41MDQPPfRu46K1ElClsv47kSQ8z+JHOFbRvCqUycPX7KYkZ3K13vcc/RyTWpe+a/5llAVe9j/yW6m/Sgf6HHL/1yz6/9VaySZ2SUdsmv7Xxcp/fWgFc5PgtncHO018nm7z6/Y0/v/oWeubt/Ja+taZHqEf30ndSYKqw5WpKmh7X7Lce/qTjtzw2aVnkt448TP1iunD4ARqKcOX7FvqtcjsNn9AF26YhJKddC6y/cP7n3WuA815LzyKdMt/HPwfUKwF+6xeJAH1Gt9+6k9pjFPECANtfCqw+W5+ETeGxz1EyeOGb5n9WKtNnVc8iXdj3Q2DkIPkRLy59J8mzH9cY/9TrJAndft18UQEAetYRAf/YZ0m2rQtPfQWw6ws/29XvpwKG6u/WgfHjwK47yf5aO+Z/fvoNQO8WeqbnRPEStCe/QkbmNXSAgoNzXkOThnQ5jZHD9ND3Ol6Fi94MVKf1Plh23kFM8MbLG3++4RJg7QU0+U0Xdn+XHozehEnhorcAJ5/WNx2wViG24ZxXNzpDADjvZqDUqvez7bydbOS8mxt/3t5DP3v6a9T4rANDe4k9DdrHS95OzNKeH+hZCyD7X31OY6APkM2s2K63YrHrLiIG/PZvWfTZdD5YahW6d8+7uTHQByhAtcpaGCsXT36FejhUFV6hsw8465VEvujqezu5ExjYGe5HZkfpftSFnXeQfaw5p/Hnp72Y9PpPfVXjWt+iwPuStzX+3LLIjxx+gB50OlCZpmTwvNfNV88ULvh5AJZeP1KdA569napZfps87/VkkzpJs2e+Sb7w/Nc3/ryjl97D01/X168y8Bz5+EvfufDfLnwz+a199+hZC6B9Wns+sO6Cxp9vugLo3UrBvi7supMC/Qvf3PhzyyKS7vDP9E01rc6STV7whoU2ctFbAFjzA1h04IkvEcnof7Z19lFF7dnb9PmtE0/TYIQL37jw3y56KwXEe+/WsxZA9r/x8oWDVU67lgJincTSM98gG7nk7Y0/tyzyJYfu1zeJc26SbPL811NPvBfqmaDTJz97G5FK5/gGy3WvpWfbU1/TV/k/+gglg5cE+JGL3kw2cvCnetYCyI9svpqUZV5sewlVup7+hr61nr0dgO3cxx6UShST7Lsnt40UL0Hb8z2qZi1bvfDfzn8dBTsHNA0Lee7bzuu+YeG/bb4a6NlAQaUOzI7TkJNzX7NwOoxl0RTHww/oa4Tc832gow/Y+qKF/3bea+mrrgdL/w5gamhhMAzQtLAzXqb3IbbzW8C2a4MnkZ37GpL19GtqqFaB9dmvWvhvW14IdK6ct6O8mBklydV5NwfbyAVvoEEsuuRCO++gaWRbXrDw39S13K2JsTr0M7p3gyZRdq0kO9V1rwHkR7ZfFzxl6vzXAxPH9dmIsm1/UAUA26+n+/C5O/WsNTFAe3lOwGQ8y6KH9v4f66uO7Pke0LORKsh+uH5EE4l14D6qEp8f4EeWbyQb0elHDv2UAowg/79sFfmYXXfpWcu26b2ffj0lZH6c82qaWHz0UT3r7Xbetz+IA+hztffSMBYdmBykZ1fQPloWXc+995CqQweevZ1sctMVC/9NSUf3fF/PWsomgyZRLltNUkRdfsu26Xlzxg3BExTPex0NMzimyUaevZ1kakHP7TNeRkmALmJp7BhVG4OmVZdKwFk3ko3oUhrs/h6RVX6iE6DKj13X99zeew8RHkH237sZ2HSlPj9Sr9N9e+YrGqs+CmffBIweJoJGB3bdRTYSFP+ccQORoLr28dRBUixc8IaF/1ZuoefN7u/qq9g9ezuw6iyquvtxzmvIRvbmI7GKlaBNnKSx2GHjNE+/nsr8OTfNxf4f000cNAa1VALOeDmVk3WwmgfuIyY6yNAB4KxX0UQ7HYxVvU4PqDNuoDK7H31bgXUX6XuI7fshAAs4/aXB/37Gy6kSc+pg/rVG+2lyV9g+nn49HV2g68Gy+7skifAzOgA5jbNfRb+jg9Xcfy/ZQJj9n/lK+ncdkyrrdbL/M18ePHJ45XZg5Rn6bGT3d2mkctgY+HNuIsZfB/M9vJ/s7YyQ0c1nvoIeOjr9yLoLgeUbFv5buYXui71362E19/0QgB1u/2ffSNPDdEy8rVWAvT8kGwkaObzmXGDFNn0V5H0/JP9+2jXB/37mDSR/18V8772HKlrbrwv+9zNuIJmjjgrh8D6Srqme2aC1rJI+QmTXXeTjezct/LdyK13TPZrOPFQ2eeYrgv/9jBuomnH4Z/nXqlWJpDr7xmC/tfpsYPlmfTa56y6Sn4bZyDk3kXxfx4TdwV0UXIfto+pJ2/ej/GsBVCHYeBlJGv0ot1Iir6vKqqRpQYQBQP6sMkl9dnlRnSWbPOuVwX5r/UWU4Ovy//vuAVqXBZPhACW7Rx4mAjYvjj8BTJ4M38ezXklfdUkBd91JxYogMrxtGd0X2uJI53qE+pGXE1mio1e3Mk1V1LNfFWwjGy8lOfjefH6kWAmacjxhZ2K0dpLOXEfwUa8BB+4Nd7wA3VgzI3pYzYM/oQB189XB/77pcmLa92twvoO7gIkT0edGbL+OxvbqYKz2/ZAcfdiZYKqRVYezP+A48G3XBv97Ry9VhHQ431qFqhVRZ0ttfymx8OqcuTzYezexlpuvCv73zVeR/EWHjQw8S1XPbS8J/50zX05Jow4bOfhTYry9PSNenO7YyAEND+h9P6SvYX6ks49kxTr8SGWGqgeRfuQGYPyoHlbz4E9oOIK3r8iL064hVlPHZzv2OFU9w/yIZdHnPnifHhJr34+ArS+YHzLkx+nO+1DXN/d699DzJOy8J3Xf6wiIDzhj9LeHkFhdK8mH6rhuc1Pk28+M8P/brqUq8qn9+dfbezc9uzZeGvzvW19IibAum5wbD7/fLIs+9/4f6yNWT3tRuE2q66ljeJlKKsMC1O61RIroIOhmxylpCLNHgO57RSzkxYH7gGVrSAYbhG3XkqRYh/8//ABVtML20bKAbdeQL9VFUGy7ZqEsW+H066kao+O6qdfYHvLc7t1MLRI67rWpYUoIo86o23YtnTE3cTL/ent+QGderg45W3DbtQAsPfHP4QeoYBJm/6UyxSQ5D64uVoLW/yAxEesvDv+d7ddRlS2vFPDEU8RoRAVW6uLpYHUO/pRK3UFlaYAMYusLKSHICyXd8g4+8WPbtcS05z03o+K8RpjDAOiG616v56yfg/eRPGfdheG/s/VFZCN5JTXHnyRHH7WPp73YeV+aHixbrg539C1t9Nl0OF/l6MMSXfVv1en8wzvmpohljtrHtedTcn1Ig5798IOkV191ZvjvbL+OeuzySgGPPEz3UVSiq3yMLj+y5QXBlXGAJohtulJPwKjOXQpjhgH63DOj+YdpTI9Qr+e2CH+88VK69w9o8CPTI2TXUf5//cVkkzqu24H7yAdGHVq75QXU85FXwnP0EapYhVUigfl/09E/cvAn5CvCbLJtGZFLOvy/Cs6i7retL6ZJxYO78q01NUxVfeXjg7D+Yqqw6XhuH7qfFD1qwmEQtr2E9oYdpQABAABJREFU1sprIwfvp0OAw1QvwLyNHHog31q2TYnXaS8OP/y3bRlVtg7nXAuYf7+Rz+1riMTO24c/dowSlKhEd/NVRJrpuNcO3EfKluUbw39ny9X0bMur6lH+P8r+dfkR26bX2H5duI10raRhNjrin/33EiFwWsSz7bQXE4k12p95mWIlaIcfpEpSmKMHHGOx849S799BX7eEVLQAKv2v2JZ/rbkpOrQ2yhgAciiDu/JLeA4/QNWsqABVvZe8wcfxJykYCKv6AHTDbbmKBrLkxaEHHEY2wka2vpCkgHmTT/Ww2BLh6FecRg3OefdxdoKqcJuujP69rS+igRR55RL9D5HMQ43EDoKq9ubt1TryMAUDWyMcfalEn+2ghsSi/yGyxzBHD9CDpV7JXx1XNhbUx6ewYjsljP057X9yCBh8LpkfOfY4Na/nweEHaMBDkHRTQdcDWl2HzRH2XyoDm6/Qc9D40UcA2NH+v1Siqq8OSc3BnxLLHmWTW66mZP94TkJEJedRn23NOTR1Lu/9NjFAFZaotQDy/8efzF+NP/yAQ/itDf8d9SzKe7Cz8v9RfquljWw2L7Fk2/R+4/Zx6wtJCnjy2Xzr9T9Ektqo5/ba84gwz/vcHjlEY8tPiyADAfps/TvyJ5+Hf0ZHt4QpegBP8pnT/lVsGOX/W9opkc8bj9g22dm2COJFvZfpU5Q45sGh+6ny7R9q58WGS0jVk3cfTx2g4w+i7BGgmOToYxqSzwfovYcpeoD5Z1GO+Kc4CdrcFLGwcRdow6XkWPI+NI8+QgMe+iICVIAM4vBD+UrhJ56ihCEu+FaJQF4W6fBD9L6jgoHOFdQgefSxfGsdda5DUMO2F5uvopswT/I5N0kJ7MbL4teClX8f+x+ifoagPg7/ennt8dhjJIOIClABIjAADfb/6PxrhWH5BupXzLuP6sEU99m2vICmiuWpjk8N02tsifEj6qFzVIMf6dtKQyXCYFkOq5kzYFRHVcQm8Q5BkTch7H8ofh97N9EwJV2Jbty9velKqmrkrY737wBgxfutTVcQcZKn0jp+goY7xF03RYgczkkIHnogPkC1LLoH8h5/ooL3MOm+wsbLiRDJU2m1bfJ7cdds1RkkucxN4j5E/cxxfnLzVTQRsTKTfa3Rw8TWRwX6wPz9oeN+W3v+wqnLXpTK9Nnz+hGXxIrxJVuuJsVGHhup1+n+2Rqzj6vOpPM/854rd2QHta5siFB9AWSzxx7PN116eB8Rs7FxpPIjeeNIJ4nxTy/1otxKv5M3jkxSMAHIHufG8yWf9ZoT/8T4kXUXUnU8h/0XJ0E78TSx7HGb1t5NGtu8gdWRR8nZRSUxABlMzjKn6wTibuINFwOw8jmNualkSQxAv6PD0fdsiC65A/NOJY+zP/4kADu810Ghsw9YrSH5PP5keK+PFxsvpQfs5FD2tdRDLDZgVAlaDjZuZpQcXNBkPj82X5W/YnH8CarEBDUae6Gua54KgpvExOxj9xp6T3kT3SOPJLvXNl9Fe54n+VR+IWgymRfq/eTxI5ODlFSI+ZFHKGjyntkYhM1XEpGRN7Ho30GVmKCJil5suoKSXR02GbeXvZuA7nX51rJtWi/JddtwMVVi8iQWKomJ88nq/eS538aO0ICEKEYfoGf65ivz2+TRxyjRDes/U9hwMcUuAzmqWuq5GEdirTydZL55Pptt0/MjLvEEyP7zVj6PPUaVmLD+MwX1PMpzrtyp/dQ3G+f/SyW6bjr8yPqL5g+nDsOmK6hdYiDHIdLqmsfd26vOol72PH6kXqfrnsRG1l/sKKly9Hz2P0TV2jXnRf+eS1Dk8CODu2nYSNxnK7eSX8vhswqUoDk3ZVzwAdDGHnk4e1WrMk3ONInxuU7jyWxrARQoda2iBsgotC2jxCJPz8/JZwHYjQdPhmHjZfTQyzOB6tgTyQL9jZcCsPI9WFTClWS99Rflu2ZzUxRQJ7FH9X7yjD8+8TTZR9DxEl50riANep5AR9lXkiBu/cUkT8mTWBx/Mp6cAID1TjKcJ7E48TR9XZfEj1yWL9GdGqYzYuICRmA+gM3DDh9/gqp1cYnustVkS3ke0Op9RvV6Kmy8jB56M2PZ1zue1I+oymfO4PvYY+n8fx6bPPIIqT6S+JJ1F+TzW+PHgcmBZPfbhkso+cwz4OjYE8mSmL6t9AzMQ5q5JFaC67buQhrKk1UuZ9t0zZMQdKpnPs91O/4kJbpxSYxlARsvyWf/p/bT8LO4JAZwks9Kvn6+o48B686PT2JWbKcgPdc+Oj4vao6BwoZLKRnMWtWq18lG0vj/PH7k6KM05XZtTBJTKjl+JMezZngfJTGJ9vESkt3mOTP1+BPkH8st0b+35lySVOaKI53YKcl1W3cB+ceMuUaBErSnqeTctzX+dzdcQhPoso4/HtxFLKz/UM0gqJtBBX5ZcOxxMvS4ah3gsBF5AivHuSUKrC6lr1lZpOocycnWxTxUAEo+V55O8qSsOP4kTYLqWR//u+svBkYPZU8sTj5LNpIk0VUP8TzBx4ln4h/OCusvyrePypaTBIzq82e1/7lJCt6TrLVsFfXz5U3QejZESw4VNlxCCVbWxEL1gSS519Tv5HloKj+SBOsvzkf0HE9BmG24FICd3W/NjFEFOokf6V5DVaYTOZKKyUEaEJDkuvWsJ1IkT8/PscepWhc2LdKLdRcSy541sUgToKrfyXu/JXmOWhb9Xp4q0/GnKNFNst66C53EYne2tcaOUk9MkgRtxXZHLpeTEFl9TnwSA9B1G9iZvWKRxv+vdfY66/3mJrqXxv+uSizykFjHnnAS3ZgkBqBrW52mGCYLRg85SUwCP7LydEqu8tj/scdpLf9h2EFYdwFd56xFjOMJVV/e38nqR2w7uR8plSlJy0MqHX+SpIurz4r/3XUX0MCh0cOZlipWgrbu/GRJjApks16kk06ZOa6cCtBDdcX2+cQnLeo1SgiTGB9Axj52JLtczk10Y3rrAM8+ZnQaQ3tI2pFkHwHHaeS4sQZ2kuNNlOg6D5+szt4NdBI8xDr7iFjIao+1Cg1/SBKgArSPpw5k78MZ2ElBZ1SjvbuW8/mzspqqopskGAbooZmHQT3xVPJEV/1eVtmJetiuOSf+d7vX0qHgWRPdyjSd75Z4Hy+mwCNr79SJpykRiqvoAvN2m9WPqP1Pet3WXaCHoEiaWKw5L1+CdjIF+bLuQhr/nLXH4lgKv7ViG0mhstr/1DAdH5H02bbmPKpqZQ0aTz5D6oG4ah0wb5NZ7zflg5IEqDoSi+NPJgv0AQpQqzNELmXBiWcAWMEH9Pqx6gySJ2Z9to0dpWpdEnsE5pUvmROLJ+lzJUl01zqfP+vxJ8q21iZNLM6R9SOzo5kTC0p0W5PFdqvPoaQ462cbOURJUFL7X3vefAyfBSefoWsfNWhOYV0+groYCZpt0wM3qaNX7EiewKrUGj3y2AvFRmTByCFypkmCOLWWeo9ZcOIZ2p+gQzz96OyjakPWfVROOwlbBdBnG96XbbqcbZMjXZ1wHxU7nPW6DTxHpfTeBBVdgB4KWR390F4KyhInFsr+M6438By93ySJbs86qlpmDT6UNCZJMADQfTK0l6qzaVGr0mdL60fyED1tPXT2TBLkCeKG9gKwgTUhZ8QErWXXs0uT0vjj5ZvobLbMfsTxdUn9yNrzae+zSpPSJGjqfZ18NlvQODdJgXQaH+l9j2kx8Cz5rI7l8b9rWcQiZw5QlQw26T6eSxWHrEGjIuiSYNVZ9IzPer8pW07st87OXq2bHALGjyUnX9R7yhqknnzaSc4jBoQolFudxCKjj0y7j2vPo2B9/Fi29U48nXwfV50FwMruIxXZvDbpZzs/exIzMUCqscR+RCUWOa7b6rPCj/zxoqWNihiDORPdNPY/eTKHOmpn+lgrox8pRoI2OUCDC5LexMtWU9CYJ7BadWayUjFAhjO0N1sztXLaYYfv+aF+L6vTGNqTfC3AKRdndBonn6WzJJKUigHnQW5nC+TGj9H0nqSJ7rLVVCXKs4+rzkiW6AK0j4O7swWNAxkCVCBbFcG2ab2k+6jeV9YgbnA3sWtR4/y9WHMu9cVk0bOPHKREN6kf6d1KPQ95Kj9rzkmW6AKOxGtnthHB6uEn4Udsm/xd0rUsh43PHDA+S9chKRmy7kKgNpu95+Hk03TsQZIKMuAEjaOkbEgLdd8ktclVZwCwsp/PNLgreRIP0DXOmli4Et8UFTQgm51Upul6J/WRLW20l1krkYO76Ny6uKE1CqvPJklklqBR3dtJg0Z1ffMQIkmvGZCvYpHa/p2jgbLY5Ow4VXST2n9bF505l/XZdvJpUipFjWr3Yu155EOmR9KvlTZGUDFZVvsfeC5dHJnLj6Qk+l1iNcNze2qYhv4ltcf2HprknfGzFSNBU0a0MmFFC5hnNbNg8Ll0AerqswDY2QKCtIHV8s1UuRnIEFjNjpPxJa0MArSPg7uyBY1DuynwTiInAOarX1mM3XX0Ca+bZeVzGkO7HYYtIdacS0FjFtmJCsaizq3zYsV20lBneWhODtIZKUkdFED7MLQ7WwVhcJejv09IhqzOEXy4+5jQ/kulnOzwc+n2cfVZVE0fyzARdnA3ACu5jaw8nciTLAnaxAmqdCRdCyAWOWvAOLQ7JRmSk8Qa3J3yujnrZQl2XPlmwuCjtZP6MLOsVa8Dg3uSqwwAssmx/mxy6cHdVDntXpfs911JWQY7UX3jSfcRoHgic4C6M12iuypHQOySuAnvt45eOsMyyz5W58hPptnHVWdS1TMLQT2wk44zSiKVBjyJRYbndloyHKB7JQ/5mMmPZCBf0rTlADRIqnNlNnusOPLZNDHymrMdJVAGgnpoD9lz0kR3TQ4/4qo1EpIhALDq9MyEWUEStJSBFeAE33vSB421KskO06ylfjeT891FbG3c5DWFUomcVJbgQ72/NIHVmnNo/OvoofTrDe9Pl1Sv2EZN3lmMXe1HGue7KuM+VmfJRpJWBgGP7CQDaTC8j9jaJJITgGxk5enAcIZ9dG0kxWdbfRZVuLOcYTeYMtFdfTYyy07UfqSxydVnZ7PH2XGSWaw6Pfnf5GGHB56jPsck/TcAkSYrtmULPtT7S+Mj15xLFYQsvbPD+9Ktpa5vFvsH6HqnWs+5xsP706818BxJ7VZsT/43q87IFqCOHqahB6kqaE4QlmU9pTJIWkHuXEH/ncqwj8pvpfL/Z9A1S0s+2jYRpGnJFyDjc3s3DZDo3ZJuvSx+a+QgKRTSxAgrTwdgU99zWqSR0wMUqLd2UWyXFllsZM05tP9pbaRed/xI2n1ENvsffI6OV0gyIE1h1ZnZYtbhvUSGpK2g1SvZbET5kaRYvonul1x+JEVMsurMzM+aYiRow3vpIZbGQa08g2QnaSUFo4dpsEWqB6ZzE2Yx9rTBAOAkn1kcfcpKDOAJdlIau207CVqKALWljYLMLPt46gDJoJKytQDdhBMn0ksKhveRg0qVWDh7nuVGThugAtlZHeXUVqax/4ysZq1Kny0pMwzkk50M7SVGPylbC9C+jx1JP0xDPYgy+ZEsNpIyGAAo+JAiepQfSfvQrFWIDEnjRzr7SOKexY9Mn6JEMktAkEVBMbyPEuW48dFerDqTbCQt+ZiJxMphk0N70/lIgO6XLInu0L75v0+KVWeQqiFtxVrJ6dPsY99pdGBxlvttUMnpEwwtUFixLWMwnIHEcmOEDPY/tCed/y+VshMUg7tINZDGRlZuJ1XDRMqjhsaPERmSxo+s2AbAyu5HVp2ePNEF5v1IWgykVH0B+SrIQ3vSJUylEim3sviR4b10nybtGwfI/qdPZZIvFyNBG9qT/iHmspopjT1LgNreQxWOTInFQefGTIFVZ2WTFAztAWCl+2xZ93FykB5iaQIrIDurc+qAU4FL4aCySpPUXqRxvh29JCnIFHzsTXfNAHIapw6klxScOkBVzFRsbcbKz/hRYtXS2sjK07OzY2kYfbUWkD7YGc7gR7rX0VCRLMFHJj9yBtlyWnZ4aA8lJMvTPMQy+hFFmGXyI1mSCnVvpwwaV2zLGFilJLEAem+zY8DEyXR/l4WgU8fapLX/yjRdu7Skwcrt2e7t4X1UXWnrSrFWRuWLe2+nuG7lFtrLU1kk7ruz7ePUIFXy00ARiKkqyNsb/zYpZsfpPaZJmIDs9/bgLrpPkwy2UFA+Na39ZyGxWjuA5RuzJ2ip/cgZ9AxOK1/OYiOqxzxti8fkECU/ae1/xfZsBIUizNKQIa6CLr1NFiNBG96foYKQUeYynIGJAxzZYcrAqjpH7HySkfdeKKeRdtrVqQPkAJLKoACa4piFHVa/nyX4GN6Xnh0+dSD5oAkF9WBJeyOPOHLPtAFxluBjZoykcmkYTYDsv15JbyPD+ynwTvMQ691KrFPae00FK0nONvQiKzuc5SGWl+hJ40csi65bWj8yM0qjqtPa/4ptNDRlIuV5kYoMSdoTBjjvLQM7nNmPnJG9EglkCIhPz6gy2JeBfHF+P22wM3KQVAbL1iT/m/ZukuCnXWt4HwA7/XN7xXZg5HD6c96GMyhRVmWs/LjV8W3p/q5va/p9rNdovdQB6jb6mjqx2At09CVvuQCcfqYV6e+3LCQWQPHSaH96YunUgQxrbZv/2zTIkqABjh9JaY+1Ct0zaWNW14+kbF85ddAhExO2XADkc1q70hMUufZxf/o4Mm1bDpBLUl+MBG3kcPokpm9rtn6m4f2UkPRsSPd3K7ald76jhwHY6R19Vuc7cjhdZQRw+pkysBFuYJWh8jM3kY4dtu35oDENsrLDI4co0Olcke7vVmxP73yV88yyj0B6+z91AFi5Ld3flJyKW1rnqz5bFoJiaijdAdL1WjYyJCs7PLyfKqZJp7x518vywATk/MjoYZKZpkFLO8lGUidoGRJdgOx/4nh6dnhoLwArA/lyenpiaXIAqEymTz6VD09tJwfSqwwAhxBJeW8rm0pNiGynHqi0ny2LyqB7PRFLIxmIzrQqA4B8T9rPNXbEablI6yOV30pJGmRJdNV6af1IFhILIN9Tr2Qglg5miCO3ALCyxT8tHenjyJUZYwS7lsGPOPFPFqI/rX+0LMf+M5BKQDY/UpkkH5sULmGWci31LEzrR1CEBG1mlHrJ0mhCgewBgarEpGGHATK+iRMk7UgKZXxZmG8gQ2B1KH1gBWRjddRNn/oh5jiNNA+yyUEaZJLWabQ5bHJqp3HIIQBSBjortxPzl+YMr1GnPyLpiHHvWgAwciDd353an34fAbLhtMHHyEEAVvp7Wz3Q09j/+HEKdNKu1bnCkaZm8SPb0v0NQHY1ejgdO6zsN3Wim7WCnIHoAbIHH+X2dL2lwLwfSRt8jByioCrp5FnvetVpIg6SImt1UPlwicAKcO5tKfJF2WSKxGJmjKRyafexVKL+wdT7uJ/8SBqVAUA2MjWUjjTIQ2IBGZKmA+kTJoBsMu0xE3kqaEC65830SDaVQUs72UhqH3mQrnfqOHKrQ9ykiCOzSG4BT2KRgRDM6kdSk7jO72eNEdIQFOPHKY5Ma4+tnRRHZhikt/QTNBWgZkks+k5L73xH+9MbA+AJCFI0HKubPq3z7V5LY9TTOI1aFRg9kl5OBsyzY2nY4dF+p6zdkW4tdx9TGHvWfQSyscPK+abFytNpuEgam3QT3ZQ22b2eBuukYXXmpujhkGUfs8h3Rg6R5DZtMJwl+HD9SIbr1rc1PTuWx4/U5tI1pbuSq5TXrXczUrPDsxPA9HB2P5KW0R87QjaSJdABMly3w9k+W+8m5+8z+P+0wU57DxEHaQIrV2WQ5d4+zZEdpuhnVSqDNFI5wLOPKYJ95SMz3dtb0l0zIF+iC6S7blll4J191PecZq163YkRMsRavc4+pokRTu0HulbR+0yDLCSuS4ZvS7eW+hspEkv19Y4dTf43biVyW7q1lq0l8ivNPlbnaKhOphjhtPRx5MghIufStOUA834kzQAg149k+Gy9GfwIipCgjWSsxKi/SbtpY0eJMUkL12mkCFJHDtMhvcs3plvLshw24kDyvxk/RmXwTPu4mZiF6VPJ/yZzgJqhXDyWM4nPInHMGuirv0+K0X6S4aTpGwEc2WFKdnj8GH3NdN1Oy8YOZ0p0M1R+sia6QPogzrbJj2TdRyBl8HGIplOmldxmYYfzBMO9W6jSkYYdzk2Ypa3qZlQZqPeYxk7y2GTvlnQ+cnIgm8oAoGeNXaOBAkmRVWXQsxGAlS5AzaoyANLvI5CjOp7x3oaVPdhPs48Tx0k6KBUjjGQlQ1SMkCLWOpVRZQDQZ0tbHcxM9Cg/kobE7ScyNq3KoFSi9dISxnY9ux+ZG09pIxljBBXDp/Ij6tmW0f6flxLHrFI5gDZt/FjyhuPqLA1kyBMQpHG+Y0dJTpNmYoy7XkrZSV7j875GEowdyZboZmGH1U2YNtEFyGmM9idnh2dG6b88TiNVENdPf5e2ggCkDz7UQyjrPgIpg4+MLGNHLyUkafZRva88RE9S5m9mhPTvuYielPafZS0gvTQ1F2GWgR0ePZLNHy9b6/QXpakgqD7FLPe2+mxpKj/9NIAjLTsMzEthk8KVyuUJdo6lWC+jyqCljRQiWZjvrInu+LHksvPKDCW7WZNBIOV1O0j7n1ZOCZAfT2OPI3nIl4yJRZZr1tbltCZkUNlkqSAv30g2Uq8l+/25SSIrM8VaWSrI/fR3WWKEvpQxQi4/4sQV42n8SMYEraMXaOtOt49qH7I+t9NWkFGUBK3cnr6CANDNb9eTBwRuoJ/hAvUoSVmawOpI+iZShd5N6QIdN7DKI99JaOy2nd35Ak5AnCaxOEqSz46+bGvZteSSsjzJoPqbtEFc1n1UTiMp8th/WnbYtslRL89o/2mDj9F+Svzbu9Ov1buZEq6kzJ+6T3oz7GMWdnjsaI593JRyH9UDOk/wkdAma1Wq2mSxR8UOpwk+xo85fYoZPtuy1fScShWgHslmI8A8+ZI0IFDXOIsvUc+oVMF+xsAKcPrCUgZWWSoIgGPHdvLq4HgO/79sDSlmJAJUwPGRGSoImap1Ke9t23ZI3IzPtuUp45+xIxSwp1UZALSP9WrygRN5Yq0sJG6efcwSawEZ/YiKfxJet3o9e5XVshwbSUmGd/QCHcvTr9e7JX0PMpZIgmZZ1s2WZd06Ojq68B9HM/YgAJ5m6oQXaSxHYFUq09+lSdDyBqhTQ8nPQlMPhSzr9abcx5lRmsSYJ7FIXUHYmF5OA6Qvhbv7mOEB3eIMO0hbQcuc6G5Oxw6r95WFNHD3MWFgNTVEcpqeDPuo1ksTMOZ9iAHJH2RuJTIjO9y1Or0fybyPG6kyknQoyfhxmmCXJRhOKwOcOE4Em5QfycMOW5YjKU5LvmQIhgHy45XJ5Odc5SFf0jLfM2P0DMjst9KSBjkqCGltMg/5UipRb3CaSuRYjiR++SZSBFVnk/1+3kokkCFGyPjZejaQL0qKrIoewEOsJowR8viRlnaq/qdNLLLea8s30sTspAoitQeZYgRF9CTcx4kTjuQ2hx9J28uaJakGslWQsUQSNNu2b7dt+5be3oBm0fHjOapMKZ3GaI7ACqAgKanTsG1y1JmdhvN3iZm/48QgtfekX6srJTvsBqg52OE0N5ZK0LJAOY00+whQxTTTeimCj3rNSeIzfrZehx1Out7YUZpYmOawV4XutYBVTh7EuQGjUAV5/Fj2a5Y6iHN+L49NJvUjtSo9yPJU0OoV6g1LgvFjFEBkkWWnZYdHc1R91N+lSuJzsMOAU/kRCqzUMzGpnYwdobHfWSoInSvob1OTWFmfbZvp2ietDuZJdLsdn5B4H5Xfynrd1id/1qgYIY/KBkjuk0cOZ1cZuBXktD4ya4K2Pl0lciwnGQ6kUGLlSOLV3yXdx3ote78z4DwTbUrkk2DsiCPLTjn8DfDcawmv23gOUgnIprLJtY8AxlMM98ISSdAiMXEc6MnA1gKegCBlYpGZsdqQ/CaeHSMGNKvzTes0Jo5nY70BZxxxCmPPU2UCyNjnxpMPnMiVoGWsoHVnDfZTsDpTQyS/zGsjaZKmrM6wVCb7SsoOu4lujsRi4mTy6uD4iex+JC3RM3aUktWsCWHPxuRB3MQJqjLl9iNJ7+0c+5iWHVZ2m/Wz9WwgG0naO5J3veUbk5/NNDNKPi7r/aZ8edL18qgMLMupWAiSL5VJ6uVMAtWnmwXKlhNL3AXJl+lTQG02x1opY4TxHISxZZFNJj2/1I21MibWPRvo+Zi0Opjn2ZZWmjd+HICVPd7q2Zg80B8/7gx/y+pHMhAUWe2xxRl2ljjRzeuPN6eLEUYP59jHlP7YwdJP0MZPZA+G27pIU5rU+CZO0PCBNCeke6HK7kmYv7GcSUzqxCJHJRJwpv0kDOKUk+5em22tNOxwvZ6vytS5gpi/xAHqcacBNUOVCXAmayVkh1XQkHsfkwZWR7IHVYBDUCTdxxxSCcCx/4S9I/UaMYRZ/UjXqnS9IxPH6ZplqTIB6YK4vGRIr7QfSUFQuH4ka6CznoKXpL0jY8doNHwWlQFA13ziZLJ7O49UDshQQcsRoALzUtgkyEu+qL9LEuzX63S/ZfVbHX3k/5Pu4+gRemZk9f89KfZR+dJcPhLpErSspBLg2H/CxMKdvJmjggYkW69WdYj+jPvo9g6m6FNctgYot2Zbr2ddCsIgr+orS4KWw4+kIXpyE3SqOpjA/1emiTTLupZ6Rj2vKmhzk8QyZmVsAQrKkma1EyezDSNR6NlAjYJJmL+8AWraxu3xHJVIgIw98T46Rrosa2KRohTu9jJl3EfLShl85JCcALTW3ARVUGPXUglajgDV+zpxmDiZfS0gpfPNKxV1EpIkwf7koFNlyrhWyem5SryPA/n9yORAMuYvT08AkD6Iy1OJBxx/nHQfT1AlMu1ZWgppCQoVoGapMgG0L9WZZPf2RN4kRgUEKSSOWZN4wLm3Uw7SyHq/qXsnSYI2PUwDHLKSL5aVMiDOG6CuB2ZHKbaJXSsn+aKIvaSfLQ8ZDjgVtKRrHcveywqkIygmT5L/z7qPpRKtl4rEyrmPU0PJpo+7z9GcMULiSnxOP5I21rLK2Z+lyv6TyDfzxiMtbdQe8ryqoKlNy+M0etIEVnkDVOd9JjFA9Z6yGkR7N1VykgSotp2f+VYBaqLKz0mn3y2Dlh1I73yB7FUmIN20Kx3OF6AgPg4TORO0zhU0ajxJgFqvU1KQJ7FI43zHcrKM6iGRxCGq38mVWKxLR1DkTXSBhJ9N+ZGM93bXapqAl0S+WauQjeTxIz3r0ikalq3JXolMyw7r8JFAssQiL/nSvhxo7UquMsjTywTMV3WTqkPae7MrUdx9TPDczhugAhRfpKlY5/H/ruw8wXp5SdyOPrq3E1UinUnGeT5bmkRX272d4HmTZ/KywrI1ySvxeUnc7rWgyk+CvmA3RshKhqwFYCWzx8o0ESJ5VDappNLOvZZl+A+Qzh/n3UfA6Yt8PlXQ3OBDqII2eRLozhmgAskMUN3seRKLpGz07BhV9vIGqNXpZFPDJk7k+1xpnK/ax6zVOsA550RI4uX2PAgkFpaV3EamT5EcLNd125CcHZ7IITkEsgXDua7bhuTOd3IgP2EAJCQoBgBYJMPMAlUdTPQQc34nrz9Oyg5PnMxvj0D6ClpWpKlY5CVf3J6fBDYyfSqfygCgALU6k+zezjOdGPAw30lILE0kbuLEQpPfSnJvjx0DYGW3SctKnli4/c4aKj9JKv861BpAMkIwr8oAIJtMnKDpInET+hGrRENasqDcQjaSxB7zkoEArTU9nKwvOG+im6YSr4XoSUHiOljaCZrOClrSnp88gX7axKKlgypNWZHUaeTtCQDSab7zOt/2HuoFSeQ0VIKWI7FOGqDadv7kM5XzPen0RGbsdwCST7tSlci8FTQgeWKR9aECOOxwS8LEQoPz7UnofG1bQ2KhKvEJSIPJAZIAlluyr9e9JqUMRAc7nLCCnMePpGGHXZWBYGCVR2UAzPc8x8FVGeS4t5VfSPS8yZnouvd2kgqaJhI3aSVyciDnPjo+L8nU1PFjznTEjCoDgN5rogBV9ftosH+Je7trFcnfkvgtN7HI8dmWrU6metGhMkhFPh7PV4kEnBghTayV49m2bA3JTZOcKdoUwsxU0JJDx43VvZ4mIcX1hVVnqUlQB6uTKCAeJGPN2u8A0N8nuYndal2eJCalsecJUC0rRWKhnEaOYH/ZaqAyFc8Oz44DtTmShWVFWuebZx+B5BLfvINdgHRB3NRgvmSwVKIHhYScDJiv/MSxw6paocWPJE10c+wjkHwfdVSrJYmecgvZcxI/MjNKCgGpwCqvjwScxDpJMKzIFx33dpLE4kS+fXTvbcEK2sxI/JmiMyP57+00+zg5mG8tgPYxEfmiIUBNM8ku771dKhExlXQfgewqA4D2cWow/rxILTFrmlgr5z6q9ZL4ES1EjxM7JS0s5PEjrZ1EcCddq9SSz0ZUD2bS40Gw1BO0yUFiSTr6sr9G0kEJExqMr7UTaOsBJhOcJp63ggAkr/y4DipPYpGinyMvOwY4Q0kSOKjJk3RjZTnfR0EFLnF7qVjP3JWfVjnnm5hl18SOAcltMrf9J5waNjVIPTEt7dnXUgx9XLAzoaES2bmSZCtJWPbJnIkukJxld+0/50MMiPfH9bojOc+bxKQlKHLcb2nu7bwDGQDy54n6VDR8tqSBlW3rIQ261yTfx7wqA/Vep2Ke2+7wqxyfTQWAiRKLk5p8ZMKqJ5C/Bw1Idm/nVRkAZP9x1wygfexcma8SuWwNDaOJI/rzSpcBTzySxG/lHNoEkE0medbkHf4GJCdxq3O017nJx4R+RKnnsva7qbXqFSL7EmJpJ2hTQ86I6xwfww0IYljUSQ0PMYCCl0RshKaH2Nw4NW9GQTmxPOxA0vNiKjNkoHluYoDea6KH2ED+SmTSngeVeOdJdEsluOO44zClKYmZHY1nhyUraJVpmmSpg6BIwg5PDeVLKoDkBIUOP1IqOfYv5EeWOQxqHDusw48kZdmnTznT+XL6kWWrEya6Girx6t5OlBAezyfLA+g6TJ+K7+eQlDjOjpNiRereHj+mIUBVssO4BE3DvV1upUQ+qU3qCFAnB+JZfR3+P+k+6qhEAmRjSQmK3ERP0hhBkVh5iP4OGgCXlKDI7UdWA1PD8b+no50kqR9RNqSliJG0WqfBHoFkpIGDYiRoeeDqomNuZB0yEIAMUIr5Tlz50RBYJT0vxr2xcl63pPuYd6Q5kJwd1lFBAFJUfjTYf9KHpqpE5qlWu/sYc910VHSBFJUfHX4k4QNaR6ADOIGVUBDXvY4GBMT1BUwOkg/I2zcLxCcxU5psJOk+TmkIrACSXSV5QOuoji9bDcCOv24TJ2maa557uyutj5SS3Q5qqMQ4vkEiQQOcxCIJ+aKjOr6WkqE4G5kapEpkHpVB4n1UVSYN100s1nLsP84m3QQtp9/qWhW/j25PpIaiwtxEPIk7eZKUSi1tOdZKKPHV5UeSVuInB/QUFYBkya4Dk6AldRpqU7OeuaOQJCBwZSAa2AEgGavTvjzfjaUmQsXt47Tax7wJmsPqxLLDmioIQHLnmzuxSCC7qjuNtJ157TFhU7raxzzV6nIrOXCpIK57XbLKz+RgE/yIBvuP8yPVOadareEhBsRXLJQ/zlOtbmkndjjOHnX546QyQB0VNMCpasU8oCszNFlXx1pAAkLECT7yXLfWDqefIyH5oiXRHY6v/EjGCDoqkUCyGGFuylEZaHq2JYkR8u5j2zIicOLsX1eClrSCNpnzfFsgxT5q9CNxgb6avJz7XlP2n6CIkTeJ6VxB8v3E+6jhs8XZI0B7nfuaOc+qJKSBgwIkaDkf0J19yfo5pnUlaAnYMVcGoimwSlJBy+t8gWTssHIqeROLLocdjnNSumQg6rWioKMHTf19nD3OjNC0I10VtFjGaliPjSRpStfFMnavIxlcnAPW8dmSVgfVe8lTrQDmpUlR0GaPKSrxeavHQDJ2WJs/XgVUJuNl4JMaVAYA+b3YwEp9Nk0JWpLKT96kAkj2bNMWoK6kZ2RlKvr3dMjA01R+8lYi1XpJkmpAT6ILxNvk1FD+fbSsZDGC6/81qAxmRuKP7JjIeewJkFxBMTWYfzo3QH4k9rmmoeXC+/ex103DPpZKDmkmIBUFnH08FU3i2jZdNymix4MCJGg5N61Udlj9BAFqqYVYwjxQ7FiUQSjjzC3fSdhMquMhBggHVgkrPzqC75Y2R/OdILFo6cx+AKtCZwJ2WElSpJzG9Kl8g1YUkrDDOmUgQALSQAPR09pFD94k9tjRm2/sPZCs8qMt0U1RQc7rs4BkfkQX0ZNGUtPRl2+QAEB2ljiw0kQaxDLfOY+PcddLcByDrsSiM0FiUa/p8f+dfQCsBAHqENl/nkokkEy+r7MSCSSTOGohcRNUfrRVxxNIyirT1Kef2x5XxK8F6LORrpXAVNw1G5r/3VxrJazEq8PF82LZmvi+MNeP5I1/VhLRPRsxuGNuks54NAlaCtTr+lj9JNN+VICqw/natehpPzplUEDCAFWI+dYWWCXoeajOETuuJbFIUPnRwTICtI+12eix/rqcb+LKj64ELQXLnpv5SxDEzU3R+PS89m9ZyZqpp4fz2z5AfmR2lI7/CIOuQD8pgyrpR3QRPUl7p3RIzgGHsR2JlmZru24pZLe6Pltc0Kj73o5KLKZHANj511IkbhKbzGuPgKOgGIq2EW2JruPTY/tLhzSRLwkqyFNDACwNKoMEBIV7xFDeyk+ZJgHHTXHU6kcSEj06FD2ATJUVSEZiTQ7k74kHkhE9uvaxrZsq7M+LBG12lBIdLbKrJAnasL4KAhAdEKibvLMv31ot7XSgs5jzTZGgaQusIpyvrn0EkjF/OnT6ai0gei917WNHHx1VkaTyo8P+k0yonFbV6p58aynnG+XsdQXDABKdu6NrH5Mk1sr+cz/EnL9PEhBoq8QnWKvcll8qlJTE0lkdhO0kDyHQnaDFHeui69nW2ZcgQHX6nVs7cq6lEouoe1tTBRlI/mzTso8Oqx81jluRhXk/W5J9VBIvKfny1BDZkg6VARDtI3X6/86+ZJVILfa4gnoQRQi6BD1otSrZqw7ysbMv2j8CeqZzA8mIHncglS4S9/mQoOmqMgHJe6e0MN8JGFtlnFqc/YroYMe29faOzIxGa76nhymoyjMNCkgmTVI3nY597FoZ7zR0MahdKRKLvDaZ5EBP29ZXQeta5YxRjmCHp0ecxFGT841MdHUmaEkqP6c0sewJiB5dfqRUdgZ3RNhjdY4GW2hj2YeiJb7KH+dWNCStoOkKrJLc25qebS3tlAxF2WRlhvq4dD1rYgMrTfuYhvnW4pMTJha6An0gmcom7162LyeCLipAnR0HanN67u3OBLGWLpVBknvNjRF0JBYrkk261SEDTGP/eT9bR58zpyHiurlkuAY/0tGXgOjRRAYmqSBrzTUSkI8eLOEETWdglaCfY3pEj6NPcmMpY8nLfAPEtEQZX2WK5HS6khgg3ti1OV8rmtXRmaB1roivIMyMarpmSSpomu0/aq25SRrFrMX+nWsRxQ7PjOiregIJgzhdlfgEQ0LEg4++/OupZmqJtbpWkeY/agCErkQ38ZCcJiQW2gi6iHvb7WXVsJcdfdTPE0XQTQ1ptv8Im9Q1VRdIFljpIujUMyQq2Z0+RRXk1hwHcANEcMQlFrorkXEEna5EV+1j1LPGbbnQFSMkSNB0qmziSNzWrnyHtANE4kr6kST7qMuPJPHHk5oqaECyYpAHSzhBU1mtJlZ/ejh6cIc2GYgKUEfCf0enNC9Oq6ycl1RioeshVirT/iRxGlLOd3pE3zUDYpL4YaDUml8GCMRLfKc1P8SA+N4RHfbY2hU/1lkng5pImqepEunu40j478yM0OCS1s7868X1BSg/oqvKCsRLfHU8MNt76D6KWsu2NRNLiA+sOvryS7wAqnzOjoX/u3tvS5IvOu1fSr4cE6DqOvYESFZB09UTD8SrbNwJppoStDj5po6hTYBHmj0S/juSiUVl2ul31uhHIokeTT4ScKpaEX5E12wBgK5bdSZ6sq4uP5JGrWQStBTQmVgsW+04jZHw39GmL++jr3FsdFt3/olhQHxTriuD6tOwVtLASsNNDNC1T+J8dQUElanwwxptm+ynozf/WokqP84+6nhAxzkN3fvofc0g6KqguWOdoxKLEfqq5bqtpmA4rC+gVqXeWa0se4wf0eEfgfjx8M0genTYo2XF907NjlO/s86AIK6Cpiuwiuvn0NXLqtYC4m1Sx72t+qujhpLo6h0B4gPU2VE9x54AycgXXZJzwCFfoq6Z5nYSICZGOKVnrdYu6mWOSgbVHuvwW3H3mtbnaMLEQlusFTMAxbURIfJRl/139IKUWDG9rKUWPTFCR2+0H/GhAAmahk2Lq1joZD7auuliRxrfiMbAKkaap3Mfk4xj1VWaBuIDK8nEojJFZ27pcvRxY51nRvVcM8AJPqIeYsIJmlb7T5pY6LD/mM/mVsalguERPcEwkMCPjNBXrQRFjMRXiujRrWgAoj+bLhkU4AQEUfe2xup4ImneiFxiMXWKkri8A0kA2sfKZLh8U2ei60rzRsJ/R2eCFlf50UniKv8QWY3RdG9bVnw/k9sT35Z/PbWPYb2zOpPBRImuoB/RWUGLs3+3J74v/1pKiZWkLUcHGR63j/63l3/FJkF9yLznkgEeSUHIxumUQSXRfGt1vs5DLEy+yZGgSSYWcSyLVdJjI3GlcJ0PsSTyzZlRPZ8LoOuRhGXXKYOSqKAByaR55XZNQVzf/GsGQWcQ19pJZ+5JBXFx5+6w+JGY66bLj8QSPc6/6Qis2nvIJ8UlTVqZb6HAKu7erjvSNq2JRYyN6PIjcYmFbokXIJfoxsUjOskX9cwKu9/UsSe6SNxYgkKTLBWgfbRrVHEPgk6ix7XHmHtbbB91VuJj/MjcJJHhWmNkQT9Smw1XYvmwhBO0EedwWA3MhxtYhRiE+4DWWbEYCf933QGqXQ/vQ9ApTVL7E7aWbdO/dWhKLJJU0Dr6qMk191oJqyO6bET1RYZhdkxvgFqbDdd8S1bQVBCnq4IWK3HUHOgD4YGVbhuJY/5mRvRWIqMGQOj8bHGJbmWGpsrpIijipg/qDKwsi5K0qL4wnfaftDquU+IY5pNnRwHYGm2yL/66adtHFRCHrKczQG3tJNJIrIIWJ3F03ocuiRcQbv869xFIJjvUqTJQrxm4lvM+dPVXW+XoSqTuxCLOj5Ra9BZMwq6bznhErSftR6L8vwdLOEHTWYmJYSMUI6ItsUhSQevTtFZM5UdnYNXaSQ33oYHVNDEf2io/fXI6/dgETWOiC8Q7xBmNiW6cNImD+Qtlx8aJUNBp/7EVXc37GOpHHKcslVjolpMBCexfRxCnWPY4fyxEmOkMrADnQNu4BE3jsy1Kmjc9TJVYHYNkYgNUzYFV+/LwagUgGyPonAYIJEwsNK41NxFNvujqiXfvbQHCGIjvndI1WwBITuLqIno6lkeT4brJxziVjc6hNUC8H9Hmj3vk/Eh7gsqnB0s3QdNZQYhN0FRgJcR86+zBcbXKAoGVZUUnFmofdSe6oZpvhkQ3rBqjU+IIJEjQGCo/ocz3OCXeLRpkgKUy3UcSLCMwv49hNjLD4UdGwtcC9CaEsQlan5611EMzzP51SkVb2h35plSi2xdPmAH6ArmowKpeZ7LJsMTilF45JZCA+e7Ts157xD4C+oY2AfHMt85zoIBo0qA6S0m3zn0EwoNUnfFIewz5ojMeAZJVkHX2sqrXDFsL0EtQhCW6c5Mkt9Rp/1HSPF1Dm4D4HjTd91qcH9H5HE0iTfVg6SZoOntw4kqqbkCgYaQ5kID51phYxMk3Z0apkVoHOwZEJxYzDImuXSP2Lwiz43qrFYBMBUG9TuTUsDG9lUggumLR3qOHHQOiA2KdLCNA+1iv0NjewPU090Sq1wyCCoC0+pGQfaxVqBqpU04GRDw0NcppgBg/ou41jfY/MxbRpztCX3UGxKGB1ThIBihkkzrlO+VWoK0nnnzRFljFSEWnNdpkbGLBQRqMBP8bxz4C0W0QuvaxrZt6MEPXUiSWUOVHZyWyI0GiC0tf/BNF9HDEI97X9UOnWqN9OdlIoSvxI4l+fWknaLo2raWDDn2Mc74SzHd1lpgKbQYRJykY0bcWIFtBi5PmzU7oC4bbllEVKbYHrU/Peu3Lw/exOksJh85ePiBiH8f17SMQnVhor6AlkNRov9dGgv+do/ITVfUEGKQZAvsIJPMjWskX2+mRCsD0CPV7tHXrWa9jefhabIHVSPh6uvwIEB006pYmdTiBVWh1XLINYswhOjWcXQdEV9C0B6gqQYsYbqHrmpVKtF6sxFEn0RmioHCPxunTs5baxzDCeGaEbFZHTzwQLZXmqER6X9cPnYRxnI1oVytFEGa6paJJpph6YBI0IIE0TzHfGgOC2VGgXgtYy7m52zQFxEnYManASufkTSCZNE9XYuFqvqPYMei9kWNZxj5NazmvEyXN03XNgOgETfeDJU7zrbMSr6R5UYkuLH2BftQ+uj5LY1IBLBI/olsq3Udfo3owO/v0VZCjKmjSzPfsmF7ypa07wRQ7jcy3XSc5lx/1umwbhAq+dSGygsbQgwNEP9t0Vsfbk1THNSYW9Qodg+OH6onX9qwRlIoCwhW0vsbXXbCebj/SE57ochAUc+PBCoq5CUcq2qdnrbj+ah9MgqYQxVjNjlHJtW2ZnrWUYQVdpDnNMqj2mArC9EiBK2iaKz9RkhoV6JfKetbq6KUqWdChx7orCEn2UTfLHmaPumWA0olFZ1/8Q0wXg9rZR4FHoI3o9iMxRE8z/Ih2ie9I8L8v6cAqpi9MN/nSniSw6tO3FhC8l7onRippXuS9rXEf27ojpPuaCbq4xIJDZRNm/7OaSdwo+9fduqKIt6g+Ra2JbjOInpHgf9c5nRuIjrWmT5GaqbVL01rO+54LsH9pwsyHpZmg2bbeRmognrHV2YMTlUXrZr7bugFYi4v51t47GFBFsG264bQmaBEVNN3JYFQpXPe49iTOV3uiG7KPKijRTlAE2GRlRq+cGEDk1DDt+xhhI2ofdVXr4oieQlTQInoeOAKrINlVMypoWgOrqAraGLUTtLTrWStKvqx7H0ul6ICYZR8jeqsBBvJFsPITVUFr6dRzfBIQLTvULQNvaaNBSaH7eIqB6ImrRGpaL7aCrJvoibJ/J/bXpmiIsH/dcsrWLjqOoNAJWmWaytZijK3GYRNAtEHMag5Q1YMlNLHQ/GBpRgUtMPieIvmLVII2N6EvGAaiHaLuALXcQpKCuCEhuhC3j4DGfh9nHwNZds0N6eq1JHT6gCf4EPAjbcuoDyuU+db82ZpSQYsIdrTayHKSzQTJrrQnaDEVZI5nW1RioduPqNf1Q/c+qteKClB1rtXWTeRR0Oh73ZWfKBupVfROjATiKz869zEqQZvRvI/qtcLsX/tni+jB5PIjQfbvzk2QqiDrJsMFiR7VTlXoc9B0T/ECojXfbIFVgAHOae5BA6IlZXOT+hOL6kzwOFb1INXdXxfFjmn9bFH7OKFPAgtEV344EotI+2eQioZpvmcniGHSzrIHJbocQVxfjJxM8z4CIUSP5uBDHbAc5Ud0Vf2B+WA4MPgYo/tal5xYve+wwGpO47AhQDaxaHV8UlCfljrwW2tgFSFxZNvHgHtbN/MNxFd+dEscgZB7m6mCFhmg9ulZC3AC1KhEV+c+OvYfdG/rJnqAaHXI7IRmEiuiB1N3v7+yx6C1XHvUnFhH7qPQc1T38DcgegCcD0szQVNGojWJiWFsdT/EgJjASmOwE3XOw9yk3sQiqmIxM0afXVcPTqKHmJAuenZCf4AKBD/IdDtfIOazMSRoQDhB0datdyADICMDBOIr8bp1+up1/WD5bCF+pO5Ug3TvY71Cagk/ZkflHtDq5xyJRVRArHMiWuuykMCKI0DtjvYjuu1Rva4fHORLVPLJIXEEIshHS99zu7XLGX0vQPQA8Ymu7kokELKPXBU0YT8SGGuN0HXVJRVV/V5RyaD2HjSpSnxUzMrgR9q7g/cxAEs0QVPBh+aKRdTUPDHmW7M0Sb1WkENkCaz66GtY5UfnTRyl+WZxvnGJrpDEUTeDCoRLCpR8QVLiq/tzhfVgukSPToIiwka096BFVH5cP6KT6OkNvmZKqsdB9IRJfLVWK2LGY89O6Fc0AOEBQVuPvnHtAF2XSIkXQ2AVVPnkahUISnQ5ks+2kERXvQeWClpIgta+XB+JparjkfGIbsI4RJqnc/Im4CEDIyo/WhOLEPm+bTsVZAaCIozo0bmPLtEjlOi2dQdL99V6LPF4SFEB0E8ahD1rfFiiCRpDYNXeTXKP6tzCf5PsQZNkvjkDqyCZl24ZCIDQqWEcSYx6iAU9WOaY2OHAyo+6bjofmiFNue4DWsr+Ne9jVHO/60c0rtcWwY5p9yMRFQTdcmIgXOI7y0CYRQ2u0V2JLLfQ8IqgfazX+aR5YbJbnZ8NCE8sZhmY77Zu6q8LOhhesgeNg+gM20d32JBQG4TufQTCEwuOeKSti6R5QdNntUtFlcQxqMrKQeKGVJDnJgHYspUf3bGWONETFmtp9seRsRZDq0wU0ePDEk/QdG5alEPkYr4F9OVAfICqlR2LkBToZpDUelLMX8dyOjclSHbF0YMDBAdxcxN0sLpWlj2E1WGpRKoHS1gFTbONhMkOWSrxEUQPWyU+5MHS0qnXRtpDpoZx+OMo5lv3QB61XmB1UAVWQj6SJfgOIQ24Aisg/Nmmcx8jq+MciUXIPuoee6/WAsLVIbqT+DCJO0uiG9HPxCZxjOqdEjhmgsMeo+JI3UkMEEH0aB5aBtBns+shEnfNJG4kYTxJI/11SUWB50OCpoxd0zkIwHyQJvHQbF0GerCEPMRau/Q1wAPhFbRZjodYRFP63JS+syvc9UK0ylwVNO9rN6yneUhIVPBRmdK7FhCu+ebS6Xtf2wuO4DvM/jkq8WE9D7UqUJ3mCYZDfRbDPkr18kX54zkG+w8lKBg+m9vPETDFUXdPMBB+eDRLYBWXoGn0I6VSeGI9N8EQWHUJVhCkk/iwfWSoICj7r4QkTVpjrS4AVjj52LpMb6wVKhVliEfcfRTyI5JET9x8AZY2CCHCOKwnOABLNEFjkjh6X1uh7sg1tMuuIh4s2tnhOPmCQIAK8CUWkRJHnQ/NkMqPCr51yskspwk8LIhr5QhQpSq6EQkah0OMlTgK2H+FYa3I5n4GBjWMZWfZx4jpa5VJ/URPmMTXPZePQXYVFKDqngar1pOqIEQOZWBILFq7QshAzYoGQF4qCgTbpO5KPIDQ/moOJUoYicsVa7UtCycfWSqRQs9Rdx/DEjTd9h9GYmk+Tw6Y90kLiM4K2YhOn6VirdBEl6MS+bzoQdMtl8DCG1ldtNZOfWup9cICYo7Aqja3cPS9ZICq1mMJrKKaxDkSC5/MiyP4Vq8XGMRxsOzLgpv7WZrEY3owdTvE9pAHC2flx+9H5hj8iGU5FWRhosdvI1xyMiC8Eq9TPQGEk1gcU3VjK2hC0iSuc6CAhXtZnaM+Ld2frbUzOLCaZbD/tmU0WdQvX2aV+AolumFJDAuJG5JYcMQjQHhiwZLo9lACscBGGCvxoZVIBvsXU9mEVNDcRFd3Vasz5FkzLkeYBWBpJmgcAbEbEPgMwh3IoDsgiJiaxNGDAyxcj+O4giiJY4UjsIqQOJZa9Z2nBYSPdeZIYoDwG3lukmEfQ5r7XYJCZ7VasE8FoAdZIDs25Zy5plEGFdY7xTGQR60nIQNRa9WrC22kGZV4sQoy07AJIMQmOSpoPYI9OCFE5xzDPgIRKgPNfSrA/Ov5A2KOGEFS4gU4ZGBQv4+6tzliBL+NMBKdoYmu7kEaIYk1SwVNWiod0YPW0gGUWzWuFZegMVTiw4ge7XGd06cedAi9D0szQZubpMCqrDOwCmFsOQJUIFriqNtphDEtHIFV1HkZc5pH+gPh/RVcckpgoVyOgx0Dwh2i7qMRgPkHy4IKsvPQ1ln5CUvQ1ChiFmmGVCUyhOhx/YgU0cMRxKnPJsB8hxE9ts1HUEROw9QpuypTQCNmkyEBamWSjinRPUgGCAhQGVh2IIJ8YZI4qtduWIvB/7e0U4wjlViEVSLnxp3gW6ONhPVOcVQigXD5su7hb0C4jXAQPa1RRA/Tsy00rmOKtSQSXSBG4sjgj9Vrx6CpCZplWVsty/qGZVmfsCzrdxP/odo0XeeAAOHSJC6JY2hgNcYQoIYkTRwJWqnkJE2+fbRtpt6RkB60CsdAEsEHtHq9MGkeh1QUkEksSmV6uCyQQc1ShUZ7YBXS3M+i04+ROEomFmx+JIT5ZpEB+taqzgCwmRLdqB60pczYOgnaAmkqQ6LrMt8+EouN+Y6SOAoFVhw+0rKCn6P1Gj1HWewxpILGVYmUiEeA8AoyR/Ct4kT/XnIMWyk7RYrAXj7NPfFAeDzCoWgII3E5/UhgJZJJKg3wJmhOUnXSsqynfD+/ybKs5yzL2pMg6boIwFds234vgMsSLz43wSBxCcnY57ikSSGsTmVa/0NT7ZWY5juAsa3O0thUDoljZYqckheVaf1JtctYhbFjUhJHpil2QDhBwSJNDatESsmgGIK40Eq8871UBY3Fj4Qx38510+mT3YNRw+RkUlMcGRlbv026gRVH71SVZDVezHFIRZWN+AJUVh8pFFi5z1EhaV4Q+chR0QXo3q5O07l/XnAcjRNKGHPGIyEj1LUnaCE+UlKax5bohsUjE/LPGu29rFGEmVCVNQB5Kmj/BeAm7w8syyoD+BiAVwM4H8A7LMs637KsiyzLusP331oAPwPwPsuy7gZwZ+KVuUaIAgsdIltgFdKUXpmh84t0wn1oSlV+Am5kLqlomFa5Ms1QQQvRfLM+WAR70IAA+3cCLQ6bXLCPTA+W1ojmfg62FggneqQqyNVphmsWQvTMThCTq7OXDwge7uImg0xET63a+HPOgHiBP2YM9L2vr1Bh8CMtIRUEjn43IHgfAbCdAwUIJhYB1XGuXlZFZlYDEmsOwgyQlTiGtQro9iNhFbTZCZq4q33YXBCJxRiP1CsLDxjnOD7J3UdfvzOXVDoy+eSqxMdPcsycoNm2/WMAw74fXw1gj23b+2zbngPwBQCvt237Sdu2X+v77ySAXwLwR7Zt3wDgNYkX5wisWjqckdUhASqHFCSsd4rjJgaCEwuOwCqoguY6DanEgmEfpVmdMM13hWPMfkgP2twk3RslzWroIEkN270WUvnklDiGJbocCWFYBY3N/oP2UfPnAhA4NYxz2AoQnBCyBFaCBEXoUAaGSny5FbDKERIvhopdqDRPSOLI0RMPkM0tGNqkeoK5fKT/ujFU0EIrkcr+OWKtIPkyg/1HxQhtPXrbcoCYBE1ImsrR7+8maAFkIMBz3YL8yFKVOIZgE4DDnu/7nZ+F4U4AH7Ys618BHAj6BcuybrEsa4dlWTsGBgbohxyBlRpZHZZYcDAEfrYKYJbmBSRoLIFVgOabc0gCEJxY695H1dwfmqAxlPlDe6e4KsgClUggmPnmrNYBwT0PHA+WQKKH0Y/4Hyz1GsnZJCvIuv0xEBJ8MEocgQBJmVOJ0R1YtQY0pXNM1QWie6d0Ez2WFU2+aLf/gEQXYAqsIgLUVs098YBzb4cdjcNUsVgw3IKhl7WljSYsN3PMvm0LV9AYhjYB0RJHtiE5ATEyR8EEiCBxORI03z5W5+g52sQETeNonvSwbfspAG+O+Z1bAdwKAFdeeSV1Oc9NAt3r9L+hIEkNV2LR2uWM2qzOT0iybUraONhaIJhp4QqspgYXrqX+TetaERW0zpV61wKCm0k5Jh0CwQFqdY76Sdia+4MSXY4ELSCxcPexQ+9aYdMHOZg/l+gJSSy0ky9N2McgqTSLHwnyx0yJbuhwF4ZqNUD378RJ31pcFbSwoQyTQPdavWsBZHd+8pEzQfPbowqsJKc4chCdLR3AzEjjz7ieNaHDLSaAldv1rgU4FWShyk9rx8LP5Q4b4lIZ+PeRQU4MILAHk00qHUVQaP5slkVE7QI/wnUucZA9ciW6Ic/RAOiuoB0BsMXz/WbnZ3rBaeyh09eYmqm9BqjkDFxOQ+rBEtmDJsRYcVTQgGDmW1037ZUf57wMb+8UV99gVA8mxz4GPViqXBW0COaPI/kMakrnOsw8qLmfMxgGQogejn0MkPhyTcNsDfDHAFjOblTrhVbQmKR5QedgipEvTNetrcs5m0/AR4YSnQxEDxCyj4qgYOjTBYIlZVzki8SxPwA9T+xaY38pV1wXJs2TVKKwyQDDCAouHxlGPlrzFTZtawkOW4k6isoH3QnaQwDOsixru2VZbQDeDuA2zWswSvMCAgKujD0osWCTeIX04FRm9Bs6EDyh0nWIDM32QLBWnyX4DmBaKjMgp6HxUGwg+LqxJbohD2iOaYBA8HjsCjNBESjxZQg+guy/Mk29ORx9KkCj/bOxjCG9rFWGwUZqvdAKGldgFcC0sxAU3Qv3kWvSofLx/uZ+jgoyQLYQ5EfUv+lE0L3NVomJ6EETDVDBGI8E+X+O5DOoB5Orl0/ZvzfWYpScA8EEBVs8IjXpMEx2yKQyCJL4qn3ULif2KNoU2Hr5BHrQLMv6PID7AZxjWVa/ZVnvs227CuBDAO4C8CyAL9m2/XTWNULBJTsJlTgyZexA40Xicr7lNufQy4CKBVvwETJmXPvUMOU0AuRrLBW0IK3ytDNkhqEBGGjcSy6WPbS5n4tlD9pHpgQtSOLlHorNVfkJGcjAZSPevXQrukw+K6h3ULecEhCuoEUEVizJZ9AUR6bKT9iEPi6iM6x3imvYEOBL0LgqMap3KiBG4CB6WjrCh4RwVVkDEwsu8iVk2JBuH+nGCJ695K7EBz3bOHxkZC8rQyUSWGiTrH5EKK5rC7hus1yV+ORTHDP3oNm2/Y6Qn38bwLezvm4isBl7FzBzrPFnXIFVVAWNQ88bKM2bZXS+zsGoat84h60AchLHIGlehckegyoWXM7XskIYq2mgQ/NobCA4QVPf604sgg5YrlfpXD6O4Lu1K2AfmaSiQcw3V5W1pZ0GoCwgemZ5KvGBFTSm4zrEpdJRPTi6Ayunsh9UQZMiXzj9MdBok1yTPgH6DAvGjE8AXat51goizNS/6V4LaLxutSqNVeeqji+wESZFQxBBwVWJb2kHYAX7EY65CZG9fFx+xPNs4+qJBxA6xZTLZwFkkyre4ZJll9sAWAv9SAB0Sxz5YdtAbZbHabR0CAZWAc2kbvDBEewESfMYzkoCyDHYtcabi03zHcB81OtOEi8kzeM4cwoIHoDClegCIYwVp1RUSOIYFMS51ToOoidgSALHWTFADNGjeR9DiZ5pvgRt1iF6FNim2IU097NJk5ZFSGqYmG/vZ6tVnAllHElMwFAGzmFDgE8GzlRBVq+5oIIg2YPG1V+qpjh6fSSTHwEQOKGYqxITVEFj9ZEh5KOUoofLjwSdTcaV6AIhUmnGfQQaY2Su2QKKDPf7kQAsiQTNsqybLcu6dXR0dD7r1N3vA4Q7RNYHS1DQKMTYVmeZ9jEo+eSuoHlZHeYHS1DvFFdSDfichmP/HJ+tJYixYpQ41isUKCpwXbeg3hHXjzAFcUF+hKuXA/BV0Bjtvy0gsOKqoLV2EdFT9ycxHJLzsB4cph60ILkoZ+UTaGRsWYmergA/whxYSRAUgJOg+StoXIlFJ5HRDQOAuJ6jAVJpLsIMcEisgH3ksEe3B9NjI1yEMRARRzKR4dUZOlrFXWuKpLjlVr1rBVXQuKSigPA+ChdMWtqLU0Gzbft227Zv6e3t9Ux642LHpHT6EQbB1vMg1IPmOkT/jWzJSDO4WEYgZPog45AEoDEgdlkdLoJCSJoUmFhwTcMMGrai/IgU0cM4MQ+QC1ADJb5MPWhBTelqsAVHkzgQIqlhDAgWVHUtxkEyAc8ajsAq6KxIdomjl3zhjBHaAyZ9csUIAc/RyjTJjHX7rSA/wkl0BlYimfcxsPLDJfENSCy45PTAwsoPF4GrXl+BS3IOCBdMIggKKRI3AEsiQWsAewUtZGqM9rUiAlSpwR1cFbSgQwarMzyDNMpt9MAKZD64KmhBUlGhSmSNsfLTGiTx5ar8BCUWU85AG81uqaWdBqBIVtCCZFBSia5biWd6kAX1snLtI+DreWCaPCs9bCgw2GEaNlQOqqAxTdUFIp6jUhVkxueoZAUtiDRQUmkugiKI6GRLdOcaf8YVa7UEEBTslR8polN9No9NcsUjgRU0JjklEJKgMY30D1QrcRIUBaqgNYBrQpl6zcDeEc7m/qDEQqpxm6ny4zJ/HgPkSgZdzbdUBSGgd4qNsQoIrDgJCr/m27Yd2YkU881kj5a1cGoYeyUy6MEimOgCTH1hPqm0bfP1oAUSPczJoJSkJuze5qhElkqUpElIztVrSlfig3qn2BILT4Baq1IvH0sPTgBpwJXElJ3x9lJS6SASi63lIqiCJlj5qdeIWGVJPp39qnn9CFdcF9SDxpnoBkmlmRNdyQpaUXrQGuD24HBUEDqp38HbuM0lAwzsQVAOkSuwCmruZwr01esr1JicL0DXJ0i+w9ZfMb3wYGCWmziAZeckKPyNq7UK9QCJERRM95par2EfhStoXDYSFKBySnz9wXetQtMwufwxEED0aJYAApTEBBEUVSZJTWBgxSSDAhbaJGsFIagHk3lIToP/5+yd6vTZI2e/c1BAzOwjpYjOckAFgV2a562gMU3DBBb6SO59BHw2ydQTX2ohtVJQBY2LoAgagMKqaJOU+BaxgsZadg9oJq3O8bHsQIhBMEmTvMx3ve4wf4wVtIovIC4zJWgtgg8WV3bik2+ysuwBiYXuPhVgoTSJc0JToOabqZcJWCgpkEh0vdMHa3N8awEhAQEH0RNWiZTyx0wSR2BhgMr52YICK65hQwC9rlRg1doVMNyCSyqq9tEjl+OuoFUCkkHOVgH/eHiOSjywMEZw95FL4uUnsWYEK2icsZZgPBJUia8w+UjLWjhIjGuqLhDRg8aR6DrxVM3jR9graKYHLR2CGKsaU2IR1dzPFcgFHmYr9GDhki8ACz8bZwUtbGS7ZA+O9990YsE+Mgb6gVNMBSsIIomFL7HmqPxE+hEmVl/iUGwgOLCqzfGQEwAWnF/HGcQFShwZk8+WdohNug1MLLgDK1+ACsgw36z2r1j9ZlXQmPexXmmcPsj2HA3q95ykn+vudwYCiB6JBM13b3P6kaDnKFcFuTLdSHRyDQkJ9MdOPKK731OtV5QKWuOYfWnGlqmCVm6lUaiSmm8vO8B1xoNaC2g0wBrTPgKyjFWgNJWJ+Q46v4W7B01KBhg0xY6zghBaQRMiX9iInqBK5BRdM47gw9/cL+6PmXrQAEeaF0T0MAZWC3pHuOxf8N4Om1AsGViVWoFSmWc9sX0MsH+u8xQB+mwNia6A/S+QLzNVPYGFEl+Oqg8QQXRy+hFf5YetEu9T2XATxrDnbcS2+SrxZeF9LFIPWuOYfeUQhTTftVlmxtaXWHCcXwE0P0CtMskXgOB9VD/Xvpbz2fxN6Rz2WCqR7fkZK67gw/9gUc6KRU4ZMn2QLfhodgVtjqeCVm6lCZVBE1M50NIhWK0Q7EEDIioIQokF15lrar3AxEJQHSIpTWLbR38PGqcSJWgfGRO0cmsw+SJxFA/nsKEwe+RSa0gqesoBySfXkBAgwI849sJJ9CiCgrMnXj1TgipoHAg6BzAASyJBa0CRpHn+s8k45QuKHVPlYlbnG9I7xdWD5m9Kl7ARf5DKxrT4AwKmXiYAC8bsSydoqvLDgRbfZ5MMUG2br4IWOMWUM4iTJHpUBdlXiWSzf78/ZjyoNLC5f5pXZRBIUAjYv5p0yNE7ZVkBJJakxIuzghaSoHFVfsrtvkSXswfNl1jXq3zDhsJaBVirI974gLMnUn02X2LN5UcWVOKd/+eIEfyTdTknb0r3BBepgtYA6Z4H9t4pf2DFmKAB8wbI2twcoPlm3UdfgMoqA1RMi+MQXeaPk7ESrERWPZpvlx3jCOLCJI5SzJ9gBU0FH2I9mMxET+A+CrDsgEP0SFXQJHpH/NVBxusmTlA4NsnZgwM4wU6TpEkSBMWCs/I4SdyABE2igsaZxFgWFhwMXJvjI4zLbb59ZKygufGIz0bEK/ECUmnWaZitACyZ4wqAhf44BEs4QWMMGtUDhZP5VutJSpOAeQPkDKwCm/u5E13f6G+ARyrqapXVPjpfpdg4zh4c/0NTfUYWdiyoB4eT+Q7YR4BpAIqvuZ9z8iYQLM3jDIbr1fnmfrcSz5joSpyDBswTFAqsgVWA/bNOMfUx35wH3ocF31w2WW5b6Ec4+7TEiJ6QVgEuGym3BVfHJQgKzkBfva7E0CYgIEETkIr65wuwTrr12b9VpnP0tK8VVkFjuLcta2EbEKs/LmwFTeDB4koznECfs+fBO9aWc5BG2aexldDOS0lF/cbuSvM4ZbBqHxllIECwfJPTHoH59VgrkeoB7WNsWYeECAVW7oPFeaAoe2SV5vn8CFcyGFqJZ5R4SRx4Dyxk2UWqrIKMbeBxHYz3trL7OcZDsdV6fj/CGeh7z0plrUQGERSMlZ+gISFsw1Z8STznvQYETFbkJMPbHRLLOWaCtfITUEHjOvYHWOhHOIl3/+AOzqE1aj1/BZnVHxe5B4119LdK0BgfYkBAYlFhDKwEWU1VLvYHVqyVSKHhFv5m0gqjPQILb2Rudgzw2D9joltqwQJJAdcIXSC8gsYSoPokvm4Qx5VYdyzsHWRP0NRnk+iv8PegCSkaWJv7g5rSOeXLAQFqqZVn0qd/cAcnGajWW+BHGAkzIECJwliJX2D/XJUf35CQygxvUg0EEMZCFQtOH6mUOxKJRRDRw3WeHBDQg8aZoKl9dAolnGQgQPeVvyeYW9HgPUIgAEs3QZOQZnD24AALS+HVWR5ZHuD5bOqhycj8WVZAQCDYy1eboxPvOcruCySOzBU0SYfoTyzcBI3BJoMkBayfzcf8Vabp/mM5B8dfiWcmevx+pFZh9COC0qSwYybYiJ6AXj71c90IC6xYmW/vvcY4bEjZnnrWcBI9gCyJtUBBwfgcLbcBsObt37Z57d9fQWANUEMqaKzj4YXikQWVH+VHOHvQHDus150kXqoSz3iv+c84dJUoXIm1v4LGXGWFPZ98hmDpJWiVGQq+Sxya17AKGiMb7WWsWJlvXymcPbHwM1bMCVptztMXM9sEiZdQYsE6xU7Zv2ruZww+gIUOkdX+AyponGdOAc0jerj3EZj3jZyHmQceM8HpR3wSR1aVQQs9x9Q+co4ZBxyixy/xYpbTuxU0YfvnTnQBjwyckTC2LEp2604QV68CsPkC1Bb/PjJWIt2peX7CWKiCxpqg+e1fQGXgJjGMvdVAQA8aZyXSt4/siragChpjfKzWiMCSSNAWHFTd0sF0uneYLlpImiEicfQxf5wM2YJpmJxsBDw3Muc++isIzA3wkg8W/zmAnFJRoNEh1ut0xgkrGeJn/hgDfUCY6PH6EUaCYkEvK3dg5akgq6FNnD1o/kQX4F3PrVZXnEmfXIFVEEHBHaA6iYWI/XvvbeYeNCBAvswZI1Qa1+KsoPmHJHBWYoCFLRes/aU+opMz0AdkCAp/oss5DVO9rlgFzSdxrApU0BpUNgJET0wf2pJI0BYcVM0eoCp2rBnMN7M0yc98swYEfmmSUNAoUkEQYof9/UUiPWhNqKDVGSdvArRn9UpjlZVTlgoIV9A8UglWiaM/QBXwI/6eSM59tOsLB0Bw+i23gsAs8VKBlep5YG3u9/XgsBM9HQG9U0KBFXfvVLnVk+hKVyIlKgj+RJfxujVM+uSU+AZUfqwyz7CVUol6SaWGrTSzEsnuRwIkvpwKM6BxLwOwJBK0BnBOulKa7wVjxjlLqv4EjVkXvcAhCjDf9ToFx+wO0cPYsieD6rNVGn+uG0EOUWqQjGQFTcL5Ao2BVVEqaAsq8QIERTPGY7uHokolFoL3tkRgBfjsn8sf+xQN7Mx3wJh9MfkyM4lVavXsI3clMmDMPrfqRWKqNLCQxOKchuzGCJ7EguuaAY2JBfeRFguId8bnqFtU8BEUUr2snOcpBk0oDsASTNAYM3b/cAt25tvH6og290sy3+ohJqVVrjDq9H2SArVmibFiIfXQXJDoMidNXvtXa3LuI9AYWBUliFsgcRSU+FamqR+YYyAP4EtiBPwx0MjYcjHfQGPPD3dg5e95aIrEkdP+m1hB4xpFDzQmFjVmP6IUDW6VlfM5GtJOwtbz1tqYoHEfVK3WAHj3EWiU+EoQZt5jJmoCw4b8BIXE+XUSw1aAIlbQGNkxwNcXIMF8+52GFPMtITvxsWPsDtHD6nN9rpLT3O/aiOOoWANUqelTfu08d2LhqSBzTowEggkKNtbbGW7hP0+Os/Lj9yPsBIVXTsz0uYBGiS87y+6voDH6EaCx54E9sPKx+qzTAIUrkd4KGvuwlaBElzEeKXsraAKKBtjOMBIIDS0TqqCVWubVLmo99ueoQDwCNPYOchPvCz6bxD4KShz99sg9xbRSuASNMUAFfIytRIDaJOa7XnHYYSYT8CYW7My3r5mUcx8tq7Hywy5x9FVHJJtym1FBk5JvcgdWXoJChPmWkjj6mL9ahY+cANAwfZD7wO8g5ptVmuTpneIOrFRlWvmrphA9Aj6yXnOGrTDLriSk0gDtZV2qgubv5RY8l5W9l89THbFth8TiHhIiEI8AjfbPfS7rgsEdnERPmKJHoCdeouoPFLGCxhigAg5j5WGQAOYA1SspEBgS0hBYMa0FNI5j5WbHFkxxZGasgio/XNI8JblVNlJlfLAEBVblNp6JqUCjNKkZPWhcDzEADeOxuQmKBcd1CARWXoKCy/aB4Aoat414GVtWaZLnCAHxwKoZRI/AcAuJgSSAHNHjrY5XBQJUoHEvuWKEBWeFcSdoknGd4NAyAA0DULiPT3KJHs8gJelhQ5zHTFT9hDF3y0XhetCYH5oNkgLuxEJSUuAziHqVN7BqaZdnvsWacr0yWCVx5EysbaHAKkBSwCrN8EiTXIfIKBUFGvuZOD+bt7lfRCotPA22gWXn9CPeSjyzDDBorDO3H1nwrOGuoAkEVqUyqTMWBFacBIXyx9JSae4KWoAf4QxQAZnEwn/GocQ0zLrnGcq6ln+4BTdh7JXmcVdZneezt4ImFY+wT9Vtb7R91rV8w+ZCsPQSNG7G1ispqEolFhKSAuU0vGsxSpPK7Y1JBcBo7AE9D6xJfPvC4IMtIPAMnKhV6awwSeab/cHiH7MvKPHlOOxeodyGBePauc9TtO15+Q7nQwyYv6e5iZ6gc6DYp695A1Tmz7YgsRAKrDjH7AONpIEbWHEOUlJ+RBFmjD3I3nXYFT0B9i9WQZMgXzyJrlXiW69hGqZUy4WQVLosmKAtkEpL9KAJtVx4K5HsfbM+wiwESy9B43YaDeeOCGTsgE+axywp8I6HZw2sAqQZYmOdBRkr5ajYpg96rpvL/AlNw+Tu92yooAlLk0T8iJTsyvMgq0tUdOEjlTgT3QB/LMZ8Mw9AaehTZJbUSPagASGyQ2aComEtrudokFSUcR9LQeegSU1DFlBQeCtoLR18cvoGiaPAVF3vOuxSaW88wkxQBPWgsVbiSwsruqwtF9L+uAAJmmVZN1uWdevo6Cg1AXMy30HnjrA3k84JMN+toDPehKRJgVJRqQdLhTmw8t7IzA7RnfYzLcCgCj+gJR2itMS3LOhHyp6AQCzRFepBE60gBPQ8sPeyNjOxEJo+KCE7rFed0djMPcGBUlGpKY7cgwuke6e8FTRuwkBwH/2VHwnC2E9QcMXIpWZW4iVaLoR8VtlXiQ/BkkjQbNu+3bbtW3p7e4WkSVJT7DwOkZv5sKyFjC13olv3M1bMI6QlKpFACGPL1TvlYfW5qyOS7BgQ7BAlKpGAk6AxV37q/qZ0gYBAethKrcp7r3nHY0tIRQFB5rtjfi1lK2yJhb93hLk66Jc4cjLf3uvGTZip884aJI7CPlKC6AEESNyWxkSX0x5LrQF+REoqLTENVojodKV5FedIC0GJr2QvH3fLhd8fh/0az+qMkJQ4ijHfnsCKfWqYxwCl95E70RVjvjsW3sjcgVXdk6BxJRaW5Rtu0YwKmlDlh12a5wtQrRJjEu8JCNilGWWyvwaptJDEUSxBE+rBLAtODfMGVgB/YtHiDawEFA2AY/8FrETWfb2s7GeTCfn/Usv8PtaZiZ5yGx2/UK8JDAlphlRUSOJY8tg/NxmoXrthqi4nGdJOPf712rxdslfii5ag1Wty0iRu5rvFy/wJGHvD9EHuxlVJiZf/wcI8JCRwHKuA5ttNBoUSC/YHi3fYCrfEUbgHs0EqPcNcrRCUOAKN0wfZCTMfg6p+xgF/Jb7KPCSkwR9zJxbePsU62T878+1RNLAObfJcN+59lJyGCfjiESnC2Gm5qDPHCCVPBY1b0eMdksOujJIetuWtoDFLHNXnqFf5p+qq9cT8sZfoFCJ66rXIX1uCCVplXmbAgYYpjjNk6FyHOXtL4dwBKuBolT3TrrgljnbN6a1Tn034/C4uBB2wzGWTXqZF3cySlU9ull1srK1PvsPdy+o/d4dbBgXIsZresebcvXxeiSO7xCuoB4dbvubYCHsl3pNYcAf6QGNiLdGDA5BNik9xFO7BUT/jWgtwEl2BeKTUOv9M41b0eJ+j7LMFhIeEeI8QYK/EexJd7n0EGuORGrMM1jtIj5t4V/GikTimhH/6IDc7AAiWi9shOsVOreNK85iSmAW9I4JDQlQlhq2/QjnEKv8+AgsryNz2WK80NvdLMVbSEkfuRFetU2XeR8DnR+aY99Hjj9W142aHpZjvUtlTQeDuL/UGVsznewI+PyLQgwOQ7bNX0HyBlYiix3dcDffQMm8FgZV8KTcmFtzDhtQ67OcpChPG3koke++UN9GV8CNtjX6E9TnqqSBLT9UN+zWe1RnBztj6JAUSzJ+oxFFq+ppnIhp379QCSQHzkBB/7xSr8/XcyG61TmhIjlRi4bURscBK4pgJb6JbJImjz/4lzqW0bUGix3vduKuD/kEyAgGBCPPtlzhKVJAFEgvVp+sNiLkVPQuGlhVgGizgSyyqzESPV+LILJUutYAmZgvJwP1SUfc9MMCNtZohcRSI69Q60r2sYW+JZ3VGsE9f88hOJOQLgMP8SUgcvZIy7ulrXmkec4LmZT7UV/axtl7ny1xBUOtwT3pT60kesAnIBARee1TBPncFuUEGxSxxAeh62epngtOuRPxIVYDoCZriyDlZLoD55rq3gwIrdvmmd2KkhMRRYIoj4JPdCti/9LChWkUmHmmYdCtUQWsgKJgSC8vyERTMBF2ppVEZUmrhU/R4h5ZxJ7pAcySOtTm5KY6F60ETORhV9Wlx96kENTczV2MamD+JxEIwsKrO0Xp2nX/aj3fYhEgFrcov8QIWMt8igZWA/ZebuI/cpJIk8wc09o7UuAkzD/MtXYnnbkovtQCwHYkvdwU5YBqs5EHt3AkT4Exfk5D4evpLJSWO7AFq0JAE7imOnnhEguipzfGP2Qd8JK6gVJo7HgkijNmHRAkNf/MeocE+xbEMwCqixFFQmmTXeOULXokjdwMwsLAULtKDNucJiLkGaaggTqAHAXAqCB7ny2qP3gCVeSAJsJD5FpMmMUszXBupykzD9DLfdp05ifFq55llUEBj7wh7QOBhvotWiW8ICOaoOsIm3xTsCQbQeIQAsxJFfQ5bKEHzVtBEJI6eISGslfggPyIVjwicS6nWqUlUkP0EhaDEkbsFCHAqaMz+GAiQOEoRPUIV5MINCWEPdjwBar0KWMzOF5BpbgZ8TItALx8gd36XGtkuEaB6p9jVmLXzQfsoxnxLVdC8U0yZ1rMsupe9vXxSzrdepeCbC95ePu59BGSJHu+5O4ro4fLJQcd1cEuTAKeqKxhYcftjoNH+uSWOVgDzXRT7VxP6bJu/giZ5niKwUOIrRRiL9GD6KmhSUmmxlotmDS0TIHoUYQbI+ZGwX+FbnQG202DBbYAuO1YwiaNf8809xQ6QkTiq9aQqaN7BBVLyHQmJFxCgnZc+v0jA/sX2UdiPSEkcvX6Em+jxSxytEtiOPfFW4gGwDxvyJmi1qpA0yWv/UtIkQYljXYp8kbJ/jzSbXdHQjCEh3imOQkSnRBJfbm1sueDeR7sO93xDkXtNqife70cE/LEtVEHzthyF/Qrf6vpgWdbNlmXdOjo6Qj+QmuJYr8pJHLnPCgMczbfUFDtPsCPG2HoCfW7GCnCcotA0TBXEeddnWU8wsQisoDE7YDHCwFdB45ZBAcLSJMHjCoD5gIDzmnkr8YBgYuEwtqyVeG9zv4T9t3t6p7grCAHMt8TZfPUaAFuQxOWWeKl9rAslMR4/wp7oFpgwbpD4Sk3n9rZccMYIglOl3Uq8FNHjicdDsCQSNNu2b7dt+5be3uX0A+4by67TRbLrMoGVmMTRG1hJTnEUGMqgmnKrApOFGgICbomjdAXNPySH0/59PQ+c06eA+cBKTOLo7WWVTnSZ7V+K6GmQODInaMB8YKX8v0hiUZMjesR60HzTByUSXVsosVDSJHctoQRNKkAV7eWTUvR4CWPmnnhgPh4R6Qn2Ej3M+yg5VRcQrsR7/PEikTgurTH7rsRR8EEm0YPWjKZc9imOfsbK4pMmAR5JgUDwbfkYWwlpUl2IsVowfZDzIeaR5nFLM4AAiaOADBYghy/lR5RtSEkzuImeBokjc6ILzCcWLtFTEIljUGAlNn2NuwfNea40JE0C/aUSfsQ73Ii937MEmiwn2IMjTfR4pXmsPtmn6JGooKleVu6qJ9DYE8xNUDRlaBPzFEf12kWQOM7DSdBEpv3MyUm8RJv7hc5v8UscpZhvqQcLINvc3wxpns2cWCxg/hj3Ua0nVYlUzrdeF6hEFpjo8QdWnPsIBDDfRZE4eg5qFyN6vBLHAo3Zd+9toX0E4J7NxPmsAchOGqbYcR/7I6TocfdRoJcVoIqZ5HEFwPxzVGyKo4T9+4YNibSuKPu3mJ/bBZE4uhCpoPluZM4LVCpTACx2fpE/sBJkrNgTtHa5freGgECoguA9v0uK+eZOLBocIjM7BswHViLSJMHEohkSR7Epdt4AVcKP+CvxBSF6LMux/yZIpavM0weDmG/23ilPT7CY/QtUkK2yoMTRd1yH1HmK3JJzgD6bXZftiVeJtcgUx2YMLWOWSi9QRrUyt1x4BhKG/Qrf6gywBSto9Qr/SH9AtvLjbcoVZawEpUl2nb5nrfz4tMpSvXwuYyVwDlq9DvYGeMu3jyLssKDEEZAJCLxrSU5xtG3ns0lU4qvClXiJXlZ/YCUg8fVKkyQCK9vm/2xeokfkjEN/JZ5ZKgd4nqPMFWTVpy5+DpoQ0SNFGFsl2seqUKILyEgcA3vQuAlj4YnZakgOO2FctDH7CiKSsrn5UjgnWlRAIHx+iyRjJSlNcoMPxusmyXyLM1Yq0WU+cwrAwmErzAmaG6AKSTMAjx8RqMSLjscWqkT6hw1JVeJFmG9f5YdzHwGPNE+I+YbtBPuzvBLHIKKHnfn2ShwlpvgKPUclJY4Nx3VIDhuSqqB5E13BISGs+1iimLiB6JHo5XPskVUq7ell5T6XD3AkjoVK0CTOQfNXfiQYK29TLveYcS8bUSSJo2JaJBILwd6ppjBW0omutMRRQprkDQiYp8ECAUmTxHEFEgGqX+LIvI/+gEBqSIhEf1G5pfGzSRIUrBUtFVhJVSIF7zWv/UtI86yS7BRH5YtFhw0J+BFLspdPcIojAPcoKsmhZRKkkn+KKbuix0gc08NfsZDQfIs2N9c8vUwShxBLJWitzjRAAVZHNEHzMlZCzHe9Op/osgZWgtMw1XrSzf3izPec0wDPXLGTnJgHyEscRY7r8PsR7sSiTdCPeBI0u14cwkytJyYVFZwqDQhLHD29rGJTpYV6Wd0KmuQ02Bq/xBGYjxEkpsGWWht7+UT9iJE4poRK0CQCgjn+KXbA/I0s1TslFqAKSwqUNEm0giZwfhGAhc39ApICiVHE/vOLuJm/BeOxBaR5Ysy305TOHQwDAVI5ieBDiOhpcQ5YdpPPgjT3A57rJjAe29twD/D6LD/zzZ6gKX8s0e8mOFUaCCBfuKc4CvWgSSt6/MS7pFRapBIv9Rz1yA4BfuIR8PhjiZaLIiVotrTEUWBIiGKs3ASNWVImdVDvgsBKSJokUkHz945INPcLMVYLJI5C+yjB/KnASrTyI8V8l+crn9x9s005qFdw2FDDVF2hCrKYxFEosVA2qPZRRNEgOGylQb4mOWxLQJonelC1qkTaQsR7VbAHzXNwugiJJdnLWplPLkT9iMB0blWxk6jEF0riKHkOmptYMG+RmvajEjTu6kgzptiJSAqcoFGkEintEH2JNbcUxPtg4dxHSzjRVWSIuP1LED3leT8i1e8mOSRBqndE8rOJS2oEx+yXfIGV1FRdieb+UllQ4ih47A/g2L9HUsY9JAQAqjPO95I9kdyJbsmXxAskFlJEp58wlugLc/0IYzzuP/DeSBxTwhaQOEpLk5TEUTl71ulTLY16XsnzMqQC1GZMcSzUeGznulWmnLWkmO85geqIT5ohGhBwEz3Kj9T5K2iSQxKkJY6Wzx+L9rJKSHyFCDqX+RaUJkk394u2CswKxSMlwXvbuW4VJ0Er0rmsbutKE4aWsdt/C8SIHlE/4u/lE5oqHfWWeN+BbkgeVC0wHhuY1yqL9I4ohzjtfF/AwEq6B03EIQoy38r+FaspFaDWBcbs+yWOUj2YUkRPvSbUN9syf83U91wQr8SXKcmVDqxEellVJV6wL0yigiZdiVdKFFGCoib7HK3N0f9L+P+qE49ISs6letBEWwWEelklj6tRn00NW5EcWibijwtVQXO+ihwMKaVVVtI8id4RVR2RcIjSxxU4gVVTetAkKj9OEGeVeaus6ropG5GSJtkClZ8FiYWA/avEWmr6ml3ntQ+1VsMgDaGhTRL+WI0ZrwtIzpvROyXV3N+M3hGp5v5SWVDi5eyj7TzbJKc4SkhuAQ9hzBx8e8/vKmoFTbKXW0LR4/cjIkPLanR/G4ljMliWdbNlWbdOTk7QD8TO3RFKLJTzldCXA/OMlWjviFBgJS4pkDq/S7CXD/BU0AQYK1soQVOJruhwC+nEQsqP2B5WU+qsMMHjClw/wimVLvBB1S7zrVh2qX0U9sfqey74EzQR+xc8rgCQIYwBZzy85DlodWGiR3KKo+NHrBLvve1W4gWr/i5BYSSOiWDb9u22bd+yrKuLfiDF2NoSU5M8Q0Ik2DFgXvMt0rjarB40AYdYmwX79CmgsQdNgh0GZKaveaVJIhU0ySEJ/mMmpBKLZvgRyUp8QXvQmjHFkfO6SUocFxzXIeSPJYgeN0Gz5RILuy6k6HE+S1WgB029vjhhLDSdGxAmehz7l+iJBOSHDYkd11GACto8JKc4KoZAqJ9DqoIAyPSgWVYTHGJddoqjRIAKzN/ItYrMAxrwTHGUGrYiKXEUnj4oNfpeVZAl1gI8lXjJYSvSfkQysBKWJrH2hQlKHL3T10SmOPqnwXJ+NkeubAv1oJU8hLHE0TjA/EAqqcRadB8lKvH+4RaCUmnupFr0uA7vsScSEsdyMSpoLmyJBE1YmuQ9qJp70ptkU656fSmp6ALmW8AhSgzSABqnD0oEqID8+UUSvVNqip2SS0gOGxJpSq/KjdkHZAiKko8wK+SQEMmDUVVPJLM0yWW+FRnCmQxajQcDi/SOVGSIHlcGXhcaNqRILEGipyIgp1evXy9iJd5DqkokTd4D7yX2EZDxIw09aEISx0JW0CQCAsnEQknzCucQWwsaWPmrTNwBsbcHTVriKDE1SVCaJzZ9sBkSx7pMJdJlviWmwZZ8zf3SRI8UYyshF2qR61Nxq1pSPrIs99n8x56wSkWFh4S405AlpdJCFTSrJCcVXdDLKjkNU2JomUNQSLQAATJ+pGEarOBxHVG/wvsONEOkguaZ4ih2Dlq9mA5RUlLgD6wkJAUShycCjecXiVXQnCRGQgYlNSRkAfMt1IMp4Ue8Q3LEekekAoI2uUqkV+IFCFXQKvJTHMWYb4FKPDAv8ZU6zNmuCVUHmzEkRFoqLdSDpuTLRT1P0VU0FGlomXrWSIzZV/5Y3WsChFmtiBU07t4ptZaSgnBCMX9FdIiuxLEJgZXIkBCVoAmMNVcOkTsYlpQ4WtY8qy/Sg6kkjhJDEjx9MYDsmH1piaOYpKYZgZWEVNoZNiR1DqDUVFFAJokBGs8TZbd/5zpJTENuSNCEpvjaTiVezI8IET2W5amgSRDvtnBPvEO8i8R1QmeXikocPc9siZajckHG7LtQFTSJqUlKdijSOyI5HhtyY20btMpS0gzhMfuAUGJRwB40oLF3SmxIiAq+BQIrqQBVET0iUmnp5n7BHsymSJOEJOduYCUx6U1wiqNaT6pVwD9sS4ToEaoOWiWPPxboCQZkpNKAs5dCCZqazi0pla5KDS1zCOOakD0CHomj0LAtqedooSSOIhU0T1OulFbZrlHyKSZxFJi+BghPTVIPaIkKmj/4ELqRRcbaSvfXtUBUUuNKHC3m6oiwxKsZvSNilXglcSxoD5qYNMlTiS+cxNFL9AhV0CR6ub1nM8GWJSjE/IgQYWxZnl4+AWVUA2EsUImXmiotPQ0TaBJhLDDFVFVYQ7BEEzShkb0SDtE1CAnmT/XXKT2vgAFKTrGTdohSEkf3YMiaAMvYjMDKIShE7FH1+0iPBxYckiPWg6b8iARBUcRhQ8I9wS6JJVmJFyR6JHtZAZljJsSHrXj2UcL3A3JSaekeNOlzWaUkji6JJTlmX6BvXL1+XcqPxNvE0krQnPyseL0jdaEx+77qCLh7p4QDK8AzoU+iB02q7O5tyhWSFIhKk4QkNaVWALbMhCbJYSuAR+Io2DuibITbj0gfMyHd3C91XAcskMRLQk4vTFC4RKddMImjc29JVxBEpdJSPWiCCdqCCpqEHxEYpAHI9vJJHngPeAhjiQQt3m8srQQNjgyQM5AT7x3xBARSzJ9UYuGVFBTpRvbvI3uAqiQFTZA4ijSlCzNWlekmDFuRqiAL9o5I9WBKB1bSUxylgg81ZlxyzL7rRyTky3XZwEqiVcBP9IhVkCWl0kI9aLBkK2gq9gGECGOpJN7byydMGIu1HAkeVxP1dnjfgWbYEpLDZmhepXpHPGe8AfyBnOi5I4KJtVutk6ygSU1NcmyiLkRQSA4JUXtXnZFhGQHPPkpMgxXuHZH0I27lp4BTHMUJM0nmW0qaJzjcQnK4S5EDVOneKTceqcsrelhbLvzkNLP9w1NBk5BlA8LTYAWHlsX9Cu870A2BUcTimlfBHjTvuTsA2Cs/0ppvoDkVNAlJjXtQr/Q+CjHf0tMHi6ad91bQpHpHpCrIDX5ESuIiIU0qAbDk/IgrcSzgNFi3Ei/Yy12ZonU5A+IFw4aEpKL1Gj+p5EpFVe+UpMRRqvIjQFA0hegpqsSxCcfVRP0K7zvQDIkKml87L9WUKzlmX+xGFpYmATIBwYIKguQUR+EHixhBIXlQ+4zg+S3CDxbJRLeIfsQqw01iABmfLOVHrBL1cUucp9isxEL6HMCinScn2oPjq0SKVNCaFY9IDi0TSNBgO2P2i2z/Qq0CUW+H9x0wgJ1ldNYQlXjVZcbsl/03Mjfz3YweNIGgUdoheg+GZD8UuBlTHKUkjuq6zQrJ8iA4xbEkKJUW9iOSvSOu/QsOiRL3x0WUOApOX1OvX50RrMRL9Sl6hluIEWZS0webZP/S/phb0SDqj6WnwQpKfBO8/hJM0LiND7Rx0kNC7Jqcdr6I0iTvg8wqMctO/JVI7uumZCcFlRS45wBKVX6qELF9dy3IED3SvSOSUmmpc6D8vYMSe/m8kDhy72NJMEFTNlKTGzZUl1I0SEq8VE+w5HALCBHGHvsX+1xSQ5skJY7NmgYr4EcSPDeXXoImgYYETcIhCkszpBKLhmk/gtMHJRrSm9Y7UjCJYzOact3EghHN6MGpC0mly34/IsA0SjaJA8KSGuHekZpEJV66giw4DVZBYqquW62T8iMlQam0cL9zQwVNqk93TqDqaclLpWEL2b+0okewVSDJ22n2G1iUsEqykgIxh9iE6WviTItAnxYg7BCbMTVJivlWjK1ABbns653ihPgBs01IdCWleZIHfgOyQ3KKGKBKnycqeQ6aguhxBc04roOb6PH74yIOLStgPOJKHGvyUxwlSAOxClqCt9PsN5AElmXdbFnWrXOzs0ILlj1N4lIHGgr2jqjPJiJNqkJEmiTJWAE+aVKBKpHuwaiSiYXw1CSJCpr0eXLq3B3JabCSgZXkPgJOJZ5ZKg3I+hFRiePzgPmuVwQkjhYAS64nXrKXz++PRQhj6d6pZsQjkhJHwdYVQMb+7TrcM5c5kcDel0SCZtv27bZt39LW3gb2YABorKCJnYPWjAqawOWX3Ee1XlEZK5GpSc2QeElXfqoyVR9A8MFSkk90JQOCZlTQxAIroeZ+V9EgKM0T62VVBIVg74iEPwYaCQpRwqxglXhYcoRxQzwiEGeVyvKEca0ZEkcBvyXWuhKP5r+DxYgGiaNESbXmHJ4oJSkQlDiKB1YVmRurVBYMrJrJWBWod0TZv0QFDRC2f89xHYWTOAoTZoCgNKks96yxmihNkvBb0tKkuoDEEZCvIIv7kWZU4qV60AR64gEfYSw5xVFI4isllZb0xwkgQP8sQViWZ/qaoMRRjPkWlDhK7WMzKmhiU5NKHvmaYHMzICO7FZPUOJ/Flfgyw2v/7DbirUQKS0UlEjQxyXkzpElCNiI6bKgJEsfqrHCCVgVa2/nXsUp0NAggE4+4ip6iTR9shlRaUtEjeS6l7U7DrFQq6O/vx8zMjP61ai3Aq74EtHQA298LHBoASsP611G49I/peXbWrwIdfcCzz2p76Y6ODmzevBmtrcmTWpOgBaFpEkfhARAiDrEZFbQCShxhOw3w3MFwkZlvZ+8k9hGQt3/p3hFR5ltwSAJQTKm0InpEpEnN6GUVrqBJ+RGvfE1Scs7u+5U/rjd+z7aeiUe0wFX0kMqgv78fPT092LZtGyzd13BuChisA23dwNwEsP5c3ms34FyryiTQswHoWa/lZW3bxtDQEPr7+7F9+3bnpwXpQWuAVGAldu6IoEMsNUPiKBjoA/PnoHFD2iECsocnSjLfUkFcA6T9iADR4x4KLyQVNVJpDes1q7m/aAfeC0qlJWKQhvWEj5mQkjh6zyWjH/Cv14wKmlTLhdS5lN5KfLkVMzMzWLVqlf7kDPDEPrZnbUZYzmfzrq3lZS2sWrUqdZVx6SVoEmhouJSQCznGLjY1SUri2KTmfrHeEUFJAeAwjQKHYgOy9r+INN9aYZXlAoKGCpqwVFqi8llYaVJZLtF1AyvJg3oFr1tNDYCQJHoEIE1QuMNWuPdRBd9OgiY6bEhgaBPgVJmKRvQsPD6JJTlrgB3/K9qW4lkryx4ZiWMQmtKUXhUMrAoocVR7VxfYR0C+KReQmfSpPovYWGfB6VMuhJy95HmKbiW+CQfMikocBXswCydN8gaNgsNWvN9zQfLAbxdSfsQSJozhVJAlpgGCBqQBMutJKaMk4zqgCRLHOlCr8+8jmlFBq8uslQAFo6w1QTQgEJTmlUogNlpQmiR5nhwgPNZWqrlZJU11gWvWjCEhghIvQI6MkyZ6xIYNSUscBYc2NeOAWbEhCZ6jH7inOC6QSguQBmKEmQMbEJNKS44ZB2QqyP4eNBFFj6CiASjmkBAAYsOGXEQn8dPT03jpS1+KWo2qsTfddBP6+vrw2te+tuH3/vmf/xlnnnkmLMvC4OBgwCtZCypoYa/1rne9C+eccw4uvPBCvPe970WlQvt/xx134A//8A/jP1JRzkFrhJRDLOj0wXKr8BTHJjT3F62C1vAgE2I1xaRJJaDaBImjSC+rN7GQqCAIj8cWnb4mJfFqxhRH4Uq8xPldzZgGKzoNUxANUmmhCrJEy4W4xLHI8Yhwy4VUL6u61WJkh5/4xCfwxje+EeUy7fVv//Zv49Of/vSC37vmmmvw/e9/H6eddlr4i/mqdWGv9a53vQs7d+7Ek08+ienpaXz84x8HALzmNa/B7bffjqmpqejPlgBG4hgEy6KRvUCxJAVqPclSuBSD6k0s2tp41wJ8jK3gg0xaviZxWGlhe9CEz0FT/UXSUmlJokds9LfgeYrus0ZwAJDUPor2oD0f/IjQvV2dFbzXVIJWIMLY28vd2sm7FuA8R5UfkTiX1Tn2x2ePf3L703jm6Ji+tew6zu+r4I+uXz2/dgA++9nP4nOf+5z7/ctf/nL88Ic/XPB7l112WfR6DUNCol/r537u59z/v/rqq9Hf3++8hIXrr78ed9xxB9761rdGrxeDgnkyTbDKclpl6Z4HdcggIMPYumtJSUUlx9oKS/PqNVmJo9Q+SvW7uRDSODb0xUj1/AhIfMXHY1vzLDv7Z/P0jkhIpa0S5u2Rex+dr7aEVLoJ02Cl7jUXgr2s4r1TBZQ4NgwbEvTHEvaojtBQ/8+7mOxaAOheC7aPubk57Nu3D9u2bdOzXsohIZVKBZ/+9Kdx0003uT+78sorce+99+Z+N6aCFoSGcaxSAYGQxNEqzQc7EmspSDpE6fOLpGSHomP2Bc5KAmSlGQsajrmXExzrXBKs/HgJA0DOJgEBoqcJ0iSFIlfiJQg60R4cOOegCazj9SNS9l9YiaNUgubp9xQherx+RCAeCblmf3TzBXrXqs4BJ5+OfGYPDg6ir69P46LpCLNf+7Vfw3XXXYeXvOQl7s/Wrl2Lo0ePxvxl/OsvvQStiAfMAkIOEfPlaUA4sJIKCATPLxKbGuZ7kHGiobm5aAmaF9J+RKgvTKqCDE9VS4qg8P8/y1oe+29p510LEP5sXqJHakKfVA9mE86llEJTpHkSMlhzULU2iPoRS67qaXkqaCH20dnZmfp8scj1UhC4f/Inf4KBgQH827/9W8PPZ2Zm0NmZX9pqJI5BkB6PDQiWwq3g/2dZq0mBlVQFTSzRlbxmivmTlIo+H3pHCnYwasO9XSA/UvTASmwtnz1KSLOL6kdKwtNgAee6SQXfId9rX88jJy6SVBTw2bzQsCFAjqywwyWOK1asQK1Wy5WkPfjgg3j3u9/trJGsgvbxj38cd911Fz7/+c+j5CNgd+3ahQsvvDDz+1EomCfThAZpXsECqwajE3TAUoFVXSqxEJQmNSPRhS0nzbCFmsRdCEoc3f8XJHpEAgLBexuSiYXgmHHveoCA/Uv6/iZMw/SvzQ5BP6LIQKkpjhJrAZ5rJTRVV0FsGmYRiZ5m+Kzoe+3GG2/Efffd537/kpe8BG95y1vwgx/8AJs3b8Zdd90FAPjHf/xHbN68Gf39/bj44ovxy7/8ywCAQ4cOUcUrwEWGvdYHPvABnDhxAi960Ytw6aWX4k//9E/dP73nnnvwmte8Jt9Hx1KTOEqeX6Qg6hClme8iJhaQq6C5awsGqJJyMhGJo3cfhSQ1UmgICISIHsBU0PJAWipdVH8sHeg3EGbNZ/W1QtIniye6zv5Jta4oSPrjohFmouRcyLo+fPCDH8Q//MM/4BWveAUAhA7o+PCHP4wPf/jDC37+wAMP4IMf/CCCYq2w16pWq4E/P3HiBKanp3HRRReFvl96+SL2oEk4xJJkgibsEJsmcWRey3vNxBlbyUok9z56A52CVSIVxIaECD6kpa+b5FlQzZLmiVfQiiSVliZ6JAPiJvSguf8vJHGUWAsgOxQ78FuQMJN+rkn6EVHCONmvXX755XjZy16GWq3mnoWWBn/zN39D/zNyOPXf+nHo0CH83d/9Xe7XAZZkgiYAUYconFhIapWLXEGTrFg0i2UXZ74XBxunb43nQSW+aMFHU3uCCygVBYT2sUl+RAKiFbQmJRbifkQyriuYj1ykyeB73/tevctlxFVXXZX/RRwUzJNpQrMcosg5UAUthUs/WBoqdkXqHfHao7TEsWDuqGnMt2QlXjjRlSJ6Ag5h5VmvSVJRif5jtZ4EYVBoPyIYI0gTdE2TOBasl09S4itZiQ9bl28R4fWiscQ8WROa+6WmJvnXZVuvSYmFZIBaaGlSwRLdpjDfzfAjksy3oP2LBFZeaZKk/QtXfoo0tMm7RlGl0kWMR8RbLgSHhIiS003yx/7/51lMbi3xJElyvfi1lliChiYwLZJNuUbimBnNDKyKNDVJctIV0Gj/Ur0jkgdVKxQ1sCqyfKdoRI9kYAXM+0jpHjSpoNEOP5tJ73pFljiqClrB/EjTpmFCzv7pG961GhcWXsJU0BYnJIPvZjlEifWeL4FV4ZxUufErJ5omTZIYNiQoF22WNKloEsciN/c3rMW7VMN64j3BEvYviGZNgy2yxLHQFbQiVeKTSQ7f+973Yu3atQ1nj/32b/82zj33XFx88cX4+Z//eYyMjKRbbxHAJGhBaNo41oJJHItcQWsGYyuxlncNEeZbUnIrjEJLU58HgVWRmW+RPt3nA9EjAMle1iJLHJ8PQ5v8/8+zmOBayfCe97wHd955Z8PPXvnKV+Kpp57CE088gbPPPhsf/ehHE7xSs6qDwVgcu7vYIHojC0/7adaZWkWSAS5Yr2CfTdl84c6TUxCWOFplATKkCeOxgYJXmQr22RoXFlhCckhIE85Bk/IjknI56eNqmuZHijadu1lxnWC1LuJzXXfddVi5cmXDz2688Ua0tFB88cIXvhD9/f0J1ku0nB6Yc9CyLiF5XoZ0D5rkWThNasot2ph96clCov1FTeodkYCkxKuhl69gzLckY9usYStAsRQN3jWKOg1W+qBqqyRM9AgSxtLDhkwPWo61IuKR7/wucPxJvev1rAde/KFct9onPvEJvO1tb0vwm82vmnlhKmhBEGVapG/kJh1WWrgDlgvclCva3C9MULhrSVYQCjYkgRZxvhStWt1Mf9zEwIoDkhLHZkm8JCA6DVNyaBM8dihNvEtO5y6y/S/+/vu/+Iu/QEtLC971rnelXKP5ydqSqKBZlnUzgJsv2tIrtKCHHRYd62ymr2Vfq5mMVYESXWDe5ot8ULUEJAOrZgUERRtsJC05fz7INwsrlRaC+jzlVv61TC+rHohX0Jo1Vdq31qv/Uv96xx4H7DqyJEz/9V//hTvuuAM/+MEPYCWxsebnZA1YEp7Mtu3bbdu+pa2tTWZByR4c8elTTZq+JtmUW7Qx++LjsQUTC2/QUbgeNMlePungu6BTHKWJHtGAuEmVeOmhTSLTBwHxXtaSQILWrHNZi5agNbWXVbJ1RTCjSbnUnXfeib/+67/Gbbfdhq6urvSLLIKhZUsiQWuAkSblg6hDbNJI/8JV0J4vEkehALXwPWiSFTT+pQo9DbZpgZWpoOWG9Dlo0oSBOa4jx1oFPq5DfIpjvI284x3vwIte9CI899xz2Lx5M/7jP/4DH/rQhzA+Po5XvvKVuPTSS/GBD3wgxVqLA0tC4igOUc239DhWwalJTWvul54aVlA2TkRSU+Bz0CSJnmZV4osmcWymVLpI09eAJipRJHuCBSDpR8oelZKoxFE4HpGchlm4ISGCPishPv/5zy/42fve9770L7Q4Po6LpVdBk0DTAquCTV8rsjSpaYyVYGBVFpAUNyRoi8w75oUbfEhL5STv7YL5kaZW0ArGfDfN/gsW1kgSZg0JmmQlvmB+pMhDQsQr8YJ9iotsSEjBPJkmuAmaRCVGesx+QR1iMwMrduZbWuLofLYW4QStsL0jwlJRUYljwfxIkYke8cBKUipd4HPQJCWOLcIVtKZJHCUPqi7YdO6m9WlJJ2jcS8WvtQQTNMlzRwqs+S6aLrrQgZW0xFGwgiY5JES6QudKvAp2rwGeuKpgn+35MsVRAoUetgX5c9AkhoR4fb5kYlG4e+15QhhLS1Mll1oEip4lmKAJQFTi2KyAQJqxKto5aAU+qFoFqeISR8Hmfgk0bdiQZEBgKmj51pMMdpo1DVZaiSK4jxIoCVYixXvQmlSJl5wqXbRpsAGKHlvimSoucdSLLHtkErQgNGtqkkhgpb4WbYqjBffDFa6C1iSJYxHP3XHXKlglXrqXVfKg6qYNGyryFEfJabAFC1ClITokRPrYE0mJo6D9P4+mOHZ0dGBoaIgvSVsElay8sG0bQ0ND6OjoSPV3ZopjEJo2HlgyaJR2GkIP6XpVVgYIyCZoRZM4lop8DtrzoQdNeIojt1xUvIL2PJgGWzhFg4KwHykLV9CK7EfYe9AEq3WAMGHcSCpt3rwZ/f39GBgY4Flv7DjFda0TwIlZnjUUKlPA5CD9/3BJawzU0dGBzZs3e34SH+8vvQStaMx3uX3+/825IznXKwOoFu8cNGmJoxsQSEscua9bs8ZjC9h+i/T0tYL6kUJPcWxYmH8JZfct7dG/pwPiFWQInoOmlCFFlDiqrwXzIwDZpF0rnh/xVSJbW1uxfft2vvX+8Z3A8D7gkncAP/+vfOsAwLO3A3f9Av3/B+4D1p/Hu14MCqYF0ARJ5rvNc8K5KKvJv1TTDkYtGmMrLU2SHLMvLqlBMXvQWpd51i1yJb6gVSaJ9Zrlj9uWRf+eDkj2oBX5HDRpgqJZhLGk7LZohHGzfGRrV/Tv6UDTzmUNRvPfwWKE5I3V0jn//5LMt/T0HZFGcUmHKKlnF5zQ5F1PpILWjPHYgOg+StzXXqJHdBps0XpZvUGccIImuZZkD5pIYCU9DVkQbi+fQE9ww7oFGxIiHY+4PrJgFTTps8LU/rUJ+JFmVOIj0Px3sBghKSlomla5gJICUYdY4CmOqsJU1CmORexBa21SJb5ofsSyZBPrJjb3s0M9z8QraOYcNC0QHbNfsHPQwtZlW0N6IJvQWl60SviRZk3DDMYSTNAKJt8JWpd3EedLwQIrAKg5DaQSBywXWXZVr9JXkSmOBT4HrdDTYAvsRySnDxZ5GqxaQ6KC1pQeNEBW0SBdQStYrCUtcVTXS6QS36xhQwI2ouI6iQqauMQ3GkswQROAJPPdsG7RpiZJ38hz9LVnI/9aDQ5ecDy2REBg1+irdAVNiiEWIr6bRvSITl8rYIKm9k902AqKR/S4gVXBmO+mDRsqYDzStKFlAustW+OsVbAeNOlKfGWGvha2Eh8Ok6AFQVpSoIxCtJ+jgE25CssFErQiS5MkK2jlJjXlSiYW4oGVZH9pAaVJTat8FkwqXS1qgiaMZvmRwkochQLvnvX0tXCtK8KEcdVJ0CQkjqYHLQ8K2DsCAC3O4XWFY76bpFUWSdAKLCmoOxU0ifHYi2xqklY0q3ek0MOGBFnNojHf0v64Mk1fn4fT17SiVGCiR1TRI5gMAkD3Ome9IiujBNZTCZqIxFHSjxSxB01EOi8ocQHmE7TCOUTpISEOilZBk2as6k2SOBZtSIg7VVQ6sJLsHRFmviUTNOkpjkUjeqqCvSNWM3pHCkoYu+sWTeIouBYwX0FTLQOcEJXTS1fiBStopSbFrCFo/jtYjJBmvt0ETZJpL2DviEJrZ/zv5IXojVxgiaPkkBC1j2LnoAlOFfWuI3rMhGBgJT60qWBDQqTHY1dVBa1gEke1dWIHVRe5gtakYUMS6F5LXydO8q/VjEqk1HoKhaugxaP572AxQjxBa5dbr8jN/ZIQlSYJM9+iQ0KapfmWDKyE/IgiJopaiS/ysBX//7Os1azmfunpawV91pSlEjR1zFDB7m3J2AcAup0K2sQJ/rWa1boiOTBHehrsIjhPsWCeTBMkz0EDhAMrQTa6WUyLBER70Lz/L1lBE0jQypIVNGE0i+iRlCYVbRR3w7pFS9Ckp+o6EkfxHrTmT1/TCukKmjvFtMDDhiSwfAN9nZvkX6sk6SOb1BMsPsVRsnUlGMI1cx2QDAgKGFiJTjISTtDe8C/zjbncaNZYW9EeNAmJY4F70J4Pw4aKKHG84Q+A/h3AWa/kX6vI47EVJAKrpkxfk/IjSrosdA6aVQZQFYpHJAd3CPegbX8pcO1vAFf9Mv9aTZM4FqyCtsgq8UswQRNASbCXAwBaVAVN0EmJLCUscbz0nfxrKEiWv5s1xbFcsCmOau/EetCKPGxIshIvXEF70Qdl1gEg28sX+g0vpCto7L7Z60cK2INWaqHqZ1HH7EslFaUy8Io/klnr+TD87XkolW7+O1iMEO8dcQKresGm/TRr+poEJG9eacZKUuLYrKbcIjb3u1LpgvayLoKeAO2wBOVkTQusCjYkRBrS9l94iWPBYhGg2MooBfFz0JpvJwXzZJrQLGmSGifKiWYcVF20ByYgVxWhxUL+nwm2oMTR6wSLFoC7fkTI/pUfkRjr3IzAahE8MLWjyOOxFUyClg/qWkn4Y8CToBWU6Cking9DQlqkCWOhSnwElp7FipbChaVJ6twYTjTDIRbRMUoF3YC8xNGu01eJCpoXhesdKTLRY/yIFjwfxmNL+JFC96AJ+xHRqm4zpNKG6NGyltR6klhkRE/z38FiRNMCq2mBxZowxXERGLp2NE3iWLDAygv2zyb8YJY+B00NG6oIVuJF+2YL7EfEKwiC94LEZ2uGVFrsHDThqdJqHdGD2gt4ULUkng+VeAmYc9CWAKSlSR3L6avq/eGEqEMsMvNdYImjgpSkRkHK2YsNCREmejp66auIH3keHFQtgaYFVgXbS9GDqoWDUqVokE7QJG1SMtEtWlIBPD8q8RIQPfakaGP2heIq8cDq+t+jNS8RmELYlKlJBbuJAeEKWpMkBS0CUxy9ELUTCVZfeBrsz/0t0LsJOOtG/rWaIakpsh8p4njs93wbGNrNvw7QJImjEOrSCZpgi0czJI6FrqAVsBL/374OTJzkXwdYdBW0pZWgAZCt/AgFVh3LgVf9hcxaRR6PLQnRMftNkhQUTuKoIF1BE7KVZauAG/9cZq3nw0HVEmha74jAddt2Df0ngVIJZJN28fxIsypohTtPsYD+Q6HIlfgzbuBfQ8Fr84tgaFmBLTYHpCtokmiG5ruIjrFp1Z4iSxyZHaK0tEWa6JGEkUrrQVMO6kUx91JUmge5c9DcBE3Ij0gOCWkK0VPkCloBK/GSWGQVtOa/g8WIIp+7I+kQ1VqSEw+lIBl0N0viWNQKWlF70CQhWokXHrYiCfcZU+Dx2FIQO7+rST1oUv5R+Su1LidESVwzJETPWgVO0ETPQSvimH0JFDlBM70jeiDpmJrlEEvSFTTJvj6JNZ4PfsQw37lgxmPrg3QFTQriCZrjrwo7tKzIfkS4El+0ZFf0kPZ4LI53kQYiI3sFD2qUhjmoWg9Eg+4mSZOkK59F6x2xhIeEiML4ES0w47H1Qfx+k+pBcw6eF0/QJA68d2AOqs6HphxXgOLtqWXRZ1okn6uA2hsNeF4w35JrLQ5j14pmnYNWNMbKi6JJk4oszTOVeD0w47H1oSRsJ1LnoDVL4iiRoDWlglzAZ6hk5Ud62JA0rPKi8Y+L410sNhS5d8QcVK0Hoj1o3sBKYL0V2wUWCYBUxc70oOWHOahaD0SlogUneqQkjs06B03K/jddSV87V/Cv1YxWgQKafqGnOEqj1CJPmIVgiUUOUoHV84D5NtKkfGjWFEeJdW+5B5gY4F+nqRC0/yJX4o0fyQcTWOmD6PRBQShCSepz3fjnwCVvA1afKbBYE6Y4FjFDa8bQJqn1pFEqy5G4MVhiCRpgAqucMAdV64HoOWje/RO4bp0rZNjTpsFU0LRBsvJTRD9ipq/pg1tBk/ps0uegCT1zWtqATVfIrNUs+y8amjG0ib7hX08apfL84fBNRoEjhxwodIJmeke0oFk9aEXcSyk07Ry0Al6zZgQExh/rWUtqPWmUhJv7pc9BK+I1a8rQsgImFaYSrw9WedHknQXcXQ1wp0EVMH8VdYjPA+ZbZjHP/y4Sz7GUISVfKBXZj5jx2FrQrPHYRdzLUotQW0LBe9Ak0bTKT8FgKvH6UGqR98chKGDkoAGusReQsW3GQdVFdIyiFbSCSwqaAVP5yYemHFRdZD9ihoTkxiKavqYVRU7QRGMEc1C11rWk1pNGqQzYi+OZ3dTdtSzrfMuyvmRZ1r9YlvXmhH/E/K5Q7N4RI3HUA9EetIJLCsRhetByoxnMdxFt3wRW+iA1fc2FkB9R4+6LWK0wEkc9aFYlvojJrrgfCUfmd2FZ1icsyzppWdZTvp/fZFnWc5Zl7bEs63djXubVAP7Jtu1fBfDurO9FO9zAanFcJK0wB1XrgZE4GsShyNNgzUHVetC03pEC+pGScAVNSipd5ApaUySOBbR99xkjfVB1EfdSuJc1Anmo3f8C8M8APqV+YFlWGcDHALwSQD+AhyzLug1AGcBHfX//XgCfBvBHlmW9DsCqHO9FLwzzrXmtxWHsWiF6DpqROOpBk4aEFFLiaCrxWtC03pEC7qVUgiYdoLoJWgH9iOi5rAW0eYWmVeILGI8U4Rw027Z/bFnWNt+Prwawx7btfbS+9QUAr7dt+6MAXhvyUh90EruvBf2jZVm3ALgFAC7c1J317aaDqpwZh5hzqedBYCWyVsEDK2mIHVSthoQU0I+Y4zr0oFmBVRGJHqtcTNWL9DlokjASRz0Q7dMteDwiXYmPgO53sQnAYc/3/c7PAmFZ1jbLsm4FVeH+Juh3bNu+1bbtK23bvrK9vR26buR63cb//f5ufPXh/oA3pr+C9t2nj+Mff7Abo1MVba8ZhuHJOXzsnj34wbMnFv4jQ5n/m48dwd999znY/sCXwWk8e2wMf/TNp3BsdFrba4Zhaq6Kj92zB18JshGGoPvB/cP449uexui030b0M7YjU3P4/a8/iaeOjGp5vSjYto2P37sPn3vgEGp1/uRo94lxfPTbz2L3ifGI39Kzj9VaHX9z105864ljAUvo9yO3P34UH7tnDyZmq9peMwwnx2bwTz/YjXt3BxxarjmxsG0bX9pxGP/0g90L/QgDqfT44RH88W1PY2B8NtXffffp4/jod55FtabpnJyIoHH/4CR+72tP4vDwlJ61IgKr2WoN/3z3btz++NGA/dePRw6dwp/e/kzq/Y9ECPM9OVvF//7GU3hw/7C+tSLwyZ8ewKfuP4CKLhuJkDjuG5jA33/3ORE/Xq/b+Ng9e/DlHYfjfzkpIoie7z1zAn//vV0Ym9EUM0Ukg0dGpvFPP9iNe547qWetCNi2jdseP4q/++5zqOt6Hkb4410nxvH7X38Sx0dnNK0V3oM2NVfF//3+btz51HE9a8XggX1D+LM7nsHI1Jy+Fw2ZBjs6VcHvf/1JPH54RN9aMWiqhs+27QNwqmPS+P++vwv/ePceAMCq7jZcf87a+X/ULE06MjKNX/vsI6jWbTx7bAz/8gu8h0D+zleewPefPYHO1jJ++rs3YMWytvl/1Mx8f/vJY/jIFx4DAPR1teF91273rKW3l29qrooPfOZhHByawj3PDeCHv3U9SiU+Nuzj9+7H339vFwBg++pluOI0z+HNmlm4vQMTeOu/3Q8AmJ6r4a/efHHwWhqCVNu28d8//yju3T2Ibzx6BD/4zeuxvrcj9+uG4e6dJ/Hn33oWADBXreE912yP+YvsmKnU8I5//xkGJ+bw4IFhfO1XXwxrwbXSF4B+9Ds78R/37Ue5ZGF1dxtecLpHqa15Guy+gQn8988/CoCC9799yyVaXjcMv/7Fx/DTvUPo7WzFT373BnS3ex8XepnvLz/cj9/5yhMAgDU97Xj71Vs9S+ndx9HpCm759A6cGJvFz/YN4TsfeUmAjSzEj3cN4JZPPwwA6GptwUdecVb+N1MKDqzmqnX86mcexs7j4/jBsydw7/98Gdpbcn7+CGne5x84hL/9Lvm67o4WvMz7PNSME2MzeOu/3o9q3caJ8Rl87J2X63nhEOb7N7/0OO58+ji+/PBhfOcj12H76mV61gvwIw/sG8If3fY0AAro/vvLNdhIl+NT2hrfd61u492feBD9p6bxnaeO4zsfeQlaynzMv4qZLIvu0eu12Egw+XJ0ZBq/+pmHUa3b2HlsDLe++0oNS4XHPn92+zO48+nj6Ggt4Sf/8was6m7Pv14I7nzqOD7s+PHezlb88ktOz/+iIQna1FwV7//UDhwcmsK9uwdxz29dj3LemCkiHvnPnxzAP3yf/MiXfuVFuHr7ynxrRWD/4CTeduvPAADjMxX89Zs1PQ+tcqCNfOjzj+De3YP45mNH8d3/cR029nXqWS8Cuu/mIwC2eL7f7PxsUaFWt/G5Bw/j+nPWYP3yDnzxIR8jpDlB+8R9+1GyLPzcRevx/WdPYHhSY7bvw76BCXz/2RO48fx1mKnW8Mn7DzT+guYy/+cfPIRNfZ14wfaV+MR9+xvZV80s+3efPoGDQ1N40+WbcWh4Cg8fOqXldYMwPVfDx+/dh2vOXIWejhZ84r79jb+gWf76pR2HUS5ZuPmSjfjijsMYnPAwy5rHY+8dmMC9uwfx9qu2YHKuhjufCqj+aMT//cFunL56Gc7fsByfe/DQQob+gw8C7/iilrW+89QxDE7M4fWXbsSjh0Zw357B+X/UnMvPVmv40o7DuOmC9ehub8GXdvgqrZoraLf+eB+62sp4xXnr8K0njrFW0Z46Moqf7h3Cqy5Yh9HpCr7w4KHGX9DsR77w4CGcubYbl2zuxX/+5IBvLb2k0u2PH8WJsVm88fJN2Hl8HM8cG0v0d197pB99Xa244dy1+Ph9+/RU0UJ85E/3DmLn8XG8+YrNODk+i3t2BlQxs67l+/9a3ca//mgfLtvahzU97fj4vfvyrxWBrz96BNW6jTdcuhHfeuIY9g5M6HnhgArawPgs7nz6ON565WbMVev4+iMBaojUCPfH/3zPHqxf3oGrtq3AZx84pMdGXv2XwGv+Hth+XcOPf7x7AP2npvHaizdg98kJfIexamHbNr7ycD9ectZqbOztxKfuP6jnhUNig0/dfxCWBdx8yUZ8/9kTODGmofoToh46NDSFu545jhvPX4fZah2f+Mn+hX+rEV995AjWL+/Ai89YhX/78T49FesQf/zD5wZwcGgKb76CYqb79w7lXytE0TNbpZjphaevRG9nK/6d24880o+SBbzuko340o5+faqqAKLnkJPgvv2qLZiYreL2x49qWCj+eaY7QXsIwFmWZW23LKsNwNsB3KZ5jdzYcWAYgxOzeNPlm/Gyc9fi3t2DjXIEzYztj3cN4AWnr8R/v+EsVGo2vsMYEN/1NMka//wNF+KyLX24d/eg7zf0Md8D47P4yZ5BvOGyjXjtJRtxZGQaB4Y8chzNCdrdO09idXcb/vh156O9pYQ7tNwkwdhxcBhjM1W8/yWn4w2XbsLdO082Pmw1yq1s28Y3Hj2Cl52zFr90zTYAwAP7vHIcK/B/s+K7z5CNfPjlZ+Gstd3u9xwYmpjFE/2jeNMVm/GuF27FrhMT2H3SF5CtOQc45yYt633zsaM4bVUX/s/PX4SWkqXpgRSMn+wZxPhMFW+7agteevYa/GjXQKNkRWMF2bZt/HjXAK47aw0+8NLTMV2pBUuYNeHOp46jXLLw12++BOes68GP/X7EdSP5P9vh4Sk8cmgEb7x8E1590QY8d2IcJ70BmWY/cs/Ok9iyshN/8JrzUS5ZwfJUH2YqNXzvmRO46YL1eOuVmzE+U8XDBzUQRCGB1X27B9HWUsIfv+4CrO5uw22P6+Y559fbfXIcx8dm8AsvOA3vvHorfrJniFWKf9tjR3HZ1j785o3nAADu3aUh+QQQNH3tx85rv/tF23D19pX4NmMSU6nV8dCBYdx04Xq879rtOD42o0dW2d4DXPW+BTbyrSeOoa+rFX/7lkvQ29mKH+naxwA8fXQMR0dncPMlG/GqC9bjvj2DmNRBEIWQL/fvG8KlW/rwG688G3UbegLiEP9x984TsG3gf7/2fLzo9FW4WwcZEoKxmQp+vGsAr7l4A954+WYMjM/i6aPJCKJIhPjIe3cPoqe9BX/yugvQ096CbzymwY+EED1PHRnFqakK3vPi7XjLFZvxw+dOYnquln+9ENz2+FFcc+Zq/Or1ZwBAQKybEQEJ2g93kfT1V156Bi7e3MvqRxreStY/tCzr8wDuB3COZVn9lmW9z7btKoAPAbgLwLMAvmTb9tN63qq7cO6X+NGuAbSWLdxw7lpcf84aTMz6HrYame+jI9PYfXIC1521Bueu78GqZW2sGtYdB4ZxxpplWLu8A5dvXYEnj4xirhqUfObfx4cODKNuA688fz2uPXM1APgqFvp6R2p1Gz/aNYCXnr0WPR2teMHpq/DgAb4K2gP7hlEuWbhy20pccdoKTFdqjYmFxh60w8PTODE2i+vPWYOLNvWiq62Mn+3zJBaazy+6Z+dJXLhpOTb2deKG89bigf3DmKnwONL7nc/xojNW4eptJHd4op+nX6Jet/HwwVN48Rmrsay9BRds6sWOMBvR4UeeG8CytjKuOXM1rj9nDQYnZhurMRr9yN6BCRwdncF1Z6/BZVtXoLO1jMcY/chDB4Zxwcbl6O1sxeWn9eHRQ6eCk08NUDby/7P358G6LVleGPbbe3/Tmc+dhzcP9WrsoZqGbkAgaCQQEm3LtiwFkggrCLkdIcAyWA475EmWA2SMwEY2kukwQoMRIAwYGtrQqJuG7lbTUNTQVV31XtWb77vvjuee+XzTHvxH7pWZO3fmzpW5963gvnZGVJ3z7vm+L/eXO/fKtdbvt37rt3/uhsOODBegLdYFfuGdx/itn76Oy1sTfPGFffyj9/1O9DfvneB8VeC3fPo6fuPrVzFKE/zMEPUqju/2828/xg++dAnb0xF+5DPX8YvvHPTPtDuoSV/+4AgA8AMvXcKvf03Q6f7xh0+nXmuxLvDm/RP8ptev4oXLm3j5ymY7+I8dFgTt7337Ea7tTPH527v4HZ+/ibcfnuGjw6Fq+prjG3ePsViX+HWvXMavf03s40GCeMf4+kfH+OIL+5iNM/z6V68Ms0ccg5zf3/aZ6/hnP3cDq7zEL7w9xH1r+winizW+cfcYP/zqFbxydQsvXdl02/Ggqey+z9c+Osb1nSmev7SBH371Ct68fzJsTZM+150jrIoSv/XT1/FPv3ENgDiPew/yR1p25BF++LUr2JqO8JvfuDZMwtLB6FF2ZB+//rUrWBcVvvbRUf/5LOPwfIX3Dy7wT71+FZ+5uYNrO9MBAzSLHXnrEV6+solXrm7ht3/uBr525wiHT5EJJy8l9o1VVf3uqqpuVVU1rqrq+aqq/kz97z9ZVdUbVVW9VlXVHx7uUocbX797jDdu7GBrOsIPvCjqir7VcKyGU1+jDNpveP0KkiTB527vsik1oaMsK3zpg0P82toR/oGXLmGVl4bTOFzQ9MsfHWOcJfjsrR28fGUT13em+ErjQBpurvcen+F4vpYOxGdv7eDth6fDFWIb45feO8AXntvD9nSE731+DwDwy7qxGdBB/codsWbf/8I+xlmKH3z5ctNpHJDiWJQVvnH3RO6RL9zeQ1FWePfRea/PdY1ffOdArOFze3j12jY2xtlTK2h/59EZThc5fuDFfQDAr3v5Er760dFTCz6/fvcYn39uD5NRKu1I41kbUA32H9SI6m98/QqyNMFnbu3gm0NkXi1jlZf46p0j/OBLYo988cVLOF3kTSragImer390jO3pCK9e3cbnbu1iZzrCVz480uYazo68ef8Ui3WJ3yDtyC7evH/qdWzfvCcEZz5/exc7szG+9/m95jXGDgvt6mKV4837p/ihV8Q1fu/z+zi8WOOjw54UHoc89lc+PMTlrQlevrKJ73t+H+MswT987+kEFm/dP0VZAZ+7vQsA+I2vX8UvvXswjFhCmrWetW/eO8EXX9hHkiT4Yv2MfuPu03luKIj4wZcvYW9jjE9d38aXnxINf74q8J2Hp/ie58TZ9Btfv4K7R3N8OJigTHO8df8Et/dmuLI9xRdf3EeWJsPYccv+/8qHRyjKCj9c1/N+/wv7AyWj7Oyhr310hO99XuyRH371CqoKT01QhuzIZ2+JoOIzN3eG2SOWRM/jsyXuPJnjh+o6sO99fg93j+Y4OOsrzGNP9HzlziGev7SB6zszWa//JUbyK2aQv/6527tIkgT/1OtXm0ntPiPJWr7/N++dyDOe7MggyKdn/JOhJekZSZL8aJIkP75e949Yq6rCr3x8gi/cFobt6vYEexvjJjoyYOb7W/dPMM4SvHFjBwDwuVu7+Pb9s6cSWLzzSAQx9HB8sXZUG4jdgLK2v/zRET57axfTUYYkSfD69W2881hz9AfMfH+rNmyfuyUO9s/c3MG6qPDe4+EDi6Ks8MsfHePX1A/iy1e2sDsb4at3tANpwBq0r945wmyc4jM3xR757M0dvPv4XFM8HE4k5P2Dc8zXhVxH2pff7lQ8jB/fvHeCLzy3i1GWIktFguJpBWh00P1Avf+/5/l9rPIS7x/QHhmuCK0oK/HdajvywuVNTEYp3n5KduSt+6fYmY7w4uVNAOI5+Oa9k6eSMf/mvRMs8xI/+LJYRwp4m07SgImeu8f4wnO7SNMEaZrg1WtbePexLRgcIECjg/2WuG+fvrmD00WOjz0KZ2/dP8HWJMNzdWH4Z2/t4s0h1t/y3ShZ8vp10Vbm+57fBzAE8myvHfnlj47x/XUQszHJ8Pnbe/jyU0J+vmms/+dv7+F8VeDu0QD1I0bme12UeP/xuVzHz9zcQZYm+JWPe66jQ2zlW/dOcGtvhus7QnDp17x0CV/+8Gg4pT5tfOv+CcoK+HwdoH3fC/sA8NSSNt9+cIZP1WfFbJzhtWtbA1Hz2hRHsqF0Hn7/C/u4f7Lor0JoSSqdLNZ499E5vv8FWsc9jNLkqSE/b94/xbWdqRQhoQRR72FV+Gzake+t7cjX+56/DkbP1+4cy+Blf3OCN25sPzUEmezIZ2s/5vO3d/HodDmMvoNBcTxb5rh3vMBr9Tp+vk4ufWNIO+K6lH4zfHdGVVU/UVXVj43HE/+LPePe8QJPzlf4wnNikSmwaDpWwzkf375/iteubWNcqyt97vYuVkU5XGG0NijIpE17c3eGzUmGD6x1Yf2c1aqq8PW7xzKDBwCvXdvGu4/OlNMyaIB2glGa4LXrQsnqMzd35b8PPT46vMAyL/Hpm+KBTNMEn7m5i3eeEsXx6x8d4wu396QC18tXt7DKS3xMTsuAjSHpAKcM9itXtzBKk6cSoFVVhbcfnMkgEAC+cPvpBRbfuneKrUmGV2uVtleuiJ/vPx4+q/zuozMs1qW0I1ma4NWrW44Arf9eeev+Kd64uSPVBj93exeni7w/qmIZ1J6AgviXrmwhTdDMzg/UrmOVl/jWxyfSeQDIjjytRI8ItJ6/RIGW2JtveuzIt+6f4tM3d6Rq7Gdu7eKEEdh5hy1Aq5NOZOveuLmNSZY2EfyoudqJnqqq8P7BOV67phQCP3trF995+JQSNh+fYGc6kuv/6doJf2soJ1X7jh8cnCMvK+mgzsYZPnV9+6kliN4/OMfLV9Q6fs/zezier3F/CIELY5Ad/0J9/tJ3bNX3DjCKssLbj87wxg3Vh5YSRP1H29d6/+AcO7MRLtfq0xR89t//bfvxjgwGha2bjjK8eGWzaccHHG89OJGBp5h3B/eOF/0plRaf9d3ax3ztmrhvdFb1TvRYEhTLvMDHx3OLHXk66/jNj09wY3eKq3WgSz7GIHbECNBoj9Aztr85wfOXNr4rrS2eiQCtOYZ1UAHg9WvbTed74Mz3p7UHkm7yOw+HR37oO7xaPyRJkuDFy5sG7WGY4PPByRKnixyfuaXW8dVrWzhd5Hh8tmrOMRA16bVr21Jq+rVr2xilyTAPpDHeNh5IAHj+8gbu6LULA8rsv/v4HJ/SDj865CXyMyDF8Zv3BKL7qetiT05GKV65uoVvPxjekN47XuB0mcvMKyCc/YtV8VSUTN95dIZXr23LIObFKwJt+vCJ7Vnrv45A04681kr0DBOgVVWFtx407Qjdv6eR6Hnn0TnGWSKd6HGW4vb+hhGgDaOs+OGTC6yKsuG0vHptC/eOF7hY1SIEQwZoRqBFB7svi/3tB6f49E11rz97kxfYeYcVQTtDkig7MB1l7b3VZy7xHwCE0NMyLyUyCwCvXdvC4cX6qTyj7z4+w2vXt7X1F3bvrSESRAaCZrPjn7u9+9SoSR8+ucBLV9Q6vnpVzPs06ON3Di8wyVLc2hVo3eZkhBcubzyVRNsHB+dY5WXDjn/u9q5MdvcalkTPe4/P8crVLWnH6f6925ctY5nrTp3gekHb/58a4lmzjLKs8O0HZ80ArfafeqNojkTPdJRK1H9nNsaLlzcHCJraiZ67h3NUFRp25NWr27h7NH8qQiHvPD6XZyCg0Na37g/wbKcjK6JLgS4gULSnhVY3LuWpz/BP2CCnl4wnIAzAwflKFf1tXm7+jBzH8zU+Pl40HKvn98UGfhqNlt95dIbbezNsTlRg+cLlzaaDOlDmm9bxFS1j+Oo1OpDOmnMN4Fi9df8Un7ml1nEySnFzbzYMNcYY8mC/puZ74dIm7p8slODKgD2ZnpyvGplXCrAVfXM4iuM7D8/w8pUtTEbqc16/vo33Hg9/IJGz8IbmID1XO/1PA/mhg53G3sYYlzbHTWXRAefSnWhAJHruHF6omreN2n5sXOo114OTJY7na3xac5BoHe8N1XxUG+88EntE76nUSvQM9Gx/UNuRl6/a7AglKIZFIvWk0s5sjMtbk047crbMcXSxbjgfZNOfimP16BzP7W9gNlbf9+UrmxpVN3qy1rwf1Pf0hUaAVicRn0Lw//HRQu5dQKz/c/sbw9C8Nq80njWbY/Xq1S08PF2q4H+gcbpY4/HZCi9Z7fjw6/jR4Ry392eNPqBvXN/Bd55Coo3OIX0dKVh7t+8esSR6TDu+OxvjytYE7/cO0No+DwnGPK/tydevb+P9g4umuNoA4/HZEisjGfLZoRBkix155+EZXrm61dgjL13ZlDa391zaoLOhkei5voWqwlMpQ/n4aC4DT0D05dvfHA+T6DHtyKMzjNKkkXx55ao464unQF/Wx6+6AO3DJxfYmY2wvzmW/0aZdnlI3/o+4A98Gbj5Pb3mIoPyumbYdjdG2JpkTyWwePfxueTJ0iDHStEOh8l800PezBgagcVAVNFVXuLj43nj8AOA23sbT8VBffvhGa7tTLGn7ZHnL22gqmCnHfYYtEd0B/X6zhSbk0xbx+EojmaWFwBu7s3w4KRv4XB7kIOkZ17JqA69/xdrUcfy6rXmHnnpypY6kAZEPT98coGbu7OGE/3SlU1UlRY0vfQbhB25/GqvuageS0cCbuxMkSbafhxwvPPorOGMAcKO3LEh8b0TPeIz9UTPK6YdwTA263i+xvF8jZfN/b8766xvuV8n027vq2buO7Mxrm5PjDWJGBbK+fsH561myi9d2cKdJ/N+DoGFmvThgcWxMhNtA42qqnDXcKwAsa8Hmeuf+feAf1X1U7x7NMfV7Qm2tAbrL9b77M6TYZ8bKiPQbev1nSm2JhneeQoI2t3DeSPQBYSdfffx2TC917RBFE19/9N+6S1KYgQWy1zY8ZeNs/7lq1v9HX3Ls3bnyRyXt5p75PXr2yjKqn8gYww6F27tNQOLjXE2+DoCwHsWO/LyFbGOvUoMLFTpO7YAjezIwAmKZV7g0emy0Sg6SRLBhBviWfudfxT4l/6s/M+7h3Pc3t+QZUqAeM7XRdUTaPmE1KCp0T9a/eBAOKiJtslu1DSBRjPEK6/1notQgucvqU2bJAlu728M7lhVVYV3Htodq8W6xCNS7hko8/3e4wuMs6TxkKh1HHauj48EfP6CcSDd3Ot2rGLHe4/PZbBJgzLMEvkZqAZNIbpqPqKmSifCIY8dOqqqwp0nF439CAgH9WyZ43QxbO+jO3UyhGoJAJWpvDswgvbBwQWqCpYDafOp1KB9eHDROIwAix1JkkHtyAvafRtlKW7uDo8gr4sSHx5cyPonGi9c3sTjs5XqfTRQLev7j8+xayTMbtcOjFrHYewIZctfMPb/7f1Zpz0mx+rm7qzx789f2mzSnmOG5bvdP17INaDx8pVNrIqy37lhKe7/8MkFkgQNZ/+5SxttwZsBxsH5Cqu8xO09cx03htnHs11g+7r8zwcnS/lM0nipfmb7Od/tPU8Oth6gJUmCV64NEFhYhi3QJafxwemwybb7xwukCXCtrvcBRKItMetSo0Yz0fPx0aJFlQOEXe+NIFsE0j46vGj5FSqwGDpAE3v8prb/k0RQyfsnekhmX323B8eLRjAIiD1yushx2KvPoSXR8+QC01GKaztqjwiaKga3I+Tz3dpvPtsvXN4cxq/YuARsXZX/+eBk0bL9ZEc+fArsHH08YwEaBkEQ2o6V2FRDowh3j8TNMzNdt/eHR34OL9Y4XxUNqgqgDJ0yAMNkvj84OMcLlzeRafD5ZJTi8tYED0+HdazuSBpC87vd2hcB2tAqWR8ftbOTFFhIh2wgBO3dR4IqZ963aztTFVQ37lX8fXtyvsL5qmjtfzowHgxczH73aNFyIvY2xk8FQSYnSKcuA+JZe3Bi2SN9EeROOzLsOn50OEeSNA92oLYjR8POdf94gbysWt9N2hG5/4dBx98/OMfLWr0JIFgGk1GKR+RoDjQXJTxaCYq9WaeQA63x7f22TeiNxBg2sigrPD5b4vrutPEyYg980MshaNuROzUSTLW9gBC8ef7SxuA0ZPc6buLoYo2zIRofa+PByaIVoA2G/BiDAmfT3r1ydXvwAG2xFgjCc/tmouHpJL/uHy9wbWfaoDzPxhlu7s4G2P/0U9VEAmjdt1eubuHBybJfc2z5rKl/+uhw3rIHtI5DJ9HJ5zP3/wuXN2UtXPQw7Mj5Msf5qmjZkVZ9e9Rc7YTxh08u8PyljYYdn40z3NiZDW5HPq7tiPmsPbe/gfsni8ER5Acni9Y6Euvug6fU1oLGsxeg9RhFWeGjwwu8eLmZHb66PUWSPB3Hamc2wt7GuPHvTwNBo88zs5O0sZSzM1Dm++BCZhEa8+1MB0fQJIJwuflA3tqdYVWUeDJgU8m8KHH/pB1Y3NrbQJYm6vAbqAbtzmGbKgeIAO2xec+AXveNDoFWgFYfhkMnDWxZ3iRJ8NzTcP7q7KQZWF/dniIvKxzPh0MHL1Y5Hp0uW1TR6/U6Phw60XM4x83dWaNuEKjtyMC1rGRHzMwrOUwtO9I70dMOdJMkqe3IU0LQTDuyt4Gji7WzmJ2eC/OQfuHyJj4+6ks7bNrjg7MlykrYUX28fFWs0dCO1aOzNsoECBSzt0KlMSgpYzqozz0lVF0gaM113N8cY2c26hnotsfjsxXGWdI665/b3xg8iUj70bR1zz2lwOK+BUEABBI9HMW33o+1fblm7P8XTQZLn7nqISm3xjpe2ZpgMkoHPw/vHS8wHaW4tNncIy9c2ujfPN1Yx4f1OrrsSC8E2SJa9uh02UogAiKJPrTewscOO/L8pQ0UZTWoampVVVYk/tbeBsZZMrgdMcczEaDJPmirfk7W/ZMF1kU7OzzOUlzZmirkZ6Bx15KdAUQQ9fhsNWgDXclv3m87qAA0ZcVh6jnuHdu/27WdKR5JBG2ozPcFRmnSchrpuw6JIjw4FQ6S+fBnaYJLmxMcnFuCpj7znSyshk2s41JwxQeiOH5oEQQAFDIzNF307uFFax0Bsbb3T4bP8k4sh9/VHdr/S/QNJmh8ZFH+AoCd6Qibk+wpJHouGkXsNG7tz3Dv6Ok4f7cN+siVbUFTPTgzkiE97EhVVU47cn1nKp2MIRM9O9N2wuxWvf9dwe694zmubk8bKBMgHNS8r0PgcKyu7TTX/8bODFma9HN2LImex2crXN1ut6+5tTfDvaeVRLQ4VoBinAwx1kWJg/Ol7ElGI0lEsf9gCJpcxyWubE0bCAIg1nHoJCLtATMZ+7Tqe+8f288ogfwMS3EkH8wM0OQZ1cu2Nv2R02WOVV42qJtAnUTcH4h2q42Pj+a4tTdr7ZHnLwna4XEf2qFpR+p1Mve/QgcHWEdtvoPzFa5sTVuvvL03PMtDJRHblHNg2ETP6TLHfF20EhRZmvRPUHzi+qBNxv4XdwzJXbUYmxu708EdVAGftx2rG3vDZ9pdRpvqfw5M6fsezupiXeDoYt3KTgLCIEjHaiBJ/zt1kaZOpwTUfRwyQ3PP4UQAIrMm1zEd5tG5f7yw7sdr21OsihIn8+FoP3dlTaQdHRkysDhdrHGyyFvZSUDsySemo99z3KvX0Tz8yPlUdNH+476l2BsQB/uN3W66XMz46LCNRAIC+VwVJQ4HdP4oSDG/m0r0DBc0PTlfYV1UfjsyYKLn+cubFidafFeX/b/neEYJiet3SDftMTmoJlqXpgJVvH/cZx9bHKuzpby3+ri1v4FHtercUOPB6QKTrJ1Eef4pKLuK5FabKgeI56aXrbM4Vo/Plri60w50n0byi6Ttrxj3bWOS4fLWZHB2ggtBe/7SRp307rFHDNrho9MlRmmCfSOJQvM/6LOOxrNGZ5BeI03DV5caM9yBrlE+ETOMPSkRNMOObE5G2JmNeu7/dqLn4GxltyN7M3x8PB+07+mD0wX2N8ct1tHTUIiWga7ljLrR144wxjMRoDVHfGDhX+yha9DsjtXlTWEQBnWsjhYYZ0nrIRlnKfY3xxry0x9Bo8DSdvhd3xXIT1lWg9Ep7x/PrQ4SZYeGdL7vylqC9nxXtic4GLg30P3jdp0EoDKIj84Wg1EcH5wssD0dNRSrAMEV398cD0rpcPHEARHoDplRBurDz7aOJoIsR791BOAILKaDJl4k5dYR6ALoWfDdHPeOFtidtffI7myEcZao/T9Aoofsre2+Xd+dSns9FIJ273jRSmAB2rPmEFd4dLpsUYUAf2DHGq3Mt52aBAh724vlYSDxZVnhyflKoqP6uL03Q1UNm7Q5PF/h0ta4FSBf255iMkoHdaw6n9FdPYk4zHjsCnRlEnHYdQTsgcXQyM/5MsfpIpdJZX3c2BV75HGf89dIvjw6FeuYGsnYG0PQ8A37QT6Rff8PX4by6KyN6ALKjgzy3TwUR2DgBEWSYrEucLbMret4a38Di3WJowHPqMPztfSh9XF7f4YkGTZAo4SYzUe7sTvFg4FZd+Z4BgO0+KGMtmOxBzyMzpc5zpa5NWNyaWv4AO3+8Rw3dmctwwYIh/ixKTjRw9mhTWkN0HZEzc/hxUrN0VPx8NHpUtb36IOU34Z8+CmwMBEEoEZ+BgzQThdC2MUaWNSG9eHpcjCKo8vRBISTNOR3U3Qm+/5frMtBexHdO7EH8RL5GdAhU4ef3WkZEkF7cr5CUVa4admPl+pD6mhQ+tTCih4nSYIrW3pdJNmR+LkeSLTIbkdOFrmggUvno6cdsYhvAJCIjsseH12ssG9xCFr1vTGDbGOL4mgL0HqeUUZgdDxfIy8rKzWJ6OND7uXDi7Xcs83LSnBDD8gHGA86kog3dmZ4UitKDjUen9oRBIWgDec0UpJkf7PNKHpu4Pp2OhNs343Okn4JqSbF8dHZ0rr3J6MUV7YmA9GJFeoDwE7N29/Aw9NlP3TQGIfnqxZ6DAxkR1oBmqD8m3RuYAgwolmDRr6liyoNuOnjMePwYiV9aH1MRxkub04GLVXqjhnEOg6JDprjV1WA9rCGz23R95WtKQ4vVoPVc9DDZjNsPocgZnxskWamcWV7qtWg9c98U8bYFnw2pPYHynw/Ol22eOKAQH42xplqMD7AuHc8tyIIAFEch3P06eG3reP1RlZ/GBXHh6cL6+EHiMN+yP34qCOIuVIb16ECwrKs8OB4aQ1i9jbGGKWJQFkH6oP28ESgTBuTdsBwZXsy6H6UDrvl8CNnd8jA+p4DrQYMBHmAZ/tBhx1pCK4MgMQXZYWDM7sdISfGhUSKwKLt6OxMR5iO0n4IvoEgPDxd4NLmuFXvBvj7tTEm035NPQhC7VgN6OwLB7U9FyDOySGZEIoG2J6PULVh5ktQVRUOzu0I2tWtKUZpMjiCJhDt9rNHtcuDzVWfCbb7RoFFLzTSeLYfndoDNGAASplhq2iPXHYEFkMiyHlR4mSRWxM9FCAOmeh5dCKSsSZaDQy8jknaGehKBHnAOrQnjkAXqO3IgPu/y45c351hlfcpQ/mE1KANNR6ciIffhjLtb45RVsDZQFl9yirYjI2kJp0Ph/w8PFlYaQiAyGzIwGIAiqPMKlicb/puRxerQWpHSC7WZbQvbY5xNKBC38HZSgpLmOPylsjqD5V5JfjcTs2r6Zuny5ZBjB0PHUgkAOxtTAZFIh+ddSUoht3/Ty5WWBWlNbBI0wRXtieDImgPTrrWcYzTZT6Y1G+XHbm0NTyC/ODErsYFiETPQav1Q3+Koy1outJgGfS3IwfnQvzHto6jLMXubIRjS4JisS4wXxfWjG2SJLi20xP5MRzUw/O1dS5AOAQni9ypNumfq9m/iJJ2tmeUzpJBKY4XKystDxB74PHpcIkGUm3d33AHFvHfrY1ErovKiiCkqahLHTJAe3KxbtWf0bi6PcXxfD3YGUW2xYbWUfJtENqtRnG02QNAOPv96MRNm0XJpiuWPUnPREsUKXKcLIRfaQssSNyq3zo2E2ZPOp61G7tCgCkajEj4iZ5hxF2a48iBxAO1+vWAiZ7j+RppAmxP2gl7SqI/TZrjsxeg9amdOl04HavdOovaS0lHG1Iu1mJsdmdjpMmwCNrB2cpqaACR2Rg0832ywGycYnejvWl3Z/U6zteDzPWog0sNAPubk0EpXq5aAkAZoKHum61xJY3djRGyNKmpou3GkKGjqio8PHFTHPc3x4NK0T8+W2JrkjlRJkDVAPQdXXU7wPBG+8HpwlrbAkAWt9OB3HcoO+JOhgxVzydqkpbWTCgAXN2atJH4Hvb4/skCV7cnrfYBgGaPB7YjpjoijUtbEyuCJh19R8b2+k5P5Mf4bsfztZWWBGhCCbHOjivzbXGsdqYjTLJ00Jrbw4u1TCqY41rfdTTG0XyFSZZiNm7vGRlYDOQ0diVRAHKIh0QQlm4EYWdY23okA932fFe3J0iS4SiOVVU56WuASBr0cvSJiqZRHLcmWUtsAlDqv0Oto0QiXcmXndlAFEfx3TrtyN5M9FuM/m78RA+dJUOxPKqq6gw+n4Yd2dsYW0GdpyGuZo5nL0DrMR6cLHDDYUT3dIdggCF5uRZlpzRNsL85GczRX+YFTpe5NYMHiAfn6GJd86mHyXzf2G0r5gHA3ubAjpXn8BPUvGEDC9c6XjEVMXvPJT7H9t2SJMHubFTD5/0pjme1XKwzQNsYD4rEPO5AIi8NLJKjMnju+Z6Y362nSI4NPQaM/T/AkIefxY5sjDNMRulg63g0X6Os7A67uIYpDs6N1g99EN2ThZUCCxj2eIC5XP2VaOxv2Cm+9G82JIY+b8jakS7HihyCeCe1aUfoubE5VkkikOehbF1ZVji66KY4Hl6sBqv5OZmvsbvRFiQB1DoOJRRC54/Laby8NR1sHQHgyfkal11JFFlzO8x8hCrvWQLCUSbqwoaiOC7WJdZF5dz/VCfdn51QqzieL630RkCd9UOtIyWRnd/tKSR6dh1zkc19EKsIa4iWdSV6JqMUO7PRYKUh83WBVV5aqaKASBo8Pl0NVhd2PM877DEh8cMKDunjV1WAJihe3ZnvoRyrR6dLpImdlwsIqHswipdDdpfGZZ0KNUDm28W3B4TaGwCcLIbOfLud70GRSEc/D0BDLAbKBh1erDAbp9i0wOeAQBEa6whEr6VLdpfG/uYY83UxWG++x6cdSKTMqg27/10O0u5sjNPFGr0ULepRVZWg4TjWcehEz6NTgUTa9kiSiHraoWrenjAC3cW6xGJdDlLL+vjcHcQTEj+0HelG4tv3jGy0C7EYLkAT63iyWMvvbg4K0qPtj0FNos+xoSOAcLiGsnUnCxH8d1GTqmo423o8XztRzytbE2RpMkzmO0lwUj/rO477dmVgcanD85U8083RaofRc9Az4Q4sZqrvaczQki8nCzGXjZkDqAAgvqSh6bQfnK/8ge5QCJq0I9+dRM/JPHfakWt9UVaDKnp4scJ05PZjrm5PB0Pi1VnvtsfzdYHzWBq4MboSZr0pvoyj85kI0IZoVJ0XQurT5XwPnfl+dLbE5fogsI1Lm8MZbVWkaX/46eA4XQyTjX5y7uYAb08FNW8oBI1oKF0I2lC01HW9R3wUx6EoZQdnK6tgDY3d2Vgc/gNQHLtEOwBgr76OkwERZBcSuTMTe+TJQIeff/+PcDoQ5fB0mWNVlLjqsiNDB2hnS2cQA4j9P1SgK9G6jnUE0Ax2eyR6Ds9XuOxwovcGpjh2qSMCVMvafq6P56SY56qdmuHwokfNTwCCdrmvKIyR+T5d5NiaZBhZxCaAmho/kKNP1+yiOJLNHarAv2sd0zTpd/4ae55sCyUnzXF5WyQRh8jqV5VojeCiylFJxVA0r6P5GpuTzCpaAxgN5WOGluihs8cVWAwmipSowMJlfzYmGbYm2WDIJwWVXQHaw9MeioCaHamqCicd+78/g8Vo+L1wo3WA0T+256BA142gDW9HXN9tY5Jhc5IN3tNVH89EgCYbVY/HiM3Y0gPiyrLTZh6K5vXIIbtLQ9Q8DEWVcxdpAiJoAgTNbYjMd1cGr0nNo3/sR3HMHMqbgDA2R/P1IIdfl2IPoALds4Gc/cOLlZNiIeYb1bVM/WX2fSgTZdGHElzpquUTDtJwgcWT8xWyNHEeSLsbhKD1H0fygHAFFsNK3z/uKJoHxP0cai46RF17UgZouh3p8Wwfdjias3GKSZYKO0IOcY92HY9Ol9iZjqz1JkCNoFn2I9HXXIEFIdLRiIVsHZB4Hat9Ka7T07ECgCTF2SLHtiOoAKg9y1BsAb+DCgwYWFy41xEQGfihGCxkW7oQtHVRDVKXer4qsCpK53lIKOuQCJoLYQUGbD2TJBJB23Hsyd7qv9JHEM/B2SLvDiy2h6tdJhu977IjO1OhCBi7RzTxt2VeYlWU7kSPXMfI/W+g/qeLHDsW1WsaQv132Fq+rho0YLj9f+xosUJDlE/8Kg/QhhjyAXE4VlRjMGTm25WtBWqK48COlQsdVJlvzdnvITbxpKOQFxAO8VCZb5K4thVpAuJ+FuUwh19XPw8AUnr/bDnMHjnokJ0GNGpeY/3i7luXXDIwbE+5dVHisAOJBHTaYf9xUMvuuvbIznQk6hsaqlVx6/jEc0DQoTgUEvmoI9AFhj0gZC0fx47I5Ytbx1Ve4nSZOx3NJEmwuzEazI4ceZIh+5tCfdOsgfLVoPXORmvf7WyZo6zcFK/JKMXOdBR/vxs2P8Hpcu0MKoCBHavzbvtz7SlkvrsCi/0Bnxs6e1yBxZDU+FNJA7R/t83JCJuTbLgatPlKsitsY3+zZ+1yg+JYI5Eu5Kf3OjZFQs6WubWdDo0hazAPL0QS0RXI9O5pqSV6yId12REpUtcXQZYIWu7c+wCp/w63joCbcv50kHj3d7u0NWztvjl+1QRovkJeytgOFaB1FUQD5KAOg8T4kJ/thmPVrwbtYiWKNLuoeXtm7VRPx6orE7rf17Bp46BDjQgANscZkmRABO3crbwJCAPbQBCA6PvWJZcMKAd0iHUkw99FzduajnC+HGr/L53PNaAcp4sB5pMOu2P/D01xPPImQ4ajbx6crZAk7sNve6ohyD3tCO0zX6KnaUd6oP4eJEA5SM37dnSxxnSUWtVIgQESGxYHtcveXdrqUXNo1LKeLnLJrrCNK9vTwRrKny67AwvVMmK4GrQudOTygOq/J4t1rRhp3yMqQOvvNJLN7Aosrg6K/Pifm7Nlj9YzARTH4RA0MXzIz5DrSPbHJloDKDsSLXim+Vq0jl6Kb+/9rwLdzkRPzRYrBugxLIN4x3yyhdUAz3ZZVp1UaaCvBsL/vw+aHE88GTyRsR3LmoO+o6tIGRAG9mJVDNIY+/H5EpMsdR62u7YatFgE4ZzhWM2GQ9COLtadEPOQ4i5kjF3Ofpom2J6MBMVrgNFVSwDUNWimuEXkWh5drLAxtksKA5qjOcA6KjpT1/7PcL4cppD3yblbdhfQqKkDFA4feqiik1GKjXE2SFatqiq/HZkMF+genC+xvzF21iQ1atB6Pts+JBLQazAHsCPztRcJANp25NhDlRsmQEuAJJW1tC7nAxB2t6VIyp9M+zX1Zr7p3gyR/T6rn/Wtqd3+NGqXe46irHC6cKuvASIgjKdYG0jkIneiFYBCpIdcx23HOgLD9gY98tifS71r9xWjRyFo9rUkP6A/EplglZdY5mVnguLq9nAUX5+j3zvRrNnIY0+gCwyU6NFq0DoTPVsTlNUwyRdfgmLIBOnZSjAavAHagAJA5nj2ArSnmLEdqhcURd5dmSfa0OcDZCcPzoSD6srO0FwCQetHcZQcYA+CNjTF0TU264NqCGf/yIOyAgKNbCBoN783aq5lXuBsmXsQtDEuVoVBzYsbvnWUIjkDBBZdTWJpbE+HC3S7lDcBHUEbIEBjBJ9D2ZGLVYF1UXXakSETPWRHXKNhR3q26/AlzIBh7YhgNHTYkVqBzESLzlfdKNMgLSOStOFYddZObY77U5Pq308X684AjajeQ6AI5Fi51jJJksFafRCC0B1YCARtiNplEeh23LPtoQILxd4gNNs2ZInBAMNXyzdcYOFH0EiyPXodt6+Ln5//76n92LH/9zcnOJ4Ps0cuPHTK/omedoDWbUcGEMnRa9A8FEcAgyg5ni9zJAmw6WA0zMYZZuN0GD/mwu/HXBq4zZM5nr0ALXI88cglA5pD0HOcLnJUFToztvSwDhVYdAWeZITOBijuZyFoJjWvh2N1fLGSwgu2QQf+EDQcuvddh+32dCTWEQD+3XvAv/nTUXNJ2d1OBIFEGbQ90gNB60IitybDJQx8PV8AsY6DIT9nKye9F1C0qsZ3i01QnK+QJt3ZyaHsyBHD0Rwy0XN0sfYiWoApEhK7jv5kyO5GjaChvx3xUbW2HImei1XR6VgNkrFN0oZIQhc171IfUQZDxfFsmWOnw9GXzvcAe5kcqw0Hgg+IJNEQc3Ec1EubE+RlNUiSyBfoyv6ZQwRoEkFwr+P+5mSwGtgLdoKiJ8UXYv9PRm6qKNBTlGTrKvC/ugP85v+FXMeu77a3Mca6qDAfoPXM+arovmdSpG6AQJdlR/poIDTtsU9syEUfjxnnywJbk5ETjABEQDXEXKqWr9tGHs/XA/Tms49fNQHaUd2roeuAGEqOm+SaWQ7BAI7VyXztlPgFgHGWYjZOjV5QPRE0hmNVDeFYeSgWmzKw6G9Ej+dr7NRUG9fYnmkB2mQTGLnXoWsoQQZ/YNGkecXet7VTiQ4AsjTBbJziYqB1BLodpKFq0Mqywsmi2/km52mIZMhhHei6BElovkHsiAx03XuEEOSh7ltX4Ek2q9muo5/YStee3BtIJKSo90hnwsyFoC1zZ7YWUBnbXvSdIAStR82DQW8/9ThWshfdIAEax7EapmXKqRTt6A50AViVO0PHiee5mY2zmvY8HMWrK7De2xgNMldZVrhYFdhkID9DOPtdvbto9FaNnO0CaartEf/+H4YNkUsbYxtSRTx2Lh1B8/SuA0Tz9N4qjkhQlhXOVt0IMlFWh1jH82XeGegCtXDNAKVKvvYZgPKDo74b4+z8VROgPakV87oOiM1JNoij4xNkADTEYgAn9WTRTUMAxGF1NkDmmx5qX/+uVVFC+sORjtUyL3CxKry1TMAwAhAnnsJyoKbmDeB8KyPqr506GSiw7oLqARHsDrEfpaPpQX4GyV4vBVrddd/ooB0iGSICtO49sjEZ4WKArCvnoG200Og5fHZklKXYnGRNkZDY/cigOIoazBxVTyT+ZL5GVflrIoF2oseHoAFUKD4AgiYR/C7VsAkuVj0byicpitr57pprSEVSnmM1GcSxoiC7K7CmvRAllNCiinZTvACNVdJzcBA0IdKV96bmEXLUtY6KmjcM8tPlDAN9RRnUUAhaNxMCGChAW3YHuqNM0DeHoDj6VEWBus1ELMVXs8fnq/r8/S7ZkTNPoAsIX2AIBG2+FuvoEogChkhQdI9nMEDrgyB0O6gb4xHmQwRoDGrS1oCOlU+xCtB6avV0do4uBMWr6+HfmpCzU8O+adxc0kHtcOIIQRtqHf2B7mgwZxjodr7J6A1BFxViK93fbXOSDbL/j+drJAk6FbK2pyOs8rIlax46Thg0hEERtPN1Z3ICEGqf8yEohxw7MmCih2tHhmjXcXixwvZ0hLFDkAQQNrIoKy3RE9cHjbOOm4519CFogHiGezkEaQYkCr3uCggHkfVPElnL9N3KfJ+tumtwAAxWg0bJkS7H6tKAam+sAE0KPvUbKkDrQLU2JijKqvc5JfdjZ6A7IMVxvsaOx/7sDsROoFY5XQiyDNAG2JNny7xzHQFVFxk1UhWgna9yTEZpp229tDnp0Z5I2f5TWRPJQOIH2P/nnlo+oEbiB6oBB7qfNaUa+XTq0J6JAC1Jkh9NkuTH1+v4RTi6WHXSoACRlRqilolDTdoesAatq7kpjR1Cfnpmvk/mQrGni+JFzs48p74jkUGFFJvocqyGpXj51nF7OhpEZp+T5dppqG/GI59lWXnbPgC1IuBAtXx7G+6+ZIBeg9lvPsm399QNAuYe6YFE+gLd6XcRiR8o0VPWDh0LQV72px0KOlP3QUt09EVfO+LpZQa49+M5I2MrRGH6Uxzn6wLjLOl0rJo9LaMmq7PsNVrX4XxMR4K+OUiD5WV3LRMgEPchnOG5DCwYge5Avcm6Al1AaxnRc5wvc4yzBNORe49IulzPtVRIpHsdNycZJlk6CMVR1ER275GdgfpncgKLQRG0VdG5jgBR8/oi8SkWq8KbVGoo8sbMAzQCtK79T3MNhUSyKI5DJHpqO9JVFkV2ZJBm7ZbxTARoVVX9RFVVPzYeNzfBO4/O8D//r7+G/+fPvev9jJPFulMKFxAZt65aph//++/gv/8f/4KXXnLMydjKonT74fcP3j3Aj/zxn8WvfHzcOVdelDhfFV7u9s5sjDOdKqc5+ieLNf7An/8K/pOffccLefsUqwBgVhuH+bpGRwzH6mfefID/7p/6Bbz76Kzzczg0qHGWYjJKnYHFw9MFftsf/1n81a981DkXwA3Qxk5nuKoq/Dt/6Wv4P/zEr3j3CAf5oQzwIi9gozh+7c4R/s3//Ev46W896JzrdCHkYv3UPHdgUZQVfu9/9o/w7/31X+n8DMCv/AWYioDt8af+7tv4vf/ZP/JmFIk21PVsj7IUW5PMed/evH+CP/QXv4r/8hff75yLrtf3rPmo0v/RT38H/8qf/kUveqhqWbsCi24V05996yH+mT/x9/D2w+5nTVJFPUHTDvVvtLTrODhb4vf9uS/jP/359xh2xO/UbrbsSDOo/smv38O/+Kd+AR8dXnR+DifQdSV6BDXJn/nmZFD/k599Bz/2X3wJB6YqYi21P18VnQIJAN+x+ujwAn/ov/4q/uwvvGedi54FFvLDcKz+L3/n2/iX/x+/6CyW5yCR+xsTa7Nwc/zsWw/xz/1f/75zT9OZ2jUfN9B9cr7CH/yLX8Wf+Dvftu7pqhK0WP868iiOP/n1e/jR/9vPO/c0NVfuKtWQirye+3bnyQV+5D/8WfztX7lv/Ts9C13rmCSJcIg99UxlWeEP/cWv4j/4yW81e6Zpzv58VXSinkBNFWXQN7/84SF+z5/5Jfzcdx5Z/87Z/9wAbZWX+Ff+9C/ij//UW9a/V1UlEj0Mii/HjvyJn3oLv/+/+nL7uuq1vFgVnUEFoCd/u/fke4/P8T/7C1/Bf/VLH2rz6EG1H4kc1S2gOPv/j/zkt/B7/swvOVWJzxiJHi5V+m994x5+55/8Odx5Yn/WLga0Iw9OFvi3/8JX8Kf+7tvav37iatCaN+3P/sJ7+Mtf/gh/5Ce/5c0gnzECi82xoF3ZGur94w8O8Ud+8k18+cMj/PWvftz5OUcBtSOuwOI//Ntv4d1H5/i3/tyXO42Ram7avWm3TQRNC5r+1jfu4ye+9jH+6N96E1/64LDzc04YdI7NMTlWdWChzXV8scbv/c++hK/dOcJ/8YsfdH4Oh5oEiO/mklD/v//M23jn0Tn+93/tV7xZDlaAVlMcbQbk2w/O8P/+xx/hz/7C+/hzukGzDE4Gj4zsfFVaKY5/8L/+Kv6bbz0wHvr24NApAUKQ7ev4X/7i+/iZNx/iP//F9/Hm/ZPOz/G1mACUQbft//mqwB/722/hZ958iH//J77Z+TkcBA0ANqcj5egb40//vXfxV75yF3/kJ9/EMu8OrH2KbYDIOLuQ+J/7ziP8ib/zbfzSe0+cjhGN4wtSNeumAQJ2FdOqqvCH/+a38PbDM/xP//xXOufiJAwAjeJosSM/8bWP8Te/fg///t/4Jr5177Tzczi0MHLWLtZtBO3+8QL/1p/7Mr5656jpPFiGDHQDEz3kWPkdAn/Gdr4q8Ef/1pv4qW8+wB/+m99q/pEQNFbmm+hC3efdH/+pb+OvfPku/k//3zfbDnGiRBK6HCuAp0j6C28/xp/86e/gH77/BH/LsafPlwVrHYHuWpWqqvAf/OSbePP+KX7/f/Vl62vmDIoj7T2f3/DXvnoXf/Urd/Ef/fR38OZ92tPKsSrqren7bhwEjfb01+8e48//Q/ueFlQ5/z0D/DU/f/Knv4N3H5/j3/0rX7dem0TQfMjnxlg2IneNr9w5xF/5yl386b//bjNZqiV6FmteYFGU3cqKVVXh3/p/fRk/953H+PG/b0/enw2IoP2Zn38Pv/TeE/zHP/sO3nt83vr7Yl2iqrqpcgCJ5Hh8lIs1/qOfeRt/45fv4Y/97Tebf6yf7Yu1P9DlBhZ/5Ce/hf/PVz/G//lvv6l8Hr25OIMJBNQJCs/+/6lfuY8f//vv4ue+8xh/zxFYnzOo0nsbYyzWZWeSvCwr/Ht//Zv41r0T/MG/+FXray5kDaaf5XTm+W5/6Ut38Ne++jH+2N9+Cx8edCcU9fGMBWhoBJ2/8PYBdqYjlBXwc9+231AaHIdAZVHbm/a/ffsxAOD5Sxv4cw7jSePoYs2qrwDsCNoHB+f40geHePHyJj44uMAHHTc0xLESIiHtzPffffMhNsYZkgT4ue887vyc00W3YhVgZKM/9c8Ct39A/u0rd0QAeHV7gr/6lbtN58EYnIaLNJ/N0a+qCn/1y3fxuVu7OFnk+Pm3u7+bqMHxIAgdgfXf/Po9UZ83HeEX3+me66Ru7tilGLmhB7oGxfHh6QLvPjrH7myEL394hI+P5s7P4WbLu0RCfuqbD/DqtS2MsxR/+R93o5GcWqau/f9T3xRO3rWdKf7bdw66ExQM5TtArOXKEnxVVYWff/sxtqcjzNcF/sG7T5yfUVWCBuhL9GyMMyzWpTWI//m3HyNLE9zamzmdMBokDd+VLe8SCfnWvVN85+EZXry8iW/eO8GjU3c/K46CIGCpwdSu7afffCjrLH7+bY89XvoDXbn/yxHw8m8Cbn+//Ns//kDZkb/85Y86+8CpBtDd821NskaiZ5mXKKvuAxqgvlPdjhUF41e3J/il94w99tqPAM//IC7WfhrULsOxKssKP/cdsaeXeYl/2JgvqSX268z3AIHFz771EOMswe29Gf7CP7xjfQ3HsXI1C9fHN++d4K0Hp3jh8gbevH9qTbpxkJ/pKMNklHq/209/66Fco1+wnB9FbZs4yKcvYPql9w4AANd3pvjL//iudU+fL/1+DEcRcJkX+GtfFWfjwfkKX7YkZgmV99VObTPqwv7GL9/DJEsxHaX4Jd3GaonHOSNAU8qi7vnee3yO+ycL7G2M8YvvHFhZGGeeflqAuGdJ4g90f/Lr9/CZmzsoqwo/8bV28p58Bd867m34KY4/8cvi869uT43nGsDr/wzw3K9hUhy18gnHWBclfvGdA2xPhXjJ1z46qv+iIWgUoDHsiC/Q/dlvP8LGOMPV7Sn+guNsPF/yqKJA93370geHuH+ywPOXNvDlDw+tPv98VSBJ0Jkg9TGBaPw3uh3x+Ib6ePYCtHp8fDTHe4/P8Qd+2+vY3xzjZ9586HytlAL1bCLKOtiEEr5+9xivXt3Cv/A9t/CteyedfQ84SAyhTGcW5Odb9wRC8ft/6+sAoD0Y9rkAhoM6yayOflEf5v/iF2/j+1/Yd1ICaHACXUVxLIB/7S8Bn/1d8m9f+fAIaQL8O7/90zierzupV2fM7MyWI7D4+HiB02WOf/kHn8ckS/GNu2666GJdYJmXLAQNsDvEP/+dR/jii5fwu77vFn7pvSdWJJaGoMrx9uNirVEc6/v3pffFgfq//V2fA4DO+6bQujhqXlVV+Na9E/zQK5fxmZs7+OY9P4LmpziSZHt7Hb/y4RG2pyP8vt/yGu6fLHC3I/hUUrge2u04xdKSDHj74RkenS7x7/z2NzAbp/i7HXbkYlWgrPyow6a+/43xjbvH+OytHfzIZ67jG3dPOoNPzjp2Bbp0n37fb30NgKDEuoavSSyN2bgWkjFqWRfrAr/07hP87l/3It64sc1I9DACXUr05AD+jb8hApl6fOXDQ0xGKf7t3/YpPDhZ4qNDf4LCd9/M1g8cxTxAOCfroupEX//R+0+wOxvhf/KbX8PdozkenizUH/+l/xT4/n+VSXH0O1Zv3j/F47Ml/pe/8zOYjFL87Fvank6SGq0Tz4LP2eEgaF+7c4wvPLeH3/zGNXl2mYNT3L/LCCzIhtPZ+HWLTScbNhv571tXPfH5Msc/ePcA/9oPv4hXr21ZAzQKonz3bbemBnc971/+4BCbkwy//0dex/2TBe7pe6QeZ4x15AS6bz88w7qo8K//8EsAYLXpsgbHF6AxlI3//rcf4Te+fgU/8pnr+IfvGwkDgE1x5FB8Kcn2v/tdn0NeVvgH7x60XnO6EMh4V/IrTRPsTEed67jKS7x1/xT/9Kev4cXLm3jrQZs5oCi3HpbTzK+i/KX3n+DW3gy/54dfwncenjXX4Xf/eeDz/yKT4ugPLL565whnyxz/m3/hs0gT4O++VfsYWosVDloN6D0t3eNrd47wgy9fwg+/etnJwBC1rP5AF+i2I1/X7EhZAd/82L7/BXDh3iOTkUg6dCHxB2dLfPXOEX7sN7+KG7tTL1Cgj2c2QPvlOmj59a9exfc8t2d9MGiQFCi35sHmpH7jrjiE3rixg1Ve4v0OVOtsufZmJtM0EciP5ca+80jA5L/jCzexMc7w1S7HitGUENAcK8PRv3c8x9kyx/c+v48feuUKvv7RcWfwebr0oyObHYHuV+4c4Y0bO/j+F/cBAN952HHfGIpVgFuU4ds1JeXzz+3hM7d2OgM0Pg2wDtAshu39gwu8cWMHP/TKFZwucrx13/3dTub+GpxxliBLk9ohbiKfX3r/ELNxih/9vtuYjFK5Z2yDwxMHiJrXXsf7JwscXqzx2Vu7+OzNXXzz4/6BBQWLttqpdx+f45WrW/jBly8DUGiJbdB98323jXHWDNDq9fzaR2JP/KY3ruGzt3Y77xmndw7gtiNVVeEbd0/wPc/t4dM3d3A8X+PBiRvVOlt296kCuhM97zw6wyhN8M9/zy1kacKyI777NhtnImFgUG4/fHKBVVHie18QduQrHx517pEQRoMt0P3KnSN8z3N7+NztXQDdduRsWdQHaffBborkEJrmdawYgk/feXiGT93YwQ+8dElevznma3+dFiH8PscKAH7LG9fwxo1tfEdPgiUpAOVYdWWHAX/tVF6U+PrdY3z/C/t47do2Ds5XVuENjordTodtpfHm/VNsjDP8c5+/BQBWmz5f5dgYZ50iRYC/X+G7j86RlxW++MI+ft3Ll6Wt0EdZ73Ev8rMxRu6h5n3pg0N88cV9vH59GwDwnsWmnzGoohxqHjmkP/TqZTy3v2F1iC8k8uOrS+1WNl4XJT44uMBnb+3i1758GR8dznH/uA4+GxTHkuXoA92KgP/o/Se4vjPFP/v5GwBg9dXOGVRRQNTzddGJv/3gFKuixPc8t4dPXd+RPkdzLlID9Ae6vkQP2ZEvvriPqgJ+2bIn5+sCG4x7BnQHupTQ++2fv4mXrmzhHbIjGr19Ie2IP2jqWsf5qsCb90/xfc8LO3Ln8KJFUSRqq88f5KBab90/wZWtCX7Lp68DcCd6fPYYEHFF9x4R6/bFF/fxa1++rBKln+Q+aJQxffHyJl6+soX3Hp87HQIu397lWB2cLfHx8UI6VoB4MF3jnKE0Awhn3watvv3wDLf3ZtjbGOMLz+1aH0IaXARtNhIIQmVsijtPxDq+cGkTr1zdRF5W+PionbmjwaodGbsDtDfvCQf1latbSBOoh94yzpY5piNRG9I1XAgaBe1vXN/BF57bwzfuHjv3CJcqOquvxURjThZrPDlf4aUrm/jUDXHAvn/gDppOF7mXTpkkCTbGduTzg4NzvHxlC7NxhleubHUKrnDq3YCa4mXZj5QV/+ytXXz21g4OL7oDi9MFh+JIgUX7gHjv8RleubqFz9zcwThLOuuZTua5t7k4AExr2qE5qBj/+UsbeOXKVuc9o2v1Iz+1iqmx/z86nON4vpaJHgCdiSVOQTQlemx9AN9+eIaXr25hZzbGGzd2WEi8b0/ORhSgNfcjFVq/cGkDL1/dwtkyd9Z8VlXFEgnZGNM6Nr9bVVXSjrx+TazjdzrtyNrLngDaiR4uNWlb1iG4D+m3H57hU9e38fnbu0gSWJGmOSPzvTHOkKVJp2P1wcE5JlmK2/sbeOHSJu40BCeSYMeqy9F/59E55usC3/e8CizeMWxRUVZYrEuvY8VRdv32g1O8cWMbe5tjvHxlE1+3nI1cx0pQ89zf7b3aFrx8dQsvXN7Ek/NVyz5SDZo/0O2m5hVlhW8/OMUXntvDq1frAO1xe0+fLfzJX84e+da9U8zGKV6+soXP3tq17kdJFfUiyOPOvf/hkwvkZYXXrm3Ls/EDsrO1HSmQYFWUDIqj+O5dDvG7j8/xxo0d7M7GuLw1UXNpY5H7g0HAv//JsRe+4Tbee3zeKtvgqGECWl2k47uVZYV3Hgk78j3P7QHosiPM/dixju8fnGNvQ6zh85c2lB0x6gYBHoLchaB9894JirLC970g7EhVoVXPR/bYt/+3GXbkrQdneOPGDm7sTnFtZ4pv3LWtY87aIzseO0I+xctXtvDi5U3cP150sqv08QwGaGJzfHQ4x/Z0hN2NEV6+uoXThdsh4NbgSMdq3byxd+pg8NVrW3j9+jaSBN2Z9mUuD+2usT0dWTPfbz88w2v1Yffq1W2nygygqdh55pvWD5D0Ucmxqh+6Fy5v4MXLWwCAD57YnVThWIUU9ze/27oo8ehsidv7G5iOMrx8ZavTsTpl8O0BNzXv2w9OcXN3hr3NMT5zcwcnixwPHXU4x1IN0I8gAGhld6jw86XLm3jh8iYAdN83hoNK811YkM+Pjxe4vb8BQOzLbgSNj/xcrIpW7cN36gzQp2/u4LO3BGLhojIt8wLrovI7tQ7UYZkX+OhwjleubmFUO5ldFMcTRjAI1AiaBRm+ezjH9Z2p2I9Xt3DveOHsBScLon2Irtz/TTvyYb0fXr26jU/XAZot40qDI00O1NQ8S2D9zqMzvH6ttiPXtjppgCfs/Z9ikZctiiN9txcub+LlK2L/f+DY/8u8xLqo2HbERB1OlznOVwVu74tn+/rO1EuV9gUHQDvRwxVJkBlbh1DCwdkST85XeP36NmbjDFe2pnhgoa9dMCheSZJ4kZ8PDi7w/OUNZGmCFy5v4qPDuVbgL2rQpGPlQRV3N4SsuavGT+7pa1t4rd5r5r0Iday6Gti/df9MJjderTPt5uBQ5YA6sOiY6/3aQXzp8haevyRs7d3DeSPzXdYmxY+gUWBh3yMPTxdYFxVevLyJG7tTbIwzvPe4/d04wWeSJNiaZJ2I7pv3T/Dpm7vI0gSfubmDdx+dtdQzuYHFtgdBe7c+m169toVbe2Id7xGCVtuPvOQhkVIkp8PZ/+jJBV64LOZ56cqmtYZ/sS46WxXQ8AUW33lwho1xhhcvb+KNGzvIy8oSWPAQtC1PT9e7R3Ms1iVev76N/c0xNsaZto5qzBm1rNNRinGWeO3IS7Utf+HyZtufSVKZ9Jx51lI0anev4x2GHbmQSKR/PwLudSzLCt95cIpP39xBkiR45eqW1Y5crAoWyupDkN9/rBJmz13aQF5WVvtvG89ggCbGR4dzPLe/US+w2ESu7DdFt7EUR1rMG7szzOqH8e0OxILDk6X5zCi/qkSWhDbp7f0NPDxdOmFvRXH0ZL4pQKOUX+1gffTkAmki5qGH0SVKMl8XKMqKJZIAAAtjHR+eLlFVwK29GQDg9evbHiSS51htOxzUDzUDc7s+GFxiGhdMJ4KMuonG0Jq9dGULu7Mx9jfH0nmxDU4NGgBsTOpst0xaiV/uHc9xe1+s42vXtgXFzCG4wq3lI0d0Yey1+ycLkQyZjfHyVRHEu2Sgz5lGlPajiUR+eHCBqgJeqed5/tJGp4y6oIr613E2TrG0IGh3j+bS+aLv5kpQcNdxw2tHpri0NcHVbU9gwdz/ooVAOxny4cEFXrsuvtNzdaDrRJAXorn4tudAmo0zFGUFak1GduTOkzk2xhmubE3kM+dSq1LKm3GMBqJH3ayf6U/d2MZ3eiKRNF8DQavX1GfLfRRHusefqgOLW3szq2PFUbED/NS8D55c4KU6SfTCpQ2scpEYAwBqVE3P3dSTad/bGKOsRKNp2yB7Ss7HdJS2EDR2DY4n8308X+Px2VKiMDd2p1Ykn09N6l7H9x+f49beDBuTDM/VybCPjPODREKmDAQBcAcWlDx5/tImkiTBy1e3rAjakon8iOSv+7vdObyQiZRb+zOUFXBw1kxw03727UmayxXEE7vj1Wvb8sz6+Lhex4QCNPGfs54U3/NljoPzlUySvnS5I0BjPGtbnnW8dzzHrf2ZdPQBtBA7YjdwAwvXd5N25Po2kkQITd232JELRi2rSPR095T74OACL0o7sonDi7V6fW1HFusCozTBqEMQDyClz9yJHFES9vbeBl69toUkaSPxZ9KO9At0758scLEqNDsya9YE12POUMME/HbkvcfnePHKJrI0kXZEfN9PMMXx7tEcz5FjdUU8GLaME6Ay3xxqANB2COjmXd+dAhAH7APLg0GDy282i9IBsaku6uwwAPnzwbEd+Tlf5kgTvxElCsaqbNYyffjkArf2NjDOUtzcnWEySp2BBbcGx7WOZExu1AHaS1dEdtflNJ4tmI7V1J4tfHy2xPVdMdeteh1tjhGg1bsxHFQArYCZnPoX60PvxcubEnm1DS6CttEQZRD37GKV4+hiLbORr17bQlFW1iwQIO4bZ48Q6mWu5aPTJa7tiL1/dXuKLE1w35EB4tYNTjKiijbnel8GumIdn9vfEFlrxwhB0FZFu1G1sCNirlfIjjjQSE5TTkBrM9EK0MQzTHvy9v7MuY4AP7DYmo5aFMeDsxXyspIo6+29GVZ5iYMOlsH2pLsBPaDsiAS16pffORSHeZIktZPpTvRw13HmWEcZoO2SHelGB08X/lo+oO3UhhT3A3a6LqAYGBQ03dh1O1aswGLqdqyqqsKHB+d4qd7L5Kgqm64ojkkCL4og2zg4gs+Pj+aYjFJc2ZogSxPc3Ju1giZuDY6P4khrRnbv+s4MB+fLNvLDqMEB/OqD79U0cgDS1zBtUclEfny1U/S55MC9ctUeWCyZyI/Nt6BRVRUeHC9xsz6Hr20L2/7wtLknSVXRRx+X1DxHEP/uo3Nc3Z5gb2OMzckI+5tjlSitEzxrLhI5615HyQiqbfpLV7bw8fG8dc4s89KL+gBE+3cjkR8fL2Tyl87Ix0age8b0LWQNpuO+0XcjH+PGrv38mK/8taxAd2CxLkrcPZrLc/hFyQqi/U9IfOkNBgHle7vaz3x8NMflrQk2JlnNMpi07Ai3JtKX6CEfkO7bjR2R6DH9UDZVeuqnOJIded5hR1zj2Q3QDi+kMXvh8ibSBM7AgjLf/Ixt88Y+OFkiSxNc2RIP4I3dGR6cdjhWTErNdNRWlqMsFs2lMnduxGJr0q1GBCjDpxA0ojjOJR0gTRO8cGnDytkG+EjkKEsxydIWxUsdsOJguL4zwzIvnTzoU66D6qhBe3y2wtVt0fvodota0RxcJ0JRHJv37e7hHJc2x/J6X7hkoQTUg6iiPtQTgKpBqw0iAFkjSME7OSyupAE5+t49MrEb0YdagJalCa7vTHHfkTCQinmM2qlJZtv/zSDm+UubeHi6dPY0OV341VkBErdozlWWFT4+mstn7KWrpjNrzsUXWwHaB8SDGomktbm+M3NSHaqqYlMcbXbkcb2OZEcoUHMdDJyGzIBmR2QmVNWgkR2ZjTPc3J05kchQsRVXgKbsyBQH5ytng2NOLzPAVoNGMuP9itLJ8dUTfHbHyp/5BmrJdsdcB+crnK8Klfk26daJ+L/FusBs1K1QBqh74OrX+dGRYrIAwJWtCQ7Om7aBnGOfSMtkJM4NF8VRZ7LQz6pSe53GxTKXSZKusetBEO48ucDLtU24vjPDKE1adGtuDRrtdVcNml4LC4ig6ZHZ0Byidsq3joBgQ7gc/SfnK6yKUiY4yNaabTg4zcUBrdWHY0/eP1F0fECcV/dknbvYN2tmoDulPeKYS9bUa/u/qtBKiCzXvGetK9AFgPvHc2mHyNa29iOj7QPNBbgDi4e1H3p1S7MjxveqqorVrgDorp36+GiOoqzw0mVK9Ij716xDS7DIC+/eB9SZ6Ap27x4pRhAg1vLgzLQjNZ3Sl2j27EcTcLmxO8N8XbTszvkyl3XQXWNn5q7BrKoKHz5RaDU9B12sIH08ewFakuBkscbJIpdZrXGW4vLWxNnnhy8SYt9ED04WuFYjB4DI3NoibkA1N+XQrqajrEVLo8Pt6k7TsXIJd5wvc5ZjRZt6ZTQbvH+8kA4+IBxiV80PtykhIGheJsXxXk1ruLVbZ0DrB+SRI9g9Y9S70VzLvGyoT85XBc6WOa7W2cH9zTFm4xT3HN9NCgIwKY5mRu7wYoUr9VwA8PxlgfzYIP2LFY8qCtTqm1I1T9EbARV0ynW0HOgAT9IcUAiauf8fnS5xfUd9t5t7M9w/cawjE0EDxFqagRchPFe2RGBNDoubmupXdQLEOppBzMPTJdZFJe3IznSE2Th12hF+Lau9durh6QI3dtU63tidOmsi52sh6c9bx6y1H2kdr+3UCYr97nU8Y/SpArRaVomg1XbkZCEz8oC4b65gkJvoGWeiTsKsZaUkC+376ztiXtMxosFG4h01aFzpb5dD/PBkiZ3pSJ4vN/dmOLpYt/a+qB3hqYa5HFS6v/TckI2QAWHdzFZkvjkIQrfT+LHhWF3dnraocismnRLolhqnAO2mDNCm9b+3HWJuYHG2tEvf54VAm6/VeytLE9zan9VIrVaDRiqOTNqVy0H96HCOq9tTeU5f3pridJE3/IO8KFGUFQtB257aFaIBtRf0BAeAli2ar3hJG9ms1zHfo9OlROkA4Ln9GT4+1vYjlD3ZmHR/N6rBdFFFdbEiQJ0jpj7BMi/5SKQjObEuSjw8XeJWbVsnoxT7m+N2oBtQywe41/HByQJXtyeS5SDQ6kWDWkq9G7k1mC47ctewIzIJ3LIjBSthoETBOuyI5ode3Zm02B5UouCzI5NaWM6F6Jp2hM4Rk+bItcddbSbOljkW61LOsTkZ4fLWpLOuXh/PRICWJMmPJkny4+u1eCgf1w+A7uxc3Z46D2iuQ+Dqg/bgdNmY6/quoAsdXbSNRJhjlbYcq8dnTQeVnB6XY8VpAApoFEc5nXjIj+drXNqcyNdd3Z7iyZmdBnXKRCIBkQmzBbqzcSqRI3KsHjoUAbmZbxl8agEa7QU6GARne8OPoDEpjiYa8+R8hcvaOt7anWFVlDi0NMnkBoNAHeiSah4JhGh1H4CiVrgDC7/yF6Bq0EwETac4AvbMHQ1CHTg1mFNLb7In5yts1jQHQEOQHc4+N8s7G2etGjTaIzd21B7psiOSKu3ZI+5a1qXM/gPigHhyvrLWl3J7dwHiQGolegwErcl9b48LJi17ZiJoSYKyrHA8Xzf2/9XtqVO0iYug0XwtBO1kgStbE+kYSAfTYUc47QoATem2drppv/gCGR+l5tHpEte084McA/0ZWuUl8rJiZb53OzLfFBxRgm9jkmE6SmWzbkVN4iMIgLu+znSsrmxPWxQvWe/mqVMR87nFLR5YMt/6v9MIqR0pK2Wz9PHkYoWqAq5tqz19Y2cmfQ8asg+ax0mlQMdF8dJLNgDgcj2v3mSZWzcIiHPMFQzKUoN6/SiJaT4/5yueTfDVTj06M8+PDY3iSAia+E/unnR9twcnC0zqhD0AXKp/mucwe/9PRlisS2vroQcni0ZNPWD3Q2Vg4QkId7xI/FL6TIDwDfOywmMNsaakT99aVtOOUG+9w3Pdjoi67pBEj40qXVUV7h7OGyirDUGjEoUJw45sdyCfD06XGGeJ9HuVHYlL9OzORjhb2WswyRZe1RIU13emeHS6+uTI7FdV9RNVVf3YeNxsQLe/0XQInBnUumu8T1nO5Vg9PFlIGgCgZe4syA9BnX0pjnRDZ3Vn9U4EgeNYjSiIqf8hSbDKS5wtc1zaVIHr1e0JHp+vrFlF+m6+hseAWEsTQbh3vMDN3Zmkw8jMhSuwYFJF6YHVnVRCk8zAQhYnG4Nq+XzGhv5uZr8Pz9e4tKXWhdA0m5Mq+ysxjKisQdMojpRZoj2yMx1hOupGfjgO6qalBu1ileNsmTcOBlcNjXhvyP5vB01PzlfycAUU/cakTdGYr/yKVYBYx7VuQJNEJlj2N0074qjTqpEYX51Wl9jQjd3mOgL2wIIrUAF4qNK1o0eqX04knnkYUd3GWqtlPVmsUVXNdbyy3c6A0lB2hLcn2xTHeWMdr0skxf7duDRYaudBNHBK+PjafGxOMiSJm1Lz4GTRQKDJodOTRdyGr0C3Y0VnINGgAODS5kQ5qHWj6kXOqx3Z6ggsCEHQHaur2xM8OV+2svoAP7BwfbcHJ0vsbYzldbsy3xfsGhx3e4THp23Han9z3Gp+SxRH330jW+8KLEyWAiVo9WdIriMDsegSCSEEjZK/k1GKS5tjPDoz15EX6EqKo2W+oqxwYARoV7enOJ6v66CnDtAKHsURsIur0Tg4X+HK9kT6GJQ0enLevG9sBJn2v4Vif8+gWgO1/9QKLEqMs8R7bvgQtIcmk8WS6OHSKQF0ioSoBJ9Yv3GWYmc6MuwIP9FDCQobGkmqvM/pAdr2pIXEcxE0QNy3bns8k/fDmejhqsHOxqgq+3eT9tiwI8dz+9lojmciQDMHZQP3zMCig+LFqcEZU+2U1bFqPxg2BSlJg2LRhdqZb/oOupN6tcPZ4SIIippUz5ekOKo3yf6mHlhMZODWmktC9YzAwuJYHV6sWpkEoMOxYgYW5EA1ArTT9oNxsxP5yVm1fHQ4tpCfi1UDiZQHrMXZp/3F6ZW3oVMcawTteL7GJEvlAZMkCa7tTDspviy0wvLdKHgwA93zVWE17tyCaMCOIB+cr+TaAeqAta0j0YlZ6zhJYaYcbPvfh8Tz2j6I1+j9u6qqwsOTpXQqAT1B0ZHo4ayjhb75+HyJySiVzlOSJLhSO8+2ccFG4ttqsIcy0NXsyNYUhxcra+Y5CEEeZy3n6MnFWmZ2AQ2Jt+z/dVFimft7cAGaHamvmdbUl7FNkgTbk5GzdsrMfFPyRs/qz6VjxUHVR85WEJIirCE/+5tjeY9IbIgrMy7rKS3zHdYo09Xtpt0rq+Z3WwUEFjseiuNNLTC/smUXLLpgJm0U8tO2Y9Kx0vbZ3sYExwYSQ4+Bby1HmaBduehyJgPjsoWap2r5+omE3D9eIE3QoB1e25m2EkXLdelFBoHupsdPzlcoq+b5sSdbDuQaxZFHFQXsyV99Pt132t8i5MdEdbnUPDc6borWAMC1nVnrHF7lJQv12RhnSJMuJH7ROD9sSWDyLbjraAs8AWFH0qSZdNvb1HrCEcUx5yOR4vra381MJgLiHD5d5o1EeFiCYmxtYQUIn6bBiKv3pm5HqqoSZ2JPBPmxxQ/d35hY2Xe28QwGaIlyrDaajtWjU3tdGLfYHqDAQi10WVY4Mug7MuK2OPtcmXGAakfa1KTd2aiRtb20OWlQHfTBr8Gpa6cKlfl2IQjiOtrzzQOyM0rcQo2Ted5Q3NuejrAxzqyO1SovscrLoMy3vpbqgG06DzbKIcCX9Fcy++q7VVWFw/OVpFMAiqJiQ9Cozx5HaWymUxzrbOPJXCgX6sHktR13PRO3Bmc8Ep9nQyL1zJ2LEgCow4Uz38SC/Dw5XzYO2N0N0YTadt+Ib89xxmyHiNz/2p68tuNO9HCftckoxShNWoITq6K02hGb4EoIxXFqpTiucHVr0tgjl7cmylE3xsWSiaBJOnH9D4m6N02q9ARVJRIXrblC7IglGDmdrxs066vbEySJPUAL2o8GEk+OlS9pA7hrp6qqwsPTJoIme2JpaIxC0DhBU4ZVYaddHZwtsTHOGvt0f3OsnR9KxTEIQbN8N3p+dLtHTuNBn8Cio3ZEd1CzNMElPfisx5xdg0ZZ/bYjZ0vwSQRN2w5lWWE25u2RrUnmpHgdXqzkmQE4ELQgBGHUSRW9uj1tSKNf35m1np9lUWLMuGddDZZpHfVgkBLrx/O1ZIWsmCqOQLtWVB8HRoC2Mx1hZDk/+AiaO0CjzzST6SYDY5WXXhQeqPvXOeqZ1nVNpJ7oaQS69QihOLr6xwKCmnd5a9pQ8Gwg8ahFQgKRSNuelOfHVvf+J7vMWUtfDabOwNiqa8/1oCmklk8q3XYhaDvNhJmJxLvGMxigKQStEVjsTLFYl1Zje8HkpAMikNEDi7NVjqpqNnC9tuPOfFOzUk5Wf2KrQTtvokwAcGlr7KznOGfSOVTtCCFoicwqNZAfecDa+8sA3Cxv++E/WTQdqyRJcN0hlBDiWE0tARodDFe29AN2gsW6tCoCnq8K1j2zqQ+eLnPkZeXIgLrpaz7KLSCoMSbF8Xi+lsaZxrXtDgSNmaAgB1VXw6M9oh9CtF9sMH0IxdEm3PHkrBnoJongipsUFX2ukP2vD8oG7hqJnifnK4e4C+9Zo/l0O3K6aM91vcOOhAe6BhJ5tmyI1gBi/zsTFMxsoWrXoVQcyflvIvHdiR6OxDtA2fLmwWe2VhhlKa5sTa1iQ1yBKACYSAS5kD851wi4KWWnRpE4YJcKl4IkDNUw1Qi9bccOzlaNTDRAjhVlvoUd4daOdCFoT6znh/hdT3JQYMFxrLamIyc16ZGBRAJtwZS8ELV8nOCT1rrTsdKRyI0xLlaFQo8hREI4zjBQBxaWuc6WOdZF8/wgG/hEX0dSsWMhCCKIt/XGPLpYN+w5zXdsOI1rJvLTpWJqKzXY22gHaFLFkcnOcQUWT86XDQZGkiS4ZCRmq6riI2iO1jOAqscyGRhny7yRVOLOBYiA0mZHHp+JHrJWOzLX7UiYj7bKS+tZd3C2bOx9wETiVaKHG1SL67MEul1+aGP/hyV6ukRr9IQZ0KZ7qvpjno8G2OnLj85WSBI0nm1CIu3NpZrjmQzQKPpsZlFriVOLk7pY8TYRIA6RXDPAtPl1atNsnGE2TlsGDVAP8g6jTosy3zrqJxyr9gHrgkS5Pdfame9U1fI1qEl0wNocK1HLxznYN8ZZKxAi5EcfIrCwULwkgsBbR6CJ/BxdrLEzbSKRstDVJtzBRNAAkcHUv5s0MJYgxkZNDaEhbNR0jsqgOO6Z67hjl2UG+HVaNqqoTdCB1tG2J8+WBSY1ncc3pqMUyxZ9rUlxBIDLW2NroBuCxLQNbYLj+Rob46zxt6vbU5SVo3aQKYMO2OxIex0bjooxyJFjy+y3BFDajvrlzXEHgsxXwwQMO0JISgDFd3Psl3gH9BpMMaqqEkj8zLL/LbY/iHI+siBo3ADNURdG55HuoG5ORG8pXXJ9EVCD5hKzAkSCzxaYH+kUxyRhU5NUXaoNQbMhp+3AnCijLIpjh2N1NF83zioALUU/Cp44943W0Zawe3y2xFSjCAPK7unXVzCDQUAkbW337Inj/EiSph2i6+QiaIDjvlnOD5vk+qrgKR2Sb2WjHT6y7P+m3QuvQdvqojjWyI8+Lm9OGuu4LiqUFc+P8SFo29MRxloQK1UjDYpviB3pqonUkUhbb71QJB5w0A7P7YkeicTXdmTObfgtm0fbEDRx/ZctiR7djiiKY7xISFFWOFmssbfZ/G7CjqjXc+uPAWVHbAHa47MlLm9OGmj1/sakZoj5Q7RnM0CrnW/9S1+1ZO5ocNVYAFGHtixsDmrToLl4pGcBCNp0lKKsgFzLYByeN1UVAQUt21RiuP2LqLhfPR8q831pq/uAlXPVgS7HsTLh86qqcLJoO1b7m2NrbxhVy8RDIoGmiqOt7orW1XbfLpY8sRWAkB8tQCMDo4mEjLMUextjO4Kw5snu0lzitiuZfVuARsiPSXuSfVEYBltSRbXPsPU1I3Ee2zqKQJf3rJm1UxcrgTa0DtitiaYeBe31fDqx7eA/ulhZ1xGw25EFU3YXAMZZYgS6bSXZUV14bVvH0wAhjekoa9wzoF3TAtQImmUdQ2r5lNiQUnE8tAVoHUj8fJ2z6L1AO1u+zEusirLVQ3B/w25HJMoaUoMWE6A5Aotji6BVkiTYnY2ajlXN8eJSkwC7Q3BwtsRVEx2pKY4iEahRHBkB07ijdopQbV0cifaAngigJEyfzPcqL3GxKhp0ZKAdWNC9GzOQn651FD00p42zjhziM22+suLdM0DQdbuQSD0xlaUJ9jfG0SIhsheUbU9eWAJdC7WOu/+p76ktaLKJJNgQNFoWFvI5sdM3F+sC56uiHVhsjRt2b1Gf3SG1U7b7dmxJGBBSrwcHq4JvR1z7X9oRzcZSTzjd7lECgLuO+nv0cXC2bLCPAGFHVC2fpuLI2I8yiLEFuvVn7mt2RIm7tPc/j+Jorwk+JUGrlh0ZN+yxDNAyRhLR0VYHEAk6kxGnEj1+muOzF6AlIvO9t8l3rATFkecQTLIUaw+CAAgjY8t8n0n1tbjaKZvi3qW68No0oNKxCkHQKGpPVGChb9bLMvNtX0eugzoZpQ2qHPX+Mh2r3Zl9HUNUzSYZfTc137llHbsQtLOQwMJALKSBMRxiIcpgQ+v4FEc6/KsWxbG5/+m/TeO+qnvnsBA0ixqmrTkzPXs2HnUQEmnUoD2RdMrmd7u8NbHWMoWI1szGqVhDbRxZHBVfoicEiV9bEz3G/t8YW3v6hFBFSWZfR+LPV+39f3lrgrNl3qI9LdYlKnYtH1Ec6V9EoidNmt9NraMDQYu0IyeSPdG8bys9KcwAAIzjSURBVLsbo047wpnPtMchjpWtETqg02i77ztJSPMQi+6Ce9NB3d8cIy8rYRuSsNoRwF07Zas9tPWEC3GsSELdTEbSOprnvtnLKSjz3UFNeny2bAiEAMq+n2prkZcVC0EAaB3dtUyXWsyBSbRIiGz9YNkjR/NVI2EAiPu2zJuUyFUu1Ac5wyYKBojndZwljedvtxGgkSpshXGWsAPruQP1AdBiYFwyqN1c2XtAr52y3zczmW4LjLkiIYCdeQTY7UiSJNjdGFkDC1Yz8479b7Mje5sTnCxykQTWG94z7Ag1oXeJDY3SpMFykIHuymJHWO067AiatCOG/7RrMCDWEYkea6BrQSL3pa9mR4H18ewFaBCZb9OxogW3ZVEFxZH3VSej1EBi7A6BK0C7CMjY0kPUCCwsvb9IBt90UqmQMYSaJPdEkuLwYoVJljaM52SUYnc2sjqoXNlRQGzshmPlWMfdjWbmggY1ueY4xMqx0moHLYFCF4LG7ScH1M6YNpcMLMwAbWtiRxACKY4AUAIqQLtoU0V3Hft/seJzqZXMeLO+bjJKGwZ/ZzpCmqClaAbU685MhpgqjqoRdPO7Xdq0B7qyXQFTZt8cNqoPOYA2O8KVnQbaSLxr/7vsCB1kLIVWS6LHFihfktTU5loqVUW+GuyqoeIokEhdRnp3NsYoTfozGtKkUfNzYqnlA8Q62uzIPMKOSBXHdX/Higr42w7BuFHcT4mzPg5BVVU4OF+2EOh93e5pDWb51Dx77dTh+apFEZ6OUmRp0kQQgqhJJNzRnM/pWG2M7AFaQObbet8stoEcK30+gaDx9simozcZsSzM82N7Nm4Gumu+891JcbQkpmxS+SEJCpOKTONkscbOrClo1aydEv++zAOoorX6oCkIR/1bbfV1dqpowDra9r8DiQSaginLACTeJq4GKLtntSM6xTcgiNl0ID+LdYHTZW4JdIlSmSuqdJAdyew1aBcr7G82Ba1s+5FqglmCPL5Ej2UddSR+PVCix5pM3/yEB2jH83UrA2QrvKZxsc5ZThzQDiy6Mt+dyA9j004tgYXVsXI0W1RZdv9cWS1uoYLPRFIdzA2/t9l0HmhcrHJsMorYAbGOeuBJDq/NsTpd5K1C1RAEzVaDdmYRxugM0Ja8Oi2aT0fQFH2tjVi4apmAMMSiglBxLMsKp8vcmgEC2vs/ZD/aELQzSw+pNE2wt2FXIuJS5YB2HzSXAuqVLcF9N/dIGIJmvCZJcGKtaSEnzJI0CEGQHUi82eTdFaBR8TXnMJqagUUuhAxa+1/akeZ8MYGuTnE8umjTstM0caKDfRI9x3P7OvqQeI4TQY2UaU+uipJV7wO4HVSbEI34b7N2ijK2PPo40HYI5mtx38093bR7Yf2LgLrpsaN2xHSGkyTB1qTZbHqZl8jSpFGS4Bq0v0w00rWOZnF/TObb5ljZKPK2GrQysAbN5aACaKg4AiJYNem9AK8GjQJd0wlcrAss87KNRFp6wgmREC590xFYzPPWszob183TGyIhCVtIY2MyQlW19wglQ03EYnc2btDdQmqZugLd4zqw0Ietl9ky59XyAUK12baOxw7mwM5G01cjOzIKSFDYxNwAtOq0mvTl2o7kfCR+00FNPTxft1gzrkRPSKALtNshOZF4A0FbBtiRLoqjrTUPxS6uWlt9PGMBmnAKjiwUx65eBPMVryknQI5VO2PbqkHbdDlWIuuaeZoSAhrys/Y4VvRgGM5+iKMPCMOuELTEGt0DooeEzUENQxAcmW8Lgga0HeKgwMIRoLkOWJdICKcpMNBG0AjtMAOL/Y2JA4nJpQHyjVFKARqAJMXpUqiKtjPJbUUnIKxoeJSlSJO2SIit91dDeEAbXCl6oN6P2jqS82JSP4ni2/puATVoLpn9dqLHbUf6UBy77Igt0OVSRwAt0VPbEReF9pKF1w/ogiScmqRE7BHtLDq2iP+Iz7PXU4SoYY4d62ij+AqFPZO+GZDoGTcD3SBqktNBddg9o+ZBBWjxRemuukUp6jNf1aWs/EbVgGgya0cQ2kwWmt/MfHPXcSoDtOZ3O7a01gHqvmmrQtbehmS+qXbGjvxY6qUtjlURrOJoq0ETfS3N59WUkw+hOErVPOP5U61F7IGFvieXgRRfF/Jjsw17lLypKY5FWbFQT8AtbqHQaoN2WKsV0t5YBCRtiAZol4dfS1RJzeWgOAYEFgtHomeUJi27udsSyQlJUNhr0CQoYdgRWdpwIQLrEqkQyWEG1q4ExRNLoOtK9HCDeDo7TTtia60DtJlc0o4EJJVstNtTh+4CAJx/ImvQauTHPKCzNBGFgdYALcwhsIuE8DPffMeKstHdjtXlTXvmO0RIAyBxC0VNOl8VViqmmU2gwe0vA1gojo5aDBc1NaTY1SYSYuv9ReqbJsWrKIWQBp/imDaydxerHKlFNnx75nJQw9YRUDVoJ66MvANBDpHvBtoUX1tNJM1vCyzmK76ksIlEKtl8l4PZnO/cEdDZhu2ZPJqvWoke0ay8nTBQYisBCLJhR0Zp0roOlx2ZBwSDU0Me3lW/ppAUOxLPSfQkSYLZONNqWdM6KG9fq8uOiECXXxPcROJdiJQjQRFCcTRqWUMcK6eDOl9jOkpbdkxQk9qZb07fKelYGe0HXGdVg4KTiFrMVUDme8vRd+rwYtVC0IB2/ccqD0MiAVuAZg/MJfJTzxeS+U7r59GV+TaRn52ZsA06YlGUvDMKqIWzrHUxq1ZfS6Cm8tkQNIZ9pWtaGO03ZA9ZC4IAqHWsqiowsEidNWimgwrodk9856Li7X3AjXyeufa/8fplgEhIWgdF5v4nNUBbwkC/FqDe/30pjpbep0A7sCBmQwjF0QyaXOu4KQMRsiNi8Pe/3R86umgLWgGWRM86bB2BNqrltCPTERZrFcSHqMGqQLeZHMwLIWxkJmX3JCjxCaU4ni3btCuglsq0OFZB4hZZ0qAmnSxEdsvchF0ZW+6GbWe+7Y4VqduYjhU9WJx6N0A4qZKahEQErpZrNQsm1XxhgUVeVpID7ETQaiNgOqkhme+JQU0C3GIVjZ5A5lwBDnET+Slqx75pPMnAmNS8C6bsPaAoT1XdqLqrFgOw1KAFrKOYL22JhNhaRuxvjK01aMu8ZM9lNmpXFMfm+7enlHFqfjeiXfFosM3XVFWFxbpsBfFpnegxKb4UkHP3yDhLGkg8UR1adGJXoicA4ZDIT72WNuVNQKntmftfIcABiZ5SURxdAZdNuhsQh2aIGqaucnsiqaL2Q89cy3nAfTOR+GVeyN5ovrExtvcUcqGL7eJ+qkGLpzi66qWbNWuJFMsJCixsWX1LohRoK9EFUbxcFMcLV4DWRLxDMt8A1YU1n/VlLmiApoOapgm2JiNZ1wuIPmhshT5H7dTZsmgFg0A70JW1Uxx0UCIIzXV0IQhk49U6kqPPRbVGDgQtbyVlAc3ukUhIlWDEYJTQXIB7/5t2j/wACiBDRELEfFmr5+DxvFYDZIiECDvCR+JdYkO2Z82d6IlXH3Qplzd7mQkEDeC1KwAIQWvvEVtNpHi9kehhtn0Q19Sd6GlTpZt2JEQNNksTTEYpLpgJs81JhiSx176a45kL0CoIg287XGwOwTIXCmUh/YvMGjSXgQFsDgGfBqiQH3GjXI6VDTYHwtQAAUHpWBZNx8rmKAmJUrtjxVbDJMGJujF2Vw0a0K92ihxUQj7LssLZyh7E7+u9POoRQnkQrzMQNEerA3owTXpQEMVLNxBJ2qFi51jHAPluoO7NZ+x/G4LWSc1jG1ExFwXxkuLYOmAzeS36UDVo/j1pOr70GNjWxaSf6dfGVx/MWutod9THWOXt5unzkJ5rlKDIuxM9rnqKiwAEDRAtO9SWTpwMhW1DYU/ONwASb2M0AGgF1vMAp9a0xyGBBVGIW70fF27HSk/whRT3u/qguZpyNxzaRAvQAqS/bRTHUwuNHGj3IIqpHWlnvu3nh8kcCMl803xm5tvloAJtentV8YJqQCRSbbVTZ4u1NZlorrtsVM1qwm13UClAs9XgAEr6O0QNk64pBEGTyE+dsCrKiuUMA1pvPhP5WYo+raZtMV8fIrMPiOReex3tSOQ4SzEdpZbAgp/8mluC+BPn+dFM9AxRg+kKdBsBXZKAclFcFVOTskvDphcAWBI9a36gO3PYERejwaw9D6kJBuw1yLLu3LhvSZJgY9xujWMbz1yAVlbujvNCicVOlQtxCFaGQ2Az1HTomnU43P4yAB9By1JxQ1uOVQANkF4nPyJJncX6O7OxtVnihQNxsw3a2NSs1+lYbToC3QD1walBTRJZyrajQvObge5CHnzMh98w2OcruwiNVCJatO8bF/WkYt+ySmRjSKC9n7cnbfqNmCswsGghaI5Ad2NsrUELQ5CbFN8zmXAwqEVTewsB0TiaWctnHFhkR2bW/d9GkENEawCReTapeTZnttOOcKnS42aAduYK0ByJHtk4PcSOFE2Ko21/uZD4cJGQSjosJwsHZXDDjcTPxmlDYdI1Wn3QAmtwADulxhqgGYqAeRngWDlUw5QKqovilQNJijIQQXNJqJ87FFu3pk+hdmS+wtYka62PFEeah2e+AaodtGe+bYnZjUmzbrZExRI/AVQi1RZY2BzUzRpNIVSW/ARWfZ1TbMXeEsas4Q9JGAAdNZiOGjS1p2o/oeTfM5eK6Wld1mCyFFQ9XhNBC7GvSzOoXtqRfKA+PyJl9meGLadxPG9Tbml+PcG3rvcKB43cHGuJG22cOuxII6CLsCOblj1SlpWzbt1M9IQh8e4atC57LO1IYIJi02IjVd25xY6Ms9aeso1nIkBLkuRHkyT58XydC0cVdofTRnEM6YMD1A4BQyTBGVisS6vTZxuUefA5VvRvpiJTCJcaoPoiRXF0OVbkoJpZnFCZcUBlIs5qYYz2AWuvHVnUheUhYisrD4IAoFV4CqhGqiGUMt2AumrzbIpOQFigS4a9SqjBbI2IGfOldR8Rl0hI0B7xiK0AKgNq7pGQ/kpmguJiJTKg5vtdvWguHIGxbYzSpNEHjbJ/dopvW30wpJYJsKvBWqmiDjuyCEDizXYd545ejK5ET0hmHiCWgULi3YmedjKkqqogBFm1fhDznTucWVXLalnHUMq5VoM2ZTtWdsTCpmIHaFQog1LGcVKpMbAr892mJpkURzG4zodZKwp0O1ZtimMRTE2yBbpmUAH0z3xbHStKJlqe183xSCb0AGFHxkxqnqsx8NnS7aACKsm2zAuMs4R1JtJ62/Yj0FZBbVG8pIPKpfi2a9CWeYHFurTuf5HkLCXFMa+SgHtmDyxcpS9beoICCkFjJw2MkgZA2Vgbc2Z7OmrVoAUjyOaz7RR0a/oY60IEgxz1X4XE86l5AK17IgM0tgCQxY4ogSp/omcVkOjpUoO10SnV/l/LuYCwBIVJg+0M0CZZKwi3jWciQKuq6ieqqvqx0XikMt9WimMbQQtFmZpBjF0mE/A5BLxlbVOT7I6V+DeLYxWYCcrSBLIsJkmcDu7OTDQ2NTd3qEgIoAz9wkHZclJFV3wEwQzQXGpmgKCZmBnMheSkx1EeXM3CaX7bnuSuI2VnRXChEDQbSrtjoebF1KCRk1NVlVMkZMtC1yEhjdDaKSVu4ajlI+NpQX5CAiZ9UFbaFVi47Ehsg2VnoqeDKs1F4s0+gF3tN2x0NZXo4duRok6UVXA3sN+p+zjpQTz1bgytwaS1dCnyUqLHZkdClDeBOJGQLnELm2MlM7z12ivkJ6QxMM+xGmcpxlkiHIgkqVt2gOXoi2vNWmITXY7VtoWaF1KDA9gCC/s57A4s+AGhSw3TNt9sogltQVAcuQiaU9xiaf9u9IyQXxCCRCZJgukoba2jixY+HWWYZKmlBie+Bs1F8QIEErmo9yMgGn6z13HaDLhonC1yK9vJFAlZBPpNZkkDoNlYK4L8NCi+diTSRIrWAc3FJ6MUozQJpziu8gZVmls7aLUjjtY69G+tRA9XbMiBsh47KLf0/J0sVKALBCDxXRRH2578pFMcu5AffSiKY4hqmFro+bq0FsDT5m07+30cVDcdzdYZfRmYCRIF9/V/JKmzXk45xFoRe14iL6sgqhygMsMuZGVzkmGUJr0QhCwVBcbmOlrrIyw9fRaBDqoNQXM5+kAbQZsHUBylSIhBcZxZZPNF3yn7/g9xUulwnq8LFGVlPfRsdQChSIxSH1QImi2okM+aBfnhGuwsTaDHfZIq7aplXdqRyJCAUEciXcIYrkaoi3XBR+INJPKsw3nYnmaW3khhCYpRlmJdB2h5laAoKzvFdzZCUSMtNGKQSEAdmAvHIb3bFegG2izaj0E1aDLz3c7YWgO0UTMQWRfCseJkvgG7cAedfbb7Lh2IJK0Fh/jOx7RGTHUBlC7Hqi0P37+4/3xZOIKYpkMbmvm20a5cSCQgEPel9vqy4vWcAux9T4E6MWVNpjRtbAgSCdQOsfHdumjhQnV4Xc8VUYNmCaoBt4M61wK0ogy7Z/Rd9NGVTNRfT/cvpC7MFei6kE+z7xq/lrUdoFVV1ZHoaSJF66Jkq2HSfDY1zM1J1gqYidGkq8ECYfvfRRV1nfutRE8ooyE3979dPI7OL90eA/0ojp0B2uQTRHGUo1LUJGtx/4bo36VnbMMpjs3+XUtHLYire3gfSo1LJARoZxPEXGGZoFGagvZEUVVYF5VTxRFoIj/SseJmvmsVIaKLLnL7uiRJYpWjnwesI9AMLNQ6Wg5YCxK5CDTY09r5pn127pAZp/nNGrR5AMo6NimOHQ7uroXiexG4/3WZfbruLoOmB7sK0Q3d/+Izzhw1LRvjDGnSXkchu8vfI6NErbkUCbHVTm24a1mD1DA1O+JK3EhnwxI08WtZm7V8nRTfzkQPc0+mSlmRvqMr0AWaCYrQ/Wgi8UuHXZiNM4yzxGIjA5BIo1F7UObb4Vi5nEaFFGmOFdP5oPeblBqqwbE530qtUBX3h2S+gWZg0e1YZVgXlXx9CPLjoiZdOASqzL5poZnvTsfKWoPWpLtVVYVxyg10mwkpGqIljEXFzlI7FRag2ZEfm40FakqygSCEJChMFdOTrnUkMQxQo2q+o99VO2XznWhPkbMfg7K6kR8Htbv+7mVZIS/5Sp+S4mu0V8jLdn9c/fW0/1cFX2wFcO9/21xJkmBTBuKJSBqD/6zROur++bnH5+3brsP8bi5fzUQiw2tZRxZ77KlB+6RQHPVRdjhWO7MR1kWTmkcweKyK42Jt7+ukHKu28x0sksConTKzCUA4gjbSKI60b7uQH91JJQnRUMdKbw7pWpdNC80kRMUOaAYWMpPckZVp0K5CA936u9FevFg6REIMZSw5X4CEugzQRKfqzpqy3Y127RQFdNyDdpIpdLBLWl7y+rUC+2AkUtZJEIJmV8NMksSaoFjmfBosAKSaA0DKkU4EzajBDG4Kb7UjFgRZOhvtwILTXJzmArRAd5VjkqVWp8CV6JlkPCENoKZKl+K11A/NRXEEmj3liJYX0vAeMJF4+3ttNJMQVd00FXUwslF1T5GQVVE60cUWNWkQx8pOlaPXSxXHOlERjPxYeha6HCvxGuXshBb3m2jMxdJet2smOUMz3zaKo6upPEAy6BrFEQl/HcftdVzmBVZFaW0Sv2kgaIu8ZCvmAfbAYu6wsYBWFwYNiQxUMdXvWxcSOZtkqColahEiEmK2FaFxtlh3I2hLEuThC2kA9kDXpThM/0Y2NjQY3LAkQ7ro9WbyhGrQuGPTFlg4KLeAJu6SAGUSRnGcjlJxz4t2gObyeWMTPVNJIW+X6dgYcVOD0RDSTw6gGszmuUpsJncNWtH6d3M8gwFal2PVdggWERlbvX/X0tHQUz70xubuciDMMTERNI9jZYpbLNYl0oTPEx9lCWhP0JlkVx9sIz+x1CQyUPO1+3CxqYSFOFZAU32wy3nYnIxQGrVToTL7lKEm5TVXDY6rBm25LtgPPhm/EoriOM4S62G2ZaHrEBLJpU7pCYouZGXTcMIAbR3ZRrR5uHRmd60BWlhGWT9IpEiII7BoUfOCKY5NFUdXUE7Oku2+BdegaWqwrp5mpjKWuLYw6hTZSACg289N9BAFkF+DVid6NNqtKyi39bQKqUED6t586xJ5HVxR82rfsGVsu2wmOQSSmheKoI2zdg2OQ9AH0B0r1WB2xER+bHQhH0qrvyakD5RJ/aThSt5MRymSRNHWQjPfQinRDNDc58eGQXEMmWs2ajvfXXXnWxNjHR1JHtfYcFDzXDZWUPfVfgTCEASguf/PHaq8gFoLurw8oF2BoiK3KY42kRCZTK8nK4qwAM3sewpoIiG25KVmYyVVNEBsAmhSpbuUmGdGkpOo0twh2iO0a1ltQTVdg6Q4VmEUR5sd6WSNURmFrMHk+00SiV+ZdsR+NprqmeEUR1sN5tpKFRWvbyZ6XOMZDNDET7vMfltMIKa4H9DELRzIDx0MLWpSgLiFmfnudqwyK4IwHfGd71GmKI70/Vy1fEAz0KWNG4LEAHrm290fy+ZYhVBFgWZdWFctlMnrB8L7opBhJzrHxdLeeNpUWKIRUjtF+7GqA7QuJNLGJw9pCgw0A93OdTSUsWgu1+tdcwFaYOHghwMual4gxVFzSOneufopAs37For86IFuVVX1PXcj8XqgK5poh6g4Nm3WuUMVDhDr2KZlh2XmR1mCvGoiW1axIUuCIphOaUPiHffcVpc1D0iYAYTEF3ItQ4vSdYeYk/nWi/u5TYEB4TSaCIKLmkTXQOprJBLSB0HrcqxMuxdCRU7rpq8tBM2h/CnFMGRrhLA+aOLsadfgbE0yK1V0Y5y1svJsR98ioc4KdFcqaOJ+LzFfJhu10+gSqBJqhQaCFuoQa/eN2hfY7Bj9Gy19CIJGSLedKmpDR1Kkmq9GySW+SI6FKrrKMRunVudbX0dp77gtLSxIfFd5iUmJDKVKT0dpax1dglZ0DaaKIzfRY0XiPUgkoJ6REIqjs5bVoRegELTm/g8TbWonDFz2eDbOGloXrvHsBWj1w7VpgSlt/N3QzPfEQH4WDgQtSRJsWYy7q9bKNqRjRSIJDkcfEFmodu0UX9IcIIoj1Y6If+NmvmWAFlg7tdZqR0IDiyDHqhFYuJ1AMyspri1cDRMQzum6KLEqSmuz8CxNsDXJGkhkUXPSQ2ipQI2gwROgjUeWjFEEVTRXzjDgQNAMhTHx+rB1JONXVHqg60hQWOoUQzPK+mHaleixoiERapiExHclN2ajDEnSlDpeFULpkC82VGfmdQTNYUfciZ5AO1LSe7sSPc1eX/rrwwM0LdETgMSHBLqAsiOhDqqNmif7y1kDtKazElrcb3es7D07xTWMNBVHMXohaCGOVcF3rAB7j6CLVeHc07qIQ/h9E6yDUqudmjvq3QCxz000JURsBWg6jV2KkZRMJGpeUVbsYBAQ6EpbbMWdBJuO0/Y6BlLzmoJAbttAr6eAOi/5+xFoJyiKssL5qrBSHMlXoz2bl2UtGsVH0KzryEEiyd4NYEdsaJ1MDMn5wqjSbjvi3v/ztaHiyKb4toMm1fvUzUA609DIkHNjlCaNdcwLYddtsUNWB/0LjSqaJPwgfsNWptORHP/E16DZVOxsWRypUBaqGpaXWNc0F5czbTa5zIsS66JiO1ZJkjRqflx0SkBlvvWDhBA07hilKdZFXTtCgW7Hg6GjTOrgC6wd0eqZXIGrTUkrlJo0sWT/bGujemq1qXl8NUxxj3QanMsJ3DaURVeBDqqU2a+gmos7HdR25jnYQdVq+bqc6S2L1PEiMBmiqKIkttIVWDgojgF7RDe2RYcarC2LKYPPwMBiVZSd4ikp9SZb2QLdQCRS4+o77Ygl0bMMTvSksnZkWZ8xtj1mQ6tDHb8JiQ0Vyo44a1ltiZ4VX5CHrqsRoPXoX9SlILxhBD2hNWhmv0LAXQAPCOeO5LHLQRC02rFy0A4Bda9DKN2AcFL1dSzqJIfLjuly8qF90Gjfk80Duus/ReZbr0Hjz2UTCekKdGUSrF6LvKiCgpiZhY7ZhaDpznpw7ZSlBq2LUSFrp2SAVgVR88S18qhy4vpU8iYPDXRdCQNXoFurnpZlFWxHZDLEkhy0UxybyE9oosdmR8Qe8dWypvEIGhNBNmsNQ9p1AJS40aiia7fNAqgGU0Ormf3kxFztQLdLR2Hzk9QHTR9KZt+tjNUo1A6l5mmNURXFy+XsNBvpEfUhrOZBSY8Krr6L4tgOmrocMdsYZxqC1lHcb0q30rUBfARtZCCR3bUjbccqpJYPsAcWrlo+wAgsPPfZHHoNWlexMNAOLGgd2Q4qCZIglTVo7kB3hFw7FIDwQFdv1N5FzzCdB0ALdNlU0TrQLTQEzWE8tyYji4pjDwSNKI6W523msCNpwu95NJV2pPSKp5g0K1UTyUcik0SXh3fX/AyS6NHadXDsiO4khrcGsVAcHetiU9KKUoMtyiiZcZqPRmftiBHQrYoyyGm0Zb47hZh0imN967nqg0qIoO1Y2Rxis7Y6tFZ0wxC3kDa2A0HTa0dCnlOTMQN028zNSYbK+LdQm6A/D11KuaoGRyFo3Iw+4KbmOZGfXhTHdg3avHP/07qL1VxX9rpq1zAl2+mMdSE/ov+jqkELC9CETdBt5tnSTrkFmmUysSIhdoqjex0b7TqC7Eg7UOgqL1FCTBoSH1iD1qzBzJEk9j1CYMAyD68Jpvm46wgIv0Xf/yFJpUmWoSibrUi6dBRsVGnbeAYDNPHTlsm2ZTFDDY3MfOelVzxiw3CsaF5u3x2AnB3/QWYqYwFuhUnXyNJEIWhEcbQq2rSzYaHraK1B66Dm2alJoQZbFZOO0sQpNw0064tCxS3IuOdFpYqFXQ/ipFnMr1Ap5lzUBw2oe9eVzv1lcxK7AmPbaAS6sj+WjeLYpN8A4RRH8g8JQVvk7j2yPXPVoAUEaEkTQZuO7MqFtgLj0PoPmx1x3XOhyBcvyJMkCcZpKp+1Lnn4IRI9I03FkTLgNtqIzdkIDXxaDe89arBmwXtIPzlAOX6hVExTrAJQGVu7Y9XOfIfsL1vmu9OxaoiEiHvHdfZt1LzzZY40cQmgNAM0gY6EZb6tYisdtVM6NS/U0af3yfk862iOPjVoMrCwBGijmqZFDi1R87jDpuJ4sXQ7jToqFY78tPfIfC3OYdv9UBRH8d95UbEdfbquZi9SqnfrQH40FcfQdQSa9+1i5a4vkkjpuuw8Q23DBjJ0KQiTbWv2Uwzb/2YtVFdgoavBlpWYh99mgvZIc/9vTUZWpGqiPZvkI1D7Js6QzdDrQevoTlA0kfhQJJKulUaXPSYVU994xgK0CmVVYZI5ijMtDsGqEEaCKyFNMPuq0B0rN/KjUxyVo89f1ixNZdTd5VgRLNtEY0IRNEVNWhXuzHeSJHX2re1YsWvQWtSkrtqRtK2+FioSogUWnHVsIhZhMuO094qy8jZC16WLge6gxzoX1aDVMvvioXcgCI4ERZDjl/HEVlRvGRvyE4ig1bVaXTQvs/knXV8IyprpMvtVR1BtsyOBGTW9dsqHxG9ODIpjoGgNIJztUtaXukUZhkj0jHQVxxpB6wpCdEWyUEZDqwatw+aZtaxU/xeDoIVeZ5IkqvluPboCbVvNQ5hj1a6F8lFqpGMF6l8UmvnmOVa6aE1VVRHITzO77BP6mmpIEVGTuMPmWHXVP9v+nXvfzEbogN5Pzn5+6A3vQ9fR1naiS4hpOlaoVCjyM7Z8t4tOOj4FaBTE85O/QHv/+yjoOksnL0s26inmagefZ8tCKhm7Xr/UxIb6qJh2qzg2X78qql61rEKgqnSuowQlkhT0rqwnguaiHCo7UkgfOawGM2sllcR3cD3bav+v82oQO+JE4pln0jMWoIkGs07Y0KKkFeqg6tSkLgcVqB0rSy1TSM1PlipFOeFYeTLfBvITVoOWSBXHZQc1CWhL9MYikTJA61DgMSVKq6rqKRLSgUQ6ELSQInaJoJWVl75mZjFDqaJJIhw5ojh2ZWU2Ldm3dRFmaKYjnthKmiaNrCQQ366gqCqsy26HeDZuF2oHi1to61CUboTKlsUU/PcwRx+oKY4ehNbsaRWKoAF1bzIdQXPc82ESPQlWtYpjlx3JUlFj29z/gZRzS02wax03DMn0mECXEhShjhXQLhSfewIL3YFY52E1OCaCVlUVFh3B6EZtYyvoxf2hmW/TsbI7qERDWuWlZLyEBhY6en0uHVR3EqzRB2qIzHcHgqCPkD5oJiIG+J/1yUgh40UVXjul37OiFM63uwYtnuKo+000utbRFAkJaVQNiPPTvGeA+1nX6W7BYisWkZyLZW7tXQc0256ErmOaClVSrkDVOEuQJhoSn4epwZp2RPq8Hft/Tg3vKdETiMQ3+ym6a/lsCFrKrAkDSCOivY5OezxWdmRVlEFo3UQLyuV8Kzd7g92bk30F/4SMsqw6+bFAPwQhnJpky+KEBE0GguZ0rCzqgx1Bj3WuLAUls8kB6aLL2aii3PoineJY1HVRXfdtsVYc73VRoar4ThzQNDRdss5m00ogXK5dBhZlKeu1XPfNrAMI7YsCiD0pKY4dWXL69wtDlCHUYdEFGYAuBHlkRdC4gcVIW0ffQTYbp3IvifcIxC3ovhkUR6fxdNiRsF5hFMCUmlBR1zq2qaIhz3YDQeNQHHslelKl4kh2xHHPp4bgQyh1SkfifUqaZsP7ULSarqup4hiIvukIgud6Z1pAuS4jqEmaM0zPhhNdrO9P2ZDHjkfQugRJdMeKntfg2ilLEMNC0AIpjjKYZNagbYwzGeDSCFMfbNZO+ZLAOpUvL8IQtOk4NZDI7lo+XcUxtA+ULdC9cEiaA3rQI/67qPhIJNBGfnzCSpNMnWt5RA2aPgfQLaShI8ih9o5eayKRQBfbSdmRvKcdkWU6Xa1M1gWqRNWychM9VgStgyqq17KWAyJoXfdNR+KD1jFr7/8uYbyZxY7YxrMXoLGoSU0DGEdNKuGrqdmajHChURxDpbgBUYfDoThuWA7JRUB/GUBs7jvlVeDX/pt4d+cHAbihVrOIUYpbRCBoS08m20R+lBJXmIOqI5E+iuN5w5ELq9MiI7EuKumgumgFU0NJaxkY6NJ8ZSVk9rtFQiwIchGG/IyzFGUlFEl9PVy2ptkwYiuFX+3KNO6hSCQAZIZISFcmDWiuY0izXUBPUPD2/7xHoAvUCFrpp/ja7EhooidLE3y7vA38mn8D72x8L6aj1Ok4boybVKTQGky9Bs0nQkNqsFVFiZ5wOzKq7QitZYhDPNacQEAXSXCJWyiHYB1BzSOlOMCPFsqa0e/9H+Ht5/8HAMJVHBvPQwc6opz1IipAM9slyNoRl/qa5qCuiyou8635DKE1aEHqgwajwldGoTNDijKsTmtWS9HTHpGOvpNSJhA06tsIBNA3taCERlegS/uUXl8hVCQkM3yhbiaL/mzmZcWm5QGwNhgXFF/3OgJiT+UysAg7O3Q7cuEJmnRRnRg1WH3v0+d0sdSqCsh/8H+MN2/9dwDE1LI271tXUA00EbSgRM+k2QfQy2jQ7UioSEgoxdFxJpjjGQzQ3DL2toMkBkEAanlsj+LYxiRrNKr2GVvbGKWplPzukhGdji2HZB4YWGQJVmWK6p//D3E4utapdjU1ELTw4n6V+ebwwwFliGKyTlmaaOvopr5NappJg+LYIU5hG3oNmg9BM6mioY16AbEOpd6o2gObXxiIRSh1CmjKw3ciaJb9zxZboT5oNRoGuB0C07jHoCP6Le5E4h0qjjEGu7n/O7KSNjXMQFSXzvSuBIXNjnQ1f7aNcZZgXoyAH/2TOE73Op9TFxLPtiOpQuKXHjuyMRmhqtDIgobMBahETx2fBTkEusAOoPVBczmpLYpj3DkFKEGbLiQGAM4/8z/Euzd/B4AAeezA5KCe+SabHJz5tqg42gStgCYtO7oGrdCfB7cQk+1ehtQzzSwIWlf9s85oEDVoAXMZ901KmocgP6FqmKaD6jmriCJdIgk+pxo1aHn3szbWqKJCZj98HZsIWu6vQdMSFAHTtZD4+SrHxjhz7hFdTj4YQXYgaE7Kbf3Zi+/9PXj3ym8BEFPL2nzWXGe4LjZE7JCg/T9Km6JNjABNbzMRGzfQmHcgyNzk6zMYoLkXOE0t4hY91Nd8DYxJsppGKC0AANJEqdh10ahsPVS6qHy2oRfc+yDcjXHqyHxzqUlqHTlqmIAyDn0RtOXajQgQJaCRNYpo+A2I+0ZG3438pAYSGR5YjFKBaokArZsqChjUvI66RtvQD9plXktWOw6GLUMkZ74ugsRW9D5o4QhaGBIDNB1SUcvqqmkRr2uIWwQ227VSpV0Ux+moSUuNCSySBAWpwa7dTqrVjkRQpYtSoVRdTtzGuCmSsyoKZA6FVdvQKY4+O6ISPXWD5Ag6cdYTQdN7ZM1XRSe62ER+QhtVqyw9oJxHp4OqIbp5YK8wK4LWkQTTlRGphUZI7Yho9aHWMQRBC6c4KieQRnedb9tmhCJo5lxdz56OoIX376rtWL02XrEVzSEW/kGAuJqlBq0TQZMOrfjvCkkwVdSkkwHdFEeFRAa2tDCSWtTv1vXd9P2vAoseSPza3buOrk9nH00CEOTpSMjDk03wscb0NlT0ntA+aGbJhy/R00TQWFMBEHuymTDjUBw1exxhR2iP+XQUPrk1aFU3rclU0grNfE+1DegNLOq5yjKeUpOliXx/Z+Zby8rQWOZh4haqdqryZmydme8ImX1v7Qg5VrWzH++gauvYcZ2Cdx2PIDRq0Dz33ORBk0MVlDQYJSghDjEO/WYI5EcEaMLAuJo1bk5HsmEt0B0Y24au4kj3oyvQBTQELQKJzFK1biSzb72uLMUkS4dZR11syIWgGbVTMugPDizE78uOoNxmR7poJrYhxIZqal7eTbuajZvruOzImNqGHlhIO+LZ/xcy0dOdPLENQuJjHCsd7aDr6HKs9LOKHOKQuQBVlN7VFBhoqhOH0g5tDWa7hJhGqejLtyoUghbkoI4SK8WrS32NkmDr0ISUQU0ix6rL+dZrR8KpeWbis/vZG48SeR7GqGECKrDokmsHNKR0LWqr+wa6XYEF2Vhq01HBXSZgvdZWDVp3Emyi7angWr6WUmJ3klVvp6AojqF2pJmg6HLoZyNVRhEcWBjIj8+OjFJlj0O/29RIstLv7numrq0swxE0F1W0k+JIVNFIFUdTAdsXxPvGMxegVVU3PG1Ky4YX96sNuPA4gZTRU4dsN03LNrI0bSBorqJ02yEp5FDDHCtAFKSvPQ6B2SzUR8UwR7OWz08VBSwUxz4IWse6mIXawSqOkr5ZScPmWkvK7laaBLq4hgDkM01RVgmqJGUJAfQRydHRQV+fMZNCECu2IhA0Ckrs6zg16gB8xfW2oV9aVXVnvk0kPlZsqJno6ULQLImegEyo2P+ifoSFxK+VQxrcTy5NUVV1osdTlG4qycX2kxPr2H3PzVpWsiMh9jhNRMKMzvUsAPmZZElLJKGr1mDaowbNVERTCsL2z9DtsY9ObI4kSTA1n/UOG5skiUQsopFIS+a7q8Fynz5QgNorJLbicohtyYg+DcZ9CYuGuEUg8jMbN32GuWeP6MmbULTOSnHsELSi61vkFKCl4Q2W1+0AzZ2gUHsqD63lM5KDvhYceoNlsumhCPLSWMcuSpxQr1X7N2b/01ouuYmevEReVEgTsH1CQk3NtkMuH9Zeg8aaSl6rjsSf+yjnmj1e9uyDpqii3fbYN56JAC1Jkh9NkuTH8zxH6VH7mU0sCFqQQ6A24NLjEBBFSmZsowILKASt41pn46ZjBYQjaLRueVF51X5sCFpoJjpNeGIrm0ZgEZP5TjUVO5+gg6mStMxDA10N+fHc89lY0BPpOy3X3UG/bYwzUYMmm7QzHVQg3GEhY1tWlVfdz+TKCyczLKgAahVHD2raQtAiatD0xE5VdR9kplBBMCfdoIqKa+2+b3pPLP0zOEMgP/5nx3TaSDE1LNClwLr0tnEwA7RQBG1iSfR09ZMDtERPIJUPUAhabO1Ik5qUd2e+TXGLmMDCzHw79ljD9ktqUo/AwlP/TDY2qpbPkfnucqx0efiniSDY9nqwuIUhytD17OlnVVFWbGcYUPaO7rdPmVSnoJVVGMqU1n39GjU4HmqeKDXQELSQdTRKMHz1z4I2q1NF+XO56PUu8S3yyWJVTEOReD2ZGKo+6Nr/XW0fgLq8I7Cf3CgTdG+zdMblw9Lrm+sY5jeZok1dtXxTHYnMw9sVAFqA5mGNcc+kZyJAq6rqJ6qq+rHRaFQ/yB7kx8jYhmT19Q3LoTgCzS7u+mdwBiFoVVWxKI40FwkrxFDz8rLEikFxXJjBYMD3AlTWypeVcSFoQUikRnH0IQLtJpdhFC8d+fFSHMdN5zu04TcgHOKygqTWdPUKA9Q6lmWFvKwCayLrAK301yaZgW5oHc2ogaB1Ow9mQ84YFUfdIS09NQ99qdK2PmiuazWRT7n/Q6l5jEDXpOv4WAK2Ie9bIURyurLR7Rq0uITZmlHLaraZiBIbqu1IbO2IKRLSlfnWi9JDKWUuBM0lbqFTHKMU0Yxz1acgTPLdMQiaSfGar0XCzSmSUNfRrIsSqyLM3pkImk9B1eaQhvbvajionvpnvVF1KKqlK6AC/udBD0SKsgpCfcxrBfz7fzJS7KGQfnJAs6YMEPsxTdy+YaOfXDAS2UyO+5KDDZGQKhxBM5H4LrEJQInqVFUVnCR11bJyKI5FUQWhnuJajbZD626/clLbVBmghayjUYM296h1620pQvspmgw3P+X8E4Sg6aOqulWTrI5VZObbJxuu9zoC9Bq0gIxtItAKn3iEyj4YNTiBDWaB2rHyUBz7UryAOhOaV97N2iruj81862IrHQfDdNwMLEKdRuWgajVoTj66GVjU9zmgv9I4S5EjQ5WI9ziVN0cpkqTNlQ9LGIifRVV50Q5T6jgPRAHIaSsbga4ju2UgPzEiIbrMvkDQuvb/kEh8dxBkOlJRNWh1YOFDdFvrKHuuhSBoCo3xIbRmDdoqggabJM0aNDeCZhcbClnHNCWKY7hDYHVQOx0r1SMutjGqVHFkImjrmnYo6sRCAws+e2OSCRq5RNAC17HQ7sEqL2WfIdvQa62iETSTmuSgAY6yBJX23xUi+qDpgUXezVKYjkwVx5A9os57wF+3a6rmhaB1Yr62uIUrYQDUVD6Iv+fIwii+43YNWle9NCVPqqoKrkGT9XUFz/fS91QZkQwxkZ+Ldd5JlSa2U1FWNXU/BkFr1rK6xYY0imPgfgRIJIdfFjGpqdVRSKSxjr6zR29LEdwHzUQiPaq6wo74v8uzF6ChO2pvUZMCM9/kfKwLXWbcr9YDaDVogbSrXKtl6naIVfbNJ13vmgvgOVZ2JDIQQasNto/iSFRRXYkLCFXDVBRAX+87UwFKBBYB1BFJ8aq8zjTdH5l9iwys/9L2v47D3/C/FvM79n+SJA3BiZim2BJBqypvAbtYx+YeCUU9AZ6KYwv5iaCK6sbdd5BtTMz2CJFqsLVIiAie3dldQK+DiUCQa5EQtY7dFC1lR2IotxrFsfRTRVv95AK+V5IktXNVee2xq59iMIKmiYSEOKlmxrZLDRCo10ajtYbVoInPVchPKT/TNvRavrwIq8EBLGJHPpbCOGsgaCHz6fVygD850hBlCBVbMZIjXgfVEowFqTiO2kikjyra6IMWgaDp60if6bo2ADKwDgmqAVMpUdj0TUdrBECcY2+PP427v+H/iH9UfjqILjcdZch19UEfVVQ7s0Nr0GiP5DJA8/mFqgYtRiTHJn3vQ+IXa622tAfy4+0npzFDQssngCaCRoFQJ4I2MhC04EBXpVO4dmRVlHUz8xBgx7THHiSe+dnPXoDmq0EbN5vThTaYJaNUVeKhH2duSWgzixmXsRVoBSco0bNvvibCtiHFLeraEf86KnGL5TocQRtniXyQAfe6mAXGcTU4aFIcA6l5QVxqSw1al0gIYAk+A+YbZyneGr2Bi1s/JObvopRpNZhxbR8UquWniloojgEHX1rXKRalQpB99JsWEhkS6OoUx8qzjuN2H8CQIEY69pWfQmsL0NIk7DCSFEfPOqapEHBoI5HhgW5e9wHsToY0kcjQQBdQmVBfEsu0I1EiIXWgG0WpsWZs3XNTXYygVMZlvukc8KGLY8P2hzgfAAmaBGS+M5G8KSMoXnoPTcDvWOn051Dkx2xUzVXD1EdYYGGp5etYR1PcIqQGh+7xqhVY+NB1Qc0LBEcawaRPkAQQdmRVpnjwmd+DHKPAQNdEkMvOZLXe9iS0Bm1k7EffWaVTHGNFQvQEsj+ISRr2Mc6O8KjSMlgt4xI9U70lRtFNp6T5YvsptpB4H2vMsCMhsWdoDRrX/3vmAjSOY9WHmpekNE/llV83o+Z1hEMwSlMWNQloZt9iHH09sPDVC21Msoa4RWgtH6AOFyXH6nGsCkVpAcJFQjiNqoF2Ddo6kEtt1qCNMzddyGxyGaqGCQgHYMXsO6IjyLFqmEBNcWTQD4g2AoQLkgA1gqxRHN39u5oHia+JvG3oFMcSHgStRXEMQ37o9hZV5c+SZ83vFopEAkokhNbFl+gx7UgQgqbVIYjkRnfCwGzMG17LKhwQXxbV7MUU47BkqbD9sZQa07HqsrGjNGHVsdpGaO2UTnEsyu57ZhsTLRtN98Kb+c7jZcbFPP72M4AKLIS4RWC9j+noewRJbPshSH2w1QfNk0zUxC1CEbSJ7CHIO1cbFMdAQRL6XKIBqubi3cFnUZZRfpNt/3e2K9DQxNAaNF21GfBTRXVnPVYkREfQfC2RqLxDnaERga4ZoDnOVakEHhHoimtTSSwOe4PYTtTjM2RP6j00AYoFupFIcV1lcA2muud1wsxjR7j295kL0HxqPy2Z/cD6oqxB8fIjMYBOcQzPfKepUTvSlSnUeNdkLEIOWj0TtC7KzoOFHpq5RCzCkEhAQcyFh+YyCMUrUf3kfFl6U2Y/NLBQtXylt+ZBqg+SSEigih0gDC41x9Tnt41pzaMG4qmigBAJWTAKeKtKNVpfB1JFAXW4sAvY12odxb+HON/qtaJdR0c2zVSDLbrrGltzGVRRX50JzQGE07IBhaBxEDHdSZQUtIiMskz0dO3/UdagqMTUso7qQ106+0wkPib4NEVCQh0Ck1LTVTs1yuq9H1Fza2a+uUXp66LCOsKxGmmOFafFhUlNClpHy330JS7FddWZ7wATZCZHfJnvJEmadgRJOIJmUH47k8BaEiy0Bk0pdzYTFhwaeaiKI9AMJuWz17FHRlkiKYf69bLm0miE4pq77bMeiIfWoOkJKX3Orj6AaUIUR/FvvZB4jw9rJjlD9yPQ3P9ZrchpG2N9HSMSPaMs0Woi/SyYiQzQ6vdH1A7q983nF4rXFSLRE5FUYveT+8TWoFXdN2ljYqHURNXg+JW1zALLmMz3KG0e0t0bSGWjybEKQ+tMkZBuJAZQDnGM0yj6UKjAwnXfdMU7IFbcQiBoqg+UX2GMhoDqw1GmnOOgtqh54YHuKCUH1e9M6z1UYtaRbhEnQWEKTsQhaEmjBtPpPLQaVXfXAdiGfuh4a9DGmcymA+H7P9HtiCdwlftfX8fAPZIF2RGVoIhJ9ND+XxeVlypNFCedmhqKxAtkyi8PbwYtof2+AF0kRPx3mGOVyXso5u92CEjBN4aKaQaji3W306jTBvMiDEGg95MjLUVvPMiPjiD0rZ3iOFarvBa3CLhnes82wF+DBrS/SxA1ryVu0W1jyZ4PsY503zgshSIQiQSayA+HvTFOm9TlIDVMg5rqbfug12AG1qClqShzkYGFpxZW9A3MJBIpPoM9nRRXo+Hb/+IMLeV7wuxIu5Z11lUvbdayBtqRUZZiXfLWUfytqQYbShWlawX8CTMdKKgCKb5te+yR2f+k1qCVVdXpvEytqmEhjpWap/A8yK3aqcDu44DYcEWpCuA7M4WaRG/uCXpsQ6qv1eIWXetIWb257lgFoBXi2lLkpXa4OL4b9UxrIT+BQVNV8WpqJpqDKtsbhCCReg2aR9ZZ8ZpVYBEjtpIXFcuZntR0MCCyXYHsTVb5s7uW2sFgal4mkB9vuwKjUbWv9s82zMDWp2JKez8vBHUqJtCtKn/PwVYtax6BRBoqjl0HUdOOhO8RmZlnNLynBIVqHh3erkNk2nUEze88iJ/hCQqiHRYR8vDjUSIpXgC86DoxGOiehcxFaIEu9jIbux0r3VkPdVABErPiIQiAqvONQ9DqddESdt2BrkKryxJB6pR0rWag24UOmmsXGljrycGlp9ckqTjK1ggRYitUOrCs19FHx5cUx9AaNC3Q5SRHCE0hXyZUxVFcq7b/u2r5iO5W78lQBHmsn6sMuyKRn5h2HaNmPzlf4n+UpTUS2Z3Asg1zHefrbuVZKZBWB02h5/24Dib1Ob39FDU12F5iQ14kUpV3FIGJHl3dEvCL+KVpwrKJz16AhqSbmpepg8TXW8w2dJEEH8e2nbENz3wrBM0v+qEXGMfQAGndSB6+Kyihh5Q2WgyClqYCqaBr7TJSukRvTKNqynTzeM2qBs0XPFrnMhC07ka9TQTB1wLANsZpUlMz/Pdcl+iNQtD0GjRffYShJBcbWHBUHMeZCOJpP64jEOSGiqOHmjTJMuk4xCGRKtD1UZNsgW44DZBPldbbI8TUCIUg8S2RHE/Bu22kiUi+qKSU/f0tynlEEE+1rDG1I9P62VM1md3Jm8w41GOkv/WMra/nFF1TaDsMgBxUg5rky3xHIj9WalKXg6rtxzJW3KLgCyuZ+y/s2RG0cFqXRV76qaJ5XB8ovYcg4EcQpLNey5oHUxxHacOG6ddgG4SmKGpeCILWpjj6+skBGjUvFEFOVQ2mr20K/Y36yQGhfdAUEk+MIC+CVgsNAYHUPIsd6XquG+sYSBUFHBRHBsU3DkFr2lffOma6HQmsQUuSpFGDybEjnO3+zAVoQLczPc5SlLUBzOu+EDEiCfQZXRvQLLAMVbGj+UiQAeCLhPiyya656L3rouwMPsnYNRG0sMBCSN8rZ6drbRrUvDp4CqUmAapJM1d9MIb/rtegcREEneIY0/A7L3hOox7octAUc5BRquo92bUuOmcbEEFTlLhF6d//ijbSH0Gm0RnoalnMGEQ31eyIr8GsrZY1dB3TJCRAUyIhMXULZpuJIIpvhBpskhCjoUSSuPc/IfG9qNJ1LWtM7cjYqMn0I2jNQCTE1zHpxfNVt0iCLO6vnZ1gx6pmQwC8JFi/wKJel5xXt6ij/rG1UyH1z7oDXCEssNbrwMuS6Ph+fyYmiG9RHH019Vo9XihVlOYLefYITekjkqOrD3JEQlZ5j8CiNBBkD/1fpzjGIvFkS7qS6XSGKsVU9lQtO7LwIGg6S2FdhpWGAPUeCbEj9bNJ3y1GbIhb263XVlcRFN+pZkc4AlUZoxfusxWg1YemD+4FhFGKE0kQP8uamsRyrIp4x4orkgCYIiEEZ4c4VkRN8lMczb5TMQhaUvcmyxlGSq8L44hhmCOTAZpQj/KpfrUfpPC56L51BjEWBC24TovaFTAD3T5qmJlEfuClgtjEXUL3CCHInNYKonl68+AKco4CakeoPgKIFVsRPznF/bZ2HVHrWPFq0GxiQzFqsBKJ72iwTIevROIj0EGJoDFU7Gx1MFy+P6ASZjG1I7qKJIe9QXuC7kUINc8Ut/BRp/Vri6sdaWe+fciPTnEMc1DbjlXXd9MTBmXVj+JIP7sSn7r9TpOwht8j/ewoeOsIqERpVA2aLtDDQCLJ2Y+pQZN2hZHUoroued6H9J0ykoPePmj6/o8NLFoUX788fB6RoCCREELP9Ou3X1sTKQpD65pnuE/EzFTDDFEwpfe3ETR/oofe0ydB4bfHyj+OReLV/mdQfBlb8JkK0CpwHFTFX49xrBKN4hhOTQqvQTMDND81Lz6ICUF+lAKUJl0fWIOWoA50PdQkmm9tBE0xgcV8xTGeqsllXvgfJHOMtAeZT/FSgUVo/QcdDhyZfX0dYzKT9NFEzeu6VjOLuc7Dv1umUfNGHl72TGuhQUIHQc6RcW2+dSQU3df3xjZ0iqOv6aXpbPtQKet8JLbCROIlghxBL2oiaN1IfIuuFqFiKu0Ig3ZloiG+PWUOPRgE4mmHKvDtongpNAUAQ9NLjdaz57FDpkhCOMVRBb5citeqiKzBMfugMR2roqziaqcsycHuQEb9LTCGUUnSovI2BQaU7SZmSBZw3+Q914P4jiBGTzxGUxzNJKvH2c9Ljbrfkegxhx5MAoyG39r+D21XQNfKldkXfxOCbmVVIUnCaYdkgzhneGYg8UF2xKhl9de76T5kBBKZJlqg6y/rmdQqwHH9FMOQeH1PFYH9FMW1Ns+etIPtATRVpV3jmQrQaHBQrXVesjIdtpEmcdQkn+qjbQSrr/Uo7m+qr/Hg3rUG64cLoIifPmoS0D/zrSiOAkHrlhlXGdoY/rsOha+YYisqsKiCvheg6j9YIiE2al5EoEvIT5dBNGswY4qGSSKYI79uUlNjhA5oiHYdHQkKrYdKTDNnXQ32u0GVHqWJlPQHOCqOREsNT/QoBM1PcdSDOaAngsZ4dppOYvhcqg4houZBQ3449lxP9ITOZaoPrj1KtHo2eV3EUBwD5bGzZh+0mEC3oeLIqUGLRH6aqqYch1h9fjgNUJ2r3BocQPVViuvfpUoHutYxSQRFmBqnhzqoTYqXv0yBZPbXEXtEZwMBon8dp3aKEp2h+78hEsJJgo1Vm4kQ9Axoot0hCBqtRQwSv5IJu+46cl14Jo9gjDWQSEarHNOOhImEKLAGCKhBK8P7KQKq7hbgCaZxnuVnM0BjHEQc4QHXyFJVO8WiJvUo7if1NbaKYw95bFqboqY4chQqpVCCh2ZiG1SDtmZkrPQHlxzUkAOCvgodel17RJfolQdyCA0qUQff2lN4LZpYKyMRU/+RJgkqKJWm75ZISOHpFWYTZYhNUHCeHR1BE338Qudqvp6HOJQsdNscNJWkSjNk9vusY5o2xVY6BRzGmXYgx1CllZMphJH8BzqppxVlJaWduYNq0PKy9KrY6UFL7H4EeMJG5pjKPVOxmu/SsyWpSYGnsZ6w84k+ZamwQ9RkOjQBMB6pGjRuYLHMi6ganFbbFXYNmnCs+iA/OSfzrd/TQCdOT25wEDTaU0Rx7EXxYiTBRmkqKL6xYivy2fMnfoQyaCVFdUICGV0YBhAKld3tCtSzxqFKt+YzqHmTLO30T8apYLJEITEa8rNk2JHMtCMB05F/wk2y6ueij2FjGxSUA0yxoXEPsRWbHWFSfENl9mm+EDbdJxZB6+ytoWUEKIsTXpRe1055qEkj7dADCB4Op3jlGoLWWXjaEAkJR9BGWobAh/aZ2bcYWkyaJChLfy0TMJxjpYqp3a8lg7AqtObPAfSKNFWZRp+DmiRJQwEqBvkBIboMYQyd4sgRnjGHqT7YdbhMDel7n2qdbQgFqpJVvzkdZ1jU36koqyDJacBCcWRkCteMHm22kRpIZHANWsQ6lkw6pi4SksckeohSxkDiFWKg0XUCnjWAEj3EaOhel7EukhOxH+m+UR1nkLjFSNkgFoJmZHhDM7ak3AmgTgJ41qamKfrONet7U6XiyFXKjUXQ1Bmu2iVwqEmEoIXSDqleCBD33WeH9LqbUAdKIcolS9Kf9hQxQ8Jq0BRjBuC1eElTjeLYQySEU1NMqBQF8TF0dWqHkXsSdk0Vx/AatFGqmCkcmnaaQtayxiJoy6KQ69hZg5nG2xHyTxTDwYfE13uqpnEHB7qpCnS5IiGxfQBbSHzRfd90ET0fe8g6n8He8Cm6c87cZytAq0VCuh2rNjUphprHQdCIZrIsegQWNcrEqx3RKF4xKnaSq1xhXfocK7W5OU6mbVDmm2pBusZ4pMQtYhxUCiRU5rvjodcQtBgEAVC9R1hQdqZ6f8QU6CdIAK0uxifcoa8j/Rt36FKzYq6uAK2NIId+N13F0fecNqh5EU5mSA2anqBQzyYf+VGBLoMqbdBMosSGEiPR46VK1/esR7sCURvgr+UDhAMVc8gC1K6jQsF4dsxET3hNsPgplRWDHIJMvpfTg9BMKoWKW2SaY+Vrhi6ur+6n6EF0bUMgCGEIWl/1wab6Gq92KlQem641hJqkJ4ZC75mO/HBqmeh7E8UxZB2TJGlR8zgImmxX0LMGh/7NOVednK7oegPmUqqk4p6XVbdfSGsskZ+I76b372IhkaVoeB/qN+lIPEcNcGScH6FIPJ3BAAW63Ug8IBJuQkQvMNGT6TVovLOqoQYbiSBzRJtGWuJRUBzZUwFo1z/77PEnjuJYwd+/qJH5jqAmAUpq2UdNAtpGKYZOmTO5xtOxKO6vKl7xqDnMAk+eBHQV1SsJULUjHChc8Nd5haq2kSXKadT/2zqXpgDFaahpG6P6vvmk6OVrZaa7YkHb+kgTIZDDEXQgBSggUh6+/mi5jpwArTaAMSgrrc26qLzPaTNBEVOn1fz8LvXBBhIfJRIifnISPaMsbTRqj+onVyNonHs+G2e9Ej10bSRc0IWIqaSQrsQVgcRXvMDCRpUOnYveG1OnAjQRNK4impg7aDppg+gzvMhP7RzFqjhSrRC3wSwQpz7YErdgOlZ57VgFO8StAK37/frZEnzPZAkGz6601zHUIW5S3n02lso7yjLCQTUQBJrfNUYpqRWK/w4JrHVhGE6SSbfnMclm/QznIZFK+j50HXUkngQufGqYgCYSEpE0WDPtCIES0o70ojiSHfH3QesToK1yXsstvQYNCK/BbFB8C3/wmjJ8pWcqQKPRFeE3i6HjnG+i1HAe5KZxD3dQhUHkZbJ1hzimaFKn1PiCJj2Ykw9H4MOoEDR/UCL6d1G9W7gapkLQ/PLYugIap6GmbWQysPBn6fVDMiawEOuoBB18CHI/eXgTiewIBhu1fFXwXIA6yFZ5wQp0Cy3QjUEBaFRIWOqDTSWtsOx1kkAGrl6Kr0mPiLAjQplUOATd1NRm7RLQXbNpDnotOY0simOhaijDEWQltsKR2V/2TJgB4tkJpSbpVFUOxauFoAVhCOqeAzxkfkSOVQTFa5xqCMLaj6DRtRDiHSa2omwQp1EvnUvkEAdTHAOfPX3tkiR0HdXzIOvIOxHoZjIk8LbVznftEDN6EGY15byI7CdHiNaK4XuR8Awp9IVs/0ZfPw71v/7eFxFiK0BND9aQeV9P2IzJwrKNBhLPKNMxZfYDt79UUgbACrrGWYJ1bC1f2hYJ6aZvCkXLmJrgiWZHOL6Q8o/D693EZ2dao2o/vZ5zvjybARrLIVDdx0MdOVWUHkapicnYkkGUfXdYyE8cNY9eS9xfTsZJQNnxCBo1mPWLhCSN7ENMDQ6gPchd6yilZdUeiUF+SGzFS3fQegjFGGyBRCoEzce1N3v6xFAcZT8gZu2UdPRjMpMFT8VxpAe6jKDHHGaSgFeDppIhTzPR06DmRVJ8y1rYxZ9UykBy0+q7BSR66s+fM+pimn1zwpNKANUEV6wGs2aj9pjnmt4b46DSezkUR9NmhaMxyrHiBBZij1WyRUXoXGWFRp1jV720osH2oyZRcMGpwaEseahjlaWpPH85SVZ9//aR2Vdnj9/GLqRISNh+bjwPRYmJR9Fa0N0Q3QcNEMlmDpI/ylK5f4GwtdSVlFUdrd8vpHWM6YOmIz8cJJLk2nsh8Yx+WqbMfnAtq06V9pS+AFqip/DXvZpjnDXVYLO0mxFHf+prRzi+UB+xFUDVgQO8RDznbHrGAjQOgqCoefE1DzwVR4Bqp3rUjqQkpKH+2zWmFsQiyLEysnGszHdeomBk+mwjScQd46Ad+kEiBEzCA12Al2nRKY5kAKNqMmQNmidznaYSIY2hARKCwBF0oIOk1JCfkP2vEDROwqAOdNeqmDlKxbHiBbrjrMmVj0Fi9MFpMyEoMeHZO0AY+ILR8B6wID+RVFFODY6uGrnOIxI9GQVo9T1nZCXzXlRp8ZPTxmGIQJfeG+xYaXUuvBocdVYBcdSkPCBAG2ciGRjbqBcgeXj/+dEWbQp3rFaNGhz3+3UVxyKCUpYlMNax+wNCgyR96EJdigXjZ83EyOwDpqw5I7BIEqGGGVPLpyUoOIJA4yzBuoyjODZ6kTIC3alRyxe+js3aKS/FsVbnjlnH0HYdOipLc4eMUZpIH4/Ty3ScpUL0qQyn4gu/Savl89ih1LQjMX3QmOvYSphFJNJD7DHHJj5TAVoFoKoSHvJTxClIAUq4g0VNMhC04KL0pEbQZCM+92vJkBelRhcKmI+Ql7lE0PyBrjhI4pBIqb7GoN+M+zpWSfNB7nq49P5dfRA01fCb4RgVKrAI3Y+UWuTQYPUsJtVuhDh+MmOVU6aRi6CRGmboOqayUTXHMdJFEUKdzNbcXetosSPRCDIH+cn6UaWlQ8DI2Kq+OWWvPmhzBhI/0Rx7VUcQg0TyEmZmP8XYWtZ1UUYVidO8HHnslsx+cMY2lY5VznCWyFnPy24hgK5rzQtSOOu2sUnSdHZi+6CxkBgNQSurcNW8LE2DkMhQp1Qfel9AriovAFxEyOzT+2XpAONcJQQtiuJoSfz4Gn7rTeFDZlP7Uac4dviFpIYZuY4jbR25VNFYiuNUsyOc/d8X+WlQpRlqsJOa4shR5zYH7UdJ/WfWe0o7EqI2rCd6AtYxHolUCBpHDZbTdP6ZCtBocCiOq0IhP+HqgwHUJL0GLY+vQSPufJczrW+gNcO4u94vs0gMBEFHImMQBFKA9D70A9TgAFofNDYSGY/85DKw8FMC8gaCFokgMPazcm4qrGNq+QIQNFvGtKsXk23IdeQ4RqnKYgo0Jd5REjVonASF2v8xGTVyQFhiQw0EOTxhUNaqYb6DRVfqJCQySOLaoDj6aEwAZM2C/n7uoHYdnKBc1EdoarCh+1/LRsc4wzQvq+ahp0OgO1br3O9YjSTFMUIkQaPmcRRUW45VEIJWv7ch0ONXcRQ9tWLUMCGf8RXjDA91Sm3vJYoYwGMExSI/o0yTh2eomooArWTZEXOYlPck6b7vOksBCKM4Zlqgu45Zx8Czo4mgdTfFBlRfyiKCKhqOxDeftWAkPkskS4SjfEutTKKElCTaXbES962a+Igm3GstYcYRG+oX6PJZYJwk2bMVoLFk9tsOQWxgwaUmNXsfhB+yQE2p8Ww+uuE67zrEkaP3zzkUR/0g6YkgcOTX+8pjmw8yi5qnqTjGUEeK0i/dSp+t90ELThig+d26Awvl3BSRTbEBpeLom4uaXKprCw8silKIAfiuVZcDjslMmoNTeE2ZQrrWkJEmqIMmbqJHUzGNsCOEIPguc6QFn3FiK7UdWfudHR0xiKWKUk0wTyQk0+xxeB80PbCIRhA0AQgujRYIl8fWHSsO3WhSO5kx6LPqZyfsijfzTUh8hGOlN9XmBboKpQXiatCKSkPQvOiI+nsVKMkg0Wsm5bdP43SgFu7IVYDWVTdI1yJq+WKooso/IQShK1gYG4FFkJBM2rRh+ufZhkoqxathUkDNPfO5tt8cNgTZ1/AbGApBY4gN1f5Mzmjt0Xpv6+xhUhxjEj0WkRBOH7TYvpQEttCcforjJxVB4/TdKZU6UOjDSHQhLjVJNbmMR37Wub/vSNYwSv4MlTmSJEGWJoqa1OEEpql4bd5A0MK+W6I3qg5AEGIojiEHmR7oxvQKo88neXgOtUj1QQvvHUJ2YsVAO3T+egxNpQXze2hMFFirmoOIdSx4mUadZrIuuhuT2i/Y+LzO7K5ax/hET1LXoPFUHPXvFt6/i0+poe8tG61HOCsAMF8zKLeWdYxt18FJ9DTEhnrUsq7yslcNTlBgEZn5biBoLGqeQPKLCPRZl7LnJJlkwiwPP4NF/660rkHzq9j1p3gpBI1D/9T3YGiKSO/ZplRN3d+NppKiTcHITyoDrlVeSvpc1/XFUvPo9WXJS7Ka+z9mLpGs9q8jnVUxbR/os2WSlXHmZ7Xtj+m51mjx8l2onWqoI7NYCqkUfYpO9BQlSzyOlpnsSJzMfuA65nG1fA0EjaE1wFm6ZypAq+r/cRtVR9eg1ZEwm5rUpwZNe7i8mW+icpRiwwU7qPV8lEXiyJr3QdCkzH7pl9kfa5m+uHVE/V7/PVf9Lnh1ALYxShPZU8XXwFjv/REjTasf0pwCXnptlGKk4ez4rpV6kynEIByNEcXUfoM41hCDmB4s7c/zBxZNsaFwuhz1AeTWoIk6snjKLacGTbc5MeuoqNIMiqNGP+NQdG2jgaB5rnVqMBp8qnXm0BvexyJoOjWJI25BCmWhu7nlWLFsbCzF0dgzgdSk0KOKei1JahJjj8U7qFoNGoPiGNpuRh82hcquPd1uexLuEDfUMH3y8HrCLHKP5CXVZvvtOaDKEsJEQtS6cAXTJqNUa1cQ+mzr9Hr/s5amIjkd2/Ab4NdOqWRinB2h2m7ZzJkp6LZmBFita5X3jZfoaSXeI/eIWscOqnQL0WVPJa+1dk9YZQqj1H82PRMBWpIkP5okyY+XJV8evo/6mu4Q+CWrUyNjG07xAmqHIKh2JBxeBsQGX+Q8mJ/6mvRRsQPAypQ0a3DCncaWSAijlk9H0GIc4gUDiQQE4qsb9/B+cmqP+ILyqeYkFmVEwXxg7chklBn95ELXMWU39CTnARAZqj4iId5Ez4ieNZWgCHUy04TadTD3P1Oe3TYyLRj0ITE6gsYpCm/NVX/+Yu3P6hNdTV/HmGeb1GC9/RSzpqx4qBiG2v8RtSMNeezw2pFeNWgMWizVIxURQhqmaI7vPpiOVTilLGmsYxc1KZWUyLjMNzFmAKIXexyrgURCOIkfsyY4vAYtrUVr/GUNgELQqirMGdavlc5Vv5CGiSAHzJUmQiWXiUQCYk8tGLRs29Cl6Dl+YUYsrIgz2FrbzUCQo2vQ0qTR79Zby1pTHGNaWqhaVl6iR/d9kiQs+SIZPnqgy0DQJMUx4uyQCBojQcHJHT4TAVpVVT9RVdWPpXXEyekbsi7i0RFRlB7WYJYy333UB30bolmDFu5YAcIIyu70jAO9IQccs44Vrxi0qe4TTgMMoTg2A7TwWj5AGBpqtOgzwGYftFDkU1IcAxA0EVjHB9UcJBJQCQpVqB3q7Cs6sh9BU+0KOEF/axifz0r0FKpHYTRVmlWDJppccmTFbYP2IKeWVa8DWBdVcBCjU27FtXZTi8apOCRVoid8/1Og67tWXQ02jqYlfsYgaLpdkZSaTuSn6aDG9C9qqA8yg1chpBE0VauW0Lc/TSQ+GEGrs/TcXo7EaAD6URzXDARBz3yH1qCFioTQnohBmQB1z7koEwX9pNQZMmTip+KJPuktOIAIBDlLpQ3TP881sjRVAVporXStXAiAlXBLU6I4RohL1ZdWlhUrYde3nyLdc26/T93GhtoRVcvKE4/T6cvB5z00OxJFlQ69b4lsl/WrtAbNH+Hr8vBUgxZLcQyhJsUiCKp7ud8h0GvQYnpQAGLTLZnXqhoSxtfgcKmiU612qqzishcAj5pHxlnPvoXXZCh1LG/NTyb6hlSR3H4lEsKjiorXRoqEpE2HwMsRTwXtUDXUDH3WUpnc4NRONSldcetIo8uh1SmO0TVoqbb/A+2Ir8+OOTINvQmpQYtJ9CTGs8ZxxHQ57NCAUG/XEaKqG9sUHojrg9YI0EIytj2L++n54SRv8qJChXB0sBFYMBEEQBcbCkXQUnYfKECsRYyQgHh92rArHOp/7NBFQmTQ1IWgaQkDIKYGjZxvXgKNhJiKMpyapzN81oVfQVhX3AbiZM1zLdD13bc0gWwrEiW2QslBhh3KUhFgCcp50FSq3pNrR0yxoQjkX08qcaiiy+h7piForBo0tUdC5wIUxZfXrqNvwkwTbRrIjjxjAZrIWHUq2mibtW/tVBA1KTLzrXPMvSIJ0gCWUWITgMhSLRn9iwBFcYylJql15PWTA1TNT2jsqdeO6P9tG/TQ6wYwGPnRMrY+SsGYDpIyLoihjw/h9QsqU/jeNymOnD1ZVJAOQEyDZaI4+uyholZUrAyVd26GHaFAl+YPGYKCIxALX2A9rVUco6miBhWk87Xas7JmJE9sg9Q7Af8914vK9fm5I00g++bwhDAq6RzFOplCJCTorSpAq3jiQyPDQY2lJnH3DMljlxWC4YqG+iCrBk38jM3q09nDcayAWsSBaY/NkaVoqDhyKF6xQw/i5fPAQNDyyDIDQju4zx5R86qofnLqu/FqcFRSFghHY0zkh1MXya2tbl1r1lRi5vTvouRJMFW0XjayI0nCSzj3UR8MqccfZ6n0IUOfBLN9k1dsSDurYp47Ons4Mvv08X0SZg0k3sNQ+8T1QaOO89zMd9/+RSGNUdfMbLI59KJJboAme0jEcOETaAe6D/lJGg5qTIPZqiLlQmZgUR8mMUpEgEbN66pBq+cqyyo6aNL7ovgulSiOCokMXUfxk0Nx1PnrRemnzbbnagZoftqIyBpFBxZ1hrcseSqOACGf/URCRKKHgcQX/VQcufQbZUd4dQDmyLT977vOhoppREsLQBzMnGbmNN+6jE/0hDaqBiBp57FOpqDUxN0DHUHrpiapZxWIdwi4NmxMKFPVRpN9Q9FieeptZj+50KBJBBYFm+KYpXx73H5vKoOSFat2JN7uSIZDWUpEputsNGurgxUBR2HJEYnKRvTv0hMUnFYheisTIDywJkSYS69Pkz5IZM30kPRP3zqm0UkisgtlWWFZJyK71qZPPzmar1GPz2obFDfXRLMj66BET/g6AnUwyaxlTZKk8d1i9n9Iw3vO+fJMBWg0WH3QirJHDZrmBDKyCXqGKtj50BwCn5+k1wFwZDyt8yUJq3aE/q4HFuHUJL76GqmtiQxvTNapmY3u2vtKDbOKDqwzTfiDJQ9fltF0Sr0Pmq/ORG9y2Sd7x/1uJNyxyuP2P9ECysrvWJnqm6EBk5nv67oPqgatim54r2dsOUGTQP0ja9C0TKNfbEhRaGID3XA7ojuJ4ZRK0aian6CQ+z8SQVsX4ckNvQ8UK/NtioREoCN5WbEpXk2KY9BU0vYLRkUANSn370fr+1NRz8HdYzrlPNixql9fVjwF4UxXgotAPYGmqml3gCZ+riJt0LhmHchnj1EvLRveRwYWsn1HAIIWsUVayI/PZiaJcr5jKLcA6nPc7xcSKttHqEv4J5W3NcJQDe9lgMbwMaJRf5n4/O7UoNF+5moNZKlKqsawLxQS72eNfSIpjkD3ImdpIjMl8ZQaatbodyaIokU3Joa3CvA4tsqxKlmolG0kCdhOI2UTYtcxSfRG1Uw+eqQ8fEt9sGMtldpUKTnpsTL74vO6XztOTQQtdB3Fz1WwgxpXfwlABVy+/V/z1yWlKwL5kSIhTOSHaipixVbo967DpbGOFc+5MUea8hp+A5TFh6ybjaG7AYJ26FtHnSrNeTZtQxcb8jY2relBfSnnvEbVOoLcx46E147oCBor822g/qHWnDK2co8xagGJ4hguEqIcK05yhLZUTC0fvZ/uOcCrhSWbFSsPT6JRHCcudow0u8JB5iUSmccHFiEKqsr3Cd//dGl5TU310lK1BEXMiqrSAd7apCnf92nNpVF8y9JfC56m8bV8DZGQomA0TjfsSOizXSdJZaDrVaVO4tE6vV0Ho0a+T00wvb+owFYibyZ6wubSZfY5CDLn+zxzAVoFrriFCppi1Ne4ULhS64lz4hoZW3YNmjhIolQcAdntnKWaF2DcW3MlCKKKAiQSEl87wlFxVFRR4aSOs3AKTpYmMrjzWalRax3DEQSgbj/AFAlZ5VWcSIhR3O97dIhrr5CfuBo0jmRvo8C4Zx80P+qpHCNSNIuhi3LbFWTSIa3/OxJB5vRT1AOJ2HYdCRIZTHLtSN92HSyZfU3FN6ZRu47Eh96DJEkka4CT+R5EHltzrHzqg0lS9xKtqgiKY32tTARBp0rHOFa6TDnATyaKucPmMuXhOZTd2GEK9PjOnnYftMDAYiQUVEmJluNjlFUcxVFS8yqezL4UZcjD5wIEPV4kKJgIGhQ6ErqOZqN2Tg1aWVVRbCCJRNZ2hFPjC/RE0HSqqMfGisR7/XugHRlLkIFby9rPjqQJJC0V4FF8Y8VWdJn9nIXEfxIpjol/kSdZk3cd3L8o5RvELBEQKkXOfQILvxqgZtwZUse2QS0EAH/2gxSgYqlJsgaNQ3HUaqfimjkn8v3iWruzkkkCWTsVgyDQg0+/d42xRBDi6gjo1SwEbaT2U8FQRjSHNIjMjG1WH+iEpviyfe33p2xZ5wbFt6dIiG9VdNoIR7XONhqJHoYdaTqkYXPp18tp+A0oJDIWQVNoX/drqQ9g/3YdHJEcZUc4zc/N0YfiSO/PmZlv/VqByBq0EMcKCaqqQhUx11hzUEOoSdGOVaocXPrvzvmy+NoRXR6eQ3GMeV7kexvPHgOJrP/MReLNMTGTgwwHle5x+LMjfsr2HUwELZbiOE6FOrJqV+CvQVPK3oFz6eJbjPumq2GGJ4nET0LHuUhMrB1RLBhuoMv3fWxzAQFqsFrJRTxVukL91VgtaGIp58IXEsFZWXFo2Z+wAK0CkDIidhJwUBzv8MCCW5RLvNPYB19SanL/ZtVrp2JkxgHhTHHpmC3kJyLzze2DZlKTYh0rLoWBkJ91JIJAVBD6vWuIJpd92hWInxwlo74y+3IdmQmKUSrqWmStSHBmUqk4cuYClJPYpwbNh1ZQk8t15CErPkPfj35KDBWVA+FOZhpgR+ha6FCOVXGkYNJ3qSSS04dyXlZgHegKiS9qBC1oKrmOMY16AaK5iIQFp+eUuNbIwCJTNoz+u2ukCSFoCK+dkhQvHjUp5FxzvT8EUR6labSDSo5YUXApjvFuEwW65J/4aNomxbFL8dE2QssUyKEto+o3ya6UCFEcFhTHWOebrzWQJokM5mIESYC6vITTBy1RrZr61PJx+snRHoqtCyORHC4LJklUrVWoidSpokXpf9b0xHvo3qf3l5WGIPsYQT2QeHpeFuz2M/7PfKYCNDCkuIE2pSaG8sBF0HSUiP47ZOiZRt9b9Ro0jhywfWgImueVJHUcT01KlMw+U/WrqGIPB/GT6A4ccQtuMbP1ehOl2MNBfnQHNVxmX+0R3zrqWfm4PlCQcwEBBzoz092aL9Vl9n0JA0pQxMvD0+AcYuMskRTHmKx5liRyP7IQtCo+QAvpp9hEB+P2v6A41r9zKI56IBHbqJrjPEu6GnqpOALhe5nml+IrzCLxvqph3BYXScK3/ebQG8xyEm66zYquHdFru4Mcq/AgBlDoCBf5iRlpKmiwOYmtMGrCxLXFl1CEUUXT2g7F0ADVs7cKkdnPe4iEFJVUw/QHFtDO7FD7qiHzjLVRyZeIlkH16/NSCFR5zw5TbChwvlGaCFVRJhKZJNDsSFzwmZdcBI2+W7gtB5QPKuvIGWdjNMWRAjTZxoqXKO0az1aABrBCdqGsKG7KKA2vL0oT8B0riWr1u6lLhtpVswYtluIIzbHqfq1sMBuJoBFXOUT1q6oia0cCufqE3HCcPttIEnXPWQ6qVswcrmInfnLQvklPFcckSRrID0cAIi9LabDD+fbKAHsDXW3/50W4SIg+ONtrlCmqdDTFkYvoBjpStrkAcnZ4NqtgOtv2+cB29lWgG4cChLQ9Uc5NJE1FW7sohyBVfaR82zNJkkbNQ+h0o5oeHNKagVt/bJsLEEhOiGPFOddsI02BsgTbroji/kj0WV4rv21EnzEi9U1GTWVowqz1/rR+dpgOqhS3YCbDm9dKdkX0hfXWoOkIWsSSKhXTMAEU8XvoXOR885lVACUowmvOyb6WjFrAdsP7iCC+0Tjdk3wB34dsXasUg6tYQncNBC0mYWacq5zEvbIj4XMBeoDGS6Z3jWcuQONE7OPaacwj4GWAKI5ikX0PVyi1rjVX40H2O8OAagEQG1goapI/sFj1oCYlSR1wMSRHlXFH79oRwH+gU60Ipyjcdb3ch55q+WS/oohAF+D1ZmrIw0cGFlnCz0arTDdYr2/Npe9/BuUWICGZfplsTuKP9j+H0mWdItFqRxh0t5CaG9v7AVrH7tfqNWixCLJOc+GIhJA9BmL2PzW8L73vpXXLIxEH/fGKueehIgvUfB2Ia9RblDqCwHtWY+aiejrqg+anAYqf0SIhaVN8i1MLS2d2aN5mJB0rHhLJKbPwzSeEjvxJ1lZfyghGhK6GyU1clhHJPeWf8NoVKDp+uGgN0DzD9c9zjZAz23Wt83WYXyj2f9BUAHQkkx+gxdoR8k+4fdCadiRuHcmOcBIGQL9a1qJSiR5vwnkAJJ7sCAfR9Y1nLkDjDElxjM0Oa4dmSKYEiL+pnOJ+hdZVrD4LtqGrr3Ey36SYJ641tJYPbJEQvTC2T+0IIRbeonLp3MT2kwM7GycbQeaRgW79k9NEtSkPH+dkNva/r2lrqmSZASDpIW7hTRhQppuZxWyPxPG7fUzq/R8d6KYhKo7UbkD8dwxNBeAdZHoNWmwfNJFF5dag9Uv0kEMgqEU8imOfQm85b+Q9J9EbjoPb1yHIy5Ldy5ECXSCC4qg5gTxxi56OVZI0Agvf0aMHurF90LjUJH3DVxGBBdlMjhJtXxXHNDFUphn3jVsTbA6dTcQSCdFQ1ogtovwTZulAop3Z4Wh1c49wGUHrSOQnTcEWGenrg0qqNNPn7WNHGiwYTqJHUnzDkUjxfgEScFpa0N9j1zENtSOcz+z9Cf8EDqI4xquvhak4AtAOh7C59Pf7DyESSeBl32xDf7h44haqxiGGmkSZb+460qEcWzuyYsDm4vVpLWMb10+OaFf0e9eQ9IicB33b5gK4zjcZwDiREDFfWKNqvQYtvs2EP1OoinCJihRovkIziyNFcYzdI2smVVTWssYiPwl/HfVgbs2oFbGOBFK51nepsl9Rjxo0btuTUJGb1vsbFMegtwKobV7J6+sHEPLTTx6bS0EnNAXo0weN14NT34/RAVrJrx3p41i1qEmBSrShQ29f42eWiJ+0juHlGooeDPCoonlJvfLinh2q7eaKPnGSc9b5ZKDL7IOmzRGMoI1MBM2z/zU7FNNCgJK6ReVPFCVJ0qidiqZKM5FI6m8bM1dTxIzfT1EEumFzAc2EQ5L493RDbCg02Zw17YiP4ssZz1yAVjFeQyqOZdXDsWI6BDoEC0Q4BPQgc2rQDIneGJGQEJqLCHT7ymOL6/VRk3R0EAjPXus8bM57R6ngXcdkCoHmg85BEAD14MZQRQFhpLjy1mUlqCaxFMeQGjSR6RP/HYsgA/AaYEkzWfGymH0HZeX7JHpkcT+TEhNbO6WLhHB7vCkEOc5GSiUvT+SrRJvqtYhI9HD3o7LH/RIG4vdw+0roCDfJRGsDxKGmQtKfR01KelCT9LMnRGa/V+1Ixa8dGaVp7wCNnO8+ta2cQaJRrNpsfT9GOPpmX0uOP9P32aG+ltySjbyIa1QtFIRLvjy89udYlJVdU1z/OXb/pwmtI09kpG+Coimz//TEVhTFsWKpUjcTPRH+bqq1O2Bc6xAI2lyirL7r9X/+MxegcZZMz1BF3dQkwTLwQexLqVkV/sBCb3K5Lvz1GK4hCzy9jlUiucL6/NyRJML4VgxqUktOOLh2RHuQmQ8iUcpiMlz6UvizMvWDu+IVoZuDXr0u/IEu/VkYpdgC/YSNQJBEr6qdCpurQSljImhzZhFu3yFq0OIRtCRRdTGhVOk+IjlslLWkQu24WlY+xTEM6TGHQHS5FC3xk+tImaMZoAW9VcyfEoLGOwuaIiGh1youkCi/vsAiQXxxv5KHJ4VKnmMV0/Cb3l/oIiGMPb3M4wJdhaBRoMt39CO+moZY+BM/+p6IdfQBjfrPOKvUsxM2l574CelrGdsHjZKDxNDxPT9NBC1sLnpvCFUOiFcf1MUtuLWssUi8bHhf8oL4PnZED8pD6JsrRm219f2JVhPMSdxn/dYR0GvQ+M+2azxzARpnjDPRm6kowmuZAMoihan1rPL+GduQGjQOf902Qg6XcS2z36efHL9HD323fupr3JoHEmXgqK3ZRoixp0BiIVGAOIrjiiGzTw99RVTRSHQkRA1Tr0ELNWpNJNIzl0EhCHZYtM/n1I5MRqmscYitR+IHFupAF/8dNhftqYoRGDSp0vE1aFyKr+gnp6k4RgSfEiVi1iz0DXRj3gvUyHzdKoTzdrKxYu7Auer7RuqD/sBCe9ZC5bH1PmgMG9tXbCVLlaIvwKDm6Y2qI4NyrvqabjuiatC0xCdLyS1p/gwZqeYzAEyxlSIyYaAFMRxxCz3oj6E4Nmr5GIsTklR1vZfrF+rMqrizI5UIMi+wiLcjFAxSYOIVyWnYkbBhJnq4fdCAcL8JID8PbNEbff/HqsEOSZX+ZAZooxRLJsfbNpoZWx7y01dmH+Dww8mxoh4qceggDU7mux81SaNWeJFICkIihQS0g4jzVjLunIPEPp/2OzewWMUGFtpnsYPPuD5Q9H42pSzpR3EMQSzImC+ZGSpzhDqlhKCV0TVo/ANdV70T7w3d/9pned7aEBuK7IMWckiPsgTrXCvUjgjiuSq5eu2H/t/cEZIwc82fS6Gjp+sQtJB5H4KmfXx4AqB2OEsegpb1DHRl7QiT8q4nQ/rWoMX4DCFDqDjyFYTp+mIVqQGd4eOfq2+5hkh8Mu5Zpj9rQVMBIIojr7k40AzKwnN7tV1h2qGRZmPjzmCoEgwughYZWMtAt+Ql05tJ/shED1PFsSnaFDRVfX2Q/glnPzfFhsLmMoVkhqBKP3MBWsXcrCVRvHocDvRZvrkARBcWhmxAAeOLPiMcuptthPCwCYns0weNRkgxKNC3doSRTUsTFJHF0ECYsacHVYmEhAa6elDNyxQWkf3kaD6pJsjY/w2KY2j2rrGOPGMtRUKesiMl1a0iqdJJkgRQYuoWApHUPH0tuKI1ffqghdiREcns173uQh1N/eP5VNEhatAiHKuEzh4+NYlGqBlqIz++ZIr6PXQuEiIgahK3Nlu/zpCR1khkwawjJzsExNsgokj67XNENKENWYLBfPbI5scikYDe19KvrEi2P7ynpUogizYT3a8PPdfMkWWKmscJdPXrCa8vEj9DGUFAXGCdJUlQw3D9esLtSIqqApZMBDkkyW8O1fuOW4OmvTcaQeNrDWS6HYlMUJAd8e0RDvr+zAVonJEmtRpgFSckoL+FT0367gQWjSL0KJl97XdfYCERtDinUf98f9+cOtAdQn0t4EAvGQeJbTTX0eegNh2p4HXUfue8ldQzy0iRkKZR9DjEmUIikySCOtJwUD2BRWqIhPSQseW8U9gR9FBxVL971QelAxCLxGvzMoOYnImG2Edi/dU2JprYUCyjgYaPNUCvzaUdCZ1LsyM9ake4DsGogSKEOsTi9XNu3x3tRsX0nRpp/Ry9VLmeCBoFulx6cR/kM9PomzHvDx1KWIn3PNBX6yMSohhBntf3SBjorXI4yE/KNyHWMU6pfxd3HeP3SFsMjufPiN+DphLvyVSih3OpIQm61nszw44E2OhgVooexHNUHIcIdEuekjjQbx3lucq0IywfJOgKnpGRJETxiuP/NnmvPGcnlpo3CjxYlLhFXGDRpCZ5AgutmBkIPyBC6jl6144E1jyQI1VFi4Tw7xs5lfMVz5EyRwhaQa8R/efiCvSbqK5vjxASGU/lkL+zA924Wj59sLJXSSJ7qMTWoKnfeQd6PE1LfX4IVRqIy16HoDEqqRTfFF7/LM5r+yr6AZEOAQVoJc9e6vctOPNtqMOGUZPC5gLEeVFVFa8GrW+AlobVjjQcq8jkXmyj39CRpSnWNb2YRXGsLyhmPyatc9WPoKnrDPVllEJfxWCm9EbQaoojt+VQH+RHIWhh2gRAZKInUX4e158xr5U7Wj3egtQww+ai91bgKZHr3yu2p3FZK1pz/Wv53lB7bNiRqLynMT6RAVqa1M3pYhtVB0TtZtQc06fE9rtrjGujxOF4W0fAw0V9HKiRZOh8+su5ijZyc/dB0JjUon6Brvrd93aiohI1r49wAQ9B03jXT9kh7q+Gyf9uI2Mdg9Uwgw9l5ST2tSMhReXA00WQiSodG8QAgVTpkaJKx1JuafD7oMUlzELtiDlIJKSoeJnv8QAIGj0PvuL+EEEe2xDnKljNzdOAxIttJElY7Yh+XsQ6qGt2HXni+J039L6APHEL8Zo4R1/85DJ8+gTWmWHDQvZzTFCs1AeZQke6zQpmA5FdYdbC9kV+UtVmguXPZPHPtlk68DQpjnRt3BKi3jXBiTi/y5InGNgATGL3fxkXC9jGMxegcTPfsuFxVNStfg/N2PapHWFlSjKFWMTc/sT5H7ZrU5mVOGqSbuy5CEJ/qijnwaL+GIKaF+NA6PN1v1YhaHHFo83MN++7if0/AILmeT9RCEomFaNzLh9aZ65jD4ojZyQJ2I3W7e8PCJpadiRsLv3zeZQYJQYQi6ao37vHOBUF7EPUuz1te9wQ/4nM2BbSIWDY8x4OiHSsJOXXL7Nv+507FDOFIRKiZ74jnlOSx+Ym0EKZKPpQLV546HVfv0tvO8ER+qL5Ymv5AI3i6LkXfdaxdYb76JQJ34bYBlFFRcshPlXU/J0zpF3JwwOLaKp0EaDiOASCxjxXm3Ykzp6zRZ8CbL9tyECXyfAZwh4rO+J7B8OXC7qCZ2RQ5ptbYGx7Pw2uykw0DTBADRDQZM0RmwXVjSLPIV6si94Oqu+hbzeCDJ8r5CBTNWhxUHQIPcOUw45BtdRcvGsj/vp3swYtttZEzctzHr5bamtpgENqG1nAOpqOVGwW1Py96/V9qBgNBNmX6MmUAEpsX0r5WdxET2Qvm961I3XCgivQM27UPITNRXtqyVRc7UNNoveXFU80J+S5tr4/1RrMfpcCXaXEHPT24DGWojl+kQRAXV+cip0RNPkSbj0QXfoqXDXBZsAUvuikuMdtFdKrBq1+OTfx0/AhI1ksRa2GGUzxDd3/pI5cM6V8962ZMA6aCoC4Pq66d1+qNPlCJbtdQXygG6rozvLlwi7h2Rh0kHCzD+YIcQhkj6pIFcdR4AGdpUlNcYwUtwg4pOnP62iqqP67z0GlueJpV2TIQhpVV7Ey+wHfrSVuEZrVDzxYqH4jHkHmG0WlmBpJQQjI/JliK3HiFmJUjNekCWQNWl9qHhdBWw2hYso80FeFWMf+Kqaeg6j+uS55Dqk59LcEizb1eNZ6iYQwVRybyGfcPV8xkdC+NT9pkqhmtt5gsKdjlaokKzfhpq4zbK72Oj7dCI3OHi6C1o/iGPY8NKnSYXOR0ichCCFBTBTFMUulAESoSEjofKF2ZRRoj1vvJ5EQZp/WIcSGVkXJem9/O6Lqn0Nq0GKpotSompfo6SG2YtiRIcSGnrkAjfOVpUjCAIEF90EcoiidqzJDNT+9qUnMDNe6KKOyQPpcT1tsRX8PV/VLIWjfrcCC59yYIzTznVKCoieqxcmmZXI/xiUMwhA0lekTc4dOGO6slxWfrtaaLSDRo+SHY6nSYQcZ9SYT1xk0VfCQmcWi/zr6GQ3i5xCiTTFon25XQpGf0PtAe4orLKP/NersSDSKF7MWUFxn3BlcVhUK5p7p48jJBstMRFlfu6hG1Wkie5lyWuXQ/o9LNoufXEpZ75qfVGsYHrCOsQhaTi2HGP5Jn/no5WumXQn161rvT2pmCjPR0yf4zDT7zFqXxPoreyRQeyQEQYtpK0VIJDfJ2ovia9iRIc7VUf+P+O4OXg0a+tWg6Y4V8yCKdawaReJMx6ooy2jkJwhB07JGvRE05oOYR66j/h4ebSRFURa1NHzwVIH95OoALbJ/V2jGKkn6yuzTOvqvUzXkjFNMDXFQVTIkXn0wZCRJgrIEqmSARA+zb45qKBsYWARSM0ZpEiCK0B6h1GwA7Ma85tA/PhhB65UwC3qrfD8V97OSKX0cAnoeaufb9+6QlhbW9ydqz4Q0qo5phN6girIQ4bD935hLOqhxz174SFCBn7Cgl0TJ7BtZ/acdoOm1rX6KV791JjaR6IP2lGX2DbviZVb1XMdw5KdPokf7bhybpa9jZPNottiKnuiJpIqWJV8NtpnoCZurZUc88/0q7oOWyOL+KHGLgOyHWTsSDItmYZBqliZYE4IWNJMYDSUvzycoBC2yf1EAzN9XHlufg1vL1wtBC8hYjUyKY6j6oP47461ZbZRiZfbpvnFuuUQ+cx49wjWX/lmuQeu2YmZouwanuLlvoicERTBrWUOn053g0Bq0KDsC/v7Xn+2+CTOvaE3PhJley9pLZp+ZQNNNQfg9V8kR8X7+B8Tdcx1B8AiS6EJbMY5VGlY70oeaZLI3nnZ8liSCOr0ueBRHur4+z46klPls7ADITwjFi6aIpTiqPmj8uczfOSOU4ti7D2AdfHLb1/Sp+dRtJudSG/5IpEgI2RGuNgHgp0Na358iqJZ1CJEcaUc8l8v5+E9kgEaZ7yJSil5/CzdTGNtguclV5r0+VtIfCFNxRE/HKiTzPQTFMQ04yNJEr0ELniqoBk1SHCOpeaHUjDQRtRtcmpU5yA5ygnI9sOgTVAMcJLKmdBFi8JQdKUmV/i7UoPVFfkIPllGaRgtpAEahOPO1q+8C5VytY1y7DkCtfWzNT6y4RXwNGo9S07hnEc9OkiRyz4QgaDHJPVJxZNegDVCDwz9X+xkeendRhvXv6lMrzRa3aCAIEfu/VqjU5+4aSY/vpovkcFDaPrVT9F3Y4haBfVnb8wkkvix51xrDaKBBz+eqqFgBV187kmp2xJfo0f8cQ3EkJJKdMBsgQBuy4f0nMkBL6wxVEV2UHuBY1SuYR2b1dcPCk1NNNQMYE8Rov3veTn/PB2gw6+0nNwSCJpEfXqakDMh0m6Ophsm7ruWa12fEHEnAXPT6PlRR5RD4X9ssMA6eKmg/mmproY5Sok3GEglJodWghZtKfVvxEbRYimMYgjbK+snsh6Ba0o4UkYyGhj32vNZE0HqgurGZb6Lmsdp9NNYxbC7VcJyrmhfvfIj3aBSvgBq0mHYYaRrWB6qPY2XuGe/7G3+Ps69UI8/ZYzRdHxSfm0DuQxWl9yvBNM7+Fz/jEDR1rnLmaiY6w+Yy+7SGIGhRwWemKzH7X5/1uG+0jjnzDP9uig31RdCo3CMOQQubq3WG94/Pnr0Ajae+JhSghihK98o6mxnbiKhbGmBO5jtL2KpdthEiEkKvXef95dq9FEdDxbFPYMHxB4Q8fMnOUJmj2QeNt455GUeh0V/OpsH2QSLrOULoN+s8DmXNAtZRBYPfHXELMu75AI2queIWse06QhseZ2nSS7Wu4aJ6Ez3q4IqrQeN/t1aiJ+KEo1sVmyQqSr489hAZ23VRsp6FfmFFs3YkpLi/V+0IM9DVryf0tqlG1RH2OeYMTlS7Ak6yLiTx2J7LCCx8z4/elzXS+Q5JstL1xexHVf/Mk2oJsSPmkEhkHp6giKllJYYPF0HuEzTpNWise+b4nTsS8IW+GnYk0r8QCTPe8zMEVZrsCNe/7hrPXIDGGZT5ju5fFABPy7qYaGU5JcPOd77jI/SQLJIO60c1mNU2oM9RMrnycQX69JOxjoleKxI+VxqwjrTmJLYSTq8Iy+qkSTzlVn8Pt5YP4Bt3c4QUUydJIvY/UxSh76BM9zA1aD45YaKZxCHIoX1wRj3tSEPJi3mtq9iEmfY7l9HQB0EjuxVLs44VCQkOLKTy59NXeqP3qwSar/2Mdp1RapiQ6xjSK8z8nTNkAqEH5TdkJIlINOclL6kVwmhov1f8XOciiPcyWXo2ah+lYTVo9Io4iiOpmPISFM0zO3KPMBMUfcVWiJrHFYOj+WK2boMqzUn09LQjSaLW0Yeu9xUJkTXBTDvShyptijb9qqQ4cjMl1EOlbx80boQ/iEPMeO84TXup2IWIhNBLxUHSj+Llz9yJvy+Z3GTrZxCCxsy4UiPI/iIhvkyJGLF9+fSP5/HRk34Ur/otXDVMQOz/WKfPnLdrkLQy0F8FzDfSBFJsKMrR1x0Cz3Y2G7WH91PUbRbn9ZodCZsKgLpvPMeIki/9Ked+OqUKWoA4e0wj5r2qLyBT3KJHVr+BoDFeH2pHWu9HQHF/IzkRcSZq1KSQRBEQkdyQYivMWr6gT7e9P5EiITyZffGzbx80HqIbjyAAgpmignj/6+UcPYLPgomg9UlQtP08fv+uWDtCtaw8sSEK4uMD3ZyLoPUIdMX7Ey0Rz1/HWHq8qCPn7n/NjkSewbFMKdt4xgI0DsERWg1af2rSZMTbQHkP2iEdEFyucZ+59Ld4DyLpND59ildfkQQAQbUjWZqgqFWS+tCgxO+8QLeKVt60/+6+Nt0Axt833jqKn7E02NBM4ziLDyyaTikj0KVET4moPoANO+J5uPtSfNM0UdQ8Zqawj6x4YvzsfG39ongVR/U7t/YjtpavOW+cQ0x9AUMdgmAETZ494XW0cXaIX9uqq2HG1o6ECPQ0arkDv1x4/bP6O88jab+9KHmNevXr60Vx5IrWNM7s4OmQJUlQApkuKXY/AvW5GoggBz8vmg0Dwii+0SIhAWJDUnk5YiHDqdKazQqfrlnL+v9r7+xCJTmqOP7/99zdVdcIakwiJmjERVAf8iDxJaBC1ChiVFQiIkGjUTHga8QHBZGIID74BYkGI6ghCOISxRjzEgTBRAkmMQaX+LWLuvjxFDC7987xobu6a+bOTZ9TNXdm7s3/B8v0ne2aqumpPn3qfJVTngOFuaxEX2zFo+cdCeojs31F5YjjM6s/YcX49kHrckcKQ2oica+7LLYFP0p6uPhz0MqLhESU/fTf552hGPPMLGKcIQE1uSOh0LzJoEhV56CNNm9PaPsKdxWOnV9WiKNvgTZ40EoV2kQ0xLdK/nkeREyh0mWen/TdPGGttbmswKDs+XPQajzxcPeVhy+vatuTPuS8YpKU7oM2jShWS/KgRfcvKkrub4b8T5d3veujRLEaDJ/OHLRgsa1FfZUoVkULC8Q8vENudfkz2JsjvIzQvMh1HMI3y2XQ1Lw5aHm/sb52bae0zyGO7X63/m2A0twoua+HIiHeUOnhuES8NqS7Wnf++WVl9rP9FMOGntiXy0NuAce18dz7oREcEAbLd31Z57Ek3miVpEWkMXpurhkFNdzT3EN6dB+04cFVdB1zxWrku/UPkgoPWiTEMVmolhHi6PWgtQ+SggfRTL++sdUUW0ltXDHbmXJTYr2bqeLosXDl1Qf3OQttCI8oNPR03ydSCKDG+pasf96NfZchR1wW1+6cc0vYrmO0SMjcdSzpz1C+SJ40yfDjWyjM5PyUKgRT5/5FFQoq0N5v3hy0nLIctOG56lnfHV1G7oizPHytYZyZfPbI2NRfjSz3eq9r90HbaposH9/RoOuiJhrIa/isMYakS7Ht9fxUXsdZD9r4+YNxOtzVzL0WXeiWGvdKqsGW6qCRUOkjW7mhJ9pX+1pjZJ1nq/oTNpBk+S5XrAZFf7z62pxiVdBf70FzCdCmSonLW4x60HqhVF8N0xsSU5M7ksJRvQrqji2nSIjXEzm10qRaLjzee2x1C7R+b5qAxbW0SEjc0kh0X23fqzg2zDaqrvCyuvY6WsLCorUw+kpO18qRhG/fnPac7eJ90PxyZNiXslyOfOL1r8Bv//pfXHXiwnDbpBC0lu/x82fnf6yvISnduX9Rflwo87yKFdDeO95zd/c13A+eOVMV4th761aT20q0zwLA7+0GynSL/DquwoPWNMS57R13+xoPWprE7bX09LWrqZsmKFci4e2LmOT6icfgHIgemicPlfbM/ei2P4vaDwYKX5X0fJwRJp2zZrpCD9oy90E7lAu0ZPn2/ijzpOsa2USyZm+yIQfNt7Co2ag3Yo3uhdJ26T5o/r6AFL9evtA9fmzL3XbSNF0OWr0HbbzYSvv/5gzF2N1X/lmO85tWaQMKra5dk4gH7dz2FMe2JgV9xRQCEpg6k/kXtO6PIqHSO1MrzEFrX8fyWIFFIY7h7obQVI+BYlIrR+hum75LqQctbzL23QajUvlC91NXnwi3SaTk/qmzzH5N2GHUez1TMbLEk0/iXLeXo0c2pEVIae4I0D5XPQpujWI1U8UO4/eeBeXIPGT7LEjHYwwhjuGuhpBfp3GkOjSvIZ4syEErITU1pwctl1nRey2dXlLFMeklEfrqg94qjt0pNUZSb7Xuag8a4M6Rn63iWFIkBIMn0jHWGk98Wmt65YjrM+s/YrX4FKvOg1a4MeoQOz/eNldQ87YRhhBHx9gmtbkjfutHHppUch1zJcCb6FoT4vico+0CwfcgQpaDFu4qVKEvnTp1JjPvbh8TGvlCtyhUNGCNy8ODiiy8QYWgYZv0C+x/iGNfDbZ0u46AHJlP1C7bAHT2day/mgdJauNSjPr9FAv3QQts17GMUNEaGnYhjt4qjgHZP0+/xcvO1Gf5zo8LZV6JZ7IqxNE5Z2ZDk8oWaMu0fD8dRCbDAouYGuOGN8KhNjRvEnyGD4umsoUu0D1XA+fXGGS9EQ758+L4sTLDZWRhkeZ8ycztQ6W340VCyp4d7Kt1R56rpRveA/4osBpP/LwHbXxOO37X2BDWj9fiFNk9fFF7wOeaXkZxi/TDem7EI03lPmj58Uj7NMG8e/rMM2P59sRRs26D5bRAc3vQllRmP5aDFmfWEzl+Pkmcn9aHOHoUo9z6VuT1mQlfc4wNrPCgxWjYeuvaUOmySnRA/DqWFraIhKbmIY77XySkfd125gHs1RfgD3FcRpn9Evoy+84qjjUhXnkhjYgHYf7YSx467TE6JGpDHD3XZtbyHesrWsWxVu6QmQxznF8TvhYNFa0JuU3tI/pJxKg0T1ooRHPQShcVQLZR9dg+gFknzzka96ANRcyc+kwgomFX26TDTn33Wk2oaGofCZVO1Dhb3DmYNcWGdsmRUPPF46n/iM0jWb6tMMQxNfE8hJpMsQIKPWiBEMdJrliFe4q5p9P/FufyBcPXJg17T2TJw+h4JwjdOWir2qg6PUi8pr7dH5D15buOdSGOfoUgmoS+V3vApzS24UHD8X6SvCFA2X2drl/Ug1ZaGj5iaa8tEpLmtKdtunS1BjPAUWxoCRENNaQiIaRXntcrjTtmOOLKBcyO49111Qfjhp/qIiFhy3dQscqiAID9lytETIb1IY4V9875bZ9cmVmgFcrz/hnuCpcrX1j0hs+pLwdz8PqX64ReD3Iud5LhONZftqVF4DlclqfYvk59xWDn5Ei8v3y7johsKDL05AZklxyJ6aw5KQ1imUVCVuZBI/lykt8m+cPsveMk7yB5G8kPLKuvhu3irDwHrW3jsnx359bloPnLY281wx5XNUnDkQdDa+0ruY7Dsed3INFvQlzyuz27E4TecMrIRpCL2idGF7rdfxfvgxZslVuo9r+KYx4eUXcdXTloGIoPRK8Ls748+xc1zKp21eSgeQw9vSJVVpAk/wzXA33CKpkVUXZ6T/wyPMieezuTIyURDTX0RUKmvmszhDgWyNfu1RtOGQ2VnqdVGv1l9hM19872ju9+yBdo0a9GckZmjl9L7nHs7TCXYeP0XqaaEEdnmPZMiGOJLtMwpKCyfy2f/+YsvlXjQev3k/Pug5bJneMFHrRJrud5vluFl3VGPrt+s1z3CXdXXAyudKNqwC9HjtYUGwp64j24vjHJ20meJfnI3PvXkHyc5CmSNz/dZ5jZE2Z2w9zb7wbwQzP7KIB3eMbiT+5vPT9FuSMBBXV+g9kiq1MSwE7F6twSPGjeggxAe+PWWHi9/U2aPMQx3l9fJMS50AVaq379Pmi+9qV7rs1663wKcc22D6mLiOdnZSGO3b3dHsf76z/HWX2wJlQutYlcx21nyfRFRIwvW00mRyoEiSu0rntdhjHEa01eZ4jjsO/O+PnLUBq9C9/a0CSybDuZmtwRr0c5v8fKFhZN7y33RkSUQuQyzKfPAIVe/OB1PFrhiQRKQhxr5n/76g1x7EPAK57BKUd4dB+03INWkoPWEE8FdMpJxXVMbXam3uuYH5fpF+ecC92cEkPPJNPPV+WJT3KEY/J/9AR/iON3AHwNwHf7zyYnAL4O4E0ATgN4gORJABMAt8y1/7CZnV3wuZcCeLg73nGOZZSG7WQD6hJrXSEqHBTUUmVgCGEYPze/8WsKTkQe6MV5Wtn38V7LmhDHSChB7cIiFOLYP0hKFaN8MTh+/rKKhFz0vGOj525lbv0yBWI49s7niPW5hiZb6JYYeiJl9ns54gxFWkS6lhG5BRRaXeden3ZctTIrH6vLgzZUqFx1iGMyDsKZg5Zkfo3S6JXPs6FJcSLbpuTU5I54czKPbtXN57by7YqKhDCTYYFFTG2Io0eGXXTBIPNLvM8pxLdt77lXu4MKXabNHPD3tepcviIPGmNb5dR44qOG9Noy+5FtU3LKqsHmep5jgbZVv0BbphxxzRwzu5/ky+bevhLAKTN7AgBI3gngWjO7BcDbnf2fRrtIewhLDLeceZBUKATefcmAboVe+IP0VqSIQENd3HbE4lTaV/RGbJo6z08ShE9tj6/18xLVtd/Nu+H3MoqEuCyujb+M7eL+2jaXPO9Zo+fWlmWOLhSaJqbc1BD1XO7V3lMeOI9fP3akTBRGFLn6e3v35+x57swivLwvwK+snKuIaKghV95Cyf0FfTXB33BZvzkQ8yLVetD22/INdEVzpuWRKREaBkMcl7CIP7/j816/8LnDAq1oL8ZoyHrF/E+Nps7cgWYJ99r5HcMxz7Yp2XV4VoE8n0zY5ylGig2VGV4WH+/dV+z83e3L5FBNLmsrR8bPP1JRbGgIJ16eHGHaj2P0xHaBdreZvab7+z0ArjGzj3R/fxDA68zspj3avxDAF9B63L5lZreQPI7WM/c/AL80s+8taHcjgBu7P18J4HH/1xPPQC4E8K91D0JsNJojYgzNETGG5ogYQ3NEjPFSM3vRov9YWRVHM/s3gI/PvfckgA+NtLsVwK37ODRxiCD5oJm9dt3jEJuL5ogYQ3NEjKE5IsbQHBE11IQVngFwWfb3pd17QgghhBBCCCEKqFmgPQDgBMnLSR4FcB2Ak8sZlhBCCCGEEEI88/CW2f8BgF8BeCXJ0yRvMLNtADcBuAfAYwDuMrNH92+oQrhQOKwYQ3NEjKE5IsbQHBFjaI6IYtxFQoQQQgghhBBC7C9LK20vhBBCCCGEEKIOLdDEoYDke0k+SnJK8rVz//dpkqdIPk7yLesao9gcSH6O5BmSD3X/3rbuMYnNgOQ1naw4RfLmdY9HbB4k/0zy4U52PLju8Yj1Q/J2kmdJPpK99wKS95L8Y/f6/HWOURwstEATh4VHALwbwP35myRfhbaAzasBXAPgGyQnqx+e2EC+YmZXdP9+uu7BiPXTyYavA3grgFcBeH8nQ4SY542d7FAZdQEA30GrY+TcDOA+MzsB4L7ubyFcaIEmDgVm9piZLdrE/FoAd5rZU2b2JwCnAFy52tEJIQ4IVwI4ZWZPmNk5AHeilSFCCLEnZnY/gP/MvX0tgDu64zsAvHOVYxIHGy3QxGHnJQD+lv19untPiJtI/q4LTVHoiQAkL4QPA/Bzkr8heeO6ByM2lovN7O/d8T8AXLzOwYiDxda6ByCEF5K/AHDJgv/6jJn9eNXjEZvN080XAN8E8Hm0itbnAXwZwIdXNzohxAHmKjM7Q/IiAPeS/EPnQRFiIWZmJFU2XbjRAk0cGMzs6oJmZwBclv19afeeOOR45wvJ2wDcvc/DEQcDyQsxipmd6V7PkvwR2tBYLdDEPP8k+WIz+zvJFwM4u+4BiYODQhzFYeckgOtIHiN5OYATAH695jGJNdM9LBPvQltkRogHAJwgeTnJo2gLDJ1c85jEBkHyOMkL0jGAN0PyQyzmJIDru+PrASjSR7iRB00cCki+C8BXAbwIwE9IPmRmbzGzR0neBeD3ALYBfNLMdtY5VrERfInkFWhDHP8M4GNrHY3YCMxsm+RNAO4BMAFwu5k9uuZhic3iYgA/Igm0OtT3zexn6x2SWDckfwDgDQAuJHkawGcBfBHAXSRvAPAXAO9b3wjFQYNmCokVQgghhBBCiE1AIY5CCCGEEEIIsSFogSaEEEIIIYQQG4IWaEIIIYQQQgixIWiBJoQQQgghhBAbghZoQgghhBBCCLEhaIEmhBBCCCGEEBuCFmhCCCGEEEIIsSFogSaEEEIIIYQQG8L/Ad1UgYK0KofTAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABTRUlEQVR4nO3dd3hcV50//veZPppR79W2ZMc9dhwndgopJCEhhZCwEAIbWMqGLLAbdmH5sSwL/NiF5buw8IWlJZSEkiXUkEJCSILTEyd23OQuy5LVextNn3u+f8yM5CiyNJJm5s695/16Hj+SJXnukcee+9bnfM45QkoJIiIiIppm0XsARERERLmGAYmIiIhoBgYkIiIiohkYkIiIiIhmYEAiIiIimoEBiYiIiGiGlAOSEKJeCLFDCHFICHFQCHFn4uNfFEJ0CSH2Jn5dm7nhEhEREWWeSHUfJCFENYBqKeVrQoh8ALsBvB3AuwD4pJRfz9goiYiIiLLIluoXSil7APQk3p8QQhwGUJupgRERERHpZVE9SEKI5QDOAbAz8aGPCyH2CyF+IoQoTtfgiIiIiPSQ8hTb1B8QwgvgGQBfllL+XghRCWAQgATw74hPw31wlj93O4DbAcDj8Zy7Zs2apY49p0RiGo70TgAANtYW6jya9Dre50MwGkNTuRd5Dqvew0mrgYkQeseDAIBlJXkocNt1HtHSnRr2IxiJwe2wwh+KYXVVvt5DSrvj/T44rBa47Bb0T4RM93+OiLJj9+7dg1LK8tk+t6CAJISwA3gEwONSym/M8vnlAB6RUm6Y63G2bt0qd+3alfJ1jaB7NIALv/oXAEDbV6/TeTTpdfU3n8XRvgn84WMXYXN9kd7DSasfPHMCX33sCADgrtvOxdXrq3Qe0dJ95Oe70D7kx9rqAuxuH8Gzn75c7yGl3Vu/9Rzqit1YV12Abz11HCf/81oIIfQeFhEZjBBit5Ry62yfW8gqNgHgxwAOnx6OEs3bSTcBaF7sQCk3SahxoLFZzm3WJJQJC5bE92mW546IckfKTdoALgJwG4ADQoi9iY99FsCtQojNiE+xtQH4SBrHR5RF5rjLSilhUSMfTX2fmpSwQJFvmoiyYiGr2J4HZn0FejR9w6FcpMpP52b5PjU5XVkxO0siIWkmee6IKHdwJ22iBLPcYzWFKkjitAoSEVE6MSARJZjlHqtJTCcHk2MPEhFlCgMSzUuVe49ZmtFV7UEiIkonBiSiBLPcY6VKPUgi2YNkkiePiHIGAxLNa6GbiRqVWb5LtXqQ2KRNRJnBgESUYJYgqEmp0D5I8bdmee6IKHcwIBElmOUeG1/mr/cossPCChIRLdJzxwfm/DwDEs1LlXuPuZq01UhIbNImosX6U3PvnJ9nQCJKMMs9Nn7UiN6jyA7BJm0iWqSu0cCcn2dAovkpcu8xyz1WrQoS90EiosXpHGFAIkqJWe6xah1WG3/LChIRLYSUEl0MSESpMctKKLU2imSTNhEt3PBkGIFIbM6vYUCiealy7zHL96nSYbVTZ7ExIRHRAsw3vQYwIBFNM8k9VqWNItmDRESLMV+DNsCARCkwy9TTfMzSx6JUD1LiFcwszx0RZUfniH/er2FAIkowyy1WSgk14hHPYiOixekYDiDfZZvzaxiQiBLMco9V6bBansVGRIvRMeJHQ0nenF/DgETzUuXeY5adtONnsek9iuzgWWxEtBgdwwxIRCkzyz02JiUsinRpc5k/ES2Upkl0jARQz4BES2WW4DAfs3ybUgJWRUpI3CiSiBZqwBdCOKqhvtg959cxIBElmeQmG9PUWebPs9iIaKFODcdXsLGCRJQis9xiNQWn2JiPiChVHQxIlC5maV6ej1luspqm0mG18besIBFRqk4N+yEEUFvEKTailJhlJZSmVA8Sm7SJaGE6hgOozHfBZbfO+XUMSDQvk+SGeZnlJhtfxab3KLJDsIJERAvUMexHfcnc1SOAAYloillusVKqNMWW7EEyy7NHRJnWMeKft/8IYEAimmKWm2xMqR6k+PcZ03QeCBEZQigaQ+94EPXFDEiUBibJDcqIaRJWVVax8bBaIlqArpEApMS8u2gDDEhEU8xyj5USCh01wn2QiCh1HSMBAPMv8QcYkIimmGU7g5iUyq1iYz4iolRMbxLJJm2ilJnlJqtJhabYuIqNiBagc9gPh9WCynzXvF/LgESUYJZbrKZNH8FhdoL7IBHRApwa9qOu2J3SaQMMSDQvs6zumo9Zvs14BUnvUWQHK0hEtBCpLvEHGJCIppjlJhvjPkhERLPqGA6k1H8EMCBRCnjrMQ4pJaSEcgFJ4z5IRDSPsUAEY4FISkv8AQYkoilmqEIke3FUCUg8aoSIUtWRXMGWwiaRAAMSpUCVe48Zvs9kUFCnB4lN2kSUmukl/gxIRAtihntsLJEUVFnFltxJ2wzVPyLKrLahSQDA8jJPSl/PgESUYIZ7bPJ7UGcfJFaQiCg1bYOTKPM64XXaUvp6BiSal1l2mJ6PGb7PWCIhKZKPuMyfiFLWNuTH8tLUptcABiSiKWa4x2pTAUmNhCR4FhsRpah9aDLl6TWAAYlSoMq9xwzfpqapFZB4FhsRpcIfjqJvPMQKEtGimOAuqynXgxR/ywoSEc2lfSi+gm1ZKStIRAtmhkbfmKZaDxKbtIlofu3JFWwMSJROqtx7zNCknVzunspBjGbAjSKJKBVtyQpSGafYiBbMDPfYmGJN2jyLjYhS0T40iVKPAwUue8p/hgGJ5qXKvccM3+ZUD5JiAYlTbEQ0l5ODk1i2gAZtgAGJaIoZgqA2tZO2zgPJEjZpE1Eq2of8C+o/AhiQiKaYoQdp+iw2NRKSYAWJiOYRjMTQMxZc0B5IAAMSpUSRu48Jvs2Ycvsgxd+yB4mIziR5SC2n2IgWyQy32GQlRZVVbMkgGGMJiYjO4OTgwpf4AwxIlAIVfjgXYrp/x8g01c5iszAgEdHcFrMHEsCARAQgXokwwy12qgdJkSm2ZK8Vm7SJ6EzahvwozrOjMC/1Jf4AAxIRgHjFxQw32djUKjZFAtLUFJvOAyGinNU+NLmgI0aSUg5IQoh6IcQOIcQhIcRBIcSdiY+XCCGeEEIcT7wtXvAoKKcZPzbMTwhhiqnE5Pegyio2S+IVzAzhlogyo23Qv6BDapMWUkGKAviklHIdgO0APiaEWAfgMwCeklKuAvBU4vdEhmK2CpIi+ei0CpLxnzsiSr9gJIbusUBmK0hSyh4p5WuJ9ycAHAZQC+BGAD9NfNlPAbx9waOgnKbCEmoBYYqApCl2FpuVTdpENIe2oUlICTRVeBf8ZxfVgySEWA7gHAA7AVRKKXsSn+oFUHmGP3O7EGKXEGLXwMDAYi5LlDEWYY7VeppiZ7EJIeIrEM3w5BFR2rUOxFewNS5wk0hgEQFJCOEF8DsAn5BSjp/+ORkvNcz6SiWlvFtKuVVKubW8vHzBAyXKJIsQptiNWbWz2ID498oKEhHN5kS/DwDQWJ7hgCSEsCMeju6TUv4+8eE+IUR14vPVAPoXPArKaSrceoQwx1Siaj1IQHw6MWaC546I0q91cBI1hS7kOWwL/rMLWcUmAPwYwGEp5TdO+9RDAN6feP/9AB5c8CiIdGaxmKQHSVOrBwmIV5DMsMknEaVf64APjeUL7z8CFlZBugjAbQDeLITYm/h1LYCvArhKCHEcwJWJ35OJmCA3zEvAHAeeTh01otIUm0VwHyQiegMpJU4MTKJpEdNrAJByzUlK+Tzi95HZXLGoqxPliHgPkvETUnKqyarQFrDxgMSERESvNzARgi8UzUoFici0hBCmaLZKhjxVdtIGEgHJBOGWiNLrRHIF2yIrSAxINC8zNC/PxywbRSZ7cVRaxWYRnGIjojc6MRBfwdbEChLR4plumb9KTdoWsEmbiN6gdWASbrsVVQWuRf15BiSalwq3HrNUkKYPq9V5IFlkFZxiI6I3ah30YUWZZ9GrehmQiGCmw2qTTdrqJCSLhcv8ieiNTgz4FnXESBIDEhESG0WaoFYWU+yoEYBN2kT0RsFIDJ0jgUUdMZLEgETzU+DeYxECZlgpruQ+SDxqhIhmaB/yQ8rFr2ADGJCIAJinB0lT9KgRMzx3RJQ+S13BBjAgUQpUuPWYZxWbej1IrCAR0UytA4s/pDaJAYkIZjysVp2AZOFRI0Q0Q+vAJKoXeUhtEgMSEeKr2MwwTTO9k7bOA8kiq8Uc06NElD4tA74lTa8BDEiUAjNUVuZjMcdJI1OVFLtCh7Fxio2ITqdpEsf7fFhVyYBEtGRm6UFKHtqq0hRb/LBaEzx5RJQWXaMBBCIxnFWZv6THYUCiealw64lvFGn87zQZFGwqNWkzIBHRaY73TwAAVi1hk0iAAYkIgHmW+UeTh9Va1QlIFh41QkSnOdYXX8G2ihUkyjQV7j1m2SgyWUmxKjbFxqNGiCjpWN8EKgucKHTbl/Q4DEhEiK/6MlUFSbUpNhM8d0SUHi39PqyqWFr1CGBAIgKQ6EHSexBpoCnYgxSv/pnh2SOipUrXCjaAAYlSYIZDXOdjMclGkawgEZHK0rWCDWBAIgJgpmX+EhYRr4ipwiK4kzYRxR3rS88KNoABiVKgwg/nZlnFFpMSNota/62tFnCKjYgAAMf707OCDWBAIgKQPGpE71EsXUyTSk2vAZxiI6Jp6VrBBjAgEQEABEzSgxRTLyCxSZuIko73pWcFG8CARClQ4dZjEcIUU4maVC8gsYJEREB8qr2lPz0r2AAGJCIAgMUkJ8JHNU2pJf4AD6slorh0rmADGJAoFQrce0y1ik21gMSz2IgI6V3BBjAgEQEwz2G10ZhUr4LEgEREOO0MNvYgEaWPmZb5q9aDZLEIUzx3RLQ0R3rHUVPoQmHe0lewAQxIlAIVdtIWgGmm2JSrILEHiYgAHOmZwJrqgrQ9HgMSEZKr2Ix/k42yB4mIFBSKxnBiwIc1VemZXgMYkCgFJsgN8xJmWeavYAXJLA32RLR4J/onEdUk1rKCRJReZulBimoSVgWPGmEFiUhth3vGAQBrq1lBIkors1Qh4keN6D2K7LJwo0gi5R3pHYfDZsHyUk/aHlOxl1JaDBVuPcIkFaSYghUkG3uQiJR3pHcCqyvzYUvjT4hqvZISnYFZjhpRchWbxYKYJk3RZE9Ei3O4ZyKtDdoAAxKlQIUbjxDm+D6jmgarUCsg2ROBMMoqEpGSBiZCGPSF0rrEH2BAIgJgth4ktQJSsqTOaTYiNR3pTX+DNsCARATAPKvYYpqEzapYQEoEwkhM03kkRKSHIz3xM9jWVLGCRFlm/NgwP1aQjCsZCFlBIlLT4Z5xVBY4UeJxpPVxGZBoXiYorMzPND1IUrkepOkKkvGfPyJauMO9E2ndIDKJAYkIiVVseg8iDdSsILEHiUhVkZiGlv6JtE+vAQxIRADYg2RkVvYgESnrxIAPkZhMe4M2wIBEBCDRg2SCCkRMk7AoNsVmt3KZP5GqDnbFV7Ctr2EFiSgjzHJYbVTRjSIBIKaxgkSkmubuMbjtVqwo86b9sRmQiGCuKTbVjhqxs0mbSFkHu8axrqYgI72Xar2SEp2BRZjjwFMVjxphkzaRmjRN4mD3GDZkYHoNYEAiApCsIOk9iqWLahIW1QISm7SJlNQ2NInJcAzrawsz8vgMSEQALBZzNGlrUsUKEjeKJFJRc3e8QXtDDQMSUcZYTTLFFolpyu2DZGUPEpGSmrvG4LBZsKoy/Q3aAAMSEQDAao2vYjN6FSkak1PL3lVhT/QgRbmKjUgpzV1jWFuVP/UakG4MSETA1PEcRq8iRTUtYy8WuSpZQeI+SETqkFKiuWssY/1HAAMSEYDpm6yR+1iklIjE5NSqLlXYE9saRDnFRqSMzpEAxoPRjPUfAQxIRAAwtfu0kfdCSlZQ7Ir1IE03aXOKjUgVzV1jAIANtZlZ4g8sICAJIX4ihOgXQjSf9rEvCiG6hBB7E7+uzcwwiTLLDBWkZAXFblPr5x4bm7SJlNPcPQabReCsyvSfwZa0kFfSewFcM8vHvyml3Jz49Wh6hkWUXcmAZOQiRDixD5B6y/y5USSRapq7xrGqMh8uuzVj10g5IEkpnwUwnLGREOnIYoIm7WgiIKnWpM2NIonUMtWgnaEdtJPS8Ur6cSHE/sQUXPGZvkgIcbsQYpcQYtfAwEAaLkuUPslMYeQqxFQPkmoBiRtFEimlazSAockwNtUXZfQ6S30l/T6AJgCbAfQA+O8zfaGU8m4p5VYp5dby8vIlXpYovczQpB2OJqbYFNsHaWqjSAYkIiXs7RgFAGyuK8rodZYUkKSUfVLKmJRSA/BDAOenZ1hE2WUzQ5P2VAVJrYA0vcyfU2xEKtjXMQqHzYLVVZlr0AaWGJCEENWn/fYmAM1n+lqiXGaOVWxq9iBZOcVGpJR9HWPYUFMAR4ZX7NpS/UIhxC8BXAagTAjRCeALAC4TQmwGIAG0AfhI+odIlHkWEwSk6VVsagWkZAWJy/yJzC8a03CgawzvPr8+49dKOSBJKW+d5cM/TuNYiHRjhqNGpvZBUmyKjRtFEqnjWJ8PgUgMmzPcoA1wJ20iANMVJCMfVps8rFW1KTZuFEmkjn2dowCATRlu0AYYkIgAmKOCFI7Gx67aKjYhBKwWYejpUSJKzb6OURTl2bGsNC/j12JAIoJJmrQVrSAB8ecvwik2ItPb2zGKTXVFECLzPwiq90pKNAuLCY4ame5BUu+/td0ipr5/IjKnyVAUx/omMr5BZJJ6r6REszDFFJuiZ7EB4BQbkQKau8agSeAcBiSi7DHFFJvKFSSrhWexEZlccgfts+sKs3I99V5JiWZhioA01YOkXgXJZmUFicjs9naMor7EjVKvMyvXY0AigjkOq02exaZiBclmsXCZP5GJSSmxu30EWxqKs3ZN9V5JiWZhhsNqk2exqbbMH0hWkDjFRmRWnSMB9E+EsHUZAxJRVpliik3Rs9iA5DJ/4z53RDS3Xe3DAIBzl5Vk7ZrqvZISzcIcq9gSTdqKncUGAA6rBZEoK0hEZrW7fQT5ThtWV+Vn7ZrqvZISzcIUR40kl/krOMXmsFmmtjkgIvPZ1TaCzQ1FU9X+bGBAIoJJptg0LvMnIvMZD0ZwtG8CW7M4vQYwIBEBMEeT9vQqNgUrSFbL1PdPROay59QopATOzWKDNsCARARgevfpqKErSBqsFpGVM4pyjd1mmerBIiJz2d02DIsANjcUZfW6DEhEMMkUW0wqWT0CWEEiMrNd7SNYW10Ar9OW1esyIBHBJFNsMU3JFWwA4LAJ9iARmVA0pmFvx2hW9z9KUvPVlGiG6QqSzgNZgmhMKrmCDWAFicisjvROwB+O4dzl2W3QBhiQiABMHzVi6GX+mqbkCjYgvsyfFSQi83m1Lb5BJCtIRDqxmGGjyKhUNiDZWUEiMqWdrcOoK3ajpsid9Wur+WpKNIMZmrRD0RicNjX/S3OjSCLz0TSJV9qGsb2xVJfrq/lqSjSDKZq0oxocqgYkVpCITOd4vw/Dk2FsW5H9/iOAAYkIgFkqSJrSFST2IBGZy8utQwDAChKRnmwmCEgqV5DsVgs0OX0eHREZ386TQ6gtcqO+JE+X66v5ako0g8UEASneg2TVexi6SAbDCHfTJjIFKSVebh3GtkZ9ptcABiQiAIDVDKvYYmpXkACwD4nIJJL9R3pNrwEMSEQApitIRt4HKRRRuwcJAFeyEZnEzmT/0QoGJCJdmWEnbZUrSI7EDuIMSETm8HLrMGoKXagvyf7+R0lqvpoSzZDIR4hpxr3BhhVfxQYAEU6xERmelBI7Tw5he2MphNDv+CQ1X02JZhAQsFkEokaeYlN8FRvAChKRGbT0+zDoC+vaoA0wIBFNsVmNHZDCUQ0Oq6Kr2NikTWQazx0fBABc2FSm6zgYkIgS7BZjbzYYisbgtKv5X9rOJm0i03i+ZRDLS/N02/8oSc1XU6JZ2KwCUYPuo6NpEpGYnKqkqMbJChKRKURiGl5uHcLFq/StHgEMSERTbFbjVpCSlRPVK0hGff6IKG7PqVH4wzFcvLJc76EwIBElOawWw+7EHEpUTlStILEHicgcnj8+AIsALmjSb/+jJDVfTYlmEW/SNuYNNhkMnHY1m7STq9hYQSIytudaBnF2XREK3Xa9h8KARJRksxi3BykUjQGY7sVRTXJ7gxArSESGNRaIYF/HKN6UA/1HAAMS0RS7kXuQklNsiu6D5Er0XoUixnz+iAh46cQQNAlcvJIBiSinGHkfpGTlRNWdtF2JqcVgopJGRMbzfMsA8hxWnNNQrPdQADAgEU2xGXgfJFaQEgEpwoBEZFTPHx/E9sbSnHkdy41REOUAu4H3QZquIKnZpO1KvKAGOcVGZEgnByfRNuTHJTnSfwQwIBFNsVkshl/Flis/eWWbzWqBzSJYQSIyqB1H+gEAb15TqfNIpqn5ako0C5tVGHgfpHgwUDUgAfFpNlaQiIxpx9F+NJV70FCq7/Eip1P31ZRoBrvVuBWkZDBwK7oPEhAPSAFWkIgMZzIUxc7WYVy+ukLvobwOAxJRgpH3QUoGA7UDkgUhBiQiw3mhZRDhmIY3r2FAIspJRt4HKRmQXA51/0u77FYu8ycyoB1H++F12rB1eYneQ3kddV9NiWYw8j5IwTArSC67hT1IRAYjpcSOIwO4eGVZzvVQ5tZoiHRks1gQMehRFVMVJJUDks3KVWxEBnO4ZwK948Gcm14DGJBoHlIas6KyGA6bQMSgFaRAJAa7VUwd2qqi+Co2BiQiI9lxNL68/7LV5TqP5I3UfTWllCiUj+L7IBm1BykcU7p6BHCKjciI/nKkHxtqC1BR4NJ7KG/AgERz0hRKSDYD76QdjMSU7j8CACebtIkMZWAihNdOjeDKtbmzOeTpGJBoTgadcVoUu9WCiEH3QQpEYnA71A5IbrsVIVaQiAzjiUN9kBK4en2V3kOZFQMSzUmpCpKB90FiBSk5xcYKEpFRPH6wFw0leVhTla/3UGaVckASQvxECNEvhGg+7WMlQognhBDHE2+LMzNM0otC+Qg2qwVRTRqyMT0Q0diDZONO2kRGMR6M4MUTg7h6fSWEEHoPZ1YLqSDdC+CaGR/7DICnpJSrADyV+D2ZiEoVJLsl/p/UiHshBcOsICVXsRkx4BKpZseRfkRiMmen14AFBCQp5bMAhmd8+EYAP028/1MAb0/PsChXqBSQbIkl8kacZmMPUnyKTZMw7IHDRCr588E+lHmd2NKQuxNPS+1BqpRS9iTe7wWQm63otGgGLKYsmt0aryCFDbjUP8AepKkpRq5kI8ptwUgMTx/tx1XrKmGx5Ob0GpDGJm0Zr2uf8XYqhLhdCLFLCLFrYGAgXZelDFNpusKZuMGGDbibNvdBmn7+2KhNlNteaBnEZDiGq9fndk1lqQGpTwhRDQCJt/1n+kIp5d1Syq1Syq3l5bm3YybNTqUKkjMxxRYyYAUiGInBrfBBtcD0OXRc6k+U2x4/2It8pw0XNpXpPZQ5LfUV9SEA70+8/34ADy7x8SjHqNSD5LQnA5LxbrCcYov3IAHgSjaiHBaOanj8YB+uWFuRc4fTzrSQZf6/BPASgNVCiE4hxIcAfBXAVUKI4wCuTPyeTESpgJT4z2q0KTYpJQMSAI/DBgDwhxmQiHLV8y0DGAtE8LbNNXoPZV62VL9QSnnrGT51RZrGQjlIoXwEpy0xRWOwgOQPxyAl4HWl/N/ZlPISq/gmQ1GdR0JEZ/Lwvh4Uuu24eGXut9rkdn2LdKdSBSlZ7g0ZbIrGlwgEHqfaASn5/TMgEeWmYCSGPx/sxVs3VOX89BrAgETzUKpJ22bMHqRkQPIyIAEAJsMMSES5aMeRfkyGY7hhU+5PrwEMSDQPTaGElJxiM1oPUrJikuzBUZXHmZxiM1YFkEgVj+zvQZnXie2NpXoPJSUMSDQnhWbYpqfYDBaQOMUWlwyInGIjyj2+UBRPHenDdRurYM3hzSFPx4BEc1KpB2l6is1YFYhkxUT1KbbkKr5JrmIjyjlPHe5DMKIZZnoNYECieSgVkAy6D5IvFAEwPcWkKotFwOOwsoJElIMe2NOFmkJXTp+9NhMDEs1JoRYkw/Yg+VhBmpLntMHPJm2inNI/HsSzxwZw05banD57bSYGJJqTSmexOQw7xZZYxab4PkhAPCT62KRNlFMe2NMFTQLv2FKn91AWhAGJ5qRWBSm5D5KxKkiToSgsAsrvpA3EN4v0c4qNKGdIKfG71zqxpaEIjeVevYezIAxINCeVepBsFgGLAMIxYwUkXygKj8MGIYxTus4Uj9M2taqPiPR3oGsMx/p8eMe5xqoeAQxINA+VApIQAk6b1XhN2sGo8kv8kzwOK89iI8ohv9vdCYfNguvPNs7qtSQGJJqTQvkIQLwPyWhHjUyGo8qvYEvKc9q4io0oR4SiMTy4rxtXratEoduu93AWjAGJ5qRSBQmI9yEZroIUinEFW4LXYeNRI0Q5YseRfoz6I/grgzVnJzEg0ZxUatIG4nshGW2Z/2SIU2xJeU4rjxohyhG/fKUDlQVOvGlVmd5DWRQGJJqTahUkh9V4FaSJYIQVpASvM15BUukMQaJc1DHsx7PHB3DLeQ2wWY0ZNYw5asoalfZBApBo0jZWBWIsEDHk/H4mFLjskBLwcZqNSFf3v3oKAsC7z6vXeyiLxoBEc1LtB3Gn3XgVpLFABEV5DEgAUOCOV9LGAxGdR0KkrkhMw69e7cTlqytQU+TWeziLxoBEc1JtqsJlsyJgoGXioWgMwYjGClJC8u9hPMAKEpFenjjUh0FfCO/Z1qD3UJaEAYnmFFNsis3jNNY+OmOJSgkDUlyBK/73MMYKEpFu/nfnKdQUunDZ6gq9h7IkDEg0p5hiFSS3w1iHnSankgoYkABM/z2MBxmQiPTQPjSJ51sG8e7zG2A10MG0s2FAojlFFQtIRtuJmRWk15ueYmNAItLDz15qh80icIuBm7OTGJBoTrGYWgHJ7TBWD9KoPx4EivIcOo8kN3CKjUg/E8EIfvVqB647uxqVBS69h7NkDEg0J+V6kBI7MRtlewNWkF7P60qsYgsaZ5qUyCx+u7sTvlAUH7hohd5DSQsGJJqTej1IVmgShlnqz4D0elaLQL7Lxik2oiyLaRL3vtiGLQ1F2FxfpPdw0oIBieakYg8SAMP0ISUDUoGLO2knFbjsDEhEWfaXI/1oH/Ljgxebo3oEMCDRPFTbBynPEQ8aRlnJNhaIHzNi1K38M6HQbecqNqIsu+eFk6gpdOGa9VV6DyVt+KpKc1KtgpTnNFgFyc9jRmYqcNu4USRRFh3sHsOLJ4bwvguXm+qHNfN8J5QRMc0YvTjpkmewKbahyTBKvVzBdrpCtx2jgbDewyBSxvefPgGv04ZbzzP2ztkzMSDRnJSrICWn2ELGqEAMTYZQ6mFAOl2Jx4nhSQYkomxoG5zEowd68N7tDSg02ZmQDEg0J/V6kAxWQfKFUep16j2MnFLqcWDEH1Hu3y6RHu569gRsVgs+ZKLm7CQGJJqTshWkSO4HJCklp9hmUeJxIKZJbhZJlGF940H8bncX3rW1DhX5xt8YciYGJJqTavsgTVWQDDDF5gtFEY5qKPOwgnS6ZGAc4jQbUUb96LlWxKTERy5p0nsoGcGARHNSLSB5nPEKks8AAWnIFw8AJexBep3k3wf7kIgyZ9Qfxn07T+GGs6tRX5Kn93AyggGJ5qTaFFu+0wYhgAkDHFUxNBkCAE6xzTAdkEI6j4TIvO5+thWBSAwfvXyl3kPJGAYkmpNqFSSLRcDrtBlio8FkBamMTdqvU5qYcuQUG1FmDPpCuOeFNtxwdg3OqszXezgZw4BEc1KtggQkj6owQgUpHgBYQXq9Yk98qfGwjwGJKBO+//QJhKIxfOLKVXoPJaMYkGhOKi6VLjDIURUDE/EpJPYgvZ7TZkW+y8YKElEG9I4F8YuX2/GOLXVoLPfqPZyMYkCiOalZQTLGafA9Y0GUehxw2qx6DyXnlHocDEhEGfDdHS2IaRL/cIW5q0cAAxLNQ7WjRgAg32XHuAGatPvGg6gqNN/eI+lQ4nGwSZsozTqG/bj/1VO45bx6065cOx0DEs0ppl4+Shx2mvsVpN6xIKoKGJBmU+Z1Tk1BElF6/NfjR2G1CPz9m81fPQIYkGgeKlaQClzG6EHqHQ+ikhWkWVUVutA7FtR7GESmsefUCB7e143b39SoTOWaAYnmpGQPktsOXyia0w3qwUgMw5NhVLOCNKvKAhfGg1H4w7k/VUqU66SU+I8/HkaZ14nbLzXnrtmzYUCiOam2DxIQb9KWEpjI4d20+8fj00esIM0uOfXIKhLR0j3W3Ivd7SP45FvOgjdx2oAKGJBoTioGpEJ3fB+dUX/uroLqHY/f+NmDNLvkFEDy74mIFicUjeGrjx3B6sp8vGtrvd7DySoGJJqTigEpuTN1Li8TT974q1lBmlVlIjj2MSARLcmPnz+JU8N+fPa6tbBahN7DySoGJJqTij1IyZ2pc3kn5q6RAAAo0yy5UFMVpDGuZCNarK7RAP7nqRa8ZV0lLj2rXO/hZB0DEs1JxQpScmfqoRzeR+fUsB8lHgfyXXa9h5KTvE4b8p02VpCIluBLDx+EhMTnb1in91B0wYBEcwpF1VvmnzzsdDCHK0gdw340KLBR21JUcqk/0aLtONqPxw/24R+uWIW6YjVfaxiQaE4RBXeKdDus8DisGMrhgNQ+PMmANI/qQhe6RgN6D4PIcIKRGL740EE0lXvw4Ysb9R6ObhiQaE5hBStIAFDqdebsFFskpqF7NMiANI+Gkjx0jPj1HgaR4Xz7qeNoH/LjSzdugMOmbkxQ9zunlKhYQQLifUi5WkHqGQ0ipkk0lDIgzWVZaR5G/RGMGeDYGKJccaBzDHc924pbttbjopVleg9HVwxINKewogGpzOvAoC83K0jtw5MAwArSPJJ/Px3DrCIRpSIc1fDPv92HMq8Dn71urd7D0R0DEs0pHNXgsKr3z6TU48zZfZDaBuMBaRkrSHOqZ0AiWpDv7mjBkd4JfOWmjVMb5qosLXuGCyHaAEwAiAGISim3puNxSX/hmAa7VSAc03sk2VVR4MSQL4RoTIMtxwJiS78PXqeNu2jPI1lBOsWARDSvQ93j+O6OFtx0Ti2uWFup93ByQjoPVblcSjmYxsejHBCOanDYLJhULCHVFLmhSaBvIoTaIrfew3mdY30+rKzwQgi1drVdqHyXHSUeB9oZkIjmFIzEcOf9e1DsceDz16u559FscutHY8o5kZim5CqG5BEe3Tm4TPx4vw+rKrx6D8MQ6kvyOMVGNI+vPHoYx/t9+O93bkJxYqNcSl9AkgD+LITYLYS4PU2PaViaiXafDkc12HNsiikbahJVo1wLSCOTYQz6QlhVyYCUimUleTiZ6Nkiojd68lAffvZSOz508QpcouBxInNJ153vYinlFgBvBfAxIcQlM79ACHG7EGKXEGLXwMBAmi6bmzRpnoAUiUmlK0g9ObYTc8uADwCwqjJf55EYw6oKLzpHAvCHo3oPhSjn9I8H8enf7cfa6gJ8+prVeg8n56Tlziel7Eq87QfwAIDzZ/mau6WUW6WUW8vLzZ1SYyYKSKquYst32ZHvsqEnxypIh3vGAQCrGZBSkgySLf0+nUdClFuiMQ133r8Xk6Eo/ufWzXDarHoPKecs+c4nhPAIIfKT7wN4C4DmpT6ukWkm2TpISomwoj1IAFBT6EZ3jlWQ9neOodTjmKpw0dzOSkxFHutjQCI63df+fBQvtQ7hyzdtxMoK/sA1m3SsYqsE8EBiRY0NwP9KKf+Uhsc1LLNMsUVi8e9DxR4kAKgvcedcg29z1xg21BZyBVuKGkry4LBacLxvQu+hEOWMPzX34K5nWvHebQ34q3Pr9B5OzlpyQJJStgLYlIaxmIZZptiSu2irOMUGACvKPHju+CA0TcJi0T+QBMIxHO/34ap13KMkVTarBY3lHhxjQCICAJwY8OFTv9mPTfVF+PwNXNI/FzXvfBkmTTLFljyo1q7oFFtjuRehqIbusdzoQzrUM46YJrGhtlDvoRjKWZX5nGIjAjAejOCOn++Gw2bB9967hX1H81DzzpdhZqkgBSPxzSHz7Gr+J1pR5gEAtA7kxjLx/Z2jAICNDEgLsq6mAF2jAYzk6NExRNkQiWn42H2v4eTgJL7znnNybgPcXMSAlAFm6UEKJAKS26FmQGosTwak3Kg+vHJyGLVF7qk9mig1Z9fFA+X+rjGdR0KkDyklvvDQQTx3fBBfuXkjLmwq03tIhsCAlAFm2SgykDhexKVoBanc64TXaUNrDmw0KKXEKyeHsW1Fid5DMZyNtYUQAtjfMar3UIh08ePnT+J/d57CHZc24V1b6/UejmEwIGWASfLRdAVJ0YAkhEBTuScn9tBp6fdhaDKMbY0MSAuV77KjscyDfZ2sIJF6HtnfjS8/ehjXrK/Cp6/mZpALwYCUAWbpQUpWkNwOdf+ZrKspwMHucUidn9OdJ4cBANtWlOo6DqPaVFc01cNFpIpnjg3gH3+1F1uXFeObt2zOidW4RqLunS+DTDPFpngFCQA21BZiLBBBx7C+K9mePTaAmkIXlpXm6ToOozq7rhD9EyH05MiKRKJM290+gjt+vhsrK/Lxo/efp2wv6VIwIGWAWZq0k6vYVO1BAqZXjB3QscE3FI3h+ZZBXL6mghtELtLW5fGpyVcSlTgiMzvSO44P3PMKKguc+NkHz0eh2673kAyJASkDTFJAOm2KTd2AtLoqHzaLQHO3fgFpZ+sw/OEY3rymQrcxGN3a6gIUuGx4sWVI76EQZdThnnG854c7keew4ecf2obyfKfeQzIsBqQMiJkkIXGKDXDarFhbXYDX2kd0G8NTh/vgtFm4NHcJrBaBbY2leKmVAYnM62D3GG794ctw2iy4//btqC/hlPxSMCBlgN4NvekS4BQbAGDbihLs6RidmnLMpmhMwx8P9OKy1eVKV/LS4YLGUpwa9qNzJLfO1yNKh+auMbznhzvhcdjwq9svwPLERre0eAxIGWCWVWy+YBRWi4DLrvY/k+2NpQhHNew5NZr1a794YgiDvhDevrk269c2mwtXxlcAcpqNzGZn6xBu/eHLyHfZcP/t29HAxRxpofadL0M0k5zFNhGMIt9lg4DajcHnrSiBRUCX6Zk/7O1CvsuGy9l/tGSrK/NRXejCk4f79B4KUdr8qbkXt/3kFVTkO/Grj1zAabU0YkDKALOsYpsIRpDvsuk9DN0Vuu04u64IO470Z/W6Y/4IHjvQi+s2Vis/zZkOQghcubYSzx0f1GW6lCjdfvFyOz56325sqCnAb++4kOerpRkDUgaYpUl7IhhFvpPLQwHgmg1VONA1ltX+ld/s7kAgEsNtFyzL2jXN7qp1lQhEYnihZVDvoRAtmqZJ/NefjuBzf2jG5asrcN+Ht6PY49B7WKbDgJQBURMFpAI3K0gAcPX6KgDA4wezMz0T0yR++lIbzltejPU1hVm5pgq2N5Yi32nDn5p79R4K0aJMBCO4/ee78L2nT+DW8xtw123ncgFHhjAgZUA4ao4mpPFgBPkuVpAAYEWZB2uq8vHwvu6sXO+hfV3oGA7ggxetyMr1VOGwWXD1hio81tw7tc8XkVG0D03i5u+9iB1HB/ClG9fjKzdtgM3K23im8G82A8IxcwSkZJM2xb1zaz32doziYIY3jYzENHzryeNYW10wVbmi9Ll5Sy18oSj+fIhVJDKOHUf6ceN3X8CAL4Sff/B8vO+C5dxZP8MYkDLATBWkAlaQprxjSy2cNgvu23kqo9f59a4OtA358U9XncXDJTNg+4pS1Ba58bvXuvQeCtG8IjEN//noYXzg3ldRVeDCgx+7CBeu5Kax2cCAlAERE1SQNE3CF2IF6XRFeQ68bVMNfre7E/3jwYxcY2AihP/z2BGcv6IEV67l0v5MsFgEbt5Si+ePD6BjmJtGUu7qGg3glrtewl3PtuK92xrwh49dhGWl3AAyWxiQMsAMFaSJYBRSgocczvCxy1ciqkl87+kTaX9sKSW+9MghBCIxfOWmjSyfZ9B7tjXAIgTufbFN76EQvYGUEg/u7cK133oOx/p8+J9bz8GXb9rI7T6yjAEpA8wQkAYnQwCAMi8POjzd8jIP3nluHe7b2Y5jfRNpfezf7OrEw/u68fdvXoWVFd60Pja9XnWhG9durMavXu3ARDCi93CIpgz6Qvjofa/hzvv3orHcg0f+/mLcsKlG72EpiQEpA0ImmGIb8oUBMCDN5p+vXg2v04b/73f707bn1b6OUfzbg824aGUpPnb5yrQ8Js3tw29aAV8oip+/3K73UIgAAI8d6MHV33wWTx3ux2feuga/veNCnqmmIwakDIiYoYLki1eQSr3cfGymUq8TX7hhPfacGsXXHj+65Mdr6Z/A39zzCioKnPi/t5wDKxuzs+LsuiJcvrocdz3TirEAq0ikn45hPz7801fxd/e9hpoiNx75h4txx6VNfC3QGQNSBphhmf8QA9Kc3n5OLd67rQE/eOYE7tu5+ArEa6dGcMtdL8NqseAXH9qG8nxW7LLpU1evxlgggh8+26r3UEhBoWgM393Rgqu++QxePDGEf712LX7/0QtxVmW+3kMjAFyilAGm6EHyhSEEUJLHgHQmX7hhPbpHA/jXB5ox6o/g7y5tSnlZvpQSv3i5Hf/xx8OoLHDh3g+cx9UpOlhfU4gbNtXgR8+34l1b63kKOmWFlBJ/OdKPLz96GK0Dk7h2YxX+7fp1qC7kWWq5hBWkDDBDQBrwhVCS5+AurXNw2Cz4wW3n4oZNNfja40fxvp+8gqO98zdu72obxi13vYx/e/AgtjWW4oGPXojGcjZl6+Wz166BVQh87sFmSJMcNE25a3/nKN5998v40E93ARK45wPn4XvvPZfhKAexgpQBZtgHqWskgBqeDD0vp82Kb797M7atKMH/+dMRXPOtZ3HxyjK8ZX0V1tcUoNTjQCQm0TMWwGvto3isuQdHeidQ5nXiqzdvxC3n1XM5v86qC9341NWr8f8/fAgP7evGjZtr9R4SmVDb4CT++4ljeHhfN0o9Dvz7jevx7vMbYOcPoTmLASkDQiaoIHWNBtBUzimfVAgh8Nfbl+G6jdW458U2/P61TvzbH5pn+bp4Y/C/37ge7zi3DnkO/vfLFe+7YDke3teNzz3QjM31RZzupLQ5MeDDd//Sgj/s7YLDZsHHL1+Jj1zayHMuDYCv0Blg9CZtKSW6RgK4ZFW53kMxlGKPA/901Vn4xytXoXMkgCO9ExgLRGC3CpTnO7G+ppAbb+Yoq0Xg27eeg2u/9Rw+/r978Js7LuCmfLQkx/om8J2/tODh/d1w2az40MUr8LeXNKIi36X30ChFDEgZEIoYOyCN+CMIRGKoLeYU22IIIVBfkof6Ejb8GkldcR6+/s5NuP3nu/Gp3+zDt999Ds/CowWRUuLZ44P48fMn8eyxAeQ5rPjIJU348JtWcE85A2JAyoDJUFTvISzJycFJAMAy3uBJMW9ZX4V/eesa/OdjR1BT5Ma/vHUNe8RoXoFwDA/s6cJPXjiJln4fyvOd+ORVZ+G925ehxMOVwEbFgJQBEyFjbzrX0h9ficW9OEhFt1/SiK7RAO5+thVCAJ+5hiGJZtfcNYZfvdqBP+ztwkQwivU1BfjGuzbh+rNr4LCx+droGJAyYCJo7ArS8T4fXHYLp9hISUIIfPGG9dCkxF3PtCIQjuHz16/jlhcEABgLRPDQvm786tVTaO4ah8NmwbUbqnDr+Q04f0UJw7SJMCBlgNED0rF+H5rKvdzmnpRlsQj8+40bkOew4e5nW3FycBLfuXULCvPYZK8ifziKJw/34+F93Xjm6ADCMQ3rqgvwpRvX48ZNtfx3YVIMSGlmtQhDnw4upcTBrjFctrpC76EQ6UoIgc9euxZN5R587g/NuP47z+Eb79qM85aX6D00ygJ/OIpnjw3g4f09eOpwH4IRDVUFLtx2wTK8fXMtNtYV6j1EyjAGpDTLd9kwbuAK0qlhP4YmwzinoUjvoRDlhFvOa8DKinx84ld78K67XsLtlzTizitWcR8rE+oc8WPHkX48ebgfL7UOIRzVUOZ14J3n1uOGTTXYuqyYKxsVwv/haVbgsmPUH0EwEjPkPiqvnRoBAGxpKNZ5JES549xlxXjszkvwH48cwl3PtOKhvd34zFvX4G2bathzYmCBcAy72ofxQssQnj7ajyOJo4JWlHnwvu3L8Oa1FTh/eQn7zxTFgJRmFflOnBr2Y2AiZMh9cF46MYR8lw2rq7iCjeh0XqcNX33H2bh5Sx2+9MhB3Hn/XvzwuVZ87LKVuHp9FSsLBhCOatjXOYoXW4bw4olB7Dk1inBMg80isGVZMT577RpcsbYSTTwbkcCAlHZVhfFdUnvGgoYLSJom8ZcjA7j0rHI2aBOdwfkrSvDgxy7GA3u68N0dLfi7+15DU7kH77tgOd6+mQ27uaRvPIjX2kewp2MUr7WP4EDXGEJRDUIAG2oK8YGLluOCplKct7wEHidvh/R6/BeRZtVTASmg80gW7kDXGAZ9IVyxlg3aRHOxWgT+6tw63HROLR490IO7n23FFx46iK88ehjXbazGDZtqcOHKUjhtxptmN6r+iSAOdY/jcM8EmrvHsPfUKLpG46/DDqsFG2oLcNv2Zdi6vAQXNJYyyNK8GJDSrKowvndQ71hQ55Es3AN74ocpXs4VbEQpsVoEbthUgxs21aC5awy/fOUUHtrbjd/v6UK+04Yr1lbg8jUVuLCpDOX5PGoiHSZDUZwcnMSJAR8O9YxPhaJBX2jqa2qL3NjcUIQPXrwC5zQUYX1NAcMqLRgDUpp5nVbkO21TP7kYRTAS3yr/6vVVKMrj1vhEC7WhthBfvmkjPn/DOrzQMog/NffiiUN9+MPebgDAWZVeXNhUhnMainB2XRGWleSxb+kMwlENPWMBnBr2o3UgHoaSb3tO++HTbhVYVZGPy1aXY111AdZWF2BddQGrQ5QWDEgZsKrSO7Uawijuf+UUxgIRvHdbg95DITI0p82KN6+pxJvXVCIa03Cwexwvnog3Bd//6inc+2IbgPiWIBtrC7GmqgCN5R40lXvRVOFBuddp6pVxUkqM+iPonwihfyKIrpEAOkcC6Bzxo3MkgK7RAHrHg5By+s94nTY0lXuwvbEUTeUeNJZ70VjuQWOZl0d6UMYwIGXAupoCPLinG1JKQ7zQ+cNRfO/pE9i2ogTbG0v1Hg6RadisFmyqL8Km+iL83WVNiMQ0HO/z4UDXKPZ3juFAYlouEIlN/Zl8pw21xW5UF7pQXeRGTaEL1YVuVBQ4UZznQLHHgeI8O9x2a068voSjGsYCEYwFwhgLRDDqj0y9HQ1EMDARwsBEEAMTIfRPhDDoCyESk697DKtFoLrQhdoiNy5sKkNdsRu1xW7UFbuxstyL8nxzh0bKTQxIGbC+phC/ePkUWgcnDbFc9GuPH0X/RAjf/+steg+FyNTsVgvW1RRgXU0Bbjkv/jFNk+gdD+LEgA8n+n1oHZxE92gAPWNB7Oscw/BkeNbHctgsKM6zo8jtgNthRV7il8uefN8Gp80Ci0XAKsTUW6sFU+9rEohpGmJa/G1Uk4hpcuptMBKDPxz/FYhEEZh6P/52MhSFPxybdXwAIARQ6nGgzOtERYELqyrzUZ7vREW+M/HWhdpiNyrzndxriHIOA1IGXNRUBgB45uhAzgekJw/14d4X2/C+C5bh3GU8QoEo2ywWgZoiN2qK3HjTqvI3fD4YiaF3LIj+iRBG/GGMTIYx4o9g1B/G8GS8ahOIxBAIxzDqjyTCSzzMhKIaNBkPO5qc5eKnj0MANosFFkv8rdUi4LJbkOewTYUuj9OGMq9zKpB5HDYU5dlR6LajwG1HUZ4DhW47itzTH+OWIWRUDEgZ0FCah1UVXvzxQA8+ePEKvYdzRrvbh3Hn/XuwsbYQn712rd7DIaJZuOxWLC/zYHmZZ0mPI6VMVIzkVGiyWkT8V6LCRETTWNPMkHef34Dd7SPY2zGq91Bm9afmXvz1j15BRYELd9+21ZDHohBR6oSIhyGHzQKXPV4NctmtsFstDEdEs2BAypB3bq1DmdeBzz/YjGhM03s4U4Z8IfzL7/fjjl/sxqpKL379kQumdv8mIiKiOAakDClw2fHFt63H/s4xfPp3+xHROST1jQfx9ceP4rKvP41f7+rE375pBX5zxwXcvI6IiGgW7EHKoOvPrkHrwCS+8cQxtA5M4vM3rMOWhuKsXb97NICnjw7gTwd78WLLIGJS4sq1lfj01auxqpKH0RIREZ0JA1KG/cMVq9BY7sEXHjyIm7/3IjbWFuKaDVU4f0UJ1tcUIM+x9KcgGImhfciPk4M+nBiYxOGecexuH5nacXZZaR4+/KZG3Hp+PZaVLq3Rk4iISAUMSFlw/dk1uHx1Be5/tQN/2NOFrz1+dOpzFflOLCvNQ4nHgQJXfGmsy26FRUzvVRKTcmoZb3IfkqHJEAYmQhj0xZf5nq62yI2ty0twbkMRtjeVYnVlPjdZIyIiWoC0BCQhxDUAvgXACuBHUsqvpuNxzcTjtOFDF6/Ahy5egeHJMHa3j+Bo7zjah/w4NexH26A/sRttBOGYhtiMTUucNgvcDivcdivcDitKPQ6srsrHRV4nyrzxkNVU7sWKMg88TuZeIiKipVjynVQIYQXwXQBXAegE8KoQ4iEp5aGlPrZZlXgcuGpdJa5aVznn12mJ/Uos3KOEiIgoq9Kxiu18AC1SylYpZRjA/QBuTMPjKs9iEbBxjxIiIqKsS8dcTC2AjtN+3wlg28wvEkLcDuB2AGhoeP2J8dGYhpODkzgxMIkBXwiDEyGMByMIRjSEIjEEozEEI/FpJ4n4jrBSAhLxt1ri2GebxQKbVcBmEVPv263xLfPtiffdDiu8Dhs8Thu8zvhbj9OKEo8DlQUulHocPBOIiIhIcVlrVpFS3g3gbgDYunWrBIDjfRP4n7+04MnDfa878FAIwOuwwWm3wmWP7/rqsltgFQIQAhYBCMR3ho2/H6+w+KNRRDWJaEwiqmmIxiQimoZYTCKiSURiGvyhGMJz7ElkEUCp14m6YjfWVOXjrMp8nNNQjI21hTxTiIiISBHpCEhdAOpP+31d4mNzevpoP27/2W447RbcuLkG5y0vwVmV+ajId6Ikw1WccFTDZCgKXyiKyXAUk6Eohicj6BsPon88iL7xENqHJ/Gn5l788pV4caw4z463rKvC+y5chvU1hRkbGxEREekvHQHpVQCrhBArEA9G7wbwnrn+gCYlPvnrfWiq8OLnHzofZd7s7ubssFngsDlQ7HHM+XVSSgxMhPDyyWE8faQfD+3rxq92deDmLbX4/PXrUJQ3958nIiIiY1pyQJJSRoUQHwfwOOLL/H8ipTw4158Z80cQmwzj7vedm/VwtBBCCFQUuPC2TTV426YafOGGCO5+7gTueqYV+zpG8YsPb0N1oVvvYRIREVGapWUeS0r5qJTyLCllk5Tyy/N9/UQoiqoCV1aP3UiHwjw7/vnqNbjvw9vQNx7CHT/fjVA0Nv8fJCIiIkPRZblWKKJhQ22BYXd33tZYiq+/82zs6xzDvS+06T0cIiIiSjNdAlI4pqGuOE+PS6fNNRuqcelZ5fj+MycQjLCKREREZCa6BCRNStSXGDsgAcDtlzRi1B/B4wd79R4KERERpZFuOyKWeY2/AuyCxlKUeZ146nC/3kMhIiKiNNLtVFOPw/gHqlosAhetLMULLUOQ83+58qSUGPFHcGrYj1F/GMGIBk1K5LtsKHDZUVvsRqnHYdjeNCIiMg/dUkqe06rXpdNq24pSPLi3G53Dfr2HkpPGgxE8ur8HzxwbwCsnhzE0GZ7z6wvddqyuysf2FSXY3lSK85eX8OgXIiLKOt0Cktdp/AoSAKytzgcAHOmd0HkkuWVgIoTv7mjBL185hVBUQ22RG5euLse66gIsK/Wg1OuA02aBRQj4QlGM+iPoGPbjxIAPzV1j+M6OFnz7Ly0o8zpww6YavHfbMqys8Or9bRERkSL0m2IzSUA6qzIekI71MSAlPbyvG5994AD84RjesaUW7922DGfXFS5o6mwiGMELLYN4cG837tt5Cve+2Ia3bqjCP111FlZW5Gdw9ERERDoGJLfdHFNsHqcNpR4HukYDeg9Fd1JKfPOJY/j2X1pwTkMRvv7OTWgqX1zVJ99lxzUbqnHNhmoM+UK454U2/PTFNvz5YB/+9pJG3HnFKrhM8m+IiIhyj27NHTaLeRpxa4rc6BphQPr2U/FpsVu21uPXH7lg0eFoplKvE5+6ejWe/ufL8PZzavH9p0/gr37wIjrY90VERBmiW0CymCgg1Ra5la8g/eVIH7755DHcvKUW/3nzRtgz0Fhd6nXi6+/chB+9bytODflxw3eex/7O0bRfh4iISL+AZKKl3OX5TvjD6u6mPRGM4DO/O4C11QX4yk0bMx5+r1xXiYf//mLku2x4zw934rVTIxm9HhERqUe3gGQ1UUAqyrPrPQRdfXfHCQz4QvjqzRuz1he0rNSD33zkQpR5HfjwT3ehbXAyK9clIiI16BaQhIm2tinKM/6u4Is1FojgFy+344aza7Cpviir164qdOGeD5wPKSU+/LNdCChcxSMiovRiBSkNitzqVpDuf+UUfKEoPnJpoy7XX1Hmwf/cugUt/T589bHDuoyBiIjMhz1IaaDyFNvvX+vCucuKsb6mULcxXLyqDB+6eAV++lI7Xm4d0m0cRERkHjquYtPryumnakA62juBo30TuHFzjd5DwT9fvRo1hS586eFDiGk8GY+IiJaGFaQ0MMuu4Av15OE+AMA1G6p0HgngslvxmWvX4lDPOB7Y06X3cIiIyODYg5QGZtkVfKFeOjGENVX5qMh36T0UAMANZ1djXXUBvvd0CzRWkYiIaAn0W8VmnnwEt0O9gBSKxvBq2zAuaCrVeyhThBD4u8ua0DowiT8f6tV7OEREZGA6BiTzJKQ8h3pTbAc6xxCKatjemDsBCQCu3ViNumI37tt5Su+hEBGRgekSkMwTjeJUnGI71DMOANhUV6TvQGawWgTeeW49nm8ZROcIz2ojIqLFMdFaMv1YTXSuXKoOdY+jxONAZYFT76G8wV9trQMA/HZ3p84jISIio9InIKmXJ0znUM841lUX5ORUaW2RG9tWlOCxA+xDIiKixdFpii33bqqUOikljvf5sKrSq/dQzugt66pwtG+CZ7QREdGicIqNFmzAF0IgEsPyUo/eQzmjq9ZVAgCeONSn80iIiMiI2KSdJg6rOlmzYzje/NxQkqfzSM6sviQPZ1V68ezxAb2HQkREBsQepDSxWU34TZ1B+1AiIJXmbkACgAsaS7GrbQThqKb3UIiIyGBYQUoTu0IVpFPDfggB1BW79R7KnC5oKkUgEsP+zlG9h0JERAajzl09w1QKSF0jAZR7nXDacnv/p20rSiFE/EgUIiKiheAqtjRxKDTFNugLoSIH9z+aqdjjQGOZB/tYQSIiogViD1Ka2G3qVJAGfCGUeXM/IAHAxtpCHOga03sYRERkMOrc1TNMpSm2wYmwcQJSXRH6xkPoHw/qPRQiIjIQNmmniSoBSUqJockQyvMNEpBqCwGAVSQiIloQTrGliSo9SGOBCCIxaZgK0vqaAggBNHeN6z0UIiIyEFaQ0kSVA2sHJkIAgDKvQ+eRpMbjtKGu2I2WAZ/eQyEiIgNRY14oC1QJSIO+MACg3CAVJABoKveipZ8BiYiIUmfTewBmkYun2mfCWCAekArz7DqPJHUry7146cQQYppUJshmUziqoW1oEhPBKIrz7KgvyVOmJ4+IzIsBKU2sigSk8WAUAFDgMk5AaqrwIhTV0D0aQH0Onx9nJFJKvNAyhHtfPInnjg8idNpxLl6nDZetLscHL16BLQ3FOo6SiGjxGJDSxKLID8wTBgxIKyu8AICWfh8DUhr0jQfxrw8048nDfSjzOnHr+Q04p6EIBW47hn1h7GofwR/3d+OR/T246ZxafPGG9YaqOBIRAQxIaWNRpII0EYwAALwu4/zTWZYIRR0jfp1HYnyHusfxwXtfxWggjM9euwbvv3D5G46cece5dfjcdWvxg2dO4AfPnMDejlH8+P1b0Vju1WnUREQLp0jdI/NUCUjjgSg8DquhennKvE44bBZ0jgT0HoqhHe2dwC13vwQAeOCjF+H2S5rOeB6fx2nDJ9+yGr/82+0YD0Tw7rtfRtvgZDaHS0S0JAxIaWKkwLAUE8EI8g00vQYAFotAbZEbXQxIi9Y/HsTf3PMK3HYrfnPHBVhbXZDSn9u6vAS/vH07IjEN77/nFYwFIhkeKRFRejAgpYki+QgTwSjyDTS9llRX7EYnp9gWRdMkPvmbfRjxh3HPB85bcB/XWZX5+NH7t6JrJIBP/nofpJQZGikRUfowIKWJKlNsE6GIYQNS1ygrSItx3852PHd8EJ+7bh3W1xQu6jHOXVaCz7x1DZ483IcH9nSleYREROnHgJQmygSkYBQFbmNNsQFAXXEeBn1hBMIxvYdiKMOTYXzt8aO4aGUp3rutYUmP9cGLVmBLQxH+/ZFDGJ4Mp2mERESZwYCUJqr0IPlCUXgcxqsg1RS5AIBVpAX61pPH4AtF8fnr1y95M1SLReArN2/EWCCC7z/dkqYREhFlBgNSmlgUCUihiAaXffaVS7msIj8ekAZ9IZ1HYhz940H88pUO3HJePVZX5aflMddUFeCmc+rws5fa0TceTMtjEhFlAgNSmiiSjxCMxOCyG++fTXl+/Oy45GG7NL8fv3ASUU3DHZc2pfVxP3HlKsQ0ibueaU3r4xIRpZPx7nQ5SpWjRgKRmCErSMnDdRmQUjMZiuK+l0/h2o3VWFbqSetj15fk4dqN1fjNrg5MhqJpfWwionRhQEoTFQ6rlVIiGInBbcCAVOi2w24VGOAUW0r+eKAHvlAUf3Ph8ow8/vsvXI6JUBS/54o2IspRDEhpkjy83MxbvEQ1CU3CkFNsFotAmdfJClKKfrurE41lHpy7LDOHzW5pKMLG2kL8785TGXl8IqKlMt6dLkcll/lrJg5IySXyRpxiA+J9SAxI82sbnMQrbcN459b6jFVGhRC4eUstDveMo6V/IiPXICJaiiUFJCHEF4UQXUKIvYlf16ZrYEaTXMWmmbiEFIwYPCCxgpSSx5p7AQA3bq7J6HWuO7saFgE8tLc7o9chIlqMdFSQviml3Jz49WgaHs+QkqvYTB2QohoAAwekfCd7kFLwxKFebKwtRE2RO6PXqch34YKmUjy0r5vHjxBRzuEUW5okV7FpJp5jC05NsRnzn02p14EhX8jUz9FS9U8EsadjFFetq8zK9a7dWI22IT9ODPiycj0iolSl4073cSHEfiHET4QQmenoNIBkr0bMxPfeYDQekIy4ig0AitwOaBLwhbm0/EyeOtwPKYG3rM9OQLpsdQUA4OmjA1m5HhFRquYNSEKIJ4UQzbP8uhHA9wE0AdgMoAfAf8/xOLcLIXYJIXbFYuY7Dyt51IiZpwqM3oNUmBc/Q27MH9F5JLnr+ZZBVBW4sLoyPTtnz6e2yI1VFV7sONqflesREaVq3kO1pJRXpvJAQogfAnhkjse5G8DdAFBQv9p0KSLZgxQz8fRNIJzsQTLmFFtR4pDdUX8E9SU6DyYHSSmxs3UIb1pVntV9vS5fU4F7XjiJyVAUHqfxzvkjInNa6iq26tN+exOA5qUNx7imV7HpPJAMSk6xGbWCVJTnAACMBVhBmk1Lvw+DvjC2N2Y3PV7YVIpITGJvx2hWr0tENJellgL+SwhxQAixH8DlAP4xDWMypOl9kMybkIw+xVaUmGIbDYR1Hklueql1CABwQWNZVq+7ZVkxhABebRvO6nWJiOaypHq2lPK2dA3E6FRYxRZKLPN3WI0/xUZvtKttBFUFLtSXZHZ5/0wFLjvWVhVgV9tIVq9LRDQXY97pctBUD5KJK0jRWCIg2Yz5z6YgEZA4xTa7/Z2j2FRfqMu5guctL8Zrp0am/o0REenNmHe6HJS8qZg4HyGS2MPAbtAKkstuhctuwaifU2wzjfkjaBvy4+y6Il2uv3V5CfzhGI708tgRIsoNxrzT5TAT5yNEEj/d26zZrzCkS5HbgRFOsb3Bga4xAMDZdYW6XH9jbfy6B7vHdLk+EdFMDEhpMjUrYeISUjIgGbUHCQAK3DZMBBmQZtrfNQpgOqhkW0NJHrxOGw52j+tyfSKimYx7p8sxAokpNp3HkUlRg0+xAYDHacNkyHwblS5Vc9cYGkryprZCyDaLRWBddQGau1hBIqLcYNw7XY5JVpBMXEBCOKZBiOldw43I67TBF+JRIzMd6/NhdVV2ds8+k3U1BTjcM2HqzVaJyDgYkNLEuJEhddGYNHT1CAA8DhsmGZBeJxzV0DY4ibMqvbqOY31NAQKRGE4OTuo6DiIigAEp7aSJJ9kiMQ12A1ePgOQUGwPS6dqHJhHVJFZV6FtBWltdAAA40ss+JCLSHwNSmqgwxRbRJOwG3QMpyeu0copthuP9PgDAygp9K0hN5fHrtw6wgkRE+jP23S6HTO2DpPM4MikS1WCzGPufjMdpw2Q4BmnmJLtAx/omIMR0QNGL22FFbZEbJwZ8uo6DiAhgQEo7M993o5oGh4H3QAIAr8uGmCanjk2heAWpvjgPbof+Z+w1VXhZQSKinMCAlCY6nM6QdZGYhM3gTdpeZ/z4wYkgp9mSWgcm0VTu0XsYAICmcg9ODPhY4SMi3Rn7bpeDzNykHY5qsBu8guRxxAMSG7XjpJToHPZjWWluBKTGci/84Rh6x4N6D4WIFMeAlCbJjSJNnI8Q1TTjL/NPVJDYqB036o9gIhRFXbFb76EAAJrK4kHtJKfZiEhnxr7b5RBh/nyEiAn2QUpOsbGCFHdq2A8gftRHLqhPjKNzJKDzSIhIdca+2+WQ6aPYzBuRIjETTLE5443Ik2EGJADoGEkEpNLcCEhVhS5YBNCZGBcRkV4YkNJEjSZtzTRN2j6exwZguoJUX5wbAclutaC60M0KEhHpzth3uxxk4gISojEJh8EDksseryAFIwxIANAxHECpxzHVm5UL6ordU5UtIiK9GPtul0OSTdomzkeIatLQB9UC0wEpxIAEID6VVZcj/UdJdcV5rCARke4YkNJEhaNGABg+ICU3QwwwIAEAesaCqC5w6T2M16krdqN3PIgwN/MkIh0xIKWZmfdBAgCLwZutXImz5IIR3nwBoG88iKrC3ApI9SV5kBLoHmUViYj0w4CUJsLgwSFVBm9Bgs1qgd0qWEEC4A9HMRGMoqLAqfdQXqcmEdi4WSQR6cngt7vcwym23OeyW9mkDaB3LB5AqnJsii0Z2PoYkIhIRwxIaWL82JAao0+xAQxISX3jIQC5GJDi4+lPjI+ISA8MSGky3aRt7hKSGSpIbruVPUiYrtBU5FhAynfa4LJb0D/BChIR6YcBKU2mdtLWdRSZZzVBBclttyIQZgUpGZByrUlbCIHKAtdUhYuISA9Cj4qHEGIAQHvWL5wdZQAG9R4ELQifM2Pi82ZMfN6Mx8zP2TIpZflsn9AlIJmZEGKXlHKr3uOg1PE5MyY+b8bE5814VH3OOMVGRERENAMDEhEREdEMDEjpd7feA6AF43NmTHzejInPm/Eo+ZyxB4mIiIhoBlaQiIiIiGZgQMogIcQnhRBSCFGm91hobkKIrwkhjggh9gshHhBCFOk9JjozIcQ1QoijQogWIcRn9B4PzU0IUS+E2CGEOCSEOCiEuFPvMVHqhBBWIcQeIcQjeo8lmxiQMkQIUQ/gLQBO6T0WSskTADZIKc8GcAzAv+g8HjoDIYQVwHcBvBXAOgC3CiHW6TsqmkcUwCellOsAbAfwMT5nhnIngMN6DyLbGJAy55sAPg3zb65tClLKP0spo4nfvgygTs/x0JzOB9AipWyVUoYB3A/gRp3HRHOQUvZIKV9LvD+B+M22Vt9RUSqEEHUArgPwI73Hkm0MSBkghLgRQJeUcp/eY6FF+SCAx/QeBJ1RLYCO037fCd5sDUMIsRzAOQB26jwUSs3/RfyHfeUOsLTpPQCjEkI8CaBqlk/9K4DPIj69RjlkrudMSvlg4mv+FfHpgPuyOTYiFQghvAB+B+ATUspxvcdDcxNCXA+gX0q5Wwhxmc7DyToGpEWSUl4528eFEBsBrACwT8QPdq0D8JoQ4nwpZW8Wh0gznOk5SxJC/A2A6wFcIbn/RS7rAlB/2u/rEh+jHCaEsCMeju6TUv5e7/FQSi4C8DYhxLUAXAAKhBC/kFL+tc7jygrug5RhQog2AFullGY96M8UhBDXAPgGgEullAN6j4fOTAhhQ7yR/grEg9GrAN4jpTyo68DojET8p8WfAhiWUn5C5+HQIiQqSJ+SUl6v81Cyhj1IRHHfAZAP4AkhxF4hxA/0HhDNLtFM/3EAjyPe7PtrhqOcdxGA2wC8OfH/a2+iKkGUs1hBIiIiIpqBFSQiIiKiGRiQiIiIiGZgQCIiIiKagQGJiIiIaAYGJCIiIqIZGJCIiIiIZmBAIiIiIpqBAYmIiIhohv8He2jICechzzMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "targets = (11, 12)\n", + "targets = (16, 17)\n", "xmax = 15\n", "x = np.linspace(-xmax + EPSILON, xmax - EPSILON, 1000)\n", "\n", @@ -289,7 +264,7 @@ "axs[1].semilogy(x, np.abs(rel_error_simple), label=targets[-1])\n", "axs[0].set_xlim(x[0], x[-1])\n", "# axs[0].set_ylim(*(np.array([-1, 1]) * 4.2e-8))\n", - "axs[1].set_ylim(1e-10, 5e-8)\n", + "# axs[1].set_ylim(1e-10, 5e-8)\n", "for ax in axs:\n", " ax.legend()\n", "\n", @@ -309,24 +284,11 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAALYCAYAAAAXYuFPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9fcy2XZcXhP3WcT3vDAPDvMQMovNRxtaqaFUa0Vo/SkmMGDXSpImh8lnbTvyjpkVTDWK0iWJMtGJtm5hpag2KTU3apElraiUElVRMGKKgThOLZSDAgANakArMex6rf+z18Vtr732c53Xd9/Nc1/N67ve9n+vcx97rY3/91t77WHsfoqp4hmd4hmd4hmd4hmd4hmd4hmd4hvcLx3sr8AzP8AzP8AzP8AzP8AzP8AzP8F/08FyYPcMzPMMzPMMzPMMzPMMzPMMzvHN4Lsye4Rme4Rme4Rme4Rme4Rme4RneOTwXZs/wDM/wDM/wDM/wDM/wDM/wDO8cnguzZ3iGZ3iGZ3iGZ3iGZ3iGZ3iGdw7PhdkzPMMzPMMzPMMzPMMzPMMzPMM7h+fC7Bm+rYKI/PMi8o9+Zp6/WkR+2+fk+QzP8AzP8AzP8AzP8AzPwOG5MHuGr2UQkd8qIv+JiHzne+vC4VMXcUZ/E5H/rP37vs+p5zM8wzM8wzM8wzM8wzN8rPBcmD3D1y6IyA8B+OsBKIC/7X21+VLCv6Wq393+/cGeSUS+eOTZVXht/md4hmd4hmd4hmd4hmf4csJzYfYMX8fwKwH8dgD/PIBftUj/XhH510TkT4jIvy4iPxcAZITfICJ/RET+uIj8bhH5r1naN0XkN4rIfywiPy4i/6CITONDRH5IRJQXNPb27n8oIj8PwD8L4L9pb7n+U0v/ThH5J0Xk94nIHxaRf1ZEvustBReR3ysif7+I/C4Af1JE/nzT538gIr8PwG8RkcP0/3Er628UkW82/SP/W/R4hmd4hmd4hmd4hmd4hs8bnguzZ/g6hl8J4DfZv18sIj+npf8yAP8IgO8F8O9YPgD4GwH8twD8BQC+CeBvB/BHLe1/Zc/+ywB+ocn4779GKVX9MQB/F/KN18+ypH/cZP58AH8+gO8H8A+9hncL/z0AfwuAnwXgW/bsFwL4eQB+MYBfbf9+EUZ5vhvA/7rx4PzP8AzP8AzP8AzP8AzP8M7huTB7hq9VEJG/DsDPBfAvq+qPAvg9AP6Olu3/pqr/hqr+aQC/DuMN1g8C+CkAPxPAXwRAVPXHVPUPicgLgF8K4Neq6p9Q1d8L4H8B4Fd8Bn0FwA8D+DWq+sdU9U8A+MdM3i781SLyn9K/39PS/xlV/f2q+p/Ts/+5qv5Je/bLAPxTqvofqep/BuDXAvilzW2R8z/DMzzDMzzDMzzDMzzDO4fnwuwZvm7hVwH4f6jqT1r8X8Lszvj7/YctTP4YgO9T1d+C8ebofwPgj4jIj4jI92C8WfsGgB8nHj+O8WbrU8PPBvDTAfyoL7QA/N/t+S78dlX9WfTvv9LSf/+Chp99H+ayfAHg52zyP8MzPMMzPMMzPMMzPMM7h+fC7Bm+NsHOZf3tAH6hiPyEiPwEgF8D4C8Xkb+csv4g0Xw3gD8LwB8EAFX9Z1T1rwDwF2O4F/7PAPwkxtu0n0s8/ksA/sBCjT9pf386Pftz6Le2/D8J4D8H8JfQQuubqvrdj5R5E7qM/uwPYi7LtwD84Ts8nuEZnuEZnuEZnuEZnuGdwnNh9gxfp/DfAXDDWFT9fPv38wD8mxhnwjz8zSLy14nId2CcNfvtqvr7ReSvFJH/hoh8A2OB9acAnKp6A/AvA/j1IvIz7bKQvwfAv9gVUNX/GGPB9stF5EVE/k4A/EbrDwP4AZMNVT0B/G8B/AYR+bMBQES+X0S+zLNd/wcAv0ZE/jxbmP5jAP6PqvqtO3TP8AzP8AzP8AzP8AzP8E7huTB7hq9T+FUA/veq+vtU9Sf8H4Z74i+jM1T/EoB/GMOF8a8A8Mvt+fdgLJL+Ewz3vj8K4J+wtL8bY7H2HwH4bcbjn9vo8T/CeNP2RwH8JQD+n5T2WwD8+wB+QkTc3fLvB/D/BvDbReSPA/jNAP7Ci3L6rY7876+8qpgW/jkA/wKAfwPA/wdjAfp3v4L+GZ7hGZ7hGZ7hGZ7hGb7iIKpPj6ZneIZneIZneIZneIZneIZneIb3DM83Zs/wDM/wDM/wDM/wDM/wDM/wDO8cnguzZ3iGZ3iGZ3iGZ3iGZ3iGZ3iGdw7PhdkzPMMzPMMzPMMzPMMzPMMzPMM7h+fC7Bme4Rme4Rme4Rme4Rme4Rme4Z3Dc2H2DM/wDM/wDM/wDM/wDM/wDM/wzuGL+1k+f/iOl+/S7/rim4DYA5FMtN+6SuOweVzzzJniDsqetOEXevQMV/KlyXolXch+MN8j6ROvN/BY8vwMfHo+tei2rT6zvJT6Sl5323IqySWfS3HB70HVSoZGt+3Ks57r4af74SP7PF0W6yL3yib+XPtj+r3QP/6j27yl/JLxvU6d10y7zjM/X+m9kivU/oJaF2s5c331thcNxksePaXqLfidv+tP/6Sq/mw8GAL3Z2YN9yU73r2Orosx5rT+aNNZVaQXNtl2Xj1cdO434fYV/r2RD4eHsfSVWPtmG3Un30O25a1yN9jI6dqzPSrjHu8F/bXKan1wHutXgfEi6JZy97Zp7voXmP4l4b7IHu+v9GLcX8pf8JTA8EdpNCKP5r2yV1e4L8v8q99XdWHxrxj3v6rwi3/Rz9A/+sdub6b/0d/1p/9VVf2bPqNKbw7vsjD7ri++B3/N9/2yAYDHAbwcwCHQL16AL17suQAvx0i3oILRobynHGbAFQA0DK1yGjCMN/U6hfE/JGTpQcNHdKRZvBvw0KPEyZiYyktafkfptC73IL4gfv5X6nPmpZQ+xbvclt5pQ5Ys0pQXq8a3T24WfKMsVzrGb63xTfnXyLShdRmWvqpXtLToCyW/ZhM12sA7B9OSrwGzsNExg0C8hOMs07PHMw0+0SUlwXnkG/FDFIdoMXZH4a0lLoWXZlwob5QpaccQ0Jo3eGnIdV0OOfHiZYYGbVSVPfd/LPeg8jHtkKN4EZT4AbVhr3iREy/RLicOKF4s74ETL3IaDJhssXKQnMN1Cr1SR88LnBE/TE7JSzqL6eC0/vwFigM3vEDxRaFF4fUiBiPeBtRND5w4RCL+Qr8B4AWI9EMPyis4IBa3dDnwjT/39/w4XhG+6xvfxF/zA79i9JbjCPyFSNoBEegX9hs+BgmrvWMCgCrkptnxoTgPQOQYGc+RlqmaduVFcPtCgG9UOQVTCY8Tny1NZIuxHcuHHbjIOyp0WWdKNBHvtJMNobwrvO31KI1Xx31FrlR63pUepOMke1emjpUPyJmCAMoT+SssL/Zhhfv03PKs8Nzzb3E/JvvJf4/7wLQQkbZZRJga8SnN+WhMgw45r7G90NqzqKqG5YHHHp9x33XY4/7A3C/knHA/+Y78IFrXp/Bf4L7TrnDf8zHtYXboC9zCLqQNobxyUt243LRPrKPnTzkn1d1sB1wOiNcLFC848YV8y3DfeGmtj7Q3I2R5gUMVQlh/CHCA7EBgOxLf7dfnwP2vKvzkH7vh3/5Xf+DN9N/4c3/P935GdT4pvMvCDIAtlqSB/jDAZeEzMo8FDgc2mJOBGTxEaE0WO6uV97RftALoULDuo027agHYUsQtiw8HGELKLeOa1B9oz3tXLsU3tNPzVVjkWe2/LXc/t8ZVlzryHGFfV7N0To5F2TLUtFj8glpeWv6qVUtjWvVusQ6NrxQ91juQu1C660IGJ82TgEqy7vWznFXdzLRUJ8Jc1CBf4980yqYOkXJPjAVF0uqyvRxu1mHRbxb1lXKF2kWW9DwuJSpJg/Yy8JhWn7PvaHSKnaTzCxDyZuwYlaJmuJkHt4JOtK/pkYtwHImzItCXsRDTshuRWJ59tzWiCM4vjqzRw3QTgVol1BF6AAdsI46qofyyMl90eF3klRjgVcduB9Y2o8mi/j3rSPEFXq3yr9FpQ9vk9syvkbsKS3tLaRXnG3q8otupOK7M5SvCGgbex/1JUte64r5nk03bd27cfcrU4HpCsdVxgR3SeE24X7rwYuRvcL/gMY3ZrEclLmeR4RhT67z24jKFCz0qWl3hviarSW8Pp4jZE6rxwG7gVLHFouOikDUw4OY+pRKbBaflneU6LcpcJ+v5rsVIm7Eo22Q+F4adtWItVz3n4wbFTc/3VuKzhPdZmCmg5wlRwdjSVqjk9Apy5ELMRlZOf/pUzztzLujKmzNLx2kw7T30HBzkEOhpOc2wxze3O2DR7usqfYwtaWlmzIUHuacv0Hoxg4xx5APV6S1OLw0XOje5oLzOhjEFjVeri6vp4apupgXqSkd/pKQUJUw6LeTECrzVxag3XdOg0S7keN3JilZ7otb6Mr48Z+OJWDeAsVehacSE2E7GhPJz2aTmMjU02zl42ZR2YbximHQjTRkUwNHbKAs/aC16Rt6h8CkG82pDUXyTXUIuJM3eQRVwArELyTqOHT5rbwFEBacoDuvYAl+0JB3gw15Gmi1SDhy4mVxfGzjq2LQiDHagk0rooTgLrZtWRxAhnUHlG7y1vHA4vTw4oLhFeQ8Izmg/ib7uO6XeZs7rNLn+cuaGsZt6UL16C5yiAM7YWXVasXY6+5h6MOjLS/aneEuG8SbL3pyJT0UKjidAqbWX4/VpcT28t8A62wH9liHyAZskYUyUxOSeSpuBmO0NDdJpi4TALXHf45U2QsM2ypy0C3xkWsbUjle9VSIv0xqv3oSOD20wx2+2GyXvQsetvVnIXVZrFT1j9i4EHsnaZqyAk3AxcV/v4L4/axVrfUg5WWv26BZUr8vFhNa+4N0TkV9n+0oixZipyXTcTOZr2ijOpsyJx4mp/LaGcR86MMpx74TCMUkBnJK0CjFsGwVXqGGSQCTtgAKxOBp4LtleJjO26EyR0/DYlWT74nhmyBwbW4fVU+gQdsMXZ+LTSEDUbMaJI+yA1RUGdgtOQO2tIQ6cOA2PBy+3N47PCrcbglNNL9HBSYZWXo8AavmoPU+R+B22wHDfsZXfqikQi1PGfcGwj8/w5Yd3WpgpcJ7QlwP6nV+EK+Pww/Hp2egNuUBDmyFlL0zw9AkYvWGzgRo9jfOfYyIj7iZzGigcBIiEmt02BPjIOq5E1QE+Juv2L3B6sfU10bpq3QgujKK0tELLohzD2lyCjZX/7M84Go99HiU1vtQxmHBdackrRLt8G0n9RESrQaO+sNx7arSTnIXOqfzesklJa7ONUjdS44vZxF6MGYHQmfNK0KrNCMRcrNTyHlY+tfL6JH1okC4qvbFiEWnjbRirWlYvf82bvNNpxc2DS8oGj71IGlMvrRWjfPZczfXihI43RmaAxwRCKe9gekIgOtwAVYapU3+bVOS6nDPqghxvbGd06PyCTitBm3nd9Gb8jLzZhl47J854KQQr3zHJyTbQQu/1lG/UDgyjrfb7JVouZftCNsujJvct90ZJLILSlVHyr9jk55AcO5p9wbpw4LWXOW0GEB0aGLOvbyBtwWl24aD6Pbh3ywIXU1YbkQW7IRWPh8o5loJdx2NFcZmc5TRMPSqmFnuzwO6Ov0taWcgpdYACx5dyO847+UYuB48WXGTXzBXu9zC1wYq2YbcCOLSVQRBvPvrKqRtJjjvuJ0DP5WQ9upt6F9UKlmJWuJ946lNsNWxTQUzE1Sf/9hZohftkhQmPZyy3fY3AqKEjyWFelHdsbN0snhXPG4a8EaKqvrcysJwWNGlQiVYS94NTaf+0AydG+U8cEL3hOAYe+6JvLKEGGuYm16A9oM3eOJZ33E8dh3PiGZjqb9K8fDfjO1IORA6rKw381cBuBWyzE8aLFphkL2/IxXmlZdfG3MAcOrn+TvExw6ixb4+F47u5MqqekG/komwYzGOHSnRWy4xqB/dmkOpvBk6MVb+CESX+9mZVA7CgJ3nLvARtd3UMo9iBfhM2WaYd1o3hK3yE8jZaB7HVAuyKtvC5E7/UreW+dGW8I5nt8aCVKc+Kdl12Lbu5UjCq9boy2bkPFqqp1/wWbDxYFbu6I3Yjz9N7/qX0zBXVVvXzhCIN2jxJ82qNrt7rWYlWMh4zVWUHit5GSXsUC+u0mGhdjmo+8/JGCaKNfILidGbIuK2nmkgdGoQ07TWkd/fAoJqLU0uuNJ/1Xc6Y8KVrpLdf6CHdbTLeRQ1jXUTXvE7rrRJ145IegKspON75jLJstGHJs+IkiIYwdkFb8tqDGK8u03cSgofjcHWdTzmE7UtNvU+vaFs9cPqG1T0MnezcBd+7ee/p9CCtR/tb/Mi/slVXsi7kRMKdvnjfZrgimvaeCUQNnwe3Cm2MkwvM9DFI3aNliIfdtbwMZmRdhSam87T/5/YZiakzHhunCfcxGyAfE8FaAn+WtAv045LmNplQB+iW2hY0osP2Fdw/w4YI8e4hkRfIcWt6a68bWBmHTmqxgzgAkm+KCe21lS+qotCyF4RGPXQ5xR6xVRNzOXcZ9LZr4HMvO9W3JO6P9qo2q5IKLWhhXTCX+i9TH/1Y4Yx3hV/v8E7LXx1vpYDh7/9yAN+wNSK5BPgExHflS3oOM2KrgTc+mRkGOBd/3hEFgJzncF26KeQ84ZNfVZbbeFMR/M/o/B4frpBpcLTS0uxNFTlxtHKF290CkCdcdbynKik6e5DMe0kLGsyrkavXtIvs2Q69/AtaqhBrg5Qz6YTONyUXHZkt/dOuJNFOcoIhubJG+/UKYuV0dqOkvMEX1r+DRqpcLwNpqdr/LgwsVU10M6i58Gn01TPqWtBKY7QhNeVRvapKyDiRf08dO1gjXnU+o3xMK4XWTcmQ5XUiQcv6nzbbHrRJk3mzfLDfNwXOc+SHHuGeqLazcSPd8og2MK7R4L7tcqTkHXXqV3Akn1ujjboU5+GTAxk6Uae7UV6ou9Lk9ITfnp2K0m9uqlGvJwSnWH1526LT+lPFzXKc1pbnG335/Y1VLNAOfiVif0I2wg6o+ltwrelBwD+tv74MGSrDzfE8jhJf0Q6slnTZofHM/cfHur+JUbX2pknsCstpdmrla3Jg/YDrzFk4jqfKiVfS4nPVTNi2jJNcjhQdFrx6MbN8cFgbo7nJW83zog1lI6fX5yRXI/sWy6fyabR/8fkejVqQMduWC8P9pLa97HSg/jz+Mu6DFoOLukHSqnWAguX8F+MN00m0Psa5X5/UJ7h0Y7wnRqim3MCPoFGSJYYjppvp6ONGkfZCSaeb4d6Jgc9qddFxf9A77qe7n2LGfXc5HLTSaKm9gILPJ/E6IbgRxgOH5ZUiZ7I33gamY6WtctyWndHjBlZ/C7DyDfqbuk4ILHf5bEcVGHaO2q/Y6Gi/Okdl3D9Ni9G2iwH7QYJCcdO3//tI4f1cGX/qW2Mx9nJAzBVFeRcVNiE/6mQ4/f9j78Z4YrjAgB7YOQLAXvMavdpgH7d3aePrrlMH7YBI3R1qO1fFOCiGu4nje6c9smyGC8Fk6ETML+S4C0yBbmG5VSdQ3i0tEEa+rAWl5fG/jRaNlssL5923AkrdpNXvt1H18it6WsZEdSrf5NJzQVt0juSccPFlDuyuGNmWcrVmUIGwU7g3Hvc6z29dOXUScuNIOZU65R5+w6glHAePn3R1lNAx42KuYRpyWs1746nUfldo1YtMZOOtRLgMtkEkkguhUQ1ZOim8JOo4z1BoyB0uIEnrix0xN5F0IVQceuA8TKqe+MIXD0E7+FQXwnQtUZqBKdI9ZOg2Thn4rzNu/TrHYDzUYMhvrfBd5WGQRz87IaSj+Pk24drLOnPXGGshilt/sNMfXnfedwatmv4avKrLzTxpfCSILY6Ku2LPAzWX0qGQQO3sGcgbQCpuEFa6bsVNkGcdQo9kpi2WJeyCCyPwEMk3xWK44oBpOpJUMIvEPRtbdCtjGWLtd3FHjPK3fN7mDTc6HnPeHjpWF0z3Bzs8ZntjkLK1N41/6kxtRnqMczatTFQ/w+S3Ts9ZCVNL+VTykI76XCQ1q+VzbHNatHqtdiFPWDFtli/K6/yk/sWCNqrGMchs5ozl+aZlpqVNCEkcJSvnZi7P3ztiCKUJ4XFxb2nvy3RgviFgPFdQc/QyRxvYO32ZM7mLOiSsA6CGsbaoPkRw82FpjGO4KHDKEYszgd3uyjYjaKW4DCaWOzYK4abZIcNyh6JzolWTc5DXVbpSAicO1cR9f043WLoTHw9L/51YXu9ZkJCUtorf/glG/zqR5V377Xyc8HRl/ISgCuh55qIs3FISUNkA26Ok9/9wGi3qhqFDGiggwEeBAqp+ViDODCDp/Gdx3mrGqJSr0/ZF0iO00tIXOi15ES0bvHu0PXSbdy9vl8PziaWOjwj2B+pgW8P10NOJl/Q6XZCUWcRWTl34S8+0cJOMha7vpPdJV9PR5UzStSa35ZEZ5loUNswpIw013NAFbVaU2EPOu3OTLOJipmXtFyqTIM+t9Fb6sh5zFjAMidgEWKOqXL6/Fc/SeAfKNzCss5shNzpKfY5PaoDi/mSaVHKFRGWdW7lpGIV28u2NjhIbYS1KtVJPyUP2Iisdqxuut0XH1ag9lVI+nXPgzaEMAgRub925y8bJAlM3ZDnF4DxC5dbWiGtG3IsnnRdJk626CEtclHXaPXvT35xd4e8Vpt7D6rvle4u9YZvfeTtctPzRL/tAxEUZePbKdN1mRNcovQgzDuIS9yPZaVkH59xe6xW5pUwjL42GgVoEoG4HfE4jhpsd90ONwP0cC2yrxJUob3RND6Gp+q4NUG8iTMBe1BmRJy0WuH+G7s7CcT+345Ir03p9cRyFlnFxgfv9Fa+2vL7ZT3WVRxXbG/fF3CY5pZ2If9GpKwKPzYpuq9DkUtsvbRFbCqJtOl4M5Wf4jOH9XBlFgJvWV6iAD40w1DG5sAs5AryP7FRpjHzim53T02PCdgD6IsO1cXzQYQTvcYnIe2PGgCskh8sRYN+mMcq0NHmi31tjvku4MIRd7hVt1tUme3+4kNP135bnAR0TjCpAlfKG4H3NsTtPNcKkNYPpSk4AWsopk4Kl4PwxTYp3WbFeAE1v2rUVnbnoWq3YMQMZQaIdXbLV44JXGtA5L/+c3KhI10xbd95Ku9LJF1JC5Xejn5hyUnn8LdzgYXualjFdRyTd00J2Cg65kKLjGTmyfF5TXs/BP2jT/STTQIsiWyhGAd3FZ+zNVtrxL10TyUWS6zURNm6lpGoNHpmvujgm7VXH34eBwXvzrnT5DqmdtPwmIjqzZt5Gm6VA2I/pgo8qYZLbecfoV85baUuP5TJMfNdYsMTQjb3xsi3TdMOLfjvvCUE3/eOqfDvaCI/YjJXOCToMc5nHy7/Bvkp3lYnygOYirqXbxiv6CY+zhJw0sZCKddObwQ0dY2pmYvdLSWhcKNvtAA/tGUdqXmH5QOCxRqestARlSWMPGM9CF9ZH/Ql19qBFYCqQbtzp1p64yC7e7l4Z/9qirGoy7E32I3YZlORN5XLX9HAvjHSumwFKnqcHz+9ukFVulon1cPmRp7XBDmMY9d3F8URag4/8RkoxLk5567+PFN7p8g97vXuewO0Wt2pRckUBvj90miw3pC9uEIqyKxw7sxivqh08NAE4J26071L/hJwyNwmscFBEMcJFbanFG4lv2IuY6mMOPbm8odjthkQ9IjPwZOaKdqfjtCJ4Be1VQXfECx0nvuyT2Yz+9HwjaGo+0jl/SkwaRBZxz69j8fAqufxMJS6uCINp5RCxK3Kda6ubuOULuTvYNeC3OL3KZPP3Suk0XMOVwm+PmnaL1FwtbJc23gzB3DTAtHmToD8/La+oxn0/GvKSn2KcwzpEAD3CrVDgWFDl+E6z8+criDWe+w1ZKa/LFavc4ZE3nAa9fl7C6cfbziufaRPauKIHJ9dSyx6U17N/n3mq8+jDYjeEpZxlGz0auDP1Vw/W/wK7D15I+w79zGqKqM6LP1nk48CDZiEnsJ5c9PyykEdgKsvX5DVbVdMWOrJSRHpZts6D8XjS5/OGS3uzAwxpGShdsViwCHJ9yxXcb8sItrKW63npNsbZnbCqFM9CzgL3mwre9aeh0PGR5U9tMzKvhpGGfTGXd8X2iIMir3b3SVC8IJPI1OQr0aph38ggEsNiYM6iX/niBOZel564uu4wcTV9xf2b0QqGy6JK2lBBYh/8anqjH3h8ohRMYedOxzkyx/0j3goOHHQsF9fX6E/Kc4YOroVGKdXQnD8N4279L1DcTDJfOnLYebQ8QWd1oMjPzlhHTvvdB4nZPas7aHVddZkHYOeJ3YtkyFGpn0T4qOEjLxxfE95lYSaH4Hh5Ab7jG8AXqcIA3TotLFdut/NK4asNG8+Ud4wcMnTcq8qE2PJJdufycUq2BLIANxZjA9IPlnfMV6DNaKTRtryToE18Qv593uV1zZ32aHQXvHp9sEpArZvC60LHiAat1LpZ0jbJbJMfpXUj78YICY6jMbXIKbynCU914ZBSYLV2YLkSchMWXT0+s6D2zMdJ9fr2xVko7fZNEc9TrDTanCDEeRmPo1axItPE9WiTEB7LXFdVjm2K2G6gyAleMCcmmHGxCTpPhsI1BZ3WQEOrYSq1OwY83JM+r2nnzzRbuowd09iPND3CeYbOKaQLi31DJ2ht2UjgMOrGaf3s3Ug77YCH6Lgun9/SAzQGeXKoY1mqVi/Rlz1utRG908qg3k9SqVpvAqJ9g4n2plGdN+NckON2ucYedG5M6/k2zx9YJGVRNk9PpDysk1qyPd1mrHRkjGG+HcuvMLXbqqaTtqycXjd21jaEIWZJu5AT+TfYXoyT7DDV/izsTcfjbXltLMumXoGN/XHlhdoSaMQ660xMa/tVwdFLtDwIuWWRVfBKp/J4G7mbGg9lYppyCLu5SG4jU1UHfgHkZMLsF9QXlnVRsIBp3Tg4rY+ABBDd0npc4MsQR2cJgFjpWHHfzxrmZuHYeqou27bkC9rBPG8dTDwOZU2w35M4NtsOc6Q6zV4dY8EZfhJeUD8b61aGB6h9Dc3iihOqdi45cN/l2KdRzCYozsAIWwZvcd+QnFw7o7qjb6mm/TkxFp/uKHZGPkNLy5tuoG/A/a8oKPDhLvF4a3gnV0YBvuM7wjhXo09GYQMcIz1f17K7UX9VPv02tMnJhtoBcSSOsaBE+mDutIMmnxWDO8lt+tOvbgTv9a0peWMUV3lnV5rHaaewKF/UTXt2JWfFo9K2GptmEMvI9HjWo+Xf6qhkabKEuszb5MWjgMWappgzC+eaamPiWtTYls8tGLYhk6qOU/9sP4rBXfDaNhc/iO96dXcON1wsN6ZGbSz5Hl/XUUoZ0i0jMxUcsQLxvmivuKwbaU9SR220bq7v3mdIrJTKus8q+V8lOaTD2s2mCWR3XtYBuK/zg8GxewrC6ZT/qoOvKmXiY/2h2ZClbuyTtbJHRWzmndDgLm3Tt+vV8KPamwu+0vJvZC7tzYZ2GfqAvsLye/aFbTHTKTBp8qDNGHl3tHdK2OTymdO1rLl2c1jp+vkuNDl7LG869hR13EjX6zJ+N4sw/i2LeprtZ6Vd1ezKvOWKomKkf8g5+8UK9+dzsYl16ZI+4/FCD+MZOqq7NtZBma5/Em8GPT7ZhmUFKOX1xxK3QrJ7e7py1rJyayceV7mrce83Z3I4Sw4uX3ZZj/utysH7bid+hs8R3mdhdsj4htlxQG83AAzSGrsD0GosleMl+GDRWFxpnXlMecdPscOaEkmxCzNZxTGYuGN6R60+1mu5cTuaJ/V40OveADXaC6ze05Led8NCzmtpp6pY0Gr/MdGmn/heR23xyv9ysastsosvysL+74Fw2Z32Yiad9ufQpn6/GAdX5eN6jHFEUsqE3dO0pelw1dtN7qtR8PZKUPfr8j0P+9oP3lJ4liuXQ69hrPgcgmK446VOYmenpNGi0IZe2s8IeOcbV9OfVL7UMfOGTCrT2eTOtFVu0tI10cFnuNaMK5GPyJvXJLMRtev0yZjeIu/gz/FTNAzvSXr7v5sZdTWeNz0p/yMg8IrQ+mhZJPp/m8iY3zGotrHB5wgn8CobdL6Os57i44Qbsevb5MyYczUoL3jJLI7zzjZjzRaoVYNFXq6bSea9Jtb2tzBu2S50nthOdXNHD2CB+7KwVb0DXdCqlrlHXyPtdbRbDssmh6OPxzuzptayXqXJtYWXLugiTssrTXwavyuWBwb5M1+A9OGoY+x3/PI5k2ObEm2Ro24L+jmpUaaT5KvSdfuEkxUXfTEmOM88u7u6Lt+dTJXOc6nw2bDxpuwG4HYCpx44cRAuznJPSMXjkJtYnlWXtG5DAtsxPs/iV+LfDKvZ1ky2Clm+26Kes3ywzxAYvfg1+Pms4j7ZDAFOfIm4/5lDL8tr/n2k8G5nzGIV9PISTwCQK9F4HSvmMqKeZqThPmTE6os5N7ACuvK2ie7RtmsZb72FHvjziTZl+LWy4WqjySP2iMgIjPIhy0eylt2f5bB+uzgXq9HqIu9UN52vl2NF21kozL20xl+j45XLztyuXOfVku7dIJsC3kB0xmB9GMD5NovNtLVkkKmytHpfCrkglo7ieblAGfdxkHVFfJH9NnqgxIOZFuEg4yasuD0e0qqZiuhVo5Gb5dSrkP16Y3fLyFNQY0I0douOKM8hMPcTp0XQAP6deClyy7zJXFdO55Wj0cae6zFoTxyA3oZbssB2NhUvw5kQ7lDi9RpONOInCEyeALKgzav1/cL6ceDVa4TPr436G7V1qrlEFrkH8uwFn4EYHL6g8rorSp9TxvXN4r/9an0pca9X/1zAW0LIF/rH6bCOFK6L1J6CMgazm2evDZvBWQlj94CV9iLEeAapuFFwn+FhwuM+WNZYF1f6zypV1LC8MslBLS8nN/xdYqrMUB71vQoX9qYXotuQFZbvdZb0ZtnJcXFTnWvacaOtV9jrzLfQCumok9yCsUyLXqAWZ9xn+pVcnuNYIbsrmezyxig3HGnYfQi7a2bFaqdVt3NScza5Hfc1qqLT2n9lbFb5lf1cNxrYloJUzUNZokSE+Er9RuBuj/6ZFIXiJRDRS6ZY2YxwW7UxoQq8SMVjAITlKHicV+ADjLT+fuxFrmhhi9mx7DqMw83RXdz9Ms9K8znm2VaB5Iyy35Dn28LGQwPnA/tLz/AF/htd2L+ioPh4l3i8NbzPwiwMghQjzIGNt0+YnEYZ/AStKcw4M6cCyCy/6qRsNfpkwIfZ6hZHe81W5SIXIkJyix46lyfFbUOpmwujGHkvwl3XRmbU0lbn7VZyl0b+wfEd9UQ7eNe0vTek0b6cbKxC+6CQ79AzvIe8fnjCTVYowJO9ZDKtwZyaiiEibfedDIpFi/3X2YDyZCemqEVuWa5EXur5xZBNkynUeJ7FQi44iUs0iPjlEimdjaA4QzJe8Tbdzwqop2bdaGar9RWuKFruh9Dy184x6VzyOilgyjqhKJONRpv/lI4xZefqLc0hd8G1LJZCG9ZZePrhZa/6ctuUVtLZ9crrkvvV64JjqvTH9S/LjM0ra9cL2trLcoJVsLz01ntgomWOipXunDfasObZ4+SiPMRqWf8bLFvGV7Suzy6vXulrYYXlV532Ss6VrbLvUHnZyjEDJlo97LYK2fxxFnHpnaKLenVDa89aeesCp+uUyLQmZtm2qCC+KXaeEpeFBRepuXH6CzxXa/CtetQxTYaEdA5b1cvgsoFxsQrjWKdl3rFy9ndZLFfgH2uPkm6qjTElbES3GcxZ0j4ld8A3dB2PKy+EjhX/K5Zrqzt2d5xtx0yb9lYozm2WdVdoL2yV51PkBluWp/GNvJaHki7f5H+EoONt37dDeKc3ZoB+8YV96dZqMnY506COgU1xsy6+AHJjk4CdwztoSwdbovjg6duJCzkTUtMIi04tVa5S52exoRKDbsk7G/ZJtsx8sYo/QDvVI+vqP9szrvNlHDXvpY7cfkUOWRIHt1b3tXw66djLt7XqVDdocj2+mhQ4X2l5nTZ2zDQhb1KZjHoa1bwIJL9BM+cd5eNFm+84NtNKQ0xDjj1rca5KOgoQtL0efSezyDHas+kMiruxEAhuUJT35jFIhiKnVYO/7UrXIAmDo+I3Mo7JnE9OTqDcDBZDDnamwepc/OYuTaN3g+Bl2nBxozk6hVgb3DA+AiqS5zmOS1pYXtuvNFr/kDN96zb+xe1iJnechxg7q7HRbn34sLyHHd4+AJzi+6n+wehsEz+4n7dWWhlM89EG3h4MXm8I3CcW2Or4u8LUKd4GO9NiQVvkSc0b2Ajkh6KpLrwhBk5mT4L1y6FGHRx61AsdKqb2QdfkEU3Rb4HH2/gqzfmyYlLz8vNtWOD+hOUrnZm3zuVd4X6xTUz/gB0IHXddlhM39bgqe5avYlstAyYnirtvDQ2THrEZo3y+QbUqoI1pt0Fkm5KXhF3wvK6sQO1DzStblRjsrB2rvXidVpH9THRcNmGfjofCXMfJrjl+iWEY20TnKIb7bItP5I2QjvWH0Xrxxk255gGguaC5mW6u8wkpm7t5263gW1C8BB6PUhxKeBx1M+6RBKXdKG/cw2t2wW/C9UXStwCyawduhPtntKt7TlD/oDEkomYzal+HaLwlk2h1K7sODmmbPgH3v+Sg+HguiW8N7/TGzIyVKuTUsP4KAftLDTcPQlVLCxxNexp8jdHIY7TdIC+7FhkkAeqEylAmd+Ar2eqAejdOMJ3jZkkf6GwIi3tBk+WIwIbvaHkLL9KP80bdtLzNwAa7JsfL28vHcbYbLHfpyrgpj6gYknpezQZYtANXnKhm+XpymQjIpCPQ5aL0114+mWhTZn2L1dxQVFtfcNAVfgRgLMrKJXYqkCPNtpS87OY46iLGlxX8cFo3EjFsNK6SZlqFxHxHghdoTFQ3Go3ySeY1Wg2d81C6u2zUQG/DYgLkBjwnX+Hu5MYYiHoM98pWrx6ybnxyIdE3Th3uPqewo467jpgDCbnKHEHrOp5EOxZflTbzItxfFNBzLNjEpxs+3bFrjnGMK7CJlj96qgpzQTxx6IHzyKv3D3KSDJfQhjdcU27own5LvQ7lLUEMkLT4xZZZ36hRKffST9iIgs+M8DYo0xRMNqPiU6sA79+OMdL+AVWuP9PE1HjBbwtHruOOdX4bWrlJkvC7vwlnPe7Fi71hBaTFmZaiJR+HbjPY3ix0EqDgIsttYre2Kry8uf3OxIakTcYiOm2oScnbFGKd2U3dxlRRkj/hg17P2uqS+irhos+YexvFRl8bF6raLjOVqPC1HbDfcC8HwuPA7uBE5pXwBKMPF9z3vMp2yvlU+4NGq+KeJ+ySTdURuGhtT14R+Y1Dx7787bcHpluLY2raBb9x8FTH4YSAmwx38UPHcu20t7XDbfAs7ekfURlughV/QwWqP41fmdfxuGB32AWNc2bAy4jpC85D4e/R3P3d9cilove2jGfZKV2qc2bSgmiBF2TfZ1vwDF9ueLc3ZoCDuuYgTWQZgY33irgbGQvD0GUaT2HvTSnCSO5oL+RGmcAgQ3zuGD62kZNObIBWvFaMNnIuR9dr8i5oSxke1PFeXFcZrhqyuZ7UCR3Rr35P5e0zjAudQy9tcvu5Altk0O5uTHAA+LdhlvoXOalHNcxs0z0xemXx4ClmYerXTDuAfbvtLFn0MrGIMjTaKNQ55Z21y/R8O+nCUJtGVrQmpyXltfR+JoALr9QttFcF+EOkPo1IrGgTSGofpqgyMs0nQ+5qeEaciuOstcbLuKldrOgcsnT0i1pti76O6tr4KWcNZiy4HlhlArHL6vXCE9lJDk9hJzEbrNvYjK7zFdYt9Ch5N3rcw1Dtv6mi3kR7pdNVuIdPfQORSQk3lm7qvZpXWK1z+TPDbAdK+erga4PWAVmz4/VzxT4SVvAV6QkekZeJOpaHHaCyYWDo5YUykx2oBo7dJKfKCqzQwscTC63wYq+XwdJiiG2wXc6p7LNJpjrnAgY+JRgmLpidoB1vtXTHyl439aITwYTlJkdCLtkBKlngj2Fq1dHdJkstVHpq3+GGngtshW0WBn23N/5m3jfehteFtxTn7cPktLdhmXZEX/Ctwfz+6dtx/8sPvpj9+od3ui4ficjhAE3/AEIFAkd/wpMe0KBsvZ4HAv8uQdtfGZ078osNmK3RqENTS9ost7oU1ERFn/zUvEF7r0yrsMi4Mtb9luGSUVt1LQz/tryPqNYyvor20QRSsN90uGYwCMLg9VTtNMwz4/f0ZHfEBNLMoJFv1pcpx21WydM1KFcAL+o1unLjm7QUX5RJmTbOQTXdmDZ0GIaM8+c/M5LU2aqKAr+9iw0q8856laEXHfzMvIP+NC3j7ZnnMTleb9pooXQzGevlPJTrXKj8ud/JLZG3htnNj8w3eI/4uaBNnf02SOOnfuMW3xiWOo7+olk2L6/SrW1W/291aRlN+YjxzE7KXZ7xSf0/9k+CTGPBzXmH1Ca7DGDOP3b2qbs0uVQZzEGqkstzUSxqAbgThnp8YQdekzfS9Q7tKnETsl4zXn50O7gSqJR1I5fL1J/rlNF/av6VTd5VJQANaCUyZp9LwqlchVnSZpfWwLx1QV3rucDrdVmWzym17GAIq5B5skSFb+BVqxvGFahjhlRa/+d56BnK7xXu5yc+Sl5r/KojLcpMnp4A3+DIfCumgqabUnUGarpjI/EB2RuvL8fyM3SUqMOgbXah3xjMOM+3UarfDqnjSpC4JZJ4T7dk2j+/fTJvnfSbJKudyPzeN/JG3rx1ctzm+VFD6PrGfx8pvOsbMwDmxOq9M7ZZMijCncpDWfEXw6fV6Ptrgw2gl42TJt7PumnNPeUt7nXsogmZd3c7LevzloW+q/VGWpEqt++kTEG8brLYTHsZ6lbYMmlPuyDqtLssl7Q0a+iFFymTppj0hfvAQiYdfF4mo7r81QzVDbGUkPJJ5y0tb6eFt5cm8EttjvF3tUSgtuY6sq3cnHLQRR+km9OMISzJjOpjnENrO8HMxB6ctnPo+4Ll9sDgVm+U8sCuJ87aX6hXWjEXRsTNWifcfQ/GZZT20Dw/4fzOBW9B3rJ4UDqKLhLn8SY5xvfmWtg5A6a9UV1wL3sB4NccJ9+R44CMj1b7mI6Ucb7hQN7I6Oc7fBH4Vsgx9WpY4G/kOxBliZvWltkZq0GVPNuM8sZsp58XelXQrb3R0TZAcXvrroyzPKKfBvdGt6aLrvJf8bi3HXunijhtgs0VL068qvoLnV+9UW9Ykf3mXqGwKXct4bI97dnMfS0vpiWOj8uml1mlhX5q+NnxMtO02Osojdmq+ZZWsTtga/nWRRrKxx670SLqSIPWzcahtAAQmc5qskg/U3aTxDf/FIq/qWNcG/+G8MNNsdH6mx/GVL8Z+MD4NMgRBlWC1i/l8BelL2Jnw5DY7rcfevlvps8Rz8fvOAM90XrNJ96Nc3c3KAQv1nLpGC/F1h30LO3NSe09TlBnutLzXByLyYoz0vBbHtdTpI8Yvl3emL3fwswBIdwVJZ4XkKkOzJkN1pUdBETqeQEDHTg7WqAFmME62mQwMm+ecyPBTiiYnqmgnhcoGmHra+/XQnPePFtjKhF4c9V0g6Y8O1wp0uTeXZw9SMtZu45eX2XytOEb0SifTBXZ6+Jh2pWWu7FsZ7CKcanJcP/30d+MmbMtfG1auOrbSrQsyPiu5PBnJaZ+E4/JKMfB4ZQxlQdAuaWvsJbCfLVRUs4otHoPXpp53b/EF06siLAcYhWLV28TcZUEIifCLTrqKi8YinGkGAtsP09nZw5AeFEKVJQSpJmnZWH4ygyTeMgRF1N4fKhhF+o3vVjnMWERavvD+IpNpJzWLxmy37All8sRwFY3ITfKj3GOKw/uj3hw633QqyP69lsMoE0IFn128qO19JhubOwAHPupMxdsJxpxvp1Xy+fE5Xp1rg+XubEZfWAtJ/NTXFY/C6sd7m+gIMfZirap0GmDZjUTe6B8k1yLhL1d8MpydizwMYap3nrdTG0QfUVKv6GuXds1nllnD5xihY1DwXldKBEFyJjjcStfGVddp0fsAKkwiuv2ZuBibnAkbdgjL0PD1FKvXHyrm3Ro9FIbdslM67LpRZf1mzXuAxKXfiBo86J358VChNtosgPVZthTCE6oCg4xLNcbjW3/xIp/HMTfMzKWJ+6PNnqJ3yfOsAPhiyCMx91moOR1XqcAYnpEGaDjfNqVvYHJ8boLe8Ny64Uv4zIWtyjeV7OSV3DwDJ8/vI8ro9jgOA74txm6oZs6wD3DxnTMJ5CquScuZCQtj/aFTgV4Wl5Oo9/dcO3K95COS503tJ3gqh6b4bs7CBd5VzpPYSdHWxy1fCx3W74r2iJo4Uqyyqu1XhfMxu/L/tlnLlMJq+fMKnS/kp3cB8OqXueFJImOWshJOufscS20l1rUOl5oIG70dE5V5ZHt+5NLEU2/7i7a3xdqdLAZU8hNEd11prpTnpUjwq0w/i2aPIwzWhMv5CrzTZnpriIlHfbbKy9btdHGM6Xn81h9beBFmetVQrt0YVot3OvvbdFCkgs+T3rt+HjahFe17+5sRo8v5fT8bTwUHRb2pcfZ3nRXRn92Vb4eLnFypcdCp1X8ihZN793btK29WcnZ6qnrBI/HnGDtflielQXcPeM0pz+Km1f7IgN/fFUyV9z1nspcAfxEQrnZDlxx63155U5b/pZ5mOHFblywvODbUps7frYnYbDqVp/Ax6L3HvfTtT75d/fKmZY+fE0aVo2dttmCZm+u5KzkZh0w/NaPkPejNh8tKMYbs7f++0jh/T4wzQux6Am2dC+7pwYsPCPor2E81ox+JCvmHUtLzB33LkYn1JFK2lkFGeuoPY//XRbPRsEG7bTRdgO7wOBJzkrnKgSLdrkvZ2K1omWcpec7Wl5URyXdK99raNFoF/EtEIVcnepmbj7KIBmvH4NuXa7pxNGy6+nFI9roavasTGqsQPyc32alzE1FR3VqSfEdzHSr0HDP84oJVziS7dfgn2puMCbGXRydzq8KHn786dY4dk/F3oCNZ8PkSOjp18sLbN4vfg2z4qYJRYemW8ohB264jQPU4kbTzJmka4uAoMx458XCvk8tUD1xFDdYxSEybubCbdwUZvXHrjKjzgdOuauNkM7+dlJk3BB2w2muKjmZOSR1haLc6nhEPWd/dC9AJT287s4Cgm8I1vi5IPMKNgEBhuN5vqnyDrPgyTZDrW+WNw+Nto2F6Vl09Qs8Xg32K4y5kNN5Xbs+WvYNHk/2ppN3m/gALkqL9/QlacevR+pmwTfbAHOX6/o3+1KmkZdl7fjsCs90YVKAIje6iffjrtey3nKMdtxf1rmVid9cA1h2z8E3Ky1+LepxaSPYDigKdo86SHwlTvC3MCM2mIS7nssx7Dsjl+OiTs+4sh3vBIJDBqaKJG3UnbLTn926CI23EIf62avEu9Ma8MCBU88o6/hGGALL/e2SmB1wd0u/xl5x2hX4Iw49403nYW+vXOc1rXl5QKF6GgbaLbNU3qT1JhWwvRE949iFfwJl2IXxIZVuM7xrAGwzJMrv9vaNqP+VhfNNZ4I+Xng/V0Zz95OcYYzX2pcuLIRYZDAFhhMxwUg7HXa+IGv+6Nf7ukvh8rKPFqT/UIyrcB3nOyBPcmpcW/m2byXUy5tyeC27cmmZQHcFwq2809XHyLqeaDsLN/yt+YouPbS6yfLJpPO98m1pSZAEs1Yeqti+cMq8ss67rZs6exLhQlgP3RlG1LNnIhxvtEWs02ZWObClTVM266ytfH6dfM+pFhvX1kcNhz4SvIh3amr1qFxV8Ot9AXctcRM9no3+GBzmyan1OzOVMQVQiPXJQaXwBcORRtHKML61ZlMAdXwacuv44/Msg+9ptHlqbVS6H7DOa5Tzm25ej2MxOGhG2VnOoPWzkCfq9+BU6kdPvZo0+Od1zTeMM2lef34OjUpJLkDJ83Uhp1qll8Vk1lLddVyylIGNBQidrZfPXamEcB/Ba4VXkYWbjMfeYkx6+3neMlQjbwfvhRxPO2r+9QgcET1eh/vLuExrg7Wb4B2M3dYNqo4Vj/cF7PUY7v3sysg+PmfTseG8iET/lhOTf1CMC+9/vf0iXvFXOS+8fK0yuNF6mGyGrPN2O9Bwn6ZLi5AjN2wc4TGftawbhMsR2vJmm7AdyO2WnRyE3VNgwnJHcKG8vIHDvJe0Elt14JNyNx1nw3KpNzAVZm/8kh+18inN4bLb+NumM+JMm/XWsTxPNisO5Pfp3KW91nm1N0Pn0zbbwO6JjTYxXUMup3ndxok3/wxB0dG+6UZXO43Fa7bvojd/mKB4njH79NAWXN6pHBT9bIk9td851NMwWtx6X+Q11Oq0iPSMchgLHrdwCt0hn8vy3w3LiiHjhxt25favFa8N3yzvhR5N70nuRfpVuNqcuDeAp8nzVb5+gceD5ZtoJ1mNuqfda89N3pnXeEAmKl60+a4dy+ldjnc+k7nGz7pByy4mWij8zY8/553XkV4v4eAdy2RnEwRiH/IonmbWnk0TT4kJeW8iVVnUDZ1o4IFXDA/L8fNMrQySqZObl+TkYqQ3XsSbjfxUF8SyzyVJk8JL4aa71FrUXdBpYmXNRfXqCql7BJjhpn6ijUM+I53isw024Yg0/+/bQlw4YGDFE7B8q24aTYsw14fqhDcAwg50WkX5NmULjL+zzdBiby5pV3h2hamrNLZl7fFk5zjtAhd7PFre9b2D+8vPNdyhXWFmjMY7uA9gPuvki3d/2GCRo37k0xP8zfmkzKofr+wAje+Kv1pwAiwXqMDI4lb3rduYK3XTAapgdylxUX30dY32Um3vOyYjQ2Lv2YEhYLID4ycZJPikXqlIppBkWqHlGtbkJQTesx1Y0E52oBYXkqUK90ex+V7YBcd9riez45K0O+yuFrDia5blgpZwXwn3d7RFZ2o1tTIEamqtx5m21muerMMS/z5KUAhu73jR/OcM7/SBacDfrxYgHb8iWwzMYng13raV+RmwcGVk45zP+VfE7Yc0Wo4Xw84GkgzUzv0lyteNbgFhB/teE5QsSYZ78UK8zsuGMoyZNJJHae/JbXaB3UfZiA6yYinWZdiW75p2ou5pu3ot+ShRkszLtqKRkknnHe4WL8o1HdP9kM5VSXf/SL5ZF2noQkXStS8SUydbGGka79RDWzllbgNNnX3DNb4jK/mNFrHJyUnli5usTLny0WM4RIxd0lM1Xf1kvBk7/BIX5BkBwXDLc/0PCG6qeFEZh61tILgro48DCdqsRy+v0mTlJFpF3gI2HFrOoD0iPnT064oHrd3bpRq7tDdqJ7/l6yBw6S8GbppuKUq6iGnpddO794msx5QTNn0efw+GvjjKCTNhX+14MWnwcaDR8MYjfW0Su7MzupSrC1oRZGh5bAe9D3sxmZqap14e01V5Z0xNHLHyNh2jrhlH7+H+Im/JIKAJadNnUrbaK97QidBkRF3oIo/mn7Kh4/bH8hrCXGP5RmfvOc5vbDp1uTrXzZUd4HwhW2pezfqURb1GjyZYZ9yVVX2xaMJFqx1atLBdqHqo2rh3LCec5KHC+uR40GoHVGn4jUYbxbH51Ol4bG7nyPINvXJEn1HmerOi2MJSTnMLVMEpA4PKogoIyWkHxm2P4cJu9cxYPtwZ6yB8gdgtvOOe29iLcdx3GwLAb96uwFntjSflLb1Zj+M2XcZup2V7w7hvZVrS5jgJm0FqJZya66KkBbhFm7t7abqGRi1z+d4K/M/wqvC+1+XHSGTjNR4GgMlRCagjMtUYr5kOoLoGSpJrPKDs0iJsRFzHBa/CxFGygFDN0uYLUCueKMor9EIDG1gxk7W/HCf9l7aYdBJBdfvowMyPHVno2eTKKJSXi99phfj3uRMIvGFCjrSkyq5/WvNO5cMFLbJ3DR211aO0utJSr1PNMt/u4lI6iXUG5l3kVpfDucOwzsBRhoXTSmv7YUQP38hw9fxyJzcCDO6VGuyOeHgZIQH0PClwWl8o8lXMbNi016sK9Q0zMIeb6HShdEOcRU/jWHZMw4gM/Xkx8RLaZRsMd5GxaPKr6A89ADkLLTdPLFJ84SjpHuLuIH4VvZ8vOM3gHeHuYjdokUuhAniR3MH0N1WnaXnoAT2S1l0ZBX56zc8LnOEh53KzXT1+5DkEKF7GEnGUfxSt1rmV5wyt3hbUePvki8eGwHCjjfXujpm8rO450BjOiVvGBXNYuRi6/ej5I34A+gKcB3D7zgN4AeQGyE8p5JYTzStMFbcB0xtlU4Mhxqtpgb9T4Xpe12NhB7qOkbnjPqcxbizwuMRZR9Ih27qWu5ZPwG+XOpbPA5PLL40XIXhgjJfhyg7MXg3cPwG0ulrYgZXCHfdL4V1ui7dN6ahDV5ntTfwUVDfIJGY7kJSj8/AzLm6xA07vxQlXxfGEx2tSDMGqoBuvNdOQb+wcn32zym8ovEGQ0yVaJLnNCLnGSwzbqE75XJvgsI05hR5H1IFCcchJA1eif/CmgZgdOOSwT6041jOmDrxVq+MD1i5hB2xTkPD6ZrgvKjiPo5WXaf2zAgq/9H4sCM/AcpCdcx7uoAmRsEXAiSPSEgP9/PVHDs8zZp8Yli6CsZ3ewA/VcCzTCPx718m22gBkRbRihLidi2HbxVc6hcVpim1oe1jKodsBlnIf4AtQ+agqCs1FP1+5QbId7LRFzxVfwr25DGwl1jz36QthPrGGoOycssVrQmThtjJXlmdWKqTWfgAzWSSXJynleuhJ/ZYWU9bU0XO5+ZnOEJBcNqzSylOdMXJBk0ZajFaDbajbmLnbTVnM+WSJ6mD8FS5gKXuZaCHmHDSpWzSkKtFyOulPKdEHp5pIPdn9AxiGmePjyvtRa76wEM167GMh5nddx1XXJeJsobO8bALsDRmVz9/wgP473ladZRHmfZHnvD7hSZ3fbgB5f6IXcGDb4pn/nXA/O8897KtyW9qSNmtghVfO//YdwO07cwwdPyXXDjWfgvv37E0Tw2+JrvC4D4sr3O/ZeXBs4/cYdcW8PWmcL195yuZ3iS7GkesYY6/ZAdIjX0EZqUOKbHhzxRY7wIIta7zWmnX28ZzFbrhIGNttRrxVk0Sbjhuun7S6zu++uSrNDgjXBdmFKS+ospyVu7CfDY8NI0nuZAfIZgVEUD8rzcB143qJ4TGoXqO83jL1vFaeJyMsb/i1wlQNPE47kEtPqg9SOW1G0vqmh3tgjFTQOeROq80OLGzVZAfyLahKy69Vzts+k/LVBMXzjNkUROQFwO8A8AdU9W+9yhsNnbMpQnobIrGrr2F8y45+xzuAXBlt+IX7ocUd6KRAR8qltwP+V3Q+Z9Z3AKtriUUWRlDKj0zQY8pV66nLYSCVTV4sHnBer7+FrZtColZ9g9Djd+SyISy02vCbnu/8j67Lp92irWm70g3sUepnU8ImN3pQ8ctZyGjPsuuS5zfLnSYNiwkBmZ2uehlzasahTE7m8gVtdGfNiX7MGlwyG9Ux4upHk9OCxvgywyxWlsEu3eZ8GJUap1fQVl0j3eJO29+a9RpyHf3tTBjl0Hm4tfjHPWs3FkBPe3M0BJ8444ZJYLjwwPmYS8oweu6emLcl8s6rKr0lpInJaAM7lq05MfHd0iHTPi7qaTbQDzfEZnxDR6oL/0stFW6R8QZU80bHszTK4yE9d6gBvfEDB7w+VgAV2niUMNfaiv25qExXMFcmMyvsXtkbjEWZfgdw+wYgB3D81Mgo/798q3qJi45RC/vDWaPI1N+nvKtC9nG0Kh9BwRIDFyLu2Ru2VZNubAeYlqrCZee0vwDRPpTy6fJ5tCfTcQXJSjlU2WUXCiV/PZaxULjrSHJ5E63Yw7mb0DhJ4W4zAo99QeJvoFq/KV7oThtnfI2r24x4c5m2zfMGz4mhNtpMU+VF3XBhj81JMB67W2TuR4fLtmFsYrmX/Iy6ybpwXGePAIHqiRerKner91KdAhwFy0FvoBCumn7+6pzyquVNF/bAY4BsBvY2Qw9z79e4aGW4mssFrSzljrxn1F3aASl4P/Q74jbLwxrvrbj/1QTBTS+3xL424XO+MfufAPgxAN/zUG6hCZXU5z7S6aX0IlyZWinnhJkHzwV2rArt5k3aPVq0vLJSuRvNq9AMWwDmAzr1UOvmDi3HiWZps+7V66O0ZVJwz7DNQdQOUReJG/qt3E7qVpHlNNblkN4rECwGQpuxhNx5TlJFs+WuOk1FIsMopTxSjD7TpjyxS33reR1tvHyu4Ittp41fqvmWSMcY8wUG72i6CFG7Sh8S9SDGM/d2NSdc4vcY+jLIzjmYEfTrnI9CnfHT+s+L+mkDxIQnh0Jeig8dlxAf4m4xfi4r9czr80kOzKFQZVyUBb5iA5TXHf78qHeaUndb8TpRkus3NHKPdCeWA4pD3e3GJm6S5/deYoNrRXs5/C6D41btu/kzJpt++MTc0bZ4xSC6Gjssd5aYXC4Sd6NZFDj+DHC+AMcXCnxLhj8RffBtuTdUMMd+8FvCK3xqvFYLxhUfbXEu19ImbsISw69w/1693qH1CbtjKy8ECqOlHo6p6+wlEC7es2MrW0zAgFJLd+v1FXmn9KSt2M02wxc3Np69X9IGttACCZBpXep9ODGVC+yKrXQM8MdNx1mxwGPSKfDcdHZTMq6j5zdN6agtvtD0f+I2w8+bCQ7ycBHUM2Nn9IvUaUQH6kKGA7hoHpoRuP1Y2YFR3BfJOw0rHqeb4ApTh8uhlzZtBqyVoHmjo7eC3zuZdiLtjeKMhVaXK0UO4qyaX8HvnhUCXwgq0X7cMMzGc2EWQUR+AMDfAuDXA/h7HqYbxNER4PHKG4D3F4n0FfZXp+iMhx8/JRW4lgVt/yvreTtSJYvnrGMtp+U99l29y5n6nNR8HtZ1s9bjbrjIuyrfpHOXu1BnWY+rPCTsUo5HLbGb5tpeCx23ddM0uijfmknThNzu0vXE81VDneVRq6uqi9LsjEx9PIhzXYWqVXiz/MLM/Le0nGa548Rn6NjPu9VaqLQIV0DWOey6VBXTSyVnI+OcGl0LUrderTr9TTr1n3GIYZhPsbhNHPz8Vb59p7zUr4qDiv3HXUssBr/KOTz1xU3pMM9q7paKc6QFn0z3y/OHHuO5nYKAT0uS1t0T3fXATpqJ5kSsYVq6WyJpYbQ8m/D++sYgPiNht3XTQqDAabvMB7tUZccrn2EQGXGb1PHYmMb93Ulyx6B5TPW8AkC+BRx/xiZ+N0B+qniaV69coX93dACAviHDIXCT44VRk/NKLL/Ky38neyOY+kfB79fYAS5/O/e04uu4Etiuk4TMu+LVH3TyaL9FrZMe/UbXEnplsx2oAwJ+8UbaAZn7U1RCuqCl96VMuA9kn4xxL4viOk62omrRX0MHdk2Mt7Bkv9QxVcXwsfUcqZtIsengutJvJd4DryXW4cNmOHb0kYwAglI+/3aYbaCpHkE7b4qyHeBmZ/tib/EIjwevGY8dy1VOs4N2qi5wzHgRlmuhbTaD5M42A03uyBsunGLyJjuwqMdniCAi/wiAX4LR0H8EwK9W1T/4Vn6fa3n5TwP4+5Cb0Y8FyalJ/lfTn1yQ6WRsY1IhlTZDi0tLKfFVXhr9UmUWHdDirvdOLv+YyocpTGmk1mRwW/6u4zKsJiornXdhkfdSbjMoUz3qglbb3w3tMt+jOu4UlpYp+sbUay7r8bpQ1oPduLazVbtilTzdUO8FFxppWe5OVLoYzVy9+Ib59YwL86TJxHUYLiGlzUju6DOe6pabL/hY98hhzvLlxtjZrGjku506/asnIdJEU02wztxv1PKqLmSMd2Ce53T1Q2dpOlh+/qdeLsGpnm5xosXEG40268ZpS13cBYeLIFLq0zfnIpzWcchvJvIeK/zl956k39WYnHTCAo+rHWBd4q8CL38G+OJPnXj5U4qXP6U4btkHlXgzbZfLodTNLpBOVzbkMWzDsnz3aF9tb1ZyVnYAm/JctN+EqJfla6C0Y7TM47QbO+BJrsklvJGQDpTbvJtAGBOPuMwb8v54HttzGZdn1XY6dvy3DThV33Sqch2DOvZW9ozRNW/QqvObDXEtX7p5K2DeGxJ8lfg6Lu7twNyMBVMxY2qRoyS34AVj/Yq22gyum9Po2E7MclsbMC21h9N+5HCDvPnfJ4Z/QlX/MlX9+QD+rwD+oU9h9slvzETkbwXwR1T1R0Xkv32R74cB/DAA/LTv+OYqR/vpqy6dr8f3oEhHYwD+Pj+uKPa455UVXjfazpuNcjf27XnIgU6zXJkiss67mlD0wDtWsqiXVXC+rHMv30JM14nrUld5+4MN7WWYaEngq2kXOu74LF0JJ+qMURt44RSYj8bsdC5y8nwTpy09Mg08u+GNXVJxEnMg7F3M4qt+01Xlc2JuZKa3JWWrMrnklfdDUqd1b7VxGxW5tLS6EQDnCYiM3V92ERyuOv4miMYzEDvFbv8P2PXNjg9WXy770HwXJuaH6XLcXSWuYw4dNdLH1fTuKDg+CioQu5o5HbMPDAMiSNoBA0yb78NUx9uv+NBpyKGzEyLB94iWl0IbCz3uVFta5A536RVqNfQQ6lTc/8Y3g8NyjInmzOJU4Aue7CwGRzDDbAcOGseb81vSf2hPoHjrjxAZb8d8vP1pZOf1sTVXW/WsY9MDXRmJWQ8uvlJ53oCLu3aQXT0Qi7thZW/u2YxOu4uvwg73l3Zgg/FXtFHn3AkWdgCIMRltJE1Uw8neJqX+Wa7ssbzLSZdFwDdiTvsgd14Ukm/Kog+S3KClYenuh6fple5vVDeug5/d5Q+Bi5899k2kxBex8ZEjVUiuUhWTXQPhMeXNNlb45zic9hC3TY77wE0EB50Xc1slOKB6FlwUp5W0A2JuAAfOcB3N6VWlZUx1LA+pxssXYlSqZRsfzWb4kQHRc5LjtMeClpo97ak9ZTtwbxi+Z1B9vzNmqvrHKfoz8CBM7sLncGX8awH8bSLyNwP4aQC+R0T+RVX95ZxJVX8EwI8AwPf8jO/XQOnW96pbipTrYdmQFsMXBjHRzV1hAEyujOrjILJLfXfIBgUo3bHooQN8Qo4/3hgJBfKaZMsXbjfdkHU96LfoJk7lm84KdZ12I2w5Yao/leT28w21bhotG+aFjjzvKrR8sGhBG/nZoEVf6BOeq7qZ5VTjmP3Ts/PsKAyRzXiK2B5pBZapMsiFxY2kKysD7Nn49vqIn0L1rp43+xwvImPSTvTVJSb5q08k3bi3Q0Di/9GpqFHn4udG4MbT5MDcOLweyYflVBtu7voY2cwgCfHw8Qm1Of+4zjjbIMuQrn+utFf60Cu/DyapZbgFumugf7dnyPF+cIPiCIg5rZ69wgftaa49SWvXIJuRHrupdhLPDoL7uQW/QlpNTi5kTqu7QettonCHygN+hXSn9TY61a8cSRweej1mohn3v/nTv08BSVfG7BLWYQ7krS8SGC10nXyelzFa78/eh4HpSvHiG8fDbIG3DBt3/TU7HjHksI4XmOpnMZ1PF1use8fuhdwrOcjunJjSsa6HxfTiU+zNlrZjLclWbpRNkwh1G896aTOcfcE672O6sAMVYH3in2Ul3PSdrNCtVSLZEJnksI3U0rdHPHUuMII8xTv4Nvf2XPHEc5FqQ3yh1utmXggmsJ/I0xhTV2F6pWuXjH7gs6Mq43HtQ0ZebLxibQc8r8O6uwamHPamMD2EUvQMd/a0c4nl7qV1mL5DDmG52xfV3IgM23ZS25/NZpxQkdDl1BOQA6Ia6Ju3YZ6mV9oBWdmbpZyh58E2RA678GTYDO+E/m7tMDsg9vsjh7qY/WqDiPx6AL8SwP8XwC/6FF6fvLxU1V+rqj+gqj8E4JcC+C19Ubah3IKsL8oCSFreEl/xKAZ3IUeCSwGTYlB2cfrdgajn35bvjtwr2q4HQMZ1wWsCy3tyXtGvd4fOV3UzKfOKep0OcD9cN5s+pqu8CzkXAq5p9317pl4zXPaJRUY+P3DlXvZIs/r8YpnW6mYzpKbw2jHE43I5vhoTdy1JfukOAqC4ZgA9b2U4nQbhpiE8Yf20ARHrWGWwe4zn9T3qlVwHPyE9nFYm2jrZyPyL4lDdzLSu89noqrPgp4SO5U2OT0580UAz16wWrRNYlGpqeddyOfMex6m3XA0gsjf3bEgPSnK6i93dur6QO8lZym28HgyfYm8m2gv5HcuX9mZRV3ft6QprU8odm9hRo+flif8qw46vSW/EajzvMmO5zHwJzGte5YX0Nq+WR9fu7w0BL+zryi50O9CxnH+scH4Xd5fJeM44mNPOSY4ivasZ/4sd6J2UaQnHqhsk97m6+tyVw/P2ugncJrfIlCtLWrS6YF6z3A++Mvu08L0i8jvo3w9zooj8ZhH59xb/fgkAqOqvU9UfBPCbAPyPP0WRd/zA9DxpGLsd41fttDyBoIsGpNLu3/NnXI/spCydd0i1MHWDKeQiZs+lyuU3EzuDxDt5utRxQQvC10KLAJJZZ2yYUF4PgsfkYiOXsjwkd6Nj3eVUytsbehG2tBs9NjpO8VZPe1qpchWxwze5NiIcDOK51413he7yFN1ketsl8Ldryw1+rQaHd0idDxehs8i3dtS6m7oRzl90HGPoaLTMZrz1AeKbMr47DMTVwS7HXSCHTCG3FPvtcRn3bR12MNxdOAaboUC6ag5XltN2jcftW/btGPE3btbFREKH4n5otMNt8Yxr+x3XxgugceOXFRIHDtyI1mtZNW/E8qexJ26PnLbudI/E7F9Cbo8IVxrFgVNOvCRXayOx//kVy3lr2c3K42c43hYYy5FvdIWThzu6V0jHyYIjmmXeYqoPRobZ3l932M0derI3RULmsToG2ZQut2KolLzrMtTi8BhjufMAzvJxfGUzJvb3cL9jXa8M6q4eLxc6bHAkYEasbRl2Oi03DWHdpX1rdRFq887WVJ+1w5e3k0oK+lhsdVeqmOqtF064whiwLc7dorhMGsPtG8hiByTrtduFrp57MIXcdMnu1ejxuIIpX+eVSuX+cGrS0tVNww7o8KRwXBTwFfn1ag/BgNV0Nc8r4x33/PMVR8hW+KUfOM1jAGL3GWZdAVl+72funqjwF/v21qphOf+Dwm75VbNzB6DDq+FQwSm3wVv47We6paPZmxcdMm+wS0sCn9PeCvLzLCtaXdJ6G1f3yunimQ8WFMDt0941/aSq/oItf9W/4UE+vwnAvwLgH36rIp91YaaqvxXAb30oczMGIvXHmDgJuTE4DZ/v8LxEy8aO0cLSV/ZLpbppMZ2u5Di7yJs67txD4izCJCdpq/se0YbAKre7pbDOV64loSMb2Qfk+s9l+easlS9y4BedmRXxHRMzrXI2BpUFizMqeXUqw1LH7srouSNdL+u1urBo2sutZO7blTdHhCsr8krhIiS3y+G8R5dDtN0Fq9N6H3OD6AZOgVhI+NhUUXJxse+ttKGckzlB+p+oud3IMu/wjeeipvti1pX9Mlcgb9bhjsg7y0K0fvh7SPRzEKcMxBnfc0k3j2wvN2IC/kRD6jyM9wsk5Jxww+2fCTjiIPzIOyp7XHnMF/5f054Y1zX7lEVtYnLGREXtPJ2bX3dS9CmG10ryPU3qC9WNm+43hd73+K+3sdhNi5xYNiSSyeiXdXCvbEYH/mC9wf3EoL3OnibAIl/qX9Z2CzmykFE3I3sa8Sou+XfyLuReYfmEmZu6mhGn0S7Ld19nn6Smjopez+waWWwImj3tBQqc4L5AbUbpE2M0O1Bwv/K+kmtCi80oiYsNBul8peatdiAUnGwGq0Vb3aaB5mZPYHlvQMf96soo9N9ahWI2IuWrAi9c38hTTPE9t9ZP3PX6ZjaFkSDdtrX0bR8mZ9gBgdiCSFRxiiAWaHoCx1E2ugS5GeifW8nFn+vm5fNPkHj6SXz83NmQewhw0u28grQ3Tju2zvwGR8/lLuzpP6FRvvm9WNqItNxM633B5STtsJhHoX0j7n8l4f3OmInIf1VV/0OL/hIA/69P4fdub8wCvH1nlOOL3N1I8vfFZqDx/1qXJdpuNHo30/57msUC5WBASy70D8rpeVd8r0I5ENpoV8NIN3kfkbsr31W+Ha1s8t4b+tNh6istFu1T7KK2emDhF8b2UkefPK52YPcPYgIn5SCGZrZ45LRJH1nMmuZO+tCDDWSYkjgEnsNQmZnlXZnk1eKuTkCLiaYizLSennOKVjdtghj15E+UDUxvSFcsF1KRnjZppi11wWfXzMhqloxNWfYTZ3BOcmePHjKkk/puaseDY+qoJF+4V/CNW1z7QEyDQq8sSZ4xW7Uc180rAKqXdfcmCFwTc7zjcRm30mn7SH8cr1JO8riiZQaXOnqYeNlIaRPxh6ZARe4jBI3Uivhw+WR+NkFdi5fsNLQf0bnaDL9ifc7UeU9ZBDTuZruwlOnNHzuhLqMK4hFU5SDnJIE1F0pKS2PahVzQ4/I23ctHQ0BR7cAk1uSIPSjbV9riUmmreao6ur1h1BJPuWsHWkHpcSzwdC23FtD4WvUklmdHVMA2scYlUPWtoBgPOieneQ63Y0dcee84SXbGbeLQnfBYQGcCz8BYjTaTSrvCY3rtucbyEXtBtgvLGeVUioNradBeYPd7B8W7fsfsHxeRvxCjC/04gL/rU5i9oytjhjoYfZao0dn08JfvPQ7QDK0YNmVe8IOwLZ00WLkyDpBNEM99pWY8VePiBxRawtI8E0r8SEfH/lR5Nh4T7UIOp28rmeJd7iq0vCu53c1zKZeM+1LnjsqOplSoMHwXdZO0rLO10Y4WTc+g1UW9tgfTti0bU7SF1qZ8NBuoi6dugAYNt5f3I7/pyumCo2Ou8zedlAw9vfepRpBo1eIHlc95wQ4H+w1c3LYhxbs60TqvuAkLMfzht2aF6yJGGQXloR2yHvLz46XDqAw3SIl+Mz5ymo3troxjJ/NM10bbbj+QfW58ytn4isY9FYC9vYo2zw9mJ6akofOPkfoHV90QqvikwCYBcoydXbghtQ+jhs6D9vTdZTojpmGnvc4EwM3cK0fsVHuDaHWVfcE+Ix7lO3DDLeRKTCDeEirIKeapauAiBDgadls9wfFavW4lxx0cj7OjeXw6d7fAVMeLihtaNgOTIOkT55V4NRoqbGKmUHn84psKyBO8SY2Xy1SYdGczSP+Cx7183Z6wDUA040O2im1Hp7lXvoL7JFg7cdel0Oo2b/ABUDskZSr2hGl1oaP3V+JJctqLsNl4soGc5Kbw6KZCxZNZ/XA+6bTFECOHJ4sMxunOFrTE65C6MBWvB6sj6eNVAT3cHonZAc2LlqK/aF4OZXXnefiMJt8gnO7uSeuXcbhrvH1CGiKKF/XNKsNiw+mBs27XDsP18ZZNILipuy6m/T0x8PimfsvtKEy6Fxqt3PBiDea3XL4oAhMFitPwV3HDF4zdZm808LjZOaOt7ohpfw7VQgtI2l041g1X+ULLffQDhtsn2aa3B1X9735Ofu+2MFviqAL5flrsNsW2GJLZkCdWM5qD0E9yxIbQBlB83YwCehDASdGglqPo6PGGs8I6ErGXl9Xa9atmfFlO6LYxTuppbF+k6rgy5JNcWdP6c5ofDdKu84XccPcOWgHNfKt8LnPXP2gp0ZDF5XfatsJptLXfdGPEPnqiWuoqWcvU59JaGi9IyctuHEDbXVSBlLpJN5UpUL36BHB84zL7dOwgKsrkTIhvVM2hE+3IWeciohpyvOj+bU0eC32eo1axcrhpotmG/6b6BfH1uumTGndh8XReAPrwG4bc3DaMVkUK7c3eV4kZxdMMm58v8ImLn29wWrEB6OU7xOvZnRSd1i8uPmMhYZfp2zA8AT2s7f22LrG+HUu3oM0JhLfCi8kB/MatMR77xcxn0f+An0lj15lPsdA5BrJ38caWAoeDqGRjFRZO6XWfSblJ1m3GPEZmPK7RLa3ndREqA4+5fxKuTC6D1K+E5YrUv5pVwHKZ1uVqI33UZqyQY4XdXPbilj8Rz3KnjWzS8V75OK5FYakbpxu5S1rGamRdpE6Ez/kqaVM+aXL0onJQsbrpUZWpJ0YTYKPTZXdx2xs2pNpODVfGfMbYXcwU2t+ISEBx0GrGu4mrLzclF2+QwOnhMplvaBybT6vXI2BfSe54dkMMpeIqbwXOQRGVk0jjVuwwm3KTA4etOLOahn4hG4pDBTfUc2WB+/6WyTZyfAHpSMVIIlCIGh4r0uUx5Iw+5xuGL3gJN3THXyU8ZlqPx1nhsC9ucaw/EO6HXHg7CA7ckDZDzfH9Gb6K8K5vzBp2TGCNPtjIjI/oGKnDgGaX6QuRaVe082o7kyxTFs8StvrzTVxmHtv4Ds/vyWnarX4/JOee3JbUsJeb8FLngqHtwZL2MZVogn5Bu2Wg67TeT413vP1hWpbbeemmAjyq/IP/EONSwfmoiJ3ktsTmYtle2q7lmnGiedBUxVUuW2qbXNhAnN5b+PiI+UzXUSLjirZUV+uDk1y27LWaE0u4ZJpyIVEcmvzPbimRHvy15m956wmvfLPr+rpbioqZ5NJ8fGqO3grD3WOykqp7op3doVe7CkGedasuLJPOFxPP1wepfeoCjyM9cD8T7m2WLt8KXcmhByuswyZ+hb9rxS5oH7Ev/lMf17EHhrH5bNYm7y48WDcTU1n8pviE7U3P6M7lwUbuAge7yjlvoMlDB78WX5Zvq4e/6V7nBfKc1yh/y8xv1FDLL0VlLbhukuO/zkpamfJt3ELJqLs6o5pN3IoW8RaO30JPLt6CqSswHvf1bZ97RNzeaK3azPEkH2ngLOueuM94rUvczwZrG6ZlfGqxN77kcmo1vZW4JyZ5q1a5XMRqfyruh83y32Rv1OzNiEssxfwN4zH74X+YoJBPvfzjw4T3WZiJg/8Cff0vn+MymjJMhSczyYGzEL7RQEMMeKZcel8ryhcUc2dPiGptwbTr4M9DDR5cqdqSF+bil9DLM5Xvum46r0nu7sEi7+WwZfqVjhflKyxWRvsh2hkow5rt6n/HlwUv7PZ1xe24aX9wX6FivGr54vILGkrTHCDSmIvrsunbKC96t7T+tktaW5dFoOnQv49SzL11XqEo0/JbUGXjJ+bK2Ax4KAH/wKkzziXOmLcNg+5GTMz9Q2E3OI6nUX/F2Gm+qQtjaxORdNdJHY4l7dD/RdyY5vFsNz9XtOPD1rRLHUbW5CrI0OZ7sPi+XOz6rmjfaKADUzO6wo3Aq4NGhiB/E3WZRE02g3L2idwCNyouUm/e4eIKnBd4HNmlRIMJ2583T31WchymsJJbZU1yL+tmIxdzdVzS7sR1W9WmB5cEjedWbtTNwo5fpW1YzXLu1/rexi5oO3h3XRnnfTHimWPFNrN0cf7WhG95jQTnJJVouRlniuaYHcFvxY2PF7eB7xg12A9eMbqpfJmjH0Fh2o7lQ55Y3aDVjXqxxL/3VSvaL/TwN1kJCoz7dINwtMNc517WQ5P2FMAX2oLm5WEY5JdXAV1utTewMuoG97OFPK8WezMuGpnnxAfw4V0Zz3e6/ONzhw9xxmyEblBpkLfd2ZUhh2UtC+bVjG8n1kZ9MWhHHVizPZKJ1vXok9Gt4D5rXqjbH62M7t0w1c1a1lKu520GcWcnJrkLA/uwzs0AVcNwIXhRvsnA7iYYq7qZJgZLtE0+hceCsfYkLXRbg22N346ghJ9+mR+u3mroPEkd9FI2kcO10g1aG45+zbEXohpOL6M/nyciArrdSjTOB1RDnYY4zo1ZOtNq1FmenRp5h5J+w6LLPGzyEW6LNJjGQk7oLq1RvuHlL2QYkefglF3yMD4QbZfmHxgXFt/0rOcvjLuInWOzRdCBNe0pY41yWEMUN0Mrb6c1U2v1ckY/8UnGS0zC/L2buaTG+KzL8zE5sAnK3LMeC21s7HHDsTsPscfMqjADYVvtpEq8ROpG3jQ0Lsa+tOcFF8k9d6qsFZY3HOlYvgo7LOjukaV8jShkUAG0P3tA/3thSbLFxSqr101PX4aOx5u62dOZXZjqZgCleJ/ruu10XOH+VXk2eDzR6oIWZAcUNcHx2PAhBmyUU7OuSGK8tWmYWuX0BiXVJG1JyLaQtyLC3PekbIwxrfP1s1eiTmu5ZZwnGi6Bvgj1NNPalBZfLHn5mo7R/rYYeVFzkxSvEZcvqQvpFJwdRy1v7Q52Dg1p/7L9RhnC7R8CvwF4NJ15MrgNQS5yxznlhc2wd11xIo1wP+0N3RLZaM+wHYjNzzj790GD4pOvy/8w4V3PmKkbX8cgQSJUzOBsyqOwvJk+7WKywYEPrJxklMwHEdBIGRifcir0VDb5rOm88c2/1FFxv9e7jlE3Le5yet3ISm7mvWsEN/GVa1BnVWwFG4F7hk2Rbg4GQP67tAeXR0kmGb6+gOlySxuEcpsCrWiLcWUFZarvOgHICnEjkHK06koMpHckH0IK0BUepW6U5LKaZUHV6orLy8cstJShpcdjpbw5xtnoTyHypklxA+IKL+YfZa4g9DC4iGLsirJRpolJoT1iUjYuYaAFndOSqrHLKYDapfhjcXeEe8gN51isKTDOgLGStviTF0DHuTGmPWV4+4/D2idU7epjVXhre7zTqpgpjW6lUReAQuPwodOO+j79HVkc3ms649NOmI3KltLZpm7n35v0MRb9sL0VBo3BNlYCn3q8qeFyID2+6qRMzH9SRyjaedlWQKY1Obu9ueVQabhPR47WrpoXY7+Mb5lJuKGjePeUdF40Xl1uY1kZe/SyTa7Lt7OR0T8WdeHxgiPF88AYFhsltW7Ij2zyvuk+pkQ72YzJvYAiBff9rVM1qlkctWzt7Vf8FAJPBA7GMKfsITb6TbqUzxuE6aUB4sW4L/Y2xzfBuHyl38Dzez9KCxPX6efoy+ZRh+YjaOu4yMWYW8uxGTW+K3bKYZtWpIDRqck5qP2ChzKmJt6OBRwPOgDuJBjGedAGujouwPBYGx4Tlnfcn+wNDhTcB6DF3mBhb7LE0Vb2+xm+/PBuy0seaN3Ux6RH5rzwvJTGXaV72CSY5+BCxYKaf2NAV5mXBqbovM47ybwjp4crnZnXVDcrnS7Ke3cILoykYpa7ZHgx59EWYYO51HlFt5BzSbtsFFzovOivTe6+Xy403fWtBd2U1nTct1vTmeNa/5YRedURrLFleriK84JRIs7uh1Nbr+JEe5px7VWRbdJLamVT2DskztMEacrJOPdvof4u8dczcT5QvjP4SElv6ljdMO5xOde/We6pTW7oLMG7jNXYta0Ln4d0fjSUyUkWtuBGx1BRijc7ULhUtQqW885BIbjCYxoUO1xULsFCh1WcybmPNhC6h7+Xtqrn7b+vdLwQ/BqbcS/va2ivsHumXtTNnGVPy793ULYLq4nrDkjv6bixN7sGqnq3zl7wfa+jorOfbcbK7FwHmdt2NWAbX8bVHV/Pt7IDM0Ym7rG0wB6rJulyqW5OricwhuaiMcsrli72PqviccZX9qvaFlaFMfghexM6MV3H/WpvmNZ1PZsuHy0oBDd9+7+PFN7dlTHHp3cIBdoOKS/g0OPMy0dVzxujLWkj8O7Qipb5++aJdFrSSWvaVsdF+boe06NG63HfLZrKsJK7yLuTu6+bCx3fQLtlclG+iXRTN1DkTin/bWJK7JG6cfAraZW2k5Smbv1kom0yc4dwwYvjq/JFXkkxFo/vlUg3yGOnNd0C2SRn/uBF+ihXfMh1lztvUC2yAMStfycEctpbKDGToi538BrXEBsdat2wW2S6X6TL5EF1HLdm2X/86nn/Fo1fbwyp59GE2sTdZg7bCRZzZTzUuqTV1eG3dw2lzbVl5H3x5zL2SLk7+4593L2ojVZdpg65SDlV7tgRHm6d4zj34e6m1nUODNeYG2B5k5e7bmq5cOQNgfp++cwIUA6iV0xd4b6nl84XeQM3FoMiXhhMeNyydhvSy8F9/gEbUsb/RLu2a624r8Njx9BF+e7ZjM73Ee8KeTTvg7R3bUYQE4Hh1cS4h+ArpU8WeJrqXDP/sjzS4kXJwgKEqUtPBf4baJcF829Pudhe5jIsFPkpk2IQqXsbvRJteF+UutJiUwIHe3n9TTZ5PbiTVGA+3L0vR+sQN+LhaicYNx3GnEAq/gI4T+Ml7ppXacMOgM6UIU9EQ4BDx6dB0maMjO7Cnp91Sffog7Fcz9Cp02Y1kms1YSrUbEb0wfHjEMG3op+kHYi3kxifoj40HdDU+B7R57yu3DY57sugBSzvOdsqJTf7q12bDxDe8TtmnzW838LMECrPaZmxlEVcBoCJW5gdLkp9GB+ldoEtHcDWLVAb0GMmJVrJOF2hvFxzEdBz+Ty9COlym46T0aD4ldzlRGRh9Cc59nPlvy+of718hZbs39JwXZSvu91M7djqtetc6ngt1mjJwi3rpva6Kpf6W9+h7xKnvriwrPGrT/B0as8rr6ty1kyS1g1TdXVZy6GpvhVvGIVMZ1rjPLWR07K+Aq7oOOlUDFfWhxtjJV3i5kLYdb80weXvo93McJ1wFxGk8VYdZ84k9RhnIEyzMqHg8uWlGf6NINU8pybB+wy5+f0dCS397JYolZ2mDicOiI6LQCbaOLuQ/UfMRAmVd8jN0xYKKVcwj5qir7WJn1QbvPyAeH2n9sogpVGrWy4wyn9IsQPF3X3nyuhxwuMymeRuln8WeOxyLHFlM/gHD/kJr7zPNjnlmn0UGSu7Vgs7017i8aZ8KzvQbcYOY1c2456d+6y2qmpFedvm1coOlPJVXNzajCK3VfA9W7WSzFHp+NuzUwfjBjZwrEnrnqMqkKOOm5puQoUelE0CjmuxGXw5yjQ2bXHAR0oStUf6C2EoglNUDuJWQsdfkpsfL+EGcvxN3HdaX1CdENtkIntji47huneQjrRZ6MhotG4ztNiM/LwJlL+XtrI3FVMHHmfcbZfaZppfPAWTE5uWyAtHvL0Ow+zYRovFqs+jnROfvxtpLzitrs5iM86oq48ZVIHb8/KPTw+8W9qbO4DTBg+DTjcaAX4dTEIOfDRlfK3RYge365S8Mj4bjbWOK16bvIkzSSszbTEMbKOk0S70WBnf7YxrYRSv3v4uh2+zK7LhO5GxzQBoNnNHbrcEGIZCN4rPOvvMB7W+PW3bvrQACcEXwiZ1DCJtstEVi0WJV2DntcXONqFuNy/VXcs8uB113ycuSlWzkKuLX2U3EMOwQCQMYGRqE4syHyrl9cHHJczpEF/17EY6SXO3VEOnTpsCCy1aIKMZ5ROmTeOr+RQKjMXWTo7xZR0VaVDzPKH/l9xVxPtgtjPTUkkLLbUMVXaVO31s+TVhSTuP6cQnb6VKW7rbhHXadOzxWfpOLnCNdVX/B2xVVmmh7d4T96ZAZc5+R8epfBTpC5gtdpvO0WMcHgVlL+uS18KGlFHW6ibPF9FjYlrkqU81nbADVtOpdyDv8ZKLjZLS7UmfvAQoLmg3T3pamfiynQujzrT9Rg+kzWiBsW38PSp0UgNKw9S5FIwo22rGyobwOJ1shmDZB0ID4sVTn67DYHGF+46piA2YwFcxjLWONzVxsRliNlCtRsne6KLWmr1Bw3Jt0lQaHlMnJCsdtJ2XFm4jnPCT0GvaF7C9YXdKszefgvtfeuhf5Pz6hndbmMXA8AeOP/EO3XfM01iVOOPfRJsDvLisIBdeE3TFAE05u7zd53fWkXTqcf8tqdMlLdXPI+4h/Uxv2BKWu6Hd9ulFeYqchdwrWjfuHZSv8mZ8rejjrjMyPao7wFrzLgu0kDvRTnO7OZS0Kjdg1ft5dpOR1qxbcVecdOSd5J63DKlSRDEjlfZiKCOxS9jqqltUW5nGdIl0FtTLTbj5fVcSGG4clZaqS+gKX/FaGy6Fvug81Dvn0Jn3085wP7QdTTkbLVWO1FupTnibjB3hE0rfQ7dlj4ZiUNCbO3g9Dp1veuLF61l8UT52bk+cZCztyLjR+s2REry8YmwSEO04ynezuqm0nu4NP6YYihu+iLTq9nh6235KcDw++mR0h4sXca5nol1iuWWdxn6q1HBD072S8hX8ErMJilj8LXWeyl9pd+Vb1t0V/nL8ni0CgrBvQi6hVkGCpmhmK7hY5S7L0GWYXlEeBNSlzqv8Hed35e9QRVgmC9pC15XmzbPpbe0iUN10G1G6/mqlzZjZd4pU12IZqqluzpO6mG7sgClYXRsb7psewxEOcRuuALkRanlV7eKMY/DIK97HGDsUuTCe7A0K7scbLOZrm+aO7QX3rQL8Iosb0cbbZ9jV8afEGDJYHjZAmxeGOKaON3Fub5j2MJ1VFS9kb27SMNXqzvFY4g2e4KbeL90+ub3xd2ZnLDLH4su/QDZueEwXyRcobmFvknZcIHKzU2W+wNFmbz66K+O3S3jnWxmR4AQfN4RWCuA4KBFbY6VATKCC/0HAZ+4w3VgFMbuXYBjYEEUgOkgbkpYPJaFeTUvGSRXjti7O3oB8cuNAo6X45E67MHRRBOaLquPS1WRVHnjdNIPS4sFqQYtWVUUu59XRfqxTGBVVcudq5VvInTuZQ1ajVZskFVrtHbQIkuONtD2t05ZJgZa2n8uz7zfA7F5ylHrVSa00opp5Q27uFArJ1T6o+A01cuiq6yDkktgmsESa1/LHBEFyuKnfluiziTyX5iPBq9b5hmui0bkb4OBnboHqCzXEomY8y7NfB8uxDue0I0aF0LyqeLiTHMgPOY+463HogVPOMN6i6QwjdtsWiJdC7TyAG24fn+a2Eq6Kw0QzLSCUzqhx4qW4SA4XR5S8n2Cg3bdIZJ78KyBCYBd4te7wAxel8Jjc0HmRRhgPzEOy4iLZDMomnNf5abM3bKuusLzjcQjJ8m3xWKud48WQ6yEdUzhecKKGpX1hPmwTF7hfcbHpfGFvuk3g8rmt4jYrL5VeIbfIASAqoKvoxvgkQfwGbdwmzfUh1eaH4rVeUq6s81paneJo/bn7/M9kBzQBdxRwlIHjhZVUWu74grkry9R0hrEpV4mvb5gEPqtMdeObIP4mydsrbITJhSpOX7wg395VPJbEcnUsRyx8lGkVuHkTql0+fzjG5WxPqEoPrxw9Bm8dOR17EQssvuL+2t5AzrQ3juUAVE9AbEPP6ljMhozfow+la6NEVbk1QsHyLxqWD9pxf2NaEvG426YP/j5K8XRl/CxB6L8BWLxr2AG7/46BW/PCec2wEWRlWrEyDIydkw5N50670/nCMHC0T3mWfC9GyFS+e7yuwmtGorQyXBn+nj6131W0Nc4i7+SJUQj2oUxw3Gj2UKwT9QpZyNX6O6OtlXqjlTZqcsqPnEzMMwC4ySIdpex6TWKLwa15OU+IoMGYHzSFW98idyrgsORzx5+MPs0QoNNEsBTZjVwpkBvYdgZlmhOlItwFluna660WIl2i6XsyVmH3XM7cjXXoy6YW4cpI0x7Sg97umJyxsM3vrzGtlu1xj4+yn5BS/3nxCeX9bGE/+CeMpY5RMERxWa8AJu82Dvdw8cpmLONa/mxxf4uT+bpzxgUeHDInrXR6GPeN90GZ7qHmBDv38PhChyjD2nQXyFvaac7b8fhCx65QQ5HE7477K6O90p2yV76zte5ud92GTEp12pxGtTnLFT5zlzOcbXllkVkpKnBccGzaBEW4Clbt1zqyvYvqVNNz0Ucl/pNpMv2WLrzysU5STD3pkm+buzO562Du+bRpqC0PJJdfHfdH8Q2PZaTFRVULxVe0EnJZQ9/OI9piM8Te/I38flLNv5R2LNxkP1J4fsfsE0MM6DYFSz97nkgMijI1KOPKeDgquU9RMV7ZpWUzaEeE5Dq4kQGYx3PVq+PmZJh5xtega0vr6TPJFKbyaZmbzrIuJhiTqm1StKrHK4M/TYp6eR4oX7Z1+XOHtljcfFq7WlMW8yToSvdV0p22vizqXVqNOpWu671K6e3Iv+JPPWdRyKd6S9owAGW3mecWpr0PUXXTq2wBiVaR304hnciox02KxrDMY3zGYLR94ZzGzlwbPacgbnD0aUrSStAeS1qlRYBEWxUcskoUm6QUQ6l5KHzw9XdUwzAOuYOPfaVmQzue+YUnw7gSrZ71Zb+54Iy90VtceDL2Z+vbxk9yZeSFlpTpT+mXHg8bYfU34+JuILfevcKrHS5Sri1X7miLMizLEzqDKnMdchq1H8PK0deWb4Mbk0vbRUg7vtZvCj3vrvxd71UTr2wK0zKkXem4sW8ly84erMqp9KPudK119XDJvxu8RUFI2fhW48ood1tnuJjeD1TXpFe48qpvcCWmxlxO+d4AaiggF3AyF7E3JkGlU4eJiPYMbAdyiVOYwtuA19EDA7u9sXFWbAJVnBqmIr9l75XFm1jpiqht3uVHcxxTMb5N6bUow4bA7ZjZG3+DmK7zADC+s8aVtaZ17PbbiN1mZF2I6cz2RjAuIbF7GEPMQTblIwZFftbl6x7e15Xxbg7ESI4d2qWhk/qzHiwrwBvucM7OQS/cEUgu5bsMHW22QMwJvXwPyNmx68WnLNuN7StjUTWcHywM97a4nshN8mhZl5OXar22rNxW9SZUwFcyb6qbneFMJ/UF33XHYGNYJ3mVlu1yp72uShosbTITdFrzZloakjR+1Whn+0vJ44YeqMZ+sJM2gZQwUEVt0lNidzfNZSzE3Kzr0FgQJ7wgPqSZLv7ZWySa07jhEVrp+re/eNR6c+c5BTsLZ7TSdnr9nJxf1nG4K04Y8VRuLMLOkPMCwa28dXOXykF7UJswrV9/fBLtqOszznD4gk+QtMOQnziMunQd6nPLxcJrgsPrbuJJgyN3gi86vMR/iNb4+URSBHih7Bd6FUytc8YZjhptwcVGu5XJvHzRPik1R/14U1+0rDBjjzE1FGxYYt0iby9PT1jUzTZ76wprTL2jI8XvrNkv66Pb04flXjHe0WpL4jooY6MpR15GbBVp3ZLpRB+YslC72ya+4KUoSLyd29loexjn0PxcFumw6jOsE1wHR7Ok5W7pGMW3J+ZiKzeo3H44H9W6yeUUR+MZN+jSXxfMJ1UOrXjsi9cbUhe2GX4LMOA244S7uo+PV5+1nI77itBCiHYsGE9z/z/JTqD89ppwe/Mtv9E3dDxxiuYnXT5weL4x+9RghkfdYNLzEo4ceHzZB+OTtrzIbJmBEE+hsRWunrFZ22n3iFhVzFnkpXgZqQs5bGCL7V3JlfxdCthoV5OBTlsmzPcMzCa+lNOyxuTeEmcXiw2xLnTkgr9Cx6lPNcCf5aZhy5nPWsdsA+unZGCr3DozGWrlTUvLBVrRs9Nm3Y4D1knDFz9UXu4DXxdO00SSi9kNOU8gmLa0kZdHqC6IHeuaVRfpfaJSaEm3VR/iPLnjmCk5SfPZBk1gythlNxSDEKoL//ZM3OYVQsXq2U2e2pupw+r8JDfAIXyQ+QRiHMIWyzvOJBzRXuPtYV4uEv1Mhyl2WsWZeaMMppdq6mjt5bQaO8BC6WeRM2iXI/h+8AYuY2M293UMMsa2M5Oel7BIJrCz6lrcZnGNi5k373egznKB5QUX9Z4crBPh08YaOq1X6QTllOYqgvLew/0re8OLndUblo77j9o5luN5t7YKtexDDiktY/yt6mbS0QuskQzfLgpsCKUJC/pf5lOwporhOLsUV3fwkblucs3p4PTQYSjgNmw0AeGZNJXLb6K1xMqaznU1uaFSw3bH4zKnaWPMV0/BbjGGGNtj46aXY12o9ogVyTz+Rojf+61wf6T4G6XsoO5+OJZEhscYCOsXOlVM9Ura2QxbYsmQt8LjYTNci6QdmcY3J8epYQV0phVBuD2ecpK9GQtDyAFRL88bcf8ZXhXecXmpdWy0Bi/ug0AB905bzqlYXs1xNQbKqT6XgV9D2rtYBwOOc/5Kq1PebbzLKmh9X+6KT6edeDUcv9JxqcdVmOcMW2Ld6HSPVHXx8K06dp0uqCcdrwQ1C1/r1VpwS6/retTpxzbPI1kvWawGw6bH8q9Nk6yprFK6rjY8S/6lKiqLfuPuhW6Sxhsv98d33kueSJeOHI1tVDYQ0vg3XCYUsDusqrHX9g+Uh3XkZ+Wv0nNlni63/kPIlkLrOka80dXPRkjTV4peJ9XxNLF5bZhm4tS3qMqjaYXaRbg+Fn0ycF8D9+VkZpk8S29yi849f3bgKyz3+CP2ZqWcLMq4or2yGcvwIO7f43MXy+/JuehG/ZbIVd7LsjI+XmDsRH+h88ziPj5fPHhVqLZwwas03J3x2UBqaXM735Wd2yqAwph7dMTLHC1xZWfPGAuLCJVgWElWGEv4arTRh8JXs16HlHlm/D3ty2BhBwjbJ9yf4j3P2mZgogVdw9FsRzyTkJk6wuKNVj0Ns72B2zmj/cCuggrg1OPN/z5SeMfLPzboV5yd7T+rNw+dtuctYOLJmts5fJ+pJaVhs5ErCyBYqqw170LFMk/n+Z67Mi6KN8HcRNvkbKpmLt8mbyddyHmUdqXjXdqW9sjbvKleH417VDmysaUP8W2ufwqg7y5NtBp5Q42pbkixnR61uy53JmWTt8RpWPiEP93XanyaG0SZR95yaYgx1xOIS0BKOcX0yGVG+MGbG6C/+XS3RzE6ETtjBtdLcJ75VsUvrfB0d7MZriNKcobrSTj+WedwueJlR7oQnnavvzkUws/lZRHdZdAhJ2ldEasZHPBzCYe5H1ZakYzXnWXPaW/a7tFGexqtXYV8QCB2+5cbZc6btAr/GOurwyVmELhZXwhMbdiekj19YTOUMhb/2w3uL3ByHixN3a7TK3DxGts6kxhYE22Xu8Wv19gMT7rIW95KPMKXcLG/TdwVN8rzZnuje1p6PtkQG6sVy9f0fOa16ACijTZ4DMundMZyv+L+nqtK0RHFxkDcNFEFtB3QqTinZ3UfASOTNGMESmkTFWNjBAi3Qr95e+CTBsYAjr+JO2L36fso8zdlTAvDczkTu3PLatzi69/JDByEUjMlDrtVcFt1xHMEtotv+pBdSDtwphyrm4LHSLvgZRIroGpeDHoI4bEMF/RRL0POod4Gw2aomqsihtviqGeTFuV3D4/4UMCg9ev0IVA57ZMAVr5ixgWXGxHvHgS3u0Dx9QjveivjBI4EXj0eBrIAcObVliZ+XiyAQkHve+vEVEiMIoAj40uVjXZ2ZZze9nFw+a084eJxJbfpPBmjhXHyR9Mi62KCsJWDBOO5Mh4pL8m9ytt0Xi1Ie910Pba05acsyxd8H5nEkCCZyteJN7SotAtN7sjlvj/nzboaFlmanIzPBQ6XMjdOq9U63EjWvGFO3YjRmw9pctJb3/f+Kq1n5ws3srxmht0YbTZUbsreznbLlOup7p6Xxra/vZGSd1Ss68yycuwOihsUh6+mjJZdifwfYOccqDOcTGtywh01amtwuKniJWjHovNFAG20ycuvbx6cXiDmxuiTI5+QjH3TUT8avN4cJv81GpE6GoldGfk6/K0rI7PKlecYw/3zJSTxNXag2ioJXPF+scXFBaZe4VOpqlI3Jq/biAubcddGPGIzOq+og1YGDg33r9YkU9jZjIUchq4ZywXxtnVFe1k+ol2pSAXS7rHTeFUQ2eNz2IyCxxu5Pa1MEOLB+KWACF1zpPM8JiOrhprxOJO8gSnvBn/72PXLlVJCNrhOWG7YHBtuZAd6VbRxkHKG4+EJtYWLE1NHU4Ue+TmTG/IcVlopQGxz6jAdE499+cX2xvFYzLFwyD1MtgDm5ugbhQr/rhgAiJ444uhNYrljtVje07VUiU+oADo2M+VA1uJLbliq2uVQruU4Y6yeFjo6H3zYoMCHe/P11vCOCzMaPUJja2egYhBJxsUnZS0sALd8+JPOopUJ1YZ2zpswMuVlQ/KKTswXMuzlruO9zl51JfSFjtqFPShnyYvLtzLkLqfLWOlIBxUmHSl/PL4oA7v/d7WE+a/sYTe+pEx8WHPmVmndoHJBprMwjTbqKicOfrufYJ11zasWTCYxEv/leHAS1EXI9JaMeHnRiM7jbvQiLykyylPl8gSYr+Ef9ZCGS0yPssOrWQNe7R7n8pW2Jz29mZUSJXSmWmpNzR+rT3dDO60w6dhrnGjRaWs7cZ+LclLtMa1Ndaj+pNQA1Sp4Eeg6vzksaakvKqKes0ObPm1RxoXd4jEQC+ldeMwO6JJHvVlS0T8lEP19pyM/aHauDckHdJzLswwy94tZQMmeeS9s1YqN77pH3gYT5eVrKwNfONHHZKcpWC5VLZ+wrgpUytAHDFZYnjzUhW2tSIte5G0ot4V9zz3wTdkAlPSwBwD6qRWl/wI6tUmkOlAWzaTScLU2rO6BbXJfR2qXc2E/B6auZRAa1vhOLbY3i6KlHMk+5nWkTU63A1Ho8ZxvAVZBLKby4qlB4BeB+Js/d6d0nr4wVaIdtz1qvLdzL4duM/IoT82rGB/LLraKat1twDN8+eFjuDIyPqXvlHXqEc9OrlBbWNVx5gAlwSYXbvRmhEGHqcu8oPFy9sKDnsDtMm8r4kZOGcT3dOxGhKtgI/euKyOnd0O5oV3pXPR9Rd5e4HYRX9NxsRinurks30o+6VjlVJ2Wehd+WnSc04lVM2reF8JNZaPjINH6jN37VnOC0m+0vdHJOP9FJscbmk5bvodW7J65sJS3iFQ3ZMxo6BilGShFumL4iHM9NHV1N0ZI3kIYu/QYhRGVvKJY3CvH0wB39TvpzZ6YEY69I/HdyaybQxE3HIrJiZc1ArzQeDyUz7RlnZ0Yt14dSnKDN7UhdQPvJ0lLbjUkN/MOvjfTI2hxjjoQvwyf5QhelJ0MrL7Ezu/tJjmvCYbl5RxVtwMhi+ITmxzAJS/1ySEH0QcnXFzgRrcDnmncUJcdgW3CZKvK2wUXaukb/C1ykHIewfIJ+x7A7rAZnwn38UjeHR7T+JLVswk3kdBC/KKnKFA2unZt0PhOeNXJKX+6WjfFVjYESbe2EbqtG2l5FQNUwmY0/uUeEa8XtiGs84T/tCGnSvUqCI8BDFzkjqNGmeYlXa3jG5qEq0rVI4TrfvdsjDzPz7ZLUZqt2IzipeHx1Nnr0rH7MAYaclNn0exCCRf5bincHWW2A/n+bNC4y7rrdMh4C+jbXgOfnW/e6ag48Q3Y2z7xBaIyN1NuvJM7ombziMXAbnJ7FGsrDV9TqN3i6J4VJ86wAypvdGH/CsPTlfFTA9m6AuA0YgXDoBaDRXkLnivKe3ERxO7F6GPVsLMr1XCXATJxdnELsCeg93jVseel4irKxpU4LeUtngrEs+uowOyiwwaW5aLxbbR33fko76jXKndyyyE+u7ysSuTvBrroSHVMIBt8SI5w+Xr6XMKW1srAO/TdTbC1Z7GGbiTKZPJKrtTy99rZ7fZP/WZVHupjoH40seaFV01UihZjGG3vhtfzKeJttgH71p2puEGaKfENFdAVxjSZEnh75DgcRusgOblo86XrqWlYs08xoviA6G3tBfPo+NZL7BCLt73zOHET5JkKry+TFFdGm86QnAwcat8iU4xr9ena+gP5nTKfHOStaycOPXGTYWwPgX2PxvhG3Xn8wC1ogbwIelyXf4o753jZ1XQ4y/dtXh1i9iXTy2FxfPVO6rgujZaj7TZe7R2NF0evwEUQ5sRGH1sOtlULXIxFGuOxdS+WO7u+a6MlOzbZKqJt8YLdLntjM1r1zLQlcSGnQ1v3KLoob4fUK2xHryvHvy43bEYq57hyV45rtcDjVb9RnpQAWLkr1iDbvEJyx8ZAM+aP2ozSJkM5uSqf29Sg60C/YIuExeDKb+nUS2So7uPES6d+vbx4aWNh2IYf2ZXNWDTm482Sb1RpxNmlkPmTxcGwDwOPw6NAx1LNF6Cuk2P3IXmJh6i7+2e6Oi38LVjiPGxh513gkMOwPetLAfidijebWww5/g+B7TejHYtnX9YOuT74B7a/jA1F4/MiTOsn8LodwDjn9oFvZVSVpyvjp4YOhMvmXgGnT/amtIaEE29Z5r2nB7tMJm+yrAsjo0y70Sn4LJLX5dvHp3CRtqU1pV/lprLLy4B+T62O9Au5U99wC6IPlGeVrvTj0oB2nVLuVNYuh7fYQAbJ/yMzbexU9rQpzBn6jmhbR9Qfzc+OjV5lekeulDl2nTO3xQ27fFR9jCvpO7lQUoXwpwG4CXgysJiTTOVTk1l4tPS5a8gi3SYUfU4kmRrznRhj0mjZbTDHFU8pvd/4CbxENY+ftvOab3CyjDkgJzkqMXlQ+MLaXV1iKsOtgfBAeGuYOloHiobP/HuH3dLii3Cl8xXmZFoZ4LWTvAKPo79LlbMiEJGa566O6/g9HSdIu1dXRFSwreHiQ3a+520wMenD9mWFWdJ0BAoeL+U0WCzpC6zmUD7wfiF3RdvdtCte5RUWqfhCFpWhpDImtQKWrBIUGVUaLxfYPdmhhW2aSEjfcoZyQcUu7hUT2Z5mau8mmXchhwq8bl5Hy0arva6rDMfMUeUrm1FthNsBtxGKejbN87Mbfh9oym/RpOuSLpP+X3epPAzPk1Yi7mUaurLt+bjh9lyYfZ5Qds/6yPM8ltZ35jok5I1bOR0qZ8sob+3clbdSB+bh3idvRZEGbknbspQykM6Tjot4r5tNXa2gcXmuqxHtaLflY/DmxDs6TuyVDKPU50taNq5d+abKRuIclcXfrkM31JNuVDvdD82tyNZy6FTHk/27037uNgL47miCbmSTRkQdsy+e+mIrU8yFItrNbvdjM1omGK1uaILkb67qiSbO6S6TxlBlao5CRLKsSmLiqEQrsLdJli5AvE077OG4nSp1rJY8P1Iq4m/AYN95GTuvvhsc5wHMYB562nkCpz1pcjfq1Q2nu8qADPU4TzBKkrSubxpPP0h+SNauMK31OQl9c8F1ZgMhnPPUX161mcxrA7spCsALxxSVDaOpiJWis/N0H3fOPzvGDo+vbAo5CDeBQJlw54G9ZjnuYCoW7BvWyiLj5Mq4YLvit4zf03GHqSsiqvK7ej2oc7TX3KTLOlSmL3l5Q3dtMxbgs9DV30jUvBPuuZylHZj1XuqkjWBrdyx7mBCurHX5CpvWsIyTs56g9d08qqa6Sdg22rytcCS3uZgPZd+AK4qWd2uGy3MZwmUybGF1uy+uloXWXLWVl8NsMxLXE59B+/aDkafdrKzQnb1xPEbYG1DaYfJPcmoc5bMFleYCbsZy139wOdze2IdkxC4IOWW86VvZgfH+TO3bbuQK/kGDgj8j8PUO774wK4ENnsd9YC3zLmhFAOQhTX51vkalFve5gZJcnhdc0LoKxWefcXmnMx4t30U81b9ehDkt5jxL2haf6/WOnAfKcK9er8PCwL6GvhuR14Rej2VS+Aq5cAOgy7Rrep4+Ul34LIQexVwBBrNX1heghRdlscavbZ/naoRowyibUfCPcUpRc9GRBGVB1bnzrY9+PoDfuMU82Y1NV994ip2V8AmNyDiDdTNjlSevyBWw1VfADoYeNzsrdrBcda1NB3EXHqfNkwijzBo6HtZekV/GyYZblOMAXzmtkNwN9bZSl5sHxgWCI/ZLvYRnLCIPK727tPiJBzfWn8s+T/fcLGyA6z6lRX5/1PuwlF88z11m3+BikVPyKuLwIg39vsN+ialckVLzPYKLZXPsFTaDYWIJNa/B1GXdYC7ja/EYWX/TG/l79CFzo9hr7E2x4xt7s+SzydR19Lz36qv6Al7A94ypU3+Ps19ocslmEA//6eeNpbstmBRtZXO8S165oVVtFymq1NZU3oL7hFtcWB+WEjgVVsZL2+xA4j4guKm7J2b5HKcBlBsMYc+PACiUM2RikyXvgn4mOe3NQP6b84GmvbFiO/YfeuCGcX2+qOkgwKmjnAOl3b3SPkod9SRU3jy/NjZth3K5iTduAQ77YxRn/H2GryK828IsATcnODFKIi713Fg7N1TxJEEieNHZg3KmLDTwRCl52UAWv/xGNuXtbMGQUfOGXKalMJcvB3jWFZZhkos7tH0ygDt5L3SeFNnImeKL8nXXMhbQDXRJv0O79NljY9jrwxoj6uMykFHka8KmGWiVKwTug8vCsvZJnCk07SRzVkXuPhpdLAHdaDS+1bWxWWeeGBBtJF1MnsJm00Rr8Gm3PXW9nC/J4QKs5oEux4n8fd6OFkBuqliz8Ga38gSYqiV1ygPckZfkaoDXOdwHefJSaEfeWMxJEWc6HmNRCePvp+bBtP5Nsi6X80r8Zlq1aYnKUSZFsJ3nE4qXz3rWYAaGYhcIvXv/Gue1Rp/M9mJa4hp5ssfsMMfrNuSg9i/G7hK8n77GDqDGSzdzMUo61iIsgDfTOi6yju3RhCM7zH0EBycdKf4q20T08bhgWWPYbIp2/XOGOtuMFm8e35Vvk1uhQZpOOutY6oY7XcVbIbydN8RICWvArVv6lJ2WNM12jHrQgn/xX7aFoWO3GVUce1LkwtbezC1s1l0TC5c35xT6kTomqI8NSa3yCna4Lt4mOVjYFZBtb7lRmPSodsB1Yjx21aqNYBuiCvukSetXZCDdq8Lb6dQTh7zUThq4n3Uw3ozeSK7hPiruq7xgeIgc5hHyUYM8XRk/Nfi46s0ccWnpMqdXWhs0HXiDliZ/xbDn4fyeNuUNOGOJ67wzLQG/hLaZ6W75sH8TdiWXJjJbg8o6LeTek7MC97u0s/iH3C1nXpVoyWJH2zL7DXsr8kuF7pX9AR3LhPOifJfsp6z9gVuCR9jXK6JlsbDcL8L2eRcpZqA1OxJNyuWStk4I1GZTJW8Zb1XDPjkKt8HIk8avGsZqiMMFRDKn+mQAIC4sJxtsps2JAqjsrKPvg+b3fDptumL6bCrLl3nBcsFyRshd54BVCPTTzoBTp0lXRsl4xyteuJfJKU/7hOL2sx/+mfB4vv75tfYmh9SM5SDajRpZqS3E1DFuSFuEV9ubOe8jzci1u8Sae+W7E39zV9ph1xYPKcPipsUt7xWm7ur1Sq9VwgqY7tlApWybvBWbH7AhJKQumBYLqAvcd5sRm3qt8445xuKSKcYAfkRhkkm4mIioxWZwZoVfYsEYQ3hsi7A+D2Er4Df3OrW7v5d8bTyAaaMcK3uTeR3Vwr4g5yYK2Bu2pFTh6/WPoK4wOOj5tsszrIldSmJlz9PKYfnMrfHRfvTVBwU+tH6vCe9/K+NkMdWdbtMSLK/Hn4M6LVuRmORNUzqEVaS8BRT67XWdB02eioFZ4ODUXYJ2Ifde32pyL7M6AD1gAPY65m9dxVfEvW4IwN4id6dzt67yGtqWt0w2e/kmY7+x6hzfWM+tvWTDG/OGB+R0/ViugIyUjYUTdfLLajad8+3WoqN14xU6VFr38T/HFYE4imGW3HF1udQOPPUetLU8Yf+Ry4czb/8FH59PWsvpfVLHZIHHt1iBhqEy10PVIjcMstPagQOJr8OMvIe4LL+RK0s23B4R1zAe5jAS7oYiUD2jHH6GzA2wm+PhwnLgpkxr5bX6cofJAWvDccZ3WoNW3M0Rscjj/jrqNJ1uPjXker/icZwxMz0Yy4k69KKDeGlDoj+Wmdig7DZiiXU+A96ArPEN9UmFmo+er/Cp0fIEreR9AI8b5fzgirZj3KOYs5K7yXvXDq3qYompd+Ss0hmfqHyl/UD0y3qQ8nzGzQu5Oyw/MdXjxEdq3sCQ8mEs+u1jf8N2er7BfQdnNeyGYSq302Rfgt+uYjzv7IbvQ231IW1t6bHQGQ/o7lpbnJnOgeWtDUTyWXxw2ayNnFbtIrhpNoEI7ExWYnnagcFYzM/wQH5kOuiBuKmXa8Vt4GE7jYcc4xp7e7N10Buy8BCAtYUcOPyzKfZWKz+qLXYDo9sMiWmtl+/UcyxWIWabT4PEQXsq8CKAW6ePHG590v41De/rygiAu+cYy9bpbDZRr9HO0N8wBK2l4SA3lSVoBhzkiAPyVf0O0bgMDTQn2oXhqnllouW5RX/NP5XnUWN1RQtMtIyJ2uRIK9/KFaHokHg+y21hK5fpsWjPO+V7mNYtXqd1taZJms5tsC3f/LaVC8w6LiQv+lEzXBta6Q3ai8BaTduMdXdwDlyetqNHtNoqPY0Gle+iA/P5u9POAJS8YwaBvDcqcYCzsrHqctQMdbj4RB8c8f5mitEraMW9+vnkVpeb7+FYjp/dyLdpQ68a16hnc3wMU+lukBwf+6FWI2bkfUnltRWXKuuJF8ll7LipEXFuYdTzkHpMe72vDFM/o/5qiyrGcqHr8vnTCtGC9Iq02IFgGgO84pXMNoLjIiy3Y12jvbI3XNIVdh81/3YkPIDH1/amly/TtQtmWo9e2J/JDmxwsYuYRv4VduOB0MpbaTu2NZ0pMtVNp+10lzrfw/JdROtPbj/PK4u8U5D29xrLS6vorEf9Nl8fy2hpe314k6yHpZ1mm0C8Y4GyKUNihrQUsbTsLCN+RD4lbwazQM3SVTvgNgMYZ8d8i47PKI+zXWrn1ZzWz4YNSeOsW7oY8snegfNpY2Du775GZ17ACShiYVedStX0IBuCdIsUsxBuB8aW4cuyvZ7h84Z3dmU0YOE3Rv67gGYd/HxjV+bXMMyV1uM0cMXzz6AweXoV2guLu6Xd5MWct8Cm5D9tdFO4BPpGu0pjZXbGakFbdL6qGgOspfvTxQTGs09105XrhnuR9ki6mKJK2djIOvhWYjcQOjc4d5mW5kmDsp2KkeZG2HJXpTmt59CWxHcf2t82QRYqoKLzFnJD6eWtjmHhFS+ZzrzqRKjJ8TL5pEC4LmobTIe/eWexlSHi08xxLu8sx3nP5Rl5W7wtun0eoY1P9rk17fi/EK3hn/E74W/G7MIRyQs+oP6Ns7ydc7yYs4tNJL9aMyYleSTfJwwZ6KZbXLjXPRIm3M3JAqkzYXfE3eWIaLo+3WZkViV7Q3y7Nhc2ZMLjVd7pgNIO6BrWhQRZ2L2Ztuj9oL1Z6twzbWidVHuCrnl3xdkOZF0teHveLndpAFuwviGd72ScCYGl4f6Fjtxo0vrEtq7WJcS2X7Cc0Lly4Udq2Mx5JzMXomfqrrUKc66bMFoql8rThvF4dqRHBEZ3jhrjhCl0G6gNf9HuCGKbAYwLCdZY3nVc2ogp7pkzTYH6Jsvzao07TgN1QzLx1G5CDNzT2FDzd4onlbXqyNuWSTvc2H0bT8Y5NbdBguAdeV2uml1Q55a8T8hnPlv8eYNCnq6Mnxq8n3Vo8I/G+jOe8auPsObamLSggWqDtL1W06PhhpOQW0oYHecbb/FkomUm3WAtIdh/SNWRaV3HacJAtJVpxndHiB5xIVFZy0Wp1315V2ScdykXi7p5lRyD+YvyXelYjcniFs4r2kIvc97JMi5V995NjbU4FB3DoslZyGBXk35RpLAcHxOUHhMn6W0yGJ2n29NmJLmuSfFBbgbI5PiHqFOupo0WmKulGN+RwOccYq9Q8rrioa9AT3cTGcx9tzR3+zX2dNKLfuQ9idZdTfya+8NpabyOvR03ffRXxiLo0KSF+PX0B/RUc28Zu7NjH1Kimo9GewqiHHoiNotEjlE3p50rEKVLQYZZzvKOvdvj9HYerjLeBnnsvEJMvvmU4Spjb9X0oRnynaAKPRqmSqaFHagDoI5nzclLzon6LIZpZaa1DtFJuw2p7vB+Ro91TFqwnNCa9vUvbYY0ub3eWMcFL84HSmMdlfJeYdsOBxvufC6bUXRe4edO10ZfXvTv8Jh11IWOi3wRwoVQSr3esxnlJZLIrNOVzqh5y9rf9eSuT7qrKnAmxgzePSPxowrwOZnTVhtifBw01PCbxut5krkJHeeKzViekxIzSIKBdfESm70xRMI9cCQxlpONAdGqY+ph58YI68grQwTwD0e7jbFaAYpOjvtVj8AJL+OZed37w10GBWo36dqiUs0LQwQnbng5szw66Zj2ZCy4fKvPXNbDNfPAeZ54sTo9zYtiVKPT2pX6ckD1tEWC19XHdmU88b6ujCLy9wL4JwH8bFX9ybfyeVdXRjaY0fH7BJfcSUbG2VgJJ5FhnFw8CisptDyzDPeQInfG2Y5vhZblVrXGHwOnKx3rNKAam+7SUmgXcre0aHlpku6scFG+2eWjsd3x6nJbmuBROQlOVzrvdOzEY2duVZDp5yQHvV4nS70VC72bt0nuY6LQ1ryy1WmRXs5ftM6AHk09fZJazCyNVSHashD0iCKMYpHg8+YGCymTXCazhPDFw0EyFeWSV/BpLahSUybtaWnjzZQGbvkxWOsx5YB10FpV3uCLGqOFuxCqGfIjr79XxbjsAmPhJOO7Z270nRbICYO/3Ur3mKHVWFQeVFY/6O0uoQfd+OUXJjutRt7hBulv35zXbsb4QKBGDZdur72psyAPaQRp6WWY3KFoPKjHLVJxUEq8jF9tfCZcbLRHp0WhLXYONW+1WzV9Hs0z7ZVrea+aCX8vcHGLqT3tymb4z8u6uZDb6qZD1VbnhZ3b1iPagsV/v8JmXNm5SW5hrDVxZUMatf/sUKzdDhCW97dphfXUURY2BIu8rj/zCUoJNoXWk8zvT47VrIE9qBDxIsY6TmzcMSY0lWgvP2jVaH3DKzamDEOVeIUbellVDywdLu7uLq62UZfEvrEmMBvital5Lf/AWGBsrsGuw08XSrFbFh33x1myrLch98xNRYhpNUp84IXkpP9F2huxrmKWxLuOKl4EuE20HzOojs/VvFcQkR8E8DcC+H2fyusdv2N27Q7TpmcJOj5o3kRrXVU815oJ09/Le5/2FYGNgTQg2sgIulfIDdcZWfC+kNufra5y3oV7Ok/GYsPk1XIeoS1EEg92tzSG0b/i0yciznenYIjVye1zNl2yeOqJNW36aPRCbrqZ5BQegH3jhHiRXJlcGnqldNpUb5yHmie6ax2tLXTQzQu0+vaGb+ZinZ22drN1+VaaxJrR5feJke+OMpU199EqXdvvo+vR+wzSWaXSSnj8K2sf/Uii3tR01MjtY1cwrtaXUnINWSZRG+2n2L97xH2Sy7/boizyLuzCFbZ51nQfanknuRd87+WdO94y1NGycbG8kr3CY6V8F7CxxWNKXuFneeYT8Q5zssjrSdldm6D7NoPt2DZk9826uTJwi8eL/aLrDFwGkgtM94mBRifihGvvKwye2wasHVlFSg86Y6KeUgstY7fLiXZoWhP4lTXagyGGbB93ywbXkui4VeVKfF5kEtK4rLqKtES2A6NpEzjCboQoszfRj11abgp6VfYN0uwyo+XTTjg/iU0dPx1maI0X6jdWAyZH25hit9Tx6CU0pK06H0hxztrvday4//KBF2bAu9/K+BsA/H0A/i+fyuj9XBllbSfSldGmGhzvlnWitR9i3UhhrjI5VfPOrZ3RYtvPJ8i+G1MmXYV2NvoKp53zJgCwjnOWuW6wENJ5buxvy8NgwZOTe7SlvA8YRl3omEpsnvlzqtdS9kVDTHK4vNuGm/lFm4i7UcxZC81VmwBzha7yupLeBit9exvvMu7qtbX99KbAxxerJC1vdBptC758a1XUMN5cxBjXrVLqKSvAD2V7/2RDJeBq1VpeaqDYEaVpSMnWbofkThSuJqF7jlH32fe6EYw3UKJ2q5Wk376nHUQ9XHTsfIKcsXvM18LXa5Q1PvmJoPW3Zfmy5rS3an6DlrudHPZK5tTTaEGuNF52lB1dxRm7xYIDIrekhZ15eGtg10JBbR0f91ByWa+DWV1nUN5OG5NYwu5puCSAidhHVjsWEEEtMrky8kSIcAsTpeyjhXYxlvqDxbBf4fHWZqxo72DOymZM5dnYpEu8fFTnFbbt5BPdVDcTHo+H/gZ+XUELmQtcZEMaj1jn1pjF3ojM+nfaZd0EQM5yNzq3kXHdJtuxXraD8mmxGR5vEh3XI5dEXfS+EPgMb8dcPDBt3JJouB5y3SMDTJty80ZGh41cmjDuZ15X3LGcbme0gZQXOXn1DrwNaIKG/fE8xeVR7eyw9dfTGjbsjcu18jmWOzbzJbW3ISrs0Q2Kw2hPq5uD+i5fXnULOzBKdNt1hf+CBxH5JQD+gKr+u7sLbV4T3v1WxhIUdAOXDeLDDV8FjyV4kzuJKGLB0/fAg5bpyQ1AgOU5Lx9PK7n+yA3crnw842IdORQdm4ql/At32h0txwVYLng4Hpi81HljJ7txV+RHwWWuj8kWXNVroy2mQHWW08rLfK9dFQV+FW4aHkpn46Zor0N0VpTLc+GOmL7rzjvvQV67OtHDvp07udlwXZ05AfC8XmHRwavOhT13HpaijTasXBfV+zudDwxyX1S5q0nNkDzGr2Padrf+oX4rFqkETLS8YIz3RkFrcglXwl1EPI7hRhIuiG18SBpwL1vmNScXAfw6/twdVRzqv/38miatTRLiN8kV6PjIqJwRV7tKecj176EZrVVhukEO10U//q226ByLTG+TTw85niTqfUxSj9KdduNq7BAnUKjVd+3TNK4qcfFxEmCJqcmYJpduq5jpMRGwUvF7crFjjJ2BbrZ7DY+baSx55ajxQkvsl625sRkdUlxNjsjREo9N3irmrs6XYVG+zp/zasFuQV88FB0ZFjsehzF1vNYit/DqNt1xxPCK34IsGfS3rzZ2YLjEZHyBjzigTcwXNoTKErRcXLZWk8nTal88W5xnG3WZm20hENGRdc1LSS1faAvTOqnxPkLuSD9JVrEDkp8HyXUc58tt/Sy5Lwyt37gdUMOfsCZx76ItltJWDbuReKwsTwBVv6XxxAteotC2bTYWU+q3KHr5/ObdM20G6NIut63irvSjz7kctw+HcTz0BSo6rv1Ht90fKygE56d9YPp7ReR3UPxHVPVHPCIivxnAn7Og+3UA/gEMN8bPEt7RlXFhEAiIVv7h0/xwRRvxapSXtCyHbezEa/FsIVeB6epjpw0AapPVHd+lsWzzgF3YGtoH8hZ7s9JPXpE3Ei7ScaErT0p6PXelVDPtEfTYCZUWuZhFCNDWRFabqxnBZGRbzU8NkZfrdh0mlVaTuQ3j+ZpzLT/ZK2eefBGvlnfKv+y82Ub8Jqx/cHTvUric6syTbc7JRpJdcBa00tom31wMZYUJu8hgna4tTqvehCS0yBc/pQD4ZR3OVLtQzUWpT0zyzQ6/uXR+Ge8OkUo3l/k5jXQJ4ulYO8NBE5TPE6S1h8TYH/XDsi0dLW1hM5T/I5W2//ToPJ45n5CcrlOTi3W6rh7WYbXBDeO63CiZaTufe7j4GptRmMqGN6eFAtfClX5HUsOYu93uapLgcVmkNf5TX+Bu0yH5En+brF3elc3Y0VzJocQ8ZaRT/ksbMnXoWlndo7JudLa8G7UDj7ng0oUveFkn0YJ1SzRHvM/TXJi4/qVqlWySFYixvIz/JqZWm0TlePk0OA0B2hqBNa82g+yAjYFSOslzd+H5oKNeT7iXRGpYbIZ2bGfbNXqOWj37OWk+I/eRw+3T7NJPquov2CWq6t+wei4ifymAPw+Avy37AQC/U0T+KlX9ibco8r63MhbDwZ6tgsmlQK5oKVlhiyN6uqKVSl3mZKBBUHb+FN0gT5jEtGyYMGj51smlAd6Vzw0UG5dHaKvKc1jJucjewzZvN8wLHR6SQ2UOA3DJa2qVu6w/d16s2ukegyld149XpAvb8aAQetTTyI3jamLQaP3t0+SWc0HrhrPrWA14hunNcVCQMUZOrlaqhJt0oy1yus7RnwetAmbUhsQ6AW91KVkezxvx4p43JhCn8XUXFK+PI2gHp/5FMZ7G+G1jeeWH5x0Miytjk+sUfAZBrO6F6u5NgTFUuNVaORzLOX2BT7wwnbFcQ//lGy3rIGssT35zN646dazrE/d7tbXFSRI+aXNpbyxtNwb7s5XNuDN+754RX9Ev7PbDPemOvCl5o/+YnKLV60KpBwA/eC11rEy63KWuZDcr9r5CIe8pr32rzY121TBbVTY2RFZZGHtZ/rV6Ig9kRF7qEVaU5kFsbzQovN/nea7UL4042xOF4Chl1qn9GOdVq2vj2mbQTIY6Ad+FKJYYWAyQp1bd1lSkZ8RsM1IH9885dNz94H4WhyLoH+h97xoU73PGTFV/N4A/2+Mi8nsB/IKv8a2MiNaOPVMzoOyuVIwt5g7SDWqCZRrdKW8YardmOXK3RrKtcGZeNF9Zzep6dJVXJzFTXTEOrNguVZ4xczLk2y7ttI3XJTzekXspZxHfGvo7Ol7lXdq8Tftt7eM2vlDgYdrUY54srmkvJ1ME8N1WZ/ZRIbnIc9CWOplYTmiI1uTwbYtTYMNliz82QjwG6MV30qqPbwlDzbqE66K5a5xmdfxbMe6yJJLI4rQxxEypXKT4uTE7qI08k+RX5pOKueMJxFuOdCuh4jjtqVaN7kA5pKQLSu8aaq4l5OoYdeNy/KOgIONsvMQWeaf/tmuVHXlF7FZImkRYGTzv5wjZtxYd2s+YNXzeg9cGyx2fwzBwbTL9hjXPsuhFdp3t9YL1kvbyYW7Uh/Gq2bVHZ01lFgqQl1e1xQ/g8yT7NdhGatzN23SeGFxh+YqXtPbc0E72ZoNjE60uMpyUd1UO5kHoO54pEZKczqfEZSHnupOUs1ykc/LulUpp9OkAWNYRtXiDinAVlIqTU/8QQJdyjfastNWtd1yZP37ZdkbgvsYizNUOFdubKkDCxTzsjWEmwhakXgKFnP7b2EhirverQ+opufgci+l0COymXsWhR7hLgujElPZbJB33h3v+uB//MAvhl9gdUp0/BeNKfF/kqegwRRY/xa7wB8qNwB8zfLIr44cJ77MwY/DjmZf3XrD9zHg5FM044/kmWhAtZlqfOwritXgAlOs42VMpvBWofu2Ndn7zlYS7K++n8lkZpznALu8KgzfxVd10nXc6dpZL29XrkYgmyF0As9NKq5viXUF144Xp6cWW7MrHmgWtLiaASbx16+gHDbkOWZGSnrKKb31P62Wivms9tBVnISeijupYTEoTxNOVr/LiCVp1g6xa9DlCqTeZBGdWt2xRGanCVf+TRitq84eoPLROouB+rY431kHititfSLa8MdkAMHYpU5u8tl+ShmkBjO+KwYxomf2Xn/5mzc8ZiDksCRBX7YtpPBZlh82d/OyBUl6J34oTL+Jaqxl2P+d1JlbbmTiVTzCA02v8xeVHEx5zfAF27sos0mjTvvg0rYRiMzLvPZvhepe0TfG6ztEtkbjIa07ulvMGcNWx2KJerTyujdQnhq49y1ri8QI3Wf+Vzr08pRxt7D/Ey58vlGxwNuM+WpzaaqbNAkoRutdpLbcamLI1vOpXFGZ70nBRqOI4TBVJOhpmzGasPmEsL3yU5BL1Km/pclqby0knm8FyKJxaiySddiN4sgNBWzFn2clh6FoK0QZzlLu/98rOzf+NNOrAjsfOI86MWbipnyFDLI7UBqyCrtKHez6knJueOIRx388bavOSSN0dzeNsmgJiXwU7Je3Nt8ey58sNqvpDn8rj3eo5++hiNrZ4qiUvjcpp5Fte6qjbyx4a5oVO0uI+XbGBqvZkSTvFY6pT0qZS73RsYVlbD9Iu+W1o7+q4AOStjHu0F8QT7V2BOsd2NuVK6RW7V9TrRHtP1srQLskWT7bW6l54hPvjT4sems+W9cyTj6uZykV5lWWWSDXgay775gmW2sZBk6urvPawY0TqrDNtz8v/tD33jQe1y1HsUOvIL5F+Ajh1vP86dfwb+emfVuPMxTxp6qY0aVN69uYwvZLR+O9r8Ljy3OGxLuNLnKC0NS7qUv4aJ7vc+zZjxfByZCztzTpc0XZBd7F8yfCCqGfjMXml8yvKdyWnhL5Ye5T2NeXjyMUg7y7aV3IfQuoViE0ryMSoSccHdC5g3mkXCu1YXamshXKR9wG59VerZ+pYEx5f9UdFsz3ruaDndTsApA9E4WW46m/rnM/JPOzviVqHdgVTXGji2G738AbGn7a8qrjvdsF1TFpPcxvgNqTam48bzijz6/99pPB+l3/s6sG3/WJ3b8RzA0OnHak8vMi0xqDRqtDurIJ2WZJvd0csZwmY0GkVxfhCF7SuIZUPLe8yzmrey3tBi42OvDF0eZvktnzXoZyL89BpN3Vxt7wP6Di19QNy1/HS0Sp9ZCMk3k24tnJ0W6/1DJlMtMK02thODUqR6dUhpjMQ4Woi1nctUcTycnlDli0UTsttnZeHblFJgLyWOBcEcYOUpjGd3qLCXBU98aThJX56yV1W+vXHzmdI8xu5XGc++eRvPITcTeREuCKmCwvibWe4gBiT8d7JTm2dWb5h7tzdZtSre97lTuaIKdRcg+wc3+mY5jc95t1esLxRj1C82Glub6rBdXxoWnWYcL99yyW6hn7DmMpLXMX/qSExp3Y87ms5ueo4HJnHw8BvwvIwJGi0rSNd2IziL2UTGWFAlpyILW2Gws77ZOfXXo4r7C4aa+pIcBMKT3WDHJsUZ9zfYvkKj1nv1+LxULvKvdB5WT4OFxi7wv2pH6zwGFTPOzmr/sRyW1/odkPCbVnu2qqirhL/7jZwactqXnFs4+tqO5ZTGVUwcBXEq+ct5U8QzTGU+lByRozP6QWUo9K19nLvDO6TfGMiX1AULBMiwi3bL15yLAfy+vwhx9zyNeOZ9yC3v/HD3RFdRyjhUZTd86a98Td0h9RqYfdGr1HBMT76bNfyqxniQ4HxkWr3ivC6OLOaxfwoTvf8EEDPcZbM7aV5x4iYj8VJtJ8J97+MoPq+H5j+nOEDXJffEcg6tc1K2L1gt6CRFa2guE9YzyJgq3qwiyHfrDitA9vCTmmwdyP4uVwZEyQqr9fQFsOAVd1UANvJEa7XynY27F1n1nFFu+4Kc11d0s4XVqzKcCV3ksNG5iIIWVctq6ktQY1Qx5rrlcdB572nnQ01j6EyE1kopXVcUA24m6DUB+s28qT+oNBiQSvzGCLD5wYvz6fmDEEtyhdnjHibqQkfl6607PaYB7fz/JwfLl+5LgoQN1rdwuC6mfTbrSTcHP2Yhuvs8RPjrJdfwTz8/P1cnrrZDUN8yBFX3ufZsnFO4pCxAOOhfyKN8Yv4zqzGHmten5/XMx3G682BGlV6P/IWlNqXsh1QOwQyLtDiylhwUR6wNxubUeLMYUUrlDSTUvkyMl2/TiVe07aBwkN0xYR0nHCQhs49XLzE4wvabm963Uwqs9yel9POmv6IHru0mbbi02IPKyNyv+52gsYk/RU6l8rQmtj7Ee+00riHWvl2doAWOx6f7EDJW+XM9pTLy/p1Pp5D5o4xmYzxYJp7YUdq/1XEAiwugPKNGDU8po+A+VtNx99kXk/tOq/iJljc/x33c7F6CGmmChGNLg0druhjA8Yu8JC8zKRsIqpvrjGtXw4yzgSzC7sQdjvvU9K2+vX70HN8coVpLzv2+4fnGbNPDGM8XzcyDzC/9to7MhvcNa2P1HrV8+Bl3IV4rWRepC3jS4AlnS9oeznu3nj1RtpO3/OWefsVrda8rkaxFx002Y50Wp3ruzAmvpOOXVGabMxGovJqaq3zRlSr213nTfoF51Vd7GRF3kp79H5VDob4rDBp2Q3kuit0HSuv8JH3yV13Y9B0+Vq+CWOtKcGNXFZNjV/r7ruShTulckXW27XEy1QmAbRQkRqH5lJNkGPFhzV3Lz5P4M0fRlRyzuKT8oozlZb79Mgbx72DZ68TcErQJpX3m8i1nPtQ21NZNUsSvD6vKyPr0GNS03a0rq+7F0nNm7QL4Io8D9iMTbmL3mOWR0rVDL7bP7XBgr1QQse6qRc430q81rdj6IWdm0LD9Xt4XOwiTSaXOjNdFyu1Wh/qgt1mGH000Sp0m+jjr4zJjaI7W3W3UjHjb6O9+NAJ4g1RtzdFsaQIXgZIs3o6/4q6T+bS8tbDdl2FivHdZmzMqaXpup53BEVucDCytQ2JpmuTImFaaTZEsryjTx0l7lnzKjuu11ZXjBFAWYip6TwXXiNvxAXmGeJYmGkKwUtUpf1XshUP6ChD/6af2fqXT8H9Z3g4vOt3zHzHpKzDJ1c//76OTQJjGzyNlfS8AHxEJK2U9HRbgU2yUm4YF7LjOTJ9aHGn3eQ1+Tzqy3X5jZZ58OHzSOqG+wHaKS/FS16ar0z4dkHb5VPV3NWxPOf8mGki+YHy9TaBZLfa6VjmaqtySSeaeU0GTMPuXdfNqtyo8eIuK5oHsvtC0Y26Ry2PtPQpMK+pPXysGa9FGfi4c0xuFWN30seN1mVTr5Nga+3Vf7NpHbxjUJHxHS4eELXbqdTa11xClEyjDHfDU/zGRsWhYm+V7NZGNXyyA9jxFkqAQ+1tlZgrI7lbinofz3rxq+hPtZuubNtz6DiIVCRcIAGXp7gZRrocL/pB5Xesid1VPYcRtreKNznN3SUnCodjojWMhI6WVwDBCxQ3vFjeI8DojSFcexR65ASidLx4A2t1w7gf40paXlcrB2DOE7Pn1Qkv4/GFzXAsb+VYelAQ7o/4vNDzMpTxv8JJ5KhKsQ/aEE6j4nbcL7ar6bjF8tWjVV4qX+C+hxX+Aw/Zue38cMUPTS6Hq/K5zl2mtvgdWzXJ6rag9NlNMXbYTdi2tSGFaesQrbyTXt6Jph3cLKPHJxNZNhhpTJpdCJsRNiTlhLeC+pjN8S0TL/sNAO5RscsbvNOGOLQodHw03mUGL3cJHzh5+Jstw26xgSTiNiPLcCjZLxn2xdPO5vYY+a3oL+o3JPotuFm5AoQXA8wWHWGrho43d3WEY3mC/JFKmd0DIOOGRm/vkf+Ml6Cy7VgfI/h56m+H8L7X5aMBkCKdbGHG42gvT3lh5dOLMALki6uAHs5KKi0BVGBq377p37zh9G4U+4eE+tYWAwG9/tBN3t79vYzsPTQZwg1t18F/TpvGTptznKWO7mIauLnSg5V0WqlywwY8QrspX7Fr7C6hWuT2Juuh7ANM5ZFWd1m7PW8h8wle6dxzefZxltt295QqE0B3H+kbHcXdY6VEsajKKej+TnWR2Suu8pWYVI+8Eka+lk/bTMzPRBW+0srlfS8m+azzqBv/jlfWlY150tkf+42N/rYzeIcSQu6F9pcsvC/efAzFlziU33cNYe4SCYVN2jUWOwOWztBxLAwPn1rE5AA26RiQqYD68eUzFhThhqJ+vPsFPlM89IRCx2LR3TTtCPSo/7FrGnGjHW+N/Sj6K0MnsQVPwLNnU4X5E8E3FdwORNfh/kH+qqMNZ7vg6ds0r+udzViV5djZG3/oeCUL2sR1BQpeMa3rycOs3PB4gZPdZhS5lHcVdvZlJWeyGZzXoenYpDe2k3nt9qcRLGBn+rnVixp26SpP9VjaUDoeoxgmxxzPku5pG4VcmC8kitzKuxZVLK9YXs28K1xOgANa3tIGNMFnnQq/VgbeHOfxJq18UT/LDcVuE1B48TSMyxRujcaMSevbLbIZpnM1H2JX8Of7Lahnl4jfgFiUcdlFla7WJ9wP2rHpN/KC5Djtafg0aG8mVlTxMhwbo9LjfKLRQs70+FDAr8Af1uPFDYnhN+Dn0qRs6g2bEaeU9YTiJW58PPT8TB9J+fLCR7vE463hXd+Y+WCIQIM9XFFEMq8BXp0abxriyuDAeTtfqekT8LMOd/JOtEPHe3lX6mt/MJXhQdpXhJUtXu5g4n4Z7pXvrpIsd2XIdaeDIS4TKNbxKyO/esgGeEezoi+7h4twpWNLnFwbm551wlFnbQNjH6ybFvqnjKc2lEf6XZjPbY7u4sFywn73em20UqhtJE5b2E0rrW6gzkTg58ooQaumvQsWV0B145w6aqHNw+rjljDSPnaWWS1GFuJBb2b8uZZY0uQ5t/HEF7E5tgjzWgkVkovSzxJygtIxNtQHZeD0CzW6fVmVZStnkVQuKFkB5SXtPm9g7CI9LgvQ19uQzER5tTze69zH8g4HS5+pSSub0Wk5fVWeqW564kq3ns7B5XY5HZpXuBg8Gj6tcI8eHLJNel2422ic1T0HrjJTZ2hDqpIdC9G6jPl51uB11T9NrlK/YS1yvCYvtncydbQHDZkU8ehrQLa70zRBULBxhqbs3OEuqZVXDWTt+KWDrRjdM8avu6/aJG110QfZgbw5UjZ/0764V0zWBdMOm/Hm3vulB8X7fGD6ywjvfMZsn+6bOzw3nY2bG8ne3VB/S6ebYUVb3q1czBOl3lUrbcvb3VAWoc89CoDkGHqMlgFsRdPl7FQjei7fLkziGv3Dw6c17bIu7jFttFPyqvs8rNj9LIatbQazsNavKE9pg8i7KKhOpNt2uZPTeKUVXXZlL+zGxbKwIjn50c9G63l9gmrl8wlrXcQkYzeSeXi7C67lW3pxqttheldn5dPCJQV73BfA6TqtpS/nRZKjImMyRHoIhqE5om5gbZ+Z7IK3Uj6PixIvOcz1spZxvL0z3W1hqiKozjND8HCr9IPueFtoIBPteG/wgm1G65selfp4qLmzAzQrLJ1jzpsqux5+nmcxABTlDc8Oy7eh59WcZMWE71FaXNimB2g/BVMro2vaSacHbFXPtyTZ8Ak83vFd0TquyEYO89rQvinEmH/g4gXWsZyDuMDjHS4uG2YlcKOTi9dNDukdyBcfF9KcF2/W7/RoQzmd7M2l3uuVL0NKQ4NV4dVw/Qj8r4vHcFMPNkLzlGZvkLf2quWF4zO1yfDiluLODjvKkDbDbIjzMdTzDUHu6/kW1PLKSTZDh70BwoWyLLKnGvl44Xn5x2cL3cgqcAjtkm0MJ8fL7UMEnjT2PUx4w6PyEGzG0R2dEaNEF8mXgScVGx1fY/gm2gcMa5czsZ0x9G75InlRN48s/taKPGgvCm0ymXTaKf3AhKTPCK7qhruYLGhn3ldyW3zZmenJYqKwNZYADR4fU1eZST7rYjzYAI6sWtQUMoR6Au7vX+rXKNm4prg27hVhZDxPmGOboOQdjrVPuEsHu2oIzF3R1fb2M/e6cGEpfGFvuQDRceWzfyjUjSQPd1+UzJ5sinHXVi7KnLZfm3KEK48gvpijx1jkehUrD0V3FfVzF+m6c+KI87ysk1fzOFN3kA5vDD7/2w2cKHS6lfplJltmS5uxky8prjP1viQRbThZeU/2xifDnrPx4jFzz1ah0DtueN209C6nyb6Mr3R8wIZdnhW+h+Ur2pXcnQxKe7i8LjciF/zv0e54rMKGb3SVVUZBuVo/+tZKLtE6v9ju2L05KzvfDpyWl7/uPJWLQX8TIstmScl2xngNXQnAdc7Gcwg9pdjTzGvodLZKl2EzxjrGwXTGcvZwIG/14H2LdE0MMy1EzJ3OFI2zylav3ucHUvNY88+UjEYOzPXzgxCEM32zIUe40g+dXsSbb5wlE0m09jNsjqRHfAYFENsE9Kb3M8bc2h/dlfHbJbzfGTMh1wzfAeERQvkAlMHi8dnlJUevCqrvffHTmZSZDFoZkETHIKO7vFtaKk/I5kRSyctQ9LwTfwPtlHc1p6G8kFreyXAlm8lYlbpZKr6JN8MpLa+2eOUlUxuUEJNtesTxbpS630r4bqOipf8sNmxNW/R9UK4U2lr4akO18PLduf38gSuiyi1SFnPhPvlwI5cqypJW7CBJ4cU6yXzT5DQ1WBSonA0AkLcesE6dvHW66FyKqY95SpvUssukX6Qh06BKWq9ijytNGLToyO6HCAOuclixlFxXyUWGih9lUcqrCuDEKUdApmr66wtOOxzPtHNdPByi0DlwevdnLB/eE6aLcp6Wt9HGwt/+zDajART1z3yaky/tDWV9izcYUsdVBVHHa5g6xct4rXXTPwfAbVxKJ6UauWriYfPKy+ByGxxE8o6P1HTlqp0GLWb8beUJXrpQc6XjSs5ivMdjqu8rPea0Ch6Mx8uxsSjPVqcSWcihuHZepCOdlKrclcrNShXhFO9yW94rLOgXPs3DrzUs8S5DobWPb35oK2/vO8HnynhxFU9YPo+hYhdMj6HaAk9ae012PQTJOPelXo5xVf4oz2m8+/adXSoFjXNgAsFNTxym9Al/M+dcJa70F+h4wydH6HTSe8vTLg2Jz7OQnA8Z9Nvn8o93e+8XB1XhONHgg4xV4pO2uIV2+cGa9iLOspd5teRVzGNrL0fX5euh96dJx338itfWP/8BuT2s66Yqtaqb1+p0mUzGYitrQ3O3Ll6tDGVbAZauf885F7OOh3VtjDUjy7caWvMq05W0TwHg+4VRklmvJ547IOftVVXVXFjaiZckq52avT5It/GtG6ftC9zh5qchR2yHUULX0+ktLUUlL68P11GJ74k7tPTv1EzzG6s4P8tx3c/4d5BMwakH6eEfEHhDiImPTo/v4mJ/e9sI+gUOynIUc7e4GpOddie2D92VnK4TYcXVJL636TJwQrGnG3134cLe3JW7efyQnXtQxGRvLnSIpEex+5GHr8Fy/nlPh1UjL/G4xe8x7vaxY/tVO1yyXtiqlY73Gd0ROuu4Hw+zTpfFazvRO1O3LCaNTcbfPR4nbnfekdfeXC5thvNXxt6V3EobNsDw3H8X+2ATZTXgPIFiH9kOJO3HXfhwed/y7yOFd3RltM4oFAfqGSwF4hp7WKcohs8jtL3Fb6Qor1bCGu7SriyCZHrJu6Nt5ZPKqrPe6smTjwdoV16gXce74RHaezo/IrdWa83rSDftXi3yvlHuNm/XY5G2PLNw3W2Il7T4tY4TrbZ0P1e1IJyarddrDAOZK7m/4VtNXqg8GR23XUEkkqVUhI0LJ+BLOtokPnbPNeP5ZsddkTVis1tKvWL5PJ2PUZ1KcU01xA5zU32ep7+xErqNq9IKZHjUaH7c+jQ5Xjdj13JgRehoJRgujH7bly3q/MybADdofBDU6+bQdKFxdyb/0DROW4LZFczuATDKcMI/RK2q8cHSQwQ3jCujD9jV0q+Zc/WwG09qjbTEY80076vRTarN8LgsadtAMu8gr/fQYbTkPK5E6lst8Z9a9ad0DtmdUyctiQts63V3aatqXiW+Swzd6bhKewQX7e/dM8CPYGrXcYWPF7R35VhoEJPQ1+qrBO83EzPCY6fttuEq3mV2neNL9G1TaMWXDpQObMt+HR8/vqdT1HuAG0qn7e3icjmRXCKV2yewHvmQXoHJ4vUVj5XpzBnJVWgdxqTGitbtgL/J78UNUpEJ+9yVXR2rrTxiOrsr4yk8GzRLomkHtORF2Ay/vVHPan/ChV6G/fQ3YY6LrNfwiB2fkBn2pnpkuM3w5hDLc1P/zMuwC+cnAf+XH75d3pi9+xmzCVPZXVEyvnITLO+nxeIMlpR3doOkLAvXknKrLIkp/tKK4i4SY6bI3ZTPaCcAXgByL093f0FLn3WueXlATnlXxmsj98qVcZLb2w9zuNS56XiVtysiFF/Cyr28F2NdqHH6jv2FGNOZG/uadi7fnpY9+h86CyS7SKMtflUrnYV+9dkiTQSWE6SadzeI+hXFs6tJ0mrTI75LA79lUUpxpnFAYKJkQEuVmJV3o+h547p841VcAQG4s4LaGbSYU1B8nBWz65PNyB9UKhhfPqtwYJyL8yuX/TSYQulCD4kFWMxHTOcw8kyr7sro5yc+waWlYxp4kjQiekhp1HBl7FgTeCQZP1A7xNUmGDBje+9XOxvCtE3OpUu7wspH9dBwsY/AEqfyFvoup+sYtCi0ezuHbV1d4aK0vBOvV9oBZvpIj7trFxa68jqj6OjRu/2GldRr2jvx+7aqYyzJIVpeTCx5dSzf1VMnnDrVqrxrHZ1WOPNUF41ZH2MlbTNopjJsOrd4mgPHrNOIel352zVFd02vZovsgHgtjEtHjrBNtsgSc+GPvMlrYLvjbeIxnPaODXFJ/g0zAWxRRq8pzKbEggyKw67aV7I3gOJGOj7DlxvecWFWP85Zxr/UeAIsTUo8LjT0F4DWwbnTTloJIH7KX+njq9J2qF4jB9e0rDvr8VBYgNJ0LqGD9lVeacrJnbwXapVwx9Bd0vpDmswwEE5XHe8I4RD5WOX2qphuWy9GY0yilR91MUTLvHOxX6gf0nGhZaEVWZ3d2sspxeu7o0XctVxfHGTaQb9paABz/+28NW9tHHrZYx/CHTx4wlImCXSF8aK8c6ROgFWWSabLJm/XKHZy8tSA0kERg50Q8zJhIeUFoHoYr7GY4svYXpDzDCWdPO+p3kYaC7qDiueLQ5TeOfR+u+tHxd3VuI2PgAuKjXCbsWK5w7ZMdEx3ISzwUXuz1vnVdqB2bbqsYS6Hzx0zTjeCCibkKBgjnRaNtumxKR+HlZxgvkljyDCorDouBcw6L23ThbIVY1vVruqZ83Z7cyVHmLae4PVPHYQAuajDFd/LPGn8hMcGdXkPR2vcWvx6hvd1odqI6WwM2Z9Rr1USt8s8hDu3WccYztqfUQW0upg2GLTXRusNkuPW34b1cex8+y3BmY/vSxz95CDjtezaxGtgLtXRZEOaHiQ3bYb3Tqc1m0FShu2SQlHzvhX3v/ygeL4x++SgrfvHc3rXPTpXGvLuyhidT4hWmJbzGniU99luGHPGJySHO2gs0prOs5wel7WOzKAZNcbxkmWR9x5tCWwYspqrzivCXd6FHhP5Rd1M6Q+Ur8weBHVyvpxpkOHobkyPyKH48iVB5JWpXtNqtL+Y2yB1pIyL8t7XuZVP0dog3fMmC9X0DmMUbDVvuvKHhRdNSIpcA3dvqzbhYEohUSMyUs/TWeUZrzQe7JajkRabK23IuSSF31KVtxT6JMWXKKmzYQLZ+sP61Lgvi77yRnnj7YBymRWH3Vh5M4m+k+rZh0vMEa6KrtOJsQM63BkP4iW4ie2O2pvBm+aEzM1r5MXYdQ09xA+JZx28BP2BEzccNqZG3iXCPBASdxevO6lvDD3GRAGJv9riQAIH097B7vBuZLnNRsz2hgcd3SC6pEWj7UCNpiOx5vhUzamTt2m1a43XBn+73KWoK+zu44mJGx4rpUvXqwvd0OpC5ytbtSrvUi7bnl40at9LOYR1oz82jGRFJzwmu8J102UZ2ylv4LG5/jVRpbxMO8mQlqa13L1PFX2l1ZHWX7u2t/HM5YPbJzcCk15IZr2tYyyM35lsY1KTzPPmZWwZz+9Busu3pSG3qRK6ApBCyUyTUGnEFGI3jg/sH/jrxXF2o2py08w3FA9zW5DDMN4uVrmJLWE1+fBc5cSgFR0gf5hHBHS4Vx4wV0bJ93DuIXDqiRcZZb8dw939I4fnwuwTg3duBk1VQA5+AJT3u0I9z5lQVulG/iiJFUj5OmPUdFFAj4Y1Zee2gXeRg6o/xaN8VN4VLddNyOK8qzhm2iXO28DXJnfaRdqUT1DjK/cYJmUlpOXVRnDXDWUx5gLM2reD1o3lYJsP78mhrJu6Ecqrl+WbRJS8TUjZRg/VK4NI4zEyayorOZFNMXWU0mbycN5acTo1aKx9eCybIVMyDENnKZOYYtRBCymTy+pI0zGytrbIG0n7uYF8SxLjyRRJ3ma81c8z8OUdGnqM334ls/U/u4GLF5CntYyqf1tMgnZItkWYF0gRcv3sgqjtqtqK46A+MobeC3iH/RAlWsEZZ87sLIKMndJxVu/Fbg1Tu05/Gg2vCl5ur6/q/gTa/XfMlzopjUVZxdTxqI0HXwAtMFWOfDbbm5bGb/oYc8Le9DGMnCvSplCxAwtbdekS3eWWDj9jLtsI9tja2ioqX6FFS29qFdy/or1nMxa0Me+/Z6sas6XOS7tQoWrKy9iFjf6XuC+krM68CmGTS/GycbnDX8KnoNVFv2jt3e2cgsZbTBpWMlHTSoZmE9XGJpc/7LGLubI3tXylEN5RKG9o4e6KganJK1wTaWxCEnXZS8PNlt97MM5FS1RenBHzxV1Al3hJs04d2+2B24J6PhmGxnk2DADEPi2TizAdtymSzWAbeWBcgT9oB3bnNEMBnGbLBu2L3yKsikNeED3iVIi84KMGvyTl2yF88sJMRH4QwG8E8HMwWvBHVPV/+RjxPO5wGR+oXNIC8zbGyeNT2gUq32nb2PVvz9dybIAvy3Ml5JXxltax84p21wYPy+2AvZOr9OdeHWvj4WC+mrTckzvxkWX7XYVt3qWSi2jXuTEsXfCVut3XK0P3Edc2bqpjQ897oKrZezw3RK2L7p4oUUixyVYbvy2vfygacOMVXO7K6Z8DbX+y//e3fq1UZfHmiyxSej038UtIYjowbQL3NU7ZcG+/xg1ZdIicaBXcj/I2MG6n/oFp15s3KwBbLNMjngb5xO1zhMB1Dj0akyFgcmWc7MBFuIcb82tVmkBL6TACTAu9SxdtvgFzt5Bayr1I649egdVLWoaumLRuQhvqDb7WtNxGi0l+cRW+L7a5bG0y6ya+SutZrT3jTZW3dR/rXWyTU/NWwVfOer07ra7Q3uuxxrItMWUQ6dVx4eq480IJGU2P1fDVxJeq3tE4dz772uu8wt7wKjDGwlxX2+A4WQZcrciYplDeUkut365wviuRm3hDXyEGFVPc4g0haaWUxku1Ie7C7tqfyLiqb/Y9UDcfIHy02xXfGj7HG7NvAfh7VfV3isjPBPCjIvKvqep/cEXERr48j9c9Pk3MeJ8MBK2Nbm0WooLcBYA0C6tBU4HE48W4SJfTy9l0XvtVNZpaN6Hdrgj0fFevj8jpvC6ftbSJFz+wv3c3Mx6Q041JPH6E1pRYGijWlZ5vdV7StBbjP3fs17ITSVX9fvko7IimmfmOxT2FOcci76oPLaOjkt3oXMsZP8JIkQHiCXKl1ZoXWjLlucDFiNG82dA/lp1vz1KxXCgqSqPbs1PzxkRFup34cbPTnxltf1laOgQcF53Wpy/2nOTyLqyApzEDg/h2rlPJFRMS7oL1DIJNcOR8DGAuwp7cK4Z7F5WZaHPsL8AGnceONgpGT2smtkRex9Uti+R4mrehqRGLbepPr8ZUSvZfdxfIiyKtfj9Cu9Wx1OE++xIzbUws8beLe41dWqVf4fGmnvxlSwmvsWO6fjw/rKn30fcOX9fzTiMvxd/rGM2ehqx7oevT7es9fSPd3j4tdVorG59n0sTypdzA+GYrfDzroh8Gn0Hs7NTPRgcLoa91ShVdwCjTOaTppkucUPEGgH0AO6tEZLhMRhURIA3vRg3ep47vnN1cJbEPTWM47D/DVxM+eWGmqn8IwB+y339CRH4MwPcDuFyYbcegwHuPCYD79lS5nL88nQ3rFjQ6reR12zER22XnByQnxldkvgOxCx173WypH6C9kmueWHPSFfiw3Csd+4NeN6+wPFdZ79bNlPtiFrFozy3bnSVcnCH0/Hpe1Oukr9B/PcNV/lW2Nivs6VTeXnRgGJXHbqGZqdc5qDTaXUqHi1/NhWiyaohzktzdFvd93y1VHSwnUfAHiXMCbXImndWau16Vn+XhekTkEYwFEbt1Mm1uRY2HR5YUEilqaZXiaLQidF4ABKUAcilpcrx6LK9fBnKqn2zLt28H3Q/26rDpItk0UvLF2SKdb0KTiV+lzTZfwlFVROlHXXXt8TiwLMGNXVo9b5mLrmbCG0i6j/vZL7dv+/rjHbbdWajsnm1H/iP8dmFBG+PlQifvv/cCD+HysC9OFv0m0i6ZL/KQ/ZNdIToeSyvTxrjvTFF87yIe1VXRtLhh2qluemNuJb8uXJxP6w0+nd0SKkHTsaNwoZVqpt19kUsUG/nhj2h8xT6Tsiq6enGSl5/V8nBamd3Fk5c6Y1gabRGbV3b4JuZI05Y3O7GfMxZLz49Xw9wg04aks73iRew8twzcjzmi4uNfl6/PM2bLICI/BOC/DuDfvp/ZxxINTMlOHEP/qPEgpwm+XyHcfc/rMYU6wAsQ88Bj5YBpXrssx6NyMZdva9l8FsXP1rOLWaWFzV/p3fOmjnfkXNSHzzlijtsNOctaGK+t4VkZefrbd42KB0VJk+u8LX/PuzXoEReiZSGLip4K2aJFR2lydFM+tAbcWBD7M7uWsI5S+v48EhdvH0veXt7MLVweO9TJRwSE6Mr4am0d/YxYVUV6Y6P+3lRVvwzAx0XO38fTyj0HM+9YFrxhodax3VVvZNEoRC66qKE1+edbrkF7gq+xZyfOVg60A+6QuEZ5BF+uHhY76I2expu2twWbIHRc5B+OyXB84mvs67VRMRFSjfOC0ydW2hzLRa0m/PEGFqmD6zHZgSkuy7wdiuLX3KwTX64b7+t1Qkl16XKJz47Wy879vAwdoo30DS5qi/f0UqauI1obXKU3ltp0vPBELSoUPThjL1/n04fuSk7HFDQdZxXBZyKrzWh6LHQu/HreSVIFu6pLJejmqua9rmidCtuAvbRtyvWxvtNw7gd8rrfWXbc/smj8qX4cI+bSMeXCnBDu02Q2zh6Xcb2YAwiQr9ZXyA3MA4rZCF3G5B2U2jNwntrGbYbjvskdLo4jD+O+YJxTezvuf/lB8VyYTUFEvhvA/wnA/1RV//gi/YcB/DAAfOd3ftMeZjrvfsRki43owijWbjpGfc/L8cjfeMdLXnWwXyNwx1yO9yEzy83cy+F1ZfSb4AX2T7TrIbyXs83PashermIzeXmE70KtRzN9Cm1PWGb7FLmRuc4IL/Yq77N6hY4lbdfA/flqQqUbEbvJF8hd5FM7Vg7KhcojLe2d1yw7nqX+wHryFty0FyldUfokxq7MyLacLDq/y1rpLmYMdbEgTRPq36BRTalAHmI/xXc9nSo/CGHf9A4aX1DlItDxiF0W0z10dz9FL8lVYNz/ad9w3F/gIPWdeUZoKK2pRJmgL+ROeXUU6DGtq9w+Q57atHff3uDlYqL27veKFitMXdu5HkLzR7Ch8XoUU1+N9YxFD9BO2RZ1s7STu0bepLX1wOt02mXqct8alH/INR532T0vl/8Cu7lTKnR8mPp4hLapsnjLvQ9Xs6uq2ut59WQB3cIBKmwmoxWXyltd1x8N1UYoDwQlPSSvwI9xHo3INHX2qZSXcTsWbYT7LHaUjeSW6hhy/BucblM+cnguzCiIyDcwFmW/SVX/z6s8qvojAH4EAL7nZ34/Ne/oCRIXMlgnsrET8WS0RlHK61zrmGuDtfZr4II2yjkVPFUqi6F5rMcDvtJ/0mMjd8r7GtpdWOr4djnTvOpTaB+JJ46tjX2JS6PVZd6tHnhF3iKnznrE5NYboIgO+Exy17SZ1glJdtfjpCS2ZyvjrC5rRPSU0gT11osml86+sfEI46QRJbmOGX4uazA4fZPHbj70CyPGGwItO5jZQiNSDY/WW7pssekLJb9pT0yeGHHcjmUKH34Do8XdtdHlCk1gxOrGXVM04jmhF39rZHy8fIegnBsTay8B8TtNV6uLsQM6bgcrN4G5SwvyZkifsPQ3LVeBcf+bP/37iofQuv86kG5wX2E3mTGWe+VKtQM+kSPaaXxt7IC3TvbnVeF6Gfa2acIi1pGSLuX4eGDM8wz8KtD79aqOSU6xc5RXFnl7OSYb+Rrs3pWv/X0Yjz00THpUx+giGxFFJ620kWVlT3fYzjozH8bIyM9gZYskpM6VdhEntkJ+c71LxrX7hCsjZjh6bmrHsbs/A+NgL9OqvNQQVF6uj6UXzLLupLju3cs7eHNlKV22WG/sHa59iqnzkFxp5Q8FhGwEzG65d0SzGc43bQyM1ijdJo3U8aZL/abHIf/wexqMNl3cRz9yLPdPsERes22jmiQ+VeP5P2p43spIQcao+98B+DFV/adeRdyNHrV8vNb2Tu5jlAxQcYsr7i5ppz1eM2eaDz7veQ575YaoHSYVg0kg4KRdR2B2O+lyruRSXZS8LX2qG86zkDPl3ei0lbtQYSrflGG2kT1vcTvapC3TpRZhEtY0uOS1pLjIu6Plq42MupTvntxJx1bCKzzqxnCXyLOTPjlCG0fa5HplhA0qvW4xAeZGanmBqXzcr6Z6nEpEFVsuZsgFTVcqvu8mlRNv1tQrlJmvyzlCzkFg4G+uwqgSMExvUCgvz99h57oGrZ08M8PttXcztxQ/CyYKe0MGSLgqZl2MvKP+bmqe02bwecd2xPPA+aGfcF2+Tzj4syGc7tVY7EDGr9zDoQo9Fq6MPc5yuZs1uUt8pkczLsqUd0nLds7+w/ZmY6oCUydcLO5fjZZ5NTwWYF4HbPJiVbyOXyXzJn5lmxZyXkXbF0t3dHyYl871eteureRu5hIFBi8bUGc5F7RFj4s+ORV+gc+lTa5owfirmObJnXZbXp3bk9/kbTZXV3nXA5/zE7HllU1evyJfWM9pkFUdS96wN3P7jX2afDPluD+eNgpyCYg3YWYXfIF3xncuRwHUch/xa/AZn02ByfVNwMR9tpFv/37lM7wmfI43Zn8tgF8B4HeLyL9jz/4BVf1X7lIKUAcF/RRQZ8xd4YmWd1Uxg6Zy3pw1TgYt8t+TexFyl4WBMKd0JW8nvgD6rZxkv6W9J4fVvLcYvZS7oGE35yvaq6Gu/GMh7x5MCPDw7r7DYuiMy2bw3rTPK5vM7YG0PtLtcS9klSuYR8BV51notVeS5Nvtf5GlbV4A4ANep191rCQmOgQZsxigF400jXG+Lr754099sBW2nOHocke6L7ymUxhlAlxpleT0N0pi3FJ/bnvn2/UCemONW70abY8r54W5iI8cfMrgIJ3DldGNM7zeqHw0eJPX20K+efVJUDtRQZMhpUlSx/LlZFs187UFXFSQcI2lrK7jQvM5g/HyNwyFtzff1L1rvdZrbbKLdlsGVEwd3ZVPjSSv1bAquNHwmN+G38Xjhk0im+KtbAiVL3TaYF1v92JSmT0VbIfHF/ALgO4X475njK54bXGfdCzlI8+AO6Z75KFpS7tXlVsafEX6KhylMhdymt61fvi+Vk/LGtjNkYYbXcPQVYdcwr8PnElLS5Upd3IfV75fTU+q2VthObWwSIy7cr61FGI8Kda4Nb5/4NnzajfyD9qMEc8rmCTK4LS5qbejDYtAbwTdDpBGpV6HPXk77n8VQdfA/bULn+NWxt+G6/nrY3zcUNCOhW7iGnFC6zDIBFd9NPqOKj/yLAVIne9aLtMyk8ybcu9elz/puJsUVDlXtEuc63qzzpx5JfsVcq/kdNpJx562kPMI7TQxWFpOptWwOPd0nkJre1np4SKlESaqFiDt8/RJ3UsdN7OhpQ6YK7LsNNp/mC9ft6+NNxsWrgcxaD/JiHRanlRwp5xmfZV3qBg6pcHzj3WWfsN5heM2tTkXtKFHxmMiK2msg5fmdfbeRuLpkNidFFNcFbHDG8sURby9SkTzt19I10al27esXOU79KfLOWInVeBYNq5RhpU1PYcEkBOi6aapqniRsXhTGI69JUR34okITQYaiJZpEGM78ZvS6PXATMv9zPuGpRGvqAvGtvJ6yfWX7KLcZdklqxYx9Q78TcKVDVkVNzFHWrwRtr7vukwLPLR67bQc7393wdLvYmrHupVcNFzsdqHxvYvdKz68aHJ8Wti1u3JaeaaXy6WflKyTXuVZSx5Y4EpI2RzoanTcm/F3wZyLNqW5giTXHjN0JwNWhguQsvhm3q0tv4jHpNw7CmH3yh6VMgnlLYN+FMiz/v/Z+7+Q3ZqmTwyqWvudJCIYkUFG1AMF46GBjCJC0MQRRJCgSIzi30Ai0YiKooQ5UYIQY4LkQJTPmANBNIpiRCPRAT3wQJI5jCJERXCMaAaMB2IyefdVHnRX9a9+Vd1rXffez3Pf75en33c/99Wr619XV1dVr9WrV30CeIg37kA8vgy3KiImqhfgjnr4/dmFEjMUcMXku2mipdD9tTMTtqnruF333WMGjJ23+Y28a/pQ07Goj5jxQbf/a5XfvmP2MwpMlm47iIqI4ZuMsz2cFR0YgtsERWESefBtAlA4D/5WITuVxBdATMSuDLu7qTB2IWmqC+GuYA0ydDJtZEYZuzjhOUp5kIAysRMFGa3rn1Z1hbiacZF2ia3cpjftKPNu/Do+XBKspQ4y34J6kDGVkgho5QuwiRaNSdUNRmKfOMxPVjCmsd/KKiJ5YZRp8y6b9IyJThcT0RyoI2A1svp8DZmNZM6dUgEZceymMa+EzsqA5WTPAHdShomRtkFCUjFD29hWaFl8z4jWFjzgMZOpsDmQUWfyMLMI1GwkIePUr3FhuEMTlde8W7xOKbSQY9DRgLX1ToGYqL4k7vnaJf65hAuSAbXZ/iMROvyIj/EalxoHbGYGaONACmEnvl3u6yddWHgpZGjDb0C80TmXKGFDb4Dvh2qJTQL1hVhcqoko+v0r+4Lg7TLS3OcHqqd4g34x4UrG7WRk3Mf+WHJFVZ7jnvg2MYTLyR+f4g0DtP19yCcV9rkkRNnxvfH5AU+ks6/HwYSDHoTGnWWy3N/iw7g/2A8XAv0kjhfJmF7lmP9rDwh5wIe3KGa+7KtzPNptae9jaGcImvFk+etTvHFcfy0gbY9XCb9v5jfbhp+/QpHEx3UBnXW1OK24+RZ+XhdcdM9vzs2bQ37jTtbHqEfM+LrF7LfDP35OuXssemjHLSBGsOxEzW8hxC0FybDEBudkGeebevIj8et8WiSXo6PfyYH42snxEHbnjKvq3hLL+Mch6G0LBJkIOvP38QY++ty78eQBB2NIfJuS1oa6AdvJqQz0XEFpmvhdu6e88dqtT8OZwS209Y+2GFZ/yRmhBekqBmdMBnaU+eREZ8z7FF8Btc5d2CrkgRVxpfb+qLLIbqxTwARRgUie1iOeLO2HX2U9YrJYWMCVlCjlLToSiYEv8DwZMJF1F3ilASFx0P5g4Z0Hxc+z6dNCiUFTXlLm85Q5MhBI5CAhAmAUNP18HG82vxduEa9tczZFB9g+bWsbx3h+W65uZbobXsxzyS8WL9FNmsanlq3RSAKH7mnAOPhuflp1wr3jy/3lPm3TmJt+0AOwUk7xhre4X8QLdd3phus7sSlSCWtjHzEG4QsET++FBX0y2DQm6bjTxCnrZjl9m3Xc8sa6UuU7A9WA2+k473LhIksE7OzGDpJnSgef+GsDqxOa0DUFvispfeF2YzF8BHDWtSgk7YsJbIn9rfyi5XMXZmje4SjWAso86KhPhRUYq/PvtzLatZKLDpdsOCVuJpJOPatOiIiyTFITmNutjNLUd7DYGa2XdiV0o+CzThNu51gavtxGN3PS7+2LwU2/EggP3gY2cFgGOdRLB+BPB7vjaxuQHS6+5JGMKcvR4zZ8df6Ho7shoG7aNny2bScgWePzQFcjkNj9A5mSzY2ydiNZZLXhTaaO1wmOOStBdYdo6aLP5oWbAyaN4Yh6gp8O8CQg8sw5AR0mDu7wfAUWS6EszKR08pV1Z9MP6fhurzihUSSOD5nvCoztKuPpms6DQ+ZL5zKfu9n6bs1rOsZLRUT1wx8aXb7c9UgFfXDnHzAOhLo9E2pUlJyUGwMZPL8HQ7i9T10ndjaiiZFMJS4wLO5B53nOukhd6mNnB+v13Xb3MqI7f8x+/x2/CG2Oi9Oxo1+EO8WqA5+EeyfzKWZwO9XTO3Q7Je98buOW/Xfnnzq6tb8quDhxuayRN3DvbPAgSq+bTTxt5/j8Cb5AGah7dwILKcyYcDcBJl7aoHFwVcPnSpy2HFfB78eTyxB7+e4BNuOKCiyQ5pFQIKOfbonbUf2TKVlAnQd4AK7MJ2GaZVOd/h9sw+vj8MgrYhVvSPqq5bd3zH5G2TnCWYbzwFRmXhcPbHvvr9bPv4Ur4SAyIscIMv2DQ0a+3rTt76bPTGNbEBf5Sw76Xdnp5iRTO056aP6R+bELPCSzUlsH/zbDNMiLyGNSBn91yXwLT1zUk25IEY+4iQmH9AXr2xmWYGRsrLdiJJg1QFa1SzSC5kwa245IDrSmsde9p0WyoN58AgQvGMfoi+s0JywplieCTmLxsRTQ5uJnTiydQdNkta2jkCUCnW+bGwFzbi3xutvdFFEL39luIngC5rU4yqWXvOwlsbjTMfZ+uAcuQPw9Mt/mcomO79fYklfUF24fn97hspMdGOl5/sDb+tG+7KTIEI6hvquy9alNAs7+a7kEAC5+X8/0eQ5xzHia+TDfRPpmVHDaM+4pNjHZxu/fli6+P4BL8axN0mUrd/bg0I44BmhtQGxK4+sKLrnUUjZ8lNu4PzsZcapEHf0tI9bTYMM2VPK7xITOeq0uWUk3eS4nzoccUEnKdJy8C512QXEcsyVLuWFhuX8sD8eAZDcw45yOAaxm3PRqKsTMcT/NfS/S1un+MGYMJvj+3vqe2ugPqyKO1DcVvQbfES9WDJkihF7V30PWfAPRt8d/9Ibcr1N+Oy7/Jxb21pp/k5NFrJS6qdZn+/O5a48rbfBJfqzBbYMUOzD8OdvXvNXFh3GxdBGI+WxwOU61AAd/VsBRNzd2X0RmvWIbXUxB54le5R42qsCrBDfmCw0fxlXiq2BzjYy1dMGtbZqCIeyej+JFE6mnLD10vBzsvHNpnFYFT0ccdkTZB20N47MmczBkY2C5JOsKruVgBngtHVf0YXtog78OASFStpKU8g5EEvvOOEBXhifKjQWtD8MQ/SK8dTZjbHWc/TO9gDr2eTyL88+YvvfhWJY8P2kKuZL9aLIdEZV8PDaNf5GldwZDNQdchWrr7Cje3BW0xQ4c56jVyyIpn10y3uKu7I39L/uzbWF/Rbx4IdLskpXIQW9wWUfMVxkXyklG0exm+D0rGvpStu6hGc+jP8brjZ855hdUtt6a+mMi5b51sn1KYJUF4dhMQuhmfOY6YC+15gMk7vxqnsmZcD78rREa534akCwk50tp6qNfMtfpLtmYsy8IWNMKaOinxT3uXq7VUCdnxJfJdXnv6TDMiD5sbYyYYTNecv8W7Ef9/q9VPuuJmar+F0XkbxGRf2peenYy/aZ88jtm6yc/mR7zDTwLOx1d1wrswevGy6ZdXhCwfSTlqwWqiePLcQ6ZylbGA25hZIvmzvxSPvlGyf1v2kyOz7NLt0DWd0vbv1OniV+7FWPTr+d8csPbMlLisd0u4mXbV9tNlj3fU9nw5e9rbbORNkbt50+9cD9Y+3nW6IJZuF2mzLQDbFRBjPdsYLtiEZrsBrc72kg28Eh75xNBNT39q4OFx2RHMNYRSuObM1gH//Gyce8q5TbiCc/cwqJQVw/6/CHu56UuylwRutSGKkMdmqSXHMJG3beizYa/2sUQxu1s7BB/QKa01b4kw+/HjAQLOeStz2lktN38uOMLP97xdWxL75Q7F58AvTzVDeA9DA+5vNupB3Fg245gp/6dWNzFF76Gfj/ZzAO/f5Lj7uIm3sQJuQzbyWwNn04+jDcUQ8rhKBtclvJON8ltJx41DxzvdlmFDaKrw4bGMfuw8j7wTZKXYriN3GH9xt6wm3wzR813dwxxv/ITM5NPP/zjv2Zmf8/PIPQFnpgNI1rzZBqs5nozHyP4Mu461rPD5cAtdeJskrjt5IcAhvUMuyH2JErs6g3sowDDMj8JFhunGNWnMp54YduDRLpra+NJkweyb84yciMQucXdCZRxI3juCuvaoIJbtRqWp3FiYE4SbQZD314R2+Tc67NOUT1GjevM3npAA8KqQHRV4TuamaaIvWBLy41dcofte7bVJYaG/1hdM+ifb/XLuOq4IvJ6oRyxGXEEND+2XnyvvwVbtXEc8tKVrW0ocTMHcDE4zjFSGccfY93lc19oqqIvgWFYAd7fL/MDAmOrMzwds4nL97U+VJLdREeWf4ZVo4V9ZBss2xUjo7B02iIhDT1SD9KTspvOlViFfSKfyls3y3zDoKH5MBL2MZ2MO/+tcb3JFKc88ZRLMw2Vpr7hw3SPfvEmJhR/2MHvcE98BegDrB1wi15Pfp59EPfhBraLA+7e7LVk7IazOfw2cNN2xNOcdb8vY2Zk3BkPwOc4nxCU+aCtJxvHzk1YiDcRB0KOfEgHxx99ZXIYUupTfU39GfMN6i+EtUW0wV3vdrFSZ+dDDoUvRY/rK7WYtPhunvO58Gbf2h6P8kQMET+h12OEygtiZLxbBmIlXBUZWyrHSbxjO6P7Sdfr0Odvh3/8OuXzFmZovHht1uORscpyTMq4RNADiVVa5Y6IzxWVuBsgIuuO7gMDXHxyvXs1ItjC7QgDXL4pclqgMd9SGr5ZCKAFdEUogXa2Sm1vTM6ylfGEqwRCziRk/EE+bAo7PX8I91AK7tOCBioifIvwSJfH8ySvdbRw8A9026Rt4SZQhn3J4/4VpR9vl/JTPy6YiVmNs4UPt2bcPHkRtZs4utqKHsHB8WIxyQHHt8+2a8rBOaWHb28buOurVy8zudRPXLS4Z/USjfcoLpD5uj2dpS9a+iBZ737YErQP34+6pnEgnxoLyQDl+tILwuYbgtKMC3emiVVyiDesCLi8TsHMJaFyzBCKi6d4I3XqJFxpuvsDPvWHcP33g3jz2B93ix+OKawL7sOuWNPfHd/WTx7oMqmnuniHL7tQdvXJJzW+/MTnbd2AMb+DK8sfF5/aFgUa+FRJsmEQozg4qvUT1Pk0YCo5HllNzHAbGL3jxykA4q428GWAzNtFFdrxTegFBb5X16m8673pL1qsscf3yp9U1T8P9T8ysz96A/9vV9X/kIj8eRH5z5rZ//ujgnzSwkzzBMCnWum3iW9RWbAiOQLVGVh2ejnOnBxIC8dx2euE3W07BHjmk6CBFiYjre1sAvct30PQb3kRrImsBeWBb2pzonfJx06Gm6QnqojICcWGAYtYHFoDn2BZ1ndwD7CMcFG9gHeOPwAuws0udbctA8d6KzPg5J2r2ZHXrY6nkjuQPuBZJqCfG8giZcVbwKusAzw6mYiJ4pjRm2x0AkM+gESr19/H79LjdZhLE9xQvCkum74xYMslQ7wsfQBAcMPksBMNeS7B7o3TxtInFnVABuzjsc+lT3ze9IvNYnbZPNopJSfwxG2Yy9Rqzsoi7hzlSNtEJT29i7FKIjSOd/JOuahKPHHo/DG+atruUpyrmdRfkCDh9ka2+K4uosgnV1/4eA6bcHdmzLhC/X2Db8CWYPEGLorHvhrmKY7fNqdH/SIutN3J3L1JUOTAMdvEF44DnYw8/sln+hy85VP9sW70WPol+an24GMVty06vt2V6DUCprm5YlOJITSP4kj80sN86yuxkLabi7Pv2IAG9AN5DubB86dfhL6JGe67bXUtOcA82qzjr/0lsx/+wPRfNLM/vWtU1T8nIn+qafqzIvLfEJG/U4by/k4R+XtF5G/+qCCfuJWRgrEni7CVMZKvcjd9BcEIjAELpgV3m/09jPQNHbDvchef+QpPB8mzJfEFuv4j7syu/rVET9HH2w64p5NgkcxJ5gL/RMafgQsyFdjiTKUGJAVQpMW4zP/IVzNOZBUTCPVo5Os7PtjOsaLrr1/mAfVtc41+csJl0Yc01lKD5J3hDFyd/YVA0o0R9iXqeS4k+BcIRbh5S2FDG/YB+rxX5BNzcLT1/Z8+x8ew6HHSB/djL1J6VPO2R+9S3MnUFUw1YDXqIn4ylpuR09YUv1XnsRx+utbsT+BFf0x8m9xom/zM4jj8UJHDuC/RcULj99fcCikGW8V/Qpm2WZIscByRYKBtwN91NL1GwoTjiYPGBwzh7iDmKwK0ACbFG3GxeIyAhttdcrhQdZkjVkntZ9KNFJMr8QYDaHmM1vj95SYWHPX56Ce5dDKKpIcChRfj6vt8eef1fSAEWugXuH3jJ1N8QbqMi2NOW/CSHTHuSQ6h/nZygMwIW2QkPgbbsk07PuhTmc/0beKHEWng7mQKvqhXmiv8eDdt6YZtj+34xXzwutEcQ2dtSydlUYZzO03g1Z90499Ad9hh90c5huL2eMMuq/82GTdmsb8rZiyRlz/yuTRgLvku61WItWV+jJfOkyDHLolLZG6J9Jjx/Wf5/V+gDFe/c0g/gb7Zn3kCp6r/LRH5n/0Ir09bmLk9b7de+KSBSba+AQHt/odgVQW2v6x2bXBxLkWASuOr8F+42sioCpPppn8/fSsj9K9s04BKklEItuG71c2JT0cb+tCVW9gGV5s29uEnnh/lGzZx0PORN+lZAbbo8S4Bwqxlt1jqxDHq743TRRkHOApsezqbxCu3Ey1oS9ux2q1/ICNOZvMLxAd1RQPYB/VcX+/e8eTuZfKtjNq0j+64F8oi+U0cCx0YtU9c34IYbRoJAR/esY7pn98tm9y/m8k1x9AQ1gatC05sVBvbID9SFPrF11GVOIZ6gS9H2OmPyrtlxe9r0W0038YXogX883g2uDhO5PcT7iVFH1tfkBQgaaHTTyvS807GFpdYftCXp8I+p0VesLyQu8UFwKNPJVh0C1u/+CTudb7u4Btamb2680FYUCaohxvt+O78M9IiH1X4IG7xx8n5JdyS8zDfYoSAS7Dsy495CuDiDbIu3mzlJ3GXGDexC+PNNujbFGnV8Xnc+u2+TNOTMoXOxz0gXwmD4uKGITwoWDfz500+Exkf2R70L4Ebnj/tjtwfr6Kq/zIz+3/M6r9LRP7xH6H3aQszdrBtPbX5LKLoeKLvv9WvKNRH9cgXA+6TYNDwrQ+3K5zLktoe8uscPW5x6aZRlRHEcJ2w0+xoEZO3cA+lBLqnutjQ4SOTS2DZ4TvsQ+H5xdidLlq+KkmPqamBLYE3EdrUA94gEABBzcf13vVbyXA+tAN924eeli88kl59S5rUz+9kXI/YSGzxMf6RxsQWXxXhPTgobZntnUBkkwsMgy3D4/thVVQfy1CpknoN8w4VPwVsLLy4D8tz2RQybyf9yKS0kNUDfSeo+rsMkaMsXePTurrNRsIWVqd1JDmQjCxJcomnO1pH1po75x2tPq7pud0avaJPfTit2P/6t/EKbZR5w+fIl4zv1k9ywgwFXdKJR3ttV2cGco5Nd6W4KJ7ekzYupMLN6mGqIOFGrsJT9ypmPXZPJnHMcczcJkucmXXeQhlgoFOfxtwPtSvNqXQsv8eb205Bn4B+Gs+NlPlrkotvqrtv29oXOOjUYZFrE8f9QA3sX2ydD90QH1lP/Efa2cSb1o5t4Ya9aZm/6/5VNgwNChoyr5hBuvloMvarlE/9jtnfrap/tQxV/l9F5D/2I8Q++QPTlk+lsTmRfDXv//HkS2Ws+HdHwyTvpEF/5GOaHFKmnQOmFVpCdyUyy+TosA58V5JBGRfIEH+v2lwrPe6TrYwsY5TGsXrft3wPuKzj4987PgTb9YdxObFN/T3N351uEi8wnPSS3oY+td0F+8WH2lXipK5gTe0FF0tsUSEbRMHEkw2PMA0/H4/WFtYTGx+IOIZZGvid/AV2DioH6LANbJiw8BKGPxHRF9B1funuouOi+9Gkg+gK2q/DJtyloPTka/qn6I75yVprXGLrofrhXkvoUV+ng70m7mUWT9JUZT4V8ydnY1viumvqxwvPp2Iisa3y+3yi5qc9fpeXXKLR3+vew/TFOxXvd63DRSKBme3xPguMn0bMWIqvPtUzFAk+gnpP8uD4TT4CW0ZNxC6ZfGUBAxvEDbtJIvI3hSTFmyQHZFNp2z3JzPGm9cfkaJKMAvA73/rA7299Kvsu8Knt+1ncP2x7Gm9eG3qE27ofWyoLGDCjtk9IDPFhG6ASLPtQg1NSGbf4cqP6/H3SI/LFuqKM1Ifj4hndr+t7Xkj3LiBGiaxpn4kq4RooCfrX4m74Bu5ojKP/3eZ82zjbPPAJm/YTFdnWfJwUjN93Nziwt18ov4FuNLYxavBZftBmPXDnrgjXuflAoYxTLtP1QWmMia/XiCHrSRvHm3kasIp8D13MmPHyWPRBv/8rlac3sX4+X/sP/kx6n7qVkSPBsCPNF3iRQgudHnYuxi5NcyrFanTA0kz8xJe+UYT98MDd1GMuQxzkxKvc6MHgxd3cyajrbxdQ2FZ14qb2Tf/EJH2jtsi8wwM+Dpf48F/JY3AHW4Ik6XGbp4kk3bD8Su18YGBBxmieMhZqEniac+c8ukSH6QrJ2OFu+WiG7WQ2Eby7V5LJGcgxwOGnKAx1Y0i86R/TEsmTJmAnLczArOErC9bw7qgJHV9ulQ7JHLihk6Us5jtAjMmCueja1jiJjlfe4Pj/SB5kcbLhN8wStbWYW6DyXdzHDDn89bvX7F+8mji3pXjCEE/I5orE756qw8q34KXmx4B8sMCKM+5pJLs2seuKuaJTd3n36PgR2vT8SCQfla8TV2gspv7QbwSfhCvEF7qAPsekPjJH+8Z55GYWMmsTB7IciRTWyfehz7mT8S2/T7DsJ4s1HGBTn9ivYP+wDXHYp578JfNzUBrTmFpAK9kB0Cp+UCBGND4VfRuPD8OmRYhBbuJ8kC7JyXHgCW6RUaZuoJ42BxippOsf85Elo2nOyWItYjJ3NBz6R7rRA1/ePrxojWsv97ExfjTfdM5LEzF75bwUj9ZfL4XN/uQ9G6/vOAY0CeA4/JCT6u6Ps9+3DDtjhtdVTOy7d2J9OmWQzA7IBHVlQX/d+4JPuYiJfdbK52H5rA9M/+zyqU/MjH/rTZ0vJE9LxCkwmPT1zo9Wvodyw9cFveNTSpMMHPlumrbye0LU0dro9VbmHR8n5T4GaW8ELE3dIG74tMTw5xt0LuJ7tAdtOgRBIa1nmZA2tHcJRyfjvjk3vDV+OTO7iPrpSPCSZzYnHq7EdC4udk61jP2VdQNGVXPjZXSeQywZNL1AXm++8F0h6PvuOLGSVUGy1WV01EGTTo7ZahU30hzV+joEiLgWyuVsRvFv1iEaqK3t5/MTOZ+UhlrqjKbLt749wSzgZXKz96rVHzkf/NEMNfuyoHWYE7hAaGXeyKE0Ngl041ONgLne4qYOEizxPQbVu3IX9wAmkeWxYJ/K+5i1we14yebEww3uO10VkbIQRzo810sd8ThG3MQBXAMUn2IZPcmokvrb3DtmUq08DotuT+E66lUnp0qLfDvG4sNAnGKiCfQJ8yCXzUhWjDciEjel2vlNMROOVsw3/7NRdL4jPYSgyYd+bMgIqLZ/kCDmi7QVnFS1diUFIgsf1e0a+yrFTH5bmP1o8clq6Uo+Vj7gJmyKbERLT1c40GlB6BdOzLeBOZqBuklLZGfdi+9Fxs7zqTxguPp3FzjsAd1NTtIDPbn8QP6fwucd3DsC7/DtXnDq8vAO+4R7enGq0JaUnJW4saEVsO9kHZEw5Oj2eExC3DWn22P4TwlvarM8ebReSkTosXTznndqL/3tumM5GfFvxqzkpNEOJSi4+y6CbJqwSyBzLG8PPep6/8H54vjAnVj/LICzMVnvTvj2vcvwQRRlde8W8u8ae4ikH2db+ixbG2DPYNnedy0iRqhxlTLS7TQtuFxgDmit5v6iLojiLZ9zKXEsiOztrtfNjQA/6o/lwBcrrCue+9i24dP7YKkDw3xEtouqd0rrqrzc+XZs+2AcaNsYFMcEYE33MYP5HMce5fjpsXgTM3Yk3De4z+SYsZOdZHgUq7ChCUS3ZhU23wVmiANx8rIluip+wJO1mANj3awzmx+RVklPxzzOfPTQp9/Ke+Vz3zFLhaLYyZvRNXbmsTc/9v1uYHmbR855biNM5Uv1BLwh1kRuFZrDPPdzLtHLdFceBN0SJH9AN/5zn1S/Wd/J2NQ789nJ+LSEvyy4TyKn5qqQrdDFcmDJFgHadNkR3wGE/D1LNLz4Eg9wF+3s0heTlQQGrYOM+WVsieOZfduF8q18VgD6CYOL9NLXSOibCYbGE0qweSAG8TH+6y9xK8HMoDjrsR0GdMRG6R/wrO+WrOPtXyGTv/uEo+YnZWk8tdG5ffOl+UkkboHTeL9tJQw25RG55rsFq88mPkbjO3NWDOON0szN9O6wO4p5B21UvY7jq2lclkjT78d44Rfrpq4c1O0ltj3BuLaOXGIs/M8aeow3kw/ZDtdTIgxzCHWz01/406TIzW9E0DXe0qh1F1s+FDMOuMEH64yzo9XBUqAv2xOZ+c6EDVhs+qz8Y0cL+CxbB1Yq6X2vBOj+GK4zbMn1N7jsy8dc78UN3UH96Ms1w5b+MS7I6Dv/wiUTrLGQgDvezZqzGY6PL7BQj/58R6aS4o3xoGumIS8FvlKFTvCZT9maALCm8KRr+nlNilnAmvj6+8kG8WY9CRu0cn9etA90fa7F3y+DmAGT+is/MRORzzz846eWr3VcPhhIPmHG6wgs7cQTARt24zJyYGiTmp3UHV839DJZgW93MEDpH+E+WvyU/klfWK8NCPe347OFbfq+LezfnNYNbOK7oyXQftOHfnUuOenu8AgX9aqMa9SvEtC4A7arZtDTFp2mJFAGPMSckoDe8s1Glj/W3My5nZDWyMwBIAV7q0nnasxsSjCE4EaJShz60MlMY83vwhY9ak4Mdzc8l2juF3ARgQzHnxcfcDAJoz81XMk3B66sn3kQ8HALfN1DZL0/56c4nuxvWyJ5Xm/kDX/ZvNcVccBf1l/OwLgj/vQv2YPNPizc/gsHCvN2fd9NRPLBTYFLjsLZgjMohz7F3wkM45NsPdlRGFpegEG/0Z8msdiXwSrDD50ZpFGnZMM+D3jqzDpvI2P7LtvM0txp2gKx+g1eJydY2RSj4WI+1FR8XxcjOvAufh7oshi7kxBb2txf9judj/Em8uV1AQQV9jGNHNs685Fcb+WH+HnUpTIsOOu7u5dou1KfdKXPcTAt9C18cBQnHzwPKCZyXNPNb9bFS/L2RN7doe5XgI/7eGVgEekPCuietx0m0BcsX/wVuMflE7cyLo87AgDVE6zADMZMZ7WnecRz9AY3LRbYieycStenA18DKVs6bPMHR3jnv1J/TvJ2fDdst7AlcbmX8fZdDJZxJ1RHa0ekgXkkxhP6HykvydspDguRUkDnIR4nZJukqKV/wt3wDViRBncChoxNIHRw24xBx+dOjhPsoRgDbvji6VplH/+djNLAYqK6EXktthC1Kj62oxg9VQNQv/vaLauGqEvgYZ6uD4PEzX3YRyeFCzL94m6MXRLORvDlkZPPsZxs1fhy449ZkOTL139FyO/fOJWEa3exqsp9jHMd0EmsJcbjOHAm+EHceY3zVh7PWxnfiZGdD/1AQT3e+txd252va3C5v61gp+t3fGz9aW8qMa2mvdVNFzPuZGZaN6WAEU4svHYyPxxLPtVwK8wjKakO43xbdrsXcAxl0yVd6DEkmnFDLv241/+1ym/vmP1woaA4737Egs0DRrFf23skzq0SrO69mS0jXbhYfxIVal46fq5EZiROJP+TAKfUxvUG9zShe71WupgcPpaxY7bRa8HlJOZJ/x7oojpmyf1jeRGnC2Cbtu27gU0ZgYZsU1a1XbFwHySmTW6H32ULi0HdDfYUYIlWgU116I/K2GoiImN7ogk+vem2VyKZtGWHdePXVKqOy2+rMqPaMRp1cxNoaVwbHbAXb4lDvpr4poXSVIVOvn6iltfzEYUqxe5tKn7C+oLLF43q21hMJI7U13XEvsP6VhmUY9QHs7EV0gB3uh8d210+VDzgn+YKxoFot1YXuIVwjc+qcxzI4w18MAAkxydLDtgSmvhgApWCAOLKsvuY3xo/Uykrdegf00K+iCKS5vnSDXbfVkzs/CfiAl/Z1YsAD3ERlqcR0yQ6PtVUZB4VvsE9+LbNA9cWln1IqO6hT02wXFfpj8tvYFlXyZfd4IrU8JLAWb9s38y7xK7502Ffq01N9rhS+6BMK/nUDax4rIJ4I+hT0Q9kt5/CmF94acL1bY/+dN0SMusi4+YXiKFjxe9nlzQcL9LGuLa2LPp8mMfwBrIl5djq0sQ1FMN9w5Rf1UR0fHrg+26+f4Fior8tzH60QGyKMuw0B7IIwm7E5MxFkv2NP7PNNrQYd2wxlBaWT6Jpxx1w3bB7GbX0t8jU4DKf7VZGkiPxYbCk10yrjsmqWHEQ0hYek8L3iNTLUWht2rbJwk27HtqelCLTB2RYyA+p2Y1euwSjC65Y3+kHk2KG7eppe4hVXKQLuMenoDgfTeq7TqV/6DOsqLXQaidLpVW2hxjxYdzki/JR+yhi5xTLexo+4KQnMz/m3hdZY7Ja0F0Ii40u3Fn3J5wX4F4T16ZMF+v9nUJ3mhMlk/EpD13GYLSVkf1+HkMB3c5OKvcZYNm3F3/1DDfFDJkykBjYxRLnlmqqHyT1JFpdHBDUDeLWxd1ul0rFlUY30PYGrlC99I/qj4secE965Wl/438K7kngdzrwpj9m2BLX3y27uCDZ9k+45RVNFHHXn40t4Dh08SbFa952z3Eg+Rvbj5/kONf3YRpa+HKg1cmYiIOvKiv27Ai2PrLpX7qXw06EDYN9JBDz4/RjS7eflDLl1fJF7d/KL1G+xFbGUZccoESatiYqP+FFuO2DiibInGTa8eFcbeflC62DszozrbApR7xBbflOmhZAknV1w/8O5tH2wx0s0+qQmnejju2btul3V13BDBtZinmqbAeg/TbShA8fHbqHCgYoHyBdgxPbpHQ1oXwpMSNYPl2xs4FER2UPW8ra0674wyTTMT6Wf3Ri1fK2SPyGlQBMBxtClyzMJeQPEPJvC4yXXvXON9AqSTu0paP2VdbAM0+Bofc4maSGd7USL5bLx2bBDrpX6CpT8XftQGaAGL+6A8YfFrLdUSVlhpBDr+4H6rtLWuadkzYYM1GYJmj2pDrvJ37cuYs/PW5T0QaXErgtbsMIz0XzBTu6o1QaW0quy4z46h5XCBfZqBwXAifcrYzkmpbMhCsMkGlhOT1RKtbMPuUQry72YQJ1+tv64xMuyFJihi25OGboji+4ma2va8p2/Aj3RKbra9mFwQyRBYbBLhYD/WQ3mu1mfB7E4lUC+pCLoCcfh2roVq9xxP8cC03ztfmgferT2lZu84lU7vCq1k8WgNeMd0e9ce1+CBsDuvWpEn7ncSGNeMMyHSbCFygHE/6DKp+4MCspxTBu9yLkoBeMlY9UBIj/CNwVYONjgejsTWJy4gKA+aYtH6UfC5aTgsrXEwzNBDbOtmXGzqvBvfGxG71KIDJu+3TkJMdG5iPfN2FL/+5kQPkJLgW8jR9KScGGTql3AWcDG/31Jstt4bSVExTNyvAsyRL2omWOqysLwgjG2RiyMcmJESUTKWhJHsMyRxnfuM2RBuNQuTbfnqLp5Azxo5kC11Px9/xcOCvEMmqM6fRDqWMSMjtsJCNAp/Miq+vjv2nOue4VY/7gbzO51tlfcx8jOh8W2fxI+hqcEbQv8dMb48ES8DU1uXxhpCLfzesT90fesnaBOxLJOctMMqaOfNugCwpP1UJvAm1hS+Qc0hxadBBXmZbPGZYxYhXHF5u+FOJP6uMKGn7T2i6B/iEfdvJCMgap6jdxPsIcU5BZUGaeTM1cVm43qIvkRJjmze2TF/IDBZfjgRdua3go/ujMbxdDyI2E7XSyOGzn20TKlsnj1nLUrwIuXPd6WRzT+Nurinvy5QlXMp9MJPPlE6ONYEvM6PgK0bUKG7YAdE0kbqyyzGUBqCryffHRiAPrfV2PIW28AdwYCwXaMUfB0NTEIGaYScQQvbATAg4Z+F4GesXBYeXI8Doo42Vx0JCKQdybMx/mrlzevxlfLh+aL35YvslvWxl/tGCsS7s6sCKybhWYzC0tArNu0nJ4gFURsas57UtynI5AyPSSc1rRqHtKjFsXB1/kYxFE1wSELnIApfmYlQa/sb/QTjF/8WEy0Nj2n7qf+t8d6LMrO70K9f9N2BITT3K8IWMpnPToPbm3eG/A0kO9Lshv9DbacfA7S4I5VhKMjJu2bxGvsm2Fgi/Kn6QwYjvfDSnrKKdLxozvC5RtkUjDROodS6v9DT7cBh20GeyCr8L7IKREE1E82gz7YAQfwRJ5mqSACYnXwJwT8rV8iy/IfIHmodv5cNI9FnT+/GXcrUXc0YNFQVXXqyJGTyLfKZwczT7zdsRIOqYN2nWlRYvfxTYxkQuextrw+57IWeKzVMAn98a1i2C77URBx2Wc4+MJDOByvAl84BMxA3TDYTAVzbi7LwCzr65xranLA1yXa+ePkZZVvi/oQvE/3HbCxcKwp0LxMcnc0TFJC7Ho+wZWqP+8lbXIoU+/CgABAABJREFULHtYczdihNP8ZT1Hlx7opmzVtRu+UEooMqDZyaTgBrnOdmN7XK938aa48WYOum5UJXy5iQxfmNxA3mLj/YqQweOf+qdJsPJpBO/fS+K4/MDl7fIv9FW57YWHUU2/uLYjiugLOwSxy2AQXJi5KIsHGy/vivV2/JVK6zD/8MrnLMw0/RGR6ujbOhaeaGwwxYAWQudvdsX4951hUrDKd0qbIL/j2QSsHZ+2yZ3jgcS2fZMUtP2/k/MdvicApWvkkI/03pmsB7tKQa6D7XB3vG/0Fuv3xvF3Q4A0813LK+Ny4NcDLnWg5H+49ZGCbelPwc18UxDW2qcy9vDzNLxJVyZ1K1wi1GS4ia9FPT20N1+mWPy3bvVbhPhJXjV1XfoHxWzviOMFTWpcv63js37h3C6fEZ2M05B9OEC7Y3LpNGVbeGR/ktQTDGI+5iQ4grJ/DQDzj4bPEmnZH2gibZtstNkFKYU4gLhp/muq85OBPK+IiRJf9ItKNkPd3FDspn4thznZbXJF0IuvHfhw9/az6kxnENvD3saQN/qXJ4qs+7pWFwilTsSwftrKKCLpSWX8nn/LjHqH72mukwwdj85Mdnoofv+Aqwgr+/FTIT1V0lkOqpvmEY+D6Emv6emZX0uMKBaLiAGwygkXGVVaFzn4tZU+OxCTpv/kT1cPO76/lV+jfN5WRoUJExmvn1C2DCXbAs/IdLX7MQoE+zapYIeNDkLn5DkEcb7U8Zm9k/jG0NE7bK7vcOB6l8fuSO14tYH6JO+OwSGIPMJp2nZD/IuVzpRu2P8UGXEQuhebdzJyELbN3xvcbf6ZcDUjxM+8L19EzkZ5kgnaY04dZZJHOk+0+O8z7PaqiLQ6WbTpzbfEM7zEqsfx9/NKou2+pE19xPzQDhUxFiqIogDLR4rZWHwm3zkTEh2nNH6kLM1l3iEf0wX/O0KDZnGz6MSocgsd60w/aO9V8nVlmEEOkjEBo9/P4aw+ZSbexapu7ZkAbvykSf+bE+hb3qc5ehK34fsEuI3b75bGtrZtz0P+vZ7agHqon8p2ALMIscDo5sq7fDu4JmdqYVk3KAfMszbedO+KO2znuho5u6HBReFO7ITL/duMNaSx7OUzrgJCw7xOrQc7FLZygV/bIq1W81MYp4AWcFj/uuW3rYw/WPD07HGBFMoT4aDvEpNj6+CIgsu4yLwb58J7pLsSTVpxvd7lpQn40L+im13pcGXjb7tA+k7QvQ7tXdn17w73ZuZvUd/p3x3uA366aWxzuQY2gsvTcoAtAe0pHd3jruF67ujgk5aFVdnOw5MDFadStnzkeZkNXukx5lHmSciDqMKdRtMmAGrFXZmvbeCk+qzkNCDUhl5g6RDXBj97rW0qinzVEwENEQxWDbFjZT6dYv2vdfX6lEfw8a2LUxZcLvJT13dKSahKg8u3mIwhar4ZxJmT+e/ZeaDHPlUR1+8OLqMAWpDBJdetqzn6Arj+WYIQabQVXOhvbJU9zQ3G7eQktZTkNWhB5Yn/ZDaWmzCsPfbHVrvX4bY3ZJR8qM8HgtnKYHvQ1K5ZhbdyHAov6n8kTJUYQj709jXQXfvOBhkGfyLfPWjpBD7sTvbTyMiHq6VK04a6Tu5AReyV68W1aGomXC28k8AaM3/R1SVTkhl1AW4okJ0WG15xwiwTWCzDqrfr6isMQNwA85ix7evXKz/y6vNXKp/4HTMPltlgPPgOR69Ul7NheNCIxEh7PhiwlHC96vHKRPjY0hQTteIayJEXWHnvckaivnUe+67eXC58vAp8jXTBMm5lPsjQtaegLcD3AZ1DPE0yOsBj2rtEkWFOuFBPVQpArLbHPo7t6Bj5znSOdS4c7Dq+KXAC9EvgzlsjIl7wj2RxogeV8xBmzdYADXKAzBGMesyEFzIbXYB5dByGiWtTXiTFZpST0NEasM6nsVlDXHZGAb4ERikcN6ZDaxvNgU1vlvYAJPE8wu3Avw1kIdjyHbOtPUVhySjOxyWe+UnYSvzhSQrZE/r9WBzM7Zb4Tgf0butwkW8JIsCL5nqA7hJlxRGUerIbFvJ1ZcsqCqTw9HDDt/SOkuiURzIut/mlxh8j7smntnNw5/OUmk4+taH7oTlg5PdNyv2IU7nbBlmcCvHe8uE2+O5Y1O/iz86ZcWEHwnwPOU76FBfTfZI/dThPSsdwg4tP9I0BW5nukpNEHJooVpW96vuYeFCxjNtvFw0nxoyvW0zktydmP6WkALTuVltp8zp47c1iSUQ2d1YIdzN+JWZi0JD6+1iAL/+3h93UqYNHnzMbPxo4drjlBXYWhmXMQ5RhG35PA9RWji9eMHGJLnwgy227v6HBfFIis0mS0N7x6UaTS/cMGxm3TzuQqUEDTOB7XJL5RsQkEx9h2iSFzKNw2iSqrFPDhvJdjQO/3TGrM4utxxnLZsy0yWQRaTFdzxxHm9HiTuXjL4F3izL253g5qSqdSFC3/qHNLj8BTiYdvATjfycz/QVuvdGleJPbE3jpX6V18oujv1MnHRyZ6X2MRNiFsfU51XR6GW8uWvxnT6fgO+g7dsjBfaebN8iynzzCGshsjTzYdsfUYbHOpetf60cetL0rI/M9Ae1gUU/SAZzLUT0c57CUlyChHOzmWMorOjfbE0H4Cvuc86NtkEBVBOMNDfRXz7tM5Ksf5/+0fO7CTESWkc0gANsPFeqjeADarBBSQic0GeivyZiAG0ed65uJ8ADXfwRoeemASG8DvbCq3osoJ9gbOu2pYjsZvdrR3si2TUyOeqVy13bg/xYtLHc62ASvbZA8scJk5IQLvpRhI19EfeCWQain8XPcF/g9Ds5ah9kTejzNMAvW0Zo4ceCE0pbnLBfOBxUp36wZrBeAEd3tKVlOLNkOZVaKjCXXfWWEMjtu0XuGNXwaM5xg6iMOwgsXSeweVef2zNk1VdEX9n99VFpdN36Evkg88dSQyesq9l3eL2F7m1VEc1pFfkY3f090xWuiMc72grFJtBfbWJQV2MXK4hhMTdeXrS6CRvW2f8VBrBY+AbQt5FOHKLqeNLBu3c6a+bb7WoGIwBMq1yvNK56DXffQb/AQipQhDV0YidsMf9vWiJA7VfmyTzWqb0uD+9Qf+ymrgYbH2Hf+mOmyzg+46QkT+8Ub3Hf4lu15NPbtK7AOy5d3sJLp8NZW7h8+sU2v0zpf9KcsI6doN/1jOVBGw4Cp4FMnId4xlmR0HFcUbU8M2irj1EWMA5b5ZB9mBEsDwacP6VLkH5N1z5cvn7swg6AX/43AOS9isELDLbhCuJqPgd/9FUlwTOu0ldHXgkjLnWAFHq28JuNgW+oZHfq3b6efmU8HQMBl3Th5WQdPdG/5vgPL/QFTOBKTrMb7SLun8wdXdgnCE9hTojVLSmLKAMrWBjn5ysQ64Vaj3uAe7cgYVoEWZ4EZr8qPfoAywg4WlJV8iBVggm1otQkL3Q1tXuTL7cx1ZRUWYuCibEz88e6ZSXz6O86ffr+oNLazgVu8wNlhF2PdtIzDLtj+HrAatNiX83saaN8K8ac3d5aJ+S5ayXdfVFdZCVrjf4O5jxGFxK1fXEMWcAWX+zsbTSXZDh+Bj93vCtMu8zXFV+ov9wFxEdYXnU98djtHe5lt037CPfI9+VWF9s7nPC12rJYL2o3nB/iWI/HpRsD2UwHOZ+erb0D5AvuU0r9Opo0NHvkeijV8672WLmg2LTEHETJ3Al+3YUG0BBGsKcFilRgz3e5I0i9UfnvH7CeUsYB5ZvpxipbA0c7zHy4YYoJim/PRhYsJ3Po+zvxug44IxpP96L+abpz6V+yHQd7yBrm+OSzvGY1Nf0vCe6IFpCDmLAd+o9etbEi3TVRrYdjiPLl0d5ifynaii/22G9g7Pkjvrs7ygQw8JiPJBXjQRZdPlGSgHfANLsubCEnc3DDReLcnruBCRfP4lrgB7SzH1TyhsdAFJ/FzkWNOlvfh+y8ZT6L41qkrmGVUjfernN4LUuKg2+pLy0Cku8qCR3Yw6lCypTqKlRliMFf47/tl6DUdcc+DqMTL4JxKXQuGrmfqsJrpLLtf2W99LSPztaxMwdvFqpbHn8RP+ppjFCBwp9umzLmuRAsKiUSXliA+mXfDD/z6dpRX5HJbA/IoUnmHDIBCdY2PYf98NZ0KXM2+u3soWoRjmXd+kWD5iUxL69BWXoMEGdl3Fl9658t3sKRX9PVFN48SA4DdTHcc245uCQmnuMcyofwC49fIdfqEAcu3e5ieZLye8cXfnYrPr2gsqYdto1HkGFJDa3+Ef9BLfPMHCf0wpcGX+WRD9oWYTZm+/Dtc79j1Fy6fd1y+dMYGntsny7ydMWDnxTCWPCtwUWYUBfJ3ZBZTPu1Nga8pmCnglrHnNqDrAdr7V96x2Mh0VFrjFLg/JxnfxS2LoC5IKP2VrDfFiw/0uK07DyUQhCX9Kf0u+j3gHgvDnnA5cN3xocQEdzGYyNqC5+PByQUmCazouX1GCVZV8paWhqzyBVn1wgfoGtS3iQegKeJCZGyP4Q9Gku9+QlDv5BinUeWourapBOPgu93SkvyNrEDndspzXkTkWvBGQqYnhDqlQd64qKGjxxTkQF8TWxUvV9I1+frCNyK2iIq8XvmERj6x8cMB0Acg7S/CDGi2w21tc4MIf0zG4V8djiEbdF09ouNJWpYBKnjrOY3VGsexjqWB8fGOeYTGZ9On+niuLYH42BdjhHdJBOQ46ZnsObZOhVpxYkO/obtbv+8XA3V+HFeRAJDn+cuiTtwQi31usm/qn+OyLtj3NX3Egyz0AGsAWxZlOx8LuGlhPmEVYHFYj2OKuCxnh4d6L35xtRvIgLhPwh33L4mhTdtGN2VxyHViUPgwbYxXSKvhy7R4e7z6Qsxhv0PbDR+sC/OduOFiUQaQ7UKZZlzCBaV1Mia9atKNqoHM0/8lmT0u0ADqFCY+QC3z854mX/5xmejXXzg+LJ93XL5INmavewD1WA31mCRRXYNgaDduZwl3Bc2UsCSBQCalk2wgmJVtKvmGBC32QFIT0fQCescXnHiJbty/2k4xo/JhWvA7gqaSWClA39Ciy+WEMc3t2PaUbnJAXn/DZ6T86sTnE0tKbrpkAusIbFLyQ8bRAy7X0xjxgDFuIp5hVTKs59IishIiacajwcWANgIV+gxD1CwT0brf9oATwQbt5EOQbp58lp5cSB4DnBjkT4Zu8omJ9fQ1NN5ObJW0YBOZT390KRjneZHNnw/OvlKqffNBgvvifUZdOm/swwT2HQyOi4RM82COhAauXQPXk+X0DXGd44aJIGRxZWsfJqBK7SI53kwC3TH9Rnz5XWdfjHdjxHOQ54bHkFXVikuJYxMKiq/O8xIPh5G6nmV7pTnA8aRsVcZ5BbCl/12yjDxvfNvOz8V4nvwij/1uQrwq7e28FaEbMAe6HS7xQT+pQLsj2+3qVoAtamN/jLAwlsnfEp1eEOpPM7bh96F/SMvsgRyWpnrYEt/L6OKNt5dtnOTHuJ3zDs3gku+Q2Lh5h3kqyLjju2SEhwxi60Zu42v9nWaHle+5XV/TAhTi2m/lFy2fvJWRZmWp91UjWHaMbXskGQ0fKhBDqjPZBqtaTAmgyLTBu6ErD9q7WPWo6B53Swsn+yGY7ER+JOMpSL0RvBi+bGc68Hl4iFtK9Lr8ZMenS5D4d6k3yQYGFU76WSC8iZC+o9IMSrdNkEXZ8SmoKusONo6HCNyZXxdjOyLIp9QWhH3Ge58CN29HvBrdlD4Eribc0cRZROphopm2mnBwpLPFL35i4yHTGtX6U7LgoVJsAloxC9VJc9jM4lGeTAE9pfp7ZQ645kFbTyPZUPIAGWZbAJH9JWRSQdJmUnH2ilpatGlz29LEF3WZ+ztb4SdvMGVaBTfBkozJRnMHcLvlAM0bnlDluPAMWQCY5/7apj+A03q3UW+5hAlu350EV/o8/4bKT87W/dwpAO18sU+pg71f1DmWCZ9WxVZGqCMi4vp4hks7+XKRdUPOpNwM4JhXdNPILNrjGuHKBrb4dvYjnb/FOhWf1i0fKF28ZPvZ7fxAF7N7N9Kw3tDe2XYC28Ubr8bjNqRpUWW+Pn+ViA/YK8HGDg/vB44J9weLDR/ypctW+D+s8nlbGVOAgrfH8uMmGSbUfD/HrCx8cCLVu7wJef7VfEkdU9MlHus2yJBDZFzvXzytQ4DOk3Rl5/hSv3uZjwWcxLa/nZwdnZ1sXSDZyNHibHhvA/NPLibkzHdALBeUnypeybCa316H5IYXPWULjv8WaV8qftIJFckf8AR8J5ESn06vGwMudx07mSgBsHkRj0dPuDfjueUTQhEsXS92w5NsO2GHQ0kJ92Fy++laa2udNoOau6dzoG3CRmIXWRCIbpa38320dNsO1OXFvobXlJzFYF/cgFxWzJyWExljyPFmI54svWyhMLMCnWByLN4ljFU8dpEkad5uFlmSrX6lfpPMc6hT/Dnt2Qb/uo0Zd0oS1K7sgRGW/fpNoLrbmZSeAh2+t8Xb7YqeT+8WvxVMMy+c/25S6ekUJAjJlNBv2MI9yaVwTXlQd38beZ1fwHDMAFm0o4s+w2E1t7NPbfvHcnZ8bMOHSmIPT4RiGjMu60DpOsdQcDtd/1J/uhyO5cU4hzJscBc8OAHS+R3f9QkR44Yfdvm/SjH5bSvjj5ayxSN+kRXNQPfOQSFOL0702uG2pDRwVTffHDswxbhj0J/Cii/QRMdXBZ7wxZ+tzA8cwi0uJ0YbOiyTyMq5HpVNcG0d2FOaB15KdSzt1s4NKfRpSngd30rgicDg9N+EDZa8vWZT6MFGz5fnMPMC5LABpeTE8TCZpbayfRhocWJheKvSFxuROA9iKjBeEPg604trGNyQ71QMnoHIQdmA0DimXjODbqGSHMryhznLJOUo4Qo2GdCTqmh/r2Gyi/fmHHTiOOqHSvDGjAucXUkwrPdL/L6T076kBhcELfZZjSu/Q3cw+MjCVozBj7GKaJ+cIakYknXYDC8bU9L4yuIGJ+KzH54qkJYfLRipYs2jJYMrVzPszid0JdmA5CeEXQxi2uxXGvGTLdhq63yWMM78W/wiojW+LU2zzqcCTFko+fVtgG7KDnaH3+gVx7ZdBCIf0g2yT9OrupzAw/iRmUs7qO4W3bcmfMJJMFOOLMhyiYybWHN/AaebR2krLrk50RtYBZlVxpZD6fW6BkxnDfwa0Ak94O6tGTPwszKR+6pISiA+6vd/rfJ0fnzx8qlbGdWTqHWlDrwHK0xOJMJe/AbQWV9H04/chQOdFofS8qXLiJICxsP+lVclchxPjMrWi7t6c3kro/a/y/tX0icCrcPs5GGndZLzRyb9L+Qw2u0vKSHPIrRJzl1505kU/3hI/grcnRyIQElguy1yEwghp6/NaNuNLk8qj/bHOiNq+A4RL3JENjeLGn7d3E50sgLQ/9QnGTOQsoyoj5SAAi1M4DeidjJ49rQOVrEyH6uUK+h/fLoZZVRSeK8ry8kse6Fv//hiyBeouGovj6+EjFgp6fRF2biQ+AQpzLK7CWCVD9DnjkasAji8sbDWfGt0s7bAArYTDgGWjOnGY4O79fPOlRcNQevVj9Gkx68wtL6s49vEyFQOfrDlg20nXMt+gWPzMSzTIiv5bjeH3aKHF2hd/3f5A35KYLdAK4nM5E/v7pWcAHHTN/Qk6aYjr/M/geK0uvcFDzKK5Kl9N/YoY/dQSAlmW7q4t2Hn4Ii7e1vH+GJj28c3cMqeYJqfR4EhhmjdmpsH7KuXXygR/JXL537HjGIX3iksXyzXdVVMRK69v0mwuzo4Gl4bdoV95KPS9C8+5seO5OTd0RnojQ8CmMcF6Z5w72z+FCg24An2TfwE9hD+Z5VTjHyb0OH6lk+XlNzwMKkB6S2+D3G7y22OKJIeDiU+p0DQwb4pV5n3nn2VLGJDi+f2Q4M46SKVtv8N9na+Qjbp/s+0X1yjGIcxvnk191lJPDdZP8KobAf5qPe0KNMy4DXePJ+/R5u9wxXq/sF5PaLLT0wZd8rZ04ILJVZJVl3z3mdhKNRuB73ezTM59L8Jxq1ZbcojmTbtT92N35cpD7c7fvPv0e/tEpA7v896flE7/W7l499M56Yc1lZnPh3fDf27oStpBdhn4fUjfo6E8XlkRPcos8l6qbOxuXf7G/Rs5qDpRUeJ0x7NfyvAJid3w/S38tPK5y7MRMRHfDnVGWjy465piBBEGq9d9wmvoFXuycaJXZImpLW4m9IsIozqDBqNuwVINwF29SewO7pHGfe4pX87utR+zEH04bx/R+ZfqGC+yI62FA4qd0HH6m9MNkKtd4sWCJpleyXQanGRr0o6mb3lqxW38GW0Tm9wMmNnHynJhKO3C3GE9SaUkXFpL01efFrCTe/NgY0HLdB76kenR+hjeroWvm1DSEVwH5XBabMZl3zMrNt3vzw7G6RV5EX9DT0N//t6uRfWj29ldHnK0aFU4g76FILPW7/mNkE/BhoV+oKY8RLBE3m9sD9WkXInXXEFhmPoyK+JS/WQMWQPNssHCsjU1WH4sn1rte/0lBBwQb1LxqWA+AyBaDlZOPppiQwxBgSWEeezSd4ihmMPc7L4dh9anHc8NzZ+spSDb2v7wLhofuwnCHe3dbwdT5TZJG8zR7re792CiNtICaaST+bj/patxX0Hi27dbyRnmFENQHGq/tCNHs3duNtdZIL+rKmzL0c6pAqOZUp1hkWXnI7EF+CLusF5RzIH6VN/O77AeFxbRppOVbWZK+u4MGTMceFLl90c/gMrn7swKzNqWfl6MV9zHVE5vHpcmxVa2y1YB3Z7g+OK40VO3HrEIkOF9yrjZKsLiXzHOuUT0d8dbpXxNElY5h2tDvgkI+6DLnQ7edhfa2l6m1ZbvrrDuPtwNScfUMqTqq6+wb2ldUO3PGF5iMs3SfQAe7ppYNxujd0caCVYTtpunfiKhvgdr5YWk+X3lkAYZpsOJWHCkdXMv+k7A1b6d3oklpMOdqjV4STQLdVfpkQPw3kv5eUHYdhmcTy+iIxDN6Be38dbMWTYGWdZIIklta8j7wXXRatebMVlFpkyLVoj/uzjTSqtfW/4Sh5D/y5nhp24L0mfKeqmxs7F3M5n6fiuOuMV2F28oUXK3XZErhdfsJmfxecc/FXHN4U16q/RtSITtr3pu5GgdbR29DxTD1KHrcvpjpMcfXnJLeysurbs4kAXqyifYLvCuYHiJze6s5sZGlq+JIM2Mtv0IRfU5ZrtNtuvKvO2f00O0PKV7Lt8/NaijPz+BZ0tk+YLltuY/odRvsBWxn5qcoz0Uxz9vymnEPrNbcAntTfOJPG1XN/5PqaBMtcZs9ntyyo4TIAyeQ4T9pGdbrxjwe3oNg6h0LKqV4bxfc2Jpzawv0ZW+EsUrUHYSzmjJjVufpMjTbi22iMhbNpClZA0SleXDWwD56UcrW8SNyxaWhs6bFopaIrU7T8QQwIWcofjfDjY2ngfx1pavO1aQYbcC8S1Fne053p6ooYJk4oofJgr3oEiTs7nlaUkb6SiYJw5+YTBE7nJgG+KkQLjLyot61JsvYGXkwrJJy2qpAMo1mmWMMFw4YvjKxM3vd9FFgPZER9KsbWt1B3NCfKcuDy8rc1u5yQnS6C7hm62jqXX0YbWQfOo43DwG+xusuCWUTaPTiJJhQs83w3gcFzZx5z815P+4c3WC347HOuKTa349mkH/jC3nMgJCox5TfYZjdifVCyEi09wuO4LLSDZ1XdjHSS88+liqvPc9XlT4vzGplK3oF1NYjteOybk01mFPPi3W/Y9tqJ4bGMsezMReNryU9i0w0U3pJjuXb3w1TofsR3dHz2t/3LFhAb7D7d83nH50tmPWzecPoOnqEV2K3PCZSqYTBjQEsZ1jvMoanSIPd8scLFNbku0NIEY3/poFLG1LafbJBaI2yYJDyZw4G4cMPdvS0sq7NaRAJ+3ZU6MSOZfq3BQ7IKk64A9qzv3m+CzO8Ew4TZBv/0tB9wdLSGbc1jaOnPaGhQxu6PFv5HWhEXctGg48ZEqU0qQdskGioSwvB1uMorvcIFMHKCR1jjhUBeu+6pZF6ZFDsHMEm4c6oE6cb7RpsKZolId30HTGF8TkWsuDt1o83dxHhcTyQkh+GhfsYS/sVBi6FZF1kEfE8+3X+pY4ObhLF8MS/5skCFl4yEE8eQABhTmrmfVYWczHi0bXb4+pEhGiaesLdwicjdHQ21LphVfpMirImkrbuDqupbuECWd53lV/ATVea6j7ccCMPlyClw8b4ANl5QowvZJ9m0p/tDvUOnJl2/6x3LwojrwyB8nefyJuhtlbGecxGIearYF1EgTQ9JzLjqMSGRtNwWEtk/HUgZF0zXz+SC+63h1Xjtjvx2EDlZEXsBXh60n14ckp12HqamkLYV9vzZigJTtdz4116M3KJPe1GVda0XjC7pkavtXtuSTHamFW5aXiVwjT752OvlCxZ7Y7C9UVPU/KSL/CRmf6P6fm9l//qO0Pu+4fJEVlL2Ok9rjt2qqZ6NblgKkViXVAbfwlT1fWcaNpJBv8Y/MF/r3ZCujhoySy6Y/2N75FZaxANCEf7qVUUTyIpJ4KLd3cmya7mQusEIXfm0nwkIcYgjFrhy0H9AruHewUD++2nNyart4Ce3pPklJEg64fo3t7CHfZI9Ux7nLtNotSVCUYFP/ilNAJRMp9l3GbeirrB+G1KfF17Yv1I0LefsdTWzqe54y2cko/udH5xe/rIX1yJB1Ja0gt/l2xcDDxczEK1sXBy0zE/2GuotONTJ6dzWJGHNZ5ziYgD7AHuYWoC6JH+EHcK+MW+YKzyucJ0iU8GLRzr4IZUyqyropcaCtNHVq285BI9XFmAAu1dM3/br5yjI9TNRYxhL3oH7cysj+2CTfkHNQuAbWTYslg3sp87+7/nT+eJl+ubnHcaHo8m6MGxsMU934X178mBjtSLKki6zmjUA4AcB4dnxxXOP1VNoy2J3aWAr2EaZ9kpnGAO2Z47DLleB1ydx+IP0mRqatjCwjxjGKTargU9Xy6cw/4vf/GBdV/etE5G8QkX+dmf2zqvov/RF6n7qVcbeFoYclu8NgzbD8mwPM7g7zBp/tf8e34B66dxPLfmgCnGQuhfvOej7waGV8N2ljp3LDl3F/VFe/ZAlVQIdKQJz1EywnJ91iAnETLU507A11caKUWS6+cE2b8RSju4mQ3O6SA+vgG7qFzyGRS0/HG/a75LHwZRgRUfOnM363ESM3nCYr9c6jpX7nLYVOr+4DnbTo1IbyhAgysnoMMnRFOS3Kz5/UirY+VrotVLcGuQxbL40nhvnFCDz6fSopRPaTyDSN28W3VxMN+qEkJvke1I4pGRLVFUTseqpUSTf62AAwDmrGq88L6cluamziKbTzvGoXirNe/BWQKv5aMyA/9UyF57ZATtnIgX6QDihtfeiOFUxdEWmejEjVWfLllutroWYJT0lmhy1PObB/4EvTu4xTZvf3aUxehOv80Vce+IaxW84XlECTSlTqYueC/rHd+FPDzn9L7t+a48x1ScbjebqJGJ250WtbyLZxDIJVE2dwGgQM2NKNuebF5KFfTst2IBibRUTsqu1fufyEEPXB8reJyN9lZv+siIiZ/b9+hNjnbWVMgQMsCTyGzVnhe1vz3TQrdzy3WxkZl2d6Mug1G1u+0ow9OivMnxq+ePBImQRedsbfBZSO70nGDnfyDJlZBqLf4a7GyjecxmlSs0Pq/pJIbf9Oev1IeZcOwD86tEMqbHH8tmBNpN+CQo68eF6kb290CeXwANqAca5VthR00eBNJxp6ATnaBBf1CtW3X41CncNc7uaXr1vqG2OUvQRBkCVwG/EAN7bm2fSOvMA59k9hco9Mw9pVay9jCfwfCoAm6Y3/E43ytrtIbF1MT8yQDE2C2HqJDgodWcPT+YS8/Lln6s9ssYlvl6733vAJoMcqI1wX2eNNx4J7l8Z8jqWAjQagShZ+6ov4DNwVi2MrpgAuf2fqcFgRJ/Muc4Q+nFcFHQBDN9IOQPJzKGODwgds2EavgXdrn8QA6yc/ZzKe3E4Z3Cep5boYyPzqfSr7+bauhOsmTn60jSEvpNnPHQV/0oEiLx/WKN+zDCxjywt0TO6zvN62co+cK+r3OU9g8Ycfc2ZZjnpFPpLjRAfLuy4wfvnTsjSPUR6QUYRwO93gcG3GBEuS7wXXFHT0xmcSPqX82Dtmf1JV/zzU/8jM/ugh7l8lIn+tqv6XReSfEZH/nJn9Yx8V5PO2MlqjQxO4NTcXRdfah5++qyCeqCxchW+b+VHKK77wNxkoEdH1I/FtZEz5kMm6hYYTUCIMCs4QdZnQqzzRDcMSXwRp4wnT2wS6got8xPV6iFkNH+2ud6iuV9bNnY42ukhB/UfmKweMO1qTLweiExofa7+L+fEXBiAdKGAZnmEjCHZCqJR8OMm8SZC6ds5R7vhiQ9IbI3kgx2BmxAfmZ3eaFZK7NA8vrwWiSz4+2L9rBXAVQOYojMEWaSZcUojSzwjAuY3/quna3qgkU0PXoH3oCjMhV7bX/Q17lvfdQoMQzDFbBGNEp443y2b/ht+3BX/pPMLb5m9Z29PxseHGB64JhVFjHtMCTifeD1RPXlTk+5QRxdf1d9nP+ri1XtI8RgWZLOO1+nSZTNOYpkWW43+HtpCdyNEEZpuN4doUfKUp2TcMqUIde3GpiJlBMrpsoDyNY79B5qkl29egU2UE4qSDFPOLc1tTRUTyAoNkFNebrf5fryV72fZI5sqviqF7bP0rTP/iSl9Tx2KTD9jNK+daY+Z3A27pF66n11SGnGf+Q7+a+scysqvYdFxFM18ZcxC/uoHK1fkE3eGvC4ZK47NfhVVK8Ejmcqgrw0Lfvf2iejpOH/3FtXSR5gnzo3ozhUKWuH+C85/HqPn9lcsPHk7yF83sT29pq/45EflTTdOflbGW+peIyL9RRP71IvI/UNV/tRnfTnlWPnUr4wiwODNp1JV/wrG7cJ18yqxrrje420Sz8AW8wqfBT7LV/rUOlMtOtk6wQ9Mjq+D+YqBsJrv/Ke0/YdI+0s0EfDIGP9WRvENLwd9xh5r61udx2wNchu1wT7xwpfL2DShMLDBQafqT4VcePGDYgDGQeyLHCRmRjTjTwTbBtZMt0WW9q+QnjyTjMM5lpJjmFB1o34ciTJJLQTeGDYLJO7cxQ4X25Z18DED5IOwPxT7ehkh9K49zyz4iy3aFKHjXvinjqRBgNmPKlTX+8P2fxib9zxDVn36thvYplaPOAzwiPpGIfA+x9A/GLk6mnPaXEmCDl/rjxyRhmVg9SOV9V49zB83v1tazaDleO+HGlyWafkBOJzHjjkEoUyTPORq/m/jb+qP5tJgXX0k6NH+HX4YiinLAAWXF37rvDp2F11hxIfw96cbGtUuhrrsxIw3bcnsus4i0C2HzHiU5a8xMPtXLC4Lba/6Y74r5wteu9J3mxReeZPuctjm/Y9arFL3C/ZpMUIAvisljMGVC+2jnBekq+qh7XLbXUpesPpG8+EwAhJd8xj+Pi5n9mV2bqv5tIvI/nguxf1RVXyLyJ0Xkn/oIr0/eygh18ZC/cd+6rnqd7cSoZjBrigECvbwerGHjzOdQOMCKrZOwmE3ryUkkTgiawn7jUSG6d7jb9nejL/Onfr4lw0d5Py0PZSqmtKmbSL27Y/V3qAQTt01wLw7VSJ1WYURY6JvywLASvyd4d4bX6b4Z63aImObk0+p/B+/lauA2wQx5IW53PP4j3Twp7G+SvTV8t/ieUWQhfmpcriegpAQmw4rkxVlDT/McyRNnNsI55ytNJQM6FUqyyvX0F3SWFkBzHBz2QmEz7cdDX8NknArJ31pLhHFbaBOrPEi387mrPxCR+1TUmPS4ZGAiYd9FJlDeSc475XZbaUGsWzIom2+5tazHJL9h3Vad4Zkx0iBBkmsC3LKDYqcroP2kzzaZFr/q00tlPN0GeZM+kL81fLAjJWbYOJkRLilux7uApi7cgEUX4C++kV6DHRttYkpdT3SzTKLQjvmwm73L2MVH0LPTyoxB5i62clybtml+IBDUfVy+/En0nT/49cr/RET+OhH5X6vqXyUif5mI/MWPEvvUrYxrJta7QHGHEfbQp2KJCFyDSxvnGm1XvoMkKnAK5IZvS2vxNKh38zcaT5Fql4RyvYHdzp0HfEpSw/WO70NYGu6z0HdRXJu2u8K48rC+k5HpPr1+gO0SoKhTkE5/MYippGOjRc4BPjn1Jk9tD/PoCugN86quvSt+vHHIw3nqRkYMUDh1dzIq6obm6HY+THnsu2Q5QrjMX1RyIqwi8l3ntNdWF+hpTiedpmsqIkofvp6BNWxhEvMj/VV5kDCC20LUleisKA+4Hw3SXeKsKvJ65XqnWJ2//ezmuR1Jriu/1/TCkwMm7WtmH/MD3UM1vnCxECknlSTDi5wOGl56CVHjxEPVOSavVR8y2tqL5LqftJPWYT6LyHoitinj4ZsGrs2tm6iOgNMph8uLfGXaimFsBj4Gzx6nbjRRyJM/3mBT561rOEGtqsMXRMVldKMGUwihghVMaCeKYhjgIZ/JqzylSz7Hwm4wfAdO0k3mWRZi4I/9Jlu0JT0KHJ0/xxX7UBxYljk9nKa9bCawq9eW0G6BOL5puzaz0nUYD/rUwAWljrEFPV4CPsftttpRKweMX57BEAeQ73dZY6xrfHX6yHQ4zPSrqKvlLjXJ3DpzKDYFCJmJTzoxEu37kvi8Bc/dRBtlBpGyzCSUZlyMvbEhQN3XZBk/7Pd/lQIK/fXLPyAi/4Cq/uMi8pdE5D/80W2MIp/9geliNcvjxZrLt/9RTBxVzXWfkLNCa6wFG5YHNImvOxQeZhKj3K2Y8zxoZTt5dlx+y6iR8TRJTjIWAGq7k5HvAu3oJJlPMHd8udhN/05zk6fKXf2N8iN+66C6R3yiTi/n8l3ZQpeTCCU4HHu2Z/zNi0EWujvdC357Lt6FuZS8kYwiIBPkb20xyfMKjgG+HfZuPiYhgQb0p5WZaXFkpQSKbw9FUO8mSXtCAMgk0GEdCXaK4MaIgO+Xf2COBG8s/i2yqOP5zFiAecq6MDFUuJO83iURmwlIswDZ1bOt0CRyDJWsc6/jLXB8MiUi8f1NT341p6NJhJmox7w6HboRIkBGnmBm+joTrnj3xxes6VMCZyeafNALk3qp4+k2lnwLjCMuvFlcfO+Q8wX0bZPPuglFz4fZ9538kUjcyEjzF9JZnOslfib5SFcm6UbZ5XWHRdX5VsbZfPFJRwZPRKkfprDWTnpsaE3+yBeHi09z5ZsXZdjggmp2smPxMY/Jn4ulKGQ36TuLQmqmBWzc8CIdJL7ThmJqeidV06IISCS+g4QlmHRDjWQ0xlErr+7gYT3rvVkR+Z7rZaqb1HypadtNKd696jgG97RiEet/TfojSb9S+dHY9FG2Zn9JRP4DP4ve5y7MwtlRZiWNkatPAjo8Q0qOV9uAT2rXHZ8iTs/nrmz61+KesoRGjp2MJ5m3pQkudzK2gamhc2CxLlKMOBL4SP9+jcJ6eApLl/gVm9bo8K//U6knJjEuwno55V+HwjlTK+Mh8RHGtR4sydnZANlOKxPUS47Fv3e4fN3bpO+qdrI2sCJSk0Tgmy9DxPVoypnLVsbNFkoeg7u5TEne2yUdyae5npjQtbhTnRPT8TTsG4g2fWxkXgKJGY1SbCunAfetZzK7ynuvSE/elcwL5AccHrY0KsWQrNgqb4dL9ANgEoEFYYp70XUQimMVH7wCAqTuszynIOm6SY/IqG8n33T0J9kRpO7sTpJjn8AljXWjG8Yt9Cy18VZbNZDN5jfMQmZb/lpkLd6mTMED/ER3GmDIowCLdpmeGi6+kSIF7JgXq+swd1EQEfGn0GWIcOzZ15DdsF5Tf/H9MgMgXXxV1oetRZfLMpFxc8b1aJJeRCv5H+qGZFZq6+pp3uUu5v7hC18uE9ovyNwS6v42MOwGjdsvH6dpr1el8aXLV5fvYfnchRmU5f/mBIsgNurDJnKgMEoQsm/OETNw02zQNNEw7rLzZVlFpOBGW+KTHbiV5ELyxO2iBPNp+LZysNAnPqAOvjF37t8zPm3yQX9PfAvsHd9fqiT7q864C9TRfkO3xfXr6LSba/bKuOk0L8TFv+xoldq4D1KHo03E+C/L0bT52EfMB0ZlW6D/9d+4pUUlJx4U9BXgu36VoMW8Or4e1HTVS8CDtkx8U0feeItXp29TyXf1g66SjJZkxDZDeL9iTsbgBELsDHbizYJjYZ4VTXqv012FCRO7HFTkdc3tjCJi30Wua61Zr9fYhunbgfAu77wefXktPmNOrXPh1YzEyDLqlGutGSfteeiGXMOp6jxFIbYMXcuodTLG84PXYnXqnOeyZdg1GmBcOvVktt5XeUk6FnzoBoxz6spczYm/BQeXOSWjqBqT9LQjLEdHj823KEbXpp6mjMlG2Z53T3hNQJdLvjhqfvYn6Wrq5pr11ucc55XmeeXoeLPBlm4UZXIf7U/FvP5a9ZAZff7s8MrjvU/LboZaqH+x3VZWx6Y+4r9THoO2NabO17cuWrgmt481HLZsDLZC4BPasVVOMyyw41MRRfKWSQOZEl+D0wrDbebTU+01deFz92Vx0vQFtskyJeZo2zT+HEMj5fN8MsbEFq8XPbXzuegPHMGOSi7R2GBqQ7nAhSZdqqQO+27xkENkLNK++nH5f0zKl9nKGP91g3EjgjvEcdfHjQusDo0tKmVirHrmCz8mbNobzSJDhR+Bh7MiYOf2i25l1PZn5tMBaL50kjHpcUMnsdnRaspbsPD7DvYXK03uuE2w8alIMxZK9JJdNjS3Cy8P8iAjtvM2Bp4X6aXjj+pUIQnZyMwLuuApUg/ZgHpapM3fyRa4nXjxi+kIatSOY8Bysb/hNUyZJy7XLoASXwW8JJcHeK/DPiO+w5ll1PViN/YPZcRG2hKZRN7Z+KNipBAZizLeglm258NAX1csgOS6RL+p+AsZZtdaUL4sb8/zrO2BiAPBUj3b7xxkvxiLRI0FmbzGNfs+5MAFu8KkM1wcp8WgkkHPq9Fu9E1Dy6Z/jf76nLdrhUWPgflhoXqePH3qCgzqsjg83QiKBRG2mctrQSvGAOPXNwmm6MvV5z7Gbfwsii2n6qeUtvPXfSLKCONpImKXyTVby1MUnleuD69vtnd17h5l8BwmFl8vEX0t36liot/BbaD8yrSN+g5+QUTkQtvgbYAwrr4FdHujz7db2qItEuOLT+YcQmHsw+foqA+b9DHMysoxsemf9bqJp8HJ5pbbVF2nk8bfaUo2t1leF8gkLu/qVxt/qe4zN+YT2rKs+ThkXtuaBeAvnbGFfLc4vQmMuopYhjKhbqDR51vatiiwuL1kHVjCce4rlh+KTV+nfOrC7LyPPeuYH25hFs9jYfxbuU5ejcQAX1D5bvjsZN6Vgltk3OMWQo38O5lLYdxDf5nHNsE8ye7OgxxEA/KI7q89D1EMzC2KME1eGbgGuEbwGGy8joHRgly8OM6OOcoMroFLd7vwWGO8kw4iZ5JGP7Xy3ckROsC+IIPu3ZldfVesboFHPZY6DGY6QARsNFBJGbgLj2VjnmVHWPMBXh9PyCe22yFLB0PGBdjNi7hhLnnsQ3zQt2pehZrlm0qP/VORlwbztCDDhYDrwZ824VMleBkIhyl/t3ISMRpE4BXJnW9lxLrJSizLonExHU8QFh+LrGfB4fc2u/mV7QcSRLPF2mWaifQ6rAEMKB59yfIroc9F1+YvfFUgzSPfwuY6Ofk534IHuKmAEBGLTYKoYmIa+PPbfMr9wSyX/PEL+7yeOkWHyWetD2wPmfjhUu6CpfHzuYHbOtffwbTMtdk39QXQC2TENj8AAp/QgV7U9WnD1qI+Aw6eqhd6oznlTWjrcfG1jug33m45Ozze75o6gRsf/oQy3wjUJf6FcQ3sdta9PzF+3j9/yu36TNsthBYeU0Y/BMnFn/LD7Aqaeln44oiLPqZ+88J1g3sk2VcFDsxfQf3UT1KI25YKLf4yrFH76hP9pVijGItF4hMDJYbLuh7dmr7ryxYT+forx2flk4/Lj7OaVkgIC3PA+U0YnyTgFPi9ge1WRsbFKKpc9Ym24SvJhtcFzX/TiTYG/S39q7jlznxbecC3k7HD9UuOKxtYBydcdAqlMF+/ZLX90VZGWf284/NLlEdsWbceNyzD7EQ2bEcdOz58kNQTJRMM4rIWbE7sJSv1Uhgz/zcd+davRUIAuPx+AvbX/3rwhO08HoAicfLIFcmArI83b6ZKUh7ZZ7mbOWliMEuJGt4dTkmExLiZyriz7/MDt8hBIMYnjkUvLD/ZBcuWk4jZP6VxCtrTg3og9r1AsDUMHwCVYabxNJt3ut2meFvdh+aarVMADW7Denmtaza3Nw7dL6XqS9fizP+qzITwEpsnMo6k7hrblL5dEDY0ZF8Jnyy+4n2FPr9ey67MVhKv87th7s/h9EX/V8dbI7G02PpocVqkOB/HQR35fNaRII+5/5rX4Rh+ea0tW9809GPfVfSbv21osM1TV2xKw1Uderhj72dsI57zORZEBjdkDDo1+3wF1zn2cyuXHwARO14mx7VfdPbbt9xlfSV/6OPpixrf1uvfvQrntPxi5BbX8k1qUp+KuUHp0tP4uPe65DKGr3HZ6CaA2TyMw+b22deU+TX1+N11lR2u0tnrOgODui4uE/39sM8Y6wkbQtq0X+9DfFh6PK0b18ac0u9zvsTCf0LOTz6oTJuL49d9ftiE9QW2m6kOn+q+S17xqGZM97GPL84PcZ/xgtNUX6AbdJg6++/1Cx2+hO8eMrnPWH2Lue+wIL+qjDFxN4YxxCe7DXtYNxzmmUbOV0Ve4ifqrlNiIx7Elsrhh18vm7h+XaC/ECNsgch3kAkTO5X1hM7HKyY22klMuWVm1SV8qcJPL/9Qy6cel5/upIiMQU93XETMj7SXARBBcGGNFpO8midaa7bLTKAos4h4rYlvnLCIiRCg8vYKx1luf/D1/imezpW7sGiAbpTacv/oOvDHyzs+ha+seRe4yEdkbS8B2sc76TTGJsQH21GvHS2SNWBJpl+y0PDX8eEOAlDCXT4748r6q3Cd+SjCiKxAD9thPEm65t/x3pCswKWyjlfX2rc0tiCr27Ln2DL5puIJE/xzOUQkb9HR10hgLpXXfMclbblyGVG382/YCRuuiwF46emiNDJBkmf+VAPkkVkP3fBY8zdf2L+R/pxQ0ILkLS3O/K9vx4G/5Z0pWMkPGZbxqUBSRP63fX/BdePjZwtPtyv4m+JJICf9r3m3wWxkO68BYyJi379L+O9v38b2xesaWxp/J+N9MxGR6yVql8Q9frN5TD4ME/iOEsNVU0JmcxEWCx/fcuknwr1eIx59+yZ6qdi3ayTB39YeJVObT8g8uszEV9f7SWmcBOZhJ2jMa5dB5Po+9akm8t2WbVxz4vi30i4Re13ZhlaKu9TQ6qZexAVRuhH0Mrnwydlrnftt30ReM6uMmwwiMXfG7/yEyS6PifjBbF025DdfBULiHOwhhw6ZvkvczBJ5jbmvInaZ2KVivqUyfMvKAfjpRCT2MY802ZaPNj8hDhlDDpVvr/k+p4no723Ms5eJvubCSsStZj1xoqMSbRJcT91Mrn9u4n6z6e8JFxZY8X09UxhLA989b0iYxQLNRES+adivb7lTumsUdK75nuUce/lm830vWPBIiDRmsfucZGO65uH0GSoWNwvs0nEjwg++UT+0BOwHTlnFb/a9vsm4iXfNmXppwU2yiK6niO4nYmznGMq0YbAx3/G8/MSK4cMs5s0g0bHA/KZxUyni0XLt62mtoCzrd/juy/IOlm824zjctF0uECx3/vguv5VfofyUhZmq/ttF5O+Tcf/j7zezv+sRnonw8aEZgKvLuWExgjWiZUCsBJxWsF6Ens+ZTNrNfdh+WQpNjpOMp6YP9RcmfOFz6r97lQc52wnkkcw7GX7hwt09AnIis8P1ONl1HB2sw1J9PYWqyAqOdPy2eJm3SNI45NNYwPd6A9gTqoRnkpK4kXRMHpAcxh1c0RQcPBh29lXMk7duNHJj0hflO+Aq/PbksKGBXWqBdghYps54ERttNmXBU7o8GbQVSDvyobe4kKHSzTH15E9XwhHvagXAaPu+sdWPFFqg2Uy4fPFm37+LfJ+3p69LTF8zWVbxp1drkFaimVc2U24yHt6u53Bej8MifKuY2/HLpkwyFj9+K9yIliCtob8XGWRnO4p4LJN4PyTmUdR//4KTGDWeVIiJ2Mu3wZnn7THWSQZtzBRt1OG4rzH3LSWq8nqNpz++MJgLVeTrcT3u7aAcOOcNQmjwg0Vc+mdVXrdf15vJ8oW4zxdkMm/CmEjlIjvLQKBQ9uUvyfMItjPqy0R+L6LfX+tmNMzVeMLqTY4n0Pfv0xYQFnxbcg3og7Gn5roatqS/HwszURlyOQ9YqIacr3kj3Un+3tttLtLUFThg4EnNmL4LN26QuIzTL0Z/v48tEeOG+urZWiPObMwG3XgSFE+rZSye8FuFKuNzFfy+mf92kwGbQxsTmzdNLl02BjsaFOTTde9i9lVFXib2TeZTOcsCOLA3YSxOf/MWWf1u62AkEcFPxkTHcB4osH3lti9Zvrp8D8sPL8xU9ZuI/NdF5N8mIn9BRP4xVf2fmtn/4YSH7zKJuO81aMhBtASMJoAY1QwnGOHi4kMJr7tyqneoc/5TE7zoXdksWL4OgeluEYKgjwsEwie4xhW9+b2RsVx/s5+PiP5SBU31ASwbO7/LpwiLf+WgVlSCB/25DUZNxt1W2NaYis8BtbizWJh0hsCTFn9z3bc1eRA1E/k+nlLhLhw/otdm0mDfIBOCBUn03XMGpcRmNxioU06S/AnjS+Z3dUbzS2UdSnDqY8e3zPu9TLGGiIAuKwH5vvTk+rTfyYrJfurgNxArdGVrYbUbMxLM4R3XbNHQePKQnzK+XfxpGS5ezMaWQ5nXXy8xWJTZ9+8jOXqp6OubyJ/4XThXe10rkUGbdQc8nUracsjyIIpnW349Fhmv8cTsZWK//y76fd7x+GbrABadh5K8dCVpcxtmDIX57ynz1VgIymQok6R5JS9Zi9jf29z+ZrFVMJLBuWPDQYcgU0TfxtQ6ZNRLvoYG4E8tlv3aWjR+l7Uwu0xecsW2QH+S6GtrFf/Ok+uGuCcZwUcgVDzhdL8zfI76kx6ZftFtZsLFtlLXzUvG0w3u7s4Rc9CeOvEFeWpy2WTJKd/nU8b5ZEr/uVHX3zuAjBsTsBXOLgvaMQYykm9fGMj0ufLtinGObdksL/7F7fDTcPT3r/FE9vsAMtVJJ/YFZhoxHib4dGvs45u2/ztNugzUmCMo0+yfPzH2Eyy9vzK2Otul00/ik1dbCdl8wiYvGfFoOuGxg0TF/oQrVef18AxpqsQ4xoJsLWLD7qf818ufFEtseX7BwRpLxiWTTSbXpXFvbC1iZy7JJfzEeqKeZHyJjO3POtd+6zTIeD0BbpykGyG8K+a38ouVn/HE7N8gIv8nM/u/iIio6n9fRP4GETkuzNZdqGHu7GJN4Q6O4hlAuPKhoNbOnM1KwWxtmYDmnu9NAb7oAxC3hBAWC0TjbZ7HhJOTKylxoIfd4B5hN6ps+TSwBl0/kXh3ofcpBc2wa+8Hv8XFGKQ8gAawdjSbjI/vdME7VJ7/+rdccMudiuR3EWCgVuLzXt9xKsrLt1RYPDq4PAnywOCLDb8N6HPB+07zJBkTJhdgc0VGy/9i4eqvKbgsWn9v55DzfjCnEC3G3uWQ0X8luWI75+9lLMQwiOIDG+8T+hjuO4555wfmi+bp3R3aHvtDxybjNjS8Q+9PyczGE6nv38VeL7Hf/178iZkf7x4fjn69xl1teDrkpzEaJt/e9TvfxXPPMl39/oqnB3HQxTeRsT0RBuS7iOi32NakkejDhPItqBg0FsQSA204bMWTS1vJvJnI99eEv0S+D33ZfMcmnpR809ALf/y6EyDZKMOFULL64XPp5TKtyas6klab7w75qW+xHdDpXMQD57PSBcGPii8/Yd+HLJeAH3Tdzb770/pxU8aGbnx78Hxagk+V92WN65LBHRclAy7PBLbwixKLhdDD3Joaztl0PoHR/LTD8F21ydb17riXin0bz8bsu4jipxJKd2AhNccwFt2/H47ycjnkJSbXvPFhaWs1HryiZmJTzzq3PL5kPBVaOydApuRfLfv3qatYzM6FX7wL+F3E31mLd2XxEXksPG1tTfZt6r8Xkd9JvNPlMbHE3inH0PsaLwFbG2M55piPh03ffInMLZzDPl4CN73c106Oow8WuDF3/aZPNzfRptz2RcYYQJ/0+/BNHvs8nqizQNwvvjj7aTs5Prn8jDdz/uUi8n+D+l+Y11JR1b9VVf+8qv75v/SX/r/jmolkc9KYlKFgqPvj9uUnqe65yKSr+G4XwjpfHERMVJAv/RP6jbjxk2lBa8jEuAzbGRj70I1P7WQ+4nJixjkdyZjamc6Bj7KeGHTHt5OR2R2D5i9Tuu6mRiwcmBmE+0500K7wpxFsPHUEAKR7ST1d74mddO23KgfCnkd7YOL+l7mZ3o3Kc/s49kS4zTtIrtPrUokHjwUPAun8aB/EZOlm/UY2nRxVyJs2kcyoa49rNAa6Llvx2/uS/P7r/1cHJLZpLX7qdX8/DLeAa5YrFmleh8ROk+AyFm+dPhx+p1tPrJE3fP9s3OjQJGd54bn4NpRZkl4URl29/9juQ4j9V/zOk4KNzmS38LHZnTqhd3OmXI8ugBMxWVuryMxifqcYCLqJbqNuQHFl+PL4CujKTGZSjrqSxejlVQ9qB93AgqD1OeQcFNpx107Sr3qbrhtSs039FcVXYKfxHIQ5oOjcwUoyJxFhg2bqb4Yb4ze/N+e5kz9RjO20mfdSreYx8d+6FvYLdo197V8nGCpj0tRJp+hDIP/r5v3y+zlP43lh2IXoEsqwFs7uB3J/UU/Z9sFnqG+JXfbrXYs+l9xRQ/4ykjRIOC9czaibAKW1egxJ15+vWHzrzUf+faHyqx1+aWZ/ZGZ/2sz+9F/2l/0Lx0XQhcF/8y8B2AkFd1KMYDlnMMbdts86jg8JwTdsbgvwRQotbuM47uRoS84XnsnZ0L+T0cqPB8yM/jZ4WxIN7uP+/RLF3uRN4/lUVXeNyXG/soMV3w6RUGGOgfO+02XXthvOBOOEHejVO/fY8YNzhhYP7dy9EbSVsXMau+C2AS+EERllfGIkqBugC6/vrAUbo2347lhErYVtJnOjwJKYHUry+9e/QMo2xgUY9mp4bdCYjPPip8TSlGyuY6cXwY3UwQevLRyzeRvbB/5FgEos/DtdSbAkZObRjevUhLlgRgMRSe6sv17bkOF6yAdewZMgtofOP+/8vGWbxes2fVCMCOlmkN04xtANXCj5k8LkQDK2njiL5CdLrwwfNsJ0PzSvcheKbjjO+VNPlzHE17m1F+Gh8y50ZzdhK4ifFWcJ1+C/IH/QWROovSGTqs34gRNjE8OxN5Uicqt3XCBAbMHuDDF18ekWoF3AsyGTNbjZL8myIe8e9/vF/TX4DX0scktakDNcG07A/3C7opb96aVXW1+1KWjLv5VfvPyMhdn/XUT+lVD/V8xrDwuNdgRhqsucNJi4cLqRHJ+tgO64O74bp3mbtCoiIG4FWn6K+yvnesen4Rt17Zse8eG2Tf+OyeaBz3ZLiMt8kpFwb/v3KxXbVt7H7bqbYGFc2LnjHeHVNpwuvovvZGKLnhNu8sU7oXfD2Y1vzNWZI7ymDCGXLbmiQ94fE5rbhznJMpI7STIp0CW5il53fBy28SE73I6cw/ppkB6keXGGelKSP4sGiKk9h/C8Q0hTzoF2EQtnl/NHJtxu+5TUfCzq6cnYEMKP+TY/s1pBSId/5f5W/0QGTfqK0+pmMmsi451M10k8WbDF10Ti6P/gs8Z0VPZOtUQqRZFWq8074GYWchjI5fLHKZAh4xyClzPPga5f8FZbK0/nRUR02dBoG/WXykwRbWzJotvvVgj7T782lF/el2W7d7rXslGfzzGn5u/hFxV869KNhW6IPv9IKwRZ66VWN9C9mEeLnJ86KWJj2yH47nF1jZ+rktUx+jgAwk/O+Wo4a18+93sH5ddNQUcgo8vr/Vny26pPWRAeZULNBX24OZPaKBfxXcric1A0+e5BZ9lY4QM2Ebj+aQmTZJ+hsybg4SuErmcRGX4cxy981bITl3HpI8+L6I/IfCgIuK6EvWhzLrvObb5DJ1lX3kFd/4quvG/p0LAvWDrDeeffFyo/4x2zf0xE/jWq+q+SsSD7m0Tk3/8I0ySCdPwXDNEdu8MqGU95M02pAo4QcwFjvuBAnS/eZUFjN6yDc0DYYvDQvyQHEmdHnhhlQZRhG0FZ5hMst6EejWTCx/iFbuPji24akMJ3J/OG1R3sL1K0YXnqICUTHW57kAXmL0Df7Ra3JjibeC/Ckws/HAKSiUjgPBiBZ9dmTFv17nSOSct8Z2wc9zucu/ze5PoTEndJTSQOLBj/dL1TBfKm6KOkF+T9xCZdxm8z4HzP/kVkyoqHI/j3l1wekJHnyS4p29VjkWxDJvHTuPzWmS/YUE8KsiBdlbRFRqTzGbmdfdE4S0NBV2NMzCTeN/tQ8UVMdtZzq814P8tERL9dot++jQNAfve7uZVqdEB/97txmMF1iX675hH6S0/JgOOO8OTL71Ohn+dAoeOYavFTZnTSu17zvS0d2y1VxrfSfjdelrFLp0zOe9AdqjSJvWrJdrSXaQ3GnNvrZDl52Tw8YTTa71/ju2W+cPymIr+74nCdaJty6AX3002yPU+VReEhg1hmMt+B+Sbjfb9vbivzqO85p011zLXf6fq+mo4xCRl9/HDYUJZkNks34Rfn4hyPOhcdryxevxuHHYzj/BXsRcbpd1Mmm+PuC93g2+gmxiLpRgIw3JHKeu83/OLs99SffZ98L53vBopc8B5Y2EnItH7HmvuaT9vwW38i41ALsEfcEpymsscM/8SDP735Nj8D8fuXyDVfCnMD+J3CyYMDNhG2iT/f/fRFp8m0hZBR8vz0Gy0qY1HiZwJ4THktGV/TbuKI/G8aR/mP+IK6WvNJbPj+cby+28J4F6/DRVtYYw3xVuchHybjQJffWbS/vs3+Oq1L1sFbMKdMhkwmErE74bod4GMVmqtisz9088VMRtbvbmPafswDH4fGHX3198tE5Jxg/gGVH16YmdnvVfVvF5F/REZK8Q+Y2f/+Ea4HrQdZ9ZhLA5aDBo+F8W/gM+ruVQEIHJYCsmkG2/HpunHqX7EfBrlXSc/3RuY7Gp6DhOPayGT4g53CTnZvIxk7sBPuaex/6fLMWqUKNuPksc/o7JFPN5ioC6YNvl49QAe6rkAC/9o5tRE2AhrmCEZddvm6AZoHM2B3fVuF+W+Qif+eZPQPwyLMbhGRFqDwjse6E5v/oq5aH+OqRvjEkJGg7yEsgEGwjL+XxN1Y0RVEjV40QJniCuYAnTy6rqcnbirjoABZL8Kfnnq9VSC58QWbXutD0XJdcsVLHjoTEjj8A5NEFVkv6KwtSdEn8O0+htiLsRBdhhz45gcwzEHw76fNa2ORds3x0HRjwQLG9QpK9QRZsiBpq5bMbzw1MkV/vTdzkabqp4pe+eneXBz5S2DxaoW/FIb2wfPKr1moNze43lTW4UFhQtPnXDIXZ+CD0JZhrEZfBRhOmZNo6+ADETDJ1IEll10KOl28XjGPdM4jRfHTjY8uByixTAWe1NuyGxIL4f2eQCTTKmnhvObz4pTXpDD/53tO5rYgEjdzkmo2Yzy+nSVxo2Lp2ES/XZmvuk1qPFUJstOPxE2n8BvwZHfOZe4fuwWRcXCM+/OwQZv8f/dt8fSxBrpjh4GGD0Vj028Si/AX3PSyKYAf0JHsE/28G0ssZifYN5UXzEe3MQcZulp09YKt3N/WnHypjIXmtXSzvkNYi5KM47Af92uLLi7Mgpauf2grNvv3s9z+L1X+uGy3/CnfMTOzf1hE/uG3cJJTcRtyJwqT04O1TKNfMU0sbgO7HAJGxbQAd0Xe5VQnrAJfS/XFqow9txn2T6Fu6Wkd43o9ThY68Nnikl7fxrVn/WtpdZMCceGvdu0nGenvbf9+oYJy5y1GIBTrY9ZT1wxwIZDHRatktGkLtiBL7HD4Npy6vqadq6y7XhfgygqomCShsw66MA6pP834B+58IpVovTTmathcBC8M+ot22DbaEdkFm0D3FDL09QKZfifz46c0h1TirmXMbZRR4PfBfsvwurzefw98BrygLrPu/Q7deFoGCWVSBG4JTQKQQKQ4dSXE3NQ4mj/ofrTw0yHcI3fJfF9qHvzx7dtcpOn8ntCU69sl8u13kgxAL1mpzfTdc89TjKktPbGtuC7LnLx0nRT6bfDR13wa8+1aTwvmgsz8SY3IXAjJGtS4JW4UB1Y9rpJq0GYH6DU+jjwNYpzSKOtJuMha/LiMsk52G/MZPisD8bMMWb1UfIMvQuMegc5E/vtcaXwbSW7IgU8ipv0nXSjGT9YNHReOfjFsdjx18hMAQ8b5NFrnd6KGPfg8gSclqCsfD6cPuoLUesnh11HGC8ZPpl982aIJCbP+TsfT0d8vufw9QlNfeMHC3saAuh36aYjfL6GFT1hKyBzzwmU0WTqH+W46v9j2fcnkvsxvrIUoshaH4uOg1xqDeUz+usk0FId+UczG0yf0kTJjVRp7jeP440POZnPRDzKhbbsPUJXXdPw2n/TG0fRgg44brtN/v/zU06lJjw/O6mXxJNDE0g2b8W95oliEfxsCewyILYR0A+UlJJMzdV25LieguS2AHt2m42m1gZ500fWdGj/i9n+V8tXle1h+ysLsI4WPhFeR6Zw1w+CjXj9aNGONZpN1EBYEVMSNRRp4bwyCDqsi80OFwCmcfY2n+EjZHVX0Z/L1ukL/wlkGrCwn1EVCvEZ8vR0nKZKuGetD3BQw53XgW2gf+GA8EwE9eTvqtaO1YcNj8KsUTX9Wpcv4Nvop3UNnStcV6c+E3RM10axTIVgf1HiPCQKUL27SVjccF5hCrbid0WD5JrF9wufASGiXjC/snwcK/M4OytTJyPO+0zcvRDyIw7yOu/ezznoq33zCeW9ZZkwQsQ/BC/XK/sSWXq2Dwa0mqiLXfA9KRQS3PrGMku2jfWqNNsy+6duqf2xXi84tViB7PCoAI/32bfF6mahvC/RyXfMJ1TTeb/OWr999VxjY61pPEFSq308xAuZB+JQp26WLn1nckQ96KmOrlyfN33T+1pW0pm2wunyuVjny7+Wc7fJDxXUeFrOAzXTdaZ90zb9fJSaiJuZbL3XEIk8iUaY1XMnLhjxuVzGfp169Lr6gkZkExliNvtjcvhgylnm1nmi5flyUl4sVWzvmBT9JPpCmTG5Wc2Ed88qfbkRf67wKXzD72/kcFfcdOEG9q3MrpwsdMmpsx5NvEketx7SYW0L9KaO/Szk+fDWEMP8QctiNzSdk0z7Fv32lccPBtxjGzTn0R7LGzxd860nX6pt9t/W02GxtT8fHN85nzunXPF3VXjKfKA9GQ69rTmF//AbKytmGoa33StcYu7P2myA2aYWtmy0Zna+6bkTErti6KHPxhHknHmk/FjG6RPZvGLJePc6JrD6IpLg3bA7mNsyBoRvLuv+2fovIulFnMEfmb4zNsfiVJVPYuvPFG7U4F2Vso0ywv5VfvHzawmwUGmV+TlqqYOAAWxKXrn2D+0isI589GVMCKDJt8M7SZaFumt+mpfv+Mmy7KOsWJigHquMO9kG5G4NfsrCct2Kg7lxXk9AJ106D6XHNq6TTsk2OnK4i3J1tb3DRYNo1Gskg0PdYHMzrvMjGQNHaBfW1LIiAb9JN09+0UAG4dt5DEtfpSk8ydzcRUHEd3akbTe3LcIwE3/oqHj+UEYxofeFJpk8A5Wmj459V0kpZVmKi8BcXRfCv9/v+W5fgnfDqMNYYUf6+0ngaoJISLlhcrHij8FuibpvYFD+T0djqm/cPH7cHfDbeNN7eN5Ix/qnISuDXNr6kAbxTQHrja3b5QSOy1k9o07TNLCXJ1yLXzTMtQSM//URRwi/6/HcYMoFYWOF44ljqIrJsjMaedGIi8P3I9EyNZFzbutN4qsQTtsFH80ehv9FT31iQjd9DTbZwYYshb/dGs3eZ4oPECrHKBl+dSjOHS/MPprAr3S98mzKpQpvrS1GtsVsJhEq+SmX5axNNX6eIRSXQ8se4ma8/9YaFC8usY/ZzHPDfNg+5lxm30A4VZImHAVNO3F4aHUKZVOJGic0xy/Ng1dm2XRZUnUB72JrD0y6VGBOTNP9eKvkrIF+xvJM8fuHyaQuz2NonIsu5GlhOmLYkJxgErCx88lY42KKhPF5N+hi4Cw8l6LBrp3CCZ1zvny1vQt4Ryu76DocCXyfzsbgDFumf1nFg3cnU/LY6jKtQvcAedHSU45MKmNDbsqT3SnRDYjMuSe1K8GTqvF0Ug035exRY+nGf+K87MiwDyqLQD5y7FIza9gOv7XZLhKG29aQly9Thoj4Smyd6JX3sxmUk0pb7hMFUK3yiA3OrzHPc90ltaTx/ZJ6FrbhvbojhtgRs7xZk1yVxkAG+u6Sythgmw4FyshdUnJLtuH37U6AYi8U/JTnpSYyrYSoC24pcMMFdjmb+ZvQZu+KdqSXH2vqq6XdQIlvi2IvD5tdw0bOLOfGOGduoy7SbHzjPOuODO1Ld0197ZTSe24m2isS2zsbnxJbUoAU2uuv3DKYserrBEnHS1tNV52Ga9Nq9ZpD9jNL1vLU5zfdDEhO3ZNz8nS88oXGF51dE3D+BPK4/l0HWARdCOo2nobO8dioGvmkcUy808cWnyEkm/wA72yHb+caFpHb/jQsjk+IPxm+L/i/dTJOmJ8j4TnHohnSV+k+LJ/bzyC/ZNOsG6xeN7Rcs6RMZf+Dla21lFJE1yzVV4zHzO1lBc/pXFqJB0bXnOr3weeSzRFZga9BY+sdioS66pOmGL3aplZm7v1GHbdocwPu3HYZGJhEInKeEHgW5k/+zCttsk+iHyZVM4UyXt8n69c7ZJHVgkIdExXOHGC/a9sh9ojVc24ftYsSrzrfD7ezPwO5QDqCvgNuaAY/JwU5ifFCns54TwEZmkRz0SAdFN0LXNzJ3MibdKCpJYH6t4L7oGdDXOk5l3NBLreuKuF5PtD9Y4E5029ZOAhE/kVFU8jZG/JeMBuDxX+HJP9FTw8EFSCvGJes3DtoQTXfDY1o22+cWL9BNPBHTmRSvrVSKk8HBEx3Qnwps4XI7wkM/lqp4cbRzwQUG5k7oykA3BrghLyWlInVeJftU+oV6t2iI2OVw/k6MywF25e4wlW6OhIzkeTb+r5PTdD19juSbcdMWXxkDMrc+6qXztAh6H9DtYtZj8WSSF1OuGNyeh/PMZGwZvgZfNZHXPDFywDYdhHfRxPn4O7q+kEgBZekC38Ec81kD9+VjP2NV3i1ik68u3oAbNg200we+r+VeYgutj4v/bubUGpMNHy5s9zAGa+ti5RsyYc57ER2m7epp+l5kRFwlXLcbnWOATyCvivNlyx+EkPflU7cyqjvwdaU6utkex9LOgssdy6CzrinOpQ+TonfkgBQLC8XLxBf5NEBAi/uXZSRiCNploHf15vKdjPxbob6TMfVhQ4evaQdD8FvddLBygP2kkoKuSF5Q3SzKOvHbhZIs04jF1wVjYQBv9JfvpIWt0/VJh6bc3j41Xw5cuFhybQyeABz92NRDPg8yLD/LwkUXzWTru/nXyBG/L8JlObo6w5Z5Dpmlze0j0uOmbTkigi+Xi0h+siZCW7gs4aIuIrND5E4X7xaV/C4Vt4VzoaQxFl8TFt9Zmk/NQj6dh4SozHdDriq3oj4gLmC3GjE9IsS3htCosW8i8HQP6oIya7alRCvLhNvEhowrM6tr2DVQ9d2RdZz46hB0NPmHzinlCYK+Fw/w6cw5zwXNgndbqQI9w6abuWiX6ONM8o1A/CurneslrjUy922SSroN6wuBSVh9TNLiZgC4WSEPNThJkJybUR3lwqdNg0U+bbqTMeq6kvEUT4Iv0EZchYWVw8IcM5F04EvQmf/SUyDNfJLTUcrpGJfAvU8O8AKexZeLJD1yHHuBfMnOCjCU2J6oNWZ0Cy+qs4zMh+NPNE89tTJubP2km+j3b+UXL5/7jlnxK8viio1PLxuPzmEPLRYD2AhhiOt1dg6O38UjybxOOXYqm/7ZutDCljpPxAacGx/LuKHflg4GcXe/3+Df6maD8oTeU75v4X2EJyYP7/DFQOhw+FfkqHMG9eQAAxcmWK283NbVT20RSDfj1gTUBMvBCq9v5lD0b6dbSMY8N0KUwKFEga9zAiAgo0E99UUrHz8KOsQ78A2Zo44vtDe4RUar78VcSeJer8jnZ0To6uDneF2k59lpT66U6zL77e9+eSI2Dx0wmYeiXDQOm8mS6pqqgRzvrDR15+tduq6V6KLNdrb5jj9SP/Chi08Wukl1L2SjVmyUnDLJXRY+QXpthTPJdJLPQRvluSYwJ2nupxAz1Z6FnH/m06V0o4xlEChuQ9HusdpgS6ycx6tKQrAW2xO343oYb+9v9Gd2iN8jdjrW9XNDa8ENIiGG+27Z6A70Gz6U44viWPpJkpZvEoB9bu2G4lEZE/SLCNP5UrTDLg5gv6J/UybwhyyjEk7w7figzYF/aOtKerW+f3w9P03f6IL5HnTTbi39SuWYGP7hlE8+/EOkOAI4KhfrEQBTcppdYLnzDrdzyhfu+VG+nHA3pXGIRvUCWvpHsKdg3QTIx4H8I7Bv9O8ON1AO/StPHu4Sl47vqdzR6vDvJjo7xSciNXzxff4ONt5BQ16oNwFzbuwZ7y6/ULCDjjnhU5G6gJFDnfhg8EI7wrvt3liSgMOc4P337W/Wjd9Zpw6kZBBzPaKDcrl+S/+SzAaw/r2k1dQefQzbWrDusP6err9IHuOTxtYWbDxiFSDsdRhYEUlZL+omYD4YATmys+FcshSP2xPLYgzqTggXIkrf6nNDAxw8uCBEa+cDGcTcTuWJjEew2MIoriul98vw8yxGpyBSvIEc0Cx3IZ6UzrjZH5tNB4aoSjoSPWQkOZJ9L32lIXdbanyQO41l/7peUJz/SjIJf5PtR93iaSTfoDLRtJvGUEgDETX7xbSbYdrcS0APZeKzbgBEJCXAaXqprA+y+xMbkfDHKB8vlPCI+FGH4/El5xJuJ9E/QVsYesEcKF6XmCQsPrg99Ya0XjRmFF84P0g+1Wthc8BHJE6OFNEcB2D8Fp8mwEK7z3tsSjaHsGiPtt4zc1inlfXKtKuM7RgEH7AT3GbLT+t46+CE5T6Uvk/YOvaHGKpZxqobqU/ev3D57R2zn1HAWY2yHGPZUgiObjk0bUnFY+5UB7YA7D6A+aIDRAlT3G6SwuSkS5DXLAcSx/61uFXGXXsn8wmW23D7ACd6mCsVuswDZT7BMN8HMh/7d5DjlyyRNHQ8aTzTPQVIwjrYpHcTvh+xeDuuLFgxyZ+RMKlbIna6IT4pADWgqY58RNYxwd6mVMdCByKkOSVSx/oN2xbQY+LT1e9sHW17d0oj/R3+xjItxH0wtzMtjWjEARaD/JAR+Srx2csUGDtdfKSULXWTQYxDExcwqeNtgupzRGNr47Abh3Xammlz4p3YNgpItqNLfJVWplGHBFob2LTAzHLwFi3WO98Rz4tnOkwieHcy0l+SqYRqluU05y6Sk/Sc7sSTjKo5Fju9rRxpApNfZJ+zaWv7kMZLim5aXRlUvO7Lo6iTTAIfQZ/ZeDwZQzYtbq6zv05xXcJt9DdEvdrkANu4toP1fybldEHUTcmHsKAescOhR01xzURynX0sPxlCWF2nPHZ63frmbgy47yxTOk1Sso3i76vOPyO98/2j0M1uTFgXWnWT/Aby/Krlt4XZj5fTgR68pdDvDvt/i2PE363TbHCLs1kflfbrKMcxGW26cewfXzgFPcZF3ZwcZcenJdjTOMloBJsusuxWx7Pl28m8gdnK+JDHTy+NDtNdVAzEIjkwi+SXpZkUtzW0jOAj+DPsJfnO7HTorR47vT3VJQZfuJT4yoq3Bu3tlgmWUevvML8T7CzMw7fbJFAPVnjJ69y2hYUFz2wvSW5KVCSPyWYM4smA9jD8vlmGzbhVVwb6wQR3jFD8/EhJyJr+hFGoSDEAr8NCK5IvelJWcGYpCf5GdxM6GvM4uIwGutNchyd7vhXOwdpY5ePQ+Koae3CmMN15TXXZWLIt0Fv0wT+ujDJXVfA7WV0hqQYYJILtXHEb0/z+1vidn/LsbT1rxoH1kvWUcPJAnxP4bpPUd93JfFOOMMl5T5lM+l0Pyu+kZ13ABy2qXsinxnteSUkH3RiOz6LjVPf1heOnfuIHrnH7eMhIvreNGSwH3BTBeLfo+uFt07aQ77V0gvMVZWQXtdMrxrEOp8Q31w3rwvFIDoW/qBtjvtgON+PKdmCtMvuiL+umiXMgx5csJr89MfvRkow76hZWEW2GTiPPCqNHB3kr46IljOscDbeWnPhKwu0CV2oznDgKIJae1jEuiHVUmlKdcZOTPMB+BJd10dKSCtvKTDjbAxg6OZhfJ4M2194td/iuLO6TZifBYBx9lOq4dTGJoKAnkzg5a0tL1jjEKVtEOAWVm+6VYATtpzrSYr6elARt2/CJeb9oICwHzMSXaPH7F0rtGDDjfQxdeCVwhZIXgrmAAkeFo2gY9JJu+COoFm368mRDSGDXjc2gDm/6bOaFuQZAZnCGqy1gXzMB+pFJRcZXnhaBQZQnJfPdrSnU+B6TSRz7Xp6yafxcJygiXI3inqjNL5fFtbKQNk7qcn9ct/4eDSZkQ7PLMdquv2SjwXr+ynNDI56hTeHciLFVTSdEppuRwDd+u0/BobP6m+eziKwtW9gf1oWuTwyseUXj2ekChxFlNIH3OnW2re+zxVxB2sVBZz+S5u8BVvPlXICvQmdf3lWT8RHmqTffQtjJ7NOkGYbkQ9P4g4wDd+kmaDe6yTfyGFZT//P2b83b96YcvFgI3cLg7vrHMcJ1ZYmxAF9NfOPUba9fqRtr26BK0/eq1+g76o5wU/8cx7elg9sImiBD4PKclHWqqONynHPeyby1kV/Xv6QbBd2QX/mt/LLl847LFwmHmupwapeKpC+wY0wd1WWtZpK3bKXH3pI8ZtnKiD8CNrtXvJOV1lUzCCCZvNgDSU3GiWHAqpPRHWebUAWitFs6mvlbElXhOowBx5zUP+/7Jngx3eTwZA1LvgDwJ7pMG50cjQHD/mqFx+zQ11JSZL0pbH847l2kRj1JMe19QR1LHj/LzStIoBhQKWOPMuJfv06BO81TXTi4DUV5XpDOsQ88743rtvgq88X+YWAN+W0sjOJ251J88G18RsipqKsXCCBiaTviqOPpZMuHaOaj9FdEFLdUqsnLZWbcgA+u8rFbk9gx/w1G6XXV7MzjKRn0QSVk1diS50/RAH7+LU8gG31gJ8v4i6wxDRlYJiDm2yslJzYBwu914VHmpJrQgeU+jLnRPDUJPitYRR+Yb5oLIDPrJilC+jmG8xhg09wgvoOP0dxYwOXpOfx+gWlwW/F9Lhr6DeyPZvzd0/OIO9h/WfXij1WWc4y21flxA2WSwdzCROwbXKPpZpZ144sY7B/WWUYcNrPMxwTyHCPWzfiiPxaT+BC207VvCza2FE6iydaBblnMvzJs6v/EjQN2XuN3ygd9Pnp/LpFkg+jraNtj0SvypbnAWya3MgrELp2wm1MZYwBcj69sv8zHY6ZAPcbkJSlmCsHiqYwuh30DWmlSfMHykbD0Bcsnb2WkUd7cMeSqESwHER4bXhw84WMAn/kyLeJV+AIAy7wpHd1SDu1F5nfo6L6/zKPDPS1AymXtLj6cWxP3S81DTgw4oYAg1wXbhCu9DTIbppsAfCwhyN0+aeREi8miOQNs8NGGpB5sadcxCAzOt5vXHZ+UFAFumBvS2s0jPfAVSTco0hMscXjcmrWUFAki8Rpti9OSDxWcEU1M0iEiLCUHWBVwQdg+nq5dMPOzi8y0Vhb3gVKegnROhOvjX9Jn6GX+9nGCo/QRPvw++I04xbGV08XL29vyyb46r2XZsZ7fp6o2seZF3maf5osBT3TQgZVPH14yL+Yp0UP6KgBb27xe5lWXoMui183BBcYy0/hCSeRPbdzMjQKmtzO5JGOfhG59DNaNZGp8SHZsVhrG/RwYSx92XNAgBtZV5lp34jcyO63iX9cUyXyYry6+STdKuimn/GGf3BrWfEXcVJ+nxhoKr5KfhLutXyJxOqsvnNDWFerYLpLsLEwc5C91nCeoC5F1uKxCWzP/lm42MgrptbnZhnySDrO7SB+vjsW3SpVRp7av5etNZS12v2r5Ugnhx8vnbWXU4YpzUHBPMbybTevBx8+LgJWFT93KqMtRJgdKrjxV1752E2k/9rx1som/JJk9FMXTugYnShMQEtE3+G5xuTMK/WUZiH6HWxpZth3/htwT3CTHrl83/H7RstHf4VLf10bHbWK/keGFeXvntHa2x0bU8eA+Ae6rNu9pYYfYzrSO9TaBbegnk9Qepq1Lwxf7Z2M+i0j9dIfWv3Zsw+xx89d/G8C3fbA9X28X+i0yFniSE410KqMsePfdHy7kt9Pi06gufLqiZLzUR/fbkEwgz24cdo6ie78pMiDHnLjqp7pB3WF1JVY52XIZnQ/IcZqTVAxlQpkxDm5uYmabnfEUbyK8E6MOfoMtpXyYu+ujy7ibD51PtUZFB91xqbZBMu7onPwPTiHUTcxlghc4/EM1wXP/0MdWHcu68Y28AF4BFhtLyCFd72zIrxdfGGMMnzDofIBZ7UeqEbzCb388N+eDn1Sa+UPdcS8p9ld0g/JQPfg0pb0hCfphv+YLvbJ9sTkREd0k0vY2jsUMg3oo/Xe/f5Hvktr/r1Z+e8fsB0u34MnOVgNm+Y1Dtk1NAzdNMUmWq7IhRXyPMlIdZFVxhzZq2sDuSqsbLhtaHBcf4e9wGxkeydbhfrA/b+F+htM48eQIx82sfzbXiatUx2oSoxvThrfBXzblJO6TJITw0xBu7NKwfVbuFpv4XooI9Yv5HFxEoe12czNWoWDgn5+GSOp8t3hMeQRHkOjfTM2AboKlOZJgKeiO33aQUcdddYdLcshqC1xfvB388Kmo5IHrnp6hkua1oS9Nes0LSIfPMqXEVDdzJv1onFCab5A2K/wTTDaBb9t/FgC/+UVzA6RqaZHM6T23jif9VlkLyCMP7XS1L9rRIz0ume/5tv6K/eS8luhRyH8ofpWD6jw+IjD2AlPu5Ie8Y5hFo48zF99gKxw+MRLxb7UlyrQIT9sEka9YWvhhoq8isR0wZEy4+bf5ZygMZGA+IvMJtWS+6H/5Bk1XkG/qnxZfnmIGtLU3eqhenn5JbiOtV90gHW67qA7/+KnVTqbgy/KzXpv2tEgVHz+nOX9fSxDe+vhbqUVV/0ER+dfO6r9YRP5pM/urP0rvU7cyjiQfg4g2xqTxExthuZODddTziUZ8tH6OglL5NpdF8qRkAy/9EwiWjUwtAxRyExji94Evkmn5nPrrTmIDW/q/47G7RsVj00d3R5108WVKN54UfHYLiiddS2Nh+Tq+t6DQfjKJcnGXi0Pgh3whjyfhaoNfYH2eUF0Br9jfriNPbJ9tiGTG7YrtkfYoM9ZNYPEDuIdPFkSgbBMqhDWJb3MxX5DXy4V1s7EtZaMbXueM96sW0MfnqtbfCvXQB/ZJ13esZLXHE57ryjQd1kTs2+qIyow3acG2+FjXL4w/rOeL6mVBpEmfuT/S0kL7jnYuZQIx3yb5auvayHyIayeZ2D+wL0ptmsda6O9GZhHykSe/IjdtXWGf07T7OmX3tIK77ddCDZob+WkVHiyiEyDym+yQ8icnUgcAX8EfJ9pZ//EEHBcuzuqCaqubNZ6++FqwMAdM6rbBRvxtna6BK+vjDdujUpuu/ub52fPp9JpgnRbL2/HRjGsiVTfw/hnzOc3PVL/hW+IE+eS8KLNtjvLP92Jm/17/rap/r4j8f36E3ud+x4z8jMKsnw+9CTZv1eCJbVSr2zqAFvqwLqBs6W4CU1ea/hk+Ajzx7QLQ/LuLGx+Skdk0emWZtu0o2AMhDX+wTp50EsEewn9KYdk6R8sFnb00iQDS2uE2MHx4zZ3eyuJ8FyxPtsynQTKD7uAW5kdz6SgL/Ub4zge0+Cka97jdgQYFVwG302Ek6M1qmWk2MolIvssaq2/HWYOfkpeWli04AQ+qmZZqIvBjxWmRXCE1J5/K72mB4yh2WHG9+JNJwwlQXprMcq7xtyUH4C2ZnQfgJrmID/F613cj32KjWMeYyNujGtwtn67s5r+KpCc7vCC9ma9dPS5S/d0QkPpzE4u3sE09LYKw3cgPdAId2oq/OcG3fiOz6vEaxSZbv+fHvq57CtTyv9Hr7hrvpmj9LMmRFp+zvvXRHX9tbHhnv40uEDfRaeqFH/NFftbDVr77GMJ2ZgT7pctHEt+fWHS8tPw3ishf/yN0PndhJiJuSStPmJljLPHRMSihWXMNLkEWWsbLTOSCLYaTvEnGfRSMQAyjOoOmJKKD7Zztrv5OJDrxIZFOuNi/bgjaRYcCiU3/HnXjqNdfp6R4S8GyyLJz8qibFnG2od45f9wyzXTL+Kj0d4TnGBjjOo7kevDZBM/2XUWkxfJP2nb1fPwl7daGyP5S0GV7LPLDQsbgKHriU+TF/miVGemk9QFvYyEZy1ZGdFAqy+BmcLVUJ7opiJv43fd1Z7lfDCb0+dJ9kI8f6c2Fn1PQ54uIXFpthQci3uua+O6gLvi4spjwIo1v+iVfxklMkQEGTnU8JTCod32b9rsIWzqJsZORBA7kvH0NBWdY6F8zn6PT8J21NOegzp/+2M4HEfH3wjv73yb4d34C+fL85vgEJK353Yrd+QkuZHI7H1N8AfpUFLKROd4jU5KZO9PIFe1Xj7t72jj8vgbjRP7SKi/1Z/tBY+crIkW3zRxr/SLXUWamg7AdH5GhG831ZGh67p9Kxd3FORV4B+3KbaIks1Y9pXfMSK98aiXSSbqJMVm+fo31uI7vw6oA7AWwYbinCfLJxbKf+qTy14rI/9PM/okfIfK5C7OUJYgsy0Dnp7mOqHABSZWPM1LMKwdwiBS+vsWSzTCJwUng/BkTqtix1iC1ce6nBVoJDE1hH3wMhAR8khHfpVDG7eRRatLS1Mt4oNWWT/AX7APedlscgLhto49yR3ZH138z7I7uoa4i958kuLOxnd3wAujwBO3WTlhv3UeWdzLiUfSYSIvU7SSAGzLf6RV9zUbGsigr8oKM7k9YNy2+0tZFIz1beW+ruGYl2I+UoM8GAeVazNRh8cmZ37hzEijMtdqHLwY4d2AoA9tk6vNqT3ZHfNf4r3o64OKAy3xYH2VrFLXXp4INryQj1jUn6zs6IumY7xZlM9dFJN9UkkY3Hb7/6fzGnd9xvpvfXb2l28F0sHcykS7Slrsdjkh/Ay0aJc9f9ldI09s2McNOsaTzg4d68NzU07Y6XtAd+tP2784ONmPw0nwtcketC7xiN9147Mba68xn07Z8A9BqaLeL0I4vyJz55hiCfF4+Nb3dY6IC7FcuP7Yw+5Oq+ueh/kdm9kdeUdU/JyJ/qsH7s2b2D83f/z4R+e/9kBTy2QszD5Yx2ut3uVumIvVo4IWVfrdG2uA2RpYCoeX6ydG3ZdO/FvdhsGGK+9uKb8jZLFAZt3UcjHsIJCeZjwHoDR6/SPGFutc3ztBBA5AWuMeyC9QHkVi+E2zJ42zT2MmlG/C7mwOdnciyoyKXgzVtO/rtmDRt4x6MlfbuvlBXTGR9K63wnTXe3rah50fcp2Pat4ndSWYLekhrrXcwoAJsynId1wBHW9z1Lhtsb/xo4XfL5rV8WAfpxyUpuLr07nhRX06tPZ2wTNKJW/b7Ar80xhyL6Nh65xtPpBT4Vp+6/ODkb2u8QjebR/Roo8n+BfhMRtsYiXIQTC1u791sZYNeMf3OV7HPqX2o15PpPijYPffZ7QL4IZ1jCFbJTxvR/3q7SHl4Hf21JWcXJhpyVVfeN139ZVxcLHa6x/6kA9lgOqI/Dd0oyYjt18Jp391v+rOtY/+gT+yPEZdvMEdsYpkbvqmBZEDY6F8DG6cwdnWay0/0OuqWZAzcHR+XSxdukRnafsjvf/3yF83sT+8azezPnJBV9Xci8u8Wkb/mRwX5AlsZR1kOdnrYcCKjPoxOF6CJGD1Gq8flS1h0wnWOpsshzLblrJFvlVUEaCW+Qnw0gZSgf/TqGyU1fKFLrcy3fA64ZeGEdZZ1A6tN+0mPgm0UZFp2J72dipGDpno6beuGD28xPAZQ5pt+nEuYvcntaUlJ73Ssu16St21YHhPcjtiYdMkWcJ864qIei1xAP7U14xx0aQ7UgOlBZCjJt5PgGJTth2STrBuWY/B1PqAIJThxmT3oNSf7udNwRdFJiulbZZ7ZpcGwUFo+pEP2sNOYx8Ju1RWCs7gK1aaQlnaZf6x434EQHJO9EjQLmGWTgAtOxX2qYXbpMYQmrdtOiTfifV64S+Qe1xd7ZcukzngjInZpDGvCfRSrcvyJhAn9k/9wWsgH528rYx6Sx/5YVv8SAGePKBPThg5Uva72IhP9jeFl3wZdAFarW+ivuu3TLCPyvPGLTAJzAhyG9O7tmgpF5uxzZtvEDd9mGbboEZTj914YtyhKQEbq444vonodfUnqj/cP/CDHn+S7OaYg3xfgbWBDfs0y8NH6AnTlRq+p3PUPcWd8QRuMui5dhYwK2Dr+85q+2t+VHfD+7izJBHzERF6acTGOjZuH7ovnQEAfvnSxe5BfsPwZEfk/mtlf+FFCX2YrY/wXnN8IKMuiedvObitjVDjAgPPLfCXBKvKVbI/JEZNTddhuK6Nz+0W3MkKXWeYdrUR3Apd1Y+ewutJdP/B9S8Y7lj/BafCc7gL9kU/p0Cr8XS9rfj/uQjfIT3HgN+u8PY4XbeOBDQVttnO255PsB9jtMcBY4BQpYTkmTvSH9/4j7MmeE1+tcgBc5qsVP/2uQTDmn4mUD0onWFiUxWRu5HcR0tMySbiXyPi4KMqO/uWjm/k7nfqpikAfb/P6x2JDlwr/RMuJjenkRR6bSSv4wBbJ4btJ8Y2ug1uqO98OdnU8yKetgfQhauD5cotJupn8CBaLisxtSKAb0bwlUTc+Tpp5xgCFb6Mr+HlcnLGuCPc4Lzs55YEv381Xaa5RW3r3zok/pBWgHW1akSVbbxZwwnXAfUn2G0mHG9zSF8QNIz/zFZHtibPtggblYj1De9EF1eXbnk+3WHJ/FqV5B6z0b9MHjnVlF8ZuXlzUZzqVscxB2nq+YPOCrdXzRb8RVxeuQF2dzyZGfrWiIp/9jtnfJD9hG6PIJy/Mtt97aWGzb6jbUqStl+QTcXeOF37stjJ29cL70L2T/RwXPx1wI/9O5lKaoPOov+zAD/LclaOMTo879RMchInc74//aNFj9T6ZsPzzqOIDwG3OcEt8XX73RMdUprM3thur7NPxzICf2GkXgMtXfVI70zqKn5KKvEDZ0hUIdNje8F/XDHTjuMvQOchfknGTF9RxJbY6aoVV5Bt1XpwZBGaA7WR6qwCT8jQMhMuCRr335Zl0eaTX4qL/j/SjaRtGwLgpKUQ5QndZKPOMIW2xBL7RVnHbG3kbe5ZEKwN3MYWTVd7yxIktbqH1/VBtDKQhaFd/KgW3jQOd32CknT0+9G0d2lM+nkDv+suJYtfnNOLkG48+ZFPnbZlpV9AOFxY7LS7Uk+w3fBEWaT/KccgeA3fHB21ZMq5gXamd5jLHGcRVaep3fJmmNO1JV7CLQUHPSrism1bG2aO0KwDopDGhYIz937V/tfKJCzMz+4/8LFqftjDzd8Yw5Id3mHdybXpkP/Uq9merzOuIK/vtIYybggtXJ9COrzRjz4uHiYO40d/izUTKjL02zbtAw3xPMna4fmmDW7Z0NXy7AGIiSRedrAn3rn9e7gI0wXNekPq369uT8sHA/xTWTaWcwsgDtAsajX4LKc31hOusujFgvhiccE5JTMFR10wbtwyecX2rhsZvnYzxjmHcKSaZRLIcy15tNS4uogp0xWZ9UqObQkOPsxXeH4v3v3AChxCT9iUgv63++ZYUHdc1dWD1VyJYDlz10xKBVvTHXG/Tt0mti8h6Uqbe9xWUVej9uHcLJghmsdWP7a5sMQxY/2CtDeNZhN1tD/1dtJ8icGD7evRLgR/whS2MvLVIBD59AjFjPIHDcZwf1XVEjE+pfzLjzZRR0I6AL/nBZaE+TXX5XM18Eg1AbP2+Qv9cNxxPgW/xOeS7vQ8lJnZzEkqKIciHcTZ+MdEC2OTuw26qP0NaxS8i3ybmtP714PeL+CefSjg0pEXml23ZZtXBR6V9fF62xs3NAW0vZLoGLBJm08GzXO/6l2xb6zmwOJ580zC2JyItlANxBWQE2ka4bM+uGyHY3VbjF5LQKlO84+VbClXCj78ky5hwZeCueTwmWrJXss3VroA7lQhtAxeMZ2dEX6FMO/3jUD5tYcZHjYvIsBj44riapAAbhtN4T+M4nWgFgWgrvMNZz6OPIWFg3OSATdKLmu6Ml2PxhGn+BJlyoAcalid3kT/6R9cpwCbn3fApfL0/TeCKhIL5dmOIjgkCaifrSlQOMnZOgaPC6V0rkOk162W7wQPctn4qHWyKgmfYnYw4Hk5LiW7KMQk2WFJU797F2o2X0+M7polNU8fApwSHw9zRGnK9Zv+gU3xi3MaO4jUE5IfbHlHmtL9n7udPfGW9G+PGe5no7Fg6lCMmP/ylrWx45+KlmU+MoT9RY6dwYXh2eE19FZnvh81Fl79LpvMlEdXXrC/yF2xlVBn+dXnjnxABNVNL9g4fjVYReFdrCJkWLc12xKwiwBX2R5r/ppixfHe5oSYCYwi4TnwqMuaS0mQBRYef1JlUida5v/MFIjneTD7xWiD2h2OVMi7xgf5p0Y0UX5FUyXMw3m1J6ukXZbAVboy9pPegyn0BJ8S+zvtrFdaADx+HXgIo8m3aio/V6o+DLJvXrh+2uhALR+DDvhthy5xy08MthhBvqFoXJSKxBdawjwCf+gcCqAIu9sFl1vv+lXeBMVZt+ud2g7CBCzYYKkQZRep7hy6zNjLzZ1w2MoYedfFJ9bDB2WmVEPKJjIvPa8YmeHLezSmZ8VRl+lPNtBwbTiv+CV7/t/KgfOpWxrEAYQ+HAAVj/SQLwbteo67HQyvQedWyooCBXOxYi6NtpE2bq+hO+7HcLQBu+D7mQwgn3Lv+BgHdBNxNeXeyt0nECfaUuDPzd46EP7V1dbz+Du5TO3jKf4NbwFkXRj+7xbDS36Ytgv1JP8xUc2OHi4G+o4ck/GXp7cOf4ooUbHumMvwkAnlFhgTya02CRKzIfKlIuvXHOg3YOnMUgyrRZegww/hPHFlBerGU8NX2dwps5wP94WIyc5Z6fD62sU8FuslfxV9dCcuGZ0craIRvo0kMtDp/ZgjP81+pf+xDsQBu72MnwG4eMm4rq/iAjLqSzRLtch1p3fkYELnMjQ4X5UfgTkbWwWbBxXXeGtfCPvEbzFdI7y5zylsy7la3nc9BHmM6x2/WzV2qVUxqUy82iH3t8Lh/WOcFNI0ttiVb2NknwPI7nG7eJUfU/I/5JhumedzaOsiY+2SSbtZQO21SJxlhpnQyJiEnH5jL2RUp9NVAPomFaHKBN4eNfXr5Y7Jy/OStjFAXGSGbt4d4uXEO1U/Oq3jrh6q9YJKN3Q2WJ8oBdy8jbg85wHJnqA+nctu/A5Inqu2CbMebrtvm+iPYm362fdrgWAfzpLwD+9HyIzx+pC9N8GzLIel4tpgiNqfAuS15QbZd6LNMu98hR7PgOUmREomN4trFPC/IkG+3qFvwVVdGcOCLVCQO4gC+uJUtpgfAroQI6xYx3esL7kVtHyg+VrzYKXB0wiLCKr6nZZBQLH0Ght9hjkQE34lyp4e4lm4Udkl0tMwtP+F8VBPfflG4xkGQFsW5mmgtNkmumdXzNslogw/TFt/u84pkW/ZGR+G/6XPaPhQ+1J+OT4frhXfI3MmIJtXgPoqZD2PVlu8D8ruGPmfa8Dr9tnoY1Z1MW1jSW3o/+IHvTnw043YHWO9wu75y/HFf7LzSvCQ+T/nW+dzMKbiudMOtvB/X+Iz11xL/duEbfC3B8YI/fXD6xEcb2K9cvryAz8oX2Mo4pn0Oh2BJ5YuM1TWNKxrNa21HAVNWLI1TH8nB7taFx+KwbriNo6/923dJ5ZBsylnGrci96p7j/kgQfAp7wDWqb3GpfGgN9BTpRqc8/hgo3pWJcTm5aYvDUm67W1wlGW9gExDKqHjZ4r/KNpRwK+eUBJuuJNvRNgGsnFhqIoanCyIs06Bi3QwOulyXuaUQ60SQMxZtYNMiC4QMdzjfBeP+Ep/UNXenuD1TRcxMLlrU1UXDSCbGLkqTbr30UwtufbhU4EteUjra3fZ3R3GBBTZxoIwBmuBtAgIA6TQW5NM7Ed4OF9suWxkrWyTdnWIXc6NTFfdv219NP2P+NnS3Mp5wD/51C3uIh97+2KdiTHFcijUtLSVcWXyPPtUyLCo7+bIbmd8MfVkmk7oI2LMqbbfTHaZTik3deO4+hL3ju7EbbjPKUaLOtqN57HEeuC28xfcAGwmdisQ7wyKSXtqb+HwwVn6Chf4KBjPiAsQE8m3t51lQDpQf+VwCvjj1/suW394x+wmlbGU0GVuA3NhlfQA19vjTQioTXHSHESrwATigEXcROU6HwYuk90qYrdO2hWcgR3bY690BdkitA7vtn2wLd3dHKzkobyIntJW5o3sSZBPYnuBiAGvnHrbx1sVT6bbrPe3fIVKWAEOwp5exS+HA8BixCSKH/iWZi+1meH4noPK1xPd1yeH+ygpeK5PzNk3H+4ZcmGQo0IEjwuN9yG6Omcx3uUBihW+MHQKsMF2xfARx1w64l77W+zomY3vIZp74qKz3d7Lh4PwUgdO8GNZsvCMW7ymYXN/ymKTdhfQ9tOsyeMXIPrylJQ5RSWOoyV/btYwl5j0utGgbZHr36RLR8TLc8gX4nkaxHaALWyaXwCg7wLMvYzlg76dxnca7fYqIMsLf6su16moDy3yltTvUB7C+iTc7GbcyneLA7ujyDnZT3oEVyePZoqAe3/DHPAav5Z6iXdtKJZSeKDX1bdzq/CALSTLt2k55SeBu2k9tt/kP9SGN7w4X6unQKSVcpsu6woVkNz4bvfNHmcv3KK9F28zykf/ch4QrItcrz9UdXxMZux0WrGEsdlzw+9gP7eLYb+UXL5/7HTMV6VZaxW8YwcbpVyIizRxWsh/mc3jXC2lVgz+XM9/1+7SwaOuN49zOD2i8lbfji21Y3zGtw3cr4/GD1TfIWzkambelDsnPKW6eP4lcWxpd/xCtB20YBJ39PlHLjr2FPb3Hx7AsR3PgTbQeEkDmmwOsHfm2Mm5wU1CE7XYIWw4+CXwL+9FJa79tEPkO6O5pl/9e2xgX7PJEc9FW8BzX5iJv4nrXPlBi26Hy9U0pY7p3FKPWJyvs90u8ae29xowuXhQZgb4xbIe7obXDyzLCxU2s2scxl7Hq8SPFFsm+fbcAOM27EywD4Bh0cmxi1a0/BZyim5+ZqD70x229uVGS/Db7RSFfjvWGzxZ2U29jBss9G2JRbAA7t+F2N869HjSvHlewjjja6EarjIjb8t30z3138uWbOBaw/BQRt2GDnHjDs9uanH9jLCJYjjez3h7W5rDM5yuWXzT5+vXK5y7MRJYi4y43BUFOonG27hxvgGIwThbYy7Fx7By4drgxQRO4IkjqH/Nt6yK5/9rUd3142L/SzgH0HRnf5cu44KSZzJOgbyL5NKWuHOympTtxWKz2ZNE7Xnj5qZO7gTsF12Fzq1L2w9/hzitDRf6tJYKe9XS8vK2P5jbTgZnkNtAr7mzjgDJgFe5EZr4dH4cddgLZAD4t6+aXG1byRUum9JFPDowJ10JXyvoJ9hb2VvmyzAvemcX7YlMGf8BkZqKCT9UsdOx88Omb417zRXWV+dTsh4Kztj/Xtar86ssJ1tt8dwUTb3B9C6EvFIt/TgMCckgawXRdANfSwK4YErhxeudGxkY3jJvtrJMxJ5PhC8LuvIH6IUSkqWOSh1O43Jwk2JYP9tcOsEp/WQ7wG50cHT7Gm+KG0C+CPPhUWjpYIg+7zE4PZG/LnetkX57k49wBr4ms/ncdeEn2qQTrJxV6G/Mpp/26jBg/J04cia/BOuEifrBrcHmsTWCMUEaFI/47Bbe4u/gzj54HGRIuzHc/afQ1cSPOoT1irBL8LMzyJSXWOCOMRwZxu7F93Bo/ugQxgra/f+kSBvKHXz53YYaxaE7S2DZIEzy2MrIDELAXmni2ocW4rUMDvryVsRSgi1sZq4z5GGQj3J2MzGe7lVHbn8WZKdQ7h91uZQRVlsndFNZj4XtEetC2080TWh/kyzLf+oAfcWR3uJsxaGXEOcY56gm32C86cCMZDWw2L47aMeHfaO9897Ab6whClhhYc+c4BWmUKX2fhYVtfnO9PfIeZKbkwHWjItvtWr4Y4jaPtSloTsXlrYx5jBTuzOIOQMfDrSt1+2LGvXYyvlOKMej8/zJSy4LK+p7baC9P3GIrHyzQuJ34KsWTZQbjWm93in+Kb2+TUz3gKuF2Ou18euLDfYU/zRws617NVS/bmxvN71P89J/G/QC+hQfCasY9FV5PlHKiQ7rY+cU7X3bnf0+L3dtyt1CGtjjcA30r47IP6n6LpC12La0dfpvDbequODjW3Q64ThvXILcyzXrSjfM84UKdbzKUmHjga9C/ND81twm1qWPz5zm2MtdFWMrpdA+rjEvbHtPhJV+wfHHxHpfPWZhN5eFdrVPSu5xOtxp7wI5wd6fmtGIenG7HpwS3jedtA9KpvmVaYXExZS0zkKHj6wvbDv4B/zuY03bEJIcSLAYZIRk56DCtk8ynoITBj8Z3m0ixzF3Z8Ol0fIzlRz1SJqBws+K2ZAcdlB4mNyjbh3C7dtLO7dzlK92YpADFq9ZejnFXVNMiZ/VvcO7uqnd9EIkvV4GMLgcF+vQXP/ysQUfiA9cgB/JJMlpTV4C1wL2I7g+dmuyLCVylzHr1iwjrH8J2qby9GzNf4EnR29bQwmeCHSSZ8vWc+cw2Q74YbwiXn46hj0HfzXw9GzWCfeIXhWCnzOkp4VPcrl36tQe2teXgN25xT3ROcUYz2P2qbsG+s5ZKPLTPER575Ifxx+WLv34N+/wOX2a18W2nxT3aFMvmf5ke8mfcBEN/Y53Gtsy60TUuPS4YxQa36HXDN6D56TTKwHw38wJppXkB/s3IlyPuBf5URBLsoANnO4D8mc4XLb8tzH6wWDPJDIKiG2yZ7VY+dBkgEXAcdwVy37aBp9WLSfrSfZqcqW7bzBJhke7ig3zhEJMi/Kpv7xAeM3Tmuy+9XgXGgODDWz2UYyPzke+bsKV/dzKg/ASXPqoN+kdHZCJ1i+SO5xPd0PW0VYZoKTEfcqEw4MjT6Ffm6qeOFNgG1/J2ibstohjUwo7ucDsRMjWJUKWwVVEouUC7cGam63f5wK+AkYmkwcbxTbSBFstrmU/SBRKLAG9gj3OpB+9xifiTMQyuKuN7oD6GJmoOi8GVafnP9bsuIuc2R8eFrl3x3RxbJD8coNHoydenZkpi0JdP2U119YtgQ/GWaQX16Y/RrzNuocX20cSqFW9I5s7pFNw+hrQOK/HZ4NJY1bimVWYHucGVQkvAtrO6gm74MmhvAhUu/o5bE4lPocVqg+uF9SY2lD5I7d+OXyuqP67Rvl5iFdQLLGwxTOOHUwxxge5bfLFK493xRdik4yu32+VepecTH2EWEb2BlVeON2L5A89VRo8pgOAxwGziju3tJ72mOFfiRN5+iLQk+ue+XBcm+e4Uq51H2tKOsO67p7ZUw1+qyPiUh7mPdz/iv3P8cT2H30f9/lZ+0fJ5x+WLFEc/AgLN7vRoG2Yk4AWt8nVzzXwcHfDj1NKdk/UoFROi8sYtLIMv8llBVExE6dCSzAdklKZwUGwOUUgOC/kwGWjkbSsl9qLTYb53E5Xpds7tA7As4ztylASDTA7B8GYy6/VROfElME9cOAjmAGpNHQm/FjIf6S4ytqUI4HpyaYTrxsT2CXOs0J51DlSlD6nTcL1Vcg5Or/juFnxiYzcf1XJyG4s00AvLhP3r5sX8jyGs04RxUF4IkpyZtkoczOGiRdtrLqTGkw29JBZOnlhcl/Nd75NFnb4rdMFWR1UD1fviDlRx5eVE1HXJ8HZBYRQ6WmxjOeUxpkp3ouGY+Wt10v1++ML2qRmKsRirTVyRGP+0jb2TccKi38f+pbvy6a+SzKSC5HPg/cdW5jx1wozIVzufdEEQd+m7xSV/3D2oPM1Jt52E2/lDjOOWddO9angsG//bxow7utr3L9XRfxm1u04R9nBqrIhkH3M4VdMXLSVW3fHt+Li8jT9GG/NFCaVIFZa2J2qnG8ljglsXeV6INO+tddstYSHofNMNwjB0lNEW7rwx6U+U0v2+yVi1mVMh1At8HL8Txri2nlx5IoB+SyzPC+ifiMkLcVFGn9nsA30yuh5V4t1Vd73ue65kGx/0+79S+W0r4w+WLglGo23rjIAz9tbJQtIE9EzyjxPfdxcAg08fUE/2Y1ncWz6npjs7PS0AOcFu+38n5zt8PwDbtt3ts+Jvsh1wyX/lHwebs+ZaaueAAzCZj5X2VsBwpLpQtA5PqpfOcUf3fO2BDlJQiWhCPcJgOenukr4BvhTUvtBMMqxuwQKveeJlEhsUM42WtskF/cl8sIeLzxpvXDxNmG2dF2tUT/2vHjUlS5KP0kd9aNLNhJWMezEt+cEyExZfXEr6u35He1qkiSQD2fin5b94y4+mtoAlfP8Jo0i4zKfWH+MmmS311w2CZWRaKpVegoWyaBHdE24zr3guv4ObCtMSqQthEbJhot35X4ZraMbioqN5UyLp7/DYgNgfN3VeCOHvu62M3ZgYXGv5tv66uXZoK3xh7BEtPVG74cunAzLt0heKIbtupCPr5dn4xUmv7Tzdx7XsMbPtWmOhK/bkNpO8hXvssMiiXoSbOKdAUONPmBzphg8FEfn4Z1J+tfLbwuwnFA5ccXpMNmiH5UQFYbT/Abhr8nRJ3z5wuelukBpZOj4DFE7UOi1o+LrD7nDguvN9vCB7oouPLL6aFcHtS9zUT+PrBxkTzAcXiy3um3Qe+4VbeZ97mAK5k/+O5F1fm+C7xY15KMk2O9htcre5nj+8+YYMbTJIi7Qj/26hhTi5v12QW0M9YP10Ll+QMR8OliuNlHCFnlr7Ym6tcyzoOumAvUabytjKErgO50/T/ORHlQWnP7Awm8S2phgnjjWTovP7KvCO1Fz8gP7ZtkryiI9g8MmzvyuWcDMcn7C7jRmIK9S/qfB8oyN3lP3gE8+wdAPkFPpkJvmmIRFA3Hd8uct4F7MIJfE9gz+j5XwPvGOB8ADWZWtx78o7cemjsaex9Q+XU07wTowQ/lbkPQ3k80LQ1ncDn6vCltzx4BeKbznJTDf2bt+Pm/WXLv9b+HYyJj6vqkg4uKnktWlxF+dVzqfPWQZ0Oe7fXfZLX/m+2Y/Y1S9dIDT+oZfPPy4/ymbEO2fWrbuwGbe5RBIwkBIsBZs0UQ6LoPKtBw9GUOfFUQ7fWvlgfzjw3QRB1sUj2zwFiV3bRwLMU70+wX2nHBY+9bTB57hbOKrfdRO3GTwOxuzwTyJ1/dOHqnwgA/OJqxAdlw1zkkpsON7cyXAn77ZOcw/bVGT/GLOD1yYYIp8eL/oWdUv1Vi4xislgNyYUhDPvuFkadCz4Dvlhe6LgUzYTURsPkCMwlwPif1pZuiQDg4UEJybVlwPspcLLx6PUxedscE/GuVk45SQQ+nfBzABcxflykDHM9X4NW2V8Zz/gjT9O7Hd2/MTvE14x7ab0Mfasm4LwBPYO9wle417e8cePYjvFiO1OYaqzHq0DOhHo2lTyLnuRt27yukve8tU7WFi4lJhv4RwLLsdx/N6B0FPvcpoLyQgxEXd7FN+thFv+0kAmWOttt9GV+n/x3Wt0rXOPZnqqVm4O/lZ+6fKp75iVd7RVYk9/JG8Qa5tHUJWogDPw7SBGgcjbcbImPpwPNJEIeRLf8r0MR3NaJnlyd/25m2hd3S+TY2lhqL8nugV24xx7RvTzJNeO7w1oG0Swfnj83h6vznSaPppIfTeR+9rJFdgbXk1rWQAcCvNNdx134rBUGJQ29ln7B0HQ6wy0SRI4EOb+NotXrJcgSE4Fxs+SAJbHz2y8q1XuSjZ8jfh0sFvbsLYN5VA/otgDN8X+5JsuPi4fYrjWtnjF1earWdB+BW2CjfrUoH3wuHz0ySBoSaIxDqRvlPlcx05KHYcpuE7aadjRHlTinV+my3MhaOGF5Dv0yDdtv2SZZNHSGzlYJsTt5m9uyzIWWO1xmW+nG//RynuoI3xLl2U6OLOSfEN78bid/W5s+ja+fGQuCPi6h3K0BeZz0RX9RbJb327NAgf4bBdW4a8yrNFx6208dVzkw/3j3wl2anLjj8OWE21dNocymYlgHJh9WP2jeIR0zW6O3rf8m2W6Mux6QoWHOU0yh/cNg2041SqDEu5ahL3Cpfq3NjmGfNXSmdYfavnEd8yWoUUiJxSMAlbCQGOG0BaS5HSUBqjDbSY8O+DikHmh9ZCvJa/1bFHyDt+O1m5BhqUNOBu2W9hmkSsix5e0H32wGvluhLIb3LsSfvahLEmeDu5WlvtReTJux3IKbAfibycf6Ohn3dr2B2WL2yzKtnSteuZtUsewUN/Rb4McyB8x19JL2SJSD1EAmXUeUOL19KI1LqyUWdenaBfxxcM9+OPR3qZR9+77QhCejqkAvI3FoPxAYb+fHCf5Sd4qmDqdJxzfKDHSj3dy0OH4k6lm+jlmFD4s1ruxCp3Qybd1ccDh2S8yLahzsXdh+QLO3zf8sfP9GbGqFIhJP+JTC988gX8o9rxN4zQmm0X0o+InU7O/lHU9dgBhrMexJt9ZFjydTEr2pqTexndrqoMWG/tVqeO3lcvpQX/SQWedbpLMm/jT/cU4ogs3+ZH4m2ErPcAVa2h4n5Zmy4JPsL7wNdVttv+Q5//lyw8nUF+jfOJWRg6Kw7rwuHyRLok/ZfwL1gos/aVVRwlOia97p7YLx8WCEd/0zZjCp6l3fN7Bbcrtgoad9Dsy7mQ+8d30x/nG5Sb52G5ZQVgHboZw25+b0vJNweIUwTeJGJcMsm0vss02E1kLzyZJYQkL39beVv/wXS+EtQ63yAi4IMnAVVnbJ6qu6m9bf31gkl4pODnddPrVfP9TwGVsbXXA5iPvGRbapkIUdKWAE4ugFDABFbYbxqGcyTfluk6ayFfVfc98aOIwsp6MqZ8AuWbXxB20VP0bOD9++Efy+37B901CHLCE8YaTSSunVV9zQ+cunslnmo1xzEiZDrKEmKDuYw7xhvFT17V2oUHt4kCNN1AwrsUUI110PlXSNF/kHsSBR/5YmutKfKWB9bIzPlL56clPqXd8d7CaaSvw6rx+2wdvZz3fxOV0gnIzRi0drXwUbAPlT7Ai8Q5sq4/mSS3C+njyqc/FnYPML4AduNl3r9dF8kfnFeoY8pLNdf55dn7FI1Bct9i1hTvCh4KMFKt0wQo2w3xcCzr6TpgOmfjmm9M2VIuIrBtqjo98/Ylb1kFeoGU+KWZM2PQE7ouW305l/MEygiDFTxXB4/LxzmRsZWwcD0/wtaVQC2yHy3wUDLhsocQ+UPLJWxlLfiC1f+2k7WRu+ncKMsy3gIETu+ODierOyXIpTldk3XXb4e7kuGu7o7XRRUuXyxv9K44/IeCmQi3jW3RzkoFto5NRqX8NzC2/k41hwJFsF2hfT2R+yUv87c+Ba1nBD+1ERMuWjjwPiK4IBF+t20NOfDjIOS/XQdI7BT4VScfNa5azu2uZ4j3glnZ6EjaO0p9dvfI7ZL7oClGpW3AKvehlsZVRSyB/s7Dj77YgTWHUnRlvbXQ4wNeCOxc9aawQdtnW8nWuHaRfxat+X7Nv3PwtuK6S+JH5tXk6yZwWCTQnq+/WBBvWwfH0OPf3bTy9triN/WhTUaEF1kmGO596slmez3e4NEZeZ59afCwP6DtPurpt93e62dgwXuMcwD+RFa73iYwNrWRHjWztDYhir7IuJLjsy4/xh/KlSOm8n1cTFx7odejmAS7okz9/sNJBpT413w4rdCEO8ImKfLIr4a4YsuKHRn0txjBm1IXiFyy/Lcx+rKTTF9kJSq6vyQ73QrYWQkeLijv2ZiXnfA1+bxzuk1LeA1URf5H71mGfAtmRaYVFObZ8NkF5S3MnU5s5AC+VfKdVCefOYe9g+fpJfwB7WGefZe74RtvBG4SeM9P223mdLCcZb9DfLqlvli6Y3MhM8yZjyvpGS4OjXUfb8bS+HcY28dU63itI8fHxWBrNaqbNdxDH/NBFl/mEz8KMxxacw5IcGteX30O+KiDH9Df+oekrjZd/QHrJiNsVoz5pXTN4j/aXfNNFV2f7h0trRDThJi/05Ua4W39N+o9Ri5VnPXqeJQlchZOCed7R7xxDCJfhk7wTZnfASccXk83GT3L/UDdbf8zz4YE/3vrJZv7yE7fWf7Eejdq4f1DKt+CY7uaaicBW5F72o8wPS1oQON+NaDv+5frDOFBc+9b3ZZ6PZSSZHNevpQUbyTzqDaeuf4exQdhyam7Qskyz8x9Jphu+4Ls7ORacxbcYnVt6YtXQGvbifj+3Jb9PuB2thAu+3GVbvn31n+PcJX8AC7M/JuVrbGWE9RYGwdTmpQleATI9X5jchA2TM5qwmLBT8o4yrVNvqlUirEJ9nYpPspbHhNw/uT2KOGUqDS7Hs5PMWzng0u0Wlg3uU9hoeoeP0iUO+pj/nmC7ZOHIlzKFFNGrbIWcO/7dAD0JlifcXdBlexaR2MoXuHlLx9yst2S+kTHtlXdmgQtEdskcC6yIMOXGCZx8BsPOPwq05raTslCauHGAeHIQq9MKuuGtJuOPHy289Lr28MN+/kkbA3PIagsH/+IdTocd4ADjOpLxdCs8kMocybk4C90MnEtl9mUe8iEm65h8/4bZwv3hJ2ahAhO7QK9u3+503HdPHRn69qRJ9qm1bjMbRHtmezLCjZhxZb4eCnBxZE6ccFfdeQKv4surzIWvZL6pIfoAcaC03cSfrn8NLPMpZRdPZcW3HW672DvxRZ/aESR/nGK1X2r8kTGskrpOsACSZ+5DmR2BfLnTSHw6n4qAfGm+U/ZE5iDR2IjLXw66Afgko89jIGpRh3gzZTTuLPv9Hd/iGzV+lxuETit8EGB28QZ7lRY32JJpLUVBmyjIt3SDSh1PvUwwVinhCuGuJ2U2/eqkNflqOIVBaz08mDFm8l27KSy6kuPXFy1/ACI+KZ+6lZGDwggINKPTV+N7Tx608MvoMgLqIixrwgLfmPMc5JJcu+gz7R74Ih+v59i7CBnJzLjbo2JZN9CO/WNwrwzdpEttouVyaBoDqbp4MiYuxy4IkQwtLNaxj8QHYU3ykGIwamWQrPeSPCSbtdxYjuHMvI6nsXcNTYAVkXCoziOeZGFHGbcEF5d/OnITGdstF4PbMdjIrEGbecGk4/5taRvoFQYcaOFdyCIzbvFQD1agkLBtozr3b+gGTxNkV5XvhhrcGcY9+6OOWwxFZB2ooRleIDDGtG+2MkYXA28o9xvx+Qb6WFsTHTfTui6LVElF5Hdw6MeHg3SyAXwaNn/HYgwni2a7kvwUrfpUUogA7s7/ilS+YHIGVDq/KCLrZT2KIelkX5yvUM+2psQXVIY/mFZGL/1V142jb5zRnU/F3xsXlf2VUIwEGSNXZdqoyk3/Cl/UY5m/Gfjo2yhgmCw9d+/eich63wpzeVtfkEq4TcwvMp98uSx3xfG1LDARF2WEp4tJ5gle7n93upp4GH+M+pfGXjgGQryRHG/id2frjW6Yb+rv/J+qf7XRFylgxCGUweJtOl2MkQneim5iS+HEewnQUpAxFlKAn/ydy+gRQOJwJ7Ppt8G3x4IMbrbiTUKl77ylrkOs0vndMghzKYZ86cWZyf6G9x9Y+cStjJIM+lF9622bywUMcAvdfT0m50M+6AdvtzJuunK3gGnloDZ0sne4KcEsToLk6uiQih7hHsoj2FPQYFBKEpIZURLA9JTqO94mkFxiG9La8EX4kMHyte0TCgx07JVKZ3Mpx3+jADs7YF157c5en87bdvR1tuRFVkfjSnVr9KygF7w8Rg91ufTOvoPf+8JACDLpaovL8TLTknHxnYsOXXwx0QpajKtufQL9rdsiL824qT+I6gvLoDEWeLjwvN6a0dF7wMrZwdCnJ2ealDnyDdDQFLT1qbB/04DAs3ijQkpbQFlBlS8u+B62Zb5kKdg/5os+pejCgFbWY+G74dP5Qaxzu1K9hXW+Tbx8r383fPnag9jE17t32gqvTf9Epb2P1PLu6hP3+P2uTZ1d+Ilv6xI1XQpau/gTi1Wsp/bATuIYK3NjN5kWdKn0h/g0c9W/IRbzIuTpMr7oUV5IEU0ToRsjOSaN3QfLCNgfZ3+DMSRLlg6ZkhFD6vFLfmNrwSIt9EAYX6JRJfz96uZ6r3iU13b6fJny28Ls5xSjCm9LebKwSMDT4AwmnwKS19Fnmcjhw4dpeuxByFEvPjQdH2wlue/fmT/271QC9obu6aOQWz6Me6ARKAz7ABeGvMBs2xhux+fB2LzTv9IOuLeB+MRns0jZlWOigokHxjsfzyRPsyA7JBsY76qcVvvnusHAdOKnjs4LGIRlXa0gqHhAiwIdkdBxJDAc2CTX0xIEA2T8XkHQ9CUevzWSDEnbSRauJLrmT/IAN4Kry+G0BRZb13rnTMXiKZzjxMJMx9bGFbRNOFH4oUJ+M0qcXku+HG3Qcemk2+VjIYHZ8Mm+bU7Ea/6eNAvfDS76+gwbm5ZAxonLSRb7gs4fNfFmgQCCO/e4HZ5lZj9Q/ALP/Y/48o72XdnJeOK78f+3BYLl1i82PLfv1p3qT3zzju+7fv0d/K5/h75ZBzfLC30fj+GN72ZY/gZnxQE+XQzdyBy+u+vjqY1pNX4/9WXSUoQHmc3WQmc8wcyxKd1QJtzww94GMnO8wfh5UQxMuzJEYNfEjBuw9f9LPy2b5Q9AxEfl0xdmUTqn60pWatutPmAGjJg0HiPj4R8J7RQwGnnufCO+37X4PMnYM4hvbb7F5IRXerXscLtkA8m+EwRvcR+oYAt7wN025XzkPb5Jrw9nuibzW3R2PBpcB2cdKsG2dCBImEh49ThGeDWnIHgc5zawT6tWRjMGbGTtA9gRR8esjXcE5mKiDdDOxZvj6RQNBPY/6ViFt/SUu6Gkk1XlwCjtQsrlrTvmUrpTHt7kbZLZz+D7ZfkFbV0LOyVY8ffLXkH3oqXFpRbw410zX178YPTbPv5luNkH2bv8DPtBPgm/OtVbnxoGM5wOHza1TUxFZLz/4cmTtsnlaZ6qrEXCMd7QJebzqH+A+447RzomD5KnNPehfye+MKc7/3uMAzSn34phrY88l+0CguGc7EGOkyqz/3rAt4s3s15vHC5rQxlV2IY1jQ3rFceL2+oY2B63e9q9wXW8vMPBNmPpMWQvB9rr0Pkm3qhJXWwRO4gRARPyMl2MSfW9X4xD6ZuWIOO6Ebf6Nb5VubxXOrn3R33/b+VR+aSF2UwW3HPwkUi+gZqeLOExrmuWQ0JYJua4MBY6EGiZFrDy1OOtyOM0yPsrecZR3QRrjhx2dshtPfFdZI8yE53uM3HKtLpje3ci3slxQt7wKboDB8dtp2C8TZgeBLBjsoVtDW2TTaJwkjkFim6QvDVfP33e4E432RbywqQGzVNgzLgpeRJnNK8Z7vGXkifHsfo493d241lga8/NQR/Et5t/+I5D0g3UzWZgC9jwKhILK8Dd1dXWlsnhJjOs+rsGIOfayWdpMSUT9wLdXPxOWYM72HsdYT8WoHXqJ2co2Q2Oa711jnd6UQkiemWf6klauF80pVn3mxflePyDT81PM7T0AeeGQfuokxLK+1sLlv1Z0s3GpyxcTbhCuuH5a1RPvq35ThX82fo2bNvxfYxLen3Kl3+3uCcZD+1t+QDsXUE5Imbc4U6fgweslHsNx1Vq7kM9aMba8Vt8rPKB+vYddW4zk/QReKTVyI8xxYRiCPIR1mHuj82+tDAG0wvqKHP55ErwJT9f9JhjiOPlhRl0tlnk5XijOWbAu9Sq+Krpeh960MGYsmAVYL90+eLiPS2f98SMJlezLpHYPNg35iqsRsqdNUWKVu+ucCDYeK4bMc4Bw++m7j6QvQm2idFGHR2tuwVZKph0bAjfJS6lW08WhwyL/WM+nBg1/HdOu6PPMr4j22Ncgv2wzwibxHplseNbsrsnQZmvKjWe7DXBLlxO+DIuLLKQ1kUi3+mCaC0/spNxtJVgDLgmHtgAFomkIGlr8TNBPKiJrIDnuAqLHxGJF7pHcISFmYisJ20qcQKkLfp+lzNtQ4G+p6dlc+uMw2N9PHmDdpV4mqbcvzeLL4jylc19WJPtAkZERvIl6FOBluNqtrvFJ41uujb4MF8UK79Niu8S3+KSnRVfhz7zXb+h1D+MNzzvT7HK6yefmjrQ+8Wnfr+Dw0T7Xb63xXFv+vchvd/J8FRGluGuf5zD8Fifxp55tbizdbNY3/Kh+dfJ3PI54Xbzy1wuO/eX+TAv8OMdbsx1zbhyg+tPy2IY1Y64cbCHu5QuRs5FEi6yRDNsPtBpxSpceDmc/02LNlm4fJDUVyxffd34tHz+VkY/FjklcroM1Rc0sylNFLfTmJgQhIDWSnU8qSFaBpPykHwWf0bx/OhEN3dv2j4dAvvbuLvyRtA30lUn0+7p3u0R+A2tNA5O52G/8ESs4vQe69FucVs+THdTrwsN6QeC5XOGvj3xLlB37Y0sOZ9cgowbGLYg39guIoRbT1TFwIMRy5ZyU/9twQq3wb9kN/UV6YQLPMZRwchnM/Q47jLfDVMTg2OGyzaUKdiiYyICh3EYBNHZjndmPRG4ROYdUAs5zINzcHrJOH3MYshi4RhP2NwjrvcJdOJe4UzHou6bum5G3Y/O/3lF04RY3y1bvhyPz8+YuR64cRPMASvuYjhF2M3nE9/N+8KPFiQugvrwL1q7JL+TsY2Ljtz5wEe4BLfVTYP7A37fRFb4Jpdwi/vAH6Ne0ZV0WyRvx7DrG6n8qFcYj+PpmA7WyOjXHTYvLIiI82H4+A099pP9dNUX7uzAUz6dbtKUAX9LfBTiQI8L7HX5QtOMG9A8MO6r02dipI4R4cZYXJYHoMCu+lKdJb7u6xesRvzAG37xGm34DI4xvJURt7yv94X92H7X5cB5BSwu2NyX+o27B7Pic4vJlxfxafnchZl7Yi/LMtY2QJjgu3dlBgDANrR2uCqS7mIa0ToVpQnsdTzKvN4dXYzyo/tM6xRgmC+3d3yzEFJ15c0N37z9p+F7KEmvxKsCzz+7/jWwBfeOxwH3Vj7m8w4umXkrww4/telxK+mtTGXe5KYC3AWzHe0mIHkD9rna0QsMlgPqsj/HTvrr7sKizB4RXfzOth30qFfLcijSUrmuXG+/WSaSAyAGQV6UBTwEVRFJ2y3F5DKJhZqIwDfHJi5soxzbKxcfhI06bGXxLSwemL9N+JoEPC8j8TbJPnYRi88ZKF5rEkNETTFDgvbw7cCH4410uAS79cfLTrWplx0ICAt8VsyAyYFzErva+EW+D5nnp6bupsTd1727/qGMeK373dSPfn+Dq6SzLd/G9t6VEXXR4aYxvKPd6WpX3vDd1l3eyMSLsrKQI77bQ2BExoIj8aA4cKcXtl/UzWlMiA8es7/t/7yWx1OLHKmOhzyJioDvNpF40h4XHNd9LXYm8amLMowZyf24j6K5jI98chzIvC81wl1+fvxY7WvL+oS58nvK6OcF/L/DXhSbfiu/fPnchZmKpIhQ7tL5BUvviCXcEgH8hs8y4nw8K+D4hKaFmpiflNXwPZRyXKy4HM03OrjcBLotn5u7iYUXwfpNHHZuhSe3Md9ODm/awSrwPfB+hx/2J8EoybELsgl3Vp7idvI67gl+pzsV4b3oZTwpcKT+NqRXnYPITXH6WEeqW7uxKUuz5x+IsXpDxp0s2rTrCn6+t168josjlw3orO0fs6OY5EO7zvqaD+Wtvpxgkhx54WXTvIC+yFxQ6aqDPvIXvByWaan40cYroM4FnmiuTz7r5EUVDVyHwYNBvP6xEje+sEQnWZMSCYyPQxlEgldoK4dwqEj/9CzPk3TjAOf+xEV/hXYw2pr40vlj9nuJj6xQJZVGwnW+eDJlWq3VPjGfUke5sLzpU+1N3KR3wj2dDHz0x1UVpXR+8odhG6dbcFHvb5TQ08YfG/1tsI/zoKN5q9cb2AS9w73pT3ulBo2eb7JtTe3rxvxovcKJ5Nibfw/Y8U0xjbiDMSLg0JeDrxaB2DTpc/uKMbrx80sX3h4nLyp+WNpABvT7Of5c0Yd1fcWmj/v9X63cTfZfqKjqXy0i/00R+StE5Pci8h83s3/0o/Q+fyvjLGsrghvU1HFTX9tdFHIpnwgIKw4V22EWrjTR2Ek63R3fjOJ0Et+oZ2/BRzsXL29S79Q1fE647LM7MjuZW3h2mAe+Oz7ch2hnhA0s4rRiHnRz17+1dREd6viP425PBOvopiBwwAXYIBZ8l2Mf79EsmtriCvTXQDSVdReOn+RU3ON1lUQrBZ8U7KYcfHcR0Whc8/Y4fxd0I0vcWY3JX0FCN/g9somjHayH7Elr7BsU/EZOegIFalCny3wg98nHEC/YmhBYBNFrbpGMj42KiMZHWb3nC9ec9lxIja5mvnEEfgTqGYzNon+X5DaE9SdpH4+AqPyaHFoaJ/STBOtz0jLsNmZcmc+iM2G19simDi1oZedkYFjLx2B9yZx2R8S4SpEZ+8dz0snnpx2a+EbxdvAbia6izKupMuzrd37xtJWRcU98i+/mv+/gIp7N9s6nCsF7THZYq7BOi/ujsmw6+Bz6ELg3tOICyyA4JpY7pplaJ3P0j2MLyIsyCsPGfCS5mI82fBp7D5nhw8mxBarIuInj7hujafnU5YMsz4sUf3a4y3+vcfWPWa96vJOGdgM+lOOA+yI8lEPsBbA2+zPfW/Nt9C5PvFvMN/wGLm5LH24H6jJO6l2uF/y+fO0yu/5Z5e8Wkf+Smf0vVPXfMev/lo8S+zJbGdM2lNm2jrp3WImAyzHdBLZteDBKdQ3ngJ64BIZJd8sXSoBoxkUHVmIT9G+3lVGlCWzSw3J7r5tD/4Rgd3y74MZ8O3GRtjbtKOOuv90lduYH3KKLbV+aWa0EdidjQxvj1x1skmMq0Mhez7jrmjvW1W4bQZ7KJZlWJ8wOF22oG7PUR3soQzU8trkx723brldu0/Ylcw1SKHs+grhuLUFea4E0yoV8NbetBy46tp0QbTwR8Up058LK65q/TyYi8g1kxq2LeNS+t3+7QC+z7gvXj57KOMWU3OHVVOOAv59I8Dj0HkOcvKbG5VOZGdkP+0XEZUzTGm+yf16I7ZprA+uXWt2UH5lu4FIXEOVxrFK6IH39R/2iCPRBq3+OOeRyvuG7ymIbce+2yW18F8vD8Cw/Lg5bPruFI+F2tHcyu61nX7f3qbz4aw2exqTdqut/H+im1SPpIvPhRWaDj31lmZMNvRYNv3j1sEwnH1HPOnZk69tVUrwRgbovkAAvLcw0x4zLWblMSnGAY8a1/H7a0q7wW1YMWDffxqEfa65+3srnUfk88UxE/kXz918pIv/kjxD75K2Md17WS91SyN8b2jmaAatrxaHVqSjh4EldTw+dqBLjr/q6/Ml+Wgf8Dm/WzTuwnVP9AVmCD9Lbtb2Li4H8LjGQh3qdtB5/QBSCTkq4/CIlIdtA4jcTCA9l6mTIurNHeijl0fjSKEH0r+NnReZV3Yz2XZCF60vPnGrPbJNwg6+PReAq4UKH0thbrna4oRDayrirg4yoGyUZc/7hWw0BVytsbRv1b+m9BN7q6MnAqPvWRsf1p2aI+9HCOw9KYV/uc/LQdsbVZ7h7o00mcfLlg65SvYdlOY4xYqswW/3b0E00mvo7sWlLW4AWE3joU2/pdribhc1tzNi0bWG5/cTnsNjajeNx0dUYXsSblm5Oyk2knjrLMk4aXX870L6UaHSAtNI/P2WVZer8cSk0VzlGYLuuH9L5Yw7c68bKur7iQO6VIN/beAP1OBRkypRkrr49LswFHcrE8eYi3Or3u630E3fazYB/yfVDnv+XL2onq/tFy39aRP4RVf17ZKyb/00/QuyTtzK6EnVZDm7/mAmrqYraWpxhGrRI5Q/reoDw983SdoJ5vfUcPiMSbubbdaPdljFlz2Ku/m2J7myfYVERWi/tStbNJih8kG9B3TZIXfQS3dNxxqV/DEuyFUQOdgoyHfgWtju+T6KZb6FkXaAXdlpH3VjltePNwf4EM4Tsg2MncxNsxVE1H0x+n7jQCMN48V27tO0xvdgtSTfrvdUlb3r3LPqg0Z7lNfq9dKO6tpqIB7sJywdujMsWf4PdnI/43TP+QLTzxS0rY7Hm18f7A2NrigdhhHfZTARgXcb1gWq862oiOhZjQfODd07TGHRG6LYltvkGF53wqSL1kdSCYf9TUkfP4NT9fL9lvfrU3VZG5z+F63yQgFy64pw/4rm9GZjiTdNvguXO7GNV5dP6xV6kk7hHv3jy5bf+mGntYE/92/HdwXV87vz+Tm/s55VgyZ8aw7q/auKANfitPEpjwPx5gAotS9dbWjivO5mYD7eh/03XGr4dLAyMv3uqgLulzfHGb1Ap1nXhQYzgeJO2sYuMWAX9XAcxSVkcjWsuUJY//PX0Xwp8rwQLCy+nFzEE4o3HgilrvH+cbs79sSx/UlX/PNT/yMz+yCuq+udE5E81eH9WRP6tIvKfMbP/kar+jSLy3xaRP/NRQX5oYaaq/1UR+XeKyF8Skf+ziPxHzeyffkwAnVg4pWWpaiJ21f39HovrF50Zt/chWwetFZf5ts4c+CT6HABN8KMTgcullTEEaHA1gxxflBbuX+97tzIe+HpzYr0LcF1ywA57F1RY5k6mDV+b/21ldJkcVo9qbHGfyH7L1y8fAvSefpP07sagLWQJd3xZZmSD8Urw/TYPViRY118WWQ82ps6H+0QkG5ehgUvBhwM32ISSDq6kctyWAoFQZARD2FLoATHagmQOml4uNaq/gE/GueaCyhMDxB13Ul8ZRxedgFWntRZrHz0yH+dtGaY0/ujL54JjGtW9T9Xwg2k720yykvZiy+TEuYh+knkTbxq/gaVdeMCHvp1vh7tbjCxTghuH3aKs8d1odzEjO77gU7WDeVJ+gk9lvR7xd37xiezMVw58H/pFkWb8N7Js39Pu+pTizUj4IeWPBZCfUKiM3xX2uck3Muzy5cZAO90X85wS+1bkjtGWVhND+GYRwI7+NPGnHS+/0bXjg/D03ra3WQIJWvlUR4k4MKY53iTExdOUivp3XQbviOX+LV8+6riV0etDRit8L18Mcsz4Ab//q5QfXzf+RTP701vyZtuFlqr+d0TkPzWr/0MR+ft/RJAffWL2vxKRv8PMfq+q/xUR+TtE5L/wHomDt8DgLN0NFTc7iYC96pLrwCeeEvnsYYdAc3B7N2lTj/dVQY5WppOjvEugT2ojMieAmHAK8NrD3vHF5qDzAH43l466Ir3uZGQ5irOE30b1FnbWGbbjnUpa/GfnvOWL1zewTKslchpPFnID6z5PN3wz+7n1bTuvNMGe5awLkySDNmyonWmtZCbDdq6A50raQom4ROsiuXjLIX/EMy3q4G6pAq6JiRrhqiXctfXEF1cuO71/5gE3LdTy1paEK/kJ3LcfeNdAQSE5qQO7oEQofAEvzspcZ8WzH1HRZutfJ2NZnCHtzig9wRQpx4Tnd7YaowU+TptlZF/G/UXy7Ce2/urEdzOvWrmY2AM+rVyHtpNuhGC53vYJ2rJva/iKHHVzy3cHR3F+f0N2SrnZbWNu6CHzEr7rX9tfZtnwrf1viIRMNrYnbuKAFgXj76a/ifb8rXDLBP0g0c3bFZEvx0/25Q1s8DrEn9I+Ywa925jcycRToLOehtGHpEXWdzCJVsEVo5iRcXPMWLjh9+NmDm5v/5rlE1+B+ydF5N8sIv8bEfnrReSf+BFiP7QwM7P/JVT/dyLy73mLADkktG+/g1C945qE2YnRnVBhJwIUyfkHH8uwLd8iIxWT9MTMCLpsZUwyburOiMVsSuhm097x/Rm2XO5OP8HBH1r/GgNrg9u1G9vGWejTlslbmXf1VjZL9Ue6ctgi4wPsrl87o32c0HAgw/bVlubzCXYn864d2vy9idrNiUsHeyDu8h8W7X2iUrfuqY9HBFuDXUQGwZf37K9rvo117qLLtMCT5YNB6Gla3PWcQRRf0pb8dAyPvB/B1hac83G6sYBDmCHXt9m/HwrQp4URL+gbOywLAx94pfYHuHd8HX+TD/dXjnFtn6gWGVs/AXGusdcEi35jA9/yddiTP2ZeJPOJzxaX6TKtD8Sqk4zvfALlLlY94rvRS/Wx+Nuaaw1u8z3HMp43cuT2zLeVscOzYaFR3/Ht6FAMqW3Paa+8Ttr+1OIxg+o8VVUkZf8UU/BanuaWYYnv1cSMgIMbdYJtHL8AFuNAutEHT+LW9sQVQ/D7aHwz7ocOfPq1yueJ+LeIyN+nqr8TkX9GRP7WHyH2M98x+5tF5B98H21ModiVOL2lutOTupBJPgu2hASswrVdDJy4irgXJAxNMNr4isTHqL7F3snY4e7qp/7tCuE+Cq4Oq6CvzmG9QesodCNj4XuXACTczSiS0Kf+lcJytHIZtOXvHyGftn+NuL2MTKTBLQHMeriuDnatqa8GHWlwTfML507gQXDOXZkjyKyUYFAvGARN4SSsgRGBx13LDFLxJYs0sbHglg9Ji5kQK+SCI4dLoDYR4W/CwDdkxBKuTlqX+PhnvgrBE3HHv1ecvjjUAosuW6d1LVgP1JaeoInJ3OIy75r+wEvWWx/pHQZfvvyxwS3jxqn4QIIvdzSst8L47fXCd8aiTkwQI95JM5K57SLxUUnHr2+TabzIfrCJkR2aAB9Ebfng9Scxg2XexZCzlBn2qT8+DC2RzPCuBx+Dzo/f+VTU5ans5AceEatYUPKpcRloRv828nL/FHOn0gM8LMdE6dMOFXfTH824wYb5Qv9SfCHc9v20XXxxdHWBhXSTYTMtKwu0tegaEynHtfXPzMjVACwsqFQGLLabwdMp8Pshri+aYssXxAnDBZkGrseJeGpGcYDjjSrGjEGX48BvpRYz+9+KyF/zs+jdLsxOL7yZ2T80Yf6sjI+q/XcPdP5WmavIv/wv/yvHRRNJt7xlhcF1iGKuR7GYIys4hoFPXKjjXcry9AEWc27Ysa98TvBtATm8O5L4JlB5clx+8EU+7FS7oMEyAeksREMLYR8691JcjRisNrSiTWtbklMyzQSr9bdhO6LFj+yk7QjbyMztG1j2YNZ9KJr5cmlhOchsiIRu6DAMnkedncS1VxhSjAHxLYuYZkwiCN7oClGzjM07gTF/6c7kJTloXrQgioBTcbvth1E88IWQGBRlPEW6NrCStzaq5Da9ZG0xtCxHetdAJIJoyHjZEXe9JqQZVmQcgwyLy3xYiKVFmqoftT+SiYuOfd4V9Pt/xZ/4K4cklJwZ/vCxdbtzpwpzQUG5JiIKmdBIxrBNMizIhv435ti17D1ZXbc4KH5xyXyKGQZ8Vn2RNIJln8pxDvvH8wy3TrX9PfnjC9qwv1Q/+cVt287HQlvL54D7appuafkfGAOW90P928jxoticZTTia0e9pfjK+QTLUvzxEqT2gRZptAgzpuW4nFuIVr54RCDCm8jrygseu14pX2JaCrjKdHd8RAQXSINP9ceM2y2uVnyZejST6xvAYhxgOjIXYU1dHfdauLxl3WPGwOSt86/gqy3uZvu7L/5kyTFgYTfFF/+Y2R/CQ70n5XZhdnrhTUTk/8/e38fs23TrQdCxzuv3vv3a7a7Nbmn33i0ttEUkBDS1wcSEopVWkVSNjUU0acA0JkSTxrYEKFgTKUQJyMcfuDVKqFaQCKWkhGY3RPhDqtmofGmirfTDkn5sKtDu7o/3uc/lHzNrrWOtWXNe133/nve97+fZ1zz5Pfc15zlr1po1M8cxM+ecc4rIbwTwXwbwn1fdL6PO001+AAB+1s/8PkrHM5vRGmomWmcagLVe1NXNOhm4jEtP1rGFskPRnBf3316P2RWpWyftAPWO3qsBQ6urpG2P1u/yLGl3aVqd9f7i9H1efpvTPKr3jp5LO2vaOzZm2UqwD8hSk9vrvePZxcY76be+6OU2Jq7pr2yYwpFXM+nihnjVLxIK17RXcVlko2cOA+o2lDoBDZ438h2vjHd667sBLAuxU69Mr5IddqR9yGWb1GVjhZTyqjZSOYe9ZyNrf8vWRq2yjwXG/e/+6d+rFVNT69hiDmM7yaYTfItcya9yiNa0VVj4xx0ekGz6MilLPNDoLYPARbSx8R7PcV53ZS9w8h6mXuHiPb2Xeqrsa2y8l9ejieSB8iW82qdt9V5g3UOc8Ya0jyE9hUu+vMJ9vArL62spXdo0gpJ8b2+HXvCN5RO9rOL+mKzTGHVrI283lDVe+abgMQp2H75QY/dWWY9j8o89zavXk6wtrkmKCwRiJ+8a35SDqA6puzw+YHgtGHzQ8LmnMv5aAL8NwF+rqn/hVcI8yhu5jQ5kS0qzMy1f101knHpcIl9lHZj3FJlglfKcCgRIJ4AtJhdzqomrXks17dIoH0raNs6X7McDslftk20UrDa3AgwOFzZeEflWz8XAhG9f6r3nx1cMNh6yuZXVVdaaUld3HHIzge2lH4O+OUJIjeDCDmnSlvxZzK9rltV5Ut0yWKTyjm6iqNtOPHfyRawIx6lXKbmllZkn5+QEM0guPRUz8or90OtEyru0przdLX7Nto8QyU3f8F59y1uSrVmvkK940sM2xUSM3+uySZdhGk3uNPK1b4v5thRVL1/49aS0gBOsDwTylhbfqgggtlDGYIDfQXhbIHyuIYHIwMnAlGhj1tdtC2HF1LQIRnmxXmuPyu228Et03oYH0g/iKrbZTOY8LP09Hqju6GwuelNwPVQMiofsqncn+xpcZNm2fA/icdLD8kU2Zd+VZ9ZFwuOalvVu8NKuJWzfpe1sFFa+livhcf1dbG7TWjxh+ShQnNToyEZpm3woaHKY7mWrX7m8tUw68yUbgzNW7qq7RZat8gvfFFnqbsxz9o6vOGAH7qtPXHRijxAPWDjj6Z3jN4gzJoIp4344q+OBcT1wVwn3TVZgh3gED9TdILbtXIoe39Lu8XNyCMYEzX0VvLDbDf5hguInzxOzO+EfA/BTAPzgfJz7B1X1v/uwdOGTAVyVYEpP88fGuVPyVsYKFr6VsRAO/I+k9AIC5hUfViy/1LspHxFFJ9vp9fgOSEm26uWISC6fsM21gCXfHUHufMMXGCjb/nPV8auCqreWtyO2R9KW+OtslpV055/u0w37fFDKR+S1NIq97ENp+Vr6m/tEJy817cN2bQb3G9n26ZXQPS6v5PRCdeLkxGral6xND99b7Y7TquxbYFlWkltKPB3UgbxdhGSDQKO8/BJ2kpV14nSjJmDbE4Xu8artkWzWed98prSVMfz26tA0yb5fRafzUxQF4HfNvOnxk7BayZLzusaN2jiKkTNxGoiTyPJ9tZIdgLnNMXPVsgWNcWO53PHcrLE6+eF+UstbuarY2ck+1rfXMnB+Hd7WeXDFmI6Lq867NtbyNIdl1Giy5ZHybfKya69J28ZLO0m+6dKmv3nSknzZtb+tr3Xr1zZey8P3CdeAMknrgKJrN7syFJvr5Fnof/nj23mxLTDGdNJiHdtRbBppAk8NPg4uO+c377Md6SAOQZyEKwhecJtJV9mOCEE51CPzTdwb+dxSWot/Ju5/p8IHN+/R8LmnMv7Sz5InsEr+lBwPUh4xJ9958+q7MUNWSjz0pL+exlCp+WAnKagk0to886rtpSVCvt8BdhcqgOLCr52dNe2Dei9Jq+rlQYA0A4hd3pUgLvS1eru09HTnsg8XG7eTMikpavmYCDZkmPPWh+uA819kG0JT0GKB9nr2fE1bIO7Un9vBZOfq5sojxMngnl5g2KxqhCGRV9HrzUYzEa2+se0bjSxWWSZIt4n1SvarFFkh2Vo+J0Z6gXuRtbTQh2WNwLHI0haWZBOTtRG7kqy67Nu3tORVo4r76a+lcedt8HjK1H5U024xdcc36V44N+ETcrzlBLlzf6PX/iw+6vTe7ZNNWraplqHYafF7i1PVN4vsDsMbv6b8DLarjTWvLt+OQ7q02KR9tHw7PVk6xQKPdzKU9ipbqRd2MbKv6m3rXle5q3jVvG2fK1flI+7tKZU0Y4CmRCVvYY4osp4lY5/7gm2mRUCJfFk2TOk5Q+aFWNDK6RN2CxZ+kZp2xo8kW7ccTn0zryPpPRvZBven7A28w+T8+FsZvybhyzyV8VVh9IGGPOPUj9E86Rx2e9JtOeRJl/o3bix/79CqIbs8wpo6wINF0yf0cVPNeVMWDBxZL2hbJJWvtYFlkF4gd/EKbg/IbkNNy3kBy/tkFq/lQ3bNCpkXvllkHyhfGqmQa1fZCUzsiFnYrY0bf3L5S5FIT0nblG8h+KRPk42jbJqeBrSkuJFlK/OAgdKC9MwETgze1mkiUMuRng5OY7jNTt/YRzCt+8V7Q6N8PkeUID6bHFnaITstlZO6soBJEawHrHf4Jp2kyCSYyFPnaWIUd+bOBAmZ5Zwkbdsp+aOf/BRKxJFrXE+ylue4b1tNjGR977/5yhqRIso1t6bU75eNe/OdMjlnU5kT5nndZG/TDlHM9woUkHMSPKd9S5CJx7VzENTPcuUnSzo//jxb5Mxj9P3CGdaiSU/CcizQDxuIecVUXIxaM4NoS2HY5KdBcl9xu0Cy2HCVuyjRBEmmPq6cuJPd4S/FE7ZTNV3JpqjO+xvsvoeLj+Bx5Z89Hj+uN5XPfl/xgOQyt36ceBwTrnGxXQBNuBx/+fK9LZWBYxLbDQlHGcuXkMqn5NeM5UlftTnxD10039BfwyfHY1tsARDfFlyfSHm9eEux/k5l9/8b7p+uZ+AEYXeJM9+g8EBOawhg8cwJQtjN5TMe4BMYhi4tvzl/K58tgkXZD3vvzXnGMH5+7JpkfAJmuG/YjswZAsXtIN7xrY30OZVUBx8vkEu/8uHdJmbRZAmEFOOELUawtLG1oHlZeU2DWEXZrpDzVd8PaLftyONp21FsvAK34yJOBfTyUXm7tJUkvT/s9BBQsmwiArrgfME6OsIlPa6i2FGqYeHm5OJi8yJbbOhIqyrqJj05PgHPl76qdy703PFrrQP2qxF5Mosc62k8Q2d1AuyNY7e2hmwSoE9KCOuZF+WiHwnJAjLPbG/swGlUsej1p1xUdqG+HHVIeiktIDgOe+ctVg9tAH+Uft5vQyH9zvzqx8WHXh7czImjlcomWTOJn0w4M7jRiILfQ3DinI1IEMfUWxs5CkkuEytvS5q2tMBl4wnY+s5YJD+OM3wIPnnxxCFn0pu2LmKe4ug2nXh7MH8GMOqR2wdPykQVehwJjxmv+ahJl2UH2QSOajq1hR0QLoPajN1xQpmEHdz9GICpz2nhtXuYykEUdEqenXAZhU+yJd8sW/CqlLByk/BNK3/nmh12SqRfyveILNm4xeMr2dT3V0FbBGrt6EQKNPtW9VoHs5+IzQCAS78uNtL9Lm3g8ZwUzIKcafJQ9FbHFZ+NacpmUfDe3zKhS74B+2bUYLQLmqSwdOuLKYuQlUY2FslQ8j4nLxhK6OLzOHWW0tI7cDbhGb/z07JR1eIYy/o9X+IQd2HK5/S87D2w28Ryb0aHHQ4VPOH5cJlEcZsHe5jym3/HEjhAuC+aeUDqe8cffOazP3/wKxXebWIG5D6XBuIaA9t032GDr4rfSS8cL7L1d0HlGrSmqk/oNnoWvcOoe2lrSETUpb0ju+h5IH2awO3Sb/xaQ3vvy5aVi/I1AM9tKA/GetluQtumx2qHc03VI2u+a2N73MYrWbVJac3vgvyC4EotLLaseoXu1W90IaY344oTcqSw3p2rM4i+dlM/7GPri7zFI+fBkx2Ly0LukCAjz0tyWSyvS71JFul+fS+MV25r2uwCpadqZnEQqE1gPe7/WDaVltIGso5DQKwtTVl8OaHH1I1h2ODiBbYtN7v0zjfFjoVv2MY7ZVh+S07b4EIra31NqBVuZm2MQRVjVszJoeWMTbiLuV15mvbd8tsd2QVju/uN7F3srmGp3zt6KHV+Eti34xRvrm+5v2JdSh+FFfpdWGBcS/MnXXSsX++7sIHqM0+6F83UtQmPd+Wr22CKXl6s4j7VbRtE0iuUHd+LODuLsTuZUiZ+LOt4XctrKWXlOcb5YT9tNV+wvPBC41eetPLJwIeUOJD1eBk7rsKHDs8nZp8ZrAPXSRa/3xVdDD1YpaXBKVNPrHLZMkAVlqwj6Kwn1/VywHdP3C6bbVy2MjYhgxtByYWZVVbThQvZKxLYyFyR/KJ3d78Jl0cT872lTnBZzq3OKqObvC9kL9/t2NmRKrS3+a6tF7LKJXg1kF7ISrl/IevbFW0QUAh4zbqkpcHCuqJKBElPx8wVaXUvEeWQjRVMdT3CcdLjTY5tUMzDO4zUecKT7bd8ZZEdkcO2E057JX3wmd4fECDeI2O9dtw+2SHwvwf5wo/XZ8Iv9yCAaKySRl7xBC5Oj3xDUABHwRBBXoiTKhDDlYSLVq98wuHS3ifu7nClxOKJ3IqLC86nvveg7AbIdfN7xIlDGmK44sjte090feXikuYVuOgiOzx+IJ8qe8U3VfE9/qkibFeiaqBvMx3uC8AjQt3ZOtv+wzY1etOM6o5vtrxu8TqK7dIEqOZM6an9qqfwgPT3lv567z5xAsdH+6Wv2JndltdBv9125pesM3HIwjdIv/0j0cD4ppnJyirruxN8C3mk8V0OEmnjFMp8Yq/pzthMXJMmfRynp2rYy97MN2pH5BuXafbVRwvhnq98eNetjBk8mSVm3DrXMgGz6LyX3iOipBbvQHqCZPSdkVfzik4Tqh2IAcZW9mJkUADIcWUjeWVjld2W4RGyLW5/zDe97LVvrm3sLj+s90phR0QkcmlquTHe15H23l0b5RGFd2TvCVj3Ktz2UHU0dXlXUqO92JMtlsjLG+L/7yZlqjo+tulGNGQvbE0QmqqkUwxdvhTP9MT3Y1C2qw3Z/DCH9v8rILQ9RH0SRWmFM54rlV4eIk+E7PgX21q0pB2wRRMocD6Av+yNoVcOev9A42ndSH/66qlPwoikh+wcMLx1y8gOj7Ob4bhvT4p0PNFcT9StciFbaWFrceoQGjrJ0BpPasm/OMTNb8uYBtgS7yVNO669WjixYOrdGmFOLFm9igc2RUN3fUPdj4TP4Zsvk6u6YUr6y34tCnk4s4COJXgkLHoZYKeeOabpZMUStH3nEY7UEi+yWy4t99hGqXmycfbm830HCf+f7d3pZVlBPgJf6P3Ako4z6+MrDzhnzAt5K35e0EPijDHL4M+a2BZ3hcEH80BwpHHGjXzhpzjO8h1F9nBZBXDi5gXgxcHPwP1neFV4v4mZ2jOsiWxO2AJobBuMr6oD6V0YS5synZ0zjwDtpv9ZV/MiH98dJaEnL1LKkvWSdisbZahmVWw03M3lyzZusfRCtssrpe0wuujl8ta0KatiI7u67d5XNlNepcpmW9nJylIHS7pqUyWvNm8taQVtnbR5XxFSVwb+nWV1kS151zpIPKmLLxe9R6RdbSrPjgspyrZ866TFbKuyNlnaEmXZBojS524H36e8aUJj944jtngo5nHxidwQkyPkbR1y5O0htyOXL7YNBjFLkbX4QfeF9GJOBDu9LsuTOlnfVbt5nc3364igb0XW32XTE3LA3zmTKftZIc9wM6ZGgWPikJaqSYDTct6WGTsnaVptABDvRWLqNE5BwbNyr+KTHlnVYmfB1AXbqAg73ygekJUq28eX8pEv6kSzYkbNCxd621Dtojp4KK96n5Ns9C6cUW24yCvLKnDwPbmUrfnUeUtrs5BVrEeQfdWVobFx0cHf8vMZHscp3zr2KBO+nPfEidQfGzvYl9yGtGB7TQs4lme+0fFem9s4Ji1eJ6l8K7/keN1mznqHXx3LFZBb1ps/dVL4pth8cF7I348UGZwysp2TMNKbZfOpuukzKVP2WHhgVmOz6yJ4QH3S+VHDZ736/IHCu25lDMDp0DNaaE27gmoejS1gl0AI64vWZoNm2VYv1q2MOe0qqwnhXj8pqR66WN9aZZvVn0f11nB5tH648G643P6Hpnxd2m7yeSfDy62SD+bhKUteKVrvVdmH9OwybmzeENt9RUXXti2o/99b8MXg4bp6NeXLg8eRj5HX6DNpoQOZ2LLJ0cs8Xog8rWQmA22yZJbTNhK+j0CBpLe847VsJTnmdbJTSPag+FFl7anVVCpqS0OrnrQKilVne1w+4uVvftpWP3adnsTVCflrQ51JF2/ntBy5BrP63mLPGVHHqRZT/Tc9NfV1Xp7b8Q3pYW5CtvGKq9I707WsJe1OtivLa/hnWy9s2xWm3msotXyP5vUKvllkXsMDF36sOLji8WvyauQqZ1RZJuPOjg7juzgvvkm5n/AX5b5ebM28zmvhkAuey3qsT9Hd1IcUfFqj4W/Kl/y6Pvky3cQ/4PSEfVPPDo95W3otj2Mp2bxMrCyN8PrStHHqje3vlOdBW9hLvsw3i+xMyyc65u9rnvjo75i9DhA+bnjXwz9ScB4jItM5dJvL1PXo+YgYQoesYpc2/4zbQ9ZM4JvrMGRmICGawEs72WkXvw9R0rbxndpi41a20VNtvBsekS3xbivJXb33fHFFbPfSXpHxK/R62G0/7Gxc9N6XDT1kJDk0590Q8NrUSU3digHnu7T6SadQLUTKJhe94jauT+SWp1eeyYzP7YdxtO9eFojtLkEedCS+hKcyOc1cNPId2zQATL2EIlH8aeMB+NHq8fQrnmw52QJ+5HBaLdWwL05QDFnfugj4FqRBmOoTCLcL8RTLZT0fAHrGk7P5PkSadCG2J9qE7IAmmw+ob7ux1dPP5mdvmJtKJh5Q+3/7eCGnXXmg3K96LK21/2mSUU2/srWxMXU269+bfs7ZFNktbrjaYlMj66cREkWiiXcAYd3RBuI9hvSyfr9C3KM8d8c3Hjqb7+hZjm7f+aaTXS5d4XFv4zavlC7jbzzFVAjFu/Kmd4vtooFIt82+TEI8Q36CRpdC755vov+N/O2TEit2gwX6tiDaLFwolbtwiJc3cDQcrKnLm02jj2Qsh2FjkbWt47xLQ21buusl3J++StDkWK9uM8s6dqs6B8ZWfOIfwmvDcj/Eg2RHcTKWm10x6eLt7piyxhkIO1L7+pjhI78C95rwvsflL6O6iAvsOzZBfAxiSVYB/oqej5l35MO8pijfy0HemrBwIK2VGoZVPVtZeHkY7DpZttku1ZXWLVk1spxWcO2bNl9Z87paeey2Wya9rVBjs6BcnNHi10vivrr35ryk+7PVmwmmI8lrG5MCanMP2ct1UOvsIm3eolJt3kzuqJMuE7bSFqJuldKLb9PoTMz5Dl8cxcY6CeMXlmkHWrpnZJm3rbBL8uQqryaSfElr8aPoTbJStpa4Xl1kD5QtlE6wljbrrVsXkx6zc9p/EwXv/LN3FATDxze36zNWTmXoro0jmpWmLYSWVA2Arjij8MCQjQItnCFFtlswq+njT5FtMLnxkbd7y+sOV7Xfk7zHIXQp8xwV5x7fCNbyLgVp/vJ9tr3zC/UHLu/DXNVhxB3/J32dzTvZbXkSSNzPl+KtzRxP72DlnULb8nrTsO8Nzht1C2GS1bU8yY6qV7CMgJu0mFj+qJ+lxBXx6RNg1hv5ZuUXsqlsG8yHVsRuitHFjSdMK5Isn6QbnDKHipLTHsmOjKegfAUYT6uE86Wt5/T0yuz6dNjULnhAXE/dPWFwZvnmXR1bzhB7t3jmc1TZr8lewQ8ePuZWRictWgMSEpJGdslGXah+xFoEvuqoRSIDQ9ZTJ+NflqyXj+9vSMVlm8WxR2SXvBpZ5sEEtPT33nbEnGlJy4OEpIxCJTuuauKbdYFEXXY5OavGGzMXfamthWxqlyWD1BYI7Jf0nU2LjXlFUVMSbWVj/Gnb4Ar7tXq19w2Tm2+jW/VcFs8nP4K1xtZ4rXq2UXZ+XWS12Earka43bUgrK6ZY8urIOfQqrVZ2sua7s9yzJ1bicSHb7YAQT8/2i+JQTXmxnpsIrXIqDhusQTEO+qh6ozyDrLMsBJD5BO4VELOGZUY/y7PgZJ3Awev9IfCp+HtXds8Z+gq9Ne0lljPGbKnwPldhFyfcWHBxF+8M3eEGNnhcgaDD4/J3Wz7W29nY4lXIXOpF9k0t38pzwS8u29my8+M2LC1/DVsbtdgIbL+7avZvxg8tn5aGGb2kunPdIVFzph6WFqr8TsJU+ASo6vG+LFJkiS+FbALHha7HLouE1cJOiviwaeiNg5oibd6euObFmDomX5avTZTsW50zPm2+lYmVoGL3mlfUCdkE4xtk2ZnXTbCVtcOhPmxQ4OtyOMnH2cpoQaOTqcWFhnS2otqBLW0T1JmBNrJiQo4S+RtlPvFx8GV9Nlncpb2SBa62oVi8flCTzGyJ5xHZzsaUtpHt9NS0rR3fBtld+eKebuvgnp5rv+qM54Hj1q+1ACT7SPm2euleenm5kWUrbYCZnuom2b2N4zKR/hwcCuth2fKEzdO6f5R4NIgqnYo1bQvirqQmbnMittSgguzzRzcnAU/ysaECr1oiIMTzOjgvqUfQx0DD9Arp9W0oooAEKca7A3NA4EQdxHjM7S7HlGWbWM8YLJxevthyqCUNxWcdyPJxUSJjtYnj1DV9fqPyvSrULqDzw9LIm7DsXsZjmixZB+fHP4b75Z6WvBZbkh7D6p4zuAaEZSVMsqyNox7BY2ziIVv65Ws45JKbmnhS9BobN7Ky6ql5Vd/c3VJYOWRj87J1scvrUT2ObSse17+tjdXYglcOa2wz+ZCTMp4OmTmwrvYstum1zWCble7RNyqp6SUsT43a4mU7uwZ32eQmyq/xk7q1Y/t0iLqsWabUADX4RklP4RAhm6NH22KbwrZ8Z1mdOGwnRWos8Le8Zr8pr2mqYXfgMxxr/VAp+418ci7bvHLGSdsP+0+e+PtjqJxx0g4JegJHnOEnEH/g8BZa+ojh3Y/LX04EjGPRRpeguJGgdHLW4pNswQsjWAJV70+J9BEvm3onnt1BKa3bXO3o46qA0B4g3ch2NkKRju5OpHJPNv2YaaT6Jst61sXG5FdEtbSBZavenWxHKvS7tbGWr+hdCLiGKxs8TiQC2fqVf4TeWlGNns4+ks11b6xt6XK+/jRSZWk3bfv0G4X5a3rk+or6IzJmkiwvbKenXWSjE21wYDoePwgylLPeoyzj8fH48WQr3kWbHiWSJFn7xhiMlHwoRiQ47OJtKoK6PZFWhMETsiF7Iz0AUvwgXznBesMPGz192Z7I7zfc/MCT8fdGZB0fGp2TOTD5mo02oBhbaWxAcfscBvQJjaSmG5ij8PObMZL6gppinnhInYwwdTQpIXyQjMHLBI1kLW/LdzaQHR6vXEWFINW9bLlfl6J3eAzgke3wSU9XvrX4KbSY2eGxrKhRucl9k8pQbCYRvqfA3jeNWQvPsSnmF+kEi6xgmXQKJ2psqr8fsRGM5VZp1uaKXxYshsSkDBiTICkOSOA2//IYR3NaMyU4pMhyvtY2XU81WHNc6F/ljFmpqT2y/YRbOvM2bNc5Rks84E/BwibnAWq7ZmfGfcy8JLoU2SwkO9LG5DMfBDXtpnbHHAGssv4lAZsMOXwFZ3iV0CJabIMsE7wpezh2z7yYM+hQD+cqy4v0Dpr+4FsZnxOzzwsDvCtJ4jpeB7Yt6l1cS/dsuNVkuagQuid30tZ7j+m5a/9Gz0OyrwkS4nfJGZu0jX6/X3hjd2+RJQGp9x6RrUplzXdJ09oge/+6Hbqxq8i2ejXF5zyFkupFvnnAfrcdLE/e+IlYJqDOkvRkietmEmK1WUr5Ii3Hq+lpaOV6LZ6ro9Z2ngxZWrYjkfOiF9O1kU+QGcvG97+qHfzyt9VRHtPld8a4fvMWFMCeuB1u5Un3qTxFNmxWGjjwAKKuyMZqrem9Qf06ECT/5YTyCZKKscvvBkSEZEVKes5XI/8H+n2+18wiGtmha+hJGNNgziM8YMPDiikcr3r2ZVijVzzWhQWPO167KJPcs7kpX2fXbiNCZ6P/lAsbWz25/7a+6WyszaTF/Yy/PtZoZBVIu807S2TLTUnQ1usW/F3sJHPCFt2nbbkJS3lbzmhsXrIibEuXfcdG1sPxygNJT+GQeC9OUx1wPolDqs1FlvGW0+ZJGh3eMdPy7opD8kRLvNwmq6l8nNfBWI4Th0jmUFC+qb7Lu2tyIrnugwXB2py/quGdtzI2MytforiWEpL244ubLSsx0KyyMjWPrVR++mMF3wWM1+Py+8GDxUvau+fXd+Wbcb5xQUhJ1tQ1MnvfbDK90LMz5K1HE7f3H5Gteje2dzJLWgU9mb1Tb6Z3IYV92vy3tjIKRgJto8iy7Sprl9cmLG/5aKxSxsqoZUGET/mOtOfoldYtuVTVhqYN5rroyRQwcgrf8ARjJLDJxlq2WcDgdNv+NxE+7+OPfEfWZ+iTQvwzLyM5/ygzjDDrFpPIYxAoE3LYbaQ/7NC5zXTVU2VFMN8PVP82kOcxV2kPf+cMiJMdYzIWq7A6XfoZDMgTr6lnxdTZ+Y55b2lnK1BYO1W6n6xs3sXJnMH55jyYM6KN9nwz8CfbvHDKBS5yXqzXrmzL1+X3Cvy9V6NXWG/lXvSS/pYzGpnqG+3S3pO9wv2NjXl7ovY2sF4qzCPcHJlp1lvt6WxmYGQ9O12cFkUPgMsJFjXdGCNs0lc9bKv/XfE45VOwPftRvZyMOcsin5wApLhm4iYtQBLyLBySMS+Xj03t8HjHGWZ/4LOlI96YW9UxZWPr4JDl75kluwmR0pZG4RMUA7tjzeqc9pyev+uBZn3z72GLgF+Xmc8HD+83MbP6XYClQSuRtHUxgbtYdyz5znx4q0UnWwcEANJRwckm/1nillYCh1rZLjQAW8lrka5jhyvZneo5ptj6pgukt8pStrMD37H5kXCPfK5stCzkQvyejZJvxtuFZaTRyNZvHd3XK0Rg2UmypM3x1qW7sqX4A5Xh5BXKlhVvWF4g8lu3jCzDyYaQmTiHbDecC2Lk/LkuEgEygRW19Wj9+kSJT20E8tOuZULmhFnT6hIPUp5xDSIXTxvkunzHhvTxhIxXWYHY7uIES/ED+UnY4QeTjDi/Syac9ksk54DSZjQ+txMNTFXcA7NlEPtoGy9ZQZC2PD6Mxynt2/Russ1X3MaObx7Tsxz69IhNn4PHxhmN7JYzdnZ06Xa4/4hv7nLGRSYP8U1uPe6Dyhl3uOqSB65C0TdHRohBtjYK8qX07lmXlnOqOzHq35S6qNzILljv/BA38sIZ55/5wnpptLk8sQn+iNS+ODnzO9K9yhknaaockSdWB+FrF7f8HePJh/F+MhJn1Lwsbd3KyGlvLivxhG365uay3Wj5AwVVPA//+MxgoKnc+kevLgPe8WO8V0ZdS+GfWcoITDMlKWl3sgL4sfyGOwZiGvc83w1L35MdxQt4S/IF+5f36ED5vkG2A90ubTfnXPQUsES53dq8mUSy7DIwqbI1bUPW9Z6U+7U4bUHaD1JOMksGYusrfxn7qh4KybCxTAwKvXynYbzAS3ltfLMSYXWSFuJT7N9Z4IlF3I+VzCK7TQsnDK6YpJa2cbgs3avbMjJ5lTgMYubKouvkFcVONvKW9Hve47zA21Ior1lWS1tlLXmsWAbp82rujQZUgvyOGb87IMLfHQvZlJZIl1dK7d02lj1K2jeHZZJVtjKiw2OOM6Ymxy+yFX+3IGP3LnCRD2bghrbgkWJ5l7ji/g7LW2zLBicbK98knOzw6SB1gvyEfabf4aJUG1Hij+JxsSvVfVN2e1d14QjilBV/+zIEcGD1DeNRul8zhfvxvt7ANp+wb2yqsjnvyhFVT/3NehX8nvxq47ze2LzmXY3ltCv+5l0WmtqryfHCWn54rdSXV3wOm9d8kx2z6KHndFnfQUDv3x0Ava8WZRrNjSeElUPucEbisYhLkbUkfOhH5RdBxv3YcqgRN1kgTa7sSH/L7pb45ox3zHTsnEiy+Njh6/JA7323MhZwXzB3AQaafNUJT5lQ1Bc/F70JWMR/LYDNeosirdlsDpzQkrptOxeAu5DXa2TrGOgB2W3b3uTTpq8TvCvZbkbH92UfX/Tcy4zL184kI6dOdq+3y+e+7IW30W6LnAPEtYR92kVPM8nNE6PpRSkgJ13asHLdWtKXKN9TsieGzUrpg1BX2UzUdTWPVwzH36PkYyc1wgYuXlR6ogWAj+nv3t3iQ0FiVZPv00mOUvIoT/UkEez4e5Bv0oTO/+XtLnl7JOczT+HCSS+OZ5KP/JDKWd93+LK2MmLq6NZi62LOgqkLLgTYMXarNd40qsgdIdr2BWc0sq0dRynTBlNfg22dje2nTbDqqpOHtTzFxnt4PH8sT36KbIv7fK/icRfu5PWIzTX4KIKGEwknC39elmFjL+Oxtvev7au4uJQvA2XLJ4k/it7+xMiGQ2p8m1YLZ+iqlyY7CszJUORTFxcT7pfF0nQPudTidk3cX2QDbeqBTuv3z7gY9FTNbQ4OkaPyTdhXd1fY98IcU4+w3eId/kaa2N3ABzgJkA/6EMWhZnN+z5ixnPM6QBPXxBP1fegPGD6Dlj5SeJ+JmSIcOCc6sWNpkGv0qxGP/h7km/ITACe8F9Vjk1sbrAfrhApeleWQ9yiFsOQotJAgk1ejJ3zQ2UXqQXlfpb0gkYfS1tDIahe/kL179PGFjSZ7Sb5VzyvK251M2dbJRZxtFKukB2WXrYvJN+RZtqktn/bV2egxGokkuQYVCPIRud5eYwTaXB9H4FNTt07FpJfiTH4S5Jm2/JEs+Z/J1fTwi9JAjAksr1FXmYhNNk2yis1he+gRxy3KeyH1uJdkPV+eGJ3rgAB2fL6ROukBiJzPuKeAyBkTQx33b0TkY9uK2XCmfOO4fPX0sfXxyw6GqYbBFY8pXvpLpG2wnPuVAkE0qQEt/eqSbzosR8bn1UOZM16DbUt8+ZQA6y1aL7Ctyq568r034XGTdsH9Gshm1SZtI7fdurjj01Y24+SWI4mL+yQV6yhtx1NJkmUZHC8Kwvi09WkBo5oHy7Zc2uRdZM1kJew2vcukq8mHsTw4xOLSlo+HZjwZqbuXmDOsPDbxMJcnztASl3mIJeUrhMdp90SyK0+czOZD1J8CJiwXWxSreBx/XRaZB9KuDBDuT1vt/WaduB48cM4JGRrOGHF/X/nbgPzPsIb3e2K2qd/d1hPfSsKTGuqU/sMBgvZyX4C1YGJH2v5CSXfgjB5k+Uv3rVou3wJ+TZzKluzCY7LJN8n4jR4uv642imB53y/ZVNVUor6S7WwkwPe0HUe5jZJt7pTtfNPYuIRNvmL/ZwJrdPZ5VaYC0mCxI1zJSR+zWdby7fwI6fOteqvJVFl5S4sdX5xleUsIK+Di77ewDFk+JjkO18iyTpr8dKvkm2WbJ3K06mnkymmXrSWcN9uETjYTrJOzvV8grDfScl5O1FTeG1U5y+a0ETf4Gvlm2U8e16U+XhUutjL6d8NmIRwzhUWj03WYumC5RNpdg69Y7lvnuQ9QXx82hk04MtZVDtkdcd/NE3f9c6SVS9nKEQ9j+SsmhsL3zK+dW93nWe8ec1Zeu2tjNXXjuxRv6tN/zMIJ257uNbL13sYOAdYt6TvbAGTcr8Zu9DBeEa/o5cSK+snOlnt+rXnNGzweWouhi97KPwl/k9KKz/n3cQD1yVgn69/xogmhYV+kpR0TEvkKxUF6GH+PhjPcRuk5I+KkA2Vb+lE5Iz+R47y6CVzlAb5/k2imx1EXAbtR3scJz62Mnx3og6H1Tr2sNW0l9lVefGmj0SM5D180IdBIhNJ+GKwJQnktGSFWcvy2uN7lZezFB/TnQQJ9JFy9i7a08VIFy1aaLkgz2CjxVpYAm1ca1/Krp13y6fTcIx1L66uE0trueVn76PLdDnY0fnMawVz9b2SkRKveNj3psWGp0qqXhPr4oHPXtWKbSpfWVv5aOybRub+06qmymWDEbS+dad7nd7MSiSoTU+SV4vR72FNlaZsKdf/1hW769thWb84rBgHrUcdCvoonVALYk7S5Ust6RW3iSE/e0raVE3Ivreuf22Q8zTntmPfkM981WBqL1SvRfurrGvfaOKX3HKnvyipbA/fntIhU7RApenJ2lzZSSa05+/eiEk6aLPOOLLLJxjuYeonlaHjgIvD3wDzfgmMLVjd+XbAP/e8lbTJm1btiaqOnYGq+Z2OHVe9WNu72dbLzr/vqeuLUytnfwgOaEmS7+AHxJYewbPGrNrIJRzf55Id2NinTuWjBsjTR6cpNByWtvMB4S3rMZr9e8Fni98DUbFPOa9znbeNxui/jvN2XwFQq3/EIV0k80dpzhpLNdrou2QFDIk5rPMA+HpO/WAg8syxO+lTLBwwK4Px6zMze7ztmmj+i6F1MAxRV4UgS3WSdlCU+s3yss0BS3D9UOhEmgQzieG+EGWNiVyYipC6nnfH6ccrCufOaOtKntEU2fIbVgBLvbFz1PmZzp2cn2/XXfDjLJq9X2hh5Zem7W2d2xL6kVYrLer/mUYntso5KiRu96SOorL7kk54GWEiOslxlHqtuaSTaPAx0AZHGQURWox9Y2mpH9B1JPmfi1tJ1s2wiPYrzt1qsb6YTtOgeoPHOuyCl8f3+G9nAnpCL0w/DJiffQuSg8tmTrqTX85ne8W0sBjZ5tRRKJ2eJQuRcZS1fpb3/EuQ7kse2FAEgFrdywPTEQMPfadNzfj9HwRO72GrzmUEVeqzYZ/essaxbGTmP2XeYM2raivvFBnN8xYnAAssrd2w+iKRuudOuf4O2BpvJrV4peikwpraya/Hu4eJjXEU2Y9Vbg25kt3YgivyqbekVoi/0Li2W8Cmn3eC+NHo8AndM9WvWmcuS+YZCxXXOwG3U1cb5V4w0pn0qwq9gInEI6/D2RbKaD6OKLfvWIDQ5xRfueHLD2Ab4+1i2eDTuBMayf4TLi+AEljUdfp30VhnQFsnEA7Ctf4HHML6ZsoqJ2aTDy2dyKB97NjxW4wb7tndg+SjikM+HfGjC6lgU44U0THvOud09fFN5rnKGlUtw4pNz1ZlOZjxAZfgycP/bGT64eY+Gdz+VMTr7iPtpVuZgXhL3zp6BP2TjmpGg5zVlZSML1iv0jwze2ax0oo/J7dLyUrMooKz3WGVTESiioLzu6U0/JsRx+SitVr1s8wTy7WmRhWCklFeLHYtpZI/biHxt1SNR9xs9PI+/epl7/BSfgIy8bCVqtXUtj2ZllfTqjWSjJH5ejkMoESckJ9E1z07P0NXla2lzGaTmV4hwDKSCNC0fWWQjfc53yMa9ET/oPh9ZH6usYTqnhZRtgxLEGkQZxeCXmaXI2irlmJbFSiJmXjfWA3vp2mT5Xt3aGEcQG9FnvWci3xtts1n15m+dxTtjmLJIaW/HJGYEtIqnHSuzmO8v3A5beR3pb8KycST0q4NPhqQsOIAGlHTsHXNAM7AVKc/vqHHojDtW+yQ7593hM4NOXkSY8Qa7k40JF6NfpB+GtxtMarfW38NjSptwcSPrZa9wUaCscgYXYcE6uinA4zzANmvRuZEDyEelP6dxmtncYLdwfLaTtVI29QcB7OCHiU+IVpabbCnPwjfcPruQDrKofBN6zW/CBUt1TyCoyHktmF+u+YSL0pMexjkg16ektBqyc9LScYYJp0nYlOX0R8NNEeeJ1lnuM8YWzpCwS7hMcE8nbGcsBuLJ1shrYGqUITDV7K9PxY7ZngQnPh0+dZ33Nnwj/ERtls+4STPfGJan94iFPwdgenUODT72zOeDm/dw+FhbGRPhNnHDkQoUXVrWZK3ZgaABlpKVsuxF2isMvX9kfblAY9urbYI7Ytvq7WR3aXaEu9GTiK7JK+nd3PP4ha4366E0V/eSdCHOh/PK+wIoL43rzSBDa1r7zbx3YWPoVU9hJFIJKsuqi/NNJyDJacOOXHonf09fbcyyWd+6jSMHtlGLG2v5tLyjHpOKRY9oqSpNY2u2Q4qsOmHm8lWbndTLPRYVPykx2xh6NXzQ2Lg++VPXW9+ZO5I/aGujXzdfc1pbtZ2TWgXgE8c3hn2DXO5za9DuHg0mW85geUmtO/XXK9m4V2R3ejqbc6WnsOL86MGtTRvKADZ4XMvXxLeY2uJTYzOV6x6/9H4t6Tc2L/lccdPO5isbk15Z/djYWHHSh+0bvXmDxep5KbKRQVdL3B5Zb4NtvALS5d9xiOXF29/tnv1qskwphSQl137G41qnK4eAbaoekEa21dP5JstGdOWmvLBYF+tOd2VaWN3WCWii03OVY3nhhZWrAvfN3rCRy3+muD9Vc1niAZy+gMiyz/DtD++3lRGjYSyk5kuEdjJSidcMkuz8MTuGHQQxn16HmOpmSxoBnaeFTyAblXtbSvk8SUpLNlZZsjmVb0l4rfch2fl7J8tpV9/UxBu9nX5kva8pz109jc1tEARbWnnm325335Vv1usbzebvZCulbbjZ3+Nq/Zn11G1m1IVSeZszGMBkG8KIJwbM751siup8ojbLR+XOL1QzOYSDXDaGOxikFWlNT/YJPWHitDzJsfrl9+NoC0u8o2V65pMooSdSWtJ6vkFmaSsKP7njuLzAX0LX8g0aiffIbIuhbbexp0ue1vwK3rpYbaQJFiLtQaush5/odebymG1330u5ExhrhdurRD+cgzrHcgIrbg2eFtFhdWnwDY7M9sFPs8y0yDp37tKrQnZiWIs5qV/0/JXyJb7p9WbZdKnisWDB/WWL4UW4xNSa785GwtRH8fju9suq9MoOutG+t022bX3T4rv2fr3HGYyxnHZLcpkXOK1WWalpw8ZlW+VSpp5DrCt5N1E4Vi82UU6+00BO2LRuXM+4z/KMx84R1rWpHxnOWvkGhuaJDz/xch4gWd5S6Hg880mcYfhpvIL4a/juf4/JH5DIj9L60fTCNoY8Ftw/gz8Kdo/vjcnkAXU9tlXxSPkiL7RNWZETouOJmXOG8814v9kPn6L3jj900A9u34PhfbcyVhRLUSlEs0vXXDPcS9sCtMmzz8/SVKyUJu2lLN3byyrsEJCErx0ZXNjMNrbb9d4q25UPAdYP23hhT+ubec1JAdek+4ieR2TTOKSS2VXIzWwjaCzTyVIJVdPqfqtnGzZH50/ZVNw7DS2nnRnQCh/AH7behyqbnwIl8/xXvBPA1iATbJGLJ3JBykyeTpKJzDktT7DmkyLXUfXmyRhIT5ZV/7fKBkkf5cCNGDAE0bqOOTm0p/k3y39e5ydjNuGysvLgwN4jiHfL7Jh+hdA9842n9ffdPj8sTbACoGM530cViD5UOIR/ac27hqvu0Ni18k2T2aN8Y+bfSfsoVz0k28l0ae9U9qXeYttrbbwX3zWHHmM3YQGS4puuXWxsuscZso3csbHJKPl10Vs8rQI9qv5aK6sBaTfE/BkjlkYP5Wuy/Q7J4IDs94L7l3yjqeqWSQNhueVp+AvD2MIZgcfBVbU5+XtelTPcjvkdMJTrjtEx8avfk+SnVvW+fz9SQo9P6BCTzFhgowmb6U15nYkzTNbfLwP8PeMo48ee+LzXvFFE/ioA/ziA7wLwRwD8zar6H701v3edmMWikzoxCcQHppB5bDIafGbZ0vFtCGOdrA4BBxGSEPfInHQlrw5Mpb/fyuYeDhTbvQxayiPI5enIZ6cXd2T7ou/TdkDb6HwVQVLaqnfxTZP3VfkeKhPbf/SmZlldE12V15f+SI+nrXnxQRqNnk6WbojfnwN/Spub+viRJj9UPqn3qmyT92Oy9P0vsxG5vMsrnzvZokdIFlBK28hqkZX8OlM+et6O0896ZScLzbKeFxPjPVlewTRZzO/PRJxlb0X25uin5V22eeIjxdOTOsQHuuvAQKCe75cT1sbNuO9tesZldo7ARYkJkMXR9Yz4/5AtHEFtRZPWHG9lUTEoMpNqS4d1FXNK+09pG+y6p8fii801751ssWnB5xlfsW2ftuZV8fee3pTfHb3ZLr24F797Tsl4vOWMnd6q5zK+Tlx2NsuSdrSGdVdDZwdXTrSgwOMElAnXTC4Nn1iPKCQZoUtaj2vNp6Rd8l7xd8QqD7AemixJlo288oeU6z3Pj56mBYbmMhwpbcFUqe8050ngIbHb4pA4Lp8nWztZf2du2mhbEm1CyrK3xAGZbw6ovzs9DgX5wIHm+u8Q/pcAfouq/isi8rcA+K0A/u63ZvaOpzICOFY/tvGZNt0XrFv97H8CQGjro+Q0PFhdPrmbMaS8tJzTLgtpF4DraeeP8YdyaAB38cWi8AG9E+weaa/mm23aRo+n3dm2k616cVE+SrfkNQv4NlkUPxdmaGU1G93l2+Ygja8Uy6Wdnvr3skZLvpdbFyk95Ru7wTSa6E7W862+CRLjLYmHvwDNZegGBHmSFfGZb7FxdOtA56onvRyOfI8nJIO0eQWT40Px2O3CE5cubcTjiRfbifxtmkY2rV4iVlCjPPGEjU/O8gndfBI3Bkhx/HFMsmLriuvVORgxv6qO7S7KWx4/gwGpIcVWRok498kFy1mz9avcOSpngPLKVo8T5ypOu15kDllkGbvv8U2yONtUsSNwQkt51/Ls4j3frDh4WYt3ZFnva3lgy3ONbGtj1bPB41pnKXaHT1vcf5PN97B8I/2QL9a0a7YOlJ2ylE9whPZ5Vc441rTeE2THGTN6MIZyLqAJT8SjrDGR4LQJ54O2loW7emrjwhmaF83cXlq48jgifmw4w9LyabYDnxmPzb6Zjg9eogUxywtKHOE8AJ9UHjjJN8EDwzeZM1iPTcxAdmXc/7hhwPBn8NLnhV8O4F+dv38QwO/HV3FiBsBGjcioYshg6KfO1Pf2iENtRIEsSyH66LgnvEeGSdBIicxbtpZJSVvt6vQusr3ey1D0XiataTvZ+XubFaVVil+SU+MbHxc/7Jteb05bKMjKUWW7UG2U1cZHZcOAxsZKk4uNZQS0F230XsiWpLZ1MSfVVi62klh8HpucyHYdFEiJW7ogiBlnHUmvuoOMbA0S4qSo0KMI0os9YUF0VtiQJXIRhb0zJiS7TNL831n8kk9E9HJBPW10Ob5nREg+bGTTt2oQAw7QSqpqECqmbByvHMTrhCw6n7hpEC7Lmi98kKAeP3DiRjZ+GUFqO664DyxH4JO0uQ60Lyl4gHmha2zMPzvMuQpTT8U2ltt254q/beJrvnHRV/FNsbHhgW14BOvu8M19n5Z8imz03Wu9r+HTLe7vZEtTfVj2Xjyk76Zbs492fEk/hqnoz35cmpys+e6+uWbd2LA5OEM3+Wbz0tMnx7rMN2s+plcdF3lguEzKkPOquG+4l/IuWM7YPtau8oQt6zp9SOoTIvcNxTEx1vUElscCm4ZeId6b928bG0EcEU/NeHHubPROPyggfmDIZy7IffzwPSLyQxT/AVX9gQdl/x0Avw7A7wHw6wH8ws8x5P23MvLqKSJuL3ALkXNaeaxx0NYS79B72baHI3jat0cq1gkhkNJC0MpegbOYDUWWxxbLSmsp35ZQO6LeyQKLbNXLeqT4BjVttWFTvi7wJPLymOS7fn2rrCyyQj+SLzjBTldKG4pluV/2zl+MQVvDpFzb1L0TrHT3Vtk8CauTsm0XWv5yXuaB/P0ZpfSypD3mqqxwXiTr+iBjpZHvH7mKEsFSeSy+38qYt6nUj3OGbCXYLGvXjmJHlfWTs+z9AZnlqwRLsrLIGsGuegSKw33TyCKO5bf7n4qeN4f9o9v5lK7ifjh6TEQjvXMGD95N1jMtfYQqbeUMNpH0NHzjuFF0LJzxmglMSZoe6FVcLHj8Glxc+IYVl7/cxlscfEX5Ot8kvxZfLHb0zSZfk0ir9R6l8ctdHbBsLR+Xp8lvj9VN/DWyVW/9UexPBkojtNGbcV283uO+gD2bcP7guJR4aUvz78ITbV5Vl67d2uPBAzXfkU5dKGGqpTnyTo0qy+44jrLtMdmReYDzdbylMvB298QD82/awi5sSxytv+pV50heELzR/Rvp5W32Vt5bkv3gE7PPWy/8YVX9FbubIvIHAPz85tbfBeBvAfCPiMjfDeD3AviJzzHkXU9lHK1ooF6tbmtgMZGQx2WNbBLgUtoF0GN1ZqyABXDl4/IzQi/zISlZd8TxgGy1kcvXdot7RLDJtzVmo7fLN9l8Z2XykY9tdjqXAUM3Gazk9qCsa5OICd8i2ZakBavfBLaMlvVS7foku5RDWFaQbe7qeDRWWpQIvdZ/UIiv3jO9fuqj2dG1NLeJSK/EV+BmUoi46/FtI7knx+plSVv1Unk6PYNMpNjYy/rRx5rJuJtoidjkkp4sJb2hh7cNBqkSESbZuSpZbGRSXZ9owd9h8CdxehY5krdrJHsU2Xjh214GpxMaP/fwj2U1wOo9P82Nvs3YzfgbqZfTCOuIP8Wz/kvMSfGeb2z1enaky8/ALIH7thfH9FyVL8snrrN4p3vihm0ZTbKc9wZztjjYlOmejS2WXwT+HEBKXHRd4n61q5avlusRvyr9KfjU+qhtD9r70W1WVIelUUnBtsU4z2/E0xH4wnlpTp5sUvDaZXz8OTiE0/KiV1fOzBUrHucS5jziA84SspLzsbxgmFcnlCQXXGF4LCRLdlneaQt65Mv8Ex9wBuxpmU26Qt+8RxyRZWnS5eXLNtoHocdpkHGgR/IHbVkMzjgLN1Gcti6G7Ad/xwz4tm5lVNVffSfJXw8AIvLLAfwNn6Pr/bYy2kSIgU7njTmyGVEiJ9B98LBtXidk9LRObMJRlIj3V3EQBKDR9Ic96wdRaUyRilBBtnBugO1E1U52gaM6SG9saY/eB9aJ04Xs0rSrTVrKi7W8VbZ1u+RLmnzT27j6RkOgsbEvbynhhY27+uz0eht8pV5ggHTVm4hxq0cW2SC/OcCzLjOvJSKfsnFCo0YeM0PZlm8vKzLtkgD2mtfYCTZk48mX2ayNjRFncnSiExu8ENFCgZoX1rT2bpbpOei+b4+RIHkYwWJN6/c1Xva2o5D9HbBpU8jSFkMoRBFx4dMSAShvdRx5Jdm5NcVtZJJ9UNbu2cdHBfaOGW+x/MygCj3Klipr//SIqm5l1JJY/XEXcUadlPGIkrrtFeYwPpuHIknwjdA9zKdwZodKLt/CA8uNmZfCZVOPlHs2Zz9ik1auZFubrm2ul7Y2Nnj2qN4tPnd6Pa1hIU+oC3a/gm/8pGe+13FDyxkleENo0nIbdFOkTVsxNbYfBg+oSP7MhcjKA45dpIfy5idBVe+IBw8MvrGeYvgrka13F23yYWw/SbZMwOZW9LCZJlqEx4q8MGU+ShxhZYTZXcrr2B3p+B3fcd/qi5+iWTxzVfBN5QGseAzD4zOlte2LnDa/sxw47YePeF4a3yibGM+yh0/CFIfWrfUfNIQLv+NBRH6eqv5pETkA/HaMExrfHN5vK6N3kHlhcqdfmPd09g6xC0TWzL02eXLZA75y2W8TFJLNdhhoRatOf6IM9YfbzHn1aW0rY3nFrdjI5et8VfSYCxq9W9lavkbvVflS2q7XNjYuSST/7Ui82hx616eggmvZnFhXm1o9xRd1OdAqiFcBFx8LXS56y0BycVO1v9NT/WhUXmSltVFcNpHohWzUm5RrJJviWZYJt1hMpFiJepKq56p+yIeljy0dkic0RtCUd5ARnPQiH03lzx/1hG/xMPmdrG0PcXnpZM1Ofu/LZJHKe6MyrbJnmhzeyFeRl5JcyN4kyFiK7I3KO3z1GXtGDNxEHAct+JiSeID3+2y3MnL2LGsOF9zFxYo53FDSu8acJ11bcN8mZTseILM6DBr3hC9d2rzMK0p5OuxmzM4IlC9UHEnf0KK/b8LyO3pTek7c5JE4NPmU+3LhjMYXKwDb5VzvnrTzTZdXkcUOyz0u3hYWzijpM97qmujCZpCsFDHP238Xm/3+SCT+WEW4CPDJlKe3BbXI56g47/diAsR1LaTnqPd4Kzbpyd8PG/87iBdEYtsgEE+Yatzk45CpfCquTciieNrwjbdG5whMm9OpjDjxiXjO5APLV1n3MfhURhC2x2TOZSUmZcEhdLDJ5+D+1zv8TSLyt83f/yyA//XnZPauh3/4qh3uT3T9iRc0T+A2silfKdcvZOuk2z+O6UbD7UiFIHJMsm8Irc31Poei50qv1t8d4e30VHkCwpT2Trnvpb0uryab23Yzkevy1C3pNDXpXKuuvlpIlgnWRphdebWRDbJq8yZiyBlmoqsDpEXWfUMThytfsKzFG1kpfhDJskaypjduh/1MJJWQeWDCsjzJgk08rI/aKiTl29noedV7HGcfdHEzSm3wESToNk47fLUUAGz7iGB9bw1a/EtH3CsAe5pFBL36Imw9iqx0sj4QoFXmIivymVtaykRqvR8/V7zaYLf1s9ReS42/CheLnipb+iefDLl8IHrhn5BdunLFhJrm0ub+3i5U+RbLO5mKvxe4eGWjB8OknWyXfxcWWV3bg6z5Vr0pvx0eU67hu4YjahmqtOMGil+bWig2OE7ykzC6q5Lxo1/opYlQ+WFl0mSj5vKW8mQ8zvl0HFF5IN03tWnHQ5G1MiQXZM7Y6THZeK8WQNqux4taU7axw7OVjd7SjoJviCcMpwmPmUPyMfz0zUvaBsmyaVvkjJtsfHz63MjCOcz4hmU/blDkbbzfQc2q/zCAf/jLyu99tzIyGnkDV2+BOuP2GN4nSWOENwmPeobds0Hxsh0mlGdZlEH8yEuFPki9GeTbdheFpE5qJz2ZbH9aIOmpLjFZ1lVtoLQoehaYS3pXWX5CtzTtRu+2fCXrxaYrvTsbzVs6AUPtSWMReKR8hYx2fnR/GsXbFpZhif/uZcnG5BtdkoVtZRuKOYSdQ+0m+zpOLgwRu4M4Lj+ljROz6AGG5yoyacNI0X3fyUapEoE6oWquP1gfDV1BQnaZZHk7IB2hdtBWHUjdjjgczzYD8AlibO2jyYmvCua/s3cnwkvvbNn7AwqM96/EZW2lMT7gybJzkuSyVX9ZuTRblGSF9dpfWpmlLSzAGWmnH0Uxj8K36/XUxjMmcp4GVH9vCNRYx1ZGy0u8P8xKm+12Yvsx2oku2K6L7MDU6GCjBptJ0xY3Ct90ZQDcRutgwVXGUXk7YuBK6HXlLZaTb+7ajJWrmrTdgSKO5amMG9lOT1W7s6nB49qStPFFlYVk93W+CaMaPJZdWpZBgHQpYX4XLfDJnOtPdqsOwisvePKVJhuB4J67nEG43/nHfV7KpxOvoqkb4JNjSDlvIec416fvcNLKTYFx7rNkK012GLOJMyzOOw6s7JUzkh7Ln2QPL2fgOYTfz602xxb99JkRn1gFdo/t/IbLowIyzvMECwXLBfbdyRs9xbJJWXBGg+XGhUKcAWQs93iRhR21n/nmSFz0ccPn0NJHCu98XH70SMcpIkFRDOJmbqLJUsJUJ+6Rr1heahnPDiiza0qWFV4CnnklTE7YXBjL3pOYduqRcTdhJunx8rGKjm0aG7XkxXq6J0VpbFFk69hDyKA6gBg278vH9SIocdYrq16rH1dZSZ9IQyJVa+NWT+ObpY4XIsWcqBgRcN1zOiMP8o6Uj+NygQ5PgiC4LLvYmIwik4XjpZDsUx0nVsH7QD6ZbkxcqA8KqC7CxnQaokSdMMEey5YWm9AaMQE8bD2SLD/BEn8XbbyrZROiIWqnC9r/DyfyqcNIGvSu1dRzS3qQ4rZSOTSfZPNQ7B/mlJDFTGsvbEc+2sjGoOTmH/HMW2UAO3wjypBlrQzxZIs/K5C3sMTHRG1yGO8ZsOy49smfqtW0APX+twfp39kd746UD1fy8fdTFjBcLGTgfU6iK4GXM1LSpHvF1OjrWo2lxwMZF71jLHhsrb3yT8YRjTIsidFwVbW5ybfY6LZI/L3CwQXL+X7l41KePZYj12kj638Jcu23bapaOMTzEuAI3LDE7uIdn+6wnBEpgR2lTZhItnc2tn/Fs1EbrHdYbnh8TOc3nBGTu9kqN+VzfKAKjMNsRgrjDEtoC182ruI64PepQPhrOpjv0g4HwE/RjbzYQSSL4AHWm2QdjyvfBLabncw3hzKW87bA8A13uRvpFYny+6EcfjM4Q8HYPYp40LvBdhCHvdNr74DFKIR5QHHz4/E126yVM2ZexhnLros5CSTOjG2PwSUfNrzTE7MvO7zvxKwEByOLLDxKHVSDAOvWxkWCKmuAeYBMHdTXyeGyOklAsaTlHwauvfkz3tuc8trauBVd9d7La5OJp93o6sp3Yda13gs9q43F5/dkN/d5Ytkpq/e79wtS6jSA4LQxMN7JLkTfGcS3E1HkON/PXaMSMEpck81VtutmdZsGy9by1cm/1LSst8jWscnwZcga0clcgeXyAsW1RW/IrjbnNq3LPY9DU54hq41srLRyecNGLb6ISRg/2RuTtixr5ee0wF42+zVkKznXY6BvXypBL8Dovx7DY/jkIAXmErULPVD0uFhrvjTgTRFa/J2V9BiWk94LPVdY3uZ7gb9us9AFKWkfxedOb62zTXwJF2kXlLzkgQa7a/m2eq9ktde7wfmrtNnPtOhzgeWRnm1cW+94N0iSSIpJxT9b3K6bKgmfS5tvy5eEe1lMPR3u99wV5WuqJGT5niDxTdigJY85gZXVxDXf+zxgynhy6HpSGfi4+ySKmCjbjht1ioj7hQdgi5OM+2abuv7hm+AZPihqcITFh6ztxPiQQYGvyytw7zsxS0QRq+ktqnmHnI/0F4DjFR3ayqIYbK7wJ1sq67y/gk+seq7AvU17Wb5UBC5JSsvgvOjdjSuqHo4r/MFhW4aGJLZdr+rvyre9UPRe5G+ivY2jQEs+LCQX5Us2kHOkud/oXfXpheymtLreX92lRU/5a/dTWyrlsOJ5McvBH1UX5RvbXrTXS3IxLuABwb6mK7kCWZb33i/7/UWTrExjK2ECSBOLWBGsf4PwmbCYrFDTWnz6xvf6T9nueHx+4nUAsYXStq+Y7mLnAZLVuRKaZE+XTYd56IybjUnWJnSnky5/v+zwtHFE/jG3OcZq8WcQdF3Vp9bv21JMDoQAAQAASURBVMw87dDlg2Nw37eWH53DT5+zJq2ApnOrpyT1jV3/5bdpeNSTsLsCO5Dzq7he9VyEKJ1Q/BrLt7hYQ4P7VWTZUnihd2P8fRtZ9g167nHVJc/typfqrMd9bd/rakLHAzuuQknbYLnjcVt/m5bRpdUSd4k6Qct5xVPGlTOysaxm4pk/sSOcc4wuerzVs4mEv7QTYOAb26ixRRxInBeTj9DHnBDY3fCA1JMJ5z3bWs4csvANf3+SsbtsiUTk5ZMi3yFSdPj9geVuv/MN5WnYTVx1uC+GTTcJe8zGQzXyJg58hm9v+DBPzISXO43vrLPZQNz6oSVdZh2GXnQtjSMVtu1Kd+fK17wfCf6SDpKdVhb6s1w3WS7CXcB32TXtgsE17YXsNmxkN9je2nj5EdSN6JJWYey0z6Sxca/uboLOqjYam/8fyK+rE6XiXeopskZ93lzDgPXpljZ6eqBtZSFFz65oRIRJjy73I9ATnNTPx/A4fetrsY9Wl6ue6JqJgPkJmX2zK/SuK5+uWyIf+ATH0vKph5p0ot6jCQ7bw7LL+2Vl2yE8LedNBD3lD5ZFrICmCdyUHdsZ53fLMJ+MCZXPbX4DQTciktoxbVt3LEe8c4aC2RbR6aza/6xKeRY2cX/bz67679QTzV+Bg6aVHS4q1id5rOchLJ++aWR1I7sNLabu9JYLlPbR2q/vVl/KNZxRIO0BhSDfKJbKeUAvAPg3ucSmxj2Rd8fnX+q40HuVhbVXfl85fQLiUu/KCWOX0Vobqc3NxLQLFNapYpukJsEVL8UxcwjWRbSwiXEybFZyE51sW2QhgcdmU2B8xWOzbWpQwmdavAq+0MIhZ8gCKS0a2YPzIaxWrNvH80m59E2yiceOv7T1nP0W2H4mPzu2W9okO47dZ1l7z9h440YLoh86PLcyfm6gEaKvPgVjBmFHPBEcoVh03GANiV4UAHYUmej7BMjDJqF496Ak4k1azstCRqxZPinxLLvoTTamgt8n2yK75HUhu4tvBx2Ulb9HVWTb7iP5t3DaRECN0gsb8z1dyWyr937aZFO1mRM7u5Eoz5qtfe7K5L+biYlwvNqRV0BFsKx6psmT5HiSXeJrWvE+y++YrTbzKVPLNo8j6zkQr4+6Xi9PWf2UfGzycaC1eRzQEdv1zA/5yPtcPt7ON0iUJouHHSdvNvMAZO7Tl7Cd08qR87pBs54Sj/fGFHLQu26L7JmPZ0Z+X8BPeCRZ890BxaeyDZL1fNbpXMui19qfrW+MpOGs7XH5NE5NoyaftPWqrnGxADDv/ZT80/od0ODiI1i+OeZSW9+ErJCs58sYVN4l3mLMFWfUtJ2ejd4K2RWP210gJe2Wqyxa7ZixbKNsbax6rT9bHZYv7aX38bbb2wumdlhe/drteqh4XPkGBcuTXo8KIJpwv+IxPC7ueJ94SUnbYCqX4ZIzDiRcNIz1blBkD/JV3uqnhUOw6EnH54OwW3L5LR+fOB2K2+Fq6P7A1CQ7ecBtSuVDxmOJtFa2e5wRx+Vreu+t4nE9pv/GvtEzvyfWcEb65MqGb3jXyIcNH9y8R8O7f2Daf1TA5uhCdJnp6il56UQjYCWnSuxtpAJ91HlX923aQs7b8oEGFRd6d7r3pJBdddfG5n69fam32rcR3m7JbPTe8+O9kB+MZu9dPRRNx+M/EmjEsZbvCi0KoV5OlGs+utZX6jSN7CaeJ3CrbBmaFCIssk1a7j2HNPel5sN6NMeXvENWSF/EBbaSOVRlG4X++bWCN7ySiZR+TgbBNmaC5adXi/28p1+ZuIFu9dWIl2WxlbXyNU/KPJ8sC+jcwqhRlkTI+TCSV4c64YmLy+0Y8Cvc8wX3WS4K30wWBHnUpyVtsSZxEy6BomzHXE9+vKtncUfo67YytuXr8q6/N2n5Xg330jI+P9IirnjuVWlp2NBIbvnzvp26Ri/yuiYkbW3e5xNlXrC8C+4cTUOoOF5+O1LZ4H5tbUXP4ptrzqh6Y+Fuxo9I1+H6iu0RPxwXqvd5gkJ5ER4bp5gc47+dhOiHVAnbpp5mCM6nayltWbyqetPva85I99zWwHK+z6dO2nZMS3+QvsoZMelCwzdIej8L979DQZ5PzL6kYJ05gYz4KorH508XoN4Yk7IgtBgczzj3wkU/oRom4RMypgNJGHwm+PHqKpuYgpARDlChRxrZBdoWXxU9O70su7PxDr9cynaXvED3ZZdMGpt3NvqlTVqvlQvf9HW/0Xtxby2fboSsfHlVt7dxLjv4U+U5SE2kiDLJDOIYjD0JQoqstV9MWTWZ8TcmNJFnfio8wd+7Ty5v6Ami4JMKmZx4Kx83G36XYCFXJicZhGkYwVs86iQl9OvaTlLeOo8ktntnr9fJ056qRT6HbwGZcf/NEzr1LYXgvJxsz4grYNtUXK/SEfdFVnSe7gWOR/mzbGxlHPc6PdX3rwwsJshbswwYdbbKhL8U5wyA+b5PdEKXFUrLsz3SWzF1xZzUsTiL0vetEzCWdzY3egpOskz2zSqbMIfKa5dS+WZzfxRTr/D3Hlft0nY8t4QH+GYvq3d90+lJsvKK8rXYvekbpf4yZoKruJmUkQK+ly4bTpaCLbivkSOXnyYrSVaFvom26jVsq6dYpsmP8w9PlOZEIHWmZuJU9Fj69DROmSNismF5GVYHf0RcJwbz9r56vy5OGS6q8GRmpk1YHqclmp0VU4/kmyJrnOJ4zPG5xZBs9i2I83j9mBzewXLNsrFtEhB9mdskz7fj/jO8KrzzcflAuy3FI0jkHI/aV74chCMJ3LxrVxClIPxDOF71jnzWb8Dk75dVkl9kS5wHDLKTdd9U2V5vh+FXNt6TTRgPtO+LSU1abbSfTHQbsq3bOtv6u7Axxc1xDWn25ROyW/f51r86FxMaG4OsJN96oHxdQYesJBtTfhtZnTZyW0gTQ7rnxwqXvNIRxZJVRt7jqj+gmJ2mbhuMpEya4u981bzNaCZCgLadwL79wnkRKSKOEbbs0lY/QZrQHUUPb2kBmNiq7IyTa9O2mpoWSAOCw8kXsOON4/wKHjzcl/0UKFgGHmETy95oEHLz+8CypaX2i0eDt9lZQ2V0KKrjkCbmAXLediujxbmxMIeUvsF1YWnTTgvGjVLW1CUo6wUXK7Ynm0lvfXGGsuehcsJFKscWj2VfvmRv9U35a1lv8aqWr/is2lh5rsXY6tdqK3KaZCPZr3TzysaU90ybXnsn/Zm7SoMqNiz3qogI0rteta2xnsXmjazEt7Y8Eyl5AajH2C+/vRGVLuSreDk9f6LE4vVI+4z7XKTx/6OxcfwauB91Xk4xlEjrXZ63XpMdUmRti7pv4xak0wdXHsjYa3EF8hMoxu0Zv+IMw26eoN2mDw6c+HQQjzkPVtxX13skvSDOyFie9CbOGHq5TP3hYR8oPJ+YfX7gLSC+hkOrSdGsMqo6MKa0S+5JDzi/CpRJZn4nLZJ3OZLNxaareIguNj+6lbGLL3Zuy4dLm7u8UuI36qmy1Rf3wuqbKdjIJnJe8m8mWjtZs5LzSH81EWXWq17HlVj56VOysejlQzbSZAqRb9qG0sRtWJcnNVOWnpqlQfaFXlBeeZ/+2kJ98KUAPzHze14XG5sRv2u+mSS5SoO805M+ii+y5JuDP95paZNNusiOpminG5Ks1vJpyst8bRMvJmth30CL3knICqRv0Pg2lJCt75A5mVPaTlZwFtlz+IbSbl6Jeiy0s7oVDAKfCG8rD3ietRXWLYXNFsOqa6MXuMa6bP/UI51Nu/gsH6/GCfEL4UzCnAKBr8L9Gk84gmUSl4QaHpAmWcq7wbpavhQv95KeapcUPUB8c+5KLwe7N/ukA0DB/+17xxNjtnzalo/PE01Vj2Rl1WWyBm2EoRlbc16GA3yvNLmkl9NLwtQob5XNrlGASlgX9IxfXK9mWWn0Zny2RRp1G4T4Jqfdywrp9ZMLk9+aida8n46Wd71WXl7Eyu8or3zD+EtPsiYeH4lDz5Sm4n5cJxsnZwyuylie9bLNZ+IMyPl5uP/tDor4uOFXPLzbxIwBiS86VBmQ1e0gfsIW4ruKnhHJTkzwj37O++MY/QacDdlJr0IcvDBvj6QMH5pQlc1o45QXb9GpRXBZNrGOXZo471FvZWXV0+aF/p7JJj0Xeq9kF70bv2Xf9IZe+0ZbWW86TNxd2prXVq+mtMKylWzv2FhXppatiiU+7tdeNeJ526OWvErexbUhK0XPqjd9dHpm7CToNg/iMne0WxuNYOjekgbIBOrkG3UQWxlN7/Sv0NG/9R7gNg9ZdZtN9mZ22CSFSdzK5yRZVlvdRkU6RWySppMqbVMZ21HGyYx2L29pwZykSZJNNmIQvMzysuxBeg/Q6qnLKunhldnPCIbHh+S8Ci5G0ou4eoVvMJVwfyZd+n6YVHDEjuBHOvo+dWeZnKDwyV9rc86W8NgMamQ7TG5wcYvHF+WrW/TLwcjXnNDp3ZSPbWY77nKGrGmXvBa8snsrdi/1m+4xdney6n/XUxgz7te/GY2nkewbXGE5BSFZypkZrd/SHmXY4j7rtcnOljMCN7kGBVmWJwfLJJ8WjKps74v4mz5gPfE1+kzgpckwtvPhGybrfIM4tdDMcR5APunWsNw+nCXEKTzRsbz8qVPLNx0ey8Ti8cTKfhtn2LuAHe5b+fI2SMXhE6uVMw5V3GZZ0om88179fMxHDFbOr0N4t4kZk4aRwFilKyhqR7s5WDdM0crCJ2VQ+HPqSlaenk7hEWAOGEiv2VxEPW/Sy3kxAKsiTkaq5bkgskXWytDoWfxqtzlSbGy3RabyRVRAJFn0ouq9kFVQ2kpoGJilpXw+QVCdhBwClXD6E7eEiC3O2mLfKAQ4uNJLoUql5DqRolf3fi1ZQVmvLU+EY3OzF/AyX3oql4hb5n2ibgUO3xJheZMf7S+RZCLQQ3N1iXlyXS3lbSmjmxRd3FBKGY5SfwfVWez/79PGiVN2olaQ1VHsvB28EllleXJ4Flk6SXE25sN9EydbsV7ephInK478TFYQWw4B+LdrjECB8sI22SzzyRZvbax6WDZOFItBSd7KeMa7aUX2s7a0zO2KmBOeijdjcEi4PyojEgQYTFyUlIcumEqTNMJyoNBJwVR78uWyIFlLSzCR+IaxvSl+lV3xKsp3n6sKrxEeMz5VLF/wqLOxhoLVc4003ao8p+jKl/3Ktcsd1DmDq7Szu2Jho5cpg9sCAIgKlHBRCy5G/mQYYxY/drFRfW9iKezOxukda0c2P0j1l9t9XlxT1PqtJh1jhB9cbM7WmnVdKJRYrLJJCPFA4HHlEPjineF4dAOTtcHbTE98Y5iqMHwD/VPC3xFujSwsrZcXrtfw/ZiyMX/OPGgHhLge2p5ofDNk1XVZCXu+YTy2tOMpWWwnjy2FVv60HXHiPmN5+tyKxKSzl52TMChuOC+46oNPfJ4Ts88N1mmsude79mP0Dr2bVp0QK+h6PuiJdkl7QViDAIMt+YlaJYI8/M35Kv+QtUw1YXpy18R35rd6Ozt24cIXXdqFYDd5LSR1R2/msr1RW73chphUyQGtLBeK8qqeW2V13Q7UZL27EQQ9CYVI37g6SbBNRe9uBdU01V7Fq5yS9PLB0Up6KF8nhypb4vS0y+7xU6YI63bFrEcX36CWF0QoVZaI7qiDq0JG2casJ398UxEnhpns9NdMl7cJxkCD67s+IbRBQbs9caaI7TKhB+j0Rhn8CaQPQJQGCQLhLS2k98sLe6AY/YriNFFJfU5xd7uhXKS5h4uv4YwF9zs9FVN2sve4qWDqzsZt+RruucLQKut/Esbeyas3cfHNLt7XoV7KtjbdwUW6k+939Zfisvqi4iQn3drBCVfPxra5kOYdBKx31ZPHQ55UyIbWZsZyzUkNu9jGrnzzd66HsrBnuzC4dISLLsp4TGnryb8sm25JlT0DM5fyr5xh5YvWQnhvYoTHlW8yHmsp34r74/p40nWQXxm7gYzlrgsK55uFQ5hvss31kyrP8O0P77yVkYZgBqhEvJbOEGc7ebO4XahoL9voEucrAXR0J10s0g0YtzZ6hxcqH9ZAkza5SldtvNQb6apsmxf/KIOixTdY9SabuTwXZN0F5V+N4vYl8nuyy/0SWt/oHb0B5JdFZH+mPFZPjnanrk9IZlHfDUSUVhqXxn+nVwV/z7RKZevIZyaRE/nsZzNPk43i/5t5zfLlUyjhBBokRsRsWyZ1Eg5voaQV2lgxNGIkcjXu5m0bRfaguh8fpB5Ch233nNd95XLm76djzfwPAdloetTTcvn4qGP/7eUNubjP2xKbtPQXSRYpnwPqpzIusl07eU3giZYPJryBzNy54c2NO7OxrNhWOkXc8fgWr3a4SKm2uSa+yWXY8sBdjHqbZ99SvntcVfHpCie1yGzx+Mvkqny3ld2nhPffJW/F5hAnt3rPxZ2ewhlrFhvPNnyzvL+csHSXz1RK5ZWlfNrHCx4rcQbjvnVPkRNAeQVE1dOlJ2blyb+dTGh5qz3Nl4zdrpvSpndm7a/Ek6iEqfQECIrxbbVp27JIRn97ztDCGWMbYs1jldUsO/3KaQ+3iTHc6uScXBIYPsp6Jt6AncJrJzoa7it8a+MB28Jo+D+3ZyauCl790OH5xOzzQreFxQHh6uucKW2XMadTlKWTRa//NLAU28KokDIZXFXaKIJs1G3i+7LXKdfQEOajai99uMuLZCuhPtJftcguMnax2JhXSMsAbKe45tXJ1rD45oG0F7J5PfMiJFmzMQcvjvTxyGgPTK7GyPbepIzlpI5hetmRNkYgEgIko+jkozxB9F7NqU56WW4S7BsjOyZn7tkxWeQJX6Q/irwPMmDvGUzZNGlZZW+zIDwI8LgScbsvw19B0nSUcZKtBM0TOko787J4+saN/zshnR7k7TGfFWZ95nolYKCu5++NcSOsgRvAbOB82EftGfcwtXLEVrblsItQB+ezzpeTPK6yTbJ4HR63uHgnVGy7kr2HxyXpZSt6BVct6sg3D8u2fLMzqkTdN1lhihXeq3i8NXb6nIcKMtt7HXp0nJ12C8CwTSifvmh8P/jmAveLBYHlhpsZcxlHkhmS0zDfZBM1e5oW1IY6Jb/ywl7o4V0aMWFT54TRRgMjTZfhPj9R4idauQz5MyktprZ8Mw5higW3LOsLaDPtQbLjAKc1bY4HltviYctVxD/byf9HCMMNX4vwzu+Y0dCV0Qs0v3FkIEZzkKpp0couXVrphyCRovDsATq3vxSWXgojLssEWedcigsbHyGQep9tZj0FrMFxG99UtyYjH9dbSYx5qsqybxabCTXV5AjckO7LMkCofmVDUh3UARD7ouhxZHZhXMsCtJW1HE1fyDGnbcBOcpnifQctK6XV5kw4Fmc9/N6JIPsnbzesxJ23iLSy1J3LmkiK84mIfMKjE1nKN1ZZWa+RIW/p4Huhh1datcjGJMiuWTFupfydjeJ66Z0zzH35dP/mekfaG6UVyfEb22gkOmWPkjbymr+T7Lm8DB7vC+RTG03WynBgfZHcDj2xieKbgwFU876n44NpMpx3vFK0x+UzFhEepwMtOrxa8DhM5MoXNL1USmSLOTVtxG0Hxm5wvRtsh2yOL5OK8m4Xv7qX9LDNkvG4lukuZ8jqV5DejO2rXx/mKtJXf1ffVL2LTRRn+B/3C8Ze4G/lpjopyr9nfzrKjYLXSe6CB9LtklU+tn72j8I/0tpc8q1mzN82Ucx6Vtn6uRLjATuY5BLLU14xcRKSZQjojsR3X3g8Y7k/rSLf5FNz+XTFPe6brOGxHSJ1tHic0474iU8SuH+TBo8XLL/HNzE5vBXcT+XZyPqi3gcOz8M/PjMMoCzo3gya829C5vI0y3NpJintQRCJCKdQNaHK1rxBE0vsZfs1phK/ILq7ZF3SzqIsod0iUonuQu8SmpuX3YIzrMS9lddrmynPVvfDstoXtrG53vATu7j+uSFcTnanrE/qNXeLxZisudrEpLCcpFX0Ussdt4R+F708ual6FtkyMK26Dvoey9AVgG9kgTlkW/Xm1cv9impZ3SOb0niG4lzN6ds1k1RdnwL8dIxXdtMK6pTl07wE+fsyceohlnygKPezrJ3UJQA9NWNZ+BYkobQx2Jjpm49OM8kLaLsmeIL2huC4mDvFJV5JoLRVYtMTRuD+XvsrT+h4otGYmPim7LxIljtnMDd1eYVNUuPEQknuTlgesl1UCs8zr/jnnt7XcEatk9fw3OK3O7J1FfTq8zNmU3qtYAO6W16InDc2NrhfG05n16OysueBKrossJHeemIv2CeLeXWipeUgqTVt+Gh97+sIkCyYzDhoaXPvSE+kHLvsXhwqkvG4cgwWLLeDPRjbkWRXrmK9HOdvRnZb8dej9i3Pkw4jqQdW8bXKPVj5hnZTVNw/aNs781zedp8nZc93zL4z4X0mZoror46eE0lPG1FYmgKadIjHkm0dpMdoF+sjmpLNTMtqPSIlYxPipTweMJDs9jhfAsZcPrRlS/dkTaslvoi+Iq2HN+h5jewyQFjKZ4QzNxN0eqXIemYP2JzqoHDSg+VzWelkN+Sb2vb4y5OGNvgRUXMQl7Zp1HHJBNaa1pfUNdlYm6BwQWiQbkdKV1Jc9EvUl5GvEdtRZLm6xWxWAPatFWolQVyFjOmdMk15TXmCFN6OYvcCB4KE3I8ky36N1cd5BLPa6qmlO+c+foojtrRk4tZJqCWtt317ajbuQcvHnnWc3pVlcznjGGj+2KjJqsv64GSmDaIe//zIfnxG4D7SjSKRcdG3MqZJGVwwYeijnFFxY4sjzCH7ctzDtkWObSjYtpV9Cx5z+axrCenY6S02tnY9wDcqE3ZKXg/JXqXdxR/1DaebNnI++fj8jZEJjzntRrbymljbLth9WV5Nfxfc92Yu6Zo3g1K+/cIdY95oPAKQoypnRLq4qF4JfDKh4aJjUGMT93RbG49JDsUZQ6dNB8lWzuAQODmxjSZk1Y6Rr7qdBwL3hyw8H2B8GHr4LHjMdmNVHrC0wAkI/GTcofeMbYgVjwtnQFF4QKN8Su+tISZscDs5L+abkfZTmnR+4PB8YvZ5QVAI1W8ErGhGEh5dwd4Bs2C3e5IH6pHhtCNgvFcm+V7eytE3x9guISmulPcy50p6w65lUsJ6yo+6TcP1lDIseq8GJinxRg+oXkraxVatPozxTbK52tjJ2qznSm8dQNS0F7JRf7qU13/Xv27TRnbRU0YMu/Y1wXG3wum0S3bYiX9ArfsubSXU9a80suqyNhkqZkuWHaSHROS+tYRIT0rxgVGeui0l2ez/BBDFQXfqimdatbQ46Y6tJZPU/V5exRx1QiuxEoMLlLhvh4Hdn/GkN+zK8ZANnfYOQGwx5JXSXu/w/Y10CJAmZfm9tCwb+ca1mJQ17fPRsGnXgRvzu2GzkgK7Zi3stjJaPPVJigtSm+W2ZRmlY9kr33RFmPeszW9xv2JqPSqfdHRwnAu7yl7h8U5PLUPCX9O7Kfe6gLbJl/Rmv5a8CwZlv2YbW2xOmfTlXXgu+XGt5/F+eeDq9u+Ck/vyUeYzMRJ292nv6Q35jOtnSr8+NRPwiYRSbAh1kurPbhruBd/EScKSMFWLXaD3crNdx/QH2yRsS6om9bzt2lFk+Skb54OyC2HBfYxj7WF6oAlT+UPRHe7zE7ryJY+Er1X2JjE5si2Glj5wn8ub9Wa+0aQrcN/sYtzXxDe9XsP9jzzxsYnyVz98oK2MFAhcDYxVTIoAmJ50pHzpR50cBLiPvBbZYlLKT9pIpC2dcNhIdnT5sl6+uHFNF662bXTNNK1g7ohgUbLeu3pJuu0ePDepNl/JlqedF+/J53LxZGn6dy+r+61B1l4orpyGn5rJOjH2hJ2/dZRPER8ltvwtLsBKnK5HS7wpGrdb8k2elBGBLnpj8iHTj06KAtjL0VG/9IQORLasV4qeZIemtIMUagcZaZnkRzwmYS7refGqX9g/An+njAgo2WHpYwvIKJ8dJ490UqLJHknvGRNcWgHtZIWP0je9og/JrscidzbSai4sTxuc8NPDM94Ncb1vDbtG6nfpd04bODkHhd6osPDA6M9yEb/Sa9lag74jK9YWvHM0eRUFssrWhcp7Q4yKV85197ij4GCyUTY2d2ktXPHATk+j1/9Wjqg25WrN9yWu2T8tcfdsY3dvk80uVxs5rg3fZCzPOJfyYoprZaPP8XZ3qfm7XSOTqksrlvFWRsLjyCsvToFkPS/p0pLe+Zv5LbYYBrZzPsOcfC+KlSdkSVbj6RbbzOXjxbWM5fPkwnmyYthh/6ufNqm4GPdy+djGgseUNm1tZKyfT7+usZw5kxfPiAccu89W1g4MSXxjess2xw8ZFHhOzL5dgbadKMUFk3hsRVUtDgcyPmJZa15lz0DAz4ip8j04phgAjTztjbICPc02yPQhZUrMwM+yKcNCGDTeDRKgOOtNeddMUGQR1x7SuyvfrryPyHLSZIOSbGSwm1jllUpdy3M1KdMgnGpzzSvZLCHr6Wt12uRp0ZzLF9vqaDBIedUtK0uzace746LdM+JAk9ch1s+I0CCJfFe9msqX9/KL6/Fr1KDCDg1bXTb8Gkcoa+gB6wERtSImg3Z/6PHV0znpi+OEJ+EwqdITNyFZX42kQUY6YnmWh+O2TXBMNmkroN6TjZe9bStLHGO/yh58TDPJ7vVoSWv1l98xEAFuGN8yqza+LUhqB92Ue8XueTXh84xX3Ke0QmnttF3eJsfxiqlhTOEbJPOtRMRFjY2cnZCs46A8JJsc1OBvvV9/7zjDtxt25dvxSdVTLzV6OjseLd+OF1SKUFOfgfv6kG+yno2hSY+u5aH4gvy8ONX5gvTytmqdq2JXuB94bHlEXvV9ssxNjMfRI4XysUlgKwvDXyQb7TAGoX+Gh7Z45xiv3htiwsB5EX5ZmhXLeXsiWtlwcsZy322RJivTXsZFYUwNnOSTCw/2jS1kafAWL5odc2EPMiZCN5mc7JiPDe6b3pUzhGwOGzPu72QT10Dn+8W8pf0Dh+epjJ8XrCOllUhFvIQy+7hSfPbG7WlbcYLjvGHPkRXpWJ46WFYFZNETNpmNHY+IdjauxBY2knAprxa9CditDMk3OW0/iJ/ukEaWye8RvYhBSCpfM9gwO5Is8WaXlk8LVJWxt8HTjkKZ7PbplhUmLelrLisaWSlx15uNrCSIVAfZ8ZL/h+RcSBAnJ2F5Cbm8qilEMEKEWMNw+PhOCwAdVMcvbEvSq1mWiz/9GrJzEuDlM7Kssjo5f8hKkbXhc2wxpPi0Och2SB/I9cDvL0BNj/o9f7KFvJXEyLiWz7K+0ZMh3/5BzYG3JgKStj6mrZiu13zM2y0tL7KZy28DBspzyVuY8PM2lU88yQRvSwFtmRyyN+V3QU5/18zKxLJfzpYW/owvHaOkOo5FM3fxkWrEAyOqEEmdPTiFOQOUF5ru5pwRcZ2V3fYMt2te08BjKbixbGVkvCnYHUpkkfX0BfcZf5fTFOk328j3FtVVD6exMlWbUh/EwlWdzY+UT5B5LnPoGb6GLHgsknlCISSbMdNhy8snkQkQFZdw2LKR5Nd6gFMt4rbNcb6z1cVTQ8mynJeUOOHxiDEed2mj/HxKNj99y9sTK87b05tRpiOVR5C3GCrqtkG3QBj3xv+rLE+0DlQMJc5A5jnmjBXLYxuhYfWN8C24aqS1yZJj6rHDfcbPOYkknBfA8VmAeSqulSUO2+CtjizL2xPtm2RuE5i7ziQbXKJT75m2UOaJ2fltwP1nuBfe94mZAPH267yWxq4FhdKoOt/zrMTGWL1sEJfEZUqrVaRbtUxM2xTJkhVwXsy5uN+z5T6esP4q38/VexVkb0cND29xaQy52spYkqLzwKJXys02c32FjdSmKxNOAMxmqd+ObCKvTL5a8lUi0TrhKvkSISWrDZSNMDeyix3I9+K22eQ9wSdeXU/I9tjTJYpHj2rSAqDJB7/4bZMgEAmh5rXoofvAVrYSu30jpurNtnR6zwJnjIdBykLxyCuWB3nwYAOBWP0N34TNZzqx0UlXaMDE7QZrXl9eKMflP4jHKe64v9dyd+v1got7nF/S0iRttXmvl2/f44hW76zwezjfxuna4psuXssn+fcS38m+yWbCIyk3G70dtofs9eDSjxCqeGyym/L4larXdNd8G9loceoqhfSuE/iSr+MEEi9Ikq0YM6M1jgtZvucuyhMlxxxO73ZnPrV7KW3hgShyXahct7SHLNl7geU72Rb3CY/zQp+910cTGcZu5TKaXsPzM+GvyQYeM/7WbeorV2XZgvuXspVvWLbW78cLz+Pyv4xAvJee8th1Bfz9mwxZEIfPhU2pQ9YMI1qPUubvW+WqjUynOTQYsJlgGM/DMKE4l5Ptaw9AKaGILOVIeorV9/J9KFBh0nYXaZP0skCaOLc2N+WrSNBc6m/YFsO+GI9l6hWeL+1lMwmkW4UkrA236nX+j31N71PKUr6L2hek9wpYITc96WSRZYXsiL3sIR/73D1JAvVwQ8jGd2HGiVTGiT5pUE2E7x/qZLtneYSPgCvE4yQJpLj58TBb1Wwye+cqokT5jnCs2wyS5cV1AdKq6dHqpWOLZx6Y5YyVS96yM8p3kH2ANdXwl/nRbBI56b2C8FE+rp9P7ppPzbxctjK+9q23hj0WzDtHxuYYNkfniK2MBlDWsCtnNPhcqWGHOQtnUGYHFk7hIXYKDSWlstddJF0wWSmyWwy7iGPvm8zD2TdV72LHSrnt7zYkPRMjZVM8vih9/blNVfNio7b+6axeuSr6xCp+rZfvr1uEV73RtHs+WYwwAcduJOxmPTL/x1g+9BLmSv7NsoHvbEcM9EELWjERsLziwBLmgZhchmx8DJmhQcN2EA4z3xCWy6LnjK3n0yf+V7DgsPGXmG0KCL2zxu+jyayG0GsYy4dvmFzBYctDyWbHYyWO1MI19GRPT5Klbenum6z3AN1TficNHzt8TSZmX8rCp4j8D0REReR7HhYq/qudi9MNsJAm7SZTH9dMoKUM2yex6v+L/Jt0i2xhasbKZbCx5CeX0QdvDT2PdJYG71/dxyR8U8v3SF6M1a/qPpLrJqjgFUpfo9cSLYW6p7mOUB4L7UPZOyZ5fG2UO8v8XsiuKfaykbuRTJc335MkG74RSWPLRrbGJbVXWf4FOTqBQ9OEh0CB4iHvK5e25UMUQi9oW/p4ImeEeYZesN6I2710VD7GS9j+/oZmWTuFMeTPIhvDaJO1l8J5wsa+ye8dnDgUtFUmjmXmeJa1bZYxKHp1qLjPs4Fz/ns5x2dTztNOkL4fxP9H1zJnvAqvHsUNvrnFDQodr0B3nXInErKvAkPK86J8iwXlwkN8syjcy175Vqjvv6nFvUZoOyl7RRB9vZ0aP17Da5owdSNJeJqbmNAYds8ZMQFjPRJZc7r5j3dexOSJJ0eVGyzd3ILo+gKX8+Qh43fOnycPGb9C9kz3AHu/jMqT3gfTMkniJ1gV90HpVx7wb09Wm0rcZA/P72xlDY8PnI7lB2G5cUeWJRsnz2UeOP0e58X1+SGDYvLGG/99oPDZT8xE5BcC+OsB/LHHpWbHUixEJHPUZqcw2nsZY6Uo0vqKFYOpZMDwtZgCuAuGddseTbTqTfnTldmR02DAy1Hwnq/bk7ZKCm35qt1UHrqXDo0oaavsEjpyutBbibZOHAr6xs9qMy5sLsulLKuWbrGRK7CY8BrfpLzFCcgptLyH4e8q2mhi52dmvUQmEedVx7qVJF6raYZVtDUjqbEUTFyS73dx1nvU8rayGnFPq/GuG+aTLyffLCuI98ZclvPapI2nWxp6JNuRjzq2l7RXWc+XZX2l2PTyymrWeys2B7Gdrncna++YuR4Ah0iQtU+MGpuR3+EYOk02vxd3o62OUm30tEP2UKy+eVMYuL/9fAkmSc69SXZok7+NVmWlckZOW3GjvhvlDxMcj0Gykbj2Mr/IUYacjqsaWatFOZZbfn9xteSb2ea9Ho77Zg9EfJk08bIt5f05fLPFfbOFMDPiMrO4P3jac8iqty5LOxdXPaktZPxdeUBK0TUmLdUmk60YWgtUcJKzkZLvgu1076j3+CZxUOxmoPImG3W1w/IFvzavU69uZQ+yg5+IWV4JQ7flD70uK/l9r4P8USeOjKn+7+hkA4/j6VeH+4zlbOOOb3jSFmWzyaJPwi5k7f201WbmjGyH5ZPebXNdprf49YE++H5B8XxiFuEfAvDb8JYFrTLhsb+ckSKT5IhnVRVIH9ovn/SqR1JOZQLA2/jawgrQHujQpg/NWtL2KZOZq96S16WNnN9d31yEJu1Wb82QbHTZ6v9GT5VtDWBLGr/ufVOutnoVyzsIKX2jtypL7Vfp0iqrReReW8l6dw1mDgcJcEHAv5iITIJGhOk+l71UjG+LcdncR9KTJQ0C5O0VYXO0Gk9rT5uQ81q/01VXOeHuHoSb07Kv0uCCZIJQM9GFLed8sfyET3gelD00r/KK8hYee8E7Vkl51dNWfEdF6iynETvSS+WrLJ0C5vZYdY2TJY+lTb0iMJbbNQP6E8CpkFMTIHTYFjXkG95SVm/BtozHprzvkykiVbbH9vZwjtdgFAfp9S4Z7WQ38fRdtAvZV/PNK2RzefZYntK3sp1etblIEnZsfwDXVfc8QK3wggeWFnup93EuDmxnz6Ymd+FHSU6pXtU0SDf8Yk5IWL3Ra2Xmd6yk6KpP/PmAI1HaEp6wdsq2uI98DYFt6duNR/bdss1bmFdynoyp4Ztpk049voURLe6rxSXKeBDfMGbbpCvxjZ6TF07C8so3496Byjd8jf08ZPlAkWf49obPemImIr8OwJ9Q1X9Drnr7SPubAPwmAPip3/zu0e5JJHhQSw+ecSXCQOrhSK+Osx2TnbWIZcMoLQ0Y3D4FlJcXK6lyWlNZ7WAxTytreUte9tvHhB3IS/xc7ONQ71H5tjJd+TZ6lixeIXtf78b/b5Xd+WIXb4LWehEAOt8suRj0ZBuZjNcj8FtRa5NFT/uqIrVnofSR1kck+6dqdk/gk7WDZZF62LxQ7k3fpHzNppQPra7avnbEoIQnCaM8MUH0ydTUk4kcmazL4GLIIsmO6+MI+krOfpyy0rtnFB/5xrYWK4OdtGWVkJ58FVlMPWzjiJ+eNstq0svvVKQVUk+LEqfypq2Z9F4feCvnYyHh/jcC99PEiVcB7Oepo6EpoOe84UvrFVQsWhq4Y5wBaahkKFh0Jywoedmf+S6YHvDJ1nmLpi/bl51WPYEjkm4vYcs3e1WXsiVek+7C5/DNIy0nu06v9Vhgf2ywPCENpyu+8Y84vIUHMPtl0cvNM3D/zrgiXRqJ6tPl5WlzE0Qyhnpqf2doPxAQme94InOGcHekf+6Dmda08SQFWnY5FPv9mnNGmXwRfvsnQpBxP3AzMJCfejmeiXpHOOZWRChxwsTFA/mTNiKBixn3g2+GqXFQB4qdGffhsvHEMbYU+mJbwxm+oOblJ7xOevZ8Y2mPlBcWPR8+fE2emN2dmInIHwDw85tbfxeAvxNjG+PdoKo/AOAHAOBn/YzvVSPMdZugOBbjQGwvqGnLYHKQ4wQQHonOTrw93pfTelzSyuZGdNgpYYcqIIfkFceKdaRXU/nMjiUplY+uc7zILr7hzDhtRzqtb7JNV+WrvkmyTMyNjTwZyB9LFdRK2JavGmLbIIsdrWxN25I8txMtaekY+0tST+wFgNq2gaXskooTQ1eeNH7t7s+4EzJNbmq7ESQTfXuI3Y1DJChfvscTJ+H78TuIlWTBZDWPdU/bYagJi63iid87ql4qR5IFbdfTEyJCk5as12xi2bwKS0Q20/pq4yTbQe4o95XsWFdL7ZAP/ndLevOTQdYrctKKKJc3lyeV19IL5jfX4h/n9ehWRsb97/7phPuUQRowzxGfUoMR2ne13cpIecmU83yt0u9NJI5oJ75LQ/YycgB6G/+++Glj75OcwPETgHxB0FAndRVj8hGYC+TkwmV53iZ39ZTQtyqW/rzF8qtyv5Vv2A5KvOOBqIP7mGo2SfXFa8o3rwnzTf3r6Sbe2CQr3ecCZazOeRVQwkVa0yf5JvNNXhzXlM52C/D9tG1QAD80iNOprFsIpbiOfESuCYykyZJ/ooPTbNIalvd6J36l7dVVNvyQ9RDfqNCWQeOBjMfGA1WW7Wbc58lfwmNk/I144LgvfGmWjXd7Q/bWyPrTuqSXP5PS6eUtjME3Vjb/9qaX6wOHd5qYicivB/A7APzlAH6lqv4Q3fs7APytAF4A/PdV9fffy+/uxExVf/XGkL8SwC8BYE/Lvh/A/1VEfqWq/sn7RQGMpCPPQtJmQ0nLkzAnYALe/EpSc8qVFAEKKta4pWS6Jtf6W+iiFAKqejBA3eXEDVt0efmSjX28TlKWZroliU38Itw9frq72NRRTRsDKiuPsS7lIXS/Brvnk6fqsI2sFMdf+kYv7pW86oE2KajbMto/kbPE/WizWZYnHPzh0iCL+G3pQibu84ek09M0zsf1a6SZecUHnDl9/F5tDtnVZvX+biuTllfyifc1IizbHqOIAcb866RIpFQPtsjXrUg0+TEbqVrcRinNbdpYyZq3u/hHPwV5RXSWPx/AcRab7YXuTjYfqRyyUXbzL5fX4vVEMDtS2k8Gw9uDfex5RDQ9cVDB+C4kzai5qhm7U28o/XlsSSudfhn1ZnlKWThiL6sCfPFTBV98cw5mXgB8Ee8IJHzvsuiubfBpxcXO5j48zAMPVOyjfLOU/WLiuJVN8U09SP6dJmWzHy127Ow0PZDVJ4vq4G+ZehmPF72Lvayn8ABN6JgPGJt5XMQY6q96VCy3bGb5pOCkIKdNEzTSM/BCvHyGG+a7xDeMe4SLvsMh4T5SWv/2GPOn4aLpNR0pn7oFfvVB+FXpn73/m08hjKrL/DCKSxM1CVtAeNzzzR734+nWCH5oxwOyvBNj6OWnbkXWbKJ65YU5f9rHPLB48QMFxXse4vFvA/ivAfif80UR+U8A+A0A/goA3wvgD4jIL1fVl6vM3ryVUVX/LQA/jwz4IwB+har+8GMZ1IhYxk7KdVug8n2Fn4wcLKGZyCdCBxaPSZo9FUuak2wwn+HPOG2J7QDZSOZDQxbIx8vzD6F8qlO4vI2bDKtMrzS+2Mkm+y1sSHOxuZRdKL47tv+uLCXR5Bsl2erECz1VVhrZSrAXeiJOgzTSn+dyvLVkpu0GI5bDVpY1jERM1F1adYJdPcuTrr3eXjaRMYzIgxSh+amSEaXdjMVgrjGNscihMMKzPDDTx4rpvDdtDiKMfNL7gTzegdLWEtNlepQGF/OeTwZHnj6AoDqJb5blAU18FyzivOILJj4n1Eh7o4GCaGxL4ZOxxrtfcwBhPndZRHqva5r8ARA9w8ZZBn6PQKx8qrAJbxyfz359Y1Cq4ygu4fO0Zk7OfLGOcT+cPuNhmHMGqLHAN6ddm1aw3C4GZ4TJAuAU4OUbAG7AOZ+e3QDoN4DzW4CcWPzVYaoDo+F+g8NslxZb9hjT3Gtky9cI2u15HV1c4bEu5VvtqJyx8AA2PFDzomv5SVmPv6634OBdHuCL9UnZJR73WfQc0W9p97s8YbuL5bPle4NbuSkt0qWGSXgsUT6faM0nS0rls34dfEO4Lrz1D/Pjz5r1TItrWi5vzM0nPi3cxFv0KmfEBMO3FDq2BVeZHsNjmxSld8bcN8xd8x5tE+TJEMhvWW/FctNzkr1wPjlIz052yJ3p3pYzJNJWm407gweeoQuq+v8EgOaVrl8H4J9S1R8H8O+KyB8C8CsB/GtX+b3Ld8ysoeWnjhMQ5hYX8Qkag2QwSKXacTsDqi5Lu9LsB7d4yIqg2eIRE7w0hi3gnGys4wPW6zZGXI9s78KnrOcoCUjg3tYSLx8T41Le1Wb7ufiGzK42J1khAmc95a/nRNs0lm2ROz0628EjskKynCHHa+Jp5PCbXupNy21pgE7l87Ib+1VfCN0n6VTXRqpCEtZiV7+K6xXE06aQ5VyiCBanCSI31zRAGGU5ql6EnUES9V/IDm4TmqBh3iOCIMK0a7wfPj2t0nwqod2vfrXVUD7hEKDJzUx7o7yl6Fq+TSM8ATrpnS/bMjl0iOc7/83f/baUVe9NiGBF0/ZDiNK2FN6qGKTOej7xoABCW2lqm3plaLqC9RfHiIrH3ApJecJ9zy8aprUM8cS9SY7p1J+NP6qItx0FPv0E8IUoPong+BYgLxjbGBmD7/CA3tnKyH2Mt853/LM7+Mpc3PEA9+fOxiRPsu7jhm/YRq1cxXp2PMBGEE5WTllC8k0FKEoiWYUWPdu/xVjBmIjwowTJ/9vbaJGFB8LmpW6SH2krY7oX122reJWVxAO5fJmPZzmFemDZTZBPU6T3x+YM+CBZSbg4sc71MN6K4yg83zwpTTwA0jO5OG9pzzYnPJbAXDsZ8XbE5ItxDwV7rbx5i6DFK+5rxnbPe8cZA6PtOPxPtJB33JFNPFA5Q/I2ejvUw2z+hJIX88AyjvlIQTFfSP5I4fsA/EGK/3/ntcvwpU3MVPUXv1IAIoL8IU51QK3Vr/V3IWf/ISvvB1nNFZ1K5PToP1JJkY0kMUQk01sb6eIVmWC1+eqelotsx5VNbd6F5O99oyaV8SJtp/dSlokeuC7Da8q3uyE0saqDBkd3Tru5z23rKi/wGISfYMX9HQnnMjSypHdZvStppdhsQO1DX7I57jVpjYxKWosfubbTvVjx5HjYfPCAYRI/2xSJw2YmrNxDq6yWfOmpVRgBeyE6lR1ZT2zTOeN9h7otxWXDjpv5yvVEGl7drjVvJzz6/F9smwrrgeuNLSymNyaDkLq1sQ4Y2Eb116A4/tZQn9AQ648Sl9lyxtuC+7WPXmDD7iPFS14uSz32AuvkBbh9K37LS9bz6i3fm3sP8U2912JIvlb9mP7eCS47/93VW/K9zwNKdXsxs75nZSfmehrs9vsXPNDmfYcHNKdN+CzrvZjkNnxT0oLTAuBthQe9Pxn3yYYiy1i3cEjBqZqW8dixW6c9C3fkfHOZQjZNQFnW+Sb7pj6BC1vX8vLJkoDmyVXlqlLeOIkRwLJdPON+xWPHVMLjyhn+zTLZy0orC4/nI/zX7YnZZi6P+sRZZv196K2MAD7zHbPvEZEfovgPzHekAQBX522o6j//OYpreJcnZh40Os/ogNYCAJHxSdV8WiIBsxZQV7ovc9uhxnM11zQbIA9fTb67JBrvqNVXhWSoSMRWbUSxseqAYqwoNgILMZesofCVupbE64Uia5fM/tn39lv96K9VVd2qeaXXfrd6ih+jvD0ZX5dPQ0krq/VCJrxSTg9Memxk8etCgC6e47blY2kmKY9Vz1621sL47VtLzAbPXz0tA3m2RRMwq85xMykW/1/pVWbjIrsOZmQjazY6D9MWQEMF345IxQ8iZzKtE5Aox2EEN2WPRTbk7RtsTmgK2HH2Y3IG5G2AsXUltqGcya/Cfga8jH5kPq+Azq2Mix5V8EdOxf3FJytOkifZmKxlW6XUvT0FWnvU60KMsQwtxStDRMYTCMVspCuIppZScB860b3I9khANsk8C7NJuMNFVQAvwO0E5OUEJHZkWLnubvH2rRPMc2tSL/LCNzmh22j3G+xuHdFdr5xRskl6WE6QuKoVlCYvK0PNlyvgXuOrWL4py4Ah7W1sZBceSLLa5u9pNzUadlBzReGTDWcAgXGGscs7YabD+tTEK8NHxlre0WGDdPtteivuh4DhoRWX48Q35V2xcejGGXo0y4Jk65O5+GxIxwOzPOYTK6/Ek6J00u7Mnw9d8neyyFfBAcwDGuln/TGmGpf4rg6ltHKW+MoZdnz98QrZOBK/6jVfEUdQ+eLQj4hj4QF83KD43HfMflhVf8U2+815G3fCnwDwCyn+/fPaZXifCbA50P9hfow9UHn0LSOtIZYxs4Buyj/eI5OSviXJYpuQPh6mJoyVPp/tk97uOo0nro1a7/Mg1G270tXIGlb69U6UL1jHbgYbF/yT05iehwm2SXi3fGTovcRN22GVl35t4suEqjWwia6cug08cctp1/KWh8FQlb2NzWqTk62MvhArlaX2u3Zod+dF3+JCJC4kJaDBxjDIfRMkGqt6TIK2Ggnwy89EkkkmfhuJxYLQvEd6bL/+mgcTe2wn8VVOkg0kqbLztw0+cE5SNTmSFS4zlkEKE6ykf0HOnNYGDGNbzLkMdrIeWU4Ye0vw76tZnG8e604JQBIep7DwADWwIuHjvo1dPjZtCibayck4gVEBOYHbF8DxMn5LNKdeli+o2Og56evT9rZlqzZpq0tkvbS1sYhv34HbXdj5tZOtaRYsv5BosNwkTonvjm3Lm25ctPA7nHGVNqFmba5L8gthZCxftpip4RlSn676apy5KF1vGovhdcaDwOgxWZJF1vDPh1JUhjgMadw9Et7HxMHaQsV0PzAE8X6ySLyjKyntCf8EiQ38KnbLmWTMfuMMS2s27zE1sH3ojQ8/h2zmDOMcK+tOdug5cXOZylVW/nldkcpXfWNx4xqfsF008w8TVN/+79sTfi+A3yAiP0VEfgmAXwbg/3JP6P2emDlwjC6qkFHzRzr8Oie3iRZAIKWTKAR+9Pz8vy9GlrwGWVaEYeOMLBvy8BFuATgj4CN9VW0Nm1GJYABtSiqUjzRx01MH31X2nl7s41ejsC5tKnuVLYOC9O5Xk/bKj8u9rWxnPFdiZ2POfWuHjVpN0yVqUYOytHJVwpBbti6ixNP9eKeAZYf2mhcu4lrauMnqkjYRvhjx8jtmPPmwtLFS6dcLQVtv5qdX1UYBTficbEL2Vsvndkwy9Ilg5CUz7tsGp2yQvpUn9NR2xFtrNMVtsFCIkFawgwRpFdQGAcJpG7/aNSJ7v071tW5xmQQsCJtSnorxvsqQv30GRauvLEicsDvBJONWM0JU44wl0+CBSJrC1Ypv6l6y4wwzAMnppWtO7CuyFWOu3BfuaHFwywOUfZuW8m/xuaRB0cPlrZ9vWXigyqLEN3ld84DkexrpXX9danY90ryXTZ5r/UCaXY8uekZzKHnVRpETL/lSCROW83ZEAJC0u6akpXLU9iyiSTbrWTF14QGQrPQ8UPHY8yJ70ntt6SlOxt+V9+jpz4XeyKtgm2Nf4CMsLjRBSicgml62qT5ty3i8YirxnHOiwCZPqyySXsP9m5wXsvYuGvZ6obkMNKGOd6lpYY/jpY6eYQ0i8l8F8I8C+LkAfp+I/N9V9deo6r8jIv97AP8PAF8A+NvuncgIvOvEbP6pQOtDyA5D6WpDKpWIPbuj5FuIYm1sxM5Hk1ZKvNiobKPJSi7CI+VbylOE6qRE6+9HQvXFlW/qhSbtpV5O1Pm1+KaddAHZN5z4wjerIaveRbrWQesMXa4safNeFUq78Vbn17SFJdt4N9AAJpE8E7Ozb9uLMrmSrIF3einai2uTRqX32+uhIEEeicSnzXmcVSZ7ankTyVJePOlKtjIB0daZ2G5Y3jOY8YN8HuMSXk0d/9YJDVrfiOjYqpgmaSSnodfuBZQ170YU4own4+Er03ubMjz5S3aSn8JmpKdmbwk2aaFhXTSo1ABm4rWxXAfrswVj7smmvrvjjIT7OyC3+Ewl+faK++bcnKaNC5WPysPx5V6Hi+SbK5xctkE2aXeccVkGDne5eCNL7u/yqhlpbQuUc8/F8477WPN9rv4WjxtsDzBv2lITOj+T7OXOB+kOBhnxQzTvlEk8YP/ra/AoaROfYGIMxVk2HcAhseDmso6jgNDhG5yXpxO6V3lg/mYe4PxFeJJnpw9OXBRgmcBNOwODO9m8XTyw3PDXtpDPU3Fb3EeKj/zoW5RT9qD3mBfOaG1k/gnZo7Uxc9UhoPJ9BcK378nXHbX6zwH45zb3/l4Af+9r8nsnXytwnsOJL2dsY5y3CB3yntEFKwKkPE6iHUsEbhTwsDRO7JqyXNJWkmATuCyslwPbyEkfaVhFNstvZKh8rV67tSvvvECuW2Wv9IJkZePXeqEWqivbjujvOuQVeq+ki1/b6lv2jvRpO9mleNN3KW2Jd5TqDyVS2odq0LfnDUVGVkGiq9EK62Y8zgZ0JfJkpaaOkraseFenyVdZmTSiA2gbixEnLG3e5hGysW1k934aACe1tNVRQk883TtJnmyhCWwcxjcqxYg4r1SGbCV+Ll8AeV4h9bLTlpx07LNmEhfQuwdWdqHfqb5eG6wfM05z3xb41r6J7b67vTb4lK2GoSQbxSydQ9cslr5/gftuttm4MQtYcX8dt5PN90JjO+PxknaXx/TNVraKNHxjYTvP2vDNVaiy68nI1G66PbXVN/6u4h0DrJJSEt2KLJOaiqm7ulycpSW/O1xFJrU8kIwCvXemAa990gu9IRQTKeYBxgbC7jlBAuEwMLaTLvjl2Dj1SEx4Rl7q/3IH3fCA5888kA9Zsnx50uYLeTrGpmHjWfLlnQsNNhceOPwU3tPTHg1njPeU48kdEFsh05OvJGv5Wt7BGenzKkXvUWysi4/BP9zN8sLfxwsaneLjbGV8U3ifJ2beX5WQbXaXSa7+LY7ZW307CBFLpEW6oVl03hFPMtRKssdanN1Lx9i70aCElr/4JVv81KnLTGQ1S1Yky8+x00MWyXkt5dOsp+J72ipiZeXy3ettkn/qhexihpTfEumWrpB8weWTJAtt/FrKt8heWVl9c0S6vFKuSxnkYGGWLaUz0Oc2ebGlJfTMY+aPnFZS5bM/1Meow35NvhJR2y3s9ixb/Xb3JB9fvJMdRzGfaVuGHFpWW9Xv22pcPBHM2zRkXgu7SJYIFRDIYUcDj9CdJhh6NZUHUrbhkB4FP1UKvTyZC711W0qOC/j44mHTjXx1pLSxxdDujaOcYyBgK6qmJwj1pO/ajH83tiGVaawWH15/L7gZ9i6ywPEmiqZPjnDlYvYtx+FoWPZkyg5gCjwOWecBzG+O2cAUdN8uCN+JMvg2x4QxcX95erRsZZQkuwBhdVdNy1sfL0QrDyR8anBxF2dXp/JRWsMySQKPlW/hqs0hVVU2683Y1g0LkxlN/akPtiXrSVhEDZsLkGbVLKAJ58U6qaVLj5RziSseI8VTg8JjPJDT8k4G0z0+43IuuH8UrnLOmIdDWLu2HQSW0k6gXe0YsozzjF2Yv/nE14NtrrgvzDd5+x0M56i8SfZA4gHusqO6LK/BVUfKB/6NLyDyGXmcBZ873O94QD2t6ello+5uxBM3ednIEgcIcl5us1IZOr38OsDcFsmy1BbegvrfsaAYD3y+BuH9nk62CD0vSr2t6+TB2KJrKRXo6ZeW+1eySU/NUVKO49eOfEsOa/my7FXaRW5r8yaUew/b/EBeLLfY/AobV9k6yaH7F0YuslrvNvkW0gw9tbYbi50zc9rlFMgqKyVtGm3cqf2SVup9ZNO2adNTlzXwJGvpdsoEuNZ+ll1trHv2UxUU24OIs5ognXzNE1H5+u0xIb/YQeMwyzM9zfNthVY+bnPlPa9mFdTTt34NArUPTbtejJVP1uP+0pNsPZMeLy+N+/zUL9crOW3z7y1h9MmNdIuLqYHnSruQ3eO80p/KDjm/NS+uoIr70YNfjcf1vqY//vuqfG38S5Dd2nwVr/nO+/3TnZ0SvbSx6rmqv9auhQsuZHOn3Mu1Yxordxw+4vdkSbrhgbYGI3ax9YK35bFsTJxX2Vg+0UV21x2rXhCWsixjbZrwNNhdcT+urVvNa1qec+65avVNHFxiepgrqr1nLh/XkwZWC3ThyIT7hU8My+MEyXORjYM8Ct9MPrVyx1M0lmWuYp8rrSnYUzm+/xXZzvg1CO/4jtkJQMboQA+oLd+c6ssoBmgwqBAgLe1N/IhT9uNeDI1HDx5iJAv+7QLzpw20je2liJlSkuMoLV1usDqehiVZnflPWbpvtwwZSnHbIiX9dI9lheLux26g0Mh2SZaB1YM2Cv+QKiuLrEOarLLL6vui11rHJKF6j2Qtr/rQLsrHT7s05VUnAEtIW3G1rHhbQxkZxjtmNX4ha8bMNjvspLSTtOGyTKa933R2Ty4vn37I5faneU44yJM00FM04bRRJ04SrocHHYpwCU0ALZ5krXxlwEBppZRnmGU2BummbStCe/gVeVXT40HikbbKsh5A9KR4bMMxm5Is7MOl9BTOtzAp7P2H0DvLIFGeLGt1K/E0c17iVdnPDhc4Y53/VbjvuFnTMthV8IlCacECTQAM54OWb4wr0iOq+QSvK2KlouiE+1MPF1xc8fgqrcfttwH2RrbD6sWwHQ9QN0Zx41aW6/4O33A2O5ucB6buNG/gsrfl1TXe2Uhl3PJAGtyjYDcSdjMGhZFhXOYBJCwPHqB2Sbr80ycpbeiVYqvFbaJW+eYovgk8Nj2B1/GUzfDQ6oFxP+rAMUYBPiDD8sr5sI+Cb+KIeIuHrFQZTzvaDeNx4HzIrFieMZa3OQpQ8LjiPi0IamA5Fs446ZCSSIsuvnw25Sw2IslCV7+GTflE3g8dPtiWxLeG9/2OGRQ4bsBxQKwJz94us+f7iqmDaIkDtA1FIk57o+rWxWWygJIXHW+TiBSZNGtaA2e2ebu1RDFeSE6yjV5LK1m2Ekq7XREE7YuNa14bl6QbgkaWkizc+6CN/KNuZXyNrPnRtrAsvmI9/PiFM0qykomCw1In7MRc+VJli147nXQVlaxnCkgqL8hGIlvhtJNcIWVCU7qUp6UuRctm3tyn3lHkaXsyQCmtlG0pmCQhiG+qsFZ+v8p0hM289x1MmNOmdDqVGLLotEnZ7TOtpZF5X5wwmZwTOUm2w2THLTvlK2rsmOUNos59hieON/5m2dxKcvN8z1QG8x2ofGzjJyZZiXxMjp+yHSIkG1tY7N+tlPctYcxfCjDyfU7oPpk8IBdpZ7l8KyO16Y4zUGVtIsEYZFoEy7zQOxyZtWIqfa5lg1fiPMBYEeE1PJAWZ2paUP9mBZ0sCmfUcDGh6cpXR3Set5S0Ve+Oq1bzV5sbHtiXjwwoGBZ6A51S+7WJ0KZOav7iwBmWpK7ANj3EA6V8E898sUnEGzMvXIl0h4OYHuYqybKWtmw5DEzQxUafWKlMTA3dGfdjq59die2K+SkZUHkgOENYtuCi+Sxtabe8Z/pbyqtwhk+Mio2dTaiHJdWnhDl9/hzJSHtz2xWfyOd8gq4AVL7JIeBdHrxwB08vdC9xFYIHht6wsT0R9yOF58TsM4JirEba5+gNfAWJIXzFUmiyY1kQbrYEwhMpB1m5JpwiG3mTbEQbobIOU4lgo2LYeX3Mvrlm4nXOp9pyobdeW1Zn7/jmSnaXrrXjwf49yhcOT6TeEppSW0I6FS35iv8mW8jS8oTVB207Yz2vvvRcili5jDTRTO+AC5Vv+e6X2SgU56dH9uSMVk9lZ7OwLfRkkJ8Smh6LOolqqpMYvORVTiOJlJeyPXNSxXrTPdiYJdJa3qIAzqI39MSL1KxHYauaMdBhYiZZKsvh72VwnhbnAUW2EeWl9DhcBE6wcf0M4lYANkkjG7n+1vfrYrXUXyCvstVXMxxzGj1Wh+XNW1rSRKmG2jdZZv6qPMAyGRfXyZ+K1UGvn/HdsUK1t3mx0fC/17sLVz29RZENtldcvMLfNp+L+BIe4YzmWvseW62/bd1nLK+6lsnePR6odjJ2d22quw+Kz7ay9ZuUtEU2Pb1ijCv4nCeX6uVrv/+IwEs5Cr9ULCe9FcudIwh/K98EbuQna477zhmBbVJwP69PEO5TOSqHCMv69cBF5znzJWPtzGOkjSdcaQeBcJnyZJT5J+qg4blSvsDjGacne+MvbXef8ZvbOMuXsHs8LbPyuS9c75SddZ9lEQvhiYeGnTcc8Lm9fPStjPq5H5j+MOF9/SyAylwN9bdLFXm/xaQ8nWzJ8Ro07+L2fNROicsyWiLKcq4HiJPCSCiynrKSL0okK8VxEgnZUR6FxmQ0/6HMmnzZlkVoc831buKd7C6t5iTptzZlaPKqNg5fWAKJ8m4GJu5MLt8ElNZXnU0pPjMAtQUEqCa1BL7ZjvitJR6ylNqcqtR4TLIYbGnt23fU1F2PlMKKRPdiAszvGZhsRFO556TF8/c97opVL8ct7bQFQSpKv+06EESR9E5bg9PD5/7+ldp15LTTN06+3mVZD5yMx5aW+CjnSBeTI5M9XE9MfKA64+fIw23kMRqdyGUnZ5nPND4Yaqc1RlqFyDn1ko1ef0Ts04YbpxN1e5LNVH88ZspbduyDz7sR6ANhgsL6fkvchuYjvUcflMB9w/oCMmr5qgFspG3tJiVlPJx8UPuudyQlaQWoUQ29svGUiQoXOtyw9kg4Z7DaiosJ62STNrpJwsWktxpRbGeZ5gFLdhXbeE+vy+YM0nem6e8qW+sJPQ9UYR53dGlh74hlbBs+nhgqJb9UFiVf6MwvkkpurlTGkOU0qVIbHgh3KFGTIm/bHlhgnKGO5RHESs6TMsP/6dTAGXWdhiMgPcl3kjnATzwknLS0HZZDo1/aqcED2ypOZqzzE3hFATl9qzkMJ8V8FJMZIdnYfRG4DD1j4sM4q6UMXr6drKUd5Rz6XuLTJo7lSHGZjhl+HHyTj9o37GZ+iVMbIadzBL/bFnpG2ztq4/poQQHV883/PlJ4p62MCnk5oXxEzwTudNocMLY5WnuYSwwjhZQcxzXHbQX0qBtuJKUXur7ulJHY3gKzjXVFjkG+EnobMlFFfORRAVOa9PryVbFREadVsT9KdjXI1MtpbfuMlITMKynjo6Spaa0MilyeorfascgmGwVj5CkpbSpvyodqUzXKJ8vtrV9HvNMr4ce51c1kR31SI3FZm3CEQ5K9qt4WZOoVkxWl+hSoIp2oZWlT3t53aFI17ZIj8gJsSyGlyoYlY21ljfVGa1fPNz0ZmnbEOwhCvkLIgsk5iBaCsqWFtgkKbWmZumM/P7x8PH7zE6eEJkYAoIrDTzgMWUszTsUy2dNJywYddioWpo/YDj7JzAYefDyxy5ouiUFKPlnRrsUEKevl7TDn/C6aHeaBWT67L7F1cbZp37opIWf1ebhOs1Fm2oqVjwfG1OhHmvsvFCqH44JAoZMH/IkZ7TDIOEoNzV8M3exGsE5GF7kvnDYiicZZCkP9zzB14oDt1OB1lqTX8MlOI6aj68qD+vU352f4xek6vgHdk028YOTdSu44o7FRCodc5RscIS5rWG560lMaVq4ofgwesKdnzAlpezxh6Yjp4g9DvcQZsw3VJ0eJx4teupWaa35yJUu/UKUTdS2N8ZE9IULgr3OCYyc1JRUcE8v9HWEycsi6xwlT50fm/TFLyNpWxth+OCQMYwDDxdjSzf9GWnPqxBwfp9Bi2tSfnvRPjgy1ZLPATy20tCKxtRyAf78MGBRuefkHpcl3huduo4xr/pTJbbSj8hE43uK+6Ym0ZvthPlU+jddkY5JtuM82r1wFb+afZn2JlZfa5DhkirYzer73AOEZvqzwblsZl+UhRi5Q1+TJ0fxfEJ1Q2hIqyVT9F8FW8Q0bjSi2ZMX51QmQJSmEpPxDVpMWE2WNpkW5iz4jNf+rtFX3K9MS9r2O6Ou9TlYovg26+upK7kJvvhDAZowqNb1kubivsfZAxHOlt24x5CdcNR6kGn0pkT+M4zW2j1BeKV/KK5Mz68myaZXVZbOeXDyF1VN8jl23ae17OAkdSE+1kfUefB1AWnIlqXxENGDbYSBRPp6E5S2LJw1OLMcr2ZyWD+JI5pd2okbYokmWByhxHHcZuJiO5Jucv8yBoJEwE/Hwa8Tfdlz+0FeffK8rSk3cVtl5csZJfQJUvGf/cwzkvGs/bPjHavCezRd8s0zO7uGi9PdajuD7ZOMWfzdY6HHZ2LQJLLeV6cqw47yallZS2uy3+Jt5QOhH/exJK0u/FUjv62UcrGHF14TPkmVrDxfiF2DlgYqpSzMk7M43MnYfsiuDZn3JJivDyrGRNvpa2q7opY18NeVl2F15IOJWZx3f1LwP0ZSX+8D9xno57Zme7uV+Q0/MWh4ILHc8hmF9pAV6Wa5PTek3suSj+LTLI3zT15kV0xbfunB7E+5/B8PXZCvjuz0x67YVCjAftzdDEwNUR2khsjPmm/d5yVHRPqWpejdm9ps9KWtJNsXvGISXLJPCOSydeu42qZ2xF+MaF3lAttq8iCyDk/XWlvDv6W3y15K2xrPiHVkUn3cFuvTNBGjhmkVcu9uAWFMMTH3H06Jek15gpLWtJFFHmorARJ4KPi84OFdio8HDUnTKPw0ugDQhMEJdVkF5e88ia8SNnA/oiRdt8fD0nD9lawvDvnVFxtYLFdqKJyQ/02L6dcTnh0WFnpTNctpBGZjlOgTxbsCUXU9LxEZWYadk+SEjLmtEDJI/3W9+rL35zbbruB4mbpTyhewx0dTqYsiJ19shMm0S38Jofj5Sbb0u+LvF3OgJZ3vcJKQt3JDgSOC7zqv0SLC7gcAQTF4xPF4aW8H9DrwYwySrXeCiAZBL+3flqxhp93aY2uS9YPUjfLO7f4HlWtJubb7gtb2pK+NYm1o+W9ISHMd0qVLPi4cpBa8TFzGHoDSVgosQHxGMaJUlngv9jN/Z/rR+QfpyDwpZNjncL44zSFi9ygZnxNMjTstPmQTl8CTixNh5wZhd+YVwkvCfyzfiunDVygNms/oTKteZeM2wcpaHtkryO1y8PTOf1MickWX56Vb2sW2/vIf7O76ZfEqy/HSNd0RYvF7ze5oX6z5k+OjbLR8M7/TETIFvfTGazjduwO3WbN8wxCYEZECzIEDaWyfzIsvWvMMQBx+77itjVVeVNyBgOyC+X1tEMinWfEDXGyK7CssR8fV3NetCNhWh2BhAi0yUnezW2F72ysZFFnMPfZdwJ9zYeFd4sVF3KT1d2qaS/LcZIGBtzuJlBNLpjDuLNbpIli16p6KxpcneIeDB726YpumK79bU3v7FvjIQ8S7IgxlKz+ReV0xF6F0itzmnGfnolI0Jh69cLpN2XqlkAk5uA2zy5KUJm2JgkCeXR0lrEyUgvwuBaSOviPKkjH2jgL8rEIMpTf9Yjw0eeDCRV1Nn/j5JKwQskm2wp2gAYiP5ZxCgv1RDSmZDi2Y50vDx5CJZa0p7CHFyjO7SYp41QmoMjHHxPTLpJwedjQctzTV4XOddC6ZWrroKtfAkmjO/k0eVfSX/cLhGq2u+uZtxVMpd21auikXPZcfI1liWReuTHQ+wzTtXLvRywTetLPGNbSVscd+ynVsfZRKGLVIxlu95TlMZMg9oK7vmo345N23GMs0FJIz1960S3uZ8zKax/Tkw1vJNO05TuZhvAlMjHtiaMXfI3qYsY7tPymzxbcsZEc+4H7s2mCOOxYYV961+jiSLxGt8AmbIhvtrXMw9Mrd93mmj7x5UvzYfmH6fidmpwI//BPCNG4RenhltYDZ921aTBpeRxQCHSQsymjWn9dEIkLYUugg/CTvPOI7Z0qZWKi5awVQRj33TeMMGwSxLBbVtN1WWfbEE46g6aHDUzLY9Irtss1lGPtd51fcnalZcvsXmTb4edVkpdd/JcsZkY8m3l6WbhlCYEJoGZ3nkJV15PG0essiV7GzDeYWTtxMorVRZWqOIGHiPIuRjkCGajqkHip7ijtgKN36nY91Fx/tqM55P0WI3SLI5tmWUvKh9mT+MtOhVkfQEyuwfeQl8y6GVRfI7ZvkkLNAphmP74nL0PPmcDo1N+UdeQfZWJkt3q2kpnvb8U772O95Pi1VXs/NWZQWpjnx1FYIDZ3nyh3QEvr1X0dto72DE71uasNVO9ECY3avuiuD7EP5hq9ASOKq6bmWkp3ksGwsdkX0GA/o5gSK9i0TZaWS7NASx/3MXrXjF9vLfwlXFwgUmK6YyjnQcwosouJJt9Oyq2Lf3XzUB803DNxWPF5s3+Fuxu92twLIUF75mmjaygBTfFPyErjtpWNYUmiXcyaCpvLG45uIF93Mdxj2pzSalXb5HBk3vKSf8RcYQX9Ca/UmQ33Gu2yBDViByJiwTVM4I7pOSlwCFb5AnFgmvuiPv86Qr8YBoko1uqAUL5zH1NJG6kazUExE128yfFAHZkN6/I3uTHgTvSYkfdjCJ+VWKXmjhAbhemTxgdh1yJiw3rhpyQrLjuqWNcnzg8DV5YvYupzIqFEozW18PiAUWMNG12zGkyILSIqfPbakAso6ZmHBGTGbChmlSVu1IaRe9XdAln1SGSykKVU/1FctepL0nu4SmfIqmTu7o6fLIslrim8SNxUu7qm2BfycybtJ6/eoi3dmUc5eNbB0gaCLm9cTEkrZcuVp0z5PBTCBGGnFP0z1JdsZTnxFdVzKrbIpTfa5bVFBkufpp0ghNen0QwOWdMlE+GpovnSzKVJ+gQfll77ktBLUM8fsovlllkWTTNkeSPdQmZidskraTRZE1PT4ImPmFn+J+jDOzP0OPIK+m2qbH14fRrxpZ7neUeGnhF6tXPRTM/sYcUgDKfzLO1P68qI1OvqDBhqsak2uDT4mUomo2bfDpSs/a0ktaKl/F7hru6V3S3+MXuSrfivuc3/I7tSHN9Z1yKiWsdZD0qttostf8y/czZi6nkF5yYp44rSbnC/WJVMpOkDil4nH+UPSKoVUWSZYZ/yS5WIzrZHkitWJqxxmsNrBwwTLkBUDmG8N9xurxelVgKD+NQrIxZPPWyGxz8MrEYyW73Cb7cDQ/cSO71A6aGj49Wp4rehBtdM83fOrinKR5fplDjXfzboq34/4zvC68y8QMquN4yp/4CegXX+RbpzHdaOQOc7PNq02OtECk3QsV7eArYcgJ4JxoP8Y+kCnWwC/a0YNmNRooDk5cxgkb2VmGXdu3tC3hULwzvQ5ErtiX1XSDmAdk3VU7G7tLpXwhO+HrokryITKRl0+HLkcbeQCgtf464bZ8s31JSpLyHjdmm1CusH4SJjXtItvZYfp1vbcURwtZlXEK+VUWYd22V2/LnpeWyUKe0FgvEapPJz6pxDFSx4dLTTb6ZxBdJiffTkLbHNMgQE+X1Skbpy2aLE/uFP6B6jq4oPcAZAIM6zWCHmnPNOkUWHyW1Y9YNptZNq+0xsRy1E9+B8GORQ7H22qq/d9OdLQrKS3En6S9KajGvyjegoupTzoflKy6zl1lQX2lAQIFyoCf2yxWO7c2ZtxPemsomLrkVSmkyF4Ud816i6lFdnXv6u+9ya2d6eeFzVXuqnyX7U7X8jIeB8o0dZocNzaHcf15v65+lFW24qTpk6YOBobWeIPbm0nmguWl0jK2ZRxdJiky+EZzBj7u4snPKmsToLBBqH/muW9duEPILpyBpNff1fKyddjMuEvlhck2eDx3T/BWdH6aJRTXkqdhMWN5HJ45cD4+BzAnZV7eOKZepuzQc0IRaStnjIlTPshj5TkkvuGtjNC6tTF2U1idHOlx+1djWqbn+eZ/Hym80+Ef83s0xwG53fyqAnnriURTiC0PHI+GM94NE1DLdCR0WSehwUJxKY5ntrSall365igwvVwAInkNG2pWohjH6hNYC9u8UzhlE9LV+CqyyGqVRcTTonTJ18rcynJUV99oZ/OFjfaEx5MysdWypv0emm3m8rBs7PsgW3TV09Tn8JOu99I2wvibnzhJtktt60wQslykNd90xUjFmY0+bX9JWzrMNsq/1qeldb1Mqnx0euRrE5W0xQVA3iYZdSqgidQsOx+1P/LMsk4qwk+NsuywwY5mnoMJt3EI1Jegb2I2zQlNaft2xHJe8S0+BA8eRtM4hFcftcTzcflxZL+li5fSbUsLDzp45fnW5jusj3wib672OJJ/XLkhtrAckEnUdsx+7YCPBYHMrXC188+omhHTCtX5Htc0ljpH4KC0sjCO4D5KYRn31rRSrnFaxHXTy7iYsJyxzm2MuJY9wayuziv0YCwwG+F6dlsZKx4H34x/DQ1syl1kS/lq4i3fkHzlm4p1bGPN2+dH068sW7kr9DVtj9POdqNLge1exf1ez6IPCB5gfDPOqO21GwVQfx55Z1yMv2bjwA3b5siW1O3k9oO7pujKGWKYSvocGdI29PgMh13yLyRBEBOWCPkzKXC7DVPTu7SMv56vTeyU4iFrcumQC2HcVLfRbOC0EF7kivuGx3XSyFgO6DymHn4oR3weIA75qHqtPLfEN1pwPx8gkp+Mse+EJqCdHpk8YJx9pC3tH3tqFhP7r3p4l4mZCCC3IzYua/PeADDeJ7B4HQh4gzaYitWjsZIq8/cAVWURVcg5rjt2iX20N6FXeiG86ucmEEQWaZdtHDX9TKvG5GVMzwdNXgZLl2x+LNS0fJhFauKNHffLR79r2ksbg7yqbJvXVnPM05a8+G9DhL3N8yO3nFYwiTtcpKhkGUTOROiLBSlfgLf6he78s6Y1PZloNZMvFLA4T1Ik8grC1bjnTqRskm+a8lqZXY+STeETIw33h8kiZEfGUc6Ul/ly2pG2mbgebW1m4hrkfXr+MgnYVPt1hN6oh3Mha2sTbqP7MK882/drxpxeUx3EhHLIyjzKOU7zinc2fOWY9B7JRqXBdKyi2gejA/bG//P7HIBo0PJnrZ3W2UO6bpG4r5I1aSubRCJQn4yuHchbHEQZ6arH21IBo0aW07Q4QkZdlaeigNZ7F7jYyl6lvZBd8nkVHhf5R/kGwd1deT0vroPkG+Jhlm1xv5aHOoRhe8KnLLHH/ZlCkTAvtRmLa/TPnZ7A4xVvuzhjuafZ4v6qN+FnwfIt3yS32lMkTmu8eUbZGa+8Tg3bO9ynanS9WVfaMWFPvgjDM8/RP9odwbjv+SqSr5wzKnZr1gvo/JZafgoniObmfqc6GmU94zMp0zc73E9PCblOqM2J4/78O7UIeLIafg4bBW/7TMp3KCi+Nsflv89WRhHg0zcAYDxG5O0t82kWYESkjg2jPfebDEFpAVm2PTrGnAp50YELLzoq8pyylI3p8fFo1Rtjx+1WRqcFlrUfAqjO1ePEdHkAHH4gWb7G0kpEV9QlvZa2ysKHFmmLCye8kq1mpnwWg1ZZ2xo2fLO64nrrTGiuvtnboXRT3TfbtLAPUo4GOdJqcQSvADbvFaR78FGJD8DJs76FS6pN++0vIzcmm2njJAVPWwcOpWJ8sKQaJEk2u6fd74VwaFDjPlNON+6P9YiVrNLgw0gSmlxtBGv5+ulV029OzBqDj3Gdt5bECuNIG/v/DX8OOd1mhSbZMSnLvnBCVZ4oZh+NLS202qoK+4i15W022bYXJ02elE1Z/6DoJP5bslGTje5De9Ik5Skb5oqpjpbJT9nG38C414bYVqj53zTPbvGWJgXFvbkxOGgri+krnFPHCfC2dcf9RZYmg4bdOq1xmNGQnVjuadzE1UnpydEG9+tWRi3Jr3DxwjXXaZX0cIJqwyavJdg94hsqgusT0uumuM1ygceRP/+OtFeyub2Nn5pkvX4lWTLSGi6yZxPuZ71CJYx2oT4oqRyy5I1If50WeX1jaoynpFWWnRB5Oa4mvAp7c9r4axOb8S2wM01Cwg+A70Yo+Bu7GpRwEW6TuYP5DaBJ2Lx3s5kEal7zQA3fBj63EZa00TjPhAMZy0/H2OUzKXriICxnPLbt7gmfiZvGScDM3y8J50VyXh3uV71ja7q636NhZpyLg6HG/2+QcUQ+YlL2sZ+YfX3C+21lNHL81gvs0+N6O4BP06SJA3oQG0k0m4UTFP4cOVaNY6Q9+TNj8sxbBdDjmFtKpt65kjzMFb8eGWUAdPzht+QVviXSZe2UKMsnpQUvbYS3atp5TetZsDKvc7qiN/xaymPl1vjtfir5Lcf1lziDKOtttzIm34SwQPMgRsg1pYxDIC6IavgGpMOaktANlp3A3ts8WD/KPuu1XVmfeaXyVsYUyKGrHMSbulAb5pOtgNj+onMbpCRfKeU1Txekgh+kV5JveMVzlLfqjZOuJCY7c5nTZGXKut75/yE7yhPbOEByoYu3EA4VQb71aU5Ne6S0Qod+5C0sgOJ20Mol8ilhecvHevgGb1dkvQI+WRGef0x+zrn1xCaco0562SgzMNq2HYEdNsfvm/lnomT6VhAkbYexrY1mW/XNIZmKb0TNb/qejWLsVMA5aiL1UW5ls8EDSJ3BBpJUSbrgxvy/j2fn4oQZABDu54Ykds2SjoK6PO27yHqniX6yO8laXuu9iDMXpTRUfM4n9/VIW+NKbvT7DWd0QTltTbbjro0ewYarkHnc2rpwWuS8lu2J5KtO7x7LS/lU4I9DTLUDo40fwrHCoFP18lZHEF/SQggrMR7IzabxzoYHhPINPTp9HPlknJy4yBjserMOaODT0Gl9dGKMyRPuszifIjtwf06E0GGo9bMZP2wCk7HZbQ4vl3eOpWDquj3RfaPAzf2quCkmLxjun77lkHlA3K+ZPzJn1C3stPgIpG3pYzJn2D70fMLcgq7qNlkZPrGsZr6J7Ynz/bGAuREn/w3fjLvmp/BPwX188KAf612xt4b3mZjNFqwK4OWEg8GBvKpTyb8MOkE/ExBWWYU/th3ZixOFMjqAAZn10oyj3GP4ZBh1GzY2uqzmolwGJqF7PWRhvIu8ilGFN/p8Xyl7t3yV+RtfbW2qBm5ldfXfhV4b2/mlSQz9mHSpfR7GrTZXvbB843eNt6qq3pJv3b6Xt0kqyVBaJ6EiW+KWVhrZo9h1pMGKIt4DtN9KskhphfLNZZ5609OwIjvz5m2IbCNfty2Ve73sGyUsOn0bTrWjbp0x0ox6Obd+dllrd25vLm+YrRTJ9wS6DoIgtJVlXrdBHoA0KRN+gQeft6XFn5S5k0qIC+r/Q3napNuFLM+FHhfJnOFcbw+X9l4epDf8kk1ueGBrYn9/w0UVQ1fE2ed7lde9tDU8JPto87jAxYc4RDa/KX5XLvUbR9yQFCA+X6JFfvV8xf3UTBN/aIlv7JTlJwz7pNpBWM7b6KTUmuFmkiu4LxvZKFfHGQX3U2EYR1fcF7tOsp4f2Rp6iUPchilrW/86m5Fl+akeoJAjy+6w3DnkDu7vbIytjVTeRVbdxtBzzokV2ShVb8Trju2b9LjvcVr9OSQ+QzXSvs8mu0eCAuPwwK9BeLcnZjiOsXo6J2YKAc4DPlM50JCkwroqPxmyuAeWVU3bX8bKpgSpHyUuBq0zi0IMvJq5YDKZnxNItjHdlybjHPzOIr9P6zAjJNsMOORCthTh9bKo/qBQ/eqJkf17Ra5VUWcQkCf7nT11ax/Z6JelKaE0egtBtqYi10m06ilaZQV55bzNcd8svEvZIKHYzACdtguy7PybJwU8+Kc49T2TAeUdL20H2fg/FWC+Q+X9V6oepDjIRiFZ/mBzLhtNeMwG2xJE21JW2TIRmv3W9Lqt87ql4/cdDk8z3k1wmxGrpKFX8wqq+4T1nouNUa88mMHcziJRXuHDPbgN2MRrOPawp7KKsaVlD1X3gw7glvmoSAGsj7+X4W0EyfdmBiMu9q6mAuesByJqG2/obbQzXSaHF3is1Uy6cMA7qL2TXJcx2H63O3WWlHMflzCvvdfJrsXo9XD5Nqazrksb7YLQ3/wz4otfyeZapkfa3I4zFow2UA1dLXffw/2CdY3m1cSJ5QsPJIy3iK4ml7LItImxe+WTivt5AlZx33Fj6svvMN3DRcJ1fu8KE/tEbehVsDzKeZAsmnRJp46nViDcZz9QU1quHe5mnd/3yuUaeZ1+zbdgkm9sO+LAxfUj0bFjgvjFtjA6H8y4642t6jdM7ma/Mi/SdkjD8mPnt/mAwmyvdWAfkh6+kZRW7JCyjxpU8Xxi9jlBAD9r7UWjhdtEzU8DwOyoklZLBRnMbR8y6E8kmmjWjWyP4GX+532tJN/OnRSxRRE63jcopHQpa8i6CcsdzTdLNMcv9MqV7J0O2G6ZvBQIvTWxbCNT5DPAoKPIfNTGRmgZTFTP3pfd3ayusC0kqvow8GXZemcN/KQsZJmM+/I5qZk/rF9I3K/p470MtlFpwLuSxojTSqilMbvVfo9/QmV1EqS8D48bQcY/3lrif9O+fibJIGmeMIGI20YU/gSuyNa03YqoEXboAJXRbCo+s/Ipks50StjiYxv05Je9l/rQuVqKWDE14r6HV/ugkC9e5m4JmSMDGftqLO4jI2tgMrf7ESArUF+OsgU3bi8AxgQNRiPqW9T1EzKwKP2QPEztJg+cNgbnRjuyJNvjn4FwKd+OK0iMucqv3Qve+R9I24V7ctV25m1ZOWOLqJzHJaZuzJjbpvuFwTvEJazyDu63ALhY097oeYDv6prYohWPH8T9eB9p8M0h+/IJyYdsa06Dxyh4FhOJo8jH78CwhPP16RVhOdsYeDvT+juCFbtDl4Gd+X/oP2GfSbF7jKnGIYbl/n4cLzgS5jMPrBxhT91iQtalDw4he6lO6pZJcHxOxkbaOOU43h3eTdD4NMZj+uetwPGdCc8nZp8bbkf8Pex0RCPVfDDC6GSZ8KTOnJicTpQRhxDRY/N3NtKCocOOhmi9U4unF06rNumriFoiW8JeA/M22zIGA5SuG0hs4hWWeYHQ9+Rv7Or0cHGSzXVA0JXXBzmabezqpD5Rl6KZqzv2AKCdlBXZsFnH+w6evCExlpUcz59vmIWQXhQCHwDrBFIqcVpJzVtYcDc+3kmyg0tA7wDk8tQVW8snugofhQyfoEkTz1svzKZ+RdcmQdvygd4bA3c7gZ1YZddNj5edZZDJywiSFfFxx/Ye3CprNtW0YeOtlN/eGzMiruXJR9fT5Ezqe1+0Ujpcl+L8foD4uxFGtijlyf1A/L+ZD03IxmrpEfE7WNUGmixZoUQBvLyM70ne5qvsN8C2zKg92fO+gdEn5+RMXsKJKtZPqB9xt1NAD0BVxsLq7BeOdQXL18W/WYyS1g2QNa0Xe4fHzah82aVR3FcxdR2kk6w0skL36H7SQ/eqXRW6Wa8XvSvvdBG/J1YQaFw7OFbKW9+ZE47EfT9rrviKbfks3L/gn+XIe49rqq9FtMG+SK+1mZS0jY3AcLY9oUrvfmUsz/ZUDn097mcbN7iPwH3ByjfJFsJMxy/XOXWkrYs5r4TdYtsGB0au+Iv0bmZw2cRUK7NNlhbcV9JrsvmbZP5ULNmoqexxT7G8dyzhZynlW8ub9QwZcdkb4b5M5I0ncwP3ly7zDN/W8H5bGQ0p5tMxFYytjXYwgQKOfor65mpBXMQExScWNMPwFitQKPSQPKFgMiuY2m6pTQQ19ajJEgPs8q2yJW1lvo6cO3u25dnk1ZZPmkndLjTpOvsuBybVJmgt/pJ276tGe5LV1maXbdJSKyqgVGql3pOo46uBTLWxTsKqb2p5e5LXEg89dcKzynb3eCXT9CqlK0+JlgleJpyUD2/P8H80SavpPQ9Neljegq0ujj+aiI7TVr1xOEcmRtdbbDokr3Smo/P1nJOls/GN5UeDj1TH5h9NZWdZ6752OpfrtvLa4L3oPaZPbDHkEH7HwAYtQwsfjy905U3hPF0nFHOSJhinGgxf6M28PjUS3kaX03Gq7ss5J206DpS6YfDKaX6k0xKsI/MWRlBv4RWgC7wKawj3H5SteLw02px1sQ+9L0q8ouASL7hvsi23dHk1ercTsirc8I1Jp++sbfTsZKsf24lmvbtsQ38A95ctKCsPhKwmPF6wvGjOPJ1l7+I+1rDjmDz5qdhccK7B8mwzpU9doOJk+U2HhKxdoOJz5oiBuVl27VKMqVw2fqoFX9iK8px5Msj15Fw1y6y8YEinJSJw3xcAlSeS69M7w30Vw3J+Okd83vjGZAcMFt8sfIO0WJUmZZMH4tCQivMyXjX4yOFrspVR9sd5fxuVivwZAH/0O674OnwPgB9+byO+AuHpp8fC00+PhaefHgsf0U9/sar+3EcTP3H/Kx2efnosPP30WHj66bHwEf30Ktz/TgUR+Zcw/PXW8MOq+mu/LHs+J7zLxOwjBhH5IVX9Fe9tx0cPTz89Fp5+eiw8/fRYePrp2xOefn0sPP30WHj66bHw9NNj4emnn5zh4559+QzP8AzP8AzP8AzP8AzP8AzP8JMkPCdmz/AMz/AMz/AMz/AMz/AMz/AM7xyeE7MIP/DeBnxFwtNPj4Wnnx4LTz89Fp5++vaEp18fC08/PRaefnosPP30WHj66SdheL5j9gzP8AzP8AzP8AzP8AzP8AzP8M7h+cTsGZ7hGZ7hGZ7hGZ7hGZ7hGZ7hncNzYvYMz/AMz/AMz/AMz/AMz/AMz/DO4Tkxe4ZneIZneIZneIZneIZneIZneOfwnJg9wzM8wzM8wzM8wzM8wzM8wzO8c3hOzJ7hGZ7hGZ7hGZ7hGZ7hGZ7hGd45PCdmz/CTLojI/1FE/jtvlP1FIvLnReT2Zdv1DM/wDM/wDM/wDM/wDD95w3Ni9gxfySAif0REfnROkv6kiPwTIvJd3yY9v9riqvrHVPW7VPXlS9bzG0XkZZaH/33vl6nnGZ7hGZ7hGZ7hGZ7hGT5meE7MnuGrHP5GVf0uAH81gP8kgL/jfc357PCvzUkf//v3aiIR+fTItavw2vTP8AzP8AzP8AzP8AzP8O0Nz4nZM3zlg6r+SQC/H2OCBgAQkb9GRP5PIvIfiMi/ISK/qpMVkb9URP5lEfn3ReSHReR/KyI/e977XQB+EYB/YT69+m0i8otFREXkk4j8N0Tkh0p+v1lEfu/8/VNE5B8QkT8mIn9KRP5xEflpbynjfHL3t4vIvwngR0Tkl047/lYR+WMA/mUROUTkt4vIHxWRPy0i/6SIfPeU/8U1/VvseIZneIZneIZneIZneIZvT3hOzJ7hKx9E5PsB/BcB/KEZ/z4Avw/A/xjAzwHwWwD8H0Tk53biAP4+AN8L4C8H8AsB/A4AUNX/NoA/hvlkTlX/J0X2XwDwl4nIL6Nr/00Av3v+/vsB/HKMCeMvBfB9AP6ezyjq3wTgbwDwswF8Ma/9tdPuXwPgN85/fx2AvwTAdwH4x0oenP4ZnuEZnuEZnuEZnuEZPkh4Tsye4ascfo+I/DkAfxzAnwbwP5zX/1sA/kVV/RdV9VTVHwTwQwD+SzUDVf1DqvqDqvrjqvpnAPyDGJOXu0FV/wKAfx5jwoQ5QfuPA/i9IiIAfhOA36yqf1ZV/xyA3wngN1xk+dfMJ3z27w+X+/+Iqv5xVf1RuvY7VPVH5rW/GcA/qKr/H1X98xhbO39D2bbI6Z/hGZ7hGZ7hGZ7hGZ7hg4TnxOwZvsrhv6KqPxPAr8KYEH3PvP4XA/j1PMkB8J8F8AtqBiLyF4nIPyUif0JE/iMA/xvK55HwuzEnZhhPy37PnLD9XAA/HcC/Tjb8S/P6LvxBVf3Z9O8vLff/eCPD174XwB+l+B8F8AnAX3Qnj2d4hmd4hmd4hmd4hmd45/CcmD3DVz6o6r8C4J8A8A/MS38cwO8qk5yfoap/fyP+OwEogL9SVX8WxtM24ezvqP9BAD9XRP5qjAmabWP8YQA/CuCvIBu+ex5W8tbQ2cLX/j2MSamFX4Sx5fFP3cnjGZ7hGZ7hGZ7hGZ7hGd45PCdmz/B1Cf8zAP8FEfmrMJ56/Y0i8mtE5CYiP1VEftV8F62GnwngzwP4D+e7ab+13P9TGO9rtUFVvwXgnwHwP8V4n+0H5/UTwP8CwD8kIj8PGO++ici3892u/x2A3ywiv2R+OuB3AvinVfWLO3LP8AzP8AzP8AzP8AzP8M7hOTF7hq9FmO+H/ZMA/h5V/eMAfh2AvxPAn8F4gvZb0bf3/xGA/xSA/xDjwJB/ttz/+wD89rkd8bds1P9uAL8awD9TJkF/O8aBJH9wbpP8AwD+soti/Gea75j9py/S1/C/AvC7APyrAP5dAD8G4L/3CvlneIZneIZneIZneIZneKcgqs+dTc/wDM/wDM/wDM/wDM/wDM/wDO8Znk/MnuEZnuEZnuEZnuEZnuEZnuEZ3jk8J2bP8AzP8AzP8AzP8AzP8AzP8AzvHJ4Ts2d4hmd4hmd4hmd4hmd4hmd4hncOz4nZMzzDMzzDMzzDMzzDMzzDMzzDO4fnxOwZnuEZnuEZnuEZnuEZnuEZnuGdw6f3UPrdP+eT/oLv/wY+QXEAUAgECkDxAsE5r72oPPw13JFOmmv5PucoW8nvVNCpWef/38+SHIZd5iv9QDZ9LF+ZTaB2FdYpxT+ezdWmKMv7hGhz72XTqu0jt7n3r78//G//6A+r6s99NP1/7Ofc9Pu+/4YbBDJNtV7zopgMMP6d5RvvQqW1K6qCk3pexSmFsLs8iCiOkQMOedupxJL8vfb9Pv5AUEDlFfW4VHv11T0bH1fzlvYVHHvPN2+0S+Vxs8hX/Ujh9TZV774tPOKbt+t4fBS1Su58E+jzyjYxRd5eor2vvoxxyj1f9S2it+lVbfMzbLpnR/we4XPPYf9//Vs//irc/06FX/PX/Qz99//sy5vl//V/88d/v6r+2i/RpDeHd5mY/bzv+yb+0d/zy/Czjxf8tGM4UlXxEwB+XAVfQPAT54E/r5/w4g/1KghEXKGzU+bufqr4BO8LvaUUIiduAAQnbqK4OUHfBxvWDNQmn2V52KAaAxJACaCmTTQRPRVQud0t+z7O3pGsJ3XYVZZtFACYdp0AVA/gYuCQfbOzaZWqNlVfVZWiIJsEkPvtpLc218Hqq11o6q/IamkZPvXQR20Uzyfyel35ojwKwTkGpCLpvteYZtleT9/nqt7H2quV7By+k86mWiednlyeva+ubTQ9YVP4ipdz9vUXvumHft1g5n7cFq7eVn81bb7ft/DHbPyv/9L/2x9thLfhF3z/J/zTv+/n46cD+GkyFuC+0PGxvb9wHjgh+EKBHz0FJ/Xnru+/QPCFHvgx/YSB5MDLxIwxYTvwhR74AgeiXkb4przgG/IFfrr8OH6qfOF6kAZSd9rOnb5fQ8V5KXyjkynGBJU3suQ+fG1j9lXundGO2OZso5KnwqZTB5eC2t0l5sx6CK695kjG/aP6ppTXEUMN0R71TSnnpU3rRPJg31Q97PQFG2o5w6+BE3u/uicUZaB/vy3A8WzgxlFkdcG2OioIvOIp2SXmPGCjaT1w4qB2wjat/Gntd+1l1Y+qzVhrg/W5vc7FmuSrPEpQym1Xf6nO+N6r6g+uta2/0o6qb6r13nq7dnThm87G/9xf8v9+Fe5/p8IP/9kX/J9///e/Wf4bv+APf8+XaM5nhXeZmJ0Q/LnzGzgV+Jmzef/IKfiEMSmzydmLHrRyWklk7aCVwAepjEnZy2y4J4CbU9SgQNFzEnrk/mgYA0qNTkg4LUtWZd1XBceU9fLonGzgGB2IZbc2dr6JDinTNyYraVRR11eTEhwz4amYQ9WjG3dsgqx6lwFC3BPhrNkugSSbho/MVyeOkeMDvmks3NYfzM5NFjbAUmV45vY6gOysxEEpubxL8Im6QEQS0Idf77XVSVAKyPRcPJ8OW/sqrc8pxG0K8L6QvdNezSMHDlizOzflvSwfLO1If7xGlm2kAaVAcAjmIJ/JS/b1t/im0p409df7JpfP+szYX3C4r+7XH5TvR3kVB+ypz1vq73GEzOELVfzYHFKcOPDnT8ELbvix84YXAN+itumqzxisW9+3sn/z+AIvCgCKn4ITL3LgxA1j78UNp35jZlInuKNWz1T+V+BG1/cl6iOe/K7obFNFniLF4pfksrftoceNjN2jhgNTa5vNdXikPC3l6EcvMH/3XLwGSSlFNflm7RUR1Ft5d9cGl4KXGT+xtsud71J5kwkCgFlpRfKzKR/zOPv1Oky/gtv43jemxHYR7cvXt5N4smvcm+04i1TXBtw3D2LOpY2zKYyrtdWJ1wHX6+qjbOx9zrgft5IGp9XSdb6y1KUeicfWUc6j9cejhb7+uP3s2x71e412tNf7ON58vKB40VpLX83wLhOzb+mBP/vyTfyI3PAj+mNQEZwqMSHxhniCu0uZPuCsXSONoZUGemM1VfWAiuAFJ1QHLHzCC76A4JMOXYcA0BOQqUWqXnWrHFiUbJTcdcKmw23i+IvyEw2dgD2o+0VtiBjlAQARBrT7vmG9TgmWtwDxkXEbbITOs9hk4Gy+MdkR52cF5ptqY5Qpw8zpBLeXna1CFFD1tqI6V3Rhw57YDidL/bFvrE54tanUH6xKh29OreXL9Re+iDGS4gYISJahLvRqkrX7t+H/Ktv4hv2q5ouxRAZr2ydkPm2M1uCyApxafEP5cnyRbftFb+OIzv4GwSknDSjH0w/dlW/aCCufaPYzMAfqe9+Ay2d9ynw1h4YiGAs2mG1f6sR/bet736z98co3S5+adT/qD5BTt/UX7eYY7dU13EjV23xT28Jrwwngx07BiwA/rie+APAtvY0nXxjTpQG8BffFe8acTg3dh4xJ6oFvjdQCfMKJF3nBix7eJk9/AjUG9DL7/AsOfAvnxIiDsPsepvZ9P3ACqa3wBA4Y+CVcPj2d+4DxNDD0ln51x0ZuhSdO4p/RlhJXJUyFD5q5/k+MLaMqdfB30XakGUqTb7D4JhZ5RDTznhQ9qj55zb56jW/mYkvqZ2j6RixqWlaOOZ7yPherEh5PDrH7SnqXhRAxLBePn+GZ1TdJb/DJMXMZk9GQ9UlM014TV837voAg2OhtfFPrRGJ0N5585v5nC2y9bwoPmOa5i2fY/Jhvap+yFjfunTjmE2KuP/NV9s2K5Z424fMDvmnaq9mkE19q/1TzRao/5nFBquvL+nsN3ny8oDB++OqHd5mYvegNf/aL78LPOv4CbnL6sOZM2+QUmJsNI15JxQA6E4ER5VwzhMycThmrfy96w7fGmw4Y66svU5Pipi+4iW2OgY+IOW/TsLOpI74YuPNmkmqz/R9zpZLWVhWxham16co3DBLFV96Bk8nJj5aXE7UNdJjYmvLe901AdDyby3rboOGr0RnJpgd9tfWN7OqP9eYSsM3uCy1bMZT1dtKkqchi3tMkt/dr3WpirjhVcchLqq+0HVHTn1J6bvc7O677hSY9o77GYPfAQVqTTTXola9e2+ayTXxXVHD4djrWU8sUsXt2POqbWj6LPVp/7KvzS/INlvK9PigEP4Zv4gt9AfCN+dxK8C0IvnCs3+F+xlFfpdaoB+4fB8ZC3zdxQmUM5l9oUqIAVIBTPrme3OKu6zBPrWrfXwqeIgf1yYE5tzH5mTafi97X8E34avyjweHVNjtVZxsuqwI4RRqb9m0nb6sqvZnac+cbUbZQMZ5i5/bu/3TYhlf5xvyjRQ8/5159k1rOtOn1eDxkmavSApQu7iAsqIsxj489bAkzO52euCyYk/5kjJWufa51cGUje+bweLEJWHyTAvuKbHqNb7q+fFiMfJX8rkg2dn2KTT1f6ZvOV4Zuh2SM+/Lrb/VNvvdW5H+G14Z328r44+cnvMgNp44h2Qvm9gJvhuIrBNzorLlw/IT4HmHDH8vDKNy2rqje8C39hC/0mOkEn+TAbe7jVdG5XYZ27qrZzbDymI0C9ZUfQayKeXeecSdQsfcMxhO+sfrBD7NHOOayxiO+sW0b7ldgbA3SGODYqouVznxzyPCCb2WcNsXiFa3u0JaOV9ef22T66woiPG42q8R7hICQX8uKUwKqO74pNkf98VYXuM+AbFNn80lxly1tYax8SSvLNj3qV4C2eEytAgB6861wVIUbmwVobEpx5H7R+dV/eBmyXYfGGl31a9VbfcV9SIHXtbkrmyCwrY3VV6fOZYR5r26l+WzfqFB/HHrGqjcA3MZC1ivr77N9o7k/xmD5deFFBS/4BGCs3L6oPfWOAfdipw5s8CHU1G2+DcyZ5VFb1jlxo4HIwJmDFiqMFWaZXu0felbQvK8T9R9xqwdAWTMAcdy3HQlv4RuozvtzwUPYN0Jp2Sbb2DoaSry3xbg/29LDvsl9ajwZU8e9qD+2IwaiPXaHr4Zdhw/etetXGxsDf+Op8K7+LK0Nba3+7DnZWidR5mxztEPnr8XGCN5/YeXD4lds2oK3G433koa+tc0pMk9wnZicoyLjL9a2cBZf9H3ZbFLn8Nrmqk1XfcpxsLbPe77x8kVfBnS+6iKtr+o2wF2f6nz1kG+w9uWYjFm/4Dp5rP5s07rblBYWrn2Tx0couX+8cC4bTr+a4X0mZir40Zdv4j+A4pu3b83NWqOrx5NTAWignlt/uWewTrIyt3GM+OhOBuYnBN/Smzfon9AT38CJm4x3FFR+HN8Qy4e7YqM32TiN1Lgn3qIPQM6xS2dJO9Pr3D6i850byNzxNbYS8Va5M5X32jdnsVEGEoaNQNhcYPBFxxZDeyo1xxRBKrx1Ku0Mv++banP4Zr4LVeo32ajzgBQ95qP5mKBBzY779Vd9U9vcUn+cl2Zf2cJAqpaNXycbTXKa0HlOa2e70c5Xi41sR9wzAGaNo92cOBS0nQGLX32wI4CctmAQ7WYt0gN+tTpza2ygEe99Wj1Wv4avpk1qZYt246TxyjYXNh1QjbXsc9LZ8BUVduZ1buvvy/GN93soRNVtFB1P991XpS9v6+9zfTPxRrnuXhlUBT+mn0Yeau87HNHeEXVa27tY+SsuLGWijTiHQvUFggMyMfVbk2tsAvRS9TyIqWHT7Pl1Rr6RFYytu4d1QDkA5ffdYpL6Fr6BIPnqbNPmuMw2eSQ9Z9ohoUJ48oBvFr5R99S+/pgzMRdbF6yb7Wbi/ulPQff96lrP8NWphO07Hje/SvFrY2Mtn2K2bwH83eGlTsKvpx26cKdfdLLcFmyCfuIlt7kJXicEyzbtZmwFBBYAmvD3sn1WG6d7jItupc0lm4Dr8plfp6+ifT7gm6YvG0cqTkgpX9Tfha+Ii7+8+jObXqh8r6s/6xdef6IP9+WTy28890GDQvGiH9e+14R3mZh9oQf+fz/xM/Dpmy9z9RSYwy4YrYjajv7D43FCjI7fCgc370gmy9si51LBAcFtbl38psh430znyqncJol8AZVPeHEkzms3ouqrhxYPvTr1IukVsjG2B6kPTEf+J2ziY/v5Y2unzjwiLeavKG/YlPPOes1Gc82QDRvryETmUSm+rUUFmk5AJN94DYYduf5W33T1N+yX7BveVjb1joG6rWTdZloFJLZCxdENZNNV/UFy3E93ijbn9SmxRSDWVL2AxY+8QqVIW1pUgfn+4843pidOBAy/KrUTcPuUeM8ghqLH3P7DNoNsErIRbuPON0b+wze5DVYb+cQtK5/ZFLvvFTydFoz2yv0m9z9JZbC4uo3ZN9XGtK1I7GnF8NUBnb6KNrKtP4SN7JuKVe6rC9+kvkw+GTZF2s433G64/nY4YOR/zzdD20Ht5vVBAXyBTwNHqJ35IsQWrwRysP8zHifcoG2Qhm0qh1ebb1HH8I0drsyHC4Ve9mXDNwm7zSYAOgd2O9xI5Tuh+snb3pgM8Rb2PRZkLgJsdGZ6rLbCNzseMNyoeo45MbP3vm5k8zUXJz0Qf8IaHzi48Cv5Jvw2/Gon951iuyXCV4FRG99s6q/66hEeF7aR+0bDxWazPZHcYWr0wXAL4/Hduuf2eo7rLzKmZYc/IYk2Z5Mf1QZT2VfO/yN+hTnVRixtbrxjKrb0JUp9ORZ/69b/jm+Y51ItPuibFJfA/ZvQE8GlPtHyD/ONSvSNXf31/ZFsmg3gZXLkzerK6g+fUl7ZxpVv8qseF5xRfMPlGwZ87E8fP98x+4ygKvhCBTe8gLcC8ROqc66IGfaPF2dnE7dtNRQf90I20s68ESuShyg+4cWfnuWHunVLn5Adw0aVuW40HwmHnCS9QoNjkw2sN6IyuIsGbyuV6aAGnRiESdyzvCPzI9k4fCPFN9XGkI3VX9s6ElMtGzAr5hbLaXcMh+g5ntBQf5KRw1KpExHZ1p+txiXfqFM51RTSE0arY/PVCFQ+Jz0hX13UH3L9cZsDBHLytpx1C4/934ENVn88gR3lHfnKhW/CRru39pO5Bc6IRaOvmEdvphNG+tlGs2uMEWIAwr7BbJNso7JvSt2HjePJgkzy9UG1TPqntm4FfiFfqSpEjsGjkMU3+YjkeeBP6xu2keqA+pjM9sxPidhXvO2D66/zjTnC4mdbf+GbEyC94xq8BQVOdL4JvZidIGzscSDSml1XvgF429HrgmI95tx9K0hxtxOSHgrbFpyu/yYc0cBJ0z3qU2f5QW00L7CY3myTOn47HqPHY8HR1L8N0UzK9Myt4Yhtg7yta2Ss2PkmbAxb7ZWAU+K9XS39N2SH5AF4/cdg0nDfDmaxcBSbim+qjcSnYzCeuYn7htcfBu7bxNHbucilr7j+fFxuvqk2ch2ar7T41fE4SmYvQVj95fISz3nbnr7UwGag6YNFb+DMg3XvuD9uqI7louhra5vTuahUMZXrRIzYYJNhufYr22i1Mss3tM3+RnjEbc71SJZlm4JvxH113zdTj1hrGuVV0izzvwPx/h/zqY3/TLbnm4LljW/29Un1N30Fbwc69RyLb6pNjD9WtzDf4RHfsE+tToBU4Gf4toX3mZjN//2I/lSc+AuAddRzriIYnvmDodltT8ROAR1taEzwp6zdAwBO62FMysaDfcXLHPT8hNqKwCCYALIhY4eErXoVx2mNOwrnssodsbFJuQuYhXbSlAQAWRpF8U3x1bRJdJBz8g3bWOwQMt5pw/+nTlZGFAERZTKiI6+kZ2Zjg6Xkm1meR3wTNsV9xXzPAAHWbrVyeWVpN5bX0fmG48nmPCC1MqWLHOo9jfIx+HJ5t75BxHWuat1vc7YVDnPCEfHcMGe+Bt7DM7NPxaRy8c2sM/+WnPv8qs1NqOdJkEo2nHzlq5Fmn/tm9RUQmHGKDTzu9Eey0dqNyMAF0d4mOEkXvIH0fYwwQyGwE33XNieuJ/qCtPXnvlHyayqf+SpjhLLemd7r7wHfcPwt4QVHsXvm53jV9F9wHQq134m/nM+p0TZmvmatcD4i0FOivRLOJP+Uejg5fYPHzlVNu/N8rGeSHpus2jfY/Abgk6a7vpk2vphvpq9S/RefOx5hDkYTJsmc/Ate5lOF0PQK30ybMXcYLDwOWpydPM71FXUi7qsXHLAPjEcJSv01vqnlDx64wn3OZ/zl+rtXJ1Bb9BqYqo9i6izvzq9WBvaNGEdbIjXEnd+LTQBI/tPAWsYrAJD5w/HrAb9m38S4IWzSuUfoTOULX2Ecjl19JR3fEC5e+Sa1V0k+HrmMd7rs1F/fau0cWXyMK76RZMPeN7XN7esv+glw8piGZB/im7u+iTYn08lef4oPGxTAy0c28BXhXSZmAPAFDpzngW+dB24HAO/umC2GHKyAdVfReO12JJn7bWFTCjGBEhxOZ6r4e9A2whcVKG74gu4DMXgcnWnkJTjn8ctms3UbshGC2CZotqw22mprgCOfhHXtG/+hVj6dHTp8YwSRt2Z2vlHPyyBYya7T82Fx9g2Vj+4HDHb1x3C/8c2ix8+aCj9tfVP8luovnqBE/dGogeuPfBVrmVY+jay9FFEnBybgz/eGYkAYeavZ6HaHr5TKx4RPkE/lAw2iLM8D9lVAe28jcqPj3lVCVqSpz/DN+FNkr9prwsxoYzex74/EHnYvo5c3nhop5ev/p/rLvso+zr4xU0LP6Du3+SWs09ur9/td/cms++j27hvAVl/JVw+214o3h9Wf+YYGJhFC9qS8/B61bWUfc90XO1obXxkUgm/pAe/R3jd0ixt9+442G1+6jDa7pCd/jO1jwy8vEtsGxetl9I3DLF7ab9++/YqaV7XgBhDte8UcP5VRBS8iYFz8AoP30peUHvIN42Z6u5Nko30Dwa8C9YmPYmypyltbc9or34TNGx4HiCOtT0mk9cFxcKRh/hcq8HduvA7S0LmtP7860waP+//a+sP0wkvn1wRzjOtwG5XK1+GGEm48hKmkl98Bc3/LPHlaj/m+ENnleKSp73e4cRdTN31XPcewVWS05Zva0exRvsj7JIwlNXPsYWOSx8dH+d7pdaL+dEkguOnclC7uGXB9RQ61/mTWweO+qTb29XfgwAuOWX+O18U3YJuKr2JS9Zhv2GZNdfIZ4P8dCs+tjJ8RBMBNFD/l9i2AV0RKQ+PH07p0CniHGi/FS5Kkm3GN8iX6BI76yFYohQ2ESNYwoGxjgO93j6sJ7JNN9v6SdaQAF8fp9F5V1wm5bIdf1wkY5hv24+qrxjf+aDtA+f/P3t/EatNs7WHQWr2f42PiPxwcMMSWggRCICGBZGWSASAMisDgAQwBBSSsDBBBBBnZn/iRUKSgIAISTD7BDEswAMkMPMCWyIBBEF8iUISNxI/4iQmyPbCd2PF33n33YlC1Vl1r1arq6u773nu/59ulc95n9921al11rZ+qrq7uNkyWwPsixK6L3n64AYS7LrD41+VHbvAtcPrOLiJYPXOYIjfeJjP7ea78gGtYtD+QHNtTN3jcev8goraFBwfChlFb6MwDftXeV4Yl71+pj1s8dGuETjvFVbbt5pakMTbblhhfwGddyM38FctODyEqn5dPeNRnVOIAneBvPGVc9dxk+ab8Wu6mb7i9mOSi/TBXcYK5x+ExlTyAedDsp89fpfGogyrg71hEriKMo3wzxjzti36XD6yy41bsru1EF8PUSPxTYzHHIn5lTvNY2S5V5HcS27Zm9g9qZxhhiaD5cJo3yPJrKe3twLojAfukd1GLxo14kRsiogfN8r7KNt91dx7BN/bKFeGzxaySbL4z46YtuPTjOI6RPu8TEW+uNZXVi8adttrlDSbYOt5EbjymNomN40CNFDfHA147+zGc98+NYV4U2RbzRpRtdvJ4fDQbp9La3XQhgt3TtCCri28KoM8beU7FwTvHpGNGG3AF8L3RTg/aavz1Y9HW5TbBf1m3VB9z40vBb9v74Nm1chePnP+1R089N5A1LZe1vLbGjbdffN6QzH5l62kbGfdp3geOUkxzbojaHK7HdC3vf1QRou+Xf9wpGwv9nh8/Eelg5Jwfi79ow9V0dDM9i3LRATnU1ee4LO3VQNjD1HUjoTchh8MjZHDg0hDHuORebngsEEwS+zSS7zFpqhPyw0arPeamzStq72x7gWIcBSemq3Ls7UdEwFV2NusPEdt8ow0+7XjO1TyR+LXy0m5uv0QWdPqLUN+jeCHVVhDx3zKp1AG2l2UnO/LHrIfakk7+cGIU46jJsDuB23u9/djJ5rh6jOgLTAzPVvc8dm1EX7CfFRe7c+NUHXDVEclk4Y1UnOhZsx85tqTj4th+OEhG+43b8PbT+kf2G+Py9rw6PL8LU4yHee7Oc7kW/yh6htkzrnn+QfX1LtJ2Ami+Y/Ug+IxD3244hrxh8ilJjNdOzZqi2wb1hRv1fFjlPhrngiYn21/i+L/xBSj6DLVy9SC/6Ih14+gTUfSo2rSxPHM2qrtR28oFMSVkF2XuPbnScnnTs2I/IoILQr+dv5flEDA5r+7+ZlGR5g0iEgp1Y0xCPna/tfj1eab9ZR/jjuNlh8lfgGHe95gWcg60CNFEGicbt9zDpPb08j1XrdH4OMWMm1hQJubCcm9WfRu99EAPzI/imOTr5hhxnoZ61X5cfa7hmelxoNt2zUk+HWGMXB2PVZ9ffj1elv9pd8yEtrrR/Lcfb/Rja9NN3JRIXFcxXfIoLRBTfeC9talX9OY+UuuCZv2nbVxiImkJTKi+qbG2tJPU14S0ZC02WLRXj2ZTXK490u97EfX9ibIYDPotk5QbqOunnxwwlgmmT7vtnefddMdke0zKlQY6U+NxzE20Hw/tZ9+5GXDj+gdtiUACO8XNsf0KV9i/YD+K/WuS7h5FtAm17VteuvqhzesYeIzHSW+rnniW66qb2n4WU9Hn+gF7Eo+OV28DtIm7l8VE+ImDjFeT5XaR0u4cjbnJ+1f46GJKPFcPxJTEhX5nDDXZIGhuNIjHxI/mMcX2IgQKOMwm0X4sMFC9AVcXuBnG1HoR4fbdMoKpAhOJ1Cer3B2iOBHAcy0/q/2NvaSPrHps23qZOL8Tkd5HxpcIbKTPIHOTFbxzn8U+G4Ziqt6GUVbvk+HnSPBD2Og7lo9Ur6Mn480f7eArkcmoZ+fdxsNdL9BGedLsp5hzbmLeYNIdDyt5n0insGJcla2MlnMsq+ilQIhfijbwst5+0vLk0H4F084o2+JId5/swR993vDb/eIEuMcMbUmr32LK+81GO73VbZQPQdSN1Rb7Wd7AC78kb0SMsD1R79FF2YcUxjfeao5tuXwPdXEMaXM2yuu6Y+gftf6Rs4meV1sTvXF5Ycem85xoPy53rDDfuM+cRL0H9mtcIe5mk43Kzg3hvb0sSzkQr8eNGTZGkmEc51O/VLaLLlHl9vsury+f84wZE+30RiS/IqqBUIr4/wpufxNy66N1Lz1K+HTmncm5pLS22j562K7HGGQ1MBS6oK6C0SPHNdxynA0F5MLGy+oKV/aFduzvSE/HDb4WO9YNSVZXKFtdTQQjTAHGKjcOY+ND6y7bj9rzBpe5GWFMZY/th7ICoq1/0WNhILcCg6cEPQGzJLzigGQXvyLhQ6rRJogrxxT7F/UiRunqZpMt9a54PzxbsSx6PHehPwc+57iq8t7naouVKwFZZ88gW/474GrB54Zc4Z0JEdpYgizEo2Rc9ZiucOP7dG1wFqp5n8jyLZHm1PrqehF7hu5IS2Pd45yNGfpGUCGm9zD5sLfnkT5E3t5huolepqB2wMhRL07A/Jjht3W3+3S6e2R39vd9JfjUSdyd4XkxWDmmEEW4/Y2I7M2Oml/Lqwc2Sm1SeX1Yf6L9MG9muPzFvh8H8NtJ9XnEelH2kMYbamm8BtszdfjP269ZXutu9YI95mOp//Ge47cKKlI8F0vksbWLqHxMaaWdNipv0YjjD+aNOIZ4TF3bScnzYn+sLT+oLMRubpt2zE99xNGQx4nPBa7wzdK1+/WFT1LzPvRfel4FZBF3j8FzM7KftwkKSb3jFWM3jjWZ/bS/mf36eEQu5vb7ukVIvl/+cacwEb3xe/m2JpU7VJqe2VbayX21HmXd1b/o0Eb2WmU81tVlgfPolHinTNAbuTnlQ8gGQH34Xlo1l/CICG47c4e5bdnStjwmZrLBGYNEZX3/4C4Ta3/6AMY3hMW2UG9ZoYkbDEvnRerrueve5iYrbTVZ25lxQ4Eb8dycsV9J8PoWTb7GDQVuJGJmswmDXqF6DyLlMTv2g5cM+gvzcPCbaL+eV6L6QLM9L9Fe6a4W3Wqdkc/FQcLH1NieGa/tWZ72LIDzG3t9eP2Is8k3e+EWl8z2q9xkOaO1G/ymtlS46vUSXbHfgc/pOeOh4DKfM66ovQU18TGB9vuYegI3oHfyeMO07NhH1G2vXyfa4hvHAu5xLqveP/BvzW07tS0+mPelxkY5z0TCdQwSYnpYcitzpoBR7HTLE5YXGTDDqrZyWY91p4beMYobKb2PVi66fAXHgEn1REzkcpvaoPaCy92y8rbIzcYB04OyM/sFrqL9sDCVcR/9jriNTXtt6FFtpB+YtjhCWW7xrOND5kfn7Of1NNb8uEaEvk6AkQFjtQtg7nAhN7DVWl/OwUOblLJx3U1SfdnnVO5yW7ql0PlRwl2jkJQtl3MwL3LI2dJiEuvGOEGu9oA5ckPGTbOZzluQG8XM8Hf5462+ndH3dw91V+3X4jHHNLQfw6cF5I3ewH4xH6uiyI3O/0bcxP4RNZ8Q8vlUiLrnbr9UkZJDP6Mw8z9DRP8JIvoVEf3fieg/LyJ/82p7n/RWxuLC78L0q8dG26YpyyKwDky4LoBvHhu4vp1unqSDxmaRVI7LBKQNzKapXjn5pErwqtadNovm+Da0NYwavnudlCLmEnh1W4boilHonzuuA5AscqMYAxfK1c6AScMV7yoKkX5nDGWJNmLeYf/9NW56rkrC3aTHrK+z1RdEXOYmYnTJLeGKmn9G+2W84rEOXkQ4WAXZFYzhWAcJIdDpeNSHiPfU5wQmDD2PEUccynrM+nak0t+t9g/8ZleE1eewrQpirxgl4fEMN7GucSVE7QGXOsWq1Xeub7G8ZL85NyOMgvYbctXbT3NZZz9d9Tjkao2bLr+eLEJkzyo1ad92eYdc0kfs08BHbcxAWYhf3cpXLn42Eu7zRrkQKT67ExHvZXIrVF5XwIneqKecxhykMRjr1vox71NZALO65OsqAh0zDVPkZsgV5EWhTk+xwaO+Upxpl/rcW+oPC/bLuBlgZJbwzLlyV9pVlxZ6s8VC9zbRwKtiUnaPuaEunpkFXq2fj+McZF2eMB1V1j5bwWGMmHOjevXtfUKQU7Ui2qQ2V7xE6I0mstJw+scaZ7E/yIvpWKw2aU/227uweVRX2wZMIR8PMRKMayoWPvmAehTxTiXvb1Ltk+Xu0N8jbqJsb4PYB6yrC1h7fZPkmCu7oDqyn4vHgf1qXtiDnv1C3v+oIvSpz5j9RSL6MyLyzsz/XSL6M0T0X7/a2CddmDH9St7qa+K4fkNkpzfe6U39lAT21Jbj9rceE7m1LPaB0prCfcDmhaQTofaaUqqBFff8amNCTG/VWetEjppDM8XduhEIuXMl4Kqs9Ilkd4MzE3IBa57uQWynN6Br50ZcYeJQ2faAvMekXEFdewXymBuPkaG3gClyJX4ft0vYFOx3gZtl+wnV2k3K2S9iBD2Y3NzLRhASQBWQRYwef84rTuqwP+XuVF11DhilHrs+uIFDf8nisR+8ImZdcfd6a6RJ3STFXlagruMqmPQMN4ixHEW/qZGmF/spV5n9PFdovxk3rTXkCuJe2Kgu9tva94XAXqn9Jlyd5cblH5eXzxSmB70Rme4+H2jOsZedS9ti6mCmpfgSo83Ynze+uF2ANXi4GFa54rrtiojam9DUO4P9YzzrgSh7nGIqiw9tO/2Ofhd7yE2cyXuOv2ijqZ3alnxu+BltwKQvNdipbBsk95bgDhmN7QdZKE3HIOuGAZ/Ly5slm1uXi2jIKzTur25JN8t2fjSyH1GZuLe87zEFT05yqFtcJZhb2LAw5qb/CdvF7eFJEalvH9zrRdlAFnCIU5rwKgGq60PMG0G21nPjkV16xDlO6y+OA0OuIJ81Hwk2mMZUqa13qPZm0E6v42qG6a79zHPiS3JiPkZM1HOV5KrcB8F3l2Lqu2gRkf8NHP7zRPSfvtPep33HTIjonZj0m0FvJFS+uaGR35yjbX+q7iPkJnFE7J+aEiLNvLbdgGv4C8MAVPf0M6RZe3Uq3o5vzlnumrW2/LxNZYuDt01lOEZi/4Jsra96d4eZOozYP2IO3JTfdTtWW6NmG1Za/Iq1a1sfoH/K8kOQxypqNmLbmz3nBo9n9qtc1briZLV3ar/r3OCt+R1emyuit+2bbNyeQ6ks8urtF21CxC55q6xY85za/ojXxhXq1T35NQF3GMm+jcKV1w0GsradlxO9ff9yXhNuiGwlN/oNSbsTxKYX9ZAaeJkbxIwm9H5TPzTaxS739iP1jfb3bqr4NDcSMDILSc2LNkmpTrNTlFVe2fy16Wl9uMpNFvdnik6mW9S7yxtSlnSipLEfr7NcLtC6VE749ph0NVx/16nOLn6RCc/7iXVry7Yy1Qu0xg/5HENkuS3mVCKuuy/UkmztS7Wpbc02TO1fwrHNbAYvQMExs8PYeHV+VtvXt8wKtVwuVPO+xDudXlaLUBhv7GLWzxeVK+9GDJ2sGKX93OxXMSlXohNS8BVAa7KM9qPATeVKx3w9QL3iMZndwAblpxaDikLbMB+ofehyW+BGZWOu2+uCjfsAc2YTXdji9qIk7YPK+vGnXQAYrsBNzDk4VrlcCFyjDrWQzS0CJqKwbXCQ24xXkCMieg+8Zvmmj6nyR/mkjCJEuzWem03Y9GTcoM9dth/ojHGR28+P43keaLkqjlWtrVFMfeWiz8JeLn+ImX8Ljn9TRH7zQjv/BSL6X9wB8mkXZjttZYuE6J0yph+Pd9q2vTmLeKe2V6bXfzcIUt1OYMGxFxe3gNavn1OpsNmWFdZnY5ve+odQ0Etb/b6RYmLiOvAjxuLkQjvXZ2000+9tklAwiddbFe5Wv27bqLJbwNhkOeFGg1QxKld1auK4atw8iOszPyArXB/s5vYV+Y5XXuLGMDLRJm1AYhbT23PlMRIXjLa9MrHfKjf7zH5UHx9XXI63xH5DbqpeaZhK/3ofs9fbiuotLJziNfGbMmESm9cZNyEubJLDTDv0zwaDkd4jXqP9dusi7VwvzrR/Ka+eK6mYxGFa8bmGcRRTQlRtL2B7Hxed/fbEfqvcBIx9riqLWJrnmh/lPocr9G03Y+TqGjcxps4V/SBwy3XKH8YGG7dl8qbb0F2sKE4BnNTsbzFHgR/LG3WrYh0HsgmW2ZDKXeZNxMYbzvjhtpWmYSxvM8RxgIMNVeGuk2LbOt64eVCTZbS/EOlr4rnGlWK2vKHc7NJhbN1keqvjpTDTI+T9jivjpmG0MQNig1nqjpgwzlVuSGjKTZ0vO/sJ6R08IpJtzA0V/yhNV1nzdel97oAby6lJDDLxICabb4th1LkH1Yt0+Bx2MmboNzC7cY6Kr8QxxPTWA+YfZZ4l0sm2Cwa1icZUs306T8E+4dZMEptbqR4O9tR18V3KBHTIjWBM1ZxjMRJ4rRiVKwo2yPKN8xvln+pYKeJ8TuNTF1zcWIX2C7lq20f28/2d26+8t/Wt45Ht4r7Zr3C0UbEtchP9s80Rgl6N+zSmvm4RIvdc4IXyN0Tkj41OMvNfIqI/nJz6DRH587XOb1B52e+fuwPk0y7MdMh8JyaR8nLijd/o3W0pJDJXcMfF83dbOvFbS3SbhiYKDRaCY11xI9IkmOnV0cbLvutxilFMlkXf7qUY2d74yEFWtzJSnZDQXtMF6NlTLkbcRIwEej1GTUDIjU5yS/N+tcg9i3WKm4hRTHYTsdUO+45IyhVgJFwxGvuNZLLmNxlGos5+gavMflWq1QVuNiH6SRMl8Io20Uuo9gwfcHXR9kI42WgDsx4rN4KY0V8hFXc8Q/9yn1uzfUn84n1OI1q5qdtk27Z9xHUmZ3iMe/ATG6BFDFP0G33Rjbcf5BPj5Ro3Pa+NGyaiB9hP/aazXx30p/Y7wU2O+VwRInqnN8PJITbyuNprDKr963m1C7VVUiapYu14j/GrNqwTT/u4cLCh35rc7M/peGMRZi24nEplcqYfryaKua76O1PF1Xyn54YdRqdXpOU2PWbkBu9WBlmixpVd3Lb6kavVnFrs5zF6+61x09mPy0KDcpVzg37jXIN2qTt2zH5sJzNu9NMJ2r8c4zE3WJeqv7YPXId8vFeMkMtzf+3Hm6K3vFmWZaeN39w4YHkDdstEm1AdAUrOw3zsd16Y7AI3NbmRvmH2p9TnJtwkGMkwtdzWuBpxQxZT5WU7xWIb7ZUTGJtUlosP6J12Nozeb+S0/UZ+UxdbRBcNfN0yP6Rqy8R+etzZr3Hj7Jdwk+ebr1tu3jGbFhH547PzzPyPEdGfIKL/sMg9sj7vwswmWGTOrWGrP+JEiRzhHH5iTZvatAWbtdOezjU9uiq7g6zX6/WYDjj2yGAyZmHa2t7FY7TghrYsELhxEfXkenNusqTRMMFtdOm5cttviAJXV7jJMRKVyUhuv9r2ov1mes3HNJ8lPibdf9mdE2kWjvZDv5HAhZDUVUG2F8s4X7C1/baVJOvPFds3T8KeBZ8T5DXKF9sjZrJBYax3JabqpgqTif6Fb5r0ticKTx9djIvY1zZBQNnmN1y3gET7AQ43NlznRvnu/dXHckkWbaV52X4nucll10uJg81iQ7E+iMlWojvdusm5TRK4HgoR4Vab3Y7BhnZh4mMyvtwp6o1jwk6lqTZxDrlbkpxKGOf2rkPbDm55BOTwrWrlIk1Itx713EQfbTwSEYls0B/Plfd3zfuKqY1dI64iNxRk0X6td9F+K9wYOlhUajlU28i5ab/hE5Uav4R1w3gTufG4mu1X/Ia49cLljTopblv/PCaxGPH2sPPQQ/XPdk6oPRiS5w37F2LJj3lUtxT2cULWRstP0fY5N5rxqW6Xn/jcgJt+HGh4yB2PuYkxpWfLTokWyzuRPSrRFr3I8m0eU1V2Yr+lfAPRgZ9+eJCfP9hdU7BJ61Fvz8ZVPk9Zyzdfrwi99sJsVpj5HyWiP01E/wER+bt32/vUZ8zitGrXW+vw25ozQAIlslZx4NukE7FkoAl+RW9/GZy/1EKLYrBJFiC2jxi65voL1Fz3Kjc5bsRSxzpD3rYpiQ1a2geicYCe5QZ/b8nLTwTX7Wc9SfQ27ZFDHShGmFuL7Vh12tbLoCPrX/u2DaxeWf2+v177ke1HvPayW8pNG5yjvzb5ue2P9M78laleeAvWU0w9N4gRW8n1rHNjN/Fq2XqDmP1UdtV+M70r+UanVP5zFk3PzH6KG/9trd7HeKY8pHFF9a824VUtoY/SLops+tX+E3JliF9oCNHjxF7baBh8/XicjTd5XHl5kxV2mG1ylmJCX4t6e+thH3xu67lB6zPBdkTT0xaj/LciZ3lxbj+i9gruFW78s5Xtd+RqxA1Je723buMmlQu7QHS7twMd/EhtzeT7v+I3QmwT3Zg3nF4hV6f1qR8LZnr9pL6Q3+dQz0E2sS/HQnFeEm2c2X7EDTNckic+19qL87JQJHKZXcDOuAF+AK/uFtmJXDv9eNPHFAWuGs/ZLCOPZceV1pP2Hl28AD4ebxj8HsfTfhy5km++i5X/ERH9koj+Yl1M+OdF5B+/2tgnbmUsRVcdRLbyXbP9QYzTDxiAMVm2nQHqaP5tSExCtqGc6nYJkC2v/ayvLCVxTtlKSG4g277URFNZn8oIMJU3JpH4utYHJv/F+YCj1+u50a+3+3M5V2VAJJMV1Mu4xdL35z437W9Ncd5+rdbD1cS6/g7aiBtLSHULTNO+r9uPqWxjqz/tXJLweArX2wTTK67qznhtx2u8RlnDT3UrY+dziNHXj35y1D/P+bHtmaTwulPrH/icx5jb5IzP5bxCu9WeTGVbWJ8zckw5V9e4iTFVuNiIaS8+t3su/CQPuK3+Gute4ybLN+eKCNH7rgsUbVGk4NyJWfN+4mdgl7i+TBBXrIeY26ytdi+hTM7bKr7v02i8keRc9ZVkfXk2VqkevKwoi2DtIkhlvX/PpnFNr8ZVeSh4xo3qEuuNNlc+Q7LZ5LnnasZNwCSRq2NuGqZ2Xu/86vG78JQb5a543V41FPkHYNr1QalhvmpLq2xnZjaoNar9BM51uQz1Yl0bq471tJa9TVhK3tAP08cchBdCvT0hp9ocwOfvhgN/n+WccvHNVD5D0eKmffal8dOPA/14ytTmcfkYMZJ1flNzvX5oGu8xrnDj8mTH1ZibGcZiv+KfhasDP+r6B3UdpoyrUf96+33lsvvtKh9WROTf8cz2Pu3CrA0S5Xb7zkSPne3tQRzcrnPiMBCws0f9ZhMcqzsSEdFO9uYaqnuMy/77qkeIWoMCLTS9sa5A3RGunUJ/xB/jK8VlVz2c65npDRjb8xw5V2oDlW1cCdG+2bNeyNUzuMFjxqXtI/uR3oFSrta5iXdkWd5c3RlXekGHeqL9Wn0hkq1V2IXK66Z1wGEQ1kQIohR4XbU9eRv4u0Bi25U8xsqNc9CQ+EXNOxhUjmyfymoLOPQR0e5fgT3jascXg5zihjpep1zZYJXbr+PqJjc+prTgK79VdsyVEwX7XeEm5/Vs0Rd3e1/iXYj4rcbTTsxoYW9vqcftxSWSxGvksknbpZDoBdDmavnxBvSGvNFhki3IQmsBIz7R1O4HceWHaHevMo9cx1eR58dCRLQLsb3ifoWb3t+FCk8zrtpEbo6JqLffiJsUEzVMQmxv+MTRIavLJPVNqo3XHRbUhMo4F2N/xJXXWPvjeoi5HMeq+WIcibiLcgr5+Mj2ZZtw7ZM0TdrLiHk0yXcX2eHZqJILJmOXK01P7zdCUp+BW8EUudp3PH+EKcYyctXyPlN51r28HaPF0ZSbLi+y60N8e/MIU/ObPu7L4nFc2JtzQ4HzVfv5WCbK7PdVi9DnbWV8dvnEtzLi9i4i/eDnW50EMAm9cR/OTP2+ZyIi/f6JW2Gpx5qQmizZXEOoTJ5xy4BOyKIe6Y5bXZMlTMHsn0kCTIayHlvYie4DxudqEj2M7Y650bqNx54rPzVr9do0RicyW9XLt7hBWeNKX6ub2E9/ibKiWOuzWyvcNJ217wmvRGP7OdniqN5+FO50CnCjk0l77sL3t2EMvDJ3GI94RRvodIiI7OPoTq+AXnRUan6yBxwrPpdhbnVh7U5if9rqfntY2utVblprZ7nJee24GvTP9CKP5gsN1zVuAKPPHsRStmc1nxOwX+QqYIr9PckNHs++aDUqQvrSpc1+KNOAApJrH/Sjs3l+YiIYF7xPkj0oP5KV2t/yL1uMU+ViJKvnne9jXRYKlrJje+tg7R+5/pFdBOw1x+rLf8Q0tTY7vQ5j3992J3eFG0RfFImUyc5en/dRzP4eVZIXYo6px2q/NW70jqqAbMtHenGGuSjapNkC82/rJWJ0911c3vc+pndWmt/UsctQSH3bnvaw6tJzjhuBHLvV7vu3/K3w2ufFrfZfrO+b6dHYZzfeRBuWtjZbrIzzlIybHpPvX7n7Q6RZ1HZMaVugp+eq9U8qV43XZDydxAn2z7dSMhDBmKg+kXLj8iLVO1yN14Yp4yY5JsjldvduIxGhN8j7GTcqiwsDLQ8gr56rLIe0v1s87rS5T718tSLE9Lg0Mn298ol3zNqmFP2FdqFHdcaNmR5SvsDeEjK4jiVrqhMO3YrQWm8JmlNZouqozmGLW7ZJQK63r0sYZdQGBkznAkG62XHUo8mgBU7Tcx9jbd248XqxCyZrXG1UVtD4lN5CDZOuvtnkqp2ktvX0c+yHx0P7MdrPJ13k6khv9AXkRoeII4xX/XOvts98ru/fDpNE5fk6ryhr313Q2I11B9w0f22Ded5f1eN97oztd1qzX8aV03OSm3meq2/em3ID9rQ7ir39znKDsrudPVd2eiuDvGHZ6FFfm6Z5f5cdng3q84a5jm1/qpfKXC8uktyGfSxRXSY7+LKZeV7s+WGyV5nUu1NCZXq/Wf+ImHbGVwy0vNFGPr0r8da+r6ao0C3VR8H+vn9Jf+srumfcYP+MC37YRE5kK3en9PlA5rqNbMzNLC/W29wpN0S+v94mxU/2ikkIucK6tb+7VDttlnPU5zJ/30GP22466B8T4sKzWrZ8HE/sqYs9uj1vGJNwPLOncEmxG1G9K9WmrDiOz3xBtA9S7sTjHCfLG9E//THba+7LwuVGwrstEpNumbWtaF5WMYqday/KOctNHOekkEJcuWJ52DdMMZcPuTEuxtzMbD+zH9csx7zbbh/f1owbIqY3SnM5xOOMG7SnkH/u7iuWz9rK+OzyKRdmmi5bAqvOVIOsJLOd3ngLr2xuA5Z6D+vf/Gbn2tpfrIuOJkSAwd3q7fTosRDFxJHUNddoMyrS1Otuc2NtWFZReO5WPeqZYsS2GmZb0XOYYt2EK+RJiNx2gwvcjO0X+zfClHBFq/ZLuIm8wluW5lwFTHGiGvR2yS7pHx6/yvZsrwImyLm5LIetJTpQLek9xPzmYjfeH+i38o369zrbj7nKYtlvQ5Fb3DTb46ucM0xjrqSufbzKfs1Wq6VtP9P8z27FnIlpkx22N5G9svlMbot5AvOxXWyobvAdxtpDvyPT+0va6Xdv7/S7+J3+/h9/h96I6LflB/2txy/pbz7+DXVLYulfw+UxlYuJrWES3Moo8PKSWd5o/WveIkT7MTdpPiaxTy2orcoWoQ30jLkBj6Vp7A+4IWsdFpVAj/lP5OqQmzdCvznK+7kfwcKkcSXU97fxga8jdzEIjKmefDtbHpMSbOLqSqlRfGqvd8tAVvARBXKybgdFzW2zvOHHqsZU5q+NnfK9s42LrxHp4kS84+FlV8fII27weK/Tj7LYthPzm+MKP0R/lhvU4zAtzQFK2Y0rAlnM5XSKm95+LYYiNw4TSRdW3+U15fO2Mrq3L+nrUcvf5Q1KZYWuW8Vny5v2nbKd6oc1q//sVEajtr2gylJJghuXwZDYbzvTFYiCgRK9oJ9LH7Yurlr6Ln+U1ndi20ZGFQditM1ttX1R2aCn6JphbMOUyZLyUAN2H3EDsvV3nSRFTJe4oSBrXFHZ1g3c6Pwzw4hc7RKGwbPc4NgMLUX7RW72itEGc52OdP7a3jSqbaAvZP0zvcAr9o+PeB3YnmpMtS0tWjvvX++vI9uTw9rbPrEJ2H6Dfj2Eprb3x7AIcoWbJKYKpuoJ9ZnBmf0aNyGm5NjnlvMNoNJXOZv9JnnOcUNtMnmVG3c3HZ3yRNEJtaos/ah+udULUS6bykTay/KH/JDnR/OImx4HWSL9+Co+C1QvDgf+jcdkNi3//zduf5f+0NvfoZ3e6F97/C76W/K7SC+0mi+pv6uP6uSZldB6UabbBsnF6nFObW/sXOHGZCnjquqt7T2EaK+xEP055SbJqXnse276vKh3afwdKs37knC1zE3MqWbPqhnevIrc7EGWhAMXsb9tyanZD2Ig5rrFvKHPoo3igqr9NtPe7t7h7hKMRcwbFp8HeWOH46O8IfUAX/+jWBuvnpuY25Qy5OosN2WMbrLWXK23Sb1jFbjazSZr3OAxXtxl3GSyliuE6qcTfM5o2z6B8wNuon+i/TJuULblrq9ZhL6fMesKM78R0W8R0V8VkT8xrSwteVRfq/+vSUxKIDzq9iANaPcBVZb6xXmug1q57rcvsqsT17ykYyER0c5lC4reCneDGNeJISQSp5fEfbBw3wVk2b6qLlVpG4O56BWPUdvadfuEKA9e7y5eD4muiEeM4bhyY6vnzO0jg4EbqZ1vPBI9pHxhDDFd5ibK2u7TcvlwZD+mAVfOfie52Ue89vZTbvAjrpu1VRkCfyVpsmWQhI8UZ/6JNkFeo+2PeEW/IV111/487KF502qyjWOVRZuMeT2yfRJTtieCu3jUmcqQm2ATxHSKm0FMWX5xAyEOwEksx5iKueoMNwmv2nGR8n7Szn6Hsdz70RVunOyF8oC8X14qUZ6p2qk8tM5MJPuDftTw0W8ItZfmzccBy6mVGCYC3K2/e90KRzi+FFADu1CxMTT0Sxb6A9vfpd//9iv6vfzbxMy070R/8O3v0d98/H30Lkz6rEhbIClO0n32QOpiZZ0g6bbYB3k/20U8JhLjZgfMI27SnApcqeyj8qgflhYqCla4Yc2LlVcCjF3eDz76QFmzn+dKpNiPjKsL3FDIG0neH3ETZZ3fEMZg4yrmY/csMdpkljek2cRmyKlNFGO9IGcqd818F0AvjgNJ3ohcERHttQ9cn/WqY4r5a8YNE/Gul74b7Sxlo13gdchNwHiHG4ypYvt6hnWLbMZVic8ZN1y5aX5FluuIqD57OOAmiSnN/Tvt9ObmFhjLvf3y+V+jdWS/yE0XUy5pfbXC9JDvZ8xi+SeI6K8Q0e8/qijE9E5+gqzBoCsQTELMb/Xr7sVJmxPWCTAGFnH7Rk6NZFtZkLL6yrD88CCto5g2kMXkRkO9oy+jR1kG2Qd5jFpKEm2YWINZZTs9sX+IkTpuoixJLkvC9sX5IvtGdlFGuN3gOdxg/1btVwbqmf3ucRNlnd8E2faQds2q3GTxY7FMRD/VVbNUzwE3U4ymIZc1DLITUdvyS0SE22yiLBHXyeUxr+1rqCNeacKrqNc3XJN49IPiPW66uHBcicnawDWIZSGdTK/lqiNuIq8tHptPea7yeHx/IjcdxpNFqL6VUXBLYZ0XCJc7WLLTQ37Qb9dX5//gR9ksVGdlWU7tbKgxSLqZy/dR9Zb4fKvgvP1tKdrsQKrYjv+eEP219z9A+rzwr+gH/d39B/2d/Zf02/KDHvX5DtqZHgyYCe9WV/tL25mw25s2i/1xAtlhRHYDRhb059z+iMlzxQ2T4QWuJtywSDLODfx75zaZ1pwK9sNStpqp/YRk5+L7H8QN0Vi2xWQ/3ozyFZntW66L3EjgRn23UQPb9bq8Ufq7yU5Mb+UrG9A/ncQXce1DzW21rdlYJaaHnd7p4ycVE9NeL8DFyX4UNxhTbZQsb2VsH6QO9qtc2WcWTozjDRdur1zLNxvtxPJmT4rYeENcxcXZrxm6xUU23himaL+lfPP1SslT3xdmVpj5jxDRf5yI/iki+q+uyOAHHgkm2vYTcd1yV2rZQ9owsBIR6SqX5dwqy62peoHT9JZzXI+J8PWhukWNah3/diSvF7dMOozkZWsGcW8p3euBDcwQABqjUrHE/g31LnATZTW4uXLjxxhunxWgkpDYOvEcbkb2I+Sq2lMSTJn97nDTbE8wwJAlb+RK0H6arJU6apcaIkLCzf7N9tR4XeRmxutKXJREb91ycaG53XwhcJFxY6vMd3itxCpXGLy4dQgniuhz6CdXucniwt74B4Ort30pJS7G3FzxucZrPVkbEd6a/VzK1JVYwEitPJOb8BWxU0UqVsFjbmd22eixFz994/KdI+I6nQEfNVsQW2uGE/rV5416Tqg9Y0Mt92EcYmwwQ5oRvbArbf6d/Rf0199/LxEz/Wrf6G/vv7SYEGzUjQMCbeuErlwA6V3CqLfD2AABN95ntW71KseV1dNfXd5v3tNt+zziBvTugEPtRSzwd8Nnfgf2I+QKrCN1Er9f5Aa34q5x034TbnWP/MauW2rfIjcYSbv1ty3k6A7/iFl3tKBe9BPmdt5iu/77gDmQLiZhPKkvMEE+qv+qz2PfR/454kb1lB0Z7GTJ9PTcNMz3uYmYLf8QPAWW2E/9YYUbr0ec7Wd+Y0IL9rO2VNTFVMG8O5/zc2OcPq3nm+/y6vKsO2b/AyL600T0+0YVmPlPEdGfIiL6PX/497S7I/W/QlwnaiCjSdX91juqrXlAxfgMj8qVQboFk14EoW7OjlO963WJiLhObuzcXifs1ITyfcOtfyOMK9w4PSC3FZqBG+VKiKU8GCpB/pnc4KQwxRT7J+A3C/Y7w80Is/7NgIt3jxHyuyvq2zqcmyyBTy5wc6d/emYjqduTULatnqkejJXzcXGS1zo5Va7YfZeu+oXMuTrPTVLXxUW7Z7RsvydzI4YD+6L3gepxwlXE9QxuZvabFcz7v+/f+vdZ3s/KLkQ/yRu9y1buurDQG/+gX26P1mNB3NweW2f8HeMGehX9u36jEbk8yjmaF8uui43+9f0X9K/uv6S/w3+PNhb61/Zflr5QuXMQfVRIiOuFp+LiqnSntuqPK9rYpy7nIC3Bf30uKnsf3HhDwf7SY1Ise8W8wg3r1VKtJXvrLlPduJ6Oze0y2/Ts1O6sQ3+NK+EP4saYsZjTX7aJ3/hJMxk3MbZ9/LItMjiYTlb7m/lY629pf7O3h6o99aomla3H7hlkaQuGkvBqi2TRBskYqX3GTy6UeDzmhp7ITfQbprYHJrcf27kjbhxwan5zNt84+4nWz+3nuaqLRzX+XMJObX8u33zV8v2MWS3M/CeI6K+JyL/AzP/BUT0R+U0i+k0ion/Tv/sfkLYX1KYB7dBcg8N5DI1EFlz8Ec64tMxUP8LnX40wm07p3+UOb5PlcWh0mNr4Av2CZW+RGnlOMvbPf0FmxgV3sjhJacfIld3BRm5cglG5Y24yjL39sj5Iu9toxVtT/O2C2tI6N81+8fzcfmVFF4ZsyequcBOSeMpra0sOMY5s3Y6ZpK62xbaAR+ef1vMJpnKc9e+Y13rxw1Qnb2A/ifampOjzE15PH8tH3MBr12v/dVGIHYzMfm4YG/Y37ghY4YbI+w1sEvJ1JdqPQDa264+PuZrF1HHBvP9v+ff8/fLYoX1uOMtr4je7A15e7l36+yvZ6wbcXnd7dqjl49jntros+j/L3LJzO5eUfphvv/w9ISIpQ+hfp99Dzm6Qf5sN23F0aN2iR0Td6/L9FtMR1JWc2rZfjeq2u9d+u+lO1LZI9VSQSrkODcYbXCwqyPQSW3NBHPPBD8F+xFTfvO+e4Esg9v31NqkfdhbNScgbpbKtP3vZiun64xGgP2b90xhkO+KujQYjyLrbwCABfrNR+UzAo50tsub7ff92yzlCaqHW/HgOYBCxxMGcS2/bp4uVNbbPe0RMtbd0hpt+LlUl6niTWWurfcY82/oT/UZRHXEDOOO8BdVnLly3fb5xffwGFk9G9lNU7snWOA5040Lzz8eR/b5oEfl+xgzLP0JE/0lm/o8R0e8mot/PzP8zEfnPjASEiKQjsDqdy4V4LEQ8Ih2DG37qztcj9cuajCXqqQ8WN9l2EakPG9uWJ97Ih3/SL/0LVg6z/uGrcrtJe8fNCGMt7txostXD7CfAkKYyrgI3vs3tov38lpa+DzP7JXon+45xe0Ffd5BE7d8zfkOh7ZDM7bmSXtbVlZmerndtWwvpEOLPR1nvdjzApK3Bhyxj8l7kxvXOeI11RwNf9LnSruNqwk2MKQG9UieJg/lewEQT+/mukUS9c3uKIFeb3XUfyeIzGrLP7ee5CmhvxNSolDsBb01ZnMyybusUemN95UTD2ZuiXEgjTI44JfMdsjcgxhjFXMAcJ4HtnNSpZTv24wBOmWj3Ntv3dodY69oFkJAbB7pXwXX5KsvtiHGAicRzVXkveao9szPiKhLTdoL0emfc6DzVuufutgmJ4GtS/PjgX2J0ZL+QU0Pe8FPcEFcys99WfRYvHshaa/orxqR/mHME8oifw/e89nkCelH9pr1MA6X9XCNys++w9Y+ICF+tT8l46zC5hEr6CSQ7b+4sJLTTxpU/y11Y18fyfoKb6HNAsr1lN/oNk9Ttla2+X4iuzzUynD3BTW8/z5XrvzT7EZULZWafb0ZctfV9rryx89+eG3w7LULO7feVy56T/7Mrty/MROTPENGfISKqd8z+a7OLMi22pcVNfnBvNxzXvzd7kDGW0lZbIS712vYvDnqanK4KdnpTWcCsNaV+wNHO41MPfUn75xIFW5KVFW5UL8DkisvwO2644XCgBoCJbXulvlp2yg2Utg5aylbr9ROlgf2wv4w2adiG9ovcSOiv/intldS9/fR4RM9Jv4myHGW9XjfQal3BZ50G3CR+g0furkLkpuvfyLcbRrFB5Rw3KsESGZ7ngdbJzLfLLEqE2h75A26inva3zGUP7BfzgLr2er5pehBVsx8F23tLWy/QfiFXOfudyDf+TuJ6Kc9TwoyDwD41v7zVb5+wcVgXxEyixQYTEX6iYot95mZDexak9mOH3Kb+uxHcwZBRLg8xiVwaV01qo5jjay+k/SLE9gp4naBBFnRc0XC8meQN7R/jRJQovvGQABNxxVS3aiFXzOK0df1b4EZlEQB+DsLaGtjPc9XudFloCE25wbyBfqS61G+O7EfEVkefa+znsKCXmv9h/6yHaJMVXiGnRL9h457tDYht30rPjW3kE1RfPtPRZCX4Tc6rLZolftNaDZhifrKtqsrVSW5C//zdrtxvunxs/3p76VblM9xEjDi3um0/YdJPqJO0/hmSA25iaTm09W/rq32ZIkTwGfWfd/mcD0yLvnmKSPY2JBLhqpc/ZiZ6JxiOYTC2TQD23JpuTdK6VLcP9LJC5XWhIi3xZ7KWUlnqF9lra9zevtekQTZg1AVQhv5BD2oLdYV4z7nwxxEj2cPkjC1HrojpiBvFqA/iSu3clJuA8V0aV/pA+ZgbHnMjUVYHd7TfETcz+zULDu2XcCPiJWc+N7N9J5v4jf4S/VUE+zeOKXy7ZOn7se1lgRv8Rk5qgwE33l/Htu+5Cbzu3tfxbZho6xk3Wb5pE9jmNzk3Zdvdkd+I6sn8NeXG+2tnv2L8U9z4fBPsdyLfgEMuF6H24pumK+Qr1pogJxu9q4cwctfyvvZRot85O1C9CK1THmnfJtK29EU8egfIcUfQ1kJsaP/2OstDPc6GVLZu60WGi3Uuq/SYr0hQK+gF5hBj2r963Nqlzr/b9/s2+85o89GB/U5x02JDZXdKuCIYq8B+ROXtgZkvGFcTbnaJmBnqtvy0MxFhjnU+t1VekUc/Vu2dbLOvdNyM8nHOa1vCSHjdS382rvenwlzDmGUM561i9rH/cLK9bSOv+osbq8BvNtKxVy3Zc9Pa5oBpjRuMi/ZMWByrWjxyxdTuXfX2w/mC2u8hAy44H8cx8t1Y5fqnXOk3BfcwT9nN9nP7HXPT2Y+grTDX2ENu/i6vKU+9MBORf46I/rnjmu0BTnVu/Z2I8uO60mFv32lLxoRDKJkEHEt2DLinegNGwbo1oHlFb/tbsrp23A5lmZuIsaYzvsONT8GqR5a5iZgDV5e4ibLt7NCPnma/jJseo7EGXBVRnAqdsUn5u23ZK5gtfGLfQ3/dR4oFn7dpdc/0D+u2V/Q2XG2H0Kq/2v0j4OsENxL95q3jCg9n+SbjCldq59zAZwgSv4mrwNF+OTdNb2q/yNUCN5HXIVcL9jtfynfLFKfFgk0arNN9+wZT4yzPG14K65LTK6STNXwtArRlE+Rpdzo9OFbhFvDYt3hZpXr1rpm3IeQN8RuixrgCpiOuJry2uzvj/nmuVu3XZNuGTgcqqdvsp6v4Mae23H5sP+QmcnVkv3SsymIf7ekwNiDS1bUOInnkexR2Kgi1bXXS0IkIbey3Mvb2Q/tqLe7rKobhS3x6TPbSGLNf/bnimupJMSlXyk2GyXOFfOsFkNT5keZ9rpgYuYr2g3GgH38TXuMY6eSO7Kd+LrTxW+jN22vsJxmNGFNX8v5Hle9nzG6X3TyI2+o0zhHqn7hdiOusCQOCqQwa8S2MhJMsqCv2F4WVBtXjMXUYyXwVVudyPSOMRO012bgyi3r22ugaNxFz4+osNw1JCewN9nRHTHNuIsY1+2XcRIzIlVu4X+IGjxP7LXITebUz8JxG0dNW5XeQnfWv40Z/lzYwMa35qy/c+odcjfQe+Y1eYEiRUh7QX4cY7VkZtjeRqT056j3gRgu+eh77PuIqiykvs6Vc9dxwi4sRZuOKj7mJMcXg89TiEahc5mZkv8jVUb7B11OvFqH2YHlbUW4x6LaWIa4SVuSejkBZVpz1LgYT4TM3emyaakzGzzYghpiPjR/MZ7VPxrOry74/1Mab9hkGj0lzrEjPTfMdNhtlmBpX5TJcgJsePw+4orpK3zDtwp0sjbjKMFJmv8hVmyD353r7KT7lhkD2yH7Re9WPcvs1rtB+GhtMwQYgK8DrLvWxh5n9QHYP+brn1edyC1lp9mlhXC1g8bx1tkd7Wi4PflPmANuYV5gvuPFFedQ+VF/YReOCnaxJTuKv8dq2JI7sp7Lxkc22y4qI1T9hDEGudmmvQ0FcY/sFroLfzOznudJz0vlUZj/PlR9vDu1HLf/jZwfcHO6LFiGi7++Y3ShCupWx7P/fwdMtaKqntJ0bDG+HYZNVB98J624hMzDUpS75YzIayRpGxNxh3DpvH2P0sjHZC5W9ysvciJ0sGPcr3EReqX0nRpu3Py5wg1dRJ7gJM89ucuLtt8ANYr7MjceM9iOnF1cIRxgX/OZ2/yTxMcC7GFOol0VhJ3qdvya87i2c27eIwJ6oN1wdOIy84DdLGFFWiPWlPsDVGX9N/WaVmxhTGVdovw/lBmTPFtGtjLnv6OSFCPIX6CYq26FbnMX4RZyNKE76aHdaULbT2/MjQS8R2Xetov1jXiyym3FLOnmW3SZcerEx5CbagcS9u5thjBSW+hHfI/u3sVj7u0u5bNXnaISY5CQ3S/ZbyBvRfnbRErmK+SpyE3nVrZuVxy3lZmY/tXXOq1C5A42y+0pcWf9qOyNeF/qnfrbz3t6xyFvoXyKrTcOVg7vDvPu6M4wupnZdyKj+SU02m4e1tqiLKeVGkKtVbhLMDP6peqW+nMTsdxSPJ+3XuKHe58B+4uzHltcwzzmi8Lj63KOz3zo3aJOvXGafY/k5lU+6MONCoL2hqDoAtVuuo6+qmxeuyDLIilB7RgMcvrbqvjBfk36m1z3gL73eqWzApPXaMWLSbUYv4ibKGje1X5o4NGlWy5GM9T6XG7K6lmR0RD+w32u5IVuByu23eVnA6F91RaCHCLcFptwYFxmv0L+w5a6snEZeFYIQ3I4ptgW3ZPPB+7xmtvfxqO1ntm9b7PpBY52b/OUcIR5TrsQmWh/FTZT18Yj2I4ib13LTy54rQlTeyqgXoiGuYGnZ+Ch1o120TvXviNPlfe9nZH1pE03T0+kdYCR4RrfDBP4d7c855nKB2LY47dbfc9xEzCzSvusjmV6sy44r9W/DFLmacOO2b8mMK/DvwTgQZQXsZ5Pygd4ZN7EuU+Oq6aXGDXLV+ZyldPM5Ap8TsGfMG3ox7mxSuWiT5UH/Dv21DFZMQptstLPnJsYJ5oL2EpAw/pC4/hzZPsNYTK56pMkSkVAYx4Er94WxkFOL9J1YrhLVF9BvnP10jKQWj30ubx7RcfUs+wWu0H6063jZ5/KUqxOx/LW3Mv76lE/cysi2wMCkDmwuYA+JmzvVyZnWPZQlkKVWv8i2YCxvnOJcb530oJ4jvRg7HGQjJmIdYnxbOknfJ3pucZP1TxpPtiAusMJJfsvA67mBbTwK8Kz9XsJNHUxrI5n9Mm5aDlbZhrk9wD7gJvTnVP+oqbZ8G9pSTMxU7d22MA15pXO2j9xoX4m8PVvdVifOrVa5Qb1ncoZy5eLRZF/PTZQ1HojcdXSLKb7ETWv7fC5uwXmu2KQ16MbjqMt81mKj3THXu1VWF3TFrYrNwkQiAq+57vUi0SOM2ppuMVRdO040a74iYssjzqepXHjYhQa3uc8Zbuyiyk4CpgFXxC23iVUsvRJgco/zsQVuMl/h2l+NbncBU9uV1lR7Dh24ivZT3Ge4wbps/cH+ajzImv1gfFKfw4UOHEOwfw+IXycL3Mz6h3ljFFPav+b/sOWbNGegXm5zc2KwUePmrO19TAnETN3QqLkLbIZjuuotzXlMytUO4+kRNwTmbv7ZfND8c2A/1btH+wWfI2YXy8fc9LxO7QdcNS64G6vwk0CNx5yb5Vz8BYsQf7+V8VaRlnQ1AKT+Dmna35GN550s22oTBo6AIEfHp7alhWhVTzu2O8HLGFv9honsAo2oNMqM29BexI2M27W9/Kx1/eqkTd4+hBtq3MDMoL1Io3E17N8BNyQy5vWAG9rJTe6O/MaVvZ1zA+OE1/P9i7y2yQjK2p9ChFsvbQI80ptgPmN7grrMsFN5d+a2NwtGTLe5kZ4Lhyv0j6DtV3MTMaaYPpCbKIs+tV7wpU+tSGwr2B/P78CHwBjSNDSs+JvA30UFl7cQYvwGvV1sYIu7uLruTmbARKLv7QQ8CUZ9hlcA6RluYl3/PE3CVbQxBRvDccfVRG/HYzy2thftJ7n9Cldj+824oUQHdsv5t7TnfGM8FExiebP1A+6kRFk8FmsBZBs3rsx4HcSUnl7hVaj5YMPEHTe3bA/23gW/BMgpJqIWN2Vxip3flLpbF48zbqLtdZUN9Wbc4PFOA/vJRfsFnEf246QfmEMsf9DW3dVd8ZsRxu78Fyv798s/rhchosfuJzZERP0Pa4WJCFeXYApvvzAeBoVC5O4uzCDYjpJFXBAjFir6l+F0g0D70935O6E3Ysi48ceKqfx7lauXczMoZ+zXA2kJ1LhJMQ24We3vkBvgFQdyWZE90Gn/AV6X2skxEeC6GKrQlpBtD3FXZapoLP+AVjYmethrvs/anjrbu5wxaexV3MSyMdFDxO5+HNnvFdxkp64UzftRSfNvUBqP+2zTZOsxbsbsEfvO6JHsnOidydZj89kZUTZFowdp9kjaipikYVrjJscMqW2Q98eY2mS05QLaI7MjbqjnJkJlJ0H+UuaofzWjMdGe2m+Rm1g35P36BNSC/VZQtzPSHed5P5Pt+jfwV+sfb8Tt3vGwIKayOJznthQTHi/ZXnmVLu3HtvuhdsQVL3OTH2u7MuAKuQkY46rDHW6i7AX79ZgY/r3AzWFMfY0i9P0dsyeUzd76QkRk+zjMn5JjdE84lCrbthe0V6BaZfRTaYndv/Kb6ndUQK9TW74NorLU9rOlmG3Lg5Rz8QvsPtp6WT3YX8hNGXI3EKTQPz1IuPokbnz/Gk9Eif0m3JAkXMB2qGNuJjY55IbGvCLEKju1/ZAbb/tzvLK3F+FzF5XnwOuMm35rkVIq4bdjv0HADwmYFrk5sn2WMxyGJ3Iz85vHzjCJzOynDT+Xm1g34+pK0e8OOnp2Duo4cK/HnMp2uOzqFSuz+2d3XGV6ZaqX9hFG1bv1zwOO+ld1CPX5TOpd+WNu6JCbPu9zLwTNtvGHQ5273LRFD3cX0TAecVV42sVvDTzLTazrcm57f+SC/aKsj31XpD3blcVVlF2Li6x/ZH0Q2vyHgbv4VpilNl6UdZju2t7uaJTniQ1XgilyFcfIHNMRNyWZYkxJsP0Wuus0CTuunstNIisr9vPPKXvI97hJZb9oEeLvl3/cLQ9dOTAvgmRggxNOAMaDCMGvOLCJazuZTIAH6+THVhrSujBgAkbb99xhE1jhTjAJ9seyc1d04v4yblS8y9TRJogpYn41N8F+Ac/Yfgk3QS/+5Pt6hpuZj63zGvHYRdvQlwd6R/05y6vrH8HksbzJLeqVITfYdB3O9BzOoweyDlewieeK5txEn0v7qrhGfhPr3+XmjP0ILtReyw0ex+yy5XDnReCtWY5L7o6n9hdfM+aRrh/4j14QiHnhAMdcr8dYMx3Ibt2kLZHVo8oJbsvOMUW9Z7kRWElPsMFPDH7Rc/V8btpkl3pZbBnsl3G1yk3klQn7XLma2M8dCQFKkJWsDQ5jYrSJymgbo/71fejq4mnIG5LFIBPp81W+Oc+FnOQ1iyltSV+Xr21I2r+Qrzp8+vcqN0L64WTEiFp2zfsCqbSbMzC9gpvok9jO2H59TD+bm7Yb5Eri/y5ny6e9lVFvzvYXT/o3liS5MZHsQuZ2LnhCbaayRx5lJ5MuMVCoR48lYKaAWayt428+xGTT/o7b1/Tux1lu9HjETcOvmH3/xzapoo7XV3KDetbtN5YFHZh0osglblb8Zsxravsk+a7p7Vqnq7zGInvDdMxNsP0pXkNc7FEWMF2yveS2T2VfwU3QM7Ufkb9gjLkKWrvLDZyPcdLtalsoZUVTV/G1/fIS6KYNP4+Q9NHJxu2L6Nvod5AHcSIlOpnq9cz1zjDWyR1iqnbgTlZzjhg/OhmXl3CDCFWWG8a9barjDpMMubrPjX8aq9zByPIGkbMfEVzUnOEGeRVi2LKYjq9D+1VZ7mXF6uJzkVvtH0H/kJkg6+L3Qv+ESF8bIUwWBwW6tz1BziEW6C+DpsGFcLS9FTxumMszTxsJC5zfSCSxfeCmYcR8VS71/fxoxk3uryptb3HVvltO3V7ODR6LSH25feVqZL8oe5Mb/TxP7q+TQe8LlO/vmN0pQlReb66vIsWT44TlkldNUOZYQtRmMb2DoxP741pXQBZuoXdbS9KVbY/RWnJb1kZBiFvlAkbT7TGN9DaMiANf34t6V7gaBD9whfb7UG4W7Rcx9HfvwtbFZT/KuBlhxOO+bqoHcYo82fYneF22fcTUY8xtr8c5phwj+eOX2f6juMH+BFyql0HP1H5Ez+EmHidcnSxCJUfoRKb9fpw3sI3GB5FuIhU72/tOxyXl2waX9M7qAqaiFx1An14JmGDSpJRiHs3fgPk8bihgNEmYyKndPoobCphfYT+ZYRpwM7Mfc86dHjeT9v1zdaPebkwd5I3Yv+o3UvPGFnMs5gLjMfa3YZTIjYDoYm7Tv7VLu114sMMkTm5sk8aVYlrlhghXvITw7mLPlYtBF6v3uenvRPu2ds37QjS0X5S9yU1mA++vX7OIED2+X/5xr+Aef721r6vWeGchrvr6Y6n1k+t5CbfyCbePsP0Xt0o4vcQTveTa6l7OgHdHmNvr1sGvZQWjqF42xB/Ojc81TdZxwR/PDd20Xz0uOiTI3uRmQdZsm9YlxzNrkpUxr1/G9sZrTfyHtl/QO7FJm+C1QW7Z9kQk/GTbL8RFz02UVftVKaYuTlbseY+bmIvJ2e/4jndedpggnMmp7lg/gkpEJExb7b8QEQMfDA17rmEL1amcOvdvvLul3O/wt/rOluUcbp9hoNq+nZdncMP29tPcV5CripjhMwwR0wu42YlpC/6tdxQz+4lxw4O4GmP0mM7kHOUGYqH2AWPSxW+tsws5PdFftbXWlo4TPOD1eByw75DWBdBsjGxce5sQNb/xOWfsC4dzOG6PMDDVTwK5sQo+RzLw1xQjyC5x42KKCBinnbaww6XZD8szuUEbWO6GV1NLFger9rvIjdpA+8d0Pe9/TFl5TcrPo3zaWxl3gVu5k2dc1o6rO9u5LRyjsXw49sfZloFE72lMRxjjrW3lJsqe5eoJ3KSyiHESDK/kJj1etJ9kv7+AmzOyse7Lbb/A65HfjJ7bzOJlZvsjvbO6qewiVx/JzQjPEOOZOHklN/F4I3/Ftl7sO0hCY3opOYfHsH2aSGDCFLYJcp2yB350wuzuMI4wjY4zqq0uztRwglU5YLRAfZG+EJVtg1L8RjHf4YaF9sBVq+tt2HOFmFDPAleXuakfHAb7EZFdXHT2U64s3mZ6D7gactPbj5ns4mKYNzrM3LBHPUfcDJ8JW+mfEBHTzriE2TA6+6b9HXAz8oWIE48d55VHO9/09D434cZ1foBpOd8IMW+knz9I7ef69xxurMrQx6jYL9m2u2y/k9xYKMM5roupX7UIfd8xu1k4edMTkSaR8XHfzrnj2e+rsrFkGDn8u6pn9Hf221fg5oijz+JmBZsWobZF4Ej2DjdHsp9l+1fyGjG3N3Idt7mKcQXzqBzZ/iO5eYbeZ3Mzst+ZdrCF+gFQGcwC4iSCKNTVY5w04ThSjg2Z6GQUz5e22jXETM9ZjNtAtkwq9RmpMrnB7ahvHpMQEdzh4KvcdM+VcFc356phUskxV0/gxslGTJGrUldcU6vcRMyD7dMdNwzhkNlvxDPGkL9niN3pXxox4ma9fyJU78YxYLYOGcZ62UH9dj3U23Mz5BUxpZj9Nlb/ZVSPqVCwys0I04CbgJnBP31mQ5+ryNz24pvcSIt75y5SNL7GfgfciPY3gBIK3HyXV5VPvGPGNZ+WEUsHI/MtPBZ1j1Z3VbYF4QlZItg+4OseyV7BeEv2m5uvyc1J2V97bm7IzjDizoqvwI0bZb9CPL6KmysjtOiLEHA61hqyY8DuXwuhf+V1iXRyUompz/Zo17SiHuMnOuZ6FzDW49Iv3z9mIuY6rQNMRGWSZy/akKJBtxDhSy7ucpNxVfCWydjGZSshV0zthRb1rYyRqwvcaK2R7Y/sx+SPbVovF7ghsEHKTXlOx2LDbFTtCfZD2PrsGsM502v9qXaVErv6txDUvelzVhqVKWYRKhc/FVeK40k+Z28HrO33PtcwttgcYLrJTRZTxs8wZ7CtddjWxhvc2CWZkG3pLP2VugWZLScwxGP89EzzuUX7LXJTPofUPhsBA9SXLd/fMbtTpDpUdTqyf/ENVLWeO2T74YysBcmqrAVErHssexXjZ8l+c/Mibk7KjjH2/flZcnNDdsaNOCVfgxs62b/XxuNr+te1vVCEwjNm1Npk0l1OdYoQ9MW6gsdWUdok3WYxICttwmGTkKjnQO8Uo/QYi446Ja0TLxJx56l+bwxfAf9Mbty5wJXO2PSbd6ZHMVau5IncjDBXsoAr8vajogS5ojvcxL8dNw2DCBF+Y0qi/SLGzOdUyy4E0GnfERenuO7wqn+xiE3GM4wiHkfT27h5Vlxo2UUvzuqZwOuruYmyWA+5oXgsKHvMTcMvgYsqX4/FXlfK9BDPVfe8XfA52Uf2u8mN89evvpWR3fjycy6fdsfMfc+m/glrCOsNmR0Sg0hLtrp1stweLl7NM9mBHkvgl2Sv9+/p3DxL9pubpbr3uKFvbmayFzH+jvC5i3pO92+xPNx79uukgaldGLrODqfvro9NptYRnZxInWCU50a0RzjBaW/QG/U2nptgDKbhKCO4Ph1kdaIkOom7wQ3Kdr2JXNW61roes5tQFmzR905wM7Bf6btQe6lA5CqRHXB1mhvx55nn3LTjA9sH0gX1aq+gf3g50jBhOd8/08zq+xmu0D84fsS3gXbhMdBrTjeJKW5c7OLbUBwpN6Ynw3SWm3asd7VVL4dVJ+RmY1wUQIydQK93hRvp7Uck5T7Qov2IiLrtlqv26445wfV1y/cds7tFthY+NdFm22/aLdg8T7Q3UAXZmliFiGQvLxspWxJ2kvq2KtXRyWZ6q0JbRRrodV0E2aP+lUb9uZdxcyQrEKYY33KPG9Q142aFV8Ul8sHczGQ59A8OPpQb0NNxgxjlA7mZ+U2dC6k9T3ETzt3iJmL8Gcfjy7nJm5mWcmnUP9Pn50Ec2u8T5Din6sVIaWOXoq9Nv8RtAdJtVLlej6nDHDEKdT7aulV+KXd62NswTICK3djOneXG1d37vEGOq6bHtk8yUdlCCJiEA1deT6c3YGzH3n4ISUQxtXqSyBp6aW2P9E4xBl7JHffcaOy07Yha1aPL4lcGsqV/eqHXtq2pXIeZ5rzG/rr8jluTQ932XbmKUduWVnck22GUEUYoQsS17yUWdPs0Vhlz03DgAsI5biJmPVPU5FyJMD0Uf7UnxQtY381Oz5l8o/VLSK7Zz+a8xEP7neKGPObv8jHlk1+XX4p3fl9PBvWOZHUg2nemXba6Z1mIeaO3bbeEaQPEk/TO6qV6soMXc3Moi+MUTCafonfw9xFGxYXCiOvDuImy4UR6btWeo3YPMGblEKMk51YwPpPXMNJM7Tn4Oz0+w81Mz69BPD6VmwPZlbK21aR9RFgx4VE20SulbWURYXoIk4jukmDaeKetvnIaJ6AjvccoPaYxP22ipYKNhrbiXc5vqe/kevUowzzABFzFD6a3RXG/9Ulgsnest8d4aD8r8YKpyuJKBGCizn6r3PRo8WIx46bobM129kti0F1ooaxrddyHjKlT/qrPNRLTJojTLwb07ZJN4HNM67ZPMbKiItrUt4QouyM7ty87XPdiWTHVbZ/k7RcBOHsPAva8/QKvif28vuv2u5bnvnYR0re9//zL52xlFKbH3n9LoS1ZDI7x1JGsrqRIeUhzF677dLmu0OzpivhROdZ7om44dqHCBF+cP5a9o7eThSUYDnXjpPCU3llZwbiK6ZXcrNqvEz6w54Hs0zBG7sK518VjJjTARLTMza9FPE6KxmPc6aXlWfF4x/arRQS3MmpjOg60Y1i6bnVhmxnaJYUp5W6Y5n6i+s413kja++OpvPiCm55M7xCj1zqLfZVlVAKTK9y0Z5PUmd5uwijk3hLIOabehG1rZfEz7C8+L1vvbmQT1RWME66i37H1B2yQTET10H0OYIUbxIzHFEu7ADm0XxQODukn0m2yXf7rjyMEOewfHof+1dugTFTuuMS8AdwIcJ7ZRJwcGY5j21PALDXE23OV7UyLcfwl4yZi7D6dcMRNh7nZg4M/NDWKGbgib+6oemq/jhuvR+dhxX5RUeTmmv38ryv55uYg8NLC9Jhm4p9P+bytjLQVB7dbwUKyY5Lrj/G2sV/RyuqSWxXQbSwaWFvcK2VDQhmsh3r9feNjjEF22j/AVAbJcf/ucDOV1f7ZjA8wSdtccJebTPYQI+BoW02kXHTTgewzuRnJcngyR8g65Sb1r+Am9bmkbrDn+PjJ3GQxlZbenkfcXIvHhf59VDwe5Jv4sVPLVU+Mx9PcXHzIWuwbPNsE5xZ04TflQnvOhctkRVfPS/g1nI+daOPWdnnhBdol0etsuIW6MdbTA7jAqf/VbyWBsH8ZCZv8Ejcju0RuYhwhCpdTyzFi2mlzXB1zEzGP7OdjY4+x0HEFsnt7JmmNm+hzq/Yr/bPaTB7TfiSr9iwYvU22U7IcZIf+2l7tWdttbYvVNQMSbjH2ucb7TYmwrbUlvd7e9ojR968916dcAKYlbsq56J/H3ESM8DQlR67YcO1xHE9iqsfYYnnOTYgpaf0phVvVTi/aL4w3wX4yi+WlXPw1i9D3HbPbBd+qpG/S0jxpyTYeW104ppGsDYPk3vIE57WGTm7s1vVUL8EfixgxPw76h4+FO26G/bvDzUH/4O1A9uV3nTAINvEx3OgxR66krIx3mF7JDfQvyrLDIfYbbtt9CTdD2QGPaE9qvL6Sm5k9zfExDwx9rNfrzt3kpsF5fjwucxP614oQ168Tr8bjK7ghSu4SLBaJXCpQzBuxLqOPOndp7ZhQmURJrGyl9AXnV3HLUo4x2N/BhjHEa+qOiZg2tZmAbMXsn2da4CZitAlmz9MYU/V3QdmGCWN0hZsM45grHxuxcOCKKq495Eb0yUOMErk4sh/Df3tMnayzH/a/f+MmTY8xT4LPLflrqyFExLKRhAUerbt340BfjvoX89UQI/inPVtGYSyaYBqOVSe5SWPK/tiIjKsmu0vOz5r9WlnON8YVE0nbYebeljnSSwk32NFhLJPjJvJ6Ne9/VPm+Y3az2JfUo6cfHU8bxYPcQCJkib3UL6ux6NBi567oPVlXk2iSFV/HzYKsJsyAC7nptj9ljZxZWZ9wE/WOMA3buqD3jCzr3NWSnTYSEzAIPoGbs7KntjI+US8eH9lzz+x5pvwaxaO3id5tIvrsXDWP+1EJrzMethFiw02ikqmI42d3/Oh5oZL3H7Zgh52YYJr1c2IXH/++kZ0JbtYUzDrxsRwyyw0zjJGrFCMca21GFpiUR3GYsH8JjkOMR9x4zHoHj4NsW1RSP9ErslUc8e8ZN739uLNfYvswDvQ8TmQ7vSf8s+ufENFGO0v5BADo7Xwu7e+Am+gLpzBVTZ3PaayOfO7AbwjrHuBIMZd3EBApV2A/wbvL+seq39y1X30/wh1ujuy3GsuX8v53OVu+xIWZrXTFAbk65WKLoW4iq3oE1wKoq5c9+Luud71umSwgplD7I7mJpVtm6TGtTaCfz83RpLDnal3vGW5yTEz9WbJc2OxJH47R42zHY3te0Duoe8ae5+w313tYE6rOMdHLuJnlqn4C9DG56gw3q0Vo9eUfUSMeZ/L421t3rvmdnyjpSrRHeIbL/g2T07+5ahUhdrIb+TtNYcLkIB1hHPE2wGV+phso2+R9dvdrXjL/xv5O/BnsxXXVAbnyL4W5Y79e95H9uNpPOvvNZSXgki4GDvymSVLP6+TiyK58yqQ+Pkk39LnDGJtxfIRx5nMR00zvEcYjbsKhLQJIbanlm+7a6SPsp/JgPw864jrDzahOBulsTH1eKc8Uf29lvFyEatAxUXnzDL4Otc1cy9ZYhsWAKmS+0o7xdaJDWZ0QwttuWt0qWlclTuvN6objDmP9Q6cJJd5Bz0dyE2R1RXAHbopsqeQnhJ/AjdPzBPs9iZsjWbXnFOMRNzNe9UT19R4jdbKKie3n69zctedZbuI4t8SNYnSYgKsg+3JuJrlKbvv6Ijfh+JgbulT0woyR22B/ApwS6wJOV7fyQUzE1gGpd/eqTrJXXZCQ7thmkMUt7YsYnV4eygrB5Mo981H+w1wm8I3xV3DjZYkJJqJVp3IEGHdDMO7fHW6cbGOF2rZmnIT6V6QjV2e4CY/TJbLtgGsw2otiOvtx2zFRWWz/Be7Il930vobXr+RzbU2kjZ+/03zuiJuZ/Tjaz/DrVugF+13hJsh++a2M3xdm94q9jUeaA5hD1qShzm4OgXfZiKg5E5eH89nXzWT3eox6THYn87woqxdHTHKolwayCtxka5QYpsqNJNzY3Mz00ljvRW5QdrdzXlZ2rcuNq4/gpiYRHew6PYpD/eajuFFMA1nHTfD1y9zMeIX+EWnSVYy9rOxtcBBGDNe4GcpWn0F7CgW/0fib2S+NxyvcFFmZ2PPDuBn6TbGfPutzLVctchN9jnz89b5O54voZJSIgy6bKDAT7XpB1eoqzk5WWl3tY+OL6p2CJltkqE0GTc+BXmV0Ulcol3V+x0TuddyIKcmpt7gh1ONl1Yb4nCKrgUFWLx5wbH4mNyired8WGupCF0tuPx0wn80NVb9pMVuPR7LBnv5ivxzvWJcJjmmJm1Vec78553M4jt+Jxxlm9bkt4dG4IZ/b4uMvz+FG9Z73uZZvnsdN3r/6wrpgv8IVW3waLmq+e5ubNC6+ZhFqzyb+3MvnXJgJ2ySgOW09Zc6pHtiOyy/FeUTIjrWul63thrrluE7J8AJAX+PsZGkgO9MrhHu4Ubav648Vk8lCQBtv1H73ss/ixnJm02/UFNmy6t0eJG4D0QdyE/TYFqmEq2vcrPEauZn63NTXr3OT6wUdDmPgVQccoO5Z3PSyDZO3Z7gIDfY74hUxnfJ1Z4taD7j6WG7G9hvnqtdxk/lc7+vnilB9a1YQZ+H2Mg49J7GPlB6XPBXzYsOp8yqTVR7qT3vUs6I3rQtWM19RHHBeMVGQhQkrbue6xY3AREUxOa4s0xMJe66IiPaGiSjhKtO7yE2sj+ONuZfUy2cGWbTfTrZgcp6bI17FxVHHzRm/AZqJqONVDriZYRzzyq0PCz7nOnfD59K6A15N/4SbOA9L9V7iBmW5XXAc+Jy9HEl/psW4iLqXeG320yPXv4H9HFe3uZlg/C4vK5/3jJnLcupMbPFAwm7bjgVoPaeZvOSfUNcdg8PqfxhygVcC9VFf0zPVS9zJr2FUCZ0w4EyCYGCAJPUSbrhyo3rJA3QN6S3/8rfV/Shuok1UNHKV9G9db8arjXkdNx2vQ4zB129x41kq/x3bbySLc+3r3Ixt761BvezI153EnNcVbpr9lP8BVyE/2STq2dwkfuPvdEloqzFS8gA72XvcjDAecLNcuPVO2p0tYX9M1qckzDpZ3BYqEFNkuvxbMOvvkLuq6FjvEcaBrGLVE6WJwoFnkF2eKnZ/Ljcqi7XbWfVXaXc0oGW7awp+fZebdq7Yp7WBENmhzOyHXJ3jJuKIsmVBBMfidreH3bw9Hnd6L/CK42nWPwr2jP3zvHqfa/3zvFZ1JHrn8gKv63HR8n7GjdTA9bbHWD3HzZzXwIKMfU6vUdjawucf73OjBxLshxmj4yrp3yguznMztv3XK/xpWxmZ+b9DRH+Syi7cv0ZE/5iI/H+vtvd5F2buexC6GkxugkiCgREbKHLd6sFE1l30WRsQbdi0+4Pb30d6uzLH2Dy9DgQSZGvFXaNNrwpmei9zE+vW42AT15SbURzo7cpNbgb201dOp8ovcIPn3DYuaX6by0a/qX3JfL0rF+1Hx/br1WY2Ps9NZxMwi/s8iusfyNYD+wSCBWkcDsa2n2J0LcXvpVXZTvg13Ix93bdjD5q7/iomWfS5gd6ujOzHlZu59ErBDwK73BGOJymnl+X4+4IHCHALioZ6DzBmsjbpFmzP36nt9cPkc0HvETfznBpbSKZdVX/85MddbjpMro2Zst5+z+Kmt1/LSXEhuWv8KJfHUm0dQ+osr1GPj4sWz4dhQWR+2d+5fCavuPie8OpkuWHqwR7qHR4msuRsHQX65Oy5Gqo9xHiUb8aYMr0e07O4mdv+6xShMy+Xenr5Z0Tkv0FExMz/ZSL6bxLRP361sc95+YeQPavUSluNWim277XKtuQ+1Eq67YFtFWlNViBIzusd1y2rIhZSlCbwVHbO1SVusH+2PnOmf6V6ueDmk7J5XcEfOK4yz2VdO0+xX5Hd4UPDuNq5JIt6iRZ9PcHYYW4v0/B+tMBN+sNZ++W8ivNtGg7CnaxTy4CpkwyytNBfsUEYn1tYkn0iNy4PENmdsZgH5rLPzgO+Ll6I+Zx5rYhQ24Y5xEmncw4s9Z7C2SY7x/XPY1Q/i5ju5KsVvZO6xlU7HPa981Gh5Y/LXsmpKVfHetp4c17vnFehtiUkjD1nbNAppmVe79je82r0LmO8yutaXLTKZ3h9VlzksmIHM++LsmfmrOf9RrniD7PfrXzzBcqje1vqxxQR+dtw+HvoJmufdsfMJlzo08kKpj/fjiUuwcfjYdt6m34m2xIaJoNLemlS1z3AH7dxxLpjTLH+JW5qArDVlvpfntig1xsw3eGmzFbdscDBh9mv47X50b4jxPA8S5D1E9L63MItv0FZ6N8dboQOZMfHkVfZyVacO0wzWTEmW48iV3j2dDwyTMZD7pzIdjF3g5tUlnKuetkX5gE8BfZLx5iLw47Yd3R4gFPKS1fgeLyvUuu2SZXvUpB1ouXOLG7U8X52DmMqq5hcXM371z1bfZubKAuGc7b3svg61/LM5Oa4GvK6xA05XvVFX0QcXHTBJtaRBW5g+5yE19V23IS76XKqf2Nu3GtyjddWFce9Sz7n/FWM1xgXY1mxlx4pnC4XnPG5YVzU8qK4OB/LMLtgz9XQb5Iccpsb5zdt0rNuv+O4uJPn7i7OvbKUF3l9Hj5m/qeI6D9HRH+LiP5Dd9r6GlsZYTLGRLh40d6Okx1XWWqnh3XjikO8BZ3J7jDxcV+2X5DtjpO60YUknB/1b4mrgewQ4w4YuUnpvbSZLO3P5yYex4m5DWIHelKuFmXteNI/h2mZG0ixz+IGfXuxfxk3q7J2vMpN1lYi654p0fir/bvCTZoHoH23QjiwAeaBy9xMZNM8MMg3yM0wD+zXuIm8dpgo5/FMsZXcGhtOQQXh+93s3x1bXZwYkTvvZWstk0Wbsu0Sn8l6vQuyOLM66F/BtYX6d7mZcDVqq8tPPVed/To9tMxNl5f5QNb8m89zg3cSJtzotaKL0TP9G3Bjh/WYqYwbIvWPu7yGR0RMYJlXbipMNLH9qs8dxcWkf4dxcYebzm8O4gL8RpzsDW4G/UVsVuFsXDyVm1D317f8IWb+LTj+TRH5TT1g5r9ERH84kfsNEfnzIvIbRPQbzPxniOi/RET/ratAPvUD03HS4JKAHcfz/ti3Oa7rno9IZhVetn8GZKfxLe6Z3h5H+7ssamnmZ1e344ayZ4XmXF3H6LkayfYYVW8cgFb1jjF39jvsn+fG2e8GN+EU+VntNzeumQNu3HGncz0PzLi569u93njhuIZxxutO0t7pkeUB1wzHH6Z54Aw3Y64WfHuhCOnrnclPBGInE5yu7h7rSq2UbG1NY7DJFe7aRMZOZxg7vb5dZ8K9sZWE5BSj8/873DCFZ7mbTTn6foJjyNUNbkpdz00sRz6KB/jm0Ux2iHHoRzk38zgKz0qd4TUexy1op3iFc8bzOC5m+cnrBJ6fbPuj/NSfK9xw6tszvQFz13bgyp2kYcG46DAdcYPHT7XfcVyc44Z+NmW/t5Xxb4jIHxudFJE/vtjOnyOiv0A/vwszpuGD6C+7FalX++qVxeHzEs7FlwQ8D1G7SITEoAiOML2uIFdjnj7HftRxNawPmF5uv8DVNze0zI3YfzUWPsq3x7VG9nsNV2P7fWoeOOPbaw32F5ZnGxRtyberJ2WSr4Z4JnqGx2lrtSpeWJGf9LXGUK+E+s0fRE4sUieYe1keYMoaQ0ybhz/Te4gRFzfOcePbqvZbIWgBM1/kRqXXyrrtr8RFa4eIbctaFhdHcQLx/kVsj1vwukWzQ71wmMSF39J8jhs3hUN1N+znuTprP6a4/X8IZYGbKc4vVESIHp+0lZGZ/50i8n+th3+SiP4vd9r7pO+Y+atwvUjH1WidN3UPPQ6OYRuwintZ+9u+otH+rQcYUG3VhENl/2/Uu4QR++eI4ZGoe9ZLqAbQs7hxiho+Iuq/OO+4iWr5udyk9muCI26m9rvLDfYP6CrC/WrbrwU3I71P4qb82zCb7AI3caw6zBnw95ybWH1gvyvcZD5H5AQHojUe4VXXszxwlhs4PrLfpeFPKM37h/k4wMS/vR3q69UX+4idPLL/CCPKJrO9RroCFSJ7jb3Z32PW9q9w444DJm9/Lv8fxn4Yi2UegkfcRN+xdk5yExtwXJ3gJoRG+PEkNyd87kh2xfaIeeavRGSLBKd4ZfI2mdi+Ez1j+8DzCq9mq5vc4L/R9qe4ccBCuye5iWpas3zJ56xvT8hzaL+vXD7xGbN/mpn/XVTuP/6/6MYbGYk+8+Uf7uHi8i/rf6rjszoVlsExBy/rZNFhTW/xUFuNAI8UPCZqe4wF2mMijvvBT2HEaOaKqZ3HYw1Q02v9CyPvkt5xXT8yZNxIx03ErLa9x02om2xFbdycsN9ZvYg52l6znNrvm5tL3AgeM+o99m3390rOAIP03Czaj25wk8qO80DkRvDEUn8XMYZj1oOB/aLYapEk72MfmWG3E/oszBjUtQrQ8mODuZNdoNVGdHJqx+DvDHptFf7IR0E9gSz2AetqLJRzTLLvFTN7zLDKvV/kxunVPinGWrlVTbipx/oWAMV0lxuURfu1OzpBb+QmsR9ydZYbxJHbb4GbGcazsge2X+E12sT7NuglIqEDzCL20o+ZnnyeMsZ42fZqzx1lgauT3OhxZvslbjSWpcaU9JjOcpNhbHnuhM8Frqxc4KaLqS9cyss/Pu2tjP+pZ7b3iW9lpGJsDUqKnnGz3cPzTC1T4ASweuDO/viKnhUM6Ph40gISRpY9RNGVSFnB7GyAGJULwIH2Qy6fbj8O52H0jZhW7bek96DulCvF/QncDP2GqZvtX9Z7UDdyY+eD39iboJhO+7YM/h4Wzv9O/QYwxj6MMJwtaR4A+2GO7Oy30vYNjFP7XRulRaKNIdcRfBewm5X6unZPUcpqcqkqRLRRe4EBvvWuXIaXZ5vbeKMrrEO9CcY4VkXZ8txJmbiZXip6O4x6HGRVT9tatM6Nl0U9wFXGDSE3HhNV7u5yo7IMGMtkE/RGbtCeYL86N73MDdHMflu7cMi4mWGEukuyA9tf4TX6jfM5sH3D0WMsF/Por9H2cNVwGqO/kFi2vaA/e9tf5SbzG8/VgBsXyxzsd4+bKNvy3HaQ56L9QJaIYixf4YbMP7/Lq8vnXZiFJQER7rcH4XGppEsaYTmIbsn6KYY/Ep0QLerF2DqNEbnhsj7STYoyrl7ITdwq1HMFgf8h3IBaHmHC6ufs9zxeVS+1EyvcJHrPcsP696HffBw3a35TuDrDjTu35Ddn456W7PfMeOztdyNHXuTm2H53SsNndwrisekGIGYHqvPtyEfi37XpdkLaMXSl/yTDOkbpiGWvp3K7hBlwFT3NGFNurCNNlkLdQ24mGLv+neAm41X1RJsc2zPYb0nvcd3efuvc3OF1bvvzvEa/OdZrATC0CVZzREE8LmOM3Lzc9mNujuNkwM1KnFzkxp07k+cW7XeWmznmr1cet8emr1E+7RkzW0DApClJPVe4/SZ4LM0BT8tWPwz1xf4zl51iPlM3FiGKUeAwfRA3sW7kqrffB3GD9qN+qrhmv+dy81rZWV1/zu1Hp8DFh/hNL/s0v0n1zurGc5/tN8eyvf0+npujuL9ShMi/dU7tEHTKDHfEpxMSOD+EqX3Ev9EnM8FVjLaCXyvxPPaduB53+AjuVAz0TjB7PZLLu9MJxoSnqOeImxmvbiGhxkbKjZVgv4t6j+1Hjosl+2Ulif11288xz/uHbSW2z3hN++sxjfSdwogn+QSveLFzy/ahT4dxshDLWZzc4CbankjO22+A6ww3vu7XvmMm9KnPmD21fO4zZliEysgfR9mlK2C+IUu4aOBlMy/EhH1azxxjbMkviFZZGdUeKr3JTZCNXCEXTHAr/Kaes/aLepcC9MnczGSj33Sy1/WkWvWHT/GbTDb4c2jS2e8UN3QjHgf+ejj6PJubIMu+Ogk1THd87plxf6VIHPjL3/ich+qa2wBOxqfYL2C61KsMo9sWNGn2yC63uIl1FzEdYqR1rlbs14Id6vKp/jFT/3r5M7JdXeBq1s4ZG0TBE7a/o7f0T3k+uLhKZcOPL7f9gmx67gm2Z2x8bvuem2ysum8/a3vE1YJor/fYfne4+fzyec+YPbt8+jNmdfgp/8WvqhO5NwJqfTsOf8e6nWzQ27eLSwq6Xzepqw9Uaj5YxbjQP+5wQWDugOmM3pvcRMyOq2A/2v048ExuZrIRE5Hn6qO4mcpGv0l5vaan8xtcTpMX+s0JzAVPi7Gp35zgpj2fdh7jNO5P9u+5vo5xr493L+TIJ3IzjXs9vlS4k5UQGxF3jxNOxrpEa33M8Kf+Mfg7rRuAdBOcAeZoQzy1V0XL3EQ9wZ9jWfGdI64O/K7nKvB0RhZP7eH8CW4kq+sCYILhsH9jvWdsv+ZzlBbRN6KM4vSIG6q/fRXbP5ubLqbWbN9zk8T8ZW6i7KL9Mln8/VXcfJeXlU+8YxaOozNlf3OQGyWNkezRZMImjzxva3YcMZ6VTc9BsAjUeRU3M57u9u+ZsrEgVx/JzQjj0J4LsrO6K3qtwov95oxsVlZi7CP9Zib7Udw42cHEepWbM/46wxTPXRygZcYJ2IGJ6sptmWDyHqrHugEa3ihyskGnrRDriwkEqgxlE4yJbN+3AUYiL+vqo09e5GbEVexfwDnFeJebiY8e6U0nnhe4STEjjqFNrnKzIBvrX+Y1zMSF/d2QA9vH42lMWd01jO74M7lJ4yKRTXB+LDeJ/eiqz93jJj7R/9XK/sXxrZZPfMYsTIKE6HCbTgyO2OgZ2S4Da93qhpOBY6p3pifDOJJl+0/DtEO9eJvkmdzMZO/ofRY38Tjar9vMfQLjHW7kq3ADXMQR5g7Gu/EYHkSO1YeyU25uyGZxj2V6QfdCbuLdKif6ST53Ku5Hpb4WnMIEwzVXzttrmuskwi1Uy6gu9Vtx4gQrlJGeKHuIkUYYKX8Xy8DVXsfNgKvQX4cpTAI/i5sufaVtnedmjPmYm+kQc+BzT7P9kSzWPYqLSX+i7U/7XGjY/OaVcXFH9sj28PfHcFP+exQXLh5Df5/FzVe+7hH5vA9MP7t84lsZw7/x788un40lZiz9Lfv7o3F8NIYz5Sti+irlM7lBP+pG44+Hk+KI5z6jHOn9ilydaUNffiD+51htdJyeC9epV2FOH8Y/cYzzmKN2Uz1QX3ekndI7O77I1VfgJpZd5mnko7h5VnlmXJjfAM/PiovTvMbyhLh4Cjd4/klx8RncdJhC48/m5iuX72fMbhX2L//Qy/TuGYgTV+hnZd1EkcNSQTw+ofcOxtHkR6hFi13QvpCbKJu19dHcdPVpbL+P5OZZss/U81W5GWE9kj1TzsjqsuQz4v4VvOISqB5/ls/ZjCFgOltwQS5yjcezc9kxNr8qmy0QrMqiTVbwUw0BAWpHsoCDw/EU0whj1JVgOuzfq7kBPMiNDX1JWx03R3ozjLH+7OeB/WYYj2RP+eCJ/lmTijHILmFewXQW45Pi4rReOE5jCvHM+hePv2BctAqLeuH4iJuvXMoHpq8OTF+rfKk7ZkJSHlAfHM+buyBrSSvIyvpe2qdjHASp7B7Ty7nJ6nIiOwneT7XfR3NzU/bper4yN1nSn+SBM+U0RnqOb7/MnjEPyCf6HE3st1r2Cb8Cf4zy4qxuNrHLjnc4MdsiPGsrbiGNspOJWf/ZAcnfUpwen8GY6InbiWf9+whuQonvT0ntOXoustM7wxg1J/1DEBP7LfmcqOwLeY2y8PclXl+BMcYF/HYrLs5y446fmUNuYPywuLjIzXf5sPL53zE7cREU2xC+KRvvQiE+d5hcFJ25cDuDEZJVJ7s6GXoGNyg7GsSpt99LuYmyI/uNfrur9ySvH+o3UfYrcjPx7dOLIXe4WfTtozxwQul5vwH7nckDT+UmlhlXawr8gB8nC8u4B3VHuJyaM3oW9a6I4b8RUzz3NG4mcktcLao80nVGNtM5sp8QJa+kXdNzFl7EdqaZq/Fiwlf7F7ma4XpBPK6IUaL2VANPjuUlTB/ATZQ9tF8U+4Q89wXK98s/bhZdjcXX0nPY3BqP43izJDvIN0xsjt3JhmCYHT8FI8pCYrDXWyOmj+ImcqGwwoT/Q7mJskf2u6sXywVev7kZ6A2+XX66xk3031O8jnxb65/p37P95mweeDY3M/tRaPtEEesL2D8cuw9s40RpoW45JdCvKuQmKzyQvaM3MCRRVkCWElmwOZ3gJthwGaPU/5ge6DBi+hBuOHAjIFu7mNiv1LnGTYyN4/7N7EcJr+hzi7wecjPgddS/VV4tAfCS3p6bMz4XZDNMTjbJWZe4OSNbuUrs12TzHPJUblbs52TX7HeHm6t5/yOK0PcHpu8XWfhtdvyquncw3dWbyY6wfRQ3R/VX9ZzVexfzs/SeqftR/fs5coO/fZRvH8munL+q96rs6NwKV6/2m1WuZkVo7Aezvq7W7b5rFibxGY6o44reZVmm7u0CinmW/1f0hjrd1rAOY8VCRP2zqPU/ytmHcHNUFyeek7Yyvc/GyEk9K4nPoe2xgWfxuiKDfzuf41zmGfF4JIsYzBexXiD7Fdwc+Rz+9pHcxH8zn3tyzriE+QuV75d/3C11Pyxun+meh6HBVjBpv/TLYrls79nk8pGvOdmCFgaFiGmq9+BzAHG70yVuMlxB7xI3C5i64xE3Gaao9+hTCZl9+SY3KLtiv64s2i+bTJzw11M2GPUvw5T2b2yTTs9ke94ZjMbNANM8psjxeoarW/nmSkxxXrc/Bslb+cbL3ss3T1ostbw/7mMsZ/gpFUJdN7eSIpvGZNQ7yUCH8Rz5Yv+3OynO/5/FjXBycdYhHnCl/j2Qfy43sYSWGWWl9GnJfif9ZoiYfEsnc7m7Dk/fxX41ziayEWO3tU3c81v3uLkhy+iDH8TNUQlcefvRx3HjZJP50eX8fIfX7/IR5fO2MhLVnMukAcnu/uzgWIvUVjj8ncn2o3MbsTToOllu51E2fPm92w410itEFPoTj6MsblM65IZ8/9yWpgM96fuYtX/CRNtY9pCbmf1OcEOxf3e5wf7RQPaAm87nduAq+sZ+IDvxG2eDEa9n/Mb3OPQPYurIPylghv4tY0RuIoaBrPcb8u2u+uvdfHM2pka8pRhh9N7F6S0+xUPZGTdHvM650f/cK3pR6XZ+dnmDDnDC3xLrJsdR/6osCiKuVHaAsR53/cswZbLP4iaVpV5WoF0a1KUXczPJV7OceoabPiajLA1ley64P6ak/iu4GclGbrIxhBJZ5Waql9a5OfQb9nqgvIybI9luHIdy6HP0RG5Az6r9Vvp3gxs7/xWLfL+V8V4R8h9LjucGx+bHkp8/bCueE2h1Jpu1Iy/AdFYWjzk5j3XutDV628/K8cx+Z9pRXHjuWTzH387iwpK92eoZvnHGBmdjKJYj31/FdYXHFRt8EKbX5JszOGDkTo9vYjorG3PE2YJ5/6j9q+ey4xGWK7J3cAzbTsagj+LmDlejendxnMF0Ru8rMUk88BPnl+F41jg+y8XPxKS48NxncJMd44nZ22PP6L0Tfx9lv6PjlXj8AqUML98XZvfKzr3jjS4u4LQrAr8dtOWadcsABzhOYtRznNVNZHtci3pnOLJzM66CrOz+eNg2U/js/aTdrNyy30TvWW5muA70TLmatXvHBrPy6+ivs7pnuDqJ8bn55gSuYW5KGvpQ+90d9Lh//fWK7jN1O9mZQfU0v0DvQd19gmufYHolxhkmIs/VM/VOZeUAM2D6SPvhl3a7bWbs//xMe1oqiRip2fOl9ouyP8N4nGH6HRePA7kvUr7vmN0sTFQMLtSMHR/cXphAD2XDcbzF3EAcyGYYYz9GmBb6191GXpWdcZVMcg9lQa/r00z2pP2mXL3KflGPYh6V2N9ML+hJtwGstHtkg5leOsBMwQ5mAAEAAElEQVQ44TV9IcAdf41/X7FJthJ4on+HNnhGTGWYz/prhmmkdyT7lex3p5y1w2Ub8pzLl+mlsd6dvCGyCfOHcBNlT3D1Um7wGDDFwSle5L+Umyg7Ce4ut0HDT+XmSJahDfH1UPDp3MxknxiPNKn7HY8vikf6skXo+8LsfskmBfFfouIUoj8yHI9lhh9HPZrkDH+XEiTZh/ocpno80rOCEetxLluOVRdgitzo8RVu0jZi/xNs8QOaQ/sFrq5iXPotsZ/icAnJYz/kJmLO+jeyYSYrE72xXcTcPVCe6Jy1dcdfo89FXcPfRjGV6D3iJp4bckX3Y+qOv6LPnYkp9Muz/orcPNV+F8vI70Z/d3XHeSPyMfTvJC8uy97RG9vAuiM/m/39Cm7SPHGkN9R5JjfpREtj9EB2xo2rf8f2RCRbCOG13PZcbgb9s3yx9fbkA9kzGD8rHju8T5BdjscP4EaP44XTZ8VjNlZ9l6eXT7kwYyHi9MpbE1onQUsOIVqb8+OssgKKk5a4NUEUxwzTXYyIyR/2mOr52csclvWuguYcR9S/ZL/xZPSs/eIb5PrkM7JfhvNI7wHmaftrsnO90U8mSZUSv7G6HxtTqU3w32ifC9zkNhjHVMQkFXZ3MffimOq5iQXO7fjbut7n2+9CEap3Odb97kzeWLbbV5Q9Uz6Km2W9C3UvywpMTnnQ7ii/YVmIr1MYYcY83Mq4iPFlvCJ3AaNdCB3F4884pl4ejx+M8aitV+m9g/GDy/cds7slmUxy9/srSfYXYtOan4Epfusmq/kRuIQI3/QmYS9cp/UL2G+OKa3xMytxkB/7Suz6/KL6bkFcc/9FXB+KCX6aR/0H4UrsN8P1WfY74mpZw7Ma+p1SfscvUnPrf3eXbL4o9dLCSV4ZlU+bLE64+zWZwH6X76JF6NfnrYy3v8bGzH+Umf+3zPyXmfn/zMz/xJKgMAkxkZSvu5dvSW1kKzjJ6o7llvpvPMb67lwi6/pAXi/LZph4ZxLxmJb1HtSdHTOrPuWoYqKCybiS8v9ncjPlKuNGuKyES8/VUO8BxiNZLFvkZt8aps5+PVdDPU/2uVf5jcaR2gD/33GD7VzVuyIrW8OBNoH/W9y/khtXF/ygxpSLe4q+/SJuoqz03CgmlyPjMzVPjqmh/ZArjPErxfiRdkz9sceJ52Rat5MN5+JxKiuFnEt6h7KLGIXaQpNQofzLcXNR7xVuKifl/yGXR6462RvcOEziuYn/pzgW+zzzKp9r51Q2wRwxUo4p8jjXG/Qs2Z4+1Od6bi7GI30EN5LLZnWHss/kZjFOvmDZiS///yuVZ9wxeyeif1JE/kVm/n1E9C8w818Ukb88lcKH9vHV+Rz+hd/tLhEe13Zk97JpXTjGItTrFSZ7IZTK6m6A03qTuswhEKG/ppO9rMP0Qm6cbMKXcTTC8QxuDmSj/RgxnenfHW5eLbuDW8y4iX6UcQP+09lrEeOpeIyxTN4+BvMuN9D2Fb9xGJUj/fdV3ETZwI2dq30iIqJHw/gqbmZxH9u6PEjvRMTwLJzp5qqbSfRtcnjO6jL0sWytbrGBsgUofkMKsZcq9YeKyTpZje/5Ab0Jxmb/I1nQW2VYG9Fjw3GTG/xWZ8aN2mTGjfVLueLEfi/kJnzo2nzPjnmSN65wQwFj5Qq5CfYyJ8viCjA/2+da/6LsAHPkFfhRb2hznJnPrWOM/rMUj0/wuTE3Cz5HH83Ngv0+hZs+Z3zpIt9bGa2IyL9CRP9K/ftfZea/QkT/IBGNL8yk5jILBMhxeJEWZIbHAs51Vrbq11GqLkDQJi1+cPtN1LOsN6nLg7r4u06SIg7C41dxE2URE+WYnsrNIma0n/320dwcyYa6p/rH5BYvlmQZ/gkxxbFudvwKbrjpVp8WrH9B7yW/QW6k4SHq80/K1Yu5ocBNG5xr1Vdyg3WxLTh/tHNrWCzvM3UaHE5e5jbWbcf67/gVZD7/6hG3aiO9JzH2skcENowO21luwq6Ty9x08CZcfTQ3emz+vWA/mvlNrNtzlXJjiY2oX838aJ9bxNw1AHWv+NxJHlO9Q3hfw+dew008Pmm/l3ITc8bV5P9dzpSnPmPGzP8QEf37ieh/f1hX/6g+f+nZA42XmAfPyARZnDJkFyWn/XKEcQGz4YgYz2B4IjcOk9aP8mfKDW6G9ntV3ljgZiYrRH618Ez/rhSVy7iZ6b7SvzN4AgRnr7vcrGIecTM57vSu+utqf6DowuQw7lftdxbHBFPMkdcLeyw4Ybhi/0M7bOE8Tl64x/Hs2EjzRniCQAIOfKZX6qmP4Eb5SLmJGO/oHcic5YbqxBH9/VWx4d5qOOEmgjjk9QTmM+MNE/EI8xFGxPWp8XjR5w6w2s6Rkc99GjdRdtHnXspNrPTMScFzi9D3HbOuMPPvJaL/JRH9V0Tkbyfn/xQR/Skioh9/4A/67yFcmdDD3zbpPSPPQXZBfhpbM/kE4xBzFmBH7c9UywVu6r+GcYQp/LScdw7st2TPC/bLYCzZL9Y56XOu7qps7F+G+Yxe/QH/nQgu++dI7+jE7LczvCb+edkmEcuMpxHGGVcr9svsNPr7gv2GsTyAwjMcJwrm/bc/+Ae7u7eXYmNQd8lnVa8kfcyOF/SuYO1ks5wa7Bvz00u4wYI5J+B2/8a/jzAejI1T2Un9jpsjXQM9p3nNzmVvmc5yW4bxBT6Hk2un98AWH+JzV+PxjM9NSppvMqOO7HdW7zPjcWWcuIJRVV7JxV+ofF+YQWHmX1C5KPtzIvK/yuqIyG8S0W8SEf3uf9sfFcb94FqHTzpCretWFJcAkyVSVr2h2cy8Uc/y5HMkO8McGo/cTLnKMJ7hJmKEQSdy5eAecRPLgIslbmb2O8tNgmlJdtHnTvcvk8XjxWLc4MTqiNczGDn8DbKdvx5hv8PNHo4XSooxctUJTDAuxvJo/B/Cztq96nMTXJ3KM/lmUjDv//KP1Lx/FuegxLoZ7pGAqryVU88AjbExy6mzvHhC5ez4SDYdEz+Km1neiAomsjOVd3g9tF8sFzA2gfMYTWA2Rkre5nc8fpF4PLIffU48fuXy6/RWxtsXZszMRPQ/JaK/IiL//WU5om6CkX/bbFBixp59zTweh7qH25iOViZmuCZ6l77AXo85Yp5xlU3kLnJzxFUne6bc5WaA6RQ3M0x3MD5T9kpiRL/BcoLXJYzZ33Qhpp7F6wpXqzF1hpszvGZwVmPqTizPbBAxZTF1lufYJjZxpo+zsuJnZ/LGyGZnc+oMY5ZTR/V3IffQfbTDrKxgHLSVPs/8LB+NdSd65nnDczO134HeQ587Y79ZMxHjCW5O2TP4zVPtOSs/i3ic+A0l9hzl1CP7dXoXMM64iccviUd/chp/3+Vl5Rl3zP4RIvrPEtG/xMz/x/rbnxWRvzCVmhk4O5c500qwjo5PJG6L49UJ4xm9s+PYVoZpdYC5w80M05HsGVxn7TlStcrNq+33DNkzE3Etd/vwCkyhrc5Gr4jlFW6OYuosN/F4havtoK1X+lyGaVSeMSgLqBRK2gQwAsfRLqmdqgEFf+T5BArqCjFgGuhN5RcxR0yxvykuhonWTW6i7Ojj9J2P9rx6rgblKjfxeGi/ia1XuGG6gBH7lmBeeXtdxLikd1AXsTi5iY919nxCPGZiHxaPC9wQgezAx2JbKS46H49pWx8Vjze5yez3hYt83zErRUT+d3TFWviswcEVOU/OeTDrSFxTB4HERMM323VbAm5g7DBNLgQdpog1YDgdTjGPdwoOZDNMg3MzvdOqWDfY7xQ3kuS8MxjPkHtR9gije0veyG9ClWWMo1PRlpKYd7K639kozmcujgHZGOaUnsEUq161feJzrhzdaY72exI38eRh/nlGqd9i65o1n+aA8xhAw82hOo8qJoVD7TYhGc0fEWN27GDghDnqWS4R00lZB2MwCdQSOxCOx/Y75masKk5qz9mvO57YL9Zdt9+63uNyxp6vxfjzjsecm+EQ+EnxmPH4+ng85mas6sB+X7B8te+RXS1PfSvjamEi/yyHtD+vzs1s0r2YFLn+Jy4iOOVPKOk2h0HbbP8he21/NzEccHUK0wRDhhFfnNQtCE4uAl9uP8rtJzTg/UJZst+KLsU4k+X+p5USfaSzQbxoPWH7yOsZHLO23O8ywDVTuMhVys2kf46rs7Y/Yb/ZhXaHC86fjZOX2e9iOZMPl0rMR88qN/PH9IL+RjlcOJqpRa6eiOmpXD2z3MD1KvvFcsaesbgFmq9iz59DPD6x3LHf77h4fHER+X75x70i1H0oNbsq2w6c1U6PlkfiRDjquyDbra9kFwXYTtR7pAcacR/TnMgeuWKXwDO9mS2SADddA1l8G9Qt+0W8GeaRLNQ9xU2V77azjbi54nNRNukPXqBnGGd3TNypWE/vzFyxvdQXHS/kPYn1ZPA32uiImwGmOAlY4mZ2gayYoj1XbK+YiKY8dW+SnGHCmBo9c7GY555qvyvjn+b9AU67+DwzSRHAi7lyxE+WB+MxyI5gHMWko4yJupddXczHnPj8qGS5zQ17V7iaYBzZ78ieqf1GevFc5ueL9oslwzjlauRHsYERxnr+ZfZc4OaqPaflTDyOxs94/Ox4JMrteSanvjoeD/xmBeNT4/FO3v/A8r2V8WZxD1zCYM3gXO4VqolTssrCpGXo3KiHazP25fegl6jt101kDUeCsXsDnuohkB9gFJVTPKBLAjcUMEduUozhYphn/YO6AvrsLT0Lsqn9RlxRwBQv3IEbZz+qmDYv03ETcYx8TLwe7Q9n3BxgnPIaZCWTlQB7FhcE/Q56GdpKbT/CTM32FhdRb+JzzESyn4gpbWKRV0FZ9nXPcNPFFGJEuRHmoDfFHLiJGPmIm3gc81zgJsqaX43sF48FuhF5zWLqZEnz/lFMDnC6nzDnzGISbNvl/Rt5oxsHAKPzu0SPswtBXeQGZDtMA25cPkv8ruMG9ErowyGvWJfm3ESMM/t1sRFiM3KzZD8KxwOMHVeDvNHFFf4rB7KZPRcxIjdZ3nfcIEZKeM1kPyIesbmVeFzl5gvG4ywunhKPi/a7E4+Ok+/ysvJpF2aYtNDujI4XjrGuyjOewyDJ/gXdjH+Dw5leasedXmp6U4zS6obcM8aW1NX2L3ETMe6h7oQb9zcmDZRb1btiv9j2GfvVNunR9JzmZsKrs0nk5gDj8PjI9tV/bNJ+gHHYv1rP5V5ZtH0tHDHygt4RrzSWxXhM/4XznU0A0yluZhix7xmOgJHDMdrvLjfxeNl+Mc9pQwt6TsXFicLyhLxxAifRwA4qux/ILmI8LUsD2fofk9UL8QvcoP2XZTXniMeUjiEDvbe5ibIjn0WuPoIb7N+RrCQYX8ENHchy7mN39B5y8+scj6/mJsrejcdncBPqft3y/br820UnMlIPutut4eof6da6ukrtth3VduPMYbgqEnFFHNTrEaw7wgj9O1zFywq03emJGCX8zQFjrHvEDR5HTKGtaD/HFdTvuKFz9otlaj9oq/Mbmthv0L+rdw6WV+SHDQwwxv6FvjpeJzEVdU0xBl9A9+h8LuhYiqkbvNpgchSP1PvrECP2d4WbAadpPEaMM26yPDcpZ+wX/z5jvzvlsI8DXYf+PZKVgf2x7ZneI4xH/j2xYcZ1F1ev5AZl639S+yf1lzCe5eZAb7TfcJzL+neHm1X74bkjjHe5OZKtylfs+R2PoOez4/GC/TrZV8Xj3eT/4vK9lfFOEfIfhZW2KmDnKfk7tOFkD+TceZ28UNB7JCtwPKk/03soF4P1qH9ZGyHxLfcPZVHvBdkpvkx29vdIlgf9y9pi6ux3yW/qv0O9C7KZnlQWy6z+APPtmDrglcPvt2PqDDcH/t8LeNkpxllMHcn2Kvt4PMA79DlJZEM5zU2U5UG9A5sslSTv6+9Ps398k2QgLM1tK3qv2H+UNzjUH/mO0HO5OZKdxe+sjWdyk8VuzDlJDhI5n49nGKeyB/ZLZUcY73BzJHvCnt/xeCCrv39UPJ60Xydb/316PH7hIvT98o/bJX7M1SYFFyYEQ9mZAG4R4RMOqLJ4fEZWJsf6W/bTkZ7BuUvcYLIOsi6BTmSPcB3KrmA+Y78k8T6bm1XZ9PgFskNuPiCmLsni8SfEVOfbHxRTp2QnuGay6fFIZrXuhZIuFDxbV2w7w3EkNymnh/7M/mfKR02O2P0zL7PYOKtzFhuzBp8ZG2fKxbnfaYx3VGbczMp3PK6X73j8Li8un76V0Rl69qX3WH8mm53H4/CGrM7XZlcf8ZtDM71HGA++N7Xcv2zifZebgez0DURn7DeTPcKsf6/ab8bVE7l5Wv/Oyk7a4U+KqameTBbLs3nFMvPtT4qprm8j2Q+MqUM9FyeX6QLK0XfcZiXr/1WcM/vfKXe4eyamr8jVUZzN2p7JnlmoWyk3fd/JfoQ977S9D9q+i0nPX2nrK8Uj0XMuXr8iV3fi8bOL0M/gObi18nkv/wgfl3XlaPUmrrpKck7l8Hg0AYiTkkz2TKKX5HhUN8N8pu6Iq9EkDvs64mbSV4vTEeZsIjzi5m5/I6gj+x0N8le5WfWbs7KjuivHd3i96p/x74lN7BXiI50zjGe4yQarQV33xtFR28/gZqWtZ/lcVlZwrsTUlTL6ZMMsb0QbnunjkeysjyNsqxhnbZzp35H9Z7Izro58ZwXjCOeZ/s3i+Y7ts7Zm3GSYR+2u2P7OODcqR/acLXKc9bmr9szKs+JxlZtXxmMm/xXicTZmPDsev2j5/sD0nYLOJ95PeLbKK+HclQmUHs6CRdrPHYYMx2yVfjWgM0xJuwx1uxX+I4yrmOJpON/dMdvDby/i5rT9BHCt2G8VUyxn+nNVNvOFyZ0UyeqG5pb0zjAq54u2jytZcSvzFNcTuXGYwvnsomyZq5vcuKoHNrlsv0FOSTERubtbR5iWikCbR3fJruZQ9rindanv46lnKs74KNg/1TuSzTAv1l3CNdMzw/gF7JepzPLKFRyn4uZM/wLGQ3vGMrJRhnEm+yJ7dn7zax6PUwwHx539znKDdT8rHr9QEaLvl3/cKUyTgIPJEeNv2d83MZg68RcXabKcYXoSrjg5QxwdpgzXCzAhroyrj+LmDCZLYh/AzYcUCf/G38NP3fUA1Hta2lrFJIADbSTeX1Y/0nkZR/7Ta7i6wA0q6+bLwNUt+41wLWCKh5fDZwHDnT5KDIDTDYxPXXbRu7nmFZj0P3fjLilnmuya+QL2SzE9s7yCuy/iY6+059Nc9YlcPc1V8QLtdmNP5upnc63z+a/LZ+Z/koj+e0T0D4jI37jazqd+xyxSmK5SzG7n4nE6Iz0Pyy4a4yQSV1nw3xWMI0wHGPFtQVsi271NaHQc7x6c4WZSl+nzuJkV/ixunsRrV7IZ8aA/DH+nSfbZ/VvkdYvNgJ90F84fwA0hBv0pYpqVF3GTqsGYuhsni3ERMUWurg5/7o4G6LY2s5ic4Q5cbCdk4wJT9A+HaaT3ip4gG/V2etAvY349kgW9M0yHmGd6KHB1hhsih9PyNtTVj9wLBe4Qa8Lrkv3w/ACTK1VW8Bjqu6alHY8w3hnHtxFOxTgYiyOmTG/H3Zm8wf5n19+JbMcNYjzCMfG5zp7YxoV4tDnPaFv2aq6KuOBc14eVXDXi6mquGrX5XdLCzH+UiP6jRPT/vtvWp21l5JFT1/PoVOlgpLK7F3GOOnFETfbq4F0CFy8av6quWy6H3/xK9KYYw7GJjdrE5KEBw+F3DR7k5mLSxQFIg7a7q7DCzch+i9zEgvbLEvpHcXPG5w4nfTSpmw0MOAAncgzd7bh4gr9i/GW8jgYGwxT95gI3KeYFblyRhsnutEa/yfTQ+NhxE45n3EQ9HVeIU5s443MjDrj+HO2Z5ObLY7OQ324FuhzvO/yW9QdkI5fTnDOL/UTWvUESc9uCbMdlHKui7ACjO8a62QusRrIYC9HvLnITee22AYP9DrmhJjvjxvku9kG52enQfrQHrkbcnPEbrSI9Rj6QtXFqhnHk60R+KxzUJQY/oTJe6rF+dHrUPycb+Uy4QXuanifEYyoz4Waa97XSouwsHpHXI26ins5+0MaH5irQk+aqQTwOx+QvUj755R//LBH9aSL683cb+vSXf+D44MYLHXDUQYTcZEQL+kzItWk8Sv2BmdxX1SmpO8VFzcFdAAS5Mxh1BUUxxliYYXJ9lfbbFW40+VjdWrl7FibiyriRICu97ArGDK/aL8M15SbqDfY7xc0Es5Nd6C/i7+oGGyCvG8qFxJT6buKvl/vHE14BY8SkdYnI5YKz3FBSF7macRMxoV6K+eaO7VWWc26yPmY+pwXtF+9EOr0HGBkqmF9RHlNYIt4zhaX5g+tjyA9d3qB2jLJpjkny1YqPdsfoL3qxuCob+q2/DWUH/ZuNN3TAjct9ynFiuEvcRNmA5UgWMQqNY2PKDdpkhFFteMBNmq/YH0+5QZ/DvHHCbzKMR3pHGDvZ0F+XN27GI9rT3Vlf8ZuD/g2fb1qRBYzoY0eyh9yEttF+P5tcRf3xajx+5fJZz5gx858kor8qIv8nvvxcRiuf97p8cCS7zU/kvZN9fV0lcIkPjrV+9sXyrq410Nd1EyENEJjtWFsHr9tmOocxnVFRk8U7Q/HWtgaTG1wuctPJYhnhymyCdcMLGc5y0/UPfGa4VSjjhsf9u8TNGV5X+jviBkXYH7u44HbcxVTir7f8JuhwsolvCyVtSevDZW6w7oCrdPWeah+wP1qyfHPX9tEetW66rYzBPnAOdS3lucV8Y6voPMA0st/ZIk6tx5H4bGf/iZ+5iVtoNvXRyCXqhX6nPjrK+xFSlmOinsy/oV08jj66yg1OzBWXcRP1hE643S0UeD1jP/0zyij+UTwHvV0+zuoexcbEfg6f8op1AyYsXT4+wNjZM2A86+vYn7P2RFlnzxFXmEuxEayb6FmNRwHZTN9qPDr5LJcFjEfxiO1t0SbPyFUX7HcrV63GY8Dx1YoI3b0w+0PM/Ftw/Jsi8pt6wMx/iYj+cCL3G0T0Z6lsY3xK+RrPmIn/vftbE1s4r8cWPKN2Ell1QsbqktQb6cVb2VhW9A7qdhOFkCCm/QvJ8Q43GQf4u5uQz2RH/470nMEY+HFlJgtcWvJflb2L+YZsTJrDuiNfWbTBKYwzH01sEuFb/SP/PuM3sYR6qR9RmDAI9SvuR3pf5a8gb3F8lZtJvjm0H7x9dUb3YUl2SljOwnic9GGE07oSf8v6OPFTLBzbOpBDSjuZUcm2JUK7rr0YR4vcRJzq68h35KprI+HatbnqdyOZWX3UC/brpmEZH1E205HYueMm1h9MtNOxeKQr2HOay1d8PWK+ac/Ox0ZtQF+77WQX49EuUrK2QHamM5rJyY7KQTy6LkT73c1VUXbRfhR0r3CT/ZbG45HsFyo3X/7xN0Tkj41Oisgfz35n5n8vEf3biUjvlv0RIvoXmfkfFpH/3xUgn/+MGeWOP5zEDIoLgGwGKL6yrmpJPc7MmV44bnTug6gzTOG4G9TjqBITyqh/oaTPlUy4iRjdOJNwxfjH0TMqs3LCfkiWZPZb6R8NuMnaibIL9hz6zUh2VGYYV7iRUOeE7S+Vgey06ezZj9kx6lr1scCN5oG02coZR9kVTKs4BrLOJBBTNtie8bkrA+nIfqOJ5mpB7AO/M9OcyeV0QOkM8Mn8NPPRuD1pCGGWj+PfE/9OucrGOSIazVeGXB1hPCgz+8VnXNyiRaZ3ZD8cb0ayWFBvko9X1S6NbVfteZBzDn09yl6xJ+acKn9oT9BzOLm/Go8JjxpvjOcDV0cq78Qj6k25umo/ChXOxuMBN9N5Z9R/ZQz5HVRE5F8ion+zHjPz/5OI/tjP8q2M5izmOELORYRCxIeC3iThhygbHWuPAcH+B1Qblxse2IEEY4cL/o6YwjEDHxJx7RFT6C+WiKHjYiKLg9VeKnC8QsS2kbpdfOY54uaM/bB+XNEShoeJMj9KZDM9RAlXc26G9ozflEG/Oeofhb/3A4xH3KDcKjexf5Qd+1OGO5UNfoNncF/Vqu1Rrzue+FzgJl7RuwmjiM8RM24yP4oY9bejPEDk/pY9YprESeZzrhMn4rHLvX2OPFtYVcziSnrIU/vv1LvkDOfAB+23kW8hrmyBxY0ZfbNW/yjWZ9xQMEvkasJN3CrmMBGcG/GS/Tbwnan94DwjZumHgVR36N9yboi4HjS035Ab1DuyX6LX/R7aOrSnth8ulDrdI4wr9ow8AU57filw1c1LJGlrdDzCH2Gd5GZqz1E+1rauxGPA1HHVzTUWctXVeAznDceAm2xe6dStcPMFS3d38GdaPv3lHymTMZlpiY565LQzWQgssSwE5/bR6HpwjMFwRs4OQpR09cVX1/JMbkbyeiIuv0ZMq9zMMGUYR3cqdbP+jJuZTc7gmB0f9e9Idlb3Kjc6GujFz5HsQtJ3snf8hsTfQTnD60znGW4qJnG/4cXQRM/otxVcC7ItG5SK6VaxFZ8bnTtl+2C/qwP0QW7sJvWqa6GP5o5n8mLMswN+0gvK+FuUndU9+n3Bd1IfnWGKZRYb2cRwwXdS+2WyM/vF+hk2/HshbyzHM4JZjY3Mpy6MN0v2PNI987GjWIg+NfKxgd+k8ZfJXpinLHPzDK4W9URfZ6Jlvzmdq1biEbmaxcUE1/L5L1q+wgemReQfutvG53xgWohY7wI4B+Dg7BOSu+Q+W4qIdcnv7R2OuoPWpnqXW+mOBS4Oe0z9slS6ghSrLuidd539FibExZxewDLITpoNyf28/aybjqsnczMtwX+7C9Yzsgd1p8ehWYndBG4kxtgJjEf2DHUFz+Ev3fuaqfebgwnEHMj4VORGMXEnm3DVNYbVeax65nNKhfsJMLkcmdnvwOeu2o+5MxHPiT8uQsR6p+JgQjJEmkwK0c+m0at6gpmXywxXX7WpPRLyDjnlpmsKMR0tYKCaLKXEPJkJZuWM/RJZia8in+mJ5ar9kovDKTcjPSsdnWA8tOcZjNF+8W7JCFPmN6s2rPaz0LozHeryzQTTzCZ0EH8Hsmfi8TBXDez3ZXIVxh8t5qovWoT4S1yYPaN87lsZw8ifUjpyxptzBNWlCwvR/zmp+yzdR5iICjU41xPCrVXJhPHMasiZIuS2BDhukrudh/vLod07heFff7f9A7n5SgUcesjN9ELjZkl4xVdIT/1GJLPa88oKNxRi7ApXZ3KVw9QuvroY23GvHq/H19mCExHDNcB0o3TPO1J/zMlvo7pEEz9bkMXfjvp4hnu2/5zEFXUEJ03HJlh3OcQ1jElssG9LaNL/M/ZLZJWrIU8DTCnGiarhy0n0/BE3K5iyMvGxzp7Pwqh+M7gIcfbM9FywH1PddR/1dI3neqOPneWmU3HGnhHIqO6vW66SA65WcH2Xp5cv8bp8Sx5CfSJZPT7KeLHU80zk9jFrk2lCG+E4wjjCNDnG15/jxZEbhFe5GcmuFGgvYnJ6RnelXmw/Inhl7TO4yeouYFjCPJPNylmMcXJFgZuM57MYz/Ba9VmMDf0mKDmDcQUT0TE3egr9cVZWbL/AjTtHbS7VZNtF26U4ieUCVz2mkzpD2wr58kuJ8Dj6WTgncNxNzsD+HaYjHCdiknmACzEFjN1zO9rWGW7OYMJqBqJxkdprlPdXuElwsRCx+/Ag/CnUFiqDXvs0SMx1R3pH3BB19or908d1RfUfcDPCeMqeB74eZW39S8h/0PGsPVcw1ra7nBq46XwM9JpPzvLxmXgkWuPqbDxiH2aYMoyLuarT81Vy1dW8/0EldunnWj7vwmy2t/0qu6PAOaq/ou9ZFj/CiEG20tazuFqpO8L0UdyM6mf17nBzppzFfLXuaskSbtT10RhXML1C7yqOq7rv2F7LaEIx0/UMvUdllaszRYi2fZJOnq2P/Z+zeQm+wPLpdyUnudzppc/hZlpH+p9ceTauyR3CuDhpE9RXYxpwJVQvREb65GtgZKLhy0A4Vn42plmbiT07THjiWeWLx+PPIVd9ySL0vZXxVpHJhVlS9xX6XbY8q+OV3vnZmHAk1HIG00dG7pVJ7Z2ScfMRsivlK9roo+1zF0csXyHOM7/5CrguNs3dG3EH5Y5+6AMnP68e3+ZgwuUIV4rhmfY/wsRtTav7YPsrF1KwjxJ+rufiNis+wnQX14wrwHTUxKdhrP/J7MkDmY/CRHTBnl8hHrPyOzRXfcnypa8c18snfmC6MCgEt2TxXaPZMZEtH9j3mY5kk7q2JcItOzRZofqKeG1CECMkk2dhpNa2rR7Vvw+5EXo+Nw6Lnxl8GjdR1v0+l3WYyLd1i5sTsv2/z+PG8dHZBOruz9PrDk9y02EE7Oe5oVa+Qkw9mxs8Tu1XT17hJvRPD9dyFTZ+otS3r0T7z/KGqTvyb3EteagrssH+l2Qp/ORNW8oT7X+ZG8wbBOql/t8CZcEmdJKb2D/kCvW2BtzPaa5LPmEx5yaqSLgZ2S82ED9BoSDrJzec3vipjCNuVuyZ+tjcnm4cxx4t6J3y2nEz5rW3J9Q9bc+DmNKf6Fh2OsfpuHpSPNKN/j2Lm9SPoix96fJ9x+xuqU6uDq4JzBW4/c5RTtpxKgvH8SFXDFBKZBnqmu7k2P2e9e0ERjvmcO6zuBFrvg/YJ3MTMaXHmezAflHWPasHdW5zc0L20J4DPVl/8HhmE6fnyf468zlS2Tj5gb9P2WSi59BvPiOmDjAfcpNgtW8vviimjKfVXJU2tlCEOvsTNToy3Uc5J9URJ31B9sj+p2UzzHCO64+Hsgf2P8dNMkmJOQpiw9kgweX0ZvY7w03EHPVm8SEDXvcc8ym/yfoX9XCPsbQpVbwNSBy5GWBc4mYhLyJGd0wDbgbxF/WexqjnYs5FvVEPhf4N+LkcjyNuBrKdngOuprIzjFr3M3PVKKZWctV3eVn5xNflExFJNXRxDVzBqTW9YHQiV5ND1flb1UDtOVkNBmk/xDFkiPGof0R+5fqM7BO5ibIe00QSEoVJw/GMm+zTCbPi7HdS1g8I97hZlg3c9LLnuBn5SS/ay/Jicj3L662Y2mc2mXFDnxNTF7jhiuWOz/Uxte5zt7lZB5kXofK6/Fiq/dvhCUU3cK7Y/7JsKqT/3Mwbq5OjBfuPFF/JqZdlXU1vv9P5+JncZDJU+hfm6vWUTgzCjECazXuMJ7nJAC00d+hz4ipfxzj9gvKCbNS7Ola9kpvYxvQzP+NyJ6feylUr3PRCA9mvXb4/MH2zMFGZFWCGS3KaHcfVCvy4li7TQFLgbstA0q5lVe98cSXRyboPjkqvFxuK7YivG49Fddsx+zfvfBQ3URYrxG0bCTfILfZuyGvkJsHsSrRflqRG9kOTZfY7y82qbMdNlB1gTrkJ/Z1hdG2VHyzZHvVv5q+pP7JvAyEO+yfBJkTnuAnHnd8kg/tSTInvxk1uuMpyfQulbO30LN9YKIO/4mA59LlXcBPrXSg8wunsn+hetv9k/jKLjaxtPH1WNpyTUd9obbzJc+pE74CbLlVeio3kHNrvrGzoH0LKdjXisaadzj8JMGUYFrhxelAHtMv2Hz3H3XHcCrdkv4hrEBcSZZVDpu5OjxvGR74udKw34se6iCnBO7XfUfyd5AbbkjvcnMlVWGY+p7iw/qtyVdb2xVyVxtkXKUL0vZXxdnkkjhT+FqJ+dT/5MG3698E5bVfsoKBRn4y33JcxxDLDFI4ZoiQOOBzqvpKbDteEqyPZy5hGbR9giufzduVp3HyYrLO9n5zrR5NjfcEKtfQ+8zyM3YRj0K6MMD2Bm3hszwsctBW5Gt5VfIrthXhn93Pmry4baB64Y69wvMpNAFNjLsGxUkZbMoWucxvz4uTcUVuH8fHk2DjCdDRGnjqX6O7WvmSACY6Zkpxzx37htylXGa+DMfJQ75nxZlbloB0Gbk5jnJzv8kb2eyK7NMdZwTWo+2H2Ozo/wITcrPj66Vw1wheOf7a56qsWIUq3b/8Myye+lbG6JaxMq+EjtaOLe+8pI6mkNLVlYEqueoT8pz+sReYwKPHYY7uVvDlGjXdmghXyeq7q/Ahuoqz1f8CVtchMMrMntnuSm3hqZj+8YYhn1ux3jpszmJf1dLIeYzmUXHuwQVxylp1TP1rDeGATGts+mr5rag82WS0d5nAauRr4Z8MUlg53uPx9pu1n9qPeX7GIcH2Y/4LeeHqBm2X7rRSh9jbe4KOyS+jT6jTA1y3bzMTh1txYtgOJ5xRzbG2L4VSzP5NfZMo8aIBZuWUKGgZcSgx2tEs5XqN/jpGJ4Ntgan8e21e8bMN/ZL85N7G/0X6qrcPFVL5obHWZOMpK3pVje/q6aL/hTo5UNsEoi75+gDHzda1Fma9jkRL7Nsc55esTjB2mJuvaT5otGILsyNdPxqPUn47HyKRczVUX7Pezy1Xf5SXl0+6YbUIkIejijY/uGBvo7sQkTjxJSv5MOxIp2GZ6/fHe9ERf747nGBmF9ApNS/i+y5SbqHg/x03EzMwQy56rGTcdJsQcP5fwVex3kptVzBlXywN8rLuzO5z2L1ywbvv+3P7BqOK32NHUXzs9Eo6XuUl+QFEBVAf5JnLFmGNu2L5bNYn2W4xlIaLtsZ/T22HGH9a5mdpvsTARbSI9jL33WZysTJ9TZfHd3MVz63xBa/Z2FSLaAmEcfRJ1760TBaM/pqCXQRdTjMHWq9hf1EMUfFJ/w1a6OIJzkStXX3lDjtj/hUOTa+jAfvucG1ei/YZXVtRmsvWfLXKViDj7IcaEG8ToqOFmP6kYIwNuwpz4ke9EjhEvAFKMHVfQKotZTzGaPaUtOpvsAcZxPAb7REwx2IHI9K6rw3SCmwNfd/7L4vsvvT2Rq+u5KtT9hFyVxd8sV4lUboa56muXxGV+luXztjKig7srfA7shmNml1Sb99VjCYM3HtvFRT3B7Oc1IuDgid7M6kn8HC5QDDFWMEK+X/sJbrKtg6e5SUpXF7gacZOdg8FUu7DGTawLXNnfJ+ynbWX2m+oN2Bcx59OwAz1Dm8hC/+C442ZR71H/OnxBP1Hur0xkS/W7dGMPZ3pn3HCCEVuccUPhb/Xt5Nked3wnpnDWhj/OMFL/jGbU22GEv+f5ZoUbOLbOXSgCkwimskAT7Q+40zcHZsGU2D99lgTlUA/54+zZrk4WMUGpLpT7Dv6b2IwDLldvFr974CZgZv0tcoWYIuYBJsZFwoPYiNuthtwkJeYCPyaGdkMun+YNtC0dcJPZDwBavUw2frNPMQ70zOwZ25nmnHCOidz2n87HJr4+jUf9ObPnLB4VR4zjCaYpNyd9vctcqjOx5889V43egumaAL3YthARp9vGvnA5yCk/l/JJb2WU8IFpGfydHNeJAjp2nbZY3Q2Oudbw26y4/lbzla4oOFUHOFpvWsL1v1JDOsdYjvEmfhVgOYkpyapVj7a8xk08Lr9sDI1OcaxgWrNfOc4whsR4mist0X4M/6UFbqL9ZKFuJotcJBi7hHjCF5Qb8WhWbe8x1yZzoBM88Jv6kbR/+JCbuHnDc2WxfJqrZOQyrlZtj4wmGg9zywSjjZxUuWLgasXnqMNosWzfxRrhmGCaGz8vQvBWRrQ/p/Zn81fUF8lssz2ULX0czcQOQAoRPgHvGB52G3BxLtvyVfTRI4Ajrupfgt4XuBly1eLKMLuZJY8niYuxkXJlW7Tmss1+gasslmbcxAiRUUM5N8v2q8cbUVu7OMQYs1q993YBI+ZyyjDuiT11LiUN02ysavEY9CzkRcs5WnHUReAqG6vG3GCbdUznRW66+IvHP/dchTgCxkmuKnPj6Edn8H10Yfp++cfNkj6cekY+yHa35sMEg8O5kmQhGNhVv1dg/hL1zjA2KfgznemdLzzkqufGywkJh+cOnsDVc+wHjT3JfjWfp7iO7De3td+LmsuGpPKMPukEHNphODj2zwGms3iSpqxJnO93OEYYfZy4plexRUwTrua2fzJXsQ2cUzzBfi72rnB1Y+xrz5ghJD+Jz/Pi+NjJ4jadunWof4V3XnzszzAlMNBZui3dgrWqEddJxIm+fz4p2bYcJ7khMFz/3Bkpq/YDWDEvdv2bcYWpTyfLktdlUCJyYD+Jbhm4mWGKXPGYG9xOKQVYR1RMI06TjDBS2K53YM+I0YV32xZXMO7lImK0tZ4w7yb9ncVj8LHZ1kUGkLpjfdnHznDjHEHwHydb4m/OTQpMm17JVRKOrfIn5apZPu1yVQvWK7nq08vdufsXKZ+6lZEI4knqfyC7dF+nx0kFQ/WwNcESNkxqMll/n1plpTz7NtE7w0xRr6vrMdpxSL5FJ7dDET8YoN4FjMxwz2w/5qbrn3FD7SIt3rlc4GZoP8GGcq7O2M+4umA/Rp9L9M7sOeeVp7J4Ando5j4259WN18iNbhs8Y/swsdNKUptetj3hfVuqAyNR/3xZwmu0PVR0O+/OcCNdg/a3JNs+j2zfcQV+7b4VdibPVSkLfbSfyYLPRYwObPFtG4ZXuIk+h7PTq4M1PGPmYt/OG1jQBf1FblI7+MImmMmG2K/n++eComz8IdQloCdUZSIilrDzu+Urv7W+CNjcaKeOj/Z3WGxMcAEh/bUFa59rB/BB3R3GkCwvTvQYV3A44ib2iUl9NtSF/OW4cXp9m539Ik8jXonshgRXfbQF++nFB4ZnlZEjjBLqOnsm3xob+DrSXjDiIOIxWl9wHNCmp/aExA/cTBfZ4eLD2U6IZGuw9FEmaxl9fRRTJhsNBpiDbPlJeZXGUdxXqfFIYL+VXGVKztmvNbOYq6iNffNcNcOY8dowp7nqYtr/LufKp72VkR7F0XR1xm4Qczu2UbImA1tN0+TAUpMdtwiqnlbyyFiWuZ0T3i05DGUFgppzzC20ysROXP+KLE1ktV2L3w3qQv/so88L/VM9wkK8Q+DB8pWtTA1k24O0TKxL3sbzOjf2cLlxldhzxs3IfrSXW1s7EbPnaoWbzn7I1QE3Xf+u+k3lpkxcGjfLfhMxktZtvm0TqyvcMNeBAOPzAjeGrPiR2x6z4jfc6pYGjrgB2c4mBsBxpd8as5XHBW5KvWA/+2cBYxLLipFZ6udFMvtNfA65spnJSW4iZkXmZgOLRYT4XacrYnCOYp8Ap+dyEhsJzqEddn/MO9SlxIZC1VfUHk1dFhvumLi+awAxhv4BN9Y/xRS5MR8VwFg3XLHHFG1qegNXTESy+7rIVYyNGa+lwZ304swm5yNuEtu3bXaBG/DvzJ5jXgXTPfg7Ob0dN+pzYL+ml+w8jmu8glF6jHYno+KIeghlU4xxHPD2Q27Qnnk81kbNnhhTvu/mr5k9db6g9XeMqQVusph6aHPhJRXKU+dj0L/IDTrFIB57bqLsmv3u5KrmuAu5ahBTGa8u36j90lz1RYvQ91bGu4WFiGT3EzNCu2fHAr8ItTUJDBwiexWqtJouOPSY6xoy2DLKRr3MAis0PUZEWCb1TS+TULuuKYHLTpLgRk+9c0dtnbs9l3fMTTv2dfVCw2rWO0wdN6iXASM3Dd5+x9z4gvYrx4fcEFFqP2he3/TpuVrjJrXfETdHGNX2lZuprNpexDymAjmwfcIrBz0CssDzGHOwvcC+8wu86g9RT/lhd5OAyI0QLgD3sXyGGxfLUDnlSta5Qb0S7XfC57z9dGqjXC3aD2QxJ/b2G3MTMUaurhQWxd7sbSdibCjuuii02bzCx2S5k9NwOd9h8azzIH6FOr2d/aNezFzQDdVL0uzQ+Q6ON+EiXGe/THqnVIgeg3HOcQN51LjxdWf5irntFDHZjNfKlXLTuPL9c2s2kauMV24XAFn89vYjYknyhnjZNh9FjGVRwuKo6nT2m3FDfkz0vJKTpUWMphcwap2RPVWPHnuMmAsS+5HnWecaBuihF/chHmP/gj1dPMLfGa/e1wfcNIQu/u7Eo7PnLC7C2GSNTnKVQTsbj6yLemu5Cvvn84tWGsQje9mOG2xrYL8vXX4GEFfKJz9jVrxQV33bKld2TC0bkpAuB7aV+FaXw1YFBtl2Dl2OQNYd1kDAlWl2xxFjvCMu9XyPKWKmLslRkG2YjrkZYlTuXH89NyPMyFVJEt5+R9xQ4Kaz3xE3+g9gpvhn/TQAdvcMNywB8xE3iAvhRNvLRDbYviJpGB2mBV5rdmdqEyEnazwDrwe25zrId3pquyqb86p8+BYRk1GScMMJN6l/LnDjYtkGsoyrJpraM3CDgc+hf0fcuAhL7MfiuTK5JC7EtPcx1dtvzE3MxZGrLC2slGHeEOAWudx7O2j+4i6XLeQNVj0BV5Y39Jxux0OMYHN2dyFUb+1j7Y8EzBIxqjis+LJIeTGDDPJk5MaCTC/IJ9x0Nmm/2vEGGLG+RDny9tujXuAq5lRm57Mu12mXmFL7CbHx14+RoX87efth/KX2m3ATucM7HS6n1hojjOEzNgx3Qwzjqj2dz9WuQh6xtrRuN1fhPB73EGNA7Go8rvp6x03nr8DNLB4BU8+N1kN/JO/rlasrucpxcyYeO71E53JViyEinsfjATdONrPfly5fHuBS+bytjNJWc1us7y5Yu2PnoOIGBldXiOpejDEATFQb2Y6AgilOvFDPRG+HsckKEfEeMSUYucUktsddfy5yE49lIEvKQtsi0O7oKKao+xo3peoCN1E4s1/W1iu5ibOI6DfLsv4Q9/+fiwvyesBWQpTwfIDRbQ+5w2u7qNAqbWCHOzu0zk3pX+j8GZ+j3WFiHBQ729M5blw55sb5DR6CX4tQYr8gi34DI3rp38x+PTfR55z9Iu2LhfHzCMZx48fhhDTdMavN8Dw2OAp2P0BH9qY3VvHbWntR1AvzpFov9I/3drFNOk+KNq1wBfRK1bPAjf2BsDuufPG+Q0QPwEhzDjBuONgA81BsoNy5IMeNfyYtLCiw/cdPfomIZGa/oLrz34n9KOFmFgtwbPOJEcbg62k7SUxm9nQ0SfgBGzJMyRwnxKP6HE/8RvuXYRLah/YLnUvsN/DXZ8TjWV9fzFVpuWC//AfMBQNfJ48xi8c7uerX5Lrny5fPu2P2gMHHnZlkOdcAE8VJmcRgHcvaBwqZiAT2zFep+AG/qd7ZLCUOXJP+uUGWk7gkOeDqBMaOq162zQ1bJ3pMiPkaNx2mBVnj6hX2O8HNFX8dy2J9CoFxjhvTo3oFLtJWMTL13wwcbWdY4HUnGXSLbUA4w43r30TvrLiPgAJXLm4T9Z2em9zEPNBEwX71ZG+/iV4+4XNdkXAU2zpZpOZ9KV3K8kabQPd9bPmo1Oz61M2+6xG3U1KvetW/JU5EUK83RJ0MtcsCod1h0pzk+OGkfxz9zsN3W5VwrDJcR9wgRgp6DvIGxFWHERdQ4kS0a3b35xP7FTVsjWX2rBscW38Y2grcSAU2cAOvmdv2udZi8EGOknX8gy1wVq+zCaqF+CVyeu286YE8eISxOKzDKohR2kURbiE1X0eCoq+HD3BT8HVQOY1Hhj4RU7v7Av3F/nTczDDKHrhZj0fTw2TPKqb+ejJXKa/jeIxx/6Rc5frY24+flKu+/CNcZ4a3L1w+5ztmRLaSxHTR0plTCpwLt5mjrJ7h4KFtUj+WPYcT/t7DKnu8FY7/aoZlTKKLXK1gRK5msrhiCZjsEHHd4Qa7d2Q/qPoS+41w7XuoJ1N7TvV2ddlDvpFgukHfJlPSbb+YYzyBaYHXN1cf/z7gtSuB8xvFx1zgaiaY2W9W9wImk1VMJLaNZYzjdSVONi61UWcFjNsy3SRCXE4Rqi8I7HBYArP+i5DbCucuNEIfTNT9LbY6jHPegjH6qL8TELfHhasFh5phgtphSvTq8zPlpVIr3PQY7b8ud0NVim6UbJsFXc5+cWIabsx2W75igq1bMRSTOO5QNMwXdn/xh5j8N68Se8Id4CIb74AzxB2cqg05XtlR037X+q67Qhv6gsMowZ4HGNGvKkibuLPU3Xl1ku12ESS5Dd03xOMW7Rm8ZxqPxM6esIsQZBuuDeMP9HYjeojHyM00HtFeQsQslM3D7PztXKUC83h8Wq6Cb74IUW+/aa5yKg9z1Zcr96YDX6Z83lZGW+mKnsx+InN07IXruexioXo9HhseqW8XmKyCcQ/1FEa3EhswdBitog/IDtMJbrpzDBPiyE1SEBNFruQmN4jpVfY7y43Yn2VwnXFzZM8FXvXBANTrzt+Pi/wiesIr2LqduuFzR3EBcHOMiIuew83A9sZVx83IdwNXZ/UeHdfBOOUmHqPPbk/kBo+vXgw+krsFqEJXayvv2hUG3eVZOJCLMxjMT1upIDoZkWBDta+b+MCkngnGqqQgJji2yanD1UKIq11E62Z5QvUqJ0vc6HlPSdGT5e56zLEu5b6hXEltb9dtYVxZsIY9JuSm+qhdYwpwo/0JV2XtelRj31942QWQclMFeq6AmyzvIVccuQJuIK7a81whVnC3geONKLPBJtLZs8s3GY/aJIn5FaujUd8f4xsxtkZcaS8Ly3wMfT/EVANr9hSi9pVp51eT+Ov8la7Ho3Wh+Xtmz1yPNB/TKqvx2GEcxOOzctVhPM65QXVdrtqGzH9+EaKvf0tvrXzSVsa68qtOiVyKdIEdZd2fUdYKrqgw2UUIwzFG+z7R2+lJ9M5k8cDVFWiLe8zwz6GeQ8xygiuxP3tZpn4pkibHJ3h9YN3dc3PHfkd6ZxjDQvmQR500YNvZBc1Qb+C1e5RoJrvQP2x45nORV3cxEPSs6F2KC6K5z2Hlhbg4y82Iq6nPRdlgv7N6j3jFg+hzVhbi4gY38NGMBO9CEYIPTOvFL3UTnvYGNnL+wOgbRO2mhgjc3AWfZSJ5EJFtOwPczqcBoOrtMPmJmOrVY419nRAL+W2PTicTyS7hhnSMM2uS2G3Xk6A3ckNr3LieVUxEoe7uzrm7ZmELIes2z5Qbj9Fvie3jWSempa36t2vMmmw2kaa31drBJjk37bjlbvcGPtAl3Oxbdr806O1tm7pNLolfKX3jbM5DqrKQ3DAeYI48Vrvolk9x3EG8BV8XCfQ+MR6FpfFa+5fFn94R9mktz4N349F8He3p+odcBExDbirHV+JRcxX40b1cNYtH5OYgHjVXqWycD32xEteRfq7l0+6YlQG6JrDJnGSlrVwOZxlRh/jz+tT/TO8RxpFs9nuKOWmQG8RDPSu6r3CFpzSojzCdsWfU5fiA0anDC2XFfjO9M4zd70JuVSY778H534fcvZhX+zvY2mGSUP+DeI2r1vpnKnvE44Heo7rLXMX6if3O6J0JhW1InaKz9rvIDW4TuzL+MZE9Wxyfj8BrwC2ci7Ry/K/Ohyq27oYLe9z+ggLbTXIfYscJ9ARTGdfaoemFPKpvzDPM2BjqFSK82NiCP3AQwHbwBRCOm6wD1LhKMVHgavc6cYvlDBN1teIFKlxDuIuK3n4MvOjY4fs/9qO0b6qH4ycsFBO8qj005j77EqMD39Yn3s/iOsmxjw0w184bNzp3GNgz+nrcqvrMeNzQfnYx1JcYY/NcdC8eiYg25Yb9hXJn+5irYO3Lx2O/C2w5HvVU9HXDHF0u5KrwRsjL8Rh9X3OVYv45vDL/16B83ss/LLELtS0TkFnwNmvcIiCS/1ubc6sy6Ed47EZlGKrtp0W9ijmri8e7YgKc1nfApRg3/e0J3MxkTa+06Nd/d4IDLE/mJi7XGVfAC3LTcYVZ9Ygb7dIFXo0Oaf/qxaOzJwDUumbPWJd8Fkz1nsTo+ht4dRy0U53tcVRY0Tv0uYWYUv4yXoGalKszGLvjCa+2y1dyrijoRkzP5Ab/1bhQDAx/ZFxt8PtTuCELy9HkalqE6uub9aDptsc88E7xECfEFdiBFWKd2dvbDlWHNl255A0M+/CYBPuJHKod0pwDdeFv29qk26UMSMDk+kvNB/e6HSzNizHntP6hzxZ+6/QcXTrhqmDy9rdPQkjFJUJuy53G7U74sbyB3zX78UbN5qLnCOwLXDE5+0Wb1I9STPIxyKL9kCtpenQnmRgfuuUsXOZgzsxsgr6NcVp51Yv0DnOM/XQbILSPON60zWpPlI3xZ801/3TxOOJxOR5rtQ2ewUKsaE+tq29v1XjU9o7iMcbQMB6JaKvc2GMEAMFxA3qYyx3su/FIRPYqkKq+PB9bdW4QRhLiEeeSMH4exqPYf+bx6GwDf29kz0d+2SLHVX4O5RMvzGo2ZoIHOdHJ6x8xQbsLuuyYan7RlVMbgsiyLH4YhWt44MSZaFFvVdglAAkOIvV/HpOldxGPiag/fgY3VdYeWk1lq95Hxag8KlesiewJ3ICscbOTPz6yHxGJMNjviJsB5pEs6nWy8LHY+q2Xcox1oZGdS4KMsnhxccTrhf6lGLVN8jy2eITkfcnnou0Tbgop1d5gX8J4hBGiu9DE/so9bmJcWB8SbtTniM7bb8DNEq+PPbWfrfbixZRNWs/Yb6DX2a/pubaVX4jfcRZePlAvhlPIUYq+Mogrs4P5Ts1PVYu/u1HvZVQ9e30ew7bVl+RSzgdMpqhuEZJdHEaPg0IHSluCH4reGua9IsNPRpAe62TtUV4E4eI55aYSSHAcfZakTfQk52on/xFme6OqjlVgPxOqbdl7GBw3o7zYuNL+OXuxdPYl4Eq50dggw3jAjU6UB/YTbs9N6UWZ1d2p5CfMoW6sUj9q7Xs/IvOxvfbXMIOPtRhUXo99rs0puF6sVB8zX1dZmAMYpr2qy+Jx5mNH8Vhttte8AVuLMR6Lb7ONVS1fvSIe2eJxf5TxRp8rjvFYyg5cTeJRJzEJV52PITfqYyoWuIrxmPrYS+KR6qJyscGXv2P2/YzZjSJSnycC5yCChEzkT9CgkiTHIIqTDEgyWkGTQZkw6+QqqB/aOc4cctyG0KDoXmYc6DRRQgsMq5hR3TA4FrhBfEqXCNQsaYn1d03KRLZXnDJMUf0xgZTyhz8hV4a1VTL1m4D9gg9M7TdSHgYa+KlxVQe6YL82dVAtsP1lB59D9Uv2HGOMYAWbV6evvNlWGiJLssYj1zsFHLgMPeoUzrDpQBaawFf/6jdZ2uBMdkdd4h2r9DmuGLTx/ODnLKZwlVQ8N4Qip+0XFY64CvYjyA3S2w8//N0+a4ED8wVuYhUffC4eTxUh4kfZpMM2Gav9wUkgotb5GQHvcMzc/FVfYW5bLpsCk+XWBG1E5VkMzCkazyzteZ1Mb8CI13/2SnCGCwnSrVN13Nsbxk3bktoWvnRAxOQ1ZvT5kSNu9CfDSIGrSqDKCmDe9HzFtInAxUPkxh8fcuMwFv9lhkmujS9hCxqLtWXjgEBsgD3d6+EHXJlbJxjLexggd6uz6T8mq3dzWmxY/FqI49yjbQ0UEueDGTctLx7z2nysts5kvG6Mmy0pzD1oHI+U6MF0nsWjxV+MRzH+snhE+7l4rFz1c7h1bkhCPHKLx7eDeOxfAgIXksF+U24iRuq5cj5H43jUsaDBgng8yKen4xHmVo2Hr1m++nXjavm81+XX28KCy6PuIw7VlcETSuBLS4rh2OruZXW+vc6XSPQ2dNgGUCaB7GSJ/CtexdpqKbjpVfzUog/wM2z5cE798P3L9kvjKpHHdJcb/Gq8tC6oHgGuQBcLYFJuwpYLzxW5uo4AHOukyNjp3Q/Ifo/+B9lPTyVbdowrfNYD7wBXLVKzILeOFl5Jf0NuupdIjzFGXk2oYHI+x9Ah28pYJxjWVrW1+YX2Fe+MyMB+0eeo+YyWujLpbnY5n9P41AER44IgBqgNTDjcudFwHo+C3OyAaQ9cwaq7s9XIfuhzNOImj0dyNgo+V2cxxhXUZ2xLUwVyFZdJj7ihGicSMGX2u1wqd5iPOeRncyRynwfgilXqeXvts8Vc4EOobGsUtaHUVegi61JJeNMb7+IxaQrAMQQxhlwumPOZyhRO2qq+QF0klpNtgg4H8nHEDWK048ZN65T+jhghtz322mbjSp1A76B14+uMm2A/IXJ6/TgX7Fl/wA9va98x7/DD+3Cm1+ruCVcc7OUGPWr9YSK/7RP8EO5YFPw+L3L4WDzvCTdyglfnc9BuxaVb2vD5wMYfYBTQm3FDyFMWFyqCsgzj4Eo87m6uwSSdj53ihjw33ucG8agXPxiPyA2+1Zq8z63lDPLxiPOMlXg0Gya5apZPV+NRm9ccC+18ydLS0s++fOrr8i0rmDNKIDYkLvMaPSafJwXa0omIXngQteRtAjCix1u7qEfP14YjDpdRdLAU8BLVqXoFVtmEOkz254bnAjd8hxvgSHOJ4dBEIL6eFsSkiqDdtsWjnkRuQtB4XGLd1J81KZZ8AbxGrqL9wkXEyH6NmwSj+006rtybt6KNLAdDxtfJgLXLgKnKIuaZjzneqHVEfzP7ARfqc2g7ov4cg964/BRe32v2C8eeGxpwA3glxFTn62EwCPbsti9M4rHlgdpvMIOtWopQuzOq9gtc4SBK9NR4jPYrq5Yz+xHEAcAIE8ElbijBpH+A/WKzS0WoXORhv+vfrHhMpwTBVhxO7K8eI+9wBS1MbYusNLtztan1ueLggEP1QosAMcTv5rlXHGonP+lpfLDjG7mBrVSr3MS/s+366OVbPFcxEflnujAHC9QZcXNgv44b3aFBRBTijFuSgRSAPisDng5waY7SEu1X/cZqoM9tITb0fP0N8+LmxgwQwrqrPhf7h5gZ76RXjPqMm+YenfgHW/Y2P9A7w2XxWX15awGL8SgxHp0tIR5hHDnnc9rfwgWH+Z+PR3seZh6PqOuyz0FFsN80HlGPcdPsafKO1/PxaMfoBht9lw8on/a6fHo8qExf1CHY7evWeQ1HObyYaqJt0gI13QWR+IkHzo/9xM9NxyBwuNXtXqMd6mLQOkx1BQpWI0qC8ZgsZzy4HbDnwr3JKpshl1Ftzo0e61uG8AILdWH/Hl4x5jdibs/RaP51narAKZyjHiMmOsWWYeKR/eJP7oeCsbsDkHDVXbQhpojLJcAwc93qncjKjeCKV63OCUa6hDFgCMna/jbXZThuvAizp62Lv8zn2p+4qu1xci+rH4uttnJDB85kDTu3c52PheP9ClcCgz8ZN2qSyI0AJPilNa3tKsfo+zKxJ2+WTyx/Ka76H/MlDvGQcuO7m+YqxWh3RtRRBr69WkSIf6qzQ7xDtXF5TgjbRtzoDHjMHCYv4Q/wb63e5SEBPkXGdqCmN8sbDuPG5WUiDOfrH2ofzF/d48TIDSM3Ca4hN+EH7jHF2GfN7RpvuAggiEsCN83POByn9sMCvmrchFO+LuQUZqJ3/Mi0AObgs5EbG6tmXIEfPQBjSVi+LvYvcrMjN+TGjBb7Gmczn5vwGn1uUx+rz1/vnoCi18d+73NZ7FNvz5nPYceZSB41CC1X6an6h+NKKL0A1xpa9ygeox9t8IYL/XYYdL1/vD9wo4sk1M4v+Vy0HxbWhQmNwYN4jLiysVaA16V8WrnRT0FUA9npjcr878sWpm6R9mdaPu91+V2wl+2HbVZYXQJ4lpiYsT1KEp/mO1iZdee1jjlh/UE8DtjPUGOvnhcid1cvxlxIsm3/tNbFQIt7hrWhqhu3PDGcsmYYjqXJjbhB7uJkBDDRQ1qycJigw/Z7/QNWtcRV7ZO75ewwCeDATZeQ3CBLuf0GMSpoT5xAJ1zlCTjBROIHRjzJVC9+G1/9BaX3ladh1N8MI3AjdSCIuGx6FT6mxn3TXm/bChkHto4r9LldWhhVQe7sB/YNq+hjTLUtt691jIn191gX1DZuwCYEttXq01y1O0z67IDhcg3tHhPmAQ037O8Geily4/2o9SbolZCrMl+/UJg0zsMF0EP9QX0+5ImoDvOckI8jHJsT/8Y8IZhHzA4hFyIO/Dt+Z7A5iI8xPcuQF9W/HUbfJ/tl3xMcA1zxG0NuPBWPkYpeweVwnDw6NxLbYmvHMefQhDcMFdSjdd254N/duIb9LdxozvG+kviR+zvhlBNMhgvzMXlMeIchzYsexNDnOh4PMOM8Jfoc4nS5FfVCY0OfkwFfE4wTn3M4lFcdLFz8VUzDvAj2TeMx6oEf8Jtl9TuHNItHLOZz4A8jn+u++SWJfRpXNr1TymE87OYKMR/j5yu7eUqwXeQKMQlekJfO2Z3XB/Ucf7US4+9nWj7trYy2CugchHOHwRIDhTDu2AK25HgMnBj4IMtCxFs7lyW3dgVhely863E2iEhoTJOKRp9OgnAA4yDXDRTkt6ZEzPWPjptkALVxePeTU3cxsbeHidtFKblJvvGEGOoruws3yeA24KZgAq60vR3r13Y3ntsPXxcLk/ol++HAAPSJDm4qu4fFAMShGGuHTQ++mhY5tc4NfIygHwLbYuFlXj3P9bzsdVVMml67rYoDKg22LUzsl8Rm5M3XCfZUP7FXHxPZd29GCVcnJxk39stohfPoGAZE4KZgHOCJ2OJPFFY5pcVfx02I5TYZa4fOj2ybnmJ2rTk/cue7ifQgV6EdutsZi+Xx8NuD3CRB/NvNRMBPscNQNu7zYDzG/ORiQ6yPvGMfA/dJXDqMiEXb2LY+D0jogjuWwD35l1cRtfjGeM5siHji64bx0OXF2Lf6H8sbEONWHzB0OYc9j84m3GbcetsE9bp8HOcEgEmDR7nBPoTnqNLxEwuT54o3wNj63zCFpORiI+OGqPObHfLBoc8pRvY2YPjb+Vz9UV9OsnHxhz203V3whN9d7EefowUeQ7uKWXnQbaDRfghrd4B7n0tf6R/yAi5YtUTYzlWbmX0Rcz3weVrjFblBn0vi0cZa9HXkips9Fa8ksiP74TmMC+Qm5lNtW8sWDKYYtfNbNPgXKwntP8fyaW9l5Ee5/994rFty4FZuTOD+xQ/Ns8xVbB9+klR28XdldHuQOdrDHFSqPtVro+dWcTDohUBjon6VBDCXFVp461DFancPDS8m/jYw2V0xPa+JYAvcGGbkRjmhFvxavWKyCdNjp/KWJpAhHCQbDnv5h/0fA5rbB2WRU/0FEpm+qc2SHQnZ3QKwZ1xBY6a6vfLhuUKse8WlmAj+xba0r1niQ78R/5xMabrZs5s8MhHtXO+iUF2p5nbXhInc3lSu28jQfojRcFT9OEgYJujEDiOZECyK6Ct5wX5KasXsn4PD7ZccBkzPlbMn+rrKSrhY2usDzcxlwlLeX1wg7dwwqd8jVx03aLO4DSw8q/MQb67YJ2242qzYhMk9nIYTJsWEGGHiWR47FMAhpS0d7Jnbts4ZJlI/An7a68ear7MxXvuPfhEaBJuIUH05gTi72rMaV4oI8XuNU9fH6g9VR4dTf0eetY+PZpdiFi4vA8ICvhInwO4FDM5HIwYOz5XoeR+35iv1AX39P1N7YF/0mDQqYQu/UIiNxB+yRaNYsrzIVLaSQV5kx80OVLDLcSWUQI+LObAf8GjtEhG9t3FC0IfCv7hFuHpzm0dH+wmlNmnjKTaQYLIFKNUN2xNpd9jU7zk0Saz2a8eWW6wCjnM0tx/aOuMxHgM38oAXUGleZCbemOThRXQa0DBjXICvp2Nv/U+WB5jIto6ALxHY1OXyiCluQApzOItP5rDFV/yiTvwXX7bm5i1Uuam5ncNeCPA580O7uIVxLRxbb2X3WLD/RIS3ugTOlW2MDXOZLyA34WUrgrprzoA8l47VeLHn5rviMGpcsNrsu7y8fN7LP97LhVkzNpNsWzvPZPt/y28xISWDEQYFOqpQeZMNtqOJx1YhW+ZgmxFWLYprJ7I7Zpgoo7PGVQyHr/2tz5t1mLBo21udZJXoJdEVMCLYxhC4clkvYEL6dvxdJ9T1/w9pzeAgXo/b6mHFZAMotb9RL9qvm3xFjK1Obz+oi3p0UKoT+/I5hPoCXE2eR6s+mf3Ml9q51H7RLW0A4sYVS/N1bTvzdZrgRF9H+xFwpQnZDfw+6fK2VYzifT1i0vZP269UZbvIVhzx2aY6o+GCgeuXSEUIPh5KrQ5yNYs/Ap3GR4Ipsa8VvbjZtmA/wNVtGwOMkauQm7yv68UCyIXurNsPRvJRiflJf3N3SRL7XSkiNpni0UW9/p3ZwQo3Drb6PleFqnyE6vWs72P3au4EB5b4wL9TxLldSO3CHofDCH4Q9HSYIq4ZV26xhVpeVFQbnFdiRlyF3BbfjjvFpD5b22fAVRaGwGYYR10RclwFf+RDHFi5+Qw9qI2v+rPLz5GbDNeJcxl3o3Eu1o3cwLHj1X6k2r9tPqmOORNe9uLmA9b4AJdhEDiVYLJ5TYhXId802NjlRSJ/YTbJ2zZeIFdwXszndP6CmJKc5/Ji4CaOt0OejjCRr6c84VgWebJ/YQyRBUwOV/iXwH4HQ8mXKHfGpy9UPvflHxrEGxPJTps5RXW6fSOpd3ptGx0khTI0cnE6JgsQ3YJniRodU/dP6wR1h5VNXQWCBMfb5p1+23So9QOOYqpNuO80MdmD03YXAfdx64QF+6GZYdvKBILeatIAijT2Nm66LIshV2HCqD9FrnTw1Yf+HzgZkzx4DZMQ01aC123zKrwWqoL9tEkpa47tdcy7f3Pbrp3lxlsjGmxGxVFgGwDbSzdqc0xh5Y8JyEvtV7jRSQEOCjBJeOxkX3J0E4C6JUYfOOay3WRzdYqMjLjqPiPRuPH2i4NE8DFcUWQC32IiKSurfiID38ShGmuNuImvl9U6m1RGHGg/HEDsokLjkwyTmYw15tU4MMEiGWOSut20+przI5x4mv2Uq2o/3M6xEzEDJlLzLPi6fujV9Ia7wDvkAVw8Ym62srjD3NT7unuLpv4MkybHVcWqfmS2G9nv6IJvUBjjxuwPufcBD0ugLoWt+DeuCxJ6YVpENtnLbyinY4Rxw9VHYRKM/GBdZh/7iNEWoACT+nGwC/KnF0eqx3xH9pbrVC/2W8cqlbU3GwNG5EovvBDnJimmZiCuGLnlNuXKuJlwFe1nC0HJ+Cp1fOXduGPNk3qhgnqwmB9B/5EbxcnUYzQeuZ2nduFiY77FL+TfXWCrtTSuuryfHKssxJa6p5sDEPm8qLGPehC/5cH2r01L6vZGJmlbnYe8KjfUxgp7CUjkVfVVOdyCh3YAzIZJt+/ZiybA50yPNsMtB2mJc4Doc+lFRuBI296lTBeUz42Jefd1kRuLG+7zoh1jXES97P01Yqo527Jr9UV2vlrHF9WDVyOaP/SnePGaYYr2Q9+A2MUL/y9ZhOjncfV4XD7tjpk8HsXZ4gBhq9JcbqHWjygwJiAiItZbuRCgAtvKcJIqBBdk5V/ROlo0KeuFYgwae0YItzgQ2XeREJOQe32pfpvGsO6ACS6ABHgoMcpEj3ci3soKyNsbBDbZCr5tj8KEI0I64xOi/gUf2YReB/cdkozsBZd2ByaGZj+YUNugxrpNTm+DQxKpGNvWRcUJ29+c/QBPxSiYmIlKsmfdCrc3PxK8U1VwiPlS6U/bIqAJteV5tYvx57ipOOrWT8NUmxMim3SwYrLETZCoqXGlvEb7xW1EMrafaHI2DolIYIuM+VDFpL4t3FbmmNxE0D44CYNx7uuoU1zcCZFdtEWubNDRQetN2+RmV7Nf5dBIbpgy++k25nah+PD228F+tQ02ntTHavzZ2/yoPttYMYnaTxdJYMDk4Ot79XW1KeYmIhLwr/a+CGibmeyCcYd8hb6+MdGjftuo2tDlgZirzK/W7HepiJC8v8Mlneqp9odVeqn/Wh6sxfqv3y7cd6I3nVzo762PqNv9beNA0+POSzyuXOIEESeUprv6r8ZU6YDHAq++7jDRIDbcVnRyi42OK8DG8U7JthPtW45pVGAcsPjKuIr2q1x19sPJKeagHfRluCJXwJE7Z9xEjPCqe/Qrtd+2t50Var84wTdOEkxIvla3Y5DPZEnsBThiizE7pDeMfXgw2cb7qjTSxkz0Xi8m7KIiweR4gr9hO6PlSesW+iesxNa7jw2T5nHQq/sV953obfO2ygrmoxgnuOUSLwD1ggO5AK5kI9Jn1VpOhRiOXNn4H7mCsRfzZJ0zqI81PcCV4ayYFLIAJt0SHbnCi1jHE/zfFpRaTjFMRaDpUXKc/WotXTRxeL9muTw2fbHyORdm+07yd/91kh8/iN+2eoGxFcdzTqPJsTpXGGjtokgnj1WuL36CQftO9P5uDryL2MRZfvwgYqbtR70I2rYyIcOFXWp/R0yWIBymBgNGh/L/x+4x6YSB657xjYm2N6Ifb/UCgv2Fo3Jlq7BEwvapWNDluWFYlWyDXOUHMMnjUe5uipDwRrLvdULKhasfb21iri+VqHesWtBTG6y5YTKUTJY0Ik7jDHkSIfrpvTfztpH8eCtb4aodaeNiP2sWcAm1ZKgV2mhYeOomTzBI7HvhZt9JdiH56b34kQjJ21bu0NQLH/nFD6K3N2LBidKbdRDtRyS0c2Y/wLViv4pNuZL6CmW1H729Eb+91Qv+ykPIbDyxX5sgEJGECTsOVuJxiewkv2oTdNnqvv4aa2XVHOxnF9mlXb0gWrJf5C7mAcMktP/0k10sydtbvf7ZjKu2ulgnHBQx5RbTwRrPtkUlaniUq5/eDd9ORPTTT0Xsrfo25qVtI7trVJ+BNf71gjbDhBNbxKRmDQtZpHngUSa48p7E31HZhejv/bZt48UFrc6X4cJJ3tv7yOXHGzFzsAu+/nqDl1qEGCFqdt/rJLiuKIsucuGkJMo+Wv6xMYOZpI5hDpPGuU5mMF/j5EknX5bb9jKZVgg1f/RvbtT+NF8WopKvmcw/eNNxjAumNzaqum2D8YJHcZHQ/oBdDG9vPrdHWaGy+LGXHL8/dpvUyS9+UbiKnFhOpOioAdPDcotoPBMR8ea+kZXierQFmZ3Ydu3Ij8ITa4y/MdkOFSLIiW289TbY2yTYXqwEtnfbCC1BWVMu9t8fEPswztVxrLuw1UVRjSG9CGVq3Khv6oWnymwJJs1HGIfwfyEi+dVPJlbypNqT6uIjYCJqC2HMxT/13NvWOK843RZSsx81nhGXciV7icdHi0dipm17a5gQD1F55rG2vevcg5nox1bG4reJLOYFuCAzH0OuNHep/RRT5v+44Etc5lrG00a0v7W6bv4HPJntdGG2/vv+IJK9hmb7NI28QT41HBBHLIWrvc5J3ZjxBcsXh7dannJhxsz/KBH9D4nojYj+JyLyT08FRMpdBn7UuQ0TbXUFeYMkqJMxtl+i3tYe/hvvLnR3OB5t1eXxsOfd6I2I6J34xy/qBQa0ae0hAOpfXDfC1K1m4B0NKQGsL0TZhWh/lLuKP6qJdqa2nU8Hf+AKaSOduDPwhtxA/YgJk/vjUS8WpeL6qfCHkwXdeqJcxffYO/s1TA6X1N8FjpFr2DIgIu0CtnIlOjEmKe9wCVuJ7G/LRmA/AYCRK6HAE/y4S524lN/lp3eSnx4N/74XtT+IiLb6MggdvFUb6A60bSP7Oa6ov/hBn9p3kp9+sgHLnkUUHQAf3o/SVdQGMXJlFaK98EKRCHiqk+H3d6L39/YyFL37oRjsrqvSLe2Yvf2GPmXcJDzpgIp54aef2iRIJzlv9XOw2wbPElSsOLE2KlpycLmJOdyVovZ/vANjuclzJe+P6tNE8oPcFiD3OvjONh7TNsA6tF/FKo8dbLiXidmVAVonnm9UdhvWWHQXj/vubN4ultlyW9lOTmUyznB3XDuB/UDdkOMs7+Od7LAApw1J8JeyWKUT5pL/Ch6diO5toiqU+4j++/5ufiB1simPh1twtAtvkuabRAUHyuqYUftTamk8aRPQxnD8DOPA+6NMrrWPIkQ/3poM0hxy0P54Lz6td+Z/IqJf/KJccIr4XB3Ge9tWh/zjXeW6cMh6MY7PBu2tn1rXyepF2ra1b5bpKs+Dyd/ZiPYLOVYnuiRt61jdeeD6F+9q7eps1GK/vq5cZCf66SewJ1su0kk5uzlAy8MCfqp5o4x7u8ttloPwbaJhgu+4q/FI7+/mn1zdU+pFsS5WVCBkC+skJL96J5Gd9PlvVm71/yLQn4R3xASLJDZPoeoDNZbFdjftXT62OY0uOOnixbsQ/eDmexEHthMeHZB68WPx+MB43Eh0cK8Le4wXoZr3iGz+R49HjTOID+Upu4B1/9Z/HrsbU/bHo92FU3v/+EXRyUT2ehumdvdW3ev9vX+29Lu8pNy+MGPmNyL6HxPRf4SI/mUi+j8w8/9aRP7ySEZ0IiTljpB9/YjrJM1etrHDlhD2QTtsXP/FAaIOro+9DKj7XgebMnEVfdZg/0H80FWlX1D3Sl7rdNB1iClMEOyuy94mqjXBF2zvbUVQhHh/qxevWxuELHHonZad9Pml9EoWseLtf/1XE/KOk+dHCWRcnWIqqyxvbyWX68rSXvcGMCZ8HXg0CXCOSSdBmFTCdjy7oP7pneTxqElQbEW3DPQ/bOVLdBVIBxnVbzOUqscGjsEkxSYrYLtu5e69/v+n0hUYnIVKAhai+nwBt/7ZRRrgOrKfvsEPBzE3ka6J+P1B9NNPxD+9k9jWPWp3WX68EdNbW5XDdpArv98jcBWxgR9pH3XwlDJxpF/9RPR4J4E7nrKVlVOxO1KPwtW+wVZnye1HTO51Vfp7hwn+r3cmKj75VZlslJxUqd/q6r7dbGWit7qyam5dK9vEJvEjxGCYg/3c3TsYlH/1E8l7tZ9u1d1/QfTjR5lYETU/j/YjyJdxAo64MkxuAvQwTPK+k/zqV2XCgW/hWy1StjLS40H0ix/md0LULo50wl0nAvT+oH2v296ZquwvygX5Vj/hoZNBzUMcuGeuk14qXD52op/eaX+8111VZVLGUvKI0afcqewDxgxY+ee3N6JfVH0b2EWfW9KLvz1wVp9LtYuZX/3UJnT17ga/bcXeWurdZdv+rnz99FOR2/e682Qj/oXAh+zxQ+TcJqfd3UqyBR4bBx5154TypPkVLxJVHnG9v5dYf9T+v23E2w4c1xV40a2kNcY15kXaYlLN96IXVNpXEZJNLzh+uAshe/Oe3i3A8VWKj/HbZi9KKH2C8dXmIdLGCdxKrzGrvoDxVuV1e3Rx9RqbeBGiPqETc23zV7+q49w76WcP+G0n+kXdScBlou+uXRTDO3Cjz0u97cQ/3iyPEK4q74/m8PX5JHdBVi80dPHK7spSaZd+QbYTpNgWv7hdcb2/2wWV4Odt1I/wTrUbjwCT5my1Y72okvf3dgdf49HaIiLhMmdx41Phnt8ftOtcqs6vhKjuuKn1sD2XI4l0t4XtKqr+4OKx3gm0ixrdcUTUYkigbV0M13kPb4Vj9R28y4a49OIb7VcX1ewC9PGoF2F1PrmXnVC2C0qfh7cLRZh7PWpfv8vLyzPumP3DRPR/E5H/BxERM//PiehPEtHwwkydT4iI3x5lhYKo+BU6MBGFr4UuwBH3j03qdDKmAYCJvQ6QLELy4xd1YltvH+tkAAdH264HitK7DejEOBnTiWarUwZbvTUvpBNsqRMtfsCtbN3vwVLv8rUmLZmM7n6Q1hnhIgtKfQ5GfmrbPuWxl9+krq7YgL0TyVu9eHuj+uBb0DeyYZgcqIxeGCumHTBqIrYBXFctf5BsexnEmOskOsFkuCpp+rNNNoCkOMk2zvaWmGFSYkUH7B9SJoy2X1wvYuuFmunhBfvFxBgmVcTg6/Xi/v3R+vcutk1PiMtnK+LEXt+Qktkvrvr6CoAp+PouZYuWDjbv722Qqb8xEdEPJtnLpJG3yrHUC+wV+x0Viy+yPKCTY5248cYktBEbRmqTLUZOpE1wN6Ju4cHoiDkJfsM6iutRsNgg+NM7iW45rZh0sk2PvTyPR0T21lh8bf6odD6eYIJnhsqEqOUBeveTr6Wicm9M9E7hmdndXKVw8DAfpveHLWy0Z3prPmb4TYwE3/cH5v3d4pR3smd4ibb63DN5Wb0jXidybZGj3inRu6p6B8FyLGLQiyDktiwokVDJp7a1fq93SOvEnsnHqO0GKUQxXqwQlXFV3oi3epHpFsfgggoXOqw58EG9sBK4CCEiEibZ3gomnLAmi1V6p1HUZ+UHyY+ac+rFheXBtzeI8Qar2A92IthWxh2O63bxh77p2aKj/lbGKze+7lWW6qInP8qEfqPSHl7sZyl3F5s824RfT5uPUs0Ju91B6xazCHmXNomGSXrZzqrjIsMdQio2hju17dnD2r9NL+KqC2xC9kwfv/W5XRCT2lZg22BdVNdth8z26SPlSwQwqf1s/vCoi+/1UQa1Pc5pItfmY8ATaTz6i0d+28oCn/ocLvJrjlD/wYsqooLphxC9c5NlavbrMElru7bL+97H49tGLHXhcdvqgg0R0V4uiggwidgz2OUOVdlWKfrmUMVE4reuaxv4t+WY3c93lZu3t2KDx0bEOL/dWxvKT7hj/VXLZz1jxsz/bSL6LxLRX68//VkR+QtX2+t24l0o/yAR/X/g+F+uv7nCzH+KmX+LmX/rJ/rtqt0PoLZX2QuWf08RDpOSOvHjOiCVO9vlvK78eWdr52xAi7eNHcYwCUjrQcKzySgcb1t761VYiSyQpH/OACa1w4l8hyf8gRcjJi9wzK3tpH1NNK59HfQ7DmiCMdZvg5D1Uf/e2C7CuMrqyqjUAcae99Di7BccadA3N4nSATqrz8Eug+7Zahe2v7TQMMCUYlSu2nYXsdcvN5n2bA/NfbvDvMiV6uN6Ui+69HmxPQlmWCXVWHWcWzlpPz2PfkS+TzbYxbtAzrcTPUfH8XemFteZbH07rfpUeZENXAAJ5ibFrvEiuU/NMHX+1Gzg7ADn2xvr1hIy5v1f0W+bT2B8FoskuuLHkYl7O3T5MrMTkb2pVeOCqduqU+hD/2UbAuybUHURQNyLo6g9N0V9/+oqFkW/s/yqx/UDwC6cutwOuXlvsuUOs79YjvZzxxifurCBseHyfrhSGuUNDrJE7Rls/Df0p7MfUpXFr9rFjZHBfk5X+6YXcblTobbXMYPe1H5VPvYPFVHk0seC874khrr+2b8Q3zH2sS2M/1F+DjmWLe8He7gKZLxa/2Ceos9Bd9k4tJXO4Rh8m8M5okFe1BzF1q7N4cRz5e/k1DmAtWvO3mPq0mOJJTdGRkz6r0EOPrwYj12q0oONyL2sS4Ks2inLc2jfEI8eI+iMuXiUN/Bi/asW4ev/v1/+WRH599X/X74oI3rOhdlSEZHfFJE/JiJ/7Bf0y7adQQsTyczq6ITZanP83a1Ss2KwAVV0lR5WwcvWAMCVOX/AvLZSH3BFnPphSF1V2gMT6X73wcWP0ByzVRI/3iIuXFVCnKhPE2T7MdGtiWEFE+CyCYuEAUZsa0s5GxKuDjxZsjuFgwbcSEtObkVxb+djid9IwcSuilwSXcF4YD/F2a1u2cjbD+oIKR4cJWPHSZhI1zszZTIkZbACvV3T2aCOlTNuRhcJiMnlg3ZccsLuuJR4kTBbfIkTytH5wfzA1dtbBcUloNulG8tZoxImPBlHA5dtkOBNo9XGBdN6wbz/u+iXDpqHAW+lVbx1S6PZion8K3EaV1Zm/Ko23RKFJcqhvfHOodkJmw05aNhWnNgIxL3AljkA1S18qVJpf9uY4SdiVYMJ29/uYs85Plls6IWCxXbrC098XWodUT1gm7atMvQnTFZjmxbH3H7rtlQx98Ix9qn4Sv+cjN7phEktcpLEvouNeK7DNSlJfLrYt2aGrHfteW5gvAEbdv1TGxscbQfGvXqHKWudiOobCEM8YswAhPyCFeXqf8K4gnO43L4RFRyL/SfEsuSYYjF5HE+k5i4/V3LxCDlckqa8Dgm5Kc5nXEd7fC5fJ1xBQzGftiZ6H/rewvix5RkXZn+ViP4oHP+R+tu4cFlRFFglKhcf3FZg3CpZL58ecx8IemjtbtxWx/TvbSPa3uxNfhYvODjlHTmc3DiMbrUr/IZvWvyhb++pbxfUB/+xD8OVrwkewUpBHrHo/9+29qZMeyMctWfdiMmeddMJib6ghIA7xDTikut/3ODBYeBWm5V/y9aT+hxGfU5JX2ZhzxfYRIbaAGT6qCWzIabAmUFhey5GbFvHZj7V7PrWXlagXGzIDZNLqFftF1fK9JmOHxXbjx9kH7nlzW1fFFJMVQdyoxPAONGPREU7WWy337m+YZSVI30Do96xgjudLf4UC3CVcpL8nuUN7Uv9215gw0z8izd7U5jUZyVF7YV+goMjQ18zbjDe/R+xIsQ2mT+zPhP4VrAJY44EtTV/DlWkEw7A6wZ/7rnaWh7Qt2eeLsxEbz+oba3CnKg+1H6X/z97fxuyTdOtiUHH6ut+3j1J0GTiGLbEASMaEREHHEWEEJMMIqIERWIUxRhwNBpRUSJxfkkQNCaIIChbnR+CSBTFgCIxA/ozJIOgRhCCEETj1yBjonsys5+7lz+qVtWxVq2qrj7P8/p4nveuvd/nvursWr2OOtZHVXdXV7d3ai1Pv9X3U6T6ivhzr2IHpOcoy9Qtb5R8e7Tc7z8Gjb5xRYurvpup/PStv1fWZMXnHw7RgWeTq7m29fcN40WZNTbejr5qwfLfcQA//dRzjslVrty4llDUcqyNye7c5Aea3EYV8fegqq/Im8XV0VdPku2VL0izi4rmE5WP6gsNCy3x4rzhxsujy4JiqsTYUV/9ZRwEIRuTgHZe29HT/idN70G+UE8WSYvjbz2vvNF49q1wr1K3VDcf0cSKNi6+JdyYbOS25UrK4yKed6nvaVHctPgJtvdzr3ouk2l+JY4z13+Cx+dofbWxlsc5i8dvWTwi9Iv8+637J+8KrtBhRZfL4XZOmwdVLM3n3g6fu+1Y46r2iXE1WdspWQAbv7O58VDYZlWPvc8ngFrMVP+R461v5+9O431SoR3Tken9IkWf/N/z5e8Wkf+diPxpEfnDz5zoFe+Y/RMA/pUi8tehXJD97QD+/SsBOQTyO78B5ID85luZvEqfYDvna2tqsXBI+Mm3ZZrjAESB79q3Mj6Osnb3d35T1ufX9fB9giiQb99qgEsPlCyJxKBaYkKfyL29tfeA5DiAnwT6MyC/+anOZRV6lLXxFtzy7c1vAc+TpYgJ8InN6gKk7+i0AaEsM5NvqIFr25iXSVi5i/ebztVxAL/5iQZI+x3wSZ0xJYlOBH1DBUoUBwC8Afq9vu8n5aLsLwnkD9VlFVq3rrbBql6EyDeyWeOJ9MWLrBlXbaBR9A/a2kCrZROD07aSp/tP9iTW7Gcv8TNXb4Qr5eqG/Q6UOLJ3P2ryV6DsMorelrmStpFEVcDfX4qYIleMlbnSs3DVeD8hKJNqeTvqv290GoqzQyqmN89NlgeMk0gWc8UbCdiL2M1+AL5JH0D/Ut+UAEDxIc4Lb34y6HcDDHkgywmWmmKxyc0h5d2rn+omNnWyIO2Ff7KZ/d38CJ2rOMGaYeJYU5LXE1Drb/9MghxSfP04ypPPv5T0ZVUOgfxO9cU2CQr3bM8TKto2ZdDjAH566z7CdmiT0LCNdDZ5UAXO6vv2voRN9Cn/yVu/YeE+FXHWpVyqbZdBYb98o/zsfAXt3I5vw2Q2NEzHzyVPuDFQuqzlGC0bO4gtf/z2rbz78+0bXcy+Qd5sHKsXsuyzPPG0GDkA+5aTfHur70/+DP3ut7h325zzU6j2rs83iJ5l63LGJNWfSb7l9jjpVK026vHbPoz9rdqh7YoA2hK+YqJ+2WdepJ7n/FZ9qtpIvv1EXMk4CbW4eivjgHwruFTOthGP9b/lqyrXPlnQzmMxZzfjaHfFb9/qe0VH8wXeil5oLtIm3QaR/ep7vUBnbngeE2SbcH1PvM2XxDbSkro5jgBv3yod5gudN+G+26lt90i6SGmyLbcB7oahcUVPTFtuPhT63eLgBL7XMRak+40+fyDo/Wm8H2Wudb7VnRP7WDeMPy7Po9vK3gmTb20zEpGfgPOtcvUHdZMjm7sYJoxcESZAIT/X+UK7+fzWd0LleQ37kdmvcVUvqFHky/uobzh+6p88anHO34E1X1eFom4aoyg8qwL/P3zd8twF1h8RkT9L9d9T1d+zioj8GQC/m8j9KQD/TQB/X0Xw9wH4BwH8nY8CefrCTFV/FpG/G8A/grIVxZ9W1f/DWkogljQOGjCGi7ISGMPdc9ONnk+mW+e7u9qogXSUT23UCyNhR7cAzS5+DIeg3emIN+ZdnQbRJtvq1M96YaFHT9DyG5ok8p1USXDRJLXdJaULDwUg7VYlTzh8u9qwJ+SWzEvgW3C7SSm9zzTlKsEEKFQF7T6YP4QeYer7qFISVH0fHIfg4A+CtrtNNlkNg70NthWX/85qWX7guQqGdX0zHSfw9lbez24XleRL7YbD0X2LLxapf0/Zj3Zbgpa7XMe3b31wE+l3hVvcSffFNplAaj+/C5jZr9uqc8U+xfajSaw1sMGXL6xTbrrdnK8z3sx+xo/Cn+c4ulHPypXtrGeFc9Ps5oz1IT4pCaXnBfKpOvh5HgRt8wH7XhT7FFAG+lnOdHyg5SiPAXViL7Ep+ZTQ78V25fNE5WbE0TYiulOkTDZa+pP+u02+jwOCuoTxOIBvwKE0IQHqk5jK+RHsIJLyD6DHBepmQD/xKC7djsRRO3qUHVZxnuXGHfunXbi7cWRyAUQ53+FqNwveumO7nDXi6tvia5mg/vRT+cwGxXK/ISkeU+SJxybLVXoWrvjGAACJPLcJtLYL1rI8uOg77OPNJpN9jyuOZYzL+OCL27iShrGYPRHtJ6VPb2846MKpxXYb8xO/6mcqs5ySXsoFC96GGB3GnHgOV7S3UykXxscb5CdpO0Z2e4bvYLmLIL7JQvFpT3WubmDYuBv8QmwucJ7At2/Fnu489H4lXxwzphN9bK59tZVKzuYxdjlWOCcdAtWjXiTzuGS2s+8KEs7UX99oXoV+cf8W7Bhx8AqOqsOt9lCF/OY31X4xHleY6hl+ot95bMwwOc76WA9oubFnSxpr26PdPDCbvXX7NUzl3zJDKzcj9KcjWQb8tcqTm3/8OVX947ODqvontjCI/LcB/M+eAfKS75jVF932X3Y7BPKb3/Tkyss22mBXrvTLb/kgwk7ihlgL9HbHjXZTs6cJpwAof9uLwO2unqIul3ujQaAHhj0dUdM1wdRw2bFOWE/CNJD33FICTuvkui3Z4UGfcAhxVSZbbWSn/1pSOWjyyG2LXfouhvRUg+8C8pMgvmiqbflbHW1oHCZKrFvaT2r8iQCoEwORYgutSya/vUFOu8jpXJU7W29j8jr8kh6J9nNcCdnP2mgfqxpV2iZ5ZeJ/9Lu+2o/ZxZF7IjJ50uJ8/cp+zKSgPslD813RMBFqO4xJ/6ZZS/QWgzyY9nhL/dfZz9r3AQmHQL5XaRpABCdwlI/K92+p8CB5pPZDDZWp/dpAFPxZ6mRaBTjQt0Ynnu1JjLwJzqMMPMK8vWU+5bmxJ5PjIBm4q3209fpifbZ3FG2Cb7aEAN/eygYuQi9gt8m22YxyE9mjpEAlrnz/48YSvQ3gnszWb+mI8Sjom8rcKYfUVQHadykUaTsf8oTD4rBP8lH8psV6zQGg87Cd7F+eMNtTU8qb/WPA1pZ8mifF5wkRbU/69HxrE3MX9/Z0oGEST2wcx8zP7ELcVlMgwWRccR9PRfmW27e+AsQmiTxuZZM6s3XkyTCptHFJ2Nek5uMMkwhg326q9jvrd9naeGJPg/mJpU1Y+aZOy6Mobc1+hqTtAhzyiOHksfs8IYfCxnx8+wY9dczb2QSYC3Nl4x6/y8vjkWHmc/H8wOqtDwdEabda23XQYp/l2L5tzJCmt+0UmV2MN4zMW/AF65PNl+qYIkD7dMJ04xH796D+HrX9+T3EiXSMGTeWFw7tn6GxnKroN8Tqrp5iuYFv1g4Ya9633E/b5buxemY/u7F+VN5pS3z+xhs4HkU8x2w/4+cMfqOT8SfaD+j2EgFg79AesM/x2AV+icezik7s1/yoclXnw8L2/Krlk+CJyL9EVf9vtfrvAvBPPnO+l1yY3S5yAD/VO4MxcbQ7FcVxdOY8bSBHd5Y6A29bzNtsMX4bTY8+IKuWyVwbGMzhkzue4nE0ZO2RMihJogciynnL3XzUZB4m8PatF2t/ah/0rbyFu2DxiaJhcsvKDHP9T8Bo476gDrDHW+ELdcDhpW2n+runWeInrnTgBvD2Q/+7Hao42qOsmvh++tZ4LE841HPN3NmSCKsTjwNXPFma2E+AesdPUGb332Df4GuDx2lLWixR0gSy2c+4qie1u5+ovm4X4Jn92rENXxcBpGLkCy4l3qyfvIzIuGNff9u3X/ex+jSmfbONboyg1r/1+Gsc8g2IYSljYr/KgXs/DoL2PTFnz/qNFql3Vzn+qr0OW/4K1AtHtp+4dxD4YpYxDVwl3DTs7cKg3qE1rjgXnQr5qZ7L7nrGpzErX7cJsnG/8nXDqoBbXhU3pThPt7vydhEpS5/bRJbsb8fd5Lrqssk08efu9sfvFpnPnoDbUvpU2FOcfnGAfqydABXjW/BRGjPo5pZ/KlzlecIP1Nwhnec3wsQx+r1ucd3sT9wxhoaRynn6i2+F72N4t7RhMq6azwZMp5Z3XTi3RW4Y4zeyx3mWp/Y8VrsbU6C6cUX245zDnxzg7fnjJH7CTeTRdhlsM3oXV/S3avcjs5/Lx29eb5zEu3qnsefyepPz+4n22N4wWp9soGb7tXkKRj0I3FlOjRgjr208o/Oyjc+zLD/kOHFLYsl+8eJBteQVHhPjRVmKCT1fA2VcOw83hrgPW59anjiZbr5IixdaqPZrx9F9oWGuZDZ7KZ23ArSL2eMnx42gY3TcOAz1nN8MM/q5ebkp39gwTFbnfHJItV/Va59aqJgO443bs/0iVza+uM9E/Sih/P0i8sdQGPynAfxHnznZJ12YAe3xek0eCtA3VqwdB4+M52gzZzpGd4itLuzENpjat38UcBdhoq2ufH6ekEnQ6TABpNz1hTEB4k/By1XUBkKQXvGTUxonByyS/K2TOmMT+EQiUi4e2oAZuKCllWo4qBsOV6SLxuF2EUeTw3bjtCbKJm6J842Eoz1oUHUv15ob3bRf6xtPihSJr771jrQlC4wJ3dePw0PY+dv0NHgdj9a6tNiqwvEu12Tp17P2i3fS3O6zh9QLR+0Ts3h3lJXQu3fKmGMayDA1Mib1o9uzpRYF+vuMNDnMcpHlhWF5Uut5zlvDMO6OV+7f1omYPUkHai7SLnvU/yS+3paoZr6elVUeAFFtF/72tEqBYWJ9o5R0ewQbyYBjeIJjwrz0FrVOeVHN1wCfI61u+12dqN8XsmP2TpLVaUIUMcW+K/Ee7KDWP/pX6VqpbOpQzNwmWPTtTqH02/obMWZcGc5pXiRMkSthTOWY6lvjSniiJwjBjtF+IG7oSX47C99MEG8/Nw7wxZHFCeVq93UFzjGWcxhfAw+Py07R+AHFUWI/iHvI528QWhxKaNudn+NMImaXUyln2/EW68wroA1QB+bGm+MYeWU9NgY0dw+5mw86+wbeWlwYy53D1rbeXIaG10IOvyKi2JYMEsc1d3OGuAFo3gJyqMqV2YTmd42rBij4SztGYwgAd5HMc4Bor4aTHYf8K2IG6kegO6/dbwJGU9EuvOC5ipjiPJNxRfu9Bfxfseh1k3dRq/offOX5PufCDCg7/ADtqTBssHYXQHBOpxTUUv9bRMjx2t+WsKQkKtsW1Qbj82wvtdpk2i4MlSdMPGA0TKwXLZg4WbcBOp28SvmQrm2TL4DIW/+uzlt9kZUwAXX7VeaH7l54bnqAC/NRW44YtffDXXgcbSt/pSTUNgMQ6VTb8WPFjfQ5J/3XOYLZ+zvdAZO6cxfKxMUmMSVvHK0fpscGVh5A2wM4mhSw31zaj1ooUHbuM0yikPqEofhO/4ZKW24qJbkCZDc3+HOS7vYcMIqg7YTJpU5Wmq8LYC8lQ+nDAvYpBsMEAHL0wcm4oXfxevH2U/Ip980bfpKohXylgaHgOLvJE3vqMQ6YbhAzW7KPka/zZsWDPRUUf6gXjpUbe6IFdMxsv5ardOBmL1fB5yp7KlCfyGrlBtUuApSPzloesO8vOftJvSCpXIi3376vt5m3f4IktH2y6QkX4ltFpCzN1KSPdXvw1keld+C0fiD4sJxTbVSX4raLDM4X8ENB+bmMMYq6hM0+yGs5nt7DEIC+c0YY2Q6K7qMt1g9vlzZu8NL3EM8VU+P2+1mPHZ0rCdyAuQmYRWqcqdOr1Z78Xq3l+57bKeaMK8spfNPzrv2Aiqna75B+vOWcw+lomGC2P7ov4G2IDfuALoD6tL5yc3A+rpjrhYbNAdw4xv7KMU1jceOKxgQLeR7mW14xXm3Zrp22zj3aEnX7dMeR+Bxjbv2ptm7pt457bd6CFifN9s1vKq+QNi605WpnTcxy9M+J4Eh9jnm0vpke73P0Du5BtnfcqL9oVNT7ZdLncMcb+VyV/U4+5+Kx9K+NgJZDjH+60Gg5FDV/H2Q/oM49tNzUsf58t5xJeUBDXDS/sXNT/NE43+adLQaNV7tg37Dfm7j8Kt/qHE7h/cbigm3C/kx5wHH1SN7/oGL3MX8N5ZOemNUBGjQ4oTpcu7PVJwKt2pxjXOFhkycAaB8yrBO+kui0Zc0S39Upm566LIknkDaR4YRc62gO3TFqTbLuQtGcXutQao5zqlvyoWGZzSnWJz+p9dzUhGuRbrLofAzccGAxRkjgSvogP/T3aIOtcSMIXNW2OvDa7SfEVeRG3HIY7UvwVHHWBO4SbGY/O6Gzn7SE3SZtwvazCcGEm6q3LzWozerA4GwAP0B2bsjXm6N2bhqIGca3N+frrLf5vNmL7pDp97PZFub79W/RfuFfLtCS+Evsx/0tNyrNnlQCRlWUpxVWrxdEYu9fCfrEhO3bDISWB4qPETdtMlV9gTC1Rlanu+h6anmpX6jO9pTIjSRPLNh+HWO9lKJYlq6IPyhs9qNlcMyVhmUnLZKrr7f38MJko3OD4OuLXMVLVpgL4/WRIgKtu5i2J3/WR1AfLQ8CfbKd5ByXj4xjFL4azjQvFllVCuDvZ3k6VdNE8Z2I8a3rZYycn7XbweKq+SjZf8yLdtGhAMVG3wnW7E/xzEtbq6xhbDjSvFi4sglyxg1AuTu+TxjGqpJyjpwbfk9Pdcg5ZSLa87PAfJbHPdLDE++TuApLQls+Zm5YluK/fYPK5ZzuN3azo9ivnv9IbM91xw3FvuXfyuMQ+zOfC5uADLzS+NLmLXWZs8WJ87mQj/FGuUDRcisyn+P+Ea/tu2czn1Ofv4Y5Du174z7gHsa1wefa8u9JPCLYvnJjF/rSxpAwH2z5V8lvUJ6u8xyAfS5ywznD+Umwp/XtkL4Sn8dpkP2aDQonZTV8tJ/ljMBNWNI7xFQTla7HXtGwnPKVy5cHuFc+7YmZe/dB0AOcH9dKn9i6WZpQ1eSLkKtLE1SXcAUIF3w9WVibPnlFT8x8q9GAS6u0v9vg4wo9mmccnMjbZEjotNKP04SsQxGPxc5LXHluKo6W5AKRIOgicO9oEC/2m9A5G76Ghw3lcdrPSvKSYQR6sjLeDuIlcOPrfGeMuQx4CGLjKrGfK/HJAS9FRU+ujKlzZQMFndt4jo69wsh9sX476PW88cKvG3iwJ9Dt5+KPdQ0w+U5jx+hsZjNeCfIKtKWO1gfn69Qhjr0Yh44miilBv2ADG8Xd6ybutXMU47H1LSxfEuIqsV/kSkntkKuEeKuVYcesRrZSvbfpK37IJxM/wipXiY/HYdnuo0X8k2wjUgbbks+2QYH823IX2alfmEd/EYo/1hv0lANdF/Oo0Y78OL625xzQ+pHcnU/zFYEjH+FXTJyPNm6IB+UbcJ6bOM61J7qRGz6flcPw9NhwY0TMOUyUcdJyNtsmG19Zd8VL+T7mDQvXnoPqD/GdceYGKMTSXCOOr+OYEezF90gl9osvXsi3FVBnD/uHMsDM5/hdb8ereFkRigPrB/mBsdhuIglssGp5SdCTULM1+xxGn2u/haXHM58z1JRjO0m1H2a/GTetfjjX6vFo5+1jr+cKaMs++f1uxiTw+Zjuhd/yOYcJg88hcNPmUxyP3H/SYy6nxOPAjctzdi7iMXID9DlJy6/Rj75g0esmv4TyaU/MYoJyicQNioh/jKXFrvSmNL5C0Tb1sybKx2V0Vj/xwwW2oYMRWAq6LUcJOcmfWwIWwhq5yVRFbsplXd7Yfjp93e8YaJj4/AkmTiIzbGwMx33SxNmP7kA1HbVhvPjI7Gdlap5gv+aj6NwM9hOauGTnF7pgtX8JY2bPDGPm6yc1ekPbMG24Oqy7W4ojBX35KveFcQFkey6bSVpQ79IGvwHaQCVBoGHKLsrcv5GrTd+GTQY7DnZDO5+jvh20C6IJppSXFkxj+8BNs197r8IG1SLc1ZD9BAmeB3ydf27c1Kep0bfvFkGbGPRl2+F8PPC3CZ4m9co/x7VxEHy1v09F/TqoM4qyjJQuPAD4DSMYB2YYQw4cxooe+82/29Jv40DqE0U7pkOsOIzmtDOM7mIwYDJuuEvGH9v5TfrS1qjGShgzRm4iZs4xPt8o8eSxBUyqZS8moPuoHbd/V9xEnLP4Eenu7nwOOa8zbmwXP9eXSew/43M2kY4cs91drhO6CRr64GL/wueynO1is5xX+UKReZjlmCuf4y93XPlcYluILuIR3cfi2HLYsyx5zudCzLh8FfOcon2ugUNkmLPZNI/z3GU+jVDJ/61Pv5ILn69ePu+JWd2FrDzeB4D2VlVzGNH+PkwpCruFKOj+VNqaLNBuGdu3YU5LVGiyfYeZvv66Tep5OUrTK10v0NoOGC0i6h0ToG7IYN984pcx24eJqxoakNuP9NKrrc1v3KQY6f2YxqPnRuzNbgu0s6uD9c+ifsBEk9KZ/ZibIUnxAEaYTLPZoG1jzbjKb47HblFvP/DxxH6Om36K0Y/spXICYtyo9jtuhin2l+8OAnWS05c48d0vfi8JjNGos9fpIkYb8EVafwpmWmpnJzkP769Q52NNocjg26L9nTl3XudzqD4GaPAxsTtwypgKhrZMq40o3p48wPflUFk8hqdAqs3XRQV6EEazGetpJ6X4ZPtVXiVgGnNVtB9x1eLCeBfPVbMf9eFAiYkzyTd2F9vEp7nK+3qWq7w9u73aVs6Oq3tFAZzfzMb1G3F1Oq3ftYwJtjyP787GicSwO5j2TTPcE+zqK1VW7PAbWmwUvWjvjjS9Wsca5pL12kXcQZhIb8tlJtvais9PFvuWC+rrPH1OXd9joTHjFjencWMWQODOZOvFB69GqMvLcBpM6cMl7YInxvOMm4yrYyKL6hFxXJOAqcb6ibpBivnNKb2/fAGf6WVuMvvRhUWPG+IuPmVtsWEKeE5TqdYOq+iNsZ9gXPFofoMoWzG/kSyN2yW39TxpX6YpmLVcIHKufsTnuC0vFax/ty4LSjzSRapw/m2+3zFt+VyGUTr1oA2N1OZ/y3i09zgR4hFbPjfU21LBzKdCPFp/LB4bN9YZA2n5NGDatF/jtXGjnZs2wHzd8uMdsyeKCsp7ADb4lV/9xFQV2t6+BLW1AZdPqPUJnNqp/HFRtySkrGfuTnrK0d+psBlw1GuH+0kL5sOdGO29L8R/yiS+7Wil4pep2OTLEmWbcNV+aeBGNrkxXgmMuw6jiz073k0yYtIFV01vS278EpZxk+vl3XGLPT2PU/tBcUL27dculiwFcd9HP3L9UqBtPct4HVdUpx302mAsAERxIvA42FMwtWeC0XNzeJ9rbeskhm1CF7/unRyMPK7sqfTfIf7Mno6bzp6EeASk3blV43HCVdHTfUEPb0+OR38toThV+ndYLd9MuFLHleLUB+2X+DbCcds1rR+3gTSxH0AXIfD2vMFNH9xrW/VtT97Vrd0luFlE+oBPd7n7zR3TT1yegVt7l4hCwPtGnxT1HMqwiQ/Kx2r2tnNmGL8dfCJv77j1/rDLn/0n3DRS9GXNijKzoHdtwNwETEtuTPE3kh3iKOOqAennEcX51lyjxgbFPuPKuIn2JIw9L5JewqizPKmm125UhF01d/QyNwv7IXBT/CaOiUEvccPva6q2KXe3p/O5BcYbPmevJrYbqOZjLGv5g8c1hHjMeJzGY7XfN7YXen5qn5zhUwdba4hHJi5MH5bcpLYP8Vjv1Chh3IrHt/D3js9Zm8HnMh+rWWI2FnM8VlmZ5dPb8Wj2lSFH9PnRFy5xPP2Flk96Yibe4PYb/eOPJfX0mJvNuOOWI8KcsE8u+RziZd2pV5giDg7IVqckLYSJVKvhaoN5wGT1GVcIbSMmmJJIRqn2uaBA6u3SEdNCryTHLutIgmrClaM3+tIdru7YzxyIZHiAIVVtgoxQF/iGDpNMMIZy6WOhfyEk3GV6HWAj5tTvtuIx87GAo8nqcE2AisnUK8tKP+50rDAtuZr4CQFSFnFcfZT9MGCyPxwmSUInnmuHG1a6y9XNovT0DqbCdGnH1dS/LepSzlA3W4TdPu58HO2UHIPdpvUkhkXQn2j0no7xnMV2xOjswhx3/3UTRPTJGN/1VcdNPYVucAOEvkrCFTxXDXPxZ0GYx1FAtPGUFG5zEzD2WLLYF2cvSMCsaE97+ucOjDAbI+5ys7JfnyO02G881vdjWzxwHikYtfp709tTX68TKMdNaxff473AHDg0jF5v343yNfFYfczxRpt0vQn5GGOjYTWLx0DtMIfb9TmOR/I5++lWPDoeN3yOUoCLR+Yq+NxWPBoud27M7XcZF54bqYFtmJZTzc8uNK780sunfcdM69aj7o6ZGxGpLrRUypJXCNh+NaHNu10CPvudSjnhg1DRVn3N9da6qg/uFLKGtqTHRjC7W6MVk9adwgyjoi93ehk3pJdlaRlHtImeNBG2hCVB1upDf60msdqX40VMFUfnSqb2U277Avs5riI3Ih2zcaPaM2J9SUmD3l63vw3j2ROuQR54vIGRZUNMtacfh7ilcOVwX7aR6rVEnPK6tmeU9T7Xz+0mwwfttgfA7WjVbLDBlVWzeGRuGq/ElZRhUM/RfjrIBq4ejEfH62DPbj/eraxs83225aWDTaDNx+7nqrX9XD7aLYL2nTH9TrYgzNEubQdF013929nB4aT3IQb/prwR83G9W19ySgVzXugNfA2xz3oJo8LWjXW7tNwGlF1n7Vz87gjnnA1uRLW/fspc2eyK+wOtc+KAach10rbPt+MWv53XC27OkHOYG845NRe48cb1r++gXsYFI+ZBbqLPtWOESWzzpqrIHjwxRh5PTzRuiz3LCg873vQeE254LE7mAKnP2ZgoLEuih1R7aZ9r8Jzo2Xh0si+IR+Oa5wDZOLfDzUU8Wuq7jMdovw2fSzG+VzxO7DeNR+bVxWPVb3rxo3xE+cR3zKRPOFoykJ4AQ13TOstaxQ5qc3i7+LHSloJx0qVH2VO9WgMl6h0wmd6us2Oy5TAec9q/Q17HjYT+NVgalisSJwp3zBJBX2bmMY7cTDBFzAFT5Cq3X+jfW+jflJu5/SJXXq96+w4+F/TYenjjxt7PaHrDMkcwrw9gnPYv8Mq2HpaWJHqXcYGc5x1/5SUs7f0mGfSmvs28DnoiJuZqI99Y9YxcRfv1Yxjst+BqJjuJe7fpRma/4whcwcs6+z3DDbf1XO0XAb4dnts2cwGE61kcodpBCKfzpdJW6Tgv4fK+0xytHfTvi2r5blHj2iZnprfbe+AnYq44OmXHgLm31ZrLChftCaPDPImNwI2m3BAo+1tKf+wO/Rj75oDExcG8miEsfhexn+Qcnrg2Hpv90G0Q7KfWDeLK22vFzcJ+K64qYUpLrweMnI8rjoaR/aDy6jC/icfofJ0wh/eZu49J48a+2ZX6WBvcLY9wXLwyHsn3FaONhnjssu3c1kGLxzZmbHITx2KEeJQ3Wm6pI1e2fLzifzQe81wVfKz1V/r36OwiLL4jBupfjEc7X4zHwX5YxyPxaPn0Sxe9bvJLKJ/3xAz28qfauOCG+nGOWBzN6oKS5FLZGg08xrQ5o/kry5LwUm+P7Ylej9FjrsmZ9Fidx712fiF9r+SGZVsOPny/DsbhMTPGl3GT2K9xYz8O9iM9u/a7w02UVYFIXQffZImbhtGegpqsTOwZZI81r4xRWO5uXLT+oF1oZHb7MF5bHqBzRZ9zsoT5ldzEuDiAFheKsgRsZr9VXDzDTegnf/AeKHHqY+o9uem+DKBPgu6UGgN+syCaUNRGpV5RHoQziyu+YSOkB70tDHe1kzVSwbAVdrsTf6D31+wPihV+3wXomJK4sn532Q5E6VhTgN6RUu1PZ/dyDsWRdD0QL2f/FEzElUQfIK4qxjbna/M/GkPYfg1jbj/HjYjb+K49/ZnYb8xt9EPbzGDGjedDgp84e4l1mzZkaBhNLz3tq++7Wd6ASrffQdy4BAteVVf1Ukwi+FyL/QmPxp/k9rTeFMycczqvMR4HHrX4jS7i0bhl3uw+nHsnu9mzctNikH2IeKwxcclNjEfyLTsffXavPKVN4lF8dYhHP4fTwM067tm3y1O3Xrfc6z4xktivcdzmR5N4ZC524lHaCfia/esWvW7ySyif9sRMjz7I28DGj1ztTkFfyVGDqJ2h1/sHQ00WAM66ZIAeZQP0mF+bLO82bn6X6iWMTi+1HWTVJglAX75msme9K2bBS0skqo7sMfhD3ERZG2BRl2a0/nWu3FIpSk59MvkkN1HW7Heg6M3sZ0nCuOJE9ipupvbrXDn70eB11qzn9CY+F/sHtM1Dp7wCOa+z/kHC0qfqg+fS5xgj2XrF66Xta/+mvK59rvCKVl/FxcrnIjepLMfFxOcG+1VQV/bb5ibKap98jD53lo9fg+zZZL39nuPmrMeHWybbRQGcdSljP3/5G66PHbhNOGzSEOOKl71muaDnqz6jMFlbttMmL7QLJ1TaDeN2IU4+emrvf/PZisHFVZ/V15vVgtO2OQyY3M06O/eJtkzY9IDsX+w9yzmLZYLRisyV+Q5oQmlcKdqy+34xn3EjxI2O9ptxw7wK8WizSeamAiyn6Lmu2RP9KWjKDdnvjN/TQY9nZa5otYbP5Wz77q/tiXezJ3FD+Tn6GGNMfS5yw5hrQjLf7vkL7cZmObf0k4HazuIx8lh1+3jsu3Xa+NNsTVAHX683RQy0vPl8hTpmoLVdxGOLC7aJj8fGDW2c1P0mxCOPAwM3NR5ZT/PVjJsOksfXwQbs65ar0PWWpYvizrXmRpqaNJ+ucpUZ7pGbcR9cfrxj9kwRgbZdnqRPBES6g7ZHu71uiTCb6MS2fBukxFKfQHlZFCB1acLwZXtqaxiXeleyARNvx9wmXzwoHiz7Qm6irBI30rnSljEZM/qgoS/k5sJ+bWAO9rNE4uz3Sm6irBI3EjFa/0Kib/UL2TgYb8bFiten4+LY5OYZ20des2WejFFew81lvtHIzcJ+gauHuMFGTA1xYTtojXGhAdNz3BQ9UhWrPDBKC4Bv1bfU5zbfR4Q+Vtk2Uev+0PogCN+LQpgU0kSNc6qtZLTlQIaVP0ugSjgqRkQuJ7kAaLbo70seZUmUUOP6qQjX/XraktKOi7xIk9hmU3EYmBtk9ieuGiYgWRZYmwi9V1sn7g5T42bmd+gTROLVnkI5WYtDjn22ydkOer3Gv/2RcBPt18aUnpC6Lxg3b4eTteX1Nv7wEjQLvYKfnhBzfxvPwX7Wv4FH6o/10fm6UB+87TtX5Accj6B4jLZP/MbH4xHiUZyvq0i/0GeTaR0DKtSut/ury0+X8Ri5wpQrZ8/2fqBhKo3nuWo/HgcfI5vgBbmKx9N1PAJXfrTMVT/Ku5fPe8esTTgs8fWEldXbpICO2TM3nlwClvxIuLU1nean/W5Ba80OL9xqoTe0d7KW2AOmFkgOYw0W6b9Z4vNLZx7gJspSshKJ3HCdMAtxVUl8GTfUNLNf/HtqP3kxN/AYPVcRowOX+NxKNnADrfa/jotUtraNS1hGn7PzjnHh9BqPzTf3eY0YtclVTGqfs7jixv55DTdR1i9hoeOpPWMsP8aN9/0xptqAalxd+hwhJUzPchMxP1zceUFO1yd5cgjFILX2Heh2sD7SclPul/HEdGnLqRbfDAr9KTdhjDbFUO/6+uQNdUIVJrHkK/HvbgfrN25yM2JqeZJ1RZ5mcdVioRLCy/No4izgvHGVC0y+cmNYIzeqVCd1IR9l33TqseyoubQfj78DN3azhvzInT/5dEUb5wC/vbrlHPK5XR9rT3Ncfsgwjrl84BjAeJHFFwddQ+43rMfHY9Tl/C/6uhA3h3jTyevj0XFlhd4p7w6mTu/9XHUjHh/NVa3a7beOxydz1Y/yruVzvmMG9A04yMtOnqTI8N3jXmigcrLksKOsd0S3UYVIhwF1Y0Emy/UpxibaM6drm8hqJmeJQNeyDDXlJsq64F73jzFx84KrJ5GXcYNr2Xv2Q2v7MDe47t84B3jQb2TRdoPXgZs2cNzg5o7eK16R+DYNZtu+3VREXjdlE4yt2NJqM6Ldoc1ko57jOW5GP/L2650cMS19TvzPd7mJNunNHh+d1SbPGs6hgVs6LCEOWST2EXDz3vCvZ+6EoPXSJs/qmkwxRr9zNxuqj3rYJqt+giN1spTqqU8+2P7+TsuUmwFT3HMqaQ/Yueu3PenwCZQlUvV4xg3BpP7Odfb33gI3DpeEsZDk20kA+w4X+4OG4JBb9vPHGePJ3/HaeXBsayLjxDrBeMfH4nEf+95P/LdLvc8XmUk8ssKLMsRj5Mb5mPtxGn9jHxOMd+MxsaeE7rZFqS/KVZfx+KpcRfJX8fhIrtrxg08t0wT3yyqf+I4ZWjJ3dxLsqr1cPXmHyWYl9TxN1tonYwfoMP/hApaDMNErOxgX9ZaI1R/OACphspuHT3FDbVudsICr4Xc+t0aunuGGudjhJhYhHQdoEEz0gOqRmwyz4pKbYX4yh3kpO+COA/im7YfB3ux1ymDWNdhRT59Meb3e9pnP8dp7r8ctndzlpv695XPR9pN8wzEh9SWEAce7cOPPpVGW7ZdgmuUQ53OJnmk8prk42O+RAVDKO2ZQoO1QbX08MbVh+7QCO290ZJLlPrn+uklPiYVTtecNDXOPcCVbdjCr2EHLi0xvhtF+ivZnTM13yAEs71e9tomE05Vxk/ldxewwwrd1XNWL8vKR4q6zfDus4iD7Na7oiZW3Z1XEem2jC7M1ccPctSVe/Ft7wgso2U9C//n1GKO15RyrV4zu8zQxLhJu1HGjcBPYGNsHYYxc8Tb1jNHOwxgD5mhPPk+7n0PfDTzbSex8OeYhHs/ATcLPPB5tWTQG+7UOL7hxeqK/ZvEY207isX2AG8Vv+rt5qPlHO4l3clXMTzficStXWfxd5Cr2m8bVI7nK4gKh/Vcs1c9/DeXTdmUEPQLW+p9wM9DvREPJPD1ldEok9ST59YTb22qUPegY67nCqOhLEC8wpRMKkh3i7gY3jlfGlOAaBoaIKQ7s1Gzo4gU33D9H6wU3MUE7TMfCfkm58jl3bMHNFcY7shqOPRQXksvGScMUc4Ip+hHrHWw/tJW8T4ryEs1kW/fpJKAeO13nbsRFGBSHyZQl+Q1u4t96k5sUc/1heMq1az/4XKUzPVnJ/Cax30PF8j7HqU1W7O+Axe3eFu2EJMfGPC9BtMZG4bYeTPLGkCcNo6DcwY44on9n440pOfK25Vz9CdqpddMPw3SDG3c3X25wVeNq6B8RqYtxTgFnT11wZa8EQ2CvZAWMSd5osurs558KJfabcZPUU/vNuBFx3NjTO9cHxsjjXjYWk94lRjpX9PXGRebr6mE5x8/8M/gY2y9iHDBBpr5erjMuuMkwWv3BeDyZqw1fb7nBMKxyFbBnP0m42s1VGlSvuErj8blc9aVLtMkvtHzeE7PqhMPHV0H+zXUZ/Y59pL3LSr8JyWZ1d24x2bL1KCevTM4pSTDbsZjU72DyowxhwjU3GUY+v1shNcHRMNe2zWasNyaJRO8VZuPpiptn7Odw0N879ptys4HxruxJmNO+LjA7O0j4VwGE7ZcvMQbbOx43fY4xNxuZbI2N9l26BSZXNzk61y43se2AiY4tba9e1upnONcONzEu7LfhYv6O/QhHi92A6YobYJOrG4Xzvvst6HUfScXCDvXfrK0yl6bLGthVd8tfPW+0c87sT/UhRp295sclHgu+1M9NmKr8mpuqOMmRgx74nNN+GNoGroL9jCvmxftSkZ/l7vbvhT1HXLRM2wXknCuEv6djb5WPeqfcYIF5ByP5DcvGeBwwi7ffLV+nNs2eJn/DngNGmcRfYt9L+8Hz+Ew8OnuKl9vydQ9vK1e1xecX8fh0rsLIlcN4wc1uroq0/yjvUz7xwoyWSwD10SntRHSAdtepAwg5W3k0X6vV69SdyzuThkDjtgpOLrxzWq7X69lc4iPhMGOOsjVxMKa2JGCTm4gxRmjjQhbcSOifeK6c/Ta44cGbMQ/UTbiJ9rS2Kvfsd+Vz4Y2PBTfXGB+RBTyvEeMVr/FOV0/W4gaRa4y8M1hdCnPD52aYm9/YqfkFph1eWQ8m9rzwuQGj+L7bYHxpv4bT692Ki1qPsdxscgSugv1Sbma+LgXhQ9wk9puluVVRkb57HZ0gTvJtEjWLDZeALuKq5Ssf0mNOhQxp0p1LWXGit+kRfzySxXYgRXEMaSLGhYkP3Ki3RVherlbZyDmpP1ufiCvnKxUThGS1SDOmaIPG1cDNYvxhWfvDfm+fJPG4Ild8kiv7DcciptZeA6/yFEYnm2Gc2JN93eerijH6Op3qWXsOmOpPnHMsFNJYxoSb0PaZeByOtTr7WMwLd3PV4/H40lw12C+pT3ntbYcxA1+8fHmAe+XzljJ+s+04awmBMwTSpC5J2x1ZdsSyhStC40Q2cfCol2MiTiBWGNNgsa+5J0noqn+D3idk/V0nocfva65i/zI9O/bLZH0ikbC8oOPa4mYYJNaY7/TvEdmhfqPtqEdcW5pS3MYo6L4wDIJ3ueGB79B++Hb/4Hl6VDZiUvWHn7DfVc6YYgSG9ybYflf9i/mE7dfKC+y3XQTQb/18bkJh5SomJ+edyabv/S36ONjb4RIvO8O8wrXClLXlwylXknN1MzYcLjsWlj3OuMntR87Pg+JOfwPmeGef/ZC58YPvgqvMfjNMtT4sJ9/pD9VvY4wHb2I0Va2/iezSngrPVbosI5w7wxREB9+Hl+Xcdp0XZH5swVVcxXTHfjk3CaZJ/2JMvV+uItngc0OdTmYxtcxVX7QI8OMds2dL8eFi5RYfPDGqxwU+kLg+5g2tshpkfb2v65a+vlZ4wjHRWw+7uAwY2+9NVp2s7x8GjEDYPajpO4LsmhvPT4gmKVpm3HD/ZIaJOjSTfdx+OTcpV2S/foZjm5vB5/hEbL+Um9p0gfGerPhBY4bx0vZ1q1zjRrlL5YdLzGR71tt58npzv4kY/Z3WJksg93md34V/yPZ2TLtvt62cU24yvRP71fPPuYmYaavjow+W9+3XCbqy32VcBPs9cl1WziVo+afDWMcGep88C5kdOP/UpZ8i231sd31Yb8at61PQG8YfOcrltPlBeZovC/sHLtRz5biJ9t/hJulP5CrLOX6Spw/axOOI3AjLYWG/mnMcN+Jlt+035ImRmyGOXAxfjXMjxo5zolcBkcDNLC+mGLuPsz39RUni63Yo2GzmY6m/Mq+1gdJvtkonynYlvWxxQ3ozHxu4Oq64iXO6kKt2uIl6Q858z1zlYipyg8DFkKu8D8Rc9Wje/7Ci101+CeUTt8tHe1RtwVKSbLG8Jd2zDeTUVrosqix/UFKO8jSuTwIk6PGTk7ZUyAaGmV6S1QxjOG+RlZ4MHEakGE228URJdIubyKugfjV+rTfrX8fMPE/0XHFTT9HewVnab41R1HMV19hvcxN9jnlO7JdzU9vKns8ZN+cgmyTrWuelT3u2T9b/G6/nNa+Z7SXYyM4948bxWEHy0mP2o/Yh0i1uImbPFTDxuQ3bj/lFLriJ/jqz3xU30Z7+opP9xtlv0+dm9tvm5kjsh8eKbRqh9sjhQFvK2u3fubOLXfLE1jb1b+cP/TuHboeyqpdTmzS+7NtS4tpCg94gG/V6PV4W0H4xID7XNZ4cRvIz2qkuxgY06iWMwb8jj1Y/BRP/rrhqbIB99ErvEKNzbty8vH6I+BTc4wYJN9FvbnDjYr/m4xZGPFbFDVDMpxJfH7hJMU58PdoeIfaJq8GeLh9L61/GTcs5Mx+b2iTpH/VhFo+ccw3jFje3fX3NTYzHVa5ac/M5uWoVU9FvxlwFJzvmKnzdopabfvnlk5YyCuy7Qar2IqNtq1odpdzKcPX2UUmbBFkbG0NaICV19Lan1GGFL//53Qe6dWcTro4RrV4wRj29RL2XGGOik76UUQOmJTd18GibYOiF3hk33LbiKLuAda68/SI3AWMXrTw/wI1a/rthv4Ebb0+nJ3K1w80Gr4w5bdsfiI5+g35cjcSl7Xv/AABvte2JsmPYDq8X/SvtyccGXi9imZbpqj2meoCbdGkMcdU/Gp7ZPmCMXFl83+RmwAgAjqsLbhgj0Ljq593Ue2m/G9wkPne7CMqI081N3KJPIii0bRIhjBtdFujyrY88QRZqG/Li0oa8VbflhaB3yPsBI/uOcA4FfDwfQVYjZgxPGRrGg4aNhJuIMV2C144Fbo4ga6KRG4R6sN8lNywb7DdwwxjRucpjAbfsN3DTdI5c+XyMvktlomfwdbZfkr+cbKzHvDjpb8w50Z6tizrnCsTrMv5YNvGbyKXzbc6L6MX5GNDuCq242fV1w8s4WFaP0N/NXDXj5qNzVZuWvkOucrux/ijvVj51V0ZR7e8r2QSqHQ9bMIj0F/Ltb/rieVyW5KRb5qdAqQe0te9t3ZxDaElTxehwIOqtfytq3yYYQ71lSfDd8nBn/QY37fG8PMIN1dE7pTLnqnETuILjivvelG1yE2TrgX37yZ79Br0Lbp7hdZCtf1/5jbhT1/4ZN6MNRm4os6a87vdP6h+mo1y0Xseykt3beSquFTcdcxbLud9Y86l/Eiaej4F84TW291z1mEpimTC2dnb4oCXN23qf5Cbh6pGi1Kemy+JVKffx4M/9V7StyP3mGdxH+q3pqR+gV603BCk3ttlU8LODMFk7QZDteqLvcC43WZiP8UWu8c+yQkunVJvvDUuT60VZn9AuMAaumKOCqaIQy6mS9K9ydbieQWiXhsx+W9y0c/XGzb+Jq6bDOn5MlgmKUzVw44mZcMNIyX56+HEDIa5Mboox2M/LureAp5jHccChhS2j677g7VmaK8mVA33JXZyLJP0zPSZr/aM20SauP5UQNw7UK4fGjbs4mHMT49GVZn/yV+pvyW+dY4/vwVxF3PyactWXL3rd5JdQPvXCjHd5gozf7Bm+4dOl/eQgPOotLSZF7FifhrTkQLIShZzsHGMPytD2qo4+QPdkKHTsQW7kEW7Gekv2iFxJg2q82j9TbiKGDW7GY0K4xnPv2a8sIZthzPXOMb5ENmnreVT/zZbkvHEg2MpVD/XP+ydkbnveeNGfVNNJ4FrvHPPpprk0ik3881E99zF2TNF+Y5yMA/ms3MPMkXHNDdtkar+bpd0xDkjiVWTar5ATB36OPKf246MsTzzbPLW1Yf8mQidx5euUc0I+Lit3fZaa9VchbnlOnCi73D67QAgyQ73qaedO+jecR8XJxvOvx5wgayWxn9vKP5bQhyjsuRrtl54n0eF26Gvxks2QrzG2py92vsHwHPsLX0/HSCGMC19AnJz7k2s7SS7rz+v1aOwvnzPaK5Q4bg8yuuZmlQujz61z45yrX1yuqsuBX5mrvnT5cWH2RBH0bxdpjbfqaH1r6HaYSn3CZutu6kVViRxKlHYsOlM8bwhYziRpvlT7p+I4YbWpHl9fY1TUiyr++ZD6ZfuP4yZidlvJZlw5bsK5JIB9kJsoaxu8uGMibQY5s58dLfZr1nyYm13MIzcbyS6zQR2czizxpxhRbFAdKPscwOP9Ix8zaLWe+asv2t7dEa0fi23ninrn3GQ+p9zIBpukf6ks+atbUnabm6Tv0X7M3bJ/2t/F0329aTze4GZtvweKoCyFUQAiPm8oek7dmQMs/H24s+tiIcpK72ygAoZJ0WlexdkCo5JsnidZr7T3TETR37HS0HSWQnYxSs/dadugt41z6vtjv/UxcZS9g3E4d5RzfiM9NmTkdeBqKzY2MN3pH2EUxjjz9Sv7bfh6SzUZxiYr7jchn1vaYAfThv0aFuMGwCmyZb8dHFy24m/G1d1c9QL75ZgezFV0w/QlueoLlx/vmD1b3uANrfYOT69rqLda+7EPFMm6nVCfQxn0zERtkOSXQXf1bGGUvHqEAP4obuy83FwmzWf2y26RZ3puYySuWO8R2gauFISJ3pfb17uJObSN9ntOD1yHhv4hHqP+Tp17R+9Gf2sCX8VyUevtt/bXOcYtXjMXnGKkxrPyREzl73pN7Acbg7v93GX1K3xul5sovsinyxLfUTBdVYflulk+jrJp201uXSXLG1m7id4tzBuxMXQx6Y+b1N7gZsVVnjcC9kn/Sk6d2++OPbftJ/Dvnx6BGyx8NImNO/bry/0KhivZNlk8uq8z5qd8PVbrb8M1w679AP8e0Qvt5+rxHJM5zkt83UrGzZWvBz1fNVe1f+7mqllZ5KovXVbj9i+ofN4Ts2jgkCgggWMOiOR89k/qnIkzxXO732TSVsbD5uSp3hWGSZ11Df2H54brr+TGHVPCEjFe4LfyKm5iibq4HvsbMa/aXunlY8/Y/im/WdhkaoOrc29gXGFuv09sn2Ikdbt6IsarumY8TPLNe8dUW42zY79J/TO4aZuz1Pqj4/Ms70/zMccnHU65k/zfKbfx3HLP/owx1iPmJrcRGzNdO3ouuYmYd+wfdd0ZT3e5obYxNvj8yj/Ei/xoP6y5iXovMTJnFaMm29TH0+/MNXa54bax9Fjt+Fj+Km+k859X2m/D11f+e4ebpf2Q9/VS1wO5aip7dxx4Ya6axkWUm8j+KO9fPm+7fKlOaR5RB3+3Xl2TZYLW1k60kHWepHPZtstYIivwGNvSEvtp0LvG2CPyGmMLlrDFtmE8P4Cb2Lbv0JZz4wJetS9NeDE3oOZul7iUK0/PFa93uNmWHTLh6/xmSNYZxjqRueuvaTzuxBTm3DSMDVMYsG5hRC93Yor1UP0jYmqLm9q2cUP2O3f1vpSbzcnVRWkbVnBMKvoFWxKTjg/47fQv8wa8bDtX+CTAUIfnYxpXk9iImP1uaJv2j7FheuRxbmZx1dwl9idy82BO3eYmyhJXU26U9G5yc5VzUowS2gJoG4LUv4tsJ8e5ocnKi7i58ptFTLFvCMInZx7hJrZt57vwOXLRYb5Hc4273OiMG/b1Ba+pz+Ga1yuMy3jERHYVU1adyW5wc64wz+z3FUsLxF9++byljEfYbp4TH6iOXo/LOi5lN+sK9GU68VhW38G0qu+0ZVwb5/WD94u4WWH6TG5u2C/6kb4XN1cYdQPjg9zEpTUrjFM/ebJ/UZYx3Y2pV3LzFWPqNjeP2O8uN4xr67xE6m4R9I2aFn105YKfZR9Zb5Td6SPDeCb2GYeb9Fz370O5QTh+R+/k2E5eHHBFvRmPmd4F5kteH7WfVWJsND00fb7AuOTmDsbYv3As5SbKTjDdwpjpveKV9V5h3uXmSu8d2UfjcWNs4v5+VK665AZe9qsvZfzxjtmThXcOklq3tyc6t+L8w/KfmtBMVoIst03qvC32UlbR99OwPjygBzuy9Nuyf5rIvoqbzCYDV8hxvCc3u/b7SG42ZN/TbxwOmWDE+/ZvKSvzmLrWu+KG+v9LjKkVN1l/b+i9xU1oe5UTqfmtwk8L5nZ6UWwQ1ls2/GJ548O5QbGTt/Ez8fuisZjaY6X3yn54LG+k/Wu/JbFRFXHef7d8zBiTc/VvXSaywZ4Pz3Gy/m3kNs/E145Hxw3WbV9mv5XsB3MTTPb1il43+SWUT9yVEe2ReZu4Eqm2zFG5Tm1vyeJCFhPZpC0m9R1ZdyfqShab/Uv0vJSbKLtoO+Pq5dw8Yb935eaG3k/3m2f694jsou0zvDIXL40p7NvkV8HNbkxR/W5RoO/KuOjjS2MjnBc7sq/OG9jEnGB8hptL+6/6B9/2UZu8cixuvJAsc5UtI3tJbGDev4yruGQyxfgINyvZXXvW/qx8HZN6ys0VRsxlQceYqx09nxWPr+Lml5qrHsn7P8r98olLGX0ihdZ/LWCDA8S27ZHqTDY7VyYL//elLEjfTb187FIWc9mpHryYmxWmz+SGZTNMn8HNO8q+1G+Yjo/qH2PKZLlfj+j9NcdUlGVYr+Tmbkxxu90icBdm8oI+uthIcCvVXfs4wajHZMYly9/kMvM7zTBR4yU3d+J5Zn/GhISrRE87VeBx6F/EtBsbmV7myroRbJItvx1soNTmAW5c/wKmDHP0m22M1NFn88Yte7KsKXjA16eYat3xbqcnvamP4SY3F3n/5fF4hfnXlqu+cPmxlPHJovZf8y7xNm9bemqo29/kJHH7z2HbUcmOlRNolBfvf0IYV3pSvdjD2OsdU++8DJhSrjT8/RQ343mtvW+zYb+Z3tbHB3glbjL7vYKbVp7C+IGyzkcqN9FvsNB7A2M82ZRXSvYeR/Ab3Yuxd+VmwdVtbiLGC264fzHuQdyEU7/W5+zkCQ8ZV48W1jVMHGu9UbDCiZzLGc5lzuEJVyKLR/OGtG7k5zVZO69eczOMA8bTqn/IuRrKwv5OKAaJHzCn9nMydowmilP7ESYXkwrH1cpHX8JN8m/G1R2MU3tu5I1hnszYAq+DPWMno/2S/gz9A2Ga2O+OPdtJJ7K3x/FZ/AV/5XI3Hme+/kvIVZn9pueF5+bLlh8XZs+VcueErCwY7uTEb3Ew5xqc8VTflmWjrUpQiFOWtQH6bn/puRK9U4wY+zPWPR/taH3+7M7NzVZ6H+AmyvY6XTgaLpI0ToVkX8VN7PvKfq/iZkhMXHkBr6v+cdnixiV84kZvcHOBcclNwqsbTWZ+oyHGbnJzxdUdblr7ejE0XDSF/q1s4s6Z+Rz9dvrW/kxJjnzI5xKMaVxIxxgxvWTMO4zjyXEB9AwukuGshXeTy9q733l7dRpvmMCpbPWXmY/G2Egncvab+rrGv1fchGPxxpM7FsQzrhwu+zfp3wpWnBgux/Ekb8SnELMJ4uDfzOVMNrSdxcoWN6SHf7uMqwuMMb81jMucGmQjdoGz6WDPzP/DOVP7Rbzs6xv94xPHnPosNzEeb9mT6tvxCMT7Zpdzja+Wq9Inq6R3ys1XLIovDnC/fM52+QLoYdGp/YvlFpzNIWgb9NIY/cMPgKpCjloXhdrtAJbViSx6QPXE0o8L74uq/lztzoHphdc7YGz1se1U1gasVpcyNeK2ypPd2D/SGzHqJjdVFiZrk7ODZJv9Opl6h5uDuIn2W8la/1r/8RpuMNmyd1d21jbhddk/edBvBozET8bNUnbSv03Z5jfVN7TauhzWdkw6rD1uAq/R9ne44RjruAzTwp5XfnPT53pbGTBBtfmNXOS5gZtg+7b5xiU3if0qrnhxuF0EbcLRJjRK9ToOyBv6khu2cRZHoY89l09kXe5O/k0ww/rrfJR0Ea5M1vQOehgjLfFE6Dv3N17EiGJ4b2/GTaxr4Mnnp/H40MGZ/fj8O9zE/i3sF7lyfpTxOrPfk9wMfYi+E7mZyMafMt5Wss5vol4s7KkYeTT7TXDsxGNqv1iibJj/PcrNEuNNe059LOFqO1dl9lv5jdDhDOMkHrdy1SIOLnPVFy0G+9dQPvUds1L6JHEcUDKv5X/Et81ko2fzP0JBRadSO2htOetKMH7EGPR62UlbrtefYtA2TK1p6O8VN1zaxexMdoKJuSLZbftFbnbst5Kt9ouP2J/iJtb1AdmsbWy+sP1tjFfc0IAhuMmNVdsIc19WQ4IXFrJJwhU3Sf/SyfQNbtJBsfKjoNjdtb0PnIdkh7FWAHUH13nO6+m/p/a7isfMfslpbhWevDNOhHqcNDic4dgEZyob9WpolxVLlxmmpK6zNjNc/PcQC7lbtcKT2ng4YHJ5cpj1UnNBjv3Obyuu6Pc2x5zFc8SzSoUL22/Zb5Kv0i5k9sva7Ph6LQ7jHV+fcLa056J/WvNja7Iju8ypOb7lucPf2v6TY17aM9G9Zc+J/bh6ivcrWfB6masCFuN1GRfJb9u5KvRrimnH13+Ul5bPXcoInzyyANoqu8kAGAakdgG0GByzeWyqbxVEVzgjptnx2OaqPMoNtyee4vxu234PJJhLzDHBMNbdsovxatC58tVN21/K7erNkqhivLO7KhdxweddDYwmG+5v9Dt02V3f7O/Z+fm3qwlLkF3F9tKPVv29Khe2j5gcV4/4nGHL7oDuxNbMfg+U2fsR0zxyo4/D5H4n9/Fv8QJ0dxxI2ggmsXYnH1+1vcp1EZcQprtjVWwbuZphWvRvuLjY6O+0THKB7NiP9LsnC7v5+ArbBcapj2Xyj2K8smdo50y9mY+nTw0f4Wwj51zGYxYfr/axUN+KxyxXIamz3IX9bnOT6Fi+u7aS/Urliz/V2y2ft11+nXC49y3i06tIcrgz6BL7TDYej7IHxjvCoOTHP7Ksa4jUidPzRMwRo9U5yAVtC9TL/sb+zfRE2RWvhCkmS15jzXQMSyy4SKKHwc8wZ7KMacMX7tgv/r3Fa6w/IJtyE/p72T86NixhecT2XBKep7ZnX6E6/x3vEj/F6xXGyA368ebLMmJ6me0v7IfQVkDvoBmuR/Jcxg2fFw/Y72Yx93Mc1H/s/QvhPkgQPEL8HnQ84prxsTiOcMz5KB/P+MlsGOsznVxPuGFZ3pCgcWWYZvUZRupv6t+MKeDi87D9gE0fJYxbY1UsM8zw7ZXatnJcy25zs+ofSj650uPsmemtmFcYI64p5omfDfHImHbGqlqfvbf2bDxO2wL78XjFDRLZRTwOeT3I3rZf7O+NeIz9a2WDmxVXkZuvvuvhV8e3Wz53u/z6J//bfEBR1vEiNLJqHajbsdh2UXcBEdsivOyaHJ9hGvRcyWYYs+BIMOkx5ypuLfsQNzNMSX/SWMj0cPURbqJsxXWbmziJuat3o+0zsik3q0GE2p6JPR0XfM5X9G+WzFf9UQw7TV3qmWHO+jPhKnLjSoLZ0fwK2yeTW038NdpT4gC6q3en7Wa+yex3uwiANwLGutH/HvL+3Zy6M+Gw41eTlQzXs/Eb64tJfjqpzzBluOCPnYLp0rHphHqGOZPNMNyNjYWeLHYesl88fDG+ZBsvTC94snHOZO9iXOSciPHO5PqOPR+Kx0cvAEJbRfdXDVy5cf3mfOHWjYAFZtXRj6b2i/B37Gf1XfvRuXe5uZwbBz0P5f2PLNFPfqHl6yxlzNrA+4e7c8J3MCT4KB/L6lwoqSor5eMEKJOf6kn0brc9kv5PMEFC2xdyE2XDvgNu0pjFxJb9YtsrjJM64t+v5iboeUb2Vv8ujrn6bGJGWLf0vpgb5zd0fEj2D/jrnZjKyoD/nfxmKhv6n+ldYf6ImIqYJrAuyywXJPTn/n3Rx+hnK9k26Zu0ZR91HEQbRhz8w6TfU73UZpnbPLRrbqwij8uueM38YcUNx+SU18x+hiMZp6Ps1H5XmDb8KMUU22qoT/o3xXghu+PrjRv29aS/Wf8CtG3Z2L+teFxx44R6fTseJ1xZo0ufw4SbROl2TG3ab9o/mWB6MFc5XAtusjj/UV5fPu/C7EBfngcUh0g8xSVCrte/9QnZppdFD6R3udpAzo0P0lOPrzAi6F3Jmk6lY9y/7C7eu3CTJMNZ2yU3x+u4GfqHse1Hc3OFMePqJX4TeLWi8bzo/vshMRVlQ39seV62g9xdXnmp31VMMTeZXu7fq/1mJpvF0EkYmav34iaLqbR/WR/uFFpa84h/X8YGJucKufzKhkDIIyvZw8tKlEWXzXL5CuMqNga/W9n/AHDmsTDTqyw7s9GVb0y4iTjM37P+8bK62L8VNyv7DdzM/GjCjVtejDFGI8Zp7Ec/uZNzEHhc2KS1xTgOvDQeuazOtRGP0xxzwc1sTOScOtVzh5t6oD1k+KhcFWIK2M9VA0bkXM1y1cN5/6PKV8e3WT7tHTN7t0usrvDLLLT+zo4X6yTLx5ayFEgcDPboVw0Hn8uqSr8nel+GMdQzTJdcvYibKMs7e7nlXh/NDcmm9vtgbi4xfhA3dpy3L26Hgh+9Z0xdykZMD3KzerfwipvUt1dcvRM3ab6JsjNML+ImygowvqcUuLpdBONTyyxv0G9xnB3GXZZnPTslk43Hgl2msgvMDVa0xQ4OPj7xFeTV9KnSNld3MMbYeJSbyPlMtrY9k+aD3CZXSz/SpM5xScdmcTXDeMeelxinZCQY4ziZ6XgkHm9gWuqOYje40eRcQPCxDOcExxTnK3PVFVe7GDODLLi5HY9fuSg+9R0zEflPAvhPAPgO4H+uqn/Po+f6vHfMauFJS/MXm0BZG2tCziRAdy4JPruSFQxfRo+DV/qxWHH/bOndxdjaZwNQhilyhffjJspGYjjhfxQ3UdYV5uqDuVnKrvr3jn7jG/qqw3hD7yPcxN+mE4hXcpNgZm4cJZEr1nND70u5Wdgv0/sMN1E2cjOon9jvquhAVGggcBNG1pvOTULb+NsVluF8PLBL+JP9IWIMMTj4Hctf2GZaErvc4SbdofCBOPQnCOfJ7LfDTT0w2G9GTBJzzn4yNB/jOcGY4jLZLC5nbUN9hjFiGfLxAmMakzuOJMm4+aJ4TPPGi+LxDjfZ0k3DFC84nonHp3NVxPZsPMbxJtH7VDx+9fJJF2Yi8jcB+FsB/OtU9S+KyF/zzPk+5wPTwDDJb1foivYy/MnOFup2InMc+7q5+eQJf26uc6KEYLyzCD/BaneT7cV103tUvdoDxb0QmuhpGIX6EzC64JHOjZv0KdoLpEtuGOMmN4yBMTZeeID6YG5mshHTR3Gz8jlLvszTTFYx56bJCnFTBbM4iU9bEesv6t8Z5Fa2R/27+Ta1HTC9kJt0eWISUylXH8yNyZredlFHmB1XWMdF5nN2LHLDGONyQ+aKc9MjJXuXRBKcU/tj3UfHZZBjvTKTtbbP2D+pu0kO6w19cpgTbqLsHW5cTrX2EuqZnshN0CnPchP1ymu4iXzc5ib2T+Z6Z34TuVnaPuZjOp7xGmVbLN/k5orXq3hs53plPD7JTfSxoX8visc73MQ5Tuo3O/G4wkjCt+Nx5jchHr9y+cQnZn8XgP+yqv5FAFDV/+czJ/vUpYxct8mkBXFcy6o1wN0kodanstmEIqkL47mStQBjvbSMzhJjJjtgtLYBcwsO8bJYyLZlTjNujlHPFTfZUjABxq3wmZsga81exc2W/a5kV/a7yc22z2Xc3JAdbG+Yow0ybmImt+pC70MxddAgMZGdTRiaD7ySm+gLSf+cb0eurM0dbmp94GYWjyDZoGc2gbDyEDdZPdjPzpnFozjQN0u1Teo7MSZfZf+JbKonnusR+89iI9r/0bwBCplX2/8ON1Hvjv0wiY2odzcfX+XUif22uIl65QnZFUYqW9zcwBhld8fTZ+Ix9ZtH49HaGjf6BDcI3HxCPF7G1J14jNzgNfZLYyra79db/oiI/Fmq/56q/t6m7F8P4G8Qkf8SgH8ewH9OVf+JR4F8mV0Zp49qyZHa8QtZV5m05bqGc1/peUbv0L+JrIZ/r2Tfixu+A+G42uUmJJEdjHcxT+13U+9tbj5QFrHuTjCXVaSnv613u3+JztS3Qb5NAu8SUzL+lC4pjOqC/B29l7bftF/TMXblfWIq4SE718PlPWLDfAdks13ZZ/RetZWO6eH+ae/TS3JqEhPvyc12bMgD9su44fYC58wP5Y2P4OaZOc4C4zMx9RXj8TY3se0r4jHT+wXi8WluEGLqKh6/annu4vHPqeofnx0UkT8D4HeTQ38K5VrqrwbwbwLwbwDwPxSRf7nqY5ezn/eOGQWvlfjtHPcNn4sS3wvThezAVGi30qth1jK0HWalc4zL/kVMURaeq1XQPMPNGYM+6OL2Tjaz36u4ieWG/SKGp7h5RvYZboAhEe+Wj4op5zd3ZYPeFTeXvHK5iKmrc69klzljJStrbq70PuVzKz3yRDxOiiK/qBvyRpxMLE7Y2tbJxDbORM8zsqmL0gTntqwdu5Pbgh4NStLvmE1kB24WGJ+RbdyY/fAgN5nfzIRn3MR2E9mXcvOsz+3E/l2fu5DdwvhrjcdQf6p/+Jx43IqpSTx+9fKeSxlV9U9M9Yr8XQD+J/VC7B8XkRPAHwHw/3pE16c/MYt3G9yjVgkXQuHuFx9r23WTF7l6uCsVz8vLE6ayQH/Em237zGVDr2R6ZufJMCdt2nmztg9w8xSv0X4R78qeCz1Rth2e2SSz34zXG/17hpuhf+ht0/6xzyUTC4uXqDf2b+h/hnGCOe1ftF/EeCWrI6aM14GbiHFl+2xkSbjJ4sTk34UbLGSz/p2beu9gnGAe2s5kb5Ys72exfokTGJesznBmsTFZnjPzO2f/TO8Cs7ND7azKhiwetCFhxCZGV1b9cyDg7Xclu+OjSdvIVSqriSx6Wyd77OmdybbqXdks5yTnSvs30bOUvWi7HAce6d9nxOOj3HxSPN7yOSsz2Sv7meyj3KzafsVSc8Anlf8pgL8JwP9KRP56AL8B8OcePdnXeMcMGCYFW8mN2urh61tfN2c8u7KTYEhPzLIW/LuY43mvMFL7FONKdsZNTFjAEsds4F7WWQ/Xb9hzlshSjI/aLx5+xud2ZTnDrjDPbJIcG2x0ZfsMU4JjdgMl05PahPXe5XVzQoS7GGfVGTexvorHTRxO77G232U8Lux3m5uLD5mnJcv7M5w79V2ckhw32dlAfsXlHf/OzpthSs6tEfOruYl6BXPZCVcv5ybWJ1wpnyCOAa/Qm9WZpx3ZQdkHYGRZWbTdted7xWPU80w8PjEW34rHR/U+mlNfEY/PcnOF8SuVmf+8f/nTAP60iPyTAP4SgP/Qo8sYga/yxIwSnYtNHe/eDHdzwjHXSCZ1BPvFu0QKv0sO17nwXewJRgn9c5gjRsY26d8KU8pNDeAUU4YjYmRMJn+Bo8lecNPqd+2XcPXu9sv6F+t3eJ20TbmJccB1s2/W3ySmHrZ9hgNjHYYpHosY7eeq39n+DleZnhlG5mrlj3bebEC8iOUtbs4JpoyrRNUON1xu26/2cWW/zGV2Cuf9ad5Y8bHy75WfAaNfImDYtcOO3juyxrVOzkWyRN/z3My4ivaP3GT19+KG62w/9TL8567eW9xc5Y1ZbovgXsnNDdn2Lp79dseeG9xwXtyOxySJfEY8Dn6ziscHuHkoHqOeLxKPicl+FACq+pcA/Adedb5PvTCzLaMBNOu3pHn1CDZ6Eclmgxkfc986qQ6ZnM7JKnpy43O3u9gRI58nw8z1mAjQca361zAyd5kezDFl3KSYE66YmygrK24yrhZ6pxitb0lSiYkkHQgYI+mdcjXDGM99h9dENvYh4yb2x7UNA6GzFw2ktzGG8658TuO54G0y+E10qgk3ETNi/SJnOG5mGCOMSa6aYbQyjcfgc44L5HV3Kv6BMWaYWe+L7fdI0ayP2lzy2r9jXcdPEzicZDezIefZYYczko16Wln5Dv2d5cWr/q1y6jK37+QNVK4WevjCmXMFiLdt+z2CccFVGhtkv3ghJHhAL7VtXM3yxsx+CeZZ/64wYiHrMEZuAka35PNRe84whrx4Nx75HJ8Rj9lF/m48Lu2XYH7Ufl8pHr9qEeBTPzD9yvJ5SxnfMC5hEvQ7O4q2O4wdR6zbuaIxQtt0PTH68fS8GGXdi/YhSJYYZ8feJhhBgTLp3yVXK4yT/rX6TBaTtoTJ2mzZb9G/JTdJInVLRlnNXW6uuNqUXfpc6F/K8x2MC24GLhTjmvVd29N5L+NxhZHPFycMd3jdwXSjfylXO7I7XG3KpnkgYposq1q+N5FheoX97pa4HNPOx/ZfxUbMG7GPbLNMD0iWuZzICh9j2TsxGXA4R2NMCDl10geJlR1uLjClNmVZzhsr2ZvcDERHbjJ7mn9HvEF2ytXFWPy0/bKccxcjK/4Me96JxxnG0MGvEo9bm0v9NsYjd2YSj0/l/o8oXx7gXvm8J2bwvjDs1iVJAM0mGVL/rEbJlnBZG35Slz2+VWtLiZ8vxlx7SWI6YqT+uXw1w0g6VIJs6J/DveDGYTS9mnATsGbb3/Id71X/3s1+XM/sFwcM3ONmlqOn3AQdU59LzoHYNunPFsYAOPXtKtT8P2Kc9Y9tf6F3SOqEB/CYouglN7G+w9UEy6x/DgzmdpvaPsMUcSzsmfWvtQsD6JKbSf/e035bRXwsMreGcSunRpxsw1l+inWBWwGRybo4Cfq2YjLYtv0b9UaM0e/i8diZTYz8O/+c1Qf/XvAqFVNqv117yoSbmd6MoxDLAuTLCRP9K/sN/b1rP1nLvoc9s3+dquPa9u8djwNHnxyP07j4hHic2Q94x3gU/9sspr5ykcdf6/pS5VMuzJrDhADO7i41h5AQKGFyAvUTCGh/pG4Oq9yW61wMU5ZAQ0UCjsGJJdd7hZEDwrZUTXc7zAAm3AwYtWyhGvVGbkyv4xmT+ob9Mm4YxJb9Qj27IJxufrLBTazvcnPH5wbZ+m+UvYPRuipHP5ewTYiPeBE5jYtNvWk8cgnnMqx2zOx1hxvD+BJuGAcrucFNZvuMm4hxiCnmJ7Ff3Nlzxc2V/VhvdkOIuZna725pjyGVbNMZE5GKs9cBX2+SAohy3beNelxdAFWyVCWAZed6fD3DbH+XWGO9Um060Ss5RjXFCqjc50ZEoGfV2zBNuNrgZma/O9xk9qusXeuN3EReUeuyx82IsbIjgNzhZmW/KJvY8xbG8xrj1OewZ8/b8XjW+g0f+1LxGDF/aDyONvhS8Qhpf/0o71ueujATkf8qgH8nyi4k/ycA/2FV/fNbwnFXPe2TBaDUIXATEkWLk7bmm+vD5GVT1uHxvu6xaD+nuwBgvSSreAyjrZNtd5FC25Qr1vsiboZlY1dcZf++mJsoKwmmz+DmadkXcJP5zZeJqehHP2LK6/niMZVifqS8GZhKuNYT1jXHqhpwauhj+T+xyYko4dKAO+qpl7BWj7Kujx1T0XNWfka9GWbDKFVv8TvJ9cQ6YxbGrN0WN7lR1bAkTX0s3OUm8qogrva4GXlN7HeHm6Gt/b3BTcQo9afBfje5kQtegz1n3KRxUe0pzZ5KGDe4aba/F4+8gkcR4uLtRjxecfNZ8bjiRrie2G/FzWU8kv2+ajx+5VJp+DWUZ5+Y/aMA/l5V/VlE/isA/l4A//kdwWx5WfP7WpdwvPmhBL8MbbM7vitZiq2OAwgnGTGld5bD349ibO0iJq4nXL2amygbccT+ZuedtX1X+30CN4/KvrvffKWYSvrr3uX6EVNDf7Pzzto+gjGT3bbfjdLGTfFKS1VaG5lx0ETytorQz6DHnWyjj+IwSecn6k257bLctx29K8zPcBMxM6a73ESMQue7w03kNdpvqZcbZ/ZzcvvcuPhFP/gK+40+FvU+5nP2JOi2PZMkcBWP3p4LjBHnLy0eE25i/Rluxnh8wH6x/TvH41cvPzb/AKCq/0uq/mMA/j1bgoItI6++Oh75j23vyDZMG+VK76rcwXiJS/0xRf439N5X47f6t9nh9+Lm0n6fxM3TvE7KK/3mQ/pn/O/GVGh3h5uHeH0g1l/JTfS5O5iinuDqc70XGNPy6oF44hMa2mzjjG1fjLfhkmuMU8wvxnSHm4d5faAwV3e4iRhvlYv20znaHW7eeTJ6h5uHxoEHysPcPBOPq0QWcf0S4nGDm19dPH6F8uPCbCh/J4B/aLfx8MQMxQ/i7+mELyE/+3lmo7TtSq+/eeGOCbD9hPcOxkx3xLSUJa4e0kvqr7hybRdcrRQ/g3HAdMVN1Bv86iluNttO3Hguu/LPi9Luwr1H/1a+sCOb+OdtbmL9xoDy0rjYEbop29o+EMtbvD5jvwfKNO9f6J6VO34W65HbVPYZvc/IvldsbDb6RXGziI1dPVuyK27Yr7N5ygfz+lDeeAefW+mZ6v0CY/GncXOl9wtw85XLb80TMxH5MwB+Nzn0p1T1H65t/hSAnwH89xfn+ZMA/iQAfPsr//D4BXGtyW1FrIR/oyzVsag7FXZM8rYRT+rgOxPBmxhbkUXbTa7S/l7pXWFmrsLhVd3h2tGziTG132aAOvslfnWbm6yetF3KrvTsFvYbpd/CuV/Sv1w8xxRlBcNmLQ9zs8vVozG10Psu3Fhbst8yli8wbvNqKlc5cdMnOe+//eE/DBxa5eV5nJd20HlsC6BRYFhr9KjelWx5l6Q1UGD+FXtAIe8TGytuAI9RgjK234bel3GzyhsA9An7rXn1EavRXqLwa8c6xkH1IPs+PqdXmBfKIo+fF4/v43M+h96Mx3fjJsou7PeO8RjHl2nO+FHetVxemKnqn1gdF5G/A8C/A8Dfojp/dqSqvwfg9wDgD/21f1SnT10eSepJkA8JcuWAgv7epHgRYBmn74Ix7sC4hWl3srTBTYbZcSOfx008vR1fYroxkXyEm0vMj/RvJhsxZnWQvYT8phIkr+7fjaJAuSnDASh0miu9wD6vSOqYcFP9h6FNffsjuFnY3XH1KDebGNO4l/2ucd7/nT/6R7VhewXOpezFJCI9J02wXx4b6tuvzucMHSZkj+aNO9xETFHHZ3FzxVucvD4dG5r3M6tH2Vl5d5/bwDzz/cbdTZ/bwvhAPH4Fn2Nwj8TjbYwP2O/l3GSyGznjK5RV7P2CyrO7Mv7bAPw9AP5GVf39O7L2UqGqzwPZltUWE24ivmhbTrSQZePVidBJssOX4YMs1we9OxivZOOHA1lv5UopoLa5SfRm3Fz171O5ibLVfjNuntH7CDfvIfsQNxQHjQ/m6qO5iXW20UfyGrg5A55hk5AoG/Ukep/lRiXIWs7asd8dvTv9Y64yzHeKUN63EwiGra+bwwoJ1rpAwm6EBHaQ9ZOoMW8QEe00yQTkpl5BtgW16fWYAMLRMHYAvLV1aX/BTYbpWW7ijRQAfN6P5QYkm/n3HjfXPtf77uIq4+YMmEn9HZ+7j3HSvxXmK59rvH5yPAafezpnvFc8vowbKjs+9ww3l/E4t58MYL9QUfz2LGW8KP8NAL8D4B+tO+b8Y6r6H7uUEgAHTZKcF9aicNuJLrcnD8e2ZAEfECSrgv5UgXHxxM30vnnZRzEOxxnXCtOsf6/gZoUpwxEr78TNsOV4xKQYl8ra4ffi5qJ/H+U3aV6a2OsZvbf9RkOd2y4wbfH6Kr+J52JYH+Q3DpfSRiEbXL2Mm424f2h5LZDmffsOUI8NDTiVcGrAGdo6WXF9UO5D/PvS7/b1rrf8lzmvEWOWN6Lej+AGQLrk7iO4ISwNI/v3BNMVN7rkJvYv44P+3omrTG7FIyI3GHld9Q/qbZb5NlWXPvcZ8Qg4/GNOfYIbqdtfvCIeX8ZN7N87cjOLx4GbKCuP5/2PKnGM/IWWZ3dl/Fc8IV3+ke78QhlD60EBcU3+Ys4SYyttG+rt0xBSE1jIVNkacmnoOkq+CXWpN8T/VLZhotJ+SzC1nydc3eQm5ZUwKcJdE+aVjl/a7xFuJlw5TELc9DPmXL2Cmxv9e73f9KTqZOncAzeQ4U7z6/1GITWGetvRJnYCAaD6gE1u+U3GFcVUFmPvGVMOU+TGn8OsWP5f6sTrldxE2W6/3seYfyLYvfJxseGhKnWB9S1l3yU2gmzA5OpfhZvY9qO5abFZfhQIrbh577wxciViuPuo6OJ3iOeeR17GzWX/pGEt2SPmYxoHvpjPpXHxHtxksp8Zjyuf+wrcwPfhR3m/8spdGbeLAtADyVKEnjjKhy/VPrMH+0K5OZ49clUnW6TlEEBRP+83ysLJ+iQqh52747C0VkeCgp9wnJneK4yywhgTfcBUH22f7Rhexs0ge1bZGqSOK4HjAuq5Erbfy7iJsjpgatw0WIwJc713uXnY5571G44LbwOLKY+5cwHVvvLmhf2LNsGGTbhs6b3rNwdxRX6ScpPUVd8pphzm8qPnpldEA1f1I6av4WYmm9vP1R8tbaOEjlPV1xk3Ks52Eau5bAOm6LIynvddZI/3k303bj6K16e5obblBM0Ptf73Uu97cZNggiR1/US/EeOIgrb9hrXsM9xksl80ph6X/e3j5it/Y1qAH0sZnypS/qfFR8w33NKb6ADrL5QDd75uftYvzpd6TaJH16vSJx/t4+6Gsf7WMXu97evtKeZdjHUCKSwbuAl1++m13ADqHnsj9G+0X+TK2e8l3JS2kSu2X8rNpv1ucXPT9qv+Ps7N6CePx9QzNmGf+0IxZXqfjqnHuVn7zSfGlHjO78bU7SIoy75Ui9K2dCGpS+sk/K53V23h67f0rGTrpfO7yK7694zsBUarP83Ne/LK/UOvmwOab34aN/XfI9QFmxhfxc1KVnKMwESW678Gv3lxTP22c/OVy1e+crxRPufCDGiPSSXU43FOdG5JlvavmzvBSb193TycZ6q3qhYZMc4wO4wZ5gXGhktYD2POMTY9Ssce5Cbib3qE6xUTNrnRUbaplq53F6Pj5sJ+XfYC44bezLZcdvq38oWZ30z7l9nk2Zi6wDjD7HzuSZvc4Sa3QVJ/MqYgqGPXo/66F1Nd1redxdQdblZcae2ryP2YeqgwAdHwKe4Yd/t26G1tdvyIbIbhVbI6/ih39D7DTfw7crWhd8t+K9kLPXZRAaX3hrUfk4Xsu3ADf2Ej6vmKspcYJ5iftj0fCxjjCR+151O2f+943OUmyl7FYzzXBPPTccH1u/H4XtxkP36t8tWvG3fLp12YQcKNGwFO9WZffhk9+tKFQTT+TclypXe4uRTqGcY7rjvDdaVnxY3ygcrNQ5iMGxK+xU2Qjfamf/YxBXwRU1afYkxsv42p8srnc3qTkzzqF2n/Jrw+4jcpriSmViHGT5/uxnJ23ldx9aqYejrf0HlWMbU6z6ztU/nG/ibbZXqW3NwpHz6ur6LDyk1QG/a/lp147SqBvHtZRRKSelJewg3/pv64Kzo78L5FSPelancX5bXcXJYVxuQC5EPKJB5d/z4wHjMsXy0eBYB+Qjz+0kp9+PdrKJ94YWYs9hmdBD8bLtCtOZHflsDyxGI1/rYnOH3Vdap35fTxpkKcwLIeO7+7y3aBcePnoVn8gbmyi+BdbgizdPOs4OWn3Jht6l1u3BO4HNMlRu4P+w/1f6o3ytDxK39NbcD1mQ0i5qv+hdOv6sDCX3djKvs5jamLsuLqyk9mNrhQd4nxZfmGRC65yW55cFaS4dw73EwxbvwsDtejkzrF/JbmnXPe1O/6X5Oag7E7mpPe291PZBuuNCpz2XctzA1hZe5Wsq/kZlViDH7IbCyxAdsvy/vcxl7+fW9uZrJ8jojpUvaOngcwSvC1Ja6J3qe4iSWcc8D0gdw0LAmmj4jHH+VTyqe9Y6ZH/QMAUJxehXaQS+pZjunnDM6UPZI2bUL/qp80db2ZYDiltaVHVBL+2MUY3+OIere5YawVgMQGC254jFHAvcMy6I36Mm4ixlm+WNkv2L5ND5v9bnITMWoHNHDlMM4xD1zZjyYXTztbnpDk36UNdvoXuXmFv7Lchu0v/WbprxEsxmPIubrNzYfkm5vcDPbruBpXF9xEjPfzDefIib6r0vK+1zX20efjUde8bSrrGtR/BXCsv1LvTv9agOsQk2Peu8PNvD9b/ZMEU8LVu3ITZQf7VZHw3sEdbsZ8ddP20X5ss8HHxf35Um62ZP27qFBAD8lT1kfEo1MG2EWPirj7Ntdp5j18LnBlQJzKj+CGZRf2m5b3iceH8v4HFntF7pdePnUp42U9To6CI2po75qsHIjPeaX3DuYR4r68TNrM5DJuMln1eWWqY6VrR88OxhHaWn52LMO20ruLOePqAmPzuZX9FOOEdKd/8bj199H+vdJf+be7sbxqG22wy02G51l/vcg3y/Nlx35N+ebREmcTr4zfGc5JTA7L5F6lF1SfxkwVms6QNvRcYJRQ35LNMNPF7I7eJWZgzo0EoSv7HcF+V3p3265kEdptyU5wPsvNbv8Yazs+yRzvHY9Ln0swZdxM2zzAzZbPbdrvI30uG5w+ipuvXJYD4i+nfP6FGd0B4zt05R9fn8rW7ePdBDmcy7Ud9PrzDnrD8QGzbLRNv95+U88KI5DXUz2b3BwbeleYs7YZVx/NzdJ++9xEn4s4XH8S2a3+sQ0M893+RYx3/fWKm0dsEmWt3OTGJeLEX1t5h3zjj93JN0/E1B1/Ddw8Z79J27tlQ/fQdiWryfFsEiEsIF72Koeu9G7LVoFmh9PbkOVexI1qYrdBVgM39idh2unvU9xE2cDNYE95TO+l36xktcdd2y2HG135HMmu9FxinunB3G+az6nnVaKziJeLuN7D9oPP3eDqFdxkso6rzH6UQ67694q4MPvJzH4mRyd6N27wpcuPzT+eLTZx2HHunfozsvw0I7ub8Cq9dzHypO6zuIn1O1z92uz3WbK/Bm7u4Pq1+fYzsvz3V7XfnWJ5fyYfj63qO20FNKlIJifvpXcpGyY6h8LdmJqVd8XIFx4XmN6Vm3gscBXj4RG972G/qWz0OerEe2KOKg8kPscNHtTzLK+Dz0XgG1y9gptYn+aMB7l6Ba9T+y369B7cfNWiwI/t8p8s/SN8/reH3hV6VFYSWcCvr7+pdzWR2sI4wanwmN6dG5MN660jV6vycm5ieQf7fRivv43czHaDucgDlxcndOyzfPvlfvPqPPCe9rtRhA2dN8DyPc9VW4HfWGV64VkmNVHP1fulK4xLWZ7MSAZrHAtnGB7mJmKMPpb1jyaC78ZNlB3OlbXX0X9vcjP+9Iz99nVF/383XsN5lhurtdPkDvihccE+174BlJzildysckjU1Ype63mvuMDI1Z24eCaH/CgfUz71A9PxN7dkKy7h4qU5cRBbySZt3XkALL8FNJOd6H0II8tO4/SDuYmyE67u6H2am0xngily9e7cvED2t4qbVbnJjas/Ghcv8O243HSKcZfXu3ngvbjJ9DxaBPQkRkl3rKPXD0G7C3rVVkIKlRuyR6zfkZVez9rC191N+CvZp7iheuyf3NDzjE24fxt6o/1UlSj8IG6i7NJ+mT0X/VNAmIv38rkVr8cNXp+Ki2d4Df3D+3ET/bPclNrg5qm4uCc7td9tvc/mG3zp8mMp47MlLtOzfyX8ntXZS3dlY1vQv0jaItRfpXenf1woThymj+BmhYll+bzP6N3lhmVXmKLse3Lz3rK/Jm4Q2nKbj+Lmo337EdmIaycP3NHzqOwz5QCG5SbLDUE0+HIy8s5suJKd9XFX7y2M8fjimGrwmSf0Lrm60b/BJ5/gJjqxe6fohh6t9dl4/gpumm+s7HdXLze90vOk7aNP3+HV2j8VFxeyd+OC23xaXCQ5ZFvvTOdCdicuuP4RcfGVSwL/l1g+6cJMJ05L3pTWMf79rCwAt2+syWZ3wLf0TnTdwTiT1Q/mRoC+r7b9NmSjG3on7Z/hJsX0Qdy8VHbS/tfCjS5kh0HkDjdXmFeyCr9G5BnffjGv0wHwE33uBUsZAa03Ze3ZX9HTtY3+2hdVKrRuStHailDz0lJIth+s+bPx2/Vyvfyg1V0XeicxpbBJkVS6On5rIUn/+t9e71PcRIyBK5Bsti+240Y+gJvhsxFc1wrTfPJa78u4kRmmBGMBR5hH/2yFfLC/2rGP2c7meI2y0vVyXMgM4zIuIo5929sJFPtx4bjBpH/PcGOy0xyyERcfwc07xcUj3CwGpk8vAvx4YvZ0keCYw0c/Z2WSVJ+RnR7Hwilv6o1tBRPZqof1fiY3EXNryz98MDdRdnp8Q/Yr8LqSFcFwk+CSmz6Q7ZUP6J9kuD7KbxayDddX8hslsQdz5Cu4iSVuX3u3iJZJhgriB2dsuiMiUD0JsLTpWTkO+rss6THcIgLFSawLANITfNDpCTsllvfpuix/SyvDaG2lNc5lTa8ksqi9dZhvc8MYAzfKXNjUjJZtfUFuFCeFQuSqY77HDeih7QY3pOcS44bPRdnezMfFFa+yyWuPC+Mk8kp9dHmiSijtktkazOIxt73JyoBxk5sYJ6/khmVr25ZDvjA367h4L262BpEf5cnyee+YHQBw1mRkkyRx8xDYBYqbYMQJxwtkIX1nJVtKEreb3taLud7YNpUlPbY9alzi8JHcZLJtR6Bgv4/kxtWD/RDkPpKbh2Wx4AYPcIPOxVfonwa/gfj+vSs3M9mF30RM785NwNvO9USOfJabadw/PjjLUeXVBv5GQruYEAHsxX/Vcr+8v0ZRJxWuLVpbaTrQLkz6RDzRAx3aQgG7Sy9LvaNsbyter8z7B9e/d+Qm1FsIbugB0K4xXsvNWXHsyCoEgRt9hJvS7lXcyNJv9mR7f/Z5XfVvkAUgx5xXMK/CPKtPI6k9r+039ZuF7dfcbPjrLjcZr8cX4Qb1nbcLnxu5eh9uvnRR9eP4L7h88nfM+sivYg4m7XirSybr68/ISjxOa3Q1HrvQ+xDGiay4ujYw+oHcRFmPydvvSvYhjBuyg/3wuP0+i9eH9ExknWnki/iNjWDSGqD5jTLee9xc6V21/TJ+I152FWOf5XMya3uz2GTCZsESTiwytheWJQCtbeb34VxTPTq2jXRO9U71BL/P9FJ7179XcxPrMh6/1BMqL+GG6wkmq/v+Ecag4GluNNQHTHM9oCYjN3uy3fb7mNf9C3VZyWYYA88zzJu2n/rNwvbX593k9YqbYHsZMF3EY5JDXsJNcmxPNsO8i3HNzbP5/73Lj6WMz5Zq4MYjT85Wv+2WXVlFuyEdxR/ScwdzaKs64nDHV3rvlCdkad7gMe3Y7wluprJmP2DO1Z3yUbx+hN9kMQZ8Pb+5+jbKb6PfPBpjd/Q8mSMfKm7knJzwEqeOv5u/37B/kZPrtjul3k13ZftcFw5wV3RoQO2eyjnPBH+CCRv6LzEuDt7pnxCuzI9W5Rm/+QjbZ6d8xvZPc0M835bl8gVsPwzG2I+Tj7Bfa/eg/SI3X738uDB7srR3zDggat1d9VPdTSwFbqnWIIs92bqEyMWTbsjOMPLPT8nGbVuRTGremZtmHt82zT0fzI2zHxL7xd2Tpv17hpsHZD/ab/hkE3vu9+8Jn7vjNymveAk37+c3r4tHP5ZSW72WfRefq2Jjjrxf/De79DmcR3JsWQ92gADZOyKviI2VXnfeWg9cT7l5NDYyvUtuQnsJXD0bG/HYjJvL/p3Pc3MpO+Hmjp5Z/5QEZrZvx57pH7of3MUcbX9H7yttH3+09wJn3Cj87t8zjE/zGpPhg/n4lfZD9JvzNdw8mPc/qvx4YvZMEbRtk92jVba6oq2Jtrq/s75uK0doupAdv6q+MvANjMH5Re5gDgNqwBS5QpRlvU9wk7YlrvxE+/24WfXPJawr+72Um9fJvpvfSPSbBcZLbh6Px6XfXOhdcRMvpD7Pb16Yq9wArG7PjTFHBtmHucHS57IcebeIBLyt2Avmdu5Y16EukN7H6kwa+BjrOuQr7X9e6A2+M7S1l/PR3mHKrmKnGDW2tHo/7y43aNwETMeKK+11O6VyNXJ1j5vUfgD6+6Y79hvzhi71rrlZ2s9xlXCzwrji9YbtH4kLq5vfSNqfBWaLqW3b45LXme1bPNIcZ87jONfYj92cG5bdipOQUzP78fXlI9zEmBI+tpnnACUQGVf3uBnb/ijvXT7viRk0eLGV9PbIujwg0jC4Eyida3UL5wFcy1MwCcndm4hJEbPUg3p3MGW3SgijUv2OwocxXnBzxdVLuEkwuZM+6Ucv4YavyJiLBaaP5EZD3ZV38m0nG7hJ/SYel8f0bpeZ3/TD7xb3U9mZbz9KQnI++t3Pe3WoDzaUfqwfkrzO3Kq3/z29vj+xrX8Xw9twilEKps4IH3+QmwWmJTftG0r1mPq2z3CTy2oQ3bQf6Srn7WPVHW6u7JdyM8M4xczn3LN979lN2we/Kf2RcCzDyLav/9yy/ZrXgef0ifeCV/tP2ODhGW6i3+zZPkLO4+QZboaYupHnHLgL+w02IaE8ph7N+x9QFMD567hw/EJLGetuSVY/KPfGgBRg+DI6+/Id2QNwj8QbJt2S9XqfwYgqq142JBXT0778/lHctDo8N40r6cdezk2UhZP1mIird+Ymyjr7Ndl35CaVtb77gaBj/CLccIw5WfLtDW6eiUePibga7Pe+3KR5IF44Nh4JaswDL+Rmz373y1Hvzmo9X5mT9vP53dCA48jbirNb4t+uj9GGSl0Y9dpL8DOMIhHjKDv374iR6sHvHuXG10/vWw9ww/VXcFN8NvGlG9xEXoue7pO73AwYrROp/RJubmC8I3tt+z1/7baneL20/RzzNa/XGFPbP8Hro9z0ttogDLZf2bPlVOvDzH773Mzt9xg3z+S5eUx94fLF4e2WT1vKKDbYC9okqX0kj9r1or7+5FfV3bsOQu3NwQ+pVYV/4rLSexOj+y3crckm2xXTyNVruXFNHSaMXH2a/TCxX/3PjKsXchPbD/b7CtwA4/I2+UrckGzK1RU3j8fj4NsAcUUYYQMUd8irfZc80AbfarPUfis9T+Sq0D7NTQ+UAj0sYc/uREc+Jm0VcMchbFL1dekTsJZeo0k39fq28Vw5t82kDmOoq5+MPcNNPO6+lbviZsA09u8ONyvMjOOSG25bY4E/h3rLfom/R/ttcbPAeFv2lu03+htTlqWNS4yrOPlc27eDS9vfjZOF7QeMc3saWXaup+03wbjrc73xq/JctN/XKz/eMXu61KgyQ0udE2k/LnYAnGSsLuCnbuOX0b1s2VVMSIHpj9krcUx0PfHf+AV2j9HXB4xi/Q+YIrZkgnVYp17ATZTV+s0dMkbgho61LGRdeRE3QfZR+xUNxOuT3DjZZj/Dw/a7wQ0h/e3hxoiJGDkPXHODC26iz41cRW4S+wHwHwR+kpsgi0ft17h6DTfO53Z9+06R0oeOLM+pvOwqtrW6zLjkfmuASXVb3qXu4Kin1/vHebMTF7qiX41+Jg2npHUA1ajX3EQ9EbMIszPLOQk3EWMhHPogNxmvI1cb3ET7Qeok9D43Q2w0rm5ys8B4WxZwtn+EV9c/+wxHiIslr6HrPk7m8fhxtu95Mbf9NTeR1xgn29y0vpDORZw8gvGu/Upd6gVW5eqFeW5k4Ud5j/JJF2ZaHEd8eLqXs9vSxrPVu4Oi+ketCz0irweLC3VZaW3ZFc+JLKFqOUT935neBj7BLBgee+uZLTOJyw+6rGNQ0e9u3OFmxavFItcrLmMs8uq4an+/gJsgm2Oay7bibPY8NyyLk5fAWjGb3uAGr+KGBptP5kbPuNzMcxNlnXu7dXRrbjz+a5/Lucr75/OAdl3PchNtryOmkiMzWeqvUZXlgQe4cT53st+gtfX2u1tK3hfqs9gY0OolL9okRxw/SGQ7jj5hQTuX102TKAB6Ck30i8/ae2uj3jXGs8q2CwbO5QFDj0Gzt/1tx63tmhtccUP2FxGc1X7j1Mpz02U7Rj3Rxuy73Mx4jU9Pdrhh+5X+k+wz3Jz2seN73ETMK5/L2nYcD9h+wauXZc7WvJb+iWurZ3+KfxmPZ8/dq5gabX/Nq9rfrdkruJnZfo+bs+Ipv/qlmo9yM8aUt9/c57o/d67qPPNBbvKY+sLlq+PbLJ/3xKzeFhdKSO6+Rb1IM59TdpYhmY1tBX3+oBxkFlhigZbJKslWbOaTstYLUNuQcKUN3FXPGyWDmi/3ZEeubnEjOTexf23QO+a8itPLXD3JzUSWx2Q71yjruVKVid7HuVFVINrPuPo0bsy3P5+bwbcDN1E2cmXlihtschNl7SmT8+00D+zZ7xY301w12m+U7QMx54FXcqMKyBtNntI8cH8AFABvUvkRzvtc975TlpIHnE62+HjnwN5ju+6jxh3iBr0hpy4wvr15+9sYwhNtb/8Ro8kWP3sBN8H+b4EribIu53iMesBxdYcbCdz0sZe4qRezV9w4/3ZcPcnNW+DG/AbX3IyYr8biIIuOQ5ufbNg+5TXK3o+Lsgyy69U3UM654HVme+c3WVxc88pxUWSf5UZS2xeuFtywPeHjYoip29zEmMrtd+Vzy7i4wU0WU1+5/FjK+GRpj1onlu7HrY5Wt2Ma6qlsS3xWV7hqKovexjLGll4Mf68wKr8gQgNFrmdenuUm0yOBp5ks18GHn+Qms4mQu+hFWy5rXu9wE2X7JNm58SDLiL29GB//vc8N673h2wHXLb3B9hk3M9++5hUAzibvfftxbvrfPQ/446t8Y4PSa7iZ5gGzxwN54BXcbNkPnpu7pTwxs6LEF9c71tyG1JYpkTpZW8jaRJtSSW0w03uN0dUlnrf219qkeuqXB2t/2rLWZ7mJGHlok37+mWzzh8AVc7Old8lNbBft52Wb/QRQlfoq8SPcMI5J/9o5rXrRv01ufK6TNjT0i7RnfC7rXxYXRXaIixbbPRfktt/0ualN1LeZyDof3IyLfW7GHFLionA185tZDnkNN9FvMNgvk3X2G3LIE9xM7Pcli4KnWb/o8nnfMWvJof/YHwzXUtZPTE7SWxbXoe8tpLJ0Zm6WyVLoCdWH81xiDAky6BE5ex+GU8T+8QAhgJ7jhhJT2TU3/tz0Bw+ME9lexJ1n3TboAhC54Q9aZnZb9i9wFZcU3uPGdaj3sc3TlcDoQhbwTzee5eZB3w53vYT+y362F1NcAq/Rt5fcRJt4+8ZsG2V9dc2r6VIAwztcE9mYB57mZpEHBqe5ygMhZz7DTbSf/ZbZ79GSvlwe6v3O9MW53An6JOtalqcbeqk3w9h0Xsr2eJNENi/9vCu9q5JiFOpzzK2pLCG6Y5Ood8lrn00Vv/M+nsta1krGrVvc9Pro3joIZPa77a9BherZb+5dYNzVm2awwCufa5AMY8RrbW+Rt46LPNPsxcXtWA45pPy0kiWN7xAXY/H2m8uOc6CnuSHZr14EgOgvA+tV+ZQLM0F3jJ4QS8DKkBDvO/2erF9GENv2x7rRYQX39Ix6s2KDVDb3acNQ5arvwvO+3KSYg6w9Mrdk7sSe4SbyoCtuRj0tPsMdv0vZJWYZ2rnEfiGrONsdrcGPLsuLfDvaryKz6HPNbunt/ckHP1kMQlG2X0xfXwo8Fo+mZ3hCPvh2/8OZGUHPbW5242+Ube8XLCYRUfYaY2gW67I7iVicd3qOgtPQPnL9Z7IqeZ5opU5KvLft641Ruy97hav239m9a7ibLbg0jAOia0wHgFOQXjzM9Ax6l6LeBu0C246OoOsTXTuocdawWXZ8zp81tnnYb8jW19zMbX8te/a4uGqvQHuPVrxNnonHUdbQ9HJI7jdAeXJv48dKz/D7bV7DmDiVF0DP9pRqJy5y7Xs5w9qjtp/KLuw36H/C536UvIjIPwTgX1WrfxWAP6+qf+zR833aUsajva9Q/o3OEu9grW7YXrV1dXPgqrNd7DgvjAOWDLJ39V637euTuU0v/c5aXEr0Mm5aJ32JfWBcdlF9helpbo68j7fsN5HdrftJu7fXjs894uvvYb9MVjrQp/XOfDvFFbgpJd5Fzv0q3vm7nzP2uOIbRzt67nFzwZXd8JCOOb6Anp3reW5GTDM/2i+K41AvH3IqGu5rrq2PMmtbJxitffsP6gUQ8XehN3TDtZ3JZuL87qm1LROqHoFtSqUoF5pPcBMxzrhqmmXEdLTjr+Nm0Jv1J+WqHhSu6y1udn1OuEHgxq1+GOpdliHntp5gjC1SjJP+kt8UXvv7WDMcBw0EeqkXaZn53B1eeemQgL56s7pMeJCbLss2SriKxTAJwKtZXsFNpur19rvDzWbcf5VyXjd5j6Kq/177W0T+QQD/n2fO98kfmMaQ4GxQ6pO2vO5O1ZzlSha9Xpt3fy6N+pMWUlAnR3GkvcLIeq8x2tOX3j+f0AN//Xb+C7lpJ2//iIS2lasW/O7jOF33e3MT+3dtv1dxYxI6cjOTdRgt2c/td48bXwesrl3FUk9P7qC/nuJmKlvO7w738aRzs+Xrz3ATBxiKt0/jJtar/Y7eXDKuUj96FTd5/JXjSec2ighxW99z8g1oGIDWurQ6y3o+tE3w7P0KW7DYjgNu+Xfv+UoPWqsmIQx7LitOtrfvbt/b8muGbSyUQM8D3HiMaJg6VwC/ydPyGgD/mqG0i9lXcONlayqIfhftJyg3JYwroSnotl72OcI88LrmxvT4WEjq3J9tXpOrgZv9ky4GWzVy5XPtXW7A87rwudahwV9nGPd9jmOoYBz95hluWLZ9fkPWPhd9FopmvxU3eTxS20zWdGzbj7h6ITdO9sG8/1Hls5cyShl8/jYAf/Mz5/nc7fJRlnepTUDCF8utBVqyU5iDrL5u7oLIyaJ/rZ1eyi7BRZMuO3eUTfR6jAu9GUbltpUXkm07dH0UN00WxJXdtaxSddIgmMl+DDf98ROa/Qau3oUb9qPKzaasSuLrD3CzzWuCMfqNor9L5GcMT3AzlfXnEZKd229Hb/9swX2f67i8r380N++Vq57hhnwucJPfSr4uB+V964MSP31ZE+UcUH8H2Y5TiEsRs1vdCrt2RLXzcWpfBFf0rvR0Lo+gd0+2ty2TB224VLRNfnla9Tw3AXOQ7TYZuSppvkpUXPLO3ER7HlIxJbLdfr0PJvsKbpTOm3HTMKPEhvMxyhvFnly/yyvx+CCvbwWk79+Fz/m42ON1DyPHAQo3C59jWbwDN9Fvmq0TWfM5K0I59W6uusJYctXjOUPegRvg4bT/MaVS9MnlbwDw/1DVf+qZk3zOO2bSHaQNEiUqYelNa7t+mJMfTU5qW3dsqCvcu0YC2PIDa2s3pv1d6Gu9cql3gfFAu0tVTmpp+qO5ibLEFW8pHWT7xZF8CDeuBckq2Q837fcMN7zdNjZkO28R4z1urnkljILuR4NsmKSpNgWPcbPgFQt7umU3d7nRm9yQbMDk7an+XO/JzTJX2bnu5ar35obdfreI8Hb5z8fkvK1Sn8ecapOkI+TU19owzxuGyZYetYkOfYqgCMoLuNFF25Groy6XGjEBfvx5NTe5341cVW5q46P5572YfIQb8yNjoS2xqz/0iWvtT6ij+hyZlnC8F6/3fc4wPaL3bm4r4/Yvx+csZxRUj/jcDYzEVcvd5HPej/oY8XJuBtk+Jny9onjyyvGPiMifpfrvqervWUVE/gyA303k/pSq/sP1738fgP/BMyCAz1zKCKU5hTSD84MQtDQInn8M9bztWG9biKKfyG0lWsNUDrJv0MsQnsFYus2YPpObsU8jV1oHQ2tVAtrdrfkobkhLeRrEHdCWRB/Su8AcuXETVdcq2K+1tVH8/TBGX/dLD9owlGJkez6mN8c8xh+8IHEjt7np5TZG4eN0MZTZE6iN34ebda6y+NrPVe/PTdSwW5SW1JWzHaGF9VOBoa0E3J4TliU90nEfvaHvzsv0jrIH/VjyFU24UOyt7ozl6PtxY21NoN8Y4a3Lm9X9EPAO3JAs2cvwuJHIZAUlt6md6S43V7zmftTt17lxsgh6WZlVms+FGydX3EwxJrL2102f2+Nmxevn+tw+NyS76XNWkYd9bj8umCsJlurcsH/2nLHUe5ebCcZfaflzqvrHZwdV9U+shEXkG4B/N4B//bNAPvU7ZuUL5Yo2HWyGt7solsFsomJ/A/wCfH9MXOrHsZLtv3fZPjrzh1ytPteb6fHnmmEsX5zvGHpi7Ho/nhuWPZs+7s9JSb7ziHfnhrmIXMU91voGCve42ee1cGMblWeYen97n3sfMoz73Mx4zTDm+8/lPmbn7Od6hJvc59b2NL11ECBuvL8+Ho8ZxtNWqFRM3rcjVz1PvJqbXNbir3NT9PS3m1+Vqx7n5l4RKA7hLfu1LpfhesdZJmyEswMiWSSySm2NO54U1d0G6V2LXO8M40zvSpb9nyaAh8es5CBX3MjB9YybrnfOq5KfmY1C/yA4K33RJq/hhurm3lImiW0DkNo/y/gHbM9BVByPcLPCqMh4ZPtd+avJOsz0vtKjPjf27+N87rF4vO9zZYxE8LlXckMYzya86XPyjtxgar+RG8OIRHai9xY3Ga/40uWTH+j9CQD/R1X9vzx7os/blbE6k7ZJQ/GRvo2+jvXqSKUtT1Yy2WohLVr6evQaVEefJIkA/PX2tvyryno9XJ9jzGV927f4JXi3lETrb+/Bja/P+1dtRUseLC2VOhzm9+TmoP4VuS7rplwfyM0bov2iLJDb8zlubvUvYIz2NPZaApbXcHPp687H2J62VKTLHrLiRrGywYqbiGm0p4+DO/F4h5uVbOMGdcIgxaesrdaB+jO4eaS0pYx3cirpajstwqYtfUnb2bgq3tMvRAX2xPoQujjuc+SF3pUNT4fJ4WCMorSZRCmHyZKfQctbNApsc3PYYxWzf/OVPuFlTDOMqO37mGgX78Cp9K7VNjfRvz1XjhuuH7wTX5koiyj5NzpGx9UGN0Ns6Ivsh+Fc5Vj/vefjHpNXNtHa7+dyDgxN01O4QbNfXHLnbaJjjKHLYuD1YqxyeUPb+NRlKzdt/FzYxNXXsbzMN/W1CTvXYRc8zue6/XqM5dz03HTPfnlMGVdnW17ZriObH2HNTcQYuLozVpWY+sJFPxXf344XLGMEPvmJmc1F0RJDTaSg312d28b6KFuSTk0+p9Qdzs7mmAKgXWKTs7dzpXqu9Fbdwo+Fx7YQ1Bc6SbbitkR1vCM327J0p7lAfEbvDW5WeqieY/ogbhL7WZs+iNfkeunrexhvyw4YvT3fjZs7spf2XOmh8iyvXzkeq1x1JfsJdgH77tyksvdL28hkU3fTJfRPnTHYxX3vYp9Q2T+qR/lNSt5vk34p77dw3l/aoR0izA2TOlKOgBFgrH3SZHw0Tc3GgrneC4ydpJGbiLGdSVkFxncTPa/X3OzbD5ASd5WbQ/h7gdplEn++lVMX9otc8XKuK/u1d8Ri/0xpeBJdVimYnrnfoPqB2ed23rBDtZ3rU7uIRJsLaa00/ws2GbjRa9uvfSHkevG57ZAi0LnC2m+A4J/7vsBtBCcOh9/m+nZBUy7mcm6o7xf22/bXYD8F2o3KbW4GjJGrOTevyvsfUhSQT9ouHwBU9e941bk+bfMPe5ek/db+0tA61kOCxrjzTJNUkhDQEwO7S0kiwx3ga71zzNdt+8CgqYCkf78S44YsB+3L9G5ys5KN5CS2f3du2n+8/XZy16p/V21v85r62Adwc0c2Je0ON1d6f8Tje8XjnVLmWjr8ttLd/y6BPtgpwdQ3qjzA3/Q5aPexA33+HKRT3PlYhY4pykWMwm3RZaJ+P3fbHCNHYGWCfe0nTkxsLqgOg93gzNYJ3cM4sd/Snv5C1WuhSeNS7wxjad+/0zYrc/uJw84Hu1+o06iD/kzWJC3oH8+pdkGhQYQnPwj9iDahb3WZBrm2/SqWy4Vu15fROHA1wdgx3R9vfF5XlAvEwJUE+134a/9rbr87cxzmylRHr9qNqTlXD+SbH+Xdyidvl1+KTxFjHYtjVu93PHpaO2yv1/OAquCtPbIu+g/x36Pb09snCHcx7uixi0wd+nMH42tl2zA4TGJi22tu7mJetT0E7d2Hu7LvxWvI4WTPj+Xmjj0/ipu5bPkrxuOq/PbE49i/dvf0BfH4DMbbRcoSMO6HEsLyDkdp2JayNlE/XixxqtaLs5Ic3o4+6Tos74eYpFebnN6OsdcZYxZXKaakf12vXXwApwi0tt3nJsc844qLXbqO/bMJIfC96b3PTeR1hsnzGGV9fw/RZj99kBvdsN+cm6R/JGxP1+3CP8Po+ycNo8Lzei0775/5jbVovBMmLytONvpvx6gP2b639cvVO1dFasaNnUvpfOyv+7GcxxRrauaU2F+TlXSsep39er33TdtKHE1lxclmMXZWTHdjmdt+6fK5SxlfVj5tKeNbWKva17fKom6N4bLoTFYVKB8HPPFW17DY3Y63+sSurJ2f6/UgAb7TsMQYRW/0L57jPbh5SBaeq8/gJpYr+30YN5nfkD3zdw/el5tLWY/2cb2PcAOW7X6T2/MK40rv8/37yHj0irCOKczj8aO4uVME/R0z3i1U2zYO7fIkTMi4vfaTVVwScdYNF8oYIG25FtDfkWjLe+h0rCfqZcx9+srHOint3Qw7Ef1x1HdJ2rlqXVv/C/7GjdomMNfc6AJTzpXvu+nomMqRt8DVHW5GXvtTs+ZSFUv0qyNgBvrzz6OtFe+497mJbW3Su+amY+qyxlW0vQkrncVs78/lYxRdlLTKJq+J31RiGTNjQvulatS+JbwdsphiWbaIx3QuMNa62a7megGGm0wpN2YTggvEZbk3uGG/cXEy4Urt3cKi3DC2SzqtSzCV7XeTm4hZMNpP+hlMr81rjZuZ/Q5wvzNu9DLffOnyxeHtls9ZyghL4PSbC0ylutJx8voLWYtdezLmd3bzQS9B1kU9qL6hdyab92fSv1Bezc2jsqXl1+LGjng9E9l35CZfZlZkFeG9ha/iN6TntuyLuImyHRfLXnET9b44pp6RfSE3gyy3DbJzbljvs/27W2yCUU/Fy3PseDvGdYF/eaDzIyxHeV3gP6bq9AjqTM9mNJpjIr2mZ+y5OvxA50dAG0mhTqyFsUQ7lYmVgnAQ96neAWOOybhq723ZLXK3pKk+VYmmLXc4m4Lb3Ay2Dv5tdpTQX2sm0b8rprgUbtC7xw3BKMeJmx4h3h6j/ei4iuuvItoyyvZzapBd9w/BX6nOuAQQ6dNra8vf1kwYbhV+7yi3513bn2Tr/iSvMDXJX62lRoPVP9W12uXG7OvtKS6PqDs24gIfH+x3g5tJTOX2077hiYwewgB7uq66hlieczNgfijvf1wRvrvxCy6fuCtjCYfxseqYLHrdB/i1bA+0U3nQsRc4edmHLvScdKyHqtyW7UXwWP+ekc15LRij7GP9+23nJpc98GvkJped9w+h7Ultu8Rr4vHXyc37x+N9bu6WtjOcnVvgnxTIOBGKE9t+V9fHxls5CEg/ftY5SJdFm4md6Mq7Xiz00kRIA0bNZQ+ECdpEtm/iUj5NMOUmymbcOIwI41zlAxgmY7F/5eld5aoS9BA3kdfaOPr/G51oKVsxKcTx/hA3iezIjSSyo40e9xs7Qf8EQOZXl7xOMEnKq78IbzeuhTNE9Rsp8nf613BEjGR7i4voc5fcwHNzPMhN5PVo3b7yG4oL8DJI0E6aD3Dj9ErLc7n9Yl7rmIC+zLLFfZIz73AT/fHLli8PcK982uYfb0dPBmlyu6xvyNK24Ic5tVZHlF29FCxV9hGMLZY/WPaR/j0j+6vl5hnZXyU3z8i+kpuP5/UHN3ioCIBvUi47bcKhgNulNU4auG2s2zzHTTgO/+7MWyJrfXhTNMW39SLojbLwsgc/fYn9dctEFW915vo0NxGjetkjPDFxsmHpKnP1NDdRFiQb7Mdcsf3MR3FHj+sfXN+j7MHLPqFwO1UO9sv1RMy9rbi6FdXy/lXWh9u8iudViFfHo8MhPW/wMUWbS73S9lovhtgmKSbjRt+HGy9bdEy5an9LjmmiN8UYlqVDeInh6WQliYs5V7bMcrTfLjc5JsVnfyjst6V83nb5lIAAc5TuqMXPYj22f0BW3GneQZb7GGWp7TOyK4zt3O/Vv99Sbp6R/cHNO3LzjOyvgZsP8LmL/m0XAUTKN9Gc3lgnXW/h+CAbccEm1MrdKbKKckcb5b0zHfr0hN5L2YJreFdIy3/cdOfwuGd6n8eYc2U8ekzvyQ3Jkn5vT28/XMTCjp4Z5rf2uzo8aFyN9gNhZAVvoMlwolepDyU+Fpgf5tVjfms+V5XZVTl0zBu39NzBqO7dsO5zjMmf/H24QV3SKYQp+lxob/+Ve3qyXNVucin3j+JRRvvJyn72Z3ep29yUm3R8+8DniC9bFPu7h33x8mm7Mh7HOX1sCsB9nb41IMfrX0bPZH3dTUBa25neXs/1rPQKsrvjadup3h2MX4Wb2PYrcBP791W42ZF9hJvI6/v3L5fdsf17cTOT/WVx0xoMba/1vi83HiPb5E4RKN7krNOMcgJb5uvraFO0+qYWdKutIeTj9e/aJzsuKMuQRj39XYr7GMflqbyEEO24tr+NS5O1XRnfmxuui/0skatK2CHuXK/mRiseAXPF9tOl/R7jhm0/4yZiMq4U9gQtxr4c/QPAHjMa5swGXcPIzR6vY/9Yj/WYMbYdAmXkYrSJx7zncx6jUFv2OUHNOSfaUkDzuStuPObHY3nMGdHnuv34gv0Zbk5ViOtvwo1Y3fuc2Q8K6JHpeZKb+iSQ/dXnsq9XBPrjHbNnigB4E63btqK5enzMHesmW9r2wa2dV6ztpG5/y1h3g4b0RiqZXq5nmLUrYD1XGPlcCcaeYj+Qmw2MaPb7PG6m9ku5iRh9MD/MDddT+93jNbf9RZx8lO372Z+3/ZPcrGw/cnPf9qnel3PT685+9oRnppfrL+cmYiSu2MFuFNuV0eEc6nlu63WadmrgI9TfwhI0m7CUZWP9zLmeGxi123mIK8Jl9Tdu63bqU9iOIe/NDZtQJS637C3sDvospz7NDdcDxkNoCRcBNvupAvzR5jU3HrNjeMUNHbc4eov9cT5Hcs3npM6tdcsmnpvH+meTa6u/OV47uANaedyziWHK9e75J1ByjlvK+NZbq3ZMa27WmKbcDP3rR6LPsf0Grp7gpr/ThnaTzBqX5bJkP5nYz2QrQa/gxp4gqpac3/qn/R3hL1t+XJg9W4r3Ff/iO4nlr7Req23y0IJC3UxCOFosrGo02b0hrrNHSw08zsxu9UTAkWEUBgvSI/2kaV2Bfse8YqS07IP7g7iJGBtX2kdKmvx8KDcT+w1cJdywPbsmz1Xp2g1uFrwWjAvZF9i+Y96xvdd7z/YMSCe8xliOv9/g9QW2Z252bH+pd8GNoI4P29x4kM5+V3GC9+JmZr9E8FZRN5mJZ5npZnERw2l9NdmRH95RDpC2dOesv/F8aKbX7Okxh7bihY6YN8iG/ty9Xt5RkZpWx6VDr+bG+zfbX3u/m6LI1Qu5aSdQSLQfdw7S3/3pLk9cbXDDxyjWo94h9jkGXf+rbMwblT3Vilm0cLsc55hM42bVP4rD0D87jd1Q4feTev9sCC+fYr8aq5qsHU95nWNsvkg2OzjHMcaBKzhM0W+a4A1uWlvh+tlu2JSbCt5+gy+8gJvmanaEbpKZ/SyEuoTnyoh9BTeH5UspvW3IZMxJP8r7lM+5MBMzMj1Qbf6sobE6Of6zBbiUNDaTE1hQ6VAverWfW1HvwPXgmIyQOWZar8zb+Q59yeozjMDkRsAHcRNlaRAaQvWjuUnsFxN95CZibMmKdPi2N7hpsvF8F7ITPRkVw49J/+xO18r2K73XtvdTx4xXr2tu+0u9K24I0yttv9J7xU0YaTe4YT2YxslHcxMxLrnaKCUvKVMztpny04/38ym8FyZy7Ykjc1ku0Pjj9FP5TO/Ev5ueooImUNF3CL90+aPa5xxBLfROMG5xE36rjft3rPqdc4UQfwu9T3OTxcVoP3sXiHcx3OUmnl/cv00FnSu3n9WjrL+w7mNk/GxP799CVq76p2n/7FpRCCN3iz+uPsZ0rJ8te7dfKVewzss5XD1TwdX12dNPH5Irf9XGVVtyq82gHQAAXv9JREFUOInljJuIuXNF+db0mI/ZOV/MzSxGl/aLI/A7cJP76xcvvzS8k/JJSxm13qEpbs/OUwbvvk7bOTzGddsHBRZkmHqQvNK2qqVN1ysl3so/UJTHxpkeC4ijYuwJsL93eEi/u2iTLMYU1zUz5h7AZQ3yIUJ3ePSl3HBxAwtzxS/Lq6VVOxbs92HcrO3HvVxx4zDS8SFZTbkZcc0wFq9PeIX5nF+upmR7nhQ8avvIq+vfilcEv+lzo2D7Oa/9nQuyfeB5n1f3DKJhumv7mG+U+sUTg4/jJrb1cXJYf+1uKg30Yn7yTtxEn3u0CBRv8r3p7z5ZY8PqZn+ruz5E2Z5jel1DPYwJzc8O+LcoMswTvTSxVcDdhc8wYdU/sqH51Xtxw7LSzj7KWldE7F2u9+SGMIm3X+yPnb5wVez3GDceY4Zrbr9ENhkzLI5GbvyYyIXbDv2/aXurF5n+1OUc/M/a8uW8Dv0Hcm5WtkfSvvlW/aXnxcKKl5VLvbxz4l1uIq+Gi/NgnquE7Pdabpb2k5XfmP3eh5tZjvwyRfFj849ny9vB9/KL2Xnd7AHUuxcWLv1vfwehTkb6+h9aRtSzJedNpWPF+U60L9sThq6nSx/tQ6dCW9tWzIr6JNBmd7WHNskivXFJlRu8bGJXoyh+6f1ZbrwsE2OYyh8K9RiZK+laPoObHfutuGGMvP6audrjhnH0/mUYbUgeeFXrdNCX2t7z6pZlJLYvLxBPeCWMU16dHu08m5D9V0ZeYyyPtn+M14be+l5/ilzNuOF849beE1fuTM9wM/G5LM9xvhGYP5qoJvaj+ku46WfOcnG4L3y/SH/HzHGJEBsAUvsjytpkxexg8Tz2seMuP5xSY0n7EQznJr6gAWP0h8iPdP6lt+/fcRrjV6Xcf//GfqRn85dXcNN9NnDF/QttbQe4ztWrufF6Y16MskBfivpNKW/c4Ga0NXOV+Q3bj2R5XItsyMirf58QnmeUpY/2y8jrbv8KMBED4XmNOw9q41UB5feIuk2UfJKpWfM66mljQD2RLWU8JMhmY6JprsfsZtTxKDfMawvCzlW3H2OyvE9b0r+Em0wWuf1k5NUwmXu9lJuA+SuXH5t/PFlsvWpz0OaVFihoAcgpD3BxPZW1dN3OZcfFB0AHRNMp1f5VddYbkvWAUWiSNvTXY2o4WLYjAM3zXPhNudGsbxNeqd41VHmxYxr6W1tRwrTB40O4ySal7iQL+wVuos+lfrLNTcSY+GvGzahh/LH9s7D9hJu+lHHB65Qbjzfq9Zg1ON2cm8z2W7xyc4XnopM02n7qN7nth5wx2PMON9kAse83wv1rne9cvQ83eRxY/7z90ix6WezmTXwJ3fQ1V3A+ioEflmWbCZ+H+Ik2tMmpy7EXObVPpuB+sWVY0VdsqaK0X9b+LfV/vBELYvsnuHGY43m5f8G0R1W0lVMDNylm4gbUfm6/MQa9/bzeXW5wyRXo+Gg/buufKfrzznjVcK4uxHOjB/vHfhd5xZxXTWyS+1ySN7L+T3LbEBdRNnLFf7nc9hg3sX0WJ/O8WH9/NTeTcdxzhby/6ML6Ym4yP/my5ceF2eNFYAN0vSNTf7Qtmw/hcKW6svNsyjatGmT5yY/APkJtsrKrN2IsqnAc/bw9oPuylAoJnLBVAV5DdIb+yYobPMaNkwVQ7o6cg6xUaGe9g/Mx3PRk6JNjtV9LRBf2u8PNwFXkJkyo2X5b/ipe1nitOtqWtRr99Xnbd14ZMxqmzmu3Hy+j0ju234nlNuBkPocQF/VCU/qHPA3oe9i+nDrJGexz78lNlDWubFANOePduUkw3i1F99lwX+UN9lEo6kdSY2yUc/EOZy1GTbY1FahbgMTLxHO9V/w4jMDg3103YxLMMCqAs22K9TpulPTwmOi5WWASoU1p7nIT6nQe1ttNeM2VyZ7kR6lNGjfzuLJjACZ5fw9TNp6OvPZcp+jPipvsRt5Y8pr0r7QqrTvGC165rQCS+JE8iLGm0PtxAb8G6mlugmzb9KKWuT3JfjUu7uTUVb4ZeH3Ufi4uan8kyN7gprcV/CjvXz5t849vUpzNPVaVHnoKAEOd2kaHjm1xzpe4tGN0X1sX53J66bwbGKeyqpADPrDCXYw3CoKXc+PqSrj8F+ej7NvA1Xtxo0EWjpvhSca2/S64GbhacRPtd9YX+LveNvzoCTnI5/gYyvpwXir0Ml7lns+BuTGYrR5xPMGrLRtUO7aSRSsK4LCJ6yu4iRinOUMbGR/CTfSbOsCWuIBr+2HcDL59v7zJc3kDOIe4O5hbF6+ABC6BInu2cz+fUzHEK4LvhEkS5wlbGqf9/RC3FfYTNhx8Ev2irEy8tfdftXOl1f51/LFJOhb+7d4XXvgOao7huBJQTg32G7iitqrlJh+meuMYkvscElnDZP0X9Hylg/2oP1W41/us1/pjvJbxlJZEAwM3a/+8mqf07h1ufEUYmyrvZE/bvXSwiRngibzR7a11mfQEU42LzhXnuhiPfjy9P4djTNEHa39DXDT70bmY8z6e3uEm8mq+eNN+gZsxd9/hxte/blEj4xdfPm3zD3uZsRRtv7c2zfm4zm35fP33VLbKuScebXPiGgT11z29ehNj0r8U09yp3o2bKNtwjbIICeF9uelt/HCZcXXXfvG83PaKGz9om35x/4KWonpZk4+Wdv13/XrU9tr+NWz9jmDP2vGdKqW/+fnLu/Eq6rnUNVfDuan+lM8p6run5bh/AuM978O4QY/Hmf0QuHovbnLZe0XqeUdd+d8jLpbtFmk5NOCEdJ2wiZwWqQP87OxK78qGCX/Vh31ur7KUXxsmJyvznLqNMXKlzWaG6W2a23xMKsnu6F35oG/vuRHYZV20X+BKu6wOHO9yw7iu7ffGxzJM1B/zudY/MXRKsUynE/ul681GiDWvq/4ZXppex9zW1HXZNg4422vNOYI5r1cYywltW3rjKn7nznh2pyduOA/0t6FWen3/Yl9b3kdYZUX267bVdjq2nwSMgP/7mpsZxjAfi7lXLO0l9nNnV+7sht4Zxi9aFPhxYfZkeTtOKPlJu2tiTnH0uiW/bAezXdkWPFYRhS2P4n2Aomymp9WPmd6kbavz4+kuy1+cF9hOWPoh3Ni20cPuV0BpLPWEh3QeP5Abrt+133tyw3WznwRurK3DOO3fBTcTXm3ZwkzWkjn7WLdnnswHjC/kVUmRt2ftT8pV//uVPpdh9Fx5+30EN9bfI+NqsB8arg/hJsjeLYecyzhaxX7/oPBGH0Me4UmF3QXn6U7WNvpdhpEvNA0TMLH/kNt6nwoeQMV2e5Mb3ESMCVfBZoP9SXbg6hB8byyv9F7ZzzvNMjYcV+MHBOzs9u8+N/GYtx+wiI2Z/VgWfVn6ft4Y/QYw7xp5jPWr/pV3BPtS8c7bft5QoD6hFJwJx1cYff1sK2/KZludK8n6t4gpAzobX3diuT0RRd3oyM4juf3GfFPPRVyZ9h37RVy5/ZTs1y1n/eu7Xucx5e23z80M45ctX/mB3o3yae+YvYl/8VrrH85ZQv2NEmN7FQs9WOwut93LllhnWVt6obakY6I3wejqUS/JnguMbfwh2YOWkhw1pNugecHNETDf4cbxCkC061UhzBbhR9ez5CbBzB8IvcONtW2yu/ZLuHEY73LDmNXLHkIf8jSFjJF51YXeyM1N28f+8c2J5mPo9myYsv4da24Yk9O7wjy0tQvyypXq3PaAmyAp+RTj2NMbMM64mtnvghvG+Aw37R2y2ibGo+NqxQ3Gto2rOxit4c0iUvM+Et5Zd3pcG85D1jjtAiD6juVToN/MAMvGthOcPT/1aYsErkeMfhLMbW1XTgXKJ1LcrrdBLxKburo6vTFGIxeScNXOU8k6tfsgc8PcLe0XuIrcuP7dsN+B/vmJ2/YD+RRG+8WYXNov6LEnQeVvdXqLLsn1gGMbZQagpf08LuC44mPQ/uRfpC9v4wurJivESGITK8U/Qx8Qee04Yqy7C2FR5wsHxosFkJ7oN3ZuG1/9Kwhz28d63zHa8ngfx+NFaLeZpPbjyvmg/drxif0KDn9R9ib9bLN5GbBnv9jfGFNfufzYlfHpUszcl1h4s7s6r+OmQOiyfXAD+o5NFtQS2lobvx0t6Y3LSWq9YSLMvL360buV6mWMwh2o/207TdVfWj9X3ASMrU5c3eWGZW0725YEJ3ozbrr9euJ7lBsJvLZ+ECN73HifG+x3xc3C54blYfbWNGezmU1WfmM+ySfh/i76F/2IJyMviSkrNBqk/jr4p/S+VZq0XqDhFjeRlcDVBTcOI/rQLmJ6ws59j8aUGy8uuIkxRX7Ak/i2NGqid+BmwFzpMp2tfxv5xp19t9ATpoWPEuJe5+VTjlt1bQ/C1bbDT5Ze9aVzrM1yWL9R0PpMFyZinFNdtNvBYyyjzNGOe4y8fE8dq/TkivPVwE3EWPT087JE4KpyoxWT9SHDdEjginKd4MJ+EmxA9tPA1R37lTbMVR+Dhs87RPtRcPa8SFyp/4PtN/Y3xIs7vZBv6HBRjYnfWLJp+WgWF/Wvgw63s1GMvNHnPXpOZdsX5e2BQxJjinrh2B5tZrx2jI5r96vlMlRurMvcoi8NbMiD3xzEFaXPgEPbxZHjGP5cPV+eZOuaJ6Lt61jliAoYbZntI/Zr/xCvMf7E2Q9trpFxNdrPuPLcCMrnGviG3cx+P8r7lpdcmInIfxbAPwDgX6yqf25H5qgJTetAUGLdvqpgg0IdtOtL+d1F2OvKnb3+hfI4kHOdjpue6txQ0hsSjf+KutaPgJ44aMAIkZBgBD32HuumsR+XxkXOTcSorS4SzqMZxgU3loQYow3a9bc1N1Tfst8GN4n9Ok/dfiL8QdzMnh5jbj8N9QtuAsacmz3ZGTftXJDRF5L+Nb9p5/Mv4MuM1ynGkRuvt99TdrafxZQNzHRu2eImYhx9vW2hrRHjPN8MXNFjynhxMMc48xu5Yb8xprz91LXN8xxjpDiJeQA2gVjbb5V/7pbDFg7VfHWEF5g67qghcus/4C01H9vOmUK884VGnX7gze4Y69Fy5ln56fmKJvxDTu3fM3Lx2vTW/jn/PhPZjunQsy5lPKh/1oe+YZXTy/mrYTwpNrT1r9iw26Dx6Lg6nX9r29xAKO/LMN4o/60RY2Y/9nd5wH5lmVnnqvfv2n553vCYsGW/nXxl/es2sPeipI1FzEXHweNAzquCfK7+Vj5ObyTXZYPMRcVoG11wfvomZVdQnydbFuv6bSwYeDVNluu8rOV9W4HQvslFshIwvTmuMBw320M8N83nbI4AW4nEuc6O1XlKPQ37nM333lw8Ws4I/QtjIkL/Yj52/UXoHwARrZue2I2Gmf3K756rEBfMjXRuYg6xDJ/b74uXH0/MShGRPwrg3wrg/7wvo3g7+mJQN0RVv7Gxudfro+YwcNukAVISMtBtY9uDZnrKuctgrIq+pS7pTWVFYB/9bMFuyzTquQ73TgYFpQh9x2fWXwuG/t2Ya24iZubKuOkYzQa8vt1x4/oL2ISeuZpy41Z7e/th4IbsGe0ncbe13H6qWpazkP1sp6e1bK8fAzcT+yVczW1wwU2fn5TkrmX995wbrW37sWn/MGIs9eCvK24UdcmvLLjhtprqnXJD/ls41qmsLfvk9fsWJ4NvZ1xdcAMkXIlNaFdxgaqnY4J2nme5Sq+4CXo6V2a/cy7r7CdTbqI9L+2X1O8WAfBNFG1q5PpcJpOqgvIlk3rBhLLF/tsib7QP29c+HvV9xTPTU/PGd+05EqhLfITfgdsZb+Z5gye1Ap+PVTCOAyiTvBOVHxsHBGgXS8l4A8vHKTfabda4Ia7AcRVisOZ9rdwIxI1Nnted8Sbnppqwzg/Jfujxe4gO9otcnaF/e+ONjw2Tje/s7thvWJYOGz065i5bpL7HGGxcdJ53fU7tHd3mN51ns8836x8sp7I9+7nKx7uLz7V3rKsjnYk9Z7yaTWw5OMcj6r9v5HN9Mxe2fcXU9NznJh2rmh912wuKfd7I57z9QBdlPWfIA9w4zAqc0X6Rq2A/oMZnZj/HlbZXd3a44bqzH/Xvy5aSrD4bxUvKK56Y/dcA/D0A/uE7Qu1phcKycnVCm+74ul2x82DavV3RnwbUn2rClnoufx47b717I/7XdlPBZBmjtWz17rgiJNu7UX/ody5X/SvRWf+6w43Y3x2zTLlhjPW4EDeuv50CW8agWHAzwWwY9+xniSZyQ3orVyrAG9lvzivL+v413QM3VGgNet6/9uceNwBQt8g+aDnljJs+AVAHLu1fsEHn9qwTrIWsHWnr7OfctNZmP7precmN9B1RxbAs/MagFh7tZIrOBBKu6NCEmxhTQnrtcG5PNPu1ZbotjkivcVXtKcI5YMINYXCTNRqAHTdOth4Ru5t6OG4GXPXv0p/cBquYulv6khzSBZucCM7Tbl+YrrO9W5LHBr3vE+xgv7f+VX6sz4f5LOh9QvF22MtXWU412/JEocgeQwwWdXYjsZ/LZoLMFflop2k7px5UB50nw8+p0pa/ubwYYmN/vKH+tWbi7Ycev95+NSpEIXq0c7D9Gq/L8Yb7QfZCuVhoLDMRif1ibBxkQctrTZuEpZrBBjyuta5o13sZvw0P+03BcHSIxQ+kh7vLOy3vl/pBXLU5gMMceaW5lJAfCdqTO8MEcA6zDWuEZLse9+29TW4iT3beHkHabNDfMfN5f7Rf75A8wE0HRlyF/rFv5farF7N12aELyXAutTzXGsR4ZOGKSUP/Knlvsf2XK9ry+S+9PHVhJiJ/K4D/q6r+b2Ww8kIOtpzC5licKL2zx2PDiWxQoAH/IMfu59Iu0vTa2t5wjE9PGNvOfHGAibgGjIyrDiRJ/5SThtqdqz1uYv9ybnwQ9ySQcaPuXP10edsZNxGjHxAnGFvCe8Z+V7Kj/VYe3O9erfpH3YLnJtM78kp+FLgRO6qATfZu90+AvufbTLYOkg2Kb8/FMJmtrmPZ65Va59id+Y1NsqAWJ6PfMFf0U+jfGmPnaoyZtf2A1ZZQ5dpSJ/YLeiaxzFztxQVhilwxtln/NvLNnWJPv/h87oOpWj7d+rMeOFCffB82ERljw/gQ/zMg0abWvviRQiEKnDjoYiDhcpKvhGzI7dvfERMif+oxAWg3vFTwne3QnhbdGW9yjJbD5v2ldo2rcppTI1eh7y/jxv892q/8VXLP6XbNG8eBffvtcJPbbxw/4mjix/HQtj2V6HrbFF4pJgPmoVvosW889+NanwgRw/XCbdY/uH+pRnMAD8Bj7P1D0FN6V74V1vU1Kf6m5cANbnMTix+rMNhR7AZ6Yj/eqdf76z1uWG//O9jPnWJmv/D9Tz5X9UqeH2XnHqDWGOuYkfjJj/Le5fLCTET+DIDfTQ79KQD/BZRljJdFRP4kgD8JAH/F7/4VeKtLRnriBYoLjklZgNa2X9DYGtvi0OYw/aV2BcLHdJ0eLXdiy4dGxZ17R+8b6COlG7K96PgFdoLsg1TcNu07GNH6k3MTZU2x9FupXdZ0V1wq5W427zr1Cm4sISnKXbWWS3gpTkPnuTKe7COot7jZ4JV1Wuup/QKvjGmH1y1uLuw52iTyqu0j02n81W2Vd3lt531BXLxRPMa4gKJc3JAPGsZdX59x42wCn0Ns50XzmxlXU/sRN99QBvl7GDuvZj8IyAcNTecqtd9E7zyW59xw/apw3v8X/O5f3i/MFGgX2xB812LVNyhOOQFVvB2Kw94kosmB9YknN40PNb2ekDYhU+BQqTufKk7ebTCZrKZjU/3PN/yM35HvOCH4HfwBfiPf8Qf4hr+ob/iL5xv619zLXWiP0d+o01PKeCQFR3/6E2STnNMggeJKOlftY8Fh+WbkyvSA2h+oE1NRqOOKOB648fFtOydyXPWnfaF/9vqb06OD/VRQbiKpEK+Vm9mY4bgp277vcxPysWr9WLp5Se435YZDeWqhfK4Yv9xfrXpE8B0+78/Gqqa3KZeKUduJD7ElseXp9FHtaT7Jvh39lccfuxwYxpCYj2E2Us9ju/ip/2u5SXCyPZ/kpkEKNhn7V3ryVm/4SRgjoUL22+cGgMu/4xygvseX2o+5Qm23b79Tz7Y5SlmkSfFIfpPOAdx4OtrvS5cvD3CvXF6YqeqfyH4XkX8tgL8OgD0t+5cC+N+IyL9RVf/vyXl+D8DvAcAf+Vf/EX071DlEec9G21pmS7A8vraxSuHv3tVjB9ePftejHA53bcT6EXGSngu9smqLPnhJO+Yxob663Orig+Vtcd5djLO2btB0XPWFRHXKAHu5mzG9ghsve8d+3W72jGKLq01uMvt12YX9QO8aaOSqZ07m1WTfaKqbcXMXMx/rvPYBhzGj9el0mOAmLgu9L4iLtuysaSccgffG1YY9Ob4zbuZxUS7KOGcYQrP9vv2eiYv+ZFFbrLbuD6x5rtb2u8tNrO8Uzvu/+6/5q/WbdN+ynFJ0S/nEgJZd0cq7G+XC7Juc7h2eN6c+8HH4d1PjciNB51QhYTv5Ez6+x7xox1QVvxHF7xzf8YfkD/C7P/2zEAj+gn7Dn//5D+H/jb8CJ/VUBH0CKrbkjfQcHd8h3LsYkxlG37+eu/sA3zBwWyGbE1fc94aJHGD0s/HOPefFN6d3fDLlLqSC/Zgr+94UKo+not44sSVhd7jRm9yE/gnb72zLxfqvFINBVkL/KJ2VOGvHFW/uvL30bBT6K2QTsTblSRDz+gb19nTnDjYZ8m+X6T2lvBjGSP95AH7KWPMT5YThEyyv5GY2zsnpMB3B9u3iFjwOzLnh42/cFjpyM7Wfevvhnv3eqrOvMOVcXdvvS5fflguzWVHV/z2Av8bqIvJPA/jju7sySri3YDtQ1bOHJUnmpOapSrLswBLalkBrk6LkXPaoVwfZlV7r86It1f0yOMBcXhgz+sxI1JDzeWJ/rzDKUta46N+/GLmyQbC14CT5Im5YdmY/z9XpZN+0WO+e/dbcRFkZ+jezX6+/CbXSfnHLsv5ccsHrRv8Cd1lc9G3etc+Egu0Z43vzWt65omSqngvGT2hexs08Lqi98r3NuLTzEfttYg7Lvvbsl3H1Gm5y2XvF8r5SF7SxXng/RCFy4A0nRE70bxT1C023Q1mVRr3As7Mxd61e/3MocNLz4Iy7LC+WX6vNRfEb+Rl/7U9/Hv+ib7+PE2/4/37/Cb8vv0HLCXQumWGqP6jGfnVmukyGqfjlQfW+vC7ydMWVxwSgchUxzblx/k6IMhzuXHUIlEG2tHWT+D5cXmB6HTdESThm5/QxN8SgO4uGM3IfWCqOF/zrOvbtvGUzrOhLlK+chO+vceG5UUJneONHwK/95BgwGdqP4MaPcfwEL74KE7nRfnjJzYgr68+1/QRIuPJjZM4VNjHNueklnPcrFsWPzT+eKSJad+cqy4Fs2D2lXwjYxwb5TtY5uFHdzADmSrbV7hi0nISgAOSs//oV4pnsqJdTRNQT64wpYKw4+rnqpE/642ffP04mVxh9fc0Nn7frKS/jaj8gfkh7lptzZb+6bmG8wwRnP+Pqnv0iN3NeR24ye9ow0H0W4N36+N6Yt/3MJiM3z9oeOJpkPSYCxfekP3sx9TyvHI9KPqaeq8uY2rffNUY+Xo9l9ntHbqJsj0ftT6saV91+OTf7cf9IXNwr/Xs8ttub1M9c2NO9cvzEN/m5xlKd8KDHlfPh9ktd1qPRhl1WUY+r0I0S9v/rvFjOW1j+Df4Af9Xx+/hDx8/4y+Uv4hDgZ/3L8Vd/+338c99/g9/Xn0iPv6DnTQjKcihbLaL4XrUM/WuYFNHGfVMCJDbknFNzqoQYrP2C0G2Qsj1m7UP3oytuFHBPwNleuf3Obj/iyqbWMacKtL0Lq46ru9wQjgtuAG0Xa7lNVnHlcznf1FegcZ7LesxdVHAOsZ/ZpK5GUG0bR5X++kWYKllONZtQ/8TjULL4Xs5BxVTi+pAz+Nz3G9yo5/UmN3a87RZZubKbC93nTmorPXYn3ET79f7EWwJ7+aZwddd+MaZmuPpb57lv07kI49csirIW+pdfXnZhpqr/sjvty4DrBwK7LrOgOGiJkyV7n9x7Wqg+i+Y6SoGFfl4AZfMAQXNwXiuWDSL8Hgbo+HzAYffug5WtLWf35kfzfPOlBKMNEjM9K24Io9pEIHI1WW+sfSIjR/8wZcbVfW5YttsPU240tV/jTf27Sre5iccaV/mgyPZkH1MAcdmU7SbXMNZzX/XPvReSYbzTv9CfQ/qym7NNUjn9rv21+cKV3gvMNuiUwVeJK36XJefGYUQffvf07tpe+xIsrU8MKlcpNyGm3gJXd7gZYqqu8VcAx3HDfkCblGb2u8VNUr9bBPadHf7NvrVTd4CT8jHcN45BWeCMuQ1wyx7ju2kC1HdBbFInTnb0M4797rPlKYTgn9W/DPJzyWXfceAv6G/wz33/DX6WA98Il7Op2PI8bXnDRo3vKjj0gN/0Q5pNgW5BtnfjaoubPK7s3Z+mt94kORV1B0RJ9URuAL+UsWP2sW91mwxncSSNq9LWlsKW70cJzrozo7ffBjcDJs8V57bITYyrK78B9a/Y28ZT+8HH707esPfjLPfNtuk/ap+Ow54219u/0s92qtYxX1PMrDnDUepnyo1vW4rZE/UGPXODwE3MbYZBkdjvBjdxnCs5phx9o3nnib4bYRnHdRjHd3OqXUjOuIl+xGe2hxlNNrEfRC+5WXGVccMYfh2XPL+M8jlPzCZ/laU6PUCk3mmKyY+dp7jUWTev6C14ac7R2gsFB21rIPl5o16Ev5G2tb+UJuq1F8Jn0LZsoz8hqOcS0Adu1emZ6419yDF7rpQGIGJH1OFSYg08YUr5WHETMT5qPz7LWO5xk/Oa2c9YYXsKaZv6jZlSvGxmA4XiUD+FeKntQZNL6ZgKjrF/Ljgmela8zmMq8mh3q7V+Q2bkZqirwm+P83rbC9C3HG53JfNYzuz3GDe+9Kcro/1kwlXsG78Y9gw3M4z7pT6FMaQtNuy5ty1dLMgeyW0S+LDoPYLc4frntzRI8yL7LMxngX9ev+HPf//LoCL4C99/wu/rN8KpbUwTdw7rXznH2eqHzxMVG9fTWAhc7XITzyXNz/wkzi/vWufFa9/hOAvcUFy1VTOtfx2R6T9cbDzGDWP0sT9yY3nS8cp66yS/nauN4/1cLVuJ3XC5nzfixkljf4sfldYn3RioeqRfJPd3qng0qwgu8oaPqfEyQNqRkbe+CYhhloEb5q2fWyHqL/3Z51bcRH+1XhQcJ3hXRuOq7ZZoN1Bkj5u1z3Vu0jmAa32m79Wy/djHVtxwPbNfluc8pscz/4eU3/Z3zJ4th7aFe2gOJDZgnpQMtd01yZJbS4zttkd1rbPXexY6+0enVQB8hy2dqt85dxizgVDTOpxsv7C0UnfTsVuAqHcjK8bWPy1DtFYy7Ax+6jnTu8BoY4PVNefGBonIlahAcVr2Dlzd4UZCPbFf4CbDyFyhDWzHY9xEXmVhP4cjsd+V3op53r+iVx+y/UQv2b4PIRh8buyf91dbxvqI7QUZZp7U2A8l7vVEuascueG6mu0V17Zf+QLxmtpeQ84I3MR8M7XfHW5823KmM7ffWf1vGctmv5jnbnAz4fVOKVGqtDMl7zYJvNWc0zaDkQ2cSW5zvoPKh0NR2n4vu6mgLVSlHNT18EVKr9tTh7+gb/h9/Qm/f/6EQ4B/XssU6qg7SzbfQfV3EajaC/VnWwJt3iA46W752IcyF4wYdahvcePiqktbDNgU9YDgZ/3e83PEFLlqsE1vqcfYH8bxkBftXPb0vPe03I45oXXK+n1hvwk3KVcaMFJc1f5af8x+PSZ7nuTSdrYDgmzPG7qbN4jHuS/QB7bR51KWWw0TVJre/mPPG0rj3LmVN0b/jHV+TnrAvk9Ivyqg0t/55BwLw6T1w9eiA6+jz13HcvG87/XJ7FnnoJ6rujcprFcdxy43I6Zr+/XzHITYciP70SU3sDKLx3mey+33RYvixztmTxeLNzO3FAf8iR5tH+i7H10tubM77UBd4nNUWa0uZXen1NoD7cvoKhD53vRA/Xa2g16uq186w8esb03v0fujDWP9mrvNEWqQ2WA904OF3hVG5kobNx0jEq6kCvelU9+f5mbbfpUr241utJ8lqdF+M71gGy14rSmPuGCuRvsBtokNccF19rkDfZmGehuw77zO9n1pwhv7HPMIrbyav/ZdUs96cub5ju2HmGq2L78czNUB0hswmQ0O5nnf9jsYe/SptydzFewH40r90PoQNw5zueveuQr2Oxb2g7bt/l9lP5a9WwTAN7FvT/U5yQlpW3kbb20pY3Xanp/QnmgUnP0juJYXDhdXNAmqx0Wk+n6/K2zv0rrt/INerr9Vnsu5T/yMNxwoy6CKf5ft/rnvlje06um4TnyTslX42bD1Y5xHzL47GAGsuTmKj7fzEMYyDrTnCHUSKI0rzouD3ohRuq05p6bcHMEGYjm1g5TKygnmKrdfj2f7dlY5xpfqGVfdtiatrn/tvCRrmqxPbbyx+FWUC0DObXWcK5i0xqjF8z1eS1ueP/QlmIKzLck760l7/+xcXdbGo1P7e1cFc7fBvu2pv42rMt9jzlWk53IFUHMbKjec9weutrgxzKVBG4trW1tebBeNNQqg+n3k5qjcKCCWj2FPjG/aj7jM7Gdn+ibBBitunA9KX5p5yU2G2dvvS5dfAsaN8mkXZiUZ9NGyTIL6tsiiZ3vZEejv6JSk0O/a9cG8J9q+vKG3tzb9HZLimVoHq36HQWGCbSiKerUf4K+9m/P3IQzk3bZUzBr1F4IB1AG9RgsnvkRPH9gW3ARZIdl2HrEmVaYt3et1u+Oi6EvfjO1HuIn8ZPazpZRC9SZ3Yb81NwatdRx9l7tu+85VN4Jhilyx/ZhXSnkDZgjcPTb+dpBULt3d0SvbR16dDZjZ0/kg+xxPRLq/9lJe0gaU9W7bPompOvEzFto5yOc6N+ImS3bQb+/9CDeRV/I5dPte2c/tICulv/oMNyRbfrcnLIq+QyHS97DMfs1fG0Z6ivYQNzmvd4uIfVog5sUW0XWyZrHEcdV9BeY7rp/jTr+t1uLV8pe4bb8NR8c56gXFBusR26bd/NPWgvDd8OYsfhwQ6U+O7OnZYUsXa3weNIZ4vUnOIfszB1vcBD1mj47NMHP+XnPj7NPiQbe5Gcd5Gy3Kf42rnq88Nz2/nPXbqVL7Y6ssAHuaZBNQ99Ss5Zw87w9+Ay7W9xqnEnnsXJW48P7Y8saF7VuusK1Oqe/m8/a+rNmy3V5peaMy6/SiXrD0CziXF4LP5bY3JvrFrGESlJVTEHuKrY19IbwQGm9q39/ISv1TOytujGe7cVJOqFKWK/Ynd6fLPz0pTriRjuPNOLWbiQ3zipuImXNan48dIRYuuTESjVeVwX5rbhiz2Y94/VHetXzeEzM3WT7rC9/lpW+bCNh3S5pz8GDSJjR8wqze785xwrWpwTe1v70TYqHXfVcqtkWA1aNzwMR9q2dGu7uh5ZG0nSLTc4XRw2B+NB6s51IadHVsnXF1k5veFq7tnv34aEHxDeh3smZ6xUt3zDZMR/sRlmi/lKtZH/xvnkcNskEq9HnZP4S2JOveyavYeWLd32aouHiwdX1PcFz43JW/Nu4vfS5wFeKeY+4ON0N/iKt6MzJwVf9Vr2Ns8Tw3LFv+OBvoA9Em/Q91Nhv9cfSjXW4yzHeL4q0+sbMpNveFl3b6fNW27XATmLhciPX4v8UtByqbsyhOOWAfFo79TXuZxoa2Cygh3NpuOijJVnG6SBQ69QnFN7FnBmPczvuXYARNJHe5abnNt3oTLW/+qbd/Os6leYNzeWkw46bfrKVYRIzvujmHnO0pRccU/Eakfnah+IuifshbD6ie6Pz2JyZpabmz+9HMbxhjif2C6k057yGRQG1bc7T2ZY5rXk1WnV6gTuK1f6eL3z6y/KYk246GfKXt0U6S+a5wOb3lovxAxwQo3oJDGb5xLKazVq7e1A7uxIX1p/z9DT0eD9F6c4JvTFxxIw6nQvqFogJuuWiGizFhtB+a/TqHZWHlNTfMYourHftFroL9vnT58cTsuWITnzJY18faUHyT7y0gsjuz0c0t2QJ9wtLvRfiE3R9PH4B+xwHBd0kcdanXJgW+PpY+APUVyn0wbjsU8d147UFXErgs9O5wE2WTCUT91e7WMVcNcz3pOeHqPjc55qNxY3c1Z/bzXJ3tTufcEvzkzy5++7Qu47VPAN9IDs2eFbN7muJ5tbbO59rES0Jb08nn2uf1yva8Vf7gc1KWONjE/EDnNGKK5UrvqrSJJ8pToZnP9bbdX3tMPc9Nq9sY1o5GnytPIM9a37ffhd4JN1v2S7jy3Jz03ye4eUERAb7J9yE2zP5dI0ir1GWv/d2ZMonqSyztwr7XObLVP4nQsgzRJvR2cyi/XB39SoA2SfX5qXqu9DNwzmn9TZ7KACX4mv8L533/fsuIMXDl8lNfIsxcscRRFz7ZmMB66o3/+gYX31y45gZ0LiGbsP32uOG61GXrRe7EQU8PEm602MWW4tkmKm0pLvsN7L1GPx75GMzGjGu/sbeQTunHjSGNNglzABurYj7ObO/1HrB34iyn2TLPeNVVL08LxtDfJhHmAN23JfwXaR3hvMaMvdfV/YYwKdpTzDSmjCvx49O1TcaYajdJ6gU8v86g8DlV68qTNKZm9tvkZsz7GOzX47WfMc5xei/r2d0YEblaczP63Fctih8XZk8WiTaW8u7ENzdw2GVEVvd3OoF+IdfSqZ3L3uFpx8/2V/8K+kxPTIF8iWX1KNtxWABJwCS2Jj5gBsKShqWeFTd87NzjSkF3c01zZ6Cb7BluMvvBYYpcjfbr7BxNbs2Nx6zu2DHIdj0+AVrynttvaEvclB+0rfXvN7F8MvELM4vsaM/7tm+pt8WYNsD2QWzRfHLU+3dH7yqm+Px1t0F+ykAX2zY5j1z1p53PcEN1XpJoth+46oP2yn6eq7vc8LlO2n8gsV/gytvviqvH7YfQ550iMD+Ll/n9q41pfqJltS0mLR/wssf6n+jvzqaSTYXy+I11aTKFSx/7/X3MbOo8w+TeX4JAVLk3xf6Bm3ku75ffpc3ZMEWuxqnW2J/2DTZF854VNzmmuf32uAn1ar8T0m7kTbkRfrpc+y7AQeOcSa/sdzUmDHpTbsZbW8YNgk2AOAcwjOJlUz1W7zu4Fv9K7OvO6qOhc2PI2CtDH27FEPPXx8IUEynLYspKf8LEODxXIzekV/v7hcUPYu7LcipfyPEYUv54xH5zrrQueR4xsWyv96O5/VZcjXPFWP+yRQGcv45N/T9vKaMrWnbkgqJPIIDm5a7e7+lYsYHNJ5dSFyg1JkejQYdxzPXGxHpdd+8Oub+0X6BZW6AtuWvv+QDwE+srjMxNDF/rg7b++wsUtEmNRFmbzHDmeYibKGunn9sv8gjCv2s/nerlf0dMTUx8+6o+keUE7rXTWUu93SoN/VUe+me2X/eXjxV93fbRxn046pM339ci631y1+euMNbj0gc9P4B6rvr0qx5PMe1zE9uaPuYpG5rb75n9Glf9fuV9bsS3b77mcflzmQS3oWNT++1xk2O+W+z9KT956Oh5QhjyFcVSjFtw3cyS+D+XQxQnbSs9j1//l7T/WQ/8ZLZL9JLnF8bkLx5kiKsoz3p5BUTggvoSueo7u/XfZ37FXK248XpH+41L+Ha48f0wpLn97IyZH6G3lfJuk5/s9zZzbmJJ5hrIuOH/Wn7v5+VYYCuyzay1H1Myf+3nbRyI0kXsaF9mOzvGGKT/p/Ul9jobx/3qpYLZNibJ9DKueUwxJrRfSjt+Y23kJp5HKsZyAeRtM16geHvGc3E/1/Yzzbnf5PYb/SgbhRDaNkwJV3Gf0vE8o8992fLjidmzpdyVOPAd3+r7ZWUd+PdkuYWleB6sbGFedZiaSP0uN33Cr8HtVe1OtLTkkgce4Df292HgMfYQONADW4qaviOQ+GRosn1nv77wwusdcay5YYz97kv5jlDn6qQnUln/6uZRULHPSLKeu9x4jNYHsx8CV9EXTPZM7Pc4N2Trmr3aMlrx9rO7tpn9xv5FbuhuVL31y/6qpgfGs5+i7POa6a0sVZ1+KRHzWieH0jGZE/vtA4oeHzMr2/vkPtp+tHV//8FzZTsMQsy+z3HT6uUDgu1dk5o65v2tJ2euBBYnP6PfSb0bF1lMbdoP1/Z7iJvovw8M0ALUd8zM/m5rhCFf8Z1wnqj4WEfAidZHbm3jwGmb+dT+9OVzNk1hPWNdCCf/O/aBJ3f9v31MIH/XnpNEDgDfAzekRwHQhiHT8SaTrVz1HNSPmaeav1ve78+wFSLHBTf2d+fConNtv95WIQM3vFGC7QxXfLw/I+zcRBz+O2NNF7lvaj+6QTVw4zDdj2dbImro2KdOgbMl29ByXdNT1+HmPld+sVdEALSnZibb3x3qH2lgf3U+aP2lvGNt3VhVuWnnGmxS/u4XGmcfTx2m/mapHzM6JnuXSwZMdafCwQZ5TJVd+U+8NYYLI2POMBtcjHvC9h3t19oOfjTGlLNfXXXTuepz4+fs97Prn5NN7PejvH/5tAuzN5S7p79z/EHZXUwU3+RsW4LyAAP4QGsDBbuRwE/sxAYFc/AoizpZsRXDpqcPJgDCBXjByecCEGRZL9ogMGJCTVBd1oyhNY0cFdds4hKTXeyfx0h6wyT4CIHn+6dN+oQ2TMBokzj5yLlhWbqPJXDruiNXR5D9VttE+z3GzVwvD+K2sYIgt9+1v3qMduKmV7vsm5PlpUE7vOZcAMXWs23PT/DSEsIk3AdpbW/xSgndD5olpt5AceIwVXsQV34w7ph2uZnahDZlUJQc1S4Gn7LfFTdz+yn87q2vs999fx1z5L0iKJ9DOTX2EWMuD9kni7MeG97Dhs9dJPyc4CcuY66zqZBZuMT62fyOYz/3O3VcugsnBb1zhWYkBXDqdxx0ScrjYJ7L8zw5zxvaMHJOHW1gvyhORcXUZaMNnrGfk1Wldyg796g8fqv8n9A6OXVbJSSx3+cAcRfXt3beK9l+IZGNxbG/5VzVj3SdN96ahYvemPd9nFCuU7gWM17bFvBCvq8+p57om29c5as057BevcrH6rz7TQKvxI0SAWN+GuPCypDr0nzTZd9gPli5Qn+P13IGxzKIK2CVU72P7dpv5Kr43xAXD9hvHF8z+/m2M9t/yfLjidlz5cCJ3xzf8dPxvW7nfpJj9oRiLlO+F1GOCrQtNej3BLw7lXP1cDJJXoJiYXLQbz5ZK3gk9hh5csIYSW+D1fV2x/Z38vqAWn9VCTtYdcl47+igkOnc9DpPMBjTyNUJj7U7eckj0r96D/9+XvxYcM5Nt9HAVeifnTXaL3IV15ff54a4WNivJ2D7t9+BY0wRY+5z47TXydpo3wYLbpH7nB0/2laXXY80Dnm7dY+xTB6jDQij2lOaPB7nGAEQJu83JaYOdH3upkjAFLmytv1O457PwTHQ+8ua+65ho8/Zvcr2jhdhums/XNjPx+lJNrtjv643s98ON4z5jfpzt5RNXhKcbbmqPd3laUVH5XNO7KO3WT/UZdu23wDUfWes8qOU66qoXSwcOMH5yuzACLK8aEea7NF5b38p9bM9cWD713gWzjlnlwlczezfMSoGrqrfmg1QLQEB7faZ2SDKdh/lllNZ4kpExqWoQrlcLQbLxl09NpoDdz0UhyNXfSzO/bvX+xOn0QbS/tdt4EYv6Voap3Xnv46PMAdudKjX9vzS9SwuVOtTMntNpJQjyir6axQ9OpbctDzi9AJ6BNmY920upQoR+0afkP3qWGVdoNw22ivwSozZk6TWXyebxZQ2TAe6z/mxStscSBFjbPSb/p7ZaD8RuI1yMlmjpMWUmd7ltsx+83Hc/5XYL3I1YHws739M0b7s7BdePunCzJ6OfcdP8r0uY0R/xC99FzIeW43y/tFXS+ZUtzswlgBaaFRZlPPYdP2A4HsL/SJ7agjdeh67CDAdIt0PBKgfHYwYew513yUD6OKyFL6EKF+V70tA2kcUMZ5LtAeq50ZTjIyLC3Nu/yu79RXy3w5pdS9aA56+37HNTW2rZ87V3H426emWsnb3uan1w2NuPic8VEX79aUo/PFNUPvoc6Wt9AEBNhxNuAn1s3fJxYUAOKVPEyKPvESvPwnqGPt0LPG5o+uVoDfDbLyWdbBS7m7zfKAy9FYnKPYUl32OB1yeLlzpvcoZdlPk1LMR0bmq/GiPc1s2aD5XZJUGSs/VLjfR56CAHv0ZD/tct5+dR4kri4I+ZWGuWG/bYCeNxytu8GRRHPiO/qyc+sh5kXzUxUbsE5h3ukBaxGDRbfej+825Fr/ou+BJHRPe6uT2TfpkMsvH46dCePOJ2DbkjdrCvotkN52y/qL1t597/oHyyZhBVulLhvs4Z5tnnCrl09n63Q0YA69B1tlvyg1jtDGk8MB5EaAsIGZDATQs9w+88mdRuM8pV+Tfo17DdGJlA7fUup6HbzMwFybQPnA85YZzDoiVMadGWQj6RRltbjHIih8HSlxMxgGyWX8Fg/KGm8UkeaMa2T7EXm4uJTFleVL62aa5DaPtT+18ZPmGZe0j5XZRBtjNtYRX4XG8XmQHv/G5KtqvE9G/NZbbryzVpLzPr5yE8cbbLxvHKS5CPF776xiPX7Io6icwPr6IyB8D8N8C8IcA/AzgP66q//ij5/ukCzPBzzjwE4DfOX7uEwPpj5DtDuIRgqM5R/WavkyQlvi0QAPEJkV0waYoOzCJSP2yfb/rfqq0pVJFb7l7Yx9HBNRNGI6QGF3dkrfrHzWm/p4KvB2lY6p1TyUF+Mv23D+Wtfh23FAg+f7ALWVsXBHJjLnwKI2bU0pCgtKSHaHB6gY3qOdXADhoi1rqr9nM268eqwOboC/2us2N9JQ/5Yr02qDR7Xc2vd8OpG2tXpbrFXuemQ2an9DAVv+Y8gi4tuVjktFv3HDePkx8KuoyDWlxYXwV2b5T2Vm3857pjYNT41XKcgkkftNiwV5uJp/revvA5250EFe73Iy25+UuZk9tg93Bk/AL+yFwtcVNxGxcsf0iV8F+xecm9gNwHJ27Y8LVPje9v/Gmzk4RAN/qhMx2WgX1kW7OuuWacXmeuLwPlzdc7FtOAumRyrMCJdMfrU9vjQfgZyh+gm0EUKY6s+XFHWOSc5Kcynmy2LD8eGrZmv7Uo7etZ2xcDfEcuek5tdi8Y4pcSfVDXv0jDXTxZxXge7tIP4hXJV79zZ5ovy45LvNEnQYyN21b8EqytIrp0DoWCb5TrBRe+yTY+tf6xtwQpl5f2e9M7Ne544+9v4lZvN7sVAmyPreNF3RC9uy+LvBL7OyTOu0pL4iLiqZ9FxanW8bb8maS29oKBMojvFwvxiMvR7R3XFt/qL/mN3yD8BvFxUlc1Pt5I1fomFqeDPaz10K6rftKmYyroqfjepN+47Vd+FM8dq6qDW7Zj20Ax5WY35D9+gYpip9Ijwau4ji+Yz+rx6Wacd7p7YevXT7vidnfD+C/qKr/CxH5t9f6v+XRk33KhVkJKmkDX/HHsBSHJgYAJed69a621K+OWLxkzZKk1Eh2sm55INpFmaUKEXWPmMvQrbBH24A9ZheTIIwWmX3YOdqAQphqf9nLLeG2Og3z/F2e3r/AVcXUuEHnRtqVVx1goHQuoDVt6wcqR+7dM2mTkzbIA/WDjNL7t+SGRm6yX7yjGbmSfnU92A/wW9Pe5iZidFz1J27tI7Jak1jwz4P0SjMx8yhtNBExHhN71uTcZOH7k2Imzm1jl+Y32lvbt8I6ZrTZXOO1uRpvryy9f23wwRiPCa88YJqgTWJt+U+x0ehzzKuCbGCc2MBGA1kaj5hh7OUtcIVmewnczOwXuNKV3jwuCld0JupvkYn263qj/UT4vNJ47/a7yU1tW+p4uNhksO2ZJrQSAeVplhxd10H8GFdC+ViYz2QMaZM30eZ3NtU5auZv4SOdlW/V/nYhIKZfqu9KwCgcZ9pSqdnwaLNyu5Fk3No3g0rP+I2pZsN680nlxBHi2ZJN44Zzl7Cn2dOAnlNbXmy5zZ409V3geGUJT/jKTdHMfgqhxw1H5azXu2zjtV39JPazs9rT62Z1rXx12chrH0EqBuYmxKCI51VsY41gvzj+8OqZ1kuaHMPiqtkezcIHxVWpGyP9mYe3J/Go/Tx9gt7zac8bpT/tYgNweR0ub2jj0c4N6U8Ymz2HeDQTKN4os7j3XRvOHksiwKH1Ul3gZIVym3FDBoPl/5YDhnhE65fFl51XcdCVnZbXRlousTmpVH883HzIxkB+Z5Ht5zPMnv2Mq7YZyGA/rXki6iFe6zje7GncZfaL8Uj245knJKzaCHOrH8UVBfAvrH//lQD+mWdO9jlPzBR4Q9kR62gBUQ6w6flNHAAtEMvf5i62Q5WCJxR9OpfI9rRZtt1FvfvB2bvKl5cugZ4sx3MNnWshpO104o5nf1MAAIB8d2+hGWr+2x0T6q90bOWuifYJeHsCoUGWUAjLEpd14HAviIZzXXNj7QijceX6umc/m0goTVhuc+PK2S8aNdqP6qlsqEcuJLaO9qwZlD7Cm543+k3Vc9T+eT+iiUsdjMaYIkS1zkvw+n9DB9J47Lz6SYA/Q5lQdNuL42r8u+eF3j/PVSYXfmvc+G/6dD+xSVa3vWC0X48L35/yR4+TFTcRn+Mq+hwAyJnbz2nXQVZdLRtUN7kJZ8hYviqCsrSK+el3zwUQXoYy9wXzu2wL8HHMKJ7TP8Ui/aV8OeuTs3Kkv3Bvk72i9wi97Zbl3/v7ucN9liGnmlU6pvZmbHsyFf3ubPHt4nrKU6/bzRueGAMhL5J/d67gcop9Iy/y2u2nrSfXuZ++Q1bHHxG/UUMpJ7z9isAbBOWj44Er66/9TTdJp3gAF++iaPy2OIpcodejzasly99iHqkub8RNWaCoHyTO7Tn4nE3OKZf4jzQXDg5RvGm54LALV2OH+9PyvtWp9+NmP5O/q38p+Um/kUbtBfXzSHZxWjbY+K58SdGQBa6kchXmAAOurstw9OPfHVda/fatzo/Y17S19VwN9oPxyv67GotqjblK7CcCfEP5BDg/0dXA1Mx+b7A9XtdziI7Jzz1S+33lMoytH1b+0wD+ERH5B1DM8G9+5mSfcmF2QvD737/hJ/kDvH37jjfpG8raRVr8qnqttqcjRn9Py/3OlVpjllV1dw6K/ThdSUVQ7tr1rVP7xZk2LeqGAzdZUT9UgGQNk4Dr1NJk68RFxL4av+Zm5KLXT3SdAvgLqZYcPDdR1g60S+iJXuaG1/4TFcM232v7MYve9sbVWdcm2cXlFTeDXuJm8DmbALLfsO1ltP1cb+BG4Zxbgfrh09peZMCcTTFW/Yt+0yZ4hDHl1Z4cVIXGTfFJLxunRabXvXu34MaKPc2LftN5pWlEiBOw7ZPCk5EZNxGj0IRhJsux3Nx1Yj/HFT0tuPbX7jeZ/VJumr+WmWDnxseu4zhg1MhN0v5uEVF8k59bHvH56hzyVytKeQE9Bg2T3Y3O837nwy5Q3gB8lwOwZevoG9TzxR7nfTt1xNjsr0DfzKDKz2Q5HwMQfIdqeb/M3tTpNo3jTbhwmXDDOcPyvs8DoywIY3sSD8HPEHxT9ZNZxI/ojvbz3OS5vHEtxpHALj57PqLzVX/+Xi9g7Ykd97cr0jQ/dV7700rO5RBbJUOyLq6i/fiiEXXi3i/2zdd7DFL/0POGrWUZ84akvLKva+2N7199h1fKDZG+lBFteaXJxryhlbvvEHCe7v2XCa+dS+uvi2nlFRP1+7XSx4xuGd+/ZgOU1ymM2x1uALSLKePUcVXjQKofHuGTTbaMv3ETYsyuis6mdsENY7RKhilwdeBsS5jNfrM857giPFNuAkbjiu2XzT2+XFHFkx+Y/iMi8mep/nuq+ntWEZE/A+B3E7k/BeBvAfCfUdX/sYj8bQD+uwD+xKNAPmcpowr+4PxWg7I+0m7JrXhMedeHH6v751lt8EB/dMxbrcZH8u5mBHhSJPj5FKgU17QXZd2X4EnycFM6bVi7Xvb5GsqSY8raGrp+50Wm3ID757ixqQ8vzwjHZM1Nl+lTNPuGWXwuGbkBhJJvtx/Ec7XClPIYZDlR6AU3cL/k9rNJy9R+iGkq2jP4nDtL4DUkRtCxTNaj973xS0rYT9qldDsb74oX8nPtQ0EQ9TqOELnncu2v0Z72lKJzP8ZJrsv7fewVczXjZsw3XZNNaryk2S/qyX0u4s14HbnpKMqyKrTJfrRf5MZf4HXtK/v1ej96RIyT/t0t5UKXc53lCY97lie9HfrNnN42i8muzZbCAeVCw7C8oW+bXZryGDCL5xFj91/OG+OzSv9U0tZ7WMcoZ1Iu57x+xY2dzefbbIzsxfDzUiyFPV3kM/uxOI4IK/uBZLsG1AtRHTCBxozIZl9qOuZyuHyyzsfXXGkYI6P9sriKHF3nDXdx56R0wquvD6sTat6wDUD4AnfIqY1HgG/FvDXPjDm1y85sT+z1ti1OSi7rF46+iP8P+poJ3kJ+n5s48rhPbFRMB2Gy2FXEpYN9HVPMsQLPz2XOQG6/kauzXcAmBLW2fF7myq83ueJmHE/VYf7i5bknZn9OVf/4/NQ6vdASkf8egP9Urf6PAPx3ngHyae+Y2fr2bPIIjINv/B2hfQyQcapBg0BPvejDXynf6oeu+QVJO0N0WAEC9nmJrl3nWTQZ1BZsivpyc9A7csADYr9Pc7h+skbPVZNVmxxGmS5aNkEZMeUTD+YqYpoVbVmCuYmYmt56R1lU3b3aGTcxrbRJ3S37GZaIizVEbtKeonvhrK2GGg8DfOFuGvmjlzGG7F+765Zj5Pu+0V/jXW8+6tkYfSG72299tydlqd9RTzKuMkzjQBK5Gv2E6+YT/aXrDBX3dzVlGWtzruYx1d9TON0NoxU30adzrjyufivIH53H1L0iqEvYF/Kz3O3rfdLbnuzIBKfLsV7PgTPgsJtZOhA4zImSnMQ5JTvGv/VFZdYj0P86Q3H82+UGTpbLmhvm0M59AFA924YRdhmUWfCKm9U4HsdX+9u1Fdu4pU9cPVd9HBy5GTGB/l5yRe0HTEPbmAE9nlmc+b/W+Tjj8nR6+vu6B/r3wkZUHPtJm+ojY06d8TpidFmuvibwBvsERccsAZNxEHN3zB873ESMMZosHxSe+vtcfbSfzXEUrFFvcsMYTzpu/bablsfwjqAGbuDO1VAr2lxpj5te4njEvf5RhvLPAPgbAfyvAfzNAP6pZ072ad8xgyj+0vmGn1Xxhw6b7pf/2gvA9utb/bdP5oAyTRnXas+WrLErChQ/A22bfDu7bcJw6Ik3OdvLuLx0puDiF8l9ovZOHieFfAxtWSH3T233O7FXtWsoVUVZ/4yrPjGAwzwboNq5ZJS1QU9NN6QEuAq9KC1QuiDodduqYOzflf1W3NhgDJTdNGFbzqvW7a2xyRV/lyq/4+kHZN+/wfbi9Wb9a5jbeYpvOYwTWe5Dl0WIE98/7zf9u0XtSUDFzFvlliGJfI4xycgNf3CSZZvfDLFsNrGY6heJtuuZVMzGbTwvIDhtwwHpE4reh1w2csNtmw3qJORomCo+9jnq79x+ffcrYywOujP7MX6TVbvjjQKyfyh35Ga4YLebG4n9ZlzNuOH+8QRyvyje6lJG9jOeknVrrnJqyTl2N1joeJbbrF5yGOqGAKV3J/oW2UM8D3oJY5pjer5i/GwXi6yYN8rkSQA9oPi52cFylHF/zY0Gbha8EjdtzKC+t0mrCiBH82meQMcnVqmeylX/BtbpYiOT5SdfzFX55ENd5q8Hfq5yx4DpaiyW9t+jYtoZx1P7hf76jwVneSPokVHWso/7HEDQM0yo1fvcCbooC3k/z7GEkTY1GfNEfPljMcepuizvnwLYFvBHRel8TntfvZ66ayNhHMaqBTcxp/Z3GftFi72+wt8z05q7u55kvJHI4ywfrzHaD81vKqajYeoXZ8bNbMw4Xd5PxqoFNzEe2X6P5f2PK/rcUsZnyn8EwH9dRL4B///2ru1Vt+So/6rXt8+cOTMT8qBGyAzq66CCGIKQB8WIjDqYZ0VBfPBFIYFIMMmfEIh5MBDEF8GACCqC4CWCLz4oakyEeCOIt6CYwQclyTl777XKh+7qqurV67L3OXPWd86uH8yc/X1f9+rqX3VX9aW6Fx4C+LnHedghE7OEvD38YrrCgzTWBiNxvuIk5XpiQAcJasD89cWAdjE/ASjGjvO/EwgjJ1zxCXL/zgiNVCaM5R1r8ix2q4oMJU3K8ZMjL6Puy/nfuPyPyMusB61HpDpkkPqZcsnXd4mrZWNgy+2vmtYUJcwkx/ery5T15prXXObQk8lztaG/Djf6rDKAIM4ycGpeDN5y5fVny7Uy9R1su6vRyrhUrt91zRN//ZtNXv/mlz43MM9RQ9rn2V3rzcqdTH6sI7TXy0/IL6v05076jq9eoCDlVJm5SWtlLPXjduJjFwVK3sqNyiSfT+Xpoom2bQsmI5PnxspYpGTfznQnT57N7nr5et075lwJNzUteMbVMjdt/9OFDqCsnK5w43m0LcVK6CfVLVc9bjyvPu9eEPJ1+fkVJfaev+XBS2tTrT1e7r9t7XWAZc9mpEYvBN3Z79vyZZva2mNrf2URQn9rFqRIgxRHMBIn+MuR9nHT2mMZyK3nVblOsMNOtfsjskE4uRBo3s2NfCbhgjw387x9ruRqbya5Lp+dj7T12dZf4/Novx+f6a/hdWjy2rNdNvW6TeVyzos2ebXc6E5PtpPyaUhTfXY+z8Xm13yb4rJN1Z40Mc/GYZu6J+/XNHomj7PmbU5tdWtT5bnqb3QsBfN7y42XcSptWcY12n8JE4bk27b3xW0rVdi0wtWSvtb0N+cq38roF2rZpNXxw7q/Wbbllpt2sutDq29j+Z8WeF7Bp1Uy858B+N4n9bxDJmZEjAfDQ7yQrnOHoDJoRGuygHZ4KmaqfdO9XdOwZ50Aa0gSrnjAJZ/KxMw/mUuokK4s6bOokcPK1ZNpLqO9pt6u8pbnlH/qOo4JaieweV9Tc5PZBlft+pwOaISbpn5kc7Nk01R1XqZvp89kTTX93JXcVH9N/YxMlaHCVQLAyfPKlb89+vNrYfY3r89O/dxL6cR+2XbRyCy53c19unPieDXc9Bxmy+vcdZRdyySrjll+/+oHL+PAKKvo2jpQdTHnRsvp82q5sdInmfkRQKw7kCCq/0qOVD72uPIBGvPVcO33a1yRfoV8IJ54gtwYaa/1loSt/swD0Ndfy9UGN01e3SUrXIltctz4+s6l9lyp4+7brhk3RE3emztoKv2RKTWvg9AUMznriHupP8/Xsr1ty3KPAMCp7vjXapX2ncDuubXcJXtFtOkjqFs/7+f04gepQwKRyL2Tmw5Xs3LMc3r6TjX9PBQw707Lp3k/6tkrSUvFplh73JbjeDX6tGlb+5SIwazXG7Q2Z5EbW27t2/Jfn5u5H5/rb1EnUAtqzzdu29R8sVX/tSlr5dq+rjyqbdC0NZVsI8/ydsJCxUbzPt1rJVsZbVj9vBy0eR03cz/HlMoX6zrR+ml9uX7P5d2V2haSy9u3qa39nfm5G+rP85ovI7H600umln3inCvv56r+FrmxY4/MTf7YngY8IzBw4HvMniiO2TGjCS8Nlzl2eWKkQXbNdPucAPciU8JyyI93YezCGuztSCNDd8lYTGzGCSMG+Yb1Fhy72mBvFKzlOmOjv/ubeHSFHDavGdto/WQgnTDVu8KMYYTu2kgf2+RGnGPDla5NrfMqtx+hDuiNTHVwsq2/lptV/ZHaqaX6eW6UE70y3G++L+nPcVM+79IfFJ7Xfv3sGNMzP5/Srsm42S+MYDaoQgafiad+uyFfh6nZy2tNnh24tTLPZGSbj8pCg4Sx6Ir0jNdGZ9ZtLnGFNW4aGVG/I4ykg1BZh088zWRY09+T4GZq6pd1NRmZGNIde31K6y5P2Wer1ripN8pZuW6BoVjgkdTSreqQLJdqj12otc0rQgNl8F52fCQ3ZY5l0J8vnSk2x+qFtm0qsG5jbN6MYifZXMRAEp6X5SLi2sYXy224qTqkppwOVwJrN2vEStMHmXMbGohgydnqV85eOZvCUFu6YI9N2jwByD9U+8RQxkmftoeb1XIka9OulvRHtn5Nffu+KqNnU43YM9stIfrd+llf5fqJrZ8ufOWFprn9YprbnJk+y3enYp/aWw4Xdd/ty7J7JwuFvlwGQESoNwFj289N9SXo+7iZtQXS8Eqxwol8Xv2lsc+V644tb/S3xk1bP6s/x5VJW31XeVDXlpeE1ZYz9NbgLW7Y2BUicF7iOl/wYaGMTxSHTMxONOHl0yM8SI/wyulRfWfS1Fzh6kMC2vAg37FyJ7SrpjlsJXdgwsQ5eOZEEyaMuJdy/K44pxfSWG8gukfX9aWq2Tjzcrnoh0CogfHr6mthN6eSMF/8MeUVQTGi7EPQiFFfULnJTSsjqRPupbW/AXnXgEGYmDCYGdN8G9xzlba46ehPIL9p/ZqwABJDSG51icv/bDu6jf6Uq/m+iM+r+pvlbdLm/NQpV3+FS2t0b+rX8trqPnMjbV8dH5BXBOd5O4NjNGfVnIQacrfEa09GUcpUvIRMygA9nK7PoprXl9P2HDOoabja6hd590nqp2GB8mT78t+b6O9JcKODJwaVc6cyLGhDo5b054Ne59xsyWi56Yfe3gyJGA/oCiOAi1LnkQlXSBg5l77eJ7k8p99/bZ3z4lvCyHm4JWHsE6dqNwkTLsy701SC/TZV1pOXQuF6NpWgK+I5hImLNMDYhHnKev5uf2O5ojb8q5dXfWAbfis3JU7I57lwQ26k3PUwz9bfzG2qGzASqkwTq4W6CTdiI93NfIDTiedmLuNS6HzXHre8GtuWfzO2zvgtPesjtrzvX/r1zeXYiUYdX0D0IZOfHMq4aEfIlNOEV27pvuWG6u95oujtvu5d5TPWhFVerR1gLXEvN72+nOWbZosG8hyGjEX6tsq+VFvejbuXm16fWtLfUHuO5aqvP42yKGnrS8/3cmN8U+Cp4KAzZoz7dIWX0iVOZQY+EZX3J+Wm6EOatNOomZKQorLybjqxHpmVJl2cMihfrgHGBY2lQU44kdzGk134AF1xTKRdiFw3K5+NjAlcvUddfWQbOqbdvNbByExF3lS6A5tyYFIzJlDa4GZRRn9mpYYlkJGpyGz3FLXT6jRHHGwNQmm5arlZ1F97C6YNRVVebViZDXtJaI91i5bYTKz2cGPbnBy6hddf9VI8a3OSNsf3U375JxmtMoAavmHrh9o05MIMHVQzKGn4wC5eRWPlTKBOYcaiPaoGm0sYi+oEtS0MRiPCMBfZ5iF3NlzD/i686nOSWYBBcYLJrniiGaS59plMKKHWpfKTtrixujcZGfCubXJ9d1N/0D7yuNzYvNmcSHlTmSz6dqMvv/X6o2pDHp+b+m672ldtgv1IxLjAhBO4rJvn92Sp7vs2VcIGCVwuo8BMD3XwTHlyPDHVIKCJdbdVdgDkgicUbjf9TWM31C7LYgdB3htHMG2WbZ7yugPy9ROi83uaTDm1N+y3qRpi6f1N5YphJqclL+d2Zn0XWFIAlNTGbred1q+VWpQLKFx/brhR3yT2G1Wm6jMgPqPhahc3xjfXcvQK9EVuoBNVkUl4xY5yqy0HTFopH7N2AzDInDVkACmprVO7Ic/t6MK0hUGSwre5PEYpzzWhhdJ0bLspQxtT4ro/7XLjnss1jW9zOiHpcVPbTUOma59b3HT6cm5Kk5Op2lThCuj7gdpurFAELLTP3e2m+uJGf4UrvZhDZcp9aq6/WofK1R5uHMVN/c4LDIAjlPH2SDThnRdfx0W5aEMa7xXbPRMA6JHM+i8BgNyeM82azEjihFOdmOVrR/NK24AJ92hCvpghvytCSiA0O1S23PJvbtqNjNWoA6gdC7p17dLLHT5cny8mKNFYLiWBD6Uyg7h5F9mSkU1nn8tseZWLIiRegJF37yaCW7krvhvJPm+Jm1bGUq4Nu8ESV26wolwNRLhG3h2tMokBu43+jE6wwlWWUXQtDga1PioHldLG+oLWfv2K83VSyrBsdOZ1i1dpv0QA01jylYmjGYQw4F4aC1MHqZ91NfXvMpnza8hbvJaJB1DyyupkcXCiX8ohx27g79rnWPU7FB4tV3Mr4GXzMpp2Ryg3kZUwN+MUc44N/cmnJ8JNqbb5nepO51x/rm07/Y1Pjpssmu/3NwSB8SKuMJSwoetskcHMmHCBRX6Mnch9krs2VT6PxeZz2YkT+89GjlPRrYT1Lteqz49eesC+rfSeZXboxKa2Y7h8kQu5cMReuftsKpVoELWVjitXhh+A1cltLUtCKttX+W7LaLkBjD22UQgdbgDfzvQZ5ogCA2zO4t2EGznDLOUQyS73Dm6ER27TLpfLTV79xvgmsqlLWyftvwNgDjYs1G9WXxnUl2damYt9H0Bga3PErzk7UmxBaZ9212+7fc77crWxQNWFtzl9bto+JdwkoHjIG3BjZJa+PNBUmggbrrScE+UdQ264afsUg8rZSrucuYObVsY1/ZXnDUSVN8tN/bNpczZseQ837L47czAjQhkfA/dowruGhyCa8C3DFRIBDyfCo7J6ds2Eb/CAS3Gots3VzuCNav2xgCENecIEwonzhFB+GzDWcMWEERepNMFiEShhodzS0Ywc+SxDacoMpMR6vbS7dYhgbxqUvK5PIU9+8tvmTTlk8kr9aUnG1hFQXQW05dasjDr5a/PKS74ZE0bkVwlQWtLJnBvZbBL7JdzIU1serYw2rAPgGvJqfAtGACckDbvawU37uYaEFosr+hTDaLlxXJGRufj9tNBu6n4o5dX7/GxbP5h2Ip/F6KrLmXq8rtaPIBdZ5E8ThiQySVrdRXBydGUU5yxcNHlb3WO9T+XznHrhzsQlVG1JppmMhhuY0MwbcFNlNDLJS+ZrmHXL1S5u0LR18vpb4obmMoudaPXHXFbSu/rrcWNlsjLu4KbR302RALyY8oT65dK4HvGEr3HC1XSJkQhXTLie8rXalVtjN4S3CSmHfDNwyfeyjSsvQBlxgZFz+OIln6DxD/KsfEPjAMJFWbhwOhOBVz4P8PaKgBr+JIltmyWTl5q8TOXsDmU7QROZcsk/y3DAQA1x79pu+MUpsWe2PsnIROxlRhn0jSCkEp+7hxv5m4C6m+u5afuzX2S0xwjacvLzqPpIOf7Q42ZJRinf6mCgVqbc16q+mJ1O5n7c9KO2XHifIZZDQuNmu/4zOaRd7Kuf168uIFhec7vJ5fqr0lAWoHSCBKPLqZZD/fpyw01XpvyHXJvv23auoJxkqjLVz3Ou8hl4VC85iU3d25dre+X670B+GiVn3lLlpnBBWq6zv6UvSyDIXm56XMnC79C0Oemf8t9iOyLV5UymLTnaPnXmiB2zxwAhn+l6B0a8khgT8rmz+zThGgmXTJgmlNVO2bIWE4n6uW65OifmBw+EEr6X5FNuxvImdTLGQTLY1XtbLswANyfUkIgsg3RsycImfx7s2XMbgKyMlfqwdjAdTJMpV72KrfsaN5JX4oTtamU1J0RVftFPHmSW3QyGrG27XYM93FSrDn/gXd8bQ34FtchEBMeV8NxylZqce7jp6Q8QR124cmklB5f2QV5/wmsxgNSIJIeQpW56maMmnOnEuGdq6mB5bX+b18+27amGsqLKJG1TDXH9zkkmZVmDX/4in8rpXr6a9SnRp105tfVT5yATLc8N4No5ml1by9MKN22fyjJJO9AdI8uVNo8tbmxbV563udHfpK0LV63+KkdVf2vc9GSyXC1xo/qcyXgDEPJA4z4I91M5sM75xNBlQn57FxM4aWBzz6aKbONEeMT52iYAuGZ39yiuWeIptBcwcR0QX9Do+mrVQym56rB+Lm2x1/eLzbSsaA9We+bqUyAXj0gIc2p8FZmnkRKR85pnWTtpZbLyuLRkbZXuWtcyWT0Yl/CnNW6sjFSlZrQhihaSX3jNPJnfW51wSVe+S/ZG3oYbOwmrfq6W532Ohm+1suX0SWbWjid5FmqfpC1uDK9WH8vc6N+DCWXscuMcj7az2iPMz3pEQ3aie3Zj7n/k7KnoqroLLHBTfvN9SFPo8QGVj2HsFcuTW5k8N64/1S/WufHtVfU1uD5q5JM0ZdW2je/ycpXxkunL29z07E1ff1QaUZ5syVPm3NS0RiYkq9Ftbnytno+Jz7njsDNm7xq+gQeU8BLlreRTusbXwHjICY8oIYHxcLRHGo2TA4x7NCavOhK3LljOM8iEbKwGVMOotANoOfZz2+AJeueZOAm98BizZ7Ge/WBAJwRN3tIJUk5SZfYdTW/R6pYD23nErYpMk0lLrn4Ee9DU5s3Z83mrcimJCWtZ40a/UY14nkVzjSaFq5pWy6h5izHJG51TZWWLmx5Xff1ZrvqhmvO8vXL1fSxSX+/uvHQzXsuoW751A+wd9dPUZYJOouucqg1vqzt7bn7Q7xfmZIYpsTfg6XNDVSbV89DJpUOfHjdSksrs22da5QbN51zS5GTSw91kntHqr62f15HkXdbfsr2xiy2t/lTCRiddboRHbevzIeYyNz2ZbwbGAzBeTANeoHzxxz0acUETvs7AFfKK9OUEEEl/nvf9qQzOL5FwzQOuON+nKy8bBieMtb9Zqe0OkeyGzG3sUr+yfOzp+96mysBJU7ZpxUKONY9K1LOpAHIIN/XqYTVkbaoPFJv7vba+wMCMkczZ707aRZvDMiCdt52ZTWXo4taK3QAkGkYC4ha46dhUAtw7MpdtnYTN2ycttYWejFs2B+Yq/WVuJFdiWRRd46axG/Ifs9s58+V4uyGRIlVmw00yNbGtS0/Hz7kRtG29vszZld4rRycccvlEe4HG0PhIK2PLjVpK326kL8vOKHXyej8+Oa586anal5ty02snyeivHeOIXJP5zXLTtm21EnN/6p+7JGMr3ZnhOQllJH6c2JTbFkr0VQD/+tQLXsc3AXjraCGeAQRP+xA87UPwtA/nyNO3MfM3700cdv+ZRvC0D8HTPgRP+3COPN3I7j8tENEfIvN1W7zFzG88KXkeB4dMzM4RRPRXzPyeo+U4dwRP+xA87UPwtA/B09uD4HUfgqd9CJ72IXjah+DpbiJtJwkEAoFAIBAIBAKBwNuJmJgFAoFAIBAIBAKBwMGIiZniV48W4BlB8LQPwdM+BE/7EDy9PQhe9yF42ofgaR+Cp30Inu4g4oxZIBAIBAKBQCAQCByM2DELBAKBQCAQCAQCgYMRE7MOiOjDRMRE9DhXbz63IKJPENE/ENHfEtHvEtE7j5bpXEBEbxDRPxLRl4nol46W5xxBRK8R0Z8S0d8R0ZeI6INHy3TOIKKBiP6GiH7/aFmeZ4TdX0fY/XWE7d9G2P79CLt/dxETswZE9BqAHwbwb0fLcsb4HIDvZObvBvBPAD56sDxnASIaAHwawI8AeB3ATxDR68dKdZa4BvBhZn4dwPcB+PngaRUfBPD3RwvxPCPs/i6E3V9A2P7dCNu/H2H37yhiYjbHLwP4CPzL1QMGzPzHzHxdPv45gFePlOeM8F4AX2bmf2bmSwC/CeADB8t0dmDm/2Tmz5e//w/Z+bz7WKnOE0T0KoAfA/BrR8vynCPs/gbC7q8ibP8OhO3fh7D7dxsxMTMgog8A+Aozf/FoWZ4h/CyAPzhaiDPBuwH8u/n8Hwinswoi+nYA3wPgLw4W5VzxKeQJw3SwHM8twu7fCmH3PcL23xBh+1fxKYTdv7M4HS3A0wYR/QmAb+389HEAH0MOZ7nzWOOJmX+vpPk4cmjCZ5+mbIHnA0T0MoDfBvAhZv7fo+U5NxDRmwD+m5n/moh+4GBxnmmE3d+HsPuBp4Gw/csIux+4cxMzZv6h3vdE9F0AvgPAF4kIyGEanyei9zLzfz1FEc8CSzwJiOhnALwJ4P0c71wQfAXAa+bzq+W7QAMiukB2zJ9l5t85Wp4zxfsA/DgR/SiA+wDeQUS/wcw/dbBczxzC7u9D2P1bI2z/ToTt30TY/TuOeI/ZAojoXwC8h5nfOlqWcwMRvQHgkwC+n5m/erQ85wIiOiEfin8/slP+SwA/ycxfOlSwMwPlEfCvA/gfZv7QweI8Eygrp7/IzG8eLMpzjbD7ywi7v4yw/fsQtv9mCLt/NxFnzAK3wa8AeAXA54joC0T0maMFOgeUg/G/AOCPkA81/1Y45i7eB+CnAfxgaT9fKKuDgUDgfBF2fwFh+3cjbH8gsIHYMQsEAoFAIBAIBAKBgxE7ZoFAIBAIBAKBQCBwMGJiFggEAoFAIBAIBAIHIyZmgUAgEAgEAoFAIHAwYmIWCAQCgUAgEAgEAgcjJmaBQCAQCAQCgUAgcDBiYhYIBAKBQCAQCAQCByMmZoFAIBAIBAKBQCBwMGJiFggEAoFAIBAIBAIH4/8BrWeAsMFwHx4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "targets = (11, 12)\n", + "targets = (16, 17)\n", "vals = np.linspace(-5 + EPSILON, 5, 100)\n", "x, y = np.meshgrid(vals, vals)\n", "mesh = x + 1j * y\n", @@ -361,45 +323,47 @@ }, { "cell_type": "code", - "execution_count": 67, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAJICAYAAAAUzce/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXhc153/8fe9d3hGM2KWjDKzEzuOY8dhbNIkhbTd0pa523Z/3W6522653W6ZtiknbdImaaBhO+TEMTODbMmyGIfnnt8fdzQgMAjssfN9Pc88M3PxXDmgj88536MppRBCCCGEEEIIce7p57oBQgghhBBCCCEsEtCEEEIIIYQQIkdIQBNCCCGEEEKIHCEBTQghhBBCCCFyhAQ0IYQQQgghhMgREtCEEEIIIYQQIkfYznUDTqa4uFhNnDjxXDcjS6ijFyMIEXuIYG8PdmXHqPYTMFzQvBPyJ4CnkISp2Hm8m4qAi2Kfc9zb1dfXh9frHff7nKlcbFcutglys1252CbIzXblYpsgN9uVi20CadeZyMU2QW62KxfbBLnZrlxsE0i7zkQutglys10bNmxoVUqVDLlTKZWzr8WLF6tc88ofV6ujn35WPf2jn6vvvPH16ve3f1zds/sepXpOKPVFv1Iv/0IppVQiYaopn3lYff2RXWelXc8888xZuc+ZysV25WKblMrNduVim5TKzXblYpuUys125WKblJJ2nYlcbJNSudmuXGyTUrnZrlxsk1LSrjORi21SKjfbBaxXw2QgGeJ4pjTrTUcHFKDRE+0Bh8/aEemx9usapXlOmnvC56SZQgghhBBCiPOPBLQzpDQFgKZZAU1DozfWC3Y3aDpE+1LHlgVcNHdHzlFLhRBCCCGEEOcbCWhnKtmDZvQHNM2wetA0zepFi/amDi3Lc9HULT1oQgghhBBCiNMjAe0MqWRA05I/Or1/iCNYAS2SEdD8Tk5IQBNCCCGEEEKcJgloZ6p/DpqmgVJomm4NcQRw+qA/rAGlfhc94TjBaPwcNFQIIYQQQghxvpGAdoZU6idmYM1B0zN60LxZPWjlfheAzEMTQgghhBBCnBYJaGcoPcRRw5qDljHE0V0IoY7UsWXJgCbz0IQQQgghhBCnQwLamUoNceyv4pgxxNFbAn2tqUPL/NYC1TIPTQghhBBCCHE6JKCdoUE9aJlDHL3F0NcCyirFXypDHIUQQgghhBBnQALamcqq4mgNceyL9ZEwE1ZAi4dSa6H5XTZcdl160IQQQgghhBCnRQLaGeovEtLfg9af2PrifdYQR4CgNcxR0zTK/S5O9EgPmhBCCCGEEOLUJKCdof4hjnrqR2dt6In2pANaxjy0Ur+LE13SgyaEEEIIIYQ4NQloZyprDlr6vTfaaw1xBGseWlKZ38WJHgloQgghhBBCiFOTgHaGVNYcNOsTJHvQPEMEtDwnJ7rDqGThECGEEEIIIYQYjgS0MzWoB81iDXHsD2jpIY7lARfhmEl3OH4WGymEEEIIIYQ4H0lAO0P9PWj90Uwlf4S9sV5weMHuHTQHDWQtNCGEEEIIIcSpSUA7Q9lVHEFLBrZBa6ElleXJYtVCCCGEEEKI0yMB7UydbA4aWJUcBxQJATghi1ULIYQQQgghTkEC2hlKFQlR/UMcwWW4rCGOYPWgBdNDHMtkiKMQQgghhBDiNElAO1MDioSgFHmOvAFDHNMBze0w8LtsNEtAE0IIIYQQQpyCBLQzpAYENAX4HL7BQxwzyuqX+V00SUATQgghhBBCnIIEtDM1aIijIs+elzHEsQTMOIQ7U6eU+V0yB00IIYQQQghxShLQzpQG6Jk9aBp5jjx6o8mAllqsui11SqnfKUMchRBCCCGEEKckAW0k9NQMNEBZQxxjGXPQIKuSY7nfRXNPBNNUCCGEEEIIIcRwJKCNgKZrqQXRFOCzD5iDBoNK7cdNRVtf9Cy3VAghhBBCCHE+kYA2ErqOluoMU/gd/vQQxyEDmixWLYQQQgghhDg1CWgjoBmQqhaChs/hI5wIE0vEwFNkbc4otV+aXAutuUcCmhBCCCGEEGJ4EtBGQtdSVRxNFD67D8Cah2ZzgCswzGLVUslRCCGEEEIIMTzbuW7A+UjLKhJiVXEE6I32UugqTK+FllSaJ0MchRBCCCGEGEtR06Q3YdIbT6TeexImvYkEfXGTnkSC3rhJoTJYda4bewYkoI2ErqVWrFaoVEBLV3IsyRriaDd0in0OCWhCCCGEEOJVLaFUKkj1JINVdzxBTzxBXzJc9cSt9954+ntfIpEKXD0J69jIaVZIfw/GOD/V2JKANgKakVkkhPQQx2hGqf3WfVnnlObJYtVCCCGEEOL8FDeVFZaSwaqnv7cqbgWnnrjJNuXiyX3HUgHLOs763J08PpgwT+t+HkPHZ+j4DAOfzXqvdjnwGQZeQyfPZuBLvnuTx+XZso/vP//5Z9eM809nbElAGwmdjB40soY4AtZi1X1rs04p8zulB00IIYQQQpxVMVMlA5TVW9UfrjJ7rlLbM3qouuPpzz1xk5B56mCl4SSvqZ08wyDPZpBnGOTbDWrcDvIMHZ/NwN8fpJL782w6eYaBN/neH7gMTTvl/S5UEtBGwJqDNsQQx8y10IJtYCZAt7pUy/wutjV0n5P2CiGEEEKI84upFH3JENUfpLqSvVDd8QRblJO1B4+nglV/b1VmyOqNJwidxjBAHfDbrJ6n/pBUZLcx0W1Y25M9VXlG9jF5mZ8NnXXPPccVK1aN+8/mQicBbSR0DTL+EsHnGDjEsQRQEGwHn7UuWpnfRVtfhFjCxG5I8UwhhBBCiAuVUoqgadITN7PCVXcyTHXHs4NXd+Yr2WPVHU9w8mjlxqg/gd8wkr1RVogqddiZ4u4fApgMUcmQ5U+FrHS48tl0PLqONgY9Vq/iTq8xJQFtJHQNLWF9VIDX5gWgN9a/WHWx9d7XkhXQlIKWngiV+e6z3GAhhBBCCHG6won0ML8DykBr78kKU12poGWFqa6Mff3b46fouNKBgM3qffInA1Ot22F9N6xt/tQ+A79NT28zDDa/+ALXXH75mAQrkVskoI2AZugQTf/LYOgGPrtvQA8aA9ZCs0rtN3WHJaAJIYQQQoyT/t6rrli616or8xVL91Rl9lylersSiQHVAfNgy4FB98kz9KwQVea0U+d1JQOUngpemSHM3x+0DAOPMbpeK4eGhLMLlAS0kdChv8+5/19fn8OXXcURstZCqyqwQllDR4hFtQVnp51CCCGEEOehmKkGhKt4Klz1B63ueILOeILuWHYA644niKmTd195DD1VrMJvMyjMmG/V30PVv+/Irp0sX7gg1ZMVSA4X1CUciXFyVgOapmleYA3wJaXUQ2fz3mNJ07WMMvvWB5/dlzHEMdmDlrEWWk2BB4D69uBZaqUQQgghxLmhlKI3YaaDVKw/UMXTwWpAj1aDyiPx4g4644lTlmK3aRCw2chPBqp8u0Gt20EgGaD6t/ltBvk2W6onq3+fXT/9cLV6d5xL8n2j/ZEIcdpGFdA0Tfs/4GagWSk1J2P79cAPAAP4lVLqG8ldnwb+Mpp75gRdG9SD5nf402X23QWg6Vk9aF6njWKfg6MS0IQQQghxHlDJKoKd8QSdsTid8QQdyd6qjuT3rtgQoSt5zKmKsvfPqeoPUOUkmFKQZwWpVLhKDxMM2PtDlg23rsnwPnHBGm0P2l3Aj4Df9W/QNM0AfgxcAxwDXtE07UGgCtgJuEZ5z3NO07WsddDAGuLYEkwGMt0AT1FWDxpATaFHetCEEEIIcVbFTWWFrHicrliCjniCtcrO/mMtdCYDlvWeDmL9209W6MKhaeTb0z1TJXY7Uz2u7F6sAb1Z/fvybMagda5Wr17Nqpm14/zTECL3aeoUY3RPeQFNmwg81N+DpmnaMqwhjNclv38meagP8AKzgBBwm1Jq0F+uaJr2XuC9AGVlZYvvvvvuUbVvrPX29jJ1rx+9O8o/dv0PxWoJEz64kt+2/JbD0cN8seqLAFy87iMEPZXsmPOZ1Lk/2xLmQKfJty/3jEu7fL7c637PxXblYpsgN9uVi22C3GxXLrYJcrNdudgmkHadiVxsE+Rmu8aqTUpBBOhFow+NXvTke/rVN+izdUyIk/c0eVD4MPGi8KGGffdhZn13MLZl1XPxzw+kXWciF9sEudmuK664YoNS6qKh9o3HHLQq4GjG92PAUqXUhwE0TXsH0DpUOANQSv0C+AXARRddpFatWjUOTRy51atXU1JaTDDSYW3QNFatWsXzLz3PgcMHSLX38AS8iRiZ7V8f2cMraw6wfMXKMV8LbfXq1eTazwpys1252CbIzXblYpsgN9uVi22C3GxXLrYJpF1nIhfbBLnZrqHaFDFNOmLWMMH2WNz6HLfe22JxOpLbUr1byR6tkxW+sCd7s/KTQwYr7VavVYHNRiDZg1Vgtz4X2Az2bNzAtcsvJWAzsJ3BfKzxlIt/fiDtOhO52CbI3XYN56xXcVRK3XW27znmMuag9X/Ic+TRE+1BKWWNifaWwPEtWafVFnpImIrjnWFqi8a+F00IIYQQZ49Siu64NWQwFbSS7+2xOB3xBHuUh59s3p+17WQFMNy6RoHdRqHdKoAx3euiIPk5YLNCViqIJbfn240zXmi4WzMpckgxbyFy0Xj8m9kA1GR8r05uu2BoWQHN4rP7iKs44UQYt81tBbTg4DloYFVylIAmhBBC5I6oadIZS9AezwhYw/RyWdus3q3EMJ1aGpBvM3BiUJUwKXPameFzUWizUZDszbKCWPJzMny5x3iEjRDi/DMeAe0VoE7TtElYwexO4M3jcJ9zR9fQkn/51f/f5TxHHgC90d5kQCuGcBfEo2BzAKRCmRQKEUIIIcZPf89WWzJotfW/ovHU9/ZYIut770l6tZy6RoEtHaame10UJgNWf7AqsBvJbemhhIamWUOrFi8+i08vhDjfjbbM/p+BVUCxpmnHgC8qpX6tadqHgcewyuz/n1Jqx6hbmkt0zZqtm6E/oPVEeyjxlKQXqw62gr8SgHK/C7uhcbRDApoQQghxuqKmaQWqWJz2aEbgGhC06lUekRe20x4bvvqgS9coSg4hLLLbmORxUpgKV1bgygxaBSMYPiiEEKMxqoCmlHrTMNsfAR4ZzbVzmWZokOpBSy9UDdAT67F2pBarbkkFNEPXqMp3Sw+aEEKIV63+3q1U4IrFac0IXpnb+4NXz0l6twpsBkUOK3CVk2BakT8dwBzpIFZot46TsCWEyHUyO3QkBsxBU9Fo1hBHICOgDZ6HJotVCyGEuJCEEyatsTitUStstURjqc9t0eztbSfp3XIme7f6A9bEgNW7ldnjlQ5eVoXCzAqEq1evZtUMWUdLCHF+k4A2Apqe2YMGia6u9BDHQT1o2QGtttDDw9uOn6WWCiGEEGfOVIqOWIKWWDJoZYatWJzdysN3NuxNhbLh5m+5dY1ih51iu41Kp515ee50AHNkBK5kCPMY0rslhBAS0EbCSPegKRSJzk58lX7AmoMGgKfIeu9rzjq1ttBDZzBGdziG32U/Wy0WQgjxKhdMmFYPVjJktWa8t0RjWdvaonGGilw6UOSw4cZggqGz0OWh2GGj2G6n2GGjxGGjONnDVeyw4TWMs/2YQghx3pOANgJWD1r/+AyNeEcHeROrgIwhjq4A2NzQ05R1bm2y1P7R9iCzKwNnq8lCCCEuQFHTpCUapyUapzkaS703J99bM773DdPL5TP0ZMiyMcHt4KKANx2y7FbQ6g9hBfaMyoQLpDKhEEKMBwloI5ExxBEg0dlJns2NoRnpHjRNg0A1dB3NOrVGApoQQoiTSChFeywdup5VdrYfOWEFsVic5ogVuFqiMTriiSGvkW8zKHHYKHXYWZDnodRhTwWtkuSQw+LkEENZd0sIIXKLBLQR0DImJCusgKZpGj6HLx3QAPJroHPogCaVHIUQ4tWlN56gKRrjRCQ2oMcru/erddDwQi8cPI5b1ylzWqGrzuvk0gIfpckQVpoMXqXJEObUJXQJIcT5SgLaSBhWQNPRAUWiswuAPHsevbHe9HGBamjalnVqwG0n4LZLQBNCiAtEXzJ4NSV7tpoiMZqiMZqT7ycicU5EY0MOMbRrWipcVTjtzM9zU+qwp3q/Sh02Dm7ayGtWLMdrk/lcQgjxaiABbQT6e9A0TQdNJ9HRAViLVWf1oAVqrXXQYiGwu1Obaws91LeHzmqbhRBCnJm+eIITycDVnAxg/T1gJ6JxTiS/DxW83LpGmdNOucPO3Dw3Vzv8ye/J4OW0wle+zThl1cKgZko4E0KIVxEJaCPRH9DQQddJdHYCkO/MpyPSkT4uv8Z672qA4qmpzbWFHnYd7z5brRVCCJEhnDBpisY4HukPW1b42qo8/HDT/tT3oUrHu3SNMoedcqed2XlurnTkpb6XO+2UJj/nSbl4IYQQIyQBbQT6e9B0TQdDSwW0Ek8Jh5sOpw8MVFvvXfVZAa2m0MMTO0+QMBWGLv8DF0KIsdITT9AYsQJWYyTK8dTnGMeT39tjgwtruHQNPwYTlWKm182qwozglezxKnfY8J9Gj5cQQggxGhLQRsLI7EEzUgGt1FNKS7AFU5lWeAv096Adyzq9ptBNNGFyojtMZb4bIYQQJ6eUoi2WoCkSTYatwcHr+DC9XkV2GxVOO5VOB4v9Xiqc9uTLQZnTRrnDTsBmsGbNGlYtktLxQgghzi0JaCOR2YOma6k5aCXuEuIqTke4gyJ3EfgrQdMHVXKszajkKAFNCPFqp5SiNRanIRyjIRKlMRxLBq508GqKxoik1p+06EBZMmxN87q4vDCPCqeDylQAs1PmsOOSMvJCCCHOIxLQRiCrSEjGHLRSTykALaEWK6AZdsirGLQWWmZAu2Ry0dlruBBCnAPBhEljJJoKYC8oF/fvqqchY9vA8OXQtFTIWuT3WMHLlQxeDjsVLjsldjs2GSYuhBDiAiMBbSQyioQoXSfR3Y0yzVRAaw42M6NwhnVsoGbQEMfKfDe6Zi1WLYQQ5zNTKVqicRrCUY5FYjSEo+ngFY5yLBIdNOdLw0lZew9VLjtz8txcV+ynyuWg2umgymUNPSyyy1wvIYQQr04S0EYgs0iIpmtgmpjd3eketGBL+uD8Gji6Lut8u6FTme+WgCaEyHmhhElDJMrRkBW2GsIxjiVDWGPYmgMWU9m9X15Dp9rloMppZ4HfQ1UyeFUlt+19aS1XL191bh5ICCGEyHES0EYic6Hq5N/wxjs6KJpgVW1sDjanjw1Uw477wUyAnl7HxloLTQKaEOLcipgmDeEY9eEIR8NWEDsajlIftt6bo/Gs4w0Nyh12ql0OFge83OJMB6/+91NVOjwoHWNCCCHEsCSgjUDmHDQz+UtIorMT56RJFLoKaQ5lBrQaMGPQe8IqGpJUU+Dhqd3NCCHEeIorOByKUJ8MXv2v/u9N0VjW8TYNqpwOalwOri7yU+NypF7VLgdlDpn3JYQQQownCWgjkblQdfL3lIGl9lPya633zqNZAa22yENrb4SecIw8l/1stFoIcQEyleJENMbhUHTIIHacAOqlXanjDQ0qkwHs8sI8al0OatzW91qXg3KnHUPmfgkhhBDnjAS0Ecicg5bQ+3vQugAroA0a4gjJSo5LU5unlvoAONDSx4Ka/HFvsxDi/BUxTY6Go6kQdiQU4UjI+l4fjhDOqICoAxVOOzUuB8sLfJhNx1kxoy7VC1bpdEgPmBBCCJHDJKCNRKoHTaO/Cy1zLbSdbTvTx6YWq84utV+XDGj7m3sloAkh6IzFORLuD2DW++FQlCOhCI2RGJllONy6zkS3gykeJ1cW5THB7WSiy8FEt5Mqlx2Hnl73a/WJQ6yqkOU8hBBCiPOFBLQR0PqLhGiGlc9stqwhjm2hNmJmDLtuB6cP3AVDLlbtMHT2Nfec5dYLIc6F/sWYDwQjHMwKYdbnznh2KfoSh40JLgfL8n1McFvha6LbyQSXgxKHTUrQCyGEEBcoCWgjkbkOmlIYgUAqoJV4SlAo2kJtlHvLreMD1YPWQrMZOhOLPRxo7j2bLRdCjLPOWJyDoQgHk0Es8703YaaOs2lQ7XIw0eVkQanH6gVLBrEJLgdem3GSuwghhBDiQiUBbSQyqjiiFEZ+froHzZ1eCy0d0Gqh49Cgy9SV5rGjseusNFkIMXb6EgkOh6IcCEY4FIxwIBRms/LR+vy2rEWZdawQNsXj5KJyL5M9Tia7nUz2OKmWuWBCCCGEGIIEtBFIFQlBQ2FiFOSn5qD1L1adVWo/vwYOPQtKpdZNA5hS6uPR7ccJxxK47PK35ULkElMpGiIx9vWF2R8Msz8YYX8wwqFQhOOR7NL0FU47BShuKslnktvJFI+TSW4nE9wOnBnzwYQQQgghTkUC2kgM0YMWO1IPWEMcgexS+4FqiPZAuAvc+anNU0t9mAoOtfYxs8J/1povhEgLJ0wOhSLsDYbZ3xdhfzDMvmCEA8EwoYzqiAU2g6keFysKfExxu5jksYLYRLcDr2GwevVqVk2vOYdPIoQQQogLgQS0EcgsEqKwAlp4y1YACl2FGJoxoNR+RiXHjICWWclRApoQ46s9Fmd/nxW+9iV7xPb1hakPR1MVEjWgxuVgqsfJ8oJi6jwupnqc1HlcFDnkP5dCCCGEGH/yG8dIZJbZVwpbcg6aUgpd0yl2F2cHtPxkQOs8CuVzU5snFXvRNdgnhUKEGDOt0Ti7+0Ls7guzt/8VDGfNDXPqGlPcThb4PbyuvIA6j4s6r4tJbiceQ4YkCiGEEOLckYA2ApkLVSulMAoKUbEYKhhE83op9ZTSEsoc4tjfg5ZdydFlN6gtlEqOQoxEdzzBnr6wFcZ6w+zuC7OnL0xrLJ46Jt9mMM3r4obigNUb5nVR53FS7XJgSJl6IYQQQuQgCWgjYaTL7PfPQQOId3Ti8HopcZdQ31OfPt5bAjYXdNUPutTUUh/7JaAJMay+RIJ9fRF294WSgSzMFuWn/bltqWO8hs50r4triv3M8LqY4XUzw+uiVNYLE0IIIcR5RgLaCGgZRUKUMlMBLdHZCdVVlHpK2dC8IeMEbci10MCq5LhmbwvxhIlNhlaJV7GEUhwMRtjRG2JXsmdsT1+YI6H0HDGnrlHncTGLOJdPnsB0r4sZXhfVLge6BDEhhBBCXAAkoI1Eqsy+AajsgIZVar8r0kU4HsZlc1nnBKqtOWgD1JXmEUso6tuDTC7xnYXGC3Hu9cQT7OwNsaM3xM7eMDt6Q+zuC6WqJhoaTHG7mJfn4fVlhczwWUFsgsuJTdesiokTys7xUwghhBBCjD0JaCOgZZXZB6OgAEgHtFSp/VALNXnJ+WeBGtj3+KBrTU1WctzX3CsBTVxwlFIcDUfZ2Rtme28oFcqOhKOpYwpsBrN8bt5aWcwsn4s5Pjd1XpesHyaEEEKIVyUJaCORVWY/Y4hj/2LVbmux6pbggIDWewLiEbA5U5eaUuIFrFL7180+S+0XYhwklGJ/MMLWniBbe4Js6wmxsy9Ed9wErBL2k91O5uV5eFNFIbN8bub43FQ47TJPTAghhBAiSQLaCGRWccQ0MfzWGmYDe9CaQ0OU2u86BkVTUpvzXHYqAi6p5CjOK3FTsS8YZmtPKBnIQmzvDREyrTDm1nVm+1zcVlrAbJ+b2T43M3wuvIZxjlsuhBBCCJHbJKCNRGaREBJoNhu63581Bw2sHrSU/FrrvfNIVkADa5ijrIUmclXcVOwNhtmS7BXb2hNkR296vpjH0Jnjc/OWykLm5XmYl+emzuOSMvZCCCGEECMgAW0kMouEKGsujVGQnwpofocfp+HMXqy6qM56b90PU67MutyUEh9/WX8U01TouvxSK84dpRSHQ1E2dvexsTvIGuXj2HNbCSfDmNfQmZucLzYvz828PA9TPE4JY0IIIYQQY0QC2ghomga6NQcNlaw6l5+fmoOmaRol7pLsgOYrBacfWvcOul5dmY9gNMHx7jBV+e6z8gxCAHTE4mzqDrKxO8jG7j429wRpjyUAq2dsAvD2AWFMytkLIYQQQowfCWgjpWvJIY4ZAa2lNbW71FNKSyhjiKOmQXEdtO0bdKmpyeqN+070SEAT4yZqmuzsDad6xzZ1BzkQigBWAY9pXhfXFQdY5Pew2O9lmsfF88+uYVVd1bltuBBCCCHEq4gEtBHSdM0qEpLsQbPl5xPdtz+1v8RTwp72PdknFdXB4ecGXau/1P7+5l5WTS8dv0aLV5WmSIx1XX1s6OpjQ3cf23pDRJJDFUscNhb7PbyxopBFfg/z8zzk2aSAhxBCCCHEuSYBbaSSPWiketAKUnPQwOpBe+7YgDBWXAdb74ZILzjTa54V+ZwUeh0caJFCIWJkTGUV8ljX2ce6LutVn1xrzKVrzMvz8I6qYhb5PSzye6mW0vZCCCGEEDlJAtoI9fegqf45aAX5mMEgZjSK7nBQ6i4lGA/SG+3F50iGseJkoZC2/VC5IOt6U0t97GnqOYtPIM5n4YTJ5p5gKoyt7+qjM27NHSu221ia7+Vfq4pZku9ljs+NQxZ9FkIIIYQ4L0hAGylDs6o4Yq37lF6suhO9rDRrLbR0QJtmvQ8R0GZV+PnL+qMkTIUhlRzFAH2JBOu7grzY2cuLHb1s7gkSS/7lQJ3HyU0lAZYEfCwJeJnodkjvmBBCCCHEeUoC2ghp/UMcrd+R0wGtsxN7WWnWWmiTA5Otgwong6YPWclxVqWfYDTB4bY+ppT4Bu0Xry598QSvdPfxYkcvL3ZagSyuwKbB/DwP760pYWnAy0UBL4V2+ddYCCGEEOJCIb/ZjVT/EMeMOWhAah5aiTvZg5ZZat/mhPwJQwa02ZV+AHY0dktAexXqiyfYomy8cKCRFzt72ZIRyBbmeflgTSmXFvi42O/FK8U8hBBCCCEuWBLQRkjTNTR0UMkhjgX5AKm10Pp70E4ET2SfWFxnLVY9QF1pHnZDY0djF7fMrxy/houcEDcVm3qCPNvew7MdPWzo7iOOD/vRFhb6PXyotoxL831cFPDgNSSQCSGEEEK8WkhAG6lBVRzzgXQPmsfuocBZwLGeY9nnFU+DQ8+BaUJG4QaHTWdaWR47G7vPQuPF2aaU4kAowpr2Hp7r6OGFjl56EiYa1pDFD9aUkld/kH9dsUwCmRBCCCHEq5gEtBHSkkVC1BBz0PrV+mup76nPPrFoKsRD0H0M8muzds2u9PPkrmaUUlLk4QLQEo3xfEdvKpQ1RGIA1LocvLasgJUFeVxW4KMgOYds9dG9Es6EEEIIIV7lJKCNlK4lQ5Q1xFF3OtE8nqyANsE/gZeOv5R9Xn8lx9a9QwS0AH9Zf4ym7jAVAfc4Nl6MB1MpNvcEebKtm6fautnSEwIg32awvMDHxwryuLwwjwlu5zluqRBCCCGEyFUS0EZK19A1A2UqEjETw65j5AdSc9AAavNqefDAg4TiIdy2ZODqXwutdT9MvTrrkqlCIQ3dEtDOE12xOM+09/BUezdPt/XQFoujA4v9Xj49qZxVhX7m5bkxpEdUCCGEEEKcBgloI9S/UDVAX3cEf5EbIz+feGc6oE3wTwCgvrue6YXTrY3eEnAFhqzkOLPCj6bBzuPdXD2rbPwfQpwxpRS7+8KpXrJXuvtIKCiwGVxR5OfqIj+rCvOk9L0QQgghhBgR+S1ypFIBTRHsiuIvcmMvLSPW1JQ6pNZvDWGs78kIaJoGRXXQtm/QJb1OG5OKvOxo7DobTyBOU8xUvNTZyyOtXTze2pWaSzbH5+YjtWVcVeRnkd8jvWRCCCGEEGLUJKCNkGakqzj2dUYAsFdVEVy/PlXko78H7Uj3keyTi6fBwWeGvO6sSj+bj3aOY8vF6QglTNa09/BIayePt3bTGU/g1jVWFfr5xEQ/VxblUeF0nOtmCiGEEEKIC4wEtJHK6EHr60oGtOpqzN5ezK4ujPx8vHYvRa4i6rsHVHIsngpb/gSRHnDmZe2aXRngoa3H6QrGCHjsZ+lhBEB3PMGTbd083NLJ0209hEyTgM3gmiI/N5UEuLzQj8fQT30hIYQQQgghRkgC2gj1z0HTNEVfZxQAe3UVANFjDbiTZfcn+CcM3YMG0LoPqhZl7UoVCjnexaVTisfvAQRglcL/Z2sXj7R08XxHLzGlKHPYeEN5ATeV5LMs34ddl6GLQgghhBDi7JCANlLJMvuGTUv1oDmqqwGIHTuGe85swJqH9nzD89nnFvVXchw+oO1s7JaANk56lcafGtu4v7mD5zt6MYGJbgfvqS7hxpIAi/wedJlPJoQQQgghzgEJaCOk6RoauhXQOtNDHAFiDcdSx03wT+D+/ffTF+vDa/daGwsngWYMWSikyOek3O9iR2P3+D/Eq0hfPMFjbd3cf6KDp/CT2HOUSW4HH5tQxmtK85npdcni4EIIIYQQ4pyTgDZSRjKg2TX6uqwhjkZeHnogQPRYOqDV5iUrOXbXM7NoprXR5oSCCUOW2gerUIhUchy9mKl4ur2be5s6eLKti5CpqHTauYEIH7loHvN8bgllQgghhBAip0hAGyFN19DR0A2NYHKII4CjqorYsYbU99RaaD0ZAQ2seWit+4e89uxKP2v2thCOJXDZjfF5gAuUUoqtvSH+2tTO30500B5LUGS3cWdFEa8tzefigJdn16xhfp7nXDdVCCGEEEKIQSSgjVTGEMdQME48msDmMLBXVxPZlx66WJNXAzBEJcc6OPAMJOJgZP8xzK70kzAVu5t6WFCTP95PckFoisS4t6mdv57oYE9fGIemcV1xgDeUF7Cq0C+FPoQQQgghxHlBAtpI6RpasgcNoK8rSqDEjb26mt7Vq1GmiabreOweSt2lgys5ls6GRATaD0DJ9KxdsysDAOxo7JKAdhIxU/F4Wxd/aGxjTXsPJnCx38u3plVzS2k++Xb5x1sIIYQQQpxf5DfYEdKM/oBmfe/riiQDWhUqGiXe2oq9tBSAGn8N9T0DetDK51rvx7cOCmjVBW7yPXa2Hu3iLUvH+0nOP4dDEf7Y2MbdTe20RONUOu18bEIZry8vZLLHea6bJ4QQQgghxIhJQBup5BDHVEDrHFhqvyEV0Cb4J7D66Ors80umg+GApq0w7/VZuzRNY2FNPpuOdoznE5xXoqbJP1u7+UNjK8929KID1xT7+ZeKIq4s8mNIsQ8hhBBCCHEBkIA2QtqAIY7Brv7FqjNK7S9aCFiVHNvD7fRGe/E5fNYFDDuUzrQC2hAW1hawem8L3eEYfpd9nJ8mdzWGo/y2sY0/NLbRFotT5bTz6Unl3FlRSIXTca6bJ4QQQgghxJiSgDZSySGOmqYwbHp6LbTKSsBarLpffyXHIz1HmF00O32N8rmw51FQCgb0AC2qLUAp2HK0kxV1JeP8MLlFKcX67iC/PNbCwy2dmAquK/bztspiLi/Mk94yIYQQQghxwZKANkL9C1UrpfDmO+jrtgKa7nJhlBRnr4XmT6+Flh3Q5sOmP0DPcfBXZl1/Xk0ATYONR149AS1imjzQ3MmvjrWwtSeE36bznuoS3llVzAS3zC0TQgghhBAXPgloI5Uc4oip8OY76euMpnY5qqqz1kLrL7U/qJJjZqGQAQHN77JTV+p7VcxDa4vG+b+GFn7b0EZrLE6dx8k3p1XzurICvDZZB04IIYQQQrx6SEAbof45aMo08QQctDf2pfbZq6sJbdqU+u62uSnzlA1eC618jvXetA2mXz/oHotqC3h0exNKKbQLcFjfsXCUnx9t5g+N7YRMk6uL/LynuoSVBb4L8nmFEEIIIYQ4FQloI5UsDoICb8DJ0Z3tqV326iq6H30UFY+j2awf8QT/BI70DOhBc+ZB4eSTFArJ5+5XjnKwtY8pJb5xeYxzYW9fmB/Vn+BvJ6zewdvLCvhQbRnTva5z3DIhhBBCCHE+UMrENGOYZgRTRVFm1Pqc9W59Vqr91BfMIRLQRkjT+wOahjffSTScIBqO43DZrFL7iQSxpqZU2f1afy1PHnly8IXK58LxLUPeY1FtAQCb6jsviIC2sauPH9Y382hrF25d551VxbyvppRql1RjFEIIIYTIdaYZR6loVvhJfVZRlNpDW7stGZYG78/cNugYNfgcZUZJmBHr2IHnq9hpt1vT3g7cMX4/mDEmAW2kUgFN4Q1YASPYFcXhsqVL7R87lgpoE/Im0BnppCvSRcAZSF+nfB7sfADCXeAKZN1iSomPPJeNjfUdvG5x9fg/0zjZ1B3kW4eO80x7D/k2g09MLONdVSUUOeQfPyGEEEKIU1EqkRFOIsleoUa6e7Zb3xMRsnuPBn7O+D5EwMoKS8MEMKWiKJU4ZVs3bz7182iaDV13ousOdM2BpjvS35Mvm+FFdxSia9b3Qcdo/cemt2Udk7F/48ajo/9DOIvkN+SRyuhB8+RbFQb7uiLkl3myAlq//kqOR7qPMK9kXvo65cnPTdth4vLsW+gaC2ry2VTfOT7PMM529Yb4jvKyfsNeCu0Gn59SyTsqi6TwhxBCCCHOK+meowiJrEA0RABKvhKD9kcywlRGGBpwrcQQ1xyut+iVV07/GfrDiqY5soJQZqCx2/OtY4bZn7lNywxKhhNdc7Bt2y4WLlySdZ42VJDS9DH6kzk9mtZ5Vu83WhLQRig1xNFUeAPpgAZgLy8HwyDakK7kODV/KgD7O/dnB7SK/oC2bVBAA2vB6h89vY/eSByf8/z449ofDPOdQ0080NyJGxufnlTOe6pL8EkwE0IIIcQImWYc0wyng0winPweTn7uDzjhIQLR4BA1bIAaMI8pYYZ5ZvWpe45OTkPXXei6E0N3WmHFcGYEFyd2mzf1OR1m0t+NAd937T7A3DkL09sMZ/b1B4Sks1GATdM08vMvGvf7XOjOj9/4c1GySIiWnIMG1hBHAM1mw15enlVqvzqvGo/Nw+723dnX8ZWBt8QKaENYVJuPqWDrsU4unVI8Dg8ydupDEb57+AR/bWrHZeh8dEIZc4/s5eaJC89104QQQggxhqywFEkFpqywZEYwk4EpYYaTn8PpUJQIJ0NUOBWeEmaYhHmc9et/lAxOmde1visVH0WLdQzDNWz40XUHNlvegG1W2Dl6tIlJk+oG7esPRJnHDn1tJ5pmG/OAtGfPakpKVo3pNUVukIA2QplFQhwuA5tDp68zktpvr67OGuKoazrTC6ezp33PgAtpVqGQpqELhSyoyQesQiG5GtB64wn+58gJfnG0BU2D91SX8OEJpZQ47Kyu33PqCwghhBBiVKxqdv09SSESiVAy4IRImKGMUJQMT2onBw9tzd6eDEzp8BRO9SBl91KNLixpmgMjFW5c6LoLw3ACcQzDg91egG709za5kp8zep8Ml7Vdd2X0GvV/d2UEpcxANvJfeRsaVjNp0qoRny/EmZKANlLJgKZhrVHmDTjp60ovVm2vrqLv2eeyTplWMI2HDj6EqUz0zLG35fNg7Y8hHgVbdkXDfI+DySVeNtXn3oLVplLc3dTO1w8epyUa5/XlBXxmUgWVUpVRCCGEQCmFUnFise5kwAml3rNCUyI05HsikRmsQlZASp0bIZEKYiMLTIcOgabZrYCTCkGudHgy3MOEJSv8DApLyV6l4cJSfw+Wpg095WH16tUsXLhqdD90IS4AZy2gaZr2WuAmwA/8Win1+Nm693hIz0Gz3j0BR3YPWlUV8ZYWzHAY3WWt7zWjcAb37LmHht4GavJq0hcrnwtmDFr3WJ8HWFRbwNO7m3NqweqXO3v5/L4GtvaGuMjv4bdzJ7HI7z3XzRJCCCFOizVEL0QiEUwGpmT46Q9Rqe/hZCAKJYfnZYardIDKDF+ZPVlKJRjw97WnpGkGuu5OBhp3KjwZhhu7PR+nUYGhu5NhyI1uuDGS+1NByHAn96UDlJERrl544RVWrbp62LAkhDh3RhXQNE37P+BmoFkpNSdj+/XADwAD+JVS6htKqfuB+zVNKwC+A5zXAS3Vg6asr958Jy31Pand/eX1Y42NOCdPBmB6wXQA9rbvzQ5oFfOt9+NbhwxoC2vzuXfDMY60BZlYfG5D0NFwlP860MiDzZ1UOu38ZNYEbivNz5ngKIQQ4sKglEoGnWBGj1NGoEptDyZ7mkKY5h5273lq0DH9oSq9PYRS0VM3YoB0b1NG+EmGIoejMBWmMoPRkfompk6ZlQ5KmWEq+bk/fPVfS9ft4/ATHfgsw/dkCSHOrdH2oN0F/Aj4Xf8Gzfq3/cfANcAx4BVN0x5USu1MHvK55P7zWqoHLckbcHK4qy3Vy5VZar8/oE0tmIqu6ezu2M1VE65Kn1w4GeyeYQuFLJ5gLVi9/kjHOQtoUdPkx/XN/ODICTTgkxPL+GBtKV5D/uMuhBCvVv29UPFEX6r3aWBwSiSC6X1mdsBKBS4zlApOiUQwNYcK1Bm2yEFzsw/D8GSEKDcOZ2kyAPVv91jhqH+bngxHyXCV1ROV0YM1kuB09OhqamtXnfF5QohXL02pM/2P34ALaNpE4KH+HjRN05YBX1JKXZf8/pnkod9Ivp5QSj15kuu9F3gvQFlZ2eK77757VO0ba729vfh8PjzNULnR4OmOv1L7pttp3a04sVkx4w4Nw66hd3ZS8h+fofvOOwmtujx1/tcav0aJrYT3lr4367oLN/4/lGaweeHXB93TVIqPPh1kQamNd891nrRd42GXMvgVHhowuIQo/0KIYu30/rkZz3aNVC62CXKzXbnYJsjNduVimyA325WLbYILv13WHKUwEEm+0p9V6nPyXaU/q6xjk9tUCE2LAkOvzTQ8G+AAnBnvztR3beA2LftYLeNYBn2209cXzLk/wwv9n6uxlIttAmnXmcjFNkFutuuKK67YoJQack2C8ZiDVgVkLtd9DFgKfAS4GghomjZVKfWzoU5WSv0C+AXARRddpFatWjUOTRy51atXs2rVKsJ72mnduAOn3cGqVavY62niic07WTR3CQXlXpRpsvcr/8UEu53yjGd4ZM0jbGnZwqDnCl8F63/DqhXLwRj8N3SXHdvA9sauwecNaNdY6orF+cqBRv54vJ0al4M/TqvmqiL/GV1jPNo1WrnYJsjNduVimyA325WLbYLcbFcutglyp13W0L4IiUQfiUSQl15aw8KFlcQTQWtbPJjshepLvgeJZ3y2julLH5/cPtxCt0Oxeo88GIYXm+FJfi7EsHkxDA8nmjqpra1Lbs98udENT3IInyej18pzVobu5cqfYaZcbBPkZrtysU0g7ToTudgmyN12DeesFQlRSv0v8L9n637jLqPMPpCxWHWUgnIvmq7jnDaNyO7sdc+mF07n0cOP0hXpIuAMpHdUXwwv/cQa5li1aNDtLplcyD93NHG0PUhNoWd8ninDk23d/PueozRHY3yotpRPTCyT4YxCCDEMpcxUOIrH+0gkeonHe5Pvfcntye+J3mSA6iMR7yWeuS/eSyIRBMys66/fMPy9DcObEZC8yTLl+bhcVdY2myfrGJvhzfjuxbD1b0sHrVPNTWppXs3UqatG/4MTQggxyHgEtAYgowIG1cltF5YhioQAWZUcndOn0/3Pf2ZVX5xemCwU0rGXi8svTl+vZon1fuyVoQPalCIAXj7UPq4BrSsW5wv7G7mnqZ0ZXhe/mTOJBf7xD4RCCHG2WaEqHZSUOkh7uz0jQA313psVrNLBq4/TmS+laUayV8qX7I3yYbPl4XSWY7P5kvu8qeBkGB727D7MvHkXDxnEDMONlrlsixBCiPPeeAS0V4A6TdMmYQWzO4E3j8N9zinN6C8Ski6zD9DXlRnQpmHecw/xEyewl5cDVql9gD3te7IDWqAa8irh6DpY+r5B95tWmkeBx85LB9t43eLqcXgieL6jh4/sqqc5GuPjE8r4t4llOHX5H78QIrf0DwGMx3usV6In9TnRvy3em7Xd2mf1XvUHKitUZdu0efD9NM2WDFLpYGWzB3C5q61AlRmsbD5shi+1zUid48NmeNF11xlXvd27ZzVFRZef+kAhhBAXhNGW2f8zsAoo1jTtGPBFpdSvNU37MPAYVpn9/1NK7Rh1S3NNqgfNene4bNhdBsHOdNle1wwrjIV3704FtGJ3MUWuIna372aQmovh2Lqhb6drXDK5iJcOto3lUwBWhcZvHWrix/XNTPE4eXjRNOk1E0KMC2vh3jDhSFM6NGWEqIGhKjtcJYNXvOe05lMZyaBks+Vhs+VZw/7c1RmBKRm2ksFq186DLFh4aaoHywpZPnTdIUuJCCGEOGtGFdCUUm8aZvsjwCOjuXau0wYENLDmoWX1oNXVARDZs5e8jImJ0wuns7dj7+CL1iyFnQ9ATxPklQ/afcnkIh7dPrbz0PYHw3xwxxG29oZ4W2URX5xaKXPNhBDD6h8WGIt1E493EYt3EY93E491E493Z3wfOmwlEr0oleCFF052Fz0drAwfhi0Ph7MUj21KKmzZjLz05+TLCl39371nvMbT7l2rKci/+NQHCiGEEOPorBUJueD0BzTSAc1X4KS7NZT6buTlYa+qIrJncKGQP+z8AzEzhj2zolV1ch7a0XUw65ZBt7xk8tjOQ7v/RAef3HMUp65x15xJXF8SOPVJQojznmlGrTCVDFVW0BoQsmJdxOM9WQHM+tzDwAIW2TRsNn/yZYUll6sqI3DlcaS+mWnT5mcHrIzAZRhe6bESQgjxqiUBbYRSc9Ay5oQXVfrY8XwDylSpHjbnjBmE92T3lk0vmE7MjHGo6xDTCqald1TMA8NhDXMcIqDVlfoo9DpGPQ8tYpp8eX8j/9fQysV+Lz+fPYFKl2PE1xNCnH2mGU+GrE7i8U5iseQrGa5iyeCVMA+xfsNPiSfDVSzWhWmGTnptXXcmA1YAu92Pw1GM1zPF2mb3Y7cFUp9ttv7v1rFWuDr53NWjR1dTXbVq7H4YQgghxAVEAtpIDdGDVljlJR416W4LESixerhc06fR+8wzmOEwussFZBcKyQpoNidULICjrwx9S11j6aTCUc1DawhHeff2w2zqCfK+mhI+N7kSuy5/Uy3EuaKUmQxOHcTiXcRiHVbAinUQi3URiyffU9s7icU7ice7T3pdqzfKD+joWhUezyQrRPX3btkzP6dDls3mxzCcZ+fhhRBCCDGIBLQRGmoOWmGlF4C2hr5UQHNOnwGmSWT/AdxzZgMwwT8Bp+Fkd/tuXjPlNdkXrlkC634J8SjYBvdqjWYe2vquPt65/RChhMmv50zkppL8MzpfCHFyiUSYWKydaKydWLSDWLJnK57q3erv6UoGrngXsVgXJxsyaPVMBbDb8rHb83F7JmK356e+979sqW0BbLa81Pyr1atXs2jRqrPzAxBCCCHEqElAGyljiB60CiugtTf2MXlBCWD1oAFE9uxJBTSbbmNq/lT2dOwZfN2aJbD2R9C0FaovGrR7pPPQ7jnezr/vOUqVy859C6Yyzes67XOFeDWyera6iUbbicWsl/W5wwpgsXZi0XaisQ5isXYSZiur10SGvZ5h+NKBypaP21VlhaqMbZmBy27Px2bzn3GhCyGEEEKc3ySgjVB/D5oyFZFgH06PF4fLhr/YRXtjb+o4e00NmttNeEChkBmFM3iq/qmsRayB7EIhQwS0M52HllCKrx04zk+ONrOiwMcvZk+kwC5/7OLVxzSjyZ6tNitUJYOXFbY6UuGrP4jF450olRjyWobhxW4vwGEvxOEoxOudyommPiZPno/dYW232wsyglYAPbMgkBBCCCHEMOQ39ZFKBjQdnfbGY1RMnQ5AYaWPtsb04qeaYeCcVkdkQKGQWUWzuG/ffRzrPUZNXk16h78CAjXJ9dA+OPi2yXloaw+ceh5aOGHykV31/KOlk3dWFfOVqVUy30xcUBKJINFoK9FoW/I9+Yq1ZWyz3uPxrmGuomO35+NwFGG3F+DxTCE/cBF2R2EyhBVhdxTisBdgTwYvwxjcA93SvJqJE1eN6/MKIYQQ4sInAW2EUnPQNJ32hsyA5qV+exuJuIlhsyqZuaZNp+fxx7N6yxaULgBgc/Pm7IAG1jDH+peHvfeyKdY8tMOtfUws9g55TFcszju2H2JtZx9fmlLJ+2tLR/O4QpwVSikSiV4ikeaMoNU6IIS1kTCPsnpNkEQiOOR1bLYADkcRDkcxPt90HPZLU9+tsFWE3V6Iw1GAzRY4ZdVBIYQQQoizRQLaSCXnoOm6QXvjsdTmoiovpqnoPBGkqMoHgHPGdDr/+lfizc3Yy8oAmBKYgs/uY3Pz5sGFQqqXwPb7oKsBAlWDbr2yzprf9uy+liED2vFIlDdvOcj+YISfzprAbWUFY/LIQoyUUop4vJNIpDkZvpqJRFqIRJuJRpqT79Z30wwPcQUdRzJYORzFaEylsnIWDkdxKnj173M4itB1WTZCCCGEEOcnCWgj1N+D5s3Lp6OxIbW9qNIKZW2NvamA5ppu9a5F9uxJBTRDN5hXMo/NLZsHX7zmYuv92DoI3DZo98RiLxOKPKzZ08Lblk3M2nckFOGOzfvpiCX447zJrCzMG81jCnFSSplEY+1EIyeSwavFCmHRFmtbtCUZwFpRKjrofMPw4XSW4nCU4A8swOkoweEstd4dxanAZbcXZBXLWL16NdPqVp3FJxVCCCGEODskoI1UMqB58vI50pguAJJf5kHXNdob+iCZs5zTrEqO4d178K1cmTp2QckCfrrlp/RGe/E5fOlrl88DmxvqX4LZgwMawOXTSrh3wzEi8QROm/WL66GgFc5CCZO/LZzK/LwzK8MvRCbTjKJUK52d6wlHjhOJNBEJNxGONFmfI01Eoy1DFtKw2fJxOktwOkrxFCzB6SjDkfzeH8CczlIMQ/4ZFUIIIYTIJAFtpJJzydz+AJ17GzETCXTDwLDpBMo8WYVCDL8fe2UlkT3ZZfUXlC5AodjaupVLKy9N7zDsUHsJHHpu2NuvrCvhd2uPsOFwB5dOLaZR6Xx8036iyuTehVOZ7XOP7fOKC0oiEU6FrHAyeFmfj2eEr1YANmxMn2cYXpzOClzOcrwFy63eL2cZTkcpTmcJDofVGyYLHQshhBBCjIwEtBHSdA008Hj9JOJxulpOUFBeCUBRpZfmI91ZxzunTx9Uan9u8Vx0TWdL85bsgAYwaSU89WXobQFfyaD7L5tShN3QWLO3hZIKH1/Bh6EU9y2YykwJZ69qSilisQ7C4QbC4UbC4WOEwg2p75HIcWKxjkHn2Wx+nM5yXM5y8nyzcLoqOHy4i/nzVuF0WdttNhkyK4QQQggxniSgjYau4fJZv7B2NDakA1qVl/0bmomG4zhc1o/YOX0avc8+ixmJoDut3gWfw0ddfh2bmjcNvvaky633w8/CnDsG7fY6bVw0oZDHD7VyT8BEAX9bOJXpsgD1BU8pk2i0hVD4GOFQMoRFrAAWClnvphnKOscwvLhclbhcVQT883G6rF4wp7Mcp7MCp7MMm21wwZn6I6spKlpxth5NCCGEEOJVTwLaKGiGhtNjzR1rbzjK5EXWpLPCZKGQjuNByib5AXDNmAGJBJF9+3HPmZ26xoLSBTx08CESZgJDTxdBoGI+OP1waOiABrB4WhHf7e3Cl0jwBXolnF0g+nvAQqH69Ct8NNkD1kA43DSo4IbNlo/bVYXXO5miohW4XFWpQOZ2VWGz5WcviC6EEEIIIXKSBLTR0DVshh23P0D78XQlx8JKqyeirbE3HdDmzAUgtGVzVkCbXzKfe/bcw/7O/UwvnJ6+tmGDCcutgDaEnniCBxwxlEvn3U4fNaH2sX46MY5MM04k0kgwI4QlzI28vO671udEb9bxDkcpLlcVeXlzKS25HperOhXAXK6qIXu/hBBCCCHE+UcC2ihouoYyFYWVVbQ3pNdC8xe7sdl1q5Jjkr2qEltZGaGNm+Atb0ltX1i6EIAtLVuyAxpY89D2PgqdRyE/vZh1OGHy9m2HOBSNUrKnh6MFsLRynB5SjJhpxgiHjxEMHrJeocOEglYYC0casqofapoDKMTpnEF+/kW43bXWy1WD212DYci8QiGEEEKIVwMJaKOha2AqCiurObBhXXqzrlFY6aWtMd0LomkansWLCG7cmHWJKl8Vxe5iNjdv5g3T35B9/cn989CegwVvBqzhb/+2u54XO3v58cxa1rYc5cldJ7i9wj4+zyhOSilFNNqaDGEHCYYOpQJZKFSPUvHUsTZbPh53LX7/PMrcN+F2T8DtrsHtrsXpLGfNmmdZMH/VuXsYIYQQQghxzklAGwVN11AJRUFlNcGnHyfc24vLZ80/K6z0Ur8je9ihe9Fiuh95lFhjI/ZKq8tL0zQWlCwYulBIyUzwFFvDHJMB7Yf1zfy9uZP/nFzBHeWF2KeFuXfDMQ51GYPPF2MmkYhY4atvP33BQ4SCh+gLHiQYPJQ1HFHXHbjdE/F6p1FSch1ezyQ8yZfdXnAOn0AIIYQQQpwPJKCNhpHuQQNobzxG5bQZgFUoZPfaJkK9Udw+BwCeRdZwxuCGjQQq02MSF5Qu4Mn6J2kNtVLsLk5fX9dh0goroCnFY23dfP3gcW4rzecjtaUArJhajKbBttbBiwWLM5dIRAgGD9LXty/9Cu4nGDwCmMmjNFyuSjzuSVRU3IbHPQmPZzIezyRcrgo0TcKyEEIIIYQYGQloo5A5Bw2yA1pRslBIe0MfVdOtgOacNg3d6yW4cQOB19ycus6C0gUAbGnewlUTrsq+yaSVsOPv7G7cxwcPhJmX5+Z7M2pTFfkKvA7mV+eztSV73TVxcqYZJxQ6TE/vLvp69w4ZxDTNSPWGlZbehM9bh8c7FY97IoYhFTOFEEIIIcTYk4A2Gsk5aIHScnTDRkdjulBIf6n9tsZeqqZbQ9s0mw33ggVWoZAMMwtn4tAdbG7ZPERAu5wOWx5v39eB1+7lrrmTcBt61iFXzSjle0900twdptQvwWGgWKyb3t7d9Pbuord3NwlzHWuePY5pRoChg5jXW4fHMxFdd57j1gshhBBCiFcTCWijoWuQUOiGQX55Be0ZAc2b78ATcNB0sJt5V6RPcS9eROsPf0SiuxvDb5XgdxgO5hTPYcOJDYNuoQom8cnZX6DRtHH/nElUOB2DjrlmdhnffWIvT+5q5s1La8f+Oc8TSinC4UZ6erbT07szFcrC4fQSCHZ7IVBGddW/4PPNwOebidc7WYKYEEIIIYTICRLQRqF/iCNAYWV1VkDTNI3Kunwa93WilEoNSfQsWgxKEdq8Gd/Klanjl1Qs4Rdbf0FXpIuAM5Da/vvj7TySv4Qv1t/F4lXfG7Id08vyKHFrPLGz6VUV0CKRZrp7ttHdvZWenm10d28jFusvzKLj8Uwm4F9IVeWb8eXNIM83E4ejlDVr1lBXt+pcNl0IIYQQQoghSUAbjWSREIDCyioObnwFM5FAN6wiEZVT89m/vpnu1jCBEmsdK/e8uWCzEdywMSugLatYxs+2/IxXml7h6glXA7C7L8QX9jewytbL+w7dBc3vhvI5g5qhaRqLSg2eOdBGXySO13nh/bFGo+309Gynu3sr3T3b6OneRiR6IrlXx+eto7j4Svx588jzz8HnnS7zxIQQQgghxHnnwvtN/izK6kGrqsFMxOlqbqKgwioaUlmXD0Djvo5UQNM9HlwzZxIasB7a3JK5eGwe1jau5eoJVxNKmLx/xxF8hsH/zpyA/pSC/U8MGdAAFpbZeOxImGf3tnDD3IpxeuKzQymTYPAgnV0b6OrcQGfXBkKhw6n9Hs9kCgqWkeefgz9vLnl5szAMz7lrsBBCCCGEEGNEAtpoJOegAalQ1t54LPW5sMKLy2uncV8nMy9Nl9X3LFpEx913o6JRNIc1p8yu27m4/GLWHl8LwFcONLK7L8yf5k2mtMgP5XNh3xNw2b8N2ZS6fJ18j50ndp447wJaIhGmu2cbXZ0b6OraQGfXRuLxTsCaMxYILKKq8g3k+efhz5uDzZZ3bhsshBBCCCHEOJGANgoD56ABtDccY8ripan9FVMDNO7rzDrPvXgR7b/9LeGdO3EvWJDavqxyGWuOreH+hoP8pqGb91aXcGWRVUiEuuvg+e9DqAPcgxc8NnSNK2eU8vTuZuIJE9uASo+5JBbrprNznfXq2khPz3aUigFW71hpybUEAovJz1+M2z0xNX9PCCGEEEKIC50EtNEwNIhba2a5fD48gXzaGxuyDqmaVsChLa30doTxFVhzojyLFgHWgtVZAa1iGQo7XzjYSq3Lx39MzugJm3YdPPcdOPA0zLljyOZcO6uMv21s4JXDHSybUjSGDzo6iUSQzs4NdHSspaNjLd092wETXXeQlzeX2pp3EggsJhBYhMNReK6bK4QQQgghxDkjAW0UNF3DTPagARRV19J86EDWMel5aJ1MW1IOgK24GMeECQQ3bqToXf+aOnZSYBJa8Z00xx3cPbsaT2YvWNVicBfC3seHDWgr6kpw2HQe39l0TgOaUgm6u7fS1vYsCfNR1jx7GKViaJodv38+kyZ+iIKCZfj9CzAMKW8vhBBCCCFEPwloo6GnqzgC1Myey4t//ROhnm7cedbQxKJqHw6XkRXQANyLFtG7ejXKNNF0K4jtD0Zo81yNL/QKK/LnDriXAVOvtgqFmAnr+wBep43LphbzxM4TfOHmWWd1aGA02kpb23O0ta+hvf15YrEOQAcmUFvzrxQULCM/f7EU8xBCCCGEEOIkcnei0nlA0zVUIh3QaucsAKU4umNrapuua1RMzR80D82zdAmJjg7Cu3YBYCrFv+85iksHZ9td7G7fPfiG066DYBs0bBy8L+naWWUc6wixu6lnVM92KkqZdHVt5sDB77HulVt57vml7Nz1KTo61lJcdAVzZv+AlStewdA/x9Sp/4+iohUSzoQQQgghhDgF6UEbDSO7B618Sh0Ot5v67VuYdsllqe2Vdfkc2d5GsDuKx29VbfRdZu3ve+453LNnc/fxdl7q6uMrk4v44eFu1h5fy+zi2dn3m3IlaDrsewxqLh6ySVfNLEPTtvH4jhPMrPCP6eOaZpzOznW0tD5OS8sTRCJNgE4gsIDJk/6NouJV5PlmoWmS+4UQQgghhBgJ+U16NAYMcTRsNqpnzuHIts1Zh/XPQzu+vzO1zVZcjGvOHHqffY7eeIKvHTzOJQEv76mtZXrBdNY2rh18P08h1CyFvY8N26SSPCcXTyjk4W2No3mylEQiQkvrU+zc+f94/oVL2LT5rTQ2/hV/3lxmzfwOK1e8wkWL/8qkSR/GnzdHwpkQQgghhBCjID1oo5BZZr/fhLkLOLjxFbpbmvGXlAJQMiEPm0OnYV8nUxaVpo71rVxB689+zs/2H6UtFuf3UyahaRrLKpfxx11/JBQP4ba5s29ady089WXoPg7+odc7u3l+BV94YAd7T/QwrezM1wxTKkFHx0scb/o7LS2Pk0j0YbPlUVx0JSUl18lwRSGEEEIIIcaJdHeMxoAeNIDauQsAOLJ9c2qbYeiUTx68Hpp3xQq63F5+2tjOjcUBFgW8AFxScQkxM8aGExsG33Paddb7vseHbdb1c8rRNXho6/Ezepyenl3s2/91XnhhBZs2v42WlicoLb2RBfN/w4rL1jF79vcoLb1OwpkQQgghhBDjRALaKGhGdpEQsErte/MLqN+2JWt7ZV0+bQ29hPtiqW3uefP4062vJwR8OmPNs0Vli3DoDl5oeGHwTUtngb/6pAGtNM/F0klFPLS1EaXUsMcBRCInOHLk57z88o2se+Vmjh69izz/XObM+SErLlvHrJnfoKhoJbruOOl1hBBCCCGEEKMnAW00huhB0zSN2jnzqd++JSscVU0rAAXHdnektjXEEtx/6ZVcv/FlprnTAchtc3NJ5SU8c/SZwQFL06DuGjjwDMTCwzbtpnkVHGzpG7Kao1KKjo6X2Lbtw7zw4gr2H/gWuuFh+rQvc9nytcyf93PKSm+UNcqEEEIIIYQ4yySgjcJQc9AAaufMJ9jVSevRI6lt5ZP9uLx2Dm1pSW377uEmlK7ztvv+mCq33+/Kmitp6G1gb8fewTeecTPE+uDg6mHbdsOccgxd46Gt6WIh8XgPR4/9npfX3cDGTW+hveNFaqrfwbJLnuTii+6luvpfcDgKz+AnIIQQQgghhBhLEtBGY4geNIDaufMBqM+o5qgbOhPnFXF4WxuJhMnevjD3HG/nHSV5lHW00ffcc1nXuLzmcjQ0nj769OD7TloJrgDsfGDYphX5nFw6pYiHth6np3cPu/d8kedfWM7evV9C153MnPFNLlv+InV1/4nHM2lkzy+EEEIIIYQYUxLQRkEzdFRcoeJm1nZ/cSkFFVXUb8+ehzZ5QQnRUJzGPZ3875ETuAydj02faJXbX/Ns1rHF7mLml8znmfpnBt/Y5oDpN8GehyEeHbZ9r53Vwmtrv8e6dTdy/PhfKCm5losu+hsXX3Q/lZWvwzBcI394IYQQQgghxJiTgDYKjto8MBWRg12D9tXOmc/RndtJxOOpbTUzC7E5dDZua+aB5k7uLC+k2GHDt3IFoS1bSHR2Zl3jytor2dW+i+O9Q1RjnHUrhLvgUHawU0rR2voM6ze8gfzQx5gYqOdY/F9YfukLzJ71HQL++WiaNibPL4QQQgghhBhbEtBGwVVXgOYwCG1rHbRvwtwFxMIhmvan55DZHAa1s4v4S3c3MaV4V3UxAL6VK8E06XvxxaxrXFFzBcDQwxynXAGOPNh5P2AFs7b251m/4XVs2fpuIpEmpk37Ig81/Yhfbrocu71gjJ5aCCGEEEIIMV4koI2CZtdxzSwktLN1ULn9mtnz0DSdg5teydpePa+Il6ptrHC7meKxhhi65s7FyM8fNMxxYmAikwOTeeboUMMcnTD9etj9MJ3t6zDVt9i8+e1EIieYMeO/WXbJU9RUv43r50zkWEeIzUc7x/TZhRBCCCGEEGNPAtoouecUY/bFiRzKHubo8vmYMH8hu55fjTLTc9S2Vtrpc+lcmdHpphkGvstX0rN6NSoWy7rOlbVXsr5pPV2RwcMoQ9NWsG1CjA2b3wScYNq0L3Lpsqeoqnwjum4H4Lo55ThtOn/f1DB2Dy2EEEIIIYQYFxLQRsk1vQDNrhPaPniY4+yVV9LT2sLRndsAaxjib5vbqQgr/Os7so7Nu/56zK4u+tauzdp+Rc0VJFSC5xrSVR7j8T4OHPguL7V+g9ZiB5Ni09C1r1NT/TZ0PXvtMr/LzrWzy3lwSyPRAcVMhBBCCCGEELlFAtoo6Q4D1/QCQjtaB62JNuXiS3B6vOxY8xQA67r62Nob4vUuH51NQTqa+lLHepcvR8/Lo/uRR7OuMad4DiXuEp6ut+ahtbat5uV1N3D4yE8oKb2eZZ0XM3nrPjRsw7bx9kVVdAZjPLOneaweWwghhBBCCDEOJKCNAffcYsyeGNH67qztdoeTacsuY+/LLxANBfnlsRbybQbvnlsFwMHN6UWrdYeDvKuvpueppzCj6dL5uqazqmYVm48/x9btH2XLlneh6y4WL7qHObO/j2vGG6GvhUDX7mHbt2JqMcU+J/dtODbGTy6EEEIIIYQYSxLQxoBrRiHYtCGrOc5eeRXxSITnX3qJR1u7eEtlEaXFHkon5HFoS/bx/huux+zpoe/5F7K2X17g5+PF7bQ0/5NJEz/K0iX/ID//Imtn3bVgc1HSkn1OJpuh89oFlTyzp5n2vuHXTRNCCCGEEEKcWxLQxoDutOGqKyC0vQ2lsoc5Vk6fSX55BXcfPEpCwdsqiwCYvLCEE4e66WoJpo71LluGHgjQ/U9rmGMiEWLX7v8k3vhDOk07zxtXMnnyx7LnmTl9UHcNpc0vQCLOcG5fVE0soXhoa+MYPrkQQgghhBBiLElAGyPuOcUkuiLEjvVmbdc0jdkrr+JlXzHz3HYmuK1wNX1pOZoGu9c2pY+128m75mp6n3qa7vYtrHvltTQ2/oUJte+jPu9OHj62kWAsyCBz34Aj1gmHVg/bvlmVfmZW+Llvo1RzFEIIIYQQIldJQBsj7pmFYGgEt7UM2udbupITpVUsak3PAfMVuKiZVcTutccxM4qL+G+4gb4Z3azf9Ebi8W4WLvgtU6f+P26ccguheGjoNdGmXUfM5oWtfzlpG+9YVMWWo53sb+496XFCCCGEEEKIc0MC2hjRPXZc0wvpW3cCM5i9ltkzCQOAkuf+mTUEcualFfR2RDi6qx0ApUxOlL1Ex7sSuNr9LF3yEIWFywFYULqACm8FDx98ePDNbU5aSi6DXf+AyPDh65YFlega/G2jFAsRQgghhBAiF0lAG0OBayegInG6n6rP2v5gcyeziMHhfRzdsTW1fdK8YlxeO7teOE4iEWTb9o9wuP4n5B+fQsG34tgSntSxuqZzw6QbeLHxRdrD7YPufaJsFcSCsHuIAJdUmudi5bQS/r6pgcSAJQGEEEIIIYQQ554EtDFkL/fivaic3peOE28NAXAwGGFbb4jXT6rGE8hn3QP3po437DrTl5ZzZOcR1q9/Cy0tj1E39T+ZPvnL0BOid82arOvfOOlGEirBE4efGHTvrsAMyK+FrXeftI2vW1zN8a4wz+0bPBRTCCGEEEIIcW5JQBtj/msmoBkaXf88BMCDzR0A3FpexEU338aRrZto2r83dXzdJV6qLvsuvb07mTv3x9TWvgvvkiXYSkrouv+BrGtPK5jG1PypPHxoiF4yTYd5b4SDq6GnafD+pGtnlVPkdfDndfXDHiOEEEIIIYQ4NySgjTHD7yBvZTWh7W1EDnfxYHMnSwJeKl0O5l9zAy6vj5f+bhXziMU6OXLi/bjyG+ja9XFKiq8FQDMMArfdRu+zzxI7cSJ1bU3TuHHSjWxq3kRD7xDVGOe9EZQJ2+4dvC/JYdN53eJqntrVTHN3eGwfXgghhBBCCDEqEtDGgW9lNbrfwaYnDrGzL8wtpfkAONweFt7wGg6sf4njh7awcdNb6evbR4Htvzm+fTot9T2pa+TfcTuYJl1/vz/r2jdMugGARw89OvjGxXVQuQi23nPS9r3x4hripuKvG6RYiBBCCCGEELlEAto40B0GgWsn8k8VQQNuLslP7Vt4wy04PE62b/8gweB+5s39OXOW3oph19n5wvHUcY4JE/AsXUrnffehTDO1vTqvmgUlC4au5ghWL1rTVmjeNWz7Jpf4WDa5iLtfqc8q8S+EEEIIIYQ4t2znugEXKs+iUp5sOc7CzgRFnVEoswPg8vqYfYeJ8jQxofIrFBWtBKDuolL2vHScS26djMtrHZv/utfR+O//TnDdOryXXJK69k2Tb+JrL3+NHW07mF00O/vGc+6Ax/4TNv8Jrv2vYdt355IaPnb3Zl440MqKupIxfnohhBBifCmlUkvX9L+bpkk8Hh9y38D3s7UtGAzS2to6Jtcby3a2t7ezf//+s/qzONW248ePs3HjxpxoS+a2w4cPY2b8Zfm5/meq//Px48fp6OgY0bnj9bm9vZ36+vqzft9TfS4pOb9+15WANk4aozH2u+CTx03afr+L0g8vQHfZOHr0/1CerZzYVEpiXxuTp1nHL7i6lt1rm9j+bAMX3TARgLxrr0H/aoDOv96bFdBunHwj313/Xe7bex+zlw0IaL4SmHY9bPkzXPl5sDmGbN91s8sp8Nj587p6CWhC5KiBv2RmvgZuG+6YSCRCV1fXGZ83nsc0Nzezffv2MbvXUD+r4d5Ptu/IkSPEYrERn386x4zk/NbWVhobG8/Z/Yd6DwaDbNmy5Zz9jE7m2WefPen+c2HdunXnuglD2rp166kPOsv27NlzrpswpCNHjgBWPYB+/Z/P1bZIJEI4HB7RueP1OZFIEI1GT/t4XddPecxYfDYMg/OJBLRx8nJXHwBXXjqB+O/20v6XvagbTrBv/zcoLbkBlT+LbU89zkWvuYPCyiqKqnzUzi5k6zPHWHB1DTa7ge50EnjNa+i85x7iHR3YCgoA8Dv8XDvxWh459AifuuhTeOye7JsvfgfseRj2Pgqzbh2yfS67wR2LqrnrxcO09EQoyXOO549DjKP+X2hM0xyT98xXR0cHBw8eHHLfcK8zOXakxx87doze3t5z2pbMn71SilAoxKZNm056zFDbTnbMWFm7du2YXWus7Ny581w3Acj+BUYpRWNj46BfajLfR7pvNOdHIhG6u7vP+Pz+X3zGo43Nzc2UlZXlzM+o//3w4cNMnjz5lPfIfB/vbbt27WLmzJnn/Jf5gds2bdrEokWLzmlbBu576aWXWLZs2Tlt01Db1qxZw6pVq8g1q1evzrl25WKbwGrX+UQC2jh5qbOXPENnwfQSgjfGaHlqLfXbvkKebyazZn2LyTURdj23mtW//QW3/ceX0DSNBdfU8uD/bGbvuhPMWl4JQP7rX0fHH/5A9z8eovBtb01d//a623nwwIM8dvgxbqu7LfvmU68CfzVsuGvYgAZw55JafvX8Ie7beIz3Xz5lHH4KY6v/F+iTvRKJxCmPaW1tZdeuXaO6RuYxYxWOent72bZt24jOH09btmwZ1+sPR9M0dF1P/VKW+YrH43R2dg7aPtzxQ72GOtZms532+QN/aTxx4gQVFRVZ24Y6bqjv43nM3r17mT59es60B2D9+vUsWbJkVNcZ6he94X75G+oaQ8nlXyxyrV252Caw/j+xYsWKc92MLO3t7cybN+9cN2OQQ4cOUVtbe66bkcXlchEIBM51M4Q45ySgjZOXu/q4KODF0DS8l1aws/cPqJhJne2rGIYHb76HZa97E2t+/2sObnyFKYuXUD29gOIaH5ufqGfmsgo0XcM1fTquuXPp/OtfKXjrv6R+sVhUuohJgUnct+++wQFNN2DRW2H1N6DjMBRMHLKNU0t9LJlUyJ9eruc9KyZj6NbfIMfj8ZO+YrFY6nMikTjp68iRI/T29p7yuJO9MgPRWNm+ffsZn2MYBrquD3pl/rJ/Ou+6rqeCQOZ20zRTfyN9ptc703NO513TNLZs2cLChQvPOOiMxbEnk4u/HOZimwB6e3tZvHjxuW5GFp/PR2lp6bluhhBCCJGTJKCNg/ZYnD19YW4vLQDgeNNf6XVso6rpA/St7sKpN+NZUMrC629m21OPsfq3v2TCvIXY7HYWXlPLE/+3kyPb25g4rxiwioU0ffGLhLdswTV/PrFYjHA4zC3lt3DX1rt4cfuLtLW1sWPHDmKxGNFolGh8LlGWEb33t8TKF1nbkq/MgLUgGKGzL8x/f30tmFYgGgu6rmMYBkopOjs7MQwj69W/3zAMHA7HoP3DHT9UQBpu+3DHbNq0iYsvvviMrzHecvEX/CNHjjBhwoRz3QwhhBBCiFcNCWjjYF2nNf9sab6XSKSZ/fu/Tn7+UuqWf5z23p2037MHZSrcC0pYeufbeegn3+fRP/2e6nkLCcaCxIqP8o9/1FO5L49QKESor4/um28i/re/Ef3HP7JC1NVczeP3Pg7Atm3bBrRkCY6GKI6uPTgcDux2Ow6HA4fDgdfrxWazUWEYPLy9majTyU3zq7HZbNhsNux2e+rzcC+73T5smOoPNLkYOg4cOJAaiiaEEEIIIUQukYA2Dl7q6sWhacxy2di69TPE42H6+m7nkccfpdvTTaevhb4HniP0YAyFgkmz2HCong2HrLKk2ECL2Igd8uLN8+B2uykNBFB791F2+214S0pwOp04nU7+uPeP7OraxTuK38HyS5anApjdbsd+4HG0e94CN/8JZtw0bHsbA/v47hN7+ciCZUwp8Z2ln5IQQgghhBBiIAloY0QpRVNTE0eOHOGfPVAWjfC7X32QmbPWcOjQQo4d3Y7H48Hv9xOoLaa4KY6zCwqnleOp87P6Vz9i4qy53PTBj6Nj4/efXUtFeT43vc+aWBxrbGT/NddSOG8uZbel55z1FffxyBOPcMh2iNvLbs9u1LTrwVcOG3570oD2pqW1/PDp/fzuxcN8+dY54/LzEUIIIYQQQpyaBLRR6l/PZ/v27bS3txPTDeovu4krzC5mztqMzTaJG67/HkVFpbhcrtR5Km7Scf9+gutP4FIBVlx3K8/f93uOXHIpM5ZfzsJra3np/oMcP9BFxZQA9spK/NddS+df/krJBz+I7vUCsLRiKVW+Kl7oeYFP8snsxhk2WPgv8Pz3oPMo5NcM+QzFPic3z6/g3g3H+NR108lz2cft5yWEEEIIIYQY3vhXPriArVu3jp/85Cc899xzBAIBXvOa17DiX9+LqencOj0MdDFv7lepqqrNCmcAmk2n4I468m+dQnhPBxOOTmHylMU8+euf0NPeyrwranDn2Xnp/gOpMuqFb387Zk8PnX/7e+o6uqbzhulvYF9kH3vah1jccdHbQCnY8JuTPss7Lp1IXzTBvRuOjfrnIoQQQgghhBgZCWijUF9fj9/v55Of/CRvf/vbWbx4MdtiJjpQ2Poz/HnzyM9fOuz5mqbhW1ZJybvnYAZjXKxfwwTHLB77yQ+w2TUuunEijfs6ObqrHQD3/Pm4Fyyg/fe/R2UUCrmj7g4cmoM/7f7T4JsUTIDpN8L630AsNGxb5lXns7A2n9+tPYJpju+6WkIIIYQQQoihSUAbhba2NkpKSvD50oU1Xu7sY5orhhbeS+2E95xyPScA5+R8Sj+6COfkfBbmX8nEljq2PvgIsy+rIq/QxUv3H0z3or3jHcTq6+nNWBE94AywxLuEhw48RHu4ffANLnk/hNph+30nbcc7Lp3IodY+1uxrOb0fgBBCCCGEEGJMSUAbIaUUbW1tFBUVpbZFTZMN3X3UJTbhctVQUnztaV/PFnBS/M7Z5L92CiXuGvJedNL61G4uvmkiLfU9HNxkhaa8q6/CXllJ+2/uyjr/cv/lRM0o9+69d/DFJ66A0lnw8s+s4Y7DuGFOBaV5Tv7v+UOn3W4hhBBCCCHE2JGANkJ9fX1Eo9GsgLatJ0TIVEyKrqG29l/R9TOrwaJpGr5LKsl/70y6E23EVrdRsL6R2lIXLz94ENNUaDYbhW9/G8H16wlu3JQ6t9xezvLK5dy9+25iidjAC8PS90HTNqhfO+z9HTaddyyfyHP7WtnR2HVGbRdCCCGEEEKMngS0EWprawPICmgvdVkLVM82GqmseN2Irx2YXE7hO2awtuUfBE90sjCaYGJ3hF1PWOuk5b/+9RiFhbT+5CdZ571l5ltoCbXw+JHHB1907hvAlW/1op3EW5ZOwOsw+OWzB0fcfiGEEEIIIcTInLWApmmaV9O032qa9ktN095ytu47XoYKaGvbmilXjcypuQXD8Izq+rVzFzD59kv5x8Ef013eQ7VDx/f0EVr/vg9l2ih617/S9/zzhLZsSZ2zvGo5E/0T+cPOP6TmrKU4PLD47bDrIavk/jACbjt3LqnlH1uP09A5fFERIYQQQgghxNgbVUDTNO3/NE1r1jRt+4Dt12uatkfTtP2apv1HcvPtwL1KqfcAt4zmvrmgra0NwzAIBAKpbTt7OpmoHaGm+q1jco9FN95K3fLlPPrST+m8VNEQU4RebqLpW69glK7AKK2m5cc/Th2vazpvmfkWtrdtZ0vLlsEXvPjdgIJXfnXS+75z+UQAfiNz0YQQQgghhDirRtuDdhdwfeYGTdMM4MfADcAs4E2aps0CqoH+rpsE57m2tjYKCgrQdetHGE0kaEq4mezx4nAUj8k9NE3jmvd+mNIJk1nztx/RO0vj6Z4YWo2f3hdO4Fn+OeKdVfSu3Zw655Ypt5DnyOOuHXcNvmB+Lcy4CTb+FqJ9w963usDDzfMq+PO6erpCsWGPE0IIIYQQQowtbdBQuDO9gKZNBB5SSs1Jfl8GfEkpdV3y+2eShx4DOpRSD2madrdS6s5hrvde4L0AZWVli+++++5RtW+s9fb24vP5WLduHW63m7lz5wJwXJ3g35jO+9jCFdqEMb1npKeL3ff9EU3XsXnehCuQx7RLNAoPKPIaNdB0Okvj9E02COfDw10P88+uf/KfFf9JhaMi61qBzp0s3PwZ9k19Dw3VNw97zyPdCb74YpjXT7Nz02THiNve//PKJbnYJsjNduVimyA325WLbYLcbFcutgmkXWciF9sEudmuXGwT5Ga7crFNIO06E7nYJsjNdl1xxRUblFIXDblTKTWqFzAR2J7x/XXArzK+vxX4EeAFfgP8FHjL6Vx78eLFKtc888wzKpFIqK985SvqscceS23/8667VdnTm9SzzUfG5b4nDh1Q//v216ufvf/d6ofveUjtfKFRKaVU8w9/qQ7c8Tl15DOr1dFPP6uafrBBnXjhgFr+u0vVZ579zNAX+9U1Sn1vjlLx6Env+ZZfvqQu/uoTKhyLj7jdzzzzzIjPHS+52CalcrNdudgmpXKzXbnYJqVys1252CalpF1nIhfbpFRutisX26RUbrYrF9uklLTrTORim5TKzXYB69UwGeisFQlRSvUppd6plPqAUuqPZ+u+46G7u5tEIpFVIGRvZwMA0/wVw502KqUTJ/Paf/8coZ5WiP+DF+/bRbg3RuE77iRW/zjtB35B/m1TUQlF9MEGfr/nq0x9IZ9j2/ehzAG9pMs/Dl31sOPvJ73ne1dOprknwt83NozLMwkhhBBCCCGyjUdAawBqMr5XJ7ddMAZWcDTNCIdCEVxanFLHma19diZqZs/jpo/8O5FgA90n/s6au3di+HwUvetdOLdsRDcaKPv4IkreOw/H7EIu614If2ii6duv0PXEEeKtyaqM066Hkhnwwg9OunD1irpi5lYF+OmaA8QT5rg9lxBCCCGEEMIyHgHtFaBO07RJmqY5gDuBB8fhPudMf0ArLCwEoKtrE02qhFqnVdhjPNUtvZRr3v0hzNghdq7+NfvWN1L4treSyM/nxLe/DYBzcoCqN83nL9ev5XtVv8fMN+h5up6m76yn+adb6H3lBIlFH4cT22H/k8PeS9M0PnzlVI60BfnH1sZxfS4hhBBCCCHE6Mvs/xlYC0zXNO2YpmnvUkrFgQ8DjwG7gL8opXaMvqm5o62tDbvdTl5eHgDt7c9zQitnijdwijPHxryrr+fKf/0AZuwgj/zwGwQjJr23vIbwlq30PJZepPptC97BU4GXuWfxGsr/Ywn+6ydiBmN0/n0/xx+spjnxfXoefIF4e3jYe10zs4wZ5Xn86On9mAOHSgohhBBCCCHG1KgCmlLqTUqpCqWUXSlVrZT6dXL7I0qpaUqpKUqpr41NU3NHW1sbRUVFqd6ylva1NFPOZK/3rLVh4XU3sez17yEePsgf//NzBC9ajLOujubvfw8VjQJQ66/luonXcc+ee+hzhfGvqqHsE4sp/ehC8q6sRbmr6Wq5iqZvvcKJH2yk+8kjxJr6sha51nWND10xlQMtfTy6vemsPZ8QQgghhBCvRmetSMiFpD+gAcRiXRzpaSSOjYnukZejH4lLX3crdcveTG/bPnY/cD+Bj3yY2JF6Ov7y19Qx7577boLxIL/d8VvAGrboqPQRuGYCZZ+8lPK8TxCofBHNYdD9VD0n/mcjTd98hY6/7SO4rRUzFOfGuRVMLvHyw6f3ZYU3IYQQQgghxNiSgHaGTNOks7MzFdA6Ol7iBKUATHI7z3p7bvrwnRTU3EaotYF/PPYA2pKLaP3xj0n09gIwrWAa10+8nj/s+gNtobbsk50+bJfeRl77f1N6m0HFfy4l/7ap2Kt8BLe00P7HXTT+11rafr6V/y4tQm8K8tSOE2f9GYUQQgghhHi1kIB2hsLhMEqpVEBr73iBZt1amHriOQhohk3ntZ+4E4f/Ntobj7PGqegM9tL285+njvnggg8SSUT49fZfD77AJR8Apx/WfBMjz4FvaQXFb51F5RcuoeT988hbVYNKmFTv7OQXeKn54z5af7uDnueOET3WM7iEvxBCCCGEEGLEJKCdoWAwCKQrOLa3v0CXcwFOXaPSaT8nbSqs9FJ9yUTs3jcQjZm8NGsie/9yN5GDhwCYFJjELVNu4Z7d99DUN2AembvACmm7HoSm7anNmqHjnBggcO1Eyj68kIrPXcLuJcU8paJ0N/TQ9fAhmn+0mcYvr6X1N9vpWXOUSH03SsrxCyGEEEIIMWIS0M5QKGStJVZUVEQo1EAodJhWYzK1Lgf6OJfYP5n8yTD9kjlozjfgyi9h3YRSXvzSZ1Nzxt4///2YmPxi6y8Gn5zRizYcw2vn8lunc3ehzkd8Mco/czGFd07Hs6CEeHuYrkcP0/KTLTR8cS3NP9tC5yOHCG1vxRi+QKQQQgghhBBiAAloZygYDOJ2u/F4PHR0vADAcbPgnAxvzKRpGpe/ZQaBklLs/jdTUVLJxkg3j3zxMyTiMap8VdxRdwd/3/d3jvYczT55mF60geyGzseuqmNHYzdP1HfgWVBKwW11lH/yIio+u5TCN8/At7QcTEXvCw20/WEXk1YbHP/GOtr+vJue5xuIHO7CjCTG+achhBBCCCHE+UkC2hkKhUKp+WfB4GHQ7ByJaOekQMhATreNa989h3Cvjnf6B6iL6+zes52/fvk/6evs4L3z3ouhG/xsy88Gn3wavWgAr11YxZQSL997Yi+JjPlnRp4Dz7wS8l8zhdIPLqDqS5dS8oH5tE43cdTkET3cRddDB2n52VYav/QiTd9dT/vdu+l57hiRg52Y4fhY/ziEEEIIIYQ479jOdQPON6FQiAkTrKIgSsXp1ooJmeZZL7E/nLKJfla8oY41f97LvGs+zYK7Ps42Xed3/+8j3PiRT/GmGW/itzt+y9tmvY3phdPTJ/b3oq35ptWLVj5nyOsbusa/XTOND/9pE//Y0shrF1YNeZxm13FO8NM5SbFg1UwAEt0Rog29xBp6iTb0EjnURXBzS+ocW7Ebe6UXR5UPe5UPe7kXw5cbP1chhBBCCCHOBgloZyAajRKJRFI9aAqTE5QD56bE/nBmr6yipb6HrS8cZ8mlb+LSZ//I9mWl3Pu1z7Pw1tfyN3se313/XX5+zc9Ti20DVkB76afwzH/Dm/407PVvnFPBjPL9/M+Te7lpXgV24/Q6Yg2/E7ffiXtmUWpbojeaCmyxhl6iR3sIbW1N7dd9duzlXuxlHuzlXmxlHuxlXnSnceY/GCGEEEIIIXKcBLQz0N7eDqQrOCqV4AQVwLkpsT8cTdNYeed02hr72NiwiIs8q1nZFmLfiivYdP/feePE6fxx0jqeb3ieFdUr0ie6C+DSj8IzX4Wj66BmyZDX13WNT147nff8bj1/23iMN15cO+K2Gj4HxvRCXNMLU9sSfTFijb3ETgSJNfURa+qjb10TKpauEGkUulKhzV7mwVbqwV7iRrNLcBNCCCGEEOcvCWhnoLu7GyDdg6YSnKAcQ4NqV24NxTPsOje8by5/+forbF/8URY+8R8svelGaj7wcZ7+v59xW0MVvwt9m0s+egl2I2N5gGUfhHW/gCe/BO94GIapTHn1zFLmVwf4wZP7uHVBFa4xDEaG145RV4CrriC1TZmKREeYWFOQ2AkrtMVOBAnv6YD+uXAaGPlObCVWWLOVeLCVuLGXetB99uzeQiGEEEIIIXKQBLQzMG3aNFauXElZWRlgBbQmSqlxObDruffLvzffyQ3vm8v939vE9uX/ju1732P6g3+j+ls/5M/f+wIzXjrOL3s+zjv/7eu48/zWSQ4vXP7/4JFPwf4noe6aIa+taRqfvn4Gb/7Vy/z2xcO87/Ip4/osmq5hK3JjK3Ljnp0eIqniJrGWEPGWIPHmYOpz36GurB43zWVgTwa2gh6NYGELtkIXtiI3ulv+NRBCCCGEELlBfjM9Q7quo+vWnCurB600p+afDVQ+OcDV75zFY7802TH5Trxf+CK1v/ol7/36T/n0d95M2abD/OaTH+Dqf/0AdUuXW71Mi94Oa38ET34ZplwF+tBzzC6dWsyq6SX8+Jn9vPHiGvI9Z78XUbPpOCq8OCq8WduVqUh0RwcFt8j+Toq6ddr37U4dq3ts2IrcGEVWYLMVurAVW+/S8yaEEEIIIc4mCWijoMwEx1UJK3I4oAFMXVxKT/tUXrwPthxtIXD/A+Tf9lre+a4v8oE/v5Vb9/n5x/e/wdSLL+Gqf/0AvsIiuPLzcN+7YPu9MO8Nw177P26YwQ0/eI4fP7Ofz9406yw+1clpuoYt34kt3wkZQyUB1jy5mmWzLybRFiLeFibebr1Hj3QT2tICKuM6DgNbkQtbkQujP7wVuDAKrGvLnDchhBBCCDGWJKCNQpdpI4iHSTlSYv9kFlxdQ09biG2rr+aVXz3IqkuXMbtsNssXXMef/I/xDc+H2PnAw9z1yQ+y4s1vZ+4Vt6KX/w88/VWY9VqwDf2MM8r93LGomt++eIS3LZtITaHnrD7XSCgbVo/bgF43sIZMxjvCxNvDJFpDxNvDxNvCxE4ECe1qh4TKOl732TEKXNgKnBj5yfeM71JtUgghhBBCnAkJaKPQELfCSC4PceynaRqXvWEa3Q0d7FU34/vsz7jkF5/nE4s/wTNHn+FvBev52rd/yFO/+jFP/uonbHv6Ca6+9v2Ur/kQvPIrq3jIMD5xzTT+saWR7z2xl++/ccHZe6hxoNl07CUe7CUemJ69r3/YZKIzTKIjQrwjTKLTeo819hHa2QbxAQHOY7MCW74To/8V6H85MPIcaKe5TIEQQgghhLjwSUAbhYZEHpBbJfZPRtc1rv/Ixfz9C0+yqf1SfD/4K3P/7Y18aMGH+NYr32LTtN287nNfY/eLz7Lm97/mjz+/h3k1l7P8yW/jmX8neAqHvG5lvpt3Lp/Ez589wLtXTGJ2ZeAsP9nZkTVscuLg/cpUmL0x4p1hEh1h4h0REskQF2sJEt7XgYqaAy4Kus+BEXBQHtPp7D5gBbeAE8PvTH3WbBLihBBCCCFeDSSgjUJjwhoiV5tjJfZPxuYwuOULV3LvJx7g+V35eJ/YypuuehN/3/93vrnum1xaeSkzl1/O5IUXs/beP7Lx0X+wm+ks+d9Psujfford6Rryuh9YNYW7X6nnaw/v4o/vXvqqLKyh6RqG34Hhd0Ctf9B+pRQqnCDRFUm+osT7P3dHsTdC38YTqHBi0Lm6154ObgEnRp51Hz3Pkf7staPlYDVRIYQQQghx+iSgjULYNHAQw3WeDVFzeuzc+rmV3Pe5p3j8r4pbair47NLP8o5/voNfbv0lH130UZweD6ve9h7mXnk9z33/Uzy/qYXNH30Xy9/0TmatvAJdz55bFXDb+cQ10/jCAzt4fOcJrptdfo6eLndpmobmtqG7bdjLB89/27F6NatWXYoZiZPoiqZCnBXgkp87I0SPdGMG44NvoIPutcKakQxuep7d+u5zoGdslx45IYQQQojcJAFtFEzUqQ/KUb7qUm68s4J//KmJf/xgE7f++1JeM/k13LXjLm6ZcgsTAxMBKKqu4bVf+TFH/3sFz7ZO5bGf/g8bH3mAlW95JxPnL8q65puX1PKHl47w34/sYtX0Epw2KZAxErrThl5qw146fMEVFTNJ9ERJ9EQxk++J7ozv3RGiDT2YvTGG+sdU99jSvW8+O7rPYRU8SX623u1ogzvzhBBCCCHEOJKANgpKKfTzOKSVXL+KVWu/yepD8OD3NvDWD7yPZ44+w1df+iq/vPaX6WGK3mJqbvogb37sc+y57r95/pmN3PffX2DCvIWsfMs7KZ04GQCbofP5m2fx1l+v4zcvHOb947x49auZZtetkv+FQw857acSCrMvlg5zyRDXH+jMniiR9jBmb3Tw/DhgCgYNz76YDnFeeyq8GclQp3vtVm+d147utskwSyGEEEKIUZCANgoK0M7jgAYw8T8/zrK3vIeX9Jt49mcaH3rtv/PNY1/k/v33c1vdbekDl7wX7ZVfM+P475j67WfY8tTjvHTf3fz+0x9l6sXLuOSOOymbNIUVdSVcPbOUHz61j9sXVZ27BxMAaEbGvLhTMKMJzN4Yid4oZm8MszfG/m17mFBaSaI3htkbJd4WIlrfjdk3dM+cNcwyGd68VnjTPTYMrx3dY0f32pLv1nfDa5O15IQQQgghMkhAG4WE4rzuQQPQnU6mfO+rxN74DjbO+RB9DxSx6uKb+Pb6b7OiegXF7mLrQJsTrvsa3P1mbJt+w+KbPsTsy69m46MPsvHRB9j/ylomL17Cstvv5LM3zeLa76/hO4/t4cbic/t84vTpDgO90MjqlesI7mb+qsE9ocpUmMFYMtBZ4S3RG8Psi2WFvFhHmERfHBUeYs5ckmbXU0EuHdyyv2cGO8NjH5fnF0IIIYTIBRLQRkEBmnZ+BzQAR20tE7/0H6hPfY6tq77ArJeupaHuOF9/+et8d9V30wdOvxGmXgPPfB1m347LX8Glr38zi2+6lU3/fIgND9/PHz/7CSYuWMw76y7hlxuOMeuSkw/BE+cnTdcwfFbxkdOJSyqhMEPJANcXxwzGSATTn82+GGYwjtkXI9YeJnyKUDfZ0Dn+0rp0sPNYwytTL0//Z3v6s0d664QQQgiR+ySgjYKpFBfKbBv/dddStmE98//0RXa95ltctedtPBP7M09Pfpora6+0DtI0uPFb8ONL4InPwx2/AsDp8XLJ7W9k0Q2vYfPjj7D+H3/DuXkDr/PV8vDLC3jrzVdgnGeVLsXY0ox0oDtdKmFaoS0jyCWSQe7InoNUFQYwg3ESfTESHRErAAbjQw+97GfTrNCWFeIyAt6AbVpG6JO5dUIIIYQ4GySgjYLi/C4SMlDZpz5FaMsW5jzxWfbe8R2uOPBm/nLPU1z8sYvJc1iLclM4GS77OKz5Jix6G0xamTrf4faw5NbXsfC6m9nyxCM8//d7KT/wID/66Hquev0bmLH8cmx2GZ4mTo9m6KllAQZq0w4wd9X0QduVqVDRhBXsQvFUaLM+xzGDcVQoGfpCcWsR8eN91vboyUtWai7DCmsuG5orGdxchvXdbSPQoNG3vmnQfs2VPMeQgCeEEEKIU5OANgqm4oLpQQPQHA6q//eHHHrdHcx++qvEb/oMc3dfxU9/8jc+9dG3off3IFz2b7Dlbnj4U/CBF8DIDl12l4uLXnM786+7mfd87kdUN23hsZ/+D8/96S4WXncz8665AY8/cA6eUFzoNF1LBaIzpeImZjieHej6w1x/sAsnt4XjJNrDxMLWZxVOUIJOx+59w7fNYaC704FNd9us0JcKc7asEJi132UDm/aqXABeCCGEeLWRgDYKJud/kZCB7GWlVP/v/1L/trezZOvv+MfCa/HuqOH333+GN3/4cuxOA+xuuOFb8Oc3wks/geUfG/paDgdXrVjAl16czltqwkzq2soLf/kDL//9L8y6/EoW3XArRdU1Z/kJhRiaZtPPeBhmP2UqnntqDZcuviQZ2OKYoYQV6ML94S6BGUruC8etZQ+a098ZvMpBNkNDdyYDntOwwpszGeIytg88xtkFsZagFQCdBppdl6AnhBBC5DAJaKNgWnX2LziehQsp/+IXOP65z3PHtKl8Y/Yupu64jHu/s45bPrwIb8AJ06+HaTfA6m/ArNdCwYQhr1WTp/PO5ZP49QuHuO0DH2flv3Sz8ZEH2LHmKbY++U9qZs1l3jU3ULdkGYZNhj+K85Oma5h2Trku3XCUUqiomRHmrECX9TmSfA/HMSMJzHCCRHcEsyWBCicwI3GID/4LoxoMTqzdkN6gg+ZMhjmXYX12GWhOIxXiUiFv4H5n8t1hvWsyt1QIIYQYcxLQRkEBF+qvJ/mvex3hnbvouOt3fOBzH+XTM3/D1Xvfzr3fXM+NH5hHSU0e3Pht+Mkl8PAn4C33WkVEhvCxq+t4cEsjn39gOw986DKufd9HuezOt7HtmSfY+uQ/efgH38ITyGfOFdcw76rrCJSWn+WnFeLc0jQtFYAIOEd8HRU3MSPpEKfCcbas38yculmY/QEvYvXsqWTIUxGr0IpqC6e2q9ipuvOSbMlePUd/eLOhOfTUNuuZbGhOPRnqrM+eFogc7koFRescGcYphBBCgAS0UVGo836h6pMp+8x/EDl0kOA3f8pbP3s7P7Z9nzce+iR/+/YGrnr7LKYuroErPw///DRsuxfmvX7I6+S57Hz+5ll85M+b+N3aw7xz+SQ8gXyWvvb1LLnlDg5v3cSWJx7llQfuY90D9zJp/iLmXXMjkxdehG5IWXQhTpdm0zFsOnjTvdHBevAsLD2j66iEmQpwZiSj9y6SDHjR7HcVSR4XtXrzYl3RrP3WcIO0SgxaNmwdfGNdywh7ekaAM1JBbtA2p26FQUeyZ8+R+V0HmwzpFEIIcX6RgDYKprpwe9AANLud6h/8gMNvfjNzv/co8z9Yy1/mfIv3HP8yj/1yO20NE1ly47vRtv3VCmlTrgRv0ZDXunleBfdtPMa3H9vDtbPLqcp3W/fQdSYtWMykBYvpbm1h29OPs+3px3jg2/+FJ5DPzBVXMOfyqyiunXgWn1yIVzfN0NE8OvoYLAqulIKESgY9K8RtWPsKC2bPz9qWCngZYa9/v9kbI5axj/hp9vABaCQDm54R4pLf7RnBz25QeFyjRztq7benw59uTw7p7L+GXZchnkIIIcaNBLRRUMCFvjSS4fdT87OfcfiNd/L+37XykTf18c+5P+etlf/O+kcO03qsl6tv/B+cv1sFj38WbvvZkNfRNI3/unUO137/Wb5w/3Z+9faLBv2ttr+4hOVveAuX3P5GDm56hZ1rnmLTow+y4aG/UzZ5KrNWXsWM5SulAqQQ5xFN08CmZfXshQvANa1gxNdUieRyCtF0wLO+m6nPKpLAjPV/N9PH9x8TSWD2RIllnFMY1ek6cPj0G2JoyZCX7rXT7BlDPO16eqin3QqB/WHQes/eptv17P0SAIUQ4lVJAtoomGrYaVcXFEd1NTU/+TFH3vZ2vvVIOe++aT17Fq9hRe1reOGv+/nLcRfXL/gsJVu+DPPeYPWkDaGm0MMnr53GVx/exSPbmrhpXsWQxxk2G3UXL6Pu4mUEu7vY/fxqtq95imfu+jlrfv9rpixewqyVVzJxwWJZV02IVyHN0FKLiI+l1c+sZuXyFUOEugQqYqJi/aEwGepi1nFmJPtzoi+G6ghnnTNUAZdT0jU0u85EdI6veyUV+Kywp2eHwAHb9GFCYOrdrssQUCGEyFES0EbBhAt6Dlom9/z5VH77WzR87ON8w17Gp42fsfSGJbz2k4t47BfbuG/1Ii4veRMzH/wofOBFcPmHvM47Lp3I/Zsb+OKDO7hsajGBUwyh8vgDLLrxVhbdeCvNhw+y89mn2PncavatexGn10vdkkuZcenl1MyeK/PVhBCjo4HuMMAx9v8tUaZCxcxUkFMxqxiLivb39GVuy97fcOQY/hJ/xrHWsE8VCyePTR8/kv8laZk9d0MEv1Tvn10Hu45m08k/qtFjb0gHQJueDonJY7SM81LbLvRhJ0IIMQYkoI3ChVzFcSj+a68l8YXPw5e/wsdtPv7D+2nuu/VvvOGzS3j81zt4es8baHQXs+LRL+O47btDXsNm6Hzj9nnc8qPn+cY/d/H12+ed9v1LJ06mdOJkVrz5ndRv28zuF9aw96Xn2f7ME3gC+Uy75DJmLL+cyrrpaPqr6U9GCJHrNN2q1InzzMPf5tVHmb1q+imPU0pBXFm9dv3DO2NmKugNGQyzQuOAABmOY3YniKVCo4mKW72Bxeh07T145j8IQ8sIcqcR7Abut+toNmOIbda7LQiJnmhqG4ZUBhVCnH8koI2CyatjiGOmgje9iXhbOxf/6Eccd4b4QvEX+J8r/odbPraAVx46xIZHrqDxySauLX6KshVXDXmNOVUB3r1iMr949iA3z6tk+dTiM2qDYbMxaeFFTFp4EbFohEOb1rPnhWfZ/vTjbH7sIfwlpdQtuZS6pcslrAkhXjU0TQO7FYDG8796ylQ8+8waLrtkOSpupkNgf/iLmxAbsD3rODPje0aIjPT3DKbDYP/n0+0ZnIjB8WdfTm/QGD7YJUMdtuRn24CQmNqupXoOBx036BpaOhzqEg6FECMjAW0UlNJeVT1o/Yo/9EES7W3c8qc/83v3k/yu7He8ffbbWXrLZGrqfDzxk07u+6PJko7dKN/Q/1f9xDXTeHLnCf7fvVt57N9W4nOO7B9Fu8PJtKXLmbZ0OZFgkAPrX2L3i8+y6Z8PseHh+/EWFDL14mVMW3op1TPnyDBIIYQYJU3XUAYY3rMzB7i/Emgq1EWHCHzJQLdr2y6mT6kbPgjGs0Oi2WcFQuLJfXETFbPuNXB5iDOmWUtfTEKn8cWXTxICNSvQDQqG2d+tkKgNHRJt+uAQaUg4FOJ8JQFtFKw5aK8+mqZR9tnPEm/v4K3//Ce/tn+Hjf85l0Vli6icWcqdH5/Amh8+wsuPGHhKoGdBmLxCV9Y1XHaDb71uHq//+Vq++ehu/uu1c0bdLqfHw6yVVzJr5ZVEgn0c3PgK+9a9yI41T7Ll8Ydx5fmZetFSQi4fsegy7I7/z959h0dVpn0c/57pfdJ7rxB6L6GEDgqKgqhYUMGODeuuuquur+7q2l0r2EBARURREAEJCNI7SAklgZBAElInPZnz/nEmk4QiEEMKPJ/rGmfmzDknzyAk88v9nPtp+ILAgiAIQtOo6QQqaVRg+PN9i/L+wNInqFG+rlwtK2sCnhbg6jyukmtfrzzzPulpRwny86xzjtqw6Sytcu/HKcf/5UvcVdQLcmiUzqA1IS/IoSL70C6l6U7doKeRXPu5qod1q4PqOvu4g+Apz2uOU4uwKAgNJQLaX3A5tNk/G0mtJviV/5BaWszkJb8x03Q/4f/4EW+jN/ro7gwbvYiwpW+RnDuVuf/aQNJN8cR29693ju4RXtzeN5JP1hzmig6B9Ik+8xpqDaE3mWnbL4m2/ZKoLC8jdfsWUtb/zv51a6goLeG95YsIa9+RqK49ieraA6v3hU2zFARBEC5tklpCUv/1pjHbko/QPinugo+Ta6qGZwlwp4fFmn3ks4TJmqCpvC7J4Cytqh8+q2SorvP4r1YRa7iqiahPqQLWBEDX9sBCFTlH/3CHutrQWD8gnik41ntec1zNNY/qU4Lj5frhTWg1RED7C2T58qyg1ZB0OsLffod9UyZx04LtfGK7g2lPzketUiMlPUmblMH4ZD1Fsu5dfpm+m7RdJ+k/IRZ9nc6Nj4+IZ/neEzzx7XaWPDwAk67x/0pq9QblmrSefamuquSnOV9iqS7n0OYNHNqyEQDfiCiiu/YgqmtPAqJjxXVrgiAIQrNyB8QGNJY5H7uTk4lN6vyn+8hOuTbY1QuMsmvbKc9rAmB1TSCsc0z1Kc/PEAjV5VCVU1o7pfWU/RqtcbZKqp1aqq5TGawJhWqpNkyqVQTkqTiZudcdGmuPqb+fpK4fOM927j87h2hsI4AIaA0myzJOLt8KWg2VXk/8R5+y9ZZxjPpiP197TuPGe94CjR7GTcfr/f5cE/IWm9r9H5t/PsLRPbkMvDGeqM6+ABh1al4d34nrP1rLvxfv5YWr//pUxz+j1mixhUaQlJTEoEl3kXssnUNblKC2fsE3rJv/FSa7B5GduxPVrQfhHbqgN5ku6pgEQRAEoSWSVBLSRVp64kz+SE4mKanbGV+TZaWiV1MBdAfCOmGuboVQCYmnB8fTntccXy3XBlHXsXJ5Nc7qKrTFUHnMURs0q+V6xzc6tXSGIHd6gAwqVJGTurtOMLzQAHnKMX92DnWdAHm5f/htAiKgNZgTmYvbKau1UBmNdP7sG36/fgTt3/6FVeb/MOCWJ8GvLQejJxF7YDq9rhxK5JMT+HXmXhZ/sJOYbn70vz4Ok01Hz8jaqY5D2/ozIM63ScYtSRLeIaF4h4TS46pxlDqKSN2+hUObN3Bw0zp2r1yGSq0mKK4t4R06E96pC/5RMahUotGIIAiCIDQlSaqpSHHRqopnsyc5maSk7md8zd3EprpuRfD08CdXnRIGq08JjedxjlP3U1Upy0rUP/epX+ciBEgVtWFNXT/AhZapOLFzq2t7nWDo3ueUiqGrmnlaCNRIymymmsfq2tDoDpMq6fSqZ83XqPt6K6xIioDWQLJchYyEdFlPcqyltpjpOXshK28YTtBLn7FX502b66dwLPhKYuXDsOQZ/O4ewHV/687WJUfYuOgwR/fm0v+6WOJ6BfDEyHhWpWTz+DxlqqOHSdfk78FosdI2cSBtEwfirK4mY/8eDm3dRNqOraz55kvWfD0Lg9lCaPuORHTsSnjHztj9App8nIIgCIIgtAz1mtg0ce8xpeLY5U/3aViAPKVKWLOPs25IdJ2r7rFOmcrjJaitutpzVDpxljlrx1DtWq+x2lnvHBclSNZQS1jbtq7P6yKgNZAsO3EiXfZTHOvS2z3pMutb1t40hujnXiNDYwHvABj7HrzXB+ZPQT15Gd2viCCqiy8rZu5h2Wd72L/xBEk3teGNCZ255r01PPv9bt658c+/4VxsKrWakLbtCWnbHibeRklhAUd2bSdtx1bSdmwjZf3vAHgEBBLeoQvhHTsT1r4TepO5WcctCIIgCIJQo6kD5M7k47RJanfBx7mnsFafJQSeKRDWhMB6j2uCaN0QKHO0PLXx3+xFJAJaA8lyFYj62Wl8vcOI+ngGe6ZMIuGZ59HfNBGSkuCqd+Crm2DZczDyJbwCzVzzWDd2rUxn7YJDzHl+Pb2uiuKhQTG8tjyFYQn+XNWpcVolNwaTzU6bvgNo03cAsiyTm5FO2o5tpO3cyh+/rWD70kVIKhX+UTGEJnQgJKE9wfHtxPVrgiAIgiAI51BvCutFuOaxPDm10c95MYmA1kCignZ27UO7c/j159n+2D/oPGs2J4ND8L79duh5F6z7H0T2h/hRqFQSHQeFEtHBh5Wz97H6mxR8gswM8rLxzHc76RHhSaDd2Nxv5zSSJOEdHIp3cChdR42huqqKzJS9pO3cxtHdO9n80/ds/OFbJEmFf1Q0IQkdCG3XQQQ2QRAEQRAE4ZxEQGsgWa52NQkRCe1MxrQbz5v/PMzaf39Kn/+8grOoCJ97XkA6sg4W3Av3rAZ7CAA2HyOjH+jE4W05rP4mhe4Zldj0Kp6auZVP7uuDuoWnYLVGUzsdEqgsLyMzZR9H/9hF+h872br4BzYtnI8kqfCLjCa0XQdCEzoQFN8Wg9nSzKMXBEEQBEEQWhIR0BpICWgSrbAxTJN5sNejTLpxG6XfbmXwe+9TXViE/92fIH2cBPMmw20/gVr5KyhJElFdfAlt58WWJWnwcxoVu0r54MOt3HNnZ9Sa1tMvU6s3ENa+E2HtOwFQWVFO5v59HP1jZ73AhiThExpOcHxbguITKC8sQJblVtltSBAEQRAEQWgcIqA1kIwS0EQF7exUkopbfCfxyS1VlH+7h1GzZlF1Moegm/+LauE9kPwSDPlHvWO0OjW9xkQR3yuAD97chG57Pp//Yy3Dbm5LaIJXM72Tv0ar0xPWviNh7TsCtYHt2L7dZOzbw57VK9m+dDEAhxfNJzhOCWzB8W3xjYhCrRH/TAVBEARBEC4X4pNfA8lOUUE7HzqVjneGvMuNpTdQbncwdvHPHD2ZS8gVN6D+7TUI7QVxI047zsPPxL3P9mHKy7/RLbecH97eRlg7b/peG413cOueFnhqYHM6qzl59AgrFi7A7KwiY/8e9q9fA4BGrycwOo6g+LYExMQTGBOH2cOzOYcvCIIgCIIgXEQioDVYTQVNOBdfky//G/oek6omUe4ZyPXztpCWF0HowAS08++Eu1eBZ8Rpx9mNWp68ozM3frCWm7290B0q4KsXN9CmbyA9R0dh8WziBUcuEpVKjW94JH7tu5CUlARAUW4OGfv2cGzfH2Ts28OG7+chO50AWH18CYyJJyAmjsCYOPwjY9AaDM34DgRBEARBEITGIgJaA8lyNU5UqEQJ7bzEe8Xz5qA3ubf6XqS7Yrn+8yOkfm8gtLcKw1e3wORfQHt6x8buEV7cPzSWN5el8J9x7QjOrGRncjopG07QeVgYXYaHoTNcen+NrV4+xPfpT3yf/oDSeCTr8CEyD+zj+IH9ZB7Yz/51qwGQVCp8QsMJiIkjIDqOwNh4vENCUakav02tIAiCIAiCcHFdep9sm4i7SYi4Bu289Q7szYuJL/LUb0+hfaQP181IIfUXO0Hd92MLfByufveMxz0wOJZ1h07yzyV7+GFqPyYmhbD++4NsWpTK7t+O0ePKSBL6B6FWX7r1TK3eQHCbBILbJLi3lRTkk3lgP8cP7uf4gf2krFvDzuVL3Pv7R8cQEK2ENv+oGOx+/qIBiSAIgiAIQgsnAloD1QQ0UUG7MFdGXUl2STavbX4N09+u5eoZ+zi2poKKwu/wDu6O1P22045RqyTevqELV7y9mvu+3MIPUxMZPqU9nYYW8vu3B1g1dz/blh+l55URxPYMQNXC2/I3FpPdg+huPYnu1hMAWZbJP57hrrAdP7CfrYt/oLqqCgC92YxfRDR+kdH4R0bjFxGNZ1CQqLQJgiAIgiC0ICKgNZA7oDX3QFqhSe0mcaLkBDP2zML42N2M/iqE7B9/ovyZ5wn8Xwyq6H6nHeNnM/DWDZ25ecZ6nl2wm9cmdMI/wsbYaV1I23WS9T8cYtlne9i0OI0eoyOI6eZ/2QS1GpIk4RkYjGdgMG37DwKgqrKSnCOpZKUeJOvwQU4cPsi2JT9SXVkJKE1I/MKjakNbZDTeIWGic6QgCIIgCEIzEZ/CGkhU0BpOkiQe7/E4hRWFvPvHh1jueJIR4cFk/+8jKm6bQujn89BEtT/tuMQYHx4cHMtby1PoFeXFhO6hSJJERAcfwtt7c3hbDusXHmLpjD/YvDiNHldGEt3FF+kyC2p1abRaAqJjCYiOdW+rrqoiNyOdrMO1oW33yuVsW/IjoCy87RMWiX9kNPmVVRwL9Mc3LByd0dRcb0MQBEEQBOGyIQJaAykBTSWuQWsglaTi+b7P46hw8O+N/8F2xUsMDHicjOde4fD11xP6yWwMHTqddtyDQ2LZmJrLswt2kRBoo32wHahd6Dqykw8HtmSx8cfDLPl4F94hFnqOjiSyo89lHdTqUms0+IZF4BsWQbuBQwCQnU7yjmeSdfgAJ1zBbf+61ZQVOziyahkAdj9/fMIi8Q1XjvUJi8QjIEBMkRQEQRAEQWhEIqA1kEw1TiTEZ/6G06g0vDLwFe5fdj/PrnmW15JeI/GVhzn6zOukTpxI0H9exXbFFfWOUask3r6xC2PeWc3dMzez8IF+eJl17tcllURsd3+iu/qRsvEEG388zOIPduIdbKbriHBiuvk19dtsFSSVCq+gYLyCgmmTOBBQrmn75ccfiAkKJOdIKtlph8k+ksqhzRuQZaXlv0anxyc0rH5wC4/EaLE259sRBEEQBEFotURAayBloWrRZv+v0qv1vDX4Le765S4eW/kYbyS9QeI/r+fYq7M5Nu1RSrZuw//xx5B0tSHMx6Lng5u7cd2Ha3lgzhY+v70nmlM6OKpUEvG9AojtrgS1zUuOsPSTP1j/wyHMETLViU7UWnEF4Z+RJAm91V6vEQlAZUU5uelHyT6SSs6Rw2SnpXJw0zp2rfjFvY/FyxufsAi8Q8LwCQnDOyQMr+BQ9CYxTVIQBEEQBOHPiIDWQDLVyIBKTHH8y8xaM+8Pe5+7f7mbR5If4Y0BrzHwvkOc+Oo38mbOpGzHDoLffANtYKD7mE6hHrw4tj1PzNvBq0v28bcr2p7x3Cq1ivjegcT1DODwjhw2L04lc1MZM1N+p/OwMBL6BV2S66hdTFqdHv+oGPyjYtzbZFmmpCDfXWXLcd0f3b3D3ZAEwOrti3dIqOsW7roPQ28yN8dbEQRBEARBaHHEJ9OGkp2igtaIbDobHw7/kLt+uYtHVj3Km/3+w0BHOqaAw2Ru3Mfha8cR9N9XsSQmuo+Z0D2UHen5fLjqEB1C7IzuGHTW80sqiajOyjVqP32VTFWmiTXzDrBpcSodkkLoMDAEk0131uOFPydJEmYPT8wenkR06ure7nRWU5B1gpPpRzl5NI2Tx45y8ugR0v/YRVVlhXs/i5c33q5Km3dIKN7BymODxdIcb0cQBEEQBKHZiIDWQLJcJRaqbmQ2nY0Ph33IXUvv4pHVT/HmoH8ywPEU+oByjm0K4OiUO/GZej8+996LpFKmJ/5jdDv2ZBbx+Dc7iPGz0CbA9qdfQ5IkLAESSTd05fihAjb/nMamn1LZsiSN+J4BdBoSinewCAWNRaVS4xkQhGdAEDHde7m3O53VFGZnczI9TQlv6Uc4mX6EHct/pqq83L2f2dML7+BQvIJD8QoKxjMoBK+gYGRZbo63IwiCIAiCcNGJgNZAsuwUbfYvArvezkfDPuKupXfx8PrneXPYUwxY+BQRo/04fugKct55l9Kt2wh69RU0np7oNCrev6kro11NQ364vx92k/a8vlZAlJ0r7+tI3vFidvyazt61mez5PZOwBC86DQ0ltK0Xkvj/e1GoVGo8/APw8A8gulttcJOdTgpzst2BTQlvaexeuZzKslL3fpJGw9HF892Bzcu1/ptnUIi4zk0QBEEQhFZNBLQGqqmgiYDW+GpC2p2/3MnD29/irSGP0//nFwjs4o+x2z848dLLHB57DUH/+Q/m3r3wsxl4/+au3PDROh76aiszJvVAfQHtNT0DzAycGE+vq6LY9dsxdq5IZ+Hb2/EKMtNpSChxPfzR6EQr+aYgqVTY/fyx+/kT1bWHe7ssyxTn55GXkU5uxjF2bFiHWS2RdegAKevWuLtKApg9PPEMCsYrMES5D1Lu7b7+qNTi/6MgCIIgCC2bCGgNJCpoF5ddb+fj4R8rIS3lS94acD/9Vr2LZ1d/DHPmkPHYYxy5/Xa8p0zG94EH6BbuxT/HtOOZBbt4Y+l+HhsRf8Ff02DR0n1UBF2GhpGy6QTblh1lxcy9/D7/AAl9g2g/MBibj/EivFvhXCRJwuLphcXTi9B2HcnTGklKSgKgqrKSghOZ5LrCW17GMfIyj7F/w++UFRW6z6FSa/DwD8AzKBgP/0A8AoLwCAjEMyAQq4+vWM9NEARBEIQWQQS0BpLlKpxoUCFatV8sNSFtyi9TeOjYz7za/UYGb/ocoy2IyPnfcuLf/+Hkx9MpXvM7Qf/9Lzf1imBnegHvrjhAQpCNKzoEnvuLnIFaq6JNn0DiewdwbH8+u5LT2bb8KFuXHSGivTftk0IIa+slFr5uITRarbvByKlKiwpdoS2d3EzlPv94Jmnbt9ZrUqJSa7D7+eMREKjc/IPwdD22+fqj1ohvlYIgCIIgNA3xqaOBZLkaGa24Rukis+vtfDzsY+5bfh/TTq7j+YShXJ38MiprAIEvPI9l4AAyn36Gw9dei/9TT/HcteNIySrika+2EeRhpHOoR4O/tiRJhMR7EhLviSOvjN2/ZbB7dQap72zH7muk/cBg2vQJxGA+v2vehKZntNoIjrcRHF9/GQbZ6cSRn0v+8UzXLYP845nkncgk/Y9dVJaXufeVVCpsvn7uqptnnRBn9/NHoxPdPwVBEARBaDwioDWQjJji2FQ8DB58PPxjHlrxEM9krqcwqhu3/PgImP2wDrkCQ/sOZP7tbxx/7jksq1bx4d+e4do5e5jy+SYW3N+XEM+/3jTC4mmg11VRdL8igoNbs9i54hhr5h1g3feHiOnmR0K/IAKj7SKwtxKSSoXVywerlw+hCR3qvVazplv+8UzyT2SSl5mhBLgTmexdnUx5SXG9/c2eXtj9AiiTQZuVjt3XH7t/AHY/fyxe3mLqpCAIgiAIF0QEtAZyNwkRbfabhFlr5r0h7/Hkqid55cgy8kNimTrvDqRJP6AN7Uno9I/J/eILsl97ndKdE5jx2N8Zt1XF5M828c29fbAZGqfKpdaoiOsRQFyPALKPFvHHbxns23CcfeuO4xlgIqFfEG16B2KwiKpaa1V3TbfgNgn1XpNlmdKiQnd4K8g6TsGJExRkH8dxJI31KXvrNSxRqTXYfHyVwObrj83VAMXDLwCbnz9Gq02EekEQBEEQ6hEBraFcTULU4sNVk9Gpdbw68FX+te5ffJQynwI/P/4+ewKqO35B8o3D+7bbMPfuTcbjT1D+5DRmDhrBbY5+TJ29lU8mdUejbtzrBX1DrQycGE/fcTEc2HyC3b9lsGbeAdYuOEh0F6WqFhzrIa5Vu4RIkoTJZsdksxMU16bea8nJyfTvl0hhTjYFWScozDqhBDjXfcrhg5TWaVoCoDUY3V0r7X4BtY99/bH5+qEziiUDBEEQBOFyIwJaAznlKmRUqCTRJKQpaVQanuvzHHadnU93f0qhh4n/mzUO7eRfwBaIoU0bIr6dx8kPPiDno4/5wryRl7Kv4p+eRl4c2/6iVCu0ejVt+wbRtm8QJ4852L06g/3rj5Oy8QRWbwPxvQOI7xWAh5/4sH2pU2u07oW5z6SitISC7CwKTriCW7br/sRx0nZuq7dIN4DebMbm44fN1w+rty82Xz/luY/y2GSzuxdtFwRBEATh0iACWkPJTpxIYnpSM5AkiWndp2HX23lzy5s4qOC1mWMx3rYIzN6odDp8H3wQ69ChZPz9af65/jNWHNvO54YnuG1U54s6Nu9gCwOuj6PvNdEc3JrNvvXH2bQolU0/pRIYbSe+dwAx3f3RG8U/vcuRzmjCNywC37CI016TZZnSwgJXcDtBYXYWhTnZFOVkUZB1gqO7d1JRWlLvGLVWi9Xb56whzurj00TvTBAEQRCExiI+JTZQ7ULV4rfXzWVyh8nY9Db+tfZfTCkv4J2ZV+E16UcwegJgSEgg8uuvyP7oYwa89z6FT93JbxmPQ7TfRR+bRqcmvpdSOXPklbN/w3H2rs0k+ct9/PZ1ClGdfIjvE0hoG09UjTz1UmidJEnCZPfAZPcgMPbM6/iVlxS7gluWO8AV5mRTlJ3F4W2bKc7LPfWkaE1mMpYtrBPifLB4Kw1SrN4+ogonCIIgCC2MCGgN5F6oWjQJaVbXxV2Hp96Tp1Y9wU3lufxv1liibv0R9FYAJJ0Ov6n3o08axIZ7HyHk1X9yskMXKhMS0Ppd/KAGYPHU03VEOF2Gh5GVVsS+tZns33SClE1ZmOw64noG0KZ3QJOMRWjd9CYzvuGR+IZHnvH1qspKik5mU5ST7Q5y+3ftRKtRceLQAQ5sXEt1VVW9Y9QaDRYvbyyuwGb19nE99sbq7StCnCAIgiA0sSYNaJIkjQWuBGzADFmWf2nKr9+YZKpFBa2FGBo+lE9GfsYDv9zNLeU5vPnlVfS4+UfQmd372Nsn0PGHeUy//1+M3raYA6OuwP+RR/C88QYkddO0QZckCf8IG/4RNhLHx5K6K4e9a4+zY/lRti09gt4DrGWpxHb3x+ZjbJIxCZcWjfb0a+AqfJNJSkoClPXfSgoLcOSepPBkNo6TORTlnqQoJxtH7kkyD+wjZf2a00KcSq2EOKt3/SBXU4WzePtgtnuIECcIgiAIjeC8A5okSZ8Ao4EsWZbb19k+EngLUAPTZVn+99nOIcvyAmCBJEmewH+B1hvQnNWiSUgL0tG3I7Ovnsd9P93CXaVZPD9nDFdNXARag3sff08r173xLPf+ux33bV8AL75IwYIFBDz/HMZ27Zp0vGqtiugufkR38aOksIKUTSfYvDyFdQsOsW7BIfwjbcR29ye6qx8WT32Tjk24dEkqlXsJAf+omDPuIzudlBYVUnQyR7nl5ihBzvX4xMEUpRJXWVnvOJVaXVuJ8/LG4u2DxdPLdfPG4uWN2dMTrd5wxq8rCIIgCILiQiponwHvAl/UbJAkSQ38DxgGpAMbJUn6ASWsvXzK8XfIspzlevyM67hWS6Yap5ji2KIEW4KZec0Cpi2cyNOONNLnjOLeG39G0tYGnDh/KzcMCOFp852MK9zDrZu/I/W6CXjefBO+Dz6I2mJp8nGbbDo6DQ4lT3WQru17cWBzFimbTrD6mxRWz0shKMaD2B7+RHfxxWjVNfn4hMuLpFK5r4U7a4hzrQdXE+IcrvBW8/jEoQMc3LSeqsqK047Vm81IOgPZq5dh9fLGXCfEmT29sHh5YfbwQq0RM/AFQRCEy9N5/wSUZXmVJEkRp2zuCRyQZfkQgCRJc4GrZVl+GaXaVo+ktDz8N7BYluUtDR51CyDLNVMcRUBrSWw6G++P/Y4XfryF9/N3c3TuMJ6//md0utoW97Geat6/uTtTvoCMG7rwYs4q8mbOoujnJfj//e9YRwxvtu6cNh8jXUeE03VEOHnHi5WwtvEEK2fvY9Xc/YS28SSmuz9RnX3Qm8Ri2ELzqLsenH9k9Bn3kWWZ8pJiHLknceTlUpyX636cun8flWWlHNm1g+L8XJzV1acdb7J71AlvXpg9vesHOi9vjDYbKlXTTFEWBEEQhKYiybJ8/jsrAe3HmimOkiSNB0bKsjzF9fwWoJcsy1PPcvyDwCRgI7BNluUPzrDPXcBdAP7+/t3mzp17QW/oYnM4HFgsFpzOBdzODQyX4CaprLmH5R5XS9Nc45JlmXVH32a2fICO1XpuDHsWi8Zeb0xrjlXy8c4KuvureciegX32HLTp6ZS3bUvRdddRHRTYpGM+25+VLMuUF0BBmkzBEagsBkkFZn+whkjYgkFjuDiBUvy9On8tcUzQMsdVd0yyLFNVWkJlSTGVxQ4qix1UFDuoLHG4nhdTUeKgqqT49BO5ulTWvWlqHhvrb1dpz/0LjZb4ZwUtc1wtcUzQMsfVEscELXNcLXFMIMZ1IVrimKBljmvQoEGbZVnufqbXmjSgXaju3bvLmzZtaoxTNZrkZOWC+4MH/0vSkQHcHRbCM9FnXpS2OcbV0jT3uBYvfoBnjq/AR63nzVGf0da3Q70xTf/tEC/+tIeJvcJ4cXQb8ufMIfudd3GWlOB500R8p05FbbM1yVjP589KlmWyUos4uDWLg1uzKcwuRZIgMMaDqM6+RHXxxerVeNf4NPf/v7NpieNqiWOCljmuhozJWV1NcX4ejjxXRS43F0deLo68k5Tk51Gcn09xQR4l+fnIsvO043VGI2YPT0x2T/d1eHVvJg9PdvyxhyEjR6FqosZB5+tS+X/YFFriuFrimKBljqsljgnEuC5ESxwTtMxxSZJ01oD2Vyf5HwNC6zwPcW275LmnODb3QIQ/NWrUO4Qtf4aHUr/l1kU38XzivzBhd78+pX8UOY4KPlh5EB+Lnmm33opt9Giy33yLvJmzKFz4I74PP4zH+HFN1u3xz0iShH+kDf9IG32uiebksWIObc3i0LZs5Zq1b1LwC7cS1cWX6C5+ePibzn1SQWgFVGq1u3vkn3E6qyktLKQ4P08JbgX5OPJyXSEuj+KCPLKPpJK2YyvlZ6jK7Zz5EUab7bTwZrZ7YvasH+p0RlOzTYcWBEEQLl1/NaBtBGIlSYpECWY3ABP/8qhagZqAJn44t3zthrzI3DXePLrrPZ5c8wxDLEn0c/ZDo1L++j85Mp7c4nLeXp6Ct1nHpL4RBL7wPJ43XM/xl17i+D//Sd5Xcwn4+98xdT/jLzqahSRJ+IRY8Amx0HNMFPknSji0LZtD27Ld3SC9gsxEdfYlooMPfuFWJJX4+ypc2lQqtTtAnUtleRklBflKcMvPY9uGDQT5+bifl+TncTL9KMX5eTirq047Xq3VYrJ5YLIr1+OZ7J61jz08XduUhitGq000PhEEQRDOy4W02Z8DJAE+kiSlA/+UZXmGJElTgSUonRs/kWV590UZaQsjy9U4UYkKWivhk/gI03VWXln3InNJ5r6ld/Nq0uvY9XYkSeKlazqQW1zJcwt3YzdqGdslGENCAuEzZ1K0eDEnXv0vaTffgu2KUfg+8gi60NBzf9Em5uFvcjcYceSVcWhbDoe2ZbF5cSqbFqVisukI7+BNRAcfQtt6odU3f0VQEJqTVm/A7heA3U9ZKP5YSQWJZ5gCIzudlBU76gU3R34eJQX5lBYWKCGvIJ/so2mUFuSfto5cDYPV5gptrjDnemy2e2K02zHbPdyBT2swil8ACoIgXKYupIvjjWfZvghY1GgjaiVklK5j4udn66HtMYWntWbaLHuM/5M3cP3CCbw1+G3iveLRqFW8O7ELkz7ZwKPfbEenUXFFh0AkScJ2xRVYBg3i5PQZnJwxg8Kly/CaOBHve+5G43nu39I3B4ungY6DQug4KISy4krSdp0kdWcOB7dks2dNJmqNiuB4TyI7ehPewadRr1sThEuNpFJhtNowWm34hIb/6b413StLCgooKcynpCBfeVyQV29bduohSgrzKS8+Q/MTQKPTu6txpVXVlO/d7q7IGW12TFYbRpvddbOh1Yn1EgVBEC4VYr5FAzlrFqoW66C1Lp1vpM3+A3x66F2mBai4ZdHNvJD4L0ZGjsSgVfPJbT249ZMNPDhnKxqVxPB2ym/WVUYjvg9MxWPCBHLefYfcmTPJnz8fn3vuxvPmm1HpW+6HI4NZS3yvAOJ7BVBd7SQzJZ/UHSc5vDOHlXNOwpz9+IRaiOjgQ0RHH/zCxFRIQWgoSZIwmC0YzBa8goLPuX9VZaW7CldSkE9JYYFSpSssoNRVmSvIOEbqts2UFBaccUkCUKqBRpsdo9WGyVYnvLmqdkabXdnuCnZ6k1lU6ARBEFooEdAayCkrPyTF59jWJ9uvP0kdOjN3/mSmBQXx+KrH2XRiE4/3eByzXs+nt/fglunruX/2Fj66tTuD4v3cx2r9/Qj817/wvOUWsl57jaxX/0vul1/i99BD2MaMQVK17EmvarWKkDZehLTxIvG6GPKOl5C6I4fUnTnuqZBGq5bQBC/CErypKjv/Lq+CIFw4jVZ7zuYnNd3HZKeTspJiSgsLKC0spKSowP24tKiAksJCJewVFpCTfoTSwkKqKsrPeE6VWoPRFdiU4Pbngc5otbW47paCIAiXKhHQGsjpWp5A5LNWqu0YfK+bxSdf3czbAcF8tu8rdmTv4LWBrxFqC+WLO3oxcfo67p65mU9v60FiTP0PT4a4OMI+/JDidevIeuVVMp58ipOff47fI49g7tevVfxmWpIkvALNeAWa6ToinFJHBUd253Jk90mO7M5l//oTAORt3UhYO2/C2nnjH2FFpW7ZIVQQLlWSSoXRYsVoscJ5ru5SWV6mhLnCAkqLagNcqet5TajLSj1EaWEBZcWOs57LYLG6A1txeQXle7djtNrc2w1WZWw12wwWq2iMIgiC0ADiO2cDVddU0EREa73ihqO9+VsenTuRbhYbT2uPMuHHCbyQ+ALDwocxc3IvJn68jsmfb+Tz23vSK8r7tFOYe/cmYt43FC5aTPYbb3D0zrswdu+G30MPYerRoxneVMMZLTr3VEjZKZN1pIiVP25GVaJyV9f0Jg2hbb0Ia6dU2MweLXdqpyAIytRHra8Bm6/fuXcGqquqKHMUuYKcUpmrDXi11bqK7CxSt22m1FFEdWXlWc+nN5ndwc1gtbnuXUHPUhPqXPeu7Vq9uCZWEITLmwhoDVSzEKqY4tjKRfaH234iadY4vs44zuPRHZiWPI2JbSbyaPdHmTWlF9d/uJY7PtvIF5N70S389KYgkkqFffSV2IYPI2/ePE6+/wFpt9yKOTER34cfwtihQzO8sb9GUkn4R9jway+RlNSNsuJKju7J5cgfSoXtwOYsALyCzIS28SKkrSdBsR7oDOJbiiC0ZmqN5ryWKXBPu5RlqsrLKXUUUlpURFlRkRLkHK7HjkLXfRGlhYXkZaRTWlRERWnJWc+t0erOEursGK3W2oqdRQl1BqsNg8nc4qeYC4IgnC/xaaqBaipoIp9dAgI7wuRfCJ55DZ/v3sDrPccxa+9sdmTv4NWBrzL7zt5c/+FabvtkA7Om9KJTqMcZTyPpdHhNnIjHNdeQN2cuJz/6iNTrJmAZMgTfBx/EEB/XtO+rERnMWmK7+xPb3R9Zljl5zMGR3bkc3ZPLrlXH2P7rUVQqZRHtkDaehLTxwj/ShlojPjAJwqVMkiS0BgNagwGbz/lV6aC2UlfmCm7ugOcoorSo0H1fWlREztE0JfA5ipCdzrOMQ4XBYsGpUpOxbKHSqMU1zVJvtmC0WNyPle0W1z4W1BptY/1xCIIgNAoR0BrIfQ1aK7jWSDgPXpEw+Re0X47nybVz6J70IM8e+4UJCyfwjz7/YPadA5nw4VpumbGeLyb3ovNZQhooHR+977gdjwkTyP3ic3I/+ZTDY8diGzUSn/vuQx8T03Tv6yJQFsi24hNipeuIcKoqqsk8VED63jzS9+SyaVEqG39KRaNXExzr4Q5s3kFm0R1SEATg/Ct1dclOJ+WlJUqAq1udKyqizFFIaVEhRw4fQmc0UVJYQG7mMcocRWddyqCG1mB0hzWDxVrvsRLulEBXE+6Mru06o1irThCEi0MEtAZyd3Fs5nEIjcjiB5N+hK9uZsiKN4hLepynivfw+KrHuSr6Kmbc/hBTPtvFzdPX89ntPege4fWnp1NbzPjedx9eEydy8pNPyZ01i8LFP2MdMQKfe+/BEB/fRG/s4tLo1IS28SK0jReMjaasuJKM/fkc3ZtL+t480nadBMBo1RIS70lIWy9C2nhi8zY288gFQWhNJJXKvYQBAWfep2bqZV1OZzXlJSXuil25w0FpscP9uKy4iDKHgzLXttyMdOVxUeFZFx0HUKnVtRU5s9ldsTs17BWkHSZjv7877OnNFtE8RRCEPyW+QzRQTQVNFAQuMQYb3PQNfHc3ocmv8lnv+/ioYx8+2vkxm09s5p/jn+f/5pdy6ycbmDGpB32iT28cciq1hwd+0x7B6/bbyP38c/JmzqLo55+xDhuKz733YkhIaII31nQMZi1RXXyJ6uILQFFumVJd25dL+p48UjYp169ZvQ0Ex3kQFOtJcJwHVm+D+G20IAiNTqVS13a/vACyLFNVUe4Kbkp4qwlxZQ4H5a7Hpa7HJQX55B47Slmx47Sq3YFF39V7rtHrMZgt6E1mJeSZlXu9yaw8NpnRWywYTBb0rucGiwW9yYLOZESlEkseCMKlTAS0BnKKLo6XLo0exn0CZj+0697j/oSx9B36IX9b+xyPrr6Lm/tPZsma9tz26QY+vrU7A+J8z++0np74Pfww3rfdRu7MWeR+8QVFS5dhGTQIn/vuvchvqvlYvQy07RtI276ByLJMXmYJR/fmkrFfWTB779rjAFg89QTFehAU60FwnCd2PzF9SBCE5iNJktIFU2/A6nX2derOxOmspry4mLJiB7+vXElCfJy7KldeXExZSTHlxcWUFzsoL3HgyMvlZPoR92vIf74GpRLszO57JeydGuZc4c8V9mrCn9YgvrcKQksnAloDOV1dHMX3uEuUSgWj/gMeofDLs3QpSGfe+Om8vHs6X+z9mITYDkip45ny+Sbev7krQ9r6n/ep1R4e+D4wFa/bJpE3axYnP/uc1Osm4JHQlmKDEVOvnpfsD09JkvAKMuMVZKbT4FBkp0xuZjEZKfkc25/P0T257N+grL9msuuUsBarVNk8A02X7J+LIAiXFpVKrSwlYLVh9g8ksnO38z5WdjqpKCtTKnTFDspLit1VufLiYspLHLXPS4opczjIP3Hc/VpFaemfnl9SqdCbLciSivQlC2pDnLmmmmepDYDu8GdGZzKhN5nR6sVsB0G42ERAa6BqsVD1pU+SoO8D4BkJ8+/E8tlV/N9NX9M/uD8vrH2BKq//EKQdxz2znLxzY1dGtg+8oNOrrVZ87r0Xz1tuIW/OHI5/PJ0jt92GoWNHvKdMxjp06CXfNlpSSXgHW/AOttAhKQRZlsk/UcKx/flkpOSTsT+PA64pkUarlqAYD4LiPCjNl3E6ZVRijrEgCJcYSaVCbzKhN5nOe/26upzV1ZS7KnS1Qc5BmbtiV0xZcTFHDh3EZDFTVlKMI/ek8lpxMVWVFecen9GEzmR2jbM2vLmfG095Xuex3mQSVTxBOAcR0BrI6V4HTXyDueS1HQ23L4LZN8CM4Yy87jM6XfUtf1/9dzZVzcQrqj1Tvy7k9eqBXNUp6IJPr7ZY8LnzTnZFRNDpZC4nZ8zg2IMPoYuMxHvKZOxjxiDpdBfhjbU8kiThGWDGM8BM+wHByLJMQXapK6zlcywlj4NbswGYvnIVAZE2AqI9CIy24x9pE+uwCYJw2VOpa6t3f+ZMDVUAqioq6lftSmqCXQnlJcVUlJa4A2B5STHlJSUUZWeR49peUVLqXiv2bCRJhc5kVAJbnbCXX+Sg+tAeEfKEy574NNNA7oDWzOMQmkhQF7hzOcy+Hr68jsAr/8uMETOYs3cOb2x+E3PUGzy2KIXS8tu4vmdYw76GVovnDdfjMX4cRb/8Qs706WQ+/QzZb7+D16234jHhOtTWC7vIvbWTJAkPPxMefiYSEpXwW5hTyq8/rsNTF0DmwQI2/nQYZKXg6R1iITDKTkCMncBoD6xehmZ+B4IgCK2LRqdDo9Nd0BIIdcmyTGVZqTvQlZeUUFFSG+bqhbya5yUlFJ3MwZF7kr0ZRykvKWlwyDtTmKt5rjMYXcHPhM6o3ERHTaElEn8rG6i2gtbMAxGajj0E7vgZ5t0BPz6C6uRBbhr2Av2D+/P31c+wXfqG5zbsJL3oCR4d0qPBX0bSaLBdcQXWUaMoXvM7Jz/6iKxXXyXnf//DPm4cXrfcjC6sgSHwEmDzMeIRITEwSVmmoLy0ihOHCsg8qNz2rDvOzpXHAKXxSEC0ncBoJbB5B5tRqcWvVQRBEC4WSZLc4cfqfWHNVWqqerIsU1le5g5vp4a5+s+LKXcFvqLck0qzFddrZ1vYvC6NVoeuTnjTmVwhzlgT4oxkHj/BltIiV7CrfV1rNLrCoUlcmyc0KhHQGkh2V9DEP8bLit4KN8yBJX+Dte/CyYOEXfsRX4z6jC92z+KNzW/xadr97J0/mQ/H3onqL1xDJkkSln6JWPolUrprN7lffE7enDnkzZqFZchgvCdNwti9+2X/A0Fv1BDWzpuwdsqSB85qJznpDjIPFnD8YAGZBwrc17Fp9Wr8Iqz4R9rxj7DhH2nDbNc35/AFQRCEU0iSpAQmgxH+fMnRs5Jlmary8toqXmkJ5aXKfUVpqXJfcoZtpaUUnczhpOv1irJSqisrydiw+hxjVrnDm3JfJ+jVqdjpakKd0eje7n4uqnqCi/gb0EDVuLo4NvM4hGag1sAVr4J3LPz8FEwfguqGOdzW/lYGhgzgth8fY13RuwybvZaZV/+bIOtZVlS9AMb27Qh+5RX8Hn2MvNmzyZ87l7RlyzEkJOB12yRsI0deNtepnYtKrcIv3IZfuE3pFCnLFOWWcfxQAccPFHD8cCHbfjmC06k0+rF6GfCPtLludnzDLGi0Yo0hQRCE1kySJLQGA1qDAYvXudcs/TO/Ll9G7x496gW7irJSJdyV1AS8mrBXG/Rqpm66n5eVnnMJBahT1asX+OpU9VwVv6z0Y+ySK9EZjWhdgbYmHNY8V2u1l/0vclsjEdAaqGahavF3/jLW6y7wawvfTIKPB8G4GUTGDWf5jXO5+4c3WZ//JVfMv4rHejzCxLbXo5L++tQ6rb8ffo88jM89d1Pw/Q/kfvEFGU88SdZ/X8Nz4kQ8rp+AxrNh1w1cqiRJwuZtxOZtJK6HEparKqrJPlLEidRCjh8q5PjhAg5sVqpsKpWET6hFqbBFKZU2sSabIAjC5Uul1mCy2THZ7H/pPLLTqUzdLC2hoqSUijLXfd3qniv8KdfpldSr6uWWlrr3q66sBODoml/PMXY1OoMrsBmV0KZ13esMBrQ1AdD93IjOYHKFPEPt1E/Xc41WJ34eNgER0BrIKaY4CgCR/eGuZJh7E8yeAEOeRdNvGjOueYy3Vyby/u5X+M/Gl1h06CdeSHyOGM+YRvmyKqNRaSgy4TqKV68m97PPyX7zTXI++AD71VfjOXEihvi4RvlalyKNTk1gjAeBMR7ubcUF5Zw4XKjcUutfy6Y3a/CPsOEXYXNV56xiaqQgCIJwQSSVyj2NsaFTN2tUV1WyYtkyenTtSmVZqSvU1d5Xnva8TAmErm0l+XlUlJVRUVZKZWkJ1VVVF/AelBCnNRhqw53rPjs3l1XHDru3nTkYul4zGkXgOwsR0BpINAkR3DzC4I4l8MMDsPwFyNwOV7/HgwP7EGF/l8d//oTdzp+4buF1TO4wmTs73ole3Tgf7iWVCsuAAVgGDKBs/37yZs6k4LvvyP/qK4zdu+F5w41Yhw9DJaY/npPZrieqsy9RnX0BcDpl8jKLOXFYqbCdOFzI0T9S3bNTzHYdvq6w5htmpars3NNWBEEQBKExqDVaNAYjdj//RjlfdVVlbZArLTkl2JXWm6ap7FPqDnyVZWWUFBZQUVpKcVEhuft2X1jgqxvejK5KnsFU57ERrd7gflw7hdPgrvJpa14zGC+Ja/ha/ztoJjVTHEU/OAEAnQnGTYfATrDsn5BzAG74kqs6R+Jhuod7ZrfFGLCID3d8yJLUJfyjzz/oEdDwTo9nYoiLI/Bf/8J32jQK5n9H3ldfkfHYY6i9vfEYNw7P6yegDQ5u1K95KVPVWUQ7oZ/S4r+yvJqco0VkpRWRdaSQ7LQiUnfmgCubHVu5Bt8wq7vK5htuxWgR4VgQBEFo2dQaLUar9pzr551LTSfO6qpKKsrKqKy5Js9drSutDXxlZbWVvpqqn+t5SeFx1/MyKsvKqKoov4D3olFCXZ3wZo5JgDOs+9dSiYDWQDUVNFGWFdwkCRIfBP92Siv+jwfBtR8zIG4YsycPZfJndlT6LjgMC7ljyR1cE3MND3d7GC/DX5zncAqNpyfek+/A6/bbKF7zO3lz53Jy+nROfvwxloED8Zx4I+Z+/ZD+QofJy5VWf/rUyIqyKnKOFvH78m3YtB5kHyni8PYc9+tWbwN+YUpY8wu34RtmxWDWNsPoBUEQBKFpqDVajBYtRkvjrN/qdFZTWVZeJ7S5KnnltZW+uq/VBLvKslIqysuQ1K2r+ZcIaA3kRFTQhLOIGQJ3rYCvboEvx8OAx+mc9De+uy+R2z7Tkr4zjKGJ21l48DuWH1nOQ10fYlzsuEYfhqRSYenfD0v/flRmZJD39dfkz/sWx113ow0NxfP6CdjHjRNNRf4inUFDUKwnPsckkpLaAcrabNlHishKU6psWUeKOLg1232MzceAb5gVnxArPqEWfEOtmOxiHr4gCIIgnIlKpXYtPm5q0PHJycmNO6CLTAS0BhJdHIU/5RUFU5bBosdg1atwdD1h42Yw/96+3PXFZhat7Madg/tz0DmTf637F/NT5jNKO+qiDUcbFITfww/je999FC1bRt6cuWT99zWy334H67BheFw3HlPPnqKq1kj0Rg0h8Z6ExNeG37LiynqhLfuog4NbakOb0arFJ9SKT4gS2HxCLdj9TKjEha6CIAiCcFkRAa2BnHI1ILo4Cn9Ca4Sr/wdhfeCnR+GD/nhc9ylfTO7F4/N28PGvGdzY82FeSjzKG1te47XS10hbm8aDXR7Ew+BxUYYk6XTYrrgC2xVXUJ6SQt7cryhYuJDCn35CGxKCx7hrsV9zDdqAv752m1CfwawltK0XoW1rp7RWlFaRk+4gJ10JbDlHi9i+/CjOauUXQBqdCu9gCz6hVnxDLfiEWPEONqPRta6pGoIgCIIgnD8R0Bqopl+b+OW2cE5dbobAzvD1rfDZaAxD/8lbEx4gxNPI+8kHySzwZc518/m/X/7B/JT5LE1bysNdH+aa2GsaZe20s9HHxhLw7DP4Pf4YRUuXkT9vHtlvvU32O+9i7peIx/jxICpqF5XOqCEo1oOgWA/3tuoqJ3nHi8k56iDnqIPso0WkbDzB7lVKy39JAo8Aszuw+YQqjUxMNtGMRBAEQRAuBSKgNVB1TZOQZh6H0EoEtFfWS/thKiz9B6oj63hy7HuEepp49vtd3PFJOVPixnJ/0v28tP4lnlv7HF/t+4qnej5FV/+uF3VoKoMB+5jR2MeMpuLIEfLnz6dg/ncce/AhfK0WTmzegsf4ceijoy/qOASFWqNSgleIFfoo22RZpuhkmRLY0ovIOeogIyWf/RtOuI8zWrXurpPewWa8gy14BZqb6V0IgiAIgtBQIqA1kNNVQhNTHIXzZrDBdZ/D+g/hl6fhgwFMHDedwEndmfrlFp4/6eTzdv58NvIzFh1exBub32DSz5MYETGCad2mEWQJuuhD1IWFKdeqTZ2KY/VqDnzwIbkzZ5L76acYu3TBY9y1WEeMQG1tnK5MwvmRJAmbjxGbj5GoLr7u7aWOCnLSHeQeK+bkMQcnjznYveoYVZU1XWZBa4GyfTvxDrHgHWTBK9iM3ceIJMr/giAIgtAiiYDWQGKhaqFBJAl63wMh3ZVW/J+OYtCgvzHv7inc/PFaJny4llev68RVna5kUOggPtv9GZ/u+pTko8lMajeJye0nY9I2rIPRBQ1To8GalEQB0KF9ewq+/578ed+S+cyzHP/Xi1iHDMZ+9dWYExORLoEFIVsro0VHaBsvQtvUXtfmdMoUZpe6A9ve7ankpDs4uC3bPTdbo1fjFWjGJ9iMV52qm1izTRAEQRCan/hk1UCy65OOyGdCg4R0h3t+gx+nwa8v0vbQSl7uNonpx0J4cM5WUk4U8cjQOO7rfB/Xxl7L65tf56MdH7EgZQEPd3uYK6OuvKjXp9Wl8fHBe/JkvO64g7IdOyj4/gcKf/qJwkWLUXt7Yx99JbarrsKQkCDaxLcAKpWEh78JD38T0V39KLEeISmpD5Xl1eRmFHMyw8HJdAcnMxwc2pbDH2sy3ceabDq8gsx4BprxqrkFmcW6bYIgCILQhERAayCnLIMEKvGBVGgogx3GTVfWTfvpMQalb2PQNR/wjE8Y7/x6gP0ninh9QmcCzAG8MuAVJraZyL83/Ju/r/47s/fMZlr3afQI6NFkw5UkCWOnThg7dcL/qSdx/PYbBQu+J2/2HHI//wJ9bAz2q6/GNmYMWn//JhuXcH60ejX+kTb8I23ubbIsU1JYoVTb0ovJzXCQm1nMnt8zqSqvdu9ntOnqBTavQBNegRYMFhHcBEEQBKGxiYDWALIsuxeqFvFM+EskCTpPhJCelH02Aes3N/Hv7lNIGDWF538+xPgP1vLxrd0I8TTR2a8zs6+czY+HfuTtLW9zx5I7SApJ4uFuDxPt0bQNPCSdDuuQIViHDKE6P5/Cn3+m4PsfyPrva2S99jrmPr2xXXUV1qFDUVssTTo24fxJkoTZrsds1xOW4O3eLjtlivLKyM0oJi+zhNxMB7mZJexdm0ll3eBm1SqBLcBcW3kLElMlBUEQBOGvEAGtAWS5Ghllepm4Bk1oFD4xbOn6HwZWJiOtfZdJfr/Tbuwr3L64hLH/W8MHN3eje4QXKknFVdFXMTx8OLP2zGLGzhlc+8O1XBNzDfd3vh9fk++5v1YjU3t44HnDDXjecAMVaWkU/LCQgu+/J/Opv3Fc908sAwdiu/JKLEkDURkMTT4+4cJJKgmbtxGbt5GIDrXbZVnGkVdObkYxuZnKLS+zmL3rj1NZdkpwC6w/VdIz0IzRqhXTYAVBEAThHERAawAloClEF0ehscgqLYz4P4gaBAvupfsv17KizxNM2N6FGz9ex3NXtWNizzAkScKgMTClwxTGxY7jox0fMXffXBYdXsSkdpO4rd1tmLXN015dFx6O7wNT8Zl6P6XbtlG4aDGFixdTtHQpKpMJy9Ah2K64Akvfvkg6UWVpbSRJwuplwOplILx9nYpbTXBzBbaaALfvlOCmN2nw8DdRLjvZXJaKZ4AZD38Tdl8jao1Yc08QBEEQQAS0BhIVNOEiih0K962FHx/GZ+2L/BLSmyc97uPp73ax/Wg+L1zdHoNWDYCnwZMnez7JxDYTeWvrW3yw/QO+3vc1d3e8m/Fx49GpmycESZKEqUsXTF264P/Uk5Rs2EDhokUU/rKUwh8WorbbsQ4fju3KKzH16I6kVjfLOIXGUS+4tasf3IrzlYpb3vES8k+UkHeimJNpsG7BodrjVRJ2XyMe/iY8/U14BJjwDDDj6W8S17kJgiAIlx0R0BpAqaCJZCZcRGYfmDATts9Fs/gJ/ivfx/B2D3P3Jpm9x4t4/+ZuBHsY3buH2kL578D/MilhEm9seYOXN7zM57s/597O9zI6ajQaVfP9U5fUasx9+mDu04eAZ5/FsWYNhT8touCnn8j/5hvUvj7YRo7CNmokxs6dkVSiknKpkCQJi6cBi6eBsDrBLTk5mb69+pF3ooT843XDWwlH/jiJs0p272uwaPEMcAU3fzOeAUqAs3kbUKnF3xVBEATh0iMCWgPIcjXOmgqaCGrCxSJJ0PlGiEhEWnAfIw6+yIaoIVx37AbGvFPKOzd2ITHGp94hHXw7MGP4DNZmruXtLW/z7Jpn+WTXJ0ztPJWh4UObrDX/2Ug6HdZBg7AOGoSztBTHypUU/vQT+V99Rd7MmWh8fbEOH451xHBM3bqJytolTGfU4B9hwz/CVm+70ylTdLKUvOMltcHteDGHd+RQWlS7JIBKI2H3rQluRux+Jjz8lHuTTSeudRMEQRBaLRHQGqBuBU1McRQuOo8wuPUHWP8+fsue51fTNv7FXdwyo4InR7bhrgFR9T6MSpJE36C+9Answ69HfuWdre/w6MpHaevVlge7PkhiUGKL+PCqMhqxjRyJbeRIqh0OHMkrKVqyhPx588j78kvU3t5Yhw3FNmIEph49xILYlwmVSgledl9TvQYlAGXFle7AVhPecjOLSd2Zg7O6tuqm1aux+xnx8FPWg3M/9hNTJgVBEISWT3ziaQBZrqamwb6YYCM0CZUK+twP0YNRz7+L546/zGjvwdy5eAI70gt4ZXxHzPr6/5wlSWJI+BCSQpP46fBPvLftPe5ddi9d/Lpwb6d76R3Yu0UENQC1xYJ99JXYR1+Js7gYx2+/UbhkCQXf/0D+3K9Qe3piHToU64gRmHv1bO7hCs3EYNYSEGUnIMpeb7uz2klRbjkFWSXkZ5WSn1VCQVYJWUeKOLglC7k2u6E3adzVtrrhze5nauJ3IwiCIAhnJgJaAyhTHGsqaC3jA65wmfBrC3f+CqvfoNvKV/jdupXH/7iFq94p4L2buxMfYD3tELVKzVXRVzEqYhTfpnzLxzs/5q6ld9HZtzP3drqXPkF9WkxQA1CZze7KmrO0FMfq1RQt+YXCRYvI/+YbVHY7trZtKKyowNKvHyqT+GB9uVOpVdh9jdh9jYS1q/9adZWTwpxSClzBLT+rlIKsEjIO5LN/4wmoE97UesjduFkJbf5KFc/mY8Dua0RvEpU3QRAEoWmIgNYAdac4tpyPtcJlQ62FgU8gtbkS4/f3827G2/xavJ47/nc7D13djwndQ894mFat5YY2N3BN7DV8l/Id03dO5+5ld9PRtyP3dbqPvkF9W1RQA9c0yGHDsA0bhrO8nOI1v1O0ZAlVS5dybN1DSHo95j59sAwZjHXQIDQ+Puc+qXBZUWtUSkfIgNOXnqiqqKYguza87dl+EEklceSPXPauPV5vX71Zg91HCYE2Vxi0+xqx+Zgw23VIYr67IAiC0EhEQGuAugtVt7DPs8LlxL8dTF4Ga99h0IqX+VnzOM/Mv4X1B6/nX9e0x6Q78z9vvVrPDW1u4NrYa1lwYAEf7/yYe5bdQ0efjtzT6R76BfdrcUENQKXXYx08COvgQewfPoweFitFy5fhWP4rjuRkjksSxk6dsA4dgmXwEPRRkc09ZKGF0+jUeAdb8A62AFCoP0xSUlcAKsqqlMpbtnIrzC6lMKeUE6mFHNiSjeysLb2ptSpsrvBm91ECXE3lzeZtRK0Vk+EFQRCE8ycCWoM4a6c4ihqa0JzUGuj3CFL8FVgW3M9bx95j2a51TD46lRduGU6s/+lTHmvo1DomxE9gbMxYFhxYwPSd07lv+X108OnAPZ3uoX9w/yZ8IxdIrcbcqyfmXj2R//Y3yvfvp2j5chzLfyXrv6+R9d/X0EVGYh0yGMvgIRg7dxLt+4ULojNo8Amx4hNy+r+h6monjtwyd3Bzh7icUtL35lJV4azdWQKLp75eeFOaoCiP9UbxY1gQBEGoT/xkaACnXAWii6PQkvjGI01eAuveZ9Dyf9HbcT9v/u96Eq6exrXdwv/00Jqgdk3MNXx/8Hum75zO/cvvp513OxJViQyUB7bIiloNSZIwxMdjiI/H9777qMzMpOjXX3Es/5WTn33OyekzUPv4YB2UhGXwYMx9+qAyGJp72EIrplar3J0mTyXLMiWFFUpwyymtF+KUpQIq6+1vMGux+Riw+ShVN6u3EZu38tzqZRDVN0EQhMuQCGgNIdetoAlCC6FSQ9+pqNtcifb7h3km7TO2ff8bb+x5hrsnXHXWKY81tGot4+PGc3XM1Sw8uJCPdnzER46PWLFwBXe0v4ORESObdcHr86UNDMTrppvwuukmqgsLcaz6DcevyylctJj8b+YhGQyYe/XCPHAAlgED0YUEN/eQhUuIJEmY7XrMdj2BMR6nvV5RVlUb2nJqp05mHyni0LbsessFIIHZrkfWOKk8vBubtxLibN5GrN4GLJ56sVi3IAjCJajlf9pqgWS5qrZJSAuuLAiXKa9I9LctoHr7V8T++BTtUqYw779X0+nml0kICzjn4VqVlmtjr2VM9BjeWPQGa6vX8rff/sa7W99lUrtJjI0Zi1FjbII38tepbbba9v0VFZSs34Bj5Ur37QT/QhcTjWXAQCwDB2Lq2gVJK7r1CRePzqDBN9SKb+jpUyedTpni/HKKTpZReLKUwpwyinJKOXLwOBkp+aRsOFFvyQCVSsLipVeqbj4GbN6uCpyrGicW7BYEQWidREBrgLpNQsTvLoUWSZJQd74Bc9xwTnz7BDce/IYjM1azuOvzjLzqxvP60KZVaelp6cljAx9jVfoqZuycwUvrX+KD7R8wsc1EbmhzA3a9/ZznaSlUOh2W/v2w9O+H/PTfqTicimPVSopXrSJ35kxyP/kElcWCOTERy4ABWAb0R+Pr29zDFi4jKpWE1cuA1ctAUKyHe3tychZJSYlUVzlx5JUpwe1kGYU5pRS67tN2nqSksKLe+dRaFVYvQ72qm9VbOb/V24DJKrpPCoIgtEQioDVAvTb74meb0JKZvPC/ZTqFe25CN38qo7bey9p93xA36S28/cPO6xQqSUVSaBJJoUlsObGFGbtm8O62d/lk1ydcF3cdtyTcgr/Z/yK/kcYlSRL6qEj0UZF433Yb1Y5iStatdVXWVlG0ZAkAhnbtsAwcgGXgQAzt2yOp1c08cuFyptac/do3gMqKandwU6pwSgWu8GQZJw4XUl5SVW9/lUbC4lkb2KyeeneAs3gZsHqKa+AEQRCagwhoDVA3oIkujkJrYGs7COsTm9g+9590OzCDivd7caDrNGKufETpBHmeuvp3pat/V/bl7uPT3Z8ya88svtz7JVdFX8Vt7W4j0t46W9urLWasQ4diHToUWZYp37cPR/JKHKtWkfPBh+S89z5qT0/M/fphTuyLuW9ftH5+zT1sQahHq1PjFWjGK/D0Nd8AKkqrKMotU24nlXuH6/nR3ScpLqyot3A3gMmuc1f13MHN20BZvkx5aZXoQikIgnARiO+sDSDLztqAJvKZ0EpIWiOdbnmFg3tvInfeQ/TY8iIn9nyF14R30Eb2uaBzxXvF8+/+/2Zq56l8vvtzvjvwHd+lfMfA0IHcmnAr3f27t9prXyRJwtCmDYY2bfC5526q8vIoXvM7jpUrKV6zhsKFCwHQx8VhTkzE3C8RU7duzTxqQTg3nVFTb923UylTKMvrBbeaIJd9tIjD23OorqpdQuDgz6vQGdT1q25edaZRermugxM/KAVBEC6ICGgNIMtV7i6O4seO0NpEt+lE8BPLmDP7fQYefh3t5yMpiL8e+1Uvgdnngs4VYg3h6d5Pc0+ne5izdw5f7/uaO47eQVuvttyScAsjI0aiVbfuphsaT093oxHZ6aR8714ca9ZQvOZ38mbNIvfTT5H0ejyiozh56DDmxET0cbGtNqAKly9lCqWy4PaZyE6ZkqIKHLnlrPttM2EB0RTl1Ya4zIMFp0+jVEtYPPVYPA1YvFz3HnosXkoXSqunAb1ZI/69CIIg1CECWgPIOOs0CRE/VITWx6DTcONtD7Bi+5UsXfAcE/fOo/zgIrTDn0PV/XalZf8F8DZ6M7XLVKZ0mMJPh35i5h8z+fvqv/PG5je4oc0NXBd3HZ4Gz4v0bpqOpFJhSEjAkJCAz5134iwpoWTTJorXrCFryS9kvfIKABpfX6W6lpiIuW8fNN7ezTxyQfjrJFXtEgL2NIkuSadfx1p3GqW7CpdbjiOvjMyUAorzs3A668+j1GhVmF0hzuqphDezh14JcK4gpzOKECcIwuVDBLQGqNtmX8zcEFqzQZ2iOBn9MS/OXcjItNfos+hRKjZ+im70qxDe94LPZ9AYGBc3jmtjr+X3jN+Z+cdM3tn6Dh/t+Igx0WO4pe0tRHlEXYR30jxUJpOr4+MA9vTpQ2J8PMW//07xmjU4VqygYMECAPQJbbH07YupV29M3bqiMp25yYMgtHbnmkbpdMqUuqpwjrwyHHn179P35VGcX15vOQEAjV6thDdXkDO7qm/u6pwrxAmCIFwKxHezhqhzDZrIZ0Jr523R89zkcXyzqSff/jiDR7NmEvjpKOR216K3XtGgc0qSRGJwIonBiRzIO8CsPbP44cAPzNs/j37B/bgl4Rb6BPa55H4jrg0MxGPcODzGjUOurqbsjz0Ur1lD8erVnPz8C05OnwFaLcZOHTH36o25T2+MHTsi6XTNPXRBaBKqOlU4/0jbGfdxVjspKayovR4ur5xiV4AryivnZIZrSYFTQpzOoEbSOynauc09jdLsoVeqca57vUlU4gRBaPlEQGuA+hU08Y1eaP0kSWJCjzD6RD/J418l0f3YF9z3x4/0lH4Ew0Ho+yDoGlb1ifGM4bm+z/Fg1wf5et/XzN07l7uX3k20PZrr21zPVdFXYdaeuetcayap1Rg7tMfYoT0+99ytTIfcvIWS9esoXreenPfeI+d//0MyGjF17Yq5T29MvXpjSGgr2vkLlzWVWuWqihkIiDrzWovVVU6KC8prK3C55Tjyy0ndn05pUSXZR4ooLao87TiNVoWpTmAzn/LY7KHDbNej1ojlBQRBaD4ioDWA0sVR+eYt4plwKQn1MvH53UlM/y2M4b8M4inNl4xMfhm2zoJhL0C7axq8+J+XwYt7Ot3DHe3vYPHhxczeO5uX1r/EW1veYkzUGG5sc+MlNf3xVCqTyb1QNkB1QQElGzdSvG49xevWkvXf15T9bDZMPXsoFbbevdDFxIjf+AvCKdQaFTZvIzbv+g1NnMkZJCX1AKC6UglxxflKeCuuc3Pkl3PicAHF+RX1OlPWMFq17vB2tkAnqnGCIFwsIqA1gCxXu7s4imvQhEuNWiVx98BoBsT5cs+nvnxatJvXymYTMu922PAxjHgRghveVl6n1nF1zNVcFX0VO3N2MnfvXL5N+Za5++bSK6AXN7S5gaTQJDSqS/vbk9pud6+9BlCVnU3x+g0Ur1tLybr1OJYtV/bz8cHcswemHspNFx0tPhQKwnlQa1XYfIzYfM7clRJQ1j0srqoX4Oo+Lsor5/jhQsocDa/GCYIgXKhL+xPQRSIWqhYuB20DbTzb28Af8tUM+bUNk/QrefTEt+g/Hgztx8OQf4BneIPPL0kSHX070tG3I4/1eIz5KfP5et/XPJL8CP4mfybET+Da2GvxMV5Y6//WSuPr627nD1CRnk7JunUUr11HycaNFC5aDIDaywtT9+5KYOvZA31sLJJKTMcShIaQJAmDRYvBosUn5MyNTeCvVePUeji+egNmuw6TXY/ZrgQ3U917mx61Vvw7FgRBIQJaA9QLaCKfCZcwjUriwaRYhiX489g3dr7M6MVrwcmM2DsPac8P0Otu6P8oGP9aC30vgxdTOkzhtna3sSp9FXP2zuGdre/w/vb3GR4+nBva3EBn386XVeVIFxKCbvx4PMaPR5ZlKo8coWTjRmVa5MaNFP3yC6BU4ozdu7urbPr4eHENmyA0sr9SjTuw5zBWs4Hi/HJOpjsoKapEPmWpAQC9WeNqoFIb5EyuhipKmFOea3Xi37cgXOpEQGuAugFNEhU04TLQNtDGgvsT+SD5IA/8aiLW0I+PQpcQ8vu7yvVpA56AHlNA89e6EWpUGgaHDWZw2GAOFxzmq31f8f2B71l0eBExHjGMjxvP6KjRjfSuWg9JktCFh6MLD8dj/HgAKtKPuQNbycaNOJYrUyJVViumrl0xuQIb1dXNOXRBuGycrRpXYkkjKamj+3nNUgMlBRUUF5RTUlhBcX65+3lxQQV5x/MoKazAWX16kNMZNa6wVlOB09d7XhPodAbxEU8QWivxr7cBZKpFkxDhsqNVq3hgSCxDE/x5fN52+u0dz11xo3hMmoVuyd9gw0cw9J+QMLbBjUTqirRH8lTPp3iwy4MsPryYefvn8e8N/+aNzW/Q0dAR2wkbXfy6XFZVtbp0IcHoQoLxuGYsAJXHjythbYMrsK1cCYCvXk9a1y6YunbD2LULxk6dUVsuva6ZgtBa1F1qwBfrWfeTnTJlxZUUF1RQ4gpuxQVKkFOel5N5sICSgjNPrdTq1adNozTZdZhsyq00T6a4oByjVYdKTAcShBZFBLQGEE1ChMtZ20Ab392XyEerDvHW8hTmau7nnZ4TGZD6FtI3t0FITxj+IoT1apSvZ9KaGBc3jnFx49hzcg/fpnzL9/u/Z9LPk4iyRzE+bjxjosbgYfBolK/XWmkDArCPGYN9zBgAKrOyKN20iZQfFmLMOkHO+++D0wkqFfo28Zi6dsPUtQvGbt3Q+vs38+gFQTiVpJIwWnUYrTr4k+vjZFmmvKTqlPBWG+aKC8rJSiuipCCHqor6Qe7QkjVIEhgsWkx1A5xVVy/MGW1KwNObRedKQWgKIqA1QP0mIYJw+dGqVdw/KIaR7QP42/ydTFpVRWLUf3lr8B58NrwKnwyHtmNg8LPgG99oX7etd1ue8X6GHiU9KAktYd7+ebyy8RXe3PwmwyKGMT52PN38u4kPEIDWzw/tFVdQZDLRLSmJaoeD0u3bKd28hZItW8j/9lvyZs1S9g0Oxti1K6ZuXTF26Yo+NkY0HhGEVkKSJAxmLQazFu+gP9+3oqzKPb1y49qtRIbGUlJYUXsrKCfveLEyvbLq9OmVKrUSGk023RnCnB6TzRX0bDq0BrX4XiwIDSQCWkPI1SAWqhYEon0tzL2zN3M3HuXlRXtIPBLM44O/5XbpJ9Rr34a9P0GnG2Hgk3+p4+Op9Co9I2JHcE3sNezL3ce8/fP48dCP/HToJyJsEYyNGctV0Vfha/JttK/Z2qktFiyJiVgSEwGQKysp27uP0q1bKNm8heJ1aylcuBBQ1mIzdu5UOy2yY0dUBkNzDl8QhEagM2jQGTTYfU3Y0iU6JIWccb+aqlxNmKsX4gprr5vLPlJEaWEF8ulZDo1WhdFWW4Uz2fWYrFrl3la/OicanwhCfSKgNUDdKY4ingmXO5VKYmKvMAa38eMf3+/ixV/S+C6oL69edx0Jh2Yoa6ft+Bq63QYDHgNrQKN+/XiveJ7u/TSPdHuEX9J+YX7KfN7c8ibvbH2HxOBExsaMJSkkCa1a26hft7WTtFqMHdpj7NAer1tvVTpFpqdTsnkzpVu2UrJlM9mrflN21moxJLTF1LkLxs6dMHbqhCYwUPx2XBAuUXWrcp4Bf37NqtMpU+aorBPmyikurKC0TqgryC4l82DBGdeTA9Do1ZisWiplJ8V/7MBk1bqnd5psOox1nhssWnHNnHDJEwGtAZQpjq4mIeJ7hCAAEGA38NGt3fl5VybPfr+b0Z/s4dY+E3ns7ruwrH8DNn+qdHzsdTckPgQmr0b9+iatibExYxkbM5bUglS+P/g9Pxz4gWnp0/DQe3Bl1JWMjRlLG682jfp1LxWSJKELDUUXGorH2LEAVOfnU7J1qyuwbSFv7lxyP/8cUNZtM3bu7A5shnbtUBnP3oJcEIRLk0oluath3sF/vm91tZPSQiXM1XSwLC2qoLRI2XYsrYyik2VkpRZS6jjzcgQ118y5A5xVi9FW87g2zJlc27R6UZ0TWh8R0BpALFQtCGc3sn0gfaJ8ePWXvXy+NpVFO/U8O/oJRvd9EGnlv2HNW7DpE+j7IPS+B/Rn72LWUBH2CB7q+hBTO0/l94zfWXBgAV/v+5ov93xJW6+2XB1zNVdGXnnZNxY5F7WHB9ZBg7AOGgS4pkXu20/p9m3K9WzbtlO0dKlrZzWG+Hh3YDN26oQ2PFxU2QRBcFOrVVg89Vg8z9zBMjk5m6SknoDSxbK8pMod4krqBLmSIqVCV1pUSVZaEaVFFVSUnXlJEY1OVS+wuQOcVYfRVuexqM4JLYgIaA0gujgKwp+zm7S8OLYD47uF8syCnTwwZytfxfjwwtWvE5X4MKz4P1jxIqx/X1nouvtk0Db+NU5qlZr+If3pH9Kf/LJ8Fh1exIIDC/j3hn/z2qbXSApN4uroq+kb3BetSkyBPBdJq8XYvh3G9u3gppsAqMrNVcKa61aw4HvyZs8BlIBn7NSptsrWoQNqa+MHckEQLj2SqnZdOTj30iBVldW1Aa7wlDDnCneOvDKy0wopLarEeYbqHBIY3dW52vCWnSOzS3VM2WbRYrAorxtMWiTxQVC4CERAawAZJ4gKmiCcU+dQD76/vx+z1qXx3yX7GPnmb9wzMIr7xn2B4cQ2+PUFWPJ3WPs/6PcIdL0VNPqLMhYPgwcT205kYtuJ7Mvdx4IDC/jp0E8sTVuKp96TkZEjGRM1hvY+7UXV5wJovLzqV9mqqyk/cLC2yrZ9u3tNNiQJfUw0Nj8/8o6fwNChPYa4OCStCMeCIPw1Gq0aq5caq9e5f9knO2XKS6tcwa2CksLK06p0pUUV5Bx1UFJYQUWpTNbOfaedp2a6pcHsCnUWLYaae4vWFehcYc6s3Ks1okOucG4ioDWALFfhFAtVC8J5UaskJvWNYFSHAP7vpz28/esBFmzL4Pmr2zHo1u/h8Cr49UVY9Bj89nptULsIFbUa8V7xPNnzSaZ1n8aaY2tYeHAh3+7/ljl75xBhi2B01GhGR48m2HKOCyqE00hqNYb4OAzxcXhOmABAdWEhpTt3ugObftNmjq/5Xdlfp8PQti2GDh0wdmiPoUMHdBERos2/IAgXjaQ6/yYoAL8uX0Gvbn0pdbgCnKPC1RilklJHJWVFFZQ6KsnNLKbsQD5ljsozdrYE0BnU7hBXN9C5g9wpj7V6sVzB5UgEtAaQZSdIyh+dqGwLwvnxsxp464YuXN89lGe+38Xtn25kVPsA/jGmB4F3LIFDybDyP7D4cVj9OiQ+DN0mgfbiNZ7QqrQkhSaRFJpEUUURS9OWsvDgQt7d9i7vbnuXrn5dGR09muHhw7Hr7RdtHJc6tc1Wr8V/8ooV9I2OpnTnTsp27qJ0185667KpLBYM7dopga29Etw0QUHiQ4ogCM1CpZYwe+gxe5zfDA+nU6a8RAlwZQ4lvLkf14Q6RwWO/HKyjzoodZx53TkAtVZVpyJXpzpn0ZGbIXPIno3BPfVSi94krqO7FIiA1gCyXFXbxbGZxyIIrU3fGB8WP9Sfj1cd4p1fD7ByfzaPDI3jtsSBaKOSlIrayv/Az0/C6jeg38NKi/6LGNQArDor18Zey7Wx15LhyOCnQz+x8NBCXlj7Ai+vf5mk0CSujLySfiH90KsvzjTMy4YkoQsLQxcWhv3KKwHX1MiDB5XAtnMHZTt3cfLzL6BSacut9vbG2L59vUqbxqtxO4EKgiA0BpVKUqpgFh3nc/2cLMtUllUrFTpHJWWuKl3dMFcT8gqySigtqqSyXGmKkrlpZ/2TSaA3aTBadBjMGgyn3Cvbte7r+5RKogaVWsxaaElEQGsI2YmMGgnEb3QFoQH0GjVTB8dydedg/vnDbv5v0R6+2nSUf4xOYEDcQIgaCId/cwW1p5SglvgQdLsddKaLPr4gSxB3dryTKR2m8EfuH/x48EcWHV7E0rSlWLQWBocNZlTkKHoF9hLNRRqJpFZjiIvDEBeHx7hrAXBWVFC+d2+9Sptj1Spq5g5pg4IwdOiAISEBQ7t2GNoloPH0bM63IQiCcMEkSUJn1KAzarD7nt8xVZXVrFi6is7tu7vDXFmx6+aovS/KLSPnqBL0qiudZz2f3qQ5PbjVTMM0199Wc68Woe6iEQGtAZxyFUgqxF9LQfhrQr1MzJjUneV7svjXT39w6ycbGNrWj2euTCAisj9E9ofUNbDy30ozkdVvQuKDqKpjm2R8kiTRzrsd7bzb8Wj3R9mQuYHFqYtZnracHw7+gIfeg2HhwxgVOQqnfPYffELDqHQ6jB07YuzY0b2t2lFM2R+7XZW2nZTt2kXRkiXu1zVBgRgSEjC2a6cEt4QENL7n+YlHEAShldBo1WhNEr5h598Zt7KiWglvjtoQV1onzJU5KigrrqQ4v5yTxxyUOSqpqjj7zzadQV0nsCnTL7PznGwqST1zyDNrUWvFp+fzIQJaQ8hOZLRieqMgNAJJkhia4E//OB8+XZPKO8tTGPbGSu7oF8kDg2OxRCRCxEJIW6sEtV+eoY/GCpoHoceURl/w+mw0Kg19g/vSN7gvz/Z+ljXH1rA4dTE/HvqRb/Z/g11tZ+OGjYyKHEUHnw6iun6RqC1mzD17Yu7Z072tuqCAsj17KNu9m7Ldf1D2xx84li13v67x83OHNUN7Jbhp/P3F/yNBEC4rWp0a7Xl2uqxRVVHtrsyVnhLuyhzKtvJipfNl3vFiigtg/f5DZx+DXl0vtOnNtdMsax/XhDsNepMWvVFz2S1n0KQBTZIkM7ASeE6W5R+b8ms3JplqZEmPSr68/rIIwsWk16i5Z2A013YJ5pUl+/hw5SHmbznGkyPbcG2XYFThfeDW7+HIegq+fxqfFf+nLHrd7TboMxVsgU02Vp1ax6CwQQwKG0RJZQmr0lcxc+NMvtr3FbP2zCLYEszIiJGMihxFnGecCAIXmdpux9y7N+bevd3bqh0OyvfsoeyPPyjdvVsJbatWgVP5bbDa29s1NdIV3BLacda2a4IgCJcpjU6NRafG4nl+oS45OZn+iQNOD3XFrgqdo4rSYuW+zFFBfnYp5cWVlJdUnfWckgR6U00TFE1tdc5UG+IMlprntfu05g6Y5xXQJEn6BBgNZMmy3L7O9pHAW4AamC7L8r/Pcaonga8bONYWQ3ZWIaMWHRwF4SLwsxn473WduLl3OM/9sJvHvtnOzHVpPDcmgS5hnhDWi10dniGpra8y5XHd+7DhI+h0o3Kdmnd0k47XpDUxMnIkhjQD3fp249cjv7L48GI+2/0ZM3bNIMoexcjIkYyIGEGUPapJx3Y5U1ssmHr0wNSjh3ubs6SEsr37KPtDqbKV7d7Nyd9/h2rlYntfk4m0Dh0wtIlH36YthrZt0EdFIel0zfU2BEEQWh21VnVBXS+htvNleXFV7ZTLEuW+vKSq3vPi/HJyjxVTVlzbLOVMVGrJXZWzRLWuX8CdbwXtM+Bd4IuaDZIkqYH/AcOAdGCjJEk/oIS1l085/g6gE/AHcPEWN2oiMk5kVEhikqMgXDSdQz2Yf29fFmw7xr8X7+Wa937n2i7BPDmqjbKDfzsY9zEM+jv8/g5snQVbZ0LCWGUttcCOf3r+i8Gqs3J1zNVcHXM1uWW5LEtbxuLDi3l/2/u8t+09YjxiGBo+lGHhw4j1iG21v9lrrVQmE6auXTB17eLe5iwvp3zfPsp27+bQr79iKiwk76uvkcvKlB20WvTR0RjatEHfJh5Dm7YY2sSj9vBonjchCIJwCarf+fL8VVc5KSuuE+zq3Gq2lRdXUqUtuUgjvzjOK6DJsrxKkqSIUzb3BA7IsnwIQJKkucDVsiy/jFJtq0eSpCSUXqMJQKkkSYtkuXVeVS+LJiGC0CRUKolru4YwvF0A7604wPTfDvPz7uOMDFfRq281Rp0avCJh9Osw8ElY9x5snAG750PMUOg3DcL7KvMjmpiXwYsJ8ROYED+BE8UnWHZkGcvSlvHRjo/4YPsHhNvCGRo2lGERw0jwShBhrZmo9Hp3I5KiwEC6JSUhV1dTkZZG+d69lO3ZS9nevRSvWUPBggXu4zSBgRjatFGqbPHKvTYkRCywLQiC0ITUGhVmux6z/c+rdcnJyU0zoEYiyec5594V0H6smeIoSdJ4YKQsy1Ncz28BesmyPPUc57kNyDnbNWiSJN0F3AXg7+/fbe7cuef3TpqIw+HAZJrNTLqSLA3hU6mguYcEKOOyWCzNPYzTtMRxtcQxQcscV0sbU1aJk7l7K9iSVY2nXuLaWC2JwRpUdcKNptJBUMbPhKT/gK6ygAJbPEdDryHHpydI6os2tvP9syqsLmRHyQ62l2xnf9l+nDjxUnvRydSJLuYuhOvCUUmN9yG/pf0/hJY5Jjj3uFSFhWjS09EcTUeTno42PR318eNIrp+jToOBquBgqkJCqAoNoTIkhKqgIPiLUyRb4p9XSxwTtMxxtcQxQcscV0scE4hxXYiWOCZomeMaNGjQZlmWu5/ptSYPaBeie/fu8qZNmxrrdI0iOTkZb59veSs3jlXSQPb3b/ppVGeSnJxMUlJScw/jNC1xXC1xTNAyx9USxwTw4fzlLMo0sP1oPm0CrPz9irYMiDullXplqTLt8fd3ID8NPCOh933Q5SbQnXvh0AvVkD+r/LJ8VhxdwdK0pazNXEuVswo/kx9Dw4YyNHwoXf26olb9tVDZEv8ftsQxQcPG5SwrozzlAGV791C+Zy9l+/ZRvncvzuJiZQeVCl1UJIa4OPTuWzza4KDzrpq2xD+vljgmaJnjaoljgpY5rpY4JhDjuhAtcUzQMsclSdJZA9pf6eJ4DAit8zzEte2SJ8tOZEmFSlyDJgjNIt5LzV3X9OXHHZm8smQvt36ygf6xPvz9ira0DbQpO2mN0PNO6H4H7P0Rfn8XFj8OK/5P2dbrbrAGNOv78DB4cE3sNVwTew1FFUWsTF/J0tSlfJvyLbP3zsbL4MWQsCEMDRtKj4AeaNViUeyWRmUwYOzQHmMHd/8sZKeTyvR0yvbudU+TLN2+g8JFi2uPM5vRx8bWCW2xGOLixLVtgiAIwl8KaBuBWEmSIlGC2Q3AxEYZVUsnV4sujoLQzCRJYkynIIa382fm2jTe+fUAV7z9G+O7hvDo8HgC7K5+RCo1JFyt3I6sh7XvwOo3lMpaxwnQ536l4Ugzs+qsjI4azeio0ZRUlvDbsd9YmrbUvc6aRWuhX3A/BoUOol9IP2w6W3MPWTgLSaVCFxaGLiwMhg93b692OChPSaF8fwrl+/dTvn8/RUuWkP91bXNjjZ/faaGNysrmeBuCIAhCMznfNvtzgCTAR5KkdOCfsizPkCRpKrAEpXPjJ7Is775oI21BZLkaJEl0cRSEFkCvUTOlfxTju4Xw7q8H+GJtGgt3ZDClXxT3JEVj0df5NhfWS7nlHlLa82+dBdu+hOjBylpq0YObpaHIqUxaEyMiRjAiYgRlVWWsz1zPiqMrWHF0BT+n/oxG0tA9oDuDQgcxKHQQgZamWwNOaDi1xYKpSxdMXWq7SMqyTFVWljuwle/fT9n+FEpmzkR2BTM/lYqDkZHuwFYT4LTBwaIpiSAIwiXofLs43niW7YuARY06olZAphpZVreEz3GCILh4mHQ8MzqBSX0jeGXJPt5dcYC5G4/w0JBYru8Rhk5T54OsVxRc8Sok/Q02faKsozbrWvBrp0x97DhBmSLZAhg0BgaGDmRg6ECedT7Lzpyd/Hr0V1YcWcHLG17m5Q0v09arrRLWwgYR7xkvOkK2IpIkofX3R+vvj6V/f/d2uapK6SS5fz/7li7FWl5B2a7dFC3+2b2PymRCFxuDPjoGfUwM+ljlXhMQIP4OCIIgtGJ/ZYrjZUt2VivXoImff4LQ4oR6mXjnxi5M7hfJS4v28Oz3u/n4t8M8MiyWqzoFo677D9fkBQMeg74PwM55Spv+hQ/Csn9Ct9ug+2TwCD3r12pqapWazn6d6ezXmWndpnG44LBSWTuygve3v897298jyBxEUmgSg8IG0c2/W3MPWWggSaNBHx2NPjqaYqORUNfF7c7iYsoPHKBs/35lqmRKCo5VqyiYP999rMpsRhcTrYS2aBHcBEEQWhsR0BpAphonokmIILRknUM9+Oqu3iTvy+aVJft45KvtfJB8iMdGxDO0rV/9D6oavdLdsfNESFsD6z+ANW/Bmreh7WjodQ+E9WkR0x/rirRHEmmP5I72d5BTmsOq9FWsOLLC3WTEqrMSp4nDcchBv6B+eBg8mnvIwl+kMpsxduqEsVOnetur8vKoOHiQ8gMHKE85QPmBAzhWrqLg27MEt5hY9K7HIrgJgiC0LCKgNYAsVwOigiYILZ0kSQxq48fAOF9+2pnJ60v3c+cXm+gS5sHjI+LpG+1z6gEQ0U+55R+BjdNh8+fwx/cQ0EEJau3Hg9bQPG/oT/gYfbg29lqujb2WksoS1mauZcWRFSw/vJy//fY3VJKKTr6dGBAygP7B/YnzjBMfyi8hGk9PNN27Y+pev2NzVV4eFQcOUH7wYG1wS14pgpsgCEILJgJaA8iyMsVR/NgShNZBpVI6Po5sH8C8zem8tSyFiR+vp3+sD4+PiKdjiMfpB3mEwbAXYOBTsPNrWP8hfH8/LP1H7fRHe3BTv5XzYtKaGBI2hCFhQxhcORif9j6sSl/FqvRVvLXlLd7a8hYB5gAGBA9gQMgAegb2xKhpGdfcCY1L4+mJpkcPTD161NvuDm41FbeDB08PbiYTuqgodFGR6KOilfvoaHShLWfaryAIwqVIBLQGkGUnMqqWNttJEIRz0KpV3NgzjGu6BDNrXRr/W3GAq95dw6j2ATw6PI4YP+vpB+lMSiDrOglSf1OC2m+vw+o3oc2V0GMKRA5o6rdy3lSSio6+Heno25GpXaaSVZLFb+m/sSp9FQsPLeTr/V+jV+vpGdCTASFKYAuyBDX3sIWL7M+CW3lKijJd8uAhKg4domTjJgp/WFi7k1qNt48PR9u3Rx8ViS4q2nUfhdp6hn9DgiAIwgURAa0BZLkKWVyDJgitlkGrtOa/vkco0387zPTfDrFk93Gu7RrCg4NjCfM2nX6QJClBLHIA5KUq0x+3zoI9P4B3LCEeA6C0Exg9m/z9XAg/kx/j4sYxLm4cFdUVbDq+iVXHlOrab+t/4//W/x8xHjHuqZCd/DqhVYkFsi8XGk9PND17Yu7Zs972akcxFampVBw6SPmhQxxbv56KtFQcq1bVW6dN4+uLLjr6tOCm8fcX0yUFQRDOU6sLaJWVlaSnp1NWVtYsX99utyNJj3CP1kwlVezZs6dZxnEqu93O4cOHCQkJQasVH6YE4XxYDVoeGRbHpL4RvLfiAF+sS2PB1mOM6xrC1MExhHqdIagBeEbA8Bdh0NOwewFsmkHMwRnw2mzoME6pqgV1OfOxLYhOraNvcF/6BvflyR5PklqY6p4K+cXuL/hk1yeYtWZ6B/YmMTiRxKBEUV27TKktZozt22Fsryzq/kdyMl2SkpTlAI4epeLwYcoPHqTi0GHKDx2kYOGPOIuK3MfXTJfUR0ehi4xCFx2FPioKXWgokk7XXG9LEAShRWp1AS09PR2r1UpERESz/DauqKgISTpOFt6UY6StpWVct1FYWEhFRQXp6elERkY293AEoVXxMitrqN05IIr3kw8ye8MRvt2SznXdQ7gv6U+CmtYInW+EzjeyaeEndJe3wc5vlMpaUFclqLW/tsWsqfZnJElyd4Wc1G4SRRVFbMjcwOqM1aw5toblR5YDSufIxKBE+gX3o5t/NwyaltcwRWg6kkaDPjISfWQk1sGD3dtlWaY6J0eZJnn4kHu6ZPGGjRR8/0PtCTQadCEh6CIilFtkpPuxxs9XVN0EQbgstbqAVlZW1mzhrJaMjNSiJjhKkoS3tzfZ2dnNPRRBaLX8bQaeu6od9wyM5v3kA8zZcJR5m9MZ3y2UqYNjCPY4e9ByWKMg6Q4Y/i/YPhc2zoDv74Mlf4fON0H3O8AnpgnfzV9j1VkZEj6EIeFDkGWZwwWHWZOxhjXH1vD1vq+ZtWcWerWe7gHdSQxKJDE4kUhbpPhALQDKzySNry8aX1/MvXvVe63edMmDh5THqakUr12LXF5eew6TCV1EOPoIV2iLjHCHN3GtmyAIl7JWF9CAFvABQG7mr39mzf/nIgiXhgC7geevbs89SdG8n3yQuRuOMm/zUSZ0D+W+QX8e1DDYodfd0PMuSF0Nm2bAhg9h3f8gPFFpONL2qhbZqv9sJEkiyiOKKI8obkm4hdKqUjaf2MyaY2tYk7GGVza+AhshyBzkngrZK7AXFp2luYcutECnTpesITudVB0/TkVqKuWu0FZxOJXSnTsp/PlncDprz+Hjgy4iHF1EBPo61be618MJgiC0Vq0yoLVGX3/9Nc899xySJNGpUydmz5592j5PP/00X3zxBXl5eTgcjmYYpSAIdQXajbxwdXvuGRjNe8kH+GrjUb7edJTre4Ry/6AYAu1/EtQkCSL7K7eiE7DtS9jyBcy/EwyPQ6cblM6Q/glN94YaiVFjpF9wP/oF9wPgmOOYEtaOrWHR4UV8s/8b1JKa9j7t6R3Ymz5Bfejo0xGtWlwfK5ydpFKhDQpCGxSEuW/feq85KyqoPHrUFdoOuwOcI3klBTnfuvfzkyQO1JsyWRvgNAEBSCpVU78tQRCECyYCWoPIgHTebfZTUlJ4+eWXWbNmDZ6enmRlZZ1xvzFjxjB16lRiY2Mbb6iCIPxlQR5GXhzbgXuTYnhvhSuobVSuUbtnYPTZr1GrYfWH/tMg8WGlVf+Wz2HTJ7D+AwjpoQS19teCztwk76exBVuCmRA/gQnxE6h0VrItaxvrMtexLmMdH+/8mA93fIhRY6S7f3d6B/ZGU6FBlmVR9RfOm0qnQx8djT46+rTXqgsLqUhLoyI1lf3JydhlKE89TMnmzcglJe79JL0eXVgo2rBwdGFh6MLDXPfhSnhTq5vyLQmCIJyVCGgXaMaMGXzyyYdUoaGwsIjYyEhWrFjxp8d8/PHH3H///Xh6Ku23/fz8zrhf7969G328giA0nmAPI/93TQfuTYrmveSDfLMpnbkbj3J15yC6m5znPoFKBVEDlVvxSdg+RwlrP0yFn/8GHcZDt0mtogPk2WhVWnoE9KBHQA8e6PIAhRWFbDy+kXUZ61iXuY7fjv0GwEdff0TvoN70DlRuAeaAZh650FqpbTaMHTpg7NCBYquV4KQkQGlUUpWV7b7GreLwYSqOHqXySBrFq1fXv95Nq0UbGuoObtqwMHRh4crjoCAkjfi4JAhC02nV33GeX7ibPzIKG/WcCUE2/jmm3Vlfnzx5MpMnjyC9yodbrhzLtGnTuP7669m3b99p+06bNo1bb72V/fv3A5CYmEh1dTXPPfccI0eObNRxC4LQdEI8Tbx0TQceHBzLx78dYvb6I3xXWc2agi3cNyiadkH2c5/E7A19p0Kf++HIOiWobZ8Dmz+FgI7Q5WZoP17ZrxWz6WwMCRvCkLAhAGQ6Mvk8+XPybHmszVjLT4d+AiDCFkGfoD70DuxNj4AeWHWiCYTw10iShNbfD62/H+Ze9dd1k51OqrKyqEhNo+JIGpVHjlCRdoSKI0coXr8eubS0dmeNBl1wMNpwV2irG+KCg8UyAYIgNLpWHdCaj8yLT/yN3gOTGDNmDGPGjPnTvauqqkhJSSE5OZn09HQGDBjAzp078fDwaJrhCoJwUQTYDTw7OoH7kqL55+yVrNyfzU87Mxncxo/7B8XQLfw8Fq2WJAjvo9xG/tvVpn8mLH4CljwN8aOULpAxQ0Hd+r9lB1oC6W3pTdKAJJyyk5S8FGU6ZOY6FhxYwJy9c1BJqtrr1wL70NG3Izq1+BAsNB5JpUIbEIA2IOC0LpOyLFOVnU1lWhoVdYJbxZE0Sjdtxlln2iRqNdqgoDNX3kJCUOn1TfzOBEG4FLTqn/Z/Vum6mL788juOHTnKs6+/DXDOClpISAi9evVCq9USGRlJXFwcKSkp9OjRo6mHLgjCReBt0TM+Tsf/3ZLIzLWpzFh9mHHv/06fKG8eGBxDn2jv87veyugBPe9Ubsd3wbbZsOMr2PMDmP2g0/XQ+Wbwa3PR31NTUEkq4r3iifeKZ1K7SVRUV7A9e7s7sE3fOZ2PdnyEQW2gk18negb0pGdAT9p5txMNR4SLRpIktH5+aP38MJ3yc1qWZapzc5XQluaqvrkC3KmLcyNJaAID8LDayFy+HG1IqHINXEgoutAQVHa7uA5TEIQzatUBrTls3bqVt9/+jJlLlqFydYP66quv/vSYsWPHMmfOHG6//XZycnLYv38/UVFRTTFcQRCakN2oZergWO7oF8ns9Uf4aNUhJk5fT5cwD+5LimFIGz9UqvP8QBbQHka+BEOfgwNLYeuXsO59+P0dZRHsLjdB+3FgPI8qXSuhU+vOeP1aze2dre8AShfJLn5d3PsmeCegVYnAJlx8kiSh8fZG4+2NqWv9a0VlWaY6P981XTLNXXkr2bWTol9XUH3yZL39VVYr2tAQdCGhyn1oqHIdXGgo2sBAJK34Oy0IlysR0C7QRx99RF5eATdfORpQkdizB9OnT//TY0aMGMEvv/xCQkICarWaV199FW9v5bqSzp07s23bNgCeeOIJZs+eTUlJCSEhIUyZMoXnnnvu4r4hQRAanUmnYUr/KG7uHc68zel8sPIgd36xiRg/C3cNiGJs52B0mvNs963RQZsrlZsjG3Z+rYS1nx6Fn/+ubO98E0QPAtWl1YXu1OvX8sry2HRikzuwvbXlLQBMGhNd/Lu4K2xtvNqgUYkfb0LTkiQJjacnGk9PjJ06ubenJCfTKSmJakcxlcfSleUCjrru049SnpKCY8UK5LpruKlUaAMDXYEtxF11qwlwovomCJc28RPsAr3//vvIpHFCCgNJR6z53IvNSpLE66+/zuuvv37aazXhDOCVV17hlVdeaczhCoLQjAxaNTf3DueGHqH8tDOTD1Ye4ol5O3jtl31M7hfJjT3DsBou4LfkFl+lqUjv+yBzuzIFcufXsHs+WAOVtdU63wQ+l+ZSHZ4GT4aFD2NY+DAATpaerBfY3tj8BgAWrYWu/l3p4d+DHoE9aOPZBvUlFl6F1kdtMaOOj8cQH3/aazVNSyqPHqXiiBLcKl0h7ryrbzUhLihIVN8EoZUTAa0hlGXQBEEQzotGreLqzsFc1SmI31Jy+GDlQV5atJd3lh/gpt7h3JEYgZ/t3L/scZMkCOqs3Ib/C/b/rFTV1rwNq99QpkB2nKBMgbyEeRu9GRExghERIwDIKc1h0/FNbDi+gY3HN7IqfRUAVq2Vbv7d6BHQg24B3Yj3jBcVNqFFqdu05NTr3gCcxcVUpB+jMv2oa6mA86i+hYSgDQlGGxysdKEMCUEbHIzGz08s2C0ILZz4CdUgMiAymiAIF0aSJAbE+TIgzpcd6fl8uOoQH606yCerD3Nt12DuHBBFtK/lwk6q0UPC1cqt6DjsnKdU1X5+CpY8TQfPTuCVpUyFbKULYZ8vH6MPIyNHMjJSWcYkqySr3jVsyenJAJi1Zjr7dqarf1e6+XejvU979GrRbU9ouVRmM4b4OAzxcae9Vq/6djTdFeLSqTxyBMeqVVRn59Q/QKtFGxSIh9GkNC8JVoKbNjgYbUgwGh8fEeAEoZmJgHaBZFl2PRLxTBCEhusY4sH/JnYlNaeY6asP8c2mdL7adJRhbf25e2AU3cK9Lvyk1gBlbbW+UyFrL+z8GvOGmTD/TtCaoM1o6Hg9RCVdEi37z8XP5MeVUVdyZdSVABwvPs6WE1vYkrWFzSc2u5uOaFVaOvh0wKfMB80xDZ19O2PRXWBQFoRmcs7qW1kZlRmZVB47plwDd+wYlceOUfLHnjNOn5R0OrRBQe6KmzY4GJ2rEqcNDkbtfZ5daQVBaLBL/yf0RSKjzDISBEH4KyJ8zLw4tgMPD43ji99T+XxtGr/8cYIuYR5M7hfJyHYBaNQN+G22XxsY8g/WqfqRFGWAHV/D7u+U6prZV5n+2HGCMh3yMvlmFmAO4IqoK7gi6goA8svy2Zq1lc0nNrMlawvLCpfxy7JflPb/nvF08+9GV/+udPXrirexdS8YLly+VAYD+qhI9FGR9banJCeTlJSEs7TUHdoqjh2jMv2Y+3nZ7t1U5+XVO04yGFxhLQhdnRCnDVamVKo9PESAE4S/SAQ0QRCEFsDHomfa8HjuHhjNvM3pfLLmMFNnbyXYw8jtiRFM6BGK7UIaitSQVBDeV7mN+g+kLFVC2qZPYf0H4B0DHSZAx+vA6/Ja/sPD4MGgsEEMChsEwJJfl2BrY2NL1ha2nNjCN/u/YdaeWQBE2CLo5t/NfQuyBDXn0AWh0aiMRvQxMehjYs74erWjmMoMV2irE94qjqVTun0HzoKCevtLJhPaoEC0gUFKJS4wEG1w7WONnx+SRnz8FIQ/I/6FXDDZ/Uj8fkgQhMZm1muY1DeCm3uHs3zPCaavPsyLP+3hzWUpTOgeyu2JEYR6mRp2co0e2o5WbqX5ygLYO76G5Jch+SUI6aFU1hLGgi2wMd9Wq6BX6ekT1Ic+QX0AqKyuZPfJ3e4pkb+k/sK3Kd8C4G/yp4tfFzr7daazX2fReES4ZKktZtRxcRjiTr/+DaC6qIjKjAwq02unT1ZmZFCZkUnZrl2nVeBQq9H4+ymBLSioNsgFBaLOzMRZUoLK1MDvcYJwiRA/TZrAI488wooVKwAoKSkhKyuL/Pz80/Z7+umn+eKLL8jLy8PhcDTxKAVBaEnUKonh7QIY3i6AnekFzFh9iC/WpvLZ74cZ0S6AKf0j6Rrm2fCpREYP6HqrcitIV5qL7JqnNBf5+W8Qngjtr4G2Vyvt/S9DWrXWHcDuaH8H1c5qDuQfcE+J3Jq1lZ9TfwaUxbM7+HSgs19nuvh1oaNvR2w6WzO/A0G4+NRW61mXDwBwlpRQefw4lccyqMzMcIW3DKoyMindtJnCE4uguhoAH2Df8y+g9vBAGxSEJijwzEHOy0tMoxQuaSKgXTDZ9V/pvCtob7zxhvvxO++8w9atW8+435gxY5g6dSqxsZfmGkaCIDRMhxA7b97QhadGteXztanMXn+ExbuO0ylUuU5tVPsAtA25Tq2GPQT6PazcclJg13zY9a2yGPaiJyByALS/VmkyYmpA85JLhFqlJt4rnniveCa2nQgojUe2Zm1lW9Y2tmZtZcbOGVTL1UhIRHtEuwNbZ9/OhFpDxYdK4bKjMpnQR0WhjzrzFGq5qoqq7GwqMzLYsXw5MXYPJcRlZlCRmkrx72uRS0rqHSPp9crUyaAgtMFBaGoeByrPtf7+Yi04oVUTAe0CzZjxCZ9++hGV6HAUFhITGemujp2POXPm8Pzzz5/xtd69ezfWMAVBuAQF2A08ObINDwyO4dvN6XyyJpUH52zF36bnpl7h3NgzDF/rX2wX7xMLSU/CwCcg6w8lqO2aDz88AD9Og+jBSliLvwIMokIUYA5gVOQoRkWOAqCksoSdOTuVwJa9lSWHlzBv/zwAvAxedPbt7J4ameCdgE6ta87hC0KzkzQaJWwFBlJWVIRPUlK912VZxllQ4AptmUolruZxRgZlK5KpzjllKQFJQuPnhzYgQAlvAQFoAwPQBAS67gPEcgJCi9a6A9rip+D4zsY9Z0AHGPXvs748efLtTJ48jCPVIdw+ejTTpk3j+uuv7jCV3gAAVsBJREFUZ9++faftO23aNG699Vb387S0NA4fPszgwYMbd8yCIFxWTDoNt/SJ4KZe4STvz+Kz39N4fel+3vk1hSs7BDKpbwRdwjz/2heRJPBvp9wGPwsZW2H3fNj1HaQsAbUeYocp16zFjbjk11g7XyatiV6BvegV2AsAp+zkYP5BtmVvY1uWcvv16K8A6FQ62vm0o5NvJzr6dqSjT0f8zf7NOXxBaHEkSULt4YHawwNDQsIZ93GWlVGZmUmVK7TVXANXefw45Xv2KIt5l5fXP0irRevnhyYwAG2d4KZ1BTpNYKDoSCk0m9Yd0JrRS088QZ+BSYwZM4YxY8ac1zFz585l/PjxqNXqizw6QRAuByqVxOA2/gxu48/BbAcz16Yxb3M6C7Zl0CnEzq19IrBWy+c+0blIEgR3VW5DX4D0jUpl7Y8FsPdHZY21uJHKYtmxw0RYq0MlqYj1jCXWM5br4q4DIKc0h+3Z293TIr/c8yWf7f4MUNZu6+TbiQ4+Hejo25EE7zN/IBUEoZbKYEAfGYk+MvKMr8uyTHV+vhLgjh9Xwtzx41RmHqfyeCalW7dSuCQLKivrHSfp9WgDAvAwGMj4eckZw5zaam2KtyhcZlp3QPuTStfFI/Pll99z7MgR/vXG2wDnXUGbO3cu//vf/5pspIIgXD6ifS08d1U7HhsRz3db0vl8bRqPfrMdqw5urdrLTb3CCfIw/vUvpFJBWC/lNvJlSPtdCWt7FioVNo0RYocqzUXiRohpkGfgY/RhSNgQhoQNAaCiuoJ9ufvYkbODHdnKbWnaUgDUkppAbSCr1612h7ZwWzj/396dx1dV3/kff33vktwsN/u+7xsBAiSIsgVXEKMypaWdttRRptoZ+9PSvZ2q7bRjxzptZ6zaKih1BbVYxYLiQgQVZCcQsgCB7GQnCyH7+f1xbm4SAkgg5N6Ez/PxOCY5S/zcQC73fT/f8/0alAzNEuJiKaUw+fpi8vU9bxdO6+ujp77eHtx6TlbrAa7mJG1FxZzesYOe2lro6xtyncHDQw9rISHn7cbJrJRipMZ3QHOAffv288QTa3j+vVwMtrHL69at+8LrCgsLaWpq4tprr73SJQohrmKervrwx2/MiubTow38z4bdPJ17jD9/XMLNacF867oYrokdpRnQDEaInatvtz4OZZ/B4bf16fsLNoDRBeJvgLTbIXkRuF3msMsJysXowuTAyUwOnMzXU78OQGNHIwfrDnKg7gBbj2zlHyX/YF2R/m+N1cXKlIApTA6crH8MmIyPxceBj0CI8U8ZDJiDgjAHBeE2ZcqQY0dzc5manT0wocngAHdy4POOoqLh98MBBqsVc0gwpqBgTCHBmIODMQWH6MsNBAdjCgmR4ZRiCAloI/Tss6toamrhrsW3olBcNzOLVatWfeF1a9eu5atf/eqwX76MjAz2798PwI9+9CNeeeUV2tvbiYiIYMWKFTzyyCNX4FEIISY6pRRzEgPomW4hfspMXvq8lHW7ytl06CQpIVaWXxvDndPCcHcZpX8GjCZ9tsfYebDoMajYCYff0gNb8SYwmCB2PqTdjrlLgtoX8bP4MT9yPvMj5zOlZQrz5s/jePNx8uryOFB3gIP1B3km7xn6NP3d/Giv6IHQFjiFJN8kzAaZxU6I0TR4QhOYds5z+rq66KmpGRhGebJG/7rmJD01tXQWF9NTXw/a0OHnysUFU3CwLbSFYAoOxhwcNBDk+ic2kdkprwoS0EboqaeeAKqoMsRhMZqIcbu4GdPOF7T6wxnAY489xmOPPXb5RQohxCCRfu78dFEqD96QxNsHKlnzWSk/e/Mgv91UwD9Nj+Dr10SRGDyK91EYDBA1S99u+S+o3AsFb+mBbcMDXIcBqmbr96yl5oA1ZPT+3xOUQRmI94kn3ieeJYlLAH3GyPyGfA7UHSCvLo/Pqj5jQ8kGAFyNrqT5pzHJfxLpAemkB6QTZY2Sd+iFuMIMLi64REbiEhl53nO07m59OGVNDd01tfTUnKS7poYeW5g7k5dHT00NWlfX0AuVwhQQYAtywVh7eqgvKta7c7Z95uBgGVI5AUhAu0SjcNu9EEKMKTcXI8uyovhKZiS7S5t4YXspL39eyprPTjAzxo+vz4piYXoIrqZRnMhIKYiYoW83/hJOHqRs0/8R3bofNv4ANv4QIq+B1Nv0qfv940fv/z3BuZvdyQrJIiskC9AnQqg+Xa3fx2a7n+314td5qeAlQB8aOcl/0pDQFuweLKFNiDGmzGZ7J+58dwbbJzapsXXg+jtxtXqQ6y4rw1JZQd3HHw+7VoZUjn8S0EZsIJrJX2shxHiklCIrxo+sGD/q29J4Y08Fr+4s44G1+/F1N/PlzEi+NjOK2IBRno1RKQidwvG4bxA9/1moKxy4Z23zf+hbUJoe1FIWQ9g0/RpxUZRShHmGEeYZxsLYhQB093VTcqqEQ/WHONRwiPz6fP6a/1d6tB4A/C3+TAqYRLp/OpMC9PDm7+bvyIchhGDoxCakpJzznNzcXObNnKl332pq6amtufghlWYzpsBATEFBZ22B+vIDts1gtUqQcwAJaEIIcRUL8HTlvvnxfHtuHJ8eq+eVz8tY/clxntlawnXx/nz9mmhuSgvGxTTKswYqBUGp+pb9Y2g6AYUboWgjfPJ72PY4eIUPhLWYOWCUey9Gymwwk+yXTLJfMl/iSwB09nZS1FjEofpD5Dfkk1+fz7aKbWi2NyBDPUJJD0jXu2220GZ1kanEhXBGBnf3Cy4xAOiTm/TPUGkbUtlTV0dPbS3dtbV0HjvG6e3b6WttHXatsliGBrfAcwc6g4csrzKaJKCNmAxuFEJMPAaDYm5iIHMTA6lt6eC13eW8urOcf39lLwGeLnzF1lWL9LtC9zb4xsC1/6Zvpxv0xbAL/wH7XoJdz4LFGxJv0cNawg3gKoHhUrkaXfWFsQMHZqo73X2aww2Hya/PJ78hn0P1h+xT/QPEeMWQ5p9mHxrZ1dd1rm8thHBCymTCbFsK4EKLrfS1tw8JbnpXbmA7k59PT20u2pkzw641eHhgCgrC18VM5T82DuvEmYKCMAUGYrBYrtwDnUAkoF0iDRniKISYmIK8LNx/fSLfyU5ga3EdL39eyp8/PsbTHx9jXmIg/3xNFDekBGEyXqG1uDz8IeOf9a2rHUq26GGtaBMcfE2fvj8uWw9rSYvAGnxl6riKeJg9htzPBnCq45TeYbMFtt0nd7Px+EYAFIr4t+JJ9Usl1T/V/tHDLO+iCzFeGdzdcYmOxiU6+rznaJpGX1vbkODWXVtLT60e7NqOHOHM3r301NainbXwN4DB2xtzUOA5O3GmQNv+wAAMrhc3Cd9EJQFNCCHEORkNigUpQSxICaLq1BnW7ipn3a4y7n1xD8FeriydEcFXMiOJ9r+CL8pd3PUglrIYenugfIc+FLJwAxzZDDwA4TMgaaG+MHbIFLlvbZT4WHyYHT6b2eGz7ftq22vJr89n496NtHu2s6N6h33mSNA7bfbQZgtu3q7ejihfCHEFKKUwWq0YrVZc44dP6mRfM65/khNbcOupraWnbmig6ywpoaeuDnp7h30fg7c3psAAW2g73xaE0XNivikkAW3EbEMctYt/AVBWVsa3vvUtTp06RW9vL7/97W+59dZbh513991388477xAUFMShQ4dGq2AhhLhsYT5urLwpif93fQIfFdbyys4yns49xpNbjjErzo9lWZEsnBSKm8sozgB5NqNJvxctZg7c8huoydfvWSt+F7b8Rt+sYXpQS1oIcfPBfKEBPWKkgtyDCIoKQpUosrOzAahrr6OgsYCChgIONxxmf91+Np3YZL8m3DOcNP+0Id02mYhEiIltyCQnyUnnPU/r66O3sXEguNXV0Vtfrw+1rKujp7aOM7v30FNXd86OnHJ315ceuFCQCwocNkmKs5OAdolGMsTx17/+NV/5ylf4zne+w+HDh7n11ls5ceLEsPPuuusu7r//fpYvXz6apQohxKgxGQ3cPCmEmyeFUN18hr/tqeC13RV8b90BHrLkc/vUMJZlRTI53PvKzvylFISk69v8H0Fbrd5RK34XDr4Oe54Hk5se0pJu0e9f8w6/cvVcxQLdAwl0D2RexDz7vqaOpiGhraCxYMg9bcHuwaT6p5Lml6Z/9E8j0C1QZosT4iqjDAY9YAUEYElLO+95mqbR19w8ENyGbHqg6yws5PS2bfSdPj3serevfhUWLLiSD2VUSUAbodWr1/D888/RhQvtLS3Ex8ayZcuWC16jlKKlpQWA5uZmwsLCznnevHnzzhnchBDCGYV6u3H/9Yn8W3YCO4438PruCt7YU8HLn5eREmJlWVYkd2aE4+vhcuWL8QyCad/Qt55OOPEJFL8HxZv00AYQMlm/Zy1poT6Fv+EK3UMn8LX4cl3YdVwXdp19X0tXC0WNRfbAVtBQwMflH9tnj/S3+Ns7bEl+SaT4phDlFYVByZ+TEFc7pRRGHx+MPj64JiZe8Fz7ZCeDtnrjFRzdcQWM64D23zv/m8LGwlH9nil+Kfx45o/Pe/yee77FPfcsoqQnim/nLGblypUsW7aMoqKiYeeuXLmS5cuX88gjj3DzzTfzxBNPcPr0aT744INRrVkIIRzJYFBcFx/AdfEBPHL7JN4+UMXru8v55YbDPLqxkJsmBbMsM5I5CQEYDGPQITG56jM9JtwAi/4b6opsQe09ffr+rY+BRxAk3WwbCpkts0KOAS8Xr2ETkbR3t1PUZAttDQUcbjzMjqod9nXa3ExuJPkmkeKXYv+Y6JuIm0mGrgohzu1ck5305uY6rqBLMK4DmmPo7/T99kc/ZHZ2Njk5OeTk5FzwildffZW77rqL73//+2zfvp1vfvObHDp0CIO8eyuEmGC83cx8c1Y035wVzeGqFl7bXc7f91fyj7xqwn3cWDojgojuvrErSCkIStG3Od+D9kY4+oHeVTu8QZ/G3+gCMXMIV3HQEAn+w298F1eGu9mdaUHTmBY0zb6vq7eLY6eOUdhYSFFTEYWNhWws2ci67nUAGJSBaK9oUnxT9E6bXwopfikEuAU46mEIIcSoGtcB7UKdrivp5Zffoqq8jMf+7/8AvrCDtnr1at59Vx9ic+2119LR0UF9fT1BQUFjWrcQQoyltDAvHrl9Ej9ZlML7h2t4bXc5//fRETQN1lfs4EszIliUHoKH6xj+U+TuB1O+om+93VC2Qw9rxe+S2PARPLEKfGMh4UZ9i50LLhNzljBn5WJ0sc8C2U/TNKpOV+mhrVEPbXn1eUMmI/G3+BNEEHv37CXFVw9t0V7RGA3ja2iTEEKM64DmCPv2HeCJJ9bw7Lsf2ztg69atu+A1UVFRfPjhh9x1110UFBTQ0dFBYGDgWJQrhBAOZzEbyZkaRs7UMCqa2vmfv33C3qYz/OD1A/zi74dYlB7CP02P4Np4f4xjMQSyn9GsB7DYuXDLb9ix6VVm+bfpHbb9L+sLZBtdIPo6SLhJD2yByTKNvwMopQj3DCfcM5wbom6w72/ubKa4qdge2vaU7eHFwy/S06cPkbQYLST6Jg4ZHpnom4iXi5ejHooQQnwhCWgj9Oyzz9HU1MI9ty3CqBTXZmWxatWqC17zP//zP/zrv/4rf/jDH1BKsWbNGpRSVFVVsWLFCjZu1Bf+/NrXvkZubi719fVERETwy1/+knvuuWcsHpYQQoyJCF937khw4ffz57O3rIk39lTyTl4V6/dVEupt4c5p4XxpejgJQWN/T1iHWyjMzIaZ/wrdHVC2XQ9rRz+AzT/XN+9I2/1tN0HsPLDIC31H8nb1HnJfW25uLrPnzqakucQ+PLKosYj3S9/nb0f+Zr8u1CPUHtwSffSP0d7RmA1mRz0UIYSwk4A2Qk899UegnlIVj5/ZRLjli2cnS0tL49NPPx22PywszB7OQL9XTQghrgZKKWZE+zEj2o+Hc9L4oKCG9XsreWZrCU/nHmNqhDf/ND2C26eGjc0skGczWyB+gb7d8hs4VQZHP9TD2sE3YM8aMJgg6tqBwBY8SbprTsBsNJPsl0yyXzK3x98O6EMka9prKG4qpripmCNNRyhuKuazys/sE5KYDWbivOP00GYLb0m+SQS4Bcj0/0KIMSUBbcTG10J3Qgjh7CxmI7dNCeO2KWHUtnbw9v4q1u+t5OG38/n1Pw6zIDmIL82IYEFyEC4mB02u5BMFmf+ibz1dUP75QHftg0f0zRpqC2s36jNDuvk6plYxjFKKEI8QQjxChqzX1t3bTUlziR7aTumh7fOTn7OhZIP9HB9XnyGhLdEnkXifeNzN7o54KEKIq4AENCGEEE4jyGphxdw4VsyNo6C6hfV7K3hzXxWbD9fg624mZ2oYd04LZ1qkj+O6GiaXgXvXbvoltFQPhLX+mSGVQV9rLW4BxF8PEVn6dcKpDO62DdZ/b1t/t+1I0xHWH1nPmZ4zACgUUV5R9uGR/eEtwhoh67YJIS6bBLRLpAEy4EEIIa6c1FAvfr44jR8vTGHb0XrW761k3a5yXtheSpSfO3dkhHFHRjgJQZ6OLdQrFKZ/U996e6BiF5RsgWNb4JM/6GuvmT0gZo4+ZDJugUw24uTOvrcNoE/ro7K1Ug9upwaC24dlH9oX23YzuZHgk0CCTwLxPvEk+CTQ1NOEpmkyTFIIcdEkoI2YDHEUQoixZDIaWJAcxILkIFo7unn30EnePlDFk1uO8sRHR5kU5sWdGeHkTA0jxNvi2GKNJoi+Vt8W/Aw6muH4Njj2kR7ajrynn2cN04dBxi/QP3rKsivOzqAMRHpFEukVyQ3RAzNJnuk5Q8mpkiEdt60VW3nz6Jv2c3736u+I94kn3ieeRN9Ee3jzt/hLcBNCDCMBTQghxLhhtZj5cmYkX86MpLalg3fyqnlrfyW/2VjAf20qYFasP3dkhLEoPRRvdyeYkc/iDam36RtAU+lAd614Exx4Rd8fPBnis/XuWvR1YHZzWMliZNxMbkwKmMSkgElD9jd1NHH01FE27dqEIdDA0VNH+bDswyGzSfq4+tjDWv/HBJ8EfC1y/6IQVzMJaCM20EGT97yEEMJxgrws3D0nlrvnxFJS18bbB6p4a38VP1l/kIfeyic7OZA7p4VzfUoQFrOTLFbsGw0z7tK3vl6oPjAQ2Hb8GT57AoyuEDVrYDik1ufoqsUl8LX4khWSxWnrabJnZQP6bJINHQ0cPXWUY6eOcfTUUY42HWVjyUZau1vt1/pZ/OyTkQwOcN6u3g56NEKIsSQB7RJpI7gJrbS0lLvvvpu6ujr8/Px46aWXiIiIGHbez3/+c1544QWamppoa2sb3YKFEGICiwv05MEbk3jghkQOVjbz931VbMjTJxexupq4JT2EOzLCuDbOH5PRSSZxMBghfLq+zf0+dJ2G0s/0sFayRZ8ZkkeYbbJC7QJ93bXY+RCQKPevjVNKKQLcAghwC2BW6Cz7fk3TqG2v1QPboPD296N/p72n3X5ekFuQHth89U5bnHcccT5xsvC2EBOMBLQRG/k9aD/4wQ9Yvnw53/rWt/joo4/46U9/yosvvjjsvJycHO6//34SExNHo1AhhLjqKKWYEuHDlAgffr44le3HGnhrfyXvHjrJG3sqCPB0YWF6CLdNCSMrxg+jwYmCjosHJN6kbwCtJ6Ekl/rt6wit3AsFb+v7PUNsYc22+UY7rmYxKpRSBHsEE+wRzOzw2fb9fVofJ0+fHBLcjjQd4fWi1+no7bCfF+gWSJx3HLHescT7xNuDm9zjJsT4JAFthFavfpHnn3+BTlw409JCfGwsW7ZsueA1hw8f5ve//z0ACxYs4M477zznebNmzTrnfiGEECNnNCjmJAYwJzGA/7wznS2FtbyTV80beyp4aUcZQVZXbp0cSs7UUKZFOuE9P9YQmPpVippCCJ0/H5qOw/Gt+layBQ6+pp/nEz3QXYudq18nJgSDMhDmGUaYZ9iQ9dt6+3qpaqviWPMxSppLKDlVQklzCRtKNnC6+7T9PKuLlXjveOJ84oYEuFCPUEc8HCHERRrXAe3kf/0XnQWFo/o9XVNTCPnZz857/J57vsk99+RQ3B3Fv9++mJUrV7Js2TKKioqGnbty5UqWL1/O1KlTWb9+PQ888ABvvvkmra2tNDQ04O/vP6q1CyGEODeL2ciiyaEsmhzK6c4ePiqs5Z28Kl7ZWcaaz04Q5m1hsm8PPvGnmBrh7XxdB6XAL07fZtylj7OvKxwIbAVvwz7byIyA5IHuWswccPdzaOli9BkNRvuMktmR2fb9/UMlS5pLhgS33PJc1h9Zbz/PzeSGv8Gfd7e9q3fbbFukVyRmgxNMriPEVW5cBzTH0G8+e+zHP2ROdjY5OTnk5ORc8IrHH3+c+++/nzVr1jBv3jzCw8MxGp3khnUhhLjKeLiayJkaRs7UMFo7uvmgoIZ3DlTzQVEt7z35KZF+biyeHMZtU0KZFOblfGEN9MAWlKpv19yrTzhyMm8gsO1/BXY9CygImTzQYYuaBRa5X2miGjxU8tqwa4ccO9VxaiC4NZewu2Q3e2v28o+Sf9jPMSkTUV5Rw4ZLxnjH4GaSmUWFGCvjOqBdqNN1Jb308ltUl5fxv088AfCFHbSwsDDWr9ffuWpra+Nvf/sbPj4+Y1myEEKIc7BazCyZFsGSaRH84/0tnPZN4J28ap7dVsKfPz5GbIAHt00J5bYpYSQFezpnWAN9wpGwafo2+wHo6YKqvQOBbeczsP1PoAwQOhWiZ+vdtahrwc3H0dWLMeBj8WG6ZTrTg6cDkHs6l+zsbNq72znectzebSs5VcLRU0fZUr6FXq3Xfn2oRygxXjHEescS4x1j/zzYPdh5fy+EGKfGdUBzhH378vjTE2v4y6ZcDAZ9JrB169Zd8Jr6+nr8/PwwGAw8+uij3H333WNRqhBCiBHwMCsWZ0bylcxIGk938V7+Sd7JG1gQOy7Qg1vTQ1k0OYS0UCftrPUzuejdsqhZMP9H0H0GyndC6adw4pOBwNbfYYuZo4e26OtkSORVxt3sziT/SUzyH7qOW1dvF2UtZfaO24mWE5xoPjFsZkk3kxsxXjHEeMcQ66WHt1jvWKK9oqXrJsQlkoA2Qs8++1eamppZkbMIs1LMyspi1apVF7wmNzeXn/70pyilmDdvHk8++aT9WEZGBvv37wfgRz/6Ea+88grt7e1ERESwYsUKHnnkkSv4aIQQQpyLn4cLX5sZxddmRlHX2sm7h6rZdOgkT+Ue5U9bjhLl586iySEsSg91znvWzmZ2g7j5+gbQ3QGVu/WwduIT2P0c7HgKUBA8ydZhm61/9AhwaOnCMVyMLvp0/r4JQ/ZrmkbdmTpONJ/gePNxTrSc4HjLcfLq8nj3+Ltog2a7DvEIGei62UJcnHccQe5BGJSTLHchhBOSgDZCTz31OzR1hhNaNKGuZoJcv/hm2qVLl7J06dJzHusPZwCPPfYYjz322GiVKoQQYhQEWl355rUxfPPaGBraOnn/cA2bDp1k9bbj/OXjEsJ93LhlUgi3Tg5hepQvBmeauv98zBa9axYzR/+6pxMq90KpLbDtexF2/kU/Fpg6ENZi5oBnkOPqFg6nlCLIPYgg9yBmhs4ccqyjp4Oy1jI9uDWf0MNb83HePvb2kNkl3UxuRHtF2ztu/SGus69zrB+OEE5JAtolGQf/+AohhBh1/p6ufHVmFF+dGUVzuz7ByKZD1by0o5TnPj1OkNWVhekhLEwPYWaMn/Msiv1FTK4Qfa2+zfuhfg9b9f6BDtuBtbDLNlokIIkkcyz41uhDKH2iZOFsAYDFZCHJN4kk36Qh+zVNo/5M/UDHrfm43nWrz+PdE0O7br97/XdDhktGe0UTbY0m1DMUk0Fetoqrg/xNvyTyD5EQQlztvN3NfGlGBF+aEUFrRzcfFday6eBJXttdzgvbS/HzcOGWScEsTA/l2jh/XEzjJKyBfg9b5Ex9m7sSenug+oC9wxZUsg3efE8/1yvcdr/btfoWlAaGcfRYxRWnlCLQPZBA98BhXbfO3k5KW0o50XyCLQe2gB+caD7BOyXv0NbdZj/PZDAR4RlBjFcMUV5RenCzbTJkUkw0EtBGbOBdHnnDUAghBOizQd6REc4dGeG0d/WQW1THpkMneXt/Fa/uLMdqMXF9ShA3p4UwPzkQT9dx9s+v0QQRM/Rt9gN8suVDslODoGwHlG2H0u1w6G/6ua7eEHWNLbRdp88sabY4tn7htFyNrvaum8sJF7LnZgN6162ho4HSllLKWso40XLC/nF79XY6eweGQ1qMFiK9Iom2DoS2/hDnb/F3/ntEhTjLOPsXwlnIL7oQQohzc3cxcevkUG6dHEpHdy/bjtSzOf8kHxTU8Nb+KlyMBmYn+HPLpBBuSA0m0Orq6JJHThn12R9DJsPMf9UXzj5Vpoe1/sB2ZLN+rtEFwmcMdNkir5Gp/cUXUkoR4BZAgFsAM4JnDDnWp/VR2147JLSVtZRx9NRRcstz6dF67Od6mD3swyTP7rx5u3qP8aMS4uJIQBsxTW+daV98phBCiKubxWzkprRgbkoLpqe3jz2lTWw+XMN7+SfZUnQQpQ4yI8qXmycFc3NaCDEBHo4u+dIoBb7R+jb1q/q+0w1Qbuuwle2Az56AT/4AKH0YZLRtSGTULPCOcGj5YnwxKAMhHiGEeIQwK3TWkGM9fT1Ut1Xroa21jBPN+sdz3e/m4+pDlFeUPmzSGjWk++ZhHqe/i2JCkIB2GaSPJoQQ4mKZjAauifPnmjh//mNxKgXVrWw+fJLN+TX818ZC/mtjIcnBVntYSw938rXWvoiHP6Qs1jeArnao3DPQZRs88Yh3lB7Uom0dtsAUffFtIUbIZDAR6RVJpFfksGNdvV1UtFbYO26lraWUtpSyo3oHbx97e8i5fhY/oqxRRHlF0XOqh9Mlp4m0RhJljcLbdRwsrSHGNQloI6Yx0mi2detWHnzwQfLy8li7du2QKff/+te/8utf/xqA//iP/+Bb3/rWsOtff/11HnnkEQoKCti5cyeZmZmX9QiEEEI4llKKtDAv0sK8ePDGJMob23n/cA2bD5+0L4wd6m3h5rRggnt6md3bh3m8zAh5Pi7uEDtX30CfeKTmkO0+ts+gJBcOvqYfc/WCiEyIsE1UEpEJFhmOJi6Pi9GFOJ844nzihh1r726nvLVcv+ettYzy1nLKWsrYUb2D2vZaNm7baD/X6mK1h7VIa6T+uZf+eaBboIQ3cdkkoF2Skf3iRUVFsWbNGh5//PEh+xsbG/nlL3/J7t27UUoxY8YMbr/9dnx9fYecl56ezvr167n33nsvu3IhhBDOJ9LPnbvnxHL3nFgaT3fxUWEtm/NPsm53OR3dffz54PvckBrMzWnBzE0ah5OMnIvRBGEZ+jbrPv0+tsYSqNgF5Z9D+S7Y+hhofejDIlNtYW2m3mXzj5fZusSocTe7k+yXTLJf8rBjmz/aTNy0OD202cJbeWs5+Q35vF/6Pr1ar/1cN5Mb4Z7h9u5bf4CLtEYS6hGKUTrD4iJMgGf4sbV69cs89/xaujDR0dJKXGwMW7ZsueA1MTExABjOmnb4vffe46abbsLPzw+Am266iXfffZevfe1rQ85LTU0dvQcghBDCqfl5uLB0RgRLZ0RwpquXp97cQpUK5MPCGt7cV4mL0cA1cX7ckBLEDanBRPq5O7rk0aGUHrr84wfuY+to0YdF9oe2Q2/CnjX6MTe/gaUAIq/RZ4sU4gpwMbiQ4JtAgm/CsGPdfd1Ut1UPDW8teifuk8pP6Orrsp/bv1RAhDXC3n3rD3HhnuG4GF3G8mEJJzauA9q214qpL2/74hNHICDSk7lfSTrv8Xvu+Wfu/tdvcKTTn+/esZiVK1eybNkyioqKhp27cuVKli9fft7vVVlZSWTkwBjpiIgIKisrL+8BCCGEmDDcXIzMCDbx/eyp9PT2sbu0iY8Ka/mgoIZHNhzmkQ2HSQr25IbUYG5MDSIj0hejYQJ1lSxeEL9A3wD6+qC+WA9rFTuhfCcUv6sfU0ZmeMRA+w16YIvIkkW0xRVnNpiJ8tK7ZbOZPeRY/2yT/cMl+0NcRWsF+2r3cbr7tP1chSLUI1TvtnkNdN36A53VxTrWD0040LgOaI6iKcVjP/4hc7IXkJOTQ05OjqNLEkIIMcGZjAZmxfkzK86fn92ayvH603xYUMNHhbU8u7WEp3OP4efhQnZyIDekBDMvKQCrxezoskeXwQBBKfo2w3bPdnsjVOyG8s/pObgZ9r0MO5/Rj3mGDHTZImZC6FRZk02MmcGzTWaFZA05pmkaTZ1N9uA2uAP3YemHNHU2DTnf29XbHtbCPcOJsEbQcKaB+NZ4QjxCMBsm2O/6VW7MAppSygD8J+AF7NY07a+X+z0v1Om6cjReeelvVJeX8dSf/gRwyR208PBwcnNz7V9XVFSQnZ092gULIYSYgGIDPFgxN44Vc+NoPtPN1uI6Piqs5aPCWtbvrcRsVMyM9eOGlGBuSA0i2n+CThvu7gdJN0PSzRwwziV77hyozde7a+U79W5bgW2GPoMZQtIhPFOfeCQ8U+5lEw6hlMLP4oefxY+MoIxhx1u7WqloraCyrZKK1goq2iqoaK2gsLGQD8s+pKdPX+vtyfVPYlRGQjxC7AEuwhox8LlnhMw6OQ5dVEBTSj0H3AbUapqWPmj/QuB/ASOwStO0317g29wBRAANQMUlV+xg+/Yd4on/fZZnNn1kv6ds3bp1l/S9brnlFn72s5/R1KS/S7J582YeffTRUatVCCHE1cHbzUzO1DBypobR09vHvvJTfFBQw0cFtfzqncP86p3DJAR5ckNqEDekBDM9ygfTeJ8V8nyMJr1TFjpVX0QboLVGv4+tcrfebTvwKux6Vj9m8dEX0u4PbOEz9CUChHAgq4uVVP9UUv2Hz0PQ29dL3Zk6NmzbQEB8gD28VbZVklueS0NHw5DzPcweQwLb4C6c3PvmnC62g7YG+BPwQv8OpZQReBK4CT1w7VJKvY0e1s5OGXcDycBnmqb9RSn1BvDh5ZXuGM8++xKnmk6xImcRLkpxTVYWq1atuuA1u3btYsmSJTQ1NbFhwwYefvhh8vPz8fPz4xe/+AVZWXrb+6GHHrJPGLJixQruu+8+MjMzefPNN/nud79LXV0dixcvJiMjg/fee++KP1YhhBDjj8loICvGj6wYP366KJXShtN8VFjLhwW1PPfJcf7ycQk+7maykwLJTg5iXlIgfh4T/AWaNRhSb9M3gL5eqCsaCGyVe2Dr72wzRgK+sQOBLSITQiaDydVx9QsxiNGgd8wSLYlkJ2YPO97e3W7vvFW2VdoD3InmE3xS+QmdvZ32cxWKIPegIaEtwjNCv//NGoG/xV+6bw5wUQFN07StSqmYs3bPBI5qmlYCoJRaC9yhadqj6N22IZRSFUD/VDa9Zx8fL5566lH6jBZKewOIcnPB1/zFP8KsrCwqKs7dNLz77ru5++67h+0fHPqWLFnCkiVLLr1oIYQQV61ofw/+ZXYs/zI7ltaObrYdqeeDgho+Lqrj7/urUAqmRviQnawHtinh3hgm0kQj52IwQnCavk233YrQ2QZV+wZC24lP4ODr+jGjix7S7EMjZ4BfnAyNFE7J3exOom8iib6Jw45pmkZDRwMVrRWUt5YP6b59Xv05G45tQEOzn28xWgjzDCPcM3zIxwjPCMI8w/Bx9ZEAdwUoTdO++CzAFtDe6R/iqJRaCizUNG2F7etvAtdomnb/ea53B54A2oFCTdOePM953wa+DRAcHDxj7dq1Q457e3uTkDB8mtOxomlVdONKBUEE0Yenurif35XW29uL0Wjk6NGjNDc3O7ocu7a2Njw9PR1dxhDOWBM4Z13OWBM4Z13OWBM4Z13OWBNcfXX1aRonWvo4WNdLXl0vJc19aIDVDOmBRqYEmJgcYMTTZfiLr6vlZ+XaUY+1tRivFn2zth7F2Kd3H7pNVlq8kmjxSqLVmkirNZFuF68rXtNocca6nLEmuLrq6ta6aexppL6nnoaeBuq762nsbaSxp5GGngba+9qHnO+iXPA3+eNn8sPf5I9nryeh7qH2r90N7k4R4Jzxz3DBggV7NE3LPNexMZskRNO0duCeizjvGeAZgMzMTO3sSTMKCgqwWh031WhLCxiNRugFi5sF60V00MZCa2srVqsVi8XCtGnOsxZMbm6u00184ow1gXPW5Yw1gXPW5Yw1gXPW5Yw1gdTVeLqLbUfqyC2q4+PiOrZXdaIUZET6kJ0URHZyIJNt3bWr9mfV2wN1BVCxG3Plbvwr9uB/Yi30dxy8oyB8GoRNh/DpEDqV3B37rs6f1SVwxppA6hqstauVqrYqfTtdRUVrhf3zfW37aO1q1VsxNh5mD73z5jHQgevvwoV5huHt6j0mdTvrn+H5XE66qAQiB30dYdt3FVCD/iuEEEKMf34eLtyREc4dGeH09mkcrGwmt6iWLUV1/PHDYv7wQTH+Hi7MTwokqLeHqae78J3o966dzWjShzqGTIbMf9H3dbRA9QGo2msbIrkXDr9lv2SmWzg0ztEX0g6brl/rMkEWFxdXHauLlWS/ZJL9ks95fONHG4nLiKOyrZKqtioq2yrtn++q2TVk7TcAq9lqD2uDh1H2f361rv92OQFtF5ColIpFD2ZfBf55VKpyapqMORdCCDGhGQ2KjEgfMiJ9ePDGJBraOtl2pJ4tRbVsKaqlqb2bZw6+r3fXkoOYnzTQXbvqWLwgdq6+9TvdANX7oHIf7XmbcT++FfJsMz4rIwSl6oEtfLoe2oLSwHSVhV0xIbkb3EnxSyHFL2XYMU3TaOlqOWd4K28tZ0f1Ds70nBlyjdXFag9soR6hepjzCCPUM5Qwj7AJu4TAxU6z/yqQDQTYJvt4WNO01Uqp+4H30GdufE7TtPwrVqkQQgghHMLf05U7p4Vz5zS9u7bm7Y9o9ojk46Ja/vBBMb9/vxhfdzOzEwKYlxTI3MQAQr3dHF2243j4Q8KNkHAjh7QsfWhVS/XQLlvhO7DvRf18o6u+PlvY9IHgFpCkT2YixAShlMLb1RtvV2/S/NOGHdc0jVOdp+zhbXCIO9F8gs+qPhsW4NxN7oR5htnD29kfA9wCMKjxt6TIxc7i+LXz7N8IbBzVipyehiZDHIUQQlyljAZFvI+R7OwkVt6URH1bJ58erefj4jq2HannnbxqABKDPO1h7ZpYf9xcrvKw4RUKXoshZbH+tabBqVI9rFXthar9cGDtwPpsZg99LbewjIF13SS0iQlMKYWvxRdfiy+TAiYNO24PcKerqG6rpqqtiurTAx/z6vNo7hw6UZ7ZYCbUI5QbXW8km+wxeiSXzzlmuBh3RhbNtm7dyoMPPkheXh5r165l6dKl9mMLFy5kx44dzJkzh3feeWfE1wshhBCOFODpar93TdM0impa2WoLay/uKGX1J8dxMRmYGePH3ES9w5YSYp2Qw5JGRCnwjdG39H/S9/X1QcORgS5b1T7Y/Tz0dw3M7hCcPjS0BaaA0eygByHE2BkS4PyHBziA092nhwS3/jDneca5ZnD8IhLQxkBUVBRr1qzh8ccfH3bshz/8Ie3t7fzlL3+5pOuFEEIIZ6GUIiXEi5QQL749L54zXb3sPNHItuI6th6p49FNhTy6qZBAqytzbcMhZycEEGiVRaABMBggMFnfpn5V39fXC/VHoHq/bTKS/bD/Fdj5jH7c6ArBk4Z224LSZGFtcVXyMHuccw243NxcxxR0iSSgjdDq1Wt57vm/0YWBjtZW4mJi2LJlywWviYmJAcBgGD4G9oYbbvjCvzQXul4IIYRwVm4uRuYnBTI/KRCAk80dbDtSx1bbhCPr9+mTP6eFejEvKZB5iQHMiPHF1STD+OwMRghK0Td7aOuDxhJbaNuvh7ZD62HP87ZrzPpEJPbQlqGHOPNVfF+gEOPIuA5oW9Y8Q21pyah+z6DoOBbc9e3zHr/nnmXcde93OHbGjf93x2JWrlzJsmXLKCoqGnbuypUrWb58+ajWJ4QQQoxXId4WvpwZyZczI+nr08ivamHrkTq2FtexalsJf/74GBazgawYP2YnBDAnIYC0UK+rc3bICzEYICBB3ybbbnvQNGg6MdBpqz4Ahf8YmIhEGfXhkLahkV7NGnRmguv4GvolxNVgXAc0x9AAxWM//iHzFiwgJyeHnJwcRxclhBBCjCsGg2JyhDeTI7z59wUJtHX2sONYA58creezY/X8dlMhAL7uZq6N92d2QgCz4wOI9neX+9fORSnwi9W3SUv0fZoGzRVDQ9vRD+DAK0wH2PdTfeKR0KkQOsW2xtsUcPdz4AMRQozrgHahTteV9PKLa6kuL+PZp54EkA6aEEIIcZk8XU3cmBbMjWnBANS2dPCZLbB9erSejQdPAhDu48achACuS/Dnuni5f+2ClAKfSH1Ltb2ZrGnQepKDm19kckCfHtpOfAIHXxu4zit8YEHu/s0nRu/cCSGuuHEd0Bxh3758nvy/p3lm44f2e8LWrVvn4KqEEEKIiSXIy2Jfe03TNI7Xn+bTo/V8crSeTYeqWbe7HICUEKt9OGRnj+bgqscBpcArlIaAmZCdPbD/dD2cPDh0O/I+aL36cVcvfQbJwaEtKFUmIxHiCpCANkLPPvsKTY2nWJGzCFdlYGZWJqtWrbrgNbt27WLJkiU0NTWxYcMGHn74YfLz9TW9586dS2FhIW1tbURERLB69WpuueUWHnroITIzM7n99tsveL0QQggx0SmliAv0JC7Qk29eG0Nvn8ahymY+PaZ31/qn8zcqmH70M304ZEIAUyN8cDFJ1+eieARA/AJ969d9BmoLBoW2PNj3EnSf1o8bTBCQPLzbJkMkhbgsEtBG6Kmnfk2POZjybg/i3V3xvIiZprKysqioqDjnsW3btp1z/69+9auLul4IIYS42hgNiqmRPkyN9OHfshPo6O5lT2kTr3y4l4ruPv73wyP88YMjuJmNZMb4MivOn2vj/ZkS7o3JKIHtopndIHy6vvXr64Om43pY6w9uxz+GvLUD53hFDLqnrX+IZLTevRNCfCEJaCOmTxIihBBCCOdgMRuZnRBAd4UL2dlzaG7vZntJAztKGth+rIHfvaffJ+7hYiQr1o9rbYFtUpg3RpkhcmQMBvCP17f+yUgA2uqgxhbYqm3hrfhd0Pr0465eelALTten/A9O15cOcPFwzOMQwolJQBNCCCHEhOLtbmZheggL00MAaGjrZEdJox7YShp41DZDpNXVxMxYP66N92dWnL9M6X85PAPB83qIv35gX1e7bYhk3rmHSKLAL84e2ALqNGiM1rttMiGJuIpJQBsBTeu/+VgN+q8QQgghnJm/pyuLp4SyeEooALWtHewoaWT7Mb3L9mFhLQDebmauGRTYkoOtEtguh4s7RMzQt359fXDqBNTk27ZD+lawgXQ0yH8UXDwhKE0PbiHptm5bKli8HfZQhBhLEtBGRGaHEkIIIca7IKuF26eGcfvUMABONnfYh0NuL2lg8+EaAPw8XOyB7do4fxKCPGUNtstlMOhdM7+4gan/ATrb2PPey8wIdx0Ib/nrYc/zA+f4RA0aImkbJukXB4Yvng9AiPFEAtol0KR3JoQQQkwYId4DU/oDVJ46o4c1W4dt0yF9DbYATxeuidPD2jWxfhLYRpOrJ61eyTAje2CfpkFL5aBOmy24Fb83MP2/yaJ31/oDW/9HmUlSjGMS0EZkaAdNnpOFEEKIiSfcx42lMyJYOiMCTdOoaDpj765tP9bAP/KqAb3DlhXjy8xYPbClhnrJpCOjSSnwjtC3pFsG9nd3QH3R0GGSRe/q97f18wyB4DR9qGRQqr4FyqQkYnyQgDYC9lvQRthB27p1Kw8++CB5eXmsXbuWpUuXArB//36+853v0NLSgtFo5Oc//znLli276OuFEEIIcWUppYj0cyfSz52vZEWiaRplje18fryRnbbtvXx9SKTV1cSMGF9mxvpxTaw/k8PlnqkrwmyB0Kn6Nlhb7dBOW20B7FoNPWcGzvGNGQhtgbbgFpAoC24LpyIBbUQu7R60qKgo1qxZw+OPPz5kv7u7Oy+88AKJiYlUVVUxY8YMbrnlFnx8fC7qeiGEEEKMLaUU0f4eRPt78JXMSACqm8/Yw9rO4408VqRP628xG4i1wv6eYmbG+jEt0hc3F7lf6orxDBo+k2RfLzSd0MNabQHUHtY/HtkMfT36OcoI/gm2TlvawEe/WLm/TTiEBLQR0Vi9+jWee/7vdKHobG0lNiaGLVu2XPCqmJgYAAxnTRmblJRk/zwsLIygoCDq6uqGBbTzXS+EEEIIxwv1duOOjHDuyNDvYWto62TXiUY+P97IRwfL+N8Pj6BpYDYqpkT4MDPWj5mxfsyI9sXLYnZw9ROcwTiwblvqbQP7e7qg4ehAYKstgOoDcPgt7G/ImywQkESK5gem/QPhzTtC7nMRV9S4DminNhyjq+r0F584Ai5hHvjkxJ/3+D33fIXl932f4+2KB+64jZUrV7Js2TKKbO+WDbZy5UqWL19+Uf/fnTt30tXVRXz8+f/fQgghhHB+/p6uLEwPZWF6KPOtdUy7ZjZ7S5tswyIbeHZrCU/nHsOgIC3Mi5kx/vbQ5ufh4ujyrw4mF/0eteC0ofu7TkNdkR7Y6vTg5lO+Dz7IHTjHxTpwX9vgjptn4Jg+BDFxjeuANvb0d1Q0pXjsxz9k/oIF5OTkkJOT8wXXXVh1dTXf/OY3+etf/ypdMiGEEGKC8XYzsyAliAUpQQC0d/Wwv+wUO2yB7eXPS3nu0+MAxAd6kBWjd9eyYvyI9neXmSLHkosHhE/XN5sdublkX5MBdYVDO24FG2DvXweudQ8YmIwkMNn2MQU8AqTjJkZkXAe0C3W6rqRXX3yZ6vIynn/6KYDL6qC1tLSwePFifvOb3zBr1qwrUq8QQgghnIe7i4nrEgK4LiEAgM6eXg5WNPP58Ub2lDax8WA1a3eVA/rU/pnRfmTG+JIZ48ekMC/MRnkzd8y5+UDULH3rp2lwum5QaLN9zHsNOpsHXet7VmizfbSGSnAT5zSuA9pY0zSNffsO89Qf/8QzG9/HaOt2rVu37pK+X1dXF0uWLGH58uUyM6MQQghxlXI1GcmM8SMzRl+7q69P42hdG7tONLLnRBO7Sht5N19fi81iNpAR6WMPbdPlPjbHUco2MUkQxGUP7Nc0aD2pd9zqigY+Hn4LzqwZOM/VyxbWBnXbApPBK0Jf0FtctSSgjYjGs8++SlNjEytyFmExGMjKzGTVqlUXvGrXrl0sWbKEpqYmNmzYwMMPP0x+fj6vvfYaW7dupaGhgTVr1gCwZs0aMjIyeOihh8jMzOT2228/7/VCCCGEmHgMBkVSsJWkYCtfvyYagJqWDnafaGJ3aSO7TzTx9MfH6N2ioRQkB1vJihnosoX7uDn4EVzllAKvUH2LXzCwX9PgdL0tsA0Kb8Wbh67hZvaAwKThXTefaJlV8iohAW2EnnrqP+lyiaayy0SKhwXXixhmkJWVRUVFxbD93/jGN/jGN75xzmt+9atffeH1QgghhLg6BHtZWDwllMVTQgE43dnD/vJT9tC2fm8FL+4oBSDU26J35KJ9yYzxJSVEFtB2CkrpE4l4BkLs3KHH2huHdtvqCqHkYzjw6sA5Jou+ZpstsAXU9UB9OPjGglFe0k8k8qc5IrZJQvoXqpbnOiGEEEI4gIeridkJAcy23cfW09tH4clW9pQ2setEI7uON7LhQBUAnq4mpkX5MC3Kl+m2j8LJuPtB9LX6NlhHM9QVD+26lX0OB18nHSD/t2Aw6+u4BSZBQP+WCP6J4OrpiEcjLpMENCGEEEKIcc5kNJAe7k16uDffui4GTdOoPHXGHtj2lJ7iTx8doc+2xFeYp2JufR7To32YHuVLfKAnBumyOR+LN0Rm6dtgnW3see9VZkR5DgS3mnwoeAe03oHzvMKHhrb+z60hMkGJE5OANgJa/8KF0joTQgghhBNTShHh606Er7t9Ae22zh7yyk+xt6yJzfuO8d7hk6zbrc8W6WUxkRHly4woX6ZH+5AR6YNVJh9xXq6etHolQkb20P09ndB4HOqLbdsR/eP+V6CrdeA8F6ttuGTy0ODmG6uvESccSgLaSGjakC8lpgkhhBBivPB0HZjeP91Qyfz58ympP83e0ib2lp1ib2kTf/ywGE3TmytJQVamR+tDImdE+xIX4CFrsjk7kysEpejbYJoGrdVDQ1t98fD73JQR/GIHdd0Gdd/cfMb0oVzNJKAJIYQQQlyFlFLEB3oSH+jJlzMjAWjp6OZA+Sn2luqdtn/kVfPqTr3L5uNuZlqkPiRyerQvUyN98HSVl5LjglLgFaZvg5cEAOhstYW2QcGtvhiOvA993QPneQQNhLX+zpt/InhHyrIAo0x+q0Zk6BBHeQ9JCCGEEBOJl8XM3MRA5iYGAvqabCX1bewpbbKHti1FdQAYFCSHeJER6cO0SB8yonyID/SUGSPHG1crhE/Xt8F6e+BU6dDQVlcM+ev1yUv6mSzgFwf+CcSedgGfKn3SEv8EffITMWIS0C6B9sWnDLF161YefPBB8vLyWLt2rX1R6tLSUpYsWUJfXx/d3d1897vf5b777ht2/euvv84jjzxCQUEBO3fuJDMzcxQehRBCCCHEhRkMioQgKwlBVpZlRQHQfKab/eWn2FPaxL6yJt7Jq+LVnWWAPoxySoQ3UyN97MEtyMviyIcgLpXRBP7x+pa8aGB//3pu/aGt4ai+1R4msvE4lL0xcK6bnx7UAhJt3ytR/9ovDszy9+J8JKCNyEijmS4qKoo1a9bw+OOPD9kfGhrK9u3bcXV1pa2tjfT0dG6//XbCwsKGnJeens769eu59957L7lyIYQQQojR4O1mZn5SIPOTBrpsxxtOs7/sFPvL9e3ZrSX02KaMDPO2kBHlw9QIPbRNjvDG3UVego5bg9dzi5k95NC2jz5g/pQYW2g7Yvt4DI5+CPtfHvxNwCfS1mmzhTb/eD3IeUVc9UMm5bdjBJQysXr1W6xe8zrdmkZXaysxMTFs2bLlgtfFxMQAYDjrL5uLy8AsOZ2dnfT19Z3z+tTU1MsrXAghhBDiCjEYBu5l+9KMCAA6unvJr2pmf3mzLbQ1sfHgSQCMBkVSsNXeYZsa6UNCkKzXNRFoBhMEJOgbC4ce7GwdCGwNR/V73hqOQvnL0NU2cJ7JAn62zp29+3Z1DZkc1wFt06ZNnDx5clS/Z0hICIsWLTrnMaPRjRUrHuAb//5jSlvbefDO21i5ciXLli2jqKho2PkrV65k+fLlF/z/lZeXs3jxYo4ePcrvfve7Yd0zIYQQQojxxmI2MiPajxnRAy+o69s6OVA+0GX7x1lDIyM9+vi8o1CGRk5UrlYIm6Zvg2katNUMDW0Nx6D2MBRthL6egXOvkiGT4zqgOdJjP/4hCxYsICcnh5ycnEv+PpGRkeTl5VFVVcWdd97J0qVLCQ4OHsVKhRBCCCEcL8DTlRtSg7khVX+dc/bQyG2Hy4cMjQz1tpBhu5dNhkZOYErpC2dbQyBmztBjvd3QVDpwn1vDkfMPmfSO0EPb4O6bXzz4Ro/pwxkN4/pv+fk6XVfa2hdeoLq8jJf+/DTAZXXQ+oWFhZGens62bdvsk4gIIYQQQkxUZw+NzPWpZ9bsueRXtdi7bPvLm9h0SB8tZVCQEOTJlAgfpkR4MyXCh5QQKxaz0cGPRFwxRvOgIZNn6WwdGC7Z33VrPAaH3hg6y6QyEpL0HSB7rKq+bOM6oDnCvn37ePIPv+fZjZsxGvV7ytatW3dJ36uiogJ/f3/c3Nxoamrik08+4Xvf+95oliuEEEIIMW7oQyP1hbH79Q+NzKtoJq/iFFsKa3ljTwUAZqMiOcTK5HAfpkZ4MznCm6RgK2bj1T3JxFXB1QphGfo2mKZBe6Me1mzBra19fN1CJAFthJ555hlONTWxImcRbgYDmZmZrFq16oLX7Nq1iyVLltDU1MSGDRt4+OGHyc/Pp6CggO9///sopdA0jR/84AdMnjwZgBUrVnDfffeRmZnJm2++yXe/+13q6upYvHgxGRkZvPfee2PxcIUQQgghHOrsoZGaplHV3MHBilMcqGjmYEXzkPvZXE0G0sK8mBrhw+Rwb6ZGehMbIOuzXTWUAg9/fYucCUBbbq5jaxohCWgj9PTTT3PGxUJ1ZzfpVjeM6ot/2bOysqioqBi2/6abbiIvL++c1wwOfUuWLGHJkiWXXrQQQgghxAShlCLcx41wHzcWpocCemgrbWjnQMUpDlY0k1fRzGu7y1nz2QkAPFyMpId724dGTonwJsrPHXURr+OEGGsS0C5B/2po8isthBBCCOF4SiliAjyICfDgjoxwAHr7NI7VtdmHRuZVNPPX7aV09RwH9PXc9MDmrQ+RjPQmxMsioU04nAQ0IYQQQggx4fSvt5YUbGWpbX227t4+ik62crByILT95eOBmSMDra5MDvcmPdyb9DAvJkd4o2nahf43Qow6CWhCCCGEEOKqYDYa9PAV7s3XZkYB+qLaBdUttk5bMwcrT5FbVIsts2F1genHd5Ie7kV6mH5thK+bdNrEFSMB7RLIEEchhBBCiInBYjYyLcqXaVEDM0ee6erlcHUL+VXNvL+7iNrWziGdNm83sx7Ywr1JD/Nmcrh+T5tBJiIRo0ACmhBCCCGEEIO4uQxM9x/VeYLs7Ll0dPdSXKMPjzxU2cKhymae/+QEXb19AFhdTaSFeQ0MkQz3ktkjxSWRgHZJ9HdPpLUthBBCCHF1sJiNthkgfez7unr6OFLbyiFbaDtY2cyLO0rp7NFDm7uLkbRQL/uwyvRwLxICPTHJOm3iAiSgXYKR3iq6detWHnzwQfLy8li7di1Lly4dcrylpYW0tDTuvPNO/vSnPw27/vXXX+eRRx6hoKCAnTt3kpmZeRnVCyGEEEKI0eBiMjApzJtJYd4sy9L39fT2cazutK3T1kx+1dAp/11NBlJDvUgP92JSmDdpoV4kh1ixmI2OeyDCqUhAu1QjaJ5FRUWxZs0aHn/88XMe/8UvfsG8efPOe316ejrr16/n3nvvHWmVQgghhBBiDJmMBpJDrCSHDMwe2duncbz+tK3T1syhqmbe2lfFSzv0xbWNBkV8oAdpoV6khXmRFupNWpgXfh4ujnwowkEkoI3Q6tWrefb55+nVNDpbW4mJiWHLli0XvCYmJgYAg2F4O3vPnj3U1NSwcOFCdu/efc7rU1NTL7tuIYQQQgjhGEaDIiHIk4QgT+6cpq/Tpmka5Y1nOFzdzOGqFvKrWvj8eCN/319lvy7U20JaqBeTwgaCW6SfzCA50Y3rgFZc/J+0thWM6ve0eqaSlPSL8x6/5557+Mp9/0Z1+xkevOM2Vq5cybJlyygqKhp27sqVK1m+fPl5v1dfXx/f//73eemll/jggw9GpX4hhBBCCOH8lFJE+bsT5e/OwvRQ+/7G010crmqxB7fD1S1sGTztv6uJ1DAvvPs6qfUsJy3Ui6RgKy4mua9tohjXAc2RHvvRD7n++uvJyckhJyfnkr7HU089xa233kpERMQoVyeEEEIIIcYjPw8X5iQGMCcxwL6vo7uXopOtHK5usXXbmvm4sof3S/MAMBsVCUHWId221FAvvN3MjnoY4jKM64B2oU7XlbTuxReoLi/j1Wf+DHDJHbTt27ezbds2nnrqKdra2ujq6sLT05Pf/va3V6x2IYQQQggxvljMRqZG+jA10se+76MtW4hJzyLf1mU7XNXCx8V1/G1vhf2cCF83PbDZ7mlLC/MizNsiQySd3LgOaI6wb98+/vLHP7B602b7PWXr1q27pO/18ssv2z9fs2YNu3fvlnAmhBBCCCG+kEEp4gI9iQv0JGdqmH1/bWuHfWhkflULBVUtbD5cg2YbIunjbiYlxEpKiBdpoV6khFpJCpZZJJ2JBLQReuaZZzjV2MQ9ty3CYjCQmZnJqlWrLnjNrl27WLJkCU1NTWzYsIGHH36Y/Pz8C16zYsUK7rvvPjIzM3nzzTf57ne/S11dHYsXLyYjI4P33ntvNB+WEEIIIYSYAIKsFoKSLWQnB9n3ne7sofBkK4ermjlc3UJBdSvrdpVzprsXAIOCmAAPUkO9SLWFt5RQK+E+MiGJI0hAG6Gnn36aFrMrTd09pFvdL+qarKwsKioqLnjOXXfdxV133WX/enDoW7JkCUuWLLmkeoUQQgghxNXNw9XEjGhfZkT72vf19WmUNbZTUN1CwclWCqtbOFjRzD/yqu3nWC0mUm1hLSXEi9RQffkAdxeJEFeS/HQvwUgXqhZCCCGEEMKZGAyKmAAPYgI8WDR5YBbJ1o5uimtaKahupfBkC4XVrazfW0lbZykASkG0n7u9y6Z33byI8HVz1EOZcCSgCSGEEEIIIQCwWszMiPZjRrSffV9fn0blqTMUVLdQeFIPbgXVrbx3+KT93jYPFyOh7hrvNx0kxTZUMjnEitUiM0mOlAS0SybjcYUQQgghxMRnMCgi/dyJ9HPn5kkh9v3tXT0U17RRWN1CQXULOwrL2XCgipc/L7OfE+nnpg+PDLGSHOJFcognMf4emIyybtv5SEC7RHK/pBBCCCGEuJq5u5jIiPQhwzb9f653PfPnz6e6ucPeZevvun1YUGNfbNvFaCA+yJPkYE97aEsKlklJ+klAuwSa3IQmhBBCCCHEMEopwnzcCPNx4/qUYPv+ju5ejta2UVzTSlFNK0UnW9l5vJG/76+yn+PpaiIp2JPkECvJwVaSbB/9PV0d8VAcRgLaJZGEJoQQQgghxMWymI2kh3uTHu49ZH9LRzfFJ/XQVnyylcKTrWw6dJJXd5bbzwnwdLV32VJC9HXbkoKteLhOzCgzMR/VGBhJ83Xr1q08+OCD5OXlsXbtWpYuXWo/ZjQamTx5MgBRUVG8/fbbI7peCCGEEEKI8crLYiYzxo/MmIFJSTRNo66tk6KTeqet2NZxW7tzYO020O9vS7aFtWTbpCRxAZ64mMb3/W0S0C7BSPtnUVFRrFmzhscff3zYMTc3N/bv33/J1wshhBBCCDGRKKX0BbetFuYmBtr39/VpVDSdofBkC8U1eretuKaV3KI6emw3uJkMirhADz202YLbmc7xNfpNAtoIrV69mmefe55eNDpbW4mJiWHLli0XvCYmJgYAg+HS0vzlXi+EEEIIIcR4ZzAoovzdifIfOptkV08fJfVtQ7ptBypO8Y5t0e27Jrlwh6OKvgTjOqD94kgFh9rOjOr3TPd04z8TI857/J577uGf7v0Opzo6+ffbF7Ny5UqWLVtGUVHRsHNXrlzJ8uXLL/j/6+joIDMzE5PJxE9+8hPuvPPOy30IQgghhBBCXDVcTAZ94ewQryH7T3f2cKS2jROH9zqoskszrgOao2jAoz/6Addffz05OTnk5ORc8vcqLS0lPDyckpISrr/+eiZPnkx8fPzoFSuEEEIIIcRVyMNVXwbg1LHxNQptXAe0C3W6rqTXX3yBqrIyXv7LnwEuq4MWHh4OQFxcHNnZ2ezbt08CmhBCCCGEEFepcR3QHGHfvn08+79/5IV337ffE7Zu3bpL+l5NTU24u7vj6upKfX09n376KT/60Y9Gs1whhBBCCCHEODK++n1O4JlnnuFUYxN3LV5IRkYGK1as+MJrdu3aRUREBK+//jr33nsvkyZNAqCgoIDMzEymTp3KggUL+MlPfkJaWhoADz30kH3K/fNdL4QQQgghhJhYpIM2Qk8//TQNJhc6+vpI8XC7qGuysrKoqKgYtv+6667j4MGD57zmV7/61RdeL4QQQgghhJhYpIN2KbSRLVQthBBCCCGEEBdDAtolGF9L3QkhhBBCCCHGCwlol0x6aEIIIYQQQojRNS4DmqY5toel4ZzxzNE/FyGEEEIIIcTlGXcBzWKx0NDQIGHkLJqm0dDQgMVicXQpQgghhBBCiEs07mZxjIiIoKKigrq6Oof8/zs6Omg1GOnToNfV7JAazqWjowMfHx8iIhyzeLcQQgghhBDi8o1ZQFNKRQH/BzQCxZqm/fZSvo/ZbCY2NnZUaxuJ3Nxc/uIbSXNvLxtTkxxWx9lyc3OZNm2ao8sQQgghhBBCXIaLGuKolHpOKVWrlDp01v6FSqkipdRRpdRPvuDbTAbe0DTtbmBcJ4k+bRyODRVCCCGEEEI4vYvtoK0B/gS80L9DKWUEngRuAiqAXUqptwEj8OhZ198N7ADeUErdDbx4eWU7Vh8aBuWM04QIIYQQQgghxrOLCmiapm1VSsWctXsmcFTTtBIApdRa4A5N0x4Fbjv7eyilfgA8bPtebwDPX1blDtQnC1ULIYQQQgghroDLuQctHCgf9HUFcM0Fzn8XeEQp9c/AifOdpJT6NvBt25dtSqmiy6jxSggA6sHpQpq9LifjjHU5Y03gnHU5Y03gnHU5Y03gnHU5Y00gdY2EM9YEzlmXM9YEzlmXM9YEUtdIOGNN4Jx1RZ/vwJhNEqJp2iFg6UWc9wzwzJWv6NIopXZrmpbp6DrOJnVdPGesCZyzLmesCZyzLmesCZyzLmesCaSukXDGmsA563LGmsA563LGmkDqGglnrAmct67zuZy5LiqByEFfR9j2CSGEEEIIIYS4BJcT0HYBiUqpWKWUC/BV4O3RKUsIIYQQQgghrj4XO83+q8B2IFkpVaGUukfTtB7gfuA9oAB4TdO0/CtXqtNw1uGXUtfFc8aawDnrcsaawDnrcsaawDnrcsaaQOoaCWesCZyzLmesCZyzLmesCaSukXDGmsB56zonpWmao2sQQgghhBBCCIGstyyEEEIIIYQQTkMC2ggopRYqpYqUUkeVUj9xdD0ASqnnlFK1SqlDjq6ln1IqUim1RSl1WCmVr5R6wNE1ASilLEqpnUqpA7a6funomvoppYxKqX1KqXccXUs/pdQJpdRBpdR+pdRuR9cDoJTyUUq9oZQqVEoVKKWudYKakm0/o/6tRSn1oBPU9T3b3/NDSqlXlVIWR9cEoJR6wFZTviN/Tud67lRK+Sml3ldKHbF99HWCmr5s+1n1KaUcMgPZeer6ne33ME8p9aZSysdJ6vpPW037lVKblVJhjq5p0LHvK6U0pVTAWNZ0vrqUUo8opSoHPXfd6uiabPu/a/u7la+UemwsazpfXUqpdYN+TieUUvudoKYMpdSO/n+jlVIzx7KmC9Q1VSm13fb6YYNSymuMazrna1BHP7+PlAS0i6SUMgJPAouANOBrSqk0x1YFwBpgoaOLOEsP8H1N09KAWcC/O8nPqhO4XtO0qUAGsFApNcuxJdk9gH4vp7NZoGlahhNNTfu/wLuapqUAU3GCn5mmaUW2n1EGMANoB950ZE1KqXDg/wGZmqalA0b0iZwcSimVDvwrMBP9z+82pVSCg8pZw/Dnzp8AH2qalgh8aPva0TUdAv4J2DrGtQy2huF1vQ+ka5o2BSgGfjrWRXHuun6nadoU2+/jO8BDTlATSqlI4GagbIzr6beGc79W+EP/85emaRsdXZNSagFwBzBV07RJwONjXNM569I0bdmg5/m/AesdXRPwGPBLW00P2b4ea2sYXtcq4Ceapk1G/7fwh2Nc0/legzr6+X1EJKBdvJnAUU3TSjRN6wLWoj+JOJSmaVuBRkfXMZimadWapu21fd6K/iI63LFVgaZrs31ptm0OvwlTKRUBLEZ/UhPnoZTyBuYBqwE0TevSNO2UQ4sa7gbgmKZppY4uBH2dSzellAlwB6ocXA9AKvC5pmnttommPkYPH2PuPM+ddwB/tX3+V+BOR9ekaVqBpmlFY1nH2c5T12bbnyHADvSldpyhrpZBX3owxs/xF/g3+Q/Aj8a6nn5O+lrhXDV9B/itpmmdtnNqnaQuAJRSCvgK8KoT1KQB/d0pbxzwHH+eupIYeEPpfeBLY1zT+V6DOvT5faQkoF28cKB80NcVOEHocHZKqRhgGvC5g0sB7EMJ9wO1wPuapjlDXX9E/4e7z8F1nE0DNiul9iilvu3oYoBYoA54XunDQVcppTwcXdRZvsoY/8N9LpqmVaK/81wGVAPNmqZtdmxVgN4NmquU8ldKuQO3MnQ9TUcL1jSt2vb5SSDYkcWMI3cDmxxdRD+l1G+UUuXA1xn7Dtq56rkDqNQ07YCjazmH+21DQp9zkiFfSejPEZ8rpT5WSmU5uqCzzAVqNE074uhCgAeB39n+rj+OY7rY55LPQAPjyzjwOf6s16Dj6vldApq4YpRSnuhDAR48611Nh9E0rdc2HCACmGkbcuUwSqnbgFpN0/Y4so7zmKNp2nT0Yb3/rpSa5+B6TMB04GlN06YBp3GiIQpKXw/yduB1J6jFF/0fyFggDPBQSn3DsVXp3SDgv4HNwLvAfqDXkTWdj6ZPcezwDruzU0r9HH1I0cuOrqWfpmk/1zQtEr2m+x1Zi+2NiJ/hBEHxHJ4G4tGH/FcD/+PQanQmwA99aNoPgddsXStn8TWc4E04m+8A37P9Xf8ettElTuBu4N+UUnsAK9DliCIu9Bp0PDy/S0C7eJUMfRcgwrZPnINSyoz+i/GypmljPVb7C9mGxm3B8ffvzQZuV0qdQB82e71S6iXHlqSzdWH6h5i8iT7M15EqgIpBXc830AObs1gE7NU0rcbRhQA3Asc1TavTNK0b/X6J6xxcEwCapq3WNG2GpmnzgCb0+5ecRY1SKhTA9nHMh1eNJ0qpu4DbgK9rzrlmz8uM8fCqc4hHf6PkgO15PgLYq5QKcWhVgKZpNbY3LfuAZ3H8czzoz/Prbbck7EQfWTLmk6qci224+D8B6xxdi823GLgX7nWc488PTdMKNU27WdO0Gehh9thY13Ce16Dj6vldAtrF2wUkKqVibe+UfxV428E1OSXbu12rgQJN037v6Hr6KaUClW2mMaWUG3ATUOjImjRN+6mmaRGapsWg/536SNM0h3c6lFIeSilr/+foN7c7dKZQTdNOAuVKqWTbrhuAww4s6WzO9M5qGTBLKeVu+328ASeYUAVAKRVk+xiF/mLnFcdWNMTb6C96sH18y4G1ODWl1EL0odm3a5rW7uh6+imlEgd9eQeOf44/qGlakKZpMbbn+Qpguu35zKH6X6zaLMHBz/E2fwcWACilkgAXoN6RBQ1yI1CoaVqFowuxqQLm2z6/HnCGYZeDn+MNwH8Afx7j///5XoOOr+d3TdNku8gN/X6JYvR3A37u6HpsNb2KPjShG/2J/x4nqGkOeus4D30I037gVieoawqwz1bXIeAhR9d0Vn3ZwDuOrsNWSxxwwLblO9Hf9wxgt+3P8O+Ar6NrstXlATQA3o6uZVBNv0R/cXoIeBFwdXRNtrq2oQfrA8ANDqxj2HMn4I8+u9cR4APAzwlqWmL7vBOoAd5zkp/VUfT7svuf4//sJHX9zfZ3Pg/YAIQ7uqazjp8AApzkZ/UicND2s3obCHWCmlyAl2x/hnvRZ152+M/Ktn8NcN9Y13OBn9UcYI/tufRzYIaT1PUA+mvlYuC3gBrjms75GtTRz+8j3ZTtwQghhBBCCCGEcDAZ4iiEEEIIIYQQTkICmhBCCCGEEEI4CQloQgghhBBCCOEkJKAJIYQQQgghhJOQgCaEEEIIIYQQTkICmhBCCCGEEEI4CQloQgghhBBCCOEkJKAJIYQQQgghhJP4/+HYCVaYZfIwAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# TODO: Macht kei Sinn!\n", - "n = 8\n", - "ms = np.arange(4, 5)\n", - "xi = np.linspace(EPSILON, 20, 201)[:, None]\n", - "z = np.arange(6, 16)[None]+0.1\n", - "c = scipy.special.factorial(n) ** 2 / scipy.special.factorial(2 * n)\n", - "\n", + "z = 0.5\n", + "ns = [4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12] # np.arange(4, 13)\n", + "ms = np.arange(6, 18)\n", + "xi = np.logspace(0, 2, 201)[:, None]\n", + "lanczos = eval_lanczos([z])[0]\n", "\n", "_, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(12, 8))\n", "ax.grid(1)\n", - "for m, color in zip(ms, ['r', 'b', 'g', 'c', 'm', 'y']):\n", + "for n, m in zip(ns, ms):\n", + " zeros, weights = np.polynomial.laguerre.laggauss(n)\n", + " c = scipy.special.factorial(n) ** 2 / scipy.special.factorial(2 * n)\n", " e = np.abs(\n", " scipy.special.poch(z - 2 * n, 2 * n)\n", " / scipy.special.poch(z - m, m)\n", " * c\n", " * xi ** (z - 2 * n + m - 1)\n", " )\n", + " ez = np.sum(\n", + " scipy.special.poch(z - 2 * n, 2 * n)\n", + " / scipy.special.poch(z - m, m)\n", + " * c\n", + " * zeros[:, None] ** (z - 2 * n + m - 1),\n", + " 0,\n", + " )\n", + " lag = eval_laguerre([z], m)[0]\n", + " err = np.abs(lanczos - lag)\n", + " # print(m+z,ez)\n", + " # for zi,ezi in zip(z[0], ez):\n", + " # print(f\"{m+zi}: {ezi}\")\n", " # ax.semilogy(xi, e, color=color)\n", - " ax.semilogy(xi, e)\n", - " ax.set_xticks(np.arange(xi[-1] +1))\n", - " ax.set_ylim(1e-8, 1e5)\n", - " _ = ax.legend([f'z={zi}' for zi in z[0]])\n" + " lines = ax.loglog(xi, e, label=str(n))\n", + " ax.axhline(err, color=lines[0].get_color())\n", + " # ax.set_xticks(np.arange(xi[-1] + 1))\n", + " # ax.set_ylim(1e-8, 1e5)\n", + "_ = ax.legend()\n", + "# _ = ax.legend([f\"z={zi}\" for zi in z[0]])\n", + "# _ = [ax.axvline(x) for x in zeros]\n" ] } ], diff --git a/buch/papers/laguerre/scripts/laguerre_plot.py b/buch/papers/laguerre/scripts/laguerre_plot.py index cd90df1..b9088d0 100644 --- a/buch/papers/laguerre/scripts/laguerre_plot.py +++ b/buch/papers/laguerre/scripts/laguerre_plot.py @@ -2,38 +2,99 @@ # -*- coding:utf-8 -*- """Some plots for Laguerre Polynomials.""" +import os from pathlib import Path import matplotlib.pyplot as plt import numpy as np import scipy.special as ss + +def get_ticks(start, end, step=1): + ticks = np.arange(start, end, step) + return ticks[ticks != 0] + + N = 1000 -t = np.linspace(0, 12.5, N)[:, None] +step = 5 +t = np.linspace(-1.05, 10.5, N)[:, None] root = str(Path(__file__).parent) +img_path = f"{root}/../images" +os.makedirs(img_path, exist_ok=True) + +# fig = plt.figure(num=1, clear=True, tight_layout=True, figsize=(5.5, 3.7)) +# ax = fig.add_subplot(axes_class=AxesZero) fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4)) -for n in np.arange(0, 10): +for n in np.arange(0, 8): k = np.arange(0, n + 1)[None] L = np.sum((-1) ** k * ss.binom(n, k) / ss.factorial(k) * t ** k, -1) ax.plot(t, L, label=f"n={n}") -ax.set_xticks(np.arange(1, t[-1])) -ax.set_xlim(t[0], t[-1] + 0.1*(t[1] - t[0])) -ax.set_ylim(-20, 20) -ax.legend(ncol=2) + +ax.set_xticks(get_ticks(int(t[0]), t[-1]), minor=True) +ax.set_xticks(get_ticks(0, t[-1], step)) +ax.set_xlim(t[0], t[-1] + 0.1 * (t[1] - t[0])) +ax.set_xlabel(r"$x$", x=1.0, labelpad=-10, rotation=0, fontsize="large") + +ylim = 13 +ax.set_yticks(np.arange(-ylim, ylim), minor=True) +ax.set_yticks(np.arange(-step * (ylim // step), ylim, step)) +ax.set_ylim(-ylim, ylim) +ax.set_ylabel(r"$y$", y=0.95, labelpad=-18, rotation=0, fontsize="large") + +ax.legend(ncol=2, loc=(0.125, 0.01), fontsize="large") + # set the x-spine -ax.spines['left'].set_position('zero') -ax.spines['right'].set_visible(False) -ax.spines['bottom'].set_position('zero') -ax.spines['top'].set_visible(False) -ax.xaxis.set_ticks_position('bottom') -ax.yaxis.set_ticks_position('left') - -# make arrows -# ax.plot((1), (0), ls="", marker=">", ms=10, color="k", -# transform=ax.get_yaxis_transform(), clip_on=False) -# ax.plot((0), (1), ls="", marker="^", ms=10, color="k", -# transform=ax.get_xaxis_transform(), clip_on=False) -# ax.grid(1) -fig.savefig(f'{root}/laguerre_polynomes.pdf') -# plt.show() +ax.spines[["left", "bottom"]].set_position("zero") +ax.spines[["right", "top"]].set_visible(False) +ax.xaxis.set_ticks_position("bottom") +hlx = 0.4 +dx = t[-1, 0] - t[0, 0] +dy = 2 * ylim +hly = dy / dx * hlx +dps = fig.dpi_scale_trans.inverted() +bbox = ax.get_window_extent().transformed(dps) +width, height = bbox.width, bbox.height + +# manual arrowhead width and length +hw = 1.0 / 60.0 * dy +hl = 1.0 / 30.0 * dx +lw = 0.5 # axis line width +ohg = 0.0 # arrow overhang + +# compute matching arrowhead length and width +yhw = hw / dy * dx * height / width +yhl = hl / dx * dy * width / height + +# draw x and y axis +ax.arrow( + t[-1, 0] - hl, + 0, + hl, + 0.0, + fc="k", + ec="k", + lw=lw, + head_width=hw, + head_length=hl, + overhang=ohg, + length_includes_head=True, + clip_on=False, +) + +ax.arrow( + 0, + ylim - yhl, + 0.0, + yhl, + fc="k", + ec="k", + lw=lw, + head_width=yhw, + head_length=yhl, + overhang=ohg, + length_includes_head=True, + clip_on=False, +) + +fig.savefig(f"{img_path}/laguerre_polynomes.pdf") diff --git a/buch/papers/laguerre/scripts/lanczos_approximation.py b/buch/papers/laguerre/scripts/lanczos_approximation.py deleted file mode 100644 index 3c48266..0000000 --- a/buch/papers/laguerre/scripts/lanczos_approximation.py +++ /dev/null @@ -1,47 +0,0 @@ -from cmath import exp, pi, sin, sqrt - -p = [ - 676.5203681218851, - -1259.1392167224028, - 771.32342877765313, - -176.61502916214059, - 12.507343278686905, - -0.13857109526572012, - 9.9843695780195716e-6, - 1.5056327351493116e-7, -] - -EPSILON = 1e-07 - - -def drop_imag(z): - if abs(z.imag) <= EPSILON: - z = z.real - return z - - -def gamma(z): - z = complex(z) - if z.real < 0.5: - y = pi / (sin(pi * z) * gamma(1 - z)) # Reflection formula - else: - z -= 1 - x = 0.99999999999980993 - for (i, pval) in enumerate(p): - x += pval / (z + i + 1) - t = z + len(p) - 0.5 - y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x - return drop_imag(y) - - -""" -The above use of the reflection (thus the if-else structure) is necessary, even though -it may look strange, as it allows to extend the approximation to values of z where -Re(z) < 0.5, where the Lanczos method is not valid. -""" - -print(gamma(1)) -print(gamma(5)) -print(gamma(0.5)) -print(gamma(0.5* (1 + 1j))) -print(gamma(-0.5)) diff --git a/buch/papers/laguerre/scripts/quadrature_gama.py b/buch/papers/laguerre/scripts/quadrature_gama.py deleted file mode 100644 index 37a9cd8..0000000 --- a/buch/papers/laguerre/scripts/quadrature_gama.py +++ /dev/null @@ -1,178 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding:utf-8 -*- -"""Use Gauss-Laguerre quadrature to calculate gamma function.""" -# import sympy -from cmath import exp, pi, sin, sqrt - -import matplotlib.pyplot as plt -import numpy as np -import scipy.special as ss - -p = [ - 676.5203681218851, - -1259.1392167224028, - 771.32342877765313, - -176.61502916214059, - 12.507343278686905, - -0.13857109526572012, - 9.9843695780195716e-6, - 1.5056327351493116e-7, -] - -EPSILON = 1e-07 - - -def drop_imag(z): - if abs(z.imag) <= EPSILON: - z = z.real - return z - - -def gamma(z): - z = complex(z) - if z.real < 0.5: - y = pi / (sin(pi * z) * gamma(1 - z)) # Reflection formula - else: - z -= 1 - x = 0.99999999999980993 - for (i, pval) in enumerate(p): - x += pval / (z + i + 1) - t = z + len(p) - 0.5 - y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x - return drop_imag(y) - - -zeros = np.array( - [ - 3.22547689619392312e-1, - 1.74576110115834658e0, - 4.53662029692112798e0, - 9.39507091230113313e0, - ], - np.longdouble, -) -weights = np.array( - [ - 6.03154104341633602e-1, - 3.57418692437799687e-1, - 3.88879085150053843e-2, - 5.39294705561327450e-4, - ], - np.longdouble, -) - -zeros = np.array( - [ - 1.70279632305101000e-1, - 9.03701776799379912e-1, - 2.25108662986613069e0, - 4.26670017028765879e0, - 7.04590540239346570e0, - 1.07585160101809952e1, - 1.57406786412780046e1, - 2.28631317368892641e1, - ], - np.longdouble, -) - -weights = np.array( - [ - 3.69188589341637530e-1, - 4.18786780814342956e-1, - 1.75794986637171806e-1, - 3.33434922612156515e-2, - 2.79453623522567252e-3, - 9.07650877335821310e-5, - 8.48574671627253154e-7, - 1.04800117487151038e-9, - ], - np.longdouble, -) - - -def calc_gamma(z, n, x, w): - res = 0.0 - z = complex(z) - for xi, wi in zip(x, w): - res += xi ** (z + n - 1) * wi - for i in range(int(n)): - res /= z + i - res = drop_imag(res) - return res - -small = 1e-3 -Z = np.linspace(small, 1-small, 101) - -# Z = [-3/2, -1/2, 1/2, 3/2] -# target = -# targets = np.array([gamma(z) for z in Z]) -targets1 = ss.gamma(Z) -targets2 = np.array([gamma(z) for z in Z]) -approxs = np.array([calc_gamma(z, 11, zeros, weights) for z in Z]) -rel_error1 = np.abs(targets1 - approxs) / targets1 -rel_error2 = np.abs(targets2 - approxs) / targets2 - -_, axs = plt.subplots(2, num=1, clear=True, constrained_layout=True) -axs[0].plot(Z, rel_error1) -axs[1].semilogy(Z, rel_error1) -axs[0].plot(Z, rel_error2) -axs[1].semilogy(Z, rel_error2) -axs[1].semilogy(Z, np.abs(targets1-targets2)/targets1) -plt.show() -# values = np.array([calc_gamma]) -# _ = [ -# print( -# n, -# [ -# float( -# f"{np.abs((calc_gamma(z, n, zeros, weights) - gamma(z)) / gamma(z)):.3g}" -# ) -# for z in Z -# ], -# ) -# for n in range(21) -# ] - - -# target = ss.gamma(z) -# target = np.sqrt(np.pi) - -# _, ax = plt.subplots(num=1, clear=True, constrained_layout=True) -# for i, degree in enumerate(degrees): -# samples_points, weights = np.polynomial.laguerre.laggauss(degree) -# values = np.sum( -# samples_points[:, None] ** (z + shifts[None] - 1) * weights[:, None], 0 -# ) / ss.poch(z, shifts) -# # print(np.abs(target - values)) -# print(values) -# ax.plot(shifts, values, label=f"N={degree}") -# ax.legend() -# plt.show() - - -# def count_equal_digits(x, y): -# for i in range(1, 13): -# try: -# np.testing.assert_almost_equal(x, y, i) -# except AssertionError: -# break -# return i - - -# Z = np.linspace(1.0, 11.0, 11) -# # degrees = [2, 4, 8, 16, 32, 64, 100] -# d = 100 -# X = np.zeros(len(Z)) -# for i, z in enumerate(Z): -# samples_points, weights = np.polynomial.laguerre.laggauss(d) -# X[i] = np.sum(samples_points ** (z - 1) * weights) -# # X[i] = np.sum(np.sin(z * samples_points) * weights) -# Y = ss.gamma(Z) -# # Y = Z / (Z ** 2 + 1) -# ed = [count_equal_digits(x, y) for x, y in zip(X, Y)] -# for x,y in zip(X,Y): -# print(x,y) - -# _, ax = plt.subplots(num=1, clear=True, constrained_layout=True) -# ax.plot(Z, ed) -# plt.show() -- cgit v1.2.1 From 7397861ade0537bf8e501fa87bd57653d932d459 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 12 May 2022 18:21:25 +0200 Subject: Remove deprecated files --- buch/papers/laguerre/images/wasserstoff_model.tex | 58 --------- buch/papers/laguerre/transformation.tex | 31 ----- buch/papers/laguerre/wasserstoff.tex | 142 ---------------------- 3 files changed, 231 deletions(-) delete mode 100644 buch/papers/laguerre/images/wasserstoff_model.tex delete mode 100644 buch/papers/laguerre/transformation.tex delete mode 100644 buch/papers/laguerre/wasserstoff.tex (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/images/wasserstoff_model.tex b/buch/papers/laguerre/images/wasserstoff_model.tex deleted file mode 100644 index fe838c3..0000000 --- a/buch/papers/laguerre/images/wasserstoff_model.tex +++ /dev/null @@ -1,58 +0,0 @@ -\documentclass{standalone} - -\usepackage{pgfplots} -\usepackage{tikz-3dplot} - -\tdplotsetmaincoords{60}{115} -\pgfplotsset{compat=newest} - -\begin{document} - -\newcommand{\drawcircle}[4]{ -\shade[ball color=#3, opacity=#4] (#1) circle (#2 cm); -\tdplotsetrotatedcoords{0}{0}{0}; -\draw[dashed, tdplot_rotated_coords, #3!40!black] (#1) circle (#2); -} - -\begin{tikzpicture}[tdplot_main_coords, scale = 2] -\def\r{1.0} -\def\rp{0.2} -\def\rn{0.05} -\def\rvec{1.0} -\def\thetavec{45} -\def\phivec{60} - -\coordinate (O) at (0, 0, 0); -\tdplotsetcoord{P}{\rvec}{\thetavec}{\phivec} - -% Labels -\node[inner sep=1pt] at (0, -4.0*\rp, 1.0*\r) (plabel){Proton}; -\draw (plabel) -- (O); -\node[inner sep=1pt] at (-0.*\r, 1.0*\r, 1.3*\r) (elabel){Elektron}; -\draw (elabel) -- (P); -% Draw proton -\drawcircle{O}{\rp}{red}{1.0} - -% Draw spherical coordinates of electron -\draw (O) -- node[anchor=north west, yshift=4pt]{$r$} (P); -\draw[dashed] (O) -- (Pxy); -\draw[dashed] (P) -- (Pxy); -\tdplotdrawarc{(O)}{0.6}{0}{\phivec}{anchor=north}{$\varphi$} -\tdplotsetthetaplanecoords{\phivec} -\tdplotdrawarc[tdplot_rotated_coords]{(0,0,0)}{0.5}{0}% -{\thetavec}{anchor=south west, xshift=-2pt, yshift=-2pt}{$\vartheta$} - -% Draw electron -\drawcircle{P}{\rn}{blue}{1.0} - -% Draw surrounding sphere -\drawcircle{O}{\r}{gray}{0.3} - -% Draw cartesian coordinate system -\draw[-stealth, thick] (O) -- (1.8*\r,0,0) node[below left] {$x$}; -\draw[-stealth, thick] (O) -- (0,1.3*\r,0) node[below right] {$y$}; -\draw[-stealth, thick] (O) -- (0,0,1.3*\r) node[above] {$z$}; - -\end{tikzpicture} - -\end{document} \ No newline at end of file diff --git a/buch/papers/laguerre/transformation.tex b/buch/papers/laguerre/transformation.tex deleted file mode 100644 index 4de86b6..0000000 --- a/buch/papers/laguerre/transformation.tex +++ /dev/null @@ -1,31 +0,0 @@ -% -% transformation.tex -% -% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule -% -\section{Laguerre Transformation -\label{laguerre:section:transformation}} -\begin{align} - L \left\{ f(x) \right\} - = - \tilde{f}_\alpha(n) - = - \int_0^\infty e^{-x} x^\alpha L_n^\alpha(x) f(x) dx - \label{laguerre:transformation} -\end{align} - -\begin{align} - L^{-1} \left\{ \tilde{f}_\alpha(n) \right\} - = - f(x) - = - \sum_{n=0}^{\infty} - \begin{pmatrix} - n + \alpha \\ - n - \end{pmatrix}^{-1} - \frac{1}{\Gamma(\alpha + 1)} - \tilde{f}_\alpha(n) - L_n^\alpha(x) - \label{laguerre:inverse_transformation} -\end{align} \ No newline at end of file diff --git a/buch/papers/laguerre/wasserstoff.tex b/buch/papers/laguerre/wasserstoff.tex deleted file mode 100644 index 0da8be3..0000000 --- a/buch/papers/laguerre/wasserstoff.tex +++ /dev/null @@ -1,142 +0,0 @@ -% -% wasserstoff.tex -% -% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule -% -\section{Radialer Schwingungsanteil eines Wasserstoffatoms -\label{laguerre:section:radial_h_atom}} - -Das Wasserstoffatom besteht aus einem Proton im Kern -mit Masse $M$ und Ladung $+e$. -Ein Elektron mit Masse $m$ und Ladung $-e$ umkreist das Proton -(vgl. Abbildung~\ref{laguerre:fig:wasserstoff_model}). -Für das folgende Model werden folgende Annahmen getroffen: - -\begin{figure} -\centering -\includegraphics{papers/laguerre/images/wasserstoff_model.pdf} -\caption{Skizze eines Wasserstoffatoms. -Kartesische, wie auch Kugelkoordinaten sind eingezeichnet. -} -\label{laguerre:fig:wasserstoff_model} -\end{figure} - -\begin{enumerate} -\item -Das Elektron wird als nicht-relativistisches Teilchen betrachtet, -das heisst, -relativistische Effekte sind vernachlässigbar. -\item -Der Spin des Elektrons und des Protons -und das damit verbundene magnetische Moment -wird vernachlässigt. -\item -Fluktuationen des Vakuums werden nicht berücksichtigt. -\item -Wechselwirkung zwischen Elektron und Proton -ist durch die Coulombwechselwirkung gegeben. -Somit entspricht die potentielle Energie der Coulombenergie $V_C(r)$ -und nimmt damit die folgende Form an -\begin{align} - V_C(r) - = - -\frac{e^2}{4 \pi \epsilon_0 r} - \text{ mit } - r - = - \lvert\vec{r}\rvert - = - \sqrt{x^2 + y^2 + z^2} - . - \label{laguerre:coulombenergie} -\end{align} -Im Falle das der Kern einen endlichen Radius $r_0$ besitzt, -ist die $1/r$-Abhängigkeit in Gleichung \eqref{laguerre:coulombenergie} -als Näherung zu betrachten. -Diese Näherung darf nur angewendet werden, wenn die -Aufenthaltswahrscheinlicheit des Elektrons -innerhalb $r_0$ vernachlässigbar ist. -Für das Wasserstoffatom ist diese Näherung für alle Zustände gerechtfertigt. -\item -Da $M \gg m$, kann das Proton als in Ruhe angenommen werden. -\end{enumerate} - -\subsection{Herleitung zeitunabhängige Schrödinger-Gleichung} -\label{laguerre:subsection:herleitung_schroedinger} -Das Problem ist kugelsymmetrisch, -darum transformieren wir das Problem in Kugelkoordinaten. -Somit gilt: - -\begin{align*} - r - & = - \sqrt{x^2 + y^2 + z^2}\\ - \vartheta - & = - \arccos\left(\frac{z}{r}\right)\\ - \varphi - & = - \arctan\left(\frac{y}{x}\right) -\end{align*} - -Die potentielle Energie $V_C(r)$ hat keine direkte Zeitabhängigkeit. -Daraus folgt, dass die konstant ist Gesamtenergie $E$ -und es existieren stationäre Zustände - -\begin{align} - \psi(r, \vartheta, \varphi, t) - = - u(r, \vartheta, \varphi) e^{-i E t / h}, -\end{align} -wobei $u(r, \vartheta, \varphi)$ -die zeitunabhängige Schrödinger-Gleichung erfüllt. - -\begin{align} - -\frac{\hbar^2}{2m} \Delta u(r, \vartheta, \varphi) - + V_C(r) u(r, \vartheta, \varphi) - = - E u(r, \vartheta, \varphi) - \label{laguerre:schroedinger} -\end{align} - -Für Kugelkoordinaten hat der Laplace-Operator $\Delta$ die Form - -\begin{align} - \Delta - = - \frac{1}{r^2} \pdv{}{r} \left( r^2 \pdv{}{r} \right) - + \frac{1}{r^2 \sin\vartheta} \pdv{}{\vartheta} - \left(\sin\vartheta \pdv{}{\vartheta}\right) - + \frac{1}{r^2 \sin^2\vartheta} \pdv[2]{}{\varphi} - \label{laguerre:laplace_kugel} -\end{align} - -Setzt man nun -\eqref{laguerre:coulombenergie} und \eqref{laguerre:laplace_kugel} -in \eqref{laguerre:schroedinger} ein, -erhält man die zeitunabhängige Schrödinger-Gleichung für Kugelkoordinaten - -\begin{align} -\nonumber -- \frac{\hbar^2}{2m} -& -\left( -\frac{1}{r^2} \pdv{}{r} -\left( r^2 \pdv{}{r} \right) -+ -\frac{1}{r^2 \sin \vartheta} \pdv{}{\vartheta} -\left( \sin \vartheta \pdv{}{\vartheta} \right) -+ -\frac{1}{r^2 \sin^2 \vartheta} \pdv[2]{}{\varphi} -\right) -u(r, \vartheta, \varphi) -\\ -& - -\frac{e^2}{4 \pi \epsilon_0 r} u(r, \vartheta, \varphi) -= -E u(r, \vartheta, \varphi). -\label{laguerre:pdg_h_atom} -\end{align} - -\subsection{Separation der Schrödinger-Gleichung} -\label{laguerre:subsection:seperation_schroedinger} -- cgit v1.2.1 From 155989e49b70a4598dbf3ff3277d9e320f226a83 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Fri, 13 May 2022 12:38:18 +0200 Subject: Add some information about Gauss Quadrature and application to Gamma integral --- buch/papers/laguerre/Makefile.inc | 3 +- buch/papers/laguerre/definition.tex | 5 ++- buch/papers/laguerre/eigenschaften.tex | 25 ++++++++++- buch/papers/laguerre/gamma.tex | 76 +++++++++++++++++++++++++++++++++ buch/papers/laguerre/main.tex | 3 +- buch/papers/laguerre/quadratur.tex | 78 ++++++++++++++++++++++++++++------ buch/papers/laguerre/references.bib | 45 +++++++------------- 7 files changed, 187 insertions(+), 48 deletions(-) create mode 100644 buch/papers/laguerre/gamma.tex (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/Makefile.inc b/buch/papers/laguerre/Makefile.inc index aae51f9..12b0935 100644 --- a/buch/papers/laguerre/Makefile.inc +++ b/buch/papers/laguerre/Makefile.inc @@ -9,6 +9,7 @@ dependencies-laguerre = \ papers/laguerre/references.bib \ papers/laguerre/definition.tex \ papers/laguerre/eigenschaften.tex \ - papers/laguerre/quadratur.tex + papers/laguerre/quadratur.tex \ + papers/laguerre/gamma.tex diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index edd2b7b..d111f6f 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -18,8 +18,9 @@ x \in \mathbb{R} . \label{laguerre:dgl} \end{align} +Die klassische Laguerre-Diffentialgleichung erhält man, wenn $\nu = 0$. Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet, -weil die Lösung gleich berechnet werden kann, +weil die Lösung mit der selben Methode berechnet werden kann, aber man zusätzlich die Lösung für den allgmeinen Fall erhält. Zur Lösung der Gleichung \eqref{laguerre:dgl} verwenden wir einen Potenzreihenansatz. @@ -117,6 +118,8 @@ L_n^\nu(x) \sum_{k=0}^{n} \frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} x^k. \label{laguerre:allg_polynom} \end{align} + +\subsection{Analytische Fortsetzung} Durch die analytische Fortsetzung erhalten wir zudem noch die zweite Lösung der Differentialgleichung mit der Form \begin{align*} diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index c589c92..b0cc3a3 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -5,9 +5,21 @@ % \section{Eigenschaften \label{laguerre:section:eigenschaften}} +{ +\large \color{red} +TODO: +Evtl. nur Orthogonalität hier behandeln, da nur diese für die Gauss-Quadratur +benötigt wird. +} + +Die Laguerre-Polynome besitzen einige interessante Eigenschaften \rhead{Eigenschaften} -\subsection{Orthogonalität} +\subsection{Orthogonalität + \label{laguerre:subsection:orthogonal}} +Im Abschnitt~\ref{laguerre:section:definition} haben wir behauptet, +dass die Laguerre-Polynome orthogonale Polynome sind. +Zu dieser Behauptung möchten wir nun einen Beweis liefern. Wenn wir die Laguerre\--Differentialgleichung in ein Sturm\--Liouville\--Problem umwandeln können, haben wir bewiesen, dass es sich bei @@ -95,4 +107,13 @@ Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb}) \end{align*} für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$. Damit können wir schlussfolgern, dass die Laguerre-Polynome orthogonal -bezüglich des Skalarproduktes mit der Laguerre\--Gewichtsfunktion sind. +bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$ mit der Laguerre\--Gewichtsfunktion +$w(x)=x^\nu e^{-x}$ sind. + + +\subsection{Rodrigues-Formel} + +\subsection{Drei-Terme Rekursion} + +\subsection{Beziehung mit der Hypergeometrischen Funktion} + diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex new file mode 100644 index 0000000..e3838b0 --- /dev/null +++ b/buch/papers/laguerre/gamma.tex @@ -0,0 +1,76 @@ +% +% gamma.tex +% +% (c) 2022 Patrik Müller, Ostschweizer Fachhochschule +% +\section{Anwendung: Berechnung der Gamma-Funktion + \label{laguerre:section:quad-gamma}} +Die Gauss-Laguerre-Quadratur kann nun verwendet werden, +um exponentiell abfallende Funktionen im Definitionsbereich $(0, \infty)$ zu +berechnen. +Dabei bietet sich z.B. die Gamma-Funkion bestens an, wie wir in den folgenden +Abschnitten sehen werden. + +\subsection{Gamma-Funktion} +Die Gamma-Funktion ist eine Erweiterung der Fakultät auf die reale und komplexe +Zahlenmenge. +Die Definition~\ref{buch:rekursion:def:gamma} beschreibt die Gamma-Funktion als +Integral der Form +\begin{align} +\Gamma(z) + & = +\int_0^\infty t^{z-1} e^{-t} dt +, +\quad +\text{wobei Realteil von $z$ grösser als $0$} +, +\label{laguerre:gamma} +\end{align} +welches alle Eigenschaften erfüllt, um mit der Gauss-Laguerre-Quadratur +berechnet zu werden. + +\subsubsection{Funktionalgleichung} +Die Funktionalgleichung besagt +\begin{align} +z \Gamma(z) = \Gamma(z+1). +\label{laguerre:gamma_funktional} +\end{align} +Mittels dieser Gleichung kann der Wert an einer bestimmten, +geeigneten Stelle evaluiert werden und dann zurückverschoben werden, +um das gewünschte Resultat zu erhalten. + +\subsection{Berechnung mittels Gauss-Laguerre-Quadratur} + +Fehlerterm: +\begin{align*} +R_n += +(z - 2n)_{2n} \frac{(n!)^2}{(2n)!} \xi^{z-2n-1} +\end{align*} + +\subsubsection{Finden der optimalen Berechnungsstelle} +Nun stellt sich die Frage, +ob die Approximation mittels Gauss-Laguerre-Quadratur verbessert werden kann, +wenn man das Problem an einer geeigneten Stelle evaluiert und +dann zurückverschiebt mit der Funktionalgleichung. +Dazu wollen wir den Fehlerterm in +Gleichung~\eqref{laguerre:lagurre:lag_error} anpassen und dann minimieren. +Zunächst wollen wir dies nur für $z\in \mathbb{R}$ und $0 Date: Thu, 19 May 2022 16:11:27 +0200 Subject: Error correction & add gamma integrand plot --- buch/papers/laguerre/eigenschaften.tex | 11 ++++++++-- buch/papers/laguerre/gamma.tex | 4 ++-- buch/papers/laguerre/quadratur.tex | 6 +++--- buch/papers/laguerre/scripts/integrand.py | 34 +++++++++++++++++++++++++++++++ 4 files changed, 48 insertions(+), 7 deletions(-) create mode 100644 buch/papers/laguerre/scripts/integrand.py (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index b0cc3a3..93d19a3 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -25,13 +25,20 @@ Sturm\--Liouville\--Problem umwandeln können, haben wir bewiesen, dass es sich bei den Laguerre\--Polynomen um orthogonale Polynome handelt (siehe Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}). -Der Sturm-Liouville-Operator hat die Form +Der Sturm-Liouville-Operator \begin{align} S = \frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right). \label{laguerre:slop} \end{align} +und der Laguerre-Operator +\begin{align} +\Lambda += +x \frac{d}{dx^2} + (\nu + 1 -x) \frac{d}{dx} +\end{align} +sind einander gleichzusetzen. Aus der Beziehung \begin{align} S @@ -56,7 +63,7 @@ Durch Separation erhalten wir dann \begin{align*} \int \frac{dp}{p} & = --\int \frac{\nu + 1 - x}{x}dx +-\int \frac{\nu + 1 - x}{x} \, dx \\ \log p & = diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex index e3838b0..b15523b 100644 --- a/buch/papers/laguerre/gamma.tex +++ b/buch/papers/laguerre/gamma.tex @@ -30,12 +30,12 @@ welches alle Eigenschaften erfüllt, um mit der Gauss-Laguerre-Quadratur berechnet zu werden. \subsubsection{Funktionalgleichung} -Die Funktionalgleichung besagt +Die Funktionalgleichung der Gamma-Funktion besagt \begin{align} z \Gamma(z) = \Gamma(z+1). \label{laguerre:gamma_funktional} \end{align} -Mittels dieser Gleichung kann der Wert an einer bestimmten, +Mittels dieser Gleichung kann der Wert von $\Gamma(z)$ an einer bestimmten, geeigneten Stelle evaluiert werden und dann zurückverschoben werden, um das gewünschte Resultat zu erhalten. diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 60fad7f..be69dee 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -7,7 +7,7 @@ \label{laguerre:section:quadratur}} {\large \color{red} TODO: Einleitung und kurze Beschreibung Gauss-Quadratur} \begin{align} -\int_a^b f(x) w(x) +\int_a^b f(x) w(x) \, dx \approx \sum_{i=1}^N f(x_i) A_i \label{laguerre:gaussquadratur} @@ -33,7 +33,7 @@ Gleichung~\eqref{laguerre:laguerrequadratur} lässt sich wiefolgt umformulieren: Nach der Definition der Gauss-Quadratur müssen als Stützstellen die Nullstellen des verwendeten Polynoms genommen werden. Das heisst für das Laguerre-Polynom $L_n$ müssen dessen Nullstellen $x_i$ und -als Gewichte $A_i$ werden die Integrale $l_i(x)e^{-x}$ verwendet werden. +als Gewichte $A_i$ die Integrale $l_i(x)e^{-x}$ verwendet werden. Dabei sind \begin{align*} l_i(x_j) @@ -57,7 +57,7 @@ A_i \subsubsection{Fehlerterm} Der Fehlerterm $R_n$ folgt direkt aus der Approximation \begin{align*} -\int_0^{\infty} f(x) e^{-x} dx +\int_0^{\infty} f(x) e^{-x} \, dx = \sum_{i=1}^n f(x_i) A_i + R_n \end{align*} diff --git a/buch/papers/laguerre/scripts/integrand.py b/buch/papers/laguerre/scripts/integrand.py new file mode 100644 index 0000000..89b9256 --- /dev/null +++ b/buch/papers/laguerre/scripts/integrand.py @@ -0,0 +1,34 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +"""Plot for integrand of gamma function with shifting terms.""" + +import os +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np + +EPSILON = 1e-12 +xlims = np.array([-3, 3]) + +root = str(Path(__file__).parent) +img_path = f"{root}/../images" +os.makedirs(img_path, exist_ok=True) + +t = np.logspace(*xlims, 1001)[:, None] +z = np.arange(-5, 5)[None] + 0.5 + + +r = t ** z + +fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4)) +ax.semilogx(t, r) +ax.set_xlim(*(10.**xlims)) +ax.set_ylim(1e-3, 40) +ax.set_xlabel(r"$t$") +ax.set_ylabel(r"$t^z$") +ax.grid(1, "both") +labels = [f"$z={zi:.1f}$" for zi in np.squeeze(z)] +ax.legend(labels, ncol=2, loc="upper left") +fig.savefig(f"{img_path}/integrands.pdf") +# plt.show() -- cgit v1.2.1 From 161adb15af8d10ccf6090a43a4c89b0d05c6ecda Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Sat, 28 May 2022 16:16:52 +0200 Subject: Add introduction, integrand plot and reason why shifting evalutaion of gamma-func --- buch/papers/laguerre/definition.tex | 22 +- buch/papers/laguerre/eigenschaften.tex | 42 +- buch/papers/laguerre/gamma.tex | 21 +- buch/papers/laguerre/images/integrands.pgf | 2907 ++++++++++++++++++++ buch/papers/laguerre/images/integrands_exp.pgf | 2035 ++++++++++++++ buch/papers/laguerre/images/laguerre_polynomes.pdf | Bin 16239 -> 0 bytes buch/papers/laguerre/images/laguerre_polynomes.pgf | 1838 +++++++++++++ buch/papers/laguerre/main.tex | 16 +- buch/papers/laguerre/quadratur.tex | 2 +- buch/papers/laguerre/scripts/gamma_approx.ipynb | 98 +- buch/papers/laguerre/scripts/integrand.py | 24 +- buch/papers/laguerre/scripts/laguerre_plot.py | 5 +- 12 files changed, 6955 insertions(+), 55 deletions(-) create mode 100644 buch/papers/laguerre/images/integrands.pgf create mode 100644 buch/papers/laguerre/images/integrands_exp.pgf delete mode 100644 buch/papers/laguerre/images/laguerre_polynomes.pdf create mode 100644 buch/papers/laguerre/images/laguerre_polynomes.pgf (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index d111f6f..f1f0d00 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -118,6 +118,17 @@ L_n^\nu(x) \sum_{k=0}^{n} \frac{(-1)^k}{(\nu + 1)_k} \binom{n}{k} x^k. \label{laguerre:allg_polynom} \end{align} +Die Laguerre-Polynome von Grad $0$ bis $7$ sind in +Abbildung~\ref{laguerre:fig:polyeval} dargestellt. +\begin{figure} +\centering +\scalebox{0.8}{\input{papers/laguerre/images/laguerre_polynomes.pgf}} +% \includegraphics[width=0.7\textwidth]{% +% papers/laguerre/images/laguerre_polynomes.eps% +% } +\caption{Laguerre-Polynome vom Grad $0$ bis $7$} +\label{laguerre:fig:polyeval} +\end{figure} \subsection{Analytische Fortsetzung} Durch die analytische Fortsetzung erhalten wir zudem noch die zweite Lösung der @@ -142,16 +153,5 @@ L_n(x) \ln(x) \end{align*} wobei $\alpha_0 = 0$ und $\alpha_k =\sum_{i=1}^k i^{-1}$, $\forall k \in \mathbb{N}$. -Die Laguerre-Polynome von Grad $0$ bis $7$ sind in -Abbildung~\ref{laguerre:fig:polyeval} dargestellt. -\begin{figure} -\centering -\includegraphics[width=0.7\textwidth]{% - papers/laguerre/images/laguerre_polynomes.pdf% -} -\caption{Laguerre-Polynome vom Grad $0$ bis $7$} -\label{laguerre:fig:polyeval} -\end{figure} - % https://www.math.kit.edu/iana1/lehre/hm3phys2012w/media/laguerre.pdf % http://www.physics.okayama-u.ac.jp/jeschke_homepage/E4/kapitel4.pdf diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index 93d19a3..77b2a2c 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -3,20 +3,22 @@ % % (c) 2022 Patrik Müller, Ostschweizer Fachhochschule % -\section{Eigenschaften - \label{laguerre:section:eigenschaften}} -{ -\large \color{red} -TODO: -Evtl. nur Orthogonalität hier behandeln, da nur diese für die Gauss-Quadratur -benötigt wird. -} +% \section{Eigenschaften +% \label{laguerre:section:eigenschaften}} +% { +% \large \color{red} +% TODO: +% Evtl. nur Orthogonalität hier behandeln, da nur diese für die Gauss-Quadratur +% benötigt wird. +% } -Die Laguerre-Polynome besitzen einige interessante Eigenschaften -\rhead{Eigenschaften} +% Die Laguerre-Polynome besitzen einige interessante Eigenschaften +% \rhead{Eigenschaften} -\subsection{Orthogonalität - \label{laguerre:subsection:orthogonal}} +% \subsection{Orthogonalität +% \label{laguerre:subsection:orthogonal}} +\section{Orthogonalität + \label{laguerre:section:orthogonal}} Im Abschnitt~\ref{laguerre:section:definition} haben wir behauptet, dass die Laguerre-Polynome orthogonale Polynome sind. Zu dieser Behauptung möchten wir nun einen Beweis liefern. @@ -113,14 +115,14 @@ Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb}) 0 \end{align*} für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$. -Damit können wir schlussfolgern, dass die Laguerre-Polynome orthogonal -bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$ mit der Laguerre\--Gewichtsfunktion -$w(x)=x^\nu e^{-x}$ sind. +Damit können wir schlussfolgern, dass die verallgemeinerten Laguerre-Polynome +orthogonal bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$ +mit der verallgemeinerten Laguerre\--Gewichtsfunktion $w(x)=x^\nu e^{-x}$ sind. +Die Laguerre-Polynome ($\nu=0$) sind somit orthognal im Intervall $(0, \infty)$ +mit der Gewichtsfunktion $w(x)=e^{-x}$. +% \subsection{Rodrigues-Formel} -\subsection{Rodrigues-Formel} - -\subsection{Drei-Terme Rekursion} - -\subsection{Beziehung mit der Hypergeometrischen Funktion} +% \subsection{Drei-Terme Rekursion} +% \subsection{Beziehung mit der Hypergeometrischen Funktion} diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex index b15523b..59c0b81 100644 --- a/buch/papers/laguerre/gamma.tex +++ b/buch/papers/laguerre/gamma.tex @@ -26,8 +26,10 @@ Integral der Form , \label{laguerre:gamma} \end{align} -welches alle Eigenschaften erfüllt, um mit der Gauss-Laguerre-Quadratur -berechnet zu werden. +Der Term $e^{-t}$ ist genau die Gewichtsfunktion der Laguerre-Integration und +der Definitionsbereich passt ebenfalls genau für dieses Verfahren. +Zu erwähnen ist auch, dass für die verallgemeinerte Laguerre-Integration die +Gewichtsfunktion $t^\nu e^{-t}$ genau dem Integranden für $\nu=z-1$ entspricht. \subsubsection{Funktionalgleichung} Die Funktionalgleichung der Gamma-Funktion besagt @@ -39,6 +41,19 @@ Mittels dieser Gleichung kann der Wert von $\Gamma(z)$ an einer bestimmten, geeigneten Stelle evaluiert werden und dann zurückverschoben werden, um das gewünschte Resultat zu erhalten. +In Abbildung~\ref{laguerre:fig:integrand} ist der Integrand $t^z$ für +unterschiedliche Werte von $z$ dargestellt. +Man erkennt, dass für kleine $z$ sich ein singulärer Integrand ergibt, +was dazu führt, dass die Genauigkeit sich verschlechtert. +Die Genauigkeit verschlechtert sich aber auch zunehmends für grosse $z$, +da in diesem Fall der Integrand sehr schnell anwächst. +\begin{figure} +\centering +\scalebox{0.8}{\input{papers/laguerre/images/integrands.pgf}} +\caption{Integrand $t^z$ mit unterschiedlichen Werten für $z$} +\label{laguerre:fig:integrand} +\end{figure} + \subsection{Berechnung mittels Gauss-Laguerre-Quadratur} Fehlerterm: @@ -52,7 +67,7 @@ R_n Nun stellt sich die Frage, ob die Approximation mittels Gauss-Laguerre-Quadratur verbessert werden kann, wenn man das Problem an einer geeigneten Stelle evaluiert und -dann zurückverschiebt mit der Funktionalgleichung. +dann mit der Funktionalgleichung zurückverschiebt. Dazu wollen wir den Fehlerterm in Gleichung~\eqref{laguerre:lagurre:lag_error} anpassen und dann minimieren. Zunächst wollen wir dies nur für $z\in \mathbb{R}$ und $0.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.505591in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.397615in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.397615in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.397615in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.397615in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.289638in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.289638in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.289638in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.289638in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.181661in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.181661in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.181661in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.181661in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.073685in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.073685in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.073685in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.073685in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.965708in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.965708in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.965708in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.965708in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.857732in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.857732in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.857732in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.774117in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.774117in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.774117in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.931195in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.931195in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.931195in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.042643in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.042643in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.042643in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.129089in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.129089in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.129089in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.199720in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.199720in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.199720in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.259438in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.259438in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.259438in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.311169in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.311169in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.311169in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.356798in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.356798in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.356798in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.666140in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.666140in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.666140in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.823218in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.823218in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.823218in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.934666in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.934666in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.934666in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.021112in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.021112in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.021112in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.091744in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.091744in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.091744in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.151462in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.151462in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.151462in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.203192in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.203192in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.203192in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.248821in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.248821in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.248821in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.558164in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.558164in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.558164in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.715241in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.715241in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.715241in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.826690in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.826690in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.826690in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.913136in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.913136in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.913136in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.983767in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.983767in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.983767in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.043485in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.043485in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.043485in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.095215in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.095215in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.095215in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.140845in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.140845in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.140845in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.450187in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.450187in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.450187in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.607265in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.607265in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.607265in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.718713in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.718713in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.718713in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.805159in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.805159in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.805159in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.875791in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.875791in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.875791in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.935509in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.935509in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.935509in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.987239in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.987239in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.987239in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.032868in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.032868in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.032868in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.342211in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.342211in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.342211in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.499288in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.499288in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.499288in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.610736in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.610736in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.610736in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.697182in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.697182in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.697182in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.767814in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.767814in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.767814in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.827532in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.827532in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.827532in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.879262in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.879262in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.879262in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.924892in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.924892in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.924892in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.234234in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.234234in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.234234in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.391312in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.391312in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.391312in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.502760in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.502760in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.502760in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.589206in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.589206in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.589206in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.659837in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.659837in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.659837in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.719555in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.719555in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.719555in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.771286in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.771286in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.771286in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.816915in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.816915in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.816915in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.181661in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle t\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.893485in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.893485in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{0.893485in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=0.840723in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{1.323783in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{1.323783in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.323783in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=1.271021in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{1.754080in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{1.754080in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.754080in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=1.701319in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{2.184378in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{2.184378in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{2.184378in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=2.131616in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{2.614676in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{2.614676in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{2.614676in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=2.561914in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{3.044973in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.044973in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{3.044973in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=2.992212in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{3.475271in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.475271in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{3.475271in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=3.422509in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 35}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{3.905568in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=3.852807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 40}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.176083in,y=2.184421in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle t^z\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.863879in}{3.915568in}}% +\pgfpathlineto{\pgfqpoint{2.876589in}{3.440325in}}% +\pgfpathlineto{\pgfqpoint{2.892646in}{2.933768in}}% +\pgfpathlineto{\pgfqpoint{2.908702in}{2.513400in}}% +\pgfpathlineto{\pgfqpoint{2.924759in}{2.164558in}}% +\pgfpathlineto{\pgfqpoint{2.940815in}{1.875071in}}% +\pgfpathlineto{\pgfqpoint{2.956872in}{1.634840in}}% +\pgfpathlineto{\pgfqpoint{2.972928in}{1.435484in}}% +\pgfpathlineto{\pgfqpoint{2.988984in}{1.270049in}}% +\pgfpathlineto{\pgfqpoint{3.005041in}{1.132762in}}% +\pgfpathlineto{\pgfqpoint{3.021097in}{1.018834in}}% +\pgfpathlineto{\pgfqpoint{3.037154in}{0.924291in}}% +\pgfpathlineto{\pgfqpoint{3.053210in}{0.845835in}}% +\pgfpathlineto{\pgfqpoint{3.069267in}{0.780728in}}% +\pgfpathlineto{\pgfqpoint{3.085323in}{0.726698in}}% +\pgfpathlineto{\pgfqpoint{3.101379in}{0.681862in}}% +\pgfpathlineto{\pgfqpoint{3.117436in}{0.644655in}}% +\pgfpathlineto{\pgfqpoint{3.133492in}{0.613778in}}% +\pgfpathlineto{\pgfqpoint{3.149549in}{0.588155in}}% +\pgfpathlineto{\pgfqpoint{3.165605in}{0.566892in}}% +\pgfpathlineto{\pgfqpoint{3.181661in}{0.549247in}}% +\pgfpathlineto{\pgfqpoint{3.197718in}{0.534604in}}% +\pgfpathlineto{\pgfqpoint{3.213774in}{0.522452in}}% +\pgfpathlineto{\pgfqpoint{3.235183in}{0.509404in}}% +\pgfpathlineto{\pgfqpoint{3.256591in}{0.499228in}}% +\pgfpathlineto{\pgfqpoint{3.278000in}{0.491293in}}% +\pgfpathlineto{\pgfqpoint{3.304761in}{0.483784in}}% +\pgfpathlineto{\pgfqpoint{3.336874in}{0.477371in}}% +\pgfpathlineto{\pgfqpoint{3.374339in}{0.472366in}}% +\pgfpathlineto{\pgfqpoint{3.422508in}{0.468433in}}% +\pgfpathlineto{\pgfqpoint{3.486733in}{0.465675in}}% +\pgfpathlineto{\pgfqpoint{3.583072in}{0.464000in}}% +\pgfpathlineto{\pgfqpoint{3.781101in}{0.463269in}}% +\pgfpathlineto{\pgfqpoint{5.076319in}{0.463187in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.463187in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.463187in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.466580in}{3.915568in}}% +\pgfpathlineto{\pgfqpoint{2.485883in}{3.587820in}}% +\pgfpathlineto{\pgfqpoint{2.507292in}{3.260873in}}% +\pgfpathlineto{\pgfqpoint{2.528700in}{2.968137in}}% +\pgfpathlineto{\pgfqpoint{2.550109in}{2.706031in}}% +\pgfpathlineto{\pgfqpoint{2.571517in}{2.471350in}}% +\pgfpathlineto{\pgfqpoint{2.592926in}{2.261226in}}% +\pgfpathlineto{\pgfqpoint{2.614335in}{2.073088in}}% +\pgfpathlineto{\pgfqpoint{2.635743in}{1.904635in}}% +\pgfpathlineto{\pgfqpoint{2.657152in}{1.753809in}}% +\pgfpathlineto{\pgfqpoint{2.678560in}{1.618764in}}% +\pgfpathlineto{\pgfqpoint{2.699969in}{1.497850in}}% +\pgfpathlineto{\pgfqpoint{2.721377in}{1.389588in}}% +\pgfpathlineto{\pgfqpoint{2.742786in}{1.292654in}}% +\pgfpathlineto{\pgfqpoint{2.764195in}{1.205863in}}% +\pgfpathlineto{\pgfqpoint{2.785603in}{1.128153in}}% +\pgfpathlineto{\pgfqpoint{2.807012in}{1.058574in}}% +\pgfpathlineto{\pgfqpoint{2.828420in}{0.996275in}}% +\pgfpathlineto{\pgfqpoint{2.849829in}{0.940496in}}% +\pgfpathlineto{\pgfqpoint{2.871237in}{0.890552in}}% +\pgfpathlineto{\pgfqpoint{2.892646in}{0.845835in}}% +\pgfpathlineto{\pgfqpoint{2.914054in}{0.805796in}}% +\pgfpathlineto{\pgfqpoint{2.935463in}{0.769947in}}% +\pgfpathlineto{\pgfqpoint{2.956872in}{0.737850in}}% +\pgfpathlineto{\pgfqpoint{2.978280in}{0.709110in}}% +\pgfpathlineto{\pgfqpoint{3.005041in}{0.677377in}}% +\pgfpathlineto{\pgfqpoint{3.031802in}{0.649739in}}% +\pgfpathlineto{\pgfqpoint{3.058562in}{0.625667in}}% +\pgfpathlineto{\pgfqpoint{3.085323in}{0.604701in}}% +\pgfpathlineto{\pgfqpoint{3.112084in}{0.586441in}}% +\pgfpathlineto{\pgfqpoint{3.138844in}{0.570537in}}% +\pgfpathlineto{\pgfqpoint{3.170957in}{0.554136in}}% +\pgfpathlineto{\pgfqpoint{3.203070in}{0.540242in}}% +\pgfpathlineto{\pgfqpoint{3.240535in}{0.526691in}}% +\pgfpathlineto{\pgfqpoint{3.278000in}{0.515523in}}% +\pgfpathlineto{\pgfqpoint{3.320817in}{0.505144in}}% +\pgfpathlineto{\pgfqpoint{3.368986in}{0.495906in}}% +\pgfpathlineto{\pgfqpoint{3.422508in}{0.488007in}}% +\pgfpathlineto{\pgfqpoint{3.486733in}{0.481003in}}% +\pgfpathlineto{\pgfqpoint{3.561663in}{0.475288in}}% +\pgfpathlineto{\pgfqpoint{3.652650in}{0.470752in}}% +\pgfpathlineto{\pgfqpoint{3.770397in}{0.467306in}}% +\pgfpathlineto{\pgfqpoint{3.936313in}{0.464936in}}% +\pgfpathlineto{\pgfqpoint{4.209272in}{0.463615in}}% +\pgfpathlineto{\pgfqpoint{4.910403in}{0.463199in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.463187in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.463187in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.751469in}{3.915568in}}% +\pgfpathlineto{\pgfqpoint{1.779401in}{3.675361in}}% +\pgfpathlineto{\pgfqpoint{1.811514in}{3.419831in}}% +\pgfpathlineto{\pgfqpoint{1.843626in}{3.184629in}}% +\pgfpathlineto{\pgfqpoint{1.875739in}{2.968137in}}% +\pgfpathlineto{\pgfqpoint{1.907852in}{2.768867in}}% +\pgfpathlineto{\pgfqpoint{1.939965in}{2.585449in}}% +\pgfpathlineto{\pgfqpoint{1.972078in}{2.416622in}}% +\pgfpathlineto{\pgfqpoint{2.004191in}{2.261226in}}% +\pgfpathlineto{\pgfqpoint{2.036303in}{2.118191in}}% +\pgfpathlineto{\pgfqpoint{2.068416in}{1.986535in}}% +\pgfpathlineto{\pgfqpoint{2.100529in}{1.865352in}}% +\pgfpathlineto{\pgfqpoint{2.132642in}{1.753809in}}% +\pgfpathlineto{\pgfqpoint{2.164755in}{1.651139in}}% +\pgfpathlineto{\pgfqpoint{2.196868in}{1.556637in}}% +\pgfpathlineto{\pgfqpoint{2.228980in}{1.469653in}}% +\pgfpathlineto{\pgfqpoint{2.261093in}{1.389588in}}% +\pgfpathlineto{\pgfqpoint{2.293206in}{1.315893in}}% +\pgfpathlineto{\pgfqpoint{2.325319in}{1.248060in}}% +\pgfpathlineto{\pgfqpoint{2.357432in}{1.185623in}}% +\pgfpathlineto{\pgfqpoint{2.389545in}{1.128153in}}% +\pgfpathlineto{\pgfqpoint{2.421658in}{1.075254in}}% +\pgfpathlineto{\pgfqpoint{2.453770in}{1.026564in}}% +\pgfpathlineto{\pgfqpoint{2.485883in}{0.981747in}}% +\pgfpathlineto{\pgfqpoint{2.517996in}{0.940496in}}% +\pgfpathlineto{\pgfqpoint{2.550109in}{0.902525in}}% +\pgfpathlineto{\pgfqpoint{2.582222in}{0.867576in}}% +\pgfpathlineto{\pgfqpoint{2.619687in}{0.830300in}}% +\pgfpathlineto{\pgfqpoint{2.657152in}{0.796459in}}% +\pgfpathlineto{\pgfqpoint{2.694617in}{0.765739in}}% +\pgfpathlineto{\pgfqpoint{2.732082in}{0.737850in}}% +\pgfpathlineto{\pgfqpoint{2.769547in}{0.712531in}}% +\pgfpathlineto{\pgfqpoint{2.812364in}{0.686441in}}% +\pgfpathlineto{\pgfqpoint{2.855181in}{0.663081in}}% +\pgfpathlineto{\pgfqpoint{2.897998in}{0.642165in}}% +\pgfpathlineto{\pgfqpoint{2.946167in}{0.621239in}}% +\pgfpathlineto{\pgfqpoint{2.994337in}{0.602759in}}% +\pgfpathlineto{\pgfqpoint{3.047858in}{0.584750in}}% +\pgfpathlineto{\pgfqpoint{3.101379in}{0.569064in}}% +\pgfpathlineto{\pgfqpoint{3.160253in}{0.554136in}}% +\pgfpathlineto{\pgfqpoint{3.224479in}{0.540242in}}% +\pgfpathlineto{\pgfqpoint{3.294056in}{0.527574in}}% +\pgfpathlineto{\pgfqpoint{3.368986in}{0.516251in}}% +\pgfpathlineto{\pgfqpoint{3.449268in}{0.506319in}}% +\pgfpathlineto{\pgfqpoint{3.540255in}{0.497291in}}% +\pgfpathlineto{\pgfqpoint{3.641946in}{0.489417in}}% +\pgfpathlineto{\pgfqpoint{3.759693in}{0.482543in}}% +\pgfpathlineto{\pgfqpoint{3.898848in}{0.476702in}}% +\pgfpathlineto{\pgfqpoint{4.070117in}{0.471873in}}% +\pgfpathlineto{\pgfqpoint{4.284202in}{0.468185in}}% +\pgfpathlineto{\pgfqpoint{4.573218in}{0.465558in}}% +\pgfpathlineto{\pgfqpoint{5.022798in}{0.463930in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{3.184629in}}% +\pgfpathlineto{\pgfqpoint{0.548408in}{3.038316in}}% +\pgfpathlineto{\pgfqpoint{0.591225in}{2.899870in}}% +\pgfpathlineto{\pgfqpoint{0.634043in}{2.768867in}}% +\pgfpathlineto{\pgfqpoint{0.676860in}{2.644907in}}% +\pgfpathlineto{\pgfqpoint{0.719677in}{2.527612in}}% +\pgfpathlineto{\pgfqpoint{0.762494in}{2.416622in}}% +\pgfpathlineto{\pgfqpoint{0.805311in}{2.311600in}}% +\pgfpathlineto{\pgfqpoint{0.848128in}{2.212224in}}% +\pgfpathlineto{\pgfqpoint{0.890945in}{2.118191in}}% +\pgfpathlineto{\pgfqpoint{0.933762in}{2.029213in}}% +\pgfpathlineto{\pgfqpoint{0.976580in}{1.945019in}}% +\pgfpathlineto{\pgfqpoint{1.019397in}{1.865352in}}% +\pgfpathlineto{\pgfqpoint{1.062214in}{1.789967in}}% +\pgfpathlineto{\pgfqpoint{1.105031in}{1.718636in}}% +\pgfpathlineto{\pgfqpoint{1.153200in}{1.642962in}}% +\pgfpathlineto{\pgfqpoint{1.201370in}{1.571849in}}% +\pgfpathlineto{\pgfqpoint{1.249539in}{1.505022in}}% +\pgfpathlineto{\pgfqpoint{1.297708in}{1.442224in}}% +\pgfpathlineto{\pgfqpoint{1.345877in}{1.383211in}}% +\pgfpathlineto{\pgfqpoint{1.394047in}{1.327755in}}% +\pgfpathlineto{\pgfqpoint{1.442216in}{1.275642in}}% +\pgfpathlineto{\pgfqpoint{1.490385in}{1.226670in}}% +\pgfpathlineto{\pgfqpoint{1.538554in}{1.180649in}}% +\pgfpathlineto{\pgfqpoint{1.592076in}{1.132762in}}% +\pgfpathlineto{\pgfqpoint{1.645597in}{1.088071in}}% +\pgfpathlineto{\pgfqpoint{1.699119in}{1.046362in}}% +\pgfpathlineto{\pgfqpoint{1.752640in}{1.007438in}}% +\pgfpathlineto{\pgfqpoint{1.806161in}{0.971112in}}% +\pgfpathlineto{\pgfqpoint{1.865035in}{0.933947in}}% +\pgfpathlineto{\pgfqpoint{1.923908in}{0.899501in}}% +\pgfpathlineto{\pgfqpoint{1.982782in}{0.867576in}}% +\pgfpathlineto{\pgfqpoint{2.047008in}{0.835407in}}% +\pgfpathlineto{\pgfqpoint{2.111233in}{0.805796in}}% +\pgfpathlineto{\pgfqpoint{2.175459in}{0.778542in}}% +\pgfpathlineto{\pgfqpoint{2.245037in}{0.751457in}}% +\pgfpathlineto{\pgfqpoint{2.314615in}{0.726698in}}% +\pgfpathlineto{\pgfqpoint{2.389545in}{0.702408in}}% +\pgfpathlineto{\pgfqpoint{2.469827in}{0.678862in}}% +\pgfpathlineto{\pgfqpoint{2.550109in}{0.657633in}}% +\pgfpathlineto{\pgfqpoint{2.635743in}{0.637287in}}% +\pgfpathlineto{\pgfqpoint{2.726730in}{0.617997in}}% +\pgfpathlineto{\pgfqpoint{2.823068in}{0.599897in}}% +\pgfpathlineto{\pgfqpoint{2.924759in}{0.583082in}}% +\pgfpathlineto{\pgfqpoint{3.031802in}{0.567611in}}% +\pgfpathlineto{\pgfqpoint{3.149549in}{0.552889in}}% +\pgfpathlineto{\pgfqpoint{3.278000in}{0.539185in}}% +\pgfpathlineto{\pgfqpoint{3.417156in}{0.526691in}}% +\pgfpathlineto{\pgfqpoint{3.567016in}{0.515523in}}% +\pgfpathlineto{\pgfqpoint{3.732932in}{0.505435in}}% +\pgfpathlineto{\pgfqpoint{3.920257in}{0.496361in}}% +\pgfpathlineto{\pgfqpoint{4.128990in}{0.488527in}}% +\pgfpathlineto{\pgfqpoint{4.369837in}{0.481757in}}% +\pgfpathlineto{\pgfqpoint{4.653500in}{0.476064in}}% +\pgfpathlineto{\pgfqpoint{5.001389in}{0.471406in}}% +\pgfpathlineto{\pgfqpoint{5.445617in}{0.467820in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.465909in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.465909in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.549247in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.549247in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.549247in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.465909in}}% +\pgfpathlineto{\pgfqpoint{1.115735in}{0.469169in}}% +\pgfpathlineto{\pgfqpoint{1.543906in}{0.473582in}}% +\pgfpathlineto{\pgfqpoint{1.875739in}{0.479139in}}% +\pgfpathlineto{\pgfqpoint{2.148698in}{0.485875in}}% +\pgfpathlineto{\pgfqpoint{2.378840in}{0.493722in}}% +\pgfpathlineto{\pgfqpoint{2.576870in}{0.502615in}}% +\pgfpathlineto{\pgfqpoint{2.753490in}{0.512709in}}% +\pgfpathlineto{\pgfqpoint{2.914054in}{0.524113in}}% +\pgfpathlineto{\pgfqpoint{3.058562in}{0.536605in}}% +\pgfpathlineto{\pgfqpoint{3.187014in}{0.549843in}}% +\pgfpathlineto{\pgfqpoint{3.310113in}{0.564765in}}% +\pgfpathlineto{\pgfqpoint{3.422508in}{0.580623in}}% +\pgfpathlineto{\pgfqpoint{3.529551in}{0.598021in}}% +\pgfpathlineto{\pgfqpoint{3.625889in}{0.615873in}}% +\pgfpathlineto{\pgfqpoint{3.716875in}{0.634899in}}% +\pgfpathlineto{\pgfqpoint{3.802510in}{0.654965in}}% +\pgfpathlineto{\pgfqpoint{3.888144in}{0.677377in}}% +\pgfpathlineto{\pgfqpoint{3.968426in}{0.700761in}}% +\pgfpathlineto{\pgfqpoint{4.043356in}{0.724884in}}% +\pgfpathlineto{\pgfqpoint{4.112934in}{0.749473in}}% +\pgfpathlineto{\pgfqpoint{4.182512in}{0.776371in}}% +\pgfpathlineto{\pgfqpoint{4.246737in}{0.803438in}}% +\pgfpathlineto{\pgfqpoint{4.310963in}{0.832844in}}% +\pgfpathlineto{\pgfqpoint{4.375189in}{0.864792in}}% +\pgfpathlineto{\pgfqpoint{4.434062in}{0.896498in}}% +\pgfpathlineto{\pgfqpoint{4.492936in}{0.930706in}}% +\pgfpathlineto{\pgfqpoint{4.551809in}{0.967615in}}% +\pgfpathlineto{\pgfqpoint{4.605331in}{1.003691in}}% +\pgfpathlineto{\pgfqpoint{4.658852in}{1.042348in}}% +\pgfpathlineto{\pgfqpoint{4.712374in}{1.083769in}}% +\pgfpathlineto{\pgfqpoint{4.765895in}{1.128153in}}% +\pgfpathlineto{\pgfqpoint{4.819416in}{1.175710in}}% +\pgfpathlineto{\pgfqpoint{4.867586in}{1.221414in}}% +\pgfpathlineto{\pgfqpoint{4.915755in}{1.270049in}}% +\pgfpathlineto{\pgfqpoint{4.963924in}{1.321803in}}% +\pgfpathlineto{\pgfqpoint{5.012093in}{1.376877in}}% +\pgfpathlineto{\pgfqpoint{5.060263in}{1.435484in}}% +\pgfpathlineto{\pgfqpoint{5.108432in}{1.497850in}}% +\pgfpathlineto{\pgfqpoint{5.156601in}{1.564217in}}% +\pgfpathlineto{\pgfqpoint{5.199418in}{1.626775in}}% +\pgfpathlineto{\pgfqpoint{5.242236in}{1.692887in}}% +\pgfpathlineto{\pgfqpoint{5.285053in}{1.762755in}}% +\pgfpathlineto{\pgfqpoint{5.327870in}{1.836593in}}% +\pgfpathlineto{\pgfqpoint{5.370687in}{1.914627in}}% +\pgfpathlineto{\pgfqpoint{5.413504in}{1.997094in}}% +\pgfpathlineto{\pgfqpoint{5.456321in}{2.084247in}}% +\pgfpathlineto{\pgfqpoint{5.499138in}{2.176351in}}% +\pgfpathlineto{\pgfqpoint{5.541955in}{2.273689in}}% +\pgfpathlineto{\pgfqpoint{5.584773in}{2.376557in}}% +\pgfpathlineto{\pgfqpoint{5.627590in}{2.485270in}}% +\pgfpathlineto{\pgfqpoint{5.670407in}{2.600160in}}% +\pgfpathlineto{\pgfqpoint{5.713224in}{2.721577in}}% +\pgfpathlineto{\pgfqpoint{5.756041in}{2.849894in}}% +\pgfpathlineto{\pgfqpoint{5.798858in}{2.985500in}}% +\pgfpathlineto{\pgfqpoint{5.841675in}{3.128812in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.184629in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.184629in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.592076in}{0.464609in}}% +\pgfpathlineto{\pgfqpoint{1.993486in}{0.467194in}}% +\pgfpathlineto{\pgfqpoint{2.250389in}{0.470964in}}% +\pgfpathlineto{\pgfqpoint{2.437714in}{0.475800in}}% +\pgfpathlineto{\pgfqpoint{2.587574in}{0.481757in}}% +\pgfpathlineto{\pgfqpoint{2.716025in}{0.489057in}}% +\pgfpathlineto{\pgfqpoint{2.823068in}{0.497291in}}% +\pgfpathlineto{\pgfqpoint{2.919407in}{0.506919in}}% +\pgfpathlineto{\pgfqpoint{3.005041in}{0.517738in}}% +\pgfpathlineto{\pgfqpoint{3.079971in}{0.529378in}}% +\pgfpathlineto{\pgfqpoint{3.149549in}{0.542401in}}% +\pgfpathlineto{\pgfqpoint{3.213774in}{0.556685in}}% +\pgfpathlineto{\pgfqpoint{3.272648in}{0.572030in}}% +\pgfpathlineto{\pgfqpoint{3.326169in}{0.588155in}}% +\pgfpathlineto{\pgfqpoint{3.379691in}{0.606670in}}% +\pgfpathlineto{\pgfqpoint{3.427860in}{0.625667in}}% +\pgfpathlineto{\pgfqpoint{3.476029in}{0.647179in}}% +\pgfpathlineto{\pgfqpoint{3.518846in}{0.668681in}}% +\pgfpathlineto{\pgfqpoint{3.561663in}{0.692696in}}% +\pgfpathlineto{\pgfqpoint{3.604481in}{0.719517in}}% +\pgfpathlineto{\pgfqpoint{3.641946in}{0.745545in}}% +\pgfpathlineto{\pgfqpoint{3.679411in}{0.774215in}}% +\pgfpathlineto{\pgfqpoint{3.716875in}{0.805796in}}% +\pgfpathlineto{\pgfqpoint{3.754340in}{0.840585in}}% +\pgfpathlineto{\pgfqpoint{3.786453in}{0.873202in}}% +\pgfpathlineto{\pgfqpoint{3.818566in}{0.908637in}}% +\pgfpathlineto{\pgfqpoint{3.850679in}{0.947136in}}% +\pgfpathlineto{\pgfqpoint{3.882792in}{0.988961in}}% +\pgfpathlineto{\pgfqpoint{3.914905in}{1.034401in}}% +\pgfpathlineto{\pgfqpoint{3.947018in}{1.083769in}}% +\pgfpathlineto{\pgfqpoint{3.979130in}{1.137403in}}% +\pgfpathlineto{\pgfqpoint{4.011243in}{1.195673in}}% +\pgfpathlineto{\pgfqpoint{4.043356in}{1.258978in}}% +\pgfpathlineto{\pgfqpoint{4.075469in}{1.327755in}}% +\pgfpathlineto{\pgfqpoint{4.107582in}{1.402476in}}% +\pgfpathlineto{\pgfqpoint{4.139695in}{1.483654in}}% +\pgfpathlineto{\pgfqpoint{4.171807in}{1.571849in}}% +\pgfpathlineto{\pgfqpoint{4.203920in}{1.667666in}}% +\pgfpathlineto{\pgfqpoint{4.236033in}{1.771763in}}% +\pgfpathlineto{\pgfqpoint{4.268146in}{1.884858in}}% +\pgfpathlineto{\pgfqpoint{4.300259in}{2.007727in}}% +\pgfpathlineto{\pgfqpoint{4.332372in}{2.141214in}}% +\pgfpathlineto{\pgfqpoint{4.364484in}{2.286239in}}% +\pgfpathlineto{\pgfqpoint{4.391245in}{2.416622in}}% +\pgfpathlineto{\pgfqpoint{4.418006in}{2.556331in}}% +\pgfpathlineto{\pgfqpoint{4.444767in}{2.706031in}}% +\pgfpathlineto{\pgfqpoint{4.471527in}{2.866437in}}% +\pgfpathlineto{\pgfqpoint{4.498288in}{3.038316in}}% +\pgfpathlineto{\pgfqpoint{4.525049in}{3.222488in}}% +\pgfpathlineto{\pgfqpoint{4.551809in}{3.419831in}}% +\pgfpathlineto{\pgfqpoint{4.578570in}{3.631288in}}% +\pgfpathlineto{\pgfqpoint{4.605331in}{3.857868in}}% +\pgfpathlineto{\pgfqpoint{4.611854in}{3.915568in}}% +\pgfpathlineto{\pgfqpoint{4.611854in}{3.915568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463187in}}% +\pgfpathlineto{\pgfqpoint{2.336023in}{0.464281in}}% +\pgfpathlineto{\pgfqpoint{2.560813in}{0.466677in}}% +\pgfpathlineto{\pgfqpoint{2.694617in}{0.470150in}}% +\pgfpathlineto{\pgfqpoint{2.796307in}{0.474958in}}% +\pgfpathlineto{\pgfqpoint{2.876589in}{0.481003in}}% +\pgfpathlineto{\pgfqpoint{2.940815in}{0.488007in}}% +\pgfpathlineto{\pgfqpoint{2.994337in}{0.495906in}}% +\pgfpathlineto{\pgfqpoint{3.042506in}{0.505144in}}% +\pgfpathlineto{\pgfqpoint{3.085323in}{0.515523in}}% +\pgfpathlineto{\pgfqpoint{3.122788in}{0.526691in}}% +\pgfpathlineto{\pgfqpoint{3.160253in}{0.540242in}}% +\pgfpathlineto{\pgfqpoint{3.192366in}{0.554136in}}% +\pgfpathlineto{\pgfqpoint{3.224479in}{0.570537in}}% +\pgfpathlineto{\pgfqpoint{3.251239in}{0.586441in}}% +\pgfpathlineto{\pgfqpoint{3.278000in}{0.604701in}}% +\pgfpathlineto{\pgfqpoint{3.304761in}{0.625667in}}% +\pgfpathlineto{\pgfqpoint{3.331521in}{0.649739in}}% +\pgfpathlineto{\pgfqpoint{3.358282in}{0.677377in}}% +\pgfpathlineto{\pgfqpoint{3.379691in}{0.702408in}}% +\pgfpathlineto{\pgfqpoint{3.401099in}{0.730364in}}% +\pgfpathlineto{\pgfqpoint{3.422508in}{0.761587in}}% +\pgfpathlineto{\pgfqpoint{3.443916in}{0.796459in}}% +\pgfpathlineto{\pgfqpoint{3.465325in}{0.835407in}}% +\pgfpathlineto{\pgfqpoint{3.486733in}{0.878905in}}% +\pgfpathlineto{\pgfqpoint{3.508142in}{0.927488in}}% +\pgfpathlineto{\pgfqpoint{3.529551in}{0.981747in}}% +\pgfpathlineto{\pgfqpoint{3.550959in}{1.042348in}}% +\pgfpathlineto{\pgfqpoint{3.572368in}{1.110030in}}% +\pgfpathlineto{\pgfqpoint{3.593776in}{1.185623in}}% +\pgfpathlineto{\pgfqpoint{3.615185in}{1.270049in}}% +\pgfpathlineto{\pgfqpoint{3.636593in}{1.364341in}}% +\pgfpathlineto{\pgfqpoint{3.658002in}{1.469653in}}% +\pgfpathlineto{\pgfqpoint{3.679411in}{1.587272in}}% +\pgfpathlineto{\pgfqpoint{3.700819in}{1.718636in}}% +\pgfpathlineto{\pgfqpoint{3.722228in}{1.865352in}}% +\pgfpathlineto{\pgfqpoint{3.743636in}{2.029213in}}% +\pgfpathlineto{\pgfqpoint{3.765045in}{2.212224in}}% +\pgfpathlineto{\pgfqpoint{3.786453in}{2.416622in}}% +\pgfpathlineto{\pgfqpoint{3.807862in}{2.644907in}}% +\pgfpathlineto{\pgfqpoint{3.829270in}{2.899870in}}% +\pgfpathlineto{\pgfqpoint{3.850679in}{3.184629in}}% +\pgfpathlineto{\pgfqpoint{3.872088in}{3.502665in}}% +\pgfpathlineto{\pgfqpoint{3.893496in}{3.857868in}}% +\pgfpathlineto{\pgfqpoint{3.896743in}{3.915568in}}% +\pgfpathlineto{\pgfqpoint{3.896743in}{3.915568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.352140in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463187in}}% +\pgfpathlineto{\pgfqpoint{2.807012in}{0.464296in}}% +\pgfpathlineto{\pgfqpoint{2.903350in}{0.466582in}}% +\pgfpathlineto{\pgfqpoint{2.962224in}{0.469914in}}% +\pgfpathlineto{\pgfqpoint{3.005041in}{0.474248in}}% +\pgfpathlineto{\pgfqpoint{3.042506in}{0.480280in}}% +\pgfpathlineto{\pgfqpoint{3.069267in}{0.486511in}}% +\pgfpathlineto{\pgfqpoint{3.096027in}{0.495015in}}% +\pgfpathlineto{\pgfqpoint{3.117436in}{0.504000in}}% +\pgfpathlineto{\pgfqpoint{3.138844in}{0.515523in}}% +\pgfpathlineto{\pgfqpoint{3.154901in}{0.526254in}}% +\pgfpathlineto{\pgfqpoint{3.170957in}{0.539185in}}% +\pgfpathlineto{\pgfqpoint{3.187014in}{0.554767in}}% +\pgfpathlineto{\pgfqpoint{3.203070in}{0.573544in}}% +\pgfpathlineto{\pgfqpoint{3.219126in}{0.596171in}}% +\pgfpathlineto{\pgfqpoint{3.235183in}{0.623438in}}% +\pgfpathlineto{\pgfqpoint{3.251239in}{0.656295in}}% +\pgfpathlineto{\pgfqpoint{3.267296in}{0.695889in}}% +\pgfpathlineto{\pgfqpoint{3.283352in}{0.743601in}}% +\pgfpathlineto{\pgfqpoint{3.299409in}{0.801096in}}% +\pgfpathlineto{\pgfqpoint{3.315465in}{0.870379in}}% +\pgfpathlineto{\pgfqpoint{3.331521in}{0.953868in}}% +\pgfpathlineto{\pgfqpoint{3.347578in}{1.054475in}}% +\pgfpathlineto{\pgfqpoint{3.363634in}{1.175710in}}% +\pgfpathlineto{\pgfqpoint{3.379691in}{1.321803in}}% +\pgfpathlineto{\pgfqpoint{3.395747in}{1.497850in}}% +\pgfpathlineto{\pgfqpoint{3.411803in}{1.709994in}}% +\pgfpathlineto{\pgfqpoint{3.427860in}{1.965634in}}% +\pgfpathlineto{\pgfqpoint{3.443916in}{2.273689in}}% +\pgfpathlineto{\pgfqpoint{3.459973in}{2.644907in}}% +\pgfpathlineto{\pgfqpoint{3.476029in}{3.092238in}}% +\pgfpathlineto{\pgfqpoint{3.492086in}{3.631288in}}% +\pgfpathlineto{\pgfqpoint{3.499444in}{3.915568in}}% +\pgfpathlineto{\pgfqpoint{3.499444in}{3.915568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.857732in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfpathlineto{\pgfqpoint{5.857732in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.602813in}{2.775171in}}% +\pgfpathlineto{\pgfqpoint{2.688653in}{2.775171in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.716431in}{2.775171in}}{\pgfqpoint{2.716431in}{2.802949in}}% +\pgfpathlineto{\pgfqpoint{2.716431in}{3.808346in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.716431in}{3.836124in}}{\pgfqpoint{2.688653in}{3.836124in}}% +\pgfpathlineto{\pgfqpoint{0.602813in}{3.836124in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.575036in}{3.836124in}}{\pgfqpoint{0.575036in}{3.808346in}}% +\pgfpathlineto{\pgfqpoint{0.575036in}{2.802949in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.575036in}{2.775171in}}{\pgfqpoint{0.602813in}{2.775171in}}% +\pgfpathlineto{\pgfqpoint{0.602813in}{2.775171in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{3.723657in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{3.723657in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{3.723657in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=3.675045in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-4.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{3.519799in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{3.519799in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{3.519799in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=3.471188in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-2.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{3.315942in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{3.315942in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{3.315942in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=3.267331in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-1.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{3.112085in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{3.112085in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{3.112085in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=3.063474in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-0.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{2.908228in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{2.908228in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{2.908228in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=2.859617in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=0.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.838635in}{3.723657in}}% +\pgfpathlineto{\pgfqpoint{1.977524in}{3.723657in}}% +\pgfpathlineto{\pgfqpoint{2.116413in}{3.723657in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.227524in,y=3.675045in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=0.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.838635in}{3.519799in}}% +\pgfpathlineto{\pgfqpoint{1.977524in}{3.519799in}}% +\pgfpathlineto{\pgfqpoint{2.116413in}{3.519799in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.227524in,y=3.471188in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=1.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.838635in}{3.315942in}}% +\pgfpathlineto{\pgfqpoint{1.977524in}{3.315942in}}% +\pgfpathlineto{\pgfqpoint{2.116413in}{3.315942in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.227524in,y=3.267331in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=2.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.838635in}{3.112085in}}% +\pgfpathlineto{\pgfqpoint{1.977524in}{3.112085in}}% +\pgfpathlineto{\pgfqpoint{2.116413in}{3.112085in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.227524in,y=3.063474in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=4.5\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/integrands_exp.pgf b/buch/papers/laguerre/images/integrands_exp.pgf new file mode 100644 index 0000000..897fc4a --- /dev/null +++ b/buch/papers/laguerre/images/integrands_exp.pgf @@ -0,0 +1,2035 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.505591in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.157421in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.157421in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.157421in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.157421in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.809250in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.809250in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.809250in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.809250in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.461080in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.461080in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.461080in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.461080in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.002841in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.002841in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.002841in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.293714in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.293714in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.293714in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.500092in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.500092in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.500092in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.660171in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.660171in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.660171in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.790964in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.790964in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.790964in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.901549in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.901549in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.901549in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.997342in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.997342in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.997342in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.081837in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.081837in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.081837in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.654671in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.654671in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.654671in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.945544in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.945544in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.945544in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.151921in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.151921in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.151921in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.312000in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.312000in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.312000in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.442794in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.442794in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.442794in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.553379in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.553379in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.553379in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.649171in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.649171in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.649171in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.733667in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.733667in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.733667in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.306500in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.306500in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.306500in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.597373in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.597373in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.597373in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.803751in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.803751in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.803751in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.963830in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.963830in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.963830in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.094623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.094623in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.094623in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.205208in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.205208in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.205208in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.301001in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.301001in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.301001in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.385496in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.385496in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.385496in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.958330in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.231961in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle t\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{1.151457in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{1.151457in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.151457in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=1.098695in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{1.839985in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{1.839985in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.839985in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=1.787223in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{2.528513in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{2.528513in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{2.528513in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=2.475751in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{3.217041in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{3.217041in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{3.217041in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=3.164279in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{3.905568in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=3.852807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.176083in,y=2.184421in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle t^z e^{-t}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.090051in}{3.915568in}}% +\pgfpathlineto{\pgfqpoint{2.124384in}{3.739479in}}% +\pgfpathlineto{\pgfqpoint{2.164028in}{3.546545in}}% +\pgfpathlineto{\pgfqpoint{2.203672in}{3.364077in}}% +\pgfpathlineto{\pgfqpoint{2.243316in}{3.191517in}}% +\pgfpathlineto{\pgfqpoint{2.282960in}{3.028338in}}% +\pgfpathlineto{\pgfqpoint{2.322604in}{2.874039in}}% +\pgfpathlineto{\pgfqpoint{2.362248in}{2.728150in}}% +\pgfpathlineto{\pgfqpoint{2.401892in}{2.590224in}}% +\pgfpathlineto{\pgfqpoint{2.441535in}{2.459838in}}% +\pgfpathlineto{\pgfqpoint{2.481179in}{2.336592in}}% +\pgfpathlineto{\pgfqpoint{2.520823in}{2.220110in}}% +\pgfpathlineto{\pgfqpoint{2.560467in}{2.110035in}}% +\pgfpathlineto{\pgfqpoint{2.600111in}{2.006028in}}% +\pgfpathlineto{\pgfqpoint{2.639755in}{1.907770in}}% +\pgfpathlineto{\pgfqpoint{2.679399in}{1.814959in}}% +\pgfpathlineto{\pgfqpoint{2.719043in}{1.727311in}}% +\pgfpathlineto{\pgfqpoint{2.758687in}{1.644555in}}% +\pgfpathlineto{\pgfqpoint{2.798331in}{1.566435in}}% +\pgfpathlineto{\pgfqpoint{2.837975in}{1.492711in}}% +\pgfpathlineto{\pgfqpoint{2.877618in}{1.423155in}}% +\pgfpathlineto{\pgfqpoint{2.917262in}{1.357551in}}% +\pgfpathlineto{\pgfqpoint{2.956906in}{1.295695in}}% +\pgfpathlineto{\pgfqpoint{2.996550in}{1.237395in}}% +\pgfpathlineto{\pgfqpoint{3.036194in}{1.182468in}}% +\pgfpathlineto{\pgfqpoint{3.075838in}{1.130741in}}% +\pgfpathlineto{\pgfqpoint{3.115482in}{1.082053in}}% +\pgfpathlineto{\pgfqpoint{3.155126in}{1.036248in}}% +\pgfpathlineto{\pgfqpoint{3.194770in}{0.993180in}}% +\pgfpathlineto{\pgfqpoint{3.244325in}{0.942986in}}% +\pgfpathlineto{\pgfqpoint{3.293879in}{0.896600in}}% +\pgfpathlineto{\pgfqpoint{3.343434in}{0.853786in}}% +\pgfpathlineto{\pgfqpoint{3.392989in}{0.814321in}}% +\pgfpathlineto{\pgfqpoint{3.442544in}{0.777998in}}% +\pgfpathlineto{\pgfqpoint{3.492099in}{0.744622in}}% +\pgfpathlineto{\pgfqpoint{3.541654in}{0.714010in}}% +\pgfpathlineto{\pgfqpoint{3.591209in}{0.685990in}}% +\pgfpathlineto{\pgfqpoint{3.640764in}{0.660400in}}% +\pgfpathlineto{\pgfqpoint{3.690319in}{0.637088in}}% +\pgfpathlineto{\pgfqpoint{3.739873in}{0.615907in}}% +\pgfpathlineto{\pgfqpoint{3.799339in}{0.593113in}}% +\pgfpathlineto{\pgfqpoint{3.858805in}{0.572966in}}% +\pgfpathlineto{\pgfqpoint{3.918271in}{0.555254in}}% +\pgfpathlineto{\pgfqpoint{3.977737in}{0.539775in}}% +\pgfpathlineto{\pgfqpoint{4.047114in}{0.524284in}}% +\pgfpathlineto{\pgfqpoint{4.116491in}{0.511281in}}% +\pgfpathlineto{\pgfqpoint{4.185867in}{0.500491in}}% +\pgfpathlineto{\pgfqpoint{4.265155in}{0.490531in}}% +\pgfpathlineto{\pgfqpoint{4.344443in}{0.482750in}}% +\pgfpathlineto{\pgfqpoint{4.433642in}{0.476169in}}% +\pgfpathlineto{\pgfqpoint{4.532752in}{0.471025in}}% +\pgfpathlineto{\pgfqpoint{4.651683in}{0.467113in}}% +\pgfpathlineto{\pgfqpoint{4.800348in}{0.464543in}}% +\pgfpathlineto{\pgfqpoint{5.018389in}{0.463219in}}% +\pgfpathlineto{\pgfqpoint{5.573404in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.495591in}{3.895646in}}% +\pgfpathlineto{\pgfqpoint{0.548539in}{3.768760in}}% +\pgfpathlineto{\pgfqpoint{0.608005in}{3.631637in}}% +\pgfpathlineto{\pgfqpoint{0.667471in}{3.499960in}}% +\pgfpathlineto{\pgfqpoint{0.726936in}{3.373504in}}% +\pgfpathlineto{\pgfqpoint{0.786402in}{3.252053in}}% +\pgfpathlineto{\pgfqpoint{0.845868in}{3.135398in}}% +\pgfpathlineto{\pgfqpoint{0.905334in}{3.023339in}}% +\pgfpathlineto{\pgfqpoint{0.964800in}{2.915685in}}% +\pgfpathlineto{\pgfqpoint{1.024266in}{2.812250in}}% +\pgfpathlineto{\pgfqpoint{1.083732in}{2.712858in}}% +\pgfpathlineto{\pgfqpoint{1.143197in}{2.617340in}}% +\pgfpathlineto{\pgfqpoint{1.202663in}{2.525532in}}% +\pgfpathlineto{\pgfqpoint{1.262129in}{2.437278in}}% +\pgfpathlineto{\pgfqpoint{1.331506in}{2.338606in}}% +\pgfpathlineto{\pgfqpoint{1.400883in}{2.244337in}}% +\pgfpathlineto{\pgfqpoint{1.470260in}{2.154255in}}% +\pgfpathlineto{\pgfqpoint{1.539637in}{2.068152in}}% +\pgfpathlineto{\pgfqpoint{1.609013in}{1.985829in}}% +\pgfpathlineto{\pgfqpoint{1.678390in}{1.907099in}}% +\pgfpathlineto{\pgfqpoint{1.747767in}{1.831782in}}% +\pgfpathlineto{\pgfqpoint{1.817144in}{1.759706in}}% +\pgfpathlineto{\pgfqpoint{1.886521in}{1.690711in}}% +\pgfpathlineto{\pgfqpoint{1.955898in}{1.624641in}}% +\pgfpathlineto{\pgfqpoint{2.025274in}{1.561349in}}% +\pgfpathlineto{\pgfqpoint{2.104562in}{1.492241in}}% +\pgfpathlineto{\pgfqpoint{2.183850in}{1.426386in}}% +\pgfpathlineto{\pgfqpoint{2.263138in}{1.363601in}}% +\pgfpathlineto{\pgfqpoint{2.342426in}{1.303715in}}% +\pgfpathlineto{\pgfqpoint{2.421713in}{1.246570in}}% +\pgfpathlineto{\pgfqpoint{2.501001in}{1.192019in}}% +\pgfpathlineto{\pgfqpoint{2.580289in}{1.139927in}}% +\pgfpathlineto{\pgfqpoint{2.669488in}{1.084113in}}% +\pgfpathlineto{\pgfqpoint{2.758687in}{1.031101in}}% +\pgfpathlineto{\pgfqpoint{2.847885in}{0.980757in}}% +\pgfpathlineto{\pgfqpoint{2.937084in}{0.932964in}}% +\pgfpathlineto{\pgfqpoint{3.026283in}{0.887629in}}% +\pgfpathlineto{\pgfqpoint{3.115482in}{0.844678in}}% +\pgfpathlineto{\pgfqpoint{3.204681in}{0.804056in}}% +\pgfpathlineto{\pgfqpoint{3.293879in}{0.765732in}}% +\pgfpathlineto{\pgfqpoint{3.383078in}{0.729693in}}% +\pgfpathlineto{\pgfqpoint{3.472277in}{0.695943in}}% +\pgfpathlineto{\pgfqpoint{3.561476in}{0.664503in}}% +\pgfpathlineto{\pgfqpoint{3.650675in}{0.635404in}}% +\pgfpathlineto{\pgfqpoint{3.739873in}{0.608686in}}% +\pgfpathlineto{\pgfqpoint{3.829072in}{0.584388in}}% +\pgfpathlineto{\pgfqpoint{3.918271in}{0.562543in}}% +\pgfpathlineto{\pgfqpoint{4.007470in}{0.543167in}}% +\pgfpathlineto{\pgfqpoint{4.096669in}{0.526255in}}% +\pgfpathlineto{\pgfqpoint{4.185867in}{0.511765in}}% +\pgfpathlineto{\pgfqpoint{4.275066in}{0.499618in}}% +\pgfpathlineto{\pgfqpoint{4.364265in}{0.489688in}}% +\pgfpathlineto{\pgfqpoint{4.463375in}{0.481042in}}% +\pgfpathlineto{\pgfqpoint{4.562485in}{0.474620in}}% +\pgfpathlineto{\pgfqpoint{4.671505in}{0.469708in}}% +\pgfpathlineto{\pgfqpoint{4.800348in}{0.466150in}}% +\pgfpathlineto{\pgfqpoint{4.968835in}{0.463927in}}% +\pgfpathlineto{\pgfqpoint{5.236431in}{0.463014in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.495591in}{0.803815in}}% +\pgfpathlineto{\pgfqpoint{1.004444in}{0.800361in}}% +\pgfpathlineto{\pgfqpoint{1.381061in}{0.795723in}}% +\pgfpathlineto{\pgfqpoint{1.678390in}{0.789982in}}% +\pgfpathlineto{\pgfqpoint{1.936076in}{0.782813in}}% +\pgfpathlineto{\pgfqpoint{2.154117in}{0.774575in}}% +\pgfpathlineto{\pgfqpoint{2.352337in}{0.764857in}}% +\pgfpathlineto{\pgfqpoint{2.530734in}{0.753876in}}% +\pgfpathlineto{\pgfqpoint{2.699221in}{0.741200in}}% +\pgfpathlineto{\pgfqpoint{2.857796in}{0.726929in}}% +\pgfpathlineto{\pgfqpoint{3.006461in}{0.711275in}}% +\pgfpathlineto{\pgfqpoint{3.155126in}{0.693283in}}% +\pgfpathlineto{\pgfqpoint{3.303790in}{0.672927in}}% +\pgfpathlineto{\pgfqpoint{3.452455in}{0.650334in}}% +\pgfpathlineto{\pgfqpoint{3.620942in}{0.622466in}}% +\pgfpathlineto{\pgfqpoint{3.918271in}{0.570407in}}% +\pgfpathlineto{\pgfqpoint{4.106580in}{0.538710in}}% +\pgfpathlineto{\pgfqpoint{4.235422in}{0.519194in}}% +\pgfpathlineto{\pgfqpoint{4.344443in}{0.504724in}}% +\pgfpathlineto{\pgfqpoint{4.453464in}{0.492497in}}% +\pgfpathlineto{\pgfqpoint{4.562485in}{0.482692in}}% +\pgfpathlineto{\pgfqpoint{4.671505in}{0.475293in}}% +\pgfpathlineto{\pgfqpoint{4.780526in}{0.470091in}}% +\pgfpathlineto{\pgfqpoint{4.909369in}{0.466272in}}% +\pgfpathlineto{\pgfqpoint{5.067944in}{0.463991in}}% +\pgfpathlineto{\pgfqpoint{5.315719in}{0.463027in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.495591in}{0.496781in}}% +\pgfpathlineto{\pgfqpoint{0.855779in}{0.506162in}}% +\pgfpathlineto{\pgfqpoint{1.192752in}{0.517076in}}% +\pgfpathlineto{\pgfqpoint{1.509904in}{0.529499in}}% +\pgfpathlineto{\pgfqpoint{1.827055in}{0.544117in}}% +\pgfpathlineto{\pgfqpoint{2.183850in}{0.562890in}}% +\pgfpathlineto{\pgfqpoint{2.847885in}{0.598506in}}% +\pgfpathlineto{\pgfqpoint{3.036194in}{0.605836in}}% +\pgfpathlineto{\pgfqpoint{3.184859in}{0.609488in}}% +\pgfpathlineto{\pgfqpoint{3.313701in}{0.610577in}}% +\pgfpathlineto{\pgfqpoint{3.432633in}{0.609477in}}% +\pgfpathlineto{\pgfqpoint{3.541654in}{0.606416in}}% +\pgfpathlineto{\pgfqpoint{3.650675in}{0.601199in}}% +\pgfpathlineto{\pgfqpoint{3.759695in}{0.593722in}}% +\pgfpathlineto{\pgfqpoint{3.868716in}{0.584006in}}% +\pgfpathlineto{\pgfqpoint{3.987648in}{0.571068in}}% +\pgfpathlineto{\pgfqpoint{4.126402in}{0.553532in}}% +\pgfpathlineto{\pgfqpoint{4.552574in}{0.497434in}}% +\pgfpathlineto{\pgfqpoint{4.661594in}{0.486371in}}% +\pgfpathlineto{\pgfqpoint{4.760704in}{0.478378in}}% +\pgfpathlineto{\pgfqpoint{4.869725in}{0.471911in}}% +\pgfpathlineto{\pgfqpoint{4.978746in}{0.467647in}}% +\pgfpathlineto{\pgfqpoint{5.107588in}{0.464820in}}% +\pgfpathlineto{\pgfqpoint{5.285986in}{0.463311in}}% +\pgfpathlineto{\pgfqpoint{5.682425in}{0.462931in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.495591in}{0.466291in}}% +\pgfpathlineto{\pgfqpoint{1.014355in}{0.469785in}}% +\pgfpathlineto{\pgfqpoint{1.400883in}{0.474511in}}% +\pgfpathlineto{\pgfqpoint{1.708123in}{0.480374in}}% +\pgfpathlineto{\pgfqpoint{1.975720in}{0.487657in}}% +\pgfpathlineto{\pgfqpoint{2.213583in}{0.496343in}}% +\pgfpathlineto{\pgfqpoint{2.431624in}{0.506505in}}% +\pgfpathlineto{\pgfqpoint{2.639755in}{0.518369in}}% +\pgfpathlineto{\pgfqpoint{2.857796in}{0.533011in}}% +\pgfpathlineto{\pgfqpoint{3.155126in}{0.555483in}}% +\pgfpathlineto{\pgfqpoint{3.412811in}{0.574354in}}% +\pgfpathlineto{\pgfqpoint{3.561476in}{0.582999in}}% +\pgfpathlineto{\pgfqpoint{3.680408in}{0.587666in}}% +\pgfpathlineto{\pgfqpoint{3.779517in}{0.589469in}}% +\pgfpathlineto{\pgfqpoint{3.878627in}{0.588966in}}% +\pgfpathlineto{\pgfqpoint{3.967826in}{0.586285in}}% +\pgfpathlineto{\pgfqpoint{4.057025in}{0.581352in}}% +\pgfpathlineto{\pgfqpoint{4.146223in}{0.574157in}}% +\pgfpathlineto{\pgfqpoint{4.235422in}{0.564844in}}% +\pgfpathlineto{\pgfqpoint{4.344443in}{0.551060in}}% +\pgfpathlineto{\pgfqpoint{4.493108in}{0.529649in}}% +\pgfpathlineto{\pgfqpoint{4.681416in}{0.502746in}}% +\pgfpathlineto{\pgfqpoint{4.790437in}{0.489577in}}% +\pgfpathlineto{\pgfqpoint{4.889547in}{0.480030in}}% +\pgfpathlineto{\pgfqpoint{4.978746in}{0.473590in}}% +\pgfpathlineto{\pgfqpoint{5.077855in}{0.468675in}}% +\pgfpathlineto{\pgfqpoint{5.186876in}{0.465485in}}% +\pgfpathlineto{\pgfqpoint{5.335541in}{0.463582in}}% +\pgfpathlineto{\pgfqpoint{5.603137in}{0.462950in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.495591in}{0.462962in}}% +\pgfpathlineto{\pgfqpoint{1.817144in}{0.464182in}}% +\pgfpathlineto{\pgfqpoint{2.223494in}{0.466638in}}% +\pgfpathlineto{\pgfqpoint{2.491090in}{0.470372in}}% +\pgfpathlineto{\pgfqpoint{2.689310in}{0.475224in}}% +\pgfpathlineto{\pgfqpoint{2.857796in}{0.481533in}}% +\pgfpathlineto{\pgfqpoint{2.996550in}{0.488811in}}% +\pgfpathlineto{\pgfqpoint{3.125393in}{0.497721in}}% +\pgfpathlineto{\pgfqpoint{3.244325in}{0.508145in}}% +\pgfpathlineto{\pgfqpoint{3.353345in}{0.519796in}}% +\pgfpathlineto{\pgfqpoint{3.462366in}{0.533578in}}% +\pgfpathlineto{\pgfqpoint{3.581298in}{0.550998in}}% +\pgfpathlineto{\pgfqpoint{3.710140in}{0.572233in}}% +\pgfpathlineto{\pgfqpoint{4.027292in}{0.625986in}}% +\pgfpathlineto{\pgfqpoint{4.106580in}{0.636533in}}% +\pgfpathlineto{\pgfqpoint{4.175956in}{0.643570in}}% +\pgfpathlineto{\pgfqpoint{4.235422in}{0.647531in}}% +\pgfpathlineto{\pgfqpoint{4.294888in}{0.649245in}}% +\pgfpathlineto{\pgfqpoint{4.354354in}{0.648447in}}% +\pgfpathlineto{\pgfqpoint{4.403909in}{0.645731in}}% +\pgfpathlineto{\pgfqpoint{4.453464in}{0.641095in}}% +\pgfpathlineto{\pgfqpoint{4.503019in}{0.634554in}}% +\pgfpathlineto{\pgfqpoint{4.562485in}{0.624311in}}% +\pgfpathlineto{\pgfqpoint{4.621950in}{0.611728in}}% +\pgfpathlineto{\pgfqpoint{4.691327in}{0.594662in}}% +\pgfpathlineto{\pgfqpoint{4.790437in}{0.567559in}}% +\pgfpathlineto{\pgfqpoint{4.929191in}{0.529576in}}% +\pgfpathlineto{\pgfqpoint{4.998568in}{0.512781in}}% +\pgfpathlineto{\pgfqpoint{5.067944in}{0.498431in}}% +\pgfpathlineto{\pgfqpoint{5.127410in}{0.488355in}}% +\pgfpathlineto{\pgfqpoint{5.186876in}{0.480368in}}% +\pgfpathlineto{\pgfqpoint{5.256253in}{0.473513in}}% +\pgfpathlineto{\pgfqpoint{5.325630in}{0.468916in}}% +\pgfpathlineto{\pgfqpoint{5.414829in}{0.465494in}}% +\pgfpathlineto{\pgfqpoint{5.533760in}{0.463588in}}% +\pgfpathlineto{\pgfqpoint{5.751802in}{0.462953in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462929in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.495591in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{2.471268in}{0.464025in}}% +\pgfpathlineto{\pgfqpoint{2.768598in}{0.466437in}}% +\pgfpathlineto{\pgfqpoint{2.956906in}{0.470116in}}% +\pgfpathlineto{\pgfqpoint{3.095660in}{0.474959in}}% +\pgfpathlineto{\pgfqpoint{3.204681in}{0.480790in}}% +\pgfpathlineto{\pgfqpoint{3.303790in}{0.488293in}}% +\pgfpathlineto{\pgfqpoint{3.392989in}{0.497427in}}% +\pgfpathlineto{\pgfqpoint{3.472277in}{0.507947in}}% +\pgfpathlineto{\pgfqpoint{3.541654in}{0.519399in}}% +\pgfpathlineto{\pgfqpoint{3.611031in}{0.533308in}}% +\pgfpathlineto{\pgfqpoint{3.670497in}{0.547452in}}% +\pgfpathlineto{\pgfqpoint{3.729962in}{0.563864in}}% +\pgfpathlineto{\pgfqpoint{3.789428in}{0.582722in}}% +\pgfpathlineto{\pgfqpoint{3.848894in}{0.604157in}}% +\pgfpathlineto{\pgfqpoint{3.908360in}{0.628222in}}% +\pgfpathlineto{\pgfqpoint{3.967826in}{0.654867in}}% +\pgfpathlineto{\pgfqpoint{4.027292in}{0.683903in}}% +\pgfpathlineto{\pgfqpoint{4.096669in}{0.720312in}}% +\pgfpathlineto{\pgfqpoint{4.195778in}{0.775198in}}% +\pgfpathlineto{\pgfqpoint{4.294888in}{0.829577in}}% +\pgfpathlineto{\pgfqpoint{4.354354in}{0.859560in}}% +\pgfpathlineto{\pgfqpoint{4.403909in}{0.881704in}}% +\pgfpathlineto{\pgfqpoint{4.443553in}{0.896891in}}% +\pgfpathlineto{\pgfqpoint{4.483197in}{0.909316in}}% +\pgfpathlineto{\pgfqpoint{4.512930in}{0.916546in}}% +\pgfpathlineto{\pgfqpoint{4.542663in}{0.921786in}}% +\pgfpathlineto{\pgfqpoint{4.572395in}{0.924875in}}% +\pgfpathlineto{\pgfqpoint{4.602128in}{0.925676in}}% +\pgfpathlineto{\pgfqpoint{4.631861in}{0.924079in}}% +\pgfpathlineto{\pgfqpoint{4.661594in}{0.920009in}}% +\pgfpathlineto{\pgfqpoint{4.691327in}{0.913428in}}% +\pgfpathlineto{\pgfqpoint{4.721060in}{0.904341in}}% +\pgfpathlineto{\pgfqpoint{4.750793in}{0.892796in}}% +\pgfpathlineto{\pgfqpoint{4.780526in}{0.878890in}}% +\pgfpathlineto{\pgfqpoint{4.810259in}{0.862765in}}% +\pgfpathlineto{\pgfqpoint{4.849903in}{0.838144in}}% +\pgfpathlineto{\pgfqpoint{4.889547in}{0.810481in}}% +\pgfpathlineto{\pgfqpoint{4.939102in}{0.772667in}}% +\pgfpathlineto{\pgfqpoint{5.018389in}{0.708302in}}% +\pgfpathlineto{\pgfqpoint{5.087766in}{0.652562in}}% +\pgfpathlineto{\pgfqpoint{5.137321in}{0.615448in}}% +\pgfpathlineto{\pgfqpoint{5.176965in}{0.588298in}}% +\pgfpathlineto{\pgfqpoint{5.216609in}{0.563885in}}% +\pgfpathlineto{\pgfqpoint{5.256253in}{0.542478in}}% +\pgfpathlineto{\pgfqpoint{5.295897in}{0.524188in}}% +\pgfpathlineto{\pgfqpoint{5.335541in}{0.508972in}}% +\pgfpathlineto{\pgfqpoint{5.375185in}{0.496660in}}% +\pgfpathlineto{\pgfqpoint{5.414829in}{0.486979in}}% +\pgfpathlineto{\pgfqpoint{5.454472in}{0.479592in}}% +\pgfpathlineto{\pgfqpoint{5.504027in}{0.473022in}}% +\pgfpathlineto{\pgfqpoint{5.553582in}{0.468740in}}% +\pgfpathlineto{\pgfqpoint{5.613048in}{0.465717in}}% +\pgfpathlineto{\pgfqpoint{5.702247in}{0.463717in}}% +\pgfpathlineto{\pgfqpoint{5.860823in}{0.462977in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462934in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.462934in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.495591in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{2.818153in}{0.463995in}}% +\pgfpathlineto{\pgfqpoint{3.046105in}{0.466388in}}% +\pgfpathlineto{\pgfqpoint{3.184859in}{0.469896in}}% +\pgfpathlineto{\pgfqpoint{3.293879in}{0.474873in}}% +\pgfpathlineto{\pgfqpoint{3.373167in}{0.480485in}}% +\pgfpathlineto{\pgfqpoint{3.442544in}{0.487386in}}% +\pgfpathlineto{\pgfqpoint{3.502010in}{0.495280in}}% +\pgfpathlineto{\pgfqpoint{3.561476in}{0.505532in}}% +\pgfpathlineto{\pgfqpoint{3.611031in}{0.516317in}}% +\pgfpathlineto{\pgfqpoint{3.660586in}{0.529592in}}% +\pgfpathlineto{\pgfqpoint{3.700230in}{0.542330in}}% +\pgfpathlineto{\pgfqpoint{3.739873in}{0.557255in}}% +\pgfpathlineto{\pgfqpoint{3.779517in}{0.574674in}}% +\pgfpathlineto{\pgfqpoint{3.819161in}{0.594923in}}% +\pgfpathlineto{\pgfqpoint{3.858805in}{0.618360in}}% +\pgfpathlineto{\pgfqpoint{3.888538in}{0.638254in}}% +\pgfpathlineto{\pgfqpoint{3.918271in}{0.660316in}}% +\pgfpathlineto{\pgfqpoint{3.948004in}{0.684710in}}% +\pgfpathlineto{\pgfqpoint{3.977737in}{0.711599in}}% +\pgfpathlineto{\pgfqpoint{4.007470in}{0.741144in}}% +\pgfpathlineto{\pgfqpoint{4.037203in}{0.773494in}}% +\pgfpathlineto{\pgfqpoint{4.066936in}{0.808789in}}% +\pgfpathlineto{\pgfqpoint{4.096669in}{0.847148in}}% +\pgfpathlineto{\pgfqpoint{4.126402in}{0.888669in}}% +\pgfpathlineto{\pgfqpoint{4.156134in}{0.933417in}}% +\pgfpathlineto{\pgfqpoint{4.185867in}{0.981421in}}% +\pgfpathlineto{\pgfqpoint{4.225511in}{1.050459in}}% +\pgfpathlineto{\pgfqpoint{4.265155in}{1.125065in}}% +\pgfpathlineto{\pgfqpoint{4.304799in}{1.204854in}}% +\pgfpathlineto{\pgfqpoint{4.344443in}{1.289207in}}% +\pgfpathlineto{\pgfqpoint{4.393998in}{1.399695in}}% +\pgfpathlineto{\pgfqpoint{4.552574in}{1.759760in}}% +\pgfpathlineto{\pgfqpoint{4.592217in}{1.841212in}}% +\pgfpathlineto{\pgfqpoint{4.621950in}{1.897092in}}% +\pgfpathlineto{\pgfqpoint{4.651683in}{1.947299in}}% +\pgfpathlineto{\pgfqpoint{4.671505in}{1.977081in}}% +\pgfpathlineto{\pgfqpoint{4.691327in}{2.003543in}}% +\pgfpathlineto{\pgfqpoint{4.711149in}{2.026379in}}% +\pgfpathlineto{\pgfqpoint{4.730971in}{2.045301in}}% +\pgfpathlineto{\pgfqpoint{4.750793in}{2.060038in}}% +\pgfpathlineto{\pgfqpoint{4.770615in}{2.070346in}}% +\pgfpathlineto{\pgfqpoint{4.780526in}{2.073771in}}% +\pgfpathlineto{\pgfqpoint{4.790437in}{2.076010in}}% +\pgfpathlineto{\pgfqpoint{4.800348in}{2.077043in}}% +\pgfpathlineto{\pgfqpoint{4.810259in}{2.076849in}}% +\pgfpathlineto{\pgfqpoint{4.820170in}{2.075412in}}% +\pgfpathlineto{\pgfqpoint{4.830081in}{2.072718in}}% +\pgfpathlineto{\pgfqpoint{4.839992in}{2.068757in}}% +\pgfpathlineto{\pgfqpoint{4.849903in}{2.063520in}}% +\pgfpathlineto{\pgfqpoint{4.869725in}{2.049198in}}% +\pgfpathlineto{\pgfqpoint{4.889547in}{2.029750in}}% +\pgfpathlineto{\pgfqpoint{4.909369in}{2.005223in}}% +\pgfpathlineto{\pgfqpoint{4.929191in}{1.975717in}}% +\pgfpathlineto{\pgfqpoint{4.949013in}{1.941388in}}% +\pgfpathlineto{\pgfqpoint{4.968835in}{1.902444in}}% +\pgfpathlineto{\pgfqpoint{4.988657in}{1.859148in}}% +\pgfpathlineto{\pgfqpoint{5.008478in}{1.811813in}}% +\pgfpathlineto{\pgfqpoint{5.038211in}{1.734038in}}% +\pgfpathlineto{\pgfqpoint{5.067944in}{1.649387in}}% +\pgfpathlineto{\pgfqpoint{5.107588in}{1.528553in}}% +\pgfpathlineto{\pgfqpoint{5.176965in}{1.306635in}}% +\pgfpathlineto{\pgfqpoint{5.226520in}{1.150253in}}% +\pgfpathlineto{\pgfqpoint{5.266164in}{1.032076in}}% +\pgfpathlineto{\pgfqpoint{5.295897in}{0.949524in}}% +\pgfpathlineto{\pgfqpoint{5.325630in}{0.873307in}}% +\pgfpathlineto{\pgfqpoint{5.355363in}{0.804140in}}% +\pgfpathlineto{\pgfqpoint{5.385096in}{0.742456in}}% +\pgfpathlineto{\pgfqpoint{5.404918in}{0.705578in}}% +\pgfpathlineto{\pgfqpoint{5.424740in}{0.672084in}}% +\pgfpathlineto{\pgfqpoint{5.444561in}{0.641909in}}% +\pgfpathlineto{\pgfqpoint{5.464383in}{0.614949in}}% +\pgfpathlineto{\pgfqpoint{5.484205in}{0.591063in}}% +\pgfpathlineto{\pgfqpoint{5.504027in}{0.570083in}}% +\pgfpathlineto{\pgfqpoint{5.523849in}{0.551814in}}% +\pgfpathlineto{\pgfqpoint{5.543671in}{0.536048in}}% +\pgfpathlineto{\pgfqpoint{5.563493in}{0.522565in}}% +\pgfpathlineto{\pgfqpoint{5.583315in}{0.511142in}}% +\pgfpathlineto{\pgfqpoint{5.603137in}{0.501556in}}% +\pgfpathlineto{\pgfqpoint{5.632870in}{0.490147in}}% +\pgfpathlineto{\pgfqpoint{5.662603in}{0.481694in}}% +\pgfpathlineto{\pgfqpoint{5.692336in}{0.475575in}}% +\pgfpathlineto{\pgfqpoint{5.731980in}{0.470129in}}% +\pgfpathlineto{\pgfqpoint{5.781535in}{0.466273in}}% +\pgfpathlineto{\pgfqpoint{5.841001in}{0.464136in}}% +\pgfpathlineto{\pgfqpoint{5.940110in}{0.463098in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.463020in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.463020in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{5.452739in}{3.442295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.495591in}{0.462929in}}% +\pgfpathlineto{\pgfqpoint{2.937084in}{0.464006in}}% +\pgfpathlineto{\pgfqpoint{3.135304in}{0.466327in}}% +\pgfpathlineto{\pgfqpoint{3.264147in}{0.469988in}}% +\pgfpathlineto{\pgfqpoint{3.353345in}{0.474540in}}% +\pgfpathlineto{\pgfqpoint{3.432633in}{0.480876in}}% +\pgfpathlineto{\pgfqpoint{3.492099in}{0.487691in}}% +\pgfpathlineto{\pgfqpoint{3.541654in}{0.495200in}}% +\pgfpathlineto{\pgfqpoint{3.591209in}{0.504849in}}% +\pgfpathlineto{\pgfqpoint{3.630853in}{0.514478in}}% +\pgfpathlineto{\pgfqpoint{3.670497in}{0.526166in}}% +\pgfpathlineto{\pgfqpoint{3.710140in}{0.540311in}}% +\pgfpathlineto{\pgfqpoint{3.749784in}{0.557367in}}% +\pgfpathlineto{\pgfqpoint{3.779517in}{0.572382in}}% +\pgfpathlineto{\pgfqpoint{3.809250in}{0.589577in}}% +\pgfpathlineto{\pgfqpoint{3.838983in}{0.609220in}}% +\pgfpathlineto{\pgfqpoint{3.868716in}{0.631609in}}% +\pgfpathlineto{\pgfqpoint{3.898449in}{0.657061in}}% +\pgfpathlineto{\pgfqpoint{3.928182in}{0.685919in}}% +\pgfpathlineto{\pgfqpoint{3.957915in}{0.718548in}}% +\pgfpathlineto{\pgfqpoint{3.987648in}{0.755332in}}% +\pgfpathlineto{\pgfqpoint{4.017381in}{0.796675in}}% +\pgfpathlineto{\pgfqpoint{4.047114in}{0.842988in}}% +\pgfpathlineto{\pgfqpoint{4.076847in}{0.894694in}}% +\pgfpathlineto{\pgfqpoint{4.106580in}{0.952212in}}% +\pgfpathlineto{\pgfqpoint{4.136313in}{1.015953in}}% +\pgfpathlineto{\pgfqpoint{4.166045in}{1.086305in}}% +\pgfpathlineto{\pgfqpoint{4.195778in}{1.163625in}}% +\pgfpathlineto{\pgfqpoint{4.225511in}{1.248219in}}% +\pgfpathlineto{\pgfqpoint{4.255244in}{1.340329in}}% +\pgfpathlineto{\pgfqpoint{4.284977in}{1.440111in}}% +\pgfpathlineto{\pgfqpoint{4.314710in}{1.547619in}}% +\pgfpathlineto{\pgfqpoint{4.344443in}{1.662776in}}% +\pgfpathlineto{\pgfqpoint{4.374176in}{1.785360in}}% +\pgfpathlineto{\pgfqpoint{4.413820in}{1.959646in}}% +\pgfpathlineto{\pgfqpoint{4.453464in}{2.144925in}}% +\pgfpathlineto{\pgfqpoint{4.503019in}{2.388594in}}% +\pgfpathlineto{\pgfqpoint{4.651683in}{3.133119in}}% +\pgfpathlineto{\pgfqpoint{4.681416in}{3.268824in}}% +\pgfpathlineto{\pgfqpoint{4.711149in}{3.394389in}}% +\pgfpathlineto{\pgfqpoint{4.730971in}{3.471141in}}% +\pgfpathlineto{\pgfqpoint{4.750793in}{3.541396in}}% +\pgfpathlineto{\pgfqpoint{4.770615in}{3.604368in}}% +\pgfpathlineto{\pgfqpoint{4.790437in}{3.659293in}}% +\pgfpathlineto{\pgfqpoint{4.810259in}{3.705443in}}% +\pgfpathlineto{\pgfqpoint{4.830081in}{3.742138in}}% +\pgfpathlineto{\pgfqpoint{4.839992in}{3.756743in}}% +\pgfpathlineto{\pgfqpoint{4.849903in}{3.768757in}}% +\pgfpathlineto{\pgfqpoint{4.859814in}{3.778115in}}% +\pgfpathlineto{\pgfqpoint{4.869725in}{3.784755in}}% +\pgfpathlineto{\pgfqpoint{4.879636in}{3.788625in}}% +\pgfpathlineto{\pgfqpoint{4.889547in}{3.789674in}}% +\pgfpathlineto{\pgfqpoint{4.899458in}{3.787861in}}% +\pgfpathlineto{\pgfqpoint{4.909369in}{3.783151in}}% +\pgfpathlineto{\pgfqpoint{4.919280in}{3.775517in}}% +\pgfpathlineto{\pgfqpoint{4.929191in}{3.764937in}}% +\pgfpathlineto{\pgfqpoint{4.939102in}{3.751399in}}% +\pgfpathlineto{\pgfqpoint{4.949013in}{3.734898in}}% +\pgfpathlineto{\pgfqpoint{4.958924in}{3.715438in}}% +\pgfpathlineto{\pgfqpoint{4.968835in}{3.693031in}}% +\pgfpathlineto{\pgfqpoint{4.988657in}{3.639464in}}% +\pgfpathlineto{\pgfqpoint{5.008478in}{3.574464in}}% +\pgfpathlineto{\pgfqpoint{5.028300in}{3.498437in}}% +\pgfpathlineto{\pgfqpoint{5.048122in}{3.411925in}}% +\pgfpathlineto{\pgfqpoint{5.067944in}{3.315604in}}% +\pgfpathlineto{\pgfqpoint{5.087766in}{3.210276in}}% +\pgfpathlineto{\pgfqpoint{5.117499in}{3.037430in}}% +\pgfpathlineto{\pgfqpoint{5.147232in}{2.849920in}}% +\pgfpathlineto{\pgfqpoint{5.186876in}{2.583888in}}% +\pgfpathlineto{\pgfqpoint{5.305808in}{1.769634in}}% +\pgfpathlineto{\pgfqpoint{5.335541in}{1.582788in}}% +\pgfpathlineto{\pgfqpoint{5.365274in}{1.408916in}}% +\pgfpathlineto{\pgfqpoint{5.395007in}{1.250118in}}% +\pgfpathlineto{\pgfqpoint{5.424740in}{1.107792in}}% +\pgfpathlineto{\pgfqpoint{5.444561in}{1.022434in}}% +\pgfpathlineto{\pgfqpoint{5.464383in}{0.944767in}}% +\pgfpathlineto{\pgfqpoint{5.484205in}{0.874710in}}% +\pgfpathlineto{\pgfqpoint{5.504027in}{0.812074in}}% +\pgfpathlineto{\pgfqpoint{5.523849in}{0.756577in}}% +\pgfpathlineto{\pgfqpoint{5.543671in}{0.707851in}}% +\pgfpathlineto{\pgfqpoint{5.563493in}{0.665468in}}% +\pgfpathlineto{\pgfqpoint{5.583315in}{0.628950in}}% +\pgfpathlineto{\pgfqpoint{5.603137in}{0.597790in}}% +\pgfpathlineto{\pgfqpoint{5.622959in}{0.571464in}}% +\pgfpathlineto{\pgfqpoint{5.642781in}{0.549445in}}% +\pgfpathlineto{\pgfqpoint{5.662603in}{0.531218in}}% +\pgfpathlineto{\pgfqpoint{5.682425in}{0.516289in}}% +\pgfpathlineto{\pgfqpoint{5.702247in}{0.504192in}}% +\pgfpathlineto{\pgfqpoint{5.722069in}{0.494499in}}% +\pgfpathlineto{\pgfqpoint{5.741891in}{0.486818in}}% +\pgfpathlineto{\pgfqpoint{5.771624in}{0.478324in}}% +\pgfpathlineto{\pgfqpoint{5.801357in}{0.472590in}}% +\pgfpathlineto{\pgfqpoint{5.841001in}{0.467901in}}% +\pgfpathlineto{\pgfqpoint{5.890555in}{0.464943in}}% +\pgfpathlineto{\pgfqpoint{5.959932in}{0.463420in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.463339in}}% +\pgfpathlineto{\pgfqpoint{5.968330in}{0.463339in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{3.905568in}}% +\pgfpathlineto{\pgfqpoint{5.958330in}{3.905568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.602813in}{2.775171in}}% +\pgfpathlineto{\pgfqpoint{2.688653in}{2.775171in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.716431in}{2.775171in}}{\pgfqpoint{2.716431in}{2.802949in}}% +\pgfpathlineto{\pgfqpoint{2.716431in}{3.808346in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.716431in}{3.836124in}}{\pgfqpoint{2.688653in}{3.836124in}}% +\pgfpathlineto{\pgfqpoint{0.602813in}{3.836124in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.575036in}{3.836124in}}{\pgfqpoint{0.575036in}{3.808346in}}% +\pgfpathlineto{\pgfqpoint{0.575036in}{2.802949in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.575036in}{2.775171in}}{\pgfqpoint{0.602813in}{2.775171in}}% +\pgfpathlineto{\pgfqpoint{0.602813in}{2.775171in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{3.723657in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{3.723657in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{3.723657in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=3.675045in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-1.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{3.519799in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{3.519799in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{3.519799in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=3.471188in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=-0.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{3.315942in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{3.315942in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{3.315942in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=3.267331in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=0.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{3.112085in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{3.112085in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{3.112085in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=3.063474in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=0.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.630591in}{2.908228in}}% +\pgfpathlineto{\pgfqpoint{0.769480in}{2.908228in}}% +\pgfpathlineto{\pgfqpoint{0.908369in}{2.908228in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.019480in,y=2.859617in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=1.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.838635in}{3.723657in}}% +\pgfpathlineto{\pgfqpoint{1.977524in}{3.723657in}}% +\pgfpathlineto{\pgfqpoint{2.116413in}{3.723657in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.227524in,y=3.675045in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=2.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.838635in}{3.519799in}}% +\pgfpathlineto{\pgfqpoint{1.977524in}{3.519799in}}% +\pgfpathlineto{\pgfqpoint{2.116413in}{3.519799in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.227524in,y=3.471188in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=3.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.838635in}{3.315942in}}% +\pgfpathlineto{\pgfqpoint{1.977524in}{3.315942in}}% +\pgfpathlineto{\pgfqpoint{2.116413in}{3.315942in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.227524in,y=3.267331in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=4.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.838635in}{3.112085in}}% +\pgfpathlineto{\pgfqpoint{1.977524in}{3.112085in}}% +\pgfpathlineto{\pgfqpoint{2.116413in}{3.112085in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.227524in,y=3.063474in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z=4.5\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/laguerre_polynomes.pdf b/buch/papers/laguerre/images/laguerre_polynomes.pdf deleted file mode 100644 index 3976bc7..0000000 Binary files a/buch/papers/laguerre/images/laguerre_polynomes.pdf and /dev/null differ diff --git a/buch/papers/laguerre/images/laguerre_polynomes.pgf b/buch/papers/laguerre/images/laguerre_polynomes.pgf new file mode 100644 index 0000000..8df1baf --- /dev/null +++ b/buch/papers/laguerre/images/laguerre_polynomes.pgf @@ -0,0 +1,1838 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{0.041670in}}% +\pgfpathlineto{\pgfqpoint{5.953330in}{0.041670in}}% +\pgfpathlineto{\pgfqpoint{5.953330in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.041670in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.041670in}{0.041670in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.501875pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.952738in}{2.000000in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{1.967361in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{1.999925in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{1.999925in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{2.000075in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{2.000075in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{2.032639in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{2.000000in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.501875pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.579040in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.611667in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.579296in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.579296in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.578784in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.578784in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.546412in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.579040in}{3.958330in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.137944in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.137944in,y=1.902778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.696848in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.696848in,y=1.902778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.067259in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.090821in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.602601in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.114382in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.626163in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.649725in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.161505in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.673286in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.185067in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.953330in,y=1.907254in,,top]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle x\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.493592in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.197062in, y=0.440831in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.246796in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.285427in, y=1.194035in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.393452in, y=1.947238in, left, top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.753204in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.393452in, y=2.700442in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.506408in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.305087in, y=3.453646in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.041670in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.192311in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.342952in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.644233in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.794874in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.945515in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.096155in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.397437in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.548078in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.698718in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.849359in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.150641in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.301282in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.451922in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.602563in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.903845in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.054485in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.205126in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.355767in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.657048in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.807689in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.447062in,y=3.762497in,,bottom]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle y\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.150641in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{2.150641in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{2.150641in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.308814in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{0.568913in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{0.568913in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.550027in}}% +\pgfpathlineto{\pgfqpoint{0.112674in}{2.487733in}}% +\pgfpathlineto{\pgfqpoint{0.183678in}{2.428338in}}% +\pgfpathlineto{\pgfqpoint{0.254681in}{2.371843in}}% +\pgfpathlineto{\pgfqpoint{0.325685in}{2.318247in}}% +\pgfpathlineto{\pgfqpoint{0.396689in}{2.267552in}}% +\pgfpathlineto{\pgfqpoint{0.467693in}{2.219755in}}% +\pgfpathlineto{\pgfqpoint{0.532780in}{2.178489in}}% +\pgfpathlineto{\pgfqpoint{0.597867in}{2.139660in}}% +\pgfpathlineto{\pgfqpoint{0.662953in}{2.103266in}}% +\pgfpathlineto{\pgfqpoint{0.728040in}{2.069310in}}% +\pgfpathlineto{\pgfqpoint{0.793127in}{2.037790in}}% +\pgfpathlineto{\pgfqpoint{0.858214in}{2.008706in}}% +\pgfpathlineto{\pgfqpoint{0.923301in}{1.982059in}}% +\pgfpathlineto{\pgfqpoint{0.988388in}{1.957848in}}% +\pgfpathlineto{\pgfqpoint{1.053474in}{1.936073in}}% +\pgfpathlineto{\pgfqpoint{1.118561in}{1.916736in}}% +\pgfpathlineto{\pgfqpoint{1.183648in}{1.899834in}}% +\pgfpathlineto{\pgfqpoint{1.248735in}{1.885369in}}% +\pgfpathlineto{\pgfqpoint{1.313822in}{1.873341in}}% +\pgfpathlineto{\pgfqpoint{1.378909in}{1.863749in}}% +\pgfpathlineto{\pgfqpoint{1.443996in}{1.856593in}}% +\pgfpathlineto{\pgfqpoint{1.509082in}{1.851874in}}% +\pgfpathlineto{\pgfqpoint{1.574169in}{1.849592in}}% +\pgfpathlineto{\pgfqpoint{1.639256in}{1.849746in}}% +\pgfpathlineto{\pgfqpoint{1.704343in}{1.852336in}}% +\pgfpathlineto{\pgfqpoint{1.769430in}{1.857363in}}% +\pgfpathlineto{\pgfqpoint{1.834517in}{1.864826in}}% +\pgfpathlineto{\pgfqpoint{1.899603in}{1.874726in}}% +\pgfpathlineto{\pgfqpoint{1.964690in}{1.887062in}}% +\pgfpathlineto{\pgfqpoint{2.029777in}{1.901835in}}% +\pgfpathlineto{\pgfqpoint{2.094864in}{1.919044in}}% +\pgfpathlineto{\pgfqpoint{2.159951in}{1.938690in}}% +\pgfpathlineto{\pgfqpoint{2.225038in}{1.960772in}}% +\pgfpathlineto{\pgfqpoint{2.290124in}{1.985290in}}% +\pgfpathlineto{\pgfqpoint{2.355211in}{2.012245in}}% +\pgfpathlineto{\pgfqpoint{2.420298in}{2.041637in}}% +\pgfpathlineto{\pgfqpoint{2.485385in}{2.073465in}}% +\pgfpathlineto{\pgfqpoint{2.550472in}{2.107729in}}% +\pgfpathlineto{\pgfqpoint{2.615559in}{2.144430in}}% +\pgfpathlineto{\pgfqpoint{2.680645in}{2.183568in}}% +\pgfpathlineto{\pgfqpoint{2.745732in}{2.225142in}}% +\pgfpathlineto{\pgfqpoint{2.816736in}{2.273274in}}% +\pgfpathlineto{\pgfqpoint{2.887740in}{2.324305in}}% +\pgfpathlineto{\pgfqpoint{2.958744in}{2.378237in}}% +\pgfpathlineto{\pgfqpoint{3.029748in}{2.435068in}}% +\pgfpathlineto{\pgfqpoint{3.100751in}{2.494798in}}% +\pgfpathlineto{\pgfqpoint{3.171755in}{2.557428in}}% +\pgfpathlineto{\pgfqpoint{3.242759in}{2.622958in}}% +\pgfpathlineto{\pgfqpoint{3.313763in}{2.691387in}}% +\pgfpathlineto{\pgfqpoint{3.384767in}{2.762716in}}% +\pgfpathlineto{\pgfqpoint{3.461687in}{2.843261in}}% +\pgfpathlineto{\pgfqpoint{3.538608in}{2.927209in}}% +\pgfpathlineto{\pgfqpoint{3.615529in}{3.014560in}}% +\pgfpathlineto{\pgfqpoint{3.692450in}{3.105314in}}% +\pgfpathlineto{\pgfqpoint{3.769371in}{3.199471in}}% +\pgfpathlineto{\pgfqpoint{3.846292in}{3.297032in}}% +\pgfpathlineto{\pgfqpoint{3.923212in}{3.397995in}}% +\pgfpathlineto{\pgfqpoint{4.006050in}{3.510530in}}% +\pgfpathlineto{\pgfqpoint{4.088888in}{3.627012in}}% +\pgfpathlineto{\pgfqpoint{4.171726in}{3.747440in}}% +\pgfpathlineto{\pgfqpoint{4.254564in}{3.871816in}}% +\pgfpathlineto{\pgfqpoint{4.317102in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{4.317102in}{3.968330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.903346in}}% +\pgfpathlineto{\pgfqpoint{0.089006in}{2.812566in}}% +\pgfpathlineto{\pgfqpoint{0.136342in}{2.726886in}}% +\pgfpathlineto{\pgfqpoint{0.183678in}{2.646188in}}% +\pgfpathlineto{\pgfqpoint{0.231014in}{2.570351in}}% +\pgfpathlineto{\pgfqpoint{0.272432in}{2.507888in}}% +\pgfpathlineto{\pgfqpoint{0.313851in}{2.448976in}}% +\pgfpathlineto{\pgfqpoint{0.355270in}{2.393535in}}% +\pgfpathlineto{\pgfqpoint{0.396689in}{2.341486in}}% +\pgfpathlineto{\pgfqpoint{0.438108in}{2.292748in}}% +\pgfpathlineto{\pgfqpoint{0.479527in}{2.247242in}}% +\pgfpathlineto{\pgfqpoint{0.520946in}{2.204888in}}% +\pgfpathlineto{\pgfqpoint{0.562365in}{2.165606in}}% +\pgfpathlineto{\pgfqpoint{0.603784in}{2.129316in}}% +\pgfpathlineto{\pgfqpoint{0.645202in}{2.095939in}}% +\pgfpathlineto{\pgfqpoint{0.686621in}{2.065394in}}% +\pgfpathlineto{\pgfqpoint{0.728040in}{2.037601in}}% +\pgfpathlineto{\pgfqpoint{0.769459in}{2.012481in}}% +\pgfpathlineto{\pgfqpoint{0.810878in}{1.989955in}}% +\pgfpathlineto{\pgfqpoint{0.852297in}{1.969941in}}% +\pgfpathlineto{\pgfqpoint{0.893716in}{1.952360in}}% +\pgfpathlineto{\pgfqpoint{0.935135in}{1.937133in}}% +\pgfpathlineto{\pgfqpoint{0.976554in}{1.924179in}}% +\pgfpathlineto{\pgfqpoint{1.017973in}{1.913419in}}% +\pgfpathlineto{\pgfqpoint{1.059391in}{1.904772in}}% +\pgfpathlineto{\pgfqpoint{1.100810in}{1.898160in}}% +\pgfpathlineto{\pgfqpoint{1.148146in}{1.892991in}}% +\pgfpathlineto{\pgfqpoint{1.195482in}{1.890255in}}% +\pgfpathlineto{\pgfqpoint{1.242818in}{1.889833in}}% +\pgfpathlineto{\pgfqpoint{1.290154in}{1.891605in}}% +\pgfpathlineto{\pgfqpoint{1.337490in}{1.895453in}}% +\pgfpathlineto{\pgfqpoint{1.390743in}{1.902115in}}% +\pgfpathlineto{\pgfqpoint{1.443996in}{1.911083in}}% +\pgfpathlineto{\pgfqpoint{1.497248in}{1.922187in}}% +\pgfpathlineto{\pgfqpoint{1.556418in}{1.936824in}}% +\pgfpathlineto{\pgfqpoint{1.615588in}{1.953657in}}% +\pgfpathlineto{\pgfqpoint{1.680675in}{1.974431in}}% +\pgfpathlineto{\pgfqpoint{1.751679in}{1.999437in}}% +\pgfpathlineto{\pgfqpoint{1.828600in}{2.028834in}}% +\pgfpathlineto{\pgfqpoint{1.923271in}{2.067569in}}% +\pgfpathlineto{\pgfqpoint{2.041611in}{2.118583in}}% +\pgfpathlineto{\pgfqpoint{2.331543in}{2.244603in}}% +\pgfpathlineto{\pgfqpoint{2.426215in}{2.282642in}}% +\pgfpathlineto{\pgfqpoint{2.503136in}{2.311279in}}% +\pgfpathlineto{\pgfqpoint{2.574140in}{2.335430in}}% +\pgfpathlineto{\pgfqpoint{2.639227in}{2.355291in}}% +\pgfpathlineto{\pgfqpoint{2.698396in}{2.371186in}}% +\pgfpathlineto{\pgfqpoint{2.757566in}{2.384783in}}% +\pgfpathlineto{\pgfqpoint{2.810819in}{2.394863in}}% +\pgfpathlineto{\pgfqpoint{2.864072in}{2.402724in}}% +\pgfpathlineto{\pgfqpoint{2.917325in}{2.408195in}}% +\pgfpathlineto{\pgfqpoint{2.964661in}{2.410916in}}% +\pgfpathlineto{\pgfqpoint{3.011997in}{2.411496in}}% +\pgfpathlineto{\pgfqpoint{3.059332in}{2.409815in}}% +\pgfpathlineto{\pgfqpoint{3.106668in}{2.405755in}}% +\pgfpathlineto{\pgfqpoint{3.154004in}{2.399196in}}% +\pgfpathlineto{\pgfqpoint{3.195423in}{2.391314in}}% +\pgfpathlineto{\pgfqpoint{3.236842in}{2.381347in}}% +\pgfpathlineto{\pgfqpoint{3.278261in}{2.369216in}}% +\pgfpathlineto{\pgfqpoint{3.319680in}{2.354842in}}% +\pgfpathlineto{\pgfqpoint{3.361099in}{2.338144in}}% +\pgfpathlineto{\pgfqpoint{3.402518in}{2.319042in}}% +\pgfpathlineto{\pgfqpoint{3.443937in}{2.297457in}}% +\pgfpathlineto{\pgfqpoint{3.485355in}{2.273309in}}% +\pgfpathlineto{\pgfqpoint{3.526774in}{2.246517in}}% +\pgfpathlineto{\pgfqpoint{3.568193in}{2.217003in}}% +\pgfpathlineto{\pgfqpoint{3.609612in}{2.184686in}}% +\pgfpathlineto{\pgfqpoint{3.651031in}{2.149486in}}% +\pgfpathlineto{\pgfqpoint{3.692450in}{2.111323in}}% +\pgfpathlineto{\pgfqpoint{3.733869in}{2.070118in}}% +\pgfpathlineto{\pgfqpoint{3.775288in}{2.025791in}}% +\pgfpathlineto{\pgfqpoint{3.816707in}{1.978262in}}% +\pgfpathlineto{\pgfqpoint{3.858126in}{1.927451in}}% +\pgfpathlineto{\pgfqpoint{3.899544in}{1.873278in}}% +\pgfpathlineto{\pgfqpoint{3.940963in}{1.815664in}}% +\pgfpathlineto{\pgfqpoint{3.982382in}{1.754528in}}% +\pgfpathlineto{\pgfqpoint{4.023801in}{1.689790in}}% +\pgfpathlineto{\pgfqpoint{4.065220in}{1.621372in}}% +\pgfpathlineto{\pgfqpoint{4.112556in}{1.538569in}}% +\pgfpathlineto{\pgfqpoint{4.159892in}{1.450735in}}% +\pgfpathlineto{\pgfqpoint{4.207228in}{1.357750in}}% +\pgfpathlineto{\pgfqpoint{4.254564in}{1.259495in}}% +\pgfpathlineto{\pgfqpoint{4.301899in}{1.155851in}}% +\pgfpathlineto{\pgfqpoint{4.349235in}{1.046698in}}% +\pgfpathlineto{\pgfqpoint{4.396571in}{0.931918in}}% +\pgfpathlineto{\pgfqpoint{4.443907in}{0.811391in}}% +\pgfpathlineto{\pgfqpoint{4.491243in}{0.684999in}}% +\pgfpathlineto{\pgfqpoint{4.538579in}{0.552621in}}% +\pgfpathlineto{\pgfqpoint{4.585915in}{0.414138in}}% +\pgfpathlineto{\pgfqpoint{4.633251in}{0.269432in}}% +\pgfpathlineto{\pgfqpoint{4.686503in}{0.099051in}}% +\pgfpathlineto{\pgfqpoint{4.706884in}{0.031670in}}% +\pgfpathlineto{\pgfqpoint{4.706884in}{0.031670in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{3.405463in}}% +\pgfpathlineto{\pgfqpoint{0.077172in}{3.276626in}}% +\pgfpathlineto{\pgfqpoint{0.112674in}{3.155330in}}% +\pgfpathlineto{\pgfqpoint{0.148176in}{3.041328in}}% +\pgfpathlineto{\pgfqpoint{0.183678in}{2.934373in}}% +\pgfpathlineto{\pgfqpoint{0.219180in}{2.834225in}}% +\pgfpathlineto{\pgfqpoint{0.254681in}{2.740644in}}% +\pgfpathlineto{\pgfqpoint{0.290183in}{2.653396in}}% +\pgfpathlineto{\pgfqpoint{0.325685in}{2.572250in}}% +\pgfpathlineto{\pgfqpoint{0.361187in}{2.496978in}}% +\pgfpathlineto{\pgfqpoint{0.396689in}{2.427355in}}% +\pgfpathlineto{\pgfqpoint{0.432191in}{2.363161in}}% +\pgfpathlineto{\pgfqpoint{0.467693in}{2.304179in}}% +\pgfpathlineto{\pgfqpoint{0.503195in}{2.250195in}}% +\pgfpathlineto{\pgfqpoint{0.532780in}{2.208874in}}% +\pgfpathlineto{\pgfqpoint{0.562365in}{2.170757in}}% +\pgfpathlineto{\pgfqpoint{0.591950in}{2.135727in}}% +\pgfpathlineto{\pgfqpoint{0.621535in}{2.103667in}}% +\pgfpathlineto{\pgfqpoint{0.651119in}{2.074462in}}% +\pgfpathlineto{\pgfqpoint{0.680704in}{2.047998in}}% +\pgfpathlineto{\pgfqpoint{0.710289in}{2.024166in}}% +\pgfpathlineto{\pgfqpoint{0.739874in}{2.002854in}}% +\pgfpathlineto{\pgfqpoint{0.769459in}{1.983954in}}% +\pgfpathlineto{\pgfqpoint{0.799044in}{1.967361in}}% +\pgfpathlineto{\pgfqpoint{0.828629in}{1.952969in}}% +\pgfpathlineto{\pgfqpoint{0.858214in}{1.940676in}}% +\pgfpathlineto{\pgfqpoint{0.893716in}{1.928551in}}% +\pgfpathlineto{\pgfqpoint{0.929218in}{1.919131in}}% +\pgfpathlineto{\pgfqpoint{0.964720in}{1.912245in}}% +\pgfpathlineto{\pgfqpoint{1.000222in}{1.907730in}}% +\pgfpathlineto{\pgfqpoint{1.035724in}{1.905424in}}% +\pgfpathlineto{\pgfqpoint{1.071225in}{1.905169in}}% +\pgfpathlineto{\pgfqpoint{1.112644in}{1.907257in}}% +\pgfpathlineto{\pgfqpoint{1.154063in}{1.911687in}}% +\pgfpathlineto{\pgfqpoint{1.195482in}{1.918226in}}% +\pgfpathlineto{\pgfqpoint{1.242818in}{1.927991in}}% +\pgfpathlineto{\pgfqpoint{1.296071in}{1.941509in}}% +\pgfpathlineto{\pgfqpoint{1.355241in}{1.959146in}}% +\pgfpathlineto{\pgfqpoint{1.420328in}{1.981048in}}% +\pgfpathlineto{\pgfqpoint{1.503165in}{2.011566in}}% +\pgfpathlineto{\pgfqpoint{1.651090in}{2.069201in}}% +\pgfpathlineto{\pgfqpoint{1.763513in}{2.111866in}}% +\pgfpathlineto{\pgfqpoint{1.840434in}{2.138807in}}% +\pgfpathlineto{\pgfqpoint{1.905520in}{2.159456in}}% +\pgfpathlineto{\pgfqpoint{1.964690in}{2.176109in}}% +\pgfpathlineto{\pgfqpoint{2.023860in}{2.190419in}}% +\pgfpathlineto{\pgfqpoint{2.077113in}{2.201057in}}% +\pgfpathlineto{\pgfqpoint{2.130366in}{2.209372in}}% +\pgfpathlineto{\pgfqpoint{2.177702in}{2.214674in}}% +\pgfpathlineto{\pgfqpoint{2.225038in}{2.217895in}}% +\pgfpathlineto{\pgfqpoint{2.272373in}{2.218934in}}% +\pgfpathlineto{\pgfqpoint{2.319709in}{2.217705in}}% +\pgfpathlineto{\pgfqpoint{2.367045in}{2.214131in}}% +\pgfpathlineto{\pgfqpoint{2.414381in}{2.208145in}}% +\pgfpathlineto{\pgfqpoint{2.461717in}{2.199693in}}% +\pgfpathlineto{\pgfqpoint{2.509053in}{2.188731in}}% +\pgfpathlineto{\pgfqpoint{2.556389in}{2.175227in}}% +\pgfpathlineto{\pgfqpoint{2.603725in}{2.159157in}}% +\pgfpathlineto{\pgfqpoint{2.651061in}{2.140513in}}% +\pgfpathlineto{\pgfqpoint{2.698396in}{2.119294in}}% +\pgfpathlineto{\pgfqpoint{2.745732in}{2.095510in}}% +\pgfpathlineto{\pgfqpoint{2.793068in}{2.069186in}}% +\pgfpathlineto{\pgfqpoint{2.840404in}{2.040354in}}% +\pgfpathlineto{\pgfqpoint{2.887740in}{2.009058in}}% +\pgfpathlineto{\pgfqpoint{2.940993in}{1.970974in}}% +\pgfpathlineto{\pgfqpoint{2.994246in}{1.929939in}}% +\pgfpathlineto{\pgfqpoint{3.047499in}{1.886065in}}% +\pgfpathlineto{\pgfqpoint{3.100751in}{1.839483in}}% +\pgfpathlineto{\pgfqpoint{3.159921in}{1.784731in}}% +\pgfpathlineto{\pgfqpoint{3.219091in}{1.727049in}}% +\pgfpathlineto{\pgfqpoint{3.284178in}{1.660521in}}% +\pgfpathlineto{\pgfqpoint{3.355182in}{1.584703in}}% +\pgfpathlineto{\pgfqpoint{3.432103in}{1.499366in}}% +\pgfpathlineto{\pgfqpoint{3.526774in}{1.390881in}}% +\pgfpathlineto{\pgfqpoint{3.674699in}{1.217398in}}% +\pgfpathlineto{\pgfqpoint{3.816707in}{1.052009in}}% +\pgfpathlineto{\pgfqpoint{3.899544in}{0.958859in}}% +\pgfpathlineto{\pgfqpoint{3.970548in}{0.882403in}}% +\pgfpathlineto{\pgfqpoint{4.029718in}{0.821859in}}% +\pgfpathlineto{\pgfqpoint{4.082971in}{0.770385in}}% +\pgfpathlineto{\pgfqpoint{4.130307in}{0.727425in}}% +\pgfpathlineto{\pgfqpoint{4.177643in}{0.687455in}}% +\pgfpathlineto{\pgfqpoint{4.219062in}{0.655212in}}% +\pgfpathlineto{\pgfqpoint{4.260481in}{0.625776in}}% +\pgfpathlineto{\pgfqpoint{4.295982in}{0.602970in}}% +\pgfpathlineto{\pgfqpoint{4.331484in}{0.582572in}}% +\pgfpathlineto{\pgfqpoint{4.366986in}{0.564749in}}% +\pgfpathlineto{\pgfqpoint{4.402488in}{0.549670in}}% +\pgfpathlineto{\pgfqpoint{4.432073in}{0.539326in}}% +\pgfpathlineto{\pgfqpoint{4.461658in}{0.531108in}}% +\pgfpathlineto{\pgfqpoint{4.491243in}{0.525122in}}% +\pgfpathlineto{\pgfqpoint{4.520828in}{0.521471in}}% +\pgfpathlineto{\pgfqpoint{4.550413in}{0.520264in}}% +\pgfpathlineto{\pgfqpoint{4.579998in}{0.521608in}}% +\pgfpathlineto{\pgfqpoint{4.609583in}{0.525615in}}% +\pgfpathlineto{\pgfqpoint{4.639168in}{0.532395in}}% +\pgfpathlineto{\pgfqpoint{4.662836in}{0.539892in}}% +\pgfpathlineto{\pgfqpoint{4.686503in}{0.549296in}}% +\pgfpathlineto{\pgfqpoint{4.710171in}{0.560667in}}% +\pgfpathlineto{\pgfqpoint{4.733839in}{0.574065in}}% +\pgfpathlineto{\pgfqpoint{4.757507in}{0.589550in}}% +\pgfpathlineto{\pgfqpoint{4.787092in}{0.611937in}}% +\pgfpathlineto{\pgfqpoint{4.816677in}{0.637805in}}% +\pgfpathlineto{\pgfqpoint{4.846262in}{0.667277in}}% +\pgfpathlineto{\pgfqpoint{4.875847in}{0.700480in}}% +\pgfpathlineto{\pgfqpoint{4.905432in}{0.737539in}}% +\pgfpathlineto{\pgfqpoint{4.935017in}{0.778584in}}% +\pgfpathlineto{\pgfqpoint{4.964602in}{0.823745in}}% +\pgfpathlineto{\pgfqpoint{4.994187in}{0.873154in}}% +\pgfpathlineto{\pgfqpoint{5.023772in}{0.926945in}}% +\pgfpathlineto{\pgfqpoint{5.053357in}{0.985254in}}% +\pgfpathlineto{\pgfqpoint{5.082941in}{1.048218in}}% +\pgfpathlineto{\pgfqpoint{5.112526in}{1.115976in}}% +\pgfpathlineto{\pgfqpoint{5.142111in}{1.188667in}}% +\pgfpathlineto{\pgfqpoint{5.171696in}{1.266435in}}% +\pgfpathlineto{\pgfqpoint{5.207198in}{1.366660in}}% +\pgfpathlineto{\pgfqpoint{5.242700in}{1.474655in}}% +\pgfpathlineto{\pgfqpoint{5.278202in}{1.590673in}}% +\pgfpathlineto{\pgfqpoint{5.313704in}{1.714975in}}% +\pgfpathlineto{\pgfqpoint{5.349206in}{1.847823in}}% +\pgfpathlineto{\pgfqpoint{5.384708in}{1.989482in}}% +\pgfpathlineto{\pgfqpoint{5.420210in}{2.140222in}}% +\pgfpathlineto{\pgfqpoint{5.455712in}{2.300316in}}% +\pgfpathlineto{\pgfqpoint{5.491213in}{2.470039in}}% +\pgfpathlineto{\pgfqpoint{5.526715in}{2.649672in}}% +\pgfpathlineto{\pgfqpoint{5.562217in}{2.839498in}}% +\pgfpathlineto{\pgfqpoint{5.603636in}{3.074227in}}% +\pgfpathlineto{\pgfqpoint{5.645055in}{3.323682in}}% +\pgfpathlineto{\pgfqpoint{5.686474in}{3.588329in}}% +\pgfpathlineto{\pgfqpoint{5.727893in}{3.868644in}}% +\pgfpathlineto{\pgfqpoint{5.742072in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{5.742072in}{3.968330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.062802in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{0.094923in}{3.775703in}}% +\pgfpathlineto{\pgfqpoint{0.130425in}{3.577919in}}% +\pgfpathlineto{\pgfqpoint{0.160010in}{3.424649in}}% +\pgfpathlineto{\pgfqpoint{0.189595in}{3.281426in}}% +\pgfpathlineto{\pgfqpoint{0.219180in}{3.147834in}}% +\pgfpathlineto{\pgfqpoint{0.248764in}{3.023467in}}% +\pgfpathlineto{\pgfqpoint{0.278349in}{2.907931in}}% +\pgfpathlineto{\pgfqpoint{0.307934in}{2.800839in}}% +\pgfpathlineto{\pgfqpoint{0.337519in}{2.701814in}}% +\pgfpathlineto{\pgfqpoint{0.367104in}{2.610489in}}% +\pgfpathlineto{\pgfqpoint{0.396689in}{2.526504in}}% +\pgfpathlineto{\pgfqpoint{0.426274in}{2.449512in}}% +\pgfpathlineto{\pgfqpoint{0.455859in}{2.379172in}}% +\pgfpathlineto{\pgfqpoint{0.485444in}{2.315152in}}% +\pgfpathlineto{\pgfqpoint{0.515029in}{2.257130in}}% +\pgfpathlineto{\pgfqpoint{0.544614in}{2.204792in}}% +\pgfpathlineto{\pgfqpoint{0.574199in}{2.157833in}}% +\pgfpathlineto{\pgfqpoint{0.603784in}{2.115957in}}% +\pgfpathlineto{\pgfqpoint{0.627452in}{2.085922in}}% +\pgfpathlineto{\pgfqpoint{0.651119in}{2.058810in}}% +\pgfpathlineto{\pgfqpoint{0.674787in}{2.034483in}}% +\pgfpathlineto{\pgfqpoint{0.698455in}{2.012804in}}% +\pgfpathlineto{\pgfqpoint{0.722123in}{1.993637in}}% +\pgfpathlineto{\pgfqpoint{0.745791in}{1.976854in}}% +\pgfpathlineto{\pgfqpoint{0.769459in}{1.962327in}}% +\pgfpathlineto{\pgfqpoint{0.793127in}{1.949931in}}% +\pgfpathlineto{\pgfqpoint{0.822712in}{1.937252in}}% +\pgfpathlineto{\pgfqpoint{0.852297in}{1.927487in}}% +\pgfpathlineto{\pgfqpoint{0.881882in}{1.920414in}}% +\pgfpathlineto{\pgfqpoint{0.911467in}{1.915820in}}% +\pgfpathlineto{\pgfqpoint{0.941052in}{1.913500in}}% +\pgfpathlineto{\pgfqpoint{0.970637in}{1.913253in}}% +\pgfpathlineto{\pgfqpoint{1.006139in}{1.915424in}}% +\pgfpathlineto{\pgfqpoint{1.041641in}{1.919988in}}% +\pgfpathlineto{\pgfqpoint{1.077142in}{1.926642in}}% +\pgfpathlineto{\pgfqpoint{1.118561in}{1.936660in}}% +\pgfpathlineto{\pgfqpoint{1.165897in}{1.950553in}}% +\pgfpathlineto{\pgfqpoint{1.219150in}{1.968576in}}% +\pgfpathlineto{\pgfqpoint{1.290154in}{1.995219in}}% +\pgfpathlineto{\pgfqpoint{1.520916in}{2.084084in}}% +\pgfpathlineto{\pgfqpoint{1.580086in}{2.103653in}}% +\pgfpathlineto{\pgfqpoint{1.633339in}{2.119144in}}% +\pgfpathlineto{\pgfqpoint{1.686592in}{2.132279in}}% +\pgfpathlineto{\pgfqpoint{1.733928in}{2.141744in}}% +\pgfpathlineto{\pgfqpoint{1.781264in}{2.148956in}}% +\pgfpathlineto{\pgfqpoint{1.828600in}{2.153779in}}% +\pgfpathlineto{\pgfqpoint{1.875935in}{2.156106in}}% +\pgfpathlineto{\pgfqpoint{1.917354in}{2.156033in}}% +\pgfpathlineto{\pgfqpoint{1.958773in}{2.153953in}}% +\pgfpathlineto{\pgfqpoint{2.000192in}{2.149848in}}% +\pgfpathlineto{\pgfqpoint{2.041611in}{2.143710in}}% +\pgfpathlineto{\pgfqpoint{2.083030in}{2.135551in}}% +\pgfpathlineto{\pgfqpoint{2.130366in}{2.123782in}}% +\pgfpathlineto{\pgfqpoint{2.177702in}{2.109457in}}% +\pgfpathlineto{\pgfqpoint{2.225038in}{2.092656in}}% +\pgfpathlineto{\pgfqpoint{2.272373in}{2.073477in}}% +\pgfpathlineto{\pgfqpoint{2.319709in}{2.052037in}}% +\pgfpathlineto{\pgfqpoint{2.372962in}{2.025387in}}% +\pgfpathlineto{\pgfqpoint{2.426215in}{1.996269in}}% +\pgfpathlineto{\pgfqpoint{2.485385in}{1.961326in}}% +\pgfpathlineto{\pgfqpoint{2.550472in}{1.920172in}}% +\pgfpathlineto{\pgfqpoint{2.621476in}{1.872660in}}% +\pgfpathlineto{\pgfqpoint{2.716147in}{1.806369in}}% +\pgfpathlineto{\pgfqpoint{2.964661in}{1.630566in}}% +\pgfpathlineto{\pgfqpoint{3.035665in}{1.583932in}}% +\pgfpathlineto{\pgfqpoint{3.094834in}{1.547616in}}% +\pgfpathlineto{\pgfqpoint{3.148087in}{1.517423in}}% +\pgfpathlineto{\pgfqpoint{3.195423in}{1.492921in}}% +\pgfpathlineto{\pgfqpoint{3.242759in}{1.470928in}}% +\pgfpathlineto{\pgfqpoint{3.284178in}{1.453976in}}% +\pgfpathlineto{\pgfqpoint{3.325597in}{1.439369in}}% +\pgfpathlineto{\pgfqpoint{3.367016in}{1.427302in}}% +\pgfpathlineto{\pgfqpoint{3.402518in}{1.419128in}}% +\pgfpathlineto{\pgfqpoint{3.438020in}{1.413082in}}% +\pgfpathlineto{\pgfqpoint{3.473521in}{1.409282in}}% +\pgfpathlineto{\pgfqpoint{3.509023in}{1.407845in}}% +\pgfpathlineto{\pgfqpoint{3.544525in}{1.408883in}}% +\pgfpathlineto{\pgfqpoint{3.580027in}{1.412509in}}% +\pgfpathlineto{\pgfqpoint{3.609612in}{1.417585in}}% +\pgfpathlineto{\pgfqpoint{3.639197in}{1.424593in}}% +\pgfpathlineto{\pgfqpoint{3.668782in}{1.433595in}}% +\pgfpathlineto{\pgfqpoint{3.698367in}{1.444647in}}% +\pgfpathlineto{\pgfqpoint{3.727952in}{1.457806in}}% +\pgfpathlineto{\pgfqpoint{3.757537in}{1.473126in}}% +\pgfpathlineto{\pgfqpoint{3.787122in}{1.490660in}}% +\pgfpathlineto{\pgfqpoint{3.816707in}{1.510457in}}% +\pgfpathlineto{\pgfqpoint{3.846292in}{1.532567in}}% +\pgfpathlineto{\pgfqpoint{3.875876in}{1.557035in}}% +\pgfpathlineto{\pgfqpoint{3.911378in}{1.589571in}}% +\pgfpathlineto{\pgfqpoint{3.946880in}{1.625636in}}% +\pgfpathlineto{\pgfqpoint{3.982382in}{1.665297in}}% +\pgfpathlineto{\pgfqpoint{4.017884in}{1.708612in}}% +\pgfpathlineto{\pgfqpoint{4.053386in}{1.755638in}}% +\pgfpathlineto{\pgfqpoint{4.088888in}{1.806421in}}% +\pgfpathlineto{\pgfqpoint{4.124390in}{1.861004in}}% +\pgfpathlineto{\pgfqpoint{4.159892in}{1.919422in}}% +\pgfpathlineto{\pgfqpoint{4.195394in}{1.981705in}}% +\pgfpathlineto{\pgfqpoint{4.236813in}{2.059281in}}% +\pgfpathlineto{\pgfqpoint{4.278231in}{2.142169in}}% +\pgfpathlineto{\pgfqpoint{4.319650in}{2.230377in}}% +\pgfpathlineto{\pgfqpoint{4.361069in}{2.323900in}}% +\pgfpathlineto{\pgfqpoint{4.402488in}{2.422716in}}% +\pgfpathlineto{\pgfqpoint{4.443907in}{2.526790in}}% +\pgfpathlineto{\pgfqpoint{4.491243in}{2.652101in}}% +\pgfpathlineto{\pgfqpoint{4.538579in}{2.784105in}}% +\pgfpathlineto{\pgfqpoint{4.585915in}{2.922669in}}% +\pgfpathlineto{\pgfqpoint{4.633251in}{3.067630in}}% +\pgfpathlineto{\pgfqpoint{4.686503in}{3.238112in}}% +\pgfpathlineto{\pgfqpoint{4.739756in}{3.416115in}}% +\pgfpathlineto{\pgfqpoint{4.798926in}{3.622253in}}% +\pgfpathlineto{\pgfqpoint{4.858096in}{3.836605in}}% +\pgfpathlineto{\pgfqpoint{4.893453in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{4.893453in}{3.968330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.160076in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{0.189595in}{3.747453in}}% +\pgfpathlineto{\pgfqpoint{0.219180in}{3.543692in}}% +\pgfpathlineto{\pgfqpoint{0.248764in}{3.356610in}}% +\pgfpathlineto{\pgfqpoint{0.278349in}{3.185290in}}% +\pgfpathlineto{\pgfqpoint{0.307934in}{3.028848in}}% +\pgfpathlineto{\pgfqpoint{0.337519in}{2.886428in}}% +\pgfpathlineto{\pgfqpoint{0.367104in}{2.757208in}}% +\pgfpathlineto{\pgfqpoint{0.390772in}{2.662802in}}% +\pgfpathlineto{\pgfqpoint{0.414440in}{2.575943in}}% +\pgfpathlineto{\pgfqpoint{0.438108in}{2.496251in}}% +\pgfpathlineto{\pgfqpoint{0.461776in}{2.423358in}}% +\pgfpathlineto{\pgfqpoint{0.485444in}{2.356904in}}% +\pgfpathlineto{\pgfqpoint{0.509112in}{2.296546in}}% +\pgfpathlineto{\pgfqpoint{0.532780in}{2.241948in}}% +\pgfpathlineto{\pgfqpoint{0.556448in}{2.192785in}}% +\pgfpathlineto{\pgfqpoint{0.580116in}{2.148746in}}% +\pgfpathlineto{\pgfqpoint{0.603784in}{2.109526in}}% +\pgfpathlineto{\pgfqpoint{0.627452in}{2.074834in}}% +\pgfpathlineto{\pgfqpoint{0.651119in}{2.044387in}}% +\pgfpathlineto{\pgfqpoint{0.674787in}{2.017914in}}% +\pgfpathlineto{\pgfqpoint{0.698455in}{1.995150in}}% +\pgfpathlineto{\pgfqpoint{0.722123in}{1.975844in}}% +\pgfpathlineto{\pgfqpoint{0.745791in}{1.959752in}}% +\pgfpathlineto{\pgfqpoint{0.769459in}{1.946640in}}% +\pgfpathlineto{\pgfqpoint{0.793127in}{1.936281in}}% +\pgfpathlineto{\pgfqpoint{0.816795in}{1.928461in}}% +\pgfpathlineto{\pgfqpoint{0.840463in}{1.922970in}}% +\pgfpathlineto{\pgfqpoint{0.864131in}{1.919609in}}% +\pgfpathlineto{\pgfqpoint{0.887799in}{1.918188in}}% +\pgfpathlineto{\pgfqpoint{0.917384in}{1.918860in}}% +\pgfpathlineto{\pgfqpoint{0.946969in}{1.921938in}}% +\pgfpathlineto{\pgfqpoint{0.976554in}{1.927100in}}% +\pgfpathlineto{\pgfqpoint{1.012056in}{1.935622in}}% +\pgfpathlineto{\pgfqpoint{1.053474in}{1.948158in}}% +\pgfpathlineto{\pgfqpoint{1.100810in}{1.965037in}}% +\pgfpathlineto{\pgfqpoint{1.165897in}{1.991006in}}% +\pgfpathlineto{\pgfqpoint{1.331573in}{2.058466in}}% +\pgfpathlineto{\pgfqpoint{1.384826in}{2.077333in}}% +\pgfpathlineto{\pgfqpoint{1.432162in}{2.092015in}}% +\pgfpathlineto{\pgfqpoint{1.479497in}{2.104371in}}% +\pgfpathlineto{\pgfqpoint{1.520916in}{2.113060in}}% +\pgfpathlineto{\pgfqpoint{1.562335in}{2.119621in}}% +\pgfpathlineto{\pgfqpoint{1.603754in}{2.123950in}}% +\pgfpathlineto{\pgfqpoint{1.645173in}{2.125978in}}% +\pgfpathlineto{\pgfqpoint{1.686592in}{2.125667in}}% +\pgfpathlineto{\pgfqpoint{1.728011in}{2.123013in}}% +\pgfpathlineto{\pgfqpoint{1.769430in}{2.118036in}}% +\pgfpathlineto{\pgfqpoint{1.810849in}{2.110785in}}% +\pgfpathlineto{\pgfqpoint{1.852267in}{2.101330in}}% +\pgfpathlineto{\pgfqpoint{1.893686in}{2.089767in}}% +\pgfpathlineto{\pgfqpoint{1.941022in}{2.074119in}}% +\pgfpathlineto{\pgfqpoint{1.988358in}{2.056068in}}% +\pgfpathlineto{\pgfqpoint{2.041611in}{2.033177in}}% +\pgfpathlineto{\pgfqpoint{2.094864in}{2.007901in}}% +\pgfpathlineto{\pgfqpoint{2.159951in}{1.974353in}}% +\pgfpathlineto{\pgfqpoint{2.236872in}{1.931958in}}% +\pgfpathlineto{\pgfqpoint{2.384796in}{1.847001in}}% +\pgfpathlineto{\pgfqpoint{2.479468in}{1.794181in}}% +\pgfpathlineto{\pgfqpoint{2.544555in}{1.760299in}}% +\pgfpathlineto{\pgfqpoint{2.603725in}{1.732074in}}% +\pgfpathlineto{\pgfqpoint{2.656977in}{1.709318in}}% +\pgfpathlineto{\pgfqpoint{2.704313in}{1.691575in}}% +\pgfpathlineto{\pgfqpoint{2.745732in}{1.678218in}}% +\pgfpathlineto{\pgfqpoint{2.787151in}{1.667088in}}% +\pgfpathlineto{\pgfqpoint{2.828570in}{1.658371in}}% +\pgfpathlineto{\pgfqpoint{2.864072in}{1.652952in}}% +\pgfpathlineto{\pgfqpoint{2.899574in}{1.649539in}}% +\pgfpathlineto{\pgfqpoint{2.935076in}{1.648228in}}% +\pgfpathlineto{\pgfqpoint{2.970578in}{1.649110in}}% +\pgfpathlineto{\pgfqpoint{3.006080in}{1.652268in}}% +\pgfpathlineto{\pgfqpoint{3.041582in}{1.657780in}}% +\pgfpathlineto{\pgfqpoint{3.077083in}{1.665714in}}% +\pgfpathlineto{\pgfqpoint{3.112585in}{1.676130in}}% +\pgfpathlineto{\pgfqpoint{3.148087in}{1.689080in}}% +\pgfpathlineto{\pgfqpoint{3.183589in}{1.704609in}}% +\pgfpathlineto{\pgfqpoint{3.219091in}{1.722751in}}% +\pgfpathlineto{\pgfqpoint{3.254593in}{1.743532in}}% +\pgfpathlineto{\pgfqpoint{3.290095in}{1.766969in}}% +\pgfpathlineto{\pgfqpoint{3.325597in}{1.793068in}}% +\pgfpathlineto{\pgfqpoint{3.361099in}{1.821829in}}% +\pgfpathlineto{\pgfqpoint{3.396601in}{1.853238in}}% +\pgfpathlineto{\pgfqpoint{3.432103in}{1.887275in}}% +\pgfpathlineto{\pgfqpoint{3.473521in}{1.930260in}}% +\pgfpathlineto{\pgfqpoint{3.514940in}{1.976709in}}% +\pgfpathlineto{\pgfqpoint{3.556359in}{2.026533in}}% +\pgfpathlineto{\pgfqpoint{3.597778in}{2.079626in}}% +\pgfpathlineto{\pgfqpoint{3.645114in}{2.144145in}}% +\pgfpathlineto{\pgfqpoint{3.692450in}{2.212550in}}% +\pgfpathlineto{\pgfqpoint{3.745703in}{2.293837in}}% +\pgfpathlineto{\pgfqpoint{3.798956in}{2.379315in}}% +\pgfpathlineto{\pgfqpoint{3.858126in}{2.478643in}}% +\pgfpathlineto{\pgfqpoint{3.923212in}{2.592375in}}% +\pgfpathlineto{\pgfqpoint{4.000133in}{2.731415in}}% +\pgfpathlineto{\pgfqpoint{4.118473in}{2.950766in}}% +\pgfpathlineto{\pgfqpoint{4.248647in}{3.191037in}}% +\pgfpathlineto{\pgfqpoint{4.319650in}{3.317476in}}% +\pgfpathlineto{\pgfqpoint{4.378820in}{3.418354in}}% +\pgfpathlineto{\pgfqpoint{4.432073in}{3.504493in}}% +\pgfpathlineto{\pgfqpoint{4.479409in}{3.576524in}}% +\pgfpathlineto{\pgfqpoint{4.520828in}{3.635455in}}% +\pgfpathlineto{\pgfqpoint{4.556330in}{3.682531in}}% +\pgfpathlineto{\pgfqpoint{4.591832in}{3.726097in}}% +\pgfpathlineto{\pgfqpoint{4.627334in}{3.765832in}}% +\pgfpathlineto{\pgfqpoint{4.656919in}{3.795780in}}% +\pgfpathlineto{\pgfqpoint{4.686503in}{3.822646in}}% +\pgfpathlineto{\pgfqpoint{4.716088in}{3.846238in}}% +\pgfpathlineto{\pgfqpoint{4.739756in}{3.862621in}}% +\pgfpathlineto{\pgfqpoint{4.763424in}{3.876683in}}% +\pgfpathlineto{\pgfqpoint{4.787092in}{3.888322in}}% +\pgfpathlineto{\pgfqpoint{4.810760in}{3.897435in}}% +\pgfpathlineto{\pgfqpoint{4.834428in}{3.903922in}}% +\pgfpathlineto{\pgfqpoint{4.858096in}{3.907680in}}% +\pgfpathlineto{\pgfqpoint{4.881764in}{3.908605in}}% +\pgfpathlineto{\pgfqpoint{4.899515in}{3.907380in}}% +\pgfpathlineto{\pgfqpoint{4.917266in}{3.904460in}}% +\pgfpathlineto{\pgfqpoint{4.935017in}{3.899802in}}% +\pgfpathlineto{\pgfqpoint{4.952768in}{3.893364in}}% +\pgfpathlineto{\pgfqpoint{4.970519in}{3.885102in}}% +\pgfpathlineto{\pgfqpoint{4.988270in}{3.874973in}}% +\pgfpathlineto{\pgfqpoint{5.011938in}{3.858488in}}% +\pgfpathlineto{\pgfqpoint{5.035606in}{3.838504in}}% +\pgfpathlineto{\pgfqpoint{5.059274in}{3.814920in}}% +\pgfpathlineto{\pgfqpoint{5.082941in}{3.787635in}}% +\pgfpathlineto{\pgfqpoint{5.106609in}{3.756547in}}% +\pgfpathlineto{\pgfqpoint{5.130277in}{3.721557in}}% +\pgfpathlineto{\pgfqpoint{5.153945in}{3.682565in}}% +\pgfpathlineto{\pgfqpoint{5.177613in}{3.639473in}}% +\pgfpathlineto{\pgfqpoint{5.201281in}{3.592183in}}% +\pgfpathlineto{\pgfqpoint{5.224949in}{3.540598in}}% +\pgfpathlineto{\pgfqpoint{5.254534in}{3.469933in}}% +\pgfpathlineto{\pgfqpoint{5.284119in}{3.392224in}}% +\pgfpathlineto{\pgfqpoint{5.313704in}{3.307291in}}% +\pgfpathlineto{\pgfqpoint{5.343289in}{3.214956in}}% +\pgfpathlineto{\pgfqpoint{5.372874in}{3.115047in}}% +\pgfpathlineto{\pgfqpoint{5.402459in}{3.007394in}}% +\pgfpathlineto{\pgfqpoint{5.432044in}{2.891832in}}% +\pgfpathlineto{\pgfqpoint{5.461629in}{2.768202in}}% +\pgfpathlineto{\pgfqpoint{5.491213in}{2.636349in}}% +\pgfpathlineto{\pgfqpoint{5.526715in}{2.467060in}}% +\pgfpathlineto{\pgfqpoint{5.562217in}{2.285470in}}% +\pgfpathlineto{\pgfqpoint{5.597719in}{2.091342in}}% +\pgfpathlineto{\pgfqpoint{5.633221in}{1.884459in}}% +\pgfpathlineto{\pgfqpoint{5.668723in}{1.664615in}}% +\pgfpathlineto{\pgfqpoint{5.704225in}{1.431621in}}% +\pgfpathlineto{\pgfqpoint{5.739727in}{1.185303in}}% +\pgfpathlineto{\pgfqpoint{5.781146in}{0.880889in}}% +\pgfpathlineto{\pgfqpoint{5.822565in}{0.557917in}}% +\pgfpathlineto{\pgfqpoint{5.863984in}{0.216210in}}% +\pgfpathlineto{\pgfqpoint{5.885447in}{0.031670in}}% +\pgfpathlineto{\pgfqpoint{5.885447in}{0.031670in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.226531in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{0.248764in}{3.767229in}}% +\pgfpathlineto{\pgfqpoint{0.272432in}{3.569453in}}% +\pgfpathlineto{\pgfqpoint{0.296100in}{3.387479in}}% +\pgfpathlineto{\pgfqpoint{0.319768in}{3.220430in}}% +\pgfpathlineto{\pgfqpoint{0.343436in}{3.067463in}}% +\pgfpathlineto{\pgfqpoint{0.367104in}{2.927764in}}% +\pgfpathlineto{\pgfqpoint{0.390772in}{2.800552in}}% +\pgfpathlineto{\pgfqpoint{0.414440in}{2.685078in}}% +\pgfpathlineto{\pgfqpoint{0.438108in}{2.580621in}}% +\pgfpathlineto{\pgfqpoint{0.461776in}{2.486488in}}% +\pgfpathlineto{\pgfqpoint{0.485444in}{2.402017in}}% +\pgfpathlineto{\pgfqpoint{0.509112in}{2.326572in}}% +\pgfpathlineto{\pgfqpoint{0.532780in}{2.259543in}}% +\pgfpathlineto{\pgfqpoint{0.556448in}{2.200349in}}% +\pgfpathlineto{\pgfqpoint{0.580116in}{2.148431in}}% +\pgfpathlineto{\pgfqpoint{0.603784in}{2.103257in}}% +\pgfpathlineto{\pgfqpoint{0.621535in}{2.073496in}}% +\pgfpathlineto{\pgfqpoint{0.639286in}{2.047036in}}% +\pgfpathlineto{\pgfqpoint{0.657036in}{2.023678in}}% +\pgfpathlineto{\pgfqpoint{0.674787in}{2.003232in}}% +\pgfpathlineto{\pgfqpoint{0.692538in}{1.985512in}}% +\pgfpathlineto{\pgfqpoint{0.710289in}{1.970341in}}% +\pgfpathlineto{\pgfqpoint{0.728040in}{1.957548in}}% +\pgfpathlineto{\pgfqpoint{0.745791in}{1.946967in}}% +\pgfpathlineto{\pgfqpoint{0.763542in}{1.938442in}}% +\pgfpathlineto{\pgfqpoint{0.781293in}{1.931819in}}% +\pgfpathlineto{\pgfqpoint{0.804961in}{1.925698in}}% +\pgfpathlineto{\pgfqpoint{0.828629in}{1.922372in}}% +\pgfpathlineto{\pgfqpoint{0.852297in}{1.921528in}}% +\pgfpathlineto{\pgfqpoint{0.875965in}{1.922875in}}% +\pgfpathlineto{\pgfqpoint{0.905550in}{1.927217in}}% +\pgfpathlineto{\pgfqpoint{0.935135in}{1.934045in}}% +\pgfpathlineto{\pgfqpoint{0.970637in}{1.944868in}}% +\pgfpathlineto{\pgfqpoint{1.012056in}{1.960198in}}% +\pgfpathlineto{\pgfqpoint{1.065308in}{1.982607in}}% +\pgfpathlineto{\pgfqpoint{1.219150in}{2.049183in}}% +\pgfpathlineto{\pgfqpoint{1.266486in}{2.066673in}}% +\pgfpathlineto{\pgfqpoint{1.307905in}{2.079881in}}% +\pgfpathlineto{\pgfqpoint{1.349324in}{2.090815in}}% +\pgfpathlineto{\pgfqpoint{1.390743in}{2.099253in}}% +\pgfpathlineto{\pgfqpoint{1.426245in}{2.104380in}}% +\pgfpathlineto{\pgfqpoint{1.461746in}{2.107498in}}% +\pgfpathlineto{\pgfqpoint{1.497248in}{2.108581in}}% +\pgfpathlineto{\pgfqpoint{1.532750in}{2.107630in}}% +\pgfpathlineto{\pgfqpoint{1.568252in}{2.104672in}}% +\pgfpathlineto{\pgfqpoint{1.603754in}{2.099759in}}% +\pgfpathlineto{\pgfqpoint{1.645173in}{2.091658in}}% +\pgfpathlineto{\pgfqpoint{1.686592in}{2.081149in}}% +\pgfpathlineto{\pgfqpoint{1.728011in}{2.068416in}}% +\pgfpathlineto{\pgfqpoint{1.775347in}{2.051412in}}% +\pgfpathlineto{\pgfqpoint{1.822683in}{2.032130in}}% +\pgfpathlineto{\pgfqpoint{1.881852in}{2.005410in}}% +\pgfpathlineto{\pgfqpoint{1.952856in}{1.970574in}}% +\pgfpathlineto{\pgfqpoint{2.207287in}{1.842753in}}% +\pgfpathlineto{\pgfqpoint{2.260539in}{1.819638in}}% +\pgfpathlineto{\pgfqpoint{2.307875in}{1.801233in}}% +\pgfpathlineto{\pgfqpoint{2.355211in}{1.785225in}}% +\pgfpathlineto{\pgfqpoint{2.396630in}{1.773451in}}% +\pgfpathlineto{\pgfqpoint{2.438049in}{1.763982in}}% +\pgfpathlineto{\pgfqpoint{2.479468in}{1.757005in}}% +\pgfpathlineto{\pgfqpoint{2.514970in}{1.753139in}}% +\pgfpathlineto{\pgfqpoint{2.550472in}{1.751324in}}% +\pgfpathlineto{\pgfqpoint{2.585974in}{1.751644in}}% +\pgfpathlineto{\pgfqpoint{2.621476in}{1.754169in}}% +\pgfpathlineto{\pgfqpoint{2.656977in}{1.758958in}}% +\pgfpathlineto{\pgfqpoint{2.692479in}{1.766056in}}% +\pgfpathlineto{\pgfqpoint{2.727981in}{1.775495in}}% +\pgfpathlineto{\pgfqpoint{2.763483in}{1.787296in}}% +\pgfpathlineto{\pgfqpoint{2.798985in}{1.801463in}}% +\pgfpathlineto{\pgfqpoint{2.834487in}{1.817991in}}% +\pgfpathlineto{\pgfqpoint{2.869989in}{1.836858in}}% +\pgfpathlineto{\pgfqpoint{2.905491in}{1.858030in}}% +\pgfpathlineto{\pgfqpoint{2.946910in}{1.885581in}}% +\pgfpathlineto{\pgfqpoint{2.988329in}{1.916108in}}% +\pgfpathlineto{\pgfqpoint{3.029748in}{1.949487in}}% +\pgfpathlineto{\pgfqpoint{3.071166in}{1.985574in}}% +\pgfpathlineto{\pgfqpoint{3.118502in}{2.029913in}}% +\pgfpathlineto{\pgfqpoint{3.165838in}{2.077278in}}% +\pgfpathlineto{\pgfqpoint{3.219091in}{2.133774in}}% +\pgfpathlineto{\pgfqpoint{3.278261in}{2.199921in}}% +\pgfpathlineto{\pgfqpoint{3.349265in}{2.282904in}}% +\pgfpathlineto{\pgfqpoint{3.449854in}{2.404360in}}% +\pgfpathlineto{\pgfqpoint{3.580027in}{2.561142in}}% +\pgfpathlineto{\pgfqpoint{3.645114in}{2.636131in}}% +\pgfpathlineto{\pgfqpoint{3.698367in}{2.694373in}}% +\pgfpathlineto{\pgfqpoint{3.745703in}{2.743049in}}% +\pgfpathlineto{\pgfqpoint{3.787122in}{2.782752in}}% +\pgfpathlineto{\pgfqpoint{3.828541in}{2.819328in}}% +\pgfpathlineto{\pgfqpoint{3.864042in}{2.847879in}}% +\pgfpathlineto{\pgfqpoint{3.899544in}{2.873571in}}% +\pgfpathlineto{\pgfqpoint{3.929129in}{2.892611in}}% +\pgfpathlineto{\pgfqpoint{3.958714in}{2.909339in}}% +\pgfpathlineto{\pgfqpoint{3.988299in}{2.923607in}}% +\pgfpathlineto{\pgfqpoint{4.017884in}{2.935270in}}% +\pgfpathlineto{\pgfqpoint{4.047469in}{2.944185in}}% +\pgfpathlineto{\pgfqpoint{4.071137in}{2.949243in}}% +\pgfpathlineto{\pgfqpoint{4.094805in}{2.952380in}}% +\pgfpathlineto{\pgfqpoint{4.118473in}{2.953528in}}% +\pgfpathlineto{\pgfqpoint{4.142141in}{2.952616in}}% +\pgfpathlineto{\pgfqpoint{4.165809in}{2.949579in}}% +\pgfpathlineto{\pgfqpoint{4.189477in}{2.944349in}}% +\pgfpathlineto{\pgfqpoint{4.213145in}{2.936864in}}% +\pgfpathlineto{\pgfqpoint{4.236813in}{2.927061in}}% +\pgfpathlineto{\pgfqpoint{4.260481in}{2.914879in}}% +\pgfpathlineto{\pgfqpoint{4.284148in}{2.900260in}}% +\pgfpathlineto{\pgfqpoint{4.307816in}{2.883148in}}% +\pgfpathlineto{\pgfqpoint{4.331484in}{2.863488in}}% +\pgfpathlineto{\pgfqpoint{4.355152in}{2.841228in}}% +\pgfpathlineto{\pgfqpoint{4.378820in}{2.816319in}}% +\pgfpathlineto{\pgfqpoint{4.402488in}{2.788714in}}% +\pgfpathlineto{\pgfqpoint{4.432073in}{2.750348in}}% +\pgfpathlineto{\pgfqpoint{4.461658in}{2.707620in}}% +\pgfpathlineto{\pgfqpoint{4.491243in}{2.660455in}}% +\pgfpathlineto{\pgfqpoint{4.520828in}{2.608787in}}% +\pgfpathlineto{\pgfqpoint{4.550413in}{2.552558in}}% +\pgfpathlineto{\pgfqpoint{4.579998in}{2.491717in}}% +\pgfpathlineto{\pgfqpoint{4.609583in}{2.426220in}}% +\pgfpathlineto{\pgfqpoint{4.639168in}{2.356035in}}% +\pgfpathlineto{\pgfqpoint{4.674669in}{2.265589in}}% +\pgfpathlineto{\pgfqpoint{4.710171in}{2.168330in}}% +\pgfpathlineto{\pgfqpoint{4.745673in}{2.064252in}}% +\pgfpathlineto{\pgfqpoint{4.781175in}{1.953370in}}% +\pgfpathlineto{\pgfqpoint{4.816677in}{1.835719in}}% +\pgfpathlineto{\pgfqpoint{4.858096in}{1.689983in}}% +\pgfpathlineto{\pgfqpoint{4.899515in}{1.535245in}}% +\pgfpathlineto{\pgfqpoint{4.940934in}{1.371677in}}% +\pgfpathlineto{\pgfqpoint{4.982353in}{1.199498in}}% +\pgfpathlineto{\pgfqpoint{5.029689in}{0.992518in}}% +\pgfpathlineto{\pgfqpoint{5.077024in}{0.775107in}}% +\pgfpathlineto{\pgfqpoint{5.124360in}{0.547814in}}% +\pgfpathlineto{\pgfqpoint{5.177613in}{0.281092in}}% +\pgfpathlineto{\pgfqpoint{5.225582in}{0.031670in}}% +\pgfpathlineto{\pgfqpoint{5.225582in}{0.031670in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.579040in}{0.041670in}}% +\pgfpathlineto{\pgfqpoint{0.579040in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.000000in}}% +\pgfpathlineto{\pgfqpoint{5.953330in}{2.000000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.813961in}{0.080837in}}% +\pgfpathlineto{\pgfqpoint{2.944352in}{0.080837in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.977686in}{0.080837in}}{\pgfqpoint{2.977686in}{0.114170in}}% +\pgfpathlineto{\pgfqpoint{2.977686in}{1.076018in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.977686in}{1.109352in}}{\pgfqpoint{2.944352in}{1.109352in}}% +\pgfpathlineto{\pgfqpoint{0.813961in}{1.109352in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.780627in}{1.109352in}}{\pgfqpoint{0.780627in}{1.076018in}}% +\pgfpathlineto{\pgfqpoint{0.780627in}{0.114170in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.780627in}{0.080837in}}{\pgfqpoint{0.813961in}{0.080837in}}% +\pgfpathlineto{\pgfqpoint{0.813961in}{0.080837in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.847294in}{0.974391in}}% +\pgfpathlineto{\pgfqpoint{1.013961in}{0.974391in}}% +\pgfpathlineto{\pgfqpoint{1.180627in}{0.974391in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.313961in,y=0.916057in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.847294in}{0.729762in}}% +\pgfpathlineto{\pgfqpoint{1.013961in}{0.729762in}}% +\pgfpathlineto{\pgfqpoint{1.180627in}{0.729762in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.313961in,y=0.671429in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=1\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.847294in}{0.485133in}}% +\pgfpathlineto{\pgfqpoint{1.013961in}{0.485133in}}% +\pgfpathlineto{\pgfqpoint{1.180627in}{0.485133in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.313961in,y=0.426800in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.847294in}{0.240504in}}% +\pgfpathlineto{\pgfqpoint{1.013961in}{0.240504in}}% +\pgfpathlineto{\pgfqpoint{1.180627in}{0.240504in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.313961in,y=0.182171in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=3\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.045823in}{0.974391in}}% +\pgfpathlineto{\pgfqpoint{2.212490in}{0.974391in}}% +\pgfpathlineto{\pgfqpoint{2.379157in}{0.974391in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.512490in,y=0.916057in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=4\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.045823in}{0.729762in}}% +\pgfpathlineto{\pgfqpoint{2.212490in}{0.729762in}}% +\pgfpathlineto{\pgfqpoint{2.379157in}{0.729762in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.512490in,y=0.671429in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.045823in}{0.485133in}}% +\pgfpathlineto{\pgfqpoint{2.212490in}{0.485133in}}% +\pgfpathlineto{\pgfqpoint{2.379157in}{0.485133in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.512490in,y=0.426800in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=6\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.045823in}{0.240504in}}% +\pgfpathlineto{\pgfqpoint{2.212490in}{0.240504in}}% +\pgfpathlineto{\pgfqpoint{2.379157in}{0.240504in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.512490in,y=0.182171in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=7\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/main.tex b/buch/papers/laguerre/main.tex index 00e3b43..9f836ef 100644 --- a/buch/papers/laguerre/main.tex +++ b/buch/papers/laguerre/main.tex @@ -8,7 +8,21 @@ \begin{refsection} \chapterauthor{Patrik Müller} -{\large \color{red} TODO: Einleitung} +{\parindent0pt Die} Laguerre\--Polynome, +benannt nach Edmond Laguerre (1834 - 1886), +sind Lösungen der ebenfalls nach Laguerre benannten Differentialgleichung. +Laguerre entdeckte diese Polynome als er Approximationsmethoden +für das Integral $\int_0^\infty exp(-x)\, dx$ suchte. +Darum möchten wir in diesem Kapitel uns, +ganz im Sinne des Entdeckers, +den Laguerre-Polynomen für Approximationen von Integralen mit +exponentiell-abfallenden Funktionen widmen. +Namentlich werden wir versuchen, +eine geeignete Approximation für die Gamma-Funktion zu finden +mittels Laguerre-Polynomen und der Gauss-Quadratur. + +Laguerre-Polynome tauchen zudem auch in der Quantenmechanik im radialen Anteil +der Lösung für die Schrödinger-Gleichung eines Wasserstoffatoms auf. \input{papers/laguerre/definition} \input{papers/laguerre/eigenschaften} diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index be69dee..f4e2955 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -21,7 +21,7 @@ In unserem Falle möchten wir die Gauss Quadratur auf die Laguerre-Polynome $L_n$ ausweiten. Diese sind orthogonal im Intervall $(0, \infty)$ bezüglich der Gewichtsfunktion $e^{-x}$. -Gleichung~\eqref{laguerre:laguerrequadratur} lässt sich wiefolgt umformulieren: +Gleichung~\eqref{laguerre:laguerrequadratur} lässt sich wie folgt umformulieren: \begin{align} \int_{0}^{\infty} f(x) e^{-x} dx \approx diff --git a/buch/papers/laguerre/scripts/gamma_approx.ipynb b/buch/papers/laguerre/scripts/gamma_approx.ipynb index 44f3abd..337b307 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.ipynb +++ b/buch/papers/laguerre/scripts/gamma_approx.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 112, "metadata": {}, "outputs": [], "source": [ @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 113, "metadata": {}, "outputs": [], "source": [ @@ -86,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 114, "metadata": {}, "outputs": [], "source": [ @@ -150,7 +150,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 115, "metadata": {}, "outputs": [], "source": [ @@ -203,9 +203,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 116, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddVgc19fA8e+sscDimoQQIhB39xB312qa6lt3t1RTd++vbdrGpXEX4u7uLrjDArs77x9DrEnbCDDI+TzPPLs7tmfbCbtn7r3nKqqqIoQQQgghhBBCfwa9AxBCCCGEEEIIoZEETQghhBBCCCGKCUnQhBBCCCGEEKKYkARNCCGEEEIIIYoJSdCEEEIIIYQQopiQBE0IIYQQQgghiokymaApivKLoihxiqLsLqDzLVAUJUVRlDl/W/+ooiiHFUVRFUUJLIj3EkIIIYQQQpReZTJBA34Duhfg+T4C7rzG+jVAZ+BEAb6XEEIIIYQQopQqkwmaqqorgaTL1ymKUjW/JWyLoiirFEWpcQPnWwqkX2P9NlVVj99ywEIIIYQQQogywaR3AMXIj8BDqqoeUhSlOfAt0FHnmIQQQgghhBBliCRogKIoNqAVMEVRlAur3fK3DQTeusZhZ1RV7VY0EQohhBBCCCHKAknQNAYgRVXVBn/foKrqdGB6kUckhBBCCCGEKHPK5Bi0v1NVNQ04pijKEABFU1/nsIQQQgghhBBlTJlM0BRFmQCsA6orinJaUZR7gduBexVF2QHsAfrdwPlWAVOATvnn65a//nFFUU4DYcBORVF+LujPIoQQQgghhCg9FFVV9Y5BCCGEEEIIIQRltAVNCCGEEEIIIYojSdCEEEIIIYQQopgoc1UcAwMD1YiICL3DEGVYZmYmnp6eeochyjC5BoXe5BoUepNrUOhty5YtCaqqBl1rW5lL0CIiIti8ebPeYYgyLCYmhg4dOugdhijD5BoUepNrUOhNrkGhN0VRTvzTNuniKIQQQgghhBDFhCRoQgghhBBCCFFMSIImhBBCCCGEEMVEmRuDJoQQQgghhLg1eXl5nD59GrvdrncoxZrVaiUsLAyz2Xzdx0iCJoQQQgghhLghp0+fxsvLi4iICBRF0TucYklVVRITEzl9+jSVK1e+7uOki6MQQgghhBDihtjtdgICAiQ5+xeKohAQEHDDrYySoAkhhBBCCCFumCRn/+1m/htJgiaEEEIIIYQQxYQkaEIIIYQQQogSJzs7m/bt2+N0OgHo3r07vr6+9O7d+4r9VFXllVdeISoqipo1a/Lll1/+57n/6Vxt27alQYMGNGjQgPLly9O/f38A5syZw+uvv14gn0v3BE1RlF8URYlTFGX3P2y/XVGUnYqi7FIUZa2iKPUv23Y8f/12RVE2F13UQgghhBBCCD398ssvDBw4EKPRCMBzzz3HH3/8cdV+v/32G6dOnWL//v3s27eP4cOH/+e5/+lcq1atYvv27Wzfvp2WLVsycOBAAHr16sXs2bPJysq6xU9VPKo4/gZ8Dfz+D9uPAe1VVU1WFKUH8CPQ/LLt0aqqJhRuiEIIIYQQQohrGT17D3vPphXoOWuV9+aNPrX/dZ9x48Yxfvz4i687depETEzMVft99913jB8/HoNBa5sKDg7+z/f/p3NdkJaWxrJly/j1118BbaxZhw4dmDNnDkOHDv3P8/8b3VvQVFVdCST9y/a1qqom579cD4QVSWBCCCGEEEKIYik3N5ejR48SERHxn/seOXKESZMm0aRJE3r06MGhQ4du+f1nzJhBp06d8Pb2vriuSZMmrFq16pbPXRxa0G7EvcD8y16rwCJFUVTgB1VVf9QnLCGEEEIIIcqm/2rpKgwJCQn4+vpe1745OTlYrVY2b97M9OnTGTVq1C0nUhMmTOC+++67Yl1wcDBnz569pfNCCUrQFEWJRkvQ2ly2uo2qqmcURQkGFiuKsj+/Re7vxz4APAAQEhLyr82VQhS2jIwMuQaFruQaFHqTa1DoTa7BW+fj40N6erpu7+9wOMjOzr4qhqysLBwOxxXry5cvT9euXUlPT6dz587cc8891xX7tc4FkJiYyIYNG/j999+v2JacnIzJZLpqf7vdfkPXW4lI0BRFqQf8DPRQVTXxwnpVVc/kP8YpivIX0Ay4KkHLb1n7EaBJkyZqhw4diiJsIa4pJiYGuQaFnuQaFHqTa1DoTa7BW7dv3z68vLx0e38vLy9cLhdmsxmr1XpxvYeHByaT6YrYBg4cyKZNm6hbty4xMTFERUXh5eXFxo0b+frrr/n992uXwrjWuUAb+9anTx+CgoKuWH/q1CkaNmx41f5Wq5WGDRte92cr9gmaoijhwHTgTlVVD1623hMwqKqanv+8K/CWTmEKIYQQxYKqqjhycsjLsZOXYyfXbifPbs9/ra1X80tSoygo+Y+XP1cUAwaTEYPBiMF44dGAkv/c7OaGu5c3Vi9vTGazfh9WCFGmde3aldWrV9O5c2dAK4G/f/9+MjIyCAsL43//+x/dunXjxRdf5Pbbb+ezzz7DZrPx888/A3Dy5Enc3d2vee5/OhfAxIkTefHFF686Zvny5bz//vu3/Ll0T9AURZkAdAACFUU5DbwBmAFUVf0eeB0IAL7Nn4nboapqEyAE+Ct/nQkYr6rqgiL/AEIIIUQhUFWV3Oxs7BlpZKenk52ehj09jeyMdOwZ6dgzMvIf859nXnjMQHW5iixOs9Uddy8vLWGzaY/acxtWm7e2zeaF1eaF1Ut7rapqkcUnhCi9HnnkET777LOLCdo/jSvz9fVl7ty5V63fsGEDjzzyyDWP+bcxatfqrhgbG0t2djZ169a9jsj/ne4JmqqqI/5j+33AfddYfxSof/URQgghRPGXa88mNS6W1LhY0uJjr3ielZpCdno6LqfjH4938/TUkh5PL6w2G97BIfmvbVjc3TFbrZjdrFjyH81uVsxWKyY3N4xGEyoqqCparqRqSdOF5y4XLpcLl9OpLS4nqtOJy+nC5XL+Y+KYnZ5Gaux5stPTyMnK/MfYFYORw9P+wOYXgM3PH09/f+25v/baOzAY7+BgDAZjQf9nF0KUIo0aNSI6Ohqn03lxLrQb8dFHHxVYLCdPnuSTTz4pkHPpnqAJIYQQpZHL5SQjMZGU2POkxJ4jNe48qbHntce4WLLTr5wzyOTmhk9QCD7BIYRWjdRam/JbpKz5rVLuXvktUTZbsU9eXE4n9kytlS87PR17Rhr2jAyy09PYv3sXATZPMpITSTh1guM7t5KbnX3F8SazBf+wigSGhRNQsRKB+YtXYBD5vWeEEIJRo0bpHQIATZs2LbBzSYImhBBC3AKnw0HS2dMknDhG3IljJJw6Qcr5s6TFx+G6MNYLMBiN+S1DIUQ2a4V3cAg+QcH4BIfiExyCu7dPqUo8DEYjHt4+eHj7XLUtw+Z3VYGG3OwsMpKTyEhKIjXuPImnT5Bw6iQn9+xk76rlF/czW90JCKtIQFj4xeQtICwcr4DAUvXfTwhRdkmCJoQQQlynnKxMYo8eJu74UeJPHCP+5HGSTp/E6dC6IhpNJvzDwgmpXI2oFm3wCQ7FNyQUn+BQvAICMdxEF5yywuLugb+7B/7lw4B6V2yzZ2SQePokiadPknDqBImnT3Bs22b2xCy57Hh3AiqEE1AxnMCKEZSLjCK4cjUpYiKEKHEkQRNCCCGuwZGbS/yJY5w/cpDzhw9y7sghks+evrjd08+foPAIIuo1JKhSZYLCI/ArH4bRJF+tBc1qs1GhRi0q1Kh1xfrs9LTLEjft8ejWTexevhjQEubgylUpH1WDcpE1KR9VA6+AQD0+ghBCXDf5FhFCCFHmuVxOkk6f4vyRQxeX+BPHLhbp8PT1I7RaFLXaRhNaNZLgiCp4+PjqG7TA3cubsJp1CKtZ54r1GclJnDu0n7MHtWX7onlsmTsTAFtAIOUja1Chek3KV69FcEQVadkUooQaNWoUc+bMITg4mN27d19c/9VXX/HNN99gNBrp1asXH374oY5R3jhJ0IQQQpQpqqqSEnuO80cOEXvkIOePHCbu2BHycuyA1tUutGo1mvTuT2jVKEKrRWHzD5DxTSWIzc+fyGatiGzWCgCnI4+440c5d/BS0nZw/WpAK85SPrI65avXokJUTcpF1cDNw1PP8IUQ12nkyJE8+uij3HXXXRfXLV++nJkzZ7Jjxw7c3NyIi4vTMcKbIwmaEEKIUk1VVRJPn+Tk7p2c2rOD0/v2YM9IB7RKgUGVq1CnYxctGasaiV9oeRSDQeeoRUEymsyUq1adctWq06hnPwDSEuI5e2AvZw7s4+yBfWyYPhlVdYGiEBQeQcXa9QivU5+KtepgcffQ+RMIIa6lXbt2HD9+/Ip13333HS+++CJubm4ABAcH6xDZrZEETQghRKmiqiqpsec5uWdHflK2k6zUFAB8gkOo1rQF5SKrE1o1ioCwcBkzVkZ5BwbhHdieGq3bA1oVyXOHDnLmwF7O7N/NjsXz2DpvJorBQGi1KCrVqU94nfqUi6ophUeE+Lv5L8L5XQV7ztC60GPMDR928OBBVq1axSuvvILVauXjjz8u0BL4RUG+lYQQQpR4WakpnNi9g5O7tnNi13bSE+IBratbpXoNCa9dj4q16+ETHKJzpKK4srh7UKleAyrVawBoRWLOHtzHyd07OLlrBxv+msL66ZMwWdyoUKMW1Zq0oFrTFtj8A/QNXAhxBYfDQVJSEuvXr2fTpk0MHTqUo0ePlqhu6pKgCSGEKHHycuyc2b+XE/kJWfzxowBYPW1UrFOPZv2GEF6nHn7lKpSoL2VRfJgsFsLzW80Yrk2xcGrvbk7u3s7x7VtZ+st3LP3lO8pFVieyWSuqNWuJX2h5vcMWQh830dJVWMLCwhg4cCCKotCsWTMMBgMJCQkEBQXpHdp1kwRNCCFEiZASe54jm9dzdOtGzhzYhzMvD6PJRPnqtWgz/C4q1W1AcJWqGAxSkU8UPDcPT6o1aU61Js0BSDx9ikMb13Jo41pWjvuVleN+JTA8gshmLYls1orA8Ai5OSCEDvr378/y5cuJjo7m4MGD5ObmEhhYsqbXkARNCCFEsaSqKnHHjnB40zoOb95AwsnjAASEhdOgay8q1WtIWI3amK1WfQMVZVJAWEUCwobRYuAwUuNiObxpPYc2rmXdtImsmzoBv3LliWrRluot20iyJkQhGTFiBDExMSQkJBAWFsbo0aMZNWoUo0aNok6dOlgsFsaOHVvi/v1JgiaEEKLYcDocnNq7i8Ob1nNkywYyEhNQFAMVatSiw133UbVxc3xDy+kdphBX8AkOoXGvfjTu1Y/MlGQOb1rPwfWr2ThjChv+moRf+TCqt2hNVMu2BFasVOJ+LApRXE2YMOGa6//8888ijqRgSYImhBBCV47cXI7v3MahDWs4smUDOZmZmNzciKjXiGrD7qRywyZ4ePvoHaYQ18XT14/6XXpQv0sPslJTOLRxHQfXr7pYZMS/fBhRLdtQo3V7AipU1DtcIUQxJAmaEEKIIpdnt3Ns+2YObljL0a2byLNn4+bpSdXGzYls3ppK9RpgtrjpHaYQt8TDx/disqa1rK3jwLrVbJg+mfXTJhJSpRo120RTo3U7PH399A5XCFFMSIImhBCiSORmZ3Fky0YOrl/D8R1bceTm4O7tQ43W7Yhq1oqKdephNMn8UqJ00lrWelK/S08ykpM4sHYl+1bHEPP7T6z443+E161PrbbRVGvWEovVXe9whRA6kgRNCCFEocnJysxPylZzfMdWnHl5ePr5Uye6M5HNWhNWszYGo1RdFGWLzc+fxr3607hXfxJPn2Lf6hj2rY5h/jefYvrZjWpNWlC3Y1cq1q4n49WEKIMkQRNCCFGg7JkZHNm8gYPrV3Ni5zacDgc2/wDqd+5BVIs2lI+qgWIw6B2mEMVCQFhF2gy/k9bD7uDsgX3sWx3DgbUr2b9mBX7lw6jfuQe123fCarPpHaoQoohIgiaEEOKWOR0Ojm3bzJ4VSzi6dTMupwOvwCAadOtNVIvWlKtWXZIyIf6FoihUqFHrYsXSg+tXs33xPGJ+/4nVE8ZSvVU76nftQWjVKGlVE6KUkwRNCCHETYs/cYw9K5awd1UM2WmpePj40rB7b6q3bEtoNfkhKcTNMFks1GrXkVrtOhJ3/Cg7Fs9j36oY9qxYQnDlqtTv0oOarTvIHICizBs1ahRz5swhODiY3bt3AzBs2DAOHDgAQEpKCr6+vmzfvl3HKG+cJGhCCCFuSFZaKvvXrGBPzFLijh/BYDRRtUkzarfvTOUGjWVMmRAFKDiiCl3uf5R2t49i36rl7Fg8j8U/fs3Kcb9Sp0MXGnTrjW9IqN5hCqGLkSNH8uijj3LXXXddXDdp0qSLz5955hl8fEreNC2SoAkhhPhPToeD4zu2sCdmKUe2bMTldBBcuSrRIx+kZpv2uHt56x2iEKWam4cHDbr1on7XnpzZv4dtC+eydf4stsybSZWGTWjYvQ+V6jWUVmtRprRr147jx49fc5uqqkyePJlly5YVbVAFQBI0IYQQ/yj+5HH2xCxh3+oYslJTcPf2oUG3XtTp0JmgSpX1Dk+IMkdRFMJq1iGsZh3SkxLYuWQBO5csYNp7r+NXPoyG3XpRu30nLO4eeocqypAPNn7A/qT9BXrOGv41eKHZCzd9/KpVqwgJCSEyMrIAoyoakqAJIYS4gtaFcSV7Viwh7tgRDEYjVRo1o3YHrQuj0SRfHUIUB17+gbQeegfNBwzj4PrVbFswm2W//sDqib9Tr3MPmvQeIBNgizJrwoQJjBgxQu8wbop8ywohhEBVVc4e2Me2hXM4tGGt1oUxoirRIx+gRuv2eHiXvD78QpQVJrOZWm2jqdU2mnOHD7B13iy2zJnB9oVzqde5O037DMTmH6B3mKIUu5WWrsLgcDiYPn06W7Zs0TuUmyIJmhBClGF5OXb2r1nJtoVziD9+FDdPTxp07UntDp0Jjqiid3hCiBtUrlp1ej3+HK2G3MaGv6awbcFsdiyeR53orjTrNwjvwGC9QxSi0C1ZsoQaNWoQFhamdyg3RRI0IYQog1Jiz7Nj8Tx2L1uEPTODwPAIujzwqJTuFqKU8CtXge4PP0mLQcPZOHMKu5YuZNfShdTu0Inm/YfgEyyVH0XJN2LECGJiYkhISCAsLIzRo0dz7733MnHixBLbvREkQRNCiDJDVVVO7NrO4Xl/seX7oyiKQmSzVjTs1psKNWtL9TchSiHfkFC6PvAYLQYOY+PMaexetpDdyxdTq200zfoPxb98Bb1DFOKmTZgw4Zrrf/vtt6INpIBJgiaEEKVcXm4O+1bFsHXeTBJPn8Tk7kGLgcOo17k7Xv6BeocnhCgC3oHBdL73/2gxYCibZk1j55IF7F25nOqt2tJ8wFACK1bSO0QhRD5J0IQQopTKSE5ix6K57Fg8n+z0NIIiqtD94aeIdai07tRZ7/CEEDqw+QcQPfIBmvUfwpa5WiGR/WtWENm8FS0GDpexp0IUA5KgCSFEKRN77Ahb581k/5qVuFxOqjZuRuOe/QirVRdFUYiPidE7RCGEzjx9/Wh3+z007TuIrfNmsnX+bA5tWEuVxs1oOXA4odWi9A5RiDJLEjQhhCgFXE4nhzevZ9v82Zzetxuzm5X6XXrQsEcf/ELL6x2eEKKYcvfypvWwO2ncewDbFsxm69yZjHvlaSo3bELrYXcSUrmq3iEKUeZIgiaEECVYVloqu5YtYseieaQnxuMdFEK7O0ZRt2NXrJ42vcMTQpQQVk8bLQeNoHHPfmxbMIfNs6fz54tPENWiDa2G3k5AhYp6hyhEmSEJmhBClEBxx4+ybcFs9q9egSMvl/A69el4z4NUadwUg8God3hCiBLK4u5B8wFDqd+1J1vmzmDL3Jkc2rCWWu060nLwCHyCQ/QOUYhSTxI0IYQoIVSXi8Ob17N13ixO79uNyeJGrfYdaditN4HhEXqHJ4QoRayeNloPvYOG3fuwccYUti+ay77VMdTr3I3mA4Zh8/PXO0QhGDVqFHPmzCE4OJjdu3cDsH37dh566CHsdjsmk4lvv/2WZs2a6RzpjZEETQghijmX08n+tSvZOGMKiadP4h0UQvs7RlEnuitWm3RjFEIUHg9vHzrcdR+Ne/Vn/bSJ7FyygN3Ll9C4Vz+a9R+Cxequd4iiDBs5ciSPPvood91118V1zz//PG+88QY9evRg3rx5PP/888SUsOJYkqAJIUQx5cjNZc+KJWyaNY3UuFgCK1ai5+PPUb1FGwxG6cYohCg6XgGBdHngUZr2HcSayX+y4a/J7I5ZQtsRd1OrbTSKwaB3iKIMateuHcePH79inaIopKWlAZCamkr58iWvUJYkaEIIUczk2rPZuXg+m+fOIDM5iXLVqhM98gGqNGwqP4KEELryDS1Hr8efo2H33iz/7UcWfPsZ2xfNJfruBygfVUPv8IROzr/3Hjn79hfoOd1q1iD05Zdv+LjPP/+cbt268eyzz+JyuVi7dm2BxlUUJEETQohiwp6RoZW5nj8Le0Y64XXq0/PRZ6hYux6KougdnhBCXFQ+qia3vfMJe1ctZ9X435jw2rPUahtNm9vuxss/UO/wRBn23Xff8dlnnzFo0CAmT57Mvffey5IlS/QO64bonqApivIL0BuIU1W1zjW2K8AXQE8gCxipqurW/G13A6/m7/qOqqpjiyZqIYQoOJkpyWyZO4Pti+aRZ8+mSuNmNO8/VO5GCyGKNcVgoHb7TkQ2a8mGGVPYMucvDm5cS/P+Q2ncuz9mi5veIYoicjMtXYVl7NixfPHFFwAMGTKE++67T+eIbpzuCRrwG/A18Ps/bO8BROYvzYHvgOaKovgDbwBNABXYoijKLFVVkws9YiGEKABpCXFsmjWd3csW4XQ4iGrZhub9hxBUqbLeoQkhxHWzuHvQdsTd1O3YjZV//sKaSX+wa9kiOtx9H9WatJAeAKJIlS9fnhUrVtChQweWLVtGZGSk3iHdMN0TNFVVVyqKEvEvu/QDfldVVQXWK4riqyhKOaADsFhV1SQARVEWA92BCYUcshBC3JLkc2fYOHMqe1cuA6BWu4406zcYv3IVdI5MCCFunm9IKH2feZmTu3ew7NcfmPXxu1Sq15CO9zyIf/kwvcMTpdCIESOIiYkhISGBsLAwRo8ezU8//cQTTzyBw+HAarXy448/6h3mDdM9QbsOFYBTl70+nb/un9YLIUSxlHjmFOunTeTA2lUYTSbqde5B074D8Q4M1js0IYQoMOF16nPnB1+yY9Fc1kwex9hnH6VRz760HDQci7uH3uGJUmTChGu3y2zZsqWIIylYJSFBu2WKojwAPAAQEhJS4uZCEKVLRkaGXINljD0lmXNb1pF0aB8Go4ng+o0Jqd8Eo4cnW3fvBfYWaTxyDQq9yTVYRnj4UGPo3ZzZsIrNs6ezY+lCKrRsj39kTd27Pco1eOt8fHxIT0/XO4wSwW6339D1VhIStDNAxcteh+WvO4PWzfHy9THXOoGqqj8CPwI0adJE7dChw7V2E6JIxMTEINdg2ZASe5710yeyd+UyjCYzTXoPoGmfgXj4+Ooal1yDQm9yDZYxPXtx7tABlv36PceXziP39HE6jXqI4IgquoUk1+Ct27dvH15eXnqHUSJYrVYaNmx43fuXhARtFvCooigT0YqEpKqqek5RlIXAe4qi+OXv1xV4Sa8ghRDigrT4ONZPn8ieFUsxGIw07N6HZv0G4+nr998HCyFEKVQusjq3vfMJu2OWsGrCWP586Uma9hlIi8EjpNqjEH+je4KmKMoEtJawQEVRTqNVZjQDqKr6PTAPrcT+YbQy+/fkb0tSFOVtYFP+qd66UDBECCH0kJGcxPppE9m1bBGKAvW79KRZv8HY/AP0Dk0IIXSnGAzU7diVas1asuKP/7Fx5lQObVxL1wceJ6zWVTMtCVFm6Z6gqao64j+2q8Aj/7DtF+CXwohLCCGulz0zg02zprF13ixcTgd1O3alWf+heAcG6R2aEEIUO+42L7r/35PUbN2BxT99xaTRL1K/Sw/a3nYPbh5SREQI3RM0IYQoqfJy7GxbMIdNM6diz8ygRuv2tB56B76h5fQOTQghir1K9Rpw90ffsGbyH2ydN5sjWzbS+b6Hqdq4ud6hCaErSdCEEOIGOR0O9sQsYd3U8WQkJ1G5YRPaDL9L1wHvQghREpmtVjrcdT/VW7Vj0fdfMuPDt6nesi0d73lQ94JKovgbNWoUc+bMITg4mN27dwOwY8cOHnroITIyMoiIiGDcuHF4e3vrHOmNMegdgBBClBSqy8WBdasY++zDLP7pa7yCghn2xhgGvvimJGdCCHELylWrzh1jPqfV0Ns5vGkdvz7zMPtWx6CNdBHi2kaOHMmCBQuuWHffffcxZswYdu3axYABA/joo490iu7mSYImhBD/QVVVjm7bxB8vPcmczz/AYDTR77nXGPHWRzKwXQghCojRZKbloBHc+cGX+IWUY95XHzPz43fISJYacOLa2rVrh7+//xXrDh48SLt27QDo0qUL06ZN0yO0WyJdHIUQ4l+c3rubVRN/5+yBvfgEh9Djkaep0aY9BoNR79CEEKJUCggLZ/jbH7J17kzWTPqT3575P6LvfoBa7TrqPsG1uLZVkw+ScCqjQM8ZWNFG26FRN3xc7dq1mTlzJv3792fKlCmcOnWqQOMqCpKgCSHENcQePczqib9zfMdWPP386Xzfw9SJ7oLRZNY7NCGEKPUMBiNN+gykSuPmLPrhCxZ8+xkH1q6kywOP4RUQqHd4ohj75ZdfePzxx3n77bfp27cvFotF75BumCRoQghxmcTTp1gz+Q8ObViL1cubdneMokG3XjKRqhBC6MC/fAWGvTGGbQvnsGrCWH575mHa3zmKuh27SWtaMXIzLV2FpUaNGixatAjQujvOnTtX54hunCRoQggBZKWmsHbKOHYuWYjZ6kbLwbfRuFd/mZNHCCF0phgMNOrRlyoNm7Lohy9Z/OPXHFy/hq4PPi7zTYqrxMXFERwcjMvl4p133uGhhx7SO6QbJgmaEKJMc+TmsmXeTDbOmIwjN5cG3XvRYuBwPLx99A5NCCHEZXxDyzHktXfZsWQBK//8hd+fe5TokTI2rSwbMWIEMTExJCQkEBYWxujRo8nIyOCbb74BYODAgdxzzz06R3njJEETQpRJqqpyYO1KVk0YS1p8HFWbNKfd7ffgXz5M79CEEEL8A8VgoEHXnkTUa8iC7z5jwbefcXjTOrrc/6jMm1YGTZgw4Zrrn3jiiSKOpGBJgiaEKHPOHtxHzO8/c+7QAYIiqjDkoScIr1Nf77CEEEJcJ9/Qcgx94322zJ3Jmom/89uzj9Dl/keIbNZK79CEuGWSoAkhyoy0hDhW/vkrB9atwtPPn24PPUGt9h2lZL4QQpRABoORpn0GUrlBY+Z/8ymzPnmPmm2j6XjPg1g9bXqHJ8RNkwRNCFHq5eXY2TRrOptmaZNVthg0nKZ9B2GxuuscmRBCiFsVWLESt73zCeunT2LDX5M4tWcn3f7vSSLqNdQ7NCFuiiRoQohSS1VVDq5fzYo/fyE9IZ6olm1pf8c9eAcG6x2aEEKIAmQ0mWg99HaqNmrK/G8+Zdq7r9G07yBaD7sTo0l+7oqSRa5YIUSpFHf8KMvH/sjpvbsJqlSZno88Q1itOnqHJYQQohCFVovijg++IGbsT2yaNY3Te3fT64nn8AkO1Ts0Ia6bJGhCiFIlKy2VtZP/ZOeShbjZbHS+7xHqduoq48yEEKKMMFvc6HL/o4TXacDiH7/i9+cfp+uDj1O9ZRu9QxPiuhj0DkAIIQqC05HHlrkz+OXJB9i5dCENuvfi3s9/pH6XHpKcCSFEGVS9ZRvu/OALAipUZM7nY1j809fk5eboHZYoIKdOnSI6OppatWpRu3ZtvvjiCwCSkpLo0qULkZGRdOnSheTkZJ0jvXGSoAkhSjRVVTm8aT1jn32EmN9/JrRqFHd9+BUdRz6I1SZVvIQQoizzCQ5l2OgPaNpvMDuXLGDcS0+RcOqE3mGJAmAymfjkk0/Yu3cv69ev55tvvmHv3r2MGTOGTp06cejQITp16sSYMWP0DvWGSRdHIUSJFXf8KDG//8ypPTvxr1CRgS++SeWGTfQOSwghRDFiNJlod9tIwmvXY/43nzLu5aep0LI9avv2KIqid3jiJpUrV45y5coB4OXlRc2aNTlz5gwzZ84kJiYGgLvvvpsOHTrwwQcf6BjpjZMETQhR4mQkJ7Fm0h/sjlmC1eZFp1H/R73O3TEYpSujEEKIa4uo34i7PvyKeV9/wokVi5jvzKXz/Y/IlCsFYPlvPxJ34miBnjO4UhWiRz5wXfseP36cbdu20bx5c2JjYy8mbqGhocTGxhZoXEVBEjQhRInhyM1l8+zpbJw5FafDQZPeA2g+YKhMSCqEEOK6ePr6Mfjlt5j42YfsX7OS80cP0+fJFwiqVFnv0MRNysjIYNCgQXz++ed4e3tfsU1RlBLZSioJmhCiRDi2fQvLfvmelNhzRDZrRbvb78E3tJzeYQkhhChhFIOBco1b0KZ7T+Z++RHjX3mG6HsepG7HriXyx3xxcL0tXQUtLy+PQYMGcfvttzNw4EAAQkJCOHfuHOXKlePcuXMEB5e8uU+lSIgQolhLS4hn1qfvMf39N1CMRga/8g59n3lZkjMhhBC3pGLtetz5wZeUr1GLxT9+xfyvPyHXnq13WOI6qarKvffeS82aNXn66acvru/bty9jx44FYOzYsfTr10+vEG+atKAJIYolp8PB1nkzWTd1Aqqq0mb4XTTuPQCT2ax3aEIIIUoJT18/Br08mo1/TWHtlPHS5bEEWbNmDX/88Qd169alQYMGALz33nu8+OKLDB06lP/9739UqlSJyZMn6xvoTZAETQhR7Jzau4ul//uOxNMnqdqkOdF3P4BPcIjeYQkhhCiFDAYjLQYNp0KNWld0eazXqZveoYl/0aZNG1RVvea2pUuXFnE0BUsSNCFEsZGRnMSqcb+yd9VyvIOC6ffca1Rr0lzvsIQQQpQBF7o8zvv6Exb/+BWxRw/R8Z4HMZqk54YoWpKgCSF058jLY+u8mayfPglnXh7NBwyj+YAhmN2seocmhBCiDLnQ5XHNxD/YOHMqiadP0uepl/D09dM7NFGGSIImhNDV0a2bWD72R1LOn6NK42Z0uOs+/ELL6x2WEEKIMspgMNL2tpEERVRh4Xdf8OdLT9Lv2VcJrRqpd2iijJAETQihi6Szp4kZ+xPHtm/Br3wYA18aTeUGjfUOSwghhACgRqt2+JcPY+bH7zDxjefp+sBj1GrXUe+wihVVVWVqgv/wT+Pk/o0kaEKIIpWTlcX66RPZOm8WJouF9nfeS8PuvaWPvxBCiGInOKIKt7/3GXM+G8P8bz4l7vgR2t0+CoPRqHdourNarSQmJhIQECBJ2j9QVZXExESs1hsbsiEJmhCiSKiqyv61K4kZ+xNZaanU6dCZNsPvkn79QgghijUPbx8GvfI2K/74H1vmziT+xHF6P/kC7l7eeoemq7CwME6fPk18fLzeoRRrVquVsLCwGzpGEjQhRKFLjTvPkp+/5fiOrYRWjWTAC29IX34hhBAlhtFkouM9DxIcUYUlP3/DuJefot9zrxEUHqF3aLoxm81UrizzxRUGSdCEEIXG5XSyZe4M1k4Zj2IwED3yARp064XBIF1DhBBClDx1orvgX6Eisz59jwmvPkv3R54iqnlrvcMSpYxB7wCEEKXT+cMH+fPlp1g57lcq1WvAyE++pVGPvpKcCSGEKNHKR9Xgjvc+I7BiJWZ/+j5rJv+J6nLpHZYoRaQFTQhRoHKzs1g96Q+2L5iLp68vfZ9+mWrNWsoAYiGEEKWGzT+AoW+8z5L/fcv6aROJP3GMHo88g5uHh96hiVJAEjQhRIE5smUjS//3HelJCdTv0pO2I+7CzcNT77CEEEKIAmeyWOj20BMER1Ql5vefGP/qM/R/7lX8ylXQOzRRwkmCJoS4ZZkpySz/7UcOrFtFQFg4I976kPJRNfUOSwghhChUiqLQqEcfrbvj52MY98rT9Hr8eZnXU9wSGYMmhLhpqqqyO2YJvz39fxzetI7WQ+/gzg++kORMCCFEmRJepx53vPcZ3gFB/DVmNBtnTr2pCYqFAGlBE0LcpJTz51j809ec3L2DCjVq0eWBxwioUFHvsIQQQghd+ASHMOLtj1nw/ResGv8biadP0uWBxzCZzXqHJkoY3RM0RVG6A18ARuBnVVXH/G37Z0B0/ksPIFhVVd/8bU5gV/62k6qq9i2SoIUow1xOJ1vmzWTt5HEYjAY63/cw9Tp1RzFIg7wQQoiyzWy10vuJ51kfFs7aKeNIjTtP32dewcPbR+/QRAmia4KmKIoR+AboApwGNimKMktV1b0X9lFV9anL9n8MaHjZKbJVVW1QROEKUebFHj3Moh+/Iu7YEao2aU6ne/8PL/9AvcMSQgghig1FUWg5eAR+5Suw8NvPGf/K0wx44Q0CwsL1Dk2UEHrf8m4GHFZV9aiqqrnARKDfv+w/AphQJJEJIS7KtWcT8/vPjHv5aTKSEunz1Iv0e/ZVSc6EEEKIf1CjVTuGvvE+eTk5jH/1WY5v36J3SKKE0DtBqwCcuuz16fx1V1EUpRJQGVh22WqroiibFUVZryhK/0KLUogy7OjWTfz2zMNsmTuDup26cs9n3xPVoo3MayaEEEL8h3KR1bn9vU/xCQpm+gej2bZwjt4hiRJA0bPCjKIog4Huqqrel//6TqC5qqqPXmPfF4AwVVUfu2xdBVVVzyiKUgUtceukquqRaxz7APAAQEhISOOJEycWzgcS4jpkZGRgs9n0DuM/5WVmcHL1MlKOHsTqF0Cl9l2xydwupUJJuQZF6SXXoNBbUV+Dztxcji2ZQ+qJowTVaUjF1tEydruMi46O3qKqapNrbdO7SMgZ4PKyb2H5665lOPDI5StUVT2T/3hUUZQYtPFpVyVoqqr+CPwI0KRJE7VDhw63GrcQNy0mJobifA2qLhc7lixg1ZTfcTryaD3sTpr2HYjRJFWoSovifg2K0k+uQaE3Pa5BV+dOrBz3G1vm/IWnUaH3ky/i5uFRpDGIkkHvBG0TEKkoSmW0xGw4cNvfd1IUpQbgB6y7bJ0fkKWqao6iKIFAa+DDIolaiFIq8fRJFv7wJecO7ie8Tj063/cIftJqJoQQQtwyg8FIhzvvxb98BZb8/C2TR7/EwJfexNPXT+/QRDGja4KmqqpDUZRHgYVoZfZ/UVV1j6IobwGbVVWdlb/rcGCiemV/zJrAD4qiuNDG0o25vPqjEOL6OR0ONs2axvppEzC7e9D94aeo1a6jjDMTQgghCli9Tt3x8g9k1mfvM+G1Zxn40lv4l5eboeISvVvQUFV1HjDvb+te/9vrN69x3FqgbqEGJ0QZEHf8KAu/+4K440eIatmWTvc8iIePr95hCSGEEKVW5YZNGPb6+0z/YDQTX3+OAS+8QbnI6nqHJYoJGZ0oRBnlyMtjzeQ/GffyU2QkJ9L36Zfp8+QLkpwJIYQQRSC0WhQj3v4Ii4cHk99+maNbN+kdkigmJEETogw6f/ggf774BOunTaRGq3aM/PQ7Ipu30jssIYQQokzxCy3PiLc+IqBCRWZ89Da7li/SOyRRDOjexVEIUXTycnNYN2U8m2f/haefHwNeeIMqjZrqHZYQQghRZnn6+jH0jfeZ/en7LPr+SzKSEmkxcLiMAy/DJEEToow4vW83i374iuRzZ6jbqRvt7xiFm4en3mEJIYQQZZ7F6k7/519n0Q9fsnbyODKSEul07/9hMBj1Dk3oQBI0IUq5nKwsVo3/jR2L5+ETHMLgV96hUr0GeoclhBBCiMsYTSa6P/wUNj9/Ns6cSlZqKr0efw6TxaJ3aKKISYImRCl2dOsmFv/8DZlJSTTu1Z/WQ+/AbLXqHZYQQgghrkFRFNreNhJPP3+Wj/2Jae+9Tr/nXsXqadM7NFGEJEETohTKSktl+W8/sn/NCgLCwun79ktSvlcIIYQoIRr16IuHtw/zv/mMSW++yKCXRmPzD9A7LFFEJEETohRRVZX9a1ey/NcfyMnKouXg22g+YAhGk1nv0IQQQghxA2q0bo+7lw8zP3mXCa8/x6CX38K/fJjeYYkiIGX2hSglMlOSmfnxO8z78iN8QkK5c8zntBpymyRnQgghRAlVqV4Dhr3xPnk5OUx4/XnOHT6gd0iiCEiCJkQJp6oq+9es4LdnHub4jq20v2MUI97+iMDwCL1DE0IIIcQtCqlSjRFvfYibuzuT33qZY9u36B2SKGSSoAlRgmWlpTLnszHM/fIjfEPLcecHX9Kkz0ApyyuEEEKUIn7lKjDi7Y/xK1eBGR++xd5Vy/UOSRQiGYMmRAl1aMNaFv/8DblZmbQZcTdN+wzEYJTETAghhCiNPH39GPbGGGZ+/A7zv/6EnMwMGnbvo3dYohBIgiZECZOdkc6yX75n/5oVBFeuSo/X3pXujEIIIUQZ4ObhwcCXRjPn8w9Y9usPOHJzadp3kN5hiQImCZoQJcjRrZtY9ONXZKel0mro7TTrNwSjSf4ZCyGEEGWFyWymz1MvMv/rT1g57lfycnJoOXgEiqLoHZooIPLLTogSICcri5jff2L38sUEhUcw8MU3CY6oondYQgghhNCB0WSi5+PPYrJYWDd1PI68XNqOuFuStFJCEjQhirmTu3ew4LvPyUhMpPmAobQcPEJK5wshhBBlnMFgpNtDT2CyWNg0cyqOnByi774fxSA1AEs6SdCEKKbycuysGj+WbQtm51dv+ohykdX1DksIIYQQxYRiMNDp3ocxmi1snTcTR24One9/RKo5l3CSoAlRDJ09uI8F335G8rmzNOrRlzYj7sLsZtU7LCGEEEIUM4qi0OGu+zC7ubHhr8k48vLo/n9PSmXnEkwSNCGKEUdeHuumjGPTrOl4BQYy5LX3CK9TT++whBBCCFGMKYpCm+F3YbK4sWbSHzhyc+j1+HMyJKKEkgRNiGIi9tgRFnz7GQknj1Mnuisd7roPNw8PvcMSQgghRAnRYuAwTBYLK/74H7M+eY8+T72EyWLROyxxgyRBE0JnToeDDX9NZsNfk3D39mHAC29QpVFTvcMSQgghRAnUpPcATBY3lv7vW/768C36P/sqZqsMkyhJJEETQkcJJ48z/9vPiDt2hJptOhB9z4O427z0DksIIYQQJViDrj0xWSws+v5Lpr3/BgNffAOLu/TKKSkkQRNCBy6nk02zp7NuyjgsHp70feZlIpu10jssIYQQQpQSdTp0xmQ2M+/rT5j6zmsMfGk0VptN77DEdZAETYgiZk9OYuLrz3Pu8AGimrem030P4+Hto3dYQgghhChlarRuj9FiYc5nHzD57ZcZ/Mrb8pujBJCZ7IQoIqrLxZa5M9k75XeSz5+l1+PP0fupF+UPpRBCCCEKTWTTlvR//jWSz5xm8uiXyEhO0jsk8R8kQROiCKQlxDP13VeJ+f0nvMPCGfnJt9Ro3R5FUfQOTQghhBClXOUGjRnw4pukxccxefSLpCXE6x2S+BeSoAlRyPatWcHvzz/KuUMH6fLAY1TtMQBPXz+9wxJCCCFEGRJepx6DXnmbzJQUJr35Aqlx5/UOSfwDSdCEKCT2jAzmfPEh8778CP8KFbnrw6+o16mbtJoJIYQQQhcVqtdk6OvvkZuVxaQ3XyLl/Dm9QxLXIAmaEIXgxM7tjH3uEQ5tWEOb4Xcx/M0P8A0tp3dYQgghhCjjQqpUY/Br75KXY2fSWy+RfP6s3iGJv5EETYgClJebw7LffmDqu69icffgtnc+ofmAoRiMRr1DE0IIIYQAIKRyVYa89i6O3Fwmj36J5HNn9A5JXEYSNCEKyLlDB/jzhSfYNn82jXr05Y4xnxNSpZreYQkhhBBCXCU4ogpDX3sXZ14ek0a/RNLZ03qHJPJJgibELXLk5bFqwlgmvPYceTk5DH7lHaJHPoDZ4qZ3aEIIIYQQ/yioUmWGvv4eLqeTyW+9TOKZU3qHJJAETYhbEnvsCONefoqNM6ZQu0Mn7v74ayrVa6B3WEIIIYQQ1yUwPIKhr7+H6nIxefRLJJ6WJE1vkqAJcROcDgdrp4xn/CtPk52exoAX3qDbQ0/g5uGpd2hCCCGEEDcksGIlhr7+PgCT33qJxNMndY6obJMETYgblHDyOONffYZ1U8dTvWVb7v74G6o0aqp3WEIIIYQQNy0grCJD33gfxWBg0uiXSDh1Qu+QyixJ0IS4Ti6Xk40zp/LnS0+SnphA32depudjz+Ju89I7NCGEEEKIWxZQoSJDX38fg9HIlLdfIemsVHfUgyRoQlyHtIQ4prz9CqvG/0aVxs0Y+cm3RDZrpXdYQgghhBAFyr98BYa8+i6qqjLlnVdIjTuvd0hljknvAIQo7vatjmHp/77D5XLR/eGnqNWuI4qi6B2WEKIQqKqKmpODKzsb1W7HlZ192XM7qj1be8zNQc3NRc3NxZWbi5qTe/G1mpenncxoQFEMYDSiGBQwGMGgoBiMgIqqqqCq4Mp/RHtUVRXFZMZgdUOxuKG4uWnP3fKfu7mhmM1gNKGYjChG48XnGI0oJpO2WCxXLmaz/O0SQlyXgLCKDH7lbaa89TKT33qFYW+OwTswSO+wygxJ0IT4B/bMDJb+7zv2r1lB+aia9Hj0GXxDQvUOSwhxGTUvD2dGBq7MTFyXPTozMnBlXFj3t9cZGbjsdlz2bNRsOy67HTU7G1dODmp29s0HYzRqSZTZrL12ucDp1BKxyx5xubTtigIGg/aoKCigvQZUh0Pbt4ApZjOKxYLB0xOjjw9GHx8Mvj75z30x+vpqz729MNi8MHrZMHh5YbDZMNpsKB4ekuQJUUYER1Rh0CtvM+XtV5j6zisMfWMMNj9/vcMqE4pFgqYoSnfgC8AI/Kyq6pi/bR8JfARc6Aj7taqqP+dvuxt4NX/9O6qqji2SoEWpdnrvbuZ98wkZSYm0Gno7zfsPxWA06h2WEKWempeHIzERR3wCjoR4HAkJOBMS8l/nL4kJF5MtNSfnv0+qKBhstvwkwxODhyeKhztmHx8M7lYUN6v2aHXHYLWiWK0YrFYMHu7aOvf8de7uGNzdtf3dLFe3UBXw3wjV4cBlz9Fa6+x2LYHM0Z6rTieqwwlOR/5zLaFTHdpz1ZGX36KXd0XL3sVWv6xMnCkpOFNSyTt5Cnvqbpypqah2+78HZTRq/x19fDD5+2MMCMAUEIAxwB+TfwCmAH+M/gEY/f0w+flh9PW9lLAKIUqc0KqRDHxpNNPefY2p77zK0Dfex8PbR++wSj3dEzRFUYzAN0AX4DSwSVGUWaqq7v3brpNUVX30b8f6A28ATQAV2JJ/bHIRhC5KIacjj7WTx7Fx1jR8Q0IZ8dZHlIusrndYQpRoqqriSkvDkZSEMykJR0Iijvh4bYmLu/Q8Ph5nUtI1z2H08cEYFIgpMAj32nUweHthtNkweHpi8LTlJ2Cel9Z5eWHw1BKyktrqo5hMGG0moOim73DZ7ThTU3GlpeFMz8CVkY4zPR3XxecZuNLTcaam4khKJO/UKbJ37ND+v11oGfwbg82mtcz5+WH001rpbJlZJB4+jDEwEFNAIKagQC3R8/cv8ERXCHFrKlSvyYAXXmf6+28y9Z1XGfL6e1IgrZDpnqABzYDDqqoeBVAUZSLQD/h7gnYt3YDFqqom5R+7GOgOTCikWEUplnT2NPO++pjYo4ep27ErHe6+H4vVXe+whCjWnBkZ5J05S965s+SdPYvj3DnyzsfiTEy8lJAlJ8OFcVmXMxow+flg8vfG7OOJe8UqmLxrYPKyYPIyY/I0Y7IZMXoYMOAAZw44csGZBK5YcDrAlQfOPEh1QFJe/msHuBygOrVHlwNcf3uuqqC6uDDu64rnqGAwXVqMZjBoY760R4u2zuSmPTe5gdENTJZLjyZ3MFvB7AEmK5jdtcXkfum52eOyR+ul1yb3i10di5ohv/WQkJAbOk51uXCmpmr/3xOTcCYl5rfQpeBITsaZnIIzORlnUjK5R47iER9P3NKl1wjAgNHfH1NwEJYKYZgrVsQcVgFLxYqYw8IwV6iAwWIpoE8rhLheFWvXo9+zrzDjo7eZ/t7rDH71HZn7tRApqqrqG4CiDAa6q6p6X/7rO4Hml7eW5XdxfB+IBw4CT6mqekpRlGcBq6qq7+Tv9xqQrarqx397jweABwBCQkIaT5w4sfA/mCgxVFUlYd8uTq9ZhmIyU6l9V/yqRBba+2VkZGCz2Qrt/EL8l+u6BlUVJSsLY0oKhpRUDCkpGFNTMCYlYUpOwJCUhCE5FcWee+VxBjDYjBitYLSqmNxcmNwcmCx5mC05mKxOTG5OTO4ujG4u/qthy6WYcBlMqIoZl8GEy2BGVUyoigmXwZj/3HiN10ZUxXDZ88vXGQAFVVEABTCgKuQ/1wJSVBeK6kBRnRcfDa4Lzx0YXA4Mrrz853kXF0W98DwXozMXg3qNxPQ6OIzuOExe5Jk98x9tOEzacvlzh8nzb689QCn+BZozMjLwMpkwpKVhSEvHkJaa/5iGIT0NY3IKxoQEjImJKJcl96qi4PL1xRkQgNPfH5e/H05/f5x+/jj9/XD5+6O6y4018d/ku/jmpBw7zJFFs/AMLkdk70EYzXLD5GZFR0dvUVW1ybW2FYcWtOsxG5igqmqOoigPAmOBjtd7sKqqPwI/AjRp0kTt0KFDoQQpSp6stFQW//gVJzetJ7xuA3o8/BQ2/4BCfc+YmBjkGhR6unANqrm55B47Qu7BXeQeOUDu8ePknjpDXmwSjtRM1Lyru6wZ85Mrs6cDc0UnZg8nZk/t0eTrjinAB8XDHyxeYPHUFjcbWGz5r22X1l9YzH9/7a61RBktGAyGkj0fjMsJDjvk2SEvK/951qXXedmXHi9sy83ClJOGKTsZa3YyZKdAdiKkHYbsZK2V8B8pYPUGjwDwDLq02IL/9jwYvEK0/x86dP+MiYmh/XX8HVRdLhzxCeSdOU3eqVPknjpN3unT5J4+hePMGfK2bgWH44pjDDYb5goVsEREYKkcgVvlyljyF6OXdMsSGvkuvkkdOnCgRg3mfvEhSetjGPDCm5ikVbvAFYcE7QxQ8bLXYVwqBgKAqqqJl738GfjwsmM7/O3YmAKPUJRKJ3ZuZ/63n2JPT6P9nffSuGc/FJ26FQlRoFRV+yGffh41/RyOE4fJPXqInOOnyD0TS/jpRA4/7yQv3UV+0xEABosLi82Bu82BKdiE2deKyc8LU6C/NkaoXHkM3kHg7q8lAB7++c/zH03yJX0Vg/FS4kkB3PxRVcjNBHuKlrjZUy97nv86OwWyEiAzHhKPwMn1kJWINlT7b8weYAvRFq/8R1sw2ELBK/TSc89A7bMUMcVgwBwSjDkkGBo1umq76nTiSEi41L323Dnyzp0n79Qp7Pv3kb5kyRXVMI2BgVrCFhGBpVI45orhWCqFY6lYEYOndNcS4npUb9kGR24OC779jNmfj6Hv0y9jNBWHlKL0KA7/NTcBkYqiVEZLuIYDt12+g6Io5VRVPZf/si+wL//5QuA9RVH88l93BV4q/JBFSebIy2P1xN/ZMucv/CtUZOCLbxIcUUXvsIS4fnnZkHoaUk9ByilIPY3z3FFyT54g9/R5cuPTyE1VyE0zkZtuwuW4dONBMYHR14hHuB/e5QJwCyuHJSICc5UoTOUraz/IPQK1MVGi+FEUrUXSzQY+Ydd/nNMB2UmQEQeZcZARDxnntdfp5yEjFuL2wdEYLcm76n0N+a1vIVri5lVOe//LF+8K2ni8IqQYjZhDQjCHhEDDhldtV3NzyT11itxjx8g5dozcY8fJPXaM9CVLcCZfWU/MGBiIpWJFLOEVMYeHY6kUoSVyEZUwSlc4Ia5Qu30n8ux2lv7yHfO//oSejz+LQYebOKWV7gmaqqoORVEeRUu2jMAvqqruURTlLWCzqqqzgMcVRekLOIAkYGT+sUmKoryNluQBvHWhYIgQ15J4+hRzv/qI+ONHqd+1F+3vuAezm/wQFcVMbqaWeKWchJQT2mPqKZyxx8k5fobcuHRyM0zkZZjITTeSm2HClXdZ66/iidnfC0ulUHwiwrFUjcKtRj0sUTUxBQezYsUK6dpT1hhN+a1hwf+9b162lrhlxGpLen4il3Ee0mO1x3M7tG1/5xl8KWHzDb+0+FTUHq3eBf/Z/oViseBWtSpuVavy986NzvR0ck+e1LpOnjhJ7qmT5J04SeaGjThmzrpiX2NAQH6rW6WLSZu1Vi3MFSqUyAqhQhSEBt16kZdjZ+W4XzFbrXR94DHpiVRAdE/QAFRVnQfM+9u61y97/hL/0DKmquovwC+FGqAo8VSXi20LZrNq/FjM7u70f/51qjZupndYoizLToako5B0LP/x0uJKiyc3zUROqpmcFBP2NDdy0txwZKhof7b9wKBgDgnEEhWOd0RVLBGVtTv/FStq3bWkUIK4WWZ38KukLf/GkQNpZ/Jbc09fatVNPaO1xh1apI2ru5zVB3zDqe3wgJzF4BcBfpW1R9+KRdoCZ/Tywr12bdxr175qmys7m9yTp8g9cZzcEyfIPXGCvOMnyFi1Euf06Rf3M3h7Y61VS1tqa4+WSpXkR6ooM5r2HUSuPZv10yZitlqJvvsBuWlRAIpFgiZEYUpLiGfhd59zcvcOqjRqStcHH8fT1++/DxTiVqgqZCVdlXxdXLKTcDkUctONWiKW40dupic5Kb7kJljAlT9eyGTCrUoVPBpF4RYZiVtUJG5VqmAuX14mABb6MrmBfxVtuRZVhcyESy3BqRdahU/hcWYPbNrxtwRO0Vre/CLyE8TK4F/5UhLn4V8EH0pjcHfHWj0Ka/Woq7Y5MzLJPXYM+7692Pfsxb53L8l//omaq1U0NXh44FarJtao/H+zkZG4VauG0de3yOIXoii1GnI7efZstsydicXqTpvhd+kdUoknCZootVRVZd/qGJb98j0up5MuDzxG3Y5d5c6OKFiOHK0QQ8IBiD+oPSYe0VrGcrSxPKoKeZkm7Dmh2DN8yEmpSE5CMHkJ6fnzbgFGI5bwYNzqV8WratWLP+4sERGSiImSSVHAFqQtYY2v2LQpJoYO7dpp3SSTj1+2HNMeDy7SxspdzupzqbXNvwoERkFQFAREFmnXSaPNE/e6dXCvW+fiOjUvj5yjR7Hv3oN9717s+/aROnsOrvT0i/uYgoIuJWxRkbhFVcctspo275wQJZiiKLS/8z5y7XY2/DUZs9Wd5v2H6B1WiSYJmiiVstPTWPLTNxzcsIby1WvR4+Gn8A0tp3dYoiRz5EDCQYjdC/H7If6AlowlHdMmRAZAQfWpSJ6xEtmuNthTFexn0rEfPYsrIxNwgTkDt4gI3JtWw6dKVdyqaeNjzJUqyQS8omwxGMC7nLZUann19txMLVlLOnYpeUs6Bud3wf452qTjF3iVg8BICKx+KXELrqUVNimCm3KK2Yy1enWs1avDoIGAdpPQERtLzqFD5Bw8pD0eOkTypEmo9vyWQ6MRS0QE1ho1cKtRXXusXh1TUJDcTBQliqIodL7vYfLsdlZPGIvFaqVh9z56h1ViSYImSp1j2zaz8PsvyE5Pp82Iu2nad6BUFhLXT1W1sTSxeyBuj5aQxe6BxEOXfhAaTOBfFTWwBrmBnbAnu2E/l4392Hns+w/gyjgCaD/a3KpXx7tnL6y1a2OtXRu3qEhJxIS4HhZPCKmtLX/nzNOStvgD2o2ThEPaDZOdkyAn7dJ+HgFaohZcC4JraucKqlEkLW6KomAODcUcGoqtbduL61WnU5sG4MBBcg7sx77/AFnbtpI2d+7FfYwBAVjr1Ma9bj3c69fDvW5d6SIpij2DwUj3h58iLyeHZb/+gNnqTp0OnfUOq0SSBE2UGnl2Oyv+/B87Fs8nsGIlBr40Wsrni3+XnawlYHH5S+xerbhBzmVlxn3CIaQWalR3cvOCsScZsJ9IJHv9PnL27sOVtRXIrxZXowbefXrjfiEZq1oVRZIxIQqe0ZzfYhZ55XpVvTRlQPz+/Bst+2Dbn5CXeWk/n4pa0hZSC4Lzk8DASO28hUzJbzWzRERAt64X1ztTU7EfOEDO/gPY9+/HvmsnCStXXewGba4Ujnu9+rjXrYt7/Xq41awpN3tEsWM0mej95AvM+PAtFn3/JW4eHkQ2a6V3WCWOJGiiVIg9doS5X35E8rkzNOkzkNbD7sQk43bEBS4nJB6Gczvh/M78H217If3cpX2sPtoPtbqDUQNqkJPtgz02F/uhY9g37MO+f+bFbkmK1Yq1enV8+vfXWsbq1MatShUZKyaE3hQlf562UKgafWm9ywWpJ7Vk7eLNmL1wZOllLeNmrXtkSC0tYQutC6H1rm9qggJg9PHBs1kzPJtdqjDszMjEvns32Tt3Yt+1k6wNG0ibPVvbmN+t0r1eXax16+Fery6WypWlgqTQnclspu8zLzP1nVeZ+8WHDHjhTSrVa6B3WCWKJGiiRFNdLjbPncHqCb/j4e3NkFffIbxOfb3DEnrKs2tdEy8kY+fyEzJHtrbdaIGg6lC5vdYyFlSLPKcf2YfPkb19B9lzt2M/uATy8gAweHpirVkTv2FDsdaqhVvNmloyZpI/n0KUGAZDfjXICKje49J6R67WfTl276UuzSfXw64pl/axheQna/kJW2g9rUhJESRCRpsnni2a49mi+cV1eefPk71jJ/bdu8jeuYvUmbNIHj9B+5g2G9Y6dbRWtsaN8GjcGKPX32eAE6LwWazuDHxxNJNGv8jMj99h8KvvUD6qht5hlRjyC0OUWOlJCSz45jNO7t5BtaYt6frgY7h7Fe0kqEJneXYt+Tq7Fc5th7M7tLviF4p2uPloP6qa3HPxx5XLOwL7/oNkb9tG9vLtZG2fijM+AQDFwwP3unUJuPuui3MbmcPD5Y60EKWVyXLZOLfLqs5lp0Dsbq0gybmd2uPRmEutbWZPbUxbaB0IqXPpHFafQg/5wrg27/zukarTSe6xY2Tv3HUxaUv87Tf46ScwGLDWrIlH06Z4NGuqJWw+hR+jEABWm41BL7/FpDde4K8xbzL0zTEEhUfoHVaJIAmaKJEObVrHou+/xJGXK+XzywpHrnaH+8wWOLtdW+L3XfrB5BEA5RpAVFcoV1+7y+0XgSM5meytW8latI3sLbPI3rv3YuuYOTwcz5Yt8WjYEPcGDXCLjJSWMSEEuPtCRBttucCRo41rO79LW2L3wJ4ZsOW3S/v4hOd3j6wD5RtChcZad8tCpBiNuFWrhlu1ajBwAAAuu53sHTvJ2riRrE2bSB4/nqTffgNFwa1GDTyaNsGjSRM8GjXCFBhYqPGJss3m58/gV99m4uvPM+3d1xg++kOpqn0d5JeIKFHy7HZifv+ZnUsXEFKlGj0fexb/8mF6hyUKmssFSUe0ZOzMVu3x/C5w5mjb3f21Hz9RXbWkrHwD8KmIqqrkHj9B9ratZP35M9lbt5J7/DiQXwY7v3XMvVEj3OvXxxQQoNcnFEKUNCY37eZPucu60asqpJ3VkrXY3ZceDy261JLvXUFL1C4s5RuAW+F2OzRYrXg2b4Znc208mysnh+wdO8jatImsjZtImTSZ5N//ALQbVR4NG2pdIhs1wlKlivQaEAXKJziUQa+8zaQ3X2Tqu68yfPSH2Pzl+/ffSIImSozzRw4x7+tPSD53hqb9BtN66O0YTVKUoVTIToHTm+HUBm05u/1SJUWzp5aMNX8g/8dNI/ANB0UhLy4O+65dZC+cjn3XTrJ37b44MazR1xf3Ro3wHTwI90aNsdapLRXPhBAFS1HAp4K2RF2qyEhulnZT6cyWS8u+WRcO0kr9V2gMFRpBWBOtomQhVpA0uLldKkDyCLhyc7Hv2UP21m1kbdtKxsqVpM6cqe3r44NHgwa4N26MR5MmuNepLdVoxS0LrFiJQS+NZvLbrzD13dcY9uYYGZbyLyRBE8Wey+lkw4zJrJ82EQ9fPykEUtKpqlZR8UIydmqj1m0IQDFq3YPqDrqUjAVVB4MRNS8P+549ZE5dhH2nlow5zp/XjjOZsEZF4d2rpzY4vmFDrZqZdHsVQujB4gHhzbXlgsxEbbzsmS3aDamD82H7n9o2k1Vrmbu8pc0votAm2TZYLHg0bIhHw4YEMCq/98Hxiwlb9patZKxYAYDi5oZ7vXq4N9ESNo8GDTB4ehZKXKJ0C60WRf/nXmP6mDeYPuZNhrz6DhZ3D73DKpYkQRPFWvK5M8z/+lPOHT5AzTYd6DjqIayeNr3DEjfCkaO1iJ1cpyVkJ9dDdpK2zeoLFZtB3cFQsbmWkLlp/38vJmQzf9HGUWzdipqVBWjzAXk0aZJfXrou1po1MVit+nw+IYS4Hp4BENlFW0C7WZVyIj9hy29l2/wLrP9W2+4RCGFNoWJTCGum9SRwK5zvP0VRcKtcGbfKlfEdNBAAR2IiWVu2kL1lC1mbt5D4w48kfvc9GI1Ya9bUqku2bo1748bSO0Fct/A69ej95IvM+uRdZn7yHgNffEN6Q12DJGiiWFJVlV1LF7L8958wmkz0euJ5arRqp3dY4npkJ8OpTVpCdnK99qPjwtixgGpQvad2V7licwiIvFiq2pWTg333brK2bCVr0yayt2zBlZ+QuUVWw7d/fzyaNcOjaRMZOyaEKPkU5VLp/zqDtHXOPG2utjOb87t9b9Ra2gAUg9bDICw/YQtrCgFVC62VzRQQgHfXrnh31bpuOjMyyd6+nazNm8javJnEsb+T+PP/UKxWPJo1xdamDZ6tW2tj2KT3gvgX1Zo0p+sDj7Hw+y9Y+P2X9Hjkablm/kYSNFHsZKYks+iHLzm6dRPhdRvQ/f+exCtAqkwVWxlxcGINnFirLbF7ABUMJq3LTrP7IbwFVGwBtqCLhzni48lasoTsrdu0kveXVVe0VKuKT/9++QlZU0nIhBBlg9EM5eppS5NR2rqsJO1G16mNcHoj7JyitbSBVjAprOmllrYKjQutAInR5omtTWtsbVoDWsKWtWkjmavXkLlmDbHvvQ+AqVw5PFu3wtaqFR7Nm8vfb3FNdaK7kJGUyJrJf2LzD6DdbSP1DqlYkQRNFCuHN61n0Q9fkme3Ez3yARp26y3VpIqblFP5yVh+UpZ4SFtv9tC6K3Z4CSq10n4oWC71Lc87f57MRX+RtWE9WVu3kXfqFACKxXKpumLDhrg3bIjJ31+PTyaEEMWPh/+VXSNdTog/AKc3aQnbqU1waGH+zopWcKRiU+2mWKWW4FupUFrZjDZPvKKj8YqOBiD39Bky16whc/Vq0hcuInXqNADcoqLwaNEczxYt8GjaVCbOFhc1HziMjORENs2cis0vgEY9+ugdUrEhCZooFvJy8svnL1lAcERVej72DAFh4XqHJUArIX1sFRxfqT2mnNDWu/loX/6N7oRKrbXWssuqkDnT08latZTMNWvJXLeO3GPHADD6++PRuDF+I0bg0aghbrVqyfgFIYS4XgYjhNTSlsZ3a+uyU67sFrn7r0vzs3mV1/5Wh7fUbp4F1bzYtbwgWcIqYBk2FL9hQ1EdDux795K5fgNZ69eTMnmKVtbfYMBapw6ezbXxax6NG6GYZfxRWaUoCh1HPURGcjLLx/6Izd+fqOat9Q6rWJAETegu7vhR5n75EUlnTtG07yBaD7tDBozqKT0Wjq+CYyvh+GptPjLQCnpEtIEWD0NEa+0urcF48TA1L4/sbZvJWLOGrLXryN61C1wuFHd3PJo2wXfoUDxbtcQtKkr6mgshREFy94VqnbUFtLkk4/dpvRxOroMT62C31qKF1Se/da2V9jf9bzfXCoJiMmmVH+vVgwfux5Wbq41fW7+BzA0bSPz1VxJ/+gmDtze2du2wRXfA1rYtRm8pu17WGAxGej3+LFPeeZV5X32Mh7cPYTXr6B2W7iRBE7pRVZVt82exctyvWL28GfzKO1Sq10DvsMqe3Ew4vgaOLocjy7UvdchvIWsFTe+FiLYQUuequ665p8+QuXo1GatXkbV+A66MDDAYcK9bl4AHH8DWqhXu9evLHDpCCFGUDPkFRUJqa+OAL1SMPLEOTq7VHi90izR7aoWbItpApTZatUhTwf7NNlgsF+dhC+IxXJmZZK5bR/qy5WTExJA2Zw6YTHg0bYJXdEdsHaOxhIUVaAyi+DK7WRnw/OtMeP15Znz0NsNHf0hgxUp6h6UrSdCELjJTkln43ecc276Fqk2a0/XBx/Hw9tE7rLLB5dTK3h9dBkditNL3rjxtHp7wllB/OFRup91VvayFDNC+VDdt0gaFr15N7vHjAJjKl8O7Rw8827TBs2ULuQsqhBDFyeUVIxuM0Nalx+aPJV6j3aRb+pa23uSujSeu3BYqt9cStgJuYTN4euLVuTNenTujOp1k79hJxvJlpC9bTux77xH73ntYqlXF1qYtnm3a4NGksUylUsq5e3kz6KXRTHjtWaa9/wa3vf1xmS4Qp6iqqncMRapJkybq5s2b9Q6jTDu2fQsLvv2M3Kws2t95L/W79ixTXd5iYmLo0KFD0b5pyik4shSOLIOjK8Ceoq0PrQdVo6FKtJacma/8AnTl5mLfsYPMdevJXL+e7J07weHQyio3bYqtTWs827SRssoljC7XoBCXkWuwGMpMvDJhi92lrbfYtHHGldtpyzV6UxSk3BMnSF+2nMxVK8natBk1Lw/FzU37zmnbpsC+c+QaLJ7ijh9l0psv4B0YzLDRH5TquW8VRdmiqmqTa22TFjRRZBx5eawa/xtb580ksGIlhrz6DoHhEXqHVTrlZGhfsofzk7ILlRa9K0DN3lpCVqUDeF55d0p1OrHv3UfWhvVkrltP1pYtqHa7NrC7dm0C7rkHjxbN8WjSBIObW9F/LiGEEIXDMwBq9dUWyE/YVms39Y6tvNQl0t0/v3WtHVTuUOBzsVkqVSLgnpEE3DMSV1YWWZs2kZHfayP2/TGAVsrf1qYNtg7t8WzRAoOnZ4G9v9BXcEQV+j79CtPHvMnMj99h0MtvYyqDhWQkQRNFIvH0SeZ++RHxJ47RoFtv2t1xD2aL/MAvMC4XnN+pJWNHlmkTRLvytK4qEW20+XSqdYLAqKu+SPNi48hcvVorj7x2Lc6UFECbi8x38GA8W+aXRpZui0IIUXZ4BkCtftoClyr6HlsJx1bA3pnaeu8K+clae6jSHrzLF1gIBg8PbO3bY2vfHrg07jlzzWrS5s0jZcoUFLNZa13roO1nqVS2xy6VBpXqNaD7/z3BvK8/YcE3n9Lr8efK3JRLkqCJQqWqKjuXLCDm958xu7nR//nXqdq4md5hlQ6pp7WiHkeXw9EYyErU1ofUgRb/pyVkFVtc3W0xJ4eszZsvjiPLOaS1rhkDA7G1b49nm9Z4tmiBKSgIIYQQAtASr/rDtEVVIemolqgdXQGHFsGOCdp+AZFaola5nVZgyqPg5rW0hFXAMnwYfsOHoebmkrV1KxkrVpKxYgWx771P7HvvY4mIwNa+HbboaDwaN5Yy/iVUzbbRpCclsmr8b9j8A+hw1316h1SkJEEThSYrLZVFP3zFkc3rqVSvId0ffgqbn0xAfNPysrWy9xe6LSYc0NbbQiCyK1TtqHVbtAVfcZiqquQePkzGmjVkrllL1qZNqHY7itmMe+PGBPfri2ebNrhVry7jyIQQQvw3RdG6NgZU1XpouFwQtye/O+QK2DERNv0MKFCunta6Vrm9Nh+bpWC6IyoWC54tWuDZogUhLzxP7qlTF5O15AkTSRr7OwYfH7w6dMCrS2c8W7fG4O5eIO8tikbTvoNIT0xgy9wZeAUE0bhXP71DKjKSoIlCcXL3DuZ//QlZaWm0v/NeGvfsV+aapwtE8nE4tFi7O3lsJTjsWrXFSq2h0V1agY/gWld1W3QkJ5O5dq02SfSaNThiYwGwVK6sdVts0xrPZs0weHjo8KGEEEKUKgYDhNbVllaPgjMPzmzRvreOroD138HaL8FghrCmWgtblQ5QoQkYC+anqKViRfzvuB3/O27HlZVF5tq1pC9eQvry5aTOnIni7o6tTRu8unTGJsVBSgRFUYgeeT8ZSYnE/PEzNn9/qrdsq3dYRUISNFGgnI481kwex6ZZ0/ArV4HbXniDkMpV9Q6r5HDkanPUXEjKEg5q6/0qQ+ORENlFS87MV94FVFUV+569ZCxbRsbKldj37AFVxeDtjWfLlni2boWtdWvMFSoU/WcSQghRthjNEN5CW9o/D7lZ2oTZF7pExoyBmPfBzVvrClm1o7b4Vy6Qtzd4eFwq45+XR9amTaQvWaIlbIsXg8mEb2QkyefP49Wpk3TpL8YMBiM9H3+Wqe+8xvyvP8HDx5eKterqHVahkzL7osAknT3NvK8+IfboIep16k6Hu+7DLPOWXOWq0r4Z8VoydnCBNqYsNx2MFq24R2RXbQm4Osl15eSQtX79xYk+HbGx2iTR9evj2aY1tjZtsNapg2I0XnWsKNukvLTQm1yDZVxWkta6dqGwVeopbb1fZW38dNWO2vg1a8EWp1JdLuw7d5K+ZAmxM2dhio8HRcG9YUO8unTBq0tnmSC7mMrOSGfia8+RmZpcaiay/rcy+5KgiVumqio7Fs1jxZ+/YLJY6PLAo0Q1b613WMVWzPLldKgZCAcWaEnZmS2ACl7lIKobRHbTun9co5++IzGRjJgVpC9fRuaatajZ2SgeHthat8bWsSO29u0w+cs4P/Hv5Mex0Jtcg+IiVYXEw5eStWOrIC8TDCZtfs4LNyqDqhdoOf+Y5ctpUaEC6YsXk75kKTn79gHgVrMmXl06492lC26RkQX2fuLWpcXHMf61Z1EMhlIxkbUkaJeRBK1gZSQnsfD7Lzi+fQsR9RvR7aEnsPkH6B1W8ePM0wp87J+DfedfWHPyKy5WaAxR3bXELLTeNb98co4eI2P5MtKXLiN72zZQVUwhIdg6RuPVsSMezZrJnGTihsiPY6E3uQbFP3LkwqkNcHiJ1t0/bo+23idc6+Yf2VWbh+0Wi438/RrMPXXqYhfI7G3bAHCLrIZXjx549+iBW+WC6X4pbs3FiayDQhg++gPcPEruHHiSoF1GErSCc2jDWhb99DUOu512d46iQddeUgXwcrlZcGQp7JujtZTZU8DsQbxPXYJa3al9yXiFXHWY6nSSvWMnGcuWkr50GbnHjgH5d/Wio7F16oi1Vi35by1umvw4FnqTa1Bct9TT+eOyF2tTyuRlgtHtsmEAXa45DOC//Ns1mBcXR/rixaTNn0/25i2A9h3s3aMH3j26Y6lY8RY+kLhVx3du468xbxJWsw4DXxqN0VQyS2pIgnYZSdBuXU5WFst/+4E9K5YSUqUaPR59hoAK8scK0PrVH1wI++do5fAd2eDuB1E9oGZvqBJNzNqNV30pOFNTyVy7loyVq8hYuRJnYiKYTHg0bYJXx054dYyWAh+iwMiPY6E3uQbFTXHkwIm12rjtQ4shUZvHE/+ql5K1Sq2vmv/zWq73Gsw7f560BQtImz8f+46dAFjr1sW7Rw+8unbFEibfzXrYs2IpC779jLodu9LlgcdK5E3rf0vQSmbKKXRzet9u5n/zGekJ8bQYOIwWg0aU2DsXBSb5BByYB/vnal8cqhO8ykOjO6FGb6jUSqtodRlVVcnZt09LyFatInv7dnA6MXh7Y2vTGlvHTtjatcXoXbADpIUQQogSy+SmTS9TNRq6v69Nln1oiZawbfkVNnwHZg9tzrXILtoQAp9bS6DMoaEEjBxJwMiR5J4+Q/qC+aTNm0/chx8S9+GHWOvUwatbV7y7dcMSHl5AH1T8l9rtO5F87gwb/pqMX/kwmvYZqHdIBUpa0MR1cTocrJ82gfV/TcY3OJQejz5N+aiaeoelD1WFc9th/zwtMYvdra0Pqgk1ekL1XlC+oTYvzGVcWVlkrF7N4YkT8Tp0GEd8PADWWrXwbNcWW7t2uNerh1LWE15R6KT1QuhNrkFR4HKztLHehxbBoYWQclJbH1oPqvfQkrVyDS5+N9/qNZh78iTpixaRtnAR9l27gPxukN264tW1G25VZMxaYVNdLuZ88SEHN6yh7zMvE9m0pd4h3RDp4ngZSdBuXGrceeZ++RHnDh2gdofOdLznQSxW9/8+sDRxOrT5yfbN1lrK0s6AYtAqTFXvqSVm/lWuPiwlhfSYGNIXLyFzzRpUux2Xhzu+HTrg2bYdtjatZf4VUeTkx7HQm1yDolCpKsTvhwPztTHgpzZyRbXkqB6sPK3QrlO3Anm73NNntGqQCxdqPWIAt8hIvHp0x7t7D0nWClFebg6TR79EwqkTDH/zA0KqVNM7pOsmCdplJEG7MfvWrGDJT98A0OWBR6nRqp3OERUhZ542qebeWVpSlpUAJndtjpbqPbW7cZ5XV6zMi43VJsRcsoSsjZvA6cQUGnpx0sxNmRl06NRJhw8khEZ+HAu9yTUoilRmgtaydmC+Vso/NwOnwYKxagdt7FpUN/AtmO6JeefPk75oMWkLF5K9dSuoKm7Vq+PdvRte3btLNchCkJmSzLhXnsbldHL7u5+WmPL7kqBdRhK065Nrz2bZLz+wZ8USykXVoNdjz+ETfHXFwVInzw5Hl2tJ2YG5YE8Fi037412zr9an/W+lfS+MJ0uPiSFjeczFrg6WypUvTnxprVPn4gBW+WEi9CbXoNCbXINCN44cOL6a08t/ISxrDyRrlZIJqnFpzrXwFleNHb8ZebGxpC9cRNqCBVqyBrjVqIF39+5aNchKJX+y5eIi/uRxJr7+HD7BoQx/68MS0dNLioSIGxJ79DBzv/yQ5PPnaDFwGC0H34bBaNQ7rMKTm6lVg9o3S6vAmJsBVh+tlaxmX6ja8aqKUK7sbDLXrScjJoaMFStwxMaCouBerx5BTz6JV5fOuFW98bK/QgghhChEJjeo1onDp42EtW+vTZJ9aJH2/b/+O1j7Jbj5aIVIqvfUbsx6+N/UW5lDQvC/607877pTa1lbuJC0+QuI//xz4j//HPf69fHp3w/vHj0w+voW7OcsY4LCI+j95Iv8NWY0c7/4kH7PvYrBUHJ/u+qeoCmK0h34AjACP6uqOuZv258G7gMcQDwwSlXVE/nbnMCu/F1Pqqrat8gCL4VUl4vNc2ewesLvePj6MvT196hYq67eYRUOe6r2x3jvzEvl8D0Coc4gqNUXItqByXLFIY7ERNKXLCVj2TIy169HzcnB4OGBZ5s22Dp0wNa+HaYAmaRbCCGEKBEUBQIjtaXlI5CTrs21dnChlrTtnQGKMX+8eXctYbuJOddAqwbpf/fd+N99N3nnzpE2bx6pM2ZwfvRbxL73PraOHfHp1w9b2zYo5ltvvSuLKjdoTPQ9D7Dsl+9Z8ccvRN99v94h3TRdEzRFUYzAN0AX4DSwSVGUWaqq7r1st21AE1VVsxRF+T/gQ2BY/rZsVVUbFGXMpVVafBwLvv2MU3t3Ua1pS7o+9DjuNi+9wypY2SnaWLK9M7VujM5csIVq5fBr9tX+ABuv/CfhiI8nbfFi0hcuImvTJnC5MIeF4Tt0KLYO7fFo2hSDxXLt9xNCCCFEyeHmBTX7aIvLBee2aePWDsyHRa9qS2CUVhWyek8Iawo30UpjLleOgHvvxX/UKOx795I6cyZpc+aSvnAhRn9/vHv3wrd/f9xq1iyR83vpqWG33iSfO8PWeTPxK1eBBl176h3STdG7Ba0ZcFhV1aMAiqJMBPoBFxM0VVWXX7b/euCOIo2wlFNVlT0xS1g+9kdUFbo++Dh1oruUnj8IuZlaBafd07W7Yc5c8AmHZg9oSVlY06vK4efFxpK+SKvGlLVlC6gqlsqVCXjwAby7dcOtevXS899HCCGEEFczGKBCY23p+Ko25+nBBdr0Ouu+gTVfgEeAVjCseg+oEg1utht6C0VRcK9dG/fatQl57jkyVq0mdcYMUiZMJPn3P7BUrYpPn9549+6NJSyskD5o6dPhrvtIOX+OZb9+j29wCBENGusd0g3TO0GrAJy67PVpoPm/7H8vMP+y11ZFUTajdX8co6rqjAKPsBTLTElm0Y9fcXTLRsJq1qH7w0/iExyqd1i3zpGjdVvcPU2765WXqbWUNb1P68JYobHWreEyeXFxpC9YSNr8+WRv2waAW2Q1Ah95BO9uXbFUqyZJmRBCCFFW+VWC5g9qiz0VDi+BAwtg/xzYPg6MblCl/aU517zL39DpFbMZr47ReHWMxpmSQtqCBaTOnkP8518Q//kXuDdsiHef3nj36IHJz6+QPmTpYDAY6f3E80x8/Xlmfz6GEW99RGB4hN5h3RBdqzgqijIY6K6q6n35r+8Emquq+ug19r0DeBRor6pqTv66CqqqnlEUpQqwDOikquqRaxz7APAAQEhISOOJEycW2mcqKZKPHOTkysU483Kp0LwtwfUal+gERHE58U3ZRXDcKgIT1mF2ZJJn8iI+qBWxIe1I9amp9SO//Ji0NKzbtmHdvAXz4cMoqkpehQrkNGqEvVFDnOXKFUqsGRkZ2Gw3dpdNiIIk16DQm1yDQm8FdQ0qLgc+qfsISNxIYMJG3O3nAUjzqkZCYEvig1qQ7XHzrV+GhESsmzfhvnEjprPnUA0GcmvXwt6sGfb69UGGWfyj3Iw09k8bh2IwUGPQHZg9PP/7oCIUHR1dPMvsK4rSEnhTVdVu+a9fAlBV9f2/7dcZ+AotOYv7h3P9BsxRVXXqv71nWS+zb8/MYNmvP7Bv1XJCqlSjxyNPExBWMHN/FDmXC06t11rK9szQ5imzeEGNXlB3MFTpcFWZXEdysjZH2fz5ZK7fAC4XlipV8O7RA++ePYqk8qKUlxZ6k2tQ6E2uQaG3QrkGVRXiD2jdIPfPgTNbtPVBNbUCZDX7QEidq3rxXN+pVXIOHCB19mzS5s7Dcf48Bm9vfHr3xnfIYKw1axbsZyklYo8eZuKbLxBYsRJDX38Ps5v1vw8qIsW5zP4mIFJRlMrAGWA4cNvlOyiK0hD4Aa2lLe6y9X5AlqqqOYqiBAKt0QqIiH9wcvcO5n/7GZnJSbQcPILmA4ZhNOl9CdwgVYWz2/KTsr8g7Yw2eXT17lr3xWpdriqJn3fuHOlLl2kTR2/SJo42Vwon4IH78e7RE7eoyBLdeiiEEEKIYkBRILiGtrR9GlJPw745sG82rPwIVnwAfpXzk7W+1xxy8c+nVrDWqIG1Rg2Cn3mGrI0bSZk6jZSpU0kePx5rrVr4DhmMd69eGL29C/mDlhwhVarR87FnmfXJe8z/5lP6PPkiyt9qDxRHuv46V1XVoSjKo8BCtDL7v6iqukdRlLeAzaqqzgI+AmzAlPwf0RfK6dcEflAUxQUY0Mag7b3mG5VxTkceayb9yabZ0/ELLc9tb39MaLUovcO6MYlHYOdk2DUZko6CwQzVOkPn0Vpy5nZlxcmcI0dIX7yE9CVLsO/eDYClalUC7rsPr65dsNaqJUmZEEIIIQqPTxi0eEhbMuLhwFzYO+tSkRHvCpeqRoa3vO6KkIrBgGeLFni2aIEz5RVSZ88hZdo0rWT/mA/w6tYV38GD8WjSpEQkI4UtsmlL2t9+Dyv+/IXVE3+n7W0j9Q7pP+nefKKq6jxg3t/WvX7Z887/cNxaoJRO0lVwks6eZt5XHxN79DD1OnWnw133YbYWn+bdf5WZoLWS7ZwEpzcBClRuC62f1P6YXTZxpKqq5OzfT9r8BaQvXkzusWMAWOvVI+jpp/Hq3Bm3KpX1+RxCCCGEKNtsQdB4pLZkJ+fPxToLtvwGG77X5mKt0esf52L9J0ZfX/zvvAO/O27HvmcvKVOnkDZnLmmzZmOuUAHvvn3w6dsXt8pl+zdQ494DSD5/lo0zp+Jbrjx1o7vqHdK/0j1BE4VDVVV2LVvE8rE/YjJb6PvMy0Q2a6V3WP8tL1vru71zslYhyeXQ+mt3eQvqDAafClfsnnP4MGnz5pM2f76WlBmNeDRrit8dt+PVuTPmkBCdPogQQgghxDW4+0H94dqSkwGHF2vJ2u5psHUsWH0gqod2M7pqR7B4/OcpFUXBvU5t3OvUJuSFF0hfvJjUmbNI/OFHEr/7Hmu9evj07Yt3r55lsgqkoih0vOchUuNiWfLTN/gEhRBep77eYf0jSdBKoeyMdBb/8BWHNq4lvE49uj/yNF7+gXqH9c+cDji+EnZO0fpp56aDV3lo+QjUHQqhda7YPff4cdLmzydt3nxyDh0CRcGjWTP8774br65dMPn7/8MbCSGEEEIUI242qD1AW/LscHS5lqwdmAc7J2rj7Kt10sasRXUDd9//PKXB3R2fvn3x6duXvNg40ubOJXXWLGLfeYfYMWOwtW2LT7++2KKjMbi5Ff5nLCaMJhN9nnqRCa89x6xP32PE2x8TUKGi3mFdkyRopczJ3TuY/82nZKWm0u72e2jSe0Dx7H+sqnB2q5aU7Z4GmXHg5g21+kG9oRDR5oq+2DlHj5G+aCFpixaRs3cfAO6NGxPy6qt4d+uKKShIr08ihBBCCHHrzFZtHrXqPcCZByfWaDeu98/VqkIaTBDRVmtZq9ELvP577lpzSDABo+4hYNQ92A8cIHXmLNLmzCFj+XIMPj549+yB74ABWOvWLRNj8908PBnwwhuMf/UZ/vpgNLe/+ynuXsWvqIquZfb1UFrL7DsdeayZPI5Ns6bhF1qeXo8/R0iVanqHdbXEI7BrirYkHgajBSK7aklZZLeLFRhVVSXn0CHSFy4ifdFCcg4dBsC9QQO8unfDu3t3zKElc1JtKS8t9CbXoNCbXINCbyXqGnS5tJva+2ZrS9IRQIHwFtqN7Zp9tIIk10l1Oslcv57UGTNJX7QINScHS9Wq+A7oj3efvphDggvvsxQTZw/uZ/JbL1EusjqDX3kbo8n83wcVsH8rsy8JWimQdPYM8776iNijh6nbqRvRd91fvAqBZCVpxT52TITTGwFFayGrO0QbDOuu9YVWVZWcfftIW7iI9IULyT1+XOu+2LgxXt264dW1S6kYU1aivhREqSTXoNCbXINCbyX2GlRViN+vJWp7Z0KsVqmaCk20ZK1WX/CLuO7TOdPTSVuwgNS/ZpC9dSsYDHi2aY3vgAHYOnXCUIonwt63ajnzvv6Eup260eX+R4u8BbE4z4MmboGqquxevphlv/1Q/AqBOPPg0GLYMQEOLgBnrjZRY+fRWmJ2WbGP3OPHSZ07l7Q5cy8W+vBs3gz/kXfj1amTdF8UQgghhID8udZqakv757WeSXtnasvi17SlXAMtWavdH/yr/OvpjF5e+A0Zgt+QIeQcO0bqzJmkzpjJmaeexujri8+AAfgOGVIqK2HXbBtN4pnTbPhrEgEVwmncq5/eIV0kCVoJlZ2RzuIfv+LQhmJUCERV4dx22D4Bdk+FrEStbGzT+7RKRaH1Lk7ImBcbR9r8eaTNmavNU6YoeDRtiv/IkVqhjzJYYUgIIYQQ4oYEVNUmxW77NCQf1wqM7J0JS0drS7kGUGcg1OoPfpX+9VRulSsT/OSTBD32GJnr1pMyZQpJf/xB0q+/4tGsGb5Dh+LVtUupalVrPfR2Ek+fZMUf/8O/fAUqN7xmg1aRkwStBDq1ZyfzvvmUrJRk2t42kqZ9BupbCCQjTpurbPt4iNsLRjdtgGv9EVrlIaPWr9eZlkb6okWkzplL1oYNoKpYa9Ui+Pnn8e7Zo8SOKRNCCCGE0J1fBLR+XFtSTsHeGdoQk8Wva0uFJvkVI/v/65g1xWjE1qY1tjatccTHk/LXDFKmTOHss8+WulY1xWCg56PPMOGN55nzxQeMePtjAiv+eyJbJHHJGLSSw+lwsHbKODbOnIpfaDl6PvYcoVUj9QnGkQuHFsK2cXBoEahO7R9+g9u0OzX548pcOTlkrFhB2uzZZMSsQM3Lw1KpEt69e+Pdq1ep+Md9o0psv3dRasg1KPQm16DQW5m6BpOPw54ZsGc6nNuhravYHGoP1LpCepf7z1OoLheZ69aRMnkK6UuXgsOBR5Mm+A4dglfXrhiKU+2Dm5CWEM/4V57GZLFw27uf4uHtU+jvKWPQSoGEk8eZ/81nxB0/Qp3orkSPvB+L1b3oAzm/S0vKdk3WujDaQqDVo1D/NgiuAWj/iLPWbyB1zmzSFy7ClZ6OMTAQ3xHD8enTB2udOmWilKsQQgghhO78IqDNk9qSeERrVdvzFyx4ARa8CJVaaS1rtfqB7doVHBWDAVvr1thaX9aqNnUqZ59/AcM77+LTty++QwZjrV69KD9ZgfEODKLfs68yafSLzP70fQa/qk9lxwskQSvmXC4nm2f/xdrJf2Lx8NSnEEhmolYWf/ufWoJmMEONntDgdqjaCYwmVFXFvmsXafMXkDZ3Lo7YWAweHnh16YJ3nz54tmiOYpLLTQghhBBCNwFVod2z2hJ/MD9Zmw7znoX5z2tVtmsPgJr9wDPgmqcwBQUR+MD9BNx3L1kbN5IyZSopkyaR/OefWOvVw3fIYHx69sTg6VnEH+7WlIusTrf/e5J5X37Ekp+/peuDj+vWoCC/mIux5PNnWfDNZ5w9uI/IZq3ofP8jRdLkCoDTAUeWwrY/4cB8cOVpRT56fKhVYfTwR3W5yN6xg/SFi0hbtBDH2XNgMmkz1L/wvDZDvbsOrXxCCCGEEOLfBUVBhxe0JW4f7J6uJWtznoK5z0LltlpxkZp9wPPqQnSKwYBnixZ4tmiBIzmZtFmzSJ4yhfOvvU7c+2Pw7tUT3yFDStQk2DVbtyfpzCnWT5tIQFg4TXoP0CUOSdCKIdXlYsfi+awY9wtGk4mejz5DjTYdiubijj+otZTtmAQZ58EjAJrdr40tC62rJWXbtpG28HvSFy3Gcf48itmMZ+vWeD32OF4dozH6FFESKYQQQgghbl1wTej4CkS/rM2ttnu6VmRkzpMw92mtZa1Wf6jZF2xXT39k8vPD/+678bvrLrK3bydlylRS58wlZcpU3KpXx3fIEHz69C4RvxFbDb6NxNMnWfnnrwSFV6ZSvQZFHoMUCSlm0hLiWfj9F5zctZ2I+o3o+uDjeAUUcvn87GTYPU0rj39mMyhGiOqmdWGM7IpqNJOzfz+ps2Zr3Rfj4lAsFjzbtsW7W1ds0dEYvbwKN8ZSpEwNTBbFklyDQm9yDQq9yTV4HVRVS9b2zNCStcTDoBigUuv8SbH/ecwagDMjg7Q5c0mZMgX7nj0obm54deuK35AhuDdpUqxb1XLt2Yx/5RkyU5K54/3P8Aku+ErjUiSkBFBVlX2rY1j6v+9QXS663P8odTt1K7yL1+mAo8th+zjYPw+cORBcC7q+A/WGgS2YvHPnSP11LGmzZpFz6DCYzdjatsW7Z09sHdpjtNkKJzYhhBBCCKEvRYHQutrS8VVtKqULydqFMWuV20PdwVCjN7j7XnG40WbDb/gw/IYPw753L8lTppA2ew5ps2ZjiYjAd9gwfAcOKJataharO/2ee5VxLz/FzE/eY8RbH2J2K7pKldKCVgzYMzJY8vM3HFi3igo1atH94afxDSmkOcHi9mtJ2c7JWhdGd39tTFmD26BcfZwZGaQvXEjqrNlkbdoEqop7w4b49O2DV/fuMoF0AZC7dkJvcg0Kvck1KPQm1+AtUFUtWds9DXZNhZQTYLRAZFeoMwiiuoPF45qHurKySFu4iJTJk8netg3F3R2fPn3wu/22YlkB8ti2zUz/YDQ1WrWj52PPFmjDibSgFWMnd+9g/refkZWSTJvhd9G03yAMBmPBvklOuvaPaOsfWhdGg0n7R9TgNojshtOeR8by5aQt/JnMlatQc3OxVKpE4GOP4tO7N5bw8IKNRwghhBBClEyKAiG1taXja3Bmi5ao7ZkO++eAxQbVe2ota1WiwWS5eKjBwwPfAf3xHdAf+969JI0fT+rMmaRMnoxHkyb43XE7Xp06oZj1K3F/ucoNm9Bm2J2snvg7oVUjadyrf5G8ryRoOnHk5bFm0h9snvMXfqHlGfH2xwU76bSqwqkNWlK25y/Iy4SgGtD1Xag3DCceWlL2zdMXkzJTcDC+w4bh06d3iaq4I4QQQgghdKAoENZEW7q9C8dXw+6psHeWNmeu1Rdq9dVa1iLawmWNENZatSj/zjuEPPssKdOmkzxhAmeefEr7PTp8GH5DhmAKurogSVFr1n8IsUcPs+LPXwiqVJnwOvUL/T2li6MOEk6dYN5XHxN/4hj1u/Sg/R33Yi6oGdgz4mHHBNj2ByQc1O5i1BkIDe/C5VeT9OUxpC1ccEVS5tW9G97du+PeoAGKwVAwcYh/JN0qhN7kGhR6k2tQ6E2uwULmyNVqHeyeBvvnQm4GeAZD7f5ashbWDP72m1N1OslYuZLkcePJXL0aTCa8OnbEd9hQPFu21PU3am52FuNeeYbstFTueP9zvIP+uTjK9ZIujsWE6nKxbeEcVo77FYu7B/2ff52qjZvd+oldTji8FLb9nj9nmQMqNoe+X6NW70Pm1t2kfjWF9CVLUbOyMIWE4Dt8mCRlQgghhBCi4JksWkXwqG6Qlw2HFuUPt/kdNv4I3mGXkrXyDUFRUIxGvKKj8YqOJufYMVImTyH1r79IX7QIc3g4fkOH4DNwICZ//yL/OBZ3D/o9e6FoyLsMf+tDzBa3Qns/SdCKSEZSIgu++5wTO7dRpVFTuj74OJ6+t1hwI+mYNpH09vGQfhY8AqH5Q6gN7yQnwUXqrNmkPtEHZ3wCBm9vfHr3xqdvH9wbNZKkTAghhBBCFD6z+6Wy/DnpWmPC7mmw4QdY9zX4RUDtgVqPr5A6oCi4Va5MyAvPE/TkE6QvWkzKpEnEffwJcV98iXeXLvgOG4ZHs6ZFOhzHv3wFej72LDM+fIvFP35Nj0eeLrT3lwStCBzcsIbFP36NIzeXTvc+TP0uPW7+f2ieHfbN1lrLjq3U5qOo2gl6fECed0NS5y0g7evnLpXFb98On759sXXogMFi+e/zCyGEEEIIURjcvKDeUG3JToZ9c7TiImu+gNWfQmDUpWQtqDoGNzd8+vTGp09vcg4fJnnyZFJnzCRt3jws1arif9dd+PTti6Gghgr9h6qNm9FqyO2snTKO0CrVaNSzX6G8jyRohSgnK4vlv/3AnhVLCakSSc/HnsG/fNjNnSz+IGz+RRtfZk8B33CIfhVXjYGkb9xL6sd/kbnuxYtl8UPffAPv7t0x+voW5EcSQgghhBDi1rn7QaM7tSUzAfbO1ArbrfgAVoyBkLpQbwjUGQw+FXCrVo3Ql18m+OmnSZs3n6Q//uD8628Q/9nnWlGRESMwB9/62LD/0mLgMGKPHSHmj/8RVKkyFWvXK/D3kAStkJzev4f5X39KekI8LQYOo8WgERhNN/if25GrlSvd/AscXwUGM9Tsg9roLrITPUmZOZP0p4fhyszEXL48gf/3f/j07ydl8YUQQgghRMnhGQhN79WWtHNasrZrCix+HRa/ARFttHl7a/XF4O6H78AB+AzoT9bGTSSNHUvi9z+Q+PP/8OnZA/+778Zaq1ahhaoYDPR45GnGv/I0sz8bU2BFQy4nCVoBczryWDd1AhtnTMU7OJhhoz+gQvWaN3aSlFOw5TdtIGVmHPiEQ6fXyfHvQNry9aQ+9D55p06heHjg3a0bPv3749G0iYwrE0IIIYQQJZt3OWjxkLYkHtHmWNs1GWY/DvOe1ebyrTsEJao7ns2b4dm8GbknTpD0x5+kTJ9O6sxZeDRtit9dd+IVHY1yow0k18HNw4N+z72mFQ35+F2Gv/UBZreC62YpCVoBSjx9inlff0zcsSPUie5C9N33Y3G/9kzqV3E54fAS2PwrHFqozWMW1Y2ccn1I35dG2ieLydn/MygKHs2bE/jIw3h36YLB07NwP5QQQgghhBB6CKgKHV6A9s/D2W1aq9ruafkTYntBjZ5QeyCWqh0JffUVgh5/jJQpU0ka9ydnHntcm1NtyBB8hwzGHBpaoKH5l69Ar8ef468P32LRD1/R87FnC6xoiCRoBcDldLJ5zl+snTIOs9Wdvs+8TGSzVtd3cMpJbTLpbX9qlRg9g8mJvJf02EDSJm8gZ/+7ALg3aEDISy/i1bUr5nLlCvHTCCGEEEIIUYwoClRopC1d34FjK2D3dNg3C3ZOAqsP1OiDsc4AAkbeif/dd2lzqk2YSMK335Lw3XfYoqPxGz4Mz9atC6zXWZVGTWkz7E5WT/ydkCrVaNJ7QIGcVxK0W5Rw6gQLv/uc80cOEdmsFZ3u/b//Lp/vyIWD82HLWDiyDIC8kHak5fQkdfURcg7MBSQpE0IIIYQQ4goGI1TtqC29Ps2fEHu6Nm5t+5/g7o9Sqy9edQbj9cN35J45S8rkKaRMm0bG0qWYw8LwHToU30EDMQUE3HI4zfoPIfbYYVb++StB4ZWpVK/BLZ9TErSb5HI62TRrGuumjsfi7kHvJ18gqkWbf2/aTDwCW8dq85ZlxuPyKE+GbRgpe7LJnLwFXIew1q8nSZkQQgghhBD/5YoJse3acKE902HnFK2eg1c5LHUGETxiMIGPPkL6kiWkTJxE/KefEv/VV3h364bfbbfh3rDBTXdPVBSF7g8/xYSzzzLniw+4/b3P8A25te6UkqDdhPiTx1n43efEHj1MVIs2dBr1EB4+vtfe2emAA/O0SoxHl6NixG5rR0pKIGnzduFKW4kpNJSA++/Hp18/3KpULtLPIoQQQgghRIlntkLN3tqSm6X1Vtt1aUJsQ0A1fOoMxuez18lJgeQJE0mdMYO0OXNwq1kTv9tG4NO7NwZ39xt+a4vVnX7PvsqfLz/JzI/f4ba3P8Z8C3OzSYJ2A5wOB5tmTmXdtIm4eXrS+8kXqd6yzbV3Tj2jtZZt/R3Sz5FnqECqvQ+p2+PJPX4AxXoCry5d8B3QH4/mzVGMxqL9MEIIIYQQQpRGFg+oM0hbspJg32ytwEj+HGtu5RoQ2mkIwfdPIjVmE8njxnP+tdeJ++hjfAf0x2/ECCwRETf0lr6h5ej9+PNMHzOaBd9/Qe8nnr/pVjlJ0K5T4ulTzP/mE2KPHqZ6y7Z0HPUQHt4+V+7kcsHRZVolxgPzceaqpOc2IvV4JFm7j4C6BfdGjQi99z5tEmkvL30+jBBCCCGEEGWBhz80vltb0s5q49V2TYFFr2DgVfwqt8X3zcFk2yuRPG0WSePGkzT2dzzbtiXgnpF4tGx53YlWRIPGtL3tblaO+5WNEVVo3n/ITYUsCdp/UF0uti2YzarxYzFZrfR56kWiWvyt1SwjTqvCuHUsauJxMlOCSE1uRvrO86g5ZzGHhxP4yCP49O0jk0gLIYQQQgihB+/y0OpRbUk4pCVqu6agzH4cD6MFj2ZdCRn0Aslbk0ieNIWTo+7FrUYNAkbdg3ePHihm83++RZM+A4k9doQ1E/8gpEo1Iuo1vOEwJUH7F2kJcSz87nNO7t5JlUZN6frg45cqNLpcWonPLb+i7puLPUEhLaUaaYer40hOx+CdjE///vj063dLAw+FEEIIIYQQBSwwEqJfhg4vwZmtF+dYM+2fQ5CbNwFP9iYtoSKJs9dy9vkXiPv0M/zvvBPfoUP+tRecoih0e/BxEk+dYO6XH3Hn+5/jHRR8Q6FJgnYNqqqyb9Vylv7yParLRZcHHqVux25akpURD9vHwZbfyDl+itSzfqSdqUxeQiaYs7C1bYtPv37Y/p+9u46P477zP/6aJa2YmRktsmQGme0wN2naJk3TNtf2ml6vkDJce81dr9frlX7NlZI22HAMMctMki3bMskWMzMuzO+PldaSY7alFXyej4ceuzs7M/tZabQ77/l+5zt5S9E4OTn6rQghhBBCCCGuRFEgbLbtZ/VPoGI3nPgHmjMf4DXUjeeyYHpXLqT1cBdNP/85Lb/7HV4PP4zPpz6JPiTksqvUG43c86/f5u/f+hfe/++f8eiP/gOdwXDdJUlAu0RfVyfb/u+3nD+8n5DEFNZ98at4BQRC5T4o+DNDh9fTVaGnq96XweYA0GhwmTsLv6/cifuqVWg9Pa/9IkIIIYQQQojJRau7eI21u/4bzm1COfEGbhfexS3RTH9CPG3lQbT97SXaXnoJ95Ur8f7E47jk5n6kt5x3cCjrvvhV3vuvn7Djr39g9ef++brLkIA2StnRI2z+f79ioKeHxR9/kpxVK9CcfAPz3/5Id1ENnVXu9DfZLmjnnJlK4OfuxGPtGnT+/g6uXAghhBBCCHHb6J0h7QHbT18bnHoH5xNvEKrsISBQS3tTPB37dtO9ZQtOiYl4f+LxjwzTH5c7j7n3P8Khd94gOC6RWctXX9dLS0ADhgb62fW3P3Fi24f4RUTx0Oc+gW/l+/R85at0lmroqXcGqxeG2Bj8H78XjzvvxBAW6uiyxQymqipWFSxWFauqYrGqWFQVq1VFVa+xLGC2WrFYVcwWFbNVxWK1YrIMr8d69RWojH1dq3W4luHXH6lFVVUsVrCqo+ZVbY8BNIqCgq1ngaLYHoOt77aq2t6H9XK3w3WMHKdSFFBQ7BOU4RoZNf/I8urIY+vIdNs0Rs8zvA6NoqAooNUoaBQFjWKrTatRRtV08T1ZrBdrvJaRdY+sV6tRUJTRrzP6b32FdWgUtMP1XLyPfT0jv9sxv6PhX9DJZjPquaar1qgdqUdjq3P072Gk/itRsM1v0CnoNBp0WgW9VoNea7uv01z7nNyR7eHS15TzeYUQQkw4Fx/I/Yztp70C/cl/EHDyTfzCy+iqcqWtooKG732f5v/6L7wefhjvxx5DH2rLCgseeZz6CyVs//Pv8Y+MJig2/povp6jXsTMxneTk5KgFBQX2x3UlZ9n021/Q0dhAzpxkslr30nOshu5qF6wmBZ2vNx733IfnPXfjlJQkOwcOYB3e4R8JD2aLislqtd1arJgsVsxW2/2RwGFVbfNdGl7MI+uwqpiH5zcNhxWTZXja8LouN81sGQkfoHJxp986vGNvveR1RtYz8noWq0pHVzeurm5jQsfo+xZVxWK5uI5LH5utVq6RoYSYtkaCrVZjC3o6jYJOq0GrUdBrFLRaWyhUgJHcrow+GMDFcKzTKvZ1aYdD7uhp9lA+KqiOPDc6YI8Oj5pL6tNqNMO3w4+1ij38jl5GwRa6R+rVjwq1eq0Gg27sY+01Qq7CxYMLtvc3/J41GjQa0Gk0ttfQadAP3x85UDAR8vPzycvLm5DXEuJyZBsUt0xVoek0FL+FevJN+kvqabvgTne1E6DgvjwPn6c/i0tWFn1dnfz9W18B4BM/+x9cPDxRFKVQVdWcy616UgQ0RVHWAr8CtMAfVVV9/pLnnYCXgNlAK/AxVVUrhp/7FvAZwAJ8WVXVzVd7rZGAZjGbOfj2axx6+3XcXPQs6C/H6VwP5j4dGqMe91Wr8HzgIVzmzJkWF5FWVZVBs3VMYBgdJCyjQtCQ2cqQxYrJbGtVGbJYGDKr9mnm4daWi8Hl4n2z1WpbfngdI8sNmS2j1qsyOLwu23O2ukaeH13fSBhyBEUBvebiEf+Ro/+aMTtXF1uCNLa9v+GdvIs7ZSM7PiMtCe1tbfj7+dl35DSjWj1Gpo0sO2YnT3txJ3J0i8mYlpThdVzL2Po0F3d2tZqPtOBcjn2nb6QWzdgd07G3F3dyL92pHN1qNRJ0QR3TCmRvbdKMbRUCxiw78theo2bs8pfunGtGtbyN7IiPXv9IC+XoVrKRbXJsC9jY1rVLa7yUOirMq9bhlsdRIf1yLZiXrm9kvostkxdbK0da8kbaGkdej1G/p8KjR5mdnX3lGofntbeAjhzkUBluMb36P6Xtd2dlyDL2QMjIQRWzVeVqm5g6XPfI64y00o60WlqGaxv53Bk5cGEebgU2Df/dRlpSLx5MuXh/5Hd12QM61rEt1Ko66u806nNp9AGWkdbYkXntB5RGfcZOBQbtxc+aS0OjZjj1Kgr2z0SDbjhAjgqUBp3t80Wx/5/Y/tdGPusUoKW5iaDAwOH/JeUjn4cjnxcjoVav0Yx5rNNc/Cy2f/6MfOYMT9PrbHXpNBpbENUqGEa15F76/3tp6B792TryeWcP2Brsz8mB26lJApq4rVQV6o7CybcwHXqb9qIe2ktdsQ5pcE6OxvcLX6EnKpLXf/hNwlJm8cC3fohWq7tiQHN4F0dFUbTAb4FVQA1wRFGU91VVPT1qts8A7aqqximK8ijwH8DHFEVJAR4FUoEQYJuiKAmqqlqu9pqttdVs/OW/01RdTWR/JwknWtFaVZyy0gh4/DO4r1gxpv/ozVJVW3jpN1kYNFlst2YrgyYrg+bh+2YLgyZbMBmZPrJTY7LYdnBM9rBkezw0vJztduz90bcj4WfQbMFkmZidA63G9gVo0A3/aMfe6rUKBp0GT4N+eNrFL8yRL3q99uIXo2509y2tYg8/eu3FwGOwd5u6eBR4zBfq8DpGvtBH5rUFkuHgNSpA6YZ3BjTXk3Rugu1L4bL/j0JMiM4yLVkR3o4uY0ZR1bGBbaT7rWq1hcaRgDdyO9Jqbxo+0GW/P/y5fq0DV5eG99G9CEZuRw6omUZ955iGD9KNBMqLPQRGgi2AOqoHw/DBu1EH2/r6LZgt1rEh+5Luyr19VuqHOoZDL2MPhAwH/JFga5oCIffiASvsIdH+vTPq+0c7atpIEISL4fRi9+SL322Xb0VVrtgyzPC0kYNu+uHbke82vfZiq/NIOL20NXj0gcjR89hC+8UQbW8dHnXQb+Q71h7yRx1kG/0a2uEW3ZHAPfK7kcArpiRFgdDZEDob/eqfEFC1H7+C1+j4YBNtJ89T88/PYvB3Zd6yxew7cYwD/3jlqqtzeEAD5gAXVFUtA1AU5TXgXmB0QLsX+OHw/TeB3yi2/+B7gddUVR0EyhVFuTC8vgNXerHexnr+9tVn0JitZNU0E6Y103//XZQt/zhtrt70DpoZ2FfNwHBYGjBZGRwOVgMmi/2LaKQr3chR25EubCaLyoDJwsBwILsd3yeXdnVx0tl+DLqR+1pcDDq8XS5OuxiQtGOnjTo6OjrAjP7RfyRUaexhynbk8aMf+COtTPLBKoQQH6WMHBya+h0yboubab0YHXJHWj7t58BaL7ZE24PdqG7wo4OuLZhebGW9tAX0cuHWYrFiGW5BNlvHtl5f7IZ/scYxgXh0a61VxTIcQFX18q89ElTNwwdkewfNl7wXWygeWWakxXtMy7OKfR9log7Q3i4aBXtXXM2oYHgx5F0MsWNaaEe1hI4EwJF9FoP24sHdkYOyHe0DvFxlO+Vl9J7LyG7MZbsqjwqTWuXq5+JeXJ8yqsv1xQCtUfhoF2h7K7EG7SUrv3gG9ujf1cU6RvbhLrYs2150ZDWju3uP1HBp/colfRvG9BTRfLTXyEeX/6iLPTgunWJbYnTvm9GvZ6t/dE+Zi7+HkfvKJX97jTL24AKM/Z+63HnjF1/jo/9PwJgu6WN/D7b6R3+OjD4IpepmwbxZKLk/wLVyB64bXqR/z3k83/iQiCh/Dr79+mV+WxdNhoAWClSPelwDzL3SPKqqmhVF6QR8h6cfvGTZq47e0dPbi9HkSqC5hb9m3Mtu7yywKLC1Fqi1z2fQanDS28KPUa/BqNfaQ45eY7t11oxqfRnVouOs12LUa4dvbcuOPHbSazDqbLe219DaA5eTXoteq+Ck1aLXXVy3hB4hhBAznYTcmzM62I4EPLPFOqrF8qPh8OJASpcfsGlkIKiRwaVGBpsaOWBtGtWCeumtddTy5kuXv6Rr8OgdalX9aEsrXLr+izvaI12fh8wjQdX23nsGzZgtKh39KgPt/fau35caferHleq89u9+7I6/beLFVvPJ3Cosbic3UL6I6+JeHuz5B9nlbejwuuoSkyGgjTtFUT4HfA4gzDcIs//nqdKY8fUrZmXYASJ8o4h1isbNoMWoA73mYjeBi1Rsp7ldtffk5Y0sNjB2Uv/wj5hZenp6yM/Pd3QZYgaTbVA4mmyD048GMAz/3PQKNLetnGvq6bHg5nY9+3QKl28bunUjrS+21tnhW3Xk9jLnI49eFka1ml78sQXrsaMew9hztEeWHVvMRx+OXv/I/dHrv+p746O/tdGtdyM1jazPfquCdfi+Mno55ZKWztHvY3iZ0S1gVnWkhW24dY2LrYa2rrcX1zO6lXGkvpH7l3vv9sfq2HUqjH7Nkfeo0qbWUmo5SqXpBNU1c/CzfhbV2gq8fMXf32QIaLVA+KjHYYxuyho7T42iKDrAE9tgIdezLKqqvgC8ALZBQu79Tho7NhYRUzwLTbOOevcyPox4h+ScMFZHryI7MBuNMoGfEmJGkROThaPJNigcTbZB4WiyDYrxVNVVxYbyDWwq30R5Zzkh3XE8VPkVnLo9iM31Y+nH8viXF668/GQIaEeAeEVRorGFq0eBj18yz/vAE9jOLXsI2KGqqqooyvvAK4qi/De2QULigcPXesHwiECeeGYNg30mju+p5NhOK8GnYug938GvA1+hKeqHLEtYwtqotczymyVdDIUQQgghhBBX1NLfwuaKzWwo28DJlpMoKOT6zOW+vmfoP2XEzduJvH9OIjLV95rrcnhAGz6n7EvAZmzD7P9ZVdVTiqL8GChQVfV94E/A34YHAWnDFuIYnu8NbAOKmIEvXmsEx9GcXPTMWRNH7qpYKk+1cmx7Ja5nvbDWWTh/roB/DvoazoEa1kStYV30OhK9EyWsCSGEEEIIIegz9bG9ajsbyjdwsO4gFtVConciX539VTL7F3Hi7SZ6OgZJzwtj7r0xGIzXF70cHtAAVFXdCGy8ZNr3R90fAB6+wrI/BX56K6+vaBSiZvkRNcuPtvpeTuysQX9AT2LTXHr8G9lZvZ6/nPwLkZ6RrItex10xdxHhEXErLymEEEIIIYSYYkwWE/vr9rOhfAP51fn0m/sJcQ3h02mf5s7oOwnTR7L79RL2H6nGJ8SVBz+bRlCM5w29xqQIaJOJT7AreR9PZN69MZzeW8fJfCfWnP0MWk8LFRHH+FPbX/j98d+T6Z/J3bF3syZqDZ5ON/ZLF0IIIYQQQkwNZquZww2H+bD8Q7ZVbaN7qBtPJ0/ujrmbO2PuJDMgE42ioayomVdeOcRgj4ncO6OYvS4Kre7Gx7WQgHYFRlc92WsiyVgZTtmxZk7sqMFyMofPGedAcjs7ut7k3w7+G88ffp688DzuirmLxaGL0Wv1ji5dCCGEEEIIcQssVgtHm46yuWIzWyu30jbQhqveleXhy1kbvZb5wfPt+/0DvSb2vH6GksON+IW7cc+XM/ALc7/p15aAdg1arYb4nEDicwJprOiiaFsVpYVW8jRP80iGkbLIw6xvfJutlVvxcvJiTdQa1katJSsgC61GLtYihBBCCCHEVKCqKmfazrC+bD2byzfT1N+Es86ZpWFLWRu1lkVhi3DSOo1ZpqyomfxXztlaze6KZvbayJtqNRtNAtoNCIzyYM3TaXTe28/x7dWc2VeHy9FZfC1tKbqsTrabPuDdC+/y+rnX8Xf2Z2XkStZErSErIEuG7RdCCCGEEGISquupY2P5Rj4o/YCyzjL0Gj2LQhfx9eivsyRsCS56l48sM9BrYs8bJZQcasQ3zI27/zkD//CbbzUbTQLaTfD0d2bJownk3hVF8a5aTuysYaDYwrzoR3lq+bNU+BSzpWozb59/m1fPvoq/sz+rIlexOmq1hDUhhBBCCCEcrGuoiy0VW1hftp7CxkIAsgOy+f7877M6cvVVx5goP95M/svnGLjFc82uRALaLXB2M5B7ZzSZqyI4d6CeY9uq2fmn87j7evLksq/yg3t+xIGWfWyp3MKbJW/yytlXCHAOYGXkSglrQgghhBBCTCCT1cS+2n28X/o++dX5mKwmojyi+Oesf+aO6DsIcw+76vK9nYPsef08pUeb8A11464vZeAfcXtazUaTgHYb6A1a0paGkbI4lIrjLRzfUc2+Ny9w+AMtyQvi+OGyPPSLVHZV72JzxWZ7WJOWNSGEEEIIIcaPqqqcbjvNB6UfsLFsI+2D7fgYfXgk8RHujrmbFN+Ua17nWFVVzuyvZ/9bFzAPWZl7bwxZqyPQasdn310C2m2k0SjEZPkTk+VPU2UXJ3bUULy7lhP5NUTN8iNjxXzWLVtHn7mPXdW72FK5hbfOv2UPa3LOmhBCCCGEELeuobeBDWUb+KD0A0o7S9Fr9CwLX8Y9sfewIHQBes31jbze0dRH/svnqD3XTki8F3mPJ+Id5DqutUtAGycBkR6s/HQK8x+IpXhXLcW7a6k40YJvmBsZy8NZnbuGO2LuoNfUy+6a3Wyp2GI/Zy3ENYS7Yu/i7pi7ifKMcvRbEUIIIYQQYtJr7mtme9V2tlZu5UjDEVRUsgKyruu8sktZLVaKtlVzeH05Wq1C3uOJpCwMQdFcvbXtdpCANs5cPZ2Ye08Ms9dGUnK4keM7qtnx0hkOvHOBtCWhpC0NY130OtZFr6PP1MeO6h2sL13PH0/+kRdOvMAsv1ncHXs3a6PW4m30dvTbEUIIIYQQYtJo6G1gW+U2tlZu5VjTMVRUoj2j+XzG57k75m4iPCJueJ3NVd3s+NsZWqp7iM7wY8mjibh5O117wdtEAtoE0Rm0pCwKIXlhMDXn2jmxvZojGyoo3FxJQk4g6SvC8Q93566Yu7gr5i6a+5rtw33++6F/5z8P/yeLwhZxd8zdLA5bjLPO2dFvSQghhBBCiAlX013D1sqtbKvcxomWEwAkeCfwT5n/xOrI1cR6xd7Ues1DFo5sqODY1iqc3fSs/VwasdkBt7P06yIBbYIpikJ4kg/hST50NPZxYmcNZw7Uc/ZgAyHxXmSsCCc63Q9/F3+eSH2CJ1Kf4FzbOdaXrWdD2Qbyq/Nx1jmzOHQxq6JWsST08tdmEEIIIYQQYrroGOhgS6VtWPxjTccASPFN4dnsZ1kVuYpIj8hbWn/dhQ52/u0sHY19JC8IZsGDcRhdr+88tdtNApoDeQW6sOTRBObeE83pffWc3FnDpv93Eq9AF7JWRZA4NwitXkOiTyKJPol8JfsrHGk8wrbKbWyr3MaWyi0YtUYWhS5iVeQqloQtwc3g5ui3JYQQQgghxC0btAyyu2Y3H5R+wJ7aPZitZmI9Y3k2+1nWRq295rD412NowMzBd0o5uasWd18j9zybSXiyz22o/uZJQJsEnFz0ZK2KIGN5GKXHmjm6uZKdfz/LoQ/KyFgeTuqSUJycdWg1WuYFz2Ne8Dy+NedbHG06am/e3Va1DYPGwIKQBayOWs3S8KV4GDwc/daEEEIIIYS4bharhcLGQjaWb2RLxRa6Td34O/vzeNLj3BV7F4neidccFv96VZ1qZefLZ+lpHyR9eRhz74nBYHR8PHJ8BcJOo9UQnxNI3OwAas62c3RzJQfeKaVwUwWpS0LJWBGOq6ftBEWtRktuUC65Qbk8N+c5jjcfZ0vFFrZWbiW/Jh+dRmcLa5GrWRaxTMKaEEIIIYSYlEwWE4caDrGtchs7q3fSNtCGs86ZVZGruDPmTuYGzUWr0d621xvoNbHvH+c5e7AB7yAXHvz6bIJirn+Ex/EmAW0SUhSF8GQfwpN9aK7q5uiWSoq2VnF8RzVJc4PIWBGBT8jF6y9oFA1ZAVlkBWTx9dyvc7LlpD2s7a7Zje6AjvnB81kVuYrlEctvaIhRIYQQQgghbrcB8wD76vaxrXIbu6p30W3qxkXnwtKwpayMXMmi0EW3fZwFVVW5UNDEnjdKGOw1k3NHFDnrotDqJ9f1hyWgTXL+Ee6seTqNznv7KNpWzZn99ZzeV09Eqg+ZKyIIS/Ye08yrUTRk+GeQ4Z/B13K+RnFLMVsqbWHt+/u/z48P/JgFoQtYF72O5eHLZYARIYQQQggxIQYtg+yt2cvG8o3sqd1Dv7kfD4MHyyOWsypyFfNC5uGkHZ/h7Lta+9n9agmVxa0ERLpzz7NJ+IW5j8tr3SoJaFOEp78LSx9LZM7d0ZzaXcvJ/Fre/98ifEJcyVwZTnxuIDr92KZfRVGY5T+LWf6z+Orsr3K69TSbKzazqWITu2t2Y9QaWRq+lHXR61gcuhiD1uCgdyeEEEIIIaYjs9XM4frDbCzfyPaq7fSYevAx+nBXzF2sjFxJblAues34jZZotaqc3FnDwffLAFj0cDyzloWhmYALTt8sCWhTjLObgZw7oslaFcn5gkaKtlWz46WzHHinlFl5YaQtCcXZ/aNBS1EUUv1SSfVL5Suzv0JRUxEbyzeytXIrmys24653Z0XkCtZFr2NO0Bx0Gtk0hBBCCCHEjVNVlePNx9lYvpHNFZtpG2jDVe/KiogV3BF9B3OD507IvmZLTTc7/3aWpspuItN8WfJYAh6+k/9awrIXPkVp9RqS5geTOC+ImnPtHN9WzeEPyincVEnC3EAylofjG3r5Ifc1iobswGyyA7N5bs5zHKo/xMbyjWyr3Ma7F97Fy8mLFRErWBW5ijnBc8b1qIYQQgghhJj6VFWlpL2EjeUb+bD8Q+p66zBoDCwNX8od0XewOGzxuHVfvJTtgtPlHNtajdFVx+qnU4mbHXDbRn8cbxLQprjRF75ub+jl+PZqzh1s4My+esKSvMlYHk5kmi/KFZpxdRodC0MXsjB0ob1f8NaqrXxY8SFvnX8LD4MHeeF5rI5czfyQ+dINUgghhBBC2FV2VbKxfCObyjdR3lmOVtEyL2QeX8z6IsvDl0/4NXorTraw5/USuloGHH7B6ZslAW0a8Q5yJe/xJObdF8vpvXWc2FnDht+dwDPAmfRl4STND7rqtR2ctE6siFzBisgVDFoGOVB3gK2VW9lZtZP3S9/HTe/G0vClrIlcw8LQhRLWhBBCCCFmoIbeBj4s/5CN5Rs503YGBYXZgbP5RPInWBW5Cm+j94TX1N02wN43zlNW1Ix3kAv3/ksWYYkTX8ftIAFtGjK66sleE0nGynDKjjZTtL2aPa+XcOj9MlIWBpO+PBx3H+NV1+GkdSIvPI+88DxMFhMH6w+ytXIr26u2s6FsA256N5ZHLGdN1BrmB89Hr51aRyaEEEIIIcT1UVWVss4ydlTtYEfVDopbiwFI803j6zlfZ03UGgJdAx1Sm8Vs5fj2ao5sKAcV5t0XQ+bKCLS6yTV0/o2QgDaNabUa4nMDic8NpKGsk+M7qjm+o4YTO2qIywkga3XEdQ0vqtfqWRy2mMVhi/ne/O9xsO4gmys2s6NqB++Xvo+HwYOVkStZE7mGOcEywIgQQgghxFRnVa2cbDnJ9qrt7KzaSUVXBQDpfuk8m/0sqyNXE+ER4dAaa8+1s+vVc7Q39BGd4ceiR+KnxCAg1yJ70jNEUIwnQTGedLX2c2J7Daf21VFyuJHwZG+yVkV+5HpqV6LXXAxrQ5Yh9tftZ3PFZjZXbObt82/j7eTNsohlLA9fPq7XshBCCCGEELeX2WqmsLGQLRVb2FG9g5b+FnSKjtygXD6R/AnywvMc1lI2Wm/nIPvfvkDJoUbcfY3c+YV0otL9HF3WbSMBbYbx8HVm0SPx5NwZxak9tZzYUcP7/1uEX7gbmSsjiMsJQKu9viZhg9Zg7wY5aBlkb+1eNldsZkvFFt4+/zbOOmcWhS5iecRyloQtwcPgMc7vTgghhBBC3AiL1cLRpqNsrtjM1sqttA20jdmHWxy6GE8nT0eXCYBqVTm1p5YD75ZhNlnIuSOK2Wsj0Rm01154CpGANkMZXfXMXhtF5ooIzh1uoGhrFdv+cpqD75WSnhdOyqJgnFyu/7wyJ60TKyJWsCJiBUOWIY40HLE1iVfvZGvlVvvRl+URy8kLzyPINWgc350QQgghhLgSi9XCsaZj9lDWOtCKUWtkSdgS1kStYXHYYpx1k6urYEtNN/kvn6OxvIuwJG+WPpaIV6CLo8saFxLQZjitXkPKwhCS5wdTUdxK0dYq9r99gcMbykmeF0T68vAb3vgNWoN96P7vzvuuvf/yjqod/PTQT/npoZ+S7JPMsvBl5IXnkeSTNGWuSyGEEEIIMRWNhLItlVvYVrmN5v5mjFoji8MW20JZ6GJc9JMv8AwNmDmyvpzjO2owuupY+ekUEuYETut9RwloAgBFoxCd7kd0uh/N1d2c2FHNqX11nNxVS2SaLxnLw6/7PLXRNIqGDP8MMvwz+Jfsf6G8s5yd1TvJr87n98d/z++O/45Al0B7V8k5QXNk+H4hhBBCiNtgdCjbWrmVlv4WnLROLA61hbIlYUsmZSgbUVbUzJ7XS+hpHyRlcQjz74udctc0uxkS0MRH+Ie7s+KJFObfH8epPbWc3FXL+/9bhHewKxnLw0icG3RTfX0VRSHGK4YYrxg+M+sztPa3srtmN7tqdvF+6fu8fu51XHQuLAlbwuqo1SwKXTTpmteFEEIIISYzs9VsC2UVW9hWtW3KhTKwXdNsz+sllB9vwSfElQeeTiM4dnKcBzcRJKCJK3LxMJB7ZzTZqyO5UNhI0fZq8l8+x6H3y8hYEU7aktAbOk/tUr7Ovtwffz/3x9/PoGWQQ/WH2Fm9kx1VO/iw4kOcdc4sDVsqYU0IIYQQ4ir6TH3sr9vPzuqd7K7ZTcdgx5QLZQBmk4WibdUUbqoAFebfH0vGyvDrHsBuupCAJq5Jq9eQOC+YhLlB1J3v4OjmSg6+W8bRDytJWxpK+vJwXD1vbTh9J60TS8KWsCRsCd+Z+x0KGgvYUrGF7VXbPxLWFoYsnBIfMkIIIYQQ46Wpr4n86nx2Vu/kUP0hTFYTHgYPloQtIS88b9KeU3Y5qqpScaKFvf84T1fLADFZ/ix8MA4Pv5l5cF4CmrhuiqIQmuBNaII3zdXdHNtcybEtVRRtryZpfjBZqyLwCrj1DwKdRse84HnMC57Ht+d++yNhzUnrxLzgeSwNX8rSsKUEuATchncnhBBCCDG5lXWWsb1yO9urtnOq9RQAYW5hPJr0KMvCl5EVkIVOM7V279sbetn7xnmqTrfhHeTCPc9mEp7s4+iyHGpq/QXFpOEf7s7qp9OYe28fx7ZWc3Z/PWf21hGbHUDmyggCo2/PNc8uDWuFjYX2QUZ21ewCIM03zT7ISIJ3wrQe1UcIIYQQM4eqqpxuO20PZWWdZQCk+6XzbPazLAtfRoxnzJTc9xnqN3NkQzkndtSgM2hY9HA8aXmhM6474+VIQBO3xNPfhbyPJ5J7ZxQndtRQvKuGC4VNBEZ7kL48jNjs67/w9bXoNDrmBs9lbvBcvpn7TS50XCC/Op/8mnx+W/RbflP0G4Jdg1kesZwVESvIDshGq5leFy4UQgghxPRmtpopaipie5UtlNX31qNVtOQE5vBo0qMsD19OoGugo8u8aapV5ezBBg68W0p/9xDJC4KZd28sLh4yivcICWjitnD1dGL+/bHMXhfJ2QP1nNhZw9Y/nWb/mxdIWxpG6uIQnN1v3z+eoijEe8cT7x3PZ9M/S0t/C7trdrOzeidvlrzJy2dexsfow7LwZayIWMHc4LkyfL8QQgghJqX2gXb21e1jd81u9tXuo2uoC4PGwIKQBXwh8wvkheXhZfRydJm3rLmqm92vnaOhrIvAaA/u/EI6gVG3p9fVdCIBTdxWBqOO9GXhzFoaRuWpVk7srOHQ+2UUbKwgYU4g6cvD8Atzv+2v6+fsxwPxD/BA/AP0mfrYW7uXbVXb+LDiQ946/xZuejcWhy1mZcRKFoUumjInzQohhBBi+lFVlbNtZ9lds5s9tXs40XwCFRUfow954XksCVvCotBFuOpdHV3qbTHQa+Lw+2UU767F6KZn+aeSSZoXhKKZel0zJ4IENDEuFI1C1Cw/omb50VbXy4n8Gs4drOfM/npC4r3IWB5OVIYfmnH4x3TRu7A6ajWro1YzZBniYP1BtldtZ0fVDjaVb0Kv0TM7cDaLQxezOGwxUR5RU7LvthBCCCGmDpPFxOGGw2yv2s6u6l009TcBkOqbyjMZz7AkbAkpvilolOlzDpa9O+M7FxjoMZG2JJQ598TMiItN3woJaGLc+YS4kvfxRObdG8OZffWczK9h0x9O4u5jZFZeGMkLg8ftH9WgNdiH7//evO9xrOkYu6p3sad2Dz8v+Dk/L/g5YW5hLA5bzOLQxeQG5WLUGcelFiGEEELMLH2mPvbV7WN71XZ2V++m29SNs86ZhSELWRq+lEWhi/Bz9nN0meNidHfGoBgP7v7nTPwjbn8vqunIoQFNURQf4HUgCqgAHlFVtf2SeTKB3wMegAX4qaqqrw8/91dgKdA5PPuTqqoWjX/l4mYYXfVkrY4gY0UY5SdaOLGjhv1vX+Dw+jKS5gWTvjwM76Dxa8rXaXTkBuWSG5TL13K/Rm1PLXtr9rKndg/vnH+HV8++ipPWiTlBc1gUuojFYYsJdw8ft3qEEEIIMf20D7Szq2YX26u2c6DuAIOWQbycvFgRuYIVESuYFzxvWh8MHug1cfiDcop31Uh3xpvk6Ba054Dtqqo+ryjKc8OPv3nJPH3Ap1RVPa8oSghQqCjKZlVVO4af/7qqqm9OXMniVmm0GmKzAojNCqC5upsTO2s4s7+e4t21hKf4kLEinIgUn3HvdhjqFsrHkj7Gx5I+xqBlkIKGAnbX7GZvrS20/ezwz4jyiLKFtdDFzA6ajZP21i7ILYQQQojpp6Kzwn7R6KLmIqyqlSDXIB5KeIgVESum5PXJbpRqVTmzv54D75Yy2CvdGW+Fo7eUe4G84fsvAvlcEtBUVS0Zdb9OUZQmwB/omJAKxbjyD3dnxaeSWXB/LKf21FG8q4b1vz6OT4grmSsjSMgNRKsf/77YTlonFoYuZGHoQgAquyrtQe2Nc2/w9zN/x1nnTG5QLktCbV0mg92Cx70uIYQQQkw+FquF483H7aGsoqsCgGSfZD6f/nmWhi8lxSdlxpzj3lDeyZ7XSmiq7CY4zpMljyaMy6BwM4WiqqrjXlxROlRV9Rq+rwDtI4+vMP8cbEEuVVVV63AXx/nAILAdeE5V1cHLLPc54HMAgYGBs1977bXb/E7E7WK1qHRVQcs5lcEO0BnBJ0HBJw60Bsd8yA1Zhzg/eJ7T/ac53X+aFnMLACH6ENKc00hzSSPSEHndJ/X29PTg5uY2niULcVWyDQpHk21QONrNbIMd5g7ODpzlXP85zg6cpcfagxYt8cZ4ZrnMIs05DR+dzzhVPDmZB1Qaj6t0lNv22QIzFTwjmTHB9FYsW7asUFXVnMs9N+4BTVGUbUDQZZ76DvDi6ECmKEq7qqreV1hPMLYWtidUVT04aloDYABeAEpVVf3x1erJyclRCwoKbuKdiImkqio1Z9o5tq2K6tNt6Jy0pCwIJmNFOB5+zg6tq7yrnN3Vu9lVs4tjTcewqBa8nbxZHLaYJWFLWBCyAHfDlY8a5efnk5eXN3FFC3EJ2QaFo8k2KBzterbBPlMfBY0FHKg7wIG6A5R2lgLga/Rlfsh88sLzWBiyEDfDzDvYYLFYKc6v5fAHZZhNVjJWhJNzRxQGo6M7500diqJcMaCN+29RVdWVV3pOUZRGRVGCVVWtHw5bTVeYzwPYAHxnJJwNr7t++O6goih/Ab52G0sXDqQoCuEpPoSn+NBS00PRtiqKd9dyMr+GmEx/0peHERznNeFHaBRFIcYzhhjPGJ5Me5LOwU721+1nV80udtXs4v3S99EqWjL8M1gctpiFIQtJ9EmcVkPmCiGEENORqqqc7zjPnpo97Kvbx7GmY5itZpy0TswOnM19cfcxP2Q+Cd4JM7aFSFVVKotbOfBOKW11vUSk+LDokfhxHeRtJnJ0zH0feAJ4fvj2vUtnUBTFALwDvHTpYCCjwp0C3AcUj3vFYsL5hbmx8skU5t0by8n8ak7traP0WDN+4W6kLwsjPjcQnV7rkNo8nTxZF72OddHrMFvNHG8+zt7aveyr3cevjv6KXx39Fb5GXxaGLmRR6CIWhCxwSJ1CCCGE+Kg+Ux8H6w+yp3YPe2r20NjXCECidyKfTP4k80Pmkx2YLYOEYTvP7MDbpdSd78DT35l1z8wiOsNvxobV8eToc9B8gTeACKAS2zD7bYqi5ADPqKr6tKIonwD+ApwateiTqqoWKYqyA9uAIQpQNLxMz9VeU7o4Tn2mIQvnDzdyfEc1bXW9GN30pC4KIW1pKG7ek2fY2pb+FvbV7mNf7T721++nc7ATjaIhQh/BHcl3sDB0Iam+qWg1jgmXYuaS7mXC0WQbFI6iqiplnWW8tPsl6o31FDQWYLKacNW7Mj94PovDFrModBEBLgGOLnXS6Gjs4+B7pZQebcbZXU/undGkLA5Bq5XeQbfial0cHRrQHEEC2vShqiq1JR2c2FFNxYkWUBRis/xJXx5OUIzHpDqiY7FaKG4tZm/tXjad2UTVUBUqKl5OXswPmW9vXZuuF6sUk4vsHAtHk21QTBRVVanpqeFw/WEONRzicP1hWgdaAYjxjGFJ2BIWhy4mKyALvVaGgx+tr2uII+vLOb23Do1eQ9bKcDJXRch5ZreJQ89BE2K8KIpCWKI3YYnedLX0c3JXLWf21XGhsInAaA8yVoQTm+WPZhIc4dFqbOelZfhnkNqRSsa8DA7UHWBf3T5baCvfBNiG510QsoC5wXPJDMjEWee4AVGEEEKIqai5r5mD9Qc53HCYw/WHqeutA8DP2Y+5wXOZGzwXtVLlwZUPOrjSyWlowEzR1iqObavGarKSsjiE3DujcfEwOLq0GUMCmpgWPPycWfhgHLl3RnHuYAPHt1ez5Y+ncPNxImN5OMkLQ3Bynjybu7fRmzti7uCOmDuwqlbOtp1lX60trL146kX+VPwn9Bo9Gf4Z9i+TNL809Bo5uieEEEKMNmgZ5GjjUfbX7Wdf3T7Ot58HbOeJzwmaw6fTPs2c4DlEe0Tbe9fk1+Y7sOLJSbWqnD3YwMH3SunrHCI2259598biFeji6NJmnMmzxyrEbWAw6piVF0bqklAqT7ZQtK2afW9e4PD6clIWhJC+PMyhw/RfjkbRkOKbQopvCp9N/yy9pl6ONh7lcMNhDtUf4ndFv+O3Rb/FWefM7MDZzAmaQ25QLkk+Seg08i8shBBiZhm55M3+WlsgK2goYMAygE6jIzsgm69kf4UFIQtkFOUbUFvSzt5/nKeluofAaA/WfX4WQTGeji5rxpK9OzEtaTQK0Rn+RGf401TZxfHt1ZzMr+HEzmqiM/1JzwsjJGHih+m/Hq56VxaHLWZx2GIAOgY6KGgs4FD9IQ43HOa/C//bPl92QDY5QTnkBuaS7JssgU0IIcS01DnYyaH6Q+yv28+BugP2bouRHpHcH38/C0MWkhuUi4teWntuREdTHwfeLqWsqBk3bydWfSaF+JzASbl/NJPI3pyY9gIiPVj1VCrz74/jZH4Np/bWUnasGZ8QV9KXhZEwJwi90+QdSdHL6MXKyJWsjLRdUrC5r5nCxkKONBzhSOMR9hTuAcBF50JWYBZzguawIGQBCd4JcuRQCCHElGS2miluKWZf3T721+2nuKUYq2rFVe/K3KC5PJX2FAtCFxDuHu7oUqekwT4TBRsrOLGzBo1Ow9x7YshcGY7OMHn3h2YSCWhixnDzdmL+/bHk3hlFyZFGTubXkP/yOQ68U0rygmDSlobh6T+5uj9ejr+LP2uj17I2ei1gG86/oLGAgoYCjjQc4ZeFv+SXhb/E1+jL/JD5LAhZwPyQ+TJCpBBCiEnLbDVzru0cBY0FFDYWUtBQQLepG42iIc03jc/O+iwLQxfK+di3yGK2Ury7loINFQz0mUheEMzce2Jw9ZTrvE0mEtDEjKMzaElZGELygmDqSzs5ubOG4ztqKNpeTVSaL7PywghP9kHRTI3mfT9nP9ZGrWVtlC2wNfU12UeI3Fe7j/Vl6wFI8kmyh7V0v3TpBiKEEMJhhixDFLcUU9hYSGFjIceajtFn7gMgwj2CVVGrWBCygHnB8/B0knOhbpWqqpQda+bAO6V0NvcTmujNwofi8A93d3Rp4jIkoIkZS1EUQuK8CInzoqd9kFN7ajm1p5aKXx/Hw9+ZtCWhJM8Pxug2tY7UBbgEcG/cvdwbdy9W1cqZtjO2wFa7j5dOvcSfi/+MTtGR7JtMVkAW2QHZZAVm4WP0cXTpQgghpqkB8wAnmk/Yenw0FnCi+QSDlkEA4rziuDv2bnICc8gOzJaLRN9m9aWd7H/rAg1lnfiEuHLXlzKISPWR88wmMQloQmDr/jj3nhhy1kVReqyJ4t217H/rAofeKyM+J4DUpaEERk2ui19fD42iIdU3lVTfVJ6e9bR9hMhjTcc42nSU186+xkunXwIgyiOK7MBssgOyyQ3KJcQtxMHVCyGEmKr6TH0UNRdR0GDrsniy5SQmqwmNoiHRO5GHEx4mJyiH7IBsvI3eji53Wupo6uPgO6WUHmvGxdPAsk8kkTQ/aFJcH1ZcnQQ0IUbR6jUkzAkiYU4QrbU9FO+q5dyhBs4ebMA/wp20JaHE5wZO6kFFrubSESKHLEOcbj3N0aajHG08yrbKbbx9/m0AQt1C7UP6zwmaQ6BroCNLF0IIMYk19zVT1FxEUZPt53TracyqGa2iJcU3hU8kf4KcoByyArJwN0i3uvHU1zVE4aYKinfVotFrmHN3NJkrI6bsvstMJAFNiCvwDXVj6ccTmf9ALCWHGji5q5adfz/L/rcvkLwgmFl5k++aajfKoDWQGZBJZkAmT6U9hVW1cqHjAkcajnC4/jDbq7bzzoV3ANtQxrlBueQG5pIZkEmwa/CUa1EUQghx6yxWCxc6LlDUVMSx5mMUNRVR21MLgEFjIM0vjSdSn7AHMle9q4MrnhkG+0wc21rF8R01WIYspCwKIfeuaBkAZAqSgCbENRiMOtKW2i5+XX+hk5P5owYVmeVHel4YYcne0yKsaBQNCd4JJHgn8Hjy41hVK+faznG44TBHGo7wYfmHvFnyJgD+zv6k+6eT7p9Ohn8GKb4pOOumdmAVQgjxUSariTOtZ+wjBh9rOkaPqQewDVSVFZDFY0mPkRmQSYpPCnrt1Dp3e6ozDVo4sbOaY1uqGOwzE5cTwJy7ovEOkmA8VUlAE+I6KYpCSLwXIfFjBxV5/0QL3kEuzMoLI3FeEAbj9Pm30igakn2TSfZN5onUJ7BYLZxrP8eJ5hMcbz7O8ebjbK/aDoBW0ZLgnUCGfwaz/Gcxy28WkR6Rci02IYSYYkwWE6daT9kD2dGmo/Sb+wHb+cpro9faBpgKyCLULXRaHKCciiwmK8V7ain8sJL+riGiZvky554YGZlxGpg+e5JCTKDRg4pcKGzkxM4adr9WwsF3S0maH0zq4lB8QqbfkSutxnYuQYpvCo8mPQpA20AbJ5pP2EPbe6Xv8dq51wBwN7iT5ptGml8a6f7ppPmlyfXYhBBikukc7OR483GONR3jWNMxiluKx4yweE/sPeQE5ZATmCOf4ZOA1WLl7MEGjmwop6dtkNAEL+Y9M4ugGLkcwXQhAU2IW6DVa0icF0zC3CAay7s4sbOG4t21nNhZQ0i8F6lLQojNDECrn76tSD5GH/LC88gLzwNs5yaUdZZxsuWk7af5JH8u/jMW1QJAiGsImQGZzA6cTXZANjFeMdLKJoQQE8SqWqnurradP9ZkO3+stLMUAJ2iI8kniYcTHmZ24GxmB86WERYnEatV5fyRRo5sKKezqZ+ASHeWfzKZsKTpcZqFuEgCmhC3gaIoBMV4EhTjSd/D8Zw9UM+pvXVs/dNp9ridJ3l+MCmLQ/AKmP4Xh9ZqtMR7xxPvHc8D8Q8AtuGWz7ad5WTLSY43H+dww2E2lm8EwNPJkyz/LLIDbd1lUn1T5fwFIYS4DSxWC5VdlZxuO82Z1jOcbj3N2baz9vPH3A3uZPhncEfMHWQFZJHmlybnEk9CqlWlrKiZQx+U017fi2+oG+uemUV0hp8Es2lKApoQt5mLh4HsNZFkrYqg5mw7xXtqKdpezbGtVbajXL4qVot1Rl2HxEXvYrvGWmA2AKqqUt1dbR/e/1jTMfJr8gFw0jqR6JNIsk8yKb4pJPskE+cVJ6FNCCGuQlVVqrqrONlykuKWYnsYGzl3zEnrRKJ3InfG3EmyTzLp/unEesVKD4ZJTFVVKk+2cuiDMlqqe/AOcmH106nEZQegaCSYTWcS0IQYJ4pGITzFh/AUH3o7Bjm9r47Te+voOavytzMHmLU0jJSFIRjdZl7wUBSFCI8IIjwiuC/uPgBa+lvsXW5Ot55mQ9kGXj/3OgA6jY54r3j7+W8pvikkeCdg0Boc+C6EEMJx2gbaKG4p5kTzCYpbijnZcpKuoS4AjFojST5J3B93P8m+toNdMZ4x6DSy2zcVqKpKzZl2Dn1QRmN5Fx7+zqx8Mpn4OUFoJJjNCPKfKsQEcPVyIvfOaGavi2L9K/lYm5058E4ph9eXkzAnkPRlYfiFzexRl/yc/VgZuZKVkSsB23kSNd019q45Z1rPsK1qG2+dfwuwhbZE70RSfVNJ80sj1S9VdkCEENOO2WqmsquS8+3nKWkvsd/W9dYBttF247ziWBW5ijS/NGb5zSLWK1Y+C6cgVVWpOtVGwcZyGsq6cPNxYtknk0icF4R2BvW6ERLQhJhQGo2CR5hC3ieyaa3t4UR+DSUHGzizr56QeC9m5YURk+k3o7o/XolG0dhb2dZGrQVsX171vfUUtxRzqvUUp1pOsbF8I2+UvAGAs86ZJJ8kEr0TSfCxXc8t3iseF/30P/dPCDH1dQ52cqbtDGdbz1LSXkJJewllnWWYrCbAdjmTKI8o0v3TeSzpMdL80kjxTZHPuClOVVXKj7dQuKmCpspu3HycWPpYAskLQqb1IGPiyiSgCeEgvqFuLHs8ifn3xXJmfz0n82vY/H/FuHo5kbwgmOQFwXj4ycnaoymKQohbCCFuIayOWg3YWtoquyrtga24pZgPyj6g91yvfblw93DiveLtoS3WK5Zw93D0mpnXvVQIMTl0DnZyqvWUffCO062nqempsT8f4BJAvHc8C0IWEO8dT4J3AtGe0dK1expRrSqlx5op2FhBa20PHn5GW4vZ3CC0OglmM5kENCEczOiqJ2tVBBkrwqk82cKpPXUUbqqgYFMF4UneJC8MISbDX46iXYFG0RDtGU20ZzR3xdwF2EJbXU+dvSvQyE9+TT5W1QrYukhGeUQR4xlDrFcsMV4xxHrGEukRKTtAQojbRlVVantqOdd2jnPt5+y3tT219nlC3UJJ8U3hwYQH7YMjyfD205fVYuV8QROFmypob+jDK9DFdo5ZbqD0oBGABDQhJg2NRiE6w5/oDH+62wY4e6Ce0/vq2PLHUxjd9CTOCyJlQci0vAD27aZRNIS5hxHmHsayiGX26f3mfso6yijtLKW0o5SyjjLOtJ1ha+VWVFTA1oUo2jPavpOU7JtMkk8Srnr5vQshrq5zsJPyznJKO0rtYaykvcQ+rL2CQqRHJGl+aTyS+Ij9c8bTSS4wPBNYLVZKjjRSsLGCzqZ+fEJcWf10KrHZATL4hxhDApoQk5C7j9E+qEjNmTZO76vj5M4ajm+rJijGk5RFwcRmB2Awyr/wjXDWOZPql0qqX+qY6QPmASq7KintKOVCxwXOtZ/jQN0B3i99H7i4UzUS2GK9bC1tIW4h0k1SiBlGVVUaehso7yynrLOMss4y+/22gTb7fM46Z/uw9ok+iSR6JxLnFSfni81AVouVc4caKdxUQWdzP75hbqz9fBoxGf4yXL64LNm7E2IS02gUIlJ9iUj1pa9riHMHGzi9r44dL51lz+vnic8NJGVhCAFR7nKxyltg1BltO1A+iWOmN/c1c6bNdn7ImdYzFDUXsalik/15raIl1C2UCI8IIj0iiXC/eBvsFiyjqAkxhVmsFmp7am2t7cNBrKzDdttn7rPP52HwIMYzhqVhS4nxjCHaM5oYzxhC3UPlGmMznMVi5dzBBgo3VdDVMoBfuFxgWlwf2XsQYopw8TCQtTqCzFXhNJR2cnpfHSWHGzi9tw6fEFdSFoaQODdoRl5Xbbz4u/jj7+LPkrAl9mntA+1UdFVQ2VVJVVeV7ba7isLGQvsFYQF0io5Q91Ai3G0jUYa7h9vDW4hbiIQ3ISYJk8VEZVclZZ227s/lHeWUdpZS0VnBkHXIPl+AcwAxXjHcH3+/PYhFe0bja/SVnW0xxqXBzD/CnTu+kEDULNlWxPWRPQQhphhFUQiO8yI4zovFjyRwvqCR0/vq2fuP8+x/5wIxmf6kLgohNNFbvgjGgbfRG2+jN1kBWWOmq6pK60CrPbhVdVfZbwsbC8cccddpdES6R9p38EaOuEd5Rsm5bkKMA5PVRGNvI3U9ddT21FLdXW1vFavqqsKiWuzzhrqFEuMZw4KQBcR4xhDjFUOMZwzuhpl9rUpxbeYhC2f213N0SyU9bYMERLqz+GMJRKZJMBM3RgKaEFOYwVlH6uJQUheH0lrbw+m9dZw71MCFgiY8A5xJXRRK0vwgnN1lVMLxpigKfs5++Dn7MTtw9pjnRsLbSItbRVcF5Z3lXOi4wM7qnWN2DgNcAoj0iCTYNdh2SQHXEPulBYJcgtBrpYVUiEuN/I/VdNdQ3V1NTXcNNT011PXUUddTR2Nf45j/M62iJdw9nFivWFZGrLSP4hrlGYWzTi5vIm7M0ICZ4t21FG2rpr9riOBYT/I+nkREqo8EM3FTJKAJMU34hrqx+GMJzL8/ltKjTZzaW8f+ty9w8P1SYjP9SV0cSkiCl3xZOMDo8JYdmD3mOZPFRHV39ZgBB2q6azhYf5Dmvmb76JJgG6wkwCVgzHlv4e7hRLjbulC6Gdwm+q0JMSFUVaVjsIOmviaa+pqo7623h7GRn9Gt1KP/V7IDswl1CyXULfTiwQ7XIBngR9yygV4TJ3bWcGJHNYN9ZsKSvMl5OpWQePmuFbdGApoQ04zOoCVxXjCJ84JprRtuVTvYwPmCJrwCXUhZGELC3EBcPZ0cXaoA9Fq9rQuVVwwrWDHmOZPFRENvA3W9tlaAkdua7hr21u7l3Qvvjpnfx+hDhHsEoe6hBDgHEOASgL+LPwEuw/ed/eUab2LSsapW2gbaqOupo763nobeBhp6G+xhrLm/maa+JkxW05jl9Bo9Ye5hhLuHkxOUQ7h7uP0n1C1UtnUxbno7Bzmxo5qT+bWYBi1EpfuRsy6KwGgPR5cmpglFVdVrzzWN5OTkqAUFBY4uQ8xg+fn55OXlTehrmocsXDjaxOk9ddSXdqJoFCLTfEmaH0TULD+0OhlpbCrqM/VR3V1tP9+turuayq5K6nvrae5rHjPAwQgvJy+crc5E+EXg5+yHr9EXX2dffI2+tsfOtltvJ2+0Gq0D3pWYTlRVpWuoi4beBhr7Gmnsa6Sht4Gi0iJwxx7ILg1fzjpnAl0Cxx5kGD7oEOASYH9OtlFxs27mu7i5upvj26s5f6QRq1UlfnYA2Wuj8AuT3gviximKUqiqas7lnpMWNCFmAJ1BS9K8YJLmBdNW38u5g/WcPdhAxYkWjK564ucEkjw/GL9wN+mWMYW46F0ue3kAsO0Ydw520tTfRHNf85jWiNNVp+k391PUVETbQNuY0SdHaBUtPkYf20iWzv74OfsR4BJg76rpbfTG08kTLycvPA2esqM8Q5itZjoGO2gfaKdrqIvOwU66hrroGuyic6jTfts20EZjry2QXbp9aRQNHhoPolyiSPNNY2XkSoJdgy/+uAXjrpdLh4jJQbWqVBS3cnx7FbXnOtA5aUldHEr68jC8AuSadmJ8SEATYobxCXZl/v1xzL0nhuqz7Zw9UM/pPbYLYfuGupI0P5jEuTKwyFSnKApeRi+8jF4keCeMeS5/YOyR4z5TH639rbQMtNhu+1to7m+mpb+Fpr4mGvsaKW4ppm2gbcw5cfbXQsHd4G4Pbd5O3vgYfewtc2PuO/vg5eQl14dyILPVTK+p1/7TZ+6z3Zr67NM6hzpp62+jbWDsT8dgxxXXO7IdjGwD8d7xLA5bTKBLIIGugQS5BBHkGoSfsx97d++d8J4EQtwI06CFswfqOb6jms6mfty8nZh/fywpi0Iwusr5i2J8SUATYobSaDVEpvoSmerLQK+JC4VNnD1Qz743L3DgnVKiM/xJWRRMeJIPikaOZE9nLnoXXPQuhHuEX3U+k9VEW38bLQMtdA502lpSBtvpHLTd7xjooGOwg8a+Rs60nqFtoA2zav7IehQUjDojLjoXnHXOOOud7fdddC44651x1jlj1Bptt7qLt0atbTkXvQtuejdcDa62W70rzjrnGRH8VFVl0DJob7nqNnXTNdhlezzyM9hF91C3/bH9/mDXmME0rsbTyRMfow8+Rh9ivWLJNebaA7eX0QsPgwceTh54GjzxcPLATe82I37/Ynrr7RzkxM4aTu2uZbDPTECkO6s/k0pMtj9arWzfYmJIQBNCYHTVk7YklLQlobTW9XBmXz3nDjZQerQJdx8jyQuDSV4QjJu30dGlCgfSa/QEutpaQ66HVbXSPdRNa38rrQOt9tuOwQ76TH30m/vpM/fRb+q3328baKPP1MeAZYAB8wD95v4xw6NfjYKCq94VF50Leq0evUaPTqNDr9F/5LGT1gmD1oBRa8SgNeCkdbJPc9I6XTVoqKqKRbVgVa32W7PVjFW1jpmmoqKq6tj7WFFVFZPVhMliYsg6xJBliCHrECaLCZPVxJBlCJPVhNlqvuLttX4nLjoXPJw88DB44G5wJ9QtlCRDki1UGTxwM9hCrYveBVedK65614uP9a64693lkg5iRmmt7aFoWxUlh23nl8Vk+pO5IpygWE/pbismnAQ0IcQYviFuLHo4nvn3xVJ2vJnTe+s4/EE5R9aXE5HqS8rCECJn+crAIuKaNIoGTydPPJ08iSHmptahqipmq5k+cx8D5gEGLAP2rnh95j56hnroMfXQZ+qjx9Rj76I3OtCMvj9oHqTH2sOgZZAhy9CY20HL4HWHwcu9V42iQato7bcKCopi+9Ggsd0fnqbX6DFoDfZbg8aAXqvHWef80XB5mfsuehd72BppyXI3uNsDmU4jX+9CXIuqqtScbadoWxVVp9rQGTSkLgohY2U4nv5yfplwHPkEF0JcllavIT4nkPicQDqb+zmzv46z++vZ9IeTOLnoiJ0dQOKcQIJjvaQLpBg3iqKg1+rx1NqC3ngzW80MWYYue67daB8JY3KEXYgpw2Kx0lGh8vreI7TW9ODsYWDuPTGkLQnF6CYtx8LxJKAJIa7J09+ZeffGMueuaKrPtFNyuIGSQw2c3lOHm48TCbmBJMwJwjdUhhoWU5tOo5PWJyGmqa6Wfk7vrePM/nr6ulS8g6ws+2QSCXMC0ellJFoxeci3kBDiumm0GiLTfIlM82VowEzFiRZKDjdybGs1RzdX4RvqSsKcIOJmB+Dh5+zocoUQQsxwVqtKZXErp3bXUnmqFQWInOWH1auVux6dKz1AxKTk0ICmKIoP8DoQBVQAj6iq2n6Z+SzAyeGHVaqq3jM8PRp4DfAFCoFPqqr60SuzCiFuO4NRR8KcIBLmBNHfPcSFwiZKDjdw4J1SDrxTSmC0B/E5gcRmB+Dm7eTocoUQQswgPe2DnNlfx+m9dfS0D+LiaSBnXRQpi0Jw9zGSn58v4UxMWo5uQXsO2K6q6vOKojw3/Pibl5mvX1XVzMtM/w/gl6qqvqYoyv8DPgP8ftyqFUJclrO7gVl5YczKC6OrpZ8LhU2cL2hk7z/Os/fN84TEeRE3O4DY7ABcPOT6akIIIW4/VVWpK+ngZH4NZcdbUK0q4Sk+LHoknqh0PxkmX0wZjg5o9wJ5w/dfBPK5fED7CMV2RvZy4OOjlv8hEtCEcCgPP2ey10SSvSaS9oZeW1g70sju10rY83oJoYneJMwJIjbbH4PR0R9BQgghprqhATMlhxs5mV9DW10vTq46MleEk7I4BK8AGY1RTD2Kql59pKpxfXFF6VBV1Wv4vgK0jzy+ZD4zUASYgedVVX1XURQ/4KCqqnHD84QDm1RVTbvM8p8DPgcQGBg4+7XXXhufNyTEdejp6cHNbWYNpqGqKoOd0Fml0lkJpl5QtOARCp5RCm5BSFeTCTQTt0Exucg2KG6HwW6VtvMqHeVgNYHRG3ziFTwjQKO7+neKbIPC0ZYtW1aoqmrO5Z4b98PXiqJsA4Iu89R3Rj9QVVVVFOVKaTFSVdVaRVFigB2KopwEOq+3BlVVXwBeAMjJyVHz8vKud1Ehbrv8/Hxm8jaoqioNZV2cO9TAhYJGOqvMOHsYSMgNJHFuEH7hbjJk+Tib6dugcDzZBsXNslpVqk61cjK/lqpTrWg0CrGzA5iVF0ZQjMd1f3/INigms3EPaKqqrrzSc4qiNCqKEqyqar2iKMFA0xXWUTt8W6YoSj6QBbwFeCmKolNV1QyEAbW3/Q0IIW4rRVEIjvUkONaTxQ/HU1ncyrlDDZzMr+H49mp8QlyJmx1A3OwAvINcHV2uEEKISaC3Y5DT++o4va+OnrZBXDwM5N4VTeriEFw9ZSAqMb04+gSQ94EngOeHb9+7dAZFUbyBPlVVB4e7NS4E/nO4xW0n8BC2kRwvu7wQYvLS6jXEZPkTk+XPQK/JNhLkoQYOf1DO4Q/K8QlxJTY7gNhsf3xDpCuKEELMJKpVpfpsG6d211F+wjboR1iSN4seiicqQwb9ENOXowPa88AbiqJ8BqgEHgFQFCUHeEZV1aeBZOAPiqJYAQ22c9BODy//TeA1RVF+AhwD/jTRb0AIcXsYXfWkLQklbUkoPe2DlBU1UXq0mSMbyjmyvhzvIBdis20taz4hrtINUgghpqm+riHOHqjn1J5auloGMLrpZdAPMaM4NKCpqtoKrLjM9ALg6eH7+4FZV1i+DJgznjUKISaem7cT6cvCSV8WTm/nIGXHmik92kThpgoKNlbgHeRCXE4g8TnSDVIIIaYD85CF8hMtnDvYQNXpNlSrSki8F3PvjSE2MwCtXlrLxMzh6BY0IYS4KldPJ/s11vq6hig71sT5giZ7y5pvmBvxOQHE5wTi4efs6HKFEEJcJ9WqUl/awdmDDZQWNjE0YMHN24msVeEkzgvGJ1gOwImZSQKaEGLKcPEwkLY0jLSlYfR2DNoviH3w3TIOvltGQJQH8TkBxGT54+ErYU0IISajjsY+zh1q4NyhBrpbB9A5aYnL8idhXhChCd5o5LIrYoaTgCaEmJJcvZzIWBFOxopwulr6uVDYxIXCJva9eYF9b17AN8yN6Aw/otP98I9wl3PWhBDCgUYGgjp3sJ6Gsi4UBcKSfZh7Twwxmf7onbSOLlGISUMCmhBiyvPwcyZ7TSTZayLpaOyj/EQL5cebKdxYQcGGCty8nYhK9yM6w4/QBG+0OjmXQQghxpvVYqXqdBtnDzRQcaIFi9mKd7Ar8++PJWFOEG7eMjy+EJcjAU0IMa14BbqQtSqCrFUR9HcPUXGylfLjzZw9UE/xrlr0Ri0RKb5EpfsSmeaLs5vB0SULIcS0oaoqLdU9nDvUQMnhBvq7TRhd9aQsDiFpXpD0aBDiOkhAE0JMW87uBpIXBJO8IBjzkIWas+2UH2+m4mQrpUebQIGgaE+i0n2JmuUnw/cLIcRNGAllF442UVrYRGdzPxqtQtQsPxLnBRGZ5is9F4S4ARLQhBAzgs6gJSrdj6h0P1SrSnN1NxUnWqg42WofZMTdx0jULF+iM/wJSfCSHQohhLiCy4UyRaMQmuBF1uoIYrL8pYeCEDdJApoQYsZRNAoBkR4ERHow5+4YejsGqThpC2tn9tdzclctBmcdkWm+RGf4EZnqi8FZPi6FEDObqqq01vZyvqBxTCgLSxwOZZn+OLtLKBPiVskehxBixnP1ciJ1cSipi0MxD1moHukKeaKF80ca0egUwhJ9iMm0tcC5esqJ7UKImaO9oZfzBU1cKGikvaFPWsqEGGcS0IQQYhSdQUt0um14fqtVpaGsk/KiZsqOt5D/8jl4+RwBke6EJ/sQnuJDUIyndIUUQkw7XS39nC9o5HxBE601PaBASJwX6cvDic2SljIhxpMENCGEuAKNRiEkzouQOC8WPBhHW10v5cdbqDrdytEtVRR+WIneSUtoojfhyT5EpPjgGeAsA40IIaak9oZeyoqaKTvWTFNlNwCB0R4sejieuNkBuHpJ7wEhJoIENCGEuA6KouAb6oZvqBs5d0Qx2G+m9lw71afbqDrdSsWJFgDcfY2EJ/sQluRNWKK3HGUWQkxaqlWlqbLbFsqKmulo7AMgINKd+ffHEjc7AA8/ZwdXKcTMIwFNCCFugpOzjphMf2Iy/QHobO4bDmttXCho5PTeOgD8wt0IS/QmLNmHkDgv9E5aR5YthJjhLCYrdec7KDveTPnxFno7Bu3nlKUvCyM6ww83b6OjyxRiRpOAJoQQt4GnvwueS11IWxqG1WKlqaqbmjPt1Jxt40R+DUXbqtFoFYJiPAlP9iYi1Rf/cHcUjXSHFEKMr67WfqpOtVFZ3ErNuXbMgxZ0Bg0Rqb7EZPgROcsPo6ve0WUKIYZJQBNCiNtMo9UQFO1JULQnOXdEYRqyUH+hg5qz7VSfaePQ++Ucer8cZ3c94Sk+RKb6Ep7iIyOhCSFuC4vZSv2FDiqHQ1l7fS9g64KdNC+IyFRfQpO80RukRV+IyUgCmhBCjDO9QUtEii8RKb4A9HUNUX3GtuNUVdxGyaFGUCAgwp2INF/Ck3wIiHJHp5edJyHE9eluG6DqVKutlexsO6ZBCxqtQki8FykLg4lM88Ur0EUGMRJiCpCAJoQQE8zFw0Di3CAS5wZhtao0V3VTdaqVqlOtFG6soGBDBRqdQmCUB8GxXgTHeRIc64mTi3RBEkLYWCxWGi50UlncSuWpVtrqbK1kbt5OxM8JJDLVl7AkbwxG2dUTYqqR/1ohhHAgjcYWxAKjPMi9M5qBXhN15zuoL+2k/kIHRVurOLpZBQV8Q91sw/7H235cPKRLpBAzhdWq0lrbQ935DupKOqg+24ZpwNZKFhznyYIH4ohI88En2FVayYSY4iSgCSHEJGJ01Y8ZHdI0aKGxvJO6C7bAduZAPSfzawDwCXElNMGb0EQvQuO9MbpJC5sQ04XFYqW5qpu6kg7qLnRQf6GToX4zYDuXLD4nkMg0aSUTYjqS/2ghhJjE9E5awpJ8CEvyAS7utNWea6e2pIMz++vsgc031I3QRFvrWmCUJ27eclFZIaaKkdFfa8+1U3O2nYayTsxDVgC8g1yIywmwt6C7+8gw+EJMZxLQhBBiCtGOGiFy9lrbaG1NFV3UlnRQW9LOqT11nNhhC2yungYCoz0JiHInMMqDgEgPDM7ysS/EZKBaVVpqe2yB7Fw7dec7MA1YAPANdSV5YQih8V4Ex0l3ZiFmGvmmFkKIKUyr0xAcZ9uJy7kjCovJSnNNN43lXTRVdNFY3kVZUbNtZgW8g1xRjVZOqDUERLrjG+YmQ20LMQGsFiuttb22c0wvdFBb0sFArwkAr0AXEuYEEZboTWiCF87uEsiEmMkkoAkhxDSi1V9sYRsx0GuyhbXhwFZzvpc9r5cAoGgUfIJd8I9wJyDSA/8Id/zC3NBJaBPilpiGLDSWd1F/wTboT0NpJ6ZBWwuZu4+RqHRfWyBL9MbNW7osCiEukoAmhBDTnNFVT0SqLxGptuuw7dy5k9zM+TRVdtNc1U1TZTeVxa2cPdAADIe2EFcCI90JGO4a6RPqilarceTbEGLSspittNX30lzVTUtVN01V3TRXdmO1Do/AGuJG4ryg4UtmyDlkQoirk4AmhBAzjKIouHkbcfM22keLVFWVnvbB4cDWRVNlN6XHmjm9rx6wtcz5hbkNBzZ3fEPc8A52kYtpixnHPGShpbaHlirbAY7m6h5a63qwmlUA9EYt/uHuZK6OIDjWk6AYT4yuMsKqEOL6SUATQgiBoii4+xhx9xkb2rpa+mmq6Kax0nZO25n99ZzcaRuERNEoeAU44xPihm+oK76htlsPX2cUjVyHSUx9FrOV1toeW2tzZRdNVd201fbaWsYAJ1cd/uHuZCwPxz/CHf9wdzz9ZfsXQtwaCWhCCCEuS1EUPP1d8PR3IT43ELBdLLejsY/W2h7a6nppre2huaqL0qNN9uV0Tlr8Qt3wC3fDP9wdv3A3fEJcpbVNTGqmIQtttb201HTTUt1DU2UXLbUXW8acXHUERHqQtdoX/0h3/CPccfcxykWhhRC3nQQ0IYQQ102jUfAJdsUn2HXM9KEBM231vcM7uD201HRz7lADxbtq7ct5B7vgF2YbOdIr0AVPf2c8/ZzR6uXcNjFxVFWlr3PIvp221PTQWtNDR2Mfqi2LYTBq8Y90J2NZOP6RtstUuPtKGBNCTAwJaEIIIW6Zwaj7yOiRqlWls6WfluoeWqptO8LVZ9s4d6jBPo+igJuPEa8AZ1trXYAzXgEuuPsZ8fB1Ru8krW7ixqmqykCvic6mfjqa+j5yO3K9MQB3XyN+YW7EzQ7AL8zW4ithTAjhSBLQhBBCjAvbOWoueAW4EDc7wD59oMdER/PYnebOpj5KjjQy1G8esw5ndz3uvs54DAc2d18jHn5GPP1dcPdxQiMjS85YqqrS322is7mfzuHtqbPZti11Nvcz2HdxW1IUWxDzCnAhKCYYr0Bn/MLc8A11w8lFBvAQQkwuEtCEEEJMKKObniC3sa1tMLbVo6u1n66WAbpbB2wDlVR2U3a02T44A9i6TboPhzVPf2fbT4Dt1tXLCYNRvuKmMtWq0tc9RHfbAD1tg/S0D9jutw/S3TpAZ1MfQ6NawkZCmKe/M/E5gfbWWM8AZzz8nNHqJMwLIaYG+fYSQggxKSiKgrObAWc3A0Exnh953mpV6e0YpKtluKWkuX+41aSP+tKOMd3WwDbcuaunE65eBtutpxOuXk64eBqGLzNguy/Xd5t4I2G8p32QnrYBW/iy37eFsZ72QawWdcxyOict7t5OuPsaCYoJtodyrwAX3H2NEsKEENOCBDQhhBBTgkZz8VIAoQneY55TVZWBHpM9uPV2DNLbOUhvxxB9nYM0lHXS2zGExWwdu1IFXDwMuHk54eZtxNXbCTcvJ4xuepxcdDi5jNzqMLro0Ru1cm7SVaiqimnQwkCvib7OIXraR/4OF/8evR2DdLWqnH59z5hlNRoFVy8n3HycCIz2JG627W/i7mPEzcd238lFJ79/IcS0JwFNCCHElKcoCs7uBpzdL9/6BrbwMNhrpqfDFhh62gds99sH6ekYpL2xj5qzbWO6zX3kdTQKTs46DM5aDM46DEYdBqMW/fCtwWh7Tu+kQz/yeNTzeifbNK1eg0aroNEqDgkcqqpitapYzSpWixWrRcUy6r5pyMJQn5nBPjOD/abhW7NtWr+ZoX4zQwNmTAMWhgYsmAbMDA1aMA1aQP3o62m0ir0F0zfUFY1nH0mz4mzhy9sWvlw8DWjk+mFCCCEBTQghxMygKApGNz1GNz1+YW5XnG9owMxA73Ao6TMz2Dd8v/fi/aEBM0MDFob6zfR2DjHU0GefZjFZr7juy9FoFHtY02g1aHQKWp0GnV6DzqBFp9egHXVfp9eAYuvyqVpUrJbhsDXy2KpiMVuxmKxYzFbMpov3LSYrZrPVfm2vG2Vw1l0MqEYdRjfbIC62EGqbpnfSYnTV4+o13L3Uywmjq35MEM3PzycrL+KmahBCiOlOApoQQggxiq3VSwe+N7e8xWIdblm6pIVpwIJpcDjEmW0tVdaRW4uKxXJxmtlsxTJkC1dmk61lqr/HZAtYQ7YWvpFAp2gUe8gbua/VK+idDLZwp1PQ6jVo9Vp0Og1avYJGp0E7EgiHb7W6iyFRZ9DYunc66+xdPPVGnbRwCSHEBJCAJoQQQtxGWq0GrasGo6sM3y6EEOLGyXBHQgghhBBCCDFJODSgKYrioyjKVkVRzg/fel9mnmWKohSN+hlQFOW+4ef+qihK+ajnMif6PQghhBBCCCHE7eLoFrTngO2qqsYD24cfj6Gq6k5VVTNVVc0ElgN9wJZRs3x95HlVVYsmoGYhhBBCCCGEGBeODmj3Ai8O338RuO8a8z8EbFJVtW88ixJCCCGEEEIIR3B0QAtUVbV++H4DEHiN+R8FXr1k2k8VRTmhKMovFUVxuu0VCiGEEEIIIcQEUVT15q6Fct0voCjbgKDLPPUd4EVVVb1GzduuqupHzkMbfi4YOAGEqKpqGjWtATAALwClqqr++DLLfg74HEBgYODs11577ZbekxC3oqenBze3K1+DSYjxJtugcDTZBoWjyTYoHG3ZsmWFqqrmXO65cR9mX1XVlVd6TlGURkVRglVVrR8OW01XWdUjwDsj4Wx43SOtb4OKovwF+NoVangBW4AjJydHzcvLu8F3IcTtk5+fj2yDwpFkGxSOJtugcDTZBsVk5uguju8DTwzffwJ47yrzPsYl3RuHQx2KoijYzl8rvv0lCiGEEEIIIcTEcHRAex5YpSjKeWDl8GMURclRFOWPIzMpihIFhAO7Lln+ZUVRTgInAT/gJxNRtBBCCCGEEEKMh3Hv4ng1qqq2AisuM70AeHrU4wog9DLzLR/P+oQQQgghhBBiIjm6BU0IIYQQQgghxDAJaEIIIYQQQggxSUhAE0IIIYQQQohJQgKaEEIIIYQQQkwSEtCEEEIIIYQQYpKQgCaEEEIIIYQQk4QENCGEEEIIIYSYJBRVVR1dw4RSFKUZqHR0HWJG8wNaHF2EmNFkGxSOJtugcDTZBoWjRaqq6n+5J2ZcQBPC0RRFKVBVNcfRdYiZS7ZB4WiyDQpHk21QTGbSxVEIIYQQQgghJgkJaEIIIYQQQggxSUhAE2LiveDoAsSMJ9ugcDTZBoWjyTYoJi05B00IIYQQQgghJglpQRNCCCGEEEKISUICmhBCCCGEEEJMEhLQhBBCCCGEEGKSkIAmhBBCCCGEEJOEBDQhhBBCCCGEmCQkoAkhhBBCCCHEJKFzdAETzc/PT42KinJ0GWIG6+3txdXV1dFliBlMtkHhaLINCkeTbVA4WmFhYYuqqv6Xe27GBbSoqCgKCgocXYaYwfLz88nLy3N0GWIGk21QOJpsg8LRZBsUjqYoSuWVnpMujkIIIYQQQggxSUhAE0IIIYQQQohJQgKaEEIIIYQQQkwSM+4cNCGEEEIIIcStMZlM1NTUMDAw4OhSJjWj0UhYWBh6vf66l5GAJoQQQkxhFrOJwb4+hvr6GOzvY6i/D9PAAGbTEOahIcxDg8O3wz+mIVSrdcw6FEUBRbHdBxSNxvajaNBoNChare1WY3usMzhhcHHB6OKKwcUVJ1dXnIZvdXqDbX1CiGmtpqYGd3d3oqKi5H/+ClRVpbW1lZqaGqKjo697OQloQgghhINZLRb6OjvoaW+jp72Nge4uBvv6GOzrsd329jLYd/FndBizmEw39FpanQ5FqwV1eIKqoo48UFVUFVTV+pEQd700Wh1OLi44ubhiGL699HFjfQNntCrOHp44e3jiMnyru4EjzEIIxxoYGJBwdg2KouDr60tzc/MNLScBTQghhBgnqqoy1N9HT1sr3a0t9LS12n7aW21hrK2NnvZW+jo6UNXLByKDszNOLm62kOPqipu3D4aQMJxcXGytV84uw/O4YnB2weDsgt7ohM7ghM5gQKc32G4NBrR6PRqN9vrrt1qxWq3Dtxb7Y/Pg4HBYvCRE9vYw2N9nu+2zBcjBvj46GuqH5+1lqL8PgJr9+Zd9ry4eXrh6e+MZEIRnQBBeQcF4BQbhFRiMs4en7AwKMYnI/+O13czvSAKaEEIIcQtMgwN0NNTTXl9Le30d7fV1dLc20d3WRk9bK6aB/o8sY3T3wN3bB1cfX/wjo3Dz9sHNxxdXb1/cvLxx9vDAycUNg4vzDQWq203RaNBqLjOemJs77r5+N7VO1Wpl+5bNZKfPoq+rk/6uTvq7uuz3+7o66WlvpfrUSU7v2Qmqal9Wb3TGKyAQz8Bge3DzDLCFN3c/f7Q62a0RQkx98kkmhBBCXIOqqvS2t9FSU0VrdRXt9TW019fSVl9HT2vLmHndvH1w9w/APzyS6MzZuPn44ubji7uPL24+frh5+6AzGBz0ThxP0WjQGZ3xCQnDJyTsqvOah4bobG6ks7GBjsZ6Ohrr6WxsoK22mvKigjHdOxWNBg//ADwDgvAOCsEvIgr/yGj8IyIxOLuM99sSQjhAf38/a9euZceOHWi1WtauXcvBgwdZtGgR69evt8+nqirf/e53+cc//oFWq+Wf/umf+PKXv3zVdV9pXYsXL6a7uxuApqYm5syZw7vvvsv69es5fPgwP/7xj2/5fUlAE0IIIUbp7+6ipbqSlupKWqurhm8rGejtsc9jdHXDOySUiJRZeAeH4h0SindwKF5BwRiMzg6sfnrRGQz4hobjGxr+kedUq5We9rYxwa2jsYHOxnrO7M23d6UE8AwMwt8e2KLxj4zGMyAQ5XKtg0KIKePPf/4zDzzwAFqtrafB17/+dfr6+vjDH/4wZr6//vWvVFdXc/bsWTQaDU1NTddc95XWtWfPHvv9Bx98kHvvvReAO++8k+9973s899xzuLjc2kEhCWhCCCFmpIHeHlqrq2itqaKlxhbCWqqr6OvssM/j5OKKb3gkCfMX4RceiV94JL7hkbh4eDqucAHYWszcff1w9/UjPGXWmOdUVaW7pZnmqnKaKytoriynuaqC0oLD9nP9DM7O+EfGEBBl+/GPisEvPAKtTgYqEeJG/eiDU5yu67qt60wJ8eAHd6dedZ6XX36ZV155xf54xYoV5Ofnf2S+3//+97zyyitohg/KBAQEXPP1r7SuEV1dXezYsYO//OUvgO1cs7y8PNavX88jjzxyzfVfjQQ0IYQQ015fZwf1F0pouHCOhtLztFRX0tPWan9e72TENyyc6Kwc/MIibEEsIhI3b185CX4KUhQFD/8APPwDiJ091z7dNDhAa001TRVlNFeW0VReRvHOrZgGbddx0mh1+IaFExAVS3B8AsHxSfiFR6LROu48QCHE5Q0NDVFWVkZUVNQ15y0tLeX111/nnXfewd/fn//93/8lPj7+ll7/3XffZcWKFXh4eNin5eTksGfPHgloQgghxGimoUGaykqpv3COhgsl1F8ooau5EbC1uviFRxKRmo7vSItYWAQefv7S3W0G0DsZCYqNJyj24o6Z1Wqho6GBpopSmivKaKooo+zoYU7t2gaAzsmJoJh4guISCIlPIig+AXefmxsgRYjp6lotXeOhpaUFLy+v65p3cHAQo9FIQUEBb7/9Nk899dSYroo349VXX+Xpp58eMy0gIIC6urpbWi9IQBNCCDGFqapKV3MTdefPUl9ylrqSMzRXlmO1WABw9/MnOC6RrDV3EhSXQGB0HHqj0cFVi8lEo9HiExKKT0goSQuWALbtqrOpkfoL56g/f5aG8yUc2/Q+BR+8DYC7rz8RaelEzMokclYmrl7ejnwLQsxIzs7ODAwMXNe8YWFhPPDAAwDcf//9fPrTn76l125paeHw4cO88847Y6YPDAzg7Hzr5yFLQBNCCDFlWMwmGkovUF9yhrqSs9SdP0tvextga+kIjksk5+4HCI5PIjguQXacxU1RFGX42mtBJC9cCoDZZKK5ooz6C+eoPXua0qNHOLVrOwB+4ZFEpmcSMSuTsOQ0GShGiAng7e2NxWJhYGAA4zUOvN13333s3LmT6Ohodu3aRUJCAgCHDx/mN7/5DS+99NINvfabb77JXXfd9ZHXLSkpIS0t7cbeyGVIQBNCCDFpqVYrTZXlVBUfp6r4OLVnTtnPF/IMDCIiNZ3ghCRCEpLxj4iSc4XEuNHp9QTHJxIcn0j2unts22ZFGZUni6g8WUTRlo0UbngPjVZHSEISURnZRGXOJiAqRs5jFGKcrF69mr1797Jy5UrANgT+2bNn6enpISwsjD/96U+sWbOG5557jscff5xf/vKXuLm58cc//hGAqqqqK7Z4XWldAK+99hrPPffcR5bZuXMnP/vZz275fUlAE0IIMWmoqkpHQ50tkJ08TtXpkwx020YG8wkJIzVvBRGpGYQkJkvrmHAoRaMhMCaOwJg45tz7EKahQerOnqGyuIjK48fY+9pL7H3tJVy9vO1hLTI9C2c3d0eXLsS08cUvfpFf/vKX9oB2pfPKvLy82LBhw0emHzp0iC9+8YuXXeZq56hdbnTHxsZG+vv7mTVr1kcXuEES0IQQQjjUYF8fVcVFVBw/SsXxY/YBPdx8/YjNziUiLYPwtHQZmEFManqDE5HpmUSmZ8LHn6S3o52K40cpLyqktPAwp3ZtR1E0BMUnEJ05m5jsOdK6JsQtys7OZtmyZVgsFvu10G7Ez3/+89tWS1VVFb/4xS9uy7okoAkhhJhQqtVKY3npcCA7Sl3JGVSrFb3RmYi0DHLvfoCIWZl4B4fIzquYsly9vElduoLUpSuwWi00XDhPeVEhFccL2f+PV9j/xsu4+/kTO3sucTnzCEtJQ6uT3TIhbtRTTz3l6BIAyM3NvW3rkk8CIYQQ466vq5PK4daEiuNH6R/uthgQHUvuPQ8SnTGb4IQk2UEV05JGoyUkIYmQhCQWPvI4fZ0dlB49TGnBYYp3bqVo83qcXFyJypxNXM5corNycHJxdXTZQggHkW9CIYQQt53VaqGx9ALlRQWUFxXSUHoeVBVnD0+iMmcTnZFNZHoWLp5eji5ViAnn4unFrGWrmbVsNabBASpPHqe04CClhYc5t383Gq2OqMxskhflETt7DnonuTSEEDOJBDQhhBC3hWlggLJjBZQWHLzYSqYoBMclsOChjxOdOZvAmDi5ILQQo+idjMTlzCUuZy5Wq4X68yWcP7yfc/t3U1Z4GL3Rmfg580levIyItHQ0GhmpVIjpTgKaEEKImzbU30fZ0SOUHNpH+bFCzEODOLt72FrJsnKISs/C2d3D0WUKMSVoNFpCE5MJTUxmyeNPUnP6FGf25nP+0D5O796Bq5c3iQuWkLwoz3awQ87RFDPcU089xfr16wkICKC4uNg+/de//jW//e1v0Wq13Hnnnfznf/6nA6u8cRLQhBBC3JDBvj7KCg9RcmgfFUVHMZuGcPXyJm3ZShLmLiQ0OVWO8gtxizQaLRFp6USkpbPiqWcoO3aEM3vyOb5lA0c3vodvWASpS1eQvHgZbt4+ji5XCId48skn+dKXvsSnPvUp+7SdO3fy3nvvcfz4cZycnGhqanJghTdHApoQQohrGuzro7TwEOcO7KHy+FEsZjNu3j7MWrmGhLkLCUlMllAmxDjRGQwkzF1IwtyFDPT0UHJoL6fyt7P75b+w55UXicrMJi1vJTGz56LT6x1drhATZsmSJVRUVIyZ9vvf/57nnnsOJycnAAICAhxQ2a2RgCaEEOKyRkJZycG9VBQV2kKZrx8Zq+8kYd4iQuIT5XwyISaY0c2N9BVrSV+xlra6Wk7t2sbp3Tv44JfPY3R1I2nRUtLyVhEQHStdIMXE2fQcNJy8vesMmgXrnr/hxUpKStizZw/f+c53MBqN/Nd//ddtHQJ/IkhAE0IIYTfU30dpwSHOHdxLxfGjWEwmeyhLnL+I4DgJZUJMFj4hoSx+7AkWfuwTVJ08TnH+Nk7u2ELR5g0ExsQz+857SZi3SC5fIWYUs9lMW1sbBw8e5MiRIzzyyCOUlZVNqQMW8h8rhBAznKqq1J49RfHObZQc3ItpcAA3H18yVt0hLWVCTAEajZaojGyiMrIZ6O3hzN58jm36gI2//i92v/wXMtfcRfrKtTi7uTu6VDFd3URL13gJCwvjgQceQFEU5syZg0ajoaWlBX9/f0eXdt0koAkhxAzV3drC6d07KM7fSkdDPXqjM0kLl5CydAWhCckSyoSYgoyubmStuYvMVXdQXlRI4YZ32fvqixx86zVSly4n+4578QkJc3SZQoyb++67j507d7Js2TJKSkoYGhrCz8/P0WXdEAloQggxg5hNJtpLz/HWgZ1UHj+GqloJS0lj3gOPkjB3IXqjXBBXiOlA0WiIyc4lJjuX5qoKjm58j+L8bRzfuonorBxm33EfEbMyplS3LyEu9dhjj5Gfn09LSwthYWH86Ec/4qmnnuKpp54iLS0Ng8HAiy++OOW2cwloQggxA7Q31HFi24ecyt9Gf3cXbr5+zL3/YVKXrsQrKNjR5QkhxpF/RBRrnnmWxY89QdGWjRzfupE3f/pd/COjmX3nfSQtXIJWJ6M/iqnn1Vdfvez0v//97xNcye0lAU0IIaYpi9lMacFBjm/7kKqTRSgaDbGz50JACHd/4lMyLL4QM4yLpxcLHv44c+59iDP78ilc/y4f/u6X7Hn1RbLW3EX6qnVynpoQk4AENCGEmGY6mxo5uWMzxTu30tvRjruvPwsf+QRpy1bh5uNLfn6+hDMhZjCdwcCsZatJy1tF5fGjFGx4l72vvcTBd14nLW8l2Xfci3dQiKPLFGLGkoAmhBDTgNVioezoEU5s20T58aMoKERn55Cxch1RmdkSyIQQH6EoClGZs4nKnE1zZTmFG97jxLbNFG3ZSMKcBcx94GMERMU4ukwhZhwJaEIIMYV1NTdxcucWindsoae9DTdvH+Y98DFmLV+Nh1+Ao8sTQkwR/pHRrP3CV1j02Kc49uEHFG1eT8mhfcTmzGXeA48SFBvv6BKFmDEkoAkhxBRjby3b/iHlRYUARGfOZsXTXyQmKweNVlrLhBA3x83bh8WPPUHu3Q9ydNP7HN30Hi9/+1+IypzNvAceJTQx2dElCjHtSUATQogpoq+rk+NbNnJi26axrWXLVuPhL61lQojbx+jmxoKHP87sO++jaPN6Cje8y2vf/zoRaenMe/AxwlNmObpEIaYtCWhCCDHJtTfUUbj+XU7t2o55aJCozNms+MwXiMnOldYyIcS4cnJxYe79j5C97h6Ob93IkQ/e5o0ffYuItHSWPP4UgTFxji5RzGBPPfUU69evJyAggOLiYgA+9rGPce7cOQA6Ojrw8vKiqKjIgVXeOAloQggxSdWVnKHgg3c4f+QAWq2W5MXLybnrPnzDIhxdmhBihtEbjeTc/QAZa+7k5LYPOfD26/z9W18hefEyFj36STnnVTjEk08+yZe+9CU+9alP2ae9/vrr9vv/+q//iqenpyNKuyUS0IQQYhKxWi2UFh6m4IN3qDt3GqOrG3Pve5jMNXfh5u3j6PKEEDOc3uBE9h33kpq3ksPv/oOjG9+n5OBesu+4l7n3PYyTi6ujSxQzyJIlS6ioqLjsc6qq8sYbb7Bjx46JLeo2kIAmhBCTgNlk4vTuHRR88Dbt9bV4+Aey7MnPkbZsFQajs6PLE0KIMZxcXFn88SfJWH0H+177G0fee5OTO7Yw/8FHyVi1Dq1O7+gSxQT6j8P/wdm2s7d1nUk+SXxzzjdvevk9e/YQGBhIfPzUG4F0SgU0RVFigO8AnqqqPnSlaUIIMVUM9vVxYtsmCje+R297GwFRsdz57DdImLtQzi8TQkx6Hn4BrPvSv5J9x73sfvnP7PzrCxz78AOWPP5p4nLnoyiKo0sUM9Srr77KY4895ugybsqEBTRFUf4M3AU0qaqaNmr6WuBXgBb4o6qqz19pHaqqlgGfURTlzatNE0KIya63o52jm97n+JaNDPb1EpGWwdov/AuRszJlh0YIMeUExsTx0Hd/SnlRAbv//hfe/8W/E5GWTt4Tn8M/IsrR5YlxdistXePBbDbz9ttvU1hY6OhSbspEtqD9FfgN8NLIBEVRtMBvgVVADXBEUZT3sYW1n12y/FOqqjZNTKlCCDE+OhobKPjgLYrzt2Exm0mYs4Dcex+Si8AKIaY8RVGIycolKj2b49s2sf/1v/O3b3yZjNXrWPDw4zi7ezi6RDFDbNu2jaSkJMLCwhxdyk1RVFWduBdTlChg/UgLmqIo84Efqqq6ZvjxtwBUVb00nF26njcv7c54uWmjnvsc8DmAwMDA2a+99tqtvhUhblpPTw9ubm6OLkNMsMGuDuoLD9J67hSKosE3MZXAzByMXhM/8Idsg8LRZBucGcwD/dQd2U/zqSK0BidCchfgn5qJotE4ujTZBm8DT09P4uIce5mFT3/60+zdu5fW1lYCAgL49re/zac+9SmeeeYZcnNz+cxnPuPQ+kZcuHCBzs7OMdOWLVtWqKpqzuXmd3RAewhYq6rq08OPPwnMVVX1S1dY3hf4KbYWtz+qqvqzy027Wg05OTlqQUHB7XpLQtyw/Px88vLyHF2GmCCdTQ0cfPt1Tu3ajkarJWPlOnLveRA3H1+H1STboHA02QZnlpaqCna++AJVxSfwDYtg2ZOfI3JWpkNrkm3w1p05c4bk5GRHlzElXO53pSjKFQPalBokRFXVVuCZa00TQghH62xq5NA7tmCmaDRkrrmTOfc85NBgJoQQjuAXEcVD3/0pFwoOsuulP/LmT75L/NwFLP/0M3L5ECEuw9EBrRYIH/U4bHiaEEJMSV0tTRx6+w2K87eiKArpK9cx576HcPfxc3RpQgjhMIqiEJ87n+iM2RRueJcDb71KVfFx8j71WVKXrpDBkYQYxdEB7QgQryhKNLZg9ijwcceWJIQQN66vq5PD775B0eYNAKSvXMucex/G3VeCmRBCjNAZDMy9/xHi5y5gyx/+l82//x/O7tvFqs9+Cc+AQEeXJ8SkMJHD7L8K5AF+iqLUAD9QVfVPiqJ8CdiMbeTGP6uqemqiahJCiFtlGhjg6Kb3Ofzem5gGBkjNW8n8hx7Dw8/f0aUJIcSk5RMSxsd+8DzHt25i9yt/5cWvfZFFjz1B1po7J8UgIkI40oQFNFVVL3ulOFVVNwIbJ6oOIYS4HawWC8U7t7L/zVfobW8jNmceix/7FL5hEY4uTQghpoSR83NjZuey9f9+y86//oFz+3ez+vNfxjcs/NorEGKacnQXRyGEmFJUVeXCkQPsefUl2utqCElM4e6vPEdoUoqjSxNCiCnJwy+AB577IWf27GTni//H3775z8x/6OPk3vMgGq3W0eUJMeEkoAkhxHWqOVPM7pf/Qv35c/iEhnPv179H7Ow5cnK7EELcIkVRSFmynMj0LHb8+f+x97WXKC08xNovfBWfkFBHlycmqaeeeor169cTEBBAcXExAEVFRTzzzDMMDAyg0+n43e9+x5w5cxxc6Y2RTr5CCHENrTVVvPOfP+b1Hz5Hd2sLqz//ZZ74+W+Iy5kr4UwIIW4jVy9v7v7qt7jzy1+nva6Wv33zyxz78ANUq9XRpYlJ6Mknn+TDDz8cM+0b3/gGP/jBDygqKuLHP/4x3/jGNxxU3c2TFjQhhLiC7rYW9r/xCqfyt6E3Gln02BNkr7sbvZPR0aUJIcS0lrRwKWHJaWz5w/+y4y9/4MKRg6z5p2fx8AtwdGliElmyZAkVFRVjpimKQldXFwCdnZ2EhIQ4oLJbIwFNCCEuMdjXy+H33uToxvdRrRay77ibufd/DGd3D0eXJoQQM4abjy/3P/dDTu7YTP5Lf+LFr32J5Z/+PClLlkvvhUmm4d//ncEzZ2/rOp2Skwj69rdveLn/+Z//Yc2aNXzta1/DarWyf//+21rXRJCAJoQQwyxmM8e3bODAW68x0NNN8qI8Fn7sk3JtHiGEcBBFUUhfsZaItEw+/N0v+fB3v+T84QOs+uwXcfXydnR5YhL6/e9/zy9/+UsefPBB3njjDT7zmc+wbds2R5d1QySgCSEEUH3qBNv//P9orakiYlYmSx7/NIHRsY4uSwghBOAVGMQjP/h3jm54j72v/40Xv/4l1n3xq0RnznZ0aQJuqqVrvLz44ov86le/AuDhhx/m6aefdnBFN04CmhBiRutua2HX3/7Muf278fAPlJEZhRBiktJotOTc/QBRmbPZ8Kv/5O2f/YCcux9g0aOfRKvTO7o8MUmEhISwa9cu8vLy2LFjB/Hx8Y4u6YZJQBNCzEgWs4mjG9/nwFuvYbWYmffgY8y57yH0BidHlyaEEOIq/MIj+fi//ze7XvoTBR+8TfWpk9z57NfxDpp6g0GIW/PYY4+Rn59PS0sLYWFh/OhHP+L//u//ePbZZzGbzRiNRl544QVHl3nDJKAJIWacypNF7Pjz/6OtroaY7FyWPfE5vIKCHV2WEEKI66Q3OLHy6S8QOSuTzX/4FX9/7llWfuYLJC9e5ujSxAR69dVXLzu9sLBwgiu5vSSgCSFmjJ72Nna++H+UHNiDZ2AQ933j+8TOnloXrxRCCHFR/NwFBMbGseF//4uNv/kFlSeLWP7UMxiMzo4uTYibJgFNCDHtqVYrJ3dsYffLf8FsGmLBw4+Te8+D6AwGR5cmhBDiFnn4BfCxH/yMA2+9ysG3X6eu5Cx3PvsNGehJTFkS0IQQ01prbTVbX/gNtWdPEZ6azqrPfhHv4FBHlyWEEOI20mi1LHzkE0SkprPx1//Fq9/7Gqs//2VSpMujmIIUVVUdXcOEUBTlbuDu0NDQz/797393dDliBuvp6cHNzc3RZUx7VouZhqOHaTh6CI1eT9j8pfgmpcnojMg2KBxPtkExnkz9fZRt+YCeumoCM3IInbcERaMZM49sg7fO09OTuLg4R5cxJVy4cIHOzs4x05YtW1aoqmrO5eafMQFtRE5OjlpQUODoMsQMlp+fT15enqPLmNZqz55mywu/pq22mqSFS8n71NNyQdNRZBsUjibboBhvFrOZ/Jf+SNHm9USmZ3HXs9/EOCqQyTZ4686cOUNycrKjy5gSLve7UhTligFNujgKIaaNwb5e9rzyV45v3YS7nz/3P/cDYrJyHV2WEEKICabV6Vjx1DP4R0az/U+/5+Vv/wv3fv27+IVHOro0Ia5Jc+1ZhBBi8jt/aD9/+eo/cWLbZrLvuJcnf/E7CWdCCDHDpa9YwyM/+BlDA/288t2vceHIQUeXJG6jp556ioCAANLS0uzTjh8/zvz585k1axZ33303XV1dDqzw5khAE0JMad2tLbz3Xz/h/f/+d1w8vfj4T3/Bsic+K0MsCyGEACA0MZlP/Ox/8AkJ473/+gkH3nyVmXaKz3T15JNP8uGHH46Z9vTTT/P8889z8uRJ7r//fn7+8587qLqbJwFNCDElqVYrxzav56//+k9UHD/Gksc/zeM//W+CYuMdXZoQQohJxt3Xj4/96HlSFi9j/z9epmzL+5gGBxxdlrhFS5YswcfHZ8y0kpISlixZAsCqVat46623HFHaLZFz0IQQU05LVQVb/u831JecJTI9i5VPfxGvwCBHlyWEEGIS0xucWPvFr+IfFcOuv/2JN370Le77xvdlEKnbYM8bJbRU99zWdfqFu7H4kYQbXi41NZX33nuP++67j3/84x9UV1ff1romgrSgCSGmDLPJxL7X/8bfnnuWjvo61n3pX3nw2z+WcCaEEOK6KIpCzl33E7v2Plpqqnj5O1+lpbrS0WWJ2+jPf/4zv/vd75g9ezbd3d0YDAZHl3TDpAVNCDEltFRXsvE3v6C5ooyUJctZ+snP4OLh6eiyhBBCTEFe0XHMX/ofvPMfP+LV732de776bSLTMx1d1pR1My1d4yUpKYktW7YAtu6OGzZscHBFN05a0IQQk5pqtXJ00/v8/Vtfoaetlfu+8T3WffGrEs6EEELcksCYOD7+01/g4R/A28//gBPbNzu6JHEbNDU1AWC1WvnJT37CM8884+CKbpwENCHEpNXT1spbP/sBO//6ApGzMnni578hdvZcR5clhBBimvDwC+DRH/0nEWkZbH3h1+x55a+oVqujyxLX6bHHHmP+/PmcO3eOsLAw/vSnP/Hqq6+SkJBAUlISISEhfPrTn3Z0mTdMujgKISalkkP72PrCbzAPDbHy6S+QvnIdiqI4uiwhhBDTjJOLC/d/8wds//PvOfzem3Q0NrD2i/+C3uDk6NLENbz66quXnf7ss89OcCW3lwQ0IcSkMtjXx86/vsCpXdsIjInnjn/+V3xCwhxdlhBCiGlMo9Wy8ukv4h0Uwq6X/0J3WwsPfPOHGN3cHF2amIEkoAkhJo2as6f48Lf/TVdzM/MefJR5DzyKVicfU0IIIcafoijk3P0AHgGBbPzfn/PGv32bh77zb3LOs5hwcg6aEMLhLGYTe175K6//8DkAPvaj/2DhI5+QcCaEEGLCJcxdyL1f/x7ttTW88aNv0dPe5uiSxAwjAU0I4VAtVRW8/O2vcvi9N5m1bBWf+s9fE5qY7OiyhBBCzGDRmbO5/7kf0tXcxOs//CZdLU2OLknMIBLQhBAOoVqtFKx/h79/+1/o7Wjn3q9/j9Wf/zIGZxdHlyaEEEIQkZbOg9/5N/o6O3n9h8/R0djg6JLEDCEBTQgx4bpamvjHT77Lrr/9iaiM2Tzx898QlyPD5wshhJhcQhOTeeT7/85Qfz+v/+AbtNZWO7okMQNIQBNCTBhVVTm9Zycvfu1LNJSeZ/UzX+ber30HF08vR5cmhBBCXFZgTByPfP/fsVqtvPGjb9FcVeHokgRQXV3NsmXLSElJITU1lV/96lcAtLW1sWrVKuLj41m1ahXt7e0OrvTGSUATQkwI09Agm3//Kzb95hf4R0bxxM9/zaxlq+XaZkIIISY9/8hoHvnBz9BoNLzxo2/RWHbB0SXNeDqdjl/84hecPn2agwcP8tvf/pbTp0/z/PPPs2LFCs6fP8+KFSt4/vnnHV3qDZOAJoQYdx0N9bz63a9xatc25j34GI/84Gd4BgQ5uiwhhBDiuvmGhvOxH/4HBmdn3vjxt6m/cM7RJc1owcHBZGdnA+Du7k5ycjK1tbW89957PPHEEwA88cQTvPvuuw6s8ubIGNZCiHFVWniITb/5bxRF4f7nfkBMVq6jSxJCCCFuildQMB/74fO88aNv8dZPv89D3/k3guISHF2Ww+386ws0VZbd1nUGRMaw7MnPXde8FRUVHDt2jLlz59LY2EhwcDAAQUFBNDY23ta6JsKMCWiKotwN3B0aGvr/2bvr8CiutoHDv1lLsnF3I4YT3N3drUgN6m5f+9beuruXGtKW4u7u7k4IUeLua/P9sbxAW5wks0nOfV1zzW4ys/MsTHbnmXPOc9i0aZPS4Qh1WHFxcZ04B2WLhQt7tpN+cDd6b1/q9RlCUkEJSXXgvdu6unIOCrZLnIOC0u70HAzuM4Qzi/9i9hsvETV4NI51sFeIq6srRUVFABiMBswmc6W+vsFouPT611NcXMzw4cN57733Lg2buHI/SZJu6nWqUnl5+S2db5Isy1UXjQ1q1aqVvG/fPqXDEOqwTZs20a1bN6XDqFKlBfks//JDko4doUnPvvS450E0Op3SYQkX1YVzULBt4hwUlFYZ52BhViZ/vfESFaXFjH7lHXzrRVZOcDXEyZMnadBA2XlLjUYjgwYNom/fvjzzzDMAxMTEsGnTJvz9/UlLS6Nbt26cPq1sd9Sr/VtJkrRfluVWV9tejEETBKFSXThzkpkvPsmF06fo+9CT9HngcZGcCYIgCLWOi7cPY157Fzu9I/PefkUUDqlmsixz//3306BBg0vJGcCQIUOYPn06ANOnT2fo0KFKhXjbRIImCEKlObx2JX/99yXUWi3j3vqIxt17Kx2SIAiCIFQZVx9fxrz2LloHB2uSdv6c0iHVGdu3b2fmzJls2LCB2NhYYmNjWbFiBS+++CJr164lKiqKdevW8eKLLyod6i2rM2PQBEGoOmaTkY2//cjhtSsJi23JwMefx97JSemwBEEQBKHKufr4Mea195jzxkvMe/sVRr/6Dj5h9ZQOq9br1KkT1xqqtX79+mqOpWrFgAAA23FJREFUpnKJFjRBEO5IaUE+c996hcNrV9J66CiG/99rIjkTBEEQ6hQ3Xz/GvP4eGjs75r71MpkJlVvRUKhbRIImCMJty0yIZ9Z/nibj3FkGPP4cXe66B5VKrXRYgiAIglDt3Hz9GPvaxSTt7VfISU1WOiShhhIJmiAIt+X0zq38+erzyLLMuDc/pEGnbkqHJAiCIAiKcvPzZ8xr76JSqZj/zmsU5WQrHZJQA4kETRCEWyJbLGybPYNln3+AT3gEE9/9rM6VFhYEQRCEa3H3C2DES29QUVrCvHdepayoUOmQqkxdm67rdtzOv5FI0ARBuGkVpaUs+vhtdi+cQ5MefRj96js4urkrHZYgCIIg2BTf8AiGPf8KBZnpLPzgDYzl5UqHVOns7e3JyckRSdp1yLJMTk4O9vb2t7SfqOIoCMJNyc9IZ9GHb5J7IYUe9z1EbJ+BSJKkdFiCIAiCYJOCGzVl4BPPs/TT91n62XsMff5V1Jrac+kdFBRESkoKWVlZSodi0+zt7QkKCrqlfWrPWSIIQpVJPn6EJZ+9DxYLo15+i5DGzZQOSRAEQRBsXlSbDvSa+ihrf/yK1d9/Qf9HnkZS1Y4ObFqtlvDwcKXDqJVEgiYIwnUdWbeK9b98h5tfAMNeeBV3vwClQxIEQRCEGqNpz76UFRawbfYMHJxd6DZ5iuiBIlyXSNAEQbgqi9nMphk/cXDVUsJjWzLwyRew0zsqHZYgCIIg1Dhtho2mtCCfAysWo3d1o+2w0UqHJNgwkaAJgvAv5cXFLP38fZKOHqLloOF0mSDmNxMEQRCE2yVJEt0mT6G0sIBtf05H7+JKkx59lA5LsFEiQRME4W9yL6Sw6MM3KcjMpO9DT9K4e2+lQxIEQRCEGk9Sqej3yFOUlxSz9sevcfb0IqxZC6XDEmxQ7RilKAhCpUg6dpg/Xn6W8pISRr/2jkjOBEEQBKESqTVaBj/9Il7BISz74gPy0lKVDkmwQSJBEwQBgFM7tjD/3ddx8vBkwjufElS/kdIhCYIgCEKto7N3YOjzr6JSqVn04VtUlJYoHZJgY0SCJggCB1YsZvkXH+IfFcO4Nz7E1cdX6ZAEQRAEodZy9fFl8DMvkZ+RxvIvP8JiMSsdkmBDRIImCHWYbLGw5fdf2Th9GlFtOjDq5bewd3JSOixBEARBqPWCGzahx70Pcv7gPrbNnql0OIINEUVCBKGOMptMrPn+C05s3Uiz3gPocd+DolKjIFQDWZYxmyyYTTJmo+XiY8sVj2VMFWaMFWYMFSaM5dbHxgrzxccmZECtVqHSSKjUKtRqCZVGhUotoVarUGtVaO1UaHRqtDo1GruLa50KrZ0atVaFRqtCrbEukkrMySQISmjWewBZiefZu3ge3sGhNOjcXemQBBsgEjRBqIMM5WUs/fQ9Eg4foOPYSbQdPkZMmikIt0iWZYzlZspLjNal2Eh5qZHyYhMVpZefV5SYLm1TUWL9nSzfxgEl0NlZky1JkrCYrcmcxWTBYpaxWG7nRa1UasmarF1M2nQOGvTOWhycdRcXLXoX3eXnTlrsHbXo9BpUIrkThDvS/Z4HyElNZs0PX+HuH4hfZLTSIQkKEwmaINQxpQX5LHj/DTITztHnwSfEPCyCcAVZlikvMVJaYLAuhRWUFBooLTRQdnFdWmigrNhIRYkRi/naSZHOXo29kxY7vRZ7Rw3OnvbY67XY6TVo7NR/a8FSX3psTZS0dmq09mrr2k6D1t66/fVupMgWGYtZxmy2YDJYMBnMGA1mTBWXHxsrzJgMZsxGCybjlS138qXHJpMFQ5mJsiID2SnFlBUZqCg1XfO4dnoNdnoN9o5a7By12Os16F3tcPV2wM1Hj6uPA04e9iKRE4RrsFZ2fInf//M0iz9+mwnvfY6Tu4fSYQkKEgmaINQh+RnpzH/nVYrzchn63CtEtGyjdEiCoAiT0UxBZhl56aXkZ5SSn3lxnVF61WREo1Whd9Whd9Hh6u2AX7iLNflytLYk2TtqsXe6/NjOUYNaXb3DvCWVhFolodaq0NlX7mubjRbKio2UFVkT1MstgkbKS03W9cXWwcLsMkryszEZLJf2V2kkXL0ccPV2wNVHT26BTGpAHu5+jjg4a0ULvlDn6V1cGfb8q/z56vMs+fgdxrz+HhqdTumwBIWIBE0Q6oisxPPMf/c1zCYTo199h4Do+kqHJAhVymyyUJhdRkFWGQWZZeRnllKQWUp+ZhlFueVwReOXo5sdbr56olr54uarx9HNzpqQOevQu+rQXuxWWFeptSqc3O1wcre7qe1lWaa0wHDx37zs0rogq5SUU3mYjDKL9h0EwM5Rg4efI+5+etz9HXH3c8TdX4+zu70YGyfUKd6h4fR/9BmWfPoua6d9Tb9Hnq7Tnzt1mSTfVkf4mkeSpMHA4MDAwKmzZs1SOhyhDisuLsapmislFqelELdiISqtjqjBo3Bw96zW4wu2RYlzsCrJsoyxBMpyoTxPpjwfKgrBWMrfkjCVFnTOYOd0ce0ioXO2PlZrxUVQdZFlmYLsUjQmPRWFUFEoX1yDueLydirNxf8nV+v/lZ2L9bHOEZG4CXfMlj8HL+zdTtq+nQR37olP4+ZKhyNUke7du++XZbnV1X5XZxK0/2nVqpW8b98+pcMQ6rBNmzbRrVu3ajte/IG9LP3sfZy9vBn18pu4ePlU27EF21Td52Blki0yBVllZCUVkZlURFZSEdnJRZe6JarUEh4Bjrj76nG9OP7pf+Og7B1FVzpbca1zsKzYQF5aKblpJeSll5CXVkJeeinFeZczN5VGwt3PEZ8QZ7xDnPEJdcEzyBGNVlShFW6eLX8OyhYLCz98k8Qjhxj35gf4R8YoHZJQBSRJumaCJro4CkItdmLrRlZ9+xk+YfUY8dIb6F1clQ5JEG6aocxETmox2SnFZKcWk5NSTM6FEkwV1gld1RoVnoGORLb0uXSh7uHviForpvisqRycdDhE6QiIcvvbzw1lJnLTS8hLKyUvrYSc1GLOH8nm5I40AFQqCfcAR3xCna2JW6gLXoFO4lwQaiRJpaL/Y88y68UnWfrZ+0x6/wscnF2UDkuoRiJBE4Ra6sDKJWz87UeCGzVl2POvoHPQKx2SIFxTebGRzMTCi0sROanFFGaXX/q9nV6DV5ATDTv44xnkhHeIMx4BjtVeiENQhs5Bg1+4K37hl28yybJMcV4FmYmFZCVaW1TPH8rm5PaLSZtawjPQCZ8wF3xCnfENc8Hd31FUkxRqBAcnZwY/9SJ/vvYCK7/5lOEvvIakEp93dYVI0AShlpFlmR1zf2fX/NlEtm7PwCeeF5WgBJtiKDdZuygmFF1Kyq5Mxtx89fiEutCgYwBegU54Bjnh5G4nuicKfyNJEs4e9jh72BPR3Np1W5ZlinLLyUwoIiupkIyEIs7uSef4llQANDoV3iHWZC0wxp3AaHe0dqJrpGCb/CKj6X73VNb/8h17Fs+j7fAxSockVBORoAlCLWKxmNnwy/ccXruSxt370Hvqo6jU4uJDUJbZbCEjvpDkk7kkHc8hM6noUvEOZw97fMKcadQ5EJ9Qa9c0Owfx1STcHkmScPF0wMXTgciWF5M2i0x+ZimZiUVkJlhvCBzdlMqhdcmo1BJ+9VwJbuBBUAN3fEJdRAubYFOa9RlA6ukTbP9rFv5RMYQ0bqZ0SEI1EN+CglBLWCxmVn37OSe3bqT10FF0Hn+3aHEQFFOQVUryiVySTuSScjoPY7kZSQLfcFda9Q/DN9wFn1AX9C6idVeoWpLKWlTE3c+RmLZ+AJgMZtLiCkg+mUvyqVx2L4ln9xJrV9rAGHeCG3gQ2tgTZ49KnlBOEG6RJEn0fuAxMhPiWf7lR0x6/wucPEQl5tpOJGiCUAtYLGZWffMZJ7dtouPYSbQbMVbpkIQ6pqzIQMrpPFJP55F8Ko/CrDLA2kIW1dqXkIYeBMW4Y6fXKhypIIBGpya4oQfBDT2Ai+fvqTyST+WSfDKX+INZAHgGORHWxJOwJl74hrmI8v6CInT2Dgx55j/8/p+nWfbFB4x+9V3UGnEJX5uJ/11BqOGuTM46jZss+qgL1aKizMSFs/mknsoj5XQuOaklAGjt1QRGudGsRzAhDT1w9XEQLbmCzXNw1hHV2peo1r7IskxeeimJR3NIOJrNgdVJ7F+ZiIOzltDG1mQtuKEHOntxCSVUH8+gYHo/8BgrvvqYbbNn0HXifUqHJFQh8ekiCDWYxWJm5defcmr7ZpGcCVVKlmWyk4uJP5xF0vFcshILkWVQa1X4R7jSbpgvgTHu+IQ4oxKVFYUaTJIkPPwd8fB3pHmfEMpLjCQdzyHhaA7nD2dzamc6KrVEQJQboY09CW3siZuvXtyIEKpcg07dSD19kn1LFxAQ04Co1u2VDkmoIiJBE4QaSiRnQlUzmyyknsnj/OFsEo5kU5xXcWkcWcsBYQTFuOMX7irmmhJqNXtHLdFt/Ihu44fFbCHtXAEJR3NIPJbD9nlxbJ8Xh4uXPaGNvQht7ElgtBsanSjOJFSNbpOnkB53htXffo7PB/Vw9fFVOiShCogETRBqIIvZzMpvRHImVL6KUiOJx6wtBYnHczCWm9HoVAQ38KDN4HqENfHEwVkU9hDqJpVaRWC0tTx/x5GRFGaXkXTcmqyd3H6Bo5tSUGtVBMW4E9nSh3qx3uhEVVKhEmm0WgY//SIzXniM1d99zuhX3xHzo9VC4lNDEGqYvyVn4++m7bDRSock1HD5maUkHLG2kl2IK0C2yDi46Ihq6UN4M2+C6ruLFgFBuAoXLwcadw2icdcgTEYzF87kW29wHMlm/fSTbPrjNOFNvYhu40tII0/UGnEhLdw5Vx9fut09lTXff8nB1cto0X+I0iEJlUwkaIJQg4jkTKgMskXmwtl8a1J2NJu89FIAPAKsY27Cm4qKdYJwqzRaNSGNPAlp5EmnMVGkxxdyZk86cfszidufiZ1eQ0RLH2La+OIf4Sb+voQ70rhbb87u3sHWP6YT1qwlHgGBSockVCKRoAlCDSFbLKz67nORnAm3xWQ0k3wyj/gDmZw9IHPCcOBSoYPGXQMJa+KFi5eD0mEKQq0gSRL+Ea74R7jSaUwUySdyObMngzO70zmx9QJOHnbUb+9Pgw7+uHiKvzvh1kmSRJ8HHmf6c4+y6ttPGffmh6hUoqdDbSESNEGoAWRZZv0v33Fy60Y6jp0kkjPhphgrzCQeyyH+YCYJx6zjyez0Gpz8oV2fxoQ09BDjYwShiqnVKsKaeBHWxAtDuYnzh7M5szudfSsS2LcigZCGHjTsFEBYUy/UogKqcAucPDzpcf/DrPjyI/YtXUiboaOUDkmoJOKbWRBsnCzLbPn9Vw6vXUnroaNEQRDhugzlJhKOZHPuQBZJx3MwGS3YO2mJaulDRAsfAmPc2bptC5EtfZQOVRDqHJ29hpi2fsS09aMwu4yTO9I4uSONVT8cw8FZS/32/jTsGICbr17pUIUaon6HLpzdvZ0dc2ZRr3krvELClA5JqAQiQRMEG7drwWz2LV1AbN+BdB5/t5hrR/gXWZbJOF/IiW0XOLsvA5PBgt5VR4MO/tRr4UNApKuYm0wQbIyLlwNth9Sj9cAwko7ncmL7BQ6tS+bgmiQCo90u/f1qRYEe4TokSaLXlEf57eRxVn7zGXe98wlqjbi8r+nE/6Ag2LD9yxezY87vNOzSgx73PCiSM+FvyouNnN6dzontF8i9UILGTk10a1/qt/fHr56rKEIgCDWASq0irKkXYU29KMmv4OTONE5uv8C6306inX2GqJY+1r/pCFfxHSBcld7Fld5TH2XJJ++ye+FfdBg9QemQhDskEjRBsFFHN6xh04xpRLXtQN+HnhTznAiAtQJjypk8Tm67wLlDWVhMMr7hLnSfWJ/IVj7o7MXHuiDUVI5udrTqH0bLvqFciMvn1I40zuzN4MT2NNx89dRvb+0e6eRur3Sogo2JatOBBp27s3vhHCJatsW3XqTSIQl3QHyTC4INOrV9M2t+/Iqw2JYMfOJ5VGrRxaWuK8gq4/SuNE7vTqcwuxw7vYbGnQNp2CkAz0AnpcMTBKESSSrp0oTYncdFc+5AJqd2prNrUTy7F8cT3MCDxt2CCGvsKVrKhUt63PMgyccOs/KbT5n43udodDqlQxJuk0jQBMHGnNu/m5XffEpQ/UYMeeYl1Bqt0iEJCjGUmzh3IItTO9O4cDYfJAiu707bIfWo19wbjVYk7oJQ2+nsNTToEECDDgEUZJVyamc6p3amseLbI7j76YntFUJ0W1/xeSBg7+REn4eeZMF7r7Nj7u90mXCv0iEJt0kkaIJgQ5KOHWbpZ+/jE1aPYS+8htZOdGOpa2SLTOrZfE7tTOPcgUxMBguuPg60HVqPmLZ+OHuIc0IQ6ipXbz1th9Sj1cAwzh3I5OCaJDbOOsWuxedo2j2Ixl2CsHcSN/XqsvDYljTp2Zd9SxcS2bo9AdH1lQ5JuA0iQRMEG5ERH8eij97GzdefES+9gZ1elFmuS4wGM6d3pnFoXTIFWWXo7NVEt/Wjfjt//Oq5iOIAgiBcolariG7tR1QrX1LP5HNobRK7l5xn/8pEGnTwp1mvYFy9xXdIXdVt0v2cP7SftT9+xcT3Pxc9cWogkaAJgg3IS0tl/nuv4+DszKiX38LB2UXpkIRqUlpo4OjmFI5tSqW8xIhPmAu9BoUT0dwbjSivLQjCdUiSRFCMO0Ex7uRcKObQumSOb7vA0S2pRMR607xvKL5h4vukrtE56Ol1/8Ms+vAt9i5ZQLsRY5UOSbhFNTJBkySpHvAy4CrL8ihJkoYBAwEX4GdZltcoGZ8g3Iri3BzmvfMayDIj//MWTh6eSockVIO89BIOrU/m9M50zCYLYU29aN4nBH9RSlsQhNvgGeBEz8kNaDe0Hkc2pnBscyrnDmYRGONGiz6hBDf0EJ8tdUhEy7ZEt+vErgWziW7XCY+AQKVDEm7BTSVokiS5AT8BjQEZuE+W5Z23ejBJkn4BBgGZsiw3/sfv+gFfAGrgJ1mW37/W68iyHA/cL0nSvIvPFwGLJElyBz4GRIIm1AjlJcXMf+91yooKGfPau+IDtJaTZZm0uAIOrUvi/JFs1GoVMe39iO0ZjLufo9LhCYJQCzi62tF+WAQt+4ZyfOsFDq9PYulXh/EKdqJ5nxAiW/iIievriB73PkjikYOsnfYVY159V0zXU4PcbAvaF8Cqi61VOuBvHZslSfIBymRZLrriZ5GyLMf943V+A74GZvxjfzXwDdAbSAH2SpK0BGuy9t4/XuM+WZYzrxHnKxdfRxBsntFQwaIP3yQ3NYURL/4Xv4gopUMSqojJaObs3kyObEwmO7kYe0ctrQaE0aRrEHoXUQZZEITKp3PQ0LxPCE27B3FmbzoH1ySx9ucT7F4cT2yvEBp08BfdqGs5Rzd3uky8l7U/fs2xTeto0qOP0iEJN+mGCZokSa5AF+AeAFmWDYDhH5t1BR6SJGmALMsVkiRNBUYA/a/cSJblLZIkhV3lMG2AuIstY0iSNBsYKsvye1hb3G4UowS8D6yUZfnAjbYXBKVZzGaWff4BqadPMujJFwhtGqt0SEIVKMmv4NiWVI5vTaWsyIhHgCPdJsQQ3dYPrbgwEgShGqi1Khp0CKB+O3/OH8nm4JpEtsw+w76VCbTqH0bDTgGoNaJlpbZq0r0PJ7duYvOsn6nXojWObu5KhyTcBEmW5etvIEmxwI/ACaAZsB94Upblkn9s9wLQAZgLPAb0lmW5+CqvFwYsu7KLoyRJo4B+sixPufh8EtBWluXHrhGTJ/AO1ha3n4AS4G5gL3BIluXvr7LPYGBwYGDg1FmzZl33PQtCVSoqKiJn33ZyTh0juHNPfBo3VzokoZKVZsvknpEpSAZkcA4EjygJR19sYgxIcXExTk5icmtBOeIcVFZJpkzmUZnSLNDqwbuxhFsYdWrS67p0Dpbn5XJi7nTcwiKp12ew0uEIF3Xv3n2/LMutrva7m+niqAFaAI/LsrxbkqQvgBeBV6/cSJblDy+2fH0HRFwtOasssiznAA/948df3mCfpcDSVq1aTe3WrVtVhSYINzTr/TfJOXWM9qPG02H0BKXDESqJxSJz/lAWB9cmkXG+EJ29mmY9AmjSLdDmyl1v2rQJ8TkoKEmcg8qTR8skn8hl95J4LuwpojRRT5vB4US28KkTiVpdOwfdLAa2z5lFsPNYIlq2UToc4QZuJkFLAVJkWd598fk8rAna30iS1BlrEZGFwOtYW9FuVioQfMXzoIs/E4RaZf/yxWQc3EOz3v1pP+oupcMRKoHJYObUFfOXuXg70HlsNPXb+6Gzr5GFcgVBqAMkSSKkkSfBDT04fzib3UviWfPTcfYHJdJ2SD3CmnjaRIu/UDlaDx3JqR1bWP/zdwQ3bIzOwbZuHAp/d8NOx7IspwPJkiTFXPxRT6zdHS+RJKk51m6QQ4F7AU9Jkt6+hTj2AlGSJIVfLEIyDlhyC/sLgs07t383m2b+hFt4FD3ue0h88dVw5cVG9i4/z4yXd7D5zzPYOWrpO7UxE95oR9PuQSI5EwShRpAkiXqx3ox9pQ2972uIqcLMim+PsPCTA2QlFd34BYQaQa3R0ufBxynKzWbbXzOVDke4gZu9gngc+P1i8hSPNQm7kh4YI8vyOQBJkiZzsajIlSRJ+hPoBnhJkpQCvC7L8s+yLJskSXoMWI21cuMvsiwfv433Iwg2KTMhnuVffIRveAQBPQagUokCETVVYXYZh9Ylc3L7BUxGC2FNPK3zl0W6iaRbEIQaS6WSiG7jR0RLH07tSGP3knjmvLeXhh38aTs0QlScrQUCohsQ22cAB1cto0HHbvhHxdx4J0ERN5WgybJ8CLjqILaLv9/+j+dGYNpVtht/nddYAay4mXgEoSYpzstl0YdvYefoyLDnX2XfkaNKhyTchpKCCvYtT+DEtgsgQXRbP5r3CsEjQMxfJghC7aFWq2jUOZDIVr7sW36eIxtSiNufSasB4TTtESQqPtZwncbdTdzeXaz58Ssmvvc5ao3o7WGLxP+KIFQho6GCxR+9RVlxIePe+BAnD0+lQxJuUUWpkQNrkjiyPhmLWaZh5wBa9gvDyd1O6dAEQRCqjJ2Dho6jomjYKYDt8+PYsSCO49tS6TQqilAxPq3GstPr6Xnfwyz++G0OrFxC68EjlA5JuAqRoAlCFZEtFlZ98xnp8XEMefY/+IZHKB2ScAuMBjNHN6ZwYHUiFWUmolv70mZwuM1VZBQEQahK7n6ODHq0GYnHc9g+9yzLvz1CSEMPOo6OwsNf9CCoiSJbtyM8tiW75s+mUZce6F3dlA5J+AfRTi0IVWTHvD84s2sbXe66h6jW7ZUOR7hJZrOFY1tSmfXqTnYuPIdfhCtjX25N7/saieRMEIQ6K7SRJ2NfbUOn0VGkny9k9lt72PrXGcpLjEqHJtyGrpOnYDJUiIIhNkq0oAlCFTi5dSO75s+mcffetBLdB2oE2SJzdl8Ge5aepyCrDP8IV/pOaUxAlJvSoQmCINgEtVpFs57BRLfxZffS8xzdlMKZPRm0GRxOo84BqNTivn9N4RkYTGzfQRxYuYTYPgPxCaundEjCFcRfkiBUstRTJ1j9/RcENWxMrymPiH76Nk6WZeIPZjH77T2s/eUEGp2agY80ZfhzLURyJgiCcBUOzjq63RXDmJfb4BnkyJbZZ/jrnb0kn8pVOjThFrQfOR57J2c2Tv8RWZaVDke4gmhBE4RKVJCZzuJP3sHZy5shz/wHtUardEjCNciyTPKJXHYviSczsQg3Xz19pjQisoUPkkok1YIgCDfiFeTE0KeaE38oi+3z4ljy+SHCm3nRcVSk6BJeA9g7OdFxzETW//wtZ/fsILptR6VDEi4SCZogVBJDWSmLPnwLi9nE8P97HQdnF6VDEq7hwtl8di0+R1pcAc4e9vSYXJ+Ytn6ie44gCMItkiSJiOY+hDb25PD6ZPatTOSPN3bTok8orfqHodaKz1Vb1rRnXw6vWc7mmb9Qr3lrNDox350tEAmaIFQCi8XM8q8+Jic1mZEvvYlHQJDSIQlXkZ1SxM4F50g6kYveVUeXcdE07BQg5vURBEG4Qxqtmpb9wqjfzp8dC+PYtyKBcwez6Dm5Ab7h4oalrVKp1XS7eyrz3n6F/csX0Xb4GKVDEhAJmiBUiu2zZxK/fw897n2Q0KaxSocj/ENRbjm7l8Rzenc6dg4aOoyIpHG3QLQ6tdKhCYIg1CqObnb0vrcR0a392PT7KeZ/uI/YXiG0GRyORnzm2qTQJrFEtm7H7oVzaNS1p5iz1QaI28aCcIdObt3InsXzaNqzH7F9BykdjnCFijITOxee4/fXdxG3L5PmvUKY+FZ7mvcJEcmZIAhCFQpt7Mm419rSoFMAB9cmMfvtPVyIy1c6LOEauk68H4vZxLbZM5QORUC0oAnCHUmLO83qH74kqEFjetz3oKjYaCPMJutcZvuWJ1BeYiS6rS9th9TDxdNB6dAEQRDqDDsHDd0n1CeypQ8bZ55i4ScHaNItiPbDItDaiZtktsTNz58WA4ayd8l8YvsMxC8yWumQ6jTRgiYIt6koN5vFH7+Do5sHg595SVRstAGyLBO3P5M/3tjNtjln8QxyYsx/WtP73kYiORMEQVBIcH0Pxr3ahibdgji6MYXZb+0mRZTktzlth49F7+rGBlF2X3EiQROE22A0VLD4o3cwlJUx7IVX0bu4Kh1SnVeQVcrSrw6zetoxNFoVgx5rxtCnYvEOcVY6NEEQhDpPZ6+hy9hohj/bAkklsfjzQ2z+8zSGcpPSoQkX2en1dBo/mbQzpzi1fbPS4dRpooujINwiWZZZ/d0XZJyPY+hzr+AdEqZ0SHWa2WTh0Lok9i5PQKWW6Dw2msZdA1GJucwEQRBsTkCUG2NfacPuxfEc3pBM0vEcekxqQGCMu9KhCUDjrr04tHo5W/74jchW7dDa2ysdUp0kWtAE4RbtWTSX0zu20GnsJCJbtVU6nDotLS6fOe/uZdeieMIae3LX6+1o2j1IJGeCIAg2TKtT02l0lLU1TZJY9NlBtojWNJsgqVR0v+cBinOyObByidLh1FmiBU0QbkHc3l1smz2D+h270mbYaKXDqbPKS4zsXHSOE1sv4ORhx4BHmhLe1EvpsARBEIRbEBDpxthX27Br0TmObEwh8XgOPSY3IDBatKYpKah+I+q1aM2+pQuI7TsQO72j0iHVOaIFTRBuUn56Giu/+RTfelH0eegJUbFRAbIsc3ZvBn+8sZuT2y4Q2yuY8a+1FcmZIAhCDaXVqek8Jprhz7QASWLRpwfZMvsMxgqz0qHVaR1GT6C8pFi0oilEtKAJwk0wGY0s/fx9JJXE4KdfRKuzUzqkOic/s5Qts8+QfCIXn1BnBj/WTBQAEQRBqCUCotwY98rl1rTkk7n0e6AxnoFOSodWJ/nWiySiVTv2L1tE836DsXcU/w/VSbSgCcJN2DLrFzLPn6Pfw0/j6uOrdDh1itloYd+K88x+cw/p8QV0HhvNyP9rJZIzQRCEWkZrp6bz2GiGPt0cQ5mJee/v4+SONKXDqrM6jL6LitIS9i9frHQodY5oQROEGzizezsHVy2lxYChRLZup3Q4dUrqmTw2/3GavPRSIlr40HlMFI5uovVSUIZsNmMuKMCcX4CluAhLcTHmkhIsJSVYiv+3LsZSWgqApNGARo2k0SJpNEhaDaitzwGwmJEtFjBbQLZceizLFlT2DqhdnFE5u1xcO6N2cbGunZ2R7O1FN2uh1gqKcWfMy61Z+8txNsw4SVpcPl3GRaPRicmtq5NPWD2i2nbgwIpFtBgwBAcncWO0uogETRCuIz8jnTXff4lfRBRdJtyjdDh1RlmxgR3z4ji1Kx1nT3sGPdaM0MaeSocl1BKyLGMpKcGcX4C5IB9zfj6WgoKLyVe+9ef5eZjy8y8+t/7MUlBw4xfXalHp9dbHRiOyyYRsNoO58sfTSDodkp3dxbUOlfbyc5WDAypHx2ssejRe3uiCg9AGB6MSZbQFG+ToaseQJ5uzZ2k8+1cmkplYRL8HGuPmq1c6tDqlw6i7OLtnJ/uXLaTTuMlKh1NniARNEK7BZDSy7PMPABj01P+h/t9db6HKyLLMqZ1pbJ8fh7HMTIt+obQaEIZW3DUVbpKlpARjZiamjExMmRmYMjMxZmRiyrj4ODMDU1Y2GI3XfA1Jr0fj5ob64qILCr70+H+LytkJtZOTNeG5cq3TXfU1ZYsFTCZrwmYygSSBpEJSq0ClQlJZ16isIw/kigrMhYVYioqs6+LiK54XIZeXIRsMWCoMyAYDckWF9bmhArnCgFxWhjEz43LLXkkJcnn5VWPTeHujDQ5GFxx8cR2ENjAQjZ8/Wh9vpGu8J0GoaiqVRLuhEfhHuLH21+PMeW8vPSY1ILKlj9Kh1RleIWHEtOvEgRVLaDFgKHoXV6VDqhNEgiYI17D191/JiD/LkGf/g6uPn9Lh1HolBRVsnHmKxGM5+Ee60vWuGDwDxKBk4TLZbMaQmETFuThM6daEy5SZcUVClomluPhf+6mcnND4+KDx9cGxdRs0Pt6o3T1Qu7qidnO1Jl2urqhdXVG5ul4zyboTkkoFOt1NJzuSvb21Zcun8i5EZZMJS2kplpISTJmZGJKSMaYkY0hOwZiURMnu3ZgW/2OsiSSh9vJE6+uH1t8PzcW1NjAIu6hIdCEhSFpx80qoWqGNPRn7chtWTzvG6mnHSIsLosPISNQaUUqhOrQfdRend21j39IFdJlwr9Lh1AkiQROEqzi7ZwcHVi6hef/BRLXpoHQ4tV78oSw2zjqFscJM57FRNOkahCQmm67TTHl5VJw+Q8WZ05SfPm19fPYsckXF5Y00GjQ+3mh9fLGLjMSxY8eLz33Q+Pqi8fFF4+OD2knM4QPWMXFqFxfULi5o/f1xaNbsX9tYKiowpqRgvJCGKSMdY1o6xox0TGnpVJw/T8mOnVhKSi7voNGgCwvFLiISu8hI7CIj0EVEoAsLq5JEV6i7nD3sGf5sC3YsiOPIhhQyEgrp/1ATHF3FuOSq5hkUTIOOXTm4ehmtBg1H7+qmdEi1nkjQBOEfCjLTWf39F/jWi6LLhPuUDqdWM5Sb2D73LCe2p+EV7ETvexvhESAupusSWZYxpqRQfuIk5SdPUH7yJBUnT2HKzLy0jdrDA/v6MbiPH49dTAx2kZFoA/xRu7tbW6aESqOys8MuIgK7iIhrbmMuKsKQlITh3DkqzsZRce4c5adOUrRmDcjyxRdSoQ0MRBcehi7MuthdXGv8RI8E4faoNSo6j4nGP8KN9dNPMO/9fQx4uKmo6lsN2o0cz6ntW9izZD7dJt2vdDi1nkjQBOEKZpN13JlskRn01P+hEV13qkx6fAHrfj1BQXYZLfqG0mZwuOiuUstZysqoiI+n4sxZyk+eoOLkKcpPncJSVGTdQK3Grl499O3aYh9TH7uYGOxjolF7eYmKhTZE7eyMQ6NGODRq9LefW8rLMZw/T0VcHIbz5zEkJFCRkEDpvv3IFytbAkh2dnh4e3Nh5UrsomPE/7NwyyJb+uDq48CKb4+w4KP99Li7AVGtxBQ4VckjIJAGnbtxePVyWg0ajpO7h9Ih1WoiQROEK2z9Yzrp584y+JmXcPMVd3mrgsVsYd+KBPatTMTJzY7hzzQnIMpd6bCESmQpLaUi/jwVcWf/1spiTEm51MIi2dtjHxODy6CB2NdvgH3DBthFRd24oqDFDIZiMJaBsfTiuvzyY1PZxXU5mAxgrrj82FQOZgOYKsBiAtla3h6LGWTz5bUsg8YOtA6g1V99rXMEO2ewcwGd08XHTqBzBnXd/GpV2dtj36AB9g0a/O3nsixjyszCkJBwaUnbs5uSXbspWLzk0nZqd/dLyZp9w4bo27ZFK1rbhGvwDnZm9EutWfn9Udb8dJzcCyW0GRQuusdXoXYjx3Fy2yb2Lp5H93seUDqcWq1ufosIwlUkHDnI/uWLaNZnINFtOyodTq2Un1HKut9OkHG+kJi2fnQeF42dg/gYqslkWcZ04QKlBw5Qun8/ZfsPUBEXd7mrm1aLXVgYDk0a4zpsKHaRUdZxSoG+SGU5UJINJZlQfAD2rIaSLCjNgYqiy4uhGCqKrY9NZbcfrMYe1Hag0YFKA5LaWjVRUl18rLauJcmaxP0z4bvp4ziAgxs4eICDO+jdretLzz2sj/UeoPe8/PNamthJkoTW1wetrw+ObdsAcHLTJmK7dbOONTxzlorTpyk/Yx1rmPfXnEsVJ3WhoejbtcOxfTv0bdqg8RB37YXL9C46hj3dnE1/nmbfigRy00rodU9DtHai8m9VcPcLoFHXnhxet5JWQ0bg7OGldEi1liT/70u0lpMkaTAwODAwcOqsWbOUDkewMabyMk7MmY5aq6PBqEmoqrBrY3FxMU5Odas6oSzL5J6FjMMyKjX4t5JwDRF3OZVyR+egxYImNRXtuXPo4s6hPXcOdV6e9Vf29pjCQyHIE5W3Axp3FTonI3amAnSGfHSGvEtrjfnqiZZJrceodcGk0WNWO1xa/28xaaxri0qHWW2HRWV3cX35uUWlu7hoLy2ypLEmXrdLtqCyGFCbK1Cbyy8uZajNpWhMZajNZWhMpZfWGlMxGlMRWmMRWuPlxyrZdM1DGDWOF9+7M+X2XpTb+1Hm4E+Zgx9lDn5U2HlaE8ha4Lrn4MVzTHf6DLrTp9GePYvqYsJmDAzEEBODMSYaQ0QEch37LBWuTpZlcs5AxiEZe1cI7iyhc7z+33td/C6uDBWF+Rz78xe8GzYlpHMvpcOp0bp3775fluVWV/tdnUnQ/qdVq1byvn37lA5DsCGyLLPsiw+J27ODu97+BN96kVV6vE2bNtGtW7cqPYYtKcwuY8PMk6Sezie0sSfdJ9bH0U1U3VLSzZ6DsixjTEyk7Ogxyo8do+zYMcpPnEAusyZXGk9X9BFeOPir0bsXYSclIZVl/fuF7FzAyQec/C6ufcDR++LaB5y8rc8dva3dB2srWQZDCZTlQmnu5fWlxzkXn2dDfjLkJ4Hlivna1DpwCwH3cHAPA/dQ69ot1PrYvubMT3Qrn4OyyUT5sWOU7NpNye5dlB04eKmap65ePfQtW+DQvAX6Fs3RhoaKcWx1WOLxHNZMO4Zaq6L/g03wj3S75rZ17bu4Mq398WuOb17HfV9Mw8XLW+lwaixJkq6ZoNXO/hSCcAtObdvEmZ1b6TRucpUnZ3WJLMuc3JHGtrlnAeg+qT4NOviLiycbZqmooHTPXkr37KH8+DHKjh67VMBD0qqx97XDLdKAg1M+eq8KNPoL1kYpRx/wjATPfta1Rzg4+19OwHR6Zd+YrZAk6zg1OydronUjFjMUpkLuecg7//d1yh4oL/j79g7ul5M1zyjwbWRdPCJqdPdJSaPBITYWh9hYvB56EEtFBeVHjlB64CBlBw5QuGYt+XPnAaD29ETfojn6Vq1w6tYNXWiowtEL1Sm0kSejXmzF8m+OsOizg3S9K4aGHQOUDqvWaTtiDMc2rWPf0gX0uPdBpcOplWruJ7YgVILC7EzW//I9AdENaD10pNLh1Bol+RVsnGWddDowxo0ekxrg4lWLW0ZqMGNaGsUb1lK8dhUlB48hVxhBBfbuFlx8yrCvb8TBw4CdhxrJOxK8m1gv/r2iwDPCevHv4Kb026idVGprIucWAnT99+/L8iAvEfITIS/h8uP0Y3BymbXgCVjH3XlHg8/FhM23Ifg2AeeaWfVOZWeHvnVr9K1bAyBbLBjOnbuUsJUeOEDR2nVkvPc+uogInHv0wKlHdxyaNRPTMtQB7n6OjHqxFWt+OsbGmafISS2m48hIVGrxf19ZXLx8aNCpK0c3rqH9qPE4OLsoHVKtIxI0oc6SLRZWffMZFouF/o89i0pVO8Z2KEmWZc7uy2DLn2cwGy1i0mlbI8vIucl47ltK5qLvKD54looMa3dFraMJt5AKnEJU6JtEoQqoD17Rlxe3EGvCINgOh4vFRwJi//07Yzlkn4HME5BxDDJOwPnNcGT25W2cfMG/Gfg1ta79m1pb4GpYK7ekUmEXFYVdVBTuY8cAYEhJpXjDBoo2bCDnl1/ImTYNtZcXTt264tyjJ47t26FyEDeNait7Ry2DHmvGjvnnOLwhmdwLJfSd2hh7RzF1TmVpNWg4xzev5/CaFbQbOU7pcGodkaAJddb+5YtIPnGUPg89IUrqVwJDmYlNf5zm7N4MfMNd6HVPQ9x8Rdc2xcgyFCTDhUNYEvdTsmMnRYcSKE4EjUFNjiSj91fh0zsQpw6t0DXriOTfpEZeoAtXobW3Jlz+Tf/+89JcyDgO6Uch/QikHYa49Zdb2+xdr0jYYq1rz4gal5zrggLxmDwJj8mTMBcUULxlK8UbN1C0ajUF8+Yj2dujb9Map06dcezcCV1YmOh+Xcuo1Co6jYnCM8iRTX+ctk5q/UhTPPwdlQ6tVvAKCSM8tiUHVy+j1eARaHQ6pUOqVUSCJtRJWYnn2TZ7BpGt29G4W2+lw6nxMhIKWfPTMYpyymkzOJyW/cNQiVaz6mUogeQ9kLgDUvZiOn+Y4vgyilLsKUm3RzZLqOztcGoVSVZ4OE0eeg61txibUefoPSC8s3X5H2OZtaUt7TCkXUza9kyzziEHoHUEvyYXk7aLi3cMqGtGa4Ta1RXXwYNwHTwI2WCgZO9eijduomTbNjLefRcAbVAQjp074dS5M45t26JyFBfxtUWDDgG4+Tqy8oejzPtgH33ub0RYE1EevjK0GjySuW/9hxNbNtC0Vz+lw6lVRIIm1Dkmg4EVX3+CnaMTvR94XNw1vQOyRebguiR2L4pH76Zj+LMtrls1S6hE5QWQtBsSt0PiduTUgxgKoDjNnuIsD0ovOIDFHo2XO26je+Pctx/6Vq2QtFrObtokkjPhMq0DBLa0Lv9jNlq7SKYdvrwcnAV7fri4jyMEtYLQDhDSHoJa14hiMJJOh1PHjjh1tM51aUhOpmTbNoq3bKVg8RLy/5wNWi36Fi1w6tYN5+7d0IWFKRqzcOf8I1wZ/WIrVn5/lOXfHqH9sAhkXd2qYl4Vghs1wbdeJPuWLaRJjz5ijGclEgmaUOds+2sm2UkJDH/xdfQuNacsta0pKahg/fSTJJ/IJaK5N90m1hf9+6tSeaG1dSxhq3VJP4rFIFOSpae4IICSlHCMOSUA6CJD8XygF849e2HfuJG4CSHcOrX2chXI2LusP7OYITceLhyClL3W83HT+4BsnfjbP9aasIV2gJB21vFxNk4XHIxu/Hjcx4/HYjBQduAAxVu3UrJlC5kffEDmBx+gCw/HqXt3nLt3w6F5cySNuHSqiZw97Bn+XAs2TD/JzoXncA0DcxcLalE85LZJkkSrwSNY/sWHxO3fTVTr9kqHVGuITxmhTkk6doT9yxfRrPcA6jVvrXQ4NVbS8RzW/XYCQ7mZrnfF0KhzgEgCKpuhFJJ3w/kt1uXCQZDNVJQ4UFwUQXFaLKXnssBkRqWX0bdvj2fnTjh26owuKFDp6IXaSKW2Vu/0ioKmo60/K8u3dq1N2gGJO2H397DjS0CydosM72JdQtqDvW1XelPpdDi2a4dju3bw/PMYUlIo3riJ4o0byZ05k9xffkHl6opT58449+iOU8+eqOzEnI41iVanps+URngGOrJ7yXlW/XCMvlMbodHWrDGWtiS6bUe2evuyb8kCkaBVIpGgCXVGRWkpq777DHe/ALpOuk/pcGoks9nCrkXxHFqbhEeAI0OfboRngJPSYdUOsmwt2nBmDcRvtLZQmA2g0mByj6XQPJCCw9mUn04AcrGLjsbj7gE4de6CvkVzJDFAW1CCgxtE97EuYB3PlrofErZbW3r3/Ag7vwZJDQHNLyZsnVGZjdd9WVugCwrCY9JEPCZNxFxcQsn27RRv3Ejx5s0ULltmHds2YgTu48aK+dZqEEmSaDUgnKTUBBL2Z7P8myP0f6gJOntxSXw7VGo1LQcOY+NvP5B6+iSBMQ2UDqlWkGS5bvXBbdWqlbxv3z6lwxAUsPr7Lzm+aR3j3/oI/6gYxeLYtGkT3bp1U+z4t6u82MiqH4+Seiafxl0C6TgqEo1O3HW8I4YSiN8MZ1dbE7OiC4AE/k2xBHWiOMONgl1nKd6xC0wm7OrXx3XIEFz690Pr73/bh62p56BQAxnLrC1s57dYE7bU/WAxYZG0qMI7QWQv6+IdU2Oqh8pmM6V79pA3+y+K1q8HkwnHDh1wGz8O5+7dRRfIGmLTpk3428ewfvpJfMNdGPRYM+z0opv+7TCWl/Pjo/cS1KARQ597RelwagxJkvbLstzqar8TnyJCnRB/cC/HNq6hzbDRiiZnNVXuhRKWf3uYknwDve5tSExbMS3BbctPgjOrrcv5LdZKeTpniOyBHNGb0iIfCtZtpWjaaizFxWh8fPC4ezKuQ4ZiHxOtdPSCcGu0DlCvq3UBqCiGpJ2kbp5JcNFpWPOydXEJgsge1mQtvKtNT34uqdU4tm+PY/v2GDMzyZ83j/w5c0l9/Ak0vr64jR6N2+jRaH19lA5VuIGYdv5o7NSs+ek4iz47yJAnYnFwFr0RbpXW3p7YPgPYtXAOuRdS8QgQ3ezvlEjQhFqvvLiYtT98hVdwKO1H3aV0ODVO4rEc1vx0DLVOzbBnmuNXTxRWuSUWM6TsgzMrrUlZ5gnrzz3qQespyFG9KS90oXDVGgq//glTZiaSXo9L7964Dh2Cvm1bJLVoqbxVsixTbi6n1FhKqamUUmMpZaYySowllBhLKDIUUWAooLCi8F/rIkMRMtfvXaJRadCqtOjUuktrnUqHVq1Fp9KhVqlRSxeXi49VkgqNSoNaUuOgccBJ64STzunv64uP9Vo9eo0ejaqWfU3bOUFUb86lagnu1g3yk+HceohbB8cXwYEZ1u6QwW0gqjdE9QHfxjbbuqb18cH7kUfweuABijdtIu/P2WR//TXZ332HY6eOuA4ZgnPPnqjs7ZUOVbiGiOY+DHhEzcrvj7LwkwMMebI5Tu5ibOGtiu07iL1LF7B/2UJ6P/CY0uHUeLXsk18Q/m3Dbz9QWljAsBdeQ6MV3RdulizLHF6fzI75cXgGOTHg4aY4e4iLjJtSXmCd/PfMaji7BspyrVXuQtpDn3eQo/pQkStTuHwFhR+/izElBUmrxbFLF1wHDsCpWzdUetsvWa6UUmMp6aXppJekk1GSQXpJ+qXn6SXpZJVmUWwsvmGSBdZEy1XnioudCy46F7z13oS7hl83MZJlGZPFhMFiwGA2YLQYMZgNFJoKMZgNGCwGzBYzZtm6WCwWTLIJi2zBbDFjkk2Um8pvKj6dSoeD1gG9xpqwOWgc0Gv1eDl4EeISQrBzMCHOIQQ5B+Fp71nzivW4BUPLe6yL2Wgde3l2rTVhW/+mdXEOgKhe1mQtvKtNFhuRNBqce/XCuVcvDImJ5M+bR8HSZVx49jlUTk449+2D65Ch6Fu3EqXIbVBoI0+GPNGMZd8cYeEn+xn6VHNcvByUDqtGcXRzp1GXnhzfsp4OYybg6Gb7VVxtmUjQhFrt7N6dnNy6kfajxuNbL1LpcGoMs8nC5j9Oc3JHGvWae9PrnoZo7UQrznWV5cHJpXBsPiRsA4vJWmY8qg9E94WInpjKLOTPm0/Bu89giDsHajWO7drh9cgjOPfqidrF9i48q4MsyxQZi8guyya7NJvssmxyy3MvLTnlOdZ1mXVdZir712t4OXjhp/ejnms92vm3s7ZCafTotXoctY6XEhy91prkuNq54qJzwUHjoEhSY5EtlBpLKTYWU2wotq4vPi4yFlFmLLO2/JlKLz0uM5Vdag08lHmIVQmrsMiWS6+p1+itCZuLNWELcb6cwPk6+qKSbDwxUGsvl+nv9ToUplkTtbi1l1vX/nejI7ofNBxqTfBsjC40FJ9nn8X7qaco3buXgkWLKVq5ioL5C9AE+OM6eAiuQ4dgV6+e0qEKVwiIcmfoU81Z+uUhFny0nyFPNcfDX0xYfitaDhrOkQ2rObR6GR3HTlI6nBpNFAkRaq3SwgKmP/coTu6e3PXOJ6htZOC2rRdoKCsysPKHo6TFFdBqQBhtBoUjqWrYXfnqYiiB0yutSdnZtWAxgns4NBwC0f2t3bRUasqOHSdv1iwKV6xANhhwaNkSl4EDcOnbF42nZ7WHrcQ5WGos5XTeaU7lnuJc/jmyy7LJKssipyyH7LJsKswV/9pHLanxsPe4vDhcfuzn6Ief3g8/Rz989b5o1XWvddxgNpBanEpyUfKlJakwieSiZFKKUzBZTJe21al0BDoHXkraApwCLv3b+ep98XLwQq2qvpswt3wOmo3WaSfOrrH+rf2vq3BQG2g8AhoOA5fbL5xT1SylpRSt30DB4sWU7NgBFgsOLVrgNmY0Ln37onIQrTXV7VrnYE5qMYu/OIRskRn6VCxeQc7VH1wNtvjjt0k5eZwHvvkVrejae12iSIhQJ63/+TvKi4sZ9crbNpOc2bqc1GKWf3uE0kIDfe5vRFRrX6VDsj0mg3XMzNF51uTMWALO/tDmAWgyEgJagCQhG40UrlxF3qzfKTt4EEmvx3XkCDwmTMAusna35uaW53Iq5xQnc09yKvcUp3JPkViYeKlLn7PWGR+9D156L5r7NMfLwevS4u3gjZeDF54OnjjrnG2/1UdBOrWOcNdwwl3D//U7s8VMRmkGSUXWhC258GICV5TEnvQ9/2qFVEtqvBy88HW0JmzBzsHU96hPjEcMoc6h1Zq8XZVaC2GdrEvvNyHnHBxfaG1ZW/UirHrJ2vLWaLi1Zc3Jtgp0qPR6XAcPwnXwIIyZmRQuXUb+3LmkvfgSGe+8i+uQIbiNGSMKAdkAz0AnRjzbgsWfH2TRpwcZ8mQsPqF1s3fD7Wg1eCRxe3dxdONaWvQfrHQ4NZZoQRNqpVM7trD8iw/pNG4ybYePUTqcv7HVFrTzh7NY+8sJtPZqBjzcFN8w8YX0NxnH4cBMOPKXdUyZg4f1QrDJKGuXq4sXsKbsbPLmzCH/z9mYsrLQhoTgMeEuXIcPt5kujJVxDsqyTG55LvEF8ZzLP8e5/HOXHueU51zaLsAxgPoe9anvWZ8GHg2o71EfX71vzRsrVYvIskxBRQEZpRlklFrH8GWUZpBRcvn5lS1w9mp7otyjiPGIob67NWmLdIvESXf7cyBW6udg1pmLydoCyDoFkso631qzu6DBYNDZ5nhOWZYp3buX/DlzKVqzBtlgwL5ZU9zHjMGlf38xDrWK3egcLMwuY9FnB6koMTL4iVhRIOsW/PnaCxTn5nD/Fz+iEkWurul6LWgiQRNqnZL8PH579hHc/PwZ/+ZHNvfhYGsJmizLHFidyK7F8fiEONP/oaaigtX/lBdYuy8emAkXDoBaB/UHWi/8Irpb7+r/b9MTJ8idMZPC5cuRjUYcO3XCfeIEnLp0sbmiALd6DsqyTGpxKkezj3Ik6wgnck4QXxBPfkX+pW2ctE7Uc6tHhGsEEW4R1qTMoz6uduKipiYymo3EF8RzKvcUp/NOczrX2j210FB4aRsvBy9CXUIJcwkj1CX00uMg5yB06uuXKq+yz8HMk3BsARydA3kJYOdibVVrPhGCWttsNUhTXh6FS5aQN2cuhnPnUDk54TZ6NB733CPK9VeRmzkHi3LLWfzZQUoKDQx6tCmB0aLwxc2I27uLxR+/zcAnX6B+hy5Kh2OzRBdHoc6QZZm1077GVFFBv0eetrnkzNaYDGY2zDzF2b0ZRLX2pcek+mLyaVmGxB1wcKa1+5SpDHwaQb/3oelY0Htc3tRspmj9evJmzKR03z4kvR630aNxnzgRu3r/7nZWU5QYSziWfYwjWUc4kn2EI1lHyC3PBaytKfU96tMrtBcRrhGXkjIfvY9oFatFtGotMR4xxHhcnjdSlmXSS9I5lXuK+IJ4EgsTSSxMZGPyxkvnB4BKUhHqEkpL35a09G1JK99W+DlW09yJPg2gx8vQ7SVI2gEHf4ejc+HAdPCMgti7oNl4mxuvpnF3x+Puu3GfPJmygwfJ+/0PcmfMIG/WLFyHDcXz/vvRhYUpHWad4+xhz/DnWrD4s4Ms++owAx5uSnBDjxvvWMdFtGyDm68/h9esEAnabRIJmlCrnNiygXP7dtN10v14BtpedS9bUpJfwYrvjpCZWES7YfVo0Te0bl9gF2XA4T+srWW556yTRzcbCy0mXxpX9j/mwkLy580n7/ffMaamog0IwOeFF3AbNdJmujHerP8V7ziRc4Lj2cc5kXOC84XnL1UHDHMJo1NgJ5p5N6OJVxOi3KNq39xcwk2RJAl/J3/8nfzpTve//a7QUEhSYRIJhQkkFiZyIucEq86vYt6ZeQAEOQVZkzW/VrT0bUmV995RqS6PWRvwofVmy6HfYf0bsOEtiOhp/duO6f+3lnClSZKEvkUL9C1a4P3Uk+T++iv58+aTP28+zn374jl1Cg6NGikdZp3i6GrHsGdasOSLQyz/9gj9HmhMWFMvpcOyaZJKRdNe/djy+6/kpCThGRSidEg1jujiKNQaJfl5/PrMQ3gFhzLm9fdQKT2o/RpsoYtjRkIhK787gqHcTK97G1Iv1lvReBRjNllLeB+YYZ2zTDZDSAdoMck6vkz39xLLhoQEcmfOIn/hQuTSUhxatcRj8mSce/RAqgGFaIxmIydzT7Jw50IMHoZLXRX/l4x5OXjRyLMRjTwb0dS7KY29GosuisJtM1vMnMk7w76MfezP2M/+jP2XusW6q93pEtaFtv5taeffDm99NX0G5ZyDQ39Yl6IL4OhtbVVrPhm8bLN4jyk7m9wZM8n74w8sxcU4duyI5wMPoG/Tum7fVLtDt/pdXF5sZMmXh8hJLabPlEZENBddT6+ntLCAHx++m6a9+9PjngeVDscmiTFoVxAJWu218utPOLVjK5M/+sqmW8+UTtDO7Elnw4xT6F11DHykKZ6Btz/Qv8bKOWftwnjoTyhOB0cfiB0PzSeBV9TfNpVlmZIdO8ibMZPizZtBq8V1QH/cJ0+2+TvZ+eX5HM46zMHMgxzKOsSx7GOXytl7OXjR0LMhDT0b0sizEQ09G+KjFxccQtWxyBbi8+PZl7GP5UeXc958noKKAoBL89e19W9La7/WOOuquLS52WStxnpghrUaq2yG0I7WVrUGQ2yysIi5qIi82bPJnT4Dc3Y29s2a4vXAAzh1725z41xrgtv5Lq4oNbLs68NkJBTR694GRLeupq67NdTyLz/i/MF9PPj9dLR2ouT+P4kE7QoiQaudkk8cZc4bL9F2+Bg6jZusdDjXpVSCJssy+1YksGfpeQKi3Oj3QGMcnK8/kL9WMZvg9ArY8yMkbLVWeovqY70gi+rzr25OlrIyCpYsJW/WTCrOxqH29MR93Djcx41F422bLY5FhiK2pmxld/puDmYe5HzBeQA0koYGng2I9Ykl1juW0rhShvYcKu6+C4rZtGkTXbp24VTuKXan7WZ32m4OZB6gzFSGSlLR0KMhzX2b09yn+aWpGKpMUYa1++OBGZB3HuxcoeloaD0VfOpX3XFvk6WigoKFC8n56WeMKSnYRUXiOWUKLgMGIGltp7umrbvd72JDuYnl3xwhLS6ffg82qbs9UG5Cyslj/PXfF+n70JM07t5b6XBsjkjQriAStNrHbDIy44UnMBkM3PPJNzZ/l0aJBM1ikdn61xmObU6lfjs/uk2sj1pTR+64luZaW8v2TIOCZHANhpb3WLs1uQT8a3Njejp5f/xJ/l9/YS4owK5BAzwmT8Zl4ABUOttLaHPKctiYvJH1SevZlbYLk8WEi86FWJ9Ymvs0J9Y7lkZejXDQXJ4IV+lWXEG42jloMBs4nHWY3Wm72Zu+l+M5xy+1+AY7B19K1lr4tCDcNbzybzBYLJC43ZqonVgM5goI7wptH4Tofpem0rAVsslE4cpV5EybRsWZM2gDAvC4/z7cRo5EJSYIvqE7+Rw0VphZ9NlBclKLGfJELAFRbpUaW20hyzLTn3sUrb09E975VOlwbI6o4ijUavuXLyY3NZlhL7xm88mZEsxGC+t+O0Hc/kya9w6h/YiIutFyknkSdv8Ah2dbKzGGdYZ+70F0f1D/+6PPmJFBzg8/kDd3HpjNOPfsgcfkyTi0amVz/14Xii+wPmk96xLXcSjrEBbZQpBTEBPqT6BXaC+aejcVEzwLNY5OraO1X2ta+7UGrGMmT+Se4GDGQQ5mHmRrylaWnFsCgIe9B92Cu9EjuAftAtphp66EqUFUKgjvbF36vQf7f4N9v8Dsu8AtxNqi1mISONhGqXVJo8F18CBcBg2keNMmcn6cRsZbb5P97Xd4TJ6M+4QJqJ0cb/xCwi3T2qkZ9FhTFnx0gOXfHmHEcy3q5nCBG5Akiaa9+rHxtx/JiI/Dt55tjvO0RaIFTajRCrMy+fXZhwlr2pyhz72idDg3pTpbLwzlJlZ+f5SUU3m0HxFBiz6h1XJcxVgscHYN7P4O4jeBxh6ajLbeAfdrctVdTNnZ5EybRt6fs5EtFtxGjsRz6hR0QUHVG/t1GM1GDmUdYlvqNranbud03mkAotyj6BXSi54hPYl2j77pRFK0oAlKu51zUJZlEgsTOZh5kJ0XdrI1dSvFxmIcNA50CuxEj5AedAnqgouuEiupmk1wapn1Zk/SDtDqoekYaPMg+DasvONUAlmWKdu3j+wfp1GydStqLy98nnoS1+HDkcSUM/9SGZ+DhTllLPjoALIsM/L5lrh4Odx4pzqmvLiYHx6+m4adu9P7gceUDsemiBY0odba8NsPAHS/5wGFI7E9ZcUGln11mKzkYnpMrk+DDv/uzldrmAzWiWm3fwnZp8ElEHq+Di3uBkfPq++Sl0fuzz+T+/sfyAYDrkOH4vXIwzaTmKUUpbDjwg62pW5jd9puSk2laCQNsT6xPN3yaXqF9CLERZQuFuoOSZIIcw0jzDWM4VHDMZqN7Enfw4akDWxM3sjaxLVoJA2t/VrTPaQ7XYK6EOgUeGcHVWug0TDrkn70cqv8/t8gtBO0vh8aDLaJUv2SJKFv3ZqQ1q0pO3KEjPfeJ+2VV8n9/Q98X3wRx7ZtlA6x1nHxdGDw481Y+MkBln51mBHPtahbY7tvgr2TEzEdOnNy2ya6TLwPO73tFeCxRaIFTaix4vbtZvFHb9Flwr20HjJS6XBuWnW0XhTllrPki0MU5ZbTd0ojwpvV0kHM5YXWC6Vd30JRGvg2gY5PWi+mrnHBZC4sJOfXX8mbPgNLWRkugwbh/egjNjEJ7Onc0yyLX8am5E0kFCYAEOAYQKfATnQM7EgbvzY46e68G41oQROUVtnnoEW2cCz7GOuT1rMhacOlv58I1wg6B3WmS1AXYn1i0aoqIZEqzbWOU9v3M+QngZOvdVxry3uuOq5VKbIsU7RyJRkff4zpQhrOvXvh8/zz6ELEjR2o3HPwQlw+S744hGeAI0Ofbo7OXrR/XCkt7jR/vPwsvaY8QrPeA5QOx2aIIiFXEAla7WAsL+e35x5Ba2fPpA++RF0D5qD6n6q+OM69UMKSLw9hrDAz8JGmtXPwclGGtRvj3l+gogDCu0DHpyCix98mlL6SpbycvFmzyP5xGpbCQpz79cP7sUexi1S2T3xWaRYrzq9g6bmlnM47jUbS0Na/7aWkLMwlrNLHwIkETVBaVZ+DCQUJbE3dypaULezL2IfJYsJJ60T7gPZ0DuxM56DOd14Z0mKGuHWw9yc4u9ZaGbb+QGg9xfqZZCNjVy3l5eT+9hvZP04DoxH3yZPweugh1M5VPJWBjavsc/D8kWxWfn+UoPruDHykad0pxHUTZFlm1otPIcsWJn3wpc2N61aK6OIo1Dq7Fv5FYVYmY//7fo1KzqpaenwBy74+jFqjYvizLfAKqmWDlnPPw7bP4PCfYDFZ5yvq+AQEtrzmLrLZTMGixWR99RWm9HScunXD+6knsa+vXPnsMlMZG5I2sPTcUnam7cQiW2ji1YSX2rxE//D+uNvbRhECQaip/tcVclLDSZQYS9iVtoutKVvZmrKVtYlrUUkq2vu3Z1jUMLoHd7+9IiMqNUT3tS65560FRQ7OhJNLwCsaOj0NTcZctShRdVLZ2+P10EO4Dh9B1uefk/vzLxQsXIT344/hNmqUKM1fScKbetFtQgwbZ55i/fST9L63IZJKJCJg7X7brHd/1k77mrSzpwmItr3pK2yNuLIVapyclGT2LV1Io669CGrQWOlwbEbS8RxW/nAUvasdQ5+MrV2DlXPOwZaP4chfoNJA7ATo8Dh4RlxzF1mWKd60iaxPP6XibBz2TZsS8OEHOLZRZhyG0WxkZ9pOViesZl3iOkpNpfg7+nN/4/sZFDGIeq71FIlLEGo7R60jPUN60jOkJ7IsczrvNGsT17Lk3BKe3/w8LjoXBoQPYHjUcBp4NLi9u/se4dDnLej+Hzi+EHZ+C4sehs0fQpfnoOlYxcepaX19CHjvXdwnTCDj/fdIf+NNcqfPwPuZp3Hu3Vu0alSChh0DKCsysGtRPA7OWjqNjhL/rhfV79iFzbN+5si6lSJBuwkiQRNqFFmWWf/zt+js7eky8V6lw7EZZ/dlsO7XE7j7OzLkiVj0LrVkkHLWGdj6MRydC2qdtRpjhyfAxf+6u5UdPkzmRx9Tum8futBQAj//HOe+far9i9JoNrIrbRerE1azIXkDRYYinLXO9Anrw5CIIbT0bSnK4QtCNZIkifoe9anvUZ9Hmj3C7rTdLIpbxIKzC5h9ejbR7tEMixzGwHoD8bD3uPUDaB2scyw2Gw+nV8Cm92Hxo7DlI+j8HDQbp3ii5tC4EaEzZ1K8cSOZn3xK6hNP4hAbi88Lz6Nv0ULR2GqDFn1DKS00cGRDCq7eDjTtHqx0SDZB56CnQafuHN+0jq6Tp+DgVLe72N6ISNCEGuXktk0knzhK76mPoXdxVTocm3BsSyqb/zyNf4QrAx9pip2+FnRXyThhvaA5vtB6wdP+UWj/ODj7Xne3irNnyfrqa4rWrEHt5YXf669Vexceo8XI7rTd1qQsaQOFhkKctE70COlB37C+tPNvh05dSxJoQajB1Co1HQI70CGwAwUVBaw6v4pFcYv4cO+HfLr/U7oHd2d45HA6BHRAfauTVEuSdTxazAA4s8qaqC157GKi9qw1gdMo9zkgSRLOPXrg1KUL+QsXkv3lVyTeNQGnnj3xefYZ7OqJFv3bJUkSHUdFUZhdzrY5Z3H10RPa6OrVhOuapr36cXjtCk5s3kDLgUOVDsemiQRNqDEqSkvYPPNn/CNjaNKjj9LhKE6WZfavTGT3knjCmnjSZ2pjtLoaPtdN1hnY8JZ1DIfOCTo9Be0fA8frD+aviIsj+9tvKVy5CpWDA16PPYbnvfegcqyeSVrNFjP7M/azMmElaxPXUlBRgJPWie7B3ekb1pf2Ae1FUiYINszVzpWx9ccytv5YzuadZVHcIpaeW8raxLX46n0ZGjmU4ZHDCXK+xWk4JAli+kN0P+scjZveh6VPWLtsd3nO2tqmYIuapNHgPno0rgMHkjtjBjnTfiJ+8BDcRo7E+/HH0HjX0grAVUylkuh9X0MWfHyANdOOMfKFVngEiEnDfcLq4R8Vw+F1K2kxYIjo/nkdooqjUGNsmvET+1csZuK7n9Xo2egro3KUbJHZPj+Ow+uTiW7rS4/JDVCra3BXuaJ02PQeHJhpnQi23UPQ7hHQX7+LUcW5c2R/+x2FK1agcnDAfeJEPO69B4171RfZkGWZI9lHWHl+JasTVpNdlo2DxsHaUhbal46BHW02KRNVHAWl1YRz0Gg2sillEwvOLmDHhR1YZAtt/doyPGo4PUN6Yq+xv/UXlWVr5cdN70HqfnAPg67/ZxPFRABMublkf/sdebNno9Lp8Hz4ITzuvhuVzjY/y+5EdU15M/f9fWh1Kka92AoHp9r373irjm9ez6pvP2PMa+8S3Kip0uEoSlRxFGq8nNRkDq5aSpPuvWt0clYZLGYLG2ee4tSudJr2CKLTqKiaWymqosg6ufTOr8FssJan7vrCjVvM4s9bW8yWL0dycMBzyv143HdftSRmZ/POsix+GavOr+JCyQV0Kh1dgrrQL7wfXYK64KCpRcVZBKEO06q19A7tTe/Q3qSXpLM4bjEL4xby4tYXcdY5MyB8ACOiRtxaYRFJgqjeENnL2qK28R1rMZEtH0O3F6HxSGt1SIVoPDzwe+VlPCZOIOPDj8j65FPy587D94XncerZU7R43CJnD3sGPNSERZ8eZNUPxxjyZGydL78f3b4TG6f/yOG1K+t8gnY9NTJBkySpHvAy4CrL8ihJkoYBAwEX4GdZltcoGZ9QuWRZZtP0aWjt7Ok0brLS4SjKZDCz+qfjJBzJps3gcFoNqPw5sqqF2WidYHrT+1CaDY2GQ49Xr1uVEcCYkUHWp59SsHQZkp0dHvfdi+f996PxuI3B/LfoYOZBph2ZxtbUrWgkDe0C2vFo80fpEdyjUiaPFgTBdvk5+vFgsweZ2nQqe9P3suDsAhaeXchfp/8ixj2G4VHDGRg+EDd7t5t7QUmylueP6gOnlltb1BZMtY5R6/YiNBwOKuUu5HVhYQR/+w3F27eT8d57pDz2OPr27fB96SXso6MVi6sm8qvnSo+767P25xNs+uM0PSbVr5nf25VEq7OjUddeHFq9nJL8PBzdxLQyV3PTCZokSWpgH5Aqy/Kg2zmYJEm/AIOATFmWG//jd/2ALwA18JMsy+9f63VkWY4H7pckad7F54uARZIkuQMfAyJBq0XiD+wh4fABuk2eit7VTelwFGMoN7HiuyOknsmn6/hoGne9xbEQtkCW4cRiWP8m5J6D0E7Q+00IuvY8ZgCyyUTeH3+Q9fkXyCYTHvfcg+f996HxrNqB17Iss+PCDqYdncb+jP2427nzePPHGR09WsxVJgh1kEpS0da/LW39214qLLIgbgHv73mfT/Z9Qo+QHgyPHE47/3Y3V1hEkqDBIGsxkZNLrInavPvA52PrTauY/opOeO3UsSOOixaRN/svsr76ivPDhuM+bixejz9eLT0Waovo1n7kpZeyb3kCHn6ONO8TonRIimraqx8HVizm+Ob1tBk6SulwbNKttKA9CZzE2kr1N5Ik+QBlsiwXXfGzSFmW4/6x6W/A18CMf+yvBr4BegMpwF5JkpZgTdbe+8dr3CfLcuY1Ynzl4usItYTJaGTT9J/wCAwmtu9ApcNRjKHMxLKvD5N+vpBe9zQkpq2f0iHdugsHYdVLkLQTvBvAXXOsd49vcPFRdvgwaf99g4qTJ3Hs3Bm/V19BF1K1X24W2cL6pPVMOzKNk7kn8dH78H+t/48RUSPQa/VVemxBEGqGKwuLnM49bS0sEr+U1Qmr8XP0Y3z98YyOHo2z7ibKiatU0GgYNBhsrV678V2YPR5COljnVwu66jCVaiFpNHhMnIDLwAFkf/0NebNnU7BsOT7PPIPb2DF1ujXoVrQZGE5+eik7Fsbh5utAeLO6W4DFMzAY/+j6nNq2SSRo13BT7eeSJAVh7UL40zU26Yq1Bcvu4vZTga/+uZEsy1uA3Kvs3waIk2U5XpZlAzAbGCrL8lFZlgf9Y/lXciZZfQCslGX5wM28J6FmOLBiMfkZaXS/eypqTY3skXvHykuMLP7iEBnnC+lzf6Oal5wVZ8Lix+DH7pB9FgZ/AQ9vt3bvuc4Xu7mggLTX/0vCuPGYc3II/Pxzgn/8oUqTs3JTOYviFjFs8TCe2fQMJcYS3ujwBitHrGRiw4kiORME4apiPGL4vzb/x4bRG/i468eEOIfw2f7P6D2vN5/s+4T0kvSbeyGVGpqMgkd3w8BPICcOfuoJcyZDzrmqfRM3oHF3x+/VV6i3aCH2DRuS/t//kjz1AYwZGYrGVVNIKokedzfAJ8SZNb+cIDul6MY71WL1O3QlKymBnJQkpUOxSTdVxfFiV8L3AGfguat1cZQk6QWgAzAXeAzoLcty8VW2CwOWXdnFUZKkUUA/WZanXHw+CWgry/Jj14jHE3gHa4vbT0AJcDewFzgky/L3V9lnMDA4MDBw6qxZs274ngXlGUqKOf7HzzgHhRDZf7jS4VSa4uJinJxubsySqUImcaNMRSEEd5RwDqw5dyoli5GglKWEJs5BZTGSGjiIhLAxmDU3KDUsy9jv3o3z/PlIxSWU9uhByeBByPa3UTHtJqUb09lRtIPdJbsptZQSoA2gj2sfmuub18qJpG/lHBSEqlAXzsGkiiTWF67nUOkhAFo5tqKnS08CdAE3/RpqUxlBKYsJSVqIJBtJ8+9LQthYjDq3qgn6ZskyDpu34LxgAbJGTdHYsZS3aaNod8xbpdQ5aCyTiV8jI0lQr4+Exr7m/JtVJmNpCUdmfI9/i7YEtOmkdDiK6N69+zWrON4wQZMkaRAwQJblRyRJ6sY1ErSL284GBgARsixnXWObMO4wQbsTosx+zbHy6084vXMr93zyHW5+/kqHU2lutrRvaaGBxZ8fpCCrjP4PNak5E13KMpxeAatfhrzz1vl/+rwDXjeuvll++gwZ77xD6Z49ODRrht9/X8e+QYMqCdNoNrI+aT1zzsxhb/peNJKGnqE9GRM9htZ+rWt1t52aUOJcqN3q0jmYWpzKzBMzWXB2AWWmMjoGduSeRvfQ1q/tzX/OFGXA5g+sxZW0DtDhCejwGOiUnVvLkJjIhRdfouzgQZx798bvjf9WS9GmyqDkOZiVVMSCj/bjHerM0Kea19nKjnPfepnC7Ezu+/zHWv2dey3XK7N/M2dER2CIJEkJWLse9pAk6V9NUJIkdQYaAwuB128xxlQg+IrnQRd/JtRRF86c5MTWjbQcNLxWJWc3qzivgoWfHKAwu4xBjzatOclZ1hmYORxm3wVqHUycD3f9dcPkzJSbS9p//8v54cOpOH0avzfeIPTPP6okOUsuSuaz/Z/Ra14vnt/yPBeKL/BkiydZO3otH3f9mDb+berkF4UgCFUj0CmQF9u8yNpRa3m8+eOcyjnF1DVTmbhyIttTt3NT89E6+8KgT+HRPRDRAza9C1+2sM4daTFX/Zu4Bl1oKKGzZuLz3LMUb9pE/OAhFK1fr1g8NYV3iDPdJ9cnLa6AbXPOKh2OYmI6dCE/PY2M+H+WrBBumKDJsvySLMtBsiyHAeOADbIsT7xyG0mSmgM/AkOBewFPSZLevoU49gJRkiSFS5Kku3icJbewv1CLyBYLG379ESd3D9oOH6N0ONWuMKeMhZ/sp6SggsFPxBJUvwbcjTSUWiszftcBLhyA/h9ax5lF9rrubrLBQM6vv3Gubz/y587DfcIEIlavwn3sGKRKLjF9KPMQT218ioELBvLb8d9o5t2M73p9x4oRK5jSZApeDtefe00QBOFOuNq58kDTB1g9ajWvtnuVrNIsHlr3EBNXTmRb6rabS9S8ImHsTLhvDbiFwJLH4PvOEKdcUiSp1XhOmULYvHlofHxIefQxLvzfi5gLCxWLqSaIbu1H8z4hHNuSyvGtdbNNIrptR1RqDad2bFE6FJtTWVdAemCMLMvnZFm2AJOBxH9uJEnSn8BOIEaSpBRJku4HkGXZhHXc2mqslSLnyLJ8vJJiE2qYY5vXkRF/ls4T7kVnX7cm/S3IKmXhJweoKDUx9MnmBES6KR3SjZ1ZDd+2ha2fWAe3P7Yf2j4Iau01d5FlmaING4kfPITMDz7AITaWeksW4/fyf1C7uVVaaGaLmXWJ65i4YiKTVk5ib/pepjSZwuqRq/myx5d0CuxUK8eYCYJgu+zUdoyJGcPy4ct5rf1rZJdm8/C6h5m4YiJbU7beXKIW0hbuXwOjfwNjCcwaATNHQIZyl072MdGE/zUbr0cepmDZMuIHD6F482bF4qkJ2g2LIKSRB1tmnyEtLl/pcKqdvZMTYbEtOL1zK7LFonQ4NuWWrkxkWd50tfFnsixvl2X56BXPjbIsT7vKduNlWfaXZVl7sVXu5yt+t0KW5WhZliNkWX7nVt+IUDtUlJaw7c8Z+EfXp0GnbkqHU61KCipY/PkhjBVmhj7VHN/wf81oYVsKUmD2BPhjDGgc4J7lMPx7cLp+6eCKs2dJvn8KKY88Amo1wT/+QMi0H7GLuP4k1bei1FjKn6f+ZPCiwTy96Wmyy7IvdTF6osUT+DnWsEqYgiDUOlq1ltHRo1k2fBmvt3+d7LJsHln/CBNWTGBLypYbJ2qSBI2GW7s99n0XUvfD952sVXOLbrJqZCWTdDq8n3iCsNl/onZxJvnBh6ytafn5isRj61Qqid73NcLZw56VPx6jOK9c6ZCqXf0OXSjOySb19AmlQ7Ep4taxYFN2zvuT0sICetzzYJ0aB1RRZmLpV4cpKzYy+PFYvENuYt4cpZiNsP1L+LqNtVtNz9fhoW0Qdv0qTLLBQNaXXxI/bDhlx47h+5//UG/xIpy6dKm00AoNhXx98Gv6zO/Du7vfxd3OnU+6fsLy4cuZ0GCCKJMvCILN0aq1jIoexbLhy/hv+/+SW57Lo+sfZdTSUSw9txSj2Xj9F9DYQftH4YmD0O4RODwbvmxu7dVgMlTPm/gHhyZNCJs/H8+HH6Jg2TLODR5M0bp1isRi6+wdtQx4uCmmCjMrvz+KyaDcmEIlRLRqi0Znx6ntopvjlUSCJtiM/Ix0Dq5aSuNuvfGLiFI6nGpjMppZ+d0R8i6U0P/BxviG2XDLWco++KErrH0VwrtY5+rp/AxodNfdreLsWRLGjSf72+9wHTyYiNWr8Jg8CUl77W6Qt6LMVMYvx36h//z+/HDkB1r6tGRG/xnMGjCLPmF9UKvUlXIcQRCEqqJVaxkZPZKlw5fyVse3sMgW/rPtP/Rb0I9fj/1KkeEG82bpPaDvO/DYXojsaR0X/H0nOL+1et7AP6h0OnyefJLwuXPQeHqR8tjjpD7zLKa8PEXisWUeAY70urchmYlFbPr99M11c60ldPYO1GvZhjO7tmEx163k9HpEgibYjJ1zf0elUtNxzASlQ6k2FovMul9OkHomnx53NyCkoY1WazSWWcvm/9wbyvNh3B9w12xwD73ubrLFQs6vv3F+5CiM6ekEff0VAe+/h8bdvXLCshiZe2YugxYM4rP9n9HMuxnzBs/jix5f0NyneZ1qhRUEoXbQqrQMixzGgiEL+K7Xd4S7hvPp/k/pPa83H+39iLTitOu/gEc4jJ0Fd80FUzlMHwQLHoTiq85+VOXsGzYkfO4cvJ54nMK1a4kfOIjCVasUicWW1Yv1ps3gcE7vTufw+mSlw6lW9Tt2oayokKSjh5QOxWZolA5AEACykxM5sW0TrQYNx8nDRpOUSibLMlv/OsO5g1l0HBVJTFsbHReVuBMWPwq556DlvdD7TbC/cSufISWVtJdeonTvXpx69sT/zTfQeFbO/61FtrAmcQ1fH/yaxMJEYr1j+aDLB7Tyu+p0IoIgCDWOJEl0CuxEp8BOnMw5yfQT0/n95O/8fvJ3+ob15cGmD1LPrd61XyC6D4TtsnZ13P4FnFlp7ZLe8l6o5Cq5NyJptXg/8gjOPXuR9p//kPrU0xQNWIv/22+h0ouu5//Tqn8Y2cnF7Jgfh2egE8ENakAV50oQ3qwlOgc9p3ZsJSy2pdLh2ATRgibYhB1zfkdnb0/rISOVDqXa7FuRwLHNqTTvHUJsrxClw/k3Qwms/D/4tT9YjDB5MQz+/IbJmSzL5M+fz/mhQyk/cQL/d98l6OuvKiU5k2WZHRd2MH75eJ7f/DxalZavenzFjP4zRHImCEKt1cCzAe93fp+VI1YyscFENqdsZsSSEby9621yynKuvaNODz1fhYd3gF9TWP4M/NwL0g5XX/BXsI+JJuyv2Xg/+QSFK1eSMG48huS61Vp0PZJKouc9DXD3d2T1tGMU5pQpHVK10Oh0RLXpwNk9OzAZlBk3aWtEgiYoLj3uDGf37KDlwOHoXVyVDqdaHN+ayp6l54lp50f74ZVXvbDSnN8C37aH3d9Dmwfg4Z1Qr9sNdzPl5pLy6GOkvfwK9o0aUW/JYtxGDK+UroYHMg5w3+r7eHDtg+SX5/NOp3eYN3ge3YK7ia6MgiDUCf5O/jzX+jlWjFjB6OjRzDszj4ELB/LT0Z8oN12nAqB3NNy9FEZMg/wk+LGbtdu6obTaYv8fSaPB6+GHCf7xR4zp6ZwfNZri7durPQ5bpbPX0P+hJlgsMmt/PoHFXDfKz9fv0BlDWSnnD+9XOhSbIBI0QXHb/pqJvbMLLQcOUzqUalGYIrP5j9OENPKk+6T6SCobSi4qimDZ0zB9MKjUcO9KGPAh2DndcNeS3Xs4P3QYJdu24fPi/xHy269oAwPvOKRj2cd4aO1D3L3qbhIKE3ixzYssHb6UIRFDRPEPQRDqJA97D15u9zILhy6ktV9rvjjwBYMXDWbpuaVY5Gtc0EsSNB1jLSLS4m7Y+TV810GxIiJOnTsRPm8uWh8fkqc+QM5PP9Wp4hjX4+ajp9uEGNLjC9i7PEHpcKpFSJNYHJxdRDXHi0SCJigq+cRREo8cpO3QUdjVgX7oF87mk7JDxjvUhX4PNEattqE/wdT98EMX2PcrtH8MHtoOoR1uuJtsNpP11dck3XsvKkdHwub8hec99yDd4RiH07mneWLDE4xfPp7jOcd5puUzrBixggkNJqBTX79qpCAIQl0Q7hrOVz2+4pe+v+Bu585/tv2H8cvHszd977V3cnC3dle/e5n1+fRBsPQpKC+sjpD/RhcSQtjsP3Hu04fMjz/hwrPPYimt/lY9WxTd2o/67f3YtzKB1NO1v/KlSq0mul0n4vfvwVBeN7p2Xo8NXR0KdY0sy2ybPRMndw+a9R2odDhVLie1mOXfHkHrCIMea4rWzkZafywW2PY5/NzHOmfOPcutpZp1N06YjRkZJN1zL9nffIPr4MGEz5+Hff36dxROfEE8z29+nlFLR7E3fS+Pxj7KyhErubfxvThoHO7otQVBEGqj1n6tmT1oNu92epecshzuW30fj61/jNO5p6+9U3hn69i09o/BgenwbTs4s6b6gr5I5ehI4Gef4v3sMxSuXEXC+LswpKRUexy2qPPYaFy9HVj76wnKi28wH14tUL9jF0yGCs7t2610KIoTCZqgmPOH9nHh9AnajRyHVmendDhVqjC7jCVfHkJrpya0m4SDk420ABWmwcxhsO51qD8QHt4GYR1vatfiLVs4P2w4ZceP4//+ewR88D4qR8fbDqXMVMan+z9lxOIRbE7ZzNQmU1k1chUPNXsIJ92Nu1gKgiDUZSpJxeCIwSwbvownWzzJgcwDjF46mhe3vkhy0TUKcej01hty968FO2f4YzQseABKc6s1dkmS8Jo6leAff8CYlkbCyFEUbxPj0nT2GvpOaUxZkYENM0/W+i6ggTENcfL04tQO0c1RJGiCImSLhW2zZ+Lq60fj7r2VDqdKlRUZWPrVYcxGC4Mfb4bO0UbGnJ1eaR1/kLIXhnwFo6dbu77cgGwwkPHhRyQ/8CAaHx/C583FbdiwOwpld9puRi4Zya/HfmVo5FBWjljJEy2ewNWubhSNEQRBqCz2GnumNJnCyhErua/xfaxPXM+QhUN4e9fbZJVeYy60oFbw4Bbo8gIcmw/ftIGTS6s3cMCpc2fC581F4+ND8tSpZH31NXIdn7zYO8SZ9sMjOH84m2ObU5UOp0pJKhUx7TuTcOgAZcU3mJi9lhMJmqCIM7u3k5UQT4fRE1BrtEqHU2UM5SaWfX2YotxyBj7SFM9AG2gJMpbB8ufgz3HgGggPbIYWk60DyG/AkJJCwqRJ5P7yC27jxxH212zs6l1nHp4bKKgo4LXtrzFlzRQkJH7u8zNvdHgDT4e6MReeIAhCVXG1c+Wplk+xYsQKRkaPZP6Z+QxYMIDP939OQUXBv3fQ2EGPl+GBTeASAH9NtM6BWVFcrXHrQkII+2s2rkOGkP3NNyRNmYIpO7taY7A1zXoEE9LIk+3z4shJrd7/j+rWoGNXLGYTcXt2Kh2KokSCJlQ7i9nM9jm/4xkUQv2OXZQOp8qYTRZWfn+UrORi+k1tjH+km9IhQeYpmNYD9k6zjjuYst5afvkmFCxZwvmhwzDEnyfw88/xf/11VPb2txWGLMusSljFkEVDWHJuCfc3vp/5Q+bTxr/Nbb2eIAiCcHXeem9eafcKS4YtoUdID3459gv9F/Tn95O/Y7ZcpXXKrwncvw46PQMHf4fvO0HKvmqNWaXX4//+e/i/8zZlBw5yfvgISvdep/BJLSepJHre3QCdXsPqn45jNNTeVkWf8Ajc/Pw5tX2z0qEoSiRoQrU7sWUDeRdS6DhuEqpaWiZdtsis/+0EKafy6D6xPmFNvZQOCQ7PhmndoSQLJsy3jjvQ3Hjsn7moiNTnnufCC/+HXf361Fu0EJd+fW87jPSSdJ7Y8ATPb34eP0c/Zg+azVMtn8Jec3vJniAIgnBjwS7BfNDlA+YOnksTrya8v+d9Jq2cdPVCIhod9HrdWjTKYrIWkdr8IZhN1RavJEm4jRxJ2Jy/UOn1JN59D9k/TkO21I15wf5J76Kj9z0NyUsrYfvcs0qHU2UkSaJ+x64kHz9KSX7tr155LSJBE6qVyWhkx7w/8IuIIrJVO6XDqRKyLLN17lnO7suk/fAIGnTwVzYgYxkseQIWPggBzeGhbRDV66Z2LT1wgPPDhlO4ciXeTz5B6Izptz23mdFiZPrx6QxbPIxdabt4rtVz/D7gd+p73FnVR0EQBOHmxXjE8H2v7/mg8wekFqcybtk4Pt//+dUnug7raP3OaDwCNr4Dvw2AvIRqjdc+Joaw+fNw6deXrE8/JfnhhzHl1c0L9+CGHjTvE8LxrRc4dyBT6XCqTP0OXZBlC6d3blM6FMWIBE2oVkfXr6IoO4uO4yYj3cSYp5po/6pEjm5MoVmvYJr3CVE2mJxz8HNvawnlTs/A5CXg7HfD3WSTiayvviZx4iSQJMJ+n4XXww8jqW+vxXNX2i5GLRnFx/s+prlPcxYMXcDdje5Go9Lc1usJgiAIt0+SJAbUG8CSYUsYHDGYn4/9zIglI9iVtuvfGzu4wcifYMRP1m7y33WCQ39CNVYUVDs5EfDJJ/i+9iqlO3ZyfsRIyg4dqrbj25K2Q+rhE+rMxlmnKMq9SlJdC3gGheAZFELc3ro7Dk0kaEK1MVaUs2vBXwQ3bEJok1ilw6kSJ7ZfYPfieKLb+tJxRKSySeiJxfBjN8hPhrvmWLurqG+cEBlSUkicNPni3GaDCF+0EIfY2NsK4ULxBZ7Z9AxT10zFYDbwVY+v+LbntwQ7B9/W6wmCIAiVx9XOlTc7vsnPfX5GQmLqmqm8vO1l8svz/71x09HWqVj8m8Kih2D+/VB+lWIjVUSSJDzuuovQP/9EUqtJmDSZ/Pnzq+34tkKtUdFnSiPMZpmNs07V2tL7Ea3aknLyGOXFtbsoyrWIBE2oNkc3rKG0IJ8OYybUytaz1DN5bP79NCENPegxuQGSSqH3aDLAyhdhzmTwioaHtkL0zY0ZK1y1mvPDhlNx9iwBH39MwAcfoHa69cqTFeYKvj/8PUMXDWVrylYeb/44i4Ytoltwt1r5fy8IglCTtfFvw/wh85naZCor4lcwZNEQViWs+veGbiFw91Lo+RocXwQ/dIHU/dUaq0PjRoTPm4tj61akvfwKGe+9h2yqvrFxtsDVW0+H4REkn8jlxLYLSodTJSJatkG2WDh/uHrPL1shEjShWphNRvYuXUBQg8YENWisdDiVrjC7jFU/HMPVx4E+UxujViv0p5WfbB0jsPs7aPsw3LvS+oV6A7LJRMZHH5H61FPoIuoRvmgRroMG3vLhZVlmY9JGhi4ayjeHvqFLUBeWDFvCA00fwE5duycjFwRBqMnsNfY80eIJ/hr8F0HOQTy/+Xle3PoihYbCv2+oUkPnZ63fLxaztYDIjq+gGot3qN3cCP7xR9wnTyJ3+gySH3gQc0H1tebZgsZdAgmq7872eXEUZpcpHU6l84uMxsHFlfj9e5QORREiQROqxfHNGyjOyabt8DFKh1LpDOUmln97BFmWGfBwU+wcFBpXdW6D9W5m5inrpNP937dW4roBU04OSfdPIfdn69xmoTNnogu69UIgacVpPLHhCZ7Y+AT2ant+6vMTn3T7BH8nhYukCIIgCDct2j2aGf1n8EjsI6w6v4qRS0ayJ+0qF8khba09NGL6w5pX4I8xUHyNibCrgKTR4Pef/+D/9luU7N1LwpixVMTHV9vxlSapJLpPshbZ2jDzFLKldnV1VKnU1GvemvOH9mGuYy2kIBI0oRpYzGb2Lp6Hb70oQps2VzqcSiVbZNb9eoK89FL6Tm2Mm6+++oOwWGDLRzBzhLUAyAOboNGwm9q17MgRzo8cRdmhQ/i/9551bjPdjZO6K5ktZmaemMnQxUPZnb6bZ1s+y9whc2nr3/bW34sgCIKgOI1Kw8PNHmZm/5nYqe2YsmYKH+/9mApzxd83dHCHMTNh4Cdwfot1zrT46p2/ym3UKEKn/4a5uJiEMWMp3rKlWo+vJBdPBzqOiiT1dB7HtqQqHU6li2jVhoqSEi6cPqF0KNVOJGhClTu9cyv5GWm0HTGm1o0/2r0knvOHs+k0OpLgBh7VH0BZHsweDxvehiajYMo68Iq84W6yLJP31xwSJ0xEUqsJ+/MP3IYPu+XDn8g5wV0r7uLDvR/S0rclC4cu5J7G96BVaW/jzQiCIAi2pIl3E+YMmsOYmDFMPzGd8cvH/3veNEmC1lNg6gawd4EZQ63fSdU4Z5q+RQvC585BGxxM8oMPkfPzL7W2eMY/NewUQEhDD3YsiKMgq1TpcCpVaNPmqDUazu3frXQo1U4kaEKVki0Wdi+cg2dQCJEta1eLypm96exflUjDTgE06RZU/QGkHbFWaYxbDwM+hhHTQOd4w90sFRWkvfIK6a+/jr5tW8LmzcW+YcNbOnSpsZSP9n7E+OXjySjJ4KMuH/Ftz28JdLq9OdIEQRAE26TX6nml3St82/Nb8srzGL98PL8e+xWzxfz3Df0aW3twxE6w9uqYPggKq6+AhTYggLDfZ+Hcpw+ZH31E2kv/QTYaq+34SpEka1dHlVrF+ukna1VXR529A8GNm3Fu/546k3D/j0jQhCoVt383OSlJtB0+BklVe063zMRCNsw4hX+kK13GRVd/y+DB363zm5kMcO8KaDPVehfzBowXLpB41wQK5i/A8+GHCP7hezTu7rd06C0pWxi2eBgzTsxgRNQIFg9bTL/wfrWudVQQBEG4rHNQZxYMWUCXoC58uv9T7lt9H0mFSX/fSOcIw76x3jBMOwLfd7aOj64mKr2ewM8/w+uxxyhYtIiUx5/AUl475wq7kpO7PZ1GR5EWV8CRjSlKh1OpIlq0IT89jdwLtet93UjtuWIWbI4sy+xe8Bduvv7EtO+sdDiVpqSgghXfHUXvrKP/g01Qa6rxz8hYDkufhMWPQFBreHALBLe5qV1L9uzh/MhRGBITCfrma3yefPKWJp4uM5Xx3x3/5dH1j6LX6Jnebzqvt38dVzvX2303giAIQg3ibu/OZ90+4+2Ob3M27ywjl4xk1olZWOR/VHBsOgYe2AiOXtbx0Rvfs1Z8rAaSJOH92KP4/fd1ijdvJmnKFMxFRdVybCXVb+9HaBNPdi06R35G7enqWK9la4A6V81RJGhClUk8fICM+DhaDx2F6hYSAVtmMppZ8d1RKspMDHikKQ7Ot1ZQ446UZMOMIbD/N+j0NExaBE7eN9xNlmVyZ/1O0n33o3ZzI2zOHJx79rylQ5/LP8ddy+9i/tn53N/4fuYOnksL3xa39z4EQRCEGkuSJIZGDmXh0IW08W/DB3s/4N5V95JYmPj3Db1jrOPSmo6Fze/DrBHVWuXRfdw4Aj/5mLJDh0mcfDem7OxqO7YSJEmi+4T6qLXWro6WWtLV0cXLB+/QcM6JBE0QKseuhXNw8vSiUdceSodSKWRZZtOs02QmFNL7noZ4Bd36BM63Les0TOsBaYdh9G/Q67+gvnE5f4vBQNorr5Dx9ts4de5M2Jy/sKsXfkuHXhS3iPHLx5Nbnsv3vb7nqZZPoVWLIiCCIAh1ma+jL1/3+Jp3O73L2Xxra9qM4zP+PjZN5wjDv4chX0HSLvihMyTuqLYYXQYMIPi7bzGcP0/ihIkYUmpfpcMrObrZ0XlsNOnxBRxel6x0OJUmolVbLpw+SVlR4Y03riVEgiZUiZSTx0g9dZzWg0eg1tSOi/nD65M5vTudNoPDqdf8xi1XlSZ+M/zUG4ylcM9yaDT8pnYzZmSSOGkSBfMX4PXIwwR98zVqZ+ebPmypsZSXt73Mq9tfpbFXY+YOnkvHwI63+y4EQRCEWkaSJAZHDGbR0EW082/HR/s+4p5V95BQkHDlRtBisrXKsFYPvw2CbZ9X28TWTp07E/LLz5jy8kicMIGKuLhqOa5Sotv4Et7Mi91L4slLL1E6nEoR0aINsmzh/MF9SodSbUSCJlSJ3Qvn4ODiSpMefZQOpVIkn8xlx/w46sV606p/WPUd+MBMa7cQF3+Ysh6CWt3UbqUHD3J+1EgqzsYR+OUXeD/xxC0VaTmTd4Zxy8ex9NxSHmr2ENN6T8NH73O770IQBEGoxXz0PnzV4yve7fQu8QXxjFo6it9P/v73ynt+TaxVHhsMhnWvw18ToaJ6xobpW7QgdOYMZLOZxAkTKTtypFqOqwRJkuh6VwxqrYqtf52pFdUPfetF4ujmXqe6OYoETah06efOknD4AC0HDkNrZ690OHesIKuM1T8dw93fkZ73NEBSVUO1QosF1v0XljwGYZ3h/jXgHnpTu+bNnUvi5LtR2TsQNvtPXPrcfJIsyzLzzszjruV3UWQoYlqfaTwa+yhqVe0YQygIgiBUjStb09r7t+f9Pe/zxMYnKKgouLyRvYu1m36/9+HMKvi5D+QlVEt89jExhP3xOypnZxLvuRfdqVPVclwlOLra0WZwOMkn84g/VH3j/qqKpFJRr0VrEg7vx2yq/VMngEjQhCqwe+Ec7Bwdie0zUOlQ7pih3MTK74+ADAMeboLO/sbjvu6YsQzm3QvbPoOW98KEuWB/40qJssVCxgcfkv7qazi2aUP43DnYR0ff9GELKgp4fsvzvLHzDZr7NGfu4Lm09a9dc9cJgiAIVctb782XPb7kxTYvsi11G6OWjuJg5sHLG0gStHsYJs6HwlTr+OqE7dUSmy4khNDff0cXGIjb199QtGlTtRxXCU26BuIZ6Mi2uWcxGqqngmZVqteyLYayMlJOHFc6lGohEjShUmUnJxK3dyfN+w3GTq9XOpw7IssyG2acJPdCCX2mNMLVuxreT3GmtX/+icXQ520Y9BncREEO2WQi7T8vk/vrr7hPmEDwD9+jdnO76cPuTd/LqKWjWJ+4nidbPMkPvX/Ay8HrDt6IIAiCUFdJksSEBhOY1X8WGknDvavu5aejP/29HH9Ed5i6ERw8LlcorgZaXx9CZ87AFBBAyuNPULh2bbUct7qp1Cq6jIumOLeCA6sSb7yDjQtt0gyNVse5/buVDqVaiARNqFR7Fs1Fa2dPi/5DlA7lju1flci5A1m0Hx5JSEPPqj9gbrx18umM4zB2FnR4/KYmn7ZUVJDy5FMULFqE1+OP4fvKy0iam2vpM1qMfHngS+5ffT86lY6ZA2YypckUVJL4aBAEQRDuTCOvRswZPIdeob344sAXPLzuYXLKci5v4BlhLR5Sr5t1js8VL4DZVOVxqd3cyHvqSRwaNiT1qacpXLmyyo+phIAod6Ja+3JwTRIFWTV7bjStnT0hTZpxbv+eWjGu7kbEVZhQaQoy0zm1fQtNe/fHwdlF6XDuSMLRbHYviSe6jS+xvYOr/oBpR+DnvlBeAPcsgwaDbmo3c3ExyVOmUrx+Pb6vvIL3o48i3URSB5BUmMTkFZOZdnQawyKHMXfwXBp7Nb6TdyEIgiAIf+Osc+ajLh/xWvvX2J+xn1FLR7En7YpiDw5ucNccaP8Y7PkBfh8JZXlVHpes1xP88884xMaS+uxzFCxZUuXHVELHkZGo1BLb5pxVOpQ7FtGyLYVZGeQk1/wWwRsRCZpQafavWIykkmg5cKjSodyRvPQS1v58HO9gZ7pPrH/TCc9tS9gGvw20dmW8b/VNV2o05eSQNPluSg8eJOCjj/CYOOGm9pNlmYVnFzJq6SgSixL5uOvHvNnxTfTamt0lVRAEQbBNkiQxOno0vw/4HWedM1PWTOHbQ99enjNNpYa+78DQb6zj0ab1gKwzVR6X2smRkGk/om/dmgv/9yL58+dX+TGrm6ObHa0GhpFwNIeEIzV7su56LVoD1IlqjiJBEypFeXExxzaspX7Hrjh71NyxSxVlJlZ8dxS1VkX/h5qg0VVx9cJTy2HmCHD2s1Zq9I65qd2MqakkTphIRXw8wd98jevgm2txKzQU8tzm53htx2s09mrMgiEL6BvW907egSAIgiDclBiPGGYPnM3giMF8d/g7Hlz7INllVyQNzSdae5FUFFm7/CdV/XgjlV5P8A/f49ixI2kvv0Len39W+TGrW7Mewbj76dk69ywmY80tGOLk4YlvvUjOHRAJmiDclMPrVmKsKKflwGFKh3LbZFlm3a8nKMwqo98DjXH2qOIpAg7MtM4D49fE2nLmGnRTu1WcO0fChImYcnII+fknnLp2van9UotTmbRiEhuSNvBkiyeZ1nsafo5+d/IOBEEQBOGW6LV63un0Dm92eJPDWYcZtWQUu9OuSMRC2lnHpek9rcVDTq2o8phU9vYEffM1Tt26kf7Gm+TOmFHlx/z/9u47Ouqia+D4d3az6b33QEiooVdBECxYedTX3rCBvWPXB0QUFRt2xa5gA8sjip0ivddAgFBCei+kb3bn/SNY0JRNsptN4H7O4RyzO+Uu/gjczMyd9mR0MTD64u6U5Vex5Zd0Z4fTJvGDhpG9dzeVpSXODsWhJEETbWapM7Plx4XE9h1AaJd4Z4fTalt/S+fgtgJGXphAZGKA4ybSur6E/re3Qfw4mPg/8Ay0qWvV9h2kXXEluq6OuLkf4zl4sE39tudv5/LvLye/Kp854+cwqe8kudtMCCGE05yfeD6fnP0Jvm6+3PDLDbyx9Y2/tjwGdKnfVRLaGz6/AjZ+6PB4DG5uRL/8Ej6nnUbuzKcofPddh8/ZnmJ6B9JtYAgbfzhIWWGVs8NptW5DhoPW7N+03tmhOJQkaKLNUlb+TnlxEUPPOd/ZobRaXloZq7/eR9f+wfQbZ9tKVqtYrXTb9379JdRJF8Jln4Gbt01dKzdt5tC112Lw9qbLJ/Nw72Hbdsjf0n7jup+uw8PFg7lnzmVo+NA2fAAhhBDCPhIDEvns7M84q+tZvL7ldW769aa/tjx6BcPVC+t/kLnwDlj2bP0POB1IuboS9cLz+J51FnnPPkfRJ584dL72NvLCBABWLUh1ciStF9olHu+g4GP+HJokaKJNtNZs+O5rgmPiiOs/yNnhtEpNVR0/vb0DTz9XTp7Yy3FFQaxW+PZ2YjL+B8NuhP97G1xcbepauX496ZMm4RIURNzcj3GNjW22j9aaj5I/4u6ld9M9oDvzzppHvH/nXeEUQghx7PE0eTLzxJlMHzmdzXmbuWjhRazPObI64uYNl38O/S6BJU/AovvA6tgzVMpkIvKZp/EeN47cGU9Q+v33Dp2vPfkGeTD4zDj2bc4nfWeRs8NpFaUU3QYNJW3bZupqa50djsNIgibaJG37FgoOHWTwOec7vtqhA2itWTo3hcNFNYy/Pgl3r+YvhW4Vq7X+J4Bb5nIw7hI48xkw2PbHr2LNGg7dcCMu4eHEfvQRpvDmz43VWeuYuXYmz254llNiT+Gd098hyKMd7nITQgghWkgpxf8l/h/zzpqHt8mbST9P4p3t79Tfd2U0wXlv1t8Nuv5tWHAtmKsdG4/JRNSLL+A5eDBZDzxI+fLlDp2vPQ04LRbfEA+Wf7EHS521+Q4dUPzgYZhrqknfud3ZoTiMJGiiTTYs/Aov/wB6jrKtUEVHs3NFFqkb8xj+n65EdPNzzCRWK3x/N2z+GMbcx8Eul9l0ATVA+YqVpN94E67RUcR99CGmsNBm+1SaK7lzyZ18tvszrulzDc+PfR4PF4+2fgohhBDCoXoE9uCzcz5jfNx4Xtr0Eo+veZw6a139DzTHPwHjn4Sd/4N5F9bfG+pABnd3ot94HbfuiWTcfgeVmzY7dL724mIyMvriRIpzKtmxLNPZ4bRKbJ/+uLi5HdPbHCVBE62Wn3aAtG2bGXjGBFxMDlp5cqDCzHKWf7GXmN6BDBof55hJtIZF98LGD+DEe2DcIzYnZ4eXLiXj5ptx7dqV2A8/xCW4+esL8irzuObHa1iRuYJHhz/KlCFTMCj5Yy6EEKJz8DJ5MWvMLCb1ncSCPQu4a8ldVJor698ceVv98YBDq+H9s6E8z6GxGH18iH37bUxhYaTfdBPVux1/N1t7iEsKIrpnABt+OEhtVZ2zw2kxF1dXonslkZ68zdmhOIz8y0202sbvv8HFzY1+p53p7FBazFxj4ae3d+Dm4cKp1/RGGRywPVNr+OEB2PAujLwDTplqe3L2229k3H4Hbt27E/fB+7gENl/lcWv+Vi797lIOlh3klZNf4ZKel7T1EwghhBDtTinFnYPu5NHhj7I8czmTfp5EYVVh/Zv9Lq4/l1aYCu+dASWOLRvvEhREzLvvYvDwIH3SJGrTO3eZeqj//T3h/G5Ul5vZ/MshZ4fTKtG9kijKTD9my+13ygRNKRWvlHpXKbXgyNfnKaXeVkp9rpQa7+z4jgflRYXsWrGMpLGn4eHt4+xwWuz3z/dQnFvJqdf1xtPXtkIdLaI1/PQwrHsLTrgNTnvc5uSs7MefyLjzLtx79yL2/fcw+vs32+frvV9z7Y/X4mZ0Y+5ZcxkTPaaNH0AIIYRwrkt6XsKLY19kb/FervrhKg6VHUkmEk6Fid9ARUF9klbg2KqErtFRxL77Drq2lkPXT6IuP9+h87WH0DhfEgaHsuXXQ1SU1jg7nBaL6Z0EQMauHU6OxDGaTdCUUu5KqXVKqa1KqWSl1PTWTqaUek8plaeU+tfvplLqDKXUbqVUqlLqwabG0Vrv11pf/7evv9FaTwZuAmTZoB1s/uk7tNXK4LPOdXYoLbZ7bQ4pq7IZcmYXYnradv9Yi2gNPz8Ka16H4TfV75u3MTkrXfgdmVOm4NGvH7HvvovR17fJ9marmZlrZzJ11VQGhw3ms3M+o3tAd3t8CiGEEMLpTo49mXdOf4fy2nKuXHQl2/KPbGuLHQHXfAd11fD+GZDt2O1ubgkJxMx5i7qCAg5NvgFLWZlD52sPw/8Tj7VOs2HRQWeH0mJh8Ym4uLmRvvM4TdCAGuBkrXV/YABwhlJqxN8bKKVClVI+/3gtoYGxPgDO+OeLSikj8BpwJtAbuEwp1Vsp1Vcp9d0/fjVVJeHRI+MIB6qtrmLrL4tIGDYC//AIZ4fTIiW5lSz9ZDcRCX4MPbuL/SfQuv6Os9WvwtDJcMbTNidnxZ9/Qdb99+M5aBCxb8/B6N30/WhF1UXc+MuNfJryKRN7T+SNU9/Az81BhU6EEEIIJ+kf0p+Pz/oYL5MX1/90PUvTl9a/EdEPrvsRjK7wwTlwaK1D4/Do35/oV16mZt8+0m+6GWtV573wGcA/zJPeJ0ayc3kWJbmVzg6nRYwuLkR273X8rqDpeuVHvjQd+fXPmwJPAr5RSrkBKKUmA680MNbvQEMXLwwDUo+sjNUCnwHnaq23a63P+cevf50IVfWeAX7QWm9q7jOJttmx5FdqKioY0skuprZYrPz8bjIuLgbGX98Hg9EBO3yXPAkrZ8OQ6+CsZ21Ozgrfe5+cadPwGjOamLfnYPDyarJ9SlEKl313GVvztjLzxJncN/Q+XAwudvgAQgghRMcT5xvH3LPmkuCfwJ1L7uSL3V/UvxGcWJ+keQXDx+fBvsUOjcN71Ciinp1F1ebNZN59D9psduh8jjbk7C4YXBRrv93v7FBaLKZXEgWHDlJ1uPOvZv6T0jbcyn5khWsjkAC8prV+oIE29wMjgfnAbcBpf0vs/t6uC/Cd1jrpb69dCJyhtZ505OurgOFa69saiScIeBI4DXgHqACuBtYDW7TWbzbQZwIwISoqavLcuXOb/cyiYdpqZccn72Ly8qLn+Zc7O5wWyduhyd+hiTlR4Rtt/6IgsWlfEH9gHtnhp7K7x63QSPXE8vJyvP9YHdMar+++w/v7RVQPGkTpddeCS9OJ1saKjcwrnIeXwYvJIZOJdWv+0moh/u6oZ1AIJ5BnULRWjbWG9wveJ7kqmXP8z2G873iUUphqS+i/dRqelRns7H0vBSEnNDlOW59Bj99/x/eTT6kaMZyyiRNtvtu0I8rdZqVgJ8SPV3gEdp47bcuzM9j9zWd0O+Nc/LsmOjucFhs3btxGrfWQht6z6UfuWmsLMEAp5Q98rZRK0lrv+EebWUqpz4A3gG4NJWf2orUupP682d+93EyfhcDCIUOGTB47dqyjQjvm7Vmzgk2HSzlj8q0kDh/p7HBsVpBxmPlfbCBxaBjjr+xj/wlWvQIH5kG/S4k473UiDMZGmy5dupSxY8eitSbv6Wco+n4Rfhf8Hz0ffxxlbLyf1ppXt7zKB2kfMDB0IC+MfYFgj+ZL7wvxT388g0I4izyDoi1Otp7M1JVT+W7/dwRGBnLvkHtRSsHok2DeRSTtnAXnvgYDGv9BcpufwbFjyQ8OpuDlV4jq3Yew++9r/VhOVju8jo8fXU3tIW/O/L+Bzg7HZnVmM/u+/wo/A8fc95MWpfta6xJgCQ2fIxsNJAFfA9NaGEcmEPO3r6OPvCY6EK01GxZ+jX9YBN2GDnd2ODazWKz89uEu3LxNjLnEAQU01r1dXxSk93n1fyE0kZz9QVss5EydStGHHxJw1VVEzJjRZHJWa6nloRUPMWfbHM5POJ93x78ryZkQQojjkslg4skTn+Tynpfz0c6PmLpqav2F1h4BcNU30HUMfHMLbPnEoXEE33wzAVdcQdF771H47rsOncuRXD1cGHJWFzJSiknf2dBJpI7JxWQiontPMo7BQiG2VHEMObJyhlLKg/pthSn/aDMQmAOcC1wLBCmlnmhBHOuBRKVUV6WUK3Ap8G0L+ot2kJO6h+zU3Qw6+1wMNiQhHcWmH9MoSC9n7OU9cPe284Xamz6qv4i6x1lwwTtgtGFR2mIh6777KJm/gOBbbibs4YdQTWyNKK0p5aZfb+L7/d9z+8DbmT5yOiZj57sYXAghhLAXgzLw4LAHubn/zXyT+g33LruXGksNuHnDZZ9B/En1Sdq2+Q6LQSlF2CMP43vWWeQ9+xwlX37lsLkcLWlMFD6B7qz6OhVtbf74U0cR3SuJvLT9VFc4bOOeU9iyghYBLFFKbaM+kfpFa/3dP9p4Ahdrrfdpra3ARCDtnwMppT4FVgM9lFIZSqnrAbTWddSfW/sJ2AV8obVObu2HEo6xffFPuLi50Xv0yc4OxWYFGeVsWHSQxKFhxA8Ise/g276Ab++ov4/log/AhqTJWl2N/5tvUbboB0Lvu5eQO+6o35bRiMzyTCb+MJHNeZt5avRT3NDvhibbCyGEEMcLpRS3DLiFB4c9yG+HfuPWX2+lwlwBJg+49FPociJ8fQPscFzipAwGIp9+Cq9Ro8ieOpXDix1bpMRRjCYDw//TlYL0clI3/qseX4cV0zsJtCYzZaezQ7ErW6o4btNaD9Ra99NaJ2mtH2+gzUqt9fa/fW3WWr/dQLvLtNYRWmuT1jpaa/3u395bpLXurrXuprV+si0fSthfbVUlKSt/p+fIMbh5ejo7HJvUb23ciZuni/23NiZ/A1/fWP/N/5K54OLWbBddW0vGbbfjumMH4Y9NI+j665tsn1yQzBXfX0F+VT5zTpvDOfHn2Cl4IYQQ4thxRa8rmHniTDbkbmDST5MoqS4BV8/6lbSY4fDlJNi10GHzK1dXol9+Cfc+fci8+x4q16932FyOlDgsnKAob9b8bx+WOquzw7FJeGIPjC4ux1y5/c5bcka0q5RVyzHXVNP35PHODsVmf21t7GnfrY27f4Avr4foYfXf/E0ezXbRVitZDz1MxYoVlF15BQGXXtpk+2Xpy7j2p2txM7ox98y5DA0faq/ohRBCiGPOhG4TeHHsi+wp3sPVP15NTkVO/XbHK+ZD1CCYf239398OYvDyIuatNzFFRZF+y61Up6Q036mDMRgUI86Lp6ygmuTlWc4OxyYmVzfCE3qQsXN78407EUnQhE22L/6JoOhYIhJ7OjsUmxy1tXGgHbc2pv4GX0yE8H5wxRf13/ybobUm96mnKfv+e0LuuYfqUaOabP9ZymfcseQOuvp1Zd7Z84j3j7dX9EIIIcQxa1zsON487U1yK3OZ+MNE9pfuBzcfuPJLCO9b//f33l8cNr9LQACx77yNwcuLQ5MnY87sfPXu4pKCiEz0Z8OiA9RW1zk7HJvE9E4id/8+aio712XbTZEETTQrP+0AOal76Hvy6Z3i/NPftzaOvsSO92JkbYbPr4LgHvXf7N39bOpW+NYcij/+mMCrJxI0eVKj7bTWvLzpZZ5c+yRjosbw/unvS6VGIYQQogWGhg/lvdPfo8ZSw8QfJrIlb0v939dXfQWhveCzK+p/2OogpshIYt95G11dQ/pNN2Mp71zFK5RSnPB/3ag6bGbrb+nODscm0b36orWVrN3Hzjk0SdBEs7Yv/hmjiwu9x4xzdig22fzTX1sbPbxd7TNo8UGYdzF4BtUnZ56BtnWbP5/82bPxnTCB0AceaDTB1Vrz4qYXeXv721yQeAGzx83G09Q5zvoJIYQQHUnvoN7MPXMufq5+TP55MksOLfmrBH9wd/jscvyLtzlsfreEBKJfmk3N/v1k3nMPuq5zrET9IbyrH137B7Pll0NUV5idHU6zIrv3xGA0kn4MnUOTBE00yVxbw87li0kYNhIPH19nh9Osgoxy1n9/kMQhofbb2lhZBHMvBEsNXLkAfMJs6nb411/JmfYYXqNHEznzyUZL6WuteWHjC7y/430u6XEJU0+YirETXWMghBBCdDQxvjF8dOZHJPgncNfSu1iwZ0H9D1cnfgMBXem7/QlIW+Ww+b1GjiR82lQqfl9O7lNPO2weRxk2IZ7aGgubfznk7FCaZXJ3J6xb4jF1Dk0SNNGk1LWrqKmooN8ppzs7lGZZLVYWf7SrfmvjpXaq2miuhs8uh5K0+pK9IT1s6laxbh2Z90zBvW8S0S/NRpkaLlKitebZDc/yQfIHXNbzMh4Z/ggGJX8shRBCiLYK8gji3dPfZWTkSKavns7rW15HewbB1d9S4xYM8y6CdMdVXAy4+GICr7uO4nnzKPp4rsPmcYTgaG8SB4eybXE6lWW1zg6nWTG9ksjdn4q5utrZodiF/EtQNGn74p/xCwsnpndfZ4fSrC2/ppN/6DBjLu1hn62NVit8cxMcWg3nvQFdmi7u8YfqlBQybrkVU0wMMW++iaGRawm01sxaP4uPd37MFb2u4KFhD3WKM35CCCFEZ+Fp8uTlk1/m3G7n8sbWN5i+ejp1noFsGTADvEJg7gWQtcVh84dOuQfvU08h96mnOLx0qcPmcYSh53TFYray6ad/XW3c4UT37ovVYiFzzy5nh2IXkqCJRhVnZ5K+czt9x41vdHteR1GSW8m67w4QPyCEhMGh9hn016mQ/DWc9jj0vdCmLrXp6RyaNBmDtzex77yNS0BAg+201jy17inm7prLVb2v4oGhjZ9PE0IIIUTrmQwmZoyaweS+k/ly75fcveRuyk0+cPXC+gIiH58HuckOmVsZjUTNmoV7z55k3TOlU5XfDwj3oscJEexYlkl5ccdemYrq0QtlMJCx89g4h9ax/9UtnGr7kl9QBgN9xp7q7FCapK2aJXNTMLoYGGOvrY1r58CqV2DoZBh5h01d6vLzOXT9JDCbiX3nbUwREQ22s2orT659kk9TPuXq3ldz35D7JDkTQgghHEgpxR2D7uCR4Y+wLGMZr+a9SoVXIFz9Lbh4wIf/gfzdDpnb4OlJ9BtvYPDxIf2mmzHn5TlkHkcYelYXtNZs+KFjr6K5engS1rUbGbuOjXNokqCJBlnq6khe+ivxg4bhHWBbxUJn2bkyi6y9JYy6IAEvf7e2D7jrO/jhfuhxFpz5DNiQPFlKSzk0aTJ1BQXEvPUmbgkJDbazaitfFH3B57s/59qka5kyZIokZ0IIIUQ7ubTnpTx30nOk1aRx++LbqfaNqF9JU4b6JK1wn0PmNYWFEvPmG1jKysi4+RasneTOLt9gD3qfGMmuFVmU5lc5O5wmRffuS07qHsy1Nc4Opc0kQRMN2r9pHZWlJfQ9ebyzQ2lSeXENq75MJaqHP71GNbxi1SLp6+HL6yFqEFzwLthQTdFaWUn6TTdTs38/0a+8jMeAAQ2201rzxJonWFm+kuuTrufuQXdLciaEEEK0s/FdxnNV8FVsyNnAPUvvwRwQV7+SZjXDhxPqr9ZxAPdevYh6/jmqd+0i64EH0FarQ+axtyFndkEZFRu+P+DsUJoU3SsJS10d2XscsxLaniRBEw3avvhnvAOD6DpgsLNDaZTWmt8/243Fohl7Rc+2JzvFafDppeATDpd9Dq7N30Oma2vJuPMuqrZuJerZZ/Ee1XAhEa01z6x/hvl75nOa72ncOehOSc6EEEIIJxniNYSpJ0xleeZyHlj+AHXBiTDxf1BbUb+SVprhkHl9xo0j7IH7OfzLrxS9/75D5rA3L383+p4Uxe61ORTnVDg7nEZF9ewNSh0T2xwlQRP/UlaQz8Etm0gaeyoGY8e9j2vfpnwObC1g2ISu+Ie28VLnmsP1yZnFDFcsAO/m71DTFgtZDz5IxfLlhE9/DN8zGr6KQGvN7E2zmbdrHlf2upIJ/hMkORNCCCGc7MLuF3LfkPv4Je0Xpq2ahjWsD1z1FVQV1ydpFQUOmTdg4kR8xo8n78XZVG1z3IXZ9jTo9DiMrkbWLey4q2juXt6ExsUfE4VCJEET/5K89Fc0mqRxHXd7Y3W5md8/201IrA8DTolp22BWC3w5qf5w8MUfQHBis1201uTMmEHZoh8IvXcKARdd1GjbN7e+yXs73uOSHpdw/9D7JTkTQgghOoiJfSZy64Bb+Xbft8xcOxMdOQiumA9lmfDJJVBr/7NiSikiZjyOS2gImfdMwXL4sN3nsDcPH1f6nxxN6sY8CjI6brzRvZPI3rubOrPZ2aG0iSRo4ihWq4XtS34mru8A/ELDnB1Oo1Yu2Et1RR3jruqJwdjGx/jXx2DPj/UFQbqdbFOX/NkvUfLZ5wRNnkTQpEmNtntvx3u8vvV1zks4j4eHPyzJmRBCCNHB3NjvRq7tcy2f7/6cFze9iI4ZDhe8A5kbYcF1YKmz+5xGPz+innsec3Y2OdOmobW2+xz2NvC0WNw8XVj7bcddRYvunUSduZac1M59Dk0SNHGUQ9u2cLggn74nN7xdryM4tLOQlDU5DBwfS0iMT9sG2zwPVr0MQ66HYZNt6lL43vsUvvUW/hddRMg99zTabt6ueby48UXO7Homj53wGAYlf9yEEEKIjkYpxd2D7+aSHpfw/o73mbNtDvSaAGc9C3t+gEX3ggMSKM9BAwm5/XbKFv1A6Zdf2n18e3PzNDHg1FgObisg50Cps8NpUHTPPgCdfpuj/ItRHGXb4p/w8PGl25Dhzg6lQbXVdSydtxv/ME+Gnt2lbYOlrYaFd0LXk+pXz2xQ8tXX5M2ahc/ppxP+2LRGV8Tm75nP0+ue5pTYU3jyxCcx2lANUgghhBDOoZTi4eEP859u/+HVLa/yUfJH9T+4HXUXbHwflj/vkHmDJk/C84QR5DzxJDX7HFPi3576nRyNu7eJdd/ud3YoDfLw8SU4tgvpuyRBE8eIytIS9m1YS++TTsHFZHJ2OA1a9+0BDhdWM+7KnriY2pD0FKfB51eAfyxc/CEYm/+8lZs2kT1tGp4njCDy2VmoRgqofLvvW2asnsHoqNE8O+ZZTIaO+XsphBBCiL8YlIHpI6dzWtxpPLvhWb7Y/QWcMg36XgyLZ8CWT+0+pzIaiXzmGQyenmTefQ/W6mq7z2FPru4uDD4jjvRdxWTuKXZ2OA2K7pVE1p5dWOrsvzW1vUiCJv60a8UyrBYLfced5uxQGlSQUc62Jen0GRNFZKJ/6wf6o2KjtQ4u/xw8AprtYs7NI+POOzFFRBA9ezYGV9cG2/108Cf+u/K/DI8YzovjXsRkQ+InhBBCiI7BxeDCM6Of4aTok5ixZgZf7/sfnPta/W6bb2+D1N/sPqcpNJTIp5+iZs8e8mbNsvv49pY0JgoPHxNbfk13digNiumdRF1NDbn79zo7lFaTBE38Kfn33wjvlkhQdKyzQ/kXrTUrF+zF1cOFEefGt36gv1dsvOhDmyo2WmtrybzjDqwVlUS/+gpGP78G263PWc9Dyx9iQMgAXhr3Em5Gt9bHKYQQQginMBlNPD/2eUZGjmTaqmksTPsJLvkYQnrCFxMhe6vd5/QeM4bAa6+l+JNPKfv5Z7uPb08urkb6jI7i4PYCSvPtX+WyraJ7JQGQ3onPoUmCJgDITztA/sH99B5jWxXD9nZwWwEZKcUMm9AVd682rEodVbFxnE1dcmc8QdXWrUTOnIl79+4NttlXso87l9xJjE8ML5/8Mp6mNt7LJoQQQgincTO68dK4lxgaPpRHVz7KTzlr6u9JdfeHeRfVH5Wws9C778I9KYnsR/+LOTPT7uPbU9JJURgMim1LHHOhd1t4+vkTGBVDZkqys0NpNUnQBADJvy/GYHSh56iTnB3Kv1jqrKxckEpAuCd9xkS1fqCURUcqNl5nc8XG4s+/oGT+fIImT270Iur8ynxu/vVm3IxuvHHqG/i5NbzCJoQQQojOw93FnVdOfoUBIQN48PcHWVyyC65cAHXVMO/C+gut7Ui5uhL1wvNgsZB5733oDnyGysvPjYTBoexalU1tdceLMyKhB7n7UzvF9QUNkQRNYLVY2LV8CfGDhuLh4+vscP5l+9IMSvOrGHVhIsbW3nlWkg7f3AwR/eGMp23qUrlpMzlPPIHX6NGE3HVnw23Mldz6262U1JTw2imvEekd2br4hBBCCNHheJo8ee2U1+gd1Jspy6bwe20+XPoJFB2A+deAxb4XIrvGxhI+fTpVmzdT8Pobdh3b3vqNi8FcbSFldbazQ/mXsG4JVJaWcLiwwNmhtIokaIKD2zZRWVpC75M63vbGqsO1rP/+ILF9AolLCmrdIBZz/UWTVgtc+D64NH82rL4oyB2YIiKIeu7ZBis21lnrmLJsCnuK9/D8Sc/TO6h36+ITQgghRIfl7erNG6e9QaJ/IncvuZtVrgaY8BLsXwo/3G/3O9L8zjkbv3PPpeDNN6ncuNGuY9tTWFdfwrr6sm1JBtrasVaqwuPrawzk7uuchUIkQRPsXLYYdx9f4gcOcXYo/7J24QHMNRZGXdh8MY9GLX4CMtbBhNkQ1K3Z5tbaWjLvvLPJoiBaa55Y8wQrMlfw6IhHGR09uvXxCSGEEKJD83X1Zc5pc+ji14U7F9/J+oju9XekbXgP1r5l9/nC/vtfTFFRZN53H5ayMruPby/9To6mNK+KtORCZ4dylJC4rhiMRnI6aSVHSdCOc9UV5aRuWEPPkWMwunSskvCFmeXsXJ5J0klRBEZ4tW6Qvb/Cytkw+Broe6FNXXKfeJKqLVuaLAry9va3+XLvl0zuO5kLu9s2rhBCCCE6L393f+acNoco7yhu++029gy6HHqeAz89BHt/setcRm8vop5/jrq8fHIee6zDnqXqNigULz/XDlcsxMXVleCYLuTuT3V2KK0iCdpxbs/qFVjMZvqcdIqzQzmK1poV8+vL6g87u2vrBinLhq9vgNA+Np87K/7iC0q++KLJoiAL9y3klc2vMCF+ArcPvL11sQkhhBCi0wnyCOKt097Cy+TFHUvvpOisZyAsCeZfC7k77TqXR79+hNx2G2WLfqD0m//ZdWx7MRoNJJ0UTfrOIoqyK5wdzlHCuiWQu29vh01umyIJ2nEu+ffFBEXHEhaf4OxQjnJweyEZKcUMPacr7t6tWNmz1NXfd2augos+AJNHs12qU1LIfeJJvE48sdGiIGuy1zB15VSGhw9n+sjpKKVaHpsQQgghOq0wrzBeGvcS+ZX53LPqUcyXfAyuXvDpJVCeb9e5giZPwnPoUHJnzKA2zf6l/e2hz+hIjC4GtnewVbTw+ESqK8opzc1xdigtJgnacaw4J4us3TvpPebkDpVo1JfV30tAuCdJJ7WyrP7vsyBtBZz9AoQ0vE3x76yVlWTefQ9GPz8iZz3TYFGQvcV7uXvJ3XTx68KL417EZOxYW0KFEEII0T76hvTl8VGPszF3IzNTPkRf+kl9cvb5FWCutts8ymgkctYzYDLVl94327dqpD14+LiSOCyMlDXZVFd0nPjCutXXL+iM59AkQTuO7fx9MShFr9FjnR3KUbYvzaA0rw1l9fcvg2WzYMAVMOAym7rkPPkktQcPEvnsLFwCA//1fn5lPrf+divuLu68fsrr+Lj6tDwuIYQQQhwzzo4/m+uTrmfBngV8eng3nP8mpK+FhXfYtbKjKSKCiOnTqd6+nfxXX7PbuPbUb1w0dbVWdq3qOCX3g2NiMZpMnfIcmiRoxylttbLz9yXE9R2AT2Cws8P5U1V5G8vql+fBV5MhOBHOetamLqXffU/pl18RdOMNeI0Y8a/3K82V3Lb4NkpqSnj1lFeJ8I5oeVxCCCGEOObcMegOxkaPZdb6WawJDIeTH4Vtn8Py5+w6j+8Zp+N34QUUzplDxdp1dh3bHkJifIhM9Gf70gysHaTkvtHFREhc105Zal8StONURkoyZfm59BnTse4+W/ftkbL6F7SirL7VCl/fCNWl9efOXJuv/Fh76BA506bhMXAgIbfd9q/3LVYLDyx/gJSiFGaNmUWfoD4tj0sIIYQQxySDMvD0mKfp6teVKUunkNb/Iuh3Sf0VP3au7Bj+0EO4xsWR9cADWEpK7Dq2PfQbF83hwmoObus4l0OHxSeSeyAVbbU6O5QWkQTtOJW87DdM7h4kDDvB2aH8qSirguTlmSSNjiQwshVl9de+CfsWwxlPQVjziZSurSVzyr1gNNZfRu3i8q82z214jqXpS3lg6AOMjRnb8piEEEIIcUzzMnnx8skvY1AGbl9yB4dPfxLC+sJXN0Cp/QpnGLy8iHzuOeoKC8meOq3DVSfs2j8Y70A3ti1Od3YofwrvlkhtVRVF2ZnODqVFJEE7DplrqtmzZiXdR4zC5Obu7HD+tPrrVExuRoZOaEVZ/dyd8Otj0OMsGHytTV3yXnqJ6u3biZgxA1PUv4uRzNs1j7m75nJlryu5vNflLY9JCCGEEMeFGJ8YXhj7Aull6dy/eiqWC98FSy0suA4s9iuc4ZHUh9C77uTwzz9T9v0iu41rDwajgb5jo8ncU0JBRrmzwwEg/EiV8s52Dk0StONQ6rrVmKurOtTdZxkpRRzcXsjgM7vg4e3ass51NfXnztx9YcLLYENFyvLlKyh69z38L70E39PH/+v9JYeW8My6Zzg55mTuHXJvy+IRQgghxHFnaPhQHhr+ECsyVzA77TuY8FJ90ZDFM+w6T+A11+CelETuM09jKSuz69ht1XtUJC4mA9uWdIxVtMCoGFzc3DrdOTRJ0I5Dyb8vxjckjOieHeM8lbZqVn6ZinegG/1Ojm75AItnQO4OOPc18A5ptnldfj5ZDz6IW2IiYQ8++K/3kwuTeWD5A/QJ6sPTY57GaPh3yX0hhBBCiH+6uMfFXNLjEj5I/oCffHxgyHWw8iXY/aPd5lBGI+GPPYalsIj82S/ZbVx7cPcy0WNEOHvW5VJVXuvscDAYjYR26UaOJGiiIztcWEDa9i30HjMOZegY//v3rM+lIL2cEed2w8XUwmTowO+w6lUYcj10P73Z5tpqJeuBB7BWVBD1wvMY3I/e4plVnsVtv91GgFsAr5zyCh4uzV9wLYQQQgjxhweGPkC/4H5MWzWNQyNvgfB+8M1NUGK/VSWPpD4EXH45xZ9+StX2HXYb1x76jovGYrayc0WWs0MB6s+h5R3cj9VicXYoNusY/0IX7WbXiqWgNb07SPXGuloLa77ZR0isD92HhrWsc1UxfH0TBHWD8U/Y1KXw3XepWLWasIcfwi3x6EqRFeYKbv3tVmrqanj91NcJ9ug41w8IIYQQonMwGU08e9KzGJWRe1c+Qs3/zQFLHSy4Furst6oUcucdGIODyHnsMXQHSj6CIr2JTPRn16rsDlHIJDw+gbraGgozO8a2S1tIgnYc0VqTvOw3Irv3IiA80tnhALBtSQblxTWMvCABZWj+7NhRvr8XynPh/94GV89mm1du3kz+7JfwOeMM/C+66Kj3rNrKw8sfZn/pfp4b+xzd/Lu1LBYhhBBCiCMivSN58sQn2VW0i2f3fwnnvgIZ6+G36Xabw+jjQ/hDD1GdnEzxp5/ZbVx76DUygtK8KrL3lTo7FMK61f9AvjOdQ5ME7TiSd2AfRZnpHaY4SNXhWjb+cJAu/YKJ7hHQss7b5sOOBTD2QYga1GxzS2kpmVOmYIqIIGLG46h/FBJ5c+ubLE5fzL1D7mVk5MiWxSKEEEII8Q9jY8ZyTZ9r+Hz35/zo6QFDJ8PqVyHFftUXfc48E6+RI8mfPRtzXp7dxm2rboNCMbkZ2bUq29mhEBAeiauHZ6c6hyYJ2nFk77pVKIOBxOEdIwFZv+gg5lorJ5zfwtWqknT4fgrEDIdRdzfbXGtN1iOPUJdfQNSLL2D08Tnq/V/SfuGNrW9wbrdzubLXlS2LRQghhBCiEXcMuoP+If15bPVjpJ1wI0QMqD+PVpxml/GVUoRP/S+6tpa8p5+xy5j2YHIzkjgklNSNedRW1zk1FmUwEBafQO5+SdBEB5S6fg3RvZLw8PF1diiU5FaSvCyT3idGEhjRgkuprZb6c2faAue/BcZ/Xy79T8Vz51H+62+E3nMPHn37HvXe7qLdPLLiEfqF9GPqCVP/tbImhBBCCNFaJoOJZ8c8i4vBhSkrHqo/j6ax63k01y5dCLrhBsoWLaJ85Uq7jGkPvUZFUldjIXWj81f2wuITyE87gKXOfnfSOZIkaMeJoqxMCjMOkTB0hLNDAWD1N/swmgwMO6eFl1KvfhXSVsCZsyCw+b5VycnkzZqF99ixBF5z9VHvFVcXc+eSO/Ex+TB77GxcjS28f00IIYQQohkR3hHMPHEmu4t380zq53Duq5C5EZbOtNscQZMnYYqLJffxGVhrauw2bluEdfUlINyTXSudv80xvFsilro6Cg7ZZ+XS0SRBO07s27AGgIQhzk/QslJL2L85n0Gnx+Lp24KkKH8PLH4Cek2AAZc329xSXkHmPfdgDAwk4qmZR62Oma1mpiybQn5lPi+d/BIhns3fnyaEEEII0RpjosdwbdK1zN8zn0XuLjDoalgxGw6usMv4Bjc3wqdOpTYtjcK337HLmG2llKLXyEhy9pdSnFPh1FjC4o8UCtmf6tQ4bCUJ2nEidf0aQrt0wzck1KlxaK1Z9WUqXn6u9D811vaOVit8dxeYPOHsF6CZrYhaa3KmTcOcnkHU88/hEnB0EZJZ62axPmc9j418jKTgpFZ8EiGEEEII290+8HYGhAxg+urpHBh5EwTGw1c31l8bZAfeo0bhe9ZZFM6ZQ21ax1gp6jEiHGVQTi8W4hcahru3Dzn79jg1DltJgnYcqCgpJmtvSofY3pi6MY/cA2UMPzcek2sLLqXeMhfSVsL4GeDdfJJZ+uWXlH3/PSG334bnkCFHvbdgzwI+2/0ZV/e+mgndJrT0IwghhBBCtJjJUH8/mqvRlXtX/Zfq816D8hz47h6w031hoQ8+gHJ1JefxGR3iDjJPX1e69A0iZU0OFovVaXEopQiLTyBHVtBER7Fv41rQ2ukJmqXOyppv9hEU5U2PERG2dyzPh5//C3GjYOBVzTav2buXnCeexPOEEQTdcMNR723K3cSTa59kVOQo7h7cfAVIIYQQQgh7CfcKZ+aJM9lTvIcn0xfB2Icg+SvY9rldxjeFhhJy111UrFzJ4R9+sMuYbdVrZARVZbUcSi5yahzh3RIpTE/DXNsxzug1RRK040Dq+jX4hYUTHNvFqXHsWpVNWUE1J5zfDUNLLqX+6SEwV8I5s5vd2mitqiLj7rsxeHkRNWsWyvjXKl1xdTFTlk0hyjuKZ8Y8g9HQghU8IYQQQgg7GB09mhv63cA3qd/wVVgXiB0J398LRQfsMn7AZZfi3qcPuU89jaW83C5jtkVsUhAevq7sWpnl1DjC4hOwWiwUpB10ahy2kATtGFdbVcmh7VtIGDLCqSXk68wWNiw6SHi8H7F9Am3vuPdX2D4fRk+BkO7NNs+dOZPaffuJnPUMLiF/Ff7QWjNjzQxKakp4/qTn8XPza83HEEIIIYRos1v638KIiBE8ue4pdp58HygDfHUDWNp+Z5gyGgl/bBp1BQXkv/SyHaJtG6PRQM/h4aRtL6SyzD5XC7TGH4VCOsM5NEnQjnEHtmzCUlfn9O2NO1dkUVFSw/D/dLU9UaythO/vgeDucGLz2xHLly+nZP4CgiZdj/eoUUe9993+7/gl7RduG3AbPQJ7tOYjCCGEEELYhdFg5JkxzxDgHsA9G2dResaTkLEOlj9vl/E9+vbF/9JLKJ43j+qdO+0yZlv0GhWB1arZvSbHaTH4BAXj6effKSo5SoJ2jEtdvxoPH18ie/RyWgzmWgsbf0gjMtGfqB4BzXf4w7KnoSStfmuji1uTTS3lFWRPm4ZrfDzBt99+1HtZ5VnMXDuTQaGDuKbPNS3/AEIIIYQQdhboHshzJz1HbkUujxatw5p0ESx7BtLX22X80LvvxhgQQPb06Wir8wp0AASEexEe78euVVlOK16ilCK8WyI5+/Y6Zf6WkATtGGapM3Ng8wa6DRmOwYnnrZJ/z6SyrLZlq2fZ22DVqzBoInQZ1Wzz/NmzqcvOIeKJGRhc/7pbzaqtPLryUazaypMnPinnzoQQQgjRYQwIHcC9Q+9lacZS3osfAL5R8NUkqDnc5rGNvr6EPXA/1Vu3UfLF/LYH20a9RkVQnFNJ7oEyp8UQFp9AUWYGtdVVTovBFpKgHcPSd+6gprLCqdsba6vr2PRTGtE9A4hMtHH1zGqBhXeCZyCc9nizzSs3baZ43jwCrrgCz0GDjnrv450fsz5nPQ8Oe5Bon+jWfAQhhBBCCIe5vOflnNHlDF7Z8Tbrxt0DJYfghwfsMrbvhAl4Dh9O3gsvUFdYaJcxWythcCgurgan3okWFp+I1lbyDuxzWgy2kATtGJa6fg0ubm7E9h3gtBi2L82g6rCZ4f+Jt73T+ncgaxOc8TR4NJ3UWWtqyH70UVwiwgm9+66j3ttbvJeXNr3EuJhxnJdwXsuDF0IIIYRwMKUU00dOJ843jvt2f0DuCTfDlnmw81u7jB0+bSrWqiryZj1rh2hbz9XdhYTBoezdkIu5xuKUGMK71RcK6ejn0CRBO0Zpq5V9G9bQtf9gTK5Nn99ylNqqOjb/coi4pCDC422smliaAb89Dt1OgaQLmm1e8Oab1O7fT8T06Ri8vP6a21LLQ8sfwsfVh2knTHNqBUshhBBCiKZ4mjx5ceyLVNVVcV9dOuaIfvDd3fV3wbaRW3w8QdddR+n//kfFunV2iLb1eo2MxFxtYd/mPKfM7+UfgHdQcIc/hyYJ2jEqd38q5UWFTt3euHVxOjUVdQyb0NX2Tovur9/ieM4Lzd55Vr17N4Vvv4PfuefiPXr0Ue+9tuU1dhfvZvrI6QR5BLUmfCGEEEKIdtPNvxuPnfAYm/O38GKPUVBTBt/fDXYoqhF8042YoqLImf44utZ5pe4jEvzwC/Vg10rnbXMMj0+QFTThHKkb1qAMBroOGuqU+WsqzWz5NZ2u/YMJjfO1rdPuH2H39zD2QQjo0mRTXVdH9iOPYvT1JfTBo/dpb8rdxPs73ueCxAsYGzO2dR9ACCGEEKKdnRV/Fpf1vIyP077n92FXwa6FsH1Bm8c1eHgQ9ugj1O7bR+EHH9oh0tZRStFrZARZe0soyat0Sgxh8YkUZ2dSXeH8S7wbIwnaMSp1/Rpieifh4e3jlPm3/JpObVULVs/M1fDjgxDcA064tdnmRR9+RPWOHYT/91FcAv46p1ZeW87DKx4myjuK+4be19rwhRBCCCGc4t4h95Lgn8D0sq0cjh4Mi6ZAWdtXnHzGjcP71FMoeP11ajMy7RBp6/QcEYFSkLLaOatof5xD68iFQiRBOwYVZWVSmHGIbkNOcMr81eVmti5Op9ugEIKjbUwQV70CxQfgzGfAaGqyaW1aGvmvvIL3Kafgc8YZR703a/0ssiuymTl6Jl4mr0ZGEEIIIYTomFyNrswYNYOCqgKei+8PdbWw8A67bHUMf/hhUIrcmTPtEGnrePm7Ed0rkL3rc51yJ1pYfAJAhz6HJgnaMWjfhjUAJAwd7pT5N/9yCHONhaHn2Lh6VnIIlj8Pvc+FbuOabKq1Jvu/U1EmE+FTpx5V/GPJoSV8nfo11yVdx8DQgW35CEIIIYQQTpMUnMQ1fa7hq/RfWXXCdbD3Z9j8cZvHNUVGEnLbrZQvXszhJUvsEGnrJA4Jo6ygmtyD7X8nmoePL36hYeRKgibaU+r6NYR27YZvcGi7z11ZVsu2JekkDgkjKNLbtk4/PVJfEGT8k802LZk/n8p16wi9715MYX99vqLqIh5b/Rg9AnpwS/9bWhu+EEIIIUSHcMuAW+jq15VpResp7zIKfny4/ofabRQ4cSKuXbqQ9+xz6Lo6O0TacvEDQzC6GNi7Ptcp84fEdaUgo+2/l44iCdoxpqKkmKy9KU6r3rj55zQsZitDz+5iW4d9i2HXtzB6CvjHNNnUnJdH3rPP4Tl8OP4XXfTn61prHl/9OIdrDzNz9ExMzWyRFEIIIYTo6NyMbswYNYO8qjxe6NIH0PC/W8FqbdO4ymQiZMo91O7fT8mCL+0TbAu5ebgQlxRE6oY8rNb23+YYGBVDSU42FiclqM2RBO0Ys2/jWtCahKHtf/6ssqyW7csy6T48nIBwG85/1dXWl9UPjIeRtzfbPHfmU+iaGiKmP3bU1saF+xfy26HfuH3g7XQP6N6WjyCEEEII0WH0D+nPVb2uYn7aj6wZeQMc+B3Wv9PmcX1OPRWPwYPJf/VVLOUVdoi05RKHhlFZVkvmnuJ2nzswMhqrpY7SPOes4DVHErRjTOr6NfiFhRMcE9fuc+9ckYnFbGXwGTbOvfYNKNwLZzwDLk1fpn14yRIO//gjwbfcgmuXLn++nl2ezVNrn2JQ6CAm9p7YhuiFEEIIITqe2wbeRhffLjxWuIrK+HHw6zQobFsFQqUUYfffh6WggKL33rNTpC3TpW8QJnejU7Y5BkZFA1CUmd7uc9tCErRjSG1VJYe2byFhyIijVpjag8ViZfuyTGJ7B9q2elaWBctmQfczofv4JptaKyrImTEDt8QEgq679q/XtZX/rvwvFm3hiROfwGgwtvVjCCGEEEJ0KO4u7jw+6nGyyrN5sWvv+mrX39wMVkubxvXo3x+fM8+g8P33Mefm2Sla27m4GonvH8L+zflYzG3bttlSgZFHErSsjHad11aSoB1DDm7bjKWujoQh7X/+bP+mfCpLa+k7Ltq2Dr9MBYsZzniq2ab5L79CXVY24dMfR7m6/vn6pymfsjZnLfcPvZ8Yn6bPrwkhhBBCdFYDQwdyRa8r+Gz/QtafeCukr4X177Z53NB77kHX1ZH/yst2iLLlEoeFUVNZx6Gdhe06r5unF14BgRRlSoJmN0qpeKXUu0qpBUe+Pk8p9bZS6nOlVNPLMcewtK2bcfXwIKJ7z3afe9uSDHxDPIjrE9R844MrYPt8OPEuCGy6FH/VjmSKPv4Y/8suxXPQX6Xz95fu58WNLzImegwXJF7QxuiFEEIIITq2OwbdQYxPDFNzl1LZdQwsngGHc9o0pmtMDIGXX0bpV19TvWePnSK1XXTPANy9TexxxjbHyGiKsjrpFkelVIxSaolSaqdSKlkpdWdrJ1NKvaeUylNK7WjgvTOUUruVUqlKqQebGkdrvV9rff3fvv5Gaz0ZuAm4pLXxdXZp2zcT06cfRheXdp03L62MnP2l9BsbjTI0s7XSUgeL7gO/WBh1V5NNdV0d2VP/i0tQEKH33PPn62armYeXP4yHiwfTR05v9+2cQgghhBDtzcPFg8dHPk5GeQYvd0mCuhr46eE2jxt0000YvLzIe+45O0TZMkajgYRBoRzcWkBtdftWVKxP0DKccll2c2xZQasDpmitewMjgFuVUr3/3kApFaqU8vnHawkNjPUBcMY/X1RKGYHXgDOB3sBlSqneSqm+Sqnv/vGrqcu9Hj0yznGnJCeb0rxc4voOaPe5ty3JwORmpOfIiOYbr38H8nbCGTPB1bPJpkUffUzNzl2EPfooRp+/Hq93tr1DcmEy/x3xX4I9gtsavhBCCCFEpzAkfAiX9byMTw5+z6YhV8COL+uvLGoDl4AAgm+6iYrfl1OxerWdIrVd4tAw6sxWDm4raNd5A6OiqamooLK0pF3ntUWzSy1a62wg+8h/H1ZK7QKigJ1/a3YScJNS6iytdY1SajLwf9QnXH8f63elVJcGphkGpGqt9wMopT4DztVaPwWc01yMqn4J5WngB631pkbaTAAmREVFsXTp0uaG7HTyk7cAkFtlbtfPV1et2bNOE9ANVq9d0WRbU20Zw9c+TlnAALbleEPu0kbbGgoKCZ49m9p+fdnkaoIjn+lQzSHezHmTIV5DcD3oytKDjY/RUZWXlx+Tz6DoPOQZFM4mz6Bwts78DA62DuYn40/cX7SV+R4RuC24lQ1DXsJqdG2+c2NiYwgODGTf1KkUPfQQGNrvFJTWGpMnrP5xJ1mVKe02b1lBEQCLF32HT2THqmXQor1wR5KrgcDav7+utZ6vlOoKfK6Umg9cB5zWgqGjgL9vAs0AhjcRRxDwJDBQKfUQUAGcCvgppRK01m/+s4/WeiGwcMiQIZPHjh3bgtA6h283rsInKITTzzu/Xbf8bVh0AG09wBlXDG++euNPj4C1isDL3mJsaOPn5LTWpN94I5UuLvSZPRtTZCQAZouZFxe+SLBnMLMnzMbPzc+eH6XdLF26lGPxGRSdhzyDwtnkGRTO1tmfQZ9MH2789UY+HnIWdyx/lzHGTTC2yRNCzSqtriHrvvsYUFaG/3nn2SdQG7kVpbL1t3RGDBmFu7epXeYsK8hj73cLiA0Jpn8HexZsTo+VUt7Al8BdWuuyf76vtZ4FVANvAP/RWpfbLcp/z1Wotb5Ja91Na/2U1vplrfXgI6/9Kzk71lmtFg4lbyWu34B2Tc5aVFq/JB3WzYH+l0MTyRnA4R9+oOL35YTedeefyRnAvF3z2F+6n6kjpnba5EwIIYQQoq1GRo3k3G7n8l7mYlJ6nQnLX2jz3Wi+Z5+Fe58+5L/0MtbqajtFapvEoWFYrZp9m9uv3L9PYDAubm4dstS+TQmaUspEfXI2T2v9VSNtRgNJwNfAtBbGkQn8fW0x+shrwga5+1Kpqaho9/NnLSqtv/RpQDX70x1LaSk5M5/CPSmJgCuu+PP1/Mp83tj6BmOix3BSzEltjFwIIYQQonO7b+h9+Lv5M9WthjoXN1h0L7Sh4IUyGAi9/37qsrMp+uhjO0bavOAYb/zDPNv10mplMPxZKKSjsaWKowLeBXZprV9opM1AYA5wLnAtEKSUeqIFcawHEpVSXZVSrsClwLct6H9cS9u2GYDYdk7Qti1Jx8+W0vp5KbD1Exg2Gfyb3uOb9/wLWIqLiXh8Osr418XTszfNptZay/1D77dH6EIIIYQQnZqfmx+PjHiEXaWpfNj/zPpiIclft2lMr+HD8B47lsI5c6grKrJTpM1TStF9WBiZe0soL65pt3kDI6M75F1otqygjQKuAk5WSm058uusf7TxBC7WWu/TWluBiUDaPwdSSn0KrAZ6KKUylFLXA2it64DbgJ+AXcAXWuvkVn+q40za9i2EdInH07f9tv3Vl9Yvo68tpfUXzwCTF5x4T5PNqpKTKfniCwInTsS991+FQrfmb+Xbfd8ysfdE4nzj7BG+EEIIIUSnd1rcaZwaeyqvF27kYGRf+PEhqP7XSaQWCb13CtbKSoree89OUdomcUgYaEjd2H6raIFR0ZQV5GGuad8tnc1pNkHTWq/QWiutdT+t9YAjvxb9o81KrfX2v31t1lq/3cBYl2mtI7TWJq11tNb63b+9t0hr3f3IubIn2/rBjhe11VVk7Ulp9+2NNpfWT18PKd/BqDvAq+mVtvznn8fo70/wLTf/+ZpVW3lq7VOEeIRwQ78b7BG6EEIIIcQx4+HhD+Pm4sa0sDCs5bmwpG3/jHZLSMD3jNMp/vQzLKWldoqyef5hnoTE+rTrNsfAyBjQmuLsrHab0xbtV0NTOETGrh1YLXXE9RvYbnNWltWyd0MuPU+IwM2jiUKgWsOvj4FXCIy4pckxy1espGLVaoJvufmoO8/+l/o/kguTuXvw3XiZmilEIoQQQghxnAnxDOG+IfexqWQP85PG1xdly9rSpjGDbrgBa0UFxZ98Yp8gbZQ4NIy8tMOU5Fa2y3yBUfV1FIoy05tp2b4kQevk0rZtwWgyEdWzd/ON7SR5eSbWOk3fsVFNN9z3G6StgDH3g5t3o8201Urec89hio7G/9JL/3y9rLaM2Ztm0z+kP+fEN3sdnhBCCCHEcem8hPMYETGCF2oOku0dDN/dDVZLq8dz79kTr5PGUPTRx1gr2ydZAkgcEgoK9m5on1W0gPBIUKrDFQqRBK2TS9u2maiefTC5urXLfJY6Kzt+zyS2TzOl9a1W+HU6+MfB4GuaHLNs4UJqUlIIufsuDK5/XbL45tY3Ka4u5qHhD7Xr9QFCCCGEEJ2JUoppJ0xDA4/HJ6GzNsGWeW0aM/jGG7EUF1OyYIF9grSBd4A7kQn+7F2fi25DRUpbubi64hca1uEKhUiC1omVFxVSmHGoXc+f7d98pLT+2GZK6yd/BTnb4ORHwaXxm+2tNTXkvfQS7n364HvmmX++vq9kH5/u+pT/S/w/+gT1sVf4QgghhBDHpGifaO4YeAcrylL5PrYfLH4SaitaPZ7noEF4DBlM4Xvvo2tr7Rhp0xKHhlGcU0lBhsOuVD5KRyy1LwlaJ5a2fQtAu54/s6m0vsUMi5+AsCRIurDJ8YrnzqMuK5vQ++5FGeofR601T697Gg8XD+4YdIc9wxdCCCGEOGZd1vMy+oX04xn3Oooq82DVq20aL/jGG6nLyaF04UI7Rdi8hEGhGAyq3YqFBEZGU5yVibZa22U+W0iC1omlbd+Ch68foXFd22U+m0vrb/oIig/AKVPB0PgjZikpoeCtt/AaMxqvESP+fH1x+mLWZK/h1oG3EugeaM+PIIQQQghxzDIajEw/YTqH66p4PX4ArHwJDrc+0fE68UTcevei8O130JbWn2lrCXdvE5Hd/UnbUdgu8wVGRVNnrqWsIL9d5rOFJGidlNaaQ9u3EJvU/8+VJ0fbviwTl+ZK69dWwLJnIHYkJI5vcryCOW9jPXyY0ClT/nytuq6aZ9c/S4J/Ahf3uNheoQshhBBCHBcSAhK4qPtFLLAWsV9ZYOnMVo+llCL4hhuoPXiQw7/8YscomxaXFERRVgWHixx/P1lg5JFKjh1om6MkaJ1UQXoaFSXF7Xb+rLrczN71ufQYFtZ0af21b0J5Lpw6DZoo7GHOyqJ47lz8zj0X9x49/nz9w+QPySzP5IFhD2AymOz5EYQQQgghjgs3D7gZdxcPZnftW7+zKW9Xq8fyOe00XLt0oWDOnHYp3AEQe+QoTXusogVGxQB0qEIhkqB1UmnbNgMQ129Au8y3a1U2FrOVpJOaKA5SVQwrXoLuZ0LsiMbbAfkvvQxAyB23//ladnk272x/h1NjT2VERNP9hRBCCCFEwwLdA5nUdxJLanNZ7+0Pv0xt9VjKaCRo8iRqdu6iYsUK+wXZhIBwT3yC3DmU7PgEzcPHF3dvH4qyOs5daJKgdVJp27cQEBGFb3Cow+fSVs2O3zOISPAjOLrx+8xY9w7UlMLJjzQ5XnVKCqXffkvgxKswRUb++fqzG54F4L6h99klbiGEEEKI49WVva4k3Cuc56O6YN37M+xf2uqx/CZMwCU8nMK35tgvwCYopYjrE0R6SjEWs2OLdyilCIyKkS2Oom3qzGYydu1ot9WzQzuLKCuopm9Tq2e1FbDmdeh+BoT3bXK8vOeex+DrS9DkyX++tiprFb+k/cKkvpOI9I5sorcQQgghhGiOu4s7dwy8g+SaAn4IiYWfH62/p7YVlKsrQdddS+WGDVRu2mTnSBsWlxREXY2FrH0lDp8rMDJatjiKtsnes4u6mhri+rZPef0dyzLw8HUlfmBI4402fghVRXDiPU2OVbFqFRUrVhB8440Y/fwAMFvMPLX2KWJ8Yrgm6Ro7Ri6EEEIIcfw6O/5segX24qVAP2pyt8O2z1s9lv+FF2IMCGi3VbSoHgEYXFQ7nUOLprK0hOry9rl7rTmSoHVCadu3oAwGYvo0vVJlD2UFVRzcUUifEyMxujTyuNTVwqpXIO5EiB3e6FjaaiXvuecxRUYScMXlf77+8a6POVh2kAeHPYib0c3eH0EIIYQQ4rhkUAamDJlCdm0p86J7wuIZYK5q3ViengROvIryZcuoTkmxc6T/ZnIzEtU9gEPtkaD9WcmxY5xDkwStE0rbtpmIhB64eXo5fK4dv2eilKLP6Ca2HW77DA5nweimV88O//Yb1Tt3EnzH7Rjc6hOxnIoc3tz6JmNjxjImeow9QxdCCCGEOO4NjxjOSdEn8bableLy7PojKa0UcPnlGLy8KJzzth0jbFxcnyCKcyopK2hdUmmrwKgjCVoH2eYoCVonU1V+mJz9qe1y/qzObGHXymy69g/GO8C94UZWC6x4ESIGQLeTGx1La03B62/gGheH3znn/Pn68xuex2K1cP/Q++0cvRBCCCGEALhn8D1UWc282bUfLH8Rylt3KbPRz4+Ayy+j7McfqU1Ls3OU/xaXVF9u39HVHP1CwjC6uHSYQiGSoHUy6Tu2gtbtcv4sdWMe1RVmkk6KarzRzm+gaD+MntLkvWflS5ZQs2sXQTfdhHKpv0dtXfY6fjz4I9f3vZ4Ynxg7Ry+EEEIIIQDi/eO5IPECvtClpOkaWPZMq8cKvPpqlIsLhR98YL8AG+EX6oFvsLvDz6EZjEb8wyMlQROtk7ZtC64eHoQndHf4XNuXZhIQ7kl0j4CGG2gNy1+A4O7Q85yG23Bk9ezV1zDFxOA3ob6d2Wpm5tqZRHlHcV3SdY4IXwghhBBCHHHzgJtxNboxO74fbHgPCva2ahyX4GB8J5xD6Tf/w1JSYt8g/0EpRVxSMBkpxdSZLQ6dKzCq41RylAStk0nbvpno3n0xHlmFcpS8tDLyDpaRdFIUqrGVsb0/Q+4OOPFuMDT+KJUvW1Z/9uymG/9cPftk1yfsK93HA0MfwN2lke2TQgghhBDCLoI9grku6Tp+rc1jk6c3LH2q1WMFTrwaXVVF8fz5doywYbF9AqkzW8naW+LQeQIjYyjJzcZSZ3boPLaQBK0TKcnJpjQvt122N25flomLm5EeIyIabqA1/P4c+MVA34saHUdrTcFrr2OKisLvP/8BIL8ynze2vsHoqNGMjRnrgOiFEEIIIcQ/TewzkVCPUJ6L6oLe8RXk7mzVOO49uuN5wgiK532CNjs2oYnqEYDRZHD4NsfAqGi01UpJTo5D57GFJGidyKEdWwGI6zvAofNUl5vZuz6XHsPCcPNoZKUubSVkrINRd4LR1OhYFStWUL19O0E33oAy1bd7YeML1FpqeXDYg42vzgkhhBBCCLvycPHg9kG3s91czM++AW1cRZtIXU4OZT//bMcI/83kaiSquz+HkoscOk9HKrUvCVonkpGSjKef/5+lQB1l1+psLGYrSSc1Mc/y58ErBAZe2WiTP86euURG4H/eeQBszN3Id/u/45o+1xDrG2vnyIUQQgghRFMmxE8g3i+eN8Ijsez6FrK3tWoc75NOwjUujqKPPrJzhP8WlxRESW4lpfmVDpsjMLK+KF5HOIcmCVonkpmSTFTP3g5dddJWzY7fM4lI8CM42rvhRlmbYd9iOOFWMHk0OlbFqlVUbd1K8A03oFxdsVgtzFw7kwivCCb3m+ygTyCEEEIIIRpjNBi5ecDN7DOX8bN/cKtX0ZTBQMDEq6jeuo3KzZvtHOXRYvvUl9tP2+G4VTRXD0+8A4M6RCVHSdA6ibKCfMry84ju2ceh8xzaWURZfhV9m1w9ewHc/GDI9Y02+ePsmUt4OH7/938AfLvvW/YU72HKkCl4uDSe2AkhhBBCCMcZHzeeBP8E3giNwLJ7EWRuatU4/uedh8HXl6IPHbuK5h/qiV+oRzucQ4uRBE3YLjMlGYAoBydoO5Zl4OHrSvzAkIYb5O+GXQth+A3g7tvoOJVr1lC1aRNBN0zG4OpKdV01r215jb7BfRkfN95B0QshhBBCiOYYlIFbBtzCAXMpPwSEwJKZrRvHy4uAiy/i8M8/Y87MtHOUR4vrE0TmnmLqah1Xbj8wsr7UvtbaYXPYQhK0TiIzJRlXDw9CunR12BxlhVUc3FFInxMjMbo08mismA0u7jD8pibHKnjtdVxCQ/G/4AIAPkv5jNzKXO4efLcUBhFCCCGEcLJTYk+he0B33gwJoy71F0hf16pxAq64ApSiaN4ndo7waHFJQVjMVjL3lDhsjsCoaGqrKqkodmxBkuZIgtZJZOxKJrJ7LwwGo8Pm2LM2FzT0GtVIaf2SdNj+BQy+BryCGx2nYu06KjdsIGjyZAxubpTVlvH29rcZFTWKoeFDHRO8EEIIIYSw2R+raGnmMr4PDIMlT7ZqHFNEBL6nj6dk/nysFRV2jvIvkd39cTEZSEt23DbHvyo5OneboyRonUDV4TIKMw45dHuj1po963KISPDDN6iR82Hr3wZthRNuaXKsgtdfxxgSjP9FFwLw/o73Kast465Bd9k5aiGEEEII0Vonx5xMr8BevBUcgnn/Uji4slXjBE6ciPXwYUq+/sau8f2di8lIVM8Ah55D+6NSurMrOUqC1glk7t4F4NACIQXp5RTnVNJ9WHjDDWorYOOH0PMc8G+8PH7lhg1Url1L8KRJGNzdyavMY+7OuZwdfzY9A3s6KHohhBBCCNFSSiluGXAL6eYyvguOqF9Fa8X5K48BA/Do35+ijz9CW60OiLReXJ8gyvKrKMl1TLl974AgTO4esoImmpeZkozRxYXwhO4Om2PPuhwMBkXCoNCGG2z7AqpLYMTNTY5T8PrrGIOD8b/4YgDe2PoGdbqO2wbcZueIhRBCCCFEW50UfRJ9gvrwVmAg5rSVcGBZq8YJvHoi5rRDlC9tXX9b/FVu3zGraEqp+kIhkqCJ5mTuSiasW3dcXF0dMr7Vqtm7PpfYpCDcvU3/bqA1rH0LwvtC7AmNjlO5eTMVq1YTdO21GDw8OFB6gK/3fs3F3S8m2sexl2sLIYQQQoiWU0px64BbyTQf5n8h0fUVHVuxiuYzfjwuEREUffihA6Ks5xfigX+YJ4cceQ4tKlq2OIqmmauryT2QSnTP3g6bI2tPMRWltXQfFtZwgwPLIH8XDL8ZmqjAWPDGGxgDAgi47FIAXtn8Cm5GN27od4MjwhZCCCGEEHZwYtSJ9Avux5wAP8zpayH1txaPoVxcCLzyCirXrqU6JcUBUdaLSwoic08JZgeV2w+MjOZwYT611VUOGd8WkqB1cNmpu7FaLET1ctz5sz3rcjG5GenSr5HKjGveBM9gSLqg0TGqtm+n4vflBF5zDQZPT7bnb+eXtF+4ps81BHkEOShyIYQQQgjRVn+somWbD/N1aGyrz6L5X3ghysPDoRdXx/UJwlJnJXN3sUPG/6NQSHGWY+91a4okaB1cxq5kUIrI7r0cMn6d2cK+TXnEDwzB5NpACf+i/bDnRxhyLZjcGx2n4I03Mfj5EXDF5Witmb1pNoHugUzsM9EhcQshhBBCCPs5IfIEBoQMYI6/D7VZm2DPTy0ew+jnh//551P23XfUFRQ4IEqITPTHxdXgsHNoHaHUviRoHVxmSjIhsV1w9/J2yPhp2wuprbY0vr1x3dtgMMKQ6xsdozolhfLFiwmceBVGb29WZa1iXc46buh3A14mL4fELYQQQggh7Ecpxa0DbyXXfJgvw2Lh92dbtYoWcNWVaLOZ4s8/d0CUYDQZiEwMcNgKmn94JEoZJEETDbPU1ZG1N8Wh95/tWZeLh68r0T0C/v1mzWHYPBf6nA++jVxezZHVM29vAq+6Cqu2MnvTbKK8o7i4+8UOi1sIIYQQQtjX8PDhDA4bzDu+XlRnbYSDy1s8hlvXrniNHEnJl1+iLY45JxbV3Z/inEoqy2rtPraLyYRfWJhTC4VIgtaB5R3cR11NDdEOOn9WXWHm4I4CEoeEYjA28Chs+QRqymD4TY2OUZOayuGffybgyisw+vryw4EfSClK4faBt2MyNlARUgghhBBCdEh/nEXLq6vgy+AIWP58q8bxv/hi6rKyqVjZuouvmxPZ3R+AzD0OOocWGU1xtpxBEw3I3JUM4LAVtP1b8rHW6YYvp7Za60vrRw2B6CGNjlHw5lsoDw8Cr74as8XMq5tfpWdgT87seqZDYhZCCCGEEI4zNHwoQ8KG8J6fLzUHlkLGxhaP4XPyOIyBgZTMn2//AIGQWB9Mbkay9pY4ZHzvwCDKixxXyr85kqB1YBkpO/EPi8A7INAh4+9Zl4NfqAehcT7/fjP1Vyja1+TF1DUHDlC2aBGBl1+GS0AAPx78kYzyDG4feDsGJY+WEEIIIURndHP/m8mzVPJlQAiseKHF/ZWrK37nn8fhxUsw5+XZPT6j0UBEgh+Ze0rsPjaAT2AwVYfLqKu1/xZKW8i/ojsobbWSuXunw1bPyotryNxTQvdh4aiG7jZb+yZ4h0Ov/zQ6RuFbc1CurgReey1aa95Pfp8E/wRGR412SMxCCCGEEMLxhoYPZVDoIN4NDKRm93eQu7PFY/hfeCFYLJR+/Y39AwSiugdQnF3hkHNo3oH1V0SVFxfZfWxbSILWQRVlZVB9uIyoXo65oHrv+lzQNFy9MX8P7PsNhk4CF9cG+9emp1O6cCEBl1yMS1AQq7NWs7d4L1f3ubrhhE8IIYQQQnQKSiluHnAzeZYqvvILhBUvtngMt65d8Rw2jJL589FWq91j/OMcmiO2OXoH1d8NXF7omKsCmiMJWgeVmVL/k4poB62g7VmfQ2gXX/xDPf/95to3wehWf/dZIwrnvI0yGgm8rr78/vvJ7xPqEcrZXc92SLxCCCGEEKL9DA8fzsDQgbwbFEztjgVQdKDFY/hffDHmjAwq16yxe3x/nENzRKEQnyMraIeLnXMOTRK0DiojJRlPP3/8wyPtPnZRVgUF6eV0H9rA6llVCWz9FPpeCF7BDfY3Z2VR8s03+F94AaawUHYV7mJN9hou73W5VG4UQgghhDgGKKW4qf9N5Fqr+drXB1a+1OIxfE47FaOfH8Vf2L9YiCPPoXkHHllBc1KhEEnQOqjMlGSie/ZxyHbBPetyUAoShoT++83NH4O5Eobf2Gj/wnfeBSBo0iQAPtz5IZ4unlzU4yK7xyqEEEIIIZzjhIgT6B/Sn3eCQ6ndMg/KslvU3+Dmht9553L4t9+oK7L/eS5HnUNz8/TE5O4hWxzFX8oK8inLzyPKAfefaa3Zsz6X6F6BePm5Hf2m1QLr5kDsSIjo32B/c24eJQsW4H/eeZgiI8kuz+bHAz9yQfcL8HX1tXu8QgghhBDCOZRS3NL/FnKsNXzj6QarX23xGP4XXQRms0OKhTjyHJqPE0vtS4LWAWWmOO7+s5x9pRwurG64OMjen6HkUJOrZ0XvvYu2WAi6YTIAc3fNBeCqXlfZPVYhhBBCCOFcJ0SeQL+QfrwTEoZ5w/tQ2bKVMLeEBDwGDaovFqK1XWNz5Dk078AgDhfJCpo4IjMlGVcPT0Liuth97D3rcnExGYgfEPLvNzd9BF6h0LPhQh91RUUUf/4FfhMm4BoTQ1ltGQv2LOD0LqcT4R1h91iFEEIIIYRzKaW4uf/NZOta/udOfTG5FvK/6CJqDx6kcv16u8ZmNBqI6Oaoc2hBlDtgW6YtJEHrgDJ2JRPZoxcGg9Gu41osVlI35tGlfzCu7i5Hv1mWDXt+goFXQCOFPkq/+gpdXU3QpPrKjQv2LKCyrpJr+lxj1ziFEEIIIUTHMSpyFH2D+/JOcDjmtW9CzeEW9fc943QMPj6UOKBYSGR3f4ecQ/MJCqa8uBCr1WLXcW0hCVoHU3W4jMKMQw4pr5++s4jqCjPdh4X/+80t80BbYGDDWxW11Urx51/gOXQobgkJmC1m5u2cx/CI4fQK6mX3WIUQQgghRMfwR0XHTMwsdKmDDe+1qL/BwwO/CRM4/PPP1BXbdztiVPcAwP7n0LwDgtBWK5WlpXYd1xaSoHUwmbt3ARDV0/4XVO/bnI+ru5HYXoFHv2G11m9v7DIagro12Ldi9WrM6en4X3IJAN8f+J68qjyu7dP4XWlCCCGEEOLYMDpqNH2C+jAnJAzzqlfBXN2i/v4XX4SuraXs22/tGldInA8ubkay7HwO7c/Lqp1QKEQStA4mMyUZo4sL4d2623Vci8XKgS35dOkfjNH0j//tB5ZBSRoMvqbR/iWffY4xIACf8aehtebD5A9JDEhkZORIu8YphBBCCCE6nj/OomVSx3eqArZ+0qL+7j174t6vH8V2LhZiNBqI7OZHpp1X0P68rNoJhUIkQetgMnclE57QHRdXV/uOu7uYmso6ug1s4O6zTR+BRwD0PKfBvubcPA4vXoz/Bf+HwdWVFZkrSC1J5Zo+1zjknjYhhBBCCNHxjIkeQ++g3rwdFELd+neghYmW/0UXUpu6j6rNm+0aV2R3f4qy7HsOzftIgiYraMc5c3U1uQdSHVJef9/mfExuRmJ7/2N7Y0UhpHwH/S4Fk3uDfUu+XAAWC/4XXwzAh8kfEuoZypldzrR7nEIIIYQQomNSSnFTv5tIN1j5oeIApK9tUX+/s87C4Olp92IhjjiH5unrh8Ho4pTLqiVB60CyU3djtVjsXiDE+sf2xr5BuLj+ozLkts/AUguDJjbYV9fVUfLFfLxGjcI1NpadhTtZm7OWK3tdiamRao9CCCGEEOLYNDZmLF194/jMzx/Wv9OivgYvL3zPOYeyH3/EUlZmt5gccQ5NGQx4BwbKCtrxLnvvbgAiuve067hZqaVUHTbTbdA/tjdqDRs/hOihENZwUZLy35dTl5OD/6X1xUE+2PEBXiYvLux+oV1jFEIIIYQQHZ9Siot7XMo2Vxd27f0eyvNb1N//4ovR1dWULlxot5gcdQ7NOyCIw5KgHd/yDu7HLywcdy9vu467b1MeLiYDsX2Cjn4jfR0U7IZBVzfat/jzz3AJCcFn7Fiyy7P5Oe1nLky8EB9XH7vGKIQQQgghOof/JPwHd4Mrn3u5w+aPW9TXI6kPbomJlP3wg11jcsg5tKBgp6ygKXtWUekMlFL5QJqz4xDHtWCg/Tc0C/EXeQaFs8kzKJxNnkHhbHFa65CG3jjuEjQhnE0ptUFrPcTZcYjjlzyDwtnkGRTOJs+g6Mhki6MQQgghhBBCdBCSoAkhhBBCCCFEByEJmhDtb46zAxDHPXkGhbPJMyicTZ5B0WHJGTQhhBBCCCGE6CBkBU0IIYQQQgghOghJ0IRwEKXUGUqp3UqpVKXUgw28f49SaqdSaptS6jelVJwz4hTHruaewb+1u0AppZVSUtFM2JUtz6BS6uIj3wuTlVKftHeM4thmw9/FsUqpJUqpzUf+Pj7LGXEK8XeyxVEIB1BKGYE9wGlABrAeuExrvfNvbcYBa7XWlUqpm4GxWutLnBKwOObY8gweaecDfA+4ArdprTe0d6zi2GTj98FE4AvgZK11sVIqVGud55SAxTHHxmdwDrBZa/2GUqo3sEhr3cUZ8QrxB1lBE8IxhgGpWuv9Wuta4DPg3L830Fov0VpXHvlyDRDdzjGKY1uzz+ARM4BngOr2DE4cF2x5BicDr2mtiwEkORN2ZsszqAHfI//tB2S1Y3xCNEgSNCEcIwpI/9vXGUdea8z1wA8OjUgcb5p9BpVSg4AYrfX37RmYOG7Y8n2wO9BdKbVSKbVGKXVGu0Unjge2PIOPAVcqpTKARcDt7ROaEI1zcXYAQhzvlFJXAkOAk5wdizh+KKUMwAvANU4ORRzfXIBEYCz1uwh+V0r11VqXODMocVy5DPhAa/28UuoE4GOlVJLW2urswMTxS1bQhHCMTCDmb19HH3ntKEqpU4FHgP9orWvaKTZxfGjuGfQBkoClSqmDwAjgWykUIuzIlu+DGcC3Wmuz1voA9eeFEtspPnHss+UZvJ76c5BorVcD7kBwu0QnRCMkQRPCMdYDiUqprkopV+BS4Nu/N1BKDQTeoj45k3MXwt6afAa11qVa62CtdZcjB+LXUP8sSpEQYS/Nfh8EvqF+9QylVDD1Wx73t2OM4thmyzN4CDgFQCnVi/oELb9doxTiHyRBE8IBtNZ1wG3AT8Au4AutdbJS6nGl1H+ONHsW8AbmK6W2KKX++ZeGEK1m4zMohMPY+Az+BBQqpXYCS4D7tNaFzolYHGtsfAanAJOVUluBT4FrtJQ4F04mZfaFEEIIIYQQooOQFTQhhBBCCCGE6CAkQRNCCCGEEEKIDkISNCGEEEIIIYToICRBE0IIIYQQQogOQhI0IYQQQgghhOggJEETQgghhBBCiA5CEjQhhBBCCCGE6CAkQRNCCCGEEEKIDuL/AU1Ry1A4e80GAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "zeros, weights = np.polynomial.laguerre.laggauss(12)\n", "targets = np.arange(16, 21)\n", @@ -241,9 +254,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 117, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(-7.5, 25.0)" + ] + }, + "execution_count": 117, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dXG39mmXtx7L9i4YhvTwQnN9N5LgBAIgRBSCCUkIQUIJARC7yWEjqm26dhg44Z770WWm2T1unW+P+7OarWamZ1y711J3/k9D49tlT2a0d3hvPc951xFVVUQBEEQBEEQBEEQmceT6R+AIAiCIAiCIAiCYJBAIwiCIAiCIAiCaCeQQCMIgiAIgiAIgmgnkEAjCIIgCIIgCIJoJ5BAIwiCIAiCIAiCaCeQQCMIgiAIgiAIgmgndDiBpijKS4qilCmKspbT632mKEq1oigzUz7+uqIomxRFWRuP6ecRjyAIgiAIgiAIwogOJ9AAvAJgOsfX+yeAq3Q+/jqAUQDGAcgBcD3HmARBEARBEARBEG3ocAJNVdXvAFQmf0xRlGFxJ2yZoijzFEUZZeP1vgZQp/Px2WocAEsA9Hf7sxMEQRAEQRAEQZjR4QSaAc8B+KWqqpMB/A7AU7xeOF7aeBWAz3i9JkEQBEEQBEEQhB6+TP8AblEUJR/A0QDeVRRF+3BW/HPnA/irzrftUVX1VIshngLwnaqq89z+rARBEARBEARBEGZ0eIEG5gJWq6o6MfUTqqq+D+B9py+sKMqfAfQAcKPjn44gCIIgCIIgCMIiHb7EUVXVWgA7FEW5CAAUxgS3r6soyvUATgVwmaqqMbevRxAEQRAEQRAEkQ6FzcDoOCiK8iaAaQC6AzgA4M8AvgHwNIA+APwA3lJVVa+0Ue/15oFNa8wHUAHgp6qqfq4oSgTALrQMEHnf6msSBEEQBEEQBEE4ocMJNIIgCIIgCIIgiM5Khy9xJAiCIAiCIAiC6CyQQCMIgiAIgiAIgmgndKgpjt27d1cHDx6c6R+DIAiCIAiCIAjCMcuWLTuoqmoPvc91KIE2ePBgLF26NNM/BkEQBEEQBEEQhGMURdll9DkqcSQIgiAIgiAIgmgnkEAjCIIgCIIgCIJoJ5BAIwiCIAiCIAiCaCd0qB40giAIgiAIgiAyTzgcRmlpKZqbmzP9o7RrsrOz0b9/f/j9fsvfQwKNIAiCIAiCIAhblJaWoqCgAIMHD4aiKJn+cdolqqqioqICpaWlGDJkiOXvoxJHgiAIgiAIgiBs0dzcjG7dupE4M0FRFHTr1s22y0gCjSAIgiAIgiAI25A4S4+Te0QCjSAIgiAIgiAIop1AAo0gCIIgCIIgiA5HU1MTTjjhBESjUQDA9OnTUVxcjDPPPLPV16mqij/84Q8YOXIkRo8ejcceeyztaxu91nHHHYeJEydi4sSJ6Nu3L84991wAwMyZM/GnP/2Jy3WRQCMIgiAIgiAIosPx0ksv4fzzz4fX6wUA3H777XjttdfafN0rr7yC3bt3Y+PGjdiwYQMuvfTStK9t9Frz5s3DypUrsXLlShx11FE4//zzAQBnnHEGPvnkEzQ2Nrq8KpriSBAEQRAEQRCEC/7yyTqs31vL9TUP7VuIP581xvRrXn/9dbzxxhuJf5944omYO3dum697+umn8cYbb8DjYd5Uz54908Y3ei2N2tpafPPNN3j55ZcBsF6zadOmYebMmbj44ovTvr4Z5KARBEEQBEEQBNGhCIVC2L59OwYPHpz2a7dt24a3334bU6ZMwWmnnYYtW7a4jv/hhx/ixBNPRGFhYeJjU6ZMwbx581y/NjloBEEQBEEQBEE4Jp3TJYKDBw+iuLjY0tcGg0FkZ2dj6dKleP/993Hddde5FlJvvvkmrr/++lYf69mzJ/bu3evqdQFy0AiCIAiCIAiC6GDk5ORYPl+sf//+iV6x8847D6tXr3YV++DBg1iyZAnOOOOMVh9vbm5GTk6Oq9cGSKARBEEQBEEQBNHB6NKlC6LRqCWRdu6552LOnDkAgG+//RYjR44EACxZsgRXX3217djvvfcezjzzTGRnZ7f6+ObNmzF27Fjbr5dK5xdokSBQsS3TP4UYVFVerGA9EA3LixeLdd5YkZC8eBXb5K3/aBhoqJATC5C7/mMxIBaVFy/cJC9WZ6bhoNx1QhAEQUjllFNOwfz58xP/Pu6443DRRRfh66+/Rv/+/fH5558DAO68807MmDED48aNw1133YUXXngBAFBSUmLoeBm9FgC89dZbuOyyy9p8z5w5c9q4ak7o3AKtvgx4Ygrw+CRgzzLx8da8Bzw3Ddj+rfhYpUuBfw4D5twvPgEJ1gGPHQb8awSwe4nYWACw5HngHwOB928QL2Zq9gBPHwU8ewJQuV1sLFUF3rgYuK8XsOBxsbEAYPMXbO0/Nw1orhEbKxoBXr8QeHQssMN9c2xaljwPPNAfWPCE+Fi7fwDu683Wf3252FiqCnx2F3B/P2DF/8TGAoCDW4DnfgR8dLN4URisB/57LvDEVGD/WrGxAGDhk+x39uUfxcciCIIgMsLNN9+MV199NfHvefPmoby8HE1NTSgtLcWpp54KACguLsasWbOwZs0aLFy4EBMmTAAALF68GDfffLPuaxu9FgDMnTsX06dPb/X1Bw4cQFNTE8aNG+f6ujq3QFvwOFBdwv7+9V/FxirfBMz4KXBgPUvCRSZysSjw9lVAqBH49kFgyxfiYgHA8teAhjKgqQr49A6xgjDUAHz5JyC/B7D6bWDNu+JiAcDs25lIq9gKzP2H2Fir3gS2fgmoMWDew0DYWt20I1QV+Ca+5oO1wPfpD2R0xYr/AtvnAv4c4JNbxa6RmlLgiz8CoXrgi3uYyBDJ/EeAaBBorAC+e0hsrJJFwKKngLwewCe/AhorxcWKRYE3LgH2LmdicN0H4mIBwNwHgO1zgIOb2N9FUl/GniNqjP1/oGyD2HgEQRBERpg0aRJ+9KMfJQ6qtss///lPjB8/nsvPUlJSgocffpjLa3VegRZuBpa9Aow5H5h2F3O1RCY7y/8LePzAFe8AkWZgw0fiYu1eAtTtBc76D1A0gCWQIlnxGjDgCOCsx1gyV/qDuFibPwPCjSxWfi9g29fiYgXrgK1fAZOuAsaeD2yYyQSiKNZ/DHQZAlz1ARO7m2aJi7VnObB/DXDGw8CQ44Etn6f/Hjcsfw3oNQ445e/MiSxZJC7W2veBSBPw0y8BX5ZYN7JuP7BpNnDcb4EJlwEr32RuoSjWfwR4s4DzngFiEbY+RVH6A1C5DTjvOaDrMPY7FEUsxp4jYy8Ejv89sHFmy+aZCFa+we7ftZ8CigdYO0NcLIIgCCKjXHfddYmDqjPJ4YcfjokTJ3J5rc4r0PYsY87BuAuBIScAUIFdC8TEUlXm9BwyncXqMYolkaLYOJOJwUNOAw7/KVCykLlAIqgvB8rWAyOnA4eczj6263sxsQBg4ywgrycw6Ghg6DTmyojqEdvyJXNGRp8FjLsICDcA274REysWZetvyPHAkGlAbjcWXxRbvmCJ6dgLWcz9a8RtUBzcwoT7xMuAQ88B/Lli3ZiNs4De44ABU4GRpzJXRhS7FgBQgVFnsFihOmDfSjGxVJW9t4efxJ4jud2BzQKF9cZZ8efIdGD8JUDJAnFrpGw9K7MdfhIw9gL2se1zxcQCgE2fAn0nsefIwKOAjbPFxSIIgiAIznRegVaykP058Cig32TAlwPsnG/+PU6p2gHUHwCG/RhQFJbIlf4grn9qx3fAoKOA7EJg8PHsY6WCesN2xvuJhhzPyg67jQB2LRQTS1XZ72joCYDHywRaYwVQLqg8aed8IKuQuYMDjgC8AXHOz/7VQLAGGHwc4PGw+7n9W3GlgLsXAT3HADnF8Q0KtPwueaMJ9pHTgUAe0GcCu14RNFUDuxe3bBb0n8qcmLoDYuKVLGKCs/d49rsDgB2CekyrdgI1u4HhP2ZrZNiPxf3OAGDr18DgY4DsImDwsexjuxeLiZV4Hh8J9DiEueM7vhMTKxoB9q1isQC2kVW2Dqh1fy4NQRAEQcigEwu0RczJyu0K+AJA/ynikg9tcMaAI9ifvccD0RBwcDP/WNEwUL4R6DMxHmsc4MtmgwxEsGsBEMhviTfoKJb8i3C1KrYxoTvoaPbvvoexP/ev4R8LYK5PnwlMDPqy2DWKKt8sXcr+HBhfI0NOYGWqFVv5x4pG2HrQEtQ+E5lTsncF/1gAu2c5XYCuQ9m/e41lQyBErJED6wCoQP/D2b+1P0X93koWsmeH1w/kdQd6jBa3QaE9nwbEf2/9JrH3Q91+/rFCjWzjo//Ullgef4uQ4s3uxUB+b6DLYLaJNeR4ccNkyjewEti+k9i/tT9lDCYhCIIgCA50ToGmqsCepS3JG8CSxvJNYpLG3UuYE9NjFPt373izoQhhcXAzE3+94xNifIG4sBDkoJWtZ/fO62P/7jeZlSpV7+IfqyRegjoovpvfbQTrxxFxHyNBlrD1m9TysQFTgb0rxTifB9Yxp6JoAPu3Jp5EiKbyDaxcU9sw8AWA7iPj4kYApcvYe01R2L97j2OlgCLWSNl69mfPQ9mffSYwYbFnKf9Y0TCL129yy8f6jBd3H0sWsedIz9HxWGzCFPat4h+rbD0boKHF8OewDZESQZtYB9azWNoa6TcZqN/PhnnwZs/yeIz4e7tXfK2UCfq9EQRBEBnjuuuuQ8+ePVudPXbJJZdg4sSJmDhxIgYPHsytL0wmnVOg1e1nQxg0EQOwpCfcANQIaEzft6rFiQGAbsNYSaUIYaHtAidfW9+JLGkUIT7LN7KSJI1e8TeAlijz5MA65tZ1H8H+7fWx5ErEfTywDoiFW1w6gP09GmRT5kTE6zW2JUHtOgxQvGzTgHus+O8meY30GiNGWIQa2BpJFjFaXFG/t+wioLAv+7c/Oy4+BazHyu1s0ESP0S0f6zWGOZ8ierX2Lmf3UXuO9B4HQBEj0LQ+uj5Jk6t6j2XinnfZbTTMNpZ6jmr5mCZCRTxH9q9hQldzdHO6AAV9xawRgiAIIqNcc801+Oyzz1p97O2338bKlSuxcuVKXHDBBTj//PMz9NM5p3MKNG2nVNtlB5ISAs79TKrKko8eScmHx8viidixPbCWuUrdRrR8rPtINvmwtpRvrIaDrAcs+dq0v4tI9ss3MXGmiRiAJan71/BPGss3sj97JYkYTRjyPtg5FmPrrteYlo/5AkzIaz8HT8o3MFep27CWj/UaA9TuYRsXPKnYBkDVXyNCxGeK0AVY4i+iT1H73fQYmRQr/jvkLSxUld3L5PuYVcB+h0I2etYA2cUtji4AdBvO3HHe4rNyO9sMafU81lwtAb+3g5vYMzF5jfQaI0YMEgRBEBnl+OOPR9euXXU/p6oq3nnnHd0Dpds7vkz/AELQdkqTE+JkYXHIafxi1e1n0yK7j2z98e4jxEyNrNwOdB3SUnIIJCXEm4HigfxiJRLUJActK5/1kYgQaAe3sKEFyXQ/BGj6LxMWufpvQEdUbmcOVvL90nbcKzkLtJoSVvKXnKAC7L6WCRBoZRtZsu31t3xMey+UbWjp8eOB1kPXbXjLxwK5QGF/oELA+WQHN7MjEZLpMZqNUQ/Ws/XJi/J4D2nye1u7jwfWtQzW4EHdPnauW7KoBpjTWrmDXxyNim1tRYz2O6zYCuR14xdLE2HJ4jO/J5tSKWqjZ/hJrT/WcxQb7hKLtjiUBEEQBD8+vZP/hmLvccBpzs+onTdvHnr16oURI0ak/+J2Rid10NazhvTkhD67kJW58HZHtEEgPVIEWteh7EBd3ocRV+1iAikZTUDxLs3TE2gAcxF473wH65kDmCp0tWut4pykVm4HivozJ0sjq4BNl6vYzjlW/GdPFjEAE5+V2/n3vJVvaF1OBrQk/rzXv/Z6mrjV6D6c/wHSTVVAczU7Sy4Z7VpFrP+igWwypUZBbyCriP8AIE3odk/5n0jXoWzt83aQq3ayjZ5kkgUaTw7qCF2AVRnwdpCbqtlgldRnVtdhrHe3hnOVAUEQBNFuefPNNzukewZ0VgetYlvbRAdgyT7vwQVGyUfXYQBUllz1HN3m2xyhqiyxSnWZ8roDOV35JzuVO9iEyIK+rT/edQg7QFpVW+/Au0FzW9rcxyEtP0tyn5NbKne0FRVA3LHgLGK0NddlUOuPdx8BqFH2O00V+E4JNzMRPyHlgVQ0EPD4BAjdbUBhP+aaJdNtOLD6Xb5rpEq7j4Nbf1zrESvfxHeNVGxlQjMZRQG6DubvamliNlXEdx3CnLWGcuY68SASFyqp97E4vkZ4C7SqXUBBn7ZrpOsQdl4ZTxLP4xSBpt3Xym1t34cEQRCEe1w4XSKIRCJ4//33sWzZskz/KI7onA5a9S79/wl3GcSSYZ5UbAP8eSwBSabb0JbP86KxkpXKpSZWAEtAeF9b1U6geBA7kymZLoOBSDPbqeZFwmVKKfES6aClOggA+73xdpmqS1g5ZarQ1Zwgnr+32j0AVPZ7S8brYwl4JWd3sGKrvtDtNoKd+9ZQzi9WtYFAK473UVXv5hdLi6f3XusyhP96rNjGzltrsxmild1yjFddAkBt60R6/WLWSPUu/dLrLoPZ+gjW84ulV3ILiHOQCYIgiHbJV199hVGjRqF///6Z/lEc0fkEWriJCYfiwW0/12UwO6w0EuQXr7aUlcqlugRd4wkBTzdGS+T1ksai/vzLd/TKKYGW5J+nsKiJJ9fJQwsAVl6W3wuo5BhLK5XTExZdBgMNZWwd8aJqF/v9eFMM64T43MkvVnV8SmnxgLaf6zqUf/KtVyoHiEmIE+s/RXz6slhJczXHCa3NtWydpApdgN3H6hJ23hwvDDdDNAeZ4+/N7DlSPLDlvciL6l3691GLz7OqQRPpRSn/Qy7owwQw7/VPEARBZJTLLrsMRx11FDZt2oT+/fvjxRdfBAC89dZbHba8EeiMJY5akqbroA0GoLL/iaeWLjmldm/LyO9kcorZlLQqjsmHtmtvJNA2zmITA1OTPCdo5ZR6AyUSwmJXy3lebqnezcanZxfqxOPsWCREjM4a0QRizR5+a6S6RH895vdkSSPPazMSugATFruX8Cs7jASZA1KoszulJci1e9zH0ajaxUamZxe1/VzxAL5HaBi5dQATpLEI25zR+7wTakr0XabigQAUvmvE9DkyANj8Ob9Y0Qh7L40zcNAA9pxJHujkhpoStqHjz279cUVh61/EwfAEQRBExnjzzTd1P/7KK6/I/UE40/kcNE0Qme3YcnV+9gBF/fQ/V9SfCThusUyS76IB7AyvxoN8YmnllHruiJZI8tz5rtmtf11aPJ67+jVx0aD3e0sINM7Jvt56VBS2Jrk6aLsBxaO/adBlCJs4ymuMet0+9qderML4veXp6hrdR4D93niWOBq5dYAYV6t6t77r6Qsw96eGo9Ct2Q14A0zIpFI8MO4gcxpuVLeX9VnqljgKKPGtNnuODOJfBksQBEEQAuh8As1s5zshLHbyiRUNs3LKQgOBVtiXr4NQs4e5B3qjxDXHgpeQ0ZImvYTYn81KyrgK3VLjxKqoH1C7j99B3NrvxMz54SUsIkG2Royurctgvv1FNbtZH1PyiH2NhKvF6dq0zQc9oZtdyA4L5rn+6/Ybv9eKB7LfGa81YrrRE/8YrzXSXMtKbg3Xf3++Gwa1e5no03PaExsUnK4tMdhF5z7mdAECBfxLpfWELhDfMOO4HgmCIAhCEJ1QoJWwg5z1Jp7l92LDGmr38YlVtx+AmkagcXTQavfoiwqAv7DQknijZKd4AGd3xCSxKuzHDrptKOMTq6aUHeSc10MnVl/mQPG6Ns1lMnJZebuD6e4jwG9Naq9juP778XV+6vYBBTquD8CuORYG6vfziVVdwgRmTpe2n8vvzf7kdR+137+ZsOD5XqvZ07ZHS6OYs4NsthmiKPHNF073MRaLX5vJRk+wlgligiAIgmjHdD6BVrefnVWk12Pj8bLPcUtQteTDKEHtz0oOeZUL1ZSal1MC/BLidMl3QZ8W8eGW5ho28c8oaeR+bXuAQgMHwetn18arFCpxH3XKAAG2aRCqB0INfOLV7Da5j5zLDhPr3+Daivrxc+siQaCxou201EQszs5P7Z64WNd5jvgCQF5Pfm5MYrCFwSHzRf3Z2ufpIBv+zjhPxEy3Rng+RxrKWZm3kUBLbFCQi0YQBMELlfc5nZ0QJ/eoEwq0fcZJHMAShTreAs0g+dA+zjOekWDK6QL4cvglH7V72Bloeg4C0OKO8Hhj1sVdj9QR48mxAH7Jfo2JEwnEE2LeAs3g96b1AdVzcAdVNb5BYbD+83qwc664OT97mMuUVaD/eU1Y8EA70qGgt/7ntWuu4+SgWXmOSHPQOPaXxmLxwUYmrj/ATzTV7mPDklLPQEuOx6uiQXv2pd3EosOqCYIgeJCdnY2KigoSaSaoqoqKigpkZ2en/+IkOt8Ux7r95hPBCvrwO9C5Lk3SqCU7tXv1R7rbIdzEHASj5ENRWPkXrwRVm05pNO2vsC8QbmAlQ3pT9eygiROjg3i5l+btAQZMNf58QW+gbAO/WIC5gwawe6A3kMUOTVUskTeK5YmfxcZTxJuKmCQHOXWqnl0SIt4gHm+BVrsPGDbK+POFfflNaK3bz8pq9UpugaSyw93uD6tuPMhKQY0EmtfPDr3nsWEAMKFntB4B9l6rPwDEomx9uoqVZo2QQCMIguBK//79UVpaivJyjmeedkKys7Ntn8fWOQXa8JOMP1/YD9j2DZ9YDWWslym72DgWwEdYJJwYk19wQR++As3I0QKSxOc+9wKtIY1Ay+3K3DweiZWqpk8a83oC9d+6jwWw+2jmMuXHk3Ie/XXaGpHl/NSXGW9OAC39YvUH9IdE2EFzdIzi5XZj7iAP5ycWZT9zuvu4a4H7WACLldfTWKAkJmLuAfpNdhdLew8ZbfQA7H3Iq98znYgv6MOmPDaUm68lKyTWiEG8/N5MCFOJI0EQBBf8fj+GDHG5uUzo0rlKHIP1bDS82f/oC/uynh8ejeL15fGyMYPbqCWoPERTQqCZJTu9+Q1JMDrfTSMh0DgkO/XxnZc8A4GmKPx6VZprgGjIOBbAEtTmaj4HmqdLUPOTRIxb0iWoAEvMeTkI9Qf0R7VraMM0uFzbgdavmYrHwz7H471WX8ZEg9l7rbAvWyM8egfrD5g7Y9rneIimhMtk8ozM68HPQatNsxmSXGXglrp95k6k18fWK6/yTYIgCIIQRLsQaIqieBVFWaEoykxXL5ToU0mTWAF8EoKGshYHRI+sQtYXxiNBbUgjYgB+CWoslt5l4nkf6w+w6ZpG/W5AfFefg4XecLDl9cxiAXzi1e4zT/RzuwNQ+CTEiXPJ0jgWvPrd6svM7yPPDYq6fcwhy+1mEq83n+Rb6xk1c5ALkhxkt9QfMBdM2jU3cOhB055FpsK6F581kjiGJE2JI8BvjeT1ZELMiPye/MQnQRAEQQiiXQg0AL8C4L7pJ10ZVPLneDhN9WXmgolnX5gmFkwT4t7MHQzWuYvVVMlcpnSlSQCfhLghnugbOZEA2xXnkaBqLkRed5NY8XvMI5GrP2Ds+gAsmczrzkfEa2LBLF5ej3jvYL27WME6INIk0UHbz17PbI0UcNqgqLUgdBOlqRxEfF0aB41nX1hio8dkY4nXZkj9AQBqmucIx0FK2gRfM/J78VmPBEEQBCGQjAs0RVH6AzgDwAuuX8xK+Y6WNNZx+J90fZl5gqrF4+WgKR5zl6mA07VZEYO+LOYQctnVLzdPGIG4QOPhoFlMUAH3CXHCZUpzbfm9Wso83VC3lzlyvoB5LMD9mkwMdjFZ/3nd2Zrl5Y6kS755lcFaKRXNjQt8t5MVY9H4BkU6YcGpL6y+jPWM+rKMvyavB5+jH6w8R7SNEh7PEbMJphrkoBEEQRAdgIwLNACPAvg9AN1DfhRFuUFRlKWKoixNOyXGVvLtMkFVVRYvXfLNy0GrL2NJodmks4RAc5mkWrmPACu94jH6uyFNqZz2szRWsITWDVpyZuZ85nEa3BGsZVMVzWIB8aSR04ZBWgeBU/lmolTO5No83vjAFR4CzYI7UtCL9YW5PXew4SAApUWE6cFLWDRWAGos/UYPTwfZynoE3AuZhgr2p9lzxOtngpGLQLMg4rXyTV5nyhEEQRCEADIq0BRFORNAmaqqy4y+RlXV51RVnaKq6pQePdIIhoZy1qdiNFURYNP0ePSFNVWxcdVpk53enEqTDqYXTLzdkbSuVneODpoFgabGgMZKd7ESybdJLxOvBLXegoMAxEUMp/I1s9LN5J/F9RqJi650wqKgFx+32krynXC1KtzFaihnk0PNepl4OWgJ19+CQONScltuwfWPf96tiNe+3+y9BrB76fZ3Fo2w17BybWqUlXETBEEQRDsl0w7aMQDOVhRlJ4C3APxYUZT/OX61hMtkcllaX5jr3WGLyXdBLyBYw84xcxXPQqkctwQ1nnSmddA4JFaqas1B49Xz01CWPvn258TLNzklqGmFddxBc3vQoy0R71Z8WihxBOIbFC4dtHAzc8bSCrS4EHC9/svS30d/NhAoaHGJ3MQCrLlaXEp8LTxHtGt3K+I18Zpu0yCvu3uh21RlLRavzReCIAiCEEhGBZqqqnepqtpfVdXBAC4F8I2qqlc6fkErCSoQL3NxmTRaKfECknreXMZrsNCnldMFgMLHQUjX7wYAed3cO2jN1WwgiZUSR8B92aGV+6jFc5ugpjvfTSO/FyuFDLo8+sHK+s/txn63PARausmbABMDbvvrtPdquv6iPE6ultXnSF43DiJeKwO0IGKCte7LN6241dxKHA8C3gDb7DAjt7t7oas983K7mn8dz2MtCIIgCEIQmXbQ+GKlJwzg0yhupZdJiwW4FzJWEiuvD8gpdh+roTy9Ewm0OGhunJ90Z6BpJAQaj/toVcS7FRZW1wgHVyvczM4ATFdO5vGy35trd6Qifjh0ujXSjZWTuVkj2uZGukEaCQfNbRmsxTWSy8H5SQiLNL+3PA69g+Fm5uZbddBci8+D7B4pivnX5XaVdx9JoBEEQRAdgHYj0FRVnauq6pmuXsRqYsVjsqLVEkdtR9eNqxVqYKPR0+2yA3zKDhsOpr8ugP08sTA7/NlxLIsuE7ek0eoa6cHHrUvX7wbw6QtrtFiWCvA550oTaOnI7cYc0pCLsf6JqYppyilzOQ3usCri83g4PweZE2nWNwvwcZCtrhFeY/0bDzKXMR15HDZ6tGtL2+/GqQyWIAiCIATSbgQaFywn371Yz0Ik5DxWfRng8adPrHgkBFbFoBaPR4mjVTEIuItntVQ0u5gNgOFRdmVJfHKYrFhfxn4fZv1uAB+Bluh3s/J76+p+jTRWWhdogMv1rx0unkag5RTDdYlvJMhcJqsCjUc5pRUnkocTn3CZLKwRHpNFrZaK5nYHYhFW7uwUqw5adhETxG5dVoIgCIIQSOcRaKEGINxoPUEF3E3yqo8PErBS4gXwSVAtJ40cBhdYSeJ4jBq3WuLo8cR7VTiUeFlZI/m9mDMYCTqP13jQmohJlF25uDY7ayS3q/spdo0V1twRnus/Xb+bx+u+XC4hBi0Ki4aDLp2fCmvrMTG4w42DZlHEaPF4uNW2niMu1oh2bTlpetAUha0jmuJIEARBtGM6j0CzOjEPSCo7dPE/aSvT0AAgkM8a5V25TBbH3gPs2lyfzVRpUehqybebhNjisAnA/VlQtsoAOZRUNlalH1oAxN1Bv7vBNQmBZuH3ltPVvYNgp8QRcBevsYLdI6/fWjw3ayQxGt6isHBd4mtRxHMpcYz/DqysSV5lsLaceDfv7Ur2rPVnW4jHwUEmCIIgCIF0HoFmZ3dYEwOuHTQLpXKK4r7s0Jb4dNnPEQ2zaXGWBBMPBy0+Yj+dEwm47wuzOrQj+WvclHk1VaXf0Qfi7iCnNWJFWOR2ZeVkTg/rjcXYe0dWiaNVMQjE179LMQhYvDYOJb5WRUwglwkQLiWOVlxdl4OUwk2s79CS+Ix/jdtrsyI8AT4bFARBEAQhkM4j0LRzcKwkxNrXaN/jhAYLB74mx3Pr1gHWSxzVqPNd/aZq9qeV+8hj51srFbWC27IrO2WAib4wF/GaKoFcC0IXiO/qu1gjTZXMhcsqSP+1OV3Zod9Oe36aq9n3WxIxHIbkNB60JmIAluy7WY+J54hFRxdw7+paEdVaPNcljkr6vlktVriBlY47wVbJLSeha1nEd3X37CcIgiAIwXQegdZoI7FyW+KoqnHnx6KwcNvz03CQnSVkqXzHpWNhJ0EN5AL+XPe9I5aTb5cljomJkTYEmlPHTlXZ+rIidIF4X0y1s1hA3K3rkn6kOZDUg+kwSU2UyllIiLO0oQxu1ohFt077mdzEsiXQXJb4RiMsnq3177LEMac4/dAaIGn9O9ygsHpIdfLXuCpxtCHQyEEjCIIg2jmdR6DZSawSDprD/0kHa1nvidWdb7dJox2Xye1utHZPLDs/LifZWS0DBOK7+o1A0OHIdluloi6FbriRHT5tuezK5eACTaBZiuVyg8LqocBAvHzTZc+P1T4toKXE0Wn5ZsJBtrLR47LEV3tmWb22/J4cygBtiBjA+RrRNm2sPCP9OYA/z/1Gj+U1QkNCCIIgiPbN/0+BFsgFfNnOkw87sQA+/UWWBVo8sXKbNFq9tjyXQxnsCAu3Z6HVl7NEMJCX/mv9uYA3y73LZFV8ui1xbKy0sR5dblDY6WXSvs7p+ldVm8l3t3iJb7WzeE1VrNfLF0j/tYkeTIfr0fZ7jUOJo537CLgQaDaOfQDcl6Y2VlrfMMvpCkSagVCj83gEQRAEIZBOJNAqWRmglfIdwJ1jYWcaGsCSnaYqIBZ1Fq/BTg+OSwfNtrBw4aDF4n1QtgWaw3h2EtTEOG6HAq3J5hrRYjkd7tJUbcNBi3+dawfNjkBz6VbLWv92Ngw058dpLE1E5hRb+/rcbmxdOXUH7ZTcar9bx89IGyWOQMuRBU4IN8cHkti8NprkSBAEQbRTOpFAq7Ke6ADxPgSnybcDB02NOR/c4WjnW5aD1t15aVKwlt0XO24d4PzamqttrhEXAs2u0M3pykoiww539e0IC+kOmosSRyexkr/PLnafI3kuhIXd91pOMXu/hOqcxbM7SEP7Hic0HIwPrSm09vVuDv1ObIbYvDYqcyQIgiDaKZ1HoNnZHQbcTfKyMzEScLdjq6r2hEUgD/DluOtBU7xAdpG1r8+NlyY5cX60BMlqgqpNn3M6TMO2iHcxuMOJgwa4W5NWY2UVAYrHnYPmy2ZloFZwU+LYaPe95rYvzEapKOBSWNgUaG7Wv6rGp4pavI/Z2hpxIdDyelgbWgPEz6+TJOLd9tcRBEEQhGA6j0Cz4yAA7kocbTtoWkmZgwQk3AREQ/auzU2yo4kYq4lVXvd4P4eDcdy2HYT41znuL6p2sEZkuawuksZIkI1Etyo+PR73Jb653Wwk3y4GdzQ7cKsBOSWOgLvSPJnrP9zI3qdWRYwnfni8YxF/sMXxtoKbjR6nLis5aARBEEQ7pXMJNKu7w4C7oQyNNp0fN0mjloxZObtII8+NY2HXiXTR82PbQShq/X1O4tm5j65KHG06P24mi9qZPJgcz42DZuu9Fh/cEXRQ4pu4tmJrX+92ZLvtjZ5idwNJoDBH02qsxPfZxK6IAeJrxIWrZSeWm40ectAIgiCITkYnEmg2S5M0B8FRaV6VvYEkbgRaQsQUW/8ebTfaCU4SVMBZkmpXWHjipZdOS7zsDCQB2LW5GRJidRog4K7E0a7QBdydzWc3+XYzEdDuBkVicIeDWKrq0Il3eih83K32WHwMuylxdCLQtKEkTrB9H12czWfnXD7AfTkxQRAEQQimcwi0WMxB+VpXIBYBgg4a7u2KQVcCrZr9acf5ye3urgfNjjviJmlMnANlM56TxCrcGC8VLbb+PTld2PeFm+3Hc9ITqX2fXZwINDdDchwLNBfr3+4GhZOyw1A9eybY+b1lFzNn0MmEVidiEHC2GWLn7DoNN9M3bT+Pi9mfbq7NajxfAAgUkINGEARBtFs6h0AL1gBQnSXEjkrKbCZWfu3cNRcljrYTVKcCrVqigxYXCLbKDovluHVA0hpx4mpVWj/sG0ja1XeyHm2W3AKSHTQXEwGbq9nQG1+W9e9x6nw6ErrF7E8nE1qdutWOHDSbLhPA1q/TwUZOyokB5+5gdrH1igbA+bURBEEQhAQ6h0Cz2xMGuC+psbMTrSjOd6OdOGg5Xdgo7mjYfjy7zo9bB81OqSjgfLKik14+N6VQdu+jL4uV5rlxIu26MU7WYzTC7qVMB83O5gTgQsQ7uI+J9e9QENrd6PH45ZQBAs7fa6F61nNo5/fm5j7aOaRdI8fFBgVBEARBCKZzCDQ37ojTkjI7ib4WT5aDltjVr7UXKzENUFZpUqX95NtpiaOTXj5XfWE2RTzgfHCN0x60SBObEuokliyB1lxt/72WXezM0XK00VPM/nQqCO3EUhTn4rOxgo3Nt3p8BsC+NtLEngt2cLSpFP9aJ9fWXGP/OeJmSBRBEARBCKaTCDSbZ04B7pJvJwmB06l5TdWwNekNaEmM7CY7ieTbRtIYyGfnpjl1fmzvfHeRV+Io00ED3JXmKV7rhwIDzifZ2e33AdjZfB6/8/VvW8Q7HCTjykFzGM/J+ndaBpjThQ3asUriOWJT7Dp1dAHn7rhdEU8OGkEQBNGO6SQCzeGQBMB+0qiqLGGxsxMNuHPQsousT3oDksbRV9uL5eQ+Jnb1JfTgAC0ixu70TUf9bg4FWizK7oddB81p0mj37DrAeQ+m9nu2I5q0NRK06egCDpPvYnkljk6dH22wkRN30OmYfbsbBk7FpxPXX9voceqgOXoe0xRHgiAIon3y/1igORzKEG4EYmEHiVWRswTVaQ8OYD/ZSZR42U3kiuSUeAHs62MR++clJZJGCQ5asza0xsG1OS1xtO3WOdygSPTy2bw2x66WA7c6u5idqWV3+qaTMlinIibodI0UO3yvOSi5dToAxUmJoybiHTnI1Q5KHLux34GTPl2CIAiCEEznEGhakmknIfD6WNmg7QQ1nqzY3bHNLnLmMjnqwSlq+V47OBG6QHxX32YsLZ6TWICza1O8QFaB9e8J5AMen/2k0anQze0qZ9iEFgtw7qC15/XvdIOiqYpNjPTnyIkFyCtxbK5x8RxxWuJoN16xi2uzux6L49/rYNOMIAiCIATTOQRaUxUTW3amAQKs18qROwJnCWo05GxX30miAzgocXQwJAFwtqufOBTY7q6+Q1dL22W3UwaoKPGE2G4sBz2RQLzE0WH5ppNEH3BQviZRoMWizHV2uv6dOD92f2f+HHaEhoxyYiBDIsZmPCdutfb1dmOFm4Fo0Nl6BJy5kQRBEAQhmE4i0BxMAwSc9XM46cEBXOxGV7twEBzufNtNUp0kjcG6+ChuB2IQcJYQ272PQItoshsLcJagqlH7v7dGJ06kw/WYKHG0MZBEi2c7liYGi23Gin+9kw0Ku/dRiydtjRQ7OxjbkUBz6sRXM7c6kG/v+5yUODo5PkOLBThzdQmCIAhCMJ1EoFXZFxWAs76wRH+FzWQny0VCbFcM+rIBb8BZD5rH5yyxsp3EOXTrnJ6X1FztLPnO6eKgDDC+ppwMLgCcJft2r82fy37XTta/3YOjAWcCzWmpnJuyQ0drpNiZiAGcO5927qWqsjXpRFQDzoaE2HWrAWcbPW4c3eTvJwiCIIh2ROcRaE7cEam7+g4SAlV15qApirOzoLQ+FaeJlZ3SPDcuE+AsIXbisjopcUzs6ttMGp0MromG2aHkdu+jojhf/47c6vggGTtrxKk74thBc1BOrMWTWeII2Fv/oQbmzNpdj/5sttnj6DliMxbgrMQxIXSL7X0fCTSCIAiiHdNJBFq1w9KkQvtN4jJ3bLWJkY6uzcHUvKCDXXaAJUdqFAjVW/8eNyVeyd9vJ55jB63a3vdorpSdc8mApDViY006dWIA9vPJSr6zi1kPZsRGD6bT5Nuxg1btUFgUuxgSUmw/VvL3W8HpM0v7Hts9aLX21z7QclxHLGYjlsQNM4IgCIKQROcQaE6FhSOXqTr+vQ4FWtBGPKcJqvY9thMrp8m3g1IopwItMVnRRizA2TRAwKGDVgN4s5gDYQcnSaOTM6eS40kTaC6uTVbyHax16MQXs+MA7NBUBQQKAK/f3vc5Ge7idMMAcOHEOxTxasxe2S2VOBIEQRCdkM4h0JprnCUfWYVAuAGIRuzF8ufZT6xkJqja99hOrBzufDuZmufUQUiUb1Zb/x7tUGCnJY6heiASsv49UkVM/Gsd/d6cCLRqedfmdIPC62fvUTsiJhpmjrW00jyHjq6TEke3Dpo0J95B+bLTZ2QgH1A8JNAIgiCIdknHF2jhZlY65SZptLVjW93+E1QtnpOGe6clXoDNxMrFrr5dVytYC0eHAgPOpr05GcgAtNwLGQ6C9j1O+xRtxypu+X7Lsapbf68d7DrIrtZjMfud2Zms2FQN5Lh4rzkqcSx2Fs/JGslyc23VNmLFv9bu+81pDyZBEARBSKDjC7Sgw4l5yd9j17FwIpj8OYDH78xlkpGgAu5KRQH7ZVcen71DgTVyip2VUzq5j05Fk5P16GRXP7H+ZTloEt3Bpmo2pMJuqShgf3CHVnrsZv3bFZ9uhK4tEeN2jdiIpcVzWuII2BefTqaKAiTQCIIgiHZLxxdorhyEwtavYQWngwQUJT6URHJ/ka2pebXudr7tOhZZhfYnRgL2z51yenAu4GyNOC259XiArAJ7Q0LcOD92E1RVldun6FTEaPFklQE6crUclhP7s5kgcVQGKMFljUZY2bjTYUOAvWtzWroMOBOfBEEQBCGBTiDQXCaogP3k20mio8VzMqHP6U67GmMHQlshGo4nVm52vqutf49Ttw6w3/Pj9Ow6wJmDFnToIAD2E2JXGxTFrO8qGrb29cE6tqZklcG6Sb7tlua5eo4Usz+lrf9im0LXTZ9isb3Jim4qGpwMQHH9PCYHjSAIgmh/dAKBVs3+lJV8y0wImmsAKM77YgDrCbEm5Bz3TinOHDQn2E1Q3VxbwkGTtEaybB6eHqwFoNg/XBywP9bfjRjMcuJEVrtw0IqdiRhX4tOmg+Z4jRTaf2Y5mSoKsJ9RjVk/QsOtGATsu4OuXFYSaARBEET7o+MLNLc9OIADB63Yfiwtnt3+oqxCVvrmJBZgPZ4boevxsPtv20FwmqAWxN0ci+WbbsaMZxW0fg0rOB0SAjgQ8W7WiCaaqi3Giv9cjnowHRx67NpBq7b+9a6eI8XsT6vrPxZreW87we75jW7ea3aH5Li5j/4cwBuw34PmeMOsmAQaQRAE0S7p+AKNS4mjxWQnFpPsoLlJ9IvZn1aTRjf3UYtn10Fz4yCoUSDcZO3rNQdNE1t2YwHW10gkCESaXKwRm8m32/WovYbVWMnf5ySetHLiYub6WC3fTAzSkFC+GaoHoDp/bztx0FyvkWrrsZK/zw6KYv9geCpxJAiCIDohnUCguSm7Kmj9GukI1YElVpISAle77JKTb9tlhy6uLeFqWeyvcyM+7ZbBJmJJXCNu3DpAjsuqfZ8tV6vOmajWYgH217+McwDdOLqAg0EyNe43eizfR8kbPa6GhBSzHkw7ZxwSBEEQhAQ6vkBz04Pj8bJEwm4S5zQhsLvzHax1nqDa7kFzUZoE2C8XcuMO2hVNwdr44eI++7G8Pva9VhNiN0MSgPgacVDi6IT27KCpalyguehTBOyJpkABeybYxZfFjtCwu2Hg+L1m10FzObQGsL754vo5YuP8Rq1U1O212bmXBEEQBCGBji/QtN1hJz04gD3R5GYaIGB/x1ZqiaPb5NvGfXTbg2O3L8yN0AXi1ybTZaq1MTUvEyWOxQ7jFVuPFWkGYmEXDlox+9PO+nf6XkscoWFTxDte/x2hDLbYYbxC60I3pE0VdRrLQQ8yQRAEQUigEwg0h2d3adjZ1efhIAA2hYUbl0mRV5qUZSexctmDo32fHcfCaSzA3rUl1ogbV0u1NzXPbYmj5fJNF2WAWjzLjpaLyZuA/cmKbkQMYG+jx02/m/Z9kSYb/XUOz+UD7DvxieeIQ2GtDQCyFIvT85jOQiMIgiDaGZ1AoLlMrDIh0OwkqU4TVG2yot3mfhm7+jx6cAAb8Vz0MgH23BHXybfNcfRuShwD+YDisR6rqZqVATopFQVsvtc4bBgkv0463GyGAPaEBQ8HDbB3bW5KbgF7z0h/LuD1O48nXaCRg0YQBEG0Lzq+QHMzJAGIJ9+yynfslgu5Lc2z41jUsoTdcfJdyEqOYtH0X+u2B8fukBDXybcdd4SDy5T8OmaoqrvkW1Hsb1Dw2AyxcjwCLxFvJ9l39RyxcQh9ogzWrYNs4fcWbmblok5/bx4vq1Cw3IPm1okskFhyTgKNIAiCaJ90fIHmxkEAbCao1S3f4zQWYC1eJAhEgxyEhZ0yQJeJFWCtNI+XgyCrxNFJf5Fbx8JKkhqqj/fgyFr/HARaLAKEGtJ/bWKNuCiVA+Suf9uTPiU4aG7XI8CuzXLJLYfNkHAjEI2k/9pEGSwJNIIgCKJz0QkEWgZ6RxwPLrBRLuQ2+QBsCrRq94kVYC1pdFsGaHtIiMsSR9sOmsOpooC9pNFtoq99rx2B5nSCKWDv2tycXZf8fXYcNFkua7AW8PjYwcxOyLYh4t2+1wCb4pODgwbEjzRJg1sRTwKNIAiCaKd0fIEW5FSaZKnsqo4l3k5GcWuxAIvJt1Yq50ZY2EiseJSKaq9jJRbgPCH2+gFfjs1hK26cHzs9aC6nito5PJ2HO2LXQXPrVmuvkzaWyzJYj5e9V60INLelooD9PsXsIlZi6gQ7DrLbklsAyLJ4HwF+zxFL618T8U57MPOYUCaBRhAEQbQzOrZAi8XclyZlFwFq1FrZVcjtsAk7DgIPd8TmRDQeO992kka3iZyVWLEoK89yNcXRxtQ8HusRkCNitHh2+hTdbhgAFstgXSbfWjwrIj7cyEovXa2R+HvNan+dK6Frx62ujn+PWwfNRqmo298ZYC2eWwfNbg8mQRAEQUiiYws0bVw7l2THYtmV09I1IP69isXkw+WYcUByYuXA+XGbyNnaZXc5xRGwmBDXuHPrEu6IHZfVjSAstp6ghuqZm+IUO6WpPH5vVtc/lzLAQrbRE260Fs/thgFgz612LdDsHPsgaaMnWAd4A4A/23k8EmgEQRBEO6RjCzS3Y5aTv9dSslPvLmFUFPtJo4wEFeAwAMJmX4ybHhzA+rVxEYM2RZOb++gLsPJNOy6r6xJHq6WiLtd/Ivm24qDVsPvgdFy7Fk/aGrFx9INUB42DW233CAFp4tNlRQNgrweTIAiCICTRsQVaIkHlMdzCooPmxkEA4hPRJAqLSDMQCZl/XaIHh0dpko0E1WkPDmB9AIpsB83tfQSsiyZepaKhuvRT8yIhNlU0wEOgWfy9ub2PljdDXB6fASRt9FjcfHEjqhM9mFaeWXEx7HpIjoXrCjcD0ZC8Eke3x5Bo8ay6gwRBEAQhiY4t0HhMsdOSMssCTVLSyGWKo8Wen0QPDofSPKtTHLkk33am2EkSn24dNMD62XxcBkDEvzfdGglxSPS18mCpybedEkceLqsEBw2wPpREu343pdnaplIsZv51PCoa7JbB8nDQrLqDBEEQBCGJDi7QeOx82xAWboeEANYny/EocbTaX8dD6AbyAMVjvaTMtdC166BJFJ+uk+8i64m+x++yVNSiaEo4uhx60KwOCZG1RngN0gCsD3dxvUFhcax/qB7w5zqfPAu0iLt0vzcuJbc2pzhy2TCzWOJLEARBEJLo2AKNS4mjnXN3XA4J0eLJ7MEB0iepPHa+E/11Vh00Di6TrZH+HIRuuniqykfEW+2L0RJ9V6WiFtcIj1I5O8cjuJ0YCVhfjzzKiRNrJM19jMXkO2g87qP2WmbwGLbiz7W50SPJZSUIgiAIiXRsgca1pCbN/6RV1f2QBC2ezB4c7bXSxQI47EZb7J3i4qBZHGvOZUiCxf6icCOgxtyvEauT5dyeSwZYd7V4lMoBsHymFs8etLSleZymOALpBaE2eVaWg8ZrUwmwsEY4nN1oZ5ASz5JzK8cjEARBEIQkOrZA4+GOWN2xjQSBWFhuX4ysnW/NPZR5bTySbzWW/vw6mUNCErFkuawcnEhbwgKS1z8P8akC4XRrpBZQvO6nigIW1ggHtw6w7qC5PRoBSFojElxWgG2ISOtBK2DP9UjQ3esQBEEQBEc6uECrY+PafS7OwVEUNpkuXULMI9HXvt/qFEcePTiADQfNrfNjdVefh/Nj9dq05DvXeSyrU/MSCaqs6YOchC4gb41YFp+cSkW117ISS0apKA9HF7DnoPFyWdPF47pGJJY4AlTmSBAEQbQrOrhAq2flO24SK8BaQsDLZdKGhKQtzeOZfMtyfiz0Tqmq/PJNt31agDXHgoejq31/uAGIRdPE45B8W52syKvEMWDhvcarT8tOf53bWB5v/L2dZo3wGMgDWD+KQXtGusGuiHdzFIMWL919jATjI/15iXgaFEIQBEG0Hzq2QAtxSKwAawkBtx6ceGleuDF9PFm7wzKdn1A9nz4tq4kVj1JRLZ4sB8Hq1LwQx/4iK7+35K93Ey9tL18DAFWig1brfnNCi2dVxLuZPKvFCjekP7+Oy9AaiyI+xGujp8BGObEkEU8QBEEQEunYAo3HwdGAtaSRW3+FVdFUC1ej4YF4f51XnjtipcSR1320OlmRx33U4qVLGjURw000pSu75TS0xlIsjhsU6Up8E2cASnKQQxzuI2Bx/XMsJwasxZPWg1YHeLMAX5a7eNkWjkfg6VYDJNAIgiCIdkUnEGg83BELk+V49lcA6RNiHiWOVieihbTEKuAunuYgmJVvJkSMLKHLaY0E8q1POpTlWPBIvj1ewJ9nLdH35wJen7t4VtYjjzMAk7/fyn10Kzy1eFY2DJJ/NsexrAo0DiWOiTJYC+ufy/PYyoYZ7+cxCTSCIAii/dCxBVqIQ/IBxHf1JQ4JAcwTq1iMT2kSAEuH9fJMrNJNRON9H9O5Ws017oWuFs/yIBlOA1DM1qQ2VZSbsLBQ4sgllp3NELcTKu30oMl6r2kOMge3GjBf/5EQEA26X4++ABvEZEUMcqtosNjLJ6uXlSAIgiAk0rEFmswSR56j6AHzeCFOib4WT1ZipY18N4vHcyBJ8uuZxeNxHwP51kvz3F5bwrEwu4+c+gYB644FLxEfDaUR8RzO00r+fhlOpBbPahmsP89lLAsOWoiTGAQkr5EiINLMBKZZLO3nchXLYhksQRAEQUikgws0mTvfvKbYWRgAwWt3GLA+AIXXfdRezwjufVqyku98aw6a22MfAGtlsIlSOVmuFi93RFsjZtfGuwfNgjvIQ+ha7cEM5AMel4/eLAtlh7yeWYANgcbpmQWYPyNpSAhBEATRiengAq3OfS8T0JJ8xGLmsaAAAbc73xYSAl67w9prWOrB4RQLMB+1z2tIiJ3eKZk9aG7P0wKs9aDxErqA3DVixR3k1YOWOL/OJJZ27AOX+2hho4fH5E2g5XdhScRw+r3JujZLzxFOa8SXzTZVSKARBEEQ7YiOK9BUld/0tUA+ADU+3tsA7awk18m3HZdJkkDj1e9mZbIcr1JRLZ5ZrGiY9eBwuY/58dI8k7KrUD2nWBZ60Hj1MmnxrIz057VhAFjcoODkxpiVHYY4jfQH2M8bbmTrzgiefVqAxBJHib2s2RaekbzEpzZIKd36JwiCIAiJdFyBlkiseCY7aXajeZWTaa9nFiv5a91gaWS1xBJHmWVXPO+jVceC24YBLPbyySyD5fhes+L8uHWrtXgy32vJr6kHz2ErQJpnFuc+RSs9mDJFPI9yYi0eOWgEQRBEO6LjCjTeiX7ya+rBy0GwUlIjvXyN866+mWMRrAcUD+DP4RPP1B3hfB+BNEkjp0OxfQF27IFZ8h2SKHQBvv2eQPr1789jZayu46W5thBHEROwsvnC6T5qQ0ZMhW5t65/LDZl4jphuUNTyqWgArLmDBEEQBCGRjivQeCZWVp0fHomOlbPJeJevhRuBaMQknuQhIQEOfVqA5PsoMfnW4km7tvh9THd+HVfnR4LQBdI7yFxFjIUBQLz6tDwe9j6yJD4lCLRoGIg0yX0ec3uvWXCQCYIgCEIiHVeg8SxNsrRjyzEhCKTpeeDdgwYYlydFIyyx4tWnZRYL4LfLDqTf+eY9JAGwUOLI69rSrBHe1xaLsNHmekTD7HM8J/SlFbqy1ginoTVAy3soXdkht2uzKuIl9LKKeK+lFWgc1iNAJY4EQRBEu6MTCDSOwkKaOyKxLyZdQsxzaIcvC/D44/2BBvAqFQXiybeFgSQ8hW7aPkWOIl5mGSxgfG0y1yPAz63T4kl7r1nYoOB5bekmiwZ5rv988/PrQjzFoNXNEEnPY4IgCIKQTMcVaCISVKkJQZreKY+fCR4esQDjXi2eQhdggx3SiRhpyTfHEq+AxeRb1q5+sA7w53Lq00ozfZPnGtF6p6RuhpiMa+cpLBLOTzsRFqE61vPq9XGIleb8Op49wYk1kqa/jgQaQRAE0UnpuAKNq4NmpXeKZ2KV5tBjrmVQaRwLniJGi5duPDyvWFp/kdH5dVxFfJrkOxbl7PykKV/jdcQEYMFl5Xgftd4pGX1aQPz8rnrj/jreLhNgfG3ReBmp1OcI7zUiQcR7POndwWYSaARBEETnJaMCTVGUAYqizFEUZb2iKOsURfmV5W8W0vNgkHzwPMwWsDZZjkfCCKQXn9wdNAvCgud9hGqcyHHtL0qTfPN0YrTXSefocr2PsLBGeK7/NJM+efZpqVHj0jyuz5E0paI8J28C1nowpa0RjkObAGvlmzxLpdMNUiIIgiAIiWTaQYsA+K2qqocCOBLAzYqiHGrpO3nu6vsCrBTIKPkINwJqTG4PGq8ENV1pXqIHjVdpXr55D5p24DeXWBb766T0aXEWaOmELm8RA8hLvtMOt+DZy5dGWCfO0+JRTpzmvcbbrQ7kWyi5lSXQ4oKb27WlKZUONfC/tnTnvBEEQRCEJDIq0FRV3aeq6vL43+sAbADQz9I3B+sAxcvnPC3APCHmnnxLdEe0w36NRBPP3hEtXrqzmXhO6APMnR9vFhPgbvH62WsZJt8iXKY0kz65CaY095G782PFQea8QWFWvpnF6dgHbUiOoYPGcVMJsFDiyHHSYcCqy8qxfNPoORKLxifPShKfBEEQBCGZTDtoCRRFGQzgMACLUz5+g6IoSxVFWVpeXt7yCc1B4JFYAeYJMffkIy7QYlH9z3Pd+U7TOyXE+TGIpaqcSxzTCTSO9xEwT4iDvJ3IAiDcYLxGgrX8E9S04pOngyyxTwswd9B4lRNr8WSU3Gqv015KHHmX+AZM1gh3oUsCjSAIgmhftAuBpihKPoAZAG5TVbVVc4qqqs+pqjpFVdUpPXr0aPkETwcBME92eI6iT34ds0SOm4OQLpYA58fIrYsE2Xlb3MuuDKb08RSDWjzDHrQMrJGOPEhGlluXbrIiz3JKII2wEHBtsbD56Hvu6zGNiOfpDhqWZcefL1p1gOtYJNAIgiCI9kXGBZqiKH4wcfa6qqrvW/5Gng4CYN5wLyL5AMx3iHklVl6feX8dzyl2QLzEMd0uOydhnW3FQeOdfEsctpL8uqnwXCO+bNaHJW2NmN1HAWIQMN+g4O2ypnXQeAtrCddmZZCMP4/PsQ9AvL/OYKMnIdAkOfEEQRAEIZlMT3FUALwIYIOqqv+29c3cy9dMJsuJKPFKft028Tg7P2YT0ULx87R4nJWkxTJMGGtbvoYH6c5443k0AmA+3IK7iLeQfPOKpSjpXS1fDr81klUgz4lJ9GBK2AwBzHtZhZXmGT23eDrxeQAU8/XP9T6aDAlJrBFODlq6Kb4EQRAEIZlMO2jHALgKwI8VRVkZ/+90S9/JOyEwTb55946Y7NiqqiBhISHR12LFwkAkpBOL9xQ7CwNQZAldEf1FgP4a4d2nBaR3tbiux3gsvbPJeLusVkocea9/WWvEbEJlNMIGafC6j4qSvsqA9xoxFNXx9zvvPl2z6bMEQRAEIRFOW+LOUFV1PgBnUz5C9UBhX34/jFlCkBghzTux0kl2wk3xkf48hYXZtQlwEAAWz9e19ed4Owhp++vqgS6D+cQC2O+kaqdBLFE9aDprhHe/G5DeHeRdBqjG2PEVqS6IiJ5IQO76r9mj/znu0zBNymBDnO+j9lqy1kggn62PWLRt2STvHrR0Gz0EQRAEIZlMO2jO4XmeFsCSNMNSOYnuCG8RA8hPrLTXbROL833U+uvMytekOWi17Gfx+vnFAgzuI+dEX3stw54fAcNWAH1Xi7uIlzwkxHSjp57fmWtAkhOvEy8o4jliUgbOu1TUbPqm7DVCEARBEJLpwAJNgLCIBllpkF4sT1wM8MBMoPF2YoA0woLjWUlAmsRKxLWZ9aqIKM0zKbuSJWJ4l4oC8eEuJqWiXNeISYkv72vzBQBvQN+JjMUE9aCl2TDgdTSImRPPe1NJey1ToctxjZiJJt4CLXHGIQk0giAIon3QMQWa1qfF20EA9P8nrfWp8DxzDZCTfADmPWjc76NWUqaT7AtzfnSuTVTyHao37p3iPbQGMHdZeQtdWZMOzYYy8J4YqcXTW4/hBgCqgB40g/467hsGFlxWEb2DenCfqmvyHOFd4qi9Fgk0giAIop3QMQVaok+Lc4IKGAg0zuWUlsoAZbkjvEVM/D7Kujajc9dEJd9QjZNGIQ6a3n3UpmHKKs0TUAYIpHFZOQtCUyeSsxhUY+wZlQrvzRBTl1WyQAs18H9mAQbuIOcx+9prUQ8aQRAE0U7omAKN9yCB5NfSdX5q+cbyBeJnk+k4CAkHjfOEPrOJaDx3omX2jgDxEkdZQjfNtfG8j2ZlV6JEfLrSPF6Yis96wOPn16cFGE9WFOJWm4hP3keDyO5TTCfQuDpaJiWOwbp4vyfHGVdm0zcJgiAIQjIdU6AJETFpkm+eO9FaPNPSJAGjv3VL8wQlVkYljjwPs9XimSbfPB0Ek94p3vcRMHY+hZQ4mjgIInr5AOPyTVnvtZBAEW8Uj6dg8njZGYZm65/3NFizYx+4u9UwuDZB7zUaEkIQBEG0EzqoQBPUgwAY79jyThqNSspE9WlpY82TicVYKaCIXj7D+8gxFhAXnyb9biJcVmkCzejaRDiR2pCccOuPJ87TkiTQeLtMgImDJuA5YurEi7g2A9GUcFk5T7oN1bHnRjJhEc9jsz5die81giAIgsgAJNA00jk/PJNhwDixErHznWUgmjTBJiRBleAgAMb9RULKKdOVOIoQFpKOYjDqwRRy5loaB42n6wmYrBGRzxGjNSLZiRfhaoVTnpFCha6k9xoNCSEIgiDaER1coIlIvo12vgU4aGY730ImK6Ym3wISK182oHiNB2nwdhACBiJGxAAII6ELSC5xbIj3aQX4xTJyfkQk+r5sdmyF0QAUES6TzKmigEQH2cCJD9Wx4wV4rhGjaxPyPDYZ2iRqo4cEGkEQBNFO6KACTRMxAkocdZN9QSWORg6CP5dvn5ZRaZ4IJ0ZRzKfm8XYQtBLH1P46IefJmU0flNyDJiIW0Pb3JmIgSWKNGAhrIe6IpGmARg6yqgpyWQ3OJhO1qQTobPQIeB77TUrORbzXjEqlCYIgCCIDdFCBJrF3RGhiZSAGRewOA3IcNMB8ap4IYRGLAJFgSiyBJV6pvzcRQxIA89I87oM0DM6dEjGQBGC9UYZDQgTdx1QRL7LEMfX3Fg2xdSqid0r2c6TNRo+A++jxmAwAoiEhBEEQROemgws0jgmI0Y5tuAnsPC1JiZWIBNWoNE+UQJOaWBns6sscsy9iSIIWT6bQ1V47GREHR2vxUnuZAEHOTz6gRpmITkZm75SIklvt9YyO6xBxH7XXbhVL4Po3HCQjYINCb0gOQRAEQWSADirQtKSR846tX6dRXLbLJKTEK11iJUAQyixNAvTLrhQPKxflRSAPgCJR6Jr0oMkSaCKG1mjxDMs3BbmDbX5v9eysOa9fTixA0CAZg/46EccVAMYuq5Bry/AGBUEQBEFkgA4q0BrYkAGeh9kC+kmjqOQjUMB29KORtvFEJVaGPWgihIXE6WuAvmjy57F+J15ovVOyhK7hfRQhdI1KHCWKT1UVdxQDoP97431dXh8bgpLagyZbxAstcZTpxMveoKA+NIIgCCLzdFyBFuCcfAP6CbHIxApoW+YlZKS/0c63qGvTGVyg9fKJ6C8C9J0f3rEA/d5BYUI331jEixK60lxWnTUSagArJ5Z4bbxjAfq9g8JEfD47py4WTYknsFRamvjUuY/RMCtFFDFsCCCBRhAEQbQLOqhAE5CgAvrlQqIFml48mSIGENOrkhor0swOyxbm/EhwR4B4+aakBNXo3KmgiBIvI3dEossqrJzS5NpErREZkw6TX0/vOSLNQYv/2y9g/bcRgwI3QwAaFEIQBEG0CzqoQBOUfOuWrwmYBpj8erqJFedr83hZL1YmSxxFlgEC+uPhRbkjsl1WGcm31qunF0vxsLI9nuiWEwt06wB5Il7PQe5MAk3vPvI+c02LJ7PfE6AeNIIgCKJdQAItGb1Ry1pCIGJIAiC37EovlsfHkivesdoIJgGDXbRYgLz7qDcAJZF8i+odlCAszIbkBPIFlRPL6vc0GQ8vzUET9RzR2ehJHA0iao1I2FQCzO+jrOcIQRAEQWSADizQRIkYSSWOeqPvVZWVswkrzTNI9Hkn31k6I6uFuyM6yb4od8RohLqMXf1YLL5GRJX4SioD1OudEv1ey+hmiCjxqbNGRJUTa/F0ha6k57Go4wqMKhoIgiAIIgN0UIEmMGmUXZqXnBAITayMkm8RiZVO0ii6NEmmOyKrB00vaQw3iomlvaZeQiwqFtA6nshBGqmxAIHPEbPyTQnOj6j7CMgX8eHGFBEvaDPESMQTBEEQRAbooAJNZkmN4KZ0aYmVwdQ8UYkV0DqeKAfBlwV4/BL7izLRgyZB6ALGPT+i3BEg5dokD4AQukb0BJoC+HL4x0q8vhZL0H3U4sm6j3qiSfhGDwk0giAIIvOQQEtG2/lW1daxRA1J0F4/EUubhsbxcOVEPL2JaKITKz13RJSwljAkQYsl48BjIE3yLbFPUahAk7BGfAHWZylr/esNydGcSA/nR65sEZ+lU+KbkY0eziWOfp3nMUEQBEFkiI4p0IRN6MsDYhEgEmz5mMghCdrrJ8dK/hzveNLcEZ2peTJ39UUNSQDYten110lzEASNogf0hYXIMkDt9ROxtPJNCWeTiezl095rrTZ6RJcTSygV1V5TVqm03vRNUc8RoyE5BEEQBJEBOp5AE518A20dC5G7w52yd0SnLywxxY7zzjfQ1h2MBAE1KlY0pV6b9ORbphMpqwdNS74FOMip619kL19WPlt/bTZ6ZN9HmRs9shw0wZtYJNAIgiCIdkDHE2jhJgCqvOEWooYkeP2sLE6ayySxB83M+ZEhLET38gFtr03EdWllV7oJqigHTZZAMyhxFFFODLRd/6J7+ZJjaH+XvtEjcfR9R+9B0+JRiSNBEATRDuh4Ak30DirQNiEQEUuLJ9MdCTew0q7keJ0i+c4z6FMRuauf6qCJEPE+dr8yVSoKSHAHU99rAsqJgbbCQmgvn961CSoD9AXiQ3JklUobbfTI2jCrYz26Hq+YeDQkhCAIgmgHdECBJjCxMhpuwbshXSN12puMXf1w6rUJHACRLGK0vkERyXdqX4wUd6SxdTxhIl7yGgkl9U6JLCfWOwdQVCygbfmalI0eCaXSWjxZg2RSN3piMYEbPfHnbqrzKfS9RgKNIAiCyDwdUKBJSL5buSMyk0YJ4lNLdmQk3zIcBKDtZDnRZYCAvvMjgtQ1EhTs/KhRdh4fED+XT1Avn1F/ncjkW3qJY0o8EYNdgLZHaMjc6IloJecinyMS+j0BEmgEQRBEu4EEWjIye0eAtiPbRZcmAS0JSLgpfii2gGTHnwtAkZh8SyxxNBSfshw0kSI+ZUiOSKGrN9Zc6HtNpog3EGiy3UEhx3Wk9EVK2TCTtNGj14NJEARBEBmgAwo0Gb0jEoWFXvmaiMQqdfqgyMRKUfQdi05RBpiJNZJyHz1+1nskIhbQEk/kSP/E2WQpkxVFuiPS+hSNShwlCYtQAxPAvM9cA9oOyRH5PNbd6JG4GUIQBEEQGaIDCrQMlCYJLamRlFilXpvIxAqID2VILRUVGCsaBCKheKxMrBGJLqtIMQjIcUe015WVfGtDQrT+OpkiXlUlb/TUiyunTC0DDwoUuh6P/gaFrPcaQRAEQWQIEmjJpJaviezTAvR70DpN8q1TmicyFtDSFyPTZRV54LEWr41bJzj5blPiKNH5FBkrub9OZoljJAjEIp3jPqY+I2WskdSJqcLEZ15rEU8QBEEQGaIDCjSBybcvm42C15IOkQceAwbJt8AeHEBeYqXn/IhMrLQYyX+KuDZfDlqVXYk88BjIjNDVnE/RLqve9E2/4GsLpjrIAh20NpshoqbBSnSZDEW8SCc+9VxKgesxWcQTBEEQRIbowAJNQu9UJhJU0e5IMIPJt2h3MDVpFNHLlyi7SoklsqQs1WUVNg1QtoMm0UFOnQgYagAUL+DL4h8rtXdK5DNLe11p/W4Sha4WT9pRDDpDogiCIAgiA3RAgRY/8NifI+b1kxNiGclHpBmIRuLxOllpkmzxmfx7E9XLB7QWFsKFrkx3JEXoiuwv0l5XWp9WqrCIr0cR5/IZifhOVeIoYdgQEJ++KavEV+cIDYIgCILIAB1ToIlKrICU5FuCgwAk9U4JTKy00jFZPWjJJY4yevmA1gmxqFhaPGnuSD4QDSUNQMmEOyJhSE40JLZPq80GhcD1CEgW8SmHR8sWuskfFxFPE4ORIBALi18jNCiEIAiCyDAdUKAJTqyy8tvufMvsnRJ1bR5P64RYivOj9WkJPHNNiwW0vjbRybfMSYeAHBHfxomUWOIoPNHXOeOt04h4vTUi0a1O/hm4x9NzIiU9RwiCIAgiQ3RAgSY6sZIpYnR6fkTF0uLJKk0K6AhdmYMLRIlqgCX7soRF6q6+yPXvy2J9Wa1+b4qYXj5Achmg5iAnrX/hz5GUNSJto0fgBoXHw9z45N+b4mEDlkSgJ3RFHyGQfDwIQRAEQWQAEmipBPLkHOYM6BweLcEdbOX8KAJ7+fJayq5kuHVASvmaSIGWAXdEhohXlNZT80SXE+u51TJ7MIVvhmRwg0LmM1JoyXnSfRTeE0lDQgiCIIj2QQcVaJ0lsZLdO5XfVsSI7OUD2Bj6jIgYWeVrEpNvTewKX/+y+rTy2fqIReX0MgGt++s6TQ9a0gZFJMT6+YSXgUu6j5qIj8WoxJEgCIL4f0MHFGgyEiuJfVoAixcNA9Gg2OQ7q0BigpokLESXePkzIXRl98XUiz9zTXttGeWUWiwtjoxhK4CcXj6g9XNExjRMgMULC16P2mtLXSMqEGkSv0a0syJpSAhBEASRYTqgQMtA74iMoQyiY2mvHZLYgwPEr02w0PX6WA+MtPI1PXeks6yRfIlCN1mgadcmqN/NFwA8/gyKeJG9fDqbIUJdrZQeTBlrJJi8/mnMPkEQBNG56XgCLSixpCZYD0ABfAL7tAB5iVXqzrfQQRpJyY408SlximNy8u3xAd6AoFjJybdgoQvo3EfBTgyQsv5lXZtgEZ/a7ymjnFiqiJfYywekbPSIGpKTzQaekEAjCIIgMkzHE2gy3BGo8d6p+O6wsAOPJbsjegMgRCFdfKYm34JjxcKs30eL1VmS76yCJJdVgtDV4ohOvoG4sGiMn8tXJ6cHTfQZgEDrSZ+yRLzMXj5AzgaFooBNaKUeNIIgCCKzdECBJrN3KhPJhywHTeJ9DMpIGvPlDUlI3dUX7cQAKSVenUXoSi7NC+TG10hz/Fw+wfdRjbLDlTvbfWyz0SO5DFa0808OGkEQBJFhOpZAU1WW9EgrqRHsMnn9gDdLrjsSaQKiEYmJlcRdfVlDErJS14jA+6j1LSWLeG2YgQjaDAmRVOKoDUDxSxCfUsopM7HRI0vEF0gcEpK60SOw5BxoXZpKEARBEBmigwm0KPtTSmmehORbiyezBw2Qc22pO9+Klx2ELDKezHJKoCWeyFgeLxNpUssAk3rQpPQp1rFYvmw28EVYvHyJbnXqc0TkRk+A9UHKEp9Z+UlnHMoqlU56ZokqOdfiUYkjQRAEkWE6mECLsT9l9HMkdr4FJh+ATtIow/mRcG2pZVcihyRo8aQL3QbxCSogX8S3Sr47idDV4skcpAEklcEKjKUoSWtEkogH5Fxbahm4lOcxOWgEQRBEZulYAi0mQaC1Sb4FJ41Z+UCwrhM7aPXiBzIAOi6TrF19wQkq0JI0ypp0CABNVUAs0gkFWiZKHAVPTNXiyexBA4DGinjJeSd6Hif36RIEQRBEhuhYAk1miaMmmmQljTIOIdZ6lxorxCffvixW1igtQc1kiaNsl1VC8l2/vyW2KGQOWwHYfQs3ZqjEUbI7KLSXT1sjB1r/W0gs2ZsheS19rARBEASRITqYQJPtoElKGpOTb9FDEgCgTkLyrSitd/U7ZS9fg/hz+YDWybfIM9cAneRbpIhPOjw61CDuIGcNqWWwSSI+KLlUWkYvH5D0HBG5RrSzySSXExMEQRBEBiGBlkpGytfiyYc3wJJWkbEAOcm39voyhiQA8d6pRqC5tuXfwmJJHAChxQvWtyT6Qnv54tdWX9b636LIkijitTLYoEQHLSjR+ZHl1mVJfI602ugRPLQGYFUGVOJIEARBZJgOJtC0EsdO0qcFSE6s4iWOMna+tdcPNbByURmxAKChvPW/RcYK1slJvluJGAliEJBTvqa9frAeCDXKuTY1xkp8tdiiSC4nFt2nBbTuU5QRC5C4RvJahLWsEket35kgCIIgMkDHEmiJISECEwJfgDlZjRKGJAApiZWEZBiQU+IItC47lCXQZOzqa2WoDQcBqBJdVkmOLiDPQUtsUMi8NglrpM16FHh2nRZPVll2YqNHphMv+Tmi9QQTBEEQRAboWAJNRomj9vpSd4clJd9tBkBILN+UJT41YSGyl8/jYa8vVcRIHFoDZGD9y7w2bY0I7Hnz5QBQJK8R2fcxExs9EoQuQKP2CYIgiIzSwQRavMRRxjABLUGVMR470gw018jpwVE8STvfkkqTpJbm7Rc/JEGLJ7MMUJqDJtGJ1F5ftrBoKGMCW+SBxx5PfI1kYjNEkhMpzUHLl+iyxgUgDQohCIIgMkgHE2gx9j9rkYkVEE+sJO58A0B9ufhYWsO9tKQxT+6QBID93kTH0uLJXCOxCDubTLYTKaUHrY71/ci8NulrRJLLFKyTeB9lOWj5Env5yEEjCIIgMk8HFGiyEiuJLhPA4omOBbAYTVUtfxcaK09unxYQv48y1ki+RJcpqXdQxnlyWqzkfwuLly9nsEvy68tcIzIH8kBl7zfRsbQS34aDSbEFEshruY9ZskocyUEjCIIgMkfHEmgxiQKtubrl7yJJTHuTkFgBrRN8Gcl3sKZtXCGx4tfSWCFJ6Oax3xkgT8Q3V4v/nXkD7Kw1bf0LLyfOYyWH2t+FxopfS8NBeWukqZL9Xfh4+PjrN0hyB7PyAajs7zLWiOznMY3aJwiCIDJIxxJoMkpcgNbJm6xdfRmxgNbXJiOxSsSSeR8lJd96fxdBcnKfVSg2lqK0XI/oPi1A7n1MrAsJjm6reJB4bRJiJceQskYy8DymEkeCIAgig3QwgRbLQPItyR2RESs5nuzkO6dYcCzJCWpyqZXM5Fu0QEuO1+lEjOzNkM78HJG5RpJiUIkjQRAE8f+ADijQZCdWnSxp1BIc2SImp6vYWLLvY263pHgSk+9sGQItr21c0bFkxMuoQOtk1ybzOZIcI7e74Fjx9zI5aARBEEQG6VgCLSa7xFFpnYgLjQW51yY9sRIs0HxZgOKNx5XgILQSaBKTbykOWjye6L4pAMguSoorOF5ySa+MNaLdP3+enKNBEn+X+RyR6NYB4p8jJNAIgiCIdkDHEmiySxzzewFev+BYskvzZCZWySWOghMr7QiB1LiiSBZo/hyxsZJ/V1IctHg8GWKwqH9SXNHTB70tQkmmiCnsy9an0FiSSxyzMrTRI/o54gsAHj+VOBIEQRAZRfBpvpyRXeKY00V8rPxeSXE7ce+I6B40gE3pC0o48BtoLdCEJ9/JPWiCe3AAdtA3APQaKz5W0YCWv8tak+FGueu/sK/4WMkxZF6b9FJRwU6kFs9AoIUiMawoqcKGfbXYdKAOjaEozhjXByeN7gWPh+9zIBZT8fXGMizdWQmvR0HA50FewIfjRnbHqN78N08O1gfx3wU7sXZvLYpy/Dj50F44YWQP5GWJSRO2ltXjvWWl2HGwHkU5fhwzvDvOGNcHPi//feO1e2qw42ADtpTVQ1VVKACOHNYNRw3tBoXz87u6MYQv1x/A8pJq9C7MRp/ibBw1tBsGdBWzdvfVNOHtH3Zja1k9+nXJwZFDu2HayB7crwsAItEY5m05iG3l9diwrw7dCwI45dDemDyIf64Ui6lYVVqNVbursauyEf275CLgVXDRlAHI9nu5x9teXo+3ftiNbWX1GN2nEOP7F+HYEd2RGxCz/rccqMMrC3aiqjGEngXZuOTwARjdh//7WlVVlFQ2YldFI3ZXsT/zAj5cMLkf+nfhvyb3VDdhxrJSHKhtxqjeBfB4FBzapxDj+hUJeW/XNIbx4vc78MOOSozuU4jLpg7A0B758HJ+HgNsTX6wYg8+XrUXMVXFtEN64sojByLLx389Ah1OoMkqcdQEWrH4WF4fkNeDnQXV6XpHkoSFR8wCbkWkmf3ZZZD4WLkSxLuG7BLHmlL2Z7/J4mO1ctAkuboN5XId5DzBfVNA680kKe/tDD1HZBDI1x2z/9na/fjLJ+uwr4Y9Z7rk+uH1KPho5V4c0qsAv/jRMG4Co6I+iJteX44lOyrh9ypQVSASix9rMBs4e0Jf3HfeWBRk86nwWLDtIG57ayUO1gcxslcBVpRU4YMVe5Dl8+C4Ed1x7mH9cMa4PlyS/uUlVXjim634ZmMZfB4Fg7vnoaohhHeWluLhLzbj1hNH4LzD+nFJsOqaw7jz/TWYtXpf4mMeBYipwGPfbMXp43rj7tNHc0tUl+2qxE9fXYrqxjAKsnyoC0YSnxvQNQfXHzsUVx05iIuYbwpF8fy87XhyzlaEozH065KDz9ftx7PfbsfIXvk4c3xfXHXkIHTJC7iOpaoqnpq7DS/M246qxjAAoHt+Fmqbwnj22+24aHJ/3HbySPQr5lNNUlLRiFveXI7VpeyYnoDXg1A0BgB46PNN+PkJw/CLacO4rEdVVfHp2v24473VCEZiGNQtF99sKoOqArkBL04+tBd+dtxQjO1XlP7FLLC6tBovzt+Bj1ftRZbPg37FOZizsRyvLtyJ08b2xpVHDuK2cbCrogG/eH051u2tTXws4PMgEo3hyblb8duTR+L644ZyEzNvLC7BHz9ai2hMRW7Ai8ZQNPG5XoVZeOmawzGmL5/7WNscxsvzd+KF+dtR1xzB+P5F+O/CnXjp+x3I8Xtx4eT+uH36ISjk8IzcW92Ef3y6EatLq7GzohFDu+ch4PPgbzPX4+Xvd+CXPx6OqUO6YUh3vv8/7GACTdJ4bG0kfHax+FgAcyq2z2E9dqLJlIMmg3OfZuegjb9UfCzRvYnJJPcvyShxLN/I/pQh0JIdEZnvbRmxNCdS1nOk2wigYgs7x040mSqVlkFWfpsetMe+3oJ/f7kZY/oW4s9nHYrDBnZBz4IsRGMqPlm9F0/N2YZfvbUSL3+/E49fdpgrt+RgfRBXPL8Yuyob8OAF43DBpP7weT2IxlRUNoTw2qJdeHLOViwvqcKDF4zHMcOdbwBEYyr+8/UWPP7NFgzpnodXrp2KQ/sWIhKNYemuKny+bj++WHcAX21YgRmHlOLxyych34WjNnP1Xtz21koU5fhx20kjcOWRg9A9PwuxmIovNxzA499swe/eXYWn527F3aePxomje6V/UQOqG0O4/PnF2HSgDr89eSR+PLonRvYqgN/rQXM4ihfn78B/vtqCrzeU4e7TR+PyIwbC70Jcf7n+AG55Yzn6Fufg5WsOx8QBxQhHVeysaMDCbRWYtWYf/vzxOqwqrcb9541z5QItL6nCza8vx76aZpw+rjfuOm00BnTNRTgaw/vLSzFj2R488tVmvPT9Dtw5fRQunTrQcaxQJIY7ZqzGByv24MRRPXHJ4QMweVAXdMvPQmMogoe/2Iz/LdqF2Wv24aIpA/Drk0eiKMd5Ury9vB6XPb8IzeEYHrxgHKYd0hPd87NwoLYZuyoa8eL87fjn55uwZEclfnfKIRjX33nCH4rE8LeZ6/Haol04tE8hnv/JFPQrzkFdcxhrSmvwyep9mL2G/ffA+eNx4eT+6V/UAFVV8eBnm/DMt9uQ4/fixuOH4Ybjh6JrXgDVjSE89932+H3cj6mDu+Lxyw9Dr8Jsx/H21zTjyhcXo645gr+cPQajehegf9dc9CnMxv7aZvzlk3V44NONeGNJCX5+wjBcMmWAq42Dp+duw4OfbcS0Q3rgb+eMRa/CbNQ0hRGKsqqD+2dtwPlPLcBvTxmJ644Z4moj650fduO+2RtQ0xTGqWN64baTRmJ0n0Lsr2nGt5vLsHRnFd5YUoLvtpTjlWunuhJOmw/U4fLnF6ExFMXUIV3x65NH4qzxfeHxKJi3pRwPzN6IO2asAQBcMmUA/nLOGH4Or6qqHea/yX08qrrwaVU4y15V1T8Xqur7N4qPpaqqunE2i7d3lfhYiWv7ufhYFdtYrD8Xio8lm6pdcq/tvr4sVn25+Fgf3MRiRaPiY6lqy32MxcTHev4kFmvpK+JjzfkHi/XlveJjqaqqrn2fxasqER9r/n9YrJm/FR9r7yq577XnfqSq/z0v8c83F+9SB90xU/312yvUYFj/PRGNxtQPV5SqY//8mTr2z5+ps1bvdRS6rLZZPenhueoh98xWv99i/F5fsqNC/fG/5qhD75ql3vHeKvVgXbPtWLFYTP3F68vUQXfMVH/z9kq1vjms+3XRaEx9af52dehds9RTH/lWLa1qtB1LVVX10zX71CF3zlQvfPp7taYpZPgzfbpmr3riw3PVQXfMVP/x6QY15uC5EIpE1YufWaCOuHu2OmfjAcOv21PVqF75wiJ10B0z1TMfm+f42t5YvEsdcudM9ezH5xn+LmKxmPqfrzarg+6YqZ76yLfq5v21jmJtL69XJ/7lc/W4B79RF247aPh1G/fVqpc8u0AddMdM9Z+fbXR0H1VVVf/04Rp10B0z1ce+2mz4GiUVDeqtby5Xh901Sz36ga/VpTsrHMXacqBWnfL3L9VJf/1C3bCvRvdrotGY+uy3W9UJf/lcHXLnTPXl+dsdxaptCqnTH/1OHXTHTPW+WevVcET/vV3VEFQvf36hOuiOmeoDszeoDUH990k6np67VR10x0z1zhmrDdd/UyiivrZwp3roHz9VT33kW3VfdZOjWJX1QfWkh+eqY/70mbqypEr3a2KxmDp79V71vCfnq4PumKne+N+lalMoYjtWLBZT75+9Xh10x0z1l28sN3xGHqhpUq9/9Qd10B0z1bMen+d4/X+2dp86+M6Z6iXPLlDXlFYbft2SHRXqxL98rh721y/UBVuN3ydm1DeH1Wn/nKMe/vcv1S0H9H/eaDSmrimtVu+bxe7BNS8tViNR6+81AEtVA83TsYaEAHJ2U5vjdrCsne9DTgP+sB/oM158rEydcdXZkOmgAUmTFSU4aGc9Bty1R/w5eamI7uUD5PZONbPynFaTKkUy5jzgT1VA8YD0X+uWTA0JkUFSD9oPOyvxx4/W4viRPfDQBeMR8Om/JzweBedM7IfZtx6HYT3y8YvXl+PZb7fZChuMRHH9qz+gtKoJL18zFUebOGOHD+6KD28+BhdPGYD3V+zB2U98j7V7amzFe37edsxavQ+3n3oIHr54gmGvmcej4NpjhuDlaw7HnqomnPnYPLy/vBQst7BGeV0Qd72/GuP6FeHV66Yalh0pioLpY/tg9q3H4bKpA/H03G24Y8ZqNIftVZfcN2sDFu+oxIMXMgfGiL7FOfjvdVPx1BWTsPNgA856fL7t+/jJqr246/01OH5kD7x5w5Holp9leG23njgCr1x7OA7WB3HWE/PxxuISW/exMRTBtS8vgaIo+O91U3HkUOP/Dx3SuwCvX38kLj18AJ6YsxU//98ylFY12rq2Wav34dWFu3D9sUPwyxNHGJbdDeiai/9cehjeu+loeD0KrnpxCRZvr7AVq6I+iMufXwwAeOuGIw37LD0eBTccPwzf/f5HOHF0L9z7yXrc+/E6ROIlkFZQVRW3v7samw/U4ZkrJ+Pu00cbOjrFuQG8+JPDcenhA/DMt9tw6qPfYcO+Wt2vNWJ1aTX++fkmnDGuD+4/b6zh+s/2e3HlkYPw9JWTsauiESc/8i3eXbrb1hqJxVTc/MZylFQ24oWfTMGEAcW6X6coCk4b1wczbjoa95wxGp+v349b3lhu+7320Oeb8Oy323HlkQPx6CUTDZ+RPQuz8dxVk/HE5YehtKoJZz7O1r8dNh+ow6/fXonx/YrwyrVTTctODx/cFe//4hgU5/hx+QuLcP/sDQhG7F3b32aux86KBjx22WEY3lO//9/jUTC2XxHuPn00/nbuWMzZVI7rX/0BNfFSYDeQQNNj4uXAqDOB434rPpaG6EmAGokJfZ2wNEkmosempxLIYyVzPvf9BGnx+uSsD43jfgf0GC0nVkKgSbi+yT8B8noC4y4UH0tDlqjOxJh9GaWbAOuvC9WjpjGMW99cgX7FOXj80sMsleQM6JqLd248CmdN6IsHPt2IO2esRmVDyFLYv36yHqtKa/DIJRNx1LD0G0AF2X48cP44zPj50VBVFZc+twirdldbirVydzUe/GwTThvbG7+YNszS9xw/sgc+uuUYDOmeh9+8swr3fLgWYYtJ8Z8/XouGUBQPXzzB0tCFgM+D+84di1t+NBzvLC3Fxc8utCwu3lm6G68s2Inrjx2C8w5LX5KmKApOH9cHH95yDHL8Xlzz8hLM21JuKVZZbTPuen8NJg0sxvNXT7F0bdMO6YnZvzoOhw/uirs/WINfvL4cTSFrieNz323HzopGPHn5JAy2ULbl9Sh44Pxx+N0pIzF/y0Gc88T3+GFnpaVYpVWNuPP91Zg4oBh3nDbK0vdMHFCM9246Cr0Ls3HFC4vx/HfbLYkLVVVxx4zVqG4K49Vrp2JEr/TDsAqz/Xjmysm4/tgheGXBTlz7ivWk+NUFO/HZuv24c/ooTB/bO+3XZ/u9+McF4/H2DUciFInhgqcX4LO1+9J+HwA0h6P47Tur0D0/gPvPH2ept+z4kT3w2W3HYXSfQtz+3mrc8Noy1DRZu7an5m7Fgm0V+PNZY0wFvIaiKLj+uKH42zlj8dWGMlz2/CKU1wUtxfpm4wE8PXcbLps6EH87Z2zaEklFUXDm+L747LbjcMTQbrj7gzV4b1mppViqquLu99cg2+/F81dPsVRGOKR7HmbeeiwunzoQz323Hec+uQC7KqxN6P1s7X689cNu3HTCMEv3EQCuOnIQ/nrOGHy/tQLnPf19q95XJ3RAgSbjjKuuwKWvA/k9xMeSjcydb9kiRiYy3J5kAvlyJjhmghP/CNy8SE4smQ5yj0OA27e0HoTSWchEL2tXa0KCRzw1VI8/fLgG5XVBPHbZYSjKtd5TE/B58OglE3Hj8UPx7rJSnPaf77Bkh3lS/MW6/Xh9cQluPGGopYQxmXH9izDjF0ejKMePi55ZiGe+3YZozDgpjsVU/PnjdeiWF8BDF463NYxgaI98vPfzo3HTtGF4fXEJrn5xCarSCNBZq/dh9pr9uO2kEYa70Hp4PAp+d+oheO6qydhRztyt+VsOmn5PSUUj7vlwLY4Z3g13WhQVGsN65DN3L8ePq15cgjtnrEZts3lS/PAXmxGMRPHviyfa6l/rWZCNV6+dirtOG4XP1u3H1S8txt7qJtPv2XKgDk/P3YYzxvWxJOA1FEXBLT8egY9/eSyKcvy4/PlFeHXBTlPhFInG8Ku3VgIq8Phlh9m+tg9uPgYnje6F+2ZvwPWvLsWB2mbT73l9cQm+2lCGO6ePwqF9rVeJeD0K7jnzUDx0wXgs2l6Bc5/6HitKqky/p7IhhIe/2IwTRvbA9ccNsRwLAI4Y2g0f33IsRvQqwM//txyPfrUZMZP3GgD85+st2FJWjwcvGG+rN29Qtzy89bMj8cczD8WcjWU4+4n5aZ27j1buwb++2IyzJvTFZVPtVVJceeQgPH3FJKzfW4sf/WsuXpi33fQ50hCM4O731+KQXgW49+xDbT1HehZk44Wrp+Cood3wu3dX4ck5W9PexxnL92DprircOX0UetrozcsN+HDfeePw4k+mYG91Ey56ZiF2HjQXaQdqm3Fn3PG/7aSRlmMBwNVHDcYr1x4OqMDNbyzHHz5Yg4akYUF2yLhAUxRluqIomxRF2aooyp1pv6EzuzIykLnzrSjAKfcBN84THysTXPwacP03cmIF8uWUN3Z2ZJY4dmZkbvRk5QPnPQtc/aH4WAAQyEOosQ4zV+/Dr08eifH9i22/hNej4K7TR+PjuCtz2fOL8NRc/SSkORzFXz5Zj1G9C3D7KYc4+pH7FOXg41uOwY9H9cQ/Pt2Ii59diDWl+qV6H67cg1W7q/H76aMcTYH0eBTcMX0U/n3xBCzbVYVznvweM1fv1b22ivog/vTRWozvX4QbjhtqOxYAnDKmNz665Rj0KMjC1S8tNryPAPDXmevh8yh4+KKJjoYQDO+Zj9m3HocbTxiKd5buxqmPfIelBo7Tur01eGfZblxz9GBLblYqHo+CG08YhscuPQxr99Ri2r/m4tGvNuuW6qmqit/PWI28LB/+fPahtmMBTIB+8ItjcPyIHvjzx+vwyzdXoLpRX1w/PXcblu2qwt/PG+to4E1Rjh9PXzkJ9551KOZvPYgzHpuPHQZJ8bbyevx91nocN6I7rjl6sO1YAHDx4QPwxs+ORHM4ivOfXoB7P16HeoOk+F9fbEJjOIp7zhjtaFJir8JsvH3DkTj/sH549KstuOG1pdh8oE73a1ftrsaz327DxVP6m5baGuHxKPjpsUPw9o3s2s576nu8v1zfcWoKRfGPTzdibL9CPHrJREfXdtq4Pph167GYOqQr/j5rAy59bqGhm/b64l3YX9uM+88f62jMfMDnwcvXHo5zJvbFPz/fhMP+9iVeXbBT971d0xTGA7M3YNLAYseDWk4c3Qvv/vwohKIxnPHYPLy2cKduOaeqqrj9vdUIhmN49FLjkk0zjh7eHV/8+njccPxQvLGkBJc+twj7asw3YPTIqEBTFMUL4EkApwE4FMBliqKYP30osXKHNo5bVn/d0bfI6a3LBIeeDfSXMOkQAIr6yekt6uzILHHszMh00ABgwqVyzpMDEPPnQQ3WYUTPfNx4vDNRoTGmbxE++eWxmD62Nx76bBMufW4R3l9eij1Jbsm7S3djT3UT7jnjUFeTzbrlZ+HpKyfh0UsmYsfBBpz1xHzc+uYK7K5sKQ1sCEbw4GcbMaF/Ec4/rJ+razt/Un+8deORUBTgljdW4Jwnv8dHK/cknJlYTMXdH6xBbXMYD1043tW1DY2Li9PH9cFDn23CSY98i3s/XoeN+1schTkby/DVhgO49cQR6F3kfPpdtt+Lu04bjfd/cQyy/V5c/sJiPPjZRqzdU4NQhIknVVVx36wNKM7x45Yfj3AcCwDOmtAXX/z6eJw6pjce/WoLTvjnXHy/tbVTOGP5Hqwoqcadp41CzwLn11aU68fzV0/BHdNHYfaafZh639e49+N1rcTT7spGPDmXHUFwzkTna0RRFFxzzBB8fMuxiKkqzn5iPh79ajNWl1a3EqH//mIzfB4PHr5ogqspgocP7oovfn08rj5yEF5duBOn/PtbfLKq9cbBipIqvLmkBNccPdhSGaUR2X4vHr54Au45YzS+31qBUx75Dr99Z1UrwdsUiuL291ahR0EW/nCGM1GtMXlQV3zyy2MxoX8xfvPOKvz8tWX4ZNVe1CU5vM/P2459Nc3405ljXI3NH96zAC/+ZAr+ddEErNlTg7OfmI8PVpSivC6YuJcNwQien7cDxwzvhsmDujqOle334tFLJuKpKyZhXL8i/Pnjdbj0+UVYt7emlcP74GcbUdUYwl8tlFGaMbJXAWb+8lhMGtQFf/xoHabe9xUe/3pLKzH/+boD+G5zOX4//RAM6+E8T/B5Pbj79NF48SdTsKWsDj/+17d4+ItNWLm72nK/pGKn+ZA3iqIcBeBeVVVPjf/7LgBQVfUBva+f0ter/vPd79Bj8FgM75kv5LBCjaqGEGYsL0VzOIqjh3fH2L5FjpS0FVRVxeIdlThYH8SQ7nkY1kPste1d8iG25k1Cty5F6JoXQNe8gLCD9hpDkUSN8RFDumFkr3whB2hqrNtbg23lDahvjuDE0T1djalNx46DDdi4rxahaAyDu+WhR0EW+nI6ByaVuppKfL+lDEFfAXoXZqN/11xuZ87osfNgA37YWYlITMWkgV2E/t6CkSgWba/EtrJ65Gf7cMLIHsJ+b+qcB6B8+w8sPm8e1IJ+6FmQhSHd84RdW11zGD/srESX3ADG9ityNcY7HaqqYuH2Cmwtq0f/Ljk4fkQPIQeDAgAiQYQ+/QN2jrkZu4O5yM/yYfKgLsLiaQdEK4qCrnkBDOmeJ+QgUgDYNeNPGLTmP5h13jqcMYFPeaqqqnjrh934z1dbsD9e7tW/Sw4m9C/GvC3lGNGrAO/9/Chu67CumZ1P9cJ8VqbUrzgHuQEfdhxsQFM4ihk3HeUqsUomFlMxY3kpnvtuO7aU1WNcvyL0K87B+n21KKlsxD1njMb1Dt2zVFRVxSer9+HtH0rww84qhCIxTB7UBYO75eGztfvQpzgHs289jtv/qysbQvjTR2sxa80+qCpQkOXDwG65mFRQjeat32HcmTfj6qMGc4mlqiq+2ViG+2dvwLbyBkzoX4Rehdmobgpj5e5qjO9XhLdvPIrbut+wrxavLtiJd5exgS8nH9oLA7rkYtaafahrjuDTXx3H7XDtXRUN+NNH6/DtZtbbV5zrx9TBXZHl92Lm6r34xbRhuP1UeyWpZizbVYU/fLAGG/fXoV9xDvuvSw4+XbsPRTl+fPWbE7idIVjVEMKz323Hc99tg8/rwfQxvVGU48cPOyux+UAdXrrmcEfumR6RaAyPfrUFbywpQWVDCFk+D86a0BcxVcXMVftw4uieePpKfpvGq3ZX4w8frsHaPWwjpDDbhwkDinGwPoQN+2ox46ajuR1Srqoq3l1air/NWo+65gj6FeegRwEbuLNydzWuP3YI7jnTndBNjjV/60G8umAXvtpwAF1y/ZgyuCt6FGRhxrJSDO6Wh1m3Hsvt/2e7Kxtx36wN+GzdfgBAfpYPZ03og6nhZTj/0uuWqao6Re/7Mi3QLgQwXVXV6+P/vgrAEaqq3pL0NTcAuAEAJvfxTvZc/QrK0AVej4JRvQtw6eEDcNnUgVwTg10VDTjvqQWtmrt7FGThqiMH4fIjBqK7wZQmp/z7i0147JutiX97FGBcvyLcfuooHDuC7yG3i7ZX4LLnFyH51+7zKLj6qMH4/fRDuArD5nAU5zzxPTYl2f9dcv340aieuOKIgZg0sAvXxPiLdftx4/+Wtbq2SQOLccPxw/DjUT25CuzdlY049dHvWh3EqCjAGeP64KZpw7gdxgiwBOj8pxdgZcoAgGE98vCLacNx/qR+XO/jsl1VuPrFxWhIurZhPfJwxvi+uGhyf27/0wbYg/Knry7FNxvLEh/zehRcMKkffvnjEVxjAcAX/70fJ2x7GIcFn0MjmAg8tE8hbpo2DGeO53MQr8buykZc+tyihFuSG/Cia14AJx/aC9cePQQDu/G9tke/2oxHv9qS+HePgixcMKk/Ljl8APcDNFeUVOHy5xejKalEZEj3PPz2lJE4fWwfLgfxatQ2h3HW4/Oxq6LFCcoNeHHS6F749ckjuV/bzGfuxpn7n0Tz73YiO5/vgfTRmIpN++uweEcFluyoxLq9tRjULRd/PWcs9+sA2FlIL3+/A/tqmtEQjGBfTTOOGtYNf+SU6CQTjal4beFOzF67H2W1zTikdwGOH9kDl08dKGQDpKohhPeWleL9FXtQ3RjCiF4F+OeF44Vs7uyvacaSnZVYtL0CJRWNmLbnWVyvzkD47gPwB/jGawhG8NYPu/F+fIO4e34W+hRl409njUFXDodOp3KgthlPz92GOZvKsLe6CYf2LcJ9547ldjBzMmW1zVi0oxJfbziAjfvqUB+MYOqQrvjLOWO4HCicTDSmYubqvZi9Zh/21zTjYD3L5+49ewxOPtT5+XpGbNpfh9cW7cSna/ajKRzF8J75uPaYwZYG1dglGlOxooSd9fXlugNoCkcxtl8RXr7mcC4HkycTi6n4emMZ9lQ1YnNZPVaWVGN/bTOuPHIQfnOyvf4sK1TUB/HF+gOYv+UgapvDCEZibFDN9FFCNuVW7a7Gs99tw+YD9SipaMTJh/bCvWePSYhDnpTVNWPJjkrM2ViOj1ftwd3KK7juvnc7rkBLZuJhk9U3Zn6DnZWNWL+3FvO2lGNVaQ3G9SvCgxeMt9VcasZv3lmJ2Wv2YcZNR6N7fhaW7arCO0t3Y+6mcgR8Hlx95CDcdfpoLotleUkVzn9qAc6f1A/XHzsU2w/WY9N+1v+w42ADJg0sxp/OGoOJBqNS7RCKxHD6Y/NQ1xzGvy+eiNqmMKoaw1hRUoV3l5Wid2E2Hr54gquDT5N57rttuH/2Rjx9xSSM61+EeVsOYunOKsxesw9N4SjOHN8HD5w/jstOVnldED9+eC4GdcvF/eeNQ5bPi682HMB/F+7EgdogDulVgH9cMA6HDXSfcKmqiqtfWoKlO6vw+GWHoX/XHOyqaMSKkmq8tnAnGkJRXHHEQPzprEO5OJMfrdyDX721En85ewyOHtYN+2ubsa2sHjOW78GaPTU4fmQPPHD+OC6OWiQaw/T/zENzOIoXfjIFuX4fvt1Sjlmr92Lxjkpk+7y458zR3JKuD1aU4tdvr8KvTxqJy48YiKrGEN5cUoLXF5cgFlPjB5+OcFXWo7GtvB5nP/o1LhmuYvq04xGJxrCtvB6vLtyFrWX1OHZ4d/z1nDEY6qKsIZmfv7YM320pxxOXH4amUAw/7KzE3uomfLOxDF6PgvvPG8dNXK8urcY5T36Pcyb0xd2nj8aq0hq8/UMJ5mwqRzSm4pjh3XDPGYdidB/3z8hgJIozH5uP+mAE95xxKPoUZ2NPVROe+GYrNh2ow7h+RbhjOr/NJW0D698XT0CvwmzsrW7Cit3V+HjlXoSiMdw8bTh+Pm0ol/daZUMIjz14F+71vAD8ZiNQ2IfDFbQjVr0NeLxyJ4t2Rj69E1j8NPD7HWyoWCdBVVWhFS5taKgA3rsWOP85oMDecJz2CjvDClw3qdIRisTg9yryfncr32BHDY08VU48Schc/+FoDJ6Pb4Hv/KfbrUCzV+I4ZYq6dOnSxL9VVcXsNfvx54/XoroxjBtPGIpbTxzh6n/Uq3ZX4/ynF+Caowe32WXcWlaPZ7/dhneXleLwwV1w/3njXNUxR6IxXPjMQuypbsLc301rdQ5NYyiCNxaX4Pl521FWF8Qvpg3D7045xNXieXLOVvzz8014+ZrD8aNRrS33xdsr8IcP12JrWT3OHN8H958/ztWOVnVjCMc/NAeTBnXBK9dObfW5uuYwXvl+Jx79egv6FefgicsPc9SIn8yv3lqBT9fsx6e3HdeqbjgcjeGr9Qfw15nrsb+2GT89Zgh+P32UKzft3aW7cft7q/HXc8a0KW+paQrj8a+34IX5OzChfxGevGIS+ndx7pQ0h6M48eFvUZzrxye3HNvqoR+Lqfjf4l34x6cboQC46/TRuOIId8Lple934N5P1uOZKydh+tjWyWlpVSPunLEG87cexJnj++ChC8dbGittRFldM0595DsM6Z6Hd39+dKsNj301TXhyzla8/cNuFOX48eglh7lK+FVVxU9e/gErdlXhm99Na7U7FoupeH1JCR78dCMaQxFcd8wQ3D79EFfPkcXbK3DJc4vw25NH4pcntu5R2V/TjF+9tQKLd1Ti9HG98fdzx7naGY/GVFz87ELsqmjAnN9Na7XhUVbbjHeXleLF+TvQGIrgicsm4SSXu8ePfLkZ//l6S5vnSDSm4sMVe/DvLzdjT3UTTh3TC/+6aIKrDZjSqkac/O/v8OPRPfHk5ZNafa6sthl/nbkeM1fvw9AeeXjogvGYMthdsvzXT9ajctH/8Kj/SeCWpUB3d/1F7Y57467IvfbO+iJS+PiXwPL/Aretpd5gN2ybA7x2LnDZW+w8WMI5+1YBRQPkbBjQc4QP714D5eJXDQVapqc4/gBghKIoQxRFCQC4FMDHVr9ZURScMb4PvvrNCTj3sH54cs42XP78YpTVmY90NaIxFMGv316JXgVZuPXEtv9jHt4zH/+8aALuP28ctpc34IoXFmPhNnuHMSbz2DdbsXJ3Ne45Y3SbQ0JzAz5cf9xQfPWbE3DhpP54cs423P7ealuHMSazu7IRj3+zBdPH9G4jzgBtfOwx+PVJI/Hp2v048eFv2zQqW0VVVdw/ewPqgxHcdVrb860Ksv345Ykj8PYNRyISZWeKvDDP2nkpeny7uRwfrdyLm6YNa9PU6fd6cNq4Pvji18fjiiMG4oX5O3DZ84vSjv01oqyuGX+buR6HD+6CK48Y1ObzRTl+3HPmoXjmysnYXt6AMx+fn6i7d8LL3+/Enuom/OGM0W125Dzx0tTPbzsehw3sgns+XIsbX1vmeKTrjoMNePCzTThhZA+cOqbtbmb/Lrn473VT8fvph2DWmn04/6kFKKmwd/CpRiQawy/+txzN4RgevGB8Gze6T1EO/n7uOMy69Th0yQ3gqpcW45XvdziKBQBfrmeNv7edPLJN6YLHo+CqIwdhzu+m4dKpbI1c+PRCx8+RSDSGv81ajz5F2bq9N72LsvHGz47E76cfgi/XH8Apj3yHBducvdcA4Kk5W7FsVxXuPG10GzHUszAbN/9oOD6/7XiM7FWAG15bajgpzgob99fiqblbcd5h/do8R7weBRdM7o9vfncC7pg+Cl9tKMN5Ty3A9vJ6x9f2l0/WAwDuPr3tc6RnYTaeuHwSXrn2cISjMVz2/CK888Nux7FW7a7GKwt2YNLweMIdcv5z2+LeIuCDn8uJRfAhfpB54k/CGdp7TMZ9jIaBNy4F9iwTH0s2qgo8ezzw37Mz/ZMQdkiz7jMq0FRVjQC4BcDnADYAeEdV1XV2X6c4N4B/XTQBT17OznA4+/Hvsbq02vbPc//sDdhR0YB/XTzB9LyKy48YiDd+diQ8ioLLnl+En7y0pNU0HSss3FaBx7/Zggsm9TedlFSQ7cdDF47HbSeNwHvLSvGz/y7F/hp7iaOqqrj343XwKAr+dJZx70FuwIdfnTQC7990NLrk+nHtyz/gs7X7bcUCmKh4Z2kpfn7CMBzS29hhnDK4K2b/6jhMO6Qn/j6LnZdi9z7urW7CbW+twIie+bjJ5MDVgmw//n7uODxx+WHYsK8WZzw2H4u32xfXf/pwHZojMfzjgvGmJQzTx/bGx788Fr0Ls3HNy0vwn6+2pD3nI5WSikY8NWcrThrdE0cPM3aPBnRlwumeM0bjqw0HcNEzC22PdA1HY/jdu6vg9yp48ALjs5E8HgW/mDYcL19zOPZWN+HUR7/Dawt32ooFAK8t2oWlu6rwwPnmLvTIXgX46JZjcOKoXrj3k/W49+N1uqNxzahuDOEvn6zHyF75uPqotqJao0dBFu4/bxyevWoytpXX45JnF6U9m0iP5+Ztx9o9tfjDGaORE9B34bzx+/jxLceiKMeHq15cgv8uND+bSI9F2yvwyFebcc7EvrhgkvFzpEdBFt664UicNaEvHv1qC654YbHlw0g1ItEY7nhvNQqz/aY9TFk+L26aNgz/++kRqGwI4Zwnv8ecTWWGX2/El+sP4Mv1B/Crk0aYlu9OO6QnZv7yOBw5tBt+P2M17p+9wfZ7rayuGTf9bxl6FWbj/KPifRUykkbt973qTfGxOjsbZwMLn5QTKxTfmJKxRkKNwJr3gAxWOwkjqAk0CZshVTuBzZ8CM34mPpZstPu3f01mf47OwJYvgbUz5MRqzwINAFRVna2q6khVVYepqnqfm9c6Y3wfvHcTm3J00TML8eGKPZa/94t1+/G/RSW4/tghpsmwxiG9CzD39mnxMasHcc3LP1gWF5UNIdz29goM6ZaHv54zJu3XK4qC204aifvOG4vvt1bg5H9/a/kUewB464fd+HpjGX5z8khLUwYnDCjGOzcehTH9CnHT68vwj083JsYLp+ObjQfw91nrceqYXvidhTN9inMDeO6qybj3rEPx7eZyXPniEtQ0WbuPsZiKO2asRjASw3MWT5Y/c3xffHjzMSjM9uHyFxbjxfk7LCfFn67Zh8/W7cevTxppafzqkO55+OAXx+C8if3wyFebcd2rP6Q91FVjV0UDLn1uIbxexdKIXo9HwfXHDcVL1xyOkspGnPvk91ie5sBODVVV8ccP12LZrir87dyxlkZUTzukJ2bdehyOGNoVf/xoHe79eJ3poZbJbD5Qh4c+24TjR/bAORPTj07PDfjwzJWTcM3Rg/HKgp04/T/zsG6vtdKKWEzFr99eibK6Zjx04QRLUxRPHdMbr/10Kg7WBXH2E/Px1foDlmIBwFfrD+Bfn2/C6eN644xx6fuXRvcpxIc3H4NpI3vgTx+twz0frrXsbh2sD+LWN1dgcLc83HfeuLSlrbkBH/5z6WH498UTsKq0Gmc9Ph9r91gvUXnsm61YVVqDe8+2NqzgqGHMlR/QJRfXvfIDHv1qs2Vxvae6CXfMWI1RvQtw3THpD5MtyvHj5WsOx9VHDcJz323HzW8st/xeaw5HceNry1DZGMLzV09Bfn4x+0RQQtIoy6X7/8BblwGf3y0nVsL50T//iitz7gNm/BTYPkd8LNlo91HGe02NP1cjzioj2jVN1v5fT1jg9QuB966TEyvN8z/jAo03Y/oW4eNbjsHEAcW47e2VuH/2hrQlX/O2lOOXb67AuH5F+N2p1g8KzfZ7cf1xQ/H4ZYdh1e5qXPb8olbn2+gRi6m4/d1VqGoI4/HLD2tT2mjGFUcMwpe/OR5De+bj5/9bjgc+Tb9T/NL8Hbjr/TW2D4Eszg3g9euPwKWHD8Az327DuU9+n7ZUaeP+WvzyjRU4tG8hHrlkouUmWe28lKeumIT1e2tw7pPf4+sN5kmxqqq4b/YGzNtyEHedPtrWBLSRvQrw4S3H4MRRPfG3mevxq7dWojFkvkaW7arE3R+swdh+hfjZcekTRo2cADsv5b7zxmLB1gqc+fj8NtMYU9l5sAGXPrcITeEo3rj+SFvXNu2QnnjvpqPg93pw8TML8dTcrabXFoup+PeXm/HWD7tx84+G2Tr3ZkDXXLz4k8Nx3TFD8MqCnbjxtaUoS1M6WlrViGtf/gF5WT7860Jjpy4Vn9eDe88eg//99Ag0hqK45NlF+HydubsbjERxz0drMWdTOf505qG2Bu1MHtQVM35xNHoUZOP6/y7FHe+tNjz4VEN7jozpW4R/XTTB8rUVZPvx3NVT8PMThuH1xSW45LlF2LCv1vR7GoIR/PTVpahpCuOJyych38Zz5PxJ/THjpqPhUYCLnlloySV/b1kpHvt6Cy6c3B9njrc+OKN/l1zMuOlonBN37i55dmFa4bT5QB2ueH4RwpEYnrh8kuV+UZ/Xg7+eMxZ/OH00vlh/ACc/8h3mpnHuovFNnhUl1Xjk4olscp12CLcM8dSofwiycGLOSlxtse5D4PM/iI+TCcISHTRtjdToH1DMnf1rgDcvAyL2HHZHyCxx1GJ1RoEm8zkSsbbxxY2d85mD3Blp7w6aCLrlZ+F/1x+R2E094v6v8cK87W12plVVxazV+/DTV5ZiSPc8vHrdVEeDAU4b1wfPXz0FO8obcOoj3+GB2RtaHQ4KsER4wdaD+MnLS/D1xjL84YzRjkaxD+qWh3dvPApXHDEQz367HTe8tkzXTdhX04Rb31yBv85kbtYLP5li+yiC3IAPD5w/Hs9fPQX7a5tx3lML8NqiXbo7/Au2HcRVLy5BfrYPL1x9uKPhEaeM6Y1Xr50Kn0fBT19digueXoD5W9r25uypbsIfP1qLF+fvwDVHD8aVRwy0Hasw249nrpyM2089BDNX78XJ//4On6za2+baahrD+M9XW3DZc4tRlOPHE5dNsn0fFUXBFUcMwrs/PwoAcN5T3+Mvn6xDMNLWTVi7pwaXPrcIwUgMb/zsSEeTSUf1LsSsXx6HH4/qiYc+24Rp/5yLj1ftbeMUqqqKP3+8Do9/sxUXTu6P355sfXNCw+thZbOaA3rCP+fi319u1t0U+Wr9AZz1+HzUNofx8jWHo6eDcdjHjuiOD24+GkN75OHG15bh7g/W6PYT7qpowIVPL8Qbi0tw4/FDceWRxqWNRozsVYAPbz4aN00bhneX7cZp//kOC7Ye1L2PL83fgateXIJ+XXLw4jVTbK9/r0fBnaeNwr8vnoDt5fU48/H5+PvM9bqisLSqETe8thRrSqvx+GWHOVojY/oW4cNbjsHI3gX4+f+W4cbXluqKwpqmMO79eB3umLEaxw7vjvstOHWp5AS8ePTSw/DMlZOwYV8dTnn0O3y2dl+b+xiLqXj5+x048/H5qGuO4JXrpmJ4T/sTNX92/FB8csux6JYXwDUv/4A/f7S21ZEpGs3hKG55Yzk+WrkXt596CE7THE/t8G0ZSWNThhIrGc7Puz8BFj4BBCXEko3MHrScYvZnU7X4WADw5uXAptlAxdb0X+uWoEQnUvtdyRCeGjF75fiO0Rw0L//R8G1I3riSsdHzyhnMQZZR4iu7jDjN8yOjUxztkjrF0QrLdlXi8W+2Yu6mcgzrkYdLDh+AvCwfFm+vxLJdVdhT3YSJA4rxyrWHozjX3fkRJRWN+MdnG/D5ugNQVRUnju6F6WN6Y0tZPT5duw+7KhpRmO3D7acegiuPHORq2p6qqnhlwU7cN2sDIjEVY/sVYly/IozsVYCyuiBe/n4HYjHg5h8Nxy0/Hu76SICSikb86u0VWFFSjZG98jHtkJ7IDXhRVhfE7spGzN96EEO65+GZKydjpIvJlgBzPp6asw0frdyDnRWNOHJoV5xyaG9k+T34YUclPlu3H6FIDJdNHYi/uTxZHmAT9+79ZD027KtF17wALpjUD0N75GPV7mp8s7EMZXVBnDiqJx6+eILrNVLTFMa/v9iEVxfuQkG2D0cP64aeBdkY1acAy3ZW4YOVe9AtLwv/u34qRvV2NxJdVVUs3VWFv36yHmv21OCood1w+OAuCEZiqG4M45tNZSivC+KG44firtNGuR4vu6uiAQ99tgmz1uxD9/wAjhjaDaN7F0BRFHy94QCWl1Tj0D6FeOLyw1yPsg9Gonjos014ZcFOeD0KpgzqgqE92CHv28rr8d6yUmT5vPjXRRO4nHmzdGclfvPOKpRUNmJcvyKM7VeI/l1y4fWwa/thZxVOObQX/nPpYYZ9Z1apagjhoc834s0lu9El148LJ/fHsB75qGuOYOmuSnyzsQwKFNx//jhcONndGTvN4Sie+GYr/rtwJ2qbIxjVuwCnj+uDcf2LsKKkGq98vwP1wQguP2Ig7jxttC2nTo+1e2rw+/dWY/2+WgzpnocTRvbAmL6FKMrx49WFO/H91gqcOKon/nHBeNfn0DSH2Rp56fsdyPF7cdGU/uiaF0C234uDdUHMXL0P+2ub2x6k3FQFPDgYOPUB4KhfuPoZ0rL1K+B/F7C/i56I1lgJPBR3/3+9Dijifz5TK/7eG4g0AVd9AAz7sdhY4Wbgvvj7/J5ywMf/vLBWPDIWqNkNnPkIMEVwOdQ3fwe++ydw7K+Bk+4VGwtomdB3w7dA34liY316B7D4GXYPz3xEbKxNnwJvXgp4/MCfnA9lsswblwCbPwOunAEMP0lsrLUzWFleoAC4W7DTWr0beHQs+/udJUA2//PyWqGtx1uWAd2Hi41VXw78Kx5DxoTKBwZAubu0fY7Zt4sTgQawRPWL9Qfw2NdbsG4v2yXuXZiNsf0KccqY3jhrfF/XSVUye6ub8PriXXhzyW5UNoTg8yiYOqQrLp4yANPH9uZ6GHRlQwgzlpXim41l2LC/FtWNrH/rrAl98ftTD+F+0O+s1fvwwvztWLenFqFoDN3yAuhdlI1jhnfHbSeNcDV2PZWmUBSvLtyJ1xbuSpSOds0L4OTRvfDLE4e7Gl+fSjSm4sv1B/Du0t2Yu5mdHVWQ5cPkwV3wm5NHuj4GIJUFWw/iveWlWL6rCmV1QTSGosj2e3DFEYNw64kjTIfU2CUaU/H64l14cs5WHKgNIsvnQV6WD1MGdcGpY3rjvMP6cT2zZUVJFZ6euw3r9tYmfm9DuuclDnrnuf5LKhrx0vc7sKq0GlvL6lHXHEHA58F5E/vh1jTDJezSFIri/RWleHNJSauDT0f0zMdlUwfiJ0cP5nqQ5oqSKjz33XZ8sf5Aor+vf5ccnDiqJ248YZilflKrVDWE8P6KPfhs7T4s3VWV2Eg85dBeuO2kkdzOmATYQJoPVuzBJ6v24oedlWgOs13YvIAX95x5KC49fADXs2i2HKjDv7/cjK83liV6ab0eBSeM7IGfHD0YJ4zs0fobomHgb92BH/0BOOH33H4OXVa/C7x/Pfu76IQgObG6aSHQi/9h1a147kfA3uXACXcCP7pLbKzKHcBjE9nfZZxN9uAQ5n6e/DfgmFvFxvr8D8yJnHAZcN4zYmNFI8DfurG/XzMLGHys2Hgf3Qys+B8w7mLggufFxpL5XgNahMVpDwFH3Cg21g8vALN+C+R0Be5wPu3YEuWbgCfjRyfJOGbi/n7MtTv3aWDi5WJj7V0JPHcC+/sfKwAvv3y2DaoK/LUrlHurDQWawOjtB0VRcOqY3jh1TG+U1wVR0xTGsB55wg6k61ucg9tPHYVfnzQSmw7UYVC3PNc7z0Z0zQvgZ8cPxc+OHwpVVXGwPoSYqqKXg/IxK5wxvg/OGN8nkei4OU8sHTkBL35+wjDccNxQVDWG0BSOok9RjpDT5L0eBdPH9sb0sb0Rjsawr7oZPQqyuAr3ZI4e3h1Hxw8Ebw5HUdUYQo/8LNvlk1bwxsfxX33UYMRiqvADNA8b2AXPXc2eN9pQiCyfR8j7bWC3XNx7Nhu0o6oqyuuDyPJ6UZTLT+Bq5AS8uOKIQbgifrxCfTCC5nAU3fPFlJUcNrALnr5yMmqawmgIRpDt97o6L82MLnkB/PTYIfjpsUNQUR/EjoMN6FOcw1Xgavi9Hlw8ZQAunjIAoUgM+2qacLA+hFG9C2z15FplRK8CPH3lZABssyIYicLv9RgPjPH6WamQjB40mSWOyeU0QfMeRy4o8fu7b5X4WHVJQ7NCDeIFmswSRy1GrfWhZ46p2NI2rkiCGehBk0E0qTRdSi+rVuIo2DkGWl+PjPLlwn7AwU1A6VLxAq12b8vfww2AV6A7GGluGVxjwP8LgZZMj4Is16UzVvF5PY76zJyiKIq0axMpzFLxeBR0E5QE6+H3ejCwG1/n0Yxsvxd9ivgnwnqIFmep8HTL0qEoCnoWiNmY0CM/yyds4yWZohw/V0c1Hd3ys6S93wI+DwZ1y8OgbtYH4bjB61GsufyBPLkDIBQJ75Pk62mWINC0eDLEYHJiJfr3Fo0A0Xgfk4zkW7ueGgkCLXnYhJRrkzhmP3ldRMNsI0YU4aRYUnpZ4wItKmGAh+yNnnB88F699WnKjkneBAk1iC3ftLAuOuWQEIIgCIJwTCBfzuhvzUFTo+Kno7Xa+ZYo0GQk33VJk0hFx2uVfEsUFskiVBThpOFmUh00yQJN9NTDkOT7qD1HZJ3LpyFlo0fiGkl14kVi4XpIoBEEQRBEMln58sfsi44ne+db5gj15OsRfh8lJ9+J8fBNzPmREQuQew6g7BLHxgrBsSSL+ISDFpS8RmRu9EjcMADEl2+Sg0YQBEEQNpFV4pjcgyZ8xzZTJY6S3RGZ91FmD5qMeNKvTeJB1cnXI7r3M1nEyCxxTI0tApkbPdFwSzlxZ36OGEACjSAIgiCSkSXQghITOZk738mJlWx3ROZ9lOGOtCo7lJh8y7i2TJU4djahm+z2dKaNnkxtGMiIRyWOBEEQBGGTgKQSx1BDy+GyspJvxSOvfEe7j6KP8wk1AH7tgHHRPWhxweTxyysD9MQHWshKGv15koeESEq+Pb7WcUWhrRFftsRrk7RGwhIdNO1aPH55z+NA/IxWmZshBpBAIwiCIIhkpAm0eiC/V8vfhcaKJwT5veTtsuf3BKC2TGITGS+/J/u7aNEk8z5q8Qp6x/8uob9O8QK53eRMw4w0sw2KWBiIBMXGCzW0vNeEr5H46+f3lDOKPvnaZDxHvAEgq0jec6SgtzyBpj1HqMSRIAiCINoZskocQw1AgcSk0ZfNRkfLctASSaME50daYpWUfMtaIzLFZyBPzpAc7fULZK4RWbEyIeJlPUcysEbye7IjBGRMus2XtRlCJY4EQRAEYQ+ZAk1m0hjIi7uDksqgEqJJRtKYL6c0T+auvuYyyRS6gTw56z8h0PqwP2VsGkgT8fESRxkCTfoaiZcTB/LkutVA6/JKUfHye7SOLTJWGkigEQRBEEQyWQUs6YlGxMWIRdno9ERiJSFBlZZ8y3bQMnRtovvrwhm8j6KTb+31ZYrP7GJWUin8vSbRZW2zGSJLxEvY6El9jsgQhIk1Qj1oBEEQBNG+CEgYOJGJMsBAvpz+ulBq0ijJQZMh0DSnp6A3EIuw0itRtFkjgoVFuFFi8q05aFpJmSTxmSVJWCieeC+fYBGf7NYBct5rWdp7TVaJYyfd6NEGkhhAAo0gCIIgkkkINIH/k9ZeO687+7NT9o5ITBqlXVsDmyqX06Xl38Jiacm3xMEF0kR86hrpZA6ydh9FD8lpsxkieoMi7qBlFWRgo0fgtalqizsoRcTXt/x/xgASaARBEASRjIxRy1oCkFUor1xIVvlaxkocJQkL7T5q/xYZC5A4JKQe8OdKciIlOmhan5YmmkT3u4UbUtaISBGfCZepIEPPEYHxwk0A1JbniIyeSBJoBEEQBGEDKQIt/tqJXX1ZZYAye0ck7Hxrh2LLKnEMNTD3QEuuRCapCRFfwISTLCdSZvmaJtBE3ketTytL4vr358rf6PHlyOmvy1QPmoz7KPM5QgKNIAiCIGwgs8RRuvOTz4aTiByAInNXv9V9lNSDFshjLkJyfBFITxobWSwZQ3I0h0LGWPM2a0Si0E2OLyoWIHGN1MsV8d6ApHLi1A0zST3BJpBAIwiCIIhkOmVildSnBYgdWd2mT0tW8i2rVDRfboljpso3ha4RiSWOGXmv5Ut6jsgWFvEhIVkFbKhMLCo2lrRy4kw8R8hBIwiCIAjrZMXdEaHla0mJVVaBvCEhssRnII8djK145TqRwntHZPagZShplLVGFA+Q0xWAIvY+amtC5nAL7XcGyFsjWQVif2exaHzSpyTxqcXSNpVklBNL2wwhgUYQBEEQ9pDujgguF9LOXEtMloP4ZCeQDyhKXDTJvI+SetC0pFGW8yN6QmUkBMTCQCBXzhoJxku8PB7x4jO1xFHKZkhuBkqlBT9HWjmRkvp0A3msny85vqhYQJLLKqkn2AQSaARBEASRTGfrQUuNBYiPp91DaUljPEGNhZnYEEWiBy0Dg2SkCF1Z5Zt1LfcwkCfW+ZTdp5jJEkdpmyGSNij8uYDHK35IjvQ1QmP2CYIgCMIefpkOmoS+mNTkIzm+qHiB3JaYMoUuIEd8yirxUrxsUILo+xiOn7kmK/kO1re4kKLPnWr1XitgUz+jYXHxEmP2Ja1Hj0/OGkmeKpooOxQsrDOy0ZMvfkgOlTgSBEEQhE28vvjIatGJlR/wBcT3oKWWyiV/TFS8ZHdEqLBIGQABSBBo+fGyK0Viqajg/iJdES+hT1GL2ek2KCTH0sqJZbp1WnyR8RLPEZkiXvCQnEgIiIZIoBEEQRCEbWQkja1cpnpAVQXFkl2alFS+I7O/SLT4jEZaevlkJcStRIxItyK+RvwSyzcTybfgwR1S10iYJd/+PMCfAzYARXQZYPJ7TXDfIJChUulO9BxJ3lQygQQaQRAEQaQiWqAF65E4SyuQD0BtKTPjjZ6D0FlLk5I/xpvkA4+1mFJ7+RoEinjJLlOwvmVaqtThFoKdn+T7KEXE16WsR1nHFchy4mU+RxRWOSF6SE7yGjGBBBpBEARBpCJj+mByYgVISBozlVhJKE3ySxAWyQ6C9qes+5iVD8QizJ0REiupB01KGWzqkBDB7zVvFuD1y0++pYj4pDJAkf11yWWA0nrQkvoUhZcT58Wnigp+jpBAIwiCIAiHiB5rnloGqH1MVCxAcl9M8gAIwbG8AdbLJ1PoAvKTb0CgsEhKvrWSOdEJsbQhIQ0S32t6Ak3iZggg/jmSJcGJjMXkb/S0uY+iniNJ7zUTSKARBEEQRCpSEqukBBWQs6svemS1qsrvQUtNvoXdR+3AY+33Jnpwh17SKGGNeH3skHHRJY6t1oisfjdZybckYZFaKgqIiyezBy3SBEDN0HNEYhmsCSTQCIIgCCIV0e5IUGbSqOf8iOrTSk2sRA9A0XGZRIuYjPSgCS47TKwRCccjJIatJPVghhqYayICmW518nEFgFwRL7o0VXtdf3yjR+Sk2zZOZD7EDslJfq/F1yWVOBIEQRBEO0P4WPPkHjTRCYHOrr5wty5JxKgxdq6QkHgSS5P0etCElgE2Jgkm0cIiKfnW4ol2mVr1YKpx10REvAYdEdNZetBklkrXMVHm9bF/i+wLSy0DFD4kJ4MbZgaQQCMIgiCIVKQmVhLK17TDbAGx4jOss/Ot/QwiCDXEzyRDy5/SnEgZZVepSaPANaL18gFiyw71km9A7KZBpvqLZJZKy7yPWjxZZYCBPMFDcjLQy0cOGkEQBEHYpLP1oGljvwEIPVMrUQaVVCoHCEx2GltieDzMARLpIAByBFpqL5+M8rU2ybcklylLQkmZ9jsTPQBFm4bpl1AqGouykkqZzk9Wkusj8vw6vRJHoJOIeCpxJAiCIAhnBPLZbm1EwI5tNMJK/tr0TolMvpMSK5FT8/RKHJM/zj1evc61SS5fE1F2FQkCarRt0ig0QU1OvgUKC+0a2gy3EOhYaMJCuIjX652S1RMp+DkSrNdZI5JcVhmlqVosr58dyyD69+YngUYQBEEQ9hCZELTpwdFiiXK16tHGHRHeO5KBnW8trsweNDUqpr+ujdCV0KeouT6AYBGv40QCkt1BySWOIkS8kcskco2kbobIPE8u+ePc46U8I4Wu/3o2JVXr5TOABBpBEARBpCIyIUgVMb4A4PFLTFAF9qBJTxolJ9/+XDbBDkgqzZOwRoQnqI0p91Fg8h002qDoJOWbHl9SL1+8dyoSFBDLoJdPloiR2oPWmUR8SiwDSKARBEEQRCoiy670pniJ3o2WVpoke+c79doEl5Sl3kdA8BqJx/DnAIpHstCVNOkz0YMpwEFO7dPS4gkbktPYunRNpLAwFGiy1oiMHjQJVQaREBAL62xQCOzTJYFGEARBEA4ICHRHgimJlfZ3qTvfgnqnZO7qpw7S0OLJvI+AmHiJ87Ti91FRJKwRST1obUocRbrVOgMZRCbfwfqUQRoSRbzos8mSD8UGBPd7SnSQU59ZWjxZ7zUDSKARBEEQRCpCE6uUEi9AgvOT0l8hamS1zBLH1EOxtXginUi95FtEPO1+JfeFiXa1AsmxCoBoEIiG+ccyLHGUIGK0eDKFbvLPwRPdjR7JGxRBURs9DQAU5hxrsRIfFxELEtcIOWgEQRAE4QyZPWja36WVJgkc3GE4Zr8TJFbBupRkWODgDt1rEzzcRVr5Zj0r1/RLOIRbr5xYtIhJ3XhJ/jl4xwJaxxM9oTXV9Vejgvrr4rESR4MILIM1eq+RQCMIgiCIdoYMERNIKhcSnhDoJY2Crs2fx8aZA/EdcKWTCl0Z4lNSGWxq+Zroa0tOvkUOydFdIwLd6qBRGWwHdwcjQf0+LUDctaW6/trHRcQCMtfLagAJNIIgCIJIReSYfW0XuFUCUiBGDBr1aQECk++kWCJ7p7T7mCosOkP5mkxhEYsBYaMBKIJ+b6kOgqghOUYDeYQm37KErkGJo0iXKbUHDRAXL3mN+DrTRk992/WvAwk0giAIgkhFhjuS2s8ks08LELjzndv6Y1n5YqavGSWosbDYsiuNrAyUOMrqidSuTVR/XaqDIErEm5U4CumdqjN4r8kq8RW0QaG3qSRzo8fjEbj+qcSRIAiCIDoGfgk736njuGWO9E/+OXjHa5N8i0oaNWGRvKsvePpmpib0AeL6i4yEbvLneJJ6H7V4QkV8SvIt6mwymWskWAd4swCvPymeaKEra6NHx2WS+owsYAfQRyNi4pFAIwiCIAgHeDxMQMno0wLEiRijBBUQ6I6kJlairi1lXLsWS/s5eKJXKurLjp9NJuj35stpORQbEDckRE/oii7Nk+6gpZzflfw53vGklcE26Ahd0SI+eY1I7EEDMvOMDHOOF4u1PSvPABJoBEEQBKGHqJIa3R4cQTu2pjvfEkqTtHhCHTQJCXGkmU2sS06+tf46IUK3sW2pqLDkW0/oClwjqQNJAIHJt0H5GsD/vR2NAJGm1vdRqBNvJGIElsHqDe4Q1TsoTaCZrRHO8fTKiQ0ggUYQBEEQeohMCPRKvAD+yZXRsAkRsYAMJY0ShIVeGZT2b2n3MR6Ld++UrtDV7qOIssO6tvdR1JAcmeWbmtuSfB+FOvH1rR0tQHyflozNEO01pa0R7WgQCUeR6K1HA0igEQRBEIQewtwRvT4tUcJCpzSps/Wg6SXfvCfLGe18iyy70ruPUFmJFO9YgLzSPMMeNEEixuNno/w1RI1s11uPgNhr0xPx0RAQ4XwIfVBvo0fkkByjUmlBsXzZgNfXOpb2OZ7olRMbQAKNIAiCIPQQNY7bMPmGuIRAZu+UzB40X05KYiU6+ZZYdqU3il77HE/aRQ+aQOdHT8RoPwfXWJLXSOqZa0DLGuHdOyV7kIzsEkfDNcL7PuqUExtAAo0gCIIg9BDpjqQ6CKJGtus5P0J7p/SSHUGlSUZOjPZz8ESvTwWQX+IICFgjOkmjx8vEr5A+rWadHjSBQ0L0+t0AceVrUq9N1vrXEWi+LMDj438fI6G2h2IDkkW8oPuoV05sAAk0giAIgtBD5s63qKQx4fzoJY28k+8wEA0auyO8e6eMpgFqn+MaSxMxKfdRmMva0HbSm+g10mbTQICIN3IQAvmChuQYlAECkl1WieXE2ud4x1I8gD+n5WOKIuYZadSnFSiQ6OiKdllJoBEEQRCEM4S6I5J70GT0/Bi6THlsAiLvc6eMpgEm/yy8MLs2UeWbeiPUk38WbrHq48l36tRIAddmJga1n4UnGSlxlNWnqDMNVtS1BeMiRlFS4hXIfY4I2egxc9CoB40gCIIg2hfCBJrkHVuPD/AGWn9cxKHHiWloOuPhkz/Pi2Bd20RHiy0ssZI4AEWWiDdMvkWsERMRA4hZk7KS78SkQ51NA2nDhgSWb+odrixko8fEiVRjQLiJczyJJY7Ug0YQBEEQLtGSb547ttqBx7LG7MtMvrXJiYauloByudREx+MRJCxMxuyLGg9vuEZ4T6jUuY9aPFkOgsgNitRr8+eIGZKjrX+9Mw65n8sXYtMapTnxOmIQEFMGa1SWnSXogHGZFQ3Ug0YQBEEQLgnkAbEI39K8cBPbBTaaviZi51uvnCaQJ3AUfWHbWMmf54XekBAtnoxBGtq/eZddJZJvnX43QEzSqHsfBTjIZvcRkFPiKGpIjqmIl3Xsg8AyWEMHTZDLJG2DQufavD427VbEhoFeObEOJNAIgiAIQg8RO7ZGSZxfVEmNjoOgxeee6NeyP40mVAopuzISaCKGJHjZ5LrUWFD5ll2ZTQMEOvZ9NCsVTf48L/QEGiBIfMZfLzX5zipgooKniDfr00r+WXjG010jAnrQjM6TE/YcMVojgta/XkWDDiTQCIIgCEIPEcmOkYPg8TCRJqTEUVLviFH5WiKx4rzzrTckBBCXWGXplYoKWCNBIwdBc0dE3EdJIt6oB02kOyhTfAby2Xs5mayCeO8UxwPGzfq0AEH9nrLc6jTuIHc30kSgiZhiaqH/DCCBRhAEQRD6iEh2EoMEJCY7erFE9MUEDcRnQqDV8osVi7HDeI129YUkcQb3EeAs4g1EjC8AeLMEOWhGQld2DxrHNWm6RgS914z6tAC+azLhoMnq9zQQMVJ70OKl0zyvLRYFIk0mVQaSyrJ1IIFGEARBEHqI6IsxOisJEDdZ0cxBiMU4xjLoQRMpYgyFroC+GKNddoBvPCMHTfsYdyfSwB2Reg6agP4izbHSfa8JODzdqE9Lez/wjGc0kMTjZSWWssSnzB40EULXaFNJ+5isknMdSKARBEEQhB4iBJrRzjcgpqTGsMQrH6x3iqewSNeDxtNBMDnwVVQPmlEs7fO8MHIQgLjzKTH5joXZ0BJeBOPHPrTp5RPgoBn1aQFxgSbAZTVyqwG+DrJRnyIgef0XMAeK5wHjwfp4v2d264+LfI7ILpW2AAk0giAIgtBDSImjwc43IKbhXu/AY0BMw32wnp23ZpR8c935NkusRDmRBsMmkn8eLrFMHDQR5ZtmPWgAf+dT99gHAUNCzER8VgFfwQSk2QyBGOdHhoMci5lPcQT4rxHdfs8Ofh8B43JiHUigEQRBEIQeQpJGyT1oRkmjiN3ooEEDvMfLBqBw3fk2K03KEzRIw0AMJv88vGIlv3YyvJ2faBiIBo0dXYB/ia/efRRRmpfOQZNxLp8WCxBTKp1aTgzw36DQSkWNymAB/g6y7noUWHJueB8llRPrQAKNIAiCIPQQmVgZDRPgmehEQqxEzdRB41wupJd8a/FkOWjafeQ61tyov0iAE2lWdsW7B83UQRBRdmgyxY63Y2Em0IScTZauxJHn7y3u/hltUAgZSGLiIPOedKt3H7VD6GXdRyE9wdSDRhAEQRDuEFLimKZ3SmaJF8DZ+amTKNDSlCbFIuywZ17InNAn00EzXY+C3BEjB4G3g2x05iDA7mM0xPcQeqMjLURthnj8bcuJAf4OWmKNSHS1jESMqPVPPWgEQRAE0UHw5QBQ+Cc7Hj8bmZ5KgPPoe7MJZaJKHA0FGuedb9nCwrAHTcSEyrp4L5/eGuE8+tvo4GhAXH+RoYPGef0bnRUGiJmsaNRfJPK9pnfgMXeha3IfRfUOGop4yQ5ypJnfABSzcmIdSKARBEEQhB4ej5hdfVMHoY5faZ7pKHpBDfeydr4TiZVJ7xSveLEo68PRi+X1MSHP20GT7SCY9aDxHiRjtv6FXJvBkRYAv0EhsZjxe9uXzSZXchdoRmukkP/vDJDcg2ay/qX1oMXXDa9Jt2ZiUAcSaARBEARhhAjHwqwHR42xXVsemI30F+UgGDpohYJ29SU4aGY9OIAYd9Aw+S5gYjEW5RPL9Mw1zR3k7GoZOQi8e37MRDzv/tJwIwBVf40oigDnp15fVAACRLxJqaioSZ+ynPh056Alf41bzJ5ZOpBAIwiCIAgjuA8uSLM7DPATTUaH2QL8HQQtnmlpEs9Y9YDiAfw5bT/Hu6TMzIkBBIl4k14+QE7SKOLwaNM1wvm9ZjpIhvd9NBExAP8NimBtGpe1lqMTb3Y0iIgeNDMnnrM7GKoDvFn65cS814iZE6kDCTSCIAiCMEKIQDNK9Dn3/JiVOPqyWGLSYXf14yJGrwcn4Q7yTr7NBqBImGIH8E+ITcvXOG8YqGqaHjTeQreWlRd6/TqxJApdQMz6N3OZoApwkE1EPO81YnRtInrQjN5r2byfIyblxDpkTKApivJPRVE2KoqyWlGUDxRFKc7Uz0IQBEEQuogoF0qbfEtIrAC+5UKxKOvVSJeg8trVN+tlSggLTo6dmROpxZPZg5b8M7nFLGn05zKXklesSJBN1zRb/9JK5Xi7I2n6i7J4O8hmPWii3EGzg6o5PbPSrRHeB4wbncsHJG30cH6OdAAH7UsAY1VVHQ9gM4C7MvizEARBEERbRCQEZj1oAH93REbDvdm4au3jsQi/seZm52mJSlBNhYWsHjTOvYNmSaOi8BWf6RwE7ZgJbiI+zbEP2tfwwJKDJuHAb6Bljch4jvA+YDyxGWLWp8h5jaQrJ27m9PzvKD1oqqp+oaqqNrtyEYD+mfpZCIIgCEKXrEIBpXlphAU30ZRuV59j8p2uv0JEP4c0ByFND5qI5NssQQX4bRqYnacF8F3/VlwmNcpPxJv2MnEeAGHW76Z9nPvE1HTik+MaMTr2AeDrfFp5ZsUiHAcpWXHQ/n/3oF0H4FO9TyiKcoOiKEsVRVlaXl4u+cciCIIg/l+TVcBvBxWw1oPGzR2pBxQv68PRjcdToJlMzEv+OM+k0ayXKflnch0rXQ+a5CmO2tfwIN3BuTwd5HQOAu8SX7OeSH8e2BmHvJ1Ig3g8e6e0cmKZ7qDRMwtocT55kNb15+0g12Zgo6cd9KApivKVoihrdf47J+lr/gAgAuB1vddQVfU5VVWnqKo6pUePHiJ/XIIgCIJoTXYh394p2T1oWfn6gzQAQcm3xJ4fowTV4+GbEMuc4mhlkAbAOfk2SRhluqy8p0YGa+WtEe19ZObG8F6P0gRaQ5o1wvF4BLPBRkDS+ufVF5ZmIAmUjPWg+fhE1UdV1ZPMPq8oyjUAzgRwoqry+r8fQRAEQXAiqwCIhVlJjd5IdztE46U5aR0Ejn1hZv0OWQVAxVY+sdIlqCKmDxrF0n4OnkkcYN4Xpp1N5vG6ixVuZGfhSSsVNRk2ocVrrOQTK20PGm8HzcK1cU++TURTuIHPGkmX6PMW8cG6NA4axw2KoMWNHhnPSI+Hfw+mWTlxang+Ue2jKMp0AL8HcLaqqo2Z+jkIgiAIwhCefQihdEkcbxFj0oOj/RwdtQfNbEiIFo93iaPf5KBqgE88K4Ndkr/OLVZEvKwetISw4HhtaUU8x/ea4jXexOH53k7b7ybgmAkzocvVrbbQpwjIceIB/hs9Ft0zILM9aE8AKADwpaIoKxVFeSaDPwtBEARBtIVnspNul90bADw+zgmqWfLNs8QrnfgU0HCf1h3hmDT6sgGvQdERT3cwXfma189+FllJo5ApjmmSb54bFKbJN+cSxyyDc/kAvhsUViYdaj8TD0IN5g4az2mwMjcoYlHmWKcTaDynOFrsPwMElziaoarq8EzFJgiCIAhLJEYt17h/rXQiRlHi5UIce9BM3ZFCINLESi+NxIflWBJ70CJBVnaazvnhVgaV7j5yTBoTyXcax4JniVdhX5NYmehB47D+o/Gy5HT9dVzFoMGAEC0WwGeNpHPieR9CH6oH8nsaf563iAFM1ogAoWsq0DhPMe0gDhpBEARBtG+yJTpoAF+BZnbmWvLPwWMoQ6IHTUJpUroSL+1zsnpweIrPdAmqFo+rE5nmPmq9U26x3IPGUejKXCOm72sRwkKi82n2HMnmKWKs9qBxfK9JK5VOcx9TIIFGEARBEEbwHA+fbhQ3wIQAryl2IQtDEpJ/LjcEtbOSDBrg/bmA4uHby5fOHeSZfGeb/c40YcGzBy1daR7Hc6csuYOchIVZqaiIMsB0ool3iaMRXJ8jVjcoOJYdmm5QaE582H2sdOXEXDd6rIr4/389aARBEATRvuHag5Zm0qH2OWm7+pyTHbNYisLv2qwc+BrI5zuhL6vI+PNcy9esOGicxKeqWutBA/i5g1bEII9yOdkuk5VhEwBfd1DG8Qiqav3aeL23zdaIdn4dl3JiC0KXpztIDhpBEARBcELmkBDtc7wSq+ZaiX0xFpKPrEK+gzSslCbxOMEnrTsiYFc/bQ8aj16+ZkCNSnTQ0ojBRO8UB4GWbtiK9jlua8TCQBLt69ySbtIhwO85ovV7mjnIvEW82XXxPL/O0oYZ5/JNs1gpkEAjCIIgCCOE7Oqn2bHlESvcxJLvdMlH8s/lhnRDEgB+rpbVEi81xqa0uY5nsb+I6xRHCcm3pfvI85gJC1PssgvllRNn5bP3SLiJTzyZ7zWzcmKAX2mepfvIuXwz3RrJKpDbgxaq59SDmaacOAUSaARBEARhhC/Ab6x5sA6AYnyeFsAx+Y7/vJZ2vjldW7r+Cl7Xlm6KXfLnZJRv8nRHNHGetgdNVi8f7/towWXluf4tDcnhVHZoqZxYQiyA/3NEpohPu0Z4OWgWpzgmf61TrJQTp0ACjSAIgiDM4LkbnVXAynQMYxXJdRCSv9ZtPGlJo8UhIclf65REqajJtfmymKPB69oC6dYIpwEQVnr5eE/NS1sGy2lku0x3MBqJn6dl8l7jutFjoVSOu0Aze45wdgetrBFZPWi8NiislBOnQAKNIAiCIMzguaufLrHKLuRTUtNsJbHiXJqXNrHiNH3QjrBwmxBb6cEB+J1NFqy1EKug5fw6N1gt8QLk9KAB/IYyWD3SAnC/Rqw4ulo8niLeDF4CrdmKg8ZzjVhZ/5wdNEvr3+UasSIGUyCBRhAEQRBm8HR+rOwOa1/rKpaFEkeZUxwBjiWOVkbR87qPFpxILR4P8dlcYy0W4N7VkukgANYHyfB0kGUcMG5FDGqf57UZYiVWNMg2GNygXZusUul0g420eFzuYx0bSuMLGH8Nr3MwrZQTp0ACjSAIgiDM4DW4w5KI0RICtzu2Fna+PV7WD8fNHbFwbTLO0wL4C12Z5ZvpHASZ18bdQZO0RjQxaFoqymmDwo5A4+bEWxC6gBzxqa1XLs9ICw4az/ea5ecxr80QEmgEQRAEwQeewsJKiSPgPtmxUuII8Omvi0WBcINFB6EOiMXcxbNaTgnIc0d4jb63UgbL7dosrBFeIl5VJfegWbmPvJJv2QLNgtDldXi6lTXC6xD6cDMQDcl5ZgHWSm4TU3xr3MWyUk6cAgk0giAIgjCD95CQdLG0r3UbK/n1zOK5TfStJh/a58MN7uI1W9ll55V8S3bQrJZ4AZLXiNs+rQYAqsUetFr3Z5PZKSd2LWLslMF20FJpszXC6xD6RDmlyaHwQLwHrZ7DGrHyXuPtoFEPGkEQBEHwgWdfTNqEIJ6ccCtxlJA0Wk0+eAoLyyLG7X20KmJ4DUCxOCQEcC8smmsBxQsETI59APisEasiPqsQgOq+x8iOy9TRRLzsjR5vlvmZawCfKgM795HH+XXNtenFIK/7SD1oBEEQBMEZLbHisasvq8QxWMdKj8z6tABwOVMoIWIk7uqnu4+8Rt9bdUe4TXG0Iz453UdFSR9Ptojnsf7TrUf//7H33XGSHNX9356ZzfH2dvdyjro76SSdcs4SCIFEMDmDjDFgDBjb2D/ANhhswGAbMIgsRBZBOYdTOp0u6XLOu3ebc57Qvz9e10zPTPdMV3VV3d1S389Hn9Xtzsybrn796r3vC1VBAaquTKSM6YPJBE3w1FW+GSRbDcjJsrIywsBDciSU+BZ9rquc8k1ZUxxNgGZgYGBgYCAH5bWAnXLKtASRSnEy3xKcnWLOByCH+WaOkq7AIgjzzeRpm+IoYR0TE3ReUlFZEodbBNIRGesY0PmWNTUvyLWlS/POoCmOQUf6S81WByjLk5lB0zkkp9i1ySrfND1oBgYGBgYGkiHDIYizHhxdUxwDTAMEMoM7Qslyvqu2vhidgUXAsqvyOnLCwpxNxu2ghnT2ubIjEoJqgKN3UMLZZIECC1lBvBWsfDMxRoG4sCzecmIJpdKBnzWNg40AjdlBGcGnKXE0MDAwMDCQCxlOY1CWvaQCiMQklHgFYIfZ9znjetD69TrfkZLiPTjlMnQkoINaKjODoMtBDep8SyQogjjDUggKJxgsNNIfyGQ+w2TRgjr6TJaUUlFdz1rAIF5G76Bt8xE9Yac4jg3Q9y5Wcu6CCdAMDAwMDAwKQUY/R9AATeZEtCDOB+uLCdNfp7MHjTlWQZjvUkmZnyB9WqzkMowjFzTLFI0BsQo5mc/Azrek7EjQ7GCYwCLtfGsMLILKAsLJC1pOXFotZ/S91mw1xzRMIFygGx+hQSPayjcDlpy7YAI0AwMDAwODQpBxFk5Q54O9RoZDHNRpTCWAxLi4rMBOoyQH1U4FW8fy2kzvkyh4enAASRm0IPIkDJzgLXEMFcQHzKDJ6EFLjJFOB1lHGYM7eIJB9nphWWwdi5AhlkVrLSPzE0RHyiUEMTpLHIMSBkxe6GvrD9Y364IJ0AwMDAwMDApBhtPI43yX18opcQzqfAByri1o2VWYzE/QTCTgOKiaevlkZtACZyw0TLFjssIOyRkLqP8yAt208x10kIyEISFBg0H2emFZHOdplUsgegJnB2spKxW2BzPQ5FmZga7G/rogdsQFE6AZGBgYGBgUghSHIGAZIACU1ektTQJCZn6GaKR9rLTw62JldKaSLua7vC58BiHoOsoI0NIH9XKUpoZB0MBCVn9daQ0QiRZ+XWk1ACukjjj3QOekT54sq44eNCC8/vP2aQEhA+uAZYAyAl2eIF5GdjAoGeKCCdAMDAwMDAwKQUr5GgfzXVYTrjQvlSQnkMuxCslGB3U+wjrEaeY7iGNVR68PW5rHE8SEydjxXFtZbcgenDEgOcGZHQzpfAeRFYk4QxlCygJOwwBNZql0EHl14daRq09Lkh0JRE5UAbBCBro85cSmxNHAwMDAwOD0g9QMWsB+jlCOPo8TJ6Hhnsf5KKuWFMQECZrqnNK8kI5cUFmApBLHoD1oGiZGApmAMdS1cQxJCOsQ8wZoE0N0TqGwvIFMf2UhsO8T5r5N8JQ4hsygidiRsDYyiI7IGKTEpf+sfDMuLs+UOBoYGBgYGEhGJEplNTKCpkCjv0P2jgQdVw3Ia7gP6nyUhyzf5CpxZFmtkE6qtiEh/UCsvHipKCDBQeUhDGSUbwY8XJx9pzAZ5KCHYgPO82g75xSKygt4bbLWMVYOREsCyAtpR7h6+ST06fLYkbD9pVxDQkJem22bEkcDAwMDAwMlCNsozhwrHudbtDSPx/mWMVmRJ4MWmtXnYL5l9YUFkRWJ0lrqkAVIzDJxrGNYZz+w8625xBEQX8tkgrJaQWSlzzgMoyNDwQgDQHMGTdIgpaD6r9OOhNWRBCsnNiWOBgYGBgYGciEjYxHYsaqlMeHxUTFZXKVyMoaEcGRHdDqNYXunEuPkWPHct7AljjyZyLH+EEE8T6DLMpF9YrKYvMDOd8ihDDoDtHGOLJNlydH/IFl4AOnzu0TLN4WCmJBBvNbg0wp+mDkgfm082ToXTIBmYGBgYGBQDKHLDjkdK0BcHo/TmHY+Qvag6WK+xwYQ2LEKm0HjyUQyeWFZfR4HNZWg3hghWSKBrqbgM+yzNjYAREooY1UMYYN4nkwkkxcmOzjBmUGDHd6OTEaihwWDkQBhkKwgPsjwHxdMgGZgYGBgYFAMMkrKeHpwgBAOAYfzLaPsiuvaZAQxtcEcq/J6+ikqj71PJ6vPEwwCIa6Ng9WPldMxCmGHu+gs3yyvpYxVMaR1pE9cFsD3bIcOLDh1RDhA4wniQ04xTcaJbOC5tlB9ipwZXUBcJ3l1xIEJ0AwMDAwMDIoh7GTFsT6goj64LCA8qx90IlqYwII5VjzMd3xYfCIaT6kou/7QGTQOebr6tMIGnzzZQcsKF1jwjPQHJDxrnD2RADDaJy7L/TlB5IUK0PoE7IiGIL6kkrKWooEuzxmAgIR17BewI5qyrA5MgGZgYGBgYFAMYVn90b6MU11UFmNsNQUW5fUhMggc5ZTu14Vho3kcfUDjOsrIDmoKLHjK15i80KVyHCWOidEQQTxHqRwLdoQDC85rC7OOgFjwKRpYpCfPBtARRvSE1kfOUlHh/rpBvqE1gD79d2ACNAMDAwMDg2IoCzsenqcMkB1oG8IhsCLOga4BUFEfwrHiyNYBLqdRVB5HaVKsDIhVhMgg9NHPwA6xjPI1jqAaCFe+WVIZbFw7EC74FMkyud8nIk+XPnJfW0gdESF6hLOsA0BJFRCNBXt9Rb0EoofnvtnARIi+MB7CADAljgYGBgYGBqcdymrIGUgl+d9r25ylSRIc1PK6YD04TJ42B1XC4I6gQQyTJyqLBa08921sQGyyYipF+hXUQU1nfnStY4jAYow3O1LvvC+k/gcBC+K1lTjWhywnHtYb6PKU5YW5NpEMGhBOJ4NeW0kFYEXNFEcDAwMDA4PTDsyZnRCYdhgfdXpw6oO9PmzZFQ/LDoRzrISYb+hxrJi80Bm0+mCvL6sF7CQwIXDo8YTAxEggnEPMU3IVZvogy7LyBp/CQRNHiSOTFzr45CgVjY+IlW8yWbxEj3Bg0cdnR8Jk4kXWEQip/wFlWVa4vsh0RUPAKb4OTIBmYGBgYGBQDGEGd/Cy7KXVxNiGYfV5HVRtGQQJZVdcgUUIx2q0D4ClJ2jiDXTT5Wt9/LKYPG2BLm+fYr3zvl5BeZz6H6oH0ymnjEQDygrRF8Zbchu2xHG0L3gwCIRbR56jQdyvC5VB5tD/MAOAmI4ErWhwYAI0AwMDAwODYgjTKM6clqDOjmWF7OfoE3OsRErzToljpanEcayP3h9kpD+TBYTTkaAZi1gp9ZDpWscwUxxFy9dESAPeMkAmLwxBwevoA2LPtoiOhOnB5M7EhxkSojGDnJgAEmN6CQrO8kbABGgGBgYGBgbFEYb5Zk4Lb9lhqAwajyzn0GOR0jyekf5MFiC2jrodK+4MQoiMRVpHNGV+uDOR9TRZMTHBL4s3OximxDc9rl1TiSPPxEggXBAvpCMhCQoe/WfrKEL08F5bmABN5ODoUCW+HNNZXTABmoGBgYGBQTGEOdCWN4PGXhuqB43TQQUEr60fXGWApTX0eq2OVZgMWj2HLOe1YcrXuAJCjax+mMBifACAFWxcOxBuSAhbR97gM0yJo0iAJnRtAtMAy0OU5on0stpJsT7dsT7KCMdKA8qSEaDpysRz6ogDE6AZGBgYGBgUQ3pwgUBfTNqxqg/+HtEMGu/ESCYLEO+dKqsJXgYYiYhPBBRxrFjviCirz7OOYXp+hLKsIUvKeHv5AD06UlIOxMrFrk0oiKkDRsME8brW0XmPjiA+maDBNbykEiB233iDwTDPmshUxTDn15kSRwMDAwMDA0VgzoOo8+H+jCAQzaAlxpyJkQIZNFGHmJcdFnUaRR2rpFMayS2vjz9gYu8TkQVocr7jzkh/TlmAeGDNeUiv8NEPvANJAFrzccFDj3knRuocEgI4vYNhBhvVB39PWP3n0f1ojDKyoYgezt5B4TJYzj5FByZAMzAwMDAwKIbyOlBpXh//e0UcK9EMmmgmBhDs+RF1vkNkEHjHw7vfyytPpAdNtL/IigQvAwTEe6fSmZgpwd8Tdh15Mwii+p8OLDhLHGFnjgPglaezxDFSQqWAPPLClIqKZOJ1ZNCA8HZEJIMmcg6mKXE0MDAwMDBQhEiUNnRRp7G0hljfoBBtuBcq8aqnn7oyaGWC5UKsvLSyIfh7RB1i2+Z3GmPlQLRU3CHmmRgJiDuobB15ArSyEMEn76RDIHzwKRI08ep/KsVPUITpwWS9pTzj2kV70ESz/oC4/vMEg4AE/eexI0z/B/lk2Ta9x5Q4GhgYGBgYKILoMAHeoR1Mlp3kdwhEB5IAIbIjmkocR3voJ5djVU8/ecu84iNAKs63jpYl3hfGO3kTcLH6nKV5IgFa2BJHkQya8NAaCA7J4by2iSHATvHJikTEz9TizegCIbJMTEc45IUZpKQzg6ZT/5mOmBJHAwMDAwMDRaioFxwS0sfvWIlOVkw7qDzZkTDlmyLla2Edq3oOWYLDBEQyCAA5faIOKrfzXU/O3wRnEM+ujbffDRDP/PA4w4D44em8EyMB8cCC9wzAtLwQZYcispITQJyzBzNMBk2UoBAKPgVkjfYBkRhQWhX8PaIZZJFySgcmQDMwMDAwMAiCMH0x3Oyw83peeSJnJTFW/3QfEjLaSwfvllTwyQIEAl3n9dyBdQMw0sP3HiZPJIMACASfAhmE0mpQEC9YmsqT9QRCDAlxyil5S0UBfv0Xdb7D9E5xlxMLHowtov/p8k1OWWxipM4MWsUUzlJR0Wetj37yEhQwAZqBgYGBgUEwhMmO8DpWYTNo3IGFgENs2+JDQkQa7pljxSsL0JtBEx2SIJJBAPQEaKLHIyTjdK+571s9BYO85ZsiQYxoiaNIOSXgrKNgiaOIPrL38kBE/yMRsRJfUZsVNkDjlQUIrKNAWbYDE6AZGBgYGBgEgWjZlVADvPN6bmfHeb1IzxuvLJEeHCDzet5yIZFSOe0ZtCniZbC6M2g6Mp9Mp3gGuwDOuttiOiKqj9w6ornEUYjocZ4X3qzuWB8NvSkp55RXLxDo9tFPoQyaYA8mtx0RLJVm624yaAYGBgYGBopQXk+bO+9kRZEGeNEM2mgfUFIFREv45XE7VgLnkgEuh5jX+RZwrEoqgGhZiFLRer73VTbwB2jpiZGCmR+RIL6sjiaT8qBMJEATdFBF+8JGe4FKTlml1YAVFc/8lGkI0GxbrE+LrTuvTorYLEBsuItITyTgPC82fw+mCBkivI6O/vMSFDABmoGBgYGBQTBU1NNkv/hI8Pck40B8WGMGTezMHSHHSuRcMiAcG83rfANih34LZ9Dq6X4nxoO/R2RiJBAug8YrCxAbkiNSTgmI94WN9vDLsixBgkKwxLGslv/MNaYjohm0UYEMmoiOCJU4hsjoAoL6z6kjZXUUxPNmIkVG+jswAZqBgYGBgUEQiARNwk5cDTkEIoGFNsfKeb22fg4BxwoQ6wsb7QNg8WdHRJh20Wyd7nWsbOB39EVLvEQzyCM9Qs6w0FASFmTxZpAr6p3SPI4ezLQdqeeTxTI3Ihk0oWetXjyDpk3/+/ivLRKh94x0871vpIcOFuctFYUJ0AwMDAwMDIIh3XDfF/w9os6H6JlaIoMEADHHStT5Tge6HE6jbYsHFkLZwT5yvHmmAQKZ4IDn2kSzdWWCmUjhQFdgQqVoiVe6xJHj2piOCJSTCfVgjvbRVNFYGd/7KhoA2HzXFiZbZ0X5AzSRMkBAbB3DZKsBvmsTHVoDAJVT+QkK0WcNJkAzMDAwMDAIBhGHQHRCGXuPCBstWuKYGOM7L4mtA/cACIEsU3wUSI6Ls/q6enBEhjKIBvGRKGX4hLIjnLKATH8dTw+maImXSH/d+AAd7i6c+REpuZ0qICtElpX3vlmWk/nhDSwE+t0AsXUU7vd01p7n2sLY40oBgkI0owsToBkYGBgYGASDUIkj66+oF5MnkkETdazY+4NCdACESNmVaC8T4KyjwGQ5oXUUcL5FMwiA4zRyll2FyaDZST4dGemhQ4HLOA6OBsQmK4bo96EyWF7nu1ssWycSxItm0Jg8nRm05DgRKjyyRCZGpgM0Dv0PcS4ZKqeKPWsifbMwAZqBgYGBgUEwiPTFiDLf7D1CpXmCGTSAz0kd7QUiJc4hxhwoqQSipfyyAL19MSIOqlDw2Uc/ReRVNfI5jWFKRdPXxnnfeA8FBsQmK44IllMCjvMtUL4pJCtEGaxoVpdHVirplAGKyHLew6v/QtflrCNXgBbGjohkIk0GzcDAwMDAQC3S2ZG+4O9hzkNlI7883gwac6xEHX2AzwEZ6RFzvi2LnBYuJ078PCFUTKF1SSaCvyd0Bo0nO9LnvFdAHi+rPz4YogyQOcSc901ElshkxTA6UjmV7gOPjox0hyxx5HnWmB0RDAi59FFwIAkgWHbYJ6b7sVLqsdMVoLFnjafEd0RQ/2ECNAMDAwMDg2AorQGsCF82ZqQbgKUngxaqv4I5Vl3B3yM6kAHg7+cIU74mMnBClNUvraaSPu4+RYGJkQB/gDYaouRWOIMmqCO8w13S2WrBDBrAHzTp6kEb7iK9Es6g9QV/ffpZE5AlWnYocl1Mnjb9n0pHHUwMBXt9mKE1MAGagYGBgYFBMEQizmRFDsdqpJscJN5DgYFMBi0oYxumT0XIsRKfUCbuNAqWOALBnX3bFne+hbKDfWITI4FMD1pgHemjn6EyaDxBTEgd4c3oAuHKDoPqfzLh9HsKjvSHxWlHukgfebPVAP/0zTAltyJ2RDSDxuTxygLClfgGlZceWmMCNAMDAwMDA7XgLTsUdfQBcghsp2wxCMKWeAGaAzRNPWi8w13G+mjdqwTKUgH+wEJ0IANApbOJseCHp4cq8RLJoAn2aTF5IjqiI7BITzAVeLYjUQrSeINPUTtSMYXv8HTRoxEAQTsieDQIkyeUQQtDYgW8b2EIA5gAzcDAwMDAIDh4yw7DBGi8GYthpzxRpN8tVkYlnMMczk6IEdLcgwtGe4FoGVBSwS+LN7BIO1YhHGLeDFqYDALAH1gIBbpO5oe3NFU4iG/g73crqwOiMX5Z7JkJvI7hnO/0kQVBMdwVgujh7J1N25EQ5Zu8EyrD6D+PzRrtFdcRXnschjCDCdAMDAwMDAyCg7c0LwzzzRtYMMeqKoQ87gxafQhZPcFL80QHkgCZ9R8O2F8XZrAL4DjffcFfP9obLoMABL+2MP1FkahzplxAfYw7mT3RAI33YOCRHuGR5tyBbpihHQB/BnmkK1xGF+AgKJgdEZAXLaEAKOg6ppLAeJgMmojNEsieAfx9imH6ZmECNAMDAwMDg+DgdqwEz0oC+KfmpR2rJjF5VY3Bh4TER4HEaLhr4zkvKUwmhq1H0GtLZxA0ZQdDlcFyll2FOQcK4OtnEj3InKFyCg1kCFyaF0JHePuLQmdZOQOL4S5xwoB3KMlINx2fUVYrJo8naArTNwvQ+idGgYmgJb59GnUknP6bAM3AwMDAwCAoKhuDl9SEGTYB8LP6w11UBsh7LplbXlBZQx30s6pZUBanszPaJ+7ol9XQuWvDncFen86OhClx5AziRbMjVbyleb3OocACpaIAX19YyBIvoZIy0ZJbVuIbuL/IWW9ReVVNwe1IMk5l1TpLpUUHkgB8mU+2jjr1X1Qfy+toii9vGazJoBkYGBgYGChGdROV5MTHir92YghITugrcWSOvrBj1cjf7yacrXPeFzRoCuNYWRafQxymxAtwhjKMBNORZCKc880d6IqfywSAL4M2Es5BFeodFA3imTzuMljB+1bdBAx3BCvxZZmv0CWOHBk0UVkAH9ETpt/N/T4dAVokSqWYvBlkweygCdAMDAwMDAyCgqdcLqwTxzuUIcwgAYDPQR12MmjVmgK0kW7xfjfAGSbAIStWDpRUisliDmCQYTJhpgEC1O9jRYOXbw51hnS+OYZbhBlIAgiUb4Zwvpk8nkA3VgGUCupIVRORN0HO5gsdxLBAN+B9G+4KGehO5c9Ehg7QOHowRfvdmDyeMthywYEkMAGagYGBgYFBcLCSPlbiVwhhnQ/eoQxhBgkAfP0cLNgJm0ELso6plHNtguWUTF5QJ26kh7KJoplInkl2YYdNRCJ8PT/DHeHWkasHLeSkwwqODFoqKX4uGQOv8x0miGH3IAghEjajmz48nSNoEu13A/j0Mey18QTxyYSTHRS0WQB/iW8IfTQBmoGBgYGBQVCkMz8BHKvhkAEawOcQhxkkAPD1c6R70ASdnWrmoAYI0Mb6gFQi8x4RVDUGz6CFziBwBBbMQQ3lEPP0DnaGW8dKjjO1ZJU4BtH/sX4AtoQMmqZySpZ5DqL/YTNolsU3uCY00dNAJb6BiJ6Q+s9T4jjSDcAOqf/6dMQEaAYGBgYGBkHB41iFzY4A/P0cYTNoQLBM03AXDVUQHTZRUuGcuxZAVthgkL03cA9aiMEuQMbZDJQdkRDEBx1cY9tOBi3EOvIMnBjpBkqqxMsA07KCON8hs3WAM8WUQ0fCZOt4Mshhj30AghM9yTgFu6H0kWMc/Ug3ZfhKysVkldcHH9wx1E4/q6eJyQI4ezDD6YgJ0AwMDAwMDIKCp3dKivMd0CGIj1JmQ4ZjFcTZGe4Q7z9jqGoM5qCGLacE6Nriw8DEcPHXhs0gpDORugK0gCVlY/3U9xQqg8ARNA2H7HcrKadR70EC3ZAT8wA4mZ/hYEc/jIY43xBwlTjy2JEQ1xY0gxb2+AD3e4NmtcLIikSCH1mQ7psNqf8j3cGGuwyHy1abAM3AwMDAwCAoSqtoeETQ7IgVFT/jBwh+NtlwyF4OwJX5Cep8hwzQqpsDlnhJyqABAe9bSOc7fXh00LIr6MmypgPdkD1oQLDsSNgADSAdYZmPQkiXU4YscXR/VkF5YbOsUwFYwQK04S7KFEVLxOUFzQ6G7QkDOImekIONmDyeTHzYEsfkOE3oLQTbJnkmQDMwMDAwMNCEqqbgpUlhzhNisoY7aVBGQVkyepk4siNDEgK0qib6nGJgzlfYHjSgeLCbGAfGB8KtY7SEgvJAgXU3lXrGysTlsXOniunIUMjJmwBfX5iUIH5asAAtHXxqKPFNJcOdywfQZL/KhoB2JGRGFwhus8L2u7nfGyjQlXBtQfvCmB6FIShqptPPwSI6OdoLpOKhZJkAzcDAwMDAgAcsaCqGsCw7QBt8KlF8ZDvL1oRxdsrrnZHtp1kGbaiD+kxk9PwUY9pl9DIxeYGyI+FYdpLVCNipADoiIYPG+neCZn5CZ9CCBmiSsiNAcf0f7QNgy3m2g65jaFlNdF3JROHXyeh34wnQhkNOjASCl/gOdVJPZFm1uCym/0NthV/H7qvJoBkYGBgYGGhCdUDHKmypHJMFFJcnI4OWHtleJIhh46pDBxZNtEbFnMbhTrquSAiXJV12WCxAk9ATBjiDOwKWXYUZWgAEDywkOI10/EAUGDhR+HW2LTGDFiSI7ww3tAYIHliwdQ5DGADOYdVBiR4JpaKwi5emjkgietyf5QemI6F7WZsCEj3t4W1WOoNWJEBLDyQ5gwM0y7I+bVmWbVlWSO0zMDAwMDDQgKAj20e6JWRiWF9YEXnpHjQJ/RxFMwg9AGw5JY6wgwUWMoJB9lmFIKMHh70/CKs/2Bb+2lhgUSyQYZnIsEMZaqYXd1DZ0QgysqzjA8VHtstw9IMG8YMn6Sdz1kVR1Ry8VDrscx10aiS79jC9fNEYBWnF9H+sn/q5whIUNdNJVmKi8OtkZKvTGbQiWd305NkzNECzLGsOgJsAHDuV38PAwMDAwCAwqprJkSnaFyapxBEo7liNdNFhtIy9FkWQke0yxt4Dwc9CG+oIHzCVVgGx8uLZQWkZNI7BBTIcVKD4Og530PeKREPKm5EJUnxlsUBXQgYNCHZtYWVVTHFGtgcM0GpnhpNX1VRcR2xbTgYtMEHRHX4gCRCM6JEQxADI6H+QoClsgFYxBYiWBcighS+5PdUZtG8C+CyAAPMqDQwMDAwMTgNUNQF2svDY6lSSMk0yptgBwTJolY3hBpIAwbKDMsbeA8GDz+HO8E6cZQVziIcl9OAAmQxaoSA+PgqM9wM1IQM0FsQUG1wwJGEdASeDVixAkzC0A3BlLIoF8RLKKSNRuu/FHH1W3hk2g1bdBEwMFh7rP9IjLxMJBMsgh71ngBOgFXnWJJQBAiDCwP15heSFJUMsK1hf5HAHECkJlYk8ZQGaZVlvANBq2/bWIq+707KsjZZlbezsDFBSYmBgYGBgoBLVAdjo4U4a3BDWIWCsfpAATYZjFcj5kNDLBARn9WWUOALBslrp/qIQJV4ABULFgngZB+cC1AsViQVzGsOWAQLBMmjpiXmSAotiGQsZ5WuAo/9F9HHwJFBWR1nZMAhCULBhFGGDeJ5S6bDZY4C+bzHCID3YRRZBUUAnExP0LEojKAJk0KqbQxFmSgM0y7KetCxrh8d/bwDwOQCfL/YZtm3fZdv2BbZtX9DUJMGwGBgYGBgYhEE6sCjkWDnOSViWPc3qByhxlOFYBen5kZYdCRCgTQwD8RE5wWeQyYrDHU4ZUyycrHTZVQFHbkiSgxqJBOtnGuqQ46DWzqD+oUI6wpxzlt0QRZCen2SCMk0yri3IuWuDJ2kNwiLIZNF0EB/SjpTXU0anqB3pCZ89BpwgXn0ZYFoWUFieLFIJoOAzSDllSHJCaYBm2/YNtm2vyv0PwCEACwBstSzrCIDZADZblhVSAw0MDAwMDBQjSOZnUFJ2hH1GUadRwoQyIFg/05BTvhO2362slvo5CmYQJPWpAE75ZrH+ojagJmRvEeByGguw+syhlKIjzcFGf0vREVZSVij4bKOsXthJh1WNlEEupCMjXQBsOdnB6gCB7sDJ8IEn4CIoCsgblET0BC3NG2qXQ4bUTKfy3UJB/FC7HDtS5UwWLRSgySqnBChYDjLFMaSsU1LiaNv2dtu2m23bnm/b9nwALQDOt227yBUbGBgYGBicYqRLkwoEaLLK1wBi6wuNNU+lgMETQO2s8LKC9PwMd1GQGrbfzbKKH1kga9gEQE7jUHvhvrDBtvDOMJPFPs8PMnWEXZsfxoecTKSkdQQoUPHDoNPvE+ZoBIAyyFVNha+NBcFhs0xA5mw+u8BohEFJARpPiaMMHambBQy0+v89MU7BbtjhJ0DmXhTLIFc3y9GR6uaAGTQZz9o0mlIaHyss70wM0AwMDAwMDM5YVExxen6KZBAASQHazMKZmOFOGiRQNzu8LOZUFHKIhySMhmeoKlK+me5TkRBY1M4CUvEimc82Oc53OkArcN8GTpAeyQiaimV+ZBzkzMAyjIWubahNju4Dxa+NBYoyyg6rpwHJCf9Dv1NJ0hEpsgI8a4PtQGl1uMOVGWpnAv0FAjQW4EjV/yIEhQzdZ/IK2mPJGTT3Z+YilZIy2Oi0CNCcTFqAebQGBgYGBganGJEIOamFnJ2hDqC8DigpDy+vZiZt+H7n/DBWXArzzRruCzg7/a1ygkGgeK+KrJH+QCbDONDi/fdUkpwuGRm0WBmV9xW6toETdG/DZhAAum/Dnf6HfrNsr6whCUDhaxuUtI5A8dK8QSe7rCODPNxJw19kBDGxMtLrQlktmYFurZNB88sOyjo+AAjWF9bfcgrsiET999PJ0V4izELet9MiQDMwMDAwMDijUKxcaFCmY1Wk50dmgFbVVLznZ0BSOSVADlq/T8AEyC1xrGMBmk+56HCX43xLCiyKOY0DrXLuGZNlp/z7mdI6IiGwKK8DYhUaM2hFArSBE9SDJENH0gc6+8iTGcSwzylUviwz0K2dBSTG/CeLpo8P0JBBs20nQJsTXhZAOlJQH9tp8qYMwqzY1EhJWX8ToBkYGBgYGPCiWGAh48wdBlZS5tfzwxyrWglsdHpqpI9jNT5Izf/SHNRZ9Hnjg95/H2il6ZSxMjmyAP/MJ3O4pAVoRc4LGzghbx1ZJsLv2piuyshYWBYFen7Xlpig4wqkZdCcEke/3sGBkyQr7AHcQOZ++D5rTEckBDGAk9UqFKCdlGdHGEHhZ7dkBp/pA519rm20F5gYAuolBWg1M0jn/KoM+lsz1x9aFgs+fYJ4Sb2lJkAzMDAwMDDgBXOs/JxGmeU7LOvhl7EbaAWipXLG7APkyPg5cQMSy8mAAIHFcXnrWDmVnEa/dZTZgwMUHu5i23IDtHRg4XffWmlqZnmdHHmFsoPps7tkBWjTqXfQry9sUEWge8xfFiBRR2b662MqRToizY44n+OnkwMn6PkIewYgQEF83Wyg77j33/ud30srcSxSdijVjjhTI/1ILEnlxCZAMzAwMDAw4EXdbP+BE8k4sdGyyneKjWzvb6XXyOhlAuh7+wZojjMpi41OO8Q+8mSWQVlWYYeYBTeynO+6ORTEJMbz/zbaCyRG5WYiAX/nu79FXlANFM4OMqdc1n1jBEW/j7M/cELePSupIAfcL7AYOEnOuawhObUznWySxzj6kS4gOS5vHdMZNJ9rY+e7hZ3OyjBlHtB31Ptv6YyuLBtZpKRSJmEWiTgllUXKYEMeLm4CNAMDAwMDA14UGjgx0Er9QLLKdyqmAKU1QK+Ps9N3lJwhWaibQw6q1zCBfon9bkDhdbRt+h6ynDigMKvfe4QyCLKc/fq5AGzv4DOdiZS0jhVTgJJKPZlIgNZo4KS3jvQ52ad6STrZsIh+dh/M/5vsTCRAz22hMsDqaXLKKYGM/nsFu+kgRlJgXdVM+u0XNMl+1urnZnTBSxZ7jQwUOhh+YhgY7ZGr/7Uz/ImevqOUqQ6ZrTYBmoGBgYGBAS8KZX5kZxAsC2iYD/Qe9v577xF5zjBADmpiFBjpyf/bQCsAS14QUzODhpJ4BRajvUB8WF6gCwANC/zXsecwBboyM5GAd8aCOa51khzUYtlBmRkEgK4tMep98Lfs8rWGhfTTK0Ab6aZepinz5cgCnP7SIlkmWWCBpZc8mX2DAOn1lHn6iJ76eXR/xoc8ZB2jQTOyyrILTY1ktkXWswZQYOmnI71HpdhjE6AZGBgYGBjwgjkyvUfy/5bOIEh0CKYsAHoO5f9+YpjKLGVn0ADvPpzeo+QMyRjaAQDRGA1B8WLaZTv6AK3jcKf3UJLeI/R3WWD33+vaWJDYIFFerc9k0fgoOcqyMjFA5nt7Bbt9R6lvTMbEPAAoraT+qe4D+X/rceTLvG91cyk48swgt0jO1hXQEdllgAAFDl42a2KE+rfq58uTxWySn/5PmS+vnLKykc4U9CrxZXZMph2pn0tEnFcPsqRA1wRoBgYGBgYGvCivo7IyL2dHRWDRsICCo1Qy+/fpYHC+PFkFs4OSWXaAHDXPQFdyJhJwBRY58mybfic1YJpJ2UEvB7XnMI39ljGQgaF+jo8z7GRMZGZZWUDU4xWgHZOb9QSAqYt8AjSHtGBZNhmomw3ER/IzyKmkoyMSZdXOpp42r6zWQCtlmWTqyJT53rKY3sjMRDJ98yqp7Dks91mLRCho8iQMmB2RSFDUz6X+wNxjLWzb0X8ToBkYGBgYGJwaTFngHVjIzjIxWal4foaEOVtSHau52Z+dJe+IXEcfcMo3j+T/vscpaZPpyLF1yg0shrvkl8pFSyir5ZdBaJgvL4MAUOAw1J5fUsbWVnp20PLPIMvMHgMUoPV4lDj2HqbvIZM0YPqWK6//OJCcyPTEyUA0RoGDVxDTd5SCRZk6MmUeHWuRexYaky9zHdNBfE7mP5WSH+gC9HleZbA9h2jKrcwhOfU+2cGhdjprToIdMQGagYGBgYGBCPwyP117gcYlcmU1+Dg7KhyrygagogHo3p/9+8Q4lRDJDGIA+ryhtvxJdl376eBgqRkEn9K8dDAo22lc4F+aJ3sd2XfPvTYV5ZQl5ZQhzJUVH6OMhcxgEACmLqagIjer1XOYHG+ZZMhU59nNvW/M+Z8qMUADnLJDjwCt6wBdt0z4ERQqsqxVU8mOdO3L/v1QG/UvStf/RXRduaWpPYdIH2UNdgEyWf3cAE3iOpoAzcDAwMDAQART5tMGnUxkfmfbQOc+oGm5XFmNy+hnZ46z07mXSuWqmiTLW0oBkhv9LQBsBSWOjjOfm0XoPpBxlmWhop4GE+ReW8du+in7vjWvADr2ZPeqpJKkN7KDGBag5QbxPYdpCqisgQwMU+bnO/rd+wE7CUxbIVcWC1Ryg6aeg3IDT8AZFBPL15F0OaWCAC1X91NJktcoOUBjz1PutXUfAEqr5R0fwNC0zGMdFRAGAOn/xGD+0Sc9h+QTL6yEN5egYMGohCDeBGgGBgYGBgYiaFgApBLZ07wGTpCT0LhUrqya6UB5PdCxM/v3HbuB5rPklkEBlAHMZb6ZMyK7xJEx6bnZyK798h1UgIKmzj3Zv+vYDZRUye13Y7Liw0Dfkczveo9Quar07IhPllVFOSVA379rX3bGon0X/WxeKV8WkB2gpVIkr1lyMBgtobXMzSB3HyAdkXUAN8OUeVQaFx/N/K7vGPU4ybYjUxdR8Nm5O/v3bduAaav02BF2D2UHTSwocut/KkUBoeysZ2kV9Q/mEmZde+koA1PiaGBgYGBgcIrAHMN2V9DEHH/ZmRjLAqatzGR6AHKMO3ZRgCYbjUuJiXaXlDHnW/a1MUfN7ciN9tJBvbIzaICT1dqdndXq3A00L5c3Yp9hmhOosLUDMvdQ9n0rr6VMam4fTs9h+dk6gPRgtCc7Y9GxC4iUKCgDnEuBhTtA6z1Mwe/0VXJlAU5gkZOt69xDhIGKIIZ9PgO7Ttn6Hy2hYLfDJSuVAtp2ANPPlisL8LEjOyhbJ3OwEZAJ4t02cvAklVPKDgYBshe5gW7nXrpmCeWUJkAzMDAwMDAQQfMKmtLXti3zuw5FQQxADn3H7kzGYrANGOuTn0EAMsy9O2hq20b9PlWSS+UqGyhzdXJr5ncnnTVVcW3NZ9FAEHfms2MP0KQg0G1aDsAip5QhHcQvUyOvbXvm3xPDVAaoRB+dz3Q7xB27SHeiJXJlRUsoK+EO0NiaTlMQoDUtI1nxMZe8XcA0BUHM9HPop/u+sedOdi8rQLrgDgZ7D1PWf8Y5amQB2STWSSdbJ5sMmTKfet5aNmZ+x65TdrYacNZxX/Zk3c490p5rE6AZGBgYGBiIoLSSGO6TrgDt+HoqAayW3BMGUDZmfCBTCsjKHZsVON+zzqefx17O/O7ktowzKRszVmcHaMfWAbCAORfKl8WCPhZMD5ygcdnTJJflAUBZNTlsuU5j3RygrEa+vFlrKHBhgcXJrYCdAmZfIF8WC2iZE5xKAS0bgFnnyZcFUB9mmyvQbdtBBImKDPLsi6gM9cQW+vdQhzodmbKAMkruAO3EFjofsKpRvrzms8iGTAzTv0++Sj9VZNBmraGfLa/Qz1SK9FOFLMsCZl9IOshwYjP9nHmufHnNK6gMlfXUjQ/SgBwToBkYGBgYGJxizDgnk0GzbeDYemDuJWpkzbmYfrKgqWUTAAuYca58WdXN5BAffZH+PTFCPTkqWHaAArTuA8DYAP376EtUulZeJ1/WtJV09lTrpowsQOF9u4icRlZS2bFbTUYLoEAslcjoJLvGmefLl1Uzne4PC3S791Np6txL5csCgHmXUTaQHUZ8bB05ySUV8mXNuYh+Hl9PP1kGSEWAFolQRslN9LRsUBNUA44u2BndOPIiBYgqMpGVDWRHjjnr2HuYstcqAjSACJ2uvZljBFo3E4mmwo4wYqDNIZYOPw/AztjpkDABmoGBgYGBgSjmXExnk3UfJOdjuEPaBp2HprNoUAgLmlpeISehvFaNvPlXAEfX0ZTKYy9RJmaWKqfRybq0bqRhCS0bgLmXqZFVVk2B5tF19O9j62j4g6rs4JyLqRS1ez+dt9a+k5h+FWD3hwUWx9dT/5aKjK5l0bUdfo7+zYiDOYoC3QVX0s/DzxNhcHw9sOhaNbKqGqks7pijIyzLpCJAAyjTdPJVysIMdVKGS5WOsKw0C5qOPE/Br+yyVIa5F9O9SqWAIy84v1OkI/OuoJ8HnybCrHVTphpANqafTdNRDz9P/z7wBAW6kggKE6AZGBgYGBiIYvH19PPg08Ceh+j/F16jRlYkQo7UkeedcrKN6lh2AFh8A/WmHHgC2PsoEKvIOMmyMe9yoKSS1nDfY0B8BFj+WjWyAAr+WjbQ2W6HnyOnNRpTJMtx2PY9Chx4EoANLL1JjazaGZQJ2fF7Gsyw73FgiSJZALD4Rpqa132Q7lv1dPkDQhimnU1n4h18ikiK5ASwUFGABtC1HXya1nHvo+SQqyg5BICzbqMDjvc9RjIBdQFaxRTKPB5bRyV5XfuA+YqeawBYcDURFC0bgEPPADUz5E+nZJhzEVDVDOy6n0oph9rVEWbREiKxDq8lO7L3EbrWWKmUjzcBmoGBgYGBgSgaFtJ/W+4BNv+cmHBVDioALL2F2PVn/52cnnmXq5O15Eagehrw0reB3Q9QtkJFORlA/XyLbyA5G35ITpZSp/FK6h954vPkoK64XZ2sqYsoINzwI2D7vXRt01erk3feu6iH6YFP0DVe8AF1spbcQD/XfYcC0HPfLn/KIUMkAix/HQXxr/yAytbmKcqyAsC576AgcO1/UAZo+W3qZM25mAKX574OrP0qBVCqAguAAokjzwOP/SOV+654gzpZS26kyZ7bfwscWksEljIdiVKwu/cR4JF/AKKlwMo71MgC6Fp6DgE/v4MmRl70IWkfbQI0AwMDAwODMLjib6k8qWsvsOb9amWtehOV1Tz3NZpatvKN6mRFS4DLPg4cfQEY6wcu+4Q6WQBw0Yepd+TI87SmEkZV+2LJTVTSuP57VN549pvVyQKASz9KhxEfeIKuU/YEOzdWv410Y/cDwOp3qCvLA4icWHIzsPFHdED1+e9VJwsAzn4L9TDtf4wCT1WEAUBlsItvJB2JldGzpwqRCHD9F2hse88h+n+VOnLJX1HwufsBYPXb5R8+70Z5HZE7G35IxzKc9251sgDgyk/TAJ6jL1BwVtmgTta576Az/46+SLoiMaNr2e4DBk9zXHDBBfbGjRuLv9DAwMDAwEAndt1PToFKdphh893AgacoeFJZ4shwdB31balq7HejfScdH8BKR1WibQew6afA8lvV9TK58dK3qXztbb9QG1gA1Me0/3HgnLeqK91k6DkM3P9x4PJPZjJqqpBKAo/9E52t9Zr/UFdyyJAYBzb9DFh0nZpD03Ox634KlmYozLAybPoZnTV48Ufo4GWV6G8FnvwCXddlH1crC6BjM7r3U9BUUq5W1nA3TdSddzk3qWRZ1ibbtj2NuAnQDAwMDAwMDAwMDAwMNKJQgGZKHA0MDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TWLZtn+rvEBiWZXUCOHqqv4fBaY1GAF2n+ksYnNYwOmJQDEZHDIrB6IhBMRgdMSiGebZtN3n94YwK0AwMisGyrI22bV9wqr+HwekLoyMGxWB0xKAYjI4YFIPREYMwMCWOBgYGBgYGBgYGBgYGpwlMgGZgYGBgYGBgYGBgYHCawARoBpMNd53qL2Bw2sPoiEExGB0xKAajIwbFYHTEQBimB83AwMDAwMDAwMDAwOA0gcmgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpAhOgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpAhOgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpgtip/gI8aGxstOfPn3+qv4aBgYGBgYGBgYGBgYEwNm3a1GXbdpPX386oAG3+/PnYuHHjqf4aBgYGBgYGBgYGBgYGwrAs66jf30yJo4GBgYGBgYGBgYGBwWkCE6AZGBgYGBgYGBgYGBicJjgjAjTLsm6zLOuu/v7+U/1VDAwMDAwMDAwMDAwMlOGMCNBs237Atu076+rqTvVXMTAwMDAwMDAwMDAwUIYzIkAzMDAwMDAwMDAwMDD4c4AJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNMEZEaCZISEGBgYGBgYGBgYGBn8OOCMCNDMkxMDAwMDAwMDAwMDgzwFnRIBmYGBgYGBgYGBgYGDw5wAToBkYGBgYGBgYGBgYGJwmMAGagYGBgYGBgYGBgYHBaQIToBkYGBgYGBgYGBgYGJwmMAGagYGBgYGBgYGBgYHBaYIzIkAzY/YNDAwMDAwMDAwMDP4ccEYEaMJj9m0b6NwHtGwCUkk1X86NsX6gYw8wMaJeVmICaNsODHerlwUAXfuBE68CyYR6WWP9QOtmYOCEelmpFNC5l/5LpdTLGzgBHN8AjA+ql5WYIFkdu+lZUI3+FrpviXH1ssaHgBNbgNFe9bJSKdL9jj161nGoE2jdpEdHkgm6rv4W9bJsG+g5BLTv0vOsjfaR/uvSka799J8OHRk4ARx5ARjpUS8rlQS6DpCOqL422wb6jtM6atmzB4Bj64GBk+pl2TbtMy0b9VzbaC89azrscXwUOPqSHjsC0HUdW6/HH5kYIV9Ll450HQB6j+ixI71HaR/VoSMTw8DRdUD3QfWyANpH23cC8TH1shT5/jGpn3Y6ofco8PsPAi0b6N9TlwBv/TnQfJZ8WckE8OQXgPXfB1JxoKQKuPZzwGUfky8LAPY+Atz/cWC4E4AFnPU64PX/C1RMkS9rpAf400eBfY/Qv2tmAm+8C1hwpXxZALDlHuDRzwHjTrZ0zfuB134NiJbIl9W+E/j9h4GOnfTv6ecAb/oh0LRMvqz4GPDwp+n6AKC8Drj5K8B575QvCwAOPg3c9zFgoJX+veRmum8V9fJlDXWQPu57lP5dPY30cenN8mXZNvDCN4G1/wEkxoBoKXDxXwI3/AsQicqX17Eb+O17gK599O9ZFwBv/jEwZZ58WckE8NQXgXXfBewk2ZHXfk2djux5GHjgb4DhDvr3ijfQfStXcN7kYBvw2/cCx1+mf09dDNzxfWD2BfJlAcBL3wae+TIQHwEiJcAVnwSu+RwQUcBJdh0A7n0fOXEAMPN8siNTF8mXlUoBa78KPP9ftNdES4Eb/w245CPyZQHA4edJR3ocp2rRdXTfqpvlyxruAv5wJ3DwKfr31MXA678NzLtUviwA2PgT4NF/IDsSiQGXfRy47v+psSO9R4DffyjjjzQuJTsy/Wz5shLjdF2bfkZ2pLyOdF+Vjux+ELj/Yxki5Oy/AG77FlBaJV/WaC9w/yeA3ffTv6fMB+64C5h7sXxZtg1s+CHw1L/l+CNfB6IKXOeWjeRrde2lf09bRXZEhc+amCB/ZPPd9O+qJtprVt4hXxYAHFoL/PEvgUEnyF3xBuAN3wXKquXLGukBHvwksOs++nf1dOD27wCLb5AvK5UCnvkS8MK36FkrrQYu/ghw9d8DsdLQH39GZNC40d8K/PgWcqpe8zV6gMcHgJ/dBvQdkyvLtoE/fBhY921g9VuBN/4AWHAV8Pg/Aeu+I1cWQI73b94F1MwA3vhD4MpPAfseA372evmZu/gY8Is304Z53f8D3vQjeqDueSOxZbLx0v8C9/01MOMc4K33AJd8FNj0EzLIstmkrv3AT28FRrqB2/4beN03yXj8+GbaTGUilSLjtOUe4NKPAW/7JRnf+z5KG4BsHHwa+MVbgLJa4C0/BW74Iv3uV2+Tz5SN9QM/eQ0Z4Gv/CXjzT8h5+827iC2Tjee+Djz1L8CSG4G3/Aw4+y2kNw99Sr6O9B6haxsbAG7/P9qYu/YDP30dMNguV5ZtA7//AF3Lee8i/Z91PukIC+plYveDwG/eCdTOAG7/Hm0oex4C7r6dNm+ZGBsA7n4DBTA3f4Wc7uQEreOJLXJlAbRZPv5PwMJrgLf+Alj1RuC5r5HeyEZ/C/Cz11FG69ZvkI70HgF+dCPQc1i+vMf/iciJVW8E3vV7YNH1wKN/D2z4kXxZB56i+2ZZwG3/A1z/eXqm775dfnZ3YoQ+9+iLJOe2/6Es089uI9slG1vuISdu3mXA238DnPM2In4e+rR8O9J33PFH9rv8kUHg52+Un3GybeB37wM2/hi48IPkj8y+kHTkxf+WKwsgu//b9wBTFtC+dsWngB330rXJzlwk48A9byKC+rp/Jn8EAO5+PXDsZbmyANprHv4MMHsN7WvMH3n4M/Jlte8Efn4HZSJf9y3Sk+Eu4CevJf2RCdumgHrz3eSPvPknQP080hsWsMnEwWfovpXVkj2+5nO0//z6HXRPZWKkh561vY8CV36afOTKqcAv36bGH3nmS8Dz3yA/5I0/AJbcBDz/dSK1ZNgR27bPmP/WrFljF0Uyads/utm2vzzLtk9uy/y+Y49t//ts2/7xa2w7lSr+OUHxyg9t+wu1tv3c17O/w6/fadv/0mDbrVvkyRrtt+2vL7Ptb19M/8+w5xHb/kKdbT/wSXmybNu2H/snurad92V+N9xt2/+zxrb/c7Ftj/TKk9Wy0ba/OMW2f/0u207EM79/+t/pO2z7nTxZyYRt33WdbX91nm13H8r8vusA6ciPbparI5t+Rtfwwreyv8M9byEdadshT9ZQF13Xdy6x7dG+zO+3/Y6+wxNfkCfLtm37D39J9+3Qc5nfDXfb9n+fa9vfOEuyjmyy7S/W2/a9H8q+P49/nq5t62/kyWI68pU5pBcMrZtt+0vTbfvuOyTbkR/QNTz/X5nfxcdt+6e3kbzug/JkDXaQjnz/atseH8r8fscf6Ts8+a/yZNm2bf/pr0lHDj7r+g7ttv1fq2z7m6uyv0NYHF1HOvLb95Edtm26Tw98kq5t3+PyZKVSpAdfnmnbbTszv+/cT3rzvatIj2SB3Z+HP5vRvUTctu95s2NHdhZ8OxeGu237PxY6dsS11+x/kvaaR/5Bnizbzuw17vsz0kN73X8uIrsmCx17bftfm2z7Z6+37cRE5vfMjrz6a3mykgnb/v41tv3vc7LtfMce0pufvV6uHdnwY7qGdd91fYck7av/MlWujoz2kT/yvxdm68j2e+k7PPQZebJsm+zSF2pte8cfMr8b6rLt/z7Ptr++PHu/C4uj60jP7/1Qxo7YdkZHdv5JniymI/+52Lb7WjK/79xPfqxsn3XzPXQNz3w187v4ONky2XZkqNO2/2MBPcduX2Dzz+k7rP1PebJs27bv/SBdg9sfGemx7W+dY9vfPNu2x4flyTq2nq7hvo9l3x9OnxXARtsn5jnlQRfPf4ECtFd/RYuz6e78v238qVxHbmyQNo+f3Jr/AA130wMn8+F6/PNkNI5vzP/bw39Pjomsh6ttJzlV9308/2+tm0nWw38vR1YqZds/vInWK9fIJhO2fde1tv21JfIeri2/9N+ImY5sv1eOrLEBMlBeQd9wN/3thzfK05EHP0X3rX1X/t/+9FG6bx175cg68arj0P9L/t9aNjoB4RflyEqlbPsHN9j215Z66EiSNrivL5Pn7G/8ib+OrL/L0ZHfy5E13E0OvZez1t9Km/Qv3y5Hlm3b9v1/Q85ax578v/3+Ttv+18Zs4iIMWjbRWj32z/l/O/yC3IAwmaSg6BtnkW12Y2LUtr99EQWE8TE58nY/SN//5e/l/2377+lvG34sR9bYINnH712ZTWDZdoaU+fFr5dkRtp+c3J7/twc+SX/r3C9HVtcBZ6/5WP7f2nbQ3x76OzmyUinar78yl0gCN5IJsjFfnS+PWNp0t+Nz/Db/b4yUkWVHxgYpqPbSg6Euuua775Ajy7Zt+5F/JD1o2ZT/t4c+4/gjksjH4xvp8/740fy/tWwiHZHlj6TtyIp8O5KYoGfwGyvk2RHmj3jpyIYf0d92PSBH1kgv6fcPb8oOPG07Y0d+cqscWbZNPse/NHj7I799L+01PUfkyGI+x1Nfyv/b4eedgPBrcmSlUuSXfn1Zvo4kE0R+fm1pIJ+1UIA2uUocUylKS08/BzjXo2/jvHdTadna/5TTpLvlHuoDu/7zVAbiRmUDcNVnqGTj8HPhZQ11UI/b2W+mlHsurv4s1b8+//XwsgAqoymppPK4XMw8j9Z344/lNM4eXku9Kdf8Q37/SyQK3PQlYKgd2CihjCeVpB6OGaspLZ2L894FNK8EnvmKnEEGr9xFZZQ3fdlbR677Z+D4etKTsOhvpb6DNe/1rlu/4V+AWAVdvww89zW6X5f/Tf7fZq0BVr0ZWP89OYMMDj4NtLwCXPP3HjoSAW7+MpWoyigHTEwAa78GzL4IOOcv8v9+wQeBpuWOHZGgI+u+Q2WAt3w1X0dqZ1L/1N6HaOBFWPQeBbb8nHTEq9fyhi8CVgR48VvhZQFkRyqmkH3KxfzLgRW30zMyJmFC796HgZOvkj3O7W0oKadnsO+YnDKeVAp4+kvUJ3XBB/P/vvIOYM7FVP4iY5DBpp9Qr6BX/0vVVCovPvoC2dKwGO4i237uO4Dpq/L/fs0/ArFyurcy8OxXgVgZcO0/5/9t2krg/PeQ7R9sCy/r8FrgyPPUI57bRxeJArd+HRjtoesPi2SC9uNZa2jfzsWa9wONy2gdZdiRDT8ERrqAG/8l345UTSV/5OBTckq9Btvonqx+O5Vi5+Kaf6Qe2he+GV4W4Ow19cBrPPauWecD576dnhEZpecHniQ7ct0/59uRaAnZyIEWsqNhkUoCz/0n9SJ66ch576H5CWv/Q07J3MvfJf1+7X/m9+NWTaVS9yPPy2lh6TkEbPkFcNFfevsjN30ZsKLUKywDz32d9prLP5H/t/lXAMtupTJfGeXZB5+mQV7X/EO+jkSi1Bc81Abs+lMoMZMrQNv/ONC9nxxGr2bwSISMVPd+qmMOA9sGNv+MGsLnXOT9mvPfS82XL/9fOFkAyUqMAld5ODoAOftr3gvs/FP4muXeI9RgefGd9LleuPLTQCpBzlVYvPw9oLLRO6gGqE9g/pUkK2xgvf9xur4rP+2jI1F6wLv3A4efDScrmaCgetH13kE1QBtc5VQ5OvLydwE7BVz+Se+/VzUCF36AdCTshMz+FupZuuAD/kMlrvw0DWnY/LNwsgAKYmpmFNaRORfTcIiwOrLzj7QBX/V3+Y4OQHpz5aeBzt3AoWfCyYqPkWOx7LX+zeCX/BVQVkfBblhs+gnpyBV/6/332hkUlG79TfjAunMvDY655KNAWY33a678FPUHywiaXvpfoH4uEQNeWHw9DXlZ//3wzs7htUDHLtIRr4EBlkVDJ/qPU+AYBqkkDY6Zf2WBveY9NMBJhkO8+W4gOQ5c+nHvv1c3U3Cx8w/hHeLBdnre1rwPqJnm/ZrLPk57jSwdqZlBe7MXZqymQSjrvx8+sN7zIO01V/ytjx2Jkj/SuSd8n10qSX2I86/0H7xzwQcpyHnl++FkARQMJsbp+3uhsgE4/92OLQ2513QfpCFlF33Y345c8Sn6Ppt+Gk4WQIFX5VRg1Zu8/77wWrIj674bPrDe/zgFMld+xltHojHg0o8CbduAYyED6/go+VrLX0d67oXz30vXLmN+wsvfywzf8ULdLPIfdvyeEhBh0HuEfPoLC+gI22te/WU4WQDNnKiZSf6bF+ZfQYOANv4klJgzIkALfA7aq/dQQLTiDf6vWX4bUDsrfDamdRNt0Gt8DD1ArO2a95OT0ntUXFYqSZmRBVcDTUv9X3fRneR8bf2VuCwA2Ppr+rnm/f6vaVhADs/WX4dziAfbgP2P0TqWlPu/7sIPEvsddiPb8CPahSCmiQABAABJREFUoJfd6v+alXdQwBiWRd3/OGX+LvyQ/2tKKihrt/eRcEYqGad7sfzWwhMGL/gATRvaHJL92/xzcnIL6ci0FeQwbPxxOIe45xAxv2veR0y7Hy7+S6D/GI0fD4MtP6em9yU3+r9mxRuIrXv1F+Fk7X2YMqwXFdCR0irKZuy6j7IbokjGidFccjNQN9v/dRfdSWTQ9nvFZQG0jpEY3Tc/zFhNGYZXfxlORzr3Uhb+ojv9J6xZFtmR7v3hdWTjj8mRKTT1bOlraK8JqyMHnwYGT5CD6odYGdnQQ2vDDcKybbpv864Ampf7v+6CD1DQFDaLsOVumkbplYVkmLqInOLNd4dziPuO0eCT899TeK+54APEfocl6Lb+iu7/stf6v2bF7eSzhB0WdeBJsn2FdKS0kvaaXfeH22tYILT0FqBhof/rLvwQ6ci234jLAkjHrCjdFz9MXQQsvJp8wDA6MtxNe/E5b/OfwmdZRJr1HAzvj2z8MU0ZXF7AHznnbUTQhSUodj9I0ygv/kv/15RWUtCx77FwBF0yAWz/HbDi9UT6+eGC98uxI5t+SpUfhfaa2RdQYL3hR+H2mt4jdN/XvNffH7Es+i4tr9AAGEGcEQGaHeQctJEemtxy9l8UHskejZGBPvh0OGZn008phe/HsjCc9y4ANrGNoji2jpjY899T+HX1c4F5lwPbfiuugLZNBnXBVUD9nMKvXf12chzClHBuv5eCSj8mgmHZrUBFQzhjP9xF93312wqPyY2VURZh32PhzlDa+kugqpkm+xTC6ndQ0LT9d+KyDj1L5S2r31b4dQ0L6d5u+004Hdn+Wzpqodi4+XPfSY5Ry0YxWQCw7XcArOL6v/Q1VOYbZh37jlOJx7nv9GY0GWJlVCK7+8FwJRM7fk/HEiy4uvDrzn83ObJhSiYOr6UyufPeVfh1088Gpp0NbPu1uKxUkuzQkpuLj2Rf/XYiu9iYehFs/x1t0F5ly26svIPs9o4Qwedon8uJK0AYRGO0Pxx4Mpyzs/VXZPuWvqbw61a/HYBN2U9RtG4iQuTcIva4cbGz14S0I9t+S5/TuLjwa1e/nfbAllfEZAEkC7Z/Fp5hyU1UFbDtt+KyRnrovq96U+Gx/bFSeh73Px5OR7bfS4RRMR0579201+z8o7isg89Qa8cFBcg5gIKm2ReRPorqSCpFxOPiG4Ca6YVfe967aa8Jk2na/juys8WONjnr9aQjYezIYDvpyHnvLOyzllYCK99AgfXEsLi8rb9yfMQrCr/unLfSGoTRkWPrqJSyULIEABqXAHMvBbb/XlxWKkX6v/h6ysoVwnnvomMMTr4qLu/VXwGwiu+jq98ORMtCZXXPiAAtEPY/QUp1dpGACciwnnseEpMVHwN2/IE+xy+dyjBlHo25DaOAO35P/WDLihhfgOqYu/cD7TvEZHXsog161RuLv3bZa+h77XlQTBZA1zbjXHpQCyFWCpx1GzlG8VExWbvvp81pZYBrO+etNAp81/1isiZGgP1PEoNU7MyU5uXkFO9+QEwWQI57WW2wsz5W3E7sX+ceMVknX3V0xKeUzI3lr6WzmsIQFLvuIyNeO7Pw60orqXxj9wPi5UnMJgTR/5V3UCnY/ifEZI0P0XtX3F787KXmFdT3FsqO/DG4jpzzF46zLjgq/vgrlD0Oao+tSDj93/lHytYWc+JKKoClN9F9Fs38732Y9ppi5BxA9jiVEL+2xASw73Fi2IudqzNlHjnEe0KuY7SMbG0xnP1mOspGdK9p207v9+q9ycXy11L/7I4Q+r/7AWLQi5FKMef69z4qfuTE3ofpvgfRkRW3074k7I+MkryzXl9cR5qXE/kShsTa8wDZkYXXFn/tOX9BpeBd+8VktW6i3uJixAtAGb1omfg6AkSqzjiXeh8LIVZK1Vh7HhI/TmDXn4icPtujzzkX57wViA9nzhrlxWgfEXQr7yh+FuT0s6m3Noxft+dB6lMNstesvIPOou3cKyarZQORN0H8kZV3kI5sC6H/O/9IpFKhKhSAynyX3UL+i2BWd/IEaPseJSZ6xnnFX9u4NJwCHn2BHpaVtwd7/YrbgfbtYmWOtk0s/ZKbgh38uPxWAJZ4j93uB+n9xZg4gJydxdfTgbciCjjYDpzYTAdtB8HK24GJIWLwRLDnYcogBTkcdMZqoG4uMZsiOPg0lYkFcXQAyhAeXy9WwpZKkRO3+IbCjD4D0xFRp3HvI+RQB7m28jrq6dj7sBiL2n2QjPeK1wd7/fJbgbE+cRZ13yOOfQhwyPCci6k8SXQdD6+lAC/IOloWbS7H1okx7ckE2btlrylc3sXAnklRh2DPgxSYLy5QJspQ1UgBuGivVvdBoPtA4TIhN856PWUAjgtmY3Y/ANTN8R6OkIvp5wC1s8XtyNEXgYnBwmVybiy/FTi5VbwP+cBTNLwlyGHlZ72BSs/YgbC82POQY0eKsOwAEaGLriV9FLEj/S1ELAXda5a9lsrBjgkOS9j7CN13v14fN2aspsyGqD9yaC3ti8WyFQwr3kBOrUiZYypJ++jSm4MdxLv0Fvopakf2PUI6tiSAo19WTWWOex8S05GhDnp2gu41K95APU2iA7523U/EW6FSYoa5l1Lbhahfd+BJIgyWB9B/yyL9P/y82PAm5rMuui6Yz3qWs96igfXu+2mvCZLAqKinyp/9j4nJ6thNGbigvv+yW4moPCl23ufkCNCSCdpYltxYnB0ASAGX3kKTakQOdz7wFLED84ukihlYidvBp/hldeyisqRC/TBuVDdTra3og7z/cXq/X8N2LpbdSmWOIiwqc1qYES+GeZdTeZJI3Xd8jPpOFt9QuHSNwbJoUzj0rBiLeuBJoLSGvnMQLLuF2DSRbMyJLaQjQQwUQFmGGavF6+f3P0FZYb8BMrlYciPVbYuwqOw7FisTZVh0HTFkIs7++BBw5EVyPoIgEqUSvoNPi2Vj9j1GOjL3kmCvX3Q9AJt0khcnNlPgGvRZa1gINJ0lHjTtf5xKactrg71+2WvJhogEFgeepJ9BbeSiaykwENH/ZJwcFy47cmM4OxIto0O3g4AFcgcE7MjACcp2LLou2OurptJecUBgXwPo2matoc8JgiU3UgmbiB055Ey3XBLw2V54De3xewUCi/gYkYhLbw6uI4tvpP1J5ODe/Y/RvhjYH3GCHZH7dvJVKl0Lakfq59Dk7H2CDvG+xyk4qZgS7PVLb6a9pucQvyymI0EygwCtd7RMzI6MD1LPbNB9LRKlNd//uKCOPE4B3iyfATK5WH4rVQmIkOEnttCQrSDBIEA9as0rxFtl9j9BflbQvWbxjUToiegI81mDkoFLbqS9RsSOYLIEaCe3EtsVdGMByAAnJ+gh4cXBp2lqXElFsNc3LnGyMU/yy2LOWNANGqBN6MRmfqZ9fJAermL9MG4suIp+HnmeTxZA61gzgwx4EMTKyCiKGMTjL1NGa9H1wd+z+EZiJo+v55d36FliogvVlrsxfTUNHRAZk83ew6P/i64lFpW3f2q4i3QrSGaEgW1CIlmEQ88Su1yoGd2Nsmp6Ng8JrOPx9bQp8TxrC6+mwIe3f8q2yUFadE1wHZl5HmU2RPT/wJO0UfBc29KbaCQ3L4k12Ealazx2hOmuiP4ffIb0I6iOVEyhwEBkAmfrZspocdljx46I9E8dWgvMvZjKd4OgcQkNHTgiwOozZyyogwqQPT2xhYYr8GCkh8rXgpRAMTCbIxJ8HltHEwybAmQrAGL+514i5jS2bqQKG55rW3AV6cgJTqbdtslBXXRtsOoJgPaaquYMscEDpiM8z/biG8i28vZPjfRQ5dGia4K/Z4HzWhES69AzZBuCZD0BeibnXSa2joefp4zWYg5/ZOlNlNFq3cwny7Yp+F9wZbAEBkD2sbRazK878CSoCitgEA+Q/h97mQbQ8KD3CGW0gga6QIbIEyEoDj5DNqRYuwVDZQNNehfRR0yWAO2IY0TnXxn8PXMvpQljvAs31Em9OywwCQLLIiNz9EX+UsDDz1E5ZrF6VzcYk8Zb5nXsZaqFD8rEAdSU2bCQfyqabVMGc97lwVhGhkXXUv9UfwufvMPPU6kEz7XNuwyAxV/C0HcM6D3Mt4lFIvTdDj/PX55x9CUyGlWNwd+z8BraIHjPO2FrweOgsgCLV1YqSeux8Bo+HZl/BZVF8jqNR18kHZkTMKMFZGwOb2DRd4xYRh4dicZInsgEwkPP0kYRNOsJkKxUnD+wYN+P51lrPoucRl57nEpRGRqPLICCkNZNdP4cDw6vBWDx2f95l9N7eIOm4W5yUHn3mvmXky7z2pGDT9M9KNZ/48aiawHY/I7c0RfpfVx2ZI7YXgPQ3jb3kuAOKkD6L2JHjrwIwHL2Dw5ZgIAdOUr9NzzrGImQTonoyKFnqYetuin4exZcRXbkGCcZzvYaHr9u6iKanMm7jrZNzveCq4v3A7ux8BryB3lbEw6vpf79ORcHfw+rxuEtu+09DAy08tnIaAn5yCIExdEXyYYEzYwDpCOJUf5hYocdu8NDTjcspMQAr38cH6P38BBYAJG4rZuEholNjgDt8PNUjlNsWpgbZdXEEvAaDXZTg5auMcy5mJj2bo7yDNsm5iloCRTDrPMp9c7rEBx5AYiU8BkNgB583uCz5xCNMubZxAAyGgB/Vuv4euo9yz1UsBAq6oEZ5/A7BOwg0AUcGwtARmqghS/1nkqSDvOu4+yLKKPCaxCPrqNm/aAsI8OcS+ge8DgEnXsoMz6X89rYRsQbWB95kZ4dHh2pnUEHifIGn8yOMH0OirmX0IbL0z+SGCdmfh6nrDkXk47w2pGjL9IQAR4dsZygh5eg6NhFrDKvjsy7lEqKWzfxve/4egomeQLdinqyPdxBDAt0OQI0gPamwZOkJ0GRSlEGYdF1fGTIjHNpr2nhPET9+Hp638wAPeNuzLuMnjWevWa4i/Zd3n2UBQZHee3/C3TAd0V98PdUTSWS7Rjnvsb2Gu599BLSEZ4jGZIJel547cjcS8iv4HX2j7xIe83MAL2eDJbl+CPr+OxI135q1eAJdIHMuYQi+j9rTfCsJ0AEbOMyAVLVeX2x6Y25WHAlVULwnHWYjFNvL7d/7Dyb3H7dy5T1bCxw/FQuLIv2XV4dObkVSIzxk4ELrqLEh8Dh32d+gJZKkZPJa3wBqsc9uZWvpvfoS46Dei6fLBb08Chg9wEa884bMMXKqEeIl2lp2UiORNByGoY5F5OTxBN8iga601YR88SzkbGNhXcdATJqLRv4Uu8tG6gnoHkFnyzmrPMETR27qOSK19EvrSSHgHfc7LGXqO8kSIO4G3MvoWMAug8Gfw9bB7/Def0w83zqH+EhXxITFMSI6Mici+ie8xj7oy/R2Ta8OiJiR05uo3Lu2ZzrWF5LQy54mcbWTRTo8jDRAOnIUBtfdjxtRzj1f9YFACy+QSGpFHB8A78+ArSpt2zg60Nr2UDN7zPP5ZPFdKSFI/js2Enn8S3iZIdjpRSI8wa6x9ZTcMbjoAJkj8f6yO4FlsXIEM4gZuZ5FETy6EgyQXaLd18DaM9u2cAXfB57ySnd9Dnk3g9sv+CxkZ27gfhI8D4mhtIqWkteMrzlFSeI4dxrZl9IPdn9HP2sLHPPq/8zz6NKLB4dmRgmmyxiR+ZdSuvIoyMtG6k0nieIATJBUyuHP3JyG+kIrz2umkqVYryB7rH1ZO94MuMAERqDJ/gIihNOaemsNXyyZl9ElTm814bJEKD1HCKWPchErVzMXkMRMc9Bcq2bnI2F02hMXUxn2fA4Vuy1vI4VQNfWtiN4YJFKkoM6m9P4AhmDzRNYtG4mlp3XaERj9IDw9A627yCjIWIQ51xIOtKxO/h7WjeKOahNyymwY4YgCFjPAq/RAEiPT2wJHlhMjFCvlQgZknYaOTaylg3EjgXtLWKIlRLRwLOOHbtooqKQHbmQnFuezGfrJnrWeDeWGasdp1HAjojo/6w1RGIFdQjijj3lYb0ZmO3h2chaN9Mkzfoio9NzUV5LwTHPOnbto71GyB5f4NgRjsCiZRMFyLxBTNNyIrF4gibW1zL7Qj5ZAF3biS3Bic7EOBFDIvo417EjPNd27GUnW3cunywWfPISZvERsXWccxEFnz2cJNaci/jtSPNZNKCIyx476yDkI6wB2rYFP/4kMU57zWyBfY3thTz3rWUDlb1Nmc8nq6SC9hoem3ViC2VURMjAWRfQ5EjevWbm+QJ7zTmU+eSyx4xUFbi22RfxVdmM9FBSQMSOMB3m6fls3Uw6UujgbS+UVtJew0ti4QwJ0CzLus2yrLv6+z1GfjInTMQhYA9yUIYglSSjwWvoAUqrzjyXGIagOLGFjChvEAPQeqTiwacrduymxmZedgyg71dWy8e0nNhCmx+v0QDo4WrfFZyNPrmVfoo439PPyf6MYoiPORuLwDpGoqQjvI5VeR1/EANQgDbcSfXpQdC+k8rCeLPHAA0vKKkKvo4AXdusNXwlVwwssAjqEDBDLWJHeMtc4qP0vPGWdwHkrE9bybeOJ1+lvoxiZ4R5Yea5fA5B23bqbRQhDKatoswnj2N18lVaRxEdmX0BPWtBHQK214g82+xeB3UIkgm6NhFZ0Rg9ozx25OSrlNEVsSOz1vCRWJ17KKMrov9TFtD35NH/Y+v4y8kYZq2htQkafLI1FyV6gOB2ZGKE1lLEHkeiFFi0cUxfbt0kRpgBdK/jIzTQIQjadpCOiNqRaBmn/m8VW0eAru3kNg47EpJUdX9GMcRHad8WkVVSQaW6XMT7JhpSFHSIhhuzLyCisy/gcVRtji8tsmc3r6DMZxuPP75ZbB0BYNZ55M9w9nyeEQGabdsP2LZ9Z12dx9ksJ7ZQyWHQ6Uxu1M8jgxM0aOraT42MvP03DNPPJoMaNLBo30nOmEgQw/sghzEakQjJCzpdKDFBgaPIBg2QAU7FidEOgrbtFOjWz+eXNWUBBZ9BH+SOXeSghjX2QR2CE1vEHVT2HYPqSJvjFInoP3MIgjpWiQnazFmAzIuZ55NDEPQw7hObKcPNy6ACmYxF0Gtr20EMqgjRAziO1fbgxr5tR7Cz/7zAdCRoKWw60BV4tqMlpFtBM58Tw3R/Re3IjHMoYxG0FKptO+01Uxfzy5qygErRgj5rXXudcjJRh+B8foJi5moxO8J0KygZyCaeijzblkX3LeizlkyIZ2IA/sxn6ybHjizgl9W4lAiKoEFTxy6HMAvhj7TvCJ4db9tO90yIMHOc6KD6nw50Be5brJQCi6A6Mj5EvkQYezzeH7xcrn0nBTE8Q70YmpaTjgTes9leI2gjZznZ8aA60rpJ3GYxexBU/8PYkViZ0+IR0K8bH6KWI9FnbdYaJzvON9r/jAjQCqJtOwUx0Rj/ey2LnP2gGwt74EWdxunnECsUhEWybXqQpwccQZ+L+rk0tj3og9yxm5yPBoGNBcgEn0HOg+rc7TCo54rJYmP5g5amtm2ndRQJdCMRvsCCbeTCDvFqKrXrPlD8tck4yRPeoFdRbfSJV4O9/uQ2IjR4Joq6MWM1fUYQY9+1jwJdnolybjDdCjr+ngUxIs5HJEolQ0FlsWAnTGAx2hss85kYp7UMepRFLprPIjY6aIDWvoN0RIRBBeh+t+8KFny27RDP6AI0bhzg0BFnr+EtXQYyFRQ8jhUgbkemrSI7EqRcLhknWyq6jg2L+AKLth1EaIjuNTNWk54FCT67D9BeMy2EPQaC7zUnt9J9DmNHeP2RGaL+yCoa7R9kmEwyQT6CqD42LHIqKAI6xO3byX+pnSUmj/l1gezIdgB2CDvCAouAdqR9h7hfF405/sirwWUBIezIStKRICTW2AA9b8LE+woAFof+byP94JkW6cb0s4MT74zoFfVH2PrzlLjjTA/QbJsueBpno70b01aR4QkSWLTvoKZtkZJDwFUuF0Ap+o9TaZGoQlgWpXE7A5YUdOykE+1FnA+AZCXGgjEEHY6yNwte29TFdB/aAxjEVMoxiIKbGOAY+4BOY/tOCnRFMjFAZmhEEIeg5xA5H7yDJhhKKui9gZ3GEAwqQI5EfDiYjrDrF9X/hoVUPx8kg5ZK0etEZQH8DkHFFHHng8eOdO4hBlXYISghe9cRMBPZsZuea1EdaV5BbHSQ4DNNhgheG3MIgqyjbTv6L+joAKQjXfv49hqRbB2Q2RODOATMjojqfzRG9y2IPQbCBboArWPQvYY5e6LXNmUB3Ycg65hK0v0VtceAQ1BwEI/l9UDdHDFZPJnP7gMU8IvqfyQCNC0LXtHQvpPWUdSOTD/bIbFOFH9th7PeonakeQVNuw0SoCXj5JOF2Wuaz+Jbx9IaIuxFwL5nEP0PG8SUVtG+zUOYhbHH088GhtqDHZHAnhHRZ5tV+PHMMsCZHqANd1LNahiDOH0VlZL0BGCRuvY7wYFAtg6gMzqiZZRBKoa0gypoNADHIO4N5jR27A65sXAEFl17KXMjUssO0Po3LQ8mq/84MUBhgvjm5RRYBJku176TDKio89G4lGqjgxhE9rCLlPcyzFwdbFCIbZPzEUYWmzQWJIPcsZMCLFEHNVpCfW9BNrK+I2QDmjknobnB4xB07ad1DBPEABnHohDaHT0Ka0eCZv07dockzJzNvT2gQ1BSBdQKZnRLq0hHgjgEA61UoiLqxAG0jomxYKVQ7Tvp9UEPMc9F4zJyGoOsoww7Mn1V8AxaZ8i9pskhSINMDW7fSfZUlFSNxmgtgxAUvUfo/oaxI9NW0bTbIMdoMHssakcal9HPICRuOtANof/NZwWTlUrReoclzIBgPkLnXgpiRAmz0kryZYLY43RGN8Q6Ni4jvzfI+XwsgSGqI+nAgiNAaw5pR4IQBsk4Pf9h7AiX/u+ig7t5h1ExlFYRaf9nlUFjD18og8gYgoCBhaihB8hpn7oI6ApQvsb6q5qWictrWk5ZuMGThV833E1MQph1bFpODkGgB3kvGTTeSZi58roCbNBsE5+6RFwWz4McNqMbK6XvGtixssLp5LSzgdEeIjsKYfAkBbqNYdbRCbaC9A52Os+aqIMKkI4ECdDYWodlvoFg+h/WjpRVU1ASVP8jMbGeGIamZRRUTAwXfl3fMTryIcw6MhsUxB537iFnXaR0maFxaTBHn+lsYwh7zOUQ7BQvywOAknIqKwtqj8PakablZEdGegq/bribnMsw+xqz5UHsSMcup7crxF7TfFYw5jsd6IbYR5s5Mp9d+zM2VQSllUDd3ID2eA+RqqF0ZBkdozHaW/h1fUeIEA0VoDHCOICz37mHvptoEAPQs83j14VdR/dn+cG26frD2OPyWtKRQP7IHqoeEg1iAHp2eo/SsLVC6D1KLRBh/BFG9AQijHc5xHuIvaZ5RfBKFAdndoCWjthDKCAz9sV6fhLjxJCFebAAyggEMYhd+4CqZprQJ4qmgA4BU9AwDGqJU9YXxPno2hdugwboPvQfL+40MqMZ6kF21qWYsz/WT4FOmGAQcJjGAA5B525ac95z69xgGapi+s+CgTDrWF5HzdGBAosD4ZwPgO5b71GadlYInRIyCGk7UqTnhzmoYe1I09Jgz1r3AadMSzDrDwR3CNKkUoh1rJhCOhKkB7NzbzhnGCB97jlcfCiPFDvi3PMgdmSoLbyNDFoK1bkbmDJPjx2RQZiV1wa3I137wz9rzcuBgRbqsSmEdIAWJohnwWeRaxvto7O+wu41TUuD+SPdB0hHwpKqANBZRF6HBL+uvA6onhbs3M3OveFsFuDYkYPF+yLZfRWtDAEy+lwssBjqIFsShngHgldQdO6hdRCtHgIc/beL984yOxNmHWtnUy9sMX0E5NiRpuVk/zjOXT6zA7TugzRhr6pJ/DPKqh2HoIhC9ByihvSwN6lxqVMKUWSSoyyFAIo7cuzapy4KJ2/q4uIPVjJOaxl6HQM6xN37aSxzGB2pmgpUNhY3UqwnIvQ6LqJsRFEdORDeiWPftWiAJoH5A+i+FXMIknF6RsIYXyYLdvFele5DQM1MsgWiqGokW1RM/9NkiASComt/8dLU7oPh9TGoY5XW/5D3rWFh8ZLzsX7K6jaFJcyW0ETY3iKjnbv3UxlU9TRxWSz4LKb/Mu1I75HiTmPnvnCZQYCD6GF2JGRg0bikeBAjy46w9xcbptG9n5y+MHakZgaVUhUNdBlhIMEf6dpffHBT1wEJ9pgFFpr0v2FRcXs82kvVQzLscXKi+Ij47gPh95q6OZSpKmaP00GMBDvSc7j4XhO2BQIITlB0Swh0IxHHjhTx68aHiDATbclhmLqIsn4cB6if2QFa72HKIIRJTQN0k4s5+jIyCOz9dpI2jmLywmYQqprI2BfbWHoOUhlUnWAjKUPDInJ2Cz3I/cdJScMajcaAZS5d+0lWWB1pXFq8hIHpUEPYjWUhkQGFHmTbJh0KU7oGUPNwtDRYBq20mhyIMGhcShtLIR3pO0Y6EnodnbUpqv+HxCfKMVgWfUZRwkAC8wfQOsaHCw/TSKWcAC2krCnzAVgBHNSDFMSIjI92o2Fh8aCaBXBSgngUL3Nk9jisHQkSfEqzI8whKNDzxuxIWOejfi7tIcUcq6591IctOrSAIQjR03uU9trQ+u/YhmL3reewHDsydVGAdZToj8RHituRnoPhs3V1s6lMslgQ03OIyIyKKeHkTQ1gR7olkUrp4DPAfQvr+0QipGdB/DpADmE2MVS4LzIxTj36Mkh+INg6VjQAlQ3h5AUpTZW1jsyOFPP9XTizAzQZBhEgpSrmoLJFFZ3Ol5YVoKRyuJvq+cMaRMui71tMIboP0uvClEEBtI7xYWCwzf81staxYREAKwDTIsFBBai8I8jGAki4toXZn+eF4U5a67D6H3GGtRQLLHqPyCFDGhbSlL5CfQiygpigjlWvJDsShLHtPUpOiujkNYbGAHZk8ASd2xh204yVUQN9UQfVCXRD68gCp+exQPmyNHsc0CHoPhDeHgN67Ug6O17IjnSRHQkrK1pCz1vRzM9Bur9hyqAA+r5jfZRJ9ZUlKYPA1qaYQ8wI47CYuqQ4YdB7GIAVrt8HyJAAha5t8AQFcWHXMVpCQVoxf6TnUHjiEaBrG2oHxgf9X8OexSkh1zFIf7Vt030NG1QDAf26A0S+ht1rgvgjfccA2OH1v7SKvm+QLKsUv24+lS8XKjuUVWGWtiNHAr/lzA3QUklSChkP8tTFNDlptM//NX1Hqa65oj6cLHaTCm3SzFiGZTWZvCAGMSxbCwQrl5PlWJWUFzf2iQnaXGRsmvXzaEJfYtz/Nd0HyZEN08sBBAss2N9kXFvDouIBWt+x8M4AkNkIC+m/LINYUU8sbCEdmRimTVyKHQlQmtp3FKibFZ4MYfeiUGle2tGXcG2B7YgEm8U+o5A89rewOlnZQKPKC+ljYoLYYRlB/JT5+uwIs+mFSANZDioQLDvYd0yePQYK678soqe8ls7kKnRt44NEmsnQkcYlQN/xwoMSeo+SjoTpCQMymcxCk0Vl2WOA9EyXHWHft2Bg4ehP2IxuxRTyDwutIyMUZFxb/TwnQ1ygEqX7INn+sGRIOkArYEdk+XWAkx08Uvg1fUflyJoyr3i1ErvusPetZgYFzEEmxjs4cwO0/hbqHZDCfAdIPfYeDf8QA+QQlFQV3liYstSHZD6AjGPlV2NuOz06MoxvEIeg9wgpadhSOYDuRyGDONBKD5+M+zZlHgC78Kh9GSWHAFDdTDpSaGNJG0QJ8urnks75GXvbdgI0CesYxLHqO0bllJWCB1C6MWV+YXaYGUspdiRAaWrvUTmBbu0sp1yogP4zXZVx3xrmF7aPyQRtmlLsiLMRFiINeo9QiUt5bXh5Re1ICwBbzn2rd+xIXyGHQJKDWt3s9DNpcqzq5xYvp5RlR4IQPb1HqP84bBkUQHa2kB2RbY9hFy477JPkj9TOounLhfSf/U0KQTe/OKnaf1wu0VPIIe47RnakrCa8PLaP+so6nnldWEyZR5nvkQKj9mX0HwP0fa2oPjtSV2Qdkwmgv1WfP9JzmHqHS6vCyYpEnMD6SPC3hJN4CiHTINY55+gUNYgSDJRlFS9zYQ9y2NQ0QA9MYoyyBF4Y6aHyBWlOY6R4EFM/NzyrA9D6FDSIbGOR+SAf8X9Nf4ucoJr1MxUkDFiJi4xrm0M15n5lh6O9tBnocqz6jzv9CiFL5QCyD4U26FNhR2RkK6IxysQVdKycZ0P0fB83psynRmm/iZiDJ6jfSUoQ4+hZUTJkfnhZTF6hgEmmHUnr/xH/1/S3yJFlOSVwBQkD53tIsSNzKUPgV3Y41kfHvuhyrGTZY4Dscc8R/7/LJHrYvl9Q/yXZkVgpDa0oSPQcB2DJsyPDnTR4wU+WnZLk6Aewx7KId4B0MkigK8uvA/x9BNumtZRxbdESuvcF1/EIECsPN0SJoW42tcn4VaIMtFJvqRR7PJ9+FvTHJZFKTF6xUmkXztwAjSkLewjDoJhBZMyfNIegyIPcf5wmwoUtpwSKZwfZOtbODC8rGiOmob/IgyxtHedQuZDflLJ+yYwV4P8gJxPkpMrQR6C4Qew7BtRMp1LPsEjrv48jJ6sMBHDKhKcUzyDL2MQAum/9Lf4ZZLbGsthowN+OxEeJKJERxACOHSmyjtXT5OgIC2D95LFnvk6CE1cxhaaUFXMIpAZox/wzyEqIHj87Eqf+OxnOMED3o1igW9UUnh0GMsGQX7Arcx0rptAeWVD/W+Ta48ET/nYkvddIeLbZd/a7b4lx0hFpdqRIBrnvGPkHYcspgcx39pM3cIJ+yrhv5fWUQS6k/zKd72J2RKY/UowwHusn0lWWHamdmbk3Xug9Qt9JBqlaPwcFM8gy7UjtTCBSUtwfkUX01M0uvI45OPMDNBmBReVUiv79HNShDspCyTKIU4rUD/e3yHNQa4uwSOl1lOgQFHKs+lvlbZr1c4lJKfQgWxE511Yzgx5kv41l8CQxf9IcgpmF13GgVY7uAxnj47eRyTSIQIDAQrJjlYpTj6kXBlqp5FZGOWU6QPPTR4lOHPucYkSPrHVMB/HF7IgEeZZVOLCwnc1bRjAI0LXFh/0zyH3HqMRHmh2J+V/b4EkAtrxrq51V2CEYkGyPAX+dlGlHWHawKNEj044kCtiREzSdMuzkQcCx65a/jvQ7JbcyMmhAgABNImHG9qxBH52U6Y9YFt1/P79OZpYJoM8pVInSd4zO3ZKx19QXIVVlJjAAoHZGcX9E2l7DCAoNRE8kWniWQSrl+Kyy9H8WlaUWO4ibfT05UtXCsqzbLMu6q7/fVToxcJJqh0sqZAhwHmQfgzggkR0GaGOZGCzwIEvcWGqm00+/yYoyA12gcOYnMUEbnIz+MyBA5ucYlW/IYP4iUfreAye9/y7TQQWKP8gDJ+Wvoy/zzUpuZTlyc/xlTTh19bIYK6bXvgTFCXqNDOavpJwOl/fTR+aUSAus55JD76cjUokeR9f81pHZTqmBhY+s0V46c6hG4joC/qRB3zH6PmEHuwDUh1A93b/kvF+FHekqYkckrSM7psXXHksmKOpm+Tv644NUUinTQQX8g93Bk/QaGXYkVkaZb79+Pra+sp7t+rn0rPlWohyTZ4/ZnlV0H5W0t9UWIHpGe4l4l0ZOs320gB2pmyNHR8pq6EgTP7+uX3aANovumV9SYbBNgV9XiDC25Ol/3WyHGPPAUDsRvLL9ET+7lYMzIkCzbfsB27bvrKury/xy4IS8Bwugm+TnNLKHgAU7YZF2Gn1uksyUankdsTZ+Cjhwghjd6mY58upmk3HwepCZUyJrHYsxtv0t8hxGgDYNvwcr7aDKYpGc7+0nb/CkPEe/ciqVlPkGFicpwyyDHQbIkA8V21hkB2h+961Vvh3xzY5I1n+mI15radtyM5HVjOgp4FiV1clptgcydsQL7DtIsyMBCApZ9hig711oHQGJ2cFiduSEPGe4qpHsiG/5Wiv9XZodmR7AQdVkR2QGukARO8L8EVlBzAyq/hj2OOcqlaRrlrWO7DsX8kfK6+WU3AJ67Ug68+NHYum0I47uyCxxTIx6JxWSCfLtZAbVgL89Hmglf1UG8Q44xHsBXxwIf0YwQ9qO+Ny3HJwRAZonBlrlKQRQ2CAOSTaIzCB4OVbxUWL+ZMmyrCIP8gmn7EbC0A6AHi6/B1n2xpI29j6b9FC7nKZVtzy/Byv9IEs0iIC34RgfomZ7mTpSUP+ddZTB/AGkj2P9pOu56Jecrasp5lhJLBUFCpfmseddlk6mgyaPbIxsdjhWSr1KBQNdietYO5PWy4vVTztWku2IX1ZrqE2eEwcUCSwUOFaAt9M4MULPoUw7UjvTf68ZPEnXLsuOVE+nc9y8zjCSTZjVFGG+ZQa6QMAATZIdKRQ0DbVTaaesdSwpp8onPx2R2QIBUGA53OGdQZZuR5hf52NHZGaZAKfssMA6WlF5diud+fTQ/+FOCvBlySopByobC2e1pPp1jj32SiqkB7tIbF0BAvehncEB2gnJDsEsuvGeDkEbAIvKl2SAKZeXY8VOa5eqgDMLlxTIdqwA781FNmNVWkmN4n4n3A+1S3asZhQOdGVmEAr1M7HvIPO+VU8jQ+uFQdkOaoHAWnaWtaqJMsReBjGVkpuJBAr3/Ay2UzZblo4wB82L6Emvo2SCohBjKzVbPYs2fa9rk13RUDmVelV97UiHfKKnYCayVs7xAYCrB9lDJ5XYkWb/dRxsl+ug1kwHYHvLY4GULHnVzeTweu2jti235Byga/NdxzYafiHNjhQgemTbY8Dpr9bsj3gF1syOyAqsKxsBWN4BWipJ+6t0f6RA64ps4h3wtluyA12A7G0h/Ze9jslxn6SCZBtZrOUiB2dmgBYfo7p6maVJVU0AbO9zJQZPkoGW0YMAFM6gKQnQCmTQZCs7U0DPTVNyBg1wHAKvTOQYscOySjcBMuQTQ8DYQP7fhjuB6iaJsgo8yAOSnQ+AvrtvBkEyY5UmKArovywyJBJxCAqPDXqkm3qZZNuRiUHv7OBQm9xMZKEMmux1BDJ9CF4YbFPjWHnJk030RKJ037z0f3yInnmZdqRmunN0hQerL5tUYs6np4OqwrEqFKCdlEwYaNxHI1H/fXS0lxw8mfpf1URVEp460ibZHhcoX1ZhR2oKtAqwih5ZYM/tsMdwF3a91ZKet2iM7pvXvsayTCqIHq/Mj3S/rkAPshI70uRdcgvI90fSNtJH/6Nl1CokA2U1RMD5+eM5ODMDNLaRyrxJVY5z7aUUg5INYkkFZVsKMVayHQK/FO5wp1zjW9WY+dxcDJ4kFrKyUZ686une6zisItBlbJzHwzXcldEhGSitIpbUbx0B+Rm0Ib8MmoJMJOBvEEsqgbJqefL8JmLKLjkEijgEktexciplB3URPX6TvFIpR/9l2hHnWfKamjfYRn0qMgZEMfgFFkrsCCup9HLkFNiRkkpvfRxQ4VhNK0z0SM+gwd8hLquVc8SEW54X0aOEMGN2xMsfkbyOVU2UQS5EmMkmOr2Il6QzJVO2jQT89b9iimQd8cn8yM76A6QDqbh3UmG4U+49S/vHBQJdHXZEVSYS8PHrnHWURaoyeZO6xJEppMyNjCmz58MluXwBcB5kr41FhUF0GjzH+rJ/n4wT+1clMWBKP8hegYXD6kQkql2Nz4M8qCCILzTJa7hL7joCtLl4GUQVm2ZVEzDen8/Yxkfp97IzuoD3fRvukHtdgMPGeegjW1sl+u9hR2Qz35EIBUXaiJ6ZwGgPncPkxlgfHXeh047IJCcAf4dgUBFhBvgEFirsSGNhx0pm71RVM+lDro6MDzqZSBWZH5/AQvY6VjX5O8OAZMK4mD8iUVY05tgRnx40QLL+z6A1y20nGe2hnzIJ3KL+iGS/rtrHr1NFmAH+gYVM/S+poKmRnnakjQJ82f74UEd+UkFJJrKYHZF4XQDdFy874oEzO0CTcZ4EQ1Uh5ltyuhjwr7FNlxRIVIq0kcpRihFmECWuY2k1TfzzdIgVKLufY6Uiy1pomMBwp6IH2UMfR7rpTLYySX0qQGadcgMLFcxfxRQqG/DLoMnMxAD+DmrajqhwCDRk0AB/omeoXW5pBpDZ8HM3F/asS7VZBTLxKpxvX3vM7IjE+1aoxHe4U64+AkDVVG87MtxJOiLVjrB9NOe+pSeYasr8yK4MAei+eDlWKvwRVi6fq5O27ZR4ybYj0/33tbJaudnqykYAdj5hnCbMZPp1zGZ5EZ2SCTPAv6JHSbUG60HOkaeiogEoYEe6aPCLrBYggK4tMUbEjhsq/TqvrK4KwtiPePfAmRmgqWC+q32Y71SKDLCKwMJvSELlVCBaIk8W2zhyHy4VjpVl0ef5OcQqHKuJIeoVcUPFg1zZQD9ZYMuQStK1yXasCgUWlVPlpt39MsgqHFTLcvTfp3dKtkGsaiR2NpXK/n06E68gQMtdx/go9aZJtyN+DkGH/NIMv3KhtB3RxNiqeNaqm0nXcxlbFcw3W8fRHDuSTNDvZOuIrx3pUWBHfJzGdBmU5MxP5VSfbHWH3J5ggOz/cJcHq6/CH/EhzMYHgfiI3HUE/PvrhtoVOKhsH80ljJ11lPlsl1Q4rQI+gYXsZ61mGt2z3L1GRUUPW6dcf2S016lokE0Y+1SiMH9EJtJ2JJcwVjC0JuaQVJ5BvORMJGAyaEIoqyU2MVchxvoopcqMiiwUyqBJZ/58HKsRBRsL+zztD3KOQzDUAZq8KfHayuqohy5vY+kBYKvJoBVyrKTK8gksVDgfAD1PuQ4qoIixaqRnOHdK03AXAEveuUyAf0lNOlst2474NFOrWEedGTQmz8tGjvaoscepeL6ODLU7fbMS5fkRPex50OUQKLHHzI7k6L8Kwgyg75+7joCaDFpVIw0DmcghA0e6ocyO5K6jiqw/+zyvdVThj6Sz47lEj2Z/ZLRXkR1J5O9tQ6xvVmK/m1+gm26TURGg6fZHcv06BSW3AD27ecR7SlEmfqo3YeyBMzRA66LmeJnlO+nMT86DzDbsCskPcuUUID6cX6uvgvnzdayYQdTFtPSqcwi8gs+KermZyEiEHuRc46sigwA4zocHYzvSrWZjAfIN4qiiwKKyId8gJuP0O1UOQS5DNtJN91PWKGKAjn7wGu7C1lG2HalocBhTj8yPCmcY8Lcj0kvzPOxIKgmM9qlzCHLlDXc6w1gk6kisjHQkV/9VBbqspMbLjsgsJwMK2BFF+yjTfzeScXreVBA9gPdeU9kgX0fK6/LJFxVtCQDtlV5jxlVUNPjZEZXBZ+49S0zQlEzpfh3LjueSgQpaIMrrqcRXF2HmV5qn1Y4o0n8vwphlInURxh44QwM0BSVegDNq3M8gKthYgPybNKqAjfAtcVTpWOUaxHEq8ZK+QTusZW49+2ivXEaTwSuwGFEY6CYn8uuwRxQMEvDrnRpRGFh4btC2mtIkwMexkvysAd6MrTI7MoV0JD6SI09BEF9ZhOhRETTl3rPRPgC2Ggc1/flueQpYdsCxI36OlYJnOzEKTAxn/16F/qf3tVxnp8/5u2Sb7LmOquxxAf1XYkea9RJm8ZH8IVEqAoui/ojka/O0I71qZKXtSK5fp8CORCLe+6iKoxEAZ0iOH2GsIGAC8tdxpIf670slTnkGnHXMJcwUzIMACvdF5uDMDNCGFSgEkFFAN5Qxf1OyPz8tr4+YEZkoqQBKqrwDCysif9NkDqr7QVbloLK18jKIsu8Z4GS1NJZ4Ad6ZH9n6HyulcdxegW6khMZ1y4QXY6UqGKz0WcdhBT2RgE8mXlWg62dHFBAUFfUALO8eNNlN4oBPoOs8e7LXsbwA0SPbHgNO5ifXIVAdWGiwIyUVQLTUI9DtcQZIlcqVV5AwU5CJAbxJLNkkJ0DXNtafI0tBewfgbUdSKZLPgg5Z8M2gddGzJrPqBfAetqUq0C0v4NepIIy92iBUVkalEtk20rbV2BFmc73scWWD/ORMpUcmXll7R4GjH3JwZgZoqpjv8vp8g6iSsQKyNxfbmWwk2yAC3unpdPmOZDWodGr13ZkfVanp9MbSl/17VRk0r5KadGAhmx1mDoFrI0sm1JR4AaT/Xo6VEoM4lZ4196hl9uzJ1n8/5lvFxgI4ZbB9ObIUZtCAbJ2Mj9EELNn6GIn6Z35UBbojXdm1+qrssR/zPdanKBPvRfQoqmjwtCNxet5ky7IsZx/ty/69sooGZx3dZGDajsgmHn0yPyNd8ku8ACpxzAvQNNqR8QEAtnyCIlZGA4C8SnxlBxWAt44oC3Tr6aeuAM2rB1Ml8Q5k+5Fj/VQGKJ3oKadp4F7+uDK/LmcdldmRyZ5BUzENECCD6OdYSWejPUpBJoaJoVDB2FZ5OAQjPWqyTMxIuR+utEGUzVg5fYg6MggA9Q7mrqOywMLDIRjrg5ISL4C+f65jpUxHnM90y2P/L7O3FHAxVh6MrZJA18OxUpVB8yoFSa9jvVxZQKYv0g1V2eqKKVSrP+EielTZEV+ip09hqXSuHXFkq9J/916jqsQLcPqZ+rJ/p5IwS8WzyUD27KlaR88SR0X+iFcGzYrQwCqZ8PJHmD4qIYwbfDKRiuxxcoJIK7cs4MyuaAB87MgAUFajgHj3GEqiKtAFfPxxVZVRDR6EcV/me0iV5ZOJ98CZG6CpCizGB/IZWysi39nxepCVGkQPx2p8QL7yAZnP9AzQJD/IkShtVroYW1arnMvYxiqIGZSJdPlmX+Z3Sg1ivbeDqqoHB8hm/9KOVb1cWV5jdG3bcQgUXFu5lz72UZmxzClegLcdSZdl18uVBXhPexsfAMolnqXFwD5zbCDzO1X6n7ZZfdm/V5r5yc3WDVAZoOxS0fQ6uuyxqr5BwDuDNqKI+fYKPlUFaKXVNOnZ7VilUs7RCJoCtFGHMJPtfHvakT7ne9TLlQV4TxZVRYZ4+SOqKnrK6wBY2ftoMu7032vKxI8PyA/gAVfZodseK1pHJs+vxFE2PAljRf5ImujxmJqagzMvQLNtUhBVgYWdyh6jO9JDN0gZG+FmNfuc71EvVxbgTDLyYVpkgx18Oq7pQa7IYVpSSad2XpFBTI5nD2UY61ekj/X0c9zDQVUSfNZ7GERVJQXOZ7o3F1WDBID84DM+QqUZqu7bWH9+D6aSjaWAY6WKsc1l/sYG5B52zOBJ9CiyI5EoXUOeYzWkjjAb7ycZDKrsiKc9Vkj0eE0EVDlsBci2I0xfZOukZVGw687WjQ+Qz6Biz2YBWm5pnop7VigTry2w6FdE9BQijGUP7og6mR9d9thZR3dSYUzROha0I4oSJp4ERb18Wb6EsSXfjsRKidAf7y/60jMvQIuPkmOlIrDwY1pUKF9JpdNMrSmDVjElX9mVMd8FHCtVpVBZ66iodhjwdwiUOPoeGQTmHChxCOq9S3x1M99KnP1cx8r5f1V2JJfoUR7oepSvKRluUX+K7Ug3ZTFKKuXLyw0sVDpWXvdtvF+d7gPZ66jS+fbqwVSZiQSys5Eq7UhZbbaDmrbHivQ/lcgmA1UTPV6EsQp/JHcdAYVET73z+Tn+SEklDbWRjTw7wioaFOm/ncx29pUlMDzsiMpryy1xZFUvqnxIIKcMvI+uWXZyBqDPHRso+rIzL0BjD7VSh6Av8ztVCmFZ+Y2JKjNoZdUO2+cuzdPIfI+zMkDJU7yA/FS4SqPhWZqqKECLltCaua9NZWCR63zbtjqCwpOx6qPmcdklXkC+Q8CMo5JSEB+CQgnRU0HN1LqY77KcQJdVNGizI47zIXtoDaDXjnhlx1XZkZJKOmx7zEP/leyj9fmT3pT1KfoQZsrsSI0P0aOR6FSRQStEGCvxR2ry7cj4oD6iRxVhAOQTxipLzpkfMO4iA1URPWUeAVpa/1VVovRl/h0fpeolnS0XKuwx4E1QeOAMDNBUGsR6+pnFNParebAAj8xPn/N7BfLKagDY2WfhKGe+c5hGFUEFUMAgqnBQPQyiyge5vC6HsWWBhYrMTz3VyrNG2fgINVcrZaxyMhbKDGKN98aiUv/d7N9YnxpHB9DvEEwMZkpqEmM0pEGXYzU+RGSTCuQOt1DtoAJ6ArR0aZ5H5kfFPlpRT7af6cj4ALH8KvuLdKwjkM98K7XHfoFFvXxZhQhjVXbEHaBNDDuVURqJHhWyAL3+CDsPLGtIjiK/rqQCiMR8/BEFNjmXMFY1aAvwLt9UuWdP2gxamvnW9CBPDMk/FI+hsiG7NENpBo05BM6DnHCmGqlgPjyZFo2OlY4AbUJXgFabQxgodAhyp2+m9VEFq++cq+YmDFSSIXkOKiuD0rCOgGL9z3UI+kC18yqebWe94s59U2qP6x0Zmuyxzgwa04UsokeRYwXQ/fEqlVaxluX1AOzMM6ZlHXOmOCplvk9hBm1iiLKDKpA7lGSsj87AVFFOXFZL/kdigv6tuzJqfEgtYazNjjjrpcMfsSxvOxItlT8gDcjoIyN6tBDvuuxIzWTNoOl4kDU5VqXV2SOkVTUlAi6GwJGnch1ZE2RuaZ4qg8gcK1a+qTKDUKr7QfZyrCz5B0cDLoe4j36y4EnFfYtEKEjL2lj61DFWk9mxyr22sT76Dipq53M3srQdURgM5mZ+lDlW9T49aPXyZel2CPIIigEqjVVRcp4+C6rPkaUwWx0rpynLuUSPrtIknf6IbZMdUeWPlFVnr+NoH91LFeXEuUSnbuJ9fFDdOpbXa6zoySEoWKmoquygVyZepV/nPmZFpR1hRFVW33ifOsI416/zgdYAzbKshZZl/ciyrHtdv7vdsqwfWJb1G8uybir6ITpKCtzZGJWOVWlVzsbSp96xYsquspEayC/NU838JSeoRpnJAtSww7lOo21rLnF0jK+KTTPXsUqvo4JgkH2u1kykqwdTZSZSt2OVa0dU9lfkBhYqHatoCQXxeY6VQocgq8TRkatCJ3MdAttWd+wJ4BxF4mFHVMCP6FFhRyyL9pU8okcT863UjtQ7Mhw9jI+Qw6oqg+zpj9SrkZW7j6YDXQXySsppsJAuO1JaBUy4BruoJANz7QgrFdWViZ9QmInM3UfTdkSB/pdUENGjrXVFcg+aZVk/tiyrw7KsHTm/v8WyrL2WZR2wLOsfCn2GbduHbNv+YM7v/mTb9ocBfATAW4t+EZ3MdyqlwbFyj2tXWeLix3wrZFryar5VGUTn/rBpV2xNVTgEuaVJ8VGnB0dTiaNqBxUAxhzGT6VBBPwZWyWyaug+scNKlfag1dNP5qAqd6wqc3pLFepIXiaeBTEKiR53Jl5liWNZDTWhsx5MlQRFrj2Oj9DEvknBfOdMn1VJmAHOACydjtVghuhRPQ0W8HBQVRFm1fkZBJWBLpBP9Ci1I5oqGkqrgMQoHffDZMXKaQS/bORm0MYVEmaAN2GskngH9BDGlpWv/0oJihzCzAc8qZqfArjF/QvLsqIAvgPgNQBWAHi7ZVkrLMs627KsB3P+ay7y+f/sfFZhqGSs2Fk4acZKsYNamuOgqnQ+cptJVQa6gGMQ3Q+y4kAXyKylyo2spAqA5dpYFLLsgEeJo8IgXuc6ss/Nmj6lsHG7LMdpTPfgKDwHkOkGu0alpdJuOzKs7p7lMt8qM2hAvmOl0o6wXhtm9+MjACxyrmTD10HVaEdUBWhsdHm6okGDHdGViS+rccqunGtKl5yrqNZwnqncUlGlmR+XHYmPKCynzCWMNVT06CI603ZkJPNTmT1mhBkrFVXsj+T5dYozkUBmHcdVV/S4ArTEBMlVOSQkPpwhA30QeA6tbdvPWZY1P+fXFwE4YNv2IQCwLOvXAN5g2/ZXALwuyOdalmUB+CqAR2zb3uzx9zsB3AkAc+fOVR9YuAM05Y6Vs7HYNkXw8RE1DbnAqWGsss74UfkgO2vGNpf4MJU0qGCsIpHsB1mHQdTFfKfXkWUiFTPf7nW0bbWBRXra2yBQM43WtKRKzSjuaIyuLc18s3VUuJHFcxwrVRtLHtGjmfkeH1SbiQRI/8vr6GdplZpy4lg5jb7PsyMqM2i6HNQcx0pn5ocd+6CyxAtwAtzqDKmkREdKaQADe7Z1lJy7CbOJETUj/YH8TLzODFq6T0vDPlpWQ/pfolD3AVfriuJ1dPvHAOl/9XQ1snIDNB0VPUz/JxT7/l5TIz0QttlpFoDjrn+3OL/zhGVZUy3L+h6A8yzL+kfn1x8HcAOAN1uW9ZHc99i2fZdt2xfYtn1BU1OTWscKoIcr4TB/Kll2gBTQTgKJcfp3fDTzcMuG35AQHYEuoCc76C5xVLWJAdl9CMozkWza1XhG3qRyrBwZyTg9CyoODgVcBAUjXxQ6cUA2G522IyozCO4M2ohCO5LLfGvQf5ZBSCbINqsulXYTParumWVlOwQ6MvG5pXmq7llpTgZBp2OVGANga8ggu/RfpR0pqfDIRGrKxMeH1RHG5br9kRpXye0wAFthJp7to65KFFX2mAXxTP/T66hr2JBKf8TxBfIIYw1ED3vmlOt/4QBNUZTjDdu2u0G9Zu7f/Q+A/wn8ISpLM4Acg8icD8WBxcQwNbJODAO1M9XIStcq55QmKXMIXMqedHp/VBlf9hC5G2WVB2iu3hFAXWCR7mcaAKqbSO6UeWpkpUuTdAVoVUDf0WyZyjLIOSWOYzrtCJuGqdAhSIxRABONOY6VJgdVZck5QDYynrNBKy9NcjlWqvQRyJ6+OaGYDCyvdUrzhjIEk+p11OlYjTg8sWrHKs+O9Cu2I5X5JV5Kn7Vh6r2PRBQTxh6l0lZUnY6UVALDnY5M1aWiufqv2B8prfYgzBRmfsYHMzqi8rgCL8I4UqJmpD+QTfTotiM+CJtBawUwx/Xv2c7v1EE5Y+VhEJWX1DClUFjiGCujsr9ch0DlJh3PGcigLNDNMYgqmT/A50FW0KcCeEy70lDzPXEKMmjpdVQV6OYytgozCEC2HdFR4gi4AguNGbSJIdpIVZQTA846apjOCng4Vooz8e5jVlTrf/q+MaZdYw/OxDBNSFPRywdkryOzJ7qYb5XrCNB1pPVRQyYeyK5E0dVywQgDFaWiAO3Pab9OQ2UU4NrbFK4j4JRRujPIUGhHqgHYmb1G5XEFua0rOgJdty8OaPBH1AZoGwAssSxrgWVZpQDeBuD+kJ+ZB8uybrMs667+/n49zHcu86dtuIVCxwpwmFNXYGFFaZS1CpRU5BtEXaVJOjNoCcVMS25WS2VgEYlSEO8OLKJl6nQkK9DVlEFzj3XWlUFTTlDkBNbxUXXrGC2hMw7ZOibG1JETgONYsXXUMGwFyC5xVE70sACNOVaqCDrHjiRG1ffgsEDMHaCVVqtzvj0JM9WBrjtAU0306Cpx1BhYlFRS0M4yCCoHaQCOPXaeMeXkdC5hprC9A8jx65xnLqZI/9Pky5hTGTWqvjIq146ogjsTqdyOSM6gWZb1KwDrACyzLKvFsqwP2radAPAxAI8B2A3gt7Zt7xT8yr6wbfsB27bvrKur0/AgV+Y7BMqYFi+HQGVgkeMQqFI+gAxEKk5lV6qZ77zSJB3MNzOIjtFXxQ4zQxsfo7G98WENgYUrQFO6jq4hOUymKoIiPdzC5cgptyMah60AZEfYWqpmbN12RJXuA96Brip77GlHNBFmCcWZePa58THnaJCEukqUSCRf/5XbEffkTajT/1wyRGUGAcghOnURFEPkfKfi6tbRsvTakVhF/mwBbSWOiu1IaXWGMIgrzqCxe5QY1TNVFHDZkUHFxLtXBk0x8c4ynj7gmeL4dp/fPwzg4eDfLCQSYxodVE3Mt1aHwJX5URmglbgYW10PsjvQVTVZCMjuHVGdCi/xMIhKWSTX2XzKGSvXkBzVjBVbx6QzbCUxpq6WHSDDPtRG/698PLCrVDo+ChqSoNiOMOYvMarHsbJtDfY4t1R6BKhqUiMLoGdr4IQjy9F/Vcx3TKM9BnIqUVSXJtXQdSUT6u2Iex0BJ1utOvOjq8SX7aND6gkzgO5b2h85BUSP8iEhmvS/rBoY6XZkqt5HXYQxGzikyo5ES4BITG8vn66Wi3SgWzhAC1viqB9aGVtdBnHYxVhpzPyocgaA7LNwlDc3e/ROqTaI7hIvQINDMJ6Z5Ki0pEwn812TkaOasYo6wRhjGHXov3bHati1jirvm6vKQHUm3s00KrfHrgwC+6mLMNNFUMTHMoSgyixrSVX2PqraHgN67Egsx47oIHp0lZy77ciEYuIRIJ1khFl8VPG+VkH3KpXS4I/kHvszorgyKicTH4mp0xF3Bk318B/AsSO6/LqazLAt5XZksgZoypmW3KZ0S+2QBMAxiKy+XOGmGSvLOPkJ1QaRlQuNqm9ujpbknBejqTTJXZqnrOabOVajmYdZOUGhi7FyM7aKHdRojDauhCbHyp2JHB8k/VB2NIhuO1Kek4nUZUcUl3jl9TxoKJXO7Z1SXSqdGKVDWFXKAhw74u4JVpyJB/TYkdzSpIQGgsId6Kosp3TbER1ET6zc5Y9oIowTY/pKpVnJua5WAUAD8ejhj6gkekorXbMFFPfyuc+U00mYFcAZEaBlDQlRzljl1HyrbG52j4dXXSoHOAbRnUFQ3NwPOA/yeEa+MnmuB1l1L1+sgkrzUglaRyuikLFybSw61tHdz6EtQBtWz1gBTrkcc6zG9Qa6Sh0rV6m0jnWMlmU7VqpZdoDsiOrRx7nj4VUz3yUue8xKRSOKtmR35kcH0VOaQ3SqDnQBPXYkWgrA0kf05BLG2ggzDf5ItDQn0FVcKs3kqL42d+9UYpyOt1BNmKXP0h3Rs45uvy5aqk5eVgZZ0z46PqR+r5lMGbSsISHKHYJKZ7hFnBwepTXYbgeVKYTKwCI3g6Z4HZmcdGChKWOhOrCIOQYpMe7oY6Xa8cAA6UdSwzrmnt+ldPqUa3CHasYKcPRfl2NVoc+xcjO27BlQqv+udYyPqndQmZykk/lR5RCw4RZscI3KA2YBCnST404mXkPpPpBD9Ch2rHT2jgCOHVHsfFsW3ae40/OWSmgolXYTZgr7BsvcmXgNPWhZgYUuwngkY0dU2S1W0ZNV0aBwH42WZa5JF2GW0ET05E4x1UFQxEfU25HJFKBlITGu3rECHAMcz/SuqEBWzbfm0qS44ub+rHVkjpXqAG2IyndSCfWOFUDXFR9RPyQByHasVK5jbs+D0gll7syPYsYKyDgEqaTT76lyI6siciKVcmyWQllZGQTWX6Q6E+9yCJTqv6vnQQfRw/Q/MQbAVqyPOXZE9T0DNDtWmgmz5ETGjqi0/yXlGXIOUEw8uvs9FZOqnoGu6paLnAyyKrjHwyfGAVhU8q5SXnxET79nzJWJjI+o3Wu8Mmiq9Z/5xuOKSxyz7LHiknPLcipRJluAFh/VN9wiMa6WZYxE6Vp0NDcD2Rk01cY+/SCP6GNsswyipgxafExxs71XD5rqQNfF2KreWABy9ic0BBbsTC0d6+ieYpqcUFcCC/j04CjWf3cGTUcmXhvR42R+VB/SDmT0L52J17ivAZp7WRVnEIBMoAtoKJV29+Ao1n823CI5ob6cDNDoj+S0XCgtzXMRPUmnvF1V1QuQqejRYkfKiZROpfQObdJJ9KRSTkWbwnWMuvwRFuiqKjkHsjPIPjgjArR0D1pfHwBbsWPlSnOqNoiAXofAHbHrGGsLZPc8KHWsqnMykYrXESBDr6vmW5tBdJXmJSbUPmtRD+ZbKfvHmG9NPZFAJrBQuY6xMjp0XmcmPl0qraGXD8gE1lZE3bAVIDPpdkID8x3NYWxV6z7gTCnTVHLOnHzV2cG0HYnTOloRtfs2IzpPBdGjkuRka5ZyH1egmjBmmXjVxLvLHicUryOTNzGkp+Q8rf/j6p81T6JHQ+tKUsOezUhUZo9V+nVAhjAugDMiQMv0oDn117oUUEeAFi3VyPy5M2gaevmAbOZbRypcVw8OQIZedaAbcZwNtrG45auAe6yt6syPV6moUsbKISjSwaCOUukRum8q7YhlZZ5tXXYkPcVRdQYtZ9iQSpIHcGXiddgRxtiOachEugkzTRm0iRHqr0vF1ep/2rEad9ZRYU8wkCGx4poyCIBL/1VW9ESo7C85oZHocQ1tUjpVOqeXW7UdKXXsiI5R9LmZeC0l5zozaMN6fMhcwljlHgpk++M+OCMCtDTYwXg6m9KVB2glxPxpCSwcg2jbGmq+XU25bGNRumk6ARo7QFQp0+JmrHQ8yBU5BlFDoGvb6vU/j7HSvY4q+zkmsR1xZ+LjGqbYAZmKBtXMt1aihzk74+oDtGgJZVndpXnKp685fdxMviq4HauJYbXrCGT2UV0VDYCj/4oDXQCIlGRXNCjvnWJDcnS2riiuaACQPgdQx17jDtBU76OnolR6YsRlR1T6I4wwjqvPRAKZUukCOMMCtBT91GUQdTzI6QyapuZ+O5UZD69liuOY46AqXseYM8komaB/q3QI3Bk0nalwLUMSKgA4G6adVF8qBOjZWJi8rCl2GgKLiWGHsdWQiU/FNTWll2UcK9WlSVmMreJySiATWGgleibUE2aAk/nR3DuievKm+7NZiaOWAG1cb4DGyry0VPTosiPlGf9AdeuK+xxALesYo3VM67+OSpRx9f6I+5gJXT3x7ioslYNd8jLxqu3IpMug6QjQdDPfzLHSVPMNOJuL6gxazpAQ1cx3pMRplHWYFqUPsiuDptpBBTQ7BE7GYKyffmphvjUxViUV+h2r9DRYhesIuIgeDYFFbi+flgPvR/QQPZEY2REdmZ8sgkIxYQY4901X70glABsYH6B/KyV63KVJI+qJntxhQ1r1X2Mm3oqo751l5Bygt3dKNfEeKckc1wToI4xVDxuyrEyJr65e7vhwRpYWoschzJTbEVe/vw/OsACNlTjqKinQwbSU5DAtKjcyZ90mhskJ0THWmfU8qHas8hgrnZkfHYGFu5dPg/6nAzQdBlEjY6VtiiMbNqTJIUjbkTgFGUp7+UpBzveg828dPWhjeogeto4pJxMf0RWg6SQoNDhW7LOZjuggzLRl4p1SaS09aLmleTr03zW0RmVbAjv2RzdhprqXD9BrR3KHhOggjNNDm6Jqhzaxqi8dZdnpMfu6MvGTJIPGpjgODTpsnFLGKqfmW7lBdJjvlMbSvLE+598K19GyyFCwQHcyMVZZwy00Md9Z0zA1BE2sxEUXY6WD+c7NRGphbIf19o6kEmqdYSBjN9J2RGdPsG47ojKwcJUmqWa+AZdjpSGDxnSQMcRaSxx1lUprHhKiM4OW0pD1j5WR882CeF3nAGrxR3Iz8YqDGCBDGmghejSVnEei9JMNbVLq17l74nX4I5OkB41NcayuclhpLQZxRA/TEmHMtxOgWVF1sphRGu2jnzoeZK0ZhIQm5tvF2KqeYgdkMmg6mG/mWE3oMIiuc0cSiodNAK7mfl29fNDfO5JKqNV9wBWgOVlW1cMtIrGM/mvJILhLpTX2sqpmvktcwy1UD23SGqDlOlY69rVTNSREQ098yrEjysuyGWHs2BFdw4Z0zhbQYkdOgT/CMmg6/DpAL9GjqzJqsmTQ0tDRg8YULj6mySC6mG8ron7MOKAngwaQUUxoYv7YeGCdzDd7kFWvYzqDNq6+pCCq0bFyj3XW4RDonL6WLpeY0Mx8JzKsoyrkEj3K9b9C33hsZo+1Th/U0NwPZNZRC/PN7AjLxGuqaNBC9ORk0JQPZYCT1R1XbyMjLv3XlYlP2xHFRI8Vcfw6XXZEc0XPmFNhpsMea8ug5RLGmjLxOtpyWEVDAZxZARo0BGhMIeykHoPoZlomE/MNZE8f1MG0pHT1oGnunUpn0MZOgWOlOrAo01iaV5bTO6KhxCuV0MvYahlIkkP0aGFsGfOtY9iQu3dEQ2nSxDDJ1DHcQleJVx7zrak0SQvRw3rQNAzkYRU1yQSUH3gPuIiepAZ/JNeOKG65SE9o1bCO6aFlGu1Ieh11DcnRVCoKaCpxdLVcpBJqiXDAsceTKoOmYUiI27HSYhBLnZKapB4HFdDHfLNUuI7ekWgpZVjT41g1MFbjg6DxwKoZqzJ9QxIiOY6Vap1MZ5CTast7AdLHVCJzeKhKxjZN9Dg6qTxocmfQNNkRbZl4V1O6FuY7oWc8NnuW0yVeOjLxujNoGjLxlpXdg6ncjuT28qn0R5xrSfcf6ySMVWfic3tZNU0x1TpmX8cUR+da0q0rGuwIyyBrsyM6M2jj+nq52XPtgzMsQHMyaCoVMB2gJYlp0eJYMeZbc3O/6geZ9dfpKDvJcwhUMlbOtUxoKN8BkHXA8mQyiECmDltnaZ6Ongd2LemGe42l0roz8ap1kvXX6SDMIrHsISE6iB5dgW6WYzWJmG/A1YOpg+gspwqbNNGjwR9J72s6CGNNPWh5PfEa9jZdFQ3pTLxGOzKuqcRR92wBQFOAxjLxuojOyRqg6WCsWAZNi0HUWOIFAKO9zr8VM1aRKG1kWkq8cjM/GlLhTJYuxlZLRldjzTf7fJ2OFaDHIT4lDuqEpkBXM2NrMTui8biC9FRdHceeMB1RXVLjcqx0nCcH6LHHQHYmXmfvlBVR+2xrLzl3ZX60ZeI1ET2RKJBKaTw+KZEZ/qYjg8YIY12BhU7CWMfQsqxMvIaKnskSoLEx+6Ojzk1SPR7eitImZic1OqgaetDypiZpcKxSST0GMV2apyGrlR4kw5wP1Q/yqcigaegdARz911hSAOjR/9x11FEqzcY66xi2ArjWUQPRk0rqG7NvJ10ljioz8ZqJnlOaQZtEmXjWcznaS2uqdRqmLqJHY8uFrgxymjDWpP/pDJqlVifTZ84yO6LYrU8PydHZg6ZJ/2NlLsJYA/FeBGdEgMbG7FeUOcqgw0lNO1Y6GCvNzF+aaVGsgMyx0poK1/AgR2IArIzzodyxcjZNXcc+ABoZW50OgYv5jpaqnZiq20HNKnHU5FixEi/lk+XcdkTDOgKaMvGM6NHEfLMgXkcPms5psOzzdU8xHevTE1QAmQyCFqKHEcaTiDADHMLYKXHUpY9ahjYxosfREdX6b0Uzh0dPtpaLaImL6NGk/wVwRgRoGdjqx4wDToCm2UHV0oPGxsM7aVUdARpjo3WM2Qf0OFaW5QzuYAZR8WOk0yDqdqxipbRhphLq19FdUqPDGQD0bSw6D6qO5mSQVTO2rMRR13hsQO/BqBO6HKuIPsJMZ08wkCEobB1ED8ug9ekL0LTZkZj+HrS0/qv261wVPcr3UVcmXtc0TF2EcSRKA/smG/EOaG45mmwBmp1S/2AB2Rk0rcyfJoVIP8gaHKtUUlNgodGxAshRjGvaWNKOlaYhCYCemm9Ar0FkpUljfRrWMQLAOgW9fJPQjqQzaJrG7AN6pphaVmayIqDRsdJR4qWxuZ99vvbSvH49gy0A1xRHXYSxTjuiqVWAnblpp/SW+ConJ3IDXdVEj6XPr9Peg1nqIno0ZeIL4AwL0Gz1yg7QjdHmWLmm/ehiWiY0Ola6hoTkOVaq17JUn2NlRQDYNCJYuUHU7ViV6WO+2bWMD6q/LsAhenSVJpXoK6lJM7aO0zhZM2iRmNr+IiCH6FG9jhF9w1Z0HjDLPj89Zl/1Ojo6kRjTVxkyodNBTWgqFc0lehQ/a1ZUb6kcQD6C8tkCsexrU+6PsIqeU5GJ16D/6Qoz1bFGcX0/swI0XdDqWJ1CxkrHg6xrSEjUtZFZUQ3lcuUamT9W5jI6CQ2ixtI85rjpmNAE5GTiJ2Fzv84MWkI3863BsQI0Ez3WKSiV1p2J16D/zLGyUxp0P3fYkC57rGNoWU7vlPK1jOgb2uQmOlXrPuC0XGjyR9JEzySb4giQTurMRBbBGRigKWZZAM2OlfP5iVE9dfqA5tIkh43TmUHTYRCjpRoZK0fn4yP6xuynSwo0OPuJcT1Bk+V2rNSKApBjR3SNh9c4HltXD5rWnmBXX5gWO1Kmb0gIY751nScHaByzr7HEN21HbCg3JOzZmpTDhnIzaBoIY22ZSI0ZNCDbH9ESoGnKoOk8B43J09W6MikzaKrT4IBex8odWOjYWLJ6HjRsLtpLCkY0Md86GSuWQRvToI+nIoOmafpaVgZNg+mLRPUc+8A+X7djldBV4qiR+Xaz+so3aND1aB8SMkntCDsaR1cm3tZgR9ixP+l9VEdFT5wqepSXSrNnTZMdyZrOrVH/dbTlxMr1DglJaTyuAHAFTRrK93VWNBTBGRGgsXPQxsfHoSeDFtXI2DqfP6EpsIiWUrYO0FOalx4PrLF3SodBdKfCdTioAJWKKr9nOZPltPSgaRprmy5NSkKPHdHoELDx2JNxrHMkeoocK81Ej5YhISnH+dY1bEVTaVKsTN++xmxHKnkKMvEaiJ6UJsKMPWvszEEtdkRjoAtQxk53qbSuDJqdVH9tWSXnMfWtK1H3OpoMWiCwc9DKykr1Z9C0nbszomFjQYZFZf+vVFZU4zq6apW1ZdA0jgcGnD5FxTqifRomK03SwXy7HStNRI/OYUMAsZo61tGKkD4CmuyILsfKdQ6gttIkVuKoaUiIrUH/3X2zgB6iU5uD6iqV1kb0aOqJzzquQ7H+pysaToEd0Xmeoo6BVO5hQzpKRZNx+n9dQXx8RNM6lugjHidLBi0bmgzihGamRRdja0UyD5eWkoJTsY46HmTNjBVAzKYOlh3QV5qaZv7syVWaBOTov85MvIYMshVxOVYanH1dB/Vm9bJqKk2a0OVYuRziSUf0lOhnvu2UPsJY5zRM1qeooycS0Begaa3oOQUljlrH7Mcz/68S2nuCdWbQiuPMC9C0ZdA0O1a6eh4iUdfDpWNIiCNL69QkTb0j2hgrVuIY13DPcg+G1FDimDaIqs0Ry6DpYr41jnV267+2AE0j0ZPQpY+nYIojW0ddDrEWO+Jivq2IhoBQ8zRMQGMGLaLRHmvcR937mvvfqhCJUjk9MPl64llpKqCn5SIdVOvKoGkctqK7VLoAzrwATZdjlQ4sJtmDzOqHAT2pcAblZ1zpfpDLANj0/7qGhMDWW1KgxbHSODUpnUHTMB4bcAILpwFe57QrLZn4qMbSJNfn6wp0J4b1ZOLdtkpbSY2twbHSXeJ1Cqav6cygTcZMPNN31hOs4xw0Bm2EmabKKPe90nXsD6CR6NFkj7PG7GtquSiAMy9A09U7wqCLaUlOaOpB0/lwuT5fubF3H1egI0BzXY+ug1F1yGJrl9IwSABwAhcW6Ooaj62rB811PboGdyTG9PWypokeDcw3g/KjSNyl0joqGtx2RKNjpe3sRl0ZhDLXAbOqA13np44x+4CjI46N1NbLqoHo1LmvAZrtsYvo1FIZpdGOuO+VLsI4pWGqKJAZtuWWfQpxZgVotiY5WQ+yJsYK0NeD5vX/SmTpzKCVeP+/KmQxVpqYRmByZStyZehivrWN2XfbEU09mIC+THz6/ydTJp4RZuN61lEn863T9rPrslP6HKtc2cpwCjJoDLoqenLlqgJ7tnWQSloJCraOtiZ/ROO1ZZH8mnpZAX2ZeAYzJIQXOhkrB7oYq1y5qpCV1dLIfCsPYtyOziR2rHQYDbZ+k82x0t474s78aDrwHtBvR3Q5+7n/r1rWpHOsNAbVfw6OlbZSaZ0VPW7CWFMvq/unDlmAeh9BN2F2qjJoOm2/tooeB6rXcVL2oOkucdR1MCpwCphvnRk0nQ6BDoPokjGZDCKQWT9dTbkMukpFT0WJo64etNz/VwWtm/QpysRPutIk9zpOMsdKK9Hjmgarg+g5Fb1TgCb9d65Nd6CrtaJH4zrm/v8ZL0szYXYqCOMCOPMCNO0ZNJ1My2TrQdPJfJ+ijSX3/1VAZ0kBkFk/3YyV1iEhk8yx0m5HdBI9GpnviG6iZ5KXOAL6pup6yVYC3ecpOtcTKVEvL4ug0Ej06NzXcv9fuSzdGbRJ1BOvnejR6UdOkgDNsqzbLMu6a2Ji4hQ0909m5ls1+6FxSMip7EGbTE25gCtA0zQeOFeuMlg+/68I6euxNGd+NE1xTP+/pkOPc/9fBXSv46kaEqJjFD2Todux0paJ13hQNaA+Cw9o7uVDRke0lDjqHDZkiB4p0F4qbTJo3LBt+wHbtu8sLS3F5OtB02wQtQ6cOEU9aFrGY7sNosYSL53DLbQYxFOQQcv9f1Vwr6Ny5lu3Y8XWT/N47ElH9OjMxLvukw6ih63fZCtN0j4khAW6mgkznT1oys/AhOaeeN1Ej07y5VQMW4Em/Xf7I6c+PDr134AXOg1iJKbB+dY9Ncn0jkiBznIJnVlPQLNjdYqmJum0I7qZb52ZeN3TMCddqfQkZb6B7NI81TglzLfmoWWqq3mAUzdsaNL1oGku8dUZNGmvwnKeMVPieLpDt0GcbAqByTskRHvviE7Gyn3PdDK2unvQNE5N0ppB0zy0RufIau3jsSdbBu0UDQmZbL2spyKDBkw+e3yqMvG6SxwnXQbtVJVKaxxaNtky8ZOlxDELGuzhKdtYdPegTaZpP6eyd2QyjdkHMus32RyCrM1kMjPfOuyIs37ax2NrnBo2me2Izl5u7Y6VzvOLdPag6bbHGntZtRAGOokezX7dpPZH/hx64r1x5gVoOjBpmT/o3aR1MlaWpfdBPmXnjmg0iGXV6mWdKsZqUjuok4z5/nMZj62T+dbqWE2yc9C0Z9Am6zpi8pZKay8VPVUljjrum7OWJVXqZek8B21SZtB0HjCro3fE7QRPunNHNE5xBKD1gOXJPCSErV/pZAvQdG8sjgzdpaKTrQdN65CQUu//V4U/h17WWLkGWZOZ6NE4JMRt83W2Ckw2O3IqD7yfbOeysmvTThibg6r5YGPyMd8llflyVeKUnTui0SGYdFOTTlFJQaluxkq1OTpVpUk6iJ5al1yN5ylONuY7EkVaNyZ1ieMkdqx02uPJVipdqpkwPlVTHJWfb2taLqQh7Y/osCMaM58mgyYInQbRspCZUqOz5nuSMVZuGdozaKof5FPU3F9Wo17WqTKIk21ISLk7QNOZQdOYQQD0lB2mm9I1T3HUeuC3xl5WHXYkNomHhOg8Ty6romeyZeJ1Th/UXSo9Sc9TBIBUnH5qIXqCHftj27YEYZMuQLNDGUTbtvGHzS34zO+2omd4wv+Fkhyro93DeOv31+HRHW2FX1hSkS1XEK8c7sFvNx7HD547hEQy5f0iSQZxaDyB/tE4UqkCiiqpd2QikaJr23AcHYNj/i9MZ9DCrWNL7wi+/thevHyo2/9FEhmr3ScHcP/WE+gfiXu/4FQ190tgrMYTSaRStr9Bk3gO2kQihfu3nsADW094v0ByadLOE/2479VW/2uTRPSsO9iNP21pxYsHugqso7xA99evHMON/7UWX3lkN5J+z7ckO9I7PIGvPbYH133jWbywv8tHljyiJ5my0TU0jomEj30EMs5VAQf1wW0n8MX7d+Kz927Fyf5R8S9UxI4kkim09o2ipXcEx3tGwjkGARzUFw904ZZvPYd3/2g9xuJJcVlAIDvywNYTeNcP1+Mrj+xGb6E9uRgCljgOjyfw5K52rDvYLb6WAYaE9I/GcddzB9E9NC4mw40AQ0I2He3F3/7m1cL2KAjcfT4F9rWOgTH81+N7seloj7gsIJAdSaZsPLu3A+OJJEYmEuKy2DpaEd+M3R+3tOCWbz2HP25pEZcD5Pg+3nbEtm384x+24x0/eBm/WH803H3j8Ef2tg0W9n+LIUAm/vGdbfj6Y3vlBDJxx+fzIXps28Z/PLoHKz//KP7xD9vCyQpQ4rjpaC+u/M9ncOlXnsLafZ3isgL4IBpCe9kQd6z+9+kD+K8n9gEARuNJfOMtq1Fe4nETJJQmdQ2N4z0/fgVHu0ew4UgPfvr+i3DV0ibvF5dUAPGRUM7Hs3s78L6fbEj/e2p1Kd54/uz8F0oYj712Xyc+9svNGBxLoDQWwT/fehbec+n8/BdKcKxs28aH7t6I55wHYfaUCvzhry5Dc61HX4OE6YNr93Xir+7ZhJGJJH694Rie+tQ1qKv0MLBuh1iQRRoci+M3G47jPx/bi4lECrPqK/CrD1+CuVMrs18o4YDZsXgSn79vB57d24mK0iim1Zbjy7evwpJpHkYv6RjvEIxVKmXjXx/chZ++dAQAcMd5s/DNt56b/0JJgcW9m1rwuT9sx4RDTJw9qw7zG3NLNOWUOL54oAuP7DiJX64/hpRNG95nb1me/0IJvSM7Wvvx9h+8nP73+y6bj8+/bgUikQLfP4S87zxzAF97bC8WNFbh+2sPYdm0msJ2JASDeqx7BG/63kvoGhrH1KoyfOjuDXjh769DY3WO3ZXQy/rC/i588YGdONQ5hJQNVJVGcdd7LsDlixvzXxyNAXH4ruNLB7rwsV9uSf97eDyJ77zzfKHvVYyN/rcHd+Fn646m/z17SgW+/+41WDmzLqSsfMdq98kBfOCnG2DbwJ62QXz47o34zjvPR225oD7ZThDs41itP9SNT/7mVVSWRrHuUDcOdw7jrvdcICariGM1nkjih88fxjce3wvGOXz6xqX4+PVLBIQVJnpSKRt/+5tX8fSeDnz76QO4eeV0/Nvtq7x9jSAoMmb/YOdQ2kb8cUsr9rUP4u9u9rBHgWS59MJH/x/f2YavPbYX+zuG8L/PHMB/vOkc/MUFcwTlFbYjbf1j+Oc/bceTuztQVRpFZVkMa//uGlSWCtgB9/m2Hli7rxOf+u1W2DbwuT/sQEk0gtedM5NfDpCtFz7r+OzeTvzqlWOIWMBLB7tRXRbDG86dJSivcNCUStn476f245m9HdjW0o+yWAT3fuQynD1bwI4UOT5pR2s/PvbLLZhIpvDYzjasnlOPj1y9CIubBf2JhBOglXrbkftePYH/e/YgYhELv95wHO+/fAGWevk1QVBkSI5tk1+TSNqoKovi7+/dhuc+ey1KYyJE5aTLoEGY+T7SNYxvPbkPbzh3Jv7m+iV4aNtJ3Po/z3tnLdIGUTxA++SvX0X7wBju+eDFWDqtBh//1RYc6x7xfnEsXAZt09FefPyXW7CwsQoPf+JKLGwi58qT/Q45HnvT0R58+GcbMXtKJT5941JcNL8Bn79vJ7777IH8F0twrJ7a3YHn9nXiE9cvwc8/eBE6B8fxuT9u92ZmRpyMF8tIciKRTOGL9+/EjLpyfP/da9A7Esft333RmwWVMDXpC/ftxJce2g0A+PIdq9A9PI7/W3uwsCzB+3b3uiP47cYWrJ5Tj2XTanCgYwif+PWr3pnWtEEUM6ijE0nc8d0X8dOXjuDaZU04Z3Yd/rilFRuOeLCtsfAZtB88dwifvXcrzptbj399w0qUl0Twtcf35r9QQiZyR2s/3vnD9bjn5WN420Vz8dYL5uC7zx70ZlxDEj22beMrj+xGfWUJHv3klfjA5Qvw05eO4F8f3FX4jYL6uPNEP77x+F68fvVMPPG3V+HsWXX4ryf2eetISDvSOTiOd/94PeLJFB742BX41Ycvxlg8hT9tafWQFY7osW0bX3poF0Ynkvjraxfji7etwMz6Cnz0F5t9Mhz+PWhbjvXiw3dvxMKmKuz615vxtzcsxUPbT2J9oWx7IRQold7TNoC7Xz6K5dNr8KXbV+FLt69CPJnCx3+1BeMJgexWVolj/n37/aYW2Dbw0j9eh/980zlYd7Abf/e7reIseMLJLHoEaBOJFD73x+2YVV+Bdf94PT56zSI8sbsdhzqHxGQVcKz6RiZwzdeexdce24sbV0zDzz5wEW5cMQ3fW3tQLGtn+f4DAPDdZw/g6T0d+IsLZuO65c24d3MLbv/Oi9h1YoBfFuDKxHsHaF9/bC9KIhae/+y1eOP5s/C9tYfQ2hciq5sr14Wtx/tw5883YWAsjrvevQYXzW/Alx/ajbhfxU4xFMigtQ+M4fXffgHP7e9CTVkMwxNJdA6O48GtJwVlFQ7QvvP0AcxrqMSzn7kG8xur8LFfbsHvN4XMpAGediSVoqzP3IZK7P63WzC3oRK/ePlYCBmu7GDO3jY0nsBHf7EZ//3UfqRsG5+4fgkqSqP41pP7xGQVyMSzAKa2ogRvv2gubACP7WjDm7/3Eva1D4rJg2N/fAjjn7x0BEunVWP9565HVWkM//D7beLZ/yKZ+FcO92Dr8T587LrF+PxtK9E2MIY/veqxZ0nCmRegCTLf31t7ELFoBP9061n45A1LcNe71+BYzwg+c6/HBhSyxHHT0R68cKALn7lpGa5Y0ojvv3sNbNvGX96zCaMTHorDAgoBecmUjc/euxVTqkpxz4cuxoqZtfjbG5Zib/sgfrfxeP4b0j1oYuv4w+cPo7Yihl99+GJ8/Pol+On7L8Rrz56Orz+2F52DOc5OyIOq48kU/v2R3VjYVIWPX7cYVy5pwidvWIond3dga0t//huYQ7DqTdyyAOCel4/icNcw/u7m5bh55XT89P0X4nDXMP7o5TSG7B15ek87/rClFbeeMwMPffwKvPPiebjtnJm479VWDI7lkAYha+fjyRR++PxhXLZoKn7wngtw13suwJdvX4XdJwfwLw/sytf/ROGSgmJYu4/uz+dftwI/ft+F+PWdl2BabRm+9NDu/JLYLIPIv44HOgbx5Yd348YV0/CT91+I91w6H3deuRAPbTuJrcf7sl8socTxq4/sQW15DBv+6Qb8+x1n48t3rMLZs+rw/bWH8l8ccjz2n15txYsHuvGpG5di+fRa/L/XnYV3XjwXd687ggMdHo4skyPQOxJPpvC5P2xHfWUp/u0NqxCLRvCx6xajpXcUT+5uz39DyBLH//enHWgfGMOP33chVs2qw5JpNTh3Tj3u9XKIQvZXbD7Whz1tg/jraxfj0zctw/suX4DvvvN8DI0n8L9PexBLDDm9I7Zt44v370RdRQl+9eFLUFkaw51XLcTMunJ86aHdYoFMgdKkX60/htJoBL+581K865J5eNcl8/Dvd5yNQ53DeHi7gJNqFSZ6nt7TgUsWTUVjdRn+4sI5+Owty/DYznbc9ZyHbgdBgdKkeze14GDnML5w2wpUl8Xw7kvnoSwWwTeeEHQaC5RK3/fqCZzsH8M/vGY5vvOO83H10iZ8+qalGJ5IeutbUfjbkYlECt9+5gBuWTkd//Gmc/Ctt52H779rDbqGJvDp3231LxkuhAJ25GT/KB7d2Yb3XT4f02rL8emblgEA7vIi+rjlZtuRsXgS//Sn7WisLsNTn74GN62cjg9fuRD9o3G8eMCnPLkY0kGTd/Z4aDyBP330cmz74k14+R+vx+Lmavzf2oPoH/VpByiEtF7k2/7h8QQ2H+vFLatmYH5jFR742OW4eEED/t99O8SD3XS5aP49f2DbCexpG8Snb1qKslgU77x4Ll450oNXc/esoEgHaPnr+I3H9+LxXW34p9eehQc+dgU+deNSvP+yBXhqTweO9/gkDQqhANG55XgfXjncg49ftxhfeePZePJTV+PBT1yBWCSCO+/eKKb/DB6E8e6TA9h6vA9vu3AuplaX4atvOhubj/Xhxm+uRcdAgXYYPxQhjH+x/hhqy2N40/mzcdWSRqycWYvvrT0odl2TckiIgGPVPxrHn15txZvOn4XmmnJYloWbVk7H3928DE/saseTuztyZIQbs/9/zx5CfWUJ3nHxXADAvKlV+O+3n4c9bQP4j0f35L+hxCnXE2CH79/aioOdw/jsLcsws54CvdedMwPnz63H97yMdAjHamQigWf3duKWVdNRX0mbRSwawSeuX4KUDTy6I8dpCNmD9vD2kzjUOYx/uGU5SqL0fd95yVyUl0Twmw0ewefKO4CzbgMaFnDLOto9jC8/vBvXLmvCTSumAQCuXNKEFTNqvZ2hED1oY/EkPv3brThrRi2+8ZbV6TLDd14yDyMTSfzp1ZweqpCB7iuHe9AxOI73XjY//btbVk3H+y+fj5+/fBTbW3OC3YQTaAtOcXxsZzvqK0vwnkvnwbIsVJbG8JmblmHr8T48uy/nWQs5Hvv7aw+hvCSCr7zxnHTZy51XL0J1WQy/3pDLSIYbEvL8/k68cKALf3PDUjTVkG2IRSP4iwtmY0/bIPa05TDkIQO07689hJUza/Gui+fRV7YsfOrGpSgvieL/nvV4tkP0sv70xSPY2tKPL92+Kl3Se8NZ0zCrvgI/efFI/htCDBva1tKHR3e24a+uXozz505J//5158zAnrbBfKchy47wy/v20/tRV1GC15+bKVdaMq0Gbzh3Ju7d1JKfIVx5hyMr20F96WA3trb04xPXL8E0p8S6ojSKv75uMba39nuTRsXgQ/TEkyk8sO0kblgxLavE+tplzVjYVIWfvXQU3ChA9BzoGMShrmFctyxThv+hKxbi1nNm4KuP7sF+EfbbJxOfSKbwvbUHsXp2Ha5b3gwAaK4px51XLfImVoKggB25d1MLVs2qxUeuXoSYs48sn16LFTNq8UjunhUEBXrQtrf2YSyewu3nzYTlvO6mldPx+dtWYPfJATwkElgXOPbn/ldPwLaBt6yhEsNZ9RV4x0Vz8bN1R/HELg9iRUSug28+sQ87Twzg3+9YheoyWuMrlzaipiyGP2wWzCL4jNkfiyfx1O4O3HHeLKyYWQvLsjC9rhxfun0VWnpH8F9eFRJFZfkPNtpwpAeJlI3LF08FQHb9629ZDdsGvnDfDjHy5T33AdXTgGkr8/704xePYFFTFW5zSijfeck8NFSV4muP7QlH9ORcW1v/GO55+SjeeuEcfPiqhWmdfOP5VEoppP8FqofWHaRKgttWZ2ztvKlV+MfXLMeR7hHsPimYRQY8iZ7fbDiO0mgEd5xH1/O6c2bi7g9chLb+MXzzyf38MnxaV2zbxrt/tB73bz2BN54/GxWlUViWhb+6ZhEOdQ7jmT0dHh9WDJMxQBPA/VtPYCyewtsvmpv1+w9cvgBNNWV4aFuOQxwig7avfRBP7m7Hey+dn1Unfe2yZtxx7iz8flNLfvqVjdrndKw6Bsfwxft3YfXsOrxm1Yz07y3Lwu3nzcKR7hEc7hrOflOI3pFHtrdhNJ7Ea12yAGDZtBosaa7Gg9tyHvaQpUmP72pHU00ZbjhrWvp3teUluPXsmfjTllacyGW23vJT4K33cMsB6EFP2cBX33ROVn/P61bPwOZjfdie63yFmOL4yuEe9I7E8dlblmX1JayeXYeVM2vxi5dzGoZDjsd+Ylc7ymIRXLUk43xZloX3X0aB7M7c0pu4s64CJY4HOgbx2M423HDWtLQzBAC3nzcL1WUxPLFLXoB2sn8Uf3q1FW+9YA4aqjKfU10Ww1VLG/HU7o7sjF3I8dg/efEIZtSV412XZNuR1549A5YFPL4zxyEKMX1tT9sA9rQN4q0XzsnSx6nVZXjT+bPxwLYT+Y3ejLHlnBqWStm4Z/1RXLSgAa89O/NsRyMW3nvZPKw/3JNfnhWC6Pn9phaUl0TwwSuziZRrHWf92dzG6xB9bjta+/HM3k58xAnas+Qta8bQeAI7cq/tdd8E3v4b4Lx3Zf36wW0nUVUaxe3nZfeJ3LZ6JvV0bPIgjYohq3w5c5+3Hu9Dz/AEbjsn29ZGIhbevGY2Xj3ex88QF5ji+LuNLYhGrKz7H4lY+Lc3rEJZLCKWRYt7lzg+sO0EjvWM4GPXLUk7jABw51ULUVMWw49eOMwvK8uxylxnx8AYtrf249az83uJXnv2dGw+1pe/jxSFP9Gz/jCVcV84vyHr9687ewbmNlTil+sFAusCvax/evUEzp1Tn9Vv+8+vOwvLp9fgi/fv9K7YCYoceY/vasc1S5tw08rp6d+VxaJ420Vz8OC2EziS62sEQbpUOtseP7evE6PxZJZfAwCXLJyKKxY3Yp1ISXHajuTb/qf3dKA0FsEF8zL3bU5DJf72xiV4cncHHhcJdudcCHxmHzD/iqxf72jtx9bjfXjHxfPStr26LIZPXLcYLx7oFgzive3wc/s6EU/aeN9l2bZ2TkMlzp5Vh4e2Fxlg54UC05BfOdyDpdOqs/ZjALhkEQW+G73aHIIix46MxZP4w+YW3LxqOqa45F21tAnvuGgufrvxOH8Js48/sqN1AM/v78LZs+rwkasXpX9/y8rpmFpV6l1lVQwBXJAzIkCzLOs2y7Luik9MQMSxum9LK5ZOq8bZs7IbImPRCC5e0ID1h3uyHeIQPWjfX3sIFSXRrGwFw5vXzMbgeCL/YY+JZdAe2nYS/aNxfO0tqxHNGRpwzVLH2dmbmx0Uc6wSyRT+9+n9OGtGLS5ZODX7Iy0L153VjM3HejE87pqyFCKIGU8k8dzeTly3rDlvIMInb1gCGza+LsKieSCZsvGHza24emlTmhlneNcl89BYXYovP5zT9xOi7OqFA10odXTPDcuy8MbzKRtzot/lfIUYa2vbNp7c3Y7LFzeiojT7vbOnVKC6LJbParEMmsCQkM/9cQcqS6P41I1Ls35fEo3g8sVTsXZvR/azFqIH7efrjiJlAx+6cmHe365fPg0dg+PYccIVWIcYsz8WT2LdwW7ctGIaymLZ6zi1ugxLm2uw8Whv9pvSzDd/gPbHza15DjPDuy6Zh4lEKp9YEsygrTvUjaPdI3j7RfmN/m+9gDLWv8h1LAXtSCpl47Gd7bh6aVNewLSwsQrzplbi2Vw2MsQZSQ9vP4loxPK8NmbHXjqYU55lWcCyW4CK+vSvkikbT+xqw7XLm/OGPRBpNAN/3NzKX3rlc6+2HOsDAFyQ4+gDSBMtL+Z+76KyvImeZMrG7ze34PrlzXnDlxqqSvGm82fj/q0nMDTOOUEvPR4727H64fOHsXx6Da53AnKG6rIY3nrhHDy0/SR/L5qPY/W8Mxn0qqX5w2DecO4sWBbwq1c4e38KlEpvONyDRU1VmJoz6CYSsfC2i+bg5UM9/GVlPtNg97YNYvfJgXT2gKEsFsUXbluJ1r5R/NarzaEYmBzXOrb2jeJw1zCucJF8DB++aiGiESvfRgSB5U0Yv3SwG5WlUVy8MF//z587Bfvah8SftZx7Np5I4r5XT+DmldPz9sj3X76A+sPWh+gPy8F/PbEPNWUxvOn87Pv27kvnY+XMWnz1kT3+U7j9wK4tJ/v28qFuTK0qxdJp+Xv5a86ejq3H+9DSy6mPPsf+JFM2Nh3tzSMnAMrszqwrx4bcPZIHOYTxozvaMDCWwNsvzLftbzx/NpIpG8/k+r/F4DNs6MHtJxCLWPj5By/C9LqMjYxFI7ht9Uw8sbsdD+UmKIpikmTQbNt+wLbtO0tKS7hLHNv6x7DxaC9uPXtmFlvHcNGCBpzsH0NLr4tFEyxNOtk/ivtebcXbLpqTxyAA5BBMrSrNT4eyDBqns/Pcvk4saKzynFgzd2olFjZV4Zm9Pmw0p6ytLX040j2Cj1y90HOC3JWLmxBP2lh/2MVsCQ63sG0bf3XPZgyOJ7JS5QxzGipxw1nT8MrhkCN+HTy/vxNtA2N4y5r8aXW15SV458WURRhw94aFGBLy3L5OnD+v3nMS1flz6wEA29xlPkWa+wth87E+tPSOejr6kYiF5dNrPAK0wlOT/NAxMIYNR3rwnkvnp8tt3bh2WTNO9I9hX7vL+YpEM9fHuY5P7+nAxQsaMKehMu9v1y5vRsQCnnSTISGGhGw80ovReNJ3Euua+VOw5Whvdi26oB0ZTyTxu00tuPGsafkTDQEsnVaNxurS/JK6UpaJ58v8/89T+9FcU5bHVgNAXWUJrl8+DY/tbMu5NrFe1q0tfWgbGMMtq6bn/c2yLFy7rBkvHuzKrjIIkUF7bGcbLlnYkC7JdqOppgxLmqux/lBxO7LrxAC6hiZw44ppnn//4JULMDyRxC95HTmfAG3zsV7Mbaj0vP8rZtSivrIkHXwEhk+J4+6TdG1eNgKg7Pd4IpX9LPHAFaD1j8Sx88QAXnfODM995C+vXoSKkqh3K0Ah+ARoLxzoQmN1Kc6aXpv3ljkNlbh++TT8cv0xPofYJxOfKuCgAkiXc27kHU3vU9Hzxy1E4tx6Tv59u3TRVJwzuw735FZjBEGaMM7IYz1mrATQjeaacly2qBFP7Grnl+VD9Gxt6cOqmXXp1gY31syjsugtxzidfZ/95fl9XegfjePNHvt/STSCG1dMw8uHusON+Hew++QAnt7TgY9euzjPJkUjFv72hqVo6R3Nr0YqhrTOZ9bftm28fKgbFy9s8PR9WSVU0WOgcuGTid/XPoih8QQumD/F403ka68/1F34aKZCyCGMf73hGOY2VOYlDACa4txcU8Zf5utjR9bu7cQlC6d67iMfvGIB5k+txMd/tZnvyJVJ2YPGmUFjvUq3npPvEACZUoRN7sg+wLkjXnhkexsSKRvv9Ro5D3KIL1vcmH+eEetBSwQvWRlPJLHuUDeuWuIxJtrBNUub8fKh7uwyB6YUnM7wxiO0Ppct8pZ3wfwpKItF8OIBV4Am6BAf6xnB03s68MkbluAKn+tbPr0GLb2j/KyuB+7d1IIplSW4/ixv5+viBQ2wbWCzl44AXMHn3rZB7GkbxE0rvPXxrBm1iEWsbOc7RObnvldbURqL4OaV3te2fEYN9pwczDaatqMvnBm0x3e1w7aBm1d6X9vVTn9LXlaXMbYcjnjn4Dj2tA16j0kHMf9r5k3J6S8VH7P/3P5OlEYjnpsBAFwwbwoGxxPZk6oEz0F7Zk8HeoYn8PaL53r+3bIsrJpVhx25vYNpoif4te1rH8T6wz2486qFvmPAb1k1HV1DE9nlKYJB9aM72hCLWLhuubc+XrOsCWPxVLpUjGSITfc80DGEg53DvvoIEBu/taWvqGPJJpBetMDb+V45sw7nzqnP78MthgIZtPMcsibvLRELVy9twtN7Ogqf55aLrJLzjB1h5z16ZSsAYM3cKZhRVy42mATIYr43O071+fO8nbimmjK885K5eHJ3RzYhVgw+B1VvPd6HNfOm+B5Lccd5s9A9PMHZP+idQTvQOYSBsUQ6gMjFkuYaVJVG09nRwPCYBjuRSOHeTcdx3fJmzyAeAN5x0Vzs7xjK7zEuhnRPfEZfNh7pQX1lCZY2e5N2N62chiPdI9jTxtmr6NGDFk+msOvEAM7xGQG/ek49ymIRPJU7O6AYfAakbTzai5KolVfRwnDd8mZMJFJ46YBAWWUOWKCbm/V0y5o3tRJ/4C2Z88igdQ9P4ET/WFafrxvzG6tw9qw6/Pzlo3xTYX2Id9Y7eu4cb3nXLGtG19AEvz4yuM7oO9w1jJcP9eS1AKS/omMj1/EGhB4ZtGFnX/d7ruc0VOKH77kQKRu4dyPP0KHJFqDZ4HI+uobG8b21B/GaVdOx2MewLGmuRlksku3sCDLfT+/pwOLmao/zlzK4fNFUdAyOZ09hY45VPHj0vaN1AGPxFC71CZgA4NrlTZhIpLDukItp9WnKLYZNR3sxf2plejhCLspLovnZGMFx36zR9HUezCADyxqKj24l0CGYnbhl1QzfsyzOnVuPaMTyDuIBLp3845ZWxCJW1sACN8pLolg+owbbWvpcny9W4jgwFscfNrfilpXTUeNzltG5c5zAosNjHTl70B7YegILG6s8yykAYEZdBZZPr8GzuVnd9PTB4I44K0u7widAA4Drz5qGXScH0MbKRUP08q3d24kLF0xBVZn3d2SO+0sH3RlksV7WJ3d3oK6iBJcv8g4GAWDVzDrs7xjKzjSl7UjwkhXGQl+XU27mBgusN3gFaJyZ8Ud3tuGyxY2oq/Bek0sWTkV5SSS7ykDQjjy2k5hhv6wXQM9230gcR/yOQHGw6WgvZtVXYEad/xEe1y5rxrbWfnTxHE7scW1dQ+NoGxjLK8l34/WrZ6JvJI7n93MclOqj/+sP92De1Erfa4tELFy2qBGbjvaKDTBwZdA2Hu1BNGLh3Dn1vi+/fvk0JFM2XuKZDOjhWA2NJ3Coa7jgmXGXLZoKy4L/Iele8BkSwvYHr7JUgDIkq+fU8wdoHr2sT+1uR9fQBN51yTzft920cjpVEfAGMiwQdNmtzcf6cN6cet9A95aV01FVGsV/8w5m8CB69rYNYjyRwjk+OlJVFsPNK6fjvldb+capp0mJ7Gt49XgvVsyo9SWo1sybgljEwibejJ0HXjrYjYWNVVllctlf0cJNK6Zh3cGu/GnOheDhFxx0fEzPs04dfObmZTjaPYJf8WT+fTLxW1v6UFsew/zcc1wdXLW0CZZFfrIQXKTSbzYcR9Tpx/XDBfOnoG8kjkM8vZEe57Jub+1HykZBmzV3aiUuXtDAl/n8c8+gsUbTv752se9rYtEIzppRm92rUuRgSC8Mjyew/nB3QUcHyKTnswYzxPgzaIyt8GNZAcoOlkQtvHLYZVjSjlXwdWSlG36sJ8PSaTXZ5WuCpUnrDnWjsboMi5r8A4TlTsnKXl7GLge7Tw5gaDyBS3zYYwCoLI1h5czabAdVkNV/8UAXLpzf4Mt6AsA5s+uxvaU/w/wUaO4vhN9uOI6h8QTuvCq/R4uBXffLBz3YQY4pji29I1h/uAd3nDfLs5yC4aqlTdh4tCeb+Y/xB2gvHuhCbXkMqwo4sZc5AU76vgmO2T/ZP4q97YO42u+geQCzp1BJcZbDXGD6mh9SKRvP7u3A1Uubsoas5GLVrDokU3Y2Yy1A9Gxt6UdNeQzzp/rf69ryEsxpqMButyyBAK19YBxHu0dwTYF1LC+J4rJFjdlZVkE78viudqyeXVcwqGKb7qvHCztfm48Vt3/XLm+CbdO+ExgeOs9s2lkz8svyGK5c0oSa8hhfCY+HY5VK2dhwpMc3e8Bw7tx6dA9PZLcCBIWL6Nl6vB/Lp9cUPGj4vLn1qCmL5RM5heAu63WeO0YWrpzpv45TqkqxamYdnuMJdH0yaBuP9GJqVamvgwpQxnaXs+cEhseQkC3H+1AaixQkcRqqSnH+3Cl4yuuYjEJg57I6+tI/EseBjiHfDAJAfbgfvmohHt3Z5n/eqxc8Wi62OdnM1QUOUX7LBbMxMJbg03+PHrRkysa2lv6Cznd5SRRLp9XkVyxwIpWy8crhnvTADD/ccNY0xJN2djVSMaT9ggyBwgKTRU3+tv3qpTSpmmswiU/LxZZjfVg9p953/2+oKsV5c+rzK2gE8MKBTly8oCFvZoAbTF838wTWbp/f0U3ma/tldBkuX9yIve2D3mcre2IyBmgcjtWGI72oKY9hRYGNDgBWzarFztaBjEMskEHb1tKPeNLGpT4lUAysX+aYu1F4+ir6We3P9OZia0sfpteW/3/2/jTIdi07DwO/DeCMOWfem3e+bx5rrnoszmSVSpSKLpYGymaQZrtb4lAm1bLCUrdkKaSWQ3bbdHdHu8OyBpoOUrQUIjUFQ2LRDMuUGCRLI6tk1vhevXrzu3PenM98DoDdPzY2gIMD4AAHe+28eWp/ERX33ay8ufMAGxtrre9b38rdoM2ajecuJw6WBXrQvnznBAe9Mb47R04JiARtvzuK3OUWqHwPJx5+69WH+K6nd3ID/etbLbTrduUE7XczXLeSeOmxbXzx1nGUWCzw2Uauh6/fP8X7b+Q/6B+4voHOyMXbB73ZtUrct3/+ygO8eGU9N4m5vtXGje3WtCuWDKhKfEYpN8liBiXec3UdE4/jzf1YIl+SQeOc41++to/veOrCjDlOHC9eWUe7bsekeYtJRWXAndV/JvE9z1zEv33zIJKLLHKO3DnBfnc8t9Dz3GVRFZ2yP//gj4g/d18svt7tY7z/+kZmZVzihcvr0+z4Agna14Ii2PvmvOg+/tzFaQfaBZ617sjFV24f5ybVgDizmjULX72Tbf/cHbm4dzLE85fzezLfe3UDF1brJROL2T0vr3PeenXHwodubpWbm5TSN/vqgw6O+xN86xP5760PBQHs7y1igR8EcZxzvHLvdO77uGZb+K5nLuC3v/GwOGNnWdG1DP78WvDey2PQAMGw/vt3joqbJWS8l2QSn/fe+rYnd+D5HJ8v0z+dIpV+9X4HT19czS3iACKR/9rd02nzrnmQBaWgYCwlaVnSNYlPBT2MU4qdeUg5R758+xib7RpupvQWS3zHUxdwbbOFf1Rmjl2Ki+NX75ygP/bmFl/ee20dX7t7uvjQdgB3T0RLxnvn7EeR5KCcJX2KxPGNvS6aNQtXcwpUAPD7g/0/4wqchZR5iv2xkAF+KCfRBYTK4Eu3T2Zn5paA73O8vtcNi/RZePLCKjZatenWlHmQe59Z4bn1jQddXFpvzBj/JPFS2YRw+Rg0jjIM2hfePsRLOfpzifdcFQHxLXlAp2i+50G+KD8wZ4M2azYurzenE7SP/Angj/+6mOFVYr0PzAn0AdEs+ZU7J9HBEh6IZYLvB7At0cCfh2cCaVsoO1yg8v3PvnY/aNiddeaJw7IYnr20Njt7qiQ+//Yhrm+1Uk0t4viWx7cwnPhhkLnIMOBv3O9i4nG8/9pm7ve9/7r4/2UlcZFB1b2Ri3//ztHcpAIQyeeXbsWS+J/+V8B//I8KrSPx8t1TbK/Uc1+qQJRYTCXWYYJW7LO9fdDH3ZMhvnNOwcCxLXzo5iZ+N+ifzJtflIff+cY+Lq038FyOVAQQFbvhxMebDxOJRYkE7TdfeQCLYW5icWOrhZrN8MbDmHzjhU8D/+UxsPNU5r+LYzjx8PV7nXC/5eH5K+t4e78X9bMulKCdgrF8ZggQQSUQSZ0XsfL/4rvH8DnwkTmFF9tieHxnJdc1ULruzdvblsXwPc9cxO+89rD44NKUBO3r9zu4uDY/IPjgjU1840GnuHlBisTx383pP5N47rJIZL9YSp43/Yw97I5w0BvPvf+A6EW8lzQUmodEL+s39rrYbNdwaT3/Osp+oH+anD+ZiVkGbb87wlv7vTBIy8JLj2+h7ljlBjunFHpee9DJlJLH8fyVBVoB5BzR4Dq+FRQKn9rNV1Q8vbuKnZV6IdOdENbsOfKl2yd437WN3ETXthh+8MPX8LnXHuKgqKQ4xdjoXwTn7XenuFPG8b5rGzgMeroWhSw4PZnDaAEiRryx1cYbZZxMUxi0Nx528cSF1bnx7yee34XPUVwuPaVEEet+9c4pfD4//pWjVH67jMrgT/8e8J/+TvjXO8cDDCd+GG9mwbIYPnxzc7o1ZR5SBn7fPx3MjQ+BqBWmtAlQ3q+j7CfpQsG46rg/xmt73Uw9eByyn+k1+TJYoHfki7eE61aae2MSN7fb0wkaY8Dj31mYHTzqjfHOQX9uRQsQUqiTwQS3DgNpygI9aL/16kN85OZWqoNNHDNV/QXssX/j5Qe4vN4M5Wl5eP7yGl6931m4qsW5kBx8tMAe+UjgTCTNUhaROMpKZF5vCSD6Ips1C1+SfWgL9E79u7cOMPH4XNYTEC/W+6fDSPO+9Tjw7B8otI7EK/dP8cKVtdyXKiCqWo7FKiVoUo72LRluUXF84LoIYl3PX0ji6Ho+PvfaQ3zvsxfnf7bgxRslaOUZtN98dQ8fvrk1NdclDY5t4fGdldmXeAmFwSv3TuH6PFdKJPHC5TX4HFHv7ALnyFfvnODxnZUZe/0kbm630a7bUVC5wLP2hXcOYbHIFTUPT11cze1TeCeQbD2WI12T+N7nLuK4PyneCJ+aoJ3OZesA4IM3NuBz5LJ/U0jpZf337x7j6kYT17fyP1vNtvC+axtzpaBT+M+/DPzEvwj/+sq9+dJNie8NxsSUkovK93VwTd962MPjOytzn9sb2218oIz0KsW0SVbp82SAgAi+P3Jza7pXdR4SpmWnwwnungzxbIE98nxaQWwe/tBfB/7w3wSuvB8A8O5BD3XHwqW1bLUOIMyLvvXJlLFFuf9oOkEbTjx840EHHyhQNPqupy+AcxRnkcNnLbp/v/HKHl56bHtu3CaLWOUKFNOQ74UnczwKJJ66uDJdfJuHlHPkzf3e3GQQEKqWVq2EeU0KEy/PhXnFvvdcXcfuWqPcYOftJ4ErHwj/+lrQL1+kQPGRx7bw2l63uOyQMfG+jl3P+ydDXMnoGYyjXXfw1MWVEkWlpWPQiiNs2J1zYAIiQAWECxOAhdzX5umY47ix3S4/CyUGGbgXYdAknR4yPyUr34Oxh5fvneJbnph/HS+vN7HWcKINukBg9dqDLt57bX1u1QcQCeFRf7IwXf7mfg8HvTG+ZU7/BSCshHdW6mE1caGg8e1DbK/UcWM7vxrj2BZevLIe9SlmuK/l4ffePYZtsUwHpzjk/i/1QojB8zlevd9JtbJOou5YePLiynRFt2QP2tfunKLuWHg6p0dR4vGdFXg+x93j4UKuol+6fYzToRsGjHl44oJM0BL7v6AbbHfk4mt3TzOdS5N46uJq2Ai+CCRDW4RBk8ZH7xwGe6TkOeL7HL936zhXbithWQzP7K6GL+JFJI6/+9Yhnru8nmmOE8dTF1dw67Cf6WQmz+rHtucHO1Iq/ZW4yU8eEp/N9Xx840G3YIImzAukGcpcpCQWb+/38PQcZjhabxNfvXta3Dly8yZw/aXwr18PJFsvXJm/3uWNJq5uNKP3VhEkpNJvH/TCZ3IevuWxLXzp9knBzzbLxH/t7ikshkL7+1se38LX75foQ5NnfvD5ZCE5y1ExjhtbothRyl2xuQ586EfDv75z0MfN7Xahd/K3PrGDO8eD4r2KiZaL1x504fk8t29Q4v3XBWNROLFInFXDiYdX7p3iO1JGByTxYpDEfL7CoOU3H3ax2nAyjdbieHp3FW8+7C7MxI9cD7cO+7l9/BKObeF91zeKy5dTCsZfun2Ca5utuZ9NjlIRA7RLznoLIPf/0xfn738Z//xemcKS3QivJ+cc906Gua1EcdzcXineg7l8EkegKIX2+beFdeo8yhUANlpCBhExaOWkSSf9Ce6dDPFigUMFEBXi+6fDcg5EMXzp1gkYm8/EAEJ2yBiipKmkPfZX757A83khto4xhmcureLVBSWOrufjrf0entot5h4oGbvS1r4BPl+w/0zi0noTe6eBxKFk0Mg5x798fT9wDZu/h5+9tIbXHgTsYIqkYB6+cucEz+yuzgzeTMMzskCxYLD/1n4PI9cvVBkH5MsnlgyW7EF7+Z5gGOb1XwDJns/yEsfffvUhLJbvFinRrju4stGc7Z0qeI68ev8UnGNuj4LEU7sreOewX85qPYYv3T7GhdVGoergTO9syQTta3dP8bAzyjUIiePp3bXoPC55jgzGHr7w9hG+q0DgBQBPXlyFzyOmLIl3D/tYbzrYaM9P9q5sNLG9Ui/OaiX2/NsH4n7O668ARNP9pz9wFX//d98tNrQ30dzPOcfbB71cU4s4PnRzC2PXL9cbE8Od4wE2WrW5SgyJZ5KmU/Ng1wEwwLIwGHu4dzLMNb+J4yOPic/2cpHPlsLEf/3+KR7fWcl0Aozjw49tweeJWZd5SDDx7wZFkjy36PCfBq0AVXq13z3s47E58l4JOYbk375ZkCFMxCOvPxS/59MFYoBW3cYLV9aKB98J1l8WXook8TXbwocf26w0e1UyWkXe/09dXMXI9XGnaKKbiEfeOejD5/kGIXF86OYmXr57UiwmTWm5+Pq908Lx78ef30UnaMFYBG8f9LCzUi90Hn/gxiYshnJ9aHYtvJ6dkYv+2Cv0jgSEyuKdw15BBnkZE7SCle8vvH2I913bKHRgAuJAeD2s2JarfMuEZF6PisTNnRY4x2KOWBB08jO7q4Wqw+26g5vb7VhfWLnAStpwF2UHpxKLkknMraMBxp5fiBkBEH5faKZREl+5Ixzsih5il9YbuB8maOUYtNf3utjrjAoF+oAITo76E+x3x6VNQjjn+Oqdk0IJPCAKBnXbihiLkghNDQpUxgHg2mYLd44H0SFWYg4a5xxfu3taqMIKRLK0dw57qQzCPPz2a/v44I3NQi8DQMgc39hPShyLMfEvB4xp0RfdYwE7WGo4Zgxfvn2C91/P7/WQWG042FmpR8x/yXPkn7/yAIxFPQjz8OylVex1RkKaUvIc+fzbhxh7fuaMvCQiaWp6MvDOYR+PFQz0GWN4z9X1hSWOsqe26LP0Ix+9id7YKxY4Tp0jNo77E3SG7tzeOonI8fK40Pcn8eB0OLcfLI5nL63ijTIsglMPP+M7YRJT7LNJaWKhoDFlUPWr9zthwXAePnSjpJlAMkE7EM/79a35fTFA0ArwYLFWAM453j3s42bBJP6Z3VVstWv4t0X70BJJ0+t7XdgWK/y8feD6Jr58+6TYZ0vMQZMFmaL7/6OP7+CV+6c47hc000jg1mG/8FrS2KZw8pl4d0plRREGDQDef20TE48XK9ImFD1j18fbB/1CkkMA+I6nd2AxlJP5xnD7aIDrBa/jSsPBC1fWy41IsKNz5EHQc3h5jtGKxGM7bQwnPvaKqLq+WRk06RZVRLoj8fTFVby+1w0Si3K9I2GCVvCAlg/pIjJHzjm+dPukkEZb4tlLaxGrldIom4cv3jrG9a351HV8rTCxKFn5lr1rRapngLD2tRgWljh+PZDlFQlQASG7uX8SrFUyQft80LuWNeg4iecuxfr5Strs3zsZYr87nuuWJ+HYFm7utPHWghLHV+6dwrFY4ft2bbOFkeuLPQKIilXMNSkP7x72cTKYzHVmk7i83kTdtgTzU1Li2B8LJ8CigT4gqrFvzUiliyV3L987xUarVrhady1oXL5zXD5B645cvPGwO9c6OI4b8d7Zkgna774lCmZFenSBKLB4c79bOkH7d28dwLFY5lDpJKR08d2M87hMYAUImds3HnSKDX9NJmj3OrBLPEvvubpe3PEtIU2Sha2iLNOVjSZ21xoVErRRYakQIAY7j1y/+Hsy1jvy9n5xdgQAdtebuLTeCJ0fC4Mx9Mcu3jnsF37/b7RreO7SWvEANWFa9u5hH5fXm4WLz89dXsNhb4yHZebzBTjojdEfe4X3v2UxfOjmVnFpasK07I29Hh7bbmfOJE3i2Utr6AzdYjFA4ll7R0qXC+7/73pG9Lx9rszMvACcczw4HeFywf3/4tV1rDWd4kxk4rPJ3uSi+18Wqd4qMjMscY68td+D53M8U0ByC4ixLe+9tpE+2qcAbh8NcL2AaYfERx7bwhffPS5e6ImdI/eCBK3oO1k+J1lqjGksXYLGCwVWDzsj9MZeoQZJiWtbLfTGHjojt3SC9o37Haw1ncI3MdVqvyBuHw1w2BsXkm5KPHdpLZCheaVdHL/47jE+VKCPSSLqZyofWMkewKLBiW0x7Kw2sHda/sXjB31TRSvVgOhDO+iNhHa6ZIL2yr1TrDWcQkYDQNQA++qDTmpzfx6knGWenXUc1zZb4WFUFq/cO8XTu6toOMXutzQkCBMLp1F4P0qmoGjwbVkM17dbgS68HIMmnanyZg0mcWOrjdOhKyRnJd1gX77XwYtXihcMZIJ297j8ffvK7RNwjlKFnpsLJmiC9Twp1J8jIQe5Pjgdli70vHq/gycurOTO2opjo13DetOJjJRi8HyO20fFGQRAMBauz4sFO4kz8s39Lh7bbhd+llYaDh7bbhdM0Kab+2UQUZRlYkwMmP69BQf27p0OsTvHaCIO6dL2WlHptV0LnzlpmV8msX7hynp5iSMY3tjrgfPiChpAuFR+/u3DYn1oiUJP2YJB2Apwr7xC4l5wtlwrERA/eWEFbx/0orFFeUicI68/7BZucQBi/gFF9kiCrXv3oIe1hoOtguqID97YxGa7Vm6MRoDOyMVg4hUuUNgWw7c+sV2CiZw+69582MOVjSZW5hgySYRKkyJqpAQTL9VZ81wV4/j2J3fwe7eOIlfggvB9jjvHg8LsMSAStN7YKy7zdaIE7b5k0AreN5nsF1J1fbMyaNLsoGj1AED44OydDkv3jry218Ezu6uFA6uLqw20avZCCZps5CwqOQTEw+f5XCQyJeagPTgd4u7JsNRa17Zk0Dgo5fAGiEP28nqzkHRTYnetsVBl8M6xmElSpNdD4vJGE5wHjF3J5PPle6d4oUTwfXGtgdWGg7f3e6VdHKMDs3jAcHWzKe7ZAvj6/U4hUwMJuUdCfX3CNSkPv/vWITbbtcIyWEAkTbePkvtx/n2IBlRuFl5rih2X6xU4R1zPL6XjB6IkpnCfQgxfDkwsyjBoN7fbuHs8DBwxiydot48GOB26hWWpQFSxvHcyLP2svbbXDZ15i+JG0lk3wL2TASYeLxUQlwsap/f9naNB+HwUxYtXiyYW070jkpma5+AYx4dubuHtgz6Ois5MCuD7HHudES5vFJc4yutY2CLerofvt3snQ7RqNjZaxd8lL15Zx+t73QLM53QP2t1AYlzmvn38+V1MPDHPcS7Cc0Rcu1tHfVyfYzQVh3zHLdKHJuXTecPek3ji4gqGEx/3TgsUjsJzhMH3Od496BdyOZSYMXjLXWt6Dto7gXSz6DvZthi+6+kL+NdvlGfQZO/6bgmJ77c+sYO39nvYLxLfJM7I+6fDQtbwEu26g921Bt4uwvzEr5dl4/W9LhgrLqcERNI08ThevleOsd7vjjB2/VIJmjQKKSxzjEkcZdG66H27sdVCs2YVLIYsW4LGUSjrjOZNFN8wMkF7cDoqXfm+dTgoLBMBRCVyxmq/IL747jEajlVYTgEAF4J5OvvdUanASrojlWEQ5FDERQKr1/e6hdkziYtrDex1yjMIL5fsmwIQ9k88OB2WYtB8PxjQWiJAZYwJt89kYlFABigHK5YJTq5utHDQG5c2rjnuj3HvZFjYIASIAplwMGyJBO3zbx/ipce2CzmKSVxeb4o9UtJm/4u3hbz3wpx5VHFIdvz2Ub8UE//2gTBaKcN6Nms2Lq41Fkqsvxy4bs2btRXHpY0mPJ+LgaYlbPal3Kmo+QkgDDDqtiV6PkswaIOxh3cP+6WquYBIPm+lDCqWjlxFTRIAEagwtmCCdjwoxVYAYoj4Owf9+WxMotDzoDPEZrtWWCoHxPrQirpUBjjojeH6vJTEca1Zw9WN5vQw9jzEAqu7xwNc3WwWDr4BwaC5foE+nASD9uBU9qkU/2wfeUzMQ/v3RWYmxc6Rkevh/ukQN0ok1dsrdVxeb5a+ZwDCnusyn00WxgtJ5uU5YtnY740w9vxSicXuWgNrDScyFCqyVnD/7pZkYgBR0Lp3MixdoHgQqHzK7H/ZolConzURa+13R7iwWny8CyBMZ94uJHGc7om/ezzA7lqj1DnynkBN8XJJVvf2cfliyPWtFnbXGsWNQuxa+Bnvnw5xYbVeWNHg2Bbee3UjGpGUh29WBu2t/S4ajoUrJR6GKEEbAk7w72rzD8Gx6+PuySAMzIpiUav9f/vmAT58cwu1Ag52EjvBg3rQLRdYvXJPDJYtEzS26ja22jURNJZIYjjneGOBBG13rbFQD9qXbh3DsVipzza1R0p8tncO++iPvVJrAaIac+uwX9okRDC65RgE+VIsK3N8ObTOLv7Z1ptCUhZKHGOBVR6O+2O8fdDHhx/bLPU7XloXe8Tj5SSOrz3olGJYAYSB063DQakE7WslDUIkrm62wgp+GXzpdrFB93FcCPrHRH9pcTfYr945hW2xUkUlxljQ81mu0PPGwy44x0IM2u3DwYwsSxbRypzvctBs2QRtOPGw3x2XT9CuSIZkDosWL+5YNvZOR3NnWyXx/usbsFj5eVAyiSkjcQSECqC4xDEq9IgErdx1lPtz/n2bPkfunwzhWAwXVooXO2q2hWcvrYaz4XIRkzge9SbgvBwTAwDf/cwFfG4Ba/N7J0PUbIadgr2jgJh1CYg4bC5iBWMppyzaKgKIc+Kp3dVyEscADzuj0vtRvg/KOkfLInKZBE32l371dpEEbToe2e+OSxUWAeDxnXZBBm2aib9/OixsoiFxdaOJjVYtNMYqCmmsd22z+HnMmBg3VNg10o5LHAelihOAcI786p2ThccIxHHOErRiTX5vPhTzT8pU2XfXJDsyAq5/C/BHfhZ47Dvm/jvhRlfuBQ6IrL6si+Nxf4xX7p8WNpqQkI35B71RlLUXCHreeNjF9a1WqcoIIOQQQuJY/N/dOxmiN/ZK6c8B8cLf746LN4AG+NLtYzx/Za3UZ0tlWQtA9oeUDb5vbAtpHp8KCPJ/X9/neO1BtzSDcHUzJk0tgTLDZ+O4uNaIpBtOsQRNVhLL9E0BwgDA56KKHyH/bPB94V72RMH+HImNdg1rTUewMc0gAWrN7+F8+d4p6rZVSiYCANc3W6UljgfdEW4fDUpJNwGEbJs4RyJp0jx87e5JMHy93Dlyeb2ZYOLnryXlcEUdxSRubLcx9mbdt9457MOxWOlg/+kFgsY7C1SHgehcmRvsJBi0vc6odKC/0nDw7KW14jOTAsgAtex6zwTXsdD5Hgus7hwPSye6V4v2dCaY+PunQ+yuNUrFG4BgPl+5dzrfgTCm6JHjFMqoIwDgEy/s4nTo4gtvl+sfvB/MgCrz2S6tixaOvOHvIWItF1JOWfZZe2Z3tZzEkQnnwaP+pLD5mYRU3Hx9XjEkAcmg7ZZYb61Zw5MXVvDlQgxaFI+4no+jfvkE7bGdFex3R6WZ+PsnQ1wu+VwzxvDClbVi0uwY9juSiSy33ocf28S7h30cFJGLxuag3TsZFu4/k/jAjU2MXL+ApHgZGbSCEscyBiGAePGsNZyAHbGAD/5IoaBRVljL9CgAImnqjtxSWfbvvnUIzoFvf6pcgrazIiWOY5TpQXvzYa90wAiIfqayEkdZJS3TWwSIQD+UXRWE73N8+VY5J0wA2G7XUbPFC7moMx8gAqcyzmwSN7ZaGEw8HPRjssM51/TO8QCDiVeaQbi2cIJ2igur9dIvuq12HUe9YHbTe/8Y8O1/au6/kYOVy5hNAPHiS2yPzNn/e50RhhMfN0tIlyVubAXs+OPfBXzmt4Dd5+f+mzf2enj8QnH3Mond9UYxS98Y5Au/TP8ZgFAyI6TSxc+Rr94tJ++VuLzRLG0S8o0HXdTs4jbdElfDnrfp/f8gCFDtksG3NEooHHwj6iUsm1hckdXoeWxMQpr0sDMq/dwCQvL+pVvHpWzb9zvi2SsToAKCCR25fiSHzkPAxI9cD/vdUam+KUCMktho1QqcgbMSx0slq+yASKwPeuP5CpCrHwRufjuwcWPhBE060RaSVMZw72RQitECRPD9xIWVco6AzA4T47LrPb27iodyJEcewmeNhcXBsvt/d62JC6v10rMAH5wOsdpwCpt2SLzv2ga+UpJBO+yNwTlwoeRnk9LUuUYh8RjEEjL0skkMINjIb9wvN/7hqD+GxYQKpwyeC5jPN4rIbmNmQw9Oh6UZNGkW9Ma8osE3o8Rx4vlB5bt8YCWCnXISr0UTtM3AOajQgNEAMol577VywU6rbmOlbguJY8EeNN/neHO/G8oVyuDqZqu0SchrC1a+5Qu/jMzxncM+OiO3dIJmWQy7a0HQWCL5fPneKZ6+WJ5BkKzsrXhFd841XZRBuBQ0798vKXF8JTA/KYvNdh1Hcp7Mkx8DvvvPzv03X759jMd32qWDk5D57MQTtPxzJLIgL/dcA+IcEcUQBlz9UKF/IwYGlz+zLq410B256I8LuMEFkExL2UQ3ZNDkZwPmJ7qnQzzsjEr1n0lc2RCFHl6CrXvtQQdPXlgtJQEHokAteY7s98alAx2gxDycWGB1d0EGTVaj5waNsXvFmYW9TjlXRYkXr27gZDCJZkIWgDRy2ikhAwQiZ7hCA6uDAbPyDLuyWf6zyRmNuUgyaAtU2YFILvfKvEr7xeeAH/vfgMbqwgnaWrOGi2uNgvbfEe6flJevAcK2vZSLacCgNRyr8CgOicgoZM51jL2z5XN+sSTLBIj7VlbiKOSU5dd63/VN3D8dzo9LY8+2fNYuluxBk06OckRFkbV6E47O0F1oj1wPCtCnw+LvrqP+GJvtemm2WhrPZM26nMLqLtDexnDi4ag/KV3okbnAu3OftWVM0Oa8pG8d9uH6HE8skFhcWm+WDlDffCj63co+fPKAPZ5X9Ynh1mEfF1brhe2j49hZbeCwN0LRHrR7p0MMJz6e2i0fNF7ZaOF06KJf/LnDq/c7uLDaKGVaAESBVZnE+u3QRKb8Z7u03ijdg1bWIERCBmr3pxKL/CQvZCJL9qA1HBtrDSchA8zHcCKsa4vOJItjq10rtfcB8dnK9oQBsQQtLm+Yc45E5hDl98h2PPksAC9wL1ukqCQDjP1O8fXe3u/h4lqjdBVyvemgblvTPWhzzpGXF5T3AqJ3duz6GHjFkkEA+MZep7S8F4h6o5KOsAfdUdh7VwaSeZ0bEMfOkUgGVT7Yf3p3tVTl+3joY+LxhYJGqXIoZMwQ4KA7xkrdRqterkhVysnx6d8PvPDp8DoukjSFxcU8JNxgy853k3jqYkHGIoZFEzQAeGJnpZj9dwx7CyYWT15Ywa3DPsbuHIVQrNBz92SIKxvljF2AEq6psUKPTNDKSm6BYPD3/U6ptoqj/rh04glEKoevzpM5xs4ROV90EYkjUMAiPhaDPOiI/VjGnVViN+6cXhBHvUnhsQhxXN1soe5YxYoG/8H/B/iPfrG0xb5Eq25jd60RztnLRIFtfv4StDmf6q0KwbfoiynnzvOvXz/AS49vlc7oN9viYT0ZFF/v1lG/lCVyHDurdRF8FwysZBKzSNAoTUmOBsUdAb/xoIPnLi8eWJWReckXYlkZFCCC/TI9aN2Ri3snw4WCRvkS7oxiL7k5zN03HnRKOzhKbK+WSyy+dvcErs9LuXxKbK2UW2vi+cKCeYHn+sJqHYzJAFg+p/MZNNF7VD7w2lqpl3L5uncywNjzF9qPIfPTLf6Se+egjycWWIsxJs6RbvFCjzyPy8p7AWCzJc6Rzlju//x71h+7uHU4KC3vBcSZxRhmZioedMfheVYGj4UDS+clTXFp0kgkwSVlroAoih31J/kurLF7tR8URxZJLEqNEQhw0BstxERKJ8dCa334PwH+wP8zlK+VDVAB4Npms8Dg92gfupyjO3IXCvQvrjXQrtvFgsYAVRK0x4qaQAQYjD30x95C+/+JiyvweYFZrzLYtyzsLSAnA8SYiLpjzZevxVwcZbywiMT3hSvrGLl+qft22JuEMV8ZiLmYkbw/E/EErbPY/l9tOAHLOi9Bi/b/Xmfxc+RS3PehIA57Y2wtcB1ti+HxnXYxiWNzA2hvh8ZGi3y2x3bahkFLQ5igLZBYXFhtFJs5EeD+yRCvPujge565WHqtzYUYtPJukRI7K41SPWjyJXW9hFtOtFa5BM33+UKzi4BsaVIe3j7oY6Vul7ahBYIE7aQ4gyadOhdhYuQ8uJNh7DrO2f+vL3gdAdEXVqaXLxzDUGJOnsRmu4aR6xceVPluwIwv0hPp2BZ2Vup4GLfan3Mdbx8JFzinpFQOEP2lvbFXeGSBlJQUHRgch3wJPyzDoB30Cg9MT2JntV5qXMc7B32sNpxSLnASG1IGPgwq1fNkqcF1XGSP1GwL2+36FIPGOcdBb1Sa1QcE+21bbH6AGiu4HPTGC60FRFXeXAVIPEHrCnnDIgHqhdU6Nlq1YsYMAQ6644X2ACCcHAvPQgOiBG2t/HrXtlroDF2cDnPey7F9OPbE3txeIGhkTPRKlpEdygStzKxQiccvrOBhZ4RekeHYCMyAgIXu2xOhk+O8YD86R476k9ISWEAE3ze2WvMD4tg7W8YLi6y3iFHIUW+M7ZXy92yl4eDJCyvzDYCmGDS5/8t/tsd32qUkjg96FRK0uCt2QRz1x9ha8Bx58sJqMWfRADIWWoT5vLm9UqA48QglaIyxJxljP88Y+8exr73AGPtZxtg/Zoz9dMGflPv/vvagi+2V+kLVip3VOvpjr3A/hxxY+F3PXCi9luxBK5qgeT7H3eMBbpTsT5DYWQkq3wXtse8eD8BY1JtUBtslE7Q7xwP0x17YXFkGrbqQ5pXqQTvo4bGdldJSCkAcKp2Ri964mLnLoj2KALBSt2Ex4DTOoM2ROL5z0F+olwmQe6R4oP+l2ye4utEMpQplIKtgRVm0N4PKV1mXT4n1Vi3QuheTy8k5SotAfraiz7aUlCzUNxsyaMX2f3/sYq8zwuMLrAWIgGaaic/fjzIZXORZk0Wsqf2fg7CotOAZeXGtMcWgnQ5dTDy+UIBasy1c22zNZywSzf2LBANAYrB3FmJ7/jgo+iwiF2KMCee8EhLH/e5iiS5Q0skRgkGw2GLBtzyn8+dBRXt55IrfaXOB6wgAT1xoF5s9FeB0MMFa0yltWgMgfC8UTQjlu2CR6ygZ+rkBcchq2TjuT8KiTFncyJhjOIVYcfphV8wAXIStfnp3FRYDvlGwD41zjsMqicXF1fmJbiyeu386RDvwHSiLx4rIYONS6aCPZRFWS7LOD0q0pxz1xwsVQwDB6r572Idb0JjvMIhNFlJQ7LRx/3Q4J5dQlKAxxn6BMbbHGPtq4uufZIy9yhh7nTH2F/J+Buf8Tc75jye+9grn/KcA/BCA75z7i3A+N+t89UFnoUAfiKrRRYPUL98+QbtuL9QXI+U7xwVNQu6dDOD6fGEGbbNdE2tZxSrf946HuLDaKDygLw55oB8Miz0I0o70mQXv28X1crPQ3jnoL8wgSK31g4Lr3aqQoDHGsNas4XSKQcu+b6fDCU4Gk4UD1O2SssPXHnTw/AIGIUAUGBZdTzoiLSJxBETFuTN0Y9cv/xxZZI6ShPxsRdnIt/d7aDhW6ZlUgLhnjBVnkGV1dGEGTSbxLJIL5a/XWzgZlEW2KEGbf8+A8jbdEhfXGlOJ7kEFqRwgArmvzzPuiCVoVVgm6SJ4/zRHnhc7O6RsdBEmBghMIEr0M4m5TIt9tmcvCyfHonNDH3ZFortIEvNckTlXUwya+HOjtdhne2xnBbeOigeNJ4PJQvJGsVZB2W2AkEFY4L5ttGvYatfmFyiCPcmZhZPBeOHPFjrn5iE2ruNk4C6UVACiX/viWqOwSU5/7GHs+osnFhdW8M5hf2ZG4xRiSdPdYNj9IkWxJy6sYK8zyk8spgo94ndab5b3RWjXHaw1nRlZeRY45zjqTbC5ABMJCFXdxOOFx1sdBnnAIsWXDwSqon/3Zo5rqkIG7RcBfHL6ZzMbwN8A8P0AXgTwI4yxFxlj72OM/Vrif7vZvyP7QwD+VwC/XuxXyf5QYgZUp9RA1Dhkw33RavSXbx/jPVfXF3oRrDUdMFbcxVFuqhsL9qCtt2oYuz4mfkEG4WTxAFUe6If9Ygzaqws6D0rsrhV33/R8jltH/YX6fYAosS5639497GO96SxcGVxrOtMMQg7zeftQMgiL7ZHtFdGnWMT21ve5GGdRMfguyjLdOuxjq10rbWwhsd50cDqYFHIfdD0f90/Lz1GSkJXS44LJp3RwLNvHCsTlm8XOLFmJXZRlFUzkpJDEceL5uH00WMgJE4ipDGSBYs4L7e7xAHXHWjjJubjWwMNY0CUNcxapoAJiXt/rD7v5c4XiCVpvsX43IC5xzNkHsbOjOxLP+NoCgRUgEouicjnf5zjsjRZOdGXB9dWCMsf97uJr3dxuo1Wz8fXckQUxBi1IrBZl0B7bbmPi8XzmM4YqCZoslBRNrOX+LzOAOw4h3yxmOOH6wMTjIWteFje2hTFZofcyY+gOJ1gtaXkfx+5as3Dfu0x0F2XQHt9Zwdj1cfckJ7GYcoMdLhy7FXJyZLFEd+hiteEs1AoAyJ7+Eomut3iiK4u7RXsHD/tjrDWchUiKb3tyGyt1G7/xyoOc71KUoHHOfwdAMhX8KIDXA2ZsDODvA/jDnPOvcM5/IPG/vZyf/auc8+8H8KOpH4GxzzDGvsAY+8Jkkv/w3TkeoDcuPwNKQr4cizBorufj5XuneN+1zYXWsiyG9WYNJwWDOFkdurG92IO3Hhx8IRlTROK1QMMuIKR5dcfCYUGJ4zcedHBts7VwNfdiicPy7vEAE48vHDTKOSa9UfHeqZsLrgWIeR+dqYA4J0E7qrZHtleEa16vQF/YneMBRq6PJxfo9wHKSxz3Oos5pUnMXsfsw/FBZwSfL87ESJnaYeEEbXFGFxAMT9EE7bW9DhhbrE8LEOdIZ+jCLyAVvX8yhOvzhfovgcgI4WRYjEG7E1SOF0l0gcgkShYoDha0hpd4/40NcI78OUaxpGlRpzdAnEvrTQf384K4OIM28mFbDO0FZFBAObnc8WACny/WywTErPYLSsqqJGi2xfDs5bX8/iKmTuJ4JThjirIxVRK01YaDC6sNvDOvxyiA3P+LMGhAuX6mUVA4XvQ6ysJ1LosWKzz2Rh5WGovtfSAoChdkfuQ7btHEQvYm517LxLiORd9d0XOdk8TEinNV9iMgXLGLFieqJrqyL3LufLLYeouu1XBsfPczF/E733i40L+XqNKDdg3ArdjfbwdfSwVjbIcx9rMAPsQY+4vB1z7GGPtrjLH/CRkMGuf85zjnL3HOX6rVarmB1Wt71ZgYeagXMQp5a7+H4cQvPZMsjlB2WAC3jkRPWNmZDBLyIZIvlLzAinNeqQrDGBNSqF6xXr5X73cWvmeAOCyLBqgyoFiUQZOHendUkEE76C8kb5RYazo4HbiFGAvJsi7KoMnDqIgD4ZtBFeqpBSWHkcSx2HXcOx0u1OsmsdZ0pnvQcoL9RQcGS4TJZ4HrWMViX2KzXSvsBvv6Xhc3ttql7c4l5DkyLsDEyxfvIs5sANCs2WjWLJyMipmEVOkbBEQSP/Z8jAJrcOnoW4VBA4Av3T7O/qbYZ/J8ju0Fk0FAvBvuHBfrQTsdeVhtOAvJoIBycrnDwGxi0WCnXXdwc7uNr5di0BZbCwBeuCxmymUrCWISR5mgLShxLNQ7GEPVgPjxnXZhq/3D3hgNx1qolwkQjN3dkwFGbk7BL2i5kHHJolJR2fqRP9A8in06IxerjcWv4+56s7BqR77jthaU5j1RhPmMFW4PemNcW/AcDBm0vMKLLCpZNk4Gk7D4vwgKzR0MINU2i7KswpuiVpxBq9ATDADPXV7DneNB9qiJR8kkhHN+wDn/Kc75U5zznwm+9luc8z/NOf9POed/o+oaMvheuAE+ONT3CwT70hp00SQGEButqMTr9mEfV9abCzW1ApFGeCBzppzA6qg/wWDihS+PRbC9Usd+gUFonHO8fdBbuKIPROYuRRwBwwHECzjmAcBacKh3CzBoni/0zov2DQIIetAmMTvi7JflraM+2nV7ocZ/IKpwF5mF9mbYE7bYfQsljgX7tB6cjkJb3kUgmJ9iEseqvUybYQ/a/Gf77rGw2F/0zAJE0nQ6KFYMeX2vu5DlfXwtABh58ws9khVYNEEDROBb1Gzo7vEQVxcsYAHRGSkd/OSfiwbE2yt1XFpvlLKjr5JY3Nhu5QeosSDudORXkngVCuQCdIJBtIvKkwFhFPJGwev4sLM4gwaIOVdH/Ul20S8WWA1dH3XHQrO22HtZPhu5zGcMJ4NJpetYxjVyP+iJXDSJf3xnBZwL9+lMBHtSvk6rM2g5a4UJN0N3NFlY3guIovBBb1yod1AW6hbtebu0JuK+XHYwERcs+u5aa9ZwYbWeb+4SU/OIvsHFr+P1rTYedkaFHI87o8UdTCUeLzELsGqCdm2rBc7znHVpE7Q7AG7E/n49+Botcg6LO0cDNGuL9yA0HBtrTacQg1bFglZio10vwaD1cb1CoC+DjIHM5nMCK0kBL+qYB8h+pvlBo5jd41dKdNeCQCO31yPAu4d91Bc0ZAAiBq1I78WD06GYb7WgxAsA1lvOtLnFHAbt+tZizcFAOQbt1uEA7QVHFQBAPajMFmHQPJ/jYXe00KwhibWGg+HEBy8gcbwTJmiL7ZGabWGt4RSSb0aMbjUZbJHeC9fz8eZ+D89UeK5lEhNu/5yCwV6FOTISm+1arActe++PXR8POsNQMrYI5ItfJhQng0kQfC8uhXpsu0AfTgxVAoIb2228e9jPZn6mmvv9SgGqDOSKOBDKc3m1wno3ttshs52HkethOPEXDvQBhMZHr2RJKhM2+5ut2sJn7lrDwUrdLsegVfhsjwfuckWKmYe90cLyRiDezzRfLjeomKBttGtYazr5BYqmGPqMGx+tLnFcb4BzFJqbW8WuHRDtMNc2W/n7PzH2p0o89eyltWImOQokjtLQrAiL1g+y+Cr37dJ6A/sFR9IcVUzQrgf3IHNPEjNonwfwDGPsCcZYHcAPA/jVCj8vE4yxTzPGfs514xKlWdwJtLeLHpaAqHIUCXaqPnSAYNCK96ANFjYIAeIJWnBtcgKrb4SmHYv18gEicS3CoFVlK4B4X9j89d7e7+Gx7fbCfSoyyCiaDAKLOThKrEsGrcBg4NtH1faIrMx2Ciafl9eblZ61zXa9kJHGYW8Mz+eVAn0ZjIah6xwGbatdQ7u+eEDZbtiFgqC3KljsS2y0iiVo90+HGLt+5bWAggzayRCtmr2Qw1d8veOI9s/8vgenQ3AevRQXwXpQCZYJ2unArcRWACJILTPnqsp6N7fb6I+9bAY8duafDr3Kn+3KRqtQ71Q3uJ5VGLtrmy10RvNNIKIgbvG1ng9MxrIdOKcZtCrJIGMMlzea+fPr5FoT4QZYKSDeLh4QnwwmC0s3gaifKZexCPbksKJUFAicHPOSmPUrwE/9K+BT/190h9UkjrLAW8TgQjLxVZifa5st3M67Z4kErQoT/56r6/j6/Q4mWewgm5Y4VtmPkTR1/n7sBc6SVZ7tndVGSK7kQczArM6gAci5b+ps9n8ZwL8B8Bxj7DZj7Mc55y6APwXgnwF4BcA/5Jx/rcjPKwvO+Wc5559xHHtu5XvRvhGJdt0uZJJw2BvDYlho3ppE0R40WR1e1PwBiExC+pP5DNprD7pYqdsLm4QA4iHqjue7Ad6tyFbItYBiSVNVyWHDsVGzmcYEzUF35EbMT56L41F/YYt9IEpiZECVhwenw0qMFiA0+UVYJvkS3F2Q9QQQ08nPt9mv0mQt0a476BeQbby930OztjijC4gkZhAEb3mQsuxLFZ7rMmZD90+HuLTeqJTEb7RqOBoEn+vSi5nfJwPOa5X2v2TQIonjegX5DiAStLm21TFUqQ7LcyZzQCqL+i87I68SgwaIILBIsCMLPlXWk/d1Hosmz+UqQdxmu44rG81w/MsMEiYhVZIKQBQnizBoMjmt0vMjJcD3CkgqO4FD36LYbNew3nTyCxTB+TGsaLYCCInvXKv9y+/FCA7Gno/VigwagELmZL2Ri1bNXsjtW+L61jwGbfqzVNn/77m6gbHrZ5tpKDQJkfFKkREaIRNfJUFbqeOwN84fWQBgMPEwcv2FZamAKGAxlnNmqWLQOOc/wjm/wjmvcc6vc85/Pvj6r3POnw36yv6bEr97BeRLHBc1SJBYbTiFmJiD3hhb7cVmrUhsBpXveZvloDcC59WkQrJaGuaDOYGV7FOpEli168UYBBUM2moJBk24AVZLLFYajkhinvmDwPdmj/+7ddiHbTFcqZB8rjVrQjo/R+J40p+gM3Qr7f8o0S3GxlyusB8BwVYXkTjKZuwq900G32EKQ1zoadVsDAoE5e8c9PDY9mIW+xIyYJOV2iw87MhEd/HrGDHx84079k6rOW8CYk8eThzg//xPgR/5+5nfJ1+ClaTSsgdtIBm0av0+QGRGlJk0AcDj343/44U/DwCVWFuZoOUGO8wCLBudij04gDDVKiIXkozkWgXGQj6P85gfWWWvEsQBYibn65lub9MMWhXJISBGJBRh0GSCViUgls/HvTwzmQDdkVtpjzDG8MSFOT0/TDJoQKOinPjGVhu3jwZzx8RIB+aqNvtAMQatO/IqJUyA2P/73ZxerQSDVuUcec9VIfH92p0MBjlIBjmzAjnx4knM7loTNZsVY9CC+G5R51lAJGg+nz9/WJ5ZVZ61umNhd62Rc2Y9QiYhypAREAwCaUcVBgEQAUGRQP+wW43+BEQPGufRZsiCfAlWaXyuOxZaNTvGoGVv8jcediuZdgBBgDrx4H/8LwM/+ZuZ33fvZFhpdhEQkzjOCYhdz8dBb4SLFdgKIJbE/+g/BD7+FzO/79ZhH1c2mqgtOCMEiILGyNY8/b7dCnTOVfZ/u2aDsfkMGudcBN8VmBiguMRR2hlXdXEEAI78HjTOOe4cVWfQWnUb/SISx/3ewoY1EqEd/ZyXjmTQqjCRcq1wi8xh0KoYhACxQs+THwPa25nfJws9VYyNZhk0txJbARScK/THfw2/d+0/BlCt8i2VAe/mMhY2wGx0hm4lyRUQyYXmBcTyPKnCDkYMWn6lXQbfVYI4ALiSlzQlBlWvVQy+r2wIR8B5hhMqErRL601R1S8gcVSxR+aaksQYtKrP2o3tNgYTb25fWCi5rfDZLqzWwVhxBq0KWwfE9n/WfUucw4s6bwJCbm9bDG9mGYXEhosD1Rhd2xIS3yKMrny2Vyokn9tBDH0wx2dCvgOq9M0CyO8dfJRcHNUh/UPdORaHQNXK92rDKSRfq+rwAkR2ocdzLLL3pSFJBV0xIA720FguY3O4no8Hp8NKUiEAaAUP0ejb/yxw7SOZ33cnmLdWha2Th9/cRLc7BufVGASxnlOoT+veSTVXOSA6IMLEIkPiGA4yryCntCyG1fr8z3bUn2Ds+ZVkeYDY/0UYNJlYXKxQoJBMSBRKpu+306GL3thTIpWel6B5Psetw0ElB0egeIK21xnCtlilYki7LqQ6gznjOjjngcSxeoI2r/ACiHPkwmqjUgVeJvHyHOkMJpX654DIXW5eQNxXUB1u1oSDa25fGLPAmRUE39UljhOPz3UQ7Y4maNXshYfZAqLy3axZ8xk0BTIoIDAT6I4ykqbo7Jj4HI0Kew4ALm+04HPg4Zyg8VRBglZ3LFxcbcwNiD2foztyKweoj++0cfuony2/Dmz2hx6rfM9kC8itOUl8JJVb/L45toWdlUaoSshDf+xWYrSAGINcINhvOFalZ82xLVzZaOasJX62H8QkVc/IiwXnePZGLtp1u5La5EJBp+qI9a9437bay8+gSZMQz81+EcgAtWpiUSSwAkTSpCJhAjDXal/a/l+oMCNHrtef4+K43x3DryinBIBWYDs8mNOH80BBlb3o8Og9BRIvoLgM9t5J9c/WqkVyAgCZ9006BVUuUDSduQzaAwX26YCYhXY6nMCbI/F90BliZ6W+8IgJII2JTP9ZKiS3gJQ4zt+PY8+vLMsOJY7zErTTES6uNiq94BhjoudtToJ23J9g7PrVz5G6cN+cJwMXstSKzHjdAWPJHrRqVf3Ndg3NmoV7c6V5HuqOVYltB8S5/SBvgK5lA5YFz+eV2ZFwbuicPjQVgT5jDFc3Wrg7RwrYU9CDBgi23ucZgVwsGHZ9LGyxL1F0FpoKBg0Qw7HnrSWLIpULFNtt+Dyn500OqvZ4JYYVKDisGvEErdp13F1r5D9rsfWqFwzEHpmXyLyx+pHKex8QSpxM2WGg4pFF46rJ5+5as1iCNnYrfzbpSnowh2UNEzQFDNq9k8Hc91cWzkWCJk1CbDvbJCRsEq8YWK3oZNDakkHLD6zkS+LCWrX11poOwvdNRmAVzi6qXPkWG3tec/xBd4ydCswIUNzFUYVUTq43by3OOe6fDCtJrgCEA4XFYcgy9//9kyGaNatSkzVQjEG+H9qnV7tvm4HEdy7zczrExYpJdSRxlAla+nVUYVoDBIWeSbH9WGW+G4BwDs18Bq3aqAKJ9aaDwUQmaOlB1YOOmnNESnXmFXruHg8qF+ckg3w6dME5V+LiyBjD1c0W7s5hLPpjt5IsSWJ3vZlf1WcWeHDPqiZNYYI2J7jqDN3KlWggSD7nJhbVZVBAtG/TZY6xBM3jlVhbID4LTU+CdnWjOZeJVBWgyuLTvGB/5FW/Z3PXCiB7rKsmhJfWG4WGVVe19Aci9dRhHvPzZ17Gz137mcryXkBcy+x7Jva/H8SQVQqnAHBxrTGXPQaC61jxs8mY/bBAUQlQIHHcamHi8XQp7DeVxPFoAMdilSu2kh3J09WPXR8ngwl2KjJaYYI2pw/noDtCq2ZXrlQ0azbGMpPPkMrJl0RVdqQZPEjzBhAe9MaVJFdAdLDPSyzkQ1I1sSgicTzsjTH2/MoJmrznftDcn4W9zgi7a9WkokDAoM35bA8V9DIBwsURwFwnR2HsUnE/SiaSF2PQVEh85zNocj9W+2xFGbQHp8PK9wwQe2Tk5V/H6Byp9qzJYCNP5sg5D6TS1e4ZIALSztDFyPUx9vzKLo6AKBrenWPK0B1Vl0EBItnPreozK6x8Vw12ZNA4t+dHAYMGiHfSPFv/iEGrGnznmEDEGTQONJ2K/W4lGbSqrNal9fmMRdiDU5Flkj3R2bOgpMSxOuvZqtu4sNoowKCJc7lq8rm71gyLbHnojaozP6sNB3XHymerN67haGJXZusAcd8edIbp0lTGps6RekXW/+JaA8f9CUZu/vtSxXXcbhc7szoKRiMA82ahLWOClsOgXd5oVnJVBMQh4XNgOMlu2H37oAfOq80uAoCNwJ53XuV7vzuuLKcEhBRjXmD1QMFwWUAYTgDIlYtOPDWJrm0xtGr2fAatMwRj1cxWgGISx3thgFpdKgcE0rwcQ4a9zrCydBMoxqDJl0TV6yjdn+YVKB4Edu1V0HAsWCwmccw4HG8fD1C3rcpy4iIupqHktuJnkyzP6dwezFFlJhIQAWlY6JlzjlRNCGUva961VDHsXmK9VUNnOAmT3aoMGiAC8Ltze9CqV9kBsZcedkfZsuGgBw1AZeZHPv/zrPZV9LsB4p20d5pvSqLCZl+sJT7bg9TKd7TnOVhlieNGq5gM9mQwwWrDqdRfBIh+PlGEyH6muooYtCtBTJbJxgRFx5HLlUjzbmy35vegDRVJHIM+xXkS/e7IrcwOMsZwYaU+V5rXH3vKGDQ+R5qqkkED5ssOuwoSNMe2sNWuYX+uSYiaXtbcQdzLwqCFPWiehzwGraqDIxA1juZVbOUg56d3qzkdhs3983rQuqPKMkAAaNTsuQNm758OUbOrGQkAUeU7N7CSw74VJJ8rDWeumcBeZ4Ttdr1yn0dos58DySBUZ9BkgmblOm+qkq+tFehB2++MsVK3Q/nlolhPmDKkwfM5Hipg0BgTSfw8m/27x0Nc2WxW6tMCpMTRyw0m905HSgoGzZqNum3l2uz7Psdhb1xpgKlEq25jPGcOWjhzTZHEMa/Qo4r1BMT+Px1OwmtZtQcNEP2MD7uj3Dl1PQVGAoC43l5wr1MRq3xXTSy22jUwNl/i2K04T0vi8noDY8/PlXn1xy5si6FRMWjcWW3AtliGpJJN/XfVRJcxhisbLdybww5WnTklIWOJo172eaFK4ujYFi6vN7NZrdDFsZpph8SNrTZuHc6XEwNAu+J6YZ/inGBfBfMDiDhp7loK+rSAqFUoT5oqz5Gqz5o0/5rniNlTJAMXfbr5z5qqBC0cVl1gjEAazkWCVrQH7dpmtWZ7IJKU5TEkrz3owmLVE7S6Y2Glbs91sjvojnFRBYPm2DEGLaN35ETIoKoGqFLimDesV9LMVZNBQBzu3XkmIQp6meRavbGX2/h5T5GRRmsqQct+XB+ejpTI11bqBRi07ggXFFzHhiOrp9mB60FvBF+B8yYg2BhewCREhVSuVbfBef5nU1UwAIBGzcIoh/U/HU7gc1QavCnRrMXPkYyeyNPqxi5AtP/zellDgygFDJpkkE8GagJUQAwH5jy/x6g/VsSgzZvPZNkhg9aoKM1zbAvb7Tr25ziiCZOE6olF2KuVE1zJPpWqUm/bYri42pgrceSonugCyHfNC3A6UMNEyj6cPBbhNJR4URtOBGZiLldSoLix3cLd40EuqyXbLqpKU+U7KU9S7Psc/YmnJPncWWnMdR/sj7zKbB0QFZazR01YoYtj5QQtuI7zZLd9BfPkAPHZ5kmlBetZbbg4IPKJtaaT/tmWhUGLwJHGoHk+x4PTYeXGfiA+rDcnQdvr4OZ2u3LlDADaDQeDeWYCnWHlKjsQBHEhg5a+OVQ4DwIR8zPMqXzLSqiKBK2IcYdgmap/Npl8jnPm1jw8HcJSwI6EEkfOMnvQBmMPnZGrhEEr4uK43x0p2Y/y+cnrU1Rl7AKIPenzfInj3ePqM9CAYhLfhx01BQNABNt5yaB81qoaGwFiT47lUlkM2kl1i30gbjZUgEFTcN/qjoWJy8M92VZwxl8Mnsu8RvieAhkUEEnzMs0LYtIkFYnFzmq9gElI9aHYwJy+sAAqZFDReo10iWPs7PAVMGgA8Pi8gc4Q56QK+Zpk0fOCfRn/VO3BAQSDnNlfF7o4VpelAqKlwPV5LtM0cn0wBtTsasG3TNDyjEIGEw+cq/lsO6vzJY7dkVuZGQQi2f2DAudI1SKcXOv+HCMlFW6YgNgj8wx5OsOJkr5ZQCjl0tuYli5BQ2picdQX1vBq2JH5lu1vPuxVZs8k6nZ+5XvkisGLKoLGpmPPHTB7+7ivRCraKhCgHiia7wYUc9/cOx2pYWJq8+WbD4NB5lUrMHItL4dBi8YHVA+I1xoOumM3lx3c746UJNWy8pa3/1X1RAJISBxnr+VEzgBUUOgp4mL64FRNwQAQ1zKvp0QasWwpuG/NmoXRHJt91YWevHPkzvEArZpd2cEUAOqOjbHnh3LEqsEHELGWeb2WgkFTwNbJeUlZpiRT0iQVwf78qn5PUV9M5HaYHXz3FUm8gBzXyCkGjSm5jk/srOC4P8ndI2PXV7IfpcQxz8lOlcQREFL2Tpb82op6rFWwTJcKsFoj10fDsSqzrPKdlCfNUzX2AZDPWn4PpnCDrb6WZH4yTVAsO8agVTTkWWvi0noD//L1/dzv6ykyUrqy0cR+d5zfgzmqPqRdYqNVS3+ul49BA9KyTknVVzWbACL3p7x+pqP+WMlagGS1sgNUVb1MgDQJCf6SEli5no+7x0M1CVoBe+yDUOKoJrHOY9B8n2O/qyZBkxXTvM+mimWyLNGEnmcSIl8QSkxCmg44ny9NVSFxlNcx76B8cKrus7XiDFrK4Xj3eACfA9crDPuOrwXkJ/F7nWFli32JRs2aw6CJAGlbgcSxVbMxlBLHzMHpago97QISR8F6VncwBUTBbOz64bVUk6BJt9JsKbsYZquArVttoO5YuT0/ftiDpiZBy5PKuZ4Pz69uRQ9E74m8xKKrSAYFBAlaKoMwnaCpYCLlsPq39rNZtJHrKUkGJYuex8Z0hpPQfKsq1po1dLOcsWNDj1XctyIs63DiKdv789bqKnIVBcR9G0783GJVb+wpYdCAOb1ajIWGW1XPSMti+OR7LuO3Xn2YGcP5PkdvrEYqKgs9eQ6cHUV9s4Bwa//mYdBSEAb6CpiYiEHLDgg6Q1eJ/TIQBQRZkPbMShi0mo0Jzw6s7p8O4fk8HPhYBUVYpsPeGLbFlDQ+rzSc3IPrsD+G63OlDFqeNE9VgibX83i2zX7omKdC4hj0imTJHF3Px1F/rEjiGDSI5zBokh1UwY4LBi07QXs3CGpvKkjQ5jE/ns+x3x0ruWdAIHHMuY7SkEcFy9Ss55sNnQwmOB26ShI0GbTNkzheU3BmASLYGLl+WDRQERAXcSvtKUosLIvh+larYIKmRuKYF+gPg3ebirXqjoVmzco1FeqP1BgJAELieNyfzJ7zMz1oChi0C2L/5skcR4oYtPWmg5rNcq3GeyMP7Vr1Xj5AsHA+j2bUTYFFPdZqJL5BgpYjOxxN/Mp9U4DYj9sr9TkMmpq5fEDUCpL1vE0C5n9VwVqAmAWYnaBFDJqKPfn7XriEkevjS7eOU/9/WTBrKeyvyxtrocp5FsiROC4Lgzbl4pjyoWQFT4VDWXtOgjbxRAVDFf3ZqOX3jkibU1UMmnyo0gIr6X50XUGwI6noeSzTVrte2ZAECCReBXqZVEjlijJoKgoGgLiWHlimscu9Y8myVg+I5Ysrq2hw2B+DcygxrYlMQvIZtAuraow0RA+a/NvsnnvnQAS1j+2oY9CyEovD3hiez5XIUoH5EsfDvtoetElOD5o0O1BxjhRhIoVBlJrrWLcZxq4X7n8Vgdx604FtMRxnMGiezzFQ1F8EiALDu1kJmmWFRQpVEsfuyM0sVskzWcVagBh7kOdWKuSU6hg0IKXSzpIMmgL3we02LAa89TA7QRt7ahI0xhh2Vhq5TORE0VpA1MeWKnMMzg9PEYN2YbUOxuZJHNUwaIBQduQxMVKJpYKNCQfDZ9y3fpAMthUxP7vrOTMVmSXaLlB9DhqA8PzOMhxSKTmXQ+gzRwhAShxVJmj57TdZOBcJ2pSLYwpkRUFFVV9W37J60GT1ruqwSImGbWGcE1jdO1EXfDdrdvhQpQVWcpjeje3qa9kWQ92xcivfKuZbSTQcK9e0Q9XMKaAY87PfUcMyASJI9TiynQdPBlip20r2ZE0maBnXUj5r2wpkqTWbwWJzGLTTIS4qSmLEdcxm0G4d9lG3LVxSsF5UoEg/mKO+QXX7P6/Qc9Qbo+5YSpKApmR0gdxzRInEcU4v63AS9OgqOB+BwCTE4+G1VJGgMcaw2aplDmSX8k0VVXZAWo3rYdBkUTTLgU0lgwYEYxBygp2R66GhaK0ibAwUSRwbjhiynJtYKGJ+AFGoyWM+VfW7AVEfWyrzGetBUyEDdGwLF1Yb2MuVOKq7jrvrzVyTkMjSX41JCAAcZty3XniOqJM47nWG6f3ozILPmRKzFSDq0z3MkEuPPHH+q9iTsiia5xrZV9TvBohRLaeDSYrEd0kYtBAcmQyaYzElQ0Vlpd7104OdjsL5OIDYcPkSxwG22rXKM6cAYRIS2YzP/rzbRwMwpiYZBIJelRyW6cFp9flWEnUn32wldANUEHzPkzj2Ri4GE0+pxNHNkTjeOx7iymZLUQ+O+BmTjAQtMpuovv8ZEw32uS6OnZGyJH6eSci7h31c324pYXTnSRzDvkFVBYo5TPxhb4ztdl3JHpmWiqYwaApdFR3bQt2xMnuCVc5AA4LzWLFJCABstGuZDJpk4puKAqsb2y2cDt30+ZosKtKp7MPJMgpRzqC18hm0ieejoaCiD0QJWrrjm9j/HNXt2iW22nUcD3KSJk9dYrGzmj8eQS2DJhO0bAaNgykrUFxazxiPEEBVLx8wn0GTxUc1cuL8wfDyHFERKwLis008nl5YssQ5Urerm60AQgbOGDJnHMrYTsWzvd5y4Fgsd57i2OPK9v9mq46x588qrpZF4hgh3Wb/IHDMUxFYOUGA6ma42J0O1NnPAvMr3/dPhrisKGFq1Kzcyvd+V8xlUrUx23U7t7lfZfA9z2ZcZS/TPHt4lZJbIMb8ZDrmDZRIYIGoQJGZoEmzCQVSOUA6Aua7OKpgtACxH70cm/13D/tK+s+A+S6mDxUWDICAQc5j0PoTJQ6OgPhsPGTiZ6/j7SPhqqhqj7TrdqbEUWWPLgDUbTuUHALqEoutdj2TQZMzm2oK3l9AJC2VifIUmJA42hZTIhuWCVoWY6EyQAWkxDH7nTJ2fSWfC5gzn0kmFlyNxBHIT+IB8dlU7ccLq/kSx7Gn7jrKWCn1vkmJI1cjcQSEK+A8F0dV+/HSegMPuyO4Ge9Llb2sO+H8uvRzxA36gh1LzWeTrFZ6/5SQOKqKFW2LYatdzyz0SEWPCnacMTa3d3bi+UqkmwBCj4XZ67h0CRpSA4KDnjpDBrm55WZPImTQFEkc5zFoh/2xskC/4eSbJBwPJthQYCIg0arZGGSwWhPPx0FvpEy+JivfWRa0e50R1puOkpfpPIfKMEFTJF8TDFp2gnb3ZKhM4jU3QZMMmgI3QEAku1mJruv52O+qS+Kb8R60lGt5/2SojD2WL66s6ygrvOrmoOX3oB30RthWwHoCwXXMYeLvnw5xZUONqyIgZI5Zia7KGWhAdN+kHEtVALLVrmW6OMp3TdWRHBJyT6W6KwaBlSomRspYb2UMIlYZoAKCjemkOqIJTDyOmqPmOuZK84K97SuSOALAZis/QRu5nrL9WEjiqChAXc+9jtLFUY3EEZgvOxxO1DFo17faYg5vhlwuZH4U3LdmzcZK3c41CQEikqEq8ve/cERWdY4AYk9msVqhokHRntxeaWQykYC4liqkm0BOgrZ8DBqQlnU+7I6VGTLYltDVZjJoQYKmikGrz+mdOuyNFQbDMZOQFLncSX+CTUXSTUAkMoMMBm2/OwLnUNqDBiCTjdlTOHNKSlqyeqeOFFqaA4JBcDMGVY9dkcRcUWSSIBO0sZu+/6UTnQo3QCCfQT7oBfMNFd23ds3J7EFzPR+H/bES8xMgJpXOKPTsdUbYaNWUVd/nuTjud0e4qKiI1XSs3F7W/Y66ghmQn8TL4c+qpKLypdwdTeBYTFnStNmu42QOg6YqsJL3OZX5sURgpWrfba/UsdZw8G6G+6A8I1X1hc2VOLo+6hm96mVRsy20anbGDC8pcVR3LfMkjpxzpUnTzmod/bGXyUyPPR72I1dFrklI8E7jgVxOBS6tN7DfHWcWx+QcNBWQBYrbGT2fKntZASFzzEosZMyqKrGI7lt6gcKFpSzRBYKigQaTEECom/LmN04UMshhgjZTfFnGBC2NQVNoaQ4AjsUyKWspcVRls9+Y0zt12BsrlJPl944cD8ahJbQK1GzRcJ+G0FVRocQLyDa32OsMlRkyNOtirSwGTQYQKsYHACLRdTNMQvY6Q3CuxuUTAOpOfg/aYW+Clbqt7GDOC76jPaLKbMWK9WBOX0vpTqmK9XTm9PKp3I9A/hw0zjkeKkyaWvX8c+Rhd6SMGQRE0czLKJgd98do1dTtR3mO9Ebq2ApgDoPmSwZNsTQvlUFj8GChqeizMcZwc6eNtw+yAtSgv05REjNP4jjyfGUMGhAwdjkMmhhUrYhBC/ZImgrE9Tl8ri7Qv7CS3880dj1lvXz5TEzk4qhKmid7B7NMIITEUR2DBsxnkFWtt7OazTLJmFXVdcztHbSEUZTKM3Inj0Hz1CZoeQwy5xwTj8NRtP9lMft4WRk0abPv+x6yetB2FCUxQH5AoJNBm3g+OkNXaYKWV/k+6k2UMSNAkOhmmK1IiZcqk5CQQctIdvc6aoZUA1F/UZat/+lArZFMq2bD9a1UOZmUxKhiWedJHI/7apP4Rs0Ond6SUL1HWnUnStAS58h+R50TLBBJMbKe7WOFPWFAvsSxN/YwnPhKJbdZiS4gAiPVCVqWouFkMFFWCAHiEseJUvnOZruOwcRLvUfyjHQUsXUrDQftup3ROyUMh1QFjADw+M5Kpq3/UKHECxBB49j1U4s6IrBSxzLJ9TqjbAZNKG7Usazis82eGaoZhHnDqlVKRdt1G7bFMkxCIhdHRXlFqMrJMgoREkc1i13dbIKxyLk2CZUSR0AMa8/qQZPFcD0SRwseVyc5BPRKHMWYifzrWKeWOC4LgyZt9q2UJ7g/DhzzFAYENSub+TkdumAMWFPU0Fq37cweNDlcVlUg16xZseb+2Wt5Mphgs6UuaHRslinxehj2aalZr57DoHHOA0MSRRLHOUO45YGmao5GWzJoabLUgVq2TlbfMhm0vjpGF8ifX/dA4WgEQPQy8YwezMjYRVUva2A2lLH/uyNX2RkC5Jvk7AeBujKJY06hZzjx0Bm6ShO0mm3lMGhqi0rxHjSV1eG8YEd1DxogWLQscwuPMzQUJmg3d9q4fdRPVZ0oZ9Ba0nBiNtj3fA6uOGhca9ZyGbSs0T+LQO7jNDMZlXP5gMiyPZtBU5foMsaw2shiIqMeNFXMjzReyjIKGbm+Msltw7Fxaa2J2xkM2tD1YFtMGRuzs1LHQYYVvSz0qDd3STcJcRWahADisx31x6lnvTxHVK23s1rPnN8oYx9V1zE8s5aVQZtCMrAKKt9KGTSbwctgfk4HE6w2HCWOkYCUJmUMs+2r/WxNJx5YTb9YJp6P7shVzKBZc90wVSUW4dDjlAfuZDDB2PWVBY0124JjsVyJY6tmK3vAa7YlbPZTHugwQVN036TEcZyRWBwpDoibOQza3ukIjKlLmlr1bOZHJmiq9ojsZc1KdDtDdYMwgcjFMU0e9VCxaY2QSqcnaA8VJ4PAfAZNFVMNRC9lqgRt5iWNmIujoootIK5/ZoKmUJYHiMHYE4/jfgpjoZpBWA+v42ywL4tzqnqngGDuWqqkUtwrVWwFIGSwAFKNQkYhg6bOxRHIY9DU9eAAOVJRSyZolkIGLRgwnmEUMlJoEgKIPrSsuYMqZ9cBolif5QYbuTiq2ZNyuHaWSYhHYBLCebprZFSgUCQVDWLqNBZNdYK21nDA2BIzaNNIJGg9tZVvQCQWk4yAoDN0lcxbk6gHfVppwwDl5lHpmJfVOyI3j9IEzc4OrDrDCWyLhXLBqsjrQYtmTqlh0ADZO5Xdp6iqRxEIJLdgqRJH1QxaKHHMSJqONTJoe50hdlYayg7Kqd6p5DmieDQCYyyXie+OXKwqTNBkMpHGokkGTeXYh6xE96HiRBcQAUdWwUy5xDHYa92RqzSIW89puFfdgwaI92FqD5olJY5qAysgK7FQ34MGpPfFTFyZ6Kr7bOvNWoY0T0oc1e2RjZa8jtkMmnKJY46kTG2BIus6RhJHVQzazkodtsWyJY4KGTQAuLzRzFxLpSEJIBLdice1MD+2JZjPVAattYUTrCndI9tBDJ82/mGkeP/LmXJpTreqCz1WMKM5z6E1898q+Q10IsEiyAqQapMQLyOwOhmMlVZs86R5MkFTFRA3HCvTZl++FFQGO3lmKyLRdZTp98MANSVpUi3xAkTAkcegqUziLcbwy+7HwT/6kzP/H1mClmkSos5VFBDXMUuaJwaZKzTSsC2ET/WMxHGMhmOFVUMVqNks8zp2hy5WG+r2SJ6LqWp2sBWXOCaCqpBBU9yDlpXoClm2+vO4O3KVS+WAbGkeoK7yDYjrn2qz/8Kn8a9r36a0B20zs8ciPgdNlcTRyVxLtZEAkMP8xHrQVCHTTADA2JPjCtR8tnbdRquW0acIcS1VX8e8OWg+LKi6lJbFsLvWwP2T2c8m3TBVFl8urGb3hakcig3MkUordoOV66Xu/x/6X/A/t39CucQRSGd1VUt8rwau12nSVFdxDxognu1vSpt9+RJSZbMP5DM/Bz21hiR5gdWR4gRtSpqUqPypNpsABBOZ1TvSGU6UGa0AMYljynWUL7wtRXOggGDAcl6CpjBotC2Gf+Z/FP4HfnTm/zsZTFCz1TGReQma53N0hq7SJL7pWJkujg9O1TodWhbL7kELXA5VFQwAwLGt1ALFcOJh7PlqJY7SuCZFLv2wI6SiqsY+iHEd+VJRpQUzO9u0icokpDt0lVbZ83vQxB5RGezvrNZx3J/M7r/v+M/wj51PhaNCVGAjR5o3nKhNLOT7KW2tMEFTHqCm9+AAAMuYTbkI8lgtmeiqCogZY7iy2QznCCahsgcNENLUdIljsA+ZpfTs3WzXU5N4GR+oZJAvrjUy+5lUDsUGonOkO5q9lhPFLo5yvdT9v7qLQ6+tXOIIpMsOVRdfHttZAQC8k+I+q5qJBEQBffkljhwpDJoICFTKrvLcB1Xa3gMxaV5KYiEPapUzp7ICK/nCUylxtHMYhFPFPTj1nOsoP5vKQK6Vx6ANXGWDzIEocEsLUo/7IkBVxkSG7oOza3UVm58A+fbwKo1dAHEdsySOR/2x0gQeEAd86nUcEVzHHAb5YXeM7XZdWaN608nuQYuMjeh7Wceuj/7YU3pmxaXSSgPUVrY0zyVg0DZCM43ZQG44USvxksZSWQGxbTFlwU5eECdl2Wp7p2oYTvzZ9xhLL/RUwc5KHYyl28PLAFVlQHx9q407GQnaRDGDJkxCshNdZQ1oAdaaDrop7ptRT6RKBk3syTTGWvSgKWTQGjnniKe+lzXTJAeSZVX32XZyChTyvqk6k1cbDi6s1vFOyvxGbQna8jFoHLMM2hhrDUepZCOvKf2wqzpBy6583zse4sKquh4cy2Kw7SAoTCZosgdNoYtjLec6dhTLACMmMt0kBFD72fLmd6lm0KzgQfZTDCBOVZskONJ9cDbQl/Isles1nfTr6HpiALfKvkFxHdMLFL2xh5W6uoQJEC/KtOuo2uUTmC9xVMloWRaLrl8yQetP0FY4Jw/I7kFTLe8Fpl/KKp0O13LMLaJB1QqTpna27HDkemoZtJaU5qUxP+oszQHRE2axdKfDCZHEEUhjPsU5whQmFo5tYWeljocp5haqe9AA4NpmC3cy3AfHrmqTkIxA/8oH8e8v/iC+gmeVrQUIY4Y0lknGByr35IWwnyklsXA9bUx8yKDpMHeBepZ1qwCDpvJaPrazgrdTErQxRS9rq5ZqEDUP5yJBi+ag+TNZp6h8qwu8gcA1L8MyuDNylUoc85ifuycDXAsm1avC0F7DhDWAtatTXw970FQyaJaVaTOu2sUul0EbjFF31DbG5zFoqo1k5DmRxqCp7sHJkzjKg1olO5jFoO13xeBolRLHKQYtcY70Rq7S/jNADmqf/WySiVTbg5Zd6NnvjpSNs5BgmQma2h5FICiYpZwjJ0FCQNETDKi1a1+tCycv3QxamuHEcKJWdtWsCbvtLAZNZfHUshi22unzkkZEDBqQct/YzH8owcW1JvZS7OFHintwAOE+eNAbp46LoehB647cWZfZehu/dvP/jpG1omwtAFhtOuE5G0ckcVTbgwZEve5xDBW7OK7mJWjSDVbhOZJp7gJxLVXukZptYa3ppCdoiuegAcBj2228myNxrCsceL/Zqi3voOq8OWhdxYE+kD2o+qgnLvC2wn63PJOQO0cDXNtUxyAAQNdaw//7fZ8Fnv7E1NeP+xNYCue7AQGDkDOuQG0PWjaDcNIXSYxKjXuznu7iyDkPPpu66ygZNC+FQVPdgyODxDRpXkfxkHYgGP3g85lERlokK5U4MpbpPtgbuVhRnqCxVDdYeR1VJoSysphWoFDNoAFAeBanSKVVSg6B7J7gyHlW4Xk8xaCpez1aoSNaGoOmvgdtI0d26PlcaZWdMSYkPBk9aCoDVCDbajwMrBQzCEAOg6bwnQKIIct7aRJHxTbjgGDQAODO8XSQKgZ+c+WJrudz9FOSQd/nsBXK8gBxtqYxaKp7IoFofEmqxFGxSUiei6mrmUETn03ts72zUk+VOI5dHxZT+9lu7rRx92Q4U9SklDhOFyiWJEGbxvSH6hBUvh073R5bDnUkMQlJBPucc9w5HoSHqCrYFsPAas+6OA7G2GzXlc13k2tlm4ToY9BOBuqDxixzi8HEg+tz5SYhAFJHMahO0BhjweiHNImjemmerGQmr6UcMqrSxTGvB6078ggSNCt1XEGHsgct1WZ/rDxBizf3x3FMwKBlmQ1JuaBKRjdeEW4ofEEDIrhKc3GcKJ5fBORLHH3OlTnmSaQ3watn0ABhdpM+vyhwX1MsqQRS3DcZTYK2u9ZInd9FIXG8Hqhzkk52FP1u89wHbcXXcTUjsaBg0GQ8mJ6gqbfZB/IH3qvtQcuXOKpO0LZX6qk2+6oZXSCy2k+eW2OiBM3zOXrxAsWyMGhTSHwoCgbNyUgsItt7dcFOFoN20Btj5Pq4SpCgZZlNqJTKAVLiNbuW73N0x67SJCZP4iWNNFQi6zrKh12txDHbJER1ggYEzE9aYkHAoEmWIplYyLkyqk1Cchm0utpAsmanm1uQmK1kuJj2Ri4GE095gsbCBG3WDValTBrINm2SFXKVBbqpBE0hgwYEVuM5PWhqGbTsBM3zecjKq8JmK33ODw2DVgvVLHFQVL7nMWgqTUIAYHetiYed0cxZT9E7FQ50TkgqJ0SBPpDO/PicK937gFACjVx/pmBLwaA1azbWGk5GD5raAoUsIqa6OPrq9/96s4ax52fOXVO5FiBi6yybfZXMOBAzUkqcydH+V5ugAcnzeBkTtJnKt6s0YAREQJDGIKieSwbEXPMSB4ls3lXOoLHsxEJ1YJWVxHRGLjhX38sEZNvsbyg0CAGEZCnNtCOUwSp0scuSOHLORe+U4gJFzUln0Ch60LKSz73TIRhTy1bbFlJt9j2fYzBRz6A5GS6mJBLHkImffpGqHsAtEfWgpfQEU5wjKYWeXhCkqLxv8SBAdUCQNfRYJvEUAUFa0sQ5lCol5HpZDJpKsxUgqLLnDHNWmVhkDhgPGTS1e2R3vQGfR2odCQoGbb2Vzg5S9PuE1zElsXA99QnaakYiQ3EdASG7Tev3VC0DrNkWWjU718VRJROfVaDgnMPnaotKgIib0uTLwmxF7Tki45jkuTUh2P/hjMOUz5aH85egJfZDZzghkDimJxYys1cqccyYX3TvRCRoNAza7NeP+mPlDNq8AFWpxNHO60EbK5c4WowhTb0pDxeVMq9I4jj99ZHrw/U52srdB9Pt4SkYNCcrQQvmkqnUnFvxHrTYQdIfq2digByTEMn8KJWKius0TOz/MEFTaLYCxBm06P74PsfJYKJe4pjRy9elSNDiJiGKg7isYb0UPWg128JK3dYncUwbxArBWDRVB8PtOo564xnDCapB1UAa80MncQRmWa0xRX9dQxrXJBmEINHVJM3zfIIELXhHJY1CZJFTZRIDiMHfaf11I8UjLYBs2SHFPMWs/S+PY9VMfLvupF9HAgYtq0AR7X+FhZ40Bm35JI7TNvucc3QJGATbslIDgsPeGLbF1A5GzWDQuiOxSVXLNy0r3a79uE8QWGUxaCETQzC/KKsHTbXEkaVfRwqW1c5g0ORBpjqxyOtBaziW0gAoZAcT++SwN1Y2WFnCthg4n5U49oJnjcQkJDXRdVF3LMVW9OLzJN1nH3bEfryoWuIoX5ax63g6nMDnak07gGwmPrxvCqWpUyYhCu8PIJKYNKtlChdHQNyHNAZNJGiqJY5ZDAINg+b6fCbZpTAJyXTNy3AxrQpZ/OolmJ9wfpdiR8zVuqOFQct0w4R4r6ne+/Kd2BmlJxaqE+tWPd3VWUh81e7/1aaTykROfI6azZR+tmju2vR6MvZRnDOhXU8fu0PR7xZJHNN70FQO/E5fa+kSNExlnSPXx8Tj6ivfGXN3DnpCvqNSHlLPaO6Xm7Sl+OWWKXEk6R0RPTjJSqccZqtyPWlukbyOY9dHb+wp79OyMq5jyKApTNCskEGbXk++xNvKe6eymU/lcmI7PUET0mX17qxpNvsRE0PQg5Z2HUdqB5kD2VJRKZVS3YO2Z1/Ba60PAlfeH35NJgOqJY6OlX4de2MXzZqllGWN/yzVDNpmK919kKIHDRBV2ySrJaVJqgPUC2t19MbeTGIhekfUriXNLd7en55hFEkcNUjKiExCQtOk5HuMIPkE5HymxD3TOk9OFChUS27lekkGTSYWqhnkVs1OHVeg2iQEyJ4p53q+0qRCrJV+3+R1VJ7o1mxMvFlX57FiS38gZgCUlDhKsyHqHrTlY9CAeNbZJXBDA7Ln7hz2RkqZESDbfU0maE3FwbdlsRkmZuL56IxcpYOcgWz52oPApeqyQgMIQFzLpFSUImECxMGUQqCFDJpKxi5rDppk0EjcBzMYtPWWYkY3OKSSZho0zDhDuMoUg0YjcXSsdKlod6jeeTYrQdsPGLQdxT1oY3sF/7/r/z2w/WT4NfmsKbfZz2DQugQOvnEoN7do19Afeym2zpJBU50Q1sJZcRLyzFLtmndpLTCcSFjEu776oPE9VzcAAF+9ezL1dYpB1UCWpIwqQRO/ezLYH008MKa2vw6Qn00Hg5ZjEuKrZ9DCBG002zsFqJfmpc1F5ZyTJGhipEW6i6mjfH+kM5/yHFF+HYN4N3ktKVwcZSyTxcSrlDhKVcm0omHZEjSO6cr3kK53JM197bA3JkvQktI8eUA3FdPjNmMzTEw0T0g1OxLIrhLr3T8RL/FdxQla3bFmruP9E5pk0M6Qih71xlhvOsp7p4BZiWNvTMWgWRi76dI89YY84jolryVF8D01By2GiIlULBV1WDqDNpwoTz7DYkjiOu53R9hs15S7bTkpRSwK6TIA2Blz0HojV/k9i+P6Vlvpz9sM3h3JeWFhDxpJ8K2HQdhdl71T0xbxrseV9jIBgkHbaNXw1TvTCdqYwH0NyEjQZBxCxKAlk/ixx1GzLOUJYdroB4pEd6XuwGKzjnlAYLOvOInPMgmRxzFFYpGWVABqZamAMI67lRiNAIhiiOq9L5MYXedImKDNFCjU96A1HBvNmpXCoKln4lfqNmyLLSeDxhj7NGPs5zhP9mnRJGhZPQ8HBAlaVuV76HqwLaa8YmZbs8GOzOopKt/AbIL24HSI1Yaj/L4JBo3erh3IkzhOtO2RPmnvVAqDNpgQSPPEn8lgn2J8hjVlsz/LxFMwaFkmIVLbrwpWFoNGMKQaSDdSonBVBKTNfnqCpnqtOD7+/EWlP0+y6keJBI2qB62V0s8hE3jVkrLQsj3BoE18HzXFazHG8L5rG/hKMkEjYH4AwSLMzq+jcXFsZcyF9HxfOTsCiAB8RuJIIBW1LIbNdrbEV3UvU1bvYJhYKF4vTeIoYxHVDNrN7TYOe+MZVsv1KJjIdCMNKpMQuf+T13LsqTdbAUSBYmYOGsH+Z4ylON0uSYLGOf8s5/wzonoUfSj58CmvRmcEqBQMmmQQksHOYOyjVbOVV8xsa5ZBky52K4qr0fKFkmQR9jpDpQOIJdIYtDBB21C7nrDZn/36UX+sXE4ZmoQkA2JCBi1t/x/1xwQGEGfEoMUljmO6HrQskxAyBi01QVN7zwBx39JkqQBFwUwMqk72soo9ovaeSWy0asrZua1Q5jIdpHoE9tiACHaSjmjyEip+rYTugw9SGDSKxOLp3VW8s9+f+ppWiSNxD1oyQHUJZIBA0M80ypA4Ekh8sxM0xfcsw9yCSuLYTmHQKIxdAOCxHcHsv3uY3P9cOYMWmq0k3TB92YOmdLkwlkmeWxRz0ICgBzOZ6Prqe9CAlFEkBS4eXfmRCiyeoAW234qr0Wk9D67n42QwUTqkGogqOTMJ2sRTOuBQwk7pQRsRHcjZDNpIOaMFZEgcT4ewLYYd1fctx8VRtZwyix0JGQsCm/20BG2/oz7YDxm02GfzfI7+2MMqAcvkp9jsSzdA9VLpLLMVGnYQSEvQxnjP1XWlawHpZySF7T2AkIHx/OlgvzfylPfWAcC//YufUJ6sA5FCIYtBU20Skia7Ct3XFEdWG60a6o6Fh0kGzeNK5d4Sm+0aOiN3yqJ9Ela+1csA7x4nJWU0CVorwyRE7H0KBiGFQSOQeAHB/LpeRoKmONBv1ixYLCo+S1AxP80Um/3I2EXtWje3gwTtoB/2YwJBvyeB4mq1MVug4JzmzAoLFEm5KIFJCCDOrZlB1UTnyNIyaNNIkSZR2OwnKt/Hgwk4VzsDTayV3jsymnhhw7BKpEnzxkRUfNiD5iUTtCFJgmax2eTzwekIu2sN5QeJmIOW3oNGxaAl1+tRmYQ4s+YWg7GH3thTLpezUxhkqufasTIYNKrEImcO2hqBDBBIMwmhkTja1mzy2SNyw5S9WclCD5XE8fJGU3mvJZA9rNT1fdiWWntsQAT7SakcVYDKGMPuWmOWQSOQOALpttVjzwdj6oNGnQyafAcn75tLMCsMEAxCZziZYqep4gExvy7FZt/nyo1kGGOpM7Xk+aj6UrZrDsauP3X+ekTmPzcDBu2dBINGIXEE0o1kKOegAbP7f+yp768DRIFiZlA10TmyCIN2/hI0Db0jNXvWZp9ivhWQ3V80mHjKLfbleslAn0rSYIcMWnQtOefYI2LQ0vpiHpwOlZuRAEGCljauYDBRb5KQ2YNGExDX7VlzCznwWPU8rTT5ZujOStBbmtaD1hu5YEz9SAvHnjXSoJrdmOaGOZx46IxcEoljOoPmoWYz5XN/spLP7sjFKqFJiGqEEsfBLINGEXynWVZTSZMAIXOccXEkYtDSbKtlEKc6acpzcVQ9B82yGOqONcMgeITBt8+jYh8QuYqSMGiZEkf1n00Mj9ZkD18P3Ddj980lGEAPCEZ3s13DrRmJI00So9NsSL6Dk4k1hQEKkC5xHAdSUdV7ZJZBm4/zl6Cl9KDpsNk/6AZ21Zr6iwYTL3S0Ub1eci3pGKU6sKqFPWjTwffY85VfRyD9sz04HeIyQb+bYNCmv+b5HL2xRyZfS2PQGFPv9JnG/DwMErQLa/QFCunOqpodsVh8Dlp09HVHHto1W7lxQt22QpmLxGDiwfM5gRtmsEdi11Em1TQmIbM9aFSMlm2lM/HUJiGq0a7bqNvWTB+O53ESlkm+P+LVaKoeHED0MyVd8yYejblFWoI2cTkaJAFqDYOJN30mhgya+vVaNTvsX5IgY9BSZkGNPbFflM8BbNdx1BvP9JJKBlk1VhpOKF+XCMdMKJcTi3Mo3jvoE8kAAZHsJofQuz5Nv2danyJdopsucfR9muso9sjsmUXR7/bNIXFk0wmaqNiq/RhpNvvH4YwfTS6OE0954A2InrfkDG6qHrQwsIp9NqrZXYA07pi+joc99a6KQLrNvjSbUF4wCJP46a/3Ry5JYpFmbrHfoQn2UxO04GVAMQcNqT1oNIG+k2IP3yEaDRKx1dF6kvXfoUjQUhi03shV3g8p1wKmmXg/KIZQmYRQgDGGjXZtxmafjEFLsaz2iQJUQEjikj3Ari/s4VUjnUHzlFv6Awida6dYBCKJIyD6p1JdHIlMQoDpzzZxJYOmdr3tlRpcn6OTtL7nNPsxj0GjYn7izxqVOyuQzsZMCAZVA/I6pie6ZHPQEvfNJdr/qw0ntaikeu8DQuJ+OphERdTlkzhyTPegTbDacEicDpPBhzxUVAffjDFYLI1B85UPqQaEHtpNZGhUdrC1lMCKqk8FyGAHJx5aNYJkMGUtqrl8WUYyvbGHNkFiIeagJSWOItgnS9BiyS5VEmMxxBi02Dkyphl4XLOF+2Cc1aJi/eU54qdcxw2FQ9Ml0nrQqAZHy6pwfP/3J3SFHkrsrNTDZ0mCygCildJwTxWgArMmTZzzGWMXVchi0GgCqzT3zSBBI7iQzZShx3Q9aHJYb+w6+jQmIaHEN9GH5lExaPVZBo3cHj4ucfRoRloAYv8fJ4bQux7N/k8bIUDXy5fuYkolg12pOxhO/KmWDiqp6M5KHT5HTOa7dAkaZgZVUzRz1ywWHlISVENYgQxnxYmHFoVJiMWQdP6magoOq/reLINGMWDWSkmsB1RmKxZD0iOEzLQmwySkP3axQpDE153Z4FvK5VS75kUMWjyJF3uEIolJ6x3pEzFo8pCPnyVdokIPMDvjkCrRBTIYtLFLUnhJc4OlMnahxsW1RvgsSVD2oAGJBC3sQVO/Xj0xh5KqlwnISNA8Iqc3ae6S0uBPIRVNM3ehMNIA0iWO8rlWvSelkiXZh+Z6dAzyDINGbg8frSff1xTMz2YKgyZYJoJCT8o8RZ9IKi0ZtL6mAoV8X8V7MMeu+nEFgDCfAoD7J4GR0vIxaNPoDGkqtrZlgfPpfo6oL4bI+l6XSQjDjLkFlUmIk+K+JgMr1bO7AJHIxJMY1/Ph+pxkXEGazT61fG1WUuaRJLppPWj73RHWmw6hAUT0tVDiSPBs8/BQjEscPZLnWlYz43JR6YaleoQAMDvjkDIZdAJ2MI7uyCPtQUt1+jxnCdqF1caMFb3r0ch3mtoljnYiQRP/TfHZ1tMSNKIkJn1+HY1JCCDmZg009aCtpcg3w8Ra8bWU7sZHCat9n9MYoKw07KnAW64F6LGHl3EPFYOWlEpPiGYOtlIY3VDiqPizNRwLjAHDJINGlMTL90e8D42q0CPN6vY6y5qgcWDKJGSkfp4QECUW8cp3ZzhBu26TSFHSpHmDMeEctBmTEMmgqQ6+ZWAVXceIQaP/bHKWDEWim2bpHwXE6ud3AbOjGETvFI0MNtmDdtSn6eWzwv66+LNGw0QCiA7FKZMQOokjMD2ovUskcQTEOeJOFZXoEl3Hmu2v61FJHOWcKy9NKn2+EjTJoMWNEqhkgGlyIUqJo+hBm5V4UbwzmzUbdcdKMD80ie5mS45HmGXQKJjIVmoPGs0ekYluXOIoz2Jb8XrSAfj+zCgGTpLEtOvOjFSOzh5+1pBHxiIkPWjtejgHUILK6bCZMvCe6hxhjKGVsp5HlsSnJ2gUUlE5H/fB6WjOd0Y4XwkaMGMSQpKgpRoX0AQfQHrSNCQaVJ02v4uMQQsDqxiDNqYLrJLyTXk4U82T4xxTgRZV8B1KHJM2+2Mq17xZtu50MCHpZYr6i6KvhUk8wf6PKt/RV3pjl4SJlIFp3MmRUnaYPEeoBkenrQVQujimn8cAjaKBEhdXGxi5/pRRgkvE/KQ5olG5rwEpEsewl4kgG8SsUQKVVC6aXzfrwEYhcWzWbIw0SbzyGDTVAfGVjSZsi+H20bQ9vO8TBd91O4w3wrXC/a92rVCaN55N0Cju20arBs4xNZ9s4tJcx3aqxFH8SSXxTe/BVH9GyvdHN5GgUZzHF9dEgWJ6VmT+9Tt/CVrCJISiB81OSSyokkG53myC5tPY7KcyaB4ciyk/SGSAOtXcP6Jj0ERfTBQgyEOlQZToApiy2qeS5mVKHMceiWueldITeTqchNVWpWuF87ui+yb3I0XlnUvmLDGomiKxqKeMmZCBOVkvqz+9VsOxSOQajkaTkFqqVFo82+dN4ihf0nGZI1UDfHoPmviTIrBqOGKshCxauUSDeiWSCZrP6azoGUtIHCWDZql/tzSd2QCVih1sODYaM0wkTYLm2BaubDRx+2gw9XXX52ERUiXaDSeMNySoxkykuTiGCRrBZ0vtwSRi0NLmKVIluoBIdtNMQmiSeMmgTc8BpCgq1WwLF1br0wnanAt4/hK0BINGKU1KBjurBEEVMGsS4vkcY88nsdlPS9DGLo3mNkp04xLHoPJNkVgwNsXEyASNZuC3+DPNNY9qCPGMScjIpevlS2HQKJKKcH5X7LONJr5yw5oIsz1oIrGgkYoC0/uftpfVmjEJ0VVU4pyTSW7TetDOs8QRmE7QqCykmzkSR4I4DnVb9G7LPRj2oOli0IiCOMtigWteygwjogB1mOxBI2IHASHJj0scpSSbYr3rW62ZBI1sUHXNxtjzp5xFI/dBGnOLtB40iv2/mZKgkbk4ap6nmGTQpBsshQw2lDiO44oGn6Q4DACX1psJieNSJWjTAUGXKACJ3Aene9DWKYOdWJU9TCzqNEnTjGMkUYJWS7HHlk27bZJAbloGKF9yFFJRlpI0hbIrxclnxKBNf703pjJlSGPQ3NCSWfVawDTLNHJ9EtYTQKwHLdqbw4lP4+LoyARt2iSkVSPqZbVmjY2oGKbkrMjhxIfPaRKmNBfH82wSAiQSNEIXO2A6sKJyXwMiibyUOcr7RSVxXG9OzzCiCuIAERBP96CJz0oxqDp9DhqNDBYQVvunw6TklpHIYG9stXHrcFriSNaD2UgbHi3+VM1qtdMMeUKJI6GzaH86sabq9wSmk0+PkIlPzl2j7OVLNwmhKfQAIkELXRwL4FwkaIyxTzPGfk6MQRMXbuQKhz4KI4E0SQ1lsGMnDCcGlMxPiiHJ2KVhLNKkov2xC8diJJPak4nF0KXtQQOmh353h8L2XnWwJS9VMmnqj2kYtLT+OioGzU5j0FyPkEGbljjKyhkJE5/CIHeJjI0AOeMw0TeriUGTZxZF32BawWy5GDS63hFgui8mmpFKI3EEop5mN3RxpHmWV5u1qd4pKhkUIGahHaVIHGmkovrmoAFCwnmaZCKJkurrW23sdUYzZhoU11GOoOmlWN+rzqul2qmfMqiaQuKYxqBNfLo5aIA+Jj5p7uKFa+kxCaEqGACiB/lhfMzKMkgcOeef5Zx/RrCB4gNJSp6mBy1F4kiZoNnTkrLI3IIg+LZm5WtjIlvRNKmosIa3SQIEi6VfR10SR6qAOEoGo7XGro+Jx7WYMgwnHkauT9KDZqewIyOiggGA2IEo/qQM9MM5aAmTEKqkybIS+5HwzEr2oI1cun7P3HEdVEwrETZbNdgWw2HMapxqULUMGvUNqhbryQQtmoNGE+ysNpypBM0lCvQBYRQSD4blTqRg0Fp1G6OExJEy+VxrJq6jR8fWXdtqAQDuxVgEKoc+yaDFZ5OF9vCK94llMTQcK9XFkcokBEhKHOnmoAH6zIbEeITphAmgZdC6sR40qusIiALdYW8ci+WWIEGbQrAhQsc8TbbOovJN1IOWsMcOGTSi/qJZiaOn3GIfiAff0z1oVFXvGQZtQpjoSokcp0/inZweHKpxBUD02aIh7XTJYDz5FD1oVIG3lDgGDBrldUxJLDojl+TMAmYZtM7IJZm3BswyaDKgpEisU/f/2MNK3SaTtFHBshi22rWpYb2u75MEcTJoTAusKKr6kcRRrOeGLo5E0rymM+ViR1n53spg0BhF76AjeqemLdQJGbRWogfN9wmvY8pgbI+ovyiVQaYrUGRK8wiupYxF4xJfl2oOWop8kyrRBQSDlspEkvTpWrDYrMSRqqh0YbUOz+fRWbIMDFoaKO2qnUTvlOdzerlQQk4G0Di9WRab6WUauz6J5FAOunS96cCKIhgGZuWbAw0JGo9dSyojGStF4kg6riAh35QvbxIGjc0mMSPXQ4NAlgpgpgetS+gGmDquY0jjPAukDaqe0Mkpgx40KYOlmqUIpLOsvZEbVsjPG7ba9alhvZTsSKtuTw19lc+0DonjhHAOGiCe2ZEbmUB4RFbcgKh8751G8+t4UOihuI5Skj/NxtAlTetNB6eD2R40CkSMBf167RSHPo+wBzNpbiELFDSjGERi0Y2PRyB0cQT0MfErDXtacujRJWiMMaw0nMR+pGPQLgQS9/2uPP+XKkHjkB8oGgpMyaCJjSGDYV0mIZK2ppg7ZVuzboDClIGgJyxkEGIM2ohm5hQwK98chSYhFD1o4s/4tRyOPTQJe/nin01WmCjcMJ0Eg0ZZMLBTjGRoJY7y59JLHJ2UAgWpVJqxqWeNWuIIRD1NY5eSQZN7ZFrRcN4MQiS2VupTEscJoUNfOzH0lVbimDAJCSqBNaLPJt/98hn2fA6iHAaX15sYuX7MlIEuQUszd6GaAwWIc70zpJfKAZHD8VTvIKf5bFEPJr3EEQjs4VOSGIrkMy2x8H2aJEYmaNNmQ+JPnQwaVdFgpe5MJYSuz5UPaZeQJlH7sg9t6Ri04APJA4WC1UpKaiJrbKLEIiE7pEzQHMuaarYHAhdHEgYtpfJNzKBNOcu5tL18wDSrRdXLZ6fIKUNpHoEbppVgfqTDF4mLI8tK0KhdHKcljjqYeIDWJMSOseOc07P+QFR8iXrQ9JgNUVn668B2uz7bg0YUfDQzgkaqOWhAlKCRM2hBwUgG+5RJzJWNJoCod4qHg6rpegeHCXt4qj3SrgsmUsYFlHLKtcasNE8wn+rXkmdRfHi6LHJSfLzk/C6XkPkBRHvP1HXknOxzAelDuClaPuWAcclWR718NM92sufN9ThZUWkmQVsuBg2QHyjqi6Gr6k+C4CN0KCNKLJyESUjIWBANBk54hJDZ7KdZqJP2oNlsitGiNAlJm0028WiYH0szgyaLR2GCRsmgpSS6tC6O0xJH0n7PlB5MSpMQOzaofRSYyFAzaPLZlkEQSaEnw2yIYu/rwNbKdD+TS2QSAoizL63yTRE01pMSR592Dprc252ROJ98wiTmUpCgTQ2ZBcAIgsZmSs8P5Ry0mjNdSPWI3ACBqKDeDQrscsYVRfAtz6L4HDRS5qfmpA+qpmJ+GtPMj89pBn6nuThSzkFrNxxwHo1J8giZSGDWlIdqXAEgXByBmIvvUjFoMZt9yjk4tQSDRtkAD5stXKwAAFVCSURBVMwyPycDSlOG6UAHkDb7FO5rgcQrnliMPJJgGJjtQaOcg5Zmsz/xaDTgaSyTFpOQkEEj7EGTa8XnoE1oJLcAIolj8CetucX0dfSDXlYqkxDRyyr+m3JIu1wLiJ5tShfHtB608yxx3F6p4ag/CQsuHtGgamC2LyZyX1O/VtiDJpkY6eJIJs2blstRma0A2Qyacr92IJTJJx0BqfaIvD+T2H2jSyrE+SDjN/lIU3y2ZMEAiIJ9iv3frNvoT2b73cj6+WJzADnn4JyqJzJb4khifZ8Yj0DZgwaIAuA4piqjGlcACBVS3bZiVvvLlKABSDJoFNXoSFKTkO8Qya5sa5r5ORlMsFKnGWZrpQwhHhMxFlGVPdr8+90RdlbqytcC0mcz1WxG8mCn2ewL9x86Bi2Ww0QMGoVJSGI2GaUhT5p8U4vEMThHKGWwycRCSpcpTUK8BOtPVQxJslp6Et3YHDRCJp4aW23h5DUtzaOrDvdThudSze8CgFGw98I5aORsTBTsU13Hi6sNWAy4fzIQXwgSMxoDiKweNJrPFo6xCF4wLpHZBCD2SN2x0BlFSTVAy+iOYvEH5xyMEfUO1qwpQx55NlI5za7GJI6UbF0712Zf+XKhR0F/NO0GS5agWdaUY7tH+KwxxnBhtY79znj+N+M8JmgxBq1Zs0gOkmTvCGUDPCA2XlwGeDqckPSfASIgTs5BozJlSM4vGk48nA5dXFpvKl8LmJVvDiceSeANRAd8PCEcu0QMWorEMXRxJBrFAESfjVQqajEwhgTz6ZEYuwCIMWjiM+qyh/d9jg/9178BgKaoBEwXKCjvmVwLiF6esgKpa+C96EE7nwnadlCgklb7pC6ONTsxYFb8SZFY1BMM2iRYjKoaLQsdUuLoEjKRjm1hd60524NGYcoQmoTEg0bazwZEklRKBg0IeqdkUh18RIr1Gvb0XD6ATgYIBOYWEz3zu4AgQRtOM5EUS8kY6r/99a/j5bunwXp0hR7JsoYMGrFUtOawqXfLhNAkBxBKpNCUZ6kkjjEXxw6hXbWVCFBDC2mioDHNJIRCTgbMWvoDgc0+YYAqk8+9U0HrXgysRlUjKd8cuXQJWmizH7uUwiSEgK3LMQmhZNDig6objkVWCUxKU/WYhAQMGuEohjiDFpe+UCWf8etIKe8FUnrQZKJLOKhafjbOOY77E2y2ac5IamzJBC0wChEBMVEPWj3Zgyar+urXSvb8hAwalSNgY5pBo5qnJbG73sBe0DsiTyuKQdWhSYgmF8da4lmm7IkEpqV5ITtCWTBI9KBRDTNv1mwMxtNMDKCnBy16rinUQtHP/PWv3ANAPwcNiNw3qV0ca/Y0g+YSzkEDxH2LVA1LlaAh5uJIOfB1WuJFOeMHEAFIPEClTNAsxsB5YjAwEYNmh+yIuH57HVF9JGPQEsnnYOwRMgjiz6RJCI3EUfyZNEkAaBgS+bKUn61P6LwJpAw9JjQJYQmb/ZHrw2I0h39cmidfpM9fXsPvf+GS8rWA6XOEWuKY7FOUMnAKk5Cw0BOs1Rm5cH2O7TaNVJoaW8HvfRwwaEJSprcHjUTimHDNc0MXRyoGTZqEBAkap2MiASH1CtnI4PpRzbgCpiVlVEOIgRiDFro40rF1QIL5IWTQ0hM0TiLLA+T+mLZrB+gStLjEkXIAfRzyfUI9Bw2IYhxyBs22phg0j7hA0a7HXCOXi0GL0BnS2lUDcYcy2YNGyKAlXBypJI7JGVcAHYMm15NSF1l93KVi0BLyzeHEJ2MrrBRWa0I0riBMmKZcHF206zZpxSwe7FMlunK9ODtCOgct0dwvZbAUPQnxc0T2G/30x54iZf7jrCdAJ3GsJQyAKFUG4ZkVBJDHPSEPOa8MWtQEHwUgVMxPMylxDGJVEoljgkGTkjm6fiYLNZuFzxZl7wggKvsyaYoGVRMwaCk9aJSfTRYHZJDqerSJ7mrDmelBo0g+bUv0n4+96R5MKgZNFkNm7eFpEzTphAnQsYNf/at/ELbFZnreKN6bSQYtlIoSFSjqCQZtQlygWKk7YX/d8jFosUHV1DN+QgYtkO9QJjFxJuZ0MCGxNAdm5WuASECpPhsLGDsgsigmS9CsaTfMAWEPWiRxTJiEEPbgTEkcxx7pwG8g2v+DMZ3zJjB93yaecKOikMoBmJE4UiaDcWmeZNCoikqAOEe82D0DCOWUCeOOEWGfrp3oZZW9W9tEZkPUaIU26pGEh27GVTqDRpEzJRmLkEEjbLiP99hRGmkAIgCPhh4HCRrBemGCFmN+KFmtqNgSzUGjCoYBcQZ2h9PBN1ViUbetGYkjpSGPz6OzMEzQiD7bSsOBz0UhOuxBI0wG12P3LZI4ql9Ljk/pjaLnWqxFV6CQCZrni/iDsgetHZ+7Nucjnb8ETZqEDOlslmctpGkljkmTkBNCBi2ZfI5d8XA3iT4bQ5TE7HVGqNkslPioRtJMo0doxR31KYq/c84xJpI4MiakolMMGuGgXjvx2QYT+gQtkhPTstUzNvuEfYrxc0RWHilnd1mxc2RAzKA5GWckjcRxei05Q2zznEocowpxjEEjrOpPPB4GIJH7GoHEUbo4Bs/wJHRxpAsz4v0j1Axas2aHvZ1hDxpBIBeahAT7w/c5aWKR7CcVBQPCHrS4+yCxFX3NZtokjq0E80kucWxGcwApB3DH10v2vJG4RjbkYOwEg0bVg2lbmEjWn9h5FggYtKXtQTsDk5CxBomj3PC+z9Ebe1glD77FescDGezQXEvGopfZg9OhsCsmNJsAokOfclZSsgdNykPqRA92clYeJYMmP1vcEZBS4ujEGDRKJgaIB6bSJISQQYu5OFKOBYnWi86RAaH5CZAuA284FkngH5kNBRLHIEHbOqcSR9nP2Y8F4JRVfSAKGimb+6VULmTQiF0cgWl5NKUbJiDumwwaQxdHih60xBw0+iQmOQeNuActbhLi0ZlbAEDdsadmXHFCk5CkHb18rinORABhjNgbeaQJk8RKPZKmUrrBhgxayIzT2uw7toWxNy1LpTyz2g07GjC+dD1o0iSEMPjONAkhkgs59myA2qKWrwVn1nFf9nPQVKOFKQkP19pepat6J+Wbok+RKvGc3iPy5UbVb5E0QOmPXRKLfQChW1hoEjLxyPYjEBQoNLHVMzb7mhg0eSBTDle2YonukNgkJDlCYzSh62MNA//gJXoY9KCdV4mjSGQjGSqluYXc2zJo9Agr7Ywx1B0rZhJC6+IIiPNW7kGXsJcPEM9SJBeVEkeK8TQWHIuFMxqjXiZaKbYbT3SJXewie3ja5LMR249yPaot0koUXlyfztIfAFYbIrbpDt3YAG5aaWqSQSMZ+F0T52N/NG0kQ9eDxqaGtAN0zxogEtCR6wfn47IlaBDBXHfkYl2bSQidfAeYDlAjaRKVFbf4Uz7QRz1ZjaYJdhiiaktv5JJKvJLyTcGy0koc5eEhH3CqIDVpgNIdeWgTs4Oh4cTYI9uPQIJBC/Y/VTEk6kGTVWpKBi3q0+pqSNAcK3aOEM9Bi9jBqAeNKqlmjE31CRz3x7AYyPp0qcEYQ7tmT0scCXvQgGg/ULo4AtMBsUyoqRk0mQj6xAxaK5A4+j6PMWhE4xFilu3UNuPyWZbPF/UcqGbAavk+J5cB1p3pHjRKOXFYDAmfa5/YtCaaFxa6YRImaCsxaSonPEcYY1ipO9oYtLhMOjI2or9v/Ym3jAya+GCc0w58BTDVF+NYjExLP9XcHwSodPK1pMSR1hEtbhLSH3ukw2Xj8k3OuVaJ45iYQRNSnujv/ZFLJoNNOlRSuzhaVhqDRiRxDCtWEYNGZUiS2oNGvP/dRKFH2xw0wtEIQOC0FeyNo/4Ym+06KVtCjVbdwWAScx8k7EEDYrIrQmkSIJ7bcUwqRynxAiL1CeecdFYYEJOLul7MxZHoOtbsiEHzaJMYGYy6nh4GTRYxJ75P7nSYZhJCXgwJ2Wq6pBqYjlMpzX8k4uMRZCxCKRdN9qBRnZE1x4r6L0NjI0IGLYgBIifHbJy/BA0Mp0FSQSVfmzEJIayyA4nm/mBTNonla2GC1tfRgxaZdlDO04rLNwcTDz5hEs8SSUzUg0bFsk7PXOuT9qBNm630x7QSx/QeNKJ9Ig9enQyaJxK0ms1IzxE7lugOA8khVeCTPCPHrk/HekK8RGWV86h3fodUS4gARFhyUwaNzQSDFla+iW5V3bZC12NKd0oJJ3h3ysSTkkFoxRiSkEEjupDNmhUzm6A1Lkj2oE08WrOV+DgGj5gdrMcKBoDY/2QSxxQGjbKIFDlJ09reS6TNXaP6eGIItx6zlZot9ogo8khZth7mc/kkjozhsEdrsxzJ16Kgkcz2G4nm/kDWQD1gOZQ4Bj1olBJHmVf0xsQSx5h8U1Z6yBi0hM2+rNLVHLqAeGpQNWUPGpsOvocaGDS5H0OJI7VJSMxmX4uLY+A6S/kCjY8roL5nMz1ohBJHIHqJAsLYaJPI5VYXZIJGHaAmGTSPWuJYi0wZJkSutnHYluhBo56VBEz3GMmTmCoAF3JKPYN65TWbxBi0GiGDEB/HQG6z7yQZNDqJo5MYV0A9OF3+aGkND9AWKFITNEI2Ut8ctOhdFjJoxC6OQMCgLZ3EEcBBkKDtECVoUe9IFHxTMSPAdGBFbY+dTD6P+xPUbYuM2WIxk5D+yAstVCkQBcQ+Toe0c6fC6xgcjNQmIXbSJISwB82KMWic83AoNhXivVPUhjwzJiETOmkeYyxMrHsjl1TeCEyPK6B33pztQaPqvwSkVEm6s3pk6gldaNXF/C6P0wbf7YSLI7XEUdynoPLtcdJeDkDI8zyfPtAHpm3UOaYLPaoRt/Sn7kGbnYPmh7MHKdcbe76G4DtF4kiVoFmziS4lExk3KvOImXFAsFqyqETpBguIJEYyaNRFrDiDHLHVtHPQgEeMQWOMPckY+3nG2D9OfH2FMfYFxtgPFPxJOOyNABAyaDMzfjxS+U6qSUidesBsJHHcaNfIKvsWEzb7nHP0xnQ9YcC0xLFLPBg4Xr0CYgyaBiOZsetj7PmELo6RfHPsiTl5lHPQLDYrcazbxIOqwx40OgYNiIovlK6zybUAPbPrgFgPGmGiC4hKuCyCUM4A1AVZIfaJezlkUtFPShyJ4sYpF0ffJw10gGjP65QmxQd/W4xmH8YHcJO7OKbMQatRShxlD5obNwmh+WxJiaPv081Bk0mmvF8usVRU/mzO6c1/gCiW6o1dcolju5HSg0bmYhrtR5lcU+7/kEEbu2oYNMbYLzDG9hhjX018/ZOMsVcZY68zxv5C3s/gnL/JOf/xlP/rvwDwD4v8HsGiOOgGDNpqo/A/K4M0m33K4GPKJCR0XyM2CQkljmPSeUIsmPE2CgZiU/VNATHmc0riSDQrL7FHyF0cYxJHuUeormV8DuAwkNxSJjGOHSWfoTU3UUWVJRi0IXFi4Viiwk85NF1iao9M6MYHAJEEVQbj1GdkfOCs6GWlvZbUaNUcDCZ+jEGjWSfpLKfDxVHep8GY9tkCgJolGvxDFztiF0dAShxlDxqVVNQKTUJ0MWhxq3FKs5VQ4uh55AYQaRJHuoHf09fRI1wLiJIjn/PYoGrCxCJ4f3WHLjkTP+3iSLxHwjEu9KY1AMLiomAI89cp+pb7RQB/HcDfkV9gjNkA/gaA7wNwG8DnGWO/CsAG8DOJf/9jnPO95A9ljH0fgJcBNAv+HgAYDnpj1GxGb7Ovqb/Csljo1CSdvaiq32kSR6oZaEDUgxa52NEyMQCCMQyit44qKJ612ac2CYmS+N6Y9lrG3aH6wX6klDjG3QcnxIMiox60KMGgZtAmgUkI9dwum0UJ2nDioUnI+m8EPWAngWHTWEMPmgx8emOPPNmlRrtuYzB2Yw59RHbtCYkjtftaPCDe745xcY2miCohGLRImkQZWDVjDJofujhSmYTY2A8K0R75oN7peMf1fVJpqnxHjty4pEyPSQilxDHNDZM2QYvaLKil0kAUS/VGEYNGlQ+263Y4By3c/xpMcqhbVYCosF6EQSv0luOc/w5j7PHElz8K4HXO+ZsAwBj7+wD+MOf8ZwAUlCviYwBWALwIYMAY+3XOuR//BsbYZwB8BgA+csUSJiHdMbbadUJZXtIkREOVXZtJSHQY+z7H7aMB3n99g2QtIOhBQ2QpSln5jss3O8Q9aEmbfR09aHI/9ogt26NxBfTztIDp3inq4bZRQKWTQePojz1c36KV5dn2NMtKec/WEwkatQxcBlqcc3I3WB0ITUJkYEUU6Kw1HdQdC2/u9wDEm/tp1qs7Vnj2PuyM8NhOm2ahAI7NMHS5lsp3cqacWI8uQYtcHGkZNHnWulMMGqXEMerVou4vasz0oFFKHKcdsl3yHjSE61FLpYEoQeuOXHLGbqUxy6Dp6UHTZxJShEGrcrpcA3Ar9vfbwddSwRjbYYz9LIAPMcb+IgBwzv8S5/w/B/BLAP7nZHIWfM/Pcc5f4py/FPwkHPTGpNVoJ8mgTWgtpC2NJiHxJOZffH0Pd44H+OR7L5OsBQQ2+0H/GQCyvilgWr5JPRg43qALxHvQaB5sYRIi/lseXFSOmDLm8Hwe64kk7tNKziGhOiBDiaMFNziQaRk04TI3cj00CRkmYJpBo55d16zZaNasWILmo0FYdZQM2ji4Z9SGK9QITUKIE4uGY+N7nrmA//1rD8A5Jx0wK9aLAuKH3RE5gyYLIDLRpR5UDUibfbHXqYrENZtFph3Ec9BC23svmidH2Tso+4vHrg9qC3WtLo7SJMTXMzg96kHj5D1hwLSsnVriGHdx9In3SE32RHpcyxy0ZuAvMSgwqFrbW45zfgDgpzL+v18s/IOYMAnZWaVL0OIudoDYkOuEts42i88vog2I7Vhi8U+/eAe7aw186n1XSNYCIoljf0w/qDfOfMoqLtUcNCuZoBEzaBaLzSUb0coO4xJHXQxaOE/Op72OcZt96qHYQOQyR13kAWYH3lMmngCw2aqHcxTHGlwc+2M3ZOIpCz060K7b6E+iBI1yXtIffM9l/PNX9vC1u6f0Lo6OsNmfeD4OezokjtZUYEV5HVsxiSMPldJEBTkWtT1QOx2GEkePfi4ZkLDZJw6IZ01C6JKYNLMVSkYrLnH0NUgc5ftLJGi0TPxKw8HE41NJPNmsvHDMBL3kFog7IHNQMmh3ANyI/f168DViiDlo2ysaKnMxdoRaBhUyaGMPtsVImRhAbI5bh308d3mNtFpmMQbOEVqmUvagxRm03thF3bHoJIczPWi0wX7cACJk0IiS3fiYCcmgUfdpxZ2v4r+DcsQYNJmg6XBxFFJK2qTCssSz5vscE482YQJEH9pxMEeReuZVzY56+QCQjZjQhXbdESY8wfNFGRC///omAOCt/V7Mjp5mLTGo2sN+VzgtUydoSZt9bQwalyYhVM5yLNYTRu1iFymGdEi8aqEpg0feOzhrs08/By00CfE56XWMm4ToGDMh319j1ydn4tvhzEGXvIg1JXGkjj8wfd/mfm+FdT4P4BnG2BOMsTqAHwbwqxV+XiYYY59mjP2c/PtBb0w2A00iLjuk7kGLM3b9oHeErL8uxo7cOR7i2maLZB0JxsRavZD1oWfQhKsXrbwg1H9r6kGLm4RINpKKQYuzg/IZoGwaty0rPIQnoYsj0XUM9wQLg2MdPWjULodyLUDsSY+4jwQANtq1UOI48ThpgiZt9vvE8l5dkMG+TDgpA6vdIEna64yiwIrQfXDs+XjYGQVrl/D/WgBSHq3DJCE+9Fu6OFIlTfG+XPI5UDH3QWq2AogzaPTvl1mJI71JiLxfwiSE7kyMt1mEzLiG+zZyPS0ujoAoRpP3YGo2CWEx5lOVzf4vA/g3AJ5jjN1mjP0459wF8KcA/DMArwD4h5zzr1X4vTPBOf8s5/wzgHB56wxdeukEmx6eS1mNjgdW1NIkyfwMxj72uyNcpU7QIOagUfdNAdPSPMqDOL6WDHgmwRDdGiGDFpmE0BquxFlWagkKIAwSvES1mCwhjNns62IHXU9PgmbF7xunLVAAwGYrStDGno+aQ1l1F4E/tYOpLsjiyulQXD/KxGKzXUPdtvCwM9IyqHrkRgkaPYMmejx1mIQ4toWGY+G4P4GsfVO5OMadbalZJstisJgobOo47xuhzT69rXndEfvjJGD6Oedksryk+7fnczLzH2C6XUVrD9rEJ19PDnPuj1zyPRIyujGzIUrmEwjmA3NFEkfO+Y9wzq9wzmuc8+uc858Pvv7rnPNnOedPcc7/m+q/9nx0g+B0V0PzsU6bfQCh5IXSoUweTreP+gBAn6AFc9BC1odU4ij+9IIXNmF+NqX/BoCRp8MkRCwWjhAg7q/zfE7exC1+thWTOGpycWQW3noonO1ubNM9A45lhYlgg7gnLG5u5PmctJoKiMBfShxdzycbMQFEUiVqB1NdkP1MsqeO1u2N4eJaA3udIbnEseHoTdCkPFqHxBEAPnB9E1945zBk0Mh60GJnoo7P5tgWJr4f9gBTBqhTJiEaetAA4AP/1f8OQBTByRi05Bw0n5MmuvFRP9Tz5ICYxDGWWFMpvaYYNOo9EmfQNJ0jVhAXz8nPKkkczwQyQaM++C1r2riDsvptxwJiantsucnfPZQJGq0EhQUUmmR9KOcXSTmBH7iV6RgS6fkcDzsj/I//4jUAxHPQfJmgeWAMaBM7fca17bQJGmISR1oGTb5QOICX752CMeC5y+skawHiusmkgpxBi50jHrHEFxA9aCeDibB55rSyEOniGLHH55tBk8GOZASp5agX1xoBg0YbWEkXR8kMUs0qlRC9iXEmhvYZ+86nL+Ard04wls6KVAyaNasqoNwjNSkV9WmDYQAh0z5136gkjokziVJZE2ciAfo5aPJjxBk0qucaiDNoHmT7FBmDVo8xaMRs3XQPGm2BWEIkaAClSYg2xHvQpGZfi31vMKG9P/ZIK7Zxanww8cKBmDRriT9vHQ0AANc3aefUMCaC4cGYPkiNz++iljjGe/l+5tdfwV5QMSadgyYZtKGLlbpDxpBEEkd6eQ0gDsN4L59tMboXTRBQ+bDw8t1TPL6zQlo0cGwW9k1p60ELmE/qoH+zXcdg4qEbOKbS96BFTPx5H1Qth4jLhJOy8g0Ixcne6SgMrCglZQDCPU+5J4CIQYuSGNLl8J1P74Bz4LAnElBKBi2UymmQHdaCHs+wB5iyl0na+rsxxo5ovVGs/wwIJI6Ej5oTu2+u79MWieMtHcHHpJ1fN+viSLWejLd7Yw+eTxsTRAkapx/zE0B6MyjpQTtrxHvQOqHEkZb5sYKDvz/R5z7ohwwaPS1+91gkaLvrxExkQOXKgJGywhOf3+URH8RxI424bJOqV9GeYtAmpAFqxMREBzGpq1HcxZGY+bFixZBX7p/ihStrZGsBAYMWFieI56DFe9B8Th70bwSjRx52ZXGCuActJnGkNBvSAdn3KD8PtRx1d11IHKl7R0JmcESftAMiINbJoMnC8Dh0lqNj0HyNDJoTjCvQ0YMzZbNP/NlknANE88IoC7eOzUIWxuO09yxyA4zb7JMtp3UOmoxv3jnokRcb6zFGN+qBp2fQ+LIwaHF0Rh4sBtJB1UDkvqaj5yFuEtKfuKTBh9zop4MJ6rZFPiuJQcxB84glh8B00ywnPojjNvs3tiIWkiq5sKzI0r838sj6z4DpQJ96SCoQPWsAvV277EHzOHDrsI8nL6ySrQWIzyb7jKjnoMngNEzQiKuAMkGTluqURko1hwUmIfQFMx0IEzQpcSRn0Jo46k8wnIhDhG4OmtgD3eA9TX3mh4OqNfaOAIAnbfbJJI7WlNkEQG9973p+KDEnlVOGg7GjHrQaUaL7p37f0+F/TzwezEGjfZdF942WQYvHO54GiaNjW7AthnGMQaNa7rGdNj76xDb+h3/xGg67Y9LnekriqEExBIjk2vOXhEGLozPysLPa0HABxYMmJZWkjEUsID7qTbDVJhzCHWyI7sglNeyQYIyBQ1QDqYOQeGJBfRAnbfajr9PJDuVanZFLK7kNgxA9wUG8v871aGfH3Nn5Nvwd9/vQ5S34HFgj7pHRyaBN2exr6EGT1+6wJ4ZVUybWjbAHzQVjtIPTdUBKHKUUkDqZfuLCCgDg/3j3CAB9gtYbueRVaEBcNzG/izbxDNcLZWXi71QSR/ns+j7H2KOflSfnrnkaGIS4xJG6B+3KRgt/4fufBxApayi3iOyVBcS7jNr8BxB7UbpJU8dYwqXVI5+DxhjDT3/vU+gMXXz9fofcnRWQNvu0BQMJK2xZWbIErTt0yR0cgcjWPGTQKFktOb/L59jvjnBhlS5Bkxu9E/QxUUNqbT1fQ1UiHqBSSxxjNvvyQKbElEnIcII10oKB+NOP93YQVx0jiSMtg9bbeA5/xf0T2O8FhRfiBM2xrKgHjZhBC/e/F0iKiV/Wa03BoB10afsv5c/mXMzAXG04pJViHWgmpIDU9+oTL+xiteHgt7/xEACtiyMgPhelq6dELWCapLqAunfESSRoVO+0eF+6dMS8QBj31KzpHjTq3qmaLRhxHXPX5M+e+D65eZgde5f5xKNO5I/mQXwlvka7/xs1S4vEEYjkxHudITGDJn722OORSQi5zT5Doraf/n2kv4UixE1Chq5PXvUGpElIZEqiwyTkdDDByPWxoyFB645cLU5oDAACjTRxfhYxP16gNdciL4icB/90TE6hGvEkpjfytPRESiYm/jUKxIfCTzyOGuFaMqm4fyp6E6jNJuIvbF0mIZNQpkG73kZLXLuDkEEjfIkG1+4rt0/w7CXavkEdSPagURev2nUHv/+F3fDv9BJHlzzIAaLna6JLmhSejcHfySSOkXzt3skQK3WbtCgneqciN0AdTIxg0HSYUAXJrkc/H1UwaFHvIGUMEnftDXtLiSN66dJKPa4DiNqY9joj2h40yaC5vpZ+T0Bct6U0CXF9oE4sFQKkcYGvyR5e3CTpBLizQlcpi2+8tgYnNCFx5OSWs8B0YsGpXRylxDGQ19gWw5/9A8+RrRfvSeiOXKw2aoRrRQe/DttlceiL58z1/FByQAFZ3LlzPJz6OxXilT9qiaMMBkYTGfSQLhdj0ESCRsmYSHbuK3dO8J6rdGMRdCF0cQzYVerKNwBsx94rVMvJPdAb65E4RkNmgz1PLXFkiQTNJhp1ElPVPDgd4vJGk7a/yLLg+jFmhPjWRa6Rema8AeLd4hNLHIVUND4HjbawCQQmIWHCRMygOTZGrh9KHCn3pEzQOLHZyrTNvj6TkKWUOLo+R11DZS5pEkI7YFl8ngenImgkZdBiD9SKBgbNYsEgRR0mITHdvufrkzi6Hn2/Ty3mDtUZTkgTi8gAhZP3CABCNjEMAqyJT9uDJpOKe8eSQaNLdIHpF4suBm3s6WHQ1oNrqaMHLW5A8t6rG2Tr6IJk0OTYAB1sk5w/ZTHCOWghM+jp6UGzImc58Xc9DJofmIQwYgbN8wSDdnmD1rW65lgYe1xL4A3EGTR6d2eZxLs+PYM2bRKiZxYrj5mEUO//uiN60HzipAkQZ6QkRkhHTCRMQhij/2xMzkFbBgYtDsGg0f/asuenp2HuTsigBQnahVVNDJqOHjQIBs33aV0VgWkGjVriGJcXTDxObydtCwaNc47eWJ/EUUePQNOxhTOULzTglA26MrG9dyKeNWqJYzzwbpK7OE6zCdRFg2bNgmOx0MWR1Jo79rNfXAIGLerV0segNYIzijIYDhm0kUsqeZWQe3wUjMOhTnSTJiFUjF38DH5wMsTl9RbJOhJiUHXEoFHfuXogldMxr1Em8a4n4xC6tRzLimz2ifuA46N+dPSEAeLcGk18LS0rQMSi0TJoUQ+ajvE0gEiu+bIyaHoqc/pt9qXEkTJBiwekOqyqGQts9jUcxPGkiVriGO9BE8YWxAyaxTDxfAwnoupIyfwwxoS5i8+19AhINmHk+uQujtIa/t6JYNDoXRyjs0qXi+MokItSz9ZijGGt6YQMmg6JIwA8eXGFbB1dYIyhWbO09aABUWFTsuKUa/RGLqlUWUKeFSPtEseAaSI6q+LFlgedES5v0BqjyR40QI9Uru5YGHmiB02H+gQQvbk+sZInuo6BxJHY/VisE5c4ki0HIGhHCBJ5HUZNMkGj3COMMaw2HJwOJsJcTsNZbDEmjI2WkkHTlKAJm30R7LQJbZ3lgyYljpQz3jZatfAh1sKgBVSuRzyXDJhurKaWOEplix+4OFIHI/Lg74wmAOjdB23Gphg0ysBHMkvDiRdIHJeIQdMocbRDNkEPgwYA661aJHGknIMW2xPnfUi1RLNmRzb7GoIdHcqTkBkc65E4RkUJXRJH8afsQaOSEcvPdeuoD8/nuLxBzKDZVpDAiL+TJ2i2FZoy0M/KizFoxImFY1uYxCSOpH3wsRjE1yRxbDg2RhM/mDNLuhQAYEcDgwYAF1br2O+ORL+bJgZtaXrQ4i6OE59redHYwZyC3sjFSt2mdQSMMWjrTYf081kWC+es6ehBCzq1xBw0ailDvKJEnBDG5QXUzoNAJHGMTGvoDSc8X7xkGKNlYySDNnS9QOJIt5ZMyO4FJiGUzDiQ7EGjvWcyINYVrAIi4T3q6+1BWxY0HTsaVK2DQdOQMMWLEFp6xe2ouAPQX8fIvEP289FcU3ne/om//XnYFsOHbmySrCPhWCyUAAJ0JjIS9YCJ0dG/7YQ9aPSJRS0wlxPrUdvsB9FVzG1ZC/PpeuTJp4QcTfPS49uk61xYbeCgOyaXwEqwoAC+FAxa0sVRt8RRVxB31Btjo01rWgAAW0FVQoeLo2UFEkcNTaXx+V3UzcBTEkcdDJol3KG6Q9kTSWxuEbgM6Rh4HDFo9BJHx7bQrtsYez7qjkUe+E8xaJp60KTEUUfQv96shVV3SpmvTC4o5d+60axZ6I/03Ssd7sfx50mHxDHa83qKEjODqokSNHludEcufup7n8R7r9Ea4zjBgGUpfiVP0Ox4D5qeM9j1OHliYVsMk2Ad6tjRisUgcqYWtTyv4URz0HQkaA9ORdvPf/iRa6TrXFhtYL870qL0AqK4eCkYtDgmPieXCgGBxMvngaU5bSIjE87uyA0HmFJCzj/TMwdNBvq+tpen60uTELq15DMsZvDQJhWAbD7m0Vw+4nsnCxQ6egflnhcSR9pB1UAkc6ScKyQRv3bUDIZuuRcw3cOnowftIuGwXt1o1uyY4yb9enokjtG5pNMkJDLGof2MjDEhTwoCK5voxuk286rZLHxvAuK9TbueSAg9Df3boc2+75Mra2q2MAl52BnB9TmubdFJU+OjfmRPJHkPWi0w9NIkcfyrf+g9+OmPPYUP39wiXefCWiRx1NGDJgvg8yoh507M72k0CRm5ogpCabEPRLKQk8GE3E4XiAJiLRJHJtqOdbjjxBu4fU67nnyBCpt9nzz4rtnCJETaclOzuhaLzASog55Q4jjxtEhe1ps1PDgdkffxAVEAWbct8oNfBiKho50mBk2C8lwee+IzLVOC1oj1Neuo2upImOLFUy09aAmJI/X8LkCc/dSMRTxB03HfZMKEsAeNdr26Y6Hfd7X0oEnJ/MTj5AG4EyS6d4IxLlc36RI0liJxpI6xJIPGNZlpvPfaBjl7DIjZw0f9CcaeryXxtKTN/rzvo/9V1MLneiqBkcTRwwpxBUsGqBOPa2HQpNRKl0mIcHGkr0yEM2p8+mZga0riqIFBCw5+OdiW2oEzzqDRV+UiiaMOwxXJ+lAz40BkIqCD9T8bBi2WoBF+RmmmcYOwIq0bzbgcUENmoWMPNmtxBk3/ntdxHS3GwAOGiWwOGosnaDquoxWaaAD0Dn2twCBHh4Q+GlTNyZkf2ct3N0jQrhEmaID0SkA4v446xorPQdNRVNKFC0Hhb78z0vK5WEGTkHPHoHEwfT1onGPkeths07kqAtPzkaj7VIBIhtIkdKaUYIhchqhvmzzoPZ9+3klcXjDxOXlg4FjW9OB04uRa7n9O7KoIJExCfE5eMZZJhY4ETSbuOp7r5Bw03RJHyvv2B168jP/s9z2Nz3zPk2Rr6Eb8/NXB/Oh0cQT0Shx19l3aFgP35Tr0DJqOXj6p0ODQI5VbaTjojfQwaFHrA33vlGNZcH0/TNCuECuipBugLpOQqAdNj8RRFy6uihj/QWekzWafcz73+Dh/CRpnGhk0wOU++Xpx3T610xsQJYSToP+BEvFeLWr6PWTQ5KBqwvXkrLAvvHOI04FLPoRYBjunA2GzT83qijkdHJwxbT1oo4lwcaROduXL7OZ2m3QdIAoOdDzXMlgduholjq2IQaOU+dYdC/+3P/Ac2c8/C8TPDD0ujvR70LJYGMSdyRw0Tf0joTqJeFA1AHKHYCBSaOhi0FYbNrojV8t5L9+d0iSE8qPJcTh3jwdYbzpTCgMKyDFG1IPTJRqOHZqE6JiDpgvSfEowaPTrhXPQloFBY4x9GsCnP3LFAoce+15hEiJchsgTtNiLmjrQByLmQEeCZgUSRx/0muXIZl+ahNCuxznwr14/AAB8+5M7pGvJYOd0KBK0FnH/oBNIHBnT6+I40SAX/ZGP3sS1zRb+8g+8QLoOEAVXGy16d9aoB0081zqkGtMM2rlTzJ8p4gyazkHV1GjWRBCnw9ZfBvc6+y4ti4F7+hg0XRLHiedHJiE6GLSxp6c9QM5BC2z2KZMYOU/uzvGQtP9MQjJo4X0j3ip1R7hver6eXi1dkO/no/5Yy7s6lDgug0kI5/yzAD770lX7Jzl0MmhiCDH1iyb+otZRaf9zf/A5cA78wPuvkq8lJY7QMABQvtQ8zuH7emRDEvQvGfHzTwYT1Gz6Z8AKJI7QMB5hyiTE91EjvnGfev8VfOr9V0jXkDgNxiJ8z7MXydcKHe2Cwgv1ngT0mYQsI+L9xssyqBoQ/UUng4mWZCluRw/o6bOzLXoGLc4q6XiOawHzE5mE0K650nCEZH/sku8TyaBNPA3jdywGz+M47o/DebOUsAOlSzioWoPEERCM9TL1oMlivutpstkPTUKWIEGLQ2sPms8x1lAJjL+odTBoO6sN/L/+w/eTrwMELo4cWhit0LgjOLAc6nJSDLos1E8GrhZzF9sKJI6gr0rPuDhqCEh04Y2HXQDA739hl3wtmUiHjnYaXjTrmnrQlhH6JY66GDSxDqVpjIQdS9CaNUuL7EokaPKz0awXr1HpcsOUNvQA1aeKIFU8JwMXLU3zISNlDd1aNZthEtjetzSchzLQl2IoHT1oADAYe8uVoIUD6H0thX0xB21JGLQ4ODS6OPIgQSNer2azMJHRwaDpBAvmPfhch5GG2Oy9sReYkug7QOhdHKNRDDrGI9iMwdOUWIcSR1e4OC4TE/OXP/Ui/ukX75DPcQHOxtFO9liIM2x5Xtg6MG0SooNB03N/5OfSInGUM0SHLloaTK8APT1oUwyahr0hbPajHjQdDBogeqrXGrRSQPk+ERJO2t4p4Yapb5CzlMrJxJr6yJejQQYTT6tCiRqSedR13ywWKJSWbVC1TgbN9wUtTr0eYyxk0XRINHSCITYHTYPN/rc8voVf/8o9uD7XGjBSN8RLduJkMEFbg/ugFTBonoa5ZA0nLnGkX08nnru8hj//yee1BOByD+p0cVxvib2oIxlcNsTnoOnY8zpMQoAoQdMtcdThSgxIBi34bFQ2+3EGTUNMUAslXuLsoH51rgZjYk4GE/JzShZP/+kX72K/S2sCEZqtaBhPAwTvaS7WAzQwaLE+52Vi0OIfRU9iHUgc56x1Lt+qWhg0xuD6vhYGDYhYhIaml4wusCBD8zT0MgHAf/Ltj+Odgz6+fPtEaxMrtdOWDIBPdTJogVTDJg6+bYuhZjMMJ34gcTyXx9KZw04waDrnoBl5Y3nEJY46ggJ9JiH6JI4y+D7VyKBZFqIEjcwkJDauQEPxIyzuaErQJIPWHbnaTEL+5ev7AGj7tOQcNB0FaSDoQeM8YGM09KAFz/ZgslwSx/i90hE32iyaXZeHcxgJMS3SCdsOetA8XQnacjJoljxAfF/LgfXcpbXwv3U03ktQJxVOzGaf2sERiExCdAwSBUQf5nDiYeL7JthfEGcxE0q6OOoK/pcJUyYhS+biCGiyh7ci1lgbg6bDZj/2c3WZhAAR+86Iu9BWYioQ8kHViZ9PKnGM9fLpZGJCaSq52kU8b/2xS57E60T8XukzCVlKiaM+Bm0Y2FXrsPWXG3/ZEjTGpMRRz8aPBzo6JY7UMtiQQRtOyGegAUJi4/tcyyBRQDDH/bELzo1cblGEM6EmsgdNT+9Kq2YvVd+gLsQLLcvk4ij3gh5zi+i66ShcAYHNPjmDFv1cPTb7QYIWMGjUR/BqLEGjVmgkE1zKOKRmsaCXT5cboGBidEkqo3aE5ZI4xregtgTNx3JIHBljn2aM/RygtwdtELih6WTQdFUBdYGBhQeIjhhON1UtQc36ODGrYB09aDaTDJoe5rNZs0Kr7GVycdSJcCaURokjIFg0k6CVh5QCMqbJJETTPZLBvhaJY+y66XBABiSDJnvQiExC7HiCpr9/VZdJCEBfSEqeTbQ9aNKQRE9h0wpaEXSZoslYeDjxtCqUqBH/LDrO4nAO2jIwaJzzz3LOPwOIBE2LxDGw2Qf0vNgaSypxFBsRQS+THk12+N86XRyJq4Dxl7SOHjQr2P+uphdNs2ajE8wMMxLHxSBvk06JIwCst2rmni0AKXHUFejoukdy3+lgcON7XJuLo6bAW0KHomBW4kiL1ZgKxNY0Q1SCMgCXe2Ps+loCfSsWX+lQDIU2+xNviSWOetbjy2gSIiSOeg9+HZXAppQ4LhuDFuj1BQWv4b7Z8QdNp8RRT6MzAD1z0KbGI+hh0HojmaCdu2PpkQBjDI7FYjb7hkF7lCHVEjoCOUCf5Fu+O3UoT+Jyb13qE0sHgxbbEzrinVqCQaPeKysNfQ6myYSaVOIoZeaur9XFkXM9hR4pcVw2k5D4GaxF4mgtEYMWh2DQNLjYxQ9IjQxac9kYNADg/EwYNJ3nB/0ctBiD1tDDoLmexh40x45JHJfrGdAJx2ZhD5quwP/yehOb7ZqWtZYJ0hFtmaRCQJxBo3+O11vRvtPFoDk2g6+xB03HdYykeXpcHB3bCtkY6s+XTDZJJY6hzFyPBFAyMZ6mHjRZdOGcvk9RJ+LXTg/zGZiELN+gaoaaDgYtduG09KAtKYMWUvA+13JgxV9sOiWO1AxC/OfraIZ3LIax62tzcbQZC6u3OtzflhWOZYUSR10M2n/9R94L15tvGWwwDZ3zwnRCfh4deadtMaw1HHQ0zkGbZtCo5qDFEjQdLo7SAdbT04MGCKOQkTvWvv8pP5sTk4rqkzgKt2Ud68VbcJaJQdPtXRDOQVs+Bk0Po2VpZtCW1WZfSBwDlyHNPQl6JY7ULo7xHjT6ukq77qA/9oIeNPo9yZhorAb0MT/LCDsmcdRVoLiw2sDljaaWtZYJsgdt2fa7PC9kDzc1JIumy8VxelA1PYOmxw0zYNBccc907Eh536h70JLQwaCNPV8bg+b5HFyTQqkRM+LR6ZJNDf02+yjEoJ3LbEC3O5QOBk0mZsvn4ijocI9rYtA0Shx//v/yEj76xDYAHbNc4j1o9HtktWGjN3aDgZvky8G2WCivWTbJl07UbP0JmsFikK6Dy3af5FmoO0E7kzloy2KzL5kfT7DvOoLUnZW6WHuJ9r+8VbokgJbFwvhKxz1rxGY3LtFtOxOTkKXsQdM2qFpzgrbMDJqQOOqpFMercdSB/ideuIQP3dgkXUNiugeNnkFbbTroDl24vq+lB0JWAoHlC1h1Iu4+a67jo43QJGTJChJy37maEjSZ6Oqy2bcsaDUJ0SNxTJqEkC+JC6sNAPrPKSnjpMBZMTE+17NePBZepkKqbuVVOAdt3veR/yaKoUviqLuCJV8uy5egBYMUNbkB2poPSF3BSNwlUgeDttJw0B258LmeF6iQOOoLDpYV8WTaDPx+tLGsPWjyvPA1JWgyHtBrs09rEhIvZta0mIREvVOAnjN4Z/VsGLTh2CP72bp74CUTo29Q9XL2oE2ZhBiJ4+KwmKWHidFtErK0g6oFPE1ugFOVEA27W75cqE0S4sG2DgZtreFg5PoYjD1t84xcw/xUxlSAsEQv0GXEskscdTFo0lhLV4JmxSWOGhg0HfPrQpt9jSYhkkHTjeGEjkHTzcQwxuD50Dao2rFYmMws0+uFMRZ+Hi3S1MB9sz/JLxacCxdHxtinAXz6I1cs2JosuHWbhMjKxLIxaLLC4+mag6b5gIwa4ukOfWBa5qIjEJFJ4Mlgoq0SKJPcZarM6UZ8n+huvjcoh8gkRN+aP/wtN8gLjk9dXAUAXNtqka4jETJoZ2ESQsWgxc5AHedvNKg6MAnRIXFcEwnayWBCv1gM0uWWAvrjD6FQ8nx9CWHDsZduDhoQtFlo6uWTc9AenI5yv+9cJGic888C+OxLV+2f1JWg6TYJeWxnBdsrdaw2z8UtKQwhcYQ2swndVLUMiD1OLXHUy6CtBmsMJp6mBA1wfT/8b4PF4BgG7dzAskQ/tc779N/9sfeTr/EfvXQdN3fa+NbAQIkauouajqWXQdPhlhd3HwT0moQc9/UmaKQM2lRiTbZMiFDiyLm2Qk/dsUSCtlxcAmzG4EFPgsbC+5a/1rnLBuIuMpRYjQXBOhi0H3j/FXz/ey8v3ZBexkTfoMf12OwzxkKjBB2Bvj6JY8wkRIuLY7T/9Wnpo/82WAzxkQjLJp1bRjRq1tLdJ8YYvu3JHW3ryQKq7J+ihsUY/LA7hN7FUQckgzaRPWga1pTD7bUnaIQMWjzG0RXv+DyQOGp6b8qCyLK9p0OJo4aPJSWO806sc5cN1DUlaLKBVaypYw4UW7rkDIhVCjQNqgaiKpbOuWvU/RZTNvuaXByjtfUkaGn/bVAO8X6VZTOfWEY0a/bSJWi6IQPGMaE7Xxz2FING887WPWPKSfSg6Vh/qx0waIMx+VpxDChNQs7IxVFXCwkQzUJbtve0PId1KYZ8zjFPeHXuMoKGpkbgeAOrDhfHZQUDADkHTVMgInMZHQfIZvCSoZYdnlUPGjDNylAhvsSySSd0wtZcwTWohmbNWrpARzd+6FtuAAC+86kLWtazNAyq1g1ZzNHppHt1U/Qofvy5XfrFYhgSMq26TZqkxFHMXdPFoMnxIFqW0wZ5v3QUJ6RiyJ/DVRuJYwZ0M2jLiqkDRNPLTLBNvpYD5I9+6BpOBhP86LfeJF1HJmgtTRX3tViCpmMOj2HQ1EAGWoY9Ox9oOoZBq4oP39zC2//dp7StJwI5WpMQ3QhdHF19PWgbrRp+7//xfeGgcV3ghP3iugtkdjBPS1dLBxC1/Czbe1qnxJExcc/8OanF+UvQNDFo2ytRgrZszoo6wRi026fLZXRJHH/8u54gX0fOwtExAw1IMmgmQTsv0CnTMKiOZs1eukr0ssO2GDq8hbHVQn1JziopjR65eo2atmJxlg785Hc/gf/Ttz1G9vOnXRzJlgnBGCKTEM0SR90yXGrIe6fFfZMxcM5jbrDpOHcJWl1TghZn6ozEcXEwRAYauoJGZwkrPFYwf6Td0GSSE+tB0yPViP/38tw33ZBnlUnQzgdaNRsT4hEdBmphMYa/530C28//AP7kkpxVToJBY0vCDEr8wh9/CWOX45PvvUy6ztR4BE1SOc/XnKAFhMWyqTTk9dNR2A8ljnPY3HOXoOmSOMZhgp3FYbFoALGuAyR80Jbstjm2hZW6nkc2vo4WBk3zgPFlhWHQzhe+/akdbeYWBmpgW8AATRyv0isndCGcgyZ70JbsDP59z1/Sso5uiaNlAXeOh7hzzKdUX5SQLOvzV9a0rKcLlkYGTc5Bm+ctd/4StNq5+5W/ucGiIc66Ki6S8Fy2OVA1i2mTONrBjKax5xsXx3ME04N2vvBnvu/Zs/4VDEpCmiYtUxFEugSHJiFn+cucY+geVG0xhncP+wCAC6t6ErSv3jkBAHxU05xDXbA1FvbleIR5EsdzVyc5CwbNYHEwsFDiqMtlSKcbj07YFtMypFpCzqmxtZiERP+9TIGPbhgGzcCAFrIAuExFkJBB02gSsoyYcnHUNKhawiM0P4ljEsRzH7qxpWU9XZC3TldLB+cc88bnnjs6SpdJCAA8f3kNX7/f0bbeMsJiCHssNMT5AKLEbNleMjXb0sagAcCzl9aw1xlpCUR0N1cvKxzTg2ZgQAr5XlmmZ4wxBttiWm32lxFnMQdN4mFnRL4eAPyPP/IhfP3+KVoaYxEdkASCPpv9+XPQzl+CppFB+5U/+R3ojeiGGn4zQNqJAvpeaDrtUnVCJGj6HtnnLq/hX76+H1ZVKRE/FJeN+dSJSOJ47sQRBgbnCsvEoAHi84wMg1YJ8WNXt/vxg1M9CdqnP3AVn/7AVS1r6YRO7wJpEjIvuzh/CZrGrL1dd7QGxMsIBhZS4rokjmGCtmQv0D/3B5/D4xdWtK333CXRBPzaXpd8rSmJowkOFkZoFWzyMwMDEsiqt71kD1ndtsIEzRzBi0F7D9qSxThnCZ3tAdF4hCWz2W865+5X/qbGVEVJ06kvLYKXrQr4xz5yXet6H3lcaMxvbLXJ19ItDVlWyHl5hkEzMKABh8jQlo5Bi/UgLJvNvi7E94Qeu3byJb5pIMMOXRJHzrEcLo6MsU8D+PRHrlhae9AMVEDvgQUsr8RRN566uIrf+DPfg8d26Fm7aYkj+XJLC2noYva+gQENIgZtuR4yJ+ZqsWQfTRvOYg6agRrodHG0gtafpUjQOOefBfDZl67aP2kStPOF+Pmhj0EL1jNvmcp45pKeWSdTLzZz3xaGrODWjdutgQEJZExFfU79xp/5HjQ1xjs1K14kM2fwItBtdmUSNHXQKXG0rCU1CWmanrBzhbOwT5cvF/OSOT+IWxKbl87ikM/YUxf19SoaGHwzgloRoqs4JmEYtOqYmuepqZcJANYaDv6XH/8o+XrLDJ3u30UljueuUcEwaOcL7CwkjnI985I5N5geVH2Gv8g5x2AsfKFevLp+xr+JgcFyQla9l+2YmupBM0WyhTA1B03DNZTrfc+zF/Hhm8s1l0w3ZH1Cx9a3pEnIvO+j/1XUwpiEnC/EN7u2pmo5cNBE+ucGTHPlcVkhHTdfuGISNAMDSixbDmOFypMz/kXOMeIxjk6b/bpz7kL5Rw6WZgbNLzCo+tzd1c2V+ln/CgYlMM2M6Dn5LSNxPHcwEkc1kMNKXzQJmoEBEURUtWxOh5LxWa5PpRfWVB8f/XpyjZpt7lpV6BxAz4I5aEthEhLHss0e+WaCth604E9DxJwf6Ha/Wlb8zR/9MP63r97H7lrjrH8VA4OlRChxXLJjKnI/XrIPphHxd5dOBq1mm7i4KuTt0iVxBABv2eagGZwvTLk4aj5DTKB/fmBs9tXgvdc28N5rG2f9axgYLC2WtQctHHJvDuCFYenuQTMSR2XQuf/lGktnErJ8x+Jy4ywljuZFc34QLzaaHjQDA4NHFXJQ9bK9XsL35ZJ9Lp2wpySOOuzaxZ91w6BVRihx1JKgiT/n5GfnMEFbtlNxyRG/W/ps9qf/NHj0YRuJo4GBwTlAxKAt1zllhQzCGf8i5xi6TUKYkTgqQ1TYp19L3jc+5ww5h3fVnB7nCWcxqDpcz7xpzg3irJm5bQYGBo8qwqr3kp1TYQ/Osn0wjZjqpdYQXctigZE4VoeMF7Uwn0uboJnq+rmC7sGNgN6BgwZqEL9Vxn3TwMDAQC90MgjLCt0SR88Xk7QMg1Yd8nbpKOwXvV3n8K6a0+NcYcokRK+Lo4nzzw90u18ZGBgYGEQIbfbNi3NhxF9dOhRDbuAyYRi06rA1SnwjBm3O99H/Kophzo5zhbhcQhejpbMSYqAG02YyZ/iLGBgYGORgWV0cTe92dTDGwrhDR/zhyQTNzEGrDJ3zc00PmsEjAessGDQzz+XcwUgcDQwMzgMiF8flOqeMzb4a2BpbLFxP7EUjcawOne7fkYvjsiVo5vA4V4jfLkebxNFo6c8bbM3uVwYGBgYLYUkZtIhBOONf5JxDWt/reI25QQ+akThWh8xxdeS6yytxNDhXOEuJo6kEnh8YiaOBgcF5gAyqlu31YhkGTQkkg6ZT4mgYtOo4CwZtXpnnHN5Vc3icJ5yJxDFc2+yV84KpQdXmvhkYGDyi+PjzuwCAF6+un/FvohaRzb5BFYSJroZ4xzUJmjLI+/Uo9aA55L+Japjg7XxB81yQ+JqWObPODabnoJln3MDA4NHEH/rAVXzi+V2sNM5f+JQHnSYJywxHIxMpGbSGkThWhrxfOvxWQonjHI3jObyr5vA4T4jfLW0SR83rGVSHkTgaGBicFyxbcgaYHjRVCF0cjUnIuYJMzHQwn8YkxOCRgDXFoJkeNIN0nIUU1sDAwMBAwGLTfxosBkujgkcyaI6x2a8MnQyyVVDieP4SNMOgnSvE97ph0AyyEL9XRmJjYGBgoBeyMMZMjFUJOuegSRfHmknQKsPSyHwWZem0JWiMsScZYz/PGPvHsa99jDH2OcbYzzLGPlbwBxH9hgYUOJs5aKYH7bwhclA641/EwMDA4JsQ5gxWA51ugNIkxDbBTmXYGvd/JHGc831Ffhhj7BcYY3uMsa8mvv5JxtirjLHXGWN/Ie9ncM7f5Jz/ePLLALoAmgBuF/ldDIN2vsDOQOIYSTXMXjkvsMIZJOaeGRgYGOiGThe7ZYaUG+ocVK1rxuwyI5pf9+hIHIt2uv4igL8O4O/ILzDGbAB/A8D3QSRXn2eM/SoAG8DPJP79j3HO91J+7uc457/NGLsE4L8H8KNzfxNzeJxb6JM4SqmGwXmBcRAzMDAwODuENvvmCK4EnXPQfC4ZNHPTqiLqHdRhsy/+nMegFUrQOOe/wxh7PPHljwJ4nXP+pliQ/X0Af5hz/jMAfqDgz/WD/zwC0Ej7HsbYZwB8BgA+csXQuOcNZ2ESIjFv8xs8OjDyGgMDA4Ozg61RmrfMiAZ+06818UQIbRi06tAZg0TPGJ1JyDUAt2J/vx18LRWMsR3G2M8C+BBj7C8GX/tBxtj/BODvQjB0M+Cc/xzn/CXO+UvBT6rwKxvoRvys1+3iOG/GhMGjg2gGiXm+DQwMDHSDhSqGM/5Fzjl0JrqRi6MhL6rCtvTdN9USx8rgnB8A+KnE134FwK+U+kHm9DhXiN8t/QmaydDOC2yN+m8DAwMDg2mY3m010Oni+G1P7uDtgz42WjXytZYdOucAFjUJqZKg3QFwI/b368HXiGEOj/OEKYmj5h40k56dHzCN+m8DAwMDg2lENvsGVaAzQfuv/vB78ZPf8yS2V+rkay075O3Scd9YQQatCi/6eQDPMMaeYIzVAfwwgF+t8PMywRj7NGPs54K/UCxhQISpOWiaWHgjcTx/MD1oBgYGBmcHI3FUg8gNk36tumPhqYur9At9E0CvxFH8qSRBY4z9MoB/A+A5xthtxtiPc85dAH8KwD8D8AqAf8g5/1qF3zkTnPPPcs4/E/w2FEsYaIA2Bi3c/CZDOy8wEkcDAwODs4M5g9VAzow2/dTnC0xjkbjoM1bUxfFHMr7+6wB+vfivpQBm058rnIWLYyhxNPnZuYGROBoYGBicHXT24CwzdEocDdRBZ4FC7g0lg6oNDBaF3OuM6ZtxVXTGhMGjAyNxNDAwMDg7RGewOYSrIOzlM9fxXEHn/o9iVLoeNG0wPWjnF/JunQXdb1wczw/MDB4DAwODs4M5e9XAMGjnE9Ggan1rLUWCNt2DZnCeEA5t1HhYrdSFctcckOcHxuLZwMDA4OxgetDUwMz0PJ84izlo89bSNgdNHcymP084Cwbtv/3B9+G5y2v4zqcuaFvToBqYxuqVgYGBgcE0TA+aGtgaXRwN1EFnkTi09J8zYPz8JWhm158vMP10//ZKHX/m+57Vtp5BdeisXhkYGBgYTIMZmbkS2GcQ8xhUh6UxBpHPmjMnQTuH9Wqz6c8TdA7/Mzi/CPeJCQ4MDAwMtEPGiuYIroawB81cyHMFnUZlUVy8BAmaMQk5v5CW9yZBM8iDGZJqYGBgcHaIJI7mEK4C+wz67g2qIzQq03DfwjXsRv73kf8mCmAGVZ9fyLPeyCYM8mCcrwwMDAzODmGCdsa/x3mHZTEzLuYcQmes6nrCYfwfbf147vediwQthNMA7NpZ/xYGJRBRuWf7exg82jAujgYGBgZnB3P2qoHNmCk0nkNEffD0aw0mLgCgVbNzv+98hc27LwJrl8/6tzAogVDiaA5/gxwYeY2BgYHB2UEWUc300GpwLGaS3XMIndLU/tgDAKw0lilBMzh/kMyIqSgZ5CCcHWNOJAMDAwPtCItj3KRoVWCZBO1c4ixcTHfXmrn/vwmHDEhhGctZgwKwzJBUAwMDgzODfEeb9KwajMTxfMLW6OL4/e+9gv/ik8/jz3/yudzvOxcJmnRxPDk5OetfxaAkzmJQtcH5g5E4GhgYGJwdLEOgKYExCTmf0NkHb1sMP/2xp9Cu54+iPhcJmnRx3NjYOOtfxaAkmJE4GhRAyLSabWJgYGCgHfIM5oZDq4RmzUJjjvmDwaMHnYOqiyI/fTMwqIgo8H50Nr3Bowfj4mhgYGBwdjBnrxr8xHc/iU++x5jZnTeEg6ofIdrKJGgGpJBnvtFkG+QhOhzNPjEwMDDQDSNxVINrmy1c22yd9a9hUBLSoOxRIhMeoVzRYJlhEjSDPOicQWJgYGBgMI3QJMQkaAbfhGg4QpZadx6dtOjR+U0MlhKGGTEoAmYkjgYGBgZnBhb2oBkYfPPh9z2/i7/5ox/GYzsrZ/2rhDgXCZpxcTy/CCWOJu42yIEZx2BgYGBwdogYNJOiGXzzoVmz8R+878pZ/xpTOBcJmnFxPL9gMIG3wXzI/WFs9g0MDAz0w7yiDQweLZyLBM3g/MK48xkUQSRxPNvfw8DAwOCbEaHNviHQDAweCZgEzYAUxsXRoAjMOAYDAwODs4OZg2Zg8GjBJGgGpGCmt8igAGRiZiSOBgYGBvoh5z8ZBs3A4NGASdAMSCHDbSNxNMhD6PZptomBgYGBdph3tIHBowWToBmQwjBoBkXA5JBIs08MDAwMtMMyNvsGBo8UTIJmQApjEmJQBHbIoJl9YmBgYKAbxmbfwODRgknQDEgh423HMCMGOTADzQ0MDAzODvLoNemZgcGjgXORoJlB1ecXZg6aQREYm30DAwODs0OoXjAZmoHBI4FzkaCZQdXnF2HgbSJvgxzIBN5IHA0MDAz0w/SgGRg8WjgXCZrB+UVoEmLiboMcWKYHzcDAwODMYHrQDAweLZgEzYAUoc2+YdAMcmAZiaOBgYHBmcHUxgwMHi2YBM2AFFbIoJnT3yAbjDEwZhg0AwMDg7OAkTgaGDxaMAmaASlkvG1MQgzmwWLMMK0GBgYGZ4BI4njGv4iBgQEAk6AZEMNIHA2KwmJG4mhgYGBwFohMHE2GZmDwKMAkaAakYEbiaFAQFmNG4mhgYGBwBpDvaMOgGRg8GjAJmgEpjMTRoCgsxsw+MTAwMDgDWEbiaGDwSMEkaAakCCWOhhkxmAOLGScxAwMDg7OAeUcbGDxacM76FygCxtinAXz66aefPutfxaAkZFXOMYPQDObgT378aXzrE9tn/WsYGBgYfNNBihfMHDQDg0cD5yJB45x/FsBnX3rppZ9M/n+TyQS3b9/GcDg8g9/sfKHZbOL69euo1Wra1jQMmkFR/F8/bgowBgYGBmeB0MXxjH8PAwMDgXORoOXh9u3bWFtbw+OPPx4aUhjMgnOOg4MD3L59G0888YS2daMeNG1LGhgYGBgYGJSAKaIaGDxaOPdh83A4xM7OjknO5oAxhp2dHe1Mo3FxNDAwMDAweLQR2uwbCs3A4JHAuU/QAJjkrCDO4jqZOWgGBgYGBgaPNiKJo8nQDAweBSxFgmbw6MIwaAYGBgYGBo82LDMHzcDgkYJJ0BRgMBjge7/3e+F5HgDgk5/8JDY3N/EDP/ADU9/HOcdf+kt/Cc8++yxeeOEF/LW/9tfm/uysn/Xd3/3d+OAHP4gPfvCDuHr1Kv7IH/kjAIBf+7Vfw1/5K39FzQdTAEmcGQbNwMDAwMDg0USYoJ3x72FgYCBgEjQF+IVf+AX84A/+IGzbBgD8uT/35/B3/+7fnfm+X/zFX8StW7fw9a9/Ha+88gp++Id/eO7PzvpZn/vc5/DFL34RX/ziF/Ht3/7t+MEf/EEAwKc+9Sl89rOfRb/fr/ip1IAFIkczgNjAwMDAwODRhGV60AwMHimcexfHOP7qZ7+Gl++eKv2ZL15dx3/56ffkfs/f+3t/D7/0S78U/v0Tn/gEfuu3fmvm+/7W3/pb+KVf+iVYlsiLd3d3566f9bMkTk9P8Zu/+Zv423/7bwMQksKPfexj+LVf+zX80A/90NyfT43QxdFIHA0MDAwMDB5JREVUk6EZGDwKMAxaRYzHY7z55pt4/PHH537vG2+8gX/wD/4BXnrpJXz/938/Xnvttcrr/5N/8k/wiU98Auvr6+HXXnrpJXzuc5+r/LNVgBmJo4GBgYGBwSMN04NmYPBoYakYtHlMFwX29/exublZ6HtHoxGazSa+8IUv4Fd+5VfwYz/2Y5UTqV/+5V/GT/zET0x9bXd3F3fv3q30c1UhlDia/MzAwMDAwOCRhGUGVRsYPFIwDFpFtFqtwrPFrl+/HvaK/dE/+kfx5S9/udLa+/v7+N3f/V186lOfmvr6cDhE6//f3v2FVnnfcRz/fOKfHlc6tbSmbmdMwYg4AwepBWHKAmLrsNQOnM2NlQy6i3gnjMgYG3QXZSJejG2wabE3SwxqmZvbXNVg9UZXoax1W5xsNou06rJb2TD77iLHzD8nPdGc5Pd7zt4vCHnO8+Q8+RB+PDlfft/n98ybN6VzN8p4iyNPqgYAIEs0uQB54VPzFC1cuFCjo6OTKtK2bNmigYEBSdKZM2e0fPlySdKFCxe0ffv2h/7dhw8f1ubNm1Uqle7Zf/nyZa1ateqhzzcdWlhmHwCArP2vxZE5NCAHFGgNsHHjRp07d2789bp167R161adOnVK5XJZJ06ckCT19PToyJEjam9v1+7du7V//35J0tDQ0IQzXhOdS5L6+vrU2dn5wHsGBgYemFVLZXwGjZEGAECWWGYfyEtT3YOWSnd3t/bt26cNGzZI0oT3lS1YsEDHjx9/YP/58+fV3d1d8z2fdo9ardUdr1+/rlu3bqm9vX0SyaffnXmzFmbQAADIEsvsA3kpRIFm+0VJLy5btix1lJpWr16tjo4OjY6Ojj8L7WHs2bOnYVmGhoa0d+/ehp1vqmyegwYAQM7u/I+mxRHIQyEazyLilxHx2vz581NHmVBXV9cjFWeNtmbNGlUqldQxxn123mzNarGefHxu6igAAKAG0+IIZKUQM2gorkVPlHT2Wx1aPL9U/4cBAMCMM8+pBrJCgYZp97kFeSz5DwAAJkZ9BuShEC2OAAAAmB7jE2jcgwZkgQKtAbq6urRo0aJ7nj22bds2VSoVVSoVLVmyJKv7wgAAAO74zNzZemx2i76zeWXqKABEi2ND7NixQzt37rznYdOHDh0a3961a5dyXuAEAAD8/5rVYg1+f1PqGACqKNAaYP369bp69WrNYxGh/v5+nT59emZDAQAAACic5irQftMjffJBY8/5TLu06Y1HfvvZs2fV2tqqtra2BoYCAAAA0Iy4B22a9fb2qrOzM3UMAAAAAAXQXDNoU5jpmg63b9/W0aNHdfHixdRRAAAAABQAM2jT6OTJk1qxYoXK5XLqKAAAAAAKgAKtATo7O7V27VoNDg6qXC7rwIEDkqS+vj7aGwEAAABMWnO1OCbS29tbc//BgwdnNggAAACAQmMGDQAAAAAyQYEGAAAAAJmgQAMAAACATDRFgRYRqSMUAn8nAAAAIG+FL9BKpZJGRkYoPuqICI2MjKhUKqWOAgAAAGAChV/FsVwua3h4WDdv3kwdJXulUolnsgEAAAAZK3yBNmfOHC1dujR1DAAAAACYssK3OAIAAABAs6BAAwAAAIBMUKABAAAAQCZcpNUPbd+U9FHqHMjaU5L+kToEssYYQT2MEdTDGEE9jBHU88WIeLrWgUIVaEA9tt+LiGdT50C+GCOohzGCehgjqIcxgqmgxREAAAAAMkGBBgAAAACZoEBDs/lp6gDIHmME9TBGUA9jBPUwRvDIuAcNAAAAADLBDBoAAAAAZIICDU3B9lbbl2z/x/az9x3bbfuK7UHbz6fKiHzY/p7ta7bfr359NXUm5MH2C9VrxRXbPanzID+2r9r+oHrteC91HqRn+03bN2x/eNe+J22/Y/sv1e8LU2ZEsVCgoVl8KOlrkt69e6ftlZJekfQlSS9I+rHtWTMfDxnaFxGV6tevU4dBetVrw48kbZK0UlJn9RoC3K+jeu1gGXVI0kGNfca4W4+kUxHRJulU9TUwKRRoaAoR8aeIGKxx6CVJfRHxr4j4m6Qrkp6b2XQACuI5SVci4q8R8W9JfRq7hgDAhCLiXUn/vG/3S5Leqm6/JWnLTGZCsVGgodl9XtLf73o9XN0H7LT9h2prCq0nkLheYHJC0u9sX7T9WuowyFZrRHxc3f5EUmvKMCiW2akDAJNl+6SkZ2oc+nZE/GKm8yBvnzZeJP1E0usa+6D1uqS9krpmLh2AAvtyRFyzvUjSO7b/XJ1BAWqKiLDNsumYNAo0FEZEbHiEt12T9IW7Xper+9DkJjtebP9M0q+mOQ6KgesF6oqIa9XvN2y/rbHWWAo03O+67cUR8bHtxZJupA6E4qDFEc3umKRXbD9me6mkNkkXEmdCYtV/lne8rLFFZoDfS2qzvdT2XI0tMHQscSZkxPbjtp+4sy1po7h+oLZjkl6tbr8qiU4fTBozaGgKtl+W9ENJT0s6bvv9iHg+Ii7Z7pf0R0m3JXVHxGjKrMjCD2xXNNbieFXSN5OmQRYi4rbtnZJOSJol6c2IuJQ4FvLSKult29LYZ6ifR8Rv00ZCarZ7JX1F0lO2hyV9V9Ibkvptf0PSR5K+ni4hisYRtMQCAAAAQA5ocQQAAACATFCgAQAAAEAmKNAAAAAAIBMUaAAAAACQCQo0AAAAAMgEBRoAAAAAZIICDQAAAAAyQYEGAAAAAJn4L6VEAYoCc2VzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABTRUlEQVR4nO3dd3hcV50//veZPppR79W2ZMc9dhwndgopJCEhhZCwEAIbWMqGLLAbdmH5sSwL/NiF5buw8IWlJZSEkiXUkEJCSILTEyd23OQuy5LVextNn3u+f8yM5CiyNJJm5s695/16Hj+SJXnukcee+9bnfM45QkoJIiIiIppm0XsARERERLmGAYmIiIhoBgYkIiIiohkYkIiIiIhmYEAiIiIimoEBiYiIiGiGlAOSEKJeCLFDCHFICHFQCHFn4uNfFEJ0CSH2Jn5dm7nhEhEREWWeSHUfJCFENYBqKeVrQoh8ALsBvB3AuwD4pJRfz9goiYiIiLLIluoXSil7APQk3p8QQhwGUJupgRERERHpZVE9SEKI5QDOAbAz8aGPCyH2CyF+IoQoTtfgiIiIiPSQ8hTb1B8QwgvgGQBfllL+XghRCWAQgATw74hPw31wlj93O4DbAcDj8Zy7Zs2apY49p0RiGo70TgAANtYW6jya9Dre50MwGkNTuRd5Dqvew0mrgYkQeseDAIBlJXkocNt1HtHSnRr2IxiJwe2wwh+KYXVVvt5DSrvj/T44rBa47Bb0T4RM93+OiLJj9+7dg1LK8tk+t6CAJISwA3gEwONSym/M8vnlAB6RUm6Y63G2bt0qd+3alfJ1jaB7NIALv/oXAEDbV6/TeTTpdfU3n8XRvgn84WMXYXN9kd7DSasfPHMCX33sCADgrtvOxdXrq3Qe0dJ95Oe70D7kx9rqAuxuH8Gzn75c7yGl3Vu/9Rzqit1YV12Abz11HCf/81oIIfQeFhEZjBBit5Ry62yfW8gqNgHgxwAOnx6OEs3bSTcBaF7sQCk3SahxoLFZzm3WJJQJC5bE92mW546IckfKTdoALgJwG4ADQoi9iY99FsCtQojNiE+xtQH4SBrHR5RF5rjLSilhUSMfTX2fmpSwQJFvmoiyYiGr2J4HZn0FejR9w6FcpMpP52b5PjU5XVkxO0siIWkmee6IKHdwJ22iBLPcYzWFKkjitAoSEVE6MSARJZjlHqtJTCcHk2MPEhFlCgMSzUuVe49ZmtFV7UEiIkonBiSiBLPcY6VKPUgi2YNkkiePiHIGAxLNa6GbiRqVWb5LtXqQ2KRNRJnBgESUYJYgqEmp0D5I8bdmee6IKHcwIBElmOUeG1/mr/cossPCChIRLdJzxwfm/DwDEs1LlXuPuZq01UhIbNImosX6U3PvnJ9nQCJKMMs9Nn7UiN6jyA7BJm0iWqSu0cCcn2dAovkpcu8xyz1WrQoS90EiosXpHGFAIkqJWe6xah1WG3/LChIRLYSUEl0MSESpMctKKLU2imSTNhEt3PBkGIFIbM6vYUCiealy7zHL96nSYbVTZ7ExIRHRAsw3vQYwIBFNM8k9VqWNItmDRESLMV+DNsCARCkwy9TTfMzSx6JUD1LiFcwszx0RZUfniH/er2FAIkowyy1WSgk14hHPYiOixekYDiDfZZvzaxiQiBLMco9V6bBansVGRIvRMeJHQ0nenF/DgETzUuXeY5adtONnsek9iuzgWWxEtBgdwwxIRCkzyz02JiUsinRpc5k/ES2Upkl0jARQz4BES2WW4DAfs3ybUgJWRUpI3CiSiBZqwBdCOKqhvtg959cxIBElmeQmG9PUWebPs9iIaKFODcdXsLGCRJQis9xiNQWn2JiPiChVHQxIlC5maV6ej1luspqm0mG18besIBFRqk4N+yEEUFvEKTailJhlJZSmVA8Sm7SJaGE6hgOozHfBZbfO+XUMSDQvk+SGeZnlJhtfxab3KLJDsIJERAvUMexHfcnc1SOAAYloillusVKqNMWW7EEyy7NHRJnWMeKft/8IYEAimmKWm2xMqR6k+PcZ03QeCBEZQigaQ+94EPXFDEiUBibJDcqIaRJWVVax8bBaIlqArpEApMS8u2gDDEhEU8xyj5USCh01wn2QiCh1HSMBAPMv8QcYkIimmGU7g5iUyq1iYz4iolRMbxLJJm2ilJnlJqtJhabYuIqNiBagc9gPh9WCynzXvF/LgESUYJZbrKZNH8FhdoL7IBHRApwa9qOu2J3SaQMMSDQvs6zumo9Zvs14BUnvUWQHK0hEtBCpLvEHGJCIppjlJhvjPkhERLPqGA6k1H8EMCBRCnjrMQ4pJaSEcgFJ4z5IRDSPsUAEY4FISkv8AQYkoilmqEIke3FUCUg8aoSIUtWRXMGWwiaRAAMSpUCVe48Zvs9kUFCnB4lN2kSUmukl/gxIRAtihntsLJEUVFnFltxJ2wzVPyLKrLahSQDA8jJPSl/PgESUYIZ7bPJ7UGcfJFaQiCg1bYOTKPM64XXaUvp6BiSal1l2mJ6PGb7PWCIhKZKPuMyfiFLWNuTH8tLUptcABiSiKWa4x2pTAUmNhCR4FhsRpah9aDLl6TWAAYlSoMq9xwzfpqapFZB4FhsRpcIfjqJvPMQKEtGimOAuqynXgxR/ywoSEc2lfSi+gm1ZKStIRAtmhkbfmKZaDxKbtIlofu3JFWwMSJROqtx7zNCknVzunspBjGbAjSKJKBVtyQpSGafYiBbMDPfYmGJN2jyLjYhS0T40iVKPAwUue8p/hgGJ5qXKvccM3+ZUD5JiAYlTbEQ0l5ODk1i2gAZtgAGJaIoZgqA2tZO2zgPJEjZpE1Eq2of8C+o/AhiQiKaYoQdp+iw2NRKSYAWJiOYRjMTQMxZc0B5IAAMSpUSRu48Jvs2Ycvsgxd+yB4mIziR5SC2n2IgWyQy32GQlRZVVbMkgGGMJiYjO4OTgwpf4AwxIlAIVfjgXYrp/x8g01c5iszAgEdHcFrMHEsCARAQgXokwwy12qgdJkSm2ZK8Vm7SJ6EzahvwozrOjMC/1Jf4AAxIRgHjFxQw32djUKjZFAtLUFJvOAyGinNU+NLmgI0aSUg5IQoh6IcQOIcQhIcRBIcSdiY+XCCGeEEIcT7wtXvAoKKcZPzbMTwhhiqnE5Pegyio2S+IVzAzhlogyo23Qv6BDapMWUkGKAviklHIdgO0APiaEWAfgMwCeklKuAvBU4vdEhmK2CpIi+ei0CpLxnzsiSr9gJIbusUBmK0hSyh4p5WuJ9ycAHAZQC+BGAD9NfNlPAbx9waOgnKbCEmoBYYqApCl2FpuVTdpENIe2oUlICTRVeBf8ZxfVgySEWA7gHAA7AVRKKXsSn+oFUHmGP3O7EGKXEGLXwMDAYi5LlDEWYY7VeppiZ7EJIeIrEM3w5BFR2rUOxFewNS5wk0hgEQFJCOEF8DsAn5BSjp/+ORkvNcz6SiWlvFtKuVVKubW8vHzBAyXKJIsQptiNWbWz2ID498oKEhHN5kS/DwDQWJ7hgCSEsCMeju6TUv4+8eE+IUR14vPVAPoXPArKaSrceoQwx1Siaj1IQHw6MWaC546I0q91cBI1hS7kOWwL/rMLWcUmAPwYwGEp5TdO+9RDAN6feP/9AB5c8CiIdGaxmKQHSVOrBwmIV5DMsMknEaVf64APjeUL7z8CFlZBugjAbQDeLITYm/h1LYCvArhKCHEcwJWJ35OJmCA3zEvAHAeeTh01otIUm0VwHyQiegMpJU4MTKJpEdNrAJByzUlK+Tzi95HZXLGoqxPliHgPkvETUnKqyarQFrDxgMSERESvNzARgi8UzUoFici0hBCmaLZKhjxVdtIGEgHJBOGWiNLrRHIF2yIrSAxINC8zNC/PxywbRSZ7cVRaxWYRnGIjojc6MRBfwdbEChLR4plumb9KTdoWsEmbiN6gdWASbrsVVQWuRf15BiSalwq3HrNUkKYPq9V5IFlkFZxiI6I3ah30YUWZZ9GrehmQiGCmw2qTTdrqJCSLhcv8ieiNTgz4FnXESBIDEhESG0WaoFYWU+yoEYBN2kT0RsFIDJ0jgUUdMZLEgETzU+DeYxECZlgpruQ+SDxqhIhmaB/yQ8rFr2ADGJCIAJinB0lT9KgRMzx3RJQ+S13BBjAgUQpUuPWYZxWbej1IrCAR0UytA4s/pDaJAYkIZjysVp2AZOFRI0Q0Q+vAJKoXeUhtEgMSEeKr2MwwTTO9k7bOA8kiq8Uc06NElD4tA74lTa8BDEiUAjNUVuZjMcdJI1OVFLtCh7Fxio2ITqdpEsf7fFhVyYBEtGRm6UFKHtqq0hRb/LBaEzx5RJQWXaMBBCIxnFWZv6THYUCiealw64lvFGn87zQZFGwqNWkzIBHRaY73TwAAVi1hk0iAAYkIgHmW+UeTh9Va1QlIFh41QkSnOdYXX8G2ihUkyjQV7j1m2SgyWUmxKjbFxqNGiCjpWN8EKgucKHTbl/Q4DEhEiK/6MlUFSbUpNhM8d0SUHi39PqyqWFr1CGBAIgKQ6EHSexBpoCnYgxSv/pnh2SOipUrXCjaAAYlSYIZDXOdjMclGkawgEZHK0rWCDWBAIgJgpmX+EhYRr4ipwiK4kzYRxR3rS88KNoABiVKgwg/nZlnFFpMSNota/62tFnCKjYgAAMf707OCDWBAIgKQPGpE71EsXUyTSk2vAZxiI6Jp6VrBBjAgEQEABEzSgxRTLyCxSZuIko73pWcFG8CARClQ4dZjEcIUU4maVC8gsYJEREB8qr2lPz0r2AAGJCIAgMUkJ8JHNU2pJf4AD6slorh0rmADGJAoFQrce0y1ik21gMSz2IgI6V3BBjAgEQEwz2G10ZhUr4LEgEREOO0MNvYgEaWPmZb5q9aDZLEIUzx3RLQ0R3rHUVPoQmHe0lewAQxIlAIVdtIWgGmm2JSrILEHiYgAHOmZwJrqgrQ9HgMSEZKr2Ix/k42yB4mIFBSKxnBiwIc1VemZXgMYkCgFJsgN8xJmWeavYAXJLA32RLR4J/onEdUk1rKCRJReZulBimoSVgWPGmEFiUhth3vGAQBrq1lBIkors1Qh4keN6D2K7LJwo0gi5R3pHYfDZsHyUk/aHlOxl1JaDBVuPcIkFaSYghUkG3uQiJR3pHcCqyvzYUvjT4hqvZISnYFZjhpRchWbxYKYJk3RZE9Ei3O4ZyKtDdoAAxKlQIUbjxDm+D6jmgarUCsg2ROBMMoqEpGSBiZCGPSF0rrEH2BAIgJgth4ktQJSsqTOaTYiNR3pTX+DNsCARATAPKvYYpqEzapYQEoEwkhM03kkRKSHIz3xM9jWVLGCRFlm/NgwP1aQjCsZCFlBIlLT4Z5xVBY4UeJxpPVxGZBoXiYorMzPND1IUrkepOkKkvGfPyJauMO9E2ndIDKJAYkIiVVseg8iDdSsILEHiUhVkZiGlv6JtE+vAQxIRADYg2RkVvYgESnrxIAPkZhMe4M2wIBEBCDRg2SCCkRMk7AoNsVmt3KZP5GqDnbFV7Ctr2EFiSgjzHJYbVTRjSIBIKaxgkSkmubuMbjtVqwo86b9sRmQiGCuKTbVjhqxs0mbSFkHu8axrqYgI72Xar2SEp2BRZjjwFMVjxphkzaRmjRN4mD3GDZkYHoNYEAiApCsIOk9iqWLahIW1QISm7SJlNQ2NInJcAzrawsz8vgMSEQALBZzNGlrUsUKEjeKJFJRc3e8QXtDDQMSUcZYTTLFFolpyu2DZGUPEpGSmrvG4LBZsKoy/Q3aAAMSEQDAao2vYjN6FSkak1PL3lVhT/QgRbmKjUgpzV1jWFuVP/UakG4MSETA1PEcRq8iRTUtYy8WuSpZQeI+SETqkFKiuWssY/1HAAMSEYDpm6yR+1iklIjE5NSqLlXYE9saRDnFRqSMzpEAxoPRjPUfAQxIRAAwtfu0kfdCSlZQ7Ir1IE03aXOKjUgVzV1jAIANtZlZ4g8sICAJIX4ihOgXQjSf9rEvCiG6hBB7E7+uzcwwiTLLDBWkZAXFblPr5x4bm7SJlNPcPQabReCsyvSfwZa0kFfSewFcM8vHvyml3Jz49Wh6hkWUXcmAZOQiRDixD5B6y/y5USSRapq7xrGqMh8uuzVj10g5IEkpnwUwnLGREOnIYoIm7WgiIKnWpM2NIonUMtWgnaEdtJPS8Ur6cSHE/sQUXPGZvkgIcbsQYpcQYtfAwEAaLkuUPslMYeQqxFQPkmoBiRtFEimlazSAockwNtUXZfQ6S30l/T6AJgCbAfQA+O8zfaGU8m4p5VYp5dby8vIlXpYovczQpB2OJqbYFNsHaWqjSAYkIiXs7RgFAGyuK8rodZYUkKSUfVLKmJRSA/BDAOenZ1hE2WUzQ5P2VAVJrYA0vcyfU2xEKtjXMQqHzYLVVZlr0AaWGJCEENWn/fYmAM1n+lqiXGaOVWxq9iBZOcVGpJR9HWPYUFMAR4ZX7NpS/UIhxC8BXAagTAjRCeALAC4TQmwGIAG0AfhI+odIlHkWEwSk6VVsagWkZAWJy/yJzC8a03CgawzvPr8+49dKOSBJKW+d5cM/TuNYiHRjhqNGpvZBUmyKjRtFEqnjWJ8PgUgMmzPcoA1wJ20iANMVJCMfVps8rFW1KTZuFEmkjn2dowCATRlu0AYYkIgAmKOCFI7Gx67aKjYhBKwWYejpUSJKzb6OURTl2bGsNC/j12JAIoJJmrQVrSAB8ecvwik2ItPb2zGKTXVFECLzPwiq90pKNAuLCY4ame5BUu+/td0ipr5/IjKnyVAUx/omMr5BZJJ6r6REszDFFJuiZ7EB4BQbkQKau8agSeAcBiSi7DHFFJvKFSSrhWexEZlccgfts+sKs3I99V5JiWZhioA01YOkXgXJZmUFicjs9naMor7EjVKvMyvXY0AigjkOq02exaZiBclmsXCZP5GJSSmxu30EWxqKs3ZN9V5JiWZhhsNqk2exqbbMH0hWkDjFRmRWnSMB9E+EsHUZAxJRVpliik3Rs9iA5DJ/4z53RDS3Xe3DAIBzl5Vk7ZrqvZISzcIcq9gSTdqKncUGAA6rBZEoK0hEZrW7fQT5ThtWV+Vn7ZrqvZISzcIUR40kl/krOMXmsFmmtjkgIvPZ1TaCzQ1FU9X+bGBAIoJJptg0LvMnIvMZD0ZwtG8CW7M4vQYwIBEBMEeT9vQqNgUrSFbL1PdPROay59QopATOzWKDNsCARARgevfpqKErSBqsFpGVM4pyjd1mmerBIiJz2d02DIsANjcUZfW6DEhEMMkUW0wqWT0CWEEiMrNd7SNYW10Ar9OW1esyIBHBJFNsMU3JFWwA4LAJ9iARmVA0pmFvx2hW9z9KUvPVlGiG6QqSzgNZgmhMKrmCDWAFicisjvROwB+O4dzl2W3QBhiQiABMHzVi6GX+mqbkCjYgvsyfFSQi83m1Lb5BJCtIRDqxmGGjyKhUNiDZWUEiMqWdrcOoK3ajpsid9Wur+WpKNIMZmrRD0RicNjX/S3OjSCLz0TSJV9qGsb2xVJfrq/lqSjSDKZq0oxocqgYkVpCITOd4vw/Dk2FsW5H9/iOAAYkIgFkqSJrSFST2IBGZy8utQwDAChKRnmwmCEgqV5DsVgs0OX0eHREZ386TQ6gtcqO+JE+X66v5ako0g8UEASneg2TVexi6SAbDCHfTJjIFKSVebh3GtkZ9ptcABiQiAIDVDKvYYmpXkACwD4nIJJL9R3pNrwEMSEQApitIRt4HKRRRuwcJAFeyEZnEzmT/0QoGJCJdmWEnbZUrSI7EDuIMSETm8HLrMGoKXagvyf7+R0lqvpoSzZDIR4hpxr3BhhVfxQYAEU6xERmelBI7Tw5he2MphNDv+CQ1X02JZhAQsFkEokaeYlN8FRvAChKRGbT0+zDoC+vaoA0wIBFNsVmNHZDCUQ0Oq6Kr2NikTWQazx0fBABc2FSm6zgYkIgS7BZjbzYYisbgtKv5X9rOJm0i03i+ZRDLS/N02/8oSc1XU6JZ2KwCUYPuo6NpEpGYnKqkqMbJChKRKURiGl5uHcLFq/StHgEMSERTbFbjVpCSlRPVK0hGff6IKG7PqVH4wzFcvLJc76EwIBElOawWw+7EHEpUTlStILEHicgcnj8+AIsALmjSb/+jJDVfTYlmEW/SNuYNNhkMnHY1m7STq9hYQSIytudaBnF2XREK3Xa9h8KARJRksxi3BykUjQGY7sVRTXJ7gxArSESGNRaIYF/HKN6UA/1HAAMS0RS7kXuQklNsiu6D5Er0XoUixnz+iAh46cQQNAlcvJIBiSinGHkfpGTlRNWdtF2JqcVgopJGRMbzfMsA8hxWnNNQrPdQADAgEU2xGXgfJFaQEgEpwoBEZFTPHx/E9sbSnHkdy41REOUAu4H3QZquIKnZpO1KvKAGOcVGZEgnByfRNuTHJTnSfwQwIBFNsVkshl/Flis/eWWbzWqBzSJYQSIyqB1H+gEAb15TqfNIpqn5ako0C5tVGHgfpHgwUDUgAfFpNlaQiIxpx9F+NJV70FCq7/Eip1P31ZRoBrvVuBWkZDBwK7oPEhAPSAFWkIgMZzIUxc7WYVy+ukLvobwOAxJRgpH3QUoGA7UDkgUhBiQiw3mhZRDhmIY3r2FAIspJRt4HKRmQXA51/0u77FYu8ycyoB1H++F12rB1eYneQ3kddV9NiWYw8j5IwTArSC67hT1IRAYjpcSOIwO4eGVZzvVQ5tZoiHRks1gQMehRFVMVJJUDks3KVWxEBnO4ZwK948Gcm14DGJBoHlIas6KyGA6bQMSgFaRAJAa7VUwd2qqi+Co2BiQiI9lxNL68/7LV5TqP5I3UfTWllCiUj+L7IBm1BykcU7p6BHCKjciI/nKkHxtqC1BR4NJ7KG/AgERz0hRKSDYD76QdjMSU7j8CACebtIkMZWAihNdOjeDKtbmzOeTpGJBoTgadcVoUu9WCiEH3QQpEYnA71A5IbrsVIVaQiAzjiUN9kBK4en2V3kOZFQMSzUmpCpKB90FiBSk5xcYKEpFRPH6wFw0leVhTla/3UGaVckASQvxECNEvhGg+7WMlQognhBDHE2+LMzNM0otC+Qg2qwVRTRqyMT0Q0diDZONO2kRGMR6M4MUTg7h6fSWEEHoPZ1YLqSDdC+CaGR/7DICnpJSrADyV+D2ZiEoVJLsl/p/UiHshBcOsICVXsRkx4BKpZseRfkRiMmen14AFBCQp5bMAhmd8+EYAP028/1MAb0/PsChXqBSQbIkl8kacZmMPUnyKTZMw7IHDRCr588E+lHmd2NKQuxNPS+1BqpRS9iTe7wWQm63otGgGLKYsmt0aryCFDbjUP8AepKkpRq5kI8ptwUgMTx/tx1XrKmGx5Ob0GpDGJm0Zr2uf8XYqhLhdCLFLCLFrYGAgXZelDFNpusKZuMGGDbibNvdBmn7+2KhNlNteaBnEZDiGq9fndk1lqQGpTwhRDQCJt/1n+kIp5d1Syq1Syq3l5bm3YybNTqUKkjMxxRYyYAUiGInBrfBBtcD0OXRc6k+U2x4/2It8pw0XNpXpPZQ5LfUV9SEA70+8/34ADy7x8SjHqNSD5LQnA5LxbrCcYov3IAHgSjaiHBaOanj8YB+uWFuRc4fTzrSQZf6/BPASgNVCiE4hxIcAfBXAVUKI4wCuTPyeTESpgJT4z2q0KTYpJQMSAI/DBgDwhxmQiHLV8y0DGAtE8LbNNXoPZV62VL9QSnnrGT51RZrGQjlIoXwEpy0xRWOwgOQPxyAl4HWl/N/ZlPISq/gmQ1GdR0JEZ/Lwvh4Uuu24eGXut9rkdn2LdKdSBSlZ7g0ZbIrGlwgEHqfaASn5/TMgEeWmYCSGPx/sxVs3VOX89BrAgETzUKpJ22bMHqRkQPIyIAEAJsMMSES5aMeRfkyGY7hhU+5PrwEMSDQPTaGElJxiM1oPUrJikuzBUZXHmZxiM1YFkEgVj+zvQZnXie2NpXoPJSUMSDQnhWbYpqfYDBaQOMUWlwyInGIjyj2+UBRPHenDdRurYM3hzSFPx4BEc1KpB2l6is1YFYhkxUT1KbbkKr5JrmIjyjlPHe5DMKIZZnoNYECieSgVkAy6D5IvFAEwPcWkKotFwOOwsoJElIMe2NOFmkJXTp+9NhMDEs1JoRYkw/Yg+VhBmpLntMHPJm2inNI/HsSzxwZw05banD57bSYGJJqTSmexOQw7xZZYxab4PkhAPCT62KRNlFMe2NMFTQLv2FKn91AWhAGJ5qRWBSm5D5KxKkiToSgsAsrvpA3EN4v0c4qNKGdIKfG71zqxpaEIjeVevYezIAxINCeVepBsFgGLAMIxYwUkXygKj8MGIYxTus4Uj9M2taqPiPR3oGsMx/p8eMe5xqoeAQxINA+VApIQAk6b1XhN2sGo8kv8kzwOK89iI8ohv9vdCYfNguvPNs7qtSQGJJqTQvkIQLwPyWhHjUyGo8qvYEvKc9q4io0oR4SiMTy4rxtXratEoduu93AWjAGJ5qRSBQmI9yEZroIUinEFW4LXYeNRI0Q5YseRfoz6I/grgzVnJzEg0ZxUatIG4nshGW2Z/2SIU2xJeU4rjxohyhG/fKUDlQVOvGlVmd5DWRQGJJqTahUkh9V4FaSJYIQVpASvM15BUukMQaJc1DHsx7PHB3DLeQ2wWY0ZNYw5asoalfZBApBo0jZWBWIsEDHk/H4mFLjskBLwcZqNSFf3v3oKAsC7z6vXeyiLxoBEc1LtB3Gn3XgVpLFABEV5DEgAUOCOV9LGAxGdR0KkrkhMw69e7cTlqytQU+TWeziLxoBEc1JtqsJlsyJgoGXioWgMwYjGClJC8u9hPMAKEpFenjjUh0FfCO/Z1qD3UJaEAYnmFFNsis3jNNY+OmOJSgkDUlyBK/73MMYKEpFu/nfnKdQUunDZ6gq9h7IkDEg0p5hiFSS3w1iHnSankgoYkABM/z2MBxmQiPTQPjSJ51sG8e7zG2A10MG0s2FAojlFFQtIRtuJmRWk15ueYmNAItLDz15qh80icIuBm7OTGJBoTrGYWgHJ7TBWD9KoPx4EivIcOo8kN3CKjUg/E8EIfvVqB647uxqVBS69h7NkDEg0J+V6kBI7MRtlewNWkF7P60qsYgsaZ5qUyCx+u7sTvlAUH7hohd5DSQsGJJqTej1IVmgShlnqz4D0elaLQL7Lxik2oiyLaRL3vtiGLQ1F2FxfpPdw0oIBieakYg8SAMP0ISUDUoGLO2knFbjsDEhEWfaXI/1oH/Ljgxebo3oEMCDRPFTbBynPEQ8aRlnJNhaIHzNi1K38M6HQbecqNqIsu+eFk6gpdOGa9VV6DyVt+KpKc1KtgpTnNFgFyc9jRmYqcNu4USRRFh3sHsOLJ4bwvguXm+qHNfN8J5QRMc0YvTjpkmewKbahyTBKvVzBdrpCtx2jgbDewyBSxvefPgGv04ZbzzP2ztkzMSDRnJSrICWn2ELGqEAMTYZQ6mFAOl2Jx4nhSQYkomxoG5zEowd68N7tDSg02ZmQDEg0J/V6kAxWQfKFUep16j2MnFLqcWDEH1Hu3y6RHu569gRsVgs+ZKLm7CQGJJqTshWkSO4HJCklp9hmUeJxIKZJbhZJlGF940H8bncX3rW1DhX5xt8YciYGJJqTavsgTVWQDDDF5gtFEY5qKPOwgnS6ZGAc4jQbUUb96LlWxKTERy5p0nsoGcGARHNSLSB5nPEKks8AAWnIFw8AJexBep3k3wf7kIgyZ9Qfxn07T+GGs6tRX5Kn93AyggGJ5qTaFFu+0wYhgAkDHFUxNBkCAE6xzTAdkEI6j4TIvO5+thWBSAwfvXyl3kPJGAYkmpNqFSSLRcDrtBlio8FkBamMTdqvU5qYcuQUG1FmDPpCuOeFNtxwdg3OqszXezgZw4BEc1KtggQkj6owQgUpHgBYQXq9Yk98qfGwjwGJKBO+//QJhKIxfOLKVXoPJaMYkGhOKi6VLjDIURUDE/EpJPYgvZ7TZkW+y8YKElEG9I4F8YuX2/GOLXVoLPfqPZyMYkCiOalZQTLGafA9Y0GUehxw2qx6DyXnlHocDEhEGfDdHS2IaRL/cIW5q0cAAxLNQ7WjRgAg32XHuAGatPvGg6gqNN/eI+lQ4nGwSZsozTqG/bj/1VO45bx6065cOx0DEs0ppl4+Shx2mvsVpN6xIKoKGJBmU+Z1Tk1BElF6/NfjR2G1CPz9m81fPQIYkGgeKlaQClzG6EHqHQ+ikhWkWVUVutA7FtR7GESmsefUCB7e143b39SoTOWaAYnmpGQPktsOXyia0w3qwUgMw5NhVLOCNKvKAhfGg1H4w7k/VUqU66SU+I8/HkaZ14nbLzXnrtmzYUCiOam2DxIQb9KWEpjI4d20+8fj00esIM0uOfXIKhLR0j3W3Ivd7SP45FvOgjdx2oAKGJBoTioGpEJ3fB+dUX/uroLqHY/f+NmDNLvkFEDy74mIFicUjeGrjx3B6sp8vGtrvd7DySoGJJqTigEpuTN1Li8TT974q1lBmlVlIjj2MSARLcmPnz+JU8N+fPa6tbBahN7DySoGJJqTij1IyZ2pc3kn5q6RAAAo0yy5UFMVpDGuZCNarK7RAP7nqRa8ZV0lLj2rXO/hZB0DEs1JxQpScmfqoRzeR+fUsB8lHgfyXXa9h5KTvE4b8p02VpCIluBLDx+EhMTnb1in91B0wYBEcwpF1VvmnzzsdDCHK0gdw340KLBR21JUcqk/0aLtONqPxw/24R+uWIW6YjVfaxiQaE4RBXeKdDus8DisGMrhgNQ+PMmANI/qQhe6RgN6D4PIcIKRGL740EE0lXvw4Ysb9R6ObhiQaE5hBStIAFDqdebsFFskpqF7NMiANI+Gkjx0jPj1HgaR4Xz7qeNoH/LjSzdugMOmbkxQ9zunlKhYQQLifUi5WkHqGQ0ipkk0lDIgzWVZaR5G/RGMGeDYGKJccaBzDHc924pbttbjopVleg9HVwxINKewogGpzOvAoC83K0jtw5MAwArSPJJ/Px3DrCIRpSIc1fDPv92HMq8Dn71urd7D0R0DEs0pHNXgsKr3z6TU48zZfZDaBuMBaRkrSHOqZ0AiWpDv7mjBkd4JfOWmjVMb5qosLXuGCyHaAEwAiAGISim3puNxSX/hmAa7VSAc03sk2VVR4MSQL4RoTIMtxwJiS78PXqeNu2jPI1lBOsWARDSvQ93j+O6OFtx0Ti2uWFup93ByQjoPVblcSjmYxsejHBCOanDYLJhULCHVFLmhSaBvIoTaIrfew3mdY30+rKzwQgi1drVdqHyXHSUeB9oZkIjmFIzEcOf9e1DsceDz16u559FscutHY8o5kZim5CqG5BEe3Tm4TPx4vw+rKrx6D8MQ6kvyOMVGNI+vPHoYx/t9+O93bkJxYqNcSl9AkgD+LITYLYS4PU2PaViaiXafDkc12HNsiikbahJVo1wLSCOTYQz6QlhVyYCUimUleTiZ6Nkiojd68lAffvZSOz508QpcouBxInNJ153vYinlFgBvBfAxIcQlM79ACHG7EGKXEGLXwMBAmi6bmzRpnoAUiUmlK0g9ObYTc8uADwCwqjJf55EYw6oKLzpHAvCHo3oPhSjn9I8H8enf7cfa6gJ8+prVeg8n56Tlziel7Eq87QfwAIDzZ/mau6WUW6WUW8vLzZ1SYyYKSKquYst32ZHvsqEnxypIh3vGAQCrGZBSkgySLf0+nUdClFuiMQ133r8Xk6Eo/ufWzXDarHoPKecs+c4nhPAIIfKT7wN4C4DmpT6ukWkm2TpISomwoj1IAFBT6EZ3jlWQ9neOodTjmKpw0dzOSkxFHutjQCI63df+fBQvtQ7hyzdtxMoK/sA1m3SsYqsE8EBiRY0NwP9KKf+Uhsc1LLNMsUVi8e9DxR4kAKgvcedcg29z1xg21BZyBVuKGkry4LBacLxvQu+hEOWMPzX34K5nWvHebQ34q3Pr9B5OzlpyQJJStgLYlIaxmIZZptiSu2irOMUGACvKPHju+CA0TcJi0T+QBMIxHO/34ap13KMkVTarBY3lHhxjQCICAJwY8OFTv9mPTfVF+PwNXNI/FzXvfBkmTTLFljyo1q7oFFtjuRehqIbusdzoQzrUM46YJrGhtlDvoRjKWZX5nGIjAjAejOCOn++Gw2bB9967hX1H81DzzpdhZqkgBSPxzSHz7Gr+J1pR5gEAtA7kxjLx/Z2jAICNDEgLsq6mAF2jAYzk6NExRNkQiWn42H2v4eTgJL7znnNybgPcXMSAlAFm6UEKJAKS26FmQGosTwak3Kg+vHJyGLVF7qk9mig1Z9fFA+X+rjGdR0KkDyklvvDQQTx3fBBfuXkjLmwq03tIhsCAlAFm2SgykDhexKVoBanc64TXaUNrDmw0KKXEKyeHsW1Fid5DMZyNtYUQAtjfMar3UIh08ePnT+J/d57CHZc24V1b6/UejmEwIGWASfLRdAVJ0YAkhEBTuScn9tBp6fdhaDKMbY0MSAuV77KjscyDfZ2sIJF6HtnfjS8/ehjXrK/Cp6/mZpALwYCUAWbpQUpWkNwOdf+ZrKspwMHucUidn9OdJ4cBANtWlOo6DqPaVFc01cNFpIpnjg3gH3+1F1uXFeObt2zOidW4RqLunS+DTDPFpngFCQA21BZiLBBBx7C+K9mePTaAmkIXlpXm6ToOozq7rhD9EyH05MiKRKJM290+gjt+vhsrK/Lxo/efp2wv6VIwIGWAWZq0k6vYVO1BAqZXjB3QscE3FI3h+ZZBXL6mghtELtLW5fGpyVcSlTgiMzvSO44P3PMKKguc+NkHz0eh2673kAyJASkDTFJAOm2KTd2AtLoqHzaLQHO3fgFpZ+sw/OEY3rymQrcxGN3a6gIUuGx4sWVI76EQZdThnnG854c7keew4ecf2obyfKfeQzIsBqQMiJkkIXGKDXDarFhbXYDX2kd0G8NTh/vgtFm4NHcJrBaBbY2leKmVAYnM62D3GG794ctw2iy4//btqC/hlPxSMCBlgN4NvekS4BQbAGDbihLs6RidmnLMpmhMwx8P9OKy1eVKV/LS4YLGUpwa9qNzJLfO1yNKh+auMbznhzvhcdjwq9svwPLERre0eAxIGWCWVWy+YBRWi4DLrvY/k+2NpQhHNew5NZr1a794YgiDvhDevrk269c2mwtXxlcAcpqNzGZn6xBu/eHLyHfZcP/t29HAxRxpofadL0M0k5zFNhGMIt9lg4DajcHnrSiBRUCX6Zk/7O1CvsuGy9l/tGSrK/NRXejCk4f79B4KUdr8qbkXt/3kFVTkO/Grj1zAabU0YkDKALOsYpsIRpDvsuk9DN0Vuu04u64IO470Z/W6Y/4IHjvQi+s2Vis/zZkOQghcubYSzx0f1GW6lCjdfvFyOz56325sqCnAb++4kOerpRkDUgaYpUl7IhhFvpPLQwHgmg1VONA1ltX+ld/s7kAgEsNtFyzL2jXN7qp1lQhEYnihZVDvoRAtmqZJ/NefjuBzf2jG5asrcN+Ht6PY49B7WKbDgJQBURMFpAI3K0gAcPX6KgDA4wezMz0T0yR++lIbzltejPU1hVm5pgq2N5Yi32nDn5p79R4K0aJMBCO4/ee78L2nT+DW8xtw123ncgFHhjAgZUA4ao4mpPFgBPkuVpAAYEWZB2uq8vHwvu6sXO+hfV3oGA7ggxetyMr1VOGwWXD1hio81tw7tc8XkVG0D03i5u+9iB1HB/ClG9fjKzdtgM3K23im8G82A8IxcwSkZJM2xb1zaz32doziYIY3jYzENHzryeNYW10wVbmi9Ll5Sy18oSj+fIhVJDKOHUf6ceN3X8CAL4Sff/B8vO+C5dxZP8MYkDLATBWkAlaQprxjSy2cNgvu23kqo9f59a4OtA358U9XncXDJTNg+4pS1Ba58bvXuvQeCtG8IjEN//noYXzg3ldRVeDCgx+7CBeu5Kax2cCAlAERE1SQNE3CF2IF6XRFeQ68bVMNfre7E/3jwYxcY2AihP/z2BGcv6IEV67l0v5MsFgEbt5Si+ePD6BjmJtGUu7qGg3glrtewl3PtuK92xrwh49dhGWl3AAyWxiQMsAMFaSJYBRSgocczvCxy1ciqkl87+kTaX9sKSW+9MghBCIxfOWmjSyfZ9B7tjXAIgTufbFN76EQvYGUEg/u7cK133oOx/p8+J9bz8GXb9rI7T6yjAEpA8wQkAYnQwCAMi8POjzd8jIP3nluHe7b2Y5jfRNpfezf7OrEw/u68fdvXoWVFd60Pja9XnWhG9durMavXu3ARDCi93CIpgz6Qvjofa/hzvv3orHcg0f+/mLcsKlG72EpiQEpA0ImmGIb8oUBMCDN5p+vXg2v04b/73f707bn1b6OUfzbg824aGUpPnb5yrQ8Js3tw29aAV8oip+/3K73UIgAAI8d6MHV33wWTx3ux2feuga/veNCnqmmIwakDIiYoYLki1eQSr3cfGymUq8TX7hhPfacGsXXHj+65Mdr6Z/A39zzCioKnPi/t5wDKxuzs+LsuiJcvrocdz3TirEAq0ikn45hPz7801fxd/e9hpoiNx75h4txx6VNfC3QGQNSBphhmf8QA9Kc3n5OLd67rQE/eOYE7tu5+ArEa6dGcMtdL8NqseAXH9qG8nxW7LLpU1evxlgggh8+26r3UEhBoWgM393Rgqu++QxePDGEf712LX7/0QtxVmW+3kMjAFyilAGm6EHyhSEEUJLHgHQmX7hhPbpHA/jXB5ox6o/g7y5tSnlZvpQSv3i5Hf/xx8OoLHDh3g+cx9UpOlhfU4gbNtXgR8+34l1b63kKOmWFlBJ/OdKPLz96GK0Dk7h2YxX+7fp1qC7kWWq5hBWkDDBDQBrwhVCS5+AurXNw2Cz4wW3n4oZNNfja40fxvp+8gqO98zdu72obxi13vYx/e/AgtjWW4oGPXojGcjZl6+Wz166BVQh87sFmSJMcNE25a3/nKN5998v40E93ARK45wPn4XvvPZfhKAexgpQBZtgHqWskgBqeDD0vp82Kb797M7atKMH/+dMRXPOtZ3HxyjK8ZX0V1tcUoNTjQCQm0TMWwGvto3isuQdHeidQ5nXiqzdvxC3n1XM5v86qC9341NWr8f8/fAgP7evGjZtr9R4SmVDb4CT++4ljeHhfN0o9Dvz7jevx7vMbYOcPoTmLASkDQiaoIHWNBtBUzimfVAgh8Nfbl+G6jdW458U2/P61TvzbH5pn+bp4Y/C/37ge7zi3DnkO/vfLFe+7YDke3teNzz3QjM31RZzupLQ5MeDDd//Sgj/s7YLDZsHHL1+Jj1zayHMuDYCv0Blg9CZtKSW6RgK4ZFW53kMxlGKPA/901Vn4xytXoXMkgCO9ExgLRGC3CpTnO7G+ppAbb+Yoq0Xg27eeg2u/9Rw+/r978Js7LuCmfLQkx/om8J2/tODh/d1w2az40MUr8LeXNKIi36X30ChFDEgZEIoYOyCN+CMIRGKoLeYU22IIIVBfkof6Ejb8GkldcR6+/s5NuP3nu/Gp3+zDt999Ds/CowWRUuLZ44P48fMn8eyxAeQ5rPjIJU348JtWcE85A2JAyoDJUFTvISzJycFJAMAy3uBJMW9ZX4V/eesa/OdjR1BT5Ma/vHUNe8RoXoFwDA/s6cJPXjiJln4fyvOd+ORVZ+G925ehxMOVwEbFgJQBEyFjbzrX0h9ficW9OEhFt1/SiK7RAO5+thVCAJ+5hiGJZtfcNYZfvdqBP+ztwkQwivU1BfjGuzbh+rNr4LCx+droGJAyYCJo7ArS8T4fXHYLp9hISUIIfPGG9dCkxF3PtCIQjuHz16/jlhcEABgLRPDQvm786tVTaO4ah8NmwbUbqnDr+Q04f0UJw7SJMCBlgNED0rF+H5rKvdzmnpRlsQj8+40bkOew4e5nW3FycBLfuXULCvPYZK8ifziKJw/34+F93Xjm6ADCMQ3rqgvwpRvX48ZNtfx3YVIMSGlmtQhDnw4upcTBrjFctrpC76EQ6UoIgc9euxZN5R587g/NuP47z+Eb79qM85aX6D00ygJ/OIpnjw3g4f09eOpwH4IRDVUFLtx2wTK8fXMtNtYV6j1EyjAGpDTLd9kwbuAK0qlhP4YmwzinoUjvoRDlhFvOa8DKinx84ld78K67XsLtlzTizitWcR8rE+oc8WPHkX48ebgfL7UOIRzVUOZ14J3n1uOGTTXYuqyYKxsVwv/haVbgsmPUH0EwEjPkPiqvnRoBAGxpKNZ5JES549xlxXjszkvwH48cwl3PtOKhvd34zFvX4G2bathzYmCBcAy72ofxQssQnj7ajyOJo4JWlHnwvu3L8Oa1FTh/eQn7zxTFgJRmFflOnBr2Y2AiZMh9cF46MYR8lw2rq7iCjeh0XqcNX33H2bh5Sx2+9MhB3Hn/XvzwuVZ87LKVuHp9FSsLBhCOatjXOYoXW4bw4olB7Dk1inBMg80isGVZMT577RpcsbYSTTwbkcCAlHZVhfFdUnvGgoYLSJom8ZcjA7j0rHI2aBOdwfkrSvDgxy7GA3u68N0dLfi7+15DU7kH77tgOd6+mQ27uaRvPIjX2kewp2MUr7WP4EDXGEJRDUIAG2oK8YGLluOCplKct7wEHidvh/R6/BeRZtVTASmg80gW7kDXGAZ9IVyxlg3aRHOxWgT+6tw63HROLR490IO7n23FFx46iK88ehjXbazGDZtqcOHKUjhtxptmN6r+iSAOdY/jcM8EmrvHsPfUKLpG46/DDqsFG2oLcNv2Zdi6vAQXNJYyyNK8GJDSrKowvndQ71hQ55Es3AN74ocpXs4VbEQpsVoEbthUgxs21aC5awy/fOUUHtrbjd/v6UK+04Yr1lbg8jUVuLCpDOX5PGoiHSZDUZwcnMSJAR8O9YxPhaJBX2jqa2qL3NjcUIQPXrwC5zQUYX1NAcMqLRgDUpp5nVbkO21TP7kYRTAS3yr/6vVVKMrj1vhEC7WhthBfvmkjPn/DOrzQMog/NffiiUN9+MPebgDAWZVeXNhUhnMainB2XRGWleSxb+kMwlENPWMBnBr2o3UgHoaSb3tO++HTbhVYVZGPy1aXY111AdZWF2BddQGrQ5QWDEgZsKrSO7Uawijuf+UUxgIRvHdbg95DITI0p82KN6+pxJvXVCIa03Cwexwvnog3Bd//6inc+2IbgPiWIBtrC7GmqgCN5R40lXvRVOFBuddp6pVxUkqM+iPonwihfyKIrpEAOkcC6Bzxo3MkgK7RAHrHg5By+s94nTY0lXuwvbEUTeUeNJZ70VjuQWOZl0d6UMYwIGXAupoCPLinG1JKQ7zQ+cNRfO/pE9i2ogTbG0v1Hg6RadisFmyqL8Km+iL83WVNiMQ0HO/z4UDXKPZ3juFAYlouEIlN/Zl8pw21xW5UF7pQXeRGTaEL1YVuVBQ4UZznQLHHgeI8O9x2a068voSjGsYCEYwFwhgLRDDqj0y9HQ1EMDARwsBEEAMTIfRPhDDoCyESk697DKtFoLrQhdoiNy5sKkNdsRu1xW7UFbuxstyL8nxzh0bKTQxIGbC+phC/ePkUWgcnDbFc9GuPH0X/RAjf/+steg+FyNTsVgvW1RRgXU0Bbjkv/jFNk+gdD+LEgA8n+n1oHZxE92gAPWNB7Oscw/BkeNbHctgsKM6zo8jtgNthRV7il8uefN8Gp80Ci0XAKsTUW6sFU+9rEohpGmJa/G1Uk4hpcuptMBKDPxz/FYhEEZh6P/52MhSFPxybdXwAIARQ6nGgzOtERYELqyrzUZ7vREW+M/HWhdpiNyrzndxriHIOA1IGXNRUBgB45uhAzgekJw/14d4X2/C+C5bh3GU8QoEo2ywWgZoiN2qK3HjTqvI3fD4YiaF3LIj+iRBG/GGMTIYx4o9g1B/G8GS8ahOIxBAIxzDqjyTCSzzMhKIaNBkPO5qc5eKnj0MANosFFkv8rdUi4LJbkOewTYUuj9OGMq9zKpB5HDYU5dlR6LajwG1HUZ4DhW47itzTH+OWIWRUDEgZ0FCah1UVXvzxQA8+ePEKvYdzRrvbh3Hn/XuwsbYQn712rd7DIaJZuOxWLC/zYHmZZ0mPI6VMVIzkVGiyWkT8V6LCRETTWNPMkHef34Dd7SPY2zGq91Bm9afmXvz1j15BRYELd9+21ZDHohBR6oSIhyGHzQKXPV4NctmtsFstDEdEs2BAypB3bq1DmdeBzz/YjGhM03s4U4Z8IfzL7/fjjl/sxqpKL379kQumdv8mIiKiOAakDClw2fHFt63H/s4xfPp3+xHROST1jQfx9ceP4rKvP41f7+rE375pBX5zxwXcvI6IiGgW7EHKoOvPrkHrwCS+8cQxtA5M4vM3rMOWhuKsXb97NICnjw7gTwd78WLLIGJS4sq1lfj01auxqpKH0RIREZ0JA1KG/cMVq9BY7sEXHjyIm7/3IjbWFuKaDVU4f0UJ1tcUIM+x9KcgGImhfciPk4M+nBiYxOGecexuH5nacXZZaR4+/KZG3Hp+PZaVLq3Rk4iISAUMSFlw/dk1uHx1Be5/tQN/2NOFrz1+dOpzFflOLCvNQ4nHgQJXfGmsy26FRUzvVRKTcmoZb3IfkqHJEAYmQhj0xZf5nq62yI2ty0twbkMRtjeVYnVlPjdZIyIiWoC0BCQhxDUAvgXACuBHUsqvpuNxzcTjtOFDF6/Ahy5egeHJMHa3j+Bo7zjah/w4NexH26A/sRttBOGYhtiMTUucNgvcDivcdivcDitKPQ6srsrHRV4nyrzxkNVU7sWKMg88TuZeIiKipVjynVQIYQXwXQBXAegE8KoQ4iEp5aGlPrZZlXgcuGpdJa5aVznn12mJ/Uos3KOEiIgoq9Kxiu18AC1SylYpZRjA/QBuTMPjKs9iEbBxjxIiIqKsS8dcTC2AjtN+3wlg28wvEkLcDuB2AGhoeP2J8dGYhpODkzgxMIkBXwiDEyGMByMIRjSEIjEEozEEI/FpJ4n4jrBSAhLxt1ri2GebxQKbVcBmEVPv263xLfPtiffdDiu8Dhs8Thu8zvhbj9OKEo8DlQUulHocPBOIiIhIcVlrVpFS3g3gbgDYunWrBIDjfRP4n7+04MnDfa878FAIwOuwwWm3wmWP7/rqsltgFQIQAhYBCMR3ho2/H6+w+KNRRDWJaEwiqmmIxiQimoZYTCKiSURiGvyhGMJz7ElkEUCp14m6YjfWVOXjrMp8nNNQjI21hTxTiIiISBHpCEhdAOpP+31d4mNzevpoP27/2W447RbcuLkG5y0vwVmV+ajId6Ikw1WccFTDZCgKXyiKyXAUk6Eohicj6BsPon88iL7xENqHJ/Gn5l788pV4caw4z463rKvC+y5chvU1hRkbGxEREekvHQHpVQCrhBArEA9G7wbwnrn+gCYlPvnrfWiq8OLnHzofZd7s7ubssFngsDlQ7HHM+XVSSgxMhPDyyWE8faQfD+3rxq92deDmLbX4/PXrUJQ3958nIiIiY1pyQJJSRoUQHwfwOOLL/H8ipTw4158Z80cQmwzj7vedm/VwtBBCCFQUuPC2TTV426YafOGGCO5+7gTueqYV+zpG8YsPb0N1oVvvYRIREVGapWUeS0r5qJTyLCllk5Tyy/N9/UQoiqoCV1aP3UiHwjw7/vnqNbjvw9vQNx7CHT/fjVA0Nv8fJCIiIkPRZblWKKJhQ22BYXd33tZYiq+/82zs6xzDvS+06T0cIiIiSjNdAlI4pqGuOE+PS6fNNRuqcelZ5fj+MycQjLCKREREZCa6BCRNStSXGDsgAcDtlzRi1B/B4wd79R4KERERpZFuOyKWeY2/AuyCxlKUeZ146nC/3kMhIiKiNNLtVFOPw/gHqlosAhetLMULLUOQ83+58qSUGPFHcGrYj1F/GMGIBk1K5LtsKHDZUVvsRqnHYdjeNCIiMg/dUkqe06rXpdNq24pSPLi3G53Dfr2HkpPGgxE8ur8HzxwbwCsnhzE0GZ7z6wvddqyuysf2FSXY3lSK85eX8OgXIiLKOt0Cktdp/AoSAKytzgcAHOmd0HkkuWVgIoTv7mjBL185hVBUQ22RG5euLse66gIsK/Wg1OuA02aBRQj4QlGM+iPoGPbjxIAPzV1j+M6OFnz7Ly0o8zpww6YavHfbMqys8Or9bRERkSL0m2IzSUA6qzIekI71MSAlPbyvG5994AD84RjesaUW7922DGfXFS5o6mwiGMELLYN4cG837tt5Cve+2Ia3bqjCP111FlZW5Gdw9ERERDoGJLfdHFNsHqcNpR4HukYDeg9Fd1JKfPOJY/j2X1pwTkMRvv7OTWgqX1zVJ99lxzUbqnHNhmoM+UK454U2/PTFNvz5YB/+9pJG3HnFKrhM8m+IiIhyj27NHTaLeRpxa4rc6BphQPr2U/FpsVu21uPXH7lg0eFoplKvE5+6ejWe/ufL8PZzavH9p0/gr37wIjrY90VERBmiW0CymCgg1Ra5la8g/eVIH7755DHcvKUW/3nzRtgz0Fhd6nXi6+/chB+9bytODflxw3eex/7O0bRfh4iISL+AZKKl3OX5TvjD6u6mPRGM4DO/O4C11QX4yk0bMx5+r1xXiYf//mLku2x4zw934rVTIxm9HhERqUe3gGQ1UUAqyrPrPQRdfXfHCQz4QvjqzRuz1he0rNSD33zkQpR5HfjwT3ehbXAyK9clIiI16BaQhIm2tinKM/6u4Is1FojgFy+344aza7Cpviir164qdOGeD5wPKSU+/LNdCChcxSMiovRiBSkNitzqVpDuf+UUfKEoPnJpoy7XX1Hmwf/cugUt/T589bHDuoyBiIjMhz1IaaDyFNvvX+vCucuKsb6mULcxXLyqDB+6eAV++lI7Xm4d0m0cRERkHjquYtPryumnakA62juBo30TuHFzjd5DwT9fvRo1hS586eFDiGk8GY+IiJaGFaQ0MMuu4Av15OE+AMA1G6p0HgngslvxmWvX4lDPOB7Y06X3cIiIyODYg5QGZtkVfKFeOjGENVX5qMh36T0UAMANZ1djXXUBvvd0CzRWkYiIaAn0W8VmnnwEt0O9gBSKxvBq2zAuaCrVeyhThBD4u8ua0DowiT8f6tV7OEREZGA6BiTzJKQ8h3pTbAc6xxCKatjemDsBCQCu3ViNumI37tt5Su+hEBGRgekSkMwTjeJUnGI71DMOANhUV6TvQGawWgTeeW49nm8ZROcIz2ojIqLFMdFaMv1YTXSuXKoOdY+jxONAZYFT76G8wV9trQMA/HZ3p84jISIio9InIKmXJ0znUM841lUX5ORUaW2RG9tWlOCxA+xDIiKixdFpii33bqqUOikljvf5sKrSq/dQzugt66pwtG+CZ7QREdGicIqNFmzAF0IgEsPyUo/eQzmjq9ZVAgCeONSn80iIiMiI2KSdJg6rOlmzYzje/NxQkqfzSM6sviQPZ1V68ezxAb2HQkREBsQepDSxWU34TZ1B+1AiIJXmbkACgAsaS7GrbQThqKb3UIiIyGBYQUoTu0IVpFPDfggB1BW79R7KnC5oKkUgEsP+zlG9h0JERAajzl09w1QKSF0jAZR7nXDacnv/p20rSiFE/EgUIiKiheAqtjRxKDTFNugLoSIH9z+aqdjjQGOZB/tYQSIiogViD1Ka2G3qVJAGfCGUeXM/IAHAxtpCHOga03sYRERkMOrc1TNMpSm2wYmwcQJSXRH6xkPoHw/qPRQiIjIQNmmniSoBSUqJockQyvMNEpBqCwGAVSQiIloQTrGliSo9SGOBCCIxaZgK0vqaAggBNHeN6z0UIiIyEFaQ0kSVA2sHJkIAgDKvQ+eRpMbjtKGu2I2WAZ/eQyEiIgNRY14oC1QJSIO+MACg3CAVJABoKveipZ8BiYiIUmfTewBmkYun2mfCWCAekArz7DqPJHUry7146cQQYppUJshmUziqoW1oEhPBKIrz7KgvyVOmJ4+IzIsBKU2sigSk8WAUAFDgMk5AaqrwIhTV0D0aQH0Onx9nJFJKvNAyhHtfPInnjg8idNpxLl6nDZetLscHL16BLQ3FOo6SiGjxGJDSxKLID8wTBgxIKyu8AICWfh8DUhr0jQfxrw8048nDfSjzOnHr+Q04p6EIBW47hn1h7GofwR/3d+OR/T246ZxafPGG9YaqOBIRAQxIaWNRpII0EYwAALwu4/zTWZYIRR0jfp1HYnyHusfxwXtfxWggjM9euwbvv3D5G46cece5dfjcdWvxg2dO4AfPnMDejlH8+P1b0Vju1WnUREQLp0jdI/NUCUjjgSg8DquhennKvE44bBZ0jgT0HoqhHe2dwC13vwQAeOCjF+H2S5rOeB6fx2nDJ9+yGr/82+0YD0Tw7rtfRtvgZDaHS0S0JAxIaWKkwLAUE8EI8g00vQYAFotAbZEbXQxIi9Y/HsTf3PMK3HYrfnPHBVhbXZDSn9u6vAS/vH07IjEN77/nFYwFIhkeKRFRejAgpYki+QgTwSjyDTS9llRX7EYnp9gWRdMkPvmbfRjxh3HPB85bcB/XWZX5+NH7t6JrJIBP/nofpJQZGikRUfowIKWJKlNsE6GIYQNS1ygrSItx3852PHd8EJ+7bh3W1xQu6jHOXVaCz7x1DZ483IcH9nSleYREROnHgJQmygSkYBQFbmNNsQFAXXEeBn1hBMIxvYdiKMOTYXzt8aO4aGUp3rutYUmP9cGLVmBLQxH+/ZFDGJ4Mp2mERESZwYCUJqr0IPlCUXgcxqsg1RS5AIBVpAX61pPH4AtF8fnr1y95M1SLReArN2/EWCCC7z/dkqYREhFlBgNSmlgUCUihiAaXffaVS7msIj8ekAZ9IZ1HYhz940H88pUO3HJePVZX5aflMddUFeCmc+rws5fa0TceTMtjEhFlAgNSmiiSjxCMxOCyG++fTXl+/Oy45GG7NL8fv3ASUU3DHZc2pfVxP3HlKsQ0ibueaU3r4xIRpZPx7nQ5SpWjRgKRmCErSMnDdRmQUjMZiuK+l0/h2o3VWFbqSetj15fk4dqN1fjNrg5MhqJpfWwionRhQEoTFQ6rlVIiGInBbcCAVOi2w24VGOAUW0r+eKAHvlAUf3Ph8ow8/vsvXI6JUBS/54o2IspRDEhpkjy83MxbvEQ1CU3CkFNsFotAmdfJClKKfrurE41lHpy7LDOHzW5pKMLG2kL8785TGXl8IqKlMt6dLkcll/lrJg5IySXyRpxiA+J9SAxI82sbnMQrbcN459b6jFVGhRC4eUstDveMo6V/IiPXICJaiiUFJCHEF4UQXUKIvYlf16ZrYEaTXMWmmbiEFIwYPCCxgpSSx5p7AQA3bq7J6HWuO7saFgE8tLc7o9chIlqMdFSQviml3Jz49WgaHs+QkqvYTB2QohoAAwekfCd7kFLwxKFebKwtRE2RO6PXqch34YKmUjy0r5vHjxBRzuEUW5okV7FpJp5jC05NsRnzn02p14EhX8jUz9FS9U8EsadjFFetq8zK9a7dWI22IT9ODPiycj0iolSl4073cSHEfiHET4QQmenoNIBkr0bMxPfeYDQekIy4ig0AitwOaBLwhbm0/EyeOtwPKYG3rM9OQLpsdQUA4OmjA1m5HhFRquYNSEKIJ4UQzbP8uhHA9wE0AdgMoAfAf8/xOLcLIXYJIXbFYuY7Dyt51IiZpwqM3oNUmBc/Q27MH9F5JLnr+ZZBVBW4sLoyPTtnz6e2yI1VFV7sONqflesREaVq3kO1pJRXpvJAQogfAnhkjse5G8DdAFBQv9p0KSLZgxQz8fRNIJzsQTLmFFtR4pDdUX8E9SU6DyYHSSmxs3UIb1pVntV9vS5fU4F7XjiJyVAUHqfxzvkjInNa6iq26tN+exOA5qUNx7imV7HpPJAMSk6xGbWCVJTnAACMBVhBmk1Lvw+DvjC2N2Y3PV7YVIpITGJvx2hWr0tENJellgL+SwhxQAixH8DlAP4xDWMypOl9kMybkIw+xVaUmGIbDYR1Hklueql1CABwQWNZVq+7ZVkxhABebRvO6nWJiOaypHq2lPK2dA3E6FRYxRZKLPN3WI0/xUZvtKttBFUFLtSXZHZ5/0wFLjvWVhVgV9tIVq9LRDQXY97pctBUD5KJK0jRWCIg2Yz5z6YgEZA4xTa7/Z2j2FRfqMu5guctL8Zrp0am/o0REenNmHe6HJS8qZg4HyGS2MPAbtAKkstuhctuwaifU2wzjfkjaBvy4+y6Il2uv3V5CfzhGI708tgRIsoNxrzT5TAT5yNEEj/d26zZrzCkS5HbgRFOsb3Bga4xAMDZdYW6XH9jbfy6B7vHdLk+EdFMDEhpMjUrYeISUjIgGbUHCQAK3DZMBBmQZtrfNQpgOqhkW0NJHrxOGw52j+tyfSKimYx7p8sxAokpNp3HkUlRg0+xAYDHacNkyHwblS5Vc9cYGkryprZCyDaLRWBddQGau1hBIqLcYNw7XY5JVpBMXEBCOKZBiOldw43I67TBF+JRIzMd6/NhdVV2ds8+k3U1BTjcM2HqzVaJyDgYkNLEuJEhddGYNHT1CAA8DhsmGZBeJxzV0DY4ibMqvbqOY31NAQKRGE4OTuo6DiIigAEp7aSJJ9kiMQ12A1ePgOQUGwPS6dqHJhHVJFZV6FtBWltdAAA40ss+JCLSHwNSmqgwxRbRJOwG3QMpyeu0copthuP9PgDAygp9K0hN5fHrtw6wgkRE+jP23S6HTO2DpPM4MikS1WCzGPufjMdpw2Q4BmnmJLtAx/omIMR0QNGL22FFbZEbJwZ8uo6DiAhgQEo7M993o5oGh4H3QAIAr8uGmCanjk2heAWpvjgPbof+Z+w1VXhZQSKinMCAlCY6nM6QdZGYhM3gTdpeZ/z4wYkgp9mSWgcm0VTu0XsYAICmcg9ODPhY4SMi3Rn7bpeDzNykHY5qsBu8guRxxAMSG7XjpJToHPZjWWluBKTGci/84Rh6x4N6D4WIFMeAlCbJjSJNnI8Q1TTjL/NPVJDYqB036o9gIhRFXbFb76EAAJrK4kHtJKfZiEhnxr7b5RBh/nyEiAn2QUpOsbGCFHdq2A8gftRHLqhPjKNzJKDzSIhIdca+2+WQ6aPYzBuRIjETTLE5443Ik2EGJADoGEkEpNLcCEhVhS5YBNCZGBcRkV4YkNJEjSZtzTRN2j6exwZguoJUX5wbAclutaC60M0KEhHpzth3uxxk4gISojEJh8EDksseryAFIwxIANAxHECpxzHVm5UL6ordU5UtIiK9GPtul0OSTdomzkeIatLQB9UC0wEpxIAEID6VVZcj/UdJdcV5rCARke4YkNJEhaNGABg+ICU3QwwwIAEAesaCqC5w6T2M16krdqN3PIgwN/MkIh0xIKWZmfdBAgCLwZutXImz5IIR3nwBoG88iKrC3ApI9SV5kBLoHmUViYj0w4CUJsLgwSFVBm9Bgs1qgd0qWEEC4A9HMRGMoqLAqfdQXqcmEdi4WSQR6cngt7vcwym23OeyW9mkDaB3LB5AqnJsii0Z2PoYkIhIRwxIaWL82JAao0+xAQxISX3jIQC5GJDi4+lPjI+ISA8MSGky3aRt7hKSGSpIbruVPUiYrtBU5FhAynfa4LJb0D/BChIR6YcBKU2mdtLWdRSZZzVBBclttyIQZgUpGZByrUlbCIHKAtdUhYuISA9Cj4qHEGIAQHvWL5wdZQAG9R4ELQifM2Pi82ZMfN6Mx8zP2TIpZflsn9AlIJmZEGKXlHKr3uOg1PE5MyY+b8bE5814VH3OOMVGRERENAMDEhEREdEMDEjpd7feA6AF43NmTHzejInPm/Eo+ZyxB4mIiIhoBlaQiIiIiGZgQMogIcQnhRBSCFGm91hobkKIrwkhjggh9gshHhBCFOk9JjozIcQ1QoijQogWIcRn9B4PzU0IUS+E2CGEOCSEOCiEuFPvMVHqhBBWIcQeIcQjeo8lmxiQMkQIUQ/gLQBO6T0WSskTADZIKc8GcAzAv+g8HjoDIYQVwHcBvBXAOgC3CiHW6TsqmkcUwCellOsAbAfwMT5nhnIngMN6DyLbGJAy55sAPg3zb65tClLKP0spo4nfvgygTs/x0JzOB9AipWyVUoYB3A/gRp3HRHOQUvZIKV9LvD+B+M22Vt9RUSqEEHUArgPwI73Hkm0MSBkghLgRQJeUcp/eY6FF+SCAx/QeBJ1RLYCO037fCd5sDUMIsRzAOQB26jwUSs3/RfyHfeUOsLTpPQCjEkI8CaBqlk/9K4DPIj69RjlkrudMSvlg4mv+FfHpgPuyOTYiFQghvAB+B+ATUspxvcdDcxNCXA+gX0q5Wwhxmc7DyToGpEWSUl4528eFEBsBrACwT8QPdq0D8JoQ4nwpZW8Wh0gznOk5SxJC/A2A6wFcIbn/RS7rAlB/2u/rEh+jHCaEsCMeju6TUv5e7/FQSi4C8DYhxLUAXAAKhBC/kFL+tc7jygrug5RhQog2AFullGY96M8UhBDXAPgGgEullAN6j4fOTAhhQ7yR/grEg9GrAN4jpTyo68DojET8p8WfAhiWUn5C5+HQIiQqSJ+SUl6v81Cyhj1IRHHfAZAP4AkhxF4hxA/0HhDNLtFM/3EAjyPe7PtrhqOcdxGA2wC8OfH/a2+iKkGUs1hBIiIiIpqBFSQiIiKiGRiQiIiIiGZgQCIiIiKagQGJiIiIaAYGJCIiIqIZGJCIiIiIZmBAIiIiIpqBAYmIiIhohv8He2jICechzzMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "targets = (16, 17)\n", "xmax = 15\n", @@ -284,9 +332,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 118, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAALYCAYAAAAXYuFPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9bcx237YfBP3GuvdpS2nPOSEHqG2RigRENNQUAghYio0YIGj8UIu8FFQa0BAoKgRrfIlCiPIiviTkqJVUXgIGoh9QkaYiNlqwJQTUmmCRUiltOS1IqXDovtfwwxwvvzHmWOu67ud59n6efbjm3s//vtaac8wx5phz/sZ8GXMuUVW8wiu8wiu8wiu8wiu8wiu8wiu8wtcLx9cW4BVe4RVe4RVe4RVe4RVe4RVe4d/p4TUxe4VXeIVXeIVXeIVXeIVXeIVX+MrhNTF7hVd4hVd4hVd4hVd4hVd4hVf4yuE1MXuFV3iFV3iFV3iFV3iFV3iFV/jK4TUxe4VXeIVXeIVXeIVXeIVXeIVX+MrhNTF7hVd4hVd4hVd4hVd4hVd4hVf4yuE1MXuFn1JBRP4uEfnvfOE8/1IR+Q1fMs9XeIVXeIVXeIVXeIVXeAUOr4nZK/xABhH5x0TkXxWRn/61ZeHwuZM4o38XkX+j/fu5X1LOV3iFV3iFV3iFV3iFV/i2wmti9go/cEFEfgGAPwOAAvjzv64035Pwf1HVn9X+/Y6eSES+88y7u/DR9K/wCq/wCq/wCq/wCq/wvQmvidkr/CCGvwTAbwTwdwH4FUP8j4nIPyoiv09E/o8i8kcCgKzwt4vI7xaRf11E/lkR+Q9Y3I+IyK8VkX9FRH6biPzXRGTrHyLyC0REeUJju3f/eRH54wD8nQD+VNvl+tcs/qeLyN8iIv+iiPwuEfk7ReQP+pSCi8i/ICJ/vYj8MwB+v4j80SbPf05E/kUAv15EDpP/t1lZf62I/EiTP9J/ihyv8Aqv8Aqv8Aqv8Aqv8GXDa2L2Cj+I4S8B8PfYvz9bRP7wFv8XAvhvA/gxAP+0pQOA/xiA/wiAPwbAjwD4ZQB+j8X9D+3dHwXgFxuPv+wjQqnqbwHwVyB3vH7Uov5m4/kLAfzRAH4egP/6R/Ju4S8A8OcC+FEA37V3vxjAHwfgzwbwl9q/X4JVnp8F4H/U8uD0r/AKr/AKr/AKr/AKr/CVw2ti9go/UEFE/nQAfySAf0BVfzOA3wrgP9OS/cOq+o+r6k8C+NVYO1h/BIA/AOBnA/j3ARBV/S2q+i+LyBuAXw7gb1DV36eq/wKAvxXAX/wF5BUAvxLAr1LV36uqvw/A32T8rsKfIiL/Gv37rS3+f6Cqv11V/016999U1d9v7/5CAH+bqv7zqvpvAPgbAPzy5rbI6V/hFV7hFV7hFV7hFV7hK4fXxOwVftDCrwDwv1fVn7Dnvxe7O+Nv9x82Mfm9AH6uqv56rJ2j/zGA3y0iPy4iP4y1s/ZDAH4b5fHbsHa2Pjf8oQB+JoDf7BMtAP87e38VfqOq/ij9+/e2+N8+0PC7n4u9LN8B8IdfpH+FV3iFV3iFV3iFV3iFrxxeE7NX+IEJdi7rlwH4xSLyO0XkdwL4VQD+BBH5EyjpH0E0PwvAHwLgdwCAqv4PVPUXAfj3Y7kX/lcA/ATWbtofSXn8uwH8S4MYv9/+/kx693Pot7b0PwHg3wTwx9NE60dU9Wc9U+aL0Hn0d78De1m+C+B3PcjjFV7hFV7hFV7hFV7hFb5SeE3MXuEHKfwnAbxjTap+of374wD8n7DOhHn4c0TkTxeRn4Z11uw3qupvF5E/SUT+ZBH5IawJ1r8F4FTVdwD/AIC/UUR+tl0W8tcC+Lu7AKr6r2BN2P4iEXkTkf8sAN7R+l0Afr7xhqqeAP4nAP52EfnDAEBEfp6IfC/Pdv19AH6ViPx7bGL6NwH4+1X1uw/oXuEVXuEVXuEVXuEVXuErhdfE7BV+kMKvAPA/V9V/UVV/p//Dck/8C+kM1d8L4L+B5cL4iwD8Rfb+h7EmSf8qlnvf7wHw37O4vwprsvbPA/gNlsevuZDjL8faafs9AP54AP9nivv1AP7vAH6niLi75V8P4P8F4DeKyL8O4NcB+GNvyum3OvK/P+lOMS38GgD/CwD/OID/N9YE9K/6AP0rvMIrvMIrvMIrvMIrfJ+DqL48ml7hFV7hFV7hFV7hFV7hFV7hFb5meO2YvcIrvMIrvMIrvMIrvMIrvMIrfOXwmpi9wiu8wiu8wiu8wiu8wiu8wit85fCamL3CK7zCK7zCK7zCK7zCK7zCK3zl8JqYvcIrvMIrvMIrvMIrvMIrvMIrfOXwmpi9wiu8wiu8wiu8wiu8wiu8wit85fCdx0m+fPhp3/mZ+gf90I/kC5H4qcIpBSjP+fqpYPlu904+maeW9y3BlQxCtDfxz8Q9JfeTPPQm7tk8tjyfyesz+elN3CfxuUyvN3GfwFc8T8Fla3iySdX8nkiL0qWu6Tb+u5wyMtKN/95N9jSVpW40vbfOUFBllPJ7kD/+o7dpOW+nkUt9T+WntCO/pH0kt/Q0Mrwb5JD2d4ynF6Ih7IN89jSA4J/6Z37yJ1T1D8WT4af90B+sP+On/Whl4F1EpGJUx9HSEI1I5zYGWXFBv1WW1bYMcVteleujNM/GfxiPn+TnVfrwruUvhKmFz5fC6QvMeUTjTemTeTeMvUt3nZVSgufxOvO9thlzW+efj/DvQb7+Q5nmlmXyHRJ2zOu0IhOmUZ5TfjdyXdulxv/CRnWMvZT/QobNhgx5bzINbamn9fSP7CkgF3YNgMi1zb78/WVw//sV/uxf8gfr7/m9759M/5v/mZ/8R1T1P/4FRfrk8FUmZn/QD/0I/tQ/6i8DAOghwCHLmohA32wTT9Z7PbLlqng6f0YabPF4xHPEKU0iOJ3Ye+cDN+S6ZLJnTu8GoPKl9wfKoKLLpLxHKSlX0jY4kD1tkd3TtkGGHhe0Q/r+O8BH9nwj/cS3/S35Up5XtLrlo6Tv+7wgdWJVyss83Ig0XUbOGx+t8lB+IqA9Z41BUQB34VEH/Yteg1ZaeaSVpxsxEc0JgMdRvjWdWrdR62qZ9+Fp7Z0/C9O6jI3vlhYa3fOA1rSUxvkc9nwUWkoranzWe//HfA+SUXA2Poo3UevKSXtE2uQZcS4TTrzJiTdxQ3kSrWb5nDZ0pxCci6+lFTmzXMb36HypfG9yJh+x9J5vKf8qn/8WqMUv3bxp/k6ZhXSXcCUA3iA4LP7QI36vtAL+34EDP+3n/tbfhg+En/HTfxR/8n/wr1ityXBfZf3W7xzAsfrt+R2yA3As487hEQBOfjbcpviOKSqAvi2+5xuA70hkdYkx4lhOcgwYw9i+YRvac7MDHLZ8O5Y9g6kTdre8pvgJu4MZ6aJgoWgOG5n3kC+gs81w+TzvHm99uORFM7HURVtgI77S+VLahd3JV7h87TlxLfNlTGU+1LoIr5uIwZexbE8vGPhyPGOB5PMhp+FkysN8Asu5CsPeMHbvadkOAIT7EVfxODBUFra9FQwmOzLwFcZfOVPWwtdxv/IN22fYnkM6x+OFj294x3fkLLpKvM20EafdhiR2L5uBhvtcvsH+eP2ZLXsz+/EdsyncNkJnXE/woSs9qw5YjvJ8wHFfmo34fNz/foWf+L3v+Cf+kZ//yfQ/9O/6rT/2BcX5rPD1XBm3BREGYxkmEjKnnbImw6DOyr/XpoDQauq4K9XBHgmct0WgNONK7UbbjMhlxpVHj952rh7yvaYVev8pq66KXa/zqvV1njuttuc7ma7rSG/bTY2b+VxV0qbVkodCM8nEf6rTQfls5K/C0Ex7BvQ4rK5FN2k6v+Gz96Ok7rl0vWqJUaNtvaMrg/ieW/47n0KtzkVwpsnfe7YZ5pSvVhINw9qbFC5KpG46k28OF1LYLG+WRFWm3Fvec3vJtFp0xXrVoJVCx3pUAOdeoZ8UVHKxbU2SAP2OQA/gFMQCWaZvGTDGGj0OLPrvCE7/fTitRh/0xaocxFORxr5PbarHdxlZzo/g7+XLe9pbTL3DR6e/oB1t4iPRPLOHtmnAX+8no71pJb4o1yiTNAS71cleAWOVbHnUSdbOl2D/FpgtTRP1brRx1S22nSapWFoxZi7XlZRXtlcZ67a0DcsLnexyXfFtMp+lYTWbwXxbZ184mL8Z+xXAKbwEyHx1S+v0VUamlc3ecN7THhjn6/2C82ds7oQdqz3tWfINpYx8zyvc/4EIinc9P/nftxS+yo4ZgNU4xIY+KtBtq1WoEdkmvOSzJVlZCXc76oRCrxz5ncmpwFqkhZ6W79E6WRuHq4i5/7R45WTSaBdByFhEbDIVvRTWdcAt1LdoALnl5a8oLTgtQHod4gWF5xh3M8Hy4mzzmUnGVr6gtRe1Lge+VM9cf6vJdGPVafW+fBM/yfbJK5qlDBrwPOuSukCwnfTp2UqK4UUir62tbKVdWDjhK5OWwgbnAimTWsHqIpmWBUE03YOaa6XWoIesScFhBRRVnKEzgariFMFBij7dTU0EJzRoVxlgaZfIvmkSK32mWNE12D8WxOAA8G60YpgCha2sHoCeUAXe5IBC8S4njoQFM+g77YElI3StMC7JT/BulMbu1Uq90i6+itN2t2TxTc2syZQKDlGT/Cx836EGXRJGOGpAlmFmORy/3Ph7+RQotKdolFhMFtFjOTIAOPGJhuzN2pxN0PTNJlNvAOTIpUKvQ9BgIlzTV0fQqBdrGweiPQNYE7F3qyvH9lCEs+F80XBQsuPRnwiWlrr6hhcdOqIvEe2YkF952mcxVQnTSe5HNmMbg01x3S7A9NfL73w2Y4NdN03OfO7g1sopTeYig6xdH5JXu75LfrrxDflKmdSSKomnQeZM2IwXFWxxmuZHdtWmfObkSPam6Ib6gqDq7ZTVz0+nJez2OoqNZyHsjzx1bWKacLxJLdSgHR1PwyeoYTcy49OUcRjjsxn26J6y0C9kRPbRxFTHULGur1H378TXKVf0AZGz0MKw/xBA9MB3RWmXaenxIAnfw2YY/kKy7HjHmwIiYRXI3mh0l8OwXFUMmgSq7vHhvNT6zwGI14GGzeS0EDR7484Dht0ch7qLlrbJu7LbLsZ9xYHj03H/FT4Uvs7ELCynAscbcKztU/g/GAyJkCsgWadmwBK7xDqxVrfHGMUmb1FA3lec6BnujPomOL8jMUBQGhB2uyyMEtRBiiF0Wq1x03NxlRnLR7SxIoyKVvw80fKzUNJuLO2hrwa77dlku6DlgYg+K2MbiPTybQMIoOhNRKuM7H40UZMFZXcWdSIuFHrai8a4TbC1/uTymZGqWVXaFFECQBcb4W4DVY3yuoNRPCsgBxdXW15ofDiv1k58PCYltpS18JUcGOXEKswPmWVbKwxjtWTglcO3kFxxulHGmvAdsiZjzucNanxl45tqXpMaH/CfJrTzPU0Xyyz5by+72GR31eGaCKkZaW+2YpMZGO0BFbVBi2na+eKgtGfwWU4/J96MdpVd8Rbxi1bMdIoNflKOxct147pUWZNVrwWX+UgNWZkEJ7vwfIqzhWBhLBbOLgwzzD7IdVGakKWRIuK8FuXIuLLjpgC+U3FSrXBed5cY432hYHnyBYmEjse1yOXvkrFCg5YE93yextQJu6XqopfvTqbSu4uuohaCb8W2Vp+Eg6NutvJwW9AqSJeL20mAbGa+VY+0H8RHrviqY3XmJqW8NEnbguFbw3l3G1x10HG0PYvvttgQRawf20DbsQyOqbqQcLWbazwWl081ytf5gJ9DNRoTC0+xBveSuOElt8mCykKpg/CfsTzlOAj3HVdJb0iboXDc97eZ2nXjaQGxxaikhS3GBcKLy+0aSjyu5ctxgkJxyNFw/yQsd+zGtc2wMriNOUMzEpjlHKtueK9UjaNhudDipdXfafV7+DPFZZtg3F9vPwn3v09BkTt+P+jhK+2YrS6vMUq0RlURrlL0XaSO6t2o8G/hLoy1ou5Y+35CTl0G/c3cbPBGtP6rgfcoY6bdjO1t0K18Hwnj+TFWwkXW2h62fMaElY9vslzSNjHcqJe873QK0CjD8jHcvqRobYFNddmiYkHZ8IZx1XAVYxcVYcKi55q3kgASBhMDnVa+YaxWwk3k0hTZqO/jkrWDyKusmbtQcZ1WlQ4Qi02MWvlKlTUFR3cchaZzeLGzaYOcjU+a7FonWfIqgmnX8vXJndJI1Acfwbe2DGuXVlM2clGKjzjkoMXL9BZ5m3sgyejtiOvVacsRqfiXrjAabT1bX0oTHEKOgn1Sn6GHI68NKOqkuDh/0cDMYS31LB/Athp88LwmJ5IjBytG7dY7Lt5hbNYVDVKOHMqI09JCTaWl3x/A8lI9IeNnpGWgod+zjBRkf7zaTefdoykv32waRXum7gd4XBk38L6ogxCCE3TaHo1sA4FrQTrwHY0UtSL/z2bbugGizFq+ZdcOjkc7476G7LhfRZ5w0JGiZSve5pVSEHZT/azFH6F8uh2rfNj+OJZnj6sGSMMOZC4xMUwrFHQFUzUxSXrerQuny7eW8gROkstSOz5IevF2s+N+WmaUuK5XPYUw6lNtRtoulZTfsVuwzgM7XS4Sekh7uvorp9W6znCB+6Sagvt32PYthJ8qO3pfzZUxGwzMONMWlaGU2vNyIfTBUn8G4ZM124MGM7TyFYMgH+2cCvkuIO8KvFlG8ga8aR44j/ydL7hHh6H1ciijlgO7Anqk+1OAtNMGeOUOQU9XaIVpUcb15RngHril9fjuhrN1vlHmltcztGQM2OjwBC/5OCI4s2wa3SBH5pNuiO8oVtMFNr5ayrudd3OZ0GghcZYx0nIQA0ji48+xkkd5a+OjxsfdGmqpli56Xa9mxTKyYCYzfLCuUT6IO+e5S2GnzeB97LRkMtEWfeZuVdKe6ToDd2XMAp3ixpV2r7DWGd/lxJva6qnRuDtMmpfM1+vPXQFXP19lSzdIPwzta5cotEJ58czYaVVh+12L9h1qcJN69gULd5dceUvg2FoNP/COd9Ib69XLJLGK67QJgWqDgVwD9t2BuhoNvKsa7Sr5u9Emhn6aAYzzZYdh/5tJ5goQRHtWocks4W+ZrKm16bAZhL/WiCw3G4QYP+vr7NWQ7R2Jy4rLk9i8ixaYQxPBDTdR05Yxace0C3yeXCYnXIyf/uPGZjAGdlwMDB1kTkzqYFx1g4GWcbLCyI77My0Dt1N2bEEISc1rl4n5IunGqsnuaTtdjNUdy7FNxFKkRgvN9l6wPgXVwgfB59hshlW2l1kMU+E652wNl8gFGMKujNwQFp9D/ZXGrpd7EgDmrui6JjlUjNbLaljrXh/unrdkME8Ed0nF7tKugLkVInr2wmbDNS+DVNrTiEV8t0hw0HjyXdZw0D0tvP4CrU3HC/dPHDGBSvdZtwtsM94/YDPE24TJ9w5c2kSXH8guw7tk7+H2uNIWiLSyefm14P7ypnhDeo18Ku5/P4JCzW794IevNjFbu1Qn5HirhpEmUqLICU0Q8hZ2z1TIQCkgPtlbW7ceV42bdRb4xu2iFUlr7CvEA0eTkewE34bItGQgN1oAUCnuBiWdlSFEciN6NJnYiBKdu78UG5pYsMnFQb1MTNZ10Yz4HW2ZLEnNqxgjFdCIcw2rKEG3+TmDMUBruuGdpCIny6iWM/F1Yp7sJq1CeNBWZPbdIcm0bUApR8ltG+QkqeI4ZtpQo9Gm0V9tT0hGXzSQY8X56iLE2mkMlphWIq2YAXJ7cnC70WxKaVyRoz9hVzgy3uruEnzB5YEycpR0TxTADFJRR2pc15ml5UaydqpOqUaN5Qx3RF3uL8uX327uwmFG8oy6c2N2eFq4AXXjbIYNLrMPKpz2jPKuHA9XBPI6Em+jeZMisGRSHEWPQnm5hFy+EieJnC6LT3JOAO+g27hgmGk5MiyFu9FHg+FQ4CXhvlD/hSAmw9FZhYdIKctG6yp1XQQfT3OWvHqf3CZhkbC+1uiDlbYs3HWMveCz4SSlDz4FzGpWMlSFYz9jmwCxg3iZVy8PJytpqxso30rYdXNlQ1Awx9pCw/0uYzU+tUWISpE5JuxjYTV3anv5aEKDKl7IK9SmVH1decfuHpa7m2xpF96mrVbnFZW4ePokhXE/d72JNircf4rdBMq4n/qrde+431UXKBuJ4xyy/UubUJivZ1WorPPEjsdnTMrYfXq9OJHr9S6E49mhNvGIInBbMJdE8TNSWC6FZgeWO6XJD0ACUxfGAgdht7sTruc3SKRd/7jTrwGd03qx02ZU2rQZzsVxz6dyKyxbpIH7vpSpklju1emIygt0aQfovJ3Xl2tM4rQd4T7gZ9pySesTcP/7GF6ujJ8TdA02u1FAM85XbSBUX1rlRV7ITuWGOnDxHdE63be9+qkPsNVl6nwnOa/CDe1TafsoZf+5pdWWQHtawtN+RqGHjfaGzyTjVmanbQYywPqBDCV3WjkZjeRmbC/iSiKUBcd795i6SBCboDT52fi0vPxRYiWLClRc/1AmZIA/r8gaN8hcit0GS10mT+PgrvvgkDhlvqSX4lpJ8ZmkGxCXw0xSTJJoQMfPmrSlL/OutxtGklhKvxca8Pig4oYWTKvbLnCt9pRcbeCiNLgofCxO4QORSqvpHrDTUl0AKOfLVoqjlEGhpWkWeJFavicQawiE72g/S99vHdbK44McxgNBFn90p+a2AGAdskSl9SazteFsVUVmGdLycy/fXdoQhASXIa1iw8WSyYRxV7jX2BV7ekXbOzXxJS+xsTwdJvfySYm63G3rskz2byjfXozdPXzcgaNOW9XBBdL6iLZk7GXVbLG6CU72gYVvugl7UDjREQ2pfJJF7jpHXsaQaVOAqcJmO7dhv9aqCFwcwJB3sNNTIxXQcR8NF3uoTWDARf8drooppbfFikc7X3Y9d64k4WbXlgu78UXRInKP0XbVfAEYawKuWHZfiQ/rhstQ7U26LorJwJyV2nosGGrmXnqBCOWEHvsK36Pw9W5lNBTfqzmHHQXB2zXKo9GJtPnT0zJcpiuH2C1hAojgfPPn2Vhd2b8uU6W1bivlcc+x+0i2Io0G60pG2fXaaatuKrNHfsSXtC1uNO6SMrbXc15TmTuAykU6XLwLUjpnNBn/I0s0ZR92e+PhBU0rVXeyahMorjdFSfm8u7fUdjGv0KZyilukxR6kR56GTDDsLpNpyK2fuJuJmksNNcAwDu5KEnKJTTZSKCVO7kbkq/Knaun+fcyw3H/tASfSlK2dsHJ43fS91jptVdYi4yZIrDKoSq7KAjaxu6AlhFnVJqEbn0TnpENDN6k7Lp/mCqc1IXd/Ac6QAxC84wz3xL18qbvlgqSxM5lSZIhD+rCVU5LrtLa86vD45JVJFeznGNBxY+7MO26UvYLV7KTmteH41E+aqUlaSiw7Lt6VofO9TNv4AzdYPdE8wNQt70lG4KFebvkWm3Fjx6Tj/I1FvcL1B0Z4bpWOM43zXV5smp/Qq+e94fCVvb9gyC6Xam584Z54aYuqzahOmEYb2ExYLtdVTGhcdOr2xmVclkNLA4ybf+GyaFSBms1wGXob9AX7vbbWH8bFg6Wk8k2jCV/cUmHsTizXUKPgVMGbkGwbpsJ2PU8qod8MCZTjCKHPnbbcWAm7odLKfmpeXKXgyzlSx92exo6apjeIY7n/BRjXzXZT3Xbcz7696uxb3pFSmLvoT4HwlXbMFPLd9zUx+qHvxDmD6Fl9JHVIMVZ7t0NJm1YnB34BQT7QEIG8mc/021ERSmHOy1j0R/K9NVZAOSvB4dIIFDCZw2XMkOelbnpmTxjdDZFv+I6yNVqukhI98S1GeRhdPBpoedzNjEb6GYaef2tzIKOCeG52F7jk56JIf7ZE3QBfFrDYQTJfxZCv51UOibS5C1dVE4NQ8vcvwdponD2wyQG7R5xEe0i6qXjn9UmOgK51Vwn3Cb+Q4gg+WRGel5tDn0geinSNgZ2XCkPqt1XZWYWg9gYgOPSMW6eWivhjnO4KI+azz3VxRQszmcsx8IBfay82IbLbtuhcggLws6U8WFj0a/KVlRCtxcqf+RymWV5w8Px5N9F1Q00zz6WFxhE3hXl87BqWaegHg9Lf0te1rhSAO4daSVDtAPdfXiBHpkErt6A0+lm2TtsfO59nMPWWz0W6ie+EV0DuODe8ekqei3Al9i12M9g33RgUVQ4dUycZJ331cKObGA+0PGfsXg9peiSFx0VVEx6Pi2TRBLMN910mQOo77+eB5bnLl81XrRzSis5YrjjP5RKoTT9566CmjMrnTd1YVX35ZCJUZvi4uvBK6H3NMVrFcBRrd0hV8SYSn0nJhSNzoTc3RD9z5aWKPOHnngxTzWUdbgfg8JG473ZgvT1rky32JnXIiJsSnKG7NRnLhUE+xbysQK0XIXxmWr8+/zR7wTqOaa4i7E3Spt309z7xhLo8tWvEBSBBC5qoJu4fUfGIMdu3eyfjCt/yxPEj4evdyvjdd+CHvpNXHcM6YF/GIbelMhjIkWmGXNoGRML9Jge8yYc7YblaH8udxw1d3T+oP7d3ilWeIgbxLbIbYQwyPJ4aVitfH09wcYuI03iC02JTVU3biqeF6afT+op2kTHHTZflQ3E9CDEqHx4wZVWCDUgSs3mlzAJ7s4DFRY3sVDwjL2iIXZubgYRSuePGrGgnOhtpA2Dm4+VLtwfLlnz2q3tK3TVz2lAJrK2HHqltmtxsxLa69mJ3vjRoSb6exhWqUcdC+WXZzWSomR+nhe8cxVpg7IT7YfbFIk8LqPiF+ScJm4bNr01OIb1esg7CUNPOYNCqoYYc1qcVp9h5tRjjOMBolEHxBqhdoS/eT0/keRYbiKhduUx8Mle7gN9oFx9bdDKTpVQn4TkAM8y0Suxuny70Sk/P8xbtbVjNyvC84Ea6/QY+EHZzYkFtt5EZNZ6Ki0Q72YwSRzJ17Ka+07t3rMXd4aISrbS8enGCaMbFDa+oDAXrGCcG3RRVeJqGy9M4p+6QVTEuZWTc74VtW5G17inXUaYqiJASajupyopFra0y1wPfpqg0wE3sRmC165ndGZOPlld+jpyTZp0wzjczNWEqsgN7O6n45PZgpU4bQRidRXaS6k484H5ciuO9MeyNNYxmIxKDDRcTje3mRdNvCLXwTQovn5g67q9lt8OxjW2V68byUvjYUeKZbYZ7GQAHVE/DceSkprQBx9SVR7jWB3YfpjPblZNQs+0GOq3nVWnZZgAHRCkft5VQk/ltpPXdvWjtrc+FnjVxP7SlXJ6l0Wwr+km4//0KCvyUufzj60yArQFR35/wv6TfJ2E3aWlQmYbPBhSav1c+Aj2OtSsn65naf7OwVUodH3Igc1e+7VnaW5nTjvl0XUjyvKVthv1Rk+7G+FNpy3tUtY75dGt+gw0bn/HZgfEurT4on16mHfnOjSUBj+MDzB/VIIpuJhnTKOzi3E+qc5L4qM15HfZh0FVals5dTLissZvThG9dLPhmW/dj1bDj0sugspNhchGSUWr+wKBXLt1Ou1U3y6WZv0JMtvznk9IsrpTysGy1rJm3y6JmbM/gw3xrWVP3PW+NfUX/V58/xzhPuN/q9wK7eyMdevA1LcWNUo1jeGqPwvJS0qFfTe1dOU5q3ChPy3vGxevnD9uMm/SP+NJweqd+hIsXfLfxlQ6J7oI0DTS+evNU3mzA2MtXn/swRbeGNYdYtNH93SjbNsPN7KeybVg+pl1vKqbOsl7GDc8KKdU39qOSb8W/XWbZMVUT/7qsK0jQdlwMeQw79/IlbZWN30nwn8vHfNNGMSBc2Yyqt84fG+3Jv4f0E2ZNOH+i475fUfIK3+vw1VwZcSrwB74LfX8HvvOdfA/sk6GyIqq4OLCVaSMreu5Wy5eB3pi1pGwn1u7Xaastbx5PLKXnR0DsixLj9hX9trTiMpbklTYmUtKee/LNmNS02tJenimbyvelaHt51A3ORCtbXlu40sXVM67UrLvMYzrJArH8QNupmuizjcYuG9qOVjev4S7RuomfZSLadH/xM1rEx4hp8yN0of4fSysAzlNj42i5gszlk1KeNBD+zNe6C/r5pSXQQdtyZ7ju8Pk0c82BDzHMleUEhHaWlowKu4vLdGNpddEul5mV/oBiXSN34lQxd5x1Nf0b6Sbi4DImn3eccQW+pkbgjjTu5pNuj4idT8VaOV4wJ3YLV+oN6kdf7b4u4xufrQ43T4HKGW6QCYHJV0zH7MLkckjUT+7YCuiiWV1ungc+51piwucC3bXx8PnDgrtKgjKQFFpm1zB1A02Swf8TqmlA3x4LpmqLuyo+yzjYgUL7EBcvnnFRXM5rshX93Q12X4Yhr16eR7LrVl83fC/zI+YXtNFsBr3yXRV1yCEBoyN2a2YFJM6yN0UVafPJ2WR0zMz+DFu8oRZKzZzTgvguLLdYqgshPuFueSphNzV9WXwnLHc3yHNIqwV/s+R5g6EhumO5YdtBedVzvIyDltrK5xd1+Hms5UDo0yDTBYyvCFQNR7FcCt9lyczna73+ogziDudq2J6I/0YVyi75rvLDUF7MNvmnUI5YOnMb4ZsF5uDOfIUdUVcJmVY0z2X7Vffumn+N+0gbCv+UgOK7gfuAfDLuf3/CT5WJ49ebmP3kTwI/7W1dl++vATLGFthvy2EnQGVOG+cIaJJWbTwZ2siW8npjvpU9N8syPvC0PF6Adx0uH9HyNchtrMHlY/D1OM3ibQZmtFUd+SXL09NWwibzAz6fQ9vLVwuIXVe9PIXPNe12w1zXeTxr0ZsyI2dGQhcjP4YsvDCtVaAQ3+5nVD4VIPxsrSyybuc14K6PsspzZPk5rRrboywkpEEK41MuMGETWxXF5YuJoiV5Rx68dq2qIs4XHEFrht0umxCso5+HkC5NRrXyZb+QKJ+m2vN7YurXVi/adS5uuQmeYST9mvuV95ucYeT4qv2QUXI/SsBn4dSmiFe09RrlIyZ3qwQqh51VWBd99Oua/dwBYNc5E5+8JjmffUgh4Gv7nda7S9ao19caHK3wya4WgZPcB5vrrlAbfQIX+bmP6QsuKvZLpDwLx/eCEyRT7eoFf9GwfHRlpIf4XADFF1hBjdtxsWV8JXOnJb6B1YM6ZIgT3OimlE+qjGh1MJawsisLUCKYb7G9kP8Gy3va1I1Um8EFlPW8Y2o1ZHf428tbxYgllB32mcoWhTruZ3zGxQkx8R15hRyKKnLqZr9pkLHR/2tfLDOb6Crjs0nEOcrjLnjcN10Dp09OTANH2GJ3Gkz8fTd8zhJw4yc3U4qptJnWLVfg/iqxLYKdC38lvyn5Vq5FkiKjY/mOubrROkqp08oRV1U53rLN8NTv9rmWzd4gJ1sH4b5YbdkF/HVhznXzAPddw18M978PQaGvyz8+J3il4ziqoSAwjOdY4emo6lQ7krEfrLa0/bnLtegRK1Cx5KVNxikI7GwLg3rN+ypok+lyJ6rlFeXR9nzBtz8H6azKjZY9KHjX5U5ej2cbuRnJ9j4Ps+uWdzm0/UjiTkusNQTXbBO84wkqIGp5N01Gg9FWgCwg1W6ME/I7JsleGl+ewKRwGj/pOATJnnz4Xb86dxt8adFOFE0iLwN/ElFaPqudmMH0ump81enFcySDQGmXjlKmaCchczYYV7/ntA2PxIdY5OLJaYh2TYg6Xz654P9yN4+fk7tGDpe0YgrxSa96mdM1xmVW1PIxn6qrgK0SOC8ufx04+aCOL0GoNJ911qDjMb0fsa3jIm8jlDxLz5hx/wmcqxI8geXUB2Pkc5UWFRoe4eY1Lu60BWOHkpRuXyHmoRzcULJNzHS9fP18XYWyJojsP2M3Z7okpDBuQpA2dK/Gi6DxX8dqac+l0wAjtiWfNfjPR8k8SMZSVk7KkjU+20VRXa9UFsfFEbs7KeHxKg+XJhM7phYZqYIldGX5SbwFHCe10ib6ws7PEuJtuJ/lyyUxnyw1G6KlRob+4fZqdSwtb6Pm28QksYVxf6Ll1IGzp3tJ7FgOK4N6WbXyAS3ewcpXsZyeQhdKuiDdUInWQiZXyhfE/e910LVw+1MhfLXLP/QQyB/4LtSvDFqv4yOIeWpSW+9vq/Ml2zTYoytj9AgdBuwrrdqtjqsRwrbWk3ZzwYn/0CCSDNbmqOCPVDwfY7CMMtDqBW2Ro38qoNMWwVF6Zjn8jZaWjc2U10C7l+8+/2JjyLpLk22sfdJNGr4aH+eSKxKRLliZRF+MqBbSWgdqTY7S0s8yDJWcnPWkYwFLedjtUYIv/Ja/i8mkGwEwraYrhnZDX3SxCxmTtTYIcMcQofKdSDdIvzDFsz5RV+1O0XLboKiuWxXNxqRxXD0kP3IqRrvq2o+Za9TJ4um3eb0ror58VVBMsev3cq9U3s1k8+quohAoThzxvNItOXLtcvVwWat6TKvphuJX269D2OYYFO6Hq0SieQh7uQq5K+MSb13i4QY2V0qB5TLpK7rvWG43OZDMui/usgDe7a/0BB8MbOTZ/ytcyQfsDsBjHPGaaKBSHgXQbUT+ATz2cx4NFjZa4huXq1xhaZfxQqzyruBiPk+4eIn7BcsqD72g3cpnP/pcaguTTM+Ud+JrjPwCiUuaKIzTVrwaIdWb2GAz2GUrFwOyfAW7Gx5Ddbe3LCKnRaYVep7mq9VlPbF74WJON1zn7koeO1qDbmIhMPjQApfHKaV1/G31m4t2js+Oo4n7iZsZl+6GieWOdVDCtuC7aOMcsnF9Jxxc58T8eWG7y+Rjx4Ps5bsVeCG14l0W7rv7O4hT4u3yO3gfcH8VPXHf3QjPyIaX6WqnYJvhF1idELxb+2ebcYBw39qh77++gXZCddnXwDFZZXW5VtmtHrPqAFTcD8z+RsPS1U+N8FUmZiKyJjwA8JN/AHg7gOOAvr1B3r7jVpH8a1FA5dKImKOvn6OotNnaEr4arSVTQxfB+qtrtGN51s5kx1Fq/5LoJ5WNgj61bsXk3XmhschAW3byUfMK4zsYhELr5J3PjXF+itb1RkFaecsAofPitFggVHWjRTcbL46DNL66lS+SdxlxJfMyUGlQbdBQ0kpOyoL2qkJbfbbylbTFZXLJfIy0daXTjfdxSNBxt4hULi4N+D1zv0GMadkFZA0gsmwC/xByipy7dmL1s9wrYsysUj9+rIAeaWTEdOALF6dElZLblA82zLXPzqbVPsVnDVaXzu/imJGSNfE54O4jZsB0lcylOuSgq/KXkQY9G7uMi2HISW6PYu47OWVfg6nku9K6+4o5DoVr0LlcMwWQmG6SjOQCGuZX3NVlxb6HjImNK97O4cG7QObjbetTQsFFx2NFuZ032kpJS21Dsq2VtKh4PLmLbyu+FFfwmOImWL3C8nI2idt/687OJ3CzdruKscdM+1GbocCIbUIyjrjYxOt1koszSXxnq7o7ZiNtfKXtBF4uy66MD635UjuqOwHU5rqMyTyFui2fbDYysY/dD1dscYMEpiFOTAPC1iDbc2liVAelyzipprthx+6ATKn9v5SdZHI+ge+qgTq+e5cWSKhRWaWrfUfRZp0nDojEdCZlIluiZE9P4yPq2OTOe9U9HDbF4O96WS2t1IT74e4Ou93QbOApPHHxUlpa8drRguVXuC+B+1XGVYL8y/Uu1BgPnBB9w3ko2IW92hvG/bVQmJMuwbtkOd+srK0bXuI+Iq41jFcoQUT+KgD/RSzv/39YVf+6T83rK+2YCeTNrvf87jsAA4S3B+fNOK43EGnxPJClBBlHVmyj7flyE92Ksj3qkM+W70ibcFwHE/d5sVzaftylHUPvqR+gDQNfXlzQ3vAp8f5YyuNK2UOU90rY5g7Dg5KSyfRMVjPa0bD7mnRs3apQikrLO118vXHmo0EZNi9zqmxKEQR8cQiIz1aErrcm8+Zi2boPDxhCR/4sQyobQcQRD+K0krlF5VEckCM1LepfAyIewuUgJQdLFE8uK4UNfIghcQXxmlPm8GWjRX1eV/Y7beaVea96VtcrctDJfFWs/lBpvYZPwRpMwD+K6nw0XGFCRs2hnpoBPiJXGtAFH24nR6F9AknGMGKz1IbEfXLDthvs7s8z7U2YojsOwBcMr+0PM38O9wvJYH9uaJ1PH2Uh+3bo8a74MsgxGZZLXKRnwonHeNxYXMrIbtFPyOQROstQvQK1Q91YB9rLt7UNSx55Zb6Molti7t8CmtwPQjVfR/88R/GM8PIV8WfsLhINpkwpBavV44RfwDFSW3xPnzmXOqF4xsVARkn8yTLNfCEduylv3aahhG1CLuuJ+0s3m/8TtEi84/6J9R23yBtX+djlUp6r2Qy1DYoVn2sHo72xp/XvWLt+VcUA6jdD37zsN7ifMmqJ+/bC+l7oV+Es8ksA/CcA/Amq+pMi8od9Tn5fZ2ImAnl7A06FfJeOHb6dufpeRgrNGAMYUdlf+WePLox0BVW3XArfFy5p2ajd1XkfSBB4TemmvLSVpRiq/tzy7nw2Obr6Wryn6aA+8R1pL5LcuXR4HgwMV0i+Q+ic3V2y/WD2Tfre7NQhdUgHxCrZnYx3fHPypOFC1Q1hPug+MLDMqoGiqYSmd3AaJUm3mTCF9Ze7w1SAt3ybbS0marPwPKBA9k/thnyNTHxAkCedPB8e6UgeETQZT/WVQHP7IDg5faXYhRC1G8WWsKfJ6D78SStBa8MgHJ0WNW9VjVXZRStmYO0uL/VvyMCMbxpRVRRa3zWwr6FtMvtk9F3X5SbOx92x+DIRga+g8y1ngncgjLSvQPebM321GSbfJwVv4/mAAtbFDXjA444Ear/6REmRH52WTnsPXHdQ4NTFTlGcoolypacR2x6nnaK2TAZ88sHpXXmfGnI1XAybgfb+ip5Vv+HKzsN3uQrcbdjS3pNss96a8P5mTB9AtQ9DLvLfdq8mEZrwyoqT5Fv0Qxl5G5zWGnIike1RUV0mcxJHNkMI35DxmW+t3MQSQmthmyE0mVgvl1fk+r17aKT7neN+Kb/mhR7hBhldsEwnAD0JQ0HYDfg36tJV0V0G+dKMivsrYdrSHVNW/GltquM+Y7e7Vp5wzM0Gr5SPl091eVCwLeMbK12mU7LGfK/O00nB8jMWKTvue9Pjk0QKBX2e95sNCrP3Xyf8lQD+ZlX9SQBQ1d/9OZl9vYmZzcT1PLF8MzS1OllFdlcBdbKSsaIsj9Bkq6fOp725xQUez7ZEHwSAgI7GGpc0VCAdZByEnd8/4nNHW8WocZ9CexVuEnyMNgGsTLIeW0D4ZKJM0Lict+W+t8ZihtRXyrYwkd3yaUnD2CuPWXfaEieFlg2UIzz3qqs1kXRF9Ag3Z8nHPsucxqINlnyiIJITsTTCQq4VuowIsXLvJDc6DgcCxMqfszxicJOV6cZcIpekXXKolSELxecCXEaNlFiDJjljbOcfhRbJGyedzxsE73b/Vr7NK/G93hatu6FUWh805CXG7gqZOnFXE3ddWoMMkpmrkYx40irxoV20oqv60dSPhmtc9MZGkRsgtbyumGwNMRrhRb+ptDKIweXNgVm1IrnIMRTrojjj5OQRlt3g/iVkt/7I4dL0PIWpF20hZJwUYLSPeIr3uxv3xSu+/Gx/I8pHqC3dJaYOJQw8JozcYX9F9EtLStpLm9Exluqwy15A2t443vsCEuZ+xws4npfTeltOXJSdNjDD0oY+st4Sf+kqfTsvVRfd8o9P7FhZQv8OXbjonspuJ9KLQ0p6JWw7tLrDez0e4jf2Ei5K4vGBRF/PdbnBJ+6z+71juVsXd0f3ZrM+O5ICsEv/GwTAO75rGJ+cc1rqE/PddZHcVwOftMlFuO4upsjPHbRuGO3gU3H/+xW+1o4ZgD8GwJ8hIn8jgH8LwH9ZVf+vn5rZV5qYAfiOuS2KGFAK8HbAL9oIELlaelLsYNae+crlcj2zyF59jQ/7bpd8p3ovOE8JGlhzVr2BS+NTAJnZMPiQjIXPaCQQxqkY9abXqeMF3we0U6h6nDLeZXQk2MoXcW00I628riP16N5Oatq8Zth5NAtBA7FLX3z1sxC+GjmsZm6VngWMC2Yijg6Qu5H0CvDiX6BkUVWwWW/GAaD2FwbkZBCVootroOlrRUl1izSayHWsTzfXWf6+ttIvJeFe4n2bd3tTrZNemVaK25ErNh/TNPm0c+n8tD6YpkrdB0ntrIIcsZtz2kHxtctyQkXT9UQBiE1rB1qNgyW+qnuuRS1zYVJ5y98418FxRQwI7GAJ3Ki7G6LqSW43tj4tPiU7rTypdkX2qbXijU8OEkAC07cM2JBAWbB7wuMLt8LA1NKdOyB3vklbJmdl0Lf+u3W/gZaaW5OZZWyQ1PCpd+gP4X6TI9o2Gs+eRrDrZkp8EVJGeWgzpOmGZVx4Y/3Ssdnjuk6bge02wTEoXLmpbfCi11Aayl+brdbkRTIzC2htK45XbiPY+8BpR7zk4ni/IJfRTMMXiAjYNX7Dbv+z2cSUI+JJxpIm0rrNqMKGpjT1AdG4YKmlWvkQnpc6cpkNf9fjuSZT0TaUdGOYx7jYx4kmj/o54sBBXTtXl5jKB0UH3LfnsBkANLDbcS9lBrTYDODNztOtSdsRtPb9tMZ3tXH2l0H+Yr5NN49w3599Ue6ncPgxEflN9Pzjqvrj/iAivw7AzxnofjXWXOoPAfCnAPiTAPwDIvJHabmS9fnw1c6Y2QeV7FKNY10AYkEpGabf0zMTxy4Zg05eHlCX6pqlIFzpgNVd4QqljZ/KW86nibi9OFjGhWBTjY55dT53neeBHhl/R2N9Qdvt7UPai7Qb7V3kQLuFW77V1e+aj8bzZS8rLrf3MpcXbP1GWe8VcDUQ62mLAeXmyc1VSs7UDvVGAs0KdrcjEmWTXju46/DhZv+WF7mylAFUSsFuIOvvWu8Lvm50L2n9iXzroz9KzSvEcBkzja9QBo0izgYcrnuLT75C5WeNpFF1d0KBD1kqLmhxx6rHwIHqXlkvAlmDNj8gr/aPP1t6pPZp59DSfZK5CVGorP5fb4SK0qgZuzfaT8PjLVhdleiHWJeAcEe7tX9pffZzcJEujfhoXpPNeLpKP2QzBvt6JdMNmu8Lezfayc6fnRBcvsQqfyy5XeJwz17HtNWVMYfKXTvj4ilxiYWjjfb6VRZAx6SsmnvDWWk553jfsDxw2hhdrYGo2YyFiRVZ16+CxjtfgOhXbN7wqKV819id2uAPV3u6jncTn6rnAfc731YOvpUSgC3oaNiMZbe6htwmNTtAuq1yL+rq9uiVk6eF73Cfab+iq+DDoPjsHbOfUNU/8TJ/1V96FScifyWAf8gmYv+krFttfgzAv/IpgnzFHTPfhNbYMRMA5/t77qDFfiz3cOsQE7oQIvqKVLpddZTwfOSClrO2oVtfBpUSnau5zUZwCAPTaJcNcdonjJO64SM+d2B7Z+WvAqnmEW2vjrCL/rBZhvzdjxGWwUfH7U77oHxjMRvibz7jfQTU66rnI0DboosxgQCDANzmKCs2ZqETCRnXYmS20dGVRlnVQkaSwPb0vHa9RBHtP3pq0Abob/qojMXkC7cVAQRKbi5p1P3DqbF6aPo5zZdGLDMfgLurhSPGcrvR4Cu03eCr4D7WV62Tk0W7fvhtVnHFtALvkTZ31o64CQvACazrmO1kgq1Or/sOq0OIl1dMX2IY5M4jPgg7ADtT4K6KCGMfLpLUThR5TTQgUDs/sIyruVpSXm7819O7TRpZRtO1uJF33Tjtl3JpoQ7qz94oJ+zufZTx2NM+gcdXwBf4hTF6SIwHNuMmK0q7je0HHLzERSXYeQb3m4wfthlPhEsPiQH/u80o7YGaAcu8g2pridrSKr1XxGRdFFUmfxSMsu5peURBSwSyqyyz8bZSL+uI0hOOx9IK2wFkvFj/zCZYLwmSQX6/TTFkinblHge5oBOy085+2VWkek6ZbLni1OKJEB8nllxo4rr1RY40SQtT/Ur4RevnsyitZRI4GfZpYR+XD1S+Q2B2bfHjK/t9V8qvy184cyYeC2Ji48cXDi+Dfd6EXdYXHlcsP4JvPfd3CrsfnlA98CZ5eln0vLEZGu3A9VgWrjabUXF/2S3GfZex0vaLS7+1cN6eH/qehv8VgF8C4P8gIn8MgJ8G4Cc+NbOvdsYM3/mOjRAP+H2xMeSxDqeOQOsxR1MBOt0KOipap+qDWMAaHtFxvvYsdMXy5jrD7IIW1XASGG6rRhRX3a5yXMJiXdIeN7STQe0Gpj/TYy/fZmwvaNEeS/mmBF3EG910vl2vV+WdD3R7Eil8o667KyNx6uUrQpctp+lchNAvrYylsWq1L1taN2HWa4jv1nJaO0lArmcb1OVyQy1a6u8Qoee8OKLLzPkwXx9T8ZmEXBlNc8K68UmJp8gLKTwtyH2mnosKWsvrHWq++0ybcKKOOeB+v0qimhOjOB/W9Why+nfZeOU39v8s33B7XWYSfgWzm2E1TZ448WaYdeJc33sz2qgrG2Vy+U4bheZO5HqzaI848eBnW/0Q+Bn5tlVW5DXKK66NKj8S2uC89CMfPDMeb9hGbY5oJzwu2HCDV7EDdZWWZQ6coOej4v4l5jQ+0ZSZT6eZcFGIzRO47+nubMZDTOVIuXjcsFsqdo/F5UitMj8qX2TU+HSbAdKVWJ9p0MU3ukYDmgpcBrw6JL1oOE5b+FDMDa1jSMfuGfd5gmIiHkTr8hcsd6xruL7ZmwyM5ctm6Jo4XaVVn5T59M9PfjlHjdSqude44z6X2HOiXHS559XyOW16TyhJsX6vyeBqH7PNUNYrlDSm0Ymc20yLoALSU0QD9xftuixkLSOeeq7FSznCYrDNeId/l8ybvGE9YTkubcbC/UW1OBfPD7KJXoZvNSi+6hmzXwPg14jI/w3Avw3gV3yqGyPw1VwZbTDlH2MKw6pQO6laJmU0UIsg9n6qiDbY5LTrOQFgpyUZL5LUZU7iJUBCie5ycBb9N8uo97QQpGtyMz63BtVpKc/IW/e4gXThjz1oF46Iex6+ghZ8b2ScddMFofguA9MXo6mpr55u5NPbl4CXObO4WjbMVmRNuwWpBKqtViR3VcheYVP8xkaofSN2FeLWP+NzMTYofU6ThRXHaL3s3MyVjTrKuTDmC6a1p9WuXJOAf8Or6EaIlv6yTE7r8guqbiTydlqO435r8SFAhR93I6GTdVF+lpEZ8yTNr9p3Y5xDEi35F8wa4ppG479RPqJKQ8tuQnteSStURwpu4KuvfKoBpFbimMNYxuJG0QicOltqpD7ZjahiIwYbQuxKpcmATzf2hprnTDsybLRcAY/Javu6wu6Jj/1+ZDP6Ua5Svs6X5C547PaQzlgVOZxv7yzeztqlGdwc/e/Wbvqz1xvhvrog0Xb8fFGmrefeGlZvQvePtiF2l0Uf0a5ddl8Iq42nYar3cNd105vfNggZzjl3fK6UVcYL7GbJWNV8ZsvLG7n1vFxue2D15Nl/xxm+B7eXt1azfxqkTHBUKV3imWot/2oTiZ/cFiabwa7mR0is4e1QaAc8VvjCFuOv0MKDt3+Pl+hD3WasZ3aWNZvE/TvKe2Uz0jqcjRZUXr+t+FsNCsH7V9rTU9V/G8Bf9KXy+2oTM7wdaxlEveOJXQW0tnAFWDc2yoHeUqa9iBWVFiKGELG6IcVGjwaeV8vBaRLwIiJAJRMHSGmCVTeUYUjCQCSf6NQTbU/bEmjtYUP5UI03PxeUvabtfGUqwxMy97s7IqmnHfId85r4MOjGoEHHcgVJieO0UhNO1L6iWC1dMTojlvGsBz64J74+iaxsArgvXRmbchScbVXQcj2p7jClMbDeuqtm4+PZn5bAziUjD57nzp4AcfOiX1kvwiuvJ7lBLtojJpis6zQu7i5yqsaNX2Iy+W1dfgU8d5MjaM1JUnPtGJA4HwZFuJp40d21xl0XD1oFOAEcsVWocb38ulOrVArUaF3mnDa5iyTsG2V235ZnG7TpTsn17XW7XGfWSu53NHe+vgvFmyJoUyybuinpRk58J3LZ6/750Fy0Ii9rJ/FuFTJquPTr1iGpWSrN8iY85vS9GAXbMGHqNmIhGR/REiV3MWb+2KxV3O8gSs8h7oT7nu8DmyGd1ui3NafhOWWUam/0kW5SieyWXNrKjX0qumFMFSpDz+vCDT2wm2Xt7E0ZZQeym5tejGJfNFzL3TUt3Rm5SHVysu18epzAbpXuIlZ7U2xIUYd5SxB2hwSBI60Lai5RxXktTxt4TC7gWKgXEyi3EUq3NsoRu2aO40J8XdXiKK5a9Cp6xs6W3wTMC0Dsvveuijc1TwSjd9zvzcjxFViY+66Kg2pbBZUWjTb0uuzN0o1pVXIzXUyvbhO/G+3RS520ud+HiDsCu1MQx9Jrm5HjEHdpV/FdP68jvML3IXw9V8Y37wWEQtwDFXwoo3Y6NMMOTm+dVQZaNm7dsNsp1u5qEhaugJ83Y3vHvdCyrgBcsyIh6kiPXSh78bSmFWB9ZSDFaeXrumEhWuYY1DzxBdkxSjwZiVFmQUzKeMAQtH3hkZ6LjsOfmpJ341fiuX60pkOtk8WHRzd6oZzVZoVOP2/uMeiuJjWuzuaaIHW00nQjkLhD3uC28SXiMDaxYeiXBnSjDi0yCJUv2q6kcfL7MdxQ+aRmiUB8MXdlbQ+npT7lyCanurU5IZ7L5cMGNVjuOgdNBg//no0q3iHh3++GbMlgaeXAe5wHEAjezfXP3oWMNkmz8q3ByLHKDD+TddoESCF4W3JYahfABzIHDruEI89zvVsJDst3cbALn0WR14AcsRt6WBrnc1jc+0oFgeC7Rvtmz++y0ko4MjptdZkUHHbmTmwg8vkWOgY93mGp++jRGoubhRicRPOoroF6T7vhXmSUaafnGRdr5NZ9L2gLYy9/xy/OarNzF7TEyHV7h6m3NqMJIpzmKdzPjGXDxWu+0nBR+2UwU3rLSKGtfIPNYL6jF47/bDJX1wv0yq113/C4TDD38tTH3bZJSpSubzbZsaKVfHifsSwCSOpbSvoczzhyrgk1LajZgL3aAXaCTGn9OIqCdZ6LPT7pPSXLxlgeWGC6XLtY5MpoLpPku7GQq2FqWAmf4Fh5/bIlJdwXx1AroLLMyM+XsLuhTxx9MnoWe2PX10ujbTYjvy3qzureLRePd3sveuA8gvPCYeFrpNJl/ggnSLM3Uec+rb6zGavs75DIK1uUT0K/3fAVz5h90fD1XBkhKL3FLIlG/B0tbkFVt7QTbbdiV7TSnu0//nozGplv2aYf5WjPGrB4m7bLzII/k5aNLA8aCu0wYCA267dc0F7IcUvbhBEMAyl7Dlc3pbQXBdzaUV/u7brRlD1caa4GbcRg56NgF564fIMtIxMVq7kis/wmc9fFkFXsUK0GtTX1FafjoGqfF7qv/86Jd0tDRC6/8nCCi90nkZmv0BMXk3vgtrDRunCf6+bus8ZY0ashXUV8FygTKNgcaVk7wpBWqKS+myXaaTVoWSvu8qQ4N1qVrIMJG9Ndal3hb2MZpLtlDi84j3dTzeGN3Yx80vZV95T5c01zv79BSA/GbKZrcSPWYasolEbSMYXzajJumOr4PODihoMbLT3TQtelLnUv3/g8CTE8z/aGkjZYnHQUtFKju+fEht3s3tbc9Ua+G5g3vr0jBPZc4KQgbb7bjMJXB74sQm80NXG4aYvjL2iyVHr+4NpIuYpW09TL25o2T86YryBVHNiOpmhSVbEFQ/k2bEcUd8TjHSfTZpQMmgK2CWmAhNuxbHjukh312XJWoj22FE7T8Fg6upE7IuPx3vCiIOkNJDF5FOsc1UXdbUZt/NXesPtp2vT8MDXrLePdFVVoxl7sDe5sBp/Xq7R5c+O3GRRf9YzZFw1fbGImIm8AfhOAf0lV/7yniPiu1dVOEAPgWHHTBNVxZMq92dLEJxs0rEaZSHfwZj4dhFSpkzf23QJRuj4QAhVnEnnRVB4TGGZaRLkK1VW7vKJl3fTBBAsxFb/r9YHM/dWYtpVjdNlraa7K93QfLbRq9pvWHbuwLM9Vhq1i+qpm8qWMJp1PypJKm6SK7QwZSGdu5dUN0KRAG2CopFtYGBtNvj7xcmOmaWZiYGDWVZqWtOTp/8nrhNf3bTRXh0mV1c146c1dIQX54VDfNTtttdRdCH0taLk9LrfAw4hPu8krd8KclZSPcy+j6y6FYjKfcevkqemaIiFDrkBDnM8qVd4q6XwSc05T1kpqa5ua8HjGJNt3RNMd8LT6OoQHhkwrUQ+HG+agReOztHFI0n1KUKvbfcvb2kPseCidOUEmiKHMTg8Ayn3CG6KU1l3lucKNEds6zyxHtRk3uOh5tyKMaQcZp+e7cFm+p4gbrb+aoAOY8UqyxmaDdc+3vBpsUeIH89Ww+yN2BrHu5ZD+c6hMQZNRg28M5b2txgKVpZRBf8i0Ilqegd1m1LFMVboP6Pu45ISGe2K4K1rdpLcB1XNg6loYgsvWbJ+6l0RgkJoLN9sGwM/xhR0RWS6XURa7ETf46lBOuHnKNkVYPeM+ypk5mG7yo9dY3wxT0CVLEhMfutoDwGE2Q6J+Vz2RzaD6XvZGbfKTbumB+0i3ey+cy+XyL5uxPDmgWmjja2tWfymD2RtZi33udVI9PLy+us1A4L5aQ6i033IQvOvxONkPQPiSO2Z/NYDfAuCHn0ot1EH9nY8CtqWTimSTgQ1sssjc6u4JhsBR3vGvjAfz4ZeSHTJgkrFxwPcuUinXZPw4Ldm4Ynee4cO0V2kvyr/ZpBs+V+WTKe2UFxArm2XH4gHtqIOnZUz3jUdpy4AAuLO6N3LMaTe7L9OzGyvSbB/QZNO08UPKWJNKScvdLt33pTYe0JkysGNJGlimPVyzZghPzhOV7yHAuxscuCf8or2C3kKLdMWwz4LGyqXL6btA7y6v32Jo+LGt7CO/V+YfvfWxiki6zggQB7Lzt5dAoXrgkJNWrF0zrr+cpPq194BvtKxzZu5Ec+AN5sgTK8NJ62mzXg76CyRfJdr0DMyJtteeYsLW54OXz3/XH/DDeQDEJnAeL89jG5R2+Ijvl8KNIZ/Pob3FmUcY9Gw+H5FxoqVXDxFus6cSE+YNND/IF7jhzZg6H6C65nOF7WHAr2mLlCVukLRjedeoZl+cnHH8o/BdcL+lMRcAfac9PS/WTfCeaePb27PFpqXw3Z/WqwYVO53X/eGTMqE6jEUhoiJ7I0ibkalywfFoE1IXJ2yGVNx3V26Azq35P8/mzPO4rBuBny82l/Wyd1QXJBn3fRfKJ2jLRpxx46J4yVxPVucSufq539Volp1YKK3m2J72LN0g38D2xh3R3WYsm9jPpaXNCI6hLbYZn+8v8b0LirxT8gc9fJGJmYj8fAB/LoC/EcBf+yQVnY0iI0oTHIANSUNDzbRBUJBMwFe88jC0f/l9p+12MfPZDCb7sW8lTCAKQCJ7BGnPQ/aFby1ewdSO1aX7lIx2Wg7sLlJXrFp2bIM434bbOtFiq83gPQ56qFyRZwujHnUTveR3KWNZBVeq6934sjvFMipd2cy0uRhyYaTS5MSQhrHqMlA81rsYKNt4ZDt30J6jWGUMo5FWkP1kat5lJxOKfRRxPRbiHTN/m4YcRcVh5Im2eQNlGVhYK5/aaNTNp8ahm9N2BbO/lO+16bp4yKXzK5hX2nMf+NsO4zp4n2kBtUHpUdyb+FL8WJW20ibtabpYB+FPM+Yq7hJgVybrEXIX2khr5YXvgq4ppkZ79WcqX+FD9dL1/AmBW1Xkzm2t9KdGSyDsLoUVUxOPQzXEd8OCGzye2m4Vr9qFO+yeIDigo+PdFZYNOtcW17F7w2d63nD0wr5cJtOLdIOtStY7uO+66CBf2+CVyJmSYm4qMs9CoQkBYOvfF0YMmd5fVmxe77Tx7e36skCgPiCGRZQ0s62tOxYzYxcuMw5MY2aOTSB9KFHZ89ZeldNazoKcPEpoJF3oLYEC0GGHQ2q2TRncRA6iWJGun7QnHff3TBn3Vd9DZpam46JPulYStUpquO+YCqPVpD2RnzJxB0JF0sJsxLI71Ub6ghrTgnB/9X2yN15+e5E7iJ3vZDPc3lqLuXAzf4UvG77Ujtl/H8BfB+Bnf4iq4y+9L2GNmsrj5cBgjVdq3s3Q7aaTMpOd9sqAZXeR5LtZyUbT2FUZCSwnvhfGued3t1B4ZXCZ16Pzk30wcJVm44u9Th7SEkLHgPzYU1/ZuTvdXBViLp8JcCV3EXjIVkHWqmU/5tnT6qXE11VBbZPa16yCrsEc3cXuqjb9XTJOPitJnmvrPW/Jp8WrWZvY+Q0bpkvDfdcUtYwS6sCNvxnm7iNevvINmMbLXYXyiGzm5SlV83D7QeVR+1EPo6cbSqVN3biu2A0F0DjIvmReA8igtVS8L5YrpL4DpfF8jLSe95LggODd6+hTQ8G2NgRTZEMT1IonnXGomNrxl1C6tTEpciQ185ntQBsoHXdpW9zER+7TjoHVRn+frhbWRYO1B9B+LctE+wj3E2ZuZRyfH8nT/7YED3XFQNMzH+3DwO+qbT5RCN9lyvzrOOWyeNdZ5k+CxTubmCdoOWR/7c1X6a/j1+7tMuOxPzEeH6RIgavAsVq2XHxXaLQZWvlEribjyl8CoyOF8B5Z7ri5TCx/wX34OV/G39xRO0+BXzriUp1+KQfhk7tX1iYttoOXevULpNhmuIQ8ZGJ7kxeXPLIZ6eb4LYfXGTMLIvLnAfjdqvqbReTPvEn3KwH8SgD4GT/0Iw+QhCyFWVDfzvWocZgazr6SPfHiDMB+lSGl3QC580Ft6cZXs9c8Hj0PwB2A8KhtNVodorbnfUS8G82ediiPAntek7xXMt6OolvcFd+S7mJEMPDZ2UrRRTUeLR/2Gx11ozcyDjK5HY/GTLUw5M9j1bXjkb79opSe0nqhcuC1nk94XuSyYCurvuO3XA5BOyRLPr/auRZHYg1vibDe5tXHbojWw2H5Os0hOSmKCR3xAdaV0oDYGSfEWQk/MO9lrG4+5sihgIg5oWgaHc8LpgvBssAiBiOarjQHBKIn4kIY0o27W7qs7rISeXZaMK1/08Z+y4F3nOR6I1Bdq6B+Vu5d/SzFctQEle+7VhcuT/M8NahS+HXNbyT/He1htJP79F1g3P/pP+NHKYYa7IQHjLENyzdg8NebzUCxGZx2yuohLmapCh/vyxF1h3F3fK/oL55HTL3Cpzub0fIPXd2FCz6TvclzRlNhrmXcaVu4ajdXurvCco/DkNZ+dwy9w/YtmvlyvNsNatq54EED8UzcPBUIL8Ux07DE8InLcAKl3Vf7Q/kVe7P6UeIkXwhluB/doNJ6Sc9To22w2n0vKSY85KbprvHZsGxCo477/jt1tdrxmrL4TYPdZnBat4Gn4b6KxsKTuDyGt4Hlxtd1kXklpjJ2i6ZL4VreShvguGopjTZrfn3sOlOqnuTq6HqXcHfvtG5vlNrV4bT2+5AD39Uzbis2FcanYZyWF/++1aD6OmPG4U8D8OeLyJ8D4GcA+GER+btVtXxsTVV/HMCPA8CP/MyfW+xYpIkRkWGFwHsP4xoiweaSWA1muKRpTbq5MhZa+1myyvRsDAMw3djbf4s3W4nL916+JvJm8wvfnq/nrZNuLorHBrSD82BzCl//2fKaQp/3TvPgjbalvdPNxk9Q9Mq66ivl1dkdQRjV2Qxy6qadPSuGjw5Bx0CNBPVINzxcAfkCnYzLPxltlJVDVNmABOeVmCZ3bkj3yVnnC4/zIpQyjCLXNqQmsc0g+bpisXd1lbLXpxtw3j2z3sZ1hFq1pY+qXcfMfElXbexkhlyi3CfWuQWLpXZkNS206qjuOrKEOGWdKlg3IJ5ZpnB/8ZXL5TJ5yBH1pWInFMKVcbnAnH5+RI7YKVNoTHoXl3MdFg++CnTaGNzEx5TMbDut1w/T7htZV4Fx/2f/8M/PbnGF3V4JHC0U3zBVG05srozUNphNyatgQeY17bAV0sm+DB2hQJ1WmRl3/fkSf69w/wrrnqG94tvrd4ofZHd9FuyOvr8Item866aWJ2nv7E1JH2m1xJWtG0ViALwcbBcozhIkVNeCS5MZtlg0pV1NmxbxIAwjdaJklcRibGkpL0dJwW4z+sSPn7fuuNmbVQThtBqoMdKyaWPaVd9WR+RnAIiBLplWobI3H+q0f0FdsFzlzbRBu2duwywtl2/h92ETqaPahWhHifuleTRXRsfud7MZjvunuTV66Q9F4L6fi3Natxn+TToxO+H4fEDjMzCK3WYoDmsTC8fjUzQ4/RoSKDR3JdVb+GlnAlf9HNaw/LziwX3qGwznLUD84ITPnl6q6t+gqj9fVX8BgF8O4Nf3SdkFZTWEQDwXg+JhM+SRcg9knLWlzf9e0V7L0XB6y0GLTLqXocje8i0yDrq5o990NbO9LU97vtHQmNcYz89XA4YHtKPMt+VrnKfyXhRMH4BOfPB05K/11zCwuQ46/twF6Am4TT8qn25daNMVmjEurO9aC9HpAvGdVuk5+Svyo8+1NDu3Xs5lRuqzouWllYb53pcoyXe+vJ47u0Qp0eq6lsuer2j3hrp0I/yKkjhIzWCwdJOaP4MXD3b82c97YEvfZfwiZrnjJP1agyobDPjNKpxCOI8Ss4Wn8Ri7GmfM2dvNbKsueExybrOwy8c9v0cy38j0IdoHgc8TFR5jah0jHunmkc14zHfPM981LOuZSG+ld/lpHfDrMFC4kbTQXpE5nyHh1bCpl3DE+VYJHXk6pj4TKh7TO126yd+6pd1oCy5WnNfGYcuLaLf+G9RrstPYEd+6j6cDn24z/PmEWHnXzY1X+i82A36zooSdYxzvtKkbo7X055m7nktvYjo3niFj+nno9tvL/1NjR+pbD1/tO2Z8fsX/rkUKtYkVN7xqvS5vBKMltQCRcGU0gIzlmIH2wpVRJ4LIKxP7itV6lDE5KO+dj8s4DMa2tJkprx5dnRfg1Uam3cqrg9G+ob0NlG9dYbrIw9/JIOPGt+k3VtRaXl6eO5ldj82Hv5SB5Z6ew3XqifIhdc4uhzNtO0zuvcSbq5fRSfpAVrPHRJ9wvm01tjQkS6O6RVrccmkpbpMA3JXEd1YkdGMuhUX+fvNY9sFsy+Y6Yyvt7lLnmecdWWvn8LS0vlLNZ79ENK6991Kmu2W6S4fcWO6B4T4yNv7luqh64o3OhBzID4oWGcHtxE4K6Ik3TRfIaArel7W5HyrgF4icSL6On34Kwq9nlnDR8bN+bnBPe17OnWe4NtqNYEFrLjq2m/cO3Sbfnxr4YgBI203pnb9tB3la9aRiWG0vVhOvmJr51dCa/krGfVGxeVqo7jKN46WOqR1vp+L2TAZcLDI/om1py27ihPsd56Z8Qapt6atto0L21aGHutHyXMKk6xBqKMP0fGFPez7dkyCKwo3GcDAuhJKaDYDqdk5jlUvstrpiu8FeAOzaONptkjOrIDHY47vbY/5Jd3Hn61gOw2coAlfYyggJxq7mh7oi6AtJ4aq4dC2Q5arIfJDYndOD7IP52ZHlYXCwzfDkjseBv4J3FbvjUMylO6/a9yIcVItqWvBTZOHSKOaOqCA8dtxfOH/YQa2FudVmKFBovYLELnlSswMSeJzni7lZJe3yGjtl7c6tuDecajgveb9jXNOP96hrIXsDgZ1D/nadGRXA+0+RieMXnZip6j8G4B97KrHMj+GWpbZ1u7mw5Fb96A4j1mmIdnOFmyyNpbXxTwPCTL/bK0JyxbqSlgFOWnH9ufGpvYoBmPgyHxn4RIfe+XbXmaKCm7GFtng2ILeujJ2vv7waQBBRd3ucdLO1n0gr1R2myzyx5fJvtEK004guMxZa4XdIpZwH0hY/6tKVUiNrfepev0TLAw05elZa4gtPpJvk1i7MEEshXspjP3oFED7qkgbkoHzSxSgvCWGDUy7KsJ950YVf57sM+RH1t+Q4iObd5PCLPZaToIQchwBKoyBfqfRzDZ12cRHrrEcc3HaD7N/WOWWZPDHaA3S5hxntpHWHE0DM93+52axr8Y+4zUsbLeVtpT/coANB67d8+vm+U3zgwLR2ab6oDUgWH99pzIvzPzGMuEj469jGIDJhqg9cS9yQ9gm86pi6uV430hx4IgfFdzI22oIxD/jc4b608j1tMzzqju/4wMTZ1nfd5IOWOtFNxnvdCMKVEUPiXh6Ku6qTjcAHx0UurrRKLB2rZUi7g2pNXzkNbFrFBM5f2IFJk7RYyDczahMxJ1VOmfjd+dAwLNLC0ccaIFX11rYBboOOnbB24TInduciNd9jq3F50TqXxjZDQiLHxXeefLjNIBvh3E7bRpLjCJsBdVysNsPlyGmAmA2RwHaBX2rvfMJSNZshluKMi0NY/2LYraLgBb6Fx4pcVlvhQF4W4t8D9Us+/Pzb4pv+EAK3GW9kixZff85a+FbD64zZlwlXRhIdzqrFWQB9Taz992isZiu908oYd2UgeHft7nbDDtc9rY9VY9VE5HJgceHN9JDvZuiYrz/rXO6JdmMi+buXt+7GDHnp8H6asA2y8Xu+fepW5s7Xae2d3wZVE1zz5Ys07IVllHnX9JxfV3oX0RILAljD2PJ5DJZtKJ/wgAeUl5fUhKTxS9I6nf3H67OnZSPtz9zGxnGT1mfN4o6DupKWFBvzPZhJ8WfP33fyim6SWR5LV+qPrjvWlufJtF1XQlduJ20MYrXydck1dOcG9Ala9XiJXLTzjbRZMeqDK+dr/04o/MRGof3EcIdPe9pawxtOItv+U7jvDQAtARp965/BKOp9phuyTRn9+Qb7ar/a8Zg7TmjF8al1Jj7X0wUdcbHL2Mt1Ub4t+opv9ClNKJz4jgUmTL3C/0lGbxsynA+eZNzeadHVhZA1jnA+7KWWxyxdqfuK3TwZKnkOYjBbCU5KeXChtSwYSJdREjFIgJWv8Pk4kuGqWgot8WltPpWR1BolaQuPRnRnM0D6ODqWNz351GzHtnPoj9VmsF4T54H1SRXGY252i9vbZjPIyDgeO7FW3H8jdWjjk7bXSuWzPWieCWx9stsMThDPn4n73+uwbNVrYvb5oS/xAYN7iGbv57/RXGhtwXt8fLLBaajPh4HtHdt36Kgjir/3527pF+DDOpi47xLc8NGBTV9J8nwZ20m2VrwdeVBldKMRbj2y2bqimhC9GaiGlRmmfJn2RuaSlvUm9S9PgLa0rJ8u9pS2y9zrvolxK9NuCyvtlYGXprCxPqsQaRQbc9nTZlvI9rWyTqdFdztZ7i6+IqzBKyeOat1EYxDcu4pvH/gZZ08bB5NLf/RG4XqsRnV966seUBewu99Ks9xQNNsFZlr/HnEOMhYtrHzutiKyPiT9hrzO+CR3FwHC5WORmyOHwlw+hivuvahWwEM1aEFyKdT4+toou7tI3hQZtCmXa/WQpaV3vFt92aUkE63A0p6U1m57jL5qaSHR3ARaZPR+4LuKb4GFE8I8F1RrOy2jQtqdTVzQwPJoc31RrgwyrG8cNa+573sfq5HXmEpGQ43X3UoBY1sX1+O4f+NCzgG7XexpflDc37S+/1xcnPLcjqomrNS+32Uuu9PVvhS9DZh62QInGUGjhIty7O81y9cy9+ju8LDnSUqm+mPXRMdJSMNy8UUS4i+E5UCxGfFZEO4LxtbFOoJvFSYmy67ekMnxGNHec3cnCy1QqI34mY9fLMW0XZNvYHdGd13MaRS3Vy8LZNmio9EeapcoRfrlhvlesPwInI/biTUvZDpN4DdNXH8LlQnezWU9d7bIVol9csS04h+WXu3+wKlnlCFsijbsBrC+debO5uvu3Xd5jza38q79wdAJsAud3rCujvedOMf9A4J31fUR6ui7vju52wywrfoM3P9+hfePrPp9w+HrTswGkyX0IUBVBY72EUGhG+k4BzfGYZQU4I8KNiStE7pFG0YQaNeiEDp3ZFVAD4mJibsyhiEnmRcfe+VZdKNYVNIsMvl3CQA9qgbDo6Ib20EVXL5uQEumRivP0DbSKe1W5STz9g3ILhMbjlYlLIToQu3CigcI3ei7XmUBbZ/cyi1tEzisnwNlbXNdRhYwJlNdZjLsJOj6G0aQnktSumnRVt2W/Zco2xWtG5sit1jfKQMtHpWYu4Z42XOAEVZetOTVbYx/rLlulYF4SNnBOjNLAOamoTa9kOwXorCrkNe/5XbCO2ZH0AK6btGyNhGroETrboGiy1XEPzC99HnmZJGMrjf0dBdZhnMt3NTdyWX012RJ1dxi5DvwgyqH3bTo7ojhngj/xo3LuNIK3uK5DjzZpWWZ/XR7TGcfLbQfN9ACb/KumFVa5T5o9RTY5k0qcL8ByJo5FhyhD79VjO39FylD50vNqWBOpBOguH81rGPajqlb+UDxMdJs5edkPd9n8Mn4fgQXhUxvx+4iB1prYD4OXccks/f9tMZdxnQptHjiVOqplweAu6EL8akyUuJwqTNakSxf0ArpptGO44XWVoN4l5HxNzeJuYSCcLl04JNmM3iIoxoyLkzVUt70AvAFtjrlcl1EdRkfJdxfMhmtJB8/1+nHQNyNUimtWINatw+6UGQEkB4BZSJLi4fvILXbZMnL7uUz78h1F6FV5kE2aN02+LbSq8K/DfYuCCx/Jzd00Te48Vs7eRrtVwwEnI+oT/7MzT7OpJmeNpvBeLxerPKdOPTAebDNyLRWm3AXyUOA78Kvz99x//DyEe4v+1NdF9fUMWnNCuAVvvfhK0/MemDgQDGaHByXrmYE2l7wc+bLlrbRbnn1uJ7XHDbDIUO8iTE3dy7fwEf3lD2fsTw3z5stmXTRBhrb4OKKz134QFoePGzyewqbDDzFlws2N6n6Qi9+l+c0lhut82HhUmTsw89xCBKjhhjwcF4sD/GXIa/Nzcp/j64ltKMmvfjU57S+KbtxZeVbS9kFKG6Q6jJHfQoZRmxqLjxTRXBztm3Gs5p8AcUHBRttpvYBSuqNy+67OzwA4jppfOTIySuSdv1O/HJXwzxnJ4Ct0gI+CDjiGma/FtlPNjg/L1bKmHWU7m0SOrBhDtEOu1YfCNzeigueh/5MDeISU5XiLzBVOeEUWt/vbao+a+s3167mD8v3iWnn8j2X12bXHtB+2KX9Ahc3G+KdmHFKM8kYrozdjRyj7aodeM+wl9lfN5uxkfJz46WtJY2mq5MO9jXYXGA3g6pYJF/Y45tzgcp3dg/VtTFxedFKK3xxD2+l7Y7AjMG9fQpxinNwrkdJeqeVW1pQHVw0nWjTZCWJb5aZqliZK0OV64zP3NW0/XMAu83wyezC5urS7stwufPnVxZo2CwvVMf9A9xwJtz3UvSpWD/j+C0Fhbwu//giYeuI2F0Zh7TjM2dkLVQprW6JtuFbybfS1jRjXs7XwQC1GGWgtw08sK+2bhwUo19MyHjxPAxct+eLAUUBoLtIuU770LhyVh357tJeydP5PhicrDrRWa83PIprxsUgZG9mN0NDin9KFrIUY5eJ/KqM01kXX+Graat5HYvnht3+U2/v4rTJOPoFl7cXmQyo37ToH8AsAsCNnett8cm698FyWu9wdTMh/VC0yxjGzEUmGcMu+k4PDaHW92CcdunBD4Gv7+jYZE7SpHoL8vKFESXaQ8Pk4zS+/bvL7vojWBu2fqBcS9oDb3bj4yo3ogJ54KBW77n7xkOLlZ/f7vjREAOiglc3jfhZTL16M+AiNRxuiLuwnc8tXy4HCpZfQcMzYbMZxIJlvMS6geGlTXyCltM+Yz86pOy4WG3arb3ZZHxOk3NeAy0njL5/w5dsxpbbhvvXfEdaAN1tMXTVZCxdRulHWTXbtdppuZ1t53SbeSzVWHRgMkecTYpIGYzNQE5T1bCuYzkofbl52e1NKKPiceaz/tMXTU5KGZTuoqh0FgsAn2s8SYQ1GdKaU9iuxbC4W4JsBPDAZmi4UCrMRbPZLbpKpLpmRpzpNbWxrr1XxRtjguZFKeseRl7MWyG+4PkJuP/9DOfr8o8vELyzSOkzK2Sv2BAku123Olqvf0OjLXyJeedT+9oT5Vh8R1yRB1ltxmoP0hJfnsl6Nv8ny3dpTwa+D8t3I89WltGoZZRexM18h5HJFV9/viuQpZd+hswjr0YXlHbxrYL4oWRPt83BH9VBt0mCyGSbLPGYNP5Inaj5WUm0bjHp3dP6eKB3u9LF+qCG/fLN0BQ5lnRnyKg02fDzZkJphYxumG0AYh9mXnm4q6PfsOVXNMdkRXPgsGjzrJqfx4qcxfJRd5/xe7zM2Mn6toxfN6yxUlodiARYHwo1Wv8cqepp7jD+2WhDLlmnEE4r/9ohcxcWM8i6bvryAYB/bNVL5xOv5cxzmhwrdvFFSKiqlpffcfaJoWDRBUAq8p5rT2Lda8NUH1DCXcYHLPfAo6pCi3IniA4k27PTcp9uO2cdY+KZM7rAnGdw8elhUqd9Bk8mHJvS3tHf0nhDXHobdbPJQsooBDvtttDXcPEpGbf3MtL1JDN9O2fu0dMwpWCqRHmn3R/ZxJK0Idaw952l6pYYCy2BpVQ3yA/3lomi4aVjhucV+KvrvV/G7sTr/JThldW7n6dyGxjnmQHKPTS4sjolJiKTE9Ty+E5XfsfsdKW0dKEaw2Mxfip4g5grI5LW0yovfq1zwGHHUd073Q6s+vRJEIrNSOxervKq62PQx3LEDEEP4+87YwKflC03zcO1KQmhjPsHfAHVP4Sy8vf9MSGbkbSrJqfu8a0Exeu6/C8buEP5arSjlfWEgslB0y0ZIbII5VWTjm44zVDXrDL9jsnZYXxFwwewjm+Vz/y8uYpsaTufrbgpU3/2rC4GBNrSFqJpjDMMEEaRB+NeNjhQ32929mIwIRtxzZd1A7tEgfPtfLOBef5adUO//byC2aREeA1iyqvWqBQ+1Y1BmpK7ywf7qbidZt1seYXOhrxNxt6FeGKVusi0/o5pw3j6OQIvJ8nvZ9CSb5rCrn6Xs8pI10X0usYuc4jpad14mXHyhtXUZP31CHcSFZ/OKNFydUgYyFX9B7zzq+T08Ywj3Ousw5qIpiFckzFLq+s5ZbD1y2iDakKskUvw0TWtOuQwXazzZzC3FTe/a5JoUzLJVeoTZ6NF0C5JAJU347PSfjR4s90xNCfFMU8rTTZTJ05Gw9twMQeAldHmakgNXpip89nszVCg4FPl0JauHG/q/Yr7M/Pj4lGeiW2oCuW+wdjdaTdDU1ly2TjyEva9/1IE26aKx4Byx0OWD7ixA912AbAmPMuBFjfoptsmbnTSKrE453nDKjLTfk3JEyVtvCOzITRxYnc9pDgkl2Od1D5iON+xW4ku9NB0M+68XdoI59N2xpypbSkFbwFivyX4rNg1CRCLygbr2OfpEsvTbpTdNHh/lVbgZjNcoWf+BBLLA1OtQwrW+bKCdbFlZvmTHThVIeLLabD1epfztL7gslt7MUxdduAtL9fXE4fdhRtyws+t2bX8nhZ2No5shuKwtDmpY9wXIM65vYlYsdZnpA/T46JVohUqzyt8L8PXm15O++P7z0gKoAJVNxyFWIa0SnndNC4ykp2P0l9Fy4UHDP73SsZBgnkCx6l0+HUhI8m/lfRicBGPF/Uw7mDflK+HuwnqbVfvgxxtf/fk9xl8RDctQ7fVU90/KMVNtA16BxmfC3zWRct/i7vZyP/uKG9vb0NKGlzwpwF0q7RK0hcNdFdm+eVGP571+gqK9Y7PQ0l9pp3AU3va6RklL/97hgxtZDjIfuo6Un7Gv3zW8q8SL9qUd505cF34AlBrLJppT1BZg5+5syBXzDnvk9Iyn/3fhxppitdwf0Y4TztkUEbxlWrG4057IdeTk7BRzgeY6jS9vQZWX03K7l5NDf/ieeyKn4jHo+29shlT2k5X2mDj/IReZ84PIPlhAVsaycgRMe9s0iPjdvfqAhdTlvZmpH1OqIemYiDfxIs+ty0r7rSzEeWsLDQ81vzX05c+tmH7mkwm5hGuRgdOfE9aw0HnSzKxvag4XmX2PM+S/87vtPKdumQ6kdidupBaFsUCILKJZ7HFbnMY9yumnw33Mz3bjOT9rQbF+lj4p/77lsJX3DGrq2a5c66InTJ+BnKHYlsy9MeWFvTM/DwfmsDttCTbaKn9lfVWSbeqFVfTKyUvxpjE0JIwBUha182ednweBZj4zGlZNSXtHe1NXrcyNp1vtFP8xKfUCRE8w5et+QM+Tz13497j3G2ux2vLdqKNOHe74LSUb8+LW7Ot3inrObKVQuuXblATHAcGq2nbat6pLmKk7nS8yJkF6AmML7zt58dHw6VDso+LreoK1m//js0hXvpFewA4Tw13vfTNT3cXv/Le3VXOQgtzS1kOIe5CaKqilW012MqzX+HCggOqJ1T4g9BnXN7hC6wHbKUaB/Q018bYg7Oymi79RkZXO8u4ntc664l1LbTrRUMHPukjGXEid1/fcOrHXRmjBZhOS9wG5Q3nDWO5jeTlatQoPbPAY2IyNdoSRXyKraC//me7kKTLeBEcg+5wooVb/O24OJjEp/BqK1+T4QHNh/hexfV4grWx7qQ9kC4i6hm+Tz0nfpXCubLSF/sDbuiE3buZYrbxNtx1GRenNgOUnSGFY9yi3a7ibyHcEUWghpHBluk4LyvTqZrpFOH2n03GkEbSfXE9AxJypZdEXJVk+cLxmrDed49c5nfYp0/ALoOGC+oyIGjhWG56dTtwCPDufEGXc7hu1G95zKZwWJzvcPlYc53PNd5yhKuiywz1m3zdJXLVwiHAd9X1oaGrg3UTy33LoT1dJq0kinC1PLGuwD/cfhLtcllPF/YTJ97U610+Cfe/n+H1HbPPDX385X/JB0LF3BG9k/voAwUmKRPvIG6ovUMjOjSsgUUIo2AdZI1sigG9dGVUmIwUeZAR6/hNP/oRt0vjFH/kkraUj58pK85XZJZxLh9K+VT2vAqfHm74Xsp4QTsOajxpkVGwXSzxjG48o2aM+anrJmWUWn+lAHtei1UKvZefhdRhb7spQyht80spxRG6yoFnWSaFG9EE9qpo4bQXoxg3vvGsTLeM5DEsvGTJKm1MwFwV3od1XYhxkB6FGpZr3Mcn70Z7QtYBb5G4dMMnezG+8rRmoJah97NeE+2R4yDVdZ4tZHL/fJ/4pAti0q7yHTSpXt+fkchL9FxlJzfJtSJqBlsVh5zhJumfVbSv1rSrkK28kjc45gdV1VxYbHBhOZx0bbJ8ggF0mB3HqR2DuMFwG2VcbHHdlbEwEgQ+d5lu+ciQFjsuQpCuVgPG3GJq/6oLGu0Nlnebseux8r2k7eVDDf0eoY2gpbvkO/BJ3cielnF/JObEWqq+M2O80q5oTjvqtdF2GaiCB7U0Pt14cWZbYvo9YDkfjCwhGuXqz9Jo0S4WucLy3h7NLmS8Rl4RJz7t6XjsMhjKKE0UDb9AuNhLExdlmMuzcTbcyxRqrsn+rbG8Vr/dRki0ftbtsPFDtxkJIAko6ot+DW7yG2f+rTVzdWxlgNkMV+whR0wwc9lNAT3XRC54uK4Sy5cdWK6PB10L4vYGbkMM609JF8i0e/kdNW1pHfePb3jiowq8vy7/+NywD8haLP2uaReu9I5yRetJcrjIzxvtlREs+VJeF3wA/dCV0tsK8o2MJd0k4yjzc3zvjDOAcgA/pFPUid6QWV9F7M+CgplbGVgdW1qi0U2GOmEIfPVouchrMNybHS+6SH/5WignnBlFWy6CaxvkDbSRdysQKKtiUKYgsULJYmRVGm00aYm3hUUQUw8hudgYFxm5KJoptJTJR7IYcsk62GSm4vPQZaK9kpldRMXi3Qj6x7WvaVlmH4Tk0MSdoo7IN99FGs0D5DnQMh0hJ15csupSmkjlkhVaCMVXNxUF6yblSr7PYxuHEcs9tG7QB+mX2H0Bk6OL4VXa/rs1ltyd6zLvOM/Y1nveJZ9BtjvaLWLCY2742LH7tnxX1as7Zm56vuKLe92MabtMtbN36njJfc2TehdVwrJdgFYOcaEyQuQgygYiXTl38Dsk6FnVOhpwkSjjrNdgF8oHqNvhy7zsx7tml2nCctCidW8MnZZK6nUqGvGBteOsmjBVal7c7oOPpox6Qdtz91sopefFJd86RYKUNt0oxZeuLRnn0ybbo7JdPS5f4gpPv3yNVjY+1NYl9VDdKvO2xrQ4jTbileg+H/e/P+Fbv57k+fDtuDLCBzSGDgEyFhN45+gxoJ2nPaSltcaXTHbDw66MLBCs+RJw1IY8xNlzdmqNwVcvM7J48RxunUh5hPnIJOPwXMpncTLxGZ4nWk6L3QZNZFP5/LnnfaebarF20aqro1JeUnUzyUu6qbSDjGMh3UAN5bkjK/lWmbezftk8V2gHmCutlrKWHVWtz5y3GyhWZd3QovNs0ox5L2sifDSUNdHQcAFxw+4riWtl0y7AsNXz6EVu0c16etanKF0VvNIuWjN9SgOBnOUsFYp/D3zl5nx9sJ03tVtv1FT7FW1eNqK2+7Xa3xtV2TsWrci6BORQjZsV3wXmHgPAvm/2Zu46y31z8RHJK+/F9Oj1dMAnWktv7lbzbjtwQWuKdLdPQGJF111Y1k1eVjtUX7cd/yKo5e3VObqPg+IC96OTWYrW8BWZ1jMr+JvNp69u887Y6I7Y8Ys5O1/U8nSsQ6Pd+/6Qlp/v8IgyDjwWSkOdWSl9WQt6Avevnm9tRuPb7c1EqCT7pMee98aUcHCTkXjmBOEi3yJXY6SWmaScU/1dmYxb3KfnaPYuhVLa6Dfe782lMLA8+Yj3obgsJfucIPsE29GO+5FvYHnVE6s9VCNrN/+g8sY5bVmXIC1cspLr8hhQo1UQHhtOhgeFJnt3ufNPi6QbYaOF6zhd1NOGmB0K3VmBJYpv1O5dsORwTAWWe2LuZq00eUOw4F1PvKnEBDsW7GTtSh1knE+Abis+8F0o3sx+rrNiaQeyfSyZ1jX8fmRBS9qO+x7yev20GevNu9mqT8f9V/h4+DZuZURABYRuGQMAHEf2wOW8a/EJKP7s94HGwDTyAurZtNUtNlpLtvhSHLX+vpXPtAmaNWs31lEGL7Mi3ViINo2Iw87ORzYZiW8zOKo1rWDxlUbb7PhOiwRyphXSDfOdynfn4tJpma8WofJ3gBLnC6nldRTnvOiBPMNuaSdI4gmZQneXwyKz0GstcVrcYRo3BeSQGtfzvRkF1FsZtZQXyNsSfRCVde+TKIRhllYHmXWen8ry5QAAyAEDrb3EAspp7dwnWEr5RuMktWRbpbSaZxfShQdVz8iu4q58fnU+JL/nwt+y8XMM3hvFBhunjW5jrymW+zUGMTFAYFdGSRdJX9l3VyOxAYKftzjEvq0TI6ADONJNZdVfujLyp6UPYdfFZeAhTOt92QYFS/JFa26Pi4N97U3cncUdLz8WBKiDYWof5ZJHwvIJ98su+ICLOuAxYxuwiZCRV1g+YGrtR9e0dZBLZbLfCmwYW2ivcBBDvk/gPqft/XmkLYLV57RVrYvSw2Rv6uYI4aJvCbBMlNdJfLrMdBi0ML+0a7xQwzaiY6qCcnD5L3CfMdUZDXqrmV3FG/DyufUmE2M3wIu/ZLd8AD/RksxKfPnjx94eWQ3ON0Tzdky0ZeKn2a290SR+psqdp4ZMGvmcoXfn5CVWQA+cpHN1XLS+d3Ja9HZkuG/qxpF8RNd19UKKjo+KqELwBh80+mcA3N19TRDPsIyib6Godc7M/iGyKLQpzgnRhcdQSay2g8zLNd4saNDm1fsd95fbo9uXZTNOq9w3w/kl4wnFd9Yipxru84rxNxYUL1fG71FIhFr9sj1vv9lCtfiNVlqcImYYDRjZ2Gx8yWo+lFFbjAyMLoLBAr24pp1102V+ji9Hj7QfTasXaa8yGp4voaAbZiKdVpmVEwwyRhkuGIqtvm3xQm1scmPpA7wSOT3VF93rRu6E7LT+IBQ5uC+6bGX3q22FaZdZqXiS4wFOG8WOVcJJ9uYOolUzvuIbJ818MJBi92LXMZa2InFcS1ficuy16cYnXcyfNzG5HEs3eUw7zlZAM54aX3zmA36uLp9P8d1UN861PcbOvNHV2mvuL5KH2U8bLR9Ufzz8UXA5pXyg9GMhV71DkhvsJnFp4DjjbyQufT/j73rNc/aG0w7x2p6dL3W5a/fMiUmljefr5Pf5XpiQp2gHzCuPA+x1/C39lstX4rPAUzmPJvgVZvZnYTrU+dvi33FyyGt4H+2m4X7iUIt7FDr+xi68YhsTCzmcmeh5pIDHDtaHr3AftU66IjuWFxNIfOUJ2oKlwFjHPZADeQN4IdUmH8ZuL7cMHYdJu3xBi1w0LNjuyYRxnzWgVk4p7VRBGmrnP3hHOXKyAtbvvdEiJtxz4oh1oXBNp47FWM6G7DRlHZQ3l4Rtmi8tfsvh9R2zLxyiwbblxWhbh5ZzG3fGzPdlldJW48k8PGHly9kpdRV+n7FpcTZD4anEukc/XHVRjH0AudMysHS+G+DVItzw+RjtB0zOpW6u+OjFe363rUZfpAnLMyS+LIO0VEPd1UFFZ4xmaK8Y7cC9/SAekzq2zKSlvJChLOhKpS0+76VhqA0K0gi5m2JnE88xfqBdOEqR6YVkTyFXW6vGeTL/zDd26K4GW+CPNSNcKhOLSC2lHa3IE5OZMt24DQTMtWTl67tjvoK74n2zRT1r4+urs7Dv1tj9iIq48OS0C0FSVT6JOtZFIEqXpdh/3RXntMrPMybpiqmdj+vJ6M+PdPyqnWg75X1p1Nzm99be8XfE1NYHei6OG53vHZZfy8yDn03cErxdbeey7sJNhy/yP4n7HMWCPU072IxLBqVtEo7IkIaqfQwfHRNGfuQ1QHGjPWLMHnEjse+GYb55bO7HLKJdk6BbXgGiQxt/YF/7Rp4GzV6jHcv3wvOJpR7jJDQ5omKlWfEXxRLAscjd31N+2zlybFPSQYC35d5p0a4uIjdHkB24sp/lFAHXNfgiDQGkjVmVb7sEjqKvZTNyspVniMPdPTTtOJwSCjLv0Jp4Wau9Wbtf2V5ExXYbD3On9Go48AYtl6cc37Aro0LKpwJ+kMM3MzG7BndF9UeiqDIUW29Wi2L0caCsBjyBoqIdu+n5gOxh6LODwVrl+KJbq/VYFriA1mU93QwUoxF59Ix9YPJ0k27FbVHNeCCRY0xwL2OhHUIfy10L4ql9mn1RX5d6bW3qlu+Tyhn4CloaSFY7yVbE6Fi5yVzzvJzMKieVqoMykOkTkpVW6YOv01mRxVeavFwnF1XdypNpvQGTaiS7iXvznC6z+MTEDBbRNk/n+O26yGucycBRAQWIsxS+o+W0h/g3ZLwvrymXwN1dclDCxvbAMppqE6xYt5XTJnsSBhbw65A9LZCTMzH3Q8TA4QCM1lLKWhte45d1bb/ThM7UBxRHG1Q8Hzq2XYZopFkp7Q4GTlzSbf2Ks/J63Tta2gkeQF6wKCEa/Q0wUrE2bJkUcpWNPoh/FK462hVGTLINNuMK99nsPVpA22VsmVziHNEN7wMnHtRNEfa6sneZGXw6tbbn60bcZB/SKI14XC1qD4MuNhGLDncCxn1Wl3eLxPLEcF8w08AnqiTPxx5qF7QJg+RzMloZL1q31u6SLcH3nXiye7bjfk5i0uY7/zz7lTbJbyF2N3aSLLxIhWTyOJ/kVZuBdeaYlu8iD8tHidY/WeIXiPmnpTONITfxOAOPc6/Lz0W7hWHcj7IgXTnz/sa8MdLz8nKIZvrixfUNhteO2ZcKxfkZ5MbTnhXV114zruSVkRkfS9A+EBtWui1tDIIJ0a6uy/eh2maXL+x0NGrOxDtaw+s+GI+LEHyA7ID2zCinYV4pW0vaz49hsCNbeSfD6jJe6Cby5bT+fiifNj7S+G3uflcyDqfVpclRdMUF2wwxyRFyCsV3q1z58pajlML2fCqht/08u9UawVZhydwPCLOM1VWKVoO5DZR8UNc8AJu4SCl6oUXqmUXY2h+G4IerQbReSYwdNzKLyZyDhbz1SipZpK23W6Val6HjzklNy862+ZX2fLtVthE3lYrcDcwBwSHUdMTXYT2LdXpgmc+URKDrGzPiFxqv2HOdGrDJWF6Z7FOu+D6bnoC8mZ5Pw6O8Xlq9AtVoP+OsgfDsxNsB6TY7P7ZGUti63hrttmAhWYZxQab0M2rUF4GP/ADZrthWXY1fyuuOx7hgPXVn6kd7482/2p5HXJxYDh2zqT6jZCgu2bWS3xXu+yvu0pbxaLsAusyi4RPzJBzvRe11oY3viNWhRy0y1ckKx1VczMs6WAZi1Fdoi4j9YpnmyshYzkVoPK8C45RjbJA17I6k3KZCQdnISjuhflHKcSuM4zGBYmnkNX3kG9guUF8xnNoQQGOvVejx5kFjzdfyI+rDL/Jgm7EuJBE58rhfxzLHL6h9++2IGxf9oydLaT4he4MUY62Gx+s88VLPabtfb7QIl7gf0qvCUhfadVTgMF2dBfcB/abPmP1UCl93YsYTHuFTGC0O2PvgFdA4YInB4WpPcL9bdNp+KUg3MsXo77+9t93JqC1t/VX59Jwnui3tzXPn87B8V4MKrbRb92ygx9nc1teU9i7cDHq2vLbC41Y3D/VKBPtu7QOZp/yeJK3eXBcKeMTjiqw2/3tJBldaPlOWE8Sunb3d8180Gepk+rrPJK2bxxVqcTKO21jsmEkiQ559UpNDooBiNJ7DMnhES6lCtr34AMRcBFMDycdOU6hdYOJpF4DF4M9vDsvri53buovLj5tDl9ukn88D/Nlp2S3HL242GZseTwBvgXUPOuFd4HFN09OEd4+wreNvUMZAbcbnTawLXCzPV93uWdsEbJormPoRbHuQ8R30jbt2d7jYwz4efk6Oie+UR6RtmHMh1KXN+JTyXch4GQZX26psYVhIWSahb+zNJNA1dnes1pgQ5mKeJUN93sD4I3buUqa9wDtWDzbDVnIDdQiPI9o6HN9ByF01cTl5HNXA4IRdeqEVZwPxabHy1MTQmBZLltFthHEKCRbsFasX5XGa8j0xPQBZSO77V1zKLJXpSNN1Ufz2xgH3Iw+yR4q0kGfIiXh+Iyv3Le+YKYDzK13+ISJ/P4A/1h5/FMC/pqq/8FPz+3oTs4tR8XbGjKxVNPGyJDqN6JA9P/6SoS+okJ2QXRE468uBiMfrHW0v90rLg4cQoRcpfs+6ubW+G98m062M1/l22su0oRtUQzfQjgOTjtzT803ZH+ZV7VbIFrq4Ms5M2/J9SjdXZVCtuusyxkiZMmQdo9iamqSUbz14Vls71Au1+ursWel494DdVqrIpNxeJ0FcYf88XaRm1HlwYYKc5rsXtJQ4b0XMCY1f2X8CkNNvJ6NnrEHMGfKI7WIp1g6XXZrhkylThptPEXMzsaFG+Ry02BmtdS0W/ATAAb+xcT17LYULIQ1b1BZQTxG86WmG2CaKeprLjO3cuR7NzVFPL5vTgmjfbTzHMuQO3tLEWtlVTS1/OChQ3NRMN+HrAy/0Bba3vIKW84+/DfdvZj96xyfkZr6Zb7FNd9g09P0NNzah8DGcHPB2pH2G7/RI/X7L4xHGPhPI7hXddEMlu1xFhk4rLfqRLji/KztWLtjBtS6ZN6165CURc/nYIPWs0wUaDbuX4sO13NrkmZ5wqysg1EzN3rHY2du5U02boaeW8sSOseO+HUD1c2Ger+/oxSUVB/LsLvxCi2xI8a3IyNtuWSQDlCpzV0bDY9WAmLVrlnIAC+cBBFYyfnta4bzIbi7oy3OLYlh+4MC7ngiXyFWgeFbk5GzZS4WcNnUSc80Mm6AQPdZti4a3Oc0SiJzwb2MesqZ0ayJ2IG6jjDpYuB91AKeF2bIzPLLE3dmFbFe0jQN8gcy3FwTvT4PMlw2q+p8OKUT+VgD/38/J7+tNzLxHswthXFO64lTMHdFtnbdgOBi0SrC0EkZego8C/mW+/AfAekuVQ8jwKMmEht0KkzFE9kWe+hzJq5uNHpm2u1CONoMmndrLMD1zHld8uoyTobqR8aofBChy2pv0wCDHbomqXENcwDqVrw/4tjEcPUsv34UIcIMlLa7QdmU2+UsZBNtqYJGROPPVzkab0YPUvZsUOZhRzzeNbTSUKN9wvrM9f4Q2TwmkEVyk9eA+T0J9MCyxsurDjZwK8YJ2XrJBhnqjTXw5zBgBwLuua4ndoIaBtbTa1Oh8AJvgqV25rOYOIlle/urMu6pduLEGC34DYq5YZs2svI7obO+wld+gjWFIpNVQiE2DTc5FexiNXzOiVPYTLsWhpw0GPjFQu5N4ZGzj/gofYdRnrGLr0VwXW78quA/Kp4XE/TsAZr5NJJLxbujSMXTE1E7TylMw9UrGTmtttOIidj37nyvMwKyaK5k33B+we8uLhNzwuCW+txnUjqADny5zYs5tgVnGnu82LnmExzfYnbOSi7y6XWv4Wxpow1zW3bYY0dNq7WMUx1i+1NSwm9Nq4nbsgMH1XvE3ct5sBu3Yd7GJj5b+mAts256aKkCXMR2OqV5UNUdyyeub4LaKsNwx1B3JC61xXdMntxkrr4PTSiJ2XkT1BpiLupdEsXbU/DMqyx4dphJ2fPebOHOvzr+xFlpQtfNtC/ePuFrf61LNmy2fv9Wg+Ho7Zh5kNeZfBuDP+px8vhlXRgClX2p5XXtgYsOEmGRcI62EBRybFfOVlmM38kRQZRzSypw24v2lVL65qnlDeyHj+My0bcyzyUwybbRAzh1uDO0kKG+aFPqLIDdpWY5KtIvjkJ8RgnTEp3jjQ3OjGjmzS9qJr2DnW5Q/ZOb1zjciluS7QCVOLnTjKdqAWtnoNt1sHaE0kNZXtJymygr3x+0QII0HxgOCXCpuPHXQJJ0vmt6kxpQ+S3xX2vZMYNTz2h0Y23NTo19jrxGXaZehpFxL3ed+vYaMU1oNObgpFU8q9aGFDwgm2mWy/ZtAAjbri9anzp8atGF36MubGJe42YiN1ptFo63eBeTKeIFXHfc3fGrPjE+rz2l5HhveE3x72+FGy3gdSTjfnj/bl/bccbF17T2/G1wUGWTmn1sdNbl7X4m0EhfprHeK3YANtBjU3YS8TCuAD7qfsWuhzOjPWvrvIyNSY8gdvBdA0XCRKs7sy1kmUN5/6Dka7d6vKoQ2vEWlrYtq5ZDINXZvxZFKqT3FTSUjmwKrgpNos58lJ8K2VaRMoa2Npl3AUAeDDdkwNZm6fVn4u3wgTkPko8hsSEayaMi6+JwQ8wCxr1ZaM2QszWIwX+MjqM+otoNUUHO58ib4qRF+TER+Ez3/uKr++Afz+DMA/C5V/ec+R5Cvf/mHhRhAxOq6uzHwoMD+e+lqcpFWqMNcGVxyMYxBTPRHpU7JnW+I05pvX6fTkk8IWjvESMu6iew28N4GGJ7E8ZX5StJcDRxwRUtyPkPL5Z3c7nuexSYMzyMfUNO4MPyVuBq3STd3gyqWWfjdxHca9JS0TcjOr0zqqiKKS4vrl/VJxlsUhS+3jWlgVxdTm2uJahlQ89jHDYS7j/j5pXAnofJSl1hp1dwP3QVEkW4jbYCV7oZAuM5EUQQEJ5Uf4rPJ8NsRYXzDFQXVHSY3KpdSD0WcjY0PigZtXmfs4xp2/ov1T5P5MHdElz3WZ624fuh8pU0YcCMvwDjW0hP28WrBd7F21ATrli0F8DZgxtLbafC5OJw48WZ8CwZ8MHCX4ufSpmMEUsEgvrtG+Blt32hjcEOeFrcA5WyV0gYffBhTleoFJmvHBrYR2yJK74dUvFAT9jSXxZuw2p+VyAV7lXbsvoof7BDzjLr29nPTdopNlNTj5Y3ETHuHx73h0buSdipfN1YTdhPGlrDpvTaogr9eBm/6mzz0YnOpGOG7VsspBX/dZa2UqbGK87tn4m/UyQXT4hYJbXYA4T4dF1JYA1/r50rF0yKHIl0ZfW/JPSqUsNvtDdsF13PiuqYdg+JNJcd7mu6WhxkykwqiKLifDobLxXvZhSWDf3PPy7B2upYX2DvW8pbjvpcnbuUlUBEccP91NVdHgUJPK7vp1LFc4TcEr7QnFG+OPYblh7pO10ej1/crl+vkoTDvEE5ru33ftCsjPteV8SdU9U+8ihSRXwfg5wxRv1pV/9f2+y8A8Pd9jhDA156YdVdGyQFYtObjyM5Po4++KrBao1hn8958ZBxd8qGRmcdlvgzGCZoJpAlmlP7g3yRXMyiqgJSPDoG9rirtpCriY/1olJl1E2WgtMK0Hq4MsAKb1xKVr7tUbvaixWnRa7NbRCvAtiI22KJMzzK18rG9rO1GNlo02i7X1uiaTNLKcKfXWgfSstYaVXaBaUTlBaDRxXYevbvW9PLQAKNcZy/V7ZMLo0xq7ZxvHEuD2UR00a0+w4z2FU5rAGvykqMqHRpVuNJoGkkb32Sz1zyOHSliIUaSlgxi6MqMeMAI1iThJMOe6pWgO03G8OePslVXkpWfDSywXFp8lfNwVxvje4TebICBPBC+dm38Pq91Bf46XA4s98S3kPXQczkrite74g0nTj0gflNXuLAYrdhgIi7//3jgvl+ej7QD7IaUaSUnMTe0qWSiLbg/CZQ/txXhJzH1ymZsWNdlBOGcxXfc2NYhH2Asx13i4oXNICjYMZQyHt24J5mQXaroYsTjWvbUY4wqcbJL3kQbAuwy9gsxcKNXIWVcujaO+Lv6YiRV66us2ELbZOS0u5WrMmz2pzgOrqdLLPc6oIrgnbKy0Ky1vrbyMNecLKwXebYsmpSYTo33lFfn4wtujp2BxWZjVn0trNWQl8oDx02txsf05O3qVI3vTCZ2hwPickc02+QLei6+mIxn7IxJurBjTcJOOv8FQdiQ3D9baR3LbT8M4UppdmCdM9OwR2I2QzQ/feKXjxwQvJM74oHDypt9f33AeskYNkMX7mvwOW2B8NsMqvI9dWVU1V96Fy8i3wHwnwLwiz6X17flykhBW7zexK28HtFKi+uj15qV8+NryxPoe15XMj5IO+BsjfMh11S+UfQswEee9SYuxdgHNlLj+XmSseiHBiqR9kaOsbgXdisGGu19H8T0jHX70diRzItWCqNxDFCMwo383VhfpQMgwl+R0prGVzT9caw03R/FaMvOXE27dVcfoA0idz7FpUV2mae0mae0v7VQOjyUImTxNhXT8MDi5vpsiTevVKEyVGQhI22x26JjTBDVmhThBE3iPPMyLhR3CUKYd9eeD4aCQnKV2g/Z8/dtTj3C8PqHqkE5u9hnGTx+POyTn/oc/be8VqKlyAEnpkW70XV6qwet77ZVFlw+bzajRW4tt3WBCeAmPNp2nBi/GFMn7H1gM6Q+3u5ssVwfcQHfFua8Tw5YHu0v8ElxlAI3sps63naFB9fqiTYXCUiOCx5TXnxpzwoNuyc7FTZDapo73lInYvW2Vq12y/JKPjTOIJximTvTIlJRzU3lYy9KbctXtGQR7uwpy8D1W3C/uY1fStq5V1MZ77XmlUVYnaKebkPoVoHi3q/Bwcvny24r+I6a6yFlSJvhC3aL5kD/hE1iKOIIwOKTH39RsES87Oh5fQbwfx/C+9c9Y/ZLAfw/VfX/87kZfYOujGiDZUdwhfYVL6AnXsE/v8O7VZVb/ozVOA1DrJQqByQSL6vRI7kGsOh8tVkILu9OWzvBw1sZ6dUGOHdGRerPsQwTPVVBWQhsg6JRRn0irQ4G9S5sbWcoz9RsrnQzyNxp78pX0t4Y7y2fLnBuLVE8uQZe0tKgaSuft3ukkiYZuX3olZp84qFbFggZtaRd5TI5tO47cVHcTaXI3IUMwWrFONvMmw1aH2wx96Xz9RFnLzsPr5ZS/QOfAsQHn502BxypGz9g7psAfmX9oWcY3ne1yz5M7tP1I1REggHRnPQplquir/Zmu/HVUA3HgaJj09Mb/ND5G055XzIaI7t4LJwD3p8Z0Qxh9efE1Bg69Ma8uTZ2Wq66hovx6mMAEvkGSQ5sHmFqkUltJ/KG9g5zHmL3M5hK3fs2r/nV4zDAx1WmVTf20Im6GeeM+8DgStieH8v4ANuuZB7z7PlcynFndIeoBoAbrG1KlixYWSGzdu/sfQeHu0nBdSnieF+/a3PeP3wCWFSz2SNL08cJhoUaFV5pq7rNvpDMKc5gOcR1kvKZxKGv/XzngPtgq5FunOJ6Dj6LVV4wpU1GEK27L1b3SwFiN80vcjqJf2K376Wt8K4SV+27xAeAd0mvioLlZMi10JL6Ytevus6PBv4bCQq+1fOrhF+OL+DGCHz1iVn2wgSCghgI4/zImjj62mBExomc7LSD4RZbLQ7QiEEQtpXIRP0EN72Im58HtVyW7+bZZcdg9KdnT9zAdhwwTNa36+wJGSdbeCvj3ZjqihfJeLWqdpvPxbsrmfvieJyjuKJhHreZU2QvmxDvMoqpyZ3PfObsCQDrtKCdn0K+mBa+Qrpoo8XKWcoYAkCZAEpQtAYReTbdRLSf93Kjk2fESt5mWNn0eho26W6YOI91+Jr7fZaP98h8Isb5LsNpmIKDrlFmww9zLTnDZWXpKw38gfT79zMDK3+/NSx5q9RPo3paoWf/dLV/R2cZ/XUF/wHgHe5x/WkGkM9uuW72hpPPvMA2QtAFtsXOY28iN4DgE5vevp/BVLYZJc8rGZ/A8jE081H4TGk58sZmPIWDV7j4DO4PWHkpE+Ndmay3tHf5VUh8zPfOxl3g7yObeFmphfam8h1D59i9oW4V7q/tyh5bMFrdorsG005+wVj7WeyAR80o4GdBM53X33o6iVZ6u2APJSTmUS6LVvyTJPl80IJI4mUWKfAYSJw1lofWc14xwBezCUrWwME00jvA+hmxLFC5EDZos9wHDSrpcnDjdxLWmh1AnpGLj6oIwoHdz+y9hx3IMvrioZgzOqCG6yctFFa7oMhmsJwqH46o/h0bVPUv/VJ5feUzZtiBnnetRPJZUc46OTAkIXoPL3mV9ZXJQnS3lW7QKSqAQ1xGhIzIsUDhm+Uh+QXl+cq2ZVopzzd4HoRB254zo5bPA9Uw2UQ72diSnEF3ypdkKjJvQj147q+LkalGXhqT5gVRMusy5kt/l4C/D2Iq33JWbGto0vhUq8hnwUp7bufE+i6DuOL5xQXf/ZIWGhxv59GyKClj2GI0EUe3wqmipwHx3cS3jJ1IryF3ySuNbY2TAjgC2rWzuvC1yKRIl8M1ITpqXhRiI0e9HzitxsCJ2xBfgLxq8ojyacijwXfle6Kc9cAy9uu8wBqoZdplflXW5SLuqrjWbNd0bQ168uyDTBj6KLgKcyySOt3wNwc+Rc9Kz3JFC6JFpd36JInGeNwaS89rwlR+7s2s7NhwX2jP8chYvemqpuO89olufR5tGUMY42/LY5tQc/kabcFJlguUD5eN8bjbhb7AqvlzS3uF3S1u1Zc0mRnpBmIu13TWJvIasLvoQkramlOrUAgXF2WysRnXbouCqIx/xOSvWJ3xk71tqsu0OrGteTvFbvPLFR1bo5mcg3o7jWaje/0mcYKtYMCAwIWF1Rt2kyDdL6QuNOWimUvLvNJGpCsj7/8n7ovVz8GxWJc/gS1A2Jv1UbgsLsyl78RpO2UL4/3UWtgwtxkWu8rjedlpZcmJ4PEpuP99C/K1XRm/WPhmzpjtg0B7H2nn5y1475cb2mIFGrpLj8dOdQUug4wddDdXxisZZZdXWS4Ow6sJXKdBwFS+AIPB8G2J58c5LQ+Mbvr3BsJPpH2Y0YWO5O7NZtlR6ukWoj6KX3cZdiM/JpxqvL/WekvcLV+lERcnvOGzpX2OD18a8oRmS5Z1EBajEDLYbuT2utZCJXFTVx2eaeYfde+HxDOdu5aklvKGSBKQ0uZEjr+v1oeH4VYjZoYtbSBCAaW89KTTsoyRlvpjmm6nzUP0rDcBsG4Jw6eFDTdyNRoxQb3A4zUiqbTUwfm/STvw1TpIZFycMKcPKFtWIeOlHbgKrTz8envxAAOfYTV1Md0inwi9fB+lZ7JHmHqJ4f3FA+yeUm4VeU17eUZx9hO/EOsCFzkE5CSWjRX8QX1vpyAe2fby0JBTLuppk3nSTRZIw41vpaXrKLJ+RlLr+a0dPrJrajkftMjmV24cRDM1hcBF8FRSaKJjcvniF5fEZD7h2L1Qi8+NOS2vXOeE1y88yQLld85WrJ9hU6INnSqKbaqbAc1mgJcB2a6ZlJ+K+9+HoADOsaP+4IVv5oxZXrxmrYqXLmnX7Lb3qcbNjK2FDtgWzbSkvTM2BV/ZoPbzabdYTeDV0l7TDpaL0WiiGVRzZ8ewP87+6JMcE1A3Pk8Zcc+r852Mc+f7RPk2PldG/3Iw0Pg2i+A+5Je0nAfzeaZOpxFjpNVRN3teqyJK1qMv5korQFoPCOCucfkYGcX5Ac08q0jqN/4GrTgfSeAHpInvZyOk8Anz5pdVRCQgp8vE+1qybqsKt0X7b9Sn3XQVtFi3bInTwtZwNHSjp0ZOAsTO5ZJxoI2hR05AxEu8rvrCIQfe9QwYS73mbWdFj/CrjhG0XkdhjE1uHkCsD0ifIQdEIKfT+iopla00IylXGHxSiD5YwUMG3A8A4QJBbEKXSXr7HyXs8HuLG1nXHLqHhKfccHIKE7b1+Ku+zBk/wONLHGIZH2HmRSFu3d0HGcf4AX8nLN/LRwBUQLjRPrIZd2WYZi3MZsDULW56Hna0onyelvH2rv60qbnQ7kUDdF2XT1lzBjzg9j7OMsdyEYMB0SaWa1ytn2XIxIyLftxkDfckz4XC3dDJKghw0nX/63mld1H5nJTjbKjG8l6TqSy/8/NLkVjGhb/ixGkjQjX1ZDV7TQB2XT6XFwu7vTzrBsWl0HWh1xkYfZheD6IH8UFwslsW9TSZ7ezciXyGTQqdjuzLpc3wf9Q29jb17YX3aaXrBzB8vYnZhI6Shtkvurh0ZaQBYNKTxTkaLSUtl2q4wfdBleUbNv9qgK2JsxsfEqPz5UmHShX5npb4mK6a6mra/tyN8UX5Rtvc+LBuuoxbcBBrfCfjfqmbllf7ucnIeY18Lmml0l4XZ8VvdSAoE4UHobb1JlRvc2W2WtMKbWuM128Q7WNwbYK0WXLENpn5kLIPnuuQNu/D2gc+OpQ523o5Z+AulMUI+mcxFLhIC/jOVBupyRWfHGwkrT9Xvt0FKnei+rmoJfMRoIN49u/hvOuanOV5BxoymEGNWjT3Qk9RaZcuDrjbjIJHwnFtskul69kdYBIzfLVWEWurcZbj48H1wy53Srifff8CUyMXyrBhN2NOkfMGc8INveBvJi5NdsRu6oN3uDjh71Hj7zCmyOhRrJsNN+zPWD7ic2XnhtCTbYjzALsv89O9vKV8tzJeYPeVzeh6LbQ7k91msFAtciNnobSk3epg5zQL2aW8Mzhe9+W5MZYtecv3pnGXrHSD9n2lddevKsdzXROWN2z3vDSwLa/sGO5ARLUZzIfkooGmBl+2XouPuAxS+RyUt5/HZczlnSe/dMNdChn3zyjDwv31PUktfBwL3w3LPYjyFzpTpsB60MX85vmRc/oz+SI/1yLB95mRzSt8bvhmXBkBpKFucdoQLPHrAqlv0tZhc7dwiDM53pnmL52nPMWluBvjkW/3Kd8N6mRg19mOFNsPm4fMOtMyrzvDPT0WOzKogRe7u83pNPsNSM2mdYNKcbxqM8qsmby0CBn4dF7jqMl11Ud2NeVdiMtnBr4lA1nAvAYlusfvOVO7sr/Ex1fMMq7SniabjdbrrsPEizJod2+hn1vQMqoU4t+MOZoq1FdPvVwXIyaj5FXXPljrU6HebGqdZFoByhXTMtKSDMLlcxlnWoKTRRtmLg9cA274En3WjYx+hX1ihzKfOPvSaEv7MjE0b+46sL7DdsCMsz2vWl7tUZir5NCCBx8fDQXLTW5vsMqC+jO1pxG/iluS4+ACxOna+lmmGvfU8xbnmhps1V1w7Ob8tUSP2HYp05YITTcYJ6tbm+2BoYnsTZdxIxl4bYm4/3Ys9242YWeh/R5jN5IX2/xcfhqFGsrcapTOcAi1nQWFd7Xi31HMJPtnSFiMupNQHeP67YG1PH2BrS/+1XPjNqnRliBkJD6bWWjYXexaEvsEVuQ6rTaZWSnRPoLYpzlaNzW12dPAFsqa6mi3GVKqsH7CwOtEC3bD3hyBiasBnZTxEbXXbRdiwsqjzBP2TUr177BJcD6w3P/8GRD7qHYtotuIeTz8bYR1xODble8j4etMzAbdBT5tboENcIdBXmZynTZ8fTspDwZEslObVZgN44oPw7PxRfTSejEDDUwcAEim/ryXD2REdZex5zWrphaG/sYZ2Ym/YpP5kTHvaQvfSZQnZCx/h1D48AvWjTYCco8p7oiszEmvmwEk2mlSdjUwASrfQeb6e5ARLT5eEaFbcV8eo8l9yYpfxu+8/c+ffYNKWvbc9sOgnnS+Tbyfs/iSf3l0JjYRa90+2QgkXAr9XJTFSE7iYvcrJoDJVQofN/gSAwch0dzwRRzzcbccwK4nRrkJ0Q1fVrM5EoZLS7oQqij8o6K+qhkG2hQtssz5cnM0cx20hhJnyqQAuUQKRN9t58dp3aivKz+8/Ygc0PPEm+tFWh/6UGBsX3oPXETDRddbB4dtJmOvg9bLkbT9bKWiNjPTaIroemQZWwbKaYOW0noj6eJS/xovBemww3jb+ma5SGMKm24qfeE91anLwjDzBA4rp+nlu5Ax+EzlZRmLnvLhI9hdNolcyXfYfSFztGbme2N7opAhY6UdFxGjDqkRetshXrGB48F9+0Q2jxVpMoY+PF9JWh6TiSAX81ivloF7C2QVKLnv2WUTkZ1hFBUzXcurSyEIy10OVW9nYnZIM232yLpLDLvS4lyyiV145FfYL74n8U09x42Ibm9MiHCZF2EVm64c8Q/C8cX3PWgT9w/f+TNXzqWrA6rvhmF+OclpNyymHO7SHjbHdv9EFYe5l64bM09bDOX9s1XYU04cp+E+Dpw48Wb1d4rgUHYY/fbC+XJl/AKBO7x3yO5rQS4i1gojepugWdpYeeo+H/HYjDrl66STK2PH50gSfLlsadPzVXVlLL24yzgZPUorUldypNFug1hKO7lxhCFsUcVODLopfCZ79ogvvdrcf6SlGQxsz2Oj7bq5S4sFvrwEOLrWXNDWRlDX7Lb63HSVtPUjz6jtZOMTkpABF4rRmkyklafFs2zccLrSTUZhGYuSlVVhJSTLUXhobbPbVizC6AMKdunt9ZHP+85aHC/3iRvRqZqroqyY3Bla9eHrxiLsRGJp3eBK7mgt98SVsdqkVkxZfLg6Vi09P5PjxKI5RdY5AAASZxCMf0w686za4Rcnq+KUtdvGejlCd+TKaIOHdGnxODvnoctIu8TpFvnx4GXc8WnAaiGqgm3SaOvDht0+KRuwvLRRvts6WN+0td6fb2jRku63UmILEy5WoevziIs39kbb80P8xXPxm917hKFocVflm2xiSfZB7O4CX+DixLfb9Q2Pb+R82mYADQubXeC8vEJKg654fMcX209uVLsuhF97pXHcIGNsbov343p9DzdCRljHZ9mUY+MpWq1YaflcFtIdUXp7k1CpT1FUFW++SEZCL9raiVSVUNH5khOh5202g6/hF632x9fS4tSargnbIQdET0De4JbJF+JOUuwBdy9f7od+cRPcG8JyPmMRr+L+kubEoW/Rh5a9qXzLeaJvLKiub7r9VAjflisjBW1P2ozxs7TdgGj51ax0couXcz0/sBAeEnFu5JifxxXOi7CNY5/l48Xgl13mTs8DZQLoy102Tzu8uxJsn/Bg1+PFuHB73QxZ0avZ8d7Wkk6L8FzeyOtqfCpVyGI/WK7OWhAri5sRvgplkFdldhCOjJoM1aHlGWaVcW1PbPx7JZEu2jm8fr2C9vTMselkG5+0SRcrcUURjrTur0q0UuUrq9UUX2nTbE8r/5dd2He3sB03ivYm1C652y63wzTEbO4lZOKBC9VJDILOoPXJr1L5FbCL88n98hn8G8KIT8/glau/24EprT9HE1TDq3uZEwvM3lzgInDf9wtfeH++zqsKcS3fhqGfQtvTOlx0LJ+UK0TLeN3tzw2EjBh6Jyj1o21CcGV3+N0Fdh/Sktxgsw+UrwKro/PpeHwb3GaQbmroJ3w6vrI7XHVnc5wYhTbA4/5eaftgPFHE3eKv1JP4mLh/WYSbjiHdUA/ds+bbcB+1CXcpucx5Cq1NnrYUnDYTpm6qZO5+WLCbrfO2LX2A8ZrrJy5y0rywI4u+VW5QarwzLBfmu3buXBfMj3XwLYeXK+OXDt7OJldGH7iUg0pDw/PlnAMxwBjdUIqFDUaEhMlfNCeF2bFb5fuKOvWH7hboKy6806c105bnXjxO624b/jHH3h43u9r51NHd9upR8IFmDKwuULK73vQBwbMyPupvt+VjmSZ5JlpqOzEYflAnVaD20K3slJe/vxucTHx1eMlx3W3woqJHkaYB2TTYmBoNpyWG3ZhNF5akIS9r12ncwuhx40j3D0i6GGaeQga+Nvo4XO20Wk6aIq705wYftCi0y03Qk4ndmCX2QVTBuyy3E7+IJD/8uXbIRPMjzqc1CHd5OZVcXsSv7V/m8tRlypd0B045relZPFa5Dr+dzFZ8/aYyX3VVHICetnu3Yt+xzj2IxAWSnx4IU70O+GxW4KKpmm1CHVxEdg9xMbEciCFRwyzn6zucHfe3Ig99suN+bcGyp53y7Ek7Tk3YeSHjM7g4YvkFn17up3Xjr67wGPR+sBO76+EUvG8/gd3adNPLzXlOE/qmA6775EMN4SM2o9P2Im7t5iJDgt4CxYXkmk8v37b7Cp+wMqJX7wffkYdk2pW0K2woinKejL/aqsr6qe1YLVDWYBXeDpZekW7n/iZyMZuRaSstyxLoQMrNIrk3RFYq82U8jp3DJnOeJXvDO06zGYj+4OHd5BO3L+ZZ4dPpxQdhM92dXaBrIiOV1nF/CXOazUDYmFf43odvxpUxBznNIh30sb/BCPKztx4HgrrtWpFGG18G38AMJOTAqSdDd6SrDNmDDd/38qF9l+cmtLSigB655iI9bVPjdqPloNapfJPdvEo7YfzmQjnkFVn1wchF1d/ycZkvjXcLXTfBTKw+GfoHm31bf6Qt5QEaLt06kzIjtYycKOvA/MqnSxIfNFUg7tG9bGwkVHd/iU5B2ih677c2Sk271XgvDBtuGVap9/U6r69QhRs69fpzruQiEmMlNT5WFEnXmGqMV56pjlVSv9I4+Ng2CvcR99UPt0OjPWOiphA5ywDHnQgBu+JeEO1n8dVFqxquikAOJtId8S3OSbnjixjtAY3Jonvm+w1hyw0z+RzwCdk6j3Co39v48SD0XxPbzrld4OLVINajJ5g/sp34EK7UJcnCWLEwdcb9cYKz4XEdwAWvDdyWzCFjy7uw4fJJlZcDy1h63BWmPqK9SPss3w4jW/xV6HpFNoHOZx8SNOwuA+7Blt3q5nns9vz91RltjI1fy3pSQhHUMyRae+VzmZ1Puy+fxzjuI73x3bF8icHKOdOGXMpI+nJcLOVtjVbtXFXvVGSbMgtfSKGFFUVMWzztgt9cdImJCNJlMsuXMvrZsUWr9q3migJ5+4DbF8d3cqcMnJbAao1aUkrrWG4ff/ZjAeTu7uVbKrdbFw+7gVf9Q9FR8pWf0R76BnWXds/D7IDbG5dpXf7h9u4Mm3Gq26HDbIa5599g8dcOCsH5+sD09zasfp+toBuvOlyuP/3RB7Q97cObZVq2ehE3PncZNpnouQPYjRw7X7mM2gzQI76s103H1+EO4yfBrgY402Cjy3xbyE6rQ50x35u8os5kiO87RXJBO714RsYeYiCy34Q1pr3LK6Lu3GHqm/jw7yMZV+IF9qGisfUHjUhXTQ6jZCyQDXcb7djYL2T0VclsCk3G+OmXiFCU64IGYDxwQEysiJYKeCXmksXXRu1wvLRhHXXKHB/Z2QsbYTjfxLZ6yYlPtPKZ1z3qzlsMhJk2SG3a9ghDx6CoSsmBFqe4xfmmSMay2dVxwMmrrnSD+x+xA3VIV2XqaSfs84iI0wdpOdttUJuRG/5em88df6fAE4ZncbA/32EKp5Wh/potua2j3qhbGG3iBabu7u81HK18j87GbTI+eud8tqS0mrH1k5vCM6/xdVt95MpWwy+TcUVlfL+JsFd9ZXmFx8Z20itR1rR5AYhuduyqARpisGsfShMsG6Dd0dHtWtCOnY1cGSU+ZrIwnAcf4mfeYL9T5EUhSTvam46DXA53KaMPSktNCxjuEzXbjG81vD/V0b798M2cMcsdqhporDQ+b6EDmWK5NpYI+i2lNw3xd1m3FZ8bYx1pbWS54W3nM/EtRLuMD3UzhWHQ+Kw9vjMioz1pLzc+V0bopjyzbp7L99ZedkSGZiN9RPsoPwxt7skMtzZ3SztETDMEpbQ8EPQBl1zQOn3TzcdCd1Mp677JZmprQ/lW90qBu/uzNHKJMtTJ7zguk04rUf5trKhEpDnJ84mUUqZn7KYl3zC+qnEeRoIvldGaklAJ0nCXTWdAEUbYx1e+au18T011LT75nK4xbVT0BUJ1V+wY8xwerzLQOvpN2sr8CT7P5jXyTYoCAy0t05TnJ3Bxy/cuNGzr5XsqMO0HSbsYV8/XLz+P01NZTomusPuOttjEAbufpAUUeT/+RWhnd7dsO6BtALcxfSAj2QyK2tIWGfuDXmL5HV+/VdAjtGSuVk15JqxsqiuLYngRAD8sgRJ2H9YZNcpf+bq7vGM5y8Al9LEg42vaKrenWS53p/fEbiOF+EacNdHKL//5IhyrNRcG8w6kgvtC1fSNhmW/PhssvonwzeyY5ZkMH2l4b0gg3A1UH+mvtAlCQwvttO2Kwe55NWJXPFcZI63TFjsvnXjmM+D+Zh+i/5JuhqJdFZcxdQTSC9rgc4ehHasnWivDtRG6eddCH0/dhjYgubRFY35S4gouW/Smm8t8J8UPgY2n+4KXNtd4BY3nL9SnLniwTEOd1GMANyNEplXST1qdco1yuhSKPZOMfdAAxXnOtOK0QQicfJ0x0iFEIHhXmOFcBTtZd5B0XbUzSn5mQUTXFcu2q7RgRUPP652GTGwIRWC0y8T6ai60psnypIxCevWfh8nMbi8QrJsU7apnP7MWN3UZPsUtjA6LJsMhQrS0o6aI2xqXwV4fQvXr9D8cGOf5BoaeBmh9p4BpjWYsY9ynyM2+DLR8PmhjNz0DjS+ykjZab4NDWtDzozDxGWxGL19/fortE7h4ib8dB9Ge5UKv7d2dbkfBO18FokPe4f4jhdxhd5droxVL1rB7koNlkaTdBB1xH4m9nJ/FFTZdjzHpI5vROO9BxuL0+uHpaDk7fGjRq7sipojVLbw4Fgqgtorki1Ci/Kx2rb3hPiqWA8XRdbg+P3H5JDx2N3G2r/4ZmXBZtPIcZJsk0jqZTYVMxkO4vBI2w6/RX8d0yN7QYp/jcaeF5MUg4UYv7p/hujCXek2Xdcd2tgNuM77ty/JfroxfJnQjCcQqiK+g5jP2c1LbDMaapnf2sqrMHX6AmkIrZWv+4SS88a3b3fdp0fk041VpQbR5VibUSMy00xXa4ZlDM1LtMroiY5lgSc2qHFq3omvnezPA4fI9NYhh2v66D2JYV+35ki+767HMln/oRod8u1GXNA1d/Klcu8zZtrtryW707/hSv/C8SH6h1H29t1aBlj8rgdBrcsjUTaQ9i9LmVuGZ1sPZnnv7W3qToorQQGHUXRdBFYo8fxBcptqyy+zjBoiQknQXo0UqVQ47NPCmcXKDTK6YK62lUKwLOgwk8wyCmJ7O+BbaKs+yxvGJU+20GifdznKW7TB3y88wgNQmfXK5+gYBBaUt7o5P4OLEJ7K/2PoqtMo1fAE6hIEbJjYR+x0H+819FfuKWXuAk4w5k0ksC40kZ8Hf0E1N1+Uodzd0mVp3oGZZbVqjHe9/6HwuZJjaQs271nW/2a/jM+NQtwm3GNrTd3tSRRxu/FT0+rkOvR8kaHb3YqW4juUt4VaerZ90A9m6xVgl0Ub5FkdHOq/35NOxvPfCbgOjbC35Slsv8WC+87WjSVOOc7itKoPAjiHOR4PPws3cPePM/PzYIn6zyd/C2BTLyq0CyLqQYx+3rsuuTsLu1Mma0J3QuGQKhvPr22aZVsSv8lf7gMpsB/xM8yt878PXnV5eLPPtfU+3vlAtW0svKOk57W5sB1qGmRug3OQcBwwMWR+lfcxXp5d3tFeGexBqwMA5tEGJTmknmS4y/FD5PgUnPpXvjbKuDN5lAm4WPKr5YHke8r2Ka3zn8nLa4bnke1cp94XS0m50k/GqjLrJNCDHDevLttpl1v6Y+eqNHiP/sgqM0JVqkvai+N+zqEM3mVl3iKmj4MQ6yq3wnTIxMyt+DQhUJeKdVlVw2j8Fx3d1PBxBXgfHxSGLjs9bL/sIHve3H8bFmfau6XfbpCTFl8TFa75z4rseOfb9m6A3abd8b8r3iN1HoPCptE/qdXx5hYvP2IGPifNpmfX0Da86dpc6/wjOf1YJK5Y7LuoW8zi7iuvXuD/lquUfYc1Fn5nU01UzpeUfPa1jLvMtdtB/20RvYXXK7L9PyyfShE3x60WS9gw8T7uw+KY3xalHsQNuT5Rov+Vwhu37+L9vKXwzroxxxoxcGRfuKaIB+3+v/Da62yOl1Ra/3tAyma9mwAYdio1PSmJhpA1BLY3zdzcWL98uhtLzzlcyrRDYPjj8EK/8B4Oyr1bKTNszkfYcv0Gi9Hzo+ap8o/wu55QXp5OZtsRN+Q/vt/oT+0/JWyufrpuJ7xV/ch9RR+JpMe9mcFPGj4+wRUx+90eQvJGw6NPzFgVfwyQCokXQZhOkTJyXEUqzetEVtzqz/nJafzHfPr9tC3YjVnGLDP8KKV08XRkprSJd+WhFMz8CLSC2lJeXd7m7CBR6LpOlceti0pqo1a3RViuXm42ZOxG867qKXoG86VFIjatkOLBcMdflsxrl82/axC5FuBecBDcH3u12tVVek10BP4QumtfwAwo982r95Yq63IL8lq7PDl6PjNXcz5Cune2q3JVEkAf1TV/FvdTquITJRUBbtws2re8nEvPjiN3VCYv5V1r/+RFcDBlNJc/gYse20GuX64Lv5jVxIXOrvmYLaxGu8iiY2uillXGDvklXPQy6YSy/TM8hvgjf/A+mMl/YRIfIaFGMmVN5+rMbyFL4JiMSBwPLXY+kvOKO2HA/AMMLyDK6TaAidMBNrJbs86XtO15R+T0+cD/7dqHF0h9jQeB+uJAupmGnCHP8egshmd4Zt6XyFEhxeRYa+7ma2WaIlcnd0vmKq3foukUYSePX4QuQNyZa5Bk24zA7ZPc/+o3Bpqhlt81miOC7AA6yN/55lkiLdW3+cnc/cZ4S9ua7mpdC+c7etxpUXx+Y/jKBRj7he9v986x1e+cpE68+QeO8DhR3LyGjX1Z7YxDEackQERD2Kp9dJjFehZ6gJ422y3HNt88py6QT97TlmfhstIPMm1eD7ImkPu5p20B87N5Nxju+l3ymBBymwcQFrfY6GRIVGVvaTcY5C/vJ7fOBce5874xzz6e0fd3rhC/LuDsLQYNfxMC5xXcLWgVpeVLa4v6BMHwc7yZOCEO6kH0NpA9EyuuWjRKf9ezGVdLNGn0ArpH2kKQL1x+fZIrgQC48+TXEAqxJWpx903A/XObTXUvMUKquSRIJfQD2LTTFKUe4IMaVyyHjOpvgfFe8XbFMtH7lMqi0n+3SQm2jY2i4FG5YJqlix4nWP9OVXCrtZR9ubePIF33hQN2G7EXYsLs3ydJ9teHEZ+Iix0+0d9jWy3eHoSOW3cR/Di5e4v6Egz2vzqfopmHMs/Zl1I1QWr1OO9xktPHlhw3LOt+750orVF7t7u6c3Av/AdwvaTcZq5AVu4lFLLZI1ElvzFL4SGB30iZ+l7xRsyrXrRGmaPvvwsVMln3ZwKfporvoH5TW5YgbIm3ys5JqYF3YAcL9ZWfWdfp+ds5tBp9pE6L1nP02Zb486s5mxOKkKg55i89a22X5+GK4/30IrzNmXyJsViODlt/V0ukDWqbvabX8YovX+HnnGvlMSI0bd5h7Wa9pL9LGf3aDgul5zIBoWdlP8n3EY+u+BcwG+rv+LjVNP5fQizDSehZuUx7hy2Af72jvyguk7ZlHIj1tux7/Q7qxgfRTzY6MDczYFaKLq/XJiGZzuK2FoY01F7m6ZBsEbDSDtCzf3/HVwlro+apXc+CPTE8wsI1X+DnHES1vPmNgccLlrQONvA7fBgq9vNpoWTXUDDTi0tBme9TkZdJ62bNxrPg1OQQ+x6Xl4edKMuWWNstHGt/Hc5R2wPkH/bfj07UN2TPISUhtt5e0fdAOrpc9/g6773bBep69nT3EY1ZjGwxHVDaV6x7ZMPQjO3edT+/IzHfk0wW5kJLXpgrtVaGoXcU3FL09PrA325X3RRcVn694zs+1fHHxubpMvcXzWeKjln/A/SrIhYzorxetRD49LeXV7a/btSf5cmOou3M1CZCYmmeIKY3TKpAS7EyL+i1ttm0rtwD1oqoB91uudDoPvmPongujzUBdLM1SKXEgnI+8s5zfK9x/hefDN7NjtrkywhubP/vWtCaaW6MRyk+Ftqxj+YO+A0GAVR/dVQdwK+DuTUor3RHvLJivJt7H+X+RfO5lRk87PLucRloGIGU1vqhqNLSdD+jvtvHQqmk03IwmE042Pjq8n7xLL3kgy3ApzzO0uEhLz942GEcrrbdJgCcp26UmwK6nGxnr6GIfBH2ofNrSdtoiFzU41LShCy8fZ+j1SNnESITdzCLt1LA7T43BQzko73oXcyMk3USVwNuUrzpSwyMLna585s4o6zzXocyHyg9PD/gVyP6h5djgUVsZDbwC3HVwuaW4zIla7h5yaF449AbvcwKVM1ZZ7Uh5uL9AluuhP6uAvjcmOEVxUP2t8hluCn+bzMvoLw68y4k3NXwVAfQ02jzr8ClhNQFNrDty1TdxUWf8RZv+ByhSfVleicdCdchXY0fS6AulaXecjCESE9fHSislftNXw98JH7grVdyvtBPuTzZj5D2IEHJMtK0wJUnHUFa1P3esm8LAt5TxgtZ1M/LpFTCVr9P2+Cub4R2iuduSmaj0E0b38Kk2g5+HdlOKFODZGk2TMTF2aNBFPwSYYbz2gpwKiPtsWyMVxnkuruXlk6IgIftVXdYNo9Q5Em6oYajVk8Lz1uDlWB6ujsI35S4+sWBnNqTi/grl9lvD53esKW/YJ4DcL+0GRV1Si9gOmhL+0kBJgHB/h5DNABbuW+nTZnjZl42IuhSzCQBE/KqPSltw/1OB//sQFPK6Lv9Lh82VEVit4HDfY2u53Z2EH8LIW589qj9wHZjR1cUW53mJAnp4v7e3PX1JS7Qo2Bwvg5auiGY+aGk3+6XAdhHalWtND0YbhoL/dtrBWLULf2qctPQcrShLgoX/IHOv+om2242RtvF5RNvTllVO6XlXS827TDEIYh12OS5k3NOmwBJW/rnyLXc0St1tY1GE7IWmtJFcQYPaYq33hs5xd3x6w9+ejI/f/at2LE+pL7JBDKNm8poV54kSgDJ+cMOp7j7C8heNuzE29xArCiAxeIgxizqkDDeDuYEsgwExMPAzZ5ZGFbJMrmljrVvGd81UAT2jfGGELX/+cGga5lXw5R5DtDGQWXwEb/CXoidOvNkkEOHq8imhzP9FEvejTVkITPXBRw6u4nZU1wzVf+B+YWrv+1YIkY6D5d5XHuATL3wVrHtAW+LpA0XXuN9IB/ydaDt2M59th7fLOGH8BS3HAYijBR0O/OER7gesdjxujVBYb51PK4IvfHgeInpN26BqP6pQK1x81cjLTnah59tDaTd4Ass9nyKgx1P5QOVTy7dg+VnSd0WMaSk+5ao2QppwOcHWWHiBXVEfMpcymPQtGqFXW3wL1JMyLlG4h4KlBXdQz4tamSqNM9XsSPIpRw42Gf2sl9kbAwVHqgNSXAhXtqsgOdmTfFa/Jd86MnVOxxtPy3YgJopwN8sjXBCXG6SdU/PyQaNOjrA3vk/2ttxgHfcnHPiGwrd2icenhm9mYtZDMbj+vP2+QN32rPQi8+1oNtMyDmYc0d60A+ue12kf0rag9Gcr34PwLO0kk5Y/Y/zVubqn3FSGuCvabXAxZfdM33ykNK6y0VjtgT/LVCZpA+3Yrnp5dY58RFs/D/XALbIb9BvdbW435Xeuaq7n7g5DFA90E1OZqIPk7G4wOVZphd/akRt1GygRbXe/rOK0ODe4ZL8ro2tMGfsyJtVLMfZjcwuja+bTDKyfJ3DXv9V/ZGsni4/f6uWDp/VGedSjXE1S9JYXKn9aiIFSVwKX1fXcaem/3Uaw7Jlv1tlWD6397fHXHUJ6G2Cbodj0vl6YJaIV/U67VToJNWLbHY512imQbvxZp4bXVdF+S09/Icf2PJXvSq8oapzL8iTfbYNmwpFn67eHPpOm7bvLNjglkN7PGpb3fG7tXuW8Y7kvgK+U7LS3jxGOpptUyCP0Y5iMvmwVnxwv8qI+t/KRjNgaYCZ2bK25Era3/i+Ur7LMg4zX27iGrVT37K3PC7yTfVjtMx35FYL+vc7A/YLdw6ECbfkUW7W3TW1SecrPxf3vdVC8PjD9ZQJPvNxwNoBhA74Zu8t89+cyQeLfN35x0Sk3qiGfKQfJtLGhfuczuNFWLtreXA1uuv6mjn9Jy2l0MGBDmifUcUEMHjdd0z+QwUk/Gm7FZcUN5Rtp3T5JL9gjZkP8R3Q50QJ7xU/57Vhvz0q3Rj5gb+50Y0PrIn5ENz5g8y4zyXg5sgdilZMbl2bCYhzJL9IHiLnzlS9ycbWeeShH5FgMWR/wjNsWm9nLXTXZDugvd0MeQAj80845qFGSETmwavIJ3PXSTLcJ4O44bnh9xbcNMQBNo3xzPOdhGLFNCZ/57KJHBoZOeKTYVsAjMaLxXGM5pyV62m68pZ3CTVqyLHc5bEW47B+MRxPu37FqXfHpKh3q73Nw/5ZvS+tdROl3l+mKdov7KO2z5ewF4gwuBo6jDewyXj0zpj5KexUszUfqZBK+HC15QBvfexwz5XtTsnyxoUbJo517USTjN5PRcd+B3rmI3VpYyidRvg1mNtwnoaBlt2692TVblzQXscugui5zOtQ+IU1ysEnMnbkVH56ixWZkJUvRQdq5cnZfDuPrthsPGsbXD6/LP75wKGdTCvJzb6xRV2kTtIm2hZwo+SDFaLPtb4OAPSdCCXeDYtoCHhdw5ZhD0ROuluJK5XsXdtr2fCEPiM1TkwYvRxfpCb6XJWj25krO7ZkN1E24NLhPDGYYECstm7ZWqXxD10dA7lMAkWnujL2/izTethrBVaNUxKTM3QEB1IVEFiOWJ7tu9La+xgGgzRCUJxJCxq+0A2kDrStcIBjy/FQSC9yoyTKYK41PbGqens8halcwT5zp5JRmvBtJnhuv2xLZ/c+nM2J8EM9S3C0Rv31SkGfP7FkEouc666C2DmsFOAxTT6dFfjXho2FrRtxd2Pdym40PNdYHpvy+Y0yUt+a1dRHCMc+3m6WtfXhSMG1Lu9E2uzYUcGyhnLZ1oZHPBU4XPh2yrCk+M+EKPV7hfpe5007Yy48mTzdzl21hSPAQ569oHZLkJu2Q7ZYXfRYFAmyfDrmin/iWBTCt7zjDOwaDLUhMsag+geyXdRQ7Vsvn7tuZbhCOy+FplLA84liw6tLIbuKM7bmxVJbOYheqQ0X08cUBAsFZAM4X9ySw2XWy475Guw63dG/DII+GMB0rgVhR471kn0r3aE37Q3ks3E87IiLrEzIiOHR9HnpPmxUkXm49ipv6obVpuc14he99+GYu//Dggxftz4rqL89WNonXH++hfPaguEUO06RCm63x6k6EO759a3xKm88zn36JhAoVx7GKdNOxTx7SYqZ13k4uu8hFzkk3PECY+EyGuhsgQdFNV2Y/U7zJ2PmwEWp8Ny8WmeOmG7ZG2lBc49MEvJtT97RbPykm5yZw2496pQqe6qBxqkySVpoiBUctp1QZy7ogDU6E+VSyXYRNxuq6MdGy6FeeJ7zC2puNG3vpckSi3rBrdbnx92gZZFLO4w5vrC3ELpOfGRPg9APi1F49sxNqu29vNpjIq48FarRHprWYFecryEarn3dt8jiPMrlz3k64T3rpLqWWutEiaLkiylkdp+syMR6PFUGVmGIVbOtUvDGQ0CDZV1rzGSc4JLJepNVSxj1ftk23fAQ75rKsV/1oxMELmRlTm8zlcbILN+Gyr+MOq50v1em2e13TshhbffPv3h5KhTv9BZbr/rLKXCtfH/ZJArBNj/qgfMIpm4wkv/VP5eeCiw38Sr6E5Q/s5aYabc2k1fU8GGtBMI+HUMwVvZxx39PmeboqVMlPDtpVw4hrEL6Qo2i74jG1Lb+O/4zzZTKkdTYaSudbf0+cdkGUn17+xq/L19flH18m8GSJwKBXfT8QPGBbTS/N6IhTDRdm8zJFyEHW4Gb03Ptwv4Vqydws3g3tFY/tuQPUQDt1n4e0JtSHuh4XhH7319vLD/SfGHBclPNhVk8lasmGartbQb6MGoxDpL0b3DwyLGzBLneUBwE/B7fuaOlWwcJP6aEPyDzpMIjaM7p7c8E2zFktBE9MhStcu4xuCPNaYU8bOUcdePyFu4ukNMs4NiPtbQyZT1ZvSrGdcqDdykMkdnr8/NghVd6DysODG14rzbT04RAbQad+P7UhpdI7Fl9jnWH3VvHXLWHExWkw6rzbYPSONi3JY9ptAPlIxirW7eveh25t4hT9KZg6mbML3AcuMrqzM5T/5KH6bPhe2YyS7xU+0+8N5+Nl43OH+8/KfBkGZU58e9oL7L61RVPaJkq+6yjUEt/amyZzK1y/wVWUXMU77rthrIfASI5ncH89y5YBIbauvBx/e/eJy4lilTCN5YnqDu87eHmNPd0yWYYEaQcS9x1vc3ePi3QwbbEDda/tWwuK1+Uf37MQ1+XHimmOaqKBX/nY0bJ2nOdoO3CUGNkhe1qJTnQb2Coyn2K8Mk9paRm8YseMjdxQvPqs2JaRblTDID8a2KvByBXtFB7I/BRt4zvi713co+cLGS7zmmRsz0nbRkt3adm1UR/I2D9Uyu4xqrU+r4LzQJPRw2R8uW2Ye0TGX9MqsC5TtBfifnnOXof0JS9mrCVtX7TTpoqUWeqYRJBuNmYg3WUldv9MRrHy+cUhas8CjRXh5YaSF2+sjfYlIHdNvp3R/3OeOc0Su+0w5Cp5wdIu2vzgM+AHv/3GxdOs7CFevqQ9IHgH1nlAiO2w2a1fEDsnaLKYKfYmdois1dMzXXnOu3Z2G7JO4hkNy9SGQBsee4V73I7d0VSi/eaAaAxX2H1XgiZHNP2OkxfF38r7iO8VLg42Y6NDo0NLO2HOYBseVvcNHt/qZpLdsO5296+Xo8XJVGYd4q7wd4oXot3weE87ybVhtKDhYsXUcN2baHuglTHHlUXs2EY8Wa4ig/c1rc9Me1keq7RTSjS7EOWHlTu94Zre66LaCOYL8jog1/ON7yI8TxbAdOV9uWA3oOdqHDPup56X62Iu4i2ctCmT5S1n3qjoZ3u99IBClG5+FK+Hleo8b3Df+RjfFbfsyDvZmwPtOn0vp66bGt0mCpRshud14Ny2Dr+t8Nox+xKBekC4EpMfyvommYT9FR8VwAdgrRI4rwN5U41SvgB1hxXH1/B3d8Q7g9ldJgttF63L6P+RloaM12YjSCYlXcVgtOd1Qctpp27GxrWXpcs4E3J9Utom1OaacGEEGWCHn3veuKe9EXuTY3KfmPhcyfEUnyHBx9IK1clj4Ky64QJorQMO0/Pmyphx7EYXo+WSd8osU3zJWiiujwBrey0XK1h5OD4aVjvDtCZDWp7ZcLEPcJw/MnpLCdd+wppk2QHiq0EH+LfT/MILdxvMK499RRThQnhYcXIQkLTrsDZscndY3FpZ1bhMn9Pm84oV4guswcYhR037RDubgmlkwKdslHpUbKNqqrg/4O+i5WhptF2ga9wvfZufFajfy3Q5hrS9vA27J4zdgveTARdv8ZhpsdNy/Ja2xZX6GvT4EENv7NomMuvuTjc3cly699vv0UZ3XKRK27DtI9h9J7P23xXrSv2OHeeOLytda+StDI0Wlbb3iy7zpYycVilyou32JTCUGUtLn4l7f91xfwhq0fkxy7QDuML9a13kJwAOw2PHffHEycfbmE2OxFkZHrtNiLTdZsB1p2luje9Bdu0da/KXY+NFuyZzVzbDcFTbpSiv8D0L34wrYw8VK2pnSuCfLO3EB8OAjgdw9FO4y/E1pF26/f34eYw7GbWm7ecQhmTjcxRvkGM0fDRWTJCk54lWn4zbgBjXk9yL8nYGXcStfDdjxI12YDWwnOWQquc7XhufJsht2pt8H4Vyu98DIjb6/uZ6YveElGRYw/M4KldidX8ZjeSjZvQkc6JGSn0/DF+Wry+QbTdctYbK5x96UaubRuWz6UprDdYbHgE+PC+NWIlWAPiV9/FMMvS+faK6GK4PRE20WO474Kv1DdNgl4GQGg6TS7AWx9/E420w4RetwC8V+TQL7d+W44FWOx5Rn4ONPIX7l9gmA0nZjkA2Jhkwhvh2PNlwccTJx7QD0SUuBu0dhva8+iunv8Huje8U/0iOGyy/xVSp9Wlj0THfgXTHfSpfP2ZzTysFrzaZbjIQ1rH9dVgr5Zlso1TFLqxwWrtoSRu5xR9bG2wWp9+ie9udr2l9NyjKO1yoni7SWiqQb0Rc4eiEmx3QeE/GZJOyN9KK+3dz1FRy5iVhAICK+70NGR+CFbYLik57VCxn3bQq2mwGms0g+cpuIdEWm8F2gMzr22gzYLgv0PuG8lWD4rVj9sVDutdm512d0JpT9OHauWsmFidJm+dE8nkfBSZtdCbFSCuFiGRsLi0+0VIqi7CMlBaMkYQUm230uCYzC9PxtgjK+fa0N3wn2jvjW1514H+Sz9XzM+W7ex7HLk/Sjpb8QjfRTgptA/Qu06Qrf6bfbq+u0m5ugs/kGzJIKY9EX+GXT+TjlUUyI9wGLT3LzGOQdWo5jVVLC+WBAMCWsO6+mUHybuJGUyNxZswjROpWqbsVH6yE9qtikOCFYL5iK475HAYRaydKddGaiCGWF9VvW0xzKpEXsD5VIKZDr/s1QT9xIDFL7XIQAfB+rJ06d6F0t8WVu+Adp93OuDJ1wywA3gXlGv9PDrxYNuG8Se5upLuHBOUTmJp9LoYjjsMbbtU27Wlh5dxcyxso8O7diKEXtGwz6ktUfOe4y3wxlOs52tJnR2BstBO9N/0b2qvnyzNkd5j6AZk57Za01e2dzCPf0sYaHl/ZCf/bIEd6ukLP7VbDPbxeokHwRe+06JFdCFuljnYATReO5b1BXBU4+aaMhOUkvlD5ys1pna9q1WObpdf2/Qj3SQ5V+yi9L+sxzpvII+6nzOstfSjbyxuILXapkruqr92s83B39nWT7tolPczlHGGL3qF4Y9z3MWfDfSC/N7Zc1Q3Lox1ZOc1mLCx3OyB47zaD7MC7fLqnxPcrfK2JmYj8QgB/J4CfAeC7AP4LqvpPfmp+364ro8cfR/Z9cjnkPuzPdGpxkRx81bEUIC10PiIqtATIFl+eLSz3GWl5YRs4Ryfre8HdyPVnVtWRcQpg21fexzhBy4tRPujg8vBAdHNVaLRdLpZ5mzNT3OgWecFnS3BXvou0lzL3pD3uUV4XaUc+FzhxK1NrO0Wv2vId0vbKf5oWQ52UAYB3joGnF6in5Z/0fKK5CZaG19zEWl4775uBBrfzEEZ2ZQz9DZx1uDa6saVj3jax8kLGGTHJj4KGKosK1zfORAT+AWePXxM4Lau77lISR/fUzyPoGlxACu2h6X64Vn2PPCpyLmvsgwtRwRGOjmstN7BL/fyC6SDcMT8eaCxT642xWxALWnEupONIKNVy9frCwu4SL3J5u2688uIwlkeG+zhQGcuDtvOltDe2arNjLBjjfhd6sBm9jDvfxuoCu0dso8gvheVhf+5kItpytKv12c6nR3WMbRtSBTc633r8QdtC0sDkGYwd8Hh3wWO5uqIaxpI+dCufNFwkbWTXrkIOso/vyvcuKy5IVSJOqbqTItcDnEfjc5Ky2E5Z2sXHO28qpEyGdelG1D/ivPrbJ+F+iJh8vIw+PTvR8g2Zl1CO3Wuyh1jgPyZaL4sVLRcIgXes59MmeoH7bidMN+tTN2fQHuU7YArBW3jgCC1MfotB8VVvZfzvAvhvqer/VkT+HHv+Mz81s8+emInIHwHg1wL4w7G6wI+r6t/xJPFllLZ4vYlbefW8pxzZHeZOro/Eecf36Lw9rF/Pyz4Qj8t3/bweWydhfUhN7vh0VYaOhSwMbyRwYm3P/ffUf1mOvlq6yTgR0+8w6k57QzoamQuCLa8b2i/Kt4187lwG+pint51KWaUcZe51ojMfhIGZQuPcP/TIGW95VxeJ3DHx6DS60vLZw17CrAIeufotkjxA2XXlKVY/kC1uT8llmscrfVEYQB0sXIwux7GLZMKFCRJkfPUxl8/VeWrWg4i7SXpfXCu8mX3u/AGffvvVJ2E39aF9Utbawo1NKXm1fP3PtnteaDOy4+KGk7iOE6nYzefgQqxtUD4+VvE2e9PkAC7tAPf97QyVD9x7nhNuyJNYTvnJk+WDNNzQm7RdVpZ5eH+Hi/tkoaZ+Co8n/TGt667F34+DyRgLiiJ7eTYs5wGsALdX7feLTrpdKzLfW0W/qNqxV6kMaz+JRETiDdDULoOyrnBfTC4DTB3SloZIfz4V9zNW9jaA1gxdNBpXdB1zF2QbsOJo08A6YFkAdM8KZNq4X1LWLlPgvjTc11r9Z1f5Nxa+4q2MCuCH7fePAPgdn5PZl9gx+y6A/5Kq/lMi8rMB/GYR+UdV9f/xkUz6TaHx3nvxYYOObaTTLJoMr6b+G+Mze+guhgPtnc1GZLPyUcua/Xf38tUBeIeK0VAMwC3061bGKTsZ+NzwvU3r5b0wQjFh/YCMoygX+d8T0e8naAuYfpC2ZxIy39Ex6rY28SnF/FBqudDrRWXvuqGGHv0KVV8xUvuc2u9V8ESD4rZ75bs7hWKQE3vUjV+RpjG0kbiz8g9UO1822J5HrKqW3bwVwwvDJs2KiR05CRmTfO2tHSqBrYcBUpRc/Lve6e7iu3IiRovFm10XVcS+b/Op4Tns7pF1sIE2mUW2s7LlUFpKxfaSPaWlagCwuaUT2H+6zdgFuE7yRJe5LB9HXOQRtgotk0G6opsJ257p3p9qBz4H9/l1bzedpOuL+Bac3PjcYHeMbG/kn/rUUB9P0z4bevku874YgGAimjKhhfGrFRAuRyt76c2by+O1DP6pj6uEOWYxz4VL3B+EmuSPsZK7Rxrq+/jQ8wnbSTcxWj8sOGIkOWHiDlivwF/lVdstW88H6x5+Cf7676lnpJVmM5wTw/K+WPsKFv4aAP+IiPwtWGr6D39OZp89MVPVfxnAv2y/f5+I/BYAPw/AhyZmxc+4G+wDmHrd0MUQ6GLP5bA/skknO6nsZDVhH+R02jGQINFlmnDXtGbpPmWs6mPAxmfEyq6sHD+OWDuJsxnwi3xvny/yvqUd9Lhl+wTfy3Chm0+lvSqvX64QLwu++2ihjgoux26TzFOUoDYQOETXAeUlbQ8++PfU3hjCyIRVavQ3o8NHtu6yPtzgyg197xykZ92HUuyqsp4pD3ILvRZXQg1egyKAnl4GN4mpeb+m3hWxnmtboWN0pc7SyNo7ktHdHNf5Ncc0jfbtfAA/2G1X6UPNOC+ZDq3na/OLZ58QLgdyO3Znu5pJSt8oHjirgOVCFux6Y3F4ZXCzGdSsI4cyAEtc7Jg6mbT9lijsQS5o6V3H/W6HCm3r4I/s2kTqvyfa0V3zGVzUXR0PsftuMvAE7t9h6lYGJlBGsQlXZuyO8UD7/TAIykTucdGmhvJscsnySZVxQSb1x7tsB3uzdxZLeFTE3ZaVvUNVQUiOrpHrysv2KYanVIPUgVW48B33y/7dxqPz9RQ77qwYlinx2Gk1zoiJ+CdPKl65zVi0GlguaxuMbBVfiJVn6TzGaf39GTajYuXhKv9Wg372GbMfE5HfRM8/rqo/7g8i8usA/JyB7lcD+I8C+FWq+g+KyC8D8D8D8Es/VZAvesZMRH4BgP8QgH/iKYJhxBXXJPdnRfG1j0OQlXh8rqud6PZ+S8sTpTDKDApFwGTrZ3KujBXjjA/4mHbDoMbqamTSyzfuzlzRFgaDkexpiUb5pf3uBrYMHlr5OsiXzQJGBLZ5LNNAy+UoiNjT4lqvvc48YXf1e8RXmgy9XirGCaGe3JenlenWM2wbVNYU0qQoYVjd3dxJmNXVyGFSdK+TZvKqjGyQUFSlZaK462KTgzKLx6CpF/hMbS6K3tU2jUUa4+A30bIwl9sX2QBXPgwae8H8VsYVjoE2UMg+eq2ZBbm/nOvEWT7rp1+bnNhBoMI7mfGacJ+IxzZWaLNzp0aU+t8DwYvNoNfaqpQ8LYToKt+Ur9+4e4mhyDiAZNhHd6C5fCQpyTstMv3UXHle0TGEZe18Cx/P/wO42CFo2zQukfT7xFadz+C+y9oxlXco+rmxNnzgqIYrDbulLvXcwuMQwenHltt1XNI3fO6cLnQzLyp3o8l8qbJGG0DlL1i3zj9xZGmqmnZBPZ4TUIETYT2rKkSpM6tPpedINPSNYpq33FrS3h/b844/fvPuDBzrMZfNanAsR7EZ9WzyAAKhe/fSuGpEWanLDnzb1+UrPnti9hOq+ide5q96OdESkV8L4K+2x/8lgP/p5wjyxXYmReRnAfgHAfw1qvqvD/G/UkR+k4j8pn/7u/8/fxnxrM/e99nIaHuewuYjXyxdtwK1J97VqzZ67XG9DF3mjU6v08pOdxmmgcokJK7L9wyvuQyPXtJ7vU92G3cR8ZR+2sAkyvoMMePZU8xu8mmDinh/q3y9eRry0OGdPWtPd5v2Cb49QbThoQff4WWRQ3e5HhLSm6l8j2id75DXnFXupEW8/VDXM42gNQCpTz9z8rEOnkvQKlYTWfmttUyltCcXk+sWllaNPvKSKE/SJh9QfieWa0vy8WcUvs8Exv0/8Ad+fxadeFZEzPrfcLH5oI12og9AOLNHNqMIfv288ZX2dkhbdbbj/ibPwOcq4efYjMv0DbNv3+v488Nhy/JzB4FPCqOXD/dpn6sfqpQN26httn/KFXOF15NwnbbFfYj2ToYxi6vGMrxS7J2O4hiOB2R+2J+TR+fZ62AWdy6u1oinJgE0GL3QZf5MnD+V8F4Tf+s/WVgdvw3LFXCPAb8QY+UhYSsY953vaf/YZjjefxT3v1Y4rZyf8u8zw+8A8Ivt958F4J/7nMy+yI6ZiPwQ1qTs71HVf2hKY1uCPw4AP/IH/9ytfnMBUsEHO/MMBZmz4QyBJSa6njY4NTJfOtFYRlGKYja5UrjS1p0yT6rRMVLmKmLpq/2cwh3g9DjXmT8QXy5up+18bjubRwot6LAcFzLNMt7Tdt3c5u118oDvWB5//wyffZFqXITaVtX66te2GoZ9R4odu8syHmXjzbfndVf2M5N0N5WSULBu3IOt41GZpJdBLuSXRbuatRNLTTvppgpRThlHm9to/RszpLeh+ButRAkpzvq+UFkbbe7OmeEKV5KVyA8ei+EYf6Tad6jcqcRp4ravaM+C93e71RFiF55pYg6wblSE38BIrovmwuKlW27OGuVRCOTMojntulofsULtrnznaa4uLre1oyPZPAyM+z/8s35ejt1cdx1THevpYJ1SPFeuRMW47pCNhXcSg0fyvRF4sBk1dPOTuLjTbjkNNqPz3VQ7Yc4Flm90XQjSRewYdRzkvy2ry3CDxw9tRhNTJzkmzO3Pd5h7gzmbzEoY2eprkzHIGLuvZPLGwqBC/O/w1p9Pen5UnrO+uGzVE9/zKjGwtSvGfaQNAZY7tEznwYD0zaOuKiSHAnneq+vtVs+IxXnhF477ggpgTYZCKyQDY3lkm/gv9hwiRVqyA2dtkPz5g3f1KZHzcTxGca923I86C9rEy2LHQd/jlXVeWBq2skvl6V4ASNvg5XkW979G+Mq3Mv7lAP4OEfkOgH8LwK/8nMy+xK2MguVP+VtU9W/7EHE3ZNYAPW41eknbKoj0qsBmQNkd8aBOMqUNGVCu4Y/OOAEdbHBDtCqZdbhXlufKqrpLDK6MN7QbsnqH8YyvjP6Wlvhs5dvppKeV67RbuOG7JS26uS7DGOamMPOh33d6HdNeBW1pH4z/bmXc2qtube4jodjDqcJLArJm/UzV3QBpyLY2yAue8a7yLXXAg6AuYx89ihsje7ENCLlTKXrjFo7rI7FN74lFQkKywVzPi08MXMBptWJGxOQVy1z4wmeTIw922+XPlo8U2jquOmwAZN+oaYY64kTjMv13/czv2Yy4mApQtwNC+hDWdafNBz1Y7yjqu7MDiU/XwNjx6UO4D6YdFvV4QFfZ1hd3eNz5Dhj6NJYz3yewbcOnjqEfwOMNF5/Fu9ad7ya0Uxv8iB24x+72vMVfgGjX86O8J9pJrl7ZAy5+1Hbd28gb/L3D1MZ3k6nTNlalD3UFXFVg2NbaiTbzEtE5qSllAhJzy+ZAxaOiVvYYC5foI54jjeOxskg5Iay6Uft/3pFADvrb+GHJxLpQQBzdNSyJRNk/A/d/CgdV/Q0AftGXyu9L7Jj9aQD+YgD/rIj80/buv6qq/5uHlN1IWsfUFte/GJ99YUaQ7Wx1SWurv9uADWlwtefFA5ppYLQD+/jc0z9JC6CccZjKt0E9M5CLtE19Y5djMBgGKpsBGGT3qNtrke/K26OfNNT7qvTOmB/H1iRD2kFRnXYrn14xaDaTkl9JefCZHAy+55y8GV9p8eMZliiQdwrqA/Gqnp3ofPt1+C5pStwaXlHY5GHt5qiNvuQA11+voH4usEpc9cpXNyNMkifN78ZsQQA/TD6pcZk+bnS9dUhacbBD0NaKoPRO4tlT18+BaKNX9SVq7RKtlKarE7BVbqK1vBS20P1gV+k6aMFYbY2/4uIF7tsIRzODaNzleF63EV2dVFkLn7Q8Z0QR8QvgvtuTWr6SyEXWPY+Jjz9y+yytm22GY3drkiOWD6HziZdO9ojWBdubd30l2OwAjz93o5cZlGZ1hXUXfC9gepYR++dEdSrbUNa9kmt7KLt2lqcnCxmFnhnrpZWnyHQxYJBGyzj/LO6XfGVLq5tSemi1EPXZCkVxmVO1MMyH3+xcW+X0Plfa4U1LEUNWoicTupVz02PHZOpTSnhcb460FKGboZFXEeELdeWZpCq47x4d8A3OT8X970/Qj65af6PhS9zK+Btwj2PP5eP9bHPty8YfRu1y90vhqx3syhhNzXfhIj0ZLO1pQX2fDDS8mbKMLY5QcjPMZOjHtHdW4UKm6DoFne9ou8z0PPC/NDQt74kl871L2+O+FO0jGTlu5NPKLI2ObWen3dxhbmTeG0qlk+Jj1y3zdV5jsdnFRVELwc8Aih8DqutF6JlpL4J6XrLM9aPV0vrcyjulhdumahWL55osfKkDHqG0WtIKl09RsGPZQGKcxQsRE8q06Ip3W9aV95mHNEvuu3G+g3VSnmLGOPNK4ZYLirsqKkQOvGO5FQmVTUwWcXX8/9n7n5fvtqZPDKra132e533bVgd2pDEGFEwG/sDJi39BTASRNsEGf4zMwEmcioZODwOKILRRMC8BR0rMwDaBBGIaBBEMpgcZpBOEqAHjRDLQmHT3e8597XKwV9X61Kdqrb2/132f51zPm7Oe5z7Xd+1Vv1atWlW19l57bQ/u6qdDXgnE+7hTfH0IWz/+vqVltYduoSNbvz/GYY6x64pgBZSSfFvn4Bxs0tVhK6N2gSWZ8ejvGGGQURLffJeaZAPJcecDyhfTfDXfOt8GsLqC9RjYOQqaOy19lksW9DY+tYjs/himcjcf24Jbpt2XPfSxH4k3IROaHPJSoO1g1Ka+bbusjgcG2IhvC1Sim+Qg2WMKbP1+5j23FGZ/dOv3eWy7cTLJRwwu/HFu07yPjmhbwbVEV+HORGzfc9jk94Fv2A0sJ8eiyHGtwU1xgGw4lKfHeALlqJpil+v5ikkTVtVExw02fxKnow9TVeN6bKWfpy6KKnR3PnUbtcln0A+/LyN3/qjf/x2VX/A7Zt+1fNdTGV8usAhzR45bGUVE5DjA8GUaf+f4D5hUsD1RPPFRSD7QiQrActU9adpKg1FW5g1+4DPr1F2EFZJZJ/xuO6InN5nvFLrz7Qxb1m/kB1MT9gFkDLQFLrYFbmV5taGMHS7WjWQi2C1uU263tHjxoA/2yCa4HDNp+ovB5U43KRBpqodzHX6d747vkos0fjZNuOB655IN2h6X+wMyn+jk05F1gIBBOdpNUtZnmaeRjPnx90g0IOBmWDYEqQPhC1RsHHySzsVPZxs4JumkQ8f1wD5FMhhAD75+KAjI61G/7PP0LSzToXiA9+Pzr8QCtqkOvMtlwpPBCOJzCwvXXy0a+pq6uhaQeOSuLH25zR7NLgOsqusZVJP8E/l55Ilzu/GpZScFkgJYJt5OwZVfxC1MUn72uCsfQ7gr/8TdWMIy3KJ/rW9bxQxbt6USfiPDfNj/dm13uoLxL1vLVr6cpygLwXMB/VkRKvsrXvyGblgMa/giQCNHLg/8PoG3dAX875j3hS/LkGiR7wbnr6xH8vMso6aYAgX9LMcfuWRQoLva+TGf0HG8GZMhJuf0qxEz3P86b9wKH7Qn34ghfFNPj+wrRcZiDRZ17m5k0NX5lFNja3z++1mL2Tefyvhpyi+7MFs93RF3dprri7aLVq06jsUEaLz5AnfymVdamdiZ79pKve+fNxk27IIz/LgLTiKS8+BOb0YXsHBy0slfOtP7+gK+yPWKnMQUx7otGERd5gVCtptNwGGZiGbhcyfzBne9sa+Rn49nfjIWIOKyS4R0yTiJ+V221I8FH9O61fHxl7EwsDWcVsfMXjaUt4CY30V00o2u5vjZkPPqQNRiXCdw+y4X8m3Y5P5liJRUANFxNMecsBCXu3HkJF2hQel8eFxEGhDP9dfL0u9B0hk+qNHtWHnNyzdxIKmyfSIBzeA/07a3pqvsJ9lvIB9VguU6yX3ZWHUy4QdXfhL8BsO2uOwXEbYQB1HYl2GsormdYhjhpkXlzilB/4K2SRmbopo0f0nmDUsGKHFgDZp21nof0USTfzJoG31hc87+l7xbejfARqvWMW/4sm7u7D3jNn6/k5kupLg24kfa4fCkhMz7OKDUP+web8ONjd0xdmRUQDezq3FAM6II9I+3CSaVU2xi+QNuXLDZG7oZenXWbP9CwIxV2DpvACbXi8gfc/u/lhfLL7sww+LG121lVJ1JVZehxCWHnQHBT6gxMu46ny0cTtlmoxmYExNMIuLeDPBL2JRl2crrN92TxAfrGzor3Ob6LS7R4G/9rFA7/JQ8LGRZ+usb3azkd5l3uIaXOtiGbnt5kRBsE5GVjKtETGL4KYmVdf9O4NOTXTCZ9ZBxqX8FwIbcnW4SIAl7J3hM7ms+pyCc3s2r9ObP6Qv6CEVyy5B18M3PxHyr4jR4FfAivh3GCRKfa9ugB/4ZdOsbYslVynxte0pzDjF88X7KeNiET+nME5VzbnscMH4qJXjn14v7K5A7hKfsJo2HzCTIcS+xhhweI4aC0pZ1oFD4EoyLEm+lhL6hxyVpmmPOfnFprg8m4FLmzbxin7p8zxZ+tzFxJ+Nu/hrxZXyUsZrwktdjf4Ww3Ffm80A3IlJv2GwEYt9WcFkO3nq5gy3tOhms/P5KZvaBA9fdQSk73Du/b1nUGHvG5RcqW6Ps+O7KxdwK847PjBkK6AGz6V/8BOPznKwVU13PmmCn7gExXuw2InZNMNwSOWXQ2Pl5bXych0Ghg6qfKs3P4/yj0h4zns7BX6r8+o7Z9yj43L6ZaGpwzGcbiRZ1D6RwPHXQlH3QCJgVsx1fxO0cR4v70MMwn5TDvaAbIR28wnfmbluf2eK/Elk73q+Wzp4eoLlukllGxibVbjCA6wORKQimJve7u2QCrjtseufHM5JFUE+7R5T61xR+gJOmGejpuoCd8qcwPW5mAsI4HBj48rAQxzVumwA8/1MQM7lWJknGwcuEOucIgy1PAtXwNwVaJX0MN6UIwYe1oxMGArbvqvYA5O8dOI7iewshh8Z/j8C14UOATrxfcOnNx+/iCXW0t1fLynmURGf47p3fKn5OQ19802jp83D+yrRpvNF1y3foo1v3awe/SezQx2gHv4g37by647uTsQX6QFn5MG5HPjwmksdgFfac3ialWPrFxEzq1L8z9/ZG1aDZDW/ydS2AzL5C/EmgKvMoekINwgaw+F4Xyw98+MFyK/Njv3/zbhK++2X5nSc+ATHVh0/leZiFBo2A0LoKai5LGcz5m7cLKmxVz7EXnEESi40TZYTTcFOuMRKDA2402vT77q9CNSpipzXzYPw3YC+nNXfZjK2MBjeaDGKG2sf9/u+k/KLH5X/X8nmemI0SR4teFUlHjdJrCCVClW0tkNwwrBNJkwMSnARCMqEMmgNBwqUgUWBVk8jlThX7BqqvAlA3d4rP0DVsQVzYOjvrNuhzgDNqwwSqH75JfxFEkVbAc5BdtN3R4vdItnJoMw5GcA7AQQVxKalsbmslWCWmxoLQKC9xGbKxxz5c9eAMgUukO1NPwZCyG8PA38ZQnBg5mKRtniphkBak1lLu7hcmXA+w1El894bMJhd60sc5ULnW2aMnGuQpDQE9sAu9xC4TN59nBmczbrah7wrnIsHOx1gTZFo8zu419caX+5PD6K7QkFS3LwAeYzlxWUbEhWSNZCyMdYpa/GbTpqRr9kGptTMsqCPu5r5D6/fL/Ga/x/gIuvLV+mBMQK/pWmNHxXez3wc+r/i+4mN3MYT5rOhU8W93oOz8bxmDTduWz5nl5L5365qdlNmtzHnCN7KK3ychSxxoH+0BsbQ1kA2tkVbdTtebM68122IUFr5h6ecbQeYGgMvIEruF/L6gzbtDOJ6Rwyh3mpyWyIH+FtX2cbf/Oyu/PjH7HgXvhnSBE+va13u6wr4B6OU7sSN3mzA6obzOk5Rfgcwy7XBpPnSRpZW5zne9lUP6th0sMdpI19O9Q2joPy5PhHmxfAvJFndBkG3sZdxX+bJt77CN2sYkbPk0i8kuOXmk15DR1nd9G/gsOh85bJLv3jYENcPOxHgnNehmJSXbNsW9GVxrdJtPzS5gTFXwI9VTuRBsDRN39wzOB8VTORLvmQH7Lw/iJgZnBY2rAyhgX5q82Fl54Nug8Ng0vhz73fnyaHvRt70mY19f4T7z1a70RUa06UDwpXF7CfdpWSE8DSBP/SKY7of8om1gsfycud3dvFn47mX/GtwKZulUwp0crV675GEVb3qye5l2MYPjSyNDe4T/nTvHivvTFQ74/bonYsXXY4YC7k6OgeY5pD89NI8I9tBoc0yY7/Ch35cSb+bhI/lzLadZnK004T5nMfn18I/vXubWoBGE4pHODEp1K0qTDSkEaJx0A1bJiwTfU+IIV0M52kKJGgWXPS6REYJt5nrJB1d873gtcCsjqFpuQwfW8txEzOL8MEvRPW6pfwfYotcVrheQcYsL4MlMbF4vSSQ7aYBN1yGQpYLjhHxUIJRoc+oXIKpcRyo3Mkdyh4w5aQLc9E7BlH6yOm3AXgi4TanFTf3T8dMTbgo2JyIqyegBTudfgzrf2gfYuT1kCMgva580CMDX/C50vMeKuCZ2Dv+kKidsQ/EBN5BRBx9/ed4PG5m4Xp8qUR0fiD6nrua2R5VDZRyNfNVN4JtEQw0HHLedVPyRgkPW+kGos+Pw/rEvd1zw5QlF0pCgGOVgAmTJsalblMYlmtxIM/pL19q6E+uu7/wm6wL7yz6i8Gtgd+WB/7WufeEzO92koc+uKuMKwXSyPvX7TAN822RGaBtf/kpR7g+yRJfTDTBPyrR1T9Jx84k+xQwRilWNPaWxwJihklwo+/LpTh/6/Y4nCibDD6qI8qoh+f2+v8Ec27iOR4F6HEDcxDPDXvEGO5llNAA3qKiKnOflty95smJVZwy5YCcfj0UKtPDTH9fx+TNmvDsfjy86bw6q6hW7SKW/lp+3fJ53zEaZWxdHEFxtZbwyMiHk6487SahjItTN/bwtcE44FjHdMRmOMq8hd7iZzzqChiBtmz9OX25lbHBRRtFa70QIOSlAdNupZp8W/RkyJN9Kulnqwn8m3S0EJtrtWMPvO76pnA9k3pQt36d0KLko/Wtsbk8Lga207+ykwGJ1B8+dN3sJt/YPJ9xeRh6FpMekj0YXJHPltZi8yDeyuNl4HV+f/d6+Ewq/ZpaRXhxnrECbulKon+67ggLcOTWau3ci3hUeX/LVl38Cvw9y9j51tiXfJhMvLiyO7ZwxY4qURCb9pDyc/T7hp3oTM1Ii2ODWGIn9a4TdwO784l1Z+pwNMOt164994fHQ73djtPUbubqOkQ1uofXCGHzPgjZXO3QHu/ZtS1z/z9aX5/rqfkpQBkdSws9H4+mN7y51hHXfru5/17haYpdkAy580fibfJdjlzkqTJyIGVNmFHPGjN6As+/ynVYzZgzPm/o3WqPN65/6JTOrKczva/k0Wxmx1HmUDXrOjX4m8xG1lmDrgSCVbs8njLPBX+P2fUpOM2RsABZy+scD17rp8bpFWHlHheW13ObX+JBMTN7akdlkLLvXhu760ANNkXdzFdtbvpxALmgnX9/IwbSORqh0addHuPun0tgOlGOafUvWUrs2CvP0Nm89EYGDedA+bJ3/lv5hVgP1I0FfhrUaQz52/+LvM3W8LL40gMlUpdkOQ3LjeyUmRzGNYhx4KcSY77wZAMZCiO6MionoAbiNxS7tZmP4zIaHHecZ+4hLpR/NRMFfNT6c0g9qAyfj+vR3BEmc1k94J2MABqHIfYCXuma1pVXN14+7JkcooGvtdRxT0KpK8N2R67Im3ERw4X9QTp+fjxyjSKW/cs4dLc3qXrIFetvXR1e2Db7NoI+rPJ3lKHxQJo7PRAvS4Va0lrGAjCBMiSHZDVQZiVE52hzhY74ML3I7/pdA1S9WAyjv20HhOJAXX9rAkm8L3eSDQFg3RxqfGsfSe8mlQBzoAmpjlBBhoBf1BZOs52x1xgnDia6DLLR18m74sN3cRQz/vpqwINFSxuuDzYd74jQxPmf59QPT37lEzgdbGWfgxbQHAnshYsNIwSgVUhlbHaNMuVAcXed8yRE5luelYPuxp1dRZuik9LBTRim2H5eA7XwRHfhs7ra3d9io3p1mlmDRPyiJ2SQuzOfWT2S1Psd1oZT+dn14kW9JTBa6SYnVDhbbSe40HBxEuvEbSIpbWBRwm8So4FLdTsaNDFGSAfiWrgZXma+TQNiVLqIOfPGJGuMC/QiYcWIhAeOYOk8FZIEBVM1zhp0EThR1v+WJlubxctyRNBjSGgOAOywdJnYgnUPoQXduYfHvAHld5jxO3buSGj+R0mXE7uuQydtPVdFzphoq/vHRifuxAkY8+oLbzpPvHgo1k+TbUiLR2HsaOPTlOO5YzC9jooM+FgDRIeHcD/rd0pkq0xSyyTUqQhsLGbv+4F9ER5FxPm5wHLZcdvW4ybGNd7Dd3F7Q5fnZ6a3gUMFtdQZj1BaYgsvj3Jt6gaU+rNix3ErXlNqJbOtTsbCfT0+QYbeH11GQ6o9pYMHv83gq+UU8MTbhYqeU6uJ6RSFnn5SF1I1umGfqj/MhbB0/3QFqjyuCYqikRZvLD7iWYhfGDPwMypQj3SgFJ27n9OtuKFPP89MerrrpQ49Rt9F2NeI2SAp7o24iesDJ6LQw/oTlChOfW8an5dNsZeQtLOldM5wkadsKDQLcwddjJjARyHTaeqAgKk4SEiNElvVWRuTT4yIPCOiBC+2YW1D3ivCBi7ohUIDl7SLY5dZnosyA28XGLS7UW9ydrrCtC7ab+fgtfFPxJ1UruRB2E0ALcAO70+OSzqiXsWb4xsYCF37XO7AwF9PC4gluAwvzhNtzwpP5LseT5tuVw5LMq74nAZzWpG5d/7E/xUCzHMmPlfen4HRWs3CGFjIMo7P8DMl9oMsZ27+jexN3fiZgHPDhdf8kgdmkI+NofYEtLeO9Ax2Mj2/Z0oK+jf2+uMjsF6dv4zmX/aJKGePuJhmwmpUOV4Jv63PARxvjdigcMxCvkakLc7sdEltc8l13uCxTiZtPfKrJdo4Wn8m6YcFWDJNgD2VEksXn5HrxVxvYQvwbynJMHsQXXBTvnqbJdDmz/WG86fzi7kllyIx2sfT7DSLHAZSjm5+DVh2/RQeNmO9yKRFJ349tcPG1mBQkW8MesLitMcaw/5B09AcyUx8Tvyl3dXf6+dEadQ0fabGl3Qah+Gh5wH6D3/+1PC6fciujCOet2ZvbDW7BV7TyfSn58iqI3NS7eedzLl0IGYnWRtSdbkQkbVtgPkyg5WPwZ4HbtjHYJronGbnvTKxxjC19hu+c6kq2ppSXnm8CztH145VAvYAtuzCSQ65JHqKnrSRAp5ihvYqrJfDjc5SyhYV+c77IZT08OUXkhDHJW8YvvTl1bz8AEwskr0MPTUROWW/uq08NqtR56BWUpFIWeigjD+SGT/vhaxERtfk5t5G0XDaHicSg5bnDhzNP3ALLiUpn5wQLk9/IiPJ8M4AFerfJH9BCI7rp7lwyN1uUKvn6ILcxZGuuowUb9a87aGFlHrz97Hbug94KH1LzzuelQ1Z2uI3QacOJyT6k0xjfxcTob57meKnCNiIH7Mq2mNiztOTiu3OUKHOTY/BuPGiKG7VLuTcy1lhM2kn7cwFhXMPtwyXVQJsTcme0es/bILN9m2Y+B+sfZlUc4b/1E6s4Rz4nAuslj9lBQw+HbCBu7tokZqmWiwarfM+vkf/aPSHx3ENEYjHnfi9ihBMO//BRv/+7KL9+x+z7FLz9GQYyr1mCoT38YELK9HTWbTwy9u1DvpWR51reDgMWbjDJx0TzxHTKCPI7Lsz+dJeXnM2UcfJZbSnEx9xTJg0G8QHGLvg0ASHxgRyk9UOF7/xbHgCsCspl+XI8fu9kXmUXq/4xH07IVv2DentC1E1gXMrJxf1viZA9LLapyrVlEBMpW8jcyBQ7u1h+vubjirhC1xwc7TuEhDQAjAMDR80QZCYYj2AhGgXbi0jbR5IxAuPK7lIdJkeavzJPAERljHeD1K4PT8shsc0q0U/9m9tGnEwkTdDfsJ3Rdh0eYhMQ+MydM+MMR29WkfndtfFx7OH71FTOkaDYKaLHpdFD5vbON/lYuewHlsfuY9FOHBANViT7chiE9BwxbV20+Mt+v5+eNv7vJ5lNH1/gSyLksULn9p9m67zTQ38bF8n+eV4U3IhrEjGkZdbiVr/fqaO7pK1CFrzhd3ujq6PR+PLi216RjeroQysBgL3TDccMIT/IvBu/X+LAJtbh6Xi7WJTINH6TZSyLbOh/Ggfqc/h9nXQT35gXfvw74o5c5ZDwV4HiU3/wSDJjf8BW0voPXPWFOy6cAAv+158ihUxO+6x8ZgeorX2ULzlfwpt7Csoe8zfGwB206+awS4fH1MXp8wHzZRsd8pMcw9H7JHLYq36d4KtyHN7k8WX6+cOjZOi1mXifqHT3MH8fy6d5xywGnoPzMe5J2DBUTPI4sB2zTUXEDgzGmic7TTI94BrSCgCIbjwB+RYa3PlIc8EnsoPZlHFeXCQNLqMADfDSl1htCCkyqkhZhOF6NqEirsOw/8E+EdtSmsDlDrV8QLwLcis+K9iiqz2u988vpfjdbGXMhKDNpCRKZ/aLFbejBcE26Dbsi8wrGRmflQHJSdn+QgEtyWYCCS0KpIOnpbEuMgLfNAYMi7THb2xjPml8TUQBNz31sfgPyKMJNydugH1iYL36G0FeRMQ0L8o4Ww6b0qznZuzT8R+xDSUnNTYHQeZhETk5Mt8W6Ujid1E9FMMRSaN/A0rUVN4/uKUF/a/fRLp8kUZ/TST5ck9i0rtNTotihrnvxoGPJ4CS5kls2fE6+GODcVnFDDnAd4mIHT7EwBf7kPjkcQ0bAPuf/UH9aepD4jNVgwiJrxyMi3bDyIlFIsfb+fipfRGB+az8cZpjEvZd/LHe4yaloM4aH3oXB7Z6xb+Nv6J8mJjmOt/E3eEmsyK7Ke+bEeyqL0HHFrDgB2M8QcZ+SyTMg8AdW6r9WHfmh+NPuCHKCXMTO8KxiuMa+XmfPe6DzuOMa8XvT6d5FTZIWvGnb7WlbY/cQdTd8F/vAgtX8I9mIIdNuQYjU53vFDLfFBQvTZzvwxfyjSS7DtMIL+mx5ROXX98x+5nLZTua69y+8u5Uil9jWJzsLV9dtzEuX9jZySsyTwYLvh/ns6LDfNqSMpsbmTZ6Z6R2zJiXLWA7vgs5t4c1Ca3P3Tdy4N/x9WJ5u0zn327H8SHgQclJgHd4myB9NHeVEy1MICBQ98lMHoSDHglbRQDY3LY7BazcJeEB1gXkMPa0fY9lSnw9Exm0SB4dRyn6HDK4lWeaz4W9ezLb3gVMycBlUPO9sdEXzLCKL0IZ5tP2AEv2kw/o4NMSXyo2t8n4n3ZqJxY6E7psNlcvQNaKOzsznzpKm+jh4+RLJqX6II7JU2Mrsz+QfC3tiGUlWroYfyLR1UsBvre43K+iq9z88tZGvsZ6XgiXTt8jmXZbDFdjFTLzpU28KYXGj7dFphtHBFtCIuvjBdydD926TCP1dLraxOrinxGOY4jDNn6zxERy3WULLfiEMoV43oCMB64E8U/IRBsUV0lCN4n47jLg5q2o6XzV68FZitvZbyefnKOHiODBHDNJQb+YZcqw059ygkPhTrTq+RMVM/l1YfZdCi5yFkEVDaM4ziVdag+rnomH00p1yErmXU+ef3wgam3vstm0t14bOA50XG/4oIyr0uYopJvHAX6Tj/UyPsN/lOZ9Qy74c+BGMrIJ9iINrsN0W2kWgUm7tqeF+SxkTGa5KptEBXXxbDxhQsAdPT6AeEfwNbvJAm5xS9J8Y/hSm8sBAZj18ClfQkkJBme622nQhxgCFfh8xqgXPigMscH9X4EGg+nMRr++OfRxZ2G/T9kF4UEBF43YvNsnjvkXJbnb8oSvX+1Mo/juCdSBhy9ZiMH2w34/J0/3XXPYbTx9oiMXre3QAmcO9b0PBdhHci38E7/X9qi84nNWg9rx7PzxatzucLmg6W989QZ1HQe4/jRmcAEbyHGt+sUiI9pcdln3Y8I2t5Otuy6L2PSEBsa5nnQPi9u4ZdxIa+eCyvz+2iWAgl5xsRI3skAJiWSbkrqzsJeG+tfy8fJpnphpmuUQRfkFpt0qAwNpJBS0XYX5Iim8UVJenNnxHdXwblXmkhvGNpdexlbmwqfp0K5/De7tRIvsbc/3Ln9N9IhOkXFVX9H5CG4S/AFthwWZt05+hSuL+o6lZj5bviolgO9kjB0VXZtW3KijgONvHJe/kLm/5XspU8d58fNDn02/KlqB7Q5AQATsb3l/BLNMFUlPRxq9ZlhplCXU7rQoSKv174/E3SrNDX56YifjwInnUo7i77yByP4fvz632l6+aeLmEyLxtYWXikm1G9xTnegOYSIBs7CNBBs6AAfVLNamj2ElkHx+HXxAem+p5Qu4AjT8D2SSirCdP7UOt5FzyFO2G69gN/1b4mLbomjX3tFvaOL8LdvZvlU26OutrbJ+unY8hv8V+2/8PNaL29jECFPJn0ZxGP9JvnzjQpcy7oYsiQjjl/IaaXRDRP0miUVlAHF/xdoULOwG37Vu9JxMqPF7CRCVB67ksh+ViE1C8UbcLzaMU5Dx/tFgp/dA0GhRtuHTYZuhdo8JbeKa9HyDOz8UCd8+b/x4OLROrk9afj3843uUZvGTjvVUhbrkp8SYRE3k6487Cqjj3tjOp+b4iu9iZDbt5xYBtrysxb852CcZAZSDbsMn7UWnSV/eu0DH1ckx2rqXnU163K7wnbpt/GI6q/7ewbLMoQ+A5YDnBb7vEuiMC3QxEbnbelEMRTZ1Kql7lJhsXQ/L0LQXPgvdaLMNpdC2+SeB8uKQWZcgDMRjEbCAxXoX23C+KtOd7XHzpisRlbDOMhtdm4w1nbIyfrjdpCeEs4OtX+J653zgEIj2fZR0yYNu3IMVETxOf8BDIjPdin8TpxHsYbnU4cEf9OeEg+/ol/8eeoyX1EGl/m6Ipx7xEjvHCK7z3Ad/mi6EjPwXBnE311f+Z+FHeAtWnqNa6UGFd3Mkeyj9I74s87Kx0mVx2A6N2zbMc5yj9p3d7WRscFEmjiGlP0imsf+Vz717wpzCKRNhH3qz+4EX6YnvLhbfxCIuHGvx790WfRV5vKhVSoBS9aTxNSLc2a82v0PAOa/Kyb1k69VlaALPPsJIxoxd1BUyZiFPFcFDk1g37ZYL/8P5QxsjNFCSi2TbZ7RPVn49/ON7lMUTqZLDcrIlsrWQtG0lYOdswbcr0nxd8rkaPPB3R0XfycTOoPiGkoH1uGvnChFvB7sKijvHDTKmILKQscWVBvdBgsfBsyW4oRP++ufwKD8H3S6J6hKqLumwfdsjcXdG0ASpYMHEd/a8ous/0zx5sH0EydyBdkmzN3zkxeYRyLX7VkLoqp84y2QOxNo+uBeT9MSJkTlRW4g4CxjaUKb7PE9AeAH3oYL+eOMXi/81iRc1rgRodmodM4CP39hr5kJ7YmAnFFdthds7uS3fbgw3xRKfZzgZl2V+gX3nf6fZvI7LlxcxAnPdNAZPZN6Js/Jt5FODzw4W2lsz2tFiOTon0fjfJayQD1nx5bKQcdv/Tv672MW4LINs2pGllSuV1l2CI828aJlJtfVdbJYujpGMhY7OJ1Um43RGwN1NsnYyTAZliIANi6+E+7PkUd+x/PqO2Xcu8x2zYXSeFJTjQMnLJK+9g83tUXQ2zQCRZ11diA3gBrfMWM8LVNKTas68YjI0k6q8f9d2Pyc55QV9CoClvislm1jLWPCGaI+mSzOcd3y7tnaf9CIZKP3oYJFYJ5P/3AUSrbDb4/L5Nw8Se1HUNQcFA9CmfVmaAJOOej7XsCVBQ5+uUp8KgIyXKY+QwCcJqIz3qSqt6F9DN2BdOEc4NQHvZCw6H8CqKvYOL2DPTsw6DXbanYi31VXSE7VLDviodrJdMnhF33XBzp00890Cr8eTNu+D+QdELyQ9L8MaB+0PdvptCzOy+ZlUTT94dWF2dG7Z1OhT9N9hux0CeGHunbr4uBzJZmH8XLDGlxe6zrMZmzg4pfMZaKtsaw1sujZsO54Io8wrv08+ovv0SXSfQ2U35o1P9fFLYDu/qYTrcq705XOd/ZLLnC4QwOL9ri5GKPnUtOXbaSH5jT8WxJVcT/7Ifze4IV7yXbl/Jfxg/+DpcGtzXDYyM+7ST7LMAv1d2H4SiTqkXCGZbDqzm5iR37sKIjp0hLue3LAa3DTlUMZkNw6rRGt8ooT3WCa+g7hfO2f//J2yZI/kFwWq6RRIw8+VcEzUGRIFfK+MGPEun7Zcx/x/S3D6POXTbGWMfID3EPr+WoFJI+50eHIBrUPm9kWHhWqgBF/JXp3ECJElHyfKL5XbYiujct2DAAd9CnSIW7Yusg1Ce9rKWNqkX7yI9L66yLwEqdeT7jKj0tYPZ3Iiy3LXn4fzNRydNLq4efmaD8BIhS9wMH5Bxkd0V/rYBWNG6GDRjjZibIuRnllmtA1qMzeUGY3LvZciP8usDayIpFUdLoZYxkgI5mBbyT4a2l5wAeg+I3UAQEXIRzRGBjKHbsz5ZFxlXEBV7DBIcLnP2XF+efzl0vo21KWQ3OiPrcKWusyYQb48ffrjnMMyYwZ3n/yzSPHdXg/cpn9Bzv/TwCYYaF75RUYo5ky4rd/f4cKP1rc9jCFbn9rgljiXGidSuQHFlRsHdRd/sHHpY5gX87k7sINxdrRWOAtY3LK2P8n220rqHummbKPz/9i9He3kLU3gulvdpBs3ddu2DjgzyR9pZMPYxRvuBMWbTo7dWKs7FTWxA1bWBv6x7W8EqMo38mrqXyigkmLUX8vPXz7lVkYR9lXZIixwu1nR0HKjewyLfCbuA194+RwP1F3jA75dfck3ujX7hy+Jbn1xJEEPYCXDPlRnprsJlru4wW23rMnR7w6HKIRYJiXYF3ATDv29e8/CGJdhILhxsFs9UBYbeWnXj0WyYcxTGj7ehP3ruscyevxoDNDgb4IFOln4q9BBx+kds3SHctBdLVTzhmcRfCm6K+WI5RLhBD5EjR0ai6VGDpOaUPFG7Lw9Jhu3GQ0GvZyXMMfToZJUQ1BObMrh5E+KyTUmuU9xh1eD/JQSHap64zSGlb81/OUv76c5aJKYBjPmO2iXfaCc/CjAcv+kKhBhoc9KYq1sdJqRxyabekS2FTXETVuYAJjrYrKlWw7cAb/RHcYz4yp2praHPjSLEr6GOleOywd/dBczuLslcSffnfwiEHDZ2R8WH2uzf+07P7uY0fluAb12pmbkf0lmrL8Ub0g3XHafMCi2Dbxx7Lv2MH33qS/hHskGL9cH/pjfbdv06EgQTbxZ+PYL9yZmREcHbGl2DJr7dEfbPYTT8/d3BXDZnQmPjUij1M9XVv7u9638Hm9l7KKV40rg+iKlrRPqlMU90OAbUeKqXaBuoDmpiK/IiybH021dw/5NGUEXnYw68bMTVcBlGQEWgwry2c05gK1817iFbkefgtWWLsuxo4P8AKHc6N/AFnhIpBKu4+Gg+e8VvyZ4Iq4yLsvpJyC6jdmsI98IUi6/SD3Za5MUrLboqErdyoi4jcyKpzYu+GHgjXhD7XV74pyDME2veUUH4oRNypgrhyRclyeeHkGw4wM9DLNq7kvClUvoE2D8I8jH6GD0D2RUGXfcLevIcRVmeqN3vSI6fBjdQlfquNH3i3jZCXfOwzTk8O2OR35C+EJxe0zbE0VgkBu/OGBN4SPTQAsdgyEtdG5py5+Nf+gYRHAL+9BG0mXyqZrHN+FG/1CXk1fAis4kN/qSQKGj82euT1vICCHYY7+/G9HO1Nv56NefxgyrqFPnJCPystTLdQeexgyZtHnB0PWvPEHEEwLZxyM8+lCn536hixmgy3JyK8Em3ijX8HGrrYxc5y2hZqAbxsW+DplwzLI/Jthz+N9z4np7WoSifwZdqcr1EWbi0+LqxI1pfzquxXorFlJgXEmv2vVvzsF8g0Kz75bpf3vdNDHDf58Gft/BYO7T9v4cT31gL9hrt5VvsUZcf69Ns27CCI77d/B+yWLy61bG71LutjKKiBxjxphck4e2rUxaMr/gNxyLHXA88ViweVzmIKEHXCNa87aWiwxB1uUa5UokNPPBwECBwBIfKTImXwYVE5HyhdzEl56aQUULbm5fHvjT8MXEguMXtnXtQu0leir93NG6w4Vyi7sqvpug6+8mOUntHa8OtsNd8OGk/BQKTitcSVMwxnd5B5f5Yn+Q7woXxwS2+Jj7/R0fqHP/dAFbtz2K4LdgzCS9p3HHJ90xUavzguUAPmbwbhae1OVMUly14BMB2GVwwQK2mRTobCLZyU7PRr2MV9SnQ4pt4/50pp3IzwouWvz9wSsxOjJM8Yt5UeZwqOhIigDXkxDJ3Y9raDuMi34/O+DIUypuo8sLFQSg+ML+2cULPjhGSrBUTzvnNG/7vGRc4yZT8nqyS/q98cffK2Ykxuan041rJ4Fy3ELhdN7jSACdX2bf1si5i03pJLsT2rt5w/6ZfHkZ/6VA1ZejDHf5Kk+PLR8p6kq+u/hjA/kAwIZsSTf8F2ktdGMrXO1xU+yRy4caXDvP6tuVaWH/0M8TbMSf4VPLvFjZkcEcVL2+xI1+V6WypAABAABJREFUnwbhxEgwfKriXc3Wb1qWUWTGuEEIDujv7fezld8HGR+UT/PEjMtlL5rr5Tdbtazr6E42sD1fXbdtaBV/eitj09RM4KCdgoymtiRjVwz+lIgLiF1wWiQfu/60ctwEiw7WqN7SaaP9E4GkSeCa35A87fwAH4jiuV4rE9Vx33sfBde4y8ObuC4URJDnoJvGfDVeo+1Y4XaF5sndEOKFgybWio+KLLaVAR0igqCFTxr/fGfjAl1IoiZHmki+9ayBxYSYx0NE+F2v3bsjJWllZ6SWEvD8dDIjVFFfmbxYbN6pRdHa9yL8twsoY03b+PHQl/IatOg0rtFcLD511UcFWMZtUK62TQxheaCBfQyu6btyjKzLEnHwzw8Tl2T7Lhv7wiYB7krZsga47bbADhf0HHOC/RkvQMgGuoNTt2Uh811B/5vk6OySWdKcV5kx424nWfIVaCe6ER/8jOPfxgz2UVhnPqt8yPiC9PrJbjPFxJBXqowi2eaWh141PA8aLxV3tLKNiSmOWQeL33tyPlNp6HLLjgQ7mnk2cY9w4C6zRseV+MyczfuUZZh9iC+3ya/ld1s+zTtm5eRBv+7/Oahtl9Rwm1YQNjXDRoH3SZRh+V2THO1tdIRyjyYpX3vZlYxLFOajIvMRNBBjvRLuisfKEYmsk5HimLpyE2i2fDjJ2tFZtD9ivwN6EihX9buDRHawC9xWnIe4QWBHMLY3NCQ+6LtjXjywgxfM5QGt58fwsxCtHDxhI/jRh5FFst36X/YJDr+bj3yV3y1ISVOJ6sCH+UKQH9fi6aOI3K4ONiV2HKAu+HeZ19eP67+aaTkg32Fww1r448SoM8LGp+Y+SIvLTzjSGMj0zbv3FVNhPS/Qppt33V6ClNN5V7hNjFzVy8VX5+8LuPH+4NBr2jonaAMLhiu+S+GgfEvMWNXPfLmY3d28+si8e4WmyV5+vsZ/2Q/yt9jmeuE6fOeQyn/Bu9uu/bSsxoxdQmx5TPapBEDy4SXsP+ReyQZvy3jPbRhDoGxzBm35ttS7CcG4mqvO4qN+/3dVft3K+J2LdsYiclkR3+ryppJcQQBPwQn4rAQwyTfBa/QtfGpVA1dv+U7YpYx3UQByEK+0CeMG91EbTdYl7syDetiH/Xkk4x3ug/JYzzsaTx3VInF/XDYBC2MiX/QAiJeLzJuoxe+jFVWtkuqOLMsMtmL0sV82g3QN+WjtT1JzcSc6+GpVBgu8sMdWXSa0xdkmn1HXlP0SFQXidFx+VpyRogyUKOJbtqdYtnxKm05ijORXAzafagtyfMt84QvLJAH6aYDb2UhJRBx3AuNa8mLHyshOyhxJcDs8+djwvw7T+P0mnF2yzv5tQw1f47Fk3WAsWsAyfRfHryfxTMpiqBQVOq67lzkleKv+LeplN2oni2UezS6uzGPFstOX5Z9L2Bte6HKwL22/KEbcTruVX2fd3cj7zWF4I3N6/fOg2KQNbmcrInN8Zda56KrS4aLtLh+teuyw1JhusnAMpPmZ1K6SOqjoqMF+L188vpWZ5G4msv/F/bTlOEWIGUzHnR3qOflA+dTlW7bZf6byad4x8+KJgXHdJD8JpkRoAF9/wqBnHU/V6sYu5wDzfZDyTpnQ4sc0v/cwDHnyRSZSDdtlJMHYKVkAET3x/oKMEFQDr1fV+olXB0t8O5FYufx+RNG9LWBF0qP9XVsIskg8Wj5w3V7ATeUVJ8U0vqMD2YmhfMeyi7orYkbNRryw0rwrsNtWxOO5XVztxoT5SCPjJtlJmZsR51vcnczT2LukSItu5iQzZcVnYPKYxHn+Pofvwrw6UWoeA5XTub5jCTdkfnpZl0mLXO/HgtNJYroHttn1QcuGHudieOD6Irl1qkg/EPKWyVSc77QbvAkYuLySQD8W/YVr/RBO+XLO1vsrY9hxAfTKJo4sEnuenxVlLW/jUxN9mlOcC6aFkFJ3EPXm6X+JqZs+8fzk99dXN41c50s3SuPaxkttYEXmAU9O85XEmHV1BwsytE/xHvItKcrKlpuY28YqFJPiDbrN29Uk1ld24zLtYmJ68Zgbh9AcM3YypaouQcv3PEXE2Jg5ZnQJW9DqAxmLx0P1mYuJ/GJPzFT1Py8i/wsR+bMi8m+KyH/LzP6dj9L7yJnH36/QVsb4zW0iOThTnUv5xlfy0HUjYvzuksOBO+frIsP2+biYlAustmD/Oj9RCvQPDlC9xSt63CTHtzJscL9LWRB8xOehMC/L/HN4K1v847YdLMPJps7zaMG3XcB3fBZdSjJ3AIv5XHA3vF4ZDuPKC8hxqt6u/xgzMTkk4KgjrVMq/Svq9HxIhuuwkcbjPO6jxkmfBv+w/uFCb+pv/eIrTnPFBvULiRfzKaRLhinJJxe/fydz4NL4Q/50190P2/fgk42SAHRtyhQ+t/6ojaE3c//R9HviYx7itHr9lnxu5Y9X8xhgQz8M2+FKg8t8z4mrG76FD+Axn7T4WdHZ0dv1i+nu+HZygm9K7YzX8fGq62o1Xqes+/P4n6W6UZ114+s78/90fbobg4bv03+2wv3MxUQuh/rBf99W/kkR+R+Y2X9ORP6qiPz3voXYp9nK6CWOy8e63wH1/672fdD2kAzrhe9wTNQUPE0mrTYj1bZqJEewQaPGhSNvZWRaG7YZVpPMe9imXZr6gDNue4rLfO05LNbjMjtrpTuTfOdR6W8HS3dC+eSo29LpAtsS8Yc0CdeEk/vmTuSCzxZXJb3zwP1AWM7r2sRusS1FqS4iOYFj3RBu6RP+bmCXW1wYVsAfOw/YyldlsvFTCx9TmPKebIOefevkxM20sj4123A6x5v7ZAnWYlJoxvU6HDedtnqp0nFyfnTy1MUJsPYurxcO7skmLmHmnWHwoZ4kxDZNcgy450eG/8aXWaAPsR2R5o+KpJPZ5kk21c8rXlA6Wp/8euB5f4X6B/4m+TKZ1xPfbt4Um3DY2fekZ7Qj/kt9DX7sbxbwLGP0gZ+ocx9AVekAy13MAHpdF1hOnEZIO8m8iiFYb+KHcjvL4D8t+8FOXqV66griNnzSkLBe+TMpCz6lvmt7hRbqUiV/yuMB366/TvY2vtBW2y4OqEgZ187uyhNf9L/0CY7ZBxWOIYZbqpwO8nVXoTp1hazxQJLiF6ZQ/P3O1NEEO2hhIEsxRO7H/t+/5e8Rkf/j+P0visi/ICJ/+aPEPs1WRjUROUTwuHzTEag9jqhIWnjttjIeYGAEm2zYAwpMhEiWsogDl2fqhI2dI93iqHPk0J+guuSLQETTpvzMtsPFebnbyhgJA+UXK/hOtCXfLVKua9O2e13nqYwdaKvnp8i78rtyaK/wuQugT3DRBrG5NcJZ0piukiD/SbS29kvz5u7GgAKcUb0mnuhDLNsgJRRpPjbJ89yybVvdmHClyWxDb51MK2WwnnaKczbonL7BoLsbV0DbDnI67idV6riIgN+HmIFsMMkBp6I0ZkjY/BtLncgm1/sxHZ+me5xQG3z2pcyDZh7RYW5EOOsj4aoUP4mvCrCdMS73vZmePV9pYFcy3sS5u1i1cTEVgAR8HCMZt6G1bd8UZZhWeR/EBRsvMbJb9Dzk+1JpZML6Jv14jU0XI1CGlUxY1SnTElfIdeHR+xsXOuuz8+lVF+Jz+QyNeyinWXW5HHsTLQW52KmsZMpkr+bvNUK/m/ILvmP2N0TkL4jI/05E/qKI/F3fQuzTnMooIiUXmJezxU8n2htNOaacYD2+F7yg2/Ppx9zpzo9XZ75QVvZtWeZWjk3xj0qLaH3i2Im64LOSrYV9Zb52fF+gEYlNw7/VzcqBdTBE925v7/advJXDnyaSjQ8CAQcGBdzle7vYz0U9PVyWB7jwu9N5+rjvaiJJ85k81g3zBBlRjy6vO1zm243XYmivru0CIeMubO6iNT85bELH4St8SFR6Pc0qH0ls6X3YYmoGfFd3QpNumNPAVvhA9mjF19hVszb4htSHTrREOdPjCqJtLiP5ikuwPnmNcYFPAATZ5j272JupNKZQIMrr4axGDPEEznFt6Cg97pHIjwxJAl0bRuk2ELL50zR47w+7H12HNnxqwNOSczH2AfzaCX/uDBPQzbTPMnr/LcuMPmnHNzFzPbr/syrEwXMMBE18qT/cJ/YxjYn2fmLho8IPG5Bhg8Sx4MHy9iYWtIMBcvs4FN2YVL9k8O87xfqtoTDZb+B7Gwc2RpuaCC5EWPhwfvpZWOAY+QmUIdD0EzOHI1rjx+Ef+wSiyTunlzGzAg7WjknshrgOh9Klno+UlLxiCL9QubG3m/LnVPWvQ/2PzeyPvaKqf01E/nyD95dE5B8Skf+pqv5lEflnReTHbxHk02xlnMflD48RLypPY3BT6k8DkPA2M+5DfbSXxZPkPOGSxWDyiORtKtn6cQthx6c48Im6kFFwvlL/qC0FfiWZn+F27QX1DnY3X3d8GWfTv7Yd5EvBs6PbXV9d2/VHCQxlIv/WnWaWgq6/3K1NnXG5D7AlLSUpVO/OVyjbbrC+OsHREwsP+hyFKMFKW0savmVrLxTDH5TQcCLHfESyjGFHzjcxmLQi38f+EW46Shnm2nXABp5+qIGT/qKcmkHnlhYIhAQ7SQy+1iiH7RZkSDdtOFMk3ZhOvySq1xYc4PPhO5NseyLTSH13BEz+8M0H1JGOTFjGvfrhBHTY3ZwYcUKnX4oEZNyp9hfAcNyT7CjTjAcKcpTDopzu+D0PDgE5RcHOsvHi09c0BQctPrTCXF6RFG9Swoh/oWvazWGgt/SrKCOYsgj4jYYv8i48pgoyK5QJFUL+qU3Md/GG+7bAjS4ArfRuF/bXyF/JvM6Lu9QHy7DclnTCvk2vvp946q2CjIDn/TZsX8UMlBH4hhp2uAcA8nH51IdWH9ykxJdE28Yq/+1y+EmRxT9D/yxQa3zhvrjvCOT5F6vXgYtg4DoYnSKqJnYqzFvNcnBQVNYN3cATibqqzrgmkheISYGojM9aVL7x8I9/28z+aNVoZn/vDf7fJyKiqn+PiPyXv0WQz7WVUSVtZRQRkeMgY9XZTEEojjn12MNbGd2RohN1+APpwQTxGbDYQqki+S78kBGdk0gmnX6W7ZhEy6vuPDZ8ux2UK1zkw4elsFp1A1sQuJT+klz6EHahJpdxK8OT9oewr/CN7mHA7uAxiHO9ZCL3uM1OsZ8HVzJueTek688CFwsnGkawK52WrYoEK+YnFQIv7HsnU9c/q3OsbH+GTD66z3Ihq8QHaJFyytDg03EL5gCMPjFnNXwMksXHSKNHIOGdIT4sZsPf6tSlQpt4spCdQbybZSbyRpLRXmtLMSWPy1StlnFQiC88/5IGQmadajhcTsR9FgcMLl7hZn5a4ULtZQo6Cx9EoQo6Ods7XJVmdC33P5lWk4wuc7ibeMMXeG7wOGgCbOTFuS8kF8qAWbI0MZ1FXMmIKEoyNopleyh2Bv4K1dbtJi668SnGdgO44eaQFv1u+brp2+QVbAxgGVckPgSuIvm9TubNZaU7tkcmOfDwRh374pDDv60GtNt5hDJwzMCflvkigOMqt3kfXM+qV37qi6c2fmpStAJj1k3pA1y8YBX4fNDP//usqOp/1Mz+36p6iMg/KtcJjR8un2srIxSj9uI3VguaVb2NjhW28pkALd+GlNO438poAYy0O0e/Cr6TtMV/icMt7gSU9NSnpfUdStB5IlfD3MiZHQzW0V0Jz7C7ThIsbw8pxwx3NDv6iNcE0SUsMEJ9pN8sU4fPjnmBm5JokbJ1ajUmQQuYJJ+vkIA0+knXuyCHsnMTJVshl1XY5edrjGxOE9k2YTDNGjhgrmM+L9xvzeTSc3er7chfua0E8CyTUmaH+st0NN9JNZHyqZIXiqkfvmFDl/7dMBA82aS6GCnLCRzUC8sFT8tk2GuZK16F7ZVzfHSON+jTdRGXbPYhLTRdZiiJFnWbB1k1L82DT1PKcfBKfNRoEQXxlece1k+ErKVMW54PoM8yd1lmbkZc8De8YFjODWiO81x6MbPMhLyD7bbRoY2hbywy029FXLfZRthyKJPrhtxFkpH6riJpkRUyKskIcSCmm00YmMoFtuBynGOBurrHHfSVm5gRIIiDMlaUgo8yYL1sJSVazpff2XvCtxeiIir1iePJ9UQNDziaxNQJAOHyHbYEO7fOt7nHZyuPFfzdy39DVf/h8ft/KyL/y28h9gm3MopkO5lex4xmiQgDhzMzusQgPH7p0TZhZdiS7aTfc0tL5uPOLFDBuTj6ni8RVb6kBfQOl9uKbhoZHxfm5871G0vRI1wvvB8TfAGW+D6Cf9K++k3XTKR+v+cVPk/gH+KiCEUl7SSDvyR/l3ws5fmAHYXddHLJ5ro389xlWdzGpQ7NcjHc9YPn9sP+Muxraromp2En+XY3Mflo/Lu+Q+Z03VFD9ofXoS8ohIkICmZlbJot69bow4B2SW4kK5F/I0uIGc7HnKYNbc1OS1osLplUXhdDk3T3rBE5UVqQxCi1mxZxcficR3bF/NB3bWLzjn2YHl7g+bb4PlWCWTHsfBXDPpxQ/PRp+TSq47PATXGPcVkv1K6aVVO6xjKezRRY+H2sw/SrcjqME1S5nlLhVsY7PMmwu5ihBOsXV/PC53HkoCzDSkaaOIUvB0lb19P4vI8LePAPn6rJfFg3XeIrIvmOqpLgNxPoo47/d1FMvnUr48dZm/0VEfkr34vep1mY6WrGRLUqvJrRuBLB0eYeWucjG9sCG82HaGROuTZnO75X1s3BjtcaYFNArGvLZpXqCS6DF92sEsdV2w5XK/1npxjl30iDg8tHEtrCh3F2dLox3DmuFa3uuvXNCheX3Vvg7kRYkdniNlP1KaNyNDDpbUeLcW3XX7CbAtBlshgoqW4ycY3bVaTcN/I6Rv1os2zIjaKn28uKVHrckvkq4RIfLOhbw3G5E9SK6/3oaD0sl0g2eXP/TMa2QJOyAFnNrbS3Kl8SGv/wDY1xL6dva8sYLCDexPULKdlD9A9jiYYfD2NGQ+sUjbqxHkrxB3Wq3WzyxFGsfM7Gdzm/7ulGG4pgzGgIM6yPIYvC8/WOT9e2Kkv7u6cVMjCsynrh5rCk9+4dtZ1ccTrnAbKsxhKVznx3sAMgxgYR0Ef6dZfpo6WbrBt6PPbFZNnQVrQezCfmizRXbgRhk9rcHx4G3ytpZCA+bEe2BBZJN440Hz4lInl3xLeM2e+i7PKv36Pyad4x84J761PdpDm+mCNMX7/i2N6i8msK812LyicBQnIhZTFQXsZWKYa94oOqCVtbePt4l8ImPC94yil4G3UUf0qwlhrzb3fM6IA72qXSJMZMO6Fthp7fBdo6kya4rAUGHMR9Uoz+Nu27WFDoUP0p7isL1rttkOXUsx0xBkCdm5SnssVOKJlB3G3c2NnULoPi9rtg3CUJmGCWcd8Q6JIOhKQXXLKujGw680kb4+gQCDzZ604tHysWi0ojB6W+KIn9dypp8epCGPwIRwD9CKWPZ1jQx/CpKiJmossXDmX6TDTwwneKlRSJel/54Z6UiPXfWJs/iA+/7LSYhBHXXI4qWp6eLqeJ+Ikj+RmkVlxOwAGAb2IsC+uG5Vr87sqdPyoxA5tpDvI47ebAMrwatfHcxbln8O8GPn7vJmnTph0s81zQjioeQoW/kZYCLCgg/CLC7/wvtt3tGmF5d7gDnt1NK8Orer6LN4zr7kbHbA070CZPoeDLOQbqnd/3SHrFCdsJ+HGP/7svD5ObT14+zTtmbHdxPWD7elf4+y0Y0PyuZjdX5iEZsO+25E9zljvFNghTvckb2vmA9eV06Ca4+Z0O9kIEpmvV8fy+dSQNgY88SX7E5kVZPuxKXu3zBxlHUHoRN23JQgf8hC877qe4u/YHSd4jmhis73AXfL5l6NrxYN2sEoodXZP89AboJObMV4YXuptQq0QcDpBY8nH81p9whbYvfqf41+oS9bVZeEzc4omTkCZyDcSxdqoXGfadPd10Ncma2A7Y5jjqdISfpFPwdvZcTkXclN5Ga1y7j6c2RcaCqvzgREwyWh3ubaCi321/u/n7UX+1mmfS6IblpPy5lRvhV7gdXAPLcqvIPM3zLua8QruTd1XHprv4s6L7Udnh9zLccSz9YN+4Xeul2+Jj7YfkqMkLh6QMK4uOgp9ayHhD6dfyC5TPt5URjssXgfr4WW8ZYRSEwOpGqTmhKN/fATa+39lQjq6EjFkM43Zm0wVvuIbHNfd8B2yL22QFHe6q3mG2fAh3RxednTTXwIe8LPMr0XXX1l1/6pHuEuxdaRzlim05aA+CjIikI+458rRTZlV/EiRBkPQCOuDG0KIcvDAhvkyrBG+EHUGKYVmOdM1h6dhzPTNc6r5mWCG+8k79Y7ooI94tJvfg37IK3HcbuNrrgpPPlu/AZYPCI96KYTW0HccIF/r+uHjCo3Idj3mMTwzEggkGD95pSs4iCI0nS0fTBBeCbJecwLU5lzCx0Tzezjd1CPgk23IZdYrvJ/+yX2S5TnLzrnad7VMtNgWEsUu+AewOCx+tj/jxbpxVU7na0Xa0xjx+eoKCsc5R/CY+tDHFBg8DXfFcYX/1gt8oAlKbgpkU+EUc4NMKW9qL94i6d6zClyxkFJHxMXOZx8Cv5Ov6R3yWhfuzJhuDFVsrMbcAfxz1Tcx4HG916jzcWKcrHE/0hxTHeLtsawPOF97XYyWVk6bBvYZOHPnoaEyEGddGJ06A0TGXNzJineVYPqT4jOWVHOwTl8+1lVEFti5ebbutjLuti1cQnHXcOpPmtztYnW189PVq5vFxzHi8KRDLqGTjZStjqkN/M+uMS03tYR0k42qSFVrENzmNBj/hbviwM2/nE+vuaRtc6vR2Wz7qgF4JFlg2ge1l2A8G0FtcBm0NZV3KlpWOr9vVKct7E5wo7N5T5Fw/FkRdUMZ2lusBn2Wi5birtg43+SrLfmCXBBWfaEXlSY60dZozM4AeTINW519eKd4H95fokIj2fIoFcaD4xd7vi9l1LD/KHYcNXIZQ9bPgg3WTudXI2+BzK21sgn7jwSSB6/bcnICIY1ZwYZzKuKD/HTJV3Nz/zHTQPa9dJolUAs6389NUb/wE35TgmLHdwk/zl+dOwUWhdrBsdxvUylikGNIKh+cvLbhwrBXbRfLhJ9620YWoiI6j6csiYOWDpfJd+uumFJlBsPCx3niK2NtDPl3bqu9cbMqhQt90I/pG41A+BXEXIynOpRSo+DZJuul8uxrd4yiOHPBWsiV/ZEXGAks/F0ctfM7ykfzrE5ZPs5VRRCBQ5zYjbz6T7d5SOmePGR1uZWT2yeCZjwllmJluOQnMK32MXi4euC6DbfjwNkm6frCuCl/UTaO+8vL0glSbmO9k9matsI/m0s4pLE7jcnb57vuGzmNhepnCEsDBLlmNYUpOdejGfxYaEDwSrgANgQuUTGYhK2ypb5INlvmWbyNCwoXfxW42toYkGKxzEcb9AjqtjE7L7Welixs5ytMJktHb+Y6syjyuuGzD1rzVMV7PCj4a33Tw79pMGf29rsqnL1PT+tLJOlT4MYWJqFnWHWTM19H6Fm34Xpw5Pa+r5jvsSvxUxPwdrtNK1pVMWfNVVU22gzKLgs0mvj6Y2ciCj8sdPsCXqK0lx1zIMpIxdVtfm7mSdCNuOw3ueT3V5O24edGanYCWXSrNfM6St3W/iYJxL5Jsy0Q7n8I+qD2qHXyo069zcD1/u3Lnn9OwGcUMq+3xl/2tTR1lAapMyrANreLLH8SMFCp2McNgfLyZ9Uxmf+dmykLmLq6hHIUYtNPY7GQq713zjxIImjaUqYEv9u51GoMurpU+ru7GlIGcfsh9lSm/Z/rJiknv/34Py6fZyjiPKrUwngi8EJjCG3XG50/ZHE2gPtrL4klKjLqOjU5GTNkbGqxnCMQn18nZo3MyrDNf7t8Fy4H9+qmPcVPHob56zy/zaXClqRNsx/cmvrUy3jqfjk+xkyxDYqF7sokMw2LgXclEfxlfHd8yWgkWGDSM+oFOnB36gu9WTqw2QaXDLVufoA/too3oLGE1y4HzKhKolYxKulXg61Mc+HJ/+f2XhDvdVo+76u+KL7oefyI0MpkJqxWW/54olIGM2mwXBb/KA4a+ZXPj57b4gRtOX3Vck6EnFTst2sI3x5MwA183aI4YMYe+1v3Z2NyeZ2luxKKW+UZGC3rxwv4YhXICmnVqhJtkinmn+d0r3xYZMgLf4YSmjytCJXESLslWs0yalL7t1+GTeSCt6ZySzA7bxJ2k0xAYuqDS+kD0maZrGYXqyaf6nPOtjuzTSJfdYaFlgUH+OQDRV6MOqZ5iBF7jJ6pn7qCiwkTEfAvcuwBjSbrDOvJen/6YHUfMJayDDOyQ7SA/x3xkU0+cc/vOK3WuDtv8WpgQ+tA7mVYydLjYtrmh7EbtuuI29t0c10r+0ArY851bF4dNQcz47KU84fw9LZ9mK+PcUqi5Dbb3XUWnw15sZRQT0UNoS6F28WrOP5VsveBTjPnTL7wTdwUe5EtYizrK6N0vk4j4rNrvcGWBq0KTWMB5IhlyaqsSwbKTo+PTEfCfzHPnI9gsmM/P5V+I0ZINxytCvVPq7XHJTPc7Oas09kZkO5tbFY7bHSrzQduHOtt6u2Wy0bfjdgu/qJfsC/hKg7uCNSn0eGdJmdtIK9FWknEC7F6LvfxYnkSqlmQMvWKmEjKuIv2LxQazY9D3RVU45ggEAKvRZiaibyjXiBmOe2iKAzb6oSJpYXLt74KvP2JC6+N1zHraSq8w/hBA4l2w4KMlfqSY4T4Xx+WEieUJcjI61KPEN8OVZRx8+WbCKg6s/H5sn0N/tpuTzndHWJfVGm/0eQzZzX0+OIWfnHM8Zd+28zm7ovTOWOuPYby7BR7C6OK3iFFcuDrlWxnlLcDyX5ahk6ODB+B8Ew7l6JmoqZw6dhV3uciaVamyea/gffzCFVObQTv731du1m4F7GRb6NV5qox7a7vc4i7ObdqwKWijnQt0fm8Iv5bvWD7XVkYoVmqa215YvcdphQ+ml/HvF2dkwt8ElO/J1+K/+hrujUp2U/B7Ts9XaUWS9YHCvmW1NaHokZ3hBrcUm3+cf/K1TV8ewzZBGnFXSRE+sXHY7bcm2dkrycS6WtUXMi1jeQjUoFs+Bbgj0T2pRrJPzag7WC/hdhkC6xiuIW55Eke4jxdCN3t/or+GV6YM84m9FMVcT+eu/12YH0pVJLZUuiC4Xy2eDNr6PS3crzkWAJhUYVv5RApsi5TT5KCjzhTs0HCxpyCLGulQxhrPXKD8GYlk93xxoHi2eFp9WkMDwdvwE0kyMpX8VDQloOFEIWY04iGuk+4S1SST8KZYiN1kW7z9luvLuWzX7928ShJobuPTw6kDqfCsYp/T6aLEmU447MMKltqj/+NJWdmeCB3KqiYnSnxY5qlXo6AI5EA2ValPgM4MO3fkDETTzJfiQrgAYI+waXsm8W1xUd8LA8ZFZizAV7aBfGHuoIzl/S+AZxkTPYzT2swLiKnphpDjAk22V5zvsT248/kN/DftlvhdlJUD+D0rn2Yr4zREy4OPe/VL5giIDjueOnmQ9ncU4h0OafOOlKhaymAzi56vT8gJ7I5gu02DJqNVZiRkFgs7c/edts7xsTNY6Sbz2dBc8I2Ayo73AW7yDjv4xkl+JHe0ZeUDZNnRMb0msQhYJmUwXN3JXTBwHNg7mTq+5S5i5+Q8oHT21PBp610iAVPbbdvjAC6CWt03CQNWC9zOhiGBSHJ90NaTrhp7KgGRdUGJRHoPBjp88dHkItMTIql6bfmSvllgfP/r5WIulMxOtUY2+qQi8/tmIv6GneFABM3rqdspMuMALpZEYFEGcwn9/qB1bXcfi4uxXTRiiKnnlNVfp3hDMqK+B9PYVj/ek9PcnOZCihHD33NSWt4/C13PmIRxh2NG5/vMrtcU/VASfv/qtoAhOi7H4lKSfQOs88WT+4xoNL5gxSc9+aJklrtQ+ySNgAt4nmeg2/RON9Y7/20iZjYXF74QIjouXoikInJO+03yhq3lgbk+8wDxBvVi2X+4LClm4Lg4nNvn2/he8uhLzKlO70gPZOZtrUb6Krijw/2ckvjWlw5bFyUauoiJLDONF5tXiU2NvkxE9F2ubYxjIO1dBA0LcZexGGRnvoa4wJ91g/Q/4vJ/5+XXd8y+Q0nLfrmMX+GOoJnIMdb74Kkb33ldOCYtFRE7tMCmhAVwr62PA6YYIiNQ0PV93DDxi4zRv3Hdu6OL+dNFE54sR6a1w013DAduockyN7DoPG4TVcRp+tLyI5hl2QzJLe4GLvVPaiKiHfCrPBtwvhtcumcZhwP6KpCLwEF0wPepk22TEqK/w0WxWA4EVLjbmuzF+01jjbacnnSwzM1cR999KAV1iKTdWOOTCQXYkuio5OSSgx1eFyl39Pl1rpRjc1IE70BddZuwR4MLfFN/wQjrYSEyF2Ufjn023icbSyyXR3UYB3Tq0OsD0GKixzGSVpuwXtwRDnSVCxfWZGVxGxmiiejpCzDXjxvE8OWnhY7VrmQp4I/5YrwOmYeiknjl3V2b9GTQnlmwjRsvI6L4jcY03qNTblOnJnvD5ArfJbxi4lomfEgoCvobf+PJXjP+2afkBDjZLHYVup/kgPHFqSUA7+N3nDT3m7mu3D/ka4Tb+RugP4ElE/PrPK/IL0dfDPrkPC3HABGRwyz5p8MkJ9Vnxnc4lXGjApxuesrdyQ4XDxwj06RnxuX4qCAj0oqxt2t7nr45AuBKVlmKGRTEWr6lT7N9Pu0HPk7nUDnBvg1tEAwwXEQWZakbIbjSP5YZY8Qpco4tqKpXfakbxB1MljJmNllGmJ/Y59DVunuforx00+gTl8/zxAzKNISNGbAX3oBe9DawxQA113crgFu+VCwbOvNhf74lTjzucJcOZNEla9paWt9QXqLzxLMw3B3somAO96hskhYOEF1QZLTldpkFbspHjPg0DnWpEkg6yvSjhKoQwYRFMwj/TTj4l0h1SOUu+YY+5RtZF5GwNHx5LCnJE0omWQ5E754ydP0rfeBkDgJuh2sJcOD6e1Qb3OhfIqgJRFuBPlhM5FqcwaWw1X4C6fD3Zk0nBrKOjjYPzCaPUMY5nqDpHFMXbSgzTnlM9Wl8xUTQt8ckujhEm2d2WNAJvvslFyjOzwwCHPpCFrRRvA7k/UJaHIEttzHinPab5gYgOX/WDdLiMUltXleqS+6PFzUr48fba7ffnNJcZ511MaQcFtIVF9z/Sf6rImXxlaQO322xEI7++T/HNaRlRPfq3fVkirjwYx/Lv5NOHsSuiBXjDqEazikYI3zCF5MB6LwSM1x3wJfnMvfvgLFJvnw4v8N8+mn2181gJx/dxNfSL6uwRc9o++P3Ydfx/nbMtug30ChzNnQsRa8s3/R5JCPVH+0a+bV8l/Jp3jFbnggYsPMn+5kWVqk+LIwDRqrbhG0/qkfRJ1NsZGr8Dj+tswS74ytpkiXcllbGfaRXD54r2B0tnrQPJvGSzxP6z9k8BPpg2XXCiP1ywMC0Fri8971seYHfyCu9QP6k8OTYlY0ML/HkSclj1SRJiLaFZXp3Y9LJhXRswXdhX+Qy1kBMix2UzPm5xe2KyrVA67J5LMe8/PPdeYRBbvqdfKpJ7IK4/LPBDgpQjRZPPOgBrsgccJPxpEGzzbEdjuwm9F7a6drSP/HAYf/gko0q0i/+GXBhHlS+/jmExmiQr+N3fn3IFAsDhEfZ2EaT3HNsVvHjURzzui/Mx2KRD57ogm4bmtjX2IYvlzsf00uzliP5aMt18OP4gejp1+FzBiRb6Pz0mGG3yud5n7bNd7DOpIk3afHvftdzM5T31ZjBumLcTk5ceAj1c0wTGTo2TtLufG4/AetvW8CijANEVeZizKZ8iWYjl0nub7L1FW9oSzGR5ojB709ZNvr9fSuf5okZ3pm8nqeus5E5r9kRj0Dq9GTWEZdpBSlITNqARsGGquAv7vm2Qe2W74BTmECb4Lzi09alSfoY1vvYOYVVnYNjh7sqO9jRxmPwzeVbaCxw28VDs1goIEb9W/1lQ4MjlX0R96hbKoLnIdwdC824+O5HSWAf8A0UzbaYDjbQ6Ss8AUwvRWuWMSfq9SeLmPo75IiA9A5yaf4tJvMGcCcj65UTqJUQSpc2usEnEgnBRPzkQgXGKdCqiMbTmkAjOTbJypNiIvIO55mr/1URPUbf3P+Nr8CeIua3uumRS0q4dHhk8PsiUm6ESZoLJvIOGYlKHsQjWM2FzKkT9gQ+MurxQeurbarb5e/qFvPYROR4x7kwJ2FsCUTjGnVVvRI5fz9m91QOdCaDXJt0ebJq43t5fuCEq4lv26NtxsEPHgc3DrrzhSgj/vXuDyC32cApKwt82ihpTi5lWSS9XfxMcY3aEgmbcL6YjPeHoE1g8RV445/B7wvP5IitjDY/FeCoaiJvIvqmou/YgctZsXxJDcA/xSIDYDeaFG+ukyCD9oBnXsfb6G7y7eTMtwXmktFc47/uu8nnJj93yKUrGX4QX/XguEZibOMc28WD9pjn75dMLlfK95KPT1Nwyqxzri4XZ9y/AaMN+N0xBr98UUlPYX+Py+d5x2wUjYBqM2iLLBwjB5+rHgEb6viiczc/MpvpVUtg72YmBLjLNpDvgo87b6ir7vhK4bNUTYOLsKkbBFtQvQ/sNKTXYykUu1e5XaFFwXili7atK8nDPIB/UnbfIYF8r+VP9ZRTeELU4Q50BbjE58y4eXHn0R3nAmQQIxdOCRCO105v7NxRN3eGgvI24OkazylyIUVEyke4tLZObSpZbSl/aMaS5wwnbzu9Yt7TytHIb/jjRueYImmbqSzqO1t/pSwO+0i3sXgBY3gNlQqv9JuIuTGE//VBs8l6bIdUEZF3y4u70M44+iOOLJM4HCCSnTkLYaeBTlt2eeG6X/Y+o0wB8H7J7dRhIyNoaGRaAzfgzsRALALSfE+uHQYVWkBOv+Ci6bs1wz/0KpTkl/npO0EMjBXgOt+MppniwIyt8m7pgWM/OQzmRmPAHF8sX8604DfHNQYnX45kWt/d+HIlX36YwBO2a1HGT6hmHLB4B/IUg09OjPHiDlr+rfQ72Ufq2zyMxETkOE/xj95f9Zpq+IPqM9mdzLESQmhlzEbTPdlz2maWF4tA+DrcxkL97yqX/JZpYSdS/GG/uInb2GYidaEIPGMHmQ4WydCbWNDJxPZVu5/eURSSSUTmu98cXz5rWcS937fyabYyYqm6tQob1taEC83glmD9bK/JK/lkTpIQN2aPAi7UlaRZGHHrE1u+jZAsc1RcmkZXC75FxjXq1awd317GjrcuYB/NpR2/O4fxvR3KQuCwMIovxclvRNqK2tBJSHS3NbY8ulAdreLhN2VOoVmwzs6fr+1wGfwDgSBNz0XiEfnZrv8eGFnWxIgEXgVulEkWXer038i41U1HGPnS3H4sh4jg4oB94GvF5lMlF+i0kb3BqRpx1wq2dgfLSFslsintRQ+/H6c6XYBqlxzTH/H5ikM2dHJ8Yw/trFUFKtz704DjOL9fyXdmRKXYGcYmwvVrK76lzjKPP/QEhPmqzFMoi3m0fJrr0nShi6feLx+/le8KR9x1/p7vLRBcRtG2W4BbI23IG8GOMYjrY6GBujgQx9+5tKECWrRQOpQF2PlwPClFZNrFmBAK7yLK4BvbePE90PP6jpmRqa10k+pNvCn9QTz+BIVJpYN4/N6bSNULimNNvYuJFDNiTAZs86A3tzG9F4rRDdeg09nZSo8j/ii//P7Zygf08xnLp9nKGHcIbrcyWuOxpcCaR8+4o3hdjCOKG9Qpi1shRRFeWdS4G3x4hRP2DsFSsC4i8ztCnNkREU9EEq72uNi/XSK3UWvtn1TAVeAjVWWZAWzFu6HVXnqSDGzoPC4oNA+T0eVXnIQtxPLr6Jg94Pr1Ebgx0ZzOXmMLUuGgI0mNuqb99e3ipAtmXX89gXAZEgBHicHXp71pnhc0tpz4Gei9Pc4bu8gBkOwxyPoc08mzbBtkGaBNADf6sJMRULi4HNrwKlsXuQ47B4uMOOnqkIA9N40fKSYi5/vcDnjqVKT7Lid9nNdpg8eVWOTTcDR8uZifWuc2a6Ew72JybmZi51gAmYm8n6IIO7ZSRmJ0DN8qNvZd+XUbd6Y1ulaMyW3GJ/DqzpbamL8DCT4yfaHbdfKvG+UBce688Odpxhfd4Ot0dMTWoCrNmGuW+ZSwHzORI76dpRJP2sHZxZMY2FJ54RIs6qLz27t4Y0NXruuyfQ9pEd/ILSQVfgKuadykFoTN1biQfDbiuO/Gukjx75cP17kDwnFOWACdly58Ma+nRRwwMTE10S+XkPqT9wc61H12RbKvigvUl/S+Wyx+xpZXHyMx/35F6OY0EflicqiK/CRyqs5pwfYoN3X+vYiBJigjtAucbGgm9uXaRmw/qdibxQ6m9LnD5BezHFwP/bheXRcxLxV0O43w8kU6nnhfnsyPz58AOc7wE/BbvRnJi77CCMfno0ocTvRr+XnLp9nKOLfnzYzD2q2M6NAbD+u0DpnbFyHor1IM3KIXgJLjZ8ZwmTHYep7BMhOf0Zae7BGtJ1sZS0K5wS3bpSgIJrUSW+4f8r0tiz5w0y2tlS66tldpfRSXhea2uzqiUiL1RIwIEBTUc90icEfiBOOHNngdECFrO0oJEsnayD0DkGU5vR6/5t1vExE7TA5PtMdcbmWQ5EImPMrAQnE7BiQGQ92olAMT+IFIkoHakt5flREu2zFeY9IBBltcTOQ6gtrrmIPe2GORqQT2l2brohi9Yzb+HfDBHtGrk87vNJE3dDgW73H5N83y+1Ta+F93bgZjateThnefNOPbZZ6MHXbJZYOPScgRpA5QMDgitFnezj5DDMQj1WuhMRKst68wN8aiS04RU7vet7MZ5+wNqFK8KTZ6wHfuOIYgro0YNo70UxE53tGPjKzOdTXmRrA6hx36kOK8MSkxMFRCMs14in0YeO9Xsnq8zyZTmBvI13y8oF5006hxE+dKPMU2rBhcbPwMJvrou/32Maoj1O6op4z3/+RaoH21aZt2Xgvo0+TdVE63m6fxxfD3EN7Hc8iB8eaqX3Z6vfd2wet7XhAdctnH+7uI/VZEx6ceamcfiErxR+Ga2jhB1eV7zzKHLY8YaW8qx7vI19/Y9U4e6Cq9BsJ+9E4+7LuPr187YZEG2y193puIyCny/uWa96v7qzGnOL4sXDY/gVvlD9d2YYqBn718NDR9svIptzKKsH4twdoNLuNbZL33lmX8+7Ex0kdFZW/IlQ/37yHX6Nb14w632O0HJ1u7cNzB34Bz7p0KI36rg0AGrzjZByCQ/61xqR5bTrANHaeQ85QJ6072qs/gqSLljmj5MLUm04E7xxeTo3nq62xcBpR5mqJFvwTkcPpx3ZMSFUoMbfKLR1eDByYytbnKpKRX6EzqHW0tCd0g6obvbQFiBzI2ae0GxwXjbDwQMpkfRI1GScBY5ZLcBvQHkxeUOb2u1Tx1eFxie5nla2EAYEwiZZFlbiwjc770ZqEnTJ7Ke8W4n+c00fdzysHKh8TOxuSIj06bXO/vlMegIrGVHOwvSqMzc94u01eLerE/GR7ep7n6u0LzY9gxn1wsqCcXwgkwyRY+x+R6F48OQPB57pJei7lRU6X44LFpoZtFcOD4GXPfLt5v7yZ6zicu6ePjOEFTwo9fs4L+o9mxGXa2DoNy0EB1vjzNKxyIePI0FzDs2y84OH3R7FpoxKIsbyOMp0OHXU8rB5yhX5U8n3Hup+k9nkiHf0rym5SFxlgsot3M2DTsQOU662f0ZZbGCAEk5CIbDx/m9FimIbeGjJOPfytRDpHTdDwVt8CfH4GXtnB86eKN8xW8/p5lklPmInX4SFW7ZHK0Tgb086An5BVVHz/UG9mjAoy8S/q+qOcIn7ZcTvGXluK7lE/zxKxsZWQY/ivuZDQ7EYU7MF43/+r93MrINo53GdKWQncCIRZ6+zkhJh8FvhJbImAnzXQ4/p+QTSrfCT4ryrgy+E5aydki383f3VbG9DkDwuUhQ3ED945/MyaZ0Cg4eJy5vDInkf8OtxMqDUqFjW6Z1PFrfmOcXqgm6InIdfcc6Y8ESU84IvuUuOvnyVy8WxneeX7kN/ah8xc93R5dJg8mYcwSMIp1h43gczXokAMVcD31uC6pXt9tmXe7bb5+lOY6BUEeD2/3wIIfsMaAFNvINCvZswCd0xGDb2zx8mBlwHMMQbGxoTdM3BJLuO51UH+eaz5nRpIT9tA9XdRADz+gDGb52kxsJm4K4h+JfyZi7+9jHTMUdaionSL6Rfzpmb2fIl+GXZiKnSrydoB706m7SKKygzJfSMUBHu7k5Nq+eNqYJ/DVVh1bJ01EDxObhjfGFHz6KVfii3zZyaY9t/Oy3/ww0TnfYBvalUzaQNEhyyXbKRpbGfUw2OYJT/w6P4PzNX2CQPJdMUQ85XoqdY4O40EOetFxSpf/Gf7ktPFh89G/U0PG6LePSRNLnH6Jn25/p8nb+/x97T7V+dFiN+g4ZVnz3PB461tR23gqVTYcTXbOcG0VQxMq+NjLT86toGYmh/tuWLDJ+Bj6cfr4+BiNhbPr4v2ybXu7xudQlffjFD2O6TTdHoZip//VsYaauxh4Z4bb5rWoufx+LAxNLpm+DtnOc267NLts5hgnN34V0d9Mf2jx1Bi2EnPuAHrknSGhV3PZZJ5G+X7N/cPlGG3gyuWQ8WTqHRyuDDsCmZIL5CmP8caFcx/q+vOnd2PLsn71LaCXrvyj0/bFRA+T41A5fhI532T6G6furq2RhWHiBrAPu+cRLh8eBOLvu/rEsBEjP/k7ZmWnx+9p+TTvmJWtjHI5h/huTWQXOa1LjtIDhU/0AxK5YdCYnAjgKmxlcFqzmb8BBFSHw9dx3ZOOlI/5XHI+SWZWhKbm5ORBPhXAVfor9Zs+KbkTagQZi15R/tFf5GtZZCaZ94/v/hLPdn7tYBcytKUoZwPLbWVQeljdgCVagBBzwOJSLwYHK3Gc6y7+4XfjhuOP7T4KHxvWq34ekuYU3iEzEXq8k+dbzCMVETtHgJ3I6e6bCRztfI7gNBaKhwUvU5HjmB/R9VcWcCb7YrKbUzznSvBEfdnV3ytAXQE01oPH1E0stpyuzjmPO/BQJjaAdGAeJhf+1+mg3jygjjGxwdfQV/lCQiB5BT2Ve1zNws1B+ICxFKiN+vqRAGgm8tNPcuohcp7XVsDjEPvyRfQ4L19/egLpsgyHY1M2T7DDy/m2wJFE2HHMcSD7vsZlBgL9iitPHUnhpez5BAjmAiaRAnzUxDfgzuRpWm2oy9yu580IH6dDTFRM3r7G0kXiRMOxCLvIHhHHDPiQO0lJnNuFHXAiX8xdkTTwMm1Kx0Q/fjzl7acLzr7I2Oo4XhN80yv3xM/NyOxfxIkhk/oYNHHY7RzDQ7opqCJvJvHE84d/97KH84vK8QY7RmDMnIYziMQ07VGTJhYX0dq25TUcFPTVCebygv5ulnaExrwz0bGwkGur3jmPy9cxRvrTV9H39+tp1d/6Ezl/+0Xsz/5G3v7sD2Jvv73I+Y0c1WSXYVSS/QjGJIcNOf0JldM4bWxfHAvKryZvX0+R9/MC+/FH0R8O0d9+Efkzb2I/XGfB2+F+deZwSecYb6A+NaWTJ+jn2l45TrAc/+R9zLHzkul4t8uWf6Mif+ZNzh/eJLwL+P2QCYYnzArGqdRdn+Tb5dR46ismcvxoYOcm8vV6Jfen4bf1PCJ+8/Zh9MsRM9GM6F1MhcVilmnc9/GF9vuM23bMG0a/lp+3fJeFmar+l0Tkr8j11YV/0sz+h99K8zLOzvuNtnaGyLqO03wDy3yNARi5FzGajC8kPlSHVOS2FNz6uytPaG+6tOT7PUtLdzNmsZ1rBbujxcyaJOVRcQfX4dr8447cc6JbEa3+TY60BAJNF/Rdo6oe2Y5ex3GHOmTwgxX8QpYYFxoeqDFQBTS+eD2cv75fSKoyD1UQGx/VzEaW5hELTpOMtwl2vy8Z84dZ1QOkD4wnwb5olCvYR5JpdWgKK0jK8MPBysAgR8Izub6pYzKPaofgG3qHJMZVxzK0J6CR7tJWIZTJHyp5nb4J9FIxE3n/KnaeIl+uBCi2PvF2gjBdr8ythJGhQD+Nr0lqznP7PK9F2QkGpnlcA9Tlji2TKmijJVY1ulEeB8K9DmuQKwvz0wagP7GYEJGwSIsZN+fpMM6IJ934ky1Ml3E14iE3IiL6fsqXH8/rBsahYu9yTTSHo/6iTRZaoV8r49XO8VWIN5O3v3XK8VXE3nS+A2paxm/qZsZ/FU27ZNThtB2+pUzeRyUYrhcao55uXg3mCm3F7zttf3fL7FqA4Na4r6fov/M3r6fBaiI/HSICj6ZOuW6KgJxoH3krY/0bMox5m7ZYnlB/P+cTKjPRH38S/fGrnPJFrkeeb1OmxpnyVvryZAjlkEbmJCNs+/xq46miiL6/i/50in3R6+NqY9cJbtDyuRH2urCFVBpbSGN9XjdQ47TNr/OzA9cCfWz9fdPIK/AJcnowjnNacHwaEbtr0Ja3MvqW2YHzk1QH9tnKR+PSJyvfvDBT1TcR+Z+LyH9RRP4tEfmXVfWfNbN/7QFy/Oy2+mXYm/pD2Ehgunrwxr3qTHwKOMIYAFFbx5f6l30ye5xGyEX8T/bY4K4mcaeb9YWG16ow7mpcn9J9gP8h2G8tM0fqTQWK7mA7HDZWvG4V1j8E63cG9f1KqjQ50zMmmx2aTilHWu221rLNeP7wbV4h9gjUEchNIoE4zsvhh13qFYDMLrnNI5DJOIBAx2E+/ZzKCXftS9bbTCZkbP8RGx/1Pa/9nLG9U0XE5h13Q3paf+Nc7hLgTibc1ojJmN+txEAZR0xHcjXEX80zbuPCAf2Ey2BfNtquhJASxleKmdiPX8Xs9OXG+IDqcW2dgiAwt5MfMt/lykY5fexll/6EdXaIOu+Z1nmK+btc/u4HjrmI+G1n31aVDqKC/khk9TJl40NiBOWiOTT6q2bX1i60fZVru2Kw0bxFFu0usrEkYFxUhXegTdqnQ8aZr5noTyZvP9qV7I8F2XGqnD9chnuIxms511y/+HRzgWOi87Iq+MRFiYbdy7svyuza4nVeT9G+vqn49+Z8qFO8he7XPSXAaLNdaxXHt/OBfUbxSTJsQDM8tIcfGP0Ps3c/f15PpeTHr6L/339P9G/9idj7u4i8X+uN/+BvRd6/xILaxmcr0pj4lCMZ0c9yW/Lz7iDNrm/Muazvp8jf+kmOH3+6tjLrWAONxX7ohm8YLpNBl8WmfL7AcV3507GT9PaTyfF+3ZTRryby07vo+ynv5yH6JnL8qJI/FM98Yc7zWHHd4B/MqXlAyhUT9et4ojfG1d97szcd7XI5//fL59sx6bbvuJFMMabSxJvQJfwd8TnyiHgHrlfJr+X7l++xY/S/ICL/hpn9383sRxH5p0TkL7xKBPdcXxfcSVWPN6cMW+CcqJGEERRPN4yX2dHee1rN1RmQDB5JL/gSqX3hfKB1CgtCDLtyKF0TXej5Lsq34D4pCzpsRrdlaRCvFR3/+YBqIpZhI/dj2jTUS2IAmZpPI7kWaocHg1OuI29hq8IMqoBnMhNELDAv5i8ddZu4A9Qdvp3XP9wycb0cPu5kvsPdVg8GIqIGc4qTAmkKzxVuB9lcTwfqAra8XAFRQC7Lc34VlG+MID+VlDz+IiKQUKhdiZe/iH0ttiHZwOQDZbr7uym4wMagbe80fh8pdoqYib2/i71/Hb/P8a6X/xN4Wd7t2eC3yGXZuc/zyQjFAUFfbTL2DYq/UKb+7zyvBchplzzjXZ144vt+Qlwx0CnFKpx/kPAoOgkccLNxf8DkVI33cdSfNIzESPygAtfDqZmfkQzRXxEjvsg+6RFktNFPEwl9qP8b7xC5fJ4Y+/t/8R4S2N16QW/Lqqs64ulI+n0dqn/yVY4f369E+ycYK58boP/0rg/qgsZsN0dan2OL3wzsQ6O5+TLnJqNGMmw2Y474GInI9RT4x6/XWH19F/n//U3Rv/m3RX/8Kvo3f4qFStKLTD891kb15iyN29TXtL+5KJNr0Wc2brac1+LnHE+n//aPon/yk8hP72PcLMmUjrXnebIoyV856umHlmgsdvQUOXxe/WRyfL2e6OlP73L89PX6+/UU+fHMftV9XTBYyGQb0/H3Ym3KqzAGYnL5G4+D7yLHj6ccYyvh208WryawXSeTa3SRdNXJyfMS4onHnuvGpcnxddXBz1Fwa+ar/z5T+R4Ls79TRP6fUP+3xrVUVPW/o6p/XVX/+o9f/+Z1sVt0qQdct97mLlLUyfP5IQXW1ZfLuQCdEApyFEjiOxHjUTTLseQDdXQiSyEnH6Z1h8t8Vws0k6LVLd/bQkFoh8ia7egs63h5S+g7F+JVdLyRBXVSbu4TbUUEgkfY8s2gM7Mfr9zMOYZjaVXkajc4S1CGdAzPAB2C2qDjhIdM+BAizBHmbpIB5mNR641NLcRPMrqLSM34jqpN5GJjd/Pizg5ADyYEi+8GhG563Ggz2Yzf4vdCbKzE+NktKsgHft/+togew08Oj2UmehzXe2XgaDSNv85+zP0+U8i0r0fA/5KgZnGeuh6HyDiIRJzckCvqqllOJQvnlwZxEDsFNTJesMdlh286DkuwMZ8mwjzkpPLN468wPnP+MW6biACd6x2ySyY7RPT9kMM09GP4qQBn5eTHj3a+WkIRsITUhcBFH+hjcqicbyLHn7zL27td2+XerxdEFZ90HNnvOF1FRqgLGs5dQVpuuQrXM7Cki4lNmvuEOewIF3KqMj8XoeN9yHj3Ua/3NL98EfmTH+NGg72/i/zmh2wo/c+mo1n+MO1xzfsQW+xs+lQncMk4noqPg3f063k9+XEf6//hfG/xOksWDlB1hLVDU92fqIuK6LuNXa8KVHQcciOiX9DfCPk8drhZHG6ZffPuXPgGAHb4e8wzi4sFw1hQ2pvWp3g4Lzq+i4J96+JNDMWgO8/t2VrK5yimH//3icrv7IwVM/tjM/sjM/uj33z5M9dF2soYvzsCrcUveJEjzBEhu790l6VZpCRcyxhGFMrYLmS8W2OWNSfL1erKpeFkZM23yMgJ145v24l1KXdonsC9QP9FsO9bdkz5blQHz3ewpJhaxrPm2viteL15qhEkdAQmmicuLs6hVfcy697YYxuaA58+7fP1eDjX5CbpN8j0ZKxXMOoS25DRZiCK/sMML3MuJdnQ1iXlJluB8S44vteFCX5KgCRfuyuvzokCD7LzWueWFvp9/QMZX1mdsh9dCNIsx0iMDNqifWec7VZGuWR45z2vVGLh4Su2KZPyQKSMbOFESzxC2Yf9fT2v0/gQtdhkw5cXFn6JnXQnQ1O/5v7A9ae0PhdGIpnmYfIT4My6sVFusLWL7GS0q19vf/IeTzSvQ8LW+Ej/kjdz6/OFvg+v+JwS89gcSTA1gk8w0DieVMa1+B7WpQ/52z/Op1YqIj+89dn7Qq7SvpExxZuEd/FXl/P9vLY0DmD7cgieDqpMBMdkmxRQfDEysRPqZvFAHmUM1DcZB6NomHGNP3sLaFtx/DzeUHt2GRYXTWQcdvTCXL4xUnQ7+ekk0Bv6Sk+8X44kv5aPlu+xMPt/icjfBfX/+Lj2oZLeJ7guMES2rIycf7aPwfu7DmlniRhNHk1/SrBNuD3fsG8Konu+JPK6u2LiLzPf96+jlfhs+IZany6UO74PF6xbgB1wF+mf0HwkxAbeCH1Fq1nw3D1KD7MZASvA/XeXD41bubDzQcK9em519oK6HfO6Cg3pLh5EyNPxe4y96XXs95UkUd4RNmfzNEQPZqS3lRvAspRx3LUMGUdAPgdSWrTB0f2rDod+VbbydDIFaZW0QPWEN8ZPJbaumMq1E+/sia78TZlDnbth+9QM2u1wfVzGHX71RdkYYDv9MeoxeFskZ3Za5lcypoVTDTicHNdWSlERectzI20LM4n3DzFRSUYXscp/gnND5aU60EL5hwHYoXHqZJ4bflqkTfnD1oiWs1XmQ3W8zpdMpnIOlfffiJyHzPfQPMHlJ3JNwEnb77xjCQRkhushLo/1u4moyvmDyPsxDgwSvU7+c79xSPZtinQXQfGFWPXE59yiDicT8ZSTbZpnUxXwHp9vxxxPXczGQRZ/8IOcP7yJ/faHC+lv/Sjmx3qi3YzfluhnOdThwSeVuCAyfapRXeRyXF8OsS+HnF/erkXZV79BMumWOz9P7wSVmGiTroqY+rf+Ll35+7p2XP7ofBM5v1z+SH96l3KDO+TBDrZiFHBsSDERgr5pfofYn5fb28D9CrpwW9454Zs29uURu5TGz/MHnTb2aYt9479PVL7HqYz/soj83ar6n5RrQfZfF5H/5iNMs8gCdEx8hQVZeuE6nKROx9LdEXVaGEQIFsdg8hWYVTonUnHOSrgT1mnxR1ERC3eh4GEGlyp2fKXw6VSzwkVVGcBy8GljEfHtco1lof7vnGzyx7vGDR3dtP0sBfXIrLlDVC86gU5HPyzXMSdLZbwQfPpPFZFT4ywME5kHY4yDNEzd8QO1QVzh9+TPRgV90WpI1xYWETtNdGyJMhORryLHAd9cigA5f3tAMrmSLP54O7IvCQ3I0BqzyvW+25tdL8CbXO9PeX9RN+loep3th8SCLelKaX7xb5frgN8m5R0/G4nliQsv5zvkMhXRtxlcUYZQ7Wred3KhTNgvm3/tbejqI7f0VEV/8xuR9/H9hi9v1ykAX95Ev7xNX6oqOr5fco3/dHbmulMQP7Yk+XfFvNHji8cMu/i9iciXq02/wBnvKteWK487b8e1lU/1GiA9Lr2qXLYw7EEHn5nwgy4bX2Sjj9OuDpG3U+w3h9jX90sGmfgxNwT4OiOOkSGTSDouv+MLPFKssqHzNxH7zfVdJ/vxTc6hCxO5kv+3IddBcwU+M5F04Hx83uglY4hjMzF1OdzOo39vKvbbN/lqKm8/mrz/2bfrVMY3FfuDt0smnw+4bxv5+n/Rt/mP3fxg2FdKOOHs7q/taxbJshLsjOl6DS18D84P7xBVsa8mbz98EfkP/KHIly/X9T/7hyJ/+IPYH/4g53/4D8V+OEA3WvsKZpS6xxfc5Ezmd0CGnz8OuUZUj7kYOlTsy5vI8aPoD29iv/0i9ts3sT/4Qc7fHvMzC8ew9WCrN34Gndv4Ftvhvl2vp4Z6uZs3n8fHKSrXHDd7u57k/eYQ++EQ+80h55fjsqMv88Yh+hv/TMRLRWV8V8J9mcSnL5y+fb2G5Bw6jU+kvB3XQvK3h9gXmFMQf4LHwnY7Uy2+3W/yHZdNjnOwxL8eGfnDJ1vAlPLZ5XtYvvmJmZl9FZH/roj8CyLyr4vIP21mf+MR8mb/sHGtCyYPR8EIdsU1JiLKcMtnZlR8N2F3d8H4d8v3vvBdxy2u3S94dmy3Wxl3hfne4LbNfNHmn/iuEzunJwwYl+tPaeoILBq59lZ2vFFjzbikOsngdorJW/wc7+BEbIf++Dew0rZqb/M62FEkufF33Sd/2hR9SvJRB96ugHPdqdR5t1f1epJ22Egg/G+jCyQJfWAZ2uKLQU8ePTAd8+8cy5Fwh4zNWK3mLsCjTk685tfRbtAWPeEd34w6wcbSuOlCDm/Deidjo7tiy47zNv59pKiKvb1d78Ecx0ju8WUgiWTa4vd1PRZM6cUj6AexKot5f+IkIuYfnnV6I+t1Hgbj7Yujy17qhp7MJ8eqpEsSOSruTN/HB7FdhpBLp05G332RlRflGhlXLMpw/IG5cRvMfRHJpwCKiLy9RZJofpPF+4Q3LKDPwSfmsYFMsJAFXaUFArscBRFN5PzNcf374ZD3H2B+Dh9YfKRfb/pvRRcwfigXDXUp6Ms5yDfw+bLVsUJ9MLyP+fgdY/Km1wLtz/yByB/+Rs4/+9vYOhj2HTpq8pbmH8pVrqMu0SYdzmF+80Xstz+I/fAm52/f5Pztl7BvnNsxz7SXxf8lf+WLh/mfCIKa5NJkw+cXlfOHNzl/OOR8O64bEW9a7Chk3JVVXhPxhn006ArjzqEiX/RaJL6pnF9E5LCpD7aJzt8s9VTbQ1c0B/Ap2RV7TOzTfPm4L7/U4R+q+hdV9W+o6qmqf0Rt/4iq/huq+n9V1b//Cb3vomYz++dF5J//JhrqMcokJYFcl83xug7rxjWeuoU/h3qHOmUZ3jX4akyuaco6pNGA7figg4oYDJNKUp35spA7XE31tn8cVKjuY7DiO/t3QwsuI+4ONuB3hfvvl/KQ3JcuuK5wX5iwPLlxV1Ghhb+HYlNfGjGUYcHAYuzsClDvKtcCSK9TnWJbID41AzFi/sH8UTdYftqs3jaTgutPFh5V60Hx+v+8m5m2u+CiQ0Ybzg2auy4j2jYPY1Kz03KgsW/xFBH9IvE+QmwlGzKlY5zt0isvdso8H5Uyp2KcUDkz2KrJfA/ikHkioo+ZM/Agjv2koMr+RqDeyRhgnUzjn3/U9KUbM9j3L2+j/zaeSH2ZjFXz06KBZKeNJ1fZJsOXN35fRME2IGaYjOOwxx1of+H/OOYR4m/OaPA/sI6KmnOj5cNPkQdu2vY4dK3+5OGLyfnVUce3jFTiTv01vhduLFSUjsKPwcyDG7pxmf0/cXsWrkNyaz+8ydev1wlxQcsumexNEi2fO3lMdIiiuf8H8kPdJNWUeWQicv72kJ9kzIExXlfuMGwjnlha8M2G7lsI0W7mcLVxDsuqTdc+PPnuqM+FUZxAK9OvBYtjwML4xmcXVcYTomus5Lc/iP7B9WT6/c/8RuQ313aKU3Hs59M2jbmuIWYICt3FfoQZDSN0WqFff2p6mhx2iL0dor8Rsa/vYr99k/MPv1xP38XoncVpNzH+7ENBnSjhhL1swUSuJ26mEjnZl6t6fBWxH8a8fj/F3lTe/+CQ84vOMfHdFCiHVpl4zFg+n6dxgqLKOBB2zLQ3uQ4r8RMPv6icg/HX34icP4yjgNL4TdoxDFBHAcINwV8DOw0/MuLLOEtG9MvYNWzjACDVb17A/Ozll5PvXxWRf1BE/gm8qKr/abl2Ef5nROQ/JiJ/TVX/HjN73xH7Zde/u62MMgz3gCxpeLOYsImWzC0ew6HhV+TTZGenamMCa08LJ8RV5m9NwUjCUyrW/Y/zSTIjbp7t5Y4/5gYpoFJ7g5vWugTrzhT1mtABViXztQKc0fhuzu6mEw3JurG7vKFbgijXd7iMtwvWzfW4tMMTKfbCibvC70jY5bI9PeeCxV8U9kWbHXDar+9zjORk/p45pE37FUnz4KqPKuSVs39ZWS4zJvRio/6WDS7syEm8Tfp4SEm8A4a8aQteO7YQYF03+gYBbugm2SvIc909JBlhHlz+huyR5xRWis8A3eiENZEyl+O9AwWZPegfgE8yYt3pYndQN9hgfBBJ55ueFFWRH75MWgcI+zbeO5HrXSqLp2hyLeAO+E4Z+PKgG+KZmMLq0WnKSN0OEfkyVjjHIfLl4m8D1t6OqbwvOhcPQ9dz/kxnHgdjyJGTsUWsQpu+4sdY4JiJvY+FIUxQ3MqoKvNdD5WxtdF52nKL2pRr6IrsTnTox2UevsO+HHKKif4wF2ERE4OvVL8CWyplzB28z8kJZtZNvRi+Q0Xsi16L10Pl/G32T4ZP78BJXHNj+rYracfJLv2chEtF0FWdfDf/Vqx7sus6Oi1uoCXfN/zTAXNdReYWtHeRU9+u0fPvcH354bqh8UXExlY4l2/e5JC4aYY+J16rMJFYUejwT6fO91sPCATjnb5r0XEtylTf4lU/O01kbBv0XRPnD2Svi5MH4yYn6zTghh7fJH2fPV4phfpxiLz/Zgz2Kde2Rf/3di2E5G3YJ26HddYkE/tF1KvYzAVNbb4jfF59xWPp9W0IOnQsh4j94E/2ZNyAQF2RGaZ5TrHIi+vRg6FdOvBvo+Hi0sZ2xnia3OWcvxYRETGzf11E0vpllL8gIv+Umf2JiPw/VPXfkOsTY//nHb1fdmG2ydJt037ZTT+Bl/WySuphmW/lteeLfmO3sOIFDTr+3WJnSWv07w63BJg96Qd8n5cV3bv1zi2hF3TFAfelgri7znPbXd1pexst0GzBEx1vihF+Z91yIIuFQ8plht2oCNwdqWPS6dwWalACQPlDh9fbJdNeL2Ev5z8VHQsTBVJQx2Ja7SgFKtdHaiDd4OWRbKaX8xXaEHYzL/jJJus16Zj1CjaH71dx/3E7UbRt/E1UkY5NuKQLWFRfiMs9CzdFJe5MOXPYwhSMVx939c4N2PDN+NQjaOUy/bjNK6qw8FLxbcBOy7+W5YusqIcok6/xuCxsdPYd5aLGYf/+FC7GXyW2VAZfl434JfsR0E3Dd/7GOXfNzrizrv5jyKHTT4i6/WmaN5MW8Wr0FDppbBTjabgokbkAdxg6LTKengVdGj+UiWTejp9k2OJzyLcEHevbUh3pgT9wwmZww2u8lHS9y2vByG3Rt8ad8FTRee78oss6YckppbGadiEi8ZTpellKrxts/tjJ7Xps17MfZG5ldBlwDLDw2HQ6BOWpXrq55Dfxd7BFr62K6camythSfy2AZBxNX3YbSHYty90QLpNNPJEhE8ZElbhret2Y0RkTYRv79f5mtm1lPTX2aggPDSGak4QbEvPp7QCEFUIXQz5dWU7YX6z8nSLyL0G9/ZwYl0+zY3S19WZaMTc0szIlfnCpASlJXXKiwKsYYifH9BSesjCfqDeTXQB7a/krXJP1/mf31ys1NropF6Dhsd0zbtO1l+ZQVvNVFJzOU4fROfNX5XjadlfHJgOROgP160AH5wwG2igjGKVrvg0sCEE0ievE766+mpqEk7tECVJJ8ma20AUbpL+TueB2CRDBohzpjiHdLczyg2z8V5q2hYypcKKi8x+e3JeuE+6tjMxvFN8mFXWTa+Gywn1afNHtNPD9Ml8oQQI5F2nXwigPoQ7fNkYyxsfteuF0RlAw1dnPoav8XtdAj2uDq4pcp+Be9O3wd8OmWChiFWD0wjS2qMVAvZnY12H3LpjKeBI0JrrPDVylLP7lE/9yXEu2gmXA+s5Af78x3YzAvsI/ny8xh4RsVzZ8WUUAm0bylOvpw6Fz2y/PgTFGKCM+AS9zA+Wi36WgXjkuKcmKBkv+R1TKJ018oWRjf2GwAF5X/dradj1dBl/ptm3ntdX0B7nep9JBs1F68anUp/lhicknqaPRpbi9+pF+Pp4mYl/G9jx88qvzHJFHpcsHQIY4xVevuan+wfq3Cz69UmJyPSn7jYyn1dlWUD/FL0qn0SJOFtPHcsytEOaEA0fkaju/XO+YpffTWFeaVXDn2+c21D5fUIH44gtH18dLSdvvtnyHd8X+nKr+daj/sZn9cdBX/Wsi8ucbvL9kZv/MN3Gm8mkWZmkrFXtLD44OKxBfExXwXKOulGxubQv8eH7XrUvhaFaoCL5X1vngtqTA2TctyyroYq0Nuj3x0kTt68VzUxa4S/AnNHdsmgApXdv3LGyq+twxLMVpDLTAusm5Y0WnOSJkOF4TiROr2BHLfM+gY7i1H5FbPZfnKh0tgy4rtWn9zQsLlrGVmQvomAMOJ40pmRPJi93NvGV2O5kLPsikJAMnuV1CutQjyajOoCkq450GoDNr3zBZfWt6LMZGQyzINLXjIRaxSPaEhvuJ4h05MU8x4xCx009kxKP4VeJrqsOfp6dxrIcQF7ZKerzpVIQD730YDVeSffFMWwbFYFFIB5Lg4lGq7fa6sfaJ5ArXZOyiO0ROgy3TaDud7aWhzDcsn5aINwJ/XW9jq9cJT7qTD9Fxhcev6WPqrOuXLi/R2AZXyQYQ4ZtwUcfOhr4ghzlkLuSGHzq/yLW18BzzecCoHPPJ1CFyqqaFdUlSoB7b2YpdwZMmJKUyXwXx9+BEYssj87QvU6540oz+eFU2MrLqp450zCONTyhcb24O4/KFxxc/Ql/l9C3LTQIX/pjEwgovokNmE0nvgvr8Fh3f97R4Uqdy2bb4t9XQ32kvR469wm8WJJh0k9JfcThBJf5jET8+bfnQHvso/7aZ/dGq0cz+3g/Q/NDnxD7NO2ZefI8mOoO4QIZW9nMu6mlCLEp+NKyzXiy8oeOTlmSMxHnJRxKf/H5d7Q6zzqrZ47aPvifyxKWmFGBXtHaFcJumntbdXuabIXmJ1itlxReDa75cQEvjAGhffG9wOaZG8POLlsc5tkc0NrYamLRffuB2WzcSXwocS4G5P4CHh1uEjF0SrlOmCDadjE3fOhlLYmm5HomRSlmUbRdEVvvHel1OjqZ/T3UTMsE7ZWkuxx1lag+ZbKmLeyWvivYLM53X4x0yfGqF75uJpK2uIhrvCpWYEb8nrr7pOO7fxl+EnbjmfJAvLtQcVituyOjzGOAM2/3CSATNVPTdchvierfxSHF3OigHysO6QV/Y2Wxy2DYXQSrziWnIBbTZ7oDuPN218sW51MmI9q8i1zazd7m27n2dvs+6+crbWndzY6MbxWvN7zQVkD/GBJX49ls8YRoyK8IruYS3kajHguwC8HzBxk0390/O7xwLel/Ix3Y44JOEh2Dj0z+3j7G24TsGThxN7/ozOCBCTeI1NIfXudDwb4iV+CFNvZExLWixfQDZiIVil50YtOE8uU7dleudY/zsA40329hKZvSlqMcT6wZ5W9CdxHxxNE/alDgJt8hBOogtjAp1q6ClD4v3kdsY8Wt5Wv5ZEflfq+r/RK7DP/5uEfm/3CF9mnfMMNa3+RsbxMZAUuITsDM7jERVsl222wwRNzyWAi4gbWQsCx7JbSVwb5xUT8vvSlruPADf6hUCw10pME8c6xM6L9KjIfllyp3CeMHQyLvrggfzuiKTZJoY6NuiEot2I/zSlZXj7+qb/qQgJTc2CHJ122NKYAAZU1snW2NPeEd+yRfrGPCa/oUcTYJ3q1eed9yXJ7o5ej5Z/gGxS0pZbu8vyiAfLJgs48IMtrKmxU+z6OpsqPWb6SafG77BgIt0Y2Mg29xWNE8IRR/LtjFlgLvyKUY0uF6BhKuzyXIqWzNmUx4y+HauwORY6DU5FuIbCR/qifiUp718o0Ak8+3mM7aZxBjiOzRxaqsuaO/mxo7vTRzq/HbEJBk+Br9FyL6b+wZU0jfedC2KicQC9fSW8bQj3i/DQ2HGNGgLxBAa+hYuP1mCb1MOGL85jexMRc43iS2WaK/Tp16IbT4ygphCnU/BTiJjf48uNl30zmPIxTe7kKDSb2vqpKakL5SR8GG9G3MKv1vJ/rjUS8dJXhcFcwBqjq20Cz4f9vu/q7Ky65+5qOo/ICL/uIj8HSLyz6nqv2Jmf7+Z/Q1V/adF5F+T6zPh//DdiYwiv/TCDEqcTBRH6IC1poUGeI7iJSFwuVe5feyUyV5YwzL5thIGZrRSl72Rg7mWO3tbvoy8w9UtbncS5dL5rPjKxlnf4AZK46CWhZ1e08ZDckvnFZ5P4e9wlZobmHLUvl/DaUD0AnZkccpjdEgcdY7jsUp6eHzSyW0i6QkwB251OaAx8XFchnUZXY7xDsCJuNhvDkaNjKgjTMyU6p2MceqjUBvwdZYhY5MRIO5Sj3dziN4RtDeJ1za2uOgjxCLIq0EiVCYQ6cqovzZpXUn8ByLgwM0LMwXd6jhJdx6/PbnQ5NL5L05UjK1WE9YQV0ViNXGoiB+RH64zH/ttyAdoWCyOLMsI2wTrO0hgBJZxFcbIDpHzfaAcl+JP4BvjcOBC1kLm4iQwFtGYQseXQ2ZDjiu5npOf51Fcx7mDCzhwUEvL6fwGqm5UrgW7iLyZvH8dCbo/SRLJfFbzBHWhUpPRwpfwV/IL+SCb9P1a+PaxfSzaD7meQJmUhYaXE+jqCUfEHyLy7jt9LoK+Ldbe9DpZczHOic+Q5fSLcWgGqkUTrIHjV7PrExRDDvVDQMAc4+lPbHEdfiCNQR7DkNFE/DTDc5xyeI09fDJCJOVZ6orz+XHm/orJ+OzCHB+fU+q0RIqtTwGzfpK7CZklxcCQEfpXYojKGD94FXFhjzx+bewlEV3tp83raZcXGkb4WvnU5Zc6zt/M/qqI/NVF2z8mIv/YK/Q+11ZGlek8fKLxVkYFi99sXbyCCeLCpEUUn0QzZoqSI8mTQQl3wsbicrX9EsVwh53i546vFD6FzQb3I1sZ2ZEEGtPaFU1/Ki3gu8Ld0f0Q7Pcs7KBXfHlMsN606UrvNsc/sYKTlQRgY/+/t71J5ct2g0F50SdOYgouyn/DpyxSdnWmzbDdkx9A3doNyrhpV4K9k/mEuXoHKxs9hk3sZF7o5sK1PBE7Wi4G3DWOJBIdw0fn1AECle2JrtsjbQWcfl9zHxXaRER94gTdkYz6QitsWsdpdkZ8SaZYQIKMAySe5oGMhvAJdypLRdK7YcFXLI4gV/54dxrDjOtbKrsnVuIyCsICLsHjkKaE34/uxnZQ052NTt1CKAabRbPimFjnhsIhBTZ1RbG4dKjTDfb7kHWM7H43Oiu8urpPHZjfuQ598Ix52G4ccT7ozBsRkrc0Ygw45Hp/0Z+aXcB5rnMskps6GMIl1zQoG3YcMvI7ZiLxfc1TdcajpzEjyYwDhkJJKj7v8QmVMZ/h306fM82T3dAD1jfvupaY2OV0CAv44atcf7CVcasrjqccx+9isRAu1fkArE9XPvnC8Wn5NFsZRWROmtJmFVYBgQq/AmEJNm9lZPZpYrV8Vhl2/Xh1+x4iO/8t376kbZ8hzvXDOl11dNEZAgDvgkyVlTO/K0Zj0iwGbwvz2vH/Ds4j4p+Cejcsi8NGIqMd7zZFkEB8qO9Oe+pwOZng4cV2XdURV2vS5H1sxSbcx3xV0nsV2L6UEeTAO2RFZtIJFkwQjWBT/zT3T5TkWOGijMDvcf+k/sX2hAv1qU/LAZjlb3AnL88C80mZmwcrL5TRWVxoHZKJo29QjcVVxAUlYTzpJ9vIN+MsOqsjA/FvN1nIZRXX68eU28T1Cf7W2zTXxWHx6HYo6WmK+9/0ZGlOpjL+cKhG8JE8boyX7CFkyo6/+hIjmWb7rp51s4lzjU2nhBHrgMzfjYs5vZKpme8GMEp4xYlyf7sCsa6cHyaSFwTOh+JC+DVy9JZ+wBOwARu+RkWuw3sk/sXNIVCSy3iZGAox+uHEDy0yTr7QXxHp7oylXrjNHZa3FU4zv48ZoNdpU0fqT1KtxkylQR42KipyaJw86kfod3FuTPu1jJb5Bq6SzES3yHzA2MECDeeMUl2ATojDsCwzy8i4UnXxaYuHrT8F5dNsZZzOLAeJui0wB6NM5IKNCSpQH+1l8STgoEIWIy/PnhuCX7T1fFLC5HxwgqY68+X+SZ5UCXcVmaZq2o5DPTvYHpb5trSkwmoD+yTIFW9NDihAdrBPeTQytVsMF7grPQQtBDW4xkrXSmYGaxhLk+vuZKPISDgM1OEneXl9mEwEL+vrjstbFVOy5YkH8I3C2wYZVjLfNH5DEbHF0Gaw6QKtBxgRKdsy0nwkPSUfALYV7RCc0jxpgp7DxF9IYLxwQMW+pABqWU/J/kN343tTI8m20fn0nThKJgpfG35vTKZ0mm3IYeN3Y6CPis6tfmNVfH0jbWgaF2AD/jrg4OqP6ZFDg4ux2cJu47/4vo6f0JY+nK0y40paUEn25TCOkdTp5JOdiV0HHMikHXAQM7weB4oALzV8Vw3tWaev1yyr19VlhKdVu5jBNjznLPRpMfdxTsYpjImvZb1KjTdG9FHmdIPMJLb9xQ0smiuJrtdRRvRHaM7eH9AVy4hpQSlDjrYZ2hIv4I/NNoDmtkf4oM74VMD1W+I9NhPXzdhxNN5Puvp/jUE6WTH6C7Y0Ol+2CY54U+JAoTWa3e+naaHxVMrH49Q1bvL7xIf1itvQGfeE/iGu+5c4lGS04y4Hk2ZcYMz4FcI5d6vM0T/n0+Civfq2Xb8euCJ12z3xFaTl7Q/0ijK6bn4tv9vyabYyzu15Gm2XkznmDBiBS4UnuwxnDTMJ78K6N3UjBVyfxHHcq1/F4AQvXQNW4Mbj3Qgo82vviU/6MQMKy+iqKZ4dYN0hd+13uO3db5rAAe667GQWmNBNiWAIsIsb48nxtQDMA4Jm275zJp1+VmxIyJcOGuEO6rq5FIf3IA/Bi3K/FIwS8QUs2gkmPCc6fki2EizMxZQs4RwlPkI2FHBNgC24QnLIlKOcHCa5biij4wrhrk44RDlsJg9pt1QjE8sQc8DbG5lXuNiHVJrDRdQlCV8FT6MAFH0Vj+ek13yoXgV0ZWJ8x+JJGbSv3wr+XtMWx0tOEG78ZllDPNxSCLRF5nb4GFb3cyai7NdRPpRRZoLk43jZETBVTXaa+nJxFhE47RefUHnfTGJLGtowxwxf7E2ZAQbejYk+DPYx/p0NkyoiuRxy6YGTHGwH5wnSTTaqWS9CsChKG09hWjrfE+QjWK/6WKe++txXyVvuUGbUqUn1OZ0/6wrrp/OTstBDR+eAEw9NruMOXUamq/mfHZLff3Q+RjiuGwNFwlxPccAaGlD4Rlesov1pkB9Mgn0Ae+RtrWGj0N9lrAK2Ucd+ot83uTJhp/Emc1FJY4B20m0/RN2kp7idjLh99oR2GwsnP/hD4Tf3R7Kti2S+bYzsdLWQUVTy5zuKcX6y8oGw9BnL59rKCMWo3TZtF61aDR+WZmSFTYlQ4cMIe75YihHvYFu+m1Jkvvr3BPcp6R2tj9j/iu8rtEIm5Yv3jDrc7vH9Uj+ax3SJaw0NClxGdd7yggHchGAbuga/EVcRt7FHxd+cOHSwurBVwk1pHNdZfqQHfFD0Tubd9iXHRZlx6Hlutts4FNp4vmE70sU+rXTV9C8lACRzx+eqQ8IkGZj1UuayzgVA0jHqNPjSKKjI6iCBu4LfJcuLtCk3fmS69fv4ZI37uMINfgY2dmRc75zA+Bc+XrfoB9pDso1UByNq2q93dca5uorP9+ZAdP31m4Z5/OldPJFFHXC7PqD+JC9uqzwYf0hmIXi2u0531DY5AFGtyfFq7qe+NP6p6AbbALbbLp3qdaqkyzxrIg5YA+vyLBj6E41rSk0Ocyujzv7zzZxNzEh9UBHFFwyRl6JvUP9/wPJNMdV5o8T1iHrQRT0WGYs26XANcGWaZDv2RwxBLHKiTYnuRmZhGRcyr/q3mge+iC18oC9tXWQdI1cyO2/XQ5JjuVft85SPJKafsHyarYwx+Ljl4bogvvTHLR3trYCAdVyfpJaCCfseR3VyhlO3ZJTM18CiJzDzMRZ5AJRTGXemT2Ihk7vvtC2jSdPVYtuJz4bmAqc4fwB5WrYvKK94d3zucL+lWP35lA0mEokA603peyjjWstHr/fHuW0pE/HhAeoSlqe4LexijMr7dUTbuutQtw5WyHYb2MS3w9UbXO1xhXFt3858MVG4ZLQMy7jayBTXJ3WWIfVHM5/270cK9lUk+2ugfW3BO8ZvnVlOu5CI7HTGjAOcTvDEbI1PlvSkcTos3N4lSjYgEDMOiFsqFbcrgIv7jX1LagadMbGM+U7GEl/Gf+J9FeDDNjtg0S+l7cllTmrmCzIXvQnjVr5drEhPnOEn+s3V3N/6DQHddDbOuAawHJdYRjSDocPEnscHyfn0Y38a8LMBDwJxWjYOt7GDfAFMiydl975zatHxXTVozb4MbhiM96Yw+edYhXxLvtbUE1/QWSwCdzaoMp4qVp+KcDsZuXC82faPfHfMZX+/bDOHupuMy7KyfZCxxHLYm/tKzvZLlF/fMfsehd/iJKPRdARq56kX9TEB/M4j+7Tl+1buRHkBsluBpFshc+sK8ynYDbnkf3eLHpaR4W5wVwGI/X8Hm2BecQBPo8CKN12+JdkFzKYUMXd2dQNbAugTvhhACM2DOcNqIiAZmecQjjPx6UoS+cmYrfrHckjuH8OwSRYZGRbmFW4BaWXigMaBB/myOwKhlk/A9QEu1SdDkEtINwE3tYF8WnrwVymoSpJxPANhP6ezP5wMTFp3DmZT0vY/kjk9UdLQmybdL3iH754xA29WuaqDngi9n0nvkbkSVEIO5pViBki2va/c4F6HkBgk7fQedTe+YVNXDFWWUUR4UrGNIkAbE/0n9DFhdfOo+Zvmfue3Nv426dXoWupL5tvKCHVu287fHS5OIe479gn+pmHJhlN4ictlkt+Li0WbJro4SLggTiKh3gZv3CYYJNk/Be05qLXvOm2pCTQmkg62SHOI9FZm0cp2WEbne+S22K7ncIgbn4SQuRjyNqXxuhFJiA/qqOhVG1z47TrqZF6OD8ksQkPBfUdaKpehUf+vv+nLer+Wn7F8nidmo/jdwstYdNZNcOfJsBnyrGXWaDS1gQ7qycnjOwkFoZmZC1stvqmBzcGF+aJMe9zlJOzE3sgcjkSBzsIZ3SX4IrLdi39LZ6H2EjSZByjEuvZdYd3s/NCdj9Jm/IdQmFgwqaT/G9igt5DlFreKvC6s1w1wmz53SQI2qdStSQ1CScg4IdrJuKDL799xwlECI8AG7tHg4tg0vLt3iJx2OVmR+IrkepbRkky1f0q4eQGX+ZAcKdt4sdD7UbHF8KCX4eD9Ljk0xYW8BVMLzfSu8Rs4d4Gf6QkX6odoNbr2GJE+fp0+RSCJdrIzpKsT9OqHiL1Lij+IH7jl/a2NzM1pbo9xPUM/rUzoNLfg+y3lPVaim+0b+g/1lcxFJ0tH0sjYtCcZoY4ypvYd77CrRia67C7E+xzvranMxZcvkHjxQ/6xvfnLY6DXyX6YP5UNR3f1rjNK3YXFXeos6JHtPz7LYbSY4DrzJ10UOJp7Pqarra/pqRR8UsbBIxY/kbGzV/bd3TzpaBwSp0WWdyBRNsJd2UIY1GJc03t97KdMv8uJ17+W+/Jp3jGDmzCpsNNcLRYyXWpPRpyfoqU5bjIMb7EVJbyoAm7nGTu+ozp+eF6Q+5P5Lhcs1rXvZF4RaslOugvcVq5Ophu+u4XdUriHbS/R/l2XxtCX3WsCXdkO8wJf+16KeUWAD8zdJWxTX9rcK7DevuLHMmluE1nI3PWnkZH9wI7v/omZZdgVnwiwzYJM+raK+8HicqnIfDTomSnD+nbGybvqeXhipY/oppt8VQa/6XHRvbKSfnFwOevJl+oIS7xWTyaTn1eZDyNxvrOMevEOXOZLNy7LNlbZ4Lb6QeY1vqBuMh+Sif2XPKwvksdUJdV+T7+xi3PL+pPi8O1qDUhT37ptc8u+G/kJ+t4W9w2nUnldgRjRtEsNrU7pejwFwsXQYn62uuVrLPNqPDr/PklcbW9SbpYt6a5kXOm5iRnLPE8lLYzwu5Id37u4Vo4KJRi0HdYl2tEHXy3+3ZVPnfg9L5/midnc2j8cPb75Ck/NauKA1jkDpvpKKwLoBcuPYpOT8ZN4UI4lMHhNXpQ0uApwiRZcswVu6W7Ld4HDsNrIwt1b4E4ZJ19lWKw3Tn0naim7IPhKgHy17Wmw7WR4Wlg/tolDHLRVyvsem1hUE4CPls6Z62zi7htXVgFY8txWgDWqF76vwHI/fK77v85e72wX7VGmHNiW+PpYl3lso13XMpOMmNB3/e1ltDx3m0SB+zP3Tdu324/yBZmDNvqPL9ekLYydX3SdHKPifRwnNW6/t5hussHR9fwe206hDusIsXCkeOMydnOI5yfYEB8KgPYwZaydTPN+dXqvrAu/w1oOXEjCZbo8F5Yxggrb84zjDS7PJZHryHjWFeC97De6wu1Kvs+nSecQwdcpwLKMKLdJhkngNvukIuVpkInMhYZIWZQo0UX50R+kLZSNjG1c7vyITDq+0GC+7L9W/UvqxcU/8h1zjnHbb+KppENAEp8mTq/sSjrcxncvdcP9c121fGzAqiwfrR4iccPJnYLv2TwaGZX4QMxI4/UZi5Hf+j0un+cds1Hm1sWrbbmV0aQGat+6GIY26+l44kaUvC1wRqEyiXFbjMtAzt4yMcCd9fB76Kxpaw2/g7PKD0oA6pKRJiB1pfFZ6YIKBEKWSaHqzm4hx6PCutvRYVOYYnyc56tlh0tG1wW2LeuFM3/kKTlYPe1jZwyLMWlfgn6Iy/XybsQisWxh2eZ2c4hhV8flr+TfzO10YAeP7Y4vLX7KHALY+L5R11/+y7gvwIroFcTBrX3TPBGRuPkWCQEQPGabyjzJLTnNwBt195eJVn6CluXW9Da+Bt9ZL7pnecdvt1H0i3xwiAtw0QU+vCDY+H1cpE0ZybiQXyN/c78z6tWOEJiawGEVe+jsbCcjksP+dbFqMwfjWG+8zHbqMpMeW9oNXlffPWUv/hn1XtOfzKdZlJbE0zJous794c8QNHS6uvH11dx3f7Sruxwq+aaYyF7HN/WCz7liJ4cQvMsC2wYT7orOwm6Yb5eyrnBP0Im6b3nrYc2MtjfT4B0wf307Ikzt7vMrT2T8lOXXhdl3KIsnQ9VHZA+WVv+NpeA+Wa9P2HogSKXb8zGZvyfclKE7PjX9JV7gn++d0KZcfC8d8Qe6g1an6kZ9SSYCDQAPOIsAtD0VCEHnkNw7hLtFAtC1o+9ui7vSzUpGaf62QlD7Dna0W3f9jhQmR3e42tjoptweDwz826HRbDclT9kJojew2sOugl9SNcnVyrgKuNqsb6ltJ1fma5PvCpfb0O9AYtPhznd3Jp9ej1b7Fz50eD2qf+y4fDxOXbIC8Umhet3id67LhAeZRQBXEXbGEBOBb1HRNsnw8+hDh0XAd9ay7tzfKfRvMHGZIT5gW/DGedWpFWyh8AHJVzGjyGSkG/S/aN/eZVjFtLEo6aFvS3waGVt6LgP5Rj4K/a7s4mfMT7fvzs/vaD2AYR/KsRLz6NTMThWv+ZR2vTI+6g38ftibLfyruwLHtaaL7G+cr5J4MM2tw9NsMwkX0qy2jsXb2M+v5OBtvE5G578Wt+tfIxPzCRHBrh2w9EczX1EbJ0ZO/9X2b6Ub8PktLLwXbT65yLcubfLX8rOVT7OVMSYDbGW8JiQENv/vcqvf1aaOJlAf7UYvVjt1dG7mXiuCJ/Mj712cCMlo5IBxohjWme+abXVW+hh3VV++54eBu8PlPiHIQmbEWdK9CZKtjFL1XMpuOFmGHf87eXcZwU4ebarQJ3bO9cJj0i+LFWIYBFWymxhnIoLJFd+x3gVUbijbAAEWcUtAGeNjgLtKXIRwcTuPSa6XhRPIOKekpeS6HOyxwc2w85j3nq+BjYyL6gKDkpwrjg8fYOGw6CBDtqfGzfQU/ursv29D58cJWm+I8ZOsNmbg9neZfj/Q1MQoK5y61KyjA/QW7h4cprhqga/Mv2luqFxXvDvNhMwHDMzPxJRtnTz+Itl2nC/ZfMKFmJjmLxaeD5u25BKbedTJmAdGkm5KzHB8m+2M6iS7uY9+I81nkpE7cwsLdX6qtXTPCv13+s0UFJP5moWDqqQ+eEPUT5C52QrX+jaihTKhvKk+cI1hh4wGMqYHOb5tEPqe+jf6ey74JJlRNzq7wLCr/qe4MJ4mnTp1jLrrPhkRMgr1l/gY1JVxeQzcx+rll7vzA7g/rW4WNhoxZcSTCxesG+bKGfGmcVafrXwwLH228mm2Ms6DnTS3pS0skgPuYiujmIzHv2C1sTWmd5R5uzwEXMts2qOQwdmrMt8MsqqjjD1fRBr9IL5S2ba4wnWQqcPFXGn5YuyKPMn8JMgv65u2+oT0Yfm5YBm+6/BTejwoTBamSHjoZFfPaN3yxUSF7CC+rYbJxoovtXGQLPbKv3d1gG/p+D9K1FqZkRbasVIbywl80pzCQeLtI42McRm30gDurn/qEOjgbnTHPiTJeKikY/s/GqNxYRb8NBY/XjWIAwqLuNjyPcr1pCMbu8GWxPD73O8xoO3WohjzvpNxGQ8iEc36VISdbcUv8rzwa154W6AoLbIAj7qR7BuTz8DVLBPgYsK8dBkNYunfYNP5ZCW4QtcaXO1BubRzkhGVmjZ8yuWFn0i/eWytxtOtr17RkrlASLSAD54sGDpc9K99iheVDM8+Z/eUlMcgHUfv1+lUxoAl2y7veZFeEyzzpT6U3wK8h0zs4zs+S93AWK/4LnXDtA6ZwvhWxk4O5NvZ/NJeDeo8IYT0+rlXPSry6ztm36Vsorul33mVYje4Bb/sUXiIJxnlyZhnvtRY6hr9+Ba+sZVR6hbNHW7i08zJV2i9Ul6lY6vhU4ht3dB2Sc9dWSQ6TNPEk8IspzKsk13J18nayXQzkKuT+m63I94svopIPBZNctONSTtGm6C+CmAIxwseXuAhraK+hk+g3IxFNy9iyxXd8jbEaWgu+yfu9xqZkW/Qbwwk2bLJ3MrGtKzUjzRYeDuKYT9QeDtisV2fWLDSDx0Srl+TLrFRSVtzds4N+E5YwiU58idYLGSOBV38nf2LxJQTMGcXiZL/moNouZrqyY64nvRBR9ovkrCoOyGD+l1sYhkd9oZvKzPTxQVEx7spCW41nwz+dH6K5wz7jYVtoX/qZK43DNb9Uq6otE9wkp6GXuMJkF8uCceiCnhBEmIg+svW54MMiUdnA9y/VZ39oNY4AFMqLbI6GwtchQVS6YTkPku9jpdS7Gz4Yl+s4VFsBt4vs5UcIsL7YiMrXO2k4vFKc9eWsJ+2fK8k9Rcun+aJWRiDkRHBlw8N9zCMEUifvKNv08Q2DTPxkxZ52waiuhxpS6EnvckLTb42LuHiaPKduOutjBVWACcLSW1A12hfR7HPBhcDDn/ru+iGA09Doy0rvtTMlaRXD5ow9Evd4O8nMnZ4m/484ts0l/hphNI490QEkUt0r/VwsneOqnHyS1wIGmkbnYuFiUHDp9BxWuNnTDnLdf8tQnyVDh1BWJIx0VKwo1X/JI818w0/MRpPGWl6WgiMw9Ih0MVhRkVXkxZuYUlHrYduLJ4UGfYwaA8+hnSdpw35ddIBn2qht3OOzeCjmvl8qDgfcX7zgCdnmLcfEqzAtp7Qifv9CTv5iPD2g2kLsLXdtwwmfzz8v59eBjyd0twaP2Aj3gCtxHjIG8rNDiTik/u+sDOd9hnxZlFPupHg4/1LuvBq40MSHYXhk1kv8wroCsNSe9zMAFZhsvrgr9MRaTpPMkr93cXaiDea+8Z+0jYyJdJujiwjxF2vd4u0AFXYlSAEB3KGzCf0qfm8RUnukRzFppPazwYpZLSsDoQNl+T2dGTcEhPnpTL/eLveSfozhIc+l/xh4IZMIKPLzLgoI8cX1JVQG9cDF+d56GPeEPJtn0oJpI26e8XLr5uoaekfu+y5HR5iiOqIpzNmXH9n+6cu1syP39Pyad4xi9iTLNjmh0dN82NdCEaBDx8WVRGxAxdhGrGwW2gon8h2MADyncHWna+O2lXX6kjgd/y0KeNMghbqMUlbADLf13FLENnMOR6StBVhw5dhCt8uGMFPfmKjTKvj013nti4ikaxLWKhzfzqZ0jUMxiAXb9M4hcTu+G8j1wwiSrC6gWWZi01B30+CPZ3+SjduN+g455TKiaUCbeyvzcC34sN0uU8RfJGu60pGEmMgkzZ14iO+VDgcaAYy7FP+xhbJHLo5h0xw1Dp+GFZxXmAAnXwVlZO+26zXCV0Dd75HoaGbKaKKAuyUY3i6j0ZAdHbqi1bw8+Jz39u8L+5bmdbV5nQDN/GcBnCmhZKFOJM+jpllvnjTz2UCVc8EC+TByQSHEs1+KJzIq9MGDoVDSiZTt9Hcvzylg4fHNb9KtJLfJz+nNO8EYW/4ikjafnvFuTy/w+cwXySkkvxBVsJapq2MXX8dRjN/pt3OfcRBH4p1aE80yHeHbjocTzq7UwENVOm+DU8+dHEJN2TUTDL97WSkeuILPDvcWJDhb8BdxUTk47kf1hV9XRNPfUyCD9qnDvt03tCO8ab0D3SR1kzIF3EF+j7qHm9OnTIqxgHID+dWRku+8BycfMu3qcyben69myc2cHXAGMQxtF/+5uWv5Wcvn2dhRuVyUjmIlPbi0fvCPnKVyK35att2V17hy8X493O2L+E+mmrsiL5DebVPK921dDiQd7QgsKJMKVnZ8G3r3MYKa3h2NHTgYpDEYM31nWxL3Af9KFsZu+mmtd7pkZOell4zZpyI3/EpfcH+dDAYjKlNta93B3dkvWq0l7noMEgr8SXfk/rSzEC2dRW5nhxxzmVlPDFnFzFYxFc+ObZ/B0/gC5HgD5SxLdpBAJ6/aXwnbhczkqr0INxexjb2MN/O5yiN4UgouX9psSAiPjL8VLWXcbYr1JOtyaK+6AMnwSKSP1VDtHhOYknv7khWUerfg/nMuuQnGOXGSSejl01/Wr67QuPUta98+XJxhIm+06D5y7jJJ9ukY7rQjTS4q5jV9a/jy+1NP0TALm5o7/iEKeg+JibSxId3wJhI815n34eJIHWuO9/imwERTo4t8wJzULX8yRWSQxthfaeFjf+1B3fohEvyxRhZtZuVjX+W8qdk7fhp3jGLO+aLOzjF6e8MpJ30F2Enz47SsCL5FJw81hzeO8/YJKZZjIbOhOv5krDUv37h2hS/6wO4W1CE7UVu25pP1O3luisru+C2nYwb0i/jfgvsC3r8SH8+jPuNsMuX9FfJx4LW3WJriavUvgv2TIuPUG5x8yKqwGrT5tfLfLWCk2RK161PClKQX/G1vq6Nnhl20L3gFjK8UiLw56RjbsVpsqGVXrAM2/KniU9jRvFFiu+H0fimxOuSleNCGzMiyZGpfzJuE0l33JM/Oigmsi0hjaa/uJUxydzBUj1d8EXlomxprdq8f6kTG9oo0/j9su/u/EiD28qPfkx3gA3Oon6KpIW5IhzSb2Rc4pK9+LwocgE820VqXsTyrhRczX2KOeQygS4/zJfHZFxr+2ySbxJ6PoQyMU7DLvrT9W+Bey1yst9f8lOJrYqi0n6cHnEqX/blvUwVFnygt5e48InLhxPMz1U+zROzeVInRFmRPDuLc+pXAzPQ1QC6nHcjSDCtrow3R4oY09Hb3COMfEBcfLehuyu7Lei0g+9NZOoCys0kS3P2Dpfq3ZYRg3rLfrEoeQW2lXHX1zQmdZyW5Qltpb98neXocPQZ+or/h3B1/rm1S01/5mUPjJwILfSGiwQ8in4i9rghI+BG4Pc63x1fKcUktvpVXO3lH//S5wOYrorgQR7qhjaCrxopsX2jHzqrBMtbTYIv0OXj8tvj84muApn0kqw9MIxnRctgyHQUtO9r9f3J8PNdzGAHlI4OBQpdgkX2O4XWJCP7jd2iZAJMXF5srPxG954ykq58JzF/by7FxCd+sQmDW/dINooqL3DNtRInoR4+opke7UFFTZcI7TFui0j8kdH2yR3HLdQX6h1l62RkXJZp/Gbbno19n3gMlrhNne2zHXtvx3/S4HJ/kI9I3v7IMWPRN6EttYzLT6mTuTUuxbfpRkn+GLCPy+9PGav/TXHMx3MsyHj3xoVOMx4UluOpUswQ2NJOuLE3lDrP9U9afn3H7HuUZvETL8f7N8miLnk7BVreRL7+xISddbwL0I0drv1E4IV9EpGWZBddcrp+57Qka+yEUEZq79YdK6ejpIuoNhO+9PduEaKsmzV8m8wwLpPYwa4c9Aa3LSwTFFw8LEk8jtrfUL4TD9ZzZ0eF1Su8m+Ak0gTJ8s5mQ8dhfVwVYF/BxWB1bOqITwscEyt8M65lXD5Zj2Vm2kk3BrBa+aSj9I3apkMy1hXqRkQOxDW53hnD9zBQjoGr3RgMmZK7bQ4UeFR8UcBbGQ8apFGfPmX6WcTlbT+iIppwtbRH4eQTYFWk3FhAf122O+1wiY5xfxVsXzNLlDlixO7pbrI7ze+UAa5KnRurmNHdo9zFI+bDcY31odK0Q5tx/11XzJqdG+qcZSTY9PRp07ensNEP5DOupwcQjGsZNi4ZLbDGHDWos6tCvqfKzJ92Mb/hk95p7PzxBna5FW6MIy5qeIGccIlvGv6bmMGxKdkf4vq1zamp0S7Dr/MqPNmcEZ/s91s+Crhw7dRT9A2AO98Uv+kU3a2MknRzHRw1249dbPq1/Gzl02xlxFKSS04CJdcLfusMnEi+84qk13yuBhtX87fMGiR0Pg/AHsmxKXGymuQtQe7QV7oqetzIWGR4QUYMHiVYEa3bvj5ZaewCD8q0w31A41WeS9hXeW3Ifg86UXZ2gwkew3ZBY0XrDnYx7yNhW+B2CWAXbC/57XXc4WPa5DglEHXxs+ZjG91BoGZcnbgm0/elQ0IaPnjgypWU52QA+fL7Zy+8aptKLJbSlZxG6EI/iGuEWxJv+B1XNnyLfVLMKDIiJSX0XWxiGTv8hQ8qumFaKVatdbMrt/63o7OQqW1vhuCOJ9LhmLTsEuhvd/PREJbk5foj2CdlGVQ3bQuZsB5mg3132IVPfSzrE9w7PmTL/HRqW7qTJYmuah4j9bHHw8q6eDL+eX0e4tP3J2IGXENZwkS6/hPdlk/EjOmnn8bIWbeb9k1s4niTXjaVz10eO5PPXT7NVsb5jtmYUbHdAhYank1321RuYXN7FJ1NyWAhCtaPSg/gRgyWOfXPjQYnVjwZrIuF3WIIYdVlTDLn/q1wO11wfbcYug3kiLtyxMQnUF6R+W5x08i83br40AGlRB1od/G7dd4iJdna4sqej5C+lRDLVqid3oyCJ+MK9L+hy08jHfaa5zLH2mVocFf9swUf7GuSb/Cx8RTp4puPGcZ3hJgO8sG8OevChsxw5L3AkfeJliVawQsCctKcBmLgdgFT6SlZ3KTiYCsiGvKCctOEwANBnL7IR/eLtFi8NWF0qdxgahYa85MlF6z7WP7uZfHXwZvkC907bPapbYee+H3miTJiu7cB+8QncGed/fyMVUNX5RMyQKvrQ74UpJaLG5A5zeeNjLKoP/H7aMZFVp26UZF94g8+JIZ41T+ZdJM5rPrDzpqrNgUvfh3aCvkHMQ59Usg8fEDxv1637Idvhmlb0i4hstfkM11GgOUj8LXDhbYkIPVdZJyKePQyxW8cg2P6gDhsI52ye9XP4icz3xKbUA6Amb5LLv8F/jnFxKPZ7u4MwlGg31ea44PggOWncSkutLo5x/x4xRJ+geJz509B+TRbGcMplECt2SHiwmu3lfEQeOdAUnBKczr4SvbwJEaILPm7NLiV0UUwZMTzyesx8QiWaAGr3CbZAXCwxVN4OlzsX5rsCIe6WdHqHJIs2ktjX2ddtXQWMrdl0d7xeYrbtdnid1vf6OWV+lKn/JfbV3Vuu9MzBzwIRFi6hCH+dHyaubqUadcnts/E19L7AGlOdXTGv0gKui2WAsF2UI1TsVBXTmsnswdNBEpbCq1/r815o246e6BrM+HUXBd3xTAa33RcPi0WkGf0gZSjgCskX8LVpIMg6PYZ27m0+M1r/Nf+uPKdpMVxF21BweT6RAr46t2hGiwf+/k2ZmAXoD+87bedO8hHCL4AjXLQZeKjejOv+Cf1J/l7p22TdhRe0O38AtS1a+Oi6c9jn1NXuZJ1upLZk3ju452tdDKDvyl8hMYGE/NX651NIV+ywe7wjySXbNqQn8jSFyc+jUxeT3Khj4V3bS/Y3QJI1nXv+zHJZDkynzNuvomIXtvdddlHWlghrvs8gEV7Twtll6mbz42Mn7H8+o7Z9yibFXhOPrN3ssDtvF5DSx3rASz/Btx9wjzoo6O9CwxFxlz3SdHy5ckEjPE7Pq2dDtztlslG1p5vL2PByyL29V0B9d7isuNlXKH2bpxu6Jf+Pu3bz+jYujH4kMqfyMgJheN1uBumbQK1kOlu/CJHaGEt1SMnasb+1k78A1Orp9OFFvoOy3pKf6uMHLx5m7YyrmJdE+48EXBudFOHHXBY14Tb8PlgKf6pew/M5YyFFtdRAQL6uvrYnvLYzfMmQZnvpDit0ejtCXc8aeU2YbpIK7fhicSBeuP3exlf7R/xgXrMDR/uJ36f5wom4i/i8k4Lg7/a4VB/sTz2MVxejBkOi+P4YV/b6OmlQ0qARun/IiisdFzcd6f35q9BtbMxtMEtXSouDz4JTDKWRU/TF5BxPu21LN+NLO2ujqVuspSmUnx5lhF2c4hd7wc3u72qnO7359/JJzxZTG7UhSjs7rikDD8Q+0l+H56a/Skov8dbGZsRgG0bjps+GMp1QhWROUEha7M0ow3NWyL6YJJW+Ep7ohb2r8CCjOGI2OE0HtTfN8syAqwu+OyS54Ujn33og0ah29HH9g/yEdJrwdVyaS2DFwouxQEzrDc+jsh7OORTDtCjerITshHe/vLYrTbBNdVXgbxjgrQWts14LWwTBGPrGgg1Axpu26B3S5FW+J7cFpxUBLeaXO6nOaUx9dUmrbSVBHqoQSxkzDJzO+HiTIdFl9O6EkTGPYeLJL6NHM5HQTmqJuUDzi+U2H7ovnRs405+XmZ957vzOGW/X7aw8+EiA68ccZ/47Hyqibnf73DB96RdFFLjS3IZMFdmUpSvZ79IEzBsZnb9qd9Pvo3UhfMe5VgtFr5XzOB6gUca5JyrnTQE7nxOgyIy+4d6jAcoSJN9r1Vdbgv4FT0l+fbicxAW+KQPOgvYlDR1wtWmvoOVM9sriomHlcQHx5VwR/9Uat2IHs4RbE82yrijgn2oW/vy32UOQL5eDtqOKBQzIP647jo6xo7gDepprGccyL7by2i33L+rdg7UjJtjhoLfd940yX4tP0v53FsZRcaxMHLZwyFp1pVH8MdsU5Fry4i3jdkbdkq4Wk71gYkB3565RKbAR49+PdlAB9UFBt/WMvlIK2P4CJDPROjxPSQyo7/Jf0Pl0k1WwXZrTdFzbUdeybd1DnpFe8cX+FjXfCfzK7iLtnPQery1xNttUX+Im7ZZgJ14PcwbYNMD5UUgT3X83cgYQf+Y9WVQXPUPgiLiCtQT7LjOO0ZSe2owAhycRlQ5I0jCwgJPuIP5V2U6xbMuhE3yrOxVz+zbEjwEzaGgvB3NKl04Hl/LShxoqRS58lMwAztxGYH2AcsJFfH31zT4vl5yYgefDDmO1AXjhRT61CnSJKqgzmMOYvomD8KPPnb+eF6yzLd7AocyqxYbDpngDkn4fXaaPhZGuMutRayIxsdSV5d+n0p3E7CA7nwqngD4YsyoW44nWvrQLvNczUFbyLjQ4zbhb/yg1328Voe5dL472O5ihNdXJ782sHHiJgrS+G6xEdeg/jTeiF3j4biRC+HYS1MPvzhpRz4DYyBv0B+ZfMs7jByrSI8RQxxXheYUvLcrInY0H2QGWuv+YbwROYdm06eT2Hib+mWvEDNc2Siz98EuQU4dMo/kzaI+gOF4/Oy7zwFyMVe12DJpdsUHXeJ+vvLJxXtcPs0TMy4pEApMtvQboyoRKFEE3P9dYCt8dd3W4WKw3sm0CIotLhTmy8SUYdegqdrT3eM+bV7KodI7Lahzu1J9x5iT6Ba3kSlw0Ww4WXmCi7ygjslI24fd4obq2v1uYI357vT3At/Qsc3fZaFFdBTgUL6OXwebshnQeeWL83Eyv7M5ESO+a8M3sRkIG1r5ulU7iXqdJbhIQ5kSE8Cd42sSMR349mNyYanT9wUJyKxp0fHR6DeCv3hSVv33zqfigi4vkNE/W8YdMN14K68WyqcHpsIu855JFym3+gW4mbeE3/1+6hc7H7rCJRn1Ca5Pse6o8sanFstQSXy79jK/F7ZQukN2wq8DoS53Pq+3jf737esJKrgGrwsuguUY8zhmPPHd2L8jt2v3e0frAS4vSJfxRrPtsrylkJ3dvjPW4boueEsh4bu/ad/77LYjlv4pyDsFN2i++Fz/KzHDSaQ808SOM11jnR7BizJWHt8UM93vu37y7FQ8EKty/pzl14XZdyhofMOA2veeTK7H4NjW2ccqcdYKYl096DdbXIACGyu3dwxNhB5dt6n5REESI8bffnMMcC0x3rJb2/IDfktQYN+Wro1kNb6+Y0zBbftC/ap0Mi8jdC/TRxfipXzU/zUyLhO8b5ShJE53YwRwdzreJ6WW6veLrOd8MXC1sMk+8yJrSRdlHvhBe/lx6HFVRZT6W2ChzU9anFQvb8XvGTjduc4wSbcboX6EYx5Bnz9O+kohmcNfxTZ0K4lR+LKR2czxvq4b7LyIHuIY1ezkgitHcIOhsguHrCpO2mycwExOlXDXOmD25QbFyi9KtdHiM1e+s7Hvnb3fxZ6t3+P2VdsqZjyJWxz77xhiPN3oqJVxc9BEqT+IGUnmj8YMhkMfowuY71RQ1eUbb8Q3ydT4TmzfmtzOxl6NGa6rpS+nDO/pGJEtn+jLVzTg79wiKcWmLr9CRr6LxXiyZNKF1TrsDLhu1s2Y8akLdeX3uXyaz8Vp8nxQym0waCqjYPO/NnCJ4nJOsRcwxOr5lGo42GodtQueeVWj91gR9V0gpwrjLjtsDQkmy7CboFeaHvBZFia2cwg3zuKWb2ccLLPSP+Z7E2C6f9pd57LA3f4bvE0lb2eZvvY57QbW4F/bZ+wf4gvgMl2UOdquhcH8iKcvFGzCaqWjK7odXw9SEZwMYK3QXiU67ZH4iW6Dt9SxjW01c2EUui7f43EZG14Dzu0sFmU8PqQLVfgnvmXxoo/Xv1cE1FLJfnE/v7WvLjK6JDU5SvZt25iRXmJZ+e7pj9vS4N75st4fT0nvFkcJt7/8SJTtyK/84pM4QLA1qGwE1Dwl2rmmTVtHS6atFJvhOci+rfGRUT+ovvGzj2PGwtdFMo/bAxcybmV+CL/yKyprWJbZqE0lwye4Fjf78lXMwMN6WO/u+234YSPctJ1Z9zJe8XDKkWA5ZrjxphtkNj5KPRyaUp8Cl2IV0TLSRYJtbM/9fizKXP4uxvxaREREVf+iqv4NVT1V9Y/g+n9EVf8Pqvrvqur/7Cm9T/OOmRcPesZ1k7ydwiBATuTrjwdmqBvfUZUWNcIpvuqWHyvXEw8RFrcyDlL5N4mcZYTLVK8yTlrmjbDtZsq74gt/yFFy//BjwoVB1x2tOm5xFzIlWgJ9WMHCb+7vrczUd4QtKDbhTbKumNZGReuyQOK7kIu8s6XVutEFcpesLW8KNLTQbspL+UoAXkc7V5HrAIUM2y0CEy7Mv/lkqOGLQcnGHczm/Yf4kWwDFklEt36nzDIuBk6jbY/uAvn9geBjmW65e2rSLYJlLMKWWxnNRN8W7SZjEYYy5Xp7lsbDwv4KfXXwO2YcUGhn2zfNsKJaYkjQdL7pAsmVtnxNI0a/Mn9DXGAb3eESn9a/YcH3IBn2dksl4dKWttv41Fxnn9rKhTLDoCnBpbnvPxu9PS6LOHHrBzmGLGiF31/w4XK3AC5jv8l7W7+/4/tBPX4o9VbwvyzfakwU2qlz1ZejH+SYQXThd+FLvptPKL0WQwuZKSeLONfFF+prtKf6mfwaH2sf+GqXv8VYxe/y4S4G0o2m4/9F8jbrkfF635Vh83z8pt0SP3N51VV85/Kvisg/KCL/BF3/2yLyl0XkPzv+PSqfbiujCATuVJdlnUueLDIn3LDUdDobkGq3UQ5cA+nqvtsHMlFzm9Qv6rh+RZlEtPIdhB9PH+JTcF8Mign30QpiD2ZPgZ70eTMIj/SlG3ke9nUJ2+AuE4RdedUzvWovGz67hCbpuU0OrYftkscVXYZttgmm+cK0rMoY52otgy3ztUUiXfvX4vJvgp2mY1V3fAhR1K5FlcUdqzPOVML2+ruvH8crxp7Lpdv1xEHfXf3+dIRGuOuEl1cFlS3bbUlqRx31mfhyzDhcWs+M6Dh7or08LEJIF9B4GxMf9u8ONxFYzfmFL2t9yq6NZX4i04NSQJUu3uUWdzHxe2eDN3HuldL6xe9Ubv3ipt0XNckXKwwNTwg/6IJ9foeL19GmgJc2scDAdz+RP1/jRZdsaFmqZzkM+glxC/xi0U3EhXm8fbQiXokp4Nv93TQ8odf90vCjx6x83vILrRvN7F8XkfKwyMz+PRH5P6nqf+oVep/u8I/yvgCsliIYl1viATwDtzGsF22ruChrj8vPUsq0WqEFXcZNoBjgogsUuDdJe1k4lmBV+xsgHPQ2gTvx7YLyKkA8CRwIk9XYDmdKRhvcR7Bd3cfAIEFa4XYJCcq9C3yrYNXoyh00qt1Ebo/Av+ObchDLQ9q/5LwW3aDNNrA9bQ9eCr8vwBmkTRTqqatNIMOTKDtdpY89o06OGfdKcIYepi1uad5CfxpbScE24Q6BdeIGR4RJuFQXooe8INgqqltN1MZ2FNQ19D3V4ZjkeAdM5ppq8eWsfWnnSTOhzccN/SL49tnTa5Tch/rcSX5w47vddkTqOIvbQp0FcSQ++m5iZ3iBksOYgyp1UQY0wlyITI5VWTdMI/wi8Z24ErrgPiRaNNzGFZobLHPB3fidW3+MMrGPX1cTj66vrVzIZ+FjCu0XyhKFdY520vkCBmcbAz/5gFWlxX7fC8emFS3Nv9Ff5TgA/toIF8as+O6mfyYSp2WGTGOBl7aq21jSHNd1pV1PKYbIPAL/sgXw5djpCbCIA+4j3B+DlIfksT2An2ZSUy6brAdf70Y5YVV8i+Lk60/MLtAzaBuCBfHPW349lfF7FD4u/xDY4uPfuNHpEMNC3Ng4GGValqx4wrLTEZ2Gd1XnxCyfxBFF+853eJ0PT9Jm0vbbLQEWgk74o+SElPg2+kDWmq9hIrLcJrdy5qtoQl0vc+SOzqKur8Jy+0P5H+Hi5a7tLjgr/W1K6E03fJ7waHBLYrbDXSVEREdkbLfc0Up1DmS4uNBkc3dj38Iu+o9JQQubAlgTbLv6ghfPqQmr5dhrXdFu+MbONe8z3N2cAXbipq0ntKUl74Kbx/S7K1FIKg4P9B2fVws6VXJuc1w0ZLECK9Nng9OZ81cLrPc5tYFq3B/nu/gN3/ijUw4nl/hAf0FZy5ssjUwsv/NFv19jYoMPfCpuz3bvyLNchS0f78+VlX/q9LyZ+ztdVeYN7q59MR/vfMz22pPyVP4bHsUvdtvzHJbrpJttzGBdkFx8EwEXV7Ho8mvdNjnki3TRVrqF8kL+aMNtgHCzqr4rzLQs65XjRMfLy8bvl8+i4A001eSLK+3utN5ZT1sZC6wJbocHd3LVVRLvz35c/jeuG/+cqv51qP+xmf2xV1T1r4nIn2/w/pKZ/TPfxJnKp9nKKCLJWVq6nFcPc6J13lXKXUgjWJ/LBS/o9nyKA3uEC+XOkW7qHAinTLuVVSNww2eVExhXOofbOeaGVssf612SoA0M1RMslg6X+KaEmenu9Nhd38CvbG1pDttGqTr3/qz6u6OzEYG/eZTvaFRxPe/NY2IJJ+niJqC9AgtSy2rrGBYTVDMsDFl/Ld8Jb/BXoW3WYXqO9vYhPuP6L0xcxLdVaqaT6Fpqz9tY8DTBrI1YcAnjDhnE34vzQ0DkwyVuKuEcnFI24zD7hIs0hs11Y8XXp1Pw/aF5E3DCJhpBCurOVz150aBVMxzq0xiGsu0e4HvfNuw7TrGUPPfZN/DvBvbOl7e4zALHE0RNfFCeZg4sF4fAN7k4ek8vnRO28xcgr+PGtV0cYF12C5gb370LgXflUcxQqNeffXmiqwXLFqb5zbC4bRAP80B31doj2ED8Tf5334/rYI/GTlym1TxY9S/qtm03mR+fDz9Pcz/m0ZAjxRTwa6EafMoGPjLoOXz4ovw5FIdVnb49+2MDN+Zx4E91+bfN7I9WjWb29/6uBPk0WxnLNhRPrrZbGZnI1aaOJlAf7XNySNCc8C6LpZluKSLEt9ynTOBReBtkmeQJlmQeF0MXnYyB23ijD2xl3PFdy3zTp11pokvXvxa24dP17xaXA8Fd/6Spc9smGJlIvVO+IVdo2pTZ5TUAw+1YS7poJkALk5LO5hKuEl+kNzppCcmqLhR0gYSgv7tEKZQJfDygYuhZ4fpWmaspy1h0lQ7tUOBrgy/KjbAy7yzqkEnrwklE/Cz6yc8UcJ1PvqMpcsLTohlcHcdPz8JF1uzjObozvluGQThOXRSge9H20zG9/tGFmWleGk6fQ76rbFWw+PhzPjDC6k6F8kTOCt+rizPWxA2F5I81+cWpqew3Muw+3ki0DdzG9p75X4V6zyfhauaLtLZ+w2XCic9/wR91vq7ls4oZRJ9x0ziQn1aWjWga/MYt3ZPgjcw72Eb2DpG3oT/aln4Hi2OA7k8zjLeXeSANLnWh9fsiZadP2X6I2L5VUeT6iLMDJd82Smw5lHBzZdux5Pbw5WPQIi7AFsny7TCV2KYdspBtp2vIBydGZ3MQb0qcgY9Du8yGvlzhJIRjavxyc76d0sAopn/OseqKIPkzKg47+Xh7gMRviANdrPxspUzq38/yubYyqghuZRQRkePIE2W1bcNkvgAxyJatjO4sADfmTHrUDxbq3gf4poltQo/FM2775Mt/mogdKCOwXsnY0QrnWGdN0OKDAVL/Jt/ikBtcoe6nPgm1dfJSvTxZaOiuHIKu2nd1SKi4jQPa6sX8li7zRD76IAFCOgtAo3Y8CSuNXydXkzCFTHZtR3TcohsyDHNymnWWn9DAT83JY9wtRJl0ouE3pnawIrY9ta59aRqDTmcnDC8ioid0UKmvciXmHkCVZPaFFK6Q4GnN9C9T8bhFDd2YiMXBHSawkBIYD5ik5ZCPeOfCj8N3xPkkzOkdsLVIReQNt7x8cEsLj0VUcUeE+3LNSN1QmeOijpIBX3WcG8GHKpfdId/J3qge7TTPkoyLxdLl9yffcucc9gV3/jXHFE18S+6Oc1CkfrtNJemmxXWZocltLeC0oKRrvDOj9U/NvHPdJ7+BQnDp6DalvDYgQnH8+pcWGtrDFn8l1L8yKJvS5TWdva3i0JAxnXhIMEbo6Mt5gecutsMFNzPblXARxr+FqCoqc7HEC6X0Wydqk17luJB86iTjx97r4CsiefwU3m3TC17R8Pwfxc8Y/CSzJ58ybWYoqs1pQGb1xHUYXtyQ83kEh1kdAIt+3yJfzQvQpOJgAb4jteeJdRw2u/+ZtzKOUPpLFFX9B0TkHxeRv0NE/jlV/VfM7O8fbf+miPyHROQ3qvpfFZG/z8z+tR29z7WVEYpROweFgsukCmle6fSwlc8EaGW6xaW2hw56t6DbJRiJb8OLE/uu+MRtbXzX9oQP465kvKPLuA/0msZgEbCYVrpLWRxzxk2xsoG9vTvaBOTb8VISh+ykbNsg5eLdbWa/2vLhRNCh3+Pm4BsqvZu3iU4WfndwCbb7gqad90v+sMjChtF/vvN6qFTdxA8FXv0AhIchPafATLj5Y6Xdd3Kw5EWXYp3eMRCxtC7yhWV6uiYfLSgEMMUnQFwfsGkuRH3qhBdlCL/zZUvckfzc+VS/7DxufTd+W0qyfDgf2R+FZRVdAasdbunvrJf5S9f4pmDhs1hAFL2HzS3iQIerFUxE+q+wNrq/jTdK/dUMr09hEZ5o7OTb1se1MiadPRpcM7rMdmJNXcBvwxiUVAtjU5JnLrwCF8UDX4jzzTa8kP6UK/vY5Zgku9GFHsGHJr/ZLbry36AFflEAl/3vkY6pp3a9OKtm/FRnhCTvuAoOBPvBMuroe74pXrcy4vMK/Nj0py2/kHhm9ldF5K8u2v4Tr9L7hFsZhQLZuKAm1t4uo6hHAaM4Byl+67oO5Pg0LkoHOfWqJzrCrCzOKwQYk3Sz/ZD7YJZpYEpylyot35lKssu8O8yCrAJtQ67FtUUi3eF2bXeLmk3/bvk2/WxpNm1L3EWAfVqKzCs+DW2TBYxfVwAkuCUuBETmV3C7gSTdbJOlUs98lwmdJxeMu6LP42UDm3zIhLWKFzLBDGzps+4i9RfVs+BEEkJ6v2AnkKa2C1a5HhfOeV090OqAmXAHbGP0tlBLavv2Uk9SvIwS62l7qux9d8Djb8F2+G0L3+10n0xY8sUr3x1sh89o51nnq5KPuXTCJxcnWCZZ4um+K0ira1vFT/Yp5d2shzIkme/8Lwv4LfFm54NQr9/o118tywNlurKT+cbHoq5Ozc3lYKcyJtkvIl/GLTJ1vrKrZ+zW1ncxb+vLjeorudyuCj+KC6AH3NJeZc2xSVkGjxGap7sVv595xEehZfrwCTv5atN+QJ+8PcWBT15+D0R8VD7NwmzewWkiSWQpuVRfNaNkhHTV5HTaoIKNDpOC3xOvKGHsMc8LClzkxdhGxkLG9WRpdq049cUBdrrpY3/7InYLSHVOWArY3cLoWVNuXCQYLS4P9ypodNcwmCGdOx6NbG1ZBYobvMXUicbdIu7CtebixdWg0xy4O753TxLy9qbM1xQhCZh14+8xFBGa0ecF0yrYFhmV+F7bYZLO2CCQdrrUzAzAzYFXS4DM7RTs6X2w+tTMEo0DdIjbJPP7Z4+84aNS6dCVpyvA5Dfcdy9Gv5lD4Z/g6H22oNbnQDJkBu+qdb3p5hv60dY3rGPGhwah8ftdWYUulTqP06xazfEnvrzxF9v40ig6v3+4kLGRr/juDngHizK0Ak+Qp7njE5+KBW2rk/FuoZpQwMfcoWW+edCWMmudj128Wcmszhm3OW8FtaWMMR908Oet0OhT037WJMzoU/a3NWYYwD5wbwf2ldild5GJj1S/j8g5hjAsn9JoDc6v5ecsn+YdMy++Pci4bpJPYbLZBsht/XpxdD8DvHmY4KwTHzwunx2Lv4Qe7cZ0hZy3wodsKc7YPpEV1US7zUuW/SM5IFAnOv5j8W4bi9dO20WgQ0fKMjyB56BV8Bb9Rd/FbUt6XiCpWeIu5GAyy9PYdrSa3zudBx/kzbbBAcivUSZTaWlp93q894YTZTW+430AvcNFJJRJsD+WbbnwRZkzbMvX93EMOgfIPD/ECTLefFBUG77RfxqT+fDIpt9z2PR+BPUf9JEXZfWUxiPxAVp2wR6EexDuhwuPqYrwZKifSQFUnIOqFDOM6mCxPqYzO2nkEMCajRgH2F+xL2da3c2PHF8afSS6rBuiuxoLJViZtvPE5y5/r1B2uAt/HD+1ysR0kx7Jj935cqR1B/soLix90L68ktqm+N/4492YWAdLfqLFp7lZ+rdaYA8/kt4xY5/KKPhe163fJzFVIiC1caDrH/hU9r8prh+2xMWbVWGDQEspZkxc9vuN7072VWNGvFts7Mun/C6j45rLHHm0tcfno9/nmIHHIByffXH2ycV7Wj7NO2arEwH7BY3UiYM4ndGOmWJjaeV0cP7Mgy5222fqtsEsU8Yt/UkTduN9yDmyj9ZbOSpycdYL2CTzg4BjnZArwC6YcvuC1pJPGkRp9d62PZH5e+ACyhL3JuBxfXn3c5d4dLRRMp4zBq27JKXji+27BQsGxA73jk8YxVO+FTYnLha4MSTc1snI7YNySdoiKbiEj0UWP/Uav7Xle9UPeBlcEh8rScq1BpnvT+CL5KKwfXHIMrtoUB8wB96e+kBJPmDQio81g392f4xjfmRf7J4QiSZcdCrlVjZUtZsuC1/OPuwuZnRxoKFV2lzm2Pa+lqOjUeLpCrfxy9q073zqsl7i50O6BFZk7mju/AbCL2Re6nWh56XcH4gNpXQy2EPf3sG2/mnNd5kD7HSz9KkMO+VITzhvxq/IWOAX/bvz1SpxIuI6Vk15lfnw3w2fITnJaLexat4ItLk4KnzpMyciVJ8HRym0R33w6W/mfePNuN9R+ezrxqfl821lhCOMRUZ9pgjVoFNEgeDr0Vnz64oloSBHwvv5oy2VAaS5OtlSEtB2OMu46pJImnd5gjPfFR+RvCBc8CmBT8HQSa1d8tGWopte/laOHe6KD+EmlK5/Hd0uuXiKC3ysXlrjdkmHO02t9SLqQoarbUqSv31Sebd8H/DBujnLMh4WRNKHOgG2xS0FcNPePJvKbYOgpj9iAscZS8aFbXuONBNW52NT7tm1xHd2wYLuhesnNU7c7klmqCJgc0D14Im64UXZ4XIC7gVyynVSmcsKB4IYnNrYvWMWZ3h+W1GepPQoab4/1vnUrCQ+cCb7PPDlQ5dtEE9JOvO7GiNECMB2fpJoirzgc6ITcH3l2x7EDPblO7+YaHa+b4Pbybjs3wOfuvT7WuGWfuPF+q2vs8Yvbnz58lpTOGa87PcR2bd0q8QJfC4sb0NfxirZ6BVlBl/uT8063OT3QV/P/H7DOXBz/8j55o4l23aBZd7I4SfpGENM4cY/4GoDW+KN5f6Vo/bRd2vQ0rjBZNk9Rn3CRlvIeMUMP5zK5dYk2gl5gccMJwsxJJT3ScsU//e+fK6tjCrpkWtsU/HJpxl1tV8vtqxAHbcyFicEk0VDkF7EdK/Yc6wEu8OFust05zyaNh2EeCdV8OkCtea2Zt1bSucoVSTdqUp8bwISJvooUwTwXcD8YLDdBVj2n4/48uUHsCKNzljvGxnaF/gf9K+lS0cJ75KI8lmJm/H1Os8pKfUckPCo6RZ3y5MC4SGb/tW+521hRCvVKWiyjIkvLZbSb018RcYXQdK7blPx/m5XNB10umLzvpnrUFMA9i0sQEsBXvJx+fO3NXw//h2zKTj/1tQcehLykzu/T3T1kjTzhZJ8Efm65Oemsns+sPhpZcSfK/+786mlv73MbT8XsI9OiL3zfcsLEz9UspwP82/nU1PM4P7ilOlk3vnFTb3t9p0u7nzqkzYq5V2+J/644aUitD1PEy7nsoVPd/plwydkZhkXujl1fsushd3ZKM+X4rvX8NlXgz9WmQvWhcza8VmOvUm+KUoJ4UHvCyc+Z1xT+DfbsX7xialEnzmRo3mHDEVWgRtuma4eeVH2Yb//a3mpfJqtjCKS77KlhZRRXYbF9TO3vFeTYGGrTPKqWnCZj6GQkh0aLyzaevNbhIKzLrtF/Rsy2Uo3UMLpEB2GvQvWhByL0i54rvhw/xq5XsGNwnQ6PhvcVBiWywrX7XfFh2k0be34cWC0DSwHhkVpcV+R8XGxTa2HbmfYrp9tP2xtY2NO85bnA9oCruVr2eAjPivw9XmZF0IB3/LpYb0tm1Q96lgJF7ehXAHXEl88ldG3qahfj2CNuO4/P35cfuvLZ6dIH+y7BfSkFVcz8pUkwjh0C5wyXy5Yy8rd+o1rHTaUbZCc4vAzL/QTxYdcsrYxg2OEEi2nLf3vLr5w/LEKgqqp/njB69bvd86gk3HUyysKi+PyH/lf6FZb2nGBPm39Ll0HXNbrKyEXcW5jU4oR4xuSTxmBHRQZO5tleZIvq7Y8p3L2A+z343tid7J2v4scMseA/O81f11WiZzmUf9oFQsepPjnCBQ3fr8+VbQKC/Fn+nslWtfvA32guH+HevLtWTdH+PpLhrs1+i9eXktOPm35NFsZ67HJQ8e8lbELsEHkalNHE6iPdvzIbTh76WCD7WWaqU4ycduc6cVOMAgmWHSo1L24BHN7ykS6WugmHwvd8HnAl3E5LotkGnd8Cu4HZIymOz5prF/kK2u+bX92sYT1I6THXaBxvBI4wNE7NR44BdyVXE3Q9SSgjHWXoNHdRA8wpX8tH0uBDWXeyhjzvIH1ORa4CjJCpqkgr8AU0hWuwM0RCXrpRC4ViS0irBugmxZK6lPYn5L5e0v5yZfDMq4CH41UZwE72lWuRdnlSsbL3t6XwJ2wOpzrx++caugvz1cLP4i+bOm7BfDLtvOBq9NPMm7v26ZP3fHlLXe6lLn6HJ9P3RyYNjv7cql76iY1aOWzize543tc1k1uWNBCmQlt62OLLfSwxeRIvkcxA/RgIn3/rPJN39piOWT2l31diwsE7qZRkrEFttY/4WIoLWgXwuPTYSXdtHMu2dPO7wORJmb4VvKrCf2x19cyF7sBX55iIvBJF8EnxmWduoi1C/p9ZCHuV+bo87tbOd5cf9UdK25Ldz5eHz76+m1EVyesDF+uJv7U7Dod1oqfn3PounbojGPOC7fKIyw/sfuMZajqT0X5NFsZ5xYPzW0YkNygxQMOWUrgiugh866nw64CEOL6tSYIXtXmtfcEO+W928rIwbYkK+yXALbc1QGh26c9HAx2fBmFcJdbGTt81N1iuAL3FRk3/Sv1lR6bOvdvGzm5P0I6uKMD5nlH+7mMFIDIFtLWIMbnvyzjLpkquFb7t8KF9naMdnw6WtTfaX8QrP0iHIKhhJt/W+ZVEoO8LSWCr4io1kNA8IRZDHozKA+aMg/qcPQDEoW0LUWFAjAeEHJdO2Cby5G2PY67owk3P4VL2yQ/GAFV3C9OZfB2vcu+yRi8Coq85lv2odXvyxI3/4B5lWwMnjSksZHMV4FvFrv6NYH52yaYCKspZiT5uH+ze8FjiQvCdNO+XbRU4cpvftDY0UJ9LhdHALv0dWSCMX4dbCfzqp3aeKG1o839OUVmbrPC3RXu751/Clj0EezrGh5kN1s5NrjF769iBv1Wwn3El9vjt5XrKQ5wjBRJ+tOVnF09zd8aQxT+k2MAbS1Xkby/eG4t90sHHp0v6IOz3xa/kQbXDo43MHnSgR+aT15UsYgDlnh+0vLJxXtaPtdWRihGtfKO2AvLd5u3JIg//e1k6Bz0g/p3w73tJm67eWiXY7IvPz66SBTsrg3x6fdyMbCje4erJPMO9y5Ir2Czr3xdN009AhaXBSy/FtZwzjKAzMvjildjvysQgFjGBLMhWBOxbecq9iYgm9DND4dXQsEgyrKrhMInraksD4z5xojN4F/EgoWSTtxexuoVUsDt+Kb+DBnbJGFxhivIhPUjwZ+gxith+OiWFvbd5kzxiZdKW2f/dLd4MIb1gWhsNMPalLHhYyLpPZXK56auhJsm7OCdVvGVT1dHePZlT3ysdjLzb0q0ee4bgQTuSsab+eylG+v0+ZxO5kV9C+sL2K69KW1sAgXgHDSR+8+XLGmZ9Afg9H6f7aTdLZIEkfv+YiDisV+V5djvffleRuvb2W5anwoHWwxo9pNF1lD75WN7f+z90dSGMQTc2oBXklEh3kiKC0caPz41N/c3qujbA/kMOeJEXOoPyoiv46mccjyZFL9g0XZ/9O9f+TRbGWdcms7nSmC9fn3As04gjJjT2B3XVEXNynYC6ypjJvH3Q/IdpNjwlNhOpzAqTXBpYSGTvDWphCsT16zerX2E2/SvIbN836ro5gaXfpdgyzLh+BCfoqsXcJcyrv566XTD/Fd1lnkX/FdjEjJZqhc9MnzXH7eFVf/aAAmbeDkw7+h4f5Id2IJHxa3Bh/pAMrLMEcIwcLU2AXoVkfRmBL+kbRPeDr80319NL4nDu1qXa8i0arfx/QSL/h/QLuptwMZhxb89c+Y8TSE50PmuGD4Nmyczury+zWUkJXQYycsF7Cj5SfDzIuPd2WNqFfEzd/ChOmDNxI7Gp+KxhBM7/+58Ks4VCjezP4oZXJkb6zhAyXaXeJMv2b3/Wviu/BLFg/ZJesenixkNX4RlwFdiRvuEsON557sbUV6OGcy786krvqs+3/CpH6tf0G3kSH7xJo5t4xH6xTu/37mGpGfqz4pvKyP79vz7Ng5Abpi2ofPpiLQATk+15JRYzhDulZ6eglswcQvi5Z0xDpzA46Kd6slfn3Dd/fNQKsY1QdH93WFYyOn8HZ4qtrDP9sDReXIvxpdfy89bvmlhpqr/YxH5r4jIjyLyfxOR/7aZ/X8eE+Dj7cMKB30zsWOmI2nedwEHvoSnImIH4QjMpeKscDJNHGNmRkHMJG0RCFyrtAqsSSQQCbfrn+S6puSj9jOVlu+k+QrfLrlnVunyTRBuZXSZVnx2Mt7hdmUVJBoayxsyjTxNTvJMN9pUHwa0SD01/93hcGDLOFZgPcBcsOHeMy7xVcCxWFAkg85IiU6dkd0ThckMgqVAYG1xGXY2ZYka/UeQvNrTk6qa8l+woz9K41lkBFnwDu9cJGEd9B8Lqwvn0LSsGXVLsPEbcK93z/K7ZIee0fYtpWKbwAfdsi9v/L4qL9Zmh92nTpw5inEibSeUXv3yxRjf6KpJvWUZb3z5OmZwfxtmJc51HWgKw5KPTbJ+g9/nRF1lDftqzEgzX0tzxfmg38eYsXwX+Qk/H2f2qfi3uD2e+6R4cKqrRW16L8pJUP/2Y5GNbsnHs41VzNgprthNjiFXpcYb4kSwPW7sFBkgOQ6QLNrEjGW8aU5SPGSuj0of0MfKdTomsC+7LNKY5SdYuLX8gvWFnC+i4G03PeEwq2Z7ohrA0rZH2LJ+1fEG3ydemP0pWjd+6xOzf1FE/hEz+6qq/yMR+UdE5L//LQTdAC7nNlM3//hzau8SuQVNvut663lTEIBUC95RcAfMMiWZdQOL/aNulLRuI7NLpA/hq8xZxgJOTjjJtaC7FJRpLQJ1K/+TYEug7TwdtJcyrGRiuTbJTNFlp5uFXrMMVmB321KU6ljcb5Wb8i1u5Zthleqz3URoi45VXNLNVNCQst8XOOfxApa3YuSERGH8rIzfHneggz4SbGOvvC1ltaUl4/rdydnGsAfVZ1DNW1w6WDz6+NCsZv/CiC/+Mm7eTnN8OALC3WZPJIpf7P3TbNeZhLBPKeOg+VfeG0q/p0JUpB79vZNx4cvRD+gSV3LZ9ufGH9/5tga2LeznNrg893e+u8jlumhkXvLZlRWfrr70bWvcTsbiU7X92Vw0ApiV6Ds7+4USyhgwbBoTq+2wgNnzyUpivtml+oFIbMBXW/i91YIpiYcMEd6m+OTL0NcX/4y6sFy/3v0iQOBbbt7t+BB8UQW946zUv94fJ1cVDOdOhyynCsJOvw9TMMWb5PcF/b6lBd5nLJ9cvMflmxZmZva/h+q/JCL/tZcIgJUuT5UK2L7e06X2MHYdd+vRwtdJYJFh1BZvawQffCG99IecQHY4mVaxMcflBQHyZfm7xQPJtbXlRo4l/IIXytTielDY4a9Y+vCRbpYyYhvza/gvYRu67uOj3v0GWo8XZCu6D8vjBWgJeg/5LvuT+9DyhaC2bBeWox9dPga57V/x3COwHwTOyVPb/xEAj0yzC654ilbCpfGuiy483CM/lctbGfEp2oAVEdyyo+l0L17EzffGHC7oHfMds0N8S8sHDBEUMLUz/DJvZfSmg+B3/mj48s5m75+CcFyglls/mP3vK7CdJEvRtv2ntp1f3PnjhSCtL7jzt3ftSPfh4gBhU9nhdnpexdNXZVz5tntq6xalv3e0b2Je8pudLp7yacrW77Mc2NbmaQvauxjR0OaF2hJWwOMkeR72Aa71T7+s1pXNJi+6Jq3p5/GADo4Z6Ymc5B0Vfj19jxLreBKkxxyUQya8Hpz5fsKydWi/P+V7vmP2D4nI/+ajyBHr62fL43dN3OmCzcCsHtk1P3zFw00vHMcfsDhjls5uTGWVOU8x0G33zEzapX9Nl/a4OxkXsCTzrR13utjJyG3MZxFQdzIvaUvjfBvdLNXJfFZ8Oxnxmo89JU96h1fYWQbg4Mz9eeolwTaV++oBaQAasgfYHpflwCCkxKOZD6ug50YKLqBs34o+zScwntenBZpp3b4F4zUvXbD5sBQjGS3pJoL5wM0fH8UDNTTq7uI4kPNXq7K6znCJ8zj9IcR0HwP+pCEaQT9gEbfymd8zw62NF65vbcSj+D9SMmY2gnk0/ejYGMK8dZCojTE20Y3fR+6VTvC1HW7TEcUQUnGXpfg2GMhVWcWmlZPD66/EjJuy9UGNT8W4tg0dFJuCDvNxA1/Fh52/anz8Mo53XWyEn/baweGgMYGZR2zLKk7tYLEOfrHzsYXcEz4Fwdllv6/ky5NMLHOSsdJOsA1u0NXhy6X35SU2p7/W8AFfnfiIqPHOCvTrmuouz6R18ZrwZ4t7LYgyrNk8YdftLz8FOwE278IQk7nI0gk7cQmW4sCv5ecvtwszVf1rIvLnm6a/ZGb/zID5SyLyVUT+Vxs6/3/2/jZmu2VJC8OuWvd75sx4gBmhGb5mzEdMbBNsxYkm2JYcGSeDIR/IhgTF+TBC+UBR5PxAxuCARSYywo5DIIotJRwrlmMSkshKxgMBGzGykkhJQBocMCD+mPAxMQEzJsYMA2fOflflR3dVXVVdve77ed699/vsc+7eevdz9+qqrupa3Vd196rV61cD+NUA8M3f9G3jYuOM/J0V+yYMLcrSKUx51Bnz+OODJ/LpnYEOcAovx7On45xpEEtmjWOgU550LrSjfYX2gncHSkv7LhYW1Vk5qDQOCWhogXUXu8hwNTo5tT18W6oOGzDfljdl0tBW17izVSvnlXKvbLXqmJ1DWiztdMqcrY71Xq9ySv5F/aRe0awsy7XTvVq7Ck52XmhorVwBkTN3nKPSNhMmb1PZ5ZwvOne01mIv5nAXBXDUuhgyzsR7EG1aaM3KzHmLlRnuqeI48vrkOLj5OUySw19kOuMdry3gWC6HLhpvYN5jHjrh/pe/jQsygJZ+xu8uCjWqlep9YdLR5wXqUfxbPVufQQRL3xK/Ed4NFrm5uTF2xO+pJoLgT+OMNyXujEmRC15c83L5KUn9pNM93quyFhcnPXeHpP/u9lU5F7apqQ1TrXWhz5+kI3Y6VkxF5KUS3euefE82cq58vkLXvtvdI/RylrD0Oi6sLlsNu06S5Rbc92+LGe+RG5GmeGV+lHyXzQ13cotfy5DQhKwnbFewv0HFW87b9x27utU2tsR5cyh5DltnnyEyNv0O8gOy49XAZs8fZ6I9SvtYjxQyaQs4G5sz/5bTN0woo6p+71W5iPwqAP9FAP9Zta/T9fV8BcBXAODbvvVn1K2CTLvk8yolgLJDIyxHhGui7XkSL9NeOHWu6R6Yc5uaKezDvDudU7oA+nqwJefvhRKmhWW6mOu7rqBZDFEd24nXTscr3pfQVtYL3k7Mldx7C9hL3jv35FKPF1C/hHelLVekXJJC27Snl6/+fx+5zLt9UXxTo1hd2k82rnTe1lvb045u/y3sqRFOT1K5vWDPu6BzgkDW8F3Nmc8PBtdQxcyrzhs7phQ6U3gP08nzjyXG/Z/0E79Le+yO39eYeoHHdG9Hpjmp9lFcxDWmttCwNmXJa7m4LGiqTvfw+AK7L3nv4H6LZw/KvWB7EbbdxfIr2l2KrnFd1+be3/NNvjChvvyh6eE6tu3p8fZ18pq6ZPN7yWvpY3rNW9MVxt6TC0ZJWxjLUtZiOfkIn1fOFU9GrBrKyAvwtd6Ot/UDAkjjBzgON05enD7DzTB9hi8I1eUP3tN5jb6e9sj5D/lMyueWPo1B9wbSh57K+EsA/DoAf7+q/tiH1OXvmFEoowIJRX0Y7ZxzDXuctN4lzVkzMEvm9SG3zAL3vuGRI/B9GNmPOSC00j640GBaA5xO57u8ssrd8ba0lSe1by83JSs3xwk3z6fC2+qBF8i5cuQvkZMAWihPoFl5ZdOeIpKrXOy/OEVQv7ngbeVoYUCajKR+kfqIZraujwjpQzp7Nf5Do87lqDa9yEcgc9r1tLpkvIMqTpB3PPPTt1xPypNT9aakp2K0G1p4hzMd/8IJ5hDCfFpX5E1Ho1Wq9yBeD23kPDSHKmo8fTuc9lwODHlx2mKMskHgizDHnBX3uyHBtNLwMqZe8noe6/uHRecFF3mslXGmAosiLbSrjtuxn3A/l1/x3sP9rW0E6TTaZBvpbfMQLt7jbXxIUk6vsXyRS3/be98l1pn9S7c1P8GitU2FqY2cRSnCxVrXyks6qcAWPwPTrhVwWmCEHzL+7pTeYXnxNyzXF2TmM4TLpFFv0uvEZsb9Mta2/nTir4kb/SaeIvlot3EuPe7H6KyLMKtrlQvGfa28I2+n7rJvso0z/u1lsHuqdiAk/D00ZLliIevTNse8B4b74ymfRUOET8i0Z/mO2htN2g/LL2L60HfM/gUAXwbwB+Yj2j+oqv/dh7nJYfo4jefC1kOjRwjCeWn89sR1HYgdU6MtTjLKqK4pll8922FaAkoHsfyeTqXlyZqKpHwCqTIPqXVOrFraV3WuCtRQTZ8PFKfZKn+PtgzeRWchnisdG7kLCD/K+0LaZNd79VzUvchZeNl5NY5s8rTtucp3f7dOsrl+ISfbRoty5Gg7HUUCNS909fF5Yffog9LoTHIWXl3GVIRHS9TttPye2HRSVMGRtg/5GOUIaRlq0uLJqOlF6uUQD8l63Ch8RJBDGcNxT3npaVccsez/qE1HouWF2bh4491XQXbeXX99IAX+djc1sBsNdtf+IjU/Ly7YneoKkW5Vhs7F32yGRKn30mfw/WoXHY2QJKcrQI+LF7xp/Da8ua+XejXK+K/VueDUFV5tbLPQPoL79fIjtI2OGdsa3qrzPTmEZRWeOtpe0VzXlV4rLy2sWpzs6zG8Wu79rr3Vllf9FWx7Wzjy4LvgTRtb0stNCu94sURUBV7b4ifjfj2W/yiPjdJCK9mG3+Maf+mLTgEhYjo0UQ4SJmK5R1lsps+ieH1TxgGve8Ar47wWPwD3NwrghihX5GP332R64+o9mj70VMaf+0HSL7y7pt95laJ3eBf+2E5uF001H5/R3X24mT2vNLqZXCCf+hi0uX1Zhza/0M+6GjBLoSZW16a+hZboO96dTilJo/POYW90dNqr9knR+Yq36tQ4l1RX4a11X8nVO7yt3M4pNcn2zuQhHt3nHmifvRLQ1bXyFE+e+j2VLDqHEyCfPZ8A6V7HNin9CufqI074hfDsjMypiiC/KyBR7/jAMslhh0w7DlWuO0i6adWu1l53xElu0B5Fxzg9MZy08R7oHX2aBBRbiMvJT/gOkvMhIS2PYPdCy6ct1v7AO0XYY3fCmN0YrLi38BY9Ol5eTCScYN7eD6TFzx182sspvE37L79Z1rSf6+3ugRDNw1he21fbsGtfreMKX7Xwdu1C48uqLdL1FVOXk4E7cRu5LRzeGx4ZmBfebr4Q1ep6L+4ls/OVz3BJG5WhC28+Rn+GV9M1sf8tci9mH24bSe1dcH8Z3wrH7oL7eAD33d9ooUXYnaFKSA/jXfBYIu9PrHToylhecd/lel32JI3eOSadmDdwfujofkDH7/b8pWf61NOneSrjyxOHmMwO0oYyTtRTf8QuPgDT4+8ZqhhPoWZeNU72osWMD9Y5M44TwUZh8ErUZeUmguXQRQt/Ua/L1KY2G60gXjaPecXynsMa4pHbs9SVmIOmpWUdl/tUdCqgzlktbJ3cbV3VWdzTudPxQmfjhRSxFzpWx/CIbUIOv8skC1tXv6fkTEiuZJpE69f1cd6ilPqOGHmCzjm2Tnp1vl4i8VeSjqOiZCLWv9OTnhCN8c/5eE9K50mJJic2IcaTr+GK1Z92zD1cnyDwR0bHJIIP8eCeEE/LPJxk5o9Slzlid4pUV+zaEq8Z2xZD9GK3lLw/mQOHHwri+HvKc7mVCWDvk0Gs7HQ5w64n7F2GVyfDbgXWCAmkMHSzVmCdum/IO9UZkCp284wiui4fxTB/q8YHqrkvz76Wm7FiecIJ7XmzXwueFlPNHl29Tb5mNelAhYaDYeb1sBPSKd3tylvLGzlbLL/yN9S+Bbutrh3ugzAHDe6b3AZ3t1je8XY4WHVsmpfklXzt2yNPY0GKHqbKxBKbi6T2OWaqV+AfizZJkvNZt4ntS6Mkymq7yJ+ov+dkmCuub8L+RXYjlyctk1mpnmGvk3A/FmkJ9zHqlXI64qO4z+9tieg8gZI/+jw7j8Cx25slMKBb/IC/MzZtdxMNXll52WfUTUH2A1FH9gNXPmP4HRm4X+/RG0tuiq+D9HEXZpTaUEYgnt/6STudg52Zw448nn33SDAzBiG8CzutDXzGsLSwIt7qCAYt8U5VE3wZkE4d0dBafgEoa56CTmebdeftD5dTfGo+blxWuel64PaWdzeBqCkBielVdPUylpMqeKB9nfwdbzEZQF1KVh0X4pqa+pOc1EGj8zDNTk4CwuovL2jtxDGthmrqauV3DvPe36Vuifvp4xF2avsc68GQwwQlTn+iiWW68Z7X0m/EwcSd1JQTL0PbPahPt2yMxUXbBQVqiGEOXRxy2PFhTjrFf7PjryEhcfQxhbDMug9zkoXWTSE7XuCQM92qg75JJhJ62OIsXiQ32iiPkBeltr8s8ZhNn1Sg38PkUvp/tMKnj4TdTkbY7R1lgxtZKQm5nVie3cPwuADhDr+6xQMvFCsvz3NLWYu1HR43OgiQsJwjD9pUMYd+5MVDaV7xGbu/6R5eyE2YKpv2XeR7PL7gLTq63I53Y0Pp2m0dsOBiy0ud1Z5YMG/F9tN5JdZgFRfLqYdSVsXLibSF3ZWGGriF5I5XJurSgo8XaM7GnauTO+WoYffsENEH16dggc/XuG9P8g4O/ZTAblNhi/sS+Bsh67LyTv6E+zKx3NiF/dGMTCBM5BBD15lo09q1PN3KfiDwWwqtLLThB4z2Taf9+YNfqPRmFmY1jc4nOb/8fgRIqC7hejuP0FerSxnx7pya896hrWBPji/r/0C+EXOP9iW8NfHCc2HeyWnK26HU2eJKx8393/LaDxJ+pcfaB14oxzLS2O0i/zJa7Wnu2YZzF/d7SeysSx/L753QonTxvTnefS8jymMzwJ7qUF2lbp/YUGVziuATLubNC+mdXlr6nO0yFr0FkEYnKbzLCf+koz3F2ulYu37mLY4+0eeQFWDKIZ1D9/EZAV4sPvi1rjUJhwLm36PmJk+p9IC1bINtmqjMKKlzLDiyQgTryL0u8/XYPeTew/JOj11Z296Ovsm3uNJ3pJ53U/4SLNem/EoOmbHnq1he7+UD+lcdK6bc4+W817PbEbjC2oI521NCq20mbR4hupd9F+87TBbSKStQ38OtMgKvCUNN+Rpjm3SUICXbxJMmIVWUyqKiRa7TComN8hXjHsD9WVfitX6U4IawWEqefeLUkb+RyWGQLMJsk63fbPQlu61yVp+hoRfednrr68ZH08ddmLFzmx1ne3RvBf1LUFvzaYGUnLMCFUg2i6m4at20PPqvNUhD24WwuI5rHSnvCpCTr/XseHf5B3hTwc75Uvm2ruJUtV7f3fuNqFb2PR0fqcvSA21d2nBBvKW9slu1TUtbncA177Ig65x2nQBZPtGuC7LsTDd6Wdm81j29XfSxusjpjacW5xhZU8exq6rX9djEhXcG2cE3+vvOrA1hYITATGerduIWMJ/26VI3P8HjJ1EcynIUWn5aNpxxOMm4Zrw8IZnvBExa47UDPIR2d313ltp7eEij6XvOBaSSDi9P1kfqQilC2MffZXFjiTA14tMGj22mZ59R72n1AZuB2/ibOm6abYANLfeGggVX6R4u3sO5Zhw/Ire4mVZux5OZN+Xo7mfmvdsmlnNPxw6flC5c4SLVdY93w7nqfPVyZoOZD895gHywyzF/sB3uDdrUHt3i/qrTHueTeQruTxDNvNSGNFIaLHc/MPEpj/NGR8J9phU6tbA+ETKs7XAfMPqMu9xe1j8thiiqovMVftDS/HsQ7vfhillXg7rAdqsvb+ZVPXqfYb7iYeT6OCluxRc+vZknZsKAEL0YSyB7GnQVlcOpj766542FEiGByHLMMN/ndbxnHetJh7zIbBdwVrnJIfpr59TY5l6qAKub3y/gbdmu5Oxk7WRfydmlR3S8FnfJ5EVVjvcbbXgL8aPt57JlotH3EO/Xdg/KxIx5L23zQrlRJtPZgfrBfN/rYlKSdlptAC8TjayfpBvRNUYbXnZi00BzgmDvpEVTlXgleN0mxYmz82Q6Vk9mvRKLMMOLMHV9EhZHKqf3EmD3m+XyEzgOTxy8cfKXrnmfEASv/YPCT5K0/GtTN/VJBmLsbgdkM1tkDOVqC6YKM9DFK9zfN+S+z1hTwe4rDH4AFx8FOH9XCsG7w+571T2EGxc+Y1tfqbTqnGRUbCs0D+m4yb8OF/dpLAaQdU520URrZTYOlznMVqZ6+fKu2N3+xQsgBqONNbZ1Sc4rZggl5WsbvHmyVJP9TtM5feyNzpJCjy9w3xY9XrP7m7GVczS2qbhvc7wIQ8fYYEqh1Hkh5WGU9p6c6jg1EToOdELm7Y6xdxdyZNwPOBEAJ26hFD01q1hu/KAF2bXPeKbPPr2Zwz8s+QuivgsqQXpk1nXmM7ulD/4YeZJe/m6WSYk3AMDfM71KRS6/x7R0403oTJUjpZyb6++BkW1qg+QuLx7mTb8pX51pd/Ki1Hp2tuzKqpyNHvzby45CspHL4WyVttNZuvId7yJXrnW+cpzJQe15l56d7KaF9o7MC7n1tx8aYi+Rpfg8WcI4XC+elUkpIzkLr6cT23cWph41xFDcs+Wy49Ce1uVQEU8CoDhYjs25JWhdt+mI05H3nNc4edF4D5KTeRU3ZJ2Ndzx44ncHFHLk072svWJtIOct4Kd1JjcmAvXI6JekOtcb+CSAgt7nCWwTMkgdkyooxqzYRn3D+yUDY9GJ8trGmLKx4/KS7/BXaN14UHuItyYt9bRyQOWVnn1mxboL3rOMDRD9p4nHnW2SnANrXY24rW96iY40Vq5sU3m7qcjOZ2Ts0ksdfbrPvBtbrLhY8qkvV1qqf1koNgftLO1AsnsK1xOkd+pcD5PjbdLx5IrHa5VTn675H804X/0Pz3mmXH5fX4qPuDV935+Y3cF9zytgB4E47kvF/R67B898r8vwWBS3YteWVzGfCJofKLiP4ud40eY+w3pewf1Z11tOfvbKFzy9uVBGwICQysruB0+Iu7R8p0KMyx9+RwUllNFOZ3P0uHgiVdc0KSTLdaa6iLrjTYkBWEu+cxqfIq8ywdYRZJqr4brIaRaDVyn1jcVwjY4P1F1t05Y3cjrb3OW9yF9NGNb89aKsVcRpNbrhXTkotFe8ura3TmJqG1pangyQw3VecV4bycstSHLrAo+ccTOJkUrbldPvIFf4xzynjkkOkJ/CpVCSwZueUjW8WW7gSQ4rjJ1XIZleJkYrlLd2TOfN+qrJorBHjFMaP+xjo4GpFYsrhuzxaoYRyiO8D2J5bdMFb52ILxPzRuek373xq6s/uDfW2Vb9BH/DJBveq8TtewkeF9or2yyqkq61ulbnl+rIhS/xr7X8Hu7nmre++Srd03lJBcvu4n6Vs8Puhv5yAVfxl3C/w3ILPuFPn+REMlrcb/C4wXn2PPHkTLycaR/DfYCf3nFIoh8/V+7JGo7IeIzkI2AYDwFwJtwH4frg1SQ3fYiadE6LQNKh+ow3f1z+QwD29tObCWW0pOUpmueVhnDaGikIzE+RlklAkgQfZguteYA7vdDVKHLYY1CdwrSlCVJ5Seft+3f1ieODvFVOa5YLudeOrVRXHWojd1t2YRtPpgfdzqrjTucaguRlF3K8OufVa1tUfSjvpydy9Z2TVCBC+wZjPrii1zH0Uv8r4S02fOQ0bBvNr0uiTd+mKe3zrimJmq4xL3u8Mt2ak+/8XbJwdICd+kVsUiYISSerJz6/4aEliz36BRojSt65tKdqkmnn/Yv84LXwRH5ZXZIcLbzmlGPxZXr4u2OJN/KH2KcbziVc8ZiD3I5EFpjMeHI2aE/ftX29f854HG5/g/tGm/KS6yohhSte9X6gtmGdiJIczVknpjG8xcWKqRrtbTFIMlvCNpaLIlcLr/nMKxzc6LzDaq6G9UDJO+7vMLbRh8fvTsckTqKu7iPXd33Gwttgedf+V2P3KIh3gjcNuxhcgeU2TgtBV4/3G93qWJ+m6tIb9rzWvnGfJx47pjJvqac2XwjLEb6CUIEgghi935CPxNhEYrkpegfhB/zBHeGxbYh5eLvr/Bjum6AcQqilDYMoDjDtfcZhA5l8iH1yhXHfbCXMCwuRnLhPC8DwN4T77jNG3Tr9wodtxn1+qbxd8IVNbyaU0cYwH5c/jkyWAEAfPQb8patwXQegNBL5EblyF5u0VY/0Iu2mR9aQycRbVet0ZLpdni7xgFey1dWipONNjq+2T9afde2XaAj8l0kA5Zf2clkjO+WtmzCw9rd+cTJLXd2l0ubEf8c2iy12OnZHaSendKFvao9s7XgvL4vBa931dzON3dTtiz62W7KXoF/8IL+DUB0u6qlXyLZAgYEUlrLutArVy6EjmPrl3UbmpDK7BdSeGuKSY/41lddTsoaT5wlJftrF7zAISkhh4uVwxEHMC6kIadGgZTnTHuboj6JTPi4fr0+MT/5XcjHhfiLM67eB5R3G1JvY6MuTb7PX3bD1KofyW58hlXejc5VTmvBibJNqq41e5V5ssZwr4nqlIb1qX/lNw2ZpX36iUXi7dc2juMj371HepnzLK811U5qZLvoKBNtyqbT38jUsl8vL33W/d7Mos9/pfulqFL7BJCvT0hyPuXfjCPlbnRn3q8/Qpd6E+4cWDOWxoKjfH3sE95mWx3F94hQbblGX6cFPyo4jnqqNKWuOtDDct3F7kP+Jegb/QTorNNFCdHw3bdpYjv7gkWf6bNMHvCnwKaSLu6zp9zqAR/7B5THRBgfx8s9Ur24cdS93CT95gY49LyWJf9raotB2vHiAt0tT5tWRvV6XRt27BY6XFd2W8g0vKu/GNtX0ypcqb71WdKynvSWZAFQUJ8vYtY9tuXGMmVfBsfhXvEp6jn+K9gj9xq7Dae77qgLUvrXm+EbMAPQD9u2TuZtHYyo+tBM6uM3sSc0cO/FUaErmHT9a8MTipjoRWvgU3ooyNYwjlYnJm7wskxY43RHD5kBDriQdl/ARz5+Jd+Tn7qzLPS94IxwFMzRmCU/0ukJ3c/S+6JP3OMqpjAf2feU60WcKrsa3NBNCZEztsW/eGMjcmIs6tpiKjA2BP7qOOcaCdhw1vC5r6LSM3w6zGpqE3ZptlXju8CadO6zr6triBmUb2mS3IqfVsf5bfPMqPynSySl/E5aPmuN+dTqW/tneP6F6UP8R70bnnY6B5wVxd/ezTSF51c7qzRjrvkTovVVh3NCMfTHsHMeT77J2ua6a/xLub+tC6AH6GzYf9bnPoHo5n95ta3xG6JFxsup3hfu8MZfyXK+cjs1C7Y/wds3/Ju8hsRAD64ixILsl/2M+Qxfa4acLbfHZR/Evr8f9zyEpJjC+8t8HJBH5FSLyJ0TkFJHvoeu/SET+sIj8sfn3P/NIfW8mlDHCUBS2YFMA/MXjGp64VjLLJHi11mXO2pJk3lE6KlDPR12SmHK9QYsIWSH5knQIWljbmZe0NN41HLHYgsrrpbuhjA2vNbU7ICS3n9rbEVzJZdILnaptPk3eK9qVl2dOJFeaE6W6ujdyV1pyNJAXto+cnhHt7rUvknpaBV8mWqVdSa6rGsGM2MlJItk6ZTfUaty0L7+DoJ4Xp5nl1knn9YidHw5vaJDDUgALOcyLGjAv4n7JHATmAA8Z70PZB0wHLb2c7fVRHsHrE4fqqAXzZflSLuFA8wSBHHJZiB2k80HONxZho338TttmCN9NYXUMTD3WUMYe25TwmDDVHGrB/RXL72CqYJnMG287fgVrmUYdl7zIvKnOCucFfx/F7o63TRe22erY8Hb1Yo7BFn8ftE0N61z0qFh1DycRtgkceYDX+gg62yhhnKR+xHZNSYKV83ssb3i7fCrTxY4tHqdQ8kYnCt/r5WrkZ3h48E5sn5jq4dlH8IyQQ6H53SxwuYG3rvOUK44bpKPfoMzLeiQUWRZ9FecB8wtsi4z7o7Ey28P+CBJH0CdeO4WR/IuFlqsSlhNWW5/iMPXqB0YL58LPfk9biPumEeYpsy+I0Mab0frfD8f9zytd7C1/1umPA/jlAH5Huf4jAH6pqv55Efk7APx+AN91r7K3G8po5ccRY7KcqLU8HTmiTAB3+g6i5vg118NlwYuFt3NWokNOrmuDnayj86LlZYfqPmQJhyu2YGAtvPxs1LHpDq/box68gkLD7ZWoXwudlHq3u7iNztweWqv3vJs8O8kdr/kWadqXeYuzmv6mDVncpa1DRThKlcWOO17X0e+BrLTbPDlUjh/i/gmZDnVaQBTtiYiV14TInpeHJCDp9KfsIEnWvGb9U6eOR+IlnWQ6I+87sSiy2g56Udwc3Zxu0WJvVHjYccVqvDzZCNrDHBvdDg4TBIDbEfksq4QUTjlWfwqFQeykWvturZxB34Uq8imONyFaqOsofk9envK4kvUEXewwVaJbjtkFYU6AwRaPqUsDoHYjaEdDKYV/GlVRf20wtT90qoHUim2oBIgxfIXdiGFZk/fLK+w2mxWsXjZculR5KznZVUD+FHWsl9TZlehXJCi0bJvOR/C1BvcT786uhTfhoi8uBsGZsyuvlHzxbUt7d/V0qdqxnNDJm1X+aoQJTPMSwuM5kd8PKL1ony147EbYUx9Zae3U3ANxYxL+zks+SLKN2ZdYJ4z1Wyw0jCZOSBQK9RsMpqL1w6P6DF/kRgihzvamKAtg8U0Vg01vOxE3QtUDf/35A/sBWpQNVeibmOSrhOobhPNJG9GazzC/92ng/ueWPpJ6qvonAeT1y7j+/6LsnwDwLSLyZVX96lV9b+ZUxpq0lOtF2air1l3ofaoCGqEb+XcdUl355GLTVe/QPuL4urw7UXJWj/J6nnmrc3hQ7lK3ORS5GB+7sq7e2j42o5S6HrUt6Vhpa121va1TvmfH2t4rxypAG3q4oV111l7HbdJiR0Z2xb2+O07po3p2sslxsaRwDvxH4x5RhYuc2l50ToNalXZOrUwSbX7BOWwjRQ7c2Ub7pNSVF3/cNWiSAAAzRDDp6+U6nTfpCE30MRHodUThJXSCGYdDWwBz6ur3LT4uHW34oBj4C9y/W86Dv/yMck42vaAyoSL+eddnXNAueNXIbXirpi72Co8bzLnHu/UZgt42F3Zd8Jh47mGoFz2qc9FJSn5L28lh6o0t6s/WNul3rl0lE8bGw8qr8PVHLis4ec9nrPmiExS8KbbWJyHWJ+173I8yLdfrb13WaQGMvOkVecZUx/0G1/PmQVnNJr+SN7W8XtYxqZ9nmixHlvasPmT1GepYPrA6elati/FVhN8T4w8/ozy9mgs+QfIDOZS++ozBq1R/ugd+6/XTxf3POAmarvKy9B0i8kOU/4qqfuWDaszpvwTg37q3KAM+9sKM0vbkQfvfMU9RWwCxEBcQjFAIrpgBZV5vTu6yHZJafa5HUkniVVyGMu4S15ryUQnGsDHdc5u7uirNdkHT1bE2cxFQdd7pci1oo2OV2znbKx031bjuhfch21TeDcmlIvRXd05uw5N1vrAseyXuDCZ3ob3QY3G+muu/qqurV/iSRj+i8hwKA8RioZfju5N2H3l30xabDiMjn5y8h7VkObxQSnUZm2jhCTm+Q5nyU0/Y0zRxB1zrdKfJvBxyg8HLOgqmY1dyvhz2aKEwMMc/6HlSYSEy/sQP9uJ4XQS+NAV2d6f25UzGVgFyWFnt1wsItAC+aGLXOd9Mb1MFS4hh4s2CPhNcbOQurDts+0C5HSnzPIyLUgoaPL6nYqfrwNQqR3N7Ghz2+ykb2eyMGae69tT8rn2LU7qSu+ra8srssRt8Xp/gPYj7wN7fFNvEybya6hH7H2F1vpE2ts/CtC7IDA/Gu7aSagjsLvoW7Oa6/LAPwnkOs/fFo98DCiGUwNSgZTwnzJ8XGZuZJ4WjU+g562k+Y33XLeyaykURJ0MKlgUZ/4X5LML9D3wP6wuQfkRVv2dXKCI/COCnNUW/UVV/4KpiEfn5AP7HAP7BRxR5Mwuz2NCp3kDjXOmSVmyq3mdMWroDPEKcZHGzY6pS6IzpuGqdxcqKnZbb+hfi5VpXuc1kowX2VsO93Gv2zCL9LXpETjchuiv3gfYtyWg3OiqT7RzQMkmsBFhvxYVtuKYktzisoJtPYDp9Kq3US9oTNjqnXVQW5d0rn27FZX3iiU92qHMkck1tDS7bnQlLJ94ysUi1kVPlfHLGM8+ONl56JoeabrkW3rwbK6n+vBPrvFJ5jY5esgaHFM4yoXppYTdsdCYdki7TwZtcP/p+tvdGMjOvejiN7d7eysTj00hszwX3RXxjy2hfgoscsWC8bc/jC8mFBPXlosRwf8GNC0sRtjHvS3DxkRMkPRUsufSJV/reo3sIUzdV38W2cv87XLzwN5166eIOY/nyFa3s29LW6z5D7xt+K/eiZxLtQ1jO2L3oo0tbs3yJ9jv+phYEbfIR2tpVvM47iwEhWl+MVN0aLC+bS+nAqYLzzBsYGWMoYzkt6oze27b6tPRki+T6NVqU1c3CYx7HJYina4F3Gffzu8iDV6ktB+nD7xmDcf/TBP7PIn0Kh3hcV6/f+xo+EfluAN8P4Feq6p96hOfNvGNmyY+Ar3lFjpfXKCPmPl9o57S3pRVDFhtc+oADTLx0GcAyjdmEYFY5rVzJGQY+dkY1v/JmuWk+RLxaaUt+kUOg2OkgoPva6Vyek+/a16bNM/a2DZv23Zc7d/B2tqntKXWHA8oOaq2r6SNb2urUi1NN+le59cbazh+xFiey67/rIjPrZU9u6ELZ/Zx/7d2Cq2Ejua66eFvKyj1IT5a8w5Y8IjzE6q68+VUmTSGHVtd4HaPy5g91Wpk7XOMtcsyJHw2tyeXwl0FrzvycdcVE4EYLvGUSAH4/bT5Rc7lxpPKrUpkVKjXSa63vl25w0sudVwqvlPtfDV/qOqJIqUOMfKEnWgDxriMA/nSEN1fW9tV8VYdltrRdOf/eYEHHW8fKDuflTjngZmvvZ+DgxjYPymn98j2cbOS0vNv2brC73r9Gt1anDW1c3+Dtgvu5rPvsQMWyPX+Rc48W0ZZcb8Hy+T5b4H688zs6gtJ8b/UDXvfE1LjY4P4mnw+GirqY9lblej4vrKT6DF3tnL4ZudyD7AcOskX4jPE9tkMUN3/vj56kuRxeENLhUhb1kHCf7EeLM/YRo57eD7zl9NZegRORbwfwewH8k6r6f3+U780cl78c446SJyDkfJcWBzoHlfOyhBIEvRxxf6lXuSKpsPBm2qX/XABfaw/+/5VtCvPVpMZ4/fdFJ2/vgRLvvfSgznfbs9GjIXW5r2rfvLBt38X9igvEfTGp6XlrvbOuOw5z4W7lrnXl9jfOufJudF6ni5q/qeNegXRIjl2jDApJ36tpdCQ5ecEWL1KHk6QnTyQD0HEIiHBd/AQpP7WKnU7jjR1KzKOKMy9CLoLWX9IWK5t/S9hhcsaIf7ciJ44+Pmeo4un5ePo1rt2OXB+f6nhIzvOhIK9Km7ESE9cV25ziapx5P2Jewv27PqPH/VbnTX6VqxlzOtpGrzqq2sUEYyhh3j1sW3hrvVvM2eh4j/eqfR/ibxaC5WdI+iDcTxrn+3dPL+zk3rlBl7i+x33F+omfmA91GIs+f6GjjbDL+U8np3xLzTDYcD4tWorO62mJVFbsauHWGfej3hX3Z9nEwYTHEl6fF0PZD0yM9QNENPQgfA575usHzixXTsLg2JxjPGaczjqv/iZh9xH1yzwe/3C+2LizupPPoG+pvdmkH/DvA5KI/DIR+f8A+HsB/F4R+f2z6B8D8HMB/CYR+SPz30+5V9+bC2X04/J554SmPWMQ2wiOsklMfJl2tbvxSqCm08pSNdZs6GFhN7VqqsN3aulIf6ZdeDu5pPKoaiO3Y6Yy7fJdHQ/wLsnaY018iVyTSaZKt2Inl3nLpUtVH9DRU+PspMh9lNe2/ZcjmFtaq9t7P+pBE9TJ4lqq0CYUWe5KW8Qq5umJninOtueNNmmiy6FJxDsLeDjxsfbVFu64nXfQjhDkScq0VT1ztgrAvgtGvOkJVdE587LOZTeVeEVj4uFx/sIwwIs15o3JwNBLp9maxZv/pbBHWkAeolNHnR+dzhOPwT+dM4aOXk7vJtiL5LYr+/qUB7cyLk7z5m7OuG82zlXZ73z0fh1g1WdE1qNgdhjDuFjwasU2Iubrs7uu7WPeIppx/6WYU3zGI/7mEfy95zOcd4exDe+L8PieXDD+9O1Dsavdk2t/02D3Vb+JVsz28U3cNCxdIpy0R/DMm7qyJrvJrMuewsRJkyvviseBv6rZ4+SQ7aLzALz522xleC1EQ+ZnOXIShlZ78OJN4v+EYak9XjfzVtw3OI5TDM0WJMHxFYzlQPNkr8fy2cKM6enofU28XhcwN8JOt5Vg+mXC/SSX2ndMv1Zxn+uCL76GMWzzkP1A8D5Tl1T1+zHCFev13wzgN7+0vrcVyiiA0GhREVhIiGKS8sKrOGrraTZYlXq5LN3dM+kYfl8gVvBukmRkyby7HlxoXT8tfBcOswu35LraF68LLbePzVjj+usEgvF1kcN0dUIwVeb6qtx7Om992IW9Wd/6dwV+A72GJymyaR/IrgtvUYjvfaVdGlB11qx8ZzdyFIm27FouelZZ93i9mDrDYrtpM9ptk9R+TTrnV0qvebOznl/XSLTZmYgv4uAOyHmF+2QODzG5Q7T4bmnwslONBZEAwBE7nwJAjnzSojlBKXJl2ia9b3bkXVxeWHner5XDRPypGLzMfpvcg2zD5XnX9nx9SIv3DfE/A84MVHgCSTh/Mca52w2fwbzIvIvPQAwhkRfifs5veUmm0bY65uZEVVRv6yMueHfYsGDVlc/oKqff7bfMim12vK3uZcyldtzrdxW7dnI5X+/njpYLHpWztE/Xhj6iI4D8aKjhTb5AU/tEQPFRHW+RwzresaPUNhKvpggHDawHCu4L78dnvRs5cXpk1JVpNZlj8QlEu2Jm1hmM5YLkU6qPsG+W2b3O/qeENh589H7+LIrVY3UdAgofn2U73oND2pGwnH1G5fUnbNTezg+85fTWH+g9mt7Wcfm028VlWkZoAHXvPTV65EKrUUPw8g6dd1oZktueuJNbHOMiN4u03r9MIC4mBTs57GOS02Q5rEMjp/bpqz7eyuH6d7TN31buTsduslV16HgL4KfrVQe7b6xjWlFmWq31LXJzC2tfSDoV3iVcpKYkVxebRPVKuuSx1JtKVx3XFgSzjZopIz6Do75j63KqGSdP3k0ucma+8nKYTtI7OaZcV6ZjWp0LBFrMtHI1laHwhlMDoHTMMcz5M6+Fkkxe3wkd7xb4UzbnVdJJi1zeRT39vTDYwgsnDpKzLAZJbhzLP0JfxkQAgJ7LYvfxZHhsxlyfaSx3P2GoIm5qHkdb3OOeXbGAhN3F/RficR5RG39R613Gfpa9IEHh9QXtlW2ucLDqVWmrXBrXrY8pWL3gZJcusNvtvNPZ5Wrfniq36tvJ7erq9G/b9wB2d3Y1SVssv38l7t8VjhfeYhvHQTV8gttsjpIey5mXaYlEocCRMbaq4NjO7yc71o8L4vk9zhPcBG2SmRcedkoul6Ngu/sMDexGwpDTsTf5Bdch4z4M1qy9rA89LbMndgeqjrlubtPAcpOTfQbAfuD0xWDoyD7Dfr/RpADOr4+V2ZsJZYyTrWIRpkBCO19U7ZbtF7RrSMtMQrzi0yOfQXrXtyd4xORdIPEinKQiHLw5FwrZMdrkBBsd/dL84cC26EhydqZp5CSdG96OdpevbEtZo6MD/QM6bp3VhZw238m1qxe2Sak640WO1TUnlrNt9X5aXfw3QhcNRJu2b+QkG1pdLtu+DYM0lBynUwghKctOb6MH78KpOSNqVzjy6P/pJe4UpsPD3PLWPiWZcdpjOsLeHV2UjVCZCGkR0pHfSUi2ILkcQugTBOLNoY+D96A6YvEXvPZtMQ6lsadxdjKWv89gv42XnbyFOUo+VSveM5j25zYwL4z3bHgnrdY2vCYV7Ky4aGULTlRsj5SPrQ9cdAEJj4OYu5dgYvUl7oc+Kx7XPMklLl0qWfNbXLzgrdj9Ibxb2qb8Lq/c9wPLpUfxd17PF4pcbHhx7W9egt1r+woeY23rDvcDY1feOmYS7RJmPhtoehPmpDh8WW/EUF1JN950i17seIxMy7jvH5kgTFVgfrCasdzGR/gIO55dil2lYCr3vp3PSLRKuO84iMByw3NRiId1lid0ht12PY3zFcs5/LPifuJVipAgPzDsx4dzBJaD5ZLfMdwftOOgFfMD0BM3Cat3/iZ0PN1W2/Dgt5LeuHqPpjcTyhghHhJlwIxNmvTWq624Av18Tuw7HBQew6CVwiA111tpubwCso9zPiZt8oZqExgMO1kOEOEFhheNB3G5RCuYckknNh1PnNKJljs55mBpcuFqSiJbQv0mji5jwq673TeOOWG66QhqL9eFVU7ibXTeOcW8C2e8AnFnAe+Y5lcSOd8Ta1KV6wZziuBv7nXVW6qRNnTJQHXWcxTDl77qjbM+xDpTv5lbhCQ3y4n2zzGdjhYqTmQJExwLJXsyORz3JJVcb/6l4agRvNyn3NFLOGBrNNMCEiEfYjpZCe1aTrkHyzFZ3B6nJ+c6eeOkK7iztXwNi7x5+4ajfHfEPUihjLYoc53zQR0C0EmMOQwndlatS8wX0s3Rg5+qIRbUL0wVQz1bB3A6IIbutmbaNOasyxRczHhMvBsczLyScDG14ai0nFfnZSUtrwWPu4Vu0/yMbW37NrwNpnY4mLC8w6dGbsXFqqNIxv4WJ4seXiSZfl1GcJr41GB3xysFu1tM1dzCDrsZLjF/x91evMY1lnvejKJuBEHtN0KLI8x3uSRE8r3mOYAvPqLTpg3ARqfufqX2EbbxXIPD0t2FMP6CbZXxdfERrQ/xG5VPuq33wDB1js2DMNRxX2xRA1/A2kKNHk4l3Hd62BSUfYJGe2c/upFcw+CoR/1u2EYdL8LeER77yb5qUMTv5o0NNt7Pvcm4rkD67Ikk3nH9Zu1Tzn8Y7n9e6Y2r93B6W6GMlLSU60XZqAstLbA6Bdq+WXgta3X0pxj2vKuOcITQQlwdQcvb6BZ65ILWKd6Rk5gLqLnO3WrLgPaeIy+gjI7mirYp14aeGbbjUkoZ61z9kbcvr1LlYd6shfchnrlvddRLO2ZhqyxXwuqq0xHJvMnHtvVbvvRQcgJML1TeV6ktreuz2DrLzZO38fxPSnt2qLHyZtr2ePwHeWPCEWX8ZMzyOhc/+R5oqmfRWczO47tjuX1adIpFXOz+zvZNHUa3Pt0+/BTN/sYCDcAMZ2F7HNiOtMv0ED51eOVj7g6Gdn7BNvMuxl4dz5yvmFOxrKcdHaLFqw3etqmzzZXce+3jPF/rsJx1utCDya50TFU1eIxCu977eV0KT1OP+9uN3GWBV3DRfxGedvbIdiQvX4F1Y8vKa3mtxFK0buoQWDSElmJd3g9Wx83QuT3Uo7cWNU8QfmQsIqNsg7+cd7uuC7xYFPe4D2vvOuMrtJQVRX3+fVDbE7ZLx5vxNx8wnDfjcv+KxQ3LYVukaArw/ZhH3Dv96a1XIayWrFNgddjENxgR8jIvyZbwNzLlvulQxq+j9GZCGR3oCAPULszZhKaYBM2MzHzYz5m3MY7KO9ltBWIOnKhE432DUE2YIsvl4sX56HJoydLeq5RoR6N2oSRLvmLrirUw1a70yLbB+hQMaG/JVTISp61/Ue241+tK5y0tydMZEpbCQx7krds124NAmA8kt6bufrGx2Gskp1v6N4gXmu3KTWz1zc6Vu3ydUPKL3db3paEd14N22Z+R0QavShqn7rQ2ceAJETk4fiok5Oy8nw89hGzjE5apo5gO4Lrp9zyx0HjTe2IlpMR2OXNYIDnIkj+g8S0aAOOo49Fu09n4/OmZxGEiLkenXnbqFtnVaO145tsss53Uwft+yq8hNK9LWjLLe8QV6+xGeO/uaQ3s9bB7nbG74kia8DNh6oFEy/ktdq+8rQFeiot2/QU+Q+vvC7lbbHuhnKpjJbz3XVD2Aw9/RDu54l5460MucHGh3ejox2wWn3VP18Vn1PYaDm30WJ9iVVrNPCS3ffJRMDbhPEC2WnVx8JUTtvRxnE86ZzxOWA7A3icbcs8kmxc2ccx+bg9vZAVt2CawPHjDD1nkwUm0wXuwvoa/JJdx33xDu1gjXll4Q8cDjPsKOwrfdBSIf0Ta+fhkXSGfZH5FB80h8yPUSa75g5PyoYfxvumkTb/+AqaPszAz2/GoJ4doI4UXRQsSVAC0PA3UdSFXZTX1AGlOzrAhlb4++p/N8a5RncRO51zFVq9VxwECVw71oTzLv5IroeMyyenSI04KnV3vVMvztHuym27TEyO17yEvu+jMVrE6pSVPSTDvo04602Bzk9Lfax3T/qA7T9axMeQmz71NOrmtbmwC5m00beTe6z68SBCvZ5VjZayP0D93bkLOkxzl4I0Fk9XPT7/qhzn5RETwSYbTUR7+OxZFfJqjyU/fQCOaqGfqBt4tDR3YeUddp8sFIowxvn0W39FxOWKO/wOd3x2M6S5tJba4YT01Y/e9zalX+Rvn5Un1y3h3+QUXO7m4g8OEg4n2AVzmxO27C+tXOjeMXrwZ/9f3PrA7Md7RUhadKnbHQN+tRRKv63GBi0n47voe8x3L+T5cYTe1L9FKtU5uIdN62KFEU/OBVPXuSMFjQTx5qrTrnc1yl2a0D8RBPJe0Ei1kDB1lgXvxvu+kXXiz3Ir7+bCma7n5W2dGG5tfvihCLKICy89GjvmPcZCHkhzzAwPnT4TPoHfi2GcASa4sTxvfXnqGMn5Gyb/8PjKRV6wx4dVDlS0krisdl99t93ZIgMYxUJl2cgkcWG60J/OmPDJvlhPEXnYQjwRzXXcucoh2SbLy7mir722d74a3q3unY823cjcOassre97QQ1YdmRdYP9F+j5czTquFbuWN39Wpy1oXl0vmPS54s6wqR/11h6ALvfO755r6nJOX9nCoH5fnCQfvOGZ6+31Q2+twPKTPr7S2CLrPu9JWB1yOYDbbFN6RnbuSFDYT75iFcx4mM9qwcxxh3/Aiv5/G7yxA57sGrDP4qVs+Ylms7kl7e6UHFGzw6RDKZ+xGpa+gkV4uiWIBjdMm3+Fi3ieMeh/BVGloAaxPfdJ4LcRUvsMY84OtbSpmtGPuPsbudPKiylt4qo7bJFHffTy+o2OiXbEtyQEexu50LxcdN3hc6uxp829NArVvJ8k9atkFbZw0OItavhhd+wVfxozR3onJ/o2vzNz7gfXJWaZVnvIg+4HoVVyX02pz5D3TYv1ciSRsyzpL4V0WWkRLX14q+d5nXOF+bLQNLPb30zT7vSGnPKFzPascxc0XWdbe7DN4oRnvFoecN5uma/t6SB9vYVa2e+6G5F04gYVhbhtvedl11tmm1HKsXJKvXOmY21Of4l23r+qrG70Sr3ZyL+zWtE/rhV1q5CyVdTpWPUznwnN1rxcdy99LOTudr+R2vFd6XdnN62oc9Ubu9ih8t+umLmTebeii2177fCJEPvSEHJXnmdc71QT8o5S1thrlR1kAVCeeT8rSJOdwHde6pNg1nq8YrzqvzLqPIkvo95hHTdqDQkMQDs5S+pbYYTKmE64veAOw8BHfQTVeueCF0tMvzAmTFh2JVzL9AfjJbIMmPkKavpnzwmQT2wXbPHqiw9S5jDZsN07fwQ0eDl98EdaxfkS7x/JKS+GLD2BM0qnouWAM4+KVHl0i3ErtfdSfdqnxN7X8kfbv7kFHx3J7otF/HvIZVv6Iz+h4+UptQOPz7tHWftSmisdXPqOySin2/rDWxQc25nylndhQdKqbb6E8l8ViyEnN/xf8FaJPTah+gDeRKi3r4O3OPsSxjQ664Lo8T82KExdzmdk146QuZeYzDLuzrxm473l7WpZ0CnrG/YHf7G8iNJFDFyNUknzGkj/psykvg4nPOwngJ3l+0dObeWKWJ0o0wvkY5cUJ1Jm8xjFANsjrU6aFN9NqKW4x1ycIGx0T8Uau5Kzr2Dk6JrDRr2vRpdxabyOnsjqgP6Rjr/Jix40jvyf3Ud5Oruxol3oz0xVvcmBuG32ZbVw8hQjs2uN/Fb4Fz3KvZBTefAocO1xJPLkpc3wUcF7A2hxukqOpnHkjKdgEMRLrMfej82e56nLsG4b8LRYhWbFQme2j0EXr3Lzg8addXp91lZiYDI2Yfs97iE64iKdTlo+F5pmehJmOg9d2NUkfWuiJ8ypAtL54JLn+3RphXp6UTKcsOr/XwxOETyHVPgfE0fRpoi2BuQp3Fj5mGBcpf6Vl6v4N7/h5ZzB/KC7uTnXcyKi432LqTocX2GbLt/7s8aro2GJ5w/qYv6mrhkbPO3JRr1/h8S6xgDx7b+vc0eqW9t612OTtFkO+F2flOrcsCAeX+2FYJnDn5kO04G3HO+QyVgM5lCIvLKwufnLGCx2fKslKm/yAv3sSGKpWzrRunqHHYe20BVKjo1S5SthOmJqeooGa7EfNw+W4jtTeDvdNx4G5Z/IpivBlht2hg7VXk7+5zWgJUdDpvRP3TQeP4Mj5ugn6TJ9tejPH5VuK0MVRtg1lZJQJ5lRv4iXStN/rTnF26Vmvz31pHpx1HywKyWLpmJ5ObgxwpAnyckDCwovUnt1kopoieKPeK14eerL8YOBey9rEoM5yLhZZtkjf6tzJ7fKN3ES7tCE7zSXkn+3Q6GSnJA2lG7kb+R662NFQWzyz2IL59ZJXFl4Wes07REXHaXdHzeB0/wCBHFh2SL392ezpGiBjF5Pax/Q5lER8KAvVk7or6XUUWhyZ3mjNSdYyDkuxjznbJQ6lye8AiDtFpz1AiyVdFmUpfzRhj8i8/p7ZgVLXKid9TNR5Z+gM0ZpjZ95XpW7smXLgcRX59Vj7AkgFu3n8Lif41TFbMCbnifACY/0I/5TPrEs923GWi1LbC28ZmnmSv2BMliWF5uEFArDgYvsZlI2Oi25du8v9advlwgoT3fvWzvx7k+8WZcv9dPra0IvfDa1IM7+4ypORLrG82va4oEVuX3ffl6CiOoYkfu8WXrU8HdhhKnP7Dt3K5ad9cchSUDK+VuzmcZ5wcdIsp/NSXRn313yVe5T2Mv4OWZppXScNXebfG+l0oByvn3gjukEA8hl5o05ILp/kGHro4jPqlPvNpTd+Nsmj6U0el1/X5cuJXcDs/ZvZLzvJQqtJwsqr3gllSC46Wn0VTKtj28td9x0e46WymnZALkRffs/mrQC9kbF1jk0di5yqU7cYrE6m0tbyewsfu//WFapcA8RJq5W/yE1PyBcnpgvv9tyZ7t0ctpHWvG5ptQtvFF6IK0d+Bb/V28jtedV5+Mme0Y6nOHaZHGa1zayLnWI+QVJLk9enTiS+1K2pOYl3VnpIUy7MSzuQ7siGlszLTm/opDg0aJfTuSpfkhtHFHc6R5hNhJ348ccSdQL8krbxIrXn4DJbZAkgml/wPlwnW4SdifeQpl89kqw/pJV4Hsh1WGulEWB92ZF5L7B7gxdb/K04WTEoYerQyUMyK25IkS+r3Dr2L6NyeGNvwbbchrt4jOY624J5LzbyFlm1rGJbw2uXV5201b3TocXuTq4U/GlSvkfZZyy6XGH3Vm7f/3NVulSR9Ojkuo4m53QifohV9x8Yr9iy+UueRNvg8TJ+HXNWOal9hIuLHGpe1qtgJunAmDr+ZjwOvOW/BbsdpxvbCBIuOh4XOZnXFjiGx2FXb0PFfcd/a9/wN4fdE8dugWg8/bKTK9lnhL8RxNM89j9sg9VnvAr3P8f0DGX80FQBXmz8qo9QBRKq+uJmt2y/oNWK/JaEeIXgZyIWwxGfShW8+Qj8GsqoRSA77pBD9epjvCi0lq/v6jnQs7O6w4sdby3oaO1CI6dtb1dJtU2ns5RLG958P1lQXLxqn/E2J+dPp6+tHCl0o2j2Sn83Zi83JgFlUkr1JNuAyaJ91od4B7C793tecqiSQxll1uUnNIpNnnJvSA7TmcORDbfPzsE+nAp3HPZ73rHFgfOTLeYTaJrHc1jG/gAQcrLUfnbgLMeOJk4hhmmRBNjRz+6c/QVuqyufBDbyMani3VZbUB1+l0r4JeVjEmD3PvLDNuWAEJy+KDv46GWMyUAc+vFaB1j7cg5djPHLeNzjfYx95rVOwtid3/9iPNFS3zIGFRFeWeQyprLP8Lqw4rG3+x7mEO0W23Y+hKu9wNBLbHtEx8bfXNFubuMduQ1ecVH1A0DvQ1o5Yxx1eLz27opta/Gqc0+b3wcmuYZTwqIauemeKNVTfIaHWwcAdjhpvHXhtGB58U0t7ivTEq4nXAzeeNKlRJPbExgaOubwb9IJOX/IHP0SslULdsdonboabkZdjPumnuEvFP4UyjG4wX0OgzwqretMh2/IGVgtCqjh8Ww7fVQaht3WRYTfDwP4GH0OeQ9/Su9BK8mdPiLybzjxrfyCp4+3MDPPZoDhziaNPEYS8CxqG8poAyi2X5JjG1ni87KgFQnAZ2crRG5lKjk8ES8IZWwd5paXbYNtiEuL4RdyPDUO1s2ebFd4hWjob6djsivW9m1pdzrzJcnXtNTV6x/OqtWDyKzORQWut/JufreLskbm4ritSKTsvhc0Il6uIhqjmbbVZbUN2zHzzGP0fcitvKDFlpX5qBIeglLK81BOfXL22IO28cQcduGdqJGcucBe9rZUyoTbEE7ULt2KHA4tOWgSAXeucOe+8kZZhCeOum6k40G8ajpQOGNyzknOfNLl4YjAjXZMgXFaF08YLJTR6/ad1Diq+VWpYGoAF2JOueD+jpfyzovMO8fB5adAdrjfjHnvehfYRi3LddhiRnK+4heRvwgXhdqdXOQLfEarSM3TeFzWb0172u+Clb9pbIvVNSV0OFWr3OIT5bs25CNlM6uUe1CBqJPldZF1Unm5w10/B9KrGwGS2CTNSrMNJz7L1jaabC6pXFaVC1GoP8cLd3ZgxX3xEZkWW8B6YBNjaBrWhy5tOhKm0u+C+0PHvJDj8ltpw1Hk8Im0cdT8qgOk+gFQeDgmjhqW5xB1w1t+//fdUcvHX+M9Cq8gZEU9OVQRJCdwn3xGwf0P/lTKMz2U3mQoI5AXCH0o46O8SCCk6VcPssp/aaa2r+slcjd5R4hVx3u8i/5702Q6duzS1Asqx0X7mr9dXYmfQLJd1HS0pY7Oybpe5BMvda76mS2KbRLLBLHWUTb5Vuctb2O5dA9sW6go5cDapOIoF9sYr/BlXmgFtzmR7Pu1tGXtsS1tq7MW0yy9LtNKpvVFHC3QpNDWfKdjdkDrbvKRlIzFTkdrTtDqzo7fnlAVHadtOPbf5KbdWC8vExdzqMXJxtM6TTrFAg3hnJ03Qhlj9/T1Drr9XIlbixu8dNI1tHHDm3xGg90g2qTXHARLqPodTM3Y9mj7mtGuTVmHbR3vBf4+4jMSxlZ80lJGf4XoO16OLlpwv8Pj1D4lWs2KdhhKcrp2psZ0ZaXLpU+Z7G6r6VFCy2P6zVdy380HMc3qvI+/og2EG4nWdQyeLCd92KfVmTeLE62UuggXo7oN/hLvivtZJ8ZFz1tdkMIbtpCFtsf9UT9vOK281TaBx71fW3nZT6j3G19ILby8ScZ6RT38Xhsv2JIPEZ0bV3yISF68RZjj6jPMNm87lFEz2HyB00c+lXGdYCqNfh0XfCai/pjcEMaGpFU36zvs/mh2tC7OIZ+q0hyyophvxqsVZ72cbIIPf4cnZrCLXK31KKBHYGbmzair7WO0VV5Ypze13snXrO5o519W60qu5e1Ew2Sb4jR0Q+unIcpex2obLbZ5uH1UXncBu/Z09+JKbrajxl8YA42FBfg73qndBN24KZp0ko1cfw7TtH102wngwhUN3hQrTw0U10mjjnly11AxeHc7rcsEgsNhlh28qHcYItdlYTeHtzOckn1A0xc8tjCx6wheAeYihXmx/p3tsnBHP+XQyuZ1c3wiMo+mj6dSfJw9oPOp4DmQbzrLY75DYoux26Q9nDZ4DnnvvALgJpN3hkze7N7ZAk510OqgXXbfX5DsHd4Y39OuhosMhEfGe8PnZfuhDQ8fwKTzL29rt2OQwCzkmI57TK3vko5hoTT2y9s5U52wBSuDaENuxmP4a5hTTLPDxRf7jHKdD6y6i/t26Q4utjZnRgm7zC4eOtJfqToChFd7W4RN1P/G8mD+rvjr/XdUYJsHCnHscp1Reas94xS9RVEpDEsbyA9MuWm6MPFqnJzYYTsbK+6opLqKHiKZdgii+hl/Mx6PRdnqM7weXyTZPRhlx5SbQ9xPr9f8n79HRXLjG11w3A1/E5g6u7Vj3foELmwWPIFOETrItiPfoLMew2fC/RR2aFjOvkNDd5ETouJH4t/IZ3jbWY6dXqnkXySelAH1qP4TBwQi7yHmt99weuPqPZzezHH5jj0ZSeLZtkr+el/jFG3rwDpu80Xq+Gm8Bmy0KBPFWCy5jOpBCjBasC6srtIwn1zDP6TqbTgyzudMNgXzqqL9QKZYWXXGJdxr93FNb+KOt7QxOZzGGXNe0EwCmPfoaZf2yVL1avdqRwkn1PLaz6LH4lA5Tdr2vpE+3mWb9sTf2XHZ0bHguiCPuAWaANglLbzlb+I10uxgnZU/Yg4DZtN15U1iC+9BvL7zOn9IsU18Rwyxq6oAcLpcrjfx0g3hUJklpAU1bBA4jpPKEBMZqsvKb0Xuzb+9E+EvLIdP4EqhjIn3LLy2GMq0Vu9wxpmXX/S+pW+bRV28E5t51XnfGa/AHXfwvc4D+sQcCMxl7Ibhsw1WSfisMIaCv4znPn6pg+sFbswfA/fXhdQVpnpTCMuVGF0nxgN0vqvUjeCVWtaO3z4JyTVzVpxkXGzlFBZvEmN3Yxvmpduw4iKxu23cVhNrZi2jngbbkO9BldE2ZIfZlB/Tf/XfLQ8EOHiFhNJfWY9dHYRzZgRrlBlOWQ7ZbfLUvsD3HmA8ztjttRGz97l5w+TQ+ZtxPvV2TzZl8/rn/WP8NT0yttfTXsnf+KImNPa6dJrgyJh6SHz4IIehj/B3vj/xxIpC++bi6ag6HgX30wLyTO3LYZDES5g6shX3OfQchOWBgbfDNs/OFDI52j7qs/cZ/URdqeGJ8S4xY3uOnrDNOCWLvdH0fGL2KaRuIk9FDBTV3AscyEWZ3SzpYKRJ1clUx0bA+KiOLW11kgtvldvnO/W1Xtjkr+RseRd7vICWwGOn47Jo61SqtrvsR1auiXcrZ6Mzlz/E63lz7IVua2u50FFLHu6wvHxrGwNjcsBNvf28Ry/eheGFVtSVenvT3rwTC7dVJqOFE00GbFSJ5DbQ8My8JKLyCvM2qb6P0OpI/ToTh64DSrRMmHgxZLyaeNNEBuwc52Kv7Oaa0w96kxtP9lwu9Uvm7UJaUsjlBzjosThjXAx7VJxceMEWBd/AC1zU+HN1zn/p24o+v9W5DpwdPt3D4w1v618umnOFvy0ed5h0py5tylsdWQ7rbbdvh3VJrqx2afG20JS67mO3prLlneAyfjm5jhXLNvefx3eqqzI2GyEV647S1uoTlirR0RfsTk+YqvBadoHdi+6xCBGWU2zRD6nKu7bHMJaQYtEx8JgiHkCHXCz9Y4P7pHPcz3ovwxaCnOf6V1pBfJtykgmFuFPbwzYF98EfnM4LL4DfpY5Fm/HGIm7yfgDuf+ZJAXkel/8pJF6ozI7XHqUOZEAF1kHDDAc8pCR5U94l8V5+sTp0uZmmQrEP18ZJLLT8onED1stCyX/JGspYeJ2y5ptmbXW8Y46q447eLt9bZCVarmtDX9uXBG36TQVJZaLKe+W4Ue5JY+h6v1+eRr2rjjFZ6E9RWxdstX0cfRi0DR/YJO10MDvx4kwrr6SStWz8rWXTOe1eBmfHRidj8sIj0QqKw5oy6eQyDy8BfPfV6DiUBUQLo2Ve342MCchR5HoYpIfD8OTAaOZOLh/FTP+WkxiZ1/NDri+0yglbTOunLzK9OWY93cHLMkF5QVomO/MOpfFLmQtss/6rNCAU1Mft71H+FhHthbtyG3xueNu6mrItUgjZpsOYDWa2mMpy7ul4hX1XvrjqWBvc6bjQZkxqdTY5d31G1LXFfde5wcJdR+cj6bXquLmb9V64C6r7yLEAAQAASURBVOkx+LIur04X2rj3A2PiCeRV+4iX67rwNXInf9j9sfxBuG6YW/Dc1Sp9IfmMguWsF/sAoWujDsJku5aeHNmTtKCDMGzQ9aU+dbsxDS+IDqI9Zthp+Cr2GUifLBHhw6FWneNpV5S5XLFPuSCwnGgZ5/2zKeab5tM490PlHj3TZ5feTChjHoiOJIxe952pv0sg/YKBrzl6SXgwkQCijn+X+L04G4db3ph4C9FeT+GlzzY6bv0tT845v1GRkC3x7uRuNa42b5RcqpIX0lKq3egxJXu511VI1tGyZNfWoW1XzVxZMzH1v4o1JmvTe4oeMv/PE6/dJCzdanc4dWa04V3unzrLsptI9ZnD9gfcRpsggZyzVxrx97b6NGelquPj1iyn8CZny3niHf9mGCVMn8ZRu5PMiyyAX9KOxREQi6Vw8vaOmcniI5PJsdMkIC2kkpM+8wKO5I5DPXion7i58z1TyEuEwER7Xpvy9JGvSlxaXlxVCG9YLDVKro7LOH7afAT3USDeLzY/QDWkahuV4TF6ZXw3acHjWtdFeolvWlzfS3k7H7D+3Ave+JsrHVe/Njc9K6aaXhXcFp+xx8VLnQ3r7vmPrOx9n1Hx2NtIeNTJZaxeZMdvw2phPhuv6eTJmW9Ocqi4H7yahO9MuPiF+TQq6cv9ivDYcMHusSJvaGXsRpIzjsAP/F11jPfG7Dh8P+JeJ4YadutJuC9ACk/MOO9tgNmq8vIGWWDoFFp8yHrYk733BVsk+T3BcmqjpFt6xgeppbw7DFv4BW8s8EbY4o3sZBt3+EDc/1zSM5TxU0i8FThHo8WP29OhyCO/MtbNKGkxJxynxE6G/zW8oqVcAY5pX6cTwmKHjpyXTGsjJzmYKbe+uM2PyRXwd8y86x1RhkK75NP7Ptjq4XVbnnWsZZVXUAjTLbnUEYj762WcL/Xy705HubJFvf+1bGOb5Fh2vK5HobXK2jZkWjU6Lifjy8H9aqNTy5v7pzuU3TBKO5qTvtzbbejJkWn59VBX0WyVwljGruVBdj2OC17k6DQpcpejjwkWrB6/RQdSyIjJtVHHbYgnVhtemkTEgSAmNx9JLEcNF2HaM71nIAeHohgt5ZlWzvSNsir3liY6o4w/TsrvlFXeAx8YMzI7j8D62ay5zi7H7CwP6NmHB2/BX+77Pub4hocKNXRv4GTtaFRGfY7fgzJsy23YN53xOMnapYptG1xs8Zh5JZvxChdPFFxo6lp8xk7nCznIP5POFQcXE3Xt2dh1kav7MilyF0VpkeI68vtbjbKBG2cDuNwgzueF1xiXwbvsAUi+lu+f5ncVF2zPOHlFm9lWnxDYrQvu8ydI/EmQzGGtmnG/6mS8mjFVC67jgtde2UsLLcJuAXAr/lXA9PldYUH5TEryGbHggVJ7ketyXo6Y4HfBVHHI6e8hW3tqiCH7jBwqmr8/GT6j8mqi7XH/jS983rh6j6aP+4Hpw37ICpRMWhwdO8m2XhqhQTsqqWGJKHVtD2ggvbp7X3Va5cbv/CvkrjqtOrfOuOpxoSfzLm24uAcLbannin5vmw0tlW/rpW7zarlde7f9Spe62MfnenVfT69l01+TVpFSvfuFIqClk2kaZhbmwjWJ86+9StJVLZsGVlc3KanhD3UxaIuyWJzJjleVys15FJ0qL8nh73tZkRBve2y98bpuw44xN2OnZrRZT3e29Dt0pne3lHVseCn0JOTQU7MUDhNPwyqtLaz6xd9w6inEhR2yTRLwyqRYTkhcf1PH3eBi9AzG15LfjH0tIj4EU1+Cba0ed+grr1zp+CF4fMV3sdC8uwil8bzD370/vfbViXZTlsofLZPSOTZ4vMi1D1bPSy2mtv25+X0520CRs8Fyot1uoCW59fTIBvcTk2bait3D0Xi+/8RIxWLmReG1J5nrkzHG32Fzs8JJvNMWLitjt4eTF+wGWFaWk/KLzyDMXfxafmc3sFscu+1aPBljnRiP2RdatMW4VnE/83I0Bdy/RjsVgaw1/zaTPJ+YfQqJ8U9iwmhbGsOBqiNFOgK/VnBFKzTEut2qUu/quDfexyYJhGY1lNGHgg0sOtqZm8BqLLyQZJvuA6PbyQbu0F7xNma+K6eKveDd0e7eN+zk+qV7OnZyrZxskSq9cqhN+wC9bF/LzPcgyYkW2v3PXT0vjpxXAT7GflSuqS3Lk9yUD9p0rhi9VyRsG3OQFCojsBCksmAzNqu/lglgoSUux2ygPJ8Pp8gTDXY6cSw9LwTDsVTeFBooUS4K0pMmBLSLfMDukvEXWgDCDlNnXuK9LvH25QXRSCMU5fB32+xl8KC7Oe9JHxvVJGelXXnj/TMdIT3Ee2h+ivYhqXKvY3DfSZel/g4XgfjuGWM7rLvmd36Tv3kAU1dsKzp3aQ4ptd91/Hap2OYKUx/G/Tu8wj9kLbyH5S/BX2dZcJ8q6OwUUNGGTF7quGAuY3cnN3uc3F8z7pcuB8bUHFLY2WLxbFSew9B9k2hTldEyXrcLNApVdCxPfmBtj3i5eL1pEk/+AWJ4PHGFdBb6p1LaM/MJy823TT9ndal2uK8J991/KOG+4S9ymDZ3Az86nn2HFNwn/yO+wdaUzbrD32TaQ/ip1Bl5HfgccgHR+nTrdNy3BanzSonwQIRJSlnMxeYcHPf5QJBn+uzTx1uYSZ/1R/W0QDMQHQAjXrwusiTAhZ5XpxAXmcOuAv2k9bksgWf9dCFjG4fSQAHapk4OVBwlOU+V7fL254K3hvBUX6SlXrH2NXLX9uXKDMe5LrbNkiptYxunK+1b6q70IJpOx0rTyeXy2t5Fx7ggzOu2mw6u6Lj8reX1niRayf3Cfu76jRTedG3qTjrWxZ0UuWueeP2vzGOcwzo2pKTwuoOq4TE+1KUpE8R0vO5q0vHMTp9p43TxlffWHLFsvIdkp5pDTcKRAUinWVVae0fMw2WEJwGgxQ/cObNc+7joWLxZ3hw8nC/vrmrm9fYVWrMTIpQx8iQHvCg7U9tflATwUHO3Vh2Da59P+EeXGcs77O7GD9eR9/iirruYuvDGhaunSIZNW8zZMVH7+vGKdS3LDW1w/2GfUdOVz2CdaZyl+qTQlZ8vso3xNLa5x5dtJUjvUVXeGMyNjpN3oa3V9H2x11mos9gVLbRZbjcdmioiFilU5m3lrQ7BgvtgTC28tFiyS8ex442nN75g4g2upIeVM/6S2AW3Vx1ThIBk0/JTpoHlgYu3ZCsteuVPhfCR9qO+jL9rWdZbSG59MjYWVrN9R+CxAri5vdR1chtP/fnkRvY366Ze5n3HfgwcOm9P2N5wej4x+xTSxU3W9Dt7nOFwBBuXUHiNxOCJ8s3uppfLuhjQ9EvuyLHFIVo5i1zp8hcefpF7kX+B3KXuO7zkn9ZkAK40GRHk3cY7pmknOTvniXz/wI5M7uhYefnULedtvO2Uk96vY53bvxo6VVtwOAyJqzudSY7keoNXV955H3gSJ1TGvDnFQsMDySTL4fa53BQeMcvSfQvny+XG6yanuhbapKOuZe6IMu9ReP1bMBdyeAfW7QYLS5Gwcb0HRG8fgR4QQaGPfghImVDQDrDxJtrCiyLH67LwRaZ12+S8h8AoMD5ibbyn6/yaFNhN+VreYugGy2viDbkWUy/0SjreyVPOF4fNeHbamm/qrbiReBe5mec1uG/kD/HG4O8xu2tv5WW5xRYJrzs77hZeXZ5Dycl23N7cDM11pb+NNbg9E/u3mLrTs/qIBfeDN2GrIIWhe1VF7ljQBhaI61jxuOjFOhuv1d9guV1gnIxEm1MdhlaMhX00mhabidc2dLhdAj/YY4O3HW9aeLFvEIYQ8/rBK4n3TLhvctHKPVP4OwxfxfA498fgnRthhs+Y3yhTts2Z7OhP4ITax08Rra3Oa7YaIeocqRG2iWiKN5vG2vHrIr2dUEYYPsVgVyChXQ5lbADT0PuQJexRHfWszoZ3jg5jZfBl9Mv7J02ZIk75mnX7k7XSZssL5eMQsbCDsJxWxyaf2ofsPJOcJt/x7mg3zvpe+2rdV+1ZaMulPrSEJnC7CcWWt2/vyqvXOqa8pstLGeksXF4caltv4tVEVMMe08662HsFlTc70IV2hruMuvwuZBulCZI5xPz3mLGCER6izjvkircvdluJ1gzl9yccry82pm0qL7fPQlpYDlhHr5tOSGQHarJYDws1cV3pdCsNuSNsENNJCuw0LD/IQyPERczBp5DD4aytfeMEruCttDnPT/eUjmk2ufY+2ZwM+MeuG/y9k+adid8V29OYC+BosRxXuKiOv2n8WrdlnRIuViwn3qbF+oDchLlshwucWHgfoP0Q7H6Ed5e/y3vhbx7BxS1274Q+qKNPvB/E1PAPs5Q37qyqLU6ual5iN8sFyBY2fsMG8X7ZxGOTa4YX+IIs2k3FpAePKiR/U3QsGM74Wxdd9gmCfNqtHZ0feByybXMMI7SReAM3zTaGx7TgMPi8x6uB3Uwb+DyxbvomD6NUM18NVxz32o+rLz7jxvjPT6gYjwsvhyfGJpy1064Pn3HQgR/BazhffYaFLtonUOzUxiHXFnLDFkX+K3D/80rmz74e0ts5Lh/AGJTl6EV7Lq5YTudKmKfwuB5x0CTehGgBQ4kXPkbjdCdyvqZSAEPmdUyrjkBook3NEwU0yYGDlCawXuXIomOoVJ2TaqYVDLlSeFln6Xjn9RSKY6Ypk4+lfczLcvgeyp6Xd1rRsKSFBxydJ8DWe0+p2AaQcrKXbm3jmU0bIM01vpS6IOkM24UVw/V8Shaqzlyhkq1mn642K3WlBZBkemE5KvP7XjEemLc2Nx9TH87YHbdY7w4nErRhmSGHnJXtNM7yW22fTwLgtMa7hgnmxSSHNsbirfLqJe/oUmfmtYlD4bV/Nw8FPceO6AQBgeJ2xBMqASikMEJpwoY5dJM/JrrwlnfVbvSOQoQ2xuSHeTmk9dFkE6e4MO+C9e9a5saM/hYTtoKLZmsF9Fg3NhIerypEIWGsMi/Nz1udWW6pe3n1rGCOAgvGJn9zZNYOYwwqFjwmfFqwm+i79t09OfLCrq1cawDpsNMxiUw42ejhheIh1U7NC+XONhuds2NpkD/FdGkqEv6fNLxJLuN+TDcsL8mZ1/bxvZyf8hAZOA3uN7Mu49Xxv3TCo9cnpd5ROjA1ysZiL+ct1YNND76JkvHJ/YDpdFTewK6QM+5JLI5GuhVe9hlH4a1hkzeKLrgln3EmPwDhEELinW2ri6OMx+YjbLmafUjnb8YJiicEJ96Zb9IsN+sYeM1yj4T7fNjIPZ/x4bj/uabnwuyzSDFUBnCW/PK7B7ueV0oZAd4F8C9yCWSudASw7tB2jmCTDHrigqwEOx1bnR+Ty8WtLQSr2auju1N/JdHuYkcvhbaxbadjul9U3spNvOsgX2yz5WUG7W3jOmvhlcgaEO5sI+vdNyeWe37ITD3WBVVaXsBMOckBmzOi3yRXmrqKGn5XXE7Lyzpry4uikxT6wbOOjMp7lHITlJ9Adrxn4pVkO3KYYnJKORR8zmDYkm0xTusSmkDkxTAtYKfOvpOLmCTk0EazVSzsjDd9w8x3TUG8r3eAPaYiLYbSeF74Ci5eYWwjc1tesZz0EMpX3Ogw9i6Gcn4TH3TlizphBB+L/vfwqm3fJrWLqarPhdy7ttnouOjVYXWilY1tKt4WxZa8kG0Uae7Q6VGwfKl7ozPjF1/pMRUFjyX+L1psxePeiVaMlJxPOlE+6B/D1M5nMEaaztlsYRvGOteZ7jMvhlbevj3MW0+LjN5D98fugbINeMFHvCQ3tTfVfeKAZLsm7J510FM0tk3GcrZBLLYi/PIK903Ozmd8erj/TI+nN7MwM6jTsr3o4+BADunoHLD1mXlsDb/3k7pTkuGSwUDOzreeylhBz4cHyamhb15DwfQuKSo4z8FTKs06Uuqc607uIqeD5k26cuKNPJ7eSqNzvRVbHRrDXr1wf2mbVt7aqp1tru/nxjqm8668Osiq4+JAC+3Ms535b7eYg5VNgNeuLqJnZ1nrEuZlJ+whI1zGTgs0MZnlWmhFU/6YYRpGOyIsWW5MAOJjyYP2gFJ8f/4bp3WF897zguTQMcjs7Gb7jgk9WW4sgkbI4giU549+Hsbjcq0t8Ts+GEpO1eQYD/11p0//RvcwefO9gsIbJ3+9LMW0pMGYMo62+Ms0dk92XzGu45InYC1uZCxnXTq80kyxp+3au9Oxo32Bz3iY94H2bfW60CX8+J7uYf9Sy1qfrwkXnb71IVov9PhffYFI5mUcTgJDh7bpbJwkd28Bw400JxCrgkZTEchYDuZ1sfu7kMIRDVOnjHroT5Iz1fCIpYkxppwURpkfPgYGmdDTwGgqP6mJdrrfcPw9020J7KYTEDveaUfHNt+AjKdLbiuFY61jKrU3NrjgvBHpED7E5dIHo7PO87CoKbt+TzLbZsX98EGndd8W9699hoaOKf9y3P9c00d6YiYivwLA9wH4eQB+gar+0Lz+CwB8xcgAfJ+qfv+9+t7Gwsz8apdU87NxsrvS43UvTDFtljdGIUrjlbXYZNxxhlVHh1C1D6cGyb59o7DScveSSrzJPpTqxKSV09Mu+SZ5UZVD+W4Ccanj4mBJ/K79yellCz4ql3m3tvE8GfTeza7tMYdxOUHY6bv9mMOq4jIsLpwza+xOR4ptNjI3k4IYyuG8eIJwOC/XFY4tnFd+kuQLRHd82ZkH7ciHHHNSNMEgOY/zTlotJ3Kl5oywlKyjkqPjdyVicRgOHuFQLcSwdbB5QmFOesgd7yHcnHd+L8d5z/TB6iPxssP/jJxfgvKC+26ljrwAlNpkOtOmhYUQG5A/Z3KsvGtSZ/L3iedpkw9Zp/obxtdHeS98xpIusPuSt/rEO6k+GX/EZyxp4292vqXj3b0T3Ct9peNqnTTrWOgvGtr4DIUQ7u95I/ST8co4SMfqP1LIno3l+4nbtzyRQnOfnSlwc33n2coz7nMoZOC4tZXxOPQKX7Dj7X1Gz5s3x+J4/GjPAfhGkOEtY3m0yfA3+4GwS8bygzcRk18ceP0uYfxJ09l7uH+6jmbHwP0cWn9Qe8MP2CLYfIbp/IaT4mMe/vHHAfxyAL+juf49qvqJiPx0AH9URH6Pqn5yVdnbWJgRHlmMs6+NMgIFi1IZnJgLo65Cmw7mWHiHnFzVOgUIHQPpZNajlF/82ZXjopncyrsi6jrRXvNex9HnlyTr36WuO07eaetkg/JS8trpyLboeE1WN6nxemUrd7WFpny3e278XfhhzhdHSV7Dw2GmYastfFFTbdfVC1CoQb2g6f6t+dWW4SRn7y7v21VejokHQI6uyNnm44OaYk5E1vcUmJfDRzwUxfQr9jDaNT8dmZeFXKe1dszyzMvhJYPutuHlkxbFaWcfmIs5jvm3dxwG/Vm+VcPvAGh6NwKIo54z7ain7r7eyHbmjI+FNyYUtzRJePnizLp0hQ2FQA5rgdmT80EtivHuad7+LoLoRnD5svERHckv06cXUgu7ObOpELsXRccsijFHNlhX676ivYexC3bLC3irTvfqqjpbWV0zLzrGpkrrq4i2YlWrQ/l0hqVVbkNUcDLqFspnH+ETb6FKtnU32J0wVUo5YyoW7E5lqdz4YtNHBMv7W5FYh4rdefFjMrtyWzTW72WlV/AdE/M/LLzq0QWWKu67LovPiE0x2fCm34TlgonjBCG3pn2GTtUP1KP1+WAlkfVo+hvdo+QzEIunEVZ+0jt0sy4Eb8b9/M7Z0Dnjfu8zwt/YbylteOuhjB/r8A9V/ZMAljWJqv4YZb8ZzZKgSx9vYVZ2RNcFD9NSoaWaT7QxqhyQbVgpkB9NlMo7J1J0qvtn5lU8tMbc+mZB1zbpotB2fxwOpNiq0CYnd+FA7/WQy3tSdb6gu+J9SKfNvX5E/67faMmn2nZ6+G3eSJVC3Npmz0t396IvaLnUyCHa3I0qbXbGQHbq6vlJC7ZJ2YWdcuvizMbBfjKRnWv8ZjlZT3YSeYiRAzTaI5zt4iQLbTowJOWHXisvEu9xwcsOLX/DjHdqbRKzto9DZWx3M3SebSinK4ryN87iSZl/LBoabfNTH42X3y/LO6xH4X1pUsL9MT5Tby60mBPgD8BUHs+8ydCEzNdJbkoLHlNeGrkl32HOsqDpcH+DRzvc79KreDeGXXg73/yQHMX6C6ttHtWp9A2mWdt3oXTBSZ4/rHqsC61eR23ElhaSrmLYfdHnQs9BzThYafMmH2N3xef6RITH+Uo76g4eSfyMvSPvm0AeyRD1R5icFLmTt2B58hku27xUwf2j4jHVQ3rL1mdooQ/b5A23QitI9R+F97jgHQd/xEm7eTEYx9jnNoTPOFJbz/JkbdabTvuFh7DzgU/8VC58zzO9JInI3w3gXwLwswD8o/eelgEf9YmZdGgT75h1j4OU8g54xUvQUzIG6wQ5ipgQNHKUsQgd1OXyzOvo05J6VRtnfO0zymSiOqcdr5KDkTu0jdJXxzU/zNu0N7km1nEnh3nv6LQtL/L5HaZL29R+amG01dkuXhFLGkd3SyqXwus/Ux+jknJMf3bkBsrTzfvRx2yEQlv0HPpM2slrVaxyouoxdNXHX0tbdLT3GCzM0bRLYYPghYbtsgetOTAbvJW2Osk0KRCbs7NT14b3XHhZTuY9l3rtyZgd25wWaLDTJRX2XR5/n4PePxvt03jiBoCPvAc9GRu3YOy2xrH8mp/ApfDL2CEdfdkWnSbndDmv2Tn1HmBdC4CHA1r44bSnjV8fx8vRhqXihDExkBj30tisuP8KXMzj1cZvN+CJTgbmmF671+NcDNMi28bbd6Gz21Hu8O7w0nCx3G7P3pPb2ACbvlNt0/vIwGpoTN+Nl3W6+m7dWm/Wa2+bgovUxuXWL3kLXcxYzl2bFw/uoKQxBfW7HcZ6d3TIZz/AeaHfuR7xe38m2qrjshkH5EVbqZsjExy7E4ZG2/OmVzZELEIKLy54E35PnEPFwRyOGHWFnMpr9ZrdRtvOrOP0xbG5FaGO9i7x2ItSYG7aHaIQPQHSMZ70WXuzz1DEe2pIuM9+IHyVHfZktKyz8Yafe8Ppw56YfYeI/BDlv6Kq9n4YROQHAfy0hu83quoP7FXSPwTg54vIzwPwvxaRf11V/8aVIh9vYdY5ISAeBer4JkxalFmPd7CslcgEMXO2YlUFqdiwwlrvzPMxyFehjAOjxQHacIvfp1rBef4pjm9nl7gkPa/pTPn6ap0eWAAtOeeNA1vWrqwQo2qn/vRfu5CWxTZEu+hVeXFBW8oXuVVXycTC969lsJ8S14QIRHvbSFwQcrh9g3Tp2kmG0Zsz6GhZHuVzGEo/hJw2lVtdxdl6t1Sqex6vTGXj/mZeVjNMZry8e1gcgmTadKTyAXShJSlPso+iU3pHbOFFyystLzlysVMOe1ohWkm8ACj8xb4nk0MZg2/kzdGP63wsfz0mOWhj4cchQKyHQPHO2352r3/dTdb2NPTFxi+PjfgnU7tuDC9DwvPRoRIutkpluVvspnzFXwtlbEOqka/1vBs+FNqscuA85Zd6ipwt74Vcy/IiK8HVrs00ri2fsLr87XRMelwspMRWnkVn+5Hl1g6DlZfbVxsmSEpK4d3+Xjsqw/SiR1f2GHaXcg08drmEme5DSC4f8nAczaKG7m2whs9gU3NdtkASyjvGpPbVxZ2mxRwOfloFx9Q9L8/6OIQweO2p1c3rClxM+lY/JiDsjvaNxRHhvjItyS24DyjksIVVHBjFWC/IPoRx3heOfm8q7sf1ivsAqBwIH6J+795u0g9dmP2Iqn7PtnbV7/2QylX1T4rIjwL4OwD80BXtR3xilraJutKe1pIY1cqsZSHFtCPve1yr4ArILUBTXUmuXZ3D8qIXe93VaUT12LXP9RxiYgEkxZlZ3YpWDjvanZhFXzR13bl/7eLvQl47SeByA2hp+onRd7a4WgyXJ1Bu106n1SM1f22W0fGq37O0W8p6SNB2NvAyiT0K/gi1EF3drbTfLHflJT1UFx0r7bJjKpVWE60gXw+nHI5nofWQvqCtB2wcC2/WIzmvIvOKdwlpmbxxUiGXxeSFdRzlZ0xWmJfqCl4OQZn5eZIXiDZ4T7JN/TDo6S+PVzlS6gKF0MB5Tc6ZFtgvTWpYvsO+Si+Az2iuMJXr2mFd6qOrHCn5Wn/G/dEBWkx5gXGW74o9gMVGduWrPi3epX1FP/cvXAfZYsFqotku0qSTq9nGRc7SwCSn2Syr+MqJeadcvk+MC1vbUN2Gz4x17JOvsBsA9Q/FOErjAeyufHPBsPobG+dAOkSE6yn1spxs/rI4EMauZbYUixhZeR2Xal1TaTezY6wm/duQwoRtpEeq3za5cn7IPXFoia6wNjT+5Uh6Be5Xn5HkTj08wkF0yDWa6jPcX4Yc/wbmbG+H+5f+hqIvKu/uaII3kRR4a98xE5GfA+CH5+EfPwvA3w7gz9zjexuhjDQJvgxlHBcWOIgimgybxxCCEJK3VMHhiMg0NUwl772oe5gBfJNGMswtay1Z5WDJC10iHQqvy2E7cnXs6Jr2rXLzpZfwLrD+Sjkt7a59QHKS6/3r5QIkuKGVS172rKwgYIuyek8W55S6ts4uyJ30npwNb3oaF6EyY/G+Ou2edwJ9enqnxbFr+QuInKGY3xNydjLqtbHAu5wwq3F90wHaBEKL83Vd5ZqXwwIhFEoy67Ud0pVXE68Qryy8Vg4vv7GNeAFHji5CCs02uoQc2rsAB+yleFpwqYUuCg4LS5ltOdIkQOe7ZzRpqaGNoAnDDIO8TTkR9ui9+0VpWiiN9Tx+C/6CsAu6wdQ5wBD1XWH5Cj6Dto71DlOd17u3DaykUGpwdzpgleNJMn/YhmTeyS/Jyl6Ki7jG49U2vdytbyKcrGysc4updhu6Lph01CnXel3TwGLzlXclGbA4cbG991lnCrgE4zHTMv4qrLwYX4Zej2A3VFxHkx8LOPHmH4RPEU447hI/DQJiLGbcn3gFw1/m1ZZXQEfYb7Ec80PywWN4LH4/WW7gr7jt+Xj/Uc4LGh9/ajpY+Lw65hqv4SIfVnNgfn9yNju+LWZh52bX08MTBeEz+CkU+wHD4/iMCcqirPoMIB/4IaHHg7ifP5cS/gbevpD7ptNHOpVRRH4ZgH8ewHcC+L0i8kdU9RcD+PsA/JMi8rWp3X9PVX/kXn1v41RGIDqMH0E135E46Igm63TA2j0UHrjsMdx8nJXvusa0buEF+YoEuOF9lB2KAwh5nMOLElh73k6NsgbYFoTNL5IHMODL7TN+rdsX7Pji0gAIkpPkIuY1KH+lXrdmU34bvmNt3LXvwjZJ+UanpX2FVrhNVswTCk5F7sJrJje5rg8JYyWsb1Cf2/nuJJe3UbPmpaEkZ7lP3chQ/z7MmPQIDv5ejOmv4eiGBPHyEC3pWzMhm+XGh0vl0HT7Rl1Wr1LdWvJYQk1k1iwN743kGK/lbVd26MC7lJP2yL0pDr2An47IvBEmiCmXnLo7W8x3A3ZyOTwE5JgnrZzgUJpbcbLMG+Ev2ZEPuSeFPY763yVe+zC2Ijvn8S8f1cyhNJgL8JeniikJ26zIsE2o7B6mSlNXwfKE3VWhOZyUcVKiXi1yh1sI3hbbGp1T+4i3e2rW4aIPVbKjD0ErQy5vcbFgebsI6/C45H3kFz0yLmZZQOBGvSerbSzsbkXRdooo628/4dMm9Bc6FgVn+8qM4Y4/DeLgjtrKvY6VRBU9Bdm8ZeJzsqH3xKSftTH2twfdcUS9NbywGuHgewCJQzHSfZw62XWXE/WpY6rxqr877JjJvNS+AzaUp0608Bi0G58x5fBtPqrP4FW9IIXr3Qx/FWD8s7rcZ0zM4ANDcphjfioGQfIv1j7HYxSf4U/GVtxf/IDbJhag7kMUxWfQosvkevviiH5vb/JVb3xh9pHS/DbZ9zfXfyeA3/nS+j7uwqwCPV0YYL8QRFllllIu0tJHWfXwTHtRjwFDjL7sdKmOPhym1sVyh05ZDsHmzonU9GK5TZlQvrSvqycVNo6P60rt2bWj8ladqvxGjhdVuZ3OO16Xq5ftc5RO7bO+kZ2AFzFv1572foeTY966OAuQ5r1ihRwNb/of7aoVHUOlkCnS57P62pYlOZQ/il2jvXkBVicqHa+lFB8/68oHWMxdzrLDyrwx9MOxjURhKgWdOGST5XK4iDk8KXYz5xz12u4piFddJwFSPtOuxyRzewTczjwhkCXE5cNCWq5wsc0TVjNvHa897jeYugOdTd0xnjXweIOhV/U8hKmd3Fp3i090fSPnLi5eye30oN+LHumeWF5XWlNkZ5ukU13hFj20+ek2eWBRJh1vjJMlv/CSloyLni86VZwUarO3NTa6IECP+7wgyXmjze9YcTFtPhWdx4/VD3S0jgvCpsm4z4ITHjutLrZJNm/yLBdJRwEIU2lWtspRKyeMtbb778DFaEcNU591NJgK6IhecFr2GdYm5tWMx+4HBm9geyOn+OrjYDu8zGdkX1V95ttLH+u4/E87fdyFGeGs/dT8nJ9LgtivI1+zSweWHcB0uzQPzIH8mh0EcbYLwVAY7m2Eh39onZpq5JM2hwlmGUmPzgTNpSqXm7w4nqYM2kycqNK7J109Krerp96zC52v5NS6XsxLdei9HaIaBmmpOiMkE89i7e9rcVjRP6Oben6jetQ1wy2SbYh3yzwUi3AYZIfmzmxSV6dOoSVM6/XQJC3HvU+HkWyz8ppOx4bXnRbtlPIx7+z0IOrrMQvbcGdFIRz5nQAUueUjnRI0/J6Y62YhOQr4u2E+gYqTvIznkOnY5Uy8NnlIulFbxzthEdIo9NdDdgrPjXgPQYROpjquOt0+7XGx4D5huQ+BwuvjLg2CGe5aMVWw/rW5WMXUzXgOfB5Mq69q0g6DrvD4gvaDedHYcep5F5+bSh7xN6tHvZBbdI5zVze2vvLzO6Idb5pqUE0Fy/0EyK59ahh1oUbF352t6QmQu5nkB/Y6Mm3ImHml30m5ydv4Lg9pL3INcyARBmh1O+6Tz/JPiRiuyuk6GdaB8bHIsfwO9719CVOHHuEHQk60Z8i7TVBgea3PsDL2Mxo8jKlAnDDc+wwlv4MFj9kPiPuBWLwdRVfPm/2YvsH99MSOfIZUn1H6yZtMz4VZJBH5xwH8VgDf+Uj8ZFsHA53bdl70x/mTFjufOunsT3oHIFNHbvVajilXzik5+iFnumso1nBLKbxL92l0vJusncTSOclO1HYxcofxtbz13TDgBa1tfSovYy9que+P9wRL1zCAlrWCh2yjxp31qOFVpWIu9dCjKe81E2RvHjn+XFo1oP/5uxVdL+NdTjKh6cpO0Ms18aZQHYScTMdPbGI30J+qkfM3RxyIwXlyuhI05tQOP3yDnXHo4Qs9d/gsVxc5h9Nm3gO0kLpymJLDDW3Hds9Lx+QXuTIXgLdk0zhs5MAZC7SG97UO+hIXLdVTd6g/PSRVA495BdF+yaQqEC7kIm0G3YdgKlXxaKqbZI/ZZvUZl7yLT16LtV5Y8sIri4ZoL9sOuwhJDfZe6b1oeZ95fW9ubXxuBbVPmu9HGo3QYoz+Xq/vp88QzhmO3u85dZGVMXVtXxoanU6Fl5/kJ7JUmWEsYTVdz59FyX4g5MDLInW0sWmUj9HvfYbJjWgCDiUP+vw5FU0y4+lWXSgFJls65oLRfYYtemTFfUl6vSf/MvFYWWb1GWfIlewzboiPUzPuj3y8ozzGgeXZB7/RpADON67jg+mDF2Yi8jcD+AcB/LlX8c+/trmyfDnbfxT0amgrknhseaG1l8iveVlsA2Exq04ThwTXNBlwvoJgWznUXOdtnV6W0+WTHMuvr+6NfJkTdXJZ57t+jnRkn9o6ows56dYr0icNGIwXndduk3cQge27FL44T46UGkFllg89dC133ukUDrrOOicAnBPjVKa570vhZZ0ByEHGQNx7m/bsnLE99eF66zHpMckoiyNg4U07rfREKZ7IBe9Rm0dmj/cSBi/H5S+8Egsno4HLy+0zXjPfTYpcsM4cHpR5h47ULnOcxovMy8fYw343tEeiHSmHJ7KOZ+LNdQ05N9BustdNzph4q443vD4NfOqxeqygAlgUWN8/2445u+BF8f4v4t44LY2TDp8TfYPH7l8KL9c9dNhjasXQConaXSRMrbi/tOclvBNTW97OVoSLSc96TxKvpDyzddidfYas7Slt2+Mvy9W+Pfb+t09oM29a5ND7WpkWBa+5862bT0i0urKIJLl52GiRQ3gkK+2xmXsY97iPE2v4fbQNraWDeYWHKy8kMq39OxB2zbQVyzOedj4j/AsdmGFyTWZpD/uMUfeMEkhtIAwV+95klmuXbqTbaG/F8lzv0WI3+4y5cBKld6dXP5B5z+IHOFokh7Rn3B80cfhIfBMzaN9yMt/xxU+fxhOz3w7g1wH4gRdxTUewN6MiPWZZFmEX9c4emoGen7GwN2w8Y+Ocul3BwanBcJT6qmPD6oh7Hccs4OEuVm1R6k+Or7av6oGre9LpvKdJxdWOD/Kyw2956wlsNbW8upSz3F7HO6tQl7M66mANuWmOUR0z/Xad5pOqzq7WD2OYdO1rJhC1CVLlhzXYYVre6IaTNeCv9eqymIuFVPzz3T3NbZC0sIAfKJKcpYWw+PVmEkMTa5PJhTkUJC9Khs6x8zn0DXssO52ssxZe5QWcOcGTJgiVFyl0sb4snndmo/2ZF37CYg21AcbO6yEcwsgTFWtf5b0YC/dSGnOzLnao3A0fwH1dcoy/1I8ZUzeLmC3uJ8wsC8cHfEaHTXXRckXbpgb3PzXeBr8eqftl2H2n3hf4DMbY/WJ2lbTzC4x+9zA15gFo21exfFfPohXzFlx8ZPh5GLo0bSA5CW89P65JoT1qvuA+0zOmGu2QNxdwE2dZlmOS6BiyVuZDOuO0qZIWio6RPR6PXQnDRcAOMhqHJWVstGoD+3jkZ9xPfqDiPnghlTfLVl6dhzqd4Y8QT+3i4I5rXrsnHAlhCz32H8sJvmrhpeoHRIV/eabPI33QwkxE/iEA/66q/tHl6dVK+6sB/GoA+OYvfdu4WJFKdRwoyejgYSlaFmpNBcu2Jk/aC8r7IxxZeH2O4CxVTqO3yFx0ST+Hr9dkva7mpXa2NNrC+5DDJFpZ2rdJrY5NWx7g7SZEq5JI7dNHePmetU7xyj6zTwEPtG8zQawTglbHJq/1VvcOt2+uJN5+QRTV+jtmUtvbTxerThEUVuXEbiDrN0braCSH8wFIjgrIT+xG0+KtkvadLgwHKrLymjNnPQCF2AdWwbrOCYWiOMz4t04uYmcRRbfRAVnP03ViBOJjokO/6RD9nsRhG2Yrc+ygY+tB/FFv/X4Z82rhPdMEYuH145g73kdQJ+P+l7/526nE7n/BS7t/inxCImF5SoxlXgdPla2/9wPLccP8CpftGzV5r3zGjrfINWLWv6Z7uP8CTH3YZzAf2+aOuB67tWfa5RN2b3irIotcW/Dvld3f+9h4WFkNQzXPQR5on0z8rbifI0J6Q1voYlyyvLpP2DXWcC7kEl7TX54KGdZx+4JXYZ/1iLbNtkwSxj0gFnQ+Kue7TuqYGv6FF0ZW98j3uG9P68zf9Iuyc9xTCqUPvAaE9ECp374NFjg4CkznBVOB4ifm4mcuBiOAxRZelthnWHtoQ03PBvdJR+8LYQtexN0k6xPREvd8BtLR+m86faM8MRORHwTw05qi3wjgN2CEMd5NqvoVAF8BgG/7m36G4zX7y+RorHCOHEHMKQODFuQLsBRBDmUMXq1CEyohhcltQxmdxEd2+JXGwZj+KWKH8q5jzbPcjSNfwnuKXP7BISulqLKucu3nlF3LOEmjI0r7do4s6SwkEyS3ssbty5V0DWIBrGORm9on3IhVZ+j8jp3nNZNyI3Q62qSjOY1SsQE8dxxqL+vr2VImRUcOf+FvkKW/zktOSnLd4TD5WzYjn093Mt7sEP27XRziCCknUE3nU/NmB3cwZtccyshPmKKuMNlRdLp5mfpx+bwo83fOJHgF4XB72rzbGmGQ89+BNKGovAfx5iOWSz3QueMbbcihjJn3Jnki0/PGJOcmWcdHEuP+T/xJ3024HxXkBdS8q4xRZnAjFvHLFUP55lr5FgtQeXM+4W8ZgkOuOE7cw25B5SW5d/C4xUluH9EkP8e8L/AZLKNLDGUL9rS4H9i24L6stmGdRSQOYLpYZFW9lxMYm7/13icHUNtVFZZSQnOPBZsLr5RrOcS7yJUdrwRGg+VaXbHosHoiPHEuqhpb2lALPyB+jXVaDx4ZtPUUP5rChR4k40bNrSe/yhFP2Vy3tOAKW6fvk5GPsLoO0lk05Fgdgftn+kyKyeXTFw1TtcjN2G16xOKJeb19TAvC4+Izbv7pk9kelMWfZN4DeyznaAjBCEvvfUbW+SW4/9HSN8rCTFW/t7suIn8ngJ8DwJ6WfTeAf0tEfoGq/oX7olfPZ519OBVGbFQ0cxDs0SWuaaHVuLrhTRqu+U53u+oDZbSkvkdhRbXrrDrq2oaNjiZ3yReAt9/tJKGTI6RXbaoU2wjyjjG30W4q6aQ137WL5LqOVW5JrU5si0fkuhxNdaUfdq+6egS+KLMJGK/RFodWF3DUR6TIcUluRyUHOnTOCyxdfrOOlbZbnLkTSTaivNWFUl542Umyo+ZpeX5CdM3rOk9mdtjcPqdVdk7hkKMeDkk8w/FPuekUMLDjMkeoLodPdRy2Yd4z8oVXdrxi+p0x8XHaOEEr63gmXm9fkTPyZyy6Wl40vK9P9VWhiXheZjeuG+uMbYxXW1rC4w6zO959nn0IWh33PqPkGZ86hbjuBmOWTaPy95J3h4sPJsbj1KimjsW/dJtbrLPV44dphI67V8wW/GU5FzYaMjX0nLZJm1MVN1HqAcvRhN1KuMh4yXjs94nw2OoNPM6LE7Zg1J97mghFCQiXa+ENH8GYmvC16CjM2+Bx+g2FfwyabATHI4V9jy32KnUu4DTraHUzprp6jc8oeMx6pMWU138u7ct1nql9B5ct2H2mxaHX7bY5ffE02rfiPr9jlt7JpuPyO3+TD3xa/cByMvAjuF/s/SaT4nn4h6r+MQA/xfIi8mcAfM/DpzIqBngqCFktYyiJ4gEGzbZ71JfGyRkrqL7ON9wLZYyZMgx9VTKxAGMxNmlNFABfPLFTVLeDyZEkZ+liiTbyQvn2OHtqs8iet6u7Ot2WtpY3cvv2btp3oWN/YpasR+vXe9zIHQsZKWV6ycvcSa45HaJdnDLzdv0w8SYtw3HTzrOQ3NFt6k2bNdC7BqYj6zTqysrEjmrhpfbIrIsPkBDnZSeo3p5wmgH4bJvBG7QWTgGEnERLdvPTAqd4P5XLQ/2G/XhnlcNLYvdxOsxZH4dxhLMKh+bOVePFcHOAwRthK7ygOhJt8PL7F+P4YnasJ9IOqfOagz+TTnHil8bR+7M8LcoKrzlwf3Hc31/g+/byFOhWBqTQXbUZkHVJwrbl3Ltu/MKnYeO65LfifKRc4EaLz6B8fb/1Xl2TN5VR+5y2YPiVz1h4d+17QO5S3QarZSHc8457wLgoC2/SWTTpWP1ATdn/XMupWiov/ublcPGEqctJWihyqs/oMdVL0yKs8PrTmorlQ7k1dDG3Ky3udNQXN4SHlOV1HKqSMDX8jdNqxm7nReUlWgrJS4tdVfoItWGWug0q7ledvSzZingJ2w0X7eRDIV2F6vJNMpn1gn1eWcCRbSyUMWP5uciNI+8D9znsUR1/V59hXVT0veMvcM53wuJmJ5/B/sZ9Bj+VvOczUHwGLyKf6bNOH+07ZgJAT8tl8MEEALVj0YxkAlI4nAqYwUuzycUZtQu7SSuKHFpicrYOSlL4hYBwnADX8F1q2SZ/L5RRpJFjYNH5gx2vFZEj3Mpt2pdoi/O81BkXtCxHMrGUfDI863TRhuAsvPOacpjh9q9kfRTzBLgeuHJXpU5RLi35Ksd6HYX3RHutLCrzkwft3kLiWluvVTXcjud11LucrOii2ZlxXTHx4Hm2OxsMm/GpUgBwo7Cb9oQtq0XYkcGdbdDmCcaRdObwPOONfJxaOK5xWAoQvGh4Y/EDd8y8+EtyhUMZg9fs+o6ctofamI5i7Z6TB3pZG+ATteBOP3jppXBoyi+8MpwFL05fnSo+pfGqcwxKpiVsW8Igl/FL14g34bEV0/h9OR6HjnLFm5u3yEn6FtMkPL7H+8L2VbmL/KKT3/FaF9PVAY4Y44/JzbTVZ1S+bKvJW/Va9DTF+Abp0l7/XwygjR5ZLmOqL874vnS8qMNC0PkMxrJuUZLUTmNfclgg3RueKplPzCfbIuF+mGSGsBdMZXwe2BF4LIShsXAIO9xYR/BmXMZ109F5wacWgkLWJ2+yLWgTDBMLw7aB1dPOyHjMOh6+SDPsjvfA3Gcg6lr9DdkG1WeMUM9jPjV7l3jDlyk2/mbSjSPyg9fCRx/yGYLE+yEbcp99Ul5UfKHTp7YwU9Wf/UIG25DOwCm2hqfrBbKSU+yqrr+ly3erl45X2rLOKQ2aUa/LoTbt5ISs4Ynu0S46X8i5l9gKyVay2q7qsg2DbPJ3ecnxtXnXRVcdq57Gq9k2Tl2d7EaPR8NhBq/mhfcsr86z4zWK3tEq1VPr3ZTXuoiWn35lHsrPclvUsBwrY+BO+SRHU91Mm+Qm09Q4dkeDVsfK6xNkBSDnJa+fQggA8wlWnNg1d4aLI7W6bGcVkze/PG0OMfMmxychN4eLBC/MuUrw3yw/2ycLL90/sByqSwGRk+omO7BtvOt3T+Ben3zsa2CsduOs8k3alLe0GVeGcLvNma6uLXYzPl/q2PFSvoz7Nj3qMwrPLvX+ptfxXnpZ+Lte26LSJ0zd6CTr7/7zJJa/5zOIVwlDWluslmRsM55lw6vKMV4Q7/y9TG0k/mx6P+IpltUrqW45lHCx0mLNVx1dUNY5N7Oe3DcxcoP72WlUTImnWw/5qqRzPGkC/UXJOy6mp2ln0n/FY83lMnF/YmqoRXUmTGXcz3aM04VDrkVX7HxG2Dx4+f3k5Oce9hnRX4/E+2G4/7mkb5R3zD6zZLGgqgvS2667nnBnmJcQkxDI1+xR0WH3Z/LaBJ3pKvjZlmh1iKqTtzCYOrMjRKgMoShK2KVgeZrlL3+jha5eppUp/OSydpJyj1fQvgS+hENW09ulhvZK57u8jY7JeT4o55K3sY1WWlawdc7Mq/mWJ3XugATJ4R3JCINBuRb1Gk1jXtT2RtcWAGfUNetIO62lF3oYpLXHh2MsTMxRh3PIOrNjFASvOQ9f1Jic5OBCJ+NNO8G2GBKbA5z55W6qN46Xn098zDkR76Gmk7rcA3EtOTQNXgjJJfn5PQE6ldLaMfuAO+LCe0DnaVw6d2ftVMaOV33BVeUcNnGwUMZCOxz66e0FtW84+klL7XtN0lmvL8TSGHVjTtwth/I7poIZkyuwsDk9Ojwuf3WDORtMrficwt+Tjh3vyrrD6StcvOTtqntB+zpdansex33tbfGAXDUhO5+bLukFzYXPcAyjUut6VTUhbpuK2HvEYDxOXSLzNvOPDufvpcrjD/3Ih/Dpg0ET2B325eFAWD4FxeLnzG1PEQqxgDoK7cBU8hnQjMdpIyuwPOs1/xp+WSSHyyY9+P3X9CSq/Eu4rwDOqSOFeFP9B/01nxH+jDFbhx+QzOO86HyG3TdNuB/4f8YTLvcZ5D/dvszLWG5+7BGfgaRjfCYFYasHceejJMXzHbMPSqrA+xO+uj28i0HlIGRTxNdwo0cYPuQ6ESPPJq3xJV3M6OyNPlT97Hvtu1pVDqXi76fzuuNYzEka5jcOfMcrCuhB8kC8nZwd710HW3hZXrXRPbmdrnd0bJMDRH+TmHdUSxLvTWpUgIO1LBPAi/atL44vlUeJ/xTYpM+d0oWztk0LC5F5JLTAR1fi7eT0dfnQUMFxKKtNQyE7VHY0cJuE3PUpFOmpMnZ4qXzPa44oiP244elE+ds7eSfVeMPhxEKPw0GQnCHI2cXuI8sNncz5hUMH/AOgUy4vjmwRl0IbEfXCHCzCeWZeLXbJO6QeyihnkcO2gdslFqF0OtcrF2V2i7Y4nDoLL8qWUYxSFGwaizKmTYuJ2umYplu0oFksdHglPe893Ej5exMf8xmP0JZUMfXSZ6BHg7s+o+okWc7jtmkad9Xeaj+vg3C/yktyDfebVPoY79dlPA7836Ukvurof9dKpOTWwz56ebEoI0xdaO9hN8mTjBPGyzOt/PQ9TlZM71o5NW+6Td0k45DpEx9JjjLGdsZ920TSIsPqY/zN2M30FRcz5rtcwt+E+w1vljvCCN0Os/3BdxLun47lzuu2Adk1/vJi8DGfcY37Zqs3nZ5PzD4siSqg9t0LGWB/HOOfIE7n2iUt5Qt9OHat+SXua5VVeTMtXauzy6Kj72hN2iWf5OR8KmPHsJFb61p1Jl4q6t7luuSVDS8MWEmH44K3yLlnGybe2WalXH+lwdvI7bgxARFL+4qWBNiy6GWN6mlr+Et4KyRHUNsrtRzkkAXhZBc5lZeHQqVVKtvQch6FV+A0AB2ZbA4t9Y3s+Pm4YdbZHU3i09TeY5GrSe76nbGQxa+4guUX2rvtQ3acR5HLH7Q23vVI/HCanPfQxq59bjtBd+LWyovMy86e2icA3jWj8tHEuOFjbnMO8ygnJb0G+ymZt/xMWjaLjx2OVN6RrwOnEGx4W0w9LsorecEnmX/v+oUFf0pdKO3n3w3vFvdfoJNQ3mV6+byy2ZBr9drcgyxsMIvqiKZp5Ay8ImukurJ1KraNQyhKx7P28L3oeFNeEi9fbvFXdnUZtrEt8mJiqYt5wUOq+p+grbjhCzrGxUJrw5U3tLLPiEWq5Zl32fhkvEq4r1luwjI+JKPifhyXH+3LPsPeTxsHf7AfwDUven9jafm0CcJWN2neeys+JC/q1vZa/qW4z3JveKbPI328J2afvB+/D487HGDN3n8DwOsEGrlwbnMz8OtCJM3vkJuchlGKYt3HLXLtKjsmllzEZTn5qd6Wd6Njp/PdVHQRqqfmd47aaaudN3asyeVc2oauSvOciJXd9JuVZdzP7RTTnCvVs0641kXWIlcL7djADMmtjppYLaQwmledOtdVWrRMSIM3O9DGEtSdheruTcxl6vnqBIXzwk4BEblMvJJo153BHJuvSU7Q5pfOQ97g5Ze4ffFD9yjzzDa4XKMb/+KBhjptdbgcLgLSOz09m6dhcdij5Q/nPRMv22SErpTj9P1Uxmwr20U1vdMTOw+/CbkvgZglpc4zO5jHvXoHIFrCxQ6PNTBhxWOj7VVZFwerjoZtKc/S7vGyPMl1XeLTNEWLi9S+S4w186Lgc+MzHl5qX/iMpGOnU+Mj0pWmDY/5tcaPc+OV7IbZz4pttlhOvyv+6oF0hhO3Z6Et2LbsOxcfcZVfFmTlN/uMWNDkcsf9hTewu9bNGMEYC+ezhsIxq8XjGTZYv1Nm7TxGA1peGFQkvFLPc4gkkPVzbCPsjvC/1Ucs+dm+If/M9Ta0+alV4L6FENb7wLhvT8hu1j49tz5DqP3t07LWZ9QnbRn3/WkZhbS/+fR8YvYBSRV4/36MrvMEvnQDcAub2jY3FCk+bKZwBNVjqYdFOgp3T90UMSFwDxW0rkcCP3udtihixba+ZC915Ugqr/1+CR/l73bH0txlxtCILc1f67rgtffXrnS+5N3KvfTOS/saVYlUEu1qmztWTe3R9p4I6+SCe+Warr6yTt7k5LUxzdJodd4o1pZ02Q2eOuuc3R53bRNlvNvGw9FCMoJ23THlY9nzCWOaHbXR2mLJ6TXqNT7nDYedDslQ9ZAfPxCE7CVUd3qPjRzqoDvdlsGr7hhjwsC8phcfJhKOdpSftIjq5doEw18SZx3TJCbeKTNdfDLh+hivJNo7o/Ay5Z7ToE7B7g/GY6B9L6qKZLxa5tpdfvqbit1XvGhoqyty3pJPuDhD4P2k83s3pPilh6YvD9S7LU4YegeIvTK6Saxj4t1Yd+fXtPkt+d1cn2rY7wvrGJ4braFp55p2uMo47/sR205mMjcN04aW9PcFzGyf4YSCIvYnT+2CQrQgjDE5QavFZ6zdOfbb2eeo80b35MMsuJzwXsx3zyc4c/EA2OJo8s32DVn8XbGC3co+peLixFTmJV1sg5Xxl3nZNyX8JZ9RN0iP5LvMb9fFZvYZ9k5ZeHd7MmY67HwGEN9U4zpX3B+8H4L8n3UK//9FTx/v8I/38yXRQ4D3AhGBvrtBxkcd4B9Z5tiLiksLEma0E3Lsacezm9yTHA6r0iqHfxaH6iBNTmLZaU31wrchxHS4am4JC+yAPtVNvMt2x8aRdd1adjuzF87WQbG2N6E1/a12LLeey2ue66plsvDqIlu4LNVbPAztDgIoR1XPY4fdzo0lnd6UC0NKkqu5eHHcSnKGzMUxevsN2E1kALJPLrhPJ95SduTwGHuKZfUavYfOHfkWr0cwT9p0QqC4ozPyQ3L7wjGO67XefFx+DKsxnzXeKbfc0yPJ4dufT6wS8PHMw8acvxVa5j3Ax/RzaOP4l3nPdHzxgXhPLORkuTyJSN9gU8U7liM1TIWeukkcxW/872g4fNDuqc0Q7b5wXI3jRHRSoc7Q4vHMtwucmkflpaucrwu5BSelYDetKQovYxJDS6fzghqNjotLTLZp+Cex0o2r7XWzsh61Lm5QbV8V6zpJktP6DC+XVUdu34LPusdqp53TfVqUwp7MElZL6tSzvPYbwjrGbiT8ze2veDzKgrfzGWnzyvMSepKMjItBy4c6mc439hlFx4PzJQwylTX5wPJaL9zfSJM37Db6QzOWLdhecDHlj15nqytjdzku/+DPiDCGDl4OTzTcHCUoYej1NNvVD7Cc2EAbfXt9ehX0Nzmzv0HVmfvNGfe0yAVqKGOP+0Bur5n2gz6T8lknxXjQ83WQPs7TSTPgfM8Mc7fDixeHUEESM7/pJGWBw7T8/54XW97KV2vRSrtxXp105lXdy1lkuo4X+Qu51a6cfSnvotdGp3t1XPEudWn7s71Q7ZpJd31srSz3VqMl/irnUrHB573m4t53WqeclnpLXWneUpz8wlt05LnzCDHJyR1vx7uRG04znADvSIZcfnKU5YX83Y5v6Fx5Ey1KWAcv2DSH+fHTNluUucNSc4BI+Whfd6TynGQkOSh2PmFPw+z+JFtrHCgi894nOQi9lvbZpED5PlD7QOdN6GrnF6eX4jFTWb7B/3ZR45h6rdJyoMWFv+nlXOQflKvLj0Jbf1/h4qXQkr0HVzW9xGfU8OiNjqMnvxCfL6gX29ixc1LLNevVOli+8yt2e+6OXduKba5xydzjMdOK0yHRCv1z3iKnHlOPQhuhbRX3GcuV6Ds8LjpjXYgE/VyUkdyE3YosR05I0TW3r8fUGj3RYXuE4WdeOO0e97PPyPiceAmzzW/zd8huyxH+9oSMfQbXlZ/2hZ9Y+wnj/uoz1n7zQbj/TA+njxbKqO/fz52jGwbsCvD+hJ7nPADEEavOsLA9xpy2DB1IxYf6uCizsIYGpFBGmjlaH5b5P2YrYC7A2P1VkNxexRquJ0nHwiuZ18hYlzbf8boia34x66O83aVHeA3ThPy39Ly1fVs5XLfbStf7lm69Op3Ue+y84+Lia5123MEuHHGLZponCFehjF4mmVak47UOOXVmXnM0W7nhTCzPiyMbUm5K4pXEyzaPvIfWTNq80OB3DmzHNGjrgi500jmGwrGxHHs3iyc47FBXXloYKjtnPoJ45n0CMWhvQropf4z0RCwsdb4vQDH9iklLO6omdx6XH9+j6eRmh+92rLQoEyKlj56K5vb5uwU2QcqHo3xIWscRdSyhPAp2UwUqMrtz8DpOOFnqNFgq2mCMUD5wkeuy/i0Lb2rWDgsaOYtfqTq+BBc7Xsn5rc+ovLv0kCumyhvbePuJNOuk9/VIvLq2h3Bz5M0J62KLFLlAchkPdfKKBFEXtbI7vdTe/apYnrT2+Ylh38gLDK8mrfNOzJMz+Kbfcj9Rw+YSb7RHXf+M5UlHKs+4T7r4dfsXmHscgfvOS77paOSa3o5too6ho+gs7eMQQ/Yv6jqGHHuvODA4sPxMvsnfS4aO3tDiPvMyzq/YbbZSfzpm+FwWnPbZFM8XuTMkURH3hRe3na9KuC9xfz4r3P/M0zOU8QOSKvT9J9B3N+Cbvxl4dxuLsdsBOWyY6QxxqcBOaN7FDxggEG+e1JKzrryY2BAvXZDO8w9dT2EoBB5XoYxOV+UsOq68HD2RRknjuJm2vnDOejCvrSnrXOYuL1Zz1VBG0yMRVl7JvFvbNI56K6fW1SVrPyskVOYCFHz6llZarMcYJxk1w/1Gwgm7OO5r3h5JdrUJQAofCW2c10NcAOTQxspjvwU5pGX8yAun4uhTng/uCB3YnBxuEqEjHMo4HHOEu+hSL8DherNe4520fBhHPqWRnNPktbANc5CV99jxIuTawsh5Je+A5roUh0jaXb258wUg9PI3LLwl5HYLssybIeqd/Z6LOXbs/HkAgG0xwnStLn6p/VVJUcYRdQxLjuV+AwYtAaEwLQI3bPyLERlv5kr1Jl4j5noK1iWdJz4tvLPeNiRyh21oUtGx5ZWCzZUXpbzBxapmi5mS/y4+o/zd4jG1x8XY6cxJJ76mvU5Vv6oDyGdYpxAisEXUhW2yH+B7Jny5/O79QfbjAn56zbx5WEhSedD6XU2KehO5XtSQ7+wzop8Y/moq2uO8Ej6L56O2HOp3cCgj8kFCQ8csl7E8h0VyvUwbdhwyCBepPIfrhW1sgyzhIulb5S4nGjruxyIr56k9AGoYZPUZt1nnDSeFoWfbVLkA5iae6RiLL0H2cS/Bfbtfbzo9F2avTwoFzhPypS+PxdntgB4yFmdAOBniQHLkyAi11F9+S5dvZveIPRwnyVpfyg0q6eVe8fmALbyNw32ofYLGjo0erW2av4/wsmz+zc656tTIqRr7wlI2cog/tZ92RLmc/WJbz84G6Z7oymvaKeDbkdSRQjbtYtJko39apmWyErxp59UdjSZe3tsYsjTzIvRw30pOidvmsmjnNcmhvC+Api0qbbS7tn/uWorGhMn1UHKCWY6Vx8EWNHkgnswbDst4zYbxwdA7vApAzniHQVfe+GYM6cgLXP5nOFBoUziMKMk5k00W3qLzeFHentZRexG2gjlqiXs23v+Q2a0Fx37AXqaKoRULeEz22DYBJTr8Wj+ueO/oZr+tb/JiQUYd3aJlkbvB3yuZL00LLiZ8it+tnKq/xKUWF7neKifhY8bFdD95wdPcCq2ZZD8NHSte82/XJVZ9FiLJG5TzVoYwwjaTK1zm9HNcF7lCvMkWXG7jrcg1Xim8nq121Uan+ZuxPGOubrEblmde0tHzD+B+nZ2k7ypSH0v+pGCO+U/HshQBMWkXnY0W8NDGhIukkz8Zm7xuWoW9d7zgPt8Tr4zkvAb3lX5PTA+5xjtxf+dvjE5Z7qpz3KczPaVz25R7YPfsmCPBcP/NH/7x/MD0ByRVnLMz43bMJ2YzpNHQ+zBUnhNcLX8NbLmr6Awz8BP4jQf59KoFfCev7dLSvU3RZuxcrHz+T2EgMSueR+crWGfSweoCPJRPSVcxfbLZgpfr4vZ1H0ht9Gbe7i+TP8R79MVcUdW5mibTDqPyR7TtHjXkZUdUcyHzmq04TUeQFF1sMjL8HgSzpa7FYShEVBc6tUv7X4w67G8YqvJ68GXkdd2ltUWYhXFUWlUri4+DcthJmkh4+6xdSI5sDL/Kq04r8wbYEGbnApdLcsiwwzFJkiugMgCwD3a6E5uO18uHLrfZHnZSkHCeh6rzHkLHFC+8Vc7pOnIoo4XMMC/rD5IrhdfkDId7Tp3MGYeOUNt9Hzut8HYH7zGvHaTzIUwL/1ZNPjFs/D0E0zZ4XZr9IbBgdISBhUK4uGK34eKCRdGR4poNZRsKCffZZyCH47mcQbdgPacOFxl/EyatuHh9uEjWqWJoxkX2IVQn4361DUNUx9vJtUt0TxImsZhG59S+ecvcl3VyXRhGmJfHPhpzw0gKqvOGCRwxJXBx8RkFe7qwxITVhKnUeRCxgj0eV17HbpcXvELtM18BIbnWOg08RsJjrheOoWCdYVhsDQy54SOCl082HPmpbsFUprUFF3+OpPobmDoS2Dee3ujEoLzhlG1DeE86C8slOSmUXjjUfMVUlgOhBZBW3J8+Q8PnMu67r/S2T16sPkNw+tOvrb9Bxn3r0slGSv7S7FhsdrM5gIcyjuba5qd9NuXNJgVUvz4O//hIpzJKDDwLYzSHaQ5W7UlBeWVf7KDUdHU6xZjwjV7Lr7VmMK/O2XaDhyM/gbkzKjIB3k4Rk/ytMTEnaeqBFwDiTgCYdR8ss0wK5sU5RLl1o4h4AaorzLpOFqZcKQunVL3En96ujZySb+ZEbpvERjKHfYserotc2KZRgxWAFJ2JV0hfYVtIrqtMcMJDkzDVfIKYyjxqnbQk+rFjS32HdYGWvKlEN8daozJj9CXRyvRo8SRMvF7eNDAd7bqV5d3FyjtphMCedUy7qYM3h7jE4m+ESE4nOPU+5EyhNn4ClTkFN0PsFlo6io5x3C8SrS1QDtgiWXE7YjQLKIxD4B/1DN41TCV2SEPnccqktUeveUEnLQrR0mTgJrT7CuCd5BPJfAEn8Q6C6WxhkNG+sM0NccKYTUoYbfOpjBTSIsDtlR7a54GA37SBT2mwF6yuY7/IpkWZAL5oGdh1gfuToeIVdSUvr7CqBReZ12kJk/RCTq0LlZ/wyDCsa0PFxYT7cz7ZYTnzRgNL+6xdkvkcCqXRmdq7bNwJZzZyJzbY9+psU0x2fU8F+Qx4Ke2ju7/4U0lyuT2Bc1Z1xWrbDHMAJNxbLOtyx5x9+AzDbgAJMzv8jeskt8Hj4wj9DPdTl5r2BWGNSyp9bNRltanLkSR3NCreqx00fIDGAXpfiTenTI7AMTXkosF9gb1TFbwauCiEi1DEEyYAKHKFsU4LLsYnR+xeHoTdGVPVcd+edvH7vItcgBZSjc+QOPI+Tudt/A1OHFpDRON9M4BD3kGLMNPZ/Kvcxf2Pc1rgN176KAuzcZMF+NKXfEQPbAzQdECtj6yMNqE7wL091WV5VDkE4MmJaDhSiUmBDa22MVVu4ze00PZJ0i/ti5a6eKFVdWxpazmIt+rY5ek2Jbn3eDu5pZ4uX7V+gRn3vH5vC32Vm+xKyJcWXiOfFpnmaFMXlQ1t1UOTnOT4fHKSaYV1QuR98eVyNfGGWHb4vZyxAMoyhHSMNOQg8WZbuImMFjYiV9vw7qLxsW0gSry2wCF7SIzeNhwGgH+zbO5wwk+zIl7R0BlZTvoWmtXptCCH2vEi2SYWuNEe0+NAsSsUYLkcDlN4eQeb5abw16RziBqTQFmuvyoRdlfcX05HDM38lwottmJILe8nLbh/L21wMvwN5Stt917yjrZi3Sbdx8Wt+o/JpfyVv0Gh9eKK+7LRcStXl3JOq46F6OGOqI+1r9CTFtRlr7B65Y1Nsqgr4VgRnRdiRadU1vSchIsZU0FYkOvSzN/4m4rtJmedEa20x8TUGIWhQwaTwHLnRWDRtn1XmAq2tQZvckUa/IhNMQh3a/W54LCNyTlLPmzHvkNIbrLNwfbofYaF8ndh92ybeO+PrgvbL/u93L4ql8xdcP/NL8yeoYwfkATAl79pONOl0Dxg8YS8nQ7wyFrZm+9u6UIk5fdURhUW/6IA9DjyOwabWlinLLdQWbZzXkzSsLRhlF37lvZu8tNWL+3Ke7u+gLfTaTFoXfystum6yz3e5VjmC97Vma+OrK1mqU9W2u59hlJvhDn2Tr7qkEE4hKmsh2jwRMMdAfHw/sUyjykTDXYI/i+FbRRnRU5u7NgN2kNnOYUn8mIrOR7SMRYzblx6QpXbl98/yHLtdK78kU17mjT1t91Je0pI4YexS8rOvvJq4vV3Brxd6pOZA/DwxpvVP98R85AWkuPtmjoejY5HY5ukI2KdIa6zwAIHxhPH1yWbbJfAt+h5c9HFGOO83g+FuKKTWgSCL+54/Er5u4z5kqyeri5uC9V5hYuJlssbPe7jYpbr1XRyi7/p7FqTi7uQu/cvPVOWWzE0dO3a4DW0TrH8beSYbeqtXyMiSTJvCBOGhW167OYNsVrvzq+7yhf3JLAt9BqLqxizNp4DF2ljjureYTcKr/uFGcoNYIOpZYFgPqW44Ni7UFg0w1Hk2gPAsWmkXl/2Tzmf8RchP/Fm/E910OInDgUhTHU5yHJSXr09He6D5GJezx+I7n1GRD0gtY/faQtarP4GmkL583tsyO3DZ4f7n1tSvU/zBUgfaWFGHu+T98CXphqaRmVcOyQ5J8PhBdombXgORl6iVYzwCA9HrRNZR6QLr0hXuWqjv+P0k1jJ7antW6rqJhf3Jhq1XAF/1t1MDBa/IjQxupB1xZvydxn5WhQuPrjqvuiYeS/TA7ZMRXT/TLHqfFsloxvObjbvtndXAvNGD8Mep22VKiKn8zHeg3jzQ97YbRuTaHUnqbCXgFsR0TSJpa+/0D3FpQUUzFmNwhj2NGkQHRMMrI7WFi9COuaJgua6yCHzISEH2Seuj7EcT9WC1uS4c0+LI7tuR+sH763oGE+7NCZR4DayjjaBoGP3rS7Xc8i1hS47edAEoHfGNmEIpzwO+QAsdGzwGx69zgGKbhYHht3tkbY7XKSBZBtMPCatXpvtC9UrSE1IuHEU3l1KtE2bdjyWeCDsMOcSF3NV2zvS+Jsrmdsm7LC743Zwy3J7kfN+Vr0SvhXkr5UsbdJUxHJXeKaGTd4KqbvvZFsoYcLuK7taXVKat5JnPsm3z94NFidgn9H8ps0e8wO1a3NdKghc1Dimf7EN8zruko5Ttjiv0uRf5xDSWJAzluvEsIKLLC/hYOJF4T2L3+hwcXyYOY60ZwxG0qP6m/AbK+5n36qpXl6cdT4jHWZlcqFJD7YNh10ejVz3mcqnOpIfaHE/L6rfbFL9uvnA9EdbmMkh0NttvGM2kx+Pn1A0JgXcxQOsc72jbKCOdayRpeEhBDSqkPdT4JwXqAAawc0ZhToE5bkEvSuxyAXys+CK9PSyTOdouXmQkt+/TpdMpSi8pUld3uout2QB90d4+RNx3H4tOjGTupfY8KKUkVxF8ahZmzUruYFCcnUCPcuSg5gNwXIrJnGAu9GG7WTm+9ndeGKUdY53BvNxyyYjnq5pKheBH34KIH0y0NtE7euOWOa6eKEVjn3QpuOLMWzJ+VEusSNLjiIdSXwgtwFKcpXeYZjOmSYgNyDpfIAWW0LvNJiDIjNHDH8MT0ydAU28IF7BfHeAdSz5eMeM3ymbZawj2I52xD23Ly9EKy+/ZyHgo5DHuwPpCGm6jyKCm+TQRc6/5lTG0fWt/zIuxrvBjg+E3dxBBXmq44anoZNxsgLURm+Tze9VMXZ3WMeRGUVuK1ZKnnhrc5z3Ahcr4IpivNPL1y50rO404WTFTF4T0X1q1MhtSossxPtmqf2SdfYyLXpIztfVU7JxppVSLlC61/MiY6rRW21ku4zds5z7zVHLWS6XVT+ALKf4J8NUS3vsjk+OjN+nY13VURbe5vehSc4Nq1w3d9URGWMCf0fb+RCQ2FAabZcj12V6jdu4nrx4Y7kCL7NFSrS14CJhqmC8dxxytcjN/oWx3LBbKi/ZsX5Um/0A89rTN1u03fwds1lv1XnxNyDaBudr3u0rBecr7r/xYMbnE7MPSQK8+5IjxV1T+qwoV7GlpV4XTiJ2tnjbVt5jLMxkODUVgd4kdmBZbvG41S8kOaRj176gIgRsK87Z6sg7x76Te49Xy9/FOd+r60HeuzoucuoMhMr223erbcoNW1iLs620yz3ZONAc5sJyNj290ZF6USlEMUWmqU6hltVJQFSdnW/mb8po0WK7sb5ASSrGrmfI0VwX8dRuk2hp+EnhDZ2y0+RyXvwschC25MUeiNfK6lPD4bBmuWpa0Fl7ObQkP60jZ6304rjzFjumtmsKieT2QZEWdKxjyCXbsP0thIWuHfT3g0NabNFF9k09eYPdsEk9jaz2vaOOl8p6nfa89p5xh20vxtSqY1HR8v27do3Om/zV4u8hH3KVGpPXe/mojnv/ope8lXqfm1cKpnYHqNQ67NLV5mPmLTi53FcGjhXbkz9x0h2mstiVl3WCMI7mzbWMx4yPAsNU1vFAxTYzQcVUfqIzyxmfqG5hGtfRZAnsw9EoclPoNS1akm01L7KAGlJZsLnBbm/fvCeBmbEgk2obx3iyjfMb/ely0jc/px+wJ3i3Um/2Gb3OsT+sSWfGdMf9+ZSs4v5Bthr/3vpx+V8/6eO9Y3aT4ezen+O4fAAlRiuupadoim1MHQGf2qxduEsa3SQ4FXIqRv8/gdvYuT05lLGid0Jsqs+cYHokFNP/ReWGt7ahpmWXs3Hoi9NvaOuCZrNcyIWfIa9d0mKb0FkKIdJ7JKls4S3lneRalnTMCwO77jv85lA9ZIRoyHGkRDqyQ+W8FB3jaOfR+Jh4ycJ7r30e8UvtrV0uOVhhfXKZ24J56yJtdnx2bO6skuMPh5EnHysvkMM2qjO6pfbxO2HnmKgYr3Ke/0190mKJjuIvvENHW8CF/v6JAsRiyHRKH4dW28VVYMo5SI6duCjEO27c+Ms6hlyUSYzOE7m813ie7e/OmcNaptrxIvjrHbRgvqOdsIw64RxX6REFjf3gawbSHL6JhnkuQtNXfKogk4lZzsO46LhRqn0Eu7c+o1eR5SwY2+i8sF+UbVPnE7v8he524JcvvC/1mLVRSGHYirBcC9ZY0cauUvJL85R5+9DAhde7qzomprpSe7JLW8ICyd9UXg6vTB+cdyyfv7c+A7DDkGzzOH86Q9NeafZV4U8Ook2LMrGwuWiHvzObsFy9vTJ1AnI0hWOdvTvFOsIWZYSLU761L3AxRyKwXTvcP4QWZu5vdM9r/oy+IRlYbryn68xP0YL29A9Ud3IZ99Xq8cfbCopNAxj3J6Yz7h9i36o0H/GhqP/5JP06CWX8OM8lHdEEcjuSz2lmeYSSwJwJ9Z5v0voj7tnRbCz6v3P8O+zvJ+9xvFcc72dZ4c1oTeJIJVPLnkpU3hqlJlbGTqFrP4n1iWmpC02e21t5BVnHAP9Ci1IJLnizKQK4mbc6wdLkJNfybI6qB1+6sEXl9XuQ4jWocKl4uhSuQ4t+6Rz+0mADPMlaS2ls31aiNTncx0B9juzIP8QAeqYafVmfotl9z+GIQ784HSp2Gy3kgg/NOMSOm4+dU3Zmh9gLxYDtNh5g3nhPyn5XXrOfhUSatfjI4ZsobkfofcgM4cNwyjeBv1wdcoFxPPEZvLjDCw4TVNfXbMovT3N4j0y73NxOVm+84/FOZkimZt4DincYu2tHw2vH8JuON8nHJt9gYSpj8RV1RZnXJYJ3tEh7reMYtyYmW9FnY6c2deaCsVTL2s/n/xZ8onweoFGdj8zKi02e5FxialHfcPESY6Xwlnxf8dKkdN2G/7VtVrtsr9FfW+CM9kkuV9KF5aJcrzJsTHeGbFP0idQeqTTjX8buhpbk7qYag9fqmyO/El/120YXvtceOj4Nle8X8cJwxGukfMhMT9ClyrK/40fCfZaLwN7ZYsJ+w0F+CgVqg20SxbUbyRKqwyQnHyEZF6u/ST4CxGe8YjiccXJgHWafO6M9zOv1nROPK+5rtoXhMRhTz4THzHtg4LxjuUy/N214g+KdGM6vvKleb+fwOTdEuKKFJpqvqrhv5Wa7mwgOWpS9JoT980tzgf7afx+QRORXiMifEJFTRL6nKf+ZIvKjIvJrH6nvI4UyIo90mM8soE6pfmwZgu1OmtbfQqQ6dxDO6aw+Oe2zZVCd77FJ5l230vqkRLubA6yazoaIrJcvuBxRbUOk6FF9TkdbdUz5jUO65CW9Wl5q1/IxU3Jg3L7xuxikk8tXim2SLah9Ve6ST3KHA4h3PjToeRHq+bnfa7TWByk/rlEYyuyDeYGl9Dt4ReATXKbt8jWMBYU3lflMiu0YT82EaMXtuIZIpN/ToUiqK+TOh+cu30M8QHKdV7Me9a8o/OXvVudop4fXKGAnI44mnS4HD/D6t24EeWfZHWdMPJgXdrqi7U5T+0YFJ33HJhZuttM65Ox4NSZAsw35hMawzWjD/CYRLXJ8cwrwz0MF7WuWZusMOGGZUwQualnBtRjb8PoTN+OdbR4fIDVeKbxFp06O7Gib9jQ4uOWVUlB5Jde9xbKrZLwFrx6akmzlFvxifVtczM3kVO9nrGJL+7id9ffEUEhgNT/dWrB7SqYet+JvwUnn5ac0QtjtbYgWBm4UWi6rdnV54uUy7ZgWbV1dbr/AnAXLaVwkubbToFYHEm/VMW5Z1slvnT8VC3tG2CC3M/4mLNthG8s1fvYRFRcn7Xr0vD0dtL/YyJ0fe3afEbxu85hoTv3MZvZO3M5nhBxJvMM/+OdYKDS+8zcuV8PesQi3snHv/e+8OQJb9NL3UXUel++4fw9kPmJSfMzj8v84gF8O4Hdsyn8bgH/90co+2sJsvMd1DBBdkgTIT3QXTKes/AFnADb5HsSD105xhPfO0enPwS/zBuoniuMUyHmOum6jXrxXaPkwKctdnAvNN2ooozt3QRm4cwjFbN3llBlzQDM5Om6uYajbglTyfJJb9WAhWBdNDa0WuTZPW+7mPV4j0ez0FUq80tfFl6YjuLLNiik0A2Jn6g5JPG8fhOWQPut/adFEvEJ5TS2eLSy8Oh0uCm115Pd5J5+VTtr1JEZ1HQ/XmR0ewpG7kzenCeflY+0htAgzpzAnB0xrzjq+c0NOmhw586Yj7E1/NxMtwDTq1MljoX8RImL809Gx47IdX39iN/UBL45ATpJtYR89Vdi7A8bLE4oIMYx2DF5xvfxdNXLGVi/nhW0D21ENXtsldqctNlxl2pUnA/RegYcyUr+g/IuTGg7pxMnor7yQYuyO8Tvxl+6018m8FVMVs0IDNsbneUqp8yaVoq4NtnWYWnGxYh3TJiNyXQXu3EVK/t3xLpc2PmOrR1tJR5uxLtlGkHzVrq74cHQReoH72ZLVT2qitfbLwqsGqkt7rjB2VDrb67jItIHdOywHdliefYYwBspZ6r3ghY1lCZyXYZu8WRU4YrzivHB8svrMrhG2HTraI+Oj8NrIHrxnoIbq/Ni1EpYPvLF2rVgeOHkj/DednDfR2uJPXI4fllSw29oztnR0frA57JmOwm95p75SfETyGT3vIbQRqeFv7KRIf8dso3Oua95PryPryAuv7ftkjvtxDz8I978Bkqr+SWDYtiYR+YcB/GkAf+3R+j7a4R+iAj1pQGHC1xFeUACoP1M3ZOBjk602+zFo7VsNfCSVXbKhJwLINwn0PaDHDbjJWCzOf0KO3XZtu04pCj8JS8yJkzOyJ32O0dLw2m+bNS3WQpoghG1WQnfkBqqdXJRreZ6TfT7LnWV1kclzoEtemjMpyY37R7Qqc5se7sQ7QenezzKBZtsItRkx8SHPk5Uwo7ntrM+ZE4sG8mlccJ3Fs1Ll+N8AT58QuJJ59qWq6SRFqEzHVpoxt1MlyY0JhGLufDmvuCMz2pQUcZLiNNpxqFtACq81YUwKhs4mZziC4E2nI2rUZbKOwxZRdeGgaYhBIjzPEofrWWiHWTMOr+C64R3yNtsnGKEh/F2beEds5FlOzVv7Vl6FzJCWCLuRyTtPUwO/15bDHAUj5MXkjLCTmEDcFh1jESbIJ3Dx+ycW0hO8wE0icEUAvJuWG7yvc9EydzRHPxSoKPSQdJotELi5jMEy9geeEC0X2JxQYqonBB4KxOmQxksY64ZStJtVwrSAb94wL7MJ8bKc+mFspxf621VUeZtFyT2fkfYEqz9gPN7KFVrgEAZz+4DkB6zCeH8scEEL7mOD+3GBqlRJ7UvRCIlVsm1CobBfsoESs6RynbhxHFk5ISxfzJraYIuGnrdw0qFEFmIYi79Qf+SPQwlXhd7N4pN87Ul5llvPWov3ryws3G5HfXpFG4DG6/5GE+YY7vhoLFhuGAWm9T6o2WcAjo8CCnUHYJ8QiSYp2YLaBPjCL+O+8Wc8rrwAfCNMCi8a3orlO58hsw3Z3/BmHGiTb95VZb8n4AOpjulz+B581rj/uSX9oHfMvkNEfojyX1HVr3xIhSLyEwD8egC/CMBDYYzAxwxltHTCR+dwvASCV52gFrGDqbw6F4D2xAsCf4pxDCeih0BFcB65MvX/s8e7kLvT4U4bdE91V25Lu3H2NblcyYslL+vqYWcnd3gbOcaXaB65n1LqkY5el7ocy7mM/1ZemgfEKkfL7dQyYVruvgMm68QOX4rcyLPz19K+2nRNtHVCYTuFrvNR8oU3Qi+4bOSPpo1IPCG30np4jPPVfOjhT4aKnOWaT3oiPz5UTeVTTgqZYTlM63KV6greHGoSEwOY47auYnVteNMEI9WlqZyf4PlOtdsCoWtx2CyHJz6HnEhhKknnJqSFRB1BOKlf95bZwHi7BbQBQi26j/s2JUTSqeb99ppvyR06Efd4RXJaPYg2z/wWWmHaijGbetHRXvmMe9i9xUXKyIa33qOloh6gcl26lI+sZNqdlsZXMXyRM64IyZWlvJFFvLagT/6EcbLIucbywJ5MOynINvwUrssvY5/byjqm5mpsAjovCi5yezTJyVOiqId9RWAqEqYeiadguZQ2JNpzbTvJyWkNT/Sngqwj15Hwl/PngvsZj9mW6nsIWQ/GfWx9Rj62vvcZ9ndtX+H1KSr5bSF/Q008IO4HQsecd9pPCfc/j6QA9MNCGX9EVZf3wyyJyA8C+GlN0W9U1R/YsH0fgN+uqj/aPU3bpY92KmOE2Cmg5qwlnPUB84vxdyYF4gkT5T0ZL5TG4/A4Hndu3lIOKMau7ViclWHfyG0dsA65msqtJtkcJEmZbcVEZT8u7m8bJsg2XOdCDcy52lmBavNqq66ufbMSz2qbrMfuniRBfJ3qSov9Tp/Cm9u/aaFYf1CyK9G2vEUFuhdrk3JdHsLSjgkNkcjO1sbYcHKa2stdrso3h+K8/s6AObK8GHDHg6iXedJkoexW8jsAwWsyAPtoZ3ZWI/mTpSkvwkWAg+zCvIuZZWzSD/uOxaudYMWLJasvv6ul4HcEwhGSUwXt5upsr53O5f1m/DvsXQSua4bVDLlntE9tcjNtQffAXlT3ts/28V+HQJRv2WBgsf9VDEeu40Xw8d5BNeSD6f2cKB2g0ET1Jw8LEFAnja6fB2sOZZz9TZNZ7WYOmiPq1nJuesaczeAwWsLjBW85X+pNeFYHP+nqvDtcvEpXeLepZ6n3Ao+3RI65fLniYua8lht426WVV1u57fH4FUs3vKh8CFxcNLkcF+ZEQZhO2F18RlpQ+LhV0jXjfMJ9WvRwiFpgeMXjaPsQyxhHf5E3+xJmkD1tPs/ve6Vw6u4f16+GX9LyJKxbcBiAnI2O6rx2r40XE1tX3FfC0cBjs6PRAhwRAec97FRGe5L2Qp9Rj8ZPfofaBsrnuow+TlzkRRgv2kZ+h/uA6PF63P88kio+8InZner1e1/B9ncD+C+LyD8H4NsBnCLyN1T1X7hi+mhPzByQdcz25QRwM9CSeJKmOt4ZI8SrYM67BcDg1UMhvIpAdEgF/J2yUcExwxHFB1y3oNj2SQWFRfSe8HJBF6jcpsWhFF4Os+EFa1trcdhbJ9+pI+QTrngfre8RHQ/7kaku5hsL3XpNcRkt/UjldVElA5IlOfeeqYnSejjd59X2d9n4cjDveCsdy8nvOKxNNWec81Q9TRh4V9MdGk1GwrGHY2XaRAd2dKCnYUzLExJzpjwpse/HBO1RZB+uUzhuwww+Lj+/Y4BCe8bEYob2xCutAkmhM+Gg+RRMdsb8XTR2zIdG6JPd/ziIxHTKT9BiEhfvIOTdVEGJOnw8KfybkeNTJYLzmEvA2TfUToKZBtni/ry91qUEitNCCZmQOqwYViblm9WHbMr2zQpdCi5eDk/BZsNuw1vVes1NaHxGVetliYzdANlon2DZOMMF7nv+jlZXt0fW71Ruye/Kvb/oim62V8pwMWO3IO+69aniovniUIsxt/w2zJXg7ZrD9VXc57wkWsLYqWPF2PybFyGEyYuc4aP7xST7DySctyd2oeOKwy3uI3xGDV1kTOVr8PqzP6i07CMOau/A6PBbnc9gv5ZxX3yhBqj7j4rl/HvYVVIkhZTfhvuYtNEXjmUO8RbTBz4x+9STqv6n7beIfB+AH723KAM+8qmMAtCpW3E9zfzn7qZA03BYYUz96uhg0YvUkayM/kmjJpeq4Yno5UyUryninYWOd+GXxHu31zdx+gDWxVjJL3LJ3tWOvMb1Scymrk4ONwcAv+aXUzMfSotbvgfIyyjVWW9tE8s5+DL1haU20D3SorOu7Se9Fl7JeUlIaR1rbR+pT7zIzphsk8TM31f5eNcLyQkO2poPNQUa75jN/LGljTzL4WHNT8qWp23Oa+0L2mPhzTryewjpySByhJkAJdSE3zXQKAcg/NI164H4x8dPuz0WOQinKqNeliuAL7qGTvbEDBiLoNMdsr2DwAsjf5nd64o2H3KGk110Bm44kvMW/w9TDi/aBAct444FjB5LMiMkcAigOjbk3sPfzz0Fc5NsvhnXYFuAjM531qZOhr/z9vthEDY2dbZU7ZtQ8S6x45V41em9t9bdEw4mTN3hb4NX0pVt5HiWdOQObs1LHb7To9GR7aqF1n7LRo77V+ZbbMOGLfXOvyveSsmvd8G7gpUdUZJxkOuuCy1dMDPjs4CfTo2ykAyA8FmK2Qs2VJ2ABX8DR9hPGD4Fpx1qEbyaaQ/CWMEWu7NcTa/1cb0r7UgRmh2+KXVBxm7uG8K4mPG3kxu0A0c5JNzkJJ0Q2J7wV/LBHiw3Pv3Cbcj9LnRSyMELqonHYjy1fYb7tIhjP1d8YryHrfPTM1kn9m3LJwy8ntFX+aCP27wWcuG4b7RuU8J9yz/TmkTklwH45wF8J4DfKyJ/RFV/8Wvr+7jvmPmsb3Rj3qhKaxpaoI28przzysho1Dgu0OjOxyhjnAwlNPTY4Vjea8yT+rS2MCdJ0rkP11CKrCO6wju8lOpYkT1tG9JRssukYpcaOVs7XvEmeetyu8rZGUPt/5tHUOkds6Y06zzy3C6petZFWakrek0AeVG5ucYLJS1yqyV1aSov5iIf9bPc+oJ3fP/Lh2XIgSbeFIIDRQpt1KzzErq48JETKbfvSKDAO6t5AiFo2ue/htOLF6DVX45Ojns60/GiddRr5S43yQmna7/5RWv7QHWEtPACL8JdqkPNbSyLuKnTDZrCGv0D1GTHqKvZJaX3btMiTLPjHruz4vW9+ls2Csg5wsahGJ8pme0xywMAfQl1g20a/O+JRgE51Bd9bAi1CIxJ1+N8zdMIpk7ZYmrt4FyWTbClrWmRk5va6txibZcauz7C28q9aERuvy68495vJDeY2us08ZZltbyaBVMLdnLq/arYzQsNlLL8FG3VuuYD6+zJCMp4Doste7RVh9LHYq5xFtw3LF/v5Ip1gfsjyxtMOl0it6H6DKSycTCTuv5cdfYZ5WnSHOL+HnMJK63vN/NiiHHQF7D+d3y7cuSnrcimiy0QYe1HiXKQYhvRdVFWoykcsy10Hba4yz7T/KT1aY7qsPa53qrrooz+pRN3Vcrib8X9N78w+wxDGS/Fqn4/gO+/Q/N9j9Yn/XH1n20Skb8E4M9+7oKv03cA+JGPrcQXID3t9Fh62umx9LTTY+kt2ulnqep3Pkr8xP0vdHra6bH0tNNj6Wmnx9JbtNOLcP/zSiLyb2DY67XpR1T1l3xa+nxI+igLs7eYROSHrk5keaaRnnZ6LD3t9Fh62umx9LTTZ5Oedn0sPe30WHra6bH0tNNj6Wmnb8z0ds++fKZneqZneqZneqZneqZneqZn+gZJz4XZMz3TMz3TMz3TMz3TMz3TMz3TR07PhVmkD/rC9zdQetrpsfS002PpaafH0tNOn0162vWx9LTTY+lpp8fS006PpaedvgHT8x2zZ3qmZ3qmZ3qmZ3qmZ3qmZ3qmj5yeT8ye6Zme6Zme6Zme6Zme6Zme6Zk+cnouzJ7pmZ7pmZ7pmZ7pmZ7pmZ7pmT5yei7MnumZnumZnumZnumZnumZnumZPnJ6Lsye6Zme6Zme6Zme6Zme6Zme6Zk+cnouzJ7pmZ7pmZ7pmZ7pmZ7pmZ7pmT5yei7MnukbLonI/0VE/tuv5P2ZIvKjInL7tPV6pmd6pmd6pmd6pmd6pm/c9FyYPdMXMonInxGRvz4XSX9BRP5lEfkJn5Gc77W8qv45Vf0Jqvr+U5bzq0Tk/WwP//sZn6acZ3qmZ3qmZ3qmZ3qmZ3qb6bkwe6YvcvqlqvoTAPxdAP4TAP4HH1edD07/z7no439/vhKJyLtHrl2ll9I/0zM90zM90zM90zM902ebnguzZ/rCJ1X9CwB+P8YCDQAgIn+PiPw/ROQ/EJE/KiK/sOMVkb9FRP5NEfn3ReRHROR/KyLfPst+J4CfCeD3zKdXv05EfraIqIi8E5H/ioj8UKnv14jI756/vywiv1VE/pyI/EUR+V+KyLe8po3zyd2vF5F/G8BfE5GfO/X4b4nInwPwb4rIISL/lIj8WRH590TkXxGRb5v8P7vSv0aPZ3qmZ3qmZ3qmZ3qmZ/ps0nNh9kxf+CQi3w3gPwfg35n57wLwewH8ZgA/GcCvBfB/FJHv7NgB/DMAfgaAnwfgbwbwfQCgqv8ogD+H+WROVf+5wvt7APxtIvIfpWv/NQC/a/7+ZwH8rRgLxp8L4LsA/KYPaOp/FcB/AcC3A/hkXvv7p96/GMCvmv/+AQD/EQA/AcC/UOpg+md6pmd6pmd6pmd6pmd6I+m5MHumL3L610TkrwL4YQD/HoD/4bz+3wDw+1T196nqqap/AMAPAfjP1wpU9d9R1T+gql9V1b8E4LdhLF7uJlX9MQA/gLFgwlyg/e0AfreICIBfDeDXqOpfVtW/CuC3APhHLqr8e+YTPvv3p0r5/1xVf1hV/zpd+z5V/Wvz2n8dwG9T1f+3qv4oRmjnP1LCFpn+mZ7pmZ7pmZ7pmZ7pmd5Iei7MnumLnP5hVf2JAH4hxoLoO+b1nwXgV/AiB8DfB+Cn1wpE5KeKyP9eRP5dEfkPAfxvqJ5H0u/CXJhhPC371+aC7TsB/E0A/jDp8G/M67v0B1X12+nf31LKf7jh4Ws/A8CfpfyfBfAOwE+9U8czPdMzPdMzPdMzPdMzfeT0XJg90xc+qer/FcC/DOC3zks/DOB3lkXOt6rqP9uw/xYACuDvVNWfhPG0Tbj6O+L/AIDvFJG/C2OBZmGMPwLgrwP4+aTDt83DSl6bOl342p/HWJRa+pkYIY9/8U4dz/RMz/RMz/RMz/RMz/SR03Nh9kxfL+l/BuAXich/HOOp1y8VkV8sIjcR+WYR+YXzXbSafiKAHwXwV+a7af9EKf+LGO9rtUlVvwbgXwXwP8F4n+0PzOsngH8RwG8XkZ8CjHffROSzfLfrfwfg14jIz5mfDvgtAP4PqvrJHb5neqZneqZneqZneqZn+sjpuTB7pq+LNN8P+1cA/CZV/WEA/xCA3wDgL2E8Qfsn0Pf3/xGA/ySAv4JxYMj/qZT/MwD+qRmO+Gs34n8XgO8F8K+WRdCvxziQ5A/OMMkfBPC3XTTj722+Y/afuqCv6V8C8DsB/N8A/GkAfwPAf/8F/M/0TM/0TM/0TM/0TM/0kZKoPiObnumZnumZnumZnumZnumZnumZPmZ6PjF7pmd6pmd6pmd6pmd6pmd6pmf6yOm5MHumZ3qmZ3qmZ3qmZ3qmZ3qmZ/rI6bkwe6ZneqZneqZneqZneqZneqZn+sjpuTB7pmd6pmd6pmd6pmd6pmd6pmf6yOm5MHumZ3qmZ3qmZ3qmZ3qmZ3qmZ/rI6d3HEPrtP/mm3/XdX8IN40u+cS6k4hMITghUgU9wfNDXcNW+E6z5q7piQiVRMSPWi98YKd+PL2j6jO7fh9jm68KuX+/pG3jcvyb96T/+Yz+iqt/5KP1P/smHfvd3v8MhggMxHhQK1ZxfR0zkdeYVA72DLyg939xTmdyyFm1S6CFJLynle537/E7SI1rtdKpy7un4WLqvV75n1zo9kv80dMqUq14vvX+fVXrcNtqW3av9NW143Da6lD92T14Htff6Os8mX2qrR3V6/bjXlnevz+ixj96/x23zIffvT/yxr70I9z+v9Iv/gW/Vf/8vv381/x/+t7/6+1X1l3yKKr06fZSF2U/97i/hf/W7fxZ+gii++VC8h+D9KfhreuDH9IZPcOCr54H/8PwmvE8deddhFFCBiszcoDWnfSrwHjfAaxizABHgwIlDGLzGJEEk5FYHrqkeocKq4xDitKQBTz9QyhWYE5UjaKtOU/9HbZN0FHNQLDekK7LOPvlR4EzWyHLNho/ZpuhYdKq2EaoZU0dg2KnqdO/+Jbl3bZPvJ9/7qhOWfOUNuw7qY8sbmwqNjiXPLcyWC1vYNPaQbFeWG7yNI+n0uGgfj8do72obmeOPteht8Trb1DvPTqjqdGWrzjb13ie97tim6qjLPVhtIY5Vud6+z730/nF67P79yr/1D/3ZTQVt+q7vfocf+H0/Bd8CwZflgArwXhU/rifeTxnvVfGeWr7RDicEn6jgx/UI3Pe1wbiD7739jAWKd1AcOPElOfElyfWyReqEaI8j9xPXnbE7yke7kGzd3SXW6yU6aZG71tvrZHrtJOVx+3I7pTbe0dGknI1On+X9S3xFx2rXmrxbNkrem3I3M4rCV63PfNH7jwsddfP70bTTqa8vdJKJih0kVVt1el0h2E6vfT1kK9yz+evTo/fPqLb3b8L5jveebR7RaVf3f+xn/vkX4f7nlX7kL7/HH/r93/1q/i/99D/1HZ+iOh+UPsrCTFXw1/QGxSd4/3440P/gfIcTN3xV3+GreuCrEJwqeO+98V43G0PcnJrtwp4QvNfDu/g5axIZTvrEgZuOSdhYDOXpNte6c5MxVZO1RI1TptwqR5d6bFEWUmWZEh7tBPHKNkStDAZ5R0ZSXTFjVgVO5Qnk1F9CyyPtg1e51zqKyh3bpKmN638qAByu4/X9ayXfsQ08X3eBBaFz3B3WcdU51S3iOq9yLB/t6YAzPJfghIKjk7nf+GJET6o/dNTEK9j110XuRV4gtHAu7RH7dUCVax86mW1CW3m9bTjNe2WTurXPmeanz/Qftc2+r19hxixXaSaas7ViVw+onjgetM3L7l9N1/fvkKsx1acxXhVfE8UNilOBr86F2AngvcbCJNtnrWfcRsU7vIfiNjQTnfyH2+OTi7tik/uMWPl3N0Hj8ketUNG6PjG0PmmbYFc6cbonv+r4kvYBYaOz6S+MItxDrO+91jacdpPOWHR/dvfv3szjJQuabuFU7/MjqerMdaztq779vn5W30vu366+vn0Cm0XcNvcv8urjodJ16Z7OrNM6LoZeB3q9r3hfkl52//I9y7OrT9c2Nb22f37cpHiv58dW4lNJH2Vh9h6Cv/r+Hf6GCP4qvoYf12/Cj+sNX9Mb/gbGUzKDdpv0zhw8J4B9HNsCY5gWMIdy4MSB9z7xOSCieP9+APu72b1VFcchuOGESDyDycB2AGJydnLNzc7ZlH/AO9qTp3E8tdL5/7FnExO1Seu8OibhOqeRyRaP2IYWPEQLACKn62hWt8VPTBqo1OUApy97H7ONquayS9u4xs6r4KeiR/CSTjve19w/EYVqvl8ofS63j+VGv9H59NZ4KQNgb5udzjYurN9kV6yAxs4bT+aFdByLW8FZ7sFiG+3smNvHOprkchfmAnHkzhG8jCRJzcp5qmX9NazzmG1cZ7fVuAepvWq9adT03qeje9usT54ft03tc8lWCmA+vdN6/15lm5fj6en9c71/7wkzHk0K4GsYct6r4r0M+58Avmbbv9Nevh1cEvdZAXATYCztZh7AOe+cqHhJGbVQCE4c+CRhn/ptHOHutIUh3FcQEHWlowQpE4vY056o7Awomb+F9Mi88oBtTLBWnanXWJ+y3yflMcX6YtGxL/oZ2yZsJY/ZJuXVnwaIZB0Sb9IJUFGcGq1YbIV8/65tE33OfaKsNnJeFN6EDFnns+FNE+okN9vm3OgI4rd+ExuEYSzBnNDL/kAB05n1Oqnvr7a50hEpLHnks10N91VK5E+98ZI3Kbh9j9iGdTSdwlZEK4CoTl80bcZmRL1naZS82Dass9tK1vYNWu3vX7UNiBcvtw3bYnf/3npSYG5Of/HTx1mY6YG/cn4rvhk/juP48lg4QfBVvMN7V4kmOl2+LHhWWgNL2/EWCI7xBO088ON6G0/SVPDJKVDc8O54jy8fX8O3HD+Od5KHoXfNFKb0mI7RrRU8ydGljCVyiJ7tQkqiyDq9zDZeV+nHogddtv9LoxO3wADhIEkvvX9Dp51tEjQohTJCXCfTVuVRW73w/iVbxSR+z0tal37TBVjq8uMBHWl6vdYdu9dmrYP7UaMj3+uoi1N3/2o++k3fXgUotJiW1Jv2Ea+W21BoL/PKtop6c7+xyZTgcM3Q2obHcrJVun+9baqOi62ktsGcdO7bn6Ztqo7X9+/lzloB/DgOKBSfzAmNAvik9jOeYHaVcJYmdnFHwkbvJsOZ9J4RFRgbd8YtNBkdi9QVJ2OMVhtQvmLq/L/1bw5sZW6FzIUqYarm5+mqK2+qJOWLv1GkEO9jo4fLmv39xNj44r6Sns6eCgjb6nHb5Hvd61TJzVbvFUC6f8i2au5fVFTGL+ux9L+qVx37lb7XO/SqTzqubFP9wt5n8Bg6NUaBQnHoSZiy108ROu1tc6XjOpbdV2uMKMHoN4cw9dpvsq0qRlzbJutQ872tjnmvz0xOKd/3l92/tc+xz0g6nYC9BtPfv2znasW4j7hrm5zf37+O/JlGEpHvA/DfAfCX5qXfoKq/77X1fZxQRgi+qjeofBNu54lTBJ/obe6bW3jXHCxCc4aUn45L5u6OzMGu0QXFd7kjtOK9Cj7Rd3ivB96fB37s/BK+dh44RPAl/QQ3vIcegGq4eIXS7kceDDJ1WHWkpRTx8u6NldWdrtjdsaAq8U05AwKZOl3aBnOHvdimPtExO1ZetesgnVRGmBkaWv91zzZrXiAUTtrbptvdORUY787E0zy21e7+dba5f/9c7ACrhXfVccm7hfr2xG6VRN8m2r1dhXipfQpAlAD19pCOJzBC5rDqVG3VjYtjGs55NfoSWXBOn45w1g/a0e99GlOP9rmJC9RPNNnKdk8rb7YNkOvt71+DGW2f6+6fYZd6/pH792G2GX3u3v3buPm76VTga5hbOMJPh2IHmPGamtTOe2QqV6Y8jl1CmyvqoDDu8PAbEaiqxBtaNE+SWh1rfiwUrO5U73zXr7bHwvNOr0tX3qnJQ7YhnaqtRnt5E67yjpotjPGkuhZbifVSK6869vcz7DoMJZCxOy/X7VNENEz4nly+s9XWNpf3LyIzhh2FxgKAml/aR3KpfafTymO8jR137eMwzwMA9HD9WU61K9+ze+Nxp2PWSZ2X4g9G35ZRahhz1Hu/sdWjttnbKnRiWwHqmAvtedlneDj8q+9fP5ZPwN+bFbNXvX+bcZJDs+XFtrl3/16L+59XOksswuecfruq/tZPo6KPsjA7Ifix91/GXxfFl+VrOG0/aiJh7Bgr5LQd5OlkdToUUYhaaM4Y6u6EZQ7fc073Zm96r2PS8V4FXz1v+Ovvv4Sv6jfhq+9HtPO33Abt7f17fMvtk8EkYzC6HJMLyruOJneUiZxjICtV5Agzu3sgjiPFiZjkjQJTIvPetY3puNiml2tyQtQsNHKxUM5Gp4W3s40CpyYdoWGr88I2Zkcluep5xON2qbZi3r1t1vs3+uNy/7i95Ly9faaTle3suukLdu/hvKsd13u/2qbeE7v3CoWcuUk73rPe+5nhPrcbF++LbSjjv81N+zhhnU/iDSXaex86PTIu8j1JY8ptFfde7thmvX8zf4UZS59ju673j211yonjM7NN3M/9/YPj6cuT4Gs6QslvSU/uG5OUZWmqYs0DcwoSC3y7dsx7JSoW+e0TxBEmOictJvolcqs9GvvYZCmHIa2W0Yn7OrFMgTHho/H7KtswrXitOOcbwftk7xcCkDgp2W11Ife8Z5vm/o2eIDilNU8kjfDKc9pKgAiF/Azun6LoVBV8yXiYtAb96v+TD9dZ2ZXLxI0RCXDK/W8jOS8YI3s5j+soBFG86T76EbOeG7va0+4Iqbtjq7s6F50wDtegov0t/Rzvn2psgiz3r8MQr47maA/K3eu42uqtJoW+KsT+LaaPFsr4o+c345vkE+hxTFC1ycoMh1Pbc4i8sve0UW0TDo411xPQw9HaeXHM3eoT70TxzbcT+v4TfFVuM5zyhlM/AeTAJ2YaPYH5lMh1LHLV5SpUbxEuorYLT7w2vHTswaX2zsmDDfbT2/Bp2warbWySp5Of5A54F6jq2LkRa8O50Gq1VbKNuFxDaGl07GxTdRxh0/xE5xa0dK6S8Upq32P3L9uqt029fx6cTuimJueCV+e91tn+TJt1tPth+fPi/nHYkag9k54TvyJn1z7TCXQCXrVj7XMjTG1tX/SbuPeHymiXkK1a3qyjTk8WtKtttOp0dQ8odPHQM+kUmzwvv3/deMw6sl3XMeV9efK+T33787NNHVMvTYoZOqiKc9q22mP0V2z0RDN+AYiFUOv8yxJHXeqbflFXOgZHrS5jLf27bKL4gn2nIwgHMSYNAOfjnqr/mk8Q6R6m98leYZuKG477LjfsBLdeyDF8PV0nOP66v3mpbRod2VZ+T8g2rKeSrUD4lHpkkvOIbUiO3z8UDa7vX7al3LUrt8eyWnW80DnJpfbZPTMNRQeyRVcq7U12td+BGzs5L7n3amIUeC+jNjnnuJRruw62HKL/Wtswrek01YJMW03n1NiqjAtkTP1gzHBbKfQc2GS2OjTu3/W4YJ1ebxujjXrt/r0c9z/P9IHvmH2HiPwQ5b+iql95Af8/JiK/EsAPAfjHVfX/91pFPsrCDMA8jIPj3wfw220fi5LAfjt4Q5xWnV5npw2farz8RG3uSM4dtkPOucBRW3ZAoCOUEQxu4u+e+AIt6RFtOimvOsKdbAewtm/Jz5MFjXfscknL++naRhLtGM8c8BcD9b0KVGb4SLGNT+rEHr3LDPfSZBvjNTlmizimvLRX52TOeGE73DLrjd/VNvHEwmw1nG2UZ9vU+yeQRMu2ae8f4Jv/vviZtGeR29/PsfjFPEp8p+NorgwnB0m0Ox3nNC/CjDSezl3zSpFrdq206vTnonO+JyLRb6yHWJ77yco7J0tTjo2T1TbWb4TsOjc97t6DYav3GP2X7wGw57V7Mt5NOoocxTLGaEylPifrmPL7V8bJx7CNjSkaci9K9nK9tzEhzZpPfRSGOYEFULtns3wOujxxmbSktCocm102yUGSG/eo07nV0XSBzLfqJOssxOs6Tm8kkU/6vdQ2lVYjL2C7CdUR0084LxadkpyX2qboCMQTCxdAtql2ZVtxIlbXa3s/q45g2wjMP+q8fxHK2dy/mec+V9vndi7tM2pbHCy2eUDn1a5xD90eNF/VwlvHCW9YVDkvHRd2arPpZKfx2m8Lt+/sKqq+pxUnrX6obbJdzkTJsjf3M1a8iG3OD8eMyquS9eT7V/tcHhc2k32tbcr9A98/vBr3vyDpR1T1e3aFIvKDAH5aU/QbAfwvAPzTGGb6pwH8TwH8N1+ryMcJZVTB1/RLECje6fvoFKcSwAHCoWyW957qvXL871SnHUKi0w36MRmACG4KvJ9SvnQovul8jxOKL8l74DjwySn+fg0gSa6FN5WRzR4htTNdPsOpefskmHhAqIovYD5z25zkWMh5DxYNnQDonM1U2zivRkiCnhoKFtssOy8nEO+uRfuU7B6VBBgqjvmiLFW/tTMg/nRmb5vIy2obtXoFko4+4j2q0FmtynlPkk5sBmXwz6ZZ+tgMXXOnpSRXJemIc+o1gd6eg5hD0ov21T7X2Sb3OXFenbZJ90Syjr7QA1ynMU5kY5v47RZvbcN6TX2mndDYpt4ToS4r6O5fb5tRl4Qe7XjEQ/evjikz1nHqgmuvts18wfwR2yxjqvbRB5JNzhTRz9JYsbqnPgwRy7gyXIQmPD4KbaeE63FmmT5+2bZFx9PGPvRaR/rN/ZvL+mEeuI9iq9faJvESz4JXpIMZKibG0Yd5Ev0q29R7D8A+C9vdv5SfOtiWKvu5D7aNuyubbo/0fubYNpc6Xtg1PysLmPC6m3FxFh0ftatt1gAP2NX1mdhb5XD+4t5XuwKS8qGTbRRm2+RxIW6jT9c2UnQ0vcZ9vzsu0GPZy21zzRu2EtgHnx4ZF2ar1/abPC7C7gCW/vKWkiLm9Z9J/arf+widiPyLAP7PHyLr453K+ONfxrfegHfyHrfxdipiNlK6oE84dIZ2qF8PWus5K68ln0woIDjxJXmPU4Ev3wSfzF3h8xR89XiHr72/zRN6zvF0jV6XjpOxWM7GLSvgj7YbWkm6q18Z7xkwRHy2tsll6hN5o7PdlLFbU75XpuSs5hOD8dRhcj1qm037ep3CVkOnCqeZ13SWySuvtY3bm3W1v/keqNOQO68iEo483m+MN2Rc3fuBrAdOfx0peo3Vy6Lu97lWJ6LV7p4kO476BeNkLnho2xQbM0LS9zHbsI5hH6W29vfee5SaIySdUO/f47Yxx1gdO8tNRyoQrRCtQP2JE9smOWe80Db6mG3a9r0ivddiw3t61vvf9dHJm+yT0jomFSNMiMeOJINOSr0vdzGKAhDDq9HLBxZOWql1YeI9RTF8yrbJLRfY2Fv8GPHq1Cv6aBmTr7ZNlDlazFCGse/HmFrsNOvVpNOnYxvjFZuk13Hk909KHk16kBfl3ovgCjdWnXftC9oxLsyuvY4VJ9sNwg+5986rcF+syHZu7KpJJ6sXn5ptFltVnaqtaMN+sdUH26byKmwuFU+vuM/14wKwcdu0Vwvvq7D47aaPdVy+iPx0Vf3/zuwvA/DHP6S+j3b4x4/rO3wrfhyQg7oW33UL/8ilbHaVmF7mPa7Mi1TzBIBZ4SGKG05/NeiE4Gv6DjeMh+c3vHcHa+VXcpeeK1G26KS1vZwDTjmwLCA+NdtwqnY6/v/s/V3Ids/SJwb9al3389/vvJkZJzrkg8xAFIweCI5kFDEEkziCxGDAgxglQU8ciR8kagjEOfIgEIKKcyDISzIHQfGLBBVUggPOQU7MTERQM0JEBCcJxkE0k5m99/+5r1UedFd1VXV1r17ruu6PZ7937/3876vX6ur69a+qe/XX6tUaBmrviemDWt4xC3mU5Xvb0G8nucnLV5q+zcBkcydiylqP1lBLW36ZG7sfLNqPBu0WlxI0ZK3j00pDcNITbhAQR9ne9lwbdzlfjDQrDnIlN8IaNx6T6O0xZbaX0u/6rghJUssNneNmzpVwM65TUK7KZEzD1Lhi1UNOdoWbzH4+r758fQdBfgY/Ipvmudw854lcNov7rA50UYx72dgObnHSKAhKp2pXblu7EU9SoyAe6+8Ih7QvzDZt6PSEzKV9iDZ8FjeqFz6NFfS5GUzRR2M2B9z0GNncJc8Vt2eIV9bbb9rGJNys2o+pvrkmD4soEe03bPiTenjC9jxpN3JeB+VBPfHQPHFGvHLIt2vLn2j7EicDq+dVdiD4vpHlZqWeYHyvs31903hi+4YpcOXshwvcmHskLx9k9oPhKq8XQ24O2oxT7c0nC4xr39d8UvgniOiPVBj/DwD/hUcy+5jj8pnwfb/hZ76BQeZDpjb0FTJrgsuDw8/72a0WTtY4shwDvBHjG8pWxp3Lsf13Jtxoxw0MbIwbZCZTnL3Xy+5ufOT1GNu9UG5uecOtmj2PG485dkZs40j6or9iApIHfFKOmtcVbnr71ZysQbn9aaszkuuoAWmPyGdw05WXc9l+Dr9qMbyKLyxxY0oZH7CtpP6azbc9hiyO9gA+y43teDg/wdgm7dFWOnxE0Hc6HuHmqD5KulkPo6S9YSM2mFomrRNDmt8ZbjymlkcffAvBwkKcWeZWzxpXT+Ymtd+5wIAeXOLznuma1ee+BR0PkBsG6+OsNiXdziR5msfFAubYVlhbzOSb/W23GUt2OMdNvDLvwnj/ju3JTG6O2aeigJDTVC1E+7V057mJ8XWfPvJhizZOYn6M7X29GOFtei2evk04w+vc9t7iPTeZv1ofeL7tbauZBctFSZvbb0Xvsf1i+53n1XPyPG6i7OcOH3VYPjP//c/M78PeMfvV6w2/pJ/wq9sv8U0nUdt3JCQujYJUAW3KCXXbnE0buhsssgzGDv2AKKGcClbDjfb6gL4BYLzyhp1v2GkH8wvud8aNZNtVkS3voTRUKY6KsZ9Zl4GGOZodbRkaKLMyslT/JtxUPTYnAKWDvO9ND21m4BzKG/UQ9HtfsvXzHDceYzmoRRrvepIfCCACsz+lyXPjO58Ow4AbG1/nhsHGfsfcGIspVwTfKacUY297Wz4TS8tHoLpa5n0udASoffdvaJNO76B8Ha8I3LQ7RAzez3Fjc32Emyhb2oy6FZd39OUr99tA6BnczPxG6oGUget7kckAL7Hf87iJA7p5tz4LzO2wE2fDOgBuce8fLeSykHYdMrDqUWt91lPJyoFJOlBk6vyVsLe8DzC3dRFpr1i/BScoyOjt27r69qfx/WdwY9vQNuhMZLUMFSPYTZhy5NF2FY/s2WGUFqf5u3JF/Wq0HeBE++1MuM5NrL+Nq/r6Zc5NtB9l3AiPB7Iwkz+d7QVz5O6q7Sf1AkaPsz11tne/z9gerR4028tBxgu8Otu3vsY1bmIdu2h7wE3euYHZaW5inbJcBfsl3JQ87CeNnsFNlD3f7n+F8+HDtjL+5dffwl/18h203cwotzgf628AnUPIg9TGOfwqDzlTdUByrG4B0L34aTuAN7Dueb/vBKZvus1l490cDrCG0d61GN0R8ZLcJHbHyz+RGz+LV+IqwT6OnWFPPeyOvO/0nsMYm4poP+XKYmbPVTteelXv4B4ipmNu/Cqeibeee01bfkdZVlEyMGonzYUrtrcPlRIj25ERcetzTo/9AK3YNn+oXLG95hB94YAbZwP4Gcs1veTuNZ/ztifbhrDP0X8I9y24ybhikBuUhlDbDDagn8VNLns2UDlhNXDp+UniNgRZYnaIpQqO2jr7UWW3GqoyVm/7REB5L9VYOGCMvmMP+/DQs3plPh7r6mDCxQlupGMnerYDbmb1KmutW1sG37Z1GG1j7WW36ne7Xu25sRqj/a5yM7KfcgVvz8bNMUbPI9K0sd3IbT/HPCvfM2wvdzLbj/RObe9FQPUApWu29z2wh2wfucLI9jHLYD+Y9mRB74wbX6eO7Wf7C3E3n7xvdoWbKa+fLDD4TQ//eM/wYVsZwYxbnfECqh8yqfMxSE9usw0DSVoTF/feqD1sqd5sL4iWvHSWJTjkzm37z20rnwRllINKdm5Nxrd63Ks0oiOMcd5P318IGIl8RSK0gwJLY13fTXoyNzTkJjZJYjM5na6kmenFAcYRN0Qn7Kc2kIaVTnGTY6zlXeSGpDzcxyWIPaPPjdJavcINLthe9ZjtWSXdNvQ5+4iIfhJtIrpXeM0xt85r9ibimMekvBaT4eqM7VvcckW9zyUYH+ZGGckx+6FyYr+AkfituPFluxL2IMlaRtHl41pGmDYUrR3Z9FdFHjtsSRkZZE5Zi2nLqmM7Ka6EDYWADKPtXgkmBrt2wZU3tDmiWU8afJCbJut/F5/hKTdWL6B7FfRKKmsUn8Hc1h4MVwk3sW5Y+13n5th+4JW6MbJnZvtEtvKsJ9Ian5xh7rnJ9b657ScYj2wvn9PRNnSB11h3r3Fz1fYY2i9y9Qg3sU5JBlu135HP2dyebb+r7f67BAbukZAfNHzQd8zKUutf+v4Tfu/LC27bXStp6xdVd1CPsL0Rgr7QU+8RWAc0pjfp04a4NISyhQcoHZeNgR3l4607ttLxZ5QtVwy82LPqI0bjwn4OPaQdlK/NAhr8i7LP5Eby2tG4YogspWm7+JO5mdovvmO2wk1orqiWlxa5WcH4iGwrH45lZ+VjSdpOwyppkWM+wGhneFf0jsp3r/f8SXqLvIa0zT9xiRsfp7oq/k7czPSYONFm/PMduen0uAIuB0aZ6JrVwS4+wUkg7MTtG1gIedOWytp3phqM2v4CkG8m2c1dO9rqzgxjjylym2CE3c7W3nt7hBubVurWTm3gOuKmxcvW8T3DtNLuL2Bcsl9SN5pt7Ez+NW56ro7sF5+vFvMCN135TvD8EbZHWC05w+sp26/xqraf1ZP3sj22c/XkDMaOq70eADLmJsqK/WA1X+RGZS+0++8VGB/3jtmzwwcNzAi/5G/4LX7F/+f1t/FtY9zojl9sr/hpE2oZMI7VtqBJp6E+NEOHHwDSr5vDuKjpxLNKbyYta+WXrVPSGWEQ7u6rID3GdoqjxcXmv+2exGz5WGDa8rrwfG6aLCpKXz5J1XNlMKUHcFznJmL2XAGp/SJXA24sRhrozbnxmKMeMrLsZMnZ0+ZwaBMC2p7xme2jLHRrl+hxM3EsWyDG5RtihC8f72T25R9h9Bg2suUqf9sHu+fcdH5juZpyE+5NuTppv4e4iT6YcWUA6xdu3pCbmf1OBG07O3lXu308a/qMr2zWbdWHR1w2u7DaaFNRbfdBzp4l5S1MIHiMsX3ajHTX8UkwtgG9fXf2CjdpSghXWRvaxxngbYzpQG+PcYSZ6ySoed5ctV+qdxFjjHHYzpY+B8YYXVq7VSaVPcHzO9u+SL6d7ekB25f/D+rJA7YnDqezzmx/tp4scxPvMzY22ykP7QfH1WX7pZi/wnuEDxmYETG2bcev9w0vrz+Bb3e83Bg/sa0sfXcZWoXr9gdQq6DU3GnnFhef1Y8XM/RFypIW9RjxXoc4t00v21kajhbYOLCmoZofe4wuroMWuVfy2jV/ecOqPcSfyQ0cxvJuTWn8yqmVkuzOgH33a1PNDdPzuSkzP7psrx1maz+rq3E144ZQ5UxjY7kacaN5OcyFK2s/ArXj4+t7P5zJssy2TfTCcDO1veW+bMmSa/IKtw7DuM3yHZdv4DeWV2LjA7ntCaQLL8INqaWqTepxxMvcBL9Z48ZiLP+VLRBiT+fbM/s9jZuImeSMj3pF6v7Ifs/jRr7aaDEKSubBVpvFsFccbPkig83E3cQupF41Wc/KjEtfRoCqn0FLJmPP5qNWqm4Fd2mbj7a+mjwxmv6sXdTkJg6jlw2Oq9zoWBotobC0WjfkGdj8m3K95P2y5yZibizYvt6Im8x+zPLNs94ma9xEXhtX3n49NzOMnte+7meyrV55no95vWr7nNesnPerth/aJLPqOq/W9sL0eW7GtrdhxfZaT87Yb8hNzuu5ds5uPfTt3LV64TFebfffJ1By6u+PGT5mYAYARPgV/wTcCa9M+AUTthfGy7a3ilWdQRv3JK6/66lu8gFd2W0o9zcbB9WZOoDrVkW5R6axr6JVqHRrZSuR5Atuj/AUs+itL4LoS+EGs8rWtPGkMDLbvd6CG0q4kUHKXmUFk33pdicdwimoZ3NjMdsGZ2Y/mfFa4QbOnmvc3PVeb78YZ5iGNJGd+esu3BzxmJavvpTMrFsXqZ4+2vSSrv13vK74zYzXFHN7l0J3A4Ow0a6fV+aKaZkb5zfn6kXBaDAx9P5O0Flm3af/ptys2A/YeXf1BG/EzX5kv74fsxSkHaFSMRpOMjy7QwFs2hLfWM6HKe3izZaxptd2pCujvA9S9JY8qp66stk2qpNilPeMdzb2t2l3mM5UO2qKK3mu3QAbjI1kHYiXivAQN1bWZuva2MCNq/s107sYro7GOdNbubnXBjjjplKpGFl4rfYbcSN95lg3evsN9DZ6Xd1Yt1/OzRHGKHvJ9nXlbsir1eNsEm1fpuVmbUFme33vbYevJ4ntZ/Uit33BdQOft31VTKBlbrJ68Qzbg2FwWPud52bEa1lUCPZLuAFae0Nqv6Sdu8BNlP2MgYH2ys4PHj5mKyMBt+qQ3/kFGwO3nXHnDd+5QJKT2lqn1m8PaltjbUeHnKxNe0dxTonvuo2rNppm65R9lDk9YGxsHgQJxhbPMd4jxvpAJa4tFur2PCadERdZpe8J3ESMlHClXJhTKxtXLW3jBg9x85raz9gk2A+189rbz3PVc0MV476OscZfK1ep/SCYWBtZ6cwUzKJX3mUZ631dst+B7cGQw/0J5SOVXHlkVNPqyaBe7yn7hXguK/WNzcxdfQhy/eCvPB0BMPutjDNuot9cqReFq2pbMDZmw1WtAyfs5/Tu9WF7gVfxcQJAvGPDht3YDxBcb8dNlG3v5J4Lpa6a01alPlOb6STlvMVdWpQ2iEy8dRoWyqh1svibbpkF105SyzfTKx3IiBFk9KBs0XLPn6p3Vje47k5oJ99e48bK7iat3h9wIxit/QVtWTHeUm5wyA07WWu/zXC1VDem9uu5kfcFaWe81v0CG+/YyO5HsfYr8ZH9lp6nkhalUl22vTzbRrxavcEmb2P7uc+N6oXF2NfdC7avOzv2ytUKN7Fe3APGR21fODKvwFzgJqtTJIPBYL+Zz0mca7yrJye5ibx+5vC1YvZAIDCIpHtcv2NBrSsCtIaBTNznAHOf3L5gK0vmN9eOjDSGqHnYvDlIeVcsDaWptpcxymysryjUMBGMbo/mWdzY8klDLd1AZnk0tPx3WF0ewzO58fZrOMBN1nHV2S/yWq/ICaB12yHBNOwTbhrmti0lsx/pHitTPm4NtuS9J+W9ws1clgw3BeNeMTbZFiTfttrY61nlJsfY/jG1q4z2krJwZb1qd7qexY0tQ/QjNvm2WVoY2cx+U27oiJsMo8XHen8f2E8wN1yPcZP7Z+WBrj/8mP3R01wyhGS5h3iOs7XSpmEwHdFeVvmX+snSDhj7q14KGMmh6DGKLKvdSJ9nJE3CBCNV+5Q2RTi5wk3Pa2vZC6bYLvYYY7vvubrCzRZ4bZuX25a0uf3U9gP7ZdyITzOXzuadX3RrPnP5aqmXbd3Vkf04YPSYSR5RhpvSIe/TettLmaztLbNvZfscs3nms/g2jWWHGLM6ZTaum3Yx4ya2qdb2ikMmyk9zEzH3ts+4sRh3xHpi2+wr3LR7ssop7Vy0X/e8ifYbtnNXuEEi+/kC42tg9nDY6hRtGcuXfzvqnliTzndLSuBwT6o3m3s2PeBfEfYdP9txlNDy83rbY0j0SvM5wxwxSm4boIMFG3ajo1U/pOV7hJsoi1oaP1xrjQyDHCav93ncWFkJ8ateEtbtV7Yb2HdtyuHjOMTYmLB2qUfr+t6xz8jl2JDtsB31sd4jbua2b7Nz7Z6sUPX4dhM76zeRm7EsdeWT371HmY7VMjdzjJlsezgNuApB7IenczO2n723Aaftl5U/YrT3Vux3JTBa22ZztRj6+DgvoOxgiDmOZFt5bHvW/O1Idoa5dZTK33YoCcN3aJrv+Pz7SbKr3IzSbhyHUR6VjVlu2PB1LHsGc7Mfa6q5j52xHwNgLrty7ih9iw3l8xz62RuTX26/npvcfiO8120/53UWYlo5/GOl0xpt3z9L1vXOMRfby+rdMa/W9jhRd48wzmzfo+kHM7n9jvWOMcf8zrRzbPBk9WQWHmlvvsIzw4etmH3DK5g23MF1ppfwfb/VXxtuVB7jIlFCq0JlZZkhw/lsGOXSozVMZStt214BsFlN80iHekXWvqAkacnHy68t5GWrjx/esGDcTT769Mq6UyOMIuvT5lxBZUsRDDemFHIikufqBDdRL5G5wknaJhHt10pybD87eNtBAJfzsHbOMPm4IPS8tnmrfg2jcTXzOdv5Ep417uwX4xmvM9sLRstC5KZcagPNrcfU2f5kvXB5FSECV5/joc9FrtrxBfZ00Iv1oqu7katoP8Gxbr9L9cLKKo5RmxE7gI0bvwJ50m8OMZ4LDOCVGy7b1eBg/5HuhrPc3anVzzHOlsLbEGYrLwZ6BzbM0rK1E3SWmiB2sHXfy7ZVgH6iAEd6O268rNSa+prYkJvoKx4TA5Grk9xEzGK/Uu3G3Ng4a7tfcTHGepmxYyur7nzDHQRmKeULdtx9281tCiW331FdmPF63vZLvA70Svmb7fmi7dtBYEvtxjvZnqi+l/cANx7jddsf2+8MN15W1hN3ahOJR+Vr7Vzrc3bt3CluYtrPG/ZkoeNHDB90KiPwsjHuvEM6EK98q+9Z/QQCcOcdG23meOjqILrOyq1/BAZR/Ext/DK6cT11WgKYa/PsK5o71r3Ta9LuSVqjtzQ6WWiYWOPtkN59953AqOc8Ro9pxJXt9JTgj+OOXJ3mZsBV2z7QY3qm/dio1Zfgo6zRa+3HwbbRfv3RzfaIW/tICg1hl9b7AteXd1XvjNfQqIrt9aETeHYHQ4fyRUzl9NJrtk9tUjX3XVHjcwlXbHj2H/4+qBcpN73tU64esN+lehHbucpT22Jl9Y64Apbtt8LNsJ1bDYQdN4Pe425lGrcFraNaPaH74vzm41bW5K7vgzgMff1temNZYvtkP3XNbmWzE00wsil/vwNgrHfEjdxtvrKb7zMlsujveUz2APm53hlGG2dw+zacAJjYz+Kwthzp5VqGsm2uvJ/Zuq4E4ObKt2a/xMemPhfKcML2Rz439QWcsX3Mq9VNPrT9ON8j25MMHEe2D3Fr+zIoG9t+HveY57aP9sNF+61zU2T9M2Wze8tPt3Nj+x1xs5724wPjayvjQ0E6Y7JtrswKE1738tAm7LjRBlCh2a6GyIk4fmGXQFyPNLZpqVUOSW1lpRrqYjoDdgOQ6/RJPwZkKm1Lq7Km4+TTIsdEVm/DyNjmekw85UZlN9fl0XuRK4tRuZE98iXtjg3Se73ETc1bZS1Xl+1nlv0XuBFpLR/v3gZmjJLZrwXPjZYvcqN52Ty2UL7mMYLR6tUmNSmf6k3qRfQpQtmmEW3fyufrlEKpesT2az63p5ij7Xe00w/FJpA2gVe4GteLY276uitc2Yezf99qgklncQsXhIybhXpRFYkPWt+5GftZ+zpcJv3Ifqe5CXXq6mtmd2NTwU2grq5bbn0Zq3/U39JVsP5LJu5l4cokM+95m5Ovgzs9XXvFkJn3nYIdNPQYRUnxZ+m4NoJ7PWNuok7SVwbae4Mjbjwma/96gIbhaqx3wE3IW44C4Zp2xE1ve8GEQ/vByBKoTWEw6rttRpYB2sb268o3iR9yE3kOthe/9uG67c9hbFfXbL9SL3w7KWiknrvyTblqtgf6rYznuMGi7RNZBPsZriTFFW56zOzyO2rnYhtX8jpTdxNuIsaL7f57BIZ8Y/jHDx/0jhnjVs+uLS/SE4gJr9iw77VbR4wde/tWCaF5GwigOquL6j7E5qjM4tTNEdtOZpiYVnAmdxeQ2fOkCSK7qmLTAtorN5jM49VgAlAHTLaytN3WRUrKYzHZuDa6GTcOo/bJamPYZK3evpI2zI4rww2H6s3w3LSsybSqz7YfHrDf5uN2xZB8E2tRqKbURhmvUTbas3U2ALtQEnwssX1b5cyt2WxPun3kDEZr+3Wf21Ju2sCj8SwPwjE3lte29ZJN3R1xk2Hs861xM8W5k38wzuxnfUGxmXuHbQZ7bro6ZezHwX4+9TPtl3MV7XcmyOQOG/HMDnYwkfKBxgewp+2GPDNc3TD2l0FB+05gX8ZM7wiz9TsCu5NlaeB3zv4wdb8xkeo5i5E0N4Nxwo3Nq1wqk5fl/dxr3DAaZmA3kwG77rSfcTO2X8/VCCOk9aDSqX+1ep3PNfsNuRnZZIXXlOdiJT2l8MCeQOR1bnuGKd972962G256NLd9MX1o9yvm9tTI68kZbh61vT5vTtpvxM28nWv9I8tNtKe2N6n9LnDzhHb/PcPXVsaHQiWPGDf5LhZx7WTVb3bxjhvf2umE3NwUGpcKIZWpd700mFvqwM6giWyDXHMnk46GGMll0TqVQz2CR4tIaVp5wMgtl0vgpq1NVqS8xo29kGMaBHJ/jOCa/QZAhnDP2K9wNbCf4UowJlSkF458rjXhE4z2LkOPu40YPY/ztpIBt411m9m+w+z9lW1mzp6s/NstMGs24bDNZpB2EORRlnNzxFWsU4Yr5uncm+Ums33jKnIT2wzo34kyRfg29gN8fVy038lQ2vbCqq4Mwxe9DGq8zzqcphtRcozbss06YuSU/SW/SpHpGeuN91y7od20+ptTT3PZelymXh1iGmMcY4La29HsgvedvdsOtc5NH7/V1AyC7JJJnnNvYr8tveff4NH11BxHVxfmmI9kc55tulVeW1rLKB2V50NsD+hAaGh7g0Nt356k9lWPx+vuuu1Dr8DEGf22wTPcxPKIdIbJc+XaULbta4bpEfs99gz4Cmvhw05llErVtjhR9REC6s8dycw0wc+MEMBM2MwgZQ9pVVpkzV8725rpUTXV+TeXBwmEMAPTMMoWqZ3RMGr6Mca9lkVecs1ka5LWFCd6BaMkVt4XuRG9EdNQFo2rsq0zt5/nik5xY+PWfkNZaz9AX4K39mvcILXfETdZ+Ua8cuXQy7Z7rqm0GCWOZgNpo0fcNC8pOe4zjGh2cz6ndcr7OoyP2XLZLXnjOiUd1ozfMTexfDk3UW/z18x+XhcbP6ET3NDQfr58Ys9j+4mMdWQ+wY0tX1t9z23SfJ3SLZVd3b34fN7D7gT9sGmtfcz+2JKWEkmcahvTbtr21/KR8SO2kPKpHRK9qg/1eCpGJ2v+OL++if5hu+Hb/UwPhKEJRhsvu1CaLNC2DTJzG84e+I5iEj++yM1I9mbqxBE3I/td4SbjtfyRzf+5H51u94WjBVlrew789rzOyye2b/fX68UZ2494Pba9+ODM9p4b+7xxbawp73vavm/3yWB6hJuGXacRyK4Qe70RI6jZbOfHubEY2yD68wXG1ztmXSCiG4A/B+BfYea/a5a2OFhZcgVI343fpZfCDJYOwl4rIRUH03c4pGNXW72yBdIc6FB7PbYCa+e7roRIXgyYD6zWTsdu4sb5d6qdNtPaqpNXjK4zY/TuPMcIeFkA4HoyY1lFbHpQ49KoiB7LTYrRcZFzs6F9VJFrj87OcDtuII2DNCkGE5u3Uyo3zOjiWOAmYm5cta1sdpWCLtmv/HAfS7bcoKzuRG6WeA2yNJMtJjTvK3kfA+8mXynYwCbE5ftq6ifsfT1iRMO4z7iJ9bHme1+uUw37TvLpiAVuIuaOm1BPGB1X8zpVZOS0P1rh5sh+iPVx1wfhof3kMV3tt/N6XY51KnIT6yNMfTysU7gW7tKZrnr3+l0z9QcCNuz1Y+iNS8Bz29pI+Rh46bxk/u06L8YO5bvcrX1qkwWJHvLc7TGtKZO0fRLZYfy72sV3jFC39cNMuFBJG/RmGIfcBFnCrjbU7cPOzwJGlo/cbnULLT2PGxhuxO+o56Zr92t93uWhd2C/ETc9r7sek76LrBHsuAn2y31uzKveNrbXOlhtf8ir5Sa1SY0N6oVrN0zdl3ZxB8qkieP5nO1d+mh7Ol8vwDJwOqgXE24ObT+xZ1cvysPiSdz09pOyn6oXKO2pPm8e4iaR/bSBcOevd8xi+AcB/HkAv38lcTmynEILVX5Lp4JB+rXzjd2cfRmwUY3XAYB+sbxOT7YZDLs3uTxgiPyd3W6JMI2qXLKDIf+1eqOHvZ6WQ+tgzTC28nNroKlhVp5k+tXlxZhxE/XMuLkHWStV/tteQ7XcqD1lYGWtGrnhc9xEXhHuqP0CN2rPxH4dN3zAzd5z09lPuFC66oYyFl9O/CaWL+HGY7yBYWzC1Os1NlG+gj17vZPyRW645wahTmFapxhkMLKUdMH2c27y+sgWw6ROea6C/Vbr1ISbIhvsp1w9aL+Em2GdmtTHzn5ZnbIfTlsMpT3fWiewDo4Y7d0zYsar2Xpz47qOYOovB370ycCVVRrUXw1ttVI2rKb8DNq2ed0QjB7zXnE1y/W+I5283fgo8YF/h7bNx6O9b2pBz5XYt3El5WNAn0WWq8e4geGG22QV1+NJBvaz/s1AteGa/Y64AW6mU7uHOlhTkucm2i/DPOO1cSNH0qOuAhqM7nl6UH8H7cZRvfC8Cjf1RECD8THbi2xeL2a8DuvFRW6yepG3IePnzXPrxUi2csXVGtRzk9ULcN2B9gRu0jr1SYM8R34TwlMGZkT0hwD8xwH8YwD+aysybosdqmNt/j5zqwZ3bNCvs5uldTJ5SXZ73P6lj0ORbfuKOxzmS+fq6NRkzcRur8dtG2ydjlWMMZ+RrMcoWz79vWdwI2VIy5dwA2rxpoefwk0zkLfB3H6VV2r3MtlH/MbxDom3YbbVK3k9x28oLZ+1QcuXNW/L1d6V7xl+Yx6YqU2a3wgmIuiJcfvM5y77TcOEgWzHVSjfWb0zv5FJoY4b8c9V+z2pTnnbH9nP+9zZwKaMxS6t80ooK2o7E8onPYpX3GL97fjx+adllLIpP6zbQoWf2KaO2jbBQZksUxmHk51qa9vL9ppG62ywAwjOV6KeaNOubZtglEjtfkMeMh03aO1LkWXAfDak50YGnWvcwGAmmZUXLgb2k/o4s9+j3DS9pa8B1SeTBrUmmrwze0YeR7zeTVugtg8YBdfZ8q3XCzLYUAa71Iy06yBayjt/3gxtr7K2XtRPeKS8Zv0hego3b1kvHuEm1qmyItfKSDatjtPyesG1Pj6zXtjyfYW3Dc9aMfvvAvhHAPy+UQIi+uMA/jgA/J6/9veqc9lQlrVL5WBuWxwJpXMjX8CRWQHSuIz0TbeK4ePmtzRScp/blzdLcN+MCIHlQZvrsbg8xnFax5Okd73XBFOIt0Y36l3nRhtHvedlWfUOyAn2JLFlKO8KNxlGJPlctd+j3FhZmLSRA7nET/Qb2V6XqOr1754au73HPnCe4zeSng79FTYauMHD3HgadKYy4SZipFCn1Mee7DeArxfIfpvyKqZgv8e5sbLn7LcSbLv/V//1vxXafd8BZGy4M5UOa/3fRgTi+6CMbHYHlLBhVEYKHBB4lw5fTVfLmNsw15vKBptpPbOdS3g96vO1MGrDHZ0eGx/bv8fY/Luk2iCYKZSXPCZsav8l/17gxvPanl5j+9XfB/a7yk3Hs7GgrBnk9svtqfVoyit5XlNuzDNjuXwtrYTrvFJaL3CC10wWho8r9eIZ3IzqBQF1oupavXiEm1inYO45e0WurP0qV8/gpq8Xnzt8vWNWAxH9XQD+dWb+F4nobxulY+bfAfA7APAH/t1/Dd/3hEBC3Z5QPOFuGu2N6/5XyGMOgP1NADjeg4tLp4sI0J2RAECs7500wKPyIgya0iqZxwPGsmRuMAed0jDqn7h9yKWX6nWNG4mX8pntBiKqKdm3+BYB+bQ5plzvGfu52zXJqv08NlziRu1HvZIhRALuDuN1v/GcHgT1G+l2e9FWnuf4zbq/tmTqN9QSMkdMud41jAOuAkYGdPsG2TRy39b7h7gZ16EOomlvbAfRoh5ydQJji5+z31Gw7f4f/vf8fm7vAHhd0vliQLc7bgSAN7zq+zIRt3xkVWzGuIORVMtQjNouEfVt+aBt72xYCjeXpYKqaJMBed+mNlxFvt0b2HDp+bN1sm2ajJp5OxwGo8WkPrvCTYLxiFciEPYBpj6U7Nbt1+KT+pvYT64UN5vYb6m/8Aa8duWrcVcv1ni9Ui9a/Cyvsg6JOa8wXJl68TA3k3pBNrkG0ousaGHa8idxE8tX60WKifufbVUx5HuRm7Hs5wvMX++Y2fC3APhPENHfCeC3APx+IvofMPPfNxPSDyibzlh5Ab5c2BmuByIvUOvScSdLPt59Rb7lFSs07xvMfgv4LUMxba3CUlNmX6s/wMjcPv7c8aOyNCjfJH6amxYvq0+tMnp0BbPjasrNRO8D9gtM1Rm+if2eyo3Vu/nBWcibLTe6ukaHei5xM5Dlncy2HAqd1nCU7hO5OfRXfShCZ+UKNgbap2CfwM2Z+tj8iIGug+/s9xA3E/sldQoT+zmu3pCbtE6dDPZ9DFcGrvcIupuBTJFK+bIHrsfJ4NYnVY2dBAAC2Gxb0jtbSGk+hN3xTsO0GueGCSoRMZW85KoblHU8zzF2JQ2yzO09RjnFd9yqNkyFq3jk9oybGUYbl0kF8YEtYIo8X7dfLN0xryTKOq64s/04Hgfz67y2ZwZ1947L59v9z8nrTq1FLXd7Hlu9EMzFXx7h5lq9qHotTrboz+s9bm+O6oWUPn5W4HncrMt+jrAnlvsRw8MDM2b+RwH8owBQV8z+4aNBGQC4FTPr4NQaets0APWNg90MFtxDrFYdDvGaYqszG74pgK7Q6bsVKB2hpqd2jNysiMXME9ma0MhaTKWbYmeCamOkL12il7V62WNc5ybKSvraJMctetUmuuf4LblZsp9RldnvqdzUzl8SSnfR2I8SWVO+pr/Nz13j5ohXGBv0HVWa1IOHuJnJJnWKbGqGx1R9jjufy8v3CDfR57QUzp5GlAn9zORzuYm2l0zK1Tijbez3Ztz48l1916BtNfEdLW3viOq32ioKkvdNsimsvp0Am0+aDKSk48IuheHH5ZoVNOqdyZK+6C+yG4pv+UFY+zgtm2vrelYw2pSkp1nmgSArJ3Y94dnceEylbdoCN86+eD/7tfapOBQbeb87hBB5jrpcfInXLJ8MY3hmLPGa1Bt8AK9c7sx4bfViM3k8h5tz9ULWrcpuotbevkWbYSXq76ReSFthB7S9D65ws47xYrP/LoFRdlv8JoQP+Y6Z7eTLkeO64YNdTGdQQcBet9YQSqeiDeCsrI8TACLCq/w2siX5Vhpdo1c6iSUtdNujyO42L5yQVUw1BZXTJ/sGqTRCmaxnZ4xxzk3EaB4RVHK25WvHfgNyrPcVbhyGITeia2Y/gLXxtPZ7C24Mprrl1XKl9lv0G+WRpXwk0Sk3Q147PVmdkqa1rfBZHgWTq2+L3KzaPuOm8Sj2yn3uqHyPcRN9oa3YsM1X2wxrPzKyb9RmUJ39tvYLbaSkztqMdW74ZHvTP9aPAnM98AAwqAt3e/1NgE7aMgBic+qi89msjGXm+87Q96cwafcZbF6dI8Vp7YkgG/loqYMNY31WHFWSyWnaKyaQbOGHTQ2f2qKYc+N59v69Gz3kyrcpr3KFo41ivml8hZvWPlH9ipS8YyiavSyn9uu4SW0w46bHKNipTpRQ1UvouYoYbfkazzWtbdsOuPH198j23gY7U11PL5h38TmDUeK7xguvR9x4+2W2H9TtmhtVnxNeKeGm5VXqxf5MblRLTZ3Ui97nipdOn4knuTG9B4eJwOW7YtV+sParkvoJo4e5Ce0pvKy33/l2/yucD08dmDHznwHwZ45TlmOTEZan22/0cc7imMiKe2vU7HYLjSO7mxO98kCVDhqjfMl+UdZiqsk9JlsGiysrn9F7mpseo2p1XJV70gHtuHpLbuqVsf1aXiL99txYffD2W/Ab99DhItzKG1f0+nrBevOofE1WZj8lYzrwOWNGkWiRhfrIJ3gVjLKFkYyvMw8wPZGbiNFxxXVyYtBmgNmdCvdW3MT3F5z9hvXTY1rnRmRW25uzgXBnOcLJlAmxLkzy7/oFlQOnpXxnSG2oSW0HS96xMlvHbF0Xz3d+1+tN4zGt+Lf4u5MU/K2t27nZ37dAjas0HGI0ra3rjNl4ggk9VzZfsqPOVO86Nw5TaNmL/ZpPR0yOm1RPvDDHaPU2XAHTQj+ll/Dl4yk39vJBvWAfBUmn2m+YtDxK4oYxYIp6V3hlCrdDJaLKkKufzed8bgMeH+Umtvuyg4PnXDEe5CbKjriqdars1A6YIleMNkgzei+3p2aXSG+/K+3+e4Wvd8weCgy42TgCTn4ZfS5bXKfMsuiMRZ1ptnmD6smP0ZGZUr1lBqPpkCOQVzAyyglj8vBtONnpbdscqjQ/l5tYPpL8SNsCyDtmrbwGE2Os54ncAGHW09mvcaX2eyduqtuYGVVOZVNuqnC2igiTr9o+YMRJXiVta0vtw8jz6HBUXHJMsrN9Wr7WmVrh1WMmt7rRMOeYnslNVqdcG1IFM67OcCNvkg65mWFsFDSuFuxn68WzuLGydgizGhj1A9PiK1X5VuvYqO5L2iyuR3lb36jOohgJdVZ40/idUTs2W82Xq15WWXmtLq37xv7KyAgjmu0UhWKqfJCcTAnsvNXtUg2TLJSWjwU/xg0rN+Ti4vM7Q9tj5uLDEVPGc9ZurHADyJas4lcZpoyrXcrwADcjjATUdx5brZP7m9DayTaMsgpFxud2p9fsS5n6Tfu7VC8At9vATstkPLY2VTCfs9+M12JT8n5DqB9z3ku9N9xYn/Pl7bl6iBuq5WdpScuUMFVMI66a7OPcqOyAK6orl7KtW3cRDOzHj3KzaD/76YTPFhj4+o7Zo+G+b4B54ADti/OlYhRP8XGRpqmsNNC2F0e76WRIJ7/WQGYYPZttGQAir4cOMBq9RFL5S9jJfEZWHmoyOyHlY+kwwMg+k5utVDKDccbVXh9/8lIlM65zM8SYcWNtAnNC3JH9rnMTbZ9yw3ZSwdpv0W+kcY/lU9tr1k+xPSArUvU2vM8pptrQu/Kxp35m+zO8iqyEXR/WUp69ytKbcjOSbRi5lxWuJtz4eh/qxYgbhZn7jcDYwdiSNgOGK8nO1gvZNv0oN+o3uBbu9cARUn/YsNOObR/pQigjGx9t/q2y4HIMtUkrenTCiQHmrR4G1+ovgdsJpk52Ta/Zc+nTVtl7TbuDa3m9zXR7P8sqaMEs3BBtIK0b17kRvVn51CYQzGblbCcj2+xHtPu8LnCjdcFxU5+Eak/L1aYHBj2Xmyi7BW6q/QJmi7G1E83n9FkFuUTL3OyHGM0zETXv2j6VuxsYozaVGo+CeZkbYwCJc7HZHS2v6Deljblhl2508Lkd0O9wIfjrMjfOb3puXL1n+Wra1g6ZO7TfGjdTn6sNta52KS7bNy6F2XjXSXLrNyxcPcCNk63229F0e/vhU4f7hUOpPmP4oBWz8hHRdqKWeDRBPYezOJpTcm18yOfrkuoNm1dtKIxeBqBbIkZ6YfRKXGeBTFr2US1Wuz3Uw0aPdgDPcGPKV26LLECBG7i4zHrW2kxW761VUIStbyvcLNqv5wbIy/ug/TKfI5+WptwE2VWbdNzE8on/1t/uFDyCmTI7VT6Z8QKgAw1fL6xsLB+c7V3cPoBGvC7W5fIQqTxz8bkZN/6EQHMSkz5cTtje1b/IlbV9lO25sXVKi4xiS3JP7pN+Y/zTsJCkbbU9YpSkjqtH7XcylDnpWyNI7X/TQ0GoHmHJ9fRdYjmyE40PhpFtW3oo4CTmpsbIlg+wSmfkFsoIk1fTo4P2gV57oqfodWkZdcDeOj4xLVf333XjUsG8O0w3o+c8N9xx03wHzBoXWXGTXQaKwpWxH/hWXUdkG5er3OiAHHo4eLBfi3v7bXrPthvEu+/EHtgv46Z/Vtn2CqdkQfVtOQbYYD7LjdhEZdHKJ77PaO8vi8RON/Vu4vq+UtVTJmrpIW6kfAQqkx6oPoncbwg7iG5ob1CWvPTU1urbfJKbmJZVb+OmhIaJq/8KV0wBk+GmPCesz61xE+sUST66bdDbQBuDyhXTLbQZ0kZWTNF+F7iBlB/Wfp6r9vD5Cm8ZPmzFTL5ArlWgPmC0qxPiUIdG7UAB5dCA5oSatrRKJpDTE/VmX5mXZ5048EgW8Bh1ElseKLWSl2+DNURd+dhunSkVZcdJbiJG6XgZxR1XKjkon8xaVptJV3WJm4C59QGi/c5xs2y/GTcD+7VOcLOdzRcYl++U32Tc6D0CkzzkrIXOc2NK1vrhq9wE28etGGfKF7nRDEDqB1n5Mm5anQLs1or2AvQiNxFjx9V6vdA6VRNZ+wGY1mU7L0DBb1CLq+kH9STDyGTrhefK+tUp+3mGTwfZKhXt4ri09VlmjzUta7kirt3EGwfN74haL59NB9mXsXaetUMoLhva54FekY3lk8TsMLLjfq9tY+8r3GQN+1e5sThK50xkN88VPC690JWvdsmlXaD2GZgVbjJeCb6PAHlGOPtZf47llZXZk/YLfhN5pdqP3YysVisGdvJ1UgtT47upkz03cPaL3BQ9RVoO0REuSrtht8b5Ompjd9M2iOy+4jc135yb0tbZZ3GUFb+RlZ82lBNurA22fs5hwk3ELFzJFubWtiG0i8Z4+stzsRuutI6c4sZizO3X1ykYrlrb3NuvbkF9EjcYlQ9omX7SwKCvUxkfCrUCo3Y4xPFsHGiNqsbNb90nL43VzqbTQp2sk2dp+FsD5tJynzZi3ENaiZi+fO2UyV3S8eKofKhfoHcn0i1yk5WvpWXfKa8TrcrVpHyy7U0waSVe4KaznwEb7XfIzcAmFtcZbmT7QOkcNSXy4C3RI26u+82RrMyklX90iZuM9y3cm3JT/UbS7rvN+3Fu9BZXv1/lxta4XZPo9bM2UZ4A4wutTzWrF7buumd8Yr9H/CbFdCTr6rnnSmdQV7mJdRnnA2Ol3ae+zNU/Slrqyqj3AP0mXub7xPa5sGknLZV1GMrFDaxfQIh6HI4DLiWttD+0y2W7SkVp+Z7JjfcdcuXd6iyHbGnSCSO0goxkZSJBfW+BG60by/YjHUDFtL1ss5+mv8CN+Oe2Fz+wspiUDza+08RvDtrUuv1Mt0+rDXydsXHJkblMQ+zV73buZS/7DVP1E/s9MFs+cuW5V9zFJlAuuY7MrnLT8Yq2+tqgk8dk8qIqATbPI27pmuw5v9Hn6c6mflv7WTlKyte2u6v93oqb2O7voY1kfOqwfx3+cT0wgD35NlQblEwkZdkFbYaaqnA77rnpkbjNNsYBuBnzWcgxNk1korHTB9L6NcZoHy7cUh5zk2CSpW1dxjN6E4wp5nBfGoIsLGFUgqL9FrgZxIF1+/VwyGxdwNB+MZ5hnGHeqBw4cEUWkJWE86E8YFr5rH2Oy0cdRtspmPlnVgYfgn9O6m6Mj+pUw/VAXaaWOw3KM8Q48BsQ6qc+ztsw2i9iijg6bga8Rvulep/9EGYy7wAccFHJFD+kxKOGvLu47b5Kp5Egybp2w8WtbHnfinhSawb2j3WfDejWjagdNpbtpgZHhzFwEzHRBNO0bZN2uU3ICFc7KHAV7ddktSXtuOpDzk2GsW2wUq5w1BGb2E8zP7Zf5OYOqYfUWsiumC0Xe2KebZ8ObaL1t93pnsWzelQnPzfsYJKTSm1NCDhMbqM61RRHTMJS8N0oW9MSGBtVJCw+hmVurN9o2H2UU4w9JpkUJgAblffMxHctV2vtTQiOKwpcBUwmkD7XyhDqRoRXw1XqRzXM6lQrs+XmqC2e3/4sgfH1HbMnBNKZcqA+BPYWB+Dui4ztTDCkA1EctuXVtogAsn1Gc22dXCpK2FS6qDdi2OvsmK2kbmOgube7fDymiFHisHoV8Qo3/h6I9OHRunXr3JSGoTa0prAcGqhDbiLmkrvjapUbixmGV0zsl3PTGixvPxrab8TNqs/JB9VXZUecD3lN/LX5TV4+dp5htgJKnUowZv4JAHstcM5dhrHVZXlwlEvHto91apWrpfZmUpePuBnazzxAI44ZxsLr3H5H3IzsN6vLZ9ub1VA60/HB6X1QOkPkYq2TAsCXKaSN8Za3bwfbbgnbyo4LGLswzN7PrO/7fgy7F9IbxvaumZVrL91LC7XATS2fJtde9io3rXxVEPZj1+lgcRDsAEavBa5cu5hyEzHKu2fefh5Tz5Ud9kppBBXv5P2Z1rjp2he9EnuvpFJs0pbUFOJWj0S4vjpgkNRVS8U43Fomdb/kuGMzG9aaXovRlmfqJ2zjxecKDEowZXWKXXm5ns3IYOyr3FS/0dxZZI1ey5UnEVmdEg07lwFjbz86195wkz1vv4K5veJRB4vmTF7vRz03tnROCQfbH3Azj3+uwKCvwz8eC6SdXOb+rt1a5t/9aO+ilLh/YMPFvaxWBOvMVpaaXgL7FQqOjaaN1yZfZNljbGWJ5Y0YM8x9WOXGYeQyi7LKTdPTx6k2oKmeLh64CbzqCUUXuEGQtfY7xY0rX/nhm/h1blL7LaU9Ll9sfGP5LK/TOuXKR/B7N8+VD45XmvLa1SmHKdblg3pxVKdwkZvMbx7hJvrNQO9Re8Mh4ux3lhvDa6zLp7i5+PzrV36zePArtHdQm58Y2di2BVmb2p6iWSZHyMmud0TCYKPml6Xr4rWPFXcI7ACY7az6MTd2sBG1Ue34zbmhTrak2nTVtB/EopONCNqMv+C0uDK0BpO1CcNvHat/c67CoOGy/WaytUtcy6fd45iUKS7gtPyDz2V+w6k/FW3OX9OOqG9zSH7os8SvmKWywW/kOZ4OQzUdaQ7jOlXsSSj+KSm44lrhJpav56r+Dm1qlM3yslzJoKarjwt1qh3x73XN7RfqIxlumLQP11b8F9ubYL8u3VF9dO3NV3iP8IHfMdPdz/WqOKr8tiFzcNnicywbH+Zn9EY9/kEoDcBEb9STlmlR9gQ3UXb/hNx09kvL9PbcvJXfMB9wcwbjI7Izbh6yvY3H8h3IBm52J3uyfI/IvhE33m9OcnNUp86U7xHZKTeMs4FRjzN2BDXNNMNpVikZei7aMU4Tb6udJV5WFbPuRhIn6YgD+qYma85oh8H05SPiboCM3Qyv7SFWIPeNzyVuLMa94ZBvP66Uj1z5BDPVYkpH05YvcuPfWiyrZKLHcEUl3rhinxcQ7Fk6rySytcMrHfK2UrLAzar9BtwgyFr7yeSdrUfagY62H/kryTODNK30kzzmsay1QeGtbBXfxaYJJlK9TbbbPVDvcYsM9Q7rVIVVPiy91RU9IbLMVMSJryFGYvOenMxykJG1aROMmrIYV0/jJejB1NLKLNvPUlNld/WTbYkbWz7eZWXdfLIhKV/khgw3Htei/eBl4X6fb/ffM3x9x+yRwAizXRIWHpAti2XZmLbU4Yuyb4Txo2S/uPni5opszw2F5F/caPw3nJv1UD7hmnei2htg2T3dtlM7IGVnsL83koWRtauYzDAvts9lBXPb9uS3XYFN08AZ5j5f1cvtDjjfoncGIypGrpis7IgrjuVjo5dLJ5VTPdKx89xEzNF+PVfz8rGmbXcY7bCUp9ovxdx4zexna1LcKkZa4JHfN4z9KvuV8qEONqC8bcSAfR/PPMuy8kW93ao8jXkd+quztUErZnXP16TuhrxaH7Ik54Fsx01Sp5rphSvTvimuA/shsZ/iWuMm1qmaqztUblR3I1cj+zmuFrjpfe5zBub6nczfgPCBx+W33zpbZ31FKgyN4g/KsmmGTsjaKiZZjfX0slhM+8XNFzdf3HxxI+Wr/b9Pw409ev9MsKtBdjsYHA6Pi1BPsjNp9Rh0x0cu2/IumClsMxvJ+niVLaVH/X/jGW21RLr0bGSFLZ2bJi8rGBmAHnm9wE3E2PSSdqnUbwJXkRuLcaO2KhUxZXpb/aXgOz4t1cIX+xmuEm4iRsuVO7n4jP0qN5meZfsZ26tsosd9voNzWYuRQZB35fuDlHrMK76gga0etPLYtMZvkGASWcWU1IuZ7aUAJEyy5RVTbmxcv1/HRhZrssM6JZhAeqR8/PxK5jdL9uNFbpI6pZ8WoHLlTDsnJZrbb4Ebq+diu/8+oT9p8kcNH7iVsR2tqrXS9hDCdgN1NnW8J8jiSDbRE2WdngXZNO2C7Bc378zNQvm+uPni5j24cZg+CTf29mJg1Hbfnb1/gJPqCpuktV/3BYF0i09Mi9qDgpfV23Xr4EnZVn5DQMBIZFcCEtlB+XSW+xFuBrL248gr5ZMtnyWJTfsYN6n9YGQXyqcdV+eD17k5bb9h+VrWZ2VT2y/6zaHtQdgp2v5YNrf9tfIt2f5I1tpeuHqQm9gOygDorN/0XF3gJpHVI+/B9UTRdVkWya7uXuHG6P2kgfGxK2ZE9F8B8F9COQD1f8XM/8jVvD748A/qrs/jZ9KOZf3xDkeyZ/V8lOxVPT58cTPW88XNFzdX9Pzmc7Ma7FZGyZPrX8k/xDmJM0oHo3YadBK3piUna/SwffG+dVyGeoLsEPNAtuBqsjSRzbeKXeBmijFyZTAl5ZtvX3uMmyZbykWmvDSRHdrvYW4es98Zv4lbQuM2s+bb13m1p/YBrN+7G8mykR1jWivfKkZKbN/Vi4HtO66u2j5wRYN68t720w+PmQmVZfuFdq7le56bHPNXiIGI/nYAfzeAfy8z/5qI/ppH8vuwrYzMgLxgHLfPtPsSMYN2Oidblmdr5VuUPdIT/56RTcv3iOwXN1/cXOamNLS/kdw8YPvPxs3b2P66LBASnAjlSH+z9a2+f9f6HCbOQLdtkNonA9pnCMLBG0a22aWWDS2vnSjVW2zo9XjZMeYm217WJ7k3kjWYOOg9zc0MY+BKymQ/q9C4Yo3vDHDl6jnc9LIbB/sFXH35xva7xE0na+0n79Ctla/1YzNeW7wdh29W/67ympSvZodaLP0Rt9VF2b1ikvtjXq/bHsroGq+MwBV5rs5yE9MC0AOKW10tsiv20zb1mfWC2gcfWm08Lh8DHVePcGNtf7HZf7fwgd8x+wcA/OPM/GsAYOZ//ZHMPmYrI1cHYlP5UU5+iuky2fJ3XTaeRHQkO04b/56RfbvyPSL7xc1HcPM5yoeT5fvi5uO4eX75HpEl31NYDMz1YIvWcyj/iS9ztP07VdBmEmR15r2EzXSQAJQP9JpOKLh9K4yjnixuMRxhNp0Wu4uJ2MCtsg5jvS8fIm6YH+QmyEpnTH7bAwU4yHLpDdcsB1xd5CbKEurHj0HYuOdGi1f1MOoHr4/sd4KbKOvt1967yuyHvfkch/J1vFa9+tkG1A70gJsp5oXySUd6EywL9QKwh0f03Jy2fYjroNBcTuvFbutF4IpDBk+wPZGpqyI6sB/DZnvRfgu8cpUlaeeszxn7+TakyOjvJ9aLK+3+ewVG+wzXxfAHiejPmfjvMPPvLMr+TQD+ViL6xwD8CsA/zMx/9iqQD1sxkw/u2uAc/HRIDMLN51jTmH3N/Y8mmOUH6IzyVO8Q4fXyPZebcfkekf3i5gw36+GLm5mWL27GWj6KmzwwgNfdbgiT9lg6W62lRhc3v7nFSx6kcfnUgOuo1PeZt5CXfAtLjhUvtwLhnOttvUd736clqq/uy4iIzSoBwenlKtsGr6Z8dJ2byCvJeyMFhdHTripGk1fhqmxDjfa7wo19FrPhapc8LDfk04oso34Xz9nvOjdlZNV+k2PlwH5VViU4YLayBlfpFyfv2yflTXk1GEVP9Buq9pMlIT1EIrF9wSTrqiNuxvbMMJY6Zod8eqSFcuJ8LvJa8ZbVuhE3Ca6Jf1o9DMm2DoC0HN5+zm9G9jvJjeW1t0nhirSdC/UitgmmvDs3rs5wk9WLaJPPHB5cMfuLzPxHRzeJ6E8D+OuSW38CZSz1bwXwHwTw7wfwPyWifwdns7AL4cMGZtpAcXsWmlVl8UGNx65LlAUl9+uV3VFTNxpJu5XKUq6X5UE/1muDlX20fM/lZlw+lsb7pGydYP14bmLePyg3z7L9Fzc/Pjc2/hm5WQ8E4KYTw1yVelykKRF+6TND2m7ThbJppblvH0YuknfX7tvOJ8CQb2+1ErdtO73eiLHhqL9JcJQfcti3HBAQy8tGFhVXhsnb/xw33Mlxd6+cz0CwVo5cRfvJrTPcyL32zSiblpUbUpjxJM2IqdYxw9XMfhk3FH43W8ztxyxlIrfoYTEThFefJ8w1yw0nmCOvML/bIMX6MgMulXBFHUau9zkwM+LG3vMYW2sWj47fq4RMmhQqyfhcS91xZSCd5sam7TDVxk7RAyDSbazWfm0VcWK/KTfxfptY6uwHkgqmAKz9+nJCZQGzLfIMNw7TyH6/ewMz/7HRPSL6BwD8s3Ug9i8Q0Q7gDwL4f1/R9XGnMpoVM/U/6aSZGxxcwTc1E9ka9jJV1LZwkLxsOpP1ej2mqDdi9NUzys7K1zeKb8XNrHy/Adzgx+dmqueLm99V3Mzr/cdxcyXcbQ+r/twOdSU4B78l7c7Qzrt04bc6g8xAW5kadKwIcFskV/QObRjSlW1lfXlkVaB1/nq+txX7L2K0QbSxudIwAZzhMfY7o7erU+G3s8GgfM1+ecpiv+vczO3X+hMqy3NZrho4+Nz0mdhdy+2nq0kaYmcc5St0DmPRy/A2z7vex9zkftOXjwywjaPPQfF4TOMw5mbsNzOuCFkde5b94v3IVcBELb3las5NhuVMm9GG8zppOhjWfbbAkNPePyT8zwH87QD+d0T0NwH4CcBfvJrZh31getcZZHGDNl9jK4t3DJP2UHaHvMfWGk0G84Zt4yJLM72M/tVLq3eEEUla0eM7Q+dkn8nNddmW/v25oYEsPpAbuLRzbvbL3BxhnMt6jD6+//B+8xg3v9l16j24WQ+MMjBTXVzy2wmAKWNTNsYpKxTRnwHpUGyQF+EB1A1BRad2PEy+eoXttTZ7HO3QXkJq/JSR3MiGLc+9w8wNK9lOP7UCQbgiz1XCjWKinps83sqn5YVs06Kil3vM1n5WNnLT623263hNOo2x3ddVRrXvyH7ZM2NgP/Jyuf1qeYP94hOKg2xr93N/tXXf1cEOMwKvjYuI0RZhI7Gj57bECOhk8zqV2SjjNU46dOXl2sIQB12xXZT7g+fpfq7N4A6/9ZtmSwKcfx7br8Xn9ov1YjRRUmXr9qzCle8fHXHDoY3gA27G9hv1Hz5jINxTPt8l/CkAf4qI/s8Afgbwn726jRH4wOPy5UhPu41HBmsYxN2Wn+BonSxu6kPSaPmVsu2S3r02KqsYO1m6KvtEbh4p3wdyAyPrTkvaybU5H8VNO/ZXr6guWbldxfiI7WeyRLcmF7j4Mf3mferFm3Lj7v443FwJZcBkOxTSqW8psG8GCgPc4mVAt6X3pMMlq06tk1eGGXcGNqod4DoYaoXymGIHhN0+nh4j8+bL4MrnGSjtl0+rmLl2Einj12wDm3Ej8T3o6bjyNnB6SHgTv9oMAXPZmf00PuCmx2juMgNqv7jieWA/x01iv33rbOLL13wu2o/J256N7G6+2wUZAEy4sbJHPgfeqp2s3whm6MB8Z8ZmJw2Y1Z4siS2PiZ80NhOfs4ODvWFKy2vbGOwgg8mWJ5f1fuMwHbQZzFszmoNRuGjbZ6sF2Miq75+0X8LNyH4x71IvGibd87vITQsL9rNl2LFsg88WGB+3YsbMPwP4+56V38cdl5/EaXJvFJeucCdrEtmG1A3QTB5n9MbrZzGfSSvxp3JzEI95XJVdwRjjo3uxmyIztFd5fQY3MYif2YbRxj/Cb3qMZSuvxUR4PjefxW+y+NXyPSL7CDdn0z4iu1q+a8Myed+XnC6Ayqw+A+2tC6k3Jq2symj/KuYDyKAmn6skfd/Ybkka1VfRVQbHTQm37qRJK/ey8kUU7fkj79iIHunYuVMBE0yRGzuAL7KMzIajum6H/1zzEB7lkJRx20aaT+TG2zPaLw8WY+OqylZ9d025ar+mtPex3N8tNy1OXVqxX8RhfT3jONVTfW03caDHPJpUcd80NrrlO1giG3HZ8nlM5UeUjT5nMXaYYLgh8RXGxu3QjCIbJ1RGNvAkWkzR53rbG86dEUoBZXUKkHeqfPk6DAOuiu03J7tkP4PL67Z/F7ixwdhvrzxnbYY7FHKE6WrD/07hA1fMnho+bmC2D5wueFZ8wE47PqOWPuTD3ssv6b2CMU37QPneUtZd/wTcsElZFqYolM9XyPfgpqTlhgnotnGweWPdNqJnMKZpT8naR3U/mO1w2b8/uN/MZD9VnRroSe99Am5mthsFZqozmn23ph3QVLsXaZxAxKB6PDmZeyW+AfbsctOjYGzaay0+H0cHm9OjNzXuMe8GI7Veax0MWEwt3uuB9pikI+QPWotcBNnATcRIYFVNsXy+txwwEqiSXFby5BS789wc2s9xFbnxHyMv3xNDO9adbVsWuYn27H3OlbdyJdxou55w08mStT28PYGxbC0fJ37DmtdY72r5NgCv1N7lLNyZtNFfuzqV+Ocir12dMrwy2ckDMvnC1YtZncrr8jo30U+ojlh0SDKwfeSmTZi0vOZ1OeHmoE5R4KbV5TE3tk4xUFbDnmC/r/C24cMO/8j3Ib+f/t+McfXzw+flxs4wScvSz2a9Zci40RldweT3ewX5j2HWztPGAx+ehenz+s3Hhy9uSmDUY5xTNvqa5X77qdzWgYTNjwHcmqTr9KB25Js1uF6b6p3hc5io1TM74AHDvr/S5WU78DXePxtPYiTJ2GCKXClmuU3GURngm8PFkcvAa2/SRftpWZs9x/ZrvGrf8hn2i1xxxtXAfrUMZLbktNPsfKe9SdiBhNfTNGlP+lL5WAYZKO8Rb8zmsBT2NmM/WdfXKTKYOWC6Wpe5fh9OuGaflls5BGO7zwazkR3immO0XJHzz5hnwKT5WPsFv7lal8U+wtW0XgT7JXXK2Q8UBl8xrPrc5wpt4u/HDx92+EdpsGpEqqfpwZR46ej65tievvQJZU/pgasjP0T5PpCb9qJza3jiGO09y+d73NJ0ysO1bV5ok0zv7zcdRjK8ddqfx81Mtkv7Qdz8EPUCLXwubq6FXY40rwpKPyFs65HtTlUZmRlg+QIS6l/30VW0Th9X57fvFRPJhrh6aiOANrEi4uT11jiR4UfuWzYCt5Izo2zTlHah6YGWyeq18svcCEbhlatebn00WZGgBlV/CzdQrsgcGAHH1RI3gtmUxw+Jjf0Af90I1qya/SAX2hZLb78JN5ftV2Tlt7Mf4DrenSxTPeDClMHgry6qdvB6yfGS8Zra3pTPsU9lEMQZr6Fe+Lrv/SZiGtrecWUwkV2ZbDVwrwMRXy/q9kY2z370ftOO2qc1biLGaL3azmm9MD4m9gPqdsWh/XqujriJ/srwq7i2XsilUj6u9m15iW7bRrLhbpmbrk7hU4f718DssdBebCV1eNk+oHGgOKI6qn+IjmVbg9LLknPEVVmdMVyRTTC2ph2nZc+V75rsqfJ9MDdEkqbKfhA3MsOpDygC5FAbovY+C1Z97g38JmLUd0VM/Xtvv+nK91WnxuWja+V7e26uBTlIjdjj1Id/9dkWhx7zzQzsVDcsMvTDwxvbtObdUyJQ3Upc8JK+S8FaVq+HB3qrdMMIbmWonaTm360DDQA7meMFiHSrlBZfMGreaNwwG4xzbhyvRHWlRDg3Wxs1rfUSMofGNfvH96R6vWI/GmOs6SI3XEGIPXv7Vfc3uBpXBKOu8UrPs58tg27ATew3sr2kIu5l9R2ymSyt14u8TtWKSoB7t/ioXgDGbwblG/GaYIx+I3Ig4EbA3drP8Kq2Vmv0fqOyOMFNWqcaV7N6sWQ/+Ph5bmKdSupF3Q7c1Quxn+GGZEBn7TnVO6tT+LSBYT+h8WOHT3Aqo1Rs1usAWhwtLmkBXpCtekLaEqePkc3KtyA7T/u7l5vWfH4ObkpbZmRNY4dP5Dd2W8PvRr/50eqUxfR5uDn/AGQQ7tjM4KB2BLSeQCp2EtdMtMMovRT9CGx4ZlC1odNTsUu2zJuRlbrBOiDQYtp4ipF9nFn1bkx4rTgocCmyevT7XjFoZ5MgWxtzWc9NxLi7tM1mmhcl5VVySLMsWWya1tuPTnLTosSE18qV2o9ieW35ZvbLuBpzs2o/4upjpnO9Wj503FCztQIZc7NPMbefnU1AmqbfnjeQBUH2e+zL5UPKq+QL+DolA0ThlY9kZfux+K/zm2NuIsbWxlk/8VyRycrJcpNdsd+qz6X2Y1Ku1H7Uc6O8KncF/6tshTzBTbtv9XiuovhXeJvwYStm9uFZnL7t8wX6uGlWIPtvR7J+z7trRjXtUNZ1OHKMj8jOyvfFzTo3sLLu8sdxw10j6DESPpnfmPhh+X5D/OZKnbrEzQ9QvmdwcyqwdLTgH/wUTjm0M88WKReqy0qCXe2onUmp35qcWiYg040qsrv0vWta7YtLx6Tm1cZ7fmXI4rIE2T4kM+Feb5UOFAG2vDBs1g7WbtMGjL3sjJs4g2+4Eq22IxZk5bbnqvGIipGol51z09LKvAOJ/UyZNG8rW1NE++0JVyq7xE3wOdMusrFf5q8UytdkoX7jnw8tb+F0zM0Ac5WS/v0u15zfSHedSge/4xE6IaP5aR2iBW5a+aLfAHVVO/EbGQQSyUH0uWwLxgYnuIGJWxvkfqPDR2yJ34is5y5wtcCN9TndFWbLK3VK0qDZz/GqZaTOfq1OrXOT2eBeM3btz6cO9LWV8aHAMKfVkbYu+v5BDXpM8SCPmSxPZPlIFlGWtEYeyfbhYvkekf3dxg3ILbF/FDctTcQofz7eb2LnwD5pDm3/m+Y3J2TPc/OM8kV7fU5uVgOjdb6B2ukBg3bo4KUow8QQ8Dfd931QZ3WDsEZZtw/JVqS4Vc+g89t2Ur0zzCZSOzcs+cby1jTle7LS0bJIDKZMdhkje65cctbtX5qXdNoFE+e8uo9Lp3ox5SapOQaTVyk99He3Hx7wV3aoGpwFvVPMJqMuX/ObULa03hO5KMuZnrP10eWbfHCa6nCC5ePyY1k7oDvUO2uggg3YlV8GQDUWSTxlvxMYu/L2osKAbteG4TWRYQduASMSjOY6Z/b7pCE+X37k8HErZh2BBNIqIlf67py5aRzw88iOw0k9j8h+cXMZ42Pl+/zcPILxy2/eRvYA5ufn5kS4a7vP2vsggusQEMF9ZiJHaH5whi3qAez3+4A24PBpWzfN5qjvWUww+kFE7c3X8u17wxjLW1MHTAYXz2Vj8NyEO44rz41La8qr28lc7mPZY25aNoXXHFO0AUJxcvuNZZ36BR6lrSyv2rD2WVLZdPTQ+007AsViJpvAye4HvObqyV3cgHB0+0y+9zkAYRARMEWM3KdzeXGxzkbhg+kBY4fJtEEdFwttxjTfaoMNwE6Jv85kk08/KcaL9mtpCRv2rrucc2Nljf1OcNP760jP5wz3T/wB7DPhEw3M6jWaxF3aTyo7C2f0PCL7xc0XN2+B8Yubt5GdYnxE9p24WQ4E1u+Y2Q15TnH5xiW1uNNd+xtcI9Sl3XzcfuQ19DjK1seWMfNmFpTYlZfdrHOP0W/3ZBBbvb58sbz2uOuyXYogvdSYbya7zg1NuXF65F03wcSb4wquA+SGSwvcNGIjNzMbSF4K8YT9/LwCY9/HmELiJfuNeHZ+w9Dtb+1C9Nemdz/wOaenTnI0Lki3Mu4ob+WRtd9EtvcTzw2Pygeu8eY3s7x2Wcqheu9Qdlynpm2G1ZvYoPiNHOpR32Bs+/fm9gv1YM5NxBjK2/mc2G9z9ptzE1e4TnCzZL/PO/Bh0NeK2cOhDfDTtk7vHcXPyB4N9t9L9q3K94jsFzfraWP44mYcvrgZh1XZR/W+JTcnAqOd8keqq73b1Ton5p0HEEBlkJHRSSJhOjYuXsSrbOz4hE6RK2N9kd6uYOmPXE/pa1XsTm9AzOaEPJPX3uVlSFauguwZbmiBG4up2sS9c9bZD6Ej+CA3UlzrC93K2MB+katoP+mU2nxE85QbhVJ+RH8lc5BFZpNQ0KlNYvkCAF8voKfzSRKfD6n6ctLgXNbZPmBqvrDlPpfKtnzVflRXpWAmLyayFGQzv9HDKYZtBpnyWTnPlYWcl88U6WFuxjZoPmntR4vc+IZ5jRtfL5yewJV/1/grvFX4sHfM1PtGHYGje4/KZpjeQ/a9yvfFzdvIxvDFzTh8cTMOH4H5PcuXBYbOKO+760rX95QA6Z2ULU61Q2XfR6Yyq6tbK2tnhoIezSpud3JlqisLZlDiOklRLyPBGDMm7aiREe/eQXSdQvthYdTytdTx/b7L3NiyJ9y0fXOtfCrt9KDfRpba7wo30kmUqPSoSfVo6mg/mHcjU27IYSx8tLwtpp4b+GB7yNZpEr3e1hjXq+ifkPI1zN72BgOJ31iIXBRQ5YiNX4Stbt3W2sTnNOjWPetzCcakfNi5vutWfQHebxxXkZvd26ivy6N6AfDu34Psy1droNvuXO23G0xP4SYWIGKGYm72w9xvHuJmYj/rg51/fr6wf+IVvTPhc21l/Apf4St8ha/wGxvkFDTA9i0YwGbi5aw27Te7Tq3rEtV+tcz+2k8cAOAwf8y+P1N0hBUV1yns9fby7bd2ZWrvRb6z1spL+l/ftetPOoyYUr0nuRHZCrKLx7ey/KmWfVzT1Y7c23BjMRoMquMcNxkmwcE048aVGP2WrrnfeFmn2elp8tXuTCaLWb1wf2p/3gxgiaFnSc4GigaT8xvzbqjbzndYL/o6JRLWFkh+d9yg+QkYnismMM24mdQpwxXXkVNrQ3rLP48bWz53UesU1QhTrJ+e10LHM7iZxD/5oIzZvsP8Y4eP+8B0YmTZ0jKKH+X3GWR/BIxf3Hw+2R8B4xc3byN7JvwI5Zvn2zLR1ROTsd0yY58RPs519tZ34+WYcN/v8Ks0XPNqq1CkfZmZ3v6vdORM4YhbnEi3FnnaSieJkOuRDpDM3D+bG3tOh0VGqEfoJ+WLmD6KGxt39lvmxsSpFoqlQ9v844gbu4Jx1m9gytd4NX1elrxIr9ttaMvlA1xp5F2hFCN8vRBMJQfjN1a2YrKyzl9H3NT33mSYyBbXETfVKu44eefruX/2Nol1qihrbrEppnflxqUVRFLeWKearLHyG3DjMT7jGfCW4esds0eDfSGRwz2pIRziNu2zZLO0j8hGHB9dvkdk34Kbz1S+R2S/uBnLfnEzlh1xQxdlP7J8JwPDfGuMub1Txe1w7NIL2Ou7QUlaKn27dkw6a0dEehCtY1LWcex7bcxmix6bdRrCXC9MnAjYy5fAmqx/F0p3QFXAtrMEbrKCCVxwUCXqrbmxneCStedKMMr3zpjZfIftfbgRPSzcBK5O2S/1OTK8zrmpSh03DVPTS1VQfQ4mbrhpvKLTu+vWOW72XLI9e9tXzktneoxRALR64TFBbV8xWh/reI22D5j3tpOuNAVcv+JA4BVuVC83rpSbgX8eYrRcHbUZb8hNV6fqu3hExceCz0HsWfl8G256jJ81lMM/vrYyXg/c/nXPeR7/dWmfJTuRuSx7EeMjsl/cXMD4iOwXN1/cvBM3h/o+oHzXQj01ixE1tTgDsmWrxU1a0S2dZRB0K1FdCpET9uR9JJlnb7PLkr50Alf0lk7iQdqOzIqxlrl0sBjATfMSjGz0xI1z57ihXs5w47iqmIQbyxWwKTeccnWGm4iLp9w02efZ79jnAlcJN1Buov1uxn4Md3rgjrpFkmp5WvlkRWSX9+gYcFvnOOI/UT5zEiZXe9pVF3vyJ7rymZWHzm/gQ8drxNj7gtrTxhgAbsbnMm4Q/Oaq7UPajiuz9dbab8SN9Vdrs/CNxWNuYp0CCFvxKfL2Kz7XeOSOmxoXf+SL3Mx4/QpvFj5sxax+TL2MwEkaZ5MgxuHTPibLVf/z9bYafR5jzOeLmy9uftdz82D5fgRu4rMu6v2M5bsSSgeCoD0xIr81DOjiWRkL9tq5NNj6rYxmxcAd2V70ltOsaazXYJSZ8wwzWFRyw2ExohVZZ54Fpu0UsufgDDdtxcnYVBkoeslwY7c86e/KFTHBbmnay+Q8nOZFbkaYj7hB5UZN6o7tXrTfgJsV+0VuBKj4b28/btgqLh3TcC9bcFmb2FMBm+wMc3xmuLQmx2hPNmj1UwYGY+YnjqFg+zN1uWVN5q3Sas8VbozfCFf7WW4ixqohrY/Bfh03IS6Yjuy30t7IafuEtpURKCtjWh3Me2wdN+wx2TItczNqiz9puP9QaMfhY4/LZ0BbXrkW07gQ00qc4WYqDmXJp7ms90D2dPkekf3i5jzGL25+CG66fH63cTNLG++9V/kuBG7vaUTdHNJFdb7T5V9Oj7trut02LNdZO6g7A/5jzpleMrI9ZidK6DjrqrSE3WZVlBIJN+FF+wVu9FbFqB/HlcGAxWCEI742GGndOxaeTnITMXtRGnOTyMq4AaftZ26dtF+KL8iK/ezAxSYV7qJsl3fEInjP8BrTSqGo2FO+HthWy0yyrFyJn7R6dc72nd9U9bv1e/Q+NuLGhv0KN6mfyICazWRDb7+UGxs3sufbOc8rgeriV2K/pAyzuPpUduNkW/xZA+PrHbMHA7mvpdvL17yAzsnGtI/IngkfIvvFzVTwi5ux4Bc3Y8HfaG5Olm8xMMqpWTZrMvdm8S4jWkwrietfMmUqqy6+W23zGplshim7rx01I79zy42MYlkJ0uuJ3iOMlNxf6640aYsJqAMhc8/q3ah1kM/aTzrmGWafU7n7EfaLgVDe/VGugm05JNbBS3Y/YrZ5LfCaldcNL6W+mUI1FeOSdnriYGSidx5nyCcQNrOy2/Jew0Qk7+JNMC9iLIOpcoUo1EfN/YT9Eq7O1uWNgDuXd99W7NdxE/2m47nXe6kt/lTh6x2z5wT7FAHa2u3ovo3H37O0Ua1800Luz/RmGDG5fyR7pXyPyH5x88XNFzfPlX1vbt67fKuyl8LmRDlknMd9kI4TB1wM6Ix1S5xsxQLALOtCcv0Ih8dsjo4ouQ86rjbuzT/Ku5VyjZuYj2HM2DDnJpqf9IbriB9wtXMzQ4ax46oqFEzg1vF0OxYBZIeEr2B6pv0Az5u3X1tpEVlupSzfextUfe3EGxvZYLeQni4fkw42+oZJ7jfZVUytzlF3/4y/SpmafT2mFJe5LqtrlGKac5P5J+S/oZ2LdeaM/Vpe5+vyXgvJVT7k7O13xA38/WfY7yu8bfi4wz928xtwVbQ02jVuPYeM3BVZlp9JWhuXDb4Rc4ifkR1itHk/Wr4P5OZS+T4jN7F8n5WbZ9r+i5vPXacGej+cmwvBzuTaDmxbVerj+sFkD9NByWeEGRv39JRb7aSxpsfK+pW9XqOAFJl2sptNArB2+l1e1DDbjp6sGKxz4/OOA74z3HS8Vj1lO5fHNez0pZiD/YjhlgAiV4EbduWrvxP7Rb2Rm07hqv3Qc+gxsv7Xc9Eime1V3m3JDFzxmNfe9j6tHbQS97J266Dqrz7oyxyHsQkfSxhJB6nCt7sX8lbbS72IfgN0tl3lJtapZr9SL6zsyPar9msI5tzEOkW0YL8lbuRkR39zlRt7/xnvGr9l2PHJAS6GDzz8g6zFuw5H98ph7ES8peys83JRdohx1Jr/YNzoisCZ8n1Gbt7K9s/mxoYvbvLyZbK/2+uUDc/iZjmQvrORd6jyePs56G65zo+Px/6/64iydGYGmOaFgZyo6INwx5BOWnfoCsy7MWm+Jh+sciPxNW6ICPeAqXMl20HVsuZc5WVoubnZ9hST4YqtpLe2G0gG+0W9a/aTnOF/n7Bf61ILN+33Ma9Br0vZ45vbPsRjGQaEjOtFxGXrX9KeLGAEs/JzzGto6nYa3LF+tFaX+zrVuB61GRFjqxdNr08pqZ5vv3PcwHET/eqQm8m9zxSYvz4w/Zxwxshnn5qfUfZM+BHL98XN28ieCT9i+b64eRvZM+Gd9PClB+eo05Pfax0+doOnvgPy6PsIKzjkuPUxDo8py+vZmHynL8MUB1KMt+KqDmCUq9CRdZgCxjAoex6mEl/nyk9e2Pek5ICLdi921M/49nooW/BsR3w8mDquFzOMZ4OVPeGDiFw9D9OMq2NM78FVb7/HuPnNGLxk4esds0cDF+dys7HuWcDuiNwubZLfp5ANlWdUvkdkv7j54uaLmz7tI7KftnyPyH4UNyPoLLPNrSvLQDhyuvyn7TILaSVO0qFqePsBD+l/7T09OKDqVT31vY1Mr83RYs4wiQ637cjiyMpHwg+lela4ifHtCjeSi+gUTFObhL8TXjv7VaXtdD8CEc/Lp/ajy9xEjDS0X89VVz6QI5KNPMH8BWo98t+t6w6HoXYgyqHfDMrXG5x6PZ3seLuibmvtZH18Znsbz3DlsjlXlpv9JDdZnfLlHHN1xn6nuYl1ils91G2NqniNG7XX0H7H3FiMV9r99woM+jqV8aHAAO3UGVkdA9BGwsYPsuzTLsrGtA/rxUQ2NpiLss/k5oxsivENuLFph3oHsjHtbzo3V33uUYwfVR9t+I3lZobxCPNA9hFuHrbfIOz7Vjreiqt2rWRAQvVDw6IrvBshHRR9byu2GYNrRbbdK50O880n2iZ6KcEsaRlEm8M0wzCS3XfT0XTbyFa5iRjRHaQxxhW72X3e7TMHZ7iJvPZcMRBVm/jmblq9IseXuOlt0NWVk/aL6VvHnOG3BYpss8xIlsFmJWTA60H5COb9IlWZYNLfebDlsZjWbW9swiUlUVBvfExtP+BKku32+jI3eZ0SrjwV1+0XuVriJmJmRvvItFGi5c25ceaGHyjO68VBe4Ov8B7hY79jht6Bli3PyYPnjQbLWZ1YVcXA270wOeIq4yaGJ2GKXESuzsi+lf0cTyvcxPBekzDsf34Exh+xPp6SxfvUx6wf9BH18cyT9H3qY/1eEcsgi1E6YUVZ28rW4nbmWLYFctqh5Bqz8a3ebh0dzRuoukXP5ravtZPPym+PuXW4YmfR4zIdRBhZsuVtyUrx5P4KNxnGxlWOqXHTmJAOKdW8bIfUYlrlxqYtg/HGVbSf54p026S1Xy3/xH5r3Kzar/FUYjP7xdVnQxuoDviaLDsbxJ5FSFtXRsa8Cje+TukBHiidawplbrYVTFYvAIfRxuEwrdkeJo66AlP9yy17I+Dagk0ixhgf1eV5e3PMVbDJkJvoN4XndW5yf+VkMOgP+uDEfhi2kc1+x9xkdeozh6/DPx4N0lmRehk7W6G+Jm1WW3bNOmpSn2oaNnpYZGIbbfSS0Wn1dHqPMIbrbNMGWe00JhgVEwDsJ7mJ5QtU2XbniBvbBkX7Ra6eYr8Fbo7sB6PnkJu8jW2YQl4zbiJG64PRnlNuRhhj2c5glEuhXizVx5j/yfp4xE3WV1n1safVx4SbpfqYcHHYZly1Xyjfu7SnDwY2jY389n2zPt7Sos7wylYjvy2Ku7PWS6GonuDXttMVHXui1xUY0hFpxvWYm4DtBPrtUBR8iIIJqf63Xw1a5ybDiI4bitzAYKrbB4krGpO4fMzZUrvCTc5rZj/L2dh+0Bl74cqvAp3hZmw/0SvPGz12nmlsPzU+av1tq1QVBQhlJXRkk8xvWrqj8tm44ZxkCEGugDI4LjySa3+zOtXVMYMp57VhzOtUsSFIBkWNKwn7ATfRb85y02E0XBVKevtF/3TcSN4wvlxbzHPc9P5Kif3I/AZRwtHYng3TGjee188bGF8fmH48MNrWAUb+1J9di3/lN+XXyVyzekuFCzrkYxUx7yP9o7QZpiR+hJHD9UO9R2mTjtohN/YhO7LfFYwR00lupjpmemc2GdnvLDdGxsadPa9ilPgFjMCA19GJe2exDuy5wk2n96g+ZhhHad+6Ph5xs2i/FYz22ru1pxcDI3YIzL2Qf99pkeu+Y8idYIz49zCAui0PsYMy1+vjsePn5WLnh519GBx82b/T0ncsrmKM3HRtAZrPyCCHg6y11zluImYKf5H+9d/Py+3H5nf0y2fYL17T7ZIS75QaGOqXJmp8bmbLvtM8xuTLM4hzOwKeGxjVpT53UKdmeLzeke19Whns2EFhsav1ufgtvQO/SfTkGAdlYjJ2Hdtv7m/xmtW5xk3ErFw1MADapFJvvzlHeTjTFn/u8HX4xyOBAQrfMQPQdb5sv+CCCj8LNgkxGQPjzmnsIJ4JNC/PrLyu43qQ9ihEWQKmmcXxm0s6sd+pkMjO7GdxpPa7iOOIV8tVpnfIVcbNKsaTvJ7B2IVZp+BI9iDboT1XyvcO9XFqv0Ttcn08wDitj2fbxDeqj2fa02Fg83K2KchpmIzpLK7tYKVGddFVi8fbfc2avXtXVlEGmMB63LV2gmoBr3DTeD0ymB1iUCfbj3mvcxOvOdYZYVb/qv0OQixfl9OK/TJe536Td2wlvZftqu+ZRrerU3Meu4kDV8F94lXbZ7zGvJpnx9v9wGfWIj/GTdRiEhz4nMc1tl+v94ibKLveZmi6Jurr1FjLY23xV3iT8CEDMwLygx6C89kTYoaVhcJvKzsMNTORjXqTpBritrMoMMKc6On0HjYGJu2j3ERZ1eczc/Wdg2wMz+ZmEhTXWftd4UZla2vH+f2Oq1i+WXjAb9J8FjEeyp/hxtapTHYUok1WyodB2iPZiZ7o20+rj/sCN6P6GPQe2s/ifTY3zwhsukA1z+5I8RCPMLXDCknXd7M6IZWt/9Uy2s6M2T6FAXWSV4eZgu94TDTpJaVDgjqAvcLNiNeeqyQjkTV3I1dXuIm8qrtRz9XcfjmmTG/MYu5z6/aTExNVlgZDuqTO9BhJkHUDOLXBiFfANQVT22f4LIoZJsPNke0zXse2r1cS+2blFVyOpydwEwd4dtv8KibNJ0A7y40rlskv2u/ofEQZqLV6kuBawjiuU58u8NepjI+HruPhK2kfj+ltfCA7VGxqA1gfgkM9Wb6p3kVZiQe9cZ91h/mZ3KQdrUGzm5Ynxp/AzZL9onzk8Q24sWntxSt+s4rxbL1IQ89Nexk9A17zXbUf0HMzkx1hfLQ+nuVm0Z4M6Paz0/bL9Jzh1eox8bH9Yj5P4OZsfVwIfotQf30UdyF2qloMRzhlvn5lK9yheScYechdbge2mA70TPWOb53ekiTJM67OcuPiD9lvjCnTewbj2r2CMcKOxdNqtJj3SN8hr5O0tvs9w+PzFRvUcrK5PMJ0hNGRYzAl7fyKjYZcneCmz8PiWsXU/PWy/SyvdtQKOxmQ28+Vb9DeZPbrZE9g/MzDHsbX4R+PBQboTn76BKQvr+fxEFZkzfan9szr9QIoL/BLWptXTDvVu4BxNzdp4vRkMb0BN6mswSRcZWE3t5/JzZL9Er0W0xtzg4n9Znrm9nwWRhxgzAc8ZNLO7HfIzZGsWVF1PnZQH7vyPbPNWKqPx/Z7hJsOY8SUIHKBG5Xv1Z5eCQxg3+37VDX3JD7qRBIBu07rcjgooc87ysaBgH3ZfkVWLRAxmmOn55iS8pusSvnkas5NxEijewTY94XioRJZ+cZ64sEEc9l8pHLefpGbt7Of58rV/sR+o/Ih3lJ75mWwcSKAJ7afPW/yfFsnZr1eDNJO/Gaf+E1mM1nNWWkHfJ0K9wxXnT0x9psjrmL5xrIJV6ajcmS/I5vsO+uq4jo3b22/zx2+VsyeERh+gO9e/E3iNu1J2dksc7dS5fZxvC3G4bbu2Al6Q26iLMm1iIl90g+zH/t7U/s9qLeTDXom2/J7Pe+FMcj225kG5UnK9wg3Q1k+WR/fkJt3q48z2Wfa753q42jgdBzscfk161DGfTcfRw44/apSf1BBzMvqiXo5vCh+JOsTI/BDclr3IaYubvXYzuaCbMdNtKH5ynQ2Ez7ipnQK5SbA2IaycWtfZz/D1Wn7BZ0P2e/Iv+0XuSd69x3YrOqsHg78prdn45kZsFvU+ET9TTHGFZdQpiXbA+BwEuXM54791eSLue1tvMcYMJ3kpm9vYgdoVTZwZe130GbM/LXUKVLfmnF1hLGzH+w9nLLfZx6kMb4GZg+H7DS62FlLO2+DzuSRLFvZJK3r/BzpNb8fwSgDHUnijtiW/Ad6nslNlE3rnsmr23P8BtxM7Se/K1en7XdCbyprrh/ZL8qP7Pl0jAbYqo/F8Ag3z6yPqZ43aDPevD5ewAi0h+Gy/d6hPb0UODzY2ZTJQuEeFsHIEuqx7gDVpT1WQTJ5VbJifoKj3XYAurQWg/xOOt6kaUtKm14mG3iEUfIy7+CNuLFxx0u4Rg5/KShZrkbcxPKZ48hH3Di3PGE/z1XOTbYqcdl+3H4DWLZfV95QP2ftVbN9tKeUl3wZbHmNrM2nxxwwZjaIPIZytPp4gAmeSynXkr+OfKOTHdXleErnMaa+fD1G/S19isznhhgXuEq4OPLXRkHdgB38wuEIddlNgGSYTPyU/fAV3iN83IpZdiQ9JvGuRVpIGx4EV2VP611JK0nkQXFB9lncRNnD7U7vxM0l+z2i90L5lu33hty8K8aPqo8raR+RNYN84GR9fMt6YbjqHoof2WZcDGy2MjZ18X0T7ZG0voXhwMqyxYmt5iVpN+hR00Cvl1sHhmrGMuMa08aOmoVrO84uXmNyEDd3GBlE5SO6bLdtM2A/Ymu5IfQYHRCDw3Pj73lu6nfMGJDPKXMchTH0yPARN9aeq/bzXA24ibwa49sOaMbN1H5Dbkb2K9zYTu7I9hJi1WETURsIr4O8mr/68oHNeVudDWxG1JnE66kfNG6xmhH1WQVZuZfV5bxOBaOg4XLc0Ab5ILW3gdg6mi+0IVNusvYmxzTm5pr95txEf212sLuItQ513Pj4o/aTEjuM+Nzha8XswUDAOSvHtDPZo7QfJTsL7yX7xc31tD86N5+1fF/cvI3sLLyXniy7ID/Nbiktpb+1c5J0/FoKyjFlcdZ+m8snp8fiiJ0FwZQfrmBgTamPqz9rdiGPUbmpvS6zfbFTRjlXcSvjEHACMXKVcmPTDuwXb52xXw45sR/1RrlUfXmkZ0FW7h34K2zehzaIPe5x53ZYnkRVjpGW/FUH3MqVx3To6hbTYRtCw5szbt7SfjsDZD8OHX3OxSM3z7FfjH/mbYxAKfdHDcyI6H8C4N9Vo38AwP+Xmf/I1fweHpgR0R8G8E8D+GtR7Pg7zPwnDwVN4+QqapjIiHVmeDumtY3we8qeSPtRsl/cfHFzCeMXN+9fvhg+CTfXAiE/cZMClz5O4CLKKC/DMwCinnMTl3eXysx03R5oTnSSLXo+Azoso12EkIdY2WLGDRNaIsXE9r7JT8oXByK6jBAwJRi1VKon8ccjbvSBLFyFMg8O/kBy9bT9jrhxtjZcPdN+kRtYjHNuLMZW3oXyRb9JuWnxlfK5cpptCbaD3/EqN7BYp0CuvCqOBGOH2a5g+/poPxsS68Wh31Dzz3Syw0GI7U3kyug9zY3FyOqjqf0m9hS93l+N3lPcRNmWtt0YYDrhc58hfNSpjMz8n5LfRPTfBvD/eyS/Z6yYvQL4rzPz/4GIfh+Af5GI/rfM/C8NJRi6lVHaR7fVwHYCuMVdpwGt4cpkaSZ7oHckq/VsJAu4BnCmR5eFL2KccmNlG7TPxY3EHy3fM7kxmJ7GjehZkV3EiAcwPsKrK59wlXD3btwkPvYpuLnSVmV6Kjdy7yFuYvkE00VurgYOL61rJwKh823ea9qdbjL5UH35vuWlJ4zV2WYVY5TteaIXUsiydUf0ysqR27bDPeZOL6jHyEA73pIaZnDzFwKYSbfWKdWL3Li2QTA+yk2UVUzsZEfcRMyp/Va5MbxyrRDlVm6/ETeH9gvcdJip50Yw7qifsDCYZaBR6q8pH3tej/3G1JnOF2oZhzaAs8Ehxlovdq7v1y1ws1KXbZ2ymJVXy42x/S4PBuGjclEaq+A39QTD+G2wVYxgGL95Dje+rTrHjcfc/OY6N3D1wtblY276Ad6nDPzxWxmpzBD8PQD+jkfyeXhgxsz/GoB/rf7+S0T05wH8DQDGAzOYRkIzah0DiZtnTWsIgph7eBhZD3ISPykb0xKgx0jLZTfomuhxLvQgxhlXBF/RZ+V7c26C2HvY75CbIJra74JeG1LbL/r6CCNwYM8HeQXQJhJN3NkviF2x5xE3UZaNzKj+AW/LzXu1VWe5ib8z+9mkq23VDONyqLxIZ4ZQT+UjKqcaAnXmmdC+N2ZrAPeyXVpoWlY7VEuo78pbGL3eTM9QL1tZhrwjpWlJcLRZfdUTX6zhbagHnGHsy6vvgF3kRsvLXPOosnKTr3KDB7gBtEfK1j8wsd+ImwOMZLgJssSeG63tzGjHtaD6uD/REjzjNfiNsYkOEIa+cFA+y0UczR3Ui85vjO3pQG/ur8Y/acIre1451ovoN1OfW8fYJib4A7mJdYqG9eI9uenr1FeYhL8VwP+Lmf/lRzJ56jtmRPQ3Avj3AfjfLwuJ7U3bpvnZS+yvWzmqF1fdhgF/uhnN0zvB+ldnLwJevW9FMj0rek9gVK4MRhD8IQs45urNuDF5HdrvvbmJuEyWdsXCTPCex3iAufP1EcbEnt0k0RX7JbJ1QrNdt1CsPX1bv1YfT3ATg57amPmYjePtuFluq57BTby+KDuyn+KymCTJVW6WQzy6OZIRFZP7fShL5ncNHOLl4jk9nd4uTn1aIZRgZpspmGIgO9SzjvkyN1Ou3psbk7a7dqT3BEYO9wwmVz8QtySSW6Xp8zvCaLiJ9gp6xnkd23783tFb2z5Jq4MOEwWFZidwY7OSwyjO6h2lTerJ+9SLA1njk765ekdupvHPFRgPr5j9QSL6cyb+O8z8OxIhoj8N4K9L5P4EM/8v6u//NID/0SMggCcOzIjo9wL4ZwD8Q8z8byT3/ziAPw4AL7//r/bfBWIzIBiFo1HXicG8bSAO9QYVcQY61Rt9I9GzrPckxkNss+t4Y24W7fvu3CzisuW7jPGMr1/AONR7JmSyAx2nMB3pOcnrkp734GZF55n7Az1XfM51dlYGeo9wkwTb7t/+bX/gVDt9Kazm/9Y4gMbtZ8F00d/fJJzlJoaP5urMs+0Z+h4OnExGHIu8SfjRbf8eGADfNn+WNuSThwcHZn+Rmf/o6CYz/7GZMBG9APhPAvibHwEBPGlgRkTfUAZl/0Nm/mezNHXk+TsA8Hv++j/MFI7Lz+jsfMzOIBHcEcNuQvAQ8FzvTMzKZrjiLZnNOD33cBFjhukUV2/ITQIxxfTe3ETMNupmo57EzZLsO2Nckp3du1gfL3GT4Bo9w96Lm7doqx7hZph21FadqX8ngm33f/E3/iGWrWcutJc58njA6Q0MP8k3A9/Vo6gnG6mO9J6UtdGsnbTZuMQfxI2Ns/znI7g56GmyyeQUNwcDlUG70TCyTzpsgCJGnLD9ScydrMGY6h1girZ/iNcn1YssXObmuu3flRtTd0+/3/Usbs7IfnD4yFMZa/hjAP6vzPwXHs3oGacyEoB/CsCfZ+b/zrIcI591sj4Rhez9+EX5yZffu3A0c/yALGV5vYGeQ9nAzZSrZ+o9IUvBnh/FTZSlmf0e0TuTneH8KIwzTCHOb1kfT2L6CPvN2qpDbmbhEW4mmIBQ/x7h5hQEIQWGH78dJ8YxwVm4bRe7l9TjM8Pc2lnedxHZid5gsw5zJ8s95oE/xFXRopdyPW/IjfON3SfjwNV7cRNPhbM+W97pMfY7xU3E6Lmalw+Oi9nqMqeyQa8TQEtwwOuZ9tjxFGUzv3Hxt7E9yTtMUtyMm8O+VF5P5tzMbe9Oh3xXbqLsABPekZtM9iuMwt+LJ2xjBJ6zYva3APj7AfyfiOj/WK/9N5j5fz2Vmhk4uyfOk3S0nJNmHQwJUf5I75FswKT+zfDOP8D9dIzJdYcpwFrSe5XXGTcx3VEH8QhjljaLh+tDbo7sZ/E8G/Po3hHmZ/t2Jj+y8wjTo3pX034kNwv3LtU/G5/wvoTRKj7y9UEZuvgo/VEYtYNHdXelfKgPAm4Z8Dw1AAEAAElEQVQXGfHdndDZOqP3CsbOhpVstglojuuNuPE4YPrMlTfF1Kd9CsYFbjL7gdF1mE/pPcQUucKENw49ZJOEF2Tt6XoZtrO8pnJVL2Hu+zFYm8T0F23vx+TtY+XDehH1WK6ucjPF3+w5PeviDbgZy0b7vSM3WfwTB/7AFTNm/s89K69nnMr4z+PsY5rhZuTOyGUh7fC/VzB6OxI+gUNHTO/qtjNuJmnfKxxy8wnsF8NnsecsfFTT+KHcLIYPxfQZ2qor7f4suK020nNpcVfOsx3TU8HoldmAVFdgnvoPKT8N1wE3XXL7qx49XvA80WsJiKtgnpsPsl/H1TBhF2fyd7TvDHtBUkQbcM/vs+qIAiNv+oivF+wxPgkTWW6dS2b+GUFjPoB4JCxzldnvjTAZPUwwNohcHejO0v6Gho/6jtmzw1NPZTwTnvVy+Vf4Cl/hK3yFHyQ83MmvD47RanUWTFq3W+2ps6t8HZORKQOPJ+Hq9smt44qvGjyNqytHbr+H/c5yZdKmJx9LtvqfVRyjnE4G2xdn+G2auGCGZ+FyuXwSTI4rRtyZeN1+D+JyuTzA1Rth+myB+eO/Y/as8GEDs+E2gtiqrfL8WWTfS8+PKPteen5E2ffS8yPKvpeez1i+R2Q/qnyTPLMJufhebveerk/dJtMBUPcOUliNcR/eq6sT9Uuw2wGOWegwd7lNZAVLxJTwc46bqMdj6rjpQFmuqPyrA7TtEW5c3Nuvl432g+mFfkb7IdQNnzF19j3wV/sV4APMU4wirwMOSzpXvSM9ESOGaY8wpu/cS9x8nw4ANutzCY4uGK4esr0tV8D0lvY7xMyQT9whVpptYr9Oryh5hv0+efjIrYzPDB+3YmZfjIwOU53BfYw1pqWDtOzvz2SHaa/oDWWYlS/V+4jsFzcPc3PG5x7h5kz59NJHcwO0mfRPys3TfW4R48PcXNQ7k31zbk4HKh8EPq2L8/v2ot6LcdvLqNd3hPzoov05IXlB1qWlVi9sudgKzrhJ8la9B9xEjBTTBn0A3DbEZR9lX/dtOTvZiNniumC/GI++87D9ImYKssa+SMoHLvhtWbp68UD5tJ/FwJb4XEjuMrQ2SNNSYr+DuGCSa1vkMSjhiU0sV5l/Or2DMkRfl3oQfW9kv6y9OWM/TuJSPjBwN3oiVyP7jepUDFld7rhJMH+FNw8fMzDLHkT23uSvfSZqnGt9kvo1yiPqmOnL0ta4bWMyvRFjmt9ZvQeyrt58IDdHsqn9jvQ9yE1MN7NfylWm9w24iff12ZBheiNuZjIE047PfP2NubG+ftl+R/qeaL9YH5f1XNB7lpuntFVnAl/RFTsQ8bizkLfrQJgLDLhOCgM6cLtif5uPkG/j8f4Ic/c39IBO+Sj5SjqVjZhqPMs/4yrim5VnZD+LI7VfyOsZ9tNwwX5yeZXXLD7FGG1ysXwM+ENJ2A+IRraP+aV1NUk3wzj0bQbujOHKT5f3QZ3aF/wzw9oN5szxkCv2m9apB+xndVK0X0w/8dcsjOryDOsor08TPvy4/KeFj9vKWIO6U2yQuU1cxKATgfXvaPk11mvR417WzR4EBxgJuazNppuISMp3Vu9MNmL6KG5sfGi/INxhejI38d7Qfok9LaZncpPJumKcsN+R3v7GWGhov8zXn2i/I25suGq/qZ5E7zLGxNc7+424SsIl+9Vwhpt475G26nSwW35WdDnCNsMphTQhbjtYeisxQKY3YrR/Y6CwFc7OkpPBFTFHDJneGcbsnuRjMaV6E+4yXrPPOziM3GQyzF3YAp9Gb2e/TH7RfvHeGfs5ewVcIx/Ta3SifBNZC2ClDo620THm5eswTzBmHYcr/qphy/XsOMnrQZhhRIiTxRT1HNgv8jqy32F7ExMM6nJqvxgf2C/Ve4Dxk4evrYyPhuog9lmSHYvr/oZ70gFJZUPoOiIzvRNZi4V5LJu256PyHeidcpMp/kBuUq54UsdH996Cm3AvtV/shMTO7UzvAKMIjPyoZdiuk02z8uBJ9F7hJpWd+ZG9R4nsAcao9xBjTHfCfsPyDfSOMK60Van9ZvVgoneGcRRS3561VUf2O+mDQ0XuZLFB3jMbRjxHuGJHUgvJ6A4i6fJKMHL9z/A49QHGw8EKjD9PuBmWl5Fu4zqS7TqHyd+MK4fRdhKTtFnnOeU1CZlNFNdR2pG+RfvFexTiM9mUx0m64TUa89qFZFA2yjc8bzqsRxjluvPXlToF0zkJA6sVnximYY+jc+xJncrCI/aLeoEL7Y2ty4zOtllZVnnsbH+lvfl8gfF1+MdDgYDuuPzZs9deyNLJAMhtXaI8rQrYDtSZkMly32ZL/PQX2wcqT4eK6aO4gf/pOqopVzNMByqvhsx+gOfK2e+J3KQhNLKq44z9gsqrIXmsHdvvLbmZhVX7BZVXw+m2ytjvtK9f5Gbk2wGiSytcvemjbU9yT8s4aEhiKqoHGWhS9h98HQbyHcuF5O0lPSp6ot5RPgS/ey9gdh3JiOnQ/g2TysudjJuIcQDZybqB15H9xLkbEOYDblzxIzeTcMZ+InDGfoNB6xKvNg/nyj7ttLyRV8Vwwl9FDyUYB351zE0Y+CgmOuevipEaxqh3iZs6jlnlKsNoZ6Im9J6q953SCaYs+W78lRK/6WxgZCftAOIA+lR78xXeI3zq4/I797XtQZwUCV+NnzrXg53AGY70FKL3Dp+EmyP7fYovyif2GuJ6pt+cwXTGfm8ZJr5+5WRul+8qNweYPsqvZr7Oj9jvUZ+b9Kc+oq3SPnvw7x4HBSFzz96yh4kAfUfuTF2e8SVbq3SA7fVMT5CT8g1kh+/sWNkhxnF5U25m9o6yo3QRR8QYtqFNB8qRm+xUxgzHWfsxztlvUheWZDNuuE877dTPDkiLetI6ZWyACcaQ93H5aIzrrL8aXBQOBlrmJpF14Wx7Y6Oxz3LG9hOOU1xH7c2oLh/YILYDj9kvKcdnCQw/gf0Dh487/ENWzEyj3MWj88g99ted73Brg1PZUVjRG8sQ4qrXYpyV76zeo7Q2/lm4ibIc7rPB+F7cZGHVfjE8k5t433IT4+/Fzcx+BK3H6SP0rbgZyEaulmTP6rHhSNZyE+vjVftdwXzk24/4zdkQ2qf03tH1meygHk3Tz/KfYVp5LozyNLLqEwftUxqPdljhdVT2mO7IP1Z4knuzunQCc8fVW9nvCO9iuzjEMKvfWbqV8q74zwjjUZtjZBnovnM31BfjWSd/9Tkw0eH8YrVtmeGPH9Re5Gb4+xn+muVzoU49zX6fMHx9YPrBQCuVcvGhFztj6UNu5oQX9cb7S3ofKe8PzM1MtutMX9H7XvYbyD6idyab2u+s3jfG+OGyPxA3D2O8KPvmbdNiyHdKMBC22riXuCfP2m5rEYfksw5Vfe+DbOLJNjo7G3tq21WHGfOdU64MPTcI5XUZaQ814SZinNiwTxu5mgVvv34r1Uwy+EgoH72X/a7W/YMBTyzfod9wiEQbDHFGGxi9GcbdSU65Sb9FGDBGzBqLXIWinOImSifbpHPpSXuTDVBPcJOpinqv+WvgJrZzk9DZr8O1br+r7f57BAa+Dv94NKxsZfwKX+ErfIWv8BsSGMsPdrfwZQYbl4LNzA6ITj6DXHflWZg0w/b3TLYdpkfDYEXjbFEf4mqU9qPtt5J+ZQLjDO7ZAP5AbnhgaYbxIqazuDL3yi9eCE/gSv1i0Ga8GyYktKysjq+GB3B93vB1XP7jYdRgRW88MWHyKWTfS8+PKPteen5E2ffS8yPKvpeez1i+R2Q/qnzTfKnPavYOC9C2YCahe2fHTbvXHpfKlplxIiqz4EaWQ15Hxd3C3ek7ZppjTRuuC6b8JM0xNxlGy1XPTcTIZoXAc0W1d6qYTnAT00auEoGGsbvunXBkv0zvzH2P7cf+t/Ujs4ighzBUHmM8lotMlpCVjMk7eHKSOQ5skNYpV15bpkTanJAYMUVu9HT1bMB+VKeMakK9wCauMIVH8qYYBaYhpqX2RgsLENjoPMdNB2tmv6M6ZS5G+5HB1BLmQK7aL8af9Qj4Csfhw94xo+TFVjX8IN4FGqd1z+eQdiorDntF9grGkexZbk5gfBo3AeOR3rSMz7a9bXDek5sHZZfL94jsZ+Em+s2Bry+X7xHZyM1J334r2zscmf1Wy3dS71T2gacz2YNQIg5TRol3g7KZryg/tTMXO3VExUbhQ60U9XCCUbISvZTonfo3tbSwaRsmS2v6uYIEY3cCKfciY/82/MhgJ8i6Vw6qfPqOso2jcUVdec9xs2q/jBsEbg7tN+Mm8iq6w/ekSNIO3qH3NqFDv9Hymnw6f0Vep7S8Uj49drXn1WI+8hvnr5Jl4q/xnVZVa7kxgxzXtAg3Nm3gxgmJfwZfSP01KOzaG1DL/yQ3EaPzV7k84CbKWq7KeLDZz3NDnWws3xX7pXXqk4evwz8eCOokprHXB0FNM4rLb3WyRVnR62TJpJUGm+vsBA9kQ3yEMZNdKl94gDjZ/UD2mdzYtFLv2X3msFQCfkduop6B/TKu3owbk9ZxE2UXyjuSfUtuzpTvYW6MH3WyB+3AU7mxaQ2myJXz7TfkJi2faQc07cS334SbKBu4uhSk3c+u178U4gJs2C5G/7Y2lMRV1mFn+IFH9temNdF4ImnXLhqMDnOCKeo7/J5n5MqkYxzU/Rk36POzvym7nsXheSWj5xI3sXxy74n2y7jSbAyvXTjysR3dIoTFeOg37LlZejdfymuUsn0QZbwazEd+o79r+TpeFm3Akt+M1/B35Dcj+6U4Qr7xdFoO6U5xY/Ow9hP5M/Yb3X4GNyOuJvmnPH6y8PWO2YOBaksje3pJPKrW0rYlpcWlcXQPlxOysLIigpB2X5Qd6oUmosO0QU9NJw+yrnx4J25Gem0h7QPjPbiJ5aNz9nszbs76HOVpP5Kbp5VvJmv9qPPtEH9LbqJs5tsiO8P4VL+BBmkHYocWyO33ptyM7BdwnQoMcFVOdgRh7se4bxfri/qElDsXD3qlR6IraoG/WCZmVowdZhMcH5z4txhGyjEqr/oKr3ODgNG0zWe5sVgdxniE9hE3EXPgyreDJ7ipD5wl+2Xc1O1uMW3KTeCETL4ZRltMsnlgwmusv4nfcE2kHfqsvAf+CfYTY7B5mXwo3htwI9s1W9u26K9d4LalNOEmriJFv+E6qqPgn7FdPOOfnd6z3FQuLDegA/uhpbX+ao8J2VzCFW58XDHGzzeIh12y3+cKzPgamD0ckqOkMfudpJW4NvZnZJMHYvf3QO8VzNO0saGWNLHxOIHxEjdJGg3dN3kOZJ/FTdTzBPs9hZursskDYSb7I/j2VBb+evTtd+PmAJf9+27cHLQD6d9FvW9iv6N7MxkG2oeLB3kN+WDoqWYj2do+qQj5tNrZYfNvpNf0uDvM8jvaSfUkGEe6bJvKXu+xvROMhisXDrgZ/WXuT56bcjP0DYZaYJWbjtega3Is/Rhj5WbWQZdkgB9ATtJOr2W8St4mTeSmlaGCGHBz6J8HmCi5lsqILtcHIMXKcS9ZxgsBelLgjNdZX0O42Wsk+vqMm5W268ncpOmX63KS/pAbG7e+E7k6aE+vtPMfGL4O/3gkMNr+WBu62Z51kvuZohMGOiNrG5K31PNE2Ye5cbb64uaS3h+Qm4fK96Nws+rbj+g95GamB5/f9qtZAv7DxfbGlA/padhRkHRcYkdDj19oSZPsVDXbfE8GXRoNmLp0rW+UYdJOaux0CrRTnSPDVcZNPG59AFmPkzdYHuYqkz3gJmJU63JJew6TZJ5zY/ORbFM/imMAPkDAMUImm4IjlSeY9onCjeMgK0U6GJ8MCjrABlOoUcFgHlO6Yudy5sorKUZyxieXNrYXZH9wuLrqC0mdYkvOkTHjkfdx9NQdL3+hLhPqaluOKfu8Q85NRChcjduqH20w9psYPm4rI9D79NFXxzG4x0naeD/eg7k205thxOT+keysfCPZo/LF8MXNnBvB+MWND49wE8v3xY3HCFzn5kr5HpE9y82JcKndD50Iti+7J6eIudS2w2U7cmzwjPTGeyIQO4QAQNQuJ+VzhzUoCQKRmkDEddqG5PC5PpZs5cvKVYDotSmmWbsY20i93y7wCW5iJ1FOixQfndov40Z+dy9+UTycb8hN1DPcnghAvrXWuCGPwyausqo76jr9rGoXKJYBIS3VVBETii/4rXMBs1xaahebfzIBG2PIDSXcaJAdV64+zvQG2QlXzrEOuMn8yNUTW77Tz4ygy7Rl7nTIWP7wvOntN8Fw1O5nXH+i8HX4x6MhnKzkAg9+x0p4RvZMnBBm0h+QPYPhSDZe++JmnH7GzZGuL27WZM/Ez3Jzpny/6dw8Ur635OZKGLX7RzgTHK7PwH0fYph3vUbZ/bP2P9CR9nNcZzTB9IgNYzoKOJZsaFDzRVxZPNxb4mbS8SY+0Lni3zPZ9F6COk4cwPah2yCy43WEK967+sywEDf4FbMjDCKHJ9je/LYLlTLeKWVc5ybW+1TvyXaxG7dc5SZrqy4+M8jU3VXZYZv4rOfW1Xb/ncLXO2aPBDaNxFFjOQqjBnuUNn7pfrUyHck+C+NINpkleqres+WLD82P5MbGPwM3z5T94mYs+0xuVjuT783NlVnKZ3KT3bfhih7b7p8RCzaj9tNhSTtrcYnIPHekeZ2OTy7gmmEioB5mMsBVfy93LwLGDlPEMZIl26nxqeUgHMfViUEO23iGqcPYeu6xPM5+EdMEQ3p7wX5Nr2CiIBsF8wEQSdqz7U/0haMBg70n6gj10Afy93Fsz7RZOPLPCS7xBQLAGzyvHPIecDPz5WX/jOJWnnqbRj1HOGx8aL8DWTZtlDsuH33XcMTNyH5Z2qVw9fnyDoFBXwOzR8PDA7MzcjHtypbJEb5H9J4Jmexqfs/kZpb+s3DzVnrPcjOT/eJmLPuR3KwOOD6KmzO6n93exPvPeOZdwKgz6yvyBmea1FzcHuxkdFvYFsMRriuDV5XV/4wU5SEeWy4nYUo+9hMyvTCmvnEKk8Vw0KmllfxmqlbtZ8vHPVfTkGGWsDJh9qAvEHwHf5TnIc/PxGS5lDgHex8N/p6ICQaTm0TI0p3V80D/lsjgOvDPGVfPtN9XeJ/wcVsZxdN0SgAwZ8TWy6wzKdqwjGa9z8pavfHJwk2209PFx3o6vWcxOp1NVuPvwc1E9kO5Gch+Fm4O9X5x8/HcPFLvn8pNKF/UCRt/f79R2XNdpTykOMf3hnyY/Bwsky5Dq51qm98KlzbTgMXSNQzm/hbSqttxvex85STGzOcSDDE+pJjRtgzO9B5hHkDI9Ek+mg0FWUK3Te3d7MdJsUey0RcDN4jXDvRa/MvltfpHmOwFa+uIYYTJyq746wCXfi5hlRsbJv651N5YTKFsmmaFmwmu03UZ7bc7Lr9en7aLGYYE06W2+BOHFTp+hPBhH5h2pzLqB1Pbi5NbjVsZ+7tvE1qKVdnmhxQqF/Vfel/Wew3jFtLrw4fsBZvobbmJsgxgI8Dup/8IbvK2aNjcvws3UfaoL/Cjc3OtfEbv6ME3lL2mZ4mbp9X7x20PVG6yFbak3r8VN8N6/4SHsn6PTDKXv5XweI9sulEwBZEPg6twKBgxXKeewl+nN9PN7Y/dkmfjXZjhMphcfVzlJmKM9WqAP8OUHkxnry1yg5BP5GoWumeglRVh855i9p2xFYyX7GfiFtNUNmKwnwkSxUeyFOJYKy9bjAzfqU54IXMrnpkzfT/Nxic+pG4f7TnKlw2uvAFPMR5yE+pUh2lg6wyT/eD2FFwo2xn7aYJYVwMuytJibr+nt8UfGRhfWxkfCoz0uHzC4OGQhHF3c0GWaz9j1lDZfIzTn9F7CaNtHSe4gHGD8Cg3NoHrkwV978lNlOUskU3zTtyMZB8t3yOy78FNd2+BG20zH/Cjp3PzHvX+CjeL9f4tfa6r948+lAftvr0/vLzyMOCQjPv7sSzLW5OCDQ8xRVzs4107b3/HcsR0E4hO7xGmTDjWDetrIwxx8JDhWuTqyH5s7pHwesEvn2m/mfqlAdtRmtiJXg0WYxBOO+oL7WJ27youHSyO9EbOVwdAq5jsgDHadkXvqv3OYLJykZvZM+LZXH3mAdgs/Ki4Q/jQUxndJGzWMIQ4A21Gg+C3pYxkZ2mtA0enr2l1r/2i3ksYbZyNXnsvYnxDbtLtPh/MTZTVdB/JzUk9v5u5cTqzeh//fgQ3Js4459sPcTOr92/RJq7IIshGbnAxXMBJgVv3N8IN8u5dKcBvFxzJjTCav1vECJ+Ggw71pyR0mCZ1Ia1XNW2caMwmHkNVbEWuP9JvXdkV3Av+vc3sF7mK8tYfpZySblSYGu/q/sx+oR3gxL9G9ovlUyjsLjfM1j/NPfFVokFeV+pvlXFb4XiAkZuIbYM6bjLZxXYxYht+A479PRF3XJi/0ddPtYu96rwYif0cJntxwX5L7c0gzOxnYQy5ibKr7c3lhv99wteK2YNBZ7skDvQvOGqLTTUNw244J/M3l0WX1sVh/H8g3x1ScqA31bOCEYGPyE1Spjflhpve4TL4hJu0fDM9R9xk5cMHc7NYvlF8RfY3hRvAPPhH+X40N5AM9fOn78ONxXVQnjfnZlrvLTcXAyPlJ8PZvDRJm/hXlIeVl/io7Up+pxjt35j55J7zu9DpiljIcHRkQ7mm9rJ5x7RRr71lMGd1g8I7XWfr/gqPQ1m08ll/yLZz2XDKfhN/ovB75nqKyySM9aqzPRm5gFFks/q49Nwm+NWyga/EdtHpi3pn5VtpF2HoJ3hujAxlvy1A5H8ZB9wkBtRj/GnM8+h5Gid/Mr2Ickk+oz5qJjqyX5r/s+yXxb/Cm4QP3MpoaxeZ/w4Ehr9z2ey5OUpxLJs9PY4wH+s5DiuyH8mNt1/k5jic5WatfOP0x7Lv5TfH4YubK3rG6c/Iskn3GbiZZrysZ5z+jOz1JzMxtINvyxzLH1qVJOKvH25HNLJudSp0ajIc0747jdOSvR9s6O6JrOBJOlozTOm1ieEPX943993AJ+konnqezexnVuRc51R0USJu+Lpkv4N6FW3UiZ4pPHtXCLfG23sJ/p20kMesvFo8Mv+sPE9NMq/m2cBm8HtatzNs7NM6jFZvZr9Qd2Y4Yr7qYwkmntgPwPx0zQlXy/5a8cSvHaz4zTCE+2fam88cvj4w/WAolT+Y/MhT81zStIenLHUtVcunlw16Zk/kExiXZKUB+ihuoqzDkNjvPblJfqZcndD7EDefyW+Sn5+KG3s+8UdxM3tapz2vN+JmltaGB+33VNmLT+uug8PoBgtp5yQ+cEftYoYrDorMtZloF6+60hn3A71unE99HzPVfcBNvNZxFRNnHGa3q94zXNnydZ/Lmunl8PfIr+xAkR+w30m/0TRHdWjQuybz2xrMZcX+nvNvSTtpN6K9FG9MEO05Sj/CFe4prkV/jWo1HwomGelldJiPzDlrbyKo7n08jO0XZYfP2zP2i/lF2ZN+c4T5qv0+W2DgayvjY4GBPWkBMkc/keWnkH22nvjgei+9byH7Xnp+RNn30vNhsuGpNcvrhyzfA7LvpeeZ9rv6yM5mcldwHQ0yZteTjjID1w6O4EH/9WjwYYUyvaN7Z/Glo9pByAYZ3HMzfC8vyy+ku8zVLL1cY7jVjKWwar+I68h+R3nZ67N6md2zZTzrDyLTHft8oPuo7cgGByv4qCVTSq3PncE0uH/oDzOMdsJnJPde9ouDzth2Luid3b9kv88cGDi3lP15w8ccl89oy7BXHWE0u3NFdvWhf1bvaYzmqXQG08N6T8jOcL0pNxPZt7LfR8n+buDmqn//CL59Vu+RrA2fxn4XFcm2tUXx7jEbV3koQAl5s5UxnS4daFz0O/2swRCo18shbdp9kPxXPjycqTvA1B2EAp/W0uS4OuLpwJ5TGwpmyxUPksdOM59ww2fYz8RnPjfTC8B1it2AJAtPaBfTgx2i7H4R04U2R/2L2u9ZfUgHNdGe8X5UeIJHd1Lke9kvwaE2IfNvgCOTXcL0yDPjK7xZ+NDDP7oWOH5so/v4hk0b4w/IIsg9ovdhjNz+2Hv7/jHcdGlDPqdk3wjjM+33Yby+kZ5Pxc0E10z2vTA+4tvPsn0XQrrYDrwXxpn9VsOokx87jVkn0vaE7OUkLcf72Q0G6L6gN5PN0mbfnhuFUVo7EBrpWcEo94OefjtxIitRMbdgmpXviJuZLknLIT6SM+nezX4RYwxR1uad3KPs9zMwhrjdLZ5O8FiMJjqsMxPZIeYQ78Y7Ex+0ZejuzfRmPB5glMFYtzEg0WMxTe0Xw8xPYuDA1YyniGu2shb1nrTfZw9f75g9GuxWxtjozSpWTCvxlUp5NDsw64wdyi5gzNLOZKVzZHG9NzdRNsP0EdzYeIZpVfaZ3JyRPYMxS7sq+1m5GeE6izFLe1V2xbffipu3sF+WdlV2tZNzNlzBmfE44tZgZ2A8mx1OGVzGeBRWMI3Sygy5JLpiwwzvFZup/0066mfrfpb/JDiuov54hH+WJtNzpj0egYnARja3v9n8NhiGR9xzIpvlvVK+LI9Z3pn/Zf74rGei9V0bD3+V9hnfj7aLkfsoGzEd2c/mc5YbaTMSvWnliDY5Y78zbfFnDo8+nz5J+OBTGY88evbEeaYsQtqremPNewbGlbzekpusfPtC2pHsM7mx8bgv5aqej5LFA7I/Kjervo0H9J6tF1d9+y1tP7Pfkex7tBnrYfqB6VSgV8Wz+wT3PSYnEJsvvoBnoLfDFPR2mLJ8TJW4hOsMVwbTKK/upMirmAKQZfuN3My+BsEJp6u4ztgvxIfdh6Ngmz2gX0GeledklWOgYCeAs4X2UX4JpprVw7gEEwCQvPcW6+Ug7+xTIjRIexpTxaXbGClLYOKWk1WuTtYftV/93X2XcNUHM0zXmu9PHujr8I9HQ6lkR541q2mPyGZrym+h50eU/d3MzVHaL27G8S9uxvHfdG7Ww+lX0yQ9tej00TtJwKEItB/klYVkoNHpPQIZ0up3zeq/eNrgVUzdztUTGPXxLJ26s1yNMM3VJiDgbK/X3tN+K1wdqBsmnlSrVOVq/RHM9S9v/vaZ96LiLubDMi1i49AsnnpX64irE5j0G2ZVznGV1UX2P7sJoCfhsgp4h/tK+NH3Lp07Z/a73oR/7vAbUq4P3MqI4nBIZqNqnOFnzfRbE/yoLL2d3hNpNf708n1x8+HcRD1f3Hxxc6V8ku6TcXO+R1xluf0kez2W08aN3o6OkDaK2jwIaJ2UveWpsoz+W0FGngF/ctzANoJrWKTIod3CaDga6rEYCcMOLVW7SfrYQZtxtVkcO7q5hSOTuWBuWheSiPOtA9tn36EbgXiK/TLuBoW3Zh3WKyvLcDuVyciPVNkbUxuE+r6xv961VxZj0EOzehFlow2CbBaG3FiMliNJN7FJLM9heyM/bb4jvRLC5gpKkkztd8CrzXuzFcfKWoxZOym2f4SbK239V3gofNhWRtStjFSfHgQCW+8GVUdjEzee1MnCPYnkXpQtly/IKrQj2QowlYWpxFl5Z+VL0iblW+Mm5zXnZsEmT+GGNO15btZs//bcnPGb1fJl3CTlfRNuHrH9j8DNQvnehJtVjI/Ui2dz4+2Hqw9rOWggdGYER4xbPa4jU3/ry/pyL3bwpWNdt3LZTmA8ntsNDuB1gXLMERN2j4MANwAm04F3mCw3jGVuyJS/CLd7ukK4e/xO1vJsZRG4Mr8tN+IWyg0FjAZTZz/hhhpv1p7Ofjy3X8cNsGQ/52PRfgl3FqOWR+5F7IE796qoYAx/I28qK5fJYMrKyx4CuHDMO3TrIAOd33QYHUm1rGx8eaR3tU5JkPLYcgdM0V87PTSQNfc7HkNc/zLaypT4rE0bTpXVe1bPTG+0X+TGYpJ6M7KfkXfcCLXWT9HyivX+iBvL6+V2/z0C48O2MhLRHwHw3wfwWwBeAfwXmflfuJrfxxyXD9T96sWrigNwbYcLsVw9obWZkrZ2MFxcZBFkucuLzfUj2aYHqpeIgf1ILxKM8pxpmHLZWflieSxXZ7mJvEZu5jbxeqQh4Tr7e4Ubdmnz8lrZY/ut8/oIN7PyIeHmrO1H3OQYr3GTYT5XH2nRX9PyaZ16C25G/rpavnPcjDCutFWj9kbe7TlXL65ys9beyL0zobX7Ld7aRcFV4/WCdMC0w88tjXQ4VJbhZvfth4TJysr1va0kSGksjqi3w2z0aCcILQObFhVXtzISMTF0i94yNwavYjaYFD57rrrysc+M7PUBV0aFK98yj4TWLib2PGO/M3rlniQecdXZM7GfHVQpr9zrlTzcfAibtCaNRnevr7OflTXloyBAQHfgTTcxYcrXYZT82XOQ6W3tldFt4iDogDy4XPceY8ajq1P2XqLX+vasTkHwEHTCRH3NpE/LJ1yFtFO9HGQDZs2DAGyJ/QyOGTfRnvbvKjed/T5z+DiQ/wSA/yYz/2+I6O+s8b/tamYf945ZbWW5REDBq0lvmHhtSYts7XaorE2b5OXutdnjTo+xrH0YaNqpXqNHZWlQvpEsL8rG8i1y46t9uZ9yk+iJ/2X2aXnC6yE3i/bLbLIkO+L1EW6Oypdxc8X2sXwh/jA352zfZCnIjvxV/jOwfdcOPIsbi/9se/NIvegxTjHP7MexfJHXiewyNxlmHOhtvnAm9HXD3kjiImg6D4iyCGlNnJ1QyC9ed/UBqpCaSKp3qXymDJqXyJBPIziG3NjLwYYI5dW0vmnreAUCV/K7/nNcRZ6MrMXkcFlo0e9ieUP54iGpijtisnkn9pP7FHDGA0+zumFl7SUPyuua+dfwfoI7YhjJRp/r3CDI2nw1+4hxR/fNXve62sjXfTaad7egEWxv7Rvz6fxkYOPUPw/qVFYfU/tEPQhpIv7VujyqUzavzH4xSWLPeNQ+xbRHGJNnxucNHwaQAfz++vvfAuBffSSzD9rKyGUrY3hQxUYdCK2Cc2Z2DRJh95VhDgBUp0RWZAuuhrTXO8II2A5h/0DPlLW8BFcui1AzfQ9gitFOvSSYDm1iZH01yHidcRMxYpg2hjP2qwJGLz+JmznIjpsj2TMYZ/56lpshxliI5EUTJzvzdS8acT2XG4vR5LXU3mRlk/IdyMJitHmca6vKFhaz2lbLMOTVyU7q30NtFXx5Z585GAWG/2YSGy5jiCeYUeB9Jht1xo4J+79d+oHsCHPsPyHctwIp5gyT1TOjenKP4u1MOaUUlcGLwdJxlbXlRnaGySlk8fcxN8+yX+c34ftdU66OMGYhXNdVzJFcjduBhx2UOF/I2g3kGN3AxsobB3F6AkbipMwWr9V71Cww2gqQCDP8KlwsQ9DjrtW0R37QcTPASTBNW2a/LP8Q79JkejP9E0yif+gzg7juIrB5BPlDbmY++xUk/EMA/jki+m+hzF38hx7J7ONWzOQ7ZtGxOg8feSupl5H+16SdORBR+VCryMZzeVNZAdrSNr3H56AePmAz5WT+zDCZtIqx42aC0fUoouxETybb8brIzRn7mQRvbr9DbhbDkuzA9h3Go/Ke5WaG8WJ9POOveDY3x/a85NvP4mbJ17mz31obEm1/ghuT6pz91kO3VWkIwGuNzZsmGww0YloV4PaP90mnc4JJ9HKgNrp0holGaeUwEoZu7TuLCwhczTABOkaPmMjcw15sxntYKcnwY2ATHNjE/gz268ogQQ4kWbUf4N+PSoSu2o9HGDVByNJ0hrN0DkMYlNAsfQIdVPDx5vVnf53P2XuhueoCG9mFPo68L8UbdBUm6j1arYq4o8xR2jSQsaUzcJC19rPcDDAO6/L0WYx2QB7BD2YxGWBNMAONo2naHzk8NnD8g0T050z8d5j5dyRCRH8awF+XyP0JAP8RAP9VZv5niOjvAfBPAfhjV4F87HH5+pZpDfEJ3AWTIJ61amesJe/RdpvMq+3PmWxn+ROfc99n+R6EKDvjasZNFOYYD+Wb6jmQTZ88o8xO2C8HsibbbZB/gJsz4QyvXTjw9WMjraU9jXFSHx/x12dx02E80d48Ui86ve9kv5ls1BsxxnzP2O9E2LjPKpolBgp/u1o4M78NtgPFZcBh3vPP+mL+QkhAMxNGamMBRsrqe1NZEVbMbwetHa8nMWrnkwumIVcLzfyQqxVuYnmv2A8n/egExm6LFw9+1/h0cJXIii2PBmXxvgyud8E4wjXoxGtI5nJGaSPOlFKqPrMDuJk8znAV0lJmr1HaiKlyxVn6I0yRG56kDemi23T2M1nG1c4uX160yYEfrTYXnzY80EUD8BeZ+Y8Os2YeDrSI6J8G8A/W6P8MwD/5CJAPPC5/VBul1tZb7igjmCdOIuvuSRL2CbLONSV6oixBHwip/BCjkV3BZN+gznSNZDuuDrg5ijtxk2/GVXwD2eYxtV8Ib2q/wNVM7xluuvJl5TW/o+K3wmixSr6cpB1xl2E8Ux/1ITnxVycSZd+Km8X2ZsTViuyR3oybUZvxiP1W6t+Um5DW2eTCI5rRjoaPwdYTDnHy8bT/ZdLKgELvd+1v6dRnW8ZmehGoGOKfxMUk6bPkXg+zSLZxpoODka5RWMTognBlTqMbcjXDvKrX/HZcwVwzq2WKcZTX8DkKf4jKhnX7xbyCPTVNwmWWHoS0g2/1zDrT0wGAEVFMB3qHGBnjAdAMk/EbBhrX2aBskRsb7PuEQ87j7+jLJou0vme+McKMPu9hXYhpR3WKcVy+WdzaL0s748bGLzT77xYY6F9ifLfwrwL4DwP4MwD+DgD/8iOZfdhx+VSPy++mWIZTQ6Pa0FLRkWzsXMe0I1kOXmriJZsJxqPyjVaZJKur3AwxLmJ2amIL9iRujuyn8Qft957cdL0Ik1W3YBHKN+NmyNWiz3nQAdMTuVn118MVqLXyPR3jIVe57NO5cXUq9Ezk/kfar+sBHAdCa/fZ5E2gukJnUw5UVTrclqPQgVGUiawUmaRjf2ezmtMEaNQ7AbXmiNod3z4GNyL4LURZ30EGinvhiIywcEUWh83ItDF2cTYrP5vflPDqZGWroLiJ4mpniJZYwpVdFLbmjPUo48qkTXmULajBfp6rgInIrwLXvLXZCdtSO732iPPkPmLU3o/VKA407GRFfHwYWW33rVIbZ88FgLJdcANwD5gAv604Vuc4gTI60dFhqLwHcmKbw0xlK6PUQesfCTdOL3x8iMnhSjDFNhaFq20D+I7OpkNMGebM9nIttnvsubH1HszgjfSY/GmTmzy2XJO0aL+cm+BznzgM55ffPvznAfxJInoB8CsAf/yRzD7wHTNADT7oC/lL9sk2TIQuWbwhcbt2ra1thjRi5P7PEBPnmDikGYkT0M0AzDBqbME7TXmmXJmZ0vaEsI8KXOcmw5RylbRKoU95aD+NPZGbwaU0r447e58PuBrkyyOMMYvEnhKcj83slwAw2WpjvmDmc/Z8tv2OMF6rj4+3AyOM1+vjGfspV8v2uxC4tfuiq5SOwyCCYUZLJZh+KGFcLEtLX/dM9oy2QqV2aeXi6mkUMwvjM7nDBjK4d2GXlwMZMFWOyNwYcyWYTHfO0hb1WFoTTF15YDDd7TtmHLLdUb7VFxQJTwaHGwwlXI14jLKZ/TxXif0CF9aGCBit3qxOWJ67+YuYNrnm1Lp21PxO5MmUFYOyt0IQiOs5a7exniNMHa4o687L4lAGm7j8lgH3xsB+a+WL7c+MGy3iQDZyM23rmIGNyruUwORlygRTptcEuyqvsto+s7On95PS0Csmu7o4ApbpTXDMMbPDOC3cV9DAzP88gL/5Wfl98Aema7APmvhkqQ28mwmS1tv8Jfs+xM5OVjMcbfWTRrlLazBTSFf/bvGjMoDTUx4O5DF15YtPq/p7r0+1A24iRtpEf+XG9SKkcTR6u/LVvAUzrN7I1XVubPy8/Uyw3F3mpnGxxI3tQWjaoNe1tNJRSdKqeQbcnLYfvI1ENtoTgH5xcma/yg0ZTEq7tYkdNAztF+JupaTdGvlYbAce4+ZMfaS2OhVlIc/y3H6gMpPftQNZHYpxiyGtj7aN8LKbrVPMx/Zb4sbouBJ2U4IKvX8dlFVl+d5R/aHwBsqrK7GB7QZ84kOMsvrD5l7iK9o/YwCb0FS53rxxyNrEwquy3RHfVqf83rnbYqmY6h+y6dUc9b8E6GcRtPBJcG1Oj5ks5h3AnbGZum3tV8pH+j0xaeN8cS2mwJXdQmh9IeGRTFONO/tB2cx+lZvmVFJIV8HdL/vpAPuB8BjUJqP6a8sS7Q3j/13aUCfthBqjrYCIbCx/rSVSjs1y3qX1GJ2fycCgYqIoa5oz/Tj3QE9xSeux1GwUypfWWYnL6qVyE9pUOYgm48bypkA4nO5o2z0TuvY44cJyZfPYg/9y8JvOf+sXJfU+HfuUtYH1G4uJg6z4YfSxpHyzJuXThKSO/ojhgz4wzaDd7A3oBmnSnHOLU0grHr5LRWfvXLKlgYMXuoedqWlGL6zeDiOVylK3RTCbGUz5YaYji35T6yMm4tBYGID23gFGthjZY3azrNoRY1d8u00FxMDdPi0nXD3ATW4/bhg7+5mnRMfVe3GDevKktIKSF5m8DDcOI7m0nW8fcWMxylSotJQdxlCn9sCNFND5mOeKiZzeYs+Bb4trRD2jOjW0Z+9jzn6hHRhzM7Nf3t60NmJkP/jZYWO/oj63XxGtdWrUNqnv9XVKbf1u9htw0/n2+aCrQYZLBrSDXvpWDTdRKYfFJMf6SxlhyqRFkaphiqP4ZbvgTm1FSJI6vWhbumrG+vHZOwXM3g+52qXIGt8RFyXAgWXUgRm1rXoBE6hmUYsMMvlJso1UL1PABChXRAYTWl5qEy64yKxKWa5sWh03CzfcVs9IbWRsYn2WDVdEPTemWpayFvzbqv1aFSz20vKSswWD2yCRyK+KBF+3VTyziYyp3NjP2t74UymbaTfEP02lpLq1jsxjR4GIHmOTki2Ba3k3Au53rts/yWMynPkteqyEyvZJ9y6X1WtsoFx0/RbjC3LC4J0LxnvxF6lbdoJP67qZQCJrANl2WMvVfXQ5s0nEZJ45Jblxcut/IqrPlyoAbph0QK2OpTplq7DYUeYkc/uhGK5ysrcGr/mRqRd+IF9LdW+YIq/Z9tlu8JvY72q7/27h494xe2r4uBWzO6M9UOPN8tc5ArPWBYl3orFS7uGC/HR7D7TFqEIcZOyT3eIixWAx+qTsHxozTPGaTuGYJ1yHKXJFqtdx5ZKyawxKBbdYzLQXy39CzbVcOSMYm7HHxAk3VpQA7RRK2tZJ5MBtyMvMqGf2i35U2i7qabeNW/075AbsZYa2sRjRGk2LVZ8aFVPm29F+hiu/bYG9attoR2wOExC5IrMqyB037KuRey9moM8+HUf2jE+LxLf1GdglrT9MFaOZ30RMNp6lDW2+bYssbxztx3vprJps+3bA+rpVwgGTybl7Bnmu7LsCh/br/CjB5uwX0y4EhnYytfNc4dK9JpF+YzN37cy35sjan6TTUcvo25wK18hKR4m4dHq2oFdNSr0sSdaCyQxiov0J3NoY2+bYfFS29tL28nd7LdeUG4PpFrmxeQG6AiO/EbixXLl2MHC1KU+AHJm/SXmD/VAxmfk055tkiHVjkHpBuUrsJ3mpDU7Yz8lKfjYvwy3B2nPOTff8NLyqj0nhzfyzpk2qUyOHq+1J2y8CtbTyXpZgZpgCatWqzwiA67H0m3NQw1PALFnFLZN+EBYwGdktYLR5yeYMbOX3fgP41dQpkU248tz4OAI31kbOb7TACaYqtLHUfUq5sRjdQBG1jRVMMnqq9VvKs5nybTC6E/vhDtAG7DKQDfXC+ZH1OcuV9hesjlLIzn41Lqvf0ReUq08cPju+1fBxpzLWN7jVCRnQFgx6wYVNWsbawrpOhR2FxO1RXB9MdjClFcjUZJEFTEsrt02VMV68OUVJMesMc3ewxW7yQstPf7tZePM0U2rI50c+D8tVt93LzJoR2MxScnkg7I0rx01XBnj7UV014sBVgGoDZZhC3PlCLaOzyYr9TG9C8JbHn+fG+REn3OjDwD4dUQcm9j0LQLvn1p7a8Q49CcFEPtsV+7W9W2zVdWl7n4PHRIEra7+Iw+IVm4z0sl0mQfUb42OAWKLG575d0kn3ZW4//7v6p5JkHKc7Hp4bporQtwOeh+jr7iEpM6fKjUng9B7w6HYL2IQGCkn9MZiQ+HrEONOb2O+g2RuGhs1gMOWgiptj3XCZoKUN/mifzNZSLi2jDID2dlHfeXY40CgklNn+0YO/49W01aYdI8VIUaxwozPZsu0oYmJdgSJ4TB1dFlPkSgPrPcuV/y45m5VwuNUQSSt5UCVr2j/q7Ge54pgsLxtnmDxX2uRLBrKqQr68Kdj6kHDcaF5GL8O3OU681SsIRwiYSVXVtGTStpK71UrJlL0sMj0sj4XQLlobdBiNnj34AkMvxO255AYmaFu/Q3m1eWEdwkBHF6a8nV4EvcZv3Aqn+82Kpa2gJ35TlbHqaRNVrl4YSPZ53fQaXzZOFgcMVLdfum29xgYMdBNKTk/wQYep5jzCLLjiHDZFGwzs92lD4OlHDh80MGPdF0zSYMr1A7H2O6TVGWH27bvMashvmZWzGdoOk8Zb1q0xFpngnZ3n1wy0/Qs1nE1ejL4sNY02JCbLFkItkSVuLWvAJA91ro/NWL6KQx+plauufGTzg7efYI5PitiQdjE2/Fv9XpflwPF6xn6t95lzZfzIFtdxY1sA1xjEVtCXh1zHTp5SBiXZVYzwVBL7QR6A9rrZo2AeQKWoPMXo7Qe1X/PyUKaB32jcrXIGefOUoGAz37dJfDsGEozs7uusOxuudADIWqb24nXAZ8pI4cnbZGtHh3tiUvsJpj34nPqaf4HH1fv2pM1DmCyhvjcT0kfZVg6t2uLrlp9Q7688oAlA926MvSmXyMyEU5os9UmFaPmweqQe1xUgYnSz+26MEPuy1OOxmDjmI7gYfXmDHQSLrlDZNKGvZ01BdYkscw+pYk4ntXsI3Gi7AeGmtCdu9SxrY02+XIWlwzlQ38syUvvBYpJrO9p2zyP7GVxkRln2g8sjezpuoKL5yrIB3Z6hJj/XBvvyjtJaHI179nEy9127Ucoo8TIPxY1Lu61tohe1vK1t8LpcG8pw3aRuMgRoH0tm08pzXL2vet1gynMnwa6K6T0pq8MIj9HmS7UJrrg4TNLZ+i2/U71S7mAHkd2i/Ux5ov30sUymXtrthcF+ijPas/629uv8RhLuPm0slyPjK7xp+Ljj8u9mT4s8bWxLKkldI921iCYdacPTKji730051feEAGlGaeR50iLrUgaBzZa2Mh5quHxeAYN25mzDHWqvU2wwEbWaqZiMaC2XNiLE5rfZJ57hYvPDcSMPoobDtrUNauPGzeKTP1b5cJ2Zw3aqbsXDJV7DlMQtV7n9TPaWpyE3xuq6khaOCRb7Wa6cXm8/S8Sab/dctdp1nivtiAQfsykdV5UblxMHXpOBTONGXqSwyNHiFCTVfgSKx8nXRPLQj/URtRwM6ux32A5Amqn+CcXkV9iabK0XI/sBaGdHw/AW6v1R2+QKjtpW2TuJ/eyERsWU+ZVO6GQ4VgMD9MpevJaBYSim0n7BxO2qhHtMUOi3EY2bGYJuy6MdZavQqz8kQXPbxK3blkJ9Z6vq4c3n3S3WGnf279wY0KJXMO2M7TsappoZoWxpgrlOtX6SbSs2w1V0DXiuRjypjGIC6Lupv+T6dqDNvBsW7KftyEbWLb393DyMt1/XLqLZj3aAvhv7macNEVV7Nd9iMpyx4VFwGCVJ9TZpyZVfkGqC+BjfzcpIturq2gXzV/zVppMqWR3MDUxlO7kI3LkcS/8ij5vafqEUflqLQzW1AwZ9TnO4jqKjP5rdc0Nb2cZYXoEj07xH28NzZfVUblxzJ22ZqLNbDvfoQxYTVx8F6FbTSd1OHkWxzPoMDFyJ7jawbe9EQmxgJyfZqNuo2PMO7C81bvvKoPBOoC0cvN8YTNqs6jv3piyMsopp3zO2RrjY7L9fCJX4Bw4ffly+NKjaEGV9DxszDys3q7Gb1j1bTbOdxNqBLKk5LNFyxUUtGjEZZ3UNIQD7Xk6PYzcV2HSITNx3imaYfN7udDUAdtsS7fsEE3puzKoSWUyQTq6/0k132UbJPeFG9vMNam4/r9UWoBtuyEPX9gQsN3GVINpv5Ee72bupDW57kg4HlbVF1Kz1YWD8N2BEtN/Mt2NcuQqd/9R+8D7ucPjNfHHLjitv4CZiin5kMcmMqZuG7Opf85XOfg7TxH6hHSDevSeHdqBbfCK0jlWwX8e1vWcmgWYr/fav2M8dVLLQNrmOH+9hQBPtN+AqYortQDdJshg4Hm9ei0C7L9Mmjm9cAjKYhuc2cpBxYu8Buhq0vcKdJmhn+PmOOvCSFVi0QywIAO26Opl6ounQdbjidfELBmiCabsD2Mx7zdy8TrtttiN11JOa8CR5KVeCBb65L/MGzfcFjSkCQHFbWKJ4ANm+QyQJZ/bTdp9r/TWDaXZGiY5CvXlokNTOrwXMYQG7Dh7Mc8+2MeKPlgPXppq23Phu62SbZ45cEwzMQB0w2zmfgjEMyhLfjI9zuwMpW4EqerliavXCfvqBuZ6vwoWHfQe2W1He8SY6R7hsmaTNtNw4zBX3ABNxqevEwJ39M8/7HvrBUMTt6rbhavf2Kpxyh1nKyHfGhvLNN2mL3LbHqDP4p+Tj7Gd4cNzs1n7+HTM3UE5s9OnCxUfTZwsfeFy+eI+pxAQ9GanEw9ON4DsqsYMgrRIbX9UZCXaO2TofkjB0mqwH2iN9teG3hTGyMsMdoLVDGkpajccyOfC2bORvG670vp1ltjPhDYQvspstj9yY7QWxs23LX7fSuI4rYhEmuOJgRGbplavdPLCsbGZ789sm2SKZgW9ne4K+PCd3GdDVBoEXV6zse40j+5HYHl0n2bWC+hCPnFvfrtzYoLNgBryVdXmZ3/rE8hZLbe9sQD6upjPdRevrTtYChPqQ0ythM3pkJtMOHrpBbdMj+UUMupVRZNV+sR0g/5fNdkRpqwjlMwyxfN0AJnCnA8V60c5ijtqBjpuWdbfvx/Y+5K9L4n29ccauI5bar6tTa4HkZMpQHtuEMLh+1gJmRVtOFfRFdMW0F53vh+s7ymmDe+1E6mQGl3JZ3snotVnWrU/jgqLj1eGIuHZge63H0puj/HV11tZps3JGxgdtnsJjBzziiC6KcO+OchjJvbV/BLiTMqke5qDusbGuomX2mqnLtpl1iXaAXtFWPu1kRj2JsHBT/SbSwEi2MgrZJoSVn5UCtDYzyCZNwTAeBxqC2dTJ9lkF1m2dotoOHLXoLw1He25N8FBLb9sj+wwEV1eU+iP/DEaltd4rK9EGXMRksVgM2X3Dk5lDMpM/hhup37Jdr9YpOxkn773JwHEYDK6Uy4QrtxVYJiotpmCLsrJLpW0UPJaL1bpsZTh8YsJumTaYJK37nqKU52K7/25hsa357OGDBmYMvN4B2aJFpA8grvs1xDHttgy4h7pv/Rjwy7Oix3RK3LadfVbzasWt/9jOjst1C2O4/m4f+oJnrxWAPT657zI2cSLIKphy5fa03EMnMnAVO/Gugu5+m9l9VwQOV7blTbgRrmoatV8s3wBTeShzeBDshqeAIwzs0xUoArBt4Hvgxu4hD/bzH30kPT3PckHiS0AyGOKeJ+FKGtrAVSPM/DZ7EdjgaL4t8YbdYcr86sh+m3RC5RATmkyERJ9qNmnfUir20/eVJvbTdsDyoX5uOZ37dvGjFum28O6CqSaWAVmcqHHcoHEEY7/6SQndJjSsb75jXTAG++3Gp2y7IFyZ8pN0wkHgnTxG2L+WDEOQ/g73qt/4h/XAfvcguxCIuWxllOwFKqENLIhqR4u1rLzVegO0KXdTRmkexGXjgKcBQB2U1YMjdtatcEqN9CyJgDvAG5exWh14a2dpa6tCxfzcABDa6ZOj4Dr9XLZV3tEwsZ13q3nLce83USx1o/qkfGvNPhbsskN4dM0GB0QA7sBNuLpzKBO3rYE7mee1FIn1ecVqvJo+2I/s34jLPqfEfq9cP3fAoJ9NvuDW7hPVLZKs3Ij9pG1jMj4IlHeLpH4duXf0K/vbruZIXjPeXb5mhRZoAzBxSx0E1QR3U83rCttWM2AQ6AWgFwJ9F72mbVgpn/ZdbBvarjFbjFwqskwsgHWQoxy/AvTC2G4A01aA2G2DNkz80+Movua3V3J7DxGGGy7MwLbdlbSt8sO0gW/Nf2f2ky5N4ya2qWIb6EpmGfAYbkT+Xm0r7aEM2r4RNl3BH9hvxJX1GwFcHV/5st90jLzZ/isqd1/hzcPHHf5xN+utphNtX5x1e/jdk1cuxGzZpzcdHDkFR6/ZCuS2MAmmTb2Tts1l61rzrGz2t+mQ2RkwxZsMiNKwyVMQhivJhgtem6+DN+DKdL4cHotpD6DjwMMMyrBtrTPL0tla4cnkLdlaLIzWkY8DIskrYhKb3e/efnH6dBTUf9oF/44U2gDIYYrlar6t3BF7+8l/7CDTrobGPNkKxUYXnitXhipjudrMksvd+LrWv4n9Ol82pY6+tO+hfmYNfOtU2XTOfneuPY9ZO2D+Wg6jr4v97LsIHSTTY9y2Zj/adNKIGeGDw9FeoYGx9pOBkFxkmHaAzZ/627aXIG+v1iuzBejLpDiS9rJebx2tiqsb7I+zHesDbq/m0V47ILy1wSYTl0GQ/aCq1XUH+GaYZm+iaWeu5rUxyorZz4zba7slB2mAAN4Y+0a6LQvV7xQSh2Ol7bNJXGHGkbtHuq2JvjNuP5ttVxbTjjpAROuNt1F6+aZTeO+ts/8iptKJLNdoL5i0vNJxFFxU2graGjeuUxttkD3XV3AJHi6Dge1nxu17vVX7+DLA5636kdSuyo2qYt+hLu5GXt8sxDKNQuxbnAj6/TijR1c16jfc2mQmu1VN6QNo83vT3n7DvIhLuxOW/ywOCoM0YLvHLf61yd3LO4D7C3n7rmCyzxn5r/HX8tu84717bsqnH0wmO4NvAO/11N4bWr0/8gX2kF07ZDHB2K7e3/ZSt4Qveu2fIPxSZPi3rttPMTLg3nOz9hNs9+ZTxGi8nVT5YeHKc+kThg/cylhXMZhMJ5Sd9252ZEYAg1o6uUiAzpgA0BG/dmpYZ0vKbFbduiMz5dqJrU22DnCkRTWtG6Tx9taXxyjL/YqJYRqtuLKy720mvLRU0OlO26GVDr1+lZHrdhuDiXy80SRlah1+hynrPMt1IuB+Ny2EbWGo/ZUHLYd7YGzw9ivZ5FzpjJfg6DrQ1R5yTzDqVxoNJgC6BVL581RYYFxvCqbGjXCBfmXlHjHubSXO2kK2RikHlZOd3QdqAySw6ZjKWEDk2olT7OuDDjT2Zj8JdllBFG5b45Wp9yvuuel8W2wgOoQr1cnennaCRLhSPwp7wxipr7eoJc88TCRfaz+djLH2CxgBj8naT7iirTQNm8Uk6nPfFi6EK1K8AdOe+Lo0N5IXEdqk0Wa2YLbtfy00+0m8t59wY9JJe4mK5W4wantx4RHNKKsdVFnSQaQ/SENW6KTZ86cywE2Q2G9NKSrHOxqHgh+M7XUvncZ7K3dZndOY67S3lbpaDiZPK7cBp7c/ehtan6/gS6dox/bKoPte20PWbz6hDjzEHzmWU+O289budZicTOBqlzan1Av63jBxdTt9NFZ3bGVptmjcmHfOOszU22hkv1pfCQC9CldVZq/+JHzBNprRBgaTVPeZ/TquakbGfjoZCeuDEuFmF30+jW1Q+gvw6XZ2fQk9VZRr2e+yuk11V0D1ZTlEAoB8nFsPjInHX0Z/ZakJpvlxdmYfF4zSntzrgEjbY24cdFvSUTMfYLLByghXFpONW65QMZlVyOJPjL3WfbcnN+Mq2E+46TBZrthyU+1l3zmTgaOsLNa0pd5vdTJZAImJJlzF9i5iMiuN+swEOoyys0BOk5atqJ82MIJP/7jhw1bM+H6vjV9t3VE7eFtt5MoeifabqjO6Drg4XfJXOjy7iZtOItuGQqeECES18yUrVADqUVf13950AwAT5FQsCpj0SG3bgeaABWiYTIdWn7F1Gx7tu1k1k4dZ40ZrMgkmNIy+XxPwwK/8uM40HFcl65aZbveUDfvMrXNtuTIdhhFXjp8Mk3Tuq12Z4bd4VSxlAnkzXASedMuZtR88Jr1t8Ni/ZnDI0nmRh555mDEA1K1mxX5bW1mxHU7RKzhRfV1n7aj5qsUEi635E8ugX+4Zn3J8KSbTy9q29rTZ2+ER3l7Wj6QekfdtVBuq3fbKx946CTUjxSUDEvFz8XUiVx8dN7EddvUaPaZov4pR7WXs59um3Qzyqfl6bTeK+faEK5M+cmV5MnWODb6SE6t7FH641Xliv4Jofuo2LrV7Zr/4N/h8tB+biYGTgbgMiMST5V2kfd+BlzI420BlrLkJ/7WcG/TUy7J9E9rmuPprOyJCv9kFTDuDfr23Tsdr4bws0lF7/uyo7+WwDoZwIx208C4H1vhtfDLPCMcROU4Z/aw1Xnfcvpdvq9F91/c7SueMwBth2wh33kE3apgYjRuCX7mtPDHkNU2DqZu8IMeVbPncfq7fe7sD2PfWbG0lU32XzPofFxyNE1aOyhhO7GowmSobV1jch7wZoF/fcXst9VrsRxuBNy42shMU4keCWeZb64SG8raTaxptXYlc1Sd7498UoDvrkDTDGjeFG/mr5ovWeddOPMynHkpd3e7lkAjaGXS/g/aSL9+KsTbacP/1HfSLGxjUPjatvhDKK/4qkGybUTGVjnoxom7P49ou36EDjdLZ33UgUopG2LYN/DPAN4YjfoTJTniaOuS24Il/MHRyaZMDVKS+76XuEhef1nm4CmPbgP2V9UvudGA/NjxZ27mJVMuNjct26jva1txqZwZKvd6A243AP+/YN/L2U24m9rOYNF7arq1iEl50Qq4OqDfm8tvZAZ86xJ37P2r4mIHZvoN/+Svw7QbabmU7ziadQrF8bblth8Jt14t7BEyHwlzS66aDgX0vA556befyMMRG4Jdytux2uxXdt7APWkPSMeToFWyucZvZsf/2O7Tz+P1VO0YMlA6atBa3G+h2qzzVine7Nb3SSZQnm33nJeKynVT5GwdBdQWI7/e6urArJn3H5uWl4JIH+1affK4ho2YHe33E1aCh0xWpfS+NoXClT3gU+91uwG0rXElDfwsrd/owxYH9IkTjR/L7fi88MYNfX8sAjAHeSqNN1acLVwxi4+Pi72o/auV22Go5OWCRCw4TF5/a92K3fS/vc6JiQulMFd++gW6ADqyls2+DYkq4YcN9PPDGYnI+tYP3vU7MVNHbrTwct63YbtuAl1vLy/qQGxCNcBkSnT/ZdoBdO8DM2F9ftfj8cgOB1H64STmrbtv5k86748Xikd6u4TIOzJSvaq/K1Q4UXyfU9nIzmG46WABx6Yi7VcdJG6DXTHvruNo9LmkH9r3ME7ze+/yOws64/ZXv5dh3BnDbsN8I28sGphuwA/tWur16vHptytzx3hZyVn+7ekLaWaI7lS1Edwb9+hW3X5beWdlOWezMG2F/Iex32R9XB5Cbz55sfa31xz69LAZ95yp2KIGy7aq+X4bXO25/+XtppjYC3TbwrUzo7BthuxF4k1XbSkbc4mR+al8344oNcD0BsPn1TVbvfr3j5S/9Gttradv5p5eC6baV7Z4vhL1+X4DrgE2HKEq/j7umzrphKIN2aNV+jNvrDvr5Fdsv77j9G78uqwrfXsA/3Qo2AviFCyagDAw3QN7Jbo8A42NAbzyN73X8mNiPzeCp6pKBruiQJl+LZesk+8I3P2n5ixAzsKFtLQOjHbBxZ2zfd9D319Je7Dtuv/wZ9Isb7r/3F7j9/l+AX24AyWmV1PPvcMEHi4UlaRhY6sCjDTDotUzG4L6Decf261fcftpw/2kDfvsb+Be/aGOMzauLXLk6pKlIdVs7yKNMB7P3OulRVxe3n3edbKL7XjYffLvh9bdfsL1szX7A3H4OLHSwqjxZIfHh6nBlQNYGZduv73Wuotl42xl3JtDtBpIj/6XKD/2VvR/JLeVGO4pNXmy6l4G+YMLrjtu9+ClTbSc+c/jk8FbDUwZmRPQfA/AnUeYZ/klm/senAozy7k+Rrg/ezW1RqRkngtSeOHrZXNe4+W1WX2SFQ1epXu/Avb5ogBvw+gq8vOhMCO3cBjoFbo4p/OwqrR2gwXbESpRloAiUAdl9B+/3MsCQWUV594K3fttXFyxX9rJcZ6df70VMr3dIx5Lvd+iL29tWvkXntgqGp+7Ufhkmi8Pc31unn5mLjQxXvMs2rnpwzGa2eJktZ53eeDG1X/hrMSmuOii7vxbemMuspYCWbXB2+1MHwz5Rkl5L5tuCw+ahA9gyqObXe/Vh1A688R/a2+B+xJFVRzFh/Tsa+CvGe6t/+17sd7+3g2LEpwh1cGH1csPE8AOiiEmx9w/MFKPZYrl/fy24pHddJz5Kh4FA+9a2k2l+1rcMkAyT2DJ0xPzq3e7bJuFKVuskG/GPfa+DNNHTOffEfiZBxo0tmpmcAe/g79+vP6Dv98JlnXwi2uqqpbxbVovB7Vh46UgUxo39yVArZe3KaLYmo3aigbIV7td30H2vhxQRcNtK551rh+kGdb+inDV/q5flSuwgGUxti3RoAuqzqaw67Nh+dQe97mZbap0wVP+iZi8ZnFUwHOwvbpxh9twE0NLB5aKDfvUztl/+XLb/3WQV4Sc9jr7sA4P+sx8ybvart8l2VkOH1zQDWj4ptzkUAwzg+w76N38F/Pq1TOIQQN9uygnvKL0RNZI/Dr/r04ZmxTYlslKrcVNWyDtUlWzZ9iUCjFbeOO+mdVaet/B+Ilbxh38IN23wo6swskXv+w78m3+57nj4Btxf4LaAM/QAGe3odwUf2IRhuGDoYKPWD7fF8nXXQ3aw76Bfv2L7/h07vZS6RQV78+GmSDjVZpN6bvR5KnVaMGp/z2OCcCW4GKDvr6DXHfytTljqKdBVif3+nqFoxI36mWlTJW4HZeI3ZeVzL4ci2T4n17ONZTWUysCzvZ0SPkmhetC1N2Kjxg2a33BrE9WPJK86SNM2yvTDvsLbhocHZkR0A/DfA/AfBfAXAPxZIvpfMvO/NJJhZvD3V8ieFdn6w8Rtyx6odkgI/q1dyaT+x9YS24l2s9JmQCYz5HXQwa+v5TcA3OpAqBSszMTVThHFh2FjAK4103eRtLANb60M7cFaV39e66qLrCi8vtYZptqgbdJB3ECyHyOuupjOW9c7iVzpiXDmnixja4fwDtzv2GXAqANHBm9bwcRcV6YAfRpyxULmr91GGDE5fOx5k1l7FJ/BvXRU+V45kmuM0qmT1buNALy0AZGsJMiMj6PnwH6Kpf4zHWeNv74Cr3fs319rg7arvZhRVspAKO8G1ZVeXUShNrjVh3TEaHwm4pH0MiBjLgOhe7EhVb40/zrTDdzqliz/ravmJ7UDuMWV6aSDqL7EA65QJxvuwPfvZVD2+qrl5W0Dvbw0yu/lwaN1v5x60OxnB24MPyCxPj3CJL5V41wHZfz9O6S3T9tmvGLTmXA3eeTebxTFpmOmA37LVf29NwzMZkAmbdP9XnDd78VGW/Ef+vatZCMDtX0HkVl5jYOsLsQ6aPny/9RmZtDIP/9cMB3qSTQzg359B9G9rProgIGAm9S7dppeG4Cyrlhq58T1Jk1Q+0uc9Zq+zP7zjtvPe+kQfS9b6nnbSudMGnhCbb+22gmSremeMgDm/bPY8+4xMZtOrPy+l3/br3Zs9710HAm1/dhqHdwqPVyfQe30QJ0PWzF/xGX/2ndMKle3X37H7VevwM+vpcO43epBKKXd34iwb01x2YZVeJImXwdJaB1uh4E8FuGo/DVb+Lh2qn/9CvrLvwb9+mfQL1+Bn16K3MtLadtoK6sL1X665ax2/OsYqtgApJ1d+xhwLR7D2bDr1O6m3tsRlAzOKOZogplXsx3pTK9ys7ftjXYrHO534Nffgb/0V0C//DX211cAO7aXDftf9QvQt5uuDHN9Jy+ao3ETbDT413C031xXpW6yLfd1B/3qZ+D7vTwrqfgD/foO+u3KAaFsf3XblBMbuOCfP/JZD6Wf0Y58l3emvrPWMbzege/1GcllN9L2KwL9Hq5b51EGRreJ/QwXDLTng9qM1SWAUhd0oLjvZYAmp4y+1u9qyvvPtzIhQzuA71z6EVv1V3mnMkOWtDfCjWI0mCD1axc/Kri2171uq2bgtU1ifoW3D89YMfsPAPi/MfP/HQCI6H8M4O8GMByYlQ71vTiJO8q8dtLY1EqZYnPHUUs+C+jESV2HGtrh0U4Hy/scBGz3NhjbtjbAqBhdZ1CfilWf3Qttn+LSgLkBI3wn//6qqx1gLp1FvgEvAN0JuMvqxtZaHn0Y2A5XiGdcsfnh7tXOL1gfjDoI4vpuIO3ltCCCvgOnU8x7XYXhlp3qW7KfwWMbt11m7OuNe1uF0Zdpqz5+La0MybsiZO0XeVmwX5e+3pJGTPxn942XbtdjBtPWPvQtHTkdjA3slT0L7OSDBOtDMsgW3651zXbcpZPJZN5907y4dILtQNHaMPpaIa3nSgcf5p/BxK933RILoKw4ojgVl31HrR3QlcYEk+hawSRp7b97404GsPLeDFEdPMpTzLYDVq8ddM38XWQamUWqPjhdm2Bt+vpatzMXn7IneiLazw0Qan5xBTZbWZP7tl3Qd14B2nfXDriDZVYDlwc/A6D9rhWWth281wk6qu9u1dPDuCRReftogDFNznVL695FIcZOtUP9XVanynWGtF0b6Eb64VlI82MXmIVrmawz3KcMs7le8Uj5brv01lAmVKgNVvleT5ij2nGq9YErLtnhz0KQq6+ev9kYwXUwgVI3qK5cfn8FXhnbC8rK3PfmdxsYfKtbnTb4CQsGiLiem2MGQQZDN1izsOukRvN3aXPr37/8V4DXb+X+yw38rXywq+AXPGiTOcF3bDMxqhYZRzooqRhlLAGUutw2ktXBhlm9czaw/mwefc4ONh58SI5eL32a+koGuPjQX/5lmez+xQvoV9+B3/5FEduaD2nzRR6SK7JrF2yoExaCiZuAHqbCtY9X6z5+9R0EBr0Qtp/voDuXVVigfhvQtPGRqxjY//SDN9suA3pKsPRrXovusn2YQfwKIsL20wZ6vQMvsg0W3cr0CNOozkdbSl3WPgS337ad4u9liyXdCPRKIK5b/oG0O5zpzp6K3bORQwLTFJXnz+7eifvM4TflHbNnnLHyNwD4f5r4X6jXXCCiP05Ef46I/tx3/FouutaQzOqZuVh/JIzb1rBXWG7WloeoLgcDkENF9JsnbDu2Bkf9130M2MZDGTwuanHb+rsymyV0eahvFZOE+sB3OOTBp7X+oJpartz6ewjSuaDAnQ7Yml6W1R6nh0JFn+DK7Bft32EC5LAGmcGW7ZVceyv6Ho7kFzuuUd+h/UyamF7ejUxmk2yu5OTI2M+WeyCchcwHtbPR7Md2q6PFkpVFro3sFzHnwEznx/iQxOtEB3mJhokB2qKvm9+d/RYxuYG5cTx3yA87kbgCPW0HYnzFfmZQJ+2TX2Vu9uP6X01X8/AnnnHAQD2mjCuy9wGd5ZV6b/IimahanD217f7Pr3+lqat2YKCsntUVNLa+UwPr9/UiYIN5jKAO8MUv5bmANkPdUrZnROXKqTRVLGJ0PjaG0n4q12j4NgLue3tfSdOabUnyjrHkJS4qHbquYtmMkHPV2R9qfzlykTSO+i7vpoXgesAG2QxH3AwGYcNgq6tt224AfvmzDtL4vgMvL7V+oKwsuk8LNL3OfrFTeoTFiFpuKSQkm9A5zUSPmFVgs0+v1bfWUZKDkcxzWtvYn7+3ARIz8IsX7zfnqlCfwF6jOoBxfmK8oWLiva5S10Ekf9vUb9I6dQRMyGDhpraZzt9LvLUxVAZABmNJtpVbIPPuPsZ1KuPIJojPWNt1kjZW2m95H932y+rAXw95eWl5slc44cf+tJgCLrUj181Y5p6dFEkGep8uyLc8rvz7ROEZA7OlwMy/w8x/lJn/6Df8QvdtayCg/3idbcwT4nSGJOkk6DRP8yaWRkplZQagOnwc/CDoXbVdnGFi4/12Zlww7XUtX6DtgYnuIRfyP+owOkzcMKQ4TRrtFJb/hZFGsF8FNeJrxX7KDYVOsuXOimaD9UhOdv8gZLxwxGjuyeAn66zG1RzbQVnFnOVp/+m1cD++f6a6qLef3LMPmMjVCOKIGwR7Cabgz97XE0zDuOR/xF3094aT46oeknZAe0R51ukA9yg4rti3TZJvN6g+6iFkGGydToH0/t5QtZU8WVXc9+5dplmw7f5PL79dYVLzNe1byTtlrVwMaIdPLrgx+qS0Wf0lQGd+6ZU7m0k7pwu01KhhMh8kjgotxiM+tGDQRxPJhJL9ZhBBu/dqHhKUNUhHjX08QzPjyj4qAVMjZUV5b0p429T+zNCDJJqtgGm7H6pvh8n6osElKwV6hP+vfgZkC3C9ycymGLYTG63G4S/yquOAwVch86ga1TrrR6ptpeqEJjQ+t3k3pRN/BurvO/Dzz42P21Z3QNhsQyWaYWL/j9hfLzaJmA1Z8u9+rxufygQqv2xOhXsKrGASPbE/B/8uoviN9vWkT2P6QPJo2G9bmSR3daxXm0Hxbai0mx6T1m2pZ+aZZA980WcSSpuzb1RW7B2mE+2NBag2kQNCJBGXVz4EoPYhBFQ08ld4y/CMrYz/CoA/bOJ/qF4bhzrzqoMz07GxJ9npzMK2jSsrAelo18xGa7WXGUDpaNVZFDlgg15uehoYA9o5s6fkdDpKigZuNJOsDy2DSzsosjWxxm+3WvSCqeznr/vB5f07y81hSxaAaNIq5zrtMPxUjnbSkw2JyxYWqpiabP2PbIWzrVDsTMfpOntsvOS3Uf1+ksVV+dluAJXtPkzVNhuBbi/t3Rv1I8vTKJzgTzBqZ138iNvBFLYc9ZRI5YK5vUOpvi36DVczSN2AKcibmVOS/DdziAzBzJ4GjhlmFj7cc8Bsp4aMnVud03T1wVLsVeu+zGBW+XK9rshweTQSbUFnJCTGD+xI5kdtX0gOVtg20LeX0g5s5VhpEluO2gHrV5GrI5cynDG8zXC/F85uG2jfChe3W1tVQm0HyLBtZ8PTQse2KrRTXbtkxExbCZSTRcsW2Un5BlD4VuxYvhtEbdts7bTpBB2jrXgwWvsov9FWkaaTnRwnuSqOjcDfNuzf7yA5eVeCvLLn2rLacTG7tFtdNnE3q91UahEQ8NZOEVdM+8sGemknp8r7WryVOsLS2dtIVbr38YzOLJI9naTp1kcBFd/f5VTIlw382z9h/3kHXra6gsll1craCGg2Ym54qcU1ranOnX1sGnDre1P5d6Ny+i7/4gX7L76BfvGt+NX9XgRp831XbZfIv+/FKN/6IvTbZgMkSaOLHwbnTuqSqtOVqbapAsPKq14jLhCl+dE8pc0i4bI9e6l+UgHbBnx7AX7xreTxe34qz5/vr0B9drvnfy1QPLuIbSQUxW4Xc9ipkaTb9ahev23gFwK9bMBPL6DbVrYx7ndge9GJD/Vt6ZoMuHH2oZaWdI67caML5hvqMxHthGJmgG9l9U5OAr7vwDcxmOdl2t4IfouTehmqbWr57ATre9M7oW5LJuBenjf6pSbXd6jcs3A9b29g4loX1WbGL6t+tWN9BjHXdhDmk06fMTDyBu4HDM8YmP1ZAP9OIvq3owzI/l4A/5mZABGBfvFTcaqXb/WF3XIkKOQwCdtRcZ0El1G7nhlEOqW8t8HettX3pFDuvZSTGMl+u+zlBVSPzS8YpVNE/p9iirWuhvhg0L3KN32PRI9T1+d/fdft+yvw7Zse+063W8EkW1nqEfrdoEVxDLiKNXiXzny9t6MMulBfEgZKx4UZvN/A/K1+3mBTrvT3bet5sgOiEVfWfqVH1A7sYC6zbS5fgOinknxn7DuXb/uIDb+9lEGaG8hR42NmP8cVt6dj7LjKCUUvANhsfZUgK0PCifi2+iHl9rMYjwaLylsd2Eun/qW8yKwHWMiBEbVh108JyKSEParf4iB9UjR9vXJ/TbgBtF7jXlxeB2Xfv5tDdgA9vEJ9ffM2k/tCSbRfDrDFxXZ2ZU/rvzkSf6tb92reJL5d2wXHldjW+dSIK8OT9uzQtnUKT9I2VYx0u2HfbuV7MjKYf7k5HFoXbVlnbYKL1MezcCHp9zIlL36ip2cSgfilDKpfGPiOU4GJwL/1rXUwbhv4RuUY75etfX5QOpkSZNDpuIb/F4MUzwwcyorkppPn23cGfqsOeKoefqmY7HY90VFpJqodLTcYJo/D4HKd3DCA4Vpvy6eeCLjvuP3im/LONyrvu0i7fyv/tCO7EepJ9dCONvUY6ARXcvgKfdvAv/UCvpf3XfAT6TZG/umlDdJuVLZaCR9b40YHEYYr934Mhb8RkyRmeXVtw/57vgH47XI4wfatPIO+3cB/1S+Ab6Xt4w3ArQxwLf+ENsCzJ+7pt9kihpH9NrGf8QegHWRBoifxVVNW9zp9V3aTvq5mSMe9HLxV2/2dsb8ytm83gH5R/KU0IqDf+ob9t37C/vt+qx6Xn/mux3XYt5W0tb+gA6la9oKxTijJoOSl+sO3+kmDbzfcf8838E83wwt5G8ww6XMZ9S2Q+lbfhnZKcx317gxsdSAGoE7afitbYF9L/eJvN+Dbhv3bDfsvbjohI+3CsA8abeb6NKY+1lVnZz892I7ArzvoW82D69ZcQsF2I+w/beVbj1qHGldxEJ35K9l2fiNd5eQ7F8h2guWG0sYDZSvsVocJ++4G5Z8yfHZ8i+HhgRkzvxLRfxnAP4cyh/anmPn/MhUiagOfbfODItcpJCeT1wi5b0Gh74SZzjaRfAtmB9V96QBMp9l0tLcMR6JTFQ/u20ors0lAXU2oBw7cZCAJ0E8vbcZeO26Go9iZ7rgYccWGC5iGhjxXwpEc17/v9Vsau9fvBkyDweshpshVbclc42bKar/fdqPyEUnXWY6DwyA/DMF+Nn23qkits7yjfGPKphOd0nHWfwP7aRmNfSYmdMSpW8n7SfXBfAO2lxeDHeXhJBMhcTAhkyD6EKIJBsuVzr8FzgAdMNrVpZeXdnpVqHtu0K++CPMvYIyYtJ0YTJ/pwIh0YCQ+tSmfNfNbbQccporH+dQBV5YnNzFS89CBIlzbpJikXPKwtHXPctW97zngSfJ09guCpu7pexByQubLSxksng3/f/b+KGS/5msPg66179/7/r8vSWOTJjW2ibRQA7ERT2JOPTCmgpbYakARRCsEoeKJtlpjoScFi6LUemA/BD1RVMSYQgu1H4KiWMpHrZi2JxaLWBHJgSht8v3/77OXBzNr5lpr1sze+77v57mf3/t/5uX9PffsPWvWta61ZvbM3rNnS3kiBKAMoLYy6LCBjz016gNaagug98zq8RGBwj/TVPil6aXOslJDygBW7T23qrNNyuzdqY6r9YuwgThhqpsWtM+JJMlNnhgTtOovT/n1W9Vrg7g6Ud3tG2bmnxZz1S6+m964ot8DmnHS0p9USGtB+q1MxGSXPmmtk0W9ofjQeKq+U/RjDQNsIkNcBX+t/Uc2bTfob/4GVN4KFvu2msXP1v1n7dXxQLy0bf/76Hp0HmY8Alo+D9bukUXe1b7Nl9ZIFaq337qGxkWtozUL01O78Wbvtxvwe3+z1Pcb37D/vh9rOzNMdaWJ1Cefq+syP+kkhjpGWrVSH9HY8laREtdlPZ5AfvxWvg344w37b35r75jBbjKEWIlcudjgeK3s2L8dpLTxnvUbdsOlvZ7xQ7Xh24b9h61MytrTahTOGlcHmOLYavB63VSqOlXtUz51wmafCylFt0LbbcPbj7eC2d1kOBmvGSZFmzRL5b5jqiI7Wr/T1PANwE+aPv3E8WR6ynfMVPWfAfDPnBYQgfz4Yx8c2FOFUhv6c3/qRdHvFkDsmw42qKH3ZexurK2L37Z6q83u4t96eXtaVQf6EgfLN95KqQ+M/EShd3b8ToChJqOpl6XB6o42wBJbG1Ttalv1t4Gt9MEYcTlMXKCtcwTguGp1xclZ42pvPX/bQGMvgzGI9B3+2vfVFphcvqtz/otc8UTMft8EbTOU2w0S7eXJoi3t5AlQm4CSTNOtg/+cE4fJhk28tt7pb4Bs3zrm9qRW61OyoDeblFnddteajg/ctL/kO5toiA2pbIJKkw+hXRi3ejW3ZsYf4abJSefG09I2nfAIPUY7V3e9kxpHbQOJGCfsP/NXa3NoeJXwuX5gqzuptuvVxo70+G7lnNS+Rm437LdbCX2LnX33fZNxlba/o9iuIze++PJkdd/rXdqwvPt2q9vlbz6+Yn+0ka1JezMcWvW2fgBAX0qMHoNv1EfYUm9RQOoy62RTmcMkwP5jvS2sCv1WBtiAlgcC0gcCagOPxqt2nsMkuNtY+81qqGzSX9OrDxeK+8vGA2+/aVvQo8Wo3uoNstovtEkZyG3NhYSxN4xOqeOd/V++TYTaBHWvh7cb9l+g74pWfaSCNiFqXLFeW0bduKhUED434K19HS/yFNDr1hva6o7y8ehvZfPSN1Ruan3E1W4D7DYx6QNGHiAWC6jvc1w1prr/DOKGMjHUsoJFfuOGfdsgP5QVAjao1Q19sm+Ty/B0KPMfx1FrJy6vvb+1Abmg8KhaKo3dTauXJh7RB9ZfofSp7X0t7uZtAN1iqBhhG0ZYN1e+MVeuQ/KLH6D7jrff860+RUT9QHrBqdpf72hPtdwkWJsPeNfMFl/hUrRbv9nwa3kibjsN/uIbRMtKof3H8lRKb8BuS+ZCvI4+oNio1XOTU+fRPlm0HVfLDYHyBHX/Zv2LArgBP+zlqdQv6rJdaJk0tWugOLsZk7/e1PImWnl19wulHJNbnaShblYGhWh9IiVb3dVSsf9iK0/NNOkTJ/7z8co+refavvn94F7jqA+/yiqkfbdPRUl7iPCp0yeHdzY9ZWJ2OdXlZiUKtj5wBfrTEAs0GzyiRQwAtAubRWmPQe7RTK5fuNq3tm59oCNuOV/9zYNnvisNOBzNnioax6it32/bkAPArS8htCt62/a6tmh7oVcCN5blgfWAScgeHsjYmv96J8cWzrdtseuW9yJl6QEPHO38t1vXFf0nMj5hHAaxxg3xGf1Xv2/X/GcTQyu8Uw9iyw05hth/pXfuPWXGVfCfuxnVRmMWI3Ybfc/91yZZu6u7cWFP2QTAZntvK4aYCoPrtsROFX25h/mA6tn5uwEK3GxtDfw21jzIdxPHEOt1IJbHtr3nQxcn02vvtKlxQ8L1e3itrDk/9gPNRQGTxViIbcu3Wqxux5X93lsdhmlzNyy0LtNlTHTDSDDGdosjH9s7AFlxJVufzAtxpQroBjctdn0iQt/E/tN+vor29xzE9031fHnRe+v9gNYGsO/A9oPzn9iHqS4k3QT7b5QbZW0yhDrwseVXgvouCA1maSljGyCRLX75U/eXKsqW82y/CHa5AbJD3m54+81aly0zN70QGuAXTEo4ACnrQ6gb4fdIygYyTTVchm7rFowC/XErW/jrBvxCvF9u4rm5bfTeTLe/P9ljzs9hUmh58tN0Arpt2G+C7Zc7dL9hp2WFprdMOsRjRODKJmwNB5z/2nsuRiSFv+NKChf7ditLv/SG/ffevA+2vvR2/zbhpvmX5AiT4ybhavAfyB7OW/dj9rXMRE+trJWtEygB+oYfds/vrZfT+pLb1p5uKPRNgNu3svztm006yN98qUoG8IazYFT/JIKXvN60PA2r3QZQn/6olGVy29Yahr4Vo/SHujzvJtAfekyh2pdhUiZZUScp/TJGs+2+wbVWroS6wV2hb1vvMurnJ9pyXFs2eGNd5JPkppd/v1Bbt44bIDtxBbuRK2XC+gOKfxTQXym2b/ZOqX1eAtAf6hPqHyrGiGnClUIo5mzcgzbJb0sZ97AEVEq/pnqDvmm5LFnd1kd+pXdPr5mYAWiDQx6Q0qC+tDUKLh4gAXQFoQ6EBmHlGqJtLON6b0i5y2jpRnVHTG1wzx0p9eIMK/ZtdBenNWCg9+bcsuLd/XaBJRxx8mEdwJZhiiOvjjG0VT/IgdIg0XRaj0e9ecZVXO6D8BSKb9PM/NeooSsbD8rN3nYBTOyc+i/EgLPdylS7eUBf/0h8GuS42GgQqDTJJm5Yht6d7Hs2EaZ4x1n6D5V6p65ibQscGlc8YaDdCuwuYKPBeDKOQqy7eGsK0JVV7I4vw+TzfRKt8JN9JR7HfqDzMQ5kjmLbF4g3OqQ9vSgxtbVyvb/hOGK+gDZBB/mH7aXYbstEqiHBs6WNtLuYwSiXD+3Nzgsv87PKY5sIXHHfNOiKO67WWM38dzHtG9p7PxY27X0Jy9vgWhhltHFcWjRGZ7fE7kGVQXh/CtVkrc0J+nI8w2S+B+mlSVmzgTC5cTxjFED6S2FtGZHp30Xa/ZpmO8W/0oS1Tyb4iUznyn0nMGDq10XDEN63qmVUyrtvW91OvGDwPugTHuam+8/u9Gf+Y2pTrlSGc1onCvvWudqBvnEB6itZAzfwONB5be0oXE4U4K44959rzZHXYA/bF+ytnYX3j/aC+XK9Ulg28tsupduv7Wi/wX0kWaN9BKJhovqVMtx7ofmHBhOtDdD4ofax5T3jDVqf3um3JuR4TDEOZFW9Slk2oP0t71C51VYb2iTY3rfSrWxI9PbNCKH4TDAxXw4Vd81qy6aZmzjwqksKb+iTcC3jXrsZtN+A/daRxJjL/MeXoIErwm1LUQ07L54oYb41OnUb7f90KTrkO00vmpgJPV2owWvLNuIAlgaLQGwcVCa7pW8XJR4UylYaOS+l4mU5tazKVpZPtI5dqJHRhc8unKmZAu442o42dMfC8AnQcdjA2p5w0ETJHsnbxcTyjhu+8PFEonGDzv1waSCfGDfuqk5XdLro47a1Ds75hC6A7orXD3r/WR+ydz3ljk4YFLL/2D7zX534OP81GAv/Ddsn2QILGZfO8lbrbXc5wshPX+txBfoL6eIucwNXzbftqRJCIv7bEek3HZr/eBTm/adtaZx10vVc82Pir8azcdZPlTt10i981d7mI/Yf0JfEWjWMLfqvxXfghlO8MNtP7YO2UsVG7a3+w0uSzIYaY+Va3f3Xlsw1n3HjW3DFmGu7UnS9ouKfbFpMcT0Ct3ssNnHc9e3+T/ZNrj9A91/to1L/Rd7PJClPMcTEpWKvNLf3ywC0d8EE/amo9NbouiSuP5joVt4IGrf6bcNelw61pzl70be3CZk0rku+6rtVHC1WrR9V2J1qBXp8eHc39/ZQ7YNE/QVhtvePUTFtfeJQMGnjytqE56rz1bihLtctRrV+F9x11yVg3+qS0Lonkwjqx4DRfWRzlQ0Jpo5HmKvG34IbbuIWOOS/HRUTgB1lEF6WVVbsW9/BsPuzx9fgv2rPwM3Mf0k3yHlgIYu+V4grCPQnUNzHWD+ptnEEtSMItrcq/k1q3yZ4+wFlySkAbDU+QctWZxjZGO2trn0qgcWF/aV1RadAblrev7Y+tQah3tCeAFl8NL3iuXE+oPh0EzLONxydGxEpmx8CkG8oT/J2w4S2gcn+o8DeKSs2+bY0+M/atXW11l1HrhTuvjtfQ7AL9FbGD9tP6O3FoH1DeRevctv8Z4YG/3Wf0fnWgOq7csH3DXeNqa0uKsMGyBvqTRB/6fqMSRTuRsj3nF4zMRNpW5PGO43tSYKNKcJd+2EwVvNlIGI9KH8UzwYY1qK0djxbr4vv0PMARPva+bYUCf1i1EBtQdYNvqjF0sBQd3WNR23ZUiZrMtvWy1aMItrusAj3asyVePtybqRxY3zaoL1B4ImHXSSobmVutOqPT11W/lPS41ZQKpWpmG+hp8j8B8UOG1TbS6/198R/YsfIB5lPtG5x2yLXJmmZfWbHEOu2vI25Gf03jW32CflPGDM9mfNc0VXOZOvAxb1wPzypZi5inrmKsb72n/lFnf/68TIZ7u9OdvdlsU2xEPXawE4V2G7dPey/KTc06RQhbkMMHnDlnkc1vcj9x8m4mnEDw9gA5H1T42bhP+12WV8lghHThaRSllW1GmiEtYd+ok2GgP6+h9Y2ZOcMNj3sBAB710epPsvrZoM0hewb3n6jlrHZEE267cPJNm8edme7sQK0u+88iSt2B6rpvGo1oL4ntv+kkF8YCQpR6dwYrraFf79pYXrg3o2Ba78C0ptxQxi1+kT2XlBr+1FF3aCk6y27S1ol3X8t1Q0yWpui0w5T5GbAKOVVaFHcdMMbLVEDKleNG+3vnlWdbaBt/o3+40MTblKM21i25XUhq10PO0gVZYW6Lftt5KAuhQO95SHADrxtdM1oG+ugbtCCMmFL9Gb2taSFc6G/rR/au6BIzW/lmgugLKdM+o3ybmLhrG10Y2154fteF1rh3k11Q7R+mkUqn9q46ef6U+FqsC3N3Wr7om+/Db5nUaOrYbS+iZauA9A31B2cpXGnqG1CSzt7u1GgmK66HHeP/gvcuJgTz5V9cgNqN8G0Y65tQwTl3daNbtbv1U9Wz2eelVnijvc7Ti+amKG/RAz0YLTOs5bhQZcLiWQA1IK85lujcC3ZzmmTKR04DWb44oHQUXPdUtcG8/WHcdXf7rLIHVSzVd15bXzAD6rEKeoXDpp4WJnIletrB258WQEftw6sYyx36iXYOnLTjpv/GFSqN3ARhcxfjoeO0Q12mZsmI24wMPNfi6PoP47ReiLapG1gFrAEuVZfemzivyy2TYbK2nLLFts8eXRcjW3NcaX9OECdf9TZ9AY7HMY6MGptywl7Odf+fDHfHsVjWnHVMIV4Cu2x9wOxHcd+gNsf58/1Vd5/ZreSD9D8x39OcVPrm8Z2hmvoq2qGeGz9AMfGPYk2qShmV5DxCUD9v7f5GDcJBjk+17ozKYOwNvGwp44bFbYnp1wHY+Jei9qSKx9/ZrgE7emIAG0FhW0aYQsoBq5IPlboME3LekwzjO2pRrU72qfkn/aU0M7B8I59W+RthsvxrjYZtQ0dal31CaLXu3mbrW1Ym3PtKmA+4obKupUqwbZ2kyWz0fii9iSugh4LoWbXzku+6yk3aGynT7QbEqw32sP5PtkZk2ZlXb39nda2cqM1drQJsX3HcKexl+uiJ205zEnoFAlbvJBf+2oC7TcJULgSdK72OmGccTOAGEghbnjixnjUuKox2+ZhnQiexO/U5mfcZG03dWGLG/KNs9fzSENBhFuKnzN9B3PHM+l175i1SQeokwyRYB2X5enPOmkIdPTn4gK49RE8omwtCBgHP9RoGIf4sq6NxgG5G8hbyyMBxggqLwFfe69qgmnFldYvvkf7GsaEG8bYrjiJwclEQ925ZDJomED+gnZbgXJnesoN+8965AWmOGjJBnwdGNzJwYcYuZEMo/i/g167aPj81H8SuOKCGVf8e+Y/5pv9x3izybxVI9reB2lPgLg+u9LM/Ndi2/4m7U+8aDs+TX3pR8Ox93ODvekFN14Qs/YXcK0wRf9xTA39QIy/JI4sX7ENse3smftvOtti2fjix9UkdeBT5d1kwd5DoiVwrf+nZg2Woe7JtcUF/Q3+ZgMeOJusrt5vjZOatoyRz4W/2eDedAz4qLko7ZnDIq1e5kLCccI5TMSGGMU8hQFk+S6Y+uVvjXs5zc0prgZs6vqh9msT7LdBkvT02NfIwYRDM2vAGOB4jpVRBTHbMTbIcl0sECqZtMh+nrvZuvSxqbJJkH3OIG4KM6s3mxglRYR4EOpT+w24DlJD3OyC+tRM2iW7LycNeigjMjkXE3MDtGuiAvUGjLqbqo2rb2g3aJa+P0hCZfvvagDV0Z5cVozpk7Ct4ud3CFfJhm5H/rPMjfy31d1ilfLhGvk9PDT7OaTXPTHb6kuFbbBA70zYHdw2mLO7vb0sANcztW1LBbDbRArbh1j6Bdjah6JtIiGqTu/saQRAAU2yGGTt4lSXvBlG01sxtm21zfCt6/LcRIwmm2Nknhs3lpfCR39/Bu5C7LjZlTB2+wauiBvr/Do37L+As/ms5B1XO9pa7yZJf3pnvw3+K3l/IRr8V21njB2TEVHf/zFuUPPNPsORx41yfFrexRzptQBwmLusG71FbhpvhHHgIoujif9aXPj2NviPuAFzU7f79hj7oLuZy3obN82CwM0c83jOKi3g2tIOSN+4wNqQHnFD/msKt7H9pU+gGWHnBsxNBzftb9p7gKojRjcCIFkZuYl5hdJdao51oS2Yq4i9dxBj/UJS0JJF6hDaMkx7WqVoywidFmmnS9qSc9kNAOmH9rrhJCDYvin2t17W9RvC/i5m7/YjDLBsIDgM2ijf6uJ2Zed3bS/WC6TvKmfcqDjZfLLa321rl0fCF7kACLM1d+a1+l/s+7+K8l5OrIu5Yf9ZrAhGrpjXwFXqPz4PqQNGYLuh7xRZMXr/9bq6/wI/jdcEI4gb5s5hpMLtqW8AbT81ymb2kV4lrpTytmTU4qT1I55XRVmKphtd75Pk7EvygRoA/YZref/I+hHuUyvmHX2MY5XZUylBe5ep3RDmm9zalbdxiXGD8D4pyPdaFHVuahnDBNSdLLsNttmPPTmzvqVxQX5wsaud+obbMHI8IoxpFJA9jP92X7cqqv8sdvn6aQ2UlXZuUv9VTDBcFkebLW2s196dMYex1PVu/0PT1ztmDyUp3+dxFyhq0EC9AG0uEJW3iXYD4hJorX20cWrs7awq9Xrg9QAI72bIWFXtKXbZ/BiJOi0oaIO8ap/VoAGWe+5tGPtssk2WGmbPVRswOIzEDWMa9HJnqGi90qatk+llA1eCrldxzX9kg9QOonHDgy5V/86ZMrEKDXv/lovXwn/WS0Gxw/vP3bVTgIeGTq/pIYzKE6vGlYdhceMnjp5XHlCYrFCsFwjqRB3GrRs0+CRiJB/5UBgxKcZYtyQsHO86Nv+FNha5qfX6C7nH6HmldwhNduk/b58ySJ3FOplLV70Y275sHHxxmwrLduMYLnDl+yq70PMVd9YP5NwMfdUZrlTbx477yTuSoL+7QWbsKtysajshOXqqlZ53bgj8sGytq209HgY2O+Y43KC+9k+ubHjyxrL+mmEYqax9mmQH9CdA6Ko8ciOj7SEM3QCS9UQe7R06hzHYZ3sH1feVrLDzH8tWWl3MRq5SbkDcsP8kYC4xLkB59MJfURn812WnkzL0vGvOfF2LGMPkwW1WHM4L98+hz+xjgN4XuO6Xm5nWcTu9kGffneK8pZ1uRpenQTK8b8g2DHpi/6S9LGP0fWj1ActswV5Be/pTljOi+Ukg3mYCp4Df4TLB1n4nPLuqjRvCjBvakl3w+5OaVMWYMv0EvYnWTU+Eudo8V95/tfKt/n+D28Lf7UzdgCY4xOej/xxXCij1Nw0jlb+z5/+49OkBnksv3C4fvQOT+k+8Y8x9Q9sSnuSz312inxBwqxz1OG8KeK26ay2h9vY0boZDeuPtiMSXdaqpF5Bg4AoTXyiibL245piUEfW6Ah1ej4Y8lbnXf+hjJOvyhnfGHKYw8pAj/5Wybic1i7d4260jGg9Kgp+v2ilXxBFjqoNo9pe0y+EQ0E6vj6kVVwFT4yrEmPMfbSJRBxkNU6C515QsGQxq3YUjfbLEvyVgQtWCtimIVMunsdokZjEnKLcwOR/PJyCt34qxrfTEIgJx9iZ9U1QzxPoE05KrpL0t/DeAiXo0tjHcldyA2PjibtRw8Tm0N0H6u2DSB029rN8VkcPcdf/og7DYXBymgANWNt5f2uAx2d12wqhUP2K92immB9ROZoWJcVh/0J5OEzcwbhRtmRJjZA6s0jJh6f2m00u8MlZ7ssOYWv+b+K/rXfjPeDU+pQzsbxf8N3AXuo/OY8DBiZ+kBC78iVpfbL7cb5CYB5BjWzY56YNuZ5+gPQVyN2li7Bv0eDBeX1A3GyPbnM4AWuP5eg3WTd2377ir1l5sXpfjo/pLPSakZavtynFDbYW4GtonQlKl90FLPr4iEp/yzTCt/Ge7xLp+ZMpFdF/ElHBlMcm+iKaanmUQvjgpvp6YPZLK2mdaggZQ75vkh4HcWFbcrSN7Kbb8FmDYqr5pFrpCA3BbfZss50NLkzjQZcx0Z8XKeL1KVfGLvLyD4DE3HaPZ4THJNso2TDLa10pvXm/hRhqmjBvvT9rv112gcnuUMHsfCPkPfclRk6X6U27s3DihjdxE/87t2zw3Gzqvg17fEY6TX4uNnBu5wlUWNyZuA5uI0fwZ6w0+i8t2HVeYxDYAkW1sU4M/LYMQvt4+S43nA67W8UkjbObKYEResxizwkL+A1wM+tva1Dcl9rVYZ584//U25Qa3zr7aN8V+4E7/uViXsHnJlSQou3zZQMCOEUwLSrfte9vwobeTvvQR3qfoT0eklfV5SDVpo63p60ke+Kj5nGXr+Z1HjkJ66DMGJR8x+nzpvrSArssGaUV3x0RczTCh8mJcUQv0fUx9+skY07qsW71J+zoJjy4bV65tVHus4MaYR/95vYTJuMkwas3f6Es3B/5rei3P10vWU41M4ybqga97KAuECcDY7RdfUxxxvxhvqI6XgV7W2hTZ15cyUpxRvxEx+xbdHbqr9lAX6e9rVYyxJ2j5Df56VAHugvJRdSG8oR8wblpfFeoWLTtzNkx07YqXPYF/quuvkaivBqDtFAlY3b3fbzYpYNvg207SStzsfN1jUuzpM50cJm073ORIUXxnTxib/0Cx3Uwgnlx/ahuJMFej/1xbJszRf/d0+1/penrddvm3OsgHfG/WBjZZXijaXdj7vNZQqwPxvsSlVKTWQ1sL5otG0KusV+sFxS7KfMXIcCwwRXvaxMoGSXb79AQ3GrnhK7flZxjDYM37RDtPDdMRNyDMG+73X9DjlrRQj2a/t7PcxPxJblL7hIrahV7GfJx4NFUnubnbf9HWzJ/Ma4xtwrjCMYwYvGzapsyfdkG1i/AqxpDZ9Ag3mPrAt0dbErpqjwsczT7DFPomp5e5qTHn/Hc78B/b1319iauz/c0diSdmjku33KsPOgDkS8UCvS4xl4KBW90AvKF/EJ70cpy1pmKDpKjL3echP0QcGU53Ttpd/B3aVyllmAC3XG9YNuhcHv09x5Tlpb4TqW+AfKObGsF/LtTMf7zsMV4GFlwdY6z+24Fd1X0X3tUTuIixAIQYk7DMN8ZN7wqGehzGULb5kWURyrYDcMvV9KatO26+J1khuzX4pP0WlIH9Ju3zDnFw7fIZJuo3yjfU6HS92cdYWNa1GWrr5Ume9A+1J5hSe7neiqucUycLoE9Wg30DJlsuWPnqn6MYeZ1iamWF8uq40Zu3IdrLy5BbGNl7b3U7/1Y2xmfEpLEuofPa9PMl/7T/PnP6HjCeSC9bymgPyNsjdenBA1inKb7NZh1iq683RLvr5WVtSmXbo5p+0ypLvQ4rYbdxwsLQhmm0rzSSrqfrtfGR2EX7BDczruJ4zHFVr6h83VDjii9WNW+a59yM/nyu/9Cx4aL/HuFG0Da0YHt7B9dRDP6c+BWBxyk3l/3n/xoiewrRMLYYlITXMbaHcb2L7dimj+JVB33Rn+8T26v+ZtYeBeXDuPP2eNgPuDozvfP+hv0X54JA9F//e9p/za7z/jtla5LU/uU4Y1xiBCTbsnNeuk+H80i4RP+7mY302GH0g3YMAthTPBFbiidOL7ftppryvu0HzHVgVAZNbSuUMbal4zRpj6nbPONuhSmzoXEt/ETW+w8auBJpYCx2cEXvEY+NwxP+a5zY8kRrK95/aYyRvqFPjb6PnJnZmvXHRcj5Ukmm1Tn2E/z0XakzsA93c/vVar+ifiAYPqX9IhdgsokYDbIQHfyT6WmBbn7heDZu2vU08JJgdQrqemIf50oXBPHFrc7mzP4EL96zZ/85TNKr16Ruu1Y4M9qskbgijIMvrF3xpG2I9dh/eq48APR+XoP/GJOzo/sv3c37MyU9LvI9pNdNzNq3WGiXMd3RH0eX/F4bTew0XFBSB2jngFFW7Wy9wNgFVsvClFZ2lGWMPS8iaaPkPHc8o339Y4yifhmHW9ZxihtaRqcJNwSDceX29QuD0vIvqb3ITlx52cBrwyw5N+gZ57/KVe6/At5xw/5LZZ/HDWAvR1duXMzxTvXRf0cxd8BNxJxhRNamaIkHLOasrogxxjbLjhcCH9tedvT9I+0xxtyzuCGM9UqVtkexmuaxPXATMVJsj9wctanuP98ejdncvqNY94P8hf8mbepqanfJG9ZOlptIDgMsym+eW15mROP0UtcW+o16d3+v5/a9c9g5oMor5uLDznXDJK4otauulwdZisQe02sjIlpmCLKnFWaurGURjkzvgCnBwbKNx53ywlxF/0mTF8IY9UY9ZnyWn2FusWG+rIoMc/Rfx+WXJ7rojf6jGNOAMbOHMcfk4pHy7BzD5N7Nky7Esu0GIDdeQesjmn11xbPtNGhtZdALDDgax8J6q6ogq9r7SnudO6yQTtuUfbiYn/i6pYyEYcDIhGKUZee0m0x2zL+BYJeBjsX6jMBV2zwm6EXghuPAFkf4duF3qO64kz7RcNwoLrbug9jfRC5czDE32u1zT/ksBokrOJvCBeMTpq93zB5J3AAgbZLCO521HfAobx3sOAHQUifLtmV0Wjts0gOpN/ns/viWyzY9jLHnc70IsljYJ94+tYvfGdnITcS44gZzbqJ9dvtITFYW3EjQG3ldcYPz9gGBqxdzc8q+wA22cXvl09xgzU3wiZMNmPnJwRjbE/saNyvZC22K22PKTYy5Z3Fzsj0aRjkR21NuVrLrNrXyX7N30letuYn96cJ/sU0lmyKdSrSS2w3iF8t0msk8WJGkThuQHMgKUHZmzJYWSc/z4Iwnju3az8v1LM96hAYKtS436AHlFW4jIsPMXGRcpfZVvQ0TvF5BqFvpvTzp9TZ73tolwNnLGN1AL/oTaEvelPREzMi4qfXyO1StqBI1M64Weni5ZdR71n9RtndQ49/W1BFkCa91Qw0/uk84aZB1PlX0XQbtSYst10swav3rYo71xDw8j7tS3MDb5x5WsU8MGz0JyvQ0vIHPyJVE38P/dmVJlxpXG2Gj5ZVRNk7KIuYBE/s+6G1tKHJl9hlP9vtbzk1rC5OYi09mY/wx5l0mmNDPf6X3Ty//wLQtWHFbOSd5CD9ZEHehWMtK7dirHil3km3Th0xP/B0xzvTmsgcYtZd3mKm6d+cm2sdcsRFc8ZSbK7xesE+DrHxQ3Ky4uRw3AbOsZC9wc6D3UFaO/Zdzw+f67l2XfY/En6/mhvKOG0lkWc9TuDnvv0bIvb53evOyS9krSeA+g6F0vA1YgKALPUbD8TagsPqo7CBr9WqoA4l8qMNkGz+JXgQ5yc5FHVyQbdwOyif2XdWrcu5cG+hJ8BfGvOPZymS+DHpnmAduqlLWccZ/jhuTWdjv2u8JHt34PNrLJ8kGp4fKsN7eHkNZVzC3ibEr3CeyvB9cOx/16EQv6xu4orJ70GVyDVuMZQ1lF9yknLuCo+yAKUB2899Eduo/zlNZhznh2tmbxXvSJ2T2cZ1pW57EjTuU8Bj995XyJCL/XgD/fQC/D8C/DuA/par/33vre91SxngLQup3d6yAiO9MOIUOGYgBpIlsz/GdZABeLzTGOziClc8I5hgTzDtLS7/TlMN0zWtoIF6vx7TmJsr6Fqpcn2r5jgUJ61nZlf9iiphS/0WZif9WstF/eJCbMEBdx43P25KoiXHuZ7yojhgn8pJwowk3kmG82h4X8YrITYxXuq13hRsc+S+mC/1NWPenIFBRFle4iQODtf98f7PwXyLr7bvQV13pby6m7OLvJmMJzmzQaTEbY0UnOroPUZYuTTaNGLzh2kZPu3hMw4QyYGZM0/i2h5Jv3maeAB3qgf8tC72DjqweQdyANtcd/HcYIhO9wPEErXUXbpfZgDuRjUtPOaU+ueK/ib32NKqBC+VWbTLakojnybiwGDWuJnECPqXjxCUdp0wAD77DGJOGxz35TvQe1hPyV3ql4SaDtXPmLBO64L8oO0xSZ6AZU827J1k5FKZygB3zZ2NuduzTpteB/R8A+C+r6v9WRP4+AP8AgH/43spe9oFptTew6RgQ7iRoncBxxMUrNnXObbmOUl2++vZTWVapQWayoRoF+gf+lDCzYMvXXq22QmdfbJxpa+ujgniXZbwIhZbruPF6FJ6r0b56Lna2CVeD7Mp/jhtvb/s48p7YF3mZ3C068l9L9IHGh7hBlM3tm8bcKpE/B9kJxhFs4OZUzCHncdEei30L/yV5axf2Pt7zuGH7bFRBlUb7XLzCcTUYsOFObiLGA/+BZIHO6xn/OViy4CbIZv6b9Td3XgDd8rG0/cL7YVU2yw99CoKNcN/DwluQndTl+rZETxqz4v70fNKnOsxxo4ajfmPpf495qTfU5bjbQvmD+B44J3/qo7waHvMf613VhUX+gBsum2E+6ob5ae3QL7KuJlAPKR1jvVzJqp3wboPw56O5fJD1aMBkw6xBT+w3uOLoe4GfnOlItysfkvOBjpS4mMvqyNoU4wnlB/9x/ghjNg6rf2d9eWtTtqxSkhjL/I2RmyFU1PMesQ9tGRj9+RmT4pXvmP1xAP+7+vufA/DP4rubmAnKh2IVnckWANSCs4nGqk7Xq2R1W9VWt+R6omyru7+I3xJjSjGaUroqJ5gG+zlNZSdcTSB4jMyVJtyc0BP81zvkCa8z/zmO0be+X3G10pPKLq6cA8Yr3ES9ESMCNyvZzPcBI9YY7+Mmx+wwHfizdOZH/kvqUrtZcU+7wIQbxkgjnqv9TcrrSdmBm4hx0VeR/5TrfaRdNL05RlfRFf9dSXXw43TPfMg2UX46+MrKhryTs/e5bkEWeb7pFeR6AK+H2z6HYMQUuNA39O3Iz3CTuYEGjSkm1ht5tcGc0CDOvmGmQdayXFfApIrxcwdhqeYU0xX/Abn/Mn50fJdmGIxHuejPiT1Rtr33WI+7ao3P+PSW9ZAfU9ksBXsa3sAPVzEd0Ibjzp4OraTIw6xNVTxuiZ7U+05UMQ8JYr0KCrWIPdPLv2dtSkI+6Gs+iG1r0hXGCezQ/haYOfYz/7nxBDxv2v4ZsQ2YznAzwfgp06pdvG/6lwH8OQD/KwB/HsAfe6SyFy5lhG959KcEnYR8OB+ThHNCd+Jra+p5juigJ5UlJYd6Jxgb/hmmM/ZNymY2nMU44BInt9QjVHC4kGW8HnFz1n9Heq7y+gxuMoyKnJvcnudgZLkz3Mx4jfYdtMfExqN4hZPjfuDZ3HD+an/zXtyc6G8e8t9B+3uwv0l6wlNp2LgjbfvoCwXsvLi9MXJZgbcxGcjwZg6KO/gRKlvr0AxHNtiHP+Ywu5HmAkPGTYJxwGSnZrLidThBsmEZ38wNxvpmbSH+jv50em1geeQ/y0ufTAx6F1yk9oXfMT41FBs2+0CCOZadxY3Cb3yCXn52PWX77B0nG7S7SSkwPI1x7mf+kg4jxl78qHYWJ9xu0lhT9MVG0b5QtMXCSm8gfBaftllKixt4rhSeRwSMwzuFB3rj7pOuPXI9wX++MJVN2mz2nqPTe4SRMMWw/JmlPyQiv0P531LV37KMiPw2gD+SyP1FAH8fgP+uiPzDAP4pAL98BMhLJmalAUjtkCj6lba2rtHAAaGc50bIOz61fN1xUSTICn2PZdRTAEbZ3sNO9YbGy5hNVTnH9vqBju0iN8humawG2SvczHhlbkY9a/vO8HrEzUn/BZ8cyxKvH8KNLLgxWQTZ0Z93YbzMzQn77m6Pemxfk83bxfO4yfScte89uMHp/mZ3shJ4veL7O/wX7Y0+uJAUaMv0lm1/D/wg70ds8DScE0fBeM6OvdEuY1f5SereWZb0pFt/S2KfYdjrqTM+xIiZeXXve2X21XNxQhAnM7zI5B5uOO+WMkafRK5A5+rfdn6PbWPiv61zNZRNuGq8LjA6TAiy5hS2N9qX2FtNcr5vOiaYXawHPY2vjeTsGPe/M4xVvwr84J7qiZMh18YmPmlxJhjsdDikl4+8CtDftw1cAJ6rpe9pCSY/KeP3CFN/kh2hy/VKL/qP25SVU25TLBt5jVxVG1xMGTfiqppzk+n5zOkxfH9VVf/UtGrVP3Mg/2cBQET+OID/8CNAXr5dvu/9xTd+bgyhioH/2HHYlRujnmE54iXZA72HGHN7z+lZyR7pzfPH3Bz55AKvlzGufCCh7BXZI725nmNuVv48kH0aRp9/rF082h6vxOuiH3iImwt6ntouot4FZtJ1uR+47PsrGM/573Syfp8HZ/zbKr+FfDwvBG0yYHQ4sz5oh18GF/Rolre6JphmelO+MkxhAHioJ9huA6gU4wGmiFn4RNRzxE207wJXK3+6xBu4ZPUecHWX/87EXOazWQrn3KCXdQhGnSt76283maxt71DvAcZU7+RcVpYnT7aU0S2T5boUfqJP55Trn+ll+w76G4crLr1dcKGKtvR4CIusz+BzC//Zbp92TAV+iTNXFTDOwig7cMjNqg19siTAy94xE5G/WVX/3yKyAfivo+zQeHd67VLG6vkWE8lFprfZUBb1G0WprKLd2U1lw1/XAV+TXWF8xL734OYe+764+eLmi5t35maFsUP8VNzcu5hR7YfVJ8FGaafHspRvQkuctYj0vALt7r8QoFSW8lZHw+x82DFleof4zjBRZWbSKW5CXe184CfTy3VFOwdMtcApbpBwgZyrWMcp/1G55r8zcROwWnJLxiZlnZ3R9zHJyLdrz5FHymd9IPtzulyP8+QDw8mfqXBliYyI0XGjiSxGjEPxSdtVoL9DReUcN/FJp070zHyfcTVpU4wjxkGrO8qS7nZMcxnN7DvyH+HKNvyZxUIsGt/dm/r+RH8jsfLPlqaN8t3Tf1JE/v76+38J4H/4SGWvm5ht0r4Y3wLclpzBLgRlW+pyOpZdycqBLJ4im2EE6Ivsg+x5+764+TXl5kH7vrj53NyUolF21S7CRfETcXNP4ncl5jYSHxsCzl529mB1p6yTBdySPX1DH3xsQe8EY8uDMG8oW/AHTFbW5Fp8737pm1hhqvcUNzLa5/JxSaiO+Gf2OUxS7GtcHXGzh3owYjauLDEu9l/Ls/+A8uT1zWNacrPyn3T/IcHE/stko49a24jcmKCE85TPlhQ2Ee1LbyVyFX3CvrfYmPgv7vEzPBnRiSxhTuN10qYA9CXNJhf1xGV1RB//bVwEPY2rzPfRX+x78ZiG5dJOMfkrponvr/Y3ANoTvCHWQyy0eE1I01C2XzOu9zefNile9sRMVf9xAP/4s+p73VLGGmgKbYMT9ziZLgqWd3cdrsqGsj4vLWJV1d8RXcguMU5kr9mHNuh7HTdRz0bc6Au5mfvvddx8lri5wM0F+57LjY/t13ATZUM/8A7cpGW3I/veKbYfkjXEFxNNtNqg9gxOKttcpb1OVDs43+OsnGuDEQGw18HR0oe53jZ4IT22/JL5tLJAr5vLOvtQMLXBxRVuTCcCV9mS0Ljjo3FTyzFXNnjMuFpyk9mXyLYJQeRq4j9n3xn/DfF97D9Q+cx/qezFuGktx+rmfPC9ySqfy+wDch9Ir9qW7ma8QoO9E4ypTxTn23KVFaAtZYwTAravbaobuGnHZKHHuIk+iBgDVxFTtE8Ik+sFF/6DEs4DboZ+Tib+I66A4L/IFYLsvf4TfKUPSC/9wLQAZSAACxah84BbLiMUiLDGfUVWgmw50YLU4TqSXemtv7VcOKZlQ77oUYep2ysfzM2xfUVWPpCbaB8cV11P5r+P4uZVcfMINx9l3wyzfDA37xXbz2pTC/+FfuCSfQ9zk8teStIHNlE3JnmHs/4Wq8vKU1msZAV+oBK2bc/9ENtVglk8JivYfk/KurySTpI/zU3EmOixeb3JDhiiDTqWvZubKHuRq6aHMYVdN09zM8NIfCwxnbGPzvH5ME4e4ncmu9Kb2sf2AP59vODvNsFZYdJRtmGcxetBm0p9zf5F4Ev6X8fpIn/oeyRcRftI/yX/KXFzJW4SzHGb+ijbypE/Xb066j30X8jf3e9/ZIoO+k7TyyZm2MI3wWT8ivr0q+qxgWy0Q89p2XpWyhKdu/QmmPVs2US2Y4qyD2C8i5sZRsbhuqQP4CbKyrTsI/57leyvLzfH/cBzuZmVfSy2n+J7LnRS9rSeh7gZubr7Ep3sEHcaJ3wsDIUSoTjQaumGvvthTQ/zMwMd5GNZdye9izzmwwyTzMu7gbJt0GLH9oXH720bC/+luBL74qD4Q/x3pe0ja9vrNNi+0HPUL3I+TgyyZDEXFZ+27wQ3Q/uVedlVepSbGDcNE2NL9FzBFZ8uXb1mOBsS/53lanW9eaQv/pTpa2J2f1KBXwpDnUG8WzfwHDsOy8u9sn0odkZWLpR9nn3XMA75u7mJmAkHRv+9hpuPk53a92nj5uNkj7lJPs5eY+pzcLOO7Uf0nombIX26uGH/PXCpTkTjoZgfuJJr551NUk9Tv3ivVZHLYZkP+XAIKfHl3JMg9WVjlYeYgr0rzFyhUt4NAul9nzMcZWVmerP4HvybkVA/es1PAe/y34KrGabBf5jYp/3kMBGnOs/2G1fsc7L1r8NsmLQX1jvGC0fxOcXMtsu8bORqxk3swlZp6ma2O16qmIvQEM72qVfbMheS5JjTS36Uj/DfJ02vesfs2elFT8wEuCU9m1zIf5RsKBs7t0+B8Vn2PSL7a8BN2hGe1PPFzUT4i5vvJG5kfv5CGnaHqzbKIp8NlNJzMxt5IGODuHorWPh4pjc14kCvJR7wWtGJbHuHiAdWZ7mZ6F1xEc+3GK2yu6B/9LoeZ66OYvas/xo3CeaBqyh+wNXd/lvonflvmQyjhKI0mM4wxuWn+xX70M+394ZizFGZoV7GFLmJdgXM03iNMBkXx1yiNupO+8V6fti85ADjoGzDYPMp/ymGJYcr/025SdqmCtx2+en7gFTv0n/U1i7574F+/8NSxsl3mF68XT4l6iCUfyw67veRXbSYDDNfHE7ouU+2nHgXbvCg7FPsy2Uf8d8Vvb9u3HyuuAkn7uAm6nmK7z8FNzH/eGw/i5tM7DBJZlOSTwaOU4Uy2iRHspndJ/yvofxUL9c545f0TMc7JzFqdjzzISb+n8i6dLFtmMigd1be9Cb+47GCRCx84ln+OxFzMT4bz4ltbbJB3e9p2cnxQx8o3KR3l7KRhumNTxaUZRNMspAdsAUc8bjTxf+HQsp6V7pO6p2WZVwzPIZp5b9Er6smYp5dM6RnXfnQZ6RpErPOf2dlszb1lT4kvWxXxraUkR2voWOk8jEvQLq17LTsadmkVVHZ4Uv3ONAb9MS6l/Y2buSTcDPBaLJP5ubQvjRu5LLe09xE+45kPyk3h7Jn7eP8BW4MF8d2PH/Zf1dkP7q/uZsbBG7ujG0q/4x2AS57ISloYHMRpw3S+km0JXY7lRX4PONO/RIGRzorm+jNMDr8rAdelm3lQbQI/PbdZ32YfKdqwKgTbuL3okxWep65unzNSPINc9SDuf9YtBXU5PzE93f7j+1b+Y/to7hS+2crPLp4ZftZMftA55hTjMSnGmZ4PQ1TIivBJ1Evy6aYA0bXpkzO6op6QszxpxL4khGvGdOnZGf6mwWmrM9Y+o/rBZzvD7kJelo9WWyTvTP/yUTvwNWVvviOfv/DkrW7n0F63ROzG4aAsJ+lAFxQDo2H81fK1rzrSIEx8EK+ZWOHdEHv0JmFcwMmU3yA6dncRNnZ082P5Oaq/96NGzwg+2vOzak4emK7v4ebw9h+J98vuXkH/52RPfLXXWm7D6dk52NZg5b5l2FXWQXc8qBTPjS9vNxp1V4x4TFiNM5r3XKBmzR/VDbjZoIpcnXmmuH0XuEqwxET+4AFr8T3o5g4n02KnTDmA3OZt2fXzh5pv5LIEu7hnbcjTNG+C/0i97/GhTBOqpe5GnwQ+kWZYULOzar/5Y02nN57/Hey7c62z3c+mbXdxH8zLh7x3yD7CdPXO2YPJm6gHBOAD0g5k5f7ZK181ggFvbFIKNuuV1cwkh4sZFMc0T5csPdObmZ6jY9XcHPKf6/i5oR9j3LzcGy/mBvGwXF0j+8/ut2/hBsEbnBB73u1e/p9Txr6/VDXql9sSSZ/6Tdfn+NyqEfalWEexjcZJwn21g4zTBZ3huskNylXCUZIPOAxMa7o/9NcJXGX4oi/w9+Z/zQRAa73G4/4T8iuiGmoOHIT6tT2T6JzVs9RXuBWiJfN1kbbXHuO/RBhyrZ2n9rHdSzi0+XZH0oxl72POsGQxdiVfrHl7Ri3T32O/85wM+NKIibAPYmfcnXU/gjbGf8lTeJzJT0u8j2k1+3KuPXAakGgtPNXzJtsO+fzyrelT8pa2Z1CV2pdWqMwYlSNdUXMd2JkXHRxymQdxnfiZiZbP7v7Em4u+++DuQHFzVj2ixvu2XUh+3Jukth+xPfHsh1Txo0bMLwzN4ftPqHydBJM+n1vY1suBPOLP+f5oHMRlxr2boq3kcSrcFhF2MpGzMOgSJNziYsjBsu0Cesd3GSYoqyELfAzrngAr3TcZDlMV9w4vYGPiDFylaWdypo/bcnnVW4O/WeyhCly5eqhY06WuAJ695eeO+JmYl+L18wHe48p51Md7WX8MT/lZqb3RJsC0CaP6aRRMXxWw/nggCvDPOUm2pM4Je0zMGLiYzNu2ICr/Q0Q+Il9Rj224ir2A1lfdcp/kauv9G7phd8x6x2nAP7iVPOIeaBHnST5k7LtzgBHcFymAco/Se9h2ZBvd2gyTB/FTYbpE3DjZNHPvZKb99J7mptMzyflppUPF5gP5+YD2v1d3JBsB3VHH3kvNzNMzM09STAMxFb5YYC0wDm8Y4NQls9Ff0c9oQq3o1oo335nOGig4yqY4GijJKvrHm5Yx6TtL7kKsFThlggdcpPxGO2J8T3jI2Bq9SqGpwRXuDntP4z2pudWvtfenp1vQ5WD7AO+V1qq2SYMYemi9b+rNI2bmd6TbSpOYuy8ZIUjjuSacYmbRXy237HP4DxjAvIloVf954v2HSq5bU2WXbu4Uvh4zvx3hZtF/jOmr6WMDyaFtLtpgA1eutfzPP0OF6+ZbCsmF2R1Ics2rDCmsiftQ2h3VnbJ1Qdxs5L9QG7ukv25c3MBI0jHK7jxsf2JuEkGrO/Pjbdv4OZMu/8Ibiyxw+5J2eD7KMkolsZOnEBYASaq5pnbI4xx81B2lJvEAMPSXIcxHgu42IeXEwXQKa5YNWO2vBtJU/6Im5jOYgLcZEvjOUGZkGWYjtJJ/0Vcgz8DMD4fyzZ80jmN3zOb6Rni9Sgd2Jf5p2GK1bB94fzA+ZW2HOLTtU0dTT3bpg65OhmfQxVRJvYvMxxnMB1glMCVOx3a0tjvn8A4acvfffqamD2YZGwEw90YzPMaGsFKdnmHVoBdfcPn72mkd9reAWMqSy1v19DgnqT3iJsoy1+Cfyk3JPtZuFnKLjA9gvFI9ogbV8+vIzfc7jG/Rn04N9lA4SD/TG7Sdv+MCzj3ayfTlfh2T2/EpHOF8f3GAecsHweSEvrFBf4UikHUbl8bbF0ZaMgcEzDmh+tv9ttgVIw8CHQFXGF/+nTbTzBnsm1QT9+iO0wX/LfEfNH3Tn0WrytZ5vwoRYxhmecuY6zP9C7jJmI68H1U6GKM+7pE9nSbqplTbXmCUV3Zecdw1KaGSrnNHHAT8xrPTRQdXSMG/4HMu+K/z55sBvszSC/cLr/8VOsw4i2AVQ9nkyYcyMZ6FrIaz2+Tskl+pfcQ4wXZNln7YG6G8wsuXsZNJsvpg7iZlk3yV+w7wvXFzX2yQ7tPLpCv5iYduDzCzZ32PXzN434fWPt7hZP5yHyIoKO9sFHekxO3Ew+e4kMB2jWjVbWKd1Gvn0diEdsVbkiPRK4iN1FW1Mm6zzPU7PA+zj3xnWCacuNkFSrdf+19xSfEd+Mq4abEly5l+zb6FZDla+wpxZx7F5XwW3HZSE9m35m2b+9obb1Yu9tcSVPmVQWyEcbYLoLu6RjgRN8G4d8a+uOcm0FPPSA8Tlu05bN9WxuPcp9xwI1rUyv/3XHNaDIY24WLKV33N67uq/77TpJ1Kz+H9NJ3zIBAZGR1xrJckM3qkGuysewjsmnZZ8iG4z8rbpLfX9zMf39xM//9PXKzxPjRfcaj6Wq/HwYL2kbCdkxHgTqhECDwI3VsSqOiLF7O+JDKlQGTtkJZOWGZzF6lQRffrb/ADZ92mJpszzs84adWebEMUCZDGZ5o31Cm4giTvFR2xk39a5vPaK1FZv4zRdO2ETDZiDpyw/gmuFTQl4slBUeMgYEkbngi7AfWAcSq7TuM2iccFbR/YsILsetf0qUhjtw3tkg6BTFtU9r8bRMQidGxKZGbx1iHsm7Ly/7GHeu4znCTxY132T3cxGPBf00vWp8Rl8G6phD9F9ry6b74K31Yeu12+ZzSi1VyPEtXZI+OXZGNZd9L9grGq3qPyq7yV/Q8wg0WsjNcr+DmFXGDhWwmPzt2j95V2bOysfxHcXMvL2f1rsqelZ1h+mhuEtl7r9eX+30eMMXyk7p0dn5E0wvd5UM/OFrJZhMS+1uf47lT8W55qifVq758kD3kn49R3Tpb93mGmwM9K26G41RYV/47y43Myk7i6GL71Vg2KZCumpPsgQUVPoo5tQE5uo1UNm4CkVUx0zN9kHKKGx15zeJARlEZflCteoGbJK8Ur2nbm+E48sFK72Gf4eOVl36e5uaIq1XZJ/b7H5amwfl9pZdOzAShg4gfEELIx374GbKWcYF6QW8sa+ke+6Is5V/CTSabfsDsBdzM/Jdx9VHcfJa4+R64Wdn7EdxE2awf+DBuOkYne6ofeJCbO+275/qnQH0SI3U7fquy5hsWgXsyloy/e4ZOIMkHO1t9tuzwSG/EyHojNw4Hy/oifC7LO27UYxowkn0FY+BCKB8xhsMOc9w1QDxXK24KZnTDVTrn93AT45WOLf1HMo0bVBxH3ES9UX8QUco3CJlNPDMWABJ9xph9rJfVdSv7fJsyW+PEP2v/3qaACeLtC+KX4pXrHfy6bsvD5x4Ysx04w03ESHqsf7rCTVoWaJ9gYT2H3BBmvg6M7cKfT7mhel2fSVwdchMwPrQj7wekr10ZH0kC4CaJk6lVKYAt5ikbO/qh7AnZ1smHsgOOcPoejMjqTWS5AbgG+8HccFnXqUauJtn34CbK3uO/Z3NzVhY4X/bnys1k0OP6gY/gZoppEdvvyg3GvPSsx/SB3ETZif9OJ0H9TIqGtqGcgW4+v+wXM+4Qyma4baxBNqd6Jxix8YBKPB8HbX/fKNQqt60NKPwOmWe4afZqaPsLTBk3jgsa5BimLSl7iFGc/65zE2ywc/tF/3HMhZi6FEfGTSwbYkyzuiKvCM0o4yaYdNa+9j5S1ZJt/uHqonMrTEPfHcpGHyx9YvVMeOX3/COusV+cYx64iRgDVxrbxRVuYtw4ey5wE4yK7eISN7Ev59NH3CwwfsoUY+E7TS/cLh/uZkO83sZzy7zcJ2sHnSwdS2U5XcGIi2WfYN/TuTlhH8tesvdK2ZV9hPuLm++EmyB7yd4rZa/YR3a8Om5OYTqSfSY34k26nE4KN91n/UDVsyyfcOOstHGew8RbpM/a+rTtB/sVSL9XeRkXvb93DzfD73jsTq6WMcsp4SaebxQJhs8jLBPVq9F/VCTNb+HgEWYmPrOHzluRVR9kZZehMfHfUE+GK54bf+Z9kAbxs7Er3t6jsqZYMfqIy8V+z9WxwiiYc3WVG8z9eU/Tjrv0unSWm3iO/Sd3+O8rvXt6ycRMgb6jEnoQZzs+8UBAOf8EWSSysq31HH3NfSWLB2Sfxc2g5wo3Bxg/BTfxy/Zf3Hxxc4abZ7apA/uuyu5WONn175Xc3JO437e6XT45j2AT5/P41ipHAgJAy8IcM0J5H2nWG20MGGc7d84wlh8dh3ChzTYkQeqzFTd2rWKejrnhsp4bhzEYyU+NVtxc9d8RN+188x/Vu5MvDrhZ+i/jRpXyIzdtA5K2qYk2/HFpWLcn5G13ySU33YY4TnFtMsbN3s/1STrzOve9MkEpN/M+Jvpg1m/0yfGEm6RdTLkJ/aLjKuMmxGvrYMVsfB43jHnpP0ww1ybguaJNjBrGk9xEzBf7G1f3Z0yfHd/J9LqljPGiQh0/MObj0ou7ZRXDI/Qreh6R/RD7DmTTsl/cfHFzD8Yvbt7dvnRZzWfh5p6U9PvRxpXNuIATqh5n/Pr0DS6vM36CD1s1vDTuCCPnwbjst3RZxSlupks1T3GDOTctn2BKuGnfjjsRs/dxEzHKNf9Zvoqe8h/zGHFQPr7zFd8Z2mWHuF0QOQZr2fj4LnKTYDzsN279XKvmkFfTox7TLG4S/x36oOabidMYTNoF6Rni5oirCcYWRw7HBNNZbu7136RNHfqvTbJlzs2s3V/oix/q9z8i6diNfa/ppUsZXbuTEC/iYwkY28NdstYx3ys7KZvJvsS+R2QvcnNWzyOyX9x8Tvsekf214+Yd7HtE9pncXE82iAD9JXJDXrksWKb8dRsbyDjucOVbhWVgIzzjijgixuD/uEnAdIOFBPswIAXa4Ir9cMQN168hn3MTMDr9VbbVp24eJEJcBT1uN+7ov8jVYB/c8YGbdCB50X8hr2e4ib5f4V4MwoV4aKeovqJ3xJjVJ0Ms5PY1LugTBed4TTCtuDFbrsardHXcvh03OMlNxNi4GsssMcZNWB7lJvQZ5dC5tuzalOT+i1x1O0a7Y6xzJff2N582fU3MHktuJo4SdLv6eN6pvIjPv0SWOumZrIJigy+agnaDjGW/N/uiHr0g+8XNFzdnuYmnf87cRPu+B27uuv4J2hImNW3SlyyZbg15AH1w33Aq5AgI28QYap4HYnbeqnMYIQPmYWCb6vUYl5jZd6QncgPNMSrEc3Wam8hr18OkKMlk3ET7BtXi/57mJnI889+Cm4f8N+PmAGP7q4v8Sq9h1O5PtxQOHZPZa7IWN7FfiLrSdpHZFzFqx9jn6tGf6zalInSeZB9pUwrnqyaacNMwcn8jvuxww+cMNyzLXG3H/ot9oovXhb5lfM4wV67Yf2f6m8+evp6YPZIEsC/Tu8ZBgRLXztv7EBYsbVnwkax6PTF/WVbOyzLG2BAOlyI8wM1H2fdz5yZi/Chuouz3wM0uPf8Mbs7Y91m5iRgf5QZ32HeVm9P9KXFzVxLGKdVGCTaWvLBYGLRbXkgWWn+yIMJgRZmfXrDYKAmXMuaR6e2yA2axqk0WTraVcX/X3HTM5RhXN+cmYCRMkSv3YVzjBsfcRIxF8gI3pIoqOOe/CTd3+S/jhn8w4REj58Xno31CvLZjkZuWj/Ha6121qaYyfK4gDuIb1OD7lBtujxVb7oO8TTX6qK7YLg65AXyss33Uli73N9E+4uqQGwTZpf8W/Y1Q3swl+1ocpe2i6876AVhdwX+n+5uv9O7pZU/MWsOq2aNlO0PDSepK85ke7W0k03OEUbKyiezKnnv0rmQjprMYBz1P4uZI9nvgZqj3g7hZYfwobj7af8/g5nKsH2B+Fsb3jO2VXszKJrJX/RmrO53O2mjtLBs5Uj5dkpbd2k1k29KneH4Vo1XHdCnciRgclhYJ/GCz/jjtf7FarX7MuYkYM0daWVom6L6rFLnJ+kWy9RI3cdnjDGfw3+m2ccV/jnxv02XfW9lgX+P5hOzVeE19MJEd7NPz9s3i9cgHlpbxepKbKDtM4EzXM/qbC9xw/pL/aKJ6d38Ty071XuxvPnP6mUweX7uU0R2gFx5r4k2zLK1iQ8PvWVmnO9G7lE0ycRyQxsZJ+2ZKr8om9LrfH8FNlI24dFH2PblxACJGTWLTTr0zN5ym/jshu9LzCK/trlzEhGP7ptxEvi/ad8V/UfYKN/fYdzbWVxifzQ0m/ouyd8fNEaykklh3yVvn+oCyg4vFHiZxGuI7FIdjLGugV7BmjmmTjF7ZwE2K8SRXK4xHXOlkwovRp4P/rnJzFlPwX85NEJrVfYQxGdCelk3U3yO78kFMzgeoOlad21HntZBl/8d4HdtU4oOs7vYIaaJ3lbROsCZcnepvZpjiuSv+u9LfCCvEdf+dPa/39DefN30tZXwgKVA+kGcZoGzNCfgXMCPJ2u+utLI1HxtNe1c51iWjHt6aNOqZybbHxouyzoTEvkwvsvxJ2dghvoqbM/5L7YsYJ3pS2ZO8HvoPvawz4cncpP6j83H5WOtcZe2/Z3DDZWM6jPWr3NzZLoT1LgYW6c51d+g9VTbEPvdVH+G/q9xc6aum/rua+CWGWl+5k6xko7RzsJHftL8Sx/twhz36HySr8HrpXNSDmZ4mKwtZjLJZWVtepPVgxo31lEm9XknCTYYx8mKygUdpHeeMm7n/LnETAV3yX8LNkZ6r3ACP+T5UOrxbtZJd+sDnne/Nn1lZPtayR3Hj42z0/UGbknAsxo3ZcIWbzJ4JV8v+hje5OdPfXPI9cFd/k/hP1J+/EutlLboE2Qv9zWdNre/8/tPLlzJyp6AxP3QYoSxn4hfX4xfKZX5+uIu7yBtGN+ha4bhg3xm9K9m0r30BNzPZKVc6ln02N7HsXf57R26W/ltgeIbeWdn41GTJVaj2vfxn+XgdSjEdxfoFvUdlr/RV+k7+s/wZbg79Fys40nsmCfrkw21VTtoVwMZ5KWVdg4iy4vN8izfiVP4rHseCn0EvY1KtmGUiG1LEvNU6GJezj/UmOHrF/Y8CELr/3WQXGHnwtVGnrOh+SGUv+E913KbeVbPw3zBIj5hW3CT1PM1/J2XNvsG/iawC9t5P0ZnUNYtX07PRyY14zWT595F9q8fKKx/EvMW2xWvUE7laxc0m3o4BV7Qv5Lm+TUe+p5gOfB8neRmmVDY4ZfBf5IrtifVGjBOuLvc3nzDNYuA7S6/b/IM72NlFPpyzJx0D9+F61C9Mk7qOBhUr2ViUMVW9MX/Wvit6j8o2jl7IzdJ/zNWsE3wnbrKip/z3jtxkXHE7Oe2/B/Wu0jLWD4WfiDGOE3Ch/b0TN1f7qrv1Ppkbh/GK3nuTxXSIb3d+2ub0WHamMz1OijK9M5szTHz8qN+PZa0wO+wsN6keHeWP+rJY9gjzKW5iXvvE/B7/CeCf1lz0X6r3Dv8d8Xq2raQ+4QM0GI+nVnqjfQjHM06u+OSK74/acsQ207PCCPQO96rsEVertPKf8rGTsgOv6su/l//u6ou/0numl75j5j6NYkEAytsh6adbXsPkI+bpt6t6Ihv1XpGdYsSBHmq8qZ4Dbi5jvFP2Yb0LbtwAOtP7Am5m/ns2N9OyOMD4ibhZtcdH9F6x7yjm3oubKPvpuTnCeIEbd/50UvTBtM51kY2AYFiS5HBKkJWAWf05M7QtG9RQnvRG2QyzwP/gemZl3XIvQbqsKMqmdU0wsh6J5ZFzqYB/gkFBIuiBeIWbmf2rONuJi5bU41fk/jviJj6hYSxX/cd1WaEVN7zLxIAz1O38ctK+WZtqcRVjLtrP9k7aVCt/wffud2jLwBhzVr0AiEsZHSaEsqC6T3IT8y3uHvSfy1/gZtDLti3Oc1rZ1+qjtjxrFzEfbf+EyUz7OaTXLWXcesz6C0A9FvJH2z2fls0GII/I3iZlE9lBz5HsFzdf3Hxxcw3jz5Gbz2rf1SToy/ZOxrcry1i4zgnOsSxdteO5QTZiDIOXqAfIcbGeTDabdOik7CE3Cca4/OsSVwFTq+siN7N8xs0tKduSzs/dw80ZjJafyaLaP42bsJwUOPZJ1Jlyk9g3a1OmM5ZlXKv2eNROZtys2pSlIY5OcJVhcmUvcJP6M7HvCBPnuexZvas2ZTqdbOBq2d+QcRlXwBxjFnOfOelxke8hve6JGWosiP/bzteMxYtl5FFZQbtpGmUzPYNsov+K7Lvb9yg3D9r3xc052RXGL26+uLkH40dyc+9OXW07ajEAbjPnmgeEtVlZvupKry/dRrrp61jbUdX6YKJ/UHWpt10wNMFcyraPOscUD4nH1Ito2PDnTm6c7JqbiM1zpe2gipl/LzcZ5hk3c/85rnDBf2diLm7Tn2DrGDNMY1kVEoDm9i31UutMeD20rwe8ez2pp7E9DRg5H+OTsJ2NVxXUdqK9mnq8bEVP6GbcuM4J3Sf3+h4dE4A5VytuYmod6cR/K8xVpn/6Q5sGw6TiuTpsU8NTzwvcuLKJrZ8oiepxoe8gvXa7/BqcCrQ4cRd+DR8+Tco+KiuCskkNy+J9ZQ8x4oubnzs3Uc9TuHmifV/cXLTvnbmZ6XklN3el2u+XpFWX+vMKNA1c1uXtdxg0qM/zNthqZa2IUn0rvQ7jDLPM8QZMhUht+NXVKx3H3dzoKW4ixjlXFVO8i3+WG8a4HXAz+C9yRbK8t/dVbgaMa25cfiduyH9SZd23sA59EPMsdoHXaN+u4HpLeDIOrmtlr2H2UM+3C49RrOEJoKwXVY+suIkYye5HfL+j/CMY/cdcrbiJ/NzBTSzbucr8F7lKuGlVim8nV7gZMN7d83+lC+mhiZmI/DcB/N0AfgngXwPwn1XV/8+xIMpSRqANVqBwy3aypTZcdrd2eYdsu85IXrZh1BzjWVk3gDqDUXrsP8INY/zi5vvg5rPZ90h7/Llzs1x6+g7cfES7uNyf1t+XU11Cw7q57jRP/Ayy4LIKu7ZYvt11VgDYa9Hyr7ovI496I8Yl5hVGeyJjARCWB4k9dVIAsmMXgdsq/CO4kb3KGlf9Lj2gNR46V+/GjZPVIFv9VzHqTXvhy3onZY0bWXBz0wFjn1NpuWtvGHHCvoZBvZ5HeOUYQ8BY7QO1C6+XcRnmO32/alPY6/xLYE+x575XqKrDGLm62/dZeyRudrnAjTyJGydb/cdt12Tfm5tM9rMmxefHeDI9+sTsnwPwD6nqTyLyjwH4hwD8V84IWgC7GBA6DwoWAKCy7rfVVY+7fFLe6p3qDXroT5eNHTmSfKhnat89GDPZgCnaMNgn/fxLuUkwvYqbLG+4nsLNCmM78Y4YZ3pXGBf+vKs93ssNy56JMZZ9L26ivXf0VbFd8KErGKeyJ/wX/bOM7cSmK0mq8zw/PvBjnvWOsgtcAvhv+HjUG1/FUxwrvRPMk/YrWb2MiwTK+Es/nJu0z6nqRq5Wep/Jjf3WcODYf7GeNUZffsWNL6vZwV5WgbbEdeaTAbaewry0zw1Q1TfoM/a5vuwJvk9l6YCMX35YxUn/k7cTDLIrjKG8sJB0XB/KzZhnPdtQ9r24mch+0vS1+QcAVf1fU/afB/AfPy28hcmthK+Ox3w/3PXT7x2+78lkrYKl3iuyB5hcgZP2ncK4kk0wRVyRq9N68Rg3MU0xfTA3K1xN4JncnMB4hPMujI/wehHTM9vjUVrFeivwztw80ldN0yPcXOw/lU9eie0rSZ5RyUk9s8RGf+RA40yn82puYvoUmIYo7TLvPQg7jSu0jmHw+4IRrQANowDXe/MPSp8AQpo+I67PiOmzpa+J2ZD+PgD/szMF7WXimM70tRoL1bxgrHNW16SKS7J8N3qFmQc8V/TM9K5kB0wTQjOuZnqezs0T/HdUZSZ7lpuYVv67h5uprKIsVaCDs1hfYTzSu8KYyaa6EgWS5J/ZHgeZk/58T27O9lVnuDmr58p4NOpFJsvnJD3c0lOuedNbmk/UduaOR6v+3hZ8h6z0Ug7i4QToA7lZphdwk0EQLvgINwdlJ0AixnH7h7HEfel5rbBdl6/UtWwnR9rO6Lnoe4fpUW7u8/2I41G959pU7r+ZyLO5+X5mO696YiYifx7APwLgTwD406r6O3TuHwLwnwPwBuC/qKr/7FF9hxMzEfltAH8kOfUXVfUv1zJ/EcBPAP7Hi3r+AoC/AADf/m1/IPlCehisJHk30KDfw/bNB/k4II56po2SymrExLJc5qyek3qnsvwEMuJiTK/mBhj893JuouyEq2dwM5U9i9HyM39ewXgga58USjEFf/J7SIft8QDjGV7TGAM+jJsrfdVHc2PnTvnv2X1VSNzv3/6mv/HBicFMyRqXgx77oNMX8juu+G0CoQ4b0d4ORP6fli5wE9Nw82CCq7zfcgeuM9w4kMnOlS/gSlzZ+k7SMLswu0aMA+TYtuYlr6WAUVzMewOnmC63k5O4FHXXxXxYkOJyBfVdfT91yYAjK/B4am2qciUy8vNh3HylM+mvAPh7AfyTfFBE/t0A/hMA/k4AfwuA3xaRP66qb6vKDidmqvpnVudF5D8D4D8C4D+gOt+rUlV/C8BvAcBv/C1/TIcoy/LJ4M8Ou3InZKeDiSNZUD4py9cWO5b0xe+LccIVl2+YXs0NPth/Z7jBxH/vyM2nwHhR1vlz1n7P2Avcz80KUz32Cm6O/Nf+fiA3MZ/57+6+6mTifv8Xf/sf1XhLs1dblBjG4ZFoonOQlVBswU/7JI9EvamCk5jHspGzVsy9AEgVZ2U/mJtYSHXNzfAeZIp5Uj39XXITZIr/NPHfHdzEYrO+bTio67KCvAzzOqs6w0z2rXhNfR9xTZT3w+/fLvLJ/MT3WThw3NzLTci3D5e/gptZm2pcHXPT2xDlH2kXUfZK5/+KNOk23l2t6r8KAMknU/4cgP+pqv4ugP+biPxfAfxpAP/HVX2P7sr4HwLwDwL496vqv3VF1i4UcVeyXnnJ2yDCTrt8Jmu8UN5VLRgGctOYOynrdxM6gfGs3pOyA0bObx6TYbxi3xLjgeyn48YwAVNuYsyt7FtifIYsY5xhjrKPcBPKDtxIrudDuQn2Lf15IMvnH20XnyJuIjdB9hnt0ZW9mPxde9A1X1u+D7oRCtd/eCc8FdhW14Ka591hxMtK3Y5SuK4mS/Y60HB88K5yTdYKhXpjBQ2jbc8NL9btk5Sbls8wAg9xE3fCE9bLO7wdcMP+68Xv54Yxpv47zQ1C2b3n98pHc8SkAWR6FJ7XKOt4FQjrHRq1L2ukR/uciYl9hWL2Pci+KJvwahgZl8MbO6vRB2mbYt+7Ld/N3t2dl9FpvcIh1s9xM/Q3OyBCet3fe7hhey74j/MZj6KH3DRMk37AKTzBzRjrd3b8H5GUmuHnSX8ryv4blv4f9dgyPfqO2X8PwC8A/HN1pvjPq+p//lBKyv82KBjOWaKvnceyD8lGuUVdl2XvxPiI7Bc3c9kPte+K7CP2xfwXN/P898DNAuP3wM3pJCR3oe0Ly/GW48NgJebjQNSXVVVgowILbiNej2miNwx0UsyhbuVBfKZ7hZFxPcJNrDfjaoEhHlv67ww3Gear/ltiQroF/pSrwffIZXlQy/aBZOOgNytb83rBvsFels0w87ls0plhJHOnOBaYy2RIRq5aAebqgNdbmznlS9gf7W+QYDzgJmI+7GNX7Xrw31VuIuaTXB3F3GdLj03M/pCI/A7lf6uu+ACAU691PSs9uivj33G3bOjjFS1Wyvl6osVaKDuTVToxLRv/PiB7D8ZH7HtE9ufOzRmMj8h+cfPFzbtws9JDxz4TN4zrfFK0b+zw4bCmR2TcTsElCX+zc8Ox0UpexqlVr1WQjVdm1acnZhjd8YCpvlfiPrwb1zslGFNMl7iJiXUWHANXmZhVea//Vtw0Pnp+WIa78N+SqxWWFJfnhjG5vAQbDF80LdPrjmsRF4Ue2NeqEc7rHGNs0WdihPxz6INpvCocn/xNwWD6gGOBh02bxuvQ3zBCPIGb+Hviv9P9DXNjGCdxtMLjjmn76W7+nehvfsbpr6rqn5qdPHqta5L+DQB/jPJ/tB5bpmfuyngtxUEDQgOfHJvlj2T1IH9Wb6bvEYztQ8sBU2iG78pNLJtxlWGa6XkWNzN/Ra6y9F7cxL+Rm5k/s7rfA2Mmu8L4LL2rGMhkZ+3xCNMjGM/Ivkd7vMpNLPsR/rsqu2p7q9QH7XFUwVbGfB1EtFGEjmJAfz+Eq+W/7bQ22bZcL+hdY+x5AYBN+vK9DnQl5nDNMOUCxxjbwJSXO20C93hjNpBrSQcfy0VuvALDFbmZcOVw7a3snKs1N0uuzvqPB9qO14rRyWqwL2kxQ7yO3GjA7H0AzOwdJ2GAZBgtPzx1MYwjNzNMsYJ1m9KGQzJuYooTHhc3Ag35UuxMvIZzbdJC8TrlJlZ71X9n+5sSS9NlnQM3HpPzX/Unc3Wtv/m8SYDPuJTxnwLwPxGR/zbK5h//LgD/wpHQp5iYTfrxef74GrCUbQObmlf7/c56V2VV4T5U205/MDdRVhOMbUPND+ImlrVLykv8N5HVgMPlr/jznTEOeYq599J7xZ/tGvjB3Hzq9vhZ/Xc1SfWxDXykDxJ6u6mDgKaLdr1TQEWBOrnTVqda0abD8lLLND1A10t36KNe1TpgFB7IFMxIMG+8PKiV7Zis7gzj5uxDmVAx5gk3jBEBo2rhpT/51IGryA3g9W683Ameqxk3EXPctVA1+m/kyvkv+F5Yz0n/lfa79p+wXpisYYrcsGotuBg0+0S01k/cbGxfr0xVK1/S9ErgFSfsG3yAzF7itcUG+0CoLDV9i3V0Pbpoy32DFvOR+UBgo+g81qtO4qqU7dx0roL/gg8u9TeAw4CUGzofuQJxc9Z/gZuhv6mdsuc14yb2N5L7b/O+X/nP83FyEv3K9KJ34ETk7wHwTwD4wwD+aRH5l1T171LVf1lE/ucA/hWUnev//qMdGYEXTsyGdyesH1vkkf2+KDvsUAT4UHtQbzy/LEuKHS46pxPZ9+AmymZcNUx36I3n78FomFj8mf67Ijvzn40ZMl/P/PnRGDmFcddT9D7Tn8/Qcyo+1Z//qPYYz89kP6P/Licb5NZKZFhWZOd7+bYwThSiAkUJmDhImNVlv3mBnf3VqSwS2Y4j1SOlRkftAtOQFwB1UnZFljEpAq+t6siVx+i4CbedPVc8WPTcDJgIl9UguM9/tmuTDYLHG14Hsqf953Hl3Ajxx2fLQFsHPatYdwQMZaM/U3uzNqX8fENZ7YTXHFNrBzz4r5pMD2RlH/m+2te4mWFKZCFmjzZMQ6wHWZ1xE8tGruicHrZHz5Wq50blhP8WbcpsnnPF3GT1Fq66/8b+9Jz/xvxnTK96YqaqfwnAX5qc+0cB/KNX6nvNxKzHoD92L6knZPm0X1P7gN5Hk5BqyWG08cE7chMTY9rxOZriu/jvUd/LnKupLz8yhcHLzJ8prnduF1N/flTK7Av+nIl9dJ9xl/8eSe9kXxmw+IFvSdEqn3flxd+1HSeqsW4q6+pBv/PcdM17u6hTNcN8HdOYb0O3CaaY97J9gGYYZ5h8Gu3r+TYhm/Ru57jpE4G7/RdGXf2NnRlXue+v+m8pK1Fv+BKQjk+uxqStbO9gkrqwQ07YVw5Ee+KgOueVn14ZJBv8d12sJ4u5Wbxq0IuQTrZdoD0JWvm+4Trqbwau6NTAzdx/7gkvkHIjS25IL3F16L8Fb7n/Yn/K6Up/88mSD6/vOr3wiVlhUQG05QXJ5MRfHnyA2L0Q4KRsG3CQXi5LA5K5XrsgBNncSo8x0ePRSlclZUStkZtTGJ/EDd+oscm0rmRX3BxgTCh5H//dwU2UlSBU9brrRHEe+bN26iT7VG5mGEn/6M+CUTNeH22PGWbSk8aN9GOHvn+Em+j7d2+P1/qMyI1hvey/RM/7tIvzqQ905gONPB/P0UCDBk9tedgEJy8r6/2HUulzevtgaV52HJCvOfPYo+wqv8Lo0zH/Xfbah6Pn3Jzh9ayelf/G3+cxrjGN3AyyPGk0NU3d2veq0V/RnrMD43XZ4QndRLY9+Rni95zs2vfht/i+3NUa2rLWJ6ZjG7+GMS/r28Ws7aYrFk767552wcn1c1hFFEL7GOsa9dzbF3+l90ive8fsBgAybFzU0hArEiKRmnMWV8LHxJ2zx8s2RpQtkdVc1nUkM70rjJKX1TP2Tbm6g5tYUbuQ0H1RDVVHruLobcnNA/4Lsryz0SX/ndXLBrlztgRgLDtwFWTd3b2I8RH/zWRPYvTsXGiPM25WmKftsRzL/SnBlidwk2GKXJ2xb8bVg31G+3PkP5WhPX54f3oxdbwn+UhHIPVV+WTiIAdcihtE9WcuvY0miWJvhVHcgVBFHOjGuCP9TfpObjJMI1djv9j+NK7qoYjLGWahNOcmnSCmmCaJyqz8N+Xmov8yruKkub93k9hn56zrWi4J8LpGe872G2PZbg/KoH7pSF95X75Xzs18f4Rx7nu6JnJfR4qiD8znA6Y7uIllO1dVj8P0Pv5b9Tf2Cp49wYz+k8DVYO1ZrrDGeMzr50r08PO7Ti9bynjq2z4cCDGfyLVYFX98qsOwZLIT3EP+LMaI64TsdG6R1XeFm6ysTI6FvJ6xL9NzAuMUz4GshvyQHuUm1k3YTskeYbzCzVleZ/5MBvsre8/al+Xvbo/Rvll6RntclQ0Tktgeh2vjBW6mmDNss7Kvao8LlUdpXHI16nGwYp6LTkFoOx/HR82X6rJLPXMfVhJPkOGeVkiogkZpZTXbpN4L3MSDZ7gaZOvor21kNNEjId9/6PP8F+o/9F/m+wFjnl8/aUSfUGA9sXQ0EuZVwPSd98bKrvuefCvzuuPmLjHR9LfVuub1yPe8WUfARDGXguU6qMi97SJytW3Hfca6weuD3KC3KdocxT2NS/qM0/67yE3k9f6e/4PSYrL6PaWXTMwUyG6Ed1JXHWfaQ5TfLj6TvMkLqJFJif+dyg7vOAY9h7iiXun2qfRzzeRENsPoOoqMq7PchPLc32R6WZYxT/23wsX5jFfmaiJ7iHE20LXEug64WQ3Oh7hB4CbDSPm0jzviZmYT5aOemf+ibPOnom0FfIobUJ6UzNrjITcRo12LnsDN0B7p3NX22G4uZe3xgJsVxtR/jGOFEcTVvdxEvAlXd21+JX03ONtG+ly3oZSXMFDMalCXM24AqTvfge4kx3csZqGVYd6pLG87vcaU7u7WBtECre91XO9STdY0rrbCjqme4xhTJf48V8fcRF4V9/jPrpmb+cvtFLf2n8+vMY5cxRq8/3jHy3UqmN0TIuzuPH8AQwMma5TnfL+wL4k5w1SWvM0wjb7vR4/1Rsyp70PMARlXY5ywXv9v1Jv3Nz6W+Z00jH1GiinLw9nHC8SPuRkxs//cLquhzxgxcR941X+rS8Q9Hf/HpVdt/vHs9LqljFsNLlvaEgnlc0f5MHgGwu8g615nVEBDvbr589N0BWOCKerlspGbJaYjbrKlfhOuznCTYoy43tF/GTcR4ymunuy/FTcOxntiZJwHGI94nWKa6eVzC3+e4Wap9yymz9IeV+dW/otVv6f/HmiPZ5MA7S65u/C3QWuejwN83l6+rF0pJbTmeVmd/4ir1gF+Ed33viX8Gb0rzJvD4bcjZ4wNEy2n3+h7SKo6+PwKN5zfAjcy5Ds3UJ4014lQwwTs6rm6wo3PX/TflvsPAN7ezX8hboI/o//6IB697bS8suvbv12Pjxv36YS48cKd9gkqj/SEZXPVqpOLPhni5qTeFebSF9R6pWKiAiNX8zZVdprfIbSu+x6MDRv7V3XKVcbNFuPmDm4i5s/ov0+ZFHjVdvnPTq+bmAG+EVp7o3Mxn8mmZc+pzesFdwfzMpcxXk2JfZzcKyJXuDng6oibLDVsB3pPYzxKMvkd8RyVvxpzszrvSJ8S4yPtMdRzyZ8n0tkY+5TtMdRzmser6UX96SWIw0twvLua1jI+31MYRAxbsfuyTg20ziX74G7bxJXN9eb5uPFE151hJDw82qpl3TfBBODdD89xM+Nqzs3AFeEqG5GHyWO60cZJbpqywFXg5or/VOuE9jI3F/0H9QPV5NMI9u2qmKwdetef84m63fKu29cgGkbpUx0JZV1+0abaU5dFLOS+n8SnUB1WTusx9bLLNgVAtjmmEWM4N3Bl1oLe5TIcJ/3n9Ji99/Q3VjbwJ0Db9Ym5WrSp5/jvPa4KXymm1+3KuGn9Jg01jkXePpZ3tmyJVz0sO8huUpcP3SF7Re826j1tH2O8g5u77dse4PVBn9zNzRXZj+Im8f0jvF7hBq/g5sF28em5eWGf8SHcSODm3BquNPkBxux3lm/Q6rky8OHtq8VWYUQfDoNcBeyt+mGgcYRDh+MjJpnkSa35bMBkeT+kuobRcNFytBk3DaMVVIdJAWzoS7LO4cjxACuuMow97yd3zFV82/8x/xW9kZvoT2onK3vgh+tjvC700L/32MeekvaJgj4wZ147pKxNEUagbpzWuRpxZL4fj0mL/5yrLfh+1abgYmOlN+9vcq4ipjU3Me/9d4WbGVeES+zXif6GecQz/Ddv258hfS1lfCRJ+V+T75JwK+H8cG4hywOMrOwu/nsSV2QP9Z7E+FT7vrj54uYe+764+RzcrPR8Vm7uSQJsm/Zrex0jKOBu4sY8lwVscif1d6KGBmrtvYxWb5FVVexC7xWd0LvCHD9m7fHwoKnI8bsiXVbruz+C9nmGi9y0842rk9xIP98HxFIxKnaVbtegt+I/6c81V/3Yiqv39J/5qmM69l/7FHD8dENtR1628zrq8bLsz6l9ib1c1op0zLT5hvO90LtwDYnL21JbOcnrCrOAls9We201YsYVJ/OJySrjvMAN5yNP0N4PnvEfc3XGf+t4VSgkxWVLJO0pYc4N5wkh++8CN67sZ07fA8YT6XVLGdnZEo7FMkjKHsnGY1RWIHfLHuq9UvZVsvHYFzdz+S9u5vJf3Mzlr3Cz0rPScRXjM2XvSIIyWPGjUV4elOc7kdpqGQGXvIjUhymzZY/lqAiwqT/vPqAswKj3BEYobMttt1TLioa6Yh6gbfXv4EaycxXXETdNbXLbub/Tcp0bz2vuv2OuvOzaf0i5OVUWWgfgcof/6iog6ef4Mwn5gLk/vRrLen+uMMc2BfW3gsYJYBY3GjCZ/ewvWtZ6l+8jJvNnxiul9oSUMXXZK9wMZQNXw7nT/kObtJnvW7u5wk30feq/ACT115iXA72n+5tPmAT4emL2aKr3AwC7UFBwtXP1N1DClO9GHcqKl4X0+7zPl7WFHnPZmX0se8m+z8aNAKIfyc1a9nNwU/Nf3JzgJmL+4qZxg8/Hzb0pLmUsd+nt5XTLaztvx3t+Llv+9l0Jh7vZ9NvLZHru04umV0OeZaOenXISuIh63p+bHCNC/orevGz8HTFFWXFy7+m/zJ8sO/qvFTn0ffmtUNg7Qn3gz2URlhie53UoK4C4Mhmv3R7/JCjj5hHf9+PHvHau7PppPD2NGwj65hh6ou3aeW1LBrv/juLmDMYMM4LMPdw0VJe4mbepr/Se6XVLGTdgtwuFNUq7JgFuHTe0lLWBiOWvyFrZR2XVGsNF2WXZR2Q/Ezfyxc0XN1/cPJsbV/YzcXM52Q5nZWBjukSAvnwtLLNqZW3AUbCV02XSKGITGy2nu9uKGSxLevlbmrwl9lh2hnlvsoryVKla0XBYkhDfIrleFa3159xY2c5Nhhmj7MCNcZdzA5Ld23s0GRfH/lQtS1hH/xE3lN8m3Iz+61Lnucn912QDV3akxNHKf2RfKzvjFY1XWx4X46YvKTyOhZV9A68nuNkjF6hdgZM95/tcjyE6wyu1C1C7FgAaYz2XPYdxP9VnXPGfj4Ur/uv53qfYjo8nuWltSlub97LX/Me+/7RJ1cj87tNLlzL6x6Tj+VXZV8mWPzKWPSn7iN6zZb+4mZf94mZe9oubedlXcvOpZGPZi2l8Ylb+mhKXl65a2jmPKdutzMk0vVavctE+OSC9Tk/DOObbYelbffMx/5Pto3P81NIA1R9nuXH1aj0u/S8D6dxI4AawmSq/v8NVKCJ+bYNSoXzEbAPD1H/BH6lNznYur9Ar3DiM3lfM1cBbxlXL94lLn8x0PWV54sz3GLE4TOrqGmNhYZ+CfG2TIeYm1tOBbBEnqe5tZtYu8nj1NylieSvbC2X2+fBRzhBXJ7iJGAeuoux1/2WxcIabsU0F/8FzdciNndOI65r/Ypv6rOlrKeOj6YyXOTqvpo+SjWUfkb2SvgfZL27Ol/3iZl72i5t52e+Bm5rKwNtfOXlQn+VZ1v9IBkMBpj9fR1/tBSBTEa/kx1f2dlfd9Cx4yU45G62ARqee5yYqbNgCV3Nu/ME2aNN+vDwsyPXm4fi4/4b6Fv47xU2o817/uZpsYD8UrIPbBR6mOCqMA8xH7IOEQXga9zmmwW8L9XOMSSw0TFUiia9ZlxMxiVrZ89zEuLFj/VNoPLM6x5UH50+e5caObFj7r9+SmKt3efLfjNe7+pvPlr4jqKv0oomZor1I6JbJWC9n5UKeLhTHslz2HWRnGB+RvYTxQW6s9d8je699j8h+Jm5avV/cTDH+OnJzFuO7cRMwfgQ3F1NbjgNvAucdrCEvAHa68yvt3zzf6ylLU/cyOJFeaqW3Y+TnM0lZBWTL9Zps/450xygw2vud8t2w3sGNw6iA0KBuxQ3LbiRr9ajIgOM0NyFvth5xw8m4AsUPIO4TzJe4iWUHrlb2Bf/VCjbaUbBJi2BfxCfb13DANhApZY2bI14dZunaWtO12Z7A8Rbtiz5QSGv6PC/OuTnC2Hkrlu4t7nXA0WWNZ6dXlbi6wE3Il1e0SK/j6sh/gSvzX5WN7e08RoFiB3+qL/pvyY2Lm9F/p7mZYP6s6euJ2YNJrfenQZ5uvnHEPDZXg/s5yuIlsq5sGMS6j0Yeyn5x88UNfv7cKHxv+mvIzcq+a9zoi7g5l0SAm71rJG3sWHFKg4EhzwPXOnhuo5E+xFQFNvo0QayLX8xXBdpmLGf0hsFXLCt0i7vgqBUQRmmy9I6elrv0SnWLbU1/LzeVVwyYIldUF783qIBsfThaXt2IXJ3nZuAq8V/GzeA/d3MD2KH4dtZ/gZvIa+a/jJuZ/9Crbjcfel1IZQ1z9Emv64hXhPPUpgCa/Gq9aWD2lG/TdYyRm7FN2Yje0N3re8Zs7/jFCcOaG2pTtDEScIGbiGngytvXuJpxc7f/Jphj343SHuf+I65Cn4gj/93RF3+l90+vW8oIeCc/4vD3DJZn4bpazxc37yN7r55Xyf7cuflI+764eR/Zi2riu0Yr1UPeRhDDyfydCT8cCXoFeVUH+fycjVoCDtrowPBnS67aPIX5uIub7GTODec3wmiyfmA4nE5VnfefHHJDQ8+hMpW+mcV5vf3kiHniv8CNiz+Hr4LxMyL/DiHbMqSql2Yoj/heWiEdy2vAFXhl3of3qsLg/C7fhydJHdOeSCU44rb1C0xdbz85YJaOKcqzz9bcvIP/0G9EzLjSQXZsU4inmasH+uJPlxTAPmtf31d64a6M2u54tGPMKV0IWi+TLbV5VHaLsqHsI7Kfwb4vbi5gfET2i5v77fviZo7xs3KDO5Ji23Yo6ZIGo+a3nrd3UPwuZFVWGGYfUFm+DyISWaW8XNQbypa8lfVL4QwHUyXtbJQ1/E/gxsli4Mq4WXOFztXWuXoKN4pS1xVuMv8h13uem5nsSW6mencqu+BGJPFJ4r8lr+d8b7wectPQJG2K/XfGvqlPbBKD1v62U9z0vGv3d3FDsru3L+0zjrhpkmfbxbV4LY91jSviMWjP2pTn6pF2IS4mP2X67PhOptc9MbOljECPHgFcK3R57Xlq0M+X1efK3oPxEdkvbr64+R64wbNkfw24eW/77pW9mAR1Lkk72SngnhKNefV56QMSE3CD6ZCPH9O1beLd8p/TemeYrawO9rYjFZdWHPxdOeayf5pAHucGa24MY84VY/LCD3Mj93HDT0pGTPf4L/jrJDf+yUnMzzEPZVV72zK9zI3Y6SwWDuxrmDuOM7xC4dp34yJg7FxcbcsUn7Vvk4zXjBvSYxnmqrflK/GJsnRxxtUZbuj0Y9xwWQWUJovSfQDolCuONs/VndwkGD9z+nrH7MHUXiWW/tdv2WwNmMLLgl60tuIXyHLXFzs7LpvIjnpWsr/u3EzKfnHzOblZ2dc69y9u5gOklSzr+Szc0PlLqQ8E+t9uZ8zD/bK84VP0ZUhmTsfe5eLVOt6FP6t3jVmYn3pCwu8uGxGxIiGMz+UmynqbGAltRV//iYM+JPn34IZTOhhO9B5jDDYTV3Zuxo0MekI7XSRXVoBys4Dq4qZJVj5sn9OyBOgwNb22RM9G6+Sna22Z47Mf638X3ES71OefEp8B01DJu3ITsItvywLPI3M1bMryRG5WMfeV3ie9drv8Nr2tDcI9u0eNphBhLb+QRSyLSdkny85axdS+leyvOzd32reSfU/7HpH94maN+ZTsgX3Ad84NPhk3mQ0HSfzL8kBcelOfZoGwuKGA5bXJMrciAt2Vri2jrJgdwkMbrjfqzZYLZRi1yXet2pfcKWGMstpx8EeT352bxgWj7nqMK+XJ3UdzE+wTwtyHqme5Ycw9Oa5OcpPVexc3O8rTEYl1mYTMZVf20enuN2DWLpzsjjK/EHu6bDxk8XmVG3VShukUNy1OUJbgWT+VtuWFfXSu7OqYxWfk6iO4YYyRq64nk5WMm3ruIW6mMfdJ06dfa3kuvfAds8W5Vf6oXkurOMqOP0v2KD3Lvkdkf525eU/7vrh5H9mj9L1zs0rfAzcXqtvagMEu/GXoYLuZ7aq1nM/b+w9tu+2ah6AtQ1KoW5ZUyo4DmSKrNIApZaGjbK63DFcYI+Bf+euDTcA+ENsHOtr11IGdjTFpqFX+Jpiexs0wGejc2ESp6GmgOlfBf0KyV7nhgbnZK6ynydZBr9kbMGVczbjRFos5V4wRLo4S/9V6oYYZE8wl5pyeDX0ZZ6tbSLbYcNwuDKePmz7YVmzbiNl8oiw7xEn1U2Lf2C4UW4sbBbR/QLm0MXVL8kSQxpyqQjfx3HDcSK3LvTN1rl1EH0Su7LMJacxt8gA3sV0UrpRluV04rnZsG3GjJ7iRO7gJ/pMYr7BG/DmTfG54p9MLn5i1HqFfG5KlO8vRwBXZWNV7yT6C8VWyX9zMZb+4mct+cTOXfZZ9MX0W++5KfUCLOhiywWRTE5bsbAxBDEEtI3XALF7eSvWjNqCghaBSytp1XKqNfhlkleElRVXvlmC0AU4bvIj2uhQNr7eXIFpB22gjYIpcPZ+bbl+DYnJtENhhev89zo0dZx+0cAyhd85/IzeMsZUJXHluIkbvA+efoKfgYz0A7zxomOFrLPJiHokxWNLoe/sMhcUNcQd198Edl9U4IR/4CXuRt5eapDJg5UbfB1zSP7vgfVknBDHmEq7accaYcjXjxte7RUwTrobV2sF/17mJ/ZzHyP4zD3iu3ouba/77tMm6sp9Beu12+cBj3r4imzSyl8heSV/cvF72i5vzZb+4mZf9udl3twobgKMNNux7Ri2d2lyEB3LJgMTprH9pkLGp1RDL8uCU65r9pWyC2Q2m7K/uQ1mF2DgK+1BPv6udyY7pPm7ieTNJFfVLXuoER//dz43DMvjAVwXIBf/lNbDcjJuIceTKxLJ4ZT3SipUjUY/ntf+hZWxTPVS3pGeqj3ScaJDsbOmjNBOYL8Y/8bnVG8u3uNE+Ocn8nHEV4sTlNbMvJt5VcGwH/ektQl25/65zM581RP95DFq/q1dOvA83J/33iZMAkK+ljA+mw45zll+ls7Jjh/5c2VX67LJf3Pz6cvPe9n1xc1z2mbJZ2Y+SzdNN9lZLHPvYrvzxRfY45hzz2mXRJwyW93eBtU1+VAU7kMr28h1g1OMwDph5clTQsH1utzMtEttWlg3a0xw9I3vIDQJmdbLxjYJNeBhZfhWOhND4eg2tyR5zA8eNYieMZQIYY4NloQrduv9uFWMmywPSY25m/qvcUDmH6cg+3bFJxxh9YAzm3Oi8XdS4kXrOZGPc2Ow6xlz/iHnB5vVea4/MjarH1NH4euxJn4ubiWzX26TX3ETZaq9xs0PTuDFO+MmSqjb/mazXe85/8Xxm79p/Y1luj6NeOccNgj+16N3Fxyu3k6/0vull75hJvCKcucLMZv1XZBV+UviesvdifJXsFzcP29fW02s89z1w80G+/y7j5oubU7KLJALcNhsk1aoUENnb0Ebrvz6fDyKyc0BfMtTqspcx6qCrmSHAzcrW801vHMgiDqYjRp/3dBX77F0TXpamZkCF5iaCCoC5yWSX3ByVDdx0KFQC7V0WybiqGKPsGW76Oc7v7R2X0QfdiB3ef5JydYWbFVe69t+BrGW2YEhm/5qbJG6cLPtn76dVIVt/d8jJVhduyvgfaY+9cVtEtfMtbqwYvd80kWWu7MwpbiIu62/q35uVSbjaNuqfSNb8ty385/Ue9xkpVwpo4j+JZR0O/m3+01PczPy3xbLxevQZ035c5HtIn+eJmfAP7b28TPJ3yXLZJ8keYRxk39m+mH5u3ITH8r3jfH3cFBgl78z8RHEjlNcP5OblcfNdt6kL9n0UNykxx0mw1/ZL7aTVFt9mWOXHJ1L2vorYO0OtlKK/w9Q3R9hAAxcJ9Uj55XExVkszjHRegL7ELrdXA9VoPPl6MGA64iZiEpTJTy/rl2JRjb3qetffc7OSXXOTYUSru9mX2KvVf2VwHP13hqsZN4/5L7PP/+oyFoPF3LPc5JjV5dl2q7v6SAKPUa+AMB1xk3NF4ZKcU//kpr63OAz+o6yAVnBe44bz3mrrJEeuZFN0r0xkD/035yaWVeOGzlkb6ByEdsEmxLqU6jnJTeQ18x9gTzYj+58rfS1lfChpf8G0bVOL3jPEPF9E2tVL8rKWRyaLtWzo3J8ve8G+u7g5wPhz4KY/24cfV36euOG7bb3//KC4OWsf6ML969Km3sO+D+Fm/3zc6PVbkwLFrfb7ivEpS8/337EswnmW3QColjvN/YlcwdysVbVxqntv6kivkjbWm2HqiKztAyIeh5PlnQshU/uOuTngVYH2Dg0ArZM/8ryXrVyh4pKpnqvcxLIlbZULfh8qyu5L/7Heq9x0//Qza//1utb2CdVlMbgBdUmaLGURZCOvc590jK1dCE7zuuaGMY6+X7cpyie88lLUvpPhrF2sufF6728XMcY0tAvm8QxG5uZMm0rbRX36b/nRf6SX7DvDzRn/fcpUL2c/h/TapYx2K4R7MO4Zb5zXcD4MIqJsLOv0PFH2dkX2on1f3Eztc0sGX8SNve9hsiJUpnWa0jpGBfpE8j3j5ghjK6r9/LN9/0nj5lPYd1V2at+Lubkj3SQfvLAqny9X2wyK1gNu2dHWdxbTWpGEvLXJjdZU5nrzfNerXVb7Uid7X8fKqqC9vJ/aK/2Itjfu5SQ3OVcRU5MljDfRtG6zSiqGurM3cXXATcQcuHLcAG1Amfov1LVVf5Z38Yi3U9ws/Ifcf0B512bpv8T34POBm8ZjJVcS2VYWAG+7ciYWMvtu22rJHdoTVGsXrk1R4S47xsLltiza/Hm2XVicZLwul5MeYWSulu0Cp/znZR9vy1vWLsgnzn/wXHHFj/vvMyft17HvPL1wV0YaqEKQb89cz8WyS9mzZfVJsvdgfMS+X19u+JV4Ky71Xz2QfQ9u7POfHZMG2fLbML4ibjrGKttv9ZUi6GX7OPXnFTcPy76cm3e276BdUADBx/a1ZG1FGpd23GOlL/nUskWA7zBb6Wxr7/ZNrHam55svpP9sZkrU204Nm2RIlW96xPSWsszOZnbD9wcdY/kdfXKOm46RuQIU/C4Uc9Ux5lwVjK1HLcfKNojnuLngv7YAgmRX/uvLVdEBnOaGyjII4ir6L3LV/diVlycZXdYwlTy1ffSBdrumBZ94Hms/HWLhqn2CvQzWB9m8XQxtStoi1uIDpX5g0pad75NYABRb0032AoSJ7BOvx23EYmgn8XnY33CbwVG78JOdmf8iV+e46bLWZ0BoYxLiZtWvtS6E7HP+gwC69l/MZ2W/0vull0zMBOUOgLagLXcdbJchAOgfWdxb3pedy27bkSyeJJuVPSP7mH2/3tz4jqP0Mb0j/zhupH0kUgDqlU22Qyx9pnXnHxs3e5X1nXXtwNVqfT439sHQ+2Rzbt6zXXxk3NzHzQzjK7m5njbZqXGo//BwyNs7R2Zjey+qYrvVsgrQwJraJKjeZl3lHcDePjCt1Q9KejOM0vO2ulTq7me7AvUJACCNv/KEsPtpSzGaXjtaMQ7cRIzMK5etXNVb+I2bXdvTuz7k2sMgd3cDzL3q3RWAbBNucn8KFLIZV7Y8LPjPcTXz394HlAAUe9lRTwV16U3CTcbj6D+I4tb8R9xEjI6r3pff0PUyr/ZUmZ+9MM9lUmI+GeOmyxLmtF3YQDz4gOLTWBPDLiMms+mGImvfiRMI9r32Ce4m04RX5/uZT/b2hNGw2STDjvWbFdqejA4+aVzZqpQZNznGFjf2BfV2I6N43LcLn2+Tt9imBv+Nbbm1C+fPrE0VrvgGL3Pjo4v8V3FM/acW63P/zdvU506ix2W+h/TCzT8A/kClNc1+18DuRHKeLihHsm7sYAOhUsC+Q2J3uY70Oj1O7xxjKvtM+54oO7dvlN2ogb6Cm97r9kF873wft++K7zcqi3YegFro0USDLkQfGTcbyXacVbZdGPB0bmLZZ8TNZ24XD3FDNxsyWb74fhZu6vDzUhIp75i1AZiNEaRO2IA+wOIYlRqjddAjG8Vsw560owbRb6PeJp71SUcpW+xtdak2DqwsID3PO7dp3MlNO+bGMLV9tYEcD/ykTjK1DoqlceMwZVzRb2ffxnoqb44rNAwCQGr93HeVCZDZZnqj/yJXwX/GjRIO5kY8N51H6/E75hg3jGnkSpfcsP8kcuUwsP8Q/Gc+0WYfBG3g3ScbpRbjy/uE4oYwtrpmvEqtVxNuNt93SOtnUG8oEqZWptoX4uR26xzsGjGFdlFj18o2nzSMSpOy3q+o2qqEKjvEwqRNmeykzyh6zfeVqxgnxFXZGp+nVIZ15b88Pk/5rza4PfrP+uPe8eFWZUdugv9Cmxr8Z+0vaxcz/xlXFlCfNakel/kO0ssmZvZ4VdpX0ynSkOUBUNlDWbo497sCgAW7yBm9ZaDCehHzE73WRN7NvpfLfjw3Yj0taJBWe3Y9kH0vbnpp6hCsU2SMkDbS+Oi48Ri7rtLpfz9x8320iztkV77HSs8LuSFcl1K9iyttFFAHZ+F8y9ISTJEyeCvL3wQ2efB8oA3G6tCm1lYH0PU4pGy1rk4PxSjxb3pbmTbglSYr1ujtaJs5WLxbvm8H3zELbIMFqEy5gOztUwAzblpfI0o8zfzfMQKgmyf+fRZBn7B36jsXTXbCDRPTJsgpN9GfO9lvejoO/12xMW5G/3VurvgPFq/GDbuEIqxV4biR+qcM2wffD+2KeZSQz3jluKGyHEfw73JtrVqKn6kPrH8m2cN2wWUDN2SnSH3P02SFZIuRnpvYpqzfSvsM01uAt6f8gtCman9EstYOSr+I2i9e918Zs6z8V+0VXgLr46a4ti77rOOcU9wMefZJt5XbhcNUVXhe8bmTAvHb799ret3EDBbYfDS+PhnyoUNsbU8A1VG2NQVBW25RJmW+Yaz1RoxHmHu9z7Lv88q+hhsgdhJ8AV/Lvi83K4zxbtOr4iZifEW8frWp8/ZxP3VV9h3tuzNtNmUqo4k6CIo1R5vpmPS8zMrW/r7POYoOe3psVdgy36jDXVsSvTnOgEMCRgH6MkEd7LVt4AFtu+J5+7QNikcv3IuxDAA3s9vqF7gbz+2j03ww9d9JvWA7dOQKxHvCVXdOGfw2OO/uP+1cDZjmsvYR4rLMLHJxoPcAM994sPgp6uxpVJ2YwN8A8R9GNoyzNrVoowmvzUOa2Yt200PaNXF8essWdcGAUXycDJhJrk6xahW9ZqurcKOdN7antpNbimqBUY78F7gK9hk3G9l5hZuRqyTd4b+v9P7pNe+YiUJoatuunxD4zVqBGMgSjlheJJMtncC+l3q2sK5X5B69/aJ5FeMj9r1OtpT94mZuX6z7iuznsu8R2TPcfMXNzyluriYBcJO91eLe2UiWD53H6WVFy7Kfn7QM/242ykB5ErSJLc/rzxx3qrfr4GvEsd455qLBv2NUUsOMssxqFzsvDpOzT674cIUxvjdT371DvZ5qkX2zMvXOUuo/xOvp/fHNg2LDpPa/Ajcp3CgEWuPmff1XrO72Stu4IuqN3HDeMCOUnes9g1Ha8jwlPeVc35ZfMC6f7ZhM1mLuKjcBcx1kGSbPTX8aW55UlffN9nak/DJcfep4Dzf9nCroXcl+nrmydibQdjNi5j+WvcRNxGwf9ib/aSu118m8+W/NjZd9zH8irAdOz6dOX0sZH0tbe3Zb3a6okzXO9/P9kSsoHA9ktZaSHsSlArujcaz3OsbYZD5Ktplm/9wlq7wsIHLxa8YN6ync7F/cfHHzxQ1xcy3ZO2YI/S+XAHiJZswjnPNPyxVAX/LzA79E0fTXnwIoFPGJS1vGNdioTbDUuuMMRjSMfTkgL4FqfqhQBMCmfWC1wnTETcQIqONKHMoqK7ZdegGkQBscGgW5/xjNOW5aWQXo8eawjBJCMUpf4r7uvzk3Y8x5WeOqvcdYK98O+g0VrQ9OpNoVfdLR5xhB6LJ2gcpFr7CFeP1h2983arTX1Z/i+Zi7wk0/57mxmGuTDyspqO9I7a38Zn1O8gS0/7rKDfHalml6TMyVVHI26Rj5qWz0X+fhAjcRYw9XNre9I1m48U/6M244gsa+6nx/KuibM0WuCN7nTd8FyOP00nfMSuq9ibtIcMMA9dvZxTKTrb+tI/ABSxeWA725Hso3TEoYr8hG+1ayJ7iRx2QHjB/KzRHGj+WmHNYvbr64uZub9v7ARPa+PuMTcBOGIGcT37X31Shc1uUF/v50P9cvCX0JUufcBp0Y7Kq7v9uYw18vElysW9J8xEiYxOoZZe3juXazkJ+aHWE64ibiKFwRpon/24Sm8mXvaSvxl/vvOjcdLE0UpeDsR+nJbRW6z39zbsbzgtF/iSzpMeyNbWGOxiWoZYOIA26W+cZK+eW4IE6k29AwqsBeyOG6VZmxNTdIz/UktcIxbgo3/X01dTE352rFRcxnvHZORq5K7VvbklTpZG4fY+rnz3Az2hfju7/j6ifVTbZ3fBNMmZ4ZN9f895mTvOiJmYj8eQD/CIA/AeBPq+rv1ON/E4D/BYB/H4D/kar+F87U97onZnaBVsvb795IjeJpfiVbA7fn+0VnWD9/pHfQQ3k8Knunfe8k+1puNMh+cfPFzffNTWrfz4GbOy6AAr+jYKzbyij9Luc15PNzNmBpO5FKXbJIuNvO2AIoBLzT2NRmjPnmhynG3WFqT1HSaxU9s6gFpFbWfCj3cJNjbEvJxP9t18wqa58hUQF2KRtEzMpaOseNphgbVw5Ttx2oO8Up6tIvSa7ra//NuYllu//s2Hk93V5qgk3W7Fex3fjsiaAk3MDXteK1ctfjxgb45aR7aobOGxB5LSi2qu1MzE0xCoa46ZhQnwoxV7FdCHHFOrtX7ok54bipFfNukRxzesJ/nasL3KR5fz2d+6/KUr9mmNRs7NYccDO2i4Y58d+nTq8D+FcA/L0A/slw/K8D+IcB/Mn6/6n0onfMUL9jhhZs/Bu4lr8uWzvDq7K147oH4yOyH8aNor3o+sXNFzdf3Hxxsyp7NYmgL2Uk+XFggHTQkJUtq336cEI2vxTOdqNr+Vq5wt6lIr1yXm/EOGL2g1PeFS/q4dlN+XxC15zdrb4XY+QqcuMnWr02+8VcXfHfCnM5N/df5Ool/sOB/47qDrINkwI3ArZDL2Eeyk64AIrftwVX7Zz6yu3jFg/xmsSNAHW3wdrnJGXb7A3MlT1HWk2qT2BkPTe0CXj5tEvO5bP9N2Dmuu/0H7TXjTpRfA//fSWfVPVfBQAJBKnqvwngfy8if8eV+l64KyMvA6BtRQHAArz9k+QfltXrsuLv0/B2xedkP9K+O2SbfV/cfHHzxc3n4ab++6m46V47n/qudvF415fl5/VB/Gc0Cj5mraeCvtd9u1vvCjMNiyTkm0SXtbw9maivlZzQcwWjNgAZJv7rMfVqbvIMbrJyVWfD9X36DwvM/jdNKQTtRgig9T2rFf77fS+HvNbfUv5Rm6Fp2Pb+tN4jzLwJSM6jm1JQFeMzvJWeKxj7k9t1u3iW/873c6P/IlcdpMAwzbha67qf1xcnxXxHlu8svWhipu2JmeVLgFMnuPWALwdi2feXzctmeT0pO8f4iOwXN1/cfHHzc+am2vNEbh63r5+/kjbaldGqUgX4PY4hz2WbpDoYIqMspyi7Adjr94kyvXPZFcY6vVI0fnkJ6ZG9G8qSwebfu7nxmMzeBiuMs5ayCsgmj3FT81P/Se6/le/LLnkHXF3BaPZC3T4/p/zXZM9xI4Ebezoy+P6U3qOy7HvtA/dEVgImaCHgqn3Hbeqk7xXtqZoGnE/1fcoV3JM8Lpv5DwrodtF/F9pU61sCV6n/7JgWGwau7uJmLP/ZkkAffcfsD4nI71D+t1T1t1r9Ir8N4I8kcn9RVf/yI4pjes1SRtQlLdLzWn/YNSPNh7L3y5amd0o20XNa71WMj8h+cfPFzRc3P0tu3tu+e2WvJkFfyng3TqC982BlV0t8Msymlz+2eujDA8xumaCgDzbPyBp+Le/HlcGf3MWN06PjZituWdKCG1DZXW35qdzFzciV95/jauK/WJdxZSUuc/NM/wGI0xfbgfNQL2V2KEC+P2wnK/vQ7bFkO5LuidxMz14Huva05opsjplWSEhZtmuyw7LdSb75nrl6wPdA4Yr7hYbpQJYfkO160X8n+xsrsernBtnAVea/U9wkej51emxi9ldV9U/Nq9Y/80jlV9LLljICCthHQGEdWw+ZVV6g0NOyo55HZM9ifJXsFzcxD3fui5svbr64eUy2DD5wZyp1SZl9nMPZBjv2/oeXlQNZ1CcRJtHP88Ak8BEwaoK5693bEjCWFdKLqb19u/+4R95ZbqZ6BYNPZSIbMVp509gmiie5ueI/VMzH/utn917iEjdz/0kTZ8yRm5ZP/OfbUUEmbXv/uX0qAlt6LCBZ1CWFJ7hZ2QeoW4rav1Q0t894tYm9qdtQx75nfR/bVDtS4pOXNsvEvhI3xAUt07aFhYz5DDcRI8fCxufJf6PvexspXHW+y58D35/ob/r3efO2a9wM/nNcef+1mLunL6b8V3q/9JqJWb1g8B2duHympHn+iuzwQc4HZFeYHsH4KtlfD256+uLmi5vzsj19cePP35fsHTNFGy0c4CoKy4Bga3JlkHDKxqqHB4NtaKgaSqv/HTFaXaRXAqah7IGsDeIV5UPYqgr/We9z9nm9e6mrWXqOGwjQJpnouAxN5/ocN11P7r9pXYls56og/ibAm5abHte4iRi7DySRjf7bJv5rIu2JcJ84KOkZufFcaI3PUq3lZ9ws7KvY28BcaLKtaPXO7ItNvH3flGTXvKKfd7/LZKPsnGrnir17bI9p2/VcNUwT/53CKMRVXdIoif+2iX0uAtl/R74/6G+ktmVvd87NmqvRf2lfdfGa8SnTY0/M7k4i8vcA+CcA/GEA/7SI/Euq+nfVc/86gN8P4EcR+Y8C+LOq+q+s6nvRUkZt2yaXfL2I0J2xGb3xXAmmPliwfCobzg2yVnc95vQ0vTlGzh/qiedXsniAmyY71j3DeAbz3PYT3MRzj3DTZJ/AzQk9ZzDPZSvGJ9q35LXZd4KbR+yb6g3nz7Spu7jJzzv7phjfmZvoezzAzcSGqxgH+yb1DtxoPflAEgA3eseM3x2R+v9OZXsi7kzW+Erar0+eO1VgEynb5gvaEGwvRWnw7zGWY/0dFNZrid9HUicriWwf0LHtexmplycEF7lhvZZE5tx4jN2+Xm/R9GbDuEpO5j/Os3123r3j5rgK3JCNvW/bvSyANwA3bHXAOXLDvOX+6/HNXB1xY/Zx3YLyZKlxocV/O9C2L98Mo5R/Zm2/xCfq5KlY7rmRwE3uAxt82y6WQrYaJn7K5OzN2pR22X3gpscry1qbMl9rLW0xZk/LjJvtiBuENqVlsrQnfFhNmayS//gz1YLOmVDZfWJf2qac/wJXwT4duIltSl1b3jjWtfTRp/ob9B9Hvs+5cVV83qR42eYfqvqXAPylybm/7Wp9L/yOGRCv9hJWwGaPeyHwHzutQejuhAKIO4u5y5m7q1Vl6c6btLt0JzHS1dwuhAj2HWFUUtPuduhFbnzt1by6pCXTO2C0c6bB7r4FbvQCNy5PatE5PsNNu2iKsWkZbZguccNlnf/qgOQkNynmVHafy6b2dfwr++TQvj23L5ZtmNf2KSSPT2dE4vusTbX4XLTlhJvYprL4jPZdbssUn2e5Yd+7IZ/sdUnMBW4YY/NfaMspN2uMHFfG0yluVv3phTT2+zb4KPmtoh+WKomJ+Vix3936UdZS2YreDzCU9SY29po6rv4NKPZD1MuYdmqtvediBNK0+fZ5ihuyr7i8DFpjvz9ywyg0YNKGxs4qned2pdD6jla3z215D4Uk7WrOTRaRnQ8FsKlAKZ6NmxjNnhv2n57yX+TGfm+Q4VzTXIO1LxnsTEX7EPTyXRvBXrZjJ246JmsDWfu1HQKtqnIj3MqPEWg2zNtUn5QrbuplexRYGtsU12a/NwG24a2nOTexTRmvttzS+tiIyNubtKnWVkq60XuZCu/rjJvMf/bUcuU/w5/3v9y2C74W+0tuamy3WqpeCdzoSW5CXN3b739UetUHpp+dXrddfhvkjt2E5a3DRDhXrgI+aJ1suIg7+VaWO8pedqU3xQgLXoXUliMudgnTAmO/MyS9mNzBTcyLdTorbiLGckxCG7zMDZXtXNUyUnXgHDdjn3Ddf2vM7L8r3NzJ66F93tKVffyR3Ll9AC/ZiGV9mtgXVXB8ylzvUVvuF8Wz3Eww1VP3cBPbMsdnVHC+v0HXdUdbPvLfPG7O+U9xgZsB4/UksIEYD3Jy3dZf8Xsb/DRLnG/WdXF9dr7c1W7PMejuspu6BhwKBL0W+1yWh22e9vjkzwZCdkTbk5aoh+tymGrciSvZuZJDbnKu+H56e8KIUY/J2s2a+Nthank/oUQ4P8fU0wbF7p4RjPVw05j5Dw3vGa46juaD1L5atgKw833QG98m5D4o6Jz0Q6ojvijbOVbwQF8x+g+tXG67m5wSJteqNCkb6jWflCdT2vBtivre05ybERPVnbQDvoF13N9UTLTkM3J1pg1xWW2FZv6LXI2YANSbBt5/YxzN+5tRD9xNiSNustj+tOlrYvZYKk8QpK9nFtT14jxY8Hm/7LCea7JWby1b/3WyViUEqjvsue1eK1jqdbI8MOplaQxRBvmDfQFToqc/SxbsV7kJGNtdlspbXKbTZXWUJb3t7qnULX31WG+GEeSj3H8Lbhzm6j/c77+MV+v05AI3A2atE7wDbnL7JNiHU/a1owuMm+PiCjcIZSkWTvLaMEduBG6wcp4bHzer+DzDTY9PzxXH5yE3Tg9aH2EC67YM6jNyn0z9l9oneZ8YucJF/8W+6moSW8Jur7c789OlcaZMWsbLctkoW/J9QCMwv5Sh1y58r5nijuq230IlmNvVUqRuX4ZZcbOcljZenjDUuHIac3tLwSRGZSx7DuPelnGhctWX4EngKrdPiiAgxE3C1ZqbcUnXjTDxRiQR08y+Z/mv18OYJ3FjbZ9qs2H/aZ+oDjz29subaQQe612bG2mx10cU9jy8s3PkA+F8OpaqvA72jdz0J7+FHUjBa+XPxyttpV/UeK7oYu53kwyYAle+f/VcXW5Tw/hv9N865vrNm75zpLQp2SluEv/NuYn25P3PV3rf9Jp3zAT4JqVbdY9kZfcNYMgrzfR3N5j2j3ZRLgxV33Be93a7UYHS6SuXTfS2/N4xWNmGqQwgehCXHqx3ABHTqAck65YMnOGm5WvHUjsD2VZl4SaVqjtk83pAZUeuDrg54b+z3PglA9rOXfNfGLgM/rvGzXmfHHNjyeLG0kanz3Lj2lSIz2m7SLjBgLHnN5XHuLHHxLK3AcZZbnrcBEwDVwfcRIzE1cZ6TnAT+5+OGXVJyxn/xTzxqoBsuvSf4yqpd+o/4uas/64mAfX74WLvl76hcb2rYot9KihWAFdPzEvUU/Xv1X442T3Ioj2VtHeZeoyu9fr8OGjvUwtARPGt/t5Vsbk3vfah3o25CTFquM5wEzFujAl9AiTal3N1Wbap7hpXrzcYYvQ8NxFjxhWAemOoW8oDSqDfdJCEq0f8B+PGlQ1tA7793qrW+PrLKb2uz/Ht92aHULbaZ4w8QbeJRveJb7v7gQ+GfBJzXNZ+jFxY3jDpAhO8PQOOBLPjimXH5ZcOUxuLlH5paFNBzxxTgvHAf54r+H6/HbvK1YE/E264z/D2jf77vEnx9cTswZQvRemk8ntkPU9lKbg4KF3Dr2cyWR3uE3DZhV7GG8t6IAOubcDk9ShNNkJV17hhuQNMNtgQV97b5zpc6lxG/42yU4wOyDE30T7fOV31Hwa8GaYz3Hg9lHfYznDTXx6P7PI9rfP2xTal7eIzbRdkveH1vh/Pt/y93NDyE1nIzrmJmCJXmX1H/Y22CTlji7avueH8PW03xs05//F7FSPm0YbxvI7nppivJ3H1C2wy1J6gt7pLfmt+EMKGeoSHHXZvt5fdGi887CglypOgaL9SXaZLxhgliYhpnccUEyORqV+87FVu5vm9DfrGBVwRa+TK/Mf9un/ed5abs/7rlvWtFQZutGMBtH3DSy5z4zH22OBS6kq4vh6ATX0eiZsuxbI9XtsTxcBi6Tf89dUnpUn3fdzoIFu9pICIl+C+dxts7O//9ZUU57mJ5/zTHqV8lOhl7KmUuPP2m5+bXvFffxsw81/hSmAbLnmucv/1kt5/93ITfW/vjWLw3ydOCnxNzB5IAsW27Y7DdrfNAnPrebd8RnxjKfXxZcS66tqB1s6Zlx82vW1XH2oQQW+OEUPZiCvDCN7oYBvttXX8ZdBAmM5yEzHKyA3nexdTfwvaEqYBowKyUcdyhRuXr2UvcXO//6bcRF7lAW4Svde4MfsS3xOmU7wu7BvbRZSdxFz0vdF/2r4JN2K+xwnfn+BmytUBNwnG0fcT2YSbvG864malB4P/clnTdoWr69wAvvzZVN7h4OnQjv5B5ToM2zDEhz1piEtzVlxL8IVbxlMHOSpv4MW02jABXHNcgrfWuyrblxe5oZQWvyoEIhqmqmxP991j3Bga48KXazZoHfSJ4o0wddn6lld9OuNWsFzg5gxXHRPaALncyOw3Ytm2dj2V+7iJvBqm7rexXc1kFT0ed75xdDc3efvl83tbEmu7DNb4CXFTfstD3GSYoQC2voyT48YmZYaP46brLktruR3cxc1Qb7+V0OwXu2HSuQLGZa7SZO/nxskq+j5V0pcnxnbfd6/cm/+47sx/d/VVHEfBf1H206YX7cr47PSiiRnwTRS7jMHkvm4O9KUIwNCAY4e9UdlN+p0EhV/2aI3BGsemaO8wDEsgIkYZA95hhG+kUfbm7FOH2c5B0Ts0uYObiDlwI+plb8MSJq6r36nZa0/SuLrKjVzghsqWJQF6yn+XucEVbsaLsZNlvQk3TlbiMjK0tNXesflege0J9rWLYpC1ZMsCO0Y6R5ju4nXBTXn3yOdNudupTOsFNHLDcRPb8gVumNdybhJzXHDGTdAT+67og9YukrjhZWFn/AfjJb5v9Cz/Bb1X0rc2MaMJgQQ/uLZv76TQecKJ9Fz320a/e91SlwwK7EqeyZrNq4FNxDTDyPYK+pOzzmW5AbEDZYIt/v4163cxegc3lo99deTKdlncFZB2R7/3fd1/pY9kru7hhjF5+0auuv8W3MhVblivDmU5f2NMJLujLjGE8Wh9quT2kOacmwPMZm8tZGV3VepXbAfErvdWazNbWU+/Csy4OYFRyhhmG+riDW/Kk8xM794wjVw92h75+aWiLDO3DTYAu+ZTn1Fxda4e5MbyArcU1bhqsu3d4oLHdouMcbNTlN3FDfmgYZISu9n7dZ85fe3K+GiyR8Y1CEqn2oNeQCfrv1wWC9nynon1Utplomw9INJXWbdOQ3K9tZ1QnV4vtdtElu2pT4iiHgAqUncp6tgHbhYYj7jJZUvH1KYhjLlyVTqJvb4s+57cUOGl/wCIOP+9HzcVUZP1/jsdNw1F6F5bZ8j8Padd9EU0dtc0iTlI/U18V1AKE3kur35pXtDLXNUY4MnRs/sM0yvSX7ifxhwE5r8z3MR2MXCzbBekP/ivb44x+s9V9CA3qf9wPRW5vbzb1eq34U+P0V666BWbNdrwg9ogl7U+xHy5oS/HESdbBq2NewC8ZXjRyfZq53emtwWCVi6FygpQN60oT5k6e+VGQ+HDPpjbJ09x+Rk/5/B6rnIjldcymap6qs3+NYNi1q2qVJRlgq1xNNs19d/ITcTYuRH3rLDiIllJ/WdIH+Rm8B8qJs6PPtmCbG9XY8zZpMSNNdRMmHGzwhzsayUUm2zou6hyzBlGaZiE9HgGj2N71S76m5IhbsRw+PbJMWdt1zYF2SB1xZQ+zM2NNNmNv/5h6Xmf0WUe52ZYMqpCN6e0+0eK/xhzjzmy7hFupmVBS2TNf/f0/F/panrKxExE/ksA/lsA/rCq/tUzMu37FdZIpS9Xc70EX7hbTOixrF0oaifeayy/tAb8Bum7y4V6Rz2odzNXemcYQbvy2J1sL9sHnjbokwM993ITZa15K3XmXda4EhVo67Dek5uq99B/esF/93JTzm6iUCW9if+O4oZjzpYMiLOn5zNurvPay/L3sNh/s5jb2AcH3Ejl5nrMoX6Dprf1Wcy9Jzcjph1t4wM6zzEX/fd+fYbZbhuTjH1kqT733/O4CfbdlRQ3eQMat+xD7usilzmWjlP6OduIgq4vPd7RdmD7JoI3BfVnwd8Z1yu9aXx3H5YQfqt+sc0irNMrum8og7ndBqopN1HvNW4AoWtvjXfCYbujlvi2AXO9JSC1bGwbbbB2lhsr29uGNG76tcj8lfsPeKtPFp/Czax/ovOZTzpvOs1r8Ke10cLp1evpGfsA27VYsKcxZ33qFngVKddTPcHNlFeahFupHjf96U9vF2PMRd8bV8/hhmKbZLeDPmN7Bjfw3Fg/YW0KxE2Jstx/ncvncxPblEJcu//U6euJWUki8scA/FkA//fzMopvWw/8EhAKt4RJueECJVC4Y4yyaJOK/j6SAlrDj556ANrugLXdmkSCbKYHIYhneueyvWyxqm9h2zGVFYM2MZGlnmLfSu9ZWaX3VfqlA9I7710Z03tyQ7LmP6s3+E+1LolN/PcINznGeN77D9rXpTfZ+qssNbEL3zO5OWNffduo6ulr57VeE6TF3P3+u8qrurGvxdxeY86a/a6M6T24iRjr1s9VZ/Of46o+3Xg3bqJ90X+1PV7138PcwMleTSJlCXtsG9Zv2DDDlvJJPSXCX6xi2d53gfIb+9ANxgxH8WHxrzhZSfUkegV9AJmVtf6pnpA6+ETl1vqNvdJR3qUsdRW3C8mSniO9K4xa4xudm424EfD1p/eprd+n2h7ihvMCQPe2WyYEuDE3gMPY/Wd9BvnvEW7Q+5zCld08LUc2jiPhnTFHjI5Hyts7b6d5S+VTqgAAQQ9JREFUtevpPbyC+g3ilXnMeZ23i0d47e2CeJXOa3sfMPDa+rakXdzNTVb2sF3IMFbc9cncOIzMVdIuFNhqn9GWfbbrwBO5SWQ/bVL0wPnO0zOemP13APyDAP7yFSH+VlDxvlpbg6IGl7BE3y5UUlkqLCRKgSUtYOkxtdQ74EPdMz1zvceyXEBbh11hBsy9w8xlxZU9r3fU02Wt8wtcVZ+4d5XenRu2r/uv9elVVqUsTUi5eoAbxtu56XET/Qfip6tRoN7Z4oFlKfcsbo5lxcn2Cwt3zuLqOuu/FTfHvApQ32GssSN9SUuf+FrJ9+EmynZ19Tz51HP1HG7O9DeZ/xR1qZCABlOt4If1GVdTX36psJmeRaNC8abUF1dM9t5GbFfFFwyo3FXemnC/SEvrR6onBaXfoOu4hL/9eJVzmGWQc7+FyypEaxS0frLyQeWMW7tbHvWc0jvBaFy5G52RmzYy89vdWxusc8qBG/vW5Wluou/FYjDhhtr+2n8PchNlK6a2AZD2trFRrYzLY0S7YSCVVyHfT3mN3FyJudAulr7+EF6TNjXhtXMTcWHSLh7g5nK7ME57fdrOCwjmab1p2ZbvDyWYq3ZeKLYkLBm1vHafPrVdfOqkcB36d5wempiJyJ8D8G+o6v+Zt0U9k/qThvLvEJwq7o7BZo0kNI4uG+5eWD8a660XSgtEfhF1JtsG1OC7Btw5zPVmGIG+a4/w+fqPye6JbNeTcXEfN1G2J22PsL2s3sfNCYwA2k5fmf86Vyv/vRc3GmT7ce4cm2z9cauS7Q66KXoSN0eyRxh1IevKXuLmWFZg7dFKanvvoi+p7TWfw/iI73t/08/LwBVS2edyM/qPuQplT/eJz28XV5JA63Ih9Lu6FHymeVdpGzuUb5ips93LKqg7B8T2D1zZaGVZ67xs82HUe6jHfxwWJiaxbI2zeq71+6QHgOtjp3qXGPtxXpSUy+b2pHqF4vsMN9K54UGnKPHkuFn771ncRNneP2mPlWnc6LyuK7wGbrDEvLbP9N3L61HZc7yO9l7jtctau3gGN5ZaDC7bRWy7vZSfTj7OTcsTxtx/rB2Vzfge2P3cHMbJV3rXdDgxE5HfBvBHklN/EcB/DWUZ42ESkb8A4C8AwG/+239fn5jVkUUZtJbggpZ1tmUzY213LgS1IVnjUG15vsOuoA7ABlNK8QrAlk/YLlgczy1wLa+tPTa9N5PFWq8qY655Omeyptkaf8Esg96OsYxEGOND3ATZm3Tb7AOMiv4pzRU3cZtZtvc0N4ls56liIsy7YsnNgPFBbvaJ/5oaqsuO7lo+sJvGzR3c5Pbl9rq74tJxaR0QHtl3lptuT/DBBHO/hlCM1R/PipuBi4QbwMeNcdUn08F/B9xk7THyeqW/aTFGywrNf4zzcpuqevQCNwTjMHG//wf+Hb/hbshxzO5aNzzC1nZnvcneBiU3GqhEWXsizYMKIZv70x97V6O2fUh9j6XXS9V2PfVoe/IteVmfr08ECPUm1OdIvznH8aD1Bz+tVaz0sI6MGyqrhSP+HEBfep3YZ+0btd8PXN3PTZTdy80r6bzNPlFgbaP1+6f9d8BNkLWIZ+mV/+xpCtfDvN5QdlzNeN2kvz30FF6HdpHzyk9FM155y/c5r9Lqxp3t4iaVm8hr4Kq1i6dwc9wuGjfwfequdrO1bp//inYRYq5hav6rG6Y8ys1E9tOmX5cnZqr6Z7LjIvLvAfC3A7CnZX8UwL8oIn9aVf9fST2/BeC3AOAP/ok/rLcabBZaCmDfQY+V6xav7YI8fpHdDWwkBM8iz6P8fkEXKtsf4Y75vvW+hHozvTwZ5HxaFtoKKPpSjsKAvfxvsjthio/Z7+dGVd3W8zNMc246Jutkn8GN81/AVGJjxk2GkTv7+7jJfF/eZ6l6tB81PvpHTo/1rrmJPkCIBeZmd3VJlHWx0n+fwRi5wcbnVm3I8qYrxNhB/F6Nm1424ybGzYyra/5bx83Kf5GrK/4LXJzghvsMOFld9Ddmw3Hifv/f+Sd/v95ouTTA3/0pYET38pkCqe1Jy6TM2cg2gDYwQLm15/oCBBuDbPwb63Z96umyFTtpE4AmXrEt9EpsEHhWz6h3UVY8Vxvg276T9XF2w4qrq9xw3n+eBXWzg1Vd/PsKV0cY42cpon1z/4U8cm56CeY1tmeOmjWv3Fc91i58PUDfuXDENLfvkXZh/aLn0XMTd3l8hJvz7SLKem6e2S5GWbsdBkhsF4GrW6hn1S4ucZPkP3X6dZmYzZKq/l8A/M2WF5F/HcCfOrsro22Nq6L9iRWFwCbWmZR8uWijRgk/QOaug/K8Mw0At0VojEzK+HqSfB0wNDvc1qMzvccY0exXwiTwnzScY5Sm4DFu4opUl3WjiBlXvisXtu8RbkK+4WO6Tvsv4nyEG+a57yIlgvLUSBgH434gbpoFWsM52tvr6e3KlmkETFHvQ3FTW4ZrYjOf0Png1+e3KXoa5DAtuLLHiJLF0XPiZu6/PB/9t+JGnLbjNtUx4aT/YkSfS9L6szLsoPvtAMrSafuej0CBje+wRz6sTmmyoLL9ty9vNnYTfLsabUzaL9Wby3rMMsiOGP2U1fw91zPHPPE/PFd5eY/RYpR3yHucm96DtR0hqcZj/1ncoB2JemZ659x0THF59Tn/sZ5Ml5fty+f6ud6qY10me8a+1orvahdRZ8Q017u+Vo3tlT/zPLPPcnH68Dg3H9curnCT9yG2M+joP1/2vdpFLvsJk+Jr849H01ZfirerpGDDLuX3Zg1E9uFuKYA66O1H0jz9LmeSsnXspaHxrHYigsK9eLnSM9U7k21rWqzb6p/3U2IgYrS8PI2bhGfHVc4NNwl7F8owPczNxH+dqzv99wxuWv6C7JGeFUYtpcsSCcHog5gvzyV4qcYpH1zkhgcbV9qUe/fiUW6CrO2ctaVxknPVBgxLH1zjxlLn6i1wtWpT5L+jGHsgts1/cqFNXUt9SWLf0axsbA/5qQxC6Brgnj5L5IP7xTf0myK9T+zWd1lbjrRJWT5pNxQESN7By2LFygKQ/VB2Q2+rvi6Psc2RjY+lHr5bnsXKRLaed/1AwBS5KvQIdi2fOXgONxbPfcgdcWT+A/oH2AGgf4LkrP8W3FRez3KT5WcxN5R1fR2XCb5vtR37vuRH+4oN59oFfxzZYVIc+P6I16jXdlnVtF1EXL1dlJZ0lZtjjCV/V7vAW6vncW7GNmX+O+pDXLtAmJo/xE2O8XMmBXQ/LvYdpKdNzFT1bztbtgW9Kna17gCAoq23BhTfZMfNLY+iAJFeV+03fOOn/E7nNcoq6rsU0ssiyJIetGU2CaYkH/XOlvYZRjvZt8LuHaWTVbgBliy4mWGacSNB1lLZpjXnyjAKYZZNl9xAvJ4jbtJOSOvStxY13faIsXDzmP8iN1OMj8geYOJOdlcF6LMSg0+0Lwc2e4znezBayvxnf0qbQoqp59XJbnKNm4h5xlVb/tzalBy0KR1k7/U9Y4KTZf+Z3pGrjpH8t+X+m3ET2xRCPu0ztA/SWlkE+3A9CYBvdfjIH1PtiyTLka3FrI4xCrNRqd9Q2JBBEPjBKGs29QmzTm2c6m1ldexjUOKo+Rt+0JvpsbRr2SXY9PQYXevNMEZZXu1h50bZjrGxo+YjHsaxbInnM9z4vML6/RU3nOclW4/4b8ZrGwSnMXcOY673Pt+fjbkdM/tK+aHfX2B07eTQ9/dgLOfLRFjOcYPynp5Nz/o97Ee4ue5734dYn0N9+RO48W2qlJ/5z/KuXVRt7VmePs4Nl/1K759e9MSshPQOG57R5huiKPdr9/qieA+FGBSCHlTiSvhHtFsb+NROTwW2jXWZaEnrGbb2wnvf5abgsjDv3UjrYALG1pja796xncG4i2LjESf8Fr3WUMs/4+N2LtmxmLYDbtDtZMw7Sidqb+ZqkIWdrzMze7z/bP+VvMDetdltkEsX6W6p91/nIfef52r034ybHKPntcfNWtYw948q5xgbh9JaT5Xt3AD1vQLpXuxxNG8XWbz2ycHoT+/XUoctBYxxMrYp+yDwdV4NjQ7cJDEnqHr2XpcrEdtUP3+Gmxhz3n/MjmGsecGUq96mTHbuvzzmvH1A7r+YbzEVt6d2/rt+iS7Q6t1y7fKbw7u3bwW19z3I5naJcLFjKO0JwUy2t0FAgc1PP12MJrLcjvn9u+Z/ih3D0X3t+5WoR62HaTcmqf22dA0jywpxY9dfzg/2NUzl0PYIN1G2NVHatXLBDedBeh/xX+S1uQ99OduKG+t1h7Z/xM0V34d45fe3M26cXgltCut24bghpHqn74Fj3xeO+4eTZ9x0Lrq/RHhf67nvM8yP+J65KTb2yVCv905uomybUc39F9tFj0rqdza5m5sR4/V+/0PTr/s7Zg+n2uOr/Ra0BnuD4raVS8cNCr8YmwdjpUnEDnv42nkLtviF+dIp7Kr05fTeGQrJ2gdC5yt646RNKYi73jlGq9t24pE6eNnbxw658ehe659yw3ljh78eP+Mm5+qGylEddEqQ3aqsNNmMG4R8Ob8RwiP/WTHj6hvKkiTz30ayx/7jITL70wZXK25G/7ENEPsdfZ/JdkyA0k5jK4ydRzVMwOiTvTAhkvk+YpzbZ4M0Ib2eR5JFkfVxEn1SJGxJc48bH+uRmxgLvCVF3h49RuNq3qYA3mBDTvgv5kf/HfQZivY9t1Wb2qTfHvD+G7kZeESfkq79V/NtcjlrU/dcALWjEGv7gOpe69zLTmLKgxriHT1rE+fGh3Tc/cZQl7UBFGqfCqD2++XMdkaW80NZu4RxXtvT2aWsWlRYOxPiBo3vFUYhraxH2gQWaH6XE/YBELVYlRoP233cxDz5r8Oe8epb7j3+ixPkDTryGvzX29zavlMxd8BN937w/ZFs5GbwvdnbnACRyA1GWXTf2zfNrvp+6hPXdq0LW3BDfY1dn4q2vdZyHzdnfN/nKGObcv0kta4z/jvb3yz9t+gHFLvnqo6P7uIm1fNJkwJf75g9kBSCXTeobthRtmUt37dR/OL2Vjb+UOAmb20p407vK7X3IdyFj5Zs2brYujOEwt5ZsAFHKe++5m7Nsb2ToqQn6i15Ltsw1o5Hm6VdtmEijPw193Z3Quuyq4rRMLMebDVfy84wljxom2rCrD3fMY5c2Z2et7beWHI9coabi/6reYcJ7D/UjWLIf7Lmpl8RvF7n+9R/zNXovyLbMXpufMxF++wiYEsz7aLU/TdidLzOfL8V3wv6uU32yk3HZP6L9knQO/W9y+sYr4htqttsg6USN6h6uz+Zm3a5k85V1nabbMQo3idZmzKuZn2G2RfbslT7Rv8Fbq74T9RhAuZ9xtiWvf/4jmfeny64iW3qjuuzCPADdMDZ78p3Lt3nVKjf4LrswI224C9soOcrR3ZOrf+qdQjevJ5CNPUxo15XdpCtMRj6tojDYTQfovjBPi671HPADZcVaDvvuAqYhry1QdhNlreHuJn5z55SpNwA7pz3Xx9cpnqBNvxUlbrUtxTYZO9cPOq/mD/g9bTvz/CKddnP4vsoW07yk7E5r5nvy6RBH+ImYjSu7m+7uO6/Wdk6gjjq52YYjauyFJxWFdzJDec/dWKjvuP0midmCuxap2K0w9qP2xt+2Gy4uGOjd5RuFBC8VMtavaB3unzHG7XB8RfmAZQdyWygVjEVPT3s4+DD1Ys+iLNjDaPVCa2mFRvdY2DZ3eP5zdlk63wt75ddOb3S1xdnGG0dd6eDcDTbrQUaNz3P76j0bynhfm7Asrn/IlciPQ7a74n/Mm7srm+noQsxHzeJ5bz/AEm5Mb2t9hpz1nPnmNk+JpJZPPD9wOvoe6E4FlDMiU0gesx1Hn28Kvogfep7XnobMN9axTL3PbVPvvDZMhrHE/lg6vsT3ERe4bjSEVPlqry7JXndwX/nuLF64JJQPBaJPcV85L9etnN1lZtZf3M1SfBZ1BXz7uklxyDgbgTZCV4uJFYQ/ulUm+DCoi/zoW+/ptfFXZDt+upOeOKfFJivREjW+ibt738ocj0zvZEblm1sVF45vgduGGOtywbBsKMJNwqE69wMY6+U/WdcTblp/2rwHz2fzPTW3Z7fKre73mDvI/aYNtkH/LeIOW12z+zrPNv/V2Iu8jr3fW8bfiXJY74/i5FlT/teuDbve2L3Lm5im2rds/U/hjdyQxgjV8/yX29T2ria+6/KTvo55787uUn9+ZXeNb3sidlPyhvlKn6QN3zbdnyTN/QnKeo/Khxq8X/z3+3xtJjmelZKiW+oTw6EZWNdR8dnZdE6enHleG09N/Ny37qtWz7EdBbjQZ4vRvBcRUZLG34SN8P5NiRB9J8d7/6rS121jpcXXLlIUSFe7QI9iyGM/otcwfsPnE9iDkBdgJHzIsOPCa7Lvu82ZDz2mKsyinZxcVBmvk+PH8cht8929ztI6NInme574/Ncn1FiLteZ+u8UN7MU/VfwzfsMLuvbzhzLDM9ZXs8mxa0+p+XNRsoZPyE/bpN904/NjRfWdtivPl8+bvvT/DR2rI2t+PO/d0j7JpIu9RycG2RL3q43nqt13VZUkfjkDm58WfLfsryXtcG49aHjOy+EX+gtGpXa2yjs/ast0XOv/8Z03mc7MPa/li7zuvK9XmonVtQ2a5rq4QH+Uew+yfeK/vrJGdlDXOi+L/hiWuGidvIwN1GW+7kn+e8yN0ex/onS1xOz+5MC+FVbA1s/3Fovkr/YfgVBX/3cB2sl9PvLlj2flVXAdbw2GK0LiQC8YYO0zU7ZnYJcb99Ie5/qnWH2X++hAUJjpPwqZcuRuDrelnw8ys3IldKHEm3tvFLZknaqr3P1fG72Q/+ZbFmeYuWNq+g/VdTtsXts3GpeoLRr4RGvtKaduGL/reJGGzdFMnJjr+wecbPGaHfK+tbL5by23NhO+uDL8ruc91/kZuZ7Sz2eLVcWXbAsl/UYH+MmykZMBVcfpHlejZvO67O4yXyS+Y/xLf33BG6O/Hc1Ccry9EGXoj1J4/wRTkMTN6ZZtg3p/YbSk0w91Bt8GMtS3vrPs/2iAvhWcez12KPcRFnGdUrWHGaYaOfXR7gZ/Yeh7S/bhvS2Yd/hm3FTlqXVDWLkBuiOb5WDGxQ3vJU528J/91xPr7b9beb7GDcDj4vrTfD92E7O+35b+p5k5bzv+3X6Pt/7fjLnZno9Pdl2T/eLif8e5YbjJvffwVhD+vh29N993MTrwOdLiq+J2QPJukYoUNZVK3YVfJO3tsSm3bVuMmOeLzirslamrXWWt7aUEe1fcbIb1WX1lGC2LkEexGiTgprXft6QbU3SY3omN1y2HCgvvZY1xwqI1heBiwwvM2rvpTyZm4yrtouRoiyDUDvTp0Ssh/1nFW0osm0ZQF2j7souuFHdqYOrFxX2n0zsqzyW6nmB4DO4yfO9G+0+avePQ8xhQHQ9bgo3K98rWE+3p/BoyzPaTlQ6YnoGN76sx9TxlCMCuJi7x3/nuMn853HY2cF/E64e52btv3uSoNwQGXQJpvkcp4/xVfvN8s0C6Wd1obf82tcYBQ5XfU7T4uyoXzRU3ddyJzex7HmusrbRMAWuuG8+xw3r4RjX+v+1ttFPWO+fc2P4RX/Ct21rFtxkb2ONlf9ybs75IOVmkA081xJp3Hyw71uZ2E4O9ZKeQ99zO7ng+8jVZW4ixnt9n/vvPm7sN9BvN5cj1/3Xa3qm/z51UgD713fM7k8KvJXbztikrP/+hjfcoHUAU4NFAV7nze+j8cDHNwiTlWF5VIlPbX8BYFO+L9E7CmusWusa9XqMrNdO9K6Ng79f6ns+7P6kiviMwL1HQXru5SbKtjXRPBBwx7S8QN3qsUEhnsaNxwjwlr+j/4rEkf86NwyQO6wLvEoQQfcn73bVp9JocoD4ZWaKvhPoHdyM7SLKgjYhsaU7e8NSMAOqGyD8bCZSs44b5sbxmNqAhquX6E8sYRcCjVyF/EPcRPs6pjaIc5hQbY4Y7NcTuCFZbknx5l/B1Rc+lfDZ6rJKRnOFm5N9RuBqZPBcEhqornWVPD+d9v1oP1rZcrE/Pu3z95ntaa1pYL3c53iMC8wKd73xmCzN2oaV7v+v21HEOPpJ3F/P1Zyb0d44zLuLG8KsVZiXSfdJSCZ7v/9sxYlI39EUsI3G+g2Wuf9W3IwY4xOM89ysfB/zi/Yd9DzD9xv9jr6P5U/Fa+r7Y161/ervjS/7ujS/brtu/ACck20lfVs5Lzvvb/wkdt7P5X3AcTu5D+N9/f6Hpa8nZvenEsClqW/6hl/Ir3DbyqBsq3eXy5NfAWgwuduDWsuHncUAtAlOC/JatuzgoxFEHRzv4E7I0tb0KtB2hxMo4fAYqVNueveGwzDWU233na12Cm278mpDWfQj1Hn0gV7Uw9xoffHzNDc2WKqyZk+rpc7Bdndxq81XdK73EW7IB4p6nl7U1cR/rfPSgv0UN7vAPhpuYbHmRikf/Fd9ZV1X2/WwSrUl4pl9Ua/jRlptGa/tI5GtXextcsPdqe0WCKGy+AmAkJ5o3xzjOuaC7+m8SpHdYLtrobV5oMSZ6FluOsc4xc0Yr8bJm5YbRf2OqbrYtW3cn85NbMu6wyZrzR7nv7emd69Pj9+DGxdzwX+K63cmBfSOWTs2DvTiAGXMWz9AgzrJZDtOy+/qF3lq3ZUxl41DHp2URZu0c+x0TAeyLQSLVTtNHK5zE8uOXHHfNrcXdSlgqaFNcqZ6LmC0m6LtOHO1kr3iP7Q6uT8WrDCrxwTubxf+CxiZ18/p+6NYR79WfWrfj1yd5ybm/Xv/ALeT0X+cL1y92n8+5pS4Kv57e4CbsexXet/0momZCnQX/GL7CX/wF38NP952bPKG37j9su3KqAD6rjDlYmxfZI95BSBbCB4qW7Z39nW1jzXWZZT8UUyhf/ew56vIXp7spRhHzIYrYup5bXneyWfHW1sbXM75sktu6I7UOW6ok6mbYTRZ2DeGAFGtmDxXzAXrfZwbw4jgP+qgMv85rtbcxEkZc5VzEzGT/+Ax3ui3DdSaxGDfQi9WPCJvF0IXDSF/buqWRNzI9ty+iU9U3c5+KuGClPpemn03sgni23L5dqGVXXPjMCpaDC65iZik+6tzNfY3IK7OclPOneEmYBT2fbfJ+y9y9WxuIsau5970TXQYICv8nfkKveoay3Kfs0EXshpku1/CrRzXioHSr/h707vnNsXYa+FrhAYcg2yLFa2yHdN1bqKejom5yrjxsiWuGm/E1Tm9I8ae5+vLfLv8UfbIf172FjBynstmfflZ/52JubXvLaJz31/j9azvo/9y35s99/o+x6xOz8wn53y/0nPEDck+5HtrJ9f890g/l3Ez+JO4mvnvFDdJ2U+dvp6YPZZEd/wN3/46fvP2S3zbFN/kJ9z4ZVV6QgUo9RU+L/WJSQynfknl9f4cfn1Pp/4RQz9wsZc5d1oWucFewuQtQzJMXF/78kq3v+FkTLU5Snlhsw+kvOwRN1byCjceoxIu7twjpm4Nyz6Lm7X/6AmVRA6PuWl6xV6M1UF2xg3nezcM4m1EYhfflX1TvbLR04+1fXRNhRBHAO9AOXavPPgffZLEjc0chnhJZAkTUHaG65j7gBeIGk9wwx4Ve8J7xE30Zz2HHmNuO20q2bk6x80sbkZucv95X+2t7xlxvQc3EWPVo9bmrqXC707b7R+3/bEs5/sWCalsq7rKKupTZGlPgsz/cTCi9altObHT3fSRH9s4qcVOw3XcLxrGhsAtL32Em9D2YTfc5ty4PHGBcC3K/ZfHN5cdZfu2SII5N5zXmvf+u85N5HXtv5msUoxMeF1x03w/8nwYN0teve9t3HLV9wqQfbjIq7/WnvP9yM2jvp/HK5rs0vepP6t9h/67l5voe+7ncm4iRlvq2ZeC4y5uxrLX+/2PS4qvD0w/mH5j+wkbdvzm7Vf4xfYTtk3rLnmoA3i40OYGUDZxQAtBN4CSGka1IccLbntzS6usAG/o721skLp7n9YNQmoD2QHZFGVS5O+eWjgzZneXO8EkCPbV8zbA2qU3k5WelBtk3Eh/GnDETdRbuYLYTn8XZO/lxvcRif9qhyVlyadhGnidcsNlBTb4ahhtnHRonzSew3CmpbneBrGd5/jsyJQG62faRe/M9ybH7+vowr4uW3xC9mkvrxC3/f+SG/HnDfO07R5xEzFSaX6ydcRNjM+damFcmyT2vTM3oyzdcKk2fiQ3EeN9qWy6sOwnQh6Y81Hy/W7x0LdNbLTlyTt2lB6/1GHXnzKgkbpMum9Xbf6at/3et9nf1P/c11Hc9X5fHuDG+9CwCGAd+ZKb6H9FARlv6VztF0N3DlB/ZOUyblx8h/zON1fv4Cbrj+f+m/SLchBzUU+Qdcvdpbfyw+spAjcLez6f7/uugKPv17yufG/pDDenfR+5mbTduf8ir3NuIq92tCz3V8jFmCt18+7MJ64ZC64+fVK0pfzfe3rJxEygUBF82xS/79vvuoEPbx0L9fkhWBRuwN+2Pa+RZBdRnvC1Nd3S8zeU5Udag/it3nsWAW6q+GHb29MGgbYne1p1zTCare19j6qzYWR7FX1pn/qGlem5zs0+cAMlnC1f72ARV9tmGKV1EKcuGo9wE/0nnhv2H28He4qbCcZWbyXmFDfsv4gRIeZCPspyXBT7pdqnd9u3KdrTHyu7wmz2pj7ZSjxC+3K2076neCzx6SeHGy5wM2CUWrYIy0luIsbI1Ra4cf57JjersrCJQU/X/PccbrKYu5ok2OL7gpJW+S4ZJs71jNmQLf3TdoyXB5k1dembWH+rzYdbq8hPykq9XS/ngd5m25HQH7N9W/ht/cwj3Lg+tuX7HfJU1mE2Nm3lCD+DyfQeccN62X/9CfoZ+5TyMik7xxi5iWX90rE5Nwf2BXtG33dZewJubTD6Ptqwti+5vqJz/n34fpTNfH+2nZzn8Yrvu+w24WrVHufcrPq5svz/jH39vD07fbRd+PynTl9PzB5IAnzDjt97+130l/5tE4USBuXdCc6jtUz3qN5kKYT71tTl3E26sEjZZKOt7ZZ+Ydy1PC3b9zLqKtuhK77JXu5WKC0Hm2F2O6xJ+SggJGACbCe8Jku7+pWt1atFdce1Z3PTVAGl44HUb/wAbejV8qU72aTotUuJoi/3affUFHdzk/vPuJn772bLtM5yM8HY71Vf4yb6L2Ls9ulEtpxSkbbkrH0OoLWPe+0jHtFfCG56Ha8bGCNFK3jjnNZmTvLKmHt8KnhZa8N1ihvmtWJCj897fG/vanWu+n3i6E8I6nOWJ3FD8Ze1qX5h3A9irvvv+dwE2TvThr0+7WYbe90ur5Vb7je0x04cdLSYEq7ROLQ+xw+SrGfxu891fkp9NUaJH25H7Cet5TaxeOrtyfoAXgYqtV/sg0CjWu/khjEKcVOvYQtuuJ+yrqEPPsNAjWNn0DvBXG1l/5UbMoWrlJv6K/PfDQpNyp7jJvef5Td0/w3cRIwuj+brU7KVS7v54X0v7nqaYbbfY5v6bL63ItR2qZ2seM3bLui92avcjGXNLpGLvg9c2U6393ETeTWuyq6i3X8jN3ZNtHbPm6X1b9Tew03N+zD/Su+cXjIx26D4fT/+LlSkvbPVBx/8u/zb8qFjcUsehpf+7IV7BXgAU3s/u0dQGrvdsSrN663q+AHAN9nxTeoTMxrszDFqglFd6dLA0X+7WqzMWxtGb4J6R/xZ3IR87Xi2xlV/AO4wNa7U6cn03s+Nx3jkv/K007qje7iJvPq78We48XfBRozs3y7bEUHRlnA0FPUUb9RxxT7A4oZjjjvvPOYa5jRuCo6G6YrvXb77vvv3PDf9KpZgusRN7vujmBOUmzjxOnU/N2O74LyVOtNnhHu9T+QmYr4nKbWj8dyQN2Vcnt51aqddnidQse7+PolI2YXT5Fm7QPv39ECxZ3xVfrxUud5s5Kes309trRN/oPSRWasb8ktuvJzQ3xU39tf46L2F/WZdHv+YJtcc8p9d92Ocz+vi94H6ZhJD2QNucv8RR1Zuys3B9TS1Z26fog6eB99r8FWOuYB9ve9zXjOcvZ2sfe9tZd8r9Vez8hnGVdn4MXZfbub7wNWlmIs46XAbK9lCxOi/kRuHMcyi5G5uan7g+pOmr80/7k83UfywveGbvOGHuvUzPz8S0B2kcOfXZv92dLOytv7WybJkf1cEqE88dcMbBG878BPa5t34Jjt+qE/LblD8KL/y3xmDdr2IAy6/ztfn/friNpiwMahSWSmd0FabpnViz+ZGg2zGlf2w9daxO2X7hne17uAm8pphMq7KkrP+rCuzz/zFTfYsN4xxwFE7yuZP8onZ2J+s1DtfyHm1S85Zbjixnuh7W5rZLzi762RjzCnkLm66vcwzxcnEJz3t05i7yg3HXMRkXB21KfPaKuYwyM64GfsMk1WrV0b/dfvit7/8hVJ04r/ATVy2e50bb9/VJALcbEk1YqyMEyRLOU4uS/Ed+0UN/b50G28ifUKE1pwbVkC9/1lvGKgU2f42hz2g7NcMavvq5RUALw8vbzzL07lhHxo5U/sgbeCrYDvO6p0nvlnAMRr7UMYc/cd93l3ctMkz+75bKapz2fZUZOLPEHNeFoPvzSmj7/tTxRmvbPuR77dFu7A+qO0fS+30ku8DrzGxPVItnHKjAO+2bKsRrF/sb4jew03EuPA9c0V32JQrQt52r3ETeaV2EvwXueJ2UbjZn8jNd5JU8fWB6QeS1InZ77n9sj6Jqu+YULTZOyc8yOpTghK0NjTq4dgHS7zds0n3jrTofAOgu+BXWj5vbUsYvskbvm1a83t596B1YrxrD5xeHfLx3B7sUep4/N1obnfvw02ut10SpC/06bX0clnaQnmgL6M8xw1hHHDxwDA81SJMbWkM1Z1xI49wUy+YEDj/QfwTLuvemu21d7Y8X5CvcuMmPYEvS1uzXamMuosdqN5u41luPH7A7PMRovA+8Xhpqi9szxluEowDLtbYfTJvU52rrVfqcG1BzzE3fQlpXC6iVZZUucSrCRxXxI0twbzmv6vcRP9dT4K+/CzaMO9Du6zlvawfMor4yedwM8CNbRSQjc7H4acfoKwxRxzSrhmCvZU3fw9tR3u/v8V+4yncFB+6642wff2a0RZ4qu/3mRmnR0eeV5gdJpvM2vK2cF2L7Wqru4r2p2XHeu7xH3+yYuAm+i+2/aFfZ1kM3Kx9fw7zo+3ClhNa2+cbFv4qc5XXhe9VW0ym3ISnOUqPyKROPObtZMXNRd+7a/w4tuhcacB0Hze9TfU+OfrvqF08j5u5/z5l+npidn8SKP6Gb7+Lb7cddrcsDheEyvqOPKbssjE/Z7G+1y2efqU3/EpveMMNN+z4xfYr/LD9VJ+W0R1QwjkOba5hGDDV+t0dSt3cgrmP4GaGq1RcOuvZU0LGBMfVYxh6EjguasdZlqJurpTJ+c6nHNuQ+e86Lh6n2pK82HH1btGj4XdVon1nMXDd/dI/1mj4yt/68XZ/GTrAEXXPMRoipXy3OrLQ4yt+oy635L64iVI+XmObyjH1MxW5jWMG7lYYM1ydlXHZYOY/j7P/yp7DzXDczw1juu/yZ58aIV1q/4z5jA8XFTXAWh9T/SIDP+zL+hRCyw6IvdR4YyPqyTACPQpiXzde28ZJNmNUBD88mRvO9x4z2h3jHm0jmXEQd5abSX889KHz+GZZ6/cN0xE3Qw+X8urjJuLAYT6bRM1l/fL3btcZXmf9RJQ90y7mPZiXTX0Pn87Gq/m+3whbc9N/j5hWetL8Bd/HlTLR3sgVt8F7uYmY4Lhibh5vF+e4eUa//5WuphctZdzxi9uv8IPs2OqSQWDsSC3fdxPiztseZcPJzjrlFlBSnpX8pIpf6VY3/BD8pIJNtO7S+BN+FFtaJVANH18lHNMgr/8qPe0w2fbIWS1v1tVCIvQ+lh8mXeHmCCPXFScU1gl0WaGtY4Xsyzt7QcQ0cjP6j7hJ7WWbtHH1VjXNl0miyUVca//NuBHq/Lz/pEAq9qnnxpanellv79nYNl0Kfh5T/s2e9LWnIPXdma1i2qXHp7Nv6oOOwz4yYUf5w8MKW26UyfZlnRsqJNnJdlSMGTc5xpn/3HbGsKU6vmzDqKgvf2cDBsE++O9tGq8ZNxxz0X/cdsc2tVObMn9+MDeT/NW0id3Trf6WbiNgA65x0NFx916pvLchaBvGVIL8ALSc6LFVF2uJ2fFW+1Bt3PLTBMM46B0wCnq8dPssz8sclZbCmWxfplUw+ji7kxvGZFxRv8ITfifbMNXBqViMutsTF7nZnR7ve7pO1DY443WXukRLrI9hvbjITYzBk9yoAEJ6Bn/yNeNAlnluvveY1ryqw5hem6btgq835uFao3gfCeJqn8S+Ba8xbsT60qFdeF5Veg17gukaNwmmyBWOfd8x1XZxxvdTbiKvQm1qb1wN/nMxl7WLR7hZ+e9zJ/1aynh/2kTxC9nxTX6FH7fd3/2of/MBsm/gPFgZy/YdhWy77jINLC997/gG+5zgX9t/gGLDJsCP+Am/EMUPm8mqW14B9IZ7jLl/2NOfq3mqt21fLeWsrZ+e2fdUblzZOLBT2NK9HWVDlI45TnDGDmrOlYbBZl8KmQ0gJcuLx5DpibLM1Rle/da5xs0Eo/blBjtsN9Bur/N9k1X0AbF02QWmkreytoNg1+t9wvb2GwyG5Ibuo84VL0bkWGB7+OljseJGHleHKfpPG6biR00weW5iXTNMkavNcdXrTnmVwBVyrtK2TEeKTxiXcXOP/2yK2zVYO/lQbiZ6riSBTVb3xEbWdRQ7M1ltk32P055GaVliWGVvri4lfLN+cYVx7sNtYS9vYKFNltmdb95yjZuRq9tStiPrg80u/SxuouxG9mayNonewUP6kavHuPGy1+1dl8WQ71F6C+eu8tpjXZwNI6+Y8srpyL7xJmfEzK2wJGl/9zBOiXo4BjX0oY/EnMfkubrWLrifv87NyKu/nqz8N28XnB5tj6P/7un5PyopXrWUUUT+PIB/BMCfAPCnVfV36vH/IID/BoAfAfwSwD+gqv+bo/petJQR+FF+hdvGSxn5XkMPDj81MWml8JAm28OHnyEoDUB2vOmGN73Vv4LfffsBu95MLb5hxyZ7a3r9PZ2IAw4Dh20vG98tGe3zGHut5Y641fne3HBZK8f5kvxj8plsbLqem4gx3jU75oYvXtJ82y9HuWzGVeQVQ9ns3SBNZW9V2LaAv8H6iJlPcvtKZ9/v2c0wWt4v4lS6UIy+34LvoWhP93LZjqnrWPnTx2sWJ6NPeh8AiNsN78j3nbMcU+TqRkeP2lTkKmtTUdZs3qg2zw3L+v5FE3s5CkoJHkZ8PDdjf3o92VNb3lyEB6d9+UzJ3xgK/EBIgHL3mt+PoaW6pQ1yLEpTNbYNu1kw6o2WRsy3GWbpHuD/Xdlal9b3uYS372xt4z5uIq8DVySeyfYNXcVvpDX47w5uoqxxFfzHyfzZB9LUL2qQvYebmt8Ms23jTnLRf7k/E/uorMYz/tKSy57wvVJM80229pkfWfAKXnWisPcqVnqPfG+y7fpBsS2tzaHf+I48ip+kWOYebiLGjgk19jpXImjxPshGTMTVPdwwZpXuPx4htFcQxHPDXN3jvxk3Z/z3KZMCL/yO2V8B8PcC+CfD8b8K4O9W1f+niPxJAP8sgL/1qLIXPTHb8Ru3XwIo31bqSxn7kICDEzU/3pEYy0qrpeqq9e5Q7NrvPe478Kt9q/Fb7hvc5A0qG37aBT9uP7kPXx/pRchvramcl+W7HQVzv5Pjvjj/VG4Y89xeBSBSvvNWPnNwPzf+nLbOJHJ1ZJ+lXffWkxpX3EGe4SbiYv+tuFnZF/11JNuvz8H3B7JL+2gg6pdooD5xXGPsx/pirFXZqX01fuOuYYPvZc5Ntoyu8CSu7BVunI+IK+Ba233Ef0PcJGXNf8bDu3OTcNUC5+6kuMlOn0pgXX2Q5vN9iaz15e5OtALsK0a+VRt3KESlfRRcay22aoDfdWkx2TY/mugNGLX+Z7JwslZ/X7pry6HaagQpTwR2QbVXqA+6k5uIUX1c40hW6kL8yplxWrDfz40vKw6TtglW50ZZj2jDws8Xy0YJZN9Vbqj1cJ795/sNwqjqliMu46bKFpts2XZlIeFm1S4Gblyr7Rg2UZTvcXbMGTcms6Mv12P/3cOrrY5As6+kW6vjmFdUPbs8xk3EqCg7UdpHRgpXxsCx/+yayFxdjbnYLnq09SjfoHWX133gJvOf4+pObkx2b2j6rp2fOulrEKrqvwqgTZ7p+P+Jsv8ygN8UkV+o6u+u6nvNO2bY8fu3vw6F4vfIr6Ai+Ek3/LI8rwKQL1/7hvUggpd82J1GBepdtg3fpAS3iuA38Sv84vaGX779Cn9NfsAP244f5Q3f5Cf83vr+W6uL1hSv9I7LGPpyrwwj0C/YCn5frHYA2Ob2SZe9zk3EzPfVrcvx+VJWsKk4vc5e8XWtuMkGn+PyPc8Nl+XLT/+wbr508dsd/gOd87LqcHDZWd5+xzwvZ2O5/qR0FTcd8zfYIAbtLneUtc7V3qGyuiKv4LqcnrjEI/JY2pvX2+2D5rJ2YjvktWPy9mnKuecm+r5zlWHqFyJdcjMumetcjRgjN1Fv5Wriv2ahZMtcn8nNef9dTQLgh1r7j9LrerPOI8Xpl1iOg4i+LNvap/27A3gzjxLg9qRRtF0A2X47kg5WkPkwKxvjuT+RQSJrv98wLmHv/h9lj7mJGLlPpWtkakNpCW8Uv+e4OuJmzpWgXwcyWdA5EIYM03VuOO/957m6at/YzrTK9hUf52SzuDGP9rothnqZLfAauUG1r7wb22M14+aI147Lbn4I2H/8LtcNx/btVfa25GrtE1CeUUauLP7msj2x/85yk9lnOPi3RR9z9S2RVfrXfo1cXYnXOP7pR+z1mq90d/qPAfgXjyZlwMu2ywd+2H7CD3jDj/JTff1a8ZP2NwT4QtYCrYwsWzCh5XeIG770Fx13FezwA5cbFCo7oIIft1/hVj8gfZMdP8ivcBOtD2Bq0PLX6p1ef7Etj8L5nMJuyfNyLSsLkub9DncjqZXR9m6ElegDvTu40V6/QJp97YlKfQLVu4c+6JGtD6GjbNHLXK24iTz2DiDjRgLndhnaAWDrQ9DyAdvOTbvbdIKbiHEL/oOz12+5oYOswLbva1y0vPkCHXNbJqAQbHVJH2FmPaFd9KQQ2Ro3PW7s4rLTAKN2+oQZ2OqTkeLxjfRuIca+NczMq8fsBpYbMMYNqp599FGzEUB74dp8AM9Vs/64z+BLWIll8oH0S9kGxUaxvOZGHY9bwzjjJrQL9IvkFv2H7j+Q/96DG0y4Kv7rQ3oBnA1nk6BMdr8B+EYtea9NozNajdB6B7tmDaOg53nZUeNJUW9s+bYWh0J8o6G3ETQwrGfQO2Ds/U4NJbqGMGMK/vSAtUHTuNUljd2HINSa6D2B0fRUTNb2Gx7yj/2VCsrQt5s5SoNFU3qVG1e21yXQunqGMEds1tQg4Tz7rxSUK9wQZo4rV6/5I2KkJWiRx4HXie+n3ChGzMYrJ/pavPdjqWSTvqok5ZXtQ2+PKTesZ8Krcj1SKartHeZrrXy0tjzntTwl8hjPcBMxNroS+4u6PeWxV9j7lHZDSHHITS/Pvq/XBG3MDLLWxm7Rf8RVj9Lya+TqHDexXTiuspj7ZEkB6GNLGf+QiPwO5X9LVX/LMiLy2wD+SCL3F1X1L68qFpG/E8A/BuDPngHymqWMUPz+7a+197l+0hu+yTfoLvjr6u/MlfI1L2Peglf1zYVUbSvtcW3TLYryWekNIm/4QXa81Yp/kPKZ6bKRQ7mACt1Wz/XC6x3KqivLQ0O798zTRoXgVgdbO6Hvd27qhbB2IHdxI9yUlTrA3sNE++xeCS9NiLIykZ1zg/PcRNnKzDcIfmoLx7xsmZQd+W/kxpfl6LG66o6dPICb2AcAN+Oi9oCblCcjDnNb3gIAb+sYw8iFdbwqby1iur9QJz/FXzJgNCRvdRkW69UlN3NerUMX2s3Tx43AlrT0vJOtuNpullX2qN1nPohcCYA3vDkf2A6qnSu70OXcuHiVPuA1jEfcMGZpXHn/9bvM1hvwe49P5ibzX2uBcSp23wXwRyhuYu+01Xv1Wr4p6VNvt04xNxnzgzOy3//vfz3yfqee+zKgDWTi4GWmd8CoY9lWb28rfejaC+1a3xURrU/5tPUxkQa5wk2wD3X34Uycqync9Qncm9nRBGiALATnAjdep3r7Jsli8laX58XJtvOfnPBfrJ3s69c1b4piInuQmNf2W8pNqojRCUXMVM5C3/pioCw9tR2Beangpjrl36S/ofh6LDaRTXhl+9oyWLrpJXZtFn4ilPNqN5H6UyTi4oAbxtj6PrFVCdxplH7/FpboRm7K2LDz3Ks/z012zehLhbuQfWRdUDcR09F/nWfyPR0f9F7wn51qPmmN6r5+/0OSKh5cyvhXVfVPzavXP3NPpSLyRwH8JQD/aVX9187IvGRi9g07/sD2K2yi+IOyQ+UN/+b+E/5/2xt2/SV+BcG/td/wS73hjbtptYae5219Z3eN9AsKtjKZ0XL+F1IGCGUwvJeOHuUJmwLtnAja3X0O1x60PWZb/DMmUMBLv+tgE3vboh9Ul2pd5607NRbp7+IJ6g6AeoEbwgjUi34fJPQG7DG3l6B1L74ImJosSrdgT5LOcOPyB9w4TOid/q7ARt3oXkeb29R/V7nxA1XHlWFWsm9D6k/YE0obhEmJ1z4AXumV1lGnPFbuy7bWdJ7iply8AcHeJooRI7ejne0znxzEWNYeDZMq29fjBpXTLfCaYbqLmwlXtp19uzRT3BR9HtMZbraNyl5oj6UPmvlvq5sRme3df4fcPMF/QJ80Cbz/riYB8IOUmym/pz6S+EnL09dyI8p2zCV/su4Gs0wZ9urHn+rTTHvWuGvdt1KBN9m8NPUFm+74YYPT1XlGG5QbmnIs3NlOZNHKy5A3gZt4e75JfQ+66R31WDI7TedUb8SoJa6bfdHfMR4EDRMvSYt6Bq4kX3p9lpttgclulL2BxoqJnof9p0W+c2VPzztGz+txu9rDufJ/uDZNuGHMJguyx/43zDfp9puvbxOM0YbSh/g26P2X+3NvGCMmUMT2dzvLqgTyyQKTovveuJhxEzFGrqT5nttR3zl1034DBYA92KK4CrLD9WXdHs/4r3PVdbo+Y4ijICvnuIkY+Ubfjm6zOunPmx58Yvb0JCJ/I4B/GsB/VVX/D2flXrSUUfHjpvh9UPyeG/CTApAdN/wSv5Qbflc37AL8VIYhrSFYT9zzluuDPG48///2zi9Ut6IM48/z7eNBQb0IhcBzsMCrQwVCSOBFkWFHOyRdFgXRbYKCIZrglXdBCRVEdBMkiFAiKFYG3SaWHQP7h0Rlkqh4oSjSOft7u5g1a96Z9WfP93ncs/b+nt/FOXutb9aad56Z9a55Z82stTZgxRRMhBaavlNEds4BaYQhLpT1k4DY9/v9CKvPN90hUmczpo8/5FOA4pSNVZ/YO0LfcQ0209lknU3eSRysjStPdyGWziZ/OtRlHe0isbL4JCAem0+ppJtSVaNNZiPSzXlKG3+OuDetxnDHTtTfttokLdD/7qePxURxKgYzEXMdg43upyKfcjt0rrM9vc19eaIGBqeZbzfRDOs6+UMby4GHPkDxN7My3+wkXkvLfgpTVtJ58m885SOnSStfB930um20Ka+LaJ+lVIBvN6k8KUib1iYci/5G2DeHA7Vxefe2oXsjXGxQBmJ/sv7mtCn9zVz9HeRPV6knlF33m8KurCcBnOReF4AZjOwCMiBOJRob3HeeJASLBlxYE2vGdcnxaVlap2z94rJkP7pf95jnkdpkLLm7LosST9nGkRRR5aBd9JPJc62A/slY0Cg/NrVu19EesYPFnoGN9OU377qSy+i3DWZ0AVY5ycl5Xhuea0yrbbSJneheA0s6xG/5+XNdsvqj98WxfNEf5M+Pe78/cnICfpZhFxgzsws2r82czdnTkYl2E6eI+uUQ5ZrLfLt3eFm+Y1c8i399MOttGl5n1gfd/dOhUpty2w7Wpm83RX6+d1Wuk8qvqe6TMq7OYraG7bUZSzOlVcwstf28/gxx4NmdewttyhShfOWgz7D+xBCSXwLwfQDXAniK5Hkz+zyAOwHcAOBBkg92yW81s9fmztfodfmGD/ECrlitcDnDW3GuXu3jHQDv2BqXWXho/O5+eHE4s8sqNcdyO5w7jiCkDsgJAGvEqX+hI5BGk1LquM6rH9HvPKZvqOmvdZFvZ022pmwqejf3f54vEBzSytBPXvIhSOzI5t3mWm0scwb5sflFmZc3pAoj9dl4bkpFvz2hTX+RD21OU1nmtPHlC3+FDjWRv58ozktfd/VXHru5NnR/p25KWb6pbbi/kgrDtEnX+NR3lZ1haLMvT3x6l56vpHbDvt3YZPmGObiOCcbqL+/8jJ1hFa+h+DrwUlHmdT/VbnxHYxttUqqwZ6+747qxXpePIb3lbVqbUgtzXcW8lse1KdOmbwv6luoDqaTVlDalx+nbhrNmE5+R15/XqnwlRR0nSZzkHk4gjFHvkVjZPi4gLaZ/ry/3eBuN+lwEsc/w2RND8JexhGnFrr9O885X2pfySV2fpIXXF4Bb3lHaOGJzlzaetzxf8nkpCOpbY3lsv51siwyeUDkbY20Nyzdmy7ATlqZw5eXrj6XTqutQbqvNmB1jncKVAeu+kEOtUvksK+OcNpPlG7FnzrYy/dS+WI82o01evhgapOm63o7eH7t2QljWya+zMU2Sm9IGGLa5VW/zfPni3ToMjI/bQaQ6mCpfWfdTbS7z4oY+4CuvKT/ts6z7VN7ttCltTHfn6fJN1d9Ym1xvrM3wnlHWn9eqvFctlnZvZXwcYbpiuf8hAA9tej6an9N0SJB8HcC/Dj3jea5B+OaAmEc61SGd6pBOdSxRp+vN7NraxPL7RxrpVId0qkM61bFEnTby+4cFyV8i6LUtb5jZ2Utlz/uhSWC2REj+fm7hnwhIpzqkUx3SqQ7p9MEgXeuQTnVIpzqkUx3SaTfZbj6KEEIIIYQQQohLhgIzIYQQQgghhGiMArPEjw9OIiCdapFOdUinOqTTB4N0rUM61SGd6pBOdUinHURrzIQQQgghhBCiMXpiJoQQQgghhBCNUWA2Asl7SBrJ9/PqzWMLye+Q/CvJP5F8vPu6uQBA8izJv5F8ieR9re1ZIiRPk/wtyT+TfJHkXa1tWjIk90j+keSTrW05zsjvzyO/P438fh3y/fXI7+8uCswKSJ4GcCuAf7e2ZcE8A+BjZvYJAH8HcH9jexYByT0APwRwG4AzAL5M8kxbqxbJRQD3mNkZAJ8C8E3pNMtdAP7S2ojjjPx+FfL7I8jvb4R8fz3y+zuKArMh3wNwL9IH0UWBmf3azC52m78DcKqlPQviJgAvmdk/zOx/AB4FcEdjmxaHmf3XzJ7v/n4b4eZzXVurlgnJUwC+AOAnrW055sjvH4D8/iTy+5XI99chv7/bKDBzkLwDwCtm9kJrW44Q3wDwdGsjFsJ1AF522/+BbjqzkPwIgBsBPNvYlKXyMELAsG5sx7FFfn8r5PcT8vtbIN8/y8OQ399ZTrQ24LAh+RsAHx756QEA30aYzrLzzOlkZk90aR5AmJrwyGHaJo4HJK8E8HMAd5vZW63tWRokzwF4zcz+QPIzjc050sjv1yG/Lw4D+f5p5PfFzgVmZva5sf0kPw7gowBeIAmEaRrPk7zJzF49RBMXwZROEZJfB3AOwC2mby5EXgFw2m2f6vaJApKXIdyYHzGzX7S2Z6HcDOCLJG8HcDmAq0n+zMy+2tiuI4f8fh3y+1shv78B8v0HIr+/4+g7ZhOQ/CeAT5rZG61tWRokzwL4LoBPm9nrre1ZCiRPICyKvwXhxvwcgK+Y2YtNDVsYDD3gnwJ408zubmzOkaAbOf2WmZ1rbMqxRn5/Gvn9ceT365Hv3wz5/d1Ea8zENvwAwFUAniF5nuSPWhu0BLqF8XcC+BXCoubHdHMe5WYAXwPw2a79nO9GB4UQy0V+fwT5/Y2Q7xfiAPTETAghhBBCCCEaoydmQgghhBBCCNEYBWZCCCGEEEII0RgFZkIIIYQQQgjRGAVmQgghhBBCCNEYBWZCCCGEEEII0RgFZkIIIYQQQgjRGAVmQgghhBBCCNEYBWZCCCGEEEII0Zj/A92f7p95HyaQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "targets = (16, 17)\n", "vals = np.linspace(-5 + EPSILON, 5, 100)\n", @@ -323,9 +384,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 119, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAJICAYAAAAUzce/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iV5f3H8fdzRpKTk713QnbCDISdMBVFceCsHf6sbbWt29ZRR22r1lHrqNUOtdvWPREUJWAIK+wA2SQhe6+Tc5Izn98fBxEEQiIBjvp9XRfXJZD7ee5zwOfwyfe+v7eiqipCCCGEEEIIIc48zZmegBBCCCGEEEIINwloQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHkICmhBCCCGEEEJ4CAloQgghhBBCCOEhdGd6AqMRFhamJiUlnelpHMVsNmM0Gs/0NIQQQowBeaYLIcTXiyc+17dv396pqmr4sX7vKxXQkpKS2LZt25mexlHWrVvHggULzvQ0hBBCjAF5pgshxNeLJz7XFUU5cLzfkyWOQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHuIrtQdNCCGEEEII8c1ht9tpbGxkaGjoS18jMDCQsrKyMZzVyPn4+BAXF4derx/xGAloQgghhBBCCI/U2NiIv78/SUlJKIrypa5hMpnw9/cf45mdmKqqdHV10djYyLhx40Y8TpY4CiGEEEIIITzS0NAQoaGhXzqcnUmKohAaGjrq6p8ENCGEEEIIIYTH+iqGs898mblLQBNCCCGEEEKIE3A6neTk5LBs2bJTeh8JaEIIIYQQQghxAs888wxZWVmn/D4S0IQQQgghhBBiGI2NjXzwwQf88Ic/POX3ki6OQgghhBBCCI/36/f3UdrcP+pxTqcTrVZ7zN/LjgnggQvGn/Aat956K48//jgmk2nU9x8tqaAJIYQQQgghxHGsWLGCiIgIpk2bdlruJxU0IYQQQgghhMcbSaXrWE72HLQNGzbw3nvvsXLlSoaGhujv7+e73/0u//nPf770NYcjFTQhhBBCCCGEOI5HHnmExsZG6urqeOWVV1i0aNEpC2cgAU0IIYQQQgghPIYscRRCCCGEEEKIEViwYAELFiw4pfeQCpoQQgghhBBCeAgJaEIIIYQQQgjhISSgCSGEEEIIIYSHkIAmhBBCCCGEEB5CApoQQgghhBBCeAgJaCep0+Y401MQQgghhBBCfE1Im/2T0G61M7+4nCmqgRy7g0C9vJ1CCCGEEEJ83SQlJeHv749Wq0Wn07Ft27ZTdi+poJ2EAJ2W78aE8ilezC+uYHVn35mekhBCCCGEEOIUWLt2Lbt27Tql4QwkoJ0UH62Ge1NieJABgvVart5Tyw2lB+i2y7JHIYQQQgghxOjJmrwxkKI4+Sg3nT8caOfpA6182m3ikfQ4LogIOtNTE0IIIYQQ4uth1d3QumfUwwxOB2iPE3uiJsLSR094DUVRWLJkCYqicP3113PdddeNeh4jJQFtjHhpNPx8XBTnhQdya3k9P9pXx/ntgTyaHke4l/5MT08IIYQQQgjxJRUVFREbG0t7eztnn302mZmZzJs375TcSwLaGMv2M7Byajp/amjnibpW5m0p58G0WC6NDEZRlDM9PSGEEEIIIb6aRlDpOpZBkwl/f/+TunVsbCwAERERLF++nOLi4lMW0GQP2img0yjclBjJJ7kZpPh6c2NZPd/bU0vzkO1MT00IIYQQQggxCmazGZPJdOi/V69ezYQJE07Z/SSgnUJpRh/enZrGg6mxbOgxMb+4nJebu1BV9UxPTQghhBBCCDECbW1t5OXlMXnyZGbMmMH555/Pueeee8ruJ0scT1bNOhSX/bi/rVUUfhQfztlhAdxe3sDPKhp4t72HJzLiSTB4n8aJCiGEEEIIIUYrOTmZ3bt3n7b7SQXtZPTWw78vYdr2n0HTjmG/NMngzRtTUng8PY4d/RYWbK3gpcYOXFJNE0IIIYQQQhwkAe1kBCXAt/6L3m6CFxfDxw+Afei4X65RFK6ODWPdjExmBhq5t6qJS3ZWU2OxnsZJCyGEEEIIITyVBLSTlXEuW6c/CznfhQ1Pw5/zoH7LsEPifLz476Rkns6Mp8w8xKKt5fypvh2nVNOEEEIIIYT4RpOANgYcej+48Fn43tvgsMLfznEfpGczH3eMoih8KzqUT2dkMj/En1/vb+aCHVVUmI9fgRNCCCGEEEJ8vUlAG0spi+Cnm2DGj2DLn+BPc6C2cNghUd56/jFhHH/OTqRu0MrZWyt4uq4Vu0uqaUIIIYQQQnzTSEAba95+cN7v4JqVoGjgnxfAittgqP+4QxRF4eLIYD6dkcnS8EAerW1l6fZK9posp3HiQgghhBBCiDNNAtqpkjQXfrwB5twE2/8Bz8+Gqk+GHRLupecv45P424Qk2mx2zt1eyWM1LVhdrtMzZyGEEEIIIcRRkpKSmDhxIlOmTCE3N/eU3ksC2qnk5QtLHoIffOyurL18KbzzUxjsGXbYeeFBFM7I5JLIYJ460MaSbZXs6D/+fjYhhBBCCCHEqbV27Vp27drFtm3bTul9JKCdDnG5cH0hzLsDdr8Cz82E8g+GHRKs1/GHrERenpSMyeFk2fYqflPdzKBTqmlCCCGEEEJ8XenO9AS+MXTesOg+yLoA3rkBXvk2TLgUlj4OxrDjDlscGsCnMzJ5cH8zzze082FnH09lxjMzyO80Tl4IIYQQQogz67HixyjvLh/1OKfTiVarPebvZYZkcteMu054DUVRWLJkCYqicP3113PdddeNeh4jJRW00y16Mly3FhbeB6XvwXMzYO+bMMwZaP46LY9nxPP65BQcqsrFO6u5t7IRs8N5GicuhBBCCCHEN1NRURE7duxg1apVPPfccxQWDt+p/WRIBe1M0Oph/h2Qtcy9J+2Na2HvW3D+78E/6rjD8kP8WTs9g0dqW3ipsZPVXf08mRFPfoj/aZy8EEIIIYQQp99IKl3HYjKZ8Pc/uX8vx8bGAhAREcHy5cspLi5m3rx5J3XN45EK2pkUkeVuIHL2g1D9ibuatuu/w1bTjDotD6XF8U5OKl6KwuW79/Pz8gb6pZomhBBCCCHEmDObzZhMpkP/vXr1aiZMmHDK7icB7UzT6mDuze6W/BHZ8M5P4OXLoLdh2GEzg/z4ZHoGNyRE8N+WLuYXl/NxZ99pmrQQQgghhBDfDG1tbeTl5TF58mRmzJjB+eefz7nnnnvK7idLHD1FWKr7cOutL8Inv3Kfm7bkNzD1GtAcO0cbtBruT4lhWXgQt5bX8709tVwWGcyDabEE6+WPVgghhBBCiJOVnJzM7t27T9v9pILmSTQamHkd/HQjxE6FFbfBvy6E7tphh+UE+LI6N53bkyJ5p72HecXlfNDRe3rmLIQQQgghhBgzEtA8UXASXP0uXPAHaNkNf5oDm/8EruPvM/PWaLhzXDQf5WYQ5aXnB3vr+NHeOjps9tM3byGEEEIIIcRJkYDmqRQFpv0f/HQzJOXBh3fD35dCZ9Www8b7GVg5LZ17kqP5qLOP+cXlvNXWgzpM4xEhhBBCCCGEZ5CA5ukCY+Hbr8Hyv0BHBfxpLhQ9DU7HcYfoNQo3J0byyfQMxhm8+WnpAf5vTy0tVtvpm7cQQgghhBBi1CSgfRUoCkz+FtxQDGlnwycPwEtnQdu+YYelG314b2oav0qJobDHxPzicv7b0iXVNCGEEEIIITyUBLSToKoqVVW/RVUPnJ4b+kfClf+By//hbsP/l/mw7jFwHL8yplUUfpwQQcH0TLKNBm4vb+Cq3TU0DEk1TQghhBBCCE9zRgOaoigXK4rygqIoryqKsuRMzuXLsFpbaGl9G5f6IKVld2G1tp/6myoKjF/urqaNvxjW/RZeWAjNO4cdluzrzVs5qTySHkdxv5kFxeX8o6kTl1TThBBCCCGEGFZvby+XXXYZmZmZZGVlsWnTplN2rzEPaIqi/E1RlHZFUfZ+4dfPVRSlQlGUakVR7gZQVfUdVVV/BPwYuHKs53Kq+fjEMGd2AQrn0Nr6Lps2L6a27jmczqFTf3NjKFz6Inzrf2DuhBcWwye/Bvvx761RFL4fG8a66RnkBhi5u7KRS3dVU2uxnvr5CiGEEEII8RV1yy23cO6551JeXs7u3bvJyso6Zfc6FRW0fwBHHK2tKIoWeA5YCmQDVymKkn3Yl9x38Pe/cnQ6fzSay5k180NCQvKoqXmSzZvPprXt/dOz1yvzPLhhC0y5CoqehL/kQ0PxsEMSDN68MjmZJzPj2TcwyKKt5fyloR2nVNOEEEIIIYQ4Ql9fH4WFhfzgBz8AwMvLi6CgoFN2P91YX1BV1UJFUZK+8MszgGpVVWsAFEV5BbhIUZQy4FFglaqqO8Z6LqeTr28Skyb+iZ6ezVRWPcy+fbfS2Pgv0tLuIzBg8qm9uSEILnoOxl8C798CLy2BWT+FRfeBl+8xhyiKwrejQ1kY4s+dFY08UN3Me+29PJWZQLrR59TOVwghhBBCiFFq/e1vsZaVj3qcw+mkW6s95u95Z2USdc89w46vra0lPDyc73//++zevZtp06bxzDPPYDQaRz2XkVBORZXnYEBboarqhIM/vww4V1XVHx78+feAmUAl8H/AVmCXqqp/Psa1rgOuA4iMjJz2yiuvjPl8T9bAwAB+fn6Hfq6qLlQ2oKpvAf0ozEJRLkVRQk75XLQOC8k1/yK2eRWDPlFUZNxIb/DEYceoKmxAzz8wMITCZQxxAVa0yimfrhBCeJwvPtOFEEKcOYGBgaSmpgLQ+/snsVVWjv4iquru43AMXunpBP3s9mGH79ixg8WLF7N69WqmT5/OnXfeib+/P/fff/+Ibl9dXU1fX98Rv7Zw4cLtqqrmHuvrz2hAU1X1xtFcNzc3V922bdtYT/ekrVu3jgULFhz16w7HAHUH/kxDw0uAhsSE60hM/BFa7bGrWmOqrgjevRF6aiH3B3D2r8Hbf9ghHTY791Q28X5HL5P8DDyVlcB4P8Opn6sQQniQ4z3ThRBCnH5lZWUnvd/LZDLh7z/8v4OH09rayqxZs6irqwNg/fr1PProo3zwwQcjGn+s16AoynED2unq4tgExB/287iDv/a1ptP5kZryc2bN/JiwsEXU1v2BTZvPpqX1HVTVdWpvnpQHP9kIs2+EbX+D52dD9Zphh4R76XlhQhIvjk+i2WrnnG0VPF7bgs11iucqhBBCCCGEh4qKiiI+Pp6KigoA1qxZQ3Z29glGfXmnK6BtBdIURRmnKIoX8C3gvdN07zPOYIhj4oRnmTb1Vby8wigt/Rnbtl1Kb9/2U3tjL18452H4wWrQG+A/l8C7N8Bg77DDlkUEUTgzk4sjgnmyro0l2yrZ1W85tXMVQgghhBDCQz377LN85zvfYdKkSezatYt7TrBv7WScijb7/wM2ARmKojQqivIDVVUdwI3AR0AZ8JqqqvvG+t5nQn2XZcTdGoOCcpme+zbZWY8zZG1l+/Yr2Lv3FgYHT3ExMX4GXL8e8n8Gu/4Hz82E8pXDDgnR6/hjdiL/njiOPoeT87ZX8tD+ZgadUk0TQgghhBDfLFOmTGHbtm2UlJTwzjvvEBwcfMruNeYBTVXVq1RVjVZVVa+qapyqqi8d/PWVqqqmq6qaoqrqw2N93zOhvX+Ic58p5IltQ1S0mkY0RlE0REdfyuxZn5CUdCMdnR+zecvZ7N//exwO86mbrN4HFv8SflQAxjB45Sp484dg7hp22NlhgXw6I5NvR4fyx/p2zt5WQXHvwKmbpxBCCCGEEN9gp2uJ49dSsNGLny/JoLbPxdJnCrn37T10DYzs0GedzkhK8m3MnvUJ4eHnUHfgeTZtPovmljdO7f60mCnwo7Ww4B7Y9w48NwP2ve3ubnMcATotT2TG89rkFKwulYt2VnN/VSNmp/PUzVMIIYQQQohvIAloJ0Gv1XBt3jgen+fL1bOTeGVrAwt+t44XCmuwOUYWsnx8Ypgw/ilyp72Oj08MZWV3sXXbxfT0DH/Y9EnRecGCu+D6TyEoHl6/Bl77Hpjahh02L8SfddMz+H5sGC80drKwuIKinpFVDoUQQgghhBAnJgFtDPh5KfzqwvF8dGs+05KCeXhlGUue+pSP9rWOeH9aYOBUcqe9zvjsp7DZutix8yr27LmRwcGGUzfxyPHwg0/grF9D5Wp3NW33K8NW04w6Lb9Nj+OdnFS0Cly2az93VjRgckg1TQghhBBCiJMlAW0MpUb484/vz+Af35+OTqvh+n9v59svbKG0uX9E4xVFQ1TUhcye9QnJ426ls2sdmzYvobr6cRyOU1Sp0uog71b4yQYIz4C3r4f/XgF9wzcumRXkx5rpmfwkPpz/NHcxv7icNV0je51CCCGEEEKIY5OAdgosyIjgw1vy+c1F4ylv7ef8Z9dz95sldJhGtj9NqzUwbtxNzJ79CZGR53Og/i9s3LSYpqZXUNVTVKkKS4Pvr4JzH3Mfcv38LNj+z2Grab5aDQ+kxrJiahp+Wi3fKanh5rID9Ngdp2aOQgghhBBCfM1JQDtFdFoNV89OYt3PF3Lt3HG8sb2RhU+s4/l11QzZRxayfLyjGJ/9BNNz38bXN4nyinsp3noh3d0bT82kNVqY9WP3AdfRk+H9m+FfF0FP3bDDpgYa+Xh6OrclRvJmWw/zi8tZ1dF7auYohBBCCCHEaVRRUcGUKVMO/QgICODpp58+ZfeTgHaKBfrquX9ZNqtvm8es5FAe/7CCs578lJV7Wka8Py0gYBLTpr7KhPF/wOEwsXPX99hdcj0WS+2pmXTIOLj6PVj2FDTtgOfnwJa/guv4jU+8NRruSo7mw2nphHvp+P7eOq7fV0enTappQgghhBDiqysjI4Ndu3axa9cutm/fjq+vL8uXLz9l95OAdpJGGrKSw/148f9yefmHM/Hz1vHTl3dw5V82s6exb0TjFUUhMvJ8Zs38mJTkn9PTs4nNW5ZSVfVb7PZTsPdLo4Hca+GnmyBxNqy6A/5xHnRWDztsor8vH07L4K5xUazs6GNecRnvtPWM+H0SQgghhBDCU61Zs4aUlBQSExNP2T10p+zK3wAOu53/3nMbuogYBnOnYfDzP+GYualhfHBzPq9ubeD3qyu48LkiLp0axx3nZBAZ4HPC8VqtN0lJPyE6+jJqap6kvuFvtLS+TfK4W4mJuRKNZoz/SIPi4TtvwO7/wYd3w5/nwsJ7YfYN7iWRx6DXKNyWFMXS8EBuLWvgx6UHeLe9l0fT44j01o/t/IQQQgghxDfC+tcq6WwYGPU4p9OJVnvsf7eGxfuRf0X6iK/1yiuvcNVVV416DqMhFbSTYDUPEBARRcu2jbxww7UUvvx3zL09Jxyn1Sh8e2YCa+9YwHXzknlvVzMLn1jHs2uqRrw/zds7nKysR5gx/V2MxjQqKn9J8dZldHWtP9mXdTRFgSnfhhuKIWUxfHw/vHQ2tJcNOyzTaGDF1DR+mRLD2u5+5hWX82pLt1TThBBCCCHEV47NZuO9997j8ssvP6X3Ub5K/1jOzc1Vt23bdqancZRVb76Os7GWyk1FaHU6JixawvQLLyEgLGJE4w90mXlkZTkf7mslJtCHu5ZmcuHkGBRFGdF4VVXp6FxNddWjDA7VExq6kLTUX2A0ppzMyzrezWDfW7DyDhjqh/l3udv0a4evjO23DHF7eQNb+swsDPHndxnxxPl4jf38hBDiJK1bt44FCxac6WkIIYQAysrKyMrKOqlrmEwm/P1PvNLtRN59912ee+45Vq9ePapxx3oNiqJsV1U191hfLxW0MWAIDWfZLXfy/af+RGbefEo+WcVLN1/HR3/+Az2tzSccnxhq5M/fm8Yr180i2OjFLa/s4tI/bWRn/YmrceDenxYRfg6zZn1Iaurd9PZuZUvxeVRU/ga7vfckX91RN4MJl7qradkXwtqH4IWF0LJ72GEpvj68nZPKw2mxbOkzs6C4nH81deL6Cn2DQAghhBBCfHP973//O+XLG0EqaGPii99t7e9oZ+v7b7KnYDUuh5OMOfnMvPhywhKSTngtp0vlze2N/G51BR0mKxdPieHOczOJCTKMeD42Wyc1NU/T1PwqOp0/yeNuITb222g0p2D/V9kK+OB2MHdC3m0w/07QeQ875MCglZ9XNLC+Z4C5QX48mRlPomH4MUIIcbpIBU0IITyHp1TQzGYzCQkJ1NTUEBgYOKqxo62gSUAbA8f7MDf39rBtxdvsXr0Su3WI1OmzmLn8SqJS0k54zQGrgz+tq+aF9bVoFLhuXgo/np+Mr9fIm4AMDFRQWfUQPT0b8fVNIS31F4SGLhjx0skRG+yBj+6FXS9DeCZc9BzEHfPv2yGqqvLflm5+Vd2EQ4V7kqO5Ni4M7VjPTQghRkkCmhBCeA5PCWgnQ5Y4ehBjUDDzv3stP3rub8y69CoaSvfw8j238cbD99NYunfYsX7eOu44J5M1t8/nrKxI/rCmioVPrOOtHY24XCML1X5+GeRM+ReTJv0VVXWyu+SH7Nr9fQYGKsfi5X3OEAwXPw/feROsA+4GIh/dCzbLcYcoisJ3YkL5dEYmc4L8uL+6iYt3VFNlHhrbuQkhhBBCCPEVIgHtNDD4BzD3iu/woz/+nfxvX0PHgVpe/fXdvPLAXdTt2j5sV8P4EF/++O2pvP7j2UQG+HD7a7tZ/vwGth/oHtG9FUUhPGwxs2auIi3tPvr7d1O8dRnlFQ9gs43sGiOWdpb73LRp18CmP7pb8tdtGHZIjI8X/5k0jj9mJVBlGeKsbRU8e6ANxwhDqBBCCCGEEF8nEtBOksvlGvHXevv6MuOiy/jhsy+y8Jrr6Oto481HHuDle26nausm1GGuNT0phHd+OpffXz6Z1v4hLv3TJm787w4ae45fpTqcRuNFQvz3mT1rDbEx36a5+X9s2ryI+vqXcLlsI34NJ+QTAMuegv97H1SX+3DrD37urqwdh6IoXBYVQuGMTM4KDeDhmhbO21FJ2cDg2M1LCCGEEEKIrwDZg3YS7HY7f/nLX/D19eWKK67Az89vVOMddjulhQUUv/s6fW2thMYlMHP5FWTMzkdznMP0ACw2B3/+tIa/Fu7HpcKP8sfxkwWp+HmPYn+auYrqqt/S1V2IwZBIWuovCAs7a2z3p9nMUPAQbP4TBMbDhX+AlIUnHPZ+ey93VzbS73ByS2IkNydG4KWR7yUIIU4P2YMmhBCe45u4B00C2kkYGBhg1apV7Nu3D51Ox7Rp05gzZ86oO7u4nE4qNhay5Z3X6WqsJygymhkXX072vIVodcfvvNjcO8jjH5bzzq5mwv29ueOcDC6bGodGM/KQ1dm1jqqqR7BYqgkOnk1a2n34+2WOav4nVL8F3r0Buqpg6tWw5CHwGf496rI5+GV1E2+29ZBt9OGprAQm+/uO7byEEOIYJKAJIYTnkIDm4TwtoH3mgw8+wGazUVJSgqIo5OTkMHfuXEJCQkZ1HdXlonrbZra8/RptNdX4h4aTe8ElTFy8BL3X8dvQ76zv4TcrStlZ38v4mADuX5bNrOTQEd/X5bLT1Pw/amqeweHoJybmcpKTb8fbK2xU8x+WfQjWPQIb/wB+Ue5lkBnnnnDY6s4+7qxopMNu54b4CG5PisJHK9U0IcSpIwFNCCE8hwQ0D+epAe2zD/Oenh42bNjAzp07cblcTJw4kby8PCIiIkZ1PVVVqdu9gy1vv0pTeSm+gUFMO/9ipiw5Dy/DsatIqqry3u5mHltVTnPfEEsnRPGLpVkkhI686mS391Fb9yyNjf9Go/FhXNJPiY+/Bo1mDM8oa9oO794I7aUw6Uo491HwHT7I9tkd/Gp/M/9r6SbN15unMhPIDTSO3ZyEEOIwEtCEEMJzeEpAe+qpp3jxxRdRFIWJEyfy97//HR8fnxGNlYB2Bhx1UHV/P5s2bWLbtm3Y7XaysrLIz88nJiZm1NduLN3L5rdf5UDJTnyMfuQsvYCcpRdi8Dv2X7JBm5MX19fw/Lr9OF0q389L4saFqfj7jPyQarO5hur9j9LZuQYfn3jSUu8mPPycsduf5rDB+t/D+ifcLfrP/z1kX3TCYeu6+/lZeQPNVjvXxYVzV3I0vlJNE0KMMQloQgjhOTwhoDU1NZGXl0dpaSkGg4ErrriC8847j2uuuWZE4+UcNA8QEBDAOeecw6233sq8efOoqanhr3/9K//5z3+or68f1bXisidw2b0P8p2HnyQ2awKb3vgfL9xwLYUv/x1zb89RX2/w0nLT4jTW3bGACybH8JdPa1jwu3X8d0s9zhG2rjcak5k86a9MmfJPtFoDe/bewI6d36bfNPzZbSOm84KFv4Dr1kFADLx2tfvHQPuwwxaEBPDpjEz+LzaMvzR2sGhrORt6TGMzJyGEEEIIIY7D4XAwODiIw+HAYrF8qcLLSEkFbQyc6LutQ0NDFBcXs3nzZiwWC0lJSeTn55OcnDzqqlRHfR1b3n6Nyk1FaHU6JixawvQLLyEg7NjLKEsae3lwRSlb63rIjPLn/mXZzE0d+d4yl8tBc8tr1NQ8hd3eQ3T0paQk/wxv79Et2zwup8O9L23dI+DlB0sfh4mXwQnel409A9xeUU/doI3/iwnl/pQY/HTH73wphBAjJRU0IYTwHIdXn9b+46+0H6gZ9TWcDifa4/w7MSIxmYXXXHfCazzzzDPce++9GAwGlixZwssvvzzi+0sFzQP5+Pgwb948br31Vs455xy6urr497//zYsvvkh5efmwB1V/UXhCEstuuZPvP/UnMvPmU/LJKl66+To++vMf6GltPurrJ8UF8dr1s3n+O1MZsDr4zotb+OE/t1HbaR7R/TQaHXGx32bO7AISEn5Ia+u7bNq8mNq653A6h0Y87+PS6iD/dvhxEYSmwFs/hP9dBf1Hv5bDzQn2o2B6JtfHh/Ov5i7mF5eztqv/5OcjhBBCCCHEYXp6enj33Xepra2lubkZs9nMf/7zn1N2P6mgjYHRfrfV4XCwa9cuioqK6O3tJSIigvz8fMaPH49mlOd99Xe0s/X9N9lTsBqXw0nGnHxmXnw5YQlJR33tkN3J3zbU8lxBNTani6tnJ3HzojQCfUe+P81iqaN6/2N0dKzGxzuGlNQ7iYxYNjb701xO2PIXWPMb0HrBOQ9DzndPWE3b1mfmtvJ6qixWrooO4VcpMQTqR34mnBBCHE4qaEII4Tk8YQ/a66+/zocffshLL70EwL/+9S82b97M888/P6LxUkH7CtDpdOTm5nLTTTexfPlyXC4Xb775Js899xw7d+7E6XSO+FoB4REsvvYn/OiPf2PasovZv72Yf95xI+8+8RCt+6uO+FofvZafLkhl7R0LuHRqHH/bUMuCJ9by7011OJyuEd3P1zeJSRP/xNScl9Hpg9i371a277iCvv7do3oPjkmjhdk/hZ9sgKiJ8N6N8O/l0Dv8vr3cQCMf52ZwS2Ikr7V2M6+4nI86+05+PkIIIYQQ4hsvISHh0FYlVVVZs2bNSYfG4UgFbQyc7HdbXS4XZWVlrF+/ntbWVgIDA5k7dy45OTno9SOvbgEMmvrZsep9dn74HlazmcRJOcxafiVx2ROO+tp9zX08uKKUzTXdpEX4cd+ybOanh4/4XqrqpKXlTfbX/B6brZOoqItJSf45Pj7Ro5rzMblcsP1v8PED7p+f9SvI/QGcoMJYYrJwa1k9peYhLokM5sHUWEK9pJomhBg5qaAJIYTn8IQKGsADDzzAq6++ik6nIycnhxdffBFv75EdRSVt9s+AsfowV1WVqqoqCgsLaWxsxM/Pj9mzZ5ObmzvivwCfsVos7P54Jds/eAdLXy+xmeOZtfwKEidPPWI5oqqqrC5t47cryzjQZWFBRjj3nZ9FasTI/xI7HCbqDvyZhoa/ARoSE68nMeFHaLWGUc35mHrr4f1bYH8BJM6FC59171Ubhs3l4tkD7Tx9oI0AnZZH0uO4IDxw7I4JEEJ8rUlAE0IIz+EpAe1kSEA7A8b6w1xVVerq6igsLKS2thaDwcDMmTOZOXMmBsPoQo/dOsSegtVsff8tBro6iUxOZebyK0jNnYVyWDXK6nDyz411PLumGovdyfdmJXLL4jSCjV4jvtfgYAPV+x+nvX0l3t5RpKTcQVTkhSjKSa6kVVXY9TJ8eA84bbDoPpj1E/eSyGGUDQxya3k9u02DnB8eyCNpcUR4j64iKYT45pGAJoQQnkMCmof7pgS0wzU0NLB+/XoqKyvx8vJixowZzJo1Cz8/v1Fdx+mws+/TAra++wa9bS2ExiUwc/kVZMzOR6P9POh0Dlh56uNK/ldcj7+PnlvPSuO7sxLRj+JA6J7erVRVPYTJtJeAgMmkp91HYODUUc33mPpbYMVtULkKYnPhoucgInPYIQ6Xyp8b2vldXSsGjYYH02K5LDJYqmlCiOOSgCaEEJ5DApqH+yYGtM+0trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFKxaT1b3n6NrsZ6giKjmX7RZYyfvwit7vPqUnlrPw+tKKOoupPkcCP3nZ/FwoyIEQcbVXXR2vo21fufwGZrJzJiGSkpd2IwxI5qvse4MOx9E1beAbYBmH8XzL0FtMNXxqotQ9xW1sDWfjOLQwL4XUYcMT4jrw4KIb45JKAJIYTnkIDm4TwxoJm6h9hesvm0fZh3dHRQVFRESUkJiqIwZcoU8vLyCAkJGdV1VJeL6m2b2fL2a7TVVOMfGk7uBZcwcfES9F7u/W6qqlJQ3s7DH5RR02kmPy2M+87PJiNqNPvTzByo/yv19S8AkBD/AxITf4xOZxzVfI8y0AGr7oB9b0PUJHc1LXrSsEOcqsrfmzp5eH8LOgUeSI3lO9EhUk0TQhxBApoQQngOCWgeztMC2pDZzj/u3oDez8XMc9NJmxGFt+H0dAzs6elhw4YN7Ny5E5fLxYQJE8jPzyciImJU11FVlbrdO9jy9qs0lZfiGxjEtPMvZsqS8/Ay+AJgc7j4z+YDPP1JJQNWB9+emcBtZ6UT6jfyxiVDQ81U7/8dbW3v4eUVQUrKz4iOuuTk96eVvgcf/AwGuyHvdpj3c9ANP68Dg1ZuL29gQ+8A+cF+PJERT6JhdE1YhBBfXxLQhBDCc0hA83CeFtDsViflm1oo/rCSoV7QeWlInRZBdl4sUckBp6UyYzKZ2LhxI9u2bcNut5OVlUV+fj4xMTGjvlZj6V42v/0qB0p24mP0I2fpBeQsvRCDn/svdI/ZxjNrqvj35gP4emm5eVEa/zcnCS/dyENWX98OKqsepr9/F/7+40lLvY/g4BmjnusRLN3w0T2w+38QnuWupsVNG3aIqqr8p6WLX1c341Th3pRoro0NQyPVNCG+8SSgCSGE55CA5uE8LaB9Zu3atWSPm0ZpUTNVW9uwW50ERxvJnhtN5qxofPxOfedAs9nMli1b2LJlC1arldTUVObNm0dCQsKor9VaXcnmt19j/7bN6H0MTD57KbnLlmMMCgagut3EQx+Usa6ig6RQX35xXhZLsiNHtT+trW0F1fsfw2ptJSJ8Kampd2EwxI96rkeoXO1uyT/QCrNvhIX3gH74rpdNQzbuqGigoNvEzEAjT2bGk+Lrc3LzEEJ8pUlAE0IIz+EpAe2pp57ixRdfRFEUJk6cyN///nd8fEb2b0YJaGfA4R/mtiEH1dvaKd3QTFttPxqdQsqUcLLzYohND0bRnNoKzdDQEMXFxYdOO09MTGTevHkkJyePuqLXUV9H8TuvU7FxPVqdjgmLljD9wksICHMvo1xX0c5DH5RR3T7A7ORQ7l+WTXZMwIiv73QOUl//InUH/oKqOkmI/z5JST9BpzuJ/4GG+mD1/bDjnxCS4q6mJc4edoiqqrzW2sMvq5uwulzcMS6a6+PC0Z3iPyshhGeSgCaEEJ7DEwJaU1MTeXl5lJaWYjAYuOKKKzjvvPO45pprRjReAtoZcLwP887GAUo3NFO5pRWrxUFAuMFdVZsdjTHw1O55stlsbN++nY0bN2IymYiNjSU/P5+MjIxRB7WeliaK332D0sICALLnLWLGRZcRHB2Lw+niv8X1PPVxJb2Ddq7MjednSzII9x/F/jRrK/v3P0Fr69vo9aGkJN9OTMzlKMrw55wNa/9aeP9m6G2AGdfBWQ+A1/CNSdqsdu6qbODDzn6m+PvyVGY8WX5jcNi2EOIrRQKaEEJ4Dk8JaLNmzWL37t0EBARw8cUXc/PNN7NkyZIRjZeAdgac6MPcYXOyf2cHpUXNNFf1omgUkiaGkp0XQ8L4UDSnsFLjcDjYtWsXRUVF9Pb2EhERQX5+PuPHj0ejGV2Djv7Odra+9xZ7Cj7C5XCSMSefmRdfTlhCEn0WO38oqOKfG+vw0Wv56cIUrp07Dh/9yENWf38JlVUP0de3HT+/TNJS7yUkZM5oX/LnrAOw5jdQ/BcISoQLn4Xk+cMOUVWVd9t7uaeqEZPDxW1JkdyUEIleqmlCfGNIQBNCCM9xeLjpfX8/tmbzqK/hdDrQao/dyM8rxkjQBSknvMYzzzzDvffei8FgYMmSJbz88ssjvr8EtDNgNB/mvW0WSouaKd/cwqDJjl+wN5lzosmeG4N/yKnb++R0Otm7dy/r16+ns7OT0NBQ8vLymDRpElrt6CpV5t4etq14m90fr8I+NEhK7ixmLb+CqNR0ajoG+O3Kcj4payMu2MA952WxdELUKPanqbS3r6R6/2MMDTURFnYWaal34+s77su8bLcDG+HdG6F7P0y7Bs7+DfgMf35cp83BfVWNvNPey3g/H57OTGCiv++Xn4MQ4itDApoQQngOTwhoPT09XHrppbz66qsEBQVx+eWXc9lll/Hd7353RPeXgHYGfJkPc6fDRe3uTko3NNNQ1g1AQnYI2XkxJE0KQ6s9yfbzx+FyuSgrK2P9+vW0trYSGBjI3LlzycnJQa8fXTOTwQETO1e9x45V72E1m0mclMOs5VcSlz2BDdWdPLiilPJWEzOSQrh/WTYT40Z+qLbTaaWh4W/UHfgTLpeN+LirSUq6Eb1+5HvcjmAfhLW/hU1/BP9ouOAZSDv7hMNWdfRyV2UjXXYHNyVEcltSJN6jrDwKIb5aJKAJIYTn8IQljq+//joffvghL730EgD/+te/2Lx5M88///yIxktAOwNO9sO8v3OQso0tlG1swdxrxRDgRdbsKLLmxhAUcWqqNqqqUlVVxfr162loaMDPz4/Zs2eTm5uLt/fo9sdZLRZ2f7yS7R+8g6Wvl9jMbHdQm5jDa9sa+f3qCrotNi6dGscd52QQGTDySqHV2kFNzZM0t7yOXh9M8rhbiYm5Eo3mS54317gd3r0BOspg8lVwzm/Bd/hDvnvtDh6obubV1m7SfL15JjOBqYEnedC2EMJjSUATQgjP4QkBbcuWLVx77bVs3boVg8HANddcQ25uLjfddNOIxktAO83s7RY27CtmwcIFJ30tl9NF/b5u9hU1c2BvF6pLJTYjiOy5MSTnhKMbxX6ukVJVlbq6OgoLC6mtrcVgMDBz5kxmzpyJwTC6Bhl26xB7Cj5m6/tvMtDVSWRyKjOXX0HEhGk8/2kNfy+qQ6dV+Mn8FH40L3lU+9NMpn1UVj1Mb+8WjMY00lLvJTQ0f7Qv181hhcInoOhJMITAsich64ITDivo6ueOigZarHauiw/nznHR+J6iSqcQ4syRgCaEEJ7DEwIawAMPPMCrr76KTqcjJyeHF198ccRFDQlop5HTbKflt1uwebsInz8O36mRaP29xuTa5l7rwapaM/2dQ3gbdWTMjCI7L4bQGL8xuccXNTY2UlhYSGVlJV5eXsyYMYNZs2bh5ze6+zkddvZ9WsDWd9+gt62F0LgEZi6/Ap/0aTz2USUf7mslJtCHu8/L4oJJ0aPan9bRsZrq6kcZHKonNHQhaam/wGg88cbOY2opcVfTWktg/HJY+jvwCx92iMnh5MH9zfyruYtxBi+ezExgdtCp+fMQQpwZEtCEEMJzeEpAOxkS0E4j1e7CsqeD5o8rMPQooFEwZIdgnBGNd2rQmJx5prpUGit6KC1qpmZXBy6nSlRyANl5MaROi0TvPfZVtdbWVtavX8++ffvQ6XRMmzaNOXPmEBg48j1kAC6nk4pN69ny9mt0NdYTFBnN9IsuwxQ/hYdXVVLa0s/UhCDuX5ZNTkLwyK/rstLQ8E9q657D5RoiNvY7JI+7Gb0+aJSvFHDaYcMz8Olj4O0PSx+HCZfCCUJjUY+Jn5U3cGDIxvdjw7gvORqjbuz/LIQQp58ENCGE8BwS0DycpwU0AOqKKNw/wOyJ8zBvbcWyow2X2YE2yBtjbiS+06PQjdGZZ4MmG+WbWyktaqa3zYLeR0v69Eiy82KISPySzTOG0dnZSVFRESUlJQBMmTKFvLw8QkKG37P1RarLRfW2zWx5+zXaaqrxCw1j6rJLqQoZz5Of1NA5YGV5Tix3nptBdODIl1XabJ3U1DxNU/Or6HT+JI+7hdjYb6PRjK7ZCQDt5e5qWtM2yDgfzv89BEQPO8TsdPJYTSsvNHYQ66PnyYwE5oWcuf/5hRBjQwKaEEJ4DgloHs7jApq5E36XilOjR5u6CDLOQ01ewmCDDvPWVqxVvaCAT0YIxulR+GSGoGjHoKqmqrRU91G6oZnq7e047S7C4v0YnxdD2owovA1fsoHGcfT09LBhwwZ27tyJy+ViwoQJ5OfnExERMep5H9i9g81vv0pTeSm+gUFkn3sxm7wy+dvmBjQKXD8vhevnJ+PrNfLXMDBQQWXVQ/T0bMTXN4W01F8QGrpg1Ady43LC5j9BwYOg84ZzHoEp3z5hNW1rn5nbyuuptlj5TnQID6TGEiDVNCG+siSgCSGE55CA5uE8LqA57XBgI41rXiDOvBt66wEF4nIhYymOqHMw1/hh3taGy2RD4++FcVokxumR6EJH14DjeKwWO5XFbewraqarcQCdXkPqtAiy82KISgkcfUgZhslkYuPGjWzbtg273U5WVhb5+fnExMSM+lqNpXvZ/ParHCjZibfRSPyii1nlSuHD0g6iAny489wMLp4SO+JDvFVVpbOrgKqq3zI4WEdISD5pqffg55c+6rnRtR/euwkObICUxe6W/EHxww4Zcrr4fV0rz9W3E+mt57H0OJaEjW5JqBDCM0hAE0IIzyEBzcN5XEA7aN26dSyYPx/aS6F8JVSshOYd7t8MHoeadj5Dvudirg1mqLIHVPBODcI4PQrD+FAU3cl3AlRVlfYDJkqLmqna2obd6iQ42kj23GgyZkVh8Bub5iUAZrOZLVu2sGXLFqxWK6mpqeTn55OYmDjqa7VWV7L57dfYv20zeh8DhjkX8s5gPPtazUyOC+SXF2QzLXHkSypdLhuNTS9TW/sHnE4zMTFXkTzuFry8RrcsE5cLtr0EHz/grqCd/RuY9n04wRlou/ot3FZeT5l5iMsig/lNWiwh+rGtaAohTi0JaEII4TkkoHk4jw5oX/ww72+Gyg/dga32U3DawBCMI3E5FvVczAcCcfba0fjq8J0aiXFGFPoxOvPMNuSgens7pUXNtNX2o9EpJE8JJzsvhrj04DFpXgIwNDTE1q1b2bRpExaLhcTERObNm0dycvKoK3cd9XUUv/M6FRvXo9HpMOVezPsDUbQP2Fk2KZq7l2YSFzzy98dm66a29g80Nf8XrdaXcUk3ERf3PTSaUQbVngPw/s1Qsw6S8uHCP0BI8vD3drl45kAbzxxoI0in49H0OJZFBI3uvkKIM0YCmhBCeA4JaB7uKxXQDmcdgP1roGKVO7QN9qBqvLGGfwez42wGW/zBBV6JARhnRGGYGIbGa2z2MHU1DbCvqJnKLa1YLQ4Cwg1kz40mc3Y0xjFqXmKz2di+fTsbN27EZDIRGxtLfn4+6enpaE5QcfqinpYmit99k9LCNdgVHQcmXMwacyguFH6UP46fLEjFz3sU+9PMVVRX/Zau7kIMhkTSUn9BWNhZowuQqgo7/w0f3ete1rr4lzDzetAM/2dUOjDIrWX1lAwMsiw8kEfS4wj3+hINTIQQp5UENCGE8ByeEtCeeeYZXnjhBVRV5Uc/+hG33nrriMdKQDsDRvVh7nRAwxb3MsiKldBdg1MNxGL8LmbrAhxmA4qPFt8pERhnROE1RmeeOWxO9u/soLSomeaqXhSNQtLEULLzYkgYHzrivV7D3sPhYNeuXRQVFdHb20tERAT5+fmMHz9+1EGtv7Odre+9xd6C1fSq3uxNX8bWwSDC/b2545wMLpsaN6o5d3ato6rqESyWaoKDZ5OWdh/+fpmje4H9zbDiNnfIjpsBFz0H4cPvcXO4VP7U0M4Tda34ajQ8lBbLJZHBY7o3UAgxtiSgCSGE5/CEgLZ3716+9a1vUVxcjJeXF+eeey5//vOfSU1NHdF4CWhnwJf+MFdV6Kx0B7XylagNW7Gp2Zg1l2Cx5YJLiz7WiHFGNL6Tw9H4jM1ept42C6VFzZRvbmHQZMcv2JvMOdFkz43BP8TnpK/vdDrZu3cv69evp7Ozk5CQEPLy8pg0aRI63eheg7m3h20r3mb3x6toUP0pTjiXAw4j42MCuH9ZNrOSQ0d8LZfLTlPz/6ipeQaHo5+YmMtJTr4db6+wkU9IVWHP67DqTrBZYMHdMOdm0A7/uirNQ9xeXs+2fgtnhwbweEYc0d5jty9QCDF2JKAJIYTn8ISA9vrrr/Phhx/y0ksvAfDggw/i7e3NnXfeOaLxEtDOgDH7MB9od1dnKlbhqi7GYp2F2XUedlcCis6FYUIoxjkJeMX7j0kFxulwUbu7k9INzTSUdQOQkB1Cdl4MSZPC0GpPrnmJy+WivLycwsJCWltbCQwMZO7cueTk5KDXj26p3+CAiZ2r3mP7qvfYSzRbIufRq3qzdEIUv1iaRULoyPen2e191NY9S2Pjv9FofBiX9FPi469BoxnFks+BdvjgZ1D2HkRPcVfToiYMO8SpqrzU2MEjNS3oFIVfp8ZyVXSIVNOE8DAS0IQQwnMcHm5WrVpFa2vrqK/hdDrRao+9NSUqKoqlS5eecA4XXXQRmzZtwmAwsHjxYnJzc3n22WdHdH8JaKeZqqp8+umnY/9hbrNAzTrU8pXYSyswm2dicc5DxYAuYAjjjGiMczLQ+I7Nnqb+zkHKNrZQtrEFc68VQ4AXWbOjyJoTQ1DkyTUvUVWVqqoq1q9fT0NDA0ajkTlz5pCbm4u39+j2wVktFnZ/vJLNH7zPRiWR7cG5oNFybV4yNy5Kxd9n5O+H2VxD9f5H6excg49PPGmpdxMefs7oAtO+d2Dlz2GwB/J/Dvk/A93wlbFai5XbK+rZ1GtmXrAfT2TEk2AYm/2AQoiTJwFNCCE8hycENICXXnqJ559/HqPRyPjx4/H29ubpp58e0f2/UgFNURQj8DxgA9apqvrycF/vaQFNtdvZv2wZ/dExpH77KvzmzkVjNI79jVxOaNqOa++HWHZ3YO6bgl1NB+wYonowzknAO3cayij3eR37Vi7q93Wzr6iZA3u7UF0qselBZOfFkJwTjk7/5ZuXqKpKXV0dhYWF1NbWYjAYmDlzJjNnzsRgGN25cHbrEHsKPqZgxQd8Qhrl/pkEeSvcsTSbb81IRDuK/Wld3UVUVT2M2VxJUNAM0tLuJcB/+GrYEcxd8OHdsOc1iBgPFz8HMTnDDnGpKv9q7uLB/c2owH3J0VwTG4ZGqmlCnHES0IQQwnN4whLHL7rnnnuIi4vjpz/96Yi+/owHNEVR/gYsA9pVVZ1w2K+fCzwDaIEXVVV9VFGU7wG9qqq+ryjKq6qqXjnctT0toDl6emh75BF6P1mDxmJB8fLCd/Ys/Bctxm/BAvSREafmxl37sRUXYN49gKU3ExU/dNo2jPEd+M5JQ5udD7qTr8iYe62UbWqhbEMz/Z1DeBt1ZMyMIjsvhtCTbF7S2NhIYWEhlZWVeHl5MX36dGbPno2f3+iu63TY2fdpAe++/wkryaDFJ5px/hp+c/k08tNH/v67XA6aW16jpuYp7PYeoqMvJSX5Z3h7j+LPsGKVu4nIQDvMvRnm3w364ff0NQzZuKO8gXU9JmYFGnkyM4FkX6mmCXEmSUATQgjP4SkBrb29nYiICOrr61myZAmbN28mKChoRGM9IaDNAwaAf30W0BRF0QKVwNlAI7AVuAq4CFilquouRVH+q6rqt4e7tqcFtM+sW7OG6X7+DBQUYCoowN7QAIDPxIn4L16E38JFeKennZK9RmpvB5a1GzHvtWIzRwMODLrtGBO78c6dhJKxBHxHeUjzF+/hUmms6KG0qJmaXR24nCqR4wLIzoshLTcSvfeXr6q1trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFK+sZC/v7ueD9U0TPoAZoQr/PY7c0iNChrxdRwOE7V1f6Sh4Z9oNHoSE39MQvwP0GpH2DxlsBdW3+duyx+a5t6bljBz2CGqqvJKazcPVDdhc6ncNS6a6+LD0Uo1TYgzQgKaEEJ4Dk8JaPn5+XR1daHX63nyySdZvHjxiMee8YB28IZJwIrDAtps4Feqqp5z8Oe/OPiljUCPqqorFEV5RVXVbw13XY8NaId9mKuqiq26GtOaAkxrCxjaXQKAPi4Ov0UL8V+0GN9pU1FG2SRjJOzNPZgLdmIpd+FyeKOlHaPuE3wTetBNyIPM8054yPKJDJpslG9upWxDMz2tFvQ+WtKnR5KdF0NEYsCXvm5nZydFRUWUlLjfrylTppCXl0dIyOjCpepyUbplE0+/u5V1rkScio7z4+FX311AaNDI/8e0WOqo3v8YHR2r8fGOITX1LiIizh95yN5fAO/dAn0NMOsnsOg+8Bp++Wur1c6dFQ2s7upnaoAvT2UmkGE8+a6aQojRkYAmhBCew1MC2snw1IB2GXCuqqo/PPjz7wEzgbuAPwJDQNGx9qApinIdcB1AZGTktFdeeWXM53uyBgYGjrs0T9PXh3fJHrxLSvAqK0NxOHD5GrCOn4B18mRs47NRR7n/6oRcYGxTCamz4t1nBFz4aLZj1H6E06+FrvDpdIXOoD8gDZQvt29NVVUsndCzX6W/AVQn+ARDcLJCYCJovb5c9WdwcJCGhgZaWlpQVZWIiAgSExMxjnJvn6qqNNbW80apmd3aBHxUK+cEdnP+tHi8fEYeelS1HJf6CtAApKJRrkRRRhZytQ4LyTX/JrZ5JYM+UVRk3EBv8KQT3A82oucfGBhE4VKGuAArOimmCXHaDPdMF0IIcXoFBgaO+Lyx4xmuScjpUF1dTV9f3xG/tnDhQs8MaKqq3jia634VKmjDcVksmDduxLSmgIF163D29IBej3HGjIPVtUXoo6PHdG6O7iHMW1sxb23GNeBEox3AqKzCqPkInb8LMs6FjPMheT7ov1xQtFrsVBa3sa+oma7GAXR6DanTIsjOiyEqJfBLLe00mUxs3LiRbdu2YbfbycrKIj8/n5iYmFFfa23RDh5aVc5+ZyChjl5+mKnjmm+dh8FvZN9JUVUnLS1vsr/m99hsnURFXUxK8s/x8Rnhn1XdBnjvRuiugdxr4axfg8/w1cYOm517q5p4r72XiX4GnsqMZ4L/yXXTFEKMjFTQhBDCc0gFbYyMdImjqqqPjOa6X/WAdjjV6WRw1y5MBQUMrCnAVlcHgHd2Fv6LFuO/aCHeWVljtm9NdaoMVXRj3trKUHk3qODt34zR8QYGV4F7yWXKIvcyyLRzwC989PdQVTrqTewraqaquA271UlwlC/ZeTFkzIrC4Df6g5ktFgubN29my5YtWK1WUlNTyc/PJzExcdRze23NTn5XUEeny5txQw1cN9HAhZdeiDEoeETXcDhM1B34Mw0NfwM0JCZeT2LCj9BqRxBsbRZY+zBsfh78Y+CCZyDtrBMO+6Cjl7srG+mxO7gpIZJbkyLxHoNunUKI45OAJoQQnkMC2hg5RkDT4W4Sshhowt0k5Nuqqu4bzXW/TgHti6w1tQysLcC0poDBnTtBVdFFR+O/cCF+ixZhnDEdxWv0AedYnH1WzNvaMG9rxdljReOt4hu2H+Pgf9BbtgEKxM+EjKWQcR6Ep4/6HrYhB9Xb2yktaqatth+NTiF5SjjZeTHEpQejjKINPsDQ0BBbt25l06ZNWCwWEhMTmTdvHsnJyaMKsVaHk+c+2MlfNzdjdSlMHijj+1MCWbh8OQFhI+vYODjYQPX+x2lvX4m3dxQpKXcQFXkhykiWizZshXdvgM4KmPIdOOdhMAwfEHvsDn5Z3cTrrT1kGH14KjOeqQGn4DgHIQQgAU0IITyJBLQxoCjK/4AFQBjQBjygqupLiqKcBzyNu83+31RVfXi01/a0gKaqKre+ugu9pYNL509jUlwgRm/dSV/X0d3NwNp1mNYWYN6wEXVwEI3RiHFePv6LFuE3bx7aUXY5POb8XSrW6l7MW1sZLO0Cp4pXtBZjWBmG/v+iaTv4XoemHgxr50P8DNCMbg1vV9MA+4qaqdzSitXiICDcQPbcaDJnR2MMHF1LeZvNxvbt29m4cSMmk4mYmBjmzZtHeno6mlFUljoHrDz67k7e3NOJl9PKrL7tXJkTyeyLLyM4OnZE1+jp3UpV1UOYTHsJCJhMetp9BAZOPfFAhxU+fRyKngJjGCx7CjLPP+GwT7r6ubOigVarnR/HR3DHuCgMWqmmCTHWJKAJIYTnkIDm4TwtoHUNWLn8z5uo6TQDoFEgIyqAnIQgcuKDyEkIJjnMiGaU1aLDuYaGMG/axEDBWkxr1+Ls7AStFt/cXHcL/0WL8IqLO+nX4hywYdnRjrm4FUfnIIqPFt9sX4xBJXi1vQ2168FlB99QSD/XHdhSFp2wM+HhHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDx3V++RwONi1axdFRUX09vYSERFBfn4+48ePH1VQK2/t51dv72bzgX6C7b3kdW/inCmJzFp+OWEJSSccr6ouWlvfpnr/E9hs7URGLCMl5U4MhhGEvJbd8M4N0LYHJlwKSx93B7Zh9DucPLi/mX83d5Fs8OapzHhmBkkzAyHGkgQ0IYTwHBLQPJynBbTPrFi9FmPieHbW97KzvoddDb2YhhwABPjomJIQfDCwBZETH0yg75drsa+6XAzt2eNuMrK2AGtVNQDe6enuJiOLF+MzfjzKSexRUlUVW20/5q2tWPZ0gsOFPtYPY04Qvr670NSuhKqPYKgPtN6QvOBgdW0p+EeN+D69bRZKi5op39zCoMmOX7A3mXOiyZoTTUDoyJuVOJ1O9u7dy/r16+ns7CQkJIS8vDwmTZqETjeyaqaqqhSUt/Pg+3up6x4i0drE3I4iZkxOZ9byK4hKPfEST4fDzIH6v1Jf/wIACfE/IDHxx+h0JwiwTjsUPQ2fPuZuHHLe72D8JXCCZZvru03cXtFA45CNa2PDuCc5GqPuzHUnEuLrRAKaEEJ4Dk8JaNdeey0rVqwgIiKCvXv3AtDd3c2VV15JXV0dSUlJvPbaawQHH711RQLaGfDFD3OXS6Wmc4Ad9b2HQltlmwnXwbc6OdxITnywO7AlBJER6Y/uSyxVs9XXu5uMFKzFsn07OJ3owsPxW7gQ/8WL8J01C4336JYQHs5lsWPZ1YG5uBV7qxlFr8EwORzjtDC81L0olaug/APoPeAeEDvNvWct4zyIyDphyABwOlzUlXRSWtRMfVk3AAnZIWTnxZA0KQztCN8Xl8tFeXk5hYWFtLa2EhgYyNy5c8nJyUE/wjPnbA4X/9l8gKc/qcQ0ZGeypZLcjo1kTshi1vIricuecMJrDA01U73/d7S1vYeXVwQpKT8jOuqSE+9Payt1701r3gGZy+D8358w8JodTh6pbeGlxk7ifLx4MiOe/JAz990hIb4uJKAJIYTn8JSAVlhYiJ+fH1dfffWhgHbnnXcSEhLC3XffzaOPPkpPTw+PPfbYUWMloJ0BI/kwH7A6KGn8LLC5Q1uX2QaAr5eWSXGB5BystE1JCCLCf3QHFDt6ejCvX49pTQHm9etxWSwovr74zZ2L36JF+C2Yj+4YiX4kVFXF3jiAubgVy+52VJsLXaQvxulRGHPC0QxUQ8VK94+m7e5BwUkHw9pSSJgD2hNXs/o7Bynb2ELZxhbMvVYM/noyZ0eTPTeGoMiRtZhXVZWqqirWr19PQ0MDRqOROXPmkJubi/cIw2qP2cYza6r496YDeGtczDTtIqutmITMTGYuv5KkyVNP2Jikr28HlVUP09+/C3//8aSl3kdw8Izhb+x0uLs8rn0YdD5w7qMw+VsnDLpbege4vbyB/YNWvhcTyv0pMQRINU2IL00CmhBCeA5PCWgAdXV1LFu27FBAy8jIYN26dURHR9PS0sKCBQuoqKg4apwEtDPgS7XZV1UaewbZUd/jDmwNvZQ292F3uv884oINhwJbTkIQ2TEBeI/wH90umw3Lli2HqmuOtjbQaDBMzcF/4SL8Fy/CKylplK/y4LWtDiy7D1bVGgdAp2CYEIZxehTeyYEoA21Qscr9o2YdOK3gEwRpS9wt/FMWn/AMMJfTRf2+bko3NFO3pwvVpRKbHkR2XgzJOeHo9Cd+H1RVpa6ujvXr11NTU4OPjw+zZs1i5syZGEZ4MHh1u4mHPihjXUUH0QaVOV0biW4rISo5lZnLryA1d9awy0lV1UVb2wqq9z+G1dpKRPhSUlPvwmCIH/7GndXualrDZkg9Gy54GgKH32c46HTxRF0rf6pvJ8pbz+MZ8ZwVOvz7LIQ4NgloQgjhOQ4PN5WVD2IaKBv1NZxOB9rjFAv8/bJIT79/RNf5YkALCgqit7cXcP/bMzg4+NDPj/caPiMB7RQbqw/zIbuTfc397PwstNX30Nw3BICXVsP42IAjlkbGBhlOWMlRVZWhfaUMFBRgKijAWl7uvl5ysrvJyMJFGCZPQvkSp6vbmgfce9V2dqAOOdCF+uA7PQrjtEi0/l5gHYCatVC+Eio/hMFu0Ohh3LzP962dIHiYe62UbWqhbEMz/Z1DePvqyJgZRXZeDKGxI2uO0djYSGFhIZWVlXh5eTF9+nRmz56Nn9/Ixq+raOehD8qobh9gYrDCrOY1+LRWEBqXwMyLLydjzjw0w7x/Tucg9fUvUnfgL6iqk4T475OU9BN0umG+k+NywdYX4JNfgaKFJQ/CtGtOWE3b0W/mtvIGKsxDXB4VzG9SYwnWn3xnUSG+SSSgCSGE5/iqBDSA4OBgenp6jhonAe0MOJUf5q19Q+xq6Dm0NLKkqZchuwuAcH/vQ90icxKCmBQXiK/X8P8Ytzc1YSpYy8DaAszFW8HhQBsait+C+fgvWoRxzhw0I6wwfUa1O7Hs6cRc3Iqtrh80CoasEIwzovBOO3jmmcsJDcVQ8YE7sHXvdw+Onvz5vrWoiccNIKpLpbGih9INzdTs7MDlVIkcF0B2XgxpuZHovU8cMFtbW1m/fj379u1Dp9Mxbdo05syZQ+AIjixwOF38t7ieJz+upG/QzjlxOibUrMLaWE1QZDTTL7qU7HmL0Q2z323I2sr+/U/Q2vo2en0oKcm3ExNzOYoyzNy7a+H9m6G20B1sL/gDhIwbdq5Wl4un69p4tr6NYL2Ox9LjOC886ISvUQjhJgFNCCE8hyxx9HDfxID2RXani4pW0+dVtoZeag+2+ddqFDIi/Q9W2NyhbVzo8dv8O00mBgoLGShYy0BhIS6TCcXbG+OcOe7q2oIF6MKGb/t+1PzaLZi3tWLZ3obL7EAb5I0xNxLf6VHoDj/zrKPy831rDcWACoHxn1fWEvNAd+yDuQcHbFRsbqW0qJmeVgt6Hy1p0yMZnxdDeIL/CauKnZ2dFBUVUVJSAsCUKVPIy8sjJCTkhK+vz2LnDwVV/HNjHT56DVemeRG39wO6ayvwCw1j+gWXMHHREvTex99D2N9fQmXVQ/T1bcfPL5O01HsJCZlz/JuqKuz4J3x0H6hOWPwAzLgOTtCtc6/Jwm3lDewZGOTCiCAeTosl3OvLdRAV4ptEApoQQngOTw5od9xxB6GhoYeahHR3d/P4448fNU4C2hlwpj/Mu802dje4l0TubOhlV30vJqu7zX+gQc+Uz1r8JwQzJS7omG3+VZsNy/bt7hb+BQXYm5tBUTBMmoTf4sX4L1qIV0rKCcPPoes5XAyWdmHe2oq1qhcU8EkPxjgjCp/MEJTDuzMOdLiXQFasgv0F4BgE7wBIPctdWUs7GwxBR99DVWnZ30dpUTPV29tx2l2ExfuRPTeG9JlReBuGryb29vayYcMGduzYgcvlYsKECeTn5xMREXHC11fTMcBvV5bxSVk78cEGfpDtjffW92iu2IdvYBDTzr+YyWefh7fvsZubqKpKe/tKqvc/xtBQE2FhZ5GWeje+vsNUx/oa4f1bofpjiJ8FFz0HYanDztPuUnm+vp3f17Xip9PwcFocF0cEjfjPUYhvojP9TBdCCPE5TwloV111FevWraOzs5PIyEh+/etfc/HFF3PFFVdQX19PYmIir7322jG/4S8B7QzwtA9zl0tlf8fAwQqbu9JW0Wbisz/qlHDjoQpbTnww6ZF+R7T5V1UVa0XFoSYjQwe/S6BPTDjUZMSQk4MywnPGHN1DmLe1Yt7WhqvfhsZfj3FaFMbpkei+eOaZfdDdXKRiJVR8COZ20OggcQ5knO+urgUnHnUPq8VOZXEb+4qa6WocQKfXkDotguy8GKJSAocNJCaTiY0bN7Jt2zbsdjuZmZnMmzePmJiYE762oqpOHlxRSkWbiRlJIVw33ovewnc4ULITb6ORnHMvZOrSCzD4H7thh9M5REPD36k78CdcLhvxcVeTlHQjev1xGnyoKpS8CqvuAscQLLwHZt1wwi6ZFeYhbiuvZ0e/hXPCAngsPZ4ob6mmCXEsnvZMF0KIbzJPCWgnQwLaaaSqKvdtuA9tt5ZLZl1CVmgW3tovf+7YqWQasrOnsY+dn1Xa6nuP2+Y/JyGYcP/PX4e9tZWBdeswrSnAsnkzqt2ONigIv/nz8Vu0COPcuWj9TnAgM6A6VYYqujFvbWWovBtU8E4Nwjg9EsP4MBTdF5bsuVzutv2fLYXscDc4IWK8uyNkxlKIzjliqZ+qqnTUm9hX1ExVcRt2q5PgKF+y82LImBWFwe/YyyYBLBYLmzdvZsuWLVitVlJTU8nPzycx8ehAeDiH08Wr2xp4cnUl3RYbl06N4//S9dR8/BbVWzej9/Zh8pLzyF22HGPQsY86sFrb2V/zJC0tb6DXB5M87lZiYq5EozlO8DK1wQe3Q/kKiJnqrqZFZg87T6eq8kJDB4/WtuClUfh1aizfigqRapoQXyABTQghPIcENA/naQGta7CL76z8Dk0DTQDoNDoygzOZFD7p0I84vziP/Aewqqo0dA8eqrDtrO9hX3M/Dtfwbf6dA2bMRUUMrC1gYN2nOPv6UPR6fGfPwn+RuyukPvLESwSdfVbM29owb2vF2WNF46vDd2okxhlR6COOc+ZZ1/7PW/jXbwTVBf7RkH4uZJ4PSfmg/3zvl23IQfX2dkqLmmmr7UejU0ieEk52Xgxx6QeblxzD0NAQW7duZdOmTVgsFhITE8nPzyflBEs8+4fsPFdQzd821KLXavjJ/BSWj9Oye8WbVGxcj0anZeKiJUy/8FICwo79HplM+6isepje3i0YjWmkpd5LaGj+sW+oqrDvbVh5Bwz1wfw7Ie820A5fGauxWLm9vJ7NfWYWBPvzu8x44n2OH1yF+KaRgCaEEJ5DApqH87SA9pn31ryHX5ofJR0llHSWsLdzL4OOQQBCfEKYFPZ5YJsQNgGj/sTVpjPB3ea/74jDtI/V5n9qorvKFm3UMbhzJwMFazEVFGCvrwfAZ8IEd5ORRYvwTk8fNtSoLhXr/l7Mxa0MlnaBU8UrMQDjjCgME8PQeB2nw6GlG6pWuytr1WvANgB6I6QuPrhvbQkYQw99eVfTAKVFzVRsacVqcRAQ5kN2XgyZs6MxBh676mmz2dixYwcbNmzAZDIRExPDvHnzSE9PRzNMg44DXWYeWVnOh/taiQ0ycNfSTPIiVLa++yalhQWASva8Rcy46DKCo2OPfk9UlY6O1VRXP8rgUD2hoQtJS/0FRmPKsW9o7nQvedz7BkROhIv+CDFTjjs/AJeq8o+mTh6qaUEB7k+J4eqYUDQe+M0EIU43CWhCCOE5JKB5OE8NaF/8MHe4HOzv3c/ujt2HQlttXy0AGkVDalCqO7CFTWJy+GSSApPQKMN35DtThmvzH+Hv/XnHyLhAMmxdOAo/ZaCggMGSElBV9LGx+C1ahP+ihfjm5qIM04beOWDDsqMdc3Erjs5BFG8tvjkRGKdH4TXcmWf2Iagrcrfwr1gFphZQNJAw+2BXyPMg1B1uHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDz1mx0uHw8GuXbsoKiqit7eXiIgI8vPzGT9+/LBBbdP+Lh5cUUppSz9TE4K4f1k2Kb52tr73FnsLVuN0OEifncfM5VcQnpB01HiXy0pDwz+prXsOl2uI2NjvkDzuZvT6oGPfsPwDWHE7mDsg71aYd+cRFcVjqR+08vOKBgp7BpgdZOTJjATG+XrmMl0hThcJaEII4TkkoHm4r0pAO5Y+ax97O/dS0lHC7k53cDPZTAD46/2ZGD7xUGibGDaRIJ+gUz/xL+GzNv87DjtMu67LArjb/GdGudv85/qrjD9Qgs/WjZg3bkS1WtH4++M3bx7+ixdhzM9He5z/UVRVxVbb7z4Ee08nOFzoY/0wzojCd3I4Gp9hGmKoKjTvPLgUciW0uRucEJZxcN/aeRCbCxoNvW0WSjc0U76phUGTHb9gbzLnRJM1J5qALzYvAZxOJ3v37mX9+vV0dnYSEhJCXl4ekyZNQnechilOl8qb2xt5/KMKOgesLM+J5c5zMwhQh9j+wTvsWr0S+9AgKbmzmLX8CqJS04+6hs3WSU3N0zQ1v4pO50/yuFuIjf02Gs0xwu5gj7sd/67/uF/zRc9B/PTjv18H3+//tXTzQHUTDlXl7uRofhgXjlaqaeIbSgKaEEJ4DgloHu6rHNC+yKW6qOuvc1fYDv6o6q3CpbqrU0kBSYcC26TwSaQFp6E7XsOIM6zbbDuiyraroZeBw9r8z4gysNBcR+b+XRh3bMLV0wM6HcYZ0/FbtBj/hQvQxx691A/AZbFj2dWBubgVe6sZRa/BMCkc44wovEZw5hk9B9wt/Ms/gAMbwOUAY7h731rGeZC8AKfGh7qSTkqLmqkv6wYgISuE7LwYkiaHodUeWSVzuVyUl5dTWFhIa2srAQEBzJ07l6lTp6I/ToVwwOrgT+uqeWF9LRoFrp+XwvXzk1Fsg+xc9T47V73HkHmAxEk5zFp+JXHZE46+xkAFlVUP0dOzEV/fFNJSf0Fo6IJjvwfVn8B7t0B/E8y+ARbeC17H2dt3UIvVxp0VjXzc1U9ugC9PZSaQZhy+AifE15EENCGE8BwS0Dzc1ymgHYvFbmFf177Pl0Z2lNA11AWAQWcgOzSbSeGTmBw2mUnhkwj3DT/pe54KzkNt/j8PbZXt7jb/GtXFYrWDs7rLSd+/C5+WBgC8s7LwX7gQv8WL8MnOPip0qKqKvXEAc3Erlt3tqDYXukhfjNOjME6NQHOMs92OMtjrDi4VK6HqY7D2g84AKQvdSyHTz6V/yJ+yTS2Ub2xhoMeKwV9P5uxosufGEBR5ZMBRVZXq6moKCwtpaGjAaDQyZ84ccnNz8fY+9jLBhm4Lj35YzgclLUQF+HDnuRlcPCUWh3WQXatXsv2Dd7D09RKbmc3M5VeSNHnqEe+Fqqp0dhVQVfVbBgfrCAnJJy31Hvz8jq68MdQPn/wKtr0EwePce9OS8oZ9i1RV5a22Hu6rasLicvHzpCh+Eh+B7jgNVYT4OpKAJoQQnsNTAtq1117LihUriIiIOHRQ9euvv86vfvUrysrKKC4uJjf3mHlLAtqZcKo+zFVVpdncfESVrbS7FIfLXZ2KNkYfUWXz9Db/JY19n4e2hl66zTZiBzqY117Ggq4y4pv3o6guNBGRBCxeiP+ixfjOnIHG68gOgy6rg8HdnQxsbcXeYAKdgmF8GMYZUXgnD3/m2SEOm7ui9tlSyL4GQIG46ZB5Hq60pdS3hVK6oYW6PV2oLpWYtCCy82JImRqOTv958xJVVTlw4ACFhYXU1NTg4+PDrFmzmDlzJgbD0UslAbbWdfPgilJKGvuYHBfILy/IZlpiCHablT1rVrP1/TcZ6OokMjmVmRdfQer0WSiH7XdzuWw0Nr1Mbe0fcDrNxMRcRfK4W/DyOvpwRGrXw3s3Qk8dTP8hnPUr8B7+IdVhs/OLykZWdPQxyd/A05kJZPsd+7UI8XUjAU0IITyHpwS0wsJC/Pz8uPrqqw8FtLKyMjQaDddffz1PPPGEBDRPcjo/zK1OK+Xd5UeEtmZzM+Bu858VknVEaIv1i/XYNv/13ZZD+9h2NvTSWNvM1OZSZrXuI7ejEm+HDYePAWXGbKKXLiFo4Xy0QUFHXMfWYsZc3IJlZwfqkANdqA++06MwTotE6z/C1vGq6t6rVn7wvLWWXe5fD0mBjKWYY8+j7EA0ZZta6e8cwttXR8bMKLLzYgj9QvOSxsZG1q9fT0VFBV5eXkyfPp3Zs2fj53d0kxOXS+XtnU08/lE5bf1Wlk2K5u6lmcQF++J02CktXEvxu6/T29pCaFwCMy++nIw589BoPw+HNls3tbV/oKn5v2i1voxLuom4uO+h0XzhtdvMUPAwbH4eAuPggmfcHS9P4P32Xn5R2Uivw8EtiZHckhiJ1zCNUYT4OpCAJoQQnsNTAhpAXV0dy5YtOxTQPrNgwQIJaJ7mTH+Yd1g6KOn8PLDt69p3ZJv/cHe3yElh7jb/vvrh9yKdKUN2J3ub3G3+S2rbsBUXk75/F7Na9hFiNeFUNHQlZ6HJm0/ShecSl516KHyqdieWvV2Yi1uw1faDRsGQFeKuqqUd/8yzY+prgsqD563VFoLTBoYQ1LRzaPS9gNIDsdSU9OByqkSOCyA7L4a03Ej03p8Hp9bWVtavX8++ffvQ6XRMmzaNOXPmEBgYeNTtLDYHf/60hr8W7selwo/yx/GTBan4eetwOZ1UbC5iy1uv0tVYT1BkNNMvupTseYvRHbbfbcBcRXXVb+nqLsRgSCQt9ReEhZ11dDhvKIZ3b4DOSsj5Lix5GAxBw74d3XYHv6xq4o22HrKMPjyVmcCUAM/8OyTEWDjTz3QhhBCfOzzc3F/VyN6BwVFfw+lwotUd++imCX4GHkyLG9F1JKAdgwS0kXG4HFT3Vrs7Rh7cz1bXXwd89dr8t/QNsquum7qN21E2FZJUvp3E/lYAGgOjaR4/Hd28+aTmTWdiQjC+XjrsHRZ3B8jt7bjMdrRB3hhzI/HNjUIXNMoloEP9sL/AXVmr/AiGekHrzWD8OVSoF1FaG0VPuw29j5a06ZGMz4sh/LDmJZ2dnRQVFVFSUgLAlClTyMvLIyTk6KWIzb2DPP5hOe/saibc35s7zsngsqlxaDQKqstF9fYtbHnrNdpqqvALDWP6BZcwcdES9N6fN/Lo7FpHVdUjWCzVBAfPJi3tPvz9Mo+8kX0IPn0UNvwB/CJg2VPuPXgnsLqzjzsrGmm32flpQgQ/T4rCR+uZf2+EOBme9kwXQohvMgloHk4C2pfXZ+1jT+eez5dGdh6/zf+k8EkEeh9d6fEEdqeL8u3lNK/6CO3mIqLqytGqLrq9/SmOHk9Tdi7G2bOYlBxJTmwAUe1WzFtbsVb3AuCTHoxxRhQ+mSEoow0XTgfUbzq4b+0D6KlDVaEl8CJKbRewvykUhx3C4v3InhtD+swovA3uzpu9vb1s2LCBHTt24HK5mDBhAvn5+URERBx1mx31Pfzm/VJ2NfQyITaA+8/PZmay+9BtVVU5sHsHm99+jabyfRgCApl2/sVMWXI+3r7uqpbLZaep+X/U1DyDw9FPTMzlJCffjrdX2JE3atoB794I7ftg4uVw7mNHHO59LH12B7/e38x/W7pJ9fXmqcwEpgd65sHrQnxZX4VnuhBCfFPIEkcPJwFt7Iymzf/kiMmkBqV6ZJt/Z28vrR8X0LbqY3Tbt6C3DjKk9WJHRDqbosZTMW4SqWlxzA33Z+aASsj+flSTHY2/HuO0KIzTI9Ed48yzE1JV6Ch3V9bKV0LTNqwuXyqViykdOofOvgB0eg2p0yLIyoshOsXdvMRkMrFp0ya2bt2K3W4nMzOTefPmERMT84XLq7y3u5nHVpXT3DfE0glR/GJpFgmhny8tbCzby5a3X6Nu9w68jUZyzr2QqUsvwOAfAIDd3kdt3bM0Nv4bjcaHcUk/JT7+GjSaw6qIDhsUPQmFvwOfIDj/CRi//IQv/9NuEz+rqKdpyM4P48K4Ozkao/bY35kS4qvmq/hMF0KIrysJaB5OAtqp9cU2/7s7dtM95D4XzKAzMD50vDu0HQxuntbm32WzYSneSv+aNfR9sgY62nEpCrWRKawLzWBT9ATa/MK5ONCPC/FiXJ8DBfBKDsRvZhSG8WEoui+5ZM/Udmjfmrp/HR1Dseyznk/VYB52p57gSB+y8+PImBWFwc8Li8XC5s2bKS4uZmhoiJSUFObNm0diYuIRlx20OXlhfQ1/Wrcfp0vl+3lJ3LgwFX+fz/efte6vYsvbr1K9dTN6bx8mLzmP3GXLMQYFA2A211Bd/QidXQX4+MSTlno34eHnHLk/rXWve29ayy7IuhDOewL8I4d9yQMOJw/XtPD3pk4Sfbz4fWY8ecFn7owRIcbK1+WZLoQQXweeEtCuuuoq1q1bR2dnJ5GRkfz6178mJCSEm266iY6ODoKCgpgyZQofffTRUWMloJ0BX9cP88Pb/H8W2sq6yw61+Y8xxnwe2MInkRWShZd2hJ0TTzFVVRkqLWWgYC2mtQVYS8sAMEfGsi9pMisD0qj1jWOp4s0FeBGFBqtewZwaSNS8eCLGBX35m9vMsH8tVKzCVl5AdXcWpYNLaLOno9GoJE/wJ3tRKnHpwVhtVrZu3cqmTZuwWCwkJiaSn59PSkrKEQGqtW+I331UwZs7Ggnz8+JnSzK4Ijce7WHNTzrr69jyzutUbFyPRqdl4qIlTL/wUgLC3Msou7qLqKp6GLO5kqCgGaSl3UuA/2EHYjsdsOlZWPuI+1Drcx+DSVfACbqAbuod4PbyemoHbVwdE8r9KTH4H2edtxBfBV/XZ7oQQnwVeUpAOxkS0M6Ab9KHudVppayr7NA+tpKOElrMLQDoNfrP2/wf/BFjjPGINv/25mZMa9cysKYA89atYLdDUDC9k2dQkjCJOm0S2b2Qhw49ChU6lf3RPvhMCGVycihZ0QF4fZnqmssJjVuh/AO6du+ktCWdisH5WFV/AoxDZM0IJuucHPS+Gnbs2MGGDRswmUzExMQwb9480tPT0RzW1r6ksZcHV5Syta6HzCh/frksmzmpR+4t62ltpvidNygtLABUsvIXMuOiywmJicXlctDc8ho1NU9ht/cQHX0pKck/w9v7sL1wHZXualpjMaSd424iEhg77Mu0OF08XtvCXxs6iPbW87uMeBaFBoz+/RLCA3yTnulCCOHpJKB5OAlonqnd0s6ejj3s7nRX2fZ17mPIOQRAqE/oobA2OXwy40PHn/E2/06TCfP69ZgK1jJQWIirvx/F2xufmbPonTSXbl0qIc1OwmwqA6h8jJ1VWgeGOH9y4oPISQgmJyGI6ECf0YfPziocpauo2VxLaWMSTbaJKDhJiuwge04kMfmz2FNWTlFRET09PURERJCfn8/48eMPBTVVVVm5p5XfriyjqXeQs7Mjuee8LMaFHdmso7+zg23vv8WeNR/hdDhIn53HzOVXEJ6QhN3eT92B52ho+CcajZ6kxJ8QH38tWu3BjpAuJxT/FT75NWj1sOQhmHr1Catp2/vM3FpeT5XFypVRIfw6NYYgveftXRRiON/0Z7oQQngSCWgeTgLaV4PD5aCqp+qIKtvhbf7TgtKOqLIlBZy5Nv+q3Y5l+3ZMBQUMrCnA3tQEgM/kSRjnLMPmlY6r0Y7GqdLgBW84hljlsmEBIgO8yYl3h7WchGAmxgZi8BrF0j5zJ71bP6F0QyvlTYkMugIxarvJim8gY24cBwxxrN+8nc7OTkJCQsjLy2PSpEnodO7AM2R38rcNtTxXUI3N6eL/Zidx0+I0Ag36I2/T28P2D95h1+qV2IcGScmdyczlVxCdmoHFUkf1/sfo6FiNj3cMqal3ERFx/ufBs7sG3rsZ6tZD8gK44A8QnMhwrC4XT9W18Wx9G6F6HY+nx3NuuGd2BRXiWOSZLoQQnkMCmoeTgPbV1TvU627zfzCw7enYg8l+sM2/l/+h9v6TwicxMWziGWnzr6oq1soqBgrWYCpYy9CePQDox6XjO3M5ilcqzn4VVafQEu3LWh8XK7tMHOi2AKDVKGRF+x8R2pJCfUdUZXMOmqlbs4HSzV3Ud7qbryR47yYrvpGh5HiKWnS0dnQTEBDA3LlzmTp1KvqDB1W3m4b4/UeVvLa9gSCDntvPTueqGQnovnCMwOCAiZ2r3mfnqvcYMg+QOCmHmcuvIC5rAj29m6mqepiBgTICA6eSlnYfgQGT3QNdLtjxD1j9S1BdcNavYPoPQTN8qN5jsnBreT37Boa4OCKIh9LiCPOSaprwfPJMF0IIzyEBzcNJQPv6cKku6vrq3M1HDoa26t7qo9r8Tw6fzKTwSWekzb+9rY2BteswFazBsmkzqt2OLm48hmkXgy4BnAq6SF+UyWGUhujZ3mZiZ0MPuxv6GLC6G6kE++qZctiyyMnxQQT46Ie9b3+HmbLVOynfZmJg0BuDppcMQwG+kd3s0KXT0A9Go5E5c+aQm5uLt7e7bf6+5j4eXFHK5ppu0iL8uG9ZNvPTj+60aRu0sGv1SrZ/8A6Wvl5iMrKZdcmVJE6aTGvrW+yv+T02WydRUReTkvxzfHyi3QN7G+D9W2D/GkiYAxf9EUJThn8PXSp/rG/jybo2/HUafpsWx0URQR6xL1GI45FnuhBCeA4JaB5OAtrXm9luZl/nPko6P+8aebw2/5PDJxNmCDvBFceOy2xmYMMGBtYUMLBuHU7zEPqEWXhnLUHRh4NWwTAhDOOMKHRJAezvMLOzvoed9b3sbOihqn0AVXVv4UoN9ztUYctJCCItwv+IboyH7ulSqd/XRWlBFXXlFlRVIdprL+HGTdQYgqh1ReLjpWXWzNnMmD0HX19fVFVldWkbv11ZxoEuCwszwrn3/GxSI/yOur7dZmVvwWq2vvcWpq4OIpNTmXnxFSTljOdAw19paPgboCEx8XoSE36EVmtwn/+2+3/w4d3gsMKi+2DWT0Ez/NLOsoFBbitvYJfJwtKwQB5NjyPSe/igKsSZIs90IYTwHBLQPJwEtG8WVVVpGmg6Yi+bJ7T5Vx0OBnfuxFSwFlPBGpw9TvSJeeiT5qJofdD4a/GbG49xWiRaf/d8+ofslDT0uUNbQy8763vosdgBMHppmRwf5A5t8cFMSQgizM/7iHuae62UbWqhbH0j/d02vHVWonw/pcunm1pNDF4aF9NTQpl99iX4RcRjdTj558Y6nl1TjcXu5HuzErllcRrBxqPfH6fDTmnhWorffZ3e1hZC4xKYefHlJOSMo6bu97S3r8TbO4qUlDuIirwQRdGAqRVW3A4VH0DsNLjoOYgY/uHpcKn8tbGDx2tb8NZo+E1qLFdEBUs1TXgceaYLIYTn8JSAdu2117JixQoiIiIOHVT9+uuv86tf/YqysjKKi4vloGpPIh/mp89I2/x/tjQy2hh9SgOAqqrYamrcTUYKPsXeqUefmIcuLB1woY/WELA4A5/scJTDqmSqqnKgy8LOhoNVtvpeSlv6cbrc/z8mhPgeDGzuSttnbf5Vl0pjZQ+lRc3U7OrA5VAJDGnGqi+hAQM6xclUvw7m5mQSOPkCOn3ieerjSv5XXI+/j55bz0rju7MS0WuP3j/mcjqp2FzElrdepauxnsDIKGZcdBkxkwOpqX0Uk2kvAQGTSU+7j8DAqe5q2r63YOUdYDXB/Dth7q3uro/D2G8Z4vbyBrb0mVkY4s8TGfHE+njG+XlCgDzThRDCk3hKQCssLMTPz4+rr776UEArKytDo9Fw/fXX88QTT0hA8yTyYX5mDdfmP8wQdkQDklPd5t/R2cnAunWY1m3D3uGDLmY6Gu8AUC14JWoIujAHr7hjL80ctDnZ29x3aGnkjvoe2vqtAHjpNEyMDWTqYUsjg7RaKja3UlrUTE+rBcXHgia0knZnH6gupiilzA3uJDR7PuVh5/DQdi1F1V0khxu57/wsFmZEHDO8qi4X1du3sOWt12irqcIvJJTcC5cTMWGIugPPYLO1ExmxjJSUOzEYYsHc6Q5p+96CqIlw0fMQPWnY98mlqvy9qZOHa1rQAA+kxvDd6FCppgmPIM90IYTwHJ4S0ADq6upYtmzZoYD2mQULFkhA8zTyYe5Z7C471T3Vh/axlXSWcKD/AOBu858enH5EaEsMSDwlbf5dg4MMbNiEqWAfji5fNEGp7t+wNeGd6k3gspl4J8YNe42WvsGDFTZ3aCtp6sPmcDdSiQrwISchiCnxgaRpvbBXmqjb2YHVaUGNaKaPJlRcTKCSfLYQblAoiLyah5tzqemH/LQw7l+WTXrksR9YqqpyoGQnm996labyfRgCApl6/lJCspppavkHAAnxPyAx8cfodEYoex8++BlYuiDvNph3B+i8j3ntzxwYtPKz8gaKegfIC/Lj95nxJBqGHyPEqSbPdCGE8ByHh5tfv7+P0ub+UV/D6XSi1R57v3x2TAAPXDB+RNc5XQFNel6Lrx29Rk9WaBZZoVl8K/NbgLvN/2dLIks6SlhZu5LXKl8DIMArgInhE5kc5l4WOSFswpi0+dcYDASctYiAsxahOp0MbNyFaW0VTkcQtgZ/2p7ahTrwCoZsP/zPzsNnwvijKkjRgQaiJxo4b6K7k6LN4aKspf+wvWy9rNrbCoBOozAxxZ8ZmjBC2gJRemKx+jezz1fHHjWDTJ2FeU3v8KHtGf7tdR7P1FzCuU918O2pEdx23mRCv7DvTVEUkiZPJWnyVBrL9rLl7dfY8L9X8DYamXLeDfinllF34HmaW94gJeVnRGdegpI4Fz66Fwp/5w5sFz0Hccd+WAEkGrx5fUoKL7d086vqJhYUV3BvSjTXxoahkWqaEEIIIb6BpII2BuS7rV89LtVFbV8tJR0lh1r9V/dUo+L+/2Fc4LhDVbbJ4ZNJCUoZszb/qlNlYH05pvUHcA4YUBQNjo4yXN0l+EwKJ+CsRfjOnInGa2T7sjoHrOw62C1yZ30vuxt6MVudRDoVpru8SLU5sfk0MWhsRlUcjIsMZkFIKwGNBTzdPZP/OM/CV2Pnlow+rl4yG6+oTHe7yWNo3V/FlrdfpXrrZvTePkw6fxKGxO0MWPbi7z+etNT7CA6eAVUfu1vym1pg9g2w8F7QG4Z9HU1DNu6saGRNdz8zAo08mRlPqq/PqN9fIU6WPNOFEMJzyBJHDycBTZxKZruZvZ17D1XZSjqPbPM/IWzCEUsjx6LNv7PPiqmoDnNxC6pVi2ozY6/fhKNtK745afgvXoRx3jx0wcEjv6ZLparddGhpZEldD7qmISbbIci7FYtvE6rWjo8xnLycRMIGq3l0h5Z1g8kkKa3cE/QJZ09ORslcCvGzQHt0MO2sr2PLO69TsXE9Gp2GiRckoI/Zit3eTkT4UlJT78KgBMLHv4Ttf4eQFPe5aYlzhp27qqq80dbD/VVNDLpc3JEUxY/jI9Ad4xgCIU4VeaYLIYTnkIDm4SSgidNJVVUaBxo/D2wdJZR3l+NQ3W3+Y/1ijwhsmSGZX7rNv+pSse7vZWBzM0OlXaAqOPsPYKsuwNG6E9/JE/FbtAj/xYvwSkgY9fX7Bu2UNPayc087nbs7MJjqsRsbcWltDDn96A9JxTc4gOIDvdQPejNbU8r9un+RbTRB2jmQsRRSF4P3kQ+3ntZmit95g9LCAhStk+wL/NGH70bFRUL890lK+gm6+u3w3s3QewBmXAeLHwDvo89lO1y71c7dlY2s7Oxjsr+BpzMTyPIbvgInxFiRZ7oQQngOTwloV111FevWraOzs5PIyEh+/etfExISwk033URHRwdBQUFMmTKFjz766KixEtDOAPkw/+YYcgxR3l1+RAOSVrN7D9hne98mhZ1cm3/ngA3LjnbMxa04OgdBceLs2sPQ7vdx9TXglZqC/0J3WPOZNAlFM/oGJ3abg02f1rNjwzb6HTW4dEM4Hb6U26PZRjCKRsGlqpznv59f8gJR9gbQesG4eZBxnjuwBcQcul5/Zwfb3n+LPWs+QvEaJON80AVXoteHkpLyM2JCz0Up+C1s+QsExcMFf4CUhcPOUVVV3uvo5Z7KJvodTm5NjOSmxAi8vsTrFWI05JkuhBCew1MC2smQgHYGyIf5N1ubuY09nXsO7Wcr7Sodkzb/qqpiq+vHXNyKZU8nOFwoPlacbdswb3wDrGa0YWH4L1yA38JFGOfMRuMz+j1b3S0DrF25ibIDO3FoLGidBgZ04/jQ5k+f0wWoJGo6uTlwPQtdmwixNrkHxuQcDGvnQeR4UBTMvT1s/+Addq1eic6/m9QlFrR+7fj5ZZGWdi8h/cB7N0JXNUy9GpY8BD7DN2TptDm4v6qRt9t7yTb68FRWApP9T91RCULIM10IITyHBDQPJwFNfBXYXXaqeqqO2Mv2WZt/raIlLTjtiNCWFJB0wiqby2LHsrsDc3Er9hYzil5BG2zF0bQJ86fv4hoYQPHxwTh3Lv6LFuK3YAG60NBRzdthd7L+o2K27tyMxdmHxumNzied9dpgynoH8dJpcLlcJLoaWaLdwVKvnUxQK9GgYjXGos06H132+ZA4l8HBIXauep+dq97FJ7KF+PxetD5mwsLOJi3xVnyL/wsbnwW/KLjgaUg/54Tz+7Cjj7sqG+i0O7ghPoLbk6LwOcaB20KcLHmmCyGE55CA5uEkoImvqp6hnkNVtpKOEvZ07mHAPgAc1uY/fDKTwyYzIXwCAV4Bx7yOqqrYGwcwb23FsqsD1eZEF2FAFz6EvWY9A+s+xtHSAoqCYcoU/Bcvwm/RIryTk0c8V1VVKdmxj3UFn9Jj7kBx6ulzpFDsHULjkJ3s6ADyUkNpM1k5cKCW9P6NnK3ZTr5mDz6KnUGtH51R8/AZv4yAzIWUFG1i+6o3MCbUEjWtB41OJT7+GpK98tCtuBM6ymDSt+DcR8A3ZNi59dod/Kq6mVdau0nz9eapzARyA40j/4MQYgTkmS6EEJ5DApqHk4Amvi5O1OY/OTD5UIVtUtgkUoNS0WqOPGDRZXUyuLuDga2t2BtMoFMwjA9DH2llaF8R5rUFDJWWAuCVlORuMrJoIYacHJTjHNZ4OFVVqa2t45MPC2hub0B16qgbSmGbLhCLqnJJTix3Ls1Eq1HYVd/LnroWXNUFJHUVMp/thCn92NFS6TOZjqgF9Dkiad9XSGBaOSEZfWgVf1KTbyauphml6CkwhMD5v4fsC084t7Vd/fy8ooFmq53r4sK5KzkaX6mmiTEiz3QhhPAcEtA8nAQ08XU2YBtgb9feI7pG9lh7AHeb/4lhEw8FtonhE49o829rMWPZ2op5RzvqkANdqA++06PwigNL8XoG1hRgLi4Gux1tcDB+8+fjt3gRfnPmoDGeuALV2NjIuoJPqa6pwu7Ss28olRLFD71W4doZidxyfiY+enfoc7pUqlp7adizHl3VKlK6C0lwNQKw15nIpsFJ2NV+YnNq8YuxoCOGSdE/IPjTl6C1BLIvhvOeAL/wYedkcjh5aH8z/2zuIsngxe8z4pkbfOYevuLrQ57pQgjhOSSgeTgJaOKbRFVVGk2N7O7cfSiwVXRXHNnm/+BB2pPC3G3+dS4Nlr1dmItbsNX2g0bBJysE44wo9NF6LBs3YFpTwMCnn+Lq70fx8sI4ezZ+ixbht3AB+oiIYefU2tpK0foi9u7bi8nlww5rKrWKgSCNhuunJHDtBel4G/RHjTM1ldGx7R28939EdP9uUF1s7k+k3BhM1LQ2vAPt9PelMNGeSUrF/1C8/GDp4zDxsuMemv2ZDT0mbi9v4MCQjf+LCeX+lBj8dCeuEApxPPJMF0IIzyEBzcNJQBPfdEOOIcq6yz5fGtlRQpulDQAvjZe7zf9nSyOVLHz3OrHsaMdltqMN8saYG4lvbiRaoxbL9h0MrC3AtKYAe6O7wuUzaZK7yciiRXinpR23eUlnZydFRUWUlJTQ7PBjmz2ZTlVPrFPD99OjueDsZCIS/Y893tyJWvkRlj0r8KpbS53JwJ7wEPwm9aPoXDSXJzCju48s134awuczcNbvSE1NQz/MEkaz08njNa38tbGDGG89v8+MZ0HIsffxCXEi8kwXQgjP4SkB7dprr2XFihVEREQcOqj6jjvu4P3338fLy4uUlBT+/ve/ExQUdNRYCWhngHyYizOp1dx6RAOSfV37sDqtAIQbwpkSOpnFQ7PJPBCLd4MLAJ/0YIzTo/DJCgGNgrWqioGCtZgKChgqKQFAHxfnbjKycBG+06ai6I+ujPX29rJhwwa2bd9BpT2YnY4ELKqWbJuWi4ICmTMvnvQZkXj7Hj0WAPsQ1Bailq9g/651lEeo+KRacNkUgkt8mDjYig09j7q+R1XMReQkhpATH0ROQjBRgUcfKbCtz8xt5fVUWaxcFR3Cr1JiCNTrxuidFt8U8kwXQgjP4SkBrbCwED8/P66++upDAW316tUsWrQInU7HXXfdBcBjjz121FgJaGeAfJgLT2J32ansqTxiL1u9qR6AaHs43xo6n7mdkzEOeaMaNfjnxuA3IwpdqME9vr2dgbXrGCgowLxpE6rNhiYwEL958/BftBBjfj5aP78j7mkymdi0aRMbirezYzCMUmc0CgozhnTMdnqRNS2S7LwYolMCj3+kgMsFzTvZX/QXqtSN6CMH0bYqTK4aIFgdpFKXzvWDN1DrdO9Niw70ISchiJz4YHISgpgQG4iPXsuQ08WTda0819BOmF7H4xnxnBM2/FlrQhxOnulCCOE5PCWgAdTV1bFs2bJDAe1wb7/9Nm+88QYvv/zyUb8nAe0MkA9z4ek+a/P/2bLIfR37yOpJ5NzeucwYmIAWLZ0RA5Djz7iZEwj0DQLAZTYzsHEjA2sKGFi3DmdvL+j1GGfMwG/xIvwXLkQfHX3oPhaLhS1btvDxxh1sNEdQ5wohUKswf9CLdItCSJSRrLkxZM6OwuDnddz5qqpKdfEfqOt4AY3BQmipiwmdvWgVMEdMY1P0d/nQkkVxk4WG7kEAdBqF7JiAQxU2nzAfHm/poNQ8xCWRwTyYGkuol1TTxInJM10IITzHEeFm1d3QumfU13A4Hei0x/k3QNREWProiK4zXEC74IILuPLKK/nud7971O9JQDsD5MNcfNU4XU53m//OEqobyvEvU8htzSTaHka/doBt4eV0ZFpJSE451OZfo8Lgrl3uJiNr1mA74D582zs7C/9Fi/FftBDvrCwURWFoaIitW7fyVuFuCgci6FKNjPPTcR7++DYOodEqJE8JJzsvhriMYBTNsatqLpeNir3P0tT6Ij62QVJ3W4n6f/beMzqu67y/3tMHU9B7750ACRKsAEmAklUoWZJrHKc4juM4LnGL7b9tJXbc4yK32ImT2IkTv44tOyqWRFWCDWAn0Uj0QrRBr9Pbve+HCwKE2ClAHFFnr8WlxeHM3Dtzlg7OD89z9vG7CEgqtHoD5N7FQsbdnDVs4eSEisbBOZqH53D5ggBEWfRYS6LpidBg0aj5Wm4y70qJveK1BIKLiDldIBAIQoc3QkD7+te/zunTp3niiSeu2CkkAtptQPwwF9wJ2D12eppb8Z+ZJWHIjEbWcD6slxciGzgT3UFefP6S5r8srgzL6DyOOkUy4m5qAllGm5SEtaYGy55azJWV+IHTZ87wi7pzHLXH4kLP9uQw3hEVz0zjDF5XgPBYI0U7kinanoQ5wnDFe/P5Zug4/00mpp8g0eYlv8+JRgaPJgKzNAuoIG0LFN5PMO8+uoKJNA7O0Tg4S+PQHF0uD/7SKOQIPRFzfu6R9exIi2JDehS5cRbUVwmIgjcnYk4XCASC0CHUWxz/67/+i5/97Gfs378fk8l0xdeJgHYbED/MBXcaQYcP59lx5o8Po5oJ4NMGOB3bweNh++g0XgAg1ZK6ZIws12aS1GzDdeAQzoYGZI8HtcWCuboKa+0ejNu3cbqnjx+93MFpRyQqFTxSFMEf52QxcGKSka45VGoVGaUxlFQlk14SjfoK1kaHs5v281/GM91AfruLhAUvs6oE5Jy7iHa0KueoAcTkQsH9yp+0zcx7Jc4OzvJvw5McUvmQAzLa9jnUo27CDVrWp0cutUauT4skynz19kvBnY+Y0wUCgSB0COWA9sILL/CpT32KQ4cOERd39fNbRUC7DYgf5oI7FVmW8V1YwHlyDFfrFAQk/PFqerPGecV6nFOzZ5hwTQCK5r84ppj1EcVUDulJaRolWH+c4NQ0aLWYNm3CXLObM/Fp/ODUJO0uC2Z1gPdtjOF9W8voPjFBx7FR3HY/5kgDRduTKNqRRPiivORSpqYP0tn+FSKGO8nvcqEJynToq4i+99MkBXugcx/0HwHJD6YYyL9XCWs5NfQENHyyfZBTCy5KtTrWzQTpGpinY8xOUFLmw6xY82JgU0JbQaL1mpp/wZ2FmNMFAoEgdAiVgPae97yHgwcPMjU1RUJCAv/4j//IN7/5TbxeLzExMQBs3bqVf/3Xf73stSKg3QbED3PBmwHJ5cfVPInz5Bj+UScqnZqwsji863S0GrppmWqhZaqFtum2Jc1/giGOPc4MKnsgqXEI9YURAPT5+TRsvZt/cScy6g8jTuvhw9sSeM+eSkba52mrtzHYNgNAelE0RTuSySqPRaNdDkmS5GfE9r8MtX+XnM4xEqa8jHvNNJsepOjtHyU1Kw1Vbx10Pg/dL4JnHjQGyN5NsOB+fhFZzTdGHGhVKr6cm8LDMeG0jiysaI2ctCufw6hTU5ZyMbApoS0h/HLNv+DOQMzpAoFAEDqESkB7LYiAdhsQP8wFbyZkWcY/7MB5agxX0ySyL4g2wYS5MhHThngkI3TNdinGyClF8z9kHwIgeVbNvcPRbOyWiO2eRJZkntm8l18nb2cBAzn6BT6yI4W9u7fgdUi0Hx2l4+gojlkvYVYdhVuTKK5KJjJhucfb75+jv//HeJv+g4LuBbR+iRNTaQxG38PmR95D5vqNqKQADB6Djn3Q+RzMKccOXMi4h09lfoijRFMdaeG7hWlkhBmWPufInHsxsM3RODTL+ZEFfEHlLLnkCCMb0qOWQltJsqL5F7zxEXO6QCAQhA4ioIU4IqAJBKGF5A3ibp7EeWoM35AdNCrCSmMxVyZiyI5YsjPOeGZonWxdCm3nps6hmnewoVdmW5+W/H41vy28h2fStxFUqVmnm+CDm5Oo2bMbozGMwfPTtNXbuNA6jSzJJOdFUlyVTM6GOLR6JRQ5nX30n/8yMadfIGnCyxwmnu3PQ07awNZH3k1u5VZUajXIMky0KW2Qnc8jjZzlV0kP8JWcjyCptXwxJshflGxErb38cG1vIEibbbHKNqRU2oZnFc2/TqOiOCl8ObSlRZEWHXb1c98EIYuY0wUCgSB0EAHtdUalUj0M7AXCgZ/LsvzStZ4vAppAELr4Rp24To3hPDuB7AmgiTFirkzEvDEBjXWldCMoBemb71MO0p5qoc3WhLGll8I+C63GhzgeW4YRPxs1Q+y1zvOWBx8htqQE57yXjmOjtNXbWJjyYDBpyd+SSElVMjEpyuHZ0zP1TDZ8mszWLgw+ifNyFvs7k4hIyWLzw++kcPtO1JpLKl0Lo9D1AsM99XxGv5UDUZVsWTjPY3ITOXnbIWcPGMOv+rkn7B6aLglsLcPzS5r/GLN+qSVyQ1okZWmRWAziLLZQR8zpAoFAEDqIgHYTqFSqXwAPABOyLJde8vi9wA8BDfAfsixf92ABlUoVBXxXluW/vNbzREATCEIf2R/EdW4a58lRfP0LoFZhLIrGvDkRY97Vzzyz++ycmzpHy0Qz5462caqvmDFtGlEqJ1tVF9g0cY7oaIjfs5v8bXvx2HS01dvoa5pECsgkZIVTXJVM7sZ4tHoYHfgl6pf/kSTbPK4wC4ftmzjfHSQiIZHND72D4p170OpWVslkj53Hz5/kH+YseIHP9v+cvx59Gk3mDii4TxGNRKRc8/MHghJd4w4ah2aX9rP1TjoBUKmgIMG6VGHbkB5JjtD8hxxiThcIBILQob29ncLCwtfUkXI7A5osy3R0dLxuAW0n4AD++2JAU6lUGqALuBsYBk4B70EJa9981Vu8X5blicXXfQ/4/2RZPnuta4qAJhC8sfBPunCeGsd1ZhzJ6UcTYcC0KQFzZQLayGtLNiRJ4n9OnecHz/cx69GSrp5hk3qQ8oFOUi60M5wOji3FRFbuIXaikOnGIHNjbnQGDXmVCRRXJROVLDNx4rPENPwOoyfIRFoZB/pLGekewhIdQ+WDb2PdnnvQGVbey7jXz+c6B3lh2s4GaYbv9zxG4egR5R+TyqFgrxLYEtcpqes6zLv8NA0vykcWQ9uCJwCAVWj+Qw4xpwsEAkHo0N/fj9VqJSYm5pZD2u0KaLIsMz09jd1uJysra8W/rVmLo0qlygSevSSgbQO+LMvyPYt///zizb06nF18vQr4FvCyLMuvXOU5HwQ+CJCQkLDxN7/5zS3f71rhcDiwWCy3+zYEgtBFAvMERAypCZtWHnLFwkKahDMOuIbB3heUeWnAzzO9fvxBmSLNGGUaGzkjFyg510aYc56WLBWNuRpc6VvIsFcRPpaKSlJjjITIHBUxqQPkDH2XNNsQbqOO5sS30NxkxTE6gtYYRkL5JuJK16PRLx+ULctwDB3/SRguVPyRb4IPjj9H4tQJwhc6USHjMcQxFbuZ6ZjNzEWWIKsv37d2xa9Dlhl3yvTOB+mdk+idkxiyS1ycjRNMKnIiNeREqsmJUJNqVaMVVbbXDTGnCwQCQeigUqkwm81oNLcu4pJl+bbtCQ8GgzidTl6duWpqal63gPYO4F5Zlj+w+Pc/BbbIsvzRq7z+b4E/R6m0NcmyfPnBAZcgKmgCwRufwIwH5+kxXKfHCS74UFt1mDcmYK5MRHuFM88uMmH38L0Xu3j89BAmHaxXD5HDGBlI5J0+SVzvALIKupPVnM4LYyJuE+nuaiIdSaCViCsxsLngFImn/wmjy8NERir2si/S9FInF5rOYDCb2XDvg1Tc91bCrMt7zqZ8Ab7YPczTE3OUWsL4fmEa61QO6HpRUfj31kHADYZwyL0LCvcq/w2LvKnvxekN0Doyv1RhOzs4x5RDaP5vB2JOFwgEgjuLUJzXX88K2k0FtJtFBDSB4M5BDsp4umZwnhzD0zkDEhiyIzBvTiSsJBaV7spltfO2eb7yTBsn+mdINqvYQB9xwSmyEhNZ73Zjra/He74NgIV4M2fy0xgJ30CsZxN6yYjPYuOu9J9SOnMer17N+Oa7Uad9grPPHKDn1DF0BiPlb7mfjXsfxhIVvXTdfZNz/L+uYab9AT6WnsAnMxMwqNXgc0H/Ieh4DrpeAOckqLWQsUPZs1ZwH0Rl3Pz3c1Oa/yhKksOF5n+VEHO6QCAQ3FmE4rwesi2ON4sIaALBnUlwwYvz9DjO0+MEZzyoTVpMG+Ixb05El2C+7PmyLPPi+XG+sa+dwRkX6+O1FHnbMXjnSE9PZ/u6dcR3d+M4cBDX8ePIfj++yCh6ynYxElaKxptEfFgTe2K/S7TfyUi8kVMlNVjN78DR0E3vsWOotRpKa97C5re+nfC4eABm/QG+1DPC42Oz5JuM/KAwjYqIS+5PkmDk9JLCn8kO5fGE0mXJSNJ6UF+jp/MaXFfznxyxuJctkor0KFKjhOb/VhBzukAgENxZhOK8/noGNC2KJGQPMILSuvjHsiyfv+WLXIIIaALBnY0syXh753CeGsN9fhqCMvqMcMyVCYSVxaHWr6wQeQNBfnn0Aj/e34PbH+SuTAPpC634HHMkJydTXV1NXmoqroaj2Ov24zh0GGl+HmdEGiPrHmRMn0VlxK9Zb9iHXw9ns8L5N60FjzePsr4o9B0zqGQoqq5hy8PvIjpZMTjun17gM51DjHn9fDAtjs9mJWHSXCF0TfcqQa1zn3JQtiyBNWk5rGVWg+61tSq+WvPfPDSP269o/mMtetanLR+mXZYqNP83gpjTBQKB4M4iFOf1tbI4/i+wG4gFxoEvybL8c5VKdT/wAxRz4y9kWf76LV3gCoiAJhC8eQg6fLjOTuA8NUZg0o3KoMG0Pg7z5iT0KSsFDlMOL4+93MVvTg5iNWp5e0EYlrFGFuZmiYuLY+fOnZSUlKCSJFxnzuKoq8NeV4dnZJTJ2PV4i4uoTPgfYlQ2xuP0nExP59ceLX3TXkr7wikYsqKWVagLEim6/x62lO9Bp43gq702/ts2TVaYnscK09kWeQ2xhGtmcd/aPujZD34n6C2QU6uEtfx7wBR99dffIBc1/2cvGiOHZulb1PyrVZCfYF1qjaxIjyQ7Vmj+X42Y0wUCgeDOIhTn9ZA9qPpmEQFNIHjzIcsyvgsLOE+N4WqZgoCELsWCuTIR0/o41MblilDH2AJfe7ad+p4psmPNvLckDHfvaaamJomOjqaqqoqysjK0Wq3yvj092OsOYK/bz0y3DfMGA3lpZwhqoSvXzKh1N86Et3BuvofZhhbiOnzogmoG412MlxnJLCwjzLqVpxyZjPrhL1JieTQ7CbP2OnvB/B64cGS5FdI+Cio1pG9b3rcWk7Nq3+Gcy0fT0NxSa2TTpZp/o5b1i4r/DYu6/0jTm1vzL+Z0gUAguLMIxXldBLQ1JhQHXSC4E5HcAVxNEzhPjuEfdaLSqQkri8O8ORF9uhWVSoUsy9R1TPD159rpm3JSnRfLe4uMDLQeZ3R0lPDwcHbs2EFFRQW6Sw6qDkxOYj9wAPfhp7AYGgi3zjERbaA9OwLHxL3k5H+EuKIoDj7zKwYO1CN7/EzGBzmdNclYDHii343DfBfhag8fSvDwx+lFJJoTb+BDSTDatBzWxs8pj8cWQOH9SmBL2XTL+9aufEmZvimnci7bYnDrHFtAWvxxkB1rVs5mS49iQ1okhYlWtFdq4bxDEXO6QCAQ3FmE4rwuAtoaE4qDLhDcyciyjH/YoVTVmiaRfUG08SbMmxMxbYhHY9bhC0j8z/EBfvhKFw5vgD/enM5DOVpaTx9jcHAQs9nMtm3bqKysxGAwrHh/yWHH9/svou//FUE1dOeFMRgez2zrg8QHKii6r5AR23lOP/skrvk5TJlJOCpiOBwu0aipJaBLxOg4QKb3FSpiCyiLLaMsrozimGKM2uvsOZu9AJ0vKIFtoAGkAJjjIP9eReGftQv0plX/Tp3eAC3D8zQOLR+mPeXwARCm07AuNWKxwhZFRXok8Xew5l/M6QKBQHBnEYrzughoa0woDrpA8GZB8gZxt0ziPDmGb8gOGhVhpbGYKxMxZEcw5/bzg1e6+NWJQUx6DR/fk8euZDjWUE9fXx9Go5EtW7awZcsWTKZXBZ/pXuSnP4Jq8BgzVgttRTrmXVmMN70bo81MTkYAKdVP65mj2KeniM/KYd1b385/WsN5fEomDDeJ9sexz+4HQKvSkh+dvxTYyuPKSbOmXd206J5V9qt1PAc9r4B3AbRhi/vW7lNCmyVuTb5XWZYZnnUvyUcaB+c4b5vHH1R+ZqREhilVtrQ7T/Mv5nSBQCC4swjFeV0EtDUmFAddIHgz4h9z4jw5hvPsBLIngCbGiLkyEfPGBPpcXr6+r52DnZNkxpj4wv1FFEcEOHLkCJ2dnej1eiorK9m2bRsWyyWyD0mCU/+B/MqXkQnSmxnBYGIA11A5o61/hDxnJsneQljiNBc8EyzMzxKdkkbEw+/hR4Y4OlxeHow18VbrKP0zzbRMttA61Yor4AIgyhBFWVzZ0p/SmFIs+ivIRgI+GKhftEI+D/NDgArSNi9aIfdCbB6soVbf4w/SNrqwVGFrHJxjZO7O0/yLOV0gEAjuLEJxXhcBbY0JxUEXCN7MyP4g7nPTOE6O4eufB7UKY1E05s2JHJf8fP35DnomHGzLjuHvHygmRuPmyJEjnD9/Ho1GQ0VFBdu3bycyMnL5TWcvwB/+FvoP4U7MoinDg8sA/sHdDJy+n0DAgnW+D7P9CDMRDhYCXsxxifQ88j5+o7EQqdXyrfxUHoiPJCgF6Z3vpWWyZelP73wvACpU5ETmUB5XroS22DKyI7NRqy7ZAybLMNa6GNaeg9Fm5fHonOV9a2lbQL32Fa2JBc/SPrbGwVlahq+u+S9PjcT8BtD8izldIBAI7ixCcV4XAW2NCcVBFwgECv5JF85T47jOjCM5/WgiDOgq4nlG6+eHDf3Mu/38UWUan7q7ALXPQX19Pc3NSuApLy+nqqqKmJgY5c1kGc7+N7z0KLLkZ6xkPW3WLnS6WHSeP6P3lULmF9SoAx6sUy/jpAuHQcVCUgYv3/9e+nQmHoiL4Jv5qcTpdSvuc8G3wLnJczRPNS+FtgXfAgAWnYXS2NKltsh1seuIMkYtv3h+ZFky0n8YJD+ERSstkAX3KS2RhmscAbCKBIISneP2xcD2xtT8izldIBAI7ixCcV4XAW2NCcVBFwgEK5EDEu72aZwnx/D2zAHgywnnl9oA/1/XOEadho/U5PIXOzLxOO00NDRw9uxZJEmipKSE6upqEhISlDebH4FnPwHdLxFILqUjP4JxqROLpYgY08cZOJ1C9+kxAn4Zo7uZgL2eBWOAs2VV1FfuwaJR8/XCdN6WGH3VFkBZlhlYGKBlarnK1jXbRVBWqlPp1vQVrZH5Ufno1DrwLEDvfiWsdb0InjnQGCB71+J5a/dCeNLaf+GX8GrNf+PgLPYraP4r0iNZHwKafzGnCwQCwZ1FKM7rIqCtMaE46AKB4OoEZjw4T4/hOj1OcMHHsEnNv4QFODTtIC06jM/fV8R9pYk4HA6OHTvGqVOn8Pv9FBYWUl1dTUpKilJNa3kcnv8sst+No/IRWixteHw24mLvJj31Mwy3Gjhfb2NqyAGBIVSuQwxbZV7Y/Qi2xHSqJm18M85MzrYtqI3XtyK6/C7aptuWQlvzZDNT7ikADBoDJTEly6EttowEYzQMHleqax3PwdyA8kbJFcutkPHFa7pv7UpcV/MfZ2bDJa2RBQmvr+ZfzOkCgUBwZxGK87oIaGtMKA66QCC4PnJQxtM1g/PkGJ7OGU5JAf5Z56fX76cyI4p/eLCEdakRuFwuTpw4wYkTJ/B4POTk5FBdXU1mZibYx2Hfp6H9GeSkcmyba+heeBJJ8pGW+mdkZn6UWRu01dvoOjWO12FDDpzgWF48RyrvQhcM8KE//JY/1kpYa2qx1OxGGxV1vVtX7l+WGXOOrWiLbJtuwy/5AUgwJSy1RZbFrqNI0mDsflmpro0szqWRGUpQK7xfOShbo7vGFdeOi5r/s4vykaahlZr/stSI5cO00yOJt66d5l/M6QKBQHBnEYrzughoa0woDrpAILg5ggtenGfGmT85xtOzdv4DL/PIvK0kkc89VEJ8uBGPx8Pp06c5duwYTqeT9PR0du7cSU5ODqq2p+G5T4NnnsD2v6Er0cPoxJPodFFkZ32C5OR3E/Sr6DkzTlu9DVt3H1P6dvZtL2MoOYvCC1187j9/SubUJGEbNmCtrcVSW4MhK+umPocv6KNzppOWKaXC1jLZwohjBFA0/wXRBUqFzZJB+fwkqf1HUfUdhKAXjBGQ9xYlsOXeBcbwNfimb4yLmv+Lga1xaI62V2n+N1w8TDs9kpLkcAza1ZGiiDldIBAI7ixCcV4XAW2NCcVBFwgEt4YsyXh75xg7buPf2mw8LvvQqVT8VXESH3pbCSazHp/Px9mzZzl69CgLCwskJSWxc+dOCtJiUb/4BWh9HBJKcd79KToW/o+5uROYzXnk5X6RmJhqAKZHHLQ12DjX0M6x+EkObFoHwNvOneR99XUY2zsA0GdlYd1Ti6W2lrDyclSamw8hU+4pWidbl1ojW6dacQcUPX6UIYqymGLK1GbKZm2U9p/A4pwGtQ6yqpWwVnAfRKSu0jd863j8Qc7bFpZaI5su0fzrNWqKk8OXQ1ta5C1r/sWcLhAIBHcWoTivi4C2xoTioAsEgtdO0OGj48gQ3z7WzyGflwTUfCI3nrfdk4chLZxAIEBzczP19fXMzs4SFxdHdXU1JbohNPs+DY4J5B0fZ7K4gp4Lj+H2DBITU0Ne7ucxm3MACPiD9DVOcvBIJ/+Z4KE/JYFUWz9/3tfBPdFWjGcacZ48CYEAmuhoLLt3Y91Ti3nbNtSvPlj7Rj+XFKRnrmeFgKRvvg9Y1PybkyiXdJTNDFM2PUy23486sQwK9yphLbHsdd+3djXGFzxLtsjGwTlahufw+CUAYi2GpZbIDWlRlKVG3JDmX8zpAoFAcGcRivO6CGhrTCgOukAgWD1kWebI0UG+/koXnW4f69DwydhINlelY1ofj6xTcf78eY4cOcLk5CRRUVHs2rKesrHHUTf9CmLzkR78PkO00X/hJ0iSh5SU95Kd9bfodJFL15kdc/LD4138Z1iAoAqqTr3M3dN2qh55mCT7NPb9dTgOH0ay21EZDJi3bcOypxbr7t1o4+Je02e8puZfrWNdQE3Z/ARlXi9l+lgi8+9TwlpmNWhvr3XxUvxBic4x+5Itsmlwjr6pZc1/QeJilW3RHJkda75M8y/mdIFAILizCMV5XQS0NSYUB10gEKw+QUnm8WMDfPelTqa9Ae5Bx4e0YWSUJ2DenIguzUJnZyeHDx9mdHSU8PBw7s83UND1U1QLI7D1w/iq/4a+oZ8xYvstWq2V7KyPk5Lyx6jVy3KOEZeXj53q5qgUIGl8mHsP/h9pUjgV972djfdsxtfciL3uAI79+/HbbKBSEVZWhqW2FuueWvQ5ObfU2ncpV9b8dxKUlepUhj9ImcdDWVBFWeJG8gofQZd/L4TdmODk9WTW6aNpePkw7aahuSXNf7hRy/rFlsiLlbbGkw1iThcIBII7iFBcq4uAtsaE4qALBIK1w+EN8NMDPfzHkT7UMvwxBt4j6bDGmzFvTiRsfRz9owMcOXKEwcFBIk1a3hXdRvLwcxCVBW/9MY64eLq6v8bs7FFMphzycj9PTMzupWAlyzJPTczx+c4hHP4A284cprKxDr02ibwte9n+jj1EJpjwdnVh378fR90BPOfOAaBLT8daU4NlTy2migpU2uu39d0ILr+L89PnlcA20UjL+Fmm/HYAjJJEsc9PuSGOspRtlJW+h/ikjaty3dVG0fw7ODu4HNq6xu1Lmv9Es4odBSm3TfMvEAgEgtUlFNfqIqCtMaE46AKBYO0ZmnHxrRc6eK5llIQwHR8Os1AzE0CtURNWGou5MpExzRxH6o/Q29tLnn6CR9T7MXnGYNNfIt/1ZaYcp+ju/gZu9wWio6vJy/0CFkv+0jUmfX6+0DXCM5NzZHo91L7wW2JGu1Fp4onLqqHywT3kViSg1Wvwj4/jOHAAe10drmPHkf1+NBERWHbvwlJTi7mqCo3FvGqfX5ZlRp2jtEw00XxhPy1jp2n3zeBfLN4lSirKzCmUpVZRnn0fRXElGDSGVbv+auLwBmhZrLK90tjDoFPDtPNyzX9FeiTr11jzLxAIBILVJRTX6iKgrTGhOOgCgeD149SFGb76bBstw/OUJVj5VFwUeT0OZE8ATYwRc2Ui8ylB6k8fo6/zHHepT7BZOo1sTUb90I+QsncyPPwr+i/8iGDQRXLye8jO+jh6ffTSNZ6dmOPz3cPM+gO8w2cn+/e/xD8/hkodjTFiGyW7dlO6M42YFAsAQYcTZ0MDjrr9OA4eIjg/j0qnw7R1K9baGiy1tegSElb9u/AFfXRc2E9L51O0TDTRElhgRKdU8LSoKDSnUpaynbKEDZTFlZFqSX3N7ZirzcGDB9m1a9c1Nf+pUWFLtsgN6ZEUr6LmXyAQCASrSyiu1UVAW2NCcdAFAsHriyTJPNk4wrdf7GB8wcuD6xL524x4Is7P4uufBzUYC2Nw5Ws5OdzC3LmXeYiXiWMab/E7MTz4HXwamf7+HzFi+zUajYmszL8lNfVPUKsVCceMP8A/dI/w+/FZCkwGPu6dZuZ3v2J+YhiVOgKNsZKkvK2U7kwnd1M8eqMSjORAAHdjI/b9ddjr6vAPDgJgLClRJCO1tRgKCtYmKLlmmGp7kpbup2mZbqNFq+KcwYB7UcwRbYikLG69cjZbXBmlsaWYdatX5bsVrjanr9D8L7ZG2uY9gKL5L0kJZ0Pa8mHaKZG3pvkXCAQCweoSimt1EdDWmFAcdIFAcHtw+QL866E+fnaoF4C/qs7mA6VJ0DyN68w4ktOPJsKAt8RIs7ud6Pafs4OT+LQR+O75NuGV78bh7Ka7++vMzBwhLCyTvNzPExu7Z2mx//LUPJ/tGmbc6+dDqXG8fXaIs0/8hon+HtRaK2rdRozh68nfnEpxVTLxGdYVe9t8vb2KZKSuDndzM8gyuuRkRTJSW4OpshKVTnfVz3jLBLzQf4RAx7P09r5Ic3CBFoOBFksE/SpF2qFCRW5ULmWxZZTHlVMWV0ZWRBZq1eu3B+xm5vSxeQ9NQxcD2xwtI8ua/zirYckWuSE9krLUCEz61dkPKBAIBIIbJxTX6iKgrTGhOOgCgeD2MjLn5tsvdPB0k404q4HP3FPA28uS8XbO4jw1hrd7FgB/toFBVT2Fwz8lgUkGI7ZgfOSHxGcWMTV9kO7ub+By9RIVtZ28vC9itRQCsBAI8pUeG78anSYnzMBjhWkkDHZz4onfMtx+Dq3ejFpXgUpXRmxaDMU7kinYkoDBtDJ4BSYncRw6hH1/Hc6jR5G9XtRWK5bqaix7arFUV6MJD1/9L0iWYbQJOp+Hjn3MT57jnMFAS1QyzeExtATt2AMuACw6C+ti1y1V2cpiy4g0Rq7+PS3yWub0Jc3/Ja2R/Zdo/gsTLzlMOz2SrJjLNf8CgUAgWF1Cca0uAtoaE4qDLhAIQoOzg7N85Zk2mobmKE0J5+/3FrMlO4bAjAfn6TFcp8cJLvjwmLwETP9NnuMZPBhoTHovWXs/SVJyAiO2/6Wv74cEAgskJ7+LnOxPotfHAnB4xs6nO4cY9vj4y9RYPp+dxGx3ByeefJwLTWfQ6sMIi9yEz1uK1mAmtyKe4qpkknIjLmu/k9xunEePYq+rw3HgIMGZGdBqMW+uxFKjVNd0KSlr80XNDSphrXMfXKhHkgIMhMfTklZGiyWKFt8sXfM9SBc1/+EZlMWWLYW2vKg8dOrVqfqt9pw+6/TRtHguW+PQHE2Dc9i9SsUwIkzH+ouK//Qo1qdGEmFag+qlQCAQvIkJxbW6CGhrTCgOukAgCB1kWeYPzTb+6fkObPMe7itN5PP3FZEeY0IOyni6ZnCeGsfTMY0k9xAe9n0ipQHayeVcxvuprNlLSkok/f0/ZnjkV6jVRrIyP0xa2vtQqw04A0G+3jfKL0amSDfqeawwjaooK+N9PRx/4rf0nDqGVm8gJm0rDnsxQX8YkQkminckU7gtkTDr5QdNy8Eg7uYWHAfqsO+vw9fXB4ChsHBRMrIHY0nx2uyx8sxD98tKYOt+GbzzoDXiytrJ+bT1tJgttMz30TzZzLRnGgCjxkhxTPFSW2RZXBnxpvhbuvxaz+mSJNM76VissCmVts5xOxd/HOfEmZcqbBvSoshPsAjNv0AgELwGQnGtLgLaGhOKgy4QCEIPty/Ivx/p418O9hKUZP6iKpOP1uRiNSoVk+CCF+eZcZwnbegX/j8idb/Gh5YX2MVs2j3s3LWLxCQVvT3fYmq6jjBjOrm5nyMu7h5UKhXH5xx8smOQfrePP02O4e9zkgnXapgaGuDkU7+jo+Ewaq2GlKIdSNJ6pkbUqDUqssrjKKlKJrUwCtVV2u28/f046g5gP1CH+2wjSBLahAQstTVYa2sxbdmCWn950HvNBHwweBQ69imBbX4QUEHqJuT8+xjN2ExL0EHzVAstUy20T7fjl/wAJJmTlloiy+LKKIopuiHN/+2Y0+0eP63D8zRerLQNzi1p/k36Zc3/xT1tcdbQPK5AIBAIQpFQXKuLgLbGhOKgCwSC0GVs3sN3Xuzk/84OE2vR8+m3FPCuTWloFsORLMl4e+dwN5wgrO9LGNUd9JHDU9RgTsxn566dxMVN0tP7TZzOLiIjN5OX90XCraW4ghLf6R/lZ0OTJBp0fKcgjT0xyh6yubFRTv7h95w/uB+Qya6oIixqG4NtEl5ngPBYI0XbkynanoQ58uoBIDAzg+PQYUXhX9+A7HajNpkwV1cr1bVdu9BERq7+FyfLMH5uuRXS1qg8Hp0NBfdDwf34kjfQMd+jHKY92ULzZDM2pw0ArVpLUXTRitCWYkm5rAoYCnO6LMsMzbiXKmyNg7Octy0QkITmXyAQCG6WUJjXX40IaGtMKA66QCAIfZqH5vjqs22cHpilMNHKPzxQzPbc2BXPCdo9+J/5Afqu7yPJcIAaGlQFxEbFUr27iqjo81y48EP8/lmSkt5OTvanMRjiOTvv5BMdQ3S5PLwzMYqv5KYQtXge2cLUJKeffYLWV14kEPCTv2UHSQV7GO7UMNI5h0qtIqM0huKqZDJKolFfo71O8npxHT+OfX8djgMHCExOgkaDqaJiSeGvT09fmy9wfgS6XlDCWv9hCPogLBry74GC+yCnFgxWJl2TtEy1LIW289PncQfcAEQboymLWzRGxpZRElvCqYZTITmnK5r/+SVjpND8CwQCwY0Rimt1EdDWmFAcdIFA8MZAlmWeax3lm/s6GJlzc3dxAl+4v4is2JVngckz/ciPfxj12FFm5SKelGsZVOuJNIWzY2cF4dENjIz8D2q1jsyMvyEt7f0EVHp+cGGcHw2OE63T8k/5qdwfF7n0ns65Wc7se5rml57D53aTvXEzJbseYtpmpv3YGO4FH+ZIA0XbkyjankR4bNi1P4sk4Tl3TpGM1B3A29UFgD43B2vtHqy1NRjLylCp12A/ldcOPfsX9629CO5Z0Ogha5cS1gruh/AkAAJSgJ65nqUKW8tkCxcWLgCgVqlJ1CayPWv7kuo/MyLzddX83wxC8y8QCATXJxTX6iKgrTGhOOgCgeCNhccf5Of1/fz0QA++oMSfb8vkY3vyiAi7xOgny3Dmv5BfehQCQS5o38VznnSm1A4sOhNbKjKxJu9nevoVjIZkcnM/R3z8Xs453HyyY4hzDjdvjY/k63kpxOmX39fjcND4wjOcff4PeBx20tetp/KhdxL0J9HWMMpgmyLiSCuKpnhHMlnlsWi01w8svqEhHAcOYN9fh+v0aQgG0cTGYq3ZjaW2FvO2baiNxtX+KiEYgKHjiwr/52C2X3k8eQMU7FUCW0IJXFJdmvfO0zrVSstkCwc7DzIsDWP32QGw6qysi1u3ojUywhCx+ve9ClxL869RqyhMtC7JRzakR5IVaxZVNoFAcMcTimt1EdDWmFAcdIFA8MZkwu7hey928fiZIaJMej55dz7vqUxbafGbH4ZnPgE9LyMlVNKhez+HhiYYV80RptKzqTAMU9rLuDydRERUkJf3KCZLGT8ZHOexC+NYtGq+kZfKQ/GRKxbnPreL5lde4PQzT+CanyM5v4gtb3sXsemldBwdpf3oKI5ZL2FWHQVbkyjekURUovnyD3EFgvPzOA4fxl5Xh/PwESSnE5XRiHnHDqy1tVh270IbE7PK3yZKqJ3shM7nlMA2fBqQITJ9cd/afZCxAzTLgfXgwYPs3LWTCwsXltoiWyZb6J7rXtL8Z4ZnrghseVF5aNWhWZ2acfpoXpSPnB2co2loDsclmv9LA1t5WuTKXwoIBALBHUAortVFQFtjQnHQBQLBG5tzI/N89dk2TvTPkJ9g4dG9xezMj1t+gixD82/ghc9BwItU/f/oclXRcPYUQ/4J9LKailwHYWkHCEgzJCY+TE7233EhGMkn24dotLu4Nzacb+WnkWhYuSD3+7ycO/Ayp/7wf9inJonPzGHL295FzsatDLXP0t4wSn/LFLIkk5wXSXFVMjkb4tDqb0xSIft8OE+ewlFXh72ujsDYGKhUhG3YsKTwN2RnrebXuYx9fHHf2vPQdwACHjBEQN7dSljLu5uDxxuvOKe7/C7OT59faotsnmxmxjMDQJg2jOKYYmU/W6yi+o8zxV32HqFAcEnzv9wa2TWxrPnPjbesaI3MT7AuCWwEAoHgjUgortVFQFtjQnHQBQLBGx9Zlnnx/Djf2NfO4IyL2sJ4vnB/EbnxluUn2cfguU9Dx7OQXAEP/YSBcT2H9h+kb34YozpIWdYAxuQTqDRaMjL+mtS0D/Bzm4N/6h/FoFbzj7nJvDsx+rJWt2DAT9uRA5x6+vfMjtqITkljy8PvpHDHLtyOAB3HRmlrGGVh0o3BpCV/cyLFVcnEplq4UWRZxtvejn1/HfYDdXjb2gHQZ2YuSUbC1q9HpVkDQ6HPCX0HFYV/1wvgmgK1lpmIEqK3/gkU3KtU2q5x7zanbUWVrW2mjYCkVKduVfN/O7B7/LQMz69ojZy5RPNfnnrJYdppkULzLxAI3lCE4lpdBLQ1JhQHXSAQ3Dl4A0F+efQCP97fg9sf5E+2ZvCJu/KINC2eOybLcP5J2Pd34FmAXZ+Fqk8yNjbJoX0H6BjpJszgpDSrDUN8B3p1PLkFn8MVfg+f7hzm+LyTmmgr3ylII9V4+VlmkhSk61g9J576HVODF4hISGTzW99B8a49aDRaRrpmaau30ds0iRSQic8Mp6QqmdxN8eiNN9f257fZsB84gKPuAM6TJ8HvRxMVhWX3biy1NVh27EBtMq3G1/qqDxlU2h87n8PZ+H+YXcPK44nrlhT+JJWv2Ld2JbxBLx0zHStC281q/kMBWZYZnHEt2SIbh+Zou0TznxYddokxMoripHD0N7AvUSAQCG4HobhWFwFtjQnFQRcIBHceUw4vj73cxW9ODmI16vjEXXn8ydYMdBf3pzmn4PnPwbnfQ8I6ePgnkFTO9PQ0h185SGvHOazWcYqym9CFj2OWi8jJf5RnVDl8rW8UFfAPOcn8aXIM6iuEBlmS6D17ihNP/Iax3m4s0TFseuBtlN11DzqDEY/DT+eJMc7X25gddaIzaMjbFE9xVQrxmdabDiJBux1nfb2i8D98GGlhAZVej3nbNix7arHs3o0uPn4VvtmVHDx4kN2lqYq+v/N5RTgiSxCeAvn3QuH9kFkN2hurIt2o5r88rpySmBJMujUIoKuAxx/k3Mii5n/RHDl6UfOvVVOaHL7UFrkhPYrkCGNIhk+BQPDmIxTX6iKgrTGhOOgCgeDOpWNsga892059zxTZcWYe3VtETUH88mK44zl49lPgnISqTyoVNa2Bubk5GuobaDx7hpi4bnIym9EYnEQ6dmJI/RRfUYVxeM7B9kgLjxWmkRl25QAiyzIDrU2cePK3DLedIyw8go33P8T6e/ZiMJmRZZmxvgXa6kfoOT1BwC8Rk2KhuCqZ/M0JGM03L6GQ/X5cZ84oCv/9dfhHRgAwlpUpkpHaGgx5easSCC6b051T0P2S8r321oHfBXor5O5RKmt5d4Mp+obf/3qa/7zIPKXKtvgnMzx0Nf+j826aFlsiGwdnaRmexxtQRCrxVsNSWNuQFsk6ofkXCAS3iVBcq4uAtsaE4qALBII7G1mWqeuY4OvPtdM35aQ6L5a/f6CY/ASr8gT3LLz4KDT9CmIL4OGfQqryc8But3Ps2DHOnjlGQmIjqantqFERbdvL6aT38W2DTACZz2cn8ZepcWiuEXqGO85z4snHudB0BoPJzIZ7H2DDfW/FFK5o6L3uAN0nlara1JADjU5NbkU8xVVJJOVG3lKgkmUZb1c3jgN12PfX4WltBUCXlqZIRmpqMW3aiEp7a2HgmnO63wP9h5ara45xUGkgY/vyeWvRNy84uaj5vxjYWidbsfsXNf9661JLZFlcGeti14W05r9j1L5UYWscnOXCtAsQmn+BQHD7CMW1ughoa0woDrpAIHhz4AtI/M/xAX74ShcOb4A/3pLOJ+/KJ8ayWP3qeQX+8HGw22Drh6Hmi6BXWuhcLhcnTpygsXE/ScnHiI+/gMobjrr/T/lpei2HzbDJauL7Renkma99Xtl4Xw8nnnyc7pNH0RmMlN19H5seeARL1HJlaXLQzvl6G10nx/B7gkQmmCjekUzhtkTCrJfvfbtR/OMTynlrB+pwHTuO7POhjojAsnMn1j21mKuq0FhuXFxyw3O6JIGtcTGs7YOJNuXxuCKlDbLgfkXccgsHc0uyxIX5C0pgW2yP7JnruUzzXx6nGCNzI3NDVvM/7fDSPDy3ZIy8VPMfadKxPk1o/gUCwdoSimt1EdDWmFAcdIFA8OZi1unjB6908asTg5j0Gj6+J48/25apiBs8C/DKl+D0LyA6G976z5C5Y+m1Ho+H06dP09LyJEnJ9YSHT6FypNE2/rf8OCMLt1bFpxJi+GhRKtrr6NanhgY4+dTv6Gg4jFqroXT33VS+9e1ExCcsPcfvDdJzZpy2ehtjfQuoNSqyyuMoqUomtTAK1WtQuktOJ46GBhx1B3AcPEhwbg50OsxbtmCprcFaW4suMfGa73HLc/pMv1JV69wHA0dBDoIlQdm3VnA/ZO8CXdgtfS4Ap9/J+anztEwtt0ZeqvkviSlZqrKVx5UTGxZ7y9daS4TmXyAQvN6E4lpdBLQ1JhQHXSAQvDnpHrfz9X3tHOycJDPGxBfuL+Lu4gSljaz/MPzhYzB7ASr/Cu76EhisS6/1+XycPXuGtvb/IjHxKAaDC4ejmv/1/hUHY80Uu+E7MTFs2JCM+jpnns2NjXLyD7/n/MH9gExRVQ2bH34H0cmpK543bXPQXj9Kx4lRvM4A4bFGirYnU7gtCUvUa1O5y4EA7qYmReFftx//wCAAxuJiLLW1WPfUYigsvKzFblXmdNeMUr3seA569oPPDjoT5NQqYS3/HjC/tgAlyzIjjhFFPrJYZWufaV/S/Cebk1fsZSuKLkKvufVK5VpyLc2/Wa+h7BLN/4b0SGItQvMvEAhunFBcq4uAtsaE4qALBII3Nwc6lf1pPRMOtufE8PcPFFOUFK6c/VX3NTj+LxCRBm/9oRIaLiEQCNDUdJKu7n8mNvY0KhU0Bj7If6prWdCo+MvBAB+JjCCqMgl9qvUqd6CwMDXJ6WefoHX/SwT8PvK3VrH1kXcRl7Fyn1bAH6SvaZK2ehsjnXOoVJCxLpbiqmQySqJRa16bJEOWZXz9/dj378dRdwB3UxPIMtrkJKw1imTEXFmJSq9f/Tk94IUL9cv71hZGQKWGtC2L+9b2QmzuqlzKG/TSPt2+IrSNOkcB0Kl1y5r/xT/J5uSQ3AN2Pc1/erRpcS+bEtqKhOZfIBBcg1Bcq4uAtsaE4qALBAKBPyjx6xODfP+VLhbcft5dmcan7i5QDhkePAFPfwSmu2HDn8JbvgZhkSteHwwGaWk5TH//Y0REtjHrj+O32kc5ok4l1yHxpVY3ZZYwzJsTMa2PR32NM89c83Ocee4pml56Dp/bTfbGzWx95N0k5RVc9ty5CRftDaO0HxvFveDDHKGnaEcyRduTCI+99RbBSwlMTeE4dAj7/jqcR48iezyoLRYsO6sZSkyk8kMfQhMevirXWoEsw2jzcivkWIvyeEyeEtYK90JqJahX72DuCdcErZOtNE8pbZHnp87jCSp6/BhjzIq2yDeS5v/swBxjC8ua/3UpEStaI5OE5l8gECwSimt1EdDWmFAcdIFAILjIvMvPD/d389/HLmDUafhobS5/sSMTg+yHQ9+Chh8qe6Ue+AEU3HvZ6yVJorX1GYaGv0dY2AjHfDX82vBB5tHz5xMyf9nswKhRE7YuFvPmRPQZ4VddGHscDhpfeIazz/8Bj8NOemk5W9/2blKL1132mmBQYqBlmvP1NgbbpgFIK4yiuCqFrPJYNKtUMZHcbpzHjmOv24/jwEGC09Og1WLatGlR4V+LPjVlVa51GXND0PWC0gp5oR4kP5hiF/et3Qc5NaA3r+ol/ZKfntmeFVW2N7Lmf6nKNjhH68iy5j8h3LDiMO11KRGEXac1VyAQ3JmE4lr9jglo0RlF8t1f+MXtvo3LmJubIzIy8nbfhkAgEFwTty/I4KyLOZcfg1ZNerSJKJOOHH83H5p/jIzABY4Ya/iviL/Bob5C9UiWKDLuZ1PCE0iGIL/wfoTjxq2Ee4L8ZbeXt48GMcowpoMTVjVnLCqcmisHNXXAS7ytkcTB4+h9TuwRqdgydjAfkwNXCHcGn0TidJCE6SBGv4xPC+PRWsZiNLiNqxceVLJERHcLGyd6KOxtJG5GaQ8cj02lI2c9ndkbGE3IQF6DwBImOVnvPc0mz3HWe09hkR340NNq2MBp41bOGLYwr7nx89ZuhgAO3Op+5Y+qD7e6H0mlHKatlk2ESVmEyVmYpGzCpCw0rG5oXC1kGVy+AA5vALtH+e/FwAZg0muwGrRYjFosBi1GnQhsAsGbgVBcqz/+oe0ioK0loTjoAoFAcDXm3X4Gpl24/UGsRi0Z0SbC9TKPOH7DI47f4FBb+UX4RzgRVn3F12tUPiosT7Au7kXOq0r4N/ljzGkiyJjx8fBggOp5iUwvBIBWs4oTVhU9RhXyFYKXKugnbrSZpIFjGLwLOC0J2DKrmI0ruGJQQ5aJWpBImg4QMy+hAubNakZjNUxFapBWwfZ36ZwePTtOQV8jBb1NpNu6UcsyC+ZIurLX05GzngtpRQS0q6+F18gBCn3n2OQ5zibvMeKD4wB06wo5bdzKacNWhrUZV/6OVgEZCZ9qHLe6D9diYPOqRkClrBn0UgJhcvZiYMvGICejIjTDTiAoKYHNG8CxGNoWt7KhUatWBDaLQSuMkQLBHUgortXvmIAmWhwFAoFgdQgEJX57eojvvdTFrMvHOypS+cw9BcS7euDpDyv7pIofgvu/C5b4K76H1ztB67mvMjp3gP+V/4w6zVuIlwN8ryCd3RozzpNjOBsnkN0BNDFGzJsSMW9MQBN+uUkwGPDTfuQgJ5/+HbOjNqJT0tjy8Dsp3LELtebKC3/nvJeOY6O0NYyyMOnGYNKSvzmR4qpkYlNv/NyzV3O1OT0wO4vj0CFF4V9fj+xyoTKZsFRVYamtwbJrF9qoqFu+7lWRZeWMtY7F89ZsZ5XHo7IUI2TBfZC+DTRrew7a9TT/pbGlKw7UDmXNf8/EJZr/oVm6JxzIspJ3c+MsK4yRefFC8y8QvNEJxbX6HdPiKAKaQCAQrC4LHj8/qevhFw396DRqPrw7hw/sSMd48idw8FvKodb3fRvWvfOq1Rq7/Tznzn+JMy4vP5M/yqQ6gd1+B9/dWExKeCTu81M4T47h7ZsHNRgLYzBvTsSYf/mZZ5IUpOtYPSee+h1TgxeIiE9g80PvpHjXHrS6K1eqZElmpGuWtnobvU2TSAGZ+MxwinckkVeZgP4a8pIrcSNzuuT14jpxAvv+Ohx1dQQmJ0GtxlRRsaTw12dk3NR1b5gFm7JvrfN56DsEQS8YIxV1f8H9kLtnxfEJa8VFzf/FsNYy2ULHTAcBWdH8p1hSVgS2wujCkNX8L3j8tAzNLxkjGwdnmXX5AUXzX562qPlPi2K90PwLBG84QnGtLgLaGhOKgy4QCAQ3w4UpJ998vp0Xz4+TEhnG5+4r5MGkBVR/+BgMn1SkFQ98H8KTr/h6WZaZnHyJls5/4v/z7+YFHsDic/O+gIMPbdtETEwM/ik3zlNjuM6MIzn8aCL0mDYlYq5MQBtpXPl+kkTv2VOceOI3jPV2Y4mOYdMDb6Nszz3ojMYr3gOAx+Gn88QY5+ttzI460Rk05G2Kp7gqhfhM6w1Z/W52TpclCc/5NkUyUncAb2cnAPqcnEXJSA1h5eWo1Gsg2vA6oLdOqax1vQDuWdDoIbMaCu+H/PsgYo0EJ1fAE/DQMdOxHNqmWhhzjgGLmv+YIspiFWNkWVwZSeakkDQtyrLMwLSLxqHlw7TbR4XmXyB4oxKKa3UR0NaYUBx0gUAguBWO9U7z1WfbaBtdYGNGFH9/fwHrbb+F/V8BjQ7u+bqi5b/KolqSvAwN/ZIX+57nX+W/xKZKpWiin7/QytxTtYOEhATkgIS7fQbnqTG83bMAGPKisGxOxFgUjeqSM89kWWagtYkTT/6W4bZzhFnD2bj3YdbfsxeD6eqiClmWGetboK1+hJ7TEwT8EjEpFoqrksnfnIDRfPV9Y691TvcND+OoO4C9rg7XqVMQDKKJicFSsxtrbS3mbdtQh63OcQErCAZg6MTieWv7YKZPeTxpvVJZK7wfEkrXbN/a1Rh3jtM61UrLpNIa2TbdtqT5jw2LXVFlC2XNv9sX5Jxt+TDts4OzjC94gStr/pMj12CMBQLBLRGKa3UR0NaYUBx0gUAguFWCkszvzwzxnRe7mHJ4eWRDCp/faiD+wGfgwhHI3g0P/giirt7C5/VN0dH7Q346quIZHsIUdFPV2co9MZHs3LmTlBSlqhOY9eA8PY7r9BjBeR9qiw7zxgRMlYnoXnXm2XDHeU48+TgXms5gMJnZcO8DbLjvrZjCI675ebzuAN2nxmmrtzE5aEejU5NbEU9xVRJJuZGXVXBWc04Pzs/jOFKPo24/jsNHkBwOVEYj5u3bse6pVfatxa7BXi1ZhqkuJah17IPhU4AMEemLh2PfBxk7QPv6txz6JT/ds91LbZEtUy0MLAwAoFFpyIvKWxHaMsIz3jCa/5aReXyL1sjEcOPiXjYltJUmC82/QHC7CMW1ughoa0woDrpAIBC8VhzeAD890MN/1PejVsFfV2fxkfAj6Ou+rASAu/8RNv0lXKN1z+7o4Pn2f+e79moGVZmULvSw8VwXJWmp7Ny5k8zMTEDZR+bpmsV5cgxPxzRIYMiOwLw5kbCSWFS65WuM9/Vw4snH6T55FJ3BSNnd97HpgUewRF1fQT85aOd8vY2uk2P4PUEiE0wU70imcFsiYVYlrKzVnC77fDhPnVqqrgVGR0GlIqy8HMueWqy1teizs9em5c8xsbxvrfcABNxgiIC8uxb3rd112UHlryezntmlKlvLZAutU604/A4AwvXhrItbR3ms0hZZGltKhOHaofx24QtIdIwtLIe2oTkGpl0AaNUqipLCl0NbWhQZMaaQbPEUCO40QnGtLgLaGhOKgy4QCASrxdCMi2+90MFzLaMkhhv58i4r9/R9C1XvfkjfDg/9M8TkXPX1siwzOrGfb3ed4nf+uzCpfNw12Ex8/wQZ6elUV1eTm5u7tFANLnhxnhnHeWqc4IwHtUmLaUM85s2J6BKW2xqnhgY4+dTv6Gg4jFqroXT33VS+9e1ExCdc9zP5vUF6zkzQVm9jrG8etUZFVnkcJVXJ9Iw3U1NT89q/uGsgyzLejg7sdXU49tfhaWsDQJ+RsSQZCVu/HpV2DcyMPhf0HVzet+acBLVWqagV7lX2G16jOvp6IMkS/fP9S22RLVMt9Mz2IKOsWbIispaqbOVx5eRE5qBVr63F8laZcnhpWrRFNg7O0Tw0h9MXBCDKpFNaIhdbI8vSIgg3rv6xDQLBm51QXKuLgLbGhOKgCwQCwWpz6sIMX322jZbhecpTwvlhUTuZp78GAS/UPgpbPwzqq7dwSZKPQ72/59FhI71ks5k+trT14Z90kJSUxM6dOykoKEC9WJGTJRlv3xzOk2O4z09DUEafbsVcmUhYeRzqxXaxubFRTv7h95w/uB+QKaqqYfPD7yA6OfWGPte0zUF7/SgdJ0bxOgPozFCxJ4vCbclYol4fW59/dBT7gQM46g7gPHEC/H40kZFYdu3CsqcWy44dqM1rcDi0FISRM9DxnFJdm1IEJySULiv8kze87vvWroTD5+D89PmlKlvzZDOzXmUP4xtN8989YV/RGtk9oVQLVSrIi7ewIS1qqTUyN94iNP8CwWskFNfqIqCtMaE46AKBQLAWSJLMk40jfPvFDsYXvLy3RM+j8r8T1vcipGyCh34C8YXXfA+Xd5pvn3ueny/ko8fH+7VdWBrnmJ1ZIC4ujurqakpKStBccv5Z0OnHdXYc58kxApNuVAYNpvVxmCsT0acqSnn79BSnn3mClv0vEvD7yN9axZaH30l8ZvYNfbaAP0hf0yRHn2nDOaEsljPWxVJclUxGSTRqzeuzDyrocOCsr1cU/ocOIS0soNLrMW3birWmFktNDbqEK59N95qZ7l2UjDwPg8dAlsCatLhvbS9kVYM2NBTzsiwz7Bhe3sv2Btb8z7v9tAzPrWiNnFvU/FsMWsrTIpZC2/q0SGKE5l8guClCca0uAtoaE4qDLhAIBGuJ0xvgZ4d6+dnhPkDmu0W9PDD8GCqfA3Z9FnZ8QrE+XoOWqU4+0dZDWzCFCnU7HzX66D9tZ3JyiqioKKqqqigvL0d7SZufLMv4BhaUqlrrFLJfQpdsxlyZiGlDPGqjFtf8HGeee4qml57D53aTvXEzWx95N0l5BTf02Q4ePMj64s20N4zSfmwU94IPc4Sewu1JFO9IJjz29bPzyX4/rrONOOr2Y99fh394GADjunWKZKSmFkN+3trsY3JOQ/dL0Pkc9NSB3wl6C+TUKq2QeW8B0/X3/b2eXEvzr1frFc3/YmArjy0n0ZwYknvAZFnmwrRrxWHa7aN2goua/4wY0wpjZGGi0PwLBNciFNfqIqCtMaE46AKBQPB6MDLn5tsvdPB0k40Ci4f/iPstaaMvQuI6eOinkFR2zddLssyPu47xmE2LSg7wV6Z6Hggr5cSJYWw2G+Hh4Wzfvp2Kigr0+pXVD8kdwNU0gfPkGP5RJyqdmrB1sZg3J6LPCMfrdNL4wjOcff4PeBx20kvL2fq2d5NavO6ai/JL5/RgUGKgZZrz9TYG26YBSCuMorgqhazyWDSv46JYlmW83d1LkhFPSwsAutRULLU1WGtrMW3ciOoqB3q/JvwexeB5sRXSMQYqDaRvU6prhfdD9I1VKl9vrqX5jwuLWwpsZbFlFMcUh7Tmv3VkpeZ/wq5o/g0XNf/py6EtKUJo/gWCi4TiWl0EtDUmFAddIBAIXk/ODMzy1WfbaBqa469iz/GZwL+h981B1adg599dty2u3+nkY61nOe22UiK38oX4IVJ1b6GhoYXBwUHMZjPbtm1j06ZNGF91ULUsy/hHHMoh2E2TyN4g2vgwpapWkUBQE6D55ec58+yTOOdmSc4vYsvb3kXW+k1XDGpXm9PtMx7aG2y0Hx3FMevFaNFRuDWR4qpkohLXYH/YdfBPTOA4eBDH/jqcx44h+3yow8Ox7NyJdU8t5upqNBbL6l9YkmC0UQlqHftg4rzyeFzhcitkysZr2j1vJ37JT9ds14rWyEH7IKBo/vOj8leEtozwjJCtso3Oe1a0RbZeQ/O/LiUCo05o/gVvTkJxrS4C2hoTioMuEAgErzeSJPNMi41vPd+Ba36Kn8X9nq32lyCuSNmblrrxmq+XZZlfDg/zld4xgnKQP1L9ng9l5oFcQ339CXp7ezEajWzZsoUtW7ZgMl1e6ZC8QdwtkzhPjeEbtINGRVhJDObNiWhSTZw/9Aon//B77FOTxGfmsOWRd5K3eTuqS8LE9eZ0SZIZapuhrd7GhZYpJEkmKTeCkqpkciri0d6Gs64klwtHQwOOugM4Dh4kODsLOh3mykpF4V9Tgy45eW0uPntBCWud++BCA8hBMMdDwb2KaCR7N+hCu5pzUfN/sTWydaoVp98JQIQhgnWx65baIkvjSgnXh9/mO74yvoBE++jCUmBrHJxjcEZo/gWCUFyrh3RAU6lUZuAQ8GVZlp+91nNFQBMIBILQx+0L8u9H+viXg71UyWf5nuk/sfqnUG37KNR84bqL9RGPj0+1dXFoPkC+3M7H9E+yK//9+Hyl1NfX09HRgU6no7Kykm3btmG1Wq/4Pv4xJ85TYzjPTiC7A2hijJg3JWJcH01X01FOPv07ZkdtRKekseXhd1K4Yxdqjeam5nTnvJeOY6O0NYyyMOnGYNKSv1mpqsWmrkH16gaQg0HcTU1LCn/fhQsAGIqLsNYoCn9DUdHaLMzds9D9ihLWel4B7wJow5R9awX3KQp/S9zqX3eVCUpBRfM/tWyM7J3rXdL8Z0dkr6iy5UbmormGwfR2ci3Nf7RZv7iXbVHznxqBVWj+BXcgobhWX5OAplKpfgE8AEzIslx6yeP3Aj8ENMB/yLL8reu8z1cAB9AmAppAIBDcOYzNe/j2ix28fLabfwz7LW+TX0aOzkH10E8gY9s1XyvLMr8bn+XRrgE8wQBvl/+X90SMUZj/BdyuOOrr6zl37hxqtZqKigp27NhBZGTkld/LL+E+P4Xz5BjevnlQg7EwBtOmOAZn2znx1ONMDV4gIj6Byre+g2m1jto9d93UZ5UlmZHuOdrqbfQ2TiAFZOIzwynekUReZQJ64+07o8vb169IRuoO4G5sBFlGm5iItbYGS+0ezJsrUenXwG4Y8MFAvdIG2fk8LAwDKkjbvKjwvx/i8lf/umuEw+fg3PS5Fa2RFzX/Jq1J0fwvBrayuDJiwmJu8x1fmetp/vPjrStaI3PjLKiF5l/wBicU1+prFdB2ogSr/74Y0FQqlQboAu4GhoFTwHtQwto3X/UW7wfKgRjACEyJgCYQCAR3Hs1Dc3z12Tb0Q0d4zPgfJEiTqDZ/EPb8AxiuXWUa9/r5XOcgL0zbyaGfv5J/xOakzeRkfxqHQ0N9fT3Nzc0AlJeXU1VVRUzM1RfG/im3slftzDiSw48mQo9pYwKThjFOvPQ4Yz1d6MwWdrz9PZTtuQfdq/a73Qgeh5/OE2Ocr7cxO+pEZ9CQtyme4qoU4jOtt7WlLDA9jePgIewH6nDWNyB7PKjNZsw7q7HW1mLZuRNNRMTqX1iWYax1UeG/D0aVMSMmd3Hf2v2QtuWa5+iFGrIsM2wfpnmqeSmwdc50rtT8Lx6kXRaraP511zGb3i4u1fyfXQxt825F8281aClfqrJFsj4timhzaB5XIBBcjVBcq69Zi6NKpcoEnr0koG1DaVW8Z/HvnweQZfnV4ezi678OmIFiwA08IsuydLXriYAmEAgEb0xkWea51lF+8Fwj73X+kj/XvkTQmorukX9W9ihd57V/mJzj851DLAQCPMzveVi1j9zMD5KW9n7sdg9Hjx7l7NmzBINBSkpKqK6uJiEh4ervGZBwt8/gPDWGt1upghjyonAluHnxlV9gtw0RZg1n496HWX/PXgymm5eAyLLMeP8C5+tt9JweJ+CTiEmxUFyVTP7mBIzm27tYlzwenMeO4airw37gIMGpKdBoMG3apFTX9uxBn3pjh33fNPPDy/vW+o+A5AdTDOTdoxghs2uuG95DEU/AQ/tM+1JbZMtkC+OuceCNp/nvn3IuKf4bB+foGFvW/GfGmJZskRvSoihMsqJ7nc4JFAhuhVBcq7+eAe0dwL2yLH9g8e9/CmyRZfmj13mf93GVCppKpfog8EGAhISEjb/5zW9u+X7XCofDgWUtTFkCgUBwh+ELyrx0wY+tv5Wvqf+dbPUoAwlvYTDvfQS11w5BC7KK/yKMo+hJl8f4IN8li3lUqneiohK/38/Q0BA2m41gMEhMTAwZGRmEh19b6KB1Q/iwCuuICp1HhV8nMRPpoGOsnrHBVjR6A3HrNpCwrgJt2K0p2IM+mflBmO2V8cwqhvrwVIjKUWGK4/Yv0iUJ3YULGFpaMDS3oB0dBcCfnIy3vAxvWTmBjPQ1MTNqAi6iZxqJnTpB9MxpdAEnkkrHbFQ5U7GbmY6pxGcIrfPWbobZwCwD3gEu+C7Q7+1nyDeEX1aqU+GacDL1mWQZssg0ZJKmT8OgDs1DqL0BmQsLEr1zQXrnJXrmJOa9yhpSp4asCDXZERpyItXkRqqJMorAJggdQnGtXlNTE9oB7UYRFTSBQCC4M5iwe/jh862ktfyQv9I+h8cYh/HhH6EpvPe6r31hcp7PdQ0x5fPziO4Qe33/SlxEGfl5jxIeXobL5eLkyZMcP34cj8dDdnY2O3fuJDMz85rvK0synq5ZBvadwzKlAglUSXr6HC2cbn0WtV5L+V33senBt2GJuvXAMDlop63eRtfJMXyeIJEJJop3JFO4LZEwa2i0jvkGBrAfOIBjfx2uM2dAktDGxWGpqcFSW4N52zbUhjUIEkE/DB5bVPg/B3MDyuMpG5cV/vFFymapNyg3qvkvjyunLK6MdGv67Q/wV0CWZWzznuXDtAdnOTeygC+oNEIlRRiXKmwb0iMpFZp/wW0kFNfqIdvieLOIgCYQCAR3FudG5vn1E0/y55PfoUA9zHjWIyS88zEwXTsAzfkDfLnHxm/GZsjSe/nL4GNkBU6TmPgwOTmfwWhIxOv1curUKY4dO4bT6SQ9PZ3q6mpyc3Ove1B1dcV2nGfGcZ4aIzjjAYOaKZ2N053P45BnKd19N5VvfTsR8Vdvo7wefm+QnjMTtNXbGOubR61RkVUeS3FVMmmF0ahCRMwQmJ3Fefgw9roDOI8cQXK5UJlMWHZsx1K7B8vuXWijolb/wrIME+3L+9ZGziiPR2ZA4V4lsKVvgxDd13UzzHhmODd17qqa/4vikbK4MtbFrsOqv7K59HbjDQRpH7Uvh7ahWYZm3ICi+S9ODl+0RiqhLT1aaP4Frw+huFZ/PQOaFkUSsgcYQZGE/LEsy+dv+SKXIAKaQCAQ3HnIssxLLUPYnvkaf+L/PS5NOK63fIekre+87msPTC/wd51D2Lx+3mUd4F77P2BUBcnI+Gsy0j+ARhOG3+/n7NmzNDQ0sLCwQFJSEtXV1RQWFqK+QsvepXO6LMl4++ZwnhzDfX4agjIug5PztnqGXB3k79jB5offSXTya9urNW1z0F4/SseJUbzOANYYI8U7kijclowlKnRa3iSfD9eJE4rCv+4AgfFxUKsJ27BBkYzU1mDIylqbi9vHFvetPQ99ByHoBWMk5L1FCWu5d4ExNM8nu1kuav6bJ5uXVP8XNf8qVCs1/3Fl5ETkhKzmf9LupWlo2RjZPDyHS2j+Ba8zobhWXyuL4/8Cu4FYYBz4kizLP1epVPcDP0AxN/5CluWv39IFroAIaAKBQHDn4g0EefbFFyk6+QWKVf2ci9xD2nt/TERcyjVfZw8E+VqvjV/apskwqPmY8RmS5n6BwZBIbs5nSUh4EJVKTSAQoKWlhfr6emZmZoiLi6O6upqSkhI0muXF7dXm9KDTj+vsBM5TowQm3ATVQQbsbfTMNxK3IZctj7yT+Mzs1/QdBPxB+pomaasfZaRzFpUKMkpjKK5KJqM0BnUIiRhkWcZzvm1J4e/t6ABAn529pPAPKy9DpVmD4OB1QN8BJax1vQCuaVDrIKt6UeF/H0SskeDkNmH32Tk3taj5Xwxtc945QNH8XzxM+2KVLZQ1/13jl2j+h+boEZp/wRoTimv1kD6o+mYQAU0gEAjufKbmHZz5339k9+gvcKnCaC79Ajse/mt02msv9Otn7Xy6Y4gBj4/3xAZ5yP1Ngo5GwsPXk5/3RSIiKgAIBoO0tbVx+PBhJicniYqKoqqqivLycrRa7XXndFmW8Q0s4Dw5hqtlEgIyc/5JeucbUeUa2PS2d5CcX/iav4e5CRftDaO0HxvFveDDHKGncHsSxTuSCY+99mHftwP/yAj2ugM4DtThPHkKAgE00dFYanZjra3FvH076rA1uG8pCEMnofM55cy1mV7l8cSy5VbIxLI39L61KyHLMkP2oaW2yJapFrpmupY0/6mW1GVjZFw5BVEFIa35bx6aW2GNFJp/wWoSimt1EdDWmFAcdIFAIHij09d2Gumpj5Dr66BBuxn2Psb29aXX3LPiDAb5p74x/n14kmSDji/GDxA39lV8vgkSEh4kN+ezGI3JAEiSRGdnJ0eOHMFmsxEeHs727dtxOp3s2bPnhu5RcgdwNU9gP24jOOYmIPsZcnTgjHNS/Pa3kFZa9pr32ASDEgMt07Q12Bg4Pw0ypBVFUVyVQlZ5LBpt6FTVLhJcWMBx5AiO/XU4Dh9GcjhQGQyYt2/HUluDtaYGbWzs2lx8smtx39rzMHQCkBVlZsF9isI/owq0d+YC3x1w0z7dvhTYmieamXBPAIrmvzimeEVoSzAlhOQeMKH5F6w2obhWFwFtjQnFQRcIBII7ATkYoPsP3yGj+TG8spbfxvwNu971CfITr73X6NS8k092DNLj8vLuhHD+Qv8ss8P/CkB6+gfISP9rtItaf1mW6e3t5fDhwwwODqLT6di5cyeVlZUYb+Kgat+wnYVjI7iaxlEH1cz7ppgyjpH24EaytlauykLYPuOh/ego7Q02HLNejBYdhVsTKa5KJirx5s9qez2QfT5cZ85g31+HvW4/AdsoqFSElZVh2bMHa20N+pyctQkKjknoflGprPXWQcANhnDI3aMYIfPugrA1EJyEEGPOsWVj5FQLbdNteINeAOLD4lfsZSuOKSZMG3rVWQCXL0Dr8DyNi/vZzg7OMWlXPodBq6YsNYKKi6EtPYqE8Js/ZF5w5xKKa3UR0NaYUBx0gUAguJPwTXQz/eu/JmnuDIelMk6Wfon37915zVYnT1DiexfG+OnQBHE6HV/LMpE5+0PGx59Br48nJ+fTJCW+DZVq+TfvAwMDPPXUU8zOzmI0GtmyZQtbtmzBZLrx888kbxBH4yjTdd3oFrQE5QBTjBJRlUb2fdtRX6dV84auIckMtc3QVm/jQssUkiSTlBtBSVUyORXxaPWhKYyQZRlvZ6ciGdlfh+e84hDTpacvSUZMFRWotNrVv7jfrchFOvdB5wvgnAC1FjK2L+9bi8pc/euGGP6govm/VEAyZB8C7izNf3KEcbnKlh5JSbLQ/L+ZCcW1ughoa0woDrpAIBDccUgSzqP/hrbuy/iDMt9X/QlJtX/Dn23PRn+NNr+mBRef7Bik3enhbQlRfCZhmqn+r7Ow0ITVWkpe3qNERVYuPf/gwYPk5eVx5MgROjo60Ol0VFZWsm3bNqzWm9Obe0YWGHn6DOqBIDqVAZdsR11gIuORLeiiVqdS4Zz30nl8jLZ6G/OTbgwmLfmbEymuSiI2NTR17Bfxj43hOHAAe90BXMePI/v9aCIisOzehaV2D+YdO9BY1qAyKEmKtv+iwn9SEZwQX6K0QRbcB0kb1uRg7lBkxjND62TrUmhrnWzFFXABEGmIvExAEuqa/7MDs0uVtuFZRfOv06goTgpf0RqZFh0WkuFTsPqE4lpdBLQ1JhQHXSAQCO5YZgdw/d9HMA0f4bhUxI/Nf8ufP1DL3cVX30/jkyR+NDDBDwbGiNBq+WZeMpvlI/T0fhuvd4z4uPvIzf0cYWFpK+b08fFx6uvrOXfuHGq1moqKCnbs2EFkZORN3XLQ66f/6WO4z0wQpUpAkiUCcRLx95ZgLo5blTPPZElmpHuOtnobvY0TSAGZ+AwrxVXJ5FUmoDeuQVVqFQk6nDjr63EcqMNx8BDB+XlUOh2mrVux7qnFUlODLuHWz527JtO9ywr/waMgS2BNgvx7lepa1k7QvXla5oJSkL75vhXGyCtp/i9W2bIjskNW8z9h99A0OLcU2FqG55c0/zFm/VJL5Ia0SMrSIrEYQvv/E8GtEYpr9TsnoGVGyKe/VHW7b+My5ubmbvqHtUAgEAheA7IMjnECswMEJPhO4N106Et5NP4YRcbpq76sTZfAJ2LfToshhb3Oc3xt5mnclkEGwqeRVZC+EEXUoJaY8JUHZU/7DdQvJNHsUNTlZeZpqiJGidV5b/q2+8aiGB8vJ16/DqPGTJAFwqNasEa1oNUt3Px3cQU8fiOd00W0TZQx445Fq/aRH9NBcXwr8eaxkBcaypKMa9iDo8eFvduJf04xExoTDVhyTVjzTBji9GtT/ZD84J5V1P3uWSWsqdTKXrWwaOUQdXVo2hDXEjsS5/DRgpcWlZcWfMyplHZCs6yiFD1lGCiXDaxDTzShGdhkZFy+IA5vAIcngN0bwOMPLv27SafBYtRiMWixGLWE6TSoCPH/YQTXJRTX6qr377szAlpslll+8EtFt/s2LiMQCKBdi355gUAgEFyTyECAP5ueYIPbSaOUzd/5/xpX+DjZcXXotc4rvkZCTX/4PfREvhWN5KVo9jfkeI6yIcJNjsWHO6CieT6MXqce+VULM03ASPh8DhZHOipZjctsYz6iB7/efnM3LoN1ykjF4AZKVJtIDMsClUxPWBeno47RYT2HtLj4fU3IYHakEzexhajpcjSSHpdplKn4E0zHNhLUul/7NdYaWSZmWia3O0Bud5AUm/K9zIer6MnT0J2nZThNjaRZi0W0rGj8g36QAkpYA2XvmkarBDXVm6MN8kp4kXEg4UDCiYwLmYv/yxhkMKPGghozKkyoQzbmyMgEpZV/Lq6OVYBGrVrxRwS2Nx6huFb/r784c4cEtPxY+cEfPXi7b+MyQjGVCwQCwZsGWWbr9BB/3N+CIRjkB4G38x/yvaRmdJGW2oNafeWg41BF0aq9izl1MnHBfkoCdaSqRlkvd5KkdzEjmTkTzGFcjrzstWqfmvDRcKzjVtSSGleUi/mUeXwW303fvmncT1azhlJnEVnWdZi14Th0bhoTuzmd1MWMaXWqahq/jujhTGIv5GGej0FSB5hNHmQysxtHzARvlDWnecFHzvk5cs/NkNE1j84v4zFq6CuOpKc0ir6iSHxha7QQ8zmUypprBnyLvwDQmZSqmikGDBbeMF/kGiDJEk6/E6fficPvwOl34peU88xUqDDrzJh1Ziw6C2adGb0mdI87cPuDODwBpdLmDeDyBbi4ZDbqNFgXK2wWgxaTXhvyVek3O6G4Vv+v+/7rzghoYg+aQCAQCK6KYwL2/R20Pc2APo8P2d+PI6qQL9xXxL2liVdshwvKMj8fnuSbfaNoVSq+nJtCUmcLJcUuenr/CY9nhLjYu8nN/X+YTJmXvd7lcnHy5EmOHz+Ox+MhOzubnTt3kpGRcdPtd+N9PZx44nEc58bIidhAclgOKlTosyKwbE4krDQWlW51qjWTg3ba6m10nRzD5wkSmWCiaEcShVuTMIWH7qL51UguF85jx7Dvr8Nx8CDBmRnQajFvrsRSuwdrzW50KSlrc/HZAeh6ATqeg4EGpcJmjoP8exSFf/Zu0N+4/fNORJZlxl3jy4dpTyqaf5+k/CIj3hSv7GOLXdb8G7WhudfP6Q3QOjK/ZIw8OzjHlENpcTbq1JSlLB+mLTT/oUcortXvnD1oIqAJBAKB4Hqcfwr2/R2Sa5Zf69/BP87fz4aseP7hgWJKUyKu+JILbi+f6hji6JyDdfj5+dYyUvQyQ0O/4MLAvyBJftJS/4zMzI+i011+BpvX6+XUqVMcO3YMp9NJWloaO3fuJDc396aD2vTwICee+h0Xjp8my7KOgtjN6AMGVGFazBviMW9ORLdKZ575vUF6zkzQVm9jrG8etUZFVnksxVXJpBVGr4q85PVCDgZxNzfjqKvDvr8OX38/AIbCwkWFfy3GkuK12bfmnoOeVxQjZPfL4F0AbRjk1ChGyPx7wRK/+td9A+IP+umc7VwR2oYdwwBoVVryo/OXAlt5XDlp1rSQNC3KsszInHsxsCkHap8Xmv+QJRTX6iKgrTGhOOgCgUDwpsY1Ay/8P2j5LXOWXD7i+gBH3em8oyKVz9xTQPwVfrstyTL/Y5vmS11DqDUavpidxF+kxOL3TdLb9xijo79Hp4siO/uTJCe9C7X68jY6v9/P2bNnaWhoYGFhgaSkJKqrqyksLER9k8r2ufExTj39e84dfIU4Qyrrs+4i0hMDEujTrZgrEwkrj0O9SmeeTdsctDeM0nl8DI/TjzXGSPGOJAq3JWOJMqzKNV5PvH39OA7UYa87gLuxESQJbUICltoarLW1mLZsQa1fg2phwKdU1DqfVwLb/BCggtRKJawV7oXYfERP3DLT7mlap1qXAlvr1ErNf1lc2VJoK40tDWnNf5ttYTGwCc1/KBGKa3UR0NaYUBx0gUAgEKAcSPzsJ5Ad4xxPfC8fGLwLWWPkw7tz+EB19hV/o/37A4f4v+hUDszY2Rph5rHCdLJNBhbs5+ju/jpzcycxm/PIy3uUmOgrm4UDgQAtLS3U19czMzNDXFwc1dXVlJSUoNHcXKCyT09x+pknaNn/IuqghsqSB0jV5sFsAJVBg6k8TqmqpVhWZbEX9Ev0NU1yvt7GSOcsKhVklMZQXJVMRmkMas0bT4oRmJnBcfCQovCvb0B2u1GbTJirqxWF/86daNZif4osw/g56Fg8b220SXk8OnvxcOz7IW2LIhwRLBGUgvTO9y4FtpbJFnrnewFlL1tOZM6K0PZG0vw3D83j9l9B858eSVmq0PyvFaG4VhcBbY0JxUEXCAQCwSLuOXj57+Hsf+OPzOEx88f5l95YUiLD+Nx9hTxYlrQi2Bw8eJBdu3bx27EZvtRjwytJfC4riQ+mxaEGJidforvnm3g8Q8TG1JKb+3nM5uwrXjoYDNLW1sbhw4eZnJwkKiqKqqoqysvLb9oo5pqf48xzT9H00nP43G7Kyu6iKGE7qgE/sl9Cl2TGvDkR04Z41Kt05tnchIv2hlHaj43iXvBhjtBTuD2J4h3JhMeuzkHbrzeSx4Pz+HEcdQewH6gjODkFGg2mjRuV6tqePejT0tbm4vMj0LV43lr/YQj6FHV//j1KdS1nz6JoRPBqFnwLnJs6txzaplqY984DYNaZKY0tpSxWaYtcF7eOaGP0dd7x9hAISnSNO2gcml3az9Y7qQhn1CrIT7AuBbaK9EiyYy2o30CtxqFKKK7VRUBbY0Jx0AUCgUDwKnrr4A8fh/khRgv/nA+PPUDjmI+NGVH8/QPFrE+LBFbO6WNeP5/rGuLFqQU2WE18vyiNQnMYkuRlaOiX9F/4CZLkITXlT8jK+hg6XeQVLy1JEp2dnRw5cgSbzYbVamXHjh1UVFSgv8k2O4/DQeOLz3B23x/wOOxklVSwqfRBDMMa/DYnKp2asHWxmDcnos8IX52qWlBioHWatnobg+enkWVIK4qiaEcy2evj0GjfeFU1AFmS8Jw7p0hG6urwdncDYMjLxVJTi3VPLcZ161DdZHvqDeG1Q89+pbLW9SJ45kCjh6xdUHg/5N8H4Umrf907BFmWGbQP0jLZsrSfrWu2i6CsVKfSrGlLVbby+HLyo/LRhej5dfMuP03Dc5wdmKVxaI6mwVkWPMrZf1ajlvVpkZe0RkYSaXrjiHxChVBcq4uAtsaE4qALBAKB4Ap4HbD/H+HkvyFHZXIw/+/5zJlIphxe3rYhhc/cW0Bn44kVc7osyzw9MccXuodxBCQ+lZnAR9IT0KlVeH1T9PV9H5vtcbTacLKz/paUlD9GfZWFoCzL9Pb2cuTIEQYGBjCZTGzbto3KykqMxpuzvvk8blpefp7Tzz6Jc26WpPxCtu16JxEL0bibJ5G9QbTxYZgrEzFVJKAxr87i1D7jof3oKO0NNhyzXowWHYVbEymuSiZqleQltwvf4CCOAwew1x3Adfo0BINo4mKx7q7BUluDeds21Dc5TjdEMABDxxdbIZ+D2QvK48kVi62Q90FCidi3dh3cATdt021LVbbmyWYm3ZMAGDQGSmJKlNC2GNwSzAm3+Y6vjCTJ9E05aRycXWyNnKNzbAFpccmeHWtm/cXWyLRIChOtaN+ArcevJ6G4VhcBbY0JxUEXCAQCwTW40AB/+CjM9OHb8D5+ovlT/uX4JGoV3Juh4Zt/toewV8k3Jn1+Hu0e4emJOUotYfygMI1Sq6JRtzs66O7+OrOzRzGZcsjL+wKxMbuveQsDAwMcPnyY3t5ejEYjW7ZsYcuWLZhMN6dmD/h8nDvwMif/8HvsU5PEZ+aw5cF3kKzPxXV6HN+gHTQqwkpiMG9OxJAduSp2RkmSGWqfoa3exoXmKSRJJik3gpKqZHIq4tGukrzkdhGcm8Nx5Aj2/XU4Dx9GcrlQhYVh3rEda00tlprdaKPXoI1OlmGyQ6msdeyDkcV1T2T68r61jO2gCc1qUChxqeb/YpWtfbp9SfOfYEpYskWWxZVRFF0U0pr/luH5Fa2RUw7lc4TpNKxLjViSj1SkR15RhPRmJhTX6iKgrTGhOOgCgUAguA4+Fxz8Bhz7CViTmdz9T3y5PZnnWkdJijDy2XsLeKg85bL9H/sm5/hc1zCz/gAfS0/gE5kJGNRqZFlmamo/3T3fxO2+QHR0NXm5X8Biyb/mbYyMjHDkyBE6OjrQ6XRUVlaybds2rNabM9UFAwHajxzg5NO/Y3bURnRyKpsffic5uZV4zk7iPDuB7A6giTZirkzAvDERzSqdeeac99J5fIy2ehvzk270YVoKNidQXJ1MbGpoGvduBsnnw3Xi5JIVMjA2BioVYRs2KJKRmloM2Vlrc3H7uHLeWuc+6DsIAQ8YIyDvLUplLfcu5e+CG8IX9NE500nL1HJr5IhjBFA0/wXRBUtVtvLYclKtqSFpWpRlmeFZ95J8pHFwjvO2efxBZV2fEhmmVNkW2yNLksPf1Jr/UFyri4C2xoTioAsEAoHgBhk+DU9/RKlarH8v/+m7hyfGY2gdmac8LZJ/eKCYjRlRK14y6w/wpZ4RHh+bJd9k5AeFaVREKO19kuRjePhX9F/4EcGgi+Tk95Cd9XH0+mtXW8bHx6mvr+fcuXOo1WoqKirYsWMHkTdpF5SkIF3HGzj55ONMDl4gIj6Byre+g+Idtfi75nGeHMPbNw9qMBYqVTVjftSqVNVkSWake462ehu9jRNIAZn4DCvFVcnkVSagXyV5ye1ElmU8bW049tdhP3AAb3s7APrMTCx7arHW1hK2fj2qm7R13hA+J/QeUCQjXS+AawrUOsisWm6FjFwjwckdzJR7itbJVlqmljX/7oCix48yRC23RcaVURpTikUfmiIXjz9I2+jCUoWtcXCOkblLNP/JEYuBLZKK9ChSo948mv9QXKuLgLbGhOKgCwQCgeAmCHjh8HfgyGN4deHoHvlnnnCt59svdDBh9/JgeTKfu7eA1KiV7Yf7pxf4TOcQY14/f50Wx2ezkghb3Avi883Q3/8jRmy/RqMxkZX5t6Sm/glq9bWrVtPT0zQ0NNDU1ARAWVkZVVVVxMbG3tRHkmWZvrMnOf7Ebxnr6cISFc2mB99G2Z57wSHjOjWG88w4ksOPJlyPaVMC5spEtFGr0xrlcfjpPDFGW4ONGZsTrUFD3qZ4iquSSchcHXlJKOC32bDXHcBRV4fz5EkIBNBERWHZvRvrnlrM27ejvsm21RtCCsLwqeVWyGlFcELiOijYq4S1pHKxb+0WCEpBeuZ6lgJby2QLffN9wLLm/2JbZFlsGdmR2ahVobkHbGLBs7SPrXFwlpbhZc1/rEXP+rTlw7TLUyMx36Ga/1Bcq4uAtsaE4qALBAKB4BYYbcbxqz/H4uyH0rfj3PMNfnZqnp8dVhZnf1Wdzd/szlmxiLEHgny118Z/26bJDjPwWGEaWyOXf8PucHbT3f11ZmaOEBaWSV7u54mN3XPdgDI/P09DQwNnz54lGAxSUlJCdXU1CQk3JzaQZZnB1mZOPPlbhtpaCbOGs3Hvw6y/Zy96Qxie9hkcJ8fwds8CYMiLUg7BLopGtQp2RlmWGe9f4Hy9jZ7T4wR8EjEpZoqrksnfnIhxleQloUDQbsd55IgS2A4dQrLbURkMmLdtw1Jbg2X3bnTx8Wtz8aluJax1Pg9DJ0CWIDxFCWoF90FmNWjfeAeOhwoLvgXOTZ6jeap5KbQt+BYAsOgsiuZ/cT/buth1RBmjrvOOt4dAUKJz3L4Y2OZoHJql702g+Q/FtboIaGtMKA66QCAQCG6NQ3WvsEvTCIf+CYzhcP93GEm5j2+/2MnTTTbirQY+c08Bb69IXbFwOTJj59OdQwx6fLw/JZYvZidh1i63uU1NH6S7+xu4XL1ERW0nL++LWC2F170fh8PBsWPHOHXqFD6fj4KCAqqrq0lNTb3pzzbS0caJJ39Lf9MZDCYz6+95gIr734opPILAnAfnqXFcp8cIzvtQW3SYNipVNd0qnXnmcwfoOjVOW72NyUE7Gq2anIo4iquSSc6LvGOqagCy34/rzBlF4b9/P36bDQBjeRnWRYW/Pjd3bT6zc0pR93fuU46X8LtAb4XcPVC4V9m3ZgrNc8LeKMiyzMDCwIoq26Wa/3Rr+orWyFDW/M+5fDRdrLJdQ/NfkR7J+jeo5j8U1+oioK0xoTjoAoFAILg1lub08TZlb5rtLBQ+AHu/x5kZA199to2moTlKU8L5+73FbMmOWXqtMxDkm/2j/Hx4ilSjnu8VpLEzelmSIUl+Rmz/S1/fDwkEFkhOfhc52Z9Er79++6LL5eLkyZMcP34cj8dDdnY2O3fuJCMj46YX+eN9PZx46nG6Tx5Dq9dTftd9bHrgESzRMciSjKdrFufJMTwd0yCBPisCy+ZEwkpjUelWp5VrctBOW72NrpNj+DxBIhNMFO1IonBrEqZVkpeECrIs4+3qwlGnSEY8ra0A6NLSsNbWYqmtxbSxAtVNHl5+Q/jdyqHYHc8p+9Yc46DSKCbIi/vWotdIcPImw+V3KZr/qWXN/5R7CrjDNP9xZjZc0hpZkBD6mv9QXKuLgLbGhOKgCwQCgeDWWDGnBwNw/Kdw4OtKe9i930Ja90c80zrKt57vYHTew/3rEvn8fUWkRS/vMzox5+BTHUP0ur28NymaL+WmEH5JNc3vn6O//8cMj/wKtdpIVuaHSUt7H2r19VvQvF4vp0+f5ujRozidTtLS0ti5cye5t1CNmR4e5MRTv6Oj4RBqtZrSmrupfOs7iIhXFo7BBR/OM+M4T40RnPGgCtNi3hCPeXMiulU688zvDdJzZoL2BhujvfOoNSqyymMprkomrTB6VeQloYZ/fBzHgYPY6/bjOnYc2e9HHRGBZddOrLW1mKuq0VjW4Ew5SVJ+4XCxFXKiTXk8vnixFXIvJG+AtTiY+02ILMuMOcdWtEW2Tbfhl/zASs1/eVw5hdGFIa/5P7soH2kaWqn5L0uNWHGYdqhp/kNxrS4C2hoTioMuEAgEglvjinP6VI9ybtrgMaU97IEf4DYl8+9H+viXg70EJZn3V2XxkZocrEaljckdlPjuhTH+ZXCCBIOOb+encnfsSh2609lHT883mZquI8yYTm7u54iLu+eGgpbf7+fs2bM0NDSwsLBAUlIS1dXVFBYWor7JBfbc+Binnv495w6+gixLFFfXsPnhdxKdrLRRypKMt28e56kx3OemICijT7cqe9XK4lAbVsdYOGNz0tZgo/P4GB6nH2u0kaIdSRRtT8YSdWfunwo6nDgbGnDU1eE4eJDg/DwqnQ7Tli2LCv8adImJa3PxmT7oXFT4DxwFOQiWRCi4V6muZe0E3eq0twoUrqn5V2spjCpc0RqZagltzf/FwNY4NEfbqzT/Gy4epp0eSUlyOAbt7dP8h+JaXQS0NSYUB10gEAgEt8ZV53RJglP/Aa98GVRqeMtXoOJ9jNl9fPvFDp44O0KsRc+n31LAuzaloVms/DQuuPhExyCdTg/vSIjiK3kpROtWtrJNz9TT3f01nM5uIiM3k5/3KFZryQ3dbyAQoKWlhfr6emZmZoiLi6OqqorS0lI0N6l6t09PcfqZJ2jZ/yIBv4/8LTvY8si7iM/MXnpO0OnHdXYC56lRAhNuVAYNpvI4paqWYlmVxWTQL9HXNMn5ehsjnbOoVJBRGkNxVTIZpTGoQ7yd6laRAwHcjY3Y6w5gr9uPf2AQAGNx8ZLC31BYuDYLdtcMdL+shLWeV8DnAJ0JcmqVsJZ/L5hjrv8+gpvmWpr/aGM0ZbGXaP5jSzHr1qC6ugp4/EHO2xaWWiObLtH86zVqipPDl0NbWuTrqvkPxbW6CGhrTCgOukAgEAhujevO6bMX4A8fU/b1ZFbDW38M0Vk0D83x1WfbOD0wS2GilX94oJjtucreMq8k8cOBcX40ME6UTsu38lPZGxe54m0lKYBt9HH6+r6P3z9LUtI7yMn+FAbDjVn/gsEgbW1tHDlyhImJCaKioqiqqqK8vBztTe5tcs3PcWbf0zS9+Cw+t5vsikq2PPJukvOXpSayLOMbWMB5ahx3yySyX0KXZMa8ORHT+njUYauzn2p+0kVbwygdR0dxLfgwR+gp3J5E8Y5kwldJXhKKyLKMr69PkYzU1eFubgZZRpuctCQZMW3ahEq/Bvv1Al64cERpg+x8HhZGlF9KpG1Z3Ld2P8Tmrv51BQAEpAC9c71LFbaWqRb65/sBRfOfG5VLWWzZkuo/KyIrZDX/4wueJVtk4+AcLcNzePwSALEWw9I+tg1pUZSlRqyZ5j8U1+oioK0xoTjoAoFAILg1bmhOl2U4+0t48VGlLWzPP8DmDyKr1DzXOso393UwMufm7uIEvnB/EVmxym+8z9ldfLJjiFaHmwfjIvlGfgpx+pVmN79/gQsX/pmh4f9GrdaTmfEh0tLej0ZzY3s6JEmiq6uLw4cPY7PZsFqt7Nixg4qKCvQ3uZj3OBw0vvgMZ/f9AY/DTnppGVse+SPSStat+M235AngaprAeXIMv82JSqcmbF0s5s2J6DNW58yzYFBioHWatnobg+enkWVILYyiuCqZ7PI4NKskLwlVAlNTOA4exF53AOfRo8geD2qLBcvOaiy1e7DsrEYTHr76F5ZlGG1e3Le2D8YUwQkxeVC4GNZSK0F9+9rX3gzMe+c5N3VOkY9MNdM62bpC878udt0KAUmkMfL23vBVCAQlOsbsi/KRWZoG5+ibWtb8FySGL+1j25AeRXaseVU0/6G4VhcBbY0JxUEXCAQCwa1xU3P6/DA8+0nofkmpLjz0E4jNw+MP8vP6fn56oAdfUOLPt2XysT15RITp8EsyPx2c4HsXxrBo1XwtL5VH4i9XzLtcF+jp+RaTUy9jNKaQm/NZ4uP33nDYkWWZ3t5ejhw5wsDAACaTiW3btlFZWYnReHMb+H0eNy0vP8/pZ5/EOTdLUn4hWx95N1kbNl12P75hO85TY7iaJpG9QbTxYZgrEzFVJKBZpTPP7DMe2o+O0t5gwzHrxWjRUbg1keKqZKJWSV4SykhuN85jx7Dv34/jwEGCMzOg1WKq3IS1RrFC6lNT1ubic0OLlbV9SpVNCoApVmmBLLgPcmpAf+ePwe1GkiVF878oH2mZUjT/kqxUpzLCM1a0RuZF5YWs5n/W6aNpePkw7aahOeyLmv9wo5b1iy2RG16D5j8U1+oioK0xoTjoAoFAILg1bnpOl2Vo+S08/zlFaV7zBdj2UdBombB7+N6LXTx+Zogok55P3p3PeyrT0GrUdDo9fLJjkLMLLt4SE84/FaSSZLh84TEze4zu7q/jcLQTEbGR/LxHCQ8vu6nPNDAwwOHDh+nt7cVoNLJ582a2bt2KyWS6/osvIeDzce7Ay5z8w++xT00Sl5nNloffRd6WbahfVUGRfEHcLZM4T47hG7SDRkVYSQzmykQMOZGrYmeUJJmh9hna6m1caJ5CkmSSciMorkompyIenf7Or+rIwSDu5hYcBxSFv6+3FwBDQQGW2hqstXswlhSjWgszo2de2a/WsU/Zv+adB60Rsncv71uzhqZK/k7E5Xdxfvr8Umhrnmxm2jMNgFFjpDimeKktsiyujHjTGh2a/hpRNP8Ozg4uh7aucftr0vyH4lpdBLQ1JhQHXSAQCAS3xi3P6fZxeO5T0PGsoip/6CeQoIg+zo3M89Vn2zjRP0N+goVH9xazMz+OoCzz70OTfKt/FL1axZdzU3hPYvRlVSlZDmIb/T29vd/D758mMfFhcnI+g9Fwc3a/kZERjhw5QkdHBzqdjsrKSrZt24bVar3+iy8hGAjQXn+Qk0/9jtnREaKTU9n88Dsp3LELzRX2u/nHnEpVrXECyRVAE23EXJmAeWMimlU688w576Xz+Bht9TbmJ93ow7QUbE6guDqZ2NSb+3xvZHwXLixJRtxnG0GS0MbHL4a1Wkxbt6Jei31rQb9iguzcpwS2+UFABamblhX+cQUQgkbCOxVZlhl1ji6FtZapFtqn25c0/4nmxKUqW3lcOUUxRRg0oWlLdXgDtCxV2ZTQNu28iuY/PZJ468ougVBcq4uAtsaE4qALBAKB4NZ4TXO6LEPbU/Dc3ynVhZ2fgapPglaPLMu8eH6Mb+zrYHDGRW1hPF+4v4jceAt9Li+f6hjk+LyTXVFWvluYRprx8kV0IGDnwsC/Mjj4C1QqDRkZf01G+gfQaG5OljE+Pk59fT3nzp1DrVZTUVHBjh07iIyMvKn3kaQgXccbOPnk40wOXiA8LoHND72Dkt13odVd3k4l+yXc56dwnhzD2zcPajAWRGPenIixYHXOPJNlmZGuOdrqbfQ1ThIMSMRnWCmuSiavMgG9cW0kBKFIYHYWx8FDisK/oQHZ5UJtMmGuqsK6pxbzzp1oo6JW/8KyDOPnF1shnwNbo/J4VJZSWSu8H9K2gubNMxahgi/oo2OmY0Vr5JtB8z/d08TdtTW3+a5XIgLaGiMCmkAgENw5rMqc7pyGFz4Hrb+DhFJ46J+VqhrgDQT5r4YL/LiuB48/yJ9szeATd+URHqbjl7ZpvtprQwU8mpPMnyfHoL7C4sjtHqKn99tMTOzDYEgkN+ezJCQ8iOomTW7T09M0NDTQ1NQEQFlZGVVVVcTGxt7U+8iyTN/Zkxx/4reM9XRhiYpm04Nvo2zPveiust/NP+XGdWoM55lxJIcfTbge06YEzJWJaKNW55Bbj8NP54kx2hpszNicaA0a8jbFU1yVTELm6shL3ihIXi+u48ex1x3AUVdHYHIS1GpMFRVY9uzBWluDPiNjbS6+YFs2QvYfgqAPwqIg7x6lupa7BwxvnipnqDHlnloR2M5NnbvjNP/bk7X8+m/vuc13uBIR0NYYEdAEAoHgzmFV5/SOfYpExDkJOz4Ouz4HOiV8TDm8PPZyF785OYjVqOOTd+Xx3q0ZjPr8fKZzmEOzdrZFmnmsIJ0s05XbjmbnTtHd/VXs9vOEh68nP++LRERU3PRtzs/P09DQwNmzZwkGgxQXF1NdXU3iTR6QLMsyg63NnHjytwy1tRJmDWfj3odZf89eDKYrL+rkoISnfQbHyTG83bMAGPKilEOwi6JRaV/73ilZlhnvX6Ct3kb36XECPomYFDPFVcnkb07EuErykjcKsiThOX9ekYzUHcDb1QWAPicHa20tltoawsrL12bfmtcOvXVKWOt6AdyzoNErh2IX3KdU2MKTV/+6ghvmWpp/tUpNTmTOkua/PK6czIjMkNf8D3Wf568e2XO7b2cFIqCtMSKgCQQCwZ3Dqs/p7jl46YvQ+CuIzVf2pqVtXvrnjrEFvvpsGw090+TEmXl0bzG78mP5zfgsX+4ZwS/J/L/sJD6QGofmChUfWZYYG3uSnt7v4vNNkJDwILk5n8VovPlFrsPh4NixY5w6dQqfz0dBQQHV1dWkpqbe9HuNdLZz4snf0t94GoPJzPp7HqDi/rdiCo+46msCcx6cp8ZxnR4jOO9DbdFhqkjAXJmALu7mhCZXw+cO0HVqnLZ6G5ODdjRaNTkVcRRXJZOcd7lN882Ab3gYR50iGXGdOgXBIJrYWCy7d2Gt3YN521bUYWtw5lwwAEMnFvetPQezSgggaT0U7lUCW0Kp2LcWArxa898y2YLdZwfA+v+zd9/hcdVXwse/UyXNqNeRLMnqzd1Wsa1iXAjGNsWEwCZvdrObzZvNbioECKEk2RBCQgiEtM3mTdmS3Q2ExRQDJrihZkuy3C3J6sUa9ZFGml7uff8YQgpG1sgz9tj8Ps+T54kd3TK6ztE9Or/fOZooViSteLfF/4rEFSHX5j8U39VFghZkofjQBUEQhMUJWkzvPgCvftHXmn/9P8GWR0DrSzpkWeZA+ziPv95O36SVmoIkHtlZTFRsGA+cv8BbU7Osi9bxTFEmBfqLL//zeKwMDP4rg4O/ACAz81MszfwH1Gr/lyPZbDaam5s5evQoDoeDnJwcampqWLp0qd8JzFhvN00vPU9X8xHUWi2rtt1M6a7dRMYnvO8xsiTj6JzG2jyKo2MKJNBmxxBZbiBieSKKAM08mxico63eSGfzKC6Hl9gUHcWVqRStT0UXoOYl1xqv2Yylto65gwew1tYhWa0owsPRV1YStWUzkTfcgDrh/Z/doskyTHb6ErXzb8CFFkCGmMx3Kms3Q1YVqD5Y1c5Q9adt/v9Qaeua6Xq3zX9WdNa7Cdsf2vyrlVdvz2EovquLBC3IQvGhC4IgCIsT1JjunIP934CWX/gaJtz6I8iufvd/dnkk/vPoAM/u78Tq8vKx8ky+tC2ft602Hu68gNUrcV+2gX/MSEbzPg01HA4j3T1PMjb2KlptMrm5XybVcIff+9MAnE4nx44do7GxEavVSkZGBjU1NeTl5fmdqE1dGKTppd/R0fA2SqWS5ZtvpOzWO4lJnr8Nu3fWhfX4GNaWUbxTDhQRavRrktGXG9AEaOaZ2+Wlp3WctnojIz1mlCoF2asSKalMI6M4MM1LrkWyy4W1ucVXXTt0CM/ICCgURKxe7esKuXUr2uzs4FQdLeO+JZAdr0PvIfA4ICwG8rf5lkHmbYOI2MBfV1i0P7T5f3dp5MTpd9v8R6gjKEko8XWMTPS1+k/SJV2xewvFd3WRoAVZKD50QRAEYXGuSEzvq4NXPgfT/VD693DjP/9ZkwST1cUP9nfyX02D6LQqvrg1nx3rlvD13hFenZhhZWQEzxRnsizy/Zedmc3H6ex6nNnZk0RFLSc//xHiYssWdbtut5vjx4/T0NDA7OwsqampVFdXU1RUhNLPfUozY6O0vPwC597ejyRJlFRvpvz2jxCfNv8ySlmScfaasbaMYj87CV4ZbUYU+nIDESuTUIYFZuaZyWilrcHI+aOjOKxuouLDKa5MpXhjKpEBal5yLZJlGWd7+7st/J1t7QBoly59t8lIxJo1KFRBmD3nskHvYV9HyPP7wDYJSrWvola4w1ddi80M/HWFyyLLMkar8Y8NSCZO02ZqwyP5hlCn6lP/rMoWzDb/ofiuft0kaCsTEuRXd+y82rfxHjMzM363JhYEQRBC05WK6QqFh9j4DqJievB6IpiaWI3D/ueDY/vV0fwkZjXN4aks8czxT+aTOJP1fK9yC7Nh4fztqWb+7lQTGkm66DVkZCw5E0yVDuDRu9D3JZB4LAuNZXGJhhfoiYridGwsc1oNsS4XK6dnyLZY8Lc+Z5clznvt9ElOvEC6UkuRMpzYhSyDUoahiMhHoS9CoYlDllzI9h5kawe4Jxfxyd7Li5JR1VIGNflMqdJAlkj2DpPp6STZewEl1877UzBILhfemWm80zNIc3O+JYoqFarYWFRxcahiolEog5CsIfsq0TYT2KZ8w+EBtHrQxYMuAbSRQbiuEAgSEja3DavbisVtweqy4pScAChQoNPoidTo0WsiidTo0arCCER9NhTf1bN+858iQQumUHzogiAIwuJc6ZiuDTORmHwCjdaCZTYT09RyZOnP99kcDTPw05jVDGhiWOsY4xP2NvaUrmVfXgm5pkkeqX+Tksmx972GpPIys3yY6RXDyEqZ2HNpxJ9OR+le3J4QCeiP1HMqNo6ZMC1RbjcrpmfIm5vD31dyhyzR5XXQIznwAKkKDUWqCBIWul9Fm4xCV4QiIheFUo3smkK2dSDbukF2+Xk3F2dVRDGkzmdInYdTqSNMspHh6SLD04VetgTkGtcy2evFazbjnZnBOzMDXi8oFCijo33JWmwsyovMxQsItx3s7yRrzncSRXUYRMT7ErbwGAjRDoOCj0tyY3VbfEmby4LVY0OSvQBolBr0Gj2Rmkj0mkj0Gj2qRTzPUHxXv24SNLHEURAEQQi2qxLT3Q54+7vQ8Czok2DXM75hvn/6JV6J/24a5Jn9ncza3dxdlsG6dal868I44y43/5iZzH1ZBiJU7//y4nCO0tPzFKOje9BoEsjN/TJpqXeiUCyu0iFJEp2dndTW1mI0GomKiqKyspK1a9ei1frXZMNhsXDizVc5/vorOCxzZC5fScXuu8lYtnJBe5wkhwfbyXGszaO4jVYUGiURKxLRlxvQLg3MzDOvV2LgzBRt9UYGz00hy5BeFEdJVRo5q5JQBah5ybVMdruxtR5n7uABLAcO4h72DUEOX7GCqK1biNy8hbCC/ODsW7NOQdebvq6Q3QfBbfVV0/K2+pZC5n/Il7QJIc0jeeie6f6zBiT9s/2Ar81/Xmzeu0sjF9rmPxTf1a+bJY4iQRMEQRCC7arGdOMJePlzMHYWVnwEtn8X9H/eMc9sc/PsgS7+40g/4RoVn9qUQ3+Kht+Oz5AbEcYzRRmUx86/xMs8e4qurm9hNh8nMrKY/PyHiY/bsOjblmWZnp4e6urqGBgYQKfTsWHDBsrKygh/n0HV78flsHP6rTc4tncP1plpUguKWL/7brLXlC74pd41bMHaPILt5ASy04s6KQJ9mQHd2mRUkYHpzjhnctBxZIS2BiMWk5PwSA2F6w0sq0ojLkDNS651sizj7Op6t4W/4/RpADTp6b4mI1u2olu3FkUwqmtuB/TV+pK182+AZRQUKsjc4PvlR+HNEJ8T+OsKQWF2mjkzeebPBmq/X5v/lUkriQn783EeofiuLhK0IAvFhy4IgiAszlWP6R4X1D8Dtd/zLc/a+RSU3P6eWVA9ExaeeL2d/e3jZMRHcFt1Fv8j2zA6Pfx9eiJfzUlFP0/DBlmWGR9/je6eJ3E4hklKvJG8vAfR6bIu6/YHBgaoq6uju7ub8PBwysvLWb9+PTqdf3PMPC4XZw/vp/nl3zE3OUFSVg4Vt99FfsUGlAvc2yS5vNhPT2BtHsU1OAcqBRHLEtCXGQjLjQ1Id0ZJkhlqN9FWb6T/1CSSJJOaF0NJVRq5a5PRaIOxD+va5B4bx3L4MHMHD2A7chTZ5UIZHU1kTQ1RW7egr65GFRmE/WOSBCMnfB0hz78B4+d8f59U9E6TkR2wZB0EYzC3EBSSLNE/2/9nDUjma/NvPG1k62YxqDooRIImCIIgBFvIxPSxc/DyZ31VteJbYMf3Ieq9Lenruib41t52zo/NUZoVR+LKRF5y2sgM1/J0UQZVcVEXOfkfeb0OhoZ+Rf/AvyBJbjIyPkF21udQq+c/7lKMRiO1tbV0dHSg0WgoKytjw4YNREX5d16vx0N7/WGaX/od0yPDxKelU377Ryiq3IRKvfA9dO5RK9aWUWwnxpFsHlTx4ejLUtCvM6AK0Mwz26zLV1WrN2KesKONUFNYnkJJdRqJ6Zf3/bzeSFYrlsZGLAcOYjl82Ld3TaNBX17+TnVtC5rU1OBc3NT3Tgv/12CgEWQv6JOhcDsU7oScTaAJwmBuIaj+ss3/qYlTmBwmAMr15fzyzl9e5Tv8cyJBC7KQ+WEuCIIgXLaQiuleDxz5MRz6tu+F8ebvwsq731NN83glftsyxNNvdTJtc1Gz3ED7Eg2DssRfpyXwtdw0otTzV3KcznF6ep9mhxt/JAAAmKFJREFUZOQFNJo4cnLuIS31LpSXOVx2fHycuro6zp49i1KpZO3atVRWVvq9YV+SvHQebaB5z/NMDPYTnZRC+W0fZtmmbaj92O8muyXs5yaxNo/i7DWDEsIL49GXGwgviEehuvyqmizLGDtnOFdvpPfEBF6PRPLSKEqq0sgvS0EbfvUG9oYi2evFfuIEcwcPYTlwANfAAABhJcVEbfG18A8rLg7OvjX7NHTt97Xw79oPrjlQR0DuFt9SyPybIPLKzesSAudP2/wPnx/mU9s/dbVv6c+IBC3IQuqHuSAIgnBZQjKmT3b5qmlDTb5GB7t+ADFL3vNlZrubnxzq5tcNfahVSopXJnM0VoFBp+V7hRlsTYi+5KVm587S1fU4MzPN6PX55Oc/QkJ81WV/hKmpKRoaGjh58iQAK1eupKqqisTERL/OI8syvcebaXrxeUa6z6OPi6fsljtYuXU7Gj/3u7kn7dhaRrG2jiFZ3KiitehKU9CXGVAHaOaZw+rm/NFR2hqMmIxW1GEq8kuTKalKIyUrMM1LrieyLOPq62PuwAEsBw9hP3kSZBl1aipRmzcTuWUL+vIyFH42oVkQjwv663zLIM+/AbMXAAVkVPj2rBXthMT8wF9XCLpQjOsiQQuyUHzogiAIwuKEbEyXvND8/+DAP/uG9H7oW7D2b95TTQPon7TyxBvtvHlujMToMOTCWIbjVNyVGs8/5y0hTjN/BUeWZSYmfk9X9xM4HEMkJmwhL++r6PWX31TBbDbT2NhIa2srHo+HZcuWUV1djcFg8Os8siwzePYUTS8+x1DbGSKiolm74zbWbN9FmM6/Jh2yV8LRbsLaMoqjcxqAsPw49GUpRBQnoFBf/t4kWZYZ65ulrd5I17ExPC6JhCV6iivTKKwwEK4PUhv6a5xnauqdfWuHsDY0IDscKPV69DXVRG3ZSmRNNaqYmEufyF+yDKOnfYlax2u+/w6QkPfHfWsZ5RCUWW9CoIViXBcJWpCF4kMXBEEQFifkY7qpD175vO83/dmb4NYfQlzWRb+0sWeSx/a20z4yiyFFz4VsHfFJOr5bkM7NSbGXvJQkORka+nf6+n+CJDlIX/JxsrM/j0Zz6WMvxWKxcOTIEVpaWnC5XBQUFFBTU0N6errf5xo+307TnufoO3GMMJ2e1TftYu2OW9FF+//i7plxYG0Zw3ZsDK/ZiTJSg25tCvqyFDRJ/jU6eT8uu4fOljHa6o1MDM6hUivJXZtESVUaafmxoqr2PiS7HeuRo1gOHWTu0GG8k5OgUqErLfW18N+yBe0i/v0siPnCO5W116GvDiS3byh2wXZfdS13i29YthCSQjGuiwQtyELxoQuCIAiLc03EdEmC4/8Gv/8ayBJs+waUfeqiXei8kswLrUN8781OJi1OIjMjmcyO5LbMBB7PTydRe+n9UE7XJL29z2A0Po9aHU1O9hdYsuRjKJWXX/Wx2+00NTVx9OhRHA4HOTk5VFdXk5WV5XeiMtbbTdNLz9PVfAS1Vsuqbdsp3XUHkfEJlz74L8iSjKNz2ldVa58CCbTZMUSWG4hYnoBCE5jKycTgHG31RjqbR3E5vMSm6CiuTKVofSq6ADUvuR7JkoTj9GnmDhxk7tBBXN09AIQVFPiajGzdSviyZSiC0ZnRMQvd+30JW9eb4DCDKgxybvDtWyvYDlH+VYSF4ArFuC4StCALxYcuCIIgLM41FdNnhmDvl3wvi5kb4NYfQ2LeRb90zuHmp4d7+GV9HxIyrqwo9PnRPFGUyW3JC6vazFk66Op6nOnpRnS6XPLzHyIx4YaAfBSn08mxY8dobGzEarWSkZFBTU0NeXl5fidqUxeGaH7pedob3kapVLJ8842U3XonMcnv7YK5EN45F9bWMawto3inHCgi1OjXJKMvN6AJ0Mwzt8tLT+s4bfVGRnrMKJUKslclUlKVRkZxfEBGAlzPXAMD7zYZsR0/DpKEOimJyM2bidq6Bd369SjDwgJ/Ya8bBo+808L/NZgZ9P39knV/XAqZXHzRpcjClROKcV0kaEEWig9dEARBWJxrLqbLMpz6H9j3IHicsPlh2PDZ990bM2Sy8Z03OnjtzAjqCDW2vChuXJHCk4WZpIRduiImyzKTkwfo6n4Cu72f+Phq8vMeIjKyICAfx+12c+LECRoaGjCbzaSmplJdXU1RURFKP6shM2OjtLz8Aufe3o8kSRRX3UD57R8hYUnGou5NlmScvWasLaPYz06CV0abEYW+3EDEyiSUYYGpqpmMVtoajJw/OorD6iYqPpziylSKN6YSGaDmJdczz/Q01tpa5g4cxFJfj2yzodDpiKysJHLLFiJv2IQ6Li7wF5ZlGG/743Ds4Vbf38dlvZOs3QyZG0ElunheaaEY10WCFmSh+NAFQRCExblmY/rcKOy91/db/CXr4Laf+H5z/z6a+0x8c+85zg7PQowGzbJ4HivL5m5D/IIqVpLk4sKF39DX/0O8XhtpaR8lJ/uLaLXxAfk4Ho+H06dPU19fj8lkIjExkerqapYvX45qngHcFzNnmuTYq3s4vX8fHreLgopKKnbfRXLW4pueeK1ubCfGsTaP4hm3odCq0K1OQl9mQJMeGZB9ZF63RO+pCdrqjVzomEahgMzlCZRUppG1IgGlSgxWvhTJ6cTW1MTcwYNYDh7CMz4OSiURa9cQtXkLUVu3oM3KCs7FZ0d889bOvw69b4PXCeGxvk6sRTsgdyuEX7qzqnD5QjGuiwQtyELxoQuCIAiLc03HdFmGcy/C6/f79sls+gpUfQlUF6+MSZLMiyeGeeKNdqYsLryGCMrK0/jh2hzSwxe2/8nlMtHX90OGjf+NSqUjO+sLpKd/HKUyMPunJEni3Llz1NXVMT4+TlxcHJWVlaxevRq1H4OqAWzmGVpff5mTb76Gy24jZ20ZFbvvIq3g/RPZS5FlGdfgHNbmUeynJ5DdEppUPfpyA7rVySgjAlMtMU/YaGsYoaNxBNusC12MluINqRRXphGTJIYqL4QsSTjOtfmajBw4iPP8eQC0OTm+JiObtxCxaiUKP38BsCBOC/Qe8i2F7NwHdhMoNZBd46usFe646OgMITBCMa6LBC3IQvGhC4IgCItzXcR066QvSTv3IhhW+Kppqave/8udHn72dg//8nYPHhkU2VF8dVsBn8pKRrnASpDF2kVX1+OYTHVERGSRn/dVEhO3BqwjoSRJdHZ2Ultbi9FoJCoqisrKStauXYvWz5lYDquFk/v20vr6yzgsc2QuX0nF7rvJWLbysu5XcniwnfRV1dxGKwqNkogViejLDWiXBmbmmdcrMXBmirYGI4Nnp5BlSC+Ko6QqjZxVSag0oqq2UK4Lw1gO+pqM2FqOgceDKiGByBs2EbV1K/oNG1BGBCH5lby+mYbnX/clbCZfgxNSV/1x35phhdi3FkChGNdFghZkofjQBUEQhMW5rmJ6+6vw2pd9CVvVPbDpAVC/f6OE4Rk7X3+tjf1nRpHDlGStSubX25eRo1v4vqfJqcN0dX0bm62HuLiN5Oc/TFRkUSA+DfDOoOreXmpraxkYGECn07FhwwbKysoI93NQtcth5/Rbb3Bs7x6sM9Ok5hey/o6/IntN6WUnU65hC9bmEWwnJ5CdXtRJEejLDOjWJqOKDEx1cc7koOPICG0NRiwmJ+GRGgrXG1hWlUZcgJqXfFB4Z2ex1NZhOXgQS20tksWCIiwM/caNvuraDTeg9nOo+oLIsm8Q/fnXfPvWhpoBGWIy3qms3QxLq0AtOnpejlCM6yJBC7JQfOiCIAjC4lx3Md1mgjcfhlP/DUlFvmpa+kXfCd7V2m/ii3vOcGHMAtEa/nprLt8oz0G1wKRFktwMG/+H3t5n8XhmSUu7i9yce9BqA/uCOzAwQF1dHd3d3YSFhVFRUcH69evR6fybV+ZxuTh7eD8tr7zA7MQ4SVk5VNx+F/kVG1Be5iBiyeXFfnoCa/MorsE5UCmIWJaAvsxAWG5sQLozSpLMULuJ9nojfacmkSSZ1LwYSqrSyF2bjEYrhin7Q3a5sB079m4Lf49xBBQKIlatInLLFqK2bEabmxuceXWWiXf2rb0BPQfBY4ewaMjb5qus5d8IEbGBv+51LhTjesgmaAqFQgk8BkQDx2RZ/vf5vl4kaIIgCEKwXbcxvestePWLMDcC6//J1+1R+/6JjCTJ/PuxQZ7Y14HL5iE6PZIf376SmvSFd79zu2fo6/sRF4Z/g1IZTnbWZ8nI+ARKZWDbnRuNRmpra+no6ECj0VBaWsrGjRuJiory6zxej4f2+sM0v/Q7pkeGiUtLp+L2j1BUuQmVn/vdLsY9ZsXaPIrtxDiSzYMqPhx9aQr60hRU0YH5nthmXe9W1czjdrQRagrKUyipSiMpw7/vh+Cr2Do7OnxNRg4cxNHWBoBmaea7TUYi1qxBEYB/H+/hskHf29Dxmi9ps06AUg1LN0LhTl91LW5p4K97HQrFuB6UBE2hUPwK2AWMy7K8/E/+fjvwLKACfiHL8nfmOcdu4HZgCnhNluUD811TJGiCIAhCsF3XMd0xC299DVp/DfE5vrlpWZXzHmJzevjSG+f4fcswsiRTvtrAz29ZQZxu4UuurNZeurufYHLqIBHhmeTlPUhS0ocCXoEYHx+nrq6Os2fPolQqWbt2LZWVlcTGxvp1Hkny0tXUSNOLzzEx2E90Ugrlt32YZZu2ofZzv9vFyG4J+7lJrM2jOHvNoITwwnj05QbCC+JRqC7/+yLLMsbOGc7VG+k9MYHXI5G8NIqSqjTyy1LQhotW74vhHh3FcugQcwcOYm1qArcbVWwskZs2+Vr4V1Wi1Adheakk+dr2/2Ep5ESH7++Tl/k6QhbeDKlrLjqsXgjNuB6sBK0GsAD/8YcETaFQqIBO4EbgAtACfBRfsvbEX5zik+/8Z1qW5X9VKBQvyLJ853zXFAmaIAiCEGwfiJje+za88nmYGYCy/wvbvgFhkfMecnZijk+9eIrRPjOqMBWf25bPFypzUPmxRG9qqo6u7sexWruIja2gIP9hoqKWXeaHudh1pmhoaODkyZMArFy5kqqqKhL93EMkyzK9x5tpevF5RrrPo4+Lp3TXblZtuxmNn/vd3o9n0o712CjWY2NIFjeqaC260hT0pQbU8YG5hsPq5vzRUdoajJiMVtRhKvJLkympTCMlOzDNSz6IvBYL1vp6X3Xt7VoksxmFRoNuw3qitvi6QmpSkoNz8akeX6J2/nXfoGxZgqhUKNgORTshqxo0YmbeH4RiXA/aEkeFQpEF7P2TBG0D8A1Zlm96589fBZBl+S+Tsz8c/3HAJcvy8wqF4jlZlu+e73oiQRMEQRCC7QMT011WOPAYNP3M15Dg1h9C7uZ5D5FlmR+fucAzb5xHmnaSmBDB07evoCY/acGXlSQPxpHn6e19Brd7mtTUO8nNuZewsMC/yJrNZhobG2ltbcXj8bBs2TKqq6sxGAx+nUeWZQbPnqJpz/MMnTtNRFQ0a3fcxuqbdhKunz+xXfA1vBKOdhPWllEcndMAhOXF+oZgFyegUF9+ZUSWZcb6ZmmrN9J1bAyPSyI+TU9JVRqFFQbC9ZceVC5cnOx2Yzt+wtcV8uBB3ENDAIQvX+5rMrJlC2EFBcFJhm0m6Pq9bylk9wFwW0Gjh7yt7+xb+xDoEwJ/3WtIKMb1K5mg3Qlsl2X5U+/8+a+BClmWP/c+x+uAHwE2oEOW5Z9c5Gs+DXwaICUlZd1vf/vbRd9vsFgsFiIjAxOgBUEQhKvrgxbTo83tFHX8EJ3diDH1Rnpy/w6vev4lWmYJfjCmpPe8DYXDS2Gymk8WakjRLzyJkGUbsvwqMgcANQrFThTciEIR+G51LpeLoaEhjEYjXq+XhIQEli5dSnS0/0OCLaPDjLQeZXawD6VWS/LytaSsXIs6wr/GJPNR2yH6goKoYQUahwKPVmZuicxsuow7QKvnvG4Z8wBM98g4pkGhhOgMiMtRoEtGVNUuhyyjGhkh7NQpwk6fRtvXD4A3IQHnypU4V63ElZ8PQZi3pvS6iJ05Q8JUM4mTzYS5TMgoMccUM5lYzlRCBXZdasCvG+pCMa5v3rw5NBM0f4kKmiAIghBsH8iY7rbD4e9A4w8h0gC7noHC7Zc87NURE/e92Y6jy4xKhk9szOJLW/OJiVh4JcZm66e7+ztMTL5FePgS8nIfIDl5Z1ASBLvdTlNTE01NTdjtdnJycqiuriYrK8vv64319dC853k6mxtRa7Ws2rad0l13EBkfuEqFLMk4uqaxNo/iaDeBJKPNjkZfnopueQIKTWBe8CcG52hrMNLZNIrL4SUmOYKSyjSKNqSiixbt3S+Xe3wcy+HDWA4ewtrYiOxyoYyKIrKmhqitW9BXV6Pys6HNgkgSjJz841LIsbO+v08sfGff2g5YUvqB2LcWinE9ZJc4+kskaIIgCEKwfaBj+nArvPw5GG+DlXfD9u+ALn7eQ8xuDw+eGeDVhkHUwzaiIjQ8cFMhHy3LQK1a+IufafoIXV2PY7G0ExOzjoL8R4iOXnm5n+iinE4nx44do7GxEavVSkZGBtXV1eTn5/udqE1dGKL5pedpb3gbpVLJshu2UX7bncQk+7eM8lK8cy6srWNYW0bxTjlQhKvRr01GX25AE6CZZ26Xl57WcdrqjYz0mFEqFWSvSqSkKo304niUARgJ8EEn2WxYGxuZO3AQy+HDeKenQa1GX15G5JatRG3ZjCYtLTgXnx74Y7I20ACSB/RJvn1rhTsg54Z5O7tey0Ixrl/JBE2Nr0nIVmAYX5OQj8myfG7RF/kTIkETBEEQgu0DH9M9Lqj7PtQ9BRFxsPP7UHLbJQ87bJrli03dTJ+eQjntIi85kq/tKqGmYOH702TZi3HkBXp6vo/bPYXBcDu5ufcTHhbYZOcP3G43J06coKGhAbPZjMFgoKamhqKiIpR+VhVmxkZpeeUFzh3ejyRJFFfdQPntHyFhSUZA71mWZJy9Zqwto9jPToJXRpsR5durtjIJZVhgqmqmESttDUbOHxnFYXUTFR9OcWUqxRtTiYwTzScCQfZ6sZ88+W4Lf1d/PwBhxcVEbd5M5NYthJeUBGe5qX0Guvf7krWut8A5C+oI3z7Uwh1QcBNEBqnByVUQinE9WF0c/we4AUgExoCvy7L8S4VCsQP4Ab7Ojb+SZfnxRV3gIkSCJgiCIASbiOnvGD0DL38WRk75ErQdT13yhc3i8fJYj5H/PHGBiM5ZvDYPW4qSeWhHMXnJC9//4fHM0T/wMwYHf4VCoWLp0n9gaeanUKkiLvdTvc/1PJw+fZr6+npMJhOJiYlUV1ezfPlyVH7uE5ozTXLs1T2c3r8Pj9tFQUUlFbvvIjkrJ+D37bW6sZ0Yx9o8imfchkKrQrc6CX2ZAU16ZEBe7L1uid5TE7TVG7nQMY1CAZnLEyipTCNrRQJKP6qkwvycvX1YDh1k7sBB7CdOgCyjNhiI3HwDUVu2oqsoRxmAMQ/v4XH5KmrnX/dV2MxDgALSy/64FDKxAK7hfYmhGNdDdlC1v0SCJgiCIASbiOl/wuvx7Us7/ARoI+HmJ2HFnZd8UWuctnBP2wAXzpuI6LOAV+bj65fypW35xPoxP81uH6K750nGx18nLMxAXu4DpKTcgkIRnKRAkiTOnTtHXV0d4+PjxMXFUVlZyerVq1H7OYjYNmvm+Osvc2LfXlx2Gzlry6jYfRdpBcUBv29ZlnENzmFtHsV+egLZLaFJ1aMvN6BbnYwyIjAzz8wTNtobRmg/MoLN7EIXo6V4QyrFlWnEJAUnef6g8phMWA4dZu7QQawNjch2O0q9Hn11NVFbNhNZU4PKz/l+CyLLvl/OnH/DN3Nt5JTv7+NzfbPWinZCejmorq05eqEY10WCFmSh+NAFQRCExREx/SImzvuqaRdaoOBm2PU0RM+/T8bmlfhu3wg/7x4lus+Ca9BCdLiGe7bl83/WL0XjR+VleqaFrq7HmJs7R3T0agryHyYmZu3lfqr3JUkSnZ2d1NbWYjQaiYqKYuPGjaxbtw6tnxUMh9XCyX17aX3jFRxzs2QsW8n6O+4mY9nKoCxdkxwebCcnsLaM4h62gFqJbkUi+nID2qzAzDyTvBL9Z6ZoazAyeHYKWYb0ojhKqtLIWZWESiOqaoEkORxYjxzBcvAQc4cO4Z2cBJUK3bp177bw12YEdintu8zD0PkGdLwOfbUguSEi3rcEsnAH5G655AzFUBCKcV0kaEEWig9dEARBWBwR09+H5IWmf4UD3wSVFm56HNZ8/JLVtGNmK/d0DNI9ZiG9z8rEiJXcJD2P7CzhhsKkBScMsiwxOrqH7p6ncLnGSUm5hbzcBwgPD1JDBd4ZVN3bS21tLQMDA+h0OjZs2EBZWRnhfg6qdjnsnN6/j2Ovvoh1ZprU/EIqdt9NztqyoLW0dw1bsDaPYDs5gez0ok6KQF9mQLc2GVVkYJbKWaYdtDeO0NZgxGJyEh6poXC9gZLKNOJTAzQTQHiXLEk4zpzxNRk5dBBnVzcAYfl57zYZCV+xAkUwOjM6ZqHngK+61vkmOGZAFQY5m3zVtYKbITo0W/iHYlwXCVqQheJDFwRBEBZHxPRLmOqBV74AA/WQs9k34Do2c95DHF6JZwbG+PHAKDEmN5Hdc4xPO6gpSOKRncUUpCy8xbjHY2Vg8F8ZHPwFAJmZn2Jp5j+gvsTstss1MDBAXV0d3d3dhIWFUVFRQUVFBXq9f9f1uFycPbyflldeYHZinKSsHCpuv4v8ig0olYGfiwUgubzYT09ibRnFNTALKgURyxLQlxkIy41FEYDujJIkM9Ruor3eSN+pSSRJJjUvhpLKNHLXJaPRBuezfdC5Bgd9TUYOHsLW2gpeL6qkRKJu8DUZ0a9fj9LPXyYsiNcNg0f/uBRyut/392lr/7hvLbkkZPathWJcv24StLyMEvl7X/rN1b6N95iZmSE2GOuABUEQhCtOxPQFkCWy3a+yzPmvAJwL+zR9mlt9047nMRgB/7FUwXA4ZHVYmLkwh0uW2RCuY7s+ikg/fuuv0EwQnvZfaOIbkNxxOI0fxW3aBAR3eZ3NO8O4qwuzZwQlKhI0WSRpc9Eo/XsJliUvlqnTzIzU4nZMoQlPJDa1msiElSiClKgBhHskkhxuEh0e1DI4lAomw9VMhqtxB6jhh+SVsM26sJpdeN0SCiVERGnRx4ShCVCXSeG9ZI8Hr9mMd3oar9nsq3orVaiio1HFxaGKjUGhXviMQr+4bWCbApsJnHO+v1OH+8Z06OIhPAa4eslaKMb1O+5bJxK0YArFhy4IgiAsjojpCxchjbLG8X1SvMeYVK3kePgDWJVL5j3Go4A3U+ANg4Jwu5fcM3N0m21oFQpu0kVSFaFH7cdv3VX684Qv+TdU+m68thwcF/4WrzXwjTj+ksM7y5irixnPMAqUxGsySdbmoVX6N0dKliWspjZmjG/jso+h1sYSm1ZNZOJqlMogvUwDClkmzuklyeEm2i0hAzNaFRPhasxaVcAqH067B5vZiX3ODYAmTIUuRosuShuQyp3wPmQJ7+wc3plpvNMzyG4XoEAZGYkqLhZVbFxwKmsAXhfYTb5kzT4DsgRKNejifPvXIuJ8f76CQjGuXzcJmljiKAiCIASbiOl+kmU4+V+w7yHfi9mWR2D9P8IlqkDtFjtf6hjk1JydTZpwFB0zHO2eIitBx8M7S9hWnOzX/rSxsVfp7nkSp3OU5OQd5OU+QEREkBon/AmTyUR9fT0nT54EYOXKlVRVVZGYmOjXeWRZpvd4C00vPsdI93n0cfGU7trNqm03ownWi/Q7PJN2rMdGsR4bQ7K4UUVr0ZWmoC81oI4PzLUdVjfnm0ZpqzdiMlpRh6nIX5dMSVUaKdmBaV4iXJwsyzjOtWE5eJC5gwdxdnQAoM3OJnLLZqK2biVi1SoUfo6UWBCXFXoO+Vr4d+7zVdmUGsiq8nWELNgOscH//2koxvXrZomjSNAEQRCEYBMxfZFmR2DvPb6Ob0tK4bafQHLRvId4JJmfDY3zvf5RIpRKPqbW8XbjED0TVirzEnhkZwnFqdELvgWv18bA4C8YGPg54CUj45NkLf0MavXC97gtltlsprGxkdbWVjweD8uWLaO6uhqDwb8h27IsM3j2FE17nmfo3GkioqJZu+M2Vt+0k3B9cLvlyV4JR7sJa8sojs5pAMLyYn1DsIsTUKgvfwmkLMuM9c3SVm+k69gYHpdEfJqekqo0CisMhOuDVzUUfNzDw8wdOozl4AGszS3g8aCKjyfyhhuI2rIZ/caNKHX+VYIXRPLCUPM789ZehylfgxMMK3171op2+P57EJL1UIzrIkELslB86IIgCMLiiJh+GWQZzv4vvH4/uCyw6StQ+UVQzf/S3W1zcE/7EC2zVm6IjWTDLPz67V5m7W7uLsvkyx8qIDEybMG34XCM0NP7FKOjL6HVJpKTcy9pqXeiUAR//5PFYuHo0aM0NzfjcrkoKCigpqaG9PR0v881fL6dpj3P0XfiGNoIHWu272LtjtvQRccE4c7/nGfGgbVlDNuxMbxmJ0q9Bt26ZN8Q7KTAvLy77B66jo3RVm9kfGAOlVpJzpokllWlkVYQK6pqV4B3bg5LbS2Wg4ew1NYizc2hCAtDv2GDr7q2eTPqpKTgXHyyy5eodbwOQ02ADNFLfB0hC3dAVjWoA9NtNBTjukjQgiwUH7ogCIKwOCKmB4BlAl6/D9pe8v1G/LafQOrKeQ/xyjK/Hp7k8Z4RVAq4Pz2Z0bNT/OfRAcI1Kj63JY+/q8wiTL3wJMs8e4qurm9hNh8nMrKY/PyHiY/bcJkfbmHsdjtNTU00NTVht9vJzs6mpqaGrKwsvxOPsb4emvc8T2dzI2qtllXbtlO66w4i4xOCdPd/JEsyjq5prM2jONpNIMlos6PRl6eiW56AQhOYpHdiaI62eiOdzWO47B5ikiMoqUyjaEMquujAvKQL85NdLmytrcwdPITlwAHcRiMA4atWEvVOC39tXl5wEmfrpK91//nXoeegr+mINgryt/mStfwbfXvXFikU47pI0IIsFB+6IAiCsDgipgdQ28vw2n2+hgFV90LNfaCevxI2YHdyb8cQDTMWqmIj+WJiPP92oIcDHeNkxuv46s1FbF9u8GN/msz4+Gt09zyJwzFMUuKN5OU9iE6XFYAPeGlOp5Njx47R2NiI1WolIyOD6upq8vPz/X7RnbowRPNLz9Pe8DZKpZJlN2yj/LY7iUn2bxnlYnnnXFhbx7C2jOKdcqAIV6Nfm4y+3IDGEJgxB26Xl57j47TVGxnpNqNUKshelUhJVRrpxfEoRWORK0KWZZydncwdOIDl4CEcZ88CoMnMJGrzZiK3bEG3bi0KdRCafbjt0Pv2O0sh3wDrOChUsHTjH5dCxmX5dcpQjOsiQQuyUHzogiAIwuKImB5gNhPs+yqc/i0kFfuqaenr5j1EkmV+Y5zimz1GvDI8nJtKvk3m2691cH5sjvLseL62q4TlSxa+1M/rdTA09Cv6B/4FSXKTkfEJsrM+d0X2pwG43W5OnDhBQ0MDZrMZg8FATU0NRUVFKP0cKjwzNkrLKy9w7vB+JEmiuOoGym//CAlLgt9sAXxVNWefGWvzKPazk+CV0WREEVlmIGJVEsoAtdI3jVhpazBy/sgoDqubqPhwiitTKd6YSmRccBunCH/OPTqK5fBh5g4cxHb0KLLbjTImhshNNURt2Yq+qgpVZBBmEUoSGI9Dx2u+ZG2i3ff3ySW+ZK1wB6StgUv8fygU47pI0IIsFB+6IAiCsDgipgdJ55vw6pfAMgobPgebHwJNxLyHXHC4uP/8EIdMc5TH6HmqYAnNZyd4+q1Opm0u7lybzv03FZIcvfCXdadznJ7epxkZeQGNJo6cnHtIS70L5RVq++3xeDhz5gx1dXWYTCYSExOprq5m+fLlqPzsojdnmuTYq3s4vX8fHreLgvKNVNxxN8lZOUG6+/fyWt3YToxjbR7FM25DoVWhW53k26uWHhmQ5XBet0TvqQna6o1c6JhGoYDM5QmUVKaRtSIBZYDmtwkL47VYsTY0YDl4AMvht/GazSg0GnTr1xO1xVdd06SkBOfipt53hmO/AQONIHsh0gCF233JWvYm0Lw3HoRiXBcJWpCF4kMXBEEQFkfE9CBymOH3j8Lxf4f4XF81ben8e8JkWeb50Wm+1j2MU5K4PzuVjybE8rO3e/h1Qx8alZLPbs7j76uyCfdjP9Ts3Fm6uh5nZqYZvT6f/PxHSIivutxPuGCSJHHu3Dnq6uoYHx8nNjaWqqoqVq9ejdrPZWO2WTPHX3+ZE/v24rLbyFlbRsXuu0grCP48uD+QZRnX4JyvqnZ6AtktoUnVoy8zoFuTjDIiMAmwecJGe8MI7UdGsJld6GK0FG1IpaQyjZik+RN+IfBkjwfb8eNYDh5i7uBB3IODAIQvW/ZuC/+wwsLg7FuzmaDrLTj/GnQf8DUm0ughd7OvhX/+TaD37dMMxbguErQgC8WHLgiCICyOiOlXQM8hePULMDME5Z+GbV8H7fzLo8acbr7SOcS+yVlWR+l4piiDCIfEE2+08+a5MZbERvDgzUXsWpnq1/60iYnf09X9BA7HEIkJW8jL+yp6/ZWrQEmSRGdnJ7W1tRiNRqKioti4cSPr1q1Dq/WvOYbDauHkvr20vvEKjrlZMpatZP0dd5OxbOUV7YgoOTzYTk5gbRnFPWwBtRLdikT05Qa0WYGZeSZ5JfrPTNHWYGTw7BSyDOlFcZRUpZGzKgmVRlTVrjRZlnH19LzbZMR++jTIMpq0NCK3bCFqy2Z0paUo/Px3vSAeJ/TX+TpCnn8D5oygUEJGBRTuoMmcRMWOjwb+updBJGhBJn6YC4IgXD9ETL9CnBY48E1o/leIXQq3/ghyNs17iCzLvDw+w0NdF5jzSNyTlcLnM1No6Zvisb3ttI/Msm5pHI/uKmF1RuyCb0WSnAwN/Tt9/T9BkhykL/k42dmfR6NZ+DkulyzL9Pb2Ultby8DAADqdjg0bNlBWVka4n4OqXQ47p/fv49jePVinTaTmF1Kx+25y1pZd8db1rmEL1pZRbCfGkZ1e1EkRvqra2mRUkYF5UbdMO2hvHKGtwYjF5CRcr6FwvYGSqjTiU4OwL0pYEM/EBHOHD2M5eAhrYyOy04kyKorI6moit2whsqYaVfTC5xwumCzDyElfotbxOoydYcSwjdTP/G/gr3UZRIIWZOKHuSAIwvVDxPQrbKARXv4cmHpg3d/Cjd+E8Pmbf0y6PDzSdYGXxmdYFhnOD4oyKdFH8ELrEN97s5NJi5M71izh/u2FpMYsfNmb0zVJb+8zGI3Po1ZHk5P9BZYs+RhK5ZUdnjwwMEBdXR3d3d2EhYVRUVFBRUUFer1/yYbH5eLs4f20vPICsxPjJC3NpmL3XeRXbESpDP5MuD8lubzYT09ibRnFNTALKgURJQnoyw2E5caiCEB3RkmSudBuoq3eSN+pSSRJJjU3hpKqNHLXJaPRXtnPLPyRZLNhPXKEuYMHsRw6jNdkArUaXVkpUVu2Erl5M9r0JcG5+MwgR480sv7mvwrO+RdJJGhBJn6YC4IgXD9ETL8K3HY49G048mOISoVbnvXNPbqENyZm+ErnBabcHj6fmcI9WSm4XF5+eriHX9b3oVTAZzbl8g81uUT48XI+Z+mgq+txpqcb0elyyc9/iMSEGy7jAy6O0Wikrq6O9vZ2NBoNpaWlbNy4kago/zpPej0eOhrepuml3zFtvEBcWjoVt3+EospNqILRJv0S3GNWrM2+qppk86CKD0dfmoJ+XQqqmIUPJJ+PbdZFxxFfVc08bkcboaagPIWSyjSSMq9M507h4mSvF/up01gOHmDu4CFcvb0AhBUWErV1C5GbtxC+fFlAq72hGNdFghZkofjQBUEQhMURMf0qutAKL3/W10p71Ufhpm+DLn7eQ2bcHr7ebeS5URP5ujCeLcpkbYyeIZON77zRwWtnRkiNCeeB7YXctmrJgudoybLM5OQBurqfwG7vJz6+mvy8h4iMLAjEJ/XL+Pg4dXV1nD17FqVSyZo1a6isrCQuzr/BvZLkpaupkaYXn2NisJ/opBTKb/swyzZtQx2MfUGXILsl7Od8VTVnjxkUEF4Uj77MQHhhPArV5b+gy7KMsWuGtnojPccn8HokkjKjKKlKo6AsBW2AmpcIi+fs6/M1GTl0EPvxEyBJqFNSiNx8A1Fbt6KrqEB5mf8+QzGuiwQtyELxoQuCIAiLI2L6VeZxQu1TUP80RMTDrqeh+JZLHnZwapb7zw8x4nTz6YwkHshORadS0txn4rG9bZwZNrMqI5av7Sph3dKFJzaS5OLChd/Q1/9DvF4baWkfJSf7i2i18yeOwWAymaivr+fkyZMArFy5kqqqKhITE/06jyzL9B5voenF5xjpPo8+Lp7SXbtZte1mNH7udwsUz6Qd67FRrMfGkCxuVNFadKUp6EsNqOMDc08Oq5vzTaO01RsxGa2ow1Tkr0umpCqNlOzANC8RLo/HZMLydq2vhX99A7LdjlKnQ19VRdTWLehralD7+YsJCM24LhK0IAvFhy4IgiAsjojpIWLktK+aNnoalu2Gm78HkUnzHjLn8fJYj5H/ME6RHaHl6aJMNsRGIkkyL54Y5sl9HYzPObl1VRpfubmIJbEL35/mcpno7XsWo/F/UKl0ZGd9gfT0j6NUXvnKk9lsprGxkdbWVjweD8uWLaO6uhqDweDXeWRZZvDsKZr2PM/QudOER0Wz7uZbWb19F+H6yCDd/SXuySvhaDdhbRnF0TkNQFheLPpyAxHFCSjUl9+dUZZlxvpnaas30nVsHI/TS3yanpKqNAorDITrr+yeQ+HiJKcT65Ej71bXvBOToFKhW7vW1xVy6xa0mZkLOlcoxnWRoAVZKD50QRAEYXFETA8hXjc0/ADefhLCouDmJ2H5h+ESlY766Tm+3DHEgMPF3y1J5OGcVCLVKqxODz97u4ef1/r2vHy6JofPbMpFH7bwZW4WSydd3d/GZKojIiLrnf1pW65K9cVisXD06FGam5txuVwUFBRQU1NDenq63+cydrbTtOd5eo+3oI3QsWb7LtbuuA1d9PwNW4LJM+PEdmwUa8sYXrMTpV6Dbl2ybwh2ki4g13DZPXQdG6Ot3sj4wBwqtZKcNUksq0ojrSBWVNVChCxJOM6e9TUZOXAQZ1cXANq8XKI2+5K18JUrUSgvnsCHYlwXCVqQheJDFwRBEBZHxPQQNN7uq6YNt0LhTtj5fYhOnfcQq9fLd3pH+MWFSZaEa/h+YSab4n3NIYZn7Hz3jQ5eOWUkOSqM+28q5MNr0/3anzY1dZiu7iew2XqIi9tIfv7DREUWXfZHXQy73U5TUxNNTU3Y7Xays7OpqakhKyvL7wRjrK+H5j3P09nciFqrZdW27ZTuuoPI+IQg3f2lyZKMo2saa/MojnYTSDLa7Gj05anolieg8GNA+XwmhuZoqzfS2TyGy+4hJjmCkso0ijakoou+8pVS4f25hoawHDzI3MFD2I4dA68XVWIiUZtvIHLzFvQbN6D8k+W6oRjXRYIWZKH40AVBEITFETE9REleOPpTOPgtUIfBTU/A6o9dsprWPGPhno4heuxOPpYaz9dz04jR+CpmrQPTPLa3jZNDM6xYEsOju0ooz1743jJJcjM8/N/09j2LxzNHWtpd5Obcg1br356wQHE6nRw7dowjR45gsVjIyMigurqa/Px8vxO1qQtDNL/0PO0Nb6NUKll2wzbKb7uTmGT/llEGmnfOhbV1DFvLKJ4pB4pwNbo1SejLU9EGaOaZ2+Wl5/g4bfVGRrrNKJUKslYlUlKVRkZx/IITeeHK8M7MYKmrY+7gQay1dUhWK4rwcPSVlURt2ULkDZuoP3Mm5OK6SNCCTPwwFwRBuH6ImB7ipnp8c9MGGyF3q68lf2zGvIfYvRLf7x/lp4PjJGs1PFmYzocSfUv3JEnmlVNGvruvgxGzgx0rDHz15mIy4he+hM7tnqGv70dcGP4NSmU42VmfJSPjEyiVgWkZ7y+3282JEydoaGjAbDZjMBiorq6muLgY5fssAXs/M2OjtLzyAucO70eSJIorN1F++10kpM//PQ82WZJx9pmxNo9iPzsJXhlNRhSRZQYiViWhDAtMVc00YqWtwcj5I6M4rG4i48MoqUyjeGMqkXFXp6GK8P4klwtbc8u7Lfw9o6OgUGDdsoXSn/z4at/enxEJWpCJH+aCIAjXDxHTrwGSBMd+CW993VdBu/GbsO7v4BLJx4lZG/d0DNJhdfDhlDgey19C/DvVNLvLy89re/nZ2z14JZlPVmXz2c25RIUvvGGE1dpLd/cTTE4dJCI8k7y8B0lK+tBV28fk8Xg4c+YMdXV1mEwmEhMTqa6uZvny5ahU/iUwc6ZJWvfu4dRb+/C4XRSUb6TijrtJzsoJ0t0vnNfqxnZiHGvLKJ4xGwqtCt2qJPTlBjTpkQH5/nvdEr2nJmirN3KhYxqFAjKXJVBSlcbSFQmoVJffvEQILFmWcbS1YTl4iG6Xiw1fvvdq39KfEQlakIkf5oIgCNcPEdOvIdMD8OoXoPcwZFXDrT+E+PkTBpck8ezAGM8OjBGrVvNEQTq3JMe++7+Pmh08+WYHLx4fJjFSy30fKuQjpRmo/FjWNjVVR1f341itXcTGVlCQ/zBRUcsW+SEvnyRJtLW1UVtby/j4OLGxsVRVVbF69WrUfg6qts2aOf76y5zYtxeX3UbO2jIqdt9FWkFxkO5+4WRZxjU456uqnZ5AdktoDHr05QZ0q5NQ6gLTndE8Yae9wUj7kRFsZhe6aC1FG1MpqUwlJkDNS4TACsW4LhK0IAvFhy4IgiAsjojp1xhZhhP/CW8+7Ov6uPVrUPEPoJy/QnTOYuee9kFOW+zsTIrhOwXpJGn/+AJ/amiGb+5to3VgmuLUaB7dVczG3IXvLZMkD8aR5+ntfQa3e5rU1DvJzbmXsLDkRX/UyyVJEp2dndTV1TE8PExUVBQbN25k3bp1aP0cBOywWji5by+tb7yCY26WjGUrqdh9F5nLV4VE50PJ4cF2cgJryyjuYQuolehWJKIvM6AN0MwzySvRf2aKtgYjg2enkGVIL4qjpDKNnNVJqDSiqhYqQjGuiwQtyELxoQuCIAiLI2L6Nco8DHvvga43Ib0cbvsJJBXMe4hHkvmXoXG+1zeKXqXksfwlfDgl7t2Xd1mWee3MCE+83sHwjJ0PlaTw0I5ishIX3ozC7Z6lv//HDF34D5RKLVlLP0NGxidRqa7e/iVZlunt7aW2tpaBgQF0Oh3r16+nvLyccD8HVbscdk7v38exvXuwTptIzS+kYvfd5KwtC4lEDcA1bMHaMortxDiy04s6KQJ9mQHd2mRUkYHpzmiZdtDeOEJ7wwhzJgfheg2F6w2UVKURH6DmJcLihWJcFwlakIXiQxcEQRAWR8T0a5gsw5nfwRsPgMsGNzwIG78AqvmX8XVaHdzTMUjrrI1tCdE8WZBOWvgfX9wdbi+/rO/jp4e6cXkl/nZjFp/bkk9MxMKXzNls/XR3f4eJybcID19CXu4DJCfvvOpJzODgILW1tXR3dxMWFkZFRQUVFRXo9f4lFR6Xi3Nv76f55ReYnRgnaWk2FbvvIr9iI8pLVDOvFMnlxX56EmvLKK6BWVApiChJQF9uICw3FkUAujNKksyFdhNt9Ub6Tk0iSTKpuTGUVKWRuy4ZjTY0vhcfNKEY10WCFmSh+NAFQRCExREx/TpgGYfXvgztr0Dqal81zbB83kO8sswvL0zwRO8IaoWCb+Qt4WOp8X+WQI3POnjq9+f5XesF4nRa7rmxgI+WZaD2o0GEafoIXV2PY7G0ExOzjoL8R4iOXrnYTxowRqORuro62tvb0Wg0lJaWsnHjRqKiovw6j9fjoaPhbZpe+h3TxgvEpaVTcftHKKrchMrP/W7B5B6zYm0Zw3Z8DMnmQRUfjr40Bf26FFQxgem+aZt10XF0hLZ6I+ZxO9oINQXlKZRUppGU6d/3Vbg8oRjXRYIWZKH40AVBEITFETH9OnLuJXj9PrBPQ/V9UP1lUM+/pK3P5uTe84McmbFSExfJU4UZZEb8+Qv72WEzj+1to6nPREFKJI/sLKGmIGnBtyXLXowjL9DT833c7ikMhtvJzb2f8LCrO2MMYHx8nPr6es6cOYNSqWTNmjVUVlYSFxfn13kkyUtXUyNNe55nYqCP6KQUym79MMtv2Ibaz/1uwSR7JOznJrE2j+LsMYMCwovi0ZcZCC+MR6G6/KqaLMsYu2ZoqzfSc3wCr0ciKTOKkqo0CspS0EaETuJ6vQrFuC4StCALxYcuCIIgLI6I6dcZ6xTsexDOPA/Jy+D2n0DamnkPkWSZ/zBO8ViPERl4OCeVv1uSiPJPqmmyLPPmuVG+/XoHgyYbW4qSeWhHMXnJkQu+NY9njv6BnzE4+CsUChVLl/4DSzM/hUoVsdhPGzAmk4n6+npOnjwJwIoVK6iuriYx0b8h3LIs03u8haY9zzHSdR59XDylu3azatvNaPzc7xZsnkk71mOjWI+NIVncKKO1vqpaqQF1fGDu1WF1c75plLZ6IyajFbVWSX5pCiVVaaQEqHmJ8F6hGNdFghZkofjQBUEQhMURMf06df4NXxMRyzhUfgE2PQia+V+6hxwu7u8Y4vD0HOtj9DxdlEmO7s+raU6Pl39r6OdHB7txuL18fP1SvrQtn1jdwqtEdvsQ3T1PMj7+OmFhBvJyHyAl5RYUiqvfBdBsNtPY2Ehraysej4dly5ZRXV2NweBftU+WZYbOneboi88xdO404VHRrLv5VlZv30W4fuFJ7ZUgeyUcHSaszaM4OqcBCMuLRV9mIKIkAYX68p+LLMuM9c/SVm+k69g4HqeX+DQ9JZVpFK43EK4PzEgAwScU47pI0IIsFB+6IAiCsDgipl/H7DPw+0d8bfkT8n170zIr5j1ElmV+O2ri693DuCSZr2Sn8umMJFR/UemYtDh5+q1Ofts8SFS4hnu25fN/1i9F48f+tOmZFrq6HmNu7hzR0aspyH+EmJj5q31XisVi4ejRozQ3N+NyuSgoKKC6upqMjAy/z2XsbKdpz/P0Hm9BG6FjzfZdrN1xG7romCDc+eXxzDixHRvF2jKG1+xEqdegW5eMvsyAJkAzz1x2D13HxmirNzI+MIdKrSRnTRLLqtJIK4gVVbUACMW4ft0kaMtS8+Tn/+6pq30b7+HxePwe9CgIgiCEJhHTr396xVnS1L9GwxQm6UbGvHciM39jiMkwFT8oTuBIko7iGSf3tU2SZXW/5+v6ZPh/sopTKElH5v8qvJQqFv6uJSNhTz2GJe8NpLBZwkfXENW1E5XTvz1gweLCQ7dyki7VBC6Fl2QpkmJvCklyJAr8SyQkScLrdiF5vKAAlVqDSq0JSDfFgJNBjQatHIYaLQoUeHDjUjhx48TPj/7+l5FkvB4ZySshy6BQgkqlRKlWIvK0xQvFuL78id0iQQumUHzogiAIwuKImP7BoMROsup3JKgO4JKTGPb8PTa5eN5jZOCQQc+PCuOxq5X8de8Md/ebUf/Fq5QsQxMKfimrMKJgLRKfUnhZ6scLtqRyYl16EOvSwwDoBzajH9iM0huYDoOXy4OXHuUUnapxHAoPCZKOYm8KBjna70RNliQ8bjeSxwOASq1GpdGgUF79JZ4Xo5CVaGUtGsJRoUJGwoULl8KBpPAG5iIyeL0SkldG8vr+gSlVClRqJUqlImAJ4QdFKMb16yZBE0scBUEQhGATMf0Dpr8BXvkcmHqh9JOw7Z8hPHreQyZcbh7uGuaV8RmWR0bwg6IMlke9d7mbyyPxH0f6efZAFzaXl4+VZ3LPjQXE6xe+P83hMNLd8yRjY6+i1SaTl3sfBsPukNifBuB2uzlx4gQNDQ2YzWYMBgPV1dUUFxej9DPBMo+P0vzyC5w7vB9Jkiiu3ET57XeRkO7/MsorQZZlnL1mrM2j2M9OgldGkxGFviwF3aoklGGBSQhMI1baGoycPzKKw+omMj6M4o1pFG9MJSpAzUuud6EY16+bJY4iQRMEQRCCTcT0DyCXDQ49Dkd+AtFL4JZnIX/bJQ97bWKGBzsvMO328PnMFL6UlULYRZISk9XFD/Z38l9Ng+i0Kr64NZ+/2ZCF1o9mEzPmVrq6Hmd29hRRUcspyH+U2NiLvttdFV6vl9OnT1NXV4fJZCIxMZHq6mqWL1+OSuXfcOY50ySte/dw6q19eNwuCso3Ur77LlKyc4N095fPa3VjOzGOtWUUz5gNhVaFblUS+nIDmvTIgOwj87olek9N0FZv5ELHNAoFZC5LoKQqjaUrElD5sd/xgyYU47pI0IIsFB+6IAiCsDgipn+ADbXAy5+FyfOw+v/ATY9DxPx7v0xuD1/rGuaFsWkK9eE8U5TB2mj9Rb+2a2yOx15rp7ZzguxEPQ/tKGZbcfKCX95lWWJs7FW6e57E6RwlOXkHebkPEBEROhUmSZJoa2ujtraW8fFxYmNjqaqqYvXq1X4vMbPNmjn++suc2LcXl91G9ppSKnbfzZLC+ZeiXk2yLOManPNV1U5PILslNAY9+nIDutVJKHWB6c5onrDT3mCk/cgINrMLXbSWoo2plFSmEhOg5iXXk1CM6yJBC7JQfOiCIAjC4oiY/gHndkDtk1D/A9Anwq5noGjnJQ97a9LMA50XGHO6+UxGMvdnG4h4n4rGofPjfGtvGz0TVirzEnhkZwnFqfMvq/xTXq+NgcFfMDDwc8BLRsYnyVr6GdTqqAWfI9gkSaKzs5O6ujqGh4eJiopi48aNrFu3Dq2fg6odVgsn33yN1tdfxjE3S8aylVTsvovM5atCusOh5PBgOzWBtXkU97AF1Ep0KxLRlxnQBmjmmeSVGDg7RVu9kYGzU8gypBfFUVKZRs7qJFQaUVWD0IzrIkELslB86IIgCMLiiJguAGA86aumjZ2F5R+Gm5/0JWzzmPV4+Wa3kd+MTJETEcYzRRlUxF58xpfbK/HfTYM8s7+TWbubu8sy+fKHCkiMXHgTEIdjhJ7epxgdfQmtNpGcnHtJS70ThcK/JYXBJMsyvb291NXV0d/fj06nY/369ZSXlxPu56Bqt8PBqf1vcGzvHqzTJlLzCqm4425y1paFdKIG4Bq2YG0ZxXZiHNnpRZ0Ugb7MgG5tMqpI/xLW92OZdtDeOEJ7wwhzJgfheg2F6w2UVKURn3rxqu4HRSjGdZGgBVkoPnRBEARhcURMF97lcUHDD+DtJ32NQ3Z8D5bdwaX6ndea5vjy+SEuOFx8ckkiD+WkoldfPGmasbl49kAX/3lkgHCNis9tyePvKrMIe5+vvxjz7Cm6ur6F2XycyMhi8vMfJj5ugz+f9IoYHByktraW7u5uwsLCqKiooKKiAr3ev+TB43Jx7u39NL/8ArMT4yQtzaZi913kV2xEqQyd5PRiJJcX++lJrC2juAZmQaUgoiQBfbmBsNzYgIwYkCWZoXYTbfVG+k5NIkkyqbkxlFSlkbsuGY02tL9HwRCKcV0kaEEWig9dEARBWBwR04X3GGvzVdOMx6FoF+z8PkQZ5j3E6vHy7d4Rfjk8SUa4lqcLM6iOf/8liD0TFr79WjsHOsbJjNfx1ZuL2L7c4Mf+NJnx8dfo7nkSh2OYpMQbyct7EJ0uy59PekUYjUbq6upob29Ho9FQWlrKhg0biI5e+DJPAK/HQ0fD2zS99DumjReIS0un4vaPUFS5CVWItVS/GPeYFWvLGLbjY0g2D6q4MPSlBvSlKahiAjNOwTbrouPoCG31RszjdrThKgrKfVW1pMzQWRIbbKEY10WCFmSh+NAFQRCExRExXbgorweO/gQOPg6aCNj+HVj1V5esph2dsXBvxxC9dicfT03ga3lpRM9THavrmuBbe9s5PzZHeXY8X9tVwvIlMQu/Ta+DoaFf0T/wL0iSm4yMT5Cd9bmQ2p/2B+Pj49TX13PmzBmUSiVr1qyhsrKSuDj/hnJLkpeupiM07XmOiYE+opNSKLv1wyy/YRtqP/e7XQ2yR8J+bhJr8yjOHjMoILwoHn2ZgfDCeBSqAFTVZBlj1wxt9UZ6jk/g9UgkZUZRUpVGQVkK2ojQT2gvRyjGdZGgBVkoPnRBEARhcURMF+Y12QUvfw6GjkLejXDLDyAmfd5D7F6J7/WN8rOhcVLCNDxZkM6Nie+fdHm8Er9tGeLptzqZtrm4c206999USHL0wvdsOZ3j9PQ+zcjIC2g0ceTk3ENa6l0olaH3Im4ymWhoaODEiRPIsszKlSuprq4mMXH+PX9/SZZl+k4c4+iLv2Wk6zz6uHhKd+1m1bab0fi53+1q8UzZsbaMYW0dRZpzo4zWol+Xgr7MgDpAM88cVjedzaO01RuZGrai1irJK01hWVUaKQFqXhJqQjGuiwQtyELxoQuCIAiLI2K6cEmSBC3/D/Z/AxQq+NBjsO5vL1lNOz5r5Z6OIc5bHdyZEsdj+UuI07x/wmS2u/nJoW5+3dCHRqXks5vz+PuqbMI1C99DNDt3lq6ux5mZaUavzyc//xES4qsWfPyVZDabaWxspLW1FY/HQ0lJCTU1NRgM8y8n/UuyLDN07jRHX3yOoXOnCY+KZt3Nt7J6+y7C9Rdv2hJqZK+Eo8OEtXkUR+c0AGF5sejLDESUJKDwY4be+15Dlhnrn6Wt3kjXsXE8Ti/xaXpKKtMoXG8gXB+YkQChIBTjukjQgiwUH7ogCIKwOCKmCwtm6oNXvwB9tZBdA7f8EOKz5z3EKUn8oH+MHw2OEadR852CdHYmxc57TP+klSfeaOfNc2MsiY3gwZuL2LUy1a/9aRMTv6er+wkcjiESE7aQl/dV9PqchX7SK8pisXD06FGam5txuVwUFBRQXV1NRob/896Mne007Xme3uMtaCN0rNm+i7U7bkMXvfBlo1ebZ8aJ7dgo1pYxvGYnSr0a3doU3xDsAM08czk8dLWM0VZvZHxgDpVaSc6aJEqq0lhSEHvNV9VCMa6LBC3IQvGhC4IgCIsjYrrgF1mG4/8Obz4Cshe2fh3KPw3K+SscZ+ds3NMxxBmLnVuSYvl2wRKStPNXLBp7JnlsbzvtI7OsWxrH13aVsCojdsG3KklOhob+nb7+nyBJDtKXfJzs7M+j0Sz8HFeS3W6nubmZo0ePYrfbyc7OpqamhqysLL8ThvH+Xpr2PE9nUwNqrZaVW7dTestuouL9W0Z5NcmSjLNr2jcEu90Ekow2K9o3BHtFIgo/KqvzmbwwR1udkfPNY7jsHmKSIiipSqNoQyq66NDf03cxoRjXRYIWZKH40AVBEITFETFdWBTzBXj1S9D9FmSsh9t+Aol58x7ilmR+OjjO9/tHiVQr+VZ+OruT569WeCWZ3x0b4qnfn2fS4uKONUt4YHsRhhg/9qe5JuntfQaj8XnU6mhycr7IkrSPolSG5pI2p9NJa2srjY2NWCwW0tPTqampIT8/3+9EberCEM0v/472+sMolUqW3bCN8tvuJCbZv2WUV5t3zoW1dQxbyyieKQeKcDW6NUnoy1PRBmjmmdvlpef4OG31Rka6zSiVCrJWJVJSlUZGcTzKAIwEuFJCMa6LBC3IQvGhC4IgCIsjYrqwaLIMp5+DN74CHgdsfgjWfxZU8zfmOG91cE/HIMdnbXwoIZrvFqaTGjZ/pWLO4eanh3v4ZV0fKqWCz2zK5dM1OUT4MeNqbq6dru7HmZ4+gk6XS37+QyQm3LDg4680t9vNiRMnaGhowGw2YzAYqK6upri4GOUlKpZ/yTw+Sssr/8vZQ28hSRLFlZsov/0uEtL9X0Z5NcmyjLPXjLVlFPvZSfDIaDKi0JeloFuVhDIsME1hpkettNUb6Tg6isPiJjI+jOKNaRRvTCUqQM1LgikU47pI0IIsFB+6IAiCsDgipguXbW4MXrsXOvZC2lpfNS2lZN5DvLLM/xua4Dt9I2iVCv45bwl/ZYi/ZIVoyGTjO2908NqZEVJjwvnK9iJuXZW24OqGLMtMTh6gq/vb2O0DJMTXkJf/EJH6/AV/3CvN6/Vy+vRp6urqMJlMJCYmUlVVxYoVK1Cp/FvmN2eapHXvHk7t34fH5aKgfCPlu+8iJTs3SHcfPF6rG9uJcawto3jGbCi0KnSrknx71dIjA7KPzOuW6D01QVu9kQsd0ygUkLksgZKqNJauSECluvzmJcEQinFdJGhBFooPXRAEQVgcEdOFgJBlOLcHXr8fHGbY9ABU3QOq+ZcR9tqc3NsxyFGzlRviovheUQYZ4Zfe99PcZ+Kbe89xdniW1RmxPLqrhHVLFz5PTJJcXLjwG/r6f4jXa2NJ2sfIzv4CWm38gs9xpUmSRFtbG3V1dYyNjREbG0tVVRWrV69G7eegatusmeOvv8KJfa/istvIXlNKxe67WVJYHKS7Dx5ZlnENzvmqaqcmkN0SGoPet1dtdRJKXWCWspon7LQ3GGk/MoLN7EIXraVoYyollanEBKh5SaCEYlwXCVqQheJDFwRBEBZHxHQhoKyTviWPZ1+AlBVw248hbfW8h0iyzL8NT/Kt3hEUwKO5afxNWgLKS1RAJEnmxRPDPLmvg/E5J7euSuMrNxexJDZiwbfrcpno7XsWo/F/UKn0ZGd9nvT0j6NUhm5zCFmW6ezspLa2luHhYaKioti4cSPr1q1D6+egaofVwsk3X6P19ZdxzM2SsWwlFbvvInP5qmuyk6Hk8GA7NYG1eRT3sAXUSnQrEtGXGdAGaOaZ5JUYODtFW72RgbNTyDIsKYxjWVUaOauTUGmuflUtFOO6SNCCLBQfuiAIgrA4IqYLQdHxGuy9F6wTUPUlqHkANPPv3Rm0O7nv/BC10xY2xOp5ujCTbF3YJS9ldXr42ds9/Ly2F4BP1+TwmU256P3Yj2SxdNLV/W1MpjoiIrLe2Z+2JaSTFFmW6e3tpa6ujv7+fnQ6HevXr6e8vJxwPwdVux0OTh/YR8urL2KdNpGaV0jFHXeRs7Y8pL8H83ENW7C2jGI7MY7s9KJOikBfZkC3NhlVZGAScMu0g/bGEdobRpgzOQjXayhcb6CkMo34tMA0L1mMUIzrIkELslB86IIgCMLiiJguBI192teO/+RvILHQtzcto2zeQ2RZ5n9GTHy9exiPLPNgTiqfSk9CtYAkYXjGznff6OCVU0aSo8K4/6ZCPrw23a/9aVNTh+nqfgKbrYe4uI3k5z9MVGTRgo6/mgYHB6mtraW7u5uwsDDKy8tZv349er1/SYLH5eLc2/tpfvl/mZ0YIykzi4o77ia/YiNKZWDa2l9pksuL/cwk1uZRXAOzoFIQUZKAvsxAWF4sigB0Z5QlmaEOE231RvpOTiJJMoacGEqq0sgrTUbjRzObQAjFuC4StCALxYcuCIIgLI6I6ULQde+HV74Is8Ow4bOw+WHQzr9nx+hw8UDnBfZPzbIuWsczRZkU6BdWFWodmOaxvW2cHJphxZIYHt1VQnn2wveWSZKb4eH/prfvWTyeOdLS7iI35x602tCfIWY0Gqmrq6O9vR2NRkNpaSkbNmwgOjrar/N4PR46Gt6m6aXfMW28QFxaOuW33Ulx1Q2o/NzvFkrcY1asLWPYjo8h2Tyo4sLQlxrQl6agirl0tXYhbLMuOo76qmozYza04SoKyg2UVKWRlBkVkGtcSijG9ZBN0BQKRSbwQ8AEdMqy/J35vl4kaIIgCEKwiZguXBGOWdj/DTj2S4jL9u1Ny6qa9xBZlnlxbJpHuoaxeiXuyzbwTxnJqBdQ8ZAkmVdOGfnuvg5GzA52rDDw1ZuLyYhfeDMHt3uGvr4fcWH4NyiV4WRnfZaMjE+gVAbmRT6YxsfHqa+v58yZMyiVStasWUNlZSVxcQtvpAIgSV66mo7QtOc5Jgb6iE5KpuzWO1l+wzbUfu53CyWyR8J+zldVc/aYQQHhhfHoyw2EF8ajUAWgqibLGLtmaGsw0tM6gdcjkZQZRUlVGgVlKWgjgpfohmJcD0qCplAofgXsAsZlWV7+J3+/HXgWUAG/mC/pUigUO4E4WZZ/o1AonpNl+e75rikSNEEQBCHYREwXrqi+Wnjl8zDdD2Wfgm3fgLD5qwoTLjcPdl7gtQkzKyMjeKY4k2WRC2sEYnd5+XltLz97uwevJPPJqmw+uzmXqPCFd/azWnvp7n6CyamDRIRnkpf3IElJH7om9maZTCYaGho4ceIEsiyzcuVKqqurSUz0rxooyzJ9J45x9MXfMtJ1Hn1cPKU7b2fljTejDV94U5ZQ5JmyY20Zw9o6ijTnRhmtRb8uBX2ZAXWAZp45rG46m0dpqzcyNWxFrVWSV5rCsqo0UgLUvORPhWJcD1aCVgNYgP/4Q4KmUChUQCdwI3ABaAE+ii9Ze+IvTvFJwAu8AMjAf8qy/Ov5rikSNEEQBCHYREwXrjiXFQ5+C47+C8Skwy3PQt7WSx726vgMX+28wIzHwxeWpvClpSloFziwedTs4Mk3O3jx+DCJkVru+1AhHynNQOXH/qOpqTq6uh/Hau0iNraCgvyHiYpatuDjryaz2UxjYyOtra14PB5KSkqorq4mNTXVr/PIsszQudM07XmOwbOnCY+KZt3Nt7J6+y7C9ZFBuvsrQ/ZKODpMWJtHcXROgwxh+bHoywxElCSgUF9+d0ZZlhnrn6W93kjnsXE8Ti/xaXpKKtMorDAQHhmYkQChGNeDtsRRoVBkAXv/JEHbAHxDluWb3vnzVwFkWf7L5OwPx98HNMuyXKtQKF6QZfnO+a4nEjRBEAQh2ERMF66awSZ4+bMw1QVrPg4fehwiYuc9ZMrl4Wvdw/zv2DRF+nB+UJTJ6uiFL1s8NTTDN/e20TowTXFqNI/uKmZj7sKrSZLkwTjyPL29z+B2T5Oaeie5OfcSFpa84HNcTRaLhaNHj9Lc3IzL5aKgoIDq6moyMjL8Ppexs52mPc/Te7wFbYSO1TftZN3O29FFxwThzq8sz4wT27FRrMfG8M44UerV6Nam+IZgB2jmmcvhoatljLZ6I+MDc6jUSnLWJFFSlcaSgtjLqqqFYly/kgnancB2WZY/9c6f/xqokGX5c+9z/HLgG8AkYJFl+b6LfM2ngU8DpKSkrPvtb3+76PsNFovFQmTktf1bEkEQBMFHxHThalJ6XSwd+C2Zg3twaWPpLPhHphLLL3lcq6zmF+iYQcEtOLkTB9oFvs/KskzLqJfnzruYcsisTVZxd6GWFP3CKySybEOWX0XmAKBGodiJghtRKK6NfVlut5vh4WEuXLiAx+MhNjaWpUuXEhvrf2Jgmxxn9PhRpns6UajVJJWsImVVKdrIK9MQI6hk0E1C9AUl+nFQyArscTKz6TIWg4wcoOaMjmmZ6V6ZmX6Q3KCNhNhcBXHZoA73P1ELxbi+efPm0EzQ/CUqaIIgCEKwiZguhITh4/Dy52D8HKz4CGz/LugT5j3E7Pbwzz1G/nvERJ4ujKcLMyiPXfhLqcPt5Zf1ffzkUDdur8Tfbszic1vyiYlY+DIzm62f7u7vMDH5FuHhS8jLfYDk5J3XxP40AKfTSWtrK42NjVgsFtLT06mpqSE/P9/vzzA1PETzS7+jvf4wSqWSZZu2UXbbncSmGIJ091eWd86F7fgY1uZRPFMOFOFqdGuSfEOw0wKTDHlcXnqOj3Ou3shItxmlUkHWqkRKKtPIKIlf8MiIUIzrIbvE0V8iQRMEQRCCTcR0IWR4XFD/NNR+D8JjYedTsGz3JQ972zTHl88PMuxw86n0RB7MSUWvWnhpY3zWwVO/P8/vWi8Qp9Ny740F/FVZBmrVwitqpukjdHU9jsXSTkzMOgryHyE6euWCj7/a3G43J06coKGhAbPZjMFgoLq6muLiYpQL3Of3B+bxUVpe+V/OHnoLSZIortxE+e13kZDu/zLKUCTLMs5eM9aWUexnJ8Ejo0mPRF9uQLcqCaUfA9LnMz1qpa3eSMfRURwWN5HxYRRvTKN4YypRl2heEopx/UomaGp8TUK2AsP4moR8TJblc4u+yJ8QCZogCIIQbCKmCyFn9Kxvb9rISSi+FXY8BVEp8x5i8Xh5vHeEXw9Pkhmu5emiDKri/Ftid3bYzDf3ttHcZ6IgJZJHd5VQnZ+04ONl2Ytx5AV6er6P2z2FwbCb3Nz7CA+7dipIXq+X06dPU19fz9TUFImJiVRVVbFixQpUfiS9AHOmSVr37uHU/n14XC7yyzdQsftuUrJzg3T3V55kc2M9Po61ZRTPmA2FVoluVbJvr1p6ZEAqqV63RO+pCdrqjVzomEahgMxlCZRUpbF0RQKqi/wiIRTjerC6OP4PcAOQCIwBX5dl+ZcKhWIH8AN8nRt/Jcvy44u6wEWIBE0QBEEINhHThZDk9cCRH8GhJ3xDrbd/F1beBZd44T0yY+HejkH67C7+Ji2BR3PTiFIvPLGQZZk3z43y+OvtDJnsbC1K5qGdxeQmLXwJm8czR3//vzA49GsUChVLl/4DSzM/hUp17bSjlySJtrY26urqGBsbIzY2lqqqKlavXo3az0HVtlkzx19/hRP7XsVlt5G9ppSK3XezpLA4SHd/5cmyjGtoDmvzKPZTE8huCY1Bh77MgG5NMkpdYLozzk7aaWsw0t44gs3sQhetpWhDKiVVqcT8SfOSUIzrITuo2l8iQRMEQRCCTcR0IaRNdPqqaReaIf8m2PUMxCyZ9xCbV+LJvhF+PjSBIUzD9woz2JoQ7ddlnR4v/9bQz48OduNwe/nrDUv54tZ8YnULbwJitw/S3f0k4xNvEBZmIC/3AVJSbkGhuPx27VeKLMt0dnZSW1vL8PAwUVFRbNy4kXXr1qH1c1C1w2rh5Juv0fr6yzjmZskoWUHFHXeTuXzVNbNnbyEkhwfbqQmszaO4hy2gVqJbkejbqxagmWeSV2Lg7BRt9UYGzk4hy7CkMI5lVWnkrE6irqE25OL6dZOgZWVlyV//+tev9m28x8zMDLGxsVf7NgRBEIQAEDFdCHUKWaJ4ro51M3uRUNEcdxtdkesvWU0bDNPxvwmZjGsjWGuZYqdpGJ3k9evaFo+CQ5ORnDCHE66U2ZRopTTWjsqPd+ywsAHi4t5CGzaK07mEadONuFzpft1HKHA4HMzMzOB0OlEqlURHRxMVFeX3HjVZkrDOmJidmkRye9BGRBCdlEz49dD18S/ILi/eWReSxY0syyjUSlTRWlSRWvz6RzQPr0fCNuvCZnbh9UgolArUETJJabEBOX+gfPKTnxQJWjCJH+aCIAjXDxHThWtFlHuSyqnfkursZji8gMaEu7Go5+/06EHBwVgDb8ekoPd6uM00xDKb2e9rjzlUvDkRRZ9NS6LWw4eSLORHuvw4g4xef5qY2EOo1Ras1mXMTG/B6732ZoY5nU7MZjN2ux2FQkF0dDTR0dH+J2qyjG1mmtmpCbwuN5rwcKISk66LOWrvIYNkdfuSNacHAJVegzJKizIiME1FAJw2D1azEwk3iamxATtvIFw3CZpY4igIgiAEm4jpwjVFkuD4v8HvvwayBNu+AWWfgkskB2fmbHypY5BzFge3JcfyeH46iVr/XoxlWWZ/+zjffr2dvkkrNQVJPLKzmIKUhVd+PB4rA4P/yuDgLwDIzPy/LM38NGq13q97CQVGo5G6ujra29vRaDSsW7eOjRs3Eh3t33JSr8dDR8PbNL/0O0zGC8SlLqH89o9QXHUDKj/3u10L3GNWrC1j2I6PIdk8qGLD0JcZ0JemoIoJC8g1QjGuXzdLHEWCJgiCIASbiOnCNWlmCF79IvQcgMyNcNuPIWH+7oBuSebHg2M83T9GlFrJt/PTuS3Z/8HMLo/Efxzp59kDXdhcXj5Wnsk9NxYQr1/4niyHw0h3z5OMjb2KVptMXu59GAy7r6n9aX8wMTFBXV0dZ86cQalUsmbNGiorK4mLi/PrPJLkpavpCE17nmNioI/opGTKbr2T5TdsQ+3nfrdrgeyRsJ+bwtoyirN7BhQQXhiPvtxAeGE8istYAhmKcV0kaEEWig9dEARBWBwR04VrlizDyf+GN78KHidseQTW/xMo5+/a2G6xc0/HECfnbNycGMN3CtJJCfO/y57J6uIH+zv5r6ZBdFoVX9yaz99syEKrXniSNWNupavrcWZnTxEVtZyC/EeJjb3oO2zIM5lMNDQ0cPLkSSRJYuXKlVRVVZGUtPBRBeCrVPadOMbRF3/LSNd59HHxlO68nZU33ow2/NrphOkPz5Qda8sY1tZRpDk3ymgt+nUp6MsMqC8x8+xiQjGuiwQtyELxoQuCIAiLI2K6cM2bHYHX7oXzr8OSdXDbTyB5/hbuHknmXy9M8GTfCOFKJd/MW8JdhrhFddjrGpvjsdfaqe2cIDtRz0M7itlWnLzgc8myxNjYq3T3PInTOUpy8g7ych8gIuLaHOw8OztLY2Mjx44dw+PxUFJSQnV1NampqX6dR5Zlhs6dpmnPcwyePU14VDRrb76FNdtvIVy/8LEH1xLZK+HomMbaMorjvAlkCMuPRV9mIKIkAcUCk/9QjOsiQQuyUHzogiAIwuKImC5cF2QZzv4vvH4/uCyw6QGo/BKo5q+Mddsc3NsxRLPZyub4KL5XmEF6+OKW0x06P8639rbRM2GlMi+BR3aWUJy68P1YXq+NgcFfMDDwc8BLRsYnyVr6GdTqa7O7ocVi4ejRo7S0tOB0OsnPz6empoaMDP8TT2NnB017nqP3eAvaCB2rb9rJup23X58NRd7hmXFiOzaK9dgY3hknSr0a3VpfVU2TrJv32FCM6yJBC7JQfOiCIAjC4oiYLlxXLBPwxgNw7kUwrIDbfgqpK+c9RJJlfjU8yeM9I6gU8LXcND6eloByEdU0t1fiv5sGeWZ/J7N2N3eXZfLlDxWQGLnw5g8Oxwg9vU8xOvoSWm0iOTn3kpZ6JwrFwgduhxK73U5zczNHjx7FbreTnZ1NdXU12dnZflcsx/t7adrzPJ1NDag1WlZu207pLbuJik8M0t1ffbIk4+zyVdXsbSaQZLRZ0ejLDehWJKLQvPffRSjGdZGgBVkoPnRBEARhcURMF65L7a/C3nvBboKqe6DmflDPnyQN2J18uWOI+hkLlbGRPF2UwdKIxXXVm7G5ePZAF/95ZIBwjYrPbcnj7yqzCFMvPMkyz56iq+tbmM3HiYwsJj//YeLjNizqfkKB0+mktbWVxsZGLBYL6enp1NTUkJ+f73eiNjU8RMvLL9BWdwilUsmyTdsou+1OYlMMQbr70OCdc2E7Poa1ZQzPpB1FuArdmmTfEOy0Py77DMW4LhK0IAvFhy4IgiAsjojpwnXLZoI3H4ZT/w1JRb69aenzN+CQZZn/GjHxje5hvDI8lJPKJ9MTUS2imgbQM2Hh26+1c6BjnMx4HQ/tKOKmZQY/9qfJjI+/RnfPkzgcwyQl3khe3oPodFmLup9Q4Ha7OXnyJPX19ZjNZgwGA9XV1RQXF/s9S808PkrLK//L2UNvIUkSRZWbqLj9IySkZwbp7kODLMs4e82+qtrZSfDIaNIjfVW1VUnUHqkPubguErQgEz/MBUEQrh8ipgvXva63fC3550Zgw2dh88Ogmb8b4LDDxf3nhzhomqMsWs/TRRnk6/3vpvcHtZ0TfOu1NjrHLFRkx/PorhKWL1n4/imv18HQ0K/oH/gXJMlNRsYnyM763DW7Pw3A6/Vy+vRp6uvrmZqaIjExkaqqKlasWIFK5d9yTotpimN793Bq/xt4XC7yyzdQsftuUrLnH71wPZBsbqwnxrE2j+IZs6HQKplc6mHV32+62rf2Z0SCFmTih7kgCML1Q8R04QPBMQtvfQ1afw3xub65aUs3znuILMu8MDbNo13D2CWJ+7IM/GNGMmrl4qppHq/Eb1uGePqtTqZtLj6yLp37PlRIcvTCEz+nc5ye3qcZGXkBjSaOnJx7SEu9C6Xy2h3oLEkSbW1t1NXVMTY2RmxsLJWVlaxevRqNxr/xB7ZZM8dff4UT+17FZbeRvaaUit13s6Rw/q6e1wNZlnENzWFtHqXfPsLavxYJWlCIBE0QBEEINhHThQ+U3sPwyhdgZgDKPw1bvw5h87dsH3e6ebDzAq9PmlkZFcGzRZkURy5+HpfZ7ubHB7v4t8Z+tCol/7Q5j7+vyib8Is0e3s/s3Fm6uh5nZqYZvb6A/PyHSYivWvQ9hQJZluns7KS2tpbh4WEiIyPZuHEjpaWlaP0cVO2wWjj55mu0vv4yjrlZMkpWULH7bjJXrFrUKIVrTSjGdZGgBVkoPnRBEARhcURMFz5wnBY4+Bg0/SvEZsAtP4TczfMeIssyr0zM8FDnMLMeL19cmsIXliaj9XPP1J/qn7Ty7dfb+X3bGEtiI3jw5iJ2rUz1a3/axMSbdHV/B4djiMSELeTlfRW9PmfR9xQKZFmmr6+P2tpa+vv70el0rF+/nvLycsLD/Vtm6nY4OH1gH8defRHLtAlDXgHr77ibnLXl13WiFopxXSRoQRaKD10QBEFYHBHThQ+sgSPwyudgqhvW/g186FsQPv++sEmXh0e7LrBnfIYSfTjPFGeyKmr+mVSX0tgzyWN722kfmaV0aRyP7iphVUbsgo/3ep1cuPBv9PX/FElykJ7+12RnfR6N5tqfETY4OEhdXR1dXV2EhYVRXl7O+vXr0ev1fp3H43Zz7vB+ml9+gdmJMZIysyjffRcF6ytRKq/N8QXzCcW4LhK0IAvFhy4IgiAsjojpwgea2w6Hn4DGH0GkAW75ARTcdMnD9k2Y+UrnEJNuD5/NSObeLAPhqsVX07ySzO+ODfHU788zaXFxx5olPLC9CEOMH/vTXJP09j6D0fg8anU0OTlfZEnaR1Eq/dvHFYqMRiN1dXW0t7ej0WhYt24dGzduJDp64YPAAbweDx0Nb9P80u8wGS8Ql7qE8ts/QnHVDajU1+4+vr8UinFdJGhBFooPXRAEQVgcEdMFARhuhZc+CxPtsPKvYPsToIuf95AZt4dvdBv57aiJfF0YzxRlUhrjX2XnL8053Pz0cA+/rOtDpVTwmU25fLomhwjtwqs8c3PtdHU/zvT0EXS6XPLzHyIx4YbLuq9QMTExQV1dHWfOnEGpVLJ69WqqqqqIi4vz6zyS5KWr6QhNe55jYqCP6KRkym75MMs334jaz/1uoSgU47pI0IIsFB+6IAiCsDgipgvCOzxOqPu+7z8R8bDz+1By6yUPOzQ1y33nhzA63Xw6PYmv5KSiu4xqGsCQycZ33ujgtTMjpMaE85XtRdy6Kg3lAjtIyrLM5OQBurq/jd0+QEJ8DXn5DxGpz7+s+woVJpOJhoYGTp48iSRJrFy5kqqqKpKSkvw6jyzL9J04xtE9zzHS2YE+No7SXbtZeePNaMMX3wjmagvFuC4StCALxYcuCIIgLI6I6YLwF0bPwEv/BKOnoeR22PEURM7/4j/n8fKtHiP/bpwiK0LL9wszqIy7/BllzX0mvrn3HGeHZ1mdEcuju0pYt3Th1SJJcnHhwm/o6/8hXq+NJWkfIzv7C2i181cHrxWzs7M0NjZy7NgxPB4PJSUlVFdXk5qa6td5ZFlm6NwZmvb8lsGzpwmPjGLtjltZs/0WwvXzd/kMRaEY10WCFmSh+NAFQRCExRExXRAuwuuGxh/C4e+ANhJufhJW3AmX6PzXMD3HvR1DDDhcfCItgUdz04hUX14TCkmSefHEME/u62B8zsmtq9L4ys1FLIldeIXH5TLR2/csRuP/oFLpyc76POnpH0epvPaX8wFYLBaOHj1KS0sLTqeT/Px8ampqyMjI8Ptcxs4OmvY8R+/xFrQROlbftJN1O29HF33tNF0JxbguErQgC8WHLgiCICyOiOmCMI+J8/DyZ+FCCxTcDLuehui0eQ+xer082TvKzy9MkBam4anCDDYn+NfM4qLndXr42ds9/Ly2F4BP1+TwmU256MMW3tzCYumkq/vbmEx1RERkvbM/bct103LebrfT3NzM0aNHsdvtZGVlUVNTQ3Z2tt+fcby/l6Y9z9PZ1IBao2Xl1psoveUOohISg3T3gROKcV0kaEEWig9dEARBWBwR0wXhEiQvHP0X3+w0VRjc9Dis+fglq2nHzFbu6Riky+bko6nxfCM3jRjN5XcKHJ6x8903OnjllJHkqDDuv6mQD69N92t/2tTUYbq6n8Bm6yEubiP5+Q8TFVl02fcWKpxOJ62trTQ2NmKxWEhPT6e6upqCggK/E7Wp4SFaXn6BtrpDKBRKlt+wjbLb7iQ2xRCku798oRjXRYIWZKH40AVBEITFETFdEBZoqgde+TwMNEDOZrj1hxCbOe8hDq/E9/tH+enQOIkaNU8WZnBTYmCWyrUOTPPY3jZODs2wYkkMj+4qoTx74XvLJMnN8PB/09v3LB7PHGlpd5Gbcw9abehXiBbK7XZz8uRJ6uvrMZvNGAwGqqurKS4uRunnkHHz+Cgtr/wvZw+9hSRJFFVuouL2j5CQPv+/gashFOO6SNCCLBQfuiAIgrA4IqYLgh8kCY79Et76uq+Ctu0bUPr3cImX/ZOzNu7pGKTd6uCOlDgey1tCgvbyq2mSJPPKKSPfeaOD0VkHO1ek8uDNRWTEL3x4tts9Q1/fj7gw/BuUynCysz5LRsYnUCrDLvv+QoXX6+X06dPU19czNTVFQkIC1dXVrFixApXKvz2CFtMUx/bu4dT+N/C4XOSXb6Bi992kZOcG6e79F4pxXSRoQRaKD10QBEFYHBHTBWERpgfg1S9C7yFYWuWrpiXM/4LukiR+ODDODwZGiVGreaIgnVuSYgKy/8vm8vDz2l7+9e1evLLM31dl80835BIVvvAh1VZrL93dTzA5dZCI8Ezy8h4kKelD183+NABJkmhra6Ouro6xsTFiY2OprKxk9erVaDT+DfS2zZo5/vornNj3Ki67jezV66jYfTdLikqCdPcLF4pxXSRoQRaKD10QBEFYHBHTBWGRZBlO/AbefBi8Ltj6KFR8BpTzV2TaLHa+1DHI6Tk7O5NieCI/neQw/5KD9zNitvO9fed58cQwiZFh3PehAj5SmoFqgfvTAKam6ujqfhyrtYvY2AoK8h8mKmpZQO4vVMiyTGdnJ7W1tQwPDxMZGcnGjRspLS1F6+egaqfNysk3X6P1tZewz82SUbKCit13k7li1VVLbkMxrosELchC8aELgiAIiyNiuiBcplkj7L0HOvdBehnc9hNIKpz3EI8k8y9D4zzVP0qEUslj+Uu4MyUuYC/0J4dmeGxvG60D0xSnRvPormI25i58b5kkeTCOPE9v7zO43dOkpt5Jbs69hIUlB+T+QoUsy/T19VFbW0t/fz86nY7169dTVlZGRIR/g6rdDgenD+zj2KsvYpk2YcgrYP0dd5OztvyKJ2qhGNdFghZkofjQBUEQhMURMV0QAkCW4cwL8Mb94LLCDQ/Cxi+Aav7KWJfVwT0dgxybtbE1PprvFaaTFh6Y2WSyLLP39AjfeaOD4Rk7HypJ4aEdxWQl6hd8Drd7lv7+HzN04T9QKrVkLf1HMjI+iUp1/exP+4PBwUHq6uro6uoiLCyM8vJy1q9fj16/8O8XgMft5tzh/TS//AKzE2MkZWZRvvsuCtZXorxEdTVQQjGuiwQtyELxoQuCIAiLI2K6IASQZRxevx/aXoLUVb5qmmHFvId4ZZlfXZjk271G1AoFX89bwv9JjQ9Y1cXh9vLL+j5+cqgbt1fi7yqz+dyWPKL92J9ms/XR3f1dJibfIjx8CXm5XyE5ecd1tT/tD0ZGRqirq6OtrQ2NRsO6devYuHEj0dH+zbLzejx0NLxN80u/w2S8QFzqEspvu5Pi6s2o1JffIGY+oRjXRYIWZKH40AVBEITFETFdEIKg7WV47ctgn4bqL0P1faCevzLWb3dyb8cQjTMWquMieaowg6URgatUjc86eOr35/ld6wXidFruvbGAvyrLQK1aeLt5k6mRru7HsVg6iIlZR0H+I0RHrwzYPYaSiYkJ6urqOHPmDEqlktWrV1NVVUVcXJxf55EkL93NRzi653km+nuJTkqm7JYPs3zzjaj93O+2UKEY10WCFmSh+NAFQRCExRExXRCCxGaCfV+F07+F5BK47cewZN28h0iyzG+MU3yzx4hXhodzU/nkkkSUAaxUnR028829bTT3mShIieTRXSVU5yct+HhZ9mIceYGenu/jdk9hMOwmN/c+wsNCd3Dz5TCZTDQ0NHDy5EkkSWLlypVUVVWRlLTw7xm8s9/txDGO7nmOkc4O9LFxlO7azcobb0Yb7t9+t0sJxbh+3SRoJSUJ8n/+5qarfRvvMTMzQ2xs7NW+DUEQBCEAREwXhOCKHhtj6amzaBwOxvJyMBYWIF9i9ta4FMWP7Ddx3JPDMtUQX4zYxxLVdMDuSZahaTiDfz+1hnFrFOtSL/CJVcdZEj3nxzk8OBxGnM5RQEF4eCphYakoFFdmn9WV5vV4MM/OMjc3hyzL6PU6YmJi0Gr9rXLKOK1WZifHcVqtKFUqIuMTiIxPROnnTLb3E4pxvXTd/4gELZhC8aELgiAIiyNiuiAEn9LtJr2tnaSBIRx6Pf2rV2JNiJ/3GFmGA+5l/Ny+FTcqPh7ewO3aFlSKwL3Lur1KXusq5IW2Fbi8KrbndfKRkjNEhbkWfA5JcmC3D+F2m1AoNEREZKLVJgDX3/408A29npudZXZuFkmS0UVEEBMbQ1hYuN/nctlszE6O47DMoVAqiYxPICo+EeVl7lELxbh+3SRoYomjIAiCEGwipgvCFdRzCF79AswM+WambX0UtPN3CRxzuvlK5xD7JmdZHaXjmaIMiiMDuyRuYs7J02918lzLINERGr60NZ//s34pGj/2p01PN9PV/S3m5s4RHb2agvxHiIlZE9D7DCV2u53m5maOHj2K3W4nKyuLmpoasrOz/W6eMt7fS9NLv6PzaD1qjZaVW2+i9JY7iEpY+GiEPxWKcf26WeIoEjRBEAQh2ERMF4QrzGmBA/8MzT+H2KVw648gZ9O8h8iyzMvjMzzUdYE5j8Q9WSl8PjMFjR8DqBeifWSWb73WRkP3FLlJeh7ZVcLmwoXPPpNliZHRF+np+T4u1zgpKbeQl/sA4eFpAb3PUOJ0OmltbaWxsRGLxUJ6ejrV1dUUFBT4nahNDQ/R8vILtNUdQqFQsvyGbZTddiexKf7t7wvFuC4StCALxYcuCIIgLI6I6YJwlQw0wsufBVMvrPs7uPGbED5/K/dJl4eHuy7w8vgMyyLD+UFRJiuidAG9LVmW2d8+zrdfb6dv0kpNQRKP7CymICVqwefweKwMDP4rg4O/ACAz8/+yNPPTqNX+zRS7lrjdbk6ePEl9fT1ms5mUlBSqq6spKSlBqVx4JRLAPD5Kyyv/y9lDbyFJEkWVm6i4/SMkpGcu6PhQjOsiQQuyUHzogiAIwuKImC4IV5HLBoe/DUd+AlGpcMuzkH/jJQ97fWKGBzsvMOX28PnMFO7JSiHMzyTgkrfmkfiPI/08e6ALm8vLx8ozuefGAuL1C28N73AY6e55krGxV9Fqk8nLvQ+DYTcKRWDvNZR4vV7OnDlDXV0dU1NTJCQkUF1dzYoVK1D52QTEYpri2N49nNr/Bh6Xi/zyDVTsvpuU7Nx5jwvFuC4StCALxYcuCIIgLI6I6YIQAi4c81XTJjpg1cfgpsdBN38TkWm3h693D/P86DT5ujCeLcpkbUzgK1Qmq4sf7O/kv5oG0WlVfHFrPn+zIQuteuFJ1oy5la6ux5mdPUVU1HIK8h8lNvai7+rXDUmSaGtro66ujrGxMWJjY6msrGT16tVoNAsfEg5gmzVz4o1XOLFvL06blezV66jYfTdLikou+vWhGNdFghZkofjQBUEQhMURMV0QQoTHCbXfg7qnQZ8IO5+G4l2XPOzA1Cz3nx9i1Onm0xlJPJCdis6P5h4L1Tk2x2N726jrmiQ7Uc/DO4rZWpy84H1WsiwxNvYq3T1P4nSOkpy8g7zcB4iIyAj4vYYSWZbp7OyktraW4eFhIiMj2bhxI6WlpWj9HFTttFk5+eZrtL72Eva5WTJKVlCx+24yV6z6s+fw/9u77/Aoq7z/4+8z6QmEEAIhhJAQSAihKhCK0osgWBZx7RVFFHUtrI9t17Wtoth4BGy4ytpFRUQURLqU0KWlASmQUENNz8z9+yM8v8fHNeMEMplJ/LyuK9fF3OF7z5eZXAc+nDnneOO4roDmZt74pouIyNnRmC7iZQq2wtxJcHAbdBoLF79YFdicOFVp5+nd+czOP0rbIH9eTmpD37BGtd6aZVksSz/MM9/uZPfhIi5o34zHRyfTMcr52rlfstuLycl9h5yctwA7MTG3Ehc7EV9f19e41UeWZbF3715WrFhBdnY2QUFB9OnTh5SUFIKCarYrZ0VpKT//+D0bvvmS08cKadk+kd5/uop2PVIwxnjluK6A5mbe+KaLiMjZ0Zgu4oXsFbDqVVg+pWrjkFEvQOcr4Hdmq1YWnuLB9DxyS8u5JTqCx+OjCPGt/YOjK+wOPlybwyuLMzlVWsFVvdrw4IhEIhq5fmhzaWkBu/dM5cCBufj7RxAf/wCtosY12IOufykvL48VK1aQmZlJQEAAKSkp9OnTh5CQmn1EtbKigh3LFrN+3hxOHDpIRJs4ev/pzxSUVjJ4yBA3dX92FNDcTH+Zi4g0HBrTRbzYoV0w9y7I3wQdRsOYl6Gx8y3XiyrtPLe3gFn7jhAd6MfLHdowINw9s1PHi8t57cdM/r0mhyA/H+4e0p6bL4gjoAah8MTJrWRmPsOJE5to1KgjCQmPEd60r1v69TYFBQWsXLmSnTt34ufnR48ePejXrx+hoa7PSAI47HbSflrOuq8+ozB/H+GJydzy9Atu6vrsKKC5mf4yFxFpODSmi3g5eyWsnQFLnwXfALjoOeh+7e/Opq07fpoH0vLYXVLGdVHhPNE+mlA3zKYB7D58mn9+u4sf0w7RJjyYRy9O4qJOLWuwPs3i0KFvycqaQmlZPs2bj6B9u4cJDo51S7/e5vDhw6xcuZJt27Zhs9no3r07F154IU2bNq3RfRwOO1mpa8jIzmXM1de6qduzo4DmZvrLXESk4dCYLlJPHMmCeXdD7hpoN7RqS/4w5xtslNgdTM0+wMzcQ0QG+DElsTUjIpq4rcUVGVXr0zIOnqZ323D+NiaZztGuP5/dXkpu3ixyct7A4aggJuYm2sbd3eDXp/2PwsJCfvrpJ7Zs2YLD4aBLly7079+f5s2b1+g+3jiuK6C5mTe+6SIicnY0povUIw4HrH8HFv+jagZt+FNVh1z/zhlom08Wc19aLulFpYyLbMpTCdGE+/m6pcVKu4NP1ufx8g8ZHCsu58oerZk8ogMtQgNdvkdZ2SF273mJgoIv8PNrSnz8/bSK+jM2m3t69jYnT55k9erVbNiwgcrKSpKTk+nfvz9RUVEu1XvjuK6A5mbe+KaLiMjZ0ZguUg8dy4Z598Le5RDXHy6dBuHxTkvKHA5eyznItJyDhPn68nxia8a0CHNbiydKKnh9SSbvrc7G38fGXYPbM/7CtgT6uf4xy5OntpOZ+SzHj6cSEpJIQsJjNAu/0G09e5uioiLWrl1LamoqZWVlJCQkMGDAAGJinM+ceuO4roDmZt74pouIyNnRmC5ST1kWbJoNix4HRyUM/TukTACb8wC043QJ9+3KZdvpEsY0b8Jzia1p7l+zg5NrIvtIEf9csItFOw8SHRbEw6OSGNM1qkbr0w4fXkhm1vOUluYR0WwI7ds/QkiI80DakJSUlJCamsratWspKSkhLi6OAQMG0LZt2998Hb1xXFdAczNvfNNFROTsaEwXqedO7If590HmIojpDZe+Ds0TnZZUOCxm5h1i6t4DhPjYeCYhmrGRTV0OTWdj9e4jPD1/F7sKTtIztil/G5NMt5gwl+vt9jL27XuPvdkzcDhKad36BtrG3YOfn/vW1HmbsrIyNm7cyOrVqzl9+jTR0dEMGDCAxMREHVRdVxTQRETE3TSmizQAlgU/fwbfPQQVJTD4Eeh7D/g4X7OVUVTK/Wm5bDxZzPBmobzQoTVRAf5ua9PusPh8Qx5TF6Vz5HQ5Y8+L5qGRSbRsUoP1aeVH2LPnFfLzP8PXN5T4+L8Q3eoabDb3zQJ6m4qKCrZs2cKqVas4ceIEkZGR9O/fn+TkZGw2m1eO6wpobuaNb7qIiJwdjekiDcipg7DgQdj1DUR1h8tnQGQnpyV2y+KdfYd5fk8BvsbwZPtorokKd+ts2qnSCmYs282slXvxsRkmDmzHhAHxBPm7vj7t1KldZGY9y7FjawgObkdCwqNENBvktp69kd1uZ9u2baxcuZKjR4/SrFkz+vfvT2FhIUPq0UHVzre4ERERERGprxpHwlUfwJXvw4l98OZAWPY8VJZXW+JjDHfEtGBJryQ6Nw7igfQ8rtq6m9ySMve1GejHf41M4scHBzIkqQWvLM5gyEvLmLt5Pw6Ha5MpjRt35Lzu/6ZrlzexrEq2bh3Pli23cLoo0219exsfHx+6d+/OpEmTGDduHL6+vsydO5f09HRPt1YjmkGrBfrfVhGRhkNjukgDVXQUvn8Ytn0GkZ3hsteh1XlOSxyWxez8ozy9Ox8LeDw+ipujI7C5cTYNIHVvIU/N38H2/SfpHhPG3y9J5vw2rh/S7HCUs2/fB+zNnobdXkx0q2tp2/Ze/P3D3di197Esi4yMDNLT07n00ks93c7/oRk0EREREfljC2kGV7wNV38MRUfg7aGw+EmoKK22xGYMN0dHsCwliZTQEB7N3M/YzVnsKXbfbBpASttw5k26kBfHdSX/eAljZ6zm3o83s/94iUv1Nps/bdrcSt8+S2jV6hr253/EmrVDyc19F4ej+tnDhsYYQ4cOHQgNDfV0KzWigCYiIiIifxxJF8OkddD9Glj1MrzZH/JSnZbEBPrzcbd4Xk6KYWdRCUPWpzEz9xB2N34SzWYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKKl26h79/OEkdniSl13xCQ7uRmfUsa9eN4vCRH6lPn6L7o1FAExEREZE/lqAwuGw6XP9l1S6Ps0bA949CeXG1JcYYro1qxvKUJPo3bcyTu/O5ZFMm6UXVz8DVhpAAXx4c0YElkwdxUaeWTFuSxeCpy5izcZ/L69MaNUqke7d/0a3rOxjjw88/T2Dzlhs5dTrNrb3L2amzgGaMiTfGzDLGzPnFtRBjzPvGmLeNMdfVVS8iIiIiIrQfCnetgV7jYe10mNkP9q50WhIV4M/sLm2ZkRzL3uIyhq9P57Xsg1S4GJbOVnRYENOuOY8v7uxLVFgQkz/fymXTf2J9dqFL9cYYIiIG0zvlWxIT/s6pUztITb2EXWmPUV5+xK29S824FNCMMe8aYw4ZY7b/6vpIY0y6MSbLGPOws3tYlrXHsqzxv7o8FphjWdbtgHet3BMRERGRhi+gMYx+CW7+turx+2Ng/gNQdqraEmMMYyObsqJ3EhdFNOG5vQVcvDGD7aeqn4GrLT1iw/nqzn68elV3Dp8q48o31jDpw03kFbr23DabHzExN9Gv7xJiWt9IQcEcVq8ZSk7OWzgc7l1bJ65xdQbtPWDkLy8YY3yA6cAoIBm4xhiTbIzpYoyZ/6uvFtXctzWQd+bX9pq3LyIiIiJSC+IuhDtXQ9+7YcO7MKMvZC12WtLc34+3O8fxTqc4CsoqGLkxgyl7CihzONzaqs1muPy8aJZMHsh9wxJYknaIoS8vZ8r3aZwqrXDpHn5+YSQm/o3eKQsIC+tF1u4prF07kkOHF2p9moe5FNAsy1oB/Hr+NAXIOjMzVg58AlxmWdY2y7LG/OrrUDW33kdVSHO5FxERERERt/APhouehfGLwC8IPrgC5k6CkmNOy8a0CGNF7yQub9GUV3IOMmJDBptOFrm93WB/X+4blsiSyQMZ0yWKmct2M3jqcj5JzcXu4kcuQ0La0b3bO3Tv9h42nwC2bbuLTZuv49SpHW7uXqrj8jloxpg4YL5lWZ3PPB4HjLQs67Yzj28AeluWdXc19c2AZ4HhwDuWZT1njAkBXgdKgVWWZX34G3UTgAkAkZGRPT755JOa/QnrwOnTp2nUqJGn2xARkVqgMV1EAGz2cmJzPqVN7peU+zchI/FOjkb0/t26TZYv7xDMMQxjKONKSvF377Fp/9+e43Y+Sisn67iDmMY2rk3yp2MzH5frLcuOxQosay5QhOECjBmLMU3c1nNd8MZxffDgwdWeg1ZnAa026KBqERFxN43pIvJ/5G+BryfBwe3QeRyMeqHqTDUnTlbaeSornw8KjhIfFMArSTH0DqubgGBZFvN/LuD579LYf7yEEcmRPHpxR+IiQly+R0XFSbKzXydv32xsNn/iYu8kJuZWfHwC3Ni5+3jjuO6ug6r3AzG/eNz6zDURERERkYahVXe4fSkMehR2fg3TU2D7l+BkkiPU14epSTF81q0dFZbF5ZuzeCxjH0WV7t9ywRjDJd1a8eODA/nrRR1YlXWE4a8s558LdnHS5fVpoSQkPEqf3t8R3rQfu/dMZe264Rw8+K3Wp9WBc5lB8wUygKFUBbP1wLWWZbntA6tBMR2sdvfNdNftz1plZSW+vr6ebkNERGqBxnQRqU6CPYenS1+nsyOLxb69eTrgDo7amjqtsYBSh4MKh4UBgnxs+Jo6+swj4HBYlBdVUFlqBwMBIX74BvlSkw4sqxK7owwsOxhffGwBVO0XWD9447i+Y/LQc5tBM8Z8DKwBOhhj9hljxluWVQncDSwEdgGfuTOciYiIiIh4UqZPLNcFP89L/jfSv3IT84ru5dKKpU5n0wwQZLMR7GPDGCi2OyhxOKireSibzRDY2J+gpgHYfG2Una6guLCUynLXZ/OM8cXXJwSbLQgsB3Z7EXZ7CRbu3a3yj8rlGTRvoDVoIiLibhrTRcQlRzKr1qblrYP2w+GSV6FJa6clxXYHL+4t4M28w7QM8OOFDjEMaxZaN/1StT5t4Y4DPLtgF3mFJQxNasGjozvSrrnr6+MqK0+RnT2T3Lx/YYwPsbF3ENvmNnx8gtzY+bnxxnHdXWvQRERERET+mCIS4JbvYOQUyPkJpveBDf9yOpsW7GPjifbRzD8/gUY+Plz/8x7u2ZXDsYrKOmnZGMPIzlEsfmAgD49KYt3eQi56ZQVPfrOD48XlLt3D17cx7ds/RN8+C4loNoi9e19lzdphHDjwNZalGbXaoIAmIiIiInI2bD7QZ2LVAdetusP8+2D2pXAs22nZ+U1C+KFXIvfHRvLlwWMMSE1jweHjddBwlQBfHyYObMfSyYO4smcM76/OZtDUZby/OpsKu2shKyioDV26vM75532Mv38zdux8gA0br+TEic1u7r7hU0ATERERETkX4W3hpm9gzKuwfzPM6Avr3gRH9WEnwGbjv+Kj+L5HIpH+fty6PZsJO7I5XO7aTou1oXnjAJ4b24X59/QnOSqUJ+btYOSrK1iafsjlezRtmkKvnnPp2HEKpaX5bNg4ju077qO0NN+NnTdsCmgiIiIiIufKGOh5C0xaC7EXwHcPwXsXw5Esp2VdGgfzXY9EHm7bku8Pn2BgahpfHTxWp9vZJ7cK5cPbevP2jT2xOyxu+dd6bno3lcyDp1yqN8ZGq6hx9O2zmLi4SRw+vIg1a4exe88rVFYWubn7hkcBTURERESktjRpDdd9DpfPhEM74Y0L4KfXwF79OjM/m+G+uJYs6pVIbGAAd+7M4ebtezlQVnezacYYhidHsuj+gTw+uiObco8x8rWV/P3r7RQWubo+LYR28Q/Qt89imjcfQXb266xZO4yCgi+0Pq0GFNBERERERGqTMdD9WpiUCu2Gwg9/h1nD4eBOp2VJIUHM75HA39u1YnnhKQak7uLjgqN1Opvm72vjtv7xLP/rYK5NacOH63IZ9OJS3lm5h/JK10JWYGArOnd6lR49PiMwMIqdux5i/YY/cfy49+3G7o0U0ERERERE3KFxS7j6Qxj3LhzPgTcHwPIXwF79zJiPMdzVpgU/9upAx5Ag7k/L45qte8grdW0Wq7aEh/jz9OWd+e4v/ekWE8Yz3+7ioldXsHjnQZcDY1iTHvTsMYdOyS9TXn6EjZuuYtv2eygpyXNz9/WbApqIiIiIiLsYA52vqJpNS74Ulj4Lbw2Ggq1Oy9oFB/LVee15NiGa1JNFDEpN4739R3DU8RnGiZGNmX1rCv+6uRc2A7fN3sD1s9axq+CkS/XG2GjZ8jL69vmBtm3/wpEjS1i7bgRZu6dSWXnazd3XTwpoIiIiIiLuFhJRNZN21YdQdKgqpP34NFSWVVtiM4bxrZuztFcHzg8N5uGMfYzbspvskupr3MEYw+CkFnx/3wD+cUky2/efZPS0lTzy5TaOnHatFx+fYOLb3kvfPotp0eJicnJmsmbtUPLzP8Oy7G7+E9QvCmgiIiIiInWl4xiYtA66XQ0rp8Ib/WGf87VZsUEBfNatHS91iGHbqWIGp6bxVt4h7HU8m+bnY+PmC9qy/K+DuKlfHJ9vyGPwi8t4c/luyipdC1mBgVF0Sn6Jnj2/JCgwhl1pj5C6/nKOHVvr5u7rDwU0EREREZG6FNQULp8B130B5UVVG4gsfAzKi6stMcZwXatmLE9Jol9YY/6elc9lmzLJLCqtw8arhAX788QlnVh4/wBS2obz3HdpDH95Bd9vL3B5fVqT0G706PE5nTu9RmXFcTZtvo6ft91JcXGOm7v3fgpoIiIiIiKekDAM7loDPW6GNa9Xbcmf/ZPTklaB/nzQtS2vd2xDVnEZwzak8985B6l01O1sGkC75o2YdXMvZt+aQqCfjYkfbOLqt9ayff8Jl+qNMURGjqFPnx+Ij3+AwsJVrF13EZlZz1FZ6doZbA2RApqIiIiIiKcEhsKYV+Cmb8ByVB1u/e1kKKs+oBhjGNcynBUpSQxrFsqzewq4eFMGO0+X1GHj/2tAYnMW3NufZy7vTOah01zy+ioemrOVQyddm93z8Qmkbdwk+vb5kZYtLyM3dxar1wxh3/6PcDiqPz+uoVJAExERERHxtLYD4M7V0OcuWP8OzOgHu5c4LWkR4Meszm15u1Mc+0srGLEhnRf3FlDuqPtDoX19bFzfJ5alkwdx24Vt+WrzfgZPXcb0pVmUVri2Pi0goAXJHafQq9dcQkLak57+N1LXX8LRwlVu7t67KKCJiIiIiHgD/xAY+RzcuhB8A+Dff4Kv74aS407LLmkRxoqUJC5r0ZSXsg9y0YYMtpysfj2bOzUJ8uOx0cn8cP9ALmgfwYsL0xn60nLm/5zv8vq00MadOf+8j+jSeTp2ewlbttzE1q23U1S0x83dewcFNBERERERb9KmN0xcBRfeD1s+hBl9IP17pyXN/H2ZnhzL7C5tOVZh5+KNGTyzO59Se93PpgHERYTw1o09+ei23jQO9OXujzZz5Rtr+HnfcZfqjTG0aDGSPr0X0r7dQxw7nsq61FFkZD5DRYVra9zqKwU0ERERERFv4xcIw/4Bt/0IQeHw8VXwxe1QXOi0bEREE5andODqqHBezz3EsA3prD9RVDc9/4Z+7SP49t7+PD+2C9lHi7j09Z944LMtHDjh6vq0AGJj76Bv3x+JihpHXt77rF4zhLx9s3E4KtzcvWcooImIiIiIeKvo82HCMhj4MOz4EqanwI65Tkua+PnyclIbPukWT4ndwaWbMvlb5j6K7J45ENrHZrg6pQ1LJw9i4sB2zN9awOCpy3htcSYl5S6uT/OPoGPSs6T0mkfjxh3JyHiSdamjOXJ0mXub9wAFNBERERERb+brD4MfgQnLIbQVfH4TfHoDnD7ktGxQeCjLU5K4KTqCt/cdYUhqOquOeW77+saBfjw8KonFDwxkcFJzXlmcwZCXljF3834cLh4T0LhxR87r/m+6dnkTy6pk69bxbNlyC6eLMt3cfd1RQBMRERERqQ9adobblsDQJyBjYdVs2s+fgZPNNxr5+vB8Ymu+7N4eY2Dclt08lJ7HqUrPzKYBtGkWzIzrevDphD40a+TPfZ9uYezM1WzKPeZSvTGG5s2H0af39yS0f4wTJzeTmjqa9PR/UF7u/COg9YECmoiIiIhIfeHjC/0fgIkroVl7+PJ2+PhqOJnvtKxf00Ys6ZXEHTHN+Xf+UQalprHk6Mk6avq39Y5vxrxJF/LiuK7kHy9h7IzV3PvxZvYfd+08N5vNnzZtbqVvnyW0anUN+/M/Ys3aoeTmvovDUe7m7t1HAU1EREREpL5p3qFqO/6LnoM9y2F6b9g02+lsWrCPjSfbRzP//ASCfWxc+/Me/rIrl+MVnjsM2mYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKXOvL3z+cpA5PktJrPqGh3cjMepa160Zx+MiPLm/t700U0ERERERE6iObD/S9C+78CVp2hXn3wL8vh2M5Tst6NAnhh54d+EtsJHMOFjIgNY3vD3t26/qQAF8eHNGBJZMHcVGnlkxbksXgqcuYs3Gfy+vTGjVKpHu3f9Gt6zsYY+PnnyewZctNWNY+N3dfuxTQRERERETqs2bt4KZvYPRLsG8DzOgLqW+Do/oz0AJ9bDwSH8V3PRKJ8PPl5u17mbgjmyPlnptNA4gOC2LaNefxxZ19iQoLYvLnW7ls+k+sz3ZtbZkxhoiIwfROWUBiwt85eWo7lrXYzV3XLgU0EREREZH6zmaDXrfBXWuqDrpeMBneGw1Hdzst69o4mO97JvLXuJZ8e/gEA1J3MffgMY9/NLBHbDhf3dmPV6/qzuFTZVz5xhomfbiJvMJil+ptNj9iYm6iX98lGHOFm7utXQpoIiIiIiINRVgbuP5LuGw6HNwBM/vB6v8GR/W7NvrbbDzYtiWLeiYSE+jPxJ053Lo9m4Nlnj0I2mYzXH5eNEsmD+S+YQksSTvE0JeXM+X7NE6Vutabn18YxjR2c6e1SwFNRERERKQhMQbOux4mrYP4wbDocZg1Ag6lOS3r2CiIb89P5PH4KJYUnmRAahqfFhR6fDYt2N+X+4YlsmTyQMZ0iWLmst0MnrqcT1Jzsbu4Pq0+UUATEREREWmIQqPgmo/hillQuAfe7A8rXgR79bNPvjbD3bGR/NirA4nBgfwlLZfrft7D/lLPb1sf1SSIl6/qztxJFxDbLJiHv9zGmP9exerdRzzdWq0ynk7ENdEzrom14YkLPd3Gfzh+/DhhYWGebkNERGqBxnQRaZDs5VUhrfgI+IVARAL4N3JaYmFxoKyCnNJyDBAbFECkvy8GUzc9/05vR4vKyT1aTLndQdNgf2KbBRPo6/Mfv9cbx3Vz64KNlmX1/K3vaQZNRERERKSh8/GH5klVX/ZyKNgCx3PAqn6nR4MhKsCf7o2DCfHxYU9xGTtPl1LqZHfIumIwRIQE0D0mjJimQZwoqWBr3nFyCouo9IL+zoWvpxuokYgEuOVbT3fxH7YsW8agQYM83YaIiNQCjeki0uAVF8LCR2Hrx1WzaJdNh9Y9qv3tgUAny+KDgqM8mZWP3YLH2kVxa3QENuPZ2TQbEA34nSzlxYXpzNm0j/Bif+4fnsjVvWLw9bF557h+a/Wvm2bQRERERET+SILD4U9vwLWfQ9lJmDUMFv0NKkqqLTHGcEOrCJanJNE3LITHM/dz+eYssopL67Dx6rUIDeTFK7vxzd0X0q5FIx6fu53R01axMvOwp1urMQU0EREREZE/osQRVeemnX8jrJ4GMy+AnDVOS6ID/fmwazzTOrYhvaiUoevTeT3nIJVespti5+gmfDqhDzOvO5/iikpumJXKBzvLPN1WjSigiYiIiIj8UQU2gUtegxu/BkcF/GsULHgIyk5XW2KM4c8tw1mRksSQ8FCe2VPA6E0Z7Dpd/QxcXTLGMKpLFD/cP5CHRyXRpfl/bhzizRTQRERERET+6OIHwZ1roPcdkPoWzOwLe5Y5LYkM8OPdznG82SmWvNJyRmzI4KW9Byj3kk06Av18mDiwHd2a169tNxTQREREREQEAhrBqClwy3dVuz7Ovgzm3QulJ6otMcZwWYumrEjpyJjmTXgx+wAjN2Sw9VRxHTbesCigiYiIiIjI/4rtCxNXwQV/gc3/hhl9IWOR05IIf19mdorjvc5tOVpRycUbM/jn7nxK7d4xm1afKKCJiIiIiMj/5RcEw5+C8YshIBQ+uhK+mli1Rb8TI5s3YXlKEldGhjMt9xDDN6Sz4URRHTXdMCigiYiIiIjIb2vdA+5YDgMegm2fw/TesOsbpyVhfr682rENH3WNp9ju4JJNmTyRuZ9izaa5RAFNRERERESq5xsAQx6D25dC45bw6fXw+c1w2vkZY0OahbIsJYkbWjXjzX2HGbI+jZ+OnaqbnusxBTQREREREfl9UV3h9iUw5G+Q9i1MT4Ftc8Cq/gy0xr4+vNAhhjnd22FZcMWW3fxXeh6nK+112Hj9ooAmIiIiIiKu8fGDAZPhjpUQHg9fjIdProWTBU7LLmzamCUpHZjQujmz848yMDWNZYUn66jp+kUBTUREREREaqZFEoxfBCOehd1Lqtambf7A6WxaiI8PTyVEM+/8BIJ8bFy9dQ/3p+VyoqKyDhv3fgpoIiIiIiJSczYf6Hc33LkaWnaGryfBB2PheK7Tsl5NQljcswP3tGnBpwWFDEhNY+GR6s9a+6NRQBMRERERkbPXrB3cNB8ungq566rOTVv/Djiq37Ux0MfGY+1asaBHIuF+vty0bS937czhaLlm0xTQRERERETk3NhskHI73LUGWveEbx+E9y+Bo7udlnUPDWZhz0QejItk3qFjDEhNY96h43XTs5dSQBMRERERkdrRNBZumAuX/jcc+BlmXgBrpoOj+l0b/W02/to2ikU9OxAd4MeEHdmM376XQ2UVdde3F1FAExERERGR2mMMnH8jTFoH8QNh4aPw7kVwON1pWXKjIBb0SOSx+CgWHz3JwNQ05hwoxHKy8UhDpIAmIiIiIiK1L7QVXPMJjH0bjmbBGxfCypfAXv06M1+b4Z7YSH7o2YF2wQHcvSuXG7btJb+0vA4b9ywFNBERERERcQ9joOufYVIqdBgFPz4F7wyBA9ucliWGBPL1+Qk81b4VPx07xcDUND7MP/qHmE1TQBMREREREfdq1AL+PBuufB9O5sNbg2DpP6Gy+pkxH2OYENOCpSlJdGkczIPpefx5625ySsrqrm8PUEATEREREZG60enyqtm0zlfA8inw1kDYv8lpSVxQAHO6t2NKYms2nSxm8Pp0Zu07jKOBzqYpoImIiIiISN0JDoexb8E1n0LJMXhnKPzwBFSUVltiM4aboiNYnpJE7yYhPJa5nz9tzmJ3cfU19ZUCmoiIiIiI1L0OI+GutdD9Ovjp1apNRHLXOS1pHejPR13jeTUphrSiUoauT2dG7iHsDWg2TQFNREREREQ8IygMLnsdbvgKKsuqtuP/7mEoL6q2xBjD1VHNWJ6SxMDwxjy1O58xGzNJKyqpu77dSAFNREREREQ8q90QuGs19LoN1s2Emf1g7wqnJS0D/Hivc1tmJseSU1rG8PUZvJJ9gApH/Z5Nq9OAZoyJN8bMMsbM+cW1y40xbxtjPjXGjKjLfkRERERExEsENIbRU+HmBWBs8P4lMP9+KD1ZbYkxhj9FNmV5ShKjmjdhyt4DjNqYwbZTxXXYeO1yOaAZY941xhwyxmz/1fWRxph0Y0yWMeZhZ/ewLGuPZVnjf3VtrmVZtwMTgatq0ryIiIiIiDQwcRfAxJ+g792w8T2Y0RcyFzstae7vx1ud4pjVOY6D5RWM3JjB83sKKHM46qbnWlSTGbT3gJG/vGCM8QGmA6OAZOAaY0yyMaaLMWb+r75a/M79Hz9zLxERERER+SPzD4aLnoVbF4F/CHx4Bcy9q2rXRydGNw9jRUoSYyOb8mrOQYavzyDT8qmjpmuHqclp3MaYOGC+ZVmdzzzuC/zDsqyLzjx+BMCyrOd+5z5zLMsad+bXBnge+MGyrP+IxsaYCcAEgMjIyB6ffPKJy/3WldOnT9OoUSNPtyEiIrVAY7qIiHcxjgrisj+lTe4XlPs3ISPxTo5G9P7dus2WL28TTNeKYib6V9ZBp64bPHjwRsuyev7W93zP8d7RQN4vHu8Dqn21jDHNgGeB84wxj5wJcvcAw4Amxpj2lmW98csay7LeAt4C6NmzpzVo0KBzbLn2LVu2DG/sS0REak5juoiINxoOBfcQMHcSXbb/s+qg61EvQEhEtRWDgPGVdn5aubJejevnGtBqxLKso1StNfvltWnAtLrsQ0RERERE6pmobjBhKax6FZZPgT3L4OIXodNYMOY3S0J9fQj67W95rXPdxXE/EPOLx63PXBMREREREaldPn4w8K9wxwoIi4U5t8Kn18OpA57urNaca0BbDyQYY9oaY/yBq4F5596WiIiIiIhINSKTYfwPMPxpyFoM01Ngy0dQg/01vFVNttn/GFgDdDDG7DPGjLcsqxK4G1gI7AI+syxrh3taFREREREROcPHFy64t2pL/hbJMPdO+HAcHM/7/Vov5vIaNMuyrqnm+gJgQa11JCIiIiIi4qqI9lWHW69/Bxb/o+rctBFPwfk3g+1cPzBY9+pfxyIiIiIiIr9ks0HvCXDXaog+D+bfD7MvhcK9nu6sxhTQRERERESkYWgaBzfOg0teg/wtMLMfrfZ/5+muakQBTUREREREGg5joMfNMGktxF2IsbzrkOrfo4AmIiIiIiINT5PWcO1n7I8e7elOakQBTUREREREGiZjwNSvyFO/uhUREREREWnAFNBERERERES8hAKaiIiIiIiIl1BAExERERER8RIKaCIiIiIiIl5CAU1ERERERMRLKKCJiIiIiIh4CQU0ERERERERL6GAJiIiIiIi4iUU0ERERERERLyEApqIiIiIiIiXUEATERERERHxEgpoIiIiIiIiXkIBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJeQgFNRERERETESxjLsjzdg8uMMYeBHKAJcKKWblsb94oAjtRCL+IZtfnzVJ/V59fB23r3RD918Zzueg6N6VLbvG1M8JT6+jp4W9+e6kfjeu3dyxvH9VjLspr/1jfqVUD7H8aYtyzLmuAt9zLGbLAsq2dt9CN1rzZ/nuqz+vw6eFvvnuinLp7TXc+hMV1qm7eNCZ5SX18Hb+vbU/1oXK+9e9W3cb2+fsTxGy+9l9RP+hmoUp9fB2/r3RP91MVzuus5NKZLbdPPQZX6+jp4W9+e6kfjeu3fq16olzNo3qa+pXIREamexnQRkYalvo3r9XUGzdu85ekGRESk1mhMFxFpWOrVuK4ZNBERERERES+hGTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCWi0zxoQYY943xrxtjLnO0/2IiMi5McbEG2NmGWPmeLoXERE5d8aYy8/8W/1TY8wIT/fzawpoLjDGvGuMOWSM2f6r6yONMenGmCxjzMNnLo8F5liWdTtwaZ03KyIiv6sm47plWXssyxrvmU5FRMQVNRzX5575t/pE4CpP9OuMAppr3gNG/vKCMcYHmA6MApKBa4wxyUBrIO/Mb7PXYY8iIuK693B9XBcREe/3HjUf1x8/832vooDmAsuyVgCFv7qcAmSd+Z/VcuAT4DJgH1UhDfT6ioh4pRqO6yIi4uVqMq6bKlOA7yzL2lTXvf4eBYizF83/zpRBVTCLBr4ErjDGzAS+8URjIiJyVn5zXDfGNDPGvAGcZ4x5xDOtiYjIWaju3+v3AMOAccaYiZ5ozBlfTzfQ0FiWVQTc4uk+RESkdliWdZSqdQoiItIAWJY1DZjm6T6qoxm0s7cfiPnF49ZnromISP2kcV1EpGGpl+O6AtrZWw8kGGPaGmP8gauBeR7uSUREzp7GdRGRhqVejusKaC4wxnwMrAE6GGP2GWPGW5ZVCdwNLAR2AZ9ZlrXDk32KiIhrNK6LiDQsDWlcN5ZleboHERERERERQTNoIiIiIiIiXkMBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJe4v8BszKEA6cVlZ8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "z = 0.5\n", "ns = [4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12] # np.arange(4, 13)\n", diff --git a/buch/papers/laguerre/scripts/integrand.py b/buch/papers/laguerre/scripts/integrand.py index 89b9256..43fc1bf 100644 --- a/buch/papers/laguerre/scripts/integrand.py +++ b/buch/papers/laguerre/scripts/integrand.py @@ -16,19 +16,33 @@ img_path = f"{root}/../images" os.makedirs(img_path, exist_ok=True) t = np.logspace(*xlims, 1001)[:, None] -z = np.arange(-5, 5)[None] + 0.5 - +z = np.array([-4.5, -2, -1, -0.5, 0.0, 0.5, 1, 2, 4.5]) r = t ** z fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4)) ax.semilogx(t, r) -ax.set_xlim(*(10.**xlims)) +ax.set_xlim(*(10.0 ** xlims)) ax.set_ylim(1e-3, 40) ax.set_xlabel(r"$t$") ax.set_ylabel(r"$t^z$") ax.grid(1, "both") labels = [f"$z={zi:.1f}$" for zi in np.squeeze(z)] ax.legend(labels, ncol=2, loc="upper left") -fig.savefig(f"{img_path}/integrands.pdf") -# plt.show() +fig.savefig(f"{img_path}/integrands.pgf") + +z2 = np.array([-1, -0.5, 0.0, 0.5, 1, 2, 3, 4, 4.5]) +r2 = t**z2 * np.exp(-t) + +fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(6, 4)) +ax2.semilogx(t, r2) +# ax2.plot(t,np.exp(-t)) +ax2.set_xlim(10**(-2), 20) +ax2.set_ylim(1e-3, 10) +ax2.set_xlabel(r"$t$") +ax2.set_ylabel(r"$t^z e^{-t}$") +ax2.grid(1, "both") +labels = [f"$z={zi:.1f}$" for zi in np.squeeze(z2)] +ax2.legend(labels, ncol=2, loc="upper left") +fig2.savefig(f"{img_path}/integrands_exp.pgf") +plt.show() diff --git a/buch/papers/laguerre/scripts/laguerre_plot.py b/buch/papers/laguerre/scripts/laguerre_plot.py index b9088d0..1be3552 100644 --- a/buch/papers/laguerre/scripts/laguerre_plot.py +++ b/buch/papers/laguerre/scripts/laguerre_plot.py @@ -29,7 +29,7 @@ fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4 for n in np.arange(0, 8): k = np.arange(0, n + 1)[None] L = np.sum((-1) ** k * ss.binom(n, k) / ss.factorial(k) * t ** k, -1) - ax.plot(t, L, label=f"n={n}") + ax.plot(t, L, label=f"$n={n}$") ax.set_xticks(get_ticks(int(t[0]), t[-1]), minor=True) ax.set_xticks(get_ticks(0, t[-1], step)) @@ -97,4 +97,5 @@ ax.arrow( clip_on=False, ) -fig.savefig(f"{img_path}/laguerre_polynomes.pdf") +fig.savefig(f"{img_path}/laguerre_polynomes.pgf") +# plt.show() -- cgit v1.2.1 From 6149839224755c21225d2decddeae12207c2cbab Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Tue, 31 May 2022 16:31:25 +0200 Subject: Add rule of thumb, analyse integrand, correct mistake in integration SLP<->LP --- buch/papers/laguerre/definition.tex | 2 +- buch/papers/laguerre/eigenschaften.tex | 20 +- buch/papers/laguerre/gamma.tex | 294 ++- buch/papers/laguerre/images/integrands.pgf | 1448 +++++----- buch/papers/laguerre/images/integrands_exp.pgf | 1323 +++++----- buch/papers/laguerre/images/rel_error_mirror.pgf | 3054 ++++++++++++++++++++++ buch/papers/laguerre/images/rel_error_simple.pgf | 2940 +++++++++++++++++++++ buch/papers/laguerre/images/rel_error_simple.png | Bin 0 -> 61966 bytes buch/papers/laguerre/images/schaetzung.pgf | 1160 ++++++++ buch/papers/laguerre/images/targets.pdf | Bin 0 -> 12940 bytes buch/papers/laguerre/quadratur.tex | 4 +- buch/papers/laguerre/references.bib | 9 + buch/papers/laguerre/scripts/gamma_approx.ipynb | 178 +- buch/papers/laguerre/scripts/gamma_approx.py | 197 ++ buch/papers/laguerre/scripts/integrand.py | 27 +- 15 files changed, 9063 insertions(+), 1593 deletions(-) create mode 100644 buch/papers/laguerre/images/rel_error_mirror.pgf create mode 100644 buch/papers/laguerre/images/rel_error_simple.pgf create mode 100644 buch/papers/laguerre/images/rel_error_simple.png create mode 100644 buch/papers/laguerre/images/schaetzung.pgf create mode 100644 buch/papers/laguerre/images/targets.pdf create mode 100644 buch/papers/laguerre/scripts/gamma_approx.py (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index f1f0d00..3e5d423 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -22,7 +22,7 @@ Die klassische Laguerre-Diffentialgleichung erhält man, wenn $\nu = 0$. Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet, weil die Lösung mit der selben Methode berechnet werden kann, aber man zusätzlich die Lösung für den allgmeinen Fall erhält. -Zur Lösung der Gleichung \eqref{laguerre:dgl} verwenden wir einen +Zur Lösung von \eqref{laguerre:dgl} verwenden wir einen Potenzreihenansatz. Da wir bereits wissen, dass die Lösung orthogonale Polynome sind, erscheint dieser Ansatz sinnvoll. diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index 77b2a2c..9b901ae 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -22,25 +22,25 @@ Im Abschnitt~\ref{laguerre:section:definition} haben wir behauptet, dass die Laguerre-Polynome orthogonale Polynome sind. Zu dieser Behauptung möchten wir nun einen Beweis liefern. -Wenn wir die Laguerre\--Differentialgleichung in ein -Sturm\--Liouville\--Problem umwandeln können, haben wir bewiesen, dass es sich -bei -den Laguerre\--Polynomen um orthogonale Polynome handelt (siehe +Wenn wir \eqref{laguerre:dgl} in ein +Sturm-Liouville-Problem umwandeln können, haben wir bewiesen, dass es sich +bei den Laguerre-Polynomen um orthogonale Polynome handelt (siehe Abschnitt~\ref{buch:integrale:subsection:sturm-liouville-problem}). -Der Sturm-Liouville-Operator +Der Beweis kann äquivalent auch über den Sturm-Liouville-Operator \begin{align} S = \frac{1}{w(x)} \left(-\frac{d}{dx}p(x) \frac{d}{dx} + q(x) \right). \label{laguerre:slop} \end{align} -und der Laguerre-Operator +und den Laguerre-Operator \begin{align} \Lambda = x \frac{d}{dx^2} + (\nu + 1 -x) \frac{d}{dx} \end{align} -sind einander gleichzusetzen. +erhalten werden, +in dem wir diese Operatoren einander gleichsetzen. Aus der Beziehung \begin{align} S @@ -66,16 +66,18 @@ Durch Separation erhalten wir dann \int \frac{dp}{p} & = -\int \frac{\nu + 1 - x}{x} \, dx += +-\int \frac{\nu + 1}{x} \, dx - \int 1\, dx \\ \log p & = --\log \nu + 1 - x + C +-(\nu + 1)\log x - x + c \\ p(x) & = -C x^{\nu + 1} e^{-x} \end{align*} -Eingefügt in Gleichung~\eqref{laguerre:sl-lag} erhalten wir +Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich \begin{align*} \frac{C}{w(x)} \left( diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex index 59c0b81..da2fa93 100644 --- a/buch/papers/laguerre/gamma.tex +++ b/buch/papers/laguerre/gamma.tex @@ -19,7 +19,7 @@ Integral der Form \begin{align} \Gamma(z) & = -\int_0^\infty t^{z-1} e^{-t} dt +\int_0^\infty x^{z-1} e^{-x} \, dx , \quad \text{wobei Realteil von $z$ grösser als $0$} @@ -32,54 +32,290 @@ Zu erwähnen ist auch, dass für die verallgemeinerte Laguerre-Integration die Gewichtsfunktion $t^\nu e^{-t}$ genau dem Integranden für $\nu=z-1$ entspricht. \subsubsection{Funktionalgleichung} -Die Funktionalgleichung der Gamma-Funktion besagt +Die Gamma-Funktion besitzt die gleiche Rekursionsbeziehung wie die Fakultät, +nämlich \begin{align} -z \Gamma(z) = \Gamma(z+1). +z \Gamma(z) += +\Gamma(z+1) +. \label{laguerre:gamma_funktional} \end{align} -Mittels dieser Gleichung kann der Wert von $\Gamma(z)$ an einer bestimmten, -geeigneten Stelle evaluiert werden und dann zurückverschoben werden, -um das gewünschte Resultat zu erhalten. -In Abbildung~\ref{laguerre:fig:integrand} ist der Integrand $t^z$ für -unterschiedliche Werte von $z$ dargestellt. -Man erkennt, dass für kleine $z$ sich ein singulärer Integrand ergibt, -was dazu führt, dass die Genauigkeit sich verschlechtert. -Die Genauigkeit verschlechtert sich aber auch zunehmends für grosse $z$, -da in diesem Fall der Integrand sehr schnell anwächst. +\subsubsection{Reflektionsformel} +Die Reflektionsformel +\begin{align} +\Gamma(z) \Gamma(1 - z) += +\frac{\pi}{\sin \pi z} +,\quad +\text{für } +z \notin \mathbb{Z} +\label{laguerre:gamma_refform} +\end{align} +stellt eine Beziehung zwischen den zwei Punkten, +die aus der Spiegelung an der Geraden $\operatorname{Re} z = 1/2$ hervorgehen, +her. +Dadurch lassen Werte der Gamma-Funktion sich für $z$ in der rechten Halbebene +leicht in die linke Halbebene übersetzen und umgekehrt. + +\subsection{Berechnung mittels Gauss-Laguerre-Quadratur} +In den vorherigen Abschnitten haben wir gesehen, +dass sich die Gamma-Funktion bestens für die Gauss-Laguerre-Quadratur eignet. +Nun bieten sich uns zwei Optionen diese zu berechnen: +\begin{enumerate} +\item Wir verwenden die verallgemeinerten Laguerre-Polynome, dann $f(x)=1$. +\item Wir verwenden die Laguerre-Polynome, dann $f(x)=x^{z-1}$. +\end{enumerate} +Die erste Variante wäre optimal auf das Problem angepasst, +allerdings müssten die Gewichte und Nullstellen für jedes $z$ +neu berechnet werden, +da sie per Definition von $z$ abhängen. +Dazu kommt, +dass die Berechnung der Gewichte $A_i$ nach \cite{Cassity1965AbcissasCA} +\begin{align*} +A_i += +\frac{ +\Gamma(n) \Gamma(n+\nu) +} +{ +(n+\nu) +\left[L_{n-1}^{\nu}(x_i)\right]^2 +} +\end{align*} +Evaluationen der Gamma-Funktion benötigen. +Somit scheint diese Methode nicht geeignet für unser Vorhaben. + +Bei der zweiten Variante benötigen wir keine Neuberechung der Gewichte +und Nullstellen für unterschiedliche $z$. +In \eqref{laguerre:quadratur_gewichte} ist ersichtlich, +dass die Gewichte einfach zu berechnen sind. +Auch die Nullstellen können vorgängig, +mittels eines geeigneten Verfahrens aus den Polynomen bestimmt werden. +Als problematisch könnte sich höchstens +die zu integrierende Funktion $f(x)=x^{z-1}$ für $|z| \gg 0$ erweisen. +Somit entscheiden wir uns auf Grund der vorherigen Punkte, +die zweite Variante weiterzuverfolgen. + +\subsubsection{Naiver Ansatz} + \begin{figure} \centering -\scalebox{0.8}{\input{papers/laguerre/images/integrands.pgf}} -\caption{Integrand $t^z$ mit unterschiedlichen Werten für $z$} -\label{laguerre:fig:integrand} +\input{papers/laguerre/images/rel_error_simple.pgf} +\caption{Relativer Fehler des naiven Ansatzes +für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome} +\label{laguerre:fig:rel_error_simple} \end{figure} -\subsection{Berechnung mittels Gauss-Laguerre-Quadratur} - -Fehlerterm: +Bevor wir die Gauss-Laguerre-Quadratur anwenden, +möchten wir als erstes eine Fehlerabschätzung durchführen. +Für den Fehlerterm \eqref{laguerre:lag_error} wird die $2n$-te Ableitung +der zu integrierenden Funktion $f(\xi)$ benötigt. +Für das Integral der Gamma-Funktion ergibt sich also +\begin{align*} +\frac{d^{2n}}{d\xi^{2n}} f(\xi) + & = +\frac{d^{2n}}{d\xi^{2n}} \xi^{z-1} +\\ + & = +(z - 2n)_{2n} \xi^{z - 2n - 1} +\end{align*} +Eingesetzt im Fehlerterm \eqref{laguerre:lag_error} resultiert \begin{align*} R_n = (z - 2n)_{2n} \frac{(n!)^2}{(2n)!} \xi^{z-2n-1} +, +\label{laguerre:gamma_err_simple} \end{align*} +wobei $\xi$ ein geeigneter Wert im Interval $(0, \infty)$ ist +und $n$ der Grad des verwendeten Laguerre-Polynoms. +Eine Fehlerabschätzung mit dem Fehlerterm stellt sich als unnütz heraus, +da $R_n$ für $z < 2n - 1$ bei $\xi \rightarrow 0$ eine Singularität aufweist +und für $z > 2n - 1$ bei $\xi \rightarrow \infty$ divergiert. +Nur für den unwahrscheinlichen Fall $ z = 2n - 1$ +wäre eine Fehlerabschätzung plausibel. + +Wenden wir nun also naiv die Gauss-Laguerre-Quadratur auf die Gammafunktion an. +Dazu benötigen wir die Gewichte nach +\eqref{laguerre:quadratur_gewichte} +und als Stützstellen die Nullstellen des Laguerre-Polynomes $L_n$. +Evaluieren wir den relativen Fehler unserer Approximation zeigt sich ein +Bild wie in Abbildung~\ref{laguerre:fig:rel_error_simple}. +Man kann sehen, +wie der relative Fehler Nullstellen aufweist für ganzzahlige $z < 2n$, +was laut der Theorie der Gauss-Quadratur auch zu erwarten ist, +denn die Approximation via Gauss-Quadratur +ist exakt für zu integrierende Polynome mit Grad $< 2n-1$. +Es ist ersichtlich, +dass sich für den Polynomgrad $n$ ein Interval gibt, +in dem der relative Fehler minimal ist. +Links steigt der relative Fehler besonders stark an, +während er auf der rechten Seite zu konvergieren scheint. +Um die linke Hälfte in den Griff zu bekommen, +könnten wir die Reflektionsformel der Gamma-Funktion ausnutzen. + +\begin{figure} +\centering +\input{papers/laguerre/images/rel_error_mirror.pgf} +\caption{Relativer Fehler des naiven Ansatz mit Spiegelung negativer Realwerte +für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome} +\label{laguerre:fig:rel_error_mirror} +\end{figure} + +Spiegelt man nun $z$ mit negativem Realteil mittels der Reflektionsformel, +ergibt sich ein stabilerer Fehler in der linken Hälfte, +wie in Abbildung~\ref{laguerre:fig:rel_error_mirror}. +Die Spiegelung bringt nur für wenige Werte einen, +für praktische Anwendungen geeigneten, +relativen Fehler. +Wie wir aber in Abbildung~\ref{laguerre:fig:rel_error_simple} sehen konnten, +gibt es für jeden Polynomgrad $n$ ein Intervall $[a, a+1]$, $a \in \mathbb{Z}$, +in welchem der relative Fehler minimal ist. +Die Funktionalgleichung der Gamma-Funktion \eqref{laguerre:gamma_funktional} +könnte uns hier helfen, +das Problem in den Griff zu bekommen. + +\subsubsection{Analyse des Integranden} +Wie wir im vorherigen Abschnitt gesehen haben, +scheint der Integrand problematisch. +Darum möchten wir jetzt den Integranden analysieren, +um ihn besser verstehen zu können +und dadurch geeignete Gegenmassnahmen zu entwickeln. + +% Dieser Abschnitt soll eine grafisches Verständnis dafür schaffen, +% wieso der Integrand so problematisch ist. +% Was das heisst sollte in Abbildung~\ref{laguerre:fig:integrand} +% und Abbildung~\ref{laguerre:fig:integrand_exp} grafisch dargestellt werden. + +\begin{figure} +\centering +\input{papers/laguerre/images/integrands.pgf} +\caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} +\label{laguerre:fig:integrand} +\end{figure} + +In Abbildung~\ref{laguerre:fig:integrand} ist der Integrand $x^z$ für +unterschiedliche Werte von $z$ dargestellt. +Dies entspricht der zu integrierenden Funktion $f(x)$ +der Gauss-Laguerre-Quadratur für die Gamma-Funktion- +Man erkennt, +dass für kleine $z$ sich ein singulärer Integrand ergibt +und auch für grosse $z$ wächst der Integrand sehr schnell an. +Das heisst, +die Ableitungen im Fehlerterm divergieren noch schneller +und das wirkt sich negativ auf die Genauigkeit der Approximation aus. +Somit lässt sich hier sagen, +dass kleine Exponenten um $0$ genauere Resultate liefern sollten. + +\begin{figure} +\centering +\input{papers/laguerre/images/integrands_exp.pgf} +\caption{Integrand $x^z e^{-x}$ mit unterschiedlichen Werten für $z$} +\label{laguerre:fig:integrand_exp} +\end{figure} + +In Abbildung~\ref{laguerre:fig:integrand_exp} fügen wir +die Dämpfung der Gewichtsfunktion $w(x)$ +der Gauss-Laguerre-Quadratur wieder hinzu +und erhalten so wieder den kompletten Integranden $x^{z-1} e^{-x}$ +der Gamma-Funktion. +Für negative $z$ ergeben sich immer noch Singularitäten, +wenn $x \rightarrow 0$. +Um $1$ wächst der Term $x^z$ schneller als die Dämpfung $e^{-x}$, +aber für $x \rightarrow \infty$ geht der Integrand gegen $0$. +Das führt zu Glockenförmigen Kurven, +die für grosse Exponenten $z$ nach der Stelle $x=1$ schnell anwachsen. +Zu grosse Exponenten $z$ sind also immer noch problematisch. +Kleine positive $z$ scheinen nun also auch zulässig zu sein. +Damit formulieren wir die Vermutung, +dass $a$, +welches das Intervall $[a,a+1]$ definiert, +in dem der relative Fehler minimal ist, +grösser als $0$ und abhängig von $n$ ist. \subsubsection{Finden der optimalen Berechnungsstelle} +% Mittels der Funktionalgleichung \eqref{laguerre:gamma_funktional} +% kann der Wert von $\Gamma(z)$ im Interval $z \in [a,a+1]$, +% in dem der relative Fehler minimal ist, +% evaluiert werden und dann mit der Funktionalgleichung zurückverschoben werden. Nun stellt sich die Frage, ob die Approximation mittels Gauss-Laguerre-Quadratur verbessert werden kann, -wenn man das Problem an einer geeigneten Stelle evaluiert und -dann mit der Funktionalgleichung zurückverschiebt. -Dazu wollen wir den Fehlerterm in -Gleichung~\eqref{laguerre:lagurre:lag_error} anpassen und dann minimieren. -Zunächst wollen wir dies nur für $z\in \mathbb{R}$ und $0.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.672226in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.371849in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.371849in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.371849in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.371849in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.071472in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.071472in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.071472in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.771095in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.771095in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.771095in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.771095in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.470718in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.470718in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.470718in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.470718in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.170342in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.170342in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.170342in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.170342in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.869965in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.869965in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.812150in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.812150in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.812150in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.952075in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.952075in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.952075in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.092000in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.092000in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.092000in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.231924in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.231924in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.231924in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.511774in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.511774in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.511774in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.651698in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.651698in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.651698in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.791623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.791623in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.791623in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.931547in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.931547in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.931547in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.211397in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.211397in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.211397in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.351321in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.351321in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.351321in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.491246in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.491246in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.491246in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.631171in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.631171in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.631171in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.911020in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.911020in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.911020in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.050944in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.050944in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.050944in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.190869in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.190869in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.190869in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.330794in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.330794in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.330794in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.610643in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.610643in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.610643in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.750568in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.750568in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.750568in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.890492in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.890492in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.890492in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.030417in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.030417in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.030417in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.310266in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.310266in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.310266in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.450191in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.450191in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.450191in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.590115in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.590115in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.590115in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.730040in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.730040in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.730040in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.771095in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.795783in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.795783in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{0.795783in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=0.743021in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.128292in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.128292in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{1.128292in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=1.075531in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.460802in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.460802in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{1.460802in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=1.408040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.793311in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.793311in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{1.793311in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=1.740550in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{2.125821in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.125821in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{2.125821in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=2.073059in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.176083in,y=1.460802in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont Relativer Fehler}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.679275in}{2.468330in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{2.410308in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{2.317895in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{2.284509in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{2.254104in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{2.227040in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{2.204343in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{2.178651in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{2.159180in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{2.137059in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{2.111145in}}% +\pgfpathlineto{\pgfqpoint{2.292406in}{2.079305in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{2.059868in}}% +\pgfpathlineto{\pgfqpoint{2.313447in}{2.036671in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{2.007374in}}% +\pgfpathlineto{\pgfqpoint{2.334488in}{1.966175in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{1.888819in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{1.852553in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{1.935490in}}% +\pgfpathlineto{\pgfqpoint{2.376571in}{1.966273in}}% +\pgfpathlineto{\pgfqpoint{2.387092in}{1.982554in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{1.991421in}}% +\pgfpathlineto{\pgfqpoint{2.408133in}{1.995381in}}% +\pgfpathlineto{\pgfqpoint{2.418654in}{1.995469in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{1.992029in}}% +\pgfpathlineto{\pgfqpoint{2.439695in}{1.984911in}}% +\pgfpathlineto{\pgfqpoint{2.450215in}{1.973415in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{1.955869in}}% +\pgfpathlineto{\pgfqpoint{2.471257in}{1.928150in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{1.876035in}}% +\pgfpathlineto{\pgfqpoint{2.492298in}{1.718273in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{1.891334in}}% +\pgfpathlineto{\pgfqpoint{2.513339in}{1.936950in}}% +\pgfpathlineto{\pgfqpoint{2.523860in}{1.962930in}}% +\pgfpathlineto{\pgfqpoint{2.534381in}{1.979802in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{1.990917in}}% +\pgfpathlineto{\pgfqpoint{2.555422in}{1.997647in}}% +\pgfpathlineto{\pgfqpoint{2.565943in}{2.000526in}}% +\pgfpathlineto{\pgfqpoint{2.576463in}{1.999568in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{1.994278in}}% +\pgfpathlineto{\pgfqpoint{2.597505in}{1.983378in}}% +\pgfpathlineto{\pgfqpoint{2.608025in}{1.963807in}}% +\pgfpathlineto{\pgfqpoint{2.618546in}{1.926370in}}% +\pgfpathlineto{\pgfqpoint{2.629066in}{1.802233in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{1.906504in}}% +\pgfpathlineto{\pgfqpoint{2.650108in}{1.968180in}}% +\pgfpathlineto{\pgfqpoint{2.660628in}{2.002136in}}% +\pgfpathlineto{\pgfqpoint{2.671149in}{2.025121in}}% +\pgfpathlineto{\pgfqpoint{2.681670in}{2.041717in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{2.053754in}}% +\pgfpathlineto{\pgfqpoint{2.702711in}{2.062026in}}% +\pgfpathlineto{\pgfqpoint{2.713232in}{2.066751in}}% +\pgfpathlineto{\pgfqpoint{2.723752in}{2.067672in}}% +\pgfpathlineto{\pgfqpoint{2.734273in}{2.063874in}}% +\pgfpathlineto{\pgfqpoint{2.744794in}{2.053110in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{2.029136in}}% +\pgfpathlineto{\pgfqpoint{2.765835in}{1.962275in}}% +\pgfpathlineto{\pgfqpoint{2.776356in}{2.287874in}}% +\pgfpathlineto{\pgfqpoint{2.797397in}{2.268373in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{2.244071in}}% +\pgfpathlineto{\pgfqpoint{2.839479in}{2.213742in}}% +\pgfpathlineto{\pgfqpoint{2.850000in}{2.195581in}}% +\pgfpathlineto{\pgfqpoint{2.860521in}{2.174687in}}% +\pgfpathlineto{\pgfqpoint{2.871041in}{2.150023in}}% +\pgfpathlineto{\pgfqpoint{2.881562in}{2.119594in}}% +\pgfpathlineto{\pgfqpoint{2.892083in}{2.078703in}}% +\pgfpathlineto{\pgfqpoint{2.902603in}{2.010520in}}% +\pgfpathlineto{\pgfqpoint{2.913124in}{1.900106in}}% +\pgfpathlineto{\pgfqpoint{2.923645in}{2.018416in}}% +\pgfpathlineto{\pgfqpoint{2.934165in}{2.050303in}}% +\pgfpathlineto{\pgfqpoint{2.944686in}{2.064566in}}% +\pgfpathlineto{\pgfqpoint{2.955207in}{2.070369in}}% +\pgfpathlineto{\pgfqpoint{2.965727in}{2.070744in}}% +\pgfpathlineto{\pgfqpoint{2.976248in}{2.066944in}}% +\pgfpathlineto{\pgfqpoint{2.986769in}{2.059435in}}% +\pgfpathlineto{\pgfqpoint{2.997289in}{2.048179in}}% +\pgfpathlineto{\pgfqpoint{3.007810in}{2.032617in}}% +\pgfpathlineto{\pgfqpoint{3.018330in}{2.011350in}}% +\pgfpathlineto{\pgfqpoint{3.028851in}{1.981005in}}% +\pgfpathlineto{\pgfqpoint{3.039372in}{1.931030in}}% +\pgfpathlineto{\pgfqpoint{3.049892in}{1.753590in}}% +\pgfpathlineto{\pgfqpoint{3.060413in}{1.906932in}}% +\pgfpathlineto{\pgfqpoint{3.070934in}{1.954561in}}% +\pgfpathlineto{\pgfqpoint{3.081454in}{1.977707in}}% +\pgfpathlineto{\pgfqpoint{3.091975in}{1.990569in}}% +\pgfpathlineto{\pgfqpoint{3.102496in}{1.997247in}}% +\pgfpathlineto{\pgfqpoint{3.113016in}{1.999389in}}% +\pgfpathlineto{\pgfqpoint{3.123537in}{1.997671in}}% +\pgfpathlineto{\pgfqpoint{3.134058in}{1.992216in}}% +\pgfpathlineto{\pgfqpoint{3.144578in}{1.982655in}}% +\pgfpathlineto{\pgfqpoint{3.155099in}{1.967919in}}% +\pgfpathlineto{\pgfqpoint{3.165620in}{1.945469in}}% +\pgfpathlineto{\pgfqpoint{3.176140in}{1.908177in}}% +\pgfpathlineto{\pgfqpoint{3.186661in}{1.818345in}}% +\pgfpathlineto{\pgfqpoint{3.197182in}{1.847277in}}% +\pgfpathlineto{\pgfqpoint{3.207702in}{1.916791in}}% +\pgfpathlineto{\pgfqpoint{3.218223in}{1.949559in}}% +\pgfpathlineto{\pgfqpoint{3.228743in}{1.969729in}}% +\pgfpathlineto{\pgfqpoint{3.239264in}{1.982965in}}% +\pgfpathlineto{\pgfqpoint{3.249785in}{1.991413in}}% +\pgfpathlineto{\pgfqpoint{3.260305in}{1.995991in}}% +\pgfpathlineto{\pgfqpoint{3.270826in}{1.996990in}}% +\pgfpathlineto{\pgfqpoint{3.281347in}{1.994217in}}% +\pgfpathlineto{\pgfqpoint{3.291867in}{1.986881in}}% +\pgfpathlineto{\pgfqpoint{3.302388in}{1.973065in}}% +\pgfpathlineto{\pgfqpoint{3.312909in}{1.947748in}}% +\pgfpathlineto{\pgfqpoint{3.333950in}{1.836594in}}% +\pgfpathlineto{\pgfqpoint{3.344471in}{1.948642in}}% +\pgfpathlineto{\pgfqpoint{3.354991in}{1.995519in}}% +\pgfpathlineto{\pgfqpoint{3.365512in}{2.026825in}}% +\pgfpathlineto{\pgfqpoint{3.376033in}{2.050779in}}% +\pgfpathlineto{\pgfqpoint{3.386553in}{2.070356in}}% +\pgfpathlineto{\pgfqpoint{3.397074in}{2.086987in}}% +\pgfpathlineto{\pgfqpoint{3.418115in}{2.114313in}}% +\pgfpathlineto{\pgfqpoint{3.439156in}{2.136291in}}% +\pgfpathlineto{\pgfqpoint{3.460198in}{2.154606in}}% +\pgfpathlineto{\pgfqpoint{3.481239in}{2.170212in}}% +\pgfpathlineto{\pgfqpoint{3.502280in}{2.183713in}}% +\pgfpathlineto{\pgfqpoint{3.533842in}{2.200878in}}% +\pgfpathlineto{\pgfqpoint{3.565404in}{2.215135in}}% +\pgfpathlineto{\pgfqpoint{3.596966in}{2.227105in}}% +\pgfpathlineto{\pgfqpoint{3.639049in}{2.240242in}}% +\pgfpathlineto{\pgfqpoint{3.681131in}{2.250814in}}% +\pgfpathlineto{\pgfqpoint{3.723214in}{2.259348in}}% +\pgfpathlineto{\pgfqpoint{3.775817in}{2.267741in}}% +\pgfpathlineto{\pgfqpoint{3.838941in}{2.275225in}}% +\pgfpathlineto{\pgfqpoint{3.912586in}{2.281308in}}% +\pgfpathlineto{\pgfqpoint{3.996751in}{2.285800in}}% +\pgfpathlineto{\pgfqpoint{4.101957in}{2.289020in}}% +\pgfpathlineto{\pgfqpoint{4.249246in}{2.291054in}}% +\pgfpathlineto{\pgfqpoint{4.512263in}{2.291963in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.292072in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.292072in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{2.410760in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{2.270043in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{2.240649in}}% +\pgfpathlineto{\pgfqpoint{1.282423in}{2.212677in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{2.186340in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{2.162155in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{2.135297in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{2.111331in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{2.084526in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{2.062062in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{2.037030in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{2.008709in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{1.987478in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{1.963816in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{1.936980in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{1.905744in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{1.867808in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{1.844903in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{1.817778in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{1.783691in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{1.735362in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{1.634970in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{1.653720in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{1.713348in}}% +\pgfpathlineto{\pgfqpoint{1.818977in}{1.736454in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{1.747122in}}% +\pgfpathlineto{\pgfqpoint{1.840018in}{1.750959in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.750060in}}% +\pgfpathlineto{\pgfqpoint{1.861059in}{1.745290in}}% +\pgfpathlineto{\pgfqpoint{1.871580in}{1.736891in}}% +\pgfpathlineto{\pgfqpoint{1.882100in}{1.724621in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{1.707639in}}% +\pgfpathlineto{\pgfqpoint{1.903142in}{1.683974in}}% +\pgfpathlineto{\pgfqpoint{1.913662in}{1.648549in}}% +\pgfpathlineto{\pgfqpoint{1.934704in}{1.516139in}}% +\pgfpathlineto{\pgfqpoint{1.945224in}{1.616888in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{1.651892in}}% +\pgfpathlineto{\pgfqpoint{1.966266in}{1.670631in}}% +\pgfpathlineto{\pgfqpoint{1.976786in}{1.681175in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{1.686301in}}% +\pgfpathlineto{\pgfqpoint{1.997828in}{1.687174in}}% +\pgfpathlineto{\pgfqpoint{2.008348in}{1.684214in}}% +\pgfpathlineto{\pgfqpoint{2.018869in}{1.677342in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{1.665946in}}% +\pgfpathlineto{\pgfqpoint{2.039910in}{1.648507in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{1.621311in}}% +\pgfpathlineto{\pgfqpoint{2.060951in}{1.572170in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{0.922914in}}% +\pgfpathlineto{\pgfqpoint{2.081993in}{1.570606in}}% +\pgfpathlineto{\pgfqpoint{2.092513in}{1.618175in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{1.643784in}}% +\pgfpathlineto{\pgfqpoint{2.113555in}{1.659613in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{1.669369in}}% +\pgfpathlineto{\pgfqpoint{2.134596in}{1.674560in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{1.675792in}}% +\pgfpathlineto{\pgfqpoint{2.155637in}{1.673136in}}% +\pgfpathlineto{\pgfqpoint{2.166158in}{1.666159in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{1.653690in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{1.632939in}}% +\pgfpathlineto{\pgfqpoint{2.197720in}{1.595827in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{1.492861in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{1.620458in}}% +\pgfpathlineto{\pgfqpoint{2.239802in}{1.653259in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{1.674134in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{1.688140in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{1.697231in}}% +\pgfpathlineto{\pgfqpoint{2.281885in}{1.702223in}}% +\pgfpathlineto{\pgfqpoint{2.292406in}{1.703335in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{1.700296in}}% +\pgfpathlineto{\pgfqpoint{2.313447in}{1.692210in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{1.676943in}}% +\pgfpathlineto{\pgfqpoint{2.334488in}{1.648848in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{1.583789in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{1.559107in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{1.652992in}}% +\pgfpathlineto{\pgfqpoint{2.376571in}{1.694151in}}% +\pgfpathlineto{\pgfqpoint{2.387092in}{1.720290in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{1.738543in}}% +\pgfpathlineto{\pgfqpoint{2.408133in}{1.751458in}}% +\pgfpathlineto{\pgfqpoint{2.418654in}{1.760107in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{1.764865in}}% +\pgfpathlineto{\pgfqpoint{2.439695in}{1.765614in}}% +\pgfpathlineto{\pgfqpoint{2.450215in}{1.761681in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{1.751422in}}% +\pgfpathlineto{\pgfqpoint{2.471257in}{1.730736in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{1.685427in}}% +\pgfpathlineto{\pgfqpoint{2.492298in}{1.534265in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{1.713742in}}% +\pgfpathlineto{\pgfqpoint{2.513339in}{1.765610in}}% +\pgfpathlineto{\pgfqpoint{2.523860in}{1.797700in}}% +\pgfpathlineto{\pgfqpoint{2.534381in}{1.820556in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{1.837547in}}% +\pgfpathlineto{\pgfqpoint{2.555422in}{1.850061in}}% +\pgfpathlineto{\pgfqpoint{2.565943in}{1.858644in}}% +\pgfpathlineto{\pgfqpoint{2.576463in}{1.863322in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{1.863608in}}% +\pgfpathlineto{\pgfqpoint{2.597505in}{1.858230in}}% +\pgfpathlineto{\pgfqpoint{2.608025in}{1.844128in}}% +\pgfpathlineto{\pgfqpoint{2.618546in}{1.812109in}}% +\pgfpathlineto{\pgfqpoint{2.629066in}{1.693333in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{1.802901in}}% +\pgfpathlineto{\pgfqpoint{2.650108in}{1.869801in}}% +\pgfpathlineto{\pgfqpoint{2.660628in}{1.908895in}}% +\pgfpathlineto{\pgfqpoint{2.671149in}{1.936918in}}% +\pgfpathlineto{\pgfqpoint{2.681670in}{1.958434in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{1.975261in}}% +\pgfpathlineto{\pgfqpoint{2.702711in}{1.988170in}}% +\pgfpathlineto{\pgfqpoint{2.713232in}{1.997368in}}% +\pgfpathlineto{\pgfqpoint{2.723752in}{2.002580in}}% +\pgfpathlineto{\pgfqpoint{2.734273in}{2.002879in}}% +\pgfpathlineto{\pgfqpoint{2.744794in}{1.996005in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{1.975709in}}% +\pgfpathlineto{\pgfqpoint{2.765835in}{1.912304in}}% +\pgfpathlineto{\pgfqpoint{2.776356in}{2.286279in}}% +\pgfpathlineto{\pgfqpoint{2.797397in}{2.260179in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{2.228979in}}% +\pgfpathlineto{\pgfqpoint{2.839479in}{2.191492in}}% +\pgfpathlineto{\pgfqpoint{2.850000in}{2.169661in}}% +\pgfpathlineto{\pgfqpoint{2.860521in}{2.145041in}}% +\pgfpathlineto{\pgfqpoint{2.871041in}{2.116593in}}% +\pgfpathlineto{\pgfqpoint{2.881562in}{2.082324in}}% +\pgfpathlineto{\pgfqpoint{2.892083in}{2.037536in}}% +\pgfpathlineto{\pgfqpoint{2.902603in}{1.965398in}}% +\pgfpathlineto{\pgfqpoint{2.913124in}{1.850973in}}% +\pgfpathlineto{\pgfqpoint{2.923645in}{1.965212in}}% +\pgfpathlineto{\pgfqpoint{2.934165in}{1.992969in}}% +\pgfpathlineto{\pgfqpoint{2.944686in}{2.003040in}}% +\pgfpathlineto{\pgfqpoint{2.955207in}{2.004587in}}% +\pgfpathlineto{\pgfqpoint{2.965727in}{2.000641in}}% +\pgfpathlineto{\pgfqpoint{2.976248in}{1.992452in}}% +\pgfpathlineto{\pgfqpoint{2.986769in}{1.980484in}}% +\pgfpathlineto{\pgfqpoint{2.997289in}{1.964697in}}% +\pgfpathlineto{\pgfqpoint{3.007810in}{1.944528in}}% +\pgfpathlineto{\pgfqpoint{3.018330in}{1.918576in}}% +\pgfpathlineto{\pgfqpoint{3.028851in}{1.883463in}}% +\pgfpathlineto{\pgfqpoint{3.039372in}{1.828635in}}% +\pgfpathlineto{\pgfqpoint{3.049892in}{1.646254in}}% +\pgfpathlineto{\pgfqpoint{3.060413in}{1.794561in}}% +\pgfpathlineto{\pgfqpoint{3.070934in}{1.837058in}}% +\pgfpathlineto{\pgfqpoint{3.081454in}{1.854970in}}% +\pgfpathlineto{\pgfqpoint{3.091975in}{1.862490in}}% +\pgfpathlineto{\pgfqpoint{3.102496in}{1.863715in}}% +\pgfpathlineto{\pgfqpoint{3.113016in}{1.860286in}}% +\pgfpathlineto{\pgfqpoint{3.123537in}{1.852874in}}% +\pgfpathlineto{\pgfqpoint{3.134058in}{1.841594in}}% +\pgfpathlineto{\pgfqpoint{3.144578in}{1.826070in}}% +\pgfpathlineto{\pgfqpoint{3.155099in}{1.805227in}}% +\pgfpathlineto{\pgfqpoint{3.165620in}{1.776515in}}% +\pgfpathlineto{\pgfqpoint{3.176140in}{1.732801in}}% +\pgfpathlineto{\pgfqpoint{3.186661in}{1.636375in}}% +\pgfpathlineto{\pgfqpoint{3.197182in}{1.658528in}}% +\pgfpathlineto{\pgfqpoint{3.207702in}{1.721071in}}% +\pgfpathlineto{\pgfqpoint{3.218223in}{1.746660in}}% +\pgfpathlineto{\pgfqpoint{3.228743in}{1.759428in}}% +\pgfpathlineto{\pgfqpoint{3.239264in}{1.765025in}}% +\pgfpathlineto{\pgfqpoint{3.249785in}{1.765578in}}% +\pgfpathlineto{\pgfqpoint{3.260305in}{1.761986in}}% +\pgfpathlineto{\pgfqpoint{3.270826in}{1.754515in}}% +\pgfpathlineto{\pgfqpoint{3.281347in}{1.742947in}}% +\pgfpathlineto{\pgfqpoint{3.291867in}{1.726463in}}% +\pgfpathlineto{\pgfqpoint{3.302388in}{1.703108in}}% +\pgfpathlineto{\pgfqpoint{3.312909in}{1.667823in}}% +\pgfpathlineto{\pgfqpoint{3.333950in}{1.535239in}}% +\pgfpathlineto{\pgfqpoint{3.344471in}{1.635700in}}% +\pgfpathlineto{\pgfqpoint{3.354991in}{1.670295in}}% +\pgfpathlineto{\pgfqpoint{3.365512in}{1.688518in}}% +\pgfpathlineto{\pgfqpoint{3.376033in}{1.698445in}}% +\pgfpathlineto{\pgfqpoint{3.386553in}{1.702864in}}% +\pgfpathlineto{\pgfqpoint{3.397074in}{1.702946in}}% +\pgfpathlineto{\pgfqpoint{3.407594in}{1.699120in}}% +\pgfpathlineto{\pgfqpoint{3.418115in}{1.691314in}}% +\pgfpathlineto{\pgfqpoint{3.428636in}{1.678921in}}% +\pgfpathlineto{\pgfqpoint{3.439156in}{1.660431in}}% +\pgfpathlineto{\pgfqpoint{3.449677in}{1.632133in}}% +\pgfpathlineto{\pgfqpoint{3.460198in}{1.581847in}}% +\pgfpathlineto{\pgfqpoint{3.470718in}{0.524177in}}% +\pgfpathlineto{\pgfqpoint{3.481239in}{1.577882in}}% +\pgfpathlineto{\pgfqpoint{3.491760in}{1.624206in}}% +\pgfpathlineto{\pgfqpoint{3.502280in}{1.648547in}}% +\pgfpathlineto{\pgfqpoint{3.512801in}{1.663089in}}% +\pgfpathlineto{\pgfqpoint{3.523322in}{1.671545in}}% +\pgfpathlineto{\pgfqpoint{3.533842in}{1.675427in}}% +\pgfpathlineto{\pgfqpoint{3.544363in}{1.675347in}}% +\pgfpathlineto{\pgfqpoint{3.554884in}{1.671379in}}% +\pgfpathlineto{\pgfqpoint{3.565404in}{1.663096in}}% +\pgfpathlineto{\pgfqpoint{3.575925in}{1.649332in}}% +\pgfpathlineto{\pgfqpoint{3.586446in}{1.627302in}}% +\pgfpathlineto{\pgfqpoint{3.596966in}{1.588931in}}% +\pgfpathlineto{\pgfqpoint{3.607487in}{1.484732in}}% +\pgfpathlineto{\pgfqpoint{3.628528in}{1.609963in}}% +\pgfpathlineto{\pgfqpoint{3.639049in}{1.641642in}}% +\pgfpathlineto{\pgfqpoint{3.649569in}{1.661443in}}% +\pgfpathlineto{\pgfqpoint{3.660090in}{1.674431in}}% +\pgfpathlineto{\pgfqpoint{3.670611in}{1.682563in}}% +\pgfpathlineto{\pgfqpoint{3.681131in}{1.686666in}}% +\pgfpathlineto{\pgfqpoint{3.691652in}{1.686963in}}% +\pgfpathlineto{\pgfqpoint{3.702173in}{1.683193in}}% +\pgfpathlineto{\pgfqpoint{3.712693in}{1.674466in}}% +\pgfpathlineto{\pgfqpoint{3.723214in}{1.658658in}}% +\pgfpathlineto{\pgfqpoint{3.733735in}{1.630130in}}% +\pgfpathlineto{\pgfqpoint{3.744255in}{1.564756in}}% +\pgfpathlineto{\pgfqpoint{3.754776in}{1.539887in}}% +\pgfpathlineto{\pgfqpoint{3.765297in}{1.633725in}}% +\pgfpathlineto{\pgfqpoint{3.775817in}{1.674989in}}% +\pgfpathlineto{\pgfqpoint{3.786338in}{1.701400in}}% +\pgfpathlineto{\pgfqpoint{3.796858in}{1.720107in}}% +\pgfpathlineto{\pgfqpoint{3.807379in}{1.733672in}}% +\pgfpathlineto{\pgfqpoint{3.817900in}{1.743189in}}% +\pgfpathlineto{\pgfqpoint{3.828420in}{1.749054in}}% +\pgfpathlineto{\pgfqpoint{3.838941in}{1.751172in}}% +\pgfpathlineto{\pgfqpoint{3.849462in}{1.748899in}}% +\pgfpathlineto{\pgfqpoint{3.859982in}{1.740623in}}% +\pgfpathlineto{\pgfqpoint{3.870503in}{1.722283in}}% +\pgfpathlineto{\pgfqpoint{3.881024in}{1.679727in}}% +\pgfpathlineto{\pgfqpoint{3.891544in}{1.531779in}}% +\pgfpathlineto{\pgfqpoint{3.902065in}{1.715001in}}% +\pgfpathlineto{\pgfqpoint{3.912586in}{1.771225in}}% +\pgfpathlineto{\pgfqpoint{3.923106in}{1.808385in}}% +\pgfpathlineto{\pgfqpoint{3.933627in}{1.837162in}}% +\pgfpathlineto{\pgfqpoint{3.944148in}{1.861100in}}% +\pgfpathlineto{\pgfqpoint{3.965189in}{1.900242in}}% +\pgfpathlineto{\pgfqpoint{3.986230in}{1.932119in}}% +\pgfpathlineto{\pgfqpoint{4.007271in}{1.959293in}}% +\pgfpathlineto{\pgfqpoint{4.028313in}{1.983092in}}% +\pgfpathlineto{\pgfqpoint{4.049354in}{2.004303in}}% +\pgfpathlineto{\pgfqpoint{4.080916in}{2.032354in}}% +\pgfpathlineto{\pgfqpoint{4.112478in}{2.056851in}}% +\pgfpathlineto{\pgfqpoint{4.144040in}{2.078528in}}% +\pgfpathlineto{\pgfqpoint{4.175602in}{2.097887in}}% +\pgfpathlineto{\pgfqpoint{4.217684in}{2.120717in}}% +\pgfpathlineto{\pgfqpoint{4.259767in}{2.140708in}}% +\pgfpathlineto{\pgfqpoint{4.301850in}{2.158325in}}% +\pgfpathlineto{\pgfqpoint{4.354453in}{2.177533in}}% +\pgfpathlineto{\pgfqpoint{4.407056in}{2.194101in}}% +\pgfpathlineto{\pgfqpoint{4.459659in}{2.208430in}}% +\pgfpathlineto{\pgfqpoint{4.522783in}{2.223114in}}% +\pgfpathlineto{\pgfqpoint{4.585907in}{2.235471in}}% +\pgfpathlineto{\pgfqpoint{4.659552in}{2.247413in}}% +\pgfpathlineto{\pgfqpoint{4.733196in}{2.257119in}}% +\pgfpathlineto{\pgfqpoint{4.817361in}{2.265949in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.270438in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.270438in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{2.096171in}}% +\pgfpathlineto{\pgfqpoint{0.724829in}{2.072200in}}% +\pgfpathlineto{\pgfqpoint{0.777432in}{2.045920in}}% +\pgfpathlineto{\pgfqpoint{0.830036in}{2.016869in}}% +\pgfpathlineto{\pgfqpoint{0.872118in}{1.991240in}}% +\pgfpathlineto{\pgfqpoint{0.914201in}{1.963066in}}% +\pgfpathlineto{\pgfqpoint{0.956283in}{1.931828in}}% +\pgfpathlineto{\pgfqpoint{0.987845in}{1.905970in}}% +\pgfpathlineto{\pgfqpoint{1.019407in}{1.877583in}}% +\pgfpathlineto{\pgfqpoint{1.050969in}{1.846096in}}% +\pgfpathlineto{\pgfqpoint{1.082531in}{1.810672in}}% +\pgfpathlineto{\pgfqpoint{1.103572in}{1.784240in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{1.754860in}}% +\pgfpathlineto{\pgfqpoint{1.145655in}{1.721547in}}% +\pgfpathlineto{\pgfqpoint{1.166696in}{1.682552in}}% +\pgfpathlineto{\pgfqpoint{1.177217in}{1.659920in}}% +\pgfpathlineto{\pgfqpoint{1.187738in}{1.634178in}}% +\pgfpathlineto{\pgfqpoint{1.198258in}{1.603800in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{1.565541in}}% +\pgfpathlineto{\pgfqpoint{1.219300in}{1.510065in}}% +\pgfpathlineto{\pgfqpoint{1.229820in}{1.368423in}}% +\pgfpathlineto{\pgfqpoint{1.240341in}{1.455624in}}% +\pgfpathlineto{\pgfqpoint{1.250862in}{1.500578in}}% +\pgfpathlineto{\pgfqpoint{1.261382in}{1.518081in}}% +\pgfpathlineto{\pgfqpoint{1.271903in}{1.524804in}}% +\pgfpathlineto{\pgfqpoint{1.282423in}{1.525255in}}% +\pgfpathlineto{\pgfqpoint{1.292944in}{1.521191in}}% +\pgfpathlineto{\pgfqpoint{1.303465in}{1.513326in}}% +\pgfpathlineto{\pgfqpoint{1.313985in}{1.501802in}}% +\pgfpathlineto{\pgfqpoint{1.324506in}{1.486277in}}% +\pgfpathlineto{\pgfqpoint{1.335027in}{1.465746in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{1.437864in}}% +\pgfpathlineto{\pgfqpoint{1.356068in}{1.396283in}}% +\pgfpathlineto{\pgfqpoint{1.366589in}{1.311200in}}% +\pgfpathlineto{\pgfqpoint{1.377109in}{1.304398in}}% +\pgfpathlineto{\pgfqpoint{1.387630in}{1.375864in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{1.403793in}}% +\pgfpathlineto{\pgfqpoint{1.408671in}{1.417960in}}% +\pgfpathlineto{\pgfqpoint{1.419192in}{1.424689in}}% +\pgfpathlineto{\pgfqpoint{1.429713in}{1.426298in}}% +\pgfpathlineto{\pgfqpoint{1.440233in}{1.423762in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{1.417393in}}% +\pgfpathlineto{\pgfqpoint{1.461274in}{1.407017in}}% +\pgfpathlineto{\pgfqpoint{1.471795in}{1.391882in}}% +\pgfpathlineto{\pgfqpoint{1.482316in}{1.370190in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{1.337389in}}% +\pgfpathlineto{\pgfqpoint{1.503357in}{1.276750in}}% +\pgfpathlineto{\pgfqpoint{1.513878in}{1.173419in}}% +\pgfpathlineto{\pgfqpoint{1.524398in}{1.298409in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{1.336621in}}% +\pgfpathlineto{\pgfqpoint{1.545440in}{1.356892in}}% +\pgfpathlineto{\pgfqpoint{1.555960in}{1.368417in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{1.374252in}}% +\pgfpathlineto{\pgfqpoint{1.577002in}{1.375668in}}% +\pgfpathlineto{\pgfqpoint{1.587522in}{1.373149in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{1.366666in}}% +\pgfpathlineto{\pgfqpoint{1.608564in}{1.355672in}}% +\pgfpathlineto{\pgfqpoint{1.619084in}{1.338776in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{1.312610in}}% +\pgfpathlineto{\pgfqpoint{1.640126in}{1.266625in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{1.092992in}}% +\pgfpathlineto{\pgfqpoint{1.661167in}{1.249958in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{1.301028in}}% +\pgfpathlineto{\pgfqpoint{1.682208in}{1.327434in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{1.343371in}}% +\pgfpathlineto{\pgfqpoint{1.703249in}{1.352940in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{1.357785in}}% +\pgfpathlineto{\pgfqpoint{1.724291in}{1.358578in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{1.355438in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{1.347990in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{1.335161in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{1.314403in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{1.278582in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{1.189991in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{1.219923in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{1.290187in}}% +\pgfpathlineto{\pgfqpoint{1.818977in}{1.323441in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{1.343820in}}% +\pgfpathlineto{\pgfqpoint{1.840018in}{1.356971in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.365025in}}% +\pgfpathlineto{\pgfqpoint{1.861059in}{1.368879in}}% +\pgfpathlineto{\pgfqpoint{1.871580in}{1.368801in}}% +\pgfpathlineto{\pgfqpoint{1.882100in}{1.364571in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{1.355371in}}% +\pgfpathlineto{\pgfqpoint{1.903142in}{1.339246in}}% +\pgfpathlineto{\pgfqpoint{1.913662in}{1.311137in}}% +\pgfpathlineto{\pgfqpoint{1.934704in}{1.192742in}}% +\pgfpathlineto{\pgfqpoint{1.945224in}{1.300215in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{1.341768in}}% +\pgfpathlineto{\pgfqpoint{1.966266in}{1.366892in}}% +\pgfpathlineto{\pgfqpoint{1.976786in}{1.383664in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{1.394872in}}% +\pgfpathlineto{\pgfqpoint{1.997828in}{1.401685in}}% +\pgfpathlineto{\pgfqpoint{2.008348in}{1.404532in}}% +\pgfpathlineto{\pgfqpoint{2.018869in}{1.403341in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{1.397503in}}% +\pgfpathlineto{\pgfqpoint{2.039910in}{1.385507in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{1.363642in}}% +\pgfpathlineto{\pgfqpoint{2.060951in}{1.319726in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{0.922665in}}% +\pgfpathlineto{\pgfqpoint{2.081993in}{1.328308in}}% +\pgfpathlineto{\pgfqpoint{2.092513in}{1.380807in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{1.411254in}}% +\pgfpathlineto{\pgfqpoint{2.113555in}{1.431834in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{1.446256in}}% +\pgfpathlineto{\pgfqpoint{2.134596in}{1.456031in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{1.461769in}}% +\pgfpathlineto{\pgfqpoint{2.155637in}{1.463542in}}% +\pgfpathlineto{\pgfqpoint{2.166158in}{1.460922in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{1.452738in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{1.436203in}}% +\pgfpathlineto{\pgfqpoint{2.197720in}{1.403242in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{1.304362in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{1.439949in}}% +\pgfpathlineto{\pgfqpoint{2.239802in}{1.476656in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{1.501382in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{1.519185in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{1.532019in}}% +\pgfpathlineto{\pgfqpoint{2.281885in}{1.540705in}}% +\pgfpathlineto{\pgfqpoint{2.292406in}{1.545461in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{1.546020in}}% +\pgfpathlineto{\pgfqpoint{2.313447in}{1.541484in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{1.529723in}}% +\pgfpathlineto{\pgfqpoint{2.334488in}{1.505090in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{1.443450in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{1.422146in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{1.519367in}}% +\pgfpathlineto{\pgfqpoint{2.376571in}{1.563822in}}% +\pgfpathlineto{\pgfqpoint{2.387092in}{1.593219in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{1.614690in}}% +\pgfpathlineto{\pgfqpoint{2.408133in}{1.630784in}}% +\pgfpathlineto{\pgfqpoint{2.418654in}{1.642575in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{1.650438in}}% +\pgfpathlineto{\pgfqpoint{2.439695in}{1.654255in}}% +\pgfpathlineto{\pgfqpoint{2.450215in}{1.653354in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{1.646090in}}% +\pgfpathlineto{\pgfqpoint{2.471257in}{1.628365in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{1.585982in}}% +\pgfpathlineto{\pgfqpoint{2.492298in}{1.437712in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{1.620049in}}% +\pgfpathlineto{\pgfqpoint{2.513339in}{1.674746in}}% +\pgfpathlineto{\pgfqpoint{2.523860in}{1.709635in}}% +\pgfpathlineto{\pgfqpoint{2.534381in}{1.735262in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{1.754998in}}% +\pgfpathlineto{\pgfqpoint{2.555422in}{1.770232in}}% +\pgfpathlineto{\pgfqpoint{2.565943in}{1.781513in}}% +\pgfpathlineto{\pgfqpoint{2.576463in}{1.788869in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{1.791816in}}% +\pgfpathlineto{\pgfqpoint{2.597505in}{1.789084in}}% +\pgfpathlineto{\pgfqpoint{2.608025in}{1.777614in}}% +\pgfpathlineto{\pgfqpoint{2.618546in}{1.748214in}}% +\pgfpathlineto{\pgfqpoint{2.629066in}{1.632047in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{1.744213in}}% +\pgfpathlineto{\pgfqpoint{2.650108in}{1.813700in}}% +\pgfpathlineto{\pgfqpoint{2.660628in}{1.855368in}}% +\pgfpathlineto{\pgfqpoint{2.671149in}{1.885948in}}% +\pgfpathlineto{\pgfqpoint{2.681670in}{1.910004in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{1.929343in}}% +\pgfpathlineto{\pgfqpoint{2.702711in}{1.944734in}}% +\pgfpathlineto{\pgfqpoint{2.713232in}{1.956374in}}% +\pgfpathlineto{\pgfqpoint{2.723752in}{1.963980in}}% +\pgfpathlineto{\pgfqpoint{2.734273in}{1.966616in}}% +\pgfpathlineto{\pgfqpoint{2.744794in}{1.962011in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{1.943908in}}% +\pgfpathlineto{\pgfqpoint{2.765835in}{1.882610in}}% +\pgfpathlineto{\pgfqpoint{2.776356in}{2.285279in}}% +\pgfpathlineto{\pgfqpoint{2.797397in}{2.255100in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{2.219712in}}% +\pgfpathlineto{\pgfqpoint{2.839479in}{2.177946in}}% +\pgfpathlineto{\pgfqpoint{2.850000in}{2.153945in}}% +\pgfpathlineto{\pgfqpoint{2.860521in}{2.127134in}}% +\pgfpathlineto{\pgfqpoint{2.871041in}{2.096478in}}% +\pgfpathlineto{\pgfqpoint{2.881562in}{2.059981in}}% +\pgfpathlineto{\pgfqpoint{2.892083in}{2.012948in}}% +\pgfpathlineto{\pgfqpoint{2.902603in}{1.938547in}}% +\pgfpathlineto{\pgfqpoint{2.913124in}{1.821840in}}% +\pgfpathlineto{\pgfqpoint{2.923645in}{1.933780in}}% +\pgfpathlineto{\pgfqpoint{2.934165in}{1.959219in}}% +\pgfpathlineto{\pgfqpoint{2.944686in}{1.966953in}}% +\pgfpathlineto{\pgfqpoint{2.955207in}{1.966146in}}% +\pgfpathlineto{\pgfqpoint{2.965727in}{1.959827in}}% +\pgfpathlineto{\pgfqpoint{2.976248in}{1.949246in}}% +\pgfpathlineto{\pgfqpoint{2.986769in}{1.934868in}}% +\pgfpathlineto{\pgfqpoint{2.997289in}{1.916649in}}% +\pgfpathlineto{\pgfqpoint{3.007810in}{1.894029in}}% +\pgfpathlineto{\pgfqpoint{3.018330in}{1.865606in}}% +\pgfpathlineto{\pgfqpoint{3.028851in}{1.828001in}}% +\pgfpathlineto{\pgfqpoint{3.039372in}{1.770660in}}% +\pgfpathlineto{\pgfqpoint{3.049892in}{1.585743in}}% +\pgfpathlineto{\pgfqpoint{3.060413in}{1.731493in}}% +\pgfpathlineto{\pgfqpoint{3.070934in}{1.771409in}}% +\pgfpathlineto{\pgfqpoint{3.081454in}{1.786718in}}% +\pgfpathlineto{\pgfqpoint{3.091975in}{1.791611in}}% +\pgfpathlineto{\pgfqpoint{3.102496in}{1.790185in}}% +\pgfpathlineto{\pgfqpoint{3.113016in}{1.784080in}}% +\pgfpathlineto{\pgfqpoint{3.123537in}{1.773966in}}% +\pgfpathlineto{\pgfqpoint{3.134058in}{1.759959in}}% +\pgfpathlineto{\pgfqpoint{3.144578in}{1.741680in}}% +\pgfpathlineto{\pgfqpoint{3.155099in}{1.718056in}}% +\pgfpathlineto{\pgfqpoint{3.165620in}{1.686535in}}% +\pgfpathlineto{\pgfqpoint{3.176140in}{1.639983in}}% +\pgfpathlineto{\pgfqpoint{3.186661in}{1.540689in}}% +\pgfpathlineto{\pgfqpoint{3.197182in}{1.559946in}}% +\pgfpathlineto{\pgfqpoint{3.207702in}{1.619561in}}% +\pgfpathlineto{\pgfqpoint{3.218223in}{1.642191in}}% +\pgfpathlineto{\pgfqpoint{3.228743in}{1.651968in}}% +\pgfpathlineto{\pgfqpoint{3.239264in}{1.654541in}}% +\pgfpathlineto{\pgfqpoint{3.249785in}{1.652036in}}% +\pgfpathlineto{\pgfqpoint{3.260305in}{1.645352in}}% +\pgfpathlineto{\pgfqpoint{3.270826in}{1.634754in}}% +\pgfpathlineto{\pgfqpoint{3.281347in}{1.620023in}}% +\pgfpathlineto{\pgfqpoint{3.291867in}{1.600338in}}% +\pgfpathlineto{\pgfqpoint{3.302388in}{1.573744in}}% +\pgfpathlineto{\pgfqpoint{3.312909in}{1.535181in}}% +\pgfpathlineto{\pgfqpoint{3.333950in}{1.395920in}}% +\pgfpathlineto{\pgfqpoint{3.344471in}{1.492979in}}% +\pgfpathlineto{\pgfqpoint{3.354991in}{1.524130in}}% +\pgfpathlineto{\pgfqpoint{3.365512in}{1.538864in}}% +\pgfpathlineto{\pgfqpoint{3.376033in}{1.545256in}}% +\pgfpathlineto{\pgfqpoint{3.386553in}{1.546093in}}% +\pgfpathlineto{\pgfqpoint{3.397074in}{1.542545in}}% +\pgfpathlineto{\pgfqpoint{3.407594in}{1.535039in}}% +\pgfpathlineto{\pgfqpoint{3.418115in}{1.523503in}}% +\pgfpathlineto{\pgfqpoint{3.428636in}{1.507327in}}% +\pgfpathlineto{\pgfqpoint{3.439156in}{1.484999in}}% +\pgfpathlineto{\pgfqpoint{3.449677in}{1.452808in}}% +\pgfpathlineto{\pgfqpoint{3.460198in}{1.398571in}}% +\pgfpathlineto{\pgfqpoint{3.469565in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.471885in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.481239in}{1.386526in}}% +\pgfpathlineto{\pgfqpoint{3.491760in}{1.428716in}}% +\pgfpathlineto{\pgfqpoint{3.502280in}{1.448858in}}% +\pgfpathlineto{\pgfqpoint{3.512801in}{1.459133in}}% +\pgfpathlineto{\pgfqpoint{3.523322in}{1.463253in}}% +\pgfpathlineto{\pgfqpoint{3.533842in}{1.462727in}}% +\pgfpathlineto{\pgfqpoint{3.544363in}{1.458165in}}% +\pgfpathlineto{\pgfqpoint{3.554884in}{1.449637in}}% +\pgfpathlineto{\pgfqpoint{3.565404in}{1.436714in}}% +\pgfpathlineto{\pgfqpoint{3.575925in}{1.418227in}}% +\pgfpathlineto{\pgfqpoint{3.586446in}{1.391387in}}% +\pgfpathlineto{\pgfqpoint{3.596966in}{1.348118in}}% +\pgfpathlineto{\pgfqpoint{3.607487in}{1.238927in}}% +\pgfpathlineto{\pgfqpoint{3.628528in}{1.353878in}}% +\pgfpathlineto{\pgfqpoint{3.639049in}{1.380261in}}% +\pgfpathlineto{\pgfqpoint{3.649569in}{1.394657in}}% +\pgfpathlineto{\pgfqpoint{3.660090in}{1.402123in}}% +\pgfpathlineto{\pgfqpoint{3.670611in}{1.404614in}}% +\pgfpathlineto{\pgfqpoint{3.681131in}{1.402950in}}% +\pgfpathlineto{\pgfqpoint{3.691652in}{1.397347in}}% +\pgfpathlineto{\pgfqpoint{3.702173in}{1.387538in}}% +\pgfpathlineto{\pgfqpoint{3.712693in}{1.372625in}}% +\pgfpathlineto{\pgfqpoint{3.723214in}{1.350477in}}% +\pgfpathlineto{\pgfqpoint{3.733735in}{1.315447in}}% +\pgfpathlineto{\pgfqpoint{3.744255in}{1.243398in}}% +\pgfpathlineto{\pgfqpoint{3.754776in}{1.211672in}}% +\pgfpathlineto{\pgfqpoint{3.765297in}{1.298459in}}% +\pgfpathlineto{\pgfqpoint{3.775817in}{1.332466in}}% +\pgfpathlineto{\pgfqpoint{3.786338in}{1.351399in}}% +\pgfpathlineto{\pgfqpoint{3.796858in}{1.362392in}}% +\pgfpathlineto{\pgfqpoint{3.807379in}{1.367991in}}% +\pgfpathlineto{\pgfqpoint{3.817900in}{1.369269in}}% +\pgfpathlineto{\pgfqpoint{3.828420in}{1.366601in}}% +\pgfpathlineto{\pgfqpoint{3.838941in}{1.359866in}}% +\pgfpathlineto{\pgfqpoint{3.849462in}{1.348392in}}% +\pgfpathlineto{\pgfqpoint{3.859982in}{1.330533in}}% +\pgfpathlineto{\pgfqpoint{3.870503in}{1.302188in}}% +\pgfpathlineto{\pgfqpoint{3.881024in}{1.249161in}}% +\pgfpathlineto{\pgfqpoint{3.891544in}{1.090218in}}% +\pgfpathlineto{\pgfqpoint{3.902065in}{1.261856in}}% +\pgfpathlineto{\pgfqpoint{3.912586in}{1.305823in}}% +\pgfpathlineto{\pgfqpoint{3.923106in}{1.329949in}}% +\pgfpathlineto{\pgfqpoint{3.933627in}{1.344782in}}% +\pgfpathlineto{\pgfqpoint{3.944148in}{1.353688in}}% +\pgfpathlineto{\pgfqpoint{3.954668in}{1.358056in}}% +\pgfpathlineto{\pgfqpoint{3.965189in}{1.358433in}}% +\pgfpathlineto{\pgfqpoint{3.975710in}{1.354846in}}% +\pgfpathlineto{\pgfqpoint{3.986230in}{1.346809in}}% +\pgfpathlineto{\pgfqpoint{3.996751in}{1.333050in}}% +\pgfpathlineto{\pgfqpoint{4.007271in}{1.310510in}}% +\pgfpathlineto{\pgfqpoint{4.017792in}{1.269993in}}% +\pgfpathlineto{\pgfqpoint{4.028313in}{1.142660in}}% +\pgfpathlineto{\pgfqpoint{4.038833in}{1.243608in}}% +\pgfpathlineto{\pgfqpoint{4.049354in}{1.301819in}}% +\pgfpathlineto{\pgfqpoint{4.059875in}{1.332149in}}% +\pgfpathlineto{\pgfqpoint{4.070395in}{1.351321in}}% +\pgfpathlineto{\pgfqpoint{4.080916in}{1.363884in}}% +\pgfpathlineto{\pgfqpoint{4.091437in}{1.371634in}}% +\pgfpathlineto{\pgfqpoint{4.101957in}{1.375318in}}% +\pgfpathlineto{\pgfqpoint{4.112478in}{1.375108in}}% +\pgfpathlineto{\pgfqpoint{4.122999in}{1.370687in}}% +\pgfpathlineto{\pgfqpoint{4.133519in}{1.361075in}}% +\pgfpathlineto{\pgfqpoint{4.144040in}{1.343949in}}% +\pgfpathlineto{\pgfqpoint{4.154561in}{1.312980in}}% +\pgfpathlineto{\pgfqpoint{4.165081in}{1.238385in}}% +\pgfpathlineto{\pgfqpoint{4.175602in}{1.241964in}}% +\pgfpathlineto{\pgfqpoint{4.186122in}{1.323721in}}% +\pgfpathlineto{\pgfqpoint{4.196643in}{1.361866in}}% +\pgfpathlineto{\pgfqpoint{4.207164in}{1.386190in}}% +\pgfpathlineto{\pgfqpoint{4.217684in}{1.403030in}}% +\pgfpathlineto{\pgfqpoint{4.228205in}{1.414722in}}% +\pgfpathlineto{\pgfqpoint{4.238726in}{1.422252in}}% +\pgfpathlineto{\pgfqpoint{4.249246in}{1.425947in}}% +\pgfpathlineto{\pgfqpoint{4.259767in}{1.425647in}}% +\pgfpathlineto{\pgfqpoint{4.270288in}{1.420614in}}% +\pgfpathlineto{\pgfqpoint{4.280808in}{1.409065in}}% +\pgfpathlineto{\pgfqpoint{4.291329in}{1.386460in}}% +\pgfpathlineto{\pgfqpoint{4.301850in}{1.336089in}}% +\pgfpathlineto{\pgfqpoint{4.312370in}{1.243109in}}% +\pgfpathlineto{\pgfqpoint{4.322891in}{1.378553in}}% +\pgfpathlineto{\pgfqpoint{4.333412in}{1.427339in}}% +\pgfpathlineto{\pgfqpoint{4.343932in}{1.458322in}}% +\pgfpathlineto{\pgfqpoint{4.354453in}{1.480714in}}% +\pgfpathlineto{\pgfqpoint{4.364974in}{1.497596in}}% +\pgfpathlineto{\pgfqpoint{4.375494in}{1.510260in}}% +\pgfpathlineto{\pgfqpoint{4.386015in}{1.519216in}}% +\pgfpathlineto{\pgfqpoint{4.396535in}{1.524465in}}% +\pgfpathlineto{\pgfqpoint{4.407056in}{1.525490in}}% +\pgfpathlineto{\pgfqpoint{4.417577in}{1.520937in}}% +\pgfpathlineto{\pgfqpoint{4.428097in}{1.507479in}}% +\pgfpathlineto{\pgfqpoint{4.438618in}{1.474617in}}% +\pgfpathlineto{\pgfqpoint{4.449139in}{1.314577in}}% +\pgfpathlineto{\pgfqpoint{4.459659in}{1.485673in}}% +\pgfpathlineto{\pgfqpoint{4.470180in}{1.551495in}}% +\pgfpathlineto{\pgfqpoint{4.480701in}{1.593377in}}% +\pgfpathlineto{\pgfqpoint{4.491221in}{1.625643in}}% +\pgfpathlineto{\pgfqpoint{4.501742in}{1.652565in}}% +\pgfpathlineto{\pgfqpoint{4.522783in}{1.696993in}}% +\pgfpathlineto{\pgfqpoint{4.543825in}{1.733708in}}% +\pgfpathlineto{\pgfqpoint{4.564866in}{1.765480in}}% +\pgfpathlineto{\pgfqpoint{4.585907in}{1.793716in}}% +\pgfpathlineto{\pgfqpoint{4.617469in}{1.831170in}}% +\pgfpathlineto{\pgfqpoint{4.649031in}{1.864168in}}% +\pgfpathlineto{\pgfqpoint{4.680593in}{1.893718in}}% +\pgfpathlineto{\pgfqpoint{4.712155in}{1.920483in}}% +\pgfpathlineto{\pgfqpoint{4.754238in}{1.952620in}}% +\pgfpathlineto{\pgfqpoint{4.796320in}{1.981401in}}% +\pgfpathlineto{\pgfqpoint{4.838403in}{2.007379in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.025274in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.025274in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.835937in}}% +\pgfpathlineto{\pgfqpoint{0.682746in}{1.256802in}}% +\pgfpathlineto{\pgfqpoint{0.693267in}{1.291493in}}% +\pgfpathlineto{\pgfqpoint{0.703788in}{1.304580in}}% +\pgfpathlineto{\pgfqpoint{0.714308in}{1.308198in}}% +\pgfpathlineto{\pgfqpoint{0.724829in}{1.306018in}}% +\pgfpathlineto{\pgfqpoint{0.735350in}{1.299517in}}% +\pgfpathlineto{\pgfqpoint{0.745870in}{1.289274in}}% +\pgfpathlineto{\pgfqpoint{0.756391in}{1.275334in}}% +\pgfpathlineto{\pgfqpoint{0.766912in}{1.257247in}}% +\pgfpathlineto{\pgfqpoint{0.777432in}{1.233822in}}% +\pgfpathlineto{\pgfqpoint{0.787953in}{1.202253in}}% +\pgfpathlineto{\pgfqpoint{0.798474in}{1.154448in}}% +\pgfpathlineto{\pgfqpoint{0.808994in}{1.040899in}}% +\pgfpathlineto{\pgfqpoint{0.830036in}{1.147619in}}% +\pgfpathlineto{\pgfqpoint{0.840556in}{1.170105in}}% +\pgfpathlineto{\pgfqpoint{0.851077in}{1.180735in}}% +\pgfpathlineto{\pgfqpoint{0.861598in}{1.184559in}}% +\pgfpathlineto{\pgfqpoint{0.872118in}{1.183522in}}% +\pgfpathlineto{\pgfqpoint{0.882639in}{1.178435in}}% +\pgfpathlineto{\pgfqpoint{0.893159in}{1.169509in}}% +\pgfpathlineto{\pgfqpoint{0.903680in}{1.156468in}}% +\pgfpathlineto{\pgfqpoint{0.914201in}{1.138408in}}% +\pgfpathlineto{\pgfqpoint{0.924721in}{1.113191in}}% +\pgfpathlineto{\pgfqpoint{0.935242in}{1.075165in}}% +\pgfpathlineto{\pgfqpoint{0.945763in}{1.000188in}}% +\pgfpathlineto{\pgfqpoint{0.956283in}{0.965596in}}% +\pgfpathlineto{\pgfqpoint{0.966804in}{1.049574in}}% +\pgfpathlineto{\pgfqpoint{0.977325in}{1.080824in}}% +\pgfpathlineto{\pgfqpoint{0.987845in}{1.097048in}}% +\pgfpathlineto{\pgfqpoint{0.998366in}{1.105375in}}% +\pgfpathlineto{\pgfqpoint{1.008887in}{1.108347in}}% +\pgfpathlineto{\pgfqpoint{1.019407in}{1.107033in}}% +\pgfpathlineto{\pgfqpoint{1.029928in}{1.101804in}}% +\pgfpathlineto{\pgfqpoint{1.040449in}{1.092536in}}% +\pgfpathlineto{\pgfqpoint{1.050969in}{1.078551in}}% +\pgfpathlineto{\pgfqpoint{1.061490in}{1.058202in}}% +\pgfpathlineto{\pgfqpoint{1.072010in}{1.027383in}}% +\pgfpathlineto{\pgfqpoint{1.082531in}{0.971895in}}% +\pgfpathlineto{\pgfqpoint{1.093052in}{0.810490in}}% +\pgfpathlineto{\pgfqpoint{1.103572in}{0.979693in}}% +\pgfpathlineto{\pgfqpoint{1.114093in}{1.021217in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{1.042901in}}% +\pgfpathlineto{\pgfqpoint{1.135134in}{1.055287in}}% +\pgfpathlineto{\pgfqpoint{1.145655in}{1.061740in}}% +\pgfpathlineto{\pgfqpoint{1.156176in}{1.063645in}}% +\pgfpathlineto{\pgfqpoint{1.166696in}{1.061546in}}% +\pgfpathlineto{\pgfqpoint{1.177217in}{1.055466in}}% +\pgfpathlineto{\pgfqpoint{1.187738in}{1.044917in}}% +\pgfpathlineto{\pgfqpoint{1.198258in}{1.028623in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{1.003523in}}% +\pgfpathlineto{\pgfqpoint{1.219300in}{0.960416in}}% +\pgfpathlineto{\pgfqpoint{1.229820in}{0.830465in}}% +\pgfpathlineto{\pgfqpoint{1.240341in}{0.928751in}}% +\pgfpathlineto{\pgfqpoint{1.250862in}{0.984265in}}% +\pgfpathlineto{\pgfqpoint{1.261382in}{1.011855in}}% +\pgfpathlineto{\pgfqpoint{1.271903in}{1.028241in}}% +\pgfpathlineto{\pgfqpoint{1.282423in}{1.037968in}}% +\pgfpathlineto{\pgfqpoint{1.292944in}{1.042829in}}% +\pgfpathlineto{\pgfqpoint{1.303465in}{1.043567in}}% +\pgfpathlineto{\pgfqpoint{1.313985in}{1.040349in}}% +\pgfpathlineto{\pgfqpoint{1.324506in}{1.032854in}}% +\pgfpathlineto{\pgfqpoint{1.335027in}{1.020100in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{0.999757in}}% +\pgfpathlineto{\pgfqpoint{1.356068in}{0.965493in}}% +\pgfpathlineto{\pgfqpoint{1.366589in}{0.887519in}}% +\pgfpathlineto{\pgfqpoint{1.377109in}{0.887632in}}% +\pgfpathlineto{\pgfqpoint{1.387630in}{0.965829in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{1.000316in}}% +\pgfpathlineto{\pgfqpoint{1.408671in}{1.020877in}}% +\pgfpathlineto{\pgfqpoint{1.419192in}{1.033844in}}% +\pgfpathlineto{\pgfqpoint{1.429713in}{1.041545in}}% +\pgfpathlineto{\pgfqpoint{1.440233in}{1.044960in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{1.044410in}}% +\pgfpathlineto{\pgfqpoint{1.461274in}{1.039726in}}% +\pgfpathlineto{\pgfqpoint{1.471795in}{1.030162in}}% +\pgfpathlineto{\pgfqpoint{1.482316in}{1.013925in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{0.986467in}}% +\pgfpathlineto{\pgfqpoint{1.503357in}{0.931067in}}% +\pgfpathlineto{\pgfqpoint{1.513878in}{0.832872in}}% +\pgfpathlineto{\pgfqpoint{1.524398in}{0.962900in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{1.006057in}}% +\pgfpathlineto{\pgfqpoint{1.545440in}{1.031183in}}% +\pgfpathlineto{\pgfqpoint{1.555960in}{1.047476in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{1.057995in}}% +\pgfpathlineto{\pgfqpoint{1.577002in}{1.064015in}}% +\pgfpathlineto{\pgfqpoint{1.587522in}{1.066021in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{1.063990in}}% +\pgfpathlineto{\pgfqpoint{1.608564in}{1.057374in}}% +\pgfpathlineto{\pgfqpoint{1.619084in}{1.044787in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{1.022861in}}% +\pgfpathlineto{\pgfqpoint{1.640126in}{0.981052in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{0.811526in}}% +\pgfpathlineto{\pgfqpoint{1.661167in}{0.972546in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{1.027607in}}% +\pgfpathlineto{\pgfqpoint{1.682208in}{1.057946in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{1.077759in}}% +\pgfpathlineto{\pgfqpoint{1.703249in}{1.091151in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{1.099764in}}% +\pgfpathlineto{\pgfqpoint{1.724291in}{1.104275in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{1.104802in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{1.100974in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{1.091716in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{1.074483in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{1.042143in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{0.956989in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{0.990316in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{1.063932in}}% +\pgfpathlineto{\pgfqpoint{1.818977in}{1.100499in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{1.124150in}}% +\pgfpathlineto{\pgfqpoint{1.840018in}{1.140536in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.151786in}}% +\pgfpathlineto{\pgfqpoint{1.861059in}{1.158800in}}% +\pgfpathlineto{\pgfqpoint{1.871580in}{1.161845in}}% +\pgfpathlineto{\pgfqpoint{1.882100in}{1.160704in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{1.154558in}}% +\pgfpathlineto{\pgfqpoint{1.903142in}{1.141454in}}% +\pgfpathlineto{\pgfqpoint{1.913662in}{1.116333in}}% +\pgfpathlineto{\pgfqpoint{1.934704in}{1.003819in}}% +\pgfpathlineto{\pgfqpoint{1.945224in}{1.114186in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{1.158603in}}% +\pgfpathlineto{\pgfqpoint{1.966266in}{1.186562in}}% +\pgfpathlineto{\pgfqpoint{1.976786in}{1.206139in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{1.220125in}}% +\pgfpathlineto{\pgfqpoint{1.997828in}{1.229688in}}% +\pgfpathlineto{\pgfqpoint{2.008348in}{1.235258in}}% +\pgfpathlineto{\pgfqpoint{2.018869in}{1.236763in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{1.233595in}}% +\pgfpathlineto{\pgfqpoint{2.039910in}{1.224244in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{1.204998in}}% +\pgfpathlineto{\pgfqpoint{2.060951in}{1.163677in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{0.922658in}}% +\pgfpathlineto{\pgfqpoint{2.081993in}{1.177378in}}% +\pgfpathlineto{\pgfqpoint{2.092513in}{1.232401in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{1.265350in}}% +\pgfpathlineto{\pgfqpoint{2.113555in}{1.288409in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{1.305288in}}% +\pgfpathlineto{\pgfqpoint{2.134596in}{1.317498in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{1.325651in}}% +\pgfpathlineto{\pgfqpoint{2.155637in}{1.329817in}}% +\pgfpathlineto{\pgfqpoint{2.166158in}{1.329570in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{1.323739in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{1.309537in}}% +\pgfpathlineto{\pgfqpoint{2.197720in}{1.278890in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{1.182304in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{1.322423in}}% +\pgfpathlineto{\pgfqpoint{2.239802in}{1.361369in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{1.388316in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{1.408322in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{1.423343in}}% +\pgfpathlineto{\pgfqpoint{2.281885in}{1.434198in}}% +\pgfpathlineto{\pgfqpoint{2.292406in}{1.441106in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{1.443801in}}% +\pgfpathlineto{\pgfqpoint{2.313447in}{1.441385in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{1.431728in}}% +\pgfpathlineto{\pgfqpoint{2.334488in}{1.409184in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{1.349617in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{1.330370in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{1.429635in}}% +\pgfpathlineto{\pgfqpoint{2.376571in}{1.476118in}}% +\pgfpathlineto{\pgfqpoint{2.387092in}{1.507528in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{1.531000in}}% +\pgfpathlineto{\pgfqpoint{2.408133in}{1.549079in}}% +\pgfpathlineto{\pgfqpoint{2.418654in}{1.562841in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{1.572662in}}% +\pgfpathlineto{\pgfqpoint{2.439695in}{1.578423in}}% +\pgfpathlineto{\pgfqpoint{2.450215in}{1.579451in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{1.574104in}}% +\pgfpathlineto{\pgfqpoint{2.471257in}{1.558281in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{1.517788in}}% +\pgfpathlineto{\pgfqpoint{2.492298in}{1.371394in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{1.555594in}}% +\pgfpathlineto{\pgfqpoint{2.513339in}{1.612142in}}% +\pgfpathlineto{\pgfqpoint{2.523860in}{1.648868in}}% +\pgfpathlineto{\pgfqpoint{2.534381in}{1.676321in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{1.697871in}}% +\pgfpathlineto{\pgfqpoint{2.555422in}{1.714908in}}% +\pgfpathlineto{\pgfqpoint{2.565943in}{1.727983in}}% +\pgfpathlineto{\pgfqpoint{2.576463in}{1.737122in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{1.741843in}}% +\pgfpathlineto{\pgfqpoint{2.597505in}{1.740877in}}% +\pgfpathlineto{\pgfqpoint{2.608025in}{1.731167in}}% +\pgfpathlineto{\pgfqpoint{2.618546in}{1.703520in}}% +\pgfpathlineto{\pgfqpoint{2.629066in}{1.589101in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{1.703010in}}% +\pgfpathlineto{\pgfqpoint{2.650108in}{1.774234in}}% +\pgfpathlineto{\pgfqpoint{2.660628in}{1.817635in}}% +\pgfpathlineto{\pgfqpoint{2.671149in}{1.849943in}}% +\pgfpathlineto{\pgfqpoint{2.681670in}{1.875718in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{1.896769in}}% +\pgfpathlineto{\pgfqpoint{2.702711in}{1.913859in}}% +\pgfpathlineto{\pgfqpoint{2.713232in}{1.927182in}}% +\pgfpathlineto{\pgfqpoint{2.723752in}{1.936450in}}% +\pgfpathlineto{\pgfqpoint{2.734273in}{1.940721in}}% +\pgfpathlineto{\pgfqpoint{2.744794in}{1.937721in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{1.921182in}}% +\pgfpathlineto{\pgfqpoint{2.765835in}{1.861402in}}% +\pgfpathlineto{\pgfqpoint{2.776356in}{2.284549in}}% +\pgfpathlineto{\pgfqpoint{2.797397in}{2.251411in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{2.213008in}}% +\pgfpathlineto{\pgfqpoint{2.839479in}{2.168179in}}% +\pgfpathlineto{\pgfqpoint{2.860521in}{2.114265in}}% +\pgfpathlineto{\pgfqpoint{2.871041in}{2.082043in}}% +\pgfpathlineto{\pgfqpoint{2.881562in}{2.043971in}}% +\pgfpathlineto{\pgfqpoint{2.892083in}{1.995353in}}% +\pgfpathlineto{\pgfqpoint{2.902603in}{1.919359in}}% +\pgfpathlineto{\pgfqpoint{2.913124in}{1.801051in}}% +\pgfpathlineto{\pgfqpoint{2.923645in}{1.911381in}}% +\pgfpathlineto{\pgfqpoint{2.934165in}{1.935200in}}% +\pgfpathlineto{\pgfqpoint{2.944686in}{1.941307in}}% +\pgfpathlineto{\pgfqpoint{2.955207in}{1.938863in}}% +\pgfpathlineto{\pgfqpoint{2.965727in}{1.930899in}}% +\pgfpathlineto{\pgfqpoint{2.976248in}{1.918663in}}% +\pgfpathlineto{\pgfqpoint{2.986769in}{1.902621in}}% +\pgfpathlineto{\pgfqpoint{2.997289in}{1.882730in}}% +\pgfpathlineto{\pgfqpoint{3.007810in}{1.858428in}}% +\pgfpathlineto{\pgfqpoint{3.018330in}{1.828313in}}% +\pgfpathlineto{\pgfqpoint{3.028851in}{1.789008in}}% +\pgfpathlineto{\pgfqpoint{3.039372in}{1.729956in}}% +\pgfpathlineto{\pgfqpoint{3.049892in}{1.543319in}}% +\pgfpathlineto{\pgfqpoint{3.060413in}{1.687338in}}% +\pgfpathlineto{\pgfqpoint{3.070934in}{1.725514in}}% +\pgfpathlineto{\pgfqpoint{3.081454in}{1.739072in}}% +\pgfpathlineto{\pgfqpoint{3.091975in}{1.742204in}}% +\pgfpathlineto{\pgfqpoint{3.102496in}{1.739006in}}% +\pgfpathlineto{\pgfqpoint{3.113016in}{1.731118in}}% +\pgfpathlineto{\pgfqpoint{3.123537in}{1.719211in}}% +\pgfpathlineto{\pgfqpoint{3.134058in}{1.703398in}}% +\pgfpathlineto{\pgfqpoint{3.144578in}{1.683304in}}% +\pgfpathlineto{\pgfqpoint{3.155099in}{1.657852in}}% +\pgfpathlineto{\pgfqpoint{3.165620in}{1.624492in}}% +\pgfpathlineto{\pgfqpoint{3.176140in}{1.576089in}}% +\pgfpathlineto{\pgfqpoint{3.186661in}{1.474932in}}% +\pgfpathlineto{\pgfqpoint{3.197182in}{1.492314in}}% +\pgfpathlineto{\pgfqpoint{3.207702in}{1.550041in}}% +\pgfpathlineto{\pgfqpoint{3.218223in}{1.570771in}}% +\pgfpathlineto{\pgfqpoint{3.228743in}{1.578635in}}% +\pgfpathlineto{\pgfqpoint{3.239264in}{1.579281in}}% +\pgfpathlineto{\pgfqpoint{3.249785in}{1.574838in}}% +\pgfpathlineto{\pgfqpoint{3.260305in}{1.566201in}}% +\pgfpathlineto{\pgfqpoint{3.270826in}{1.553636in}}% +\pgfpathlineto{\pgfqpoint{3.281347in}{1.536925in}}% +\pgfpathlineto{\pgfqpoint{3.291867in}{1.515245in}}% +\pgfpathlineto{\pgfqpoint{3.302388in}{1.486643in}}% +\pgfpathlineto{\pgfqpoint{3.312909in}{1.446057in}}% +\pgfpathlineto{\pgfqpoint{3.333950in}{1.302705in}}% +\pgfpathlineto{\pgfqpoint{3.344471in}{1.397697in}}% +\pgfpathlineto{\pgfqpoint{3.354991in}{1.426764in}}% +\pgfpathlineto{\pgfqpoint{3.365512in}{1.439399in}}% +\pgfpathlineto{\pgfqpoint{3.376033in}{1.443676in}}% +\pgfpathlineto{\pgfqpoint{3.386553in}{1.442382in}}% +\pgfpathlineto{\pgfqpoint{3.397074in}{1.436687in}}% +\pgfpathlineto{\pgfqpoint{3.407594in}{1.427017in}}% +\pgfpathlineto{\pgfqpoint{3.418115in}{1.413299in}}% +\pgfpathlineto{\pgfqpoint{3.428636in}{1.394925in}}% +\pgfpathlineto{\pgfqpoint{3.439156in}{1.370381in}}% +\pgfpathlineto{\pgfqpoint{3.449677in}{1.335956in}}% +\pgfpathlineto{\pgfqpoint{3.460198in}{1.279468in}}% +\pgfpathlineto{\pgfqpoint{3.468361in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.473113in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.481239in}{1.262863in}}% +\pgfpathlineto{\pgfqpoint{3.491760in}{1.302745in}}% +\pgfpathlineto{\pgfqpoint{3.502280in}{1.320560in}}% +\pgfpathlineto{\pgfqpoint{3.512801in}{1.328489in}}% +\pgfpathlineto{\pgfqpoint{3.523322in}{1.330242in}}% +\pgfpathlineto{\pgfqpoint{3.533842in}{1.327329in}}% +\pgfpathlineto{\pgfqpoint{3.544363in}{1.320358in}}% +\pgfpathlineto{\pgfqpoint{3.554884in}{1.309401in}}% +\pgfpathlineto{\pgfqpoint{3.565404in}{1.294028in}}% +\pgfpathlineto{\pgfqpoint{3.575925in}{1.273069in}}% +\pgfpathlineto{\pgfqpoint{3.586446in}{1.243734in}}% +\pgfpathlineto{\pgfqpoint{3.596966in}{1.197947in}}% +\pgfpathlineto{\pgfqpoint{3.607487in}{1.086216in}}% +\pgfpathlineto{\pgfqpoint{3.628528in}{1.196016in}}% +\pgfpathlineto{\pgfqpoint{3.639049in}{1.219786in}}% +\pgfpathlineto{\pgfqpoint{3.649569in}{1.231545in}}% +\pgfpathlineto{\pgfqpoint{3.660090in}{1.236349in}}% +\pgfpathlineto{\pgfqpoint{3.670611in}{1.236152in}}% +\pgfpathlineto{\pgfqpoint{3.681131in}{1.231772in}}% +\pgfpathlineto{\pgfqpoint{3.691652in}{1.223428in}}% +\pgfpathlineto{\pgfqpoint{3.702173in}{1.210850in}}% +\pgfpathlineto{\pgfqpoint{3.712693in}{1.193139in}}% +\pgfpathlineto{\pgfqpoint{3.723214in}{1.168166in}}% +\pgfpathlineto{\pgfqpoint{3.733735in}{1.130280in}}% +\pgfpathlineto{\pgfqpoint{3.744255in}{1.055346in}}% +\pgfpathlineto{\pgfqpoint{3.754776in}{1.020705in}}% +\pgfpathlineto{\pgfqpoint{3.765297in}{1.104545in}}% +\pgfpathlineto{\pgfqpoint{3.775817in}{1.135574in}}% +\pgfpathlineto{\pgfqpoint{3.786338in}{1.151496in}}% +\pgfpathlineto{\pgfqpoint{3.796858in}{1.159445in}}% +\pgfpathlineto{\pgfqpoint{3.807379in}{1.161966in}}% +\pgfpathlineto{\pgfqpoint{3.817900in}{1.160131in}}% +\pgfpathlineto{\pgfqpoint{3.828420in}{1.154313in}}% +\pgfpathlineto{\pgfqpoint{3.838941in}{1.144393in}}% +\pgfpathlineto{\pgfqpoint{3.849462in}{1.129696in}}% +\pgfpathlineto{\pgfqpoint{3.859982in}{1.108576in}}% +\pgfpathlineto{\pgfqpoint{3.870503in}{1.076931in}}% +\pgfpathlineto{\pgfqpoint{3.881024in}{1.020563in}}% +\pgfpathlineto{\pgfqpoint{3.891544in}{0.858239in}}% +\pgfpathlineto{\pgfqpoint{3.902065in}{1.026453in}}% +\pgfpathlineto{\pgfqpoint{3.912586in}{1.066952in}}% +\pgfpathlineto{\pgfqpoint{3.923106in}{1.087567in}}% +\pgfpathlineto{\pgfqpoint{3.933627in}{1.098842in}}% +\pgfpathlineto{\pgfqpoint{3.944148in}{1.104143in}}% +\pgfpathlineto{\pgfqpoint{3.954668in}{1.104858in}}% +\pgfpathlineto{\pgfqpoint{3.965189in}{1.101533in}}% +\pgfpathlineto{\pgfqpoint{3.975710in}{1.094192in}}% +\pgfpathlineto{\pgfqpoint{3.986230in}{1.082349in}}% +\pgfpathlineto{\pgfqpoint{3.996751in}{1.064730in}}% +\pgfpathlineto{\pgfqpoint{4.007271in}{1.038274in}}% +\pgfpathlineto{\pgfqpoint{4.017792in}{0.993784in}}% +\pgfpathlineto{\pgfqpoint{4.028313in}{0.862420in}}% +\pgfpathlineto{\pgfqpoint{4.038833in}{0.959274in}}% +\pgfpathlineto{\pgfqpoint{4.049354in}{1.013330in}}% +\pgfpathlineto{\pgfqpoint{4.059875in}{1.039439in}}% +\pgfpathlineto{\pgfqpoint{4.070395in}{1.054322in}}% +\pgfpathlineto{\pgfqpoint{4.080916in}{1.062528in}}% +\pgfpathlineto{\pgfqpoint{4.091437in}{1.065849in}}% +\pgfpathlineto{\pgfqpoint{4.101957in}{1.065030in}}% +\pgfpathlineto{\pgfqpoint{4.112478in}{1.060240in}}% +\pgfpathlineto{\pgfqpoint{4.122999in}{1.051159in}}% +\pgfpathlineto{\pgfqpoint{4.133519in}{1.036805in}}% +\pgfpathlineto{\pgfqpoint{4.144040in}{1.014850in}}% +\pgfpathlineto{\pgfqpoint{4.154561in}{0.978963in}}% +\pgfpathlineto{\pgfqpoint{4.165081in}{0.899359in}}% +\pgfpathlineto{\pgfqpoint{4.175602in}{0.897831in}}% +\pgfpathlineto{\pgfqpoint{4.186122in}{0.974381in}}% +\pgfpathlineto{\pgfqpoint{4.196643in}{1.007214in}}% +\pgfpathlineto{\pgfqpoint{4.207164in}{1.026117in}}% +\pgfpathlineto{\pgfqpoint{4.217684in}{1.037423in}}% +\pgfpathlineto{\pgfqpoint{4.228205in}{1.043460in}}% +\pgfpathlineto{\pgfqpoint{4.238726in}{1.045210in}}% +\pgfpathlineto{\pgfqpoint{4.249246in}{1.042995in}}% +\pgfpathlineto{\pgfqpoint{4.259767in}{1.036646in}}% +\pgfpathlineto{\pgfqpoint{4.270288in}{1.025419in}}% +\pgfpathlineto{\pgfqpoint{4.280808in}{1.007523in}}% +\pgfpathlineto{\pgfqpoint{4.291329in}{0.978410in}}% +\pgfpathlineto{\pgfqpoint{4.301850in}{0.921361in}}% +\pgfpathlineto{\pgfqpoint{4.312370in}{0.821523in}}% +\pgfpathlineto{\pgfqpoint{4.322891in}{0.949917in}}% +\pgfpathlineto{\pgfqpoint{4.333412in}{0.991449in}}% +\pgfpathlineto{\pgfqpoint{4.343932in}{1.014960in}}% +\pgfpathlineto{\pgfqpoint{4.354453in}{1.029650in}}% +\pgfpathlineto{\pgfqpoint{4.364974in}{1.038578in}}% +\pgfpathlineto{\pgfqpoint{4.375494in}{1.043021in}}% +\pgfpathlineto{\pgfqpoint{4.386015in}{1.043466in}}% +\pgfpathlineto{\pgfqpoint{4.396535in}{1.039890in}}% +\pgfpathlineto{\pgfqpoint{4.407056in}{1.031747in}}% +\pgfpathlineto{\pgfqpoint{4.417577in}{1.017652in}}% +\pgfpathlineto{\pgfqpoint{4.428097in}{0.994238in}}% +\pgfpathlineto{\pgfqpoint{4.438618in}{0.950964in}}% +\pgfpathlineto{\pgfqpoint{4.449139in}{0.780000in}}% +\pgfpathlineto{\pgfqpoint{4.459659in}{0.939598in}}% +\pgfpathlineto{\pgfqpoint{4.470180in}{0.993268in}}% +\pgfpathlineto{\pgfqpoint{4.480701in}{1.022242in}}% +\pgfpathlineto{\pgfqpoint{4.491221in}{1.040722in}}% +\pgfpathlineto{\pgfqpoint{4.501742in}{1.052809in}}% +\pgfpathlineto{\pgfqpoint{4.512263in}{1.060152in}}% +\pgfpathlineto{\pgfqpoint{4.522783in}{1.063425in}}% +\pgfpathlineto{\pgfqpoint{4.533304in}{1.062752in}}% +\pgfpathlineto{\pgfqpoint{4.543825in}{1.057760in}}% +\pgfpathlineto{\pgfqpoint{4.554345in}{1.047379in}}% +\pgfpathlineto{\pgfqpoint{4.564866in}{1.029065in}}% +\pgfpathlineto{\pgfqpoint{4.575386in}{0.995686in}}% +\pgfpathlineto{\pgfqpoint{4.585907in}{0.909540in}}% +\pgfpathlineto{\pgfqpoint{4.596428in}{0.941921in}}% +\pgfpathlineto{\pgfqpoint{4.606948in}{1.014643in}}% +\pgfpathlineto{\pgfqpoint{4.617469in}{1.050366in}}% +\pgfpathlineto{\pgfqpoint{4.627990in}{1.073230in}}% +\pgfpathlineto{\pgfqpoint{4.638510in}{1.088886in}}% +\pgfpathlineto{\pgfqpoint{4.649031in}{1.099466in}}% +\pgfpathlineto{\pgfqpoint{4.659552in}{1.105872in}}% +\pgfpathlineto{\pgfqpoint{4.670072in}{1.108376in}}% +\pgfpathlineto{\pgfqpoint{4.680593in}{1.106762in}}% +\pgfpathlineto{\pgfqpoint{4.691114in}{1.100216in}}% +\pgfpathlineto{\pgfqpoint{4.701634in}{1.086787in}}% +\pgfpathlineto{\pgfqpoint{4.712155in}{1.061420in}}% +\pgfpathlineto{\pgfqpoint{4.733196in}{0.948666in}}% +\pgfpathlineto{\pgfqpoint{4.743717in}{1.059048in}}% +\pgfpathlineto{\pgfqpoint{4.754238in}{1.103576in}}% +\pgfpathlineto{\pgfqpoint{4.764758in}{1.131746in}}% +\pgfpathlineto{\pgfqpoint{4.775279in}{1.151641in}}% +\pgfpathlineto{\pgfqpoint{4.785799in}{1.166055in}}% +\pgfpathlineto{\pgfqpoint{4.796320in}{1.176164in}}% +\pgfpathlineto{\pgfqpoint{4.806841in}{1.182402in}}% +\pgfpathlineto{\pgfqpoint{4.817361in}{1.184707in}}% +\pgfpathlineto{\pgfqpoint{4.827882in}{1.182476in}}% +\pgfpathlineto{\pgfqpoint{4.838403in}{1.174207in}}% +\pgfpathlineto{\pgfqpoint{4.848923in}{1.156199in}}% +\pgfpathlineto{\pgfqpoint{4.859444in}{1.116278in}}% +\pgfpathlineto{\pgfqpoint{4.866636in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.866636in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.835897in}}% +\pgfpathlineto{\pgfqpoint{0.682746in}{0.660479in}}% +\pgfpathlineto{\pgfqpoint{0.693267in}{0.705644in}}% +\pgfpathlineto{\pgfqpoint{0.703788in}{0.728746in}}% +\pgfpathlineto{\pgfqpoint{0.714308in}{0.741963in}}% +\pgfpathlineto{\pgfqpoint{0.724829in}{0.749005in}}% +\pgfpathlineto{\pgfqpoint{0.735350in}{0.751379in}}% +\pgfpathlineto{\pgfqpoint{0.745870in}{0.749695in}}% +\pgfpathlineto{\pgfqpoint{0.756391in}{0.744023in}}% +\pgfpathlineto{\pgfqpoint{0.766912in}{0.733932in}}% +\pgfpathlineto{\pgfqpoint{0.777432in}{0.718253in}}% +\pgfpathlineto{\pgfqpoint{0.787953in}{0.694197in}}% +\pgfpathlineto{\pgfqpoint{0.798474in}{0.653684in}}% +\pgfpathlineto{\pgfqpoint{0.808994in}{0.547172in}}% +\pgfpathlineto{\pgfqpoint{0.830036in}{0.667544in}}% +\pgfpathlineto{\pgfqpoint{0.840556in}{0.696577in}}% +\pgfpathlineto{\pgfqpoint{0.851077in}{0.713587in}}% +\pgfpathlineto{\pgfqpoint{0.861598in}{0.723637in}}% +\pgfpathlineto{\pgfqpoint{0.872118in}{0.728681in}}% +\pgfpathlineto{\pgfqpoint{0.882639in}{0.729536in}}% +\pgfpathlineto{\pgfqpoint{0.893159in}{0.726420in}}% +\pgfpathlineto{\pgfqpoint{0.903680in}{0.719063in}}% +\pgfpathlineto{\pgfqpoint{0.914201in}{0.706568in}}% +\pgfpathlineto{\pgfqpoint{0.924721in}{0.686802in}}% +\pgfpathlineto{\pgfqpoint{0.935242in}{0.654114in}}% +\pgfpathlineto{\pgfqpoint{0.945763in}{0.584381in}}% +\pgfpathlineto{\pgfqpoint{0.956283in}{0.554998in}}% +\pgfpathlineto{\pgfqpoint{0.966804in}{0.643925in}}% +\pgfpathlineto{\pgfqpoint{0.977325in}{0.680121in}}% +\pgfpathlineto{\pgfqpoint{0.987845in}{0.701198in}}% +\pgfpathlineto{\pgfqpoint{0.998366in}{0.714293in}}% +\pgfpathlineto{\pgfqpoint{1.008887in}{0.721949in}}% +\pgfpathlineto{\pgfqpoint{1.019407in}{0.725241in}}% +\pgfpathlineto{\pgfqpoint{1.029928in}{0.724539in}}% +\pgfpathlineto{\pgfqpoint{1.040449in}{0.719723in}}% +\pgfpathlineto{\pgfqpoint{1.050969in}{0.710119in}}% +\pgfpathlineto{\pgfqpoint{1.061490in}{0.694082in}}% +\pgfpathlineto{\pgfqpoint{1.072010in}{0.667507in}}% +\pgfpathlineto{\pgfqpoint{1.082531in}{0.616188in}}% +\pgfpathlineto{\pgfqpoint{1.093052in}{0.457318in}}% +\pgfpathlineto{\pgfqpoint{1.103572in}{0.632167in}}% +\pgfpathlineto{\pgfqpoint{1.114093in}{0.677682in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{0.703303in}}% +\pgfpathlineto{\pgfqpoint{1.135134in}{0.719571in}}% +\pgfpathlineto{\pgfqpoint{1.145655in}{0.729851in}}% +\pgfpathlineto{\pgfqpoint{1.156176in}{0.735530in}}% +\pgfpathlineto{\pgfqpoint{1.166696in}{0.737155in}}% +\pgfpathlineto{\pgfqpoint{1.177217in}{0.734748in}}% +\pgfpathlineto{\pgfqpoint{1.187738in}{0.727824in}}% +\pgfpathlineto{\pgfqpoint{1.198258in}{0.715107in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{0.693538in}}% +\pgfpathlineto{\pgfqpoint{1.219300in}{0.653924in}}% +\pgfpathlineto{\pgfqpoint{1.229820in}{0.527682in}}% +\pgfpathlineto{\pgfqpoint{1.240341in}{0.629097in}}% +\pgfpathlineto{\pgfqpoint{1.250862in}{0.687971in}}% +\pgfpathlineto{\pgfqpoint{1.261382in}{0.718881in}}% +\pgfpathlineto{\pgfqpoint{1.271903in}{0.738545in}}% +\pgfpathlineto{\pgfqpoint{1.282423in}{0.751514in}}% +\pgfpathlineto{\pgfqpoint{1.292944in}{0.759578in}}% +\pgfpathlineto{\pgfqpoint{1.303465in}{0.763483in}}% +\pgfpathlineto{\pgfqpoint{1.313985in}{0.763396in}}% +\pgfpathlineto{\pgfqpoint{1.324506in}{0.758997in}}% +\pgfpathlineto{\pgfqpoint{1.335027in}{0.749304in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{0.731990in}}% +\pgfpathlineto{\pgfqpoint{1.356068in}{0.700721in}}% +\pgfpathlineto{\pgfqpoint{1.366589in}{0.625700in}}% +\pgfpathlineto{\pgfqpoint{1.377109in}{0.628738in}}% +\pgfpathlineto{\pgfqpoint{1.387630in}{0.709854in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{0.747213in}}% +\pgfpathlineto{\pgfqpoint{1.408671in}{0.770617in}}% +\pgfpathlineto{\pgfqpoint{1.419192in}{0.786397in}}% +\pgfpathlineto{\pgfqpoint{1.429713in}{0.796883in}}% +\pgfpathlineto{\pgfqpoint{1.440233in}{0.803057in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{0.805238in}}% +\pgfpathlineto{\pgfqpoint{1.461274in}{0.803257in}}% +\pgfpathlineto{\pgfqpoint{1.471795in}{0.796371in}}% +\pgfpathlineto{\pgfqpoint{1.482316in}{0.782786in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{0.757956in}}% +\pgfpathlineto{\pgfqpoint{1.503357in}{0.705161in}}% +\pgfpathlineto{\pgfqpoint{1.513878in}{0.609553in}}% +\pgfpathlineto{\pgfqpoint{1.524398in}{0.742126in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{0.787816in}}% +\pgfpathlineto{\pgfqpoint{1.545440in}{0.815452in}}% +\pgfpathlineto{\pgfqpoint{1.555960in}{0.834231in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{0.847216in}}% +\pgfpathlineto{\pgfqpoint{1.577002in}{0.855679in}}% +\pgfpathlineto{\pgfqpoint{1.587522in}{0.860108in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{0.860478in}}% +\pgfpathlineto{\pgfqpoint{1.608564in}{0.856243in}}% +\pgfpathlineto{\pgfqpoint{1.619084in}{0.846017in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{0.826432in}}% +\pgfpathlineto{\pgfqpoint{1.640126in}{0.786944in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{0.619669in}}% +\pgfpathlineto{\pgfqpoint{1.661167in}{0.783026in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{0.840352in}}% +\pgfpathlineto{\pgfqpoint{1.682208in}{0.872937in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{0.894981in}}% +\pgfpathlineto{\pgfqpoint{1.703249in}{0.910583in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{0.921391in}}% +\pgfpathlineto{\pgfqpoint{1.724291in}{0.928079in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{0.930767in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{0.929082in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{0.921952in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{0.906831in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{0.876587in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{0.793515in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{0.828905in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{0.904571in}}% +\pgfpathlineto{\pgfqpoint{1.818977in}{0.943172in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{0.968844in}}% +\pgfpathlineto{\pgfqpoint{1.840018in}{0.987236in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.000478in}}% +\pgfpathlineto{\pgfqpoint{1.861059in}{1.009469in}}% +\pgfpathlineto{\pgfqpoint{1.871580in}{1.014478in}}% +\pgfpathlineto{\pgfqpoint{1.882100in}{1.015288in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{1.011079in}}% +\pgfpathlineto{\pgfqpoint{1.903142in}{0.999898in}}% +\pgfpathlineto{\pgfqpoint{1.913662in}{0.976687in}}% +\pgfpathlineto{\pgfqpoint{1.934704in}{0.867955in}}% +\pgfpathlineto{\pgfqpoint{1.945224in}{0.980194in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{1.026471in}}% +\pgfpathlineto{\pgfqpoint{1.966266in}{1.056277in}}% +\pgfpathlineto{\pgfqpoint{1.976786in}{1.077690in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{1.093499in}}% +\pgfpathlineto{\pgfqpoint{1.997828in}{1.104874in}}% +\pgfpathlineto{\pgfqpoint{2.008348in}{1.112244in}}% +\pgfpathlineto{\pgfqpoint{2.018869in}{1.115538in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{1.114148in}}% +\pgfpathlineto{\pgfqpoint{2.039910in}{1.106563in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{1.089072in}}% +\pgfpathlineto{\pgfqpoint{2.060951in}{1.049496in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{0.922657in}}% +\pgfpathlineto{\pgfqpoint{2.081993in}{1.066653in}}% +\pgfpathlineto{\pgfqpoint{2.092513in}{1.123389in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{1.158040in}}% +\pgfpathlineto{\pgfqpoint{2.113555in}{1.182790in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{1.201351in}}% +\pgfpathlineto{\pgfqpoint{2.134596in}{1.215234in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{1.225048in}}% +\pgfpathlineto{\pgfqpoint{2.155637in}{1.230867in}}% +\pgfpathlineto{\pgfqpoint{2.166158in}{1.232261in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{1.228064in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{1.215486in}}% +\pgfpathlineto{\pgfqpoint{2.197720in}{1.186452in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{1.091471in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{1.234773in}}% +\pgfpathlineto{\pgfqpoint{2.239802in}{1.275297in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{1.303813in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{1.325380in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{1.341952in}}% +\pgfpathlineto{\pgfqpoint{2.281885in}{1.354351in}}% +\pgfpathlineto{\pgfqpoint{2.292406in}{1.362794in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{1.367016in}}% +\pgfpathlineto{\pgfqpoint{2.313447in}{1.366118in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{1.357972in}}% +\pgfpathlineto{\pgfqpoint{2.334488in}{1.336930in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{1.278858in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{1.261098in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{1.361842in}}% +\pgfpathlineto{\pgfqpoint{2.376571in}{1.409796in}}% +\pgfpathlineto{\pgfqpoint{2.387092in}{1.442670in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{1.467598in}}% +\pgfpathlineto{\pgfqpoint{2.408133in}{1.487126in}}% +\pgfpathlineto{\pgfqpoint{2.418654in}{1.502330in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{1.513585in}}% +\pgfpathlineto{\pgfqpoint{2.439695in}{1.520773in}}% +\pgfpathlineto{\pgfqpoint{2.450215in}{1.523221in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{1.519286in}}% +\pgfpathlineto{\pgfqpoint{2.471257in}{1.504869in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{1.465774in}}% +\pgfpathlineto{\pgfqpoint{2.492298in}{1.320772in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{1.506356in}}% +\pgfpathlineto{\pgfqpoint{2.513339in}{1.564281in}}% +\pgfpathlineto{\pgfqpoint{2.523860in}{1.602378in}}% +\pgfpathlineto{\pgfqpoint{2.534381in}{1.631195in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{1.654103in}}% +\pgfpathlineto{\pgfqpoint{2.555422in}{1.672491in}}% +\pgfpathlineto{\pgfqpoint{2.565943in}{1.686911in}}% +\pgfpathlineto{\pgfqpoint{2.576463in}{1.697389in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{1.703445in}}% +\pgfpathlineto{\pgfqpoint{2.597505in}{1.703809in}}% +\pgfpathlineto{\pgfqpoint{2.608025in}{1.695424in}}% +\pgfpathlineto{\pgfqpoint{2.618546in}{1.669098in}}% +\pgfpathlineto{\pgfqpoint{2.629066in}{1.555997in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{1.671220in}}% +\pgfpathlineto{\pgfqpoint{2.650108in}{1.743757in}}% +\pgfpathlineto{\pgfqpoint{2.660628in}{1.788467in}}% +\pgfpathlineto{\pgfqpoint{2.671149in}{1.822081in}}% +\pgfpathlineto{\pgfqpoint{2.681670in}{1.849160in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{1.871508in}}% +\pgfpathlineto{\pgfqpoint{2.702711in}{1.889890in}}% +\pgfpathlineto{\pgfqpoint{2.713232in}{1.904497in}}% +\pgfpathlineto{\pgfqpoint{2.723752in}{1.915038in}}% +\pgfpathlineto{\pgfqpoint{2.734273in}{1.920568in}}% +\pgfpathlineto{\pgfqpoint{2.744794in}{1.918808in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{1.903485in}}% +\pgfpathlineto{\pgfqpoint{2.765835in}{1.844893in}}% +\pgfpathlineto{\pgfqpoint{2.776356in}{2.283975in}}% +\pgfpathlineto{\pgfqpoint{2.797397in}{2.248513in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{2.207752in}}% +\pgfpathlineto{\pgfqpoint{2.839479in}{2.160537in}}% +\pgfpathlineto{\pgfqpoint{2.860521in}{2.104212in}}% +\pgfpathlineto{\pgfqpoint{2.871041in}{2.070776in}}% +\pgfpathlineto{\pgfqpoint{2.881562in}{2.031485in}}% +\pgfpathlineto{\pgfqpoint{2.892083in}{1.981643in}}% +\pgfpathlineto{\pgfqpoint{2.902603in}{1.904418in}}% +\pgfpathlineto{\pgfqpoint{2.913124in}{1.784875in}}% +\pgfpathlineto{\pgfqpoint{2.923645in}{1.893964in}}% +\pgfpathlineto{\pgfqpoint{2.934165in}{1.916538in}}% +\pgfpathlineto{\pgfqpoint{2.944686in}{1.921394in}}% +\pgfpathlineto{\pgfqpoint{2.955207in}{1.917694in}}% +\pgfpathlineto{\pgfqpoint{2.965727in}{1.908469in}}% +\pgfpathlineto{\pgfqpoint{2.976248in}{1.894967in}}% +\pgfpathlineto{\pgfqpoint{2.986769in}{1.877653in}}% +\pgfpathlineto{\pgfqpoint{2.997289in}{1.856485in}}% +\pgfpathlineto{\pgfqpoint{3.007810in}{1.830901in}}% +\pgfpathlineto{\pgfqpoint{3.018330in}{1.799499in}}% +\pgfpathlineto{\pgfqpoint{3.028851in}{1.758900in}}% +\pgfpathlineto{\pgfqpoint{3.039372in}{1.698550in}}% +\pgfpathlineto{\pgfqpoint{3.049892in}{1.510609in}}% +\pgfpathlineto{\pgfqpoint{3.060413in}{1.653318in}}% +\pgfpathlineto{\pgfqpoint{3.070934in}{1.690179in}}% +\pgfpathlineto{\pgfqpoint{3.081454in}{1.702415in}}% +\pgfpathlineto{\pgfqpoint{3.091975in}{1.704220in}}% +\pgfpathlineto{\pgfqpoint{3.102496in}{1.699689in}}% +\pgfpathlineto{\pgfqpoint{3.113016in}{1.690462in}}% +\pgfpathlineto{\pgfqpoint{3.123537in}{1.677209in}}% +\pgfpathlineto{\pgfqpoint{3.134058in}{1.660045in}}% +\pgfpathlineto{\pgfqpoint{3.144578in}{1.638594in}}% +\pgfpathlineto{\pgfqpoint{3.155099in}{1.611777in}}% +\pgfpathlineto{\pgfqpoint{3.165620in}{1.577047in}}% +\pgfpathlineto{\pgfqpoint{3.176140in}{1.527267in}}% +\pgfpathlineto{\pgfqpoint{3.186661in}{1.424726in}}% +\pgfpathlineto{\pgfqpoint{3.197182in}{1.440718in}}% +\pgfpathlineto{\pgfqpoint{3.207702in}{1.497048in}}% +\pgfpathlineto{\pgfqpoint{3.218223in}{1.516374in}}% +\pgfpathlineto{\pgfqpoint{3.228743in}{1.522828in}}% +\pgfpathlineto{\pgfqpoint{3.239264in}{1.522056in}}% +\pgfpathlineto{\pgfqpoint{3.249785in}{1.516188in}}% +\pgfpathlineto{\pgfqpoint{3.260305in}{1.506119in}}% +\pgfpathlineto{\pgfqpoint{3.270826in}{1.492115in}}% +\pgfpathlineto{\pgfqpoint{3.281347in}{1.473957in}}% +\pgfpathlineto{\pgfqpoint{3.291867in}{1.450824in}}% +\pgfpathlineto{\pgfqpoint{3.302388in}{1.420760in}}% +\pgfpathlineto{\pgfqpoint{3.312909in}{1.378705in}}% +\pgfpathlineto{\pgfqpoint{3.333950in}{1.232393in}}% +\pgfpathlineto{\pgfqpoint{3.344471in}{1.325892in}}% +\pgfpathlineto{\pgfqpoint{3.354991in}{1.353460in}}% +\pgfpathlineto{\pgfqpoint{3.365512in}{1.364587in}}% +\pgfpathlineto{\pgfqpoint{3.376033in}{1.367348in}}% +\pgfpathlineto{\pgfqpoint{3.386553in}{1.364530in}}% +\pgfpathlineto{\pgfqpoint{3.397074in}{1.357302in}}% +\pgfpathlineto{\pgfqpoint{3.407594in}{1.346091in}}% +\pgfpathlineto{\pgfqpoint{3.418115in}{1.330824in}}% +\pgfpathlineto{\pgfqpoint{3.428636in}{1.310891in}}% +\pgfpathlineto{\pgfqpoint{3.439156in}{1.284781in}}% +\pgfpathlineto{\pgfqpoint{3.449677in}{1.248781in}}% +\pgfpathlineto{\pgfqpoint{3.460198in}{1.190708in}}% +\pgfpathlineto{\pgfqpoint{3.467474in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.474024in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.481239in}{1.170908in}}% +\pgfpathlineto{\pgfqpoint{3.491760in}{1.209179in}}% +\pgfpathlineto{\pgfqpoint{3.502280in}{1.225373in}}% +\pgfpathlineto{\pgfqpoint{3.512801in}{1.231671in}}% +\pgfpathlineto{\pgfqpoint{3.523322in}{1.231785in}}% +\pgfpathlineto{\pgfqpoint{3.533842in}{1.227222in}}% +\pgfpathlineto{\pgfqpoint{3.544363in}{1.218593in}}% +\pgfpathlineto{\pgfqpoint{3.554884in}{1.205967in}}% +\pgfpathlineto{\pgfqpoint{3.565404in}{1.188915in}}% +\pgfpathlineto{\pgfqpoint{3.575925in}{1.166267in}}% +\pgfpathlineto{\pgfqpoint{3.586446in}{1.135233in}}% +\pgfpathlineto{\pgfqpoint{3.596966in}{1.087737in}}% +\pgfpathlineto{\pgfqpoint{3.607487in}{0.974286in}}% +\pgfpathlineto{\pgfqpoint{3.628528in}{1.080614in}}% +\pgfpathlineto{\pgfqpoint{3.639049in}{1.102633in}}% +\pgfpathlineto{\pgfqpoint{3.649569in}{1.112629in}}% +\pgfpathlineto{\pgfqpoint{3.660090in}{1.115659in}}% +\pgfpathlineto{\pgfqpoint{3.670611in}{1.113676in}}% +\pgfpathlineto{\pgfqpoint{3.681131in}{1.107500in}}% +\pgfpathlineto{\pgfqpoint{3.691652in}{1.097347in}}% +\pgfpathlineto{\pgfqpoint{3.702173in}{1.082949in}}% +\pgfpathlineto{\pgfqpoint{3.712693in}{1.063407in}}% +\pgfpathlineto{\pgfqpoint{3.723214in}{1.036589in}}% +\pgfpathlineto{\pgfqpoint{3.733735in}{0.996848in}}% +\pgfpathlineto{\pgfqpoint{3.744255in}{0.920045in}}% +\pgfpathlineto{\pgfqpoint{3.754776in}{0.883523in}}% +\pgfpathlineto{\pgfqpoint{3.765297in}{0.965470in}}% +\pgfpathlineto{\pgfqpoint{3.775817in}{0.994592in}}% +\pgfpathlineto{\pgfqpoint{3.786338in}{1.008595in}}% +\pgfpathlineto{\pgfqpoint{3.796858in}{1.014611in}}% +\pgfpathlineto{\pgfqpoint{3.807379in}{1.015185in}}% +\pgfpathlineto{\pgfqpoint{3.817900in}{1.011391in}}% +\pgfpathlineto{\pgfqpoint{3.828420in}{1.003600in}}% +\pgfpathlineto{\pgfqpoint{3.838941in}{0.991693in}}% +\pgfpathlineto{\pgfqpoint{3.849462in}{0.974994in}}% +\pgfpathlineto{\pgfqpoint{3.859982in}{0.951858in}}% +\pgfpathlineto{\pgfqpoint{3.870503in}{0.918182in}}% +\pgfpathlineto{\pgfqpoint{3.881024in}{0.859769in}}% +\pgfpathlineto{\pgfqpoint{3.891544in}{0.695384in}}% +\pgfpathlineto{\pgfqpoint{3.902065in}{0.861522in}}% +\pgfpathlineto{\pgfqpoint{3.912586in}{0.899930in}}% +\pgfpathlineto{\pgfqpoint{3.923106in}{0.918438in}}% +\pgfpathlineto{\pgfqpoint{3.933627in}{0.927591in}}% +\pgfpathlineto{\pgfqpoint{3.944148in}{0.930753in}}% +\pgfpathlineto{\pgfqpoint{3.954668in}{0.929312in}}% +\pgfpathlineto{\pgfqpoint{3.965189in}{0.923815in}}% +\pgfpathlineto{\pgfqpoint{3.975710in}{0.914285in}}% +\pgfpathlineto{\pgfqpoint{3.986230in}{0.900236in}}% +\pgfpathlineto{\pgfqpoint{3.996751in}{0.880393in}}% +\pgfpathlineto{\pgfqpoint{4.007271in}{0.851695in}}% +\pgfpathlineto{\pgfqpoint{4.017792in}{0.804945in}}% +\pgfpathlineto{\pgfqpoint{4.028313in}{0.671302in}}% +\pgfpathlineto{\pgfqpoint{4.038833in}{0.765860in}}% +\pgfpathlineto{\pgfqpoint{4.049354in}{0.817600in}}% +\pgfpathlineto{\pgfqpoint{4.059875in}{0.841373in}}% +\pgfpathlineto{\pgfqpoint{4.070395in}{0.853902in}}% +\pgfpathlineto{\pgfqpoint{4.080916in}{0.859733in}}% +\pgfpathlineto{\pgfqpoint{4.091437in}{0.860658in}}% +\pgfpathlineto{\pgfqpoint{4.101957in}{0.857423in}}% +\pgfpathlineto{\pgfqpoint{4.112478in}{0.850196in}}% +\pgfpathlineto{\pgfqpoint{4.122999in}{0.838656in}}% +\pgfpathlineto{\pgfqpoint{4.133519in}{0.821822in}}% +\pgfpathlineto{\pgfqpoint{4.144040in}{0.797365in}}% +\pgfpathlineto{\pgfqpoint{4.154561in}{0.758953in}}% +\pgfpathlineto{\pgfqpoint{4.165081in}{0.676800in}}% +\pgfpathlineto{\pgfqpoint{4.175602in}{0.672700in}}% +\pgfpathlineto{\pgfqpoint{4.186122in}{0.746654in}}% +\pgfpathlineto{\pgfqpoint{4.196643in}{0.776867in}}% +\pgfpathlineto{\pgfqpoint{4.207164in}{0.793125in}}% +\pgfpathlineto{\pgfqpoint{4.217684in}{0.801761in}}% +\pgfpathlineto{\pgfqpoint{4.228205in}{0.805101in}}% +\pgfpathlineto{\pgfqpoint{4.238726in}{0.804129in}}% +\pgfpathlineto{\pgfqpoint{4.249246in}{0.799164in}}% +\pgfpathlineto{\pgfqpoint{4.259767in}{0.790038in}}% +\pgfpathlineto{\pgfqpoint{4.270288in}{0.776006in}}% +\pgfpathlineto{\pgfqpoint{4.280808in}{0.755276in}}% +\pgfpathlineto{\pgfqpoint{4.291329in}{0.723301in}}% +\pgfpathlineto{\pgfqpoint{4.301850in}{0.663359in}}% +\pgfpathlineto{\pgfqpoint{4.312370in}{0.560600in}}% +\pgfpathlineto{\pgfqpoint{4.322891in}{0.686038in}}% +\pgfpathlineto{\pgfqpoint{4.333412in}{0.724584in}}% +\pgfpathlineto{\pgfqpoint{4.343932in}{0.745077in}}% +\pgfpathlineto{\pgfqpoint{4.354453in}{0.756714in}}% +\pgfpathlineto{\pgfqpoint{4.364974in}{0.762557in}}% +\pgfpathlineto{\pgfqpoint{4.375494in}{0.763880in}}% +\pgfpathlineto{\pgfqpoint{4.386015in}{0.761169in}}% +\pgfpathlineto{\pgfqpoint{4.396535in}{0.754400in}}% +\pgfpathlineto{\pgfqpoint{4.407056in}{0.743028in}}% +\pgfpathlineto{\pgfqpoint{4.417577in}{0.725665in}}% +\pgfpathlineto{\pgfqpoint{4.428097in}{0.698944in}}% +\pgfpathlineto{\pgfqpoint{4.438618in}{0.652322in}}% +\pgfpathlineto{\pgfqpoint{4.449139in}{0.477972in}}% +\pgfpathlineto{\pgfqpoint{4.459659in}{0.634137in}}% +\pgfpathlineto{\pgfqpoint{4.470180in}{0.684334in}}% +\pgfpathlineto{\pgfqpoint{4.480701in}{0.709791in}}% +\pgfpathlineto{\pgfqpoint{4.491221in}{0.724706in}}% +\pgfpathlineto{\pgfqpoint{4.501742in}{0.733183in}}% +\pgfpathlineto{\pgfqpoint{4.512263in}{0.736867in}}% +\pgfpathlineto{\pgfqpoint{4.522783in}{0.736433in}}% +\pgfpathlineto{\pgfqpoint{4.533304in}{0.732001in}}% +\pgfpathlineto{\pgfqpoint{4.543825in}{0.723198in}}% +\pgfpathlineto{\pgfqpoint{4.554345in}{0.708952in}}% +\pgfpathlineto{\pgfqpoint{4.564866in}{0.686718in}}% +\pgfpathlineto{\pgfqpoint{4.575386in}{0.649362in}}% +\pgfpathlineto{\pgfqpoint{4.585907in}{0.559179in}}% +\pgfpathlineto{\pgfqpoint{4.596428in}{0.587464in}}% +\pgfpathlineto{\pgfqpoint{4.606948in}{0.656026in}}% +\pgfpathlineto{\pgfqpoint{4.617469in}{0.687526in}}% +\pgfpathlineto{\pgfqpoint{4.627990in}{0.706099in}}% +\pgfpathlineto{\pgfqpoint{4.638510in}{0.717395in}}% +\pgfpathlineto{\pgfqpoint{4.649031in}{0.723544in}}% +\pgfpathlineto{\pgfqpoint{4.659552in}{0.725446in}}% +\pgfpathlineto{\pgfqpoint{4.670072in}{0.723368in}}% +\pgfpathlineto{\pgfqpoint{4.680593in}{0.717094in}}% +\pgfpathlineto{\pgfqpoint{4.691114in}{0.705805in}}% +\pgfpathlineto{\pgfqpoint{4.701634in}{0.687548in}}% +\pgfpathlineto{\pgfqpoint{4.712155in}{0.657266in}}% +\pgfpathlineto{\pgfqpoint{4.733196in}{0.534402in}}% +\pgfpathlineto{\pgfqpoint{4.743717in}{0.639578in}}% +\pgfpathlineto{\pgfqpoint{4.754238in}{0.678796in}}% +\pgfpathlineto{\pgfqpoint{4.764758in}{0.701552in}}% +\pgfpathlineto{\pgfqpoint{4.775279in}{0.715918in}}% +\pgfpathlineto{\pgfqpoint{4.785799in}{0.724684in}}% +\pgfpathlineto{\pgfqpoint{4.796320in}{0.729021in}}% +\pgfpathlineto{\pgfqpoint{4.806841in}{0.729358in}}% +\pgfpathlineto{\pgfqpoint{4.817361in}{0.725625in}}% +\pgfpathlineto{\pgfqpoint{4.827882in}{0.717212in}}% +\pgfpathlineto{\pgfqpoint{4.838403in}{0.702610in}}% +\pgfpathlineto{\pgfqpoint{4.848923in}{0.678109in}}% +\pgfpathlineto{\pgfqpoint{4.859444in}{0.631528in}}% +\pgfpathlineto{\pgfqpoint{4.861399in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.861399in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.753212in}{1.516709in}}% +\pgfpathlineto{\pgfqpoint{1.470533in}{1.516709in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.493672in}{1.516709in}}{\pgfqpoint{1.493672in}{1.539848in}}% +\pgfpathlineto{\pgfqpoint{1.493672in}{2.377344in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.493672in}{2.400483in}}{\pgfqpoint{1.470533in}{2.400483in}}% +\pgfpathlineto{\pgfqpoint{0.753212in}{2.400483in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.730073in}{2.400483in}}{\pgfqpoint{0.730073in}{2.377344in}}% +\pgfpathlineto{\pgfqpoint{0.730073in}{1.539848in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.730073in}{1.516709in}}{\pgfqpoint{0.753212in}{1.516709in}}% +\pgfpathlineto{\pgfqpoint{0.753212in}{1.516709in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.776351in}{2.306797in}}% +\pgfpathlineto{\pgfqpoint{0.892045in}{2.306797in}}% +\pgfpathlineto{\pgfqpoint{1.007740in}{2.306797in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.100295in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.776351in}{2.136984in}}% +\pgfpathlineto{\pgfqpoint{0.892045in}{2.136984in}}% +\pgfpathlineto{\pgfqpoint{1.007740in}{2.136984in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.100295in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=4\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.776351in}{1.967171in}}% +\pgfpathlineto{\pgfqpoint{0.892045in}{1.967171in}}% +\pgfpathlineto{\pgfqpoint{1.007740in}{1.967171in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.100295in,y=1.926678in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=6\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.776351in}{1.797358in}}% +\pgfpathlineto{\pgfqpoint{0.892045in}{1.797358in}}% +\pgfpathlineto{\pgfqpoint{1.007740in}{1.797358in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.100295in,y=1.756865in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=8\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.776351in}{1.627545in}}% +\pgfpathlineto{\pgfqpoint{0.892045in}{1.627545in}}% +\pgfpathlineto{\pgfqpoint{1.007740in}{1.627545in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.100295in,y=1.587052in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=10\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/rel_error_simple.pgf b/buch/papers/laguerre/images/rel_error_simple.pgf new file mode 100644 index 0000000..9368616 --- /dev/null +++ b/buch/papers/laguerre/images/rel_error_simple.pgf @@ -0,0 +1,2940 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.672226in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.271903in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.271903in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.271903in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.271903in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.871580in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.871580in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.871580in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.871580in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.471257in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.471257in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.471257in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.471257in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.070934in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.070934in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.070934in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.070934in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.670611in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.670611in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.670611in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.670611in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.270288in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.270288in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.270288in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.270288in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.869965in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.869965in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.792161in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.792161in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.792161in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.912097in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.912097in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.912097in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.032032in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.032032in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.032032in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.151967in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.151967in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.151967in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.391838in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.391838in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.391838in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.511774in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.511774in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.511774in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.631709in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.631709in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.631709in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.751644in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.751644in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.751644in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.991515in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.991515in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.991515in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.111451in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.111451in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.111451in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.231386in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.231386in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.231386in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.351321in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.351321in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.351321in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.591192in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.591192in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.591192in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.711128in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.711128in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.711128in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.831063in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.831063in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.831063in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.950998in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.950998in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.950998in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.190869in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.190869in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.190869in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.310805in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.310805in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.310805in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.430740in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.430740in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.430740in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.550675in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.550675in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.550675in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.790546in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.790546in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.790546in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.910481in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.910481in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.910481in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.030417in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.030417in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.030417in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.150352in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.150352in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.150352in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.390223in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.390223in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.390223in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.510158in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.510158in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.510158in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.630094in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.630094in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.630094in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.750029in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.750029in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.750029in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.771095in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.697986in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.697986in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{0.697986in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=0.645224in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.932698in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.932698in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{0.932698in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=0.879937in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.167411in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.167411in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{1.167411in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=1.114649in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.402124in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.402124in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{1.402124in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=1.349362in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.636836in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.636836in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{1.636836in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.287001in, y=1.584075in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.871549in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.871549in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{1.871549in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.373807in, y=1.818787in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{2.106261in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.106261in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{2.106261in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.373807in, y=2.053500in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{2.340974in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.340974in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.672226in}{2.340974in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.373807in, y=2.288212in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{5}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.176083in,y=1.460802in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont Relativer Fehler}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.754205in}}% +\pgfpathlineto{\pgfqpoint{0.682746in}{2.019288in}}% +\pgfpathlineto{\pgfqpoint{0.693267in}{2.042641in}}% +\pgfpathlineto{\pgfqpoint{0.703788in}{2.050108in}}% +\pgfpathlineto{\pgfqpoint{0.714308in}{2.050176in}}% +\pgfpathlineto{\pgfqpoint{0.724829in}{2.045361in}}% +\pgfpathlineto{\pgfqpoint{0.735350in}{2.036564in}}% +\pgfpathlineto{\pgfqpoint{0.745870in}{2.023921in}}% +\pgfpathlineto{\pgfqpoint{0.756391in}{2.006908in}}% +\pgfpathlineto{\pgfqpoint{0.766912in}{1.983910in}}% +\pgfpathlineto{\pgfqpoint{0.777432in}{1.950189in}}% +\pgfpathlineto{\pgfqpoint{0.787953in}{1.881573in}}% +\pgfpathlineto{\pgfqpoint{0.798474in}{1.884842in}}% +\pgfpathlineto{\pgfqpoint{0.808994in}{1.926450in}}% +\pgfpathlineto{\pgfqpoint{0.819515in}{1.939872in}}% +\pgfpathlineto{\pgfqpoint{0.830036in}{1.943485in}}% +\pgfpathlineto{\pgfqpoint{0.840556in}{1.941360in}}% +\pgfpathlineto{\pgfqpoint{0.851077in}{1.934890in}}% +\pgfpathlineto{\pgfqpoint{0.861598in}{1.924441in}}% +\pgfpathlineto{\pgfqpoint{0.872118in}{1.909649in}}% +\pgfpathlineto{\pgfqpoint{0.882639in}{1.889114in}}% +\pgfpathlineto{\pgfqpoint{0.893159in}{1.858716in}}% +\pgfpathlineto{\pgfqpoint{0.903680in}{1.799567in}}% +\pgfpathlineto{\pgfqpoint{0.914201in}{1.782399in}}% +\pgfpathlineto{\pgfqpoint{0.924721in}{1.833386in}}% +\pgfpathlineto{\pgfqpoint{0.935242in}{1.850485in}}% +\pgfpathlineto{\pgfqpoint{0.945763in}{1.857161in}}% +\pgfpathlineto{\pgfqpoint{0.956283in}{1.858149in}}% +\pgfpathlineto{\pgfqpoint{0.966804in}{1.855162in}}% +\pgfpathlineto{\pgfqpoint{0.977325in}{1.848916in}}% +\pgfpathlineto{\pgfqpoint{0.987845in}{1.839643in}}% +\pgfpathlineto{\pgfqpoint{0.998366in}{1.827223in}}% +\pgfpathlineto{\pgfqpoint{1.008887in}{1.811140in}}% +\pgfpathlineto{\pgfqpoint{1.019407in}{1.790185in}}% +\pgfpathlineto{\pgfqpoint{1.029928in}{1.761445in}}% +\pgfpathlineto{\pgfqpoint{1.040449in}{1.715196in}}% +\pgfpathlineto{\pgfqpoint{1.050969in}{1.572762in}}% +\pgfpathlineto{\pgfqpoint{1.061490in}{1.698583in}}% +\pgfpathlineto{\pgfqpoint{1.072010in}{1.716349in}}% +\pgfpathlineto{\pgfqpoint{1.082531in}{1.716239in}}% +\pgfpathlineto{\pgfqpoint{1.093052in}{1.702510in}}% +\pgfpathlineto{\pgfqpoint{1.103572in}{1.663978in}}% +\pgfpathlineto{\pgfqpoint{1.114093in}{1.620733in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{1.699269in}}% +\pgfpathlineto{\pgfqpoint{1.135134in}{1.728962in}}% +\pgfpathlineto{\pgfqpoint{1.145655in}{1.746635in}}% +\pgfpathlineto{\pgfqpoint{1.156176in}{1.758337in}}% +\pgfpathlineto{\pgfqpoint{1.166696in}{1.766290in}}% +\pgfpathlineto{\pgfqpoint{1.177217in}{1.771577in}}% +\pgfpathlineto{\pgfqpoint{1.187738in}{1.774811in}}% +\pgfpathlineto{\pgfqpoint{1.198258in}{1.776376in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{1.776523in}}% +\pgfpathlineto{\pgfqpoint{1.219300in}{1.775424in}}% +\pgfpathlineto{\pgfqpoint{1.240341in}{1.769923in}}% +\pgfpathlineto{\pgfqpoint{1.261382in}{1.760408in}}% +\pgfpathlineto{\pgfqpoint{1.282423in}{1.746983in}}% +\pgfpathlineto{\pgfqpoint{1.303465in}{1.729347in}}% +\pgfpathlineto{\pgfqpoint{1.324506in}{1.706592in}}% +\pgfpathlineto{\pgfqpoint{1.335027in}{1.692698in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{1.676497in}}% +\pgfpathlineto{\pgfqpoint{1.356068in}{1.657053in}}% +\pgfpathlineto{\pgfqpoint{1.366589in}{1.632441in}}% +\pgfpathlineto{\pgfqpoint{1.377109in}{1.597524in}}% +\pgfpathlineto{\pgfqpoint{1.387630in}{1.525604in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{1.537523in}}% +\pgfpathlineto{\pgfqpoint{1.408671in}{1.578018in}}% +\pgfpathlineto{\pgfqpoint{1.419192in}{1.592425in}}% +\pgfpathlineto{\pgfqpoint{1.429713in}{1.597694in}}% +\pgfpathlineto{\pgfqpoint{1.440233in}{1.597702in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{1.593795in}}% +\pgfpathlineto{\pgfqpoint{1.461274in}{1.586349in}}% +\pgfpathlineto{\pgfqpoint{1.471795in}{1.575089in}}% +\pgfpathlineto{\pgfqpoint{1.482316in}{1.558888in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{1.534614in}}% +\pgfpathlineto{\pgfqpoint{1.503357in}{1.490506in}}% +\pgfpathlineto{\pgfqpoint{1.513878in}{1.416100in}}% +\pgfpathlineto{\pgfqpoint{1.524398in}{1.502705in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{1.527886in}}% +\pgfpathlineto{\pgfqpoint{1.545440in}{1.540201in}}% +\pgfpathlineto{\pgfqpoint{1.555960in}{1.546078in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{1.547571in}}% +\pgfpathlineto{\pgfqpoint{1.577002in}{1.545393in}}% +\pgfpathlineto{\pgfqpoint{1.587522in}{1.539547in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{1.529328in}}% +\pgfpathlineto{\pgfqpoint{1.608564in}{1.512687in}}% +\pgfpathlineto{\pgfqpoint{1.619084in}{1.483205in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{1.392330in}}% +\pgfpathlineto{\pgfqpoint{1.640126in}{1.462505in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{1.502427in}}% +\pgfpathlineto{\pgfqpoint{1.661167in}{1.522570in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{1.534701in}}% +\pgfpathlineto{\pgfqpoint{1.682208in}{1.541960in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{1.545484in}}% +\pgfpathlineto{\pgfqpoint{1.703249in}{1.545557in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{1.541811in}}% +\pgfpathlineto{\pgfqpoint{1.724291in}{1.532911in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{1.514991in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{1.471110in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{1.455947in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{1.524776in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{1.556770in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{1.578643in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{1.595546in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{1.609424in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{1.631519in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.648783in}}% +\pgfpathlineto{\pgfqpoint{1.871580in}{1.662871in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{1.674670in}}% +\pgfpathlineto{\pgfqpoint{1.924183in}{1.689203in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{1.700894in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{1.710435in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{1.720592in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{1.728489in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{1.735954in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{1.742298in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{1.747154in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{1.750770in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{1.752994in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{1.754026in}}% +\pgfpathlineto{\pgfqpoint{3.491760in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.754519in}}% +\pgfpathlineto{\pgfqpoint{0.682746in}{2.181128in}}% +\pgfpathlineto{\pgfqpoint{0.693267in}{2.201913in}}% +\pgfpathlineto{\pgfqpoint{0.703788in}{2.206736in}}% +\pgfpathlineto{\pgfqpoint{0.714308in}{2.204138in}}% +\pgfpathlineto{\pgfqpoint{0.724829in}{2.196641in}}% +\pgfpathlineto{\pgfqpoint{0.735350in}{2.185146in}}% +\pgfpathlineto{\pgfqpoint{0.745870in}{2.169783in}}% +\pgfpathlineto{\pgfqpoint{0.756391in}{2.150008in}}% +\pgfpathlineto{\pgfqpoint{0.766912in}{2.124151in}}% +\pgfpathlineto{\pgfqpoint{0.777432in}{2.087265in}}% +\pgfpathlineto{\pgfqpoint{0.787953in}{2.012959in}}% +\pgfpathlineto{\pgfqpoint{0.798474in}{2.021124in}}% +\pgfpathlineto{\pgfqpoint{0.808994in}{2.058129in}}% +\pgfpathlineto{\pgfqpoint{0.819515in}{2.068517in}}% +\pgfpathlineto{\pgfqpoint{0.830036in}{2.069376in}}% +\pgfpathlineto{\pgfqpoint{0.840556in}{2.064626in}}% +\pgfpathlineto{\pgfqpoint{0.851077in}{2.055639in}}% +\pgfpathlineto{\pgfqpoint{0.861598in}{2.042809in}}% +\pgfpathlineto{\pgfqpoint{0.872118in}{2.025866in}}% +\pgfpathlineto{\pgfqpoint{0.882639in}{2.003663in}}% +\pgfpathlineto{\pgfqpoint{0.893159in}{1.972966in}}% +\pgfpathlineto{\pgfqpoint{0.903680in}{1.921325in}}% +\pgfpathlineto{\pgfqpoint{0.914201in}{1.850576in}}% +\pgfpathlineto{\pgfqpoint{0.924721in}{1.923920in}}% +\pgfpathlineto{\pgfqpoint{0.935242in}{1.941559in}}% +\pgfpathlineto{\pgfqpoint{0.945763in}{1.946553in}}% +\pgfpathlineto{\pgfqpoint{0.956283in}{1.945065in}}% +\pgfpathlineto{\pgfqpoint{0.966804in}{1.939109in}}% +\pgfpathlineto{\pgfqpoint{0.977325in}{1.929423in}}% +\pgfpathlineto{\pgfqpoint{0.987845in}{1.916087in}}% +\pgfpathlineto{\pgfqpoint{0.998366in}{1.898587in}}% +\pgfpathlineto{\pgfqpoint{1.008887in}{1.875417in}}% +\pgfpathlineto{\pgfqpoint{1.019407in}{1.842331in}}% +\pgfpathlineto{\pgfqpoint{1.029928in}{1.779898in}}% +\pgfpathlineto{\pgfqpoint{1.040449in}{1.762527in}}% +\pgfpathlineto{\pgfqpoint{1.050969in}{1.809789in}}% +\pgfpathlineto{\pgfqpoint{1.061490in}{1.823622in}}% +\pgfpathlineto{\pgfqpoint{1.072010in}{1.826680in}}% +\pgfpathlineto{\pgfqpoint{1.082531in}{1.823354in}}% +\pgfpathlineto{\pgfqpoint{1.093052in}{1.814840in}}% +\pgfpathlineto{\pgfqpoint{1.103572in}{1.800842in}}% +\pgfpathlineto{\pgfqpoint{1.114093in}{1.779173in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{1.741528in}}% +\pgfpathlineto{\pgfqpoint{1.135134in}{1.425341in}}% +\pgfpathlineto{\pgfqpoint{1.145655in}{1.733313in}}% +\pgfpathlineto{\pgfqpoint{1.156176in}{1.763336in}}% +\pgfpathlineto{\pgfqpoint{1.166696in}{1.777868in}}% +\pgfpathlineto{\pgfqpoint{1.177217in}{1.785653in}}% +\pgfpathlineto{\pgfqpoint{1.187738in}{1.789455in}}% +\pgfpathlineto{\pgfqpoint{1.198258in}{1.790513in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{1.789493in}}% +\pgfpathlineto{\pgfqpoint{1.219300in}{1.786789in}}% +\pgfpathlineto{\pgfqpoint{1.229820in}{1.782650in}}% +\pgfpathlineto{\pgfqpoint{1.250862in}{1.770657in}}% +\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{1.292944in}{1.733343in}}% +\pgfpathlineto{\pgfqpoint{1.313985in}{1.707635in}}% +\pgfpathlineto{\pgfqpoint{1.335027in}{1.675702in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{1.656452in}}% +\pgfpathlineto{\pgfqpoint{1.356068in}{1.633904in}}% +\pgfpathlineto{\pgfqpoint{1.366589in}{1.606132in}}% +\pgfpathlineto{\pgfqpoint{1.377109in}{1.568002in}}% +\pgfpathlineto{\pgfqpoint{1.387630in}{1.492814in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{1.501409in}}% +\pgfpathlineto{\pgfqpoint{1.408671in}{1.538524in}}% +\pgfpathlineto{\pgfqpoint{1.419192in}{1.549490in}}% +\pgfpathlineto{\pgfqpoint{1.429713in}{1.551259in}}% +\pgfpathlineto{\pgfqpoint{1.440233in}{1.547705in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{1.540169in}}% +\pgfpathlineto{\pgfqpoint{1.461274in}{1.529026in}}% +\pgfpathlineto{\pgfqpoint{1.471795in}{1.513998in}}% +\pgfpathlineto{\pgfqpoint{1.482316in}{1.493955in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{1.465760in}}% +\pgfpathlineto{\pgfqpoint{1.503357in}{1.417650in}}% +\pgfpathlineto{\pgfqpoint{1.513878in}{1.339156in}}% +\pgfpathlineto{\pgfqpoint{1.524398in}{1.421582in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{1.442488in}}% +\pgfpathlineto{\pgfqpoint{1.545440in}{1.450426in}}% +\pgfpathlineto{\pgfqpoint{1.555960in}{1.451821in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{1.448717in}}% +\pgfpathlineto{\pgfqpoint{1.577002in}{1.441822in}}% +\pgfpathlineto{\pgfqpoint{1.587522in}{1.431133in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{1.415935in}}% +\pgfpathlineto{\pgfqpoint{1.608564in}{1.394171in}}% +\pgfpathlineto{\pgfqpoint{1.619084in}{1.359410in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{1.263092in}}% +\pgfpathlineto{\pgfqpoint{1.640126in}{1.327646in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{1.361757in}}% +\pgfpathlineto{\pgfqpoint{1.661167in}{1.375881in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{1.381771in}}% +\pgfpathlineto{\pgfqpoint{1.682208in}{1.382547in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{1.379323in}}% +\pgfpathlineto{\pgfqpoint{1.703249in}{1.372356in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{1.361248in}}% +\pgfpathlineto{\pgfqpoint{1.724291in}{1.344630in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{1.318592in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{1.266142in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{1.241894in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{1.301044in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{1.322660in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{1.333319in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{1.337986in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{1.338336in}}% +\pgfpathlineto{\pgfqpoint{1.818977in}{1.334919in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{1.327605in}}% +\pgfpathlineto{\pgfqpoint{1.840018in}{1.315497in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.296075in}}% +\pgfpathlineto{\pgfqpoint{1.861059in}{1.260797in}}% +\pgfpathlineto{\pgfqpoint{1.871580in}{0.519076in}}% +\pgfpathlineto{\pgfqpoint{1.882100in}{1.257532in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{1.289548in}}% +\pgfpathlineto{\pgfqpoint{1.903142in}{1.305714in}}% +\pgfpathlineto{\pgfqpoint{1.913662in}{1.314575in}}% +\pgfpathlineto{\pgfqpoint{1.924183in}{1.318655in}}% +\pgfpathlineto{\pgfqpoint{1.934704in}{1.318855in}}% +\pgfpathlineto{\pgfqpoint{1.945224in}{1.315305in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{1.307462in}}% +\pgfpathlineto{\pgfqpoint{1.966266in}{1.293652in}}% +\pgfpathlineto{\pgfqpoint{1.976786in}{1.268916in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{1.206680in}}% +\pgfpathlineto{\pgfqpoint{1.997828in}{1.227879in}}% +\pgfpathlineto{\pgfqpoint{2.008348in}{1.277323in}}% +\pgfpathlineto{\pgfqpoint{2.018869in}{1.300401in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{1.314112in}}% +\pgfpathlineto{\pgfqpoint{2.039910in}{1.322369in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{1.326549in}}% +\pgfpathlineto{\pgfqpoint{2.060951in}{1.327055in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{1.323636in}}% +\pgfpathlineto{\pgfqpoint{2.081993in}{1.315185in}}% +\pgfpathlineto{\pgfqpoint{2.092513in}{1.298591in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{1.262110in}}% +\pgfpathlineto{\pgfqpoint{2.113555in}{1.195296in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{1.289475in}}% +\pgfpathlineto{\pgfqpoint{2.134596in}{1.322227in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{1.342129in}}% +\pgfpathlineto{\pgfqpoint{2.155637in}{1.355628in}}% +\pgfpathlineto{\pgfqpoint{2.166158in}{1.364797in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{1.370371in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{1.372378in}}% +\pgfpathlineto{\pgfqpoint{2.197720in}{1.370141in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{1.361645in}}% +\pgfpathlineto{\pgfqpoint{2.218761in}{1.340509in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{1.258231in}}% +\pgfpathlineto{\pgfqpoint{2.239802in}{1.337313in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{1.386533in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{1.416465in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{1.439016in}}% +\pgfpathlineto{\pgfqpoint{2.281885in}{1.457526in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{1.487469in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{1.511626in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{1.532075in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{1.549871in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{1.572894in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{1.592585in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{1.609711in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{1.629408in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{1.646237in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{1.660749in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{1.676223in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{1.689255in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{1.702255in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{1.712886in}}% +\pgfpathlineto{\pgfqpoint{2.892083in}{1.722846in}}% +\pgfpathlineto{\pgfqpoint{2.976248in}{1.731634in}}% +\pgfpathlineto{\pgfqpoint{3.070934in}{1.738919in}}% +\pgfpathlineto{\pgfqpoint{3.176140in}{1.744563in}}% +\pgfpathlineto{\pgfqpoint{3.302388in}{1.748887in}}% +\pgfpathlineto{\pgfqpoint{3.460198in}{1.751846in}}% +\pgfpathlineto{\pgfqpoint{3.681131in}{1.753541in}}% +\pgfpathlineto{\pgfqpoint{4.122999in}{1.754161in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.756434in}}% +\pgfpathlineto{\pgfqpoint{0.682746in}{2.278618in}}% +\pgfpathlineto{\pgfqpoint{0.693267in}{2.297753in}}% +\pgfpathlineto{\pgfqpoint{0.703788in}{2.300924in}}% +\pgfpathlineto{\pgfqpoint{0.714308in}{2.296672in}}% +\pgfpathlineto{\pgfqpoint{0.724829in}{2.287522in}}% +\pgfpathlineto{\pgfqpoint{0.735350in}{2.274372in}}% +\pgfpathlineto{\pgfqpoint{0.745870in}{2.257353in}}% +\pgfpathlineto{\pgfqpoint{0.756391in}{2.235920in}}% +\pgfpathlineto{\pgfqpoint{0.766912in}{2.208398in}}% +\pgfpathlineto{\pgfqpoint{0.777432in}{2.169830in}}% +\pgfpathlineto{\pgfqpoint{0.787953in}{2.093676in}}% +\pgfpathlineto{\pgfqpoint{0.798474in}{2.100656in}}% +\pgfpathlineto{\pgfqpoint{0.808994in}{2.135897in}}% +\pgfpathlineto{\pgfqpoint{0.819515in}{2.144614in}}% +\pgfpathlineto{\pgfqpoint{0.830036in}{2.143818in}}% +\pgfpathlineto{\pgfqpoint{0.840556in}{2.137423in}}% +\pgfpathlineto{\pgfqpoint{0.851077in}{2.126800in}}% +\pgfpathlineto{\pgfqpoint{0.861598in}{2.112346in}}% +\pgfpathlineto{\pgfqpoint{0.872118in}{2.093801in}}% +\pgfpathlineto{\pgfqpoint{0.882639in}{2.070042in}}% +\pgfpathlineto{\pgfqpoint{0.893159in}{2.037916in}}% +\pgfpathlineto{\pgfqpoint{0.903680in}{1.985469in}}% +\pgfpathlineto{\pgfqpoint{0.914201in}{1.906049in}}% +\pgfpathlineto{\pgfqpoint{0.924721in}{1.982150in}}% +\pgfpathlineto{\pgfqpoint{0.935242in}{1.998529in}}% +\pgfpathlineto{\pgfqpoint{0.945763in}{2.001970in}}% +\pgfpathlineto{\pgfqpoint{0.956283in}{1.998824in}}% +\pgfpathlineto{\pgfqpoint{0.966804in}{1.991138in}}% +\pgfpathlineto{\pgfqpoint{0.977325in}{1.979639in}}% +\pgfpathlineto{\pgfqpoint{0.987845in}{1.964367in}}% +\pgfpathlineto{\pgfqpoint{0.998366in}{1.944703in}}% +\pgfpathlineto{\pgfqpoint{1.008887in}{1.918851in}}% +\pgfpathlineto{\pgfqpoint{1.019407in}{1.881454in}}% +\pgfpathlineto{\pgfqpoint{1.029928in}{1.801434in}}% +\pgfpathlineto{\pgfqpoint{1.040449in}{1.823671in}}% +\pgfpathlineto{\pgfqpoint{1.050969in}{1.858105in}}% +\pgfpathlineto{\pgfqpoint{1.061490in}{1.868238in}}% +\pgfpathlineto{\pgfqpoint{1.072010in}{1.869149in}}% +\pgfpathlineto{\pgfqpoint{1.082531in}{1.864396in}}% +\pgfpathlineto{\pgfqpoint{1.093052in}{1.855086in}}% +\pgfpathlineto{\pgfqpoint{1.103572in}{1.841204in}}% +\pgfpathlineto{\pgfqpoint{1.114093in}{1.821572in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{1.792333in}}% +\pgfpathlineto{\pgfqpoint{1.135134in}{1.735889in}}% +\pgfpathlineto{\pgfqpoint{1.145655in}{1.713198in}}% +\pgfpathlineto{\pgfqpoint{1.156176in}{1.768084in}}% +\pgfpathlineto{\pgfqpoint{1.166696in}{1.787295in}}% +\pgfpathlineto{\pgfqpoint{1.177217in}{1.796238in}}% +\pgfpathlineto{\pgfqpoint{1.187738in}{1.799938in}}% +\pgfpathlineto{\pgfqpoint{1.198258in}{1.800301in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{1.798256in}}% +\pgfpathlineto{\pgfqpoint{1.219300in}{1.794325in}}% +\pgfpathlineto{\pgfqpoint{1.229820in}{1.788826in}}% +\pgfpathlineto{\pgfqpoint{1.250862in}{1.773855in}}% +\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{1.292944in}{1.730001in}}% +\pgfpathlineto{\pgfqpoint{1.313985in}{1.700844in}}% +\pgfpathlineto{\pgfqpoint{1.335027in}{1.665376in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{1.644328in}}% +\pgfpathlineto{\pgfqpoint{1.356068in}{1.619966in}}% +\pgfpathlineto{\pgfqpoint{1.366589in}{1.590361in}}% +\pgfpathlineto{\pgfqpoint{1.377109in}{1.550380in}}% +\pgfpathlineto{\pgfqpoint{1.387630in}{1.473325in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{1.480034in}}% +\pgfpathlineto{\pgfqpoint{1.408671in}{1.515247in}}% +\pgfpathlineto{\pgfqpoint{1.419192in}{1.524294in}}% +\pgfpathlineto{\pgfqpoint{1.429713in}{1.524125in}}% +\pgfpathlineto{\pgfqpoint{1.440233in}{1.518615in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{1.509105in}}% +\pgfpathlineto{\pgfqpoint{1.461274in}{1.495970in}}% +\pgfpathlineto{\pgfqpoint{1.471795in}{1.478930in}}% +\pgfpathlineto{\pgfqpoint{1.482316in}{1.456856in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{1.426611in}}% +\pgfpathlineto{\pgfqpoint{1.503357in}{1.376429in}}% +\pgfpathlineto{\pgfqpoint{1.513878in}{1.295843in}}% +\pgfpathlineto{\pgfqpoint{1.524398in}{1.376155in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{1.394925in}}% +\pgfpathlineto{\pgfqpoint{1.545440in}{1.400705in}}% +\pgfpathlineto{\pgfqpoint{1.555960in}{1.399917in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{1.394608in}}% +\pgfpathlineto{\pgfqpoint{1.577002in}{1.385483in}}% +\pgfpathlineto{\pgfqpoint{1.587522in}{1.372539in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{1.355059in}}% +\pgfpathlineto{\pgfqpoint{1.608564in}{1.330987in}}% +\pgfpathlineto{\pgfqpoint{1.619084in}{1.293892in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{1.195210in}}% +\pgfpathlineto{\pgfqpoint{1.640126in}{1.257372in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{1.289061in}}% +\pgfpathlineto{\pgfqpoint{1.661167in}{1.300734in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{1.304140in}}% +\pgfpathlineto{\pgfqpoint{1.682208in}{1.302400in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{1.296627in}}% +\pgfpathlineto{\pgfqpoint{1.703249in}{1.287077in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{1.273351in}}% +\pgfpathlineto{\pgfqpoint{1.724291in}{1.254079in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{1.225350in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{1.170170in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{1.143153in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{1.199493in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{1.218257in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{1.226021in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{1.227747in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{1.225112in}}% +\pgfpathlineto{\pgfqpoint{1.818977in}{1.218661in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{1.208264in}}% +\pgfpathlineto{\pgfqpoint{1.840018in}{1.193022in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.170413in}}% +\pgfpathlineto{\pgfqpoint{1.861059in}{1.131894in}}% +\pgfpathlineto{\pgfqpoint{1.870642in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.872530in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.882100in}{1.121974in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{1.150572in}}% +\pgfpathlineto{\pgfqpoint{1.903142in}{1.163257in}}% +\pgfpathlineto{\pgfqpoint{1.913662in}{1.168572in}}% +\pgfpathlineto{\pgfqpoint{1.924183in}{1.169036in}}% +\pgfpathlineto{\pgfqpoint{1.934704in}{1.165550in}}% +\pgfpathlineto{\pgfqpoint{1.945224in}{1.158239in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{1.146558in}}% +\pgfpathlineto{\pgfqpoint{1.966266in}{1.128830in}}% +\pgfpathlineto{\pgfqpoint{1.976786in}{1.100090in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{1.033762in}}% +\pgfpathlineto{\pgfqpoint{1.997828in}{1.050777in}}% +\pgfpathlineto{\pgfqpoint{2.008348in}{1.095939in}}% +\pgfpathlineto{\pgfqpoint{2.018869in}{1.114634in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{1.123854in}}% +\pgfpathlineto{\pgfqpoint{2.039910in}{1.127507in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{1.126963in}}% +\pgfpathlineto{\pgfqpoint{2.060951in}{1.122619in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{1.114217in}}% +\pgfpathlineto{\pgfqpoint{2.081993in}{1.100642in}}% +\pgfpathlineto{\pgfqpoint{2.092513in}{1.078772in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{1.036854in}}% +\pgfpathlineto{\pgfqpoint{2.113555in}{0.964431in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{1.052816in}}% +\pgfpathlineto{\pgfqpoint{2.134596in}{1.079577in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{1.093274in}}% +\pgfpathlineto{\pgfqpoint{2.155637in}{1.100335in}}% +\pgfpathlineto{\pgfqpoint{2.166158in}{1.102814in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{1.101423in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{1.096163in}}% +\pgfpathlineto{\pgfqpoint{2.197720in}{1.086322in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{1.069850in}}% +\pgfpathlineto{\pgfqpoint{2.218761in}{1.040319in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{0.949171in}}% +\pgfpathlineto{\pgfqpoint{2.239802in}{1.018840in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{1.058014in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{1.077153in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{1.088010in}}% +\pgfpathlineto{\pgfqpoint{2.281885in}{1.093709in}}% +\pgfpathlineto{\pgfqpoint{2.292406in}{1.095367in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{1.093244in}}% +\pgfpathlineto{\pgfqpoint{2.313447in}{1.086946in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{1.075103in}}% +\pgfpathlineto{\pgfqpoint{2.334488in}{1.053809in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{1.006076in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{0.986519in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{1.050335in}}% +\pgfpathlineto{\pgfqpoint{2.376571in}{1.076597in}}% +\pgfpathlineto{\pgfqpoint{2.387092in}{1.091884in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{1.101163in}}% +\pgfpathlineto{\pgfqpoint{2.408133in}{1.106113in}}% +\pgfpathlineto{\pgfqpoint{2.418654in}{1.107282in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{1.104549in}}% +\pgfpathlineto{\pgfqpoint{2.439695in}{1.097016in}}% +\pgfpathlineto{\pgfqpoint{2.450215in}{1.082166in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{1.051461in}}% +\pgfpathlineto{\pgfqpoint{2.468667in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.473828in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{1.057357in}}% +\pgfpathlineto{\pgfqpoint{2.492298in}{1.093968in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{1.114744in}}% +\pgfpathlineto{\pgfqpoint{2.513339in}{1.128233in}}% +\pgfpathlineto{\pgfqpoint{2.523860in}{1.136963in}}% +\pgfpathlineto{\pgfqpoint{2.534381in}{1.141841in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{1.143002in}}% +\pgfpathlineto{\pgfqpoint{2.555422in}{1.139907in}}% +\pgfpathlineto{\pgfqpoint{2.565943in}{1.130891in}}% +\pgfpathlineto{\pgfqpoint{2.576463in}{1.110998in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{1.053664in}}% +\pgfpathlineto{\pgfqpoint{2.597505in}{1.079831in}}% +\pgfpathlineto{\pgfqpoint{2.608025in}{1.134319in}}% +\pgfpathlineto{\pgfqpoint{2.618546in}{1.162527in}}% +\pgfpathlineto{\pgfqpoint{2.629066in}{1.181467in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{1.195065in}}% +\pgfpathlineto{\pgfqpoint{2.650108in}{1.204714in}}% +\pgfpathlineto{\pgfqpoint{2.660628in}{1.210838in}}% +\pgfpathlineto{\pgfqpoint{2.671149in}{1.213206in}}% +\pgfpathlineto{\pgfqpoint{2.681670in}{1.210740in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{1.200360in}}% +\pgfpathlineto{\pgfqpoint{2.702711in}{1.170364in}}% +\pgfpathlineto{\pgfqpoint{2.713232in}{1.110355in}}% +\pgfpathlineto{\pgfqpoint{2.723752in}{1.211724in}}% +\pgfpathlineto{\pgfqpoint{2.734273in}{1.252138in}}% +\pgfpathlineto{\pgfqpoint{2.744794in}{1.280286in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{1.302773in}}% +\pgfpathlineto{\pgfqpoint{2.776356in}{1.338760in}}% +\pgfpathlineto{\pgfqpoint{2.797397in}{1.367853in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{1.392713in}}% +\pgfpathlineto{\pgfqpoint{2.839479in}{1.414609in}}% +\pgfpathlineto{\pgfqpoint{2.871041in}{1.443403in}}% +\pgfpathlineto{\pgfqpoint{2.902603in}{1.468547in}}% +\pgfpathlineto{\pgfqpoint{2.934165in}{1.490888in}}% +\pgfpathlineto{\pgfqpoint{2.965727in}{1.510973in}}% +\pgfpathlineto{\pgfqpoint{3.007810in}{1.534893in}}% +\pgfpathlineto{\pgfqpoint{3.049892in}{1.556115in}}% +\pgfpathlineto{\pgfqpoint{3.091975in}{1.575094in}}% +\pgfpathlineto{\pgfqpoint{3.144578in}{1.596166in}}% +\pgfpathlineto{\pgfqpoint{3.197182in}{1.614745in}}% +\pgfpathlineto{\pgfqpoint{3.249785in}{1.631200in}}% +\pgfpathlineto{\pgfqpoint{3.312909in}{1.648547in}}% +\pgfpathlineto{\pgfqpoint{3.376033in}{1.663642in}}% +\pgfpathlineto{\pgfqpoint{3.449677in}{1.678816in}}% +\pgfpathlineto{\pgfqpoint{3.523322in}{1.691739in}}% +\pgfpathlineto{\pgfqpoint{3.607487in}{1.704155in}}% +\pgfpathlineto{\pgfqpoint{3.691652in}{1.714432in}}% +\pgfpathlineto{\pgfqpoint{3.786338in}{1.723834in}}% +\pgfpathlineto{\pgfqpoint{3.891544in}{1.732043in}}% +\pgfpathlineto{\pgfqpoint{4.007271in}{1.738858in}}% +\pgfpathlineto{\pgfqpoint{4.144040in}{1.744568in}}% +\pgfpathlineto{\pgfqpoint{4.301850in}{1.748821in}}% +\pgfpathlineto{\pgfqpoint{4.501742in}{1.751815in}}% +\pgfpathlineto{\pgfqpoint{4.785799in}{1.753552in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.753773in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.753773in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.762704in}}% +\pgfpathlineto{\pgfqpoint{0.682746in}{2.348594in}}% +\pgfpathlineto{\pgfqpoint{0.693267in}{2.366527in}}% +\pgfpathlineto{\pgfqpoint{0.703788in}{2.368495in}}% +\pgfpathlineto{\pgfqpoint{0.714308in}{2.363041in}}% +\pgfpathlineto{\pgfqpoint{0.724829in}{2.352687in}}% +\pgfpathlineto{\pgfqpoint{0.735350in}{2.338335in}}% +\pgfpathlineto{\pgfqpoint{0.745870in}{2.320113in}}% +\pgfpathlineto{\pgfqpoint{0.756391in}{2.297476in}}% +\pgfpathlineto{\pgfqpoint{0.766912in}{2.268750in}}% +\pgfpathlineto{\pgfqpoint{0.777432in}{2.228974in}}% +\pgfpathlineto{\pgfqpoint{0.787953in}{2.151584in}}% +\pgfpathlineto{\pgfqpoint{0.798474in}{2.157443in}}% +\pgfpathlineto{\pgfqpoint{0.808994in}{2.191463in}}% +\pgfpathlineto{\pgfqpoint{0.819515in}{2.198974in}}% +\pgfpathlineto{\pgfqpoint{0.830036in}{2.196977in}}% +\pgfpathlineto{\pgfqpoint{0.840556in}{2.189382in}}% +\pgfpathlineto{\pgfqpoint{0.851077in}{2.177560in}}% +\pgfpathlineto{\pgfqpoint{0.861598in}{2.161911in}}% +\pgfpathlineto{\pgfqpoint{0.872118in}{2.142177in}}% +\pgfpathlineto{\pgfqpoint{0.882639in}{2.117239in}}% +\pgfpathlineto{\pgfqpoint{0.893159in}{2.083965in}}% +\pgfpathlineto{\pgfqpoint{0.903680in}{2.030518in}}% +\pgfpathlineto{\pgfqpoint{0.914201in}{1.948071in}}% +\pgfpathlineto{\pgfqpoint{0.924721in}{2.024152in}}% +\pgfpathlineto{\pgfqpoint{0.935242in}{2.039427in}}% +\pgfpathlineto{\pgfqpoint{0.945763in}{2.041688in}}% +\pgfpathlineto{\pgfqpoint{0.956283in}{2.037334in}}% +\pgfpathlineto{\pgfqpoint{0.966804in}{2.028418in}}% +\pgfpathlineto{\pgfqpoint{0.977325in}{2.015664in}}% +\pgfpathlineto{\pgfqpoint{0.987845in}{1.999096in}}% +\pgfpathlineto{\pgfqpoint{0.998366in}{1.978055in}}% +\pgfpathlineto{\pgfqpoint{1.008887in}{1.950639in}}% +\pgfpathlineto{\pgfqpoint{1.019407in}{1.911038in}}% +\pgfpathlineto{\pgfqpoint{1.029928in}{1.821833in}}% +\pgfpathlineto{\pgfqpoint{1.040449in}{1.858238in}}% +\pgfpathlineto{\pgfqpoint{1.050969in}{1.888826in}}% +\pgfpathlineto{\pgfqpoint{1.061490in}{1.897222in}}% +\pgfpathlineto{\pgfqpoint{1.072010in}{1.896843in}}% +\pgfpathlineto{\pgfqpoint{1.082531in}{1.891030in}}% +\pgfpathlineto{\pgfqpoint{1.093052in}{1.880877in}}% +\pgfpathlineto{\pgfqpoint{1.103572in}{1.866462in}}% +\pgfpathlineto{\pgfqpoint{1.114093in}{1.846897in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{1.819337in}}% +\pgfpathlineto{\pgfqpoint{1.135134in}{1.773055in}}% +\pgfpathlineto{\pgfqpoint{1.145655in}{1.677277in}}% +\pgfpathlineto{\pgfqpoint{1.156176in}{1.772491in}}% +\pgfpathlineto{\pgfqpoint{1.166696in}{1.795146in}}% +\pgfpathlineto{\pgfqpoint{1.177217in}{1.804656in}}% +\pgfpathlineto{\pgfqpoint{1.187738in}{1.808065in}}% +\pgfpathlineto{\pgfqpoint{1.198258in}{1.807765in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{1.804863in}}% +\pgfpathlineto{\pgfqpoint{1.219300in}{1.799960in}}% +\pgfpathlineto{\pgfqpoint{1.229820in}{1.793414in}}% +\pgfpathlineto{\pgfqpoint{1.250862in}{1.776207in}}% +\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{1.292944in}{1.727572in}}% +\pgfpathlineto{\pgfqpoint{1.313985in}{1.695933in}}% +\pgfpathlineto{\pgfqpoint{1.335027in}{1.657937in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{1.635611in}}% +\pgfpathlineto{\pgfqpoint{1.356068in}{1.609961in}}% +\pgfpathlineto{\pgfqpoint{1.366589in}{1.579060in}}% +\pgfpathlineto{\pgfqpoint{1.377109in}{1.537774in}}% +\pgfpathlineto{\pgfqpoint{1.387630in}{1.459404in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{1.464792in}}% +\pgfpathlineto{\pgfqpoint{1.408671in}{1.498674in}}% +\pgfpathlineto{\pgfqpoint{1.419192in}{1.506382in}}% +\pgfpathlineto{\pgfqpoint{1.429713in}{1.504866in}}% +\pgfpathlineto{\pgfqpoint{1.440233in}{1.498000in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{1.487126in}}% +\pgfpathlineto{\pgfqpoint{1.461274in}{1.472618in}}% +\pgfpathlineto{\pgfqpoint{1.471795in}{1.454196in}}% +\pgfpathlineto{\pgfqpoint{1.482316in}{1.430731in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{1.399086in}}% +\pgfpathlineto{\pgfqpoint{1.503357in}{1.347495in}}% +\pgfpathlineto{\pgfqpoint{1.513878in}{1.265490in}}% +\pgfpathlineto{\pgfqpoint{1.524398in}{1.344373in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{1.361705in}}% +\pgfpathlineto{\pgfqpoint{1.545440in}{1.366037in}}% +\pgfpathlineto{\pgfqpoint{1.555960in}{1.363791in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{1.357012in}}% +\pgfpathlineto{\pgfqpoint{1.577002in}{1.346409in}}% +\pgfpathlineto{\pgfqpoint{1.587522in}{1.331974in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{1.312993in}}% +\pgfpathlineto{\pgfqpoint{1.608564in}{1.287409in}}% +\pgfpathlineto{\pgfqpoint{1.619084in}{1.248790in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{1.148573in}}% +\pgfpathlineto{\pgfqpoint{1.640126in}{1.209188in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{1.239319in}}% +\pgfpathlineto{\pgfqpoint{1.661167in}{1.249420in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{1.251243in}}% +\pgfpathlineto{\pgfqpoint{1.682208in}{1.247907in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{1.240525in}}% +\pgfpathlineto{\pgfqpoint{1.703249in}{1.229352in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{1.213991in}}% +\pgfpathlineto{\pgfqpoint{1.724291in}{1.193070in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{1.162677in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{1.105820in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{1.077112in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{1.131745in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{1.148788in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{1.154816in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{1.154791in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{1.150389in}}% +\pgfpathlineto{\pgfqpoint{1.818977in}{1.142154in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{1.129957in}}% +\pgfpathlineto{\pgfqpoint{1.840018in}{1.112899in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.088457in}}% +\pgfpathlineto{\pgfqpoint{1.861059in}{1.048087in}}% +\pgfpathlineto{\pgfqpoint{1.869442in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.873757in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.882100in}{1.034412in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{1.061106in}}% +\pgfpathlineto{\pgfqpoint{1.903142in}{1.071868in}}% +\pgfpathlineto{\pgfqpoint{1.913662in}{1.075240in}}% +\pgfpathlineto{\pgfqpoint{1.924183in}{1.073743in}}% +\pgfpathlineto{\pgfqpoint{1.934704in}{1.068274in}}% +\pgfpathlineto{\pgfqpoint{1.945224in}{1.058962in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{1.045258in}}% +\pgfpathlineto{\pgfqpoint{1.966266in}{1.025486in}}% +\pgfpathlineto{\pgfqpoint{1.976786in}{0.994682in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{0.926267in}}% +\pgfpathlineto{\pgfqpoint{1.997828in}{0.941171in}}% +\pgfpathlineto{\pgfqpoint{2.008348in}{0.984201in}}% +\pgfpathlineto{\pgfqpoint{2.018869in}{1.000739in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{1.007779in}}% +\pgfpathlineto{\pgfqpoint{2.039910in}{1.009227in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{1.006453in}}% +\pgfpathlineto{\pgfqpoint{2.060951in}{0.999853in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{0.989168in}}% +\pgfpathlineto{\pgfqpoint{2.081993in}{0.973284in}}% +\pgfpathlineto{\pgfqpoint{2.092513in}{0.949076in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{0.904793in}}% +\pgfpathlineto{\pgfqpoint{2.113555in}{0.829975in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{0.915936in}}% +\pgfpathlineto{\pgfqpoint{2.134596in}{0.940242in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{0.951452in}}% +\pgfpathlineto{\pgfqpoint{2.155637in}{0.955995in}}% +\pgfpathlineto{\pgfqpoint{2.166158in}{0.955922in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{0.951945in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{0.944064in}}% +\pgfpathlineto{\pgfqpoint{2.197720in}{0.931567in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{0.912401in}}% +\pgfpathlineto{\pgfqpoint{2.218761in}{0.880139in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{0.786220in}}% +\pgfpathlineto{\pgfqpoint{2.239802in}{0.853078in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{0.889400in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{0.905643in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{0.913561in}}% +\pgfpathlineto{\pgfqpoint{2.281885in}{0.916275in}}% +\pgfpathlineto{\pgfqpoint{2.292406in}{0.914901in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{0.909698in}}% +\pgfpathlineto{\pgfqpoint{2.313447in}{0.900268in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{0.885243in}}% +\pgfpathlineto{\pgfqpoint{2.334488in}{0.860713in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{0.809687in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{0.786781in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{0.847188in}}% +\pgfpathlineto{\pgfqpoint{2.376571in}{0.869978in}}% +\pgfpathlineto{\pgfqpoint{2.387092in}{0.881729in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{0.887405in}}% +\pgfpathlineto{\pgfqpoint{2.408133in}{0.888682in}}% +\pgfpathlineto{\pgfqpoint{2.418654in}{0.886106in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{0.879552in}}% +\pgfpathlineto{\pgfqpoint{2.439695in}{0.868119in}}% +\pgfpathlineto{\pgfqpoint{2.450215in}{0.849287in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{0.814514in}}% +\pgfpathlineto{\pgfqpoint{2.465711in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.476820in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{0.811998in}}% +\pgfpathlineto{\pgfqpoint{2.492298in}{0.844256in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{0.860575in}}% +\pgfpathlineto{\pgfqpoint{2.513339in}{0.869498in}}% +\pgfpathlineto{\pgfqpoint{2.523860in}{0.873546in}}% +\pgfpathlineto{\pgfqpoint{2.534381in}{0.873620in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{0.869847in}}% +\pgfpathlineto{\pgfqpoint{2.555422in}{0.861682in}}% +\pgfpathlineto{\pgfqpoint{2.565943in}{0.847449in}}% +\pgfpathlineto{\pgfqpoint{2.576463in}{0.822186in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{0.759316in}}% +\pgfpathlineto{\pgfqpoint{2.597505in}{0.779770in}}% +\pgfpathlineto{\pgfqpoint{2.608025in}{0.828355in}}% +\pgfpathlineto{\pgfqpoint{2.618546in}{0.850457in}}% +\pgfpathlineto{\pgfqpoint{2.629066in}{0.863068in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{0.870099in}}% +\pgfpathlineto{\pgfqpoint{2.650108in}{0.872919in}}% +\pgfpathlineto{\pgfqpoint{2.660628in}{0.871928in}}% +\pgfpathlineto{\pgfqpoint{2.671149in}{0.866866in}}% +\pgfpathlineto{\pgfqpoint{2.681670in}{0.856622in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{0.838072in}}% +\pgfpathlineto{\pgfqpoint{2.702711in}{0.799467in}}% +\pgfpathlineto{\pgfqpoint{2.713232in}{0.730349in}}% +\pgfpathlineto{\pgfqpoint{2.723752in}{0.822032in}}% +\pgfpathlineto{\pgfqpoint{2.734273in}{0.852086in}}% +\pgfpathlineto{\pgfqpoint{2.744794in}{0.869070in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{0.879416in}}% +\pgfpathlineto{\pgfqpoint{2.765835in}{0.885177in}}% +\pgfpathlineto{\pgfqpoint{2.776356in}{0.887067in}}% +\pgfpathlineto{\pgfqpoint{2.786876in}{0.885087in}}% +\pgfpathlineto{\pgfqpoint{2.797397in}{0.878527in}}% +\pgfpathlineto{\pgfqpoint{2.807918in}{0.865338in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{0.839094in}}% +\pgfpathlineto{\pgfqpoint{2.828959in}{0.751238in}}% +\pgfpathlineto{\pgfqpoint{2.839479in}{0.824204in}}% +\pgfpathlineto{\pgfqpoint{2.850000in}{0.866682in}}% +\pgfpathlineto{\pgfqpoint{2.860521in}{0.889134in}}% +\pgfpathlineto{\pgfqpoint{2.871041in}{0.903315in}}% +\pgfpathlineto{\pgfqpoint{2.881562in}{0.912350in}}% +\pgfpathlineto{\pgfqpoint{2.892083in}{0.917358in}}% +\pgfpathlineto{\pgfqpoint{2.902603in}{0.918601in}}% +\pgfpathlineto{\pgfqpoint{2.913124in}{0.915685in}}% +\pgfpathlineto{\pgfqpoint{2.923645in}{0.907245in}}% +\pgfpathlineto{\pgfqpoint{2.934165in}{0.889376in}}% +\pgfpathlineto{\pgfqpoint{2.944686in}{0.845091in}}% +\pgfpathlineto{\pgfqpoint{2.955207in}{0.829010in}}% +\pgfpathlineto{\pgfqpoint{2.965727in}{0.896332in}}% +\pgfpathlineto{\pgfqpoint{2.976248in}{0.926132in}}% +\pgfpathlineto{\pgfqpoint{2.986769in}{0.944992in}}% +\pgfpathlineto{\pgfqpoint{2.997289in}{0.957884in}}% +\pgfpathlineto{\pgfqpoint{3.007810in}{0.966490in}}% +\pgfpathlineto{\pgfqpoint{3.018330in}{0.971364in}}% +\pgfpathlineto{\pgfqpoint{3.028851in}{0.972386in}}% +\pgfpathlineto{\pgfqpoint{3.039372in}{0.968667in}}% +\pgfpathlineto{\pgfqpoint{3.049892in}{0.957695in}}% +\pgfpathlineto{\pgfqpoint{3.060413in}{0.930937in}}% +\pgfpathlineto{\pgfqpoint{3.066756in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.075038in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.081454in}{0.944967in}}% +\pgfpathlineto{\pgfqpoint{3.091975in}{0.985782in}}% +\pgfpathlineto{\pgfqpoint{3.102496in}{1.010868in}}% +\pgfpathlineto{\pgfqpoint{3.113016in}{1.028785in}}% +\pgfpathlineto{\pgfqpoint{3.123537in}{1.042076in}}% +\pgfpathlineto{\pgfqpoint{3.134058in}{1.051663in}}% +\pgfpathlineto{\pgfqpoint{3.144578in}{1.057703in}}% +\pgfpathlineto{\pgfqpoint{3.155099in}{1.059680in}}% +\pgfpathlineto{\pgfqpoint{3.165620in}{1.055958in}}% +\pgfpathlineto{\pgfqpoint{3.176140in}{1.041616in}}% +\pgfpathlineto{\pgfqpoint{3.186661in}{0.990133in}}% +\pgfpathlineto{\pgfqpoint{3.197182in}{1.022509in}}% +\pgfpathlineto{\pgfqpoint{3.207702in}{1.083633in}}% +\pgfpathlineto{\pgfqpoint{3.218223in}{1.119001in}}% +\pgfpathlineto{\pgfqpoint{3.228743in}{1.145751in}}% +\pgfpathlineto{\pgfqpoint{3.239264in}{1.167995in}}% +\pgfpathlineto{\pgfqpoint{3.260305in}{1.204794in}}% +\pgfpathlineto{\pgfqpoint{3.281347in}{1.235403in}}% +\pgfpathlineto{\pgfqpoint{3.302388in}{1.262072in}}% +\pgfpathlineto{\pgfqpoint{3.323429in}{1.285925in}}% +\pgfpathlineto{\pgfqpoint{3.354991in}{1.317792in}}% +\pgfpathlineto{\pgfqpoint{3.386553in}{1.346086in}}% +\pgfpathlineto{\pgfqpoint{3.418115in}{1.371604in}}% +\pgfpathlineto{\pgfqpoint{3.460198in}{1.402189in}}% +\pgfpathlineto{\pgfqpoint{3.502280in}{1.429588in}}% +\pgfpathlineto{\pgfqpoint{3.544363in}{1.454371in}}% +\pgfpathlineto{\pgfqpoint{3.586446in}{1.476944in}}% +\pgfpathlineto{\pgfqpoint{3.639049in}{1.502518in}}% +\pgfpathlineto{\pgfqpoint{3.691652in}{1.525575in}}% +\pgfpathlineto{\pgfqpoint{3.744255in}{1.546462in}}% +\pgfpathlineto{\pgfqpoint{3.807379in}{1.569042in}}% +\pgfpathlineto{\pgfqpoint{3.870503in}{1.589262in}}% +\pgfpathlineto{\pgfqpoint{3.944148in}{1.610259in}}% +\pgfpathlineto{\pgfqpoint{4.017792in}{1.628821in}}% +\pgfpathlineto{\pgfqpoint{4.091437in}{1.645249in}}% +\pgfpathlineto{\pgfqpoint{4.175602in}{1.661731in}}% +\pgfpathlineto{\pgfqpoint{4.259767in}{1.676062in}}% +\pgfpathlineto{\pgfqpoint{4.354453in}{1.689932in}}% +\pgfpathlineto{\pgfqpoint{4.459659in}{1.702910in}}% +\pgfpathlineto{\pgfqpoint{4.564866in}{1.713673in}}% +\pgfpathlineto{\pgfqpoint{4.680593in}{1.723322in}}% +\pgfpathlineto{\pgfqpoint{4.806841in}{1.731635in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.735049in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.735049in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{1.776224in}}% +\pgfpathlineto{\pgfqpoint{0.682746in}{2.403219in}}% +\pgfpathlineto{\pgfqpoint{0.693267in}{2.420206in}}% +\pgfpathlineto{\pgfqpoint{0.703788in}{2.421228in}}% +\pgfpathlineto{\pgfqpoint{0.714308in}{2.414827in}}% +\pgfpathlineto{\pgfqpoint{0.724829in}{2.403528in}}% +\pgfpathlineto{\pgfqpoint{0.735350in}{2.388229in}}% +\pgfpathlineto{\pgfqpoint{0.745870in}{2.369060in}}% +\pgfpathlineto{\pgfqpoint{0.756391in}{2.345477in}}% +\pgfpathlineto{\pgfqpoint{0.766912in}{2.315804in}}% +\pgfpathlineto{\pgfqpoint{0.777432in}{2.275080in}}% +\pgfpathlineto{\pgfqpoint{0.787953in}{2.196735in}}% +\pgfpathlineto{\pgfqpoint{0.798474in}{2.201671in}}% +\pgfpathlineto{\pgfqpoint{0.808994in}{2.234740in}}% +\pgfpathlineto{\pgfqpoint{0.819515in}{2.241304in}}% +\pgfpathlineto{\pgfqpoint{0.830036in}{2.238361in}}% +\pgfpathlineto{\pgfqpoint{0.840556in}{2.229821in}}% +\pgfpathlineto{\pgfqpoint{0.851077in}{2.217055in}}% +\pgfpathlineto{\pgfqpoint{0.861598in}{2.200463in}}% +\pgfpathlineto{\pgfqpoint{0.872118in}{2.179786in}}% +\pgfpathlineto{\pgfqpoint{0.882639in}{2.153911in}}% +\pgfpathlineto{\pgfqpoint{0.893159in}{2.119711in}}% +\pgfpathlineto{\pgfqpoint{0.903680in}{2.065391in}}% +\pgfpathlineto{\pgfqpoint{0.914201in}{1.981333in}}% +\pgfpathlineto{\pgfqpoint{0.924721in}{2.056903in}}% +\pgfpathlineto{\pgfqpoint{0.935242in}{2.071266in}}% +\pgfpathlineto{\pgfqpoint{0.945763in}{2.072589in}}% +\pgfpathlineto{\pgfqpoint{0.956283in}{2.067287in}}% +\pgfpathlineto{\pgfqpoint{0.966804in}{2.057414in}}% +\pgfpathlineto{\pgfqpoint{0.977325in}{2.043691in}}% +\pgfpathlineto{\pgfqpoint{0.987845in}{2.026137in}}% +\pgfpathlineto{\pgfqpoint{0.998366in}{2.004074in}}% +\pgfpathlineto{\pgfqpoint{1.008887in}{1.975548in}}% +\pgfpathlineto{\pgfqpoint{1.019407in}{1.934531in}}% +\pgfpathlineto{\pgfqpoint{1.029928in}{1.840042in}}% +\pgfpathlineto{\pgfqpoint{1.040449in}{1.883070in}}% +\pgfpathlineto{\pgfqpoint{1.050969in}{1.911652in}}% +\pgfpathlineto{\pgfqpoint{1.061490in}{1.918892in}}% +\pgfpathlineto{\pgfqpoint{1.072010in}{1.917554in}}% +\pgfpathlineto{\pgfqpoint{1.082531in}{1.910889in}}% +\pgfpathlineto{\pgfqpoint{1.093052in}{1.899990in}}% +\pgfpathlineto{\pgfqpoint{1.103572in}{1.884984in}}% +\pgfpathlineto{\pgfqpoint{1.114093in}{1.865118in}}% +\pgfpathlineto{\pgfqpoint{1.124614in}{1.837985in}}% +\pgfpathlineto{\pgfqpoint{1.135134in}{1.795200in}}% +\pgfpathlineto{\pgfqpoint{1.145655in}{1.527200in}}% +\pgfpathlineto{\pgfqpoint{1.156176in}{1.776572in}}% +\pgfpathlineto{\pgfqpoint{1.166696in}{1.801850in}}% +\pgfpathlineto{\pgfqpoint{1.177217in}{1.811631in}}% +\pgfpathlineto{\pgfqpoint{1.187738in}{1.814694in}}% +\pgfpathlineto{\pgfqpoint{1.198258in}{1.813795in}}% +\pgfpathlineto{\pgfqpoint{1.208779in}{1.810166in}}% +\pgfpathlineto{\pgfqpoint{1.219300in}{1.804460in}}% +\pgfpathlineto{\pgfqpoint{1.229820in}{1.797064in}}% +\pgfpathlineto{\pgfqpoint{1.250862in}{1.778069in}}% +\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{1.292944in}{1.725664in}}% +\pgfpathlineto{\pgfqpoint{1.313985in}{1.692083in}}% +\pgfpathlineto{\pgfqpoint{1.335027in}{1.652119in}}% +\pgfpathlineto{\pgfqpoint{1.345547in}{1.628800in}}% +\pgfpathlineto{\pgfqpoint{1.356068in}{1.602151in}}% +\pgfpathlineto{\pgfqpoint{1.366589in}{1.570246in}}% +\pgfpathlineto{\pgfqpoint{1.377109in}{1.527951in}}% +\pgfpathlineto{\pgfqpoint{1.387630in}{1.448568in}}% +\pgfpathlineto{\pgfqpoint{1.398151in}{1.452936in}}% +\pgfpathlineto{\pgfqpoint{1.408671in}{1.485794in}}% +\pgfpathlineto{\pgfqpoint{1.419192in}{1.492473in}}% +\pgfpathlineto{\pgfqpoint{1.429713in}{1.489923in}}% +\pgfpathlineto{\pgfqpoint{1.440233in}{1.482019in}}% +\pgfpathlineto{\pgfqpoint{1.450754in}{1.470100in}}% +\pgfpathlineto{\pgfqpoint{1.461274in}{1.454543in}}% +\pgfpathlineto{\pgfqpoint{1.471795in}{1.435068in}}% +\pgfpathlineto{\pgfqpoint{1.482316in}{1.410544in}}% +\pgfpathlineto{\pgfqpoint{1.492836in}{1.377833in}}% +\pgfpathlineto{\pgfqpoint{1.503357in}{1.325173in}}% +\pgfpathlineto{\pgfqpoint{1.513878in}{1.242092in}}% +\pgfpathlineto{\pgfqpoint{1.524398in}{1.319895in}}% +\pgfpathlineto{\pgfqpoint{1.534919in}{1.336141in}}% +\pgfpathlineto{\pgfqpoint{1.545440in}{1.339381in}}% +\pgfpathlineto{\pgfqpoint{1.555960in}{1.336037in}}% +\pgfpathlineto{\pgfqpoint{1.566481in}{1.328156in}}% +\pgfpathlineto{\pgfqpoint{1.577002in}{1.316443in}}% +\pgfpathlineto{\pgfqpoint{1.587522in}{1.300893in}}% +\pgfpathlineto{\pgfqpoint{1.598043in}{1.280791in}}% +\pgfpathlineto{\pgfqpoint{1.608564in}{1.254080in}}% +\pgfpathlineto{\pgfqpoint{1.619084in}{1.214327in}}% +\pgfpathlineto{\pgfqpoint{1.629605in}{1.112971in}}% +\pgfpathlineto{\pgfqpoint{1.640126in}{1.172439in}}% +\pgfpathlineto{\pgfqpoint{1.650646in}{1.201417in}}% +\pgfpathlineto{\pgfqpoint{1.661167in}{1.210359in}}% +\pgfpathlineto{\pgfqpoint{1.671687in}{1.211016in}}% +\pgfpathlineto{\pgfqpoint{1.682208in}{1.206507in}}% +\pgfpathlineto{\pgfqpoint{1.692729in}{1.197945in}}% +\pgfpathlineto{\pgfqpoint{1.703249in}{1.185586in}}% +\pgfpathlineto{\pgfqpoint{1.713770in}{1.169031in}}% +\pgfpathlineto{\pgfqpoint{1.724291in}{1.146909in}}% +\pgfpathlineto{\pgfqpoint{1.734811in}{1.115308in}}% +\pgfpathlineto{\pgfqpoint{1.745332in}{1.057236in}}% +\pgfpathlineto{\pgfqpoint{1.755853in}{1.027305in}}% +\pgfpathlineto{\pgfqpoint{1.766373in}{1.080708in}}% +\pgfpathlineto{\pgfqpoint{1.776894in}{1.096513in}}% +\pgfpathlineto{\pgfqpoint{1.787415in}{1.101295in}}% +\pgfpathlineto{\pgfqpoint{1.797935in}{1.100016in}}% +\pgfpathlineto{\pgfqpoint{1.808456in}{1.094352in}}% +\pgfpathlineto{\pgfqpoint{1.818977in}{1.084847in}}% +\pgfpathlineto{\pgfqpoint{1.829497in}{1.071373in}}% +\pgfpathlineto{\pgfqpoint{1.840018in}{1.053029in}}% +\pgfpathlineto{\pgfqpoint{1.850538in}{1.027292in}}% +\pgfpathlineto{\pgfqpoint{1.861059in}{0.985620in}}% +\pgfpathlineto{\pgfqpoint{1.868547in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.874680in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.882100in}{0.969314in}}% +\pgfpathlineto{\pgfqpoint{1.892621in}{0.994678in}}% +\pgfpathlineto{\pgfqpoint{1.903142in}{1.004102in}}% +\pgfpathlineto{\pgfqpoint{1.913662in}{1.006127in}}% +\pgfpathlineto{\pgfqpoint{1.924183in}{1.003274in}}% +\pgfpathlineto{\pgfqpoint{1.934704in}{0.996440in}}% +\pgfpathlineto{\pgfqpoint{1.945224in}{0.985753in}}% +\pgfpathlineto{\pgfqpoint{1.955745in}{0.970664in}}% +\pgfpathlineto{\pgfqpoint{1.966266in}{0.949498in}}% +\pgfpathlineto{\pgfqpoint{1.976786in}{0.917289in}}% +\pgfpathlineto{\pgfqpoint{1.987307in}{0.847460in}}% +\pgfpathlineto{\pgfqpoint{1.997828in}{0.860941in}}% +\pgfpathlineto{\pgfqpoint{2.008348in}{0.902536in}}% +\pgfpathlineto{\pgfqpoint{2.018869in}{0.917629in}}% +\pgfpathlineto{\pgfqpoint{2.029390in}{0.923213in}}% +\pgfpathlineto{\pgfqpoint{2.039910in}{0.923195in}}% +\pgfpathlineto{\pgfqpoint{2.050431in}{0.918943in}}% +\pgfpathlineto{\pgfqpoint{2.060951in}{0.910855in}}% +\pgfpathlineto{\pgfqpoint{2.071472in}{0.898671in}}% +\pgfpathlineto{\pgfqpoint{2.081993in}{0.881275in}}% +\pgfpathlineto{\pgfqpoint{2.092513in}{0.855545in}}% +\pgfpathlineto{\pgfqpoint{2.103034in}{0.809727in}}% +\pgfpathlineto{\pgfqpoint{2.113555in}{0.733363in}}% +\pgfpathlineto{\pgfqpoint{2.124075in}{0.817765in}}% +\pgfpathlineto{\pgfqpoint{2.134596in}{0.840500in}}% +\pgfpathlineto{\pgfqpoint{2.145117in}{0.850127in}}% +\pgfpathlineto{\pgfqpoint{2.155637in}{0.853073in}}% +\pgfpathlineto{\pgfqpoint{2.166158in}{0.851391in}}% +\pgfpathlineto{\pgfqpoint{2.176679in}{0.845792in}}% +\pgfpathlineto{\pgfqpoint{2.187199in}{0.836275in}}% +\pgfpathlineto{\pgfqpoint{2.197720in}{0.822128in}}% +\pgfpathlineto{\pgfqpoint{2.208241in}{0.801300in}}% +\pgfpathlineto{\pgfqpoint{2.218761in}{0.767360in}}% +\pgfpathlineto{\pgfqpoint{2.229282in}{0.671750in}}% +\pgfpathlineto{\pgfqpoint{2.239802in}{0.736902in}}% +\pgfpathlineto{\pgfqpoint{2.250323in}{0.771502in}}% +\pgfpathlineto{\pgfqpoint{2.260844in}{0.786009in}}% +\pgfpathlineto{\pgfqpoint{2.271364in}{0.792175in}}% +\pgfpathlineto{\pgfqpoint{2.281885in}{0.793122in}}% +\pgfpathlineto{\pgfqpoint{2.292406in}{0.789965in}}% +\pgfpathlineto{\pgfqpoint{2.302926in}{0.782963in}}% +\pgfpathlineto{\pgfqpoint{2.313447in}{0.771717in}}% +\pgfpathlineto{\pgfqpoint{2.323968in}{0.754859in}}% +\pgfpathlineto{\pgfqpoint{2.334488in}{0.728480in}}% +\pgfpathlineto{\pgfqpoint{2.345009in}{0.675587in}}% +\pgfpathlineto{\pgfqpoint{2.355530in}{0.650795in}}% +\pgfpathlineto{\pgfqpoint{2.366050in}{0.709299in}}% +\pgfpathlineto{\pgfqpoint{2.376571in}{0.730167in}}% +\pgfpathlineto{\pgfqpoint{2.387092in}{0.739978in}}% +\pgfpathlineto{\pgfqpoint{2.397612in}{0.743693in}}% +\pgfpathlineto{\pgfqpoint{2.408133in}{0.742990in}}% +\pgfpathlineto{\pgfqpoint{2.418654in}{0.738415in}}% +\pgfpathlineto{\pgfqpoint{2.429174in}{0.729840in}}% +\pgfpathlineto{\pgfqpoint{2.439695in}{0.716366in}}% +\pgfpathlineto{\pgfqpoint{2.450215in}{0.695472in}}% +\pgfpathlineto{\pgfqpoint{2.460736in}{0.658614in}}% +\pgfpathlineto{\pgfqpoint{2.463586in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.478996in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.481777in}{0.651862in}}% +\pgfpathlineto{\pgfqpoint{2.492298in}{0.681968in}}% +\pgfpathlineto{\pgfqpoint{2.502819in}{0.696110in}}% +\pgfpathlineto{\pgfqpoint{2.513339in}{0.702832in}}% +\pgfpathlineto{\pgfqpoint{2.523860in}{0.704654in}}% +\pgfpathlineto{\pgfqpoint{2.534381in}{0.702477in}}% +\pgfpathlineto{\pgfqpoint{2.544901in}{0.696426in}}% +\pgfpathlineto{\pgfqpoint{2.555422in}{0.685957in}}% +\pgfpathlineto{\pgfqpoint{2.565943in}{0.669393in}}% +\pgfpathlineto{\pgfqpoint{2.576463in}{0.641770in}}% +\pgfpathlineto{\pgfqpoint{2.586984in}{0.576511in}}% +\pgfpathlineto{\pgfqpoint{2.597505in}{0.594548in}}% +\pgfpathlineto{\pgfqpoint{2.608025in}{0.640685in}}% +\pgfpathlineto{\pgfqpoint{2.618546in}{0.660307in}}% +\pgfpathlineto{\pgfqpoint{2.629066in}{0.670408in}}% +\pgfpathlineto{\pgfqpoint{2.639587in}{0.674895in}}% +\pgfpathlineto{\pgfqpoint{2.650108in}{0.675139in}}% +\pgfpathlineto{\pgfqpoint{2.660628in}{0.671536in}}% +\pgfpathlineto{\pgfqpoint{2.671149in}{0.663828in}}% +\pgfpathlineto{\pgfqpoint{2.681670in}{0.650899in}}% +\pgfpathlineto{\pgfqpoint{2.692190in}{0.629629in}}% +\pgfpathlineto{\pgfqpoint{2.702711in}{0.588265in}}% +\pgfpathlineto{\pgfqpoint{2.713232in}{0.516347in}}% +\pgfpathlineto{\pgfqpoint{2.723752in}{0.605191in}}% +\pgfpathlineto{\pgfqpoint{2.734273in}{0.632363in}}% +\pgfpathlineto{\pgfqpoint{2.744794in}{0.646422in}}% +\pgfpathlineto{\pgfqpoint{2.755314in}{0.653798in}}% +\pgfpathlineto{\pgfqpoint{2.765835in}{0.656543in}}% +\pgfpathlineto{\pgfqpoint{2.776356in}{0.655368in}}% +\pgfpathlineto{\pgfqpoint{2.786876in}{0.650275in}}% +\pgfpathlineto{\pgfqpoint{2.797397in}{0.640551in}}% +\pgfpathlineto{\pgfqpoint{2.807918in}{0.624146in}}% +\pgfpathlineto{\pgfqpoint{2.818438in}{0.594630in}}% +\pgfpathlineto{\pgfqpoint{2.828959in}{0.503446in}}% +\pgfpathlineto{\pgfqpoint{2.839479in}{0.573026in}}% +\pgfpathlineto{\pgfqpoint{2.850000in}{0.612056in}}% +\pgfpathlineto{\pgfqpoint{2.860521in}{0.630997in}}% +\pgfpathlineto{\pgfqpoint{2.871041in}{0.641602in}}% +\pgfpathlineto{\pgfqpoint{2.881562in}{0.646994in}}% +\pgfpathlineto{\pgfqpoint{2.892083in}{0.648287in}}% +\pgfpathlineto{\pgfqpoint{2.902603in}{0.645741in}}% +\pgfpathlineto{\pgfqpoint{2.913124in}{0.638959in}}% +\pgfpathlineto{\pgfqpoint{2.923645in}{0.626572in}}% +\pgfpathlineto{\pgfqpoint{2.934165in}{0.604673in}}% +\pgfpathlineto{\pgfqpoint{2.944686in}{0.556271in}}% +\pgfpathlineto{\pgfqpoint{2.955207in}{0.535980in}}% +\pgfpathlineto{\pgfqpoint{2.965727in}{0.598993in}}% +\pgfpathlineto{\pgfqpoint{2.976248in}{0.624386in}}% +\pgfpathlineto{\pgfqpoint{2.986769in}{0.638733in}}% +\pgfpathlineto{\pgfqpoint{2.997289in}{0.646999in}}% +\pgfpathlineto{\pgfqpoint{3.007810in}{0.650860in}}% +\pgfpathlineto{\pgfqpoint{3.018330in}{0.650865in}}% +\pgfpathlineto{\pgfqpoint{3.028851in}{0.646885in}}% +\pgfpathlineto{\pgfqpoint{3.039372in}{0.638024in}}% +\pgfpathlineto{\pgfqpoint{3.049892in}{0.621760in}}% +\pgfpathlineto{\pgfqpoint{3.060413in}{0.589552in}}% +\pgfpathlineto{\pgfqpoint{3.060425in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.081442in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.081454in}{0.592162in}}% +\pgfpathlineto{\pgfqpoint{3.091975in}{0.626979in}}% +\pgfpathlineto{\pgfqpoint{3.102496in}{0.645857in}}% +\pgfpathlineto{\pgfqpoint{3.113016in}{0.657338in}}% +\pgfpathlineto{\pgfqpoint{3.123537in}{0.663945in}}% +\pgfpathlineto{\pgfqpoint{3.134058in}{0.666578in}}% +\pgfpathlineto{\pgfqpoint{3.144578in}{0.665366in}}% +\pgfpathlineto{\pgfqpoint{3.155099in}{0.659763in}}% +\pgfpathlineto{\pgfqpoint{3.165620in}{0.648096in}}% +\pgfpathlineto{\pgfqpoint{3.176140in}{0.625402in}}% +\pgfpathlineto{\pgfqpoint{3.186661in}{0.565104in}}% +\pgfpathlineto{\pgfqpoint{3.197182in}{0.588134in}}% +\pgfpathlineto{\pgfqpoint{3.207702in}{0.639300in}}% +\pgfpathlineto{\pgfqpoint{3.218223in}{0.663990in}}% +\pgfpathlineto{\pgfqpoint{3.228743in}{0.679196in}}% +\pgfpathlineto{\pgfqpoint{3.239264in}{0.688829in}}% +\pgfpathlineto{\pgfqpoint{3.249785in}{0.694259in}}% +\pgfpathlineto{\pgfqpoint{3.260305in}{0.695887in}}% +\pgfpathlineto{\pgfqpoint{3.270826in}{0.693455in}}% +\pgfpathlineto{\pgfqpoint{3.281347in}{0.685850in}}% +\pgfpathlineto{\pgfqpoint{3.291867in}{0.669953in}}% +\pgfpathlineto{\pgfqpoint{3.302388in}{0.634013in}}% +\pgfpathlineto{\pgfqpoint{3.312909in}{0.567577in}}% +\pgfpathlineto{\pgfqpoint{3.323429in}{0.661953in}}% +\pgfpathlineto{\pgfqpoint{3.333950in}{0.694719in}}% +\pgfpathlineto{\pgfqpoint{3.344471in}{0.714432in}}% +\pgfpathlineto{\pgfqpoint{3.354991in}{0.727527in}}% +\pgfpathlineto{\pgfqpoint{3.365512in}{0.736057in}}% +\pgfpathlineto{\pgfqpoint{3.376033in}{0.740739in}}% +\pgfpathlineto{\pgfqpoint{3.386553in}{0.741575in}}% +\pgfpathlineto{\pgfqpoint{3.397074in}{0.737857in}}% +\pgfpathlineto{\pgfqpoint{3.407594in}{0.727538in}}% +\pgfpathlineto{\pgfqpoint{3.418115in}{0.704194in}}% +\pgfpathlineto{\pgfqpoint{3.428636in}{0.619270in}}% +\pgfpathlineto{\pgfqpoint{3.439156in}{0.695202in}}% +\pgfpathlineto{\pgfqpoint{3.449677in}{0.740685in}}% +\pgfpathlineto{\pgfqpoint{3.460198in}{0.766182in}}% +\pgfpathlineto{\pgfqpoint{3.470718in}{0.783452in}}% +\pgfpathlineto{\pgfqpoint{3.481239in}{0.795624in}}% +\pgfpathlineto{\pgfqpoint{3.491760in}{0.803819in}}% +\pgfpathlineto{\pgfqpoint{3.502280in}{0.808305in}}% +\pgfpathlineto{\pgfqpoint{3.512801in}{0.808692in}}% +\pgfpathlineto{\pgfqpoint{3.523322in}{0.803621in}}% +\pgfpathlineto{\pgfqpoint{3.533842in}{0.789193in}}% +\pgfpathlineto{\pgfqpoint{3.544363in}{0.748427in}}% +\pgfpathlineto{\pgfqpoint{3.554884in}{0.735950in}}% +\pgfpathlineto{\pgfqpoint{3.565404in}{0.806971in}}% +\pgfpathlineto{\pgfqpoint{3.575925in}{0.840575in}}% +\pgfpathlineto{\pgfqpoint{3.586446in}{0.863355in}}% +\pgfpathlineto{\pgfqpoint{3.596966in}{0.880294in}}% +\pgfpathlineto{\pgfqpoint{3.607487in}{0.893092in}}% +\pgfpathlineto{\pgfqpoint{3.618007in}{0.902319in}}% +\pgfpathlineto{\pgfqpoint{3.628528in}{0.907878in}}% +\pgfpathlineto{\pgfqpoint{3.639049in}{0.908904in}}% +\pgfpathlineto{\pgfqpoint{3.649569in}{0.902917in}}% +\pgfpathlineto{\pgfqpoint{3.660090in}{0.881422in}}% +\pgfpathlineto{\pgfqpoint{3.666381in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.674695in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.681131in}{0.907017in}}% +\pgfpathlineto{\pgfqpoint{3.691652in}{0.954276in}}% +\pgfpathlineto{\pgfqpoint{3.702173in}{0.986379in}}% +\pgfpathlineto{\pgfqpoint{3.712693in}{1.012034in}}% +\pgfpathlineto{\pgfqpoint{3.733735in}{1.053510in}}% +\pgfpathlineto{\pgfqpoint{3.754776in}{1.087620in}}% +\pgfpathlineto{\pgfqpoint{3.775817in}{1.117269in}}% +\pgfpathlineto{\pgfqpoint{3.796858in}{1.143814in}}% +\pgfpathlineto{\pgfqpoint{3.828420in}{1.179394in}}% +\pgfpathlineto{\pgfqpoint{3.859982in}{1.211152in}}% +\pgfpathlineto{\pgfqpoint{3.891544in}{1.239965in}}% +\pgfpathlineto{\pgfqpoint{3.933627in}{1.274752in}}% +\pgfpathlineto{\pgfqpoint{3.975710in}{1.306188in}}% +\pgfpathlineto{\pgfqpoint{4.017792in}{1.334872in}}% +\pgfpathlineto{\pgfqpoint{4.059875in}{1.361236in}}% +\pgfpathlineto{\pgfqpoint{4.112478in}{1.391409in}}% +\pgfpathlineto{\pgfqpoint{4.165081in}{1.418930in}}% +\pgfpathlineto{\pgfqpoint{4.217684in}{1.444160in}}% +\pgfpathlineto{\pgfqpoint{4.280808in}{1.471806in}}% +\pgfpathlineto{\pgfqpoint{4.343932in}{1.496941in}}% +\pgfpathlineto{\pgfqpoint{4.407056in}{1.519873in}}% +\pgfpathlineto{\pgfqpoint{4.480701in}{1.544168in}}% +\pgfpathlineto{\pgfqpoint{4.554345in}{1.566117in}}% +\pgfpathlineto{\pgfqpoint{4.638510in}{1.588663in}}% +\pgfpathlineto{\pgfqpoint{4.722676in}{1.608807in}}% +\pgfpathlineto{\pgfqpoint{4.806841in}{1.626816in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.639057in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{1.639057in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.384851in}{2.026148in}}% +\pgfpathlineto{\pgfqpoint{4.788979in}{2.026148in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.812117in}{2.026148in}}{\pgfqpoint{4.812117in}{2.049287in}}% +\pgfpathlineto{\pgfqpoint{4.812117in}{2.377344in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.812117in}{2.400483in}}{\pgfqpoint{4.788979in}{2.400483in}}% +\pgfpathlineto{\pgfqpoint{2.384851in}{2.400483in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.361713in}{2.400483in}}{\pgfqpoint{2.361713in}{2.377344in}}% +\pgfpathlineto{\pgfqpoint{2.361713in}{2.049287in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.361713in}{2.026148in}}{\pgfqpoint{2.384851in}{2.026148in}}% +\pgfpathlineto{\pgfqpoint{2.384851in}{2.026148in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.407990in}{2.306797in}}% +\pgfpathlineto{\pgfqpoint{2.523685in}{2.306797in}}% +\pgfpathlineto{\pgfqpoint{2.639379in}{2.306797in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.731935in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.407990in}{2.136984in}}% +\pgfpathlineto{\pgfqpoint{2.523685in}{2.136984in}}% +\pgfpathlineto{\pgfqpoint{2.639379in}{2.136984in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.731935in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=4\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.251394in}{2.306797in}}% +\pgfpathlineto{\pgfqpoint{3.367088in}{2.306797in}}% +\pgfpathlineto{\pgfqpoint{3.482782in}{2.306797in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.575338in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=6\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.251394in}{2.136984in}}% +\pgfpathlineto{\pgfqpoint{3.367088in}{2.136984in}}% +\pgfpathlineto{\pgfqpoint{3.482782in}{2.136984in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.575338in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=8\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.094797in}{2.306797in}}% +\pgfpathlineto{\pgfqpoint{4.210491in}{2.306797in}}% +\pgfpathlineto{\pgfqpoint{4.326186in}{2.306797in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.418741in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=10\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/rel_error_simple.png b/buch/papers/laguerre/images/rel_error_simple.png new file mode 100644 index 0000000..8bcd8e0 Binary files /dev/null and b/buch/papers/laguerre/images/rel_error_simple.png differ diff --git a/buch/papers/laguerre/images/schaetzung.pgf b/buch/papers/laguerre/images/schaetzung.pgf new file mode 100644 index 0000000..873a10c --- /dev/null +++ b/buch/papers/laguerre/images/schaetzung.pgf @@ -0,0 +1,1160 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{4.000000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{2.276777in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.756261in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{0.756261in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.756261in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.556655in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{1.556655in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.556655in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.357049in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{2.357049in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.357049in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.157443in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{3.157443in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.157443in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.957837in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{3.957837in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.957837in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.758231in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.758231in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.758231in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.574427in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.574427in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{2.574427in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.370575in, y=2.521666in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.092617in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.092617in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{3.092617in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.282209in, y=3.039855in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.610806in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.610806in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{3.610806in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.282209in, y=3.558045in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.353211in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.881896in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.756261in}{2.422322in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.156458in}{2.562568in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.556655in}{2.701268in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.956852in}{2.840483in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.357049in}{2.979182in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.757246in}{3.116851in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.157443in}{3.255550in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.557640in}{3.394249in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.957837in}{3.531918in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.358034in}{3.670617in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.758231in}{3.818082in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.958330in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.653384in}{3.439504in}}% +\pgfpathlineto{\pgfqpoint{1.219775in}{3.439504in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.439504in}}{\pgfqpoint{1.247553in}{3.467282in}}% +\pgfpathlineto{\pgfqpoint{1.247553in}{3.861108in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.888886in}}{\pgfqpoint{1.219775in}{3.888886in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{3.888886in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.888886in}}{\pgfqpoint{0.625607in}{3.861108in}}% +\pgfpathlineto{\pgfqpoint{0.625607in}{3.467282in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.439504in}}{\pgfqpoint{0.653384in}{3.439504in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{3.439504in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.681162in}{3.776418in}}% +\pgfpathlineto{\pgfqpoint{0.820051in}{3.776418in}}% +\pgfpathlineto{\pgfqpoint{0.958940in}{3.776418in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=3.727807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.820051in}{3.572561in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=3.523950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \bar{m}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.756261in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.756261in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.756261in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.756261in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.556655in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.556655in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.556655in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.556655in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.357049in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.357049in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.357049in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.357049in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.157443in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.157443in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.157443in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.157443in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.957837in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.957837in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.957837in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.957837in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.758231in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.758231in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.758231in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.758231in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.757246in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.814398in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.814398in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{0.814398in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=0.761637in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.04}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.187458in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.187458in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.187458in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=1.134696in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.02}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.560518in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.560518in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.560518in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149695in, y=1.507756in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.933577in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.933577in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.933577in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149695in, y=1.880816in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.02}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.756261in}{1.628009in}}% +\pgfpathlineto{\pgfqpoint{1.156458in}{1.398538in}}% +\pgfpathlineto{\pgfqpoint{1.556655in}{1.447469in}}% +\pgfpathlineto{\pgfqpoint{1.956852in}{1.403600in}}% +\pgfpathlineto{\pgfqpoint{2.357049in}{1.452531in}}% +\pgfpathlineto{\pgfqpoint{2.757246in}{1.687064in}}% +\pgfpathlineto{\pgfqpoint{3.157443in}{1.735996in}}% +\pgfpathlineto{\pgfqpoint{3.557640in}{1.784927in}}% +\pgfpathlineto{\pgfqpoint{3.957837in}{2.019460in}}% +\pgfpathlineto{\pgfqpoint{4.358034in}{2.068392in}}% +\pgfpathlineto{\pgfqpoint{4.758231in}{0.539708in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.756261in}{1.628009in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.156458in}{1.398538in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.556655in}{1.447469in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.956852in}{1.403600in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.357049in}{1.452531in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.757246in}{1.687064in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.157443in}{1.735996in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.557640in}{1.784927in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.957837in}{2.019460in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.358034in}{2.068392in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.758231in}{0.539708in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.144826in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.653384in}{1.829858in}}% +\pgfpathlineto{\pgfqpoint{1.511473in}{1.829858in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.829858in}}{\pgfqpoint{1.539251in}{1.857636in}}% +\pgfpathlineto{\pgfqpoint{1.539251in}{2.047604in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{2.075382in}}{\pgfqpoint{1.511473in}{2.075382in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{2.075382in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{2.075382in}}{\pgfqpoint{0.625607in}{2.047604in}}% +\pgfpathlineto{\pgfqpoint{0.625607in}{1.857636in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.829858in}}{\pgfqpoint{0.653384in}{1.829858in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{1.829858in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.681162in}{1.962914in}}% +\pgfpathlineto{\pgfqpoint{0.820051in}{1.962914in}}% +\pgfpathlineto{\pgfqpoint{0.958940in}{1.962914in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.820051in}{1.962914in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=1.914303in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m} - \bar{m}\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/targets.pdf b/buch/papers/laguerre/images/targets.pdf new file mode 100644 index 0000000..22c2c5a Binary files /dev/null and b/buch/papers/laguerre/images/targets.pdf differ diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index f4e2955..b5ad316 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -61,14 +61,14 @@ Der Fehlerterm $R_n$ folgt direkt aus der Approximation = \sum_{i=1}^n f(x_i) A_i + R_n \end{align*} -un \cite{abramowitz+stegun} gibt in als +und \cite{abramowitz+stegun} gibt ihn als \begin{align} R_n = \frac{(n!)^2}{(2n)!} f^{(2n)}(\xi) ,\quad 0 < \xi < \infty -\label{lagurre:lag_error} +\label{laguerre:lag_error} \end{align} an. diff --git a/buch/papers/laguerre/references.bib b/buch/papers/laguerre/references.bib index 6956ade..e12e218 100644 --- a/buch/papers/laguerre/references.bib +++ b/buch/papers/laguerre/references.bib @@ -19,4 +19,13 @@ timestamp = {2008-06-25T06:25:58.000+0200}, title = {Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables}, year = 1972 +} + +@article{Cassity1965AbcissasCA, + title={Abcissas, coefficients, and error term for the generalized Gauss-Laguerre quadrature formula using the zero ordinate}, + author={C. Ronald Cassity}, + journal={Mathematics of Computation}, + year={1965}, + volume={19}, + pages={287-296} } \ No newline at end of file diff --git a/buch/papers/laguerre/scripts/gamma_approx.ipynb b/buch/papers/laguerre/scripts/gamma_approx.ipynb index 337b307..a8280aa 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.ipynb +++ b/buch/papers/laguerre/scripts/gamma_approx.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -86,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -136,21 +136,24 @@ "def laguerre_gamma(z, x, w, target=11):\n", " # res = 0.0\n", " z = complex(z)\n", - " if z.real < 1e-3:\n", - " res = pi / (\n", - " sin(pi * z) * laguerre_gamma(1 - z, x, w, target)\n", - " ) # Reflection formula\n", - " else:\n", - " z_shifted, correction_factor = find_shift(z, target)\n", - " res = np.sum(x ** (z_shifted - 1) * w)\n", - " res *= correction_factor\n", + " # if z.real < 1e-3:\n", + " # res = pi / (\n", + " # sin(pi * z) * laguerre_gamma(1 - z, x, w, target)\n", + " # ) # Reflection formula\n", + " # else:\n", + " # z_shifted, correction_factor = find_shift(z, target)\n", + " # res = np.sum(x ** (z_shifted - 1) * w)\n", + " # res *= correction_factor\n", + " z_shifted, correction_factor = find_shift(z, target)\n", + " res = np.sum(x ** (z_shifted - 1) * w)\n", + " res *= correction_factor\n", " res = drop_imag(res)\n", " return res\n" ] }, { "cell_type": "code", - "execution_count": 115, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -203,26 +206,13 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddVgc19fA8e+sscDimoQQIhB39xB312qa6lt3t1RTd++vbdrGpXEX4u7uLrjDArs77x9DrEnbCDDI+TzPPLs7tmfbCbtn7r3nKqqqIoQQQgghhBBCfwa9AxBCCCGEEEIIoZEETQghhBBCCCGKCUnQhBBCCCGEEKKYkARNCCGEEEIIIYoJSdCEEEIIIYQQopiQBE0IIYQQQgghiokymaApivKLoihxiqLsLqDzLVAUJUVRlDl/W/+ooiiHFUVRFUUJLIj3EkIIIYQQQpReZTJBA34Duhfg+T4C7rzG+jVAZ+BEAb6XEEIIIYQQopQqkwmaqqorgaTL1ymKUjW/JWyLoiirFEWpcQPnWwqkX2P9NlVVj99ywEIIIYQQQogywaR3AMXIj8BDqqoeUhSlOfAt0FHnmIQQQgghhBBliCRogKIoNqAVMEVRlAur3fK3DQTeusZhZ1RV7VY0EQohhBBCCCHKAknQNAYgRVXVBn/foKrqdGB6kUckhBBCCCGEKHPK5Bi0v1NVNQ04pijKEABFU1/nsIQQQgghhBBlTJlM0BRFmQCsA6orinJaUZR7gduBexVF2QHsAfrdwPlWAVOATvnn65a//nFFUU4DYcBORVF+LujPIoQQQgghhCg9FFVV9Y5BCCGEEEIIIQRltAVNCCGEEEIIIYojSdCEEEIIIYQQopgoc1UcAwMD1YiICL3DEGVYZmYmnp6eeochyjC5BoXe5BoUepNrUOhty5YtCaqqBl1rW5lL0CIiIti8ebPeYYgyLCYmhg4dOugdhijD5BoUepNrUOhNrkGhN0VRTvzTNuniKIQQQgghhBDFhCRoQgghhBBCCFFMSIImhBBCCCGEEMVEmRuDJoQQQgghhLg1eXl5nD59GrvdrncoxZrVaiUsLAyz2Xzdx0iCJoQQQgghhLghp0+fxsvLi4iICBRF0TucYklVVRITEzl9+jSVK1e+7uOki6MQQgghhBDihtjtdgICAiQ5+xeKohAQEHDDrYySoAkhhBBCCCFumCRn/+1m/htJgiaEEEIIIYQQxYQkaEIIIYQQQogSJzs7m/bt2+N0OgHo3r07vr6+9O7d+4r9VFXllVdeISoqipo1a/Lll1/+57n/6Vxt27alQYMGNGjQgPLly9O/f38A5syZw+uvv14gn0v3BE1RlF8URYlTFGX3P2y/XVGUnYqi7FIUZa2iKPUv23Y8f/12RVE2F13UQgghhBBCCD398ssvDBw4EKPRCMBzzz3HH3/8cdV+v/32G6dOnWL//v3s27eP4cOH/+e5/+lcq1atYvv27Wzfvp2WLVsycOBAAHr16sXs2bPJysq6xU9VPKo4/gZ8Dfz+D9uPAe1VVU1WFKUH8CPQ/LLt0aqqJhRuiEIIIYQQQohrGT17D3vPphXoOWuV9+aNPrX/dZ9x48Yxfvz4i687depETEzMVft99913jB8/HoNBa5sKDg7+z/f/p3NdkJaWxrJly/j1118BbaxZhw4dmDNnDkOHDv3P8/8b3VvQVFVdCST9y/a1qqom579cD4QVSWBCCCGEEEKIYik3N5ejR48SERHxn/seOXKESZMm0aRJE3r06MGhQ4du+f1nzJhBp06d8Pb2vriuSZMmrFq16pbPXRxa0G7EvcD8y16rwCJFUVTgB1VVf9QnLCGEEEIIIcqm/2rpKgwJCQn4+vpe1745OTlYrVY2b97M9OnTGTVq1C0nUhMmTOC+++67Yl1wcDBnz569pfNCCUrQFEWJRkvQ2ly2uo2qqmcURQkGFiuKsj+/Re7vxz4APAAQEhLyr82VQhS2jIwMuQaFruQaFHqTa1DoTa7BW+fj40N6erpu7+9wOMjOzr4qhqysLBwOxxXry5cvT9euXUlPT6dz587cc8891xX7tc4FkJiYyIYNG/j999+v2JacnIzJZLpqf7vdfkPXW4lI0BRFqQf8DPRQVTXxwnpVVc/kP8YpivIX0Ay4KkHLb1n7EaBJkyZqhw4diiJsIa4pJiYGuQaFnuQaFHqTa1DoTa7BW7dv3z68vLx0e38vLy9cLhdmsxmr1XpxvYeHByaT6YrYBg4cyKZNm6hbty4xMTFERUXh5eXFxo0b+frrr/n992uXwrjWuUAb+9anTx+CgoKuWH/q1CkaNmx41f5Wq5WGDRte92cr9gmaoijhwHTgTlVVD1623hMwqKqanv+8K/CWTmEKIYQQxYKqqjhycsjLsZOXYyfXbifPbs9/ra1X80tSoygo+Y+XP1cUAwaTEYPBiMF44dGAkv/c7OaGu5c3Vi9vTGazfh9WCFGmde3aldWrV9O5c2dAK4G/f/9+MjIyCAsL43//+x/dunXjxRdf5Pbbb+ezzz7DZrPx888/A3Dy5Enc3d2vee5/OhfAxIkTefHFF686Zvny5bz//vu3/Ll0T9AURZkAdAACFUU5DbwBmAFUVf0eeB0IAL7Nn4nboapqEyAE+Ct/nQkYr6rqgiL/AEIIIUQhUFWV3Oxs7BlpZKenk52ehj09jeyMdOwZ6dgzMvIf859nXnjMQHW5iixOs9Uddy8vLWGzaY/acxtWm7e2zeaF1eaF1Ut7rapqkcUnhCi9HnnkET777LOLCdo/jSvz9fVl7ty5V63fsGEDjzzyyDWP+bcxatfqrhgbG0t2djZ169a9jsj/ne4JmqqqI/5j+33AfddYfxSof/URQgghRPGXa88mNS6W1LhY0uJjr3ielZpCdno6LqfjH4938/TUkh5PL6w2G97BIfmvbVjc3TFbrZjdrFjyH81uVsxWKyY3N4xGEyoqqCparqRqSdOF5y4XLpcLl9OpLS4nqtOJy+nC5XL+Y+KYnZ5Gaux5stPTyMnK/MfYFYORw9P+wOYXgM3PH09/f+25v/baOzAY7+BgDAZjQf9nF0KUIo0aNSI6Ohqn03lxLrQb8dFHHxVYLCdPnuSTTz4pkHPpnqAJIYQQpZHL5SQjMZGU2POkxJ4jNe48qbHntce4WLLTr5wzyOTmhk9QCD7BIYRWjdRam/JbpKz5rVLuXvktUTZbsU9eXE4n9kytlS87PR17Rhr2jAyy09PYv3sXATZPMpITSTh1guM7t5KbnX3F8SazBf+wigSGhRNQsRKB+YtXYBD5vWeEEIJRo0bpHQIATZs2LbBzSYImhBBC3AKnw0HS2dMknDhG3IljJJw6Qcr5s6TFx+G6MNYLMBiN+S1DIUQ2a4V3cAg+QcH4BIfiExyCu7dPqUo8DEYjHt4+eHj7XLUtw+Z3VYGG3OwsMpKTyEhKIjXuPImnT5Bw6iQn9+xk76rlF/czW90JCKtIQFj4xeQtICwcr4DAUvXfTwhRdkmCJoQQQlynnKxMYo8eJu74UeJPHCP+5HGSTp/E6dC6IhpNJvzDwgmpXI2oFm3wCQ7FNyQUn+BQvAICMdxEF5yywuLugb+7B/7lw4B6V2yzZ2SQePokiadPknDqBImnT3Bs22b2xCy57Hh3AiqEE1AxnMCKEZSLjCK4cjUpYiKEKHEkQRNCCCGuwZGbS/yJY5w/cpDzhw9y7sghks+evrjd08+foPAIIuo1JKhSZYLCI/ArH4bRJF+tBc1qs1GhRi0q1Kh1xfrs9LTLEjft8ejWTexevhjQEubgylUpH1WDcpE1KR9VA6+AQD0+ghBCXDf5FhFCCFHmuVxOkk6f4vyRQxeX+BPHLhbp8PT1I7RaFLXaRhNaNZLgiCp4+PjqG7TA3cubsJp1CKtZ54r1GclJnDu0n7MHtWX7onlsmTsTAFtAIOUja1Chek3KV69FcEQVadkUooQaNWoUc+bMITg4mN27d19c/9VXX/HNN99gNBrp1asXH374oY5R3jhJ0IQQQpQpqqqSEnuO80cOEXvkIOePHCbu2BHycuyA1tUutGo1mvTuT2jVKEKrRWHzD5DxTSWIzc+fyGatiGzWCgCnI4+440c5d/BS0nZw/WpAK85SPrI65avXokJUTcpF1cDNw1PP8IUQ12nkyJE8+uij3HXXXRfXLV++nJkzZ7Jjxw7c3NyIi4vTMcKbIwmaEEKIUk1VVRJPn+Tk7p2c2rOD0/v2YM9IB7RKgUGVq1CnYxctGasaiV9oeRSDQeeoRUEymsyUq1adctWq06hnPwDSEuI5e2AvZw7s4+yBfWyYPhlVdYGiEBQeQcXa9QivU5+KtepgcffQ+RMIIa6lXbt2HD9+/Ip13333HS+++CJubm4ABAcH6xDZrZEETQghRKmiqiqpsec5uWdHflK2k6zUFAB8gkOo1rQF5SKrE1o1ioCwcBkzVkZ5BwbhHdieGq3bA1oVyXOHDnLmwF7O7N/NjsXz2DpvJorBQGi1KCrVqU94nfqUi6ophUeE+Lv5L8L5XQV7ztC60GPMDR928OBBVq1axSuvvILVauXjjz8u0BL4RUG+lYQQQpR4WakpnNi9g5O7tnNi13bSE+IBratbpXoNCa9dj4q16+ETHKJzpKK4srh7UKleAyrVawBoRWLOHtzHyd07OLlrBxv+msL66ZMwWdyoUKMW1Zq0oFrTFtj8A/QNXAhxBYfDQVJSEuvXr2fTpk0MHTqUo0ePlqhu6pKgCSGEKHHycuyc2b+XE/kJWfzxowBYPW1UrFOPZv2GEF6nHn7lKpSoL2VRfJgsFsLzW80Yrk2xcGrvbk7u3s7x7VtZ+st3LP3lO8pFVieyWSuqNWuJX2h5vcMWQh830dJVWMLCwhg4cCCKotCsWTMMBgMJCQkEBQXpHdp1kwRNCCFEiZASe54jm9dzdOtGzhzYhzMvD6PJRPnqtWgz/C4q1W1AcJWqGAxSkU8UPDcPT6o1aU61Js0BSDx9ikMb13Jo41pWjvuVleN+JTA8gshmLYls1orA8Ai5OSCEDvr378/y5cuJjo7m4MGD5ObmEhhYsqbXkARNCCFEsaSqKnHHjnB40zoOb95AwsnjAASEhdOgay8q1WtIWI3amK1WfQMVZVJAWEUCwobRYuAwUuNiObxpPYc2rmXdtImsmzoBv3LliWrRluot20iyJkQhGTFiBDExMSQkJBAWFsbo0aMZNWoUo0aNok6dOlgsFsaOHVvi/v1JgiaEEKLYcDocnNq7i8Ob1nNkywYyEhNQFAMVatSiw133UbVxc3xDy+kdphBX8AkOoXGvfjTu1Y/MlGQOb1rPwfWr2ThjChv+moRf+TCqt2hNVMu2BFasVOJ+LApRXE2YMOGa6//8888ijqRgSYImhBBCV47cXI7v3MahDWs4smUDOZmZmNzciKjXiGrD7qRywyZ4ePvoHaYQ18XT14/6XXpQv0sPslJTOLRxHQfXr7pYZMS/fBhRLdtQo3V7AipU1DtcIUQxJAmaEEKIIpdnt3Ns+2YObljL0a2byLNn4+bpSdXGzYls3ppK9RpgtrjpHaYQt8TDx/disqa1rK3jwLrVbJg+mfXTJhJSpRo120RTo3U7PH399A5XCFFMSIImhBCiSORmZ3Fky0YOrl/D8R1bceTm4O7tQ43W7Yhq1oqKdephNMn8UqJ00lrWelK/S08ykpM4sHYl+1bHEPP7T6z443+E161PrbbRVGvWEovVXe9whRA6kgRNCCFEocnJysxPylZzfMdWnHl5ePr5Uye6M5HNWhNWszYGo1RdFGWLzc+fxr3607hXfxJPn2Lf6hj2rY5h/jefYvrZjWpNWlC3Y1cq1q4n49WEKIMkQRNCCFGg7JkZHNm8gYPrV3Ni5zacDgc2/wDqd+5BVIs2lI+qgWIw6B2mEMVCQFhF2gy/k9bD7uDsgX3sWx3DgbUr2b9mBX7lw6jfuQe123fCarPpHaoQoohIgiaEEOKWOR0Ojm3bzJ4VSzi6dTMupwOvwCAadOtNVIvWlKtWXZIyIf6FoihUqFHrYsXSg+tXs33xPGJ+/4nVE8ZSvVU76nftQWjVKGlVE6KUkwRNCCHETYs/cYw9K5awd1UM2WmpePj40rB7b6q3bEtoNfkhKcTNMFks1GrXkVrtOhJ3/Cg7Fs9j36oY9qxYQnDlqtTv0oOarTvIHICizBs1ahRz5swhODiY3bt3AzBs2DAOHDgAQEpKCr6+vmzfvl3HKG+cJGhCCCFuSFZaKvvXrGBPzFLijh/BYDRRtUkzarfvTOUGjWVMmRAFKDiiCl3uf5R2t49i36rl7Fg8j8U/fs3Kcb9Sp0MXGnTrjW9IqN5hCqGLkSNH8uijj3LXXXddXDdp0qSLz5955hl8fEreNC2SoAkhhPhPToeD4zu2sCdmKUe2bMTldBBcuSrRIx+kZpv2uHt56x2iEKWam4cHDbr1on7XnpzZv4dtC+eydf4stsybSZWGTWjYvQ+V6jWUVmtRprRr147jx49fc5uqqkyePJlly5YVbVAFQBI0IYQQ/yj+5HH2xCxh3+oYslJTcPf2oUG3XtTp0JmgSpX1Dk+IMkdRFMJq1iGsZh3SkxLYuWQBO5csYNp7r+NXPoyG3XpRu30nLO4eeocqypAPNn7A/qT9BXrOGv41eKHZCzd9/KpVqwgJCSEyMrIAoyoakqAJIYS4gtaFcSV7Viwh7tgRDEYjVRo1o3YHrQuj0SRfHUIUB17+gbQeegfNBwzj4PrVbFswm2W//sDqib9Tr3MPmvQeIBNgizJrwoQJjBgxQu8wbop8ywohhEBVVc4e2Me2hXM4tGGt1oUxoirRIx+gRuv2eHiXvD78QpQVJrOZWm2jqdU2mnOHD7B13iy2zJnB9oVzqde5O037DMTmH6B3mKIUu5WWrsLgcDiYPn06W7Zs0TuUmyIJmhBClGF5OXb2r1nJtoVziD9+FDdPTxp07UntDp0Jjqiid3hCiBtUrlp1ej3+HK2G3MaGv6awbcFsdiyeR53orjTrNwjvwGC9QxSi0C1ZsoQaNWoQFhamdyg3RRI0IYQog1Jiz7Nj8Tx2L1uEPTODwPAIujzwqJTuFqKU8CtXge4PP0mLQcPZOHMKu5YuZNfShdTu0Inm/YfgEyyVH0XJN2LECGJiYkhISCAsLIzRo0dz7733MnHixBLbvREkQRNCiDJDVVVO7NrO4Xl/seX7oyiKQmSzVjTs1psKNWtL9TchSiHfkFC6PvAYLQYOY+PMaexetpDdyxdTq200zfoPxb98Bb1DFOKmTZgw4Zrrf/vtt6INpIBJgiaEEKVcXm4O+1bFsHXeTBJPn8Tk7kGLgcOo17k7Xv6BeocnhCgC3oHBdL73/2gxYCibZk1j55IF7F25nOqt2tJ8wFACK1bSO0QhRD5J0IQQopTKSE5ix6K57Fg8n+z0NIIiqtD94aeIdai07tRZ7/CEEDqw+QcQPfIBmvUfwpa5WiGR/WtWENm8FS0GDpexp0IUA5KgCSFEKRN77Ahb581k/5qVuFxOqjZuRuOe/QirVRdFUYiPidE7RCGEzjx9/Wh3+z007TuIrfNmsnX+bA5tWEuVxs1oOXA4odWi9A5RiDJLEjQhhCgFXE4nhzevZ9v82Zzetxuzm5X6XXrQsEcf/ELL6x2eEKKYcvfypvWwO2ncewDbFsxm69yZjHvlaSo3bELrYXcSUrmq3iEKUeZIgiaEECVYVloqu5YtYseieaQnxuMdFEK7O0ZRt2NXrJ42vcMTQpQQVk8bLQeNoHHPfmxbMIfNs6fz54tPENWiDa2G3k5AhYp6hyhEmSEJmhBClEBxx4+ybcFs9q9egSMvl/A69el4z4NUadwUg8God3hCiBLK4u5B8wFDqd+1J1vmzmDL3Jkc2rCWWu060nLwCHyCQ/QOUYhSTxI0IYQoIVSXi8Ob17N13ixO79uNyeJGrfYdaditN4HhEXqHJ4QoRayeNloPvYOG3fuwccYUti+ay77VMdTr3I3mA4Zh8/PXO0QhGDVqFHPmzCE4OJjdu3cDsH37dh566CHsdjsmk4lvv/2WZs2a6RzpjZEETQghijmX08n+tSvZOGMKiadP4h0UQvs7RlEnuitWm3RjFEIUHg9vHzrcdR+Ne/Vn/bSJ7FyygN3Ll9C4Vz+a9R+Cxequd4iiDBs5ciSPPvood91118V1zz//PG+88QY9evRg3rx5PP/888SUsOJYkqAJIUQx5cjNZc+KJWyaNY3UuFgCK1ai5+PPUb1FGwxG6cYohCg6XgGBdHngUZr2HcSayX+y4a/J7I5ZQtsRd1OrbTSKwaB3iKIMateuHcePH79inaIopKWlAZCamkr58iWvUJYkaEIIUczk2rPZuXg+m+fOIDM5iXLVqhM98gGqNGwqP4KEELryDS1Hr8efo2H33iz/7UcWfPsZ2xfNJfruBygfVUPv8IROzr/3Hjn79hfoOd1q1iD05Zdv+LjPP/+cbt268eyzz+JyuVi7dm2BxlUUJEETQohiwp6RoZW5nj8Le0Y64XXq0/PRZ6hYux6KougdnhBCXFQ+qia3vfMJe1ctZ9X435jw2rPUahtNm9vuxss/UO/wRBn23Xff8dlnnzFo0CAmT57Mvffey5IlS/QO64bonqApivIL0BuIU1W1zjW2K8AXQE8gCxipqurW/G13A6/m7/qOqqpjiyZqIYQoOJkpyWyZO4Pti+aRZ8+mSuNmNO8/VO5GCyGKNcVgoHb7TkQ2a8mGGVPYMucvDm5cS/P+Q2ncuz9mi5veIYoicjMtXYVl7NixfPHFFwAMGTKE++67T+eIbpzuCRrwG/A18Ps/bO8BROYvzYHvgOaKovgDbwBNABXYoijKLFVVkws9YiGEKABpCXFsmjWd3csW4XQ4iGrZhub9hxBUqbLeoQkhxHWzuHvQdsTd1O3YjZV//sKaSX+wa9kiOtx9H9WatJAeAKJIlS9fnhUrVtChQweWLVtGZGSk3iHdMN0TNFVVVyqKEvEvu/QDfldVVQXWK4riqyhKOaADsFhV1SQARVEWA92BCYUcshBC3JLkc2fYOHMqe1cuA6BWu4406zcYv3IVdI5MCCFunm9IKH2feZmTu3ew7NcfmPXxu1Sq15CO9zyIf/kwvcMTpdCIESOIiYkhISGBsLAwRo8ezU8//cQTTzyBw+HAarXy448/6h3mDdM9QbsOFYBTl70+nb/un9YLIUSxlHjmFOunTeTA2lUYTSbqde5B074D8Q4M1js0IYQoMOF16nPnB1+yY9Fc1kwex9hnH6VRz760HDQci7uH3uGJUmTChGu3y2zZsqWIIylYJSFBu2WKojwAPAAQEhJS4uZCEKVLRkaGXINljD0lmXNb1pF0aB8Go4ng+o0Jqd8Eo4cnW3fvBfYWaTxyDQq9yTVYRnj4UGPo3ZzZsIrNs6ezY+lCKrRsj39kTd27Pco1eOt8fHxIT0/XO4wSwW6339D1VhIStDNAxcteh+WvO4PWzfHy9THXOoGqqj8CPwI0adJE7dChw7V2E6JIxMTEINdg2ZASe5710yeyd+UyjCYzTXoPoGmfgXj4+Ooal1yDQm9yDZYxPXtx7tABlv36PceXziP39HE6jXqI4IgquoUk1+Ct27dvH15eXnqHUSJYrVYaNmx43fuXhARtFvCooigT0YqEpKqqek5RlIXAe4qi+OXv1xV4Sa8ghRDigrT4ONZPn8ieFUsxGIw07N6HZv0G4+nr998HCyFEKVQusjq3vfMJu2OWsGrCWP586Uma9hlIi8EjpNqjEH+je4KmKMoEtJawQEVRTqNVZjQDqKr6PTAPrcT+YbQy+/fkb0tSFOVtYFP+qd66UDBECCH0kJGcxPppE9m1bBGKAvW79KRZv8HY/AP0Dk0IIXSnGAzU7diVas1asuKP/7Fx5lQObVxL1wceJ6zWVTMtCVFm6Z6gqao64j+2q8Aj/7DtF+CXwohLCCGulz0zg02zprF13ixcTgd1O3alWf+heAcG6R2aEEIUO+42L7r/35PUbN2BxT99xaTRL1K/Sw/a3nYPbh5SREQI3RM0IYQoqfJy7GxbMIdNM6diz8ygRuv2tB56B76h5fQOTQghir1K9Rpw90ffsGbyH2ydN5sjWzbS+b6Hqdq4ud6hCaErSdCEEOIGOR0O9sQsYd3U8WQkJ1G5YRPaDL9L1wHvQghREpmtVjrcdT/VW7Vj0fdfMuPDt6nesi0d73lQ94JKovgbNWoUc+bMITg4mN27dwOwY8cOHnroITIyMoiIiGDcuHF4e3vrHOmNMegdgBBClBSqy8WBdasY++zDLP7pa7yCghn2xhgGvvimJGdCCHELylWrzh1jPqfV0Ns5vGkdvz7zMPtWx6CNdBHi2kaOHMmCBQuuWHffffcxZswYdu3axYABA/joo490iu7mSYImhBD/QVVVjm7bxB8vPcmczz/AYDTR77nXGPHWRzKwXQghCojRZKbloBHc+cGX+IWUY95XHzPz43fISJYacOLa2rVrh7+//xXrDh48SLt27QDo0qUL06ZN0yO0WyJdHIUQ4l+c3rubVRN/5+yBvfgEh9Djkaep0aY9BoNR79CEEKJUCggLZ/jbH7J17kzWTPqT3575P6LvfoBa7TrqPsG1uLZVkw+ScCqjQM8ZWNFG26FRN3xc7dq1mTlzJv3792fKlCmcOnWqQOMqCpKgCSHENcQePczqib9zfMdWPP386Xzfw9SJ7oLRZNY7NCGEKPUMBiNN+gykSuPmLPrhCxZ8+xkH1q6kywOP4RUQqHd4ohj75ZdfePzxx3n77bfp27cvFotF75BumCRoQghxmcTTp1gz+Q8ObViL1cubdneMokG3XjKRqhBC6MC/fAWGvTGGbQvnsGrCWH575mHa3zmKuh27SWtaMXIzLV2FpUaNGixatAjQujvOnTtX54hunCRoQggBZKWmsHbKOHYuWYjZ6kbLwbfRuFd/mZNHCCF0phgMNOrRlyoNm7Lohy9Z/OPXHFy/hq4PPi7zTYqrxMXFERwcjMvl4p133uGhhx7SO6QbJgmaEKJMc+TmsmXeTDbOmIwjN5cG3XvRYuBwPLx99A5NCCHEZXxDyzHktXfZsWQBK//8hd+fe5TokTI2rSwbMWIEMTExJCQkEBYWxujRo8nIyOCbb74BYODAgdxzzz06R3njJEETQpRJqqpyYO1KVk0YS1p8HFWbNKfd7ffgXz5M79CEEEL8A8VgoEHXnkTUa8iC7z5jwbefcXjTOrrc/6jMm1YGTZgw4Zrrn3jiiSKOpGBJgiaEKHPOHtxHzO8/c+7QAYIiqjDkoScIr1Nf77CEEEJcJ9/Qcgx94322zJ3Jmom/89uzj9Dl/keIbNZK79CEuGWSoAkhyoy0hDhW/vkrB9atwtPPn24PPUGt9h2lZL4QQpRABoORpn0GUrlBY+Z/8ymzPnmPmm2j6XjPg1g9bXqHJ8RNkwRNCFHq5eXY2TRrOptmaZNVthg0nKZ9B2GxuuscmRBCiFsVWLESt73zCeunT2LDX5M4tWcn3f7vSSLqNdQ7NCFuiiRoQohSS1VVDq5fzYo/fyE9IZ6olm1pf8c9eAcG6x2aEEKIAmQ0mWg99HaqNmrK/G8+Zdq7r9G07yBaD7sTo0l+7oqSRa5YIUSpFHf8KMvH/sjpvbsJqlSZno88Q1itOnqHJYQQohCFVovijg++IGbsT2yaNY3Te3fT64nn8AkO1Ts0Ia6bJGhCiFIlKy2VtZP/ZOeShbjZbHS+7xHqduoq48yEEKKMMFvc6HL/o4TXacDiH7/i9+cfp+uDj1O9ZRu9QxPiuhj0DkAIIQqC05HHlrkz+OXJB9i5dCENuvfi3s9/pH6XHpKcCSFEGVS9ZRvu/OALAipUZM7nY1j809fk5eboHZYoIKdOnSI6OppatWpRu3ZtvvjiCwCSkpLo0qULkZGRdOnSheTkZJ0jvXGSoAkhSjRVVTm8aT1jn32EmN9/JrRqFHd9+BUdRz6I1SZVvIQQoizzCQ5l2OgPaNpvMDuXLGDcS0+RcOqE3mGJAmAymfjkk0/Yu3cv69ev55tvvmHv3r2MGTOGTp06cejQITp16sSYMWP0DvWGSRdHIUSJFXf8KDG//8ypPTvxr1CRgS++SeWGTfQOSwghRDFiNJlod9tIwmvXY/43nzLu5aep0LI9avv2KIqid3jiJpUrV45y5coB4OXlRc2aNTlz5gwzZ84kJiYGgLvvvpsOHTrwwQcf6BjpjZMETQhR4mQkJ7Fm0h/sjlmC1eZFp1H/R73O3TEYpSujEEKIa4uo34i7PvyKeV9/wokVi5jvzKXz/Y/IlCsFYPlvPxJ34miBnjO4UhWiRz5wXfseP36cbdu20bx5c2JjYy8mbqGhocTGxhZoXEVBEjQhRInhyM1l8+zpbJw5FafDQZPeA2g+YKhMSCqEEOK6ePr6Mfjlt5j42YfsX7OS80cP0+fJFwiqVFnv0MRNysjIYNCgQXz++ed4e3tfsU1RlBLZSioJmhCiRDi2fQvLfvmelNhzRDZrRbvb78E3tJzeYQkhhChhFIOBco1b0KZ7T+Z++RHjX3mG6HsepG7HriXyx3xxcL0tXQUtLy+PQYMGcfvttzNw4EAAQkJCOHfuHOXKlePcuXMEB5e8uU+lSIgQolhLS4hn1qfvMf39N1CMRga/8g59n3lZkjMhhBC3pGLtetz5wZeUr1GLxT9+xfyvPyHXnq13WOI6qarKvffeS82aNXn66acvru/bty9jx44FYOzYsfTr10+vEG+atKAJIYolp8PB1nkzWTd1Aqqq0mb4XTTuPQCT2ax3aEIIIUoJT18/Br08mo1/TWHtlPHS5bEEWbNmDX/88Qd169alQYMGALz33nu8+OKLDB06lP/9739UqlSJyZMn6xvoTZAETQhR7Jzau4ul//uOxNMnqdqkOdF3P4BPcIjeYQkhhCiFDAYjLQYNp0KNWld0eazXqZveoYl/0aZNG1RVvea2pUuXFnE0BUsSNCFEsZGRnMSqcb+yd9VyvIOC6ffca1Rr0lzvsIQQQpQBF7o8zvv6Exb/+BWxRw/R8Z4HMZqk54YoWpKgCSF058jLY+u8mayfPglnXh7NBwyj+YAhmN2seocmhBCiDLnQ5XHNxD/YOHMqiadP0uepl/D09dM7NFGGSIImhNDV0a2bWD72R1LOn6NK42Z0uOs+/ELL6x2WEEKIMspgMNL2tpEERVRh4Xdf8OdLT9Lv2VcJrRqpd2iijJAETQihi6Szp4kZ+xPHtm/Br3wYA18aTeUGjfUOSwghhACgRqt2+JcPY+bH7zDxjefp+sBj1GrXUe+wihVVVWVqgv/wT+Pk/o0kaEKIIpWTlcX66RPZOm8WJouF9nfeS8PuvaWPvxBCiGInOKIKt7/3GXM+G8P8bz4l7vgR2t0+CoPRqHdourNarSQmJhIQECBJ2j9QVZXExESs1hsbsiEJmhCiSKiqyv61K4kZ+xNZaanU6dCZNsPvkn79QgghijUPbx8GvfI2K/74H1vmziT+xHF6P/kC7l7eeoemq7CwME6fPk18fLzeoRRrVquVsLCwGzpGEjQhRKFLjTvPkp+/5fiOrYRWjWTAC29IX34hhBAlhtFkouM9DxIcUYUlP3/DuJefot9zrxEUHqF3aLoxm81UrizzxRUGSdCEEIXG5XSyZe4M1k4Zj2IwED3yARp064XBIF1DhBBClDx1orvgX6Eisz59jwmvPkv3R54iqnlrvcMSpYxB7wCEEKXT+cMH+fPlp1g57lcq1WvAyE++pVGPvpKcCSGEKNHKR9Xgjvc+I7BiJWZ/+j5rJv+J6nLpHZYoRaQFTQhRoHKzs1g96Q+2L5iLp68vfZ9+mWrNWsoAYiGEEKWGzT+AoW+8z5L/fcv6aROJP3GMHo88g5uHh96hiVJAEjQhRIE5smUjS//3HelJCdTv0pO2I+7CzcNT77CEEEKIAmeyWOj20BMER1Ql5vefGP/qM/R/7lX8ylXQOzRRwkmCJoS4ZZkpySz/7UcOrFtFQFg4I976kPJRNfUOSwghhChUiqLQqEcfrbvj52MY98rT9Hr8eZnXU9wSGYMmhLhpqqqyO2YJvz39fxzetI7WQ+/gzg++kORMCCFEmRJepx53vPcZ3gFB/DVmNBtnTr2pCYqFAGlBE0LcpJTz51j809ec3L2DCjVq0eWBxwioUFHvsIQQQghd+ASHMOLtj1nw/ResGv8biadP0uWBxzCZzXqHJkoY3RM0RVG6A18ARuBnVVXH/G37Z0B0/ksPIFhVVd/8bU5gV/62k6qq9i2SoIUow1xOJ1vmzWTt5HEYjAY63/cw9Tp1RzFIg7wQQoiyzWy10vuJ51kfFs7aKeNIjTtP32dewcPbR+/QRAmia4KmKIoR+AboApwGNimKMktV1b0X9lFV9anL9n8MaHjZKbJVVW1QROEKUebFHj3Moh+/Iu7YEao2aU6ne/8PL/9AvcMSQgghig1FUWg5eAR+5Suw8NvPGf/K0wx44Q0CwsL1Dk2UEHrf8m4GHFZV9aiqqrnARKDfv+w/AphQJJEJIS7KtWcT8/vPjHv5aTKSEunz1Iv0e/ZVSc6EEEKIf1CjVTuGvvE+eTk5jH/1WY5v36J3SKKE0DtBqwCcuuz16fx1V1EUpRJQGVh22WqroiibFUVZryhK/0KLUogy7OjWTfz2zMNsmTuDup26cs9n3xPVoo3MayaEEEL8h3KR1bn9vU/xCQpm+gej2bZwjt4hiRJA0bPCjKIog4Huqqrel//6TqC5qqqPXmPfF4AwVVUfu2xdBVVVzyiKUgUtceukquqRaxz7APAAQEhISOOJEycWzgcS4jpkZGRgs9n0DuM/5WVmcHL1MlKOHsTqF0Cl9l2xydwupUJJuQZF6SXXoNBbUV+Dztxcji2ZQ+qJowTVaUjF1tEydruMi46O3qKqapNrbdO7SMgZ4PKyb2H5665lOPDI5StUVT2T/3hUUZQYtPFpVyVoqqr+CPwI0KRJE7VDhw63GrcQNy0mJobifA2qLhc7lixg1ZTfcTryaD3sTpr2HYjRJFWoSovifg2K0k+uQaE3Pa5BV+dOrBz3G1vm/IWnUaH3ky/i5uFRpDGIkkHvBG0TEKkoSmW0xGw4cNvfd1IUpQbgB6y7bJ0fkKWqao6iKIFAa+DDIolaiFIq8fRJFv7wJecO7ie8Tj063/cIftJqJoQQQtwyg8FIhzvvxb98BZb8/C2TR7/EwJfexNPXT+/QRDGja4KmqqpDUZRHgYVoZfZ/UVV1j6IobwGbVVWdlb/rcGCiemV/zJrAD4qiuNDG0o25vPqjEOL6OR0ONs2axvppEzC7e9D94aeo1a6jjDMTQgghCli9Tt3x8g9k1mfvM+G1Zxn40lv4l5eboeISvVvQUFV1HjDvb+te/9vrN69x3FqgbqEGJ0QZEHf8KAu/+4K440eIatmWTvc8iIePr95hCSGEEKVW5YZNGPb6+0z/YDQTX3+OAS+8QbnI6nqHJYoJGZ0oRBnlyMtjzeQ/GffyU2QkJ9L36Zfp8+QLkpwJIYQQRSC0WhQj3v4Ii4cHk99+maNbN+kdkigmJEETogw6f/ggf774BOunTaRGq3aM/PQ7Ipu30jssIYQQokzxCy3PiLc+IqBCRWZ89Da7li/SOyRRDOjexVEIUXTycnNYN2U8m2f/haefHwNeeIMqjZrqHZYQQghRZnn6+jH0jfeZ/en7LPr+SzKSEmkxcLiMAy/DJEEToow4vW83i374iuRzZ6jbqRvt7xiFm4en3mEJIYQQZZ7F6k7/519n0Q9fsnbyODKSEul07/9hMBj1Dk3oQBI0IUq5nKwsVo3/jR2L5+ETHMLgV96hUr0GeoclhBBCiMsYTSa6P/wUNj9/Ns6cSlZqKr0efw6TxaJ3aKKISYImRCl2dOsmFv/8DZlJSTTu1Z/WQ+/AbLXqHZYQQgghrkFRFNreNhJPP3+Wj/2Jae+9Tr/nXsXqadM7NFGEJEETohTKSktl+W8/sn/NCgLCwun79ktSvlcIIYQoIRr16IuHtw/zv/mMSW++yKCXRmPzD9A7LFFEJEETohRRVZX9a1ey/NcfyMnKouXg22g+YAhGk1nv0IQQQghxA2q0bo+7lw8zP3mXCa8/x6CX38K/fJjeYYkiIGX2hSglMlOSmfnxO8z78iN8QkK5c8zntBpymyRnQgghRAlVqV4Dhr3xPnk5OUx4/XnOHT6gd0iiCEiCJkQJp6oq+9es4LdnHub4jq20v2MUI97+iMDwCL1DE0IIIcQtCqlSjRFvfYibuzuT33qZY9u36B2SKGSSoAlRgmWlpTLnszHM/fIjfEPLcecHX9Kkz0ApyyuEEEKUIn7lKjDi7Y/xK1eBGR++xd5Vy/UOSRQiGYMmRAl1aMNaFv/8DblZmbQZcTdN+wzEYJTETAghhCiNPH39GPbGGGZ+/A7zv/6EnMwMGnbvo3dYohBIgiZECZOdkc6yX75n/5oVBFeuSo/X3pXujEIIIUQZ4ObhwcCXRjPn8w9Y9usPOHJzadp3kN5hiQImCZoQJcjRrZtY9ONXZKel0mro7TTrNwSjSf4ZCyGEEGWFyWymz1MvMv/rT1g57lfycnJoOXgEiqLoHZooIPLLTogSICcri5jff2L38sUEhUcw8MU3CY6oondYQgghhNCB0WSi5+PPYrJYWDd1PI68XNqOuFuStFJCEjQhirmTu3ew4LvPyUhMpPmAobQcPEJK5wshhBBlnMFgpNtDT2CyWNg0cyqOnByi774fxSA1AEs6SdCEKKbycuysGj+WbQtm51dv+ohykdX1DksIIYQQxYRiMNDp3ocxmi1snTcTR24One9/RKo5l3CSoAlRDJ09uI8F335G8rmzNOrRlzYj7sLsZtU7LCGEEEIUM4qi0OGu+zC7ubHhr8k48vLo/n9PSmXnEkwSNCGKEUdeHuumjGPTrOl4BQYy5LX3CK9TT++whBBCCFGMKYpCm+F3YbK4sWbSHzhyc+j1+HMyJKKEkgRNiGIi9tgRFnz7GQknj1Mnuisd7roPNw8PvcMSQgghRAnRYuAwTBYLK/74H7M+eY8+T72EyWLROyxxgyRBE0JnToeDDX9NZsNfk3D39mHAC29QpVFTvcMSQgghRAnUpPcATBY3lv7vW/768C36P/sqZqsMkyhJJEETQkcJJ48z/9vPiDt2hJptOhB9z4O427z0DksIIYQQJViDrj0xWSws+v5Lpr3/BgNffAOLu/TKKSkkQRNCBy6nk02zp7NuyjgsHp70feZlIpu10jssIYQQQpQSdTp0xmQ2M+/rT5j6zmsMfGk0VptN77DEdZAETYgiZk9OYuLrz3Pu8AGimrem030P4+Hto3dYQgghhChlarRuj9FiYc5nHzD57ZcZ/Mrb8pujBJCZ7IQoIqrLxZa5M9k75XeSz5+l1+PP0fupF+UPpRBCCCEKTWTTlvR//jWSz5xm8uiXyEhO0jsk8R8kQROiCKQlxDP13VeJ+f0nvMPCGfnJt9Ro3R5FUfQOTQghhBClXOUGjRnw4pukxccxefSLpCXE6x2S+BeSoAlRyPatWcHvzz/KuUMH6fLAY1TtMQBPXz+9wxJCCCFEGRJepx6DXnmbzJQUJr35Aqlx5/UOSfwDSdCEKCT2jAzmfPEh8778CP8KFbnrw6+o16mbtJoJIYQQQhcVqtdk6OvvkZuVxaQ3XyLl/Dm9QxLXIAmaEIXgxM7tjH3uEQ5tWEOb4Xcx/M0P8A0tp3dYQgghhCjjQqpUY/Br75KXY2fSWy+RfP6s3iGJv5EETYgClJebw7LffmDqu69icffgtnc+ofmAoRiMRr1DE0IIIYQAIKRyVYa89i6O3Fwmj36J5HNn9A5JXEYSNCEKyLlDB/jzhSfYNn82jXr05Y4xnxNSpZreYQkhhBBCXCU4ogpDX3sXZ14ek0a/RNLZ03qHJPJJgibELXLk5bFqwlgmvPYceTk5DH7lHaJHPoDZ4qZ3aEIIIYQQ/yioUmWGvv4eLqeTyW+9TOKZU3qHJJAETYhbEnvsCONefoqNM6ZQu0Mn7v74ayrVa6B3WEIIIYQQ1yUwPIKhr7+H6nIxefRLJJ6WJE1vkqAJcROcDgdrp4xn/CtPk52exoAX3qDbQ0/g5uGpd2hCCCGEEDcksGIlhr7+PgCT33qJxNMndY6obJMETYgblHDyOONffYZ1U8dTvWVb7v74G6o0aqp3WEIIIYQQNy0grCJD33gfxWBg0uiXSDh1Qu+QyixJ0IS4Ti6Xk40zp/LnS0+SnphA32depudjz+Ju89I7NCGEEEKIWxZQoSJDX38fg9HIlLdfIemsVHfUgyRoQlyHtIQ4prz9CqvG/0aVxs0Y+cm3RDZrpXdYQgghhBAFyr98BYa8+i6qqjLlnVdIjTuvd0hljknvAIQo7vatjmHp/77D5XLR/eGnqNWuI4qi6B2WEKIQqKqKmpODKzsb1W7HlZ192XM7qj1be8zNQc3NRc3NxZWbi5qTe/G1mpenncxoQFEMYDSiGBQwGMGgoBiMgIqqqqCq4Mp/RHtUVRXFZMZgdUOxuKG4uWnP3fKfu7mhmM1gNKGYjChG48XnGI0oJpO2WCxXLmaz/O0SQlyXgLCKDH7lbaa89TKT33qFYW+OwTswSO+wygxJ0IT4B/bMDJb+7zv2r1lB+aia9Hj0GXxDQvUOSwhxGTUvD2dGBq7MTFyXPTozMnBlXFj3t9cZGbjsdlz2bNRsOy67HTU7G1dODmp29s0HYzRqSZTZrL12ucDp1BKxyx5xubTtigIGg/aoKCigvQZUh0Pbt4ApZjOKxYLB0xOjjw9GHx8Mvj75z30x+vpqz729MNi8MHrZMHh5YbDZMNpsKB4ekuQJUUYER1Rh0CtvM+XtV5j6zisMfWMMNj9/vcMqE4pFgqYoSnfgC8AI/Kyq6pi/bR8JfARc6Aj7taqqP+dvuxt4NX/9O6qqji2SoEWpdnrvbuZ98wkZSYm0Gno7zfsPxWA06h2WEKWempeHIzERR3wCjoR4HAkJOBMS8l/nL4kJF5MtNSfnv0+qKBhstvwkwxODhyeKhztmHx8M7lYUN6v2aHXHYLWiWK0YrFYMHu7aOvf8de7uGNzdtf3dLFe3UBXw3wjV4cBlz9Fa6+x2LYHM0Z6rTieqwwlOR/5zLaFTHdpz1ZGX36KXd0XL3sVWv6xMnCkpOFNSyTt5Cnvqbpypqah2+78HZTRq/x19fDD5+2MMCMAUEIAxwB+TfwCmAH+M/gEY/f0w+flh9PW9lLAKIUqc0KqRDHxpNNPefY2p77zK0Dfex8PbR++wSj3dEzRFUYzAN0AX4DSwSVGUWaqq7v3brpNUVX30b8f6A28ATQAV2JJ/bHIRhC5KIacjj7WTx7Fx1jR8Q0IZ8dZHlIusrndYQpRoqqriSkvDkZSEMykJR0Iijvh4bYmLu/Q8Ph5nUtI1z2H08cEYFIgpMAj32nUweHthtNkweHpi8LTlJ2Cel9Z5eWHw1BKyktrqo5hMGG0moOim73DZ7ThTU3GlpeFMz8CVkY4zPR3XxecZuNLTcaam4khKJO/UKbJ37ND+v11oGfwbg82mtcz5+WH001rpbJlZJB4+jDEwEFNAIKagQC3R8/cv8ERXCHFrKlSvyYAXXmf6+28y9Z1XGfL6e1IgrZDpnqABzYDDqqoeBVAUZSLQD/h7gnYt3YDFqqom5R+7GOgOTCikWEUplnT2NPO++pjYo4ep27ErHe6+H4vVXe+whCjWnBkZ5J05S965s+SdPYvj3DnyzsfiTEy8lJAlJ8OFcVmXMxow+flg8vfG7OOJe8UqmLxrYPKyYPIyY/I0Y7IZMXoYMOAAZw44csGZBK5YcDrAlQfOPEh1QFJe/msHuBygOrVHlwNcf3uuqqC6uDDu64rnqGAwXVqMZjBoY760R4u2zuSmPTe5gdENTJZLjyZ3MFvB7AEmK5jdtcXkfum52eOyR+ul1yb3i10di5ohv/WQkJAbOk51uXCmpmr/3xOTcCYl5rfQpeBITsaZnIIzORlnUjK5R47iER9P3NKl1wjAgNHfH1NwEJYKYZgrVsQcVgFLxYqYw8IwV6iAwWIpoE8rhLheFWvXo9+zrzDjo7eZ/t7rDH71HZn7tRApqqrqG4CiDAa6q6p6X/7rO4Hml7eW5XdxfB+IBw4CT6mqekpRlGcBq6qq7+Tv9xqQrarqx397jweABwBCQkIaT5w4sfA/mCgxVFUlYd8uTq9ZhmIyU6l9V/yqRBba+2VkZGCz2Qrt/EL8l+u6BlUVJSsLY0oKhpRUDCkpGFNTMCYlYUpOwJCUhCE5FcWee+VxBjDYjBitYLSqmNxcmNwcmCx5mC05mKxOTG5OTO4ujG4u/qthy6WYcBlMqIoZl8GEy2BGVUyoigmXwZj/3HiN10ZUxXDZ88vXGQAFVVEABTCgKuQ/1wJSVBeK6kBRnRcfDa4Lzx0YXA4Mrrz853kXF0W98DwXozMXg3qNxPQ6OIzuOExe5Jk98x9tOEzacvlzh8nzb689QCn+BZozMjLwMpkwpKVhSEvHkJaa/5iGIT0NY3IKxoQEjImJKJcl96qi4PL1xRkQgNPfH5e/H05/f5x+/jj9/XD5+6O6y4018d/ku/jmpBw7zJFFs/AMLkdk70EYzXLD5GZFR0dvUVW1ybW2FYcWtOsxG5igqmqOoigPAmOBjtd7sKqqPwI/AjRp0kTt0KFDoQQpSp6stFQW//gVJzetJ7xuA3o8/BQ2/4BCfc+YmBjkGhR6unANqrm55B47Qu7BXeQeOUDu8ePknjpDXmwSjtRM1Lyru6wZ85Mrs6cDc0UnZg8nZk/t0eTrjinAB8XDHyxeYPHUFjcbWGz5r22X1l9YzH9/7a61RBktGAyGkj0fjMsJDjvk2SEvK/951qXXedmXHi9sy83ClJOGKTsZa3YyZKdAdiKkHYbsZK2V8B8pYPUGjwDwDLq02IL/9jwYvEK0/x86dP+MiYmh/XX8HVRdLhzxCeSdOU3eqVPknjpN3unT5J4+hePMGfK2bgWH44pjDDYb5goVsEREYKkcgVvlyljyF6OXdMsSGvkuvkkdOnCgRg3mfvEhSetjGPDCm5ikVbvAFYcE7QxQ8bLXYVwqBgKAqqqJl738GfjwsmM7/O3YmAKPUJRKJ3ZuZ/63n2JPT6P9nffSuGc/FJ26FQlRoFRV+yGffh41/RyOE4fJPXqInOOnyD0TS/jpRA4/7yQv3UV+0xEABosLi82Bu82BKdiE2deKyc8LU6C/NkaoXHkM3kHg7q8lAB7++c/zH03yJX0Vg/FS4kkB3PxRVcjNBHuKlrjZUy97nv86OwWyEiAzHhKPwMn1kJWINlT7b8weYAvRFq/8R1sw2ELBK/TSc89A7bMUMcVgwBwSjDkkGBo1umq76nTiSEi41L323Dnyzp0n79Qp7Pv3kb5kyRXVMI2BgVrCFhGBpVI45orhWCqFY6lYEYOndNcS4npUb9kGR24OC779jNmfj6Hv0y9jNBWHlKL0KA7/NTcBkYqiVEZLuIYDt12+g6Io5VRVPZf/si+wL//5QuA9RVH88l93BV4q/JBFSebIy2P1xN/ZMucv/CtUZOCLbxIcUUXvsIS4fnnZkHoaUk9ByilIPY3z3FFyT54g9/R5cuPTyE1VyE0zkZtuwuW4dONBMYHR14hHuB/e5QJwCyuHJSICc5UoTOUraz/IPQK1MVGi+FEUrUXSzQY+Ydd/nNMB2UmQEQeZcZARDxnntdfp5yEjFuL2wdEYLcm76n0N+a1vIVri5lVOe//LF+8K2ni8IqQYjZhDQjCHhEDDhldtV3NzyT11itxjx8g5dozcY8fJPXaM9CVLcCZfWU/MGBiIpWJFLOEVMYeHY6kUoSVyEZUwSlc4Ia5Qu30n8ux2lv7yHfO//oSejz+LQYebOKWV7gmaqqoORVEeRUu2jMAvqqruURTlLWCzqqqzgMcVRekLOIAkYGT+sUmKoryNluQBvHWhYIgQ15J4+hRzv/qI+ONHqd+1F+3vuAezm/wQFcVMbqaWeKWchJQT2mPqKZyxx8k5fobcuHRyM0zkZZjITTeSm2HClXdZ66/iidnfC0ulUHwiwrFUjcKtRj0sUTUxBQezYsUK6dpT1hhN+a1hwf+9b162lrhlxGpLen4il3Ee0mO1x3M7tG1/5xl8KWHzDb+0+FTUHq3eBf/Z/oViseBWtSpuVavy986NzvR0ck+e1LpOnjhJ7qmT5J04SeaGjThmzrpiX2NAQH6rW6WLSZu1Vi3MFSqUyAqhQhSEBt16kZdjZ+W4XzFbrXR94DHpiVRAdE/QAFRVnQfM+9u61y97/hL/0DKmquovwC+FGqAo8VSXi20LZrNq/FjM7u70f/51qjZupndYoizLToako5B0LP/x0uJKiyc3zUROqpmcFBP2NDdy0txwZKhof7b9wKBgDgnEEhWOd0RVLBGVtTv/FStq3bWkUIK4WWZ38KukLf/GkQNpZ/Jbc09fatVNPaO1xh1apI2ru5zVB3zDqe3wgJzF4BcBfpW1R9+KRdoCZ/Tywr12bdxr175qmys7m9yTp8g9cZzcEyfIPXGCvOMnyFi1Euf06Rf3M3h7Y61VS1tqa4+WSpXkR6ooM5r2HUSuPZv10yZitlqJvvsBuWlRAIpFgiZEYUpLiGfhd59zcvcOqjRqStcHH8fT1++/DxTiVqgqZCVdlXxdXLKTcDkUctONWiKW40dupic5Kb7kJljAlT9eyGTCrUoVPBpF4RYZiVtUJG5VqmAuX14mABb6MrmBfxVtuRZVhcyESy3BqRdahU/hcWYPbNrxtwRO0Vre/CLyE8TK4F/5UhLn4V8EH0pjcHfHWj0Ka/Woq7Y5MzLJPXYM+7692Pfsxb53L8l//omaq1U0NXh44FarJtao/H+zkZG4VauG0de3yOIXoii1GnI7efZstsydicXqTpvhd+kdUoknCZootVRVZd/qGJb98j0up5MuDzxG3Y5d5c6OKFiOHK0QQ8IBiD+oPSYe0VrGcrSxPKoKeZkm7Dmh2DN8yEmpSE5CMHkJ6fnzbgFGI5bwYNzqV8WratWLP+4sERGSiImSSVHAFqQtYY2v2LQpJoYO7dpp3SSTj1+2HNMeDy7SxspdzupzqbXNvwoERkFQFAREFmnXSaPNE/e6dXCvW+fiOjUvj5yjR7Hv3oN9717s+/aROnsOrvT0i/uYgoIuJWxRkbhFVcctspo275wQJZiiKLS/8z5y7XY2/DUZs9Wd5v2H6B1WiSYJmiiVstPTWPLTNxzcsIby1WvR4+Gn8A0tp3dYoiRz5EDCQYjdC/H7If6AlowlHdMmRAZAQfWpSJ6xEtmuNthTFexn0rEfPYsrIxNwgTkDt4gI3JtWw6dKVdyqaeNjzJUqyQS8omwxGMC7nLZUann19txMLVlLOnYpeUs6Bud3wf452qTjF3iVg8BICKx+KXELrqUVNimCm3KK2Yy1enWs1avDoIGAdpPQERtLzqFD5Bw8pD0eOkTypEmo9vyWQ6MRS0QE1ho1cKtRXXusXh1TUJDcTBQliqIodL7vYfLsdlZPGIvFaqVh9z56h1ViSYImSp1j2zaz8PsvyE5Pp82Iu2nad6BUFhLXT1W1sTSxeyBuj5aQxe6BxEOXfhAaTOBfFTWwBrmBnbAnu2E/l4392Hns+w/gyjgCaD/a3KpXx7tnL6y1a2OtXRu3qEhJxIS4HhZPCKmtLX/nzNOStvgD2o2ThEPaDZOdkyAn7dJ+HgFaohZcC4JraucKqlEkLW6KomAODcUcGoqtbduL61WnU5sG4MBBcg7sx77/AFnbtpI2d+7FfYwBAVjr1Ma9bj3c69fDvW5d6SIpij2DwUj3h58iLyeHZb/+gNnqTp0OnfUOq0SSBE2UGnl2Oyv+/B87Fs8nsGIlBr40Wsrni3+XnawlYHH5S+xerbhBzmVlxn3CIaQWalR3cvOCsScZsJ9IJHv9PnL27sOVtRXIrxZXowbefXrjfiEZq1oVRZIxIQqe0ZzfYhZ55XpVvTRlQPz+/Bst+2Dbn5CXeWk/n4pa0hZSC4Lzk8DASO28hUzJbzWzRERAt64X1ztTU7EfOEDO/gPY9+/HvmsnCStXXewGba4Ujnu9+rjXrYt7/Xq41awpN3tEsWM0mej95AvM+PAtFn3/JW4eHkQ2a6V3WCWOJGiiVIg9doS5X35E8rkzNOkzkNbD7sQk43bEBS4nJB6Gczvh/M78H217If3cpX2sPtoPtbqDUQNqkJPtgz02F/uhY9g37MO+f+bFbkmK1Yq1enV8+vfXWsbq1MatShUZKyaE3hQlf562UKgafWm9ywWpJ7Vk7eLNmL1wZOllLeNmrXtkSC0tYQutC6H1rm9qggJg9PHBs1kzPJtdqjDszMjEvns32Tt3Yt+1k6wNG0ibPVvbmN+t0r1eXax16+Fery6WypWlgqTQnclspu8zLzP1nVeZ+8WHDHjhTSrVa6B3WCWKJGiiRFNdLjbPncHqCb/j4e3NkFffIbxOfb3DEnrKs2tdEy8kY+fyEzJHtrbdaIGg6lC5vdYyFlSLPKcf2YfPkb19B9lzt2M/uATy8gAweHpirVkTv2FDsdaqhVvNmloyZpI/n0KUGAZDfjXICKje49J6R67WfTl276UuzSfXw64pl/axheQna/kJW2g9rUhJESRCRpsnni2a49mi+cV1eefPk71jJ/bdu8jeuYvUmbNIHj9B+5g2G9Y6dbRWtsaN8GjcGKPX32eAE6LwWazuDHxxNJNGv8jMj99h8KvvUD6qht5hlRjyC0OUWOlJCSz45jNO7t5BtaYt6frgY7h7Fe0kqEJneXYt+Tq7Fc5th7M7tLviF4p2uPloP6qa3HPxx5XLOwL7/oNkb9tG9vLtZG2fijM+AQDFwwP3unUJuPuui3MbmcPD5Y60EKWVyXLZOLfLqs5lp0Dsbq0gybmd2uPRmEutbWZPbUxbaB0IqXPpHFafQg/5wrg27/zukarTSe6xY2Tv3HUxaUv87Tf46ScwGLDWrIlH06Z4NGuqJWw+hR+jEABWm41BL7/FpDde4K8xbzL0zTEEhUfoHVaJIAmaKJEObVrHou+/xJGXK+XzywpHrnaH+8wWOLtdW+L3XfrB5BEA5RpAVFcoV1+7y+0XgSM5meytW8latI3sLbPI3rv3YuuYOTwcz5Yt8WjYEPcGDXCLjJSWMSEEuPtCRBttucCRo41rO79LW2L3wJ4ZsOW3S/v4hOd3j6wD5RtChcZad8tCpBiNuFWrhlu1ajBwAAAuu53sHTvJ2riRrE2bSB4/nqTffgNFwa1GDTyaNsGjSRM8GjXCFBhYqPGJss3m58/gV99m4uvPM+3d1xg++kOpqn0d5JeIKFHy7HZifv+ZnUsXEFKlGj0fexb/8mF6hyUKmssFSUe0ZOzMVu3x/C5w5mjb3f21Hz9RXbWkrHwD8KmIqqrkHj9B9ratZP35M9lbt5J7/DiQXwY7v3XMvVEj3OvXxxQQoNcnFEKUNCY37eZPucu60asqpJ3VkrXY3ZceDy261JLvXUFL1C4s5RuAW+F2OzRYrXg2b4Znc208mysnh+wdO8jatImsjZtImTSZ5N//ALQbVR4NG2pdIhs1wlKlivQaEAXKJziUQa+8zaQ3X2Tqu68yfPSH2Pzl+/ffSIImSozzRw4x7+tPSD53hqb9BtN66O0YTVKUoVTIToHTm+HUBm05u/1SJUWzp5aMNX8g/8dNI/ANB0UhLy4O+65dZC+cjn3XTrJ37b44MazR1xf3Ro3wHTwI90aNsdapLRXPhBAFS1HAp4K2RF2qyEhulnZT6cyWS8u+WRcO0kr9V2gMFRpBWBOtomQhVpA0uLldKkDyCLhyc7Hv2UP21m1kbdtKxsqVpM6cqe3r44NHgwa4N26MR5MmuNepLdVoxS0LrFiJQS+NZvLbrzD13dcY9uYYGZbyLyRBE8Wey+lkw4zJrJ82EQ9fPykEUtKpqlZR8UIydmqj1m0IQDFq3YPqDrqUjAVVB4MRNS8P+549ZE5dhH2nlow5zp/XjjOZsEZF4d2rpzY4vmFDrZqZdHsVQujB4gHhzbXlgsxEbbzsmS3aDamD82H7n9o2k1Vrmbu8pc0votAm2TZYLHg0bIhHw4YEMCq/98Hxiwlb9patZKxYAYDi5oZ7vXq4N9ESNo8GDTB4ehZKXKJ0C60WRf/nXmP6mDeYPuZNhrz6DhZ3D73DKpYkQRPFWvK5M8z/+lPOHT5AzTYd6DjqIayeNr3DEjfCkaO1iJ1cpyVkJ9dDdpK2zeoLFZtB3cFQsbmWkLlp/38vJmQzf9HGUWzdipqVBWjzAXk0aZJfXrou1po1MVit+nw+IYS4Hp4BENlFW0C7WZVyIj9hy29l2/wLrP9W2+4RCGFNoWJTCGum9SRwK5zvP0VRcKtcGbfKlfEdNBAAR2IiWVu2kL1lC1mbt5D4w48kfvc9GI1Ya9bUqku2bo1748bSO0Fct/A69ej95IvM+uRdZn7yHgNffEN6Q12DJGiiWFJVlV1LF7L8958wmkz0euJ5arRqp3dY4npkJ8OpTVpCdnK99qPjwtixgGpQvad2V7licwiIvFiq2pWTg333brK2bCVr0yayt2zBlZ+QuUVWw7d/fzyaNcOjaRMZOyaEKPkU5VLp/zqDtHXOPG2utjOb87t9b9Ra2gAUg9bDICw/YQtrCgFVC62VzRQQgHfXrnh31bpuOjMyyd6+nazNm8javJnEsb+T+PP/UKxWPJo1xdamDZ6tW2tj2KT3gvgX1Zo0p+sDj7Hw+y9Y+P2X9Hjkablm/kYSNFHsZKYks+iHLzm6dRPhdRvQ/f+exCtAqkwVWxlxcGINnFirLbF7ABUMJq3LTrP7IbwFVGwBtqCLhzni48lasoTsrdu0kveXVVe0VKuKT/9++QlZU0nIhBBlg9EM5eppS5NR2rqsJO1G16mNcHoj7JyitbSBVjAprOmllrYKjQutAInR5omtTWtsbVoDWsKWtWkjmavXkLlmDbHvvQ+AqVw5PFu3wtaqFR7Nm8vfb3FNdaK7kJGUyJrJf2LzD6DdbSP1DqlYkQRNFCuHN61n0Q9fkme3Ez3yARp26y3VpIqblFP5yVh+UpZ4SFtv9tC6K3Z4CSq10n4oWC71Lc87f57MRX+RtWE9WVu3kXfqFACKxXKpumLDhrg3bIjJ31+PTyaEEMWPh/+VXSNdTog/AKc3aQnbqU1waGH+zopWcKRiU+2mWKWW4FupUFrZjDZPvKKj8YqOBiD39Bky16whc/Vq0hcuInXqNADcoqLwaNEczxYt8GjaVCbOFhc1HziMjORENs2cis0vgEY9+ugdUrEhCZooFvJy8svnL1lAcERVej72DAFh4XqHJUArIX1sFRxfqT2mnNDWu/loX/6N7oRKrbXWssuqkDnT08latZTMNWvJXLeO3GPHADD6++PRuDF+I0bg0aghbrVqyfgFIYS4XgYjhNTSlsZ3a+uyU67sFrn7r0vzs3mV1/5Wh7fUbp4F1bzYtbwgWcIqYBk2FL9hQ1EdDux795K5fgNZ69eTMnmKVtbfYMBapw6ezbXxax6NG6GYZfxRWaUoCh1HPURGcjLLx/6Izd+fqOat9Q6rWJAETegu7vhR5n75EUlnTtG07yBaD7tDBozqKT0Wjq+CYyvh+GptPjLQCnpEtIEWD0NEa+0urcF48TA1L4/sbZvJWLOGrLXryN61C1wuFHd3PJo2wXfoUDxbtcQtKkr6mgshREFy94VqnbUFtLkk4/dpvRxOroMT62C31qKF1Se/da2V9jf9bzfXCoJiMmmVH+vVgwfux5Wbq41fW7+BzA0bSPz1VxJ/+gmDtze2du2wRXfA1rYtRm8pu17WGAxGej3+LFPeeZV5X32Mh7cPYTXr6B2W7iRBE7pRVZVt82exctyvWL28GfzKO1Sq10DvsMqe3Ew4vgaOLocjy7UvdchvIWsFTe+FiLYQUuequ665p8+QuXo1GatXkbV+A66MDDAYcK9bl4AHH8DWqhXu9evLHDpCCFGUDPkFRUJqa+OAL1SMPLEOTq7VHi90izR7aoWbItpApTZatUhTwf7NNlgsF+dhC+IxXJmZZK5bR/qy5WTExJA2Zw6YTHg0bYJXdEdsHaOxhIUVaAyi+DK7WRnw/OtMeP15Znz0NsNHf0hgxUp6h6UrSdCELjJTkln43ecc276Fqk2a0/XBx/Hw9tE7rLLB5dTK3h9dBkditNL3rjxtHp7wllB/OFRup91VvayFDNC+VDdt0gaFr15N7vHjAJjKl8O7Rw8827TBs2ULuQsqhBDFyeUVIxuM0Nalx+aPJV6j3aRb+pa23uSujSeu3BYqt9cStgJuYTN4euLVuTNenTujOp1k79hJxvJlpC9bTux77xH73ntYqlXF1qYtnm3a4NGksUylUsq5e3kz6KXRTHjtWaa9/wa3vf1xmS4Qp6iqqncMRapJkybq5s2b9Q6jTDu2fQsLvv2M3Kws2t95L/W79ixTXd5iYmLo0KFD0b5pyik4shSOLIOjK8Ceoq0PrQdVo6FKtJacma/8AnTl5mLfsYPMdevJXL+e7J07weHQyio3bYqtTWs827SRssoljC7XoBCXkWuwGMpMvDJhi92lrbfYtHHGldtpyzV6UxSk3BMnSF+2nMxVK8natBk1Lw/FzU37zmnbpsC+c+QaLJ7ijh9l0psv4B0YzLDRH5TquW8VRdmiqmqTa22TFjRRZBx5eawa/xtb580ksGIlhrz6DoHhEXqHVTrlZGhfsofzk7ILlRa9K0DN3lpCVqUDeF55d0p1OrHv3UfWhvVkrltP1pYtqHa7NrC7dm0C7rkHjxbN8WjSBIObW9F/LiGEEIXDMwBq9dUWyE/YVms39Y6tvNQl0t0/v3WtHVTuUOBzsVkqVSLgnpEE3DMSV1YWWZs2kZHfayP2/TGAVsrf1qYNtg7t8WzRAoOnZ4G9v9BXcEQV+j79CtPHvMnMj99h0MtvYyqDhWQkQRNFIvH0SeZ++RHxJ47RoFtv2t1xD2aL/MAvMC4XnN+pJWNHlmkTRLvytK4qEW20+XSqdYLAqKu+SPNi48hcvVorj7x2Lc6UFECbi8x38GA8W+aXRpZui0IIUXZ4BkCtftoClyr6HlsJx1bA3pnaeu8K+clae6jSHrzLF1gIBg8PbO3bY2vfHrg07jlzzWrS5s0jZcoUFLNZa13roO1nqVS2xy6VBpXqNaD7/z3BvK8/YcE3n9Lr8efK3JRLkqCJQqWqKjuXLCDm958xu7nR//nXqdq4md5hlQ6pp7WiHkeXw9EYyErU1ofUgRb/pyVkFVtc3W0xJ4eszZsvjiPLOaS1rhkDA7G1b49nm9Z4tmiBKSgIIYQQAtASr/rDtEVVIemolqgdXQGHFsGOCdp+AZFaola5nVZgyqPg5rW0hFXAMnwYfsOHoebmkrV1KxkrVpKxYgWx771P7HvvY4mIwNa+HbboaDwaN5Yy/iVUzbbRpCclsmr8b9j8A+hw1316h1SkJEEThSYrLZVFP3zFkc3rqVSvId0ffgqbn0xAfNPysrWy9xe6LSYc0NbbQiCyK1TtqHVbtAVfcZiqquQePkzGmjVkrllL1qZNqHY7itmMe+PGBPfri2ebNrhVry7jyIQQQvw3RdG6NgZU1XpouFwQtye/O+QK2DERNv0MKFCunta6Vrm9Nh+bpWC6IyoWC54tWuDZogUhLzxP7qlTF5O15AkTSRr7OwYfH7w6dMCrS2c8W7fG4O5eIO8tikbTvoNIT0xgy9wZeAUE0bhXP71DKjKSoIlCcXL3DuZ//QlZaWm0v/NeGvfsV+aapwtE8nE4tFi7O3lsJTjsWrXFSq2h0V1agY/gWld1W3QkJ5O5dq02SfSaNThiYwGwVK6sdVts0xrPZs0weHjo8KGEEEKUKgYDhNbVllaPgjMPzmzRvreOroD138HaL8FghrCmWgtblQ5QoQkYC+anqKViRfzvuB3/O27HlZVF5tq1pC9eQvry5aTOnIni7o6tTRu8unTGJsVBSgRFUYgeeT8ZSYnE/PEzNn9/qrdsq3dYRUISNFGgnI481kwex6ZZ0/ArV4HbXniDkMpV9Q6r5HDkanPUXEjKEg5q6/0qQ+ORENlFS87MV94FVFUV+569ZCxbRsbKldj37AFVxeDtjWfLlni2boWtdWvMFSoU/WcSQghRthjNEN5CW9o/D7lZ2oTZF7pExoyBmPfBzVvrClm1o7b4Vy6Qtzd4eFwq45+XR9amTaQvWaIlbIsXg8mEb2QkyefP49Wpk3TpL8YMBiM9H3+Wqe+8xvyvP8HDx5eKterqHVahkzL7osAknT3NvK8+IfboIep16k6Hu+7DLPOWXOWq0r4Z8VoydnCBNqYsNx2MFq24R2RXbQm4Osl15eSQtX79xYk+HbGx2iTR9evj2aY1tjZtsNapg2I0XnWsKNukvLTQm1yDZVxWkta6dqGwVeopbb1fZW38dNWO2vg1a8EWp1JdLuw7d5K+ZAmxM2dhio8HRcG9YUO8unTBq0tnmSC7mMrOSGfia8+RmZpcaiay/rcy+5KgiVumqio7Fs1jxZ+/YLJY6PLAo0Q1b613WMVWzPLldKgZCAcWaEnZmS2ACl7lIKobRHbTun9co5++IzGRjJgVpC9fRuaatajZ2SgeHthat8bWsSO29u0w+cs4P/Hv5Mex0Jtcg+IiVYXEw5eStWOrIC8TDCZtfs4LNyqDqhdoOf+Y5ctpUaEC6YsXk75kKTn79gHgVrMmXl06492lC26RkQX2fuLWpcXHMf61Z1EMhlIxkbUkaJeRBK1gZSQnsfD7Lzi+fQsR9RvR7aEnsPkH6B1W8ePM0wp87J+DfedfWHPyKy5WaAxR3bXELLTeNb98co4eI2P5MtKXLiN72zZQVUwhIdg6RuPVsSMezZrJnGTihsiPY6E3uQbFP3LkwqkNcHiJ1t0/bo+23idc6+Yf2VWbh+0Wi438/RrMPXXqYhfI7G3bAHCLrIZXjx549+iBW+WC6X4pbs3FiayDQhg++gPcPEruHHiSoF1GErSCc2jDWhb99DUOu512d46iQddeUgXwcrlZcGQp7JujtZTZU8DsQbxPXYJa3al9yXiFXHWY6nSSvWMnGcuWkr50GbnHjgH5d/Wio7F16oi1Vi35by1umvw4FnqTa1Bct9TT+eOyF2tTyuRlgtHtsmEAXa45DOC//Ns1mBcXR/rixaTNn0/25i2A9h3s3aMH3j26Y6lY8RY+kLhVx3du468xbxJWsw4DXxqN0VQyS2pIgnYZSdBuXU5WFst/+4E9K5YSUqUaPR59hoAK8scK0PrVH1wI++do5fAd2eDuB1E9oGZvqBJNzNqNV30pOFNTyVy7loyVq8hYuRJnYiKYTHg0bYJXx054dYyWAh+iwMiPY6E3uQbFTXHkwIm12rjtQ4shUZvHE/+ql5K1Sq2vmv/zWq73Gsw7f560BQtImz8f+46dAFjr1sW7Rw+8unbFEibfzXrYs2IpC779jLodu9LlgcdK5E3rf0vQSmbKKXRzet9u5n/zGekJ8bQYOIwWg0aU2DsXBSb5BByYB/vnal8cqhO8ykOjO6FGb6jUSqtodRlVVcnZt09LyFatInv7dnA6MXh7Y2vTGlvHTtjatcXoXbADpIUQQogSy+SmTS9TNRq6v69Nln1oiZawbfkVNnwHZg9tzrXILtoQAp9bS6DMoaEEjBxJwMiR5J4+Q/qC+aTNm0/chx8S9+GHWOvUwatbV7y7dcMSHl5AH1T8l9rtO5F87gwb/pqMX/kwmvYZqHdIBUpa0MR1cTocrJ82gfV/TcY3OJQejz5N+aiaeoelD1WFc9th/zwtMYvdra0Pqgk1ekL1XlC+oTYvzGVcWVlkrF7N4YkT8Tp0GEd8PADWWrXwbNcWW7t2uNerh1LWE15R6KT1QuhNrkFR4HKztLHehxbBoYWQclJbH1oPqvfQkrVyDS5+N9/qNZh78iTpixaRtnAR9l27gPxukN264tW1G25VZMxaYVNdLuZ88SEHN6yh7zMvE9m0pd4h3RDp4ngZSdBuXGrceeZ++RHnDh2gdofOdLznQSxW9/8+sDRxOrT5yfbN1lrK0s6AYtAqTFXvqSVm/lWuPiwlhfSYGNIXLyFzzRpUux2Xhzu+HTrg2bYdtjatZf4VUeTkx7HQm1yDolCpKsTvhwPztTHgpzZyRbXkqB6sPK3QrlO3Anm73NNntGqQCxdqPWIAt8hIvHp0x7t7D0nWClFebg6TR79EwqkTDH/zA0KqVNM7pOsmCdplJEG7MfvWrGDJT98A0OWBR6nRqp3OERUhZ542qebeWVpSlpUAJndtjpbqPbW7cZ5XV6zMi43VJsRcsoSsjZvA6cQUGnpx0sxNmRl06NRJhw8khEZ+HAu9yTUoilRmgtaydmC+Vso/NwOnwYKxagdt7FpUN/AtmO6JeefPk75oMWkLF5K9dSuoKm7Vq+PdvRte3btLNchCkJmSzLhXnsbldHL7u5+WmPL7kqBdRhK065Nrz2bZLz+wZ8USykXVoNdjz+ETfHXFwVInzw5Hl2tJ2YG5YE8Fi037412zr9an/W+lfS+MJ0uPiSFjeczFrg6WypUvTnxprVPn4gBW+WEi9CbXoNCbXINCN44cOL6a08t/ISxrDyRrlZIJqnFpzrXwFleNHb8ZebGxpC9cRNqCBVqyBrjVqIF39+5aNchKJX+y5eIi/uRxJr7+HD7BoQx/68MS0dNLioSIGxJ79DBzv/yQ5PPnaDFwGC0H34bBaNQ7rMKTm6lVg9o3S6vAmJsBVh+tlaxmX6ja8aqKUK7sbDLXrScjJoaMFStwxMaCouBerx5BTz6JV5fOuFW98bK/QgghhChEJjeo1onDp42EtW+vTZJ9aJH2/b/+O1j7Jbj5aIVIqvfUbsx6+N/UW5lDQvC/607877pTa1lbuJC0+QuI//xz4j//HPf69fHp3w/vHj0w+voW7OcsY4LCI+j95Iv8NWY0c7/4kH7PvYrBUHJ/u+qeoCmK0h34AjACP6uqOuZv258G7gMcQDwwSlXVE/nbnMCu/F1Pqqrat8gCL4VUl4vNc2ewesLvePj6MvT196hYq67eYRUOe6r2x3jvzEvl8D0Coc4gqNUXItqByXLFIY7ERNKXLCVj2TIy169HzcnB4OGBZ5s22Dp0wNa+HaYAmaRbCCGEKBEUBQIjtaXlI5CTrs21dnChlrTtnQGKMX+8eXctYbuJOddAqwbpf/fd+N99N3nnzpE2bx6pM2ZwfvRbxL73PraOHfHp1w9b2zYo5ltvvSuLKjdoTPQ9D7Dsl+9Z8ccvRN99v94h3TRdEzRFUYzAN0AX4DSwSVGUWaqq7r1st21AE1VVsxRF+T/gQ2BY/rZsVVUbFGXMpVVafBwLvv2MU3t3Ua1pS7o+9DjuNi+9wypY2SnaWLK9M7VujM5csIVq5fBr9tX+ABuv/CfhiI8nbfFi0hcuImvTJnC5MIeF4Tt0KLYO7fFo2hSDxXLt9xNCCCFEyeHmBTX7aIvLBee2aePWDsyHRa9qS2CUVhWyek8Iawo30UpjLleOgHvvxX/UKOx795I6cyZpc+aSvnAhRn9/vHv3wrd/f9xq1iyR83vpqWG33iSfO8PWeTPxK1eBBl176h3STdG7Ba0ZcFhV1aMAiqJMBPoBFxM0VVWXX7b/euCOIo2wlFNVlT0xS1g+9kdUFbo++Dh1oruUnj8IuZlaBafd07W7Yc5c8AmHZg9oSVlY06vK4efFxpK+SKvGlLVlC6gqlsqVCXjwAby7dcOtevXS899HCCGEEFczGKBCY23p+Ko25+nBBdr0Ouu+gTVfgEeAVjCseg+oEg1utht6C0VRcK9dG/fatQl57jkyVq0mdcYMUiZMJPn3P7BUrYpPn9549+6NJSyskD5o6dPhrvtIOX+OZb9+j29wCBENGusd0g3TO0GrAJy67PVpoPm/7H8vMP+y11ZFUTajdX8co6rqjAKPsBTLTElm0Y9fcXTLRsJq1qH7w0/iExyqd1i3zpGjdVvcPU2765WXqbWUNb1P68JYobHWreEyeXFxpC9YSNr8+WRv2waAW2Q1Ah95BO9uXbFUqyZJmRBCCFFW+VWC5g9qiz0VDi+BAwtg/xzYPg6MblCl/aU517zL39DpFbMZr47ReHWMxpmSQtqCBaTOnkP8518Q//kXuDdsiHef3nj36IHJz6+QPmTpYDAY6f3E80x8/Xlmfz6GEW99RGB4hN5h3RBdqzgqijIY6K6q6n35r+8Emquq+ug19r0DeBRor6pqTv66CqqqnlEUpQqwDOikquqRaxz7APAAQEhISOOJEycW2mcqKZKPHOTkysU483Kp0LwtwfUal+gERHE58U3ZRXDcKgIT1mF2ZJJn8iI+qBWxIe1I9amp9SO//Ji0NKzbtmHdvAXz4cMoqkpehQrkNGqEvVFDnOXKFUqsGRkZ2Gw3dpdNiIIk16DQm1yDQm8FdQ0qLgc+qfsISNxIYMJG3O3nAUjzqkZCYEvig1qQ7XHzrV+GhESsmzfhvnEjprPnUA0GcmvXwt6sGfb69UGGWfyj3Iw09k8bh2IwUGPQHZg9PP/7oCIUHR1dPMvsK4rSEnhTVdVu+a9fAlBV9f2/7dcZ+AotOYv7h3P9BsxRVXXqv71nWS+zb8/MYNmvP7Bv1XJCqlSjxyNPExBWMHN/FDmXC06t11rK9szQ5imzeEGNXlB3MFTpcFWZXEdysjZH2fz5ZK7fAC4XlipV8O7RA++ePYqk8qKUlxZ6k2tQ6E2uQaG3QrkGVRXiD2jdIPfPgTNbtPVBNbUCZDX7QEidq3rxXN+pVXIOHCB19mzS5s7Dcf48Bm9vfHr3xnfIYKw1axbsZyklYo8eZuKbLxBYsRJDX38Ps5v1vw8qIsW5zP4mIFJRlMrAGWA4cNvlOyiK0hD4Aa2lLe6y9X5AlqqqOYqiBAKt0QqIiH9wcvcO5n/7GZnJSbQcPILmA4ZhNOl9CdwgVYWz2/KTsr8g7Yw2eXT17lr3xWpdriqJn3fuHOlLl2kTR2/SJo42Vwon4IH78e7RE7eoyBLdeiiEEEKIYkBRILiGtrR9GlJPw745sG82rPwIVnwAfpXzk7W+1xxy8c+nVrDWqIG1Rg2Cn3mGrI0bSZk6jZSpU0kePx5rrVr4DhmMd69eGL29C/mDlhwhVarR87FnmfXJe8z/5lP6PPkiyt9qDxRHuv46V1XVoSjKo8BCtDL7v6iqukdRlLeAzaqqzgI+AmzAlPwf0RfK6dcEflAUxQUY0Mag7b3mG5VxTkceayb9yabZ0/ELLc9tb39MaLUovcO6MYlHYOdk2DUZko6CwQzVOkPn0Vpy5nZlxcmcI0dIX7yE9CVLsO/eDYClalUC7rsPr65dsNaqJUmZEEIIIQqPTxi0eEhbMuLhwFzYO+tSkRHvCpeqRoa3vO6KkIrBgGeLFni2aIEz5RVSZ88hZdo0rWT/mA/w6tYV38GD8WjSpEQkI4UtsmlL2t9+Dyv+/IXVE3+n7W0j9Q7pP+nefKKq6jxg3t/WvX7Z887/cNxaoJRO0lVwks6eZt5XHxN79DD1OnWnw133YbYWn+bdf5WZoLWS7ZwEpzcBClRuC62f1P6YXTZxpKqq5OzfT9r8BaQvXkzusWMAWOvVI+jpp/Hq3Bm3KpX1+RxCCCGEKNtsQdB4pLZkJ+fPxToLtvwGG77X5mKt0esf52L9J0ZfX/zvvAO/O27HvmcvKVOnkDZnLmmzZmOuUAHvvn3w6dsXt8pl+zdQ494DSD5/lo0zp+Jbrjx1o7vqHdK/0j1BE4VDVVV2LVvE8rE/YjJb6PvMy0Q2a6V3WP8tL1vru71zslYhyeXQ+mt3eQvqDAafClfsnnP4MGnz5pM2f76WlBmNeDRrit8dt+PVuTPmkBCdPogQQgghxDW4+0H94dqSkwGHF2vJ2u5psHUsWH0gqod2M7pqR7B4/OcpFUXBvU5t3OvUJuSFF0hfvJjUmbNI/OFHEr/7Hmu9evj07Yt3r55lsgqkoih0vOchUuNiWfLTN/gEhRBep77eYf0jSdBKoeyMdBb/8BWHNq4lvE49uj/yNF7+gXqH9c+cDji+EnZO0fpp56aDV3lo+QjUHQqhda7YPff4cdLmzydt3nxyDh0CRcGjWTP8774br65dMPn7/8MbCSGEEEIUI242qD1AW/LscHS5lqwdmAc7J2rj7Kt10sasRXUDd9//PKXB3R2fvn3x6duXvNg40ubOJXXWLGLfeYfYMWOwtW2LT7++2KKjMbi5Ff5nLCaMJhN9nnqRCa89x6xP32PE2x8TUKGi3mFdkyRopczJ3TuY/82nZKWm0u72e2jSe0Dx7H+sqnB2q5aU7Z4GmXHg5g21+kG9oRDR5oq+2DlHj5G+aCFpixaRs3cfAO6NGxPy6qt4d+uKKShIr08ihBBCCHHrzFZtHrXqPcCZByfWaDeu98/VqkIaTBDRVmtZq9ELvP577lpzSDABo+4hYNQ92A8cIHXmLNLmzCFj+XIMPj549+yB74ABWOvWLRNj8908PBnwwhuMf/UZ/vpgNLe/+ynuXsWvqIquZfb1UFrL7DsdeayZPI5Ns6bhF1qeXo8/R0iVanqHdbXEI7BrirYkHgajBSK7aklZZLeLFRhVVSXn0CHSFy4ifdFCcg4dBsC9QQO8unfDu3t3zKElc1JtKS8t9CbXoNCbXINCbyXqGnS5tJva+2ZrS9IRQIHwFtqN7Zp9tIIk10l1Oslcv57UGTNJX7QINScHS9Wq+A7oj3efvphDggvvsxQTZw/uZ/JbL1EusjqDX3kbo8n83wcVsH8rsy8JWimQdPYM8776iNijh6nbqRvRd91fvAqBZCVpxT52TITTGwFFayGrO0QbDOuu9YVWVZWcfftIW7iI9IULyT1+XOu+2LgxXt264dW1S6kYU1aivhREqSTXoNCbXINCbyX2GlRViN+vJWp7Z0KsVqmaCk20ZK1WX/CLuO7TOdPTSVuwgNS/ZpC9dSsYDHi2aY3vgAHYOnXCUIonwt63ajnzvv6Eup260eX+R4u8BbE4z4MmboGqquxevphlv/1Q/AqBOPPg0GLYMQEOLgBnrjZRY+fRWmJ2WbGP3OPHSZ07l7Q5cy8W+vBs3gz/kXfj1amTdF8UQgghhID8udZqakv757WeSXtnasvi17SlXAMtWavdH/yr/OvpjF5e+A0Zgt+QIeQcO0bqzJmkzpjJmaeexujri8+AAfgOGVIqK2HXbBtN4pnTbPhrEgEVwmncq5/eIV0kCVoJlZ2RzuIfv+LQhmJUCERV4dx22D4Bdk+FrEStbGzT+7RKRaH1Lk7ImBcbR9r8eaTNmavNU6YoeDRtiv/IkVqhjzJYYUgIIYQQ4oYEVNUmxW77NCQf1wqM7J0JS0drS7kGUGcg1OoPfpX+9VRulSsT/OSTBD32GJnr1pMyZQpJf/xB0q+/4tGsGb5Dh+LVtUupalVrPfR2Ek+fZMUf/8O/fAUqN7xmg1aRkwStBDq1ZyfzvvmUrJRk2t42kqZ9BupbCCQjTpurbPt4iNsLRjdtgGv9EVrlIaPWr9eZlkb6okWkzplL1oYNoKpYa9Ui+Pnn8e7Zo8SOKRNCCCGE0J1fBLR+XFtSTsHeGdoQk8Wva0uFJvkVI/v/65g1xWjE1qY1tjatccTHk/LXDFKmTOHss8+WulY1xWCg56PPMOGN55nzxQeMePtjAiv+eyJbJHHJGLSSw+lwsHbKODbOnIpfaDl6PvYcoVUj9QnGkQuHFsK2cXBoEahO7R9+g9u0OzX548pcOTlkrFhB2uzZZMSsQM3Lw1KpEt69e+Pdq1ep+Md9o0psv3dRasg1KPQm16DQW5m6BpOPw54ZsGc6nNuhravYHGoP1LpCepf7z1OoLheZ69aRMnkK6UuXgsOBR5Mm+A4dglfXrhiKU+2Dm5CWEM/4V57GZLFw27uf4uHtU+jvKWPQSoGEk8eZ/81nxB0/Qp3orkSPvB+L1b3oAzm/S0vKdk3WujDaQqDVo1D/NgiuAWj/iLPWbyB1zmzSFy7ClZ6OMTAQ3xHD8enTB2udOmWilKsQQgghhO78IqDNk9qSeERrVdvzFyx4ARa8CJVaaS1rtfqB7doVHBWDAVvr1thaX9aqNnUqZ59/AcM77+LTty++QwZjrV69KD9ZgfEODKLfs68yafSLzP70fQa/qk9lxwskQSvmXC4nm2f/xdrJf2Lx8NSnEEhmolYWf/ufWoJmMEONntDgdqjaCYwmVFXFvmsXafMXkDZ3Lo7YWAweHnh16YJ3nz54tmiOYpLLTQghhBBCNwFVod2z2hJ/MD9Zmw7znoX5z2tVtmsPgJr9wDPgmqcwBQUR+MD9BNx3L1kbN5IyZSopkyaR/OefWOvVw3fIYHx69sTg6VnEH+7WlIusTrf/e5J5X37Ekp+/peuDj+vWoCC/mIux5PNnWfDNZ5w9uI/IZq3ofP8jRdLkCoDTAUeWwrY/4cB8cOVpRT56fKhVYfTwR3W5yN6xg/SFi0hbtBDH2XNgMmkz1L/wvDZDvbsOrXxCCCGEEOLfBUVBhxe0JW4f7J6uJWtznoK5z0LltlpxkZp9wPPqQnSKwYBnixZ4tmiBIzmZtFmzSJ4yhfOvvU7c+2Pw7tUT3yFDStQk2DVbtyfpzCnWT5tIQFg4TXoP0CUOSdCKIdXlYsfi+awY9wtGk4mejz5DjTYdiubijj+otZTtmAQZ58EjAJrdr40tC62rJWXbtpG28HvSFy3Gcf48itmMZ+vWeD32OF4dozH6FFESKYQQQgghbl1wTej4CkS/rM2ttnu6VmRkzpMw92mtZa1Wf6jZF2xXT39k8vPD/+678bvrLrK3bydlylRS58wlZcpU3KpXx3fIEHz69C4RvxFbDb6NxNMnWfnnrwSFV6ZSvQZFHoMUCSlm0hLiWfj9F5zctZ2I+o3o+uDjeAUUcvn87GTYPU0rj39mMyhGiOqmdWGM7IpqNJOzfz+ps2Zr3Rfj4lAsFjzbtsW7W1ds0dEYvbwKN8ZSpEwNTBbFklyDQm9yDQq9yTV4HVRVS9b2zNCStcTDoBigUuv8SbH/ecwagDMjg7Q5c0mZMgX7nj0obm54deuK35AhuDdpUqxb1XLt2Yx/5RkyU5K54/3P8Aku+ErjUiSkBFBVlX2rY1j6v+9QXS663P8odTt1K7yL1+mAo8th+zjYPw+cORBcC7q+A/WGgS2YvHPnSP11LGmzZpFz6DCYzdjatsW7Z09sHdpjtNkKJzYhhBBCCKEvRYHQutrS8VVtKqULydqFMWuV20PdwVCjN7j7XnG40WbDb/gw/IYPw753L8lTppA2ew5ps2ZjiYjAd9gwfAcOKJataharO/2ee5VxLz/FzE/eY8RbH2J2K7pKldKCVgzYMzJY8vM3HFi3igo1atH94afxDSmkOcHi9mtJ2c7JWhdGd39tTFmD26BcfZwZGaQvXEjqrNlkbdoEqop7w4b49O2DV/fuMoF0AZC7dkJvcg0Kvck1KPQm1+AtUFUtWds9DXZNhZQTYLRAZFeoMwiiuoPF45qHurKySFu4iJTJk8netg3F3R2fPn3wu/22YlkB8ti2zUz/YDQ1WrWj52PPFmjDibSgFWMnd+9g/refkZWSTJvhd9G03yAMBmPBvklOuvaPaOsfWhdGg0n7R9TgNojshtOeR8by5aQt/JnMlatQc3OxVKpE4GOP4tO7N5bw8IKNRwghhBBClEyKAiG1taXja3Bmi5ao7ZkO++eAxQbVe2ota1WiwWS5eKjBwwPfAf3xHdAf+969JI0fT+rMmaRMnoxHkyb43XE7Xp06oZj1K3F/ucoNm9Bm2J2snvg7oVUjadyrf5G8ryRoOnHk5bFm0h9snvMXfqHlGfH2xwU76bSqwqkNWlK25y/Iy4SgGtD1Xag3DCceWlL2zdMXkzJTcDC+w4bh06d3iaq4I4QQQgghdKAoENZEW7q9C8dXw+6psHeWNmeu1Rdq9dVa1iLawmWNENZatSj/zjuEPPssKdOmkzxhAmeefEr7PTp8GH5DhmAKurogSVFr1n8IsUcPs+LPXwiqVJnwOvUL/T2li6MOEk6dYN5XHxN/4hj1u/Sg/R33Yi6oGdgz4mHHBNj2ByQc1O5i1BkIDe/C5VeT9OUxpC1ccEVS5tW9G97du+PeoAGKwVAwcYh/JN0qhN7kGhR6k2tQ6E2uwULmyNVqHeyeBvvnQm4GeAZD7f5ashbWDP72m1N1OslYuZLkcePJXL0aTCa8OnbEd9hQPFu21PU3am52FuNeeYbstFTueP9zvIP+uTjK9ZIujsWE6nKxbeEcVo77FYu7B/2ff52qjZvd+oldTji8FLb9nj9nmQMqNoe+X6NW70Pm1t2kfjWF9CVLUbOyMIWE4Dt8mCRlQgghhBCi4JksWkXwqG6Qlw2HFuUPt/kdNv4I3mGXkrXyDUFRUIxGvKKj8YqOJufYMVImTyH1r79IX7QIc3g4fkOH4DNwICZ//yL/OBZ3D/o9e6FoyLsMf+tDzBa3Qns/SdCKSEZSIgu++5wTO7dRpVFTuj74OJ6+t1hwI+mYNpH09vGQfhY8AqH5Q6gN7yQnwUXqrNmkPtEHZ3wCBm9vfHr3xqdvH9wbNZKkTAghhBBCFD6z+6Wy/DnpWmPC7mmw4QdY9zX4RUDtgVqPr5A6oCi4Va5MyAvPE/TkE6QvWkzKpEnEffwJcV98iXeXLvgOG4ZHs6ZFOhzHv3wFej72LDM+fIvFP35Nj0eeLrT3lwStCBzcsIbFP36NIzeXTvc+TP0uPW7+f2ieHfbN1lrLjq3U5qOo2gl6fECed0NS5y0g7evnLpXFb98On759sXXogMFi+e/zCyGEEEIIURjcvKDeUG3JToZ9c7TiImu+gNWfQmDUpWQtqDoGNzd8+vTGp09vcg4fJnnyZFJnzCRt3jws1arif9dd+PTti6Gghgr9h6qNm9FqyO2snTKO0CrVaNSzX6G8jyRohSgnK4vlv/3AnhVLCakSSc/HnsG/fNjNnSz+IGz+RRtfZk8B33CIfhVXjYGkb9xL6sd/kbnuxYtl8UPffAPv7t0x+voW5EcSQgghhBDi1rn7QaM7tSUzAfbO1ArbrfgAVoyBkLpQbwjUGQw+FXCrVo3Ql18m+OmnSZs3n6Q//uD8628Q/9nnWlGRESMwB9/62LD/0mLgMGKPHSHmj/8RVKkyFWvXK/D3kAStkJzev4f5X39KekI8LQYOo8WgERhNN/if25GrlSvd/AscXwUGM9Tsg9roLrITPUmZOZP0p4fhyszEXL48gf/3f/j07ydl8YUQQgghRMnhGQhN79WWtHNasrZrCix+HRa/ARFttHl7a/XF4O6H78AB+AzoT9bGTSSNHUvi9z+Q+PP/8OnZA/+778Zaq1ahhaoYDPR45GnGv/I0sz8bU2BFQy4nCVoBczryWDd1AhtnTMU7OJhhoz+gQvWaN3aSlFOw5TdtIGVmHPiEQ6fXyfHvQNry9aQ+9D55p06heHjg3a0bPv3749G0iYwrE0IIIYQQJZt3OWjxkLYkHtHmWNs1GWY/DvOe1ebyrTsEJao7ns2b4dm8GbknTpD0x5+kTJ9O6sxZeDRtit9dd+IVHY1yow0k18HNw4N+z72mFQ35+F2Gv/UBZreC62YpCVoBSjx9inlff0zcsSPUie5C9N33Y3G/9kzqV3E54fAS2PwrHFqozWMW1Y2ccn1I35dG2ieLydn/MygKHs2bE/jIw3h36YLB07NwP5QQQgghhBB6CKgKHV6A9s/D2W1aq9ruafkTYntBjZ5QeyCWqh0JffUVgh5/jJQpU0ka9ydnHntcm1NtyBB8hwzGHBpaoKH5l69Ar8ef468P32LRD1/R87FnC6xoiCRoBcDldLJ5zl+snTIOs9Wdvs+8TGSzVtd3cMpJbTLpbX9qlRg9g8mJvJf02EDSJm8gZ/+7ALg3aEDISy/i1bUr5nLlCvHTCCGEEEIIUYwoClRopC1d34FjK2D3dNg3C3ZOAqsP1OiDsc4AAkbeif/dd2lzqk2YSMK335Lw3XfYoqPxGz4Mz9atC6zXWZVGTWkz7E5WT/ydkCrVaNJ7QIGcVxK0W5Rw6gQLv/uc80cOEdmsFZ3u/b//Lp/vyIWD82HLWDiyDIC8kHak5fQkdfURcg7MBSQpE0IIIYQQ4goGI1TtqC29Ps2fEHu6Nm5t+5/g7o9Sqy9edQbj9cN35J45S8rkKaRMm0bG0qWYw8LwHToU30EDMQUE3HI4zfoPIfbYYVb++StB4ZWpVK/BLZ9TErSb5HI62TRrGuumjsfi7kHvJ18gqkWbf2/aTDwCW8dq85ZlxuPyKE+GbRgpe7LJnLwFXIew1q8nSZkQQgghhBD/5YoJse3acKE902HnFK2eg1c5LHUGETxiMIGPPkL6kiWkTJxE/KefEv/VV3h364bfbbfh3rDBTXdPVBSF7g8/xYSzzzLniw+4/b3P8A25te6UkqDdhPiTx1n43efEHj1MVIs2dBr1EB4+vtfe2emAA/O0SoxHl6NixG5rR0pKIGnzduFKW4kpNJSA++/Hp18/3KpULtLPIoQQQgghRIlntkLN3tqSm6X1Vtt1aUJsQ0A1fOoMxuez18lJgeQJE0mdMYO0OXNwq1kTv9tG4NO7NwZ39xt+a4vVnX7PvsqfLz/JzI/f4ba3P8Z8C3OzSYJ2A5wOB5tmTmXdtIm4eXrS+8kXqd6yzbV3Tj2jtZZt/R3Sz5FnqECqvQ+p2+PJPX4AxXoCry5d8B3QH4/mzVGMxqL9MEIIIYQQQpRGFg+oM0hbspJg32ytwEj+HGtu5RoQ2mkIwfdPIjVmE8njxnP+tdeJ++hjfAf0x2/ECCwRETf0lr6h5ej9+PNMHzOaBd9/Qe8nnr/pVjlJ0K5T4ulTzP/mE2KPHqZ6y7Z0HPUQHt4+V+7kcsHRZVolxgPzceaqpOc2IvV4JFm7j4C6BfdGjQi99z5tEmkvL30+jBBCCCGEEGWBhz80vltb0s5q49V2TYFFr2DgVfwqt8X3zcFk2yuRPG0WSePGkzT2dzzbtiXgnpF4tGx53YlWRIPGtL3tblaO+5WNEVVo3n/ITYUsCdp/UF0uti2YzarxYzFZrfR56kWiWvyt1SwjTqvCuHUsauJxMlOCSE1uRvrO86g5ZzGHhxP4yCP49O0jk0gLIYQQQgihB+/y0OpRbUk4pCVqu6agzH4cD6MFj2ZdCRn0Aslbk0ieNIWTo+7FrUYNAkbdg3ePHihm83++RZM+A4k9doQ1E/8gpEo1Iuo1vOEwJUH7F2kJcSz87nNO7t5JlUZN6frg45cqNLpcWonPLb+i7puLPUEhLaUaaYer40hOx+CdjE///vj063dLAw+FEEIIIYQQBSwwEqJfhg4vwZmtF+dYM+2fQ5CbNwFP9iYtoSKJs9dy9vkXiPv0M/zvvBPfoUP+tRecoih0e/BxEk+dYO6XH3Hn+5/jHRR8Q6FJgnYNqqqyb9Vylv7yParLRZcHHqVux25akpURD9vHwZbfyDl+itSzfqSdqUxeQiaYs7C1bYtPv37Y/p+9u46P477zP/6aJa2YmRktsmQGme0wN2naJk3TNtf2ml6vkDJce81dr9frlX7NlZI22HAMMctMki3bMskWMzMuzO+PldaSY7alFXyej4ceuzs7M/tZabQ77/l+5zt5S9E4OTn6rQghhBBCCCGuRFEgbLbtZ/VPoGI3nPgHmjMf4DXUjeeyYHpXLqT1cBdNP/85Lb/7HV4PP4zPpz6JPiTksqvUG43c86/f5u/f+hfe/++f8eiP/gOdwXDdJUlAu0RfVyfb/u+3nD+8n5DEFNZ98at4BQRC5T4o+DNDh9fTVaGnq96XweYA0GhwmTsLv6/cifuqVWg9Pa/9IkIIIYQQQojJRau7eI21u/4bzm1COfEGbhfexS3RTH9CPG3lQbT97SXaXnoJ95Ur8f7E47jk5n6kt5x3cCjrvvhV3vuvn7Djr39g9ef++brLkIA2StnRI2z+f79ioKeHxR9/kpxVK9CcfAPz3/5Id1ENnVXu9DfZLmjnnJlK4OfuxGPtGnT+/g6uXAghhBBCCHHb6J0h7QHbT18bnHoH5xNvEKrsISBQS3tTPB37dtO9ZQtOiYl4f+LxjwzTH5c7j7n3P8Khd94gOC6RWctXX9dLS0ADhgb62fW3P3Fi24f4RUTx0Oc+gW/l+/R85at0lmroqXcGqxeG2Bj8H78XjzvvxBAW6uiyxQymqipWFSxWFauqYrGqWFQVq1VFVa+xLGC2WrFYVcwWFbNVxWK1YrIMr8d69RWojH1dq3W4luHXH6lFVVUsVrCqo+ZVbY8BNIqCgq1ngaLYHoOt77aq2t6H9XK3w3WMHKdSFFBQ7BOU4RoZNf/I8urIY+vIdNs0Rs8zvA6NoqAooNUoaBQFjWKrTatRRtV08T1ZrBdrvJaRdY+sV6tRUJTRrzP6b32FdWgUtMP1XLyPfT0jv9sxv6PhX9DJZjPquaar1qgdqUdjq3P072Gk/itRsM1v0CnoNBp0WgW9VoNea7uv01z7nNyR7eHS15TzeYUQQkw4Fx/I/Yztp70C/cl/EHDyTfzCy+iqcqWtooKG732f5v/6L7wefhjvxx5DH2rLCgseeZz6CyVs//Pv8Y+MJig2/povp6jXsTMxneTk5KgFBQX2x3UlZ9n021/Q0dhAzpxkslr30nOshu5qF6wmBZ2vNx733IfnPXfjlJQkOwcOYB3e4R8JD2aLislqtd1arJgsVsxW2/2RwGFVbfNdGl7MI+uwqpiH5zcNhxWTZXja8LouN81sGQkfoHJxp986vGNvveR1RtYz8noWq0pHVzeurm5jQsfo+xZVxWK5uI5LH5utVq6RoYSYtkaCrVZjC3o6jYJOq0GrUdBrFLRaWyhUgJHcrow+GMDFcKzTKvZ1aYdD7uhp9lA+KqiOPDc6YI8Oj5pL6tNqNMO3w4+1ij38jl5GwRa6R+rVjwq1eq0Gg27sY+01Qq7CxYMLtvc3/J41GjQa0Gk0ttfQadAP3x85UDAR8vPzycvLm5DXEuJyZBsUt0xVoek0FL+FevJN+kvqabvgTne1E6DgvjwPn6c/i0tWFn1dnfz9W18B4BM/+x9cPDxRFKVQVdWcy616UgQ0RVHWAr8CtMAfVVV9/pLnnYCXgNlAK/AxVVUrhp/7FvAZwAJ8WVXVzVd7rZGAZjGbOfj2axx6+3XcXPQs6C/H6VwP5j4dGqMe91Wr8HzgIVzmzJkWF5FWVZVBs3VMYBgdJCyjQtCQ2cqQxYrJbGtVGbJYGDKr9mnm4daWi8Hl4n2z1WpbfngdI8sNmS2j1qsyOLwu23O2ukaeH13fSBhyBEUBvebiEf+Ro/+aMTtXF1uCNLa9v+GdvIs7ZSM7PiMtCe1tbfj7+dl35DSjWj1Gpo0sO2YnT3txJ3J0i8mYlpThdVzL2Po0F3d2tZqPtOBcjn2nb6QWzdgd07G3F3dyL92pHN1qNRJ0QR3TCmRvbdKMbRUCxiw78theo2bs8pfunGtGtbyN7IiPXv9IC+XoVrKRbXJsC9jY1rVLa7yUOirMq9bhlsdRIf1yLZiXrm9kvostkxdbK0da8kbaGkdej1G/p8KjR5mdnX3lGofntbeAjhzkUBluMb36P6Xtd2dlyDL2QMjIQRWzVeVqm5g6XPfI64y00o60WlqGaxv53Bk5cGEebgU2Df/dRlpSLx5MuXh/5Hd12QM61rEt1Ko66u806nNp9AGWkdbYkXntB5RGfcZOBQbtxc+aS0OjZjj1Kgr2z0SDbjhAjgqUBp3t80Wx/5/Y/tdGPusUoKW5iaDAwOH/JeUjn4cjnxcjoVav0Yx5rNNc/Cy2f/6MfOYMT9PrbHXpNBpbENUqGEa15F76/3tp6B792TryeWcP2Brsz8mB26lJApq4rVQV6o7CybcwHXqb9qIe2ktdsQ5pcE6OxvcLX6EnKpLXf/hNwlJm8cC3fohWq7tiQHN4F0dFUbTAb4FVQA1wRFGU91VVPT1qts8A7aqqximK8ijwH8DHFEVJAR4FUoEQYJuiKAmqqlqu9pqttdVs/OW/01RdTWR/JwknWtFaVZyy0gh4/DO4r1gxpv/ozVJVW3jpN1kYNFlst2YrgyYrg+bh+2YLgyZbMBmZPrJTY7LYdnBM9rBkezw0vJztduz90bcj4WfQbMFkmZidA63G9gVo0A3/aMfe6rUKBp0GT4N+eNrFL8yRL3q99uIXo2509y2tYg8/eu3FwGOwd5u6eBR4zBfq8DpGvtBH5rUFkuHgNSpA6YZ3BjTXk3Rugu1L4bL/j0JMiM4yLVkR3o4uY0ZR1bGBbaT7rWq1hcaRgDdyO9Jqbxo+0GW/P/y5fq0DV5eG99G9CEZuRw6omUZ955iGD9KNBMqLPQRGgi2AOqoHw/DBu1EH2/r6LZgt1rEh+5Luyr19VuqHOoZDL2MPhAwH/JFga5oCIffiASvsIdH+vTPq+0c7atpIEISL4fRi9+SL322Xb0VVrtgyzPC0kYNu+uHbke82vfZiq/NIOL20NXj0gcjR89hC+8UQbW8dHnXQb+Q71h7yRx1kG/0a2uEW3ZHAPfK7kcArpiRFgdDZEDob/eqfEFC1H7+C1+j4YBNtJ89T88/PYvB3Zd6yxew7cYwD/3jlqqtzeEAD5gAXVFUtA1AU5TXgXmB0QLsX+OHw/TeB3yi2/+B7gddUVR0EyhVFuTC8vgNXerHexnr+9tVn0JitZNU0E6Y103//XZQt/zhtrt70DpoZ2FfNwHBYGjBZGRwOVgMmi/2LaKQr3chR25EubCaLyoDJwsBwILsd3yeXdnVx0tl+DLqR+1pcDDq8XS5OuxiQtGOnjTo6OjrAjP7RfyRUaexhynbk8aMf+COtTPLBKoQQH6WMHBya+h0yboubab0YHXJHWj7t58BaL7ZE24PdqG7wo4OuLZhebGW9tAX0cuHWYrFiGW5BNlvHtl5f7IZ/scYxgXh0a61VxTIcQFX18q89ElTNwwdkewfNl7wXWygeWWakxXtMy7OKfR9log7Q3i4aBXtXXM2oYHgx5F0MsWNaaEe1hI4EwJF9FoP24sHdkYOyHe0DvFxlO+Vl9J7LyG7MZbsqjwqTWuXq5+JeXJ8yqsv1xQCtUfhoF2h7K7EG7SUrv3gG9ujf1cU6RvbhLrYs2150ZDWju3uP1HBp/colfRvG9BTRfLTXyEeX/6iLPTgunWJbYnTvm9GvZ6t/dE+Zi7+HkfvKJX97jTL24AKM/Z+63HnjF1/jo/9PwJgu6WN/D7b6R3+OjD4IpepmwbxZKLk/wLVyB64bXqR/z3k83/iQiCh/Dr79+mV+WxdNhoAWClSPelwDzL3SPKqqmhVF6QR8h6cfvGTZq47e0dPbi9HkSqC5hb9m3Mtu7yywKLC1Fqi1z2fQanDS28KPUa/BqNfaQ45eY7t11oxqfRnVouOs12LUa4dvbcuOPHbSazDqbLe219DaA5eTXoteq+Ck1aLXXVy3hB4hhBAznYTcmzM62I4EPLPFOqrF8qPh8OJASpcfsGlkIKiRwaVGBpsaOWBtGtWCeumtddTy5kuXv6Rr8OgdalX9aEsrXLr+izvaI12fh8wjQdX23nsGzZgtKh39KgPt/fau35caferHleq89u9+7I6/beLFVvPJ3Cosbic3UL6I6+JeHuz5B9nlbejwuuoSkyGgjTtFUT4HfA4gzDcIs//nqdKY8fUrZmXYASJ8o4h1isbNoMWoA73mYjeBi1Rsp7ldtffk5Y0sNjB2Uv/wj5hZenp6yM/Pd3QZYgaTbVA4mmyD048GMAz/3PQKNLetnGvq6bHg5nY9+3QKl28bunUjrS+21tnhW3Xk9jLnI49eFka1ml78sQXrsaMew9hztEeWHVvMRx+OXv/I/dHrv+p746O/tdGtdyM1jazPfquCdfi+Mno55ZKWztHvY3iZ0S1gVnWkhW24dY2LrYa2rrcX1zO6lXGkvpH7l3vv9sfq2HUqjH7Nkfeo0qbWUmo5SqXpBNU1c/CzfhbV2gq8fMXf32QIaLVA+KjHYYxuyho7T42iKDrAE9tgIdezLKqqvgC8ALZBQu79Tho7NhYRUzwLTbOOevcyPox4h+ScMFZHryI7MBuNMoGfEmJGkROThaPJNigcTbZB4WiyDYrxVNVVxYbyDWwq30R5Zzkh3XE8VPkVnLo9iM31Y+nH8viXF668/GQIaEeAeEVRorGFq0eBj18yz/vAE9jOLXsI2KGqqqooyvvAK4qi/De2QULigcPXesHwiECeeGYNg30mju+p5NhOK8GnYug938GvA1+hKeqHLEtYwtqotczymyVdDIUQQgghhBBX1NLfwuaKzWwo28DJlpMoKOT6zOW+vmfoP2XEzduJvH9OIjLV95rrcnhAGz6n7EvAZmzD7P9ZVdVTiqL8GChQVfV94E/A34YHAWnDFuIYnu8NbAOKmIEvXmsEx9GcXPTMWRNH7qpYKk+1cmx7Ja5nvbDWWTh/roB/DvoazoEa1kStYV30OhK9EyWsCSGEEEIIIegz9bG9ajsbyjdwsO4gFtVConciX539VTL7F3Hi7SZ6OgZJzwtj7r0xGIzXF70cHtAAVFXdCGy8ZNr3R90fAB6+wrI/BX56K6+vaBSiZvkRNcuPtvpeTuysQX9AT2LTXHr8G9lZvZ6/nPwLkZ6RrItex10xdxHhEXErLymEEEIIIYSYYkwWE/vr9rOhfAP51fn0m/sJcQ3h02mf5s7oOwnTR7L79RL2H6nGJ8SVBz+bRlCM5w29xqQIaJOJT7AreR9PZN69MZzeW8fJfCfWnP0MWk8LFRHH+FPbX/j98d+T6Z/J3bF3syZqDZ5ON/ZLF0IIIYQQQkwNZquZww2H+bD8Q7ZVbaN7qBtPJ0/ujrmbO2PuJDMgE42ioayomVdeOcRgj4ncO6OYvS4Kre7Gx7WQgHYFRlc92WsiyVgZTtmxZk7sqMFyMofPGedAcjs7ut7k3w7+G88ffp688DzuirmLxaGL0Wv1ji5dCCGEEEIIcQssVgtHm46yuWIzWyu30jbQhqveleXhy1kbvZb5wfPt+/0DvSb2vH6GksON+IW7cc+XM/ALc7/p15aAdg1arYb4nEDicwJprOiiaFsVpYVW8jRP80iGkbLIw6xvfJutlVvxcvJiTdQa1katJSsgC61GLtYihBBCCCHEVKCqKmfazrC+bD2byzfT1N+Es86ZpWFLWRu1lkVhi3DSOo1ZpqyomfxXztlaze6KZvbayJtqNRtNAtoNCIzyYM3TaXTe28/x7dWc2VeHy9FZfC1tKbqsTrabPuDdC+/y+rnX8Xf2Z2XkStZErSErIEuG7RdCCCGEEGISquupY2P5Rj4o/YCyzjL0Gj2LQhfx9eivsyRsCS56l48sM9BrYs8bJZQcasQ3zI27/zkD//CbbzUbTQLaTfD0d2bJownk3hVF8a5aTuysYaDYwrzoR3lq+bNU+BSzpWozb59/m1fPvoq/sz+rIlexOmq1hDUhhBBCCCEcrGuoiy0VW1hftp7CxkIAsgOy+f7877M6cvVVx5goP95M/svnGLjFc82uRALaLXB2M5B7ZzSZqyI4d6CeY9uq2fmn87j7evLksq/yg3t+xIGWfWyp3MKbJW/yytlXCHAOYGXkSglrQgghhBBCTCCT1cS+2n28X/o++dX5mKwmojyi+Oesf+aO6DsIcw+76vK9nYPsef08pUeb8A11464vZeAfcXtazUaTgHYb6A1a0paGkbI4lIrjLRzfUc2+Ny9w+AMtyQvi+OGyPPSLVHZV72JzxWZ7WJOWNSGEEEIIIcaPqqqcbjvNB6UfsLFsI+2D7fgYfXgk8RHujrmbFN+Ua17nWFVVzuyvZ/9bFzAPWZl7bwxZqyPQasdn310C2m2k0SjEZPkTk+VPU2UXJ3bUULy7lhP5NUTN8iNjxXzWLVtHn7mPXdW72FK5hbfOv2UPa3LOmhBCCCGEELeuobeBDWUb+KD0A0o7S9Fr9CwLX8Y9sfewIHQBes31jbze0dRH/svnqD3XTki8F3mPJ+Id5DqutUtAGycBkR6s/HQK8x+IpXhXLcW7a6k40YJvmBsZy8NZnbuGO2LuoNfUy+6a3Wyp2GI/Zy3ENYS7Yu/i7pi7ifKMcvRbEUIIIYQQYtJr7mtme9V2tlZu5UjDEVRUsgKyruu8sktZLVaKtlVzeH05Wq1C3uOJpCwMQdFcvbXtdpCANs5cPZ2Ye08Ms9dGUnK4keM7qtnx0hkOvHOBtCWhpC0NY130OtZFr6PP1MeO6h2sL13PH0/+kRdOvMAsv1ncHXs3a6PW4m30dvTbEUIIIYQQYtJo6G1gW+U2tlZu5VjTMVRUoj2j+XzG57k75m4iPCJueJ3NVd3s+NsZWqp7iM7wY8mjibh5O117wdtEAtoE0Rm0pCwKIXlhMDXn2jmxvZojGyoo3FxJQk4g6SvC8Q93566Yu7gr5i6a+5rtw33++6F/5z8P/yeLwhZxd8zdLA5bjLPO2dFvSQghhBBCiAlX013D1sqtbKvcxomWEwAkeCfwT5n/xOrI1cR6xd7Ues1DFo5sqODY1iqc3fSs/VwasdkBt7P06yIBbYIpikJ4kg/hST50NPZxYmcNZw7Uc/ZgAyHxXmSsCCc63Q9/F3+eSH2CJ1Kf4FzbOdaXrWdD2Qbyq/Nx1jmzOHQxq6JWsST08tdmEEIIIYQQYrroGOhgS6VtWPxjTccASPFN4dnsZ1kVuYpIj8hbWn/dhQ52/u0sHY19JC8IZsGDcRhdr+88tdtNApoDeQW6sOTRBObeE83pffWc3FnDpv93Eq9AF7JWRZA4NwitXkOiTyKJPol8JfsrHGk8wrbKbWyr3MaWyi0YtUYWhS5iVeQqloQtwc3g5ui3JYQQQgghxC0btAyyu2Y3H5R+wJ7aPZitZmI9Y3k2+1nWRq295rD412NowMzBd0o5uasWd18j9zybSXiyz22o/uZJQJsEnFz0ZK2KIGN5GKXHmjm6uZKdfz/LoQ/KyFgeTuqSUJycdWg1WuYFz2Ne8Dy+NedbHG06am/e3Va1DYPGwIKQBayOWs3S8KV4GDwc/daEEEIIIYS4bharhcLGQjaWb2RLxRa6Td34O/vzeNLj3BV7F4neidccFv96VZ1qZefLZ+lpHyR9eRhz74nBYHR8PHJ8BcJOo9UQnxNI3OwAas62c3RzJQfeKaVwUwWpS0LJWBGOq6ftBEWtRktuUC65Qbk8N+c5jjcfZ0vFFrZWbiW/Jh+dRmcLa5GrWRaxTMKaEEIIIYSYlEwWE4caDrGtchs7q3fSNtCGs86ZVZGruDPmTuYGzUWr0d621xvoNbHvH+c5e7AB7yAXHvz6bIJirn+Ex/EmAW0SUhSF8GQfwpN9aK7q5uiWSoq2VnF8RzVJc4PIWBGBT8jF6y9oFA1ZAVlkBWTx9dyvc7LlpD2s7a7Zje6AjvnB81kVuYrlEctvaIhRIYQQQgghbrcB8wD76vaxrXIbu6p30W3qxkXnwtKwpayMXMmi0EW3fZwFVVW5UNDEnjdKGOw1k3NHFDnrotDqJ9f1hyWgTXL+Ee6seTqNznv7KNpWzZn99ZzeV09Eqg+ZKyIIS/Ye08yrUTRk+GeQ4Z/B13K+RnFLMVsqbWHt+/u/z48P/JgFoQtYF72O5eHLZYARIYQQQggxIQYtg+yt2cvG8o3sqd1Dv7kfD4MHyyOWsypyFfNC5uGkHZ/h7Lta+9n9agmVxa0ERLpzz7NJ+IW5j8tr3SoJaFOEp78LSx9LZM7d0ZzaXcvJ/Fre/98ifEJcyVwZTnxuIDr92KZfRVGY5T+LWf6z+Orsr3K69TSbKzazqWITu2t2Y9QaWRq+lHXR61gcuhiD1uCgdyeEEEIIIaYjs9XM4frDbCzfyPaq7fSYevAx+nBXzF2sjFxJblAues34jZZotaqc3FnDwffLAFj0cDyzloWhmYALTt8sCWhTjLObgZw7oslaFcn5gkaKtlWz46WzHHinlFl5YaQtCcXZ/aNBS1EUUv1SSfVL5Suzv0JRUxEbyzeytXIrmys24653Z0XkCtZFr2NO0Bx0Gtk0hBBCCCHEjVNVlePNx9lYvpHNFZtpG2jDVe/KiogV3BF9B3OD507IvmZLTTc7/3aWpspuItN8WfJYAh6+k/9awrIXPkVp9RqS5geTOC+ImnPtHN9WzeEPyincVEnC3EAylofjG3r5Ifc1iobswGyyA7N5bs5zHKo/xMbyjWyr3Ma7F97Fy8mLFRErWBW5ijnBc8b1qIYQQgghhJj6VFWlpL2EjeUb+bD8Q+p66zBoDCwNX8od0XewOGzxuHVfvJTtgtPlHNtajdFVx+qnU4mbHXDbRn8cbxLQprjRF75ub+jl+PZqzh1s4My+esKSvMlYHk5kmi/KFZpxdRodC0MXsjB0ob1f8NaqrXxY8SFvnX8LD4MHeeF5rI5czfyQ+dINUgghhBBC2FV2VbKxfCObyjdR3lmOVtEyL2QeX8z6IsvDl0/4NXorTraw5/USuloGHH7B6ZslAW0a8Q5yJe/xJObdF8vpvXWc2FnDht+dwDPAmfRl4STND7rqtR2ctE6siFzBisgVDFoGOVB3gK2VW9lZtZP3S9/HTe/G0vClrIlcw8LQhRLWhBBCCCFmoIbeBj4s/5CN5Rs503YGBYXZgbP5RPInWBW5Cm+j94TX1N02wN43zlNW1Ix3kAv3/ksWYYkTX8ftIAFtGjK66sleE0nGynDKjjZTtL2aPa+XcOj9MlIWBpO+PBx3H+NV1+GkdSIvPI+88DxMFhMH6w+ytXIr26u2s6FsA256N5ZHLGdN1BrmB89Hr51aRyaEEEIIIcT1UVWVss4ydlTtYEfVDopbiwFI803j6zlfZ03UGgJdAx1Sm8Vs5fj2ao5sKAcV5t0XQ+bKCLS6yTV0/o2QgDaNabUa4nMDic8NpKGsk+M7qjm+o4YTO2qIywkga3XEdQ0vqtfqWRy2mMVhi/ne/O9xsO4gmys2s6NqB++Xvo+HwYOVkStZE7mGOcEywIgQQgghxFRnVa2cbDnJ9qrt7KzaSUVXBQDpfuk8m/0sqyNXE+ER4dAaa8+1s+vVc7Q39BGd4ceiR+KnxCAg1yJ70jNEUIwnQTGedLX2c2J7Daf21VFyuJHwZG+yVkV+5HpqV6LXXAxrQ5Yh9tftZ3PFZjZXbObt82/j7eTNsohlLA9fPq7XshBCCCGEELeX2WqmsLGQLRVb2FG9g5b+FnSKjtygXD6R/AnywvMc1lI2Wm/nIPvfvkDJoUbcfY3c+YV0otL9HF3WbSMBbYbx8HVm0SPx5NwZxak9tZzYUcP7/1uEX7gbmSsjiMsJQKu9viZhg9Zg7wY5aBlkb+1eNldsZkvFFt4+/zbOOmcWhS5iecRyloQtwcPgMc7vTgghhBBC3AiL1cLRpqNsrtjM1sqttA20jdmHWxy6GE8nT0eXCYBqVTm1p5YD75ZhNlnIuSOK2Wsj0Rm01154CpGANkMZXfXMXhtF5ooIzh1uoGhrFdv+cpqD75WSnhdOyqJgnFyu/7wyJ60TKyJWsCJiBUOWIY40HLE1iVfvZGvlVvvRl+URy8kLzyPINWgc350QQgghhLgSi9XCsaZj9lDWOtCKUWtkSdgS1kStYXHYYpx1k6urYEtNN/kvn6OxvIuwJG+WPpaIV6CLo8saFxLQZjitXkPKwhCS5wdTUdxK0dYq9r99gcMbykmeF0T68vAb3vgNWoN96P7vzvuuvf/yjqod/PTQT/npoZ+S7JPMsvBl5IXnkeSTNGWuSyGEEEIIMRWNhLItlVvYVrmN5v5mjFoji8MW20JZ6GJc9JMv8AwNmDmyvpzjO2owuupY+ekUEuYETut9RwloAgBFoxCd7kd0uh/N1d2c2FHNqX11nNxVS2SaLxnLw6/7PLXRNIqGDP8MMvwz+Jfsf6G8s5yd1TvJr87n98d/z++O/45Al0B7V8k5QXNk+H4hhBBCiNtgdCjbWrmVlv4WnLROLA61hbIlYUsmZSgbUVbUzJ7XS+hpHyRlcQjz74udctc0uxkS0MRH+Ie7s+KJFObfH8epPbWc3FXL+/9bhHewKxnLw0icG3RTfX0VRSHGK4YYrxg+M+sztPa3srtmN7tqdvF+6fu8fu51XHQuLAlbwuqo1SwKXTTpmteFEEIIISYzs9VsC2UVW9hWtW3KhTKwXdNsz+sllB9vwSfElQeeTiM4dnKcBzcRJKCJK3LxMJB7ZzTZqyO5UNhI0fZq8l8+x6H3y8hYEU7aktAbOk/tUr7Ovtwffz/3x9/PoGWQQ/WH2Fm9kx1VO/iw4kOcdc4sDVsqYU0IIYQQ4ir6TH3sr9vPzuqd7K7ZTcdgx5QLZQBmk4WibdUUbqoAFebfH0vGyvDrHsBuupCAJq5Jq9eQOC+YhLlB1J3v4OjmSg6+W8bRDytJWxpK+vJwXD1vbTh9J60TS8KWsCRsCd+Z+x0KGgvYUrGF7VXbPxLWFoYsnBIfMkIIIYQQ46Wpr4n86nx2Vu/kUP0hTFYTHgYPloQtIS88b9KeU3Y5qqpScaKFvf84T1fLADFZ/ix8MA4Pv5l5cF4CmrhuiqIQmuBNaII3zdXdHNtcybEtVRRtryZpfjBZqyLwCrj1DwKdRse84HnMC57Ht+d++yNhzUnrxLzgeSwNX8rSsKUEuATchncnhBBCCDG5lXWWsb1yO9urtnOq9RQAYW5hPJr0KMvCl5EVkIVOM7V279sbetn7xnmqTrfhHeTCPc9mEp7s4+iyHGpq/QXFpOEf7s7qp9OYe28fx7ZWc3Z/PWf21hGbHUDmyggCo2/PNc8uDWuFjYX2QUZ21ewCIM03zT7ISIJ3wrQe1UcIIYQQM4eqqpxuO20PZWWdZQCk+6XzbPazLAtfRoxnzJTc9xnqN3NkQzkndtSgM2hY9HA8aXmhM6474+VIQBO3xNPfhbyPJ5J7ZxQndtRQvKuGC4VNBEZ7kL48jNjs67/w9bXoNDrmBs9lbvBcvpn7TS50XCC/Op/8mnx+W/RbflP0G4Jdg1kesZwVESvIDshGq5leFy4UQgghxPRmtpopaipie5UtlNX31qNVtOQE5vBo0qMsD19OoGugo8u8aapV5ezBBg68W0p/9xDJC4KZd28sLh4yivcICWjitnD1dGL+/bHMXhfJ2QP1nNhZw9Y/nWb/mxdIWxpG6uIQnN1v3z+eoijEe8cT7x3PZ9M/S0t/C7trdrOzeidvlrzJy2dexsfow7LwZayIWMHc4LkyfL8QQgghJqX2gXb21e1jd81u9tXuo2uoC4PGwIKQBXwh8wvkheXhZfRydJm3rLmqm92vnaOhrIvAaA/u/EI6gVG3p9fVdCIBTdxWBqOO9GXhzFoaRuWpVk7srOHQ+2UUbKwgYU4g6cvD8Atzv+2v6+fsxwPxD/BA/AP0mfrYW7uXbVXb+LDiQ946/xZuejcWhy1mZcRKFoUumjInzQohhBBi+lFVlbNtZ9lds5s9tXs40XwCFRUfow954XksCVvCotBFuOpdHV3qbTHQa+Lw+2UU767F6KZn+aeSSZoXhKKZel0zJ4IENDEuFI1C1Cw/omb50VbXy4n8Gs4drOfM/npC4r3IWB5OVIYfmnH4x3TRu7A6ajWro1YzZBniYP1BtldtZ0fVDjaVb0Kv0TM7cDaLQxezOGwxUR5RU7LvthBCCCGmDpPFxOGGw2yv2s6u6l009TcBkOqbyjMZz7AkbAkpvilolOlzDpa9O+M7FxjoMZG2JJQ598TMiItN3woJaGLc+YS4kvfxRObdG8OZffWczK9h0x9O4u5jZFZeGMkLg8ftH9WgNdiH7//evO9xrOkYu6p3sad2Dz8v+Dk/L/g5YW5hLA5bzOLQxeQG5WLUGcelFiGEEELMLH2mPvbV7WN71XZ2V++m29SNs86ZhSELWRq+lEWhi/Bz9nN0meNidHfGoBgP7v7nTPwjbn8vqunIoQFNURQf4HUgCqgAHlFVtf2SeTKB3wMegAX4qaqqrw8/91dgKdA5PPuTqqoWjX/l4mYYXfVkrY4gY0UY5SdaOLGjhv1vX+Dw+jKS5gWTvjwM76Dxa8rXaXTkBuWSG5TL13K/Rm1PLXtr9rKndg/vnH+HV8++ipPWiTlBc1gUuojFYYsJdw8ft3qEEEIIMf20D7Szq2YX26u2c6DuAIOWQbycvFgRuYIVESuYFzxvWh8MHug1cfiDcop31Uh3xpvk6Ba054Dtqqo+ryjKc8OPv3nJPH3Ap1RVPa8oSghQqCjKZlVVO4af/7qqqm9OXMniVmm0GmKzAojNCqC5upsTO2s4s7+e4t21hKf4kLEinIgUn3HvdhjqFsrHkj7Gx5I+xqBlkIKGAnbX7GZvrS20/ezwz4jyiLKFtdDFzA6ajZP21i7ILYQQQojpp6Kzwn7R6KLmIqyqlSDXIB5KeIgVESum5PXJbpRqVTmzv54D75Yy2CvdGW+Fo7eUe4G84fsvAvlcEtBUVS0Zdb9OUZQmwB/omJAKxbjyD3dnxaeSWXB/LKf21FG8q4b1vz6OT4grmSsjSMgNRKsf/77YTlonFoYuZGHoQgAquyrtQe2Nc2/w9zN/x1nnTG5QLktCbV0mg92Cx70uIYQQQkw+FquF483H7aGsoqsCgGSfZD6f/nmWhi8lxSdlxpzj3lDeyZ7XSmiq7CY4zpMljyaMy6BwM4WiqqrjXlxROlRV9Rq+rwDtI4+vMP8cbEEuVVVV63AXx/nAILAdeE5V1cHLLPc54HMAgYGBs1977bXb/E7E7WK1qHRVQcs5lcEO0BnBJ0HBJw60Bsd8yA1Zhzg/eJ7T/ac53X+aFnMLACH6ENKc00hzSSPSEHndJ/X29PTg5uY2niULcVWyDQpHk21QONrNbIMd5g7ODpzlXP85zg6cpcfagxYt8cZ4ZrnMIs05DR+dzzhVPDmZB1Qaj6t0lNv22QIzFTwjmTHB9FYsW7asUFXVnMs9N+4BTVGUbUDQZZ76DvDi6ECmKEq7qqreV1hPMLYWtidUVT04aloDYABeAEpVVf3x1erJyclRCwoKbuKdiImkqio1Z9o5tq2K6tNt6Jy0pCwIJmNFOB5+zg6tq7yrnN3Vu9lVs4tjTcewqBa8nbxZHLaYJWFLWBCyAHfDlY8a5efnk5eXN3FFC3EJ2QaFo8k2KBzterbBPlMfBY0FHKg7wIG6A5R2lgLga/Rlfsh88sLzWBiyEDfDzDvYYLFYKc6v5fAHZZhNVjJWhJNzRxQGo6M7500diqJcMaCN+29RVdWVV3pOUZRGRVGCVVWtHw5bTVeYzwPYAHxnJJwNr7t++O6goih/Ab52G0sXDqQoCuEpPoSn+NBS00PRtiqKd9dyMr+GmEx/0peHERznNeFHaBRFIcYzhhjPGJ5Me5LOwU721+1nV80udtXs4v3S99EqWjL8M1gctpiFIQtJ9EmcVkPmCiGEENORqqqc7zjPnpo97Kvbx7GmY5itZpy0TswOnM19cfcxP2Q+Cd4JM7aFSFVVKotbOfBOKW11vUSk+LDokfhxHeRtJnJ0zH0feAJ4fvj2vUtnUBTFALwDvHTpYCCjwp0C3AcUj3vFYsL5hbmx8skU5t0by8n8ak7traP0WDN+4W6kLwsjPjcQnV7rkNo8nTxZF72OddHrMFvNHG8+zt7aveyr3cevjv6KXx39Fb5GXxaGLmRR6CIWhCxwSJ1CCCGE+Kg+Ux8H6w+yp3YPe2r20NjXCECidyKfTP4k80Pmkx2YLYOEYTvP7MDbpdSd78DT35l1z8wiOsNvxobV8eToc9B8gTeACKAS2zD7bYqi5ADPqKr6tKIonwD+ApwateiTqqoWKYqyA9uAIQpQNLxMz9VeU7o4Tn2mIQvnDzdyfEc1bXW9GN30pC4KIW1pKG7ek2fY2pb+FvbV7mNf7T721++nc7ATjaIhQh/BHcl3sDB0Iam+qWg1jgmXYuaS7mXC0WQbFI6iqiplnWW8tPsl6o31FDQWYLKacNW7Mj94PovDFrModBEBLgGOLnXS6Gjs4+B7pZQebcbZXU/undGkLA5Bq5XeQbfial0cHRrQHEEC2vShqiq1JR2c2FFNxYkWUBRis/xJXx5OUIzHpDqiY7FaKG4tZm/tXjad2UTVUBUqKl5OXswPmW9vXZuuF6sUk4vsHAtHk21QTBRVVanpqeFw/WEONRzicP1hWgdaAYjxjGFJ2BIWhy4mKyALvVaGgx+tr2uII+vLOb23Do1eQ9bKcDJXRch5ZreJQ89BE2K8KIpCWKI3YYnedLX0c3JXLWf21XGhsInAaA8yVoQTm+WPZhIc4dFqbOelZfhnkNqRSsa8DA7UHWBf3T5baCvfBNiG510QsoC5wXPJDMjEWee4AVGEEEKIqai5r5mD9Qc53HCYw/WHqeutA8DP2Y+5wXOZGzwXtVLlwZUPOrjSyWlowEzR1iqObavGarKSsjiE3DujcfEwOLq0GUMCmpgWPPycWfhgHLl3RnHuYAPHt1ez5Y+ncPNxImN5OMkLQ3Bynjybu7fRmzti7uCOmDuwqlbOtp1lX60trL146kX+VPwn9Bo9Gf4Z9i+TNL809Bo5uieEEEKMNmgZ5GjjUfbX7Wdf3T7Ot58HbOeJzwmaw6fTPs2c4DlEe0Tbe9fk1+Y7sOLJSbWqnD3YwMH3SunrHCI2259598biFeji6NJmnMmzxyrEbWAw6piVF0bqklAqT7ZQtK2afW9e4PD6clIWhJC+PMyhw/RfjkbRkOKbQopvCp9N/yy9pl6ONh7lcMNhDtUf4ndFv+O3Rb/FWefM7MDZzAmaQ25QLkk+Seg08i8shBBiZhm55M3+WlsgK2goYMAygE6jIzsgm69kf4UFIQtkFOUbUFvSzt5/nKeluofAaA/WfX4WQTGeji5rxpK9OzEtaTQK0Rn+RGf401TZxfHt1ZzMr+HEzmqiM/1JzwsjJGHih+m/Hq56VxaHLWZx2GIAOgY6KGgs4FD9IQ43HOa/C//bPl92QDY5QTnkBuaS7JssgU0IIcS01DnYyaH6Q+yv28+BugP2bouRHpHcH38/C0MWkhuUi4teWntuREdTHwfeLqWsqBk3bydWfSaF+JzASbl/NJPI3pyY9gIiPVj1VCrz74/jZH4Np/bWUnasGZ8QV9KXhZEwJwi90+QdSdHL6MXKyJWsjLRdUrC5r5nCxkKONBzhSOMR9hTuAcBF50JWYBZzguawIGQBCd4JcuRQCCHElGS2miluKWZf3T721+2nuKUYq2rFVe/K3KC5PJX2FAtCFxDuHu7oUqekwT4TBRsrOLGzBo1Ow9x7YshcGY7OMHn3h2YSCWhixnDzdmL+/bHk3hlFyZFGTubXkP/yOQ68U0rygmDSlobh6T+5uj9ejr+LP2uj17I2ei1gG86/oLGAgoYCjjQc4ZeFv+SXhb/E1+jL/JD5LAhZwPyQ+TJCpBBCiEnLbDVzru0cBY0FFDYWUtBQQLepG42iIc03jc/O+iwLQxfK+di3yGK2Ury7loINFQz0mUheEMzce2Jw9ZTrvE0mEtDEjKMzaElZGELygmDqSzs5ubOG4ztqKNpeTVSaL7PywghP9kHRTI3mfT9nP9ZGrWVtlC2wNfU12UeI3Fe7j/Vl6wFI8kmyh7V0v3TpBiKEEMJhhixDFLcUU9hYSGFjIceajtFn7gMgwj2CVVGrWBCygHnB8/B0knOhbpWqqpQda+bAO6V0NvcTmujNwofi8A93d3Rp4jIkoIkZS1EUQuK8CInzoqd9kFN7ajm1p5aKXx/Hw9+ZtCWhJM8Pxug2tY7UBbgEcG/cvdwbdy9W1cqZtjO2wFa7j5dOvcSfi/+MTtGR7JtMVkAW2QHZZAVm4WP0cXTpQgghpqkB8wAnmk/Yenw0FnCi+QSDlkEA4rziuDv2bnICc8gOzJaLRN9m9aWd7H/rAg1lnfiEuHLXlzKISPWR88wmMQloQmDr/jj3nhhy1kVReqyJ4t217H/rAofeKyM+J4DUpaEERk2ui19fD42iIdU3lVTfVJ6e9bR9hMhjTcc42nSU186+xkunXwIgyiOK7MBssgOyyQ3KJcQtxMHVCyGEmKr6TH0UNRdR0GDrsniy5SQmqwmNoiHRO5GHEx4mJyiH7IBsvI3eji53Wupo6uPgO6WUHmvGxdPAsk8kkTQ/aFJcH1ZcnQQ0IUbR6jUkzAkiYU4QrbU9FO+q5dyhBs4ebMA/wp20JaHE5wZO6kFFrubSESKHLEOcbj3N0aajHG08yrbKbbx9/m0AQt1C7UP6zwmaQ6BroCNLF0IIMYk19zVT1FxEUZPt53TracyqGa2iJcU3hU8kf4KcoByyArJwN0i3uvHU1zVE4aYKinfVotFrmHN3NJkrI6bsvstMJAFNiCvwDXVj6ccTmf9ALCWHGji5q5adfz/L/rcvkLwgmFl5k++aajfKoDWQGZBJZkAmT6U9hVW1cqHjAkcajnC4/jDbq7bzzoV3ANtQxrlBueQG5pIZkEmwa/CUa1EUQghx6yxWCxc6LlDUVMSx5mMUNRVR21MLgEFjIM0vjSdSn7AHMle9q4MrnhkG+0wc21rF8R01WIYspCwKIfeuaBkAZAqSgCbENRiMOtKW2i5+XX+hk5P5owYVmeVHel4YYcne0yKsaBQNCd4JJHgn8Hjy41hVK+faznG44TBHGo7wYfmHvFnyJgD+zv6k+6eT7p9Ohn8GKb4pOOumdmAVQgjxUSariTOtZ+wjBh9rOkaPqQewDVSVFZDFY0mPkRmQSYpPCnrt1Dp3e6ozDVo4sbOaY1uqGOwzE5cTwJy7ovEOkmA8VUlAE+I6KYpCSLwXIfFjBxV5/0QL3kEuzMoLI3FeEAbj9Pm30igakn2TSfZN5onUJ7BYLZxrP8eJ5hMcbz7O8ebjbK/aDoBW0ZLgnUCGfwaz/Gcxy28WkR6Rci02IYSYYkwWE6daT9kD2dGmo/Sb+wHb+cpro9faBpgKyCLULXRaHKCciiwmK8V7ain8sJL+riGiZvky554YGZlxGpg+e5JCTKDRg4pcKGzkxM4adr9WwsF3S0maH0zq4lB8QqbfkSutxnYuQYpvCo8mPQpA20AbJ5pP2EPbe6Xv8dq51wBwN7iT5ptGml8a6f7ppPmlyfXYhBBikukc7OR483GONR3jWNMxiluKx4yweE/sPeQE5ZATmCOf4ZOA1WLl7MEGjmwop6dtkNAEL+Y9M4ugGLkcwXQhAU2IW6DVa0icF0zC3CAay7s4sbOG4t21nNhZQ0i8F6lLQojNDECrn76tSD5GH/LC88gLzwNs5yaUdZZxsuWk7af5JH8u/jMW1QJAiGsImQGZzA6cTXZANjFeMdLKJoQQE8SqWqnurradP9ZkO3+stLMUAJ2iI8kniYcTHmZ24GxmB86WERYnEatV5fyRRo5sKKezqZ+ASHeWfzKZsKTpcZqFuEgCmhC3gaIoBMV4EhTjSd/D8Zw9UM+pvXVs/dNp9ridJ3l+MCmLQ/AKmP4Xh9ZqtMR7xxPvHc8D8Q8AtuGWz7ad5WTLSY43H+dww2E2lm8EwNPJkyz/LLIDbd1lUn1T5fwFIYS4DSxWC5VdlZxuO82Z1jOcbj3N2baz9vPH3A3uZPhncEfMHWQFZJHmlybnEk9CqlWlrKiZQx+U017fi2+oG+uemUV0hp8Es2lKApoQt5mLh4HsNZFkrYqg5mw7xXtqKdpezbGtVbajXL4qVot1Rl2HxEXvYrvGWmA2AKqqUt1dbR/e/1jTMfJr8gFw0jqR6JNIsk8yKb4pJPskE+cVJ6FNCCGuQlVVqrqrONlykuKWYnsYGzl3zEnrRKJ3InfG3EmyTzLp/unEesVKD4ZJTFVVKk+2cuiDMlqqe/AOcmH106nEZQegaCSYTWcS0IQYJ4pGITzFh/AUH3o7Bjm9r47Te+voOavytzMHmLU0jJSFIRjdZl7wUBSFCI8IIjwiuC/uPgBa+lvsXW5Ot55mQ9kGXj/3OgA6jY54r3j7+W8pvikkeCdg0Boc+C6EEMJx2gbaKG4p5kTzCYpbijnZcpKuoS4AjFojST5J3B93P8m+toNdMZ4x6DSy2zcVqKpKzZl2Dn1QRmN5Fx7+zqx8Mpn4OUFoJJjNCPKfKsQEcPVyIvfOaGavi2L9K/lYm5058E4ph9eXkzAnkPRlYfiFzexRl/yc/VgZuZKVkSsB23kSNd019q45Z1rPsK1qG2+dfwuwhbZE70RSfVNJ80sj1S9VdkCEENOO2WqmsquS8+3nKWkvsd/W9dYBttF247ziWBW5ijS/NGb5zSLWK1Y+C6cgVVWpOtVGwcZyGsq6cPNxYtknk0icF4R2BvW6ERLQhJhQGo2CR5hC3ieyaa3t4UR+DSUHGzizr56QeC9m5YURk+k3o7o/XolG0dhb2dZGrQVsX171vfUUtxRzqvUUp1pOsbF8I2+UvAGAs86ZJJ8kEr0TSfCxXc8t3iseF/30P/dPCDH1dQ52cqbtDGdbz1LSXkJJewllnWWYrCbAdjmTKI8o0v3TeSzpMdL80kjxTZHPuClOVVXKj7dQuKmCpspu3HycWPpYAskLQqb1IGPiyiSgCeEgvqFuLHs8ifn3xXJmfz0n82vY/H/FuHo5kbwgmOQFwXj4ycnaoymKQohbCCFuIayOWg3YWtoquyrtga24pZgPyj6g91yvfblw93DiveLtoS3WK5Zw93D0mpnXvVQIMTl0DnZyqvWUffCO062nqempsT8f4BJAvHc8C0IWEO8dT4J3AtGe0dK1expRrSqlx5op2FhBa20PHn5GW4vZ3CC0OglmM5kENCEczOiqJ2tVBBkrwqk82cKpPXUUbqqgYFMF4UneJC8MISbDX46iXYFG0RDtGU20ZzR3xdwF2EJbXU+dvSvQyE9+TT5W1QrYukhGeUQR4xlDrFcsMV4xxHrGEukRKTtAQojbRlVVantqOdd2jnPt5+y3tT219nlC3UJJ8U3hwYQH7YMjyfD205fVYuV8QROFmypob+jDK9DFdo5ZbqD0oBGABDQhJg2NRiE6w5/oDH+62wY4e6Ce0/vq2PLHUxjd9CTOCyJlQci0vAD27aZRNIS5hxHmHsayiGX26f3mfso6yijtLKW0o5SyjjLOtJ1ha+VWVFTA1oUo2jPavpOU7JtMkk8Srnr5vQshrq5zsJPyznJKO0rtYaykvcQ+rL2CQqRHJGl+aTyS+Ij9c8bTSS4wPBNYLVZKjjRSsLGCzqZ+fEJcWf10KrHZATL4hxhDApoQk5C7j9E+qEjNmTZO76vj5M4ajm+rJijGk5RFwcRmB2Awyr/wjXDWOZPql0qqX+qY6QPmASq7KintKOVCxwXOtZ/jQN0B3i99H7i4UzUS2GK9bC1tIW4h0k1SiBlGVVUaehso7yynrLOMss4y+/22gTb7fM46Z/uw9ok+iSR6JxLnFSfni81AVouVc4caKdxUQWdzP75hbqz9fBoxGf4yXL64LNm7E2IS02gUIlJ9iUj1pa9riHMHGzi9r44dL51lz+vnic8NJGVhCAFR7nKxyltg1BltO1A+iWOmN/c1c6bNdn7ImdYzFDUXsalik/15raIl1C2UCI8IIj0iiXC/eBvsFiyjqAkxhVmsFmp7am2t7cNBrKzDdttn7rPP52HwIMYzhqVhS4nxjCHaM5oYzxhC3UPlGmMznMVi5dzBBgo3VdDVMoBfuFxgWlwf2XsQYopw8TCQtTqCzFXhNJR2cnpfHSWHGzi9tw6fEFdSFoaQODdoRl5Xbbz4u/jj7+LPkrAl9mntA+1UdFVQ2VVJVVeV7ba7isLGQvsFYQF0io5Q91Ai3G0jUYa7h9vDW4hbiIQ3ISYJk8VEZVclZZ227s/lHeWUdpZS0VnBkHXIPl+AcwAxXjHcH3+/PYhFe0bja/SVnW0xxqXBzD/CnTu+kEDULNlWxPWRPQQhphhFUQiO8yI4zovFjyRwvqCR0/vq2fuP8+x/5wIxmf6kLgohNNFbvgjGgbfRG2+jN1kBWWOmq6pK60CrPbhVdVfZbwsbC8cccddpdES6R9p38EaOuEd5Rsm5bkKMA5PVRGNvI3U9ddT21FLdXW1vFavqqsKiWuzzhrqFEuMZw4KQBcR4xhDjFUOMZwzuhpl9rUpxbeYhC2f213N0SyU9bYMERLqz+GMJRKZJMBM3RgKaEFOYwVlH6uJQUheH0lrbw+m9dZw71MCFgiY8A5xJXRRK0vwgnN1lVMLxpigKfs5++Dn7MTtw9pjnRsLbSItbRVcF5Z3lXOi4wM7qnWN2DgNcAoj0iCTYNdh2SQHXEPulBYJcgtBrpYVUiEuN/I/VdNdQ3V1NTXcNNT011PXUUddTR2Nf45j/M62iJdw9nFivWFZGrLSP4hrlGYWzTi5vIm7M0ICZ4t21FG2rpr9riOBYT/I+nkREqo8EM3FTJKAJMU34hrqx+GMJzL8/ltKjTZzaW8f+ty9w8P1SYjP9SV0cSkiCl3xZOMDo8JYdmD3mOZPFRHV39ZgBB2q6azhYf5Dmvmb76JJgG6wkwCVgzHlv4e7hRLjbulC6Gdwm+q0JMSFUVaVjsIOmviaa+pqo7623h7GRn9Gt1KP/V7IDswl1CyXULfTiwQ7XIBngR9yygV4TJ3bWcGJHNYN9ZsKSvMl5OpWQePmuFbdGApoQ04zOoCVxXjCJ84JprRtuVTvYwPmCJrwCXUhZGELC3EBcPZ0cXaoA9Fq9rQuVVwwrWDHmOZPFRENvA3W9tlaAkdua7hr21u7l3Qvvjpnfx+hDhHsEoe6hBDgHEOASgL+LPwEuw/ed/eUab2LSsapW2gbaqOupo763nobeBhp6G+xhrLm/maa+JkxW05jl9Bo9Ye5hhLuHkxOUQ7h7uP0n1C1UtnUxbno7Bzmxo5qT+bWYBi1EpfuRsy6KwGgPR5cmpglFVdVrzzWN5OTkqAUFBY4uQ8xg+fn55OXlTehrmocsXDjaxOk9ddSXdqJoFCLTfEmaH0TULD+0OhlpbCrqM/VR3V1tP9+turuayq5K6nvrae5rHjPAwQgvJy+crc5E+EXg5+yHr9EXX2dffI2+tsfOtltvJ2+0Gq0D3pWYTlRVpWuoi4beBhr7Gmnsa6Sht4Gi0iJwxx7ILg1fzjpnAl0Cxx5kGD7oEOASYH9OtlFxs27mu7i5upvj26s5f6QRq1UlfnYA2Wuj8AuT3gviximKUqiqas7lnpMWNCFmAJ1BS9K8YJLmBdNW38u5g/WcPdhAxYkWjK564ucEkjw/GL9wN+mWMYW46F0ue3kAsO0Ydw520tTfRHNf85jWiNNVp+k391PUVETbQNuY0SdHaBUtPkYf20iWzv74OfsR4BJg76rpbfTG08kTLycvPA2esqM8Q5itZjoGO2gfaKdrqIvOwU66hrroGuyic6jTfts20EZjry2QXbp9aRQNHhoPolyiSPNNY2XkSoJdgy/+uAXjrpdLh4jJQbWqVBS3cnx7FbXnOtA5aUldHEr68jC8AuSadmJ8SEATYobxCXZl/v1xzL0nhuqz7Zw9UM/pPbYLYfuGupI0P5jEuTKwyFSnKApeRi+8jF4keCeMeS5/YOyR4z5TH639rbQMtNhu+1to7m+mpb+Fpr4mGvsaKW4ppm2gbcw5cfbXQsHd4G4Pbd5O3vgYfewtc2PuO/vg5eQl14dyILPVTK+p1/7TZ+6z3Zr67NM6hzpp62+jbWDsT8dgxxXXO7IdjGwD8d7xLA5bTKBLIIGugQS5BBHkGoSfsx97d++d8J4EQtwI06CFswfqOb6jms6mfty8nZh/fywpi0Iwusr5i2J8SUATYobSaDVEpvoSmerLQK+JC4VNnD1Qz743L3DgnVKiM/xJWRRMeJIPikaOZE9nLnoXXPQuhHuEX3U+k9VEW38bLQMtdA502lpSBtvpHLTd7xjooGOwg8a+Rs60nqFtoA2zav7IehQUjDojLjoXnHXOOOud7fdddC44651x1jlj1Bptt7qLt0atbTkXvQtuejdcDa62W70rzjrnGRH8VFVl0DJob7nqNnXTNdhlezzyM9hF91C3/bH9/mDXmME0rsbTyRMfow8+Rh9ivWLJNebaA7eX0QsPgwceTh54GjzxcPLATe82I37/Ynrr7RzkxM4aTu2uZbDPTECkO6s/k0pMtj9arWzfYmJIQBNCYHTVk7YklLQlobTW9XBmXz3nDjZQerQJdx8jyQuDSV4QjJu30dGlCgfSa/QEutpaQ66HVbXSPdRNa38rrQOt9tuOwQ76TH30m/vpM/fRb+q3328baKPP1MeAZYAB8wD95v4xw6NfjYKCq94VF50Leq0evUaPTqNDr9F/5LGT1gmD1oBRa8SgNeCkdbJPc9I6XTVoqKqKRbVgVa32W7PVjFW1jpmmoqKq6tj7WFFVFZPVhMliYsg6xJBliCHrECaLCZPVxJBlCJPVhNlqvuLttX4nLjoXPJw88DB44G5wJ9QtlCRDki1UGTxwM9hCrYveBVedK65614uP9a64693lkg5iRmmt7aFoWxUlh23nl8Vk+pO5IpygWE/pbismnAQ0IcQYviFuLHo4nvn3xVJ2vJnTe+s4/EE5R9aXE5HqS8rCECJn+crAIuKaNIoGTydPPJ08iSHmptahqipmq5k+cx8D5gEGLAP2rnh95j56hnroMfXQZ+qjx9Rj76I3OtCMvj9oHqTH2sOgZZAhy9CY20HL4HWHwcu9V42iQato7bcKCopi+9Ggsd0fnqbX6DFoDfZbg8aAXqvHWef80XB5mfsuehd72BppyXI3uNsDmU4jX+9CXIuqqtScbadoWxVVp9rQGTSkLgohY2U4nv5yfplwHPkEF0JcllavIT4nkPicQDqb+zmzv46z++vZ9IeTOLnoiJ0dQOKcQIJjvaQLpBg3iqKg1+rx1NqC3ngzW80MWYYue67daB8JY3KEXYgpw2Kx0lGh8vreI7TW9ODsYWDuPTGkLQnF6CYtx8LxJKAJIa7J09+ZeffGMueuaKrPtFNyuIGSQw2c3lOHm48TCbmBJMwJwjdUhhoWU5tOo5PWJyGmqa6Wfk7vrePM/nr6ulS8g6ws+2QSCXMC0ellJFoxeci3kBDiumm0GiLTfIlM82VowEzFiRZKDjdybGs1RzdX4RvqSsKcIOJmB+Dh5+zocoUQQsxwVqtKZXErp3bXUnmqFQWInOWH1auVux6dKz1AxKTk0ICmKIoP8DoQBVQAj6iq2n6Z+SzAyeGHVaqq3jM8PRp4DfAFCoFPqqr60SuzCiFuO4NRR8KcIBLmBNHfPcSFwiZKDjdw4J1SDrxTSmC0B/E5gcRmB+Dm7eTocoUQQswgPe2DnNlfx+m9dfS0D+LiaSBnXRQpi0Jw9zGSn58v4UxMWo5uQXsO2K6q6vOKojw3/Pibl5mvX1XVzMtM/w/gl6qqvqYoyv8DPgP8ftyqFUJclrO7gVl5YczKC6OrpZ8LhU2cL2hk7z/Os/fN84TEeRE3O4DY7ABcPOT6akIIIW4/VVWpK+ngZH4NZcdbUK0q4Sk+LHoknqh0PxkmX0wZjg5o9wJ5w/dfBPK5fED7CMV2RvZy4OOjlv8hEtCEcCgPP2ey10SSvSaS9oZeW1g70sju10rY83oJoYneJMwJIjbbH4PR0R9BQgghprqhATMlhxs5mV9DW10vTq46MleEk7I4BK8AGY1RTD2Kql59pKpxfXFF6VBV1Wv4vgK0jzy+ZD4zUASYgedVVX1XURQ/4KCqqnHD84QDm1RVTbvM8p8DPgcQGBg4+7XXXhufNyTEdejp6cHNbWYNpqGqKoOd0Fml0lkJpl5QtOARCp5RCm5BSFeTCTQTt0Exucg2KG6HwW6VtvMqHeVgNYHRG3ziFTwjQKO7+neKbIPC0ZYtW1aoqmrO5Z4b98PXiqJsA4Iu89R3Rj9QVVVVFOVKaTFSVdVaRVFigB2KopwEOq+3BlVVXwBeAMjJyVHz8vKud1Ehbrv8/Hxm8jaoqioNZV2cO9TAhYJGOqvMOHsYSMgNJHFuEH7hbjJk+Tib6dugcDzZBsXNslpVqk61cjK/lqpTrWg0CrGzA5iVF0ZQjMd1f3/INigms3EPaKqqrrzSc4qiNCqKEqyqar2iKMFA0xXWUTt8W6YoSj6QBbwFeCmKolNV1QyEAbW3/Q0IIW4rRVEIjvUkONaTxQ/HU1ncyrlDDZzMr+H49mp8QlyJmx1A3OwAvINcHV2uEEKISaC3Y5DT++o4va+OnrZBXDwM5N4VTeriEFw9ZSAqMb04+gSQ94EngOeHb9+7dAZFUbyBPlVVB4e7NS4E/nO4xW0n8BC2kRwvu7wQYvLS6jXEZPkTk+XPQK/JNhLkoQYOf1DO4Q/K8QlxJTY7gNhsf3xDpCuKEELMJKpVpfpsG6d211F+wjboR1iSN4seiicqQwb9ENOXowPa88AbiqJ8BqgEHgFQFCUHeEZV1aeBZOAPiqJYAQ22c9BODy//TeA1RVF+AhwD/jTRb0AIcXsYXfWkLQklbUkoPe2DlBU1UXq0mSMbyjmyvhzvIBdis20taz4hrtINUgghpqm+riHOHqjn1J5auloGMLrpZdAPMaM4NKCpqtoKrLjM9ALg6eH7+4FZV1i+DJgznjUKISaem7cT6cvCSV8WTm/nIGXHmik92kThpgoKNlbgHeRCXE4g8TnSDVIIIaYD85CF8hMtnDvYQNXpNlSrSki8F3PvjSE2MwCtXlrLxMzh6BY0IYS4KldPJ/s11vq6hig71sT5giZ7y5pvmBvxOQHE5wTi4efs6HKFEEJcJ9WqUl/awdmDDZQWNjE0YMHN24msVeEkzgvGJ1gOwImZSQKaEGLKcPEwkLY0jLSlYfR2DNoviH3w3TIOvltGQJQH8TkBxGT54+ErYU0IISajjsY+zh1q4NyhBrpbB9A5aYnL8idhXhChCd5o5LIrYoaTgCaEmJJcvZzIWBFOxopwulr6uVDYxIXCJva9eYF9b17AN8yN6Aw/otP98I9wl3PWhBDCgUYGgjp3sJ6Gsi4UBcKSfZh7Twwxmf7onbSOLlGISUMCmhBiyvPwcyZ7TSTZayLpaOyj/EQL5cebKdxYQcGGCty8nYhK9yM6w4/QBG+0OjmXQQghxpvVYqXqdBtnDzRQcaIFi9mKd7Ar8++PJWFOEG7eMjy+EJcjAU0IMa14BbqQtSqCrFUR9HcPUXGylfLjzZw9UE/xrlr0Ri0RKb5EpfsSmeaLs5vB0SULIcS0oaoqLdU9nDvUQMnhBvq7TRhd9aQsDiFpXpD0aBDiOkhAE0JMW87uBpIXBJO8IBjzkIWas+2UH2+m4mQrpUebQIGgaE+i0n2JmuUnw/cLIcRNGAllF442UVrYRGdzPxqtQtQsPxLnBRGZ5is9F4S4ARLQhBAzgs6gJSrdj6h0P1SrSnN1NxUnWqg42WofZMTdx0jULF+iM/wJSfCSHQohhLiCy4UyRaMQmuBF1uoIYrL8pYeCEDdJApoQYsZRNAoBkR4ERHow5+4YejsGqThpC2tn9tdzclctBmcdkWm+RGf4EZnqi8FZPi6FEDObqqq01vZyvqBxTCgLSxwOZZn+OLtLKBPiVskehxBixnP1ciJ1cSipi0MxD1moHukKeaKF80ca0egUwhJ9iMm0tcC5esqJ7UKImaO9oZfzBU1cKGikvaFPWsqEGGcS0IQQYhSdQUt0um14fqtVpaGsk/KiZsqOt5D/8jl4+RwBke6EJ/sQnuJDUIyndIUUQkw7XS39nC9o5HxBE601PaBASJwX6cvDic2SljIhxpMENCGEuAKNRiEkzouQOC8WPBhHW10v5cdbqDrdytEtVRR+WIneSUtoojfhyT5EpPjgGeAsA40IIaak9oZeyoqaKTvWTFNlNwCB0R4sejieuNkBuHpJ7wEhJoIENCGEuA6KouAb6oZvqBs5d0Qx2G+m9lw71afbqDrdSsWJFgDcfY2EJ/sQluRNWKK3HGUWQkxaqlWlqbLbFsqKmulo7AMgINKd+ffHEjc7AA8/ZwdXKcTMIwFNCCFugpOzjphMf2Iy/QHobO4bDmttXCho5PTeOgD8wt0IS/QmLNmHkDgv9E5aR5YthJjhLCYrdec7KDveTPnxFno7Bu3nlKUvCyM6ww83b6OjyxRiRpOAJoQQt4GnvwueS11IWxqG1WKlqaqbmjPt1Jxt40R+DUXbqtFoFYJiPAlP9iYi1Rf/cHcUjXSHFEKMr67WfqpOtVFZ3ErNuXbMgxZ0Bg0Rqb7EZPgROcsPo6ve0WUKIYZJQBNCiNtMo9UQFO1JULQnOXdEYRqyUH+hg5qz7VSfaePQ++Ucer8cZ3c94Sk+RKb6Ep7iIyOhCSFuC4vZSv2FDiqHQ1l7fS9g64KdNC+IyFRfQpO80RukRV+IyUgCmhBCjDO9QUtEii8RKb4A9HUNUX3GtuNUVdxGyaFGUCAgwp2INF/Ck3wIiHJHp5edJyHE9eluG6DqVKutlexsO6ZBCxqtQki8FykLg4lM88Ur0EUGMRJiCpCAJoQQE8zFw0Di3CAS5wZhtao0V3VTdaqVqlOtFG6soGBDBRqdQmCUB8GxXgTHeRIc64mTi3RBEkLYWCxWGi50UlncSuWpVtrqbK1kbt5OxM8JJDLVl7AkbwxG2dUTYqqR/1ohhHAgjcYWxAKjPMi9M5qBXhN15zuoL+2k/kIHRVurOLpZBQV8Q91sw/7H235cPKRLpBAzhdWq0lrbQ935DupKOqg+24ZpwNZKFhznyYIH4ohI88En2FVayYSY4iSgCSHEJGJ01Y8ZHdI0aKGxvJO6C7bAduZAPSfzawDwCXElNMGb0EQvQuO9MbpJC5sQ04XFYqW5qpu6kg7qLnRQf6GToX4zYDuXLD4nkMg0aSUTYjqS/2ghhJjE9E5awpJ8CEvyAS7utNWea6e2pIMz++vsgc031I3QRFvrWmCUJ27eclFZIaaKkdFfa8+1U3O2nYayTsxDVgC8g1yIywmwt6C7+8gw+EJMZxLQhBBiCtGOGiFy9lrbaG1NFV3UlnRQW9LOqT11nNhhC2yungYCoz0JiHInMMqDgEgPDM7ysS/EZKBaVVpqe2yB7Fw7dec7MA1YAPANdSV5YQih8V4Ex0l3ZiFmGvmmFkKIKUyr0xAcZ9uJy7kjCovJSnNNN43lXTRVdNFY3kVZUbNtZgW8g1xRjVZOqDUERLrjG+YmQ20LMQGsFiuttb22c0wvdFBb0sFArwkAr0AXEuYEEZboTWiCF87uEsiEmMkkoAkhxDSi1V9sYRsx0GuyhbXhwFZzvpc9r5cAoGgUfIJd8I9wJyDSA/8Id/zC3NBJaBPilpiGLDSWd1F/wTboT0NpJ6ZBWwuZu4+RqHRfWyBL9MbNW7osCiEukoAmhBDTnNFVT0SqLxGptuuw7dy5k9zM+TRVdtNc1U1TZTeVxa2cPdAADIe2EFcCI90JGO4a6RPqilarceTbEGLSspittNX30lzVTUtVN01V3TRXdmO1Do/AGuJG4ryg4UtmyDlkQoirk4AmhBAzjKIouHkbcfM22keLVFWVnvbB4cDWRVNlN6XHmjm9rx6wtcz5hbkNBzZ3fEPc8A52kYtpixnHPGShpbaHlirbAY7m6h5a63qwmlUA9EYt/uHuZK6OIDjWk6AYT4yuMsKqEOL6SUATQgiBoii4+xhx9xkb2rpa+mmq6Kax0nZO25n99ZzcaRuERNEoeAU44xPihm+oK76htlsPX2cUjVyHSUx9FrOV1toeW2tzZRdNVd201fbaWsYAJ1cd/uHuZCwPxz/CHf9wdzz9ZfsXQtwaCWhCCCEuS1EUPP1d8PR3IT43ELBdLLejsY/W2h7a6nppre2huaqL0qNN9uV0Tlr8Qt3wC3fDP9wdv3A3fEJcpbVNTGqmIQtttb201HTTUt1DU2UXLbUXW8acXHUERHqQtdoX/0h3/CPccfcxykWhhRC3nQQ0IYQQ102jUfAJdsUn2HXM9KEBM231vcM7uD201HRz7lADxbtq7ct5B7vgF2YbOdIr0AVPf2c8/ZzR6uXcNjFxVFWlr3PIvp221PTQWtNDR2Mfqi2LYTBq8Y90J2NZOP6RtstUuPtKGBNCTAwJaEIIIW6Zwaj7yOiRqlWls6WfluoeWqptO8LVZ9s4d6jBPo+igJuPEa8AZ1trXYAzXgEuuPsZ8fB1Ru8krW7ixqmqykCvic6mfjqa+j5yO3K9MQB3XyN+YW7EzQ7AL8zW4ithTAjhSBLQhBBCjAvbOWoueAW4EDc7wD59oMdER/PYnebOpj5KjjQy1G8esw5ndz3uvs54DAc2d18jHn5GPP1dcPdxQiMjS85YqqrS322is7mfzuHtqbPZti11Nvcz2HdxW1IUWxDzCnAhKCYYr0Bn/MLc8A11w8lFBvAQQkwuEtCEEEJMKKObniC3sa1tMLbVo6u1n66WAbpbB2wDlVR2U3a02T44A9i6TboPhzVPf2fbT4Dt1tXLCYNRvuKmMtWq0tc9RHfbAD1tg/S0D9jutw/S3TpAZ1MfQ6NawkZCmKe/M/E5gfbWWM8AZzz8nNHqJMwLIaYG+fYSQggxKSiKgrObAWc3A0Exnh953mpV6e0YpKtluKWkuX+41aSP+tKOMd3WwDbcuaunE65eBtutpxOuXk64eBqGLzNguy/Xd5t4I2G8p32QnrYBW/iy37eFsZ72QawWdcxyOict7t5OuPsaCYoJtodyrwAX3H2NEsKEENOCBDQhhBBTgkZz8VIAoQneY55TVZWBHpM9uPV2DNLbOUhvxxB9nYM0lHXS2zGExWwdu1IFXDwMuHk54eZtxNXbCTcvJ4xuepxcdDi5jNzqMLro0Ru1cm7SVaiqimnQwkCvib7OIXraR/4OF/8evR2DdLWqnH59z5hlNRoFVy8n3HycCIz2JG627W/i7mPEzcd238lFJ79/IcS0JwFNCCHElKcoCs7uBpzdL9/6BrbwMNhrpqfDFhh62gds99sH6ekYpL2xj5qzbWO6zX3kdTQKTs46DM5aDM46DEYdBqMW/fCtwWh7Tu+kQz/yeNTzeifbNK1eg0aroNEqDgkcqqpitapYzSpWixWrRcUy6r5pyMJQn5nBPjOD/abhW7NtWr+ZoX4zQwNmTAMWhgYsmAbMDA1aMA1aQP3o62m0ir0F0zfUFY1nH0mz4mzhy9sWvlw8DWjk+mFCCCEBTQghxMygKApGNz1GNz1+YW5XnG9owMxA73Ao6TMz2Dd8v/fi/aEBM0MDFob6zfR2DjHU0GefZjFZr7juy9FoFHtY02g1aHQKWp0GnV6DzqBFp9egHXVfp9eAYuvyqVpUrJbhsDXy2KpiMVuxmKxYzFbMpov3LSYrZrPVfm2vG2Vw1l0MqEYdRjfbIC62EGqbpnfSYnTV4+o13L3Uywmjq35MEM3PzycrL+KmahBCiOlOApoQQggxiq3VSwe+N7e8xWIdblm6pIVpwIJpcDjEmW0tVdaRW4uKxXJxmtlsxTJkC1dmk61lqr/HZAtYQ7YWvpFAp2gUe8gbua/VK+idDLZwp1PQ6jVo9Vp0Og1avYJGp0E7EgiHb7W6iyFRZ9DYunc66+xdPPVGnbRwCSHEBJCAJoQQQtxGWq0GrasGo6sM3y6EEOLGyXBHQgghhBBCCDFJODSgKYrioyjKVkVRzg/fel9mnmWKohSN+hlQFOW+4ef+qihK+ajnMif6PQghhBBCCCHE7eLoFrTngO2qqsYD24cfj6Gq6k5VVTNVVc0ElgN9wJZRs3x95HlVVYsmoGYhhBBCCCGEGBeODmj3Ai8O338RuO8a8z8EbFJVtW88ixJCCCGEEEIIR3B0QAtUVbV++H4DEHiN+R8FXr1k2k8VRTmhKMovFUVxuu0VCiGEEEIIIcQEUVT15q6Fct0voCjbgKDLPPUd4EVVVb1GzduuqupHzkMbfi4YOAGEqKpqGjWtATAALwClqqr++DLLfg74HEBgYODs11577ZbekxC3oqenBze3K1+DSYjxJtugcDTZBoWjyTYoHG3ZsmWFqqrmXO65cR9mX1XVlVd6TlGURkVRglVVrR8OW01XWdUjwDsj4Wx43SOtb4OKovwF+NoVangBW4AjJydHzcvLu8F3IcTtk5+fj2yDwpFkGxSOJtugcDTZBsVk5uguju8DTwzffwJ47yrzPsYl3RuHQx2KoijYzl8rvv0lCiGEEEIIIcTEcHRAex5YpSjKeWDl8GMURclRFOWPIzMpihIFhAO7Lln+ZUVRTgInAT/gJxNRtBBCCCGEEEKMh3Hv4ng1qqq2AisuM70AeHrU4wog9DLzLR/P+oQQQgghhBBiIjm6BU0IIYQQQgghxDAJaEIIIYQQQggxSUhAE0IIIYQQQohJQgKaEEIIIYQQQkwSEtCEEEIIIYQQYpKQgCaEEEIIIYQQk4QENCGEEEIIIYSYJBRVVR1dw4RSFKUZqHR0HWJG8wNaHF2EmNFkGxSOJtugcDTZBoWjRaqq6n+5J2ZcQBPC0RRFKVBVNcfRdYiZS7ZB4WiyDQpHk21QTGbSxVEIIYQQQgghJgkJaEIIIYQQQggxSUhAE2LiveDoAsSMJ9ugcDTZBoWjyTYoJi05B00IIYQQQgghJglpQRNCCCGEEEKISUICmhBCCCGEEEJMEhLQhBBCCCGEEGKSkIAmhBBCCCGEEJOEBDQhhBBCCCGEmCQkoAkhhBBCCCHEJKFzdAETzc/PT42KinJ0GWIG6+3txdXV1dFliBlMtkHhaLINCkeTbVA4WmFhYYuqqv6Xe27GBbSoqCgKCgocXYaYwfLz88nLy3N0GWIGk21QOJpsg8LRZBsUjqYoSuWVnpMujkIIIYQQQggxSUhAE0IIIYQQQohJQgKaEEIIIYQQQkwSM+4cNCGEEEIIIcStMZlM1NTUMDAw4OhSJjWj0UhYWBh6vf66l5GAJoQQQkxhFrOJwb4+hvr6GOzvY6i/D9PAAGbTEOahIcxDg8O3wz+mIVSrdcw6FEUBRbHdBxSNxvajaNBoNChare1WY3usMzhhcHHB6OKKwcUVJ1dXnIZvdXqDbX1CiGmtpqYGd3d3oqKi5H/+ClRVpbW1lZqaGqKjo697OQloQgghhINZLRb6OjvoaW+jp72Nge4uBvv6GOzrsd329jLYd/FndBizmEw39FpanQ5FqwV1eIKqoo48UFVUFVTV+pEQd700Wh1OLi44ubhiGL699HFjfQNntCrOHp44e3jiMnyru4EjzEIIxxoYGJBwdg2KouDr60tzc/MNLScBTQghhBgnqqoy1N9HT1sr3a0t9LS12n7aW21hrK2NnvZW+jo6UNXLByKDszNOLm62kOPqipu3D4aQMJxcXGytV84uw/O4YnB2weDsgt7ohM7ghM5gQKc32G4NBrR6PRqN9vrrt1qxWq3Dtxb7Y/Pg4HBYvCRE9vYw2N9nu+2zBcjBvj46GuqH5+1lqL8PgJr9+Zd9ry4eXrh6e+MZEIRnQBBeQcF4BQbhFRiMs4en7AwKMYnI/+O13czvSAKaEEIIcQtMgwN0NNTTXl9Le30d7fV1dLc20d3WRk9bK6aB/o8sY3T3wN3bB1cfX/wjo3Dz9sHNxxdXb1/cvLxx9vDAycUNg4vzDQWq203RaNBqLjOemJs77r5+N7VO1Wpl+5bNZKfPoq+rk/6uTvq7uuz3+7o66WlvpfrUSU7v2Qmqal9Wb3TGKyAQz8Bge3DzDLCFN3c/f7Q62a0RQkx98kkmhBBCXIOqqvS2t9FSU0VrdRXt9TW019fSVl9HT2vLmHndvH1w9w/APzyS6MzZuPn44ubji7uPL24+frh5+6AzGBz0ThxP0WjQGZ3xCQnDJyTsqvOah4bobG6ks7GBjsZ6Ohrr6WxsoK22mvKigjHdOxWNBg//ADwDgvAOCsEvIgr/yGj8IyIxOLuM99sSQjhAf38/a9euZceOHWi1WtauXcvBgwdZtGgR69evt8+nqirf/e53+cc//oFWq+Wf/umf+PKXv3zVdV9pXYsXL6a7uxuApqYm5syZw7vvvsv69es5fPgwP/7xj2/5fUlAE0IIIUbp7+6ipbqSlupKWqurhm8rGejtsc9jdHXDOySUiJRZeAeH4h0SindwKF5BwRiMzg6sfnrRGQz4hobjGxr+kedUq5We9rYxwa2jsYHOxnrO7M23d6UE8AwMwt8e2KLxj4zGMyAQ5XKtg0KIKePPf/4zDzzwAFqtrafB17/+dfr6+vjDH/4wZr6//vWvVFdXc/bsWTQaDU1NTddc95XWtWfPHvv9Bx98kHvvvReAO++8k+9973s899xzuLjc2kEhCWhCCCFmpIHeHlqrq2itqaKlxhbCWqqr6OvssM/j5OKKb3gkCfMX4RceiV94JL7hkbh4eDqucAHYWszcff1w9/UjPGXWmOdUVaW7pZnmqnKaKytoriynuaqC0oLD9nP9DM7O+EfGEBBl+/GPisEvPAKtTgYqEeJG/eiDU5yu67qt60wJ8eAHd6dedZ6XX36ZV155xf54xYoV5Ofnf2S+3//+97zyyitohg/KBAQEXPP1r7SuEV1dXezYsYO//OUvgO1cs7y8PNavX88jjzxyzfVfjQQ0IYQQ015fZwf1F0pouHCOhtLztFRX0tPWan9e72TENyyc6Kwc/MIibEEsIhI3b185CX4KUhQFD/8APPwDiJ091z7dNDhAa001TRVlNFeW0VReRvHOrZgGbddx0mh1+IaFExAVS3B8AsHxSfiFR6LROu48QCHE5Q0NDVFWVkZUVNQ15y0tLeX111/nnXfewd/fn//93/8lPj7+ll7/3XffZcWKFXh4eNin5eTksGfPHgloQgghxGimoUGaykqpv3COhgsl1F8ooau5EbC1uviFRxKRmo7vSItYWAQefv7S3W0G0DsZCYqNJyj24o6Z1Wqho6GBpopSmivKaKooo+zoYU7t2gaAzsmJoJh4guISCIlPIig+AXefmxsgRYjp6lotXeOhpaUFLy+v65p3cHAQo9FIQUEBb7/9Nk899dSYroo349VXX+Xpp58eMy0gIIC6urpbWi9IQBNCCDGFqapKV3MTdefPUl9ylrqSMzRXlmO1WABw9/MnOC6RrDV3EhSXQGB0HHqj0cFVi8lEo9HiExKKT0goSQuWALbtqrOpkfoL56g/f5aG8yUc2/Q+BR+8DYC7rz8RaelEzMokclYmrl7ejnwLQsxIzs7ODAwMXNe8YWFhPPDAAwDcf//9fPrTn76l125paeHw4cO88847Y6YPDAzg7Hzr5yFLQBNCCDFlWMwmGkovUF9yhrqSs9SdP0tvextga+kIjksk5+4HCI5PIjguQXacxU1RFGX42mtBJC9cCoDZZKK5ooz6C+eoPXua0qNHOLVrOwB+4ZFEpmcSMSuTsOQ0GShGiAng7e2NxWJhYGAA4zUOvN13333s3LmT6Ohodu3aRUJCAgCHDx/mN7/5DS+99NINvfabb77JXXfd9ZHXLSkpIS0t7cbeyGVIQBNCCDFpqVYrTZXlVBUfp6r4OLVnTtnPF/IMDCIiNZ3ghCRCEpLxj4iSc4XEuNHp9QTHJxIcn0j2unts22ZFGZUni6g8WUTRlo0UbngPjVZHSEISURnZRGXOJiAqRs5jFGKcrF69mr1797Jy5UrANgT+2bNn6enpISwsjD/96U+sWbOG5557jscff5xf/vKXuLm58cc//hGAqqqqK7Z4XWldAK+99hrPPffcR5bZuXMnP/vZz275fUlAE0IIMWmoqkpHQ50tkJ08TtXpkwx020YG8wkJIzVvBRGpGYQkJkvrmHAoRaMhMCaOwJg45tz7EKahQerOnqGyuIjK48fY+9pL7H3tJVy9vO1hLTI9C2c3d0eXLsS08cUvfpFf/vKX9oB2pfPKvLy82LBhw0emHzp0iC9+8YuXXeZq56hdbnTHxsZG+vv7mTVr1kcXuEES0IQQQjjUYF8fVcVFVBw/SsXxY/YBPdx8/YjNziUiLYPwtHQZmEFManqDE5HpmUSmZ8LHn6S3o52K40cpLyqktPAwp3ZtR1E0BMUnEJ05m5jsOdK6JsQtys7OZtmyZVgsFvu10G7Ez3/+89tWS1VVFb/4xS9uy7okoAkhhJhQqtVKY3npcCA7Sl3JGVSrFb3RmYi0DHLvfoCIWZl4B4fIzquYsly9vElduoLUpSuwWi00XDhPeVEhFccL2f+PV9j/xsu4+/kTO3sucTnzCEtJQ6uT3TIhbtRTTz3l6BIAyM3NvW3rkk8CIYQQ466vq5PK4daEiuNH6R/uthgQHUvuPQ8SnTGb4IQk2UEV05JGoyUkIYmQhCQWPvI4fZ0dlB49TGnBYYp3bqVo83qcXFyJypxNXM5corNycHJxdXTZQggHkW9CIYQQt53VaqGx9ALlRQWUFxXSUHoeVBVnD0+iMmcTnZFNZHoWLp5eji5ViAnn4unFrGWrmbVsNabBASpPHqe04CClhYc5t383Gq2OqMxskhflETt7DnonuTSEEDOJBDQhhBC3hWlggLJjBZQWHLzYSqYoBMclsOChjxOdOZvAmDi5ILQQo+idjMTlzCUuZy5Wq4X68yWcP7yfc/t3U1Z4GL3Rmfg580levIyItHQ0GhmpVIjpTgKaEEKImzbU30fZ0SOUHNpH+bFCzEODOLt72FrJsnKISs/C2d3D0WUKMSVoNFpCE5MJTUxmyeNPUnP6FGf25nP+0D5O796Bq5c3iQuWkLwoz3awQ87RFDPcU089xfr16wkICKC4uNg+/de//jW//e1v0Wq13Hnnnfznf/6nA6u8cRLQhBBC3JDBvj7KCg9RcmgfFUVHMZuGcPXyJm3ZShLmLiQ0OVWO8gtxizQaLRFp6USkpbPiqWcoO3aEM3vyOb5lA0c3vodvWASpS1eQvHgZbt4+ji5XCId48skn+dKXvsSnPvUp+7SdO3fy3nvvcfz4cZycnGhqanJghTdHApoQQohrGuzro7TwEOcO7KHy+FEsZjNu3j7MWrmGhLkLCUlMllAmxDjRGQwkzF1IwtyFDPT0UHJoL6fyt7P75b+w55UXicrMJi1vJTGz56LT6x1drhATZsmSJVRUVIyZ9vvf/57nnnsOJycnAAICAhxQ2a2RgCaEEOKyRkJZycG9VBQV2kKZrx8Zq+8kYd4iQuIT5XwyISaY0c2N9BVrSV+xlra6Wk7t2sbp3Tv44JfPY3R1I2nRUtLyVhEQHStdIMXE2fQcNJy8vesMmgXrnr/hxUpKStizZw/f+c53MBqN/Nd//ddtHQJ/IkhAE0IIYTfU30dpwSHOHdxLxfGjWEwmeyhLnL+I4DgJZUJMFj4hoSx+7AkWfuwTVJ08TnH+Nk7u2ELR5g0ExsQz+857SZi3SC5fIWYUs9lMW1sbBw8e5MiRIzzyyCOUlZVNqQMW8h8rhBAznKqq1J49RfHObZQc3ItpcAA3H18yVt0hLWVCTAEajZaojGyiMrIZ6O3hzN58jm36gI2//i92v/wXMtfcRfrKtTi7uTu6VDFd3URL13gJCwvjgQceQFEU5syZg0ajoaWlBX9/f0eXdt0koAkhxAzV3drC6d07KM7fSkdDPXqjM0kLl5CydAWhCckSyoSYgoyubmStuYvMVXdQXlRI4YZ32fvqixx86zVSly4n+4578QkJc3SZQoyb++67j507d7Js2TJKSkoYGhrCz8/P0WXdEAloQggxg5hNJtpLz/HWgZ1UHj+GqloJS0lj3gOPkjB3IXqjXBBXiOlA0WiIyc4lJjuX5qoKjm58j+L8bRzfuonorBxm33EfEbMyplS3LyEu9dhjj5Gfn09LSwthYWH86Ec/4qmnnuKpp54iLS0Ng8HAiy++OOW2cwloQggxA7Q31HFi24ecyt9Gf3cXbr5+zL3/YVKXrsQrKNjR5QkhxpF/RBRrnnmWxY89QdGWjRzfupE3f/pd/COjmX3nfSQtXIJWJ6M/iqnn1Vdfvez0v//97xNcye0lAU0IIaYpi9lMacFBjm/7kKqTRSgaDbGz50JACHd/4lMyLL4QM4yLpxcLHv44c+59iDP78ilc/y4f/u6X7Hn1RbLW3EX6qnVynpoQk4AENCGEmGY6mxo5uWMzxTu30tvRjruvPwsf+QRpy1bh5uNLfn6+hDMhZjCdwcCsZatJy1tF5fGjFGx4l72vvcTBd14nLW8l2Xfci3dQiKPLFGLGkoAmhBDTgNVioezoEU5s20T58aMoKERn55Cxch1RmdkSyIQQH6EoClGZs4nKnE1zZTmFG97jxLbNFG3ZSMKcBcx94GMERMU4ukwhZhwJaEIIMYV1NTdxcucWindsoae9DTdvH+Y98DFmLV+Nh1+Ao8sTQkwR/pHRrP3CV1j02Kc49uEHFG1eT8mhfcTmzGXeA48SFBvv6BKFmDEkoAkhxBRjby3b/iHlRYUARGfOZsXTXyQmKweNVlrLhBA3x83bh8WPPUHu3Q9ydNP7HN30Hi9/+1+IypzNvAceJTQx2dElCjHtSUATQogpoq+rk+NbNnJi26axrWXLVuPhL61lQojbx+jmxoKHP87sO++jaPN6Cje8y2vf/zoRaenMe/AxwlNmObpEIaYtCWhCCDHJtTfUUbj+XU7t2o55aJCozNms+MwXiMnOldYyIcS4cnJxYe79j5C97h6Ob93IkQ/e5o0ffYuItHSWPP4UgTFxji5RzGBPPfUU69evJyAggOLiYgA+9rGPce7cOQA6Ojrw8vKiqKjIgVXeOAloQggxSdWVnKHgg3c4f+QAWq2W5MXLybnrPnzDIhxdmhBihtEbjeTc/QAZa+7k5LYPOfD26/z9W18hefEyFj36STnnVTjEk08+yZe+9CU+9alP2ae9/vrr9vv/+q//iqenpyNKuyUS0IQQYhKxWi2UFh6m4IN3qDt3GqOrG3Pve5jMNXfh5u3j6PKEEDOc3uBE9h33kpq3ksPv/oOjG9+n5OBesu+4l7n3PYyTi6ujSxQzyJIlS6ioqLjsc6qq8sYbb7Bjx46JLeo2kIAmhBCTgNlk4vTuHRR88Dbt9bV4+Aey7MnPkbZsFQajs6PLE0KIMZxcXFn88SfJWH0H+177G0fee5OTO7Yw/8FHyVi1Dq1O7+gSxQT6j8P/wdm2s7d1nUk+SXxzzjdvevk9e/YQGBhIfPzUG4F0SgU0RVFigO8AnqqqPnSlaUIIMVUM9vVxYtsmCje+R297GwFRsdz57DdImLtQzi8TQkx6Hn4BrPvSv5J9x73sfvnP7PzrCxz78AOWPP5p4nLnoyiKo0sUM9Srr77KY4895ugybsqEBTRFUf4M3AU0qaqaNmr6WuBXgBb4o6qqz19pHaqqlgGfURTlzatNE0KIya63o52jm97n+JaNDPb1EpGWwdov/AuRszJlh0YIMeUExsTx0Hd/SnlRAbv//hfe/8W/E5GWTt4Tn8M/IsrR5YlxdistXePBbDbz9ttvU1hY6OhSbspEtqD9FfgN8NLIBEVRtMBvgVVADXBEUZT3sYW1n12y/FOqqjZNTKlCCDE+OhobKPjgLYrzt2Exm0mYs4Dcex+Si8AKIaY8RVGIycolKj2b49s2sf/1v/O3b3yZjNXrWPDw4zi7ezi6RDFDbNu2jaSkJMLCwhxdyk1RVFWduBdTlChg/UgLmqIo84Efqqq6ZvjxtwBUVb00nF26njcv7c54uWmjnvsc8DmAwMDA2a+99tqtvhUhblpPTw9ubm6OLkNMsMGuDuoLD9J67hSKosE3MZXAzByMXhM/8Idsg8LRZBucGcwD/dQd2U/zqSK0BidCchfgn5qJotE4ujTZBm8DT09P4uIce5mFT3/60+zdu5fW1lYCAgL49re/zac+9SmeeeYZcnNz+cxnPuPQ+kZcuHCBzs7OMdOWLVtWqKpqzuXmd3RAewhYq6rq08OPPwnMVVX1S1dY3hf4KbYWtz+qqvqzy027Wg05OTlqQUHB7XpLQtyw/Px88vLyHF2GmCCdTQ0cfPt1Tu3ajkarJWPlOnLveRA3H1+H1STboHA02QZnlpaqCna++AJVxSfwDYtg2ZOfI3JWpkNrkm3w1p05c4bk5GRHlzElXO53pSjKFQPalBokRFXVVuCZa00TQghH62xq5NA7tmCmaDRkrrmTOfc85NBgJoQQjuAXEcVD3/0pFwoOsuulP/LmT75L/NwFLP/0M3L5ECEuw9EBrRYIH/U4bHiaEEJMSV0tTRx6+w2K87eiKArpK9cx576HcPfxc3RpQgjhMIqiEJ87n+iM2RRueJcDb71KVfFx8j71WVKXrpDBkYQYxdEB7QgQryhKNLZg9ijwcceWJIQQN66vq5PD775B0eYNAKSvXMucex/G3VeCmRBCjNAZDMy9/xHi5y5gyx/+l82//x/O7tvFqs9+Cc+AQEeXJ8SkMJHD7L8K5AF+iqLUAD9QVfVPiqJ8CdiMbeTGP6uqemqiahJCiFtlGhjg6Kb3Ofzem5gGBkjNW8n8hx7Dw8/f0aUJIcSk5RMSxsd+8DzHt25i9yt/5cWvfZFFjz1B1po7J8UgIkI40oQFNFVVL3ulOFVVNwIbJ6oOIYS4HawWC8U7t7L/zVfobW8jNmceix/7FL5hEY4uTQghpoSR83NjZuey9f9+y86//oFz+3ez+vNfxjcs/NorEGKacnQXRyGEmFJUVeXCkQPsefUl2utqCElM4e6vPEdoUoqjSxNCiCnJwy+AB577IWf27GTni//H3775z8x/6OPk3vMgGq3W0eUJMeEkoAkhxHWqOVPM7pf/Qv35c/iEhnPv179H7Ow5cnK7EELcIkVRSFmynMj0LHb8+f+x97WXKC08xNovfBWfkFBHlycmqaeeeor169cTEBBAcXExAEVFRTzzzDMMDAyg0+n43e9+x5w5cxxc6Y2RTr5CCHENrTVVvPOfP+b1Hz5Hd2sLqz//ZZ74+W+Iy5kr4UwIIW4jVy9v7v7qt7jzy1+nva6Wv33zyxz78ANUq9XRpYlJ6Mknn+TDDz8cM+0b3/gGP/jBDygqKuLHP/4x3/jGNxxU3c2TFjQhhLiC7rYW9r/xCqfyt6E3Gln02BNkr7sbvZPR0aUJIcS0lrRwKWHJaWz5w/+y4y9/4MKRg6z5p2fx8AtwdGliElmyZAkVFRVjpimKQldXFwCdnZ2EhIQ4oLJbIwFNCCEuMdjXy+H33uToxvdRrRay77ibufd/DGd3D0eXJoQQM4abjy/3P/dDTu7YTP5Lf+LFr32J5Z/+PClLlkvvhUmm4d//ncEzZ2/rOp2Skwj69rdveLn/+Z//Yc2aNXzta1/DarWyf//+21rXRJCAJoQQwyxmM8e3bODAW68x0NNN8qI8Fn7sk3JtHiGEcBBFUUhfsZaItEw+/N0v+fB3v+T84QOs+uwXcfXydnR5YhL6/e9/zy9/+UsefPBB3njjDT7zmc+wbds2R5d1QySgCSEEUH3qBNv//P9orakiYlYmSx7/NIHRsY4uSwghBOAVGMQjP/h3jm54j72v/40Xv/4l1n3xq0RnznZ0aQJuqqVrvLz44ov86le/AuDhhx/m6aefdnBFN04CmhBiRutua2HX3/7Muf278fAPlJEZhRBiktJotOTc/QBRmbPZ8Kv/5O2f/YCcux9g0aOfRKvTO7o8MUmEhISwa9cu8vLy2LFjB/Hx8Y4u6YZJQBNCzEgWs4mjG9/nwFuvYbWYmffgY8y57yH0BidHlyaEEOIq/MIj+fi//ze7XvoTBR+8TfWpk9z57NfxDpp6g0GIW/PYY4+Rn59PS0sLYWFh/OhHP+L//u//ePbZZzGbzRiNRl544QVHl3nDJKAJIWacypNF7Pjz/6OtroaY7FyWPfE5vIKCHV2WEEKI66Q3OLHy6S8QOSuTzX/4FX9/7llWfuYLJC9e5ujSxAR69dVXLzu9sLBwgiu5vSSgCSFmjJ72Nna++H+UHNiDZ2AQ933j+8TOnloXrxRCCHFR/NwFBMbGseF//4uNv/kFlSeLWP7UMxiMzo4uTYibJgFNCDHtqVYrJ3dsYffLf8FsGmLBw4+Te8+D6AwGR5cmhBDiFnn4BfCxH/yMA2+9ysG3X6eu5Cx3PvsNGehJTFkS0IQQ01prbTVbX/gNtWdPEZ6azqrPfhHv4FBHlyWEEOI20mi1LHzkE0SkprPx1//Fq9/7Gqs//2VSpMujmIIUVVUdXcOEUBTlbuDu0NDQz/797393dDliBuvp6cHNzc3RZUx7VouZhqOHaTh6CI1eT9j8pfgmpcnojMg2KBxPtkExnkz9fZRt+YCeumoCM3IInbcERaMZM49sg7fO09OTuLg4R5cxJVy4cIHOzs4x05YtW1aoqmrO5eafMQFtRE5OjlpQUODoMsQMlp+fT15enqPLmNZqz55mywu/pq22mqSFS8n71NNyQdNRZBsUjibboBhvFrOZ/Jf+SNHm9USmZ3HXs9/EOCqQyTZ4686cOUNycrKjy5gSLve7UhTligFNujgKIaaNwb5e9rzyV45v3YS7nz/3P/cDYrJyHV2WEEKICabV6Vjx1DP4R0az/U+/5+Vv/wv3fv27+IVHOro0Ia5Jc+1ZhBBi8jt/aD9/+eo/cWLbZrLvuJcnf/E7CWdCCDHDpa9YwyM/+BlDA/288t2vceHIQUeXJG6jp556ioCAANLS0uzTjh8/zvz585k1axZ33303XV1dDqzw5khAE0JMad2tLbz3Xz/h/f/+d1w8vfj4T3/Bsic+K0MsCyGEACA0MZlP/Ox/8AkJ473/+gkH3nyVmXaKz3T15JNP8uGHH46Z9vTTT/P8889z8uRJ7r//fn7+8587qLqbJwFNCDElqVYrxzav56//+k9UHD/Gksc/zeM//W+CYuMdXZoQQohJxt3Xj4/96HlSFi9j/z9epmzL+5gGBxxdlrhFS5YswcfHZ8y0kpISlixZAsCqVat46623HFHaLZFz0IQQU05LVQVb/u831JecJTI9i5VPfxGvwCBHlyWEEGIS0xucWPvFr+IfFcOuv/2JN370Le77xvdlEKnbYM8bJbRU99zWdfqFu7H4kYQbXi41NZX33nuP++67j3/84x9UV1ff1romgrSgCSGmDLPJxL7X/8bfnnuWjvo61n3pX3nw2z+WcCaEEOK6KIpCzl33E7v2Plpqqnj5O1+lpbrS0WWJ2+jPf/4zv/vd75g9ezbd3d0YDAZHl3TDpAVNCDEltFRXsvE3v6C5ooyUJctZ+snP4OLh6eiyhBBCTEFe0XHMX/ofvPMfP+LV732de776bSLTMx1d1pR1My1d4yUpKYktW7YAtu6OGzZscHBFN05a0IQQk5pqtXJ00/v8/Vtfoaetlfu+8T3WffGrEs6EEELcksCYOD7+01/g4R/A28//gBPbNzu6JHEbNDU1AWC1WvnJT37CM8884+CKbpwENCHEpNXT1spbP/sBO//6ApGzMnni578hdvZcR5clhBBimvDwC+DRH/0nEWkZbH3h1+x55a+oVqujyxLX6bHHHmP+/PmcO3eOsLAw/vSnP/Hqq6+SkJBAUlISISEhfPrTn3Z0mTdMujgKISalkkP72PrCbzAPDbHy6S+QvnIdiqI4uiwhhBDTjJOLC/d/8wds//PvOfzem3Q0NrD2i/+C3uDk6NLENbz66quXnf7ss89OcCW3lwQ0IcSkMtjXx86/vsCpXdsIjInnjn/+V3xCwhxdlhBCiGlMo9Wy8ukv4h0Uwq6X/0J3WwsPfPOHGN3cHF2amIEkoAkhJo2as6f48Lf/TVdzM/MefJR5DzyKVicfU0IIIcafoijk3P0AHgGBbPzfn/PGv32bh77zb3LOs5hwcg6aEMLhLGYTe175K6//8DkAPvaj/2DhI5+QcCaEEGLCJcxdyL1f/x7ttTW88aNv0dPe5uiSxAwjAU0I4VAtVRW8/O2vcvi9N5m1bBWf+s9fE5qY7OiyhBBCzGDRmbO5/7kf0tXcxOs//CZdLU2OLknMIBLQhBAOoVqtFKx/h79/+1/o7Wjn3q9/j9Wf/zIGZxdHlyaEEEIQkZbOg9/5N/o6O3n9h8/R0djg6JLEDCEBTQgx4bpamvjHT77Lrr/9iaiM2Tzx898QlyPD5wshhJhcQhOTeeT7/85Qfz+v/+AbtNZWO7okMQNIQBNCTBhVVTm9Zycvfu1LNJSeZ/UzX+ber30HF08vR5cmhBBCXFZgTByPfP/fsVqtvPGjb9FcVeHokgRQXV3NsmXLSElJITU1lV/96lcAtLW1sWrVKuLj41m1ahXt7e0OrvTGSUATQkwI09Agm3//Kzb95hf4R0bxxM9/zaxlq+XaZkIIISY9/8hoHvnBz9BoNLzxo2/RWHbB0SXNeDqdjl/84hecPn2agwcP8tvf/pbTp0/z/PPPs2LFCs6fP8+KFSt4/vnnHV3qDZOAJoQYdx0N9bz63a9xatc25j34GI/84Gd4BgQ5uiwhhBDiuvmGhvOxH/4HBmdn3vjxt6m/cM7RJc1owcHBZGdnA+Du7k5ycjK1tbW89957PPHEEwA88cQTvPvuuw6s8ubIGNZCiHFVWniITb/5bxRF4f7nfkBMVq6jSxJCCCFuildQMB/74fO88aNv8dZPv89D3/k3guISHF2Ww+386ws0VZbd1nUGRMaw7MnPXde8FRUVHDt2jLlz59LY2EhwcDAAQUFBNDY23ta6JsKMCWiKotwN3B0aGvr/2bvr8CiutoHDv1lLsnF3I4YT3N3drUgN6m5f+9beuruXGtKW4u7u7k4IUeLua/P9sbxAW5wks0nOfV1zzW4ys/MsTHbnmXPOc9i0aZPS4Qh1WHFxcZ04B2WLhQt7tpN+cDd6b1/q9RlCUkEJSXXgvdu6unIOCrZLnIOC0u70HAzuM4Qzi/9i9hsvETV4NI51sFeIq6srRUVFABiMBswmc6W+vsFouPT611NcXMzw4cN57733Lg2buHI/SZJu6nWqUnl5+S2db5Isy1UXjQ1q1aqVvG/fPqXDEOqwTZs20a1bN6XDqFKlBfks//JDko4doUnPvvS450E0Op3SYQkX1YVzULBt4hwUlFYZ52BhViZ/vfESFaXFjH7lHXzrRVZOcDXEyZMnadBA2XlLjUYjgwYNom/fvjzzzDMAxMTEsGnTJvz9/UlLS6Nbt26cPq1sd9Sr/VtJkrRfluVWV9tejEETBKFSXThzkpkvPsmF06fo+9CT9HngcZGcCYIgCLWOi7cPY157Fzu9I/PefkUUDqlmsixz//3306BBg0vJGcCQIUOYPn06ANOnT2fo0KFKhXjbRIImCEKlObx2JX/99yXUWi3j3vqIxt17Kx2SIAiCIFQZVx9fxrz2LloHB2uSdv6c0iHVGdu3b2fmzJls2LCB2NhYYmNjWbFiBS+++CJr164lKiqKdevW8eKLLyod6i2rM2PQBEGoOmaTkY2//cjhtSsJi23JwMefx97JSemwBEEQBKHKufr4Mea195jzxkvMe/sVRr/6Dj5h9ZQOq9br1KkT1xqqtX79+mqOpWrFgAAA23FJREFUpnKJFjRBEO5IaUE+c996hcNrV9J66CiG/99rIjkTBEEQ6hQ3Xz/GvP4eGjs75r71MpkJlVvRUKhbRIImCMJty0yIZ9Z/nibj3FkGPP4cXe66B5VKrXRYgiAIglDt3Hz9GPvaxSTt7VfISU1WOiShhhIJmiAIt+X0zq38+erzyLLMuDc/pEGnbkqHJAiCIAiKcvPzZ8xr76JSqZj/zmsU5WQrHZJQA4kETRCEWyJbLGybPYNln3+AT3gEE9/9rM6VFhYEQRCEa3H3C2DES29QUVrCvHdepayoUOmQqkxdm67rdtzOv5FI0ARBuGkVpaUs+vhtdi+cQ5MefRj96js4urkrHZYgCIIg2BTf8AiGPf8KBZnpLPzgDYzl5UqHVOns7e3JyckRSdp1yLJMTk4O9vb2t7SfqOIoCMJNyc9IZ9GHb5J7IYUe9z1EbJ+BSJKkdFiCIAiCYJOCGzVl4BPPs/TT91n62XsMff5V1Jrac+kdFBRESkoKWVlZSodi0+zt7QkKCrqlfWrPWSIIQpVJPn6EJZ+9DxYLo15+i5DGzZQOSRAEQRBsXlSbDvSa+ihrf/yK1d9/Qf9HnkZS1Y4ObFqtlvDwcKXDqJVEgiYIwnUdWbeK9b98h5tfAMNeeBV3vwClQxIEQRCEGqNpz76UFRawbfYMHJxd6DZ5iuiBIlyXSNAEQbgqi9nMphk/cXDVUsJjWzLwyRew0zsqHZYgCIIg1Dhtho2mtCCfAysWo3d1o+2w0UqHJNgwkaAJgvAv5cXFLP38fZKOHqLloOF0mSDmNxMEQRCE2yVJEt0mT6G0sIBtf05H7+JKkx59lA5LsFEiQRME4W9yL6Sw6MM3KcjMpO9DT9K4e2+lQxIEQRCEGk9Sqej3yFOUlxSz9sevcfb0IqxZC6XDEmxQ7RilKAhCpUg6dpg/Xn6W8pISRr/2jkjOBEEQBKESqTVaBj/9Il7BISz74gPy0lKVDkmwQSJBEwQBgFM7tjD/3ddx8vBkwjufElS/kdIhCYIgCEKto7N3YOjzr6JSqVn04VtUlJYoHZJgY0SCJggCB1YsZvkXH+IfFcO4Nz7E1cdX6ZAEQRAEodZy9fFl8DMvkZ+RxvIvP8JiMSsdkmBDRIImCHWYbLGw5fdf2Th9GlFtOjDq5bewd3JSOixBEARBqPWCGzahx70Pcv7gPrbNnql0OIINEUVCBKGOMptMrPn+C05s3Uiz3gPocd+DolKjIFQDWZYxmyyYTTJmo+XiY8sVj2VMFWaMFWYMFSaM5dbHxgrzxccmZECtVqHSSKjUKtRqCZVGhUotoVarUGtVaO1UaHRqtDo1GruLa50KrZ0atVaFRqtCrbEukkrMySQISmjWewBZiefZu3ge3sGhNOjcXemQBBsgEjRBqIMM5WUs/fQ9Eg4foOPYSbQdPkZMmikIt0iWZYzlZspLjNal2Eh5qZHyYhMVpZefV5SYLm1TUWL9nSzfxgEl0NlZky1JkrCYrcmcxWTBYpaxWG7nRa1UasmarF1M2nQOGvTOWhycdRcXLXoX3eXnTlrsHbXo9BpUIrkThDvS/Z4HyElNZs0PX+HuH4hfZLTSIQkKEwmaINQxpQX5LHj/DTITztHnwSfEPCyCcAVZlikvMVJaYLAuhRWUFBooLTRQdnFdWmigrNhIRYkRi/naSZHOXo29kxY7vRZ7Rw3OnvbY67XY6TVo7NR/a8FSX3psTZS0dmq09mrr2k6D1t66/fVupMgWGYtZxmy2YDJYMBnMGA1mTBWXHxsrzJgMZsxGCybjlS138qXHJpMFQ5mJsiID2SnFlBUZqCg1XfO4dnoNdnoN9o5a7By12Os16F3tcPV2wM1Hj6uPA04e9iKRE4RrsFZ2fInf//M0iz9+mwnvfY6Tu4fSYQkKEgmaINQh+RnpzH/nVYrzchn63CtEtGyjdEiCoAiT0UxBZhl56aXkZ5SSn3lxnVF61WREo1Whd9Whd9Hh6u2AX7iLNflytLYk2TtqsXe6/NjOUYNaXb3DvCWVhFolodaq0NlX7mubjRbKio2UFVkT1MstgkbKS03W9cXWwcLsMkryszEZLJf2V2kkXL0ccPV2wNVHT26BTGpAHu5+jjg4a0ULvlDn6V1cGfb8q/z56vMs+fgdxrz+HhqdTumwBIWIBE0Q6oisxPPMf/c1zCYTo199h4Do+kqHJAhVymyyUJhdRkFWGQWZZeRnllKQWUp+ZhlFueVwReOXo5sdbr56olr54uarx9HNzpqQOevQu+rQXuxWWFeptSqc3O1wcre7qe1lWaa0wHDx37zs0rogq5SUU3mYjDKL9h0EwM5Rg4efI+5+etz9HXH3c8TdX4+zu70YGyfUKd6h4fR/9BmWfPoua6d9Tb9Hnq7Tnzt1mSTfVkf4mkeSpMHA4MDAwKmzZs1SOhyhDisuLsapmislFqelELdiISqtjqjBo3Bw96zW4wu2RYlzsCrJsoyxBMpyoTxPpjwfKgrBWMrfkjCVFnTOYOd0ce0ioXO2PlZrxUVQdZFlmYLsUjQmPRWFUFEoX1yDueLydirNxf8nV+v/lZ2L9bHOEZG4CXfMlj8HL+zdTtq+nQR37olP4+ZKhyNUke7du++XZbnV1X5XZxK0/2nVqpW8b98+pcMQ6rBNmzbRrVu3ajte/IG9LP3sfZy9vBn18pu4ePlU27EF21Td52Blki0yBVllZCUVkZlURFZSEdnJRZe6JarUEh4Bjrj76nG9OP7pf+Og7B1FVzpbca1zsKzYQF5aKblpJeSll5CXVkJeeinFeZczN5VGwt3PEZ8QZ7xDnPEJdcEzyBGNVlShFW6eLX8OyhYLCz98k8Qjhxj35gf4R8YoHZJQBSRJumaCJro4CkItdmLrRlZ9+xk+YfUY8dIb6F1clQ5JEG6aocxETmox2SnFZKcWk5NSTM6FEkwV1gld1RoVnoGORLb0uXSh7uHviForpvisqRycdDhE6QiIcvvbzw1lJnLTS8hLKyUvrYSc1GLOH8nm5I40AFQqCfcAR3xCna2JW6gLXoFO4lwQaiRJpaL/Y88y68UnWfrZ+0x6/wscnF2UDkuoRiJBE4Ra6sDKJWz87UeCGzVl2POvoHPQKx2SIFxTebGRzMTCi0sROanFFGaXX/q9nV6DV5ATDTv44xnkhHeIMx4BjtVeiENQhs5Bg1+4K37hl28yybJMcV4FmYmFZCVaW1TPH8rm5PaLSZtawjPQCZ8wF3xCnfENc8Hd31FUkxRqBAcnZwY/9SJ/vvYCK7/5lOEvvIakEp93dYVI0AShlpFlmR1zf2fX/NlEtm7PwCeeF5WgBJtiKDdZuygmFF1Kyq5Mxtx89fiEutCgYwBegU54Bjnh5G4nuicKfyNJEs4e9jh72BPR3Np1W5ZlinLLyUwoIiupkIyEIs7uSef4llQANDoV3iHWZC0wxp3AaHe0dqJrpGCb/CKj6X73VNb/8h17Fs+j7fAxSockVBORoAlCLWKxmNnwy/ccXruSxt370Hvqo6jU4uJDUJbZbCEjvpDkk7kkHc8hM6noUvEOZw97fMKcadQ5EJ9Qa9c0Owfx1STcHkmScPF0wMXTgciWF5M2i0x+ZimZiUVkJlhvCBzdlMqhdcmo1BJ+9VwJbuBBUAN3fEJdRAubYFOa9RlA6ukTbP9rFv5RMYQ0bqZ0SEI1EN+CglBLWCxmVn37OSe3bqT10FF0Hn+3aHEQFFOQVUryiVySTuSScjoPY7kZSQLfcFda9Q/DN9wFn1AX9C6idVeoWpLKWlTE3c+RmLZ+AJgMZtLiCkg+mUvyqVx2L4ln9xJrV9rAGHeCG3gQ2tgTZ49KnlBOEG6RJEn0fuAxMhPiWf7lR0x6/wucPEQl5tpOJGiCUAtYLGZWffMZJ7dtouPYSbQbMVbpkIQ6pqzIQMrpPFJP55F8Ko/CrDLA2kIW1dqXkIYeBMW4Y6fXKhypIIBGpya4oQfBDT2Ai+fvqTyST+WSfDKX+INZAHgGORHWxJOwJl74hrmI8v6CInT2Dgx55j/8/p+nWfbFB4x+9V3UGnEJX5uJ/11BqOGuTM46jZss+qgL1aKizMSFs/mknsoj5XQuOaklAGjt1QRGudGsRzAhDT1w9XEQLbmCzXNw1hHV2peo1r7IskxeeimJR3NIOJrNgdVJ7F+ZiIOzltDG1mQtuKEHOntxCSVUH8+gYHo/8BgrvvqYbbNn0HXifUqHJFQh8ekiCDWYxWJm5defcmr7ZpGcCVVKlmWyk4uJP5xF0vFcshILkWVQa1X4R7jSbpgvgTHu+IQ4oxKVFYUaTJIkPPwd8fB3pHmfEMpLjCQdzyHhaA7nD2dzamc6KrVEQJQboY09CW3siZuvXtyIEKpcg07dSD19kn1LFxAQ04Co1u2VDkmoIiJBE4QaSiRnQlUzmyyknsnj/OFsEo5kU5xXcWkcWcsBYQTFuOMX7irmmhJqNXtHLdFt/Ihu44fFbCHtXAEJR3NIPJbD9nlxbJ8Xh4uXPaGNvQht7ElgtBsanSjOJFSNbpOnkB53htXffo7PB/Vw9fFVOiShCogETRBqIIvZzMpvRHImVL6KUiOJx6wtBYnHczCWm9HoVAQ38KDN4HqENfHEwVkU9hDqJpVaRWC0tTx/x5GRFGaXkXTcmqyd3H6Bo5tSUGtVBMW4E9nSh3qx3uhEVVKhEmm0WgY//SIzXniM1d99zuhX3xHzo9VC4lNDEGqYvyVn4++m7bDRSock1HD5maUkHLG2kl2IK0C2yDi46Ihq6UN4M2+C6ruLFgFBuAoXLwcadw2icdcgTEYzF87kW29wHMlm/fSTbPrjNOFNvYhu40tII0/UGnEhLdw5Vx9fut09lTXff8nB1cto0X+I0iEJlUwkaIJQg4jkTKgMskXmwtl8a1J2NJu89FIAPAKsY27Cm4qKdYJwqzRaNSGNPAlp5EmnMVGkxxdyZk86cfszidufiZ1eQ0RLH2La+OIf4Sb+voQ70rhbb87u3sHWP6YT1qwlHgGBSockVCKRoAlCDSFbLKz67nORnAm3xWQ0k3wyj/gDmZw9IHPCcOBSoYPGXQMJa+KFi5eD0mEKQq0gSRL+Ea74R7jSaUwUySdyObMngzO70zmx9QJOHnbUb+9Pgw7+uHiKvzvh1kmSRJ8HHmf6c4+y6ttPGffmh6hUoqdDbSESNEGoAWRZZv0v33Fy60Y6jp0kkjPhphgrzCQeyyH+YCYJx6zjyez0Gpz8oV2fxoQ09BDjYwShiqnVKsKaeBHWxAtDuYnzh7M5szudfSsS2LcigZCGHjTsFEBYUy/UogKqcAucPDzpcf/DrPjyI/YtXUiboaOUDkmoJOKbWRBsnCzLbPn9Vw6vXUnroaNEQRDhugzlJhKOZHPuQBZJx3MwGS3YO2mJaulDRAsfAmPc2bptC5EtfZQOVRDqHJ29hpi2fsS09aMwu4yTO9I4uSONVT8cw8FZS/32/jTsGICbr17pUIUaon6HLpzdvZ0dc2ZRr3krvELClA5JqAQiQRMEG7drwWz2LV1AbN+BdB5/t5hrR/gXWZbJOF/IiW0XOLsvA5PBgt5VR4MO/tRr4UNApKuYm0wQbIyLlwNth9Sj9cAwko7ncmL7BQ6tS+bgmiQCo90u/f1qRYEe4TokSaLXlEf57eRxVn7zGXe98wlqjbi8r+nE/6Ag2LD9yxezY87vNOzSgx73PCiSM+FvyouNnN6dzontF8i9UILGTk10a1/qt/fHr56rKEIgCDWASq0irKkXYU29KMmv4OTONE5uv8C6306inX2GqJY+1r/pCFfxHSBcld7Fld5TH2XJJ++ye+FfdBg9QemQhDskEjRBsFFHN6xh04xpRLXtQN+HnhTznAiAtQJjypk8Tm67wLlDWVhMMr7hLnSfWJ/IVj7o7MXHuiDUVI5udrTqH0bLvqFciMvn1I40zuzN4MT2NNx89dRvb+0e6eRur3Sogo2JatOBBp27s3vhHCJatsW3XqTSIQl3QHyTC4INOrV9M2t+/Iqw2JYMfOJ5VGrRxaWuK8gq4/SuNE7vTqcwuxw7vYbGnQNp2CkAz0AnpcMTBKESSSrp0oTYncdFc+5AJqd2prNrUTy7F8cT3MCDxt2CCGvsKVrKhUt63PMgyccOs/KbT5n43udodDqlQxJuk0jQBMHGnNu/m5XffEpQ/UYMeeYl1Bqt0iEJCjGUmzh3IItTO9O4cDYfJAiu707bIfWo19wbjVYk7oJQ2+nsNTToEECDDgEUZJVyamc6p3amseLbI7j76YntFUJ0W1/xeSBg7+REn4eeZMF7r7Nj7u90mXCv0iEJt0kkaIJgQ5KOHWbpZ+/jE1aPYS+8htZOdGOpa2SLTOrZfE7tTOPcgUxMBguuPg60HVqPmLZ+OHuIc0IQ6ipXbz1th9Sj1cAwzh3I5OCaJDbOOsWuxedo2j2Ixl2CsHcSN/XqsvDYljTp2Zd9SxcS2bo9AdH1lQ5JuA0iQRMEG5ERH8eij97GzdefES+9gZ1elFmuS4wGM6d3pnFoXTIFWWXo7NVEt/Wjfjt//Oq5iOIAgiBcolariG7tR1QrX1LP5HNobRK7l5xn/8pEGnTwp1mvYFy9xXdIXdVt0v2cP7SftT9+xcT3Pxc9cWogkaAJgg3IS0tl/nuv4+DszKiX38LB2UXpkIRqUlpo4OjmFI5tSqW8xIhPmAu9BoUT0dwbjSivLQjCdUiSRFCMO0Ex7uRcKObQumSOb7vA0S2pRMR607xvKL5h4vukrtE56Ol1/8Ms+vAt9i5ZQLsRY5UOSbhFNTJBkySpHvAy4CrL8ihJkoYBAwEX4GdZltcoGZ8g3Iri3BzmvfMayDIj//MWTh6eSockVIO89BIOrU/m9M50zCYLYU29aN4nBH9RSlsQhNvgGeBEz8kNaDe0Hkc2pnBscyrnDmYRGONGiz6hBDf0EJ8tdUhEy7ZEt+vErgWziW7XCY+AQKVDEm7BTSVokiS5AT8BjQEZuE+W5Z23ejBJkn4BBgGZsiw3/sfv+gFfAGrgJ1mW37/W68iyHA/cL0nSvIvPFwGLJElyBz4GRIIm1AjlJcXMf+91yooKGfPau+IDtJaTZZm0uAIOrUvi/JFs1GoVMe39iO0ZjLufo9LhCYJQCzi62tF+WAQt+4ZyfOsFDq9PYulXh/EKdqJ5nxAiW/iIievriB73PkjikYOsnfYVY159V0zXU4PcbAvaF8Cqi61VOuBvHZslSfIBymRZLrriZ5GyLMf943V+A74GZvxjfzXwDdAbSAH2SpK0BGuy9t4/XuM+WZYzrxHnKxdfRxBsntFQwaIP3yQ3NYURL/4Xv4gopUMSqojJaObs3kyObEwmO7kYe0ctrQaE0aRrEHoXUQZZEITKp3PQ0LxPCE27B3FmbzoH1ySx9ucT7F4cT2yvEBp08BfdqGs5Rzd3uky8l7U/fs2xTeto0qOP0iEJN+mGCZokSa5AF+AeAFmWDYDhH5t1BR6SJGmALMsVkiRNBUYA/a/cSJblLZIkhV3lMG2AuIstY0iSNBsYKsvye1hb3G4UowS8D6yUZfnAjbYXBKVZzGaWff4BqadPMujJFwhtGqt0SEIVKMmv4NiWVI5vTaWsyIhHgCPdJsQQ3dYPrbgwEgShGqi1Khp0CKB+O3/OH8nm4JpEtsw+w76VCbTqH0bDTgGoNaJlpbZq0r0PJ7duYvOsn6nXojWObu5KhyTcBEmW5etvIEmxwI/ACaAZsB94Upblkn9s9wLQAZgLPAb0lmW5+CqvFwYsu7KLoyRJo4B+sixPufh8EtBWluXHrhGTJ/AO1ha3n4AS4G5gL3BIluXvr7LPYGBwYGDg1FmzZl33PQtCVSoqKiJn33ZyTh0juHNPfBo3VzokoZKVZsvknpEpSAZkcA4EjygJR19sYgxIcXExTk5icmtBOeIcVFZJpkzmUZnSLNDqwbuxhFsYdWrS67p0Dpbn5XJi7nTcwiKp12ew0uEIF3Xv3n2/LMutrva7m+niqAFaAI/LsrxbkqQvgBeBV6/cSJblDy+2fH0HRFwtOasssiznAA/948df3mCfpcDSVq1aTe3WrVtVhSYINzTr/TfJOXWM9qPG02H0BKXDESqJxSJz/lAWB9cmkXG+EJ29mmY9AmjSLdDmyl1v2rQJ8TkoKEmcg8qTR8skn8hl95J4LuwpojRRT5vB4US28KkTiVpdOwfdLAa2z5lFsPNYIlq2UToc4QZuJkFLAVJkWd598fk8rAna30iS1BlrEZGFwOtYW9FuVioQfMXzoIs/E4RaZf/yxWQc3EOz3v1pP+oupcMRKoHJYObUFfOXuXg70HlsNPXb+6Gzr5GFcgVBqAMkSSKkkSfBDT04fzib3UviWfPTcfYHJdJ2SD3CmnjaRIu/UDlaDx3JqR1bWP/zdwQ3bIzOwbZuHAp/d8NOx7IspwPJkiTFXPxRT6zdHS+RJKk51m6QQ4F7AU9Jkt6+hTj2AlGSJIVfLEIyDlhyC/sLgs07t383m2b+hFt4FD3ue0h88dVw5cVG9i4/z4yXd7D5zzPYOWrpO7UxE95oR9PuQSI5EwShRpAkiXqx3ox9pQ2972uIqcLMim+PsPCTA2QlFd34BYQaQa3R0ufBxynKzWbbXzOVDke4gZu9gngc+P1i8hSPNQm7kh4YI8vyOQBJkiZzsajIlSRJ+hPoBnhJkpQCvC7L8s+yLJskSXoMWI21cuMvsiwfv433Iwg2KTMhnuVffIRveAQBPQagUokCETVVYXYZh9Ylc3L7BUxGC2FNPK3zl0W6iaRbEIQaS6WSiG7jR0RLH07tSGP3knjmvLeXhh38aTs0QlScrQUCohsQ22cAB1cto0HHbvhHxdx4J0ERN5WgybJ8CLjqILaLv9/+j+dGYNpVtht/nddYAay4mXgEoSYpzstl0YdvYefoyLDnX2XfkaNKhyTchpKCCvYtT+DEtgsgQXRbP5r3CsEjQMxfJghC7aFWq2jUOZDIVr7sW36eIxtSiNufSasB4TTtESQqPtZwncbdTdzeXaz58Ssmvvc5ao3o7WGLxP+KIFQho6GCxR+9RVlxIePe+BAnD0+lQxJuUUWpkQNrkjiyPhmLWaZh5wBa9gvDyd1O6dAEQRCqjJ2Dho6jomjYKYDt8+PYsSCO49tS6TQqilAxPq3GstPr6Xnfwyz++G0OrFxC68EjlA5JuAqRoAlCFZEtFlZ98xnp8XEMefY/+IZHKB2ScAuMBjNHN6ZwYHUiFWUmolv70mZwuM1VZBQEQahK7n6ODHq0GYnHc9g+9yzLvz1CSEMPOo6OwsNf9CCoiSJbtyM8tiW75s+mUZce6F3dlA5J+AfRTi0IVWTHvD84s2sbXe66h6jW7ZUOR7hJZrOFY1tSmfXqTnYuPIdfhCtjX25N7/saieRMEIQ6K7SRJ2NfbUOn0VGkny9k9lt72PrXGcpLjEqHJtyGrpOnYDJUiIIhNkq0oAlCFTi5dSO75s+mcffetBLdB2oE2SJzdl8Ge5aepyCrDP8IV/pOaUxAlJvSoQmCINgEtVpFs57BRLfxZffS8xzdlMKZPRm0GRxOo84BqNTivn9N4RkYTGzfQRxYuYTYPgPxCaundEjCFcRfkiBUstRTJ1j9/RcENWxMrymPiH76Nk6WZeIPZjH77T2s/eUEGp2agY80ZfhzLURyJgiCcBUOzjq63RXDmJfb4BnkyJbZZ/jrnb0kn8pVOjThFrQfOR57J2c2Tv8RWZaVDke4gmhBE4RKVJCZzuJP3sHZy5shz/wHtUardEjCNciyTPKJXHYviSczsQg3Xz19pjQisoUPkkok1YIgCDfiFeTE0KeaE38oi+3z4ljy+SHCm3nRcVSk6BJeA9g7OdFxzETW//wtZ/fsILptR6VDEi4SCZogVBJDWSmLPnwLi9nE8P97HQdnF6VDEq7hwtl8di0+R1pcAc4e9vSYXJ+Ytn6ie44gCMItkiSJiOY+hDb25PD6ZPatTOSPN3bTok8orfqHodaKz1Vb1rRnXw6vWc7mmb9Qr3lrNDox350tEAmaIFQCi8XM8q8+Jic1mZEvvYlHQJDSIQlXkZ1SxM4F50g6kYveVUeXcdE07BQg5vURBEG4Qxqtmpb9wqjfzp8dC+PYtyKBcwez6Dm5Ab7h4oalrVKp1XS7eyrz3n6F/csX0Xb4GKVDEhAJmiBUiu2zZxK/fw897n2Q0KaxSocj/ENRbjm7l8Rzenc6dg4aOoyIpHG3QLQ6tdKhCYIg1CqObnb0vrcR0a392PT7KeZ/uI/YXiG0GRyORnzm2qTQJrFEtm7H7oVzaNS1p5iz1QaI28aCcIdObt3InsXzaNqzH7F9BykdjnCFijITOxee4/fXdxG3L5PmvUKY+FZ7mvcJEcmZIAhCFQpt7Mm419rSoFMAB9cmMfvtPVyIy1c6LOEauk68H4vZxLbZM5QORUC0oAnCHUmLO83qH74kqEFjetz3oKjYaCPMJutcZvuWJ1BeYiS6rS9th9TDxdNB6dAEQRDqDDsHDd0n1CeypQ8bZ55i4ScHaNItiPbDItDaiZtktsTNz58WA4ayd8l8YvsMxC8yWumQ6jTRgiYIt6koN5vFH7+Do5sHg595SVRstAGyLBO3P5M/3tjNtjln8QxyYsx/WtP73kYiORMEQVBIcH0Pxr3ahibdgji6MYXZb+0mRZTktzlth49F7+rGBlF2X3EiQROE22A0VLD4o3cwlJUx7IVX0bu4Kh1SnVeQVcrSrw6zetoxNFoVgx5rxtCnYvEOcVY6NEEQhDpPZ6+hy9hohj/bAkklsfjzQ2z+8zSGcpPSoQkX2en1dBo/mbQzpzi1fbPS4dRpooujINwiWZZZ/d0XZJyPY+hzr+AdEqZ0SHWa2WTh0Lok9i5PQKWW6Dw2msZdA1GJucwEQRBsTkCUG2NfacPuxfEc3pBM0vEcekxqQGCMu9KhCUDjrr04tHo5W/74jchW7dDa2ysdUp0kWtAE4RbtWTSX0zu20GnsJCJbtVU6nDotLS6fOe/uZdeieMIae3LX6+1o2j1IJGeCIAg2TKtT02l0lLU1TZJY9NlBtojWNJsgqVR0v+cBinOyObByidLh1FmiBU0QbkHc3l1smz2D+h270mbYaKXDqbPKS4zsXHSOE1sv4ORhx4BHmhLe1EvpsARBEIRbEBDpxthX27Br0TmObEwh8XgOPSY3IDBatKYpKah+I+q1aM2+pQuI7TsQO72j0iHVOaIFTRBuUn56Giu/+RTfelH0eegJUbFRAbIsc3ZvBn+8sZuT2y4Q2yuY8a+1FcmZIAhCDaXVqek8Jprhz7QASWLRpwfZMvsMxgqz0qHVaR1GT6C8pFi0oilEtKAJwk0wGY0s/fx9JJXE4KdfRKuzUzqkOic/s5Qts8+QfCIXn1BnBj/WTBQAEQRBqCUCotwY98rl1rTkk7n0e6AxnoFOSodWJ/nWiySiVTv2L1tE836DsXcU/w/VSbSgCcJN2DLrFzLPn6Pfw0/j6uOrdDh1itloYd+K88x+cw/p8QV0HhvNyP9rJZIzQRCEWkZrp6bz2GiGPt0cQ5mJee/v4+SONKXDqrM6jL6LitIS9i9frHQodY5oQROEGzizezsHVy2lxYChRLZup3Q4dUrqmTw2/3GavPRSIlr40HlMFI5uovVSUIZsNmMuKMCcX4CluAhLcTHmkhIsJSVYiv+3LsZSWgqApNGARo2k0SJpNEhaDaitzwGwmJEtFjBbQLZceizLFlT2DqhdnFE5u1xcO6N2cbGunZ2R7O1FN2uh1gqKcWfMy61Z+8txNsw4SVpcPl3GRaPRicmtq5NPWD2i2nbgwIpFtBgwBAcncWO0uogETRCuIz8jnTXff4lfRBRdJtyjdDh1RlmxgR3z4ji1Kx1nT3sGPdaM0MaeSocl1BKyLGMpKcGcX4C5IB9zfj6WgoKLyVe+9ef5eZjy8y8+t/7MUlBw4xfXalHp9dbHRiOyyYRsNoO58sfTSDodkp3dxbUOlfbyc5WDAypHx2ssejRe3uiCg9AGB6MSZbQFG+ToaseQJ5uzZ2k8+1cmkplYRL8HGuPmq1c6tDqlw6i7OLtnJ/uXLaTTuMlKh1NniARNEK7BZDSy7PMPABj01P+h/t9db6HKyLLMqZ1pbJ8fh7HMTIt+obQaEIZW3DUVbpKlpARjZiamjExMmRmYMjMxZmRiyrj4ODMDU1Y2GI3XfA1Jr0fj5ob64qILCr70+H+LytkJtZOTNeG5cq3TXfU1ZYsFTCZrwmYygSSBpEJSq0ClQlJZ16isIw/kigrMhYVYioqs6+LiK54XIZeXIRsMWCoMyAYDckWF9bmhArnCgFxWhjEz43LLXkkJcnn5VWPTeHujDQ5GFxx8cR2ENjAQjZ8/Wh9vpGu8J0GoaiqVRLuhEfhHuLH21+PMeW8vPSY1ILKlj9Kh1RleIWHEtOvEgRVLaDFgKHoXV6VDqhNEgiYI17D191/JiD/LkGf/g6uPn9Lh1HolBRVsnHmKxGM5+Ee60vWuGDwDxKBk4TLZbMaQmETFuThM6daEy5SZcUVClomluPhf+6mcnND4+KDx9cGxdRs0Pt6o3T1Qu7qidnO1Jl2urqhdXVG5ul4zyboTkkoFOt1NJzuSvb21Zcun8i5EZZMJS2kplpISTJmZGJKSMaYkY0hOwZiURMnu3ZgW/2OsiSSh9vJE6+uH1t8PzcW1NjAIu6hIdCEhSFpx80qoWqGNPRn7chtWTzvG6mnHSIsLosPISNQaUUqhOrQfdRend21j39IFdJlwr9Lh1AkiQROEqzi7ZwcHVi6hef/BRLXpoHQ4tV78oSw2zjqFscJM57FRNOkahCQmm67TTHl5VJw+Q8WZ05SfPm19fPYsckXF5Y00GjQ+3mh9fLGLjMSxY8eLz33Q+Pqi8fFF4+OD2knM4QPWMXFqFxfULi5o/f1xaNbsX9tYKiowpqRgvJCGKSMdY1o6xox0TGnpVJw/T8mOnVhKSi7voNGgCwvFLiISu8hI7CIj0EVEoAsLq5JEV6i7nD3sGf5sC3YsiOPIhhQyEgrp/1ATHF3FuOSq5hkUTIOOXTm4ehmtBg1H7+qmdEi1nkjQBOEfCjLTWf39F/jWi6LLhPuUDqdWM5Sb2D73LCe2p+EV7ETvexvhESAupusSWZYxpqRQfuIk5SdPUH7yJBUnT2HKzLy0jdrDA/v6MbiPH49dTAx2kZFoA/xRu7tbW6aESqOys8MuIgK7iIhrbmMuKsKQlITh3DkqzsZRce4c5adOUrRmDcjyxRdSoQ0MRBcehi7MuthdXGv8RI8E4faoNSo6j4nGP8KN9dNPMO/9fQx4uKmo6lsN2o0cz6ntW9izZD7dJt2vdDi1nkjQBOEKZpN13JlskRn01P+hEV13qkx6fAHrfj1BQXYZLfqG0mZwuOiuUstZysqoiI+n4sxZyk+eoOLkKcpPncJSVGTdQK3Grl499O3aYh9TH7uYGOxjolF7eYmKhTZE7eyMQ6NGODRq9LefW8rLMZw/T0VcHIbz5zEkJFCRkEDpvv3IFytbAkh2dnh4e3Nh5UrsomPE/7NwyyJb+uDq48CKb4+w4KP99Li7AVGtxBQ4VckjIJAGnbtxePVyWg0ajpO7h9Ih1WoiQROEK2z9Yzrp584y+JmXcPMVd3mrgsVsYd+KBPatTMTJzY7hzzQnIMpd6bCESmQpLaUi/jwVcWf/1spiTEm51MIi2dtjHxODy6CB2NdvgH3DBthFRd24oqDFDIZiMJaBsfTiuvzyY1PZxXU5mAxgrrj82FQOZgOYKsBiAtla3h6LGWTz5bUsg8YOtA6g1V99rXMEO2ewcwGd08XHTqBzBnXd/GpV2dtj36AB9g0a/O3nsixjyszCkJBwaUnbs5uSXbspWLzk0nZqd/dLyZp9w4bo27ZFK1rbhGvwDnZm9EutWfn9Udb8dJzcCyW0GRQuusdXoXYjx3Fy2yb2Lp5H93seUDqcWq1ufosIwlUkHDnI/uWLaNZnINFtOyodTq2Un1HKut9OkHG+kJi2fnQeF42dg/gYqslkWcZ04QKlBw5Qun8/ZfsPUBEXd7mrm1aLXVgYDk0a4zpsKHaRUdZxSoG+SGU5UJINJZlQfAD2rIaSLCjNgYqiy4uhGCqKrY9NZbcfrMYe1Hag0YFKA5LaWjVRUl18rLauJcmaxP0z4bvp4ziAgxs4eICDO+jdretLzz2sj/UeoPe8/PNamthJkoTW1wetrw+ObdsAcHLTJmK7dbOONTxzlorTpyk/Yx1rmPfXnEsVJ3WhoejbtcOxfTv0bdqg8RB37YXL9C46hj3dnE1/nmbfigRy00rodU9DtHai8m9VcPcLoFHXnhxet5JWQ0bg7OGldEi1liT/70u0lpMkaTAwODAwcOqsWbOUDkewMabyMk7MmY5aq6PBqEmoqrBrY3FxMU5Odas6oSzL5J6FjMMyKjX4t5JwDRF3OZVyR+egxYImNRXtuXPo4s6hPXcOdV6e9Vf29pjCQyHIE5W3Axp3FTonI3amAnSGfHSGvEtrjfnqiZZJrceodcGk0WNWO1xa/28xaaxri0qHWW2HRWV3cX35uUWlu7hoLy2ypLEmXrdLtqCyGFCbK1Cbyy8uZajNpWhMZajNZWhMpZfWGlMxGlMRWmMRWuPlxyrZdM1DGDWOF9+7M+X2XpTb+1Hm4E+Zgx9lDn5U2HlaE8ha4Lrn4MVzTHf6DLrTp9GePYvqYsJmDAzEEBODMSYaQ0QEch37LBWuTpZlcs5AxiEZe1cI7iyhc7z+33td/C6uDBWF+Rz78xe8GzYlpHMvpcOp0bp3775fluVWV/tdnUnQ/qdVq1byvn37lA5DsCGyLLPsiw+J27ODu97+BN96kVV6vE2bNtGtW7cqPYYtKcwuY8PMk6Sezie0sSfdJ9bH0U1U3VLSzZ6DsixjTEyk7Ogxyo8do+zYMcpPnEAusyZXGk9X9BFeOPir0bsXYSclIZVl/fuF7FzAyQec/C6ufcDR++LaB5y8rc8dva3dB2srWQZDCZTlQmnu5fWlxzkXn2dDfjLkJ4Hlivna1DpwCwH3cHAPA/dQ69ot1PrYvubMT3Qrn4OyyUT5sWOU7NpNye5dlB04eKmap65ePfQtW+DQvAX6Fs3RhoaKcWx1WOLxHNZMO4Zaq6L/g03wj3S75rZ17bu4Mq398WuOb17HfV9Mw8XLW+lwaixJkq6ZoNXO/hSCcAtObdvEmZ1b6TRucpUnZ3WJLMuc3JHGtrlnAeg+qT4NOviLiycbZqmooHTPXkr37KH8+DHKjh67VMBD0qqx97XDLdKAg1M+eq8KNPoL1kYpRx/wjATPfta1Rzg4+19OwHR6Zd+YrZAk6zg1OydronUjFjMUpkLuecg7//d1yh4oL/j79g7ul5M1zyjwbWRdPCJqdPdJSaPBITYWh9hYvB56EEtFBeVHjlB64CBlBw5QuGYt+XPnAaD29ETfojn6Vq1w6tYNXWiowtEL1Sm0kSejXmzF8m+OsOizg3S9K4aGHQOUDqvWaTtiDMc2rWPf0gX0uPdBpcOplWruJ7YgVILC7EzW//I9AdENaD10pNLh1Bol+RVsnGWddDowxo0ekxrg4lWLW0ZqMGNaGsUb1lK8dhUlB48hVxhBBfbuFlx8yrCvb8TBw4CdhxrJOxK8m1gv/r2iwDPCevHv4Kb026idVGprIucWAnT99+/L8iAvEfITIS/h8uP0Y3BymbXgCVjH3XlHg8/FhM23Ifg2AeeaWfVOZWeHvnVr9K1bAyBbLBjOnbuUsJUeOEDR2nVkvPc+uogInHv0wKlHdxyaNRPTMtQB7n6OjHqxFWt+OsbGmafISS2m48hIVGrxf19ZXLx8aNCpK0c3rqH9qPE4OLsoHVKtIxI0oc6SLRZWffMZFouF/o89i0pVO8Z2KEmWZc7uy2DLn2cwGy1i0mlbI8vIucl47ltK5qLvKD54looMa3dFraMJt5AKnEJU6JtEoQqoD17Rlxe3EGvCINgOh4vFRwJi//07Yzlkn4HME5BxDDJOwPnNcGT25W2cfMG/Gfg1ta79m1pb4GpYK7ekUmEXFYVdVBTuY8cAYEhJpXjDBoo2bCDnl1/ImTYNtZcXTt264tyjJ47t26FyEDeNait7Ry2DHmvGjvnnOLwhmdwLJfSd2hh7RzF1TmVpNWg4xzev5/CaFbQbOU7pcGodkaAJddb+5YtIPnGUPg89IUrqVwJDmYlNf5zm7N4MfMNd6HVPQ9x8Rdc2xcgyFCTDhUNYEvdTsmMnRYcSKE4EjUFNjiSj91fh0zsQpw6t0DXriOTfpEZeoAtXobW3Jlz+Tf/+89JcyDgO6Uch/QikHYa49Zdb2+xdr0jYYq1rz4gal5zrggLxmDwJj8mTMBcUULxlK8UbN1C0ajUF8+Yj2dujb9Map06dcezcCV1YmOh+Xcuo1Co6jYnCM8iRTX+ctk5q/UhTPPwdlQ6tVvAKCSM8tiUHVy+j1eARaHQ6pUOqVUSCJtRJWYnn2TZ7BpGt29G4W2+lw6nxMhIKWfPTMYpyymkzOJyW/cNQiVaz6mUogeQ9kLgDUvZiOn+Y4vgyilLsKUm3RzZLqOztcGoVSVZ4OE0eeg61txibUefoPSC8s3X5H2OZtaUt7TCkXUza9kyzziEHoHUEvyYXk7aLi3cMqGtGa4Ta1RXXwYNwHTwI2WCgZO9eijduomTbNjLefRcAbVAQjp074dS5M45t26JyFBfxtUWDDgG4+Tqy8oejzPtgH33ub0RYE1EevjK0GjySuW/9hxNbNtC0Vz+lw6lVRIIm1Dkmg4EVX3+CnaMTvR94XNw1vQOyRebguiR2L4pH76Zj+LMtrls1S6hE5QWQtBsSt0PiduTUgxgKoDjNnuIsD0ovOIDFHo2XO26je+Pctx/6Vq2QtFrObtokkjPhMq0DBLa0Lv9jNlq7SKYdvrwcnAV7fri4jyMEtYLQDhDSHoJa14hiMJJOh1PHjjh1tM51aUhOpmTbNoq3bKVg8RLy/5wNWi36Fi1w6tYN5+7d0IWFKRqzcOf8I1wZ/WIrVn5/lOXfHqH9sAhkXd2qYl4Vghs1wbdeJPuWLaRJjz5ijGclEgmaUOds+2sm2UkJDH/xdfQuNacsta0pKahg/fSTJJ/IJaK5N90m1hf9+6tSeaG1dSxhq3VJP4rFIFOSpae4IICSlHCMOSUA6CJD8XygF849e2HfuJG4CSHcOrX2chXI2LusP7OYITceLhyClL3W83HT+4BsnfjbP9aasIV2gJB21vFxNk4XHIxu/Hjcx4/HYjBQduAAxVu3UrJlC5kffEDmBx+gCw/HqXt3nLt3w6F5cySNuHSqiZw97Bn+XAs2TD/JzoXncA0DcxcLalE85LZJkkSrwSNY/sWHxO3fTVTr9kqHVGuITxmhTkk6doT9yxfRrPcA6jVvrXQ4NVbS8RzW/XYCQ7mZrnfF0KhzgEgCKpuhFJJ3w/kt1uXCQZDNVJQ4UFwUQXFaLKXnssBkRqWX0bdvj2fnTjh26owuKFDp6IXaSKW2Vu/0ioKmo60/K8u3dq1N2gGJO2H397DjS0CydosM72JdQtqDvW1XelPpdDi2a4dju3bw/PMYUlIo3riJ4o0byZ05k9xffkHl6opT58449+iOU8+eqOzEnI41iVanps+URngGOrJ7yXlW/XCMvlMbodHWrDGWtiS6bUe2evuyb8kCkaBVIpGgCXVGRWkpq777DHe/ALpOuk/pcGoks9nCrkXxHFqbhEeAI0OfboRngJPSYdUOsmwt2nBmDcRvtLZQmA2g0mByj6XQPJCCw9mUn04AcrGLjsbj7gE4de6CvkVzJDFAW1CCgxtE97EuYB3PlrofErZbW3r3/Ag7vwZJDQHNLyZsnVGZjdd9WVugCwrCY9JEPCZNxFxcQsn27RRv3Ejx5s0ULltmHds2YgTu48aK+dZqEEmSaDUgnKTUBBL2Z7P8myP0f6gJOntxSXw7VGo1LQcOY+NvP5B6+iSBMQ2UDqlWkGS5bvXBbdWqlbxv3z6lwxAUsPr7Lzm+aR3j3/oI/6gYxeLYtGkT3bp1U+z4t6u82MiqH4+Seiafxl0C6TgqEo1O3HW8I4YSiN8MZ1dbE7OiC4AE/k2xBHWiOMONgl1nKd6xC0wm7OrXx3XIEFz690Pr73/bh62p56BQAxnLrC1s57dYE7bU/WAxYZG0qMI7QWQv6+IdU2Oqh8pmM6V79pA3+y+K1q8HkwnHDh1wGz8O5+7dRRfIGmLTpk3428ewfvpJfMNdGPRYM+z0opv+7TCWl/Pjo/cS1KARQ597RelwagxJkvbLstzqar8TnyJCnRB/cC/HNq6hzbDRiiZnNVXuhRKWf3uYknwDve5tSExbMS3BbctPgjOrrcv5LdZKeTpniOyBHNGb0iIfCtZtpWjaaizFxWh8fPC4ezKuQ4ZiHxOtdPSCcGu0DlCvq3UBqCiGpJ2kbp5JcNFpWPOydXEJgsge1mQtvKtNT34uqdU4tm+PY/v2GDMzyZ83j/w5c0l9/Ak0vr64jR6N2+jRaH19lA5VuIGYdv5o7NSs+ek4iz47yJAnYnFwFr0RbpXW3p7YPgPYtXAOuRdS8QgQ3ezvlEjQhFqvvLiYtT98hVdwKO1H3aV0ODVO4rEc1vx0DLVOzbBnmuNXTxRWuSUWM6TsgzMrrUlZ5gnrzz3qQespyFG9KS90oXDVGgq//glTZiaSXo9L7964Dh2Cvm1bJLVoqbxVsixTbi6n1FhKqamUUmMpZaYySowllBhLKDIUUWAooLCi8F/rIkMRMtfvXaJRadCqtOjUuktrnUqHVq1Fp9KhVqlRSxeXi49VkgqNSoNaUuOgccBJ64STzunv64uP9Vo9eo0ejaqWfU3bOUFUb86lagnu1g3yk+HceohbB8cXwYEZ1u6QwW0gqjdE9QHfxjbbuqb18cH7kUfweuABijdtIu/P2WR//TXZ332HY6eOuA4ZgnPPnqjs7ZUOVbiGiOY+DHhEzcrvj7LwkwMMebI5Tu5ibOGtiu07iL1LF7B/2UJ6P/CY0uHUeLXsk18Q/m3Dbz9QWljAsBdeQ6MV3RdulizLHF6fzI75cXgGOTHg4aY4e4iLjJtSXmCd/PfMaji7BspyrVXuQtpDn3eQo/pQkStTuHwFhR+/izElBUmrxbFLF1wHDsCpWzdUetsvWa6UUmMp6aXppJekk1GSQXpJ+qXn6SXpZJVmUWwsvmGSBdZEy1XnioudCy46F7z13oS7hl83MZJlGZPFhMFiwGA2YLQYMZgNFJoKMZgNGCwGzBYzZtm6WCwWTLIJi2zBbDFjkk2Um8pvKj6dSoeD1gG9xpqwOWgc0Gv1eDl4EeISQrBzMCHOIQQ5B+Fp71nzivW4BUPLe6yL2Wgde3l2rTVhW/+mdXEOgKhe1mQtvKtNFhuRNBqce/XCuVcvDImJ5M+bR8HSZVx49jlUTk449+2D65Ch6Fu3EqXIbVBoI0+GPNGMZd8cYeEn+xn6VHNcvByUDqtGcXRzp1GXnhzfsp4OYybg6Gb7VVxtmUjQhFrt7N6dnNy6kfajxuNbL1LpcGoMs8nC5j9Oc3JHGvWae9PrnoZo7UQrznWV5cHJpXBsPiRsA4vJWmY8qg9E94WInpjKLOTPm0/Bu89giDsHajWO7drh9cgjOPfqidrF9i48q4MsyxQZi8guyya7NJvssmxyy3MvLTnlOdZ1mXVdZir712t4OXjhp/ejnms92vm3s7ZCafTotXoctY6XEhy91prkuNq54qJzwUHjoEhSY5EtlBpLKTYWU2wotq4vPi4yFlFmLLO2/JlKLz0uM5Vdag08lHmIVQmrsMiWS6+p1+itCZuLNWELcb6cwPk6+qKSbDwxUGsvl+nv9ToUplkTtbi1l1vX/nejI7ofNBxqTfBsjC40FJ9nn8X7qaco3buXgkWLKVq5ioL5C9AE+OM6eAiuQ4dgV6+e0qEKVwiIcmfoU81Z+uUhFny0nyFPNcfDX0xYfitaDhrOkQ2rObR6GR3HTlI6nBpNFAkRaq3SwgKmP/coTu6e3PXOJ6htZOC2rRdoKCsysPKHo6TFFdBqQBhtBoUjqWrYXfnqYiiB0yutSdnZtWAxgns4NBwC0f2t3bRUasqOHSdv1iwKV6xANhhwaNkSl4EDcOnbF42nZ7WHrcQ5WGos5XTeaU7lnuJc/jmyy7LJKssipyyH7LJsKswV/9pHLanxsPe4vDhcfuzn6Ief3g8/Rz989b5o1XWvddxgNpBanEpyUfKlJakwieSiZFKKUzBZTJe21al0BDoHXkraApwCLv3b+ep98XLwQq2qvpswt3wOmo3WaSfOrrH+rf2vq3BQG2g8AhoOA5fbL5xT1SylpRSt30DB4sWU7NgBFgsOLVrgNmY0Ln37onIQrTXV7VrnYE5qMYu/OIRskRn6VCxeQc7VH1wNtvjjt0k5eZwHvvkVrejae12iSIhQJ63/+TvKi4sZ9crbNpOc2bqc1GKWf3uE0kIDfe5vRFRrX6VDsj0mg3XMzNF51uTMWALO/tDmAWgyEgJagCQhG40UrlxF3qzfKTt4EEmvx3XkCDwmTMAusna35uaW53Iq5xQnc09yKvcUp3JPkViYeKlLn7PWGR+9D156L5r7NMfLwevS4u3gjZeDF54OnjjrnG2/1UdBOrWOcNdwwl3D//U7s8VMRmkGSUXWhC258GICV5TEnvQ9/2qFVEtqvBy88HW0JmzBzsHU96hPjEcMoc6h1Zq8XZVaC2GdrEvvNyHnHBxfaG1ZW/UirHrJ2vLWaLi1Zc3Jtgp0qPR6XAcPwnXwIIyZmRQuXUb+3LmkvfgSGe+8i+uQIbiNGSMKAdkAz0AnRjzbgsWfH2TRpwcZ8mQsPqF1s3fD7Wg1eCRxe3dxdONaWvQfrHQ4NZZoQRNqpVM7trD8iw/pNG4ybYePUTqcv7HVFrTzh7NY+8sJtPZqBjzcFN8w8YX0NxnH4cBMOPKXdUyZg4f1QrDJKGuXq4sXsKbsbPLmzCH/z9mYsrLQhoTgMeEuXIcPt5kujJVxDsqyTG55LvEF8ZzLP8e5/HOXHueU51zaLsAxgPoe9anvWZ8GHg2o71EfX71vzRsrVYvIskxBRQEZpRlklFrH8GWUZpBRcvn5lS1w9mp7otyjiPGIob67NWmLdIvESXf7cyBW6udg1pmLydoCyDoFkso631qzu6DBYNDZ5nhOWZYp3buX/DlzKVqzBtlgwL5ZU9zHjMGlf38xDrWK3egcLMwuY9FnB6koMTL4iVhRIOsW/PnaCxTn5nD/Fz+iEkWurul6LWgiQRNqnZL8PH579hHc/PwZ/+ZHNvfhYGsJmizLHFidyK7F8fiEONP/oaaigtX/lBdYuy8emAkXDoBaB/UHWi/8Irpb7+r/b9MTJ8idMZPC5cuRjUYcO3XCfeIEnLp0sbmiALd6DsqyTGpxKkezj3Ik6wgnck4QXxBPfkX+pW2ctE7Uc6tHhGsEEW4R1qTMoz6uduKipiYymo3EF8RzKvcUp/NOczrX2j210FB4aRsvBy9CXUIJcwkj1CX00uMg5yB06uuXKq+yz8HMk3BsARydA3kJYOdibVVrPhGCWttsNUhTXh6FS5aQN2cuhnPnUDk54TZ6NB733CPK9VeRmzkHi3LLWfzZQUoKDQx6tCmB0aLwxc2I27uLxR+/zcAnX6B+hy5Kh2OzRBdHoc6QZZm1077GVFFBv0eetrnkzNaYDGY2zDzF2b0ZRLX2pcek+mLyaVmGxB1wcKa1+5SpDHwaQb/3oelY0Htc3tRspmj9evJmzKR03z4kvR630aNxnzgRu3r/7nZWU5QYSziWfYwjWUc4kn2EI1lHyC3PBaytKfU96tMrtBcRrhGXkjIfvY9oFatFtGotMR4xxHhcnjdSlmXSS9I5lXuK+IJ4EgsTSSxMZGPyxkvnB4BKUhHqEkpL35a09G1JK99W+DlW09yJPg2gx8vQ7SVI2gEHf4ejc+HAdPCMgti7oNl4mxuvpnF3x+Puu3GfPJmygwfJ+/0PcmfMIG/WLFyHDcXz/vvRhYUpHWad4+xhz/DnWrD4s4Ms++owAx5uSnBDjxvvWMdFtGyDm68/h9esEAnabRIJmlCrnNiygXP7dtN10v14BtpedS9bUpJfwYrvjpCZWES7YfVo0Te0bl9gF2XA4T+srWW556yTRzcbCy0mXxpX9j/mwkLy580n7/ffMaamog0IwOeFF3AbNdJmujHerP8V7ziRc4Lj2cc5kXOC84XnL1UHDHMJo1NgJ5p5N6OJVxOi3KNq39xcwk2RJAl/J3/8nfzpTve//a7QUEhSYRIJhQkkFiZyIucEq86vYt6ZeQAEOQVZkzW/VrT0bUmV995RqS6PWRvwofVmy6HfYf0bsOEtiOhp/duO6f+3lnClSZKEvkUL9C1a4P3Uk+T++iv58+aTP28+zn374jl1Cg6NGikdZp3i6GrHsGdasOSLQyz/9gj9HmhMWFMvpcOyaZJKRdNe/djy+6/kpCThGRSidEg1jujiKNQaJfl5/PrMQ3gFhzLm9fdQKT2o/RpsoYtjRkIhK787gqHcTK97G1Iv1lvReBRjNllLeB+YYZ2zTDZDSAdoMck6vkz39xLLhoQEcmfOIn/hQuTSUhxatcRj8mSce/RAqgGFaIxmIydzT7Jw50IMHoZLXRX/l4x5OXjRyLMRjTwb0dS7KY29GosuisJtM1vMnMk7w76MfezP2M/+jP2XusW6q93pEtaFtv5taeffDm99NX0G5ZyDQ39Yl6IL4OhtbVVrPhm8bLN4jyk7m9wZM8n74w8sxcU4duyI5wMPoG/Tum7fVLtDt/pdXF5sZMmXh8hJLabPlEZENBddT6+ntLCAHx++m6a9+9PjngeVDscmiTFoVxAJWu218utPOLVjK5M/+sqmW8+UTtDO7Elnw4xT6F11DHykKZ6Btz/Qv8bKOWftwnjoTyhOB0cfiB0PzSeBV9TfNpVlmZIdO8ibMZPizZtBq8V1QH/cJ0+2+TvZ+eX5HM46zMHMgxzKOsSx7GOXytl7OXjR0LMhDT0b0sizEQ09G+KjFxccQtWxyBbi8+PZl7GP5UeXc958noKKAoBL89e19W9La7/WOOuquLS52WStxnpghrUaq2yG0I7WVrUGQ2yysIi5qIi82bPJnT4Dc3Y29s2a4vXAAzh1725z41xrgtv5Lq4oNbLs68NkJBTR694GRLeupq67NdTyLz/i/MF9PPj9dLR2ouT+P4kE7QoiQaudkk8cZc4bL9F2+Bg6jZusdDjXpVSCJssy+1YksGfpeQKi3Oj3QGMcnK8/kL9WMZvg9ArY8yMkbLVWeovqY70gi+rzr25OlrIyCpYsJW/WTCrOxqH29MR93Djcx41F422bLY5FhiK2pmxld/puDmYe5HzBeQA0koYGng2I9Ykl1juW0rhShvYcKu6+C4rZtGkTXbp24VTuKXan7WZ32m4OZB6gzFSGSlLR0KMhzX2b09yn+aWpGKpMUYa1++OBGZB3HuxcoeloaD0VfOpX3XFvk6WigoKFC8n56WeMKSnYRUXiOWUKLgMGIGltp7umrbvd72JDuYnl3xwhLS6ffg82qbs9UG5Cyslj/PXfF+n70JM07t5b6XBsjkjQriAStNrHbDIy44UnMBkM3PPJNzZ/l0aJBM1ikdn61xmObU6lfjs/uk2sj1pTR+64luZaW8v2TIOCZHANhpb3WLs1uQT8a3Njejp5f/xJ/l9/YS4owK5BAzwmT8Zl4ABUOttLaHPKctiYvJH1SevZlbYLk8WEi86FWJ9Ymvs0J9Y7lkZejXDQXJ4IV+lWXEG42jloMBs4nHWY3Wm72Zu+l+M5xy+1+AY7B19K1lr4tCDcNbzybzBYLJC43ZqonVgM5goI7wptH4Tofpem0rAVsslE4cpV5EybRsWZM2gDAvC4/z7cRo5EJSYIvqE7+Rw0VphZ9NlBclKLGfJELAFRbpUaW20hyzLTn3sUrb09E975VOlwbI6o4ijUavuXLyY3NZlhL7xm88mZEsxGC+t+O0Hc/kya9w6h/YiIutFyknkSdv8Ah2dbKzGGdYZ+70F0f1D/+6PPmJFBzg8/kDd3HpjNOPfsgcfkyTi0amVz/14Xii+wPmk96xLXcSjrEBbZQpBTEBPqT6BXaC+aejcVEzwLNY5OraO1X2ta+7UGrGMmT+Se4GDGQQ5mHmRrylaWnFsCgIe9B92Cu9EjuAftAtphp66EqUFUKgjvbF36vQf7f4N9v8Dsu8AtxNqi1mISONhGqXVJo8F18CBcBg2keNMmcn6cRsZbb5P97Xd4TJ6M+4QJqJ0cb/xCwi3T2qkZ9FhTFnx0gOXfHmHEcy3q5nCBG5Akiaa9+rHxtx/JiI/Dt55tjvO0RaIFTajRCrMy+fXZhwlr2pyhz72idDg3pTpbLwzlJlZ+f5SUU3m0HxFBiz6h1XJcxVgscHYN7P4O4jeBxh6ajLbeAfdrctVdTNnZ5EybRt6fs5EtFtxGjsRz6hR0QUHVG/t1GM1GDmUdYlvqNranbud03mkAotyj6BXSi54hPYl2j77pRFK0oAlKu51zUJZlEgsTOZh5kJ0XdrI1dSvFxmIcNA50CuxEj5AedAnqgouuEiupmk1wapn1Zk/SDtDqoekYaPMg+DasvONUAlmWKdu3j+wfp1GydStqLy98nnoS1+HDkcSUM/9SGZ+DhTllLPjoALIsM/L5lrh4Odx4pzqmvLiYHx6+m4adu9P7gceUDsemiBY0odba8NsPAHS/5wGFI7E9ZcUGln11mKzkYnpMrk+DDv/uzldrmAzWiWm3fwnZp8ElEHq+Di3uBkfPq++Sl0fuzz+T+/sfyAYDrkOH4vXIwzaTmKUUpbDjwg62pW5jd9puSk2laCQNsT6xPN3yaXqF9CLERZQuFuoOSZIIcw0jzDWM4VHDMZqN7Enfw4akDWxM3sjaxLVoJA2t/VrTPaQ7XYK6EOgUeGcHVWug0TDrkn70cqv8/t8gtBO0vh8aDLaJUv2SJKFv3ZqQ1q0pO3KEjPfeJ+2VV8n9/Q98X3wRx7ZtlA6x1nHxdGDw481Y+MkBln51mBHPtahbY7tvgr2TEzEdOnNy2ya6TLwPO73tFeCxRaIFTaix4vbtZvFHb9Flwr20HjJS6XBuWnW0XhTllrPki0MU5ZbTd0ojwpvV0kHM5YXWC6Vd30JRGvg2gY5PWi+mrnHBZC4sJOfXX8mbPgNLWRkugwbh/egjNjEJ7Onc0yyLX8am5E0kFCYAEOAYQKfATnQM7EgbvzY46e68G41oQROUVtnnoEW2cCz7GOuT1rMhacOlv58I1wg6B3WmS1AXYn1i0aoqIZEqzbWOU9v3M+QngZOvdVxry3uuOq5VKbIsU7RyJRkff4zpQhrOvXvh8/zz6ELEjR2o3HPwQlw+S744hGeAI0Ofbo7OXrR/XCkt7jR/vPwsvaY8QrPeA5QOx2aIIiFXEAla7WAsL+e35x5Ba2fPpA++RF0D5qD6n6q+OM69UMKSLw9hrDAz8JGmtXPwclGGtRvj3l+gogDCu0DHpyCix98mlL6SpbycvFmzyP5xGpbCQpz79cP7sUexi1S2T3xWaRYrzq9g6bmlnM47jUbS0Na/7aWkLMwlrNLHwIkETVBaVZ+DCQUJbE3dypaULezL2IfJYsJJ60T7gPZ0DuxM56DOd14Z0mKGuHWw9yc4u9ZaGbb+QGg9xfqZZCNjVy3l5eT+9hvZP04DoxH3yZPweugh1M5VPJWBjavsc/D8kWxWfn+UoPruDHykad0pxHUTZFlm1otPIcsWJn3wpc2N61aK6OIo1Dq7Fv5FYVYmY//7fo1KzqpaenwBy74+jFqjYvizLfAKqmWDlnPPw7bP4PCfYDFZ5yvq+AQEtrzmLrLZTMGixWR99RWm9HScunXD+6knsa+vXPnsMlMZG5I2sPTcUnam7cQiW2ji1YSX2rxE//D+uNvbRhECQaip/tcVclLDSZQYS9iVtoutKVvZmrKVtYlrUUkq2vu3Z1jUMLoHd7+9IiMqNUT3tS65560FRQ7OhJNLwCsaOj0NTcZctShRdVLZ2+P10EO4Dh9B1uefk/vzLxQsXIT344/hNmqUKM1fScKbetFtQgwbZ55i/fST9L63IZJKJCJg7X7brHd/1k77mrSzpwmItr3pK2yNuLIVapyclGT2LV1Io669CGrQWOlwbEbS8RxW/nAUvasdQ5+MrV2DlXPOwZaP4chfoNJA7ATo8Dh4RlxzF1mWKd60iaxPP6XibBz2TZsS8OEHOLZRZhyG0WxkZ9pOViesZl3iOkpNpfg7+nN/4/sZFDGIeq71FIlLEGo7R60jPUN60jOkJ7IsczrvNGsT17Lk3BKe3/w8LjoXBoQPYHjUcBp4NLi9u/se4dDnLej+Hzi+EHZ+C4sehs0fQpfnoOlYxcepaX19CHjvXdwnTCDj/fdIf+NNcqfPwPuZp3Hu3Vu0alSChh0DKCsysGtRPA7OWjqNjhL/rhfV79iFzbN+5si6lSJBuwkiQRNqFFmWWf/zt+js7eky8V6lw7EZZ/dlsO7XE7j7OzLkiVj0LrVkkHLWGdj6MRydC2qdtRpjhyfAxf+6u5UdPkzmRx9Tum8futBQAj//HOe+far9i9JoNrIrbRerE1azIXkDRYYinLXO9Anrw5CIIbT0bSnK4QtCNZIkifoe9anvUZ9Hmj3C7rTdLIpbxIKzC5h9ejbR7tEMixzGwHoD8bD3uPUDaB2scyw2Gw+nV8Cm92Hxo7DlI+j8HDQbp3ii5tC4EaEzZ1K8cSOZn3xK6hNP4hAbi88Lz6Nv0ULR2GqDFn1DKS00cGRDCq7eDjTtHqx0SDZB56CnQafuHN+0jq6Tp+DgVLe72N6ISNCEGuXktk0knzhK76mPoXdxVTocm3BsSyqb/zyNf4QrAx9pip2+FnRXyThhvaA5vtB6wdP+UWj/ODj7Xne3irNnyfrqa4rWrEHt5YXf669Vexceo8XI7rTd1qQsaQOFhkKctE70COlB37C+tPNvh05dSxJoQajB1Co1HQI70CGwAwUVBaw6v4pFcYv4cO+HfLr/U7oHd2d45HA6BHRAfauTVEuSdTxazAA4s8qaqC157GKi9qw1gdMo9zkgSRLOPXrg1KUL+QsXkv3lVyTeNQGnnj3xefYZ7OqJFv3bJUkSHUdFUZhdzrY5Z3H10RPa6OrVhOuapr36cXjtCk5s3kDLgUOVDsemiQRNqDEqSkvYPPNn/CNjaNKjj9LhKE6WZfavTGT3knjCmnjSZ2pjtLoaPtdN1hnY8JZ1DIfOCTo9Be0fA8frD+aviIsj+9tvKVy5CpWDA16PPYbnvfegcqyeSVrNFjP7M/azMmElaxPXUlBRgJPWie7B3ekb1pf2Ae1FUiYINszVzpWx9ccytv5YzuadZVHcIpaeW8raxLX46n0ZGjmU4ZHDCXK+xWk4JAli+kN0P+scjZveh6VPWLtsd3nO2tqmYIuapNHgPno0rgMHkjtjBjnTfiJ+8BDcRo7E+/HH0HjX0grAVUylkuh9X0MWfHyANdOOMfKFVngEiEnDfcLq4R8Vw+F1K2kxYIjo/nkdooqjUGNsmvET+1csZuK7n9Xo2egro3KUbJHZPj+Ow+uTiW7rS4/JDVCra3BXuaJ02PQeHJhpnQi23UPQ7hHQX7+LUcW5c2R/+x2FK1agcnDAfeJEPO69B4171RfZkGWZI9lHWHl+JasTVpNdlo2DxsHaUhbal46BHW02KRNVHAWl1YRz0Gg2sillEwvOLmDHhR1YZAtt/doyPGo4PUN6Yq+xv/UXlWVr5cdN70HqfnAPg67/ZxPFRABMublkf/sdebNno9Lp8Hz4ITzuvhuVzjY/y+5EdU15M/f9fWh1Kka92AoHp9r373irjm9ez6pvP2PMa+8S3Kip0uEoSlRxFGq8nNRkDq5aSpPuvWt0clYZLGYLG2ee4tSudJr2CKLTqKiaWymqosg6ufTOr8FssJan7vrCjVvM4s9bW8yWL0dycMBzyv143HdftSRmZ/POsix+GavOr+JCyQV0Kh1dgrrQL7wfXYK64KCpRcVZBKEO06q19A7tTe/Q3qSXpLM4bjEL4xby4tYXcdY5MyB8ACOiRtxaYRFJgqjeENnL2qK28R1rMZEtH0O3F6HxSGt1SIVoPDzwe+VlPCZOIOPDj8j65FPy587D94XncerZU7R43CJnD3sGPNSERZ8eZNUPxxjyZGydL78f3b4TG6f/yOG1K+t8gnY9NTJBkySpHvAy4CrL8ihJkoYBAwEX4GdZltcoGZ9QuWRZZtP0aWjt7Ok0brLS4SjKZDCz+qfjJBzJps3gcFoNqPw5sqqF2WidYHrT+1CaDY2GQ49Xr1uVEcCYkUHWp59SsHQZkp0dHvfdi+f996PxuI3B/LfoYOZBph2ZxtbUrWgkDe0C2vFo80fpEdyjUiaPFgTBdvk5+vFgsweZ2nQqe9P3suDsAhaeXchfp/8ixj2G4VHDGRg+EDd7t5t7QUmylueP6gOnlltb1BZMtY5R6/YiNBwOKuUu5HVhYQR/+w3F27eT8d57pDz2OPr27fB96SXso6MVi6sm8qvnSo+767P25xNs+uM0PSbVr5nf25VEq7OjUddeHFq9nJL8PBzdxLQyV3PTCZokSWpgH5Aqy/Kg2zmYJEm/AIOATFmWG//jd/2ALwA18JMsy+9f63VkWY4H7pckad7F54uARZIkuQMfAyJBq0XiD+wh4fABuk2eit7VTelwFGMoN7HiuyOknsmn6/hoGne9xbEQtkCW4cRiWP8m5J6D0E7Q+00IuvY8ZgCyyUTeH3+Q9fkXyCYTHvfcg+f996HxrNqB17Iss+PCDqYdncb+jP2427nzePPHGR09WsxVJgh1kEpS0da/LW39214qLLIgbgHv73mfT/Z9Qo+QHgyPHE47/3Y3V1hEkqDBIGsxkZNLrInavPvA52PrTauY/opOeO3UsSOOixaRN/svsr76ivPDhuM+bixejz9eLT0Waovo1n7kpZeyb3kCHn6ONO8TonRIimraqx8HVizm+Ob1tBk6SulwbNKttKA9CZzE2kr1N5Ik+QBlsiwXXfGzSFmW4/6x6W/A18CMf+yvBr4BegMpwF5JkpZgTdbe+8dr3CfLcuY1Ynzl4usItYTJaGTT9J/wCAwmtu9ApcNRjKHMxLKvD5N+vpBe9zQkpq2f0iHdugsHYdVLkLQTvBvAXXOsd49vcPFRdvgwaf99g4qTJ3Hs3Bm/V19BF1K1X24W2cL6pPVMOzKNk7kn8dH78H+t/48RUSPQa/VVemxBEGqGKwuLnM49bS0sEr+U1Qmr8XP0Y3z98YyOHo2z7ibKiatU0GgYNBhsrV678V2YPR5COljnVwu66jCVaiFpNHhMnIDLwAFkf/0NebNnU7BsOT7PPIPb2DF1ujXoVrQZGE5+eik7Fsbh5utAeLO6W4DFMzAY/+j6nNq2SSRo13BT7eeSJAVh7UL40zU26Yq1Bcvu4vZTga/+uZEsy1uA3Kvs3waIk2U5XpZlAzAbGCrL8lFZlgf9Y/lXciZZfQCslGX5wM28J6FmOLBiMfkZaXS/eypqTY3skXvHykuMLP7iEBnnC+lzf6Oal5wVZ8Lix+DH7pB9FgZ/AQ9vt3bvuc4Xu7mggLTX/0vCuPGYc3II/Pxzgn/8oUqTs3JTOYviFjFs8TCe2fQMJcYS3ujwBitHrGRiw4kiORME4apiPGL4vzb/x4bRG/i468eEOIfw2f7P6D2vN5/s+4T0kvSbeyGVGpqMgkd3w8BPICcOfuoJcyZDzrmqfRM3oHF3x+/VV6i3aCH2DRuS/t//kjz1AYwZGYrGVVNIKokedzfAJ8SZNb+cIDul6MY71WL1O3QlKymBnJQkpUOxSTdVxfFiV8L3AGfguat1cZQk6QWgAzAXeAzoLcty8VW2CwOWXdnFUZKkUUA/WZanXHw+CWgry/Jj14jHE3gHa4vbT0AJcDewFzgky/L3V9lnMDA4MDBw6qxZs274ngXlGUqKOf7HzzgHhRDZf7jS4VSa4uJinJxubsySqUImcaNMRSEEd5RwDqw5dyoli5GglKWEJs5BZTGSGjiIhLAxmDU3KDUsy9jv3o3z/PlIxSWU9uhByeBByPa3UTHtJqUb09lRtIPdJbsptZQSoA2gj2sfmuub18qJpG/lHBSEqlAXzsGkiiTWF67nUOkhAFo5tqKnS08CdAE3/RpqUxlBKYsJSVqIJBtJ8+9LQthYjDq3qgn6ZskyDpu34LxgAbJGTdHYsZS3aaNod8xbpdQ5aCyTiV8jI0lQr4+Exr7m/JtVJmNpCUdmfI9/i7YEtOmkdDiK6N69+zWrON4wQZMkaRAwQJblRyRJ6sY1ErSL284GBgARsixnXWObMO4wQbsTosx+zbHy6084vXMr93zyHW5+/kqHU2lutrRvaaGBxZ8fpCCrjP4PNak5E13KMpxeAatfhrzz1vl/+rwDXjeuvll++gwZ77xD6Z49ODRrht9/X8e+QYMqCdNoNrI+aT1zzsxhb/peNJKGnqE9GRM9htZ+rWt1t52aUOJcqN3q0jmYWpzKzBMzWXB2AWWmMjoGduSeRvfQ1q/tzX/OFGXA5g+sxZW0DtDhCejwGOiUnVvLkJjIhRdfouzgQZx798bvjf9WS9GmyqDkOZiVVMSCj/bjHerM0Kea19nKjnPfepnC7Ezu+/zHWv2dey3XK7N/M2dER2CIJEkJWLse9pAk6V9NUJIkdQYaAwuB128xxlQg+IrnQRd/JtRRF86c5MTWjbQcNLxWJWc3qzivgoWfHKAwu4xBjzatOclZ1hmYORxm3wVqHUycD3f9dcPkzJSbS9p//8v54cOpOH0avzfeIPTPP6okOUsuSuaz/Z/Ra14vnt/yPBeKL/BkiydZO3otH3f9mDb+berkF4UgCFUj0CmQF9u8yNpRa3m8+eOcyjnF1DVTmbhyIttTt3NT89E6+8KgT+HRPRDRAza9C1+2sM4daTFX/Zu4Bl1oKKGzZuLz3LMUb9pE/OAhFK1fr1g8NYV3iDPdJ9cnLa6AbXPOKh2OYmI6dCE/PY2M+H+WrBBumKDJsvySLMtBsiyHAeOADbIsT7xyG0mSmgM/AkOBewFPSZLevoU49gJRkiSFS5Kku3icJbewv1CLyBYLG379ESd3D9oOH6N0ONWuMKeMhZ/sp6SggsFPxBJUvwbcjTSUWiszftcBLhyA/h9ax5lF9rrubrLBQM6vv3Gubz/y587DfcIEIlavwn3sGKRKLjF9KPMQT218ioELBvLb8d9o5t2M73p9x4oRK5jSZApeDtefe00QBOFOuNq58kDTB1g9ajWvtnuVrNIsHlr3EBNXTmRb6rabS9S8ImHsTLhvDbiFwJLH4PvOEKdcUiSp1XhOmULYvHlofHxIefQxLvzfi5gLCxWLqSaIbu1H8z4hHNuSyvGtdbNNIrptR1RqDad2bFE6FJtTWVdAemCMLMvnZFm2AJOBxH9uJEnSn8BOIEaSpBRJku4HkGXZhHXc2mqslSLnyLJ8vJJiE2qYY5vXkRF/ls4T7kVnX7cm/S3IKmXhJweoKDUx9MnmBES6KR3SjZ1ZDd+2ha2fWAe3P7Yf2j4Iau01d5FlmaING4kfPITMDz7AITaWeksW4/fyf1C7uVVaaGaLmXWJ65i4YiKTVk5ib/pepjSZwuqRq/myx5d0CuxUK8eYCYJgu+zUdoyJGcPy4ct5rf1rZJdm8/C6h5m4YiJbU7beXKIW0hbuXwOjfwNjCcwaATNHQIZyl072MdGE/zUbr0cepmDZMuIHD6F482bF4qkJ2g2LIKSRB1tmnyEtLl/pcKqdvZMTYbEtOL1zK7LFonQ4NuWWrkxkWd50tfFnsixvl2X56BXPjbIsT7vKduNlWfaXZVl7sVXu5yt+t0KW5WhZliNkWX7nVt+IUDtUlJaw7c8Z+EfXp0GnbkqHU61KCipY/PkhjBVmhj7VHN/wf81oYVsKUmD2BPhjDGgc4J7lMPx7cLp+6eCKs2dJvn8KKY88Amo1wT/+QMi0H7GLuP4k1bei1FjKn6f+ZPCiwTy96Wmyy7IvdTF6osUT+DnWsEqYgiDUOlq1ltHRo1k2fBmvt3+d7LJsHln/CBNWTGBLypYbJ2qSBI2GW7s99n0XUvfD952sVXOLbrJqZCWTdDq8n3iCsNl/onZxJvnBh6ytafn5isRj61Qqid73NcLZw56VPx6jOK9c6ZCqXf0OXSjOySb19AmlQ7Ep4taxYFN2zvuT0sICetzzYJ0aB1RRZmLpV4cpKzYy+PFYvENuYt4cpZiNsP1L+LqNtVtNz9fhoW0Qdv0qTLLBQNaXXxI/bDhlx47h+5//UG/xIpy6dKm00AoNhXx98Gv6zO/Du7vfxd3OnU+6fsLy4cuZ0GCCKJMvCILN0aq1jIoexbLhy/hv+/+SW57Lo+sfZdTSUSw9txSj2Xj9F9DYQftH4YmD0O4RODwbvmxu7dVgMlTPm/gHhyZNCJs/H8+HH6Jg2TLODR5M0bp1isRi6+wdtQx4uCmmCjMrvz+KyaDcmEIlRLRqi0Znx6ntopvjlUSCJtiM/Ix0Dq5aSuNuvfGLiFI6nGpjMppZ+d0R8i6U0P/BxviG2XDLWco++KErrH0VwrtY5+rp/AxodNfdreLsWRLGjSf72+9wHTyYiNWr8Jg8CUl77W6Qt6LMVMYvx36h//z+/HDkB1r6tGRG/xnMGjCLPmF9UKvUlXIcQRCEqqJVaxkZPZKlw5fyVse3sMgW/rPtP/Rb0I9fj/1KkeEG82bpPaDvO/DYXojsaR0X/H0nOL+1et7AP6h0OnyefJLwuXPQeHqR8tjjpD7zLKa8PEXisWUeAY70urchmYlFbPr99M11c60ldPYO1GvZhjO7tmEx163k9HpEgibYjJ1zf0elUtNxzASlQ6k2FovMul9OkHomnx53NyCkoY1WazSWWcvm/9wbyvNh3B9w12xwD73ubrLFQs6vv3F+5CiM6ekEff0VAe+/h8bdvXLCshiZe2YugxYM4rP9n9HMuxnzBs/jix5f0NyneZ1qhRUEoXbQqrQMixzGgiEL+K7Xd4S7hvPp/k/pPa83H+39iLTitOu/gEc4jJ0Fd80FUzlMHwQLHoTiq85+VOXsGzYkfO4cvJ54nMK1a4kfOIjCVasUicWW1Yv1ps3gcE7vTufw+mSlw6lW9Tt2oayokKSjh5QOxWZolA5AEACykxM5sW0TrQYNx8nDRpOUSibLMlv/OsO5g1l0HBVJTFsbHReVuBMWPwq556DlvdD7TbC/cSufISWVtJdeonTvXpx69sT/zTfQeFbO/61FtrAmcQ1fH/yaxMJEYr1j+aDLB7Tyu+p0IoIgCDWOJEl0CuxEp8BOnMw5yfQT0/n95O/8fvJ3+ob15cGmD1LPrd61XyC6D4TtsnZ13P4FnFlp7ZLe8l6o5Cq5NyJptXg/8gjOPXuR9p//kPrU0xQNWIv/22+h0ouu5//Tqn8Y2cnF7Jgfh2egE8ENakAV50oQ3qwlOgc9p3ZsJSy2pdLh2ATRgibYhB1zfkdnb0/rISOVDqXa7FuRwLHNqTTvHUJsrxClw/k3Qwms/D/4tT9YjDB5MQz+/IbJmSzL5M+fz/mhQyk/cQL/d98l6OuvKiU5k2WZHRd2MH75eJ7f/DxalZavenzFjP4zRHImCEKt1cCzAe93fp+VI1YyscFENqdsZsSSEby9621yynKuvaNODz1fhYd3gF9TWP4M/NwL0g5XX/BXsI+JJuyv2Xg/+QSFK1eSMG48huS61Vp0PZJKouc9DXD3d2T1tGMU5pQpHVK10Oh0RLXpwNk9OzAZlBk3aWtEgiYoLj3uDGf37KDlwOHoXVyVDqdaHN+ayp6l54lp50f74ZVXvbDSnN8C37aH3d9Dmwfg4Z1Qr9sNdzPl5pLy6GOkvfwK9o0aUW/JYtxGDK+UroYHMg5w3+r7eHDtg+SX5/NOp3eYN3ge3YK7ia6MgiDUCf5O/jzX+jlWjFjB6OjRzDszj4ELB/LT0Z8oN12nAqB3NNy9FEZMg/wk+LGbtdu6obTaYv8fSaPB6+GHCf7xR4zp6ZwfNZri7durPQ5bpbPX0P+hJlgsMmt/PoHFXDfKz9fv0BlDWSnnD+9XOhSbIBI0QXHb/pqJvbMLLQcOUzqUalGYIrP5j9OENPKk+6T6SCobSi4qimDZ0zB9MKjUcO9KGPAh2DndcNeS3Xs4P3QYJdu24fPi/xHy269oAwPvOKRj2cd4aO1D3L3qbhIKE3ixzYssHb6UIRFDRPEPQRDqJA97D15u9zILhy6ktV9rvjjwBYMXDWbpuaVY5Gtc0EsSNB1jLSLS4m7Y+TV810GxIiJOnTsRPm8uWh8fkqc+QM5PP9Wp4hjX4+ajp9uEGNLjC9i7PEHpcKpFSJNYHJxdRDXHi0SCJigq+cRREo8cpO3QUdjVgX7oF87mk7JDxjvUhX4PNEattqE/wdT98EMX2PcrtH8MHtoOoR1uuJtsNpP11dck3XsvKkdHwub8hec99yDd4RiH07mneWLDE4xfPp7jOcd5puUzrBixggkNJqBTX79qpCAIQl0Q7hrOVz2+4pe+v+Bu585/tv2H8cvHszd977V3cnC3dle/e5n1+fRBsPQpKC+sjpD/RhcSQtjsP3Hu04fMjz/hwrPPYimt/lY9WxTd2o/67f3YtzKB1NO1v/KlSq0mul0n4vfvwVBeN7p2Xo8NXR0KdY0sy2ybPRMndw+a9R2odDhVLie1mOXfHkHrCIMea4rWzkZafywW2PY5/NzHOmfOPcutpZp1N06YjRkZJN1zL9nffIPr4MGEz5+Hff36dxROfEE8z29+nlFLR7E3fS+Pxj7KyhErubfxvThoHO7otQVBEGqj1n6tmT1oNu92epecshzuW30fj61/jNO5p6+9U3hn69i09o/BgenwbTs4s6b6gr5I5ehI4Gef4v3sMxSuXEXC+LswpKRUexy2qPPYaFy9HVj76wnKi28wH14tUL9jF0yGCs7t2610KIoTCZqgmPOH9nHh9AnajRyHVmendDhVqjC7jCVfHkJrpya0m4SDk420ABWmwcxhsO51qD8QHt4GYR1vatfiLVs4P2w4ZceP4//+ewR88D4qR8fbDqXMVMan+z9lxOIRbE7ZzNQmU1k1chUPNXsIJ92Nu1gKgiDUZSpJxeCIwSwbvownWzzJgcwDjF46mhe3vkhy0TUKcej01hty968FO2f4YzQseABKc6s1dkmS8Jo6leAff8CYlkbCyFEUbxPj0nT2GvpOaUxZkYENM0/W+i6ggTENcfL04tQO0c1RJGiCImSLhW2zZ+Lq60fj7r2VDqdKlRUZWPrVYcxGC4Mfb4bO0UbGnJ1eaR1/kLIXhnwFo6dbu77cgGwwkPHhRyQ/8CAaHx/C583FbdiwOwpld9puRi4Zya/HfmVo5FBWjljJEy2ewNWubhSNEQRBqCz2GnumNJnCyhErua/xfaxPXM+QhUN4e9fbZJVeYy60oFbw4Bbo8gIcmw/ftIGTS6s3cMCpc2fC581F4+ND8tSpZH31NXIdn7zYO8SZ9sMjOH84m2ObU5UOp0pJKhUx7TuTcOgAZcU3mJi9lhMJmqCIM7u3k5UQT4fRE1BrtEqHU2UM5SaWfX2YotxyBj7SFM9AG2gJMpbB8ufgz3HgGggPbIYWk60DyG/AkJJCwqRJ5P7yC27jxxH212zs6l1nHp4bKKgo4LXtrzFlzRQkJH7u8zNvdHgDT4e6MReeIAhCVXG1c+Wplk+xYsQKRkaPZP6Z+QxYMIDP939OQUXBv3fQ2EGPl+GBTeASAH9NtM6BWVFcrXHrQkII+2s2rkOGkP3NNyRNmYIpO7taY7A1zXoEE9LIk+3z4shJrd7/j+rWoGNXLGYTcXt2Kh2KokSCJlQ7i9nM9jm/4xkUQv2OXZQOp8qYTRZWfn+UrORi+k1tjH+km9IhQeYpmNYD9k6zjjuYst5afvkmFCxZwvmhwzDEnyfw88/xf/11VPb2txWGLMusSljFkEVDWHJuCfc3vp/5Q+bTxr/Nbb2eIAiCcHXeem9eafcKS4YtoUdID3459gv9F/Tn95O/Y7ZcpXXKrwncvw46PQMHf4fvO0HKvmqNWaXX4//+e/i/8zZlBw5yfvgISvdep/BJLSepJHre3QCdXsPqn45jNNTeVkWf8Ajc/Pw5tX2z0qEoSiRoQrU7sWUDeRdS6DhuEqpaWiZdtsis/+0EKafy6D6xPmFNvZQOCQ7PhmndoSQLJsy3jjvQ3Hjsn7moiNTnnufCC/+HXf361Fu0EJd+fW87jPSSdJ7Y8ATPb34eP0c/Zg+azVMtn8Jec3vJniAIgnBjwS7BfNDlA+YOnksTrya8v+d9Jq2cdPVCIhod9HrdWjTKYrIWkdr8IZhN1RavJEm4jRxJ2Jy/UOn1JN59D9k/TkO21I15wf5J76Kj9z0NyUsrYfvcs0qHU2UkSaJ+x64kHz9KSX7tr155LSJBE6qVyWhkx7w/8IuIIrJVO6XDqRKyLLN17lnO7suk/fAIGnTwVzYgYxkseQIWPggBzeGhbRDV66Z2LT1wgPPDhlO4ciXeTz5B6Izptz23mdFiZPrx6QxbPIxdabt4rtVz/D7gd+p73FnVR0EQBOHmxXjE8H2v7/mg8wekFqcybtk4Pt//+dUnug7raP3OaDwCNr4Dvw2AvIRqjdc+Joaw+fNw6deXrE8/JfnhhzHl1c0L9+CGHjTvE8LxrRc4dyBT6XCqTP0OXZBlC6d3blM6FMWIBE2oVkfXr6IoO4uO4yYj3cSYp5po/6pEjm5MoVmvYJr3CVE2mJxz8HNvawnlTs/A5CXg7HfD3WSTiayvviZx4iSQJMJ+n4XXww8jqW+vxXNX2i5GLRnFx/s+prlPcxYMXcDdje5Go9Lc1usJgiAIt0+SJAbUG8CSYUsYHDGYn4/9zIglI9iVtuvfGzu4wcifYMRP1m7y33WCQ39CNVYUVDs5EfDJJ/i+9iqlO3ZyfsRIyg4dqrbj25K2Q+rhE+rMxlmnKMq9SlJdC3gGheAZFELc3ro7Dk0kaEK1MVaUs2vBXwQ3bEJok1ilw6kSJ7ZfYPfieKLb+tJxRKSySeiJxfBjN8hPhrvmWLurqG+cEBlSUkicNPni3GaDCF+0EIfY2NsK4ULxBZ7Z9AxT10zFYDbwVY+v+LbntwQ7B9/W6wmCIAiVx9XOlTc7vsnPfX5GQmLqmqm8vO1l8svz/71x09HWqVj8m8Kih2D+/VB+lWIjVUSSJDzuuovQP/9EUqtJmDSZ/Pnzq+34tkKtUdFnSiPMZpmNs07V2tL7Ea3aknLyGOXFtbsoyrWIBE2oNkc3rKG0IJ8OYybUytaz1DN5bP79NCENPegxuQGSSqH3aDLAyhdhzmTwioaHtkL0zY0ZK1y1mvPDhlNx9iwBH39MwAcfoHa69cqTFeYKvj/8PUMXDWVrylYeb/44i4Ytoltwt1r5fy8IglCTtfFvw/wh85naZCor4lcwZNEQViWs+veGbiFw91Lo+RocXwQ/dIHU/dUaq0PjRoTPm4tj61akvfwKGe+9h2yqvrFxtsDVW0+H4REkn8jlxLYLSodTJSJatkG2WDh/uHrPL1shEjShWphNRvYuXUBQg8YENWisdDiVrjC7jFU/HMPVx4E+UxujViv0p5WfbB0jsPs7aPsw3LvS+oV6A7LJRMZHH5H61FPoIuoRvmgRroMG3vLhZVlmY9JGhi4ayjeHvqFLUBeWDFvCA00fwE5duycjFwRBqMnsNfY80eIJ/hr8F0HOQTy/+Xle3PoihYbCv2+oUkPnZ63fLxaztYDIjq+gGot3qN3cCP7xR9wnTyJ3+gySH3gQc0H1tebZgsZdAgmq7872eXEUZpcpHU6l84uMxsHFlfj9e5QORREiQROqxfHNGyjOyabt8DFKh1LpDOUmln97BFmWGfBwU+wcFBpXdW6D9W5m5inrpNP937dW4roBU04OSfdPIfdn69xmoTNnogu69UIgacVpPLHhCZ7Y+AT2ant+6vMTn3T7BH8nhYukCIIgCDct2j2aGf1n8EjsI6w6v4qRS0ayJ+0qF8khba09NGL6w5pX4I8xUHyNibCrgKTR4Pef/+D/9luU7N1LwpixVMTHV9vxlSapJLpPshbZ2jDzFLKldnV1VKnU1GvemvOH9mGuYy2kIBI0oRpYzGb2Lp6Hb70oQps2VzqcSiVbZNb9eoK89FL6Tm2Mm6+++oOwWGDLRzBzhLUAyAOboNGwm9q17MgRzo8cRdmhQ/i/9551bjPdjZO6K5ktZmaemMnQxUPZnb6bZ1s+y9whc2nr3/bW34sgCIKgOI1Kw8PNHmZm/5nYqe2YsmYKH+/9mApzxd83dHCHMTNh4Cdwfot1zrT46p2/ym3UKEKn/4a5uJiEMWMp3rKlWo+vJBdPBzqOiiT1dB7HtqQqHU6li2jVhoqSEi6cPqF0KNVOJGhClTu9cyv5GWm0HTGm1o0/2r0knvOHs+k0OpLgBh7VH0BZHsweDxvehiajYMo68Iq84W6yLJP31xwSJ0xEUqsJ+/MP3IYPu+XDn8g5wV0r7uLDvR/S0rclC4cu5J7G96BVaW/jzQiCIAi2pIl3E+YMmsOYmDFMPzGd8cvH/3veNEmC1lNg6gawd4EZQ63fSdU4Z5q+RQvC585BGxxM8oMPkfPzL7W2eMY/NewUQEhDD3YsiKMgq1TpcCpVaNPmqDUazu3frXQo1U4kaEKVki0Wdi+cg2dQCJEta1eLypm96exflUjDTgE06RZU/QGkHbFWaYxbDwM+hhHTQOd4w90sFRWkvfIK6a+/jr5tW8LmzcW+YcNbOnSpsZSP9n7E+OXjySjJ4KMuH/Ftz28JdLq9OdIEQRAE26TX6nml3St82/Nb8srzGL98PL8e+xWzxfz3Df0aW3twxE6w9uqYPggKq6+AhTYggLDfZ+Hcpw+ZH31E2kv/QTYaq+34SpEka1dHlVrF+ukna1VXR529A8GNm3Fu/546k3D/j0jQhCoVt383OSlJtB0+BklVe063zMRCNsw4hX+kK13GRVd/y+DB363zm5kMcO8KaDPVehfzBowXLpB41wQK5i/A8+GHCP7hezTu7rd06C0pWxi2eBgzTsxgRNQIFg9bTL/wfrWudVQQBEG4rHNQZxYMWUCXoC58uv9T7lt9H0mFSX/fSOcIw76x3jBMOwLfd7aOj64mKr2ewM8/w+uxxyhYtIiUx5/AUl475wq7kpO7PZ1GR5EWV8CRjSlKh1OpIlq0IT89jdwLtet93UjtuWIWbI4sy+xe8Bduvv7EtO+sdDiVpqSgghXfHUXvrKP/g01Qa6rxz8hYDkufhMWPQFBreHALBLe5qV1L9uzh/MhRGBITCfrma3yefPKWJp4uM5Xx3x3/5dH1j6LX6Jnebzqvt38dVzvX2303giAIQg3ibu/OZ90+4+2Ob3M27ywjl4xk1olZWOR/VHBsOgYe2AiOXtbx0Rvfs1Z8rAaSJOH92KP4/fd1ijdvJmnKFMxFRdVybCXVb+9HaBNPdi06R35G7enqWK9la4A6V81RJGhClUk8fICM+DhaDx2F6hYSAVtmMppZ8d1RKspMDHikKQ7Ot1ZQ446UZMOMIbD/N+j0NExaBE7eN9xNlmVyZ/1O0n33o3ZzI2zOHJx79rylQ5/LP8ddy+9i/tn53N/4fuYOnksL3xa39z4EQRCEGkuSJIZGDmXh0IW08W/DB3s/4N5V95JYmPj3Db1jrOPSmo6Fze/DrBHVWuXRfdw4Aj/5mLJDh0mcfDem7OxqO7YSJEmi+4T6qLXWro6WWtLV0cXLB+/QcM6JBE0QKseuhXNw8vSiUdceSodSKWRZZtOs02QmFNL7noZ4Bd36BM63Les0TOsBaYdh9G/Q67+gvnE5f4vBQNorr5Dx9ts4de5M2Jy/sKsXfkuHXhS3iPHLx5Nbnsv3vb7nqZZPoVWLIiCCIAh1ma+jL1/3+Jp3O73L2Xxra9qM4zP+PjZN5wjDv4chX0HSLvihMyTuqLYYXQYMIPi7bzGcP0/ihIkYUmpfpcMrObrZ0XlsNOnxBRxel6x0OJUmolVbLpw+SVlR4Y03riVEgiZUiZSTx0g9dZzWg0eg1tSOi/nD65M5vTudNoPDqdf8xi1XlSZ+M/zUG4ylcM9yaDT8pnYzZmSSOGkSBfMX4PXIwwR98zVqZ+ebPmypsZSXt73Mq9tfpbFXY+YOnkvHwI63+y4EQRCEWkaSJAZHDGbR0EW082/HR/s+4p5V95BQkHDlRtBisrXKsFYPvw2CbZ9X28TWTp07E/LLz5jy8kicMIGKuLhqOa5Sotv4Et7Mi91L4slLL1E6nEoR0aINsmzh/MF9SodSbUSCJlSJ3Qvn4ODiSpMefZQOpVIkn8xlx/w46sV606p/WPUd+MBMa7cQF3+Ysh6CWt3UbqUHD3J+1EgqzsYR+OUXeD/xxC0VaTmTd4Zxy8ex9NxSHmr2ENN6T8NH73O770IQBEGoxXz0PnzV4yve7fQu8QXxjFo6it9P/v73ynt+TaxVHhsMhnWvw18ToaJ6xobpW7QgdOYMZLOZxAkTKTtypFqOqwRJkuh6VwxqrYqtf52pFdUPfetF4ujmXqe6OYoETah06efOknD4AC0HDkNrZ690OHesIKuM1T8dw93fkZ73NEBSVUO1QosF1v0XljwGYZ3h/jXgHnpTu+bNnUvi5LtR2TsQNvtPXPrcfJIsyzLzzszjruV3UWQoYlqfaTwa+yhqVe0YQygIgiBUjStb09r7t+f9Pe/zxMYnKKgouLyRvYu1m36/9+HMKvi5D+QlVEt89jExhP3xOypnZxLvuRfdqVPVclwlOLra0WZwOMkn84g/VH3j/qqKpFJRr0VrEg7vx2yq/VMngEjQhCqwe+Ec7Bwdie0zUOlQ7pih3MTK74+ADAMeboLO/sbjvu6YsQzm3QvbPoOW98KEuWB/40qJssVCxgcfkv7qazi2aUP43DnYR0ff9GELKgp4fsvzvLHzDZr7NGfu4Lm09a9dc9cJgiAIVctb782XPb7kxTYvsi11G6OWjuJg5sHLG0gStHsYJs6HwlTr+OqE7dUSmy4khNDff0cXGIjb199QtGlTtRxXCU26BuIZ6Mi2uWcxGqqngmZVqteyLYayMlJOHFc6lGohEjShUmUnJxK3dyfN+w3GTq9XOpw7IssyG2acJPdCCX2mNMLVuxreT3GmtX/+icXQ520Y9BncREEO2WQi7T8vk/vrr7hPmEDwD9+jdnO76cPuTd/LqKWjWJ+4nidbPMkPvX/Ay8HrDt6IIAiCUFdJksSEBhOY1X8WGknDvavu5aejP/29HH9Ed5i6ERw8LlcorgZaXx9CZ87AFBBAyuNPULh2bbUct7qp1Cq6jIumOLeCA6sSb7yDjQtt0gyNVse5/buVDqVaiARNqFR7Fs1Fa2dPi/5DlA7lju1flci5A1m0Hx5JSEPPqj9gbrx18umM4zB2FnR4/KYmn7ZUVJDy5FMULFqE1+OP4fvKy0iam2vpM1qMfHngS+5ffT86lY6ZA2YypckUVJL4aBAEQRDuTCOvRswZPIdeob344sAXPLzuYXLKci5v4BlhLR5Sr5t1js8VL4DZVOVxqd3cyHvqSRwaNiT1qacpXLmyyo+phIAod6Ja+3JwTRIFWTV7bjStnT0hTZpxbv+eWjGu7kbEVZhQaQoy0zm1fQtNe/fHwdlF6XDuSMLRbHYviSe6jS+xvYOr/oBpR+DnvlBeAPcsgwaDbmo3c3ExyVOmUrx+Pb6vvIL3o48i3URSB5BUmMTkFZOZdnQawyKHMXfwXBp7Nb6TdyEIgiAIf+Osc+ajLh/xWvvX2J+xn1FLR7En7YpiDw5ucNccaP8Y7PkBfh8JZXlVHpes1xP88884xMaS+uxzFCxZUuXHVELHkZGo1BLb5pxVOpQ7FtGyLYVZGeQk1/wWwRsRCZpQafavWIykkmg5cKjSodyRvPQS1v58HO9gZ7pPrH/TCc9tS9gGvw20dmW8b/VNV2o05eSQNPluSg8eJOCjj/CYOOGm9pNlmYVnFzJq6SgSixL5uOvHvNnxTfTamt0lVRAEQbBNkiQxOno0vw/4HWedM1PWTOHbQ99enjNNpYa+78DQb6zj0ab1gKwzVR6X2smRkGk/om/dmgv/9yL58+dX+TGrm6ObHa0GhpFwNIeEIzV7su56LVoD1IlqjiJBEypFeXExxzaspX7Hrjh71NyxSxVlJlZ8dxS1VkX/h5qg0VVx9cJTy2HmCHD2s1Zq9I65qd2MqakkTphIRXw8wd98jevgm2txKzQU8tzm53htx2s09mrMgiEL6BvW907egSAIgiDclBiPGGYPnM3giMF8d/g7Hlz7INllVyQNzSdae5FUFFm7/CdV/XgjlV5P8A/f49ixI2kvv0Len39W+TGrW7Mewbj76dk69ywmY80tGOLk4YlvvUjOHRAJmiDclMPrVmKsKKflwGFKh3LbZFlm3a8nKMwqo98DjXH2qOIpAg7MtM4D49fE2nLmGnRTu1WcO0fChImYcnII+fknnLp2van9UotTmbRiEhuSNvBkiyeZ1nsafo5+d/IOBEEQBOGW6LV63un0Dm92eJPDWYcZtWQUu9OuSMRC2lnHpek9rcVDTq2o8phU9vYEffM1Tt26kf7Gm+TOmFHlx/z/9u47Ouqia+D4d3az6b33QEiooVdBECxYedTX3rCBvWPXB0QUFRt2xa5gA8sjip0ivddAgFBCei+kb3bn/SNY0JRNsptN4H7O4RyzO+Uu/gjczMyd9mR0MTD64u6U5Vex5Zd0Z4fTJvGDhpG9dzeVpSXODsWhJEETbWapM7Plx4XE9h1AaJd4Z4fTalt/S+fgtgJGXphAZGKA4ybSur6E/re3Qfw4mPg/8Ay0qWvV9h2kXXEluq6OuLkf4zl4sE39tudv5/LvLye/Kp854+cwqe8kudtMCCGE05yfeD6fnP0Jvm6+3PDLDbyx9Y2/tjwGdKnfVRLaGz6/AjZ+6PB4DG5uRL/8Ej6nnUbuzKcofPddh8/ZnmJ6B9JtYAgbfzhIWWGVs8NptW5DhoPW7N+03tmhOJQkaKLNUlb+TnlxEUPPOd/ZobRaXloZq7/eR9f+wfQbZ9tKVqtYrXTb9379JdRJF8Jln4Gbt01dKzdt5tC112Lw9qbLJ/Nw72Hbdsjf0n7jup+uw8PFg7lnzmVo+NA2fAAhhBDCPhIDEvns7M84q+tZvL7ldW769aa/tjx6BcPVC+t/kLnwDlj2bP0POB1IuboS9cLz+J51FnnPPkfRJ584dL72NvLCBABWLUh1ciStF9olHu+g4GP+HJokaKJNtNZs+O5rgmPiiOs/yNnhtEpNVR0/vb0DTz9XTp7Yy3FFQaxW+PZ2YjL+B8NuhP97G1xcbepauX496ZMm4RIURNzcj3GNjW22j9aaj5I/4u6ld9M9oDvzzppHvH/nXeEUQghx7PE0eTLzxJlMHzmdzXmbuWjhRazPObI64uYNl38O/S6BJU/AovvA6tgzVMpkIvKZp/EeN47cGU9Q+v33Dp2vPfkGeTD4zDj2bc4nfWeRs8NpFaUU3QYNJW3bZupqa50djsNIgibaJG37FgoOHWTwOec7vtqhA2itWTo3hcNFNYy/Pgl3r+YvhW4Vq7X+J4Bb5nIw7hI48xkw2PbHr2LNGg7dcCMu4eHEfvQRpvDmz43VWeuYuXYmz254llNiT+Gd098hyKMd7nITQgghWkgpxf8l/h/zzpqHt8mbST9P4p3t79Tfd2U0wXlv1t8Nuv5tWHAtmKsdG4/JRNSLL+A5eDBZDzxI+fLlDp2vPQ04LRbfEA+Wf7EHS521+Q4dUPzgYZhrqknfud3ZoTiMJGiiTTYs/Aov/wB6jrKtUEVHs3NFFqkb8xj+n65EdPNzzCRWK3x/N2z+GMbcx8Eul9l0ATVA+YqVpN94E67RUcR99CGmsNBm+1SaK7lzyZ18tvszrulzDc+PfR4PF4+2fgohhBDCoXoE9uCzcz5jfNx4Xtr0Eo+veZw6a139DzTHPwHjn4Sd/4N5F9bfG+pABnd3ot94HbfuiWTcfgeVmzY7dL724mIyMvriRIpzKtmxLNPZ4bRKbJ/+uLi5HdPbHCVBE62Wn3aAtG2bGXjGBFxMDlp5cqDCzHKWf7GXmN6BDBof55hJtIZF98LGD+DEe2DcIzYnZ4eXLiXj5ptx7dqV2A8/xCW4+esL8irzuObHa1iRuYJHhz/KlCFTMCj5Yy6EEKJz8DJ5MWvMLCb1ncSCPQu4a8ldVJor698ceVv98YBDq+H9s6E8z6GxGH18iH37bUxhYaTfdBPVux1/N1t7iEsKIrpnABt+OEhtVZ2zw2kxF1dXonslkZ68zdmhOIz8y0202sbvv8HFzY1+p53p7FBazFxj4ae3d+Dm4cKp1/RGGRywPVNr+OEB2PAujLwDTplqe3L2229k3H4Hbt27E/fB+7gENl/lcWv+Vi797lIOlh3klZNf4ZKel7T1EwghhBDtTinFnYPu5NHhj7I8czmTfp5EYVVh/Zv9Lq4/l1aYCu+dASWOLRvvEhREzLvvYvDwIH3SJGrTO3eZeqj//T3h/G5Ul5vZ/MshZ4fTKtG9kijKTD9my+13ygRNKRWvlHpXKbXgyNfnKaXeVkp9rpQa7+z4jgflRYXsWrGMpLGn4eHt4+xwWuz3z/dQnFvJqdf1xtPXtkIdLaI1/PQwrHsLTrgNTnvc5uSs7MefyLjzLtx79yL2/fcw+vs32+frvV9z7Y/X4mZ0Y+5ZcxkTPaaNH0AIIYRwrkt6XsKLY19kb/FervrhKg6VHUkmEk6Fid9ARUF9klbg2KqErtFRxL77Drq2lkPXT6IuP9+h87WH0DhfEgaHsuXXQ1SU1jg7nBaL6Z0EQMauHU6OxDGaTdCUUu5KqXVKqa1KqWSl1PTWTqaUek8plaeU+tfvplLqDKXUbqVUqlLqwabG0Vrv11pf/7evv9FaTwZuAmTZoB1s/uk7tNXK4LPOdXYoLbZ7bQ4pq7IZcmYXYnradv9Yi2gNPz8Ka16H4TfV75u3MTkrXfgdmVOm4NGvH7HvvovR17fJ9marmZlrZzJ11VQGhw3ms3M+o3tAd3t8CiGEEMLpTo49mXdOf4fy2nKuXHQl2/KPbGuLHQHXfAd11fD+GZDt2O1ubgkJxMx5i7qCAg5NvgFLWZlD52sPw/8Tj7VOs2HRQWeH0mJh8Ym4uLmRvvM4TdCAGuBkrXV/YABwhlJqxN8bKKVClVI+/3gtoYGxPgDO+OeLSikj8BpwJtAbuEwp1Vsp1Vcp9d0/fjVVJeHRI+MIB6qtrmLrL4tIGDYC//AIZ4fTIiW5lSz9ZDcRCX4MPbuL/SfQuv6Os9WvwtDJcMbTNidnxZ9/Qdb99+M5aBCxb8/B6N30/WhF1UXc+MuNfJryKRN7T+SNU9/Az81BhU6EEEIIJ+kf0p+Pz/oYL5MX1/90PUvTl9a/EdEPrvsRjK7wwTlwaK1D4/Do35/oV16mZt8+0m+6GWtV573wGcA/zJPeJ0ayc3kWJbmVzg6nRYwuLkR273X8rqDpeuVHvjQd+fXPmwJPAr5RSrkBKKUmA680MNbvQEMXLwwDUo+sjNUCnwHnaq23a63P+cevf50IVfWeAX7QWm9q7jOJttmx5FdqKioY0skuprZYrPz8bjIuLgbGX98Hg9EBO3yXPAkrZ8OQ6+CsZ21Ozgrfe5+cadPwGjOamLfnYPDyarJ9SlEKl313GVvztjLzxJncN/Q+XAwudvgAQgghRMcT5xvH3LPmkuCfwJ1L7uSL3V/UvxGcWJ+keQXDx+fBvsUOjcN71Ciinp1F1ebNZN59D9psduh8jjbk7C4YXBRrv93v7FBaLKZXEgWHDlJ1uPOvZv6T0jbcyn5khWsjkAC8prV+oIE29wMjgfnAbcBpf0vs/t6uC/Cd1jrpb69dCJyhtZ505OurgOFa69saiScIeBI4DXgHqACuBtYDW7TWbzbQZwIwISoqavLcuXOb/cyiYdpqZccn72Ly8qLn+Zc7O5wWyduhyd+hiTlR4Rtt/6IgsWlfEH9gHtnhp7K7x63QSPXE8vJyvP9YHdMar+++w/v7RVQPGkTpddeCS9OJ1saKjcwrnIeXwYvJIZOJdWv+0moh/u6oZ1AIJ5BnULRWjbWG9wveJ7kqmXP8z2G873iUUphqS+i/dRqelRns7H0vBSEnNDlOW59Bj99/x/eTT6kaMZyyiRNtvtu0I8rdZqVgJ8SPV3gEdp47bcuzM9j9zWd0O+Nc/LsmOjucFhs3btxGrfWQht6z6UfuWmsLMEAp5Q98rZRK0lrv+EebWUqpz4A3gG4NJWf2orUupP682d+93EyfhcDCIUOGTB47dqyjQjvm7Vmzgk2HSzlj8q0kDh/p7HBsVpBxmPlfbCBxaBjjr+xj/wlWvQIH5kG/S4k473UiDMZGmy5dupSxY8eitSbv6Wco+n4Rfhf8Hz0ffxxlbLyf1ppXt7zKB2kfMDB0IC+MfYFgj+ZL7wvxT388g0I4izyDoi1Otp7M1JVT+W7/dwRGBnLvkHtRSsHok2DeRSTtnAXnvgYDGv9BcpufwbFjyQ8OpuDlV4jq3Yew++9r/VhOVju8jo8fXU3tIW/O/L+Bzg7HZnVmM/u+/wo/A8fc95MWpfta6xJgCQ2fIxsNJAFfA9NaGEcmEPO3r6OPvCY6EK01GxZ+jX9YBN2GDnd2ODazWKz89uEu3LxNjLnEAQU01r1dXxSk93n1fyE0kZz9QVss5EydStGHHxJw1VVEzJjRZHJWa6nloRUPMWfbHM5POJ93x78ryZkQQojjkslg4skTn+Tynpfz0c6PmLpqav2F1h4BcNU30HUMfHMLbPnEoXEE33wzAVdcQdF771H47rsOncuRXD1cGHJWFzJSiknf2dBJpI7JxWQiontPMo7BQiG2VHEMObJyhlLKg/pthSn/aDMQmAOcC1wLBCmlnmhBHOuBRKVUV6WUK3Ap8G0L+ot2kJO6h+zU3Qw6+1wMNiQhHcWmH9MoSC9n7OU9cPe284Xamz6qv4i6x1lwwTtgtGFR2mIh6777KJm/gOBbbibs4YdQTWyNKK0p5aZfb+L7/d9z+8DbmT5yOiZj57sYXAghhLAXgzLw4LAHubn/zXyT+g33LruXGksNuHnDZZ9B/En1Sdq2+Q6LQSlF2CMP43vWWeQ9+xwlX37lsLkcLWlMFD6B7qz6OhVtbf74U0cR3SuJvLT9VFc4bOOeU9iyghYBLFFKbaM+kfpFa/3dP9p4Ahdrrfdpra3ARCDtnwMppT4FVgM9lFIZSqnrAbTWddSfW/sJ2AV8obVObu2HEo6xffFPuLi50Xv0yc4OxWYFGeVsWHSQxKFhxA8Ise/g276Ab++ov4/log/AhqTJWl2N/5tvUbboB0Lvu5eQO+6o35bRiMzyTCb+MJHNeZt5avRT3NDvhibbCyGEEMcLpRS3DLiFB4c9yG+HfuPWX2+lwlwBJg+49FPociJ8fQPscFzipAwGIp9+Cq9Ro8ieOpXDix1bpMRRjCYDw//TlYL0clI3/qseX4cV0zsJtCYzZaezQ7ErW6o4btNaD9Ra99NaJ2mtH2+gzUqt9fa/fW3WWr/dQLvLtNYRWmuT1jpaa/3u395bpLXurrXuprV+si0fSthfbVUlKSt/p+fIMbh5ejo7HJvUb23ciZuni/23NiZ/A1/fWP/N/5K54OLWbBddW0vGbbfjumMH4Y9NI+j665tsn1yQzBXfX0F+VT5zTpvDOfHn2Cl4IYQQ4thxRa8rmHniTDbkbmDST5MoqS4BV8/6lbSY4fDlJNi10GHzK1dXol9+Cfc+fci8+x4q16932FyOlDgsnKAob9b8bx+WOquzw7FJeGIPjC4ux1y5/c5bcka0q5RVyzHXVNP35PHODsVmf21t7GnfrY27f4Avr4foYfXf/E0ezXbRVitZDz1MxYoVlF15BQGXXtpk+2Xpy7j2p2txM7ox98y5DA0faq/ohRBCiGPOhG4TeHHsi+wp3sPVP15NTkVO/XbHK+ZD1CCYf239398OYvDyIuatNzFFRZF+y61Up6Q036mDMRgUI86Lp6ygmuTlWc4OxyYmVzfCE3qQsXN78407EUnQhE22L/6JoOhYIhJ7OjsUmxy1tXGgHbc2pv4GX0yE8H5wxRf13/ybobUm96mnKfv+e0LuuYfqUaOabP9ZymfcseQOuvp1Zd7Z84j3j7dX9EIIIcQxa1zsON487U1yK3OZ+MNE9pfuBzcfuPJLCO9b//f33l8cNr9LQACx77yNwcuLQ5MnY87sfPXu4pKCiEz0Z8OiA9RW1zk7HJvE9E4id/8+aio712XbTZEETTQrP+0AOal76Hvy6Z3i/NPftzaOvsSO92JkbYbPr4LgHvXf7N39bOpW+NYcij/+mMCrJxI0eVKj7bTWvLzpZZ5c+yRjosbw/unvS6VGIYQQogWGhg/lvdPfo8ZSw8QfJrIlb0v939dXfQWhveCzK+p/2OogpshIYt95G11dQ/pNN2Mp71zFK5RSnPB/3ag6bGbrb+nODscm0b36orWVrN3Hzjk0SdBEs7Yv/hmjiwu9x4xzdig22fzTX1sbPbxd7TNo8UGYdzF4BtUnZ56BtnWbP5/82bPxnTCB0AceaDTB1Vrz4qYXeXv721yQeAGzx83G09Q5zvoJIYQQHUnvoN7MPXMufq5+TP55MksOLfmrBH9wd/jscvyLtzlsfreEBKJfmk3N/v1k3nMPuq5zrET9IbyrH137B7Pll0NUV5idHU6zIrv3xGA0kn4MnUOTBE00yVxbw87li0kYNhIPH19nh9Osgoxy1n9/kMQhofbb2lhZBHMvBEsNXLkAfMJs6nb411/JmfYYXqNHEznzyUZL6WuteWHjC7y/430u6XEJU0+YirETXWMghBBCdDQxvjF8dOZHJPgncNfSu1iwZ0H9D1cnfgMBXem7/QlIW+Ww+b1GjiR82lQqfl9O7lNPO2weRxk2IZ7aGgubfznk7FCaZXJ3J6xb4jF1Dk0SNNGk1LWrqKmooN8ppzs7lGZZLVYWf7SrfmvjpXaq2miuhs8uh5K0+pK9IT1s6laxbh2Z90zBvW8S0S/NRpkaLlKitebZDc/yQfIHXNbzMh4Z/ggGJX8shRBCiLYK8gji3dPfZWTkSKavns7rW15HewbB1d9S4xYM8y6CdMdVXAy4+GICr7uO4nnzKPp4rsPmcYTgaG8SB4eybXE6lWW1zg6nWTG9ksjdn4q5utrZodiF/EtQNGn74p/xCwsnpndfZ4fSrC2/ppN/6DBjLu1hn62NVit8cxMcWg3nvQFdmi7u8YfqlBQybrkVU0wMMW++iaGRawm01sxaP4uPd37MFb2u4KFhD3WKM35CCCFEZ+Fp8uTlk1/m3G7n8sbWN5i+ejp1noFsGTADvEJg7gWQtcVh84dOuQfvU08h96mnOLx0qcPmcYSh53TFYray6ad/XW3c4UT37ovVYiFzzy5nh2IXkqCJRhVnZ5K+czt9x41vdHteR1GSW8m67w4QPyCEhMGh9hn016mQ/DWc9jj0vdCmLrXp6RyaNBmDtzex77yNS0BAg+201jy17inm7prLVb2v4oGhjZ9PE0IIIUTrmQwmZoyaweS+k/ly75fcveRuyk0+cPXC+gIiH58HuckOmVsZjUTNmoV7z55k3TOlU5XfDwj3oscJEexYlkl5ccdemYrq0QtlMJCx89g4h9ax/9UtnGr7kl9QBgN9xp7q7FCapK2aJXNTMLoYGGOvrY1r58CqV2DoZBh5h01d6vLzOXT9JDCbiX3nbUwREQ22s2orT659kk9TPuXq3ldz35D7JDkTQgghHEgpxR2D7uCR4Y+wLGMZr+a9SoVXIFz9Lbh4wIf/gfzdDpnb4OlJ9BtvYPDxIf2mmzHn5TlkHkcYelYXtNZs+KFjr6K5engS1rUbGbuOjXNokqCJBlnq6khe+ivxg4bhHWBbxUJn2bkyi6y9JYy6IAEvf7e2D7jrO/jhfuhxFpz5DNiQPFlKSzk0aTJ1BQXEvPUmbgkJDbazaitfFH3B57s/59qka5kyZIokZ0IIIUQ7ubTnpTx30nOk1aRx++LbqfaNqF9JU4b6JK1wn0PmNYWFEvPmG1jKysi4+RasneTOLt9gD3qfGMmuFVmU5lc5O5wmRffuS07qHsy1Nc4Opc0kQRMN2r9pHZWlJfQ9ebyzQ2lSeXENq75MJaqHP71GNbxi1SLp6+HL6yFqEFzwLthQTdFaWUn6TTdTs38/0a+8jMeAAQ2201rzxJonWFm+kuuTrufuQXdLciaEEEK0s/FdxnNV8FVsyNnAPUvvwRwQV7+SZjXDhxPqr9ZxAPdevYh6/jmqd+0i64EH0FarQ+axtyFndkEZFRu+P+DsUJoU3SsJS10d2XscsxLaniRBEw3avvhnvAOD6DpgsLNDaZTWmt8/243Fohl7Rc+2JzvFafDppeATDpd9Dq7N30Oma2vJuPMuqrZuJerZZ/Ee1XAhEa01z6x/hvl75nOa72ncOehOSc6EEEIIJxniNYSpJ0xleeZyHlj+AHXBiTDxf1BbUb+SVprhkHl9xo0j7IH7OfzLrxS9/75D5rA3L383+p4Uxe61ORTnVDg7nEZF9ewNSh0T2xwlQRP/UlaQz8Etm0gaeyoGY8e9j2vfpnwObC1g2ISu+Ie28VLnmsP1yZnFDFcsAO/m71DTFgtZDz5IxfLlhE9/DN8zGr6KQGvN7E2zmbdrHlf2upIJ/hMkORNCCCGc7MLuF3LfkPv4Je0Xpq2ahjWsD1z1FVQV1ydpFQUOmTdg4kR8xo8n78XZVG1z3IXZ9jTo9DiMrkbWLey4q2juXt6ExsUfE4VCJEET/5K89Fc0mqRxHXd7Y3W5md8/201IrA8DTolp22BWC3w5qf5w8MUfQHBis1201uTMmEHZoh8IvXcKARdd1GjbN7e+yXs73uOSHpdw/9D7JTkTQgghOoiJfSZy64Bb+Xbft8xcOxMdOQiumA9lmfDJJVBr/7NiSikiZjyOS2gImfdMwXL4sN3nsDcPH1f6nxxN6sY8CjI6brzRvZPI3rubOrPZ2aG0iSRo4ihWq4XtS34mru8A/ELDnB1Oo1Yu2Et1RR3jruqJwdjGx/jXx2DPj/UFQbqdbFOX/NkvUfLZ5wRNnkTQpEmNtntvx3u8vvV1zks4j4eHPyzJmRBCCNHB3NjvRq7tcy2f7/6cFze9iI4ZDhe8A5kbYcF1YKmz+5xGPz+innsec3Y2OdOmobW2+xz2NvC0WNw8XVj7bcddRYvunUSduZac1M59Dk0SNHGUQ9u2cLggn74nN7xdryM4tLOQlDU5DBwfS0iMT9sG2zwPVr0MQ66HYZNt6lL43vsUvvUW/hddRMg99zTabt6ueby48UXO7Homj53wGAYlf9yEEEKIjkYpxd2D7+aSHpfw/o73mbNtDvSaAGc9C3t+gEX3ggMSKM9BAwm5/XbKFv1A6Zdf2n18e3PzNDHg1FgObisg50Cps8NpUHTPPgCdfpuj/ItRHGXb4p/w8PGl25Dhzg6lQbXVdSydtxv/ME+Gnt2lbYOlrYaFd0LXk+pXz2xQ8tXX5M2ahc/ppxP+2LRGV8Tm75nP0+ue5pTYU3jyxCcx2lANUgghhBDOoZTi4eEP859u/+HVLa/yUfJH9T+4HXUXbHwflj/vkHmDJk/C84QR5DzxJDX7HFPi3576nRyNu7eJdd/ud3YoDfLw8SU4tgvpuyRBE8eIytIS9m1YS++TTsHFZHJ2OA1a9+0BDhdWM+7KnriY2pD0FKfB51eAfyxc/CEYm/+8lZs2kT1tGp4njCDy2VmoRgqofLvvW2asnsHoqNE8O+ZZTIaO+XsphBBCiL8YlIHpI6dzWtxpPLvhWb7Y/QWcMg36XgyLZ8CWT+0+pzIaiXzmGQyenmTefQ/W6mq7z2FPru4uDD4jjvRdxWTuKXZ2OA2K7pVE1p5dWOrsvzW1vUiCJv60a8UyrBYLfced5uxQGlSQUc62Jen0GRNFZKJ/6wf6o2KjtQ4u/xw8AprtYs7NI+POOzFFRBA9ezYGV9cG2/108Cf+u/K/DI8YzovjXsRkQ+InhBBCiI7BxeDCM6Of4aTok5ixZgZf7/sfnPta/W6bb2+D1N/sPqcpNJTIp5+iZs8e8mbNsvv49pY0JgoPHxNbfk13digNiumdRF1NDbn79zo7lFaTBE38Kfn33wjvlkhQdKyzQ/kXrTUrF+zF1cOFEefGt36gv1dsvOhDmyo2WmtrybzjDqwVlUS/+gpGP78G263PWc9Dyx9iQMgAXhr3Em5Gt9bHKYQQQginMBlNPD/2eUZGjmTaqmksTPsJLvkYQnrCFxMhe6vd5/QeM4bAa6+l+JNPKfv5Z7uPb08urkb6jI7i4PYCSvPtX+WyraJ7JQGQ3onPoUmCJgDITztA/sH99B5jWxXD9nZwWwEZKcUMm9AVd682rEodVbFxnE1dcmc8QdXWrUTOnIl79+4NttlXso87l9xJjE8ML5/8Mp6mNt7LJoQQQgincTO68dK4lxgaPpRHVz7KTzlr6u9JdfeHeRfVH5Wws9C778I9KYnsR/+LOTPT7uPbU9JJURgMim1LHHOhd1t4+vkTGBVDZkqys0NpNUnQBADJvy/GYHSh56iTnB3Kv1jqrKxckEpAuCd9xkS1fqCURUcqNl5nc8XG4s+/oGT+fIImT270Iur8ynxu/vVm3IxuvHHqG/i5NbzCJoQQQojOw93FnVdOfoUBIQN48PcHWVyyC65cAHXVMO/C+gut7Ui5uhL1wvNgsZB5733oDnyGysvPjYTBoexalU1tdceLMyKhB7n7UzvF9QUNkQRNYLVY2LV8CfGDhuLh4+vscP5l+9IMSvOrGHVhIsbW3nlWkg7f3AwR/eGMp23qUrlpMzlPPIHX6NGE3HVnw23Mldz6262U1JTw2imvEekd2br4hBBCCNHheJo8ee2U1+gd1Jspy6bwe20+XPoJFB2A+deAxb4XIrvGxhI+fTpVmzdT8Pobdh3b3vqNi8FcbSFldbazQ/mXsG4JVJaWcLiwwNmhtIokaIKD2zZRWVpC75M63vbGqsO1rP/+ILF9AolLCmrdIBZz/UWTVgtc+D64NH82rL4oyB2YIiKIeu7ZBis21lnrmLJsCnuK9/D8Sc/TO6h36+ITQgghRIfl7erNG6e9QaJ/IncvuZtVrgaY8BLsXwo/3G/3O9L8zjkbv3PPpeDNN6ncuNGuY9tTWFdfwrr6sm1JBtrasVaqwuPrawzk7uuchUIkQRPsXLYYdx9f4gcOcXYo/7J24QHMNRZGXdh8MY9GLX4CMtbBhNkQ1K3Z5tbaWjLvvLPJoiBaa55Y8wQrMlfw6IhHGR09uvXxCSGEEKJD83X1Zc5pc+ji14U7F9/J+oju9XekbXgP1r5l9/nC/vtfTFFRZN53H5ayMruPby/9To6mNK+KtORCZ4dylJC4rhiMRnI6aSVHSdCOc9UV5aRuWEPPkWMwunSskvCFmeXsXJ5J0klRBEZ4tW6Qvb/Cytkw+Broe6FNXXKfeJKqLVuaLAry9va3+XLvl0zuO5kLu9s2rhBCCCE6L393f+acNoco7yhu++029gy6HHqeAz89BHt/setcRm8vop5/jrq8fHIee6zDnqXqNigULz/XDlcsxMXVleCYLuTuT3V2KK0iCdpxbs/qFVjMZvqcdIqzQzmK1poV8+vL6g87u2vrBinLhq9vgNA+Np87K/7iC0q++KLJoiAL9y3klc2vMCF+ArcPvL11sQkhhBCi0wnyCOKt097Cy+TFHUvvpOisZyAsCeZfC7k77TqXR79+hNx2G2WLfqD0m//ZdWx7MRoNJJ0UTfrOIoqyK5wdzlHCuiWQu29vh01umyIJ2nEu+ffFBEXHEhaf4OxQjnJweyEZKcUMPacr7t6tWNmz1NXfd2augos+AJNHs12qU1LIfeJJvE48sdGiIGuy1zB15VSGhw9n+sjpKKVaHpsQQgghOq0wrzBeGvcS+ZX53LPqUcyXfAyuXvDpJVCeb9e5giZPwnPoUHJnzKA2zf6l/e2hz+hIjC4GtnewVbTw+ESqK8opzc1xdigtJgnacaw4J4us3TvpPebkDpVo1JfV30tAuCdJJ7WyrP7vsyBtBZz9AoQ0vE3x76yVlWTefQ9GPz8iZz3TYFGQvcV7uXvJ3XTx68KL417EZOxYW0KFEEII0T76hvTl8VGPszF3IzNTPkRf+kl9cvb5FWCutts8ymgkctYzYDLVl94327dqpD14+LiSOCyMlDXZVFd0nPjCutXXL+iM59AkQTuO7fx9MShFr9FjnR3KUbYvzaA0rw1l9fcvg2WzYMAVMOAym7rkPPkktQcPEvnsLFwCA//1fn5lPrf+divuLu68fsrr+Lj6tDwuIYQQQhwzzo4/m+uTrmfBngV8eng3nP8mpK+FhXfYtbKjKSKCiOnTqd6+nfxXX7PbuPbUb1w0dbVWdq3qOCX3g2NiMZpMnfIcmiRoxylttbLz9yXE9R2AT2Cws8P5U1V5G8vql+fBV5MhOBHOetamLqXffU/pl18RdOMNeI0Y8a/3K82V3Lb4NkpqSnj1lFeJ8I5oeVxCCCGEOObcMegOxkaPZdb6WawJDIeTH4Vtn8Py5+w6j+8Zp+N34QUUzplDxdp1dh3bHkJifIhM9Gf70gysHaTkvtHFREhc105Zal8StONURkoyZfm59BnTse4+W/ftkbL6F7SirL7VCl/fCNWl9efOXJuv/Fh76BA506bhMXAgIbfd9q/3LVYLDyx/gJSiFGaNmUWfoD4tj0sIIYQQxySDMvD0mKfp6teVKUunkNb/Iuh3Sf0VP3au7Bj+0EO4xsWR9cADWEpK7Dq2PfQbF83hwmoObus4l0OHxSeSeyAVbbU6O5QWkQTtOJW87DdM7h4kDDvB2aH8qSirguTlmSSNjiQwshVl9de+CfsWwxlPQVjziZSurSVzyr1gNNZfRu3i8q82z214jqXpS3lg6AOMjRnb8piEEEIIcUzzMnnx8skvY1AGbl9yB4dPfxLC+sJXN0Cp/QpnGLy8iHzuOeoKC8meOq3DVSfs2j8Y70A3ti1Od3YofwrvlkhtVRVF2ZnODqVFJEE7DplrqtmzZiXdR4zC5Obu7HD+tPrrVExuRoZOaEVZ/dyd8Otj0OMsGHytTV3yXnqJ6u3biZgxA1PUv4uRzNs1j7m75nJlryu5vNflLY9JCCGEEMeFGJ8YXhj7Aull6dy/eiqWC98FSy0suA4s9iuc4ZHUh9C77uTwzz9T9v0iu41rDwajgb5jo8ncU0JBRrmzwwEg/EiV8s52Dk0StONQ6rrVmKurOtTdZxkpRRzcXsjgM7vg4e3ass51NfXnztx9YcLLYENFyvLlKyh69z38L70E39PH/+v9JYeW8My6Zzg55mTuHXJvy+IRQgghxHFnaPhQHhr+ECsyVzA77TuY8FJ90ZDFM+w6T+A11+CelETuM09jKSuz69ht1XtUJC4mA9uWdIxVtMCoGFzc3DrdOTRJ0I5Dyb8vxjckjOieHeM8lbZqVn6ZinegG/1Ojm75AItnQO4OOPc18A5ptnldfj5ZDz6IW2IiYQ8++K/3kwuTeWD5A/QJ6sPTY57GaPh3yX0hhBBCiH+6uMfFXNLjEj5I/oCffHxgyHWw8iXY/aPd5lBGI+GPPYalsIj82S/ZbVx7cPcy0WNEOHvW5VJVXuvscDAYjYR26UaOJGiiIztcWEDa9i30HjMOZegY//v3rM+lIL2cEed2w8XUwmTowO+w6lUYcj10P73Z5tpqJeuBB7BWVBD1wvMY3I/e4plVnsVtv91GgFsAr5zyCh4uzV9wLYQQQgjxhweGPkC/4H5MWzWNQyNvgfB+8M1NUGK/VSWPpD4EXH45xZ9+StX2HXYb1x76jovGYrayc0WWs0MB6s+h5R3cj9VicXYoNusY/0IX7WbXiqWgNb07SPXGuloLa77ZR0isD92HhrWsc1UxfH0TBHWD8U/Y1KXw3XepWLWasIcfwi3x6EqRFeYKbv3tVmrqanj91NcJ9ug41w8IIYQQonMwGU08e9KzGJWRe1c+Qs3/zQFLHSy4Furst6oUcucdGIODyHnsMXQHSj6CIr2JTPRn16rsDlHIJDw+gbraGgozO8a2S1tIgnYc0VqTvOw3Irv3IiA80tnhALBtSQblxTWMvCABZWj+7NhRvr8XynPh/94GV89mm1du3kz+7JfwOeMM/C+66Kj3rNrKw8sfZn/pfp4b+xzd/Lu1LBYhhBBCiCMivSN58sQn2VW0i2f3fwnnvgIZ6+G36Xabw+jjQ/hDD1GdnEzxp5/ZbVx76DUygtK8KrL3lTo7FMK61f9AvjOdQ5ME7TiSd2AfRZnpHaY4SNXhWjb+cJAu/YKJ7hHQss7b5sOOBTD2QYga1GxzS2kpmVOmYIqIIGLG46h/FBJ5c+ubLE5fzL1D7mVk5MiWxSKEEEII8Q9jY8ZyTZ9r+Hz35/zo6QFDJ8PqVyHFftUXfc48E6+RI8mfPRtzXp7dxm2rboNCMbkZ2bUq29mhEBAeiauHZ6c6hyYJ2nFk77pVKIOBxOEdIwFZv+gg5lorJ5zfwtWqknT4fgrEDIdRdzfbXGtN1iOPUJdfQNSLL2D08Tnq/V/SfuGNrW9wbrdzubLXlS2LRQghhBCiEXcMuoP+If15bPVjpJ1wI0QMqD+PVpxml/GVUoRP/S+6tpa8p5+xy5j2YHIzkjgklNSNedRW1zk1FmUwEBafQO5+SdBEB5S6fg3RvZLw8PF1diiU5FaSvCyT3idGEhjRgkuprZb6c2faAue/BcZ/Xy79T8Vz51H+62+E3nMPHn37HvXe7qLdPLLiEfqF9GPqCVP/tbImhBBCCNFaJoOJZ8c8i4vBhSkrHqo/j6ax63k01y5dCLrhBsoWLaJ85Uq7jGkPvUZFUldjIXWj81f2wuITyE87gKXOfnfSOZIkaMeJoqxMCjMOkTB0hLNDAWD1N/swmgwMO6eFl1KvfhXSVsCZsyCw+b5VycnkzZqF99ixBF5z9VHvFVcXc+eSO/Ex+TB77GxcjS28f00IIYQQohkR3hHMPHEmu4t380zq53Duq5C5EZbOtNscQZMnYYqLJffxGVhrauw2bluEdfUlINyTXSudv80xvFsilro6Cg7ZZ+XS0SRBO07s27AGgIQhzk/QslJL2L85n0Gnx+Lp24KkKH8PLH4Cek2AAZc329xSXkHmPfdgDAwk4qmZR62Oma1mpiybQn5lPi+d/BIhns3fnyaEEEII0RpjosdwbdK1zN8zn0XuLjDoalgxGw6usMv4Bjc3wqdOpTYtjcK337HLmG2llKLXyEhy9pdSnFPh1FjC4o8UCtmf6tQ4bCUJ2nEidf0aQrt0wzck1KlxaK1Z9WUqXn6u9D811vaOVit8dxeYPOHsF6CZrYhaa3KmTcOcnkHU88/hEnB0EZJZ62axPmc9j418jKTgpFZ8EiGEEEII290+8HYGhAxg+urpHBh5EwTGw1c31l8bZAfeo0bhe9ZZFM6ZQ21ax1gp6jEiHGVQTi8W4hcahru3Dzn79jg1DltJgnYcqCgpJmtvSofY3pi6MY/cA2UMPzcek2sLLqXeMhfSVsL4GeDdfJJZ+uWXlH3/PSG334bnkCFHvbdgzwI+2/0ZV/e+mgndJrT0IwghhBBCtJjJUH8/mqvRlXtX/Zfq816D8hz47h6w031hoQ8+gHJ1JefxGR3iDjJPX1e69A0iZU0OFovVaXEopQiLTyBHVtBER7Fv41rQ2ukJmqXOyppv9hEU5U2PERG2dyzPh5//C3GjYOBVzTav2buXnCeexPOEEQTdcMNR723K3cSTa59kVOQo7h7cfAVIIYQQQgh7CfcKZ+aJM9lTvIcn0xfB2Icg+SvY9rldxjeFhhJy111UrFzJ4R9+sMuYbdVrZARVZbUcSi5yahzh3RIpTE/DXNsxzug1RRK040Dq+jX4hYUTHNvFqXHsWpVNWUE1J5zfDUNLLqX+6SEwV8I5s5vd2mitqiLj7rsxeHkRNWsWyvjXKl1xdTFTlk0hyjuKZ8Y8g9HQghU8IYQQQgg7GB09mhv63cA3qd/wVVgXiB0J398LRQfsMn7AZZfi3qcPuU89jaW83C5jtkVsUhAevq7sWpnl1DjC4hOwWiwUpB10ahy2kATtGFdbVcmh7VtIGDLCqSXk68wWNiw6SHi8H7F9Am3vuPdX2D4fRk+BkO7NNs+dOZPaffuJnPUMLiF/Ff7QWjNjzQxKakp4/qTn8XPza83HEEIIIYRos1v638KIiBE8ue4pdp58HygDfHUDWNp+Z5gyGgl/bBp1BQXkv/SyHaJtG6PRQM/h4aRtL6SyzD5XC7TGH4VCOsM5NEnQjnEHtmzCUlfn9O2NO1dkUVFSw/D/dLU9UaythO/vgeDucGLz2xHLly+nZP4CgiZdj/eoUUe9993+7/gl7RduG3AbPQJ7tOYjCCGEEELYhdFg5JkxzxDgHsA9G2dResaTkLEOlj9vl/E9+vbF/9JLKJ43j+qdO+0yZlv0GhWB1arZvSbHaTH4BAXj6effKSo5SoJ2jEtdvxoPH18ie/RyWgzmWgsbf0gjMtGfqB4BzXf4w7KnoSStfmuji1uTTS3lFWRPm4ZrfDzBt99+1HtZ5VnMXDuTQaGDuKbPNS3/AEIIIYQQdhboHshzJz1HbkUujxatw5p0ESx7BtLX22X80LvvxhgQQPb06Wir8wp0AASEexEe78euVVlOK16ilCK8WyI5+/Y6Zf6WkATtGGapM3Ng8wa6DRmOwYnnrZJ/z6SyrLZlq2fZ22DVqzBoInQZ1Wzz/NmzqcvOIeKJGRhc/7pbzaqtPLryUazaypMnPinnzoQQQgjRYQwIHcC9Q+9lacZS3osfAL5R8NUkqDnc5rGNvr6EPXA/1Vu3UfLF/LYH20a9RkVQnFNJ7oEyp8UQFp9AUWYGtdVVTovBFpKgHcPSd+6gprLCqdsba6vr2PRTGtE9A4hMtHH1zGqBhXeCZyCc9nizzSs3baZ43jwCrrgCz0GDjnrv450fsz5nPQ8Oe5Bon+jWfAQhhBBCCIe5vOflnNHlDF7Z8Tbrxt0DJYfghwfsMrbvhAl4Dh9O3gsvUFdYaJcxWythcCgurgan3okWFp+I1lbyDuxzWgy2kATtGJa6fg0ubm7E9h3gtBi2L82g6rCZ4f+Jt73T+ncgaxOc8TR4NJ3UWWtqyH70UVwiwgm9+66j3ttbvJeXNr3EuJhxnJdwXsuDF0IIIYRwMKUU00dOJ843jvt2f0DuCTfDlnmw81u7jB0+bSrWqiryZj1rh2hbz9XdhYTBoezdkIu5xuKUGMK71RcK6ejn0CRBO0Zpq5V9G9bQtf9gTK5Nn99ylNqqOjb/coi4pCDC422smliaAb89Dt1OgaQLmm1e8Oab1O7fT8T06Ri8vP6a21LLQ8sfwsfVh2knTHNqBUshhBBCiKZ4mjx5ceyLVNVVcV9dOuaIfvDd3fV3wbaRW3w8QdddR+n//kfFunV2iLb1eo2MxFxtYd/mPKfM7+UfgHdQcIc/hyYJ2jEqd38q5UWFTt3euHVxOjUVdQyb0NX2Tovur9/ieM4Lzd55Vr17N4Vvv4PfuefiPXr0Ue+9tuU1dhfvZvrI6QR5BLUmfCGEEEKIdtPNvxuPnfAYm/O38GKPUVBTBt/fDXYoqhF8042YoqLImf44utZ5pe4jEvzwC/Vg10rnbXMMj0+QFTThHKkb1qAMBroOGuqU+WsqzWz5NZ2u/YMJjfO1rdPuH2H39zD2QQjo0mRTXVdH9iOPYvT1JfTBo/dpb8rdxPs73ueCxAsYGzO2dR9ACCGEEKKdnRV/Fpf1vIyP077n92FXwa6FsH1Bm8c1eHgQ9ugj1O7bR+EHH9oh0tZRStFrZARZe0soyat0Sgxh8YkUZ2dSXeH8S7wbIwnaMSp1/Rpieifh4e3jlPm3/JpObVULVs/M1fDjgxDcA064tdnmRR9+RPWOHYT/91FcAv46p1ZeW87DKx4myjuK+4be19rwhRBCCCGc4t4h95Lgn8D0sq0cjh4Mi6ZAWdtXnHzGjcP71FMoeP11ajMy7RBp6/QcEYFSkLLaOatof5xD68iFQiRBOwYVZWVSmHGIbkNOcMr81eVmti5Op9ugEIKjbUwQV70CxQfgzGfAaGqyaW1aGvmvvIL3Kafgc8YZR703a/0ssiuymTl6Jl4mr0ZGEEIIIYTomFyNrswYNYOCqgKei+8PdbWw8A67bHUMf/hhUIrcmTPtEGnrePm7Ed0rkL3rc51yJ1pYfAJAhz6HJgnaMWjfhjUAJAwd7pT5N/9yCHONhaHn2Lh6VnIIlj8Pvc+FbuOabKq1Jvu/U1EmE+FTpx5V/GPJoSV8nfo11yVdx8DQgW35CEIIIYQQTpMUnMQ1fa7hq/RfWXXCdbD3Z9j8cZvHNUVGEnLbrZQvXszhJUvsEGnrJA4Jo6ygmtyD7X8nmoePL36hYeRKgibaU+r6NYR27YZvcGi7z11ZVsu2JekkDgkjKNLbtk4/PVJfEGT8k802LZk/n8p16wi9715MYX99vqLqIh5b/Rg9AnpwS/9bWhu+EEIIIUSHcMuAW+jq15VpResp7zIKfny4/ofabRQ4cSKuXbqQ9+xz6Lo6O0TacvEDQzC6GNi7Ptcp84fEdaUgo+2/l44iCdoxpqKkmKy9KU6r3rj55zQsZitDz+5iW4d9i2HXtzB6CvjHNNnUnJdH3rPP4Tl8OP4XXfTn61prHl/9OIdrDzNz9ExMzWyRFEIIIYTo6NyMbswYNYO8qjxe6NIH0PC/W8FqbdO4ymQiZMo91O7fT8mCL+0TbAu5ebgQlxRE6oY8rNb23+YYGBVDSU42FiclqM2RBO0Ys2/jWtCahKHtf/6ssqyW7csy6T48nIBwG85/1dXWl9UPjIeRtzfbPHfmU+iaGiKmP3bU1saF+xfy26HfuH3g7XQP6N6WjyCEEEII0WH0D+nPVb2uYn7aj6wZeQMc+B3Wv9PmcX1OPRWPwYPJf/VVLOUVdoi05RKHhlFZVkvmnuJ2nzswMhqrpY7SPOes4DVHErRjTOr6NfiFhRMcE9fuc+9ckYnFbGXwGTbOvfYNKNwLZzwDLk1fpn14yRIO//gjwbfcgmuXLn++nl2ezVNrn2JQ6CAm9p7YhuiFEEIIITqe2wbeRhffLjxWuIrK+HHw6zQobFsFQqUUYfffh6WggKL33rNTpC3TpW8QJnejU7Y5BkZFA1CUmd7uc9tCErRjSG1VJYe2byFhyIijVpjag8ViZfuyTGJ7B9q2elaWBctmQfczofv4JptaKyrImTEDt8QEgq679q/XtZX/rvwvFm3hiROfwGgwtvVjCCGEEEJ0KO4u7jw+6nGyyrN5sWvv+mrX39wMVkubxvXo3x+fM8+g8P33Mefm2Sla27m4GonvH8L+zflYzG3bttlSgZFHErSsjHad11aSoB1DDm7bjKWujoQh7X/+bP+mfCpLa+k7Ltq2Dr9MBYsZzniq2ab5L79CXVY24dMfR7m6/vn6pymfsjZnLfcPvZ8Yn6bPrwkhhBBCdFYDQwdyRa8r+Gz/QtafeCukr4X177Z53NB77kHX1ZH/yst2iLLlEoeFUVNZx6Gdhe06r5unF14BgRRlSoJmN0qpeKXUu0qpBUe+Pk8p9bZS6nOlVNPLMcewtK2bcfXwIKJ7z3afe9uSDHxDPIjrE9R844MrYPt8OPEuCGy6FH/VjmSKPv4Y/8suxXPQX6Xz95fu58WNLzImegwXJF7QxuiFEEIIITq2OwbdQYxPDFNzl1LZdQwsngGHc9o0pmtMDIGXX0bpV19TvWePnSK1XXTPANy9TexxxjbHyGiKsjrpFkelVIxSaolSaqdSKlkpdWdrJ1NKvaeUylNK7WjgvTOUUruVUqlKqQebGkdrvV9rff3fvv5Gaz0ZuAm4pLXxdXZp2zcT06cfRheXdp03L62MnP2l9BsbjTI0s7XSUgeL7gO/WBh1V5NNdV0d2VP/i0tQEKH33PPn62armYeXP4yHiwfTR05v9+2cQgghhBDtzcPFg8dHPk5GeQYvd0mCuhr46eE2jxt0000YvLzIe+45O0TZMkajgYRBoRzcWkBtdftWVKxP0DKccll2c2xZQasDpmitewMjgFuVUr3/3kApFaqU8vnHawkNjPUBcMY/X1RKGYHXgDOB3sBlSqneSqm+Sqnv/vGrqcu9Hj0yznGnJCeb0rxc4voOaPe5ty3JwORmpOfIiOYbr38H8nbCGTPB1bPJpkUffUzNzl2EPfooRp+/Hq93tr1DcmEy/x3xX4I9gtsavhBCCCFEpzAkfAiX9byMTw5+z6YhV8COL+uvLGoDl4AAgm+6iYrfl1OxerWdIrVd4tAw6sxWDm4raNd5A6OiqamooLK0pF3ntUWzSy1a62wg+8h/H1ZK7QKigJ1/a3YScJNS6iytdY1SajLwf9QnXH8f63elVJcGphkGpGqt9wMopT4DztVaPwWc01yMqn4J5WngB631pkbaTAAmREVFsXTp0uaG7HTyk7cAkFtlbtfPV1et2bNOE9ANVq9d0WRbU20Zw9c+TlnAALbleEPu0kbbGgoKCZ49m9p+fdnkaoIjn+lQzSHezHmTIV5DcD3oytKDjY/RUZWXlx+Tz6DoPOQZFM4mz6Bwts78DA62DuYn40/cX7SV+R4RuC24lQ1DXsJqdG2+c2NiYwgODGTf1KkUPfQQGNrvFJTWGpMnrP5xJ1mVKe02b1lBEQCLF32HT2THqmXQor1wR5KrgcDav7+utZ6vlOoKfK6Umg9cB5zWgqGjgL9vAs0AhjcRRxDwJDBQKfUQUAGcCvgppRK01m/+s4/WeiGwcMiQIZPHjh3bgtA6h283rsInKITTzzu/Xbf8bVh0AG09wBlXDG++euNPj4C1isDL3mJsaOPn5LTWpN94I5UuLvSZPRtTZCQAZouZFxe+SLBnMLMnzMbPzc+eH6XdLF26lGPxGRSdhzyDwtnkGRTO1tmfQZ9MH2789UY+HnIWdyx/lzHGTTC2yRNCzSqtriHrvvsYUFaG/3nn2SdQG7kVpbL1t3RGDBmFu7epXeYsK8hj73cLiA0Jpn8HexZsTo+VUt7Al8BdWuuyf76vtZ4FVANvAP/RWpfbLcp/z1Wotb5Ja91Na/2U1vplrfXgI6/9Kzk71lmtFg4lbyWu34B2Tc5aVFq/JB3WzYH+l0MTyRnA4R9+oOL35YTedeefyRnAvF3z2F+6n6kjpnba5EwIIYQQoq1GRo3k3G7n8l7mYlJ6nQnLX2jz3Wi+Z5+Fe58+5L/0MtbqajtFapvEoWFYrZp9m9uv3L9PYDAubm4dstS+TQmaUspEfXI2T2v9VSNtRgNJwNfAtBbGkQn8fW0x+shrwga5+1Kpqaho9/NnLSqtv/RpQDX70x1LaSk5M5/CPSmJgCuu+PP1/Mp83tj6BmOix3BSzEltjFwIIYQQonO7b+h9+Lv5M9WthjoXN1h0L7Sh4IUyGAi9/37qsrMp+uhjO0bavOAYb/zDPNv10mplMPxZKKSjsaWKowLeBXZprV9opM1AYA5wLnAtEKSUeqIFcawHEpVSXZVSrsClwLct6H9cS9u2GYDYdk7Qti1Jx8+W0vp5KbD1Exg2Gfyb3uOb9/wLWIqLiXh8Osr418XTszfNptZay/1D77dH6EIIIYQQnZqfmx+PjHiEXaWpfNj/zPpiIclft2lMr+HD8B47lsI5c6grKrJTpM1TStF9WBiZe0soL65pt3kDI6M75F1otqygjQKuAk5WSm058uusf7TxBC7WWu/TWluBiUDaPwdSSn0KrAZ6KKUylFLXA2it64DbgJ+AXcAXWuvkVn+q40za9i2EdInH07f9tv3Vl9Yvo68tpfUXzwCTF5x4T5PNqpKTKfniCwInTsS991+FQrfmb+Xbfd8ysfdE4nzj7BG+EEIIIUSnd1rcaZwaeyqvF27kYGRf+PEhqP7XSaQWCb13CtbKSoree89OUdomcUgYaEjd2H6raIFR0ZQV5GGuad8tnc1pNkHTWq/QWiutdT+t9YAjvxb9o81KrfX2v31t1lq/3cBYl2mtI7TWJq11tNb63b+9t0hr3f3IubIn2/rBjhe11VVk7Ulp9+2NNpfWT18PKd/BqDvAq+mVtvznn8fo70/wLTf/+ZpVW3lq7VOEeIRwQ78b7BG6EEIIIcQx4+HhD+Pm4sa0sDCs5bmwpG3/jHZLSMD3jNMp/vQzLKWldoqyef5hnoTE+rTrNsfAyBjQmuLsrHab0xbtV0NTOETGrh1YLXXE9RvYbnNWltWyd0MuPU+IwM2jiUKgWsOvj4FXCIy4pckxy1espGLVaoJvufmoO8/+l/o/kguTuXvw3XiZmilEIoQQQghxnAnxDOG+IfexqWQP85PG1xdly9rSpjGDbrgBa0UFxZ98Yp8gbZQ4NIy8tMOU5Fa2y3yBUfV1FIoy05tp2b4kQevk0rZtwWgyEdWzd/ON7SR5eSbWOk3fsVFNN9z3G6StgDH3g5t3o8201Urec89hio7G/9JL/3y9rLaM2Ztm0z+kP+fEN3sdnhBCCCHEcem8hPMYETGCF2oOku0dDN/dDVZLq8dz79kTr5PGUPTRx1gr2ydZAkgcEgoK9m5on1W0gPBIUKrDFQqRBK2TS9u2maiefTC5urXLfJY6Kzt+zyS2TzOl9a1W+HU6+MfB4GuaHLNs4UJqUlIIufsuDK5/XbL45tY3Ka4u5qHhD7Xr9QFCCCGEEJ2JUoppJ0xDA4/HJ6GzNsGWeW0aM/jGG7EUF1OyYIF9grSBd4A7kQn+7F2fi25DRUpbubi64hca1uEKhUiC1omVFxVSmHGoXc+f7d98pLT+2GZK6yd/BTnb4ORHwaXxm+2tNTXkvfQS7n364HvmmX++vq9kH5/u+pT/S/w/+gT1sVf4QgghhBDHpGifaO4YeAcrylL5PrYfLH4SaitaPZ7noEF4DBlM4Xvvo2tr7Rhp0xKHhlGcU0lBhsOuVD5KRyy1LwlaJ5a2fQtAu54/s6m0vsUMi5+AsCRIurDJ8YrnzqMuK5vQ++5FGeofR601T697Gg8XD+4YdIc9wxdCCCGEOGZd1vMy+oX04xn3Oooq82DVq20aL/jGG6nLyaF04UI7Rdi8hEGhGAyq3YqFBEZGU5yVibZa22U+W0iC1omlbd+Ch68foXFd22U+m0vrb/oIig/AKVPB0PgjZikpoeCtt/AaMxqvESP+fH1x+mLWZK/h1oG3EugeaM+PIIQQQghxzDIajEw/YTqH66p4PX4ArHwJDrc+0fE68UTcevei8O130JbWn2lrCXdvE5Hd/UnbUdgu8wVGRVNnrqWsIL9d5rOFJGidlNaaQ9u3EJvU/8+VJ0fbviwTl+ZK69dWwLJnIHYkJI5vcryCOW9jPXyY0ClT/nytuq6aZ9c/S4J/Ahf3uNheoQshhBBCHBcSAhK4qPtFLLAWsV9ZYOnMVo+llCL4hhuoPXiQw7/8YscomxaXFERRVgWHixx/P1lg5JFKjh1om6MkaJ1UQXoaFSXF7Xb+rLrczN71ufQYFtZ0af21b0J5Lpw6DZoo7GHOyqJ47lz8zj0X9x49/nz9w+QPySzP5IFhD2AymOz5EYQQQgghjgs3D7gZdxcPZnftW7+zKW9Xq8fyOe00XLt0oWDOnHYp3AEQe+QoTXusogVGxQB0qEIhkqB1UmnbNgMQ129Au8y3a1U2FrOVpJOaKA5SVQwrXoLuZ0LsiMbbAfkvvQxAyB23//ladnk272x/h1NjT2VERNP9hRBCCCFEwwLdA5nUdxJLanNZ7+0Pv0xt9VjKaCRo8iRqdu6iYsUK+wXZhIBwT3yC3DmU7PgEzcPHF3dvH4qyOs5daJKgdVJp27cQEBGFb3Cow+fSVs2O3zOISPAjOLrx+8xY9w7UlMLJjzQ5XnVKCqXffkvgxKswRUb++fqzG54F4L6h99klbiGEEEKI49WVva4k3Cuc56O6YN37M+xf2uqx/CZMwCU8nMK35tgvwCYopYjrE0R6SjEWs2OLdyilCIyKkS2Oom3qzGYydu1ot9WzQzuLKCuopm9Tq2e1FbDmdeh+BoT3bXK8vOeex+DrS9DkyX++tiprFb+k/cKkvpOI9I5sorcQQgghhGiOu4s7dwy8g+SaAn4IiYWfH62/p7YVlKsrQdddS+WGDVRu2mTnSBsWlxREXY2FrH0lDp8rMDJatjiKtsnes4u6mhri+rZPef0dyzLw8HUlfmBI4402fghVRXDiPU2OVbFqFRUrVhB8440Y/fwAMFvMPLX2KWJ8Yrgm6Ro7Ri6EEEIIcfw6O/5segX24qVAP2pyt8O2z1s9lv+FF2IMCGi3VbSoHgEYXFQ7nUOLprK0hOry9rl7rTmSoHVCadu3oAwGYvo0vVJlD2UFVRzcUUifEyMxujTyuNTVwqpXIO5EiB3e6FjaaiXvuecxRUYScMXlf77+8a6POVh2kAeHPYib0c3eH0EIIYQQ4rhkUAamDJlCdm0p86J7wuIZYK5q3ViengROvIryZcuoTkmxc6T/ZnIzEtU9gEPtkaD9WcmxY5xDkwStE0rbtpmIhB64eXo5fK4dv2eilKLP6Ca2HW77DA5nweimV88O//Yb1Tt3EnzH7Rjc6hOxnIoc3tz6JmNjxjImeow9QxdCCCGEOO4NjxjOSdEn8bableLy7PojKa0UcPnlGLy8KJzzth0jbFxcnyCKcyopK2hdUmmrwKgjCVoH2eYoCVonU1V+mJz9qe1y/qzObGHXymy69g/GO8C94UZWC6x4ESIGQLeTGx1La03B62/gGheH3znn/Pn68xuex2K1cP/Q++0cvRBCCCGEALhn8D1UWc282bUfLH8Rylt3KbPRz4+Ayy+j7McfqU1Ls3OU/xaXVF9u39HVHP1CwjC6uHSYQiGSoHUy6Tu2gtbtcv4sdWMe1RVmkk6KarzRzm+gaD+MntLkvWflS5ZQs2sXQTfdhHKpv0dtXfY6fjz4I9f3vZ4Ynxg7Ry+EEEIIIQDi/eO5IPECvtClpOkaWPZMq8cKvPpqlIsLhR98YL8AG+EX6oFvsLvDz6EZjEb8wyMlQROtk7ZtC64eHoQndHf4XNuXZhIQ7kl0j4CGG2gNy1+A4O7Q85yG23Bk9ezV1zDFxOA3ob6d2Wpm5tqZRHlHcV3SdY4IXwghhBBCHHHzgJtxNboxO74fbHgPCva2ahyX4GB8J5xD6Tf/w1JSYt8g/0EpRVxSMBkpxdSZLQ6dKzCq41RylAStk0nbvpno3n0xHlmFcpS8tDLyDpaRdFIUqrGVsb0/Q+4OOPFuMDT+KJUvW1Z/9uymG/9cPftk1yfsK93HA0MfwN2lke2TQgghhBDCLoI9grku6Tp+rc1jk6c3LH2q1WMFTrwaXVVF8fz5doywYbF9AqkzW8naW+LQeQIjYyjJzcZSZ3boPLaQBK0TKcnJpjQvt122N25flomLm5EeIyIabqA1/P4c+MVA34saHUdrTcFrr2OKisLvP/8BIL8ynze2vsHoqNGMjRnrgOiFEEIIIcQ/TewzkVCPUJ6L6oLe8RXk7mzVOO49uuN5wgiK532CNjs2oYnqEYDRZHD4NsfAqGi01UpJTo5D57GFJGidyKEdWwGI6zvAofNUl5vZuz6XHsPCcPNoZKUubSVkrINRd4LR1OhYFStWUL19O0E33oAy1bd7YeML1FpqeXDYg42vzgkhhBBCCLvycPHg9kG3s91czM++AW1cRZtIXU4OZT//bMcI/83kaiSquz+HkoscOk9HKrUvCVonkpGSjKef/5+lQB1l1+psLGYrSSc1Mc/y58ErBAZe2WiTP86euURG4H/eeQBszN3Id/u/45o+1xDrG2vnyIUQQgghRFMmxE8g3i+eN8Ijsez6FrK3tWoc75NOwjUujqKPPrJzhP8WlxRESW4lpfmVDpsjMLK+KF5HOIcmCVonkpmSTFTP3g5dddJWzY7fM4lI8CM42rvhRlmbYd9iOOFWMHk0OlbFqlVUbd1K8A03oFxdsVgtzFw7kwivCCb3m+ygTyCEEEIIIRpjNBi5ecDN7DOX8bN/cKtX0ZTBQMDEq6jeuo3KzZvtHOXRYvvUl9tP2+G4VTRXD0+8A4M6RCVHSdA6ibKCfMry84ju2ceh8xzaWURZfhV9m1w9ewHc/GDI9Y02+ePsmUt4OH7/938AfLvvW/YU72HKkCl4uDSe2AkhhBBCCMcZHzeeBP8E3giNwLJ7EWRuatU4/uedh8HXl6IPHbuK5h/qiV+oRzucQ4uRBE3YLjMlGYAoBydoO5Zl4OHrSvzAkIYb5O+GXQth+A3g7tvoOJVr1lC1aRNBN0zG4OpKdV01r215jb7BfRkfN95B0QshhBBCiOYYlIFbBtzCAXMpPwSEwJKZrRvHy4uAiy/i8M8/Y87MtHOUR4vrE0TmnmLqah1Xbj8wsr7UvtbaYXPYQhK0TiIzJRlXDw9CunR12BxlhVUc3FFInxMjMbo08mismA0u7jD8pibHKnjtdVxCQ/G/4AIAPkv5jNzKXO4efLcUBhFCCCGEcLJTYk+he0B33gwJoy71F0hf16pxAq64ApSiaN4ndo7waHFJQVjMVjL3lDhsjsCoaGqrKqkodmxBkuZIgtZJZOxKJrJ7LwwGo8Pm2LM2FzT0GtVIaf2SdNj+BQy+BryCGx2nYu06KjdsIGjyZAxubpTVlvH29rcZFTWKoeFDHRO8EEIIIYSw2R+raGnmMr4PDIMlT7ZqHFNEBL6nj6dk/nysFRV2jvIvkd39cTEZSEt23DbHvyo5OneboyRonUDV4TIKMw45dHuj1po963KISPDDN6iR82Hr3wZthRNuaXKsgtdfxxgSjP9FFwLw/o73Kast465Bd9k5aiGEEEII0Vonx5xMr8BevBUcgnn/Uji4slXjBE6ciPXwYUq+/sau8f2di8lIVM8Ah55D+6NSurMrOUqC1glk7t4F4NACIQXp5RTnVNJ9WHjDDWorYOOH0PMc8G+8PH7lhg1Url1L8KRJGNzdyavMY+7OuZwdfzY9A3s6KHohhBBCCNFSSiluGXAL6eYyvguOqF9Fa8X5K48BA/Do35+ijz9CW60OiLReXJ8gyvKrKMl1TLl974AgTO4esoImmpeZkozRxYXwhO4Om2PPuhwMBkXCoNCGG2z7AqpLYMTNTY5T8PrrGIOD8b/4YgDe2PoGdbqO2wbcZueIhRBCCCFEW50UfRJ9gvrwVmAg5rSVcGBZq8YJvHoi5rRDlC9tXX9b/FVu3zGraEqp+kIhkqCJ5mTuSiasW3dcXF0dMr7Vqtm7PpfYpCDcvU3/bqA1rH0LwvtC7AmNjlO5eTMVq1YTdO21GDw8OFB6gK/3fs3F3S8m2sexl2sLIYQQQoiWU0px64BbyTQf5n8h0fUVHVuxiuYzfjwuEREUffihA6Ks5xfigX+YJ4cceQ4tKlq2OIqmmauryT2QSnTP3g6bI2tPMRWltXQfFtZwgwPLIH8XDL8ZmqjAWPDGGxgDAgi47FIAXtn8Cm5GN27od4MjwhZCCCGEEHZwYtSJ9Avux5wAP8zpayH1txaPoVxcCLzyCirXrqU6JcUBUdaLSwoic08JZgeV2w+MjOZwYT611VUOGd8WkqB1cNmpu7FaLET1ctz5sz3rcjG5GenSr5HKjGveBM9gSLqg0TGqtm+n4vflBF5zDQZPT7bnb+eXtF+4ps81BHkEOShyIYQQQgjRVn+somWbD/N1aGyrz6L5X3ghysPDoRdXx/UJwlJnJXN3sUPG/6NQSHGWY+91a4okaB1cxq5kUIrI7r0cMn6d2cK+TXnEDwzB5NpACf+i/bDnRxhyLZjcGx2n4I03Mfj5EXDF5Witmb1pNoHugUzsM9EhcQshhBBCCPs5IfIEBoQMYI6/D7VZm2DPTy0ew+jnh//551P23XfUFRQ4IEqITPTHxdXgsHNoHaHUviRoHVxmSjIhsV1w9/J2yPhp2wuprbY0vr1x3dtgMMKQ6xsdozolhfLFiwmceBVGb29WZa1iXc46buh3A14mL4fELYQQQggh7Ecpxa0DbyXXfJgvw2Lh92dbtYoWcNWVaLOZ4s8/d0CUYDQZiEwMcNgKmn94JEoZJEETDbPU1ZG1N8Wh95/tWZeLh68r0T0C/v1mzWHYPBf6nA++jVxezZHVM29vAq+6Cqu2MnvTbKK8o7i4+8UOi1sIIYQQQtjX8PDhDA4bzDu+XlRnbYSDy1s8hlvXrniNHEnJl1+iLY45JxbV3Z/inEoqy2rtPraLyYRfWJhTC4VIgtaB5R3cR11NDdEOOn9WXWHm4I4CEoeEYjA28Chs+QRqymD4TY2OUZOayuGffybgyisw+vryw4EfSClK4faBt2MyNlARUgghhBBCdEh/nEXLq6vgy+AIWP58q8bxv/hi6rKyqVjZuouvmxPZ3R+AzD0OOocWGU1xtpxBEw3I3JUM4LAVtP1b8rHW6YYvp7Za60vrRw2B6CGNjlHw5lsoDw8Cr74as8XMq5tfpWdgT87seqZDYhZCCCGEEI4zNHwoQ8KG8J6fLzUHlkLGxhaP4XPyOIyBgZTMn2//AIGQWB9Mbkay9pY4ZHzvwCDKixxXyr85kqB1YBkpO/EPi8A7INAh4+9Zl4NfqAehcT7/fjP1Vyja1+TF1DUHDlC2aBGBl1+GS0AAPx78kYzyDG4feDsGJY+WEEIIIURndHP/m8mzVPJlQAiseKHF/ZWrK37nn8fhxUsw5+XZPT6j0UBEgh+Ze0rsPjaAT2AwVYfLqKu1/xZKW8i/ojsobbWSuXunw1bPyotryNxTQvdh4aiG7jZb+yZ4h0Ov/zQ6RuFbc1CurgReey1aa95Pfp8E/wRGR412SMxCCCGEEMLxhoYPZVDoIN4NDKRm93eQu7PFY/hfeCFYLJR+/Y39AwSiugdQnF3hkHNo3oH1V0SVFxfZfWxbSILWQRVlZVB9uIyoXo65oHrv+lzQNFy9MX8P7PsNhk4CF9cG+9emp1O6cCEBl1yMS1AQq7NWs7d4L1f3ubrhhE8IIYQQQnQKSiluHnAzeZYqvvILhBUvtngMt65d8Rw2jJL589FWq91j/OMcmiO2OXoH1d8NXF7omKsCmiMJWgeVmVL/k4poB62g7VmfQ2gXX/xDPf/95to3wehWf/dZIwrnvI0yGgm8rr78/vvJ7xPqEcrZXc92SLxCCCGEEKL9DA8fzsDQgbwbFEztjgVQdKDFY/hffDHmjAwq16yxe3x/nENzRKEQnyMraIeLnXMOTRK0DiojJRlPP3/8wyPtPnZRVgUF6eV0H9rA6llVCWz9FPpeCF7BDfY3Z2VR8s03+F94AaawUHYV7mJN9hou73W5VG4UQgghhDgGKKW4qf9N5Fqr+drXB1a+1OIxfE47FaOfH8Vf2L9YiCPPoXkHHllBc1KhEEnQOqjMlGSie/ZxyHbBPetyUAoShoT++83NH4O5Eobf2Gj/wnfeBSBo0iQAPtz5IZ4unlzU4yK7xyqEEEIIIZzjhIgT6B/Sn3eCQ6ndMg/KslvU3+Dmht9553L4t9+oK7L/eS5HnUNz8/TE5O4hWxzFX8oK8inLzyPKAfefaa3Zsz6X6F6BePm5Hf2m1QLr5kDsSIjo32B/c24eJQsW4H/eeZgiI8kuz+bHAz9yQfcL8HX1tXu8QgghhBDCOZRS3NL/FnKsNXzj6QarX23xGP4XXQRms0OKhTjyHJqPE0vtS4LWAWWmOO7+s5x9pRwurG64OMjen6HkUJOrZ0XvvYu2WAi6YTIAc3fNBeCqXlfZPVYhhBBCCOFcJ0SeQL+QfrwTEoZ5w/tQ2bKVMLeEBDwGDaovFqK1XWNz5Dk078AgDhfJCpo4IjMlGVcPT0Liuth97D3rcnExGYgfEPLvNzd9BF6h0LPhQh91RUUUf/4FfhMm4BoTQ1ltGQv2LOD0LqcT4R1h91iFEEIIIYRzKaW4uf/NZOta/udOfTG5FvK/6CJqDx6kcv16u8ZmNBqI6Oaoc2hBlDtgW6YtJEHrgDJ2JRPZoxcGg9Gu41osVlI35tGlfzCu7i5Hv1mWDXt+goFXQCOFPkq/+gpdXU3QpPrKjQv2LKCyrpJr+lxj1ziFEEIIIUTHMSpyFH2D+/JOcDjmtW9CzeEW9fc943QMPj6UOKBYSGR3f4ecQ/MJCqa8uBCr1WLXcW0hCVoHU3W4jMKMQw4pr5++s4jqCjPdh4X/+80t80BbYGDDWxW11Urx51/gOXQobgkJmC1m5u2cx/CI4fQK6mX3WIUQQgghRMfwR0XHTMwsdKmDDe+1qL/BwwO/CRM4/PPP1BXbdztiVPcAwP7n0LwDgtBWK5WlpXYd1xaSoHUwmbt3ARDV0/4XVO/bnI+ru5HYXoFHv2G11m9v7DIagro12Ldi9WrM6en4X3IJAN8f+J68qjyu7dP4XWlCCCGEEOLYMDpqNH2C+jAnJAzzqlfBXN2i/v4XX4SuraXs22/tGldInA8ubkay7HwO7c/Lqp1QKEQStA4mMyUZo4sL4d2623Vci8XKgS35dOkfjNH0j//tB5ZBSRoMvqbR/iWffY4xIACf8aehtebD5A9JDEhkZORIu8YphBBCCCE6nj/OomVSx3eqArZ+0qL+7j174t6vH8V2LhZiNBqI7OZHpp1X0P68rNoJhUIkQetgMnclE57QHRdXV/uOu7uYmso6ug1s4O6zTR+BRwD0PKfBvubcPA4vXoz/Bf+HwdWVFZkrSC1J5Zo+1zjknjYhhBBCCNHxjIkeQ++g3rwdFELd+neghYmW/0UXUpu6j6rNm+0aV2R3f4qy7HsOzftIgiYraMc5c3U1uQdSHVJef9/mfExuRmJ7/2N7Y0UhpHwH/S4Fk3uDfUu+XAAWC/4XXwzAh8kfEuoZypldzrR7nEIIIYQQomNSSnFTv5tIN1j5oeIApK9tUX+/s87C4Olp92IhjjiH5unrh8Ho4pTLqiVB60CyU3djtVjsXiDE+sf2xr5BuLj+ozLkts/AUguDJjbYV9fVUfLFfLxGjcI1NpadhTtZm7OWK3tdiamRao9CCCGEEOLYNDZmLF194/jMzx/Wv9OivgYvL3zPOYeyH3/EUlZmt5gccQ5NGQx4BwbKCtrxLnvvbgAiuve067hZqaVUHTbTbdA/tjdqDRs/hOihENZwUZLy35dTl5OD/6X1xUE+2PEBXiYvLux+oV1jFEIIIYQQHZ9Siot7XMo2Vxd27f0eyvNb1N//4ovR1dWULlxot5gcdQ7NOyCIw5KgHd/yDu7HLywcdy9vu467b1MeLiYDsX2Cjn4jfR0U7IZBVzfat/jzz3AJCcFn7Fiyy7P5Oe1nLky8EB9XH7vGKIQQQgghOof/JPwHd4Mrn3u5w+aPW9TXI6kPbomJlP3wg11jcsg5tKBgp6ygKXtWUekMlFL5QJqz4xDHtWCg/Tc0C/EXeQaFs8kzKJxNnkHhbHFa65CG3jjuEjQhnE0ptUFrPcTZcYjjlzyDwtnkGRTOJs+g6Mhki6MQQgghhBBCdBCSoAkhhBBCCCFEByEJmhDtb46zAxDHPXkGhbPJMyicTZ5B0WHJGTQhhBBCCCGE6CBkBU0IIYQQQgghOghJ0IRwEKXUGUqp3UqpVKXUgw28f49SaqdSaptS6jelVJwz4hTHruaewb+1u0AppZVSUtFM2JUtz6BS6uIj3wuTlVKftHeM4thmw9/FsUqpJUqpzUf+Pj7LGXEK8XeyxVEIB1BKGYE9wGlABrAeuExrvfNvbcYBa7XWlUqpm4GxWutLnBKwOObY8gweaecDfA+4ArdprTe0d6zi2GTj98FE4AvgZK11sVIqVGud55SAxTHHxmdwDrBZa/2GUqo3sEhr3cUZ8QrxB1lBE8IxhgGpWuv9Wuta4DPg3L830Fov0VpXHvlyDRDdzjGKY1uzz+ARM4BngOr2DE4cF2x5BicDr2mtiwEkORN2ZsszqAHfI//tB2S1Y3xCNEgSNCEcIwpI/9vXGUdea8z1wA8OjUgcb5p9BpVSg4AYrfX37RmYOG7Y8n2wO9BdKbVSKbVGKXVGu0Unjge2PIOPAVcqpTKARcDt7ROaEI1zcXYAQhzvlFJXAkOAk5wdizh+KKUMwAvANU4ORRzfXIBEYCz1uwh+V0r11VqXODMocVy5DPhAa/28UuoE4GOlVJLW2urswMTxS1bQhHCMTCDmb19HH3ntKEqpU4FHgP9orWvaKTZxfGjuGfQBkoClSqmDwAjgWykUIuzIlu+DGcC3Wmuz1voA9eeFEtspPnHss+UZvJ76c5BorVcD7kBwu0QnRCMkQRPCMdYDiUqprkopV+BS4Nu/N1BKDQTeoj45k3MXwt6afAa11qVa62CtdZcjB+LXUP8sSpEQYS/Nfh8EvqF+9QylVDD1Wx73t2OM4thmyzN4CDgFQCnVi/oELb9doxTiHyRBE8IBtNZ1wG3AT8Au4AutdbJS6nGl1H+ONHsW8AbmK6W2KKX++ZeGEK1m4zMohMPY+Az+BBQqpXYCS4D7tNaFzolYHGtsfAanAJOVUluBT4FrtJQ4F04mZfaFEEIIIYQQooOQFTQhhBBCCCGE6CAkQRNCCCGEEEKIDkISNCGEEEIIIYToICRBE0IIIYQQQogOQhI0IYQQQgghhOggJEETQgghhBBCiA5CEjQhhBBCCCGE6CAkQRNCCCGEEEKIDuL/AU1Ry1A4e80GAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "zeros, weights = np.polynomial.laguerre.laggauss(12)\n", - "targets = np.arange(16, 21)\n", - "mean_targets = ((16, 17),)\n", + "zeros, weights = np.polynomial.laguerre.laggauss(8)\n", + "targets = np.arange(9, 14)\n", + "mean_targets = ((9, 10),)\n", "x = np.linspace(EPSILON, 1 - EPSILON, 101)\n", "_, axs = plt.subplots(\n", " 2, sharex=True, clear=True, constrained_layout=True, figsize=(12, 12)\n", @@ -239,7 +229,7 @@ "maxs = []\n", "for target in targets:\n", " rel_error = evaluate(x, target)\n", - " mins.append(np.min(np.abs(rel_error[(0.1 <= x) & (x <= 0.9)])))\n", + " mins.append(np.min(np.abs(rel_error[(0.05 <= x) & (x <= 0.95)])))\n", " maxs.append(np.max(np.abs(rel_error)))\n", " axs[0].plot(x, rel_error, label=target)\n", " axs[1].semilogy(x, np.abs(rel_error), label=target)\n", @@ -254,44 +244,9 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-7.5, 25.0)" - ] - }, - "execution_count": 117, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gc1dXG39mmXtx7L9i4YhvTwQnN9N5LgBAIgRBSCCUkIQUIJARC7yWEjqm26dhg44Z770WWm2T1unW+P+7OarWamZ1y711J3/k9D49tlT2a0d3hvPc951xFVVUQBEEQBEEQBEEQmceT6R+AIAiCIAiCIAiCYJBAIwiCIAiCIAiCaCeQQCMIgiAIgiAIgmgnkEAjCIIgCIIgCIJoJ5BAIwiCIAiCIAiCaCeQQCMIgiAIgiAIgmgndDiBpijKS4qilCmKspbT632mKEq1oigzUz7+uqIomxRFWRuP6ecRjyAIgiAIgiAIwogOJ9AAvAJgOsfX+yeAq3Q+/jqAUQDGAcgBcD3HmARBEARBEARBEG3ocAJNVdXvAFQmf0xRlGFxJ2yZoijzFEUZZeP1vgZQp/Px2WocAEsA9Hf7sxMEQRAEQRAEQZjR4QSaAc8B+KWqqpMB/A7AU7xeOF7aeBWAz3i9JkEQBEEQBEEQhB6+TP8AblEUJR/A0QDeVRRF+3BW/HPnA/irzrftUVX1VIshngLwnaqq89z+rARBEARBEARBEGZ0eIEG5gJWq6o6MfUTqqq+D+B9py+sKMqfAfQAcKPjn44gCIIgCIIgCMIiHb7EUVXVWgA7FEW5CAAUxgS3r6soyvUATgVwmaqqMbevRxAEQRAEQRAEkQ6FzcDoOCiK8iaAaQC6AzgA4M8AvgHwNIA+APwA3lJVVa+0Ue/15oFNa8wHUAHgp6qqfq4oSgTALrQMEHnf6msSBEEQBEEQBEE4ocMJNIIgCIIgCIIgiM5Khy9xJAiCIAiCIAiC6CyQQCMIgiAIgiAIgmgndKgpjt27d1cHDx6c6R+DIAiCIAiCIAjCMcuWLTuoqmoPvc91KIE2ePBgLF26NNM/BkEQBEEQBEEQhGMURdll9DkqcSQIgiAIgiAIgmgnkEAjCIIgCIIgCIJoJ5BAIwiCIAiCIAiCaCd0qB40giAIgiAIgiAyTzgcRmlpKZqbmzP9o7RrsrOz0b9/f/j9fsvfQwKNIAiCIAiCIAhblJaWoqCgAIMHD4aiKJn+cdolqqqioqICpaWlGDJkiOXvoxJHgiAIgiAIgiBs0dzcjG7dupE4M0FRFHTr1s22y0gCjSAIgiAIgiAI25A4S4+Te0QCjSAIgiAIgiAIop1AAo0gCIIgCIIgiA5HU1MTTjjhBESjUQDA9OnTUVxcjDPPPLPV16mqij/84Q8YOXIkRo8ejcceeyztaxu91nHHHYeJEydi4sSJ6Nu3L84991wAwMyZM/GnP/2Jy3WRQCMIgiAIgiAIosPx0ksv4fzzz4fX6wUA3H777XjttdfafN0rr7yC3bt3Y+PGjdiwYQMuvfTStK9t9Frz5s3DypUrsXLlShx11FE4//zzAQBnnHEGPvnkEzQ2Nrq8KpriSBAEQRAEQRCEC/7yyTqs31vL9TUP7VuIP581xvRrXn/9dbzxxhuJf5944omYO3dum697+umn8cYbb8DjYd5Uz54908Y3ei2N2tpafPPNN3j55ZcBsF6zadOmYebMmbj44ovTvr4Z5KARBEEQBEEQBNGhCIVC2L59OwYPHpz2a7dt24a3334bU6ZMwWmnnYYtW7a4jv/hhx/ixBNPRGFhYeJjU6ZMwbx581y/NjloBEEQBEEQBEE4Jp3TJYKDBw+iuLjY0tcGg0FkZ2dj6dKleP/993Hddde5FlJvvvkmrr/++lYf69mzJ/bu3evqdQFy0AiCIAiCIAiC6GDk5ORYPl+sf//+iV6x8847D6tXr3YV++DBg1iyZAnOOOOMVh9vbm5GTk6Oq9cGSKARBEEQBEEQBNHB6NKlC6LRqCWRdu6552LOnDkAgG+//RYjR44EACxZsgRXX3217djvvfcezjzzTGRnZ7f6+ObNmzF27Fjbr5dK5xdokSBQsS3TP4UYVFVerGA9EA3LixeLdd5YkZC8eBXb5K3/aBhoqJATC5C7/mMxIBaVFy/cJC9WZ6bhoNx1QhAEQUjllFNOwfz58xP/Pu6443DRRRfh66+/Rv/+/fH5558DAO68807MmDED48aNw1133YUXXngBAFBSUmLoeBm9FgC89dZbuOyyy9p8z5w5c9q4ak7o3AKtvgx4Ygrw+CRgzzLx8da8Bzw3Ddj+rfhYpUuBfw4D5twvPgEJ1gGPHQb8awSwe4nYWACw5HngHwOB928QL2Zq9gBPHwU8ewJQuV1sLFUF3rgYuK8XsOBxsbEAYPMXbO0/Nw1orhEbKxoBXr8QeHQssMN9c2xaljwPPNAfWPCE+Fi7fwDu683Wf3252FiqCnx2F3B/P2DF/8TGAoCDW4DnfgR8dLN4URisB/57LvDEVGD/WrGxAGDhk+x39uUfxcciCIIgMsLNN9+MV199NfHvefPmoby8HE1NTSgtLcWpp54KACguLsasWbOwZs0aLFy4EBMmTAAALF68GDfffLPuaxu9FgDMnTsX06dPb/X1Bw4cQFNTE8aNG+f6ujq3QFvwOFBdwv7+9V/FxirfBMz4KXBgPUvCRSZysSjw9lVAqBH49kFgyxfiYgHA8teAhjKgqQr49A6xgjDUAHz5JyC/B7D6bWDNu+JiAcDs25lIq9gKzP2H2Fir3gS2fgmoMWDew0DYWt20I1QV+Ca+5oO1wPfpD2R0xYr/AtvnAv4c4JNbxa6RmlLgiz8CoXrgi3uYyBDJ/EeAaBBorAC+e0hsrJJFwKKngLwewCe/AhorxcWKRYE3LgH2LmdicN0H4mIBwNwHgO1zgIOb2N9FUl/GniNqjP1/oGyD2HgEQRBERpg0aRJ+9KMfJQ6qtss///lPjB8/nsvPUlJSgocffpjLa3VegRZuBpa9Aow5H5h2F3O1RCY7y/8LePzAFe8AkWZgw0fiYu1eAtTtBc76D1A0gCWQIlnxGjDgCOCsx1gyV/qDuFibPwPCjSxWfi9g29fiYgXrgK1fAZOuAsaeD2yYyQSiKNZ/DHQZAlz1ARO7m2aJi7VnObB/DXDGw8CQ44Etn6f/Hjcsfw3oNQ445e/MiSxZJC7W2veBSBPw0y8BX5ZYN7JuP7BpNnDcb4EJlwEr32RuoSjWfwR4s4DzngFiEbY+RVH6A1C5DTjvOaDrMPY7FEUsxp4jYy8Ejv89sHFmy+aZCFa+we7ftZ8CigdYO0NcLIIgCCKjXHfddYmDqjPJ4YcfjokTJ3J5rc4r0PYsY87BuAuBIScAUIFdC8TEUlXm9BwyncXqMYolkaLYOJOJwUNOAw7/KVCykLlAIqgvB8rWAyOnA4eczj6263sxsQBg4ywgrycw6Ghg6DTmyojqEdvyJXNGRp8FjLsICDcA274REysWZetvyPHAkGlAbjcWXxRbvmCJ6dgLWcz9a8RtUBzcwoT7xMuAQ88B/Lli3ZiNs4De44ABU4GRpzJXRhS7FgBQgVFnsFihOmDfSjGxVJW9t4efxJ4jud2BzQKF9cZZ8efIdGD8JUDJAnFrpGw9K7MdfhIw9gL2se1zxcQCgE2fAn0nsefIwKOAjbPFxSIIgiAIznRegVaykP058Cig32TAlwPsnG/+PU6p2gHUHwCG/RhQFJbIlf4grn9qx3fAoKOA7EJg8PHsY6WCesN2xvuJhhzPyg67jQB2LRQTS1XZ72joCYDHywRaYwVQLqg8aed8IKuQuYMDjgC8AXHOz/7VQLAGGHwc4PGw+7n9W3GlgLsXAT3HADnF8Q0KtPwueaMJ9pHTgUAe0GcCu14RNFUDuxe3bBb0n8qcmLoDYuKVLGKCs/d49rsDgB2CekyrdgI1u4HhP2ZrZNiPxf3OAGDr18DgY4DsImDwsexjuxeLiZV4Hh8J9DiEueM7vhMTKxoB9q1isQC2kVW2Dqh1fy4NQRAEQcigEwu0RczJyu0K+AJA/ynikg9tcMaAI9ifvccD0RBwcDP/WNEwUL4R6DMxHmsc4MtmgwxEsGsBEMhviTfoKJb8i3C1KrYxoTvoaPbvvoexP/ev4R8LYK5PnwlMDPqy2DWKKt8sXcr+HBhfI0NOYGWqFVv5x4pG2HrQEtQ+E5lTsncF/1gAu2c5XYCuQ9m/e41lQyBErJED6wCoQP/D2b+1P0X93koWsmeH1w/kdQd6jBa3QaE9nwbEf2/9JrH3Q91+/rFCjWzjo//Ullgef4uQ4s3uxUB+b6DLYLaJNeR4ccNkyjewEti+k9i/tT9lDCYhCIIgCA50ToGmqsCepS3JG8CSxvJNYpLG3UuYE9NjFPt373izoQhhcXAzE3+94xNifIG4sBDkoJWtZ/fO62P/7jeZlSpV7+IfqyRegjoovpvfbQTrxxFxHyNBlrD1m9TysQFTgb0rxTifB9Yxp6JoAPu3Jp5EiKbyDaxcU9sw8AWA7iPj4kYApcvYe01R2L97j2OlgCLWSNl69mfPQ9mffSYwYbFnKf9Y0TCL129yy8f6jBd3H0sWsedIz9HxWGzCFPat4h+rbD0boKHF8OewDZESQZtYB9azWNoa6TcZqN/PhnnwZs/yeIz4e7tXfK2UCfq9EQRBEBnjuuuuQ8+ePVudPXbJJZdg4sSJmDhxIgYPHsytL0wmnVOg1e1nQxg0EQOwpCfcANQIaEzft6rFiQGAbsNYSaUIYaHtAidfW9+JLGkUIT7LN7KSJI1e8TeAlijz5MA65tZ1H8H+7fWx5ErEfTywDoiFW1w6gP09GmRT5kTE6zW2JUHtOgxQvGzTgHus+O8meY30GiNGWIQa2BpJFjFaXFG/t+wioLAv+7c/Oy4+BazHyu1s0ESP0S0f6zWGOZ8ierX2Lmf3UXuO9B4HQBEj0LQ+uj5Jk6t6j2XinnfZbTTMNpZ6jmr5mCZCRTxH9q9hQldzdHO6AAV9xawRgiAIIqNcc801+Oyzz1p97O2338bKlSuxcuVKXHDBBTj//PMz9NM5p3MKNG2nVNtlB5ISAs79TKrKko8eScmHx8viidixPbCWuUrdRrR8rPtINvmwtpRvrIaDrAcs+dq0v4tI9ss3MXGmiRiAJan71/BPGss3sj97JYkYTRjyPtg5FmPrrteYlo/5AkzIaz8HT8o3MFep27CWj/UaA9TuYRsXPKnYBkDVXyNCxGeK0AVY4i+iT1H73fQYmRQr/jvkLSxUld3L5PuYVcB+h0I2etYA2cUtji4AdBvO3HHe4rNyO9sMafU81lwtAb+3g5vYMzF5jfQaI0YMEgRBEBnl+OOPR9euXXU/p6oq3nnnHd0Dpds7vkz/AELQdkqTE+JkYXHIafxi1e1n0yK7j2z98e4jxEyNrNwOdB3SUnIIJCXEm4HigfxiJRLUJActK5/1kYgQaAe3sKEFyXQ/BGj6LxMWufpvQEdUbmcOVvL90nbcKzkLtJoSVvKXnKAC7L6WCRBoZRtZsu31t3xMey+UbWjp8eOB1kPXbXjLxwK5QGF/oELA+WQHN7MjEZLpMZqNUQ/Ws/XJi/J4D2nye1u7jwfWtQzW4EHdPnauW7KoBpjTWrmDXxyNim1tRYz2O6zYCuR14xdLE2HJ4jO/J5tSKWqjZ/hJrT/WcxQb7hKLtjiUBEEQBD8+vZP/hmLvccBpzs+onTdvHnr16oURI0ak/+J2Rid10NazhvTkhD67kJW58HZHtEEgPVIEWteh7EBd3ocRV+1iAikZTUDxLs3TE2gAcxF473wH65kDmCp0tWut4pykVm4HivozJ0sjq4BNl6vYzjlW/GdPFjEAE5+V2/n3vJVvaF1OBrQk/rzXv/Z6mrjV6D6c/wHSTVVAczU7Sy4Z7VpFrP+igWwypUZBbyCriP8AIE3odk/5n0jXoWzt83aQq3ayjZ5kkgUaTw7qCF2AVRnwdpCbqtlgldRnVtdhrHe3hnOVAUEQBNFuefPNNzukewZ0VgetYlvbRAdgyT7vwQVGyUfXYQBUllz1HN3m2xyhqiyxSnWZ8roDOV35JzuVO9iEyIK+rT/edQg7QFpVW+/Au0FzW9rcxyEtP0tyn5NbKne0FRVA3LHgLGK0NddlUOuPdx8BqFH2O00V+E4JNzMRPyHlgVQ0EPD4BAjdbUBhP+aaJdNtOLD6Xb5rpEq7j4Nbf1zrESvfxHeNVGxlQjMZRQG6DubvamliNlXEdx3CnLWGcuY68SASFyqp97E4vkZ4C7SqXUBBn7ZrpOsQdl4ZTxLP4xSBpt3Xym1t34cEQRCEe1w4XSKIRCJ4//33sWzZskz/KI7onA5a9S79/wl3GcSSYZ5UbAP8eSwBSabb0JbP86KxkpXKpSZWAEtAeF9b1U6geBA7kymZLoOBSDPbqeZFwmVKKfES6aClOggA+73xdpmqS1g5ZarQ1Zwgnr+32j0AVPZ7S8brYwl4JWd3sGKrvtDtNoKd+9ZQzi9WtYFAK473UVXv5hdLi6f3XusyhP96rNjGzltrsxmild1yjFddAkBt60R6/WLWSPUu/dLrLoPZ+gjW84ulV3ILiHOQCYIgiHbJV199hVGjRqF///6Z/lEc0fkEWriJCYfiwW0/12UwO6w0EuQXr7aUlcqlugRd4wkBTzdGS+T1ksai/vzLd/TKKYGW5J+nsKiJJ9fJQwsAVl6W3wuo5BhLK5XTExZdBgMNZWwd8aJqF/v9eFMM64T43MkvVnV8SmnxgLaf6zqUf/KtVyoHiEmIE+s/RXz6slhJczXHCa3NtWydpApdgN3H6hJ23hwvDDdDNAeZ4+/N7DlSPLDlvciL6l3691GLz7OqQRPpRSn/Qy7owwQw7/VPEARBZJTLLrsMRx11FDZt2oT+/fvjxRdfBAC89dZbHba8EeiMJY5akqbroA0GoLL/iaeWLjmldm/LyO9kcorZlLQqjsmHtmtvJNA2zmITA1OTPCdo5ZR6AyUSwmJXy3lebqnezcanZxfqxOPsWCREjM4a0QRizR5+a6S6RH895vdkSSPPazMSugATFruX8Cs7jASZA1KoszulJci1e9zH0ajaxUamZxe1/VzxAL5HaBi5dQATpLEI25zR+7wTakr0XabigQAUvmvE9DkyANj8Ob9Y0Qh7L40zcNAA9pxJHujkhpoStqHjz279cUVh61/EwfAEQRBExnjzzTd1P/7KK6/I/UE40/kcNE0Qme3YcnV+9gBF/fQ/V9SfCThusUyS76IB7AyvxoN8YmnllHruiJZI8tz5rtmtf11aPJ67+jVx0aD3e0sINM7Jvt56VBS2Jrk6aLsBxaO/adBlCJs4ymuMet0+9qderML4veXp6hrdR4D93niWOBq5dYAYV6t6t77r6Qsw96eGo9Ct2Q14A0zIpFI8MO4gcxpuVLeX9VnqljgKKPGtNnuODOJfBksQBEEQAuh8As1s5zshLHbyiRUNs3LKQgOBVtiXr4NQs4e5B3qjxDXHgpeQ0ZImvYTYn81KyrgK3VLjxKqoH1C7j99B3NrvxMz54SUsIkG2Royurctgvv1FNbtZH1PyiH2NhKvF6dq0zQc9oZtdyA4L5rn+6/Ybv9eKB7LfGa81YrrRE/8YrzXSXMtKbg3Xf3++Gwa1e5no03PaExsUnK4tMdhF5z7mdAECBfxLpfWELhDfMOO4HgmCIAhCEJ1QoJWwg5z1Jp7l92LDGmr38YlVtx+AmkagcXTQavfoiwqAv7DQknijZKd4AGd3xCSxKuzHDrptKOMTq6aUHeSc10MnVl/mQPG6Ns1lMnJZebuD6e4jwG9Naq9juP778XV+6vYBBTquD8CuORYG6vfziVVdwgRmTpe2n8vvzf7kdR+137+ZsOD5XqvZ07ZHS6OYs4NsthmiKPHNF073MRaLX5vJRk+wlgligiAIgmjHdD6BVrefnVWk12Pj8bLPcUtQteTDKEHtz0oOeZUL1ZSal1MC/BLidMl3QZ8W8eGW5ho28c8oaeR+bXuAQgMHwetn18arFCpxH3XKAAG2aRCqB0INfOLV7Da5j5zLDhPr3+Daivrxc+siQaCxou201EQszs5P7Z64WNd5jvgCQF5Pfm5MYrCFwSHzRf3Z2ufpIBv+zjhPxEy3Rng+RxrKWZm3kUBLbFCQi0YQBMELlfc5nZ0QJ/eoEwq0fcZJHMAShTreAs0g+dA+zjOekWDK6QL4cvglH7V72Bloeg4C0OKO8Hhj1sVdj9QR48mxAH7Jfo2JEwnEE2LeAs3g96b1AdVzcAdVNb5BYbD+83qwc664OT97mMuUVaD/eU1Y8EA70qGgt/7ntWuu4+SgWXmOSHPQOPaXxmLxwUYmrj/ATzTV7mPDklLPQEuOx6uiQXv2pd3EosOqCYIgeJCdnY2KigoSaSaoqoqKigpkZ2en/+IkOt8Ux7r95hPBCvrwO9C5Lk3SqCU7tXv1R7rbIdzEHASj5ENRWPkXrwRVm05pNO2vsC8QbmAlQ3pT9eygiROjg3i5l+btAQZMNf58QW+gbAO/WIC5gwawe6A3kMUOTVUskTeK5YmfxcZTxJuKmCQHOXWqnl0SIt4gHm+BVrsPGDbK+POFfflNaK3bz8pq9UpugaSyw93uD6tuPMhKQY0EmtfPDr3nsWEAMKFntB4B9l6rPwDEomx9uoqVZo2QQCMIguBK//79UVpaivJyjmeedkKys7Ntn8fWOQXa8JOMP1/YD9j2DZ9YDWWslym72DgWwEdYJJwYk19wQR++As3I0QKSxOc+9wKtIY1Ay+3K3DweiZWqpk8a83oC9d+6jwWw+2jmMuXHk3Ie/XXaGpHl/NSXGW9OAC39YvUH9IdE2EFzdIzi5XZj7iAP5ycWZT9zuvu4a4H7WACLldfTWKAkJmLuAfpNdhdLew8ZbfQA7H3Iq98znYgv6MOmPDaUm68lKyTWiEG8/N5MCFOJI0EQBBf8fj+GDHG5uUzo0rlKHIP1bDS82f/oC/uynh8ejeL15fGyMYPbqCWoPERTQqCZJTu9+Q1JMDrfTSMh0DgkO/XxnZc8A4GmKPx6VZprgGjIOBbAEtTmaj4HmqdLUPOTRIxb0iWoAEvMeTkI9Qf0R7VraMM0uFzbgdavmYrHwz7H471WX8ZEg9l7rbAvWyM8egfrD5g7Y9rneIimhMtk8ozM68HPQatNsxmSXGXglrp95k6k18fWK6/yTYIgCIIQRLsQaIqieBVFWaEoykxXL5ToU0mTWAF8EoKGshYHRI+sQtYXxiNBbUgjYgB+CWoslt5l4nkf6w+w6ZpG/W5AfFefg4XecLDl9cxiAXzi1e4zT/RzuwNQ+CTEiXPJ0jgWvPrd6svM7yPPDYq6fcwhy+1mEq83n+Rb6xk1c5ALkhxkt9QfMBdM2jU3cOhB055FpsK6F581kjiGJE2JI8BvjeT1ZELMiPye/MQnQRAEQQiiXQg0AL8C4L7pJ10ZVPLneDhN9WXmgolnX5gmFkwT4t7MHQzWuYvVVMlcpnSlSQCfhLghnugbOZEA2xXnkaBqLkRed5NY8XvMI5GrP2Ds+gAsmczrzkfEa2LBLF5ej3jvYL27WME6INIk0UHbz17PbI0UcNqgqLUgdBOlqRxEfF0aB41nX1hio8dkY4nXZkj9AQBqmucIx0FK2gRfM/J78VmPBEEQBCGQjAs0RVH6AzgDwAuuX8xK+Y6WNNZx+J90fZl5gqrF4+WgKR5zl6mA07VZEYO+LOYQctnVLzdPGIG4QOPhoFlMUAH3CXHCZUpzbfm9Wso83VC3lzlyvoB5LMD9mkwMdjFZ/3nd2Zrl5Y6kS755lcFaKRXNjQt8t5MVY9H4BkU6YcGpL6y+jPWM+rKMvyavB5+jH6w8R7SNEh7PEbMJphrkoBEEQRAdgIwLNACPAvg9AN1DfhRFuUFRlKWKoixNOyXGVvLtMkFVVRYvXfLNy0GrL2NJodmks4RAc5mkWrmPACu94jH6uyFNqZz2szRWsITWDVpyZuZ85nEa3BGsZVMVzWIB8aSR04ZBWgeBU/lmolTO5No83vjAFR4CzYI7UtCL9YW5PXew4SAApUWE6cFLWDRWAGos/UYPTwfZynoE3AuZhgr2p9lzxOtngpGLQLMg4rXyTV5nyhEEQRCEADIq0BRFORNAmaqqy4y+RlXV51RVnaKq6pQePdIIhoZy1qdiNFURYNP0ePSFNVWxcdVpk53enEqTDqYXTLzdkbSuVneODpoFgabGgMZKd7ESybdJLxOvBLXegoMAxEUMp/I1s9LN5J/F9RqJi650wqKgFx+32krynXC1KtzFaihnk0PNepl4OWgJ19+CQONScltuwfWPf96tiNe+3+y9BrB76fZ3Fo2w17BybWqUlXETBEEQRDsl0w7aMQDOVhRlJ4C3APxYUZT/OX61hMtkcllaX5jr3WGLyXdBLyBYw84xcxXPQqkctwQ1nnSmddA4JFaqas1B49Xz01CWPvn258TLNzklqGmFddxBc3vQoy0R71Z8WihxBOIbFC4dtHAzc8bSCrS4EHC9/svS30d/NhAoaHGJ3MQCrLlaXEp8LTxHtGt3K+I18Zpu0yCvu3uh21RlLRavzReCIAiCEEhGBZqqqnepqtpfVdXBAC4F8I2qqlc6fkErCSoQL3NxmTRaKfECknreXMZrsNCnldMFgMLHQUjX7wYAed3cO2jN1WwgiZUSR8B92aGV+6jFc5ugpjvfTSO/FyuFDLo8+sHK+s/txn63PARausmbABMDbvvrtPdquv6iPE6ultXnSF43DiJeKwO0IGKCte7LN6241dxKHA8C3gDb7DAjt7t7oas983K7mn8dz2MtCIIgCEIQmXbQ+GKlJwzg0yhupZdJiwW4FzJWEiuvD8gpdh+roTy9Ewm0OGhunJ90Z6BpJAQaj/toVcS7FRZW1wgHVyvczM4ATFdO5vGy35trd6Qifjh0ujXSjZWTuVkj2uZGukEaCQfNbRmsxTWSy8H5SQiLNL+3PA69g+Fm5uZbddBci8+D7B4pivnX5XaVdx9JoBEEQRAdgHYj0FRVnauq6pmuXsRqYsVjsqLVEkdtR9eNqxVqYKPR0+2yA3zKDhsOpr8ugP08sTA7/NlxLIsuE7ek0eoa6cHHrUvX7wbw6QtrtFiWCvA550oTaOnI7cYc0pCLsf6JqYppyilzOQ3usCri83g4PweZE2nWNwvwcZCtrhFeY/0bDzKXMR15HDZ6tGtL2+/GqQyWIAiCIATSbgQaFywn371Yz0Ik5DxWfRng8adPrHgkBFbFoBaPR4mjVTEIuItntVQ0u5gNgOFRdmVJfHKYrFhfxn4fZv1uAB+Bluh3s/J76+p+jTRWWhdogMv1rx0unkag5RTDdYlvJMhcJqsCjUc5pRUnkocTn3CZLKwRHpNFrZaK5nYHYhFW7uwUqw5adhETxG5dVoIgCIIQSOcRaKEGINxoPUEF3E3yqo8PErBS4gXwSVAtJ40cBhdYSeJ4jBq3WuLo8cR7VTiUeFlZI/m9mDMYCTqP13jQmohJlF25uDY7ayS3q/spdo0V1twRnus/Xb+bx+u+XC4hBi0Ki4aDLp2fCmvrMTG4w42DZlHEaPF4uNW2niMu1oh2bTlpetAUha0jmuJIEARBtGM6j0CzOjEPSCo7dPE/aSvT0AAgkM8a5V25TBbH3gPs2lyfzVRpUehqybebhNjisAnA/VlQtsoAOZRUNlalH1oAxN1Bv7vBNQmBZuH3ltPVvYNgp8QRcBevsYLdI6/fWjw3ayQxGt6isHBd4mtRxHMpcYz/DqysSV5lsLaceDfv7Ur2rPVnW4jHwUEmCIIgCIF0HoFmZ3dYEwOuHTQLpXKK4r7s0Jb4dNnPEQ2zaXGWBBMPBy0+Yj+dEwm47wuzOrQj+WvclHk1VaXf0Qfi7iCnNWJFWOR2ZeVkTg/rjcXYe0dWiaNVMQjE179LMQhYvDYOJb5WRUwglwkQLiWOVlxdl4OUwk2s79CS+Ix/jdtrsyI8AT4bFARBEAQhkM4j0LRzcKwkxNrXaN/jhAYLB74mx3Pr1gHWSxzVqPNd/aZq9qeV+8hj51srFbWC27IrO2WAib4wF/GaKoFcC0IXiO/qu1gjTZXMhcsqSP+1OV3Zod9Oe36aq9n3WxIxHIbkNB60JmIAluy7WY+J54hFRxdw7+paEdVaPNcljkr6vlktVriBlY47wVbJLSeha1nEd3X37CcIgiAIwXQegdZoI7FyW+KoqnHnx6KwcNvz03CQnSVkqXzHpWNhJ0EN5AL+XPe9I5aTb5cljomJkTYEmlPHTlXZ+rIidIF4X0y1s1hA3K3rkn6kOZDUg+kwSU2UyllIiLO0oQxu1ohFt077mdzEsiXQXJb4RiMsnq3177LEMac4/dAaIGn9O9ygsHpIdfLXuCpxtCHQyEEjCIIg2jmdR6DZSawSDprD/0kHa1nvidWdb7dJox2Xye1utHZPLDs/LifZWS0DBOK7+o1A0OHIdluloi6FbriRHT5tuezK5eACTaBZiuVyg8LqocBAvHzTZc+P1T4toKXE0Wn5ZsJBtrLR47LEV3tmWb22/J4cygBtiBjA+RrRNm2sPCP9OYA/z/1Gj+U1QkNCCIIgiPbN/0+BFsgFfNnOkw87sQA+/UWWBVo8sXKbNFq9tjyXQxnsCAu3Z6HVl7NEMJCX/mv9uYA3y73LZFV8ui1xbKy0sR5dblDY6WXSvs7p+ldVm8l3t3iJb7WzeE1VrNfLF0j/tYkeTIfr0fZ7jUOJo537CLgQaDaOfQDcl6Y2VlrfMMvpCkSagVCj83gEQRAEIZBOJNAqWRmglfIdwJ1jYWcaGsCSnaYqIBZ1Fq/BTg+OSwfNtrBw4aDF4n1QtgWaw3h2EtTEOG6HAq3J5hrRYjkd7tJUbcNBi3+dawfNjkBz6VbLWv92Ngw058dpLE1E5hRb+/rcbmxdOXUH7ZTcar9bx89IGyWOQMuRBU4IN8cHkti8NprkSBAEQbRTOpFAq7Ke6ADxPgSnybcDB02NOR/c4WjnW5aD1t15aVKwlt0XO24d4PzamqttrhEXAs2u0M3pykoiww539e0IC+kOmosSRyexkr/PLnafI3kuhIXd91pOMXu/hOqcxbM7SEP7Hic0HIwPrSm09vVuDv1ObIbYvDYqcyQIgiDaKZ1HoNnZHQbcTfKyMzEScLdjq6r2hEUgD/DluOtBU7xAdpG1r8+NlyY5cX60BMlqgqpNn3M6TMO2iHcxuMOJgwa4W5NWY2UVAYrHnYPmy2ZloFZwU+LYaPe95rYvzEapKOBSWNgUaG7Wv6rGp4pavI/Z2hpxIdDyelgbWgPEz6+TJOLd9tcRBEEQhGA6j0Cz4yAA7kocbTtoWkmZgwQk3AREQ/auzU2yo4kYq4lVXvd4P4eDcdy2HYT41znuL6p2sEZkuawuksZIkI1Etyo+PR73Jb653Wwk3y4GdzQ7cKsBOSWOgLvSPJnrP9zI3qdWRYwnfni8YxF/sMXxtoKbjR6nLis5aARBEEQ7pXMJNKu7w4C7oQyNNp0fN0mjloxZObtII8+NY2HXiXTR82PbQShq/X1O4tm5j65KHG06P24mi9qZPJgcz42DZuu9Fh/cEXRQ4pu4tmJrX+92ZLvtjZ5idwNJoDBH02qsxPfZxK6IAeJrxIWrZSeWm40ectAIgiCITkYnEmg2S5M0B8FRaV6VvYEkbgRaQsQUW/8ebTfaCU4SVMBZkmpXWHjipZdOS7zsDCQB2LW5GRJidRog4K7E0a7QBdydzWc3+XYzEdDuBkVicIeDWKrq0Il3eih83K32WHwMuylxdCLQtKEkTrB9H12czWfnXD7AfTkxQRAEQQimcwi0WMxB+VpXIBYBgg4a7u2KQVcCrZr9acf5ye3urgfNjjviJmlMnANlM56TxCrcGC8VLbb+PTld2PeFm+3Hc9ITqX2fXZwINDdDchwLNBfr3+4GhZOyw1A9eybY+b1lFzNn0MmEVidiEHC2GWLn7DoNN9M3bT+Pi9mfbq7NajxfAAgUkINGEARBtFs6h0AL1gBQnSXEjkrKbCZWfu3cNRcljrYTVKcCrVqigxYXCLbKDovluHVA0hpx4mpVWj/sG0ja1XeyHm2W3AKSHTQXEwGbq9nQG1+W9e9x6nw6ErrF7E8nE1qdutWOHDSbLhPA1q/TwUZOyokB5+5gdrH1igbA+bURBEEQhAQ6h0Cz2xMGuC+psbMTrSjOd6OdOGg5Xdgo7mjYfjy7zo9bB81OqSjgfLKik14+N6VQdu+jL4uV5rlxIu26MU7WYzTC7qVMB83O5gTgQsQ7uI+J9e9QENrd6PH45ZQBAs7fa6F61nNo5/fm5j7aOaRdI8fFBgVBEARBCKZzCDQ37ojTkjI7ib4WT5aDltjVr7UXKzENUFZpUqX95NtpiaOTXj5XfWE2RTzgfHCN0x60SBObEuokliyB1lxt/72WXezM0XK00VPM/nQqCO3EUhTn4rOxgo3Nt3p8BsC+NtLEngt2cLSpFP9aJ9fWXGP/OeJmSBRBEARBCKaTCDSbZ04B7pJvJwmB06l5TdWwNekNaEmM7CY7ieTbRtIYyGfnpjl1fmzvfHeRV+Io00ED3JXmKV7rhwIDzifZ2e33AdjZfB6/8/VvW8Q7HCTjykFzGM/J+ndaBpjThQ3asUriOWJT7Dp1dAHn7rhdEU8OGkEQBNGO6SQCzeGQBMB+0qiqLGGxsxMNuHPQsousT3oDksbRV9uL5eQ+Jnb1JfTgAC0ixu70TUf9bg4FWizK7oddB81p0mj37DrAeQ+m9nu2I5q0NRK06egCDpPvYnkljk6dH22wkRN30OmYfbsbBk7FpxPXX9voceqgOXoe0xRHgiAIon3y/1igORzKEG4EYmEHiVWRswTVaQ8OYD/ZSZR42U3kiuSUeAHs62MR++clJZJGCQ5asza0xsG1OS1xtO3WOdygSPTy2bw2x66WA7c6u5idqWV3+qaTMlinIibodI0UO3yvOSi5dToAxUmJoybiHTnI1Q5KHLux34GTPl2CIAiCEEznEGhakmknIfD6WNmg7QQ1nqzY3bHNLnLmMjnqwSlq+V47OBG6QHxX32YsLZ6TWICza1O8QFaB9e8J5AMen/2k0anQze0qZ9iEFgtw7qC15/XvdIOiqYpNjPTnyIkFyCtxbK5x8RxxWuJoN16xi2uzux6L49/rYNOMIAiCIATTOQRaUxUTW3amAQKs18qROwJnCWo05GxX30miAzgocXQwJAFwtqufOBTY7q6+Q1dL22W3UwaoKPGE2G4sBz2RQLzE0WH5ppNEH3BQviZRoMWizHV2uv6dOD92f2f+HHaEhoxyYiBDIsZmPCdutfb1dmOFm4Fo0Nl6BJy5kQRBEAQhmE4i0BxMAwSc9XM46cEBXOxGV7twEBzufNtNUp0kjcG6+ChuB2IQcJYQ272PQItoshsLcJagqlH7v7dGJ06kw/WYKHG0MZBEi2c7liYGi23Gin+9kw0Ku/dRiydtjRQ7OxjbkUBz6sRXM7c6kG/v+5yUODo5PkOLBThzdQmCIAhCMJ1EoFXZFxWAs76wRH+FzWQny0VCbFcM+rIBb8BZD5rH5yyxsp3EOXTrnJ6X1FztLPnO6eKgDDC+ppwMLgCcJft2r82fy37XTta/3YOjAWcCzWmpnJuyQ0drpNiZiAGcO5927qWqsjXpRFQDzoaE2HWrAWcbPW4c3eTvJwiCIIh2ROcRaE7cEam7+g4SAlV15qApirOzoLQ+FaeJlZ3SPDcuE+AsIXbisjopcUzs6ttMGp0MromG2aHkdu+jojhf/47c6vggGTtrxKk74thBc1BOrMWTWeII2Fv/oQbmzNpdj/5sttnj6DliMxbgrMQxIXSL7X0fCTSCIAiiHdNJBFq1w9KkQvtN4jJ3bLWJkY6uzcHUvKCDXXaAJUdqFAjVW/8eNyVeyd9vJ55jB63a3vdorpSdc8mApDViY006dWIA9vPJSr6zi1kPZsRGD6bT5Nuxg1btUFgUuxgSUmw/VvL3W8HpM0v7Hts9aLX21z7QclxHLGYjlsQNM4IgCIKQROcQaE6FhSOXqTr+vQ4FWtBGPKcJqvY9thMrp8m3g1IopwItMVnRRizA2TRAwKGDVgN4s5gDYQcnSaOTM6eS40kTaC6uTVbyHax16MQXs+MA7NBUBQQKAK/f3vc5Ge7idMMAcOHEOxTxasxe2S2VOBIEQRCdkM4h0JprnCUfWYVAuAGIRuzF8ufZT6xkJqja99hOrBzufDuZmufUQUiUb1Zb/x7tUGCnJY6heiASsv49UkVM/Gsd/d6cCLRqedfmdIPC62fvUTsiJhpmjrW00jyHjq6TEke3Dpo0J95B+bLTZ2QgH1A8JNAIgiCIdknHF2jhZlY65SZptLVjW93+E1QtnpOGe6clXoDNxMrFrr5dVytYC0eHAgPOpr05GcgAtNwLGQ6C9j1O+xRtxypu+X7Lsapbf68d7DrIrtZjMfud2Zms2FQN5Lh4rzkqcSx2Fs/JGslyc23VNmLFv9bu+81pDyZBEARBSKDjC7Sgw4l5yd9j17FwIpj8OYDH78xlkpGgAu5KRQH7ZVcen71DgTVyip2VUzq5j05Fk5P16GRXP7H+ZTloEt3Bpmo2pMJuqShgf3CHVnrsZv3bFZ9uhK4tEeN2jdiIpcVzWuII2BefTqaKAiTQCIIgiHZLxxdorhyEwtavYQWngwQUJT6URHJ/ka2pebXudr7tOhZZhfYnRgL2z51yenAu4GyNOC259XiArAJ7Q0LcOD92E1RVldun6FTEaPFklQE6crUclhP7s5kgcVQGKMFljUZY2bjTYUOAvWtzWroMOBOfBEEQBCGBTiDQXCaogP3k20mio8VzMqHP6U67GmMHQlshGo4nVm52vqutf49Ttw6w3/Pj9Ow6wJmDFnToIAD2E2JXGxTFrO8qGrb29cE6tqZklcG6Sb7tlua5eo4Usz+lrf9im0LXTZ9isb3Jim4qGpwMQHH9PCYHjSAIgmh/dAKBVs3+lJV8y0wImmsAKM77YgDrCbEm5Bz3TinOHDQn2E1Q3VxbwkGTtEaybB6eHqwFoNg/XBywP9bfjRjMcuJEVrtw0IqdiRhX4tOmg+Z4jRTaf2Y5mSoKsJ9RjVk/QsOtGATsu4OuXFYSaARBEET7o+MLNLc9OIADB63Yfiwtnt3+oqxCVvrmJBZgPZ4boevxsPtv20FwmqAWxN0ci+WbbsaMZxW0fg0rOB0SAjgQ8W7WiCaaqi3Giv9cjnowHRx67NpBq7b+9a6eI8XsT6vrPxZreW87we75jW7ea3aH5Li5j/4cwBuw34PmeMOsmAQaQRAE0S7p+AKNS4mjxWQnFpPsoLlJ9IvZn1aTRjf3UYtn10Fz4yCoUSDcZO3rNQdNE1t2YwHW10gkCESaXKwRm8m32/WovYbVWMnf5ySetHLiYub6WC3fTAzSkFC+GaoHoDp/bztx0FyvkWrrsZK/zw6KYv9geCpxJAiCIDohnUCguSm7Kmj9GukI1YElVpISAle77JKTb9tlhy6uLeFqWeyvcyM+7ZbBJmJJXCNu3DpAjsuqfZ8tV6vOmajWYgH217+McwDdOLqAg0EyNe43eizfR8kbPa6GhBSzHkw7ZxwSBEEQhAQ6vkBz04Pj8bJEwm4S5zQhsLvzHax1nqDa7kFzUZoE2C8XcuMO2hVNwdr44eI++7G8Pva9VhNiN0MSgPgacVDi6IT27KCpalyguehTBOyJpkABeybYxZfFjtCwu2Hg+L1m10FzObQGsL754vo5YuP8Rq1U1O212bmXBEEQBCGBji/QtN1hJz04gD3R5GYaIGB/x1ZqiaPb5NvGfXTbg2O3L8yN0AXi1ybTZaq1MTUvEyWOxQ7jFVuPFWkGYmEXDlox+9PO+nf6XkscoWFTxDte/x2hDLbYYbxC60I3pE0VdRrLQQ8yQRAEQUigEwg0h2d3adjZ1efhIAA2hYUbl0mRV5qUZSexctmDo32fHcfCaSzA3rUl1ogbV0u1NzXPbYmj5fJNF2WAWjzLjpaLyZuA/cmKbkQMYG+jx02/m/Z9kSYb/XUOz+UD7DvxieeIQ2GtDQCyFIvT85jOQiMIgiDaGZ1AoLlMrDIh0OwkqU4TVG2yot3mfhm7+jx6cAAb8Vz0MgH23BHXybfNcfRuShwD+YDisR6rqZqVATopFQVsvtc4bBgkv0463GyGAPaEBQ8HDbB3bW5KbgF7z0h/LuD1O48nXaCRg0YQBEG0Lzq+QHMzJAGIJ9+yynfslgu5Lc2z41jUsoTdcfJdyEqOYtH0X+u2B8fukBDXybcdd4SDy5T8OmaoqrvkW1Hsb1Dw2AyxcjwCLxFvJ9l39RyxcQh9ogzWrYNs4fcWbmblok5/bx4vq1Cw3IPm1okskFhyTgKNIAiCaJ90fIHmxkEAbCao1S3f4zQWYC1eJAhEgxyEhZ0yQJeJFWCtNI+XgyCrxNFJf5Fbx8JKkhqqj/fgyFr/HARaLAKEGtJ/bWKNuCiVA+Suf9uTPiU4aG7XI8CuzXLJLYfNkHAjEI2k/9pEGSwJNIIgCKJz0QkEWgZ6RxwPLrBRLuQ2+QBsCrRq94kVYC1pdFsGaHtIiMsSR9sOmsOpooC9pNFtoq99rx2B5nSCKWDv2tycXZf8fXYcNFkua7AW8PjYwcxOyLYh4t2+1wCb4pODgwbEjzRJg1sRTwKNIAiCaKd0fIEW5FSaZKnsqo4l3k5GcWuxAIvJt1Yq50ZY2EiseJSKaq9jJRbgPCH2+gFfjs1hK26cHzs9aC6nito5PJ2HO2LXQXPrVmuvkzaWyzJYj5e9V60INLelooD9PsXsIlZi6gQ7DrLbklsAyLJ4HwF+zxFL618T8U57MPOYUCaBRhAEQbQzOrZAi8XclyZlFwFq1FrZVcjtsAk7DgIPd8TmRDQeO992kka3iZyVWLEoK89yNcXRxtQ8HusRkCNitHh2+hTdbhgAFstgXSbfWjwrIj7cyEovXa2R+HvNan+dK6Frx62ujn+PWwfNRqmo298ZYC2eWwfNbg8mQRAEQUiiYws0bVw7l2THYtmV09I1IP69isXkw+WYcUByYuXA+XGbyNnaZXc5xRGwmBDXuHPrEu6IHZfVjSAstp6ghuqZm+IUO6WpPH5vVtc/lzLAQrbRE260Fs/thgFgz612LdDsHPsgaaMnWAd4A4A/23k8EmgEQRBEO6RjCzS3Y5aTv9dSslPvLmFUFPtJo4wEFeAwAMJmX4ybHhzA+rVxEYM2RZOb++gLsPJNOy6r6xJHq6WiLtd/Ivm24qDVsPvgdFy7Fk/aGrFx9INUB42DW233CAFp4tNlRQNgrweTIAiCICTRsQVaIkHlMdzCooPmxkEA4hPRJAqLSDMQCZl/XaIHh0dpko0E1WkPDmB9AIpsB83tfQSsiyZepaKhuvRT8yIhNlU0wEOgWfy9ub2PljdDXB6fASRt9FjcfHEjqhM9mFaeWXEx7HpIjoXrCjcD0ZC8Eke3x5Bo8ay6gwRBEAQhiY4t0HhMsdOSMssCTVLSyGWKo8Wen0QPDofSPKtTHLkk33am2EkSn24dNMD62XxcBkDEvzfdGglxSPS18mCpybedEkceLqsEBw2wPpREu343pdnaplIsZv51PCoa7JbB8nDQrLqDBEEQBCGJDi7QeOx82xAWboeEANYny/EocbTaX8dD6AbyAMVjvaTMtdC166BJFJ+uk+8i64m+x++yVNSiaEo4uhx60KwOCZG1RngN0gCsD3dxvUFhcax/qB7w5zqfPAu0iLt0vzcuJbc2pzhy2TCzWOJLEARBEJLo2AKNS4mjnXN3XA4J0eLJ7MEB0iepPHa+E/11Vh00Di6TrZH+HIRuuniqykfEW+2L0RJ9V6WiFtcIj1I5O8cjuJ0YCVhfjzzKiRNrJM19jMXkO2g87qP2WmbwGLbiz7W50SPJZSUIgiAIiXRsgca1pCbN/6RV1f2QBC2ezB4c7bXSxQI47EZb7J3i4qBZHGvOZUiCxf6icCOgxtyvEauT5dyeSwZYd7V4lMoBsHymFs8etLSleZymOALpBaE2eVaWg8ZrUwmwsEY4nN1oZ5ASz5JzK8cjEARBEIQkOrZA4+GOWN2xjQSBWFhuX4ysnW/NPZR5bTySbzWW/vw6mUNCErFkuawcnEhbwgKS1z8P8akC4XRrpBZQvO6nigIW1ggHtw6w7qC5PRoBSFojElxWgG2ISOtBK2DP9UjQ3esQBEEQBEc6uECrY+PafS7OwVEUNpkuXULMI9HXvt/qFEcePTiADQfNrfNjdVefh/Nj9dq05DvXeSyrU/MSCaqs6YOchC4gb41YFp+cSkW117ISS0apKA9HF7DnoPFyWdPF47pGJJY4AlTmSBAEQbQrOrhAq2flO24SK8BaQsDLZdKGhKQtzeOZfMtyfiz0Tqmq/PJNt31agDXHgoejq31/uAGIRdPE45B8W52syKvEMWDhvcarT8tOf53bWB5v/L2dZo3wGMgDWD+KQXtGusGuiHdzFIMWL919jATjI/15iXgaFEIQBEG0Hzq2QAtxSKwAawkBtx6ceGleuDF9PFm7wzKdn1A9nz4tq4kVj1JRLZ4sB8Hq1LwQx/4iK7+35K93Ey9tL18DAFWig1brfnNCi2dVxLuZPKvFCjekP7+Oy9AaiyI+xGujp8BGObEkEU8QBEEQEunYAo3HwdGAtaSRW3+FVdFUC1ej4YF4f51XnjtipcSR1320OlmRx33U4qVLGjURw000pSu75TS0xlIsjhsU6Up8E2cASnKQQxzuI2Bx/XMsJwasxZPWg1YHeLMAX5a7eNkWjkfg6VYDJNAIgiCIdkUnEGg83BELk+V49lcA6RNiHiWOVieihbTEKuAunuYgmJVvJkSMLKHLaY0E8q1POpTlWPBIvj1ewJ9nLdH35wJen7t4VtYjjzMAk7/fyn10Kzy1eFY2DJJ/NsexrAo0DiWOiTJYC+ufy/PYyoYZ7+cxCTSCIAii/dCxBVqIQ/IBxHf1JQ4JAcwTq1iMT2kSAEuH9fJMrNJNRON9H9O5Ws017oWuFs/yIBlOA1DM1qQ2VZSbsLBQ4sgllp3NELcTKu30oMl6r2kOMge3GjBf/5EQEA26X4++ABvEZEUMcqtosNjLJ6uXlSAIgiAk0rEFmswSR56j6AHzeCFOib4WT1ZipY18N4vHcyBJ8uuZxeNxHwP51kvz3F5bwrEwu4+c+gYB644FLxEfDaUR8RzO00r+fhlOpBbPahmsP89lLAsOWoiTGAQkr5EiINLMBKZZLO3nchXLYhksQRAEQUikgws0mTvfvKbYWRgAwWt3GLA+AIXXfdRezwjufVqyku98aw6a22MfAGtlsIlSOVmuFi93RFsjZtfGuwfNgjvIQ+ha7cEM5AMel4/eLAtlh7yeWYANgcbpmQWYPyNpSAhBEATRiengAq3OfS8T0JJ8xGLmsaAAAbc73xYSAl67w9prWOrB4RQLMB+1z2tIiJ3eKZk9aG7P0wKs9aDxErqA3DVixR3k1YOWOL/OJJZ27AOX+2hho4fH5E2g5XdhScRw+r3JujZLzxFOa8SXzTZVSKARBEEQ7YiOK9BUld/0tUA+ADU+3tsA7awk18m3HZdJkkDj1e9mZbIcr1JRLZ5ZrGiY9eBwuY/58dI8k7KrUD2nWBZ60Hj1MmnxrIz057VhAFjcoODkxpiVHYY4jfQH2M8bbmTrzgiefVqAxBJHib2s2RaekbzEpzZIKd36JwiCIAiJdFyBlkiseCY7aXajeZWTaa9nFiv5a91gaWS1xBJHmWVXPO+jVceC24YBLPbyySyD5fhes+L8uHWrtXgy32vJr6kHz2ErQJpnFuc+RSs9mDJFPI9yYi0eOWgEQRBEO6LjCjTeiX7ya+rBy0GwUlIjvXyN866+mWMRrAcUD+DP4RPP1B3hfB+BNEkjp0OxfQF27IFZ8h2SKHQBvv2eQPr1789jZayu46W5thBHEROwsvnC6T5qQ0ZMhW5t65/LDZl4jphuUNTyqWgArLmDBEEQBCGRjivQeCZWVp0fHomOlbPJeJevhRuBaMQknuQhIQEOfVqA5PsoMfnW4km7tvh9THd+HVfnR4LQBdI7yFxFjIUBQLz6tDwe9j6yJD4lCLRoGIg0yX0ec3uvWXCQCYIgCEIiHVeg8SxNsrRjyzEhCKTpeeDdgwYYlydFIyyx4tWnZRYL4LfLDqTf+eY9JAGwUOLI69rSrBHe1xaLsNHmekTD7HM8J/SlFbqy1ginoTVAy3soXdkht2uzKuIl9LKKeK+lFWgc1iNAJY4EQRBEu6MTCDSOwkKaOyKxLyZdQsxzaIcvC/D44/2BBvAqFQXiybeFgSQ8hW7aPkWOIl5mGSxgfG0y1yPAz63T4kl7r1nYoOB5bekmiwZ5rv988/PrQjzFoNXNEEnPY4IgCIKQTMcVaCISVKkJQZreKY+fCR4esQDjXi2eQhdggx3SiRhpyTfHEq+AxeRb1q5+sA7w53Lq00ozfZPnGtF6p6RuhpiMa+cpLBLOTzsRFqE61vPq9XGIleb8Op49wYk1kqa/jgQaQRAE0UnpuAKNq4NmpXeKZ2KV5tBjrmVQaRwLniJGi5duPDyvWFp/kdH5dVxFfJrkOxbl7PykKV/jdcQEYMFl5Xgftd4pGX1aQPz8rnrj/jreLhNgfG3ReBmp1OcI7zUiQcR7POndwWYSaARBEETnJaMCTVGUAYqizFEUZb2iKOsURfmV5W8W0vNgkHzwPMwWsDZZjkfCCKQXn9wdNAvCgud9hGqcyHHtL0qTfPN0YrTXSefocr2PsLBGeK7/NJM+efZpqVHj0jyuz5E0paI8J28C1nowpa0RjkObAGvlmzxLpdMNUiIIgiAIiWTaQYsA+K2qqocCOBLAzYqiHGrpO3nu6vsCrBTIKPkINwJqTG4PGq8ENV1pXqIHjVdpXr55D5p24DeXWBb766T0aXEWaOmELm8RA8hLvtMOt+DZy5dGWCfO0+JRTpzmvcbbrQ7kWyi5lSXQ4oKb27WlKZUONfC/tnTnvBEEQRCEJDIq0FRV3aeq6vL43+sAbADQz9I3B+sAxcvnPC3APCHmnnxLdEe0w36NRBPP3hEtXrqzmXhO6APMnR9vFhPgbvH62WsZJt8iXKY0kz65CaY095G782PFQea8QWFWvpnF6dgHbUiOoYPGcVMJsFDiyHHSYcCqy8qxfNPoORKLxifPShKfBEEQBCGZTDtoCRRFGQzgMACLUz5+g6IoSxVFWVpeXt7yCc1B4JFYAeYJMffkIy7QYlH9z3Pd+U7TOyXE+TGIpaqcSxzTCTSO9xEwT4iDvJ3IAiDcYLxGgrX8E9S04pOngyyxTwswd9B4lRNr8WSU3Gqv015KHHmX+AZM1gh3oUsCjSAIgmhftAuBpihKPoAZAG5TVbVVc4qqqs+pqjpFVdUpPXr0aPkETwcBME92eI6iT34ds0SOm4OQLpYA58fIrYsE2Xlb3MuuDKb08RSDWjzDHrQMrJGOPEhGlluXbrIiz3JKII2wEHBtsbD56Hvu6zGNiOfpDhqWZcefL1p1gOtYJNAIgiCI9kXGBZqiKH4wcfa6qqrvW/5Gng4CYN5wLyL5AMx3iHklVl6feX8dzyl2QLzEMd0uOydhnW3FQeOdfEsctpL8uqnwXCO+bNaHJW2NmN1HAWIQMN+g4O2ypnXQeAtrCddmZZCMP4/PsQ9AvL/OYKMnIdAkOfEEQRAEIZlMT3FUALwIYIOqqv+29c3cy9dMJsuJKPFKft028Tg7P2YT0ULx87R4nJWkxTJMGGtbvoYH6c5443k0AmA+3IK7iLeQfPOKpSjpXS1fDr81klUgz4lJ9GBK2AwBzHtZhZXmGT23eDrxeQAU8/XP9T6aDAlJrBFODlq6Kb4EQRAEIZlMO2jHALgKwI8VRVkZ/+90S9/JOyEwTb55946Y7NiqqiBhISHR12LFwkAkpBOL9xQ7CwNQZAldEf1FgP4a4d2nBaR3tbiux3gsvbPJeLusVkocea9/WWvEbEJlNMIGafC6j4qSvsqA9xoxFNXx9zvvPl2z6bMEQRAEIRFOW+LOUFV1PgBnUz5C9UBhX34/jFlCkBghzTux0kl2wk3xkf48hYXZtQlwEAAWz9e19ed4Owhp++vqgS6D+cQC2O+kaqdBLFE9aDprhHe/G5DeHeRdBqjG2PEVqS6IiJ5IQO76r9mj/znu0zBNymBDnO+j9lqy1kggn62PWLRt2STvHrR0Gz0EQRAEIZlMO2jO4XmeFsCSNMNSOYnuCG8RA8hPrLTXbROL833U+uvMytekOWi17Gfx+vnFAgzuI+dEX3stw54fAcNWAH1Xi7uIlzwkxHSjp57fmWtAkhOvEy8o4jliUgbOu1TUbPqm7DVCEARBEJLpwAJNgLCIBllpkF4sT1wM8MBMoPF2YoA0woLjWUlAmsRKxLWZ9aqIKM0zKbuSJWJ4l4oC8eEuJqWiXNeISYkv72vzBQBvQN+JjMUE9aCl2TDgdTSImRPPe1NJey1ToctxjZiJJt4CLXHGIQk0giAIon3QMQWa1qfF20EA9P8nrfWp8DxzDZCTfADmPWjc76NWUqaT7AtzfnSuTVTyHao37p3iPbQGMHdZeQtdWZMOzYYy8J4YqcXTW4/hBgCqgB40g/467hsGFlxWEb2DenCfqmvyHOFd4qi9Fgk0giAIop3QMQVaok+Lc4IKGAg0zuWUlsoAZbkjvEVM/D7Kujajc9dEJd9QjZNGIQ6a3n3UpmHKKs0TUAYIpHFZOQtCUyeSsxhUY+wZlQrvzRBTl1WyQAs18H9mAQbuIOcx+9prUQ8aQRAE0U7omAKN9yCB5NfSdX5q+cbyBeJnk+k4CAkHjfOEPrOJaDx3omX2jgDxEkdZQjfNtfG8j2ZlV6JEfLrSPF6Yis96wOPn16cFGE9WFOJWm4hP3keDyO5TTCfQuDpaJiWOwbp4vyfHGVdm0zcJgiAIQjIdU6AJETFpkm+eO9FaPNPSJAGjv3VL8wQlVkYljjwPs9XimSbfPB0Ek94p3vcRMHY+hZQ4mjgIInr5AOPyTVnvtZBAEW8Uj6dg8njZGYZm65/3NFizYx+4u9UwuDZB7zUaEkIQBEG0EzqoQBPUgwAY79jyThqNSspE9WlpY82TicVYKaCIXj7D+8gxFhAXnyb9biJcVmkCzejaRDiR2pCccOuPJ87TkiTQeLtMgImDJuA5YurEi7g2A9GUcFk5T7oN1bHnRjJhEc9jsz5die81giAIgsgAJNA00jk/PJNhwDixErHznWUgmjTBJiRBleAgAMb9RULKKdOVOIoQFpKOYjDqwRRy5loaB42n6wmYrBGRzxGjNSLZiRfhaoVTnpFCha6k9xoNCSEIgiDaER1coIlIvo12vgU4aGY730ImK6Ym3wISK182oHiNB2nwdhACBiJGxAAII6ELSC5xbIj3aQX4xTJyfkQk+r5sdmyF0QAUES6TzKmigEQH2cCJD9Wx4wV4rhGjaxPyPDYZ2iRqo4cEGkEQBNFO6KACTRMxAkocdZN9QSWORg6CP5dvn5ZRaZ4IJ0ZRzKfm8XYQtBLH1P46IefJmU0flNyDJiIW0Pb3JmIgSWKNGAhrIe6IpGmARg6yqgpyWQ3OJhO1qQTobPQIeB77TUrORbzXjEqlCYIgCCIDdFCBJrF3RGhiZSAGRewOA3IcNMB8ap4IYRGLAJFgSiyBJV6pvzcRQxIA89I87oM0DM6dEjGQBGC9UYZDQgTdx1QRL7LEMfX3Fg2xdSqid0r2c6TNRo+A++jxmAwAoiEhBEEQROemgws0jgmI0Y5tuAnsPC1JiZWIBNWoNE+UQJOaWBns6sscsy9iSIIWT6bQ1V47GREHR2vxUnuZAEHOTz6gRpmITkZm75SIklvt9YyO6xBxH7XXbhVL4Po3HCQjYINCb0gOQRAEQWSADirQtKSR846tX6dRXLbLJKTEK11iJUAQyixNAvTLrhQPKxflRSAPgCJR6Jr0oMkSaCKG1mjxDMs3BbmDbX5v9eysOa9fTixA0CAZg/46EccVAMYuq5Bry/AGBUEQBEFkgA4q0BrYkAGeh9kC+kmjqOQjUMB29KORtvFEJVaGPWgihIXE6WuAvmjy57F+J15ovVOyhK7hfRQhdI1KHCWKT1UVdxQDoP97431dXh8bgpLagyZbxAstcZTpxMveoKA+NIIgCCLzdFyBFuCcfAP6CbHIxApoW+YlZKS/0c63qGvTGVyg9fKJ6C8C9J0f3rEA/d5BYUI331jEixK60lxWnTUSagArJ5Z4bbxjAfq9g8JEfD47py4WTYknsFRamvjUuY/RMCtFFDFsCCCBRhAEQbQLOqhAE5CgAvrlQqIFml48mSIGENOrkhor0swOyxbm/EhwR4B4+aakBNXo3KmgiBIvI3dEossqrJzS5NpErREZkw6TX0/vOSLNQYv/2y9g/bcRgwI3QwAaFEIQBEG0CzqoQBOUfOuWrwmYBpj8erqJFedr83hZL1YmSxxFlgEC+uPhRbkjsl1WGcm31qunF0vxsLI9nuiWEwt06wB5Il7PQe5MAk3vPvI+c02LJ7PfE6AeNIIgCKJdQAItGb1Ry1pCIGJIAiC37EovlsfHkivesdoIJgGDXbRYgLz7qDcAJZF8i+odlCAszIbkBPIFlRPL6vc0GQ8vzUET9RzR2ehJHA0iao1I2FQCzO+jrOcIQRAEQWSADizQRIkYSSWOeqPvVZWVswkrzTNI9Hkn31k6I6uFuyM6yb4od8RohLqMXf1YLL5GRJX4SioD1OudEv1ey+hmiCjxqbNGRJUTa/F0ha6k57Go4wqMKhoIgiAIIgN0UIEmMGmUXZqXnBAITayMkm8RiZVO0ii6NEmmOyKrB00vaQw3iomlvaZeQiwqFtA6nshBGqmxAIHPEbPyTQnOj6j7CMgX8eHGFBEvaDPESMQTBEEQRAbooAJNZkmN4KZ0aYmVwdQ8UYkV0DqeKAfBlwV4/BL7izLRgyZB6ALGPT+i3BEg5dokD4AQukb0BJoC+HL4x0q8vhZL0H3U4sm6j3qiSfhGDwk0giAIIvOQQEtG2/lW1daxRA1J0F4/EUubhsbxcOVEPL2JaKITKz13RJSwljAkQYsl48BjIE3yLbFPUahAk7BGfAHWZylr/esNydGcSA/nR65sEZ+lU+KbkY0eziWOfp3nMUEQBEFkiI4p0IRN6MsDYhEgEmz5mMghCdrrJ8dK/hzveNLcEZ2peTJ39UUNSQDYten110lzEASNogf0hYXIMkDt9ROxtPJNCWeTiezl095rrTZ6RJcTSygV1V5TVqm03vRNUc8RoyE5BEEQBJEBOp5AE518A20dC5G7w52yd0SnLywxxY7zzjfQ1h2MBAE1KlY0pV6b9ORbphMpqwdNS74FOMip619kL19WPlt/bTZ6ZN9HmRs9shw0wZtYJNAIgiCIdkDHE2jhJgCqvOEWooYkeP2sLE6ayySxB83M+ZEhLET38gFtr03EdWllV7oJqigHTZZAMyhxFFFODLRd/6J7+ZJjaH+XvtEjcfR9R+9B0+JRiSNBEATRDuh4Ak30DirQNiEQEUuLJ9MdCTew0q7keJ0i+c4z6FMRuauf6qCJEPE+dr8yVSoKSHAHU99rAsqJgbbCQmgvn961CSoD9AXiQ3JklUobbfTI2jCrYz26Hq+YeDQkhCAIgmgHdECBJjCxMhpuwbshXSN12puMXf1w6rUJHACRLGK0vkERyXdqX4wUd6SxdTxhIl7yGgkl9U6JLCfWOwdQVCygbfmalI0eCaXSWjxZg2RSN3piMYEbPfHnbqrzKfS9RgKNIAiCyDwdUKBJSL5buSMyk0YJ4lNLdmQk3zIcBKDtZDnRZYCAvvMjgtQ1EhTs/KhRdh4fED+XT1Avn1F/ncjkW3qJY0o8EYNdgLZHaMjc6IloJecinyMS+j0BEmgEQRBEu4EEWjIye0eAtiPbRZcmAS0JSLgpfii2gGTHnwtAkZh8SyxxNBSfshw0kSI+ZUiOSKGrN9Zc6HtNpog3EGiy3UEhx3Wk9EVK2TCTtNGj14NJEARBEBmgAwo0Gb0jEoWFXvmaiMQqdfqgyMRKUfQdi05RBpiJNZJyHz1+1nskIhbQEk/kSP/E2WQpkxVFuiPS+hSNShwlCYtQAxPAvM9cA9oOyRH5PNbd6JG4GUIQBEEQGaIDCrQMlCYJLamRlFilXpvIxAqID2VILRUVGCsaBCKheKxMrBGJLqtIMQjIcUe015WVfGtDQrT+OpkiXlUlb/TUiyunTC0DDwoUuh6P/gaFrPcaQRAEQWQIEmjJpJaviezTAvR70DpN8q1TmicyFtDSFyPTZRV54LEWr41bJzj5blPiKNH5FBkrub9OZoljJAjEIp3jPqY+I2WskdSJqcLEZ15rEU8QBEEQGaIDCjSBybcvm42C15IOkQceAwbJt8AeHEBeYqXn/IhMrLQYyX+KuDZfDlqVXYk88BjIjNDVnE/RLqve9E2/4GsLpjrIAh20NpshoqbBSnSZDEW8SCc+9VxKgesxWcQTBEEQRIbowAJNQu9UJhJU0e5IMIPJt2h3MDVpFNHLlyi7SoklsqQs1WUVNg1QtoMm0UFOnQgYagAUL+DL4h8rtXdK5DNLe11p/W4Sha4WT9pRDDpDogiCIAgiA3RAgRY/8NifI+b1kxNiGclHpBmIRuLxOllpkmzxmfx7E9XLB7QWFsKFrkx3JEXoiuwv0l5XWp9WqrCIr0cR5/IZifhOVeIoYdgQEJ++KavEV+cIDYIgCILIAB1ToIlKrICU5FuCgwAk9U4JTKy00jFZPWjJJY4yevmA1gmxqFhaPGnuSD4QDSUNQMmEOyJhSE40JLZPq80GhcD1CEgW8SmHR8sWuskfFxFPE4ORIBALi18jNCiEIAiCyDAdUKAJTqyy8tvufMvsnRJ1bR5P64RYivOj9WkJPHNNiwW0vjbRybfMSYeAHBHfxomUWOIoPNHXOeOt04h4vTUi0a1O/hm4x9NzIiU9RwiCIAgiQ3RAgSY6sZIpYnR6fkTF0uLJKk0K6AhdmYMLRIlqgCX7soRF6q6+yPXvy2J9Wa1+b4qYXj5Achmg5iAnrX/hz5GUNSJto0fgBoXHw9z45N+b4mEDlkSgJ3RFHyGQfDwIQRAEQWQAEmipBPLkHOYM6BweLcEdbOX8KAJ7+fJayq5kuHVASvmaSIGWAXdEhohXlNZT80SXE+u51TJ7MIVvhmRwg0LmM1JoyXnSfRTeE0lDQgiCIIj2QQcVaJ0lsZLdO5XfVsSI7OUD2Bj6jIgYWeVrEpNvTewKX/+y+rTy2fqIReX0MgGt++s6TQ9a0gZFJMT6+YSXgUu6j5qIj8WoxJEgCIL4f0MHFGgyEiuJfVoAixcNA9Gg2OQ7q0BigpokLESXePkzIXRl98XUiz9zTXttGeWUWiwtjoxhK4CcXj6g9XNExjRMgMULC16P2mtLXSMqEGkSv0a0syJpSAhBEASRYTqgQMtA74iMoQyiY2mvHZLYgwPEr02w0PX6WA+MtPI1PXeks6yRfIlCN1mgadcmqN/NFwA8/gyKeJG9fDqbIUJdrZQeTBlrJJi8/mnMPkEQBNG56XgCLSixpCZYD0ABfAL7tAB5iVXqzrfQQRpJyY408SlximNy8u3xAd6AoFjJybdgoQvo3EfBTgyQsv5lXZtgEZ/a7ymjnFiqiJfYywekbPSIGpKTzQaekEAjCIIgMkzHE2gy3BGo8d6p+O6wsAOPJbsjegMgRCFdfKYm34JjxcKs30eL1VmS76yCJJdVgtDV4ohOvoG4sGiMn8tXJ6cHTfQZgEDrSZ+yRLzMXj5AzgaFooBNaKUeNIIgCCKzdECBJrN3KhPJhywHTeJ9DMpIGvPlDUlI3dUX7cQAKSVenUXoSi7NC+TG10hz/Fw+wfdRjbLDlTvbfWyz0SO5DFa0808OGkEQBJFhOpZAU1WW9EgrqRHsMnn9gDdLrjsSaQKiEYmJlcRdfVlDErJS14jA+6j1LSWLeG2YgQjaDAmRVOKoDUDxSxCfUsopM7HRI0vEF0gcEpK60SOw5BxoXZpKEARBEBmigwm0KPtTSmmehORbiyezBw2Qc22pO9+Klx2ELDKezHJKoCWeyFgeLxNpUssAk3rQpPQp1rFYvmw28EVYvHyJbnXqc0TkRk+A9UHKEp9Z+UlnHMoqlU56ZokqOdfiUYkjQRAEkWE6mECLsT9l9HMkdr4FJh+ATtIow/mRcG2pZVcihyRo8aQL3QbxCSogX8S3Sr47idDV4skcpAEklcEKjKUoSWtEkogH5Fxbahm4lOcxOWgEQRBEZulYAi0mQaC1Sb4FJ41Z+UCwrhM7aPXiBzIAOi6TrF19wQkq0JI0ypp0CABNVUAs0gkFWiZKHAVPTNXiyexBA4DGinjJeSd6Hif36RIEQRBEhuhYAk1miaMmmmQljTIOIdZ6lxorxCffvixW1igtQc1kiaNsl1VC8l2/vyW2KGQOWwHYfQs3ZqjEUbI7KLSXT1sjB1r/W0gs2ZsheS19rARBEASRITqYQJPtoElKGpOTb9FDEgCgTkLyrSitd/U7ZS9fg/hz+YDWybfIM9cAneRbpIhPOjw61CDuIGcNqWWwSSI+KLlUWkYvH5D0HBG5RrSzySSXExMEQRBEBiGBlkpGytfiyYc3wJJWkbEAOcm39voyhiQA8d6pRqC5tuXfwmJJHAChxQvWtyT6Qnv54tdWX9b636LIkijitTLYoEQHLSjR+ZHl1mVJfI602ugRPLQGYFUGVOJIEARBZJgOJtC0EsdO0qcFSE6s4iWOMna+tdcPNbByURmxAKChvPW/RcYK1slJvluJGAliEJBTvqa9frAeCDXKuTY1xkp8tdiiSC4nFt2nBbTuU5QRC5C4RvJahLWsEket35kgCIIgMkDHEmiJISECEwJfgDlZjRKGJAApiZWEZBiQU+IItC47lCXQZOzqa2WoDQcBqBJdVkmOLiDPQUtsUMi8NglrpM16FHh2nRZPVll2YqNHphMv+Tmi9QQTBEEQRAboWAJNRomj9vpSd4clJd9tBkBILN+UJT41YSGyl8/jYa8vVcRIHFoDZGD9y7w2bY0I7Hnz5QBQJK8R2fcxExs9EoQuQKP2CYIgiIzSwQRavMRRxjABLUGVMR470gw018jpwVE8STvfkkqTpJbm7Rc/JEGLJ7MMUJqDJtGJ1F5ftrBoKGMCW+SBxx5PfI1kYjNEkhMpzUHLl+iyxgUgDQohCIIgMkgHE2gx9j9rkYkVEE+sJO58A0B9ufhYWsO9tKQxT+6QBID93kTH0uLJXCOxCDubTLYTKaUHrY71/ci8NulrRJLLFKyTeB9lOWj5Env5yEEjCIIgMk8HFGiyEiuJLhPA4omOBbAYTVUtfxcaK09unxYQv48y1ki+RJcpqXdQxnlyWqzkfwuLly9nsEvy68tcIzIH8kBl7zfRsbQS34aDSbEFEshruY9ZskocyUEjCIIgMkfHEmgxiQKtubrl7yJJTHuTkFgBrRN8Gcl3sKZtXCGx4tfSWCFJ6Oax3xkgT8Q3V4v/nXkD7Kw1bf0LLyfOYyWH2t+FxopfS8NBeWukqZL9Xfh4+PjrN0hyB7PyAajs7zLWiOznMY3aJwiCIDJIxxJoMkpcgNbJm6xdfRmxgNbXJiOxSsSSeR8lJd96fxdBcnKfVSg2lqK0XI/oPi1A7n1MrAsJjm6reJB4bRJiJceQskYy8DymEkeCIAgig3QwgRbLQPItyR2RESs5nuzkO6dYcCzJCWpyqZXM5Fu0QEuO1+lEjOzNkM78HJG5RpJiUIkjQRAE8f+ADijQZCdWnSxp1BIc2SImp6vYWLLvY263pHgSk+9sGQItr21c0bFkxMuoQOtk1ybzOZIcI7e74Fjx9zI5aARBEEQG6VgCLSa7xFFpnYgLjQW51yY9sRIs0HxZgOKNx5XgILQSaBKTbykOWjye6L4pAMguSoorOF5ySa+MNaLdP3+enKNBEn+X+RyR6NYB4p8jJNAIgiCIdkDHEmiySxzzewFev+BYskvzZCZWySWOghMr7QiB1LiiSBZo/hyxsZJ/V1IctHg8GWKwqH9SXNHTB70tQkmmiCnsy9an0FiSSxyzMrTRI/o54gsAHj+VOBIEQRAZRfBpvpyRXeKY00V8rPxeSXE7ce+I6B40gE3pC0o48BtoLdCEJ9/JPWiCe3AAdtA3APQaKz5W0YCWv8tak+FGueu/sK/4WMkxZF6b9FJRwU6kFs9AoIUiMawoqcKGfbXYdKAOjaEozhjXByeN7gWPh+9zIBZT8fXGMizdWQmvR0HA50FewIfjRnbHqN78N08O1gfx3wU7sXZvLYpy/Dj50F44YWQP5GWJSRO2ltXjvWWl2HGwHkU5fhwzvDvOGNcHPi//feO1e2qw42ADtpTVQ1VVKACOHNYNRw3tBoXz87u6MYQv1x/A8pJq9C7MRp/ibBw1tBsGdBWzdvfVNOHtH3Zja1k9+nXJwZFDu2HayB7crwsAItEY5m05iG3l9diwrw7dCwI45dDemDyIf64Ui6lYVVqNVbursauyEf275CLgVXDRlAHI9nu5x9teXo+3ftiNbWX1GN2nEOP7F+HYEd2RGxCz/rccqMMrC3aiqjGEngXZuOTwARjdh//7WlVVlFQ2YldFI3ZXsT/zAj5cMLkf+nfhvyb3VDdhxrJSHKhtxqjeBfB4FBzapxDj+hUJeW/XNIbx4vc78MOOSozuU4jLpg7A0B758HJ+HgNsTX6wYg8+XrUXMVXFtEN64sojByLLx389Ah1OoMkqcdQEWrH4WF4fkNeDnQXV6XpHkoSFR8wCbkWkmf3ZZZD4WLkSxLuG7BLHmlL2Z7/J4mO1ctAkuboN5XId5DzBfVNA680kKe/tDD1HZBDI1x2z/9na/fjLJ+uwr4Y9Z7rk+uH1KPho5V4c0qsAv/jRMG4Co6I+iJteX44lOyrh9ypQVSASix9rMBs4e0Jf3HfeWBRk86nwWLDtIG57ayUO1gcxslcBVpRU4YMVe5Dl8+C4Ed1x7mH9cMa4PlyS/uUlVXjim634ZmMZfB4Fg7vnoaohhHeWluLhLzbj1hNH4LzD+nFJsOqaw7jz/TWYtXpf4mMeBYipwGPfbMXp43rj7tNHc0tUl+2qxE9fXYrqxjAKsnyoC0YSnxvQNQfXHzsUVx05iIuYbwpF8fy87XhyzlaEozH065KDz9ftx7PfbsfIXvk4c3xfXHXkIHTJC7iOpaoqnpq7DS/M246qxjAAoHt+Fmqbwnj22+24aHJ/3HbySPQr5lNNUlLRiFveXI7VpeyYnoDXg1A0BgB46PNN+PkJw/CLacO4rEdVVfHp2v24473VCEZiGNQtF99sKoOqArkBL04+tBd+dtxQjO1XlP7FLLC6tBovzt+Bj1ftRZbPg37FOZizsRyvLtyJ08b2xpVHDuK2cbCrogG/eH051u2tTXws4PMgEo3hyblb8duTR+L644ZyEzNvLC7BHz9ai2hMRW7Ai8ZQNPG5XoVZeOmawzGmL5/7WNscxsvzd+KF+dtR1xzB+P5F+O/CnXjp+x3I8Xtx4eT+uH36ISjk8IzcW92Ef3y6EatLq7GzohFDu+ch4PPgbzPX4+Xvd+CXPx6OqUO6YUh3vv8/7GACTdJ4bG0kfHax+FgAcyq2z2E9dqLJlIMmg3OfZuegjb9UfCzRvYnJJPcvyShxLN/I/pQh0JIdEZnvbRmxNCdS1nOk2wigYgs7x040mSqVlkFWfpsetMe+3oJ/f7kZY/oW4s9nHYrDBnZBz4IsRGMqPlm9F0/N2YZfvbUSL3+/E49fdpgrt+RgfRBXPL8Yuyob8OAF43DBpP7weT2IxlRUNoTw2qJdeHLOViwvqcKDF4zHMcOdbwBEYyr+8/UWPP7NFgzpnodXrp2KQ/sWIhKNYemuKny+bj++WHcAX21YgRmHlOLxyych34WjNnP1Xtz21koU5fhx20kjcOWRg9A9PwuxmIovNxzA499swe/eXYWn527F3aePxomje6V/UQOqG0O4/PnF2HSgDr89eSR+PLonRvYqgN/rQXM4ihfn78B/vtqCrzeU4e7TR+PyIwbC70Jcf7n+AG55Yzn6Fufg5WsOx8QBxQhHVeysaMDCbRWYtWYf/vzxOqwqrcb9541z5QItL6nCza8vx76aZpw+rjfuOm00BnTNRTgaw/vLSzFj2R488tVmvPT9Dtw5fRQunTrQcaxQJIY7ZqzGByv24MRRPXHJ4QMweVAXdMvPQmMogoe/2Iz/LdqF2Wv24aIpA/Drk0eiKMd5Ury9vB6XPb8IzeEYHrxgHKYd0hPd87NwoLYZuyoa8eL87fjn55uwZEclfnfKIRjX33nCH4rE8LeZ6/Haol04tE8hnv/JFPQrzkFdcxhrSmvwyep9mL2G/ffA+eNx4eT+6V/UAFVV8eBnm/DMt9uQ4/fixuOH4Ybjh6JrXgDVjSE89932+H3cj6mDu+Lxyw9Dr8Jsx/H21zTjyhcXo645gr+cPQajehegf9dc9CnMxv7aZvzlk3V44NONeGNJCX5+wjBcMmWAq42Dp+duw4OfbcS0Q3rgb+eMRa/CbNQ0hRGKsqqD+2dtwPlPLcBvTxmJ644Z4moj650fduO+2RtQ0xTGqWN64baTRmJ0n0Lsr2nGt5vLsHRnFd5YUoLvtpTjlWunuhJOmw/U4fLnF6ExFMXUIV3x65NH4qzxfeHxKJi3pRwPzN6IO2asAQBcMmUA/nLOGH4Or6qqHea/yX08qrrwaVU4y15V1T8Xqur7N4qPpaqqunE2i7d3lfhYiWv7ufhYFdtYrD8Xio8lm6pdcq/tvr4sVn25+Fgf3MRiRaPiY6lqy32MxcTHev4kFmvpK+JjzfkHi/XlveJjqaqqrn2fxasqER9r/n9YrJm/FR9r7yq577XnfqSq/z0v8c83F+9SB90xU/312yvUYFj/PRGNxtQPV5SqY//8mTr2z5+ps1bvdRS6rLZZPenhueoh98xWv99i/F5fsqNC/fG/5qhD75ql3vHeKvVgXbPtWLFYTP3F68vUQXfMVH/z9kq1vjms+3XRaEx9af52dehds9RTH/lWLa1qtB1LVVX10zX71CF3zlQvfPp7taYpZPgzfbpmr3riw3PVQXfMVP/x6QY15uC5EIpE1YufWaCOuHu2OmfjAcOv21PVqF75wiJ10B0z1TMfm+f42t5YvEsdcudM9ezH5xn+LmKxmPqfrzarg+6YqZ76yLfq5v21jmJtL69XJ/7lc/W4B79RF247aPh1G/fVqpc8u0AddMdM9Z+fbXR0H1VVVf/04Rp10B0z1ce+2mz4GiUVDeqtby5Xh901Sz36ga/VpTsrHMXacqBWnfL3L9VJf/1C3bCvRvdrotGY+uy3W9UJf/lcHXLnTPXl+dsdxaptCqnTH/1OHXTHTPW+WevVcET/vV3VEFQvf36hOuiOmeoDszeoDUH990k6np67VR10x0z1zhmrDdd/UyiivrZwp3roHz9VT33kW3VfdZOjWJX1QfWkh+eqY/70mbqypEr3a2KxmDp79V71vCfnq4PumKne+N+lalMoYjtWLBZT75+9Xh10x0z1l28sN3xGHqhpUq9/9Qd10B0z1bMen+d4/X+2dp86+M6Z6iXPLlDXlFYbft2SHRXqxL98rh721y/UBVuN3ydm1DeH1Wn/nKMe/vcv1S0H9H/eaDSmrimtVu+bxe7BNS8tViNR6+81AEtVA83TsYaEAHJ2U5vjdrCsne9DTgP+sB/oM158rEydcdXZkOmgAUmTFSU4aGc9Bty1R/w5eamI7uUD5PZONbPynFaTKkUy5jzgT1VA8YD0X+uWTA0JkUFSD9oPOyvxx4/W4viRPfDQBeMR8Om/JzweBedM7IfZtx6HYT3y8YvXl+PZb7fZChuMRHH9qz+gtKoJL18zFUebOGOHD+6KD28+BhdPGYD3V+zB2U98j7V7amzFe37edsxavQ+3n3oIHr54gmGvmcej4NpjhuDlaw7HnqomnPnYPLy/vBQst7BGeV0Qd72/GuP6FeHV66Yalh0pioLpY/tg9q3H4bKpA/H03G24Y8ZqNIftVZfcN2sDFu+oxIMXMgfGiL7FOfjvdVPx1BWTsPNgA856fL7t+/jJqr246/01OH5kD7x5w5Holp9leG23njgCr1x7OA7WB3HWE/PxxuISW/exMRTBtS8vgaIo+O91U3HkUOP/Dx3SuwCvX38kLj18AJ6YsxU//98ylFY12rq2Wav34dWFu3D9sUPwyxNHGJbdDeiai/9cehjeu+loeD0KrnpxCRZvr7AVq6I+iMufXwwAeOuGIw37LD0eBTccPwzf/f5HOHF0L9z7yXrc+/E6ROIlkFZQVRW3v7samw/U4ZkrJ+Pu00cbOjrFuQG8+JPDcenhA/DMt9tw6qPfYcO+Wt2vNWJ1aTX++fkmnDGuD+4/b6zh+s/2e3HlkYPw9JWTsauiESc/8i3eXbrb1hqJxVTc/MZylFQ24oWfTMGEAcW6X6coCk4b1wczbjoa95wxGp+v349b3lhu+7320Oeb8Oy323HlkQPx6CUTDZ+RPQuz8dxVk/HE5YehtKoJZz7O1r8dNh+ow6/fXonx/YrwyrVTTctODx/cFe//4hgU5/hx+QuLcP/sDQhG7F3b32aux86KBjx22WEY3lO//9/jUTC2XxHuPn00/nbuWMzZVI7rX/0BNfFSYDeQQNNj4uXAqDOB434rPpaG6EmAGokJfZ2wNEkmosempxLIYyVzPvf9BGnx+uSsD43jfgf0GC0nVkKgSbi+yT8B8noC4y4UH0tDlqjOxJh9GaWbAOuvC9WjpjGMW99cgX7FOXj80sMsleQM6JqLd248CmdN6IsHPt2IO2esRmVDyFLYv36yHqtKa/DIJRNx1LD0G0AF2X48cP44zPj50VBVFZc+twirdldbirVydzUe/GwTThvbG7+YNszS9xw/sgc+uuUYDOmeh9+8swr3fLgWYYtJ8Z8/XouGUBQPXzzB0tCFgM+D+84di1t+NBzvLC3Fxc8utCwu3lm6G68s2Inrjx2C8w5LX5KmKApOH9cHH95yDHL8Xlzz8hLM21JuKVZZbTPuen8NJg0sxvNXT7F0bdMO6YnZvzoOhw/uirs/WINfvL4cTSFrieNz323HzopGPHn5JAy2ULbl9Sh44Pxx+N0pIzF/y0Gc88T3+GFnpaVYpVWNuPP91Zg4oBh3nDbK0vdMHFCM9246Cr0Ls3HFC4vx/HfbLYkLVVVxx4zVqG4K49Vrp2JEr/TDsAqz/Xjmysm4/tgheGXBTlz7ivWk+NUFO/HZuv24c/ooTB/bO+3XZ/u9+McF4/H2DUciFInhgqcX4LO1+9J+HwA0h6P47Tur0D0/gPvPH2ept+z4kT3w2W3HYXSfQtz+3mrc8Noy1DRZu7an5m7Fgm0V+PNZY0wFvIaiKLj+uKH42zlj8dWGMlz2/CKU1wUtxfpm4wE8PXcbLps6EH87Z2zaEklFUXDm+L747LbjcMTQbrj7gzV4b1mppViqquLu99cg2+/F81dPsVRGOKR7HmbeeiwunzoQz323Hec+uQC7KqxN6P1s7X689cNu3HTCMEv3EQCuOnIQ/nrOGHy/tQLnPf19q95XJ3RAgSbjjKuuwKWvA/k9xMeSjcydb9kiRiYy3J5kAvlyJjhmghP/CNy8SE4smQ5yj0OA27e0HoTSWchEL2tXa0KCRzw1VI8/fLgG5XVBPHbZYSjKtd5TE/B58OglE3Hj8UPx7rJSnPaf77Bkh3lS/MW6/Xh9cQluPGGopYQxmXH9izDjF0ejKMePi55ZiGe+3YZozDgpjsVU/PnjdeiWF8BDF463NYxgaI98vPfzo3HTtGF4fXEJrn5xCarSCNBZq/dh9pr9uO2kEYa70Hp4PAp+d+oheO6qydhRztyt+VsOmn5PSUUj7vlwLY4Z3g13WhQVGsN65DN3L8ePq15cgjtnrEZts3lS/PAXmxGMRPHviyfa6l/rWZCNV6+dirtOG4XP1u3H1S8txt7qJtPv2XKgDk/P3YYzxvWxJOA1FEXBLT8egY9/eSyKcvy4/PlFeHXBTlPhFInG8Ku3VgIq8Phlh9m+tg9uPgYnje6F+2ZvwPWvLsWB2mbT73l9cQm+2lCGO6ePwqF9rVeJeD0K7jnzUDx0wXgs2l6Bc5/6HitKqky/p7IhhIe/2IwTRvbA9ccNsRwLAI4Y2g0f33IsRvQqwM//txyPfrUZMZP3GgD85+st2FJWjwcvGG+rN29Qtzy89bMj8cczD8WcjWU4+4n5aZ27j1buwb++2IyzJvTFZVPtVVJceeQgPH3FJKzfW4sf/WsuXpi33fQ50hCM4O731+KQXgW49+xDbT1HehZk44Wrp+Cood3wu3dX4ck5W9PexxnL92DprircOX0UetrozcsN+HDfeePw4k+mYG91Ey56ZiF2HjQXaQdqm3Fn3PG/7aSRlmMBwNVHDcYr1x4OqMDNbyzHHz5Yg4akYUF2yLhAUxRluqIomxRF2aooyp1pv6EzuzIykLnzrSjAKfcBN84THysTXPwacP03cmIF8uWUN3Z2ZJY4dmZkbvRk5QPnPQtc/aH4WAAQyEOosQ4zV+/Dr08eifH9i22/hNej4K7TR+PjuCtz2fOL8NRc/SSkORzFXz5Zj1G9C3D7KYc4+pH7FOXg41uOwY9H9cQ/Pt2Ii59diDWl+qV6H67cg1W7q/H76aMcTYH0eBTcMX0U/n3xBCzbVYVznvweM1fv1b22ivog/vTRWozvX4QbjhtqOxYAnDKmNz665Rj0KMjC1S8tNryPAPDXmevh8yh4+KKJjoYQDO+Zj9m3HocbTxiKd5buxqmPfIelBo7Tur01eGfZblxz9GBLblYqHo+CG08YhscuPQxr99Ri2r/m4tGvNuuW6qmqit/PWI28LB/+fPahtmMBTIB+8ItjcPyIHvjzx+vwyzdXoLpRX1w/PXcblu2qwt/PG+to4E1Rjh9PXzkJ9551KOZvPYgzHpuPHQZJ8bbyevx91nocN6I7rjl6sO1YAHDx4QPwxs+ORHM4ivOfXoB7P16HeoOk+F9fbEJjOIp7zhjtaFJir8JsvH3DkTj/sH549KstuOG1pdh8oE73a1ftrsaz327DxVP6m5baGuHxKPjpsUPw9o3s2s576nu8v1zfcWoKRfGPTzdibL9CPHrJREfXdtq4Pph167GYOqQr/j5rAy59bqGhm/b64l3YX9uM+88f62jMfMDnwcvXHo5zJvbFPz/fhMP+9iVeXbBT971d0xTGA7M3YNLAYseDWk4c3Qvv/vwohKIxnPHYPLy2cKduOaeqqrj9vdUIhmN49FLjkk0zjh7eHV/8+njccPxQvLGkBJc+twj7asw3YPTIqEBTFMUL4EkApwE4FMBliqKYP30osXKHNo5bVn/d0bfI6a3LBIeeDfSXMOkQAIr6yekt6uzILHHszMh00ABgwqVyzpMDEPPnQQ3WYUTPfNx4vDNRoTGmbxE++eWxmD62Nx76bBMufW4R3l9eij1Jbsm7S3djT3UT7jnjUFeTzbrlZ+HpKyfh0UsmYsfBBpz1xHzc+uYK7K5sKQ1sCEbw4GcbMaF/Ec4/rJ+razt/Un+8deORUBTgljdW4Jwnv8dHK/cknJlYTMXdH6xBbXMYD1043tW1DY2Li9PH9cFDn23CSY98i3s/XoeN+1schTkby/DVhgO49cQR6F3kfPpdtt+Lu04bjfd/cQyy/V5c/sJiPPjZRqzdU4NQhIknVVVx36wNKM7x45Yfj3AcCwDOmtAXX/z6eJw6pjce/WoLTvjnXHy/tbVTOGP5Hqwoqcadp41CzwLn11aU68fzV0/BHdNHYfaafZh639e49+N1rcTT7spGPDmXHUFwzkTna0RRFFxzzBB8fMuxiKkqzn5iPh79ajNWl1a3EqH//mIzfB4PHr5ogqspgocP7oovfn08rj5yEF5duBOn/PtbfLKq9cbBipIqvLmkBNccPdhSGaUR2X4vHr54Au45YzS+31qBUx75Dr99Z1UrwdsUiuL291ahR0EW/nCGM1GtMXlQV3zyy2MxoX8xfvPOKvz8tWX4ZNVe1CU5vM/P2459Nc3405ljXI3NH96zAC/+ZAr+ddEErNlTg7OfmI8PVpSivC6YuJcNwQien7cDxwzvhsmDujqOle334tFLJuKpKyZhXL8i/Pnjdbj0+UVYt7emlcP74GcbUdUYwl8tlFGaMbJXAWb+8lhMGtQFf/xoHabe9xUe/3pLKzH/+boD+G5zOX4//RAM6+E8T/B5Pbj79NF48SdTsKWsDj/+17d4+ItNWLm72nK/pGKn+ZA3iqIcBeBeVVVPjf/7LgBQVfUBva+f0ter/vPd79Bj8FgM75kv5LBCjaqGEGYsL0VzOIqjh3fH2L5FjpS0FVRVxeIdlThYH8SQ7nkY1kPste1d8iG25k1Cty5F6JoXQNe8gLCD9hpDkUSN8RFDumFkr3whB2hqrNtbg23lDahvjuDE0T1djalNx46DDdi4rxahaAyDu+WhR0EW+nI6ByaVuppKfL+lDEFfAXoXZqN/11xuZ87osfNgA37YWYlITMWkgV2E/t6CkSgWba/EtrJ65Gf7cMLIHsJ+b+qcB6B8+w8sPm8e1IJ+6FmQhSHd84RdW11zGD/srESX3ADG9ityNcY7HaqqYuH2Cmwtq0f/Ljk4fkQPIQeDAgAiQYQ+/QN2jrkZu4O5yM/yYfKgLsLiaQdEK4qCrnkBDOmeJ+QgUgDYNeNPGLTmP5h13jqcMYFPeaqqqnjrh934z1dbsD9e7tW/Sw4m9C/GvC3lGNGrAO/9/Chu67CumZ1P9cJ8VqbUrzgHuQEfdhxsQFM4ihk3HeUqsUomFlMxY3kpnvtuO7aU1WNcvyL0K87B+n21KKlsxD1njMb1Dt2zVFRVxSer9+HtH0rww84qhCIxTB7UBYO75eGztfvQpzgHs289jtv/qysbQvjTR2sxa80+qCpQkOXDwG65mFRQjeat32HcmTfj6qMGc4mlqiq+2ViG+2dvwLbyBkzoX4Rehdmobgpj5e5qjO9XhLdvPIrbut+wrxavLtiJd5exgS8nH9oLA7rkYtaafahrjuDTXx3H7XDtXRUN+NNH6/DtZtbbV5zrx9TBXZHl92Lm6r34xbRhuP1UeyWpZizbVYU/fLAGG/fXoV9xDvuvSw4+XbsPRTl+fPWbE7idIVjVEMKz323Hc99tg8/rwfQxvVGU48cPOyux+UAdXrrmcEfumR6RaAyPfrUFbywpQWVDCFk+D86a0BcxVcXMVftw4uieePpKfpvGq3ZX4w8frsHaPWwjpDDbhwkDinGwPoQN+2ox46ajuR1Srqoq3l1air/NWo+65gj6FeegRwEbuLNydzWuP3YI7jnTndBNjjV/60G8umAXvtpwAF1y/ZgyuCt6FGRhxrJSDO6Wh1m3Hsvt/2e7Kxtx36wN+GzdfgBAfpYPZ03og6nhZTj/0uuWqao6Re/7Mi3QLgQwXVXV6+P/vgrAEaqq3pL0NTcAuAEAJvfxTvZc/QrK0AVej4JRvQtw6eEDcNnUgVwTg10VDTjvqQWtmrt7FGThqiMH4fIjBqK7wZQmp/z7i0147JutiX97FGBcvyLcfuooHDuC7yG3i7ZX4LLnFyH51+7zKLj6qMH4/fRDuArD5nAU5zzxPTYl2f9dcv340aieuOKIgZg0sAvXxPiLdftx4/+Wtbq2SQOLccPxw/DjUT25CuzdlY049dHvWh3EqCjAGeP64KZpw7gdxgiwBOj8pxdgZcoAgGE98vCLacNx/qR+XO/jsl1VuPrFxWhIurZhPfJwxvi+uGhyf27/0wbYg/Knry7FNxvLEh/zehRcMKkffvnjEVxjAcAX/70fJ2x7GIcFn0MjmAg8tE8hbpo2DGeO53MQr8buykZc+tyihFuSG/Cia14AJx/aC9cePQQDu/G9tke/2oxHv9qS+HePgixcMKk/Ljl8APcDNFeUVOHy5xejKalEZEj3PPz2lJE4fWwfLgfxatQ2h3HW4/Oxq6LFCcoNeHHS6F749ckjuV/bzGfuxpn7n0Tz73YiO5/vgfTRmIpN++uweEcFluyoxLq9tRjULRd/PWcs9+sA2FlIL3+/A/tqmtEQjGBfTTOOGtYNf+SU6CQTjal4beFOzF67H2W1zTikdwGOH9kDl08dKGQDpKohhPeWleL9FXtQ3RjCiF4F+OeF44Vs7uyvacaSnZVYtL0CJRWNmLbnWVyvzkD47gPwB/jGawhG8NYPu/F+fIO4e34W+hRl409njUFXDodOp3KgthlPz92GOZvKsLe6CYf2LcJ9547ldjBzMmW1zVi0oxJfbziAjfvqUB+MYOqQrvjLOWO4HCicTDSmYubqvZi9Zh/21zTjYD3L5+49ewxOPtT5+XpGbNpfh9cW7cSna/ajKRzF8J75uPaYwZYG1dglGlOxooSd9fXlugNoCkcxtl8RXr7mcC4HkycTi6n4emMZ9lQ1YnNZPVaWVGN/bTOuPHIQfnOyvf4sK1TUB/HF+gOYv+UgapvDCEZibFDN9FFCNuVW7a7Gs99tw+YD9SipaMTJh/bCvWePSYhDnpTVNWPJjkrM2ViOj1ftwd3KK7juvnc7rkBLZuJhk9U3Zn6DnZWNWL+3FvO2lGNVaQ3G9SvCgxeMt9VcasZv3lmJ2Wv2YcZNR6N7fhaW7arCO0t3Y+6mcgR8Hlx95CDcdfpoLotleUkVzn9qAc6f1A/XHzsU2w/WY9N+1v+w42ADJg0sxp/OGoOJBqNS7RCKxHD6Y/NQ1xzGvy+eiNqmMKoaw1hRUoV3l5Wid2E2Hr54gquDT5N57rttuH/2Rjx9xSSM61+EeVsOYunOKsxesw9N4SjOHN8HD5w/jstOVnldED9+eC4GdcvF/eeNQ5bPi682HMB/F+7EgdogDulVgH9cMA6HDXSfcKmqiqtfWoKlO6vw+GWHoX/XHOyqaMSKkmq8tnAnGkJRXHHEQPzprEO5OJMfrdyDX721En85ewyOHtYN+2ubsa2sHjOW78GaPTU4fmQPPHD+OC6OWiQaw/T/zENzOIoXfjIFuX4fvt1Sjlmr92Lxjkpk+7y458zR3JKuD1aU4tdvr8KvTxqJy48YiKrGEN5cUoLXF5cgFlPjB5+OcFXWo7GtvB5nP/o1LhmuYvq04xGJxrCtvB6vLtyFrWX1OHZ4d/z1nDEY6qKsIZmfv7YM320pxxOXH4amUAw/7KzE3uomfLOxDF6PgvvPG8dNXK8urcY5T36Pcyb0xd2nj8aq0hq8/UMJ5mwqRzSm4pjh3XDPGYdidB/3z8hgJIozH5uP+mAE95xxKPoUZ2NPVROe+GYrNh2ow7h+RbhjOr/NJW0D698XT0CvwmzsrW7Cit3V+HjlXoSiMdw8bTh+Pm0ol/daZUMIjz14F+71vAD8ZiNQ2IfDFbQjVr0NeLxyJ4t2Rj69E1j8NPD7HWyoWCdBVVWhFS5taKgA3rsWOP85oMDecJz2CjvDClw3qdIRisTg9yryfncr32BHDY08VU48Schc/+FoDJ6Pb4Hv/KfbrUCzV+I4ZYq6dOnSxL9VVcXsNfvx54/XoroxjBtPGIpbTxzh6n/Uq3ZX4/ynF+Caowe32WXcWlaPZ7/dhneXleLwwV1w/3njXNUxR6IxXPjMQuypbsLc301rdQ5NYyiCNxaX4Pl521FWF8Qvpg3D7045xNXieXLOVvzz8014+ZrD8aNRrS33xdsr8IcP12JrWT3OHN8H958/ztWOVnVjCMc/NAeTBnXBK9dObfW5uuYwXvl+Jx79egv6FefgicsPc9SIn8yv3lqBT9fsx6e3HdeqbjgcjeGr9Qfw15nrsb+2GT89Zgh+P32UKzft3aW7cft7q/HXc8a0KW+paQrj8a+34IX5OzChfxGevGIS+ndx7pQ0h6M48eFvUZzrxye3HNvqoR+Lqfjf4l34x6cboQC46/TRuOIId8Lple934N5P1uOZKydh+tjWyWlpVSPunLEG87cexJnj++ChC8dbGittRFldM0595DsM6Z6Hd39+dKsNj301TXhyzla8/cNuFOX48eglh7lK+FVVxU9e/gErdlXhm99Na7U7FoupeH1JCR78dCMaQxFcd8wQ3D79EFfPkcXbK3DJc4vw25NH4pcntu5R2V/TjF+9tQKLd1Ti9HG98fdzx7naGY/GVFz87ELsqmjAnN9Na7XhUVbbjHeXleLF+TvQGIrgicsm4SSXu8ePfLkZ//l6S5vnSDSm4sMVe/DvLzdjT3UTTh3TC/+6aIKrDZjSqkac/O/v8OPRPfHk5ZNafa6sthl/nbkeM1fvw9AeeXjogvGYMthdsvzXT9ajctH/8Kj/SeCWpUB3d/1F7Y57467IvfbO+iJS+PiXwPL/Aretpd5gN2ybA7x2LnDZW+w8WMI5+1YBRQPkbBjQc4QP714D5eJXDQVapqc4/gBghKIoQxRFCQC4FMDHVr9ZURScMb4PvvrNCTj3sH54cs42XP78YpTVmY90NaIxFMGv316JXgVZuPXEtv9jHt4zH/+8aALuP28ctpc34IoXFmPhNnuHMSbz2DdbsXJ3Ne45Y3SbQ0JzAz5cf9xQfPWbE3DhpP54cs423P7ealuHMSazu7IRj3+zBdPH9G4jzgBtfOwx+PVJI/Hp2v048eFv2zQqW0VVVdw/ewPqgxHcdVrb860Ksv345Ykj8PYNRyISZWeKvDDP2nkpeny7uRwfrdyLm6YNa9PU6fd6cNq4Pvji18fjiiMG4oX5O3DZ84vSjv01oqyuGX+buR6HD+6CK48Y1ObzRTl+3HPmoXjmysnYXt6AMx+fn6i7d8LL3+/Enuom/OGM0W125Dzx0tTPbzsehw3sgns+XIsbX1vmeKTrjoMNePCzTThhZA+cOqbtbmb/Lrn473VT8fvph2DWmn04/6kFKKmwd/CpRiQawy/+txzN4RgevGB8Gze6T1EO/n7uOMy69Th0yQ3gqpcW45XvdziKBQBfrmeNv7edPLJN6YLHo+CqIwdhzu+m4dKpbI1c+PRCx8+RSDSGv81ajz5F2bq9N72LsvHGz47E76cfgi/XH8Apj3yHBducvdcA4Kk5W7FsVxXuPG10GzHUszAbN/9oOD6/7XiM7FWAG15bajgpzgob99fiqblbcd5h/do8R7weBRdM7o9vfncC7pg+Cl9tKMN5Ty3A9vJ6x9f2l0/WAwDuPr3tc6RnYTaeuHwSXrn2cISjMVz2/CK888Nux7FW7a7GKwt2YNLweMIdcv5z2+LeIuCDn8uJRfAhfpB54k/CGdp7TMZ9jIaBNy4F9iwTH0s2qgo8ezzw37Mz/ZMQdkiz7jMq0FRVjQC4BcDnADYAeEdV1XV2X6c4N4B/XTQBT17OznA4+/Hvsbq02vbPc//sDdhR0YB/XTzB9LyKy48YiDd+diQ8ioLLnl+En7y0pNU0HSss3FaBx7/Zggsm9TedlFSQ7cdDF47HbSeNwHvLSvGz/y7F/hp7iaOqqrj343XwKAr+dJZx70FuwIdfnTQC7990NLrk+nHtyz/gs7X7bcUCmKh4Z2kpfn7CMBzS29hhnDK4K2b/6jhMO6Qn/j6LnZdi9z7urW7CbW+twIie+bjJ5MDVgmw//n7uODxx+WHYsK8WZzw2H4u32xfXf/pwHZojMfzjgvGmJQzTx/bGx788Fr0Ls3HNy0vwn6+2pD3nI5WSikY8NWcrThrdE0cPM3aPBnRlwumeM0bjqw0HcNEzC22PdA1HY/jdu6vg9yp48ALjs5E8HgW/mDYcL19zOPZWN+HUR7/Dawt32ooFAK8t2oWlu6rwwPnmLvTIXgX46JZjcOKoXrj3k/W49+N1uqNxzahuDOEvn6zHyF75uPqotqJao0dBFu4/bxyevWoytpXX45JnF6U9m0iP5+Ztx9o9tfjDGaORE9B34bzx+/jxLceiKMeHq15cgv8uND+bSI9F2yvwyFebcc7EvrhgkvFzpEdBFt664UicNaEvHv1qC654YbHlw0g1ItEY7nhvNQqz/aY9TFk+L26aNgz/++kRqGwI4Zwnv8ecTWWGX2/El+sP4Mv1B/Crk0aYlu9OO6QnZv7yOBw5tBt+P2M17p+9wfZ7rayuGTf9bxl6FWbj/KPifRUykkbt973qTfGxOjsbZwMLn5QTKxTfmJKxRkKNwJr3gAxWOwkjqAk0CZshVTuBzZ8CM34mPpZstPu3f01mf47OwJYvgbUz5MRqzwINAFRVna2q6khVVYepqnqfm9c6Y3wfvHcTm3J00TML8eGKPZa/94t1+/G/RSW4/tghpsmwxiG9CzD39mnxMasHcc3LP1gWF5UNIdz29goM6ZaHv54zJu3XK4qC204aifvOG4vvt1bg5H9/a/kUewB464fd+HpjGX5z8khLUwYnDCjGOzcehTH9CnHT68vwj083JsYLp+ObjQfw91nrceqYXvidhTN9inMDeO6qybj3rEPx7eZyXPniEtQ0WbuPsZiKO2asRjASw3MWT5Y/c3xffHjzMSjM9uHyFxbjxfk7LCfFn67Zh8/W7cevTxppafzqkO55+OAXx+C8if3wyFebcd2rP6Q91FVjV0UDLn1uIbxexdKIXo9HwfXHDcVL1xyOkspGnPvk91ie5sBODVVV8ccP12LZrir87dyxlkZUTzukJ2bdehyOGNoVf/xoHe79eJ3poZbJbD5Qh4c+24TjR/bAORPTj07PDfjwzJWTcM3Rg/HKgp04/T/zsG6vtdKKWEzFr99eibK6Zjx04QRLUxRPHdMbr/10Kg7WBXH2E/Px1foDlmIBwFfrD+Bfn2/C6eN644xx6fuXRvcpxIc3H4NpI3vgTx+twz0frrXsbh2sD+LWN1dgcLc83HfeuLSlrbkBH/5z6WH498UTsKq0Gmc9Ph9r91gvUXnsm61YVVqDe8+2NqzgqGHMlR/QJRfXvfIDHv1qs2Vxvae6CXfMWI1RvQtw3THpD5MtyvHj5WsOx9VHDcJz323HzW8st/xeaw5HceNry1DZGMLzV09Bfn4x+0RQQtIoy6X7/8BblwGf3y0nVsL50T//iitz7gNm/BTYPkd8LNlo91HGe02NP1cjzioj2jVN1v5fT1jg9QuB966TEyvN8z/jAo03Y/oW4eNbjsHEAcW47e2VuH/2hrQlX/O2lOOXb67AuH5F+N2p1g8KzfZ7cf1xQ/H4ZYdh1e5qXPb8olbn2+gRi6m4/d1VqGoI4/HLD2tT2mjGFUcMwpe/OR5De+bj5/9bjgc+Tb9T/NL8Hbjr/TW2D4Eszg3g9euPwKWHD8Az327DuU9+n7ZUaeP+WvzyjRU4tG8hHrlkouUmWe28lKeumIT1e2tw7pPf4+sN5kmxqqq4b/YGzNtyEHedPtrWBLSRvQrw4S3H4MRRPfG3mevxq7dWojFkvkaW7arE3R+swdh+hfjZcekTRo2cADsv5b7zxmLB1gqc+fj8NtMYU9l5sAGXPrcITeEo3rj+SFvXNu2QnnjvpqPg93pw8TML8dTcrabXFoup+PeXm/HWD7tx84+G2Tr3ZkDXXLz4k8Nx3TFD8MqCnbjxtaUoS1M6WlrViGtf/gF5WT7860Jjpy4Vn9eDe88eg//99Ag0hqK45NlF+HydubsbjERxz0drMWdTOf505qG2Bu1MHtQVM35xNHoUZOP6/y7FHe+tNjz4VEN7jozpW4R/XTTB8rUVZPvx3NVT8PMThuH1xSW45LlF2LCv1vR7GoIR/PTVpahpCuOJyych38Zz5PxJ/THjpqPhUYCLnlloySV/b1kpHvt6Cy6c3B9njrc+OKN/l1zMuOlonBN37i55dmFa4bT5QB2ueH4RwpEYnrh8kuV+UZ/Xg7+eMxZ/OH00vlh/ACc/8h3mpnHuovFNnhUl1Xjk4olscp12CLcM8dSofwiycGLOSlxtse5D4PM/iI+TCcISHTRtjdToH1DMnf1rgDcvAyL2HHZHyCxx1GJ1RoEm8zkSsbbxxY2d85mD3Blp7w6aCLrlZ+F/1x+R2E094v6v8cK87W12plVVxazV+/DTV5ZiSPc8vHrdVEeDAU4b1wfPXz0FO8obcOoj3+GB2RtaHQ4KsER4wdaD+MnLS/D1xjL84YzRjkaxD+qWh3dvPApXHDEQz367HTe8tkzXTdhX04Rb31yBv85kbtYLP5li+yiC3IAPD5w/Hs9fPQX7a5tx3lML8NqiXbo7/Au2HcRVLy5BfrYPL1x9uKPhEaeM6Y1Xr50Kn0fBT19digueXoD5W9r25uypbsIfP1qLF+fvwDVHD8aVRwy0Hasw249nrpyM2089BDNX78XJ//4On6za2+baahrD+M9XW3DZc4tRlOPHE5dNsn0fFUXBFUcMwrs/PwoAcN5T3+Mvn6xDMNLWTVi7pwaXPrcIwUgMb/zsSEeTSUf1LsSsXx6HH4/qiYc+24Rp/5yLj1ftbeMUqqqKP3+8Do9/sxUXTu6P355sfXNCw+thZbOaA3rCP+fi319u1t0U+Wr9AZz1+HzUNofx8jWHo6eDcdjHjuiOD24+GkN75OHG15bh7g/W6PYT7qpowIVPL8Qbi0tw4/FDceWRxqWNRozsVYAPbz4aN00bhneX7cZp//kOC7Ye1L2PL83fgateXIJ+XXLw4jVTbK9/r0fBnaeNwr8vnoDt5fU48/H5+PvM9bqisLSqETe8thRrSqvx+GWHOVojY/oW4cNbjsHI3gX4+f+W4cbXluqKwpqmMO79eB3umLEaxw7vjvstOHWp5AS8ePTSw/DMlZOwYV8dTnn0O3y2dl+b+xiLqXj5+x048/H5qGuO4JXrpmJ4T/sTNX92/FB8csux6JYXwDUv/4A/f7S21ZEpGs3hKG55Yzk+WrkXt596CE7THE/t8G0ZSWNThhIrGc7Puz8BFj4BBCXEko3MHrScYvZnU7X4WADw5uXAptlAxdb0X+uWoEQnUvtdyRCeGjF75fiO0Rw0L//R8G1I3riSsdHzyhnMQZZR4iu7jDjN8yOjUxztkjrF0QrLdlXi8W+2Yu6mcgzrkYdLDh+AvCwfFm+vxLJdVdhT3YSJA4rxyrWHozjX3fkRJRWN+MdnG/D5ugNQVRUnju6F6WN6Y0tZPT5duw+7KhpRmO3D7acegiuPHORq2p6qqnhlwU7cN2sDIjEVY/sVYly/IozsVYCyuiBe/n4HYjHg5h8Nxy0/Hu76SICSikb86u0VWFFSjZG98jHtkJ7IDXhRVhfE7spGzN96EEO65+GZKydjpIvJlgBzPp6asw0frdyDnRWNOHJoV5xyaG9k+T34YUclPlu3H6FIDJdNHYi/uTxZHmAT9+79ZD027KtF17wALpjUD0N75GPV7mp8s7EMZXVBnDiqJx6+eILrNVLTFMa/v9iEVxfuQkG2D0cP64aeBdkY1acAy3ZW4YOVe9AtLwv/u34qRvV2NxJdVVUs3VWFv36yHmv21OCood1w+OAuCEZiqG4M45tNZSivC+KG44firtNGuR4vu6uiAQ99tgmz1uxD9/wAjhjaDaN7F0BRFHy94QCWl1Tj0D6FeOLyw1yPsg9Gonjos014ZcFOeD0KpgzqgqE92CHv28rr8d6yUmT5vPjXRRO4nHmzdGclfvPOKpRUNmJcvyKM7VeI/l1y4fWwa/thZxVOObQX/nPpYYZ9Z1apagjhoc834s0lu9El148LJ/fHsB75qGuOYOmuSnyzsQwKFNx//jhcONndGTvN4Sie+GYr/rtwJ2qbIxjVuwCnj+uDcf2LsKKkGq98vwP1wQguP2Ig7jxttC2nTo+1e2rw+/dWY/2+WgzpnocTRvbAmL6FKMrx49WFO/H91gqcOKon/nHBeNfn0DSH2Rp56fsdyPF7cdGU/uiaF0C234uDdUHMXL0P+2ub2x6k3FQFPDgYOPUB4KhfuPoZ0rL1K+B/F7C/i56I1lgJPBR3/3+9Dijifz5TK/7eG4g0AVd9AAz7sdhY4Wbgvvj7/J5ywMf/vLBWPDIWqNkNnPkIMEVwOdQ3fwe++ydw7K+Bk+4VGwtomdB3w7dA34liY316B7D4GXYPz3xEbKxNnwJvXgp4/MCfnA9lsswblwCbPwOunAEMP0lsrLUzWFleoAC4W7DTWr0beHQs+/udJUA2//PyWqGtx1uWAd2Hi41VXw78Kx5DxoTKBwZAubu0fY7Zt4sTgQawRPWL9Qfw2NdbsG4v2yXuXZiNsf0KccqY3jhrfF/XSVUye6ub8PriXXhzyW5UNoTg8yiYOqQrLp4yANPH9uZ6GHRlQwgzlpXim41l2LC/FtWNrH/rrAl98ftTD+F+0O+s1fvwwvztWLenFqFoDN3yAuhdlI1jhnfHbSeNcDV2PZWmUBSvLtyJ1xbuSpSOds0L4OTRvfDLE4e7Gl+fSjSm4sv1B/Du0t2Yu5mdHVWQ5cPkwV3wm5NHuj4GIJUFWw/iveWlWL6rCmV1QTSGosj2e3DFEYNw64kjTIfU2CUaU/H64l14cs5WHKgNIsvnQV6WD1MGdcGpY3rjvMP6cT2zZUVJFZ6euw3r9tYmfm9DuuclDnrnuf5LKhrx0vc7sKq0GlvL6lHXHEHA58F5E/vh1jTDJezSFIri/RWleHNJSauDT0f0zMdlUwfiJ0cP5nqQ5oqSKjz33XZ8sf5Aor+vf5ccnDiqJ248YZilflKrVDWE8P6KPfhs7T4s3VWV2Eg85dBeuO2kkdzOmATYQJoPVuzBJ6v24oedlWgOs13YvIAX95x5KC49fADXs2i2HKjDv7/cjK83liV6ab0eBSeM7IGfHD0YJ4zs0fobomHgb92BH/0BOOH33H4OXVa/C7x/Pfu76IQgObG6aSHQi/9h1a147kfA3uXACXcCP7pLbKzKHcBjE9nfZZxN9uAQ5n6e/DfgmFvFxvr8D8yJnHAZcN4zYmNFI8DfurG/XzMLGHys2Hgf3Qys+B8w7mLggufFxpL5XgNahMVpDwFH3Cg21g8vALN+C+R0Be5wPu3YEuWbgCfjRyfJOGbi/n7MtTv3aWDi5WJj7V0JPHcC+/sfKwAvv3y2DaoK/LUrlHurDQWawOjtB0VRcOqY3jh1TG+U1wVR0xTGsB55wg6k61ucg9tPHYVfnzQSmw7UYVC3PNc7z0Z0zQvgZ8cPxc+OHwpVVXGwPoSYqqKXg/IxK5wxvg/OGN8nkei4OU8sHTkBL35+wjDccNxQVDWG0BSOok9RjpDT5L0eBdPH9sb0sb0Rjsawr7oZPQqyuAr3ZI4e3h1Hxw8Ebw5HUdUYQo/8LNvlk1bwxsfxX33UYMRiqvADNA8b2AXPXc2eN9pQiCyfR8j7bWC3XNx7Nhu0o6oqyuuDyPJ6UZTLT+Bq5AS8uOKIQbgifrxCfTCC5nAU3fPFlJUcNrALnr5yMmqawmgIRpDt97o6L82MLnkB/PTYIfjpsUNQUR/EjoMN6FOcw1Xgavi9Hlw8ZQAunjIAoUgM+2qacLA+hFG9C2z15FplRK8CPH3lZABssyIYicLv9RgPjPH6WamQjB40mSWOyeU0QfMeRy4o8fu7b5X4WHVJQ7NCDeIFmswSRy1GrfWhZ46p2NI2rkiCGehBk0E0qTRdSi+rVuIo2DkGWl+PjPLlwn7AwU1A6VLxAq12b8vfww2AV6A7GGluGVxjwP8LgZZMj4Is16UzVvF5PY76zJyiKIq0axMpzFLxeBR0E5QE6+H3ejCwG1/n0Yxsvxd9ivgnwnqIFmep8HTL0qEoCnoWiNmY0CM/yyds4yWZohw/V0c1Hd3ys6S93wI+DwZ1y8OgbtYH4bjB61GsufyBPLkDIBQJ75Pk62mWINC0eDLEYHJiJfr3Fo0A0Xgfk4zkW7ueGgkCLXnYhJRrkzhmP3ldRMNsI0YU4aRYUnpZ4wItKmGAh+yNnnB88F699WnKjkneBAk1iC3ftLAuOuWQEIIgCIJwTCBfzuhvzUFTo+Kno7Xa+ZYo0GQk33VJk0hFx2uVfEsUFskiVBThpOFmUh00yQJN9NTDkOT7qD1HZJ3LpyFlo0fiGkl14kVi4XpIoBEEQRBEMln58sfsi44ne+db5gj15OsRfh8lJ9+J8fBNzPmREQuQew6g7BLHxgrBsSSL+ISDFpS8RmRu9EjcMADEl2+Sg0YQBEEQNpFV4pjcgyZ8xzZTJY6S3RGZ91FmD5qMeNKvTeJB1cnXI7r3M1nEyCxxTI0tApkbPdFwSzlxZ36OGEACjSAIgiCSkSXQghITOZk738mJlWx3ROZ9lOGOtCo7lJh8y7i2TJU4djahm+z2dKaNnkxtGMiIRyWOBEEQBGGTgKQSx1BDy+GyspJvxSOvfEe7j6KP8wk1AH7tgHHRPWhxweTxyysD9MQHWshKGv15koeESEq+Pb7WcUWhrRFftsRrk7RGwhIdNO1aPH55z+NA/IxWmZshBpBAIwiCIIhkpAm0eiC/V8vfhcaKJwT5veTtsuf3BKC2TGITGS+/J/u7aNEk8z5q8Qp6x/8uob9O8QK53eRMw4w0sw2KWBiIBMXGCzW0vNeEr5H46+f3lDOKPvnaZDxHvAEgq0jec6SgtzyBpj1HqMSRIAiCINoZskocQw1AgcSk0ZfNRkfLctASSaME50daYpWUfMtaIzLFZyBPzpAc7fULZK4RWbEyIeJlPUcysEbye7IjBGRMus2XtRlCJY4EQRAEYQ+ZAk1m0hjIi7uDksqgEqJJRtKYL6c0T+auvuYyyRS6gTw56z8h0PqwP2VsGkgT8fESRxkCTfoaiZcTB/LkutVA6/JKUfHye7SOLTJWGkigEQRBEEQyWQUs6YlGxMWIRdno9ERiJSFBlZZ8y3bQMnRtovvrwhm8j6KTb+31ZYrP7GJWUin8vSbRZW2zGSJLxEvY6El9jsgQhIk1Qj1oBEEQBNG+CEgYOJGJMsBAvpz+ulBq0ijJQZMh0DSnp6A3EIuw0itRtFkjgoVFuFFi8q05aFpJmSTxmSVJWCieeC+fYBGf7NYBct5rWdp7TVaJYyfd6NEGkhhAAo0gCIIgkkkINIH/k9ZeO687+7NT9o5ITBqlXVsDmyqX06Xl38Jiacm3xMEF0kR86hrpZA6ydh9FD8lpsxkieoMi7qBlFWRgo0fgtalqizsoRcTXt/x/xgASaARBEASRjIxRy1oCkFUor1xIVvlaxkocJQkL7T5q/xYZC5A4JKQe8OdKciIlOmhan5YmmkT3u4UbUtaISBGfCZepIEPPEYHxwk0A1JbniIyeSBJoBEEQBGEDKQIt/tqJXX1ZZYAye0ck7Hxrh2LLKnEMNTD3QEuuRCapCRFfwISTLCdSZvmaJtBE3ketTytL4vr358rf6PHlyOmvy1QPmoz7KPM5QgKNIAiCIGwgs8RRuvOTz4aTiByAInNXv9V9lNSDFshjLkJyfBFITxobWSwZQ3I0h0LGWPM2a0Si0E2OLyoWIHGN1MsV8d6ApHLi1A0zST3BJpBAIwiCIIhkOmVildSnBYgdWd2mT0tW8i2rVDRfboljpso3ha4RiSWOGXmv5Ut6jsgWFvEhIVkFbKhMLCo2lrRy4kw8R8hBIwiCIAjrZMXdEaHla0mJVVaBvCEhssRnII8djK145TqRwntHZPagZShplLVGFA+Q0xWAIvY+amtC5nAL7XcGyFsjWQVif2exaHzSpyTxqcXSNpVklBNL2wwhgUYQBEEQ9pDujgguF9LOXEtMloP4ZCeQDyhKXDTJvI+SetC0pFGW8yN6QmUkBMTCQCBXzhoJxku8PB7x4jO1xFHKZkhuBkqlBT9HWjmRkvp0A3msny85vqhYQJLLKqkn2AQSaARBEASRTGfrQUuNBYiPp91DaUljPEGNhZnYEEWiBy0Dg2SkCF1Z5Zt1LfcwkCfW+ZTdp5jJEkdpmyGSNij8uYDHK35IjvQ1QmP2CYIgCMIefpkOmoS+mNTkIzm+qHiB3JaYMoUuIEd8yirxUrxsUILo+xiOn7kmK/kO1re4kKLPnWr1XitgUz+jYXHxEmP2Ja1Hj0/OGkmeKpooOxQsrDOy0ZMvfkgOlTgSBEEQhE28vvjIatGJlR/wBcT3oKWWyiV/TFS8ZHdEqLBIGQABSBBo+fGyK0Viqajg/iJdES+hT1GL2ek2KCTH0sqJZbp1WnyR8RLPEZkiXvCQnEgIiIZIoBEEQRCEbWQkja1cpnpAVQXFkl2alFS+I7O/SLT4jEZaevlkJcStRIxItyK+RvwSyzcTybfgwR1S10iYJd/+PMCfAzYARXQZYPJ7TXDfIJChUulO9BxJ3lQygQQaQRAEQaQiWqAF65E4SyuQD0BtKTPjjZ6D0FlLk5I/xpvkA4+1mFJ7+RoEinjJLlOwvmVaqtThFoKdn+T7KEXE16WsR1nHFchy4mU+RxRWOSF6SE7yGjGBBBpBEARBpCJj+mByYgVISBozlVhJKE3ySxAWyQ6C9qes+5iVD8QizJ0REiupB01KGWzqkBDB7zVvFuD1y0++pYj4pDJAkf11yWWA0nrQkvoUhZcT58Wnigp+jpBAIwiCIAiHiB5rnloGqH1MVCxAcl9M8gAIwbG8AdbLJ1PoAvKTb0CgsEhKvrWSOdEJsbQhIQ0S32t6Ak3iZggg/jmSJcGJjMXkb/S0uY+iniNJ7zUTSKARBEEQRCpSEqukBBWQs6svemS1qsrvQUtNvoXdR+3AY+33Jnpwh17SKGGNeH3skHHRJY6t1oisfjdZybckYZFaKgqIiyezBy3SBEDN0HNEYhmsCSTQCIIgCCIV0e5IUGbSqOf8iOrTSk2sRA9A0XGZRIuYjPSgCS47TKwRCccjJIatJPVghhqYayICmW518nEFgFwRL7o0VXtdf3yjR+Sk2zZOZD7EDslJfq/F1yWVOBIEQRBEO0P4WPPkHjTRCYHOrr5wty5JxKgxdq6QkHgSS5P0etCElgE2Jgkm0cIiKfnW4ol2mVr1YKpx10REvAYdEdNZetBklkrXMVHm9bF/i+wLSy0DFD4kJ4MbZgaQQCMIgiCIVKQmVhLK17TDbAGx4jOss/Ot/QwiCDXEzyRDy5/SnEgZZVepSaPANaL18gFiyw71km9A7KZBpvqLZJZKy7yPWjxZZYCBPMFDcjLQy0cOGkEQBEHYpLP1oGljvwEIPVMrUQaVVCoHCEx2GltieDzMARLpIAByBFpqL5+M8rU2ybcklylLQkmZ9jsTPQBFm4bpl1AqGouykkqZzk9Wkusj8vw6vRJHoJOIeCpxJAiCIAhnBPLZbm1EwI5tNMJK/tr0TolMvpMSK5FT8/RKHJM/zj1evc61SS5fE1F2FQkCarRt0ig0QU1OvgUKC+0a2gy3EOhYaMJCuIjX652S1RMp+DkSrNdZI5JcVhmlqVosr58dyyD69+YngUYQBEEQ9hCZELTpwdFiiXK16tHGHRHeO5KBnW8trsweNDUqpr+ujdCV0KeouT6AYBGv40QCkt1BySWOIkS8kcskco2kbobIPE8u+ePc46U8I4Wu/3o2JVXr5TOABBpBEARBpCIyIUgVMb4A4PFLTFAF9qBJTxolJ9/+XDbBDkgqzZOwRoQnqI0p91Fg8h002qDoJOWbHl9SL1+8dyoSFBDLoJdPloiR2oPWmUR8SiwDSKARBEEQRCoiy670pniJ3o2WVpoke+c79doEl5Sl3kdA8BqJx/DnAIpHstCVNOkz0YMpwEFO7dPS4gkbktPYunRNpLAwFGiy1oiMHjQJVQaREBAL62xQCOzTJYFGEARBEA4ICHRHgimJlfZ3qTvfgnqnZO7qpw7S0OLJvI+AmHiJ87Ti91FRJKwRST1obUocRbrVOgMZRCbfwfqUQRoSRbzos8mSD8UGBPd7SnSQU59ZWjxZ7zUDSKARBEEQRCpCE6uUEi9AgvOT0l8hamS1zBLH1EOxtXginUi95FtEPO1+JfeFiXa1AsmxCoBoEIiG+ccyLHGUIGK0eDKFbvLPwRPdjR7JGxRBURs9DQAU5hxrsRIfFxELEtcIOWgEQRAE4QyZPWja36WVJgkc3GE4Zr8TJFbBupRkWODgDt1rEzzcRVr5Zj0r1/RLOIRbr5xYtIhJ3XhJ/jl4xwJaxxM9oTXV9Vejgvrr4rESR4MILIM1eq+RQCMIgiCIdoYMERNIKhcSnhDoJY2Crs2fx8aZA/EdcKWTCl0Z4lNSGWxq+Zroa0tOvkUOydFdIwLd6qBRGWwHdwcjQf0+LUDctaW6/trHRcQCMtfLagAJNIIgCIJIReSYfW0XuFUCUiBGDBr1aQECk++kWCJ7p7T7mCosOkP5mkxhEYsBYaMBKIJ+b6kOgqghOUYDeYQm37KErkGJo0iXKbUHDRAXL3mN+DrTRk992/WvAwk0giAIgkhFhjuS2s8ks08LELjzndv6Y1n5YqavGSWosbDYsiuNrAyUOMrqidSuTVR/XaqDIErEm5U4CumdqjN4r8kq8RW0QaG3qSRzo8fjEbj+qcSRIAiCIDoGfgk736njuGWO9E/+OXjHa5N8i0oaNWGRvKsvePpmpib0AeL6i4yEbvLneJJ6H7V4QkV8SvIt6mwymWskWAd4swCvPymeaKEra6NHx2WS+owsYAfQRyNi4pFAIwiCIAgHeDxMQMno0wLEiRijBBUQ6I6kJlairi1lXLsWS/s5eKJXKurLjp9NJuj35stpORQbEDckRE/oii7Nk+6gpZzflfw53vGklcE26Ahd0SI+eY1I7EEDMvOMDHOOF4u1PSvPABJoBEEQBKGHqJIa3R4cQTu2pjvfEkqTtHhCHTQJCXGkmU2sS06+tf46IUK3sW2pqLDkW0/oClwjqQNJAIHJt0H5GsD/vR2NAJGm1vdRqBNvJGIElsHqDe4Q1TsoTaCZrRHO8fTKiQ0ggUYQBEEQeohMCPRKvAD+yZXRsAkRsYAMJY0ShIVeGZT2b2n3MR6Ld++UrtDV7qOIssO6tvdR1JAcmeWbmtuSfB+FOvH1rR0tQHyflozNEO01pa0R7WgQCUeR6K1HA0igEQRBEIQewtwRvT4tUcJCpzSps/Wg6SXfvCfLGe18iyy70ruPUFmJFO9YgLzSPMMeNEEixuNno/w1RI1s11uPgNhr0xPx0RAQ4XwIfVBvo0fkkByjUmlBsXzZgNfXOpb2OZ7olRMbQAKNIAiCIPQQNY7bMPmGuIRAZu+UzB40X05KYiU6+ZZYdqU3il77HE/aRQ+aQOdHT8RoPwfXWJLXSOqZa0DLGuHdOyV7kIzsEkfDNcL7PuqUExtAAo0gCIIg9BDpjqQ6CKJGtus5P0J7p/SSHUGlSUZOjPZz8ESvTwWQX+IICFgjOkmjx8vEr5A+rWadHjSBQ0L0+t0AceVrUq9N1vrXEWi+LMDj438fI6G2h2IDkkW8oPuoV05sAAk0giAIgtBD5s63qKQx4fzoJY28k+8wEA0auyO8e6eMpgFqn+MaSxMxKfdRmMva0HbSm+g10mbTQICIN3IQAvmChuQYlAECkl1WieXE2ud4x1I8gD+n5WOKIuYZadSnFSiQ6OiKdllJoBEEQRCEM4S6I5J70GT0/Bi6THlsAiLvc6eMpgEm/yy8MLs2UeWbeiPUk38WbrHq48l36tRIAddmJga1n4UnGSlxlNWnqDMNVtS1BeMiRlFS4hXIfY4I2egxc9CoB40gCIIg2hfCBJrkHVuPD/AGWn9cxKHHiWloOuPhkz/Pi2Bd20RHiy0ssZI4AEWWiDdMvkWsERMRA4hZk7KS78SkQ51NA2nDhgSWb+odrixko8fEiVRjQLiJczyJJY7Ug0YQBEEQLtGSb547ttqBx7LG7MtMvrXJiYauloByudREx+MRJCxMxuyLGg9vuEZ4T6jUuY9aPFkOgsgNitRr8+eIGZKjrX+9Mw65n8sXYtMapTnxOmIQEFMGa1SWnSXogHGZFQ3Ug0YQBEEQLgnkAbEI39K8cBPbBTaaviZi51uvnCaQJ3AUfWHbWMmf54XekBAtnoxBGtq/eZddJZJvnX43QEzSqHsfBTjIZvcRkFPiKGpIjqmIl3Xsg8AyWEMHTZDLJG2DQufavD427VbEhoFeObEOJNAIgiAIQg8RO7ZGSZxfVEmNjoOgxeee6NeyP40mVAopuzISaCKGJHjZ5LrUWFD5ll2ZTQMEOvZ9NCsVTf48L/QEGiBIfMZfLzX5zipgooKniDfr00r+WXjG010jAnrQjM6TE/YcMVojgta/XkWDDiTQCIIgCEIPEcmOkYPg8TCRJqTEUVLviFH5WiKx4rzzrTckBBCXWGXplYoKWCNBIwdBc0dE3EdJIt6oB02kOyhTfAby2Xs5mayCeO8UxwPGzfq0AEH9nrLc6jTuIHc30kSgiZhiaqH/DCCBRhAEQRD6iEh2EoMEJCY7erFE9MUEDcRnQqDV8osVi7HDeI129YUkcQb3EeAs4g1EjC8AeLMEOWhGQld2DxrHNWm6RgS914z6tAC+azLhoMnq9zQQMVJ70OKl0zyvLRYFIk0mVQaSyrJ1IIFGEARBEHqI6IsxOisJEDdZ0cxBiMU4xjLoQRMpYgyFroC+GKNddoBvPCMHTfsYdyfSwB2Reg6agP4izbHSfa8JODzdqE9Lez/wjGc0kMTjZSWWssSnzB40EULXaFNJ+5isknMdSKARBEEQhB4iBJrRzjcgpqTGsMQrH6x3iqewSNeDxtNBMDnwVVQPmlEs7fO8MHIQgLjzKTH5joXZ0BJeBOPHPrTp5RPgoBn1aQFxgSbAZTVyqwG+DrJRnyIgef0XMAeK5wHjwfp4v2d264+LfI7ILpW2AAk0giAIgtBDSImjwc43IKbhXu/AY0BMw32wnp23ZpR8c935NkusRDmRBsMmkn8eLrFMHDQR5ZtmPWgAf+dT99gHAUNCzER8VgFfwQSk2QyBGOdHhoMci5lPcQT4rxHdfs8Ofh8B43JiHUigEQRBEIQeQpJGyT1oRkmjiN3ooEEDvMfLBqBw3fk2K03KEzRIw0AMJv88vGIlv3YyvJ2faBiIBo0dXYB/ia/efRRRmpfOQZNxLp8WCxBTKp1aTgzw36DQSkWNymAB/g6y7noUWHJueB8llRPrQAKNIAiCIPQQmVgZDRPgmehEQqxEzdRB41wupJd8a/FkOWjafeQ61tyov0iAE2lWdsW7B83UQRBRdmgyxY63Y2Em0IScTZauxJHn7y3u/hltUAgZSGLiIPOedKt3H7VD6GXdRyE9wdSDRhAEQRDuEFLimKZ3SmaJF8DZ+amTKNDSlCbFIuywZ17InNAn00EzXY+C3BEjB4G3g2x05iDA7mM0xPcQeqMjLURthnj8bcuJAf4OWmKNSHS1jESMqPVPPWgEQRAE0UHw5QBQ+Cc7Hj8bmZ5KgPPoe7MJZaJKHA0FGuedb9nCwrAHTcSEyrp4L5/eGuE8+tvo4GhAXH+RoYPGef0bnRUGiJmsaNRfJPK9pnfgMXeha3IfRfUOGop4yQ5ypJnfABSzcmIdSKARBEEQhB4ej5hdfVMHoY5faZ7pKHpBDfeydr4TiZVJ7xSveLEo68PRi+X1MSHP20GT7SCY9aDxHiRjtv6FXJvBkRYAv0EhsZjxe9uXzSZXchdoRmukkP/vDJDcg2ay/qX1oMXXDa9Jt2ZiUAcSaARBEARhhAjHwqwHR42xXVsemI30F+UgGDpohYJ29SU4aGY9OIAYd9Aw+S5gYjEW5RPL9Mw1zR3k7GoZOQi8e37MRDzv/tJwIwBVf40oigDnp15fVAACRLxJqaioSZ+ynPh056Alf41bzJ5ZOpBAIwiCIAgjuA8uSLM7DPATTUaH2QL8HQQtnmlpEs9Y9YDiAfw5bT/Hu6TMzIkBBIl4k14+QE7SKOLwaNM1wvm9ZjpIhvd9NBExAP8NimBtGpe1lqMTb3Y0iIgeNDMnnrM7GKoDvFn65cS814iZE6kDCTSCIAiCMEKIQDNK9Dn3/JiVOPqyWGLSYXf14yJGrwcn4Q7yTr7NBqBImGIH8E+ITcvXOG8YqGqaHjTeQreWlRd6/TqxJApdQMz6N3OZoApwkE1EPO81YnRtInrQjN5r2byfIyblxDpkTKApivJPRVE2KoqyWlGUDxRFKc7Uz0IQBEEQuogoF0qbfEtIrAC+5UKxKOvVSJeg8trVN+tlSggLTo6dmROpxZPZg5b8M7nFLGn05zKXklesSJBN1zRb/9JK5Xi7I2n6i7J4O8hmPWii3EGzg6o5PbPSrRHeB4wbncsHJG30cH6OdAAH7UsAY1VVHQ9gM4C7MvizEARBEERbRCQEZj1oAH93REbDvdm4au3jsQi/seZm52mJSlBNhYWsHjTOvYNmSaOi8BWf6RwE7ZgJbiI+zbEP2tfwwJKDJuHAb6Bljch4jvA+YDyxGWLWp8h5jaQrJ27m9PzvKD1oqqp+oaqqNrtyEYD+mfpZCIIgCEKXrEIBpXlphAU30ZRuV59j8p2uv0JEP4c0ByFND5qI5NssQQX4bRqYnacF8F3/VlwmNcpPxJv2MnEeAGHW76Z9nPvE1HTik+MaMTr2AeDrfFp5ZsUiHAcpWXHQ/n/3oF0H4FO9TyiKcoOiKEsVRVlaXl4u+cciCIIg/l+TVcBvBxWw1oPGzR2pBxQv68PRjcdToJlMzEv+OM+k0ayXKflnch0rXQ+a5CmO2tfwIN3BuTwd5HQOAu8SX7OeSH8e2BmHvJ1Ig3g8e6e0cmKZ7qDRMwtocT55kNb15+0g12Zgo6cd9KApivKVoihrdf47J+lr/gAgAuB1vddQVfU5VVWnqKo6pUePHiJ/XIIgCIJoTXYh394p2T1oWfn6gzQAQcm3xJ4fowTV4+GbEMuc4mhlkAbAOfk2SRhluqy8p0YGa+WtEe19ZObG8F6P0gRaQ5o1wvF4BLPBRkDS+ufVF5ZmIAmUjPWg+fhE1UdV1ZPMPq8oyjUAzgRwoqry+r8fQRAEQXAiqwCIhVlJjd5IdztE46U5aR0Ejn1hZv0OWQVAxVY+sdIlqCKmDxrF0n4OnkkcYN4Xpp1N5vG6ixVuZGfhSSsVNRk2ocVrrOQTK20PGm8HzcK1cU++TURTuIHPGkmX6PMW8cG6NA4axw2KoMWNHhnPSI+Hfw+mWTlxang+Ue2jKMp0AL8HcLaqqo2Z+jkIgiAIwhCefQihdEkcbxFj0oOj/RwdtQfNbEiIFo93iaPf5KBqgE88K4Ndkr/OLVZEvKwetISw4HhtaUU8x/ea4jXexOH53k7b7ybgmAkzocvVrbbQpwjIceIB/hs9Ft0zILM9aE8AKADwpaIoKxVFeSaDPwtBEARBtIVnspNul90bADw+zgmqWfLNs8QrnfgU0HCf1h3hmDT6sgGvQdERT3cwXfma189+FllJo5ApjmmSb54bFKbJN+cSxyyDc/kAvhsUViYdaj8TD0IN5g4az2mwMjcoYlHmWKcTaDynOFrsPwMElziaoarq8EzFJgiCIAhLJEYt17h/rXQiRlHi5UIce9BM3ZFCINLESi+NxIflWBJ70CJBVnaazvnhVgaV7j5yTBoTyXcax4JniVdhX5NYmehB47D+o/Gy5HT9dVzFoMGAEC0WwGeNpHPieR9CH6oH8nsaf563iAFM1ogAoWsq0DhPMe0gDhpBEARBtG+yJTpoAF+BZnbmWvLPwWMoQ6IHTUJpUroSL+1zsnpweIrPdAmqFo+rE5nmPmq9U26x3IPGUejKXCOm72sRwkKi82n2HMnmKWKs9qBxfK9JK5VOcx9TIIFGEARBEEbwHA+fbhQ3wIQAryl2IQtDEpJ/LjcEtbOSDBrg/bmA4uHby5fOHeSZfGeb/c40YcGzBy1daR7Hc6csuYOchIVZqaiIMsB0ool3iaMRXJ8jVjcoOJYdmm5QaE582H2sdOXEXDd6rIr4/389aARBEATRvuHag5Zm0qH2OWm7+pyTHbNYisLv2qwc+BrI5zuhL6vI+PNcy9esOGicxKeqWutBA/i5g1bEII9yOdkuk5VhEwBfd1DG8Qiqav3aeL23zdaIdn4dl3JiC0KXpztIDhpBEARBcELmkBDtc7wSq+ZaiX0xFpKPrEK+gzSslCbxOMEnrTsiYFc/bQ8aj16+ZkCNSnTQ0ojBRO8UB4GWbtiK9jlua8TCQBLt69ySbtIhwO85ovV7mjnIvEW82XXxPL/O0oYZ5/JNs1gpkEAjCIIgCCOE7Oqn2bHlESvcxJLvdMlH8s/lhnRDEgB+rpbVEi81xqa0uY5nsb+I6xRHCcm3pfvI85gJC1PssgvllRNn5bP3SLiJTzyZ7zWzcmKAX2mepfvIuXwz3RrJKpDbgxaq59SDmaacOAUSaARBEARhhC/Ab6x5sA6AYnyeFsAx+Y7/vJZ2vjldW7r+Cl7Xlm6KXfLnZJRv8nRHNHGetgdNVi8f7/towWXluf4tDcnhVHZoqZxYQiyA/3NEpohPu0Z4OWgWpzgmf61TrJQTp0ACjSAIgiDM4LkbnVXAynQMYxXJdRCSv9ZtPGlJo8UhIclf65REqajJtfmymKPB69oC6dYIpwEQVnr5eE/NS1sGy2lku0x3MBqJn6dl8l7jutFjoVSOu0Aze45wdgetrBFZPWi8NiislBOnQAKNIAiCIMzguaufLrHKLuRTUtNsJbHiXJqXNrHiNH3QjrBwmxBb6cEB+J1NFqy1EKug5fw6N1gt8QLk9KAB/IYyWD3SAnC/Rqw4ulo8niLeDF4CrdmKg8ZzjVhZ/5wdNEvr3+UasSIGUyCBRhAEQRBm8HR+rOwOa1/rKpaFEkeZUxwBjiWOVkbR87qPFpxILR4P8dlcYy0W4N7VkukgANYHyfB0kGUcMG5FDGqf57UZYiVWNMg2GNygXZusUul0g420eFzuYx0bSuMLGH8Nr3MwrZQTp0ACjSAIgiDM4DW4w5KI0RICtzu2Fna+PV7WD8fNHbFwbTLO0wL4C12Z5ZvpHASZ18bdQZO0RjQxaFoqymmDwo5A4+bEWxC6gBzxqa1XLs9ICw4az/ea5ecxr80QEmgEQRAEwQeewsJKiSPgPtmxUuII8Omvi0WBcINFB6EOiMXcxbNaTgnIc0d4jb63UgbL7dosrBFeIl5VJfegWbmPvJJv2QLNgtDldXi6lTXC6xD6cDMQDcl5ZgHWSm4TU3xr3MWyUk6cAgk0giAIgjCD95CQdLG0r3UbK/n1zOK5TfStJh/a58MN7uI1W9ll55V8S3bQrJZ4AZLXiNs+rQYAqsUetFr3Z5PZKSd2LWLslMF20FJpszXC6xD6RDmlyaHwQLwHrZ7DGrHyXuPtoFEPGkEQBEHwgWdfTNqEIJ6ccCtxlJA0Wk0+eAoLyyLG7X20KmJ4DUCxOCQEcC8smmsBxQsETI59APisEasiPqsQgOq+x8iOy9TRRLzsjR5vlvmZawCfKgM795HH+XXNtenFIK/7SD1oBEEQBMEZLbHisasvq8QxWMdKj8z6tABwOVMoIWIk7uqnu4+8Rt9bdUe4TXG0Iz453UdFSR9Ptojnsf7TrUf//7H33XGSHNX9356ZzfH2dvdyjro76SSdcs4SCIFEMDmDjDFgDBjb2D/ANhhswGAbMIgsRBZBOYdTOp0u6XLOu3ebc57Qvz9e10zPTPdMV3VV3d1S389Hn9Xtzsybrn796r3vC1VBAaquTKSM6YPJBE3w1FW+GSRbDcjJsrIywsBDciSU+BZ9rquc8k1ZUxxNgGZgYGBgYCAH5bWAnXLKtASRSnEy3xKcnWLOByCH+WaOkq7AIgjzzeRpm+IoYR0TE3ReUlFZEodbBNIRGesY0PmWNTUvyLWlS/POoCmOQUf6S81WByjLk5lB0zkkp9i1ySrfND1oBgYGBgYGkiHDIYizHhxdUxwDTAMEMoM7Qslyvqu2vhidgUXAsqvyOnLCwpxNxu2ghnT2ubIjEoJqgKN3UMLZZIECC1lBvBWsfDMxRoG4sCzecmIJpdKBnzWNg40AjdlBGcGnKXE0MDAwMDCQCxlOY1CWvaQCiMQklHgFYIfZ9znjetD69TrfkZLiPTjlMnQkoINaKjODoMtBDep8SyQogjjDUggKJxgsNNIfyGQ+w2TRgjr6TJaUUlFdz1rAIF5G76Bt8xE9Yac4jg3Q9y5Wcu6CCdAMDAwMDAwKQUY/R9AATeZEtCDOB+uLCdNfp7MHjTlWQZjvUkmZnyB9WqzkMowjFzTLFI0BsQo5mc/Azrek7EjQ7GCYwCLtfGsMLILKAsLJC1pOXFotZ/S91mw1xzRMIFygGx+hQSPayjcDlpy7YAI0AwMDAwODQpBxFk5Q54O9RoZDHNRpTCWAxLi4rMBOoyQH1U4FW8fy2kzvkyh4enAASRm0IPIkDJzgLXEMFcQHzKDJ6EFLjJFOB1lHGYM7eIJB9nphWWwdi5AhlkVrLSPzE0RHyiUEMTpLHIMSBkxe6GvrD9Y364IJ0AwMDAwMDApBhtPI43yX18opcQzqfAByri1o2VWYzE/QTCTgOKiaevlkZtACZyw0TLFjssIOyRkLqP8yAt208x10kIyEISFBg0H2emFZHOdplUsgegJnB2spKxW2BzPQ5FmZga7G/rogdsQFE6AZGBgYGBgUghSHIGAZIACU1ektTQJCZn6GaKR9rLTw62JldKaSLua7vC58BiHoOsoI0NIH9XKUpoZB0MBCVn9daQ0QiRZ+XWk1ACukjjj3QOekT54sq44eNCC8/vP2aQEhA+uAZYAyAl2eIF5GdjAoGeKCCdAMDAwMDAwKQUr5GgfzXVYTrjQvlSQnkMuxCslGB3U+wjrEaeY7iGNVR68PW5rHE8SEydjxXFtZbcgenDEgOcGZHQzpfAeRFYk4QxlCygJOwwBNZql0EHl14daRq09Lkh0JRE5UAbBCBro85cSmxNHAwMDAwOD0g9QMWsB+jlCOPo8TJ6Hhnsf5KKuWFMQECZrqnNK8kI5cUFmApBLHoD1oGiZGApmAMdS1cQxJCOsQ8wZoE0N0TqGwvIFMf2UhsO8T5r5N8JQ4hsygidiRsDYyiI7IGKTEpf+sfDMuLs+UOBoYGBgYGEhGJEplNTKCpkCjv0P2jgQdVw3Ia7gP6nyUhyzf5CpxZFmtkE6qtiEh/UCsvHipKCDBQeUhDGSUbwY8XJx9pzAZ5KCHYgPO82g75xSKygt4bbLWMVYOREsCyAtpR7h6+ST06fLYkbD9pVxDQkJem22bEkcDAwMDAwMlCNsozhwrHudbtDSPx/mWMVmRJ4MWmtXnYL5l9YUFkRWJ0lrqkAVIzDJxrGNYZz+w8625xBEQX8tkgrJaQWSlzzgMoyNDwQgDQHMGTdIgpaD6r9OOhNWRBCsnNiWOBgYGBgYGciEjYxHYsaqlMeHxUTFZXKVyMoaEcGRHdDqNYXunEuPkWPHct7AljjyZyLH+EEE8T6DLMpF9YrKYvMDOd8ihDDoDtHGOLJNlydH/IFl4AOnzu0TLN4WCmJBBvNbg0wp+mDkgfm082ToXTIBmYGBgYGBQDKHLDjkdK0BcHo/TmHY+Qvag6WK+xwYQ2LEKm0HjyUQyeWFZfR4HNZWg3hghWSKBrqbgM+yzNjYAREooY1UMYYN4nkwkkxcmOzjBmUGDHd6OTEaihwWDkQBhkKwgPsjwHxdMgGZgYGBgYFAMMkrKeHpwgBAOAYfzLaPsiuvaZAQxtcEcq/J6+ikqj71PJ6vPEwwCIa6Ng9WPldMxCmGHu+gs3yyvpYxVMaR1pE9cFsD3bIcOLDh1RDhA4wniQ04xTcaJbOC5tlB9ipwZXUBcJ3l1xIEJ0AwMDAwMDIoh7GTFsT6goj64LCA8qx90IlqYwII5VjzMd3xYfCIaT6kou/7QGTQOebr6tMIGnzzZQcsKF1jwjPQHJDxrnD2RADDaJy7L/TlB5IUK0PoE7IiGIL6kkrKWooEuzxmAgIR17BewI5qyrA5MgGZgYGBgYFAMYVn90b6MU11UFmNsNQUW5fUhMggc5ZTu14Vho3kcfUDjOsrIDmoKLHjK15i80KVyHCWOidEQQTxHqRwLdoQDC85rC7OOgFjwKRpYpCfPBtARRvSE1kfOUlHh/rpBvqE1gD79d2ACNAMDAwMDg2IoCzsenqcMkB1oG8IhsCLOga4BUFEfwrHiyNYBLqdRVB5HaVKsDIhVhMgg9NHPwA6xjPI1jqAaCFe+WVIZbFw7EC74FMkyud8nIk+XPnJfW0gdESF6hLOsA0BJFRCNBXt9Rb0EoofnvtnARIi+MB7CADAljgYGBgYGBqcdymrIGUgl+d9r25ylSRIc1PK6YD04TJ42B1XC4I6gQQyTJyqLBa08921sQGyyYipF+hXUQU1nfnStY4jAYow3O1LvvC+k/gcBC+K1lTjWhywnHtYb6PKU5YW5NpEMGhBOJ4NeW0kFYEXNFEcDAwMDA4PTDsyZnRCYdhgfdXpw6oO9PmzZFQ/LDoRzrISYb+hxrJi80Bm0+mCvL6sF7CQwIXDo8YTAxEggnEPMU3IVZvogy7LyBp/CQRNHiSOTFzr45CgVjY+IlW8yWbxEj3Bg0cdnR8Jk4kXWEQip/wFlWVa4vsh0RUPAKb4OTIBmYGBgYGBQDGEGd/Cy7KXVxNiGYfV5HVRtGQQJZVdcgUUIx2q0D4ClJ2jiDXTT5Wt9/LKYPG2BLm+fYr3zvl5BeZz6H6oH0ymnjEQDygrRF8Zbchu2xHG0L3gwCIRbR56jQdyvC5VB5tD/MAOAmI4ErWhwYAI0AwMDAwODYgjTKM6clqDOjmWF7OfoE3OsRErzToljpanEcayP3h9kpD+TBYTTkaAZi1gp9ZDpWscwUxxFy9dESAPeMkAmLwxBwevoA2LPtoiOhOnB5M7EhxkSojGDnJgAEmN6CQrO8kbABGgGBgYGBgbFEYb5Zk4Lb9lhqAwajyzn0GOR0jyekf5MFiC2jrodK+4MQoiMRVpHNGV+uDOR9TRZMTHBL4s3OximxDc9rl1TiSPPxEggXBAvpCMhCQoe/WfrKEL08F5bmABN5ODoUCW+HNNZXTABmoGBgYGBQTGEOdCWN4PGXhuqB43TQQUEr60fXGWApTX0eq2OVZgMWj2HLOe1YcrXuAJCjax+mMBifACAFWxcOxBuSAhbR97gM0yJo0iAJnRtAtMAy0OU5on0stpJsT7dsT7KCMdKA8qSEaDpysRz6ogDE6AZGBgYGBgUQ3pwgUBfTNqxqg/+HtEMGu/ESCYLEO+dKqsJXgYYiYhPBBRxrFjviCirz7OOYXp+hLKsIUvKeHv5AD06UlIOxMrFrk0oiKkDRsME8brW0XmPjiA+maDBNbykEiB233iDwTDPmshUxTDn15kSRwMDAwMDA0VgzoOo8+H+jCAQzaAlxpyJkQIZNFGHmJcdFnUaRR2rpFMayS2vjz9gYu8TkQVocr7jzkh/TlmAeGDNeUiv8NEPvANJAFrzccFDj3knRuocEgI4vYNhBhvVB39PWP3n0f1ojDKyoYgezt5B4TJYzj5FByZAMzAwMDAwKIbyOlBpXh//e0UcK9EMmmgmBhDs+RF1vkNkEHjHw7vfyytPpAdNtL/IigQvAwTEe6fSmZgpwd8Tdh15Mwii+p8OLDhLHGFnjgPglaezxDFSQqWAPPLClIqKZOJ1ZNCA8HZEJIMmcg6mKXE0MDAwMDBQhEiUNnRRp7G0hljfoBBtuBcq8aqnn7oyaGWC5UKsvLSyIfh7RB1i2+Z3GmPlQLRU3CHmmRgJiDuobB15ArSyEMEn76RDIHzwKRI08ep/KsVPUITpwWS9pTzj2kV70ESz/oC4/vMEg4AE/eexI0z/B/lk2Ta9x5Q4GhgYGBgYKILoMAHeoR1Mlp3kdwhEB5IAIbIjmkocR3voJ5djVU8/ecu84iNAKs63jpYl3hfGO3kTcLH6nKV5IgFa2BJHkQya8NAaCA7J4by2iSHATvHJikTEz9TizegCIbJMTEc45IUZpKQzg6ZT/5mOmBJHAwMDAwMDRaioFxwS0sfvWIlOVkw7qDzZkTDlmyLla2Edq3oOWYLDBEQyCAA5faIOKrfzXU/O3wRnEM+ujbffDRDP/PA4w4D44em8EyMB8cCC9wzAtLwQZYcispITQJyzBzNMBk2UoBAKPgVkjfYBkRhQWhX8PaIZZJFySgcmQDMwMDAwMAiCMH0x3Oyw83peeSJnJTFW/3QfEjLaSwfvllTwyQIEAl3n9dyBdQMw0sP3HiZPJIMACASfAhmE0mpQEC9YmsqT9QRCDAlxyil5S0UBfv0Xdb7D9E5xlxMLHowtov/p8k1OWWxipM4MWsUUzlJR0Wetj37yEhQwAZqBgYGBgUEwhMmO8DpWYTNo3IGFgENs2+JDQkQa7pljxSsL0JtBEx2SIJJBAPQEaKLHIyTjdK+571s9BYO85ZsiQYxoiaNIOSXgrKNgiaOIPrL38kBE/yMRsRJfUZsVNkDjlQUIrKNAWbYDE6AZGBgYGBgEgWjZlVADvPN6bmfHeb1IzxuvLJEeHCDzet5yIZFSOe0ZtCniZbC6M2g6Mp9Mp3gGuwDOuttiOiKqj9w6ornEUYjocZ4X3qzuWB8NvSkp55RXLxDo9tFPoQyaYA8mtx0RLJVm624yaAYGBgYGBopQXk+bO+9kRZEGeNEM2mgfUFIFREv45XE7VgLnkgEuh5jX+RZwrEoqgGhZiFLRer73VTbwB2jpiZGCmR+RIL6sjiaT8qBMJEATdFBF+8JGe4FKTlml1YAVFc/8lGkI0GxbrE+LrTuvTorYLEBsuItITyTgPC82fw+mCBkivI6O/vMSFDABmoGBgYGBQTBU1NNkv/hI8Pck40B8WGMGTezMHSHHSuRcMiAcG83rfANih34LZ9Dq6X4nxoO/R2RiJBAug8YrCxAbkiNSTgmI94WN9vDLsixBgkKwxLGslv/MNaYjohm0UYEMmoiOCJU4hsjoAoL6z6kjZXUUxPNmIkVG+jswAZqBgYGBgUEQiARNwk5cDTkEIoGFNsfKeb22fg4BxwoQ6wsb7QNg8WdHRJh20Wyd7nWsbOB39EVLvEQzyCM9Qs6w0FASFmTxZpAr6p3SPI4ezLQdqeeTxTI3Ihk0oWetXjyDpk3/+/ivLRKh94x0871vpIcOFuctFYUJ0AwMDAwMDIIh3XDfF/w9os6H6JlaIoMEADHHStT5Tge6HE6jbYsHFkLZwT5yvHmmAQKZ4IDn2kSzdWWCmUjhQFdgQqVoiVe6xJHj2piOCJSTCfVgjvbRVNFYGd/7KhoA2HzXFiZbZ0X5AzSRMkBAbB3DZKsBvmsTHVoDAJVT+QkK0WcNJkAzMDAwMDAIBhGHQHRCGXuPCBstWuKYGOM7L4mtA/cACIEsU3wUSI6Ls/q6enBEhjKIBvGRKGX4hLIjnLKATH8dTw+maImXSH/d+AAd7i6c+REpuZ0qICtElpX3vlmWk/nhDSwE+t0AsXUU7vd01p7n2sLY40oBgkI0owsToBkYGBgYGASDUIkj66+oF5MnkkETdazY+4NCdACESNmVaC8T4KyjwGQ5oXUUcL5FMwiA4zRyll2FyaDZST4dGemhQ4HLOA6OBsQmK4bo96EyWF7nu1ssWycSxItm0Jg8nRm05DgRKjyyRCZGpgM0Dv0PcS4ZKqeKPWsifbMwAZqBgYGBgUEwiPTFiDLf7D1CpXmCGTSAz0kd7QUiJc4hxhwoqQSipfyyAL19MSIOqlDw2Uc/ReRVNfI5jWFKRdPXxnnfeA8FBsQmK44IllMCjvMtUL4pJCtEGaxoVpdHVirplAGKyHLew6v/QtflrCNXgBbGjohkIk0GzcDAwMDAQC3S2ZG+4O9hzkNlI7883gwac6xEHX2AzwEZ6RFzvi2LnBYuJ078PCFUTKF1SSaCvyd0Bo0nO9LnvFdAHi+rPz4YogyQOcSc901ElshkxTA6UjmV7gOPjox0hyxx5HnWmB0RDAi59FFwIAkgWHbYJ6b7sVLqsdMVoLFnjafEd0RQ/2ECNAMDAwMDg2AorQGsCF82ZqQbgKUngxaqv4I5Vl3B3yM6kAHg7+cIU74mMnBClNUvraaSPu4+RYGJkQB/gDYaouRWOIMmqCO8w13S2WrBDBrAHzTp6kEb7iK9Es6g9QV/ffpZE5AlWnYocl1Mnjb9n0pHHUwMBXt9mKE1MAGagYGBgYFBMEQizmRFDsdqpJscJN5DgYFMBi0oYxumT0XIsRKfUCbuNAqWOALBnX3bFne+hbKDfWITI4FMD1pgHemjn6EyaDxBTEgd4c3oAuHKDoPqfzLh9HsKjvSHxWlHukgfebPVAP/0zTAltyJ2RDSDxuTxygLClfgGlZceWmMCNAMDAwMDA7XgLTsUdfQBcghsp2wxCMKWeAGaAzRNPWi8w13G+mjdqwTKUgH+wEJ0IANApbOJseCHp4cq8RLJoAn2aTF5IjqiI7BITzAVeLYjUQrSeINPUTtSMYXv8HTRoxEAQTsieDQIkyeUQQtDYgW8b2EIA5gAzcDAwMDAIDh4yw7DBGi8GYthpzxRpN8tVkYlnMMczk6IEdLcgwtGe4FoGVBSwS+LN7BIO1YhHGLeDFqYDALAH1gIBbpO5oe3NFU4iG/g73crqwOiMX5Z7JkJvI7hnO/0kQVBMdwVgujh7J1N25EQ5Zu8EyrD6D+PzRrtFdcRXnschjCDCdAMDAwMDAyCg7c0LwzzzRtYMMeqKoQ87gxafQhZPcFL80QHkgCZ9R8O2F8XZrAL4DjffcFfP9obLoMABL+2MP1FkahzplxAfYw7mT3RAI33YOCRHuGR5tyBbpihHQB/BnmkK1xGF+AgKJgdEZAXLaEAKOg6ppLAeJgMmojNEsieAfx9imH6ZmECNAMDAwMDg+DgdqwEz0oC+KfmpR2rJjF5VY3Bh4TER4HEaLhr4zkvKUwmhq1H0GtLZxA0ZQdDlcFyll2FOQcK4OtnEj3InKFyCg1kCFyaF0JHePuLQmdZOQOL4S5xwoB3KMlINx2fUVYrJo8naArTNwvQ+idGgYmgJb59GnUknP6bAM3AwMDAwCAoKhuDl9SEGTYB8LP6w11UBsh7LplbXlBZQx30s6pZUBanszPaJ+7ol9XQuWvDncFen86OhClx5AziRbMjVbyleb3OocACpaIAX19YyBIvoZIy0ZJbVuIbuL/IWW9ReVVNwe1IMk5l1TpLpUUHkgB8mU+2jjr1X1Qfy+toii9vGazJoBkYGBgYGChGdROV5MTHir92YghITugrcWSOvrBj1cjf7yacrXPeFzRoCuNYWRafQxymxAtwhjKMBNORZCKc880d6IqfywSAL4M2Es5BFeodFA3imTzuMljB+1bdBAx3BCvxZZmv0CWOHBk0UVkAH9ETpt/N/T4dAVokSqWYvBlkweygCdAMDAwMDAyCgqdcLqwTxzuUIcwgAYDPQR12MmjVmgK0kW7xfjfAGSbAIStWDpRUisliDmCQYTJhpgEC1O9jRYOXbw51hnS+OYZbhBlIAgiUb4Zwvpk8nkA3VgGUCupIVRORN0HO5gsdxLBAN+B9G+4KGehO5c9Ehg7QOHowRfvdmDyeMthywYEkMAGagYGBgYFBcLCSPlbiVwhhnQ/eoQxhBgkAfP0cLNgJm0ELso6plHNtguWUTF5QJ26kh7KJoplInkl2YYdNRCJ8PT/DHeHWkasHLeSkwwqODFoqKX4uGQOv8x0miGH3IAghEjajmz48nSNoEu13A/j0Mey18QTxyYSTHRS0WQB/iW8IfTQBmoGBgYGBQVCkMz8BHKvhkAEawOcQhxkkAPD1c6R70ASdnWrmoAYI0Mb6gFQi8x4RVDUGz6CFziBwBBbMQQ3lEPP0DnaGW8dKjjO1ZJU4BtH/sX4AtoQMmqZySpZ5DqL/YTNolsU3uCY00dNAJb6BiJ6Q+s9T4jjSDcAOqf/6dMQEaAYGBgYGBkHB41iFzY4A/P0cYTNoQLBM03AXDVUQHTZRUuGcuxZAVthgkL03cA9aiMEuQMbZDJQdkRDEBx1cY9tOBi3EOvIMnBjpBkqqxMsA07KCON8hs3WAM8WUQ0fCZOt4Mshhj30AghM9yTgFu6H0kWMc/Ug3ZfhKysVkldcHH9wx1E4/q6eJyQI4ezDD6YgJ0AwMDAwMDIKCp3dKivMd0CGIj1JmQ4ZjFcTZGe4Q7z9jqGoM5qCGLacE6Nriw8DEcPHXhs0gpDORugK0gCVlY/3U9xQqg8ARNA2H7HcrKadR70EC3ZAT8wA4mZ/hYEc/jIY43xBwlTjy2JEQ1xY0gxb2+AD3e4NmtcLIikSCH1mQ7psNqf8j3cGGuwyHy1abAM3AwMDAwCAoSqtoeETQ7IgVFT/jBwh+NtlwyF4OwJX5Cep8hwzQqpsDlnhJyqABAe9bSOc7fXh00LIr6MmypgPdkD1oQLDsSNgADSAdYZmPQkiXU4YscXR/VkF5YbOsUwFYwQK04S7KFEVLxOUFzQ6G7QkDOImekIONmDyeTHzYEsfkOE3oLQTbJnkmQDMwMDAwMNCEqqbgpUlhzhNisoY7aVBGQVkyepk4siNDEgK0qib6nGJgzlfYHjSgeLCbGAfGB8KtY7SEgvJAgXU3lXrGysTlsXOniunIUMjJmwBfX5iUIH5asAAtHXxqKPFNJcOdywfQZL/KhoB2JGRGFwhus8L2u7nfGyjQlXBtQfvCmB6FIShqptPPwSI6OdoLpOKhZJkAzcDAwMDAgAcsaCqGsCw7QBt8KlF8ZDvL1oRxdsrrnZHtp1kGbaiD+kxk9PwUY9pl9DIxeYGyI+FYdpLVCNipADoiIYPG+neCZn5CZ9CCBmiSsiNAcf0f7QNgy3m2g65jaFlNdF3JROHXyeh34wnQhkNOjASCl/gOdVJPZFm1uCym/0NthV/H7qvJoBkYGBgYGGhCdUDHKmypHJMFFJcnI4OWHtleJIhh46pDBxZNtEbFnMbhTrquSAiXJV12WCxAk9ATBjiDOwKWXYUZWgAEDywkOI10/EAUGDhR+HW2LTGDFiSI7ww3tAYIHliwdQ5DGADOYdVBiR4JpaKwi5emjkgietyf5QemI6F7WZsCEj3t4W1WOoNWJEBLDyQ5gwM0y7I+bVmWbVlWSO0zMDAwMDDQgKAj20e6JWRiWF9YEXnpHjQJ/RxFMwg9AGw5JY6wgwUWMoJB9lmFIKMHh70/CKs/2Bb+2lhgUSyQYZnIsEMZaqYXd1DZ0QgysqzjA8VHtstw9IMG8YMn6Sdz1kVR1Ry8VDrscx10aiS79jC9fNEYBWnF9H+sn/q5whIUNdNJVmKi8OtkZKvTGbQiWd305NkzNECzLGsOgJsAHDuV38PAwMDAwCAwqprJkSnaFyapxBEo7liNdNFhtIy9FkWQke0yxt4Dwc9CG+oIHzCVVgGx8uLZQWkZNI7BBTIcVKD4Og530PeKREPKm5EJUnxlsUBXQgYNCHZtYWVVTHFGtgcM0GpnhpNX1VRcR2xbTgYtMEHRHX4gCRCM6JEQxADI6H+QoClsgFYxBYiWBcighS+5PdUZtG8C+CyAAPMqDQwMDAwMTgNUNQF2svDY6lSSMk0yptgBwTJolY3hBpIAwbKDMsbeA8GDz+HO8E6cZQVziIcl9OAAmQxaoSA+PgqM9wM1IQM0FsQUG1wwJGEdASeDVixAkzC0A3BlLIoF8RLKKSNRuu/FHH1W3hk2g1bdBEwMFh7rP9IjLxMJBMsgh71ngBOgFXnWJJQBAiDCwP15heSFJUMsK1hf5HAHECkJlYk8ZQGaZVlvANBq2/bWIq+707KsjZZlbezsDFBSYmBgYGBgoBLVAdjo4U4a3BDWIWCsfpAATYZjFcj5kNDLBARn9WWUOALBslrp/qIQJV4ABULFgngZB+cC1AsViQVzGsOWAQLBMmjpiXmSAotiGQsZ5WuAo/9F9HHwJFBWR1nZMAhCULBhFGGDeJ5S6bDZY4C+bzHCID3YRRZBUUAnExP0LEojKAJk0KqbQxFmSgM0y7KetCxrh8d/bwDwOQCfL/YZtm3fZdv2BbZtX9DUJMGwGBgYGBgYhEE6sCjkWDnOSViWPc3qByhxlOFYBen5kZYdCRCgTQwD8RE5wWeQyYrDHU4ZUyycrHTZVQFHbkiSgxqJBOtnGuqQ46DWzqD+oUI6wpxzlt0QRZCen2SCMk0yri3IuWuDJ2kNwiLIZNF0EB/SjpTXU0anqB3pCZ89BpwgXn0ZYFoWUFieLFIJoOAzSDllSHJCaYBm2/YNtm2vyv0PwCEACwBstSzrCIDZADZblhVSAw0MDAwMDBQjSOZnUFJ2hH1GUadRwoQyIFg/05BTvhO2362slvo5CmYQJPWpAE75ZrH+ojagJmRvEeByGguw+syhlKIjzcFGf0vREVZSVij4bKOsXthJh1WNlEEupCMjXQBsOdnB6gCB7sDJ8IEn4CIoCsgblET0BC3NG2qXQ4bUTKfy3UJB/FC7HDtS5UwWLRSgySqnBChYDjLFMaSsU1LiaNv2dtu2m23bnm/b9nwALQDOt227yBUbGBgYGBicYqRLkwoEaLLK1wBi6wuNNU+lgMETQO2s8LKC9PwMd1GQGrbfzbKKH1kga9gEQE7jUHvhvrDBtvDOMJPFPs8PMnWEXZsfxoecTKSkdQQoUPHDoNPvE+ZoBIAyyFVNha+NBcFhs0xA5mw+u8BohEFJARpPiaMMHambBQy0+v89MU7BbtjhJ0DmXhTLIFc3y9GR6uaAGTQZz9o0mlIaHyss70wM0AwMDAwMDM5YVExxen6KZBAASQHazMKZmOFOGiRQNzu8LOZUFHKIhySMhmeoKlK+me5TkRBY1M4CUvEimc82Oc53OkArcN8GTpAeyQiaimV+ZBzkzMAyjIWubahNju4Dxa+NBYoyyg6rpwHJCf9Dv1NJ0hEpsgI8a4PtQGl1uMOVGWpnAv0FAjQW4EjV/yIEhQzdZ/IK2mPJGTT3Z+YilZIy2Oi0CNCcTFqAebQGBgYGBganGJEIOamFnJ2hDqC8DigpDy+vZiZt+H7n/DBWXArzzRruCzg7/a1ygkGgeK+KrJH+QCbDONDi/fdUkpwuGRm0WBmV9xW6toETdG/DZhAAum/Dnf6HfrNsr6whCUDhaxuUtI5A8dK8QSe7rCODPNxJw19kBDGxMtLrQlktmYFurZNB88sOyjo+AAjWF9bfcgrsiET999PJ0V4izELet9MiQDMwMDAwMDijUKxcaFCmY1Wk50dmgFbVVLznZ0BSOSVADlq/T8AEyC1xrGMBmk+56HCX43xLCiyKOY0DrXLuGZNlp/z7mdI6IiGwKK8DYhUaM2hFArSBE9SDJENH0gc6+8iTGcSwzylUviwz0K2dBSTG/CeLpo8P0JBBs20nQJsTXhZAOlJQH9tp8qYMwqzY1EhJWX8ToBkYGBgYGPCiWGAh48wdBlZS5tfzwxyrWglsdHpqpI9jNT5Izf/SHNRZ9Hnjg95/H2il6ZSxMjmyAP/MJ3O4pAVoRc4LGzghbx1ZJsLv2piuyshYWBYFen7Xlpig4wqkZdCcEke/3sGBkyQr7AHcQOZ++D5rTEckBDGAk9UqFKCdlGdHGEHhZ7dkBp/pA519rm20F5gYAuolBWg1M0jn/KoM+lsz1x9aFgs+fYJ4Sb2lJkAzMDAwMDDgBXOs/JxGmeU7LOvhl7EbaAWipXLG7APkyPg5cQMSy8mAAIHFcXnrWDmVnEa/dZTZgwMUHu5i23IDtHRg4XffWmlqZnmdHHmFsoPps7tkBWjTqXfQry9sUEWge8xfFiBRR2b662MqRToizY44n+OnkwMn6PkIewYgQEF83Wyg77j33/ud30srcSxSdijVjjhTI/1ILEnlxCZAMzAwMDAw4EXdbP+BE8k4sdGyyneKjWzvb6XXyOhlAuh7+wZojjMpi41OO8Q+8mSWQVlWYYeYBTeynO+6ORTEJMbz/zbaCyRG5WYiAX/nu79FXlANFM4OMqdc1n1jBEW/j7M/cELePSupIAfcL7AYOEnOuawhObUznWySxzj6kS4gOS5vHdMZNJ9rY+e7hZ3OyjBlHtB31Ptv6YyuLBtZpKRSJmEWiTgllUXKYEMeLm4CNAMDAwMDA14UGjgx0Er9QLLKdyqmAKU1QK+Ps9N3lJwhWaibQw6q1zCBfon9bkDhdbRt+h6ynDigMKvfe4QyCLKc/fq5AGzv4DOdiZS0jhVTgJJKPZlIgNZo4KS3jvQ52ad6STrZsIh+dh/M/5vsTCRAz22hMsDqaXLKKYGM/nsFu+kgRlJgXdVM+u0XNMl+1urnZnTBSxZ7jQwUOhh+YhgY7ZGr/7Uz/ImevqOUqQ6ZrTYBmoGBgYGBAS8KZX5kZxAsC2iYD/Qe9v577xF5zjBADmpiFBjpyf/bQCsAS14QUzODhpJ4BRajvUB8WF6gCwANC/zXsecwBboyM5GAd8aCOa51khzUYtlBmRkEgK4tMep98Lfs8rWGhfTTK0Ab6aZepinz5cgCnP7SIlkmWWCBpZc8mX2DAOn1lHn6iJ76eXR/xoc8ZB2jQTOyyrILTY1ktkXWswZQYOmnI71HpdhjE6AZGBgYGBjwgjkyvUfy/5bOIEh0CKYsAHoO5f9+YpjKLGVn0ADvPpzeo+QMyRjaAQDRGA1B8WLaZTv6AK3jcKf3UJLeI/R3WWD33+vaWJDYIFFerc9k0fgoOcqyMjFA5nt7Bbt9R6lvTMbEPAAoraT+qe4D+X/rceTLvG91cyk48swgt0jO1hXQEdllgAAFDl42a2KE+rfq58uTxWySn/5PmS+vnLKykc4U9CrxZXZMph2pn0tEnFcPsqRA1wRoBgYGBgYGvCivo7IyL2dHRWDRsICCo1Qy+/fpYHC+PFkFs4OSWXaAHDXPQFdyJhJwBRY58mybfic1YJpJ2UEvB7XnMI39ljGQgaF+jo8z7GRMZGZZWUDU4xWgHZOb9QSAqYt8AjSHtGBZNhmomw3ER/IzyKmkoyMSZdXOpp42r6zWQCtlmWTqyJT53rKY3sjMRDJ98yqp7Dks91mLRCho8iQMmB2RSFDUz6X+wNxjLWzb0X8ToBkYGBgYGJwaTFngHVjIzjIxWal4foaEOVtSHau52Z+dJe+IXEcfcMo3j+T/vscpaZPpyLF1yg0shrvkl8pFSyir5ZdBaJgvL4MAUOAw1J5fUsbWVnp20PLPIMvMHgMUoPV4lDj2HqbvIZM0YPqWK6//OJCcyPTEyUA0RoGDVxDTd5SCRZk6MmUeHWuRexYaky9zHdNBfE7mP5WSH+gC9HleZbA9h2jKrcwhOfU+2cGhdjprToIdMQGagYGBgYGBCPwyP117gcYlcmU1+Dg7KhyrygagogHo3p/9+8Q4lRDJDGIA+ryhtvxJdl376eBgqRkEn9K8dDAo22lc4F+aJ3sd2XfPvTYV5ZQl5ZQhzJUVH6OMhcxgEACmLqagIjer1XOYHG+ZZMhU59nNvW/M+Z8qMUADnLJDjwCt6wBdt0z4ERQqsqxVU8mOdO3L/v1QG/UvStf/RXRduaWpPYdIH2UNdgEyWf3cAE3iOpoAzcDAwMDAQART5tMGnUxkfmfbQOc+oGm5XFmNy+hnZ46z07mXSuWqmiTLW0oBkhv9LQBsBSWOjjOfm0XoPpBxlmWhop4GE+ReW8du+in7vjWvADr2ZPeqpJKkN7KDGBag5QbxPYdpCqisgQwMU+bnO/rd+wE7CUxbIVcWC1Ryg6aeg3IDT8AZFBPL15F0OaWCAC1X91NJktcoOUBjz1PutXUfAEqr5R0fwNC0zGMdFRAGAOn/xGD+0Sc9h+QTL6yEN5egYMGohCDeBGgGBgYGBgYiaFgApBLZ07wGTpCT0LhUrqya6UB5PdCxM/v3HbuB5rPklkEBlAHMZb6ZMyK7xJEx6bnZyK798h1UgIKmzj3Zv+vYDZRUye13Y7Liw0Dfkczveo9Quar07IhPllVFOSVA379rX3bGon0X/WxeKV8WkB2gpVIkr1lyMBgtobXMzSB3HyAdkXUAN8OUeVQaFx/N/K7vGPU4ybYjUxdR8Nm5O/v3bduAaav02BF2D2UHTSwocut/KkUBoeysZ2kV9Q/mEmZde+koA1PiaGBgYGBgcIrAHMN2V9DEHH/ZmRjLAqatzGR6AHKMO3ZRgCYbjUuJiXaXlDHnW/a1MUfN7ciN9tJBvbIzaICT1dqdndXq3A00L5c3Yp9hmhOosLUDMvdQ9n0rr6VMam4fTs9h+dk6gPRgtCc7Y9GxC4iUKCgDnEuBhTtA6z1Mwe/0VXJlAU5gkZOt69xDhIGKIIZ9PgO7Ttn6Hy2hYLfDJSuVAtp2ANPPlisL8LEjOyhbJ3OwEZAJ4t02cvAklVPKDgYBshe5gW7nXrpmCeWUJkAzMDAwMDAQQfMKmtLXti3zuw5FQQxADn3H7kzGYrANGOuTn0EAMsy9O2hq20b9PlWSS+UqGyhzdXJr5ncnnTVVcW3NZ9FAEHfms2MP0KQg0G1aDsAip5QhHcQvUyOvbXvm3xPDVAaoRB+dz3Q7xB27SHeiJXJlRUsoK+EO0NiaTlMQoDUtI1nxMZe8XcA0BUHM9HPop/u+sedOdi8rQLrgDgZ7D1PWf8Y5amQB2STWSSdbJ5sMmTKfet5aNmZ+x65TdrYacNZxX/Zk3c490p5rE6AZGBgYGBiIoLSSGO6TrgDt+HoqAayW3BMGUDZmfCBTCsjKHZsVON+zzqefx17O/O7ktowzKRszVmcHaMfWAbCAORfKl8WCPhZMD5ygcdnTJJflAUBZNTlsuU5j3RygrEa+vFlrKHBhgcXJrYCdAmZfIF8WC2iZE5xKAS0bgFnnyZcFUB9mmyvQbdtBBImKDPLsi6gM9cQW+vdQhzodmbKAMkruAO3EFjofsKpRvrzms8iGTAzTv0++Sj9VZNBmraGfLa/Qz1SK9FOFLMsCZl9IOshwYjP9nHmufHnNK6gMlfXUjQ/SgBwToBkYGBgYGJxizDgnk0GzbeDYemDuJWpkzbmYfrKgqWUTAAuYca58WdXN5BAffZH+PTFCPTkqWHaAArTuA8DYAP376EtUulZeJ1/WtJV09lTrpowsQOF9u4icRlZS2bFbTUYLoEAslcjoJLvGmefLl1Uzne4PC3S791Np6txL5csCgHmXUTaQHUZ8bB05ySUV8mXNuYh+Hl9PP1kGSEWAFolQRslN9LRsUBNUA44u2BndOPIiBYgqMpGVDWRHjjnr2HuYstcqAjSACJ2uvZljBFo3E4mmwo4wYqDNIZYOPw/AztjpkDABmoGBgYGBgSjmXExnk3UfJOdjuEPaBp2HprNoUAgLmlpeISehvFaNvPlXAEfX0ZTKYy9RJmaWKqfRybq0bqRhCS0bgLmXqZFVVk2B5tF19O9j62j4g6rs4JyLqRS1ez+dt9a+k5h+FWD3hwUWx9dT/5aKjK5l0bUdfo7+zYiDOYoC3QVX0s/DzxNhcHw9sOhaNbKqGqks7pijIyzLpCJAAyjTdPJVysIMdVKGS5WOsKw0C5qOPE/Br+yyVIa5F9O9SqWAIy84v1OkI/OuoJ8HnybCrHVTphpANqafTdNRDz9P/z7wBAW6kggKE6AZGBgYGBiIYvH19PPg08Ceh+j/F16jRlYkQo7UkeedcrKN6lh2AFh8A/WmHHgC2PsoEKvIOMmyMe9yoKSS1nDfY0B8BFj+WjWyAAr+WjbQ2W6HnyOnNRpTJMtx2PY9Chx4EoANLL1JjazaGZQJ2fF7Gsyw73FgiSJZALD4Rpqa132Q7lv1dPkDQhimnU1n4h18ikiK5ASwUFGABtC1HXya1nHvo+SQqyg5BICzbqMDjvc9RjIBdQFaxRTKPB5bRyV5XfuA+YqeawBYcDURFC0bgEPPADUz5E+nZJhzEVDVDOy6n0oph9rVEWbREiKxDq8lO7L3EbrWWKmUjzcBmoGBgYGBgSgaFtJ/W+4BNv+cmHBVDioALL2F2PVn/52cnnmXq5O15Eagehrw0reB3Q9QtkJFORlA/XyLbyA5G35ITpZSp/FK6h954vPkoK64XZ2sqYsoINzwI2D7vXRt01erk3feu6iH6YFP0DVe8AF1spbcQD/XfYcC0HPfLn/KIUMkAix/HQXxr/yAytbmKcqyAsC576AgcO1/UAZo+W3qZM25mAKX574OrP0qBVCqAguAAokjzwOP/SOV+654gzpZS26kyZ7bfwscWksEljIdiVKwu/cR4JF/AKKlwMo71MgC6Fp6DgE/v4MmRl70IWkfbQI0AwMDAwODMLjib6k8qWsvsOb9amWtehOV1Tz3NZpatvKN6mRFS4DLPg4cfQEY6wcu+4Q6WQBw0Yepd+TI87SmEkZV+2LJTVTSuP57VN549pvVyQKASz9KhxEfeIKuU/YEOzdWv410Y/cDwOp3qCvLA4icWHIzsPFHdED1+e9VJwsAzn4L9TDtf4wCT1WEAUBlsItvJB2JldGzpwqRCHD9F2hse88h+n+VOnLJX1HwufsBYPXb5R8+70Z5HZE7G35IxzKc9251sgDgyk/TAJ6jL1BwVtmgTta576Az/46+SLoiMaNr2e4DBk9zXHDBBfbGjRuLv9DAwMDAwEAndt1PToFKdphh893AgacoeFJZ4shwdB31balq7HejfScdH8BKR1WibQew6afA8lvV9TK58dK3qXztbb9QG1gA1Me0/3HgnLeqK91k6DkM3P9x4PJPZjJqqpBKAo/9E52t9Zr/UFdyyJAYBzb9DFh0nZpD03Ox634KlmYozLAybPoZnTV48Ufo4GWV6G8FnvwCXddlH1crC6BjM7r3U9BUUq5W1nA3TdSddzk3qWRZ1ibbtj2NuAnQDAwMDAwMDAwMDAwMNKJQgGZKHA0MDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNIEJ0AwMDAwMDAwMDAwMDE4TWLZtn+rvEBiWZXUCOHqqv4fBaY1GAF2n+ksYnNYwOmJQDEZHDIrB6IhBMRgdMSiGebZtN3n94YwK0AwMisGyrI22bV9wqr+HwekLoyMGxWB0xKAYjI4YFIPREYMwMCWOBgYGBgYGBgYGBgYGpwlMgGZgYGBgYGBgYGBgYHCawARoBpMNd53qL2Bw2sPoiEExGB0xKAajIwbFYHTEQBimB83AwMDAwMDAwMDAwOA0gcmgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpAhOgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpAhOgGRgYGBgYGBgYGBgYnCYwAZqBgYGBgYGBgYGBgcFpgtip/gI8aGxstOfPn3+qv4aBgYGBgYGBgYGBgYEwNm3a1GXbdpPX386oAG3+/PnYuHHjqf4aBgYGBgYGBgYGBgYGwrAs66jf30yJo4GBgYGBgYGBgYGBwWkCE6AZGBgYGBgYGBgYGBicJjgjAjTLsm6zLOuu/v7+U/1VDAwMDAwMDAwMDAwMlOGMCNBs237Atu076+rqTvVXMTAwMDAwMDAwMDAwUIYzIkAzMDAwMDAwMDAwMDD4c4AJ0AwMDAwMDAwMDAwMDE4TmADNwMDAwMDAwMDAwMDgNMEZEaCZISEGBgYGBgYGBgYGBn8OOCMCNDMkxMDAwMDAwMDAwMDgzwFnRIBmYGBgYGBgYGBgYGDw5wAToBkYGBgYGBgYGBgYGJwmMAGagYGBgYGBgYGBgYHBaQIToBkYGBgYGBgYGBgYGJwmMAGagYGBgYGBgYGBgYHBaYIzIkAzY/YNDAwMDAwMDAwMDP4ccEYEaMJj9m0b6NwHtGwCUkk1X86NsX6gYw8wMaJeVmICaNsODHerlwUAXfuBE68CyYR6WWP9QOtmYOCEelmpFNC5l/5LpdTLGzgBHN8AjA+ql5WYIFkdu+lZUI3+FrpviXH1ssaHgBNbgNFe9bJSKdL9jj161nGoE2jdpEdHkgm6rv4W9bJsG+g5BLTv0vOsjfaR/uvSka799J8OHRk4ARx5ARjpUS8rlQS6DpCOqL422wb6jtM6atmzB4Bj64GBk+pl2TbtMy0b9VzbaC89azrscXwUOPqSHjsC0HUdW6/HH5kYIV9Ll450HQB6j+ixI71HaR/VoSMTw8DRdUD3QfWyANpH23cC8TH1shT5/jGpn3Y6ofco8PsPAi0b6N9TlwBv/TnQfJZ8WckE8OQXgPXfB1JxoKQKuPZzwGUfky8LAPY+Atz/cWC4E4AFnPU64PX/C1RMkS9rpAf400eBfY/Qv2tmAm+8C1hwpXxZALDlHuDRzwHjTrZ0zfuB134NiJbIl9W+E/j9h4GOnfTv6ecAb/oh0LRMvqz4GPDwp+n6AKC8Drj5K8B575QvCwAOPg3c9zFgoJX+veRmum8V9fJlDXWQPu57lP5dPY30cenN8mXZNvDCN4G1/wEkxoBoKXDxXwI3/AsQicqX17Eb+O17gK599O9ZFwBv/jEwZZ58WckE8NQXgXXfBewk2ZHXfk2djux5GHjgb4DhDvr3ijfQfStXcN7kYBvw2/cCx1+mf09dDNzxfWD2BfJlAcBL3wae+TIQHwEiJcAVnwSu+RwQUcBJdh0A7n0fOXEAMPN8siNTF8mXlUoBa78KPP9ftNdES4Eb/w245CPyZQHA4edJR3ocp2rRdXTfqpvlyxruAv5wJ3DwKfr31MXA678NzLtUviwA2PgT4NF/IDsSiQGXfRy47v+psSO9R4DffyjjjzQuJTsy/Wz5shLjdF2bfkZ2pLyOdF+Vjux+ELj/Yxki5Oy/AG77FlBaJV/WaC9w/yeA3ffTv6fMB+64C5h7sXxZtg1s+CHw1L/l+CNfB6IKXOeWjeRrde2lf09bRXZEhc+amCB/ZPPd9O+qJtprVt4hXxYAHFoL/PEvgUEnyF3xBuAN3wXKquXLGukBHvwksOs++nf1dOD27wCLb5AvK5UCnvkS8MK36FkrrQYu/ghw9d8DsdLQH39GZNC40d8K/PgWcqpe8zV6gMcHgJ/dBvQdkyvLtoE/fBhY921g9VuBN/4AWHAV8Pg/Aeu+I1cWQI73b94F1MwA3vhD4MpPAfseA372evmZu/gY8Is304Z53f8D3vQjeqDueSOxZbLx0v8C9/01MOMc4K33AJd8FNj0EzLIstmkrv3AT28FRrqB2/4beN03yXj8+GbaTGUilSLjtOUe4NKPAW/7JRnf+z5KG4BsHHwa+MVbgLJa4C0/BW74Iv3uV2+Tz5SN9QM/eQ0Z4Gv/CXjzT8h5+827iC2Tjee+Djz1L8CSG4G3/Aw4+y2kNw99Sr6O9B6haxsbAG7/P9qYu/YDP30dMNguV5ZtA7//AF3Lee8i/Z91PukIC+plYveDwG/eCdTOAG7/Hm0oex4C7r6dNm+ZGBsA7n4DBTA3f4Wc7uQEreOJLXJlAbRZPv5PwMJrgLf+Alj1RuC5r5HeyEZ/C/Cz11FG69ZvkI70HgF+dCPQc1i+vMf/iciJVW8E3vV7YNH1wKN/D2z4kXxZB56i+2ZZwG3/A1z/eXqm775dfnZ3YoQ+9+iLJOe2/6Es089uI9slG1vuISdu3mXA238DnPM2In4e+rR8O9J33PFH9rv8kUHg52+Un3GybeB37wM2/hi48IPkj8y+kHTkxf+WKwsgu//b9wBTFtC+dsWngB330rXJzlwk48A9byKC+rp/Jn8EAO5+PXDsZbmyANprHv4MMHsN7WvMH3n4M/Jlte8Efn4HZSJf9y3Sk+Eu4CevJf2RCdumgHrz3eSPvPknQP080hsWsMnEwWfovpXVkj2+5nO0//z6HXRPZWKkh561vY8CV36afOTKqcAv36bGH3nmS8Dz3yA/5I0/AJbcBDz/dSK1ZNgR27bPmP/WrFljF0Uyads/utm2vzzLtk9uy/y+Y49t//ts2/7xa2w7lSr+OUHxyg9t+wu1tv3c17O/w6/fadv/0mDbrVvkyRrtt+2vL7Ptb19M/8+w5xHb/kKdbT/wSXmybNu2H/snurad92V+N9xt2/+zxrb/c7Ftj/TKk9Wy0ba/OMW2f/0u207EM79/+t/pO2z7nTxZyYRt33WdbX91nm13H8r8vusA6ciPbparI5t+Rtfwwreyv8M9byEdadshT9ZQF13Xdy6x7dG+zO+3/Y6+wxNfkCfLtm37D39J9+3Qc5nfDXfb9n+fa9vfOEuyjmyy7S/W2/a9H8q+P49/nq5t62/kyWI68pU5pBcMrZtt+0vTbfvuOyTbkR/QNTz/X5nfxcdt+6e3kbzug/JkDXaQjnz/atseH8r8fscf6Ts8+a/yZNm2bf/pr0lHDj7r+g7ttv1fq2z7m6uyv0NYHF1HOvLb95Edtm26Tw98kq5t3+PyZKVSpAdfnmnbbTszv+/cT3rzvatIj2SB3Z+HP5vRvUTctu95s2NHdhZ8OxeGu237PxY6dsS11+x/kvaaR/5Bnizbzuw17vsz0kN73X8uIrsmCx17bftfm2z7Z6+37cRE5vfMjrz6a3mykgnb/v41tv3vc7LtfMce0pufvV6uHdnwY7qGdd91fYck7av/MlWujoz2kT/yvxdm68j2e+k7PPQZebJsm+zSF2pte8cfMr8b6rLt/z7Ptr++PHu/C4uj60jP7/1Qxo7YdkZHdv5JniymI/+52Lb7WjK/79xPfqxsn3XzPXQNz3w187v4ONky2XZkqNO2/2MBPcduX2Dzz+k7rP1PebJs27bv/SBdg9sfGemx7W+dY9vfPNu2x4flyTq2nq7hvo9l3x9OnxXARtsn5jnlQRfPf4ECtFd/RYuz6e78v238qVxHbmyQNo+f3Jr/AA130wMn8+F6/PNkNI5vzP/bw39Pjomsh6ttJzlV9308/2+tm0nWw38vR1YqZds/vInWK9fIJhO2fde1tv21JfIeri2/9N+ImY5sv1eOrLEBMlBeQd9wN/3thzfK05EHP0X3rX1X/t/+9FG6bx175cg68arj0P9L/t9aNjoB4RflyEqlbPsHN9j215Z66EiSNrivL5Pn7G/8ib+OrL/L0ZHfy5E13E0OvZez1t9Km/Qv3y5Hlm3b9v1/Q85ax578v/3+Ttv+18Zs4iIMWjbRWj32z/l/O/yC3IAwmaSg6BtnkW12Y2LUtr99EQWE8TE58nY/SN//5e/l/2377+lvG34sR9bYINnH712ZTWDZdoaU+fFr5dkRtp+c3J7/twc+SX/r3C9HVtcBZ6/5WP7f2nbQ3x76OzmyUinar78yl0gCN5IJsjFfnS+PWNp0t+Nz/Db/b4yUkWVHxgYpqPbSg6Euuua775Ajy7Zt+5F/JD1o2ZT/t4c+4/gjksjH4xvp8/740fy/tWwiHZHlj6TtyIp8O5KYoGfwGyvk2RHmj3jpyIYf0d92PSBH1kgv6fcPb8oOPG07Y0d+cqscWbZNPse/NHj7I799L+01PUfkyGI+x1Nfyv/b4eedgPBrcmSlUuSXfn1Zvo4kE0R+fm1pIJ+1UIA2uUocUylKS08/BzjXo2/jvHdTadna/5TTpLvlHuoDu/7zVAbiRmUDcNVnqGTj8HPhZQ11UI/b2W+mlHsurv4s1b8+//XwsgAqoymppPK4XMw8j9Z344/lNM4eXku9Kdf8Q37/SyQK3PQlYKgd2CihjCeVpB6OGaspLZ2L894FNK8EnvmKnEEGr9xFZZQ3fdlbR677Z+D4etKTsOhvpb6DNe/1rlu/4V+AWAVdvww89zW6X5f/Tf7fZq0BVr0ZWP89OYMMDj4NtLwCXPP3HjoSAW7+MpWoyigHTEwAa78GzL4IOOcv8v9+wQeBpuWOHZGgI+u+Q2WAt3w1X0dqZ1L/1N6HaOBFWPQeBbb8nHTEq9fyhi8CVgR48VvhZQFkRyqmkH3KxfzLgRW30zMyJmFC796HgZOvkj3O7W0oKadnsO+YnDKeVAp4+kvUJ3XBB/P/vvIOYM7FVP4iY5DBpp9Qr6BX/0vVVCovPvoC2dKwGO4i237uO4Dpq/L/fs0/ArFyurcy8OxXgVgZcO0/5/9t2krg/PeQ7R9sCy/r8FrgyPPUI57bRxeJArd+HRjtoesPi2SC9uNZa2jfzsWa9wONy2gdZdiRDT8ERrqAG/8l345UTSV/5OBTckq9Btvonqx+O5Vi5+Kaf6Qe2he+GV4W4Ow19cBrPPauWecD576dnhEZpecHniQ7ct0/59uRaAnZyIEWsqNhkUoCz/0n9SJ66ch576H5CWv/Q07J3MvfJf1+7X/m9+NWTaVS9yPPy2lh6TkEbPkFcNFfevsjN30ZsKLUKywDz32d9prLP5H/t/lXAMtupTJfGeXZB5+mQV7X/EO+jkSi1Bc81Abs+lMoMZMrQNv/ONC9nxxGr2bwSISMVPd+qmMOA9sGNv+MGsLnXOT9mvPfS82XL/9fOFkAyUqMAld5ODoAOftr3gvs/FP4muXeI9RgefGd9LleuPLTQCpBzlVYvPw9oLLRO6gGqE9g/pUkK2xgvf9xur4rP+2jI1F6wLv3A4efDScrmaCgetH13kE1QBtc5VQ5OvLydwE7BVz+Se+/VzUCF36AdCTshMz+FupZuuAD/kMlrvw0DWnY/LNwsgAKYmpmFNaRORfTcIiwOrLzj7QBX/V3+Y4OQHpz5aeBzt3AoWfCyYqPkWOx7LX+zeCX/BVQVkfBblhs+gnpyBV/6/332hkUlG79TfjAunMvDY655KNAWY33a678FPUHywiaXvpfoH4uEQNeWHw9DXlZ//3wzs7htUDHLtIRr4EBlkVDJ/qPU+AYBqkkDY6Zf2WBveY9NMBJhkO8+W4gOQ5c+nHvv1c3U3Cx8w/hHeLBdnre1rwPqJnm/ZrLPk57jSwdqZlBe7MXZqymQSjrvx8+sN7zIO01V/ytjx2Jkj/SuSd8n10qSX2I86/0H7xzwQcpyHnl++FkARQMJsbp+3uhsgE4/92OLQ2513QfpCFlF33Y345c8Sn6Ppt+Gk4WQIFX5VRg1Zu8/77wWrIj674bPrDe/zgFMld+xltHojHg0o8CbduAYyED6/go+VrLX0d67oXz30vXLmN+wsvfywzf8ULdLPIfdvyeEhBh0HuEfPoLC+gI22te/WU4WQDNnKiZSf6bF+ZfQYOANv4klJgzIkALfA7aq/dQQLTiDf6vWX4bUDsrfDamdRNt0Gt8DD1ArO2a95OT0ntUXFYqSZmRBVcDTUv9X3fRneR8bf2VuCwA2Ppr+rnm/f6vaVhADs/WX4dziAfbgP2P0TqWlPu/7sIPEvsddiPb8CPahSCmiQABAABJREFUoJfd6v+alXdQwBiWRd3/OGX+LvyQ/2tKKihrt/eRcEYqGad7sfzWwhMGL/gATRvaHJL92/xzcnIL6ci0FeQwbPxxOIe45xAxv2veR0y7Hy7+S6D/GI0fD4MtP6em9yU3+r9mxRuIrXv1F+Fk7X2YMqwXFdCR0irKZuy6j7IbokjGidFccjNQN9v/dRfdSWTQ9nvFZQG0jpEY3Tc/zFhNGYZXfxlORzr3Uhb+ojv9J6xZFtmR7v3hdWTjj8mRKTT1bOlraK8JqyMHnwYGT5CD6odYGdnQQ2vDDcKybbpv864Ampf7v+6CD1DQFDaLsOVumkbplYVkmLqInOLNd4dziPuO0eCT899TeK+54APEfocl6Lb+iu7/stf6v2bF7eSzhB0WdeBJsn2FdKS0kvaaXfeH22tYILT0FqBhof/rLvwQ6ci234jLAkjHrCjdFz9MXQQsvJp8wDA6MtxNe/E5b/OfwmdZRJr1HAzvj2z8MU0ZXF7AHznnbUTQhSUodj9I0ygv/kv/15RWUtCx77FwBF0yAWz/HbDi9UT6+eGC98uxI5t+SpUfhfaa2RdQYL3hR+H2mt4jdN/XvNffH7Es+i4tr9AAGEGcEQGaHeQctJEemtxy9l8UHskejZGBPvh0OGZn008phe/HsjCc9y4ANrGNoji2jpjY899T+HX1c4F5lwPbfiuugLZNBnXBVUD9nMKvXf12chzClHBuv5eCSj8mgmHZrUBFQzhjP9xF93312wqPyY2VURZh32PhzlDa+kugqpkm+xTC6ndQ0LT9d+KyDj1L5S2r31b4dQ0L6d5u+004Hdn+Wzpqodi4+XPfSY5Ry0YxWQCw7XcArOL6v/Q1VOYbZh37jlOJx7nv9GY0GWJlVCK7+8FwJRM7fk/HEiy4uvDrzn83ObJhSiYOr6UyufPeVfh1088Gpp0NbPu1uKxUkuzQkpuLj2Rf/XYiu9iYehFs/x1t0F5ly26svIPs9o4Qwedon8uJK0AYRGO0Pxx4Mpyzs/VXZPuWvqbw61a/HYBN2U9RtG4iQuTcIva4cbGz14S0I9t+S5/TuLjwa1e/nfbAllfEZAEkC7Z/Fp5hyU1UFbDtt+KyRnrovq96U+Gx/bFSeh73Px5OR7bfS4RRMR0579201+z8o7isg89Qa8cFBcg5gIKm2ReRPorqSCpFxOPiG4Ca6YVfe967aa8Jk2na/juys8WONjnr9aQjYezIYDvpyHnvLOyzllYCK99AgfXEsLi8rb9yfMQrCr/unLfSGoTRkWPrqJSyULIEABqXAHMvBbb/XlxWKkX6v/h6ysoVwnnvomMMTr4qLu/VXwGwiu+jq98ORMtCZXXPiAAtEPY/QUp1dpGACciwnnseEpMVHwN2/IE+xy+dyjBlHo25DaOAO35P/WDLihhfgOqYu/cD7TvEZHXsog161RuLv3bZa+h77XlQTBZA1zbjXHpQCyFWCpx1GzlG8VExWbvvp81pZYBrO+etNAp81/1isiZGgP1PEoNU7MyU5uXkFO9+QEwWQI57WW2wsz5W3E7sX+ceMVknX3V0xKeUzI3lr6WzmsIQFLvuIyNeO7Pw60orqXxj9wPi5UnMJgTR/5V3UCnY/ifEZI0P0XtX3F787KXmFdT3FsqO/DG4jpzzF46zLjgq/vgrlD0Oao+tSDj93/lHytYWc+JKKoClN9F9Fs38732Y9ppi5BxA9jiVEL+2xASw73Fi2IudqzNlHjnEe0KuY7SMbG0xnP1mOspGdK9p207v9+q9ycXy11L/7I4Q+r/7AWLQi5FKMef69z4qfuTE3ofpvgfRkRW3074k7I+MkryzXl9cR5qXE/kShsTa8wDZkYXXFn/tOX9BpeBd+8VktW6i3uJixAtAGb1omfg6AkSqzjiXeh8LIVZK1Vh7HhI/TmDXn4icPtujzzkX57wViA9nzhrlxWgfEXQr7yh+FuT0s6m3Noxft+dB6lMNstesvIPOou3cKyarZQORN0H8kZV3kI5sC6H/O/9IpFKhKhSAynyX3UL+i2BWd/IEaPseJSZ6xnnFX9u4NJwCHn2BHpaVtwd7/YrbgfbtYmWOtk0s/ZKbgh38uPxWAJZ4j93uB+n9xZg4gJydxdfTgbciCjjYDpzYTAdtB8HK24GJIWLwRLDnYcogBTkcdMZqoG4uMZsiOPg0lYkFcXQAyhAeXy9WwpZKkRO3+IbCjD4D0xFRp3HvI+RQB7m28jrq6dj7sBiL2n2QjPeK1wd7/fJbgbE+cRZ13yOOfQhwyPCci6k8SXQdD6+lAC/IOloWbS7H1okx7ckE2btlrylc3sXAnklRh2DPgxSYLy5QJspQ1UgBuGivVvdBoPtA4TIhN856PWUAjgtmY3Y/ANTN8R6OkIvp5wC1s8XtyNEXgYnBwmVybiy/FTi5VbwP+cBTNLwlyGHlZ72BSs/YgbC82POQY0eKsOwAEaGLriV9FLEj/S1ELAXda5a9lsrBjgkOS9j7CN13v14fN2aspsyGqD9yaC3ti8WyFQwr3kBOrUiZYypJ++jSm4MdxLv0Fvopakf2PUI6tiSAo19WTWWOex8S05GhDnp2gu41K95APU2iA7523U/EW6FSYoa5l1Lbhahfd+BJIgyWB9B/yyL9P/y82PAm5rMuui6Yz3qWs96igfXu+2mvCZLAqKinyp/9j4nJ6thNGbigvv+yW4moPCl23ufkCNCSCdpYltxYnB0ASAGX3kKTakQOdz7wFLED84ukihlYidvBp/hldeyisqRC/TBuVDdTra3og7z/cXq/X8N2LpbdSmWOIiwqc1qYES+GeZdTeZJI3Xd8jPpOFt9QuHSNwbJoUzj0rBiLeuBJoLSGvnMQLLuF2DSRbMyJLaQjQQwUQFmGGavF6+f3P0FZYb8BMrlYciPVbYuwqOw7FisTZVh0HTFkIs7++BBw5EVyPoIgEqUSvoNPi2Vj9j1GOjL3kmCvX3Q9AJt0khcnNlPgGvRZa1gINJ0lHjTtf5xKactrg71+2WvJhogEFgeepJ9BbeSiaykwENH/ZJwcFy47cmM4OxIto0O3g4AFcgcE7MjACcp2LLou2OurptJecUBgXwPo2matoc8JgiU3UgmbiB055Ey3XBLw2V54De3xewUCi/gYkYhLbw6uI4tvpP1J5ODe/Y/RvhjYH3GCHZH7dvJVKl0Lakfq59Dk7H2CDvG+xyk4qZgS7PVLb6a9pucQvyymI0EygwCtd7RMzI6MD1LPbNB9LRKlNd//uKCOPE4B3iyfATK5WH4rVQmIkOEnttCQrSDBIEA9as0rxFtl9j9BflbQvWbxjUToiegI81mDkoFLbqS9RsSOYLIEaCe3EtsVdGMByAAnJ+gh4cXBp2lqXElFsNc3LnGyMU/yy2LOWNANGqBN6MRmfqZ9fJAermL9MG4suIp+HnmeTxZA61gzgwx4EMTKyCiKGMTjL1NGa9H1wd+z+EZiJo+v55d36FliogvVlrsxfTUNHRAZk83ew6P/i64lFpW3f2q4i3QrSGaEgW1CIlmEQ88Su1yoGd2Nsmp6Ng8JrOPx9bQp8TxrC6+mwIe3f8q2yUFadE1wHZl5HmU2RPT/wJO0UfBc29KbaCQ3L4k12Ealazx2hOmuiP4ffIb0I6iOVEyhwEBkAmfrZspocdljx46I9E8dWgvMvZjKd4OgcQkNHTgiwOozZyyogwqQPT2xhYYr8GCkh8rXgpRAMTCbIxJ8HltHEwybAmQrAGL+514i5jS2bqQKG55rW3AV6cgJTqbdtslBXXRtsOoJgPaaquYMscEDpiM8z/biG8i28vZPjfRQ5dGia4K/Z4HzWhES69AzZBuCZD0BeibnXSa2joefp4zWYg5/ZOlNlNFq3cwny7Yp+F9wZbAEBkD2sbRazK878CSoCitgEA+Q/h97mQbQ8KD3CGW0gga6QIbIEyEoDj5DNqRYuwVDZQNNehfRR0yWAO2IY0TnXxn8PXMvpQljvAs31Em9OywwCQLLIiNz9EX+UsDDz1E5ZrF6VzcYk8Zb5nXsZaqFD8rEAdSU2bCQfyqabVMGc97lwVhGhkXXUv9UfwufvMPPU6kEz7XNuwyAxV/C0HcM6D3Mt4lFIvTdDj/PX55x9CUyGlWNwd+z8BraIHjPO2FrweOgsgCLV1YqSeux8Bo+HZl/BZVF8jqNR18kHZkTMKMFZGwOb2DRd4xYRh4dicZInsgEwkPP0kYRNOsJkKxUnD+wYN+P51lrPoucRl57nEpRGRqPLICCkNZNdP4cDw6vBWDx2f95l9N7eIOm4W5yUHn3mvmXky7z2pGDT9M9KNZ/48aiawHY/I7c0RfpfVx2ZI7YXgPQ3jb3kuAOKkD6L2JHjrwIwHL2Dw5ZgIAdOUr9NzzrGImQTonoyKFnqYetuin4exZcRXbkGCcZzvYaHr9u6iKanMm7jrZNzveCq4v3A7ux8BryB3lbEw6vpf79ORcHfw+rxuEtu+09DAy08tnIaAn5yCIExdEXyYYEzYwDpCOJUf5hYocdu8NDTjcspMQAr38cH6P38BBYAJG4rZuEholNjgDt8PNUjlNsWpgbZdXEEvAaDXZTg5auMcy5mJj2bo7yDNsm5iloCRTDrPMp9c7rEBx5AYiU8BkNgB583uCz5xCNMubZxAAyGgB/Vuv4euo9yz1UsBAq6oEZ5/A7BOwg0AUcGwtARmqghS/1nkqSDvOu4+yLKKPCaxCPrqNm/aAsI8OcS+ge8DgEnXsoMz6X89rYRsQbWB95kZ4dHh2pnUEHifIGn8yOMH0OirmX0IbL0z+SGCdmfh6nrDkXk47w2pGjL9IQAR4dsZygh5eg6NhFrDKvjsy7lEqKWzfxve/4egomeQLdinqyPdxBDAt0OQI0gPamwZOkJ0GRSlEGYdF1fGTIjHNpr2nhPET9+Hp638wAPeNuzLuMnjWevWa4i/Zd3n2UBQZHee3/C3TAd0V98PdUTSWS7Rjnvsb2Gu599BLSEZ4jGZIJel547cjcS8iv4HX2j7xIe83MAL2eDJbl+CPr+OxI135q1eAJdIHMuYQi+j9rTfCsJ0AEbOMyAVLVeX2x6Y25WHAlVULwnHWYjFNvL7d/7Dyb3H7dy5T1bCxw/FQuLIv2XV4dObkVSIzxk4ELrqLEh8Dh32d+gJZKkZPJa3wBqsc9uZWvpvfoS46Dei6fLBb08Chg9wEa884bMMXKqEeIl2lp2UiORNByGoY5F5OTxBN8iga601YR88SzkbGNhXcdATJqLRv4Uu8tG6gnoHkFnyzmrPMETR27qOSK19EvrSSHgHfc7LGXqO8kSIO4G3MvoWMAug8Gfw9bB7/Def0w83zqH+EhXxITFMSI6Mici+ie8xj7oy/R2Ta8OiJiR05uo3Lu2ZzrWF5LQy54mcbWTRTo8jDRAOnIUBtfdjxtRzj1f9YFACy+QSGpFHB8A78+ArSpt2zg60Nr2UDN7zPP5ZPFdKSFI/js2Enn8S3iZIdjpRSI8wa6x9ZTcMbjoAJkj8f6yO4FlsXIEM4gZuZ5FETy6EgyQXaLd18DaM9u2cAXfB57ySnd9Dnk3g9sv+CxkZ27gfhI8D4mhtIqWkteMrzlFSeI4dxrZl9IPdn9HP2sLHPPq/8zz6NKLB4dmRgmmyxiR+ZdSuvIoyMtG6k0nieIATJBUyuHP3JyG+kIrz2umkqVYryB7rH1ZO94MuMAERqDJ/gIihNOaemsNXyyZl9ElTm814bJEKD1HCKWPchErVzMXkMRMc9Bcq2bnI2F02hMXUxn2fA4Vuy1vI4VQNfWtiN4YJFKkoM6m9P4AhmDzRNYtG4mlp3XaERj9IDw9A627yCjIWIQ51xIOtKxO/h7WjeKOahNyymwY4YgCFjPAq/RAEiPT2wJHlhMjFCvlQgZknYaOTaylg3EjgXtLWKIlRLRwLOOHbtooqKQHbmQnFuezGfrJnrWeDeWGasdp1HAjojo/6w1RGIFdQjijj3lYb0ZmO3h2chaN9Mkzfoio9NzUV5LwTHPOnbto71GyB5f4NgRjsCiZRMFyLxBTNNyIrF4gibW1zL7Qj5ZAF3biS3Bic7EOBFDIvo417EjPNd27GUnW3cunywWfPISZvERsXWccxEFnz2cJNaci/jtSPNZNKCIyx476yDkI6wB2rYFP/4kMU57zWyBfY3thTz3rWUDlb1Nmc8nq6SC9hoem3ViC2VURMjAWRfQ5EjevWbm+QJ7zTmU+eSyx4xUFbi22RfxVdmM9FBSQMSOMB3m6fls3Uw6UujgbS+UVtJew0ti4QwJ0CzLus2yrLv6+z1GfjInTMQhYA9yUIYglSSjwWvoAUqrzjyXGIagOLGFjChvEAPQeqTiwacrduymxmZedgyg71dWy8e0nNhCmx+v0QDo4WrfFZyNPrmVfoo439PPyf6MYoiPORuLwDpGoqQjvI5VeR1/EANQgDbcSfXpQdC+k8rCeLPHAA0vKKkKvo4AXdusNXwlVwwssAjqEDBDLWJHeMtc4qP0vPGWdwHkrE9bybeOJ1+lvoxiZ4R5Yea5fA5B23bqbRQhDKatoswnj2N18lVaRxEdmX0BPWtBHQK214g82+xeB3UIkgm6NhFZ0Rg9ozx25OSrlNEVsSOz1vCRWJ17KKMrov9TFtD35NH/Y+v4y8kYZq2htQkafLI1FyV6gOB2ZGKE1lLEHkeiFFi0cUxfbt0kRpgBdK/jIzTQIQjadpCOiNqRaBmn/m8VW0eAru3kNg47EpJUdX9GMcRHad8WkVVSQaW6XMT7JhpSFHSIhhuzLyCisy/gcVRtji8tsmc3r6DMZxuPP75ZbB0BYNZ55M9w9nyeEQGabdsP2LZ9Z12dx9ksJ7ZQyWHQ6Uxu1M8jgxM0aOraT42MvP03DNPPJoMaNLBo30nOmEgQw/sghzEakQjJCzpdKDFBgaPIBg2QAU7FidEOgrbtFOjWz+eXNWUBBZ9BH+SOXeSghjX2QR2CE1vEHVT2HYPqSJvjFInoP3MIgjpWiQnazFmAzIuZ55NDEPQw7hObKcPNy6ACmYxF0Gtr20EMqgjRAziO1fbgxr5tR7Cz/7zAdCRoKWw60BV4tqMlpFtBM58Tw3R/Re3IjHMoYxG0FKptO+01Uxfzy5qygErRgj5rXXudcjJRh+B8foJi5moxO8J0KygZyCaeijzblkX3LeizlkyIZ2IA/sxn6ybHjizgl9W4lAiKoEFTxy6HMAvhj7TvCJ4db9tO90yIMHOc6KD6nw50Be5brJQCi6A6Mj5EvkQYezzeH7xcrn0nBTE8Q70YmpaTjgTes9leI2gjZznZ8aA60rpJ3GYxexBU/8PYkViZ0+IR0K8bH6KWI9FnbdYaJzvON9r/jAjQCqJtOwUx0Rj/ey2LnP2gGwt74EWdxunnECsUhEWybXqQpwccQZ+L+rk0tj3og9yxm5yPBoGNBcgEn0HOg+rc7TCo54rJYmP5g5amtm2ndRQJdCMRvsCCbeTCDvFqKrXrPlD8tck4yRPeoFdRbfSJV4O9/uQ2IjR4Joq6MWM1fUYQY9+1jwJdnolybjDdCjr+ngUxIs5HJEolQ0FlsWAnTGAx2hss85kYp7UMepRFLprPIjY6aIDWvoN0RIRBBeh+t+8KFny27RDP6AI0bhzg0BFnr+EtXQYyFRQ8jhUgbkemrSI7EqRcLhknWyq6jg2L+AKLth1EaIjuNTNWk54FCT67D9BeMy2EPQaC7zUnt9J9DmNHeP2RGaL+yCoa7R9kmEwyQT6CqD42LHIqKAI6xO3byX+pnSUmj/l1gezIdgB2CDvCAouAdqR9h7hfF405/sirwWUBIezIStKRICTW2AA9b8LE+woAFof+byP94JkW6cb0s4MT74zoFfVH2PrzlLjjTA/QbJsueBpno70b01aR4QkSWLTvoKZtkZJDwFUuF0Ap+o9TaZGoQlgWpXE7A5YUdOykE+1FnA+AZCXGgjEEHY6yNwte29TFdB/aAxjEVMoxiIKbGOAY+4BOY/tOCnRFMjFAZmhEEIeg5xA5H7yDJhhKKui9gZ3GEAwqQI5EfDiYjrDrF9X/hoVUPx8kg5ZK0etEZQH8DkHFFHHng8eOdO4hBlXYISghe9cRMBPZsZuea1EdaV5BbHSQ4DNNhgheG3MIgqyjbTv6L+joAKQjXfv49hqRbB2Q2RODOATMjojqfzRG9y2IPQbCBboArWPQvYY5e6LXNmUB3Ycg65hK0v0VtceAQ1BwEI/l9UDdHDFZPJnP7gMU8IvqfyQCNC0LXtHQvpPWUdSOTD/bIbFOFH9th7PeonakeQVNuw0SoCXj5JOF2Wuaz+Jbx9IaIuxFwL5nEP0PG8SUVtG+zUOYhbHH088GhtqDHZHAnhHRZ5tV+PHMMsCZHqANd1LNahiDOH0VlZL0BGCRuvY7wYFAtg6gMzqiZZRBKoa0gypoNADHIO4N5jR27A65sXAEFl17KXMjUssO0Po3LQ8mq/84MUBhgvjm5RRYBJku176TDKio89G4lGqjgxhE9rCLlPcyzFwdbFCIbZPzEUYWmzQWJIPcsZMCLFEHNVpCfW9BNrK+I2QDmjknobnB4xB07ad1DBPEABnHohDaHT0Ka0eCZv07dockzJzNvT2gQ1BSBdQKZnRLq0hHgjgEA61UoiLqxAG0jomxYKVQ7Tvp9UEPMc9F4zJyGoOsoww7Mn1V8AxaZ8i9pskhSINMDW7fSfZUlFSNxmgtgxAUvUfo/oaxI9NW0bTbIMdoMHssakcal9HPICRuOtANof/NZwWTlUrReoclzIBgPkLnXgpiRAmz0kryZYLY43RGN8Q6Ni4jvzfI+XwsgSGqI+nAgiNAaw5pR4IQBsk4Pf9h7AiX/u+ig7t5h1ExlFYRaf9nlUFjD18og8gYgoCBhaihB8hpn7oI6ApQvsb6q5qWictrWk5ZuMGThV833E1MQph1bFpODkGgB3kvGTTeSZi58roCbNBsE5+6RFwWz4McNqMbK6XvGtixssLp5LSzgdEeIjsKYfAkBbqNYdbRCbaC9A52Os+aqIMKkI4ECdDYWodlvoFg+h/WjpRVU1ASVP8jMbGeGIamZRRUTAwXfl3fMTryIcw6MhsUxB537iFnXaR0maFxaTBHn+lsYwh7zOUQ7BQvywOAknIqKwtqj8PakablZEdGegq/bribnMsw+xqz5UHsSMcup7crxF7TfFYw5jsd6IbYR5s5Mp9d+zM2VQSllUDd3ID2eA+RqqF0ZBkdozHaW/h1fUeIEA0VoDHCOICz37mHvptoEAPQs83j14VdR/dn+cG26frD2OPyWtKRQP7IHqoeEg1iAHp2eo/SsLVC6D1KLRBh/BFG9AQijHc5xHuIvaZ5RfBKFAdndoCWjthDKCAz9sV6fhLjxJCFebAAyggEMYhd+4CqZprQJ4qmgA4BU9AwDGqJU9YXxPno2hdugwboPvQfL+40MqMZ6kF21qWYsz/WT4FOmGAQcJjGAA5B525ac95z69xgGapi+s+CgTDrWF5HzdGBAosD4ZwPgO5b71GadlYInRIyCGk7UqTnhzmoYe1I09Jgz1r3AadMSzDrDwR3CNKkUoh1rJhCOhKkB7NzbzhnGCB97jlcfCiPFDvi3PMgdmSoLbyNDFoK1bkbmDJPjx2RQZiV1wa3I137wz9rzcuBgRbqsSmEdIAWJohnwWeRaxvto7O+wu41TUuD+SPdB0hHwpKqANBZRF6HBL+uvA6onhbs3M3OveFsFuDYkYPF+yLZfRWtDAEy+lwssBjqIFsShngHgldQdO6hdRCtHgIc/beL984yOxNmHWtnUy9sMX0E5NiRpuVk/zjOXT6zA7TugzRhr6pJ/DPKqh2HoIhC9ByihvSwN6lxqVMKUWSSoyyFAIo7cuzapy4KJ2/q4uIPVjJOaxl6HQM6xN37aSxzGB2pmgpUNhY3UqwnIvQ6LqJsRFEdORDeiWPftWiAJoH5A+i+FXMIknF6RsIYXyYLdvFele5DQM1MsgWiqGokW1RM/9NkiASComt/8dLU7oPh9TGoY5XW/5D3rWFh8ZLzsX7K6jaFJcyW0ETY3iKjnbv3UxlU9TRxWSz4LKb/Mu1I75HiTmPnvnCZQYCD6GF2JGRg0bikeBAjy46w9xcbptG9n5y+MHakZgaVUhUNdBlhIMEf6dpffHBT1wEJ9pgFFpr0v2FRcXs82kvVQzLscXKi+Ij47gPh95q6OZSpKmaP00GMBDvSc7j4XhO2BQIITlB0Swh0IxHHjhTx68aHiDATbclhmLqIsn4cB6if2QFa72HKIIRJTQN0k4s5+jIyCOz9dpI2jmLywmYQqprI2BfbWHoOUhlUnWAjKUPDInJ2Cz3I/cdJScMajcaAZS5d+0lWWB1pXFq8hIHpUEPYjWUhkQGFHmTbJh0KU7oGUPNwtDRYBq20mhyIMGhcShtLIR3pO0Y6EnodnbUpqv+HxCfKMVgWfUZRwkAC8wfQOsaHCw/TSKWcAC2krCnzAVgBHNSDFMSIjI92o2Fh8aCaBXBSgngUL3Nk9jisHQkSfEqzI8whKNDzxuxIWOejfi7tIcUcq6591IctOrSAIQjR03uU9trQ+u/YhmL3reewHDsydVGAdZToj8RHituRnoPhs3V1s6lMslgQ03OIyIyKKeHkTQ1gR7olkUrp4DPAfQvr+0QipGdB/DpADmE2MVS4LzIxTj36Mkh+INg6VjQAlQ3h5AUpTZW1jsyOFPP9XTizAzQZBhEgpSrmoLJFFZ3Ol5YVoKRyuJvq+cMaRMui71tMIboP0uvClEEBtI7xYWCwzf81staxYREAKwDTIsFBBai8I8jGAki4toXZn+eF4U5a67D6H3GGtRQLLHqPyCFDGhbSlL5CfQiygpigjlWvJDsShLHtPUpOiujkNYbGAHZk8ASd2xh204yVUQN9UQfVCXRD68gCp+exQPmyNHsc0CHoPhDeHgN67Ug6O17IjnSRHQkrK1pCz1vRzM9Bur9hyqAA+r5jfZRJ9ZUlKYPA1qaYQ8wI47CYuqQ4YdB7GIAVrt8HyJAAha5t8AQFcWHXMVpCQVoxf6TnUHjiEaBrG2oHxgf9X8OexSkh1zFIf7Vt030NG1QDAf26A0S+ht1rgvgjfccA2OH1v7SKvm+QLKsUv24+lS8XKjuUVWGWtiNHAr/lzA3QUklSChkP8tTFNDlptM//NX1Hqa65oj6cLHaTCm3SzFiGZTWZvCAGMSxbCwQrl5PlWJWUFzf2iQnaXGRsmvXzaEJfYtz/Nd0HyZEN08sBBAss2N9kXFvDouIBWt+x8M4AkNkIC+m/LINYUU8sbCEdmRimTVyKHQlQmtp3FKibFZ4MYfeiUGle2tGXcG2B7YgEm8U+o5A89rewOlnZQKPKC+ljYoLYYRlB/JT5+uwIs+mFSANZDioQLDvYd0yePQYK678soqe8ls7kKnRt44NEmsnQkcYlQN/xwoMSeo+SjoTpCQMymcxCk0Vl2WOA9EyXHWHft2Bg4ehP2IxuxRTyDwutIyMUZFxb/TwnQ1ygEqX7INn+sGRIOkArYEdk+XWAkx08Uvg1fUflyJoyr3i1ErvusPetZgYFzEEmxjs4cwO0/hbqHZDCfAdIPfYeDf8QA+QQlFQV3liYstSHZD6AjGPlV2NuOz06MoxvEIeg9wgpadhSOYDuRyGDONBKD5+M+zZlHgC78Kh9GSWHAFDdTDpSaGNJG0QJ8urnks75GXvbdgI0CesYxLHqO0bllJWCB1C6MWV+YXaYGUspdiRAaWrvUTmBbu0sp1yogP4zXZVx3xrmF7aPyQRtmlLsiLMRFiINeo9QiUt5bXh5Re1ICwBbzn2rd+xIXyGHQJKDWt3s9DNpcqzq5xYvp5RlR4IQPb1HqP84bBkUQHa2kB2RbY9hFy477JPkj9TOounLhfSf/U0KQTe/OKnaf1wu0VPIIe47RnakrCa8PLaP+so6nnldWEyZR5nvkQKj9mX0HwP0fa2oPjtSV2Qdkwmgv1WfP9JzmHqHS6vCyYpEnMD6SPC3hJN4CiHTINY55+gUNYgSDJRlFS9zYQ9y2NQ0QA9MYoyyBF4Y6aHyBWlOY6R4EFM/NzyrA9D6FDSIbGOR+SAf8X9Nf4ucoJr1MxUkDFiJi4xrm0M15n5lh6O9tBnocqz6jzv9CiFL5QCyD4U26FNhR2RkK6IxysQVdKycZ0P0fB83psynRmm/iZiDJ6jfSUoQ4+hZUTJkfnhZTF6hgEmmHUnr/xH/1/S3yJFlOSVwBQkD53tIsSNzKUPgV3Y41kfHvuhyrGTZY4Dscc8R/7/LJHrYvl9Q/yXZkVgpDa0oSPQcB2DJsyPDnTR4wU+WnZLk6Aewx7KId4B0MkigK8uvA/x9BNumtZRxbdESuvcF1/EIECsPN0SJoW42tcn4VaIMtFJvqRR7PJ9+FvTHJZFKTF6xUmkXztwAjSkLewjDoJhBZMyfNIegyIPcf5wmwoUtpwSKZwfZOtbODC8rGiOmob/IgyxtHedQuZDflLJ+yYwV4P8gJxPkpMrQR6C4Qew7BtRMp1LPsEjrv48jJ6sMBHDKhKcUzyDL2MQAum/9Lf4ZZLbGsthowN+OxEeJKJERxACOHSmyjtXT5OgIC2D95LFnvk6CE1cxhaaUFXMIpAZox/wzyEqIHj87Eqf+OxnOMED3o1igW9UUnh0GMsGQX7Arcx0rptAeWVD/W+Ta48ET/nYkvddIeLbZd/a7b4lx0hFpdqRIBrnvGPkHYcspgcx39pM3cIJ+yrhv5fWUQS6k/zKd72J2RKY/UowwHusn0lWWHamdmbk3Xug9Qt9JBqlaPwcFM8gy7UjtTCBSUtwfkUX01M0uvI45OPMDNBmBReVUiv79HNShDspCyTKIU4rUD/e3yHNQa4uwSOl1lOgQFHKs+lvlbZr1c4lJKfQgWxE511Yzgx5kv41l8CQxf9IcgpmF13GgVY7uAxnj47eRyTSIQIDAQrJjlYpTj6kXBlqp5FZGOWU6QPPTR4lOHPucYkSPrHVMB/HF7IgEeZZVOLCwnc1bRjAI0LXFh/0zyH3HqMRHmh2J+V/b4EkAtrxrq51V2CEYkGyPAX+dlGlHWHawKNEj044kCtiREzSdMuzkQcCx65a/jvQ7JbcyMmhAgABNImHG9qxBH52U6Y9YFt1/P79OZpYJoM8pVInSd4zO3ZKx19QXIVVlJjAAoHZGcX9E2l7DCAoNRE8kWniWQSrl+Kyy9H8WlaUWO4ibfT05UtXCsqzbLMu6q7/fVToxcJJqh0sqZAhwHmQfgzggkR0GaGOZGCzwIEvcWGqm00+/yYoyA12gcOYnMUEbnIz+MyBA5ucYlW/IYP4iUfreAye9/y7TQQWKP8gDJ+Wvoy/zzUpuZTlyc/xlTTh19bIYK6bXvgTFCXqNDOavpJwOl/fTR+aUSAus55JD76cjUokeR9f81pHZTqmBhY+s0V46c6hG4joC/qRB3zH6PmEHuwDUh1A93b/kvF+FHekqYkckrSM7psXXHksmKOpm+Tv644NUUinTQQX8g93Bk/QaGXYkVkaZb79+Pra+sp7t+rn0rPlWohyTZ4/ZnlV0H5W0t9UWIHpGe4l4l0ZOs320gB2pmyNHR8pq6EgTP7+uX3aANovumV9SYbBNgV9XiDC25Ol/3WyHGPPAUDsRvLL9ET+7lYMzIkCzbfsB27bvrKury/xy4IS8Bwugm+TnNLKHgAU7YZF2Gn1uksyUankdsTZ+Cjhwghjd6mY58upmk3HwepCZUyJrHYsxtv0t8hxGgDYNvwcr7aDKYpGc7+0nb/CkPEe/ciqVlPkGFicpwyyDHQbIkA8V21hkB2h+961Vvh3xzY5I1n+mI15radtyM5HVjOgp4FiV1clptgcydsQL7DtIsyMBCApZ9hig711oHQGJ2cFiduSEPGe4qpHsiG/5Wiv9XZodmR7AQdVkR2QGukARO8L8EVlBzAyq/hj2OOcqlaRrlrWO7DsX8kfK6+WU3AJ67Ug68+NHYum0I47uyCxxTIx6JxWSCfLtZAbVgL89Hmglf1UG8Q44xHsBXxwIf0YwQ9qO+Ny3HJwRAZonBlrlKQRQ2CAOSTaIzCB4OVbxUWL+ZMmyrCIP8gmn7EbC0A6AHi6/B1n2xpI29j6b9FC7nKZVtzy/Byv9IEs0iIC34RgfomZ7mTpSUP+ddZTB/AGkj2P9pOu56Jecrasp5lhJLBUFCpfmseddlk6mgyaPbIxsdjhWSr1KBQNdietYO5PWy4vVTztWku2IX1ZrqE2eEwcUCSwUOFaAt9M4MULPoUw7UjvTf68ZPEnXLsuOVE+nc9y8zjCSTZjVFGG+ZQa6QMAATZIdKRQ0DbVTaaesdSwpp8onPx2R2QIBUGA53OGdQZZuR5hf52NHZGaZAKfssMA6WlF5diud+fTQ/+FOCvBlySopByobC2e1pPp1jj32SiqkB7tIbF0BAvehncEB2gnJDsEsuvGeDkEbAIvKl2SAKZeXY8VOa5eqgDMLlxTIdqwA781FNmNVWkmN4n4n3A+1S3asZhQOdGVmEAr1M7HvIPO+VU8jQ+uFQdkOaoHAWnaWtaqJMsReBjGVkpuJBAr3/Ay2UzZblo4wB82L6Emvo2SCohBjKzVbPYs2fa9rk13RUDmVelV97UiHfKKnYCayVs7xAYCrB9lDJ5XYkWb/dRxsl+ug1kwHYHvLY4GULHnVzeTweu2jti235Byga/NdxzYafiHNjhQgemTbY8Dpr9bsj3gF1syOyAqsKxsBWN4BWipJ+6t0f6RA64ps4h3wtluyA12A7G0h/Ze9jslxn6SCZBtZrOUiB2dmgBYfo7p6maVJVU0AbO9zJQZPkoGW0YMAFM6gKQnQCmTQZCs7U0DPTVNyBg1wHAKvTOQYscOySjcBMuQTQ8DYQP7fhjuB6iaJsgo8yAOSnQ+AvrtvBkEyY5UmKArovywyJBJxCAqPDXqkm3qZZNuRiUHv7OBQm9xMZKEMmux1BDJ9CF4YbFPjWHnJk030RKJ037z0f3yInnmZdqRmunN0hQerL5tUYs6np4OqwrEqFKCdlEwYaNxHI1H/fXS0lxw8mfpf1URVEp460ibZHhcoX1ZhR2oKtAqwih5ZYM/tsMdwF3a91ZKet2iM7pvXvsayTCqIHq/Mj3S/rkAPshI70uRdcgvI90fSNtJH/6Nl1CokA2U1RMD5+eM5ODMDNLaRyrxJVY5z7aUUg5INYkkFZVsKMVayHQK/FO5wp1zjW9WY+dxcDJ4kFrKyUZ686une6zisItBlbJzHwzXcldEhGSitIpbUbx0B+Rm0Ib8MmoJMJOBvEEsqgbJqefL8JmLKLjkEijgEktexciplB3URPX6TvFIpR/9l2hHnWfKamjfYRn0qMgZEMfgFFkrsCCup9HLkFNiRkkpvfRxQ4VhNK0z0SM+gwd8hLquVc8SEW54X0aOEMGN2xMsfkbyOVU2UQS5EmMkmOr2Il6QzJVO2jQT89b9iimQd8cn8yM76A6QDqbh3UmG4U+49S/vHBQJdHXZEVSYS8PHrnHWURaoyeZO6xJEppMyNjCmz58MluXwBcB5kr41FhUF0GjzH+rJ/n4wT+1clMWBKP8hegYXD6kQkql2Nz4M8qCCILzTJa7hL7joCtLl4GUQVm2ZVEzDen8/Yxkfp97IzuoD3fRvukHtdgMPGeegjW1sl+u9hR2Qz35EIBUXaiJ6ZwGgPncPkxlgfHXeh047IJCcAf4dgUBFhBvgEFirsSGNhx0pm71RVM+lDro6MDzqZSBWZH5/AQvY6VjX5O8OAZMK4mD8iUVY05tgRnx40QLL+z6A1y20nGe2hnzIJ3KL+iGS/rtrHr1NFmAH+gYVM/S+poKmRnnakjQJ82f74UEd+UkFJJrKYHZF4XQDdFy874oEzO0CTcZ4EQ1Uh5ltyuhjwr7FNlxRIVIq0kcpRihFmECWuY2k1TfzzdIgVKLufY6Uiy1pomMBwp6IH2UMfR7rpTLYySX0qQGadcgMLFcxfxRQqG/DLoMnMxAD+DmrajqhwCDRk0AB/omeoXW5pBpDZ8HM3F/asS7VZBTLxKpxvX3vM7IjE+1aoxHe4U64+AkDVVG87MtxJOiLVjrB9NOe+pSeYasr8yK4MAei+eDlWKvwRVi6fq5O27ZR4ybYj0/33tbJaudnqykYAdj5hnCbMZPp1zGZ5EZ2SCTPAv6JHSbUG60HOkaeiogEoYEe6aPCLrBYggK4tMUbEjhsq/TqvrK4KwtiPePfAmRmgqWC+q32Y71SKDLCKwMJvSELlVCBaIk8W2zhyHy4VjpVl0ef5OcQqHKuJIeoVcUPFg1zZQD9ZYMuQStK1yXasCgUWlVPlpt39MsgqHFTLcvTfp3dKtkGsaiR2NpXK/n06E68gQMtdx/go9aZJtyN+DkGH/NIMv3KhtB3RxNiqeNaqm0nXcxlbFcw3W8fRHDuSTNDvZOuIrx3pUWBHfJzGdBmU5MxP5VSfbHWH3J5ggOz/cJcHq6/CH/EhzMYHgfiI3HUE/PvrhtoVOKhsH80ljJ11lPlsl1Q4rQI+gYXsZ61mGt2z3L1GRUUPW6dcf2S016lokE0Y+1SiMH9EJtJ2JJcwVjC0JuaQVJ5BvORMJGAyaEIoqyU2MVchxvoopcqMiiwUyqBJZ/58HKsRBRsL+zztD3KOQzDUAZq8KfHayuqohy5vY+kBYKvJoBVyrKTK8gksVDgfAD1PuQ4qoIixaqRnOHdK03AXAEveuUyAf0lNOlst2474NFOrWEedGTQmz8tGjvaoscepeL6ODLU7fbMS5fkRPex50OUQKLHHzI7k6L8Kwgyg75+7joCaDFpVIw0DmcghA0e6ocyO5K6jiqw/+zyvdVThj6Sz47lEj2Z/ZLRXkR1J5O9tQ6xvVmK/m1+gm26TURGg6fZHcv06BSW3AD27ecR7SlEmfqo3YeyBMzRA66LmeJnlO+nMT86DzDbsCskPcuUUID6cX6uvgvnzdayYQdTFtPSqcwi8gs+KermZyEiEHuRc46sigwA4zocHYzvSrWZjAfIN4qiiwKKyId8gJuP0O1UOQS5DNtJN91PWKGKAjn7wGu7C1lG2HalocBhTj8yPCmcY8Lcj0kvzPOxIKgmM9qlzCHLlDXc6w1gk6kisjHQkV/9VBbqspMbLjsgsJwMK2BFF+yjTfzeScXreVBA9gPdeU9kgX0fK6/LJFxVtCQDtlV5jxlVUNPjZEZXBZ+49S0zQlEzpfh3LjueSgQpaIMrrqcRXF2HmV5qn1Y4o0n8vwphlInURxh44QwM0BSVegDNq3M8gKthYgPybNKqAjfAtcVTpWOUaxHEq8ZK+QTusZW49+2ivXEaTwSuwGFEY6CYn8uuwRxQMEvDrnRpRGFh4btC2mtIkwMexkvysAd6MrTI7MoV0JD6SI09BEF9ZhOhRETTl3rPRPgC2Ggc1/flueQpYdsCxI36OlYJnOzEKTAxn/16F/qf3tVxnp8/5u2Sb7LmOquxxAf1XYkea9RJm8ZH8IVEqAoui/ojka/O0I71qZKXtSK5fp8CORCLe+6iKoxEAZ0iOH2GsIGAC8tdxpIf670slTnkGnHXMJcwUzIMACvdF5uDMDNCGFSgEkFFAN5Qxf1OyPz8tr4+YEZkoqQBKqrwDCysif9NkDqr7QVbloLK18jKIsu8Z4GS1NJZ4Ad6ZH9n6HyulcdxegW6khMZ1y4QXY6UqGKz0WcdhBT2RgE8mXlWg62dHFBAUFfUALO8eNNlN4oBPoOs8e7LXsbwA0SPbHgNO5ifXIVAdWGiwIyUVQLTUI9DtcQZIlcqVV5AwU5CJAbxJLNkkJ0DXNtafI0tBewfgbUdSKZLPgg5Z8M2gddGzJrPqBfAetqUq0C0v4NepIIy92iBUVkalEtk20rbV2BFmc73scWWD/ORMpUcmXll7R4GjH3JwZgZoqpjv8vp8g6iSsQKyNxfbmWwk2yAC3unpdPmOZDWodGr13ZkfVanp9MbSl/17VRk0r5KadGAhmx1mDoFrI0sm1JR4AaT/Xo6VEoM4lZ4196hl9uzJ1n8/5lvFxgI4ZbB9ObIUZtCAbJ2Mj9EELNn6GIn6Z35UBbojXdm1+qrssR/zPdanKBPvRfQoqmjwtCNxet5ky7IsZx/ty/69sooGZx3dZGDajsgmHn0yPyNd8ku8ACpxzAvQNNqR8QEAtnyCIlZGA4C8SnxlBxWAt44oC3Tr6aeuAM2rB1Ml8Q5k+5Fj/VQGKJ3oKadp4F7+uDK/LmcdldmRyZ5BUzENECCD6OdYSWejPUpBJoaJoVDB2FZ5OAQjPWqyTMxIuR+utEGUzVg5fYg6MggA9Q7mrqOywMLDIRjrg5ISL4C+f65jpUxHnM90y2P/L7O3FHAxVh6MrZJA18OxUpVB8yoFSa9jvVxZQKYv0g1V2eqKKVSrP+EielTZEV+ip09hqXSuHXFkq9J/916jqsQLcPqZ+rJ/p5IwS8WzyUD27KlaR88SR0X+iFcGzYrQwCqZ8PJHmD4qIYwbfDKRiuxxcoJIK7cs4MyuaAB87MgAUFajgHj3GEqiKtAFfPxxVZVRDR6EcV/me0iV5ZOJ98CZG6CpCizGB/IZWysi39nxepCVGkQPx2p8QL7yAZnP9AzQJD/IkShtVroYW1arnMvYxiqIGZSJdPlmX+Z3Sg1ivbeDqqoHB8hm/9KOVb1cWV5jdG3bcQgUXFu5lz72UZmxzClegLcdSZdl18uVBXhPexsfAMolnqXFwD5zbCDzO1X6n7ZZfdm/V5r5yc3WDVAZoOxS0fQ6uuyxqr5BwDuDNqKI+fYKPlUFaKXVNOnZ7VilUs7RCJoCtFGHMJPtfHvakT7ne9TLlQV4TxZVRYZ4+SOqKnrK6wBY2ftoMu7032vKxI8PyA/gAVfZodseK1pHJs+vxFE2PAljRf5ImujxmJqagzMvQLNtUhBVgYWdyh6jO9JDN0gZG+FmNfuc71EvVxbgTDLyYVpkgx18Oq7pQa7IYVpSSad2XpFBTI5nD2UY61ekj/X0c9zDQVUSfNZ7GERVJQXOZ7o3F1WDBID84DM+QqUZqu7bWH9+D6aSjaWAY6WKsc1l/sYG5B52zOBJ9CiyI5EoXUOeYzWkjjAb7ycZDKrsiKc9Vkj0eE0EVDlsBci2I0xfZOukZVGw687WjQ+Qz6Biz2YBWm5pnop7VigTry2w6FdE9BQijGUP7og6mR9d9thZR3dSYUzROha0I4oSJp4ERb18Wb6EsSXfjsRKidAf7y/60jMvQIuPkmOlIrDwY1pUKF9JpdNMrSmDVjElX9mVMd8FHCtVpVBZ66iodhjwdwiUOPoeGQTmHChxCOq9S3x1M99KnP1cx8r5f1V2JJfoUR7oepSvKRluUX+K7Ug3ZTFKKuXLyw0sVDpWXvdtvF+d7gPZ66jS+fbqwVSZiQSys5Eq7UhZbbaDmrbHivQ/lcgmA1UTPV6EsQp/JHcdAYVET73z+Tn+SEklDbWRjTw7wioaFOm/ncx29pUlMDzsiMpryy1xZFUvqnxIIKcMvI+uWXZyBqDPHRso+rIzL0BjD7VSh6Av8ztVCmFZ+Y2JKjNoZdUO2+cuzdPIfI+zMkDJU7yA/FS4SqPhWZqqKECLltCaua9NZWCR63zbtjqCwpOx6qPmcdklXkC+Q8CMo5JSEB+CQgnRU0HN1LqY77KcQJdVNGizI47zIXtoDaDXjnhlx1XZkZJKOmx7zEP/leyj9fmT3pT1KfoQZsrsSI0P0aOR6FSRQStEGCvxR2ry7cj4oD6iRxVhAOQTxipLzpkfMO4iA1URPWUeAVpa/1VVovRl/h0fpeolnS0XKuwx4E1QeOAMDNBUGsR6+pnFNParebAAj8xPn/N7BfLKagDY2WfhKGe+c5hGFUEFUMAgqnBQPQyiyge5vC6HsWWBhYrMTz3VyrNG2fgINVcrZaxyMhbKDGKN98aiUv/d7N9YnxpHB9DvEEwMZkpqEmM0pEGXYzU+RGSTCuQOt1DtoAJ6ArR0aZ5H5kfFPlpRT7af6cj4ALH8KvuLdKwjkM98K7XHfoFFvXxZhQhjVXbEHaBNDDuVURqJHhWyAL3+CDsPLGtIjiK/rqQCiMR8/BEFNjmXMFY1aAvwLt9UuWdP2gxamvnW9CBPDMk/FI+hsiG7NENpBo05BM6DnHCmGqlgPjyZFo2OlY4AbUJXgFabQxgodAhyp2+m9VEFq++cq+YmDFSSIXkOKiuD0rCOgGL9z3UI+kC18yqebWe94s59U2qP6x0Zmuyxzgwa04UsokeRYwXQ/fEqlVaxluX1AOzMM6ZlHXOmOCplvk9hBm1iiLKDKpA7lGSsj87AVFFOXFZL/kdigv6tuzJqfEgtYazNjjjrpcMfsSxvOxItlT8gDcjoIyN6tBDvuuxIzWTNoOl4kDU5VqXV2SOkVTUlAi6GwJGnch1ZE2RuaZ4qg8gcK1a+qTKDUKr7QfZyrCz5B0cDLoe4j36y4EnFfYtEKEjL2lj61DFWk9mxyr22sT76Dipq53M3srQdURgM5mZ+lDlW9T49aPXyZel2CPIIigEqjVVRcp4+C6rPkaUwWx0rpynLuUSPrtIknf6IbZMdUeWPlFVnr+NoH91LFeXEuUSnbuJ9fFDdOpbXa6zoySEoWKmoquygVyZepV/nPmZFpR1hRFVW33ifOsI416/zgdYAzbKshZZl/ciyrHtdv7vdsqwfWJb1G8uybir6ITpKCtzZGJWOVWlVzsbSp96xYsquspEayC/NU838JSeoRpnJAtSww7lOo21rLnF0jK+KTTPXsUqvo4JgkH2u1kykqwdTZSZSt2OVa0dU9lfkBhYqHatoCQXxeY6VQocgq8TRkatCJ3MdAttWd+wJ4BxF4mFHVMCP6FFhRyyL9pU8okcT863UjtQ7Mhw9jI+Qw6oqg+zpj9SrkZW7j6YDXQXySsppsJAuO1JaBUy4BruoJANz7QgrFdWViZ9QmInM3UfTdkSB/pdUENGjrXVFcg+aZVk/tiyrw7KsHTm/v8WyrL2WZR2wLOsfCn2GbduHbNv+YM7v/mTb9ocBfATAW4t+EZ3MdyqlwbFyj2tXWeLix3wrZFryar5VGUTn/rBpV2xNVTgEuaVJ8VGnB0dTiaNqBxUAxhzGT6VBBPwZWyWyaug+scNKlfag1dNP5qAqd6wqc3pLFepIXiaeBTEKiR53Jl5liWNZDTWhsx5MlQRFrj2Oj9DEvknBfOdMn1VJmAHOACydjtVghuhRPQ0W8HBQVRFm1fkZBJWBLpBP9Ci1I5oqGkqrgMQoHffDZMXKaQS/bORm0MYVEmaAN2GskngH9BDGlpWv/0oJihzCzAc8qZqfArjF/QvLsqIAvgPgNQBWAHi7ZVkrLMs627KsB3P+ay7y+f/sfFZhqGSs2Fk4acZKsYNamuOgqnQ+cptJVQa6gGMQ3Q+y4kAXyKylyo2spAqA5dpYFLLsgEeJo8IgXuc6ss/Nmj6lsHG7LMdpTPfgKDwHkOkGu0alpdJuOzKs7p7lMt8qM2hAvmOl0o6wXhtm9+MjACxyrmTD10HVaEdUBWhsdHm6okGDHdGViS+rccqunGtKl5yrqNZwnqncUlGlmR+XHYmPKCynzCWMNVT06CI603ZkJPNTmT1mhBkrFVXsj+T5dYozkUBmHcdVV/S4ArTEBMlVOSQkPpwhA30QeA6tbdvPWZY1P+fXFwE4YNv2IQCwLOvXAN5g2/ZXALwuyOdalmUB+CqAR2zb3uzx9zsB3AkAc+fOVR9YuAM05Y6Vs7HYNkXw8RE1DbnAqWGsss74UfkgO2vGNpf4MJU0qGCsIpHsB1mHQdTFfKfXkWUiFTPf7nW0bbWBRXra2yBQM43WtKRKzSjuaIyuLc18s3VUuJHFcxwrVRtLHtGjmfkeH1SbiQRI/8vr6GdplZpy4lg5jb7PsyMqM2i6HNQcx0pn5ocd+6CyxAtwAtzqDKmkREdKaQADe7Z1lJy7CbOJETUj/YH8TLzODFq6T0vDPlpWQ/pfolD3AVfriuJ1dPvHAOl/9XQ1snIDNB0VPUz/JxT7/l5TIz0QttlpFoDjrn+3OL/zhGVZUy3L+h6A8yzL+kfn1x8HcAOAN1uW9ZHc99i2fZdt2xfYtn1BU1OTWscKoIcr4TB/Kll2gBTQTgKJcfp3fDTzcMuG35AQHYEuoCc76C5xVLWJAdl9CMozkWza1XhG3qRyrBwZyTg9CyoODgVcBAUjXxQ6cUA2G522IyozCO4M2ohCO5LLfGvQf5ZBSCbINqsulXYTParumWVlOwQ6MvG5pXmq7llpTgZBp2OVGANga8ggu/RfpR0pqfDIRGrKxMeH1RHG5br9kRpXye0wAFthJp7to65KFFX2mAXxTP/T66hr2JBKf8TxBfIIYw1ED3vmlOt/4QBNUZTjDdu2u0G9Zu7f/Q+A/wn8ISpLM4Acg8icD8WBxcQwNbJODAO1M9XIStcq55QmKXMIXMqedHp/VBlf9hC5G2WVB2iu3hFAXWCR7mcaAKqbSO6UeWpkpUuTdAVoVUDf0WyZyjLIOSWOYzrtCJuGqdAhSIxRABONOY6VJgdVZck5QDYynrNBKy9NcjlWqvQRyJ6+OaGYDCyvdUrzhjIEk+p11OlYjTg8sWrHKs+O9Cu2I5X5JV5Kn7Vh6r2PRBQTxh6l0lZUnY6UVALDnY5M1aWiufqv2B8prfYgzBRmfsYHMzqi8rgCL8I4UqJmpD+QTfTotiM+CJtBawUwx/Xv2c7v1EE5Y+VhEJWX1DClUFjiGCujsr9ch0DlJh3PGcigLNDNMYgqmT/A50FW0KcCeEy70lDzPXEKMmjpdVQV6OYytgozCEC2HdFR4gi4AguNGbSJIdpIVZQTA846apjOCng4Vooz8e5jVlTrf/q+MaZdYw/OxDBNSFPRywdkryOzJ7qYb5XrCNB1pPVRQyYeyK5E0dVywQgDFaWiAO3Pab9OQ2UU4NrbFK4j4JRRujPIUGhHqgHYmb1G5XEFua0rOgJdty8OaPBH1AZoGwAssSxrgWVZpQDeBuD+kJ+ZB8uybrMs667+/n49zHcu86dtuIVCxwpwmFNXYGFFaZS1CpRU5BtEXaVJOjNoCcVMS25WS2VgEYlSEO8OLKJl6nQkK9DVlEFzj3XWlUFTTlDkBNbxUXXrGC2hMw7ZOibG1JETgONYsXXUMGwFyC5xVE70sACNOVaqCDrHjiRG1ffgsEDMHaCVVqtzvj0JM9WBrjtAU0306Cpx1BhYlFRS0M4yCCoHaQCOPXaeMeXkdC5hprC9A8jx65xnLqZI/9Pky5hTGTWqvjIq146ogjsTqdyOSM6gWZb1KwDrACyzLKvFsqwP2radAPAxAI8B2A3gt7Zt7xT8yr6wbfsB27bvrKur0/AgV+Y7BMqYFi+HQGVgkeMQqFI+gAxEKk5lV6qZ77zSJB3MNzOIjtFXxQ4zQxsfo7G98WENgYUrQFO6jq4hOUymKoIiPdzC5cgptyMah60AZEfYWqpmbN12RJXuA96Brip77GlHNBFmCcWZePa58THnaJCEukqUSCRf/5XbEffkTajT/1wyRGUGAcghOnURFEPkfKfi6tbRsvTakVhF/mwBbSWOiu1IaXWGMIgrzqCxe5QY1TNVFHDZkUHFxLtXBk0x8c4ynj7gmeL4dp/fPwzg4eDfLCQSYxodVE3Mt1aHwJX5URmglbgYW10PsjvQVTVZCMjuHVGdCi/xMIhKWSTX2XzKGSvXkBzVjBVbx6QzbCUxpq6WHSDDPtRG/698PLCrVDo+ChqSoNiOMOYvMarHsbJtDfY4t1R6BKhqUiMLoGdr4IQjy9F/Vcx3TKM9BnIqUVSXJtXQdSUT6u2Iex0BJ1utOvOjq8SX7aND6gkzgO5b2h85BUSP8iEhmvS/rBoY6XZkqt5HXYQxGzikyo5ES4BITG8vn66Wi3SgWzhAC1viqB9aGVtdBnHYxVhpzPyocgaA7LNwlDc3e/ROqTaI7hIvQINDMJ6Z5Ki0pEwn812TkaOasYo6wRhjGHXov3bHati1jirvm6vKQHUm3s00KrfHrgwC+6mLMNNFUMTHMoSgyixrSVX2PqraHgN67Egsx47oIHp0lZy77ciEYuIRIJ1khFl8VPG+VkH3KpXS4I/kHvszorgyKicTH4mp0xF3Bk318B/AsSO6/LqazLAt5XZksgZoypmW3KZ0S+2QBMAxiKy+XOGmGSvLOPkJ1QaRlQuNqm9ujpbknBejqTTJXZqnrOabOVajmYdZOUGhi7FyM7aKHdRojDauhCbHyp2JHB8k/VB2NIhuO1Kek4nUZUcUl3jl9TxoKJXO7Z1SXSqdGKVDWFXKAhw74u4JVpyJB/TYkdzSpIQGgsId6Kosp3TbER1ET6zc5Y9oIowTY/pKpVnJua5WAUAD8ejhj6gkekorXbMFFPfyuc+U00mYFcAZEaBlDQlRzljl1HyrbG52j4dXXSoHOAbRnUFQ3NwPOA/yeEa+MnmuB1l1L1+sgkrzUglaRyuikLFybSw61tHdz6EtQBtWz1gBTrkcc6zG9Qa6Sh0rV6m0jnWMlmU7VqpZdoDsiOrRx7nj4VUz3yUue8xKRSOKtmR35kcH0VOaQ3SqDnQBPXYkWgrA0kf05BLG2ggzDf5ItDQn0FVcKs3kqL42d+9UYpyOt1BNmKXP0h3Rs45uvy5aqk5eVgZZ0z46PqR+r5lMGbSsISHKHYJKZ7hFnBwepTXYbgeVKYTKwCI3g6Z4HZmcdGChKWOhOrCIOQYpMe7oY6Xa8cAA6UdSwzrmnt+ldPqUa3CHasYKcPRfl2NVoc+xcjO27BlQqv+udYyPqndQmZykk/lR5RCw4RZscI3KA2YBCnST404mXkPpPpBD9Ch2rHT2jgCOHVHsfFsW3ae40/OWSmgolXYTZgr7BsvcmXgNPWhZgYUuwngkY0dU2S1W0ZNV0aBwH42WZa5JF2GW0ET05E4x1UFQxEfU25HJFKBlITGu3rECHAMcz/SuqEBWzbfm0qS44ub+rHVkjpXqAG2IyndSCfWOFUDXFR9RPyQByHasVK5jbs+D0gll7syPYsYKyDgEqaTT76lyI6siciKVcmyWQllZGQTWX6Q6E+9yCJTqv6vnQQfRw/Q/MQbAVqyPOXZE9T0DNDtWmgmz5ETGjqi0/yXlGXIOUEw8uvs9FZOqnoGu6paLnAyyKrjHwyfGAVhU8q5SXnxET79nzJWJjI+o3Wu8Mmiq9Z/5xuOKSxyz7LHiknPLcipRJluAFh/VN9wiMa6WZYxE6Vp0NDcD2Rk01cY+/SCP6GNsswyipgxafExxs71XD5rqQNfF2KreWABy9ic0BBbsTC0d6+ieYpqcUFcCC/j04CjWf3cGTUcmXhvR42R+VB/SDmT0L52J17ivAZp7WRVnEIBMoAtoKJV29+Ao1n823CI5ob6cDNDoj+S0XCgtzXMRPUmnvF1V1QuQqejRYkfKiZROpfQObdJJ9KRSTkWbwnWMuvwRFuiqKjkHsjPIPjgjArR0D1pfHwBbsWPlSnOqNoiAXofAHbHrGGsLZPc8KHWsqnMykYrXESBDr6vmW5tBdJXmJSbUPmtRD+ZbKfvHmG9NPZFAJrBQuY6xMjp0XmcmPl0qraGXD8gE1lZE3bAVIDPpdkID8x3NYWxV6z7gTCnTVHLOnHzV2cG0HYnTOloRtfs2IzpPBdGjkuRka5ZyH1egmjBmmXjVxLvLHicUryOTNzGkp+Q8rf/j6p81T6JHQ+tKUsOezUhUZo9V+nVAhjAugDMiQMv0oDn117oUUEeAFi3VyPy5M2gaevmAbOZbRypcVw8OQIZedaAbcZwNtrG45auAe6yt6syPV6moUsbKISjSwaCOUukRum8q7YhlZZ5tXXYkPcVRdQYtZ9iQSpIHcGXiddgRxtiOachEugkzTRm0iRHqr0vF1ep/2rEad9ZRYU8wkCGx4poyCIBL/1VW9ESo7C85oZHocQ1tUjpVOqeXW7UdKXXsiI5R9LmZeC0l5zozaMN6fMhcwljlHgpk++M+OCMCtDTYwXg6m9KVB2glxPxpCSwcg2jbGmq+XU25bGNRumk6ARo7QFQp0+JmrHQ8yBU5BlFDoGvb6vU/j7HSvY4q+zkmsR1xZ+LjGqbYAZmKBtXMt1aihzk74+oDtGgJZVndpXnKp685fdxMviq4HauJYbXrCGT2UV0VDYCj/4oDXQCIlGRXNCjvnWJDcnS2riiuaACQPgdQx17jDtBU76OnolR6YsRlR1T6I4wwjqvPRAKZUukCOMMCtBT91GUQdTzI6QyapuZ+O5UZD69liuOY46AqXseYM8komaB/q3QI3Bk0nalwLUMSKgA4G6adVF8qBOjZWJi8rCl2GgKLiWGHsdWQiU/FNTWll2UcK9WlSVmMreJySiATWGgleibUE2aAk/nR3DuievKm+7NZiaOWAG1cb4DGyry0VPTosiPlGf9AdeuK+xxALesYo3VM67+OSpRx9f6I+5gJXT3x7ioslYNd8jLxqu3IpMug6QjQdDPfzLHSVPMNOJuL6gxazpAQ1cx3pMRplHWYFqUPsiuDptpBBTQ7BE7GYKyffmphvjUxViUV+h2r9DRYhesIuIgeDYFFbi+flgPvR/QQPZEY2REdmZ8sgkIxYQY4901X70glABsYH6B/KyV63KVJI+qJntxhQ1r1X2Mm3oqo751l5Bygt3dKNfEeKckc1wToI4xVDxuyrEyJr65e7vhwRpYWoschzJTbEVe/vw/OsACNlTjqKinQwbSU5DAtKjcyZ90mhskJ0THWmfU8qHas8hgrnZkfHYGFu5dPg/6nAzQdBlEjY6VtiiMbNqTJIUjbkTgFGUp7+UpBzveg828dPWhjeogeto4pJxMf0RWg6SQoNDhW7LOZjuggzLRl4p1SaS09aLmleTr03zW0RmVbAjv2RzdhprqXD9BrR3KHhOggjNNDm6Jqhzaxqi8dZdnpMfu6MvGTJIPGpjgODTpsnFLGKqfmW7lBdJjvlMbSvLE+598K19GyyFCwQHcyMVZZwy00Md9Z0zA1BE2sxEUXY6WD+c7NRGphbIf19o6kEmqdYSBjN9J2RGdPsG47ojKwcJUmqWa+AZdjpSGDxnSQMcRaSxx1lUprHhKiM4OW0pD1j5WR882CeF3nAGrxR3Iz8YqDGCBDGmghejSVnEei9JMNbVLq17l74nX4I5OkB41NcayuclhpLQZxRA/TEmHMtxOgWVF1sphRGu2jnzoeZK0ZhIQm5tvF2KqeYgdkMmg6mG/mWE3oMIiuc0cSiodNAK7mfl29fNDfO5JKqNV9wBWgOVlW1cMtIrGM/mvJILhLpTX2sqpmvktcwy1UD23SGqDlOlY69rVTNSREQ098yrEjysuyGWHs2BFdw4Z0zhbQYkdOgT/CMmg6/DpAL9GjqzJqsmTQ0tDRg8YULj6mySC6mG8ron7MOKAngwaQUUxoYv7YeGCdzDd7kFWvYzqDNq6+pCCq0bFyj3XW4RDonL6WLpeY0Mx8JzKsoyrkEj3K9b9C33hsZo+1Th/U0NwPZNZRC/PN7AjLxGuqaNBC9ORk0JQPZYCT1R1XbyMjLv3XlYlP2xHFRI8Vcfw6XXZEc0XPmFNhpsMea8ug5RLGmjLxOtpyWEVDAZxZARo0BGhMIeykHoPoZlomE/MNZE8f1MG0pHT1oGnunUpn0MZOgWOlOrAo01iaV5bTO6KhxCuV0MvYahlIkkP0aGFsGfOtY9iQu3dEQ2nSxDDJ1DHcQleJVx7zrak0SQvRw3rQNAzkYRU1yQSUH3gPuIiepAZ/JNeOKG65SE9o1bCO6aFlGu1Ieh11DcnRVCoKaCpxdLVcpBJqiXDAsceTKoOmYUiI27HSYhBLnZKapB4HFdDHfLNUuI7ekWgpZVjT41g1MFbjg6DxwKoZqzJ9QxIiOY6Vap1MZ5CTast7AdLHVCJzeKhKxjZN9Dg6qTxocmfQNNkRbZl4V1O6FuY7oWc8NnuW0yVeOjLxujNoGjLxlpXdg6ncjuT28qn0R5xrSfcf6ySMVWfic3tZNU0x1TpmX8cUR+da0q0rGuwIyyBrsyM6M2jj+nq52XPtgzMsQHMyaCoVMB2gJYlp0eJYMeZbc3O/6geZ9dfpKDvJcwhUMlbOtUxoKN8BkHXA8mQyiECmDltnaZ6Ongd2LemGe42l0roz8ap1kvXX6SDMIrHsISE6iB5dgW6WYzWJmG/A1YOpg+gspwqbNNGjwR9J72s6CGNNPWh5PfEa9jZdFQ3pTLxGOzKuqcRR92wBQFOAxjLxuojOyRqg6WCsWAZNi0HUWOIFAKO9zr8VM1aRKG1kWkq8cjM/GlLhTJYuxlZLRldjzTf7fJ2OFaDHIT4lDuqEpkBXM2NrMTui8biC9FRdHceeMB1RXVLjcqx0nCcH6LHHQHYmXmfvlBVR+2xrLzl3ZX60ZeI1ET2RKJBKaTw+KZEZ/qYjg8YIY12BhU7CWMfQsqxMvIaKnskSoLEx+6Ojzk1SPR7eitImZic1OqgaetDypiZpcKxSST0GMV2apyGrlR4kw5wP1Q/yqcigaegdARz911hSAOjR/9x11FEqzcY66xi2ArjWUQPRk0rqG7NvJ10ljioz8ZqJnlOaQZtEmXjWcznaS2uqdRqmLqJHY8uFrgxymjDWpP/pDJqlVifTZ84yO6LYrU8PydHZg6ZJ/2NlLsJYA/FeBGdEgMbG7FeUOcqgw0lNO1Y6GCvNzF+aaVGsgMyx0poK1/AgR2IArIzzodyxcjZNXcc+ABoZW50OgYv5jpaqnZiq20HNKnHU5FixEi/lk+XcdkTDOgKaMvGM6NHEfLMgXkcPms5psOzzdU8xHevTE1QAmQyCFqKHEcaTiDADHMLYKXHUpY9ahjYxosfREdX6b0Uzh0dPtpaLaImL6NGk/wVwRgRoGdjqx4wDToCm2UHV0oPGxsM7aVUdARpjo3WM2Qf0OFaW5QzuYAZR8WOk0yDqdqxipbRhphLq19FdUqPDGQD0bSw6D6qO5mSQVTO2rMRR13hsQO/BqBO6HKuIPsJMZ08wkCEobB1ED8ug9ekL0LTZkZj+HrS0/qv261wVPcr3UVcmXtc0TF2EcSRKA/smG/EOaG45mmwBmp1S/2AB2Rk0rcyfJoVIP8gaHKtUUlNgodGxAshRjGvaWNKOlaYhCYCemm9Ar0FkpUljfRrWMQLAOgW9fJPQjqQzaJrG7AN6pphaVmayIqDRsdJR4qWxuZ99vvbSvH49gy0A1xRHXYSxTjuiqVWAnblpp/SW+ConJ3IDXdVEj6XPr9Peg1nqIno0ZeIL4AwL0Gz1yg7QjdHmWLmm/ehiWiY0Ola6hoTkOVaq17JUn2NlRQDYNCJYuUHU7ViV6WO+2bWMD6q/LsAhenSVJpXoK6lJM7aO0zhZM2iRmNr+IiCH6FG9jhF9w1Z0HjDLPj89Zl/1Ojo6kRjTVxkyodNBTWgqFc0lehQ/a1ZUb6kcQD6C8tkCsexrU+6PsIqeU5GJ16D/6Qoz1bFGcX0/swI0XdDqWJ1CxkrHg6xrSEjUtZFZUQ3lcuUamT9W5jI6CQ2ixtI85rjpmNAE5GTiJ2Fzv84MWkI3863BsQI0Ez3WKSiV1p2J16D/zLGyUxp0P3fYkC57rGNoWU7vlPK1jOgb2uQmOlXrPuC0XGjyR9JEzySb4giQTurMRBbBGRigKWZZAM2OlfP5iVE9dfqA5tIkh43TmUHTYRCjpRoZK0fn4yP6xuynSwo0OPuJcT1Bk+V2rNSKApBjR3SNh9c4HltXD5rWnmBXX5gWO1Kmb0gIY751nScHaByzr7HEN21HbCg3JOzZmpTDhnIzaBoIY22ZSI0ZNCDbH9ESoGnKoOk8B43J09W6MikzaKrT4IBex8odWOjYWLJ6HjRsLtpLCkY0Md86GSuWQRvToI+nIoOmafpaVgZNg+mLRPUc+8A+X7djldBV4qiR+Xaz+so3aND1aB8SMkntCDsaR1cm3tZgR9ixP+l9VEdFT5wqepSXSrNnTZMdyZrOrVH/dbTlxMr1DglJaTyuAHAFTRrK93VWNBTBGRGgsXPQxsfHoSeDFtXI2DqfP6EpsIiWUrYO0FOalx4PrLF3SodBdKfCdTioAJWKKr9nOZPltPSgaRprmy5NSkKPHdHoELDx2JNxrHMkeoocK81Ej5YhISnH+dY1bEVTaVKsTN++xmxHKnkKMvEaiJ6UJsKMPWvszEEtdkRjoAtQxk53qbSuDJqdVH9tWSXnMfWtK1H3OpoMWiCwc9DKykr1Z9C0nbszomFjQYZFZf+vVFZU4zq6apW1ZdA0jgcGnD5FxTqifRomK03SwXy7HStNRI/OYUMAsZo61tGKkD4CmuyILsfKdQ6gttIkVuKoaUiIrUH/3X2zgB6iU5uD6iqV1kb0aOqJzzquQ7H+pysaToEd0Xmeoo6BVO5hQzpKRZNx+n9dQXx8RNM6lugjHidLBi0bmgzihGamRRdja0UyD5eWkoJTsY46HmTNjBVAzKYOlh3QV5qaZv7syVWaBOTov85MvIYMshVxOVYanH1dB/Vm9bJqKk2a0OVYuRziSUf0lOhnvu2UPsJY5zRM1qeooycS0Begaa3oOQUljlrH7Mcz/68S2nuCdWbQiuPMC9C0ZdA0O1a6eh4iUdfDpWNIiCNL69QkTb0j2hgrVuIY13DPcg+G1FDimDaIqs0Ry6DpYr41jnV267+2AE0j0ZPQpY+nYIojW0ddDrEWO+Jivq2IhoBQ8zRMQGMGLaLRHmvcR937mvvfqhCJUjk9MPl64llpKqCn5SIdVOvKoGkctqK7VLoAzrwATZdjlQ4sJtmDzOqHAT2pcAblZ1zpfpDLANj0/7qGhMDWW1KgxbHSODUpnUHTMB4bcAILpwFe57QrLZn4qMbSJNfn6wp0J4b1ZOLdtkpbSY2twbHSXeJ1Cqav6cygTcZMPNN31hOs4xw0Bm2EmabKKPe90nXsD6CR6NFkj7PG7GtquSiAMy9A09U7wqCLaUlOaOpB0/lwuT5fubF3H1egI0BzXY+ug1F1yGJrl9IwSABwAhcW6Ooaj62rB811PboGdyTG9PWypokeDcw3g/KjSNyl0joqGtx2RKNjpe3sRl0ZhDLXAbOqA13np44x+4CjI46N1NbLqoHo1LmvAZrtsYvo1FIZpdGOuO+VLsI4pWGqKJAZtuWWfQpxZgVotiY5WQ+yJsYK0NeD5vX/SmTpzKCVeP+/KmQxVpqYRmByZStyZehivrWN2XfbEU09mIC+THz6/ydTJp4RZuN61lEn863T9rPrslP6HKtc2cpwCjJoDLoqenLlqgJ7tnWQSloJCraOtiZ/ROO1ZZH8mnpZAX2ZeAYzJIQXOhkrB7oYq1y5qpCV1dLIfCsPYtyOziR2rHQYDbZ+k82x0t474s78aDrwHtBvR3Q5+7n/r1rWpHOsNAbVfw6OlbZSaZ0VPW7CWFMvq/unDlmAeh9BN2F2qjJoOm2/tooeB6rXcVL2oOkucdR1MCpwCphvnRk0nQ6BDoPokjGZDCKQWT9dTbkMukpFT0WJo64etNz/VwWtm/QpysRPutIk9zpOMsdKK9Hjmgarg+g5Fb1TgCb9d65Nd6CrtaJH4zrm/v8ZL0szYXYqCOMCOPMCNO0ZNJ1My2TrQdPJfJ+ijSX3/1VAZ0kBkFk/3YyV1iEhk8yx0m5HdBI9GpnviG6iZ5KXOAL6pup6yVYC3ecpOtcTKVEvL4ug0Ej06NzXcv9fuSzdGbRJ1BOvnejR6UdOkgDNsqzbLMu6a2Ji4hQ0909m5ls1+6FxSMip7EGbTE25gCtA0zQeOFeuMlg+/68I6euxNGd+NE1xTP+/pkOPc/9fBXSv46kaEqJjFD2Todux0paJ13hQNaA+Cw9o7uVDRke0lDjqHDZkiB4p0F4qbTJo3LBt+wHbtu8sLS3F5OtB02wQtQ6cOEU9aFrGY7sNosYSL53DLbQYxFOQQcv9f1Vwr6Ny5lu3Y8XWT/N47ElH9OjMxLvukw6ih63fZCtN0j4khAW6mgkznT1oys/AhOaeeN1Ej07y5VQMW4Em/Xf7I6c+PDr134AXOg1iJKbB+dY9Ncn0jkiBznIJnVlPQLNjdYqmJum0I7qZb52ZeN3TMCddqfQkZb6B7NI81TglzLfmoWWqq3mAUzdsaNL1oGku8dUZNGmvwnKeMVPieLpDt0GcbAqByTskRHvviE7Gyn3PdDK2unvQNE5N0ppB0zy0RufIau3jsSdbBu0UDQmZbL2spyKDBkw+e3yqMvG6SxwnXQbtVJVKaxxaNtky8ZOlxDELGuzhKdtYdPegTaZpP6eyd2QyjdkHMus32RyCrM1kMjPfOuyIs37ax2NrnBo2me2Izl5u7Y6VzvOLdPag6bbHGntZtRAGOokezX7dpPZH/hx64r1x5gVoOjBpmT/o3aR1MlaWpfdBPmXnjmg0iGXV6mWdKsZqUjuok4z5/nMZj62T+dbqWE2yc9C0Z9Am6zpi8pZKay8VPVUljjrum7OWJVXqZek8B21SZtB0HjCro3fE7QRPunNHNE5xBKD1gOXJPCSErV/pZAvQdG8sjgzdpaKTrQdN65CQUu//V4U/h17WWLkGWZOZ6NE4JMRt83W2Ckw2O3IqD7yfbOeysmvTThibg6r5YGPyMd8llflyVeKUnTui0SGYdFOTTlFJQaluxkq1OTpVpUk6iJ5al1yN5ylONuY7EkVaNyZ1ieMkdqx02uPJVipdqpkwPlVTHJWfb2taLqQh7Y/osCMaM58mgyYInQbRspCZUqOz5nuSMVZuGdozaKof5FPU3F9Wo17WqTKIk21ISLk7QNOZQdOYQQD0lB2mm9I1T3HUeuC3xl5WHXYkNomHhOg8Ty6romeyZeJ1Th/UXSo9Sc9TBIBUnH5qIXqCHftj27YEYZMuQLNDGUTbtvGHzS34zO+2omd4wv+Fkhyro93DeOv31+HRHW2FX1hSkS1XEK8c7sFvNx7HD547hEQy5f0iSQZxaDyB/tE4UqkCiiqpd2QikaJr23AcHYNj/i9MZ9DCrWNL7wi+/thevHyo2/9FEhmr3ScHcP/WE+gfiXu/4FQ190tgrMYTSaRStr9Bk3gO2kQihfu3nsADW094v0ByadLOE/2479VW/2uTRPSsO9iNP21pxYsHugqso7xA99evHMON/7UWX3lkN5J+z7ckO9I7PIGvPbYH133jWbywv8tHljyiJ5my0TU0jomEj30EMs5VAQf1wW0n8MX7d+Kz927Fyf5R8S9UxI4kkim09o2ipXcEx3tGwjkGARzUFw904ZZvPYd3/2g9xuJJcVlAIDvywNYTeNcP1+Mrj+xGb6E9uRgCljgOjyfw5K52rDvYLb6WAYaE9I/GcddzB9E9NC4mw40AQ0I2He3F3/7m1cL2KAjcfT4F9rWOgTH81+N7seloj7gsIJAdSaZsPLu3A+OJJEYmEuKy2DpaEd+M3R+3tOCWbz2HP25pEZcD5Pg+3nbEtm384x+24x0/eBm/WH803H3j8Ef2tg0W9n+LIUAm/vGdbfj6Y3vlBDJxx+fzIXps28Z/PLoHKz//KP7xD9vCyQpQ4rjpaC+u/M9ncOlXnsLafZ3isgL4IBpCe9kQd6z+9+kD+K8n9gEARuNJfOMtq1Fe4nETJJQmdQ2N4z0/fgVHu0ew4UgPfvr+i3DV0ibvF5dUAPGRUM7Hs3s78L6fbEj/e2p1Kd54/uz8F0oYj712Xyc+9svNGBxLoDQWwT/fehbec+n8/BdKcKxs28aH7t6I55wHYfaUCvzhry5Dc61HX4OE6YNr93Xir+7ZhJGJJH694Rie+tQ1qKv0MLBuh1iQRRoci+M3G47jPx/bi4lECrPqK/CrD1+CuVMrs18o4YDZsXgSn79vB57d24mK0iim1Zbjy7evwpJpHkYv6RjvEIxVKmXjXx/chZ++dAQAcMd5s/DNt56b/0JJgcW9m1rwuT9sx4RDTJw9qw7zG3NLNOWUOL54oAuP7DiJX64/hpRNG95nb1me/0IJvSM7Wvvx9h+8nP73+y6bj8+/bgUikQLfP4S87zxzAF97bC8WNFbh+2sPYdm0msJ2JASDeqx7BG/63kvoGhrH1KoyfOjuDXjh769DY3WO3ZXQy/rC/i588YGdONQ5hJQNVJVGcdd7LsDlixvzXxyNAXH4ruNLB7rwsV9uSf97eDyJ77zzfKHvVYyN/rcHd+Fn646m/z17SgW+/+41WDmzLqSsfMdq98kBfOCnG2DbwJ62QXz47o34zjvPR225oD7ZThDs41itP9SNT/7mVVSWRrHuUDcOdw7jrvdcICariGM1nkjih88fxjce3wvGOXz6xqX4+PVLBIQVJnpSKRt/+5tX8fSeDnz76QO4eeV0/Nvtq7x9jSAoMmb/YOdQ2kb8cUsr9rUP4u9u9rBHgWS59MJH/x/f2YavPbYX+zuG8L/PHMB/vOkc/MUFcwTlFbYjbf1j+Oc/bceTuztQVRpFZVkMa//uGlSWCtgB9/m2Hli7rxOf+u1W2DbwuT/sQEk0gtedM5NfDpCtFz7r+OzeTvzqlWOIWMBLB7tRXRbDG86dJSivcNCUStn476f245m9HdjW0o+yWAT3fuQynD1bwI4UOT5pR2s/PvbLLZhIpvDYzjasnlOPj1y9CIubBf2JhBOglXrbkftePYH/e/YgYhELv95wHO+/fAGWevk1QVBkSI5tk1+TSNqoKovi7+/dhuc+ey1KYyJE5aTLoEGY+T7SNYxvPbkPbzh3Jv7m+iV4aNtJ3Po/z3tnLdIGUTxA++SvX0X7wBju+eDFWDqtBh//1RYc6x7xfnEsXAZt09FefPyXW7CwsQoPf+JKLGwi58qT/Q45HnvT0R58+GcbMXtKJT5941JcNL8Bn79vJ7777IH8F0twrJ7a3YHn9nXiE9cvwc8/eBE6B8fxuT9u92ZmRpyMF8tIciKRTOGL9+/EjLpyfP/da9A7Esft333RmwWVMDXpC/ftxJce2g0A+PIdq9A9PI7/W3uwsCzB+3b3uiP47cYWrJ5Tj2XTanCgYwif+PWr3pnWtEEUM6ijE0nc8d0X8dOXjuDaZU04Z3Yd/rilFRuOeLCtsfAZtB88dwifvXcrzptbj399w0qUl0Twtcf35r9QQiZyR2s/3vnD9bjn5WN420Vz8dYL5uC7zx70ZlxDEj22beMrj+xGfWUJHv3klfjA5Qvw05eO4F8f3FX4jYL6uPNEP77x+F68fvVMPPG3V+HsWXX4ryf2eetISDvSOTiOd/94PeLJFB742BX41Ycvxlg8hT9tafWQFY7osW0bX3poF0Ynkvjraxfji7etwMz6Cnz0F5t9Mhz+PWhbjvXiw3dvxMKmKuz615vxtzcsxUPbT2J9oWx7IRQold7TNoC7Xz6K5dNr8KXbV+FLt69CPJnCx3+1BeMJgexWVolj/n37/aYW2Dbw0j9eh/980zlYd7Abf/e7reIseMLJLHoEaBOJFD73x+2YVV+Bdf94PT56zSI8sbsdhzqHxGQVcKz6RiZwzdeexdce24sbV0zDzz5wEW5cMQ3fW3tQLGtn+f4DAPDdZw/g6T0d+IsLZuO65c24d3MLbv/Oi9h1YoBfFuDKxHsHaF9/bC9KIhae/+y1eOP5s/C9tYfQ2hciq5sr14Wtx/tw5883YWAsjrvevQYXzW/Alx/ajbhfxU4xFMigtQ+M4fXffgHP7e9CTVkMwxNJdA6O48GtJwVlFQ7QvvP0AcxrqMSzn7kG8xur8LFfbsHvN4XMpAGediSVoqzP3IZK7P63WzC3oRK/ePlYCBmu7GDO3jY0nsBHf7EZ//3UfqRsG5+4fgkqSqP41pP7xGQVyMSzAKa2ogRvv2gubACP7WjDm7/3Eva1D4rJg2N/fAjjn7x0BEunVWP9565HVWkM//D7beLZ/yKZ+FcO92Dr8T587LrF+PxtK9E2MIY/veqxZ0nCmRegCTLf31t7ELFoBP9061n45A1LcNe71+BYzwg+c6/HBhSyxHHT0R68cKALn7lpGa5Y0ojvv3sNbNvGX96zCaMTHorDAgoBecmUjc/euxVTqkpxz4cuxoqZtfjbG5Zib/sgfrfxeP4b0j1oYuv4w+cPo7Yihl99+GJ8/Pol+On7L8Rrz56Orz+2F52DOc5OyIOq48kU/v2R3VjYVIWPX7cYVy5pwidvWIond3dga0t//huYQ7DqTdyyAOCel4/icNcw/u7m5bh55XT89P0X4nDXMP7o5TSG7B15ek87/rClFbeeMwMPffwKvPPiebjtnJm479VWDI7lkAYha+fjyRR++PxhXLZoKn7wngtw13suwJdvX4XdJwfwLw/sytf/ROGSgmJYu4/uz+dftwI/ft+F+PWdl2BabRm+9NDu/JLYLIPIv44HOgbx5Yd348YV0/CT91+I91w6H3deuRAPbTuJrcf7sl8socTxq4/sQW15DBv+6Qb8+x1n48t3rMLZs+rw/bWH8l8ccjz2n15txYsHuvGpG5di+fRa/L/XnYV3XjwXd687ggMdHo4skyPQOxJPpvC5P2xHfWUp/u0NqxCLRvCx6xajpXcUT+5uz39DyBLH//enHWgfGMOP33chVs2qw5JpNTh3Tj3u9XKIQvZXbD7Whz1tg/jraxfj0zctw/suX4DvvvN8DI0n8L9PexBLDDm9I7Zt44v370RdRQl+9eFLUFkaw51XLcTMunJ86aHdYoFMgdKkX60/htJoBL+581K865J5eNcl8/Dvd5yNQ53DeHi7gJNqFSZ6nt7TgUsWTUVjdRn+4sI5+Owty/DYznbc9ZyHbgdBgdKkeze14GDnML5w2wpUl8Xw7kvnoSwWwTeeEHQaC5RK3/fqCZzsH8M/vGY5vvOO83H10iZ8+qalGJ5IeutbUfjbkYlECt9+5gBuWTkd//Gmc/Ctt52H779rDbqGJvDp3231LxkuhAJ25GT/KB7d2Yb3XT4f02rL8emblgEA7vIi+rjlZtuRsXgS//Sn7WisLsNTn74GN62cjg9fuRD9o3G8eMCnPLkY0kGTd/Z4aDyBP330cmz74k14+R+vx+Lmavzf2oPoH/VpByiEtF7k2/7h8QQ2H+vFLatmYH5jFR742OW4eEED/t99O8SD3XS5aP49f2DbCexpG8Snb1qKslgU77x4Ll450oNXc/esoEgHaPnr+I3H9+LxXW34p9eehQc+dgU+deNSvP+yBXhqTweO9/gkDQqhANG55XgfXjncg49ftxhfeePZePJTV+PBT1yBWCSCO+/eKKb/DB6E8e6TA9h6vA9vu3AuplaX4atvOhubj/Xhxm+uRcdAgXYYPxQhjH+x/hhqy2N40/mzcdWSRqycWYvvrT0odl2TckiIgGPVPxrHn15txZvOn4XmmnJYloWbVk7H3928DE/saseTuztyZIQbs/9/zx5CfWUJ3nHxXADAvKlV+O+3n4c9bQP4j0f35L+hxCnXE2CH79/aioOdw/jsLcsws54CvdedMwPnz63H97yMdAjHamQigWf3duKWVdNRX0mbRSwawSeuX4KUDTy6I8dpCNmD9vD2kzjUOYx/uGU5SqL0fd95yVyUl0Twmw0ewefKO4CzbgMaFnDLOto9jC8/vBvXLmvCTSumAQCuXNKEFTNqvZ2hED1oY/EkPv3brThrRi2+8ZbV6TLDd14yDyMTSfzp1ZweqpCB7iuHe9AxOI73XjY//btbVk3H+y+fj5+/fBTbW3OC3YQTaAtOcXxsZzvqK0vwnkvnwbIsVJbG8JmblmHr8T48uy/nWQs5Hvv7aw+hvCSCr7zxnHTZy51XL0J1WQy/3pDLSIYbEvL8/k68cKALf3PDUjTVkG2IRSP4iwtmY0/bIPa05TDkIQO07689hJUza/Gui+fRV7YsfOrGpSgvieL/nvV4tkP0sv70xSPY2tKPL92+Kl3Se8NZ0zCrvgI/efFI/htCDBva1tKHR3e24a+uXozz505J//5158zAnrbBfKchy47wy/v20/tRV1GC15+bKVdaMq0Gbzh3Ju7d1JKfIVx5hyMr20F96WA3trb04xPXL8E0p8S6ojSKv75uMba39nuTRsXgQ/TEkyk8sO0kblgxLavE+tplzVjYVIWfvXQU3ChA9BzoGMShrmFctyxThv+hKxbi1nNm4KuP7sF+EfbbJxOfSKbwvbUHsXp2Ha5b3gwAaK4px51XLfImVoKggB25d1MLVs2qxUeuXoSYs48sn16LFTNq8UjunhUEBXrQtrf2YSyewu3nzYTlvO6mldPx+dtWYPfJATwkElgXOPbn/ldPwLaBt6yhEsNZ9RV4x0Vz8bN1R/HELg9iRUSug28+sQ87Twzg3+9YheoyWuMrlzaipiyGP2wWzCL4jNkfiyfx1O4O3HHeLKyYWQvLsjC9rhxfun0VWnpH8F9eFRJFZfkPNtpwpAeJlI3LF08FQHb9629ZDdsGvnDfDjHy5T33AdXTgGkr8/704xePYFFTFW5zSijfeck8NFSV4muP7QlH9ORcW1v/GO55+SjeeuEcfPiqhWmdfOP5VEoppP8FqofWHaRKgttWZ2ztvKlV+MfXLMeR7hHsPimYRQY8iZ7fbDiO0mgEd5xH1/O6c2bi7g9chLb+MXzzyf38MnxaV2zbxrt/tB73bz2BN54/GxWlUViWhb+6ZhEOdQ7jmT0dHh9WDJMxQBPA/VtPYCyewtsvmpv1+w9cvgBNNWV4aFuOQxwig7avfRBP7m7Hey+dn1Unfe2yZtxx7iz8flNLfvqVjdrndKw6Bsfwxft3YfXsOrxm1Yz07y3Lwu3nzcKR7hEc7hrOflOI3pFHtrdhNJ7Ea12yAGDZtBosaa7Gg9tyHvaQpUmP72pHU00ZbjhrWvp3teUluPXsmfjTllacyGW23vJT4K33cMsB6EFP2cBX33ROVn/P61bPwOZjfdie63yFmOL4yuEe9I7E8dlblmX1JayeXYeVM2vxi5dzGoZDjsd+Ylc7ymIRXLUk43xZloX3X0aB7M7c0pu4s64CJY4HOgbx2M423HDWtLQzBAC3nzcL1WUxPLFLXoB2sn8Uf3q1FW+9YA4aqjKfU10Ww1VLG/HU7o7sjF3I8dg/efEIZtSV412XZNuR1549A5YFPL4zxyEKMX1tT9sA9rQN4q0XzsnSx6nVZXjT+bPxwLYT+Y3ejLHlnBqWStm4Z/1RXLSgAa89O/NsRyMW3nvZPKw/3JNfnhWC6Pn9phaUl0TwwSuziZRrHWf92dzG6xB9bjta+/HM3k58xAnas+Qta8bQeAI7cq/tdd8E3v4b4Lx3Zf36wW0nUVUaxe3nZfeJ3LZ6JvV0bPIgjYohq3w5c5+3Hu9Dz/AEbjsn29ZGIhbevGY2Xj3ex88QF5ji+LuNLYhGrKz7H4lY+Lc3rEJZLCKWRYt7lzg+sO0EjvWM4GPXLUk7jABw51ULUVMWw49eOMwvK8uxylxnx8AYtrf249az83uJXnv2dGw+1pe/jxSFP9Gz/jCVcV84vyHr9687ewbmNlTil+sFAusCvax/evUEzp1Tn9Vv+8+vOwvLp9fgi/fv9K7YCYoceY/vasc1S5tw08rp6d+VxaJ420Vz8OC2EziS62sEQbpUOtseP7evE6PxZJZfAwCXLJyKKxY3Yp1ISXHajuTb/qf3dKA0FsEF8zL3bU5DJf72xiV4cncHHhcJdudcCHxmHzD/iqxf72jtx9bjfXjHxfPStr26LIZPXLcYLx7oFgzive3wc/s6EU/aeN9l2bZ2TkMlzp5Vh4e2Fxlg54UC05BfOdyDpdOqs/ZjALhkEQW+G73aHIIix46MxZP4w+YW3LxqOqa45F21tAnvuGgufrvxOH8Js48/sqN1AM/v78LZs+rwkasXpX9/y8rpmFpV6l1lVQwBXJAzIkCzLOs2y7Luik9MQMSxum9LK5ZOq8bZs7IbImPRCC5e0ID1h3uyHeIQPWjfX3sIFSXRrGwFw5vXzMbgeCL/YY+JZdAe2nYS/aNxfO0tqxHNGRpwzVLH2dmbmx0Uc6wSyRT+9+n9OGtGLS5ZODX7Iy0L153VjM3HejE87pqyFCKIGU8k8dzeTly3rDlvIMInb1gCGza+LsKieSCZsvGHza24emlTmhlneNcl89BYXYovP5zT9xOi7OqFA10odXTPDcuy8MbzKRtzot/lfIUYa2vbNp7c3Y7LFzeiojT7vbOnVKC6LJbParEMmsCQkM/9cQcqS6P41I1Ls35fEo3g8sVTsXZvR/azFqIH7efrjiJlAx+6cmHe365fPg0dg+PYccIVWIcYsz8WT2LdwW7ctGIaymLZ6zi1ugxLm2uw8Whv9pvSzDd/gPbHza15DjPDuy6Zh4lEKp9YEsygrTvUjaPdI3j7RfmN/m+9gDLWv8h1LAXtSCpl47Gd7bh6aVNewLSwsQrzplbi2Vw2MsQZSQ9vP4loxPK8NmbHXjqYU55lWcCyW4CK+vSvkikbT+xqw7XLm/OGPRBpNAN/3NzKX3rlc6+2HOsDAFyQ4+gDSBMtL+Z+76KyvImeZMrG7ze34PrlzXnDlxqqSvGm82fj/q0nMDTOOUEvPR4727H64fOHsXx6Da53AnKG6rIY3nrhHDy0/SR/L5qPY/W8Mxn0qqX5w2DecO4sWBbwq1c4e38KlEpvONyDRU1VmJoz6CYSsfC2i+bg5UM9/GVlPtNg97YNYvfJgXT2gKEsFsUXbluJ1r5R/NarzaEYmBzXOrb2jeJw1zCucJF8DB++aiGiESvfRgSB5U0Yv3SwG5WlUVy8MF//z587Bfvah8SftZx7Np5I4r5XT+DmldPz9sj3X76A+sPWh+gPy8F/PbEPNWUxvOn87Pv27kvnY+XMWnz1kT3+U7j9wK4tJ/v28qFuTK0qxdJp+Xv5a86ejq3H+9DSy6mPPsf+JFM2Nh3tzSMnAMrszqwrx4bcPZIHOYTxozvaMDCWwNsvzLftbzx/NpIpG8/k+r/F4DNs6MHtJxCLWPj5By/C9LqMjYxFI7ht9Uw8sbsdD+UmKIpikmTQbNt+wLbtO0tKS7hLHNv6x7DxaC9uPXtmFlvHcNGCBpzsH0NLr4tFEyxNOtk/ivtebcXbLpqTxyAA5BBMrSrNT4eyDBqns/Pcvk4saKzynFgzd2olFjZV4Zm9Pmw0p6ytLX040j2Cj1y90HOC3JWLmxBP2lh/2MVsCQ63sG0bf3XPZgyOJ7JS5QxzGipxw1nT8MrhkCN+HTy/vxNtA2N4y5r8aXW15SV458WURRhw94aFGBLy3L5OnD+v3nMS1flz6wEA29xlPkWa+wth87E+tPSOejr6kYiF5dNrPAK0wlOT/NAxMIYNR3rwnkvnp8tt3bh2WTNO9I9hX7vL+YpEM9fHuY5P7+nAxQsaMKehMu9v1y5vRsQCnnSTISGGhGw80ovReNJ3Euua+VOw5Whvdi26oB0ZTyTxu00tuPGsafkTDQEsnVaNxurS/JK6UpaJ58v8/89T+9FcU5bHVgNAXWUJrl8+DY/tbMu5NrFe1q0tfWgbGMMtq6bn/c2yLFy7rBkvHuzKrjIIkUF7bGcbLlnYkC7JdqOppgxLmqux/lBxO7LrxAC6hiZw44ppnn//4JULMDyRxC95HTmfAG3zsV7Mbaj0vP8rZtSivrIkHXwEhk+J4+6TdG1eNgKg7Pd4IpX9LPHAFaD1j8Sx88QAXnfODM995C+vXoSKkqh3K0Ah+ARoLxzoQmN1Kc6aXpv3ljkNlbh++TT8cv0xPofYJxOfKuCgAkiXc27kHU3vU9Hzxy1E4tx6Tv59u3TRVJwzuw735FZjBEGaMM7IYz1mrATQjeaacly2qBFP7Grnl+VD9Gxt6cOqmXXp1gY31syjsugtxzidfZ/95fl9XegfjePNHvt/STSCG1dMw8uHusON+Hew++QAnt7TgY9euzjPJkUjFv72hqVo6R3Nr0YqhrTOZ9bftm28fKgbFy9s8PR9WSVU0WOgcuGTid/XPoih8QQumD/F403ka68/1F34aKZCyCGMf73hGOY2VOYlDACa4txcU8Zf5utjR9bu7cQlC6d67iMfvGIB5k+txMd/tZnvyJVJ2YPGmUFjvUq3npPvEACZUoRN7sg+wLkjXnhkexsSKRvv9Ro5D3KIL1vcmH+eEetBSwQvWRlPJLHuUDeuWuIxJtrBNUub8fKh7uwyB6YUnM7wxiO0Ppct8pZ3wfwpKItF8OIBV4Am6BAf6xnB03s68MkbluAKn+tbPr0GLb2j/KyuB+7d1IIplSW4/ixv5+viBQ2wbWCzl44AXMHn3rZB7GkbxE0rvPXxrBm1iEWsbOc7RObnvldbURqL4OaV3te2fEYN9pwczDaatqMvnBm0x3e1w7aBm1d6X9vVTn9LXlaXMbYcjnjn4Dj2tA16j0kHMf9r5k3J6S8VH7P/3P5OlEYjnpsBAFwwbwoGxxPZk6oEz0F7Zk8HeoYn8PaL53r+3bIsrJpVhx25vYNpoif4te1rH8T6wz2486qFvmPAb1k1HV1DE9nlKYJB9aM72hCLWLhuubc+XrOsCWPxVLpUjGSITfc80DGEg53DvvoIEBu/taWvqGPJJpBetMDb+V45sw7nzqnP78MthgIZtPMcsibvLRELVy9twtN7Ogqf55aLrJLzjB1h5z16ZSsAYM3cKZhRVy42mATIYr43O071+fO8nbimmjK885K5eHJ3RzYhVgw+B1VvPd6HNfOm+B5Lccd5s9A9PMHZP+idQTvQOYSBsUQ6gMjFkuYaVJVG09nRwPCYBjuRSOHeTcdx3fJmzyAeAN5x0Vzs7xjK7zEuhnRPfEZfNh7pQX1lCZY2e5N2N62chiPdI9jTxtmr6NGDFk+msOvEAM7xGQG/ek49ymIRPJU7O6AYfAakbTzai5KolVfRwnDd8mZMJFJ46YBAWWUOWKCbm/V0y5o3tRJ/4C2Z88igdQ9P4ET/WFafrxvzG6tw9qw6/Pzlo3xTYX2Id9Y7eu4cb3nXLGtG19AEvz4yuM7oO9w1jJcP9eS1AKS/omMj1/EGhB4ZtGFnX/d7ruc0VOKH77kQKRu4dyPP0KHJFqDZ4HI+uobG8b21B/GaVdOx2MewLGmuRlksku3sCDLfT+/pwOLmao/zlzK4fNFUdAyOZ09hY45VPHj0vaN1AGPxFC71CZgA4NrlTZhIpLDukItp9WnKLYZNR3sxf2plejhCLspLovnZGMFx36zR9HUezCADyxqKj24l0CGYnbhl1QzfsyzOnVuPaMTyDuIBLp3845ZWxCJW1sACN8pLolg+owbbWvpcny9W4jgwFscfNrfilpXTUeNzltG5c5zAosNjHTl70B7YegILG6s8yykAYEZdBZZPr8GzuVnd9PTB4I44K0u7widAA4Drz5qGXScH0MbKRUP08q3d24kLF0xBVZn3d2SO+0sH3RlksV7WJ3d3oK6iBJcv8g4GAWDVzDrs7xjKzjSl7UjwkhXGQl+XU27mBgusN3gFaJyZ8Ud3tuGyxY2oq/Bek0sWTkV5SSS7ykDQjjy2k5hhv6wXQM9230gcR/yOQHGw6WgvZtVXYEad/xEe1y5rxrbWfnTxHE7scW1dQ+NoGxjLK8l34/WrZ6JvJI7n93MclOqj/+sP92De1Erfa4tELFy2qBGbjvaKDTBwZdA2Hu1BNGLh3Dn1vi+/fvk0JFM2XuKZDOjhWA2NJ3Coa7jgmXGXLZoKy4L/Iele8BkSwvYHr7JUgDIkq+fU8wdoHr2sT+1uR9fQBN51yTzft920cjpVEfAGMiwQdNmtzcf6cN6cet9A95aV01FVGsV/8w5m8CB69rYNYjyRwjk+OlJVFsPNK6fjvldb+capp0mJ7Gt49XgvVsyo9SWo1sybgljEwibejJ0HXjrYjYWNVVllctlf0cJNK6Zh3cGu/GnOheDhFxx0fEzPs04dfObmZTjaPYJf8WT+fTLxW1v6UFsew/zcc1wdXLW0CZZFfrIQXKTSbzYcR9Tpx/XDBfOnoG8kjkM8vZEe57Jub+1HykZBmzV3aiUuXtDAl/n8c8+gsUbTv752se9rYtEIzppRm92rUuRgSC8Mjyew/nB3QUcHyKTnswYzxPgzaIyt8GNZAcoOlkQtvHLYZVjSjlXwdWSlG36sJ8PSaTXZ5WuCpUnrDnWjsboMi5r8A4TlTsnKXl7GLge7Tw5gaDyBS3zYYwCoLI1h5czabAdVkNV/8UAXLpzf4Mt6AsA5s+uxvaU/w/wUaO4vhN9uOI6h8QTuvCq/R4uBXffLBz3YQY4pji29I1h/uAd3nDfLs5yC4aqlTdh4tCeb+Y/xB2gvHuhCbXkMqwo4sZc5AU76vgmO2T/ZP4q97YO42u+geQCzp1BJcZbDXGD6mh9SKRvP7u3A1Uubsoas5GLVrDokU3Y2Yy1A9Gxt6UdNeQzzp/rf69ryEsxpqMButyyBAK19YBxHu0dwTYF1LC+J4rJFjdlZVkE78viudqyeXVcwqGKb7qvHCztfm48Vt3/XLm+CbdO+ExgeOs9s2lkz8svyGK5c0oSa8hhfCY+HY5VK2dhwpMc3e8Bw7tx6dA9PZLcCBIWL6Nl6vB/Lp9cUPGj4vLn1qCmL5RM5heAu63WeO0YWrpzpv45TqkqxamYdnuMJdH0yaBuP9GJqVamvgwpQxnaXs+cEhseQkC3H+1AaixQkcRqqSnH+3Cl4yuuYjEJg57I6+tI/EseBjiHfDAJAfbgfvmohHt3Z5n/eqxc8Wi62OdnM1QUOUX7LBbMxMJbg03+PHrRkysa2lv6Cznd5SRRLp9XkVyxwIpWy8crhnvTADD/ccNY0xJN2djVSMaT9ggyBwgKTRU3+tv3qpTSpmmswiU/LxZZjfVg9p953/2+oKsV5c+rzK2gE8MKBTly8oCFvZoAbTF838wTWbp/f0U3ma/tldBkuX9yIve2D3mcre2IyBmgcjtWGI72oKY9hRYGNDgBWzarFztaBjEMskEHb1tKPeNLGpT4lUAysX+aYu1F4+ir6We3P9OZia0sfpteW/3/2/jTIdi07DwO/DeCMOWfem3e+bx5rrnoszmSVSpSKLpYGymaQZrtb4lAm1bLCUrdkKaSWQ3bbdHdHu8OyBpoOUrQUIjUFQ2LRDMuUGCRLI6tk1vhevXrzu3PenM98DoDdPzY2gIMD4AAHe+28eWp/ERX33ay8ufMAGxtrre9b38rdoM2ajecuJw6WBXrQvnznBAe9Mb47R04JiARtvzuK3OUWqHwPJx5+69WH+K6nd3ID/etbLbTrduUE7XczXLeSeOmxbXzx1nGUWCzw2Uauh6/fP8X7b+Q/6B+4voHOyMXbB73ZtUrct3/+ygO8eGU9N4m5vtXGje3WtCuWDKhKfEYpN8liBiXec3UdE4/jzf1YIl+SQeOc41++to/veOrCjDlOHC9eWUe7bsekeYtJRWXAndV/JvE9z1zEv33zIJKLLHKO3DnBfnc8t9Dz3GVRFZ2yP//gj4g/d18svt7tY7z/+kZmZVzihcvr0+z4Agna14Ii2PvmvOg+/tzFaQfaBZ617sjFV24f5ybVgDizmjULX72Tbf/cHbm4dzLE85fzezLfe3UDF1brJROL2T0vr3PeenXHwodubpWbm5TSN/vqgw6O+xN86xP5760PBQHs7y1igR8EcZxzvHLvdO77uGZb+K5nLuC3v/GwOGNnWdG1DP78WvDey2PQAMGw/vt3joqbJWS8l2QSn/fe+rYnd+D5HJ8v0z+dIpV+9X4HT19czS3iACKR/9rd02nzrnmQBaWgYCwlaVnSNYlPBT2MU4qdeUg5R758+xib7RpupvQWS3zHUxdwbbOFf1Rmjl2Ki+NX75ygP/bmFl/ee20dX7t7uvjQdgB3T0RLxnvn7EeR5KCcJX2KxPGNvS6aNQtXcwpUAPD7g/0/4wqchZR5iv2xkAF+KCfRBYTK4Eu3T2Zn5paA73O8vtcNi/RZePLCKjZatenWlHmQe59Z4bn1jQddXFpvzBj/JPFS2YRw+Rg0jjIM2hfePsRLOfpzifdcFQHxLXlAp2i+50G+KD8wZ4M2azYurzenE7SP/Angj/+6mOFVYr0PzAn0AdEs+ZU7J9HBEh6IZYLvB7At0cCfh2cCaVsoO1yg8v3PvnY/aNiddeaJw7IYnr20Njt7qiQ+//Yhrm+1Uk0t4viWx7cwnPhhkLnIMOBv3O9i4nG8/9pm7ve9/7r4/2UlcZFB1b2Ri3//ztHcpAIQyeeXbsWS+J/+V8B//I8KrSPx8t1TbK/Uc1+qQJRYTCXWYYJW7LO9fdDH3ZMhvnNOwcCxLXzo5iZ+N+ifzJtflIff+cY+Lq038FyOVAQQFbvhxMebDxOJRYkE7TdfeQCLYW5icWOrhZrN8MbDmHzjhU8D/+UxsPNU5r+LYzjx8PV7nXC/5eH5K+t4e78X9bMulKCdgrF8ZggQQSUQSZ0XsfL/4rvH8DnwkTmFF9tieHxnJdc1ULruzdvblsXwPc9cxO+89rD44NKUBO3r9zu4uDY/IPjgjU1840GnuHlBisTx383pP5N47rJIZL9YSp43/Yw97I5w0BvPvf+A6EW8lzQUmodEL+s39rrYbNdwaT3/Osp+oH+anD+ZiVkGbb87wlv7vTBIy8JLj2+h7ljlBjunFHpee9DJlJLH8fyVBVoB5BzR4Dq+FRQKn9rNV1Q8vbuKnZV6IdOdENbsOfKl2yd437WN3ETXthh+8MPX8LnXHuKgqKQ4xdjoXwTn7XenuFPG8b5rGzgMeroWhSw4PZnDaAEiRryx1cYbZZxMUxi0Nx528cSF1bnx7yee34XPUVwuPaVEEet+9c4pfD4//pWjVH67jMrgT/8e8J/+TvjXO8cDDCd+GG9mwbIYPnxzc7o1ZR5SBn7fPx3MjQ+BqBWmtAlQ3q+j7CfpQsG46rg/xmt73Uw9eByyn+k1+TJYoHfki7eE61aae2MSN7fb0wkaY8Dj31mYHTzqjfHOQX9uRQsQUqiTwQS3DgNpygI9aL/16kN85OZWqoNNHDNV/QXssX/j5Qe4vN4M5Wl5eP7yGl6931m4qsW5kBx8tMAe+UjgTCTNUhaROMpKZF5vCSD6Ips1C1+SfWgL9E79u7cOMPH4XNYTEC/W+6fDSPO+9Tjw7B8otI7EK/dP8cKVtdyXKiCqWo7FKiVoUo72LRluUXF84LoIYl3PX0ji6Ho+PvfaQ3zvsxfnf7bgxRslaOUZtN98dQ8fvrk1NdclDY5t4fGdldmXeAmFwSv3TuH6PFdKJPHC5TX4HFHv7ALnyFfvnODxnZUZe/0kbm630a7bUVC5wLP2hXcOYbHIFTUPT11cze1TeCeQbD2WI12T+N7nLuK4PyneCJ+aoJ3OZesA4IM3NuBz5LJ/U0jpZf337x7j6kYT17fyP1vNtvC+axtzpaBT+M+/DPzEvwj/+sq9+dJNie8NxsSUkovK93VwTd962MPjOytzn9sb2218oIz0KsW0SVbp82SAgAi+P3Jza7pXdR4SpmWnwwnungzxbIE98nxaQWwe/tBfB/7w3wSuvB8A8O5BD3XHwqW1bLUOIMyLvvXJlLFFuf9oOkEbTjx840EHHyhQNPqupy+AcxRnkcNnLbp/v/HKHl56bHtu3CaLWOUKFNOQ74UnczwKJJ66uDJdfJuHlHPkzf3e3GQQEKqWVq2EeU0KEy/PhXnFvvdcXcfuWqPcYOftJ4ErHwj/+lrQL1+kQPGRx7bw2l63uOyQMfG+jl3P+ydDXMnoGYyjXXfw1MWVEkWlpWPQiiNs2J1zYAIiQAWECxOAhdzX5umY47ix3S4/CyUGGbgXYdAknR4yPyUr34Oxh5fvneJbnph/HS+vN7HWcKINukBg9dqDLt57bX1u1QcQCeFRf7IwXf7mfg8HvTG+ZU7/BSCshHdW6mE1caGg8e1DbK/UcWM7vxrj2BZevLIe9SlmuK/l4ffePYZtsUwHpzjk/i/1QojB8zlevd9JtbJOou5YePLiynRFt2QP2tfunKLuWHg6p0dR4vGdFXg+x93j4UKuol+6fYzToRsGjHl44oJM0BL7v6AbbHfk4mt3TzOdS5N46uJq2Ai+CCRDW4RBk8ZH7xwGe6TkOeL7HL936zhXbithWQzP7K6GL+JFJI6/+9Yhnru8nmmOE8dTF1dw67Cf6WQmz+rHtucHO1Iq/ZW4yU8eEp/N9Xx840G3YIImzAukGcpcpCQWb+/38PQcZjhabxNfvXta3Dly8yZw/aXwr18PJFsvXJm/3uWNJq5uNKP3VhEkpNJvH/TCZ3IevuWxLXzp9knBzzbLxH/t7ikshkL7+1se38LX75foQ5NnfvD5ZCE5y1ExjhtbothRyl2xuQ586EfDv75z0MfN7Xahd/K3PrGDO8eD4r2KiZaL1x504fk8t29Q4v3XBWNROLFInFXDiYdX7p3iO1JGByTxYpDEfL7CoOU3H3ax2nAyjdbieHp3FW8+7C7MxI9cD7cO+7l9/BKObeF91zeKy5dTCsZfun2Ca5utuZ9NjlIRA7RLznoLIPf/0xfn738Z//xemcKS3QivJ+cc906Gua1EcdzcXineg7l8EkegKIX2+beFdeo8yhUANlpCBhExaOWkSSf9Ce6dDPFigUMFEBXi+6fDcg5EMXzp1gkYm8/EAEJ2yBiipKmkPfZX757A83khto4xhmcureLVBSWOrufjrf0entot5h4oGbvS1r4BPl+w/0zi0noTe6eBxKFk0Mg5x798fT9wDZu/h5+9tIbXHgTsYIqkYB6+cucEz+yuzgzeTMMzskCxYLD/1n4PI9cvVBkH5MsnlgyW7EF7+Z5gGOb1XwDJns/yEsfffvUhLJbvFinRrju4stGc7Z0qeI68ev8UnGNuj4LEU7sreOewX85qPYYv3T7GhdVGoergTO9syQTta3dP8bAzyjUIiePp3bXoPC55jgzGHr7w9hG+q0DgBQBPXlyFzyOmLIl3D/tYbzrYaM9P9q5sNLG9Ui/OaiX2/NsH4n7O668ARNP9pz9wFX//d98tNrQ30dzPOcfbB71cU4s4PnRzC2PXL9cbE8Od4wE2WrW5SgyJZ5KmU/Ng1wEwwLIwGHu4dzLMNb+J4yOPic/2cpHPlsLEf/3+KR7fWcl0Aozjw49tweeJWZd5SDDx7wZFkjy36PCfBq0AVXq13z3s47E58l4JOYbk375ZkCFMxCOvPxS/59MFYoBW3cYLV9aKB98J1l8WXook8TXbwocf26w0e1UyWkXe/09dXMXI9XGnaKKbiEfeOejD5/kGIXF86OYmXr57UiwmTWm5+Pq908Lx78ef30UnaMFYBG8f9LCzUi90Hn/gxiYshnJ9aHYtvJ6dkYv+2Cv0jgSEyuKdw15BBnkZE7SCle8vvH2I913bKHRgAuJAeD2s2JarfMuEZF6PisTNnRY4x2KOWBB08jO7q4Wqw+26g5vb7VhfWLnAStpwF2UHpxKLkknMraMBxp5fiBkBEH5faKZREl+5Ixzsih5il9YbuB8maOUYtNf3utjrjAoF+oAITo76E+x3x6VNQjjn+Oqdk0IJPCAKBnXbihiLkghNDQpUxgHg2mYLd44H0SFWYg4a5xxfu3taqMIKRLK0dw57qQzCPPz2a/v44I3NQi8DQMgc39hPShyLMfEvB4xp0RfdYwE7WGo4Zgxfvn2C91/P7/WQWG042FmpR8x/yXPkn7/yAIxFPQjz8OylVex1RkKaUvIc+fzbhxh7fuaMvCQiaWp6MvDOYR+PFQz0GWN4z9X1hSWOsqe26LP0Ix+9id7YKxY4Tp0jNo77E3SG7tzeOonI8fK40Pcn8eB0OLcfLI5nL63ijTIsglMPP+M7YRJT7LNJaWKhoDFlUPWr9zthwXAePnSjpJlAMkE7EM/79a35fTFA0ArwYLFWAM453j3s42bBJP6Z3VVstWv4t0X70BJJ0+t7XdgWK/y8feD6Jr58+6TYZ0vMQZMFmaL7/6OP7+CV+6c47hc000jg1mG/8FrS2KZw8pl4d0plRREGDQDef20TE48XK9ImFD1j18fbB/1CkkMA+I6nd2AxlJP5xnD7aIDrBa/jSsPBC1fWy41IsKNz5EHQc3h5jtGKxGM7bQwnPvaKqLq+WRk06RZVRLoj8fTFVby+1w0Si3K9I2GCVvCAlg/pIjJHzjm+dPukkEZb4tlLaxGrldIom4cv3jrG9a351HV8rTCxKFn5lr1rRapngLD2tRgWljh+PZDlFQlQASG7uX8SrFUyQft80LuWNeg4iecuxfr5Strs3zsZYr87nuuWJ+HYFm7utPHWghLHV+6dwrFY4ft2bbOFkeuLPQKIilXMNSkP7x72cTKYzHVmk7i83kTdtgTzU1Li2B8LJ8CigT4gqrFvzUiliyV3L987xUarVrhady1oXL5zXD5B645cvPGwO9c6OI4b8d7Zkgna774lCmZFenSBKLB4c79bOkH7d28dwLFY5lDpJKR08d2M87hMYAUImds3HnSKDX9NJmj3OrBLPEvvubpe3PEtIU2Sha2iLNOVjSZ21xoVErRRYakQIAY7j1y/+Hsy1jvy9n5xdgQAdtebuLTeCJ0fC4Mx9Mcu3jnsF37/b7RreO7SWvEANWFa9u5hH5fXm4WLz89dXsNhb4yHZebzBTjojdEfe4X3v2UxfOjmVnFpasK07I29Hh7bbmfOJE3i2Utr6AzdYjFA4ll7R0qXC+7/73pG9Lx9rszMvACcczw4HeFywf3/4tV1rDWd4kxk4rPJ3uSi+18Wqd4qMjMscY68td+D53M8U0ByC4ixLe+9tpE+2qcAbh8NcL2AaYfERx7bwhffPS5e6ImdI/eCBK3oO1k+J1lqjGksXYLGCwVWDzsj9MZeoQZJiWtbLfTGHjojt3SC9o37Haw1ncI3MdVqvyBuHw1w2BsXkm5KPHdpLZCheaVdHL/47jE+VKCPSSLqZyofWMkewKLBiW0x7Kw2sHda/sXjB31TRSvVgOhDO+iNhHa6ZIL2yr1TrDWcQkYDQNQA++qDTmpzfx6knGWenXUc1zZb4WFUFq/cO8XTu6toOMXutzQkCBMLp1F4P0qmoGjwbVkM17dbgS68HIMmnanyZg0mcWOrjdOhKyRnJd1gX77XwYtXihcMZIJ297j8ffvK7RNwjlKFnpsLJmiC9Twp1J8jIQe5Pjgdli70vHq/gycurOTO2opjo13DetOJjJRi8HyO20fFGQRAMBauz4sFO4kz8s39Lh7bbhd+llYaDh7bbhdM0Kab+2UQUZRlYkwMmP69BQf27p0OsTvHaCIO6dL2WlHptV0LnzlpmV8msX7hynp5iSMY3tjrgfPiChpAuFR+/u3DYn1oiUJP2YJB2Apwr7xC4l5wtlwrERA/eWEFbx/0orFFeUicI68/7BZucQBi/gFF9kiCrXv3oIe1hoOtguqID97YxGa7Vm6MRoDOyMVg4hUuUNgWw7c+sV2CiZw+69582MOVjSZW5hgySYRKkyJqpAQTL9VZ81wV4/j2J3fwe7eOIlfggvB9jjvHg8LsMSAStN7YKy7zdaIE7b5k0AreN5nsF1J1fbMyaNLsoGj1AED44OydDkv3jry218Ezu6uFA6uLqw20avZCCZps5CwqOQTEw+f5XCQyJeagPTgd4u7JsNRa17Zk0Dgo5fAGiEP28nqzkHRTYnetsVBl8M6xmElSpNdD4vJGE5wHjF3J5PPle6d4oUTwfXGtgdWGg7f3e6VdHKMDs3jAcHWzKe7ZAvj6/U4hUwMJuUdCfX3CNSkPv/vWITbbtcIyWEAkTbePkvtx/n2IBlRuFl5rih2X6xU4R1zPL6XjB6IkpnCfQgxfDkwsyjBoN7fbuHs8DBwxiydot48GOB26hWWpQFSxvHcyLP2svbbXDZ15i+JG0lk3wL2TASYeLxUQlwsap/f9naNB+HwUxYtXiyYW070jkpma5+AYx4dubuHtgz6Ois5MCuD7HHudES5vFJc4yutY2CLerofvt3snQ7RqNjZaxd8lL15Zx+t73QLM53QP2t1AYlzmvn38+V1MPDHPcS7Cc0Rcu1tHfVyfYzQVh3zHLdKHJuXTecPek3ji4gqGEx/3TgsUjsJzhMH3Od496BdyOZSYMXjLXWt6Dto7gXSz6DvZthi+6+kL+NdvlGfQZO/6bgmJ77c+sYO39nvYLxLfJM7I+6fDQtbwEu26g921Bt4uwvzEr5dl4/W9LhgrLqcERNI08ThevleOsd7vjjB2/VIJmjQKKSxzjEkcZdG66H27sdVCs2YVLIYsW4LGUSjrjOZNFN8wMkF7cDoqXfm+dTgoLBMBRCVyxmq/IL747jEajlVYTgEAF4J5OvvdUanASrojlWEQ5FDERQKr1/e6hdkziYtrDex1yjMIL5fsmwIQ9k88OB2WYtB8PxjQWiJAZYwJt89kYlFABigHK5YJTq5utHDQG5c2rjnuj3HvZFjYIASIAplwMGyJBO3zbx/ipce2CzmKSVxeb4o9UtJm/4u3hbz3wpx5VHFIdvz2Ub8UE//2gTBaKcN6Nms2Lq41Fkqsvxy4bs2btRXHpY0mPJ+LgaYlbPal3Kmo+QkgDDDqtiV6PkswaIOxh3cP+6WquYBIPm+lDCqWjlxFTRIAEagwtmCCdjwoxVYAYoj4Owf9+WxMotDzoDPEZrtWWCoHxPrQirpUBjjojeH6vJTEca1Zw9WN5vQw9jzEAqu7xwNc3WwWDr4BwaC5foE+nASD9uBU9qkU/2wfeUzMQ/v3RWYmxc6Rkevh/ukQN0ok1dsrdVxeb5a+ZwDCnusyn00WxgtJ5uU5YtnY740w9vxSicXuWgNrDScyFCqyVnD/7pZkYgBR0Lp3MixdoHgQqHzK7H/ZolConzURa+13R7iwWny8CyBMZ94uJHGc7om/ezzA7lqj1DnynkBN8XJJVvf2cfliyPWtFnbXGsWNQuxa+Bnvnw5xYbVeWNHg2Bbee3UjGpGUh29WBu2t/S4ajoUrJR6GKEEbAk7w72rzD8Gx6+PuySAMzIpiUav9f/vmAT58cwu1Ag52EjvBg3rQLRdYvXJPDJYtEzS26ja22jURNJZIYjjneGOBBG13rbFQD9qXbh3DsVipzza1R0p8tncO++iPvVJrAaIac+uwX9okRDC65RgE+VIsK3N8ObTOLv7Z1ptCUhZKHGOBVR6O+2O8fdDHhx/bLPU7XloXe8Tj5SSOrz3olGJYAYSB063DQakE7WslDUIkrm62wgp+GXzpdrFB93FcCPrHRH9pcTfYr945hW2xUkUlxljQ81mu0PPGwy44x0IM2u3DwYwsSxbRypzvctBs2QRtOPGw3x2XT9CuSIZkDosWL+5YNvZOR3NnWyXx/usbsFj5eVAyiSkjcQSECqC4xDEq9IgErdx1lPtz/n2bPkfunwzhWAwXVooXO2q2hWcvrYaz4XIRkzge9SbgvBwTAwDf/cwFfG4Ba/N7J0PUbIadgr2jgJh1CYg4bC5iBWMppyzaKgKIc+Kp3dVyEscADzuj0vtRvg/KOkfLInKZBE32l371dpEEbToe2e+OSxUWAeDxnXZBBm2aib9/OixsoiFxdaOJjVYtNMYqCmmsd22z+HnMmBg3VNg10o5LHAelihOAcI786p2ThccIxHHOErRiTX5vPhTzT8pU2XfXJDsyAq5/C/BHfhZ47Dvm/jvhRlfuBQ6IrL6si+Nxf4xX7p8WNpqQkI35B71RlLUXCHreeNjF9a1WqcoIIOQQQuJY/N/dOxmiN/ZK6c8B8cLf746LN4AG+NLtYzx/Za3UZ0tlWQtA9oeUDb5vbAtpHp8KCPJ/X9/neO1BtzSDcHUzJk0tgTLDZ+O4uNaIpBtOsQRNVhLL9E0BwgDA56KKHyH/bPB94V72RMH+HImNdg1rTUewMc0gAWrN7+F8+d4p6rZVSiYCANc3W6UljgfdEW4fDUpJNwGEbJs4RyJp0jx87e5JMHy93Dlyeb2ZYOLnryXlcEUdxSRubLcx9mbdt9457MOxWOlg/+kFgsY7C1SHgehcmRvsJBi0vc6odKC/0nDw7KW14jOTAsgAtex6zwTXsdD5Hgus7hwPSye6V4v2dCaY+PunQ+yuNUrFG4BgPl+5dzrfgTCm6JHjFMqoIwDgEy/s4nTo4gtvl+sfvB/MgCrz2S6tixaOvOHvIWItF1JOWfZZe2Z3tZzEkQnnwaP+pLD5mYRU3Hx9XjEkAcmg7ZZYb61Zw5MXVvDlQgxaFI+4no+jfvkE7bGdFex3R6WZ+PsnQ1wu+VwzxvDClbVi0uwY9juSiSy33ocf28S7h30cFJGLxuag3TsZFu4/k/jAjU2MXL+ApHgZGbSCEscyBiGAePGsNZyAHbGAD/5IoaBRVljL9CgAImnqjtxSWfbvvnUIzoFvf6pcgrazIiWOY5TpQXvzYa90wAiIfqayEkdZJS3TWwSIQD+UXRWE73N8+VY5J0wA2G7XUbPFC7moMx8gAqcyzmwSN7ZaGEw8HPRjssM51/TO8QCDiVeaQbi2cIJ2igur9dIvuq12HUe9YHbTe/8Y8O1/au6/kYOVy5hNAPHiS2yPzNn/e50RhhMfN0tIlyVubAXs+OPfBXzmt4Dd5+f+mzf2enj8QnH3Mond9UYxS98Y5Au/TP8ZgFAyI6TSxc+Rr94tJ++VuLzRLG0S8o0HXdTs4jbdElfDnrfp/f8gCFDtksG3NEooHHwj6iUsm1hckdXoeWxMQpr0sDMq/dwCQvL+pVvHpWzb9zvi2SsToAKCCR25fiSHzkPAxI9cD/vdUam+KUCMktho1QqcgbMSx0slq+yASKwPeuP5CpCrHwRufjuwcWPhBE060RaSVMZw72RQitECRPD9xIWVco6AzA4T47LrPb27iodyJEcewmeNhcXBsvt/d62JC6v10rMAH5wOsdpwCpt2SLzv2ga+UpJBO+yNwTlwoeRnk9LUuUYh8RjEEjL0skkMINjIb9wvN/7hqD+GxYQKpwyeC5jPN4rIbmNmQw9Oh6UZNGkW9Ma8osE3o8Rx4vlB5bt8YCWCnXISr0UTtM3AOajQgNEAMol577VywU6rbmOlbguJY8EeNN/neHO/G8oVyuDqZqu0SchrC1a+5Qu/jMzxncM+OiO3dIJmWQy7a0HQWCL5fPneKZ6+WJ5BkKzsrXhFd841XZRBuBQ0798vKXF8JTA/KYvNdh1Hcp7Mkx8DvvvPzv03X759jMd32qWDk5D57MQTtPxzJLIgL/dcA+IcEcUQBlz9UKF/IwYGlz+zLq410B256I8LuMEFkExL2UQ3ZNDkZwPmJ7qnQzzsjEr1n0lc2RCFHl6CrXvtQQdPXlgtJQEHokAteY7s98alAx2gxDycWGB1d0EGTVaj5waNsXvFmYW9TjlXRYkXr27gZDCJZkIWgDRy2ikhAwQiZ7hCA6uDAbPyDLuyWf6zyRmNuUgyaAtU2YFILvfKvEr7xeeAH/vfgMbqwgnaWrOGi2uNgvbfEe6flJevAcK2vZSLacCgNRyr8CgOicgoZM51jL2z5XN+sSTLBIj7VlbiKOSU5dd63/VN3D8dzo9LY8+2fNYuluxBk06OckRFkbV6E47O0F1oj1wPCtCnw+LvrqP+GJvtemm2WhrPZM26nMLqLtDexnDi4ag/KV3okbnAu3OftWVM0Oa8pG8d9uH6HE8skFhcWm+WDlDffCj63co+fPKAPZ5X9Ynh1mEfF1brhe2j49hZbeCwN0LRHrR7p0MMJz6e2i0fNF7ZaOF06KJf/LnDq/c7uLDaKGVaAESBVZnE+u3QRKb8Z7u03ijdg1bWIERCBmr3pxKL/CQvZCJL9qA1HBtrDSchA8zHcCKsa4vOJItjq10rtfcB8dnK9oQBsQQtLm+Yc45E5hDl98h2PPksAC9wL1ukqCQDjP1O8fXe3u/h4lqjdBVyvemgblvTPWhzzpGXF5T3AqJ3duz6GHjFkkEA+MZep7S8F4h6o5KOsAfdUdh7VwaSeZ0bEMfOkUgGVT7Yf3p3tVTl+3joY+LxhYJGqXIoZMwQ4KA7xkrdRqterkhVysnx6d8PvPDp8DoukjSFxcU8JNxgy853k3jqYkHGIoZFEzQAeGJnpZj9dwx7CyYWT15Ywa3DPsbuHIVQrNBz92SIKxvljF2AEq6psUKPTNDKSm6BYPD3/U6ptoqj/rh04glEKoevzpM5xs4ROV90EYkjUMAiPhaDPOiI/VjGnVViN+6cXhBHvUnhsQhxXN1soe5YxYoG/8H/B/iPfrG0xb5Eq25jd60RztnLRIFtfv4StDmf6q0KwbfoiynnzvOvXz/AS49vlc7oN9viYT0ZFF/v1lG/lCVyHDurdRF8FwysZBKzSNAoTUmOBsUdAb/xoIPnLi8eWJWReckXYlkZFCCC/TI9aN2Ri3snw4WCRvkS7oxiL7k5zN03HnRKOzhKbK+WSyy+dvcErs9LuXxKbK2UW2vi+cKCeYHn+sJqHYzJAFg+p/MZNNF7VD7w2lqpl3L5uncywNjzF9qPIfPTLf6Se+egjycWWIsxJs6RbvFCjzyPy8p7AWCzJc6Rzlju//x71h+7uHU4KC3vBcSZxRhmZioedMfheVYGj4UDS+clTXFp0kgkwSVlroAoih31J/kurLF7tR8URxZJLEqNEQhw0BstxERKJ8dCa334PwH+wP8zlK+VDVAB4Npms8Dg92gfupyjO3IXCvQvrjXQrtvFgsYAVRK0x4qaQAQYjD30x95C+/+JiyvweYFZrzLYtyzsLSAnA8SYiLpjzZevxVwcZbywiMT3hSvrGLl+qft22JuEMV8ZiLmYkbw/E/EErbPY/l9tOAHLOi9Bi/b/Xmfxc+RS3PehIA57Y2wtcB1ti+HxnXYxiWNzA2hvh8ZGi3y2x3bahkFLQ5igLZBYXFhtFJs5EeD+yRCvPujge565WHqtzYUYtPJukRI7K41SPWjyJXW9hFtOtFa5BM33+UKzi4BsaVIe3j7oY6Vul7ahBYIE7aQ4gyadOhdhYuQ8uJNh7DrO2f+vL3gdAdEXVqaXLxzDUGJOnsRmu4aR6xceVPluwIwv0hPp2BZ2Vup4GLfan3Mdbx8JFzinpFQOEP2lvbFXeGSBlJQUHRgch3wJPyzDoB30Cg9MT2JntV5qXMc7B32sNpxSLnASG1IGPgwq1fNkqcF1XGSP1GwL2+36FIPGOcdBb1Sa1QcE+21bbH6AGiu4HPTGC60FRFXeXAVIPEHrCnnDIgHqhdU6Nlq1YsYMAQ6644X2ACCcHAvPQgOiBG2t/HrXtlroDF2cDnPey7F9OPbE3txeIGhkTPRKlpEdygStzKxQiccvrOBhZ4RekeHYCMyAgIXu2xOhk+O8YD86R476k9ISWEAE3ze2WvMD4tg7W8YLi6y3iFHIUW+M7ZXy92yl4eDJCyvzDYCmGDS5/8t/tsd32qUkjg96FRK0uCt2QRz1x9ha8Bx58sJqMWfRADIWWoT5vLm9UqA48QglaIyxJxljP88Y+8exr73AGPtZxtg/Zoz9dMGflPv/vvagi+2V+kLVip3VOvpjr3A/hxxY+F3PXCi9luxBK5qgeT7H3eMBbpTsT5DYWQkq3wXtse8eD8BY1JtUBtslE7Q7xwP0x17YXFkGrbqQ5pXqQTvo4bGdldJSCkAcKp2Ri964mLnLoj2KALBSt2Ex4DTOoM2ROL5z0F+olwmQe6R4oP+l2ye4utEMpQplIKtgRVm0N4PKV1mXT4n1Vi3QuheTy8k5SotAfraiz7aUlCzUNxsyaMX2f3/sYq8zwuMLrAWIgGaaic/fjzIZXORZk0Wsqf2fg7CotOAZeXGtMcWgnQ5dTDy+UIBasy1c22zNZywSzf2LBANAYrB3FmJ7/jgo+iwiF2KMCee8EhLH/e5iiS5Q0skRgkGw2GLBtzyn8+dBRXt55IrfaXOB6wgAT1xoF5s9FeB0MMFa0yltWgMgfC8UTQjlu2CR6ygZ+rkBcchq2TjuT8KiTFncyJhjOIVYcfphV8wAXIStfnp3FRYDvlGwD41zjsMqicXF1fmJbiyeu386RDvwHSiLx4rIYONS6aCPZRFWS7LOD0q0pxz1xwsVQwDB6r572Idb0JjvMIhNFlJQ7LRx/3Q4J5dQlKAxxn6BMbbHGPtq4uufZIy9yhh7nTH2F/J+Buf8Tc75jye+9grn/KcA/BCA75z7i3A+N+t89UFnoUAfiKrRRYPUL98+QbtuL9QXI+U7xwVNQu6dDOD6fGEGbbNdE2tZxSrf946HuLDaKDygLw55oB8Miz0I0o70mQXv28X1crPQ3jnoL8wgSK31g4Lr3aqQoDHGsNas4XSKQcu+b6fDCU4Gk4UD1O2SssPXHnTw/AIGIUAUGBZdTzoiLSJxBETFuTN0Y9cv/xxZZI6ShPxsRdnIt/d7aDhW6ZlUgLhnjBVnkGV1dGEGTSbxLJIL5a/XWzgZlEW2KEGbf8+A8jbdEhfXGlOJ7kEFqRwgArmvzzPuiCVoVVgm6SJ4/zRHnhc7O6RsdBEmBghMIEr0M4m5TIt9tmcvCyfHonNDH3ZFortIEvNckTlXUwya+HOjtdhne2xnBbeOigeNJ4PJQvJGsVZB2W2AkEFY4L5ttGvYatfmFyiCPcmZhZPBeOHPFjrn5iE2ruNk4C6UVACiX/viWqOwSU5/7GHs+osnFhdW8M5hf2ZG4xRiSdPdYNj9IkWxJy6sYK8zyk8spgo94ndab5b3RWjXHaw1nRlZeRY45zjqTbC5ABMJCFXdxOOFx1sdBnnAIsWXDwSqon/3Zo5rqkIG7RcBfHL6ZzMbwN8A8P0AXgTwI4yxFxlj72OM/Vrif7vZvyP7QwD+VwC/XuxXyf5QYgZUp9RA1Dhkw33RavSXbx/jPVfXF3oRrDUdMFbcxVFuqhsL9qCtt2oYuz4mfkEG4WTxAFUe6If9Ygzaqws6D0rsrhV33/R8jltH/YX6fYAosS5639497GO96SxcGVxrOtMMQg7zeftQMgiL7ZHtFdGnWMT21ve5GGdRMfguyjLdOuxjq10rbWwhsd50cDqYFHIfdD0f90/Lz1GSkJXS44LJp3RwLNvHCsTlm8XOLFmJXZRlFUzkpJDEceL5uH00WMgJE4ipDGSBYs4L7e7xAHXHWjjJubjWwMNY0CUNcxapoAJiXt/rD7v5c4XiCVpvsX43IC5xzNkHsbOjOxLP+NoCgRUgEouicjnf5zjsjRZOdGXB9dWCMsf97uJr3dxuo1Wz8fXckQUxBi1IrBZl0B7bbmPi8XzmM4YqCZoslBRNrOX+LzOAOw4h3yxmOOH6wMTjIWteFje2hTFZofcyY+gOJ1gtaXkfx+5as3Dfu0x0F2XQHt9Zwdj1cfckJ7GYcoMdLhy7FXJyZLFEd+hiteEs1AoAyJ7+Eomut3iiK4u7RXsHD/tjrDWchUiKb3tyGyt1G7/xyoOc71KUoHHOfwdAMhX8KIDXA2ZsDODvA/jDnPOvcM5/IPG/vZyf/auc8+8H8KOpH4GxzzDGvsAY+8Jkkv/w3TkeoDcuPwNKQr4cizBorufj5XuneN+1zYXWsiyG9WYNJwWDOFkdurG92IO3Hhx8IRlTROK1QMMuIKR5dcfCYUGJ4zcedHBts7VwNfdiicPy7vEAE48vHDTKOSa9UfHeqZsLrgWIeR+dqYA4J0E7qrZHtleEa16vQF/YneMBRq6PJxfo9wHKSxz3Oos5pUnMXsfsw/FBZwSfL87ESJnaYeEEbXFGFxAMT9EE7bW9DhhbrE8LEOdIZ+jCLyAVvX8yhOvzhfovgcgI4WRYjEG7E1SOF0l0gcgkShYoDha0hpd4/40NcI78OUaxpGlRpzdAnEvrTQf384K4OIM28mFbDO0FZFBAObnc8WACny/WywTErPYLSsqqJGi2xfDs5bX8/iKmTuJ4JThjirIxVRK01YaDC6sNvDOvxyiA3P+LMGhAuX6mUVA4XvQ6ysJ1LosWKzz2Rh5WGovtfSAoChdkfuQ7btHEQvYm517LxLiORd9d0XOdk8TEinNV9iMgXLGLFieqJrqyL3LufLLYeouu1XBsfPczF/E733i40L+XqNKDdg3ArdjfbwdfSwVjbIcx9rMAPsQY+4vB1z7GGPtrjLH/CRkMGuf85zjnL3HOX6rVarmB1Wt71ZgYeagXMQp5a7+H4cQvPZMsjlB2WAC3jkRPWNmZDBLyIZIvlLzAinNeqQrDGBNSqF6xXr5X73cWvmeAOCyLBqgyoFiUQZOHendUkEE76C8kb5RYazo4HbiFGAvJsi7KoMnDqIgD4ZtBFeqpBSWHkcSx2HXcOx0u1OsmsdZ0pnvQcoL9RQcGS4TJZ4HrWMViX2KzXSvsBvv6Xhc3ttql7c4l5DkyLsDEyxfvIs5sANCs2WjWLJyMipmEVOkbBEQSP/Z8jAJrcOnoW4VBA4Av3T7O/qbYZ/J8ju0Fk0FAvBvuHBfrQTsdeVhtOAvJoIBycrnDwGxi0WCnXXdwc7uNr5di0BZbCwBeuCxmymUrCWISR5mgLShxLNQ7GEPVgPjxnXZhq/3D3hgNx1qolwkQjN3dkwFGbk7BL2i5kHHJolJR2fqRP9A8in06IxerjcWv4+56s7BqR77jthaU5j1RhPmMFW4PemNcW/AcDBm0vMKLLCpZNk4Gk7D4vwgKzR0MINU2i7KswpuiVpxBq9ATDADPXV7DneNB9qiJR8kkhHN+wDn/Kc75U5zznwm+9luc8z/NOf9POed/o+oaMvheuAE+ONT3CwT70hp00SQGEButqMTr9mEfV9abCzW1ApFGeCBzppzA6qg/wWDihS+PRbC9Usd+gUFonHO8fdBbuKIPROYuRRwBwwHECzjmAcBacKh3CzBoni/0zov2DQIIetAmMTvi7JflraM+2nV7ocZ/IKpwF5mF9mbYE7bYfQsljgX7tB6cjkJb3kUgmJ9iEseqvUybYQ/a/Gf77rGw2F/0zAJE0nQ6KFYMeX2vu5DlfXwtABh58ws9khVYNEEDROBb1Gzo7vEQVxcsYAHRGSkd/OSfiwbE2yt1XFpvlLKjr5JY3Nhu5QeosSDudORXkngVCuQCdIJBtIvKkwFhFPJGwev4sLM4gwaIOVdH/Ul20S8WWA1dH3XHQrO22HtZPhu5zGcMJ4NJpetYxjVyP+iJXDSJf3xnBZwL9+lMBHtSvk6rM2g5a4UJN0N3NFlY3guIovBBb1yod1AW6hbtebu0JuK+XHYwERcs+u5aa9ZwYbWeb+4SU/OIvsHFr+P1rTYedkaFHI87o8UdTCUeLzELsGqCdm2rBc7znHVpE7Q7AG7E/n49+Botcg6LO0cDNGuL9yA0HBtrTacQg1bFglZio10vwaD1cb1CoC+DjIHM5nMCK0kBL+qYB8h+pvlBo5jd41dKdNeCQCO31yPAu4d91Bc0ZAAiBq1I78WD06GYb7WgxAsA1lvOtLnFHAbt+tZizcFAOQbt1uEA7QVHFQBAPajMFmHQPJ/jYXe00KwhibWGg+HEBy8gcbwTJmiL7ZGabWGt4RSSb0aMbjUZbJHeC9fz8eZ+D89UeK5lEhNu/5yCwV6FOTISm+1arActe++PXR8POsNQMrYI5ItfJhQng0kQfC8uhXpsu0AfTgxVAoIb2228e9jPZn6mmvv9SgGqDOSKOBDKc3m1wno3ttshs52HkethOPEXDvQBhMZHr2RJKhM2+5ut2sJn7lrDwUrdLsegVfhsjwfuckWKmYe90cLyRiDezzRfLjeomKBttGtYazr5BYqmGPqMGx+tLnFcb4BzFJqbW8WuHRDtMNc2W/n7PzH2p0o89eyltWImOQokjtLQrAiL1g+y+Cr37dJ6A/sFR9IcVUzQrgf3IHNPEjNonwfwDGPsCcZYHcAPA/jVCj8vE4yxTzPGfs514xKlWdwJtLeLHpaAqHIUCXaqPnSAYNCK96ANFjYIAeIJWnBtcgKrb4SmHYv18gEicS3CoFVlK4B4X9j89d7e7+Gx7fbCfSoyyCiaDAKLOThKrEsGrcBg4NtH1faIrMx2Ciafl9eblZ61zXa9kJHGYW8Mz+eVAn0ZjIah6xwGbatdQ7u+eEDZbtiFgqC3KljsS2y0iiVo90+HGLt+5bWAggzayRCtmr2Qw1d8veOI9s/8vgenQ3AevRQXwXpQCZYJ2unArcRWACJILTPnqsp6N7fb6I+9bAY8duafDr3Kn+3KRqtQ71Q3uJ5VGLtrmy10RvNNIKIgbvG1ng9MxrIdOKcZtCrJIGMMlzea+fPr5FoT4QZYKSDeLh4QnwwmC0s3gaifKZexCPbksKJUFAicHPOSmPUrwE/9K+BT/190h9UkjrLAW8TgQjLxVZifa5st3M67Z4kErQoT/56r6/j6/Q4mWewgm5Y4VtmPkTR1/n7sBc6SVZ7tndVGSK7kQczArM6gAci5b+ps9n8ZwL8B8Bxj7DZj7Mc55y6APwXgnwF4BcA/5Jx/rcjPKwvO+Wc5559xHHtu5XvRvhGJdt0uZJJw2BvDYlho3ppE0R40WR1e1PwBiExC+pP5DNprD7pYqdsLm4QA4iHqjue7Ad6tyFbItYBiSVNVyWHDsVGzmcYEzUF35EbMT56L41F/YYt9IEpiZECVhwenw0qMFiA0+UVYJvkS3F2Q9QQQ08nPt9mv0mQt0a476BeQbby930OztjijC4gkZhAEb3mQsuxLFZ7rMmZD90+HuLTeqJTEb7RqOBoEn+vSi5nfJwPOa5X2v2TQIonjegX5DiAStLm21TFUqQ7LcyZzQCqL+i87I68SgwaIILBIsCMLPlXWk/d1Hosmz+UqQdxmu44rG81w/MsMEiYhVZIKQBQnizBoMjmt0vMjJcD3CkgqO4FD36LYbNew3nTyCxTB+TGsaLYCCInvXKv9y+/FCA7Gno/VigwagELmZL2Ri1bNXsjtW+L61jwGbfqzVNn/77m6gbHrZ5tpKDQJkfFKkREaIRNfJUFbqeOwN84fWQBgMPEwcv2FZamAKGAxlnNmqWLQOOc/wjm/wjmvcc6vc85/Pvj6r3POnw36yv6bEr97BeRLHBc1SJBYbTiFmJiD3hhb7cVmrUhsBpXveZvloDcC59WkQrJaGuaDOYGV7FOpEli168UYBBUM2moJBk24AVZLLFYajkhinvmDwPdmj/+7ddiHbTFcqZB8rjVrQjo/R+J40p+gM3Qr7f8o0S3GxlyusB8BwVYXkTjKZuwq900G32EKQ1zoadVsDAoE5e8c9PDY9mIW+xIyYJOV2iw87MhEd/HrGDHx84079k6rOW8CYk8eThzg//xPgR/5+5nfJ1+ClaTSsgdtIBm0av0+QGRGlJk0AcDj343/44U/DwCVWFuZoOUGO8wCLBudij04gDDVKiIXkozkWgXGQj6P85gfWWWvEsQBYibn65lub9MMWhXJISBGJBRh0GSCViUgls/HvTwzmQDdkVtpjzDG8MSFOT0/TDJoQKOinPjGVhu3jwZzx8RIB+aqNvtAMQatO/IqJUyA2P/73ZxerQSDVuUcec9VIfH92p0MBjlIBjmzAjnx4knM7loTNZsVY9CC+G5R51lAJGg+nz9/WJ5ZVZ61umNhd62Rc2Y9QiYhypAREAwCaUcVBgEQAUGRQP+wW43+BEQPGufRZsiCfAlWaXyuOxZaNTvGoGVv8jcediuZdgBBgDrx4H/8LwM/+ZuZ33fvZFhpdhEQkzjOCYhdz8dBb4SLFdgKIJbE/+g/BD7+FzO/79ZhH1c2mqgtOCMEiILGyNY8/b7dCnTOVfZ/u2aDsfkMGudcBN8VmBiguMRR2hlXdXEEAI78HjTOOe4cVWfQWnUb/SISx/3ewoY1EqEd/ZyXjmTQqjCRcq1wi8xh0KoYhACxQs+THwPa25nfJws9VYyNZhk0txJbARScK/THfw2/d+0/BlCt8i2VAe/mMhY2wGx0hm4lyRUQyYXmBcTyPKnCDkYMWn6lXQbfVYI4ALiSlzQlBlWvVQy+r2wIR8B5hhMqErRL601R1S8gcVSxR+aaksQYtKrP2o3tNgYTb25fWCi5rfDZLqzWwVhxBq0KWwfE9n/WfUucw4s6bwJCbm9bDG9mGYXEhosD1Rhd2xIS3yKMrny2Vyokn9tBDH0wx2dCvgOq9M0CyO8dfJRcHNUh/UPdORaHQNXK92rDKSRfq+rwAkR2ocdzLLL3pSFJBV0xIA720FguY3O4no8Hp8NKUiEAaAUP0ejb/yxw7SOZ33cnmLdWha2Th9/cRLc7BufVGASxnlOoT+veSTVXOSA6IMLEIkPiGA4yryCntCyG1fr8z3bUn2Ds+ZVkeYDY/0UYNJlYXKxQoJBMSBRKpu+306GL3thTIpWel6B5Psetw0ElB0egeIK21xnCtlilYki7LqQ6gznjOjjngcSxeoI2r/ACiHPkwmqjUgVeJvHyHOkMJpX654DIXW5eQNxXUB1u1oSDa25fGLPAmRUE39UljhOPz3UQ7Y4maNXshYfZAqLy3axZ8xk0BTIoIDAT6I4ykqbo7Jj4HI0Kew4ALm+04HPg4Zyg8VRBglZ3LFxcbcwNiD2foztyKweoj++0cfuony2/Dmz2hx6rfM9kC8itOUl8JJVb/L45toWdlUaoSshDf+xWYrSAGINcINhvOFalZ82xLVzZaOasJX62H8QkVc/IiwXnePZGLtp1u5La5EJBp+qI9a9437bay8+gSZMQz81+EcgAtWpiUSSwAkTSpCJhAjDXal/a/l+oMCNHrtef4+K43x3DryinBIBWYDs8mNOH80BBlb3o8Og9BRIvoLgM9t5J9c/WqkVyAgCZ9006BVUuUDSduQzaAwX26YCYhXY6nMCbI/F90BliZ6W+8IgJII2JTP9ZKiS3gJQ4zt+PY8+vLMsOJY7zErTTES6uNiq94BhjoudtToJ23J9g7PrVz5G6cN+cJwMXstSKzHjdAWPJHrRqVf3Ndg3NmoV7c6V5HuqOVYltB8S5/SBvgK5lA5YFz+eV2ZFwbuicPjQVgT5jDFc3Wrg7RwrYU9CDBgi23ucZgVwsGHZ9LGyxL1F0FpoKBg0Qw7HnrSWLIpULFNtt+Dyn500OqvZ4JYYVKDisGvEErdp13F1r5D9rsfWqFwzEHpmXyLyx+pHKex8QSpxM2WGg4pFF46rJ5+5as1iCNnYrfzbpSnowh2UNEzQFDNq9k8Hc91cWzkWCJk1CbDvbJCRsEq8YWK3oZNDakkHLD6zkS+LCWrX11poOwvdNRmAVzi6qXPkWG3tec/xBd4ydCswIUNzFUYVUTq43by3OOe6fDCtJrgCEA4XFYcgy9//9kyGaNatSkzVQjEG+H9qnV7tvm4HEdy7zczrExYpJdSRxlAla+nVUYVoDBIWeSbH9WGW+G4BwDs18Bq3aqAKJ9aaDwUQmaOlB1YOOmnNESnXmFXruHg8qF+ckg3w6dME5V+LiyBjD1c0W7s5hLPpjt5IsSWJ3vZlf1WcWeHDPqiZNYYI2J7jqDN3KlWggSD7nJhbVZVBAtG/TZY6xBM3jlVhbID4LTU+CdnWjOZeJVBWgyuLTvGB/5FW/Z3PXCiB7rKsmhJfWG4WGVVe19Aci9dRhHvPzZ17Gz137mcryXkBcy+x7Jva/H8SQVQqnAHBxrTGXPQaC61jxs8mY/bBAUQlQIHHcamHi8XQp7DeVxPFoAMdilSu2kh3J09WPXR8ngwl2KjJaYYI2pw/noDtCq2ZXrlQ0azbGMpPPkMrJl0RVdqQZPEjzBhAe9MaVJFdAdLDPSyzkQ1I1sSgicTzsjTH2/MoJmrznftDcn4W9zgi7a9WkokDAoM35bA8V9DIBwsURwFwnR2HsUnE/SiaSF2PQVEh85zNocj9W+2xFGbQHp8PK9wwQe2Tk5V/H6Byp9qzJYCNP5sg5D6TS1e4ZIALSztDFyPUx9vzKLo6AKBrenWPK0B1Vl0EBItnPreozK6x8Vw12ZNA4t+dHAYMGiHfSPFv/iEGrGnznmEDEGTQONJ2K/W4lGbSqrNal9fmMRdiDU5Flkj3R2bOgpMSxOuvZqtu4sNoowKCJc7lq8rm71gyLbHnojaozP6sNB3XHymerN67haGJXZusAcd8edIbp0lTGps6RekXW/+JaA8f9CUZu/vtSxXXcbhc7szoKRiMA82ahLWOClsOgXd5oVnJVBMQh4XNgOMlu2H37oAfOq80uAoCNwJ53XuV7vzuuLKcEhBRjXmD1QMFwWUAYTgDIlYtOPDWJrm0xtGr2fAatMwRj1cxWgGISx3thgFpdKgcE0rwcQ4a9zrCydBMoxqDJl0TV6yjdn+YVKB4Edu1V0HAsWCwmccw4HG8fD1C3rcpy4iIupqHktuJnkyzP6dwezFFlJhIQAWlY6JlzjlRNCGUva961VDHsXmK9VUNnOAmT3aoMGiAC8Ltze9CqV9kBsZcedkfZsuGgBw1AZeZHPv/zrPZV9LsB4p20d5pvSqLCZl+sJT7bg9TKd7TnOVhlieNGq5gM9mQwwWrDqdRfBIh+PlGEyH6muooYtCtBTJbJxgRFx5HLlUjzbmy35vegDRVJHIM+xXkS/e7IrcwOMsZwYaU+V5rXH3vKGDQ+R5qqkkED5ssOuwoSNMe2sNWuYX+uSYiaXtbcQdzLwqCFPWiehzwGraqDIxA1juZVbOUg56d3qzkdhs3983rQuqPKMkAAaNTsuQNm758OUbOrGQkAUeU7N7CSw74VJJ8rDWeumcBeZ4Ttdr1yn0dos58DySBUZ9BkgmblOm+qkq+tFehB2++MsVK3Q/nlolhPmDKkwfM5Hipg0BgTSfw8m/27x0Nc2WxW6tMCpMTRyw0m905HSgoGzZqNum3l2uz7Psdhb1xpgKlEq25jPGcOWjhzTZHEMa/Qo4r1BMT+Px1OwmtZtQcNEP2MD7uj3Dl1PQVGAoC43l5wr1MRq3xXTSy22jUwNl/i2K04T0vi8noDY8/PlXn1xy5si6FRMWjcWW3AtliGpJJN/XfVRJcxhisbLdybww5WnTklIWOJo172eaFK4ujYFi6vN7NZrdDFsZpph8SNrTZuHc6XEwNAu+J6YZ/inGBfBfMDiDhp7loK+rSAqFUoT5oqz5Gqz5o0/5rniNlTJAMXfbr5z5qqBC0cVl1gjEAazkWCVrQH7dpmtWZ7IJKU5TEkrz3owmLVE7S6Y2Glbs91sjvojnFRBYPm2DEGLaN35ETIoKoGqFLimDesV9LMVZNBQBzu3XkmIQp6meRavbGX2/h5T5GRRmsqQct+XB+ejpTI11bqBRi07ggXFFzHhiOrp9mB60FvBF+B8yYg2BhewCREhVSuVbfBef5nU1UwAIBGzcIoh/U/HU7gc1QavCnRrMXPkYyeyNPqxi5AtP/zellDgygFDJpkkE8GagJUQAwH5jy/x6g/VsSgzZvPZNkhg9aoKM1zbAvb7Tr25ziiCZOE6olF2KuVE1zJPpWqUm/bYri42pgrceSonugCyHfNC3A6UMNEyj6cPBbhNJR4URtOBGZiLldSoLix3cLd40EuqyXbLqpKU+U7KU9S7Psc/YmnJPncWWnMdR/sj7zKbB0QFZazR01YoYtj5QQtuI7zZLd9BfPkAPHZ5kmlBetZbbg4IPKJtaaT/tmWhUGLwJHGoHk+x4PTYeXGfiA+rDcnQdvr4OZ2u3LlDADaDQeDeWYCnWHlKjsQBHEhg5a+OVQ4DwIR8zPMqXzLSqiKBK2IcYdgmap/Npl8jnPm1jw8HcJSwI6EEkfOMnvQBmMPnZGrhEEr4uK43x0p2Y/y+cnrU1Rl7AKIPenzfInj3ePqM9CAYhLfhx01BQNABNt5yaB81qoaGwFiT47lUlkM2kl1i30gbjZUgEFTcN/qjoWJy8M92VZwxl8Mnsu8RvieAhkUEEnzMs0LYtIkFYnFzmq9gElI9aHYwJy+sAAqZFDReo10iWPs7PAVMGgA8Pi8gc4Q56QK+Zpk0fOCfRn/VO3BAQSDnNlfF7o4VpelAqKlwPV5LtM0cn0wBtTsasG3TNDyjEIGEw+cq/lsO6vzJY7dkVuZGQQi2f2DAudI1SKcXOv+HCMlFW6YgNgj8wx5OsOJkr5ZQCjl0tuYli5BQ2picdQX1vBq2JH5lu1vPuxVZs8k6nZ+5XvkisGLKoLGpmPPHTB7+7ivRCraKhCgHiia7wYUc9/cOx2pYWJq8+WbD4NB5lUrMHItL4dBi8YHVA+I1xoOumM3lx3c746UJNWy8pa3/1X1RAJISBxnr+VEzgBUUOgp4mL64FRNwQAQ1zKvp0QasWwpuG/NmoXRHJt91YWevHPkzvEArZpd2cEUAOqOjbHnh3LEqsEHELGWeb2WgkFTwNbJeUlZpiRT0iQVwf78qn5PUV9M5HaYHXz3FUm8gBzXyCkGjSm5jk/srOC4P8ndI2PXV7IfpcQxz8lOlcQREFL2Tpb82op6rFWwTJcKsFoj10fDsSqzrPKdlCfNUzX2AZDPWn4PpnCDrb6WZH4yTVAsO8agVTTkWWvi0noD//L1/dzv6ykyUrqy0cR+d5zfgzmqPqRdYqNVS3+ul49BA9KyTknVVzWbACL3p7x+pqP+WMlagGS1sgNUVb1MgDQJCf6SEli5no+7x0M1CVoBe+yDUOKoJrHOY9B8n2O/qyZBkxXTvM+mimWyLNGEnmcSIl8QSkxCmg44ny9NVSFxlNcx76B8cKrus7XiDFrK4Xj3eACfA9crDPuOrwXkJ/F7nWFli32JRs2aw6CJAGlbgcSxVbMxlBLHzMHpago97QISR8F6VncwBUTBbOz64bVUk6BJt9JsKbsYZquArVttoO5YuT0/ftiDpiZBy5PKuZ4Pz69uRQ9E74m8xKKrSAYFBAlaKoMwnaCpYCLlsPq39rNZtJHrKUkGJYuex8Z0hpPQfKsq1po1dLOcsWNDj1XctyIs63DiKdv789bqKnIVBcR9G0783GJVb+wpYdCAOb1ajIWGW1XPSMti+OR7LuO3Xn2YGcP5PkdvrEYqKgs9eQ6cHUV9s4Bwa//mYdBSEAb6CpiYiEHLDgg6Q1eJ/TIQBQRZkPbMShi0mo0Jzw6s7p8O4fk8HPhYBUVYpsPeGLbFlDQ+rzSc3IPrsD+G63OlDFqeNE9VgibX83i2zX7omKdC4hj0imTJHF3Px1F/rEjiGDSI5zBokh1UwY4LBi07QXs3CGpvKkjQ5jE/ns+x3x0ruWdAIHHMuY7SkEcFy9Ss55sNnQwmOB26ShI0GbTNkzheU3BmASLYGLl+WDRQERAXcSvtKUosLIvh+larYIKmRuKYF+gPg3ebirXqjoVmzco1FeqP1BgJAELieNyfzJ7zMz1oChi0C2L/5skcR4oYtPWmg5rNcq3GeyMP7Vr1Xj5AsHA+j2bUTYFFPdZqJL5BgpYjOxxN/Mp9U4DYj9sr9TkMmpq5fEDUCpL1vE0C5n9VwVqAmAWYnaBFDJqKPfn7XriEkevjS7eOU/9/WTBrKeyvyxtrocp5FsiROC4Lgzbl4pjyoWQFT4VDWXtOgjbxRAVDFf3ZqOX3jkibU1UMmnyo0gIr6X50XUGwI6noeSzTVrte2ZAECCReBXqZVEjlijJoKgoGgLiWHlimscu9Y8myVg+I5Ysrq2hw2B+DcygxrYlMQvIZtAuraow0RA+a/NvsnnvnQAS1j+2oY9CyEovD3hiez5XIUoH5EsfDvtoetElOD5o0O1BxjhRhIoVBlJrrWLcZxq4X7n8Vgdx604FtMRxnMGiezzFQ1F8EiALDu1kJmmWFRQpVEsfuyM0sVskzWcVagBh7kOdWKuSU6hg0IKXSzpIMmgL3we02LAa89TA7QRt7ahI0xhh2Vhq5TORE0VpA1MeWKnMMzg9PEYN2YbUOxuZJHNUwaIBQduQxMVKJpYKNCQfDZ9y3fpAMthUxP7vrOTMVmSXaLlB9DhqA8PzOMhxSKTmXQ+gzRwhAShxVJmj57TdZOBcJ2pSLYwpkRUFFVV9W37J60GT1ruqwSImGbWGcE1jdO1EXfDdrdvhQpQVWcpjeje3qa9kWQ92xcivfKuZbSTQcK9e0Q9XMKaAY87PfUcMyASJI9TiynQdPBlip20r2ZE0maBnXUj5r2wpkqTWbwWJzGLTTIS4qSmLEdcxm0G4d9lG3LVxSsF5UoEg/mKO+QXX7P6/Qc9Qbo+5YSpKApmR0gdxzRInEcU4v63AS9OgqOB+BwCTE4+G1VJGgMcaw2aplDmSX8k0VVXZAWo3rYdBkUTTLgU0lgwYEYxBygp2R66GhaK0ibAwUSRwbjhiynJtYKGJ+AFGoyWM+VfW7AVEfWyrzGetBUyEDdGwLF1Yb2MuVOKq7jrvrzVyTkMjSX41JCAAcZty3XniOqJM47nWG6f3ozILPmRKzFSDq0z3MkEuPPHH+q9iTsiia5xrZV9TvBohRLaeDSYrEd0kYtBAcmQyaYzElQ0Vlpd7104OdjsL5OIDYcPkSxwG22rXKM6cAYRIS2YzP/rzbRwMwpiYZBIJelRyW6cFp9flWEnUn32wldANUEHzPkzj2Ri4GE0+pxNHNkTjeOx7iymZLUQ+O+BmTjAQtMpuovv8ZEw32uS6OnZGyJH6eSci7h31c324pYXTnSRzDvkFVBYo5TPxhb4ztdl3JHpmWiqYwaApdFR3bQt2xMnuCVc5AA4LzWLFJCABstGuZDJpk4puKAqsb2y2cDt30+ZosKtKp7MPJMgpRzqC18hm0ieejoaCiD0QJWrrjm9j/HNXt2iW22nUcD3KSJk9dYrGzmj8eQS2DJhO0bAaNgykrUFxazxiPEEBVLx8wn0GTxUc1cuL8wfDyHFERKwLis008nl5YssQ5Urerm60AQgbOGDJnHMrYTsWzvd5y4Fgsd57i2OPK9v9mq46x588qrpZF4hgh3Wb/IHDMUxFYOUGA6ma42J0O1NnPAvMr3/dPhrisKGFq1Kzcyvd+V8xlUrUx23U7t7lfZfA9z2ZcZS/TPHt4lZJbIMb8ZDrmDZRIYIGoQJGZoEmzCQVSOUA6Aua7OKpgtACxH70cm/13D/tK+s+A+S6mDxUWDICAQc5j0PoTJQ6OgPhsPGTiZ6/j7SPhqqhqj7TrdqbEUWWPLgDUbTuUHALqEoutdj2TQZMzm2oK3l9AJC2VifIUmJA42hZTIhuWCVoWY6EyQAWkxDH7nTJ2fSWfC5gzn0kmFlyNxBHIT+IB8dlU7ccLq/kSx7Gn7jrKWCn1vkmJI1cjcQSEK+A8F0dV+/HSegMPuyO4Ge9Llb2sO+H8uvRzxA36gh1LzWeTrFZ6/5SQOKqKFW2LYatdzyz0SEWPCnacMTa3d3bi+UqkmwBCj4XZ67h0CRpSA4KDnjpDBrm55WZPImTQFEkc5zFoh/2xskC/4eSbJBwPJthQYCIg0arZGGSwWhPPx0FvpEy+JivfWRa0e50R1puOkpfpPIfKMEFTJF8TDFp2gnb3ZKhM4jU3QZMMmgI3QEAku1mJruv52O+qS+Kb8R60lGt5/2SojD2WL66s6ygrvOrmoOX3oB30RthWwHoCwXXMYeLvnw5xZUONqyIgZI5Zia7KGWhAdN+kHEtVALLVrmW6OMp3TdWRHBJyT6W6KwaBlSomRspYb2UMIlYZoAKCjemkOqIJTDyOmqPmOuZK84K97SuSOALAZis/QRu5nrL9WEjiqChAXc+9jtLFUY3EEZgvOxxO1DFo17faYg5vhlwuZH4U3LdmzcZK3c41CQEikqEq8ve/cERWdY4AYk9msVqhokHRntxeaWQykYC4liqkm0BOgrZ8DBqQlnU+7I6VGTLYltDVZjJoQYKmikGrz+mdOuyNFQbDMZOQFLncSX+CTUXSTUAkMoMMBm2/OwLnUNqDBiCTjdlTOHNKSlqyeqeOFFqaA4JBcDMGVY9dkcRcUWSSIBO0sZu+/6UTnQo3QCCfQT7oBfMNFd23ds3J7EFzPR+H/bES8xMgJpXOKPTsdUbYaNWUVd/nuTjud0e4qKiI1XSs3F7W/Y66ghmQn8TL4c+qpKLypdwdTeBYTFnStNmu42QOg6YqsJL3OZX5sURgpWrfba/UsdZw8G6G+6A8I1X1hc2VOLo+6hm96mVRsy20anbGDC8pcVR3LfMkjpxzpUnTzmod/bGXyUyPPR72I1dFrklI8E7jgVxOBS6tN7DfHWcWx+QcNBWQBYrbGT2fKntZASFzzEosZMyqKrGI7lt6gcKFpSzRBYKigQaTEECom/LmN04UMshhgjZTfFnGBC2NQVNoaQ4AjsUyKWspcVRls9+Y0zt12BsrlJPl944cD8ahJbQK1GzRcJ+G0FVRocQLyDa32OsMlRkyNOtirSwGTQYQKsYHACLRdTNMQvY6Q3CuxuUTAOpOfg/aYW+Clbqt7GDOC76jPaLKbMWK9WBOX0vpTqmK9XTm9PKp3I9A/hw0zjkeKkyaWvX8c+Rhd6SMGQRE0czLKJgd98do1dTtR3mO9Ebq2ApgDoPmSwZNsTQvlUFj8GChqeizMcZwc6eNtw+yAtSgv05REjNP4jjyfGUMGhAwdjkMmhhUrYhBC/ZImgrE9Tl8ri7Qv7CS3880dj1lvXz5TEzk4qhKmid7B7NMIITEUR2DBsxnkFWtt7OazTLJmFXVdcztHbSEUZTKM3Inj0Hz1CZoeQwy5xwTj8NRtP9lMft4WRk0abPv+x6yetB2FCUxQH5AoJNBm3g+OkNXaYKWV/k+6k2UMSNAkOhmmK1IiZcqk5CQQctIdvc6aoZUA1F/UZat/+lArZFMq2bD9a1UOZmUxKhiWedJHI/7apP4Rs0Ond6SUL1HWnUnStAS58h+R50TLBBJMbKe7WOFPWFAvsSxN/YwnPhKJbdZiS4gAiPVCVqWouFkMFFWCAHiEseJUvnOZruOwcRLvUfyjHQUsXUrDQftup3ROyUMh1QFjADw+M5Kpq3/UKHECxBB49j1U4s6IrBSxzLJ9TqjbAZNKG7Usazis82eGaoZhHnDqlVKRdt1G7bFMkxCIhdHRXlFqMrJMgoREkc1i13dbIKxyLk2CZUSR0AMa8/qQZPFcD0SRwseVyc5BPRKHMWYifzrWKeWOC4LgyZt9q2UJ7g/DhzzFAYENSub+TkdumAMWFPU0Fq37cweNDlcVlUg16xZseb+2Wt5Mphgs6UuaHRslinxehj2aalZr57DoHHOA0MSRRLHOUO45YGmao5GWzJoabLUgVq2TlbfMhm0vjpGF8ifX/dA4WgEQPQy8YwezMjYRVUva2A2lLH/uyNX2RkC5Jvk7AeBujKJY06hZzjx0Bm6ShO0mm3lMGhqi0rxHjSV1eG8YEd1DxogWLQscwuPMzQUJmg3d9q4fdRPVZ0oZ9Ba0nBiNtj3fA6uOGhca9ZyGbSs0T+LQO7jNDMZlXP5gMiyPZtBU5foMsaw2shiIqMeNFXMjzReyjIKGbm+Msltw7Fxaa2J2xkM2tD1YFtMGRuzs1LHQYYVvSz0qDd3STcJcRWahADisx31x6lnvTxHVK23s1rPnN8oYx9V1zE8s5aVQZtCMrAKKt9KGTSbwctgfk4HE6w2HCWOkYCUJmUMs+2r/WxNJx5YTb9YJp6P7shVzKBZc90wVSUW4dDjlAfuZDDB2PWVBY0124JjsVyJY6tmK3vAa7YlbPZTHugwQVN036TEcZyRWBwpDoibOQza3ukIjKlLmlr1bOZHJmiq9ojsZc1KdDtDdYMwgcjFMU0e9VCxaY2QSqcnaA8VJ4PAfAZNFVMNRC9lqgRt5iWNmIujoootIK5/ZoKmUJYHiMHYE4/jfgpjoZpBWA+v42ywL4tzqnqngGDuWqqkUtwrVWwFIGSwAFKNQkYhg6bOxRHIY9DU9eAAOVJRSyZolkIGLRgwnmEUMlJoEgKIPrSsuYMqZ9cBolif5QYbuTiq2ZNyuHaWSYhHYBLCebprZFSgUCQVDWLqNBZNdYK21nDA2BIzaNNIJGg9tZVvQCQWk4yAoDN0lcxbk6gHfVppwwDl5lHpmJfVOyI3j9IEzc4OrDrDCWyLhXLBqsjrQYtmTqlh0ADZO5Xdp6iqRxEIJLdgqRJH1QxaKHHMSJqONTJoe50hdlYayg7Kqd6p5DmieDQCYyyXie+OXKwqTNBkMpHGokkGTeXYh6xE96HiRBcQAUdWwUy5xDHYa92RqzSIW89puFfdgwaI92FqD5olJY5qAysgK7FQ34MGpPfFTFyZ6Kr7bOvNWoY0T0oc1e2RjZa8jtkMmnKJY46kTG2BIus6RhJHVQzazkodtsWyJY4KGTQAuLzRzFxLpSEJIBLdice1MD+2JZjPVAattYUTrCndI9tBDJ82/mGkeP/LmXJpTreqCz1WMKM5z6E1898q+Q10IsEiyAqQapMQLyOwOhmMlVZs86R5MkFTFRA3HCvTZl++FFQGO3lmKyLRdZTp98MANSVpUi3xAkTAkcegqUziLcbwy+7HwT/6kzP/H1mClmkSos5VFBDXMUuaJwaZKzTSsC2ET/WMxHGMhmOFVUMVqNks8zp2hy5WG+r2SJ6LqWp2sBWXOCaCqpBBU9yDlpXoClm2+vO4O3KVS+WAbGkeoK7yDYjrn2qz/8Kn8a9r36a0B20zs8ciPgdNlcTRyVxLtZEAkMP8xHrQVCHTTADA2JPjCtR8tnbdRquW0acIcS1VX8e8OWg+LKi6lJbFsLvWwP2T2c8m3TBVFl8urGb3hakcig3MkUordoOV66Xu/x/6X/A/t39CucQRSGd1VUt8rwau12nSVFdxDxognu1vSpt9+RJSZbMP5DM/Bz21hiR5gdWR4gRtSpqUqPypNpsABBOZ1TvSGU6UGa0AMYljynWUL7wtRXOggGDAcl6CpjBotC2Gf+Z/FP4HfnTm/zsZTFCz1TGReQma53N0hq7SJL7pWJkujg9O1TodWhbL7kELXA5VFQwAwLGt1ALFcOJh7PlqJY7SuCZFLv2wI6SiqsY+iHEd+VJRpQUzO9u0icokpDt0lVbZ83vQxB5RGezvrNZx3J/M7r/v+M/wj51PhaNCVGAjR5o3nKhNLOT7KW2tMEFTHqCm9+AAAMuYTbkI8lgtmeiqCogZY7iy2QznCCahsgcNENLUdIljsA+ZpfTs3WzXU5N4GR+oZJAvrjUy+5lUDsUGonOkO5q9lhPFLo5yvdT9v7qLQ6+tXOIIpMsOVRdfHttZAQC8k+I+q5qJBEQBffkljhwpDJoICFTKrvLcB1Xa3gMxaV5KYiEPapUzp7ICK/nCUylxtHMYhFPFPTj1nOsoP5vKQK6Vx6ANXGWDzIEocEsLUo/7IkBVxkSG7oOza3UVm58A+fbwKo1dAHEdsySOR/2x0gQeEAd86nUcEVzHHAb5YXeM7XZdWaN608nuQYuMjeh7Wceuj/7YU3pmxaXSSgPUVrY0zyVg0DZCM43ZQG44USvxksZSWQGxbTFlwU5eECdl2Wp7p2oYTvzZ9xhLL/RUwc5KHYyl28PLAFVlQHx9q407GQnaRDGDJkxCshNdZQ1oAdaaDrop7ptRT6RKBk3syTTGWvSgKWTQGjnniKe+lzXTJAeSZVX32XZyChTyvqk6k1cbDi6s1vFOyvxGbQna8jFoHLMM2hhrDUepZCOvKf2wqzpBy6583zse4sKquh4cy2Kw7SAoTCZosgdNoYtjLec6dhTLACMmMt0kBFD72fLmd6lm0KzgQfZTDCBOVZskONJ9cDbQl/Isles1nfTr6HpiALfKvkFxHdMLFL2xh5W6uoQJEC/KtOuo2uUTmC9xVMloWRaLrl8yQetP0FY4Jw/I7kFTLe8Fpl/KKp0O13LMLaJB1QqTpna27HDkemoZtJaU5qUxP+oszQHRE2axdKfDCZHEEUhjPsU5whQmFo5tYWeljocp5haqe9AA4NpmC3cy3AfHrmqTkIxA/8oH8e8v/iC+gmeVrQUIY4Y0lknGByr35IWwnyklsXA9bUx8yKDpMHeBepZ1qwCDpvJaPrazgrdTErQxRS9rq5ZqEDUP5yJBi+ag+TNZp6h8qwu8gcA1L8MyuDNylUoc85ifuycDXAsm1avC0F7DhDWAtatTXw970FQyaJaVaTOu2sUul0EbjFF31DbG5zFoqo1k5DmRxqCp7sHJkzjKg1olO5jFoO13xeBolRLHKQYtcY70Rq7S/jNADmqf/WySiVTbg5Zd6NnvjpSNs5BgmQma2h5FICiYpZwjJ0FCQNETDKi1a1+tCycv3QxamuHEcKJWdtWsCbvtLAZNZfHUshi22unzkkZEDBqQct/YzH8owcW1JvZS7OFHintwAOE+eNAbp46LoehB647cWZfZehu/dvP/jpG1omwtAFhtOuE5G0ckcVTbgwZEve5xDBW7OK7mJWjSDVbhOZJp7gJxLVXukZptYa3ppCdoiuegAcBj2228myNxrCsceL/Zqi3voOq8OWhdxYE+kD2o+qgnLvC2wn63PJOQO0cDXNtUxyAAQNdaw//7fZ8Fnv7E1NeP+xNYCue7AQGDkDOuQG0PWjaDcNIXSYxKjXuznu7iyDkPPpu66ygZNC+FQVPdgyODxDRpXkfxkHYgGP3g85lERlokK5U4MpbpPtgbuVhRnqCxVDdYeR1VJoSysphWoFDNoAFAeBanSKVVSg6B7J7gyHlW4Xk8xaCpez1aoSNaGoOmvgdtI0d26PlcaZWdMSYkPBk9aCoDVCDbajwMrBQzCEAOg6bwnQKIIct7aRJHxTbjgGDQAODO8XSQKgZ+c+WJrudz9FOSQd/nsBXK8gBxtqYxaKp7IoFofEmqxFGxSUiei6mrmUETn03ts72zUk+VOI5dHxZT+9lu7rRx92Q4U9SklDhOFyiWJEGbxvSH6hBUvh073R5bDnUkMQlJBPucc9w5HoSHqCrYFsPAas+6OA7G2GzXlc13k2tlm4ToY9BOBuqDxixzi8HEg+tz5SYhAFJHMahO0BhjweiHNImjemmerGQmr6UcMqrSxTGvB6078ggSNCt1XEGHsgct1WZ/rDxBizf3x3FMwKBlmQ1JuaBKRjdeEW4ofEEDIrhKc3GcKJ5fBORLHH3OlTnmSaQ3watn0ABhdpM+vyhwX1MsqQRS3DcZTYK2u9ZInd9FIXG8Hqhzkk52FP1u89wHbcXXcTUjsaBg0GQ8mJ6gqbfZB/IH3qvtQcuXOKpO0LZX6qk2+6oZXSCy2k+eW2OiBM3zOXrxAsWyMGhTSHwoCgbNyUgsItt7dcFOFoN20Btj5Pq4SpCgZZlNqJTKAVLiNbuW73N0x67SJCZP4iWNNFQi6zrKh12txDHbJER1ggYEzE9aYkHAoEmWIplYyLkyqk1Cchm0utpAsmanm1uQmK1kuJj2Ri4GE095gsbCBG3WDValTBrINm2SFXKVBbqpBE0hgwYEVuM5PWhqGbTsBM3zecjKq8JmK33ODw2DVgvVLHFQVL7nMWgqTUIAYHetiYed0cxZT9E7FQ50TkgqJ0SBPpDO/PicK937gFACjVx/pmBLwaA1azbWGk5GD5raAoUsIqa6OPrq9/96s4ax52fOXVO5FiBi6yybfZXMOBAzUkqcydH+V5ugAcnzeBkTtJnKt6s0YAREQJDGIKieSwbEXPMSB4ls3lXOoLHsxEJ1YJWVxHRGLjhX38sEZNvsbyg0CAGEZCnNtCOUwSp0scuSOHLORe+U4gJFzUln0Ch60LKSz73TIRhTy1bbFlJt9j2fYzBRz6A5GS6mJBLHkImffpGqHsAtEfWgpfQEU5wjKYWeXhCkqLxv8SBAdUCQNfRYJvEUAUFa0sQ5lCol5HpZDJpKsxUgqLLnDHNWmVhkDhgPGTS1e2R3vQGfR2odCQoGbb2Vzg5S9PuE1zElsXA99QnaakYiQ3EdASG7Tev3VC0DrNkWWjU718VRJROfVaDgnMPnaotKgIib0uTLwmxF7Tki45jkuTUh2P/hjMOUz5aH85egJfZDZzghkDimJxYys1cqccyYX3TvRCRoNAza7NeP+mPlDNq8AFWpxNHO60EbK5c4WowhTb0pDxeVMq9I4jj99ZHrw/U52srdB9Pt4SkYNCcrQQvmkqnUnFvxHrTYQdIfq2digByTEMn8KJWKius0TOz/MEFTaLYCxBm06P74PsfJYKJe4pjRy9elSNDiJiGKg7isYb0UPWg128JK3dYncUwbxArBWDRVB8PtOo564xnDCapB1UAa80MncQRmWa0xRX9dQxrXJBmEINHVJM3zfIIELXhHJY1CZJFTZRIDiMHfaf11I8UjLYBs2SHFPMWs/S+PY9VMfLvupF9HAgYtq0AR7X+FhZ40Bm35JI7TNvucc3QJGATbslIDgsPeGLbF1A5GzWDQuiOxSVXLNy0r3a79uE8QWGUxaCETQzC/KKsHTbXEkaVfRwqW1c5g0ORBpjqxyOtBaziW0gAoZAcT++SwN1Y2WFnCthg4n5U49oJnjcQkJDXRdVF3LMVW9OLzJN1nH3bEfryoWuIoX5ax63g6nMDnak07gGwmPrxvCqWpUyYhCu8PIJKYNKtlChdHQNyHNAZNJGiqJY5ZDAINg+b6fCbZpTAJyXTNy3AxrQpZ/OolmJ9wfpdiR8zVuqOFQct0w4R4r6ne+/Kd2BmlJxaqE+tWPd3VWUh81e7/1aaTykROfI6azZR+tmju2vR6MvZRnDOhXU8fu0PR7xZJHNN70FQO/E5fa+kSNExlnSPXx8Tj6ivfGXN3DnpCvqNSHlLPaO6Xm7Sl+OWWKXEk6R0RPTjJSqccZqtyPWlukbyOY9dHb+wp79OyMq5jyKApTNCskEGbXk++xNvKe6eymU/lcmI7PUET0mX17qxpNvsRE0PQg5Z2HUdqB5kD2VJRKZVS3YO2Z1/Ba60PAlfeH35NJgOqJY6OlX4de2MXzZqllGWN/yzVDNpmK919kKIHDRBV2ySrJaVJqgPUC2t19MbeTGIhekfUriXNLd7en55hFEkcNUjKiExCQtOk5HuMIPkE5HymxD3TOk9OFChUS27lekkGTSYWqhnkVs1OHVeg2iQEyJ4p53q+0qRCrJV+3+R1VJ7o1mxMvFlX57FiS38gZgCUlDhKsyHqHrTlY9CAeNbZJXBDA7Ln7hz2RkqZESDbfU0maE3FwbdlsRkmZuL56IxcpYOcgWz52oPApeqyQgMIQFzLpFSUImECxMGUQqCFDJpKxi5rDppk0EjcBzMYtPWWYkY3OKSSZho0zDhDuMoUg0YjcXSsdKlod6jeeTYrQdsPGLQdxT1oY3sF/7/r/z2w/WT4NfmsKbfZz2DQugQOvnEoN7do19Afeym2zpJBU50Q1sJZcRLyzFLtmndpLTCcSFjEu776oPE9VzcAAF+9ezL1dYpB1UCWpIwqQRO/ezLYH008MKa2vw6Qn00Hg5ZjEuKrZ9DCBG002zsFqJfmpc1F5ZyTJGhipEW6i6mjfH+kM5/yHFF+HYN4N3ktKVwcZSyTxcSrlDhKVcm0omHZEjSO6cr3kK53JM197bA3JkvQktI8eUA3FdPjNmMzTEw0T0g1OxLIrhLr3T8RL/FdxQla3bFmruP9E5pk0M6Qih71xlhvOsp7p4BZiWNvTMWgWRi76dI89YY84jolryVF8D01By2GiIlULBV1WDqDNpwoTz7DYkjiOu53R9hs15S7bTkpRSwK6TIA2Blz0HojV/k9i+P6Vlvpz9sM3h3JeWFhDxpJ8K2HQdhdl71T0xbxrseV9jIBgkHbaNXw1TvTCdqYwH0NyEjQZBxCxKAlk/ixx1GzLOUJYdroB4pEd6XuwGKzjnlAYLOvOInPMgmRxzFFYpGWVABqZamAMI67lRiNAIhiiOq9L5MYXedImKDNFCjU96A1HBvNmpXCoKln4lfqNmyLLSeDxhj7NGPs5zhP9mnRJGhZPQ8HBAlaVuV76HqwLaa8YmZbs8GOzOopKt/AbIL24HSI1Yaj/L4JBo3erh3IkzhOtO2RPmnvVAqDNpgQSPPEn8lgn2J8hjVlsz/LxFMwaFkmIVLbrwpWFoNGMKQaSDdSonBVBKTNfnqCpnqtOD7+/EWlP0+y6keJBI2qB62V0s8hE3jVkrLQsj3BoE18HzXFazHG8L5rG/hKMkEjYH4AwSLMzq+jcXFsZcyF9HxfOTsCiAB8RuJIIBW1LIbNdrbEV3UvU1bvYJhYKF4vTeIoYxHVDNrN7TYOe+MZVsv1KJjIdCMNKpMQuf+T13LsqTdbAUSBYmYOGsH+Z4ylON0uSYLGOf8s5/wzonoUfSj58CmvRmcEqBQMmmQQksHOYOyjVbOVV8xsa5ZBky52K4qr0fKFkmQR9jpDpQOIJdIYtDBB21C7nrDZn/36UX+sXE4ZmoQkA2JCBi1t/x/1xwQGEGfEoMUljmO6HrQskxAyBi01QVN7zwBx39JkqQBFwUwMqk72soo9ovaeSWy0asrZua1Q5jIdpHoE9tiACHaSjmjyEip+rYTugw9SGDSKxOLp3VW8s9+f+ppWiSNxD1oyQHUJZIBA0M80ypA4Ekh8sxM0xfcsw9yCSuLYTmHQKIxdAOCxHcHsv3uY3P9cOYMWmq0k3TB92YOmdLkwlkmeWxRz0ICgBzOZ6Prqe9CAlFEkBS4eXfmRCiyeoAW234qr0Wk9D67n42QwUTqkGogqOTMJ2sRTOuBQwk7pQRsRHcjZDNpIOaMFZEgcT4ewLYYd1fctx8VRtZwyix0JGQsCm/20BG2/oz7YDxm02GfzfI7+2MMqAcvkp9jsSzdA9VLpLLMVGnYQSEvQxnjP1XWlawHpZySF7T2AkIHx/OlgvzfylPfWAcC//YufUJ6sA5FCIYtBU20Skia7Ct3XFEdWG60a6o6Fh0kGzeNK5d4Sm+0aOiN3yqJ9Ela+1csA7x4nJWU0CVorwyRE7H0KBiGFQSOQeAHB/LpeRoKmONBv1ixYLCo+S1AxP80Um/3I2EXtWje3gwTtoB/2YwJBvyeB4mq1MVug4JzmzAoLFEm5KIFJCCDOrZlB1UTnyNIyaNNIkSZR2OwnKt/Hgwk4VzsDTayV3jsymnhhw7BKpEnzxkRUfNiD5iUTtCFJgmax2eTzwekIu2sN5QeJmIOW3oNGxaAl1+tRmYQ4s+YWg7GH3thTLpezUxhkqufasTIYNKrEImcO2hqBDBBIMwmhkTja1mzy2SNyw5S9WclCD5XE8fJGU3mvJZA9rNT1fdiWWntsQAT7SakcVYDKGMPuWmOWQSOQOALpttVjzwdj6oNGnQyafAcn75tLMCsMEAxCZziZYqep4gExvy7FZt/nyo1kGGOpM7Xk+aj6UrZrDsauP3X+ekTmPzcDBu2dBINGIXEE0o1kKOegAbP7f+yp768DRIFiZlA10TmyCIN2/hI0Db0jNXvWZp9ivhWQ3V80mHjKLfbleslAn0rSYIcMWnQtOefYI2LQ0vpiHpwOlZuRAEGCljauYDBRb5KQ2YNGExDX7VlzCznwWPU8rTT5ZujOStBbmtaD1hu5YEz9SAvHnjXSoJrdmOaGOZx46IxcEoljOoPmoWYz5XN/spLP7sjFKqFJiGqEEsfBLINGEXynWVZTSZMAIXOccXEkYtDSbKtlEKc6acpzcVQ9B82yGOqONcMgeITBt8+jYh8QuYqSMGiZEkf1n00Mj9ZkD18P3Ddj980lGEAPCEZ3s13DrRmJI00So9NsSL6Dk4k1hQEKkC5xHAdSUdV7ZJZBm4/zl6Cl9KDpsNk/6AZ21Zr6iwYTL3S0Ub1eci3pGKU6sKqFPWjTwffY85VfRyD9sz04HeIyQb+bYNCmv+b5HL2xRyZfS2PQGFPv9JnG/DwMErQLa/QFCunOqpodsVh8Dlp09HVHHto1W7lxQt22QpmLxGDiwfM5gRtmsEdi11Em1TQmIbM9aFSMlm2lM/HUJiGq0a7bqNvWTB+O53ESlkm+P+LVaKoeHED0MyVd8yYejblFWoI2cTkaJAFqDYOJN30mhgya+vVaNTvsX5IgY9BSZkGNPbFflM8BbNdx1BvP9JJKBlk1VhpOKF+XCMdMKJcTi3Mo3jvoE8kAAZHsJofQuz5Nv2danyJdopsucfR9muso9sjsmUXR7/bNIXFk0wmaqNiq/RhpNvvH4YwfTS6OE0954A2InrfkDG6qHrQwsIp9NqrZXYA07pi+joc99a6KQLrNvjSbUF4wCJP46a/3Ry5JYpFmbrHfoQn2UxO04GVAMQcNqT1oNIG+k2IP3yEaDRKx1dF6kvXfoUjQUhi03shV3g8p1wKmmXg/KIZQmYRQgDGGjXZtxmafjEFLsaz2iQJUQEjikj3Ari/s4VUjnUHzlFv6Awida6dYBCKJIyD6p1JdHIlMQoDpzzZxJYOmdr3tlRpcn6OTtL7nNPsxj0GjYn7izxqVOyuQzsZMCAZVA/I6pie6ZHPQEvfNJdr/qw0ntaikeu8DQuJ+OphERdTlkzhyTPegTbDacEicDpPBhzxUVAffjDFYLI1B85UPqQaEHtpNZGhUdrC1lMCKqk8FyGAHJx5aNYJkMGUtqrl8WUYyvbGHNkFiIeagJSWOItgnS9BiyS5VEmMxxBi02Dkyphl4XLOF+2Cc1aJi/eU54qdcxw2FQ9Ml0nrQqAZHy6pwfP/3J3SFHkrsrNTDZ0mCygCildJwTxWgArMmTZzzGWMXVchi0GgCqzT3zSBBI7iQzZShx3Q9aHJYb+w6+jQmIaHEN9GH5lExaPVZBo3cHj4ucfRoRloAYv8fJ4bQux7N/k8bIUDXy5fuYkolg12pOxhO/KmWDiqp6M5KHT5HTOa7dAkaZgZVUzRz1ywWHlISVENYgQxnxYmHFoVJiMWQdP6magoOq/reLINGMWDWSkmsB1RmKxZD0iOEzLQmwySkP3axQpDE153Z4FvK5VS75kUMWjyJF3uEIolJ6x3pEzFo8pCPnyVdokIPMDvjkCrRBTIYtLFLUnhJc4OlMnahxsW1RvgsSVD2oAGJBC3sQVO/Xj0xh5KqlwnISNA8Iqc3ae6S0uBPIRVNM3ehMNIA0iWO8rlWvSelkiXZh+Z6dAzyDINGbg8frSff1xTMz2YKgyZYJoJCT8o8RZ9IKi0ZtL6mAoV8X8V7MMeu+nEFgDCfAoD7J4GR0vIxaNPoDGkqtrZlgfPpfo6oL4bI+l6XSQjDjLkFlUmIk+K+JgMr1bO7AJHIxJMY1/Ph+pxkXEGazT61fG1WUuaRJLppPWj73RHWmw6hAUT0tVDiSPBs8/BQjEscPZLnWlYz43JR6YaleoQAMDvjkDIZdAJ2MI7uyCPtQUt1+jxnCdqF1caMFb3r0ch3mtoljnYiQRP/TfHZ1tMSNKIkJn1+HY1JCCDmZg009aCtpcg3w8Ra8bWU7sZHCat9n9MYoKw07KnAW64F6LGHl3EPFYOWlEpPiGYOtlIY3VDiqPizNRwLjAHDJINGlMTL90e8D42q0CPN6vY6y5qgcWDKJGSkfp4QECUW8cp3ZzhBu26TSFHSpHmDMeEctBmTEMmgqQ6+ZWAVXceIQaP/bHKWDEWim2bpHwXE6ud3AbOjGETvFI0MNtmDdtSn6eWzwv66+LNGw0QCiA7FKZMQOokjMD2ovUskcQTEOeJOFZXoEl3Hmu2v61FJHOWcKy9NKn2+EjTJoMWNEqhkgGlyIUqJo+hBm5V4UbwzmzUbdcdKMD80ie5mS45HmGXQKJjIVmoPGs0ekYluXOIoz2Jb8XrSAfj+zCgGTpLEtOvOjFSOzh5+1pBHxiIkPWjtejgHUILK6bCZMvCe6hxhjKGVsp5HlsSnJ2gUUlE5H/fB6WjOd0Y4XwkaMGMSQpKgpRoX0AQfQHrSNCQaVJ02v4uMQQsDqxiDNqYLrJLyTXk4U82T4xxTgRZV8B1KHJM2+2Mq17xZtu50MCHpZYr6i6KvhUk8wf6PKt/RV3pjl4SJlIFp3MmRUnaYPEeoBkenrQVQujimn8cAjaKBEhdXGxi5/pRRgkvE/KQ5olG5rwEpEsewl4kgG8SsUQKVVC6aXzfrwEYhcWzWbIw0SbzyGDTVAfGVjSZsi+H20bQ9vO8TBd91O4w3wrXC/a92rVCaN55N0Cju20arBs4xNZ9s4tJcx3aqxFH8SSXxTe/BVH9GyvdHN5GgUZzHF9dEgWJ6VmT+9Tt/CVrCJISiB81OSSyokkG53myC5tPY7KcyaB4ciyk/SGSAOtXcP6Jj0ERfTBQgyEOlQZToApiy2qeS5mVKHMceiWueldITeTqchNVWpWuF87ui+yb3I0XlnUvmLDGomiKxqKeMmZCBOVkvqz+9VsOxSOQajkaTkFqqVFo82+dN4ihf0nGZI1UDfHoPmviTIrBqOGKshCxauUSDeiWSCZrP6azoGUtIHCWDZql/tzSd2QCVih1sODYaM0wkTYLm2BaubDRx+2gw9XXX52ERUiXaDSeMNySoxkykuTiGCRrBZ0vtwSRi0NLmKVIluoBIdtNMQmiSeMmgTc8BpCgq1WwLF1br0wnanAt4/hK0BINGKU1KBjurBEEVMGsS4vkcY88nsdlPS9DGLo3mNkp04xLHoPJNkVgwNsXEyASNZuC3+DPNNY9qCPGMScjIpevlS2HQKJKKcH5X7LONJr5yw5oIsz1oIrGgkYoC0/uftpfVmjEJ0VVU4pyTSW7TetDOs8QRmE7QqCykmzkSR4I4DnVb9G7LPRj2oOli0IiCOMtigWteygwjogB1mOxBI2IHASHJj0scpSSbYr3rW62ZBI1sUHXNxtjzp5xFI/dBGnOLtB40iv2/mZKgkbk4ap6nmGTQpBsshQw2lDiO44oGn6Q4DACX1psJieNSJWjTAUGXKACJ3Aene9DWKYOdWJU9TCzqNEnTjGMkUYJWS7HHlk27bZJAbloGKF9yFFJRlpI0hbIrxclnxKBNf703pjJlSGPQ3NCSWfVawDTLNHJ9EtYTQKwHLdqbw4lP4+LoyARt2iSkVSPqZbVmjY2oGKbkrMjhxIfPaRKmNBfH82wSAiQSNEIXO2A6sKJyXwMiibyUOcr7RSVxXG9OzzCiCuIAERBP96CJz0oxqDp9DhqNDBYQVvunw6TklpHIYG9stXHrcFriSNaD2UgbHi3+VM1qtdMMeUKJI6GzaH86sabq9wSmk0+PkIlPzl2j7OVLNwmhKfQAIkELXRwL4FwkaIyxTzPGfk6MQRMXbuQKhz4KI4E0SQ1lsGMnDCcGlMxPiiHJ2KVhLNKkov2xC8diJJPak4nF0KXtQQOmh353h8L2XnWwJS9VMmnqj2kYtLT+OioGzU5j0FyPkEGbljjKyhkJE5/CIHeJjI0AOeMw0TeriUGTZxZF32BawWy5GDS63hFgui8mmpFKI3EEop5mN3RxpHmWV5u1qd4pKhkUIGahHaVIHGmkovrmoAFCwnmaZCKJkurrW23sdUYzZhoU11GOoOmlWN+rzqul2qmfMqiaQuKYxqBNfLo5aIA+Jj5p7uKFa+kxCaEqGACiB/lhfMzKMkgcOeef5Zx/RrCB4gNJSp6mBy1F4kiZoNnTkrLI3IIg+LZm5WtjIlvRNKmosIa3SQIEi6VfR10SR6qAOEoGo7XGro+Jx7WYMgwnHkauT9KDZqewIyOiggGA2IEo/qQM9MM5aAmTEKqkybIS+5HwzEr2oI1cun7P3HEdVEwrETZbNdgWw2HMapxqULUMGvUNqhbryQQtmoNGE+ysNpypBM0lCvQBYRQSD4blTqRg0Fp1G6OExJEy+VxrJq6jR8fWXdtqAQDuxVgEKoc+yaDFZ5OF9vCK94llMTQcK9XFkcokBEhKHOnmoAH6zIbEeITphAmgZdC6sR40qusIiALdYW8ci+WWIEGbQrAhQsc8TbbOovJN1IOWsMcOGTSi/qJZiaOn3GIfiAff0z1oVFXvGQZtQpjoSokcp0/inZweHKpxBUD02aIh7XTJYDz5FD1oVIG3lDgGDBrldUxJLDojl+TMAmYZtM7IJZm3BswyaDKgpEisU/f/2MNK3SaTtFHBshi22rWpYb2u75MEcTJoTAusKKr6kcRRrOeGLo5E0rymM+ViR1n53spg0BhF76AjeqemLdQJGbRWogfN9wmvY8pgbI+ovyiVQaYrUGRK8wiupYxF4xJfl2oOWop8kyrRBQSDlspEkvTpWrDYrMSRqqh0YbUOz+fRWbIMDFoaKO2qnUTvlOdzerlQQk4G0Di9WRab6WUauz6J5FAOunS96cCKIhgGZuWbAw0JGo9dSyojGStF4kg6riAh35QvbxIGjc0mMSPXQ4NAlgpgpgetS+gGmDquY0jjPAukDaqe0Mkpgx40KYOlmqUIpLOsvZEbVsjPG7ba9alhvZTsSKtuTw19lc+0DonjhHAOGiCe2ZEbmUB4RFbcgKh8751G8+t4UOihuI5Skj/NxtAlTetNB6eD2R40CkSMBf167RSHPo+wBzNpbiELFDSjGERi0Y2PRyB0cQT0MfErDXtacujRJWiMMaw0nMR+pGPQLgQS9/2uPP+XKkHjkB8oGgpMyaCJjSGDYV0mIZK2ppg7ZVuzboDClIGgJyxkEGIM2ohm5hQwK98chSYhFD1o4s/4tRyOPTQJe/nin01WmCjcMJ0Eg0ZZMLBTjGRoJY7y59JLHJ2UAgWpVJqxqWeNWuIIRD1NY5eSQZN7ZFrRcN4MQiS2VupTEscJoUNfOzH0lVbimDAJCSqBNaLPJt/98hn2fA6iHAaX15sYuX7MlIEuQUszd6GaAwWIc70zpJfKAZHD8VTvIKf5bFEPJr3EEQjs4VOSGIrkMy2x8H2aJEYmaNNmQ+JPnQwaVdFgpe5MJYSuz5UPaZeQJlH7sg9t6Ri04APJA4WC1UpKaiJrbKLEIiE7pEzQHMuaarYHAhdHEgYtpfJNzKBNOcu5tL18wDSrRdXLZ6fIKUNpHoEbppVgfqTDF4mLI8tK0KhdHKcljjqYeIDWJMSOseOc07P+QFR8iXrQ9JgNUVn668B2uz7bg0YUfDQzgkaqOWhAlKCRM2hBwUgG+5RJzJWNJoCod4qHg6rpegeHCXt4qj3SrgsmUsYFlHLKtcasNE8wn+rXkmdRfHi6LHJSfLzk/C6XkPkBRHvP1HXknOxzAelDuClaPuWAcclWR718NM92sufN9ThZUWkmQVsuBg2QHyjqi6Gr6k+C4CN0KCNKLJyESUjIWBANBk54hJDZ7KdZqJP2oNlsitGiNAlJm0028WiYH0szgyaLR2GCRsmgpSS6tC6O0xJH0n7PlB5MSpMQOzaofRSYyFAzaPLZlkEQSaEnw2yIYu/rwNbKdD+TS2QSAoizL63yTRE01pMSR592Dprc252ROJ98wiTmUpCgTQ2ZBcAIgsZmSs8P5Ry0mjNdSPWI3ACBqKDeDQrscsYVRfAtz6L4HDRS5qfmpA+qpmJ+GtPMj89pBn6nuThSzkFrNxxwHo1J8giZSGDWlIdqXAEgXByBmIvvUjFoMZt9yjk4tQSDRtkAD5stXKwAAFVCSURBVMwyPycDSlOG6UAHkDb7FO5rgcQrnliMPJJgGJjtQaOcg5Zmsz/xaDTgaSyTFpOQkEEj7EGTa8XnoE1oJLcAIolj8CetucX0dfSDXlYqkxDRyyr+m3JIu1wLiJ5tShfHtB608yxx3F6p4ag/CQsuHtGgamC2LyZyX1O/VtiDJpkY6eJIJs2blstRma0A2Qyacr92IJTJJx0BqfaIvD+T2H2jSyrE+SDjN/lIU3y2ZMEAiIJ9iv3frNvoT2b73cj6+WJzADnn4JyqJzJb4khifZ8Yj0DZgwaIAuA4piqjGlcACBVS3bZiVvvLlKABSDJoFNXoSFKTkO8Qya5sa5r5ORlMsFKnGWZrpQwhHhMxFlGVPdr8+90RdlbqytcC0mcz1WxG8mCn2ewL9x86Bi2Ww0QMGoVJSGI2GaUhT5p8U4vEMThHKGWwycRCSpcpTUK8BOtPVQxJslp6Et3YHDRCJp4aW23h5DUtzaOrDvdThudSze8CgFGw98I5aORsTBTsU13Hi6sNWAy4fzIQXwgSMxoDiKweNJrPFo6xCF4wLpHZBCD2SN2x0BlFSTVAy+iOYvEH5xyMEfUO1qwpQx55NlI5za7GJI6UbF0712Zf+XKhR0F/NO0GS5agWdaUY7tH+KwxxnBhtY79znj+N+M8JmgxBq1Zs0gOkmTvCGUDPCA2XlwGeDqckPSfASIgTs5BozJlSM4vGk48nA5dXFpvKl8LmJVvDiceSeANRAd8PCEcu0QMWorEMXRxJBrFAESfjVQqajEwhgTz6ZEYuwCIMWjiM+qyh/d9jg/9178BgKaoBEwXKCjvmVwLiF6esgKpa+C96EE7nwnadlCgklb7pC6ONTsxYFb8SZFY1BMM2iRYjKoaLQsdUuLoEjKRjm1hd60524NGYcoQmoTEg0bazwZEklRKBg0IeqdkUh18RIr1Gvb0XD6ATgYIBOYWEz3zu4AgQRtOM5EUS8kY6r/99a/j5bunwXp0hR7JsoYMGrFUtOawqXfLhNAkBxBKpNCUZ6kkjjEXxw6hXbWVCFBDC2mioDHNJIRCTgbMWvoDgc0+YYAqk8+9U0HrXgysRlUjKd8cuXQJWmizH7uUwiSEgK3LMQmhZNDig6objkVWCUxKU/WYhAQMGuEohjiDFpe+UCWf8etIKe8FUnrQZKJLOKhafjbOOY77E2y2ac5IamzJBC0wChEBMVEPWj3Zgyar+urXSvb8hAwalSNgY5pBo5qnJbG73sBe0DsiTyuKQdWhSYgmF8da4lmm7IkEpqV5ITtCWTBI9KBRDTNv1mwMxtNMDKCnBy16rinUQtHP/PWv3ANAPwcNiNw3qV0ca/Y0g+YSzkEDxH2LVA1LlaAh5uJIOfB1WuJFOeMHEAFIPEClTNAsxsB5YjAwEYNmh+yIuH57HVF9JGPQEsnnYOwRMgjiz6RJCI3EUfyZNEkAaBgS+bKUn61P6LwJpAw9JjQJYQmb/ZHrw2I0h39cmidfpM9fXsPvf+GS8rWA6XOEWuKY7FOUMnAKk5Cw0BOs1Rm5cH2O7TaNVJoaW8HvfRwwaEJSprcHjUTimHDNc0MXRyoGTZqEBAkap2MiASH1CtnI4PpRzbgCpiVlVEOIgRiDFro40rF1QIL5IWTQ0hM0TiLLA+T+mLZrB+gStLjEkXIAfRzyfUI9Bw2IYhxyBs22phg0j7hA0a7HXCOXi0GL0BnS2lUDcYcy2YNGyKAlXBypJI7JGVcAHYMm15NSF1l93KVi0BLyzeHEJ2MrrBRWa0I0riBMmKZcHF206zZpxSwe7FMlunK9ODtCOgct0dwvZbAUPQnxc0T2G/30x54iZf7jrCdAJ3GsJQyAKFUG4ZkVBJDHPSEPOa8MWtQEHwUgVMxPMylxDGJVEoljgkGTkjm6fiYLNZuFzxZl7wggKvsyaYoGVRMwaCk9aJSfTRYHZJDqerSJ7mrDmelBo0g+bUv0n4+96R5MKgZNFkNm7eFpEzTphAnQsYNf/at/ELbFZnreKN6bSQYtlIoSFSjqCQZtQlygWKk7YX/d8jFosUHV1DN+QgYtkO9QJjFxJuZ0MCGxNAdm5WuASECpPhsLGDsgsigmS9CsaTfMAWEPWiRxTJiEEPbgTEkcxx7pwG8g2v+DMZ3zJjB93yaecKOikMoBmJE4UiaDcWmeZNCoikqAOEe82D0DCOWUCeOOEWGfrp3oZZW9W9tEZkPUaIU26pGEh27GVTqDRpEzJRmLkEEjbLiP99hRGmkAIgCPhh4HCRrBemGCFmN+KFmtqNgSzUGjCoYBcQZ2h9PBN1ViUbetGYkjpSGPz6OzMEzQiD7bSsOBz0UhOuxBI0wG12P3LZI4ql9Ljk/pjaLnWqxFV6CQCZrni/iDsgetHZ+7Nucjnb8ETZqEDOlslmctpGkljkmTkBNCBi2ZfI5d8XA3iT4bQ5TE7HVGqNkslPioRtJMo0doxR31KYq/c84xJpI4MiakolMMGuGgXjvx2QYT+gQtkhPTstUzNvuEfYrxc0RWHilnd1mxc2RAzKA5GWckjcRxei05Q2zznEocowpxjEEjrOpPPB4GIJH7GoHEUbo4Bs/wJHRxpAsz4v0j1Axas2aHvZ1hDxpBIBeahAT7w/c5aWKR7CcVBQPCHrS4+yCxFX3NZtokjq0E80kucWxGcwApB3DH10v2vJG4RjbkYOwEg0bVg2lbmEjWn9h5FggYtKXtQTsDk5CxBomj3PC+z9Ebe1glD77FescDGezQXEvGopfZg9OhsCsmNJsAokOfclZSsgdNykPqRA92clYeJYMmP1vcEZBS4ujEGDRKJgaIB6bSJISQQYu5OFKOBYnWi86RAaH5CZAuA284FkngH5kNBRLHIEHbOqcSR9nP2Y8F4JRVfSAKGimb+6VULmTQiF0cgWl5NKUbJiDumwwaQxdHih60xBw0+iQmOQeNuActbhLi0ZlbAEDdsadmXHFCk5CkHb18rinORABhjNgbeaQJk8RKPZKmUrrBhgxayIzT2uw7toWxNy1LpTyz2g07GjC+dD1o0iSEMPjONAkhkgs59myA2qKWrwVn1nFf9nPQVKOFKQkP19pepat6J+Wbok+RKvGc3iPy5UbVb5E0QOmPXRKLfQChW1hoEjLxyPYjEBQoNLHVMzb7mhg0eSBTDle2YonukNgkJDlCYzSh62MNA//gJXoY9KCdV4mjSGQjGSqluYXc2zJo9Agr7Ywx1B0rZhJC6+IIiPNW7kGXsJcPEM9SJBeVEkeK8TQWHIuFMxqjXiZaKbYbT3SJXewie3ja5LMR249yPaot0koUXlyfztIfAFYbIrbpDt3YAG5aaWqSQSMZ+F0T52N/NG0kQ9eDxqaGtAN0zxogEtCR6wfn47IlaBDBXHfkYl2bSQidfAeYDlAjaRKVFbf4Uz7QRz1ZjaYJdhiiaktv5JJKvJLyTcGy0koc5eEhH3CqIDVpgNIdeWgTs4Oh4cTYI9uPQIJBC/Y/VTEk6kGTVWpKBi3q0+pqSNAcK3aOEM9Bi9jBqAeNKqlmjE31CRz3x7AYyPp0qcEYQ7tmT0scCXvQgGg/ULo4AtMBsUyoqRk0mQj6xAxaK5A4+j6PMWhE4xFilu3UNuPyWZbPF/UcqGbAavk+J5cB1p3pHjRKOXFYDAmfa5/YtCaaFxa6YRImaCsxaSonPEcYY1ipO9oYtLhMOjI2or9v/Ym3jAya+GCc0w58BTDVF+NYjExLP9XcHwSodPK1pMSR1hEtbhLSH3ukw2Xj8k3OuVaJ45iYQRNSnujv/ZFLJoNNOlRSuzhaVhqDRiRxDCtWEYNGZUiS2oNGvP/dRKFH2xw0wtEIQOC0FeyNo/4Ym+06KVtCjVbdwWAScx8k7EEDYrIrQmkSIJ7bcUwqRynxAiL1CeecdFYYEJOLul7MxZHoOtbsiEHzaJMYGYy6nh4GTRYxJ75P7nSYZhJCXgwJ2Wq6pBqYjlMpzX8k4uMRZCxCKRdN9qBRnZE1x4r6L0NjI0IGLYgBIifHbJy/BA0Mp0FSQSVfmzEJIayyA4nm/mBTNonla2GC1tfRgxaZdlDO04rLNwcTDz5hEs8SSUzUg0bFsk7PXOuT9qBNm630x7QSx/QeNKJ9Ig9enQyaJxK0ms1IzxE7lugOA8khVeCTPCPHrk/HekK8RGWV86h3fodUS4gARFhyUwaNzQSDFla+iW5V3bZC12NKd0oJJ3h3ysSTkkFoxRiSkEEjupDNmhUzm6A1Lkj2oE08WrOV+DgGj5gdrMcKBoDY/2QSxxQGjbKIFDlJ09reS6TNXaP6eGIItx6zlZot9ogo8khZth7mc/kkjozhsEdrsxzJ16Kgkcz2G4nm/kDWQD1gOZQ4Bj1olBJHmVf0xsQSx5h8U1Z6yBi0hM2+rNLVHLqAeGpQNWUPGpsOvocaGDS5H0OJI7VJSMxmX4uLY+A6S/kCjY8roL5nMz1ohBJHIHqJAsLYaJPI5VYXZIJGHaAmGTSPWuJYi0wZJkSutnHYluhBo56VBEz3GMmTmCoAF3JKPYN65TWbxBi0GiGDEB/HQG6z7yQZNDqJo5MYV0A9OF3+aGkND9AWKFITNEI2Ut8ctOhdFjJoxC6OQMCgLZ3EEcBBkKDtECVoUe9IFHxTMSPAdGBFbY+dTD6P+xPUbYuM2WIxk5D+yAstVCkQBcQ+Toe0c6fC6xgcjNQmIXbSJISwB82KMWic83AoNhXivVPUhjwzJiETOmkeYyxMrHsjl1TeCEyPK6B33pztQaPqvwSkVEm6s3pk6gldaNXF/C6P0wbf7YSLI7XEUdynoPLtcdJeDkDI8zyfPtAHpm3UOaYLPaoRt/Sn7kGbnYPmh7MHKdcbe76G4DtF4kiVoFmziS4lExk3KvOImXFAsFqyqETpBguIJEYyaNRFrDiDHLHVtHPQgEeMQWOMPckY+3nG2D9OfH2FMfYFxtgPFPxJOOyNABAyaDMzfjxS+U6qSUidesBsJHHcaNfIKvsWEzb7nHP0xnQ9YcC0xLFLPBg4Xr0CYgyaBiOZsetj7PmELo6RfHPsiTl5lHPQLDYrcazbxIOqwx40OgYNiIovlK6zybUAPbPrgFgPGmGiC4hKuCyCUM4A1AVZIfaJezlkUtFPShyJ4sYpF0ffJw10gGjP65QmxQd/W4xmH8YHcJO7OKbMQatRShxlD5obNwmh+WxJiaPv081Bk0mmvF8usVRU/mzO6c1/gCiW6o1dcolju5HSg0bmYhrtR5lcU+7/kEEbu2oYNMbYLzDG9hhjX018/ZOMsVcZY68zxv5C3s/gnL/JOf/xlP/rvwDwD4v8HsGiOOgGDNpqo/A/K4M0m33K4GPKJCR0XyM2CQkljmPSeUIsmPE2CgZiU/VNATHmc0riSDQrL7FHyF0cYxJHuUeormV8DuAwkNxSJjGOHSWfoTU3UUWVJRi0IXFi4Viiwk85NF1iao9M6MYHAJEEVQbj1GdkfOCs6GWlvZbUaNUcDCZ+jEGjWSfpLKfDxVHep8GY9tkCgJolGvxDFztiF0dAShxlDxqVVNQKTUJ0MWhxq3FKs5VQ4uh55AYQaRJHuoHf09fRI1wLiJIjn/PYoGrCxCJ4f3WHLjkTP+3iSLxHwjEu9KY1AMLiomAI89cp+pb7RQB/HcDfkV9gjNkA/gaA7wNwG8DnGWO/CsAG8DOJf/9jnPO95A9ljH0fgJcBNAv+HgAYDnpj1GxGb7Ovqb/Csljo1CSdvaiq32kSR6oZaEDUgxa52NEyMQCCMQyit44qKJ612ac2CYmS+N6Y9lrG3aH6wX6klDjG3QcnxIMiox60KMGgZtAmgUkI9dwum0UJ2nDioUnI+m8EPWAngWHTWEMPmgx8emOPPNmlRrtuYzB2Yw59RHbtCYkjtftaPCDe745xcY2miCohGLRImkQZWDVjDJofujhSmYTY2A8K0R75oN7peMf1fVJpqnxHjty4pEyPSQilxDHNDZM2QYvaLKil0kAUS/VGEYNGlQ+263Y4By3c/xpMcqhbVYCosF6EQSv0luOc/w5j7PHElz8K4HXO+ZsAwBj7+wD+MOf8ZwAUlCviYwBWALwIYMAY+3XOuR//BsbYZwB8BgA+csUSJiHdMbbadUJZXtIkREOVXZtJSHQY+z7H7aMB3n99g2QtIOhBQ2QpSln5jss3O8Q9aEmbfR09aHI/9ogt26NxBfTztIDp3inq4bZRQKWTQePojz1c36KV5dn2NMtKec/WEwkatQxcBlqcc3I3WB0ITUJkYEUU6Kw1HdQdC2/u9wDEm/tp1qs7Vnj2PuyM8NhOm2ahAI7NMHS5lsp3cqacWI8uQYtcHGkZNHnWulMMGqXEMerVou4vasz0oFFKHKcdsl3yHjSE61FLpYEoQeuOXHLGbqUxy6Dp6UHTZxJShEGrcrpcA3Ar9vfbwddSwRjbYYz9LIAPMcb+IgBwzv8S5/w/B/BLAP7nZHIWfM/Pcc5f4py/FPwkHPTGpNVoJ8mgTWgtpC2NJiHxJOZffH0Pd44H+OR7L5OsBQQ2+0H/GQCyvilgWr5JPRg43qALxHvQaB5sYRIi/lseXFSOmDLm8Hwe64kk7tNKziGhOiBDiaMFNziQaRk04TI3cj00CRkmYJpBo55d16zZaNasWILmo0FYdZQM2ji4Z9SGK9QITUKIE4uGY+N7nrmA//1rD8A5Jx0wK9aLAuKH3RE5gyYLIDLRpR5UDUibfbHXqYrENZtFph3Ec9BC23svmidH2Tso+4vHrg9qC3WtLo7SJMTXMzg96kHj5D1hwLSsnVriGHdx9In3SE32RHpcyxy0ZuAvMSgwqFrbW45zfgDgpzL+v18s/IOYMAnZWaVL0OIudoDYkOuEts42i88vog2I7Vhi8U+/eAe7aw186n1XSNYCIoljf0w/qDfOfMoqLtUcNCuZoBEzaBaLzSUb0coO4xJHXQxaOE/Op72OcZt96qHYQOQyR13kAWYH3lMmngCw2aqHcxTHGlwc+2M3ZOIpCz060K7b6E+iBI1yXtIffM9l/PNX9vC1u6f0Lo6OsNmfeD4OezokjtZUYEV5HVsxiSMPldJEBTkWtT1QOx2GEkePfi4ZkLDZJw6IZ01C6JKYNLMVSkYrLnH0NUgc5ftLJGi0TPxKw8HE41NJPNmsvHDMBL3kFog7IHNQMmh3ANyI/f168DViiDlo2ysaKnMxdoRaBhUyaGMPtsVImRhAbI5bh308d3mNtFpmMQbOEVqmUvagxRm03thF3bHoJIczPWi0wX7cACJk0IiS3fiYCcmgUfdpxZ2v4r+DcsQYNJmg6XBxFFJK2qTCssSz5vscE482YQJEH9pxMEeReuZVzY56+QCQjZjQhXbdESY8wfNFGRC///omAOCt/V7Mjp5mLTGo2sN+VzgtUydoSZt9bQwalyYhVM5yLNYTRu1iFymGdEi8aqEpg0feOzhrs08/By00CfE56XWMm4ToGDMh319j1ydn4tvhzEGXvIg1JXGkjj8wfd/mfm+FdT4P4BnG2BOMsTqAHwbwqxV+XiYYY59mjP2c/PtBb0w2A00iLjuk7kGLM3b9oHeErL8uxo7cOR7i2maLZB0JxsRavZD1oWfQhKsXrbwg1H9r6kGLm4RINpKKQYuzg/IZoGwaty0rPIQnoYsj0XUM9wQLg2MdPWjULodyLUDsSY+4jwQANtq1UOI48ThpgiZt9vvE8l5dkMG+TDgpA6vdIEna64yiwIrQfXDs+XjYGQVrl/D/WgBSHq3DJCE+9Fu6OFIlTfG+XPI5UDH3QWq2AogzaPTvl1mJI71JiLxfwiSE7kyMt1mEzLiG+zZyPS0ujoAoRpP3YGo2CWEx5lOVzf4vA/g3AJ5jjN1mjP0459wF8KcA/DMArwD4h5zzr1X4vTPBOf8s5/wzgHB56wxdeukEmx6eS1mNjgdW1NIkyfwMxj72uyNcpU7QIOagUfdNAdPSPMqDOL6WDHgmwRDdGiGDFpmE0BquxFlWagkKIAwSvES1mCwhjNns62IHXU9PgmbF7xunLVAAwGYrStDGno+aQ1l1F4E/tYOpLsjiyulQXD/KxGKzXUPdtvCwM9IyqHrkRgkaPYMmejx1mIQ4toWGY+G4P4GsfVO5OMadbalZJstisJgobOo47xuhzT69rXndEfvjJGD6Oedksryk+7fnczLzH2C6XUVrD9rEJ19PDnPuj1zyPRIyujGzIUrmEwjmA3NFEkfO+Y9wzq9wzmuc8+uc858Pvv7rnPNnOedPcc7/m+q/9nx0g+B0V0PzsU6bfQCh5IXSoUweTreP+gBAn6AFc9BC1odU4ij+9IIXNmF+NqX/BoCRp8MkRCwWjhAg7q/zfE7exC1+thWTOGpycWQW3noonO1ubNM9A45lhYlgg7gnLG5u5PmctJoKiMBfShxdzycbMQFEUiVqB1NdkP1MsqeO1u2N4eJaA3udIbnEseHoTdCkPFqHxBEAPnB9E1945zBk0Mh60GJnoo7P5tgWJr4f9gBTBqhTJiEaetAA4AP/1f8OQBTByRi05Bw0n5MmuvFRP9Tz5ICYxDGWWFMpvaYYNOo9EmfQNJ0jVhAXz8nPKkkczwQyQaM++C1r2riDsvptxwJiantsucnfPZQJGq0EhQUUmmR9KOcXSTmBH7iV6RgS6fkcDzsj/I//4jUAxHPQfJmgeWAMaBM7fca17bQJGmISR1oGTb5QOICX752CMeC5y+skawHiusmkgpxBi50jHrHEFxA9aCeDibB55rSyEOniGLHH55tBk8GOZASp5agX1xoBg0YbWEkXR8kMUs0qlRC9iXEmhvYZ+86nL+Ard04wls6KVAyaNasqoNwjNSkV9WmDYQAh0z5136gkjokziVJZE2ciAfo5aPJjxBk0qucaiDNoHmT7FBmDVo8xaMRs3XQPGm2BWEIkaAClSYg2xHvQpGZfi31vMKG9P/ZIK7Zxanww8cKBmDRriT9vHQ0AANc3aefUMCaC4cGYPkiNz++iljjGe/l+5tdfwV5QMSadgyYZtKGLlbpDxpBEEkd6eQ0gDsN4L59tMboXTRBQ+bDw8t1TPL6zQlo0cGwW9k1p60ELmE/qoH+zXcdg4qEbOKbS96BFTPx5H1Qth4jLhJOy8g0Ixcne6SgMrCglZQDCPU+5J4CIQYuSGNLl8J1P74Bz4LAnElBKBi2UymmQHdaCHs+wB5iyl0na+rsxxo5ovVGs/wwIJI6Ej5oTu2+u79MWieMtHcHHpJ1fN+viSLWejLd7Yw+eTxsTRAkapx/zE0B6MyjpQTtrxHvQOqHEkZb5sYKDvz/R5z7ohwwaPS1+91gkaLvrxExkQOXKgJGywhOf3+URH8RxI424bJOqV9GeYtAmpAFqxMREBzGpq1HcxZGY+bFixZBX7p/ihStrZGsBAYMWFieI56DFe9B8Th70bwSjRx52ZXGCuActJnGkNBvSAdn3KD8PtRx1d11IHKl7R0JmcESftAMiINbJoMnC8Dh0lqNj0HyNDJoTjCvQ0YMzZbNP/NlknANE88IoC7eOzUIWxuO09yxyA4zb7JMtp3UOmoxv3jnokRcb6zFGN+qBp2fQ+LIwaHF0Rh4sBtJB1UDkvqaj5yFuEtKfuKTBh9zop4MJ6rZFPiuJQcxB84glh8B00ywnPojjNvs3tiIWkiq5sKzI0r838sj6z4DpQJ96SCoQPWsAvV277EHzOHDrsI8nL6ySrQWIzyb7jKjnoMngNEzQiKuAMkGTluqURko1hwUmIfQFMx0IEzQpcSRn0Jo46k8wnIhDhG4OmtgD3eA9TX3mh4OqNfaOAIAnbfbJJI7WlNkEQG9973p+KDEnlVOGg7GjHrQaUaL7p37f0+F/TzwezEGjfZdF942WQYvHO54GiaNjW7AthnGMQaNa7rGdNj76xDb+h3/xGg67Y9LnekriqEExBIjk2vOXhEGLozPysLPa0HABxYMmJZWkjEUsID7qTbDVJhzCHWyI7sglNeyQYIyBQ1QDqYOQeGJBfRAnbfajr9PJDuVanZFLK7kNgxA9wUG8v871aGfH3Nn5Nvwd9/vQ5S34HFgj7pHRyaBN2exr6EGT1+6wJ4ZVUybWjbAHzQVjtIPTdUBKHKUUkDqZfuLCCgDg/3j3CAB9gtYbueRVaEBcNzG/izbxDNcLZWXi71QSR/ns+j7H2KOflSfnrnkaGIS4xJG6B+3KRgt/4fufBxApayi3iOyVBcS7jNr8BxB7UbpJU8dYwqXVI5+DxhjDT3/vU+gMXXz9fofcnRWQNvu0BQMJK2xZWbIErTt0yR0cgcjWPGTQKFktOb/L59jvjnBhlS5Bkxu9E/QxUUNqbT1fQ1UiHqBSSxxjNvvyQKbElEnIcII10oKB+NOP93YQVx0jiSMtg9bbeA5/xf0T2O8FhRfiBM2xrKgHjZhBC/e/F0iKiV/Wa03BoB10afsv5c/mXMzAXG04pJViHWgmpIDU9+oTL+xiteHgt7/xEACtiyMgPhelq6dELWCapLqAunfESSRoVO+0eF+6dMS8QBj31KzpHjTq3qmaLRhxHXPX5M+e+D65eZgde5f5xKNO5I/mQXwlvka7/xs1S4vEEYjkxHudITGDJn722OORSQi5zT5Doraf/n2kv4UixE1Chq5PXvUGpElIZEqiwyTkdDDByPWxoyFB645cLU5oDAACjTRxfhYxP16gNdciL4icB/90TE6hGvEkpjfytPRESiYm/jUKxIfCTzyOGuFaMqm4fyp6E6jNJuIvbF0mIZNQpkG73kZLXLuDkEEjfIkG1+4rt0/w7CXavkEdSPagURev2nUHv/+F3fDv9BJHlzzIAaLna6JLmhSejcHfySSOkXzt3skQK3WbtCgneqciN0AdTIxg0HSYUAXJrkc/H1UwaFHvIGUMEnftDXtLiSN66dJKPa4DiNqY9joj2h40yaC5vpZ+T0Bct6U0CXF9oE4sFQKkcYGvyR5e3CTpBLizQlcpi2+8tgYnNCFx5OSWs8B0YsGpXRylxDGQ19gWw5/9A8+RrRfvSeiOXKw2aoRrRQe/DttlceiL58z1/FByQAFZ3LlzPJz6OxXilT9qiaMMBkYTGfSQLhdj0ESCRsmYSHbuK3dO8J6rdGMRdCF0cQzYVerKNwBsx94rVMvJPdAb65E4RkNmgz1PLXFkiQTNJhp1ElPVPDgd4vJGk7a/yLLg+jFmhPjWRa6Rema8AeLd4hNLHIVUND4HjbawCQQmIWHCRMygOTZGrh9KHCn3pEzQOLHZyrTNvj6TkKWUOLo+R11DZS5pEkI7YFl8ngenImgkZdBiD9SKBgbNYsEgRR0mITHdvufrkzi6Hn2/Ty3mDtUZTkgTi8gAhZP3CABCNjEMAqyJT9uDJpOKe8eSQaNLdIHpF4suBm3s6WHQ1oNrqaMHLW5A8t6rG2Tr6IJk0OTYAB1sk5w/ZTHCOWghM+jp6UGzImc58Xc9DJofmIQwYgbN8wSDdnmD1rW65lgYe1xL4A3EGTR6d2eZxLs+PYM2bRKiZxYrj5mEUO//uiN60HzipAkQZ6QkRkhHTCRMQhij/2xMzkFbBgYtDsGg0f/asuenp2HuTsigBQnahVVNDJqOHjQIBs33aV0VgWkGjVriGJcXTDxObydtCwaNc47eWJ/EUUePQNOxhTOULzTglA26MrG9dyKeNWqJYzzwbpK7OE6zCdRFg2bNgmOx0MWR1Jo79rNfXAIGLerV0segNYIzijIYDhm0kUsqeZWQe3wUjMOhTnSTJiFUjF38DH5wMsTl9RbJOhJiUHXEoFHfuXogldMxr1Em8a4n4xC6tRzLimz2ifuA46N+dPSEAeLcGk18LS0rQMSi0TJoUQ+ajvE0gEiu+bIyaHoqc/pt9qXEkTJBiwekOqyqGQts9jUcxPGkiVriGO9BE8YWxAyaxTDxfAwnoupIyfwwxoS5i8+19AhINmHk+uQujtIa/t6JYNDoXRyjs0qXi+MokItSz9ZijGGt6YQMmg6JIwA8eXGFbB1dYIyhWbO09aABUWFTsuKUa/RGLqlUWUKeFSPtEseAaSI6q+LFlgedES5v0BqjyR40QI9Uru5YGHmiB02H+gQQvbk+sZInuo6BxJHY/VisE5c4ki0HIGhHCBJ5HUZNMkGj3COMMaw2HJwOJsJcTsNZbDEmjI2WkkHTlKAJm30R7LQJbZ3lgyYljpQz3jZatfAh1sKgBVSuRzyXDJhurKaWOEplix+4OFIHI/Lg74wmAOjdB23Gphg0ysBHMkvDiRdIHJeIQdMocbRDNkEPgwYA661aJHGknIMW2xPnfUi1RLNmRzb7GoIdHcqTkBkc65E4RkUJXRJH8afsQaOSEcvPdeuoD8/nuLxBzKDZVpDAiL+TJ2i2FZoy0M/KizFoxImFY1uYxCSOpH3wsRjE1yRxbDg2RhM/mDNLuhQAYEcDgwYAF1br2O+ORL+bJgZtaXrQ4i6OE59redHYwZyC3sjFSt2mdQSMMWjrTYf081kWC+es6ehBCzq1xBw0ailDvKJEnBDG5QXUzoNAJHGMTGvoDSc8X7xkGKNlYySDNnS9QOJIt5ZMyO4FJiGUzDiQ7EGjvWcyINYVrAIi4T3q6+1BWxY0HTsaVK2DQdOQMMWLEFp6xe2ouAPQX8fIvEP289FcU3ne/om//XnYFsOHbmySrCPhWCyUAAJ0JjIS9YCJ0dG/7YQ9aPSJRS0wlxPrUdvsB9FVzG1ZC/PpeuTJp4QcTfPS49uk61xYbeCgOyaXwEqwoAC+FAxa0sVRt8RRVxB31Btjo01rWgAAW0FVQoeLo2UFEkcNTaXx+V3UzcBTEkcdDJol3KG6Q9kTSWxuEbgM6Rh4HDFo9BJHx7bQrtsYez7qjkUe+E8xaJp60KTEUUfQv96shVV3SpmvTC4o5d+60axZ6I/03Ssd7sfx50mHxDHa83qKEjODqokSNHludEcufup7n8R7r9Ea4zjBgGUpfiVP0Ox4D5qeM9j1OHliYVsMk2Ad6tjRisUgcqYWtTyv4URz0HQkaA9ORdvPf/iRa6TrXFhtYL870qL0AqK4eCkYtDgmPieXCgGBxMvngaU5bSIjE87uyA0HmFJCzj/TMwdNBvq+tpen60uTELq15DMsZvDQJhWAbD7m0Vw+4nsnCxQ6egflnhcSR9pB1UAkc6ScKyQRv3bUDIZuuRcw3cOnowftIuGwXt1o1uyY4yb9enokjtG5pNMkJDLGof2MjDEhTwoCK5voxuk286rZLHxvAuK9TbueSAg9Df3boc2+75Mra2q2MAl52BnB9TmubdFJU+OjfmRPJHkPWi0w9NIkcfyrf+g9+OmPPYUP39wiXefCWiRx1NGDJgvg8yoh507M72k0CRm5ogpCabEPRLKQk8GE3E4XiAJiLRJHJtqOdbjjxBu4fU67nnyBCpt9nzz4rtnCJETaclOzuhaLzASog55Q4jjxtEhe1ps1PDgdkffxAVEAWbct8oNfBiKho50mBk2C8lwee+IzLVOC1oj1Neuo2upImOLFUy09aAmJI/X8LkCc/dSMRTxB03HfZMKEsAeNdr26Y6Hfd7X0oEnJ/MTj5AG4EyS6d4IxLlc36RI0liJxpI6xJIPGNZlpvPfaBjl7DIjZw0f9CcaeryXxtKTN/rzvo/9V1MLneiqBkcTRwwpxBUsGqBOPa2HQpNRKl0mIcHGkr0yEM2p8+mZga0riqIFBCw5+OdiW2oEzzqDRV+UiiaMOwxXJ+lAz40BkIqCD9T8bBi2WoBF+RmmmcYOwIq0bzbgcUENmoWMPNmtxBk3/ntdxHS3GwAOGiWwOGosnaDquoxWaaAD0Dn2twCBHh4Q+GlTNyZkf2ct3N0jQrhEmaID0SkA4v446xorPQdNRVNKFC0Hhb78z0vK5WEGTkHPHoHEwfT1onGPkeths07kqAtPzkaj7VIBIhtIkdKaUYIhchqhvmzzoPZ9+3klcXjDxOXlg4FjW9OB04uRa7n9O7KoIJExCfE5eMZZJhY4ETSbuOp7r5Bw03RJHyvv2B168jP/s9z2Nz3zPk2Rr6Eb8/NXB/Oh0cQT0Shx19l3aFgP35Tr0DJqOXj6p0ODQI5VbaTjojfQwaFHrA33vlGNZcH0/TNCuECuipBugLpOQqAdNj8RRFy6uihj/QWekzWafcz73+Dh/CRpnGhk0wOU++Xpx3T610xsQJYSToP+BEvFeLWr6PWTQ5KBqwvXkrLAvvHOI04FLPoRYBjunA2GzT83qijkdHJwxbT1oo4lwcaROduXL7OZ2m3QdIAoOdDzXMlgduholjq2IQaOU+dYdC/+3P/Ac2c8/C8TPDD0ujvR70LJYGMSdyRw0Tf0joTqJeFA1AHKHYCBSaOhi0FYbNrojV8t5L9+d0iSE8qPJcTh3jwdYbzpTCgMKyDFG1IPTJRqOHZqE6JiDpgvSfEowaPTrhXPQloFBY4x9GsCnP3LFAoce+15hEiJchsgTtNiLmjrQByLmQEeCZgUSRx/0muXIZl+ahNCuxznwr14/AAB8+5M7pGvJYOd0KBK0FnH/oBNIHBnT6+I40SAX/ZGP3sS1zRb+8g+8QLoOEAVXGy16d9aoB0081zqkGtMM2rlTzJ8p4gyazkHV1GjWRBCnw9ZfBvc6+y4ti4F7+hg0XRLHiedHJiE6GLSxp6c9QM5BC2z2KZMYOU/uzvGQtP9MQjJo4X0j3ip1R7hver6eXi1dkO/no/5Yy7s6lDgug0kI5/yzAD770lX7Jzl0MmhiCDH1iyb+otZRaf9zf/A5cA78wPuvkq8lJY7QMABQvtQ8zuH7emRDEvQvGfHzTwYT1Gz6Z8AKJI7QMB5hyiTE91EjvnGfev8VfOr9V0jXkDgNxiJ8z7MXydcKHe2Cwgv1ngT0mYQsI+L9xssyqBoQ/UUng4mWZCluRw/o6bOzLXoGLc4q6XiOawHzE5mE0K650nCEZH/sku8TyaBNPA3jdywGz+M47o/DebOUsAOlSzioWoPEERCM9TL1oMlivutpstkPTUKWIEGLQ2sPms8x1lAJjL+odTBoO6sN/L/+w/eTrwMELo4cWhit0LgjOLAc6nJSDLos1E8GrhZzF9sKJI6gr0rPuDhqCEh04Y2HXQDA739hl3wtmUiHjnYaXjTrmnrQlhH6JY66GDSxDqVpjIQdS9CaNUuL7EokaPKz0awXr1HpcsOUNvQA1aeKIFU8JwMXLU3zISNlDd1aNZthEtjetzSchzLQl2IoHT1oADAYe8uVoIUD6H0thX0xB21JGLQ4ODS6OPIgQSNer2azMJHRwaDpBAvmPfhch5GG2Oy9sReYkug7QOhdHKNRDDrGI9iMwdOUWIcSR1e4OC4TE/OXP/Ui/ukX75DPcQHOxtFO9liIM2x5Xtg6MG0SooNB03N/5OfSInGUM0SHLloaTK8APT1oUwyahr0hbPajHjQdDBogeqrXGrRSQPk+ERJO2t4p4Yapb5CzlMrJxJr6yJejQQYTT6tCiRqSedR13ywWKJSWbVC1TgbN9wUtTr0eYyxk0XRINHSCITYHTYPN/rc8voVf/8o9uD7XGjBSN8RLduJkMEFbg/ugFTBonoa5ZA0nLnGkX08nnru8hj//yee1BOByD+p0cVxvib2oIxlcNsTnoOnY8zpMQoAoQdMtcdThSgxIBi34bFQ2+3EGTUNMUAslXuLsoH51rgZjYk4GE/JzShZP/+kX72K/S2sCEZqtaBhPAwTvaS7WAzQwaLE+52Vi0OIfRU9iHUgc56x1Lt+qWhg0xuD6vhYGDYhYhIaml4wusCBD8zT0MgHAf/Ltj+Odgz6+fPtEaxMrtdOWDIBPdTJogVTDJg6+bYuhZjMMJ34gcTyXx9KZw04waDrnoBl5Y3nEJY46ggJ9JiH6JI4y+D7VyKBZFqIEjcwkJDauQEPxIyzuaErQJIPWHbnaTEL+5ev7AGj7tOQcNB0FaSDoQeM8YGM09KAFz/ZgslwSx/i90hE32iyaXZeHcxgJMS3SCdsOetA8XQnacjJoljxAfF/LgfXcpbXwv3U03ktQJxVOzGaf2sERiExCdAwSBUQf5nDiYeL7JthfEGcxE0q6OOoK/pcJUyYhS+biCGiyh7ci1lgbg6bDZj/2c3WZhAAR+86Iu9BWYioQ8kHViZ9PKnGM9fLpZGJCaSq52kU8b/2xS57E60T8XukzCVlKiaM+Bm0Y2FXrsPWXG3/ZEjTGpMRRz8aPBzo6JY7UMtiQQRtOyGegAUJi4/tcyyBRQDDH/bELzo1cblGEM6EmsgdNT+9Kq2YvVd+gLsQLLcvk4ij3gh5zi+i66ShcAYHNPjmDFv1cPTb7QYIWMGjUR/BqLEGjVmgkE1zKOKRmsaCXT5cboGBidEkqo3aE5ZI4xregtgTNx3JIHBljn2aM/RygtwdtELih6WTQdFUBdYGBhQeIjhhON1UtQc36ODGrYB09aDaTDJoe5rNZs0Kr7GVycdSJcCaURokjIFg0k6CVh5QCMqbJJETTPZLBvhaJY+y66XBABiSDJnvQiExC7HiCpr9/VZdJCEBfSEqeTbQ9aNKQRE9h0wpaEXSZoslYeDjxtCqUqBH/LDrO4nAO2jIwaJzzz3LOPwOIBE2LxDGw2Qf0vNgaSypxFBsRQS+THk12+N86XRyJq4Dxl7SOHjQr2P+uphdNs2ajE8wMMxLHxSBvk06JIwCst2rmni0AKXHUFejoukdy3+lgcON7XJuLo6bAW0KHomBW4kiL1ZgKxNY0Q1SCMgCXe2Ps+loCfSsWX+lQDIU2+xNviSWOetbjy2gSIiSOeg9+HZXAppQ4LhuDFuj1BQWv4b7Z8QdNp8RRT6MzAD1z0KbGI+hh0HojmaCdu2PpkQBjDI7FYjb7hkF7lCHVEjoCOUCf5Fu+O3UoT+Jyb13qE0sHgxbbEzrinVqCQaPeKysNfQ6myYSaVOIoZeaur9XFkXM9hR4pcVw2k5D4GaxF4mgtEYMWh2DQNLjYxQ9IjQxac9kYNADg/EwYNJ3nB/0ctBiD1tDDoLmexh40x45JHJfrGdAJx2ZhD5quwP/yehOb7ZqWtZYJ0hFtmaRCQJxBo3+O11vRvtPFoDk2g6+xB03HdYykeXpcHB3bCtkY6s+XTDZJJY6hzFyPBFAyMZ6mHjRZdOGcvk9RJ+LXTg/zGZiELN+gaoaaDgYtduG09KAtKYMWUvA+13JgxV9sOiWO1AxC/OfraIZ3LIax62tzcbQZC6u3OtzflhWOZYUSR10M2n/9R94L15tvGWwwDZ3zwnRCfh4deadtMaw1HHQ0zkGbZtCo5qDFEjQdLo7SAdbT04MGCKOQkTvWvv8pP5sTk4rqkzgKt2Ud68VbcJaJQdPtXRDOQVs+Bk0Po2VpZtCW1WZfSBwDlyHNPQl6JY7ULo7xHjT6ukq77qA/9oIeNPo9yZhorAb0MT/LCDsmcdRVoLiw2sDljaaWtZYJsgdt2fa7PC9kDzc1JIumy8VxelA1PYOmxw0zYNBccc907Eh536h70JLQwaCNPV8bg+b5HFyTQqkRM+LR6ZJNDf02+yjEoJ3LbEC3O5QOBk0mZsvn4ijocI9rYtA0Shx//v/yEj76xDYAHbNc4j1o9HtktWGjN3aDgZvky8G2WCivWTbJl07UbP0JmsFikK6Dy3af5FmoO0E7kzloy2KzL5kfT7DvOoLUnZW6WHuJ9r+8VbokgJbFwvhKxz1rxGY3LtFtOxOTkKXsQdM2qFpzgrbMDJqQOOqpFMercdSB/ideuIQP3dgkXUNiugeNnkFbbTroDl24vq+lB0JWAoHlC1h1Iu4+a67jo43QJGTJChJy37maEjSZ6Oqy2bcsaDUJ0SNxTJqEkC+JC6sNAPrPKSnjpMBZMTE+17NePBZepkKqbuVVOAdt3veR/yaKoUviqLuCJV8uy5egBYMUNbkB2poPSF3BSNwlUgeDttJw0B258LmeF6iQOOoLDpYV8WTaDPx+tLGsPWjyvPA1JWgyHtBrs09rEhIvZta0mIREvVOAnjN4Z/VsGLTh2CP72bp74CUTo29Q9XL2oE2ZhBiJ4+KwmKWHidFtErK0g6oFPE1ugFOVEA27W75cqE0S4sG2DgZtreFg5PoYjD1t84xcw/xUxlSAsEQv0GXEskscdTFo0lhLV4JmxSWOGhg0HfPrQpt9jSYhkkHTjeGEjkHTzcQwxuD50Dao2rFYmMws0+uFMRZ+Hi3S1MB9sz/JLxacCxdHxtinAXz6I1cs2JosuHWbhMjKxLIxaLLC4+mag6b5gIwa4ukOfWBa5qIjEJFJ4Mlgoq0SKJPcZarM6UZ8n+huvjcoh8gkRN+aP/wtN8gLjk9dXAUAXNtqka4jETJoZ2ESQsWgxc5AHedvNKg6MAnRIXFcEwnayWBCv1gM0uWWAvrjD6FQ8nx9CWHDsZduDhoQtFlo6uWTc9AenI5yv+9cJGic888C+OxLV+2f1JWg6TYJeWxnBdsrdaw2z8UtKQwhcYQ2swndVLUMiD1OLXHUy6CtBmsMJp6mBA1wfT/8b4PF4BgG7dzAskQ/tc779N/9sfeTr/EfvXQdN3fa+NbAQIkauouajqWXQdPhlhd3HwT0moQc9/UmaKQM2lRiTbZMiFDiyLm2Qk/dsUSCtlxcAmzG4EFPgsbC+5a/1rnLBuIuMpRYjQXBOhi0H3j/FXz/ey8v3ZBexkTfoMf12OwzxkKjBB2Bvj6JY8wkRIuLY7T/9Wnpo/82WAzxkQjLJp1bRjRq1tLdJ8YYvu3JHW3ryQKq7J+ihsUY/LA7hN7FUQckgzaRPWga1pTD7bUnaIQMWjzG0RXv+DyQOGp6b8qCyLK9p0OJo4aPJSWO806sc5cN1DUlaLKBVaypYw4UW7rkDIhVCjQNqgaiKpbOuWvU/RZTNvuaXByjtfUkaGn/bVAO8X6VZTOfWEY0a/bSJWi6IQPGMaE7Xxz2FING887WPWPKSfSg6Vh/qx0waIMx+VpxDChNQs7IxVFXCwkQzUJbtve0PId1KYZ8zjFPeHXuMoKGpkbgeAOrDhfHZQUDADkHTVMgInMZHQfIZvCSoZYdnlUPGjDNylAhvsSySSd0wtZcwTWohmbNWrpARzd+6FtuAAC+86kLWtazNAyq1g1ZzNHppHt1U/Qofvy5XfrFYhgSMq26TZqkxFHMXdPFoMnxIFqW0wZ5v3QUJ6RiyJ/DVRuJYwZ0M2jLiqkDRNPLTLBNvpYD5I9+6BpOBhP86LfeJF1HJmgtTRX3tViCpmMOj2HQ1EAGWoY9Ox9oOoZBq4oP39zC2//dp7StJwI5WpMQ3QhdHF19PWgbrRp+7//xfeGgcV3ghP3iugtkdjBPS1dLBxC1/Czbe1qnxJExcc/8OanF+UvQNDFo2ytRgrZszoo6wRi026fLZXRJHH/8u54gX0fOwtExAw1IMmgmQTsv0CnTMKiOZs1eukr0ssO2GDq8hbHVQn1JziopjR65eo2atmJxlg785Hc/gf/Ttz1G9vOnXRzJlgnBGCKTEM0SR90yXGrIe6fFfZMxcM5jbrDpOHcJWl1TghZn6ozEcXEwRAYauoJGZwkrPFYwf6Td0GSSE+tB0yPViP/38tw33ZBnlUnQzgdaNRsT4hEdBmphMYa/530C28//AP7kkpxVToJBY0vCDEr8wh9/CWOX45PvvUy6ztR4BE1SOc/XnKAFhMWyqTTk9dNR2A8ljnPY3HOXoOmSOMZhgp3FYbFoALGuAyR80Jbstjm2hZW6nkc2vo4WBk3zgPFlhWHQzhe+/akdbeYWBmpgW8AATRyv0isndCGcgyZ70JbsDP59z1/Sso5uiaNlAXeOh7hzzKdUX5SQLOvzV9a0rKcLlkYGTc5Bm+ctd/4StNq5+5W/ucGiIc66Ki6S8Fy2OVA1i2mTONrBjKax5xsXx3ME04N2vvBnvu/Zs/4VDEpCmiYtUxFEugSHJiFn+cucY+geVG0xhncP+wCAC6t6ErSv3jkBAHxU05xDXbA1FvbleIR5EsdzVyc5CwbNYHEwsFDiqMtlSKcbj07YFtMypFpCzqmxtZiERP+9TIGPbhgGzcCAFrIAuExFkJBB02gSsoyYcnHUNKhawiM0P4ljEsRzH7qxpWU9XZC3TldLB+cc88bnnjs6SpdJCAA8f3kNX7/f0bbeMsJiCHssNMT5AKLEbNleMjXb0sagAcCzl9aw1xlpCUR0N1cvKxzTg2ZgQAr5XlmmZ4wxBttiWm32lxFnMQdN4mFnRL4eAPyPP/IhfP3+KVoaYxEdkASCPpv9+XPQzl+CppFB+5U/+R3ojeiGGn4zQNqJAvpeaDrtUnVCJGj6HtnnLq/hX76+H1ZVKRE/FJeN+dSJSOJ47sQRBgbnCsvEoAHi84wMg1YJ8WNXt/vxg1M9CdqnP3AVn/7AVS1r6YRO7wJpEjIvuzh/CZrGrL1dd7QGxMsIBhZS4rokjmGCtmQv0D/3B5/D4xdWtK333CXRBPzaXpd8rSmJowkOFkZoFWzyMwMDEsiqt71kD1ndtsIEzRzBi0F7D9qSxThnCZ3tAdF4hCWz2W865+5X/qbGVEVJ06kvLYKXrQr4xz5yXet6H3lcaMxvbLXJ19ItDVlWyHl5hkEzMKABh8jQlo5Bi/UgLJvNvi7E94Qeu3byJb5pIMMOXRJHzrEcLo6MsU8D+PRHrlhae9AMVEDvgQUsr8RRN566uIrf+DPfg8d26Fm7aYkj+XJLC2noYva+gQENIgZtuR4yJ+ZqsWQfTRvOYg6agRrodHG0gtafpUjQOOefBfDZl67aP2kStPOF+Pmhj0EL1jNvmcp45pKeWSdTLzZz3xaGrODWjdutgQEJZExFfU79xp/5HjQ1xjs1K14kM2fwItBtdmUSNHXQKXG0rCU1CWmanrBzhbOwT5cvF/OSOT+IWxKbl87ikM/YUxf19SoaGHwzgloRoqs4JmEYtOqYmuepqZcJANYaDv6XH/8o+XrLDJ3u30UljueuUcEwaOcL7CwkjnI985I5N5geVH2Gv8g5x2AsfKFevLp+xr+JgcFyQla9l+2YmupBM0WyhTA1B03DNZTrfc+zF/Hhm8s1l0w3ZH1Cx9a3pEnIvO+j/1XUwpiEnC/EN7u2pmo5cNBE+ucGTHPlcVkhHTdfuGISNAMDSixbDmOFypMz/kXOMeIxjk6b/bpz7kL5Rw6WZgbNLzCo+tzd1c2V+ln/CgYlMM2M6Dn5LSNxPHcwEkc1kMNKXzQJmoEBEURUtWxOh5LxWa5PpRfWVB8f/XpyjZpt7lpV6BxAz4I5aEthEhLHss0e+WaCth604E9DxJwf6Ha/Wlb8zR/9MP63r97H7lrjrH8VA4OlRChxXLJjKnI/XrIPphHxd5dOBq1mm7i4KuTt0iVxBABv2eagGZwvTLk4aj5DTKB/fmBs9tXgvdc28N5rG2f9axgYLC2WtQctHHJvDuCFYenuQTMSR2XQuf/lGktnErJ8x+Jy4ywljuZFc34QLzaaHjQDA4NHFXJQ9bK9XsL35ZJ9Lp2wpySOOuzaxZ91w6BVRihx1JKgiT/n5GfnMEFbtlNxyRG/W/ps9qf/NHj0YRuJo4GBwTlAxKAt1zllhQzCGf8i5xi6TUKYkTgqQ1TYp19L3jc+5ww5h3fVnB7nCWcxqDpcz7xpzg3irJm5bQYGBo8qwqr3kp1TYQ/Osn0wjZjqpdYQXctigZE4VoeMF7Uwn0uboJnq+rmC7sGNgN6BgwZqEL9Vxn3TwMDAQC90MgjLCt0SR88Xk7QMg1Yd8nbpKOwXvV3n8K6a0+NcYcokRK+Lo4nzzw90u18ZGBgYGEQIbfbNi3NhxF9dOhRDbuAyYRi06rA1SnwjBm3O99H/Kophzo5zhbhcQhejpbMSYqAG02YyZ/iLGBgYGORgWV0cTe92dTDGwrhDR/zhyQTNzEGrDJ3zc00PmsEjAessGDQzz+XcwUgcDQwMzgMiF8flOqeMzb4a2BpbLFxP7EUjcawOne7fkYvjsiVo5vA4V4jfLkebxNFo6c8bbM3uVwYGBgYLYUkZtIhBOONf5JxDWt/reI25QQ+akThWh8xxdeS6yytxNDhXOEuJo6kEnh8YiaOBgcF5gAyqlu31YhkGTQkkg6ZT4mgYtOo4CwZtXpnnHN5Vc3icJ5yJxDFc2+yV84KpQdXmvhkYGDyi+PjzuwCAF6+un/FvohaRzb5BFYSJroZ4xzUJmjLI+/Uo9aA55L+Japjg7XxB81yQ+JqWObPODabnoJln3MDA4NHEH/rAVXzi+V2sNM5f+JQHnSYJywxHIxMpGbSGkThWhrxfOvxWQonjHI3jObyr5vA4T4jfLW0SR83rGVSHkTgaGBicFyxbcgaYHjRVCF0cjUnIuYJMzHQwn8YkxOCRgDXFoJkeNIN0nIUU1sDAwMBAwGLTfxosBkujgkcyaI6x2a8MnQyyVVDieP4SNMOgnSvE97ph0AyyEL9XRmJjYGBgoBeyMMZMjFUJOuegSRfHmknQKsPSyHwWZem0JWiMsScZYz/PGPvHsa99jDH2OcbYzzLGPlbwBxH9hgYUOJs5aKYH7bwhclA641/EwMDA4JsQ5gxWA51ugNIkxDbBTmXYGvd/JHGc831Ffhhj7BcYY3uMsa8mvv5JxtirjLHXGWN/Ie9ncM7f5Jz/ePLLALoAmgBuF/ldDIN2vsDOQOIYSTXMXjkvsMIZJOaeGRgYGOiGThe7ZYaUG+ocVK1rxuwyI5pf9+hIHIt2uv4igL8O4O/ILzDGbAB/A8D3QSRXn2eM/SoAG8DPJP79j3HO91J+7uc457/NGLsE4L8H8KNzfxNzeJxb6JM4SqmGwXmBcRAzMDAwODuENvvmCK4EnXPQfC4ZNHPTqiLqHdRhsy/+nMegFUrQOOe/wxh7PPHljwJ4nXP+pliQ/X0Af5hz/jMAfqDgz/WD/zwC0Ej7HsbYZwB8BgA+csXQuOcNZ2ESIjFv8xs8OjDyGgMDA4Ozg61RmrfMiAZ+06818UQIbRi06tAZg0TPGJ1JyDUAt2J/vx18LRWMsR3G2M8C+BBj7C8GX/tBxtj/BODvQjB0M+Cc/xzn/CXO+UvBT6rwKxvoRvys1+3iOG/GhMGjg2gGiXm+DQwMDHSDhSqGM/5Fzjl0JrqRi6MhL6rCtvTdN9USx8rgnB8A+KnE134FwK+U+kHm9DhXiN8t/QmaydDOC2yN+m8DAwMDg2mY3m010Oni+G1P7uDtgz42WjXytZYdOucAFjUJqZKg3QFwI/b368HXiGEOj/OEKYmj5h40k56dHzCN+m8DAwMDg2lENvsGVaAzQfuv/vB78ZPf8yS2V+rkay075O3Scd9YQQatCi/6eQDPMMaeYIzVAfwwgF+t8PMywRj7NGPs54K/UCxhQISpOWiaWHgjcTx/MD1oBgYGBmcHI3FUg8gNk36tumPhqYur9At9E0CvxFH8qSRBY4z9MoB/A+A5xthtxtiPc85dAH8KwD8D8AqAf8g5/1qF3zkTnPPPcs4/E/w2FEsYaIA2Bi3c/CZDOy8wEkcDAwODs4M5g9VAzow2/dTnC0xjkbjoM1bUxfFHMr7+6wB+vfivpQBm058rnIWLYyhxNPnZuYGROBoYGBicHXT24CwzdEocDdRBZ4FC7g0lg6oNDBaF3OuM6ZtxVXTGhMGjAyNxNDAwMDg7RGewOYSrIOzlM9fxXEHn/o9iVLoeNG0wPWjnF/JunQXdb1wczw/MDB4DAwODs4M5e9XAMGjnE9Ggan1rLUWCNt2DZnCeEA5t1HhYrdSFctcckOcHxuLZwMDA4OxgetDUwMz0PJ84izlo89bSNgdNHcymP084Cwbtv/3B9+G5y2v4zqcuaFvToBqYxuqVgYGBgcE0TA+aGtgaXRwN1EFnkTi09J8zYPz8JWhm158vMP10//ZKHX/m+57Vtp5BdeisXhkYGBgYTIMZmbkS2GcQ8xhUh6UxBpHPmjMnQTuH9Wqz6c8TdA7/Mzi/CPeJCQ4MDAwMtEPGiuYIroawB81cyHMFnUZlUVy8BAmaMQk5v5CW9yZBM8iDGZJqYGBgcHaIJI7mEK4C+wz67g2qIzQq03DfwjXsRv73kf8mCmAGVZ9fyLPeyCYM8mCcrwwMDAzODmGCdsa/x3mHZTEzLuYcQmes6nrCYfwfbf147vediwQthNMA7NpZ/xYGJRBRuWf7exg82jAujgYGBgZnB3P2qoHNmCk0nkNEffD0aw0mLgCgVbNzv+98hc27LwJrl8/6tzAogVDiaA5/gxwYeY2BgYHB2UEWUc300GpwLGaS3XMIndLU/tgDAKw0lilBMzh/kMyIqSgZ5CCcHWNOJAMDAwPtCItj3KRoVWCZBO1c4ixcTHfXmrn/vwmHDEhhGctZgwKwzJBUAwMDgzODfEeb9KwajMTxfMLW6OL4/e+9gv/ik8/jz3/yudzvOxcJmnRxPDk5OetfxaAkzmJQtcH5g5E4GhgYGJwdLEOgKYExCTmf0NkHb1sMP/2xp9Cu54+iPhcJmnRx3NjYOOtfxaAkmJE4GhRAyLSabWJgYGCgHfIM5oZDq4RmzUJjjvmDwaMHnYOqiyI/fTMwqIgo8H50Nr3Bowfj4mhgYGBwdjBnrxr8xHc/iU++x5jZnTeEg6ofIdrKJGgGpJBnvtFkG+QhOhzNPjEwMDDQDSNxVINrmy1c22yd9a9hUBLSoOxRIhMeoVzRYJlhEjSDPOicQWJgYGBgMI3QJMQkaAbfhGg4QpZadx6dtOjR+U0MlhKGGTEoAmYkjgYGBgZnBhb2oBkYfPPh9z2/i7/5ox/GYzsrZ/2rhDgXCZpxcTy/CCWOJu42yIEZx2BgYGBwdogYNJOiGXzzoVmz8R+878pZ/xpTOBcJmnFxPL9gMIG3wXzI/WFs9g0MDAz0w7yiDQweLZyLBM3g/MK48xkUQSRxPNvfw8DAwOCbEaHNviHQDAweCZgEzYAUxsXRoAjMOAYDAwODs4OZg2Zg8GjBJGgGpGCmt8igAGRiZiSOBgYGBvoh5z8ZBs3A4NGASdAMSCHDbSNxNMhD6PZptomBgYGBdph3tIHBowWToBmQwjBoBkXA5JBIs08MDAwMtMMyNvsGBo8UTIJmQApjEmJQBHbIoJl9YmBgYKAbxmbfwODRgknQDEgh423HMCMGOTADzQ0MDAzODvLoNemZgcGjgXORoJlB1ecXZg6aQREYm30DAwODs0OoXjAZmoHBI4FzkaCZQdXnF2HgbSJvgxzIBN5IHA0MDAz0w/SgGRg8WjgXCZrB+UVoEmLiboMcWKYHzcDAwODMYHrQDAweLZgEzYAUoc2+YdAMcmAZiaOBgYHBmcHUxgwMHi2YBM2AFFbIoJnT3yAbjDEwZhg0AwMDg7OAkTgaGDxaMAmaASlkvG1MQgzmwWLMMK0GBgYGZ4BI4njGv4iBgQEAk6AZEMNIHA2KwmJG4mhgYGBwFohMHE2GZmDwKMAkaAakYEbiaFAQFmNG4mhgYGBwBpDvaMOgGRg8GjAJmgEpjMTRoCgsxsw+MTAwMDgDWEbiaGDwSMEkaAakCCWOhhkxmAOLGScxAwMDg7OAeUcbGDxacM76FygCxtinAXz66aefPutfxaAkZFXOMYPQDObgT378aXzrE9tn/WsYGBgYfNNBihfMHDQDg0cD5yJB45x/FsBnX3rppZ9M/n+TyQS3b9/GcDg8g9/sfKHZbOL69euo1Wra1jQMmkFR/F8/bgowBgYGBmeB0MXxjH8PAwMDgXORoOXh9u3bWFtbw+OPPx4aUhjMgnOOg4MD3L59G0888YS2daMeNG1LGhgYGBgYGJSAKaIaGDxaOPdh83A4xM7OjknO5oAxhp2dHe1Mo3FxNDAwMDAweLQR2uwbCs3A4JHAuU/QAJjkrCDO4jqZOWgGBgYGBgaPNiKJo8nQDAweBSxFgmbw6MIwaAYGBgYGBo82LDMHzcDgkYJJ0BRgMBjge7/3e+F5HgDgk5/8JDY3N/EDP/ADU9/HOcdf+kt/Cc8++yxeeOEF/LW/9tfm/uysn/Xd3/3d+OAHP4gPfvCDuHr1Kv7IH/kjAIBf+7Vfw1/5K39FzQdTAEmcGQbNwMDAwMDg0USYoJ3x72FgYCBgEjQF+IVf+AX84A/+IGzbBgD8uT/35/B3/+7fnfm+X/zFX8StW7fw9a9/Ha+88gp++Id/eO7PzvpZn/vc5/DFL34RX/ziF/Ht3/7t+MEf/EEAwKc+9Sl89rOfRb/fr/ip1IAFIkczgNjAwMDAwODRhGV60AwMHimcexfHOP7qZ7+Gl++eKv2ZL15dx3/56ffkfs/f+3t/D7/0S78U/v0Tn/gEfuu3fmvm+/7W3/pb+KVf+iVYlsiLd3d3566f9bMkTk9P8Zu/+Zv423/7bwMQksKPfexj+LVf+zX80A/90NyfT43QxdFIHA0MDAwMDB5JREVUk6EZGDwKMAxaRYzHY7z55pt4/PHH537vG2+8gX/wD/4BXnrpJXz/938/Xnvttcrr/5N/8k/wiU98Auvr6+HXXnrpJXzuc5+r/LNVgBmJo4GBgYGBwSMN04NmYPBoYakYtHlMFwX29/exublZ6HtHoxGazSa+8IUv4Fd+5VfwYz/2Y5UTqV/+5V/GT/zET0x9bXd3F3fv3q30c1UhlDia/MzAwMDAwOCRhGUGVRsYPFIwDFpFtFqtwrPFrl+/HvaK/dE/+kfx5S9/udLa+/v7+N3f/V186lOfmvr6cDhE6//f3v2FVnnfcRz/fOKfHlc6tbSmbmdMwYg4AwepBWHKAmLrsNQOnM2NlQy6i3gnjMgYG3QXZSJejG2wabE3SwxqmZvbXNVg9UZXoax1W5xsNou06rJb2TD77iLHzD8nPdGc5Pd7zt4vCHnO8+Q8+RB+PDlfft/n98ybN6VzN8p4iyNPqgYAIEs0uQB54VPzFC1cuFCjo6OTKtK2bNmigYEBSdKZM2e0fPlySdKFCxe0ffv2h/7dhw8f1ubNm1Uqle7Zf/nyZa1ateqhzzcdWlhmHwCArP2vxZE5NCAHFGgNsHHjRp07d2789bp167R161adOnVK5XJZJ06ckCT19PToyJEjam9v1+7du7V//35J0tDQ0IQzXhOdS5L6+vrU2dn5wHsGBgYemFVLZXwGjZEGAECWWGYfyEtT3YOWSnd3t/bt26cNGzZI0oT3lS1YsEDHjx9/YP/58+fV3d1d8z2fdo9ardUdr1+/rlu3bqm9vX0SyaffnXmzFmbQAADIEsvsA3kpRIFm+0VJLy5btix1lJpWr16tjo4OjY6Ojj8L7WHs2bOnYVmGhoa0d+/ehp1vqmyegwYAQM7u/I+mxRHIQyEazyLilxHx2vz581NHmVBXV9cjFWeNtmbNGlUqldQxxn123mzNarGefHxu6igAAKAG0+IIZKUQM2gorkVPlHT2Wx1aPL9U/4cBAMCMM8+pBrJCgYZp97kFeSz5DwAAJkZ9BuShEC2OAAAAmB7jE2jcgwZkgQKtAbq6urRo0aJ7nj22bds2VSoVVSoVLVmyJKv7wgAAAO74zNzZemx2i76zeWXqKABEi2ND7NixQzt37rznYdOHDh0a3961a5dyXuAEAAD8/5rVYg1+f1PqGACqKNAaYP369bp69WrNYxGh/v5+nT59emZDAQAAACic5irQftMjffJBY8/5TLu06Y1HfvvZs2fV2tqqtra2BoYCAAAA0Iy4B22a9fb2qrOzM3UMAAAAAAXQXDNoU5jpmg63b9/W0aNHdfHixdRRAAAAABQAM2jT6OTJk1qxYoXK5XLqKAAAAAAKgAKtATo7O7V27VoNDg6qXC7rwIEDkqS+vj7aGwEAAABMWnO1OCbS29tbc//BgwdnNggAAACAQmMGDQAAAAAyQYEGAAAAAJmgQAMAAACATDRFgRYRqSMUAn8nAAAAIG+FL9BKpZJGRkYoPuqICI2MjKhUKqWOAgAAAGAChV/FsVwua3h4WDdv3kwdJXulUolnsgEAAAAZK3yBNmfOHC1dujR1DAAAAACYssK3OAIAAABAs6BAAwAAAIBMUKABAAAAQCZcpNUPbd+U9FHqHMjaU5L+kToEssYYQT2MEdTDGEE9jBHU88WIeLrWgUIVaEA9tt+LiGdT50C+GCOohzGCehgjqIcxgqmgxREAAAAAMkGBBgAAAACZoEBDs/lp6gDIHmME9TBGUA9jBPUwRvDIuAcNAAAAADLBDBoAAAAAZIICDU3B9lbbl2z/x/az9x3bbfuK7UHbz6fKiHzY/p7ta7bfr359NXUm5MH2C9VrxRXbPanzID+2r9r+oHrteC91HqRn+03bN2x/eNe+J22/Y/sv1e8LU2ZEsVCgoVl8KOlrkt69e6ftlZJekfQlSS9I+rHtWTMfDxnaFxGV6tevU4dBetVrw48kbZK0UlJn9RoC3K+jeu1gGXVI0kGNfca4W4+kUxHRJulU9TUwKRRoaAoR8aeIGKxx6CVJfRHxr4j4m6Qrkp6b2XQACuI5SVci4q8R8W9JfRq7hgDAhCLiXUn/vG/3S5Leqm6/JWnLTGZCsVGgodl9XtLf73o9XN0H7LT9h2prCq0nkLheYHJC0u9sX7T9WuowyFZrRHxc3f5EUmvKMCiW2akDAJNl+6SkZ2oc+nZE/GKm8yBvnzZeJP1E0usa+6D1uqS9krpmLh2AAvtyRFyzvUjSO7b/XJ1BAWqKiLDNsumYNAo0FEZEbHiEt12T9IW7Xper+9DkJjtebP9M0q+mOQ6KgesF6oqIa9XvN2y/rbHWWAo03O+67cUR8bHtxZJupA6E4qDFEc3umKRXbD9me6mkNkkXEmdCYtV/lne8rLFFZoDfS2qzvdT2XI0tMHQscSZkxPbjtp+4sy1po7h+oLZjkl6tbr8qiU4fTBozaGgKtl+W9ENJT0s6bvv9iHg+Ii7Z7pf0R0m3JXVHxGjKrMjCD2xXNNbieFXSN5OmQRYi4rbtnZJOSJol6c2IuJQ4FvLSKult29LYZ6ifR8Rv00ZCarZ7JX1F0lO2hyV9V9Ibkvptf0PSR5K+ni4hisYRtMQCAAAAQA5ocQQAAACATFCgAQAAAEAmKNAAAAAAIBMUaAAAAACQCQo0AAAAAMgEBRoAAAAAZIICDQAAAAAyQYEGAAAAAJn4L6VEAYoCc2VzAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABTRUlEQVR4nO3dd3hcV50//veZPppR79W2ZMc9dhwndgopJCEhhZCwEAIbWMqGLLAbdmH5sSwL/NiF5buw8IWlJZSEkiXUkEJCSILTEyd23OQuy5LVextNn3u+f8yM5CiyNJJm5s695/16Hj+SJXnukcee+9bnfM45QkoJIiIiIppm0XsARERERLmGAYmIiIhoBgYkIiIiohkYkIiIiIhmYEAiIiIimoEBiYiIiGiGlAOSEKJeCLFDCHFICHFQCHFn4uNfFEJ0CSH2Jn5dm7nhEhEREWWeSHUfJCFENYBqKeVrQoh8ALsBvB3AuwD4pJRfz9goiYiIiLLIluoXSil7APQk3p8QQhwGUJupgRERERHpZVE9SEKI5QDOAbAz8aGPCyH2CyF+IoQoTtfgiIiIiPSQ8hTb1B8QwgvgGQBfllL+XghRCWAQgATw74hPw31wlj93O4DbAcDj8Zy7Zs2apY49p0RiGo70TgAANtYW6jya9Dre50MwGkNTuRd5Dqvew0mrgYkQeseDAIBlJXkocNt1HtHSnRr2IxiJwe2wwh+KYXVVvt5DSrvj/T44rBa47Bb0T4RM93+OiLJj9+7dg1LK8tk+t6CAJISwA3gEwONSym/M8vnlAB6RUm6Y63G2bt0qd+3alfJ1jaB7NIALv/oXAEDbV6/TeTTpdfU3n8XRvgn84WMXYXN9kd7DSasfPHMCX33sCADgrtvOxdXrq3Qe0dJ95Oe70D7kx9rqAuxuH8Gzn75c7yGl3Vu/9Rzqit1YV12Abz11HCf/81oIIfQeFhEZjBBit5Ry62yfW8gqNgHgxwAOnx6OEs3bSTcBaF7sQCk3SahxoLFZzm3WJJQJC5bE92mW546IckfKTdoALgJwG4ADQoi9iY99FsCtQojNiE+xtQH4SBrHR5RF5rjLSilhUSMfTX2fmpSwQJFvmoiyYiGr2J4HZn0FejR9w6FcpMpP52b5PjU5XVkxO0siIWkmee6IKHdwJ22iBLPcYzWFKkjitAoSEVE6MSARJZjlHqtJTCcHk2MPEhFlCgMSzUuVe49ZmtFV7UEiIkonBiSiBLPcY6VKPUgi2YNkkiePiHIGAxLNa6GbiRqVWb5LtXqQ2KRNRJnBgESUYJYgqEmp0D5I8bdmee6IKHcwIBElmOUeG1/mr/cossPCChIRLdJzxwfm/DwDEs1LlXuPuZq01UhIbNImosX6U3PvnJ9nQCJKMMs9Nn7UiN6jyA7BJm0iWqSu0cCcn2dAovkpcu8xyz1WrQoS90EiosXpHGFAIkqJWe6xah1WG3/LChIRLYSUEl0MSESpMctKKLU2imSTNhEt3PBkGIFIbM6vYUCiealy7zHL96nSYbVTZ7ExIRHRAsw3vQYwIBFNM8k9VqWNItmDRESLMV+DNsCARCkwy9TTfMzSx6JUD1LiFcwszx0RZUfniH/er2FAIkowyy1WSgk14hHPYiOixekYDiDfZZvzaxiQiBLMco9V6bBansVGRIvRMeJHQ0nenF/DgETzUuXeY5adtONnsek9iuzgWWxEtBgdwwxIRCkzyz02JiUsinRpc5k/ES2Upkl0jARQz4BES2WW4DAfs3ybUgJWRUpI3CiSiBZqwBdCOKqhvtg959cxIBElmeQmG9PUWebPs9iIaKFODcdXsLGCRJQis9xiNQWn2JiPiChVHQxIlC5maV6ej1luspqm0mG18besIBFRqk4N+yEEUFvEKTailJhlJZSmVA8Sm7SJaGE6hgOozHfBZbfO+XUMSDQvk+SGeZnlJhtfxab3KLJDsIJERAvUMexHfcnc1SOAAYloillusVKqNMWW7EEyy7NHRJnWMeKft/8IYEAimmKWm2xMqR6k+PcZ03QeCBEZQigaQ+94EPXFDEiUBibJDcqIaRJWVVax8bBaIlqArpEApMS8u2gDDEhEU8xyj5USCh01wn2QiCh1HSMBAPMv8QcYkIimmGU7g5iUyq1iYz4iolRMbxLJJm2ilJnlJqtJhabYuIqNiBagc9gPh9WCynzXvF/LgESUYJZbrKZNH8FhdoL7IBHRApwa9qOu2J3SaQMMSDQvs6zumo9Zvs14BUnvUWQHK0hEtBCpLvEHGJCIppjlJhvjPkhERLPqGA6k1H8EMCBRCnjrMQ4pJaSEcgFJ4z5IRDSPsUAEY4FISkv8AQYkoilmqEIke3FUCUg8aoSIUtWRXMGWwiaRAAMSpUCVe48Zvs9kUFCnB4lN2kSUmukl/gxIRAtihntsLJEUVFnFltxJ2wzVPyLKrLahSQDA8jJPSl/PgESUYIZ7bPJ7UGcfJFaQiCg1bYOTKPM64XXaUvp6BiSal1l2mJ6PGb7PWCIhKZKPuMyfiFLWNuTH8tLUptcABiSiKWa4x2pTAUmNhCR4FhsRpah9aDLl6TWAAYlSoMq9xwzfpqapFZB4FhsRpcIfjqJvPMQKEtGimOAuqynXgxR/ywoSEc2lfSi+gm1ZKStIRAtmhkbfmKZaDxKbtIlofu3JFWwMSJROqtx7zNCknVzunspBjGbAjSKJKBVtyQpSGafYiBbMDPfYmGJN2jyLjYhS0T40iVKPAwUue8p/hgGJ5qXKvccM3+ZUD5JiAYlTbEQ0l5ODk1i2gAZtgAGJaIoZgqA2tZO2zgPJEjZpE1Eq2of8C+o/AhiQiKaYoQdp+iw2NRKSYAWJiOYRjMTQMxZc0B5IAAMSpUSRu48Jvs2Ycvsgxd+yB4mIziR5SC2n2IgWyQy32GQlRZVVbMkgGGMJiYjO4OTgwpf4AwxIlAIVfjgXYrp/x8g01c5iszAgEdHcFrMHEsCARAQgXokwwy12qgdJkSm2ZK8Vm7SJ6EzahvwozrOjMC/1Jf4AAxIRgHjFxQw32djUKjZFAtLUFJvOAyGinNU+NLmgI0aSUg5IQoh6IcQOIcQhIcRBIcSdiY+XCCGeEEIcT7wtXvAoKKcZPzbMTwhhiqnE5Pegyio2S+IVzAzhlogyo23Qv6BDapMWUkGKAviklHIdgO0APiaEWAfgMwCeklKuAvBU4vdEhmK2CpIi+ei0CpLxnzsiSr9gJIbusUBmK0hSyh4p5WuJ9ycAHAZQC+BGAD9NfNlPAbx9waOgnKbCEmoBYYqApCl2FpuVTdpENIe2oUlICTRVeBf8ZxfVgySEWA7gHAA7AVRKKXsSn+oFUHmGP3O7EGKXEGLXwMDAYi5LlDEWYY7VeppiZ7EJIeIrEM3w5BFR2rUOxFewNS5wk0hgEQFJCOEF8DsAn5BSjp/+ORkvNcz6SiWlvFtKuVVKubW8vHzBAyXKJIsQptiNWbWz2ID498oKEhHN5kS/DwDQWJ7hgCSEsCMeju6TUv4+8eE+IUR14vPVAPoXPArKaSrceoQwx1Siaj1IQHw6MWaC546I0q91cBI1hS7kOWwL/rMLWcUmAPwYwGEp5TdO+9RDAN6feP/9AB5c8CiIdGaxmKQHSVOrBwmIV5DMsMknEaVf64APjeUL7z8CFlZBugjAbQDeLITYm/h1LYCvArhKCHEcwJWJ35OJmCA3zEvAHAeeTh01otIUm0VwHyQiegMpJU4MTKJpEdNrAJByzUlK+Tzi95HZXLGoqxPliHgPkvETUnKqyarQFrDxgMSERESvNzARgi8UzUoFici0hBCmaLZKhjxVdtIGEgHJBOGWiNLrRHIF2yIrSAxINC8zNC/PxywbRSZ7cVRaxWYRnGIjojc6MRBfwdbEChLR4plumb9KTdoWsEmbiN6gdWASbrsVVQWuRf15BiSalwq3HrNUkKYPq9V5IFlkFZxiI6I3ah30YUWZZ9GrehmQiGCmw2qTTdrqJCSLhcv8ieiNTgz4FnXESBIDEhESG0WaoFYWU+yoEYBN2kT0RsFIDJ0jgUUdMZLEgETzU+DeYxECZlgpruQ+SDxqhIhmaB/yQ8rFr2ADGJCIAJinB0lT9KgRMzx3RJQ+S13BBjAgUQpUuPWYZxWbej1IrCAR0UytA4s/pDaJAYkIZjysVp2AZOFRI0Q0Q+vAJKoXeUhtEgMSEeKr2MwwTTO9k7bOA8kiq8Uc06NElD4tA74lTa8BDEiUAjNUVuZjMcdJI1OVFLtCh7Fxio2ITqdpEsf7fFhVyYBEtGRm6UFKHtqq0hRb/LBaEzx5RJQWXaMBBCIxnFWZv6THYUCiealw64lvFGn87zQZFGwqNWkzIBHRaY73TwAAVi1hk0iAAYkIgHmW+UeTh9Va1QlIFh41QkSnOdYXX8G2ihUkyjQV7j1m2SgyWUmxKjbFxqNGiCjpWN8EKgucKHTbl/Q4DEhEiK/6MlUFSbUpNhM8d0SUHi39PqyqWFr1CGBAIgKQ6EHSexBpoCnYgxSv/pnh2SOipUrXCjaAAYlSYIZDXOdjMclGkawgEZHK0rWCDWBAIgJgpmX+EhYRr4ipwiK4kzYRxR3rS88KNoABiVKgwg/nZlnFFpMSNota/62tFnCKjYgAAMf707OCDWBAIgKQPGpE71EsXUyTSk2vAZxiI6Jp6VrBBjAgEQEABEzSgxRTLyCxSZuIko73pWcFG8CARClQ4dZjEcIUU4maVC8gsYJEREB8qr2lPz0r2AAGJCIAgMUkJ8JHNU2pJf4AD6slorh0rmADGJAoFQrce0y1ik21gMSz2IgI6V3BBjAgEQEwz2G10ZhUr4LEgEREOO0MNvYgEaWPmZb5q9aDZLEIUzx3RLQ0R3rHUVPoQmHe0lewAQxIlAIVdtIWgGmm2JSrILEHiYgAHOmZwJrqgrQ9HgMSEZKr2Ix/k42yB4mIFBSKxnBiwIc1VemZXgMYkCgFJsgN8xJmWeavYAXJLA32RLR4J/onEdUk1rKCRJReZulBimoSVgWPGmEFiUhth3vGAQBrq1lBIkors1Qh4keN6D2K7LJwo0gi5R3pHYfDZsHyUk/aHlOxl1JaDBVuPcIkFaSYghUkG3uQiJR3pHcCqyvzYUvjT4hqvZISnYFZjhpRchWbxYKYJk3RZE9Ei3O4ZyKtDdoAAxKlQIUbjxDm+D6jmgarUCsg2ROBMMoqEpGSBiZCGPSF0rrEH2BAIgJgth4ktQJSsqTOaTYiNR3pTX+DNsCARATAPKvYYpqEzapYQEoEwkhM03kkRKSHIz3xM9jWVLGCRFlm/NgwP1aQjCsZCFlBIlLT4Z5xVBY4UeJxpPVxGZBoXiYorMzPND1IUrkepOkKkvGfPyJauMO9E2ndIDKJAYkIiVVseg8iDdSsILEHiUhVkZiGlv6JtE+vAQxIRADYg2RkVvYgESnrxIAPkZhMe4M2wIBEBCDRg2SCCkRMk7AoNsVmt3KZP5GqDnbFV7Ctr2EFiSgjzHJYbVTRjSIBIKaxgkSkmubuMbjtVqwo86b9sRmQiGCuKTbVjhqxs0mbSFkHu8axrqYgI72Xar2SEp2BRZjjwFMVjxphkzaRmjRN4mD3GDZkYHoNYEAiApCsIOk9iqWLahIW1QISm7SJlNQ2NInJcAzrawsz8vgMSEQALBZzNGlrUsUKEjeKJFJRc3e8QXtDDQMSUcZYTTLFFolpyu2DZGUPEpGSmrvG4LBZsKoy/Q3aAAMSEQDAao2vYjN6FSkak1PL3lVhT/QgRbmKjUgpzV1jWFuVP/UakG4MSETA1PEcRq8iRTUtYy8WuSpZQeI+SETqkFKiuWssY/1HAAMSEYDpm6yR+1iklIjE5NSqLlXYE9saRDnFRqSMzpEAxoPRjPUfAQxIRAAwtfu0kfdCSlZQ7Ir1IE03aXOKjUgVzV1jAIANtZlZ4g8sICAJIX4ihOgXQjSf9rEvCiG6hBB7E7+uzcwwiTLLDBWkZAXFblPr5x4bm7SJlNPcPQabReCsyvSfwZa0kFfSewFcM8vHvyml3Jz49Wh6hkWUXcmAZOQiRDixD5B6y/y5USSRapq7xrGqMh8uuzVj10g5IEkpnwUwnLGREOnIYoIm7WgiIKnWpM2NIonUMtWgnaEdtJPS8Ur6cSHE/sQUXPGZvkgIcbsQYpcQYtfAwEAaLkuUPslMYeQqxFQPkmoBiRtFEimlazSAockwNtUXZfQ6S30l/T6AJgCbAfQA+O8zfaGU8m4p5VYp5dby8vIlXpYovczQpB2OJqbYFNsHaWqjSAYkIiXs7RgFAGyuK8rodZYUkKSUfVLKmJRSA/BDAOenZ1hE2WUzQ5P2VAVJrYA0vcyfU2xEKtjXMQqHzYLVVZlr0AaWGJCEENWn/fYmAM1n+lqiXGaOVWxq9iBZOcVGpJR9HWPYUFMAR4ZX7NpS/UIhxC8BXAagTAjRCeALAC4TQmwGIAG0AfhI+odIlHkWEwSk6VVsagWkZAWJy/yJzC8a03CgawzvPr8+49dKOSBJKW+d5cM/TuNYiHRjhqNGpvZBUmyKjRtFEqnjWJ8PgUgMmzPcoA1wJ20iANMVJCMfVps8rFW1KTZuFEmkjn2dowCATRlu0AYYkIgAmKOCFI7Gx67aKjYhBKwWYejpUSJKzb6OURTl2bGsNC/j12JAIoJJmrQVrSAB8ecvwik2ItPb2zGKTXVFECLzPwiq90pKNAuLCY4ame5BUu+/td0ipr5/IjKnyVAUx/omMr5BZJJ6r6REszDFFJuiZ7EB4BQbkQKau8agSeAcBiSi7DHFFJvKFSSrhWexEZlccgfts+sKs3I99V5JiWZhioA01YOkXgXJZmUFicjs9naMor7EjVKvMyvXY0AigjkOq02exaZiBclmsXCZP5GJSSmxu30EWxqKs3ZN9V5JiWZhhsNqk2exqbbMH0hWkDjFRmRWnSMB9E+EsHUZAxJRVpliik3Rs9iA5DJ/4z53RDS3Xe3DAIBzl5Vk7ZrqvZISzcIcq9gSTdqKncUGAA6rBZEoK0hEZrW7fQT5ThtWV+Vn7ZrqvZISzcIUR40kl/krOMXmsFmmtjkgIvPZ1TaCzQ1FU9X+bGBAIoJJptg0LvMnIvMZD0ZwtG8CW7M4vQYwIBEBMEeT9vQqNgUrSFbL1PdPROay59QopATOzWKDNsCARARgevfpqKErSBqsFpGVM4pyjd1mmerBIiJz2d02DIsANjcUZfW6DEhEMMkUW0wqWT0CWEEiMrNd7SNYW10Ar9OW1esyIBHBJFNsMU3JFWwA4LAJ9iARmVA0pmFvx2hW9z9KUvPVlGiG6QqSzgNZgmhMKrmCDWAFicisjvROwB+O4dzl2W3QBhiQiABMHzVi6GX+mqbkCjYgvsyfFSQi83m1Lb5BJCtIRDqxmGGjyKhUNiDZWUEiMqWdrcOoK3ajpsid9Wur+WpKNIMZmrRD0RicNjX/S3OjSCLz0TSJV9qGsb2xVJfrq/lqSjSDKZq0oxocqgYkVpCITOd4vw/Dk2FsW5H9/iOAAYkIgFkqSJrSFST2IBGZy8utQwDAChKRnmwmCEgqV5DsVgs0OX0eHREZ386TQ6gtcqO+JE+X66v5ako0g8UEASneg2TVexi6SAbDCHfTJjIFKSVebh3GtkZ9ptcABiQiAIDVDKvYYmpXkACwD4nIJJL9R3pNrwEMSEQApitIRt4HKRRRuwcJAFeyEZnEzmT/0QoGJCJdmWEnbZUrSI7EDuIMSETm8HLrMGoKXagvyf7+R0lqvpoSzZDIR4hpxr3BhhVfxQYAEU6xERmelBI7Tw5he2MphNDv+CQ1X02JZhAQsFkEokaeYlN8FRvAChKRGbT0+zDoC+vaoA0wIBFNsVmNHZDCUQ0Oq6Kr2NikTWQazx0fBABc2FSm6zgYkIgS7BZjbzYYisbgtKv5X9rOJm0i03i+ZRDLS/N02/8oSc1XU6JZ2KwCUYPuo6NpEpGYnKqkqMbJChKRKURiGl5uHcLFq/StHgEMSERTbFbjVpCSlRPVK0hGff6IKG7PqVH4wzFcvLJc76EwIBElOawWw+7EHEpUTlStILEHicgcnj8+AIsALmjSb/+jJDVfTYlmEW/SNuYNNhkMnHY1m7STq9hYQSIytudaBnF2XREK3Xa9h8KARJRksxi3BykUjQGY7sVRTXJ7gxArSESGNRaIYF/HKN6UA/1HAAMS0RS7kXuQklNsiu6D5Er0XoUixnz+iAh46cQQNAlcvJIBiSinGHkfpGTlRNWdtF2JqcVgopJGRMbzfMsA8hxWnNNQrPdQADAgEU2xGXgfJFaQEgEpwoBEZFTPHx/E9sbSnHkdy41REOUAu4H3QZquIKnZpO1KvKAGOcVGZEgnByfRNuTHJTnSfwQwIBFNsVkshl/Flis/eWWbzWqBzSJYQSIyqB1H+gEAb15TqfNIpqn5ako0C5tVGHgfpHgwUDUgAfFpNlaQiIxpx9F+NJV70FCq7/Eip1P31ZRoBrvVuBWkZDBwK7oPEhAPSAFWkIgMZzIUxc7WYVy+ukLvobwOAxJRgpH3QUoGA7UDkgUhBiQiw3mhZRDhmIY3r2FAIspJRt4HKRmQXA51/0u77FYu8ycyoB1H++F12rB1eYneQ3kddV9NiWYw8j5IwTArSC67hT1IRAYjpcSOIwO4eGVZzvVQ5tZoiHRks1gQMehRFVMVJJUDks3KVWxEBnO4ZwK948Gcm14DGJBoHlIas6KyGA6bQMSgFaRAJAa7VUwd2qqi+Co2BiQiI9lxNL68/7LV5TqP5I3UfTWllCiUj+L7IBm1BykcU7p6BHCKjciI/nKkHxtqC1BR4NJ7KG/AgERz0hRKSDYD76QdjMSU7j8CACebtIkMZWAihNdOjeDKtbmzOeTpGJBoTgadcVoUu9WCiEH3QQpEYnA71A5IbrsVIVaQiAzjiUN9kBK4en2V3kOZFQMSzUmpCpKB90FiBSk5xcYKEpFRPH6wFw0leVhTla/3UGaVckASQvxECNEvhGg+7WMlQognhBDHE2+LMzNM0otC+Qg2qwVRTRqyMT0Q0diDZONO2kRGMR6M4MUTg7h6fSWEEHoPZ1YLqSDdC+CaGR/7DICnpJSrADyV+D2ZiEoVJLsl/p/UiHshBcOsICVXsRkx4BKpZseRfkRiMmen14AFBCQp5bMAhmd8+EYAP028/1MAb0/PsChXqBSQbIkl8kacZmMPUnyKTZMw7IHDRCr588E+lHmd2NKQuxNPS+1BqpRS9iTe7wWQm63otGgGLKYsmt0aryCFDbjUP8AepKkpRq5kI8ptwUgMTx/tx1XrKmGx5Ob0GpDGJm0Zr2uf8XYqhLhdCLFLCLFrYGAgXZelDFNpusKZuMGGDbibNvdBmn7+2KhNlNteaBnEZDiGq9fndk1lqQGpTwhRDQCJt/1n+kIp5d1Syq1Syq3l5bm3YybNTqUKkjMxxRYyYAUiGInBrfBBtcD0OXRc6k+U2x4/2It8pw0XNpXpPZQ5LfUV9SEA70+8/34ADy7x8SjHqNSD5LQnA5LxbrCcYov3IAHgSjaiHBaOanj8YB+uWFuRc4fTzrSQZf6/BPASgNVCiE4hxIcAfBXAVUKI4wCuTPyeTESpgJT4z2q0KTYpJQMSAI/DBgDwhxmQiHLV8y0DGAtE8LbNNXoPZV62VL9QSnnrGT51RZrGQjlIoXwEpy0xRWOwgOQPxyAl4HWl/N/ZlPISq/gmQ1GdR0JEZ/Lwvh4Uuu24eGXut9rkdn2LdKdSBSlZ7g0ZbIrGlwgEHqfaASn5/TMgEeWmYCSGPx/sxVs3VOX89BrAgETzUKpJ22bMHqRkQPIyIAEAJsMMSES5aMeRfkyGY7hhU+5PrwEMSDQPTaGElJxiM1oPUrJikuzBUZXHmZxiM1YFkEgVj+zvQZnXie2NpXoPJSUMSDQnhWbYpqfYDBaQOMUWlwyInGIjyj2+UBRPHenDdRurYM3hzSFPx4BEc1KpB2l6is1YFYhkxUT1KbbkKr5JrmIjyjlPHe5DMKIZZnoNYECieSgVkAy6D5IvFAEwPcWkKotFwOOwsoJElIMe2NOFmkJXTp+9NhMDEs1JoRYkw/Yg+VhBmpLntMHPJm2inNI/HsSzxwZw05banD57bSYGJJqTSmexOQw7xZZYxab4PkhAPCT62KRNlFMe2NMFTQLv2FKn91AWhAGJ5qRWBSm5D5KxKkiToSgsAsrvpA3EN4v0c4qNKGdIKfG71zqxpaEIjeVevYezIAxINCeVepBsFgGLAMIxYwUkXygKj8MGIYxTus4Uj9M2taqPiPR3oGsMx/p8eMe5xqoeAQxINA+VApIQAk6b1XhN2sGo8kv8kzwOK89iI8ohv9vdCYfNguvPNs7qtSQGJJqTQvkIQLwPyWhHjUyGo8qvYEvKc9q4io0oR4SiMTy4rxtXratEoduu93AWjAGJ5qRSBQmI9yEZroIUinEFW4LXYeNRI0Q5YseRfoz6I/grgzVnJzEg0ZxUatIG4nshGW2Z/2SIU2xJeU4rjxohyhG/fKUDlQVOvGlVmd5DWRQGJJqTahUkh9V4FaSJYIQVpASvM15BUukMQaJc1DHsx7PHB3DLeQ2wWY0ZNYw5asoalfZBApBo0jZWBWIsEDHk/H4mFLjskBLwcZqNSFf3v3oKAsC7z6vXeyiLxoBEc1LtB3Gn3XgVpLFABEV5DEgAUOCOV9LGAxGdR0KkrkhMw69e7cTlqytQU+TWeziLxoBEc1JtqsJlsyJgoGXioWgMwYjGClJC8u9hPMAKEpFenjjUh0FfCO/Z1qD3UJaEAYnmFFNsis3jNNY+OmOJSgkDUlyBK/73MMYKEpFu/nfnKdQUunDZ6gq9h7IkDEg0p5hiFSS3w1iHnSankgoYkABM/z2MBxmQiPTQPjSJ51sG8e7zG2A10MG0s2FAojlFFQtIRtuJmRWk15ueYmNAItLDz15qh80icIuBm7OTGJBoTrGYWgHJ7TBWD9KoPx4EivIcOo8kN3CKjUg/E8EIfvVqB647uxqVBS69h7NkDEg0J+V6kBI7MRtlewNWkF7P60qsYgsaZ5qUyCx+u7sTvlAUH7hohd5DSQsGJJqTej1IVmgShlnqz4D0elaLQL7Lxik2oiyLaRL3vtiGLQ1F2FxfpPdw0oIBieakYg8SAMP0ISUDUoGLO2knFbjsDEhEWfaXI/1oH/Ljgxebo3oEMCDRPFTbBynPEQ8aRlnJNhaIHzNi1K38M6HQbecqNqIsu+eFk6gpdOGa9VV6DyVt+KpKc1KtgpTnNFgFyc9jRmYqcNu4USRRFh3sHsOLJ4bwvguXm+qHNfN8J5QRMc0YvTjpkmewKbahyTBKvVzBdrpCtx2jgbDewyBSxvefPgGv04ZbzzP2ztkzMSDRnJSrICWn2ELGqEAMTYZQ6mFAOl2Jx4nhSQYkomxoG5zEowd68N7tDSg02ZmQDEg0J/V6kAxWQfKFUep16j2MnFLqcWDEH1Hu3y6RHu569gRsVgs+ZKLm7CQGJJqTshWkSO4HJCklp9hmUeJxIKZJbhZJlGF940H8bncX3rW1DhX5xt8YciYGJJqTavsgTVWQDDDF5gtFEY5qKPOwgnS6ZGAc4jQbUUb96LlWxKTERy5p0nsoGcGARHNSLSB5nPEKks8AAWnIFw8AJexBep3k3wf7kIgyZ9Qfxn07T+GGs6tRX5Kn93AyggGJ5qTaFFu+0wYhgAkDHFUxNBkCAE6xzTAdkEI6j4TIvO5+thWBSAwfvXyl3kPJGAYkmpNqFSSLRcDrtBlio8FkBamMTdqvU5qYcuQUG1FmDPpCuOeFNtxwdg3OqszXezgZw4BEc1KtggQkj6owQgUpHgBYQXq9Yk98qfGwjwGJKBO+//QJhKIxfOLKVXoPJaMYkGhOKi6VLjDIURUDE/EpJPYgvZ7TZkW+y8YKElEG9I4F8YuX2/GOLXVoLPfqPZyMYkCiOalZQTLGafA9Y0GUehxw2qx6DyXnlHocDEhEGfDdHS2IaRL/cIW5q0cAAxLNQ7WjRgAg32XHuAGatPvGg6gqNN/eI+lQ4nGwSZsozTqG/bj/1VO45bx6065cOx0DEs0ppl4+Shx2mvsVpN6xIKoKGJBmU+Z1Tk1BElF6/NfjR2G1CPz9m81fPQIYkGgeKlaQClzG6EHqHQ+ikhWkWVUVutA7FtR7GESmsefUCB7e143b39SoTOWaAYnmpGQPktsOXyia0w3qwUgMw5NhVLOCNKvKAhfGg1H4w7k/VUqU66SU+I8/HkaZ14nbLzXnrtmzYUCiOam2DxIQb9KWEpjI4d20+8fj00esIM0uOfXIKhLR0j3W3Ivd7SP45FvOgjdx2oAKGJBoTioGpEJ3fB+dUX/uroLqHY/f+NmDNLvkFEDy74mIFicUjeGrjx3B6sp8vGtrvd7DySoGJJqTigEpuTN1Li8TT974q1lBmlVlIjj2MSARLcmPnz+JU8N+fPa6tbBahN7DySoGJJqTij1IyZ2pc3kn5q6RAAAo0yy5UFMVpDGuZCNarK7RAP7nqRa8ZV0lLj2rXO/hZB0DEs1JxQpScmfqoRzeR+fUsB8lHgfyXXa9h5KTvE4b8p02VpCIluBLDx+EhMTnb1in91B0wYBEcwpF1VvmnzzsdDCHK0gdw340KLBR21JUcqk/0aLtONqPxw/24R+uWIW6YjVfaxiQaE4RBXeKdDus8DisGMrhgNQ+PMmANI/qQhe6RgN6D4PIcIKRGL740EE0lXvw4Ysb9R6ObhiQaE5hBStIAFDqdebsFFskpqF7NMiANI+Gkjx0jPj1HgaR4Xz7qeNoH/LjSzdugMOmbkxQ9zunlKhYQQLifUi5WkHqGQ0ipkk0lDIgzWVZaR5G/RGMGeDYGKJccaBzDHc924pbttbjopVleg9HVwxINKewogGpzOvAoC83K0jtw5MAwArSPJJ/Px3DrCIRpSIc1fDPv92HMq8Dn71urd7D0R0DEs0pHNXgsKr3z6TU48zZfZDaBuMBaRkrSHOqZ0AiWpDv7mjBkd4JfOWmjVMb5qosLXuGCyHaAEwAiAGISim3puNxSX/hmAa7VSAc03sk2VVR4MSQL4RoTIMtxwJiS78PXqeNu2jPI1lBOsWARDSvQ93j+O6OFtx0Ti2uWFup93ByQjoPVblcSjmYxsejHBCOanDYLJhULCHVFLmhSaBvIoTaIrfew3mdY30+rKzwQgi1drVdqHyXHSUeB9oZkIjmFIzEcOf9e1DsceDz16u559FscutHY8o5kZim5CqG5BEe3Tm4TPx4vw+rKrx6D8MQ6kvyOMVGNI+vPHoYx/t9+O93bkJxYqNcSl9AkgD+LITYLYS4PU2PaViaiXafDkc12HNsiikbahJVo1wLSCOTYQz6QlhVyYCUimUleTiZ6Nkiojd68lAffvZSOz508QpcouBxInNJ153vYinlFgBvBfAxIcQlM79ACHG7EGKXEGLXwMBAmi6bmzRpnoAUiUmlK0g9ObYTc8uADwCwqjJf55EYw6oKLzpHAvCHo3oPhSjn9I8H8enf7cfa6gJ8+prVeg8n56Tlziel7Eq87QfwAIDzZ/mau6WUW6WUW8vLzZ1SYyYKSKquYst32ZHvsqEnxypIh3vGAQCrGZBSkgySLf0+nUdClFuiMQ133r8Xk6Eo/ufWzXDarHoPKecs+c4nhPAIIfKT7wN4C4DmpT6ukWkm2TpISomwoj1IAFBT6EZ3jlWQ9neOodTjmKpw0dzOSkxFHutjQCI63df+fBQvtQ7hyzdtxMoK/sA1m3SsYqsE8EBiRY0NwP9KKf+Uhsc1LLNMsUVi8e9DxR4kAKgvcedcg29z1xg21BZyBVuKGkry4LBacLxvQu+hEOWMPzX34K5nWvHebQ34q3Pr9B5OzlpyQJJStgLYlIaxmIZZptiSu2irOMUGACvKPHju+CA0TcJi0T+QBMIxHO/34ap13KMkVTarBY3lHhxjQCICAJwY8OFTv9mPTfVF+PwNXNI/FzXvfBkmTTLFljyo1q7oFFtjuRehqIbusdzoQzrUM46YJrGhtlDvoRjKWZX5nGIjAjAejOCOn++Gw2bB9967hX1H81DzzpdhZqkgBSPxzSHz7Gr+J1pR5gEAtA7kxjLx/Z2jAICNDEgLsq6mAF2jAYzk6NExRNkQiWn42H2v4eTgJL7znnNybgPcXMSAlAFm6UEKJAKS26FmQGosTwak3Kg+vHJyGLVF7qk9mig1Z9fFA+X+rjGdR0KkDyklvvDQQTx3fBBfuXkjLmwq03tIhsCAlAFm2SgykDhexKVoBanc64TXaUNrDmw0KKXEKyeHsW1Fid5DMZyNtYUQAtjfMar3UIh08ePnT+J/d57CHZc24V1b6/UejmEwIGWASfLRdAVJ0YAkhEBTuScn9tBp6fdhaDKMbY0MSAuV77KjscyDfZ2sIJF6HtnfjS8/ehjXrK/Cp6/mZpALwYCUAWbpQUpWkNwOdf+ZrKspwMHucUidn9OdJ4cBANtWlOo6DqPaVFc01cNFpIpnjg3gH3+1F1uXFeObt2zOidW4RqLunS+DTDPFpngFCQA21BZiLBBBx7C+K9mePTaAmkIXlpXm6ToOozq7rhD9EyH05MiKRKJM290+gjt+vhsrK/Lxo/efp2wv6VIwIGWAWZq0k6vYVO1BAqZXjB3QscE3FI3h+ZZBXL6mghtELtLW5fGpyVcSlTgiMzvSO44P3PMKKguc+NkHz0eh2673kAyJASkDTFJAOm2KTd2AtLoqHzaLQHO3fgFpZ+sw/OEY3rymQrcxGN3a6gIUuGx4sWVI76EQZdThnnG854c7keew4ecf2obyfKfeQzIsBqQMiJkkIXGKDXDarFhbXYDX2kd0G8NTh/vgtFm4NHcJrBaBbY2leKmVAYnM62D3GG794ctw2iy4//btqC/hlPxSMCBlgN4NvekS4BQbAGDbihLs6RidmnLMpmhMwx8P9OKy1eVKV/LS4YLGUpwa9qNzJLfO1yNKh+auMbznhzvhcdjwq9svwPLERre0eAxIGWCWVWy+YBRWi4DLrvY/k+2NpQhHNew5NZr1a794YgiDvhDevrk269c2mwtXxlcAcpqNzGZn6xBu/eHLyHfZcP/t29HAxRxpofadL0M0k5zFNhGMIt9lg4DajcHnrSiBRUCX6Zk/7O1CvsuGy9l/tGSrK/NRXejCk4f79B4KUdr8qbkXt/3kFVTkO/Grj1zAabU0YkDKALOsYpsIRpDvsuk9DN0Vuu04u64IO470Z/W6Y/4IHjvQi+s2Vis/zZkOQghcubYSzx0f1GW6lCjdfvFyOz56325sqCnAb++4kOerpRkDUgaYpUl7IhhFvpPLQwHgmg1VONA1ltX+ld/s7kAgEsNtFyzL2jXN7qp1lQhEYnihZVDvoRAtmqZJ/NefjuBzf2jG5asrcN+Ht6PY49B7WKbDgJQBURMFpAI3K0gAcPX6KgDA4wezMz0T0yR++lIbzltejPU1hVm5pgq2N5Yi32nDn5p79R4K0aJMBCO4/ee78L2nT+DW8xtw123ncgFHhjAgZUA4ao4mpPFgBPkuVpAAYEWZB2uq8vHwvu6sXO+hfV3oGA7ggxetyMr1VOGwWXD1hio81tw7tc8XkVG0D03i5u+9iB1HB/ClG9fjKzdtgM3K23im8G82A8IxcwSkZJM2xb1zaz32doziYIY3jYzENHzryeNYW10wVbmi9Ll5Sy18oSj+fIhVJDKOHUf6ceN3X8CAL4Sff/B8vO+C5dxZP8MYkDLATBWkAlaQprxjSy2cNgvu23kqo9f59a4OtA358U9XncXDJTNg+4pS1Ba58bvXuvQeCtG8IjEN//noYXzg3ldRVeDCgx+7CBeu5Kax2cCAlAERE1SQNE3CF2IF6XRFeQ68bVMNfre7E/3jwYxcY2AihP/z2BGcv6IEV67l0v5MsFgEbt5Si+ePD6BjmJtGUu7qGg3glrtewl3PtuK92xrwh49dhGWl3AAyWxiQMsAMFaSJYBRSgocczvCxy1ciqkl87+kTaX9sKSW+9MghBCIxfOWmjSyfZ9B7tjXAIgTufbFN76EQvYGUEg/u7cK133oOx/p8+J9bz8GXb9rI7T6yjAEpA8wQkAYnQwCAMi8POjzd8jIP3nluHe7b2Y5jfRNpfezf7OrEw/u68fdvXoWVFd60Pja9XnWhG9durMavXu3ARDCi93CIpgz6Qvjofa/hzvv3orHcg0f+/mLcsKlG72EpiQEpA0ImmGIb8oUBMCDN5p+vXg2v04b/73f707bn1b6OUfzbg824aGUpPnb5yrQ8Js3tw29aAV8oip+/3K73UIgAAI8d6MHV33wWTx3ux2feuga/veNCnqmmIwakDIiYoYLki1eQSr3cfGymUq8TX7hhPfacGsXXHj+65Mdr6Z/A39zzCioKnPi/t5wDKxuzs+LsuiJcvrocdz3TirEAq0ikn45hPz7801fxd/e9hpoiNx75h4txx6VNfC3QGQNSBphhmf8QA9Kc3n5OLd67rQE/eOYE7tu5+ArEa6dGcMtdL8NqseAXH9qG8nxW7LLpU1evxlgggh8+26r3UEhBoWgM393Rgqu++QxePDGEf712LX7/0QtxVmW+3kMjAFyilAGm6EHyhSEEUJLHgHQmX7hhPbpHA/jXB5ox6o/g7y5tSnlZvpQSv3i5Hf/xx8OoLHDh3g+cx9UpOlhfU4gbNtXgR8+34l1b63kKOmWFlBJ/OdKPLz96GK0Dk7h2YxX+7fp1qC7kWWq5hBWkDDBDQBrwhVCS5+AurXNw2Cz4wW3n4oZNNfja40fxvp+8gqO98zdu72obxi13vYx/e/AgtjWW4oGPXojGcjZl6+Wz166BVQh87sFmSJMcNE25a3/nKN5998v40E93ARK45wPn4XvvPZfhKAexgpQBZtgHqWskgBqeDD0vp82Kb797M7atKMH/+dMRXPOtZ3HxyjK8ZX0V1tcUoNTjQCQm0TMWwGvto3isuQdHeidQ5nXiqzdvxC3n1XM5v86qC9341NWr8f8/fAgP7evGjZtr9R4SmVDb4CT++4ljeHhfN0o9Dvz7jevx7vMbYOcPoTmLASkDQiaoIHWNBtBUzimfVAgh8Nfbl+G6jdW458U2/P61TvzbH5pn+bp4Y/C/37ge7zi3DnkO/vfLFe+7YDke3teNzz3QjM31RZzupLQ5MeDDd//Sgj/s7YLDZsHHL1+Jj1zayHMuDYCv0Blg9CZtKSW6RgK4ZFW53kMxlGKPA/901Vn4xytXoXMkgCO9ExgLRGC3CpTnO7G+ppAbb+Yoq0Xg27eeg2u/9Rw+/r978Js7LuCmfLQkx/om8J2/tODh/d1w2az40MUr8LeXNKIi36X30ChFDEgZEIoYOyCN+CMIRGKoLeYU22IIIVBfkof6Ejb8GkldcR6+/s5NuP3nu/Gp3+zDt999Ds/CowWRUuLZ44P48fMn8eyxAeQ5rPjIJU348JtWcE85A2JAyoDJUFTvISzJycFJAMAy3uBJMW9ZX4V/eesa/OdjR1BT5Ma/vHUNe8RoXoFwDA/s6cJPXjiJln4fyvOd+ORVZ+G925ehxMOVwEbFgJQBEyFjbzrX0h9ficW9OEhFt1/SiK7RAO5+thVCAJ+5hiGJZtfcNYZfvdqBP+ztwkQwivU1BfjGuzbh+rNr4LCx+droGJAyYCJo7ArS8T4fXHYLp9hISUIIfPGG9dCkxF3PtCIQjuHz16/jlhcEABgLRPDQvm786tVTaO4ah8NmwbUbqnDr+Q04f0UJw7SJMCBlgNED0rF+H5rKvdzmnpRlsQj8+40bkOew4e5nW3FycBLfuXULCvPYZK8ifziKJw/34+F93Xjm6ADCMQ3rqgvwpRvX48ZNtfx3YVIMSGlmtQhDnw4upcTBrjFctrpC76EQ6UoIgc9euxZN5R587g/NuP47z+Eb79qM85aX6D00ygJ/OIpnjw3g4f09eOpwH4IRDVUFLtx2wTK8fXMtNtYV6j1EyjAGpDTLd9kwbuAK0qlhP4YmwzinoUjvoRDlhFvOa8DKinx84ld78K67XsLtlzTizitWcR8rE+oc8WPHkX48ebgfL7UOIRzVUOZ14J3n1uOGTTXYuqyYKxsVwv/haVbgsmPUH0EwEjPkPiqvnRoBAGxpKNZ5JES549xlxXjszkvwH48cwl3PtOKhvd34zFvX4G2bathzYmCBcAy72ofxQssQnj7ajyOJo4JWlHnwvu3L8Oa1FTh/eQn7zxTFgJRmFflOnBr2Y2AiZMh9cF46MYR8lw2rq7iCjeh0XqcNX33H2bh5Sx2+9MhB3Hn/XvzwuVZ87LKVuHp9FSsLBhCOatjXOYoXW4bw4olB7Dk1inBMg80isGVZMT577RpcsbYSTTwbkcCAlHZVhfFdUnvGgoYLSJom8ZcjA7j0rHI2aBOdwfkrSvDgxy7GA3u68N0dLfi7+15DU7kH77tgOd6+mQ27uaRvPIjX2kewp2MUr7WP4EDXGEJRDUIAG2oK8YGLluOCplKct7wEHidvh/R6/BeRZtVTASmg80gW7kDXGAZ9IVyxlg3aRHOxWgT+6tw63HROLR490IO7n23FFx46iK88ehjXbazGDZtqcOHKUjhtxptmN6r+iSAOdY/jcM8EmrvHsPfUKLpG46/DDqsFG2oLcNv2Zdi6vAQXNJYyyNK8GJDSrKowvndQ71hQ55Es3AN74ocpXs4VbEQpsVoEbthUgxs21aC5awy/fOUUHtrbjd/v6UK+04Yr1lbg8jUVuLCpDOX5PGoiHSZDUZwcnMSJAR8O9YxPhaJBX2jqa2qL3NjcUIQPXrwC5zQUYX1NAcMqLRgDUpp5nVbkO21TP7kYRTAS3yr/6vVVKMrj1vhEC7WhthBfvmkjPn/DOrzQMog/NffiiUN9+MPebgDAWZVeXNhUhnMainB2XRGWleSxb+kMwlENPWMBnBr2o3UgHoaSb3tO++HTbhVYVZGPy1aXY111AdZWF2BddQGrQ5QWDEgZsKrSO7Uawijuf+UUxgIRvHdbg95DITI0p82KN6+pxJvXVCIa03Cwexwvnog3Bd//6inc+2IbgPiWIBtrC7GmqgCN5R40lXvRVOFBuddp6pVxUkqM+iPonwihfyKIrpEAOkcC6Bzxo3MkgK7RAHrHg5By+s94nTY0lXuwvbEUTeUeNJZ70VjuQWOZl0d6UMYwIGXAupoCPLinG1JKQ7zQ+cNRfO/pE9i2ogTbG0v1Hg6RadisFmyqL8Km+iL83WVNiMQ0HO/z4UDXKPZ3juFAYlouEIlN/Zl8pw21xW5UF7pQXeRGTaEL1YVuVBQ4UZznQLHHgeI8O9x2a068voSjGsYCEYwFwhgLRDDqj0y9HQ1EMDARwsBEEAMTIfRPhDDoCyESk697DKtFoLrQhdoiNy5sKkNdsRu1xW7UFbuxstyL8nxzh0bKTQxIGbC+phC/ePkUWgcnDbFc9GuPH0X/RAjf/+steg+FyNTsVgvW1RRgXU0Bbjkv/jFNk+gdD+LEgA8n+n1oHZxE92gAPWNB7Oscw/BkeNbHctgsKM6zo8jtgNthRV7il8uefN8Gp80Ci0XAKsTUW6sFU+9rEohpGmJa/G1Uk4hpcuptMBKDPxz/FYhEEZh6P/52MhSFPxybdXwAIARQ6nGgzOtERYELqyrzUZ7vREW+M/HWhdpiNyrzndxriHIOA1IGXNRUBgB45uhAzgekJw/14d4X2/C+C5bh3GU8QoEo2ywWgZoiN2qK3HjTqvI3fD4YiaF3LIj+iRBG/GGMTIYx4o9g1B/G8GS8ahOIxBAIxzDqjyTCSzzMhKIaNBkPO5qc5eKnj0MANosFFkv8rdUi4LJbkOewTYUuj9OGMq9zKpB5HDYU5dlR6LajwG1HUZ4DhW47itzTH+OWIWRUDEgZ0FCah1UVXvzxQA8+ePEKvYdzRrvbh3Hn/XuwsbYQn712rd7DIaJZuOxWLC/zYHmZZ0mPI6VMVIzkVGiyWkT8V6LCRETTWNPMkHef34Dd7SPY2zGq91Bm9afmXvz1j15BRYELd9+21ZDHohBR6oSIhyGHzQKXPV4NctmtsFstDEdEs2BAypB3bq1DmdeBzz/YjGhM03s4U4Z8IfzL7/fjjl/sxqpKL379kQumdv8mIiKiOAakDClw2fHFt63H/s4xfPp3+xHROST1jQfx9ceP4rKvP41f7+rE375pBX5zxwXcvI6IiGgW7EHKoOvPrkHrwCS+8cQxtA5M4vM3rMOWhuKsXb97NICnjw7gTwd78WLLIGJS4sq1lfj01auxqpKH0RIREZ0JA1KG/cMVq9BY7sEXHjyIm7/3IjbWFuKaDVU4f0UJ1tcUIM+x9KcgGImhfciPk4M+nBiYxOGecexuH5nacXZZaR4+/KZG3Hp+PZaVLq3Rk4iISAUMSFlw/dk1uHx1Be5/tQN/2NOFrz1+dOpzFflOLCvNQ4nHgQJXfGmsy26FRUzvVRKTcmoZb3IfkqHJEAYmQhj0xZf5nq62yI2ty0twbkMRtjeVYnVlPjdZIyIiWoC0BCQhxDUAvgXACuBHUsqvpuNxzcTjtOFDF6/Ahy5egeHJMHa3j+Bo7zjah/w4NexH26A/sRttBOGYhtiMTUucNgvcDivcdivcDitKPQ6srsrHRV4nyrzxkNVU7sWKMg88TuZeIiKipVjynVQIYQXwXQBXAegE8KoQ4iEp5aGlPrZZlXgcuGpdJa5aVznn12mJ/Uos3KOEiIgoq9Kxiu18AC1SylYpZRjA/QBuTMPjKs9iEbBxjxIiIqKsS8dcTC2AjtN+3wlg28wvEkLcDuB2AGhoeP2J8dGYhpODkzgxMIkBXwiDEyGMByMIRjSEIjEEozEEI/FpJ4n4jrBSAhLxt1ri2GebxQKbVcBmEVPv263xLfPtiffdDiu8Dhs8Thu8zvhbj9OKEo8DlQUulHocPBOIiIhIcVlrVpFS3g3gbgDYunWrBIDjfRP4n7+04MnDfa878FAIwOuwwWm3wmWP7/rqsltgFQIQAhYBCMR3ho2/H6+w+KNRRDWJaEwiqmmIxiQimoZYTCKiSURiGvyhGMJz7ElkEUCp14m6YjfWVOXjrMp8nNNQjI21hTxTiIiISBHpCEhdAOpP+31d4mNzevpoP27/2W447RbcuLkG5y0vwVmV+ajId6Ikw1WccFTDZCgKXyiKyXAUk6Eohicj6BsPon88iL7xENqHJ/Gn5l788pV4caw4z463rKvC+y5chvU1hRkbGxEREekvHQHpVQCrhBArEA9G7wbwnrn+gCYlPvnrfWiq8OLnHzofZd7s7ubssFngsDlQ7HHM+XVSSgxMhPDyyWE8faQfD+3rxq92deDmLbX4/PXrUJQ3958nIiIiY1pyQJJSRoUQHwfwOOLL/H8ipTw4158Z80cQmwzj7vedm/VwtBBCCFQUuPC2TTV426YafOGGCO5+7gTueqYV+zpG8YsPb0N1oVvvYRIREVGapWUeS0r5qJTyLCllk5Tyy/N9/UQoiqoCV1aP3UiHwjw7/vnqNbjvw9vQNx7CHT/fjVA0Nv8fJCIiIkPRZblWKKJhQ22BYXd33tZYiq+/82zs6xzDvS+06T0cIiIiSjNdAlI4pqGuOE+PS6fNNRuqcelZ5fj+MycQjLCKREREZCa6BCRNStSXGDsgAcDtlzRi1B/B4wd79R4KERERpZFuOyKWeY2/AuyCxlKUeZ146nC/3kMhIiKiNNLtVFOPw/gHqlosAhetLMULLUOQ83+58qSUGPFHcGrYj1F/GMGIBk1K5LtsKHDZUVvsRqnHYdjeNCIiMg/dUkqe06rXpdNq24pSPLi3G53Dfr2HkpPGgxE8ur8HzxwbwCsnhzE0GZ7z6wvddqyuysf2FSXY3lSK85eX8OgXIiLKOt0Cktdp/AoSAKytzgcAHOmd0HkkuWVgIoTv7mjBL185hVBUQ22RG5euLse66gIsK/Wg1OuA02aBRQj4QlGM+iPoGPbjxIAPzV1j+M6OFnz7Ly0o8zpww6YavHfbMqys8Or9bRERkSL0m2IzSUA6qzIekI71MSAlPbyvG5994AD84RjesaUW7922DGfXFS5o6mwiGMELLYN4cG837tt5Cve+2Ia3bqjCP111FlZW5Gdw9ERERDoGJLfdHFNsHqcNpR4HukYDeg9Fd1JKfPOJY/j2X1pwTkMRvv7OTWgqX1zVJ99lxzUbqnHNhmoM+UK454U2/PTFNvz5YB/+9pJG3HnFKrhM8m+IiIhyj27NHTaLeRpxa4rc6BphQPr2U/FpsVu21uPXH7lg0eFoplKvE5+6ejWe/ufL8PZzavH9p0/gr37wIjrY90VERBmiW0CymCgg1Ra5la8g/eVIH7755DHcvKUW/3nzRtgz0Fhd6nXi6+/chB+9bytODflxw3eex/7O0bRfh4iISL+AZKKl3OX5TvjD6u6mPRGM4DO/O4C11QX4yk0bMx5+r1xXiYf//mLku2x4zw934rVTIxm9HhERqUe3gGQ1UUAqyrPrPQRdfXfHCQz4QvjqzRuz1he0rNSD33zkQpR5HfjwT3ehbXAyK9clIiI16BaQhIm2tinKM/6u4Is1FojgFy+344aza7Cpviir164qdOGeD5wPKSU+/LNdCChcxSMiovRiBSkNitzqVpDuf+UUfKEoPnJpoy7XX1Hmwf/cugUt/T589bHDuoyBiIjMhz1IaaDyFNvvX+vCucuKsb6mULcxXLyqDB+6eAV++lI7Xm4d0m0cRERkHjquYtPryumnakA62juBo30TuHFzjd5DwT9fvRo1hS586eFDiGk8GY+IiJaGFaQ0MMuu4Av15OE+AMA1G6p0HgngslvxmWvX4lDPOB7Y06X3cIiIyODYg5QGZtkVfKFeOjGENVX5qMh36T0UAMANZ1djXXUBvvd0CzRWkYiIaAn0W8VmnnwEt0O9gBSKxvBq2zAuaCrVeyhThBD4u8ua0DowiT8f6tV7OEREZGA6BiTzJKQ8h3pTbAc6xxCKatjemDsBCQCu3ViNumI37tt5Su+hEBGRgekSkMwTjeJUnGI71DMOANhUV6TvQGawWgTeeW49nm8ZROcIz2ojIqLFMdFaMv1YTXSuXKoOdY+jxONAZYFT76G8wV9trQMA/HZ3p84jISIio9InIKmXJ0znUM841lUX5ORUaW2RG9tWlOCxA+xDIiKixdFpii33bqqUOikljvf5sKrSq/dQzugt66pwtG+CZ7QREdGicIqNFmzAF0IgEsPyUo/eQzmjq9ZVAgCeONSn80iIiMiI2KSdJg6rOlmzYzje/NxQkqfzSM6sviQPZ1V68ezxAb2HQkREBsQepDSxWU34TZ1B+1AiIJXmbkACgAsaS7GrbQThqKb3UIiIyGBYQUoTu0IVpFPDfggB1BW79R7KnC5oKkUgEsP+zlG9h0JERAajzl09w1QKSF0jAZR7nXDacnv/p20rSiFE/EgUIiKiheAqtjRxKDTFNugLoSIH9z+aqdjjQGOZB/tYQSIiogViD1Ka2G3qVJAGfCGUeXM/IAHAxtpCHOga03sYRERkMOrc1TNMpSm2wYmwcQJSXRH6xkPoHw/qPRQiIjIQNmmniSoBSUqJockQyvMNEpBqCwGAVSQiIloQTrGliSo9SGOBCCIxaZgK0vqaAggBNHeN6z0UIiIyEFaQ0kSVA2sHJkIAgDKvQ+eRpMbjtKGu2I2WAZ/eQyEiIgNRY14oC1QJSIO+MACg3CAVJABoKveipZ8BiYiIUmfTewBmkYun2mfCWCAekArz7DqPJHUry7146cQQYppUJshmUziqoW1oEhPBKIrz7KgvyVOmJ4+IzIsBKU2sigSk8WAUAFDgMk5AaqrwIhTV0D0aQH0Onx9nJFJKvNAyhHtfPInnjg8idNpxLl6nDZetLscHL16BLQ3FOo6SiGjxGJDSxKLID8wTBgxIKyu8AICWfh8DUhr0jQfxrw8048nDfSjzOnHr+Q04p6EIBW47hn1h7GofwR/3d+OR/T246ZxafPGG9YaqOBIRAQxIaWNRpII0EYwAALwu4/zTWZYIRR0jfp1HYnyHusfxwXtfxWggjM9euwbvv3D5G46cece5dfjcdWvxg2dO4AfPnMDejlH8+P1b0Vju1WnUREQLp0jdI/NUCUjjgSg8DquhennKvE44bBZ0jgT0HoqhHe2dwC13vwQAeOCjF+H2S5rOeB6fx2nDJ9+yGr/82+0YD0Tw7rtfRtvgZDaHS0S0JAxIaWKkwLAUE8EI8g00vQYAFotAbZEbXQxIi9Y/HsTf3PMK3HYrfnPHBVhbXZDSn9u6vAS/vH07IjEN77/nFYwFIhkeKRFRejAgpYki+QgTwSjyDTS9llRX7EYnp9gWRdMkPvmbfRjxh3HPB85bcB/XWZX5+NH7t6JrJIBP/nofpJQZGikRUfowIKWJKlNsE6GIYQNS1ygrSItx3852PHd8EJ+7bh3W1xQu6jHOXVaCz7x1DZ483IcH9nSleYREROnHgJQmygSkYBQFbmNNsQFAXXEeBn1hBMIxvYdiKMOTYXzt8aO4aGUp3rutYUmP9cGLVmBLQxH+/ZFDGJ4Mp2mERESZwYCUJqr0IPlCUXgcxqsg1RS5AIBVpAX61pPH4AtF8fnr1y95M1SLReArN2/EWCCC7z/dkqYREhFlBgNSmlgUCUihiAaXffaVS7msIj8ekAZ9IZ1HYhz940H88pUO3HJePVZX5aflMddUFeCmc+rws5fa0TceTMtjEhFlAgNSmiiSjxCMxOCyG++fTXl+/Oy45GG7NL8fv3ASUU3DHZc2pfVxP3HlKsQ0ibueaU3r4xIRpZPx7nQ5SpWjRgKRmCErSMnDdRmQUjMZiuK+l0/h2o3VWFbqSetj15fk4dqN1fjNrg5MhqJpfWwionRhQEoTFQ6rlVIiGInBbcCAVOi2w24VGOAUW0r+eKAHvlAUf3Ph8ow8/vsvXI6JUBS/54o2IspRDEhpkjy83MxbvEQ1CU3CkFNsFotAmdfJClKKfrurE41lHpy7LDOHzW5pKMLG2kL8785TGXl8IqKlMt6dLkcll/lrJg5IySXyRpxiA+J9SAxI82sbnMQrbcN459b6jFVGhRC4eUstDveMo6V/IiPXICJaiiUFJCHEF4UQXUKIvYlf16ZrYEaTXMWmmbiEFIwYPCCxgpSSx5p7AQA3bq7J6HWuO7saFgE8tLc7o9chIlqMdFSQviml3Jz49WgaHs+QkqvYTB2QohoAAwekfCd7kFLwxKFebKwtRE2RO6PXqch34YKmUjy0r5vHjxBRzuEUW5okV7FpJp5jC05NsRnzn02p14EhX8jUz9FS9U8EsadjFFetq8zK9a7dWI22IT9ODPiycj0iolSl4073cSHEfiHET4QQmenoNIBkr0bMxPfeYDQekIy4ig0AitwOaBLwhbm0/EyeOtwPKYG3rM9OQLpsdQUA4OmjA1m5HhFRquYNSEKIJ4UQzbP8uhHA9wE0AdgMoAfAf8/xOLcLIXYJIXbFYuY7Dyt51IiZpwqM3oNUmBc/Q27MH9F5JLnr+ZZBVBW4sLoyPTtnz6e2yI1VFV7sONqflesREaVq3kO1pJRXpvJAQogfAnhkjse5G8DdAFBQv9p0KSLZgxQz8fRNIJzsQTLmFFtR4pDdUX8E9SU6DyYHSSmxs3UIb1pVntV9vS5fU4F7XjiJyVAUHqfxzvkjInNa6iq26tN+exOA5qUNx7imV7HpPJAMSk6xGbWCVJTnAACMBVhBmk1Lvw+DvjC2N2Y3PV7YVIpITGJvx2hWr0tENJellgL+SwhxQAixH8DlAP4xDWMypOl9kMybkIw+xVaUmGIbDYR1Hklueql1CABwQWNZVq+7ZVkxhABebRvO6nWJiOaypHq2lPK2dA3E6FRYxRZKLPN3WI0/xUZvtKttBFUFLtSXZHZ5/0wFLjvWVhVgV9tIVq9LRDQXY97pctBUD5KJK0jRWCIg2Yz5z6YgEZA4xTa7/Z2j2FRfqMu5guctL8Zrp0am/o0REenNmHe6HJS8qZg4HyGS2MPAbtAKkstuhctuwaifU2wzjfkjaBvy4+y6Il2uv3V5CfzhGI708tgRIsoNxrzT5TAT5yNEEj/d26zZrzCkS5HbgRFOsb3Bga4xAMDZdYW6XH9jbfy6B7vHdLk+EdFMDEhpMjUrYeISUjIgGbUHCQAK3DZMBBmQZtrfNQpgOqhkW0NJHrxOGw52j+tyfSKimYx7p8sxAokpNp3HkUlRg0+xAYDHacNkyHwblS5Vc9cYGkryprZCyDaLRWBddQGau1hBIqLcYNw7XY5JVpBMXEBCOKZBiOldw43I67TBF+JRIzMd6/NhdVV2ds8+k3U1BTjcM2HqzVaJyDgYkNLEuJEhddGYNHT1CAA8DhsmGZBeJxzV0DY4ibMqvbqOY31NAQKRGE4OTuo6DiIigAEp7aSJJ9kiMQ12A1ePgOQUGwPS6dqHJhHVJFZV6FtBWltdAAA40ss+JCLSHwNSmqgwxRbRJOwG3QMpyeu0copthuP9PgDAygp9K0hN5fHrtw6wgkRE+jP23S6HTO2DpPM4MikS1WCzGPufjMdpw2Q4BmnmJLtAx/omIMR0QNGL22FFbZEbJwZ8uo6DiAhgQEo7M993o5oGh4H3QAIAr8uGmCanjk2heAWpvjgPbof+Z+w1VXhZQSKinMCAlCY6nM6QdZGYhM3gTdpeZ/z4wYkgp9mSWgcm0VTu0XsYAICmcg9ODPhY4SMi3Rn7bpeDzNykHY5qsBu8guRxxAMSG7XjpJToHPZjWWluBKTGci/84Rh6x4N6D4WIFMeAlCbJjSJNnI8Q1TTjL/NPVJDYqB036o9gIhRFXbFb76EAAJrK4kHtJKfZiEhnxr7b5RBh/nyEiAn2QUpOsbGCFHdq2A8gftRHLqhPjKNzJKDzSIhIdca+2+WQ6aPYzBuRIjETTLE5443Ik2EGJADoGEkEpNLcCEhVhS5YBNCZGBcRkV4YkNJEjSZtzTRN2j6exwZguoJUX5wbAclutaC60M0KEhHpzth3uxxk4gISojEJh8EDksseryAFIwxIANAxHECpxzHVm5UL6ordU5UtIiK9GPtul0OSTdomzkeIatLQB9UC0wEpxIAEID6VVZcj/UdJdcV5rCARke4YkNJEhaNGABg+ICU3QwwwIAEAesaCqC5w6T2M16krdqN3PIgwN/MkIh0xIKWZmfdBAgCLwZutXImz5IIR3nwBoG88iKrC3ApI9SV5kBLoHmUViYj0w4CUJsLgwSFVBm9Bgs1qgd0qWEEC4A9HMRGMoqLAqfdQXqcmEdi4WSQR6cngt7vcwym23OeyW9mkDaB3LB5AqnJsii0Z2PoYkIhIRwxIaWL82JAao0+xAQxISX3jIQC5GJDi4+lPjI+ISA8MSGky3aRt7hKSGSpIbruVPUiYrtBU5FhAynfa4LJb0D/BChIR6YcBKU2mdtLWdRSZZzVBBclttyIQZgUpGZByrUlbCIHKAtdUhYuISA9Cj4qHEGIAQHvWL5wdZQAG9R4ELQifM2Pi82ZMfN6Mx8zP2TIpZflsn9AlIJmZEGKXlHKr3uOg1PE5MyY+b8bE5814VH3OOMVGRERENAMDEhEREdEMDEjpd7feA6AF43NmTHzejInPm/Eo+ZyxB4mIiIhoBlaQiIiIiGZgQMogIcQnhRBSCFGm91hobkKIrwkhjggh9gshHhBCFOk9JjozIcQ1QoijQogWIcRn9B4PzU0IUS+E2CGEOCSEOCiEuFPvMVHqhBBWIcQeIcQjeo8lmxiQMkQIUQ/gLQBO6T0WSskTADZIKc8GcAzAv+g8HjoDIYQVwHcBvBXAOgC3CiHW6TsqmkcUwCellOsAbAfwMT5nhnIngMN6DyLbGJAy55sAPg3zb65tClLKP0spo4nfvgygTs/x0JzOB9AipWyVUoYB3A/gRp3HRHOQUvZIKV9LvD+B+M22Vt9RUSqEEHUArgPwI73Hkm0MSBkghLgRQJeUcp/eY6FF+SCAx/QeBJ1RLYCO037fCd5sDUMIsRzAOQB26jwUSs3/RfyHfeUOsLTpPQCjEkI8CaBqlk/9K4DPIj69RjlkrudMSvlg4mv+FfHpgPuyOTYiFQghvAB+B+ATUspxvcdDcxNCXA+gX0q5Wwhxmc7DyToGpEWSUl4528eFEBsBrACwT8QPdq0D8JoQ4nwpZW8Wh0gznOk5SxJC/A2A6wFcIbn/RS7rAlB/2u/rEh+jHCaEsCMeju6TUv5e7/FQSi4C8DYhxLUAXAAKhBC/kFL+tc7jygrug5RhQog2AFullGY96M8UhBDXAPgGgEullAN6j4fOTAhhQ7yR/grEg9GrAN4jpTyo68DojET8p8WfAhiWUn5C5+HQIiQqSJ+SUl6v81Cyhj1IRHHfAZAP4AkhxF4hxA/0HhDNLtFM/3EAjyPe7PtrhqOcdxGA2wC8OfH/a2+iKkGUs1hBIiIiIpqBFSQiIiKiGRiQiIiIiGZgQCIiIiKagQGJiIiIaAYGJCIiIqIZGJCIiIiIZmBAIiIiIpqBAYmIiIhohv8He2jICechzzMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "targets = (16, 17)\n", "xmax = 15\n", @@ -332,22 +287,9 @@ }, { "cell_type": "code", - "execution_count": 118, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAALYCAYAAAAXYuFPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9bcx237YfBP3GuvdpS2nPOSEHqG2RigRENNQUAghYio0YIGj8UIu8FFQa0BAoKgRrfIlCiPIiviTkqJVUXgIGoh9QkaYiNlqwJQTUmmCRUiltOS1IqXDovtfwwxwvvzHmWOu67ud59n6efbjm3s//vtaac8wx5phz/sZ8GXMuUVW8wiu8wiu8wiu8wiu8wiu8wiu8wtcLx9cW4BVe4RVe4RVe4RVe4RVe4RVe4d/p4TUxe4VXeIVXeIVXeIVXeIVXeIVX+MrhNTF7hVd4hVd4hVd4hVd4hVd4hVf4yuE1MXuFV3iFV3iFV3iFV3iFV3iFV/jK4TUxe4VXeIVXeIVXeIVXeIVXeIVX+MrhNTF7hVd4hVd4hVd4hVd4hVd4hVf4yuE1MXuFn1JBRP4uEfnvfOE8/1IR+Q1fMs9XeIVXeIVXeIVXeIVXeAUOr4nZK/xABhH5x0TkXxWRn/61ZeHwuZM4o38XkX+j/fu5X1LOV3iFV3iFV3iFV3iFV/i2wmti9go/cEFEfgGAPwOAAvjzv64035Pwf1HVn9X+/Y6eSES+88y7u/DR9K/wCq/wCq/wCq/wCq/wvQmvidkr/CCGvwTAbwTwdwH4FUP8j4nIPyoiv09E/o8i8kcCgKzwt4vI7xaRf11E/lkR+Q9Y3I+IyK8VkX9FRH6biPzXRGTrHyLyC0REeUJju3f/eRH54wD8nQD+VNvl+tcs/qeLyN8iIv+iiPwuEfk7ReQP+pSCi8i/ICJ/vYj8MwB+v4j80SbPf05E/kUAv15EDpP/t1lZf62I/EiTP9J/ihyv8Aqv8Aqv8Aqv8Aqv8GXDa2L2Cj+I4S8B8PfYvz9bRP7wFv8XAvhvA/gxAP+0pQOA/xiA/wiAPwbAjwD4ZQB+j8X9D+3dHwXgFxuPv+wjQqnqbwHwVyB3vH7Uov5m4/kLAfzRAH4egP/6R/Ju4S8A8OcC+FEA37V3vxjAHwfgzwbwl9q/X4JVnp8F4H/U8uD0r/AKr/AKr/AKr/AKr/CVw2ti9go/UEFE/nQAfySAf0BVfzOA3wrgP9OS/cOq+o+r6k8C+NVYO1h/BIA/AOBnA/j3ARBV/S2q+i+LyBuAXw7gb1DV36eq/wKAvxXAX/wF5BUAvxLAr1LV36uqvw/A32T8rsKfIiL/Gv37rS3+f6Cqv11V/016999U1d9v7/5CAH+bqv7zqvpvAPgbAPzy5rbI6V/hFV7hFV7hFV7hFV7hK4fXxOwVftDCrwDwv1fVn7Dnvxe7O+Nv9x82Mfm9AH6uqv56rJ2j/zGA3y0iPy4iP4y1s/ZDAH4b5fHbsHa2Pjf8oQB+JoDf7BMtAP87e38VfqOq/ij9+/e2+N8+0PC7n4u9LN8B8IdfpH+FV3iFV3iFV3iFV3iFrxxeE7NX+IEJdi7rlwH4xSLyO0XkdwL4VQD+BBH5EyjpH0E0PwvAHwLgdwCAqv4PVPUXAfj3Y7kX/lcA/ATWbtofSXn8uwH8S4MYv9/+/kx693Pot7b0PwHg3wTwx9NE60dU9Wc9U+aL0Hn0d78De1m+C+B3PcjjFV7hFV7hFV7hFV7hFb5SeE3MXuEHKfwnAbxjTap+of374wD8n7DOhHn4c0TkTxeRn4Z11uw3qupvF5E/SUT+ZBH5IawJ1r8F4FTVdwD/AIC/UUR+tl0W8tcC+Lu7AKr6r2BN2P4iEXkTkf8sAN7R+l0Afr7xhqqeAP4nAP52EfnDAEBEfp6IfC/Pdv19AH6ViPx7bGL6NwH4+1X1uw/oXuEVXuEVXuEVXuEVXuErhdfE7BV+kMKvAPA/V9V/UVV/p//Dck/8C+kM1d8L4L+B5cL4iwD8Rfb+h7EmSf8qlnvf7wHw37O4vwprsvbPA/gNlsevuZDjL8faafs9AP54AP9nivv1AP7vAH6niLi75V8P4P8F4DeKyL8O4NcB+GNvyum3OvK/P+lOMS38GgD/CwD/OID/N9YE9K/6AP0rvMIrvMIrvMIrvMIrfJ+DqL48ml7hFV7hFV7hFV7hFV7hFV7hFb5meO2YvcIrvMIrvMIrvMIrvMIrvMIrfOXwmpi9wiu8wiu8wiu8wiu8wiu8wit85fCamL3CK7zCK7zCK7zCK7zCK7zCK3zl8JqYvcIrvMIrvMIrvMIrvMIrvMIrfOXwmpi9wiu8wiu8wiu8wiu8wiu8wit85fCdx0m+fPhp3/mZ+gf90I/kC5H4qcIpBSjP+fqpYPlu904+maeW9y3BlQxCtDfxz8Q9JfeTPPQm7tk8tjyfyesz+elN3CfxuUyvN3GfwFc8T8Fla3iySdX8nkiL0qWu6Tb+u5wyMtKN/95N9jSVpW40vbfOUFBllPJ7kD/+o7dpOW+nkUt9T+WntCO/pH0kt/Q0Mrwb5JD2d4ynF6Ih7IN89jSA4J/6Z37yJ1T1D8WT4af90B+sP+On/Whl4F1EpGJUx9HSEI1I5zYGWXFBv1WW1bYMcVteleujNM/GfxiPn+TnVfrwruUvhKmFz5fC6QvMeUTjTemTeTeMvUt3nZVSgufxOvO9thlzW+efj/DvQb7+Q5nmlmXyHRJ2zOu0IhOmUZ5TfjdyXdulxv/CRnWMvZT/QobNhgx5bzINbamn9fSP7CkgF3YNgMi1zb78/WVw//sV/uxf8gfr7/m9759M/5v/mZ/8R1T1P/4FRfrk8FUmZn/QD/0I/tQ/6i8DAOghwCHLmohA32wTT9Z7PbLlqng6f0YabPF4xHPEKU0iOJ3Ye+cDN+S6ZLJnTu8GoPKl9wfKoKLLpLxHKSlX0jY4kD1tkd3TtkGGHhe0Q/r+O8BH9nwj/cS3/S35Up5XtLrlo6Tv+7wgdWJVyss83Ig0XUbOGx+t8lB+IqA9Z41BUQB34VEH/Yteg1ZaeaSVpxsxEc0JgMdRvjWdWrdR62qZ9+Fp7Z0/C9O6jI3vlhYa3fOA1rSUxvkc9nwUWkoranzWe//HfA+SUXA2Poo3UevKSXtE2uQZcS4TTrzJiTdxQ3kSrWb5nDZ0pxCci6+lFTmzXMb36HypfG9yJh+x9J5vKf8qn/8WqMUv3bxp/k6ZhXSXcCUA3iA4LP7QI36vtAL+34EDP+3n/tbfhg+En/HTfxR/8n/wr1ityXBfZf3W7xzAsfrt+R2yA3As487hEQBOfjbcpviOKSqAvi2+5xuA70hkdYkx4lhOcgwYw9i+YRvac7MDHLZ8O5Y9g6kTdre8pvgJu4MZ6aJgoWgOG5n3kC+gs81w+TzvHm99uORFM7HURVtgI77S+VLahd3JV7h87TlxLfNlTGU+1LoIr5uIwZexbE8vGPhyPGOB5PMhp+FkysN8Asu5CsPeMHbvadkOAIT7EVfxODBUFra9FQwmOzLwFcZfOVPWwtdxv/IN22fYnkM6x+OFj294x3fkLLpKvM20EafdhiR2L5uBhvtcvsH+eP2ZLXsz+/EdsyncNkJnXE/woSs9qw5YjvJ8wHFfmo34fNz/foWf+L3v+Cf+kZ//yfQ/9O/6rT/2BcX5rPD1XBm3BREGYxkmEjKnnbImw6DOyr/XpoDQauq4K9XBHgmct0WgNONK7UbbjMhlxpVHj952rh7yvaYVev8pq66KXa/zqvV1njuttuc7ma7rSG/bTY2b+VxV0qbVkodCM8nEf6rTQfls5K/C0Ex7BvQ4rK5FN2k6v+Gz96Ok7rl0vWqJUaNtvaMrg/ieW/47n0KtzkVwpsnfe7YZ5pSvVhINw9qbFC5KpG46k28OF1LYLG+WRFWm3Fvec3vJtFp0xXrVoJVCx3pUAOdeoZ8UVHKxbU2SAP2OQA/gFMQCWaZvGTDGGj0OLPrvCE7/fTitRh/0xaocxFORxr5PbarHdxlZzo/g7+XLe9pbTL3DR6e/oB1t4iPRPLOHtmnAX+8no71pJb4o1yiTNAS71cleAWOVbHnUSdbOl2D/FpgtTRP1brRx1S22nSapWFoxZi7XlZRXtlcZ67a0DcsLnexyXfFtMp+lYTWbwXxbZ184mL8Z+xXAKbwEyHx1S+v0VUamlc3ecN7THhjn6/2C82ds7oQdqz3tWfINpYx8zyvc/4EIinc9P/nftxS+yo4ZgNU4xIY+KtBtq1WoEdkmvOSzJVlZCXc76oRCrxz5ncmpwFqkhZ6W79E6WRuHq4i5/7R45WTSaBdByFhEbDIVvRTWdcAt1LdoALnl5a8oLTgtQHod4gWF5xh3M8Hy4mzzmUnGVr6gtRe1Lge+VM9cf6vJdGPVafW+fBM/yfbJK5qlDBrwPOuSukCwnfTp2UqK4UUir62tbKVdWDjhK5OWwgbnAimTWsHqIpmWBUE03YOaa6XWoIesScFhBRRVnKEzgariFMFBij7dTU0EJzRoVxlgaZfIvmkSK32mWNE12D8WxOAA8G60YpgCha2sHoCeUAXe5IBC8S4njoQFM+g77YElI3StMC7JT/BulMbu1Uq90i6+itN2t2TxTc2syZQKDlGT/Cx836EGXRJGOGpAlmFmORy/3Ph7+RQotKdolFhMFtFjOTIAOPGJhuzN2pxN0PTNJlNvAOTIpUKvQ9BgIlzTV0fQqBdrGweiPQNYE7F3qyvH9lCEs+F80XBQsuPRnwiWlrr6hhcdOqIvEe2YkF952mcxVQnTSe5HNmMbg01x3S7A9NfL73w2Y4NdN03OfO7g1sopTeYig6xdH5JXu75LfrrxDflKmdSSKomnQeZM2IwXFWxxmuZHdtWmfObkSPam6Ib6gqDq7ZTVz0+nJez2OoqNZyHsjzx1bWKacLxJLdSgHR1PwyeoYTcy49OUcRjjsxn26J6y0C9kRPbRxFTHULGur1H378TXKVf0AZGz0MKw/xBA9MB3RWmXaenxIAnfw2YY/kKy7HjHmwIiYRXI3mh0l8OwXFUMmgSq7vHhvNT6zwGI14GGzeS0EDR7484Dht0ch7qLlrbJu7LbLsZ9xYHj03H/FT4Uvs7ELCynAscbcKztU/g/GAyJkCsgWadmwBK7xDqxVrfHGMUmb1FA3lec6BnujPomOL8jMUBQGhB2uyyMEtRBiiF0Wq1x03NxlRnLR7SxIoyKVvw80fKzUNJuLO2hrwa77dlku6DlgYg+K2MbiPTybQMIoOhNRKuM7H40UZMFZXcWdSIuFHrai8a4TbC1/uTymZGqWVXaFFECQBcb4W4DVY3yuoNRPCsgBxdXW15ofDiv1k58PCYltpS18JUcGOXEKswPmWVbKwxjtWTglcO3kFxxulHGmvAdsiZjzucNanxl45tqXpMaH/CfJrTzPU0Xyyz5by+72GR31eGaCKkZaW+2YpMZGO0BFbVBi2na+eKgtGfwWU4/J96MdpVd8Rbxi1bMdIoNflKOxct147pUWZNVrwWX+UgNWZkEJ7vwfIqzhWBhLBbOLgwzzD7IdVGakKWRIuK8FuXIuLLjpgC+U3FSrXBed5cY432hYHnyBYmEjse1yOXvkrFCg5YE93yextQJu6XqopfvTqbSu4uuohaCb8W2Vp+Eg6NutvJwW9AqSJeL20mAbGa+VY+0H8RHrviqY3XmJqW8NEnbguFbw3l3G1x10HG0PYvvttgQRawf20DbsQyOqbqQcLWbazwWl081ytf5gJ9DNRoTC0+xBveSuOElt8mCykKpg/CfsTzlOAj3HVdJb0iboXDc97eZ2nXjaQGxxaikhS3GBcKLy+0aSjyu5ctxgkJxyNFw/yQsd+zGtc2wMriNOUMzEpjlHKtueK9UjaNhudDipdXfafV7+DPFZZtg3F9vPwn3v09BkTt+P+jhK+2YrS6vMUq0RlURrlL0XaSO6t2o8G/hLoy1ou5Y+35CTl0G/c3cbPBGtP6rgfcoY6bdjO1t0K18Hwnj+TFWwkXW2h62fMaElY9vslzSNjHcqJe873QK0CjD8jHcvqRobYFNddmiYkHZ8IZx1XAVYxcVYcKi55q3kgASBhMDnVa+YaxWwk3k0hTZqO/jkrWDyKusmbtQcZ1WlQ4Qi02MWvlKlTUFR3cchaZzeLGzaYOcjU+a7FonWfIqgmnX8vXJndJI1Acfwbe2DGuXVlM2clGKjzjkoMXL9BZ5m3sgyejtiOvVacsRqfiXrjAabT1bX0oTHEKOgn1Sn6GHI68NKOqkuDh/0cDMYS31LB/Athp88LwmJ5IjBytG7dY7Lt5hbNYVDVKOHMqI09JCTaWl3x/A8lI9IeNnpGWgod+zjBRkf7zaTefdoykv32waRXum7gd4XBk38L6ogxCCE3TaHo1sA4FrQTrwHY0UtSL/z2bbugGizFq+ZdcOjkc7476G7LhfRZ5w0JGiZSve5pVSEHZT/azFH6F8uh2rfNj+OJZnj6sGSMMOZC4xMUwrFHQFUzUxSXrerQuny7eW8gROkstSOz5IevF2s+N+WmaUuK5XPYUw6lNtRtoulZTfsVuwzgM7XS4Sekh7uvorp9W6znCB+6Sagvt32PYthJ8qO3pfzZUxGwzMONMWlaGU2vNyIfTBUn8G4ZM124MGM7TyFYMgH+2cCvkuIO8KvFlG8ga8aR44j/ydL7hHh6H1ciijlgO7Anqk+1OAtNMGeOUOQU9XaIVpUcb15RngHril9fjuhrN1vlHmltcztGQM2OjwBC/5OCI4s2wa3SBH5pNuiO8oVtMFNr5ayrudd3OZ0GghcZYx0nIQA0ji48+xkkd5a+OjxsfdGmqpli56Xa9mxTKyYCYzfLCuUT6IO+e5S2GnzeB97LRkMtEWfeZuVdKe6ToDd2XMAp3ixpV2r7DWGd/lxJva6qnRuDtMmpfM1+vPXQFXP19lSzdIPwzta5cotEJ58czYaVVh+12L9h1qcJN69gULd5dceUvg2FoNP/COd9Ib69XLJLGK67QJgWqDgVwD9t2BuhoNvKsa7Sr5u9Emhn6aAYzzZYdh/5tJ5goQRHtWocks4W+ZrKm16bAZhL/WiCw3G4QYP+vr7NWQ7R2Jy4rLk9i8ixaYQxPBDTdR05Yxace0C3yeXCYnXIyf/uPGZjAGdlwMDB1kTkzqYFx1g4GWcbLCyI77My0Dt1N2bEEISc1rl4n5IunGqsnuaTtdjNUdy7FNxFKkRgvN9l6wPgXVwgfB59hshlW2l1kMU+E652wNl8gFGMKujNwQFp9D/ZXGrpd7EgDmrui6JjlUjNbLaljrXh/unrdkME8Ed0nF7tKugLkVInr2wmbDNS+DVNrTiEV8t0hw0HjyXdZw0D0tvP4CrU3HC/dPHDGBSvdZtwtsM94/YDPE24TJ9w5c2kSXH8guw7tk7+H2uNIWiLSyefm14P7ypnhDeo18Ku5/P4JCzW794IevNjFbu1Qn5HirhpEmUqLICU0Q8hZ2z1TIQCkgPtlbW7ceV42bdRb4xu2iFUlr7CvEA0eTkewE34bItGQgN1oAUCnuBiWdlSFEciN6NJnYiBKdu78UG5pYsMnFQb1MTNZ10Yz4HW2ZLEnNqxgjFdCIcw2rKEG3+TmDMUBruuGdpCIny6iWM/F1Yp7sJq1CeNBWZPbdIcm0bUApR8ltG+QkqeI4ZtpQo9Gm0V9tT0hGXzSQY8X56iLE2mkMlphWIq2YAXJ7cnC70WxKaVyRoz9hVzgy3uruEnzB5YEycpR0TxTADFJRR2pc15ml5UaydqpOqUaN5Qx3RF3uL8uX327uwmFG8oy6c2N2eFq4AXXjbIYNLrMPKpz2jPKuHA9XBPI6Em+jeZMisGRSHEWPQnm5hFy+EieJnC6LT3JOAO+g27hgmGk5MiyFu9FHg+FQ4CXhvlD/hSAmw9FZhYdIKctG6yp1XQQfT3OWvHqf3CZhkbC+1uiDlbYs3HWMveCz4SSlDz4FzGpWMlSFYz9jmwCxg3iZVy8PJytpqxso30rYdXNlQ1Awx9pCw/0uYzU+tUWISpE5JuxjYTV3anv5aEKDKl7IK9SmVH1decfuHpa7m2xpF96mrVbnFZW4ePokhXE/d72JNircf4rdBMq4n/qrde+431UXKBuJ4xyy/UubUJivZ1WorPPEjsdnTMrYfXq9OJHr9S6E49mhNvGIInBbMJdE8TNSWC6FZgeWO6XJD0ACUxfGAgdht7sTruc3SKRd/7jTrwGd03qx02ZU2rQZzsVxz6dyKyxbpIH7vpSpklju1emIygt0aQfovJ3Xl2tM4rQd4T7gZ9pySesTcP/7GF6ujJ8TdA02u1FAM85XbSBUX1rlRV7ITuWGOnDxHdE63be9+qkPsNVl6nwnOa/CDe1TafsoZf+5pdWWQHtawtN+RqGHjfaGzyTjVmanbQYywPqBDCV3WjkZjeRmbC/iSiKUBcd795i6SBCboDT52fi0vPxRYiWLClRc/1AmZIA/r8gaN8hcit0GS10mT+PgrvvgkDhlvqSX4lpJ8ZmkGxCXw0xSTJJoQMfPmrSlL/OutxtGklhKvxca8Pig4oYWTKvbLnCt9pRcbeCiNLgofCxO4QORSqvpHrDTUl0AKOfLVoqjlEGhpWkWeJFavicQawiE72g/S99vHdbK44McxgNBFn90p+a2AGAdskSl9SazteFsVUVmGdLycy/fXdoQhASXIa1iw8WSyYRxV7jX2BV7ekXbOzXxJS+xsTwdJvfySYm63G3rskz2byjfXozdPXzcgaNOW9XBBdL6iLZk7GXVbLG6CU72gYVvugl7UDjREQ2pfJJF7jpHXsaQaVOAqcJmO7dhv9aqCFwcwJB3sNNTIxXQcR8NF3uoTWDARf8drooppbfFikc7X3Y9d64k4WbXlgu78UXRInKP0XbVfAEYawKuWHZfiQ/rhstQ7U26LorJwJyV2nosGGrmXnqBCOWEHvsK36Pw9W5lNBTfqzmHHQXB2zXKo9GJtPnT0zJcpiuH2C1hAojgfPPn2Vhd2b8uU6W1bivlcc+x+0i2Io0G60pG2fXaaatuKrNHfsSXtC1uNO6SMrbXc15TmTuAykU6XLwLUjpnNBn/I0s0ZR92e+PhBU0rVXeyahMorjdFSfm8u7fUdjGv0KZyilukxR6kR56GTDDsLpNpyK2fuJuJmksNNcAwDu5KEnKJTTZSKCVO7kbkq/Knaun+fcyw3H/tASfSlK2dsHJ43fS91jptVdYi4yZIrDKoSq7KAjaxu6AlhFnVJqEbn0TnpENDN6k7Lp/mCqc1IXd/Ac6QAxC84wz3xL18qbvlgqSxM5lSZIhD+rCVU5LrtLa86vD45JVJFeznGNBxY+7MO26UvYLV7KTmteH41E+aqUlaSiw7Lt6VofO9TNv4AzdYPdE8wNQt70lG4KFebvkWm3Fjx6Tj/I1FvcL1B0Z4bpWOM43zXV5smp/Qq+e94fCVvb9gyC6Xam584Z54aYuqzahOmEYb2ExYLtdVTGhcdOr2xmVclkNLA4ybf+GyaFSBms1wGXob9AX7vbbWH8bFg6Wk8k2jCV/cUmHsTizXUKPgVMGbkGwbpsJ2PU8qod8MCZTjCKHPnbbcWAm7odLKfmpeXKXgyzlSx92exo6apjeIY7n/BRjXzXZT3Xbcz7696uxb3pFSmLvoT4HwlXbMFPLd9zUx+qHvxDmD6Fl9JHVIMVZ7t0NJm1YnB34BQT7QEIG8mc/021ERSmHOy1j0R/K9NVZAOSvB4dIIFDCZw2XMkOelbnpmTxjdDZFv+I6yNVqukhI98S1GeRhdPBpoedzNjEb6GYaef2tzIKOCeG52F7jk56JIf7ZE3QBfFrDYQTJfxZCv51UOibS5C1dVE4NQ8vcvwdponD2wyQG7R5xEe0i6qXjn9UmOgK51Vwn3Cb+Q4gg+WRGel5tDn0geinSNgZ2XCkPqt1XZWYWg9gYgOPSMW6eWivhjnO4KI+azz3VxRQszmcsx8IBfay82IbLbtuhcggLws6U8WFj0a/KVlRCtxcqf+RymWV5w8Px5N9F1Q00zz6WFxhE3hXl87BqWaegHg9Lf0te1rhSAO4daSVDtAPdfXiBHpkErt6A0+lm2TtsfO59nMPWWz0W6ie+EV0DuODe8ekqei3Al9i12M9g33RgUVQ4dUycZJ331cKObGA+0PGfsXg9peiSFx0VVEx6Pi2TRBLMN910mQOo77+eB5bnLl81XrRzSis5YrjjP5RKoTT9566CmjMrnTd1YVX35ZCJUZvi4uvBK6H3NMVrFcBRrd0hV8SYSn0nJhSNzoTc3RD9z5aWKPOHnngxTzWUdbgfg8JG473ZgvT1rky32JnXIiJsSnKG7NRnLhUE+xbysQK0XIXxmWr8+/zR7wTqOaa4i7E3Spt309z7xhLo8tWvEBSBBC5qoJu4fUfGIMdu3eyfjCt/yxPEj4evdyvjdd+CHvpNXHcM6YF/GIbelMhjIkWmGXNoGRML9Jge8yYc7YblaH8udxw1d3T+oP7d3ilWeIgbxLbIbYQwyPJ4aVitfH09wcYuI03iC02JTVU3biqeF6afT+op2kTHHTZflQ3E9CDEqHx4wZVWCDUgSs3mlzAJ7s4DFRY3sVDwjL2iIXZubgYRSuePGrGgnOhtpA2Dm4+VLtwfLlnz2q3tK3TVz2lAJrK2HHqltmtxsxLa69mJ3vjRoSb6exhWqUcdC+WXZzWSomR+nhe8cxVpg7IT7YfbFIk8LqPiF+ScJm4bNr01OIb1esg7CUNPOYNCqoYYc1qcVp9h5tRjjOMBolEHxBqhdoS/eT0/keRYbiKhduUx8Mle7gN9oFx9bdDKTpVQn4TkAM8y0Suxuny70Sk/P8xbtbVjNyvC84Ea6/QY+EHZzYkFtt5EZNZ6Ki0Q72YwSRzJ17Ka+07t3rMXd4aISrbS8enGCaMbFDa+oDAXrGCcG3RRVeJqGy9M4p+6QVTEuZWTc74VtW5G17inXUaYqiJASajupyopFra0y1wPfpqg0wE3sRmC165ndGZOPlld+jpyTZp0wzjczNWEqsgN7O6n45PZgpU4bQRidRXaS6k484H5ciuO9MeyNNYxmIxKDDRcTje3mRdNvCLXwTQovn5g67q9lt8OxjW2V68byUvjYUeKZbYZ7GQAHVE/DceSkprQBx9SVR7jWB3YfpjPblZNQs+0GOq3nVWnZZgAHRCkft5VQk/ltpPXdvWjtrc+FnjVxP7SlXJ6l0Wwr+km4//0KCvyUufzj60yArQFR35/wv6TfJ2E3aWlQmYbPBhSav1c+Aj2OtSsn65naf7OwVUodH3Igc1e+7VnaW5nTjvl0XUjyvKVthv1Rk+7G+FNpy3tUtY75dGt+gw0bn/HZgfEurT4on16mHfnOjSUBj+MDzB/VIIpuJhnTKOzi3E+qc5L4qM15HfZh0FVals5dTLissZvThG9dLPhmW/dj1bDj0sugspNhchGSUWr+wKBXLt1Ou1U3y6WZv0JMtvznk9IsrpTysGy1rJm3y6JmbM/gw3xrWVP3PW+NfUX/V58/xzhPuN/q9wK7eyMdevA1LcWNUo1jeGqPwvJS0qFfTe1dOU5q3ChPy3vGxevnD9uMm/SP+NJweqd+hIsXfLfxlQ6J7oI0DTS+evNU3mzA2MtXn/swRbeGNYdYtNH93SjbNsPN7KeybVg+pl1vKqbOsl7GDc8KKdU39qOSb8W/XWbZMVUT/7qsK0jQdlwMeQw79/IlbZWN30nwn8vHfNNGMSBc2Yyqt84fG+3Jv4f0E2ZNOH+i475fUfIK3+vw1VwZcSrwB74LfX8HvvOdfA/sk6GyIqq4OLCVaSMreu5Wy5eB3pi1pGwn1u7Xaastbx5PLKXnR0DsixLj9hX9trTiMpbklTYmUtKee/LNmNS02tJenimbyvelaHt51A3ORCtbXlu40sXVM67UrLvMYzrJArH8QNupmuizjcYuG9qOVjev4S7RuomfZSLadH/xM1rEx4hp8yN0of4fSysAzlNj42i5gszlk1KeNBD+zNe6C/r5pSXQQdtyZ7ju8Pk0c82BDzHMleUEhHaWlowKu4vLdGNpddEul5mV/oBiXSN34lQxd5x1Nf0b6Sbi4DImn3eccQW+pkbgjjTu5pNuj4idT8VaOV4wJ3YLV+oN6kdf7b4u4xufrQ43T4HKGW6QCYHJV0zH7MLkckjUT+7YCuiiWV1ungc+51piwucC3bXx8PnDgrtKgjKQFFpm1zB1A02Swf8TqmlA3x4LpmqLuyo+yzjYgUL7EBcvnnFRXM5rshX93Q12X4Yhr16eR7LrVl83fC/zI+YXtNFsBr3yXRV1yCEBoyN2a2YFJM6yN0UVafPJ2WR0zMz+DFu8oRZKzZzTgvguLLdYqgshPuFueSphNzV9WXwnLHc3yHNIqwV/s+R5g6EhumO5YdtBedVzvIyDltrK5xd1+Hms5UDo0yDTBYyvCFQNR7FcCt9lyczna73+ogziDudq2J6I/0YVyi75rvLDUF7MNvmnUI5YOnMb4ZsF5uDOfIUdUVcJmVY0z2X7Vffumn+N+0gbCv+UgOK7gfuAfDLuf3/CT5WJ49ebmP3kTwI/7W1dl++vATLGFthvy2EnQGVOG+cIaJJWbTwZ2siW8npjvpU9N8syPvC0PF6Adx0uH9HyNchtrMHlY/D1OM3ibQZmtFUd+SXL09NWwibzAz6fQ9vLVwuIXVe9PIXPNe12w1zXeTxr0ZsyI2dGQhcjP4YsvDCtVaAQ3+5nVD4VIPxsrSyybuc14K6PsspzZPk5rRrboywkpEEK41MuMGETWxXF5YuJoiV5Rx68dq2qIs4XHEFrht0umxCso5+HkC5NRrXyZb+QKJ+m2vN7YurXVi/adS5uuQmeYST9mvuV95ucYeT4qv2QUXI/SsBn4dSmiFe09RrlIyZ3qwQqh51VWBd99Oua/dwBYNc5E5+8JjmffUgh4Gv7nda7S9ao19caHK3wya4WgZPcB5vrrlAbfQIX+bmP6QsuKvZLpDwLx/eCEyRT7eoFf9GwfHRlpIf4XADFF1hBjdtxsWV8JXOnJb6B1YM6ZIgT3OimlE+qjGh1MJawsisLUCKYb7G9kP8Gy3va1I1Um8EFlPW8Y2o1ZHf428tbxYgllB32mcoWhTruZ3zGxQkx8R15hRyKKnLqZr9pkLHR/2tfLDOb6Crjs0nEOcrjLnjcN10Dp09OTANH2GJ3Gkz8fTd8zhJw4yc3U4qptJnWLVfg/iqxLYKdC38lvyn5Vq5FkiKjY/mOubrROkqp08oRV1U53rLN8NTv9rmWzd4gJ1sH4b5YbdkF/HVhznXzAPddw18M978PQaGvyz8+J3il4ziqoSAwjOdY4emo6lQ7krEfrLa0/bnLtegRK1Cx5KVNxikI7GwLg3rN+ypok+lyJ6rlFeXR9nzBtz8H6azKjZY9KHjX5U5ej2cbuRnJ9j4Ps+uWdzm0/UjiTkusNQTXbBO84wkqIGp5N01Gg9FWgCwg1W6ME/I7JsleGl+ewKRwGj/pOATJnnz4Xb86dxt8adFOFE0iLwN/ElFaPqudmMH0ump81enFcySDQGmXjlKmaCchczYYV7/ntA2PxIdY5OLJaYh2TYg6Xz654P9yN4+fk7tGDpe0YgrxSa96mdM1xmVW1PIxn6qrgK0SOC8ufx04+aCOL0GoNJ911qDjMb0fsa3jIm8jlDxLz5hx/wmcqxI8geXUB2Pkc5UWFRoe4eY1Lu60BWOHkpRuXyHmoRzcULJNzHS9fP18XYWyJojsP2M3Z7okpDBuQpA2dK/Gi6DxX8dqac+l0wAjtiWfNfjPR8k8SMZSVk7KkjU+20VRXa9UFsfFEbs7KeHxKg+XJhM7phYZqYIldGX5SbwFHCe10ib6ws7PEuJtuJ/lyyUxnyw1G6KlRob+4fZqdSwtb6Pm28QksYVxf6Ll1IGzp3tJ7FgOK4N6WbXyAS3ewcpXsZyeQhdKuiDdUInWQiZXyhfE/e910LVw+1MhfLXLP/QQyB/4LtSvDFqv4yOIeWpSW+9vq/Ml2zTYoytj9AgdBuwrrdqtjqsRwrbWk3ZzwYn/0CCSDNbmqOCPVDwfY7CMMtDqBW2Ro38qoNMWwVF6Zjn8jZaWjc2U10C7l+8+/2JjyLpLk22sfdJNGr4aH+eSKxKRLliZRF+MqBbSWgdqTY7S0s8yDJWcnPWkYwFLedjtUYIv/Ja/i8mkGwEwraYrhnZDX3SxCxmTtTYIcMcQofKdSDdIvzDFsz5RV+1O0XLboKiuWxXNxqRxXD0kP3IqRrvq2o+Za9TJ4um3eb0ror58VVBMsev3cq9U3s1k8+quohAoThzxvNItOXLtcvVwWat6TKvphuJX269D2OYYFO6Hq0SieQh7uQq5K+MSb13i4QY2V0qB5TLpK7rvWG43OZDMui/usgDe7a/0BB8MbOTZ/ytcyQfsDsBjHPGaaKBSHgXQbUT+ATz2cx4NFjZa4huXq1xhaZfxQqzyruBiPk+4eIn7BcsqD72g3cpnP/pcaguTTM+Ud+JrjPwCiUuaKIzTVrwaIdWb2GAz2GUrFwOyfAW7Gx5Ddbe3LCKnRaYVep7mq9VlPbF74WJON1zn7koeO1qDbmIhMPjQApfHKaV1/G31m4t2js+Oo4n7iZsZl+6GieWOdVDCtuC7aOMcsnF9Jxxc58T8eWG7y+Rjx4Ps5bsVeCG14l0W7rv7O4hT4u3yO3gfcH8VPXHf3QjPyIaX6WqnYJvhF1idELxb+2ebcYBw39qh77++gXZCddnXwDFZZXW5VtmtHrPqAFTcD8z+RsPS1U+N8FUmZiKyJjwA8JN/AHg7gOOAvr1B3r7jVpH8a1FA5dKImKOvn6OotNnaEr4arSVTQxfB+qtrtGN51s5kx1Fq/5LoJ5WNgj61bsXk3XmhschAW3byUfMK4zsYhELr5J3PjXF+itb1RkFaecsAofPitFggVHWjRTcbL46DNL66lS+SdxlxJfMyUGlQbdBQ0kpOyoL2qkJbfbbylbTFZXLJfIy0daXTjfdxSNBxt4hULi4N+D1zv0GMadkFZA0gsmwC/xByipy7dmL1s9wrYsysUj9+rIAeaWTEdOALF6dElZLblA82zLXPzqbVPsVnDVaXzu/imJGSNfE54O4jZsB0lcylOuSgq/KXkQY9G7uMi2HISW6PYu47OWVfg6nku9K6+4o5DoVr0LlcMwWQmG6SjOQCGuZX3NVlxb6HjImNK97O4cG7QObjbetTQsFFx2NFuZ032kpJS21Dsq2VtKh4PLmLbyu+FFfwmOImWL3C8nI2idt/687OJ3CzdruKscdM+1GbocCIbUIyjrjYxOt1koszSXxnq7o7ZiNtfKXtBF4uy66MD635UjuqOwHU5rqMyTyFui2fbDYysY/dD1dscYMEpiFOTAPC1iDbc2liVAelyzipprthx+6ATKn9v5SdZHI+ge+qgTq+e5cWSKhRWaWrfUfRZp0nDojEdCZlIluiZE9P4yPq2OTOe9U9HDbF4O96WS2t1IT74e4Ou93QbOApPHHxUlpa8drRguVXuC+B+1XGVYL8y/Uu1BgPnBB9w3ko2IW92hvG/bVQmJMuwbtkOd+srK0bXuI+Iq41jFcoQUT+KgD/RSzv/39YVf+6T83rK+2YCeTNrvf87jsAA4S3B+fNOK43EGnxPJClBBlHVmyj7flyE92Ksj3qkM+W70ibcFwHE/d5sVzaftylHUPvqR+gDQNfXlzQ3vAp8f5YyuNK2UOU90rY5g7Dg5KSyfRMVjPa0bD7mnRs3apQikrLO118vXHmo0EZNi9zqmxKEQR8cQiIz1aErrcm8+Zi2boPDxhCR/4sQyobQcQRD+K0krlF5VEckCM1LepfAyIewuUgJQdLFE8uK4UNfIghcQXxmlPm8GWjRX1eV/Y7beaVea96VtcrctDJfFWs/lBpvYZPwRpMwD+K6nw0XGFCRs2hnpoBPiJXGtAFH24nR6F9AknGMGKz1IbEfXLDthvs7s8z7U2YojsOwBcMr+0PM38O9wvJYH9uaJ1PH2Uh+3bo8a74MsgxGZZLXKRnwonHeNxYXMrIbtFPyOQROstQvQK1Q91YB9rLt7UNSx55Zb6Molti7t8CmtwPQjVfR/88R/GM8PIV8WfsLhINpkwpBavV44RfwDFSW3xPnzmXOqF4xsVARkn8yTLNfCEduylv3aahhG1CLuuJ+0s3m/8TtEi84/6J9R23yBtX+djlUp6r2Qy1DYoVn2sHo72xp/XvWLt+VcUA6jdD37zsN7ifMmqJ+/bC+l7oV+Es8ksA/CcA/Amq+pMi8od9Tn5fZ2ImAnl7A06FfJeOHb6dufpeRgrNGAMYUdlf+WePLox0BVW3XArfFy5p2ajd1XkfSBB4TemmvLSVpRiq/tzy7nw2Obr6Wryn6aA+8R1pL5LcuXR4HgwMV0i+Q+ic3V2y/WD2Tfre7NQhdUgHxCrZnYx3fHPypOFC1Q1hPug+MLDMqoGiqYSmd3AaJUm3mTCF9Ze7w1SAt3ybbS0marPwPKBA9k/thnyNTHxAkCedPB8e6UgeETQZT/WVQHP7IDg5faXYhRC1G8WWsKfJ6D78SStBa8MgHJ0WNW9VjVXZRStmYO0uL/VvyMCMbxpRVRRa3zWwr6FtMvtk9F3X5SbOx92x+DIRga+g8y1ngncgjLSvQPebM321GSbfJwVv4/mAAtbFDXjA444Ear/6REmRH52WTnsPXHdQ4NTFTlGcoolypacR2x6nnaK2TAZ88sHpXXmfGnI1XAybgfb+ip5Vv+HKzsN3uQrcbdjS3pNss96a8P5mTB9AtQ9DLvLfdq8mEZrwyoqT5Fv0Qxl5G5zWGnIike1RUV0mcxJHNkMI35DxmW+t3MQSQmthmyE0mVgvl1fk+r17aKT7neN+Kb/mhR7hBhldsEwnAD0JQ0HYDfg36tJV0V0G+dKMivsrYdrSHVNW/GltquM+Y7e7Vp5wzM0Gr5SPl091eVCwLeMbK12mU7LGfK/O00nB8jMWKTvue9Pjk0QKBX2e95sNCrP3Xyf8lQD+ZlX9SQBQ1d/9OZl9vYmZzcT1PLF8MzS1OllFdlcBdbKSsaIsj9Bkq6fOp725xQUez7ZEHwSAgI7GGpc0VCAdZByEnd8/4nNHW8WocZ9CexVuEnyMNgGsTLIeW0D4ZKJM0Lict+W+t8ZihtRXyrYwkd3yaUnD2CuPWXfaEieFlg2UIzz3qqs1kXRF9Ag3Z8nHPsucxqINlnyiIJITsTTCQq4VuowIsXLvJDc6DgcCxMqfszxicJOV6cZcIpekXXKolSELxecCXEaNlFiDJjljbOcfhRbJGyedzxsE73b/Vr7NK/G93hatu6FUWh805CXG7gqZOnFXE3ddWoMMkpmrkYx40irxoV20oqv60dSPhmtc9MZGkRsgtbyumGwNMRrhRb+ptDKIweXNgVm1IrnIMRTrojjj5OQRlt3g/iVkt/7I4dL0PIWpF20hZJwUYLSPeIr3uxv3xSu+/Gx/I8pHqC3dJaYOJQw8JozcYX9F9EtLStpLm9Exluqwy15A2t443vsCEuZ+xws4npfTeltOXJSdNjDD0oY+st4Sf+kqfTsvVRfd8o9P7FhZQv8OXbjonspuJ9KLQ0p6JWw7tLrDez0e4jf2Ei5K4vGBRF/PdbnBJ+6z+71juVsXd0f3ZrM+O5ICsEv/GwTAO75rGJ+cc1rqE/PddZHcVwOftMlFuO4upsjPHbRuGO3gU3H/+xW+1o4ZgD8GwJ8hIn8jgH8LwH9ZVf+vn5rZV5qYAfiOuS2KGFAK8HbAL9oIELlaelLsYNae+crlcj2zyF59jQ/7bpd8p3ovOE8JGlhzVr2BS+NTAJnZMPiQjIXPaCQQxqkY9abXqeMF3we0U6h6nDLeZXQk2MoXcW00I628riP16N5Oatq8Zth5NAtBA7FLX3z1sxC+GjmsZm6VngWMC2Yijg6Qu5H0CvDiX6BkUVWwWW/GAaD2FwbkZBCVootroOlrRUl1izSayHWsTzfXWf6+ttIvJeFe4n2bd3tTrZNemVaK25ErNh/TNPm0c+n8tD6YpkrdB0ntrIIcsZtz2kHxtctyQkXT9UQBiE1rB1qNgyW+qnuuRS1zYVJ5y98418FxRQwI7GAJ3Ki7G6LqSW43tj4tPiU7rTypdkX2qbXijU8OEkAC07cM2JBAWbB7wuMLt8LA1NKdOyB3vklbJmdl0Lf+u3W/gZaaW5OZZWyQ1PCpd+gP4X6TI9o2Gs+eRrDrZkp8EVJGeWgzpOmGZVx4Y/3Ssdnjuk6bge02wTEoXLmpbfCi11Aayl+brdbkRTIzC2htK45XbiPY+8BpR7zk4ni/IJfRTMMXiAjYNX7Dbv+z2cSUI+JJxpIm0rrNqMKGpjT1AdG4YKmlWvkQnpc6cpkNf9fjuSZT0TaUdGOYx7jYx4kmj/o54sBBXTtXl5jKB0UH3LfnsBkANLDbcS9lBrTYDODNztOtSdsRtPb9tMZ3tXH2l0H+Yr5NN49w3599Ue6ncPgxEflN9Pzjqvrj/iAivw7AzxnofjXWXOoPAfCnAPiTAPwDIvJHabmS9fnw1c6Y2QeV7FKNY10AYkEpGabf0zMTxy4Zg05eHlCX6pqlIFzpgNVd4QqljZ/KW86nibi9OFjGhWBTjY55dT53neeBHhl/R2N9Qdvt7UPai7Qb7V3kQLuFW77V1e+aj8bzZS8rLrf3MpcXbP1GWe8VcDUQ62mLAeXmyc1VSs7UDvVGAs0KdrcjEmWTXju46/DhZv+WF7mylAFUSsFuIOvvWu8Lvm50L2n9iXzroz9KzSvEcBkzja9QBo0izgYcrnuLT75C5WeNpFF1d0KBD1kqLmhxx6rHwIHqXlkvAlmDNj8gr/aPP1t6pPZp59DSfZK5CVGorP5fb4SK0qgZuzfaT8PjLVhdleiHWJeAcEe7tX9pffZzcJEujfhoXpPNeLpKP2QzBvt6JdMNmu8Lezfayc6fnRBcvsQqfyy5XeJwz17HtNWVMYfKXTvj4ilxiYWjjfb6VRZAx6SsmnvDWWk553jfsDxw2hhdrYGo2YyFiRVZ16+CxjtfgOhXbN7wqKV819id2uAPV3u6jncTn6rnAfc731YOvpUSgC3oaNiMZbe6htwmNTtAuq1yL+rq9uiVk6eF73Cfab+iq+DDoPjsHbOfUNU/8TJ/1V96FScifyWAf8gmYv+krFttfgzAv/IpgnzFHTPfhNbYMRMA5/t77qDFfiz3cOsQE7oQIvqKVLpddZTwfOSClrO2oVtfBpUSnau5zUZwCAPTaJcNcdonjJO64SM+d2B7Z+WvAqnmEW2vjrCL/rBZhvzdjxGWwUfH7U77oHxjMRvibz7jfQTU66rnI0DboosxgQCDANzmKCs2ZqETCRnXYmS20dGVRlnVQkaSwPb0vHa9RBHtP3pq0Abob/qojMXkC7cVAQRKbi5p1P3DqbF6aPo5zZdGLDMfgLurhSPGcrvR4Cu03eCr4D7WV62Tk0W7fvhtVnHFtALvkTZ31o64CQvACazrmO1kgq1Or/sOq0OIl1dMX2IY5M4jPgg7ADtT4K6KCGMfLpLUThR5TTQgUDs/sIyruVpSXm7819O7TRpZRtO1uJF33Tjtl3JpoQ7qz94oJ+zufZTx2NM+gcdXwBf4hTF6SIwHNuMmK0q7je0HHLzERSXYeQb3m4wfthlPhEsPiQH/u80o7YGaAcu8g2pridrSKr1XxGRdFFUmfxSMsu5peURBSwSyqyyz8bZSL+uI0hOOx9IK2wFkvFj/zCZYLwmSQX6/TTFkinblHge5oBOy085+2VWkek6ZbLni1OKJEB8nllxo4rr1RY40SQtT/Ur4RevnsyitZRI4GfZpYR+XD1S+Q2B2bfHjK/t9V8qvy184cyYeC2Ji48cXDi+Dfd6EXdYXHlcsP4JvPfd3CrsfnlA98CZ5eln0vLEZGu3A9VgWrjabUXF/2S3GfZex0vaLS7+1cN6eH/qehv8VgF8C4P8gIn8MgJ8G4Cc+NbOvdsYM3/mOjRAP+H2xMeSxDqeOQOsxR1MBOt0KOipap+qDWMAaHtFxvvYsdMXy5jrD7IIW1XASGG6rRhRX3a5yXMJiXdIeN7STQe0Gpj/TYy/fZmwvaNEeS/mmBF3EG910vl2vV+WdD3R7Eil8o667KyNx6uUrQpctp+lchNAvrYylsWq1L1taN2HWa4jv1nJaO0lArmcb1OVyQy1a6u8Qoee8OKLLzPkwXx9T8ZmEXBlNc8K68UmJp8gLKTwtyH2mnosKWsvrHWq++0ybcKKOOeB+v0qimhOjOB/W9Why+nfZeOU39v8s33B7XWYSfgWzm2E1TZ448WaYdeJc33sz2qgrG2Vy+U4bheZO5HqzaI848eBnW/0Q+Bn5tlVW5DXKK66NKj8S2uC89CMfPDMeb9hGbY5oJzwu2HCDV7EDdZWWZQ6coOej4v4l5jQ+0ZSZT6eZcFGIzRO47+nubMZDTOVIuXjcsFsqdo/F5UitMj8qX2TU+HSbAdKVWJ9p0MU3ukYDmgpcBrw6JL1oOE5b+FDMDa1jSMfuGfd5gmIiHkTr8hcsd6xruL7ZmwyM5ctm6Jo4XaVVn5T59M9PfjlHjdSqude44z6X2HOiXHS559XyOW16TyhJsX6vyeBqH7PNUNYrlDSm0Ymc20yLoALSU0QD9xftuixkLSOeeq7FSznCYrDNeId/l8ybvGE9YTkubcbC/UW1OBfPD7KJXoZvNSi+6hmzXwPg14jI/w3Avw3gV3yqGyPw1VwZbTDlH2MKw6pQO6laJmU0UIsg9n6qiDbY5LTrOQFgpyUZL5LUZU7iJUBCie5ycBb9N8uo97QQpGtyMz63BtVpKc/IW/e4gXThjz1oF46Iex6+ghZ8b2ScddMFofguA9MXo6mpr55u5NPbl4CXObO4WjbMVmRNuwWpBKqtViR3VcheYVP8xkaofSN2FeLWP+NzMTYofU6ThRXHaL3s3MyVjTrKuTDmC6a1p9WuXJOAf8Or6EaIlv6yTE7r8guqbiTydlqO435r8SFAhR93I6GTdVF+lpEZ8yTNr9p3Y5xDEi35F8wa4ppG479RPqJKQ8tuQnteSStURwpu4KuvfKoBpFbimMNYxuJG0QicOltqpD7ZjahiIwYbQuxKpcmATzf2hprnTDsybLRcAY/Javu6wu6Jj/1+ZDP6Ua5Svs6X5C547PaQzlgVOZxv7yzeztqlGdwc/e/Wbvqz1xvhvrog0Xb8fFGmrefeGlZvQvePtiF2l0Uf0a5ddl8Iq42nYar3cNd105vfNggZzjl3fK6UVcYL7GbJWNV8ZsvLG7n1vFxue2D15Nl/xxm+B7eXt1azfxqkTHBUKV3imWot/2oTiZ/cFiabwa7mR0is4e1QaAc8VvjCFuOv0MKDt3+Pl+hD3WasZ3aWNZvE/TvKe2Uz0jqcjRZUXr+t+FsNCsH7V9rTU9V/G8Bf9KXy+2oTM7wdaxlEveOJXQW0tnAFWDc2yoHeUqa9iBWVFiKGELG6IcVGjwaeV8vBaRLwIiJAJRMHSGmCVTeUYUjCQCSf6NQTbU/bEmjtYUP5UI03PxeUvabtfGUqwxMy97s7IqmnHfId85r4MOjGoEHHcgVJieO0UhNO1L6iWC1dMTojlvGsBz64J74+iaxsArgvXRmbchScbVXQcj2p7jClMbDeuqtm4+PZn5bAziUjD57nzp4AcfOiX1kvwiuvJ7lBLtojJpis6zQu7i5yqsaNX2Iy+W1dfgU8d5MjaM1JUnPtGJA4HwZFuJp40d21xl0XD1oFOAEcsVWocb38ulOrVArUaF3mnDa5iyTsG2V235ZnG7TpTsn17XW7XGfWSu53NHe+vgvFmyJoUyybuinpRk58J3LZ6/750Fy0Ii9rJ/FuFTJquPTr1iGpWSrN8iY85vS9GAXbMGHqNmIhGR/REiV3MWb+2KxV3O8gSs8h7oT7nu8DmyGd1ui3NafhOWWUam/0kW5SieyWXNrKjX0qumFMFSpDz+vCDT2wm2Xt7E0ZZQeym5tejGJfNFzL3TUt3Rm5SHVysu18epzAbpXuIlZ7U2xIUYd5SxB2hwSBI60Lai5RxXktTxt4TC7gWKgXEyi3EUq3NsoRu2aO40J8XdXiKK5a9Cp6xs6W3wTMC0Dsvveuijc1TwSjd9zvzcjxFViY+66Kg2pbBZUWjTb0uuzN0o1pVXIzXUyvbhO/G+3RS520ud+HiDsCu1MQx9Jrm5HjEHdpV/FdP68jvML3IXw9V8Y37wWEQtwDFXwoo3Y6NMMOTm+dVQZaNm7dsNsp1u5qEhaugJ83Y3vHvdCyrgBcsyIh6kiPXSh78bSmFWB9ZSDFaeXrumEhWuYY1DzxBdkxSjwZiVFmQUzKeMAQtH3hkZ6LjsOfmpJ341fiuX60pkOtk8WHRzd6oZzVZoVOP2/uMeiuJjWuzuaaIHW00nQjkLhD3uC28SXiMDaxYeiXBnSjDi0yCJUv2q6kcfL7MdxQ+aRmiUB8MXdlbQ+npT7lyCanurU5IZ7L5cMGNVjuOgdNBg//no0q3iHh3++GbMlgaeXAe5wHEAjezfXP3oWMNkmz8q3ByLHKDD+TddoESCF4W3JYahfABzIHDruEI89zvVsJDst3cbALn0WR14AcsRt6WBrnc1jc+0oFgeC7Rvtmz++y0ko4MjptdZkUHHbmTmwg8vkWOgY93mGp++jRGoubhRicRPOoroF6T7vhXmSUaafnGRdr5NZ9L2gLYy9/xy/OarNzF7TEyHV7h6m3NqMJIpzmKdzPjGXDxWu+0nBR+2UwU3rLSKGtfIPNYL6jF47/bDJX1wv0yq113/C4TDD38tTH3bZJSpSubzbZsaKVfHifsSwCSOpbSvoczzhyrgk1LajZgL3aAXaCTGn9OIqCdZ6LPT7pPSXLxlgeWGC6XLtY5MpoLpPku7GQq2FqWAmf4Fh5/bIlJdwXx1AroLLMyM+XsLuhTxx9MnoWe2PX10ujbTYjvy3qzureLRePd3sveuA8gvPCYeFrpNJl/ggnSLM3Uec+rb6zGavs75DIK1uUT0K/3fAVz5h90fD1XBkhKL3FLIlG/B0tbkFVt7QTbbdiV7TSnu0//nozGplv2aYf5WjPGrB4m7bLzII/k5aNLA8aCu0wYCA267dc0F7IcUvbhBEMAyl7Dlc3pbQXBdzaUV/u7brRlD1caa4GbcRg56NgF564fIMtIxMVq7kis/wmc9fFkFXsUK0GtTX1FafjoGqfF7qv/86Jd0tDRC6/8nCCi90nkZmv0BMXk3vgtrDRunCf6+bus8ZY0ashXUV8FygTKNgcaVk7wpBWqKS+myXaaTVoWSvu8qQ4N1qVrIMJG9Ndal3hb2MZpLtlDi84j3dTzeGN3Yx80vZV95T5c01zv79BSA/GbKZrcSPWYasolEbSMYXzajJumOr4PODihoMbLT3TQtelLnUv3/g8CTE8z/aGkjZYnHQUtFKju+fEht3s3tbc9Ua+G5g3vr0jBPZc4KQgbb7bjMJXB74sQm80NXG4aYvjL2iyVHr+4NpIuYpW09TL25o2T86YryBVHNiOpmhSVbEFQ/k2bEcUd8TjHSfTZpQMmgK2CWmAhNuxbHjukh312XJWoj22FE7T8Fg6upE7IuPx3vCiIOkNJDF5FOsc1UXdbUZt/NXesPtp2vT8MDXrLePdFVVoxl7sDe5sBp/Xq7R5c+O3GRRf9YzZFw1fbGImIm8AfhOAf0lV/7yniPiu1dVOEAPgWHHTBNVxZMq92dLEJxs0rEaZSHfwZj4dhFSpkzf23QJRuj4QAhVnEnnRVB4TGGZaRLkK1VW7vKJl3fTBBAsxFb/r9YHM/dWYtpVjdNlraa7K93QfLbRq9pvWHbuwLM9Vhq1i+qpm8qWMJp1PypJKm6SK7QwZSGdu5dUN0KRAG2CopFtYGBtNvj7xcmOmaWZiYGDWVZqWtOTp/8nrhNf3bTRXh0mV1c146c1dIQX54VDfNTtttdRdCH0taLk9LrfAw4hPu8krd8KclZSPcy+j6y6FYjKfcevkqemaIiFDrkBDnM8qVd4q6XwSc05T1kpqa5ua8HjGJNt3RNMd8LT6OoQHhkwrUQ+HG+agReOztHFI0n1KUKvbfcvb2kPseCidOUEmiKHMTg8Ayn3CG6KU1l3lucKNEds6zyxHtRk3uOh5tyKMaQcZp+e7cFm+p4gbrb+aoAOY8UqyxmaDdc+3vBpsUeIH89Ww+yN2BrHu5ZD+c6hMQZNRg28M5b2txgKVpZRBf8i0Ilqegd1m1LFMVboP6Pu45ISGe2K4K1rdpLcB1XNg6loYgsvWbJ+6l0RgkJoLN9sGwM/xhR0RWS6XURa7ETf46lBOuHnKNkVYPeM+ypk5mG7yo9dY3wxT0CVLEhMfutoDwGE2Q6J+Vz2RzaD6XvZGbfKTbumB+0i3ey+cy+XyL5uxPDmgWmjja2tWfymD2RtZi33udVI9PLy+us1A4L5aQ6i033IQvOvxONkPQPiSO2Z/NYDfAuCHn0ot1EH9nY8CtqWTimSTgQ1sssjc6u4JhsBR3vGvjAfz4ZeSHTJgkrFxwPcuUinXZPw4Ldm4Ynee4cO0V2kvyr/ZpBs+V+WTKe2UFxArm2XH4gHtqIOnZUz3jUdpy4AAuLO6N3LMaTe7L9OzGyvSbB/QZNO08UPKWJNKScvdLt33pTYe0JkysGNJGlimPVyzZghPzhOV7yHAuxscuCf8or2C3kKLdMWwz4LGyqXL6btA7y6v32Jo+LGt7CO/V+YfvfWxiki6zggQB7Lzt5dAoXrgkJNWrF0zrr+cpPq194BvtKxzZu5Ec+AN5sgTK8NJ62mzXg76CyRfJdr0DMyJtteeYsLW54OXz3/XH/DDeQDEJnAeL89jG5R2+Ijvl8KNIZ/Pob3FmUcY9Gw+H5FxoqVXDxFus6cSE+YNND/IF7jhzZg6H6C65nOF7WHAr2mLlCVukLRjedeoZl+cnHH8o/BdcL+lMRcAfac9PS/WTfCeaePb27PFpqXw3Z/WqwYVO53X/eGTMqE6jEUhoiJ7I0ibkalywfFoE1IXJ2yGVNx3V26Azq35P8/mzPO4rBuBny82l/Wyd1QXJBn3fRfKJ2jLRpxx46J4yVxPVucSufq539Volp1YKK3m2J72LN0g38D2xh3R3WYsm9jPpaXNCI6hLbYZn+8v8b0LirxT8gc9fJGJmYj8fAB/LoC/EcBf+yQVnY0iI0oTHIANSUNDzbRBUJBMwFe88jC0f/l9p+12MfPZDCb7sW8lTCAKQCJ7BGnPQ/aFby1ewdSO1aX7lIx2Wg7sLlJXrFp2bIM434bbOtFiq83gPQ56qFyRZwujHnUTveR3KWNZBVeq6934sjvFMipd2cy0uRhyYaTS5MSQhrHqMlA81rsYKNt4ZDt30J6jWGUMo5FWkP1kat5lJxOKfRRxPRbiHTN/m4YcRcVh5Im2eQNlGVhYK5/aaNTNp8ahm9N2BbO/lO+16bp4yKXzK5hX2nMf+NsO4zp4n2kBtUHpUdyb+FL8WJW20ibtabpYB+FPM+Yq7hJgVybrEXIX2khr5YXvgq4ppkZ79WcqX+FD9dL1/AmBW1Xkzm2t9KdGSyDsLoUVUxOPQzXEd8OCGzye2m4Vr9qFO+yeIDigo+PdFZYNOtcW17F7w2d63nD0wr5cJtOLdIOtStY7uO+66CBf2+CVyJmSYm4qMs9CoQkBYOvfF0YMmd5fVmxe77Tx7e36skCgPiCGRZQ0s62tOxYzYxcuMw5MY2aOTSB9KFHZ89ZeldNazoKcPEpoJF3oLYEC0GGHQ2q2TRncRA6iWJGun7QnHff3TBn3Vd9DZpam46JPulYStUpquO+YCqPVpD2RnzJxB0JF0sJsxLI71Ub6ghrTgnB/9X2yN15+e5E7iJ3vZDPc3lqLuXAzf4UvG77Ujtl/H8BfB+Bnf4iq4y+9L2GNmsrj5cBgjVdq3s3Q7aaTMpOd9sqAZXeR5LtZyUbT2FUZCSwnvhfGued3t1B4ZXCZ16Pzk30wcJVm44u9Th7SEkLHgPzYU1/ZuTvdXBViLp8JcCV3EXjIVkHWqmU/5tnT6qXE11VBbZPa16yCrsEc3cXuqjb9XTJOPitJnmvrPW/Jp8WrWZvY+Q0bpkvDfdcUtYwS6sCNvxnm7iNevvINmMbLXYXyiGzm5SlV83D7QeVR+1EPo6cbSqVN3biu2A0F0DjIvmReA8igtVS8L5YrpL4DpfF8jLSe95LggODd6+hTQ8G2NgRTZEMT1IonnXGomNrxl1C6tTEpciQ185ntQBsoHXdpW9zER+7TjoHVRn+frhbWRYO1B9B+LctE+wj3E2ZuZRyfH8nT/7YED3XFQNMzH+3DwO+qbT5RCN9lyvzrOOWyeNdZ5k+CxTubmCdoOWR/7c1X6a/j1+7tMuOxPzEeH6RIgavAsVq2XHxXaLQZWvlEribjyl8CoyOF8B5Z7ri5TCx/wX34OV/G39xRO0+BXzriUp1+KQfhk7tX1iYttoOXevULpNhmuIQ8ZGJ7kxeXPLIZ6eb4LYfXGTMLIvLnAfjdqvqbReTPvEn3KwH8SgD4GT/0Iw+QhCyFWVDfzvWocZgazr6SPfHiDMB+lSGl3QC580Ft6cZXs9c8Hj0PwB2A8KhtNVodorbnfUS8G82ediiPAntek7xXMt6OolvcFd+S7mJEMPDZ2UrRRTUeLR/2Gx11ozcyDjK5HY/GTLUw5M9j1bXjkb79opSe0nqhcuC1nk94XuSyYCurvuO3XA5BOyRLPr/auRZHYg1vibDe5tXHbojWw2H5Os0hOSmKCR3xAdaV0oDYGSfEWQk/MO9lrG4+5sihgIg5oWgaHc8LpgvBssAiBiOarjQHBKIn4kIY0o27W7qs7rISeXZaMK1/08Z+y4F3nOR6I1Bdq6B+Vu5d/SzFctQEle+7VhcuT/M8NahS+HXNbyT/He1htJP79F1g3P/pP+NHKYYa7IQHjLENyzdg8NebzUCxGZx2yuohLmapCh/vyxF1h3F3fK/oL55HTL3Cpzub0fIPXd2FCz6TvclzRlNhrmXcaVu4ajdXurvCco/DkNZ+dwy9w/YtmvlyvNsNatq54EED8UzcPBUIL8Ux07DE8InLcAKl3Vf7Q/kVe7P6UeIkXwhluB/doNJ6Sc9To22w2n0vKSY85KbprvHZsGxCo477/jt1tdrxmrL4TYPdZnBat4Gn4b6KxsKTuDyGt4Hlxtd1kXklpjJ2i6ZL4VreShvguGopjTZrfn3sOlOqnuTq6HqXcHfvtG5vlNrV4bT2+5AD39Uzbis2FcanYZyWF/++1aD6OmPG4U8D8OeLyJ8D4GcA+GER+btVtXxsTVV/HMCPA8CP/MyfW+xYpIkRkWGFwHsP4xoiweaSWA1muKRpTbq5MhZa+1myyvRsDAMw3djbf4s3W4nL916+JvJm8wvfnq/nrZNuLorHBrSD82BzCl//2fKaQp/3TvPgjbalvdPNxk9Q9Mq66ivl1dkdQRjV2Qxy6qadPSuGjw5Bx0CNBPVINzxcAfkCnYzLPxltlJVDVNmABOeVmCZ3bkj3yVnnC4/zIpQyjCLXNqQmsc0g+bpisXd1lbLXpxtw3j2z3sZ1hFq1pY+qXcfMfElXbexkhlyi3CfWuQWLpXZkNS206qjuOrKEOGWdKlg3IJ5ZpnB/8ZXL5TJ5yBH1pWInFMKVcbnAnH5+RI7YKVNoTHoXl3MdFg++CnTaGNzEx5TMbDut1w/T7htZV4Fx/2f/8M/PbnGF3V4JHC0U3zBVG05srozUNphNyatgQeY17bAV0sm+DB2hQJ1WmRl3/fkSf69w/wrrnqG94tvrd4ofZHd9FuyOvr8Item866aWJ2nv7E1JH2m1xJWtG0ViALwcbBcozhIkVNeCS5MZtlg0pV1NmxbxIAwjdaJklcRibGkpL0dJwW4z+sSPn7fuuNmbVQThtBqoMdKyaWPaVd9WR+RnAIiBLplWobI3H+q0f0FdsFzlzbRBu2duwywtl2/h92ETqaPahWhHifuleTRXRsfud7MZjvunuTV66Q9F4L6fi3Natxn+TToxO+H4fEDjMzCK3WYoDmsTC8fjUzQ4/RoSKDR3JdVb+GlnAlf9HNaw/LziwX3qGwznLUD84ITPnl6q6t+gqj9fVX8BgF8O4Nf3SdkFZTWEQDwXg+JhM+SRcg9knLWlzf9e0V7L0XB6y0GLTLqXocje8i0yDrq5o990NbO9LU97vtHQmNcYz89XA4YHtKPMt+VrnKfyXhRMH4BOfPB05K/11zCwuQ46/twF6Am4TT8qn25daNMVmjEurO9aC9HpAvGdVuk5+Svyo8+1NDu3Xs5lRuqzouWllYb53pcoyXe+vJ47u0Qp0eq6lsuer2j3hrp0I/yKkjhIzWCwdJOaP4MXD3b82c97YEvfZfwiZrnjJP1agyobDPjNKpxCOI8Ss4Wn8Ri7GmfM2dvNbKsueExybrOwy8c9v0cy38j0IdoHgc8TFR5jah0jHunmkc14zHfPM981LOuZSG+ld/lpHfDrMFC4kbTQXpE5nyHh1bCpl3DE+VYJHXk6pj4TKh7TO126yd+6pd1oCy5WnNfGYcuLaLf+G9RrstPYEd+6j6cDn24z/PmEWHnXzY1X+i82A36zooSdYxzvtKkbo7X055m7nktvYjo3niFj+nno9tvL/1NjR+pbD1/tO2Z8fsX/rkUKtYkVN7xqvS5vBKMltQCRcGU0gIzlmIH2wpVRJ4LIKxP7itV6lDE5KO+dj8s4DMa2tJkprx5dnRfg1Uam3cqrg9G+ob0NlG9dYbrIw9/JIOPGt+k3VtRaXl6eO5ldj82Hv5SB5Z6ew3XqifIhdc4uhzNtO0zuvcSbq5fRSfpAVrPHRJ9wvm01tjQkS6O6RVrccmkpbpMA3JXEd1YkdGMuhUX+fvNY9sFsy+Y6Yyvt7lLnmecdWWvn8LS0vlLNZ79ENK6991Kmu2W6S4fcWO6B4T4yNv7luqh64o3OhBzID4oWGcHtxE4K6Ik3TRfIaArel7W5HyrgF4icSL6On34Kwq9nlnDR8bN+bnBPe17OnWe4NtqNYEFrLjq2m/cO3Sbfnxr4YgBI203pnb9tB3la9aRiWG0vVhOvmJr51dCa/krGfVGxeVqo7jKN46WOqR1vp+L2TAZcLDI/om1py27ihPsd56Z8Qapt6atto0L21aGHutHyXMKk6xBqKMP0fGFPez7dkyCKwo3GcDAuhJKaDYDqdk5jlUvstrpiu8FeAOzaONptkjOrIDHY47vbY/5Jd3Hn61gOw2coAlfYyggJxq7mh7oi6AtJ4aq4dC2Q5arIfJDYndOD7IP52ZHlYXCwzfDkjseBv4J3FbvjUMylO6/a9yIcVItqWvBTZOHSKOaOqCA8dtxfOH/YQa2FudVmKFBovYLELnlSswMSeJzni7lZJe3yGjtl7c6tuDecajgveb9jXNOP96hrIXsDgZ1D/nadGRXA+0+RieMXnZip6j8G4B97KrHMj+GWpbZ1u7mw5Fb96A4j1mmIdnOFmyyNpbXxTwPCTL/bK0JyxbqSlgFOWnH9ufGpvYoBmPgyHxn4RIfe+XbXmaKCm7GFtng2ILeujJ2vv7waQBBRd3ucdLO1n0gr1R2myzyx5fJvtEK004guMxZa4XdIpZwH0hY/6tKVUiNrfepev0TLAw05elZa4gtPpJvk1i7MEEshXspjP3oFED7qkgbkoHzSxSgvCWGDUy7KsJ950YVf57sM+RH1t+Q4iObd5PCLPZaToIQchwBKoyBfqfRzDZ12cRHrrEcc3HaD7N/WOWWZPDHaA3S5hxntpHWHE0DM93+52axr8Y+4zUsbLeVtpT/coANB67d8+vm+U3zgwLR2ab6oDUgWH99pzIvzPzGMuEj469jGIDJhqg9cS9yQ9gm86pi6uV430hx4IgfFdzI22oIxD/jc4b608j1tMzzqju/4wMTZ1nfd5IOWOtFNxnvdCMKVEUPiXh6Ku6qTjcAHx0UurrRKLB2rZUi7g2pNXzkNbFrFBM5f2IFJk7RYyDczahMxJ1VOmfjd+dAwLNLC0ccaIFX11rYBboOOnbB24TInduciNd9jq3F50TqXxjZDQiLHxXeefLjNIBvh3E7bRpLjCJsBdVysNsPlyGmAmA2RwHaBX2rvfMJSNZshluKMi0NY/2LYraLgBb6Fx4pcVlvhQF4W4t8D9Us+/Pzb4pv+EAK3GW9kixZff85a+FbD64zZlwlXRhIdzqrFWQB9Taz992isZiu908oYd2UgeHft7nbDDtc9rY9VY9VE5HJgceHN9JDvZuiYrz/rXO6JdmMi+buXt+7GDHnp8H6asA2y8Xu+fepW5s7Xae2d3wZVE1zz5Ys07IVllHnX9JxfV3oX0RILAljD2PJ5DJZtKJ/wgAeUl5fUhKTxS9I6nf3H67OnZSPtz9zGxnGT1mfN4o6DupKWFBvzPZhJ8WfP33fyim6SWR5LV+qPrjvWlufJtF1XQlduJ20MYrXydck1dOcG9Ala9XiJXLTzjbRZMeqDK+dr/04o/MRGof3EcIdPe9pawxtOItv+U7jvDQAtARp965/BKOp9phuyTRn9+Qb7ar/a8Zg7TmjF8al1Jj7X0wUdcbHL2Mt1Ub4t+opv9ClNKJz4jgUmTL3C/0lGbxsynA+eZNzeadHVhZA1jnA+7KWWxyxdqfuK3TwZKnkOYjBbCU5KeXChtSwYSJdREjFIgJWv8Pk4kuGqWgot8WltPpWR1BolaQuPRnRnM0D6ODqWNz351GzHtnPoj9VmsF4T54H1SRXGY252i9vbZjPIyDgeO7FW3H8jdWjjk7bXSuWzPWieCWx9stsMThDPn4n73+uwbNVrYvb5oS/xAYN7iGbv57/RXGhtwXt8fLLBaajPh4HtHdt36Kgjir/3527pF+DDOpi47xLc8NGBTV9J8nwZ20m2VrwdeVBldKMRbj2y2bqimhC9GaiGlRmmfJn2RuaSlvUm9S9PgLa0rJ8u9pS2y9zrvolxK9NuCyvtlYGXprCxPqsQaRQbc9nTZlvI9rWyTqdFdztZ7i6+IqzBKyeOat1EYxDcu4pvH/gZZ08bB5NLf/RG4XqsRnV966seUBewu99Ks9xQNNsFZlr/HnEOMhYtrHzutiKyPiT9hrzO+CR3FwHC5WORmyOHwlw+hivuvahWwEM1aEFyKdT4+toou7tI3hQZtCmXa/WQpaV3vFt92aUkE63A0p6U1m57jL5qaSHR3ARaZPR+4LuKb4GFE8I8F1RrOy2jQtqdTVzQwPJoc31RrgwyrG8cNa+573sfq5HXmEpGQ43X3UoBY1sX1+O4f+NCzgG7XexpflDc37S+/1xcnPLcjqomrNS+32Uuu9PVvhS9DZh62QInGUGjhIty7O81y9cy9+ju8LDnSUqm+mPXRMdJSMNy8UUS4i+E5UCxGfFZEO4LxtbFOoJvFSYmy67ekMnxGNHec3cnCy1QqI34mY9fLMW0XZNvYHdGd13MaRS3Vy8LZNmio9EeapcoRfrlhvlesPwInI/biTUvZDpN4DdNXH8LlQnezWU9d7bIVol9csS04h+WXu3+wKlnlCFsijbsBrC+debO5uvu3Xd5jza38q79wdAJsAud3rCujvedOMf9A4J31fUR6ui7vju52wywrfoM3P9+hfePrPp9w+HrTswGkyX0IUBVBY72EUGhG+k4BzfGYZQU4I8KNiStE7pFG0YQaNeiEDp3ZFVAD4mJibsyhiEnmRcfe+VZdKNYVNIsMvl3CQA9qgbDo6Ib20EVXL5uQEumRivP0DbSKe1W5STz9g3ILhMbjlYlLIToQu3CigcI3ei7XmUBbZ/cyi1tEzisnwNlbXNdRhYwJlNdZjLsJOj6G0aQnktSumnRVt2W/Zco2xWtG5sit1jfKQMtHpWYu4Z42XOAEVZetOTVbYx/rLlulYF4SNnBOjNLAOamoTa9kOwXorCrkNe/5XbCO2ZH0AK6btGyNhGroETrboGiy1XEPzC99HnmZJGMrjf0dBdZhnMt3NTdyWX012RJ1dxi5DvwgyqH3bTo7ojhngj/xo3LuNIK3uK5DjzZpWWZ/XR7TGcfLbQfN9ACb/KumFVa5T5o9RTY5k0qcL8ByJo5FhyhD79VjO39FylD50vNqWBOpBOguH81rGPajqlb+UDxMdJs5edkPd9n8Mn4fgQXhUxvx+4iB1prYD4OXccks/f9tMZdxnQptHjiVOqplweAu6EL8akyUuJwqTNakSxf0ArpptGO44XWVoN4l5HxNzeJuYSCcLl04JNmM3iIoxoyLkzVUt70AvAFtjrlcl1EdRkfJdxfMhmtJB8/1+nHQNyNUimtWINatw+6UGQEkB4BZSJLi4fvILXbZMnL7uUz78h1F6FV5kE2aN02+LbSq8K/DfYuCCx/Jzd00Te48Vs7eRrtVwwEnI+oT/7MzT7OpJmeNpvBeLxerPKdOPTAebDNyLRWm3AXyUOA78Kvz99x//DyEe4v+1NdF9fUMWnNCuAVvvfhK0/MemDgQDGaHByXrmYE2l7wc+bLlrbRbnn1uJ7XHDbDIUO8iTE3dy7fwEf3lD2fsTw3z5stmXTRBhrb4OKKz134QFoePGzyewqbDDzFlws2N6n6Qi9+l+c0lhut82HhUmTsw89xCBKjhhjwcF4sD/GXIa/Nzcp/j64ltKMmvfjU57S+KbtxZeVbS9kFKG6Q6jJHfQoZRmxqLjxTRXBztm3Gs5p8AcUHBRttpvYBSuqNy+67OzwA4jppfOTIySuSdv1O/HJXwzxnJ4Ct0gI+CDjiGma/FtlPNjg/L1bKmHWU7m0SOrBhDtEOu1YfCNzeigueh/5MDeISU5XiLzBVOeEUWt/vbao+a+s3167mD8v3iWnn8j2X12bXHtB+2KX9Ahc3G+KdmHFKM8kYrozdjRyj7aodeM+wl9lfN5uxkfJz46WtJY2mq5MO9jXYXGA3g6pYJF/Y45tzgcp3dg/VtTFxedFKK3xxD2+l7Y7AjMG9fQpxinNwrkdJeqeVW1pQHVw0nWjTZCWJb5aZqliZK0OV64zP3NW0/XMAu83wyezC5urS7stwufPnVxZo2CwvVMf9A9xwJtz3UvSpWD/j+C0Fhbwu//giYeuI2F0Zh7TjM2dkLVQprW6JtuFbybfS1jRjXs7XwQC1GGWgtw08sK+2bhwUo19MyHjxPAxct+eLAUUBoLtIuU770LhyVh357tJeydP5PhicrDrRWa83PIprxsUgZG9mN0NDin9KFrIUY5eJ/KqM01kXX+Graat5HYvnht3+U2/v4rTJOPoFl7cXmQyo37ToH8AsAsCNnett8cm698FyWu9wdTMh/VC0yxjGzEUmGcMu+k4PDaHW92CcdunBD4Gv7+jYZE7SpHoL8vKFESXaQ8Pk4zS+/bvL7vojWBu2fqBcS9oDb3bj4yo3ogJ54KBW77n7xkOLlZ/f7vjREAOiglc3jfhZTL16M+AiNRxuiLuwnc8tXy4HCpZfQcMzYbMZxIJlvMS6geGlTXyCltM+Yz86pOy4WG3arb3ZZHxOk3NeAy0njL5/w5dsxpbbhvvXfEdaAN1tMXTVZCxdRulHWTXbtdppuZ1t53SbeSzVWHRgMkecTYpIGYzNQE5T1bCuYzkofbl52e1NKKPiceaz/tMXTU5KGZTuoqh0FgsAn2s8SYQ1GdKaU9iuxbC4W4JsBPDAZmi4UCrMRbPZLbpKpLpmRpzpNbWxrr1XxRtjguZFKeseRl7MWyG+4PkJuP/9DOfr8o8vELyzSOkzK2Sv2BAku123Olqvf0OjLXyJeedT+9oT5Vh8R1yRB1ltxmoP0hJfnsl6Nv8ny3dpTwa+D8t3I89WltGoZZRexM18h5HJFV9/viuQpZd+hswjr0YXlHbxrYL4oWRPt83BH9VBt0mCyGSbLPGYNP5Inaj5WUm0bjHp3dP6eKB3u9LF+qCG/fLN0BQ5lnRnyKg02fDzZkJphYxumG0AYh9mXnm4q6PfsOVXNMdkRXPgsGjzrJqfx4qcxfJRd5/xe7zM2Mn6toxfN6yxUlodiARYHwo1Wv8cqepp7jD+2WhDLlmnEE4r/9ohcxcWM8i6bvryAYB/bNVL5xOv5cxzmhwrdvFFSKiqlpffcfaJoWDRBUAq8p5rT2Lda8NUH1DCXcYHLPfAo6pCi3IniA4k27PTcp9uO2cdY+KZM7rAnGdw8elhUqd9Bk8mHJvS3tHf0nhDXHobdbPJQsooBDvtttDXcPEpGbf3MtL1JDN9O2fu0dMwpWCqRHmn3R/ZxJK0Idaw952l6pYYCy2BpVQ3yA/3lomi4aVjhucV+KvrvV/G7sTr/JThldW7n6dyGxjnmQHKPTS4sjolJiKTE9Ty+E5XfsfsdKW0dKEaw2Mxfip4g5grI5LW0yovfq1zwGHHUd073Q6s+vRJEIrNSOxervKq62PQx3LEDEEP4+87YwKflC03zcO1KQmhjPsHfAHVP4Sy8vf9MSGbkbSrJqfu8a0Exeu6/C8buEP5arSjlfWEgslB0y0ZIbII5VWTjm44zVDXrDL9jsnZYXxFwwewjm+Vz/y8uYpsaTufrbgpU3/2rC4GBNrSFqJpjDMMEEaRB+NeNjhQ32929mIwIRtxzZd1A7tEgfPtfLOBef5adUO//byC2aREeA1iyqvWqBQ+1Y1BmpK7ywf7qbidZt1seYXOhrxNxt6FeGKVusi0/o5pw3j6OQIvJ8nvZ9CSb5rCrn6Xs8pI10X0usYuc4jpad14mXHyhtXUZP31CHcSFZ/OKNFydUgYyFX9B7zzq+T08Ywj3Ousw5qIpiFckzFLq+s5ZbD1y2iDakKskUvw0TWtOuQwXazzZzC3FTe/a5JoUzLJVeoTZ6NF0C5JAJU347PSfjR4s90xNCfFMU8rTTZTJ05Gw9twMQeAldHmakgNXpip89nszVCg4FPl0JauHG/q/Yr7M/Pj4lGeiW2oCuW+wdjdaTdDU1ly2TjyEva9/1IE26aKx4Byx0OWD7ixA912AbAmPMuBFjfoptsmbnTSKrE453nDKjLTfk3JEyVtvCOzITRxYnc9pDgkl2Od1D5iON+xW4ku9NB0M+68XdoI59N2xpypbSkFbwFivyX4rNg1CRCLygbr2OfpEsvTbpTdNHh/lVbgZjNcoWf+BBLLA1OtQwrW+bKCdbFlZvmTHThVIeLLabD1epfztL7gslt7MUxdduAtL9fXE4fdhRtyws+t2bX8nhZ2No5shuKwtDmpY9wXIM65vYlYsdZnpA/T46JVohUqzyt8L8PXm15O++P7z0gKoAJVNxyFWIa0SnndNC4ykp2P0l9Fy4UHDP73SsZBgnkCx6l0+HUhI8m/lfRicBGPF/Uw7mDflK+HuwnqbVfvgxxtf/fk9xl8RDctQ7fVU90/KMVNtA16BxmfC3zWRct/i7vZyP/uKG9vb0NKGlzwpwF0q7RK0hcNdFdm+eVGP571+gqK9Y7PQ0l9pp3AU3va6RklL/97hgxtZDjIfuo6Un7Gv3zW8q8SL9qUd505cF34AlBrLJppT1BZg5+5syBXzDnvk9Iyn/3fhxppitdwf0Y4TztkUEbxlWrG4057IdeTk7BRzgeY6jS9vQZWX03K7l5NDf/ieeyKn4jHo+29shlT2k5X2mDj/IReZ84PIPlhAVsaycgRMe9s0iPjdvfqAhdTlvZmpH1OqIemYiDfxIs+ty0r7rSzEeWsLDQ81vzX05c+tmH7mkwm5hGuRgdOfE9aw0HnSzKxvag4XmX2PM+S/87vtPKdumQ6kdidupBaFsUCILKJZ7HFbnMY9yumnw33Mz3bjOT9rQbF+lj4p/77lsJX3DGrq2a5c66InTJ+BnKHYlsy9MeWFvTM/DwfmsDttCTbaKn9lfVWSbeqFVfTKyUvxpjE0JIwBUha182ednweBZj4zGlZNSXtHe1NXrcyNp1vtFP8xKfUCRE8w5et+QM+Tz13497j3G2ux2vLdqKNOHe74LSUb8+LW7Ot3inrObKVQuuXblATHAcGq2nbat6pLmKk7nS8yJkF6AmML7zt58dHw6VDso+LreoK1m//js0hXvpFewA4Tw13vfTNT3cXv/Le3VXOQgtzS1kOIe5CaKqilW012MqzX+HCggOqJ1T4g9BnXN7hC6wHbKUaB/Q018bYg7Oymi79RkZXO8u4ntc664l1LbTrRUMHPukjGXEid1/fcOrHXRmjBZhOS9wG5Q3nDWO5jeTlatQoPbPAY2IyNdoSRXyKraC//me7kKTLeBEcg+5wooVb/O24OJjEp/BqK1+T4QHNh/hexfV4grWx7qQ9kC4i6hm+Tz0nfpXCubLSF/sDbuiE3buZYrbxNtx1GRenNgOUnSGFY9yi3a7ibyHcEUWghpHBluk4LyvTqZrpFOH2n03GkEbSfXE9AxJypZdEXJVk+cLxmrDed49c5nfYp0/ALoOGC+oyIGjhWG56dTtwCPDufEGXc7hu1G95zKZwWJzvcPlYc53PNd5yhKuiywz1m3zdJXLVwiHAd9X1oaGrg3UTy33LoT1dJq0kinC1PLGuwD/cfhLtcllPF/YTJ97U610+Cfe/n+H1HbPPDX385X/JB0LF3BG9k/voAwUmKRPvIG6ovUMjOjSsgUUIo2AdZI1sigG9dGVUmIwUeZAR6/hNP/oRt0vjFH/kkraUj58pK85XZJZxLh9K+VT2vAqfHm74Xsp4QTsOajxpkVGwXSzxjG48o2aM+anrJmWUWn+lAHtei1UKvZefhdRhb7spQyht80spxRG6yoFnWSaFG9EE9qpo4bQXoxg3vvGsTLeM5DEsvGTJKm1MwFwV3od1XYhxkB6FGpZr3Mcn70Z7QtYBb5G4dMMnezG+8rRmoJah97NeE+2R4yDVdZ4tZHL/fJ/4pAti0q7yHTSpXt+fkchL9FxlJzfJtSJqBlsVh5zhJumfVbSv1rSrkK28kjc45gdV1VxYbHBhOZx0bbJ8ggF0mB3HqR2DuMFwG2VcbHHdlbEwEgQ+d5lu+ciQFjsuQpCuVgPG3GJq/6oLGu0Nlnebseux8r2k7eVDDf0eoY2gpbvkO/BJ3cielnF/JObEWqq+M2O80q5oTjvqtdF2GaiCB7U0Pt14cWZbYvo9YDkfjCwhGuXqz9Jo0S4WucLy3h7NLmS8Rl4RJz7t6XjsMhjKKE0UDb9AuNhLExdlmMuzcTbcyxRqrsn+rbG8Vr/dRki0ftbtsPFDtxkJIAko6ot+DW7yG2f+rTVzdWxlgNkMV+whR0wwc9lNAT3XRC54uK4Sy5cdWK6PB10L4vYGbkMM609JF8i0e/kdNW1pHfePb3jiowq8vy7/+NywD8haLP2uaReu9I5yRetJcrjIzxvtlREs+VJeF3wA/dCV0tsK8o2MJd0k4yjzc3zvjDOAcgA/pFPUid6QWV9F7M+CgplbGVgdW1qi0U2GOmEIfPVouchrMNybHS+6SH/5WignnBlFWy6CaxvkDbSRdysQKKtiUKYgsULJYmRVGm00aYm3hUUQUw8hudgYFxm5KJoptJTJR7IYcsk62GSm4vPQZaK9kpldRMXi3Qj6x7WvaVlmH4Tk0MSdoo7IN99FGs0D5DnQMh0hJ15csupSmkjlkhVaCMVXNxUF6yblSr7PYxuHEcs9tG7QB+mX2H0Bk6OL4VXa/rs1ltyd6zLvOM/Y1nveJZ9BtjvaLWLCY2742LH7tnxX1as7Zm56vuKLe92MabtMtbN36njJfc2TehdVwrJdgFYOcaEyQuQgygYiXTl38Dsk6FnVOhpwkSjjrNdgF8oHqNvhy7zsx7tml2nCctCidW8MnZZK6nUqGvGBteOsmjBVal7c7oOPpox6Qdtz91sopefFJd86RYKUNt0oxZeuLRnn0ybbo7JdPS5f4gpPv3yNVjY+1NYl9VDdKvO2xrQ4jTbileg+H/e/P+Fbv57k+fDtuDLCBzSGDgEyFhN45+gxoJ2nPaSltcaXTHbDw66MLBCs+RJw1IY8xNlzdmqNwVcvM7J48RxunUh5hPnIJOPwXMpncTLxGZ4nWk6L3QZNZFP5/LnnfaebarF20aqro1JeUnUzyUu6qbSDjGMh3UAN5bkjK/lWmbezftk8V2gHmCutlrKWHVWtz5y3GyhWZd3QovNs0ox5L2sifDSUNdHQcAFxw+4riWtl0y7AsNXz6EVu0c16etanKF0VvNIuWjN9SgOBnOUsFYp/D3zl5nx9sJ03tVtv1FT7FW1eNqK2+7Xa3xtV2TsWrci6BORQjZsV3wXmHgPAvm/2Zu46y31z8RHJK+/F9Oj1dMAnWktv7lbzbjtwQWuKdLdPQGJF111Y1k1eVjtUX7cd/yKo5e3VObqPg+IC96OTWYrW8BWZ1jMr+JvNp69u887Y6I7Y8Ys5O1/U8nSsQ6Pd+/6Qlp/v8IgyDjwWSkOdWSl9WQt6Avevnm9tRuPb7c1EqCT7pMee98aUcHCTkXjmBOEi3yJXY6SWmaScU/1dmYxb3KfnaPYuhVLa6Dfe782lMLA8+Yj3obgsJfucIPsE29GO+5FvYHnVE6s9VCNrN/+g8sY5bVmXIC1cspLr8hhQo1UQHhtOhgeFJnt3ufNPi6QbYaOF6zhd1NOGmB0K3VmBJYpv1O5dsORwTAWWe2LuZq00eUOw4F1PvKnEBDsW7GTtSh1knE+Abis+8F0o3sx+rrNiaQeyfSyZ1jX8fmRBS9qO+x7yev20GevNu9mqT8f9V/h4+DZuZURABYRuGQMAHEf2wOW8a/EJKP7s94HGwDTyAurZtNUtNlpLtvhSHLX+vpXPtAmaNWs31lEGL7Mi3ViINo2Iw87ORzYZiW8zOKo1rWDxlUbb7PhOiwRyphXSDfOdynfn4tJpma8WofJ3gBLnC6nldRTnvOiBPMNuaSdI4gmZQneXwyKz0GstcVrcYRo3BeSQGtfzvRkF1FsZtZQXyNsSfRCVde+TKIRhllYHmXWen8ry5QAAyAEDrb3EAspp7dwnWEr5RuMktWRbpbSaZxfShQdVz8iu4q58fnU+JL/nwt+y8XMM3hvFBhunjW5jrymW+zUGMTFAYFdGSRdJX9l3VyOxAYKftzjEvq0TI6ADONJNZdVfujLyp6UPYdfFZeAhTOt92QYFS/JFa26Pi4N97U3cncUdLz8WBKiDYWof5ZJHwvIJ98su+ICLOuAxYxuwiZCRV1g+YGrtR9e0dZBLZbLfCmwYW2ivcBBDvk/gPqft/XmkLYLV57RVrYvSw2Rv6uYI4aJvCbBMlNdJfLrMdBi0ML+0a7xQwzaiY6qCcnD5L3CfMdUZDXqrmV3FG/DyufUmE2M3wIu/ZLd8AD/RksxKfPnjx94eWQ3ON0Tzdky0ZeKn2a290SR+psqdp4ZMGvmcoXfn5CVWQA+cpHN1XLS+d3Ja9HZkuG/qxpF8RNd19UKKjo+KqELwBh80+mcA3N19TRDPsIyib6Godc7M/iGyKLQpzgnRhcdQSay2g8zLNd4saNDm1fsd95fbo9uXZTNOq9w3w/kl4wnFd9Yipxru84rxNxYUL1fG71FIhFr9sj1vv9lCtfiNVlqcImYYDRjZ2Gx8yWo+lFFbjAyMLoLBAr24pp1102V+ji9Hj7QfTasXaa8yGp4voaAbZiKdVpmVEwwyRhkuGIqtvm3xQm1scmPpA7wSOT3VF93rRu6E7LT+IBQ5uC+6bGX3q22FaZdZqXiS4wFOG8WOVcJJ9uYOolUzvuIbJ818MJBi92LXMZa2InFcS1ficuy16cYnXcyfNzG5HEs3eUw7zlZAM54aX3zmA36uLp9P8d1UN861PcbOvNHV2mvuL5KH2U8bLR9Ufzz8UXA5pXyg9GMhV71DkhvsJnFp4DjjbyQufT/j73rNc/aG0w7x2p6dL3W5a/fMiUmljefr5Pf5XpiQp2gHzCuPA+x1/C39lstX4rPAUzmPJvgVZvZnYTrU+dvi33FyyGt4H+2m4X7iUIt7FDr+xi68YhsTCzmcmeh5pIDHDtaHr3AftU66IjuWFxNIfOUJ2oKlwFjHPZADeQN4IdUmH8ZuL7cMHYdJu3xBi1w0LNjuyYRxnzWgVk4p7VRBGmrnP3hHOXKyAtbvvdEiJtxz4oh1oXBNp47FWM6G7DRlHZQ3l4Rtmi8tfsvh9R2zLxyiwbblxWhbh5ZzG3fGzPdlldJW48k8PGHly9kpdRV+n7FpcTZD4anEukc/XHVRjH0AudMysHS+G+DVItzw+RjtB0zOpW6u+OjFe363rUZfpAnLMyS+LIO0VEPd1UFFZ4xmaK8Y7cC9/SAekzq2zKSlvJChLOhKpS0+76VhqA0K0gi5m2JnE88xfqBdOEqR6YVkTyFXW6vGeTL/zDd26K4GW+CPNSNcKhOLSC2lHa3IE5OZMt24DQTMtWTl67tjvoK74n2zRT1r4+urs7Dv1tj9iIq48OS0C0FSVT6JOtZFIEqXpdh/3RXntMrPMybpiqmdj+vJ6M+PdPyqnWg75X1p1Nzm99be8XfE1NYHei6OG53vHZZfy8yDn03cErxdbeey7sJNhy/yP4n7HMWCPU072IxLBqVtEo7IkIaqfQwfHRNGfuQ1QHGjPWLMHnEjse+GYb55bO7HLKJdk6BbXgGiQxt/YF/7Rp4GzV6jHcv3wvOJpR7jJDQ5omKlWfEXxRLAscjd31N+2zlybFPSQYC35d5p0a4uIjdHkB24sp/lFAHXNfgiDQGkjVmVb7sEjqKvZTNyspVniMPdPTTtOJwSCjLv0Jp4Wau9Wbtf2V5ExXYbD3On9Go48AYtl6cc37Aro0LKpwJ+kMM3MzG7BndF9UeiqDIUW29Wi2L0caCsBjyBoqIdu+n5gOxh6LODwVrl+KJbq/VYFriA1mU93QwUoxF59Ix9YPJ0k27FbVHNeCCRY0xwL2OhHUIfy10L4ql9mn1RX5d6bW3qlu+Tyhn4CloaSFY7yVbE6Fi5yVzzvJzMKieVqoMykOkTkpVW6YOv01mRxVeavFwnF1XdypNpvQGTaiS7iXvznC6z+MTEDBbRNk/n+O26yGucycBRAQWIsxS+o+W0h/g3ZLwvrymXwN1dclDCxvbAMppqE6xYt5XTJnsSBhbw65A9LZCTMzH3Q8TA4QCM1lLKWhte45d1bb/ThM7UBxRHG1Q8Hzq2XYZopFkp7Q4GTlzSbf2Ks/J63Tta2gkeQF6wKCEa/Q0wUrE2bJkUcpWNPoh/FK462hVGTLINNuMK99nsPVpA22VsmVziHNEN7wMnHtRNEfa6sneZGXw6tbbn60bcZB/SKI14XC1qD4MuNhGLDncCxn1Wl3eLxPLEcF8w08AnqiTPxx5qF7QJg+RzMloZL1q31u6SLcH3nXiye7bjfk5i0uY7/zz7lTbJbyF2N3aSLLxIhWTyOJ/kVZuBdeaYlu8iD8tHidY/WeIXiPmnpTONITfxOAOPc6/Lz0W7hWHcj7IgXTnz/sa8MdLz8nKIZvrixfUNhteO2ZcKxfkZ5MbTnhXV114zruSVkRkfS9A+EBtWui1tDIIJ0a6uy/eh2maXL+x0NGrOxDtaw+s+GI+LEHyA7ID2zCinYV4pW0vaz49hsCNbeSfD6jJe6Cby5bT+fiifNj7S+G3uflcyDqfVpclRdMUF2wwxyRFyCsV3q1z58pajlML2fCqht/08u9UawVZhydwPCLOM1VWKVoO5DZR8UNc8AJu4SCl6oUXqmUXY2h+G4IerQbReSYwdNzKLyZyDhbz1SipZpK23W6Val6HjzklNy862+ZX2fLtVthE3lYrcDcwBwSHUdMTXYT2LdXpgmc+URKDrGzPiFxqv2HOdGrDJWF6Z7FOu+D6bnoC8mZ5Pw6O8Xlq9AtVoP+OsgfDsxNsB6TY7P7ZGUti63hrttmAhWYZxQab0M2rUF4GP/ADZrthWXY1fyuuOx7hgPXVn6kd7482/2p5HXJxYDh2zqT6jZCgu2bWS3xXu+yvu0pbxaLsAusyi4RPzJBzvRe11oY3viNWhRy0y1ckKx1VczMs6WAZi1Fdoi4j9YpnmyshYzkVoPK8C45RjbJA17I6k3KZCQdnISjuhflHKcSuM4zGBYmnkNX3kG9guUF8xnNoQQGOvVejx5kFjzdfyI+rDL/Jgm7EuJBE58rhfxzLHL6h9++2IGxf9oydLaT4he4MUY62Gx+s88VLPabtfb7QIl7gf0qvCUhfadVTgMF2dBfcB/abPmP1UCl93YsYTHuFTGC0O2PvgFdA4YInB4WpPcL9bdNp+KUg3MsXo77+9t93JqC1t/VX59Jwnui3tzXPn87B8V4MKrbRb92ygx9nc1teU9i7cDHq2vLbC41Y3D/VKBPtu7QOZp/yeJK3eXBcKeMTjiqw2/3tJBldaPlOWE8Sunb3d8180Gepk+rrPJK2bxxVqcTKO21jsmEkiQ559UpNDooBiNJ7DMnhES6lCtr34AMRcBFMDycdOU6hdYOJpF4DF4M9vDsvri53buovLj5tDl9ukn88D/Nlp2S3HL242GZseTwBvgXUPOuFd4HFN09OEd4+wreNvUMZAbcbnTawLXCzPV93uWdsEbJormPoRbHuQ8R30jbt2d7jYwz4efk6Oie+UR6RtmHMh1KXN+JTyXch4GQZX26psYVhIWSahb+zNJNA1dnes1pgQ5mKeJUN93sD4I3buUqa9wDtWDzbDVnIDdQiPI9o6HN9ByF01cTl5HNXA4IRdeqEVZwPxabHy1MTQmBZLltFthHEKCRbsFasX5XGa8j0xPQBZSO77V1zKLJXpSNN1Ufz2xgH3Iw+yR4q0kGfIiXh+Iyv3Le+YKYDzK13+ISJ/P4A/1h5/FMC/pqq/8FPz+3oTs4tR8XbGjKxVNPGyJDqN6JA9P/6SoS+okJ2QXRE468uBiMfrHW0v90rLg4cQoRcpfs+6ubW+G98m062M1/l22su0oRtUQzfQjgOTjtzT803ZH+ZV7VbIFrq4Ms5M2/J9SjdXZVCtuusyxkiZMmQdo9iamqSUbz14Vls71Au1+ursWel494DdVqrIpNxeJ0FcYf88XaRm1HlwYYKc5rsXtJQ4b0XMCY1f2X8CkNNvJ6NnrEHMGfKI7WIp1g6XXZrhkylThptPEXMzsaFG+Ry02BmtdS0W/ATAAb+xcT17LYULIQ1b1BZQTxG86WmG2CaKeprLjO3cuR7NzVFPL5vTgmjfbTzHMuQO3tLEWtlVTS1/OChQ3NRMN+HrAy/0Bba3vIKW84+/DfdvZj96xyfkZr6Zb7FNd9g09P0NNzah8DGcHPB2pH2G7/RI/X7L4xHGPhPI7hXddEMlu1xFhk4rLfqRLji/KztWLtjBtS6ZN6165CURc/nYIPWs0wUaDbuX4sO13NrkmZ5wqysg1EzN3rHY2du5U02boaeW8sSOseO+HUD1c2Ger+/oxSUVB/LsLvxCi2xI8a3IyNtuWSQDlCpzV0bDY9WAmLVrlnIAC+cBBFYyfnta4bzIbi7oy3OLYlh+4MC7ngiXyFWgeFbk5GzZS4WcNnUSc80Mm6AQPdZti4a3Oc0SiJzwb2MesqZ0ayJ2IG6jjDpYuB91AKeF2bIzPLLE3dmFbFe0jQN8gcy3FwTvT4PMlw2q+p8OKUT+VgD/38/J7+tNzLxHswthXFO64lTMHdFtnbdgOBi0SrC0EkZego8C/mW+/AfAekuVQ8jwKMmEht0KkzFE9kWe+hzJq5uNHpm2u1CONoMmndrLMD1zHld8uoyTobqR8aofBChy2pv0wCDHbomqXENcwDqVrw/4tjEcPUsv34UIcIMlLa7QdmU2+UsZBNtqYJGROPPVzkab0YPUvZsUOZhRzzeNbTSUKN9wvrM9f4Q2TwmkEVyk9eA+T0J9MCyxsurDjZwK8YJ2XrJBhnqjTXw5zBgBwLuua4ndoIaBtbTa1Oh8AJvgqV25rOYOIlle/urMu6pduLEGC34DYq5YZs2svI7obO+wld+gjWFIpNVQiE2DTc5FexiNXzOiVPYTLsWhpw0GPjFQu5N4ZGzj/gofYdRnrGLr0VwXW78quA/Kp4XE/TsAZr5NJJLxbujSMXTE1E7TylMw9UrGTmtttOIidj37nyvMwKyaK5k33B+we8uLhNzwuCW+txnUjqADny5zYs5tgVnGnu82LnmExzfYnbOSi7y6XWv4Wxpow1zW3bYY0dNq7WMUx1i+1NSwm9Nq4nbsgMH1XvE3ct5sBu3Yd7GJj5b+mAts256aKkCXMR2OqV5UNUdyyeub4LaKsNwx1B3JC61xXdMntxkrr4PTSiJ2XkT1BpiLupdEsXbU/DMqyx4dphJ2fPebOHOvzr+xFlpQtfNtC/ePuFrf61LNmy2fv9Wg+Ho7Zh5kNeZfBuDP+px8vhlXRgClX2p5XXtgYsOEmGRcI62EBRybFfOVlmM38kRQZRzSypw24v2lVL65qnlDeyHj+My0bcyzyUwybbRAzh1uDO0kKG+aFPqLIDdpWY5KtIvjkJ8RgnTEp3jjQ3OjGjmzS9qJr2DnW5Q/ZOb1zjciluS7QCVOLnTjKdqAWtnoNt1sHaE0kNZXtJymygr3x+0QII0HxgOCXCpuPHXQJJ0vmt6kxpQ+S3xX2vZMYNTz2h0Y23NTo19jrxGXaZehpFxL3ed+vYaMU1oNObgpFU8q9aGFDwgm2mWy/ZtAAjbri9anzp8atGF36MubGJe42YiN1ptFo63eBeTKeIFXHfc3fGrPjE+rz2l5HhveE3x72+FGy3gdSTjfnj/bl/bccbF17T2/G1wUGWTmn1sdNbl7X4m0EhfprHeK3YANtBjU3YS8TCuAD7qfsWuhzOjPWvrvIyNSY8gdvBdA0XCRKs7sy1kmUN5/6Dka7d6vKoQ2vEWlrYtq5ZDINXZvxZFKqT3FTSUjmwKrgpNos58lJ8K2VaRMoa2Npl3AUAeDDdkwNZm6fVn4u3wgTkPko8hsSEayaMi6+JwQ8wCxr1ZaM2QszWIwX+MjqM+otoNUUHO58ib4qRF+TER+Ez3/uKr++Afz+DMA/C5V/ec+R5Cvf/mHhRhAxOq6uzHwoMD+e+lqcpFWqMNcGVxyMYxBTPRHpU7JnW+I05pvX6fTkk8IWjvESMu6iew28N4GGJ7E8ZX5StJcDRxwRUtyPkPL5Z3c7nuexSYMzyMfUNO4MPyVuBq3STd3gyqWWfjdxHca9JS0TcjOr0zqqiKKS4vrl/VJxlsUhS+3jWlgVxdTm2uJahlQ89jHDYS7j/j5pXAnofJSl1hp1dwP3QVEkW4jbYCV7oZAuM5EUQQEJ5Uf4rPJ8NsRYXzDFQXVHSY3KpdSD0WcjY0PigZtXmfs4xp2/ov1T5P5MHdElz3WZ624fuh8pU0YcCMvwDjW0hP28WrBd7F21ATrli0F8DZgxtLbafC5OJw48WZ8CwZ8MHCX4ufSpmMEUsEgvrtG+Blt32hjcEOeFrcA5WyV0gYffBhTleoFJmvHBrYR2yJK74dUvFAT9jSXxZuw2p+VyAV7lXbsvoof7BDzjLr29nPTdopNlNTj5Y3ETHuHx73h0buSdipfN1YTdhPGlrDpvTaogr9eBm/6mzz0YnOpGOG7VsspBX/dZa2UqbGK87tn4m/UyQXT4hYJbXYA4T4dF1JYA1/r50rF0yKHIl0ZfW/JPSqUsNvtDdsF13PiuqYdg+JNJcd7mu6WhxkykwqiKLifDobLxXvZhSWDf3PPy7B2upYX2DvW8pbjvpcnbuUlUBEccP91NVdHgUJPK7vp1LFc4TcEr7QnFG+OPYblh7pO10ej1/crl+vkoTDvEE5ru33ftCsjPteV8SdU9U+8ihSRXwfg5wxRv1pV/9f2+y8A8Pd9jhDA156YdVdGyQFYtObjyM5Po4++KrBao1hn8958ZBxd8qGRmcdlvgzGCZoJpAlmlP7g3yRXMyiqgJSPDoG9rirtpCriY/1olJl1E2WgtMK0Hq4MsAKb1xKVr7tUbvaixWnRa7NbRCvAtiI22KJMzzK18rG9rO1GNlo02i7X1uiaTNLKcKfXWgfSstYaVXaBaUTlBaDRxXYevbvW9PLQAKNcZy/V7ZMLo0xq7ZxvHEuD2UR00a0+w4z2FU5rAGvykqMqHRpVuNJoGkkb32Sz1zyOHSliIUaSlgxi6MqMeMAI1iThJMOe6pWgO03G8OePslVXkpWfDSywXFp8lfNwVxvje4TebICBPBC+dm38Pq91Bf46XA4s98S3kPXQczkrite74g0nTj0gflNXuLAYrdhgIi7//3jgvl+ej7QD7IaUaSUnMTe0qWSiLbg/CZQ/txXhJzH1ymZsWNdlBOGcxXfc2NYhH2Asx13i4oXNICjYMZQyHt24J5mQXaroYsTjWvbUY4wqcbJL3kQbAuwy9gsxcKNXIWVcujaO+Lv6YiRV66us2ELbZOS0u5WrMmz2pzgOrqdLLPc6oIrgnbKy0Ky1vrbyMNecLKwXebYsmpSYTo33lFfn4wtujp2BxWZjVn0trNWQl8oDx02txsf05O3qVI3vTCZ2hwPickc02+QLei6+mIxn7IxJurBjTcJOOv8FQdiQ3D9baR3LbT8M4UppdmCdM9OwR2I2QzQ/feKXjxwQvJM74oHDypt9f33AeskYNkMX7mvwOW2B8NsMqvI9dWVU1V96Fy8i3wHwnwLwiz6X17flykhBW7zexK28HtFKi+uj15qV8+NryxPoe15XMj5IO+BsjfMh11S+UfQswEee9SYuxdgHNlLj+XmSseiHBiqR9kaOsbgXdisGGu19H8T0jHX70diRzItWCqNxDFCMwo383VhfpQMgwl+R0prGVzT9caw03R/FaMvOXE27dVcfoA0idz7FpUV2mae0mae0v7VQOjyUImTxNhXT8MDi5vpsiTevVKEyVGQhI22x26JjTBDVmhThBE3iPPMyLhR3CUKYd9eeD4aCQnKV2g/Z8/dtTj3C8PqHqkE5u9hnGTx+POyTn/oc/be8VqKlyAEnpkW70XV6qwet77ZVFlw+bzajRW4tt3WBCeAmPNp2nBi/GFMn7H1gM6Q+3u5ssVwfcQHfFua8Tw5YHu0v8ElxlAI3sps63naFB9fqiTYXCUiOCx5TXnxpzwoNuyc7FTZDapo73lInYvW2Vq12y/JKPjTOIJximTvTIlJRzU3lYy9KbctXtGQR7uwpy8D1W3C/uY1fStq5V1MZ77XmlUVYnaKebkPoVoHi3q/Bwcvny24r+I6a6yFlSJvhC3aL5kD/hE1iKOIIwOKTH39RsES87Oh5fQbwfx/C+9c9Y/ZLAfw/VfX/87kZfYOujGiDZUdwhfYVL6AnXsE/v8O7VZVb/ozVOA1DrJQqByQSL6vRI7kGsOh8tVkILu9OWzvBw1sZ6dUGOHdGRerPsQwTPVVBWQhsg6JRRn0irQ4G9S5sbWcoz9RsrnQzyNxp78pX0t4Y7y2fLnBuLVE8uQZe0tKgaSuft3ukkiYZuX3olZp84qFbFggZtaRd5TI5tO47cVHcTaXI3IUMwWrFONvMmw1aH2wx96Xz9RFnLzsPr5ZS/QOfAsQHn502BxypGz9g7psAfmX9oWcY3ne1yz5M7tP1I1REggHRnPQplquir/Zmu/HVUA3HgaJj09Mb/ND5G055XzIaI7t4LJwD3p8Z0Qxh9efE1Bg69Ma8uTZ2Wq66hovx6mMAEvkGSQ5sHmFqkUltJ/KG9g5zHmL3M5hK3fs2r/nV4zDAx1WmVTf20Im6GeeM+8DgStieH8v4ANuuZB7z7PlcynFndIeoBoAbrG1KlixYWSGzdu/sfQeHu0nBdSnieF+/a3PeP3wCWFSz2SNL08cJhoUaFV5pq7rNvpDMKc5gOcR1kvKZxKGv/XzngPtgq5FunOJ6Dj6LVV4wpU1GEK27L1b3SwFiN80vcjqJf2K376Wt8K4SV+27xAeAd0mvioLlZMi10JL6Ytevus6PBv4bCQq+1fOrhF+OL+DGCHz1iVn2wgSCghgI4/zImjj62mBExomc7LSD4RZbLQ7QiEEQtpXIRP0EN72Im58HtVyW7+bZZcdg9KdnT9zAdhwwTNa36+wJGSdbeCvj3ZjqihfJeLWqdpvPxbsrmfvieJyjuKJhHreZU2QvmxDvMoqpyZ3PfObsCQDrtKCdn0K+mBa+Qrpoo8XKWcoYAkCZAEpQtAYReTbdRLSf93Kjk2fESt5mWNn0eho26W6YOI91+Jr7fZaP98h8Isb5LsNpmIKDrlFmww9zLTnDZWXpKw38gfT79zMDK3+/NSx5q9RPo3paoWf/dLV/R2cZ/XUF/wHgHe5x/WkGkM9uuW72hpPPvMA2QtAFtsXOY28iN4DgE5vevp/BVLYZJc8rGZ/A8jE081H4TGk58sZmPIWDV7j4DO4PWHkpE+Ndmay3tHf5VUh8zPfOxl3g7yObeFmphfam8h1D59i9oW4V7q/tyh5bMFrdorsG005+wVj7WeyAR80o4GdBM53X33o6iVZ6u2APJSTmUS6LVvyTJPl80IJI4mUWKfAYSJw1lofWc14xwBezCUrWwME00jvA+hmxLFC5EDZos9wHDSrpcnDjdxLWmh1AnpGLj6oIwoHdz+y9hx3IMvrioZgzOqCG6yctFFa7oMhmsJwqH46o/h0bVPUv/VJ5feUzZtiBnnetRPJZUc46OTAkIXoPL3mV9ZXJQnS3lW7QKSqAQ1xGhIzIsUDhm+Uh+QXl+cq2ZVopzzd4HoRB254zo5bPA9Uw2UQ72diSnEF3ypdkKjJvQj147q+LkalGXhqT5gVRMusy5kt/l4C/D2Iq33JWbGto0vhUq8hnwUp7bufE+i6DuOL5xQXf/ZIWGhxv59GyKClj2GI0EUe3wqmipwHx3cS3jJ1IryF3ySuNbY2TAjgC2rWzuvC1yKRIl8M1ITpqXhRiI0e9HzitxsCJ2xBfgLxq8ojyacijwXfle6Kc9cAy9uu8wBqoZdplflXW5SLuqrjWbNd0bQ168uyDTBj6KLgKcyySOt3wNwc+Rc9Kz3JFC6JFpd36JInGeNwaS89rwlR+7s2s7NhwX2jP8chYvemqpuO89olufR5tGUMY42/LY5tQc/kabcFJlguUD5eN8bjbhb7AqvlzS3uF3S1u1Zc0mRnpBmIu13TWJvIasLvoQkramlOrUAgXF2WysRnXbouCqIx/xOSvWJ3xk71tqsu0OrGteTvFbvPLFR1bo5mcg3o7jWaje/0mcYKtYMCAwIWF1Rt2kyDdL6QuNOWimUvLvNJGpCsj7/8n7ovVz8GxWJc/gS1A2Jv1UbgsLsyl78RpO2UL4/3UWtgwtxkWu8rjedlpZcmJ4PEpuP99C/K1XRm/WPhmzpjtg0B7H2nn5y1475cb2mIFGrpLj8dOdQUug4wddDdXxisZZZdXWS4Ow6sJXKdBwFS+AIPB8G2J58c5LQ+Mbvr3BsJPpH2Y0YWO5O7NZtlR6ukWoj6KX3cZdiM/JpxqvL/WekvcLV+lERcnvOGzpX2OD18a8oRmS5Z1EBajEDLYbuT2utZCJXFTVx2eaeYfde+HxDOdu5aklvKGSBKQ0uZEjr+v1oeH4VYjZoYtbSBCAaW89KTTsoyRlvpjmm6nzUP0rDcBsG4Jw6eFDTdyNRoxQb3A4zUiqbTUwfm/STvw1TpIZFycMKcPKFtWIeOlHbgKrTz8envxAAOfYTV1Md0inwi9fB+lZ7JHmHqJ4f3FA+yeUm4VeU17eUZx9hO/EOsCFzkE5CSWjRX8QX1vpyAe2fby0JBTLuppk3nSTRZIw41vpaXrKLJ+RlLr+a0dPrJrajkftMjmV24cRDM1hcBF8FRSaKJjcvniF5fEZD7h2L1Qi8+NOS2vXOeE1y88yQLld85WrJ9hU6INnSqKbaqbAc1mgJcB2a6ZlJ+K+9+HoADOsaP+4IVv5oxZXrxmrYqXLmnX7Lb3qcbNjK2FDtgWzbSkvTM2BV/ZoPbzabdYTeDV0l7TDpaL0WiiGVRzZ8ewP87+6JMcE1A3Pk8Zcc+r852Mc+f7RPk2PldG/3Iw0Pg2i+A+5Je0nAfzeaZOpxFjpNVRN3teqyJK1qMv5korQFoPCOCucfkYGcX5Ac08q0jqN/4GrTgfSeAHpInvZyOk8Anz5pdVRCQgp8vE+1qybqsKt0X7b9Sn3XQVtFi3bInTwtZwNHSjp0ZOAsTO5ZJxoI2hR05AxEu8rvrCIQfe9QwYS73mbWdFj/CrjhG0XkdhjE1uHkCsD0ifIQdEIKfT+iopla00IylXGHxSiD5YwUMG3A8A4QJBbEKXSXr7HyXs8HuLG1nXHLqHhKfccHIKE7b1+Ku+zBk/wONLHGIZH2HmRSFu3d0HGcf4AX8nLN/LRwBUQLjRPrIZd2WYZi3MZsDULW56Hna0onyelvH2rv60qbnQ7kUDdF2XT1lzBjzg9j7OMsdyEYMB0SaWa1ytn2XIxIyLftxkDfckz4XC3dDJKghw0nX/63mld1H5nJTjbKjG8l6TqSy/8/NLkVjGhb/ixGkjQjX1ZDV7TQB2XT6XFwu7vTzrBsWl0HWh1xkYfZheD6IH8UFwslsW9TSZ7ezciXyGTQqdjuzLpc3wf9Q29jb17YX3aaXrBzB8vYnZhI6Shtkvurh0ZaQBYNKTxTkaLSUtl2q4wfdBleUbNv9qgK2JsxsfEqPz5UmHShX5npb4mK6a6mra/tyN8UX5Rtvc+LBuuoxbcBBrfCfjfqmbllf7ucnIeY18Lmml0l4XZ8VvdSAoE4UHobb1JlRvc2W2WtMKbWuM128Q7WNwbYK0WXLENpn5kLIPnuuQNu/D2gc+OpQ523o5Z+AulMUI+mcxFLhIC/jOVBupyRWfHGwkrT9Xvt0FKnei+rmoJfMRoIN49u/hvOuanOV5BxoymEGNWjT3Qk9RaZcuDrjbjIJHwnFtskul69kdYBIzfLVWEWurcZbj48H1wy53Srifff8CUyMXyrBhN2NOkfMGc8INveBvJi5NdsRu6oN3uDjh71Hj7zCmyOhRrJsNN+zPWD7ic2XnhtCTbYjzALsv89O9vKV8tzJeYPeVzeh6LbQ7k91msFAtciNnobSk3epg5zQL2aW8Mzhe9+W5MZYtecv3pnGXrHSD9n2lddevKsdzXROWN2z3vDSwLa/sGO5ARLUZzIfkooGmBl+2XouPuAxS+RyUt5/HZczlnSe/dMNdChn3zyjDwv31PUktfBwL3w3LPYjyFzpTpsB60MX85vmRc/oz+SI/1yLB95mRzSt8bvhmXBkBpKFucdoQLPHrAqlv0tZhc7dwiDM53pnmL52nPMWluBvjkW/3Kd8N6mRg19mOFNsPm4fMOtMyrzvDPT0WOzKogRe7u83pNPsNSM2mdYNKcbxqM8qsmby0CBn4dF7jqMl11Ud2NeVdiMtnBr4lA1nAvAYlusfvOVO7sr/Ex1fMMq7SniabjdbrrsPEizJod2+hn1vQMqoU4t+MOZoq1FdPvVwXIyaj5FXXPljrU6HebGqdZFoByhXTMtKSDMLlcxlnWoKTRRtmLg9cA274En3WjYx+hX1ihzKfOPvSaEv7MjE0b+46sL7DdsCMsz2vWl7tUZir5NCCBx8fDQXLTW5vsMqC+jO1pxG/iluS4+ACxOna+lmmGvfU8xbnmhps1V1w7Ob8tUSP2HYp05YITTcYJ6tbm+2BoYnsTZdxIxl4bYm4/3Ys9242YWeh/R5jN5IX2/xcfhqFGsrcapTOcAi1nQWFd7Xi31HMJPtnSFiMupNQHeP67YG1PH2BrS/+1XPjNqnRliBkJD6bWWjYXexaEvsEVuQ6rTaZWSnRPoLYpzlaNzW12dPAFsqa6mi3GVKqsH7CwOtEC3bD3hyBiasBnZTxEbXXbRdiwsqjzBP2TUr177BJcD6w3P/8GRD7qHYtotuIeTz8bYR1xODble8j4etMzAbdBT5tboENcIdBXmZynTZ8fTspDwZEslObVZgN44oPw7PxRfTSejEDDUwcAEim/ryXD2REdZex5zWrphaG/sYZ2Ym/YpP5kTHvaQvfSZQnZCx/h1D48AvWjTYCco8p7oiszEmvmwEk2mlSdjUwASrfQeb6e5ARLT5eEaFbcV8eo8l9yYpfxu+8/c+ffYNKWvbc9sOgnnS+Tbyfs/iSf3l0JjYRa90+2QgkXAr9XJTFSE7iYvcrJoDJVQofN/gSAwch0dzwRRzzcbccwK4nRrkJ0Q1fVrM5EoZLS7oQqij8o6K+qhkG2hQtssz5cnM0cx20hhJnyqQAuUQKRN9t58dp3aivKz+8/Ygc0PPEm+tFWh/6UGBsX3oPXETDRddbB4dtJmOvg9bLkbT9bKWiNjPTaIroemQZWwbKaYOW0noj6eJS/xovBemww3jb+ma5SGMKm24qfeE91anLwjDzBA4rp+nlu5Ax+EzlZRmLnvLhI9hdNolcyXfYfSFztGbme2N7opAhY6UdFxGjDqkRetshXrGB48F9+0Q2jxVpMoY+PF9JWh6TiSAX81ivloF7C2QVKLnv2WUTkZ1hFBUzXcurSyEIy10OVW9nYnZIM232yLpLDLvS4lyyiV145FfYL74n8U09x42Ibm9MiHCZF2EVm64c8Q/C8cX3PWgT9w/f+TNXzqWrA6rvhmF+OclpNyymHO7SHjbHdv9EFYe5l64bM09bDOX9s1XYU04cp+E+Dpw48Wb1d4rgUHYY/fbC+XJl/AKBO7x3yO5rQS4i1gojepugWdpYeeo+H/HYjDrl66STK2PH50gSfLlsadPzVXVlLL24yzgZPUorUldypNFug1hKO7lxhCFsUcVODLopfCZ79ogvvdrcf6SlGQxsz2Oj7bq5S4sFvrwEOLrWXNDWRlDX7Lb63HSVtPUjz6jtZOMTkpABF4rRmkyklafFs2zccLrSTUZhGYuSlVVhJSTLUXhobbPbVizC6AMKdunt9ZHP+85aHC/3iRvRqZqroqyY3Bla9eHrxiLsRGJp3eBK7mgt98SVsdqkVkxZfLg6Vi09P5PjxKI5RdY5AAASZxCMf0w686za4Rcnq+KUtdvGejlCd+TKaIOHdGnxODvnoctIu8TpFvnx4GXc8WnAaiGqgm3SaOvDht0+KRuwvLRRvts6WN+0td6fb2jRku63UmILEy5WoevziIs39kbb80P8xXPxm917hKFocVflm2xiSfZB7O4CX+DixLfb9Q2Pb+R82mYADQubXeC8vEJKg654fMcX209uVLsuhF97pXHcIGNsbov343p9DzdCRljHZ9mUY+MpWq1YaflcFtIdUXp7k1CpT1FUFW++SEZCL9raiVSVUNH5khOh5202g6/hF632x9fS4tSargnbIQdET0De4JbJF+JOUuwBdy9f7od+cRPcG8JyPmMRr+L+kubEoW/Rh5a9qXzLeaJvLKiub7r9VAjflisjBW1P2ozxs7TdgGj51ax0couXcz0/sBAeEnFu5JifxxXOi7CNY5/l48Xgl13mTs8DZQLoy102Tzu8uxJsn/Bg1+PFuHB73QxZ0avZ8d7Wkk6L8FzeyOtqfCpVyGI/WK7OWhAri5sRvgplkFdldhCOjJoM1aHlGWaVcW1PbPx7JZEu2jm8fr2C9vTMselkG5+0SRcrcUURjrTur0q0UuUrq9UUX2nTbE8r/5dd2He3sB03ivYm1C652y63wzTEbO4lZOKBC9VJDILOoPXJr1L5FbCL88n98hn8G8KIT8/glau/24EprT9HE1TDq3uZEwvM3lzgInDf9wtfeH++zqsKcS3fhqGfQtvTOlx0LJ+UK0TLeN3tzw2EjBh6Jyj1o21CcGV3+N0Fdh/Sktxgsw+UrwKro/PpeHwb3GaQbmroJ3w6vrI7XHVnc5wYhTbA4/5eaftgPFHE3eKv1JP4mLh/WYSbjiHdUA/ds+bbcB+1CXcpucx5Cq1NnrYUnDYTpm6qZO5+WLCbrfO2LX2A8ZrrJy5y0rywI4u+VW5QarwzLBfmu3buXBfMj3XwLYeXK+OXDt7OJldGH7iUg0pDw/PlnAMxwBjdUIqFDUaEhMlfNCeF2bFb5fuKOvWH7hboKy6806c105bnXjxO624b/jHH3h43u9r51NHd9upR8IFmDKwuULK73vQBwbMyPupvt+VjmSZ5JlpqOzEYflAnVaD20K3slJe/vxucTHx1eMlx3W3woqJHkaYB2TTYmBoNpyWG3ZhNF5akIS9r12ncwuhx40j3D0i6GGaeQga+Nvo4XO20Wk6aIq705wYftCi0y03Qk4ndmCX2QVTBuyy3E7+IJD/8uXbIRPMjzqc1CHd5OZVcXsSv7V/m8tRlypd0B045relZPFa5Dr+dzFZ8/aYyX3VVHICetnu3Yt+xzj2IxAWSnx4IU70O+GxW4KKpmm1CHVxEdg9xMbEciCFRwyzn6zucHfe3Ig99suN+bcGyp53y7Ek7Tk3YeSHjM7g4YvkFn17up3Xjr67wGPR+sBO76+EUvG8/gd3adNPLzXlOE/qmA6775EMN4SM2o9P2Im7t5iJDgt4CxYXkmk8v37b7Cp+wMqJX7wffkYdk2pW0K2woinKejL/aqsr6qe1YLVDWYBXeDpZekW7n/iZyMZuRaSstyxLoQMrNIrk3RFYq82U8jp3DJnOeJXvDO06zGYj+4OHd5BO3L+ZZ4dPpxQdhM92dXaBrIiOV1nF/CXOazUDYmFf43odvxpUxBznNIh30sb/BCPKztx4HgrrtWpFGG18G38AMJOTAqSdDd6SrDNmDDd/38qF9l+cmtLSigB655iI9bVPjdqPloNapfJPdvEo7YfzmQjnkFVn1wchF1d/ycZkvjXcLXTfBTKw+GfoHm31bf6Qt5QEaLt06kzIjtYycKOvA/MqnSxIfNFUg7tG9bGwkVHd/iU5B2ih677c2Sk271XgvDBtuGVap9/U6r69QhRs69fpzruQiEmMlNT5WFEnXmGqMV56pjlVSv9I4+Ng2CvcR99UPt0OjPWOiphA5ywDHnQgBu+JeEO1n8dVFqxquikAOJtId8S3OSbnjixjtAY3Jonvm+w1hyw0z+RzwCdk6j3Co39v48SD0XxPbzrld4OLVINajJ5g/sp34EK7UJcnCWLEwdcb9cYKz4XEdwAWvDdyWzCFjy7uw4fJJlZcDy1h63BWmPqK9SPss3w4jW/xV6HpFNoHOZx8SNOwuA+7Blt3q5nns9vz91RltjI1fy3pSQhHUMyRae+VzmZ1Puy+fxzjuI73x3bF8icHKOdOGXMpI+nJcLOVtjVbtXFXvVGSbMgtfSKGFFUVMWzztgt9cdImJCNJlMsuXMvrZsUWr9q3migJ5+4DbF8d3cqcMnJbAao1aUkrrWG4ff/ZjAeTu7uVbKrdbFw+7gVf9Q9FR8pWf0R76BnWXds/D7IDbG5dpXf7h9u4Mm3Gq26HDbIa5599g8dcOCsH5+sD09zasfp+toBuvOlyuP/3RB7Q97cObZVq2ehE3PncZNpnouQPYjRw7X7mM2gzQI76s103H1+EO4yfBrgY402Cjy3xbyE6rQ50x35u8os5kiO87RXJBO714RsYeYiCy34Q1pr3LK6Lu3GHqm/jw7yMZV+IF9qGisfUHjUhXTQ6jZCyQDXcb7djYL2T0VclsCk3G+OmXiFCU64IGYDxwQEysiJYKeCXmksXXRu1wvLRhHXXKHB/Z2QsbYTjfxLZ6yYlPtPKZ1z3qzlsMhJk2SG3a9ghDx6CoSsmBFqe4xfmmSMay2dVxwMmrrnSD+x+xA3VIV2XqaSfs84iI0wdpOdttUJuRG/5em88df6fAE4ZncbA/32EKp5Wh/potua2j3qhbGG3iBabu7u81HK18j87GbTI+eud8tqS0mrH1k5vCM6/xdVt95MpWwy+TcUVlfL+JsFd9ZXmFx8Z20itR1rR5AYhuduyqARpisGsfShMsG6Dd0dHtWtCOnY1cGSU+ZrIwnAcf4mfeYL9T5EUhSTvam46DXA53KaMPSktNCxjuEzXbjG81vD/V0b798M2cMcsdqhporDQ+b6EDmWK5NpYI+i2lNw3xd1m3FZ8bYx1pbWS54W3nM/EtRLuMD3UzhWHQ+Kw9vjMioz1pLzc+V0bopjyzbp7L99ZedkSGZiN9RPsoPwxt7skMtzZ3SztETDMEpbQ8EPQBl1zQOn3TzcdCd1Mp677JZmprQ/lW90qBu/uzNHKJMtTJ7zguk04rUf5trKhEpDnJ84mUUqZn7KYl3zC+qnEeRoIvldGaklAJ0nCXTWdAEUbYx1e+au18T011LT75nK4xbVT0BUJ1V+wY8xwerzLQOvpN2sr8CT7P5jXyTYoCAy0t05TnJ3Bxy/cuNGzr5XsqMO0HSbsYV8/XLz+P01NZTomusPuOttjEAbufpAUUeT/+RWhnd7dsO6BtALcxfSAj2QyK2tIWGfuDXmL5HV+/VdAjtGSuVk15JqxsqiuLYngRAD8sgRJ2H9YZNcpf+bq7vGM5y8Al9LEg42vaKrenWS53p/fEbiOF+EacNdHKL//5IhyrNRcG8w6kgvtC1fSNhmW/PhssvonwzeyY5ZkMH2l4b0gg3A1UH+mvtAlCQwvttO2Kwe55NWJXPFcZI63TFjsvnXjmM+D+Zh+i/5JuhqJdFZcxdQTSC9rgc4ehHasnWivDtRG6eddCH0/dhjYgubRFY35S4gouW/Smm8t8J8UPgY2n+4KXNtd4BY3nL9SnLniwTEOd1GMANyNEplXST1qdco1yuhSKPZOMfdAAxXnOtOK0QQicfJ0x0iFEIHhXmOFcBTtZd5B0XbUzSn5mQUTXFcu2q7RgRUPP652GTGwIRWC0y8T6ai60psnypIxCevWfh8nMbi8QrJsU7apnP7MWN3UZPsUtjA6LJsMhQrS0o6aI2xqXwV4fQvXr9D8cGOf5BoaeBmh9p4BpjWYsY9ynyM2+DLR8PmhjNz0DjS+ykjZab4NDWtDzozDxGWxGL19/fortE7h4ib8dB9Ge5UKv7d2dbkfBO18FokPe4f4jhdxhd5droxVL1rB7koNlkaTdBB1xH4m9nJ/FFTZdjzHpI5vROO9BxuL0+uHpaDk7fGjRq7sipojVLbw4Fgqgtorki1Ci/Kx2rb3hPiqWA8XRdbg+P3H5JDx2N3G2r/4ZmXBZtPIcZJsk0jqZTYVMxkO4vBI2w6/RX8d0yN7QYp/jcaeF5MUg4UYv7p/hujCXek2Xdcd2tgNuM77ty/JfroxfJnQjCcQqiK+g5jP2c1LbDMaapnf2sqrMHX6AmkIrZWv+4SS88a3b3fdp0fk041VpQbR5VibUSMy00xXa4ZlDM1LtMroiY5lgSc2qHFq3omvnezPA4fI9NYhh2v66D2JYV+35ki+767HMln/oRod8u1GXNA1d/Klcu8zZtrtryW707/hSv/C8SH6h1H29t1aBlj8rgdBrcsjUTaQ9i9LmVuGZ1sPZnnv7W3qToorQQGHUXRdBFYo8fxBcptqyy+zjBoiQknQXo0UqVQ47NPCmcXKDTK6YK62lUKwLOgwk8wyCmJ7O+BbaKs+yxvGJU+20GifdznKW7TB3y88wgNQmfXK5+gYBBaUt7o5P4OLEJ7K/2PoqtMo1fAE6hIEbJjYR+x0H+819FfuKWXuAk4w5k0ksC40kZ8Hf0E1N1+Uodzd0mVp3oGZZbVqjHe9/6HwuZJjaQs271nW/2a/jM+NQtwm3GNrTd3tSRRxu/FT0+rkOvR8kaHb3YqW4juUt4VaerZ90A9m6xVgl0Ub5FkdHOq/35NOxvPfCbgOjbC35Slsv8WC+87WjSVOOc7itKoPAjiHOR4PPws3cPePM/PzYIn6zyd/C2BTLyq0CyLqQYx+3rsuuTsLu1Mma0J3QuGQKhvPr22aZVsSv8lf7gMpsB/xM8yt878PXnV5eLPPtfU+3vlAtW0svKOk57W5sB1qGmRug3OQcBwwMWR+lfcxXp5d3tFeGexBqwMA5tEGJTmknmS4y/FD5PgUnPpXvjbKuDN5lAm4WPKr5YHke8r2Ka3zn8nLa4bnke1cp94XS0m50k/GqjLrJNCDHDevLttpl1v6Y+eqNHiP/sgqM0JVqkvai+N+zqEM3mVl3iKmj4MQ6yq3wnTIxMyt+DQhUJeKdVlVw2j8Fx3d1PBxBXgfHxSGLjs9bL/sIHve3H8bFmfau6XfbpCTFl8TFa75z4rseOfb9m6A3abd8b8r3iN1HoPCptE/qdXx5hYvP2IGPifNpmfX0Da86dpc6/wjOf1YJK5Y7LuoW8zi7iuvXuD/lquUfYc1Fn5nU01UzpeUfPa1jLvMtdtB/20RvYXXK7L9PyyfShE3x60WS9gw8T7uw+KY3xalHsQNuT5Rov+Vwhu37+L9vKXwzroxxxoxcGRfuKaIB+3+v/Da62yOl1Ra/3tAyma9mwAYdio1PSmJhpA1BLY3zdzcWL98uhtLzzlcyrRDYPjj8EK/8B4Oyr1bKTNszkfYcv0Gi9Hzo+ap8o/wu55QXp5OZtsRN+Q/vt/oT+0/JWyufrpuJ7xV/ch9RR+JpMe9mcFPGj4+wRUx+90eQvJGw6NPzFgVfwyQCokXQZhOkTJyXEUqzetEVtzqz/nJafzHfPr9tC3YjVnGLDP8KKV08XRkprSJd+WhFMz8CLSC2lJeXd7m7CBR6LpOlceti0pqo1a3RViuXm42ZOxG867qKXoG86VFIjatkOLBcMdflsxrl82/axC5FuBecBDcH3u12tVVek10BP4QumtfwAwo982r95Yq63IL8lq7PDl6PjNXcz5Cune2q3JVEkAf1TV/FvdTquITJRUBbtws2re8nEvPjiN3VCYv5V1r/+RFcDBlNJc/gYse20GuX64Lv5jVxIXOrvmYLaxGu8iiY2uillXGDvklXPQy6YSy/TM8hvgjf/A+mMl/YRIfIaFGMmVN5+rMbyFL4JiMSBwPLXY+kvOKO2HA/AMMLyDK6TaAidMBNrJbs86XtO15R+T0+cD/7dqHF0h9jQeB+uJAupmGnCHP8egshmd4Zt6XyFEhxeRYa+7ma2WaIlcnd0vmKq3foukUYSePX4QuQNyZa5Bk24zA7ZPc/+o3Bpqhlt81miOC7AA6yN/55lkiLdW3+cnc/cZ4S9ua7mpdC+c7etxpUXx+Y/jKBRj7he9v986x1e+cpE68+QeO8DhR3LyGjX1Z7YxDEackQERD2Kp9dJjFehZ6gJ422y3HNt88py6QT97TlmfhstIPMm1eD7ImkPu5p20B87N5Nxju+l3ymBBymwcQFrfY6GRIVGVvaTcY5C/vJ7fOBce5874xzz6e0fd3rhC/LuDsLQYNfxMC5xXcLWgVpeVLa4v6BMHwc7yZOCEO6kH0NpA9EyuuWjRKf9ezGVdLNGn0ArpH2kKQL1x+fZIrgQC48+TXEAqxJWpx903A/XObTXUvMUKquSRIJfQD2LTTFKUe4IMaVyyHjOpvgfFe8XbFMtH7lMqi0n+3SQm2jY2i4FG5YJqlix4nWP9OVXCrtZR9ubePIF33hQN2G7EXYsLs3ydJ9teHEZ+Iix0+0d9jWy3eHoSOW3cR/Di5e4v6Egz2vzqfopmHMs/Zl1I1QWr1OO9xktPHlhw3LOt+750orVF7t7u6c3Av/AdwvaTcZq5AVu4lFLLZI1ElvzFL4SGB30iZ+l7xRsyrXrRGmaPvvwsVMln3ZwKfporvoH5TW5YgbIm3ys5JqYF3YAcL9ZWfWdfp+ds5tBp9pE6L1nP02Zb486s5mxOKkKg55i89a22X5+GK4/30IrzNmXyJsViODlt/V0ukDWqbvabX8YovX+HnnGvlMSI0bd5h7Wa9pL9LGf3aDgul5zIBoWdlP8n3EY+u+BcwG+rv+LjVNP5fQizDSehZuUx7hy2Af72jvyguk7ZlHIj1tux7/Q7qxgfRTzY6MDczYFaKLq/XJiGZzuK2FoY01F7m6ZBsEbDSDtCzf3/HVwlro+apXc+CPTE8wsI1X+DnHES1vPmNgccLlrQONvA7fBgq9vNpoWTXUDDTi0tBme9TkZdJ62bNxrPg1OQQ+x6Xl4edKMuWWNstHGt/Hc5R2wPkH/bfj07UN2TPISUhtt5e0fdAOrpc9/g6773bBep69nT3EY1ZjGwxHVDaV6x7ZMPQjO3edT+/IzHfk0wW5kJLXpgrtVaGoXcU3FL09PrA325X3RRcVn694zs+1fHHxubpMvcXzWeKjln/A/SrIhYzorxetRD49LeXV7a/btSf5cmOou3M1CZCYmmeIKY3TKpAS7EyL+i1ttm0rtwD1oqoB91uudDoPvmPongujzUBdLM1SKXEgnI+8s5zfK9x/hefDN7NjtrkywhubP/vWtCaaW6MRyk+Ftqxj+YO+A0GAVR/dVQdwK+DuTUor3RHvLJivJt7H+X+RfO5lRk87PLucRloGIGU1vqhqNLSdD+jvtvHQqmk03IwmE042Pjq8n7xLL3kgy3ApzzO0uEhLz942GEcrrbdJgCcp26UmwK6nGxnr6GIfBH2ofNrSdtoiFzU41LShCy8fZ+j1SNnESITdzCLt1LA7T43BQzko73oXcyMk3USVwNuUrzpSwyMLna585s4o6zzXocyHyg9PD/gVyP6h5djgUVsZDbwC3HVwuaW4zIla7h5yaF449AbvcwKVM1ZZ7Uh5uL9AluuhP6uAvjcmOEVxUP2t8hluCn+bzMvoLw68y4k3NXwVAfQ02jzr8ClhNQFNrDty1TdxUWf8RZv+ByhSfVleicdCdchXY0fS6AulaXecjCESE9fHSislftNXw98JH7grVdyvtBPuTzZj5D2IEHJMtK0wJUnHUFa1P3esm8LAt5TxgtZ1M/LpFTCVr9P2+Cub4R2iuduSmaj0E0b38Kk2g5+HdlOKFODZGk2TMTF2aNBFPwSYYbz2gpwKiPtsWyMVxnkuruXlk6IgIftVXdYNo9Q5Em6oYajVk8Lz1uDlWB6ujsI35S4+sWBnNqTi/grl9lvD53esKW/YJ4DcL+0GRV1Si9gOmhL+0kBJgHB/h5DNABbuW+nTZnjZl42IuhSzCQBE/KqPSltw/1OB//sQFPK6Lv9Lh82VEVit4HDfY2u53Z2EH8LIW589qj9wHZjR1cUW53mJAnp4v7e3PX1JS7Qo2Bwvg5auiGY+aGk3+6XAdhHalWtND0YbhoL/dtrBWLULf2qctPQcrShLgoX/IHOv+om2242RtvF5RNvTllVO6XlXS827TDEIYh12OS5k3NOmwBJW/rnyLXc0St1tY1GE7IWmtJFcQYPaYq33hs5xd3x6w9+ejI/f/at2LE+pL7JBDKNm8poV54kSgDJ+cMOp7j7C8heNuzE29xArCiAxeIgxizqkDDeDuYEsgwExMPAzZ5ZGFbJMrmljrVvGd81UAT2jfGGELX/+cGga5lXw5R5DtDGQWXwEb/CXoidOvNkkEOHq8imhzP9FEvejTVkITPXBRw6u4nZU1wzVf+B+YWrv+1YIkY6D5d5XHuATL3wVrHtAW+LpA0XXuN9IB/ydaDt2M59th7fLOGH8BS3HAYijBR0O/OER7gesdjxujVBYb51PK4IvfHgeInpN26BqP6pQK1x81cjLTnah59tDaTd4Ass9nyKgx1P5QOVTy7dg+VnSd0WMaSk+5ao2QppwOcHWWHiBXVEfMpcymPQtGqFXW3wL1JMyLlG4h4KlBXdQz4tamSqNM9XsSPIpRw42Gf2sl9kbAwVHqgNSXAhXtqsgOdmTfFa/Jd86MnVOxxtPy3YgJopwN8sjXBCXG6SdU/PyQaNOjrA3vk/2ttxgHfcnHPiGwrd2icenhm9mYtZDMbj+vP2+QN32rPQi8+1oNtMyDmYc0d60A+ue12kf0rag9Gcr34PwLO0kk5Y/Y/zVubqn3FSGuCvabXAxZfdM33ykNK6y0VjtgT/LVCZpA+3Yrnp5dY58RFs/D/XALbIb9BvdbW435Xeuaq7n7g5DFA90E1OZqIPk7G4wOVZphd/akRt1GygRbXe/rOK0ODe4ZL8ro2tMGfsyJtVLMfZjcwuja+bTDKyfJ3DXv9V/ZGsni4/f6uWDp/VGedSjXE1S9JYXKn9aiIFSVwKX1fXcaem/3Uaw7Jlv1tlWD6397fHXHUJ6G2Cbodj0vl6YJaIV/U67VToJNWLbHY512imQbvxZp4bXVdF+S09/Icf2PJXvSq8oapzL8iTfbYNmwpFn67eHPpOm7bvLNjglkN7PGpb3fG7tXuW8Y7kvgK+U7LS3jxGOpptUyCP0Y5iMvmwVnxwv8qI+t/KRjNgaYCZ2bK25Era3/i+Ur7LMg4zX27iGrVT37K3PC7yTfVjtMx35FYL+vc7A/YLdw6ECbfkUW7W3TW1SecrPxf3vdVC8PjD9ZQJPvNxwNoBhA74Zu8t89+cyQeLfN35x0Sk3qiGfKQfJtLGhfuczuNFWLtreXA1uuv6mjn9Jy2l0MGBDmifUcUEMHjdd0z+QwUk/Gm7FZcUN5Rtp3T5JL9gjZkP8R3Q50QJ7xU/57Vhvz0q3Rj5gb+50Y0PrIn5ENz5g8y4zyXg5sgdilZMbl2bCYhzJL9IHiLnzlS9ycbWeeShH5FgMWR/wjNsWm9nLXTXZDugvd0MeQAj80845qFGSETmwavIJ3PXSTLcJ4O44bnh9xbcNMQBNo3xzPOdhGLFNCZ/57KJHBoZOeKTYVsAjMaLxXGM5pyV62m68pZ3CTVqyLHc5bEW47B+MRxPu37FqXfHpKh3q73Nw/5ZvS+tdROl3l+mKdov7KO2z5ewF4gwuBo6jDewyXj0zpj5KexUszUfqZBK+HC15QBvfexwz5XtTsnyxoUbJo517USTjN5PRcd+B3rmI3VpYyidRvg1mNtwnoaBlt2692TVblzQXscugui5zOtQ+IU1ysEnMnbkVH56ixWZkJUvRQdq5cnZfDuPrthsPGsbXD6/LP75wKGdTCvJzb6xRV2kTtIm2hZwo+SDFaLPtb4OAPSdCCXeDYtoCHhdw5ZhD0ROuluJK5XsXdtr2fCEPiM1TkwYvRxfpCb6XJWj25krO7ZkN1E24NLhPDGYYECstm7ZWqXxD10dA7lMAkWnujL2/izTethrBVaNUxKTM3QEB1IVEFiOWJ7tu9La+xgGgzRCUJxJCxq+0A2kDrStcIBjy/FQSC9yoyTKYK41PbGqens8halcwT5zp5JRmvBtJnhuv2xLZ/c+nM2J8EM9S3C0Rv31SkGfP7FkEouc666C2DmsFOAxTT6dFfjXho2FrRtxd2Pdym40PNdYHpvy+Y0yUt+a1dRHCMc+3m6WtfXhSMG1Lu9E2uzYUcGyhnLZ1oZHPBU4XPh2yrCk+M+EKPV7hfpe5007Yy48mTzdzl21hSPAQ569oHZLkJu2Q7ZYXfRYFAmyfDrmin/iWBTCt7zjDOwaDLUhMsag+geyXdRQ7Vsvn7tuZbhCOy+FplLA84liw6tLIbuKM7bmxVJbOYheqQ0X08cUBAsFZAM4X9ySw2XWy475Guw63dG/DII+GMB0rgVhR471kn0r3aE37Q3ks3E87IiLrEzIiOHR9HnpPmxUkXm49ipv6obVpuc14he99+GYu//Dggxftz4rqL89WNonXH++hfPaguEUO06RCm63x6k6EO759a3xKm88zn36JhAoVx7GKdNOxTx7SYqZ13k4uu8hFzkk3PECY+EyGuhsgQdFNV2Y/U7zJ2PmwEWp8Ny8WmeOmG7ZG2lBc49MEvJtT97RbPykm5yZw2496pQqe6qBxqkySVpoiBUctp1QZy7ogDU6E+VSyXYRNxuq6MdGy6FeeJ7zC2puNG3vpckSi3rBrdbnx92gZZFLO4w5vrC3ELpOfGRPg9APi1F49sxNqu29vNpjIq48FarRHprWYFecryEarn3dt8jiPMrlz3k64T3rpLqWWutEiaLkiylkdp+syMR6PFUGVmGIVbOtUvDGQ0CDZV1rzGSc4JLJepNVSxj1ftk23fAQ75rKsV/1oxMELmRlTm8zlcbILN+Gyr+MOq50v1em2e13TshhbffPv3h5KhTv9BZbr/rLKXCtfH/ZJArBNj/qgfMIpm4wkv/VP5eeCiw38Sr6E5Q/s5aYabc2k1fU8GGtBMI+HUMwVvZxx39PmeboqVMlPDtpVw4hrEL6Qo2i74jG1Lb+O/4zzZTKkdTYaSudbf0+cdkGUn17+xq/L19flH18m8GSJwKBXfT8QPGBbTS/N6IhTDRdm8zJFyEHW4Gb03Ptwv4Vqydws3g3tFY/tuQPUQDt1n4e0JtSHuh4XhH7319vLD/SfGHBclPNhVk8lasmGartbQb6MGoxDpL0b3DwyLGzBLneUBwE/B7fuaOlWwcJP6aEPyDzpMIjaM7p7c8E2zFktBE9MhStcu4xuCPNaYU8bOUcdePyFu4ukNMs4NiPtbQyZT1ZvSrGdcqDdykMkdnr8/NghVd6DysODG14rzbT04RAbQad+P7UhpdI7Fl9jnWH3VvHXLWHExWkw6rzbYPSONi3JY9ptAPlIxirW7eveh25t4hT9KZg6mbML3AcuMrqzM5T/5KH6bPhe2YyS7xU+0+8N5+Nl43OH+8/KfBkGZU58e9oL7L61RVPaJkq+6yjUEt/amyZzK1y/wVWUXMU77rthrIfASI5ncH89y5YBIbauvBx/e/eJy4lilTCN5YnqDu87eHmNPd0yWYYEaQcS9x1vc3ePi3QwbbEDda/tWwuK1+Uf37MQ1+XHimmOaqKBX/nY0bJ2nOdoO3CUGNkhe1qJTnQb2Coyn2K8Mk9paRm8YseMjdxQvPqs2JaRblTDID8a2KvByBXtFB7I/BRt4zvi713co+cLGS7zmmRsz0nbRkt3adm1UR/I2D9Uyu4xqrU+r4LzQJPRw2R8uW2Ye0TGX9MqsC5TtBfifnnOXof0JS9mrCVtX7TTpoqUWeqYRJBuNmYg3WUldv9MRrHy+cUhas8CjRXh5YaSF2+sjfYlIHdNvp3R/3OeOc0Su+0w5Cp5wdIu2vzgM+AHv/3GxdOs7CFevqQ9IHgH1nlAiO2w2a1fEDsnaLKYKfYmdois1dMzXXnOu3Z2G7JO4hkNy9SGQBsee4V73I7d0VSi/eaAaAxX2H1XgiZHNP2OkxfF38r7iO8VLg42Y6NDo0NLO2HOYBseVvcNHt/qZpLdsO5296+Xo8XJVGYd4q7wd4oXot3weE87ybVhtKDhYsXUcN2baHuglTHHlUXs2EY8Wa4ig/c1rc9Me1keq7RTSjS7EOWHlTu94Zre66LaCOYL8jog1/ON7yI8TxbAdOV9uWA3oOdqHDPup56X62Iu4i2ctCmT5S1n3qjoZ3u99IBClG5+FK+Hleo8b3Df+RjfFbfsyDvZmwPtOn0vp66bGt0mCpRshud14Ny2Dr+t8Nox+xKBekC4EpMfyvommYT9FR8VwAdgrRI4rwN5U41SvgB1hxXH1/B3d8Q7g9ldJgttF63L6P+RloaM12YjSCYlXcVgtOd1Qctpp27GxrWXpcs4E3J9Utom1OaacGEEGWCHn3veuKe9EXuTY3KfmPhcyfEUnyHBx9IK1clj4Ky64QJorQMO0/Pmyphx7EYXo+WSd8osU3zJWiiujwBrey0XK1h5OD4aVjvDtCZDWp7ZcLEPcJw/MnpLCdd+wppk2QHiq0EH+LfT/MILdxvMK499RRThQnhYcXIQkLTrsDZscndY3FpZ1bhMn9Pm84oV4guswcYhR037RDubgmlkwKdslHpUbKNqqrg/4O+i5WhptF2ga9wvfZufFajfy3Q5hrS9vA27J4zdgveTARdv8ZhpsdNy/Ja2xZX6GvT4EENv7NomMuvuTjc3cly699vv0UZ3XKRK27DtI9h9J7P23xXrSv2OHeeOLytda+StDI0Wlbb3iy7zpYycVilyou32JTCUGUtLn4l7f91xfwhq0fkxy7QDuML9a13kJwAOw2PHffHEycfbmE2OxFkZHrtNiLTdZsB1p2luje9Bdu0da/KXY+NFuyZzVzbDcFTbpSiv8D0L34wrYw8VK2pnSuCfLO3EB8OAjgdw9FO4y/E1pF26/f34eYw7GbWm7ecQhmTjcxRvkGM0fDRWTJCk54lWn4zbgBjXk9yL8nYGXcStfDdjxI12YDWwnOWQquc7XhufJsht2pt8H4Vyu98DIjb6/uZ6YveElGRYw/M4KldidX8ZjeSjZvQkc6JGSn0/DF+Wry+QbTdctYbK5x96UaubRuWz6UprDdYbHgE+PC+NWIlWAPiV9/FMMvS+faK6GK4PRE20WO474Kv1DdNgl4GQGg6TS7AWx9/E420w4RetwC8V+TQL7d+W44FWOx5Rn4ONPIX7l9gmA0nZjkA2Jhkwhvh2PNlwccTJx7QD0SUuBu0dhva8+iunv8Huje8U/0iOGyy/xVSp9Wlj0THfgXTHfSpfP2ZzTysFrzaZbjIQ1rH9dVgr5Zlso1TFLqxwWrtoSRu5xR9bG2wWp9+ie9udr2l9NyjKO1yoni7SWiqQb0Rc4eiEmx3QeE/GZJOyN9KK+3dz1FRy5iVhAICK+70NGR+CFbYLik57VCxn3bQq2mwGms0g+cpuIdEWm8F2gMzr22gzYLgv0PuG8lWD4rVj9sVDutdm512d0JpT9OHauWsmFidJm+dE8nkfBSZtdCbFSCuFiGRsLi0+0VIqi7CMlBaMkYQUm230uCYzC9PxtgjK+fa0N3wn2jvjW1514H+Sz9XzM+W7ex7HLk/Sjpb8QjfRTgptA/Qu06Qrf6bfbq+u0m5ugs/kGzJIKY9EX+GXT+TjlUUyI9wGLT3LzGOQdWo5jVVLC+WBAMCWsO6+mUHybuJGUyNxZswjROpWqbsVH6yE9qtikOCFYL5iK475HAYRaydKddGaiCGWF9VvW0xzKpEXsD5VIKZDr/s1QT9xIDFL7XIQAfB+rJ06d6F0t8WVu+Adp93OuDJ1wywA3gXlGv9PDrxYNuG8Se5upLuHBOUTmJp9LoYjjsMbbtU27Wlh5dxcyxso8O7diKEXtGwz6ktUfOe4y3wxlOs52tJnR2BstBO9N/0b2qvnyzNkd5j6AZk57Za01e2dzCPf0sYaHl/ZCf/bIEd6ukLP7VbDPbxeokHwRe+06JFdCFuljnYATReO5b1BXBU4+aaMhOUkvlD5ys1pna9q1WObpdf2/Qj3SQ5V+yi9L+sxzpvII+6nzOstfSjbyxuILXapkruqr92s83B39nWT7tolPczlHGGL3qF4Y9z3MWfDfSC/N7Zc1Q3Lox1ZOc1mLCx3OyB47zaD7MC7fLqnxPcrfK2JmYj8QgB/J4CfAeC7AP4LqvpPfmp+364ro8cfR/Z9cjnkPuzPdGpxkRx81bEUIC10PiIqtATIFl+eLSz3GWl5YRs4Ryfre8HdyPVnVtWRcQpg21fexzhBy4tRPujg8vBAdHNVaLRdLpZ5mzNT3OgWecFnS3BXvou0lzL3pD3uUV4XaUc+FzhxK1NrO0Wv2vId0vbKf5oWQ52UAYB3joGnF6in5Z/0fKK5CZaG19zEWl4775uBBrfzEEZ2ZQz9DZx1uDa6saVj3jax8kLGGTHJj4KGKosK1zfORAT+AWePXxM4Lau77lISR/fUzyPoGlxACu2h6X64Vn2PPCpyLmvsgwtRwRGOjmstN7BL/fyC6SDcMT8eaCxT642xWxALWnEupONIKNVy9frCwu4SL3J5u2688uIwlkeG+zhQGcuDtvOltDe2arNjLBjjfhd6sBm9jDvfxuoCu0dso8gvheVhf+5kItpytKv12c6nR3WMbRtSBTc633r8QdtC0sDkGYwd8Hh3wWO5uqIaxpI+dCufNFwkbWTXrkIOso/vyvcuKy5IVSJOqbqTItcDnEfjc5Ky2E5Z2sXHO28qpEyGdelG1D/ivPrbJ+F+iJh8vIw+PTvR8g2Zl1CO3Wuyh1jgPyZaL4sVLRcIgXes59MmeoH7bidMN+tTN2fQHuU7YArBW3jgCC1MfotB8VVvZfzvAvhvqer/VkT+HHv+Mz81s8+emInIHwHg1wL4w7G6wI+r6t/xJPFllLZ4vYlbefW8pxzZHeZOro/Eecf36Lw9rF/Pyz4Qj8t3/bweWydhfUhN7vh0VYaOhSwMbyRwYm3P/ffUf1mOvlq6yTgR0+8w6k57QzoamQuCLa8b2i/Kt4187lwG+pint51KWaUcZe51ojMfhIGZQuPcP/TIGW95VxeJ3DHx6DS60vLZw17CrAIeufotkjxA2XXlKVY/kC1uT8llmscrfVEYQB0sXIwux7GLZMKFCRJkfPUxl8/VeWrWg4i7SXpfXCu8mX3u/AGffvvVJ2E39aF9Utbawo1NKXm1fP3PtnteaDOy4+KGk7iOE6nYzefgQqxtUD4+VvE2e9PkAC7tAPf97QyVD9x7nhNuyJNYTvnJk+WDNNzQm7RdVpZ5eH+Hi/tkoaZ+Co8n/TGt667F34+DyRgLiiJ7eTYs5wGsALdX7feLTrpdKzLfW0W/qNqxV6kMaz+JRETiDdDULoOyrnBfTC4DTB3SloZIfz4V9zNW9jaA1gxdNBpXdB1zF2QbsOJo08A6YFkAdM8KZNq4X1LWLlPgvjTc11r9Z1f5Nxa+4q2MCuCH7fePAPgdn5PZl9gx+y6A/5Kq/lMi8rMB/GYR+UdV9f/xkUz6TaHx3nvxYYOObaTTLJoMr6b+G+Mze+guhgPtnc1GZLPyUcua/Xf38tUBeIeK0VAMwC3061bGKTsZ+NzwvU3r5b0wQjFh/YCMoygX+d8T0e8naAuYfpC2ZxIy39Ex6rY28SnF/FBqudDrRWXvuqGGHv0KVV8xUvuc2u9V8ESD4rZ75bs7hWKQE3vUjV+RpjG0kbiz8g9UO1822J5HrKqW3bwVwwvDJs2KiR05CRmTfO2tHSqBrYcBUpRc/Lve6e7iu3IiRovFm10XVcS+b/Op4Tns7pF1sIE2mUW2s7LlUFpKxfaSPaWlagCwuaUT2H+6zdgFuE7yRJe5LB9HXOQRtgotk0G6opsJ257p3p9qBz4H9/l1bzedpOuL+Bac3PjcYHeMbG/kn/rUUB9P0z4bevku874YgGAimjKhhfGrFRAuRyt76c2by+O1DP6pj6uEOWYxz4VL3B+EmuSPsZK7Rxrq+/jQ8wnbSTcxWj8sOGIkOWHiDlivwF/lVdstW88H6x5+Cf7676lnpJVmM5wTw/K+WPsKFv4aAP+IiPwtWGr6D39OZp89MVPVfxnAv2y/f5+I/BYAPw/AhyZmxc+4G+wDmHrd0MUQ6GLP5bA/skknO6nsZDVhH+R02jGQINFlmnDXtGbpPmWs6mPAxmfEyq6sHD+OWDuJsxnwi3xvny/yvqUd9Lhl+wTfy3Chm0+lvSqvX64QLwu++2ihjgoux26TzFOUoDYQOETXAeUlbQ8++PfU3hjCyIRVavQ3o8NHtu6yPtzgyg197xykZ92HUuyqsp4pD3ILvRZXQg1egyKAnl4GN4mpeb+m3hWxnmtboWN0pc7SyNo7ktHdHNf5Ncc0jfbtfAA/2G1X6UPNOC+ZDq3na/OLZ58QLgdyO3Znu5pJSt8oHjirgOVCFux6Y3F4ZXCzGdSsI4cyAEtc7Jg6mbT9lijsQS5o6V3H/W6HCm3r4I/s2kTqvyfa0V3zGVzUXR0PsftuMvAE7t9h6lYGJlBGsQlXZuyO8UD7/TAIykTucdGmhvJscsnySZVxQSb1x7tsB3uzdxZLeFTE3ZaVvUNVQUiOrpHrysv2KYanVIPUgVW48B33y/7dxqPz9RQ77qwYlinx2Gk1zoiJ+CdPKl65zVi0GlguaxuMbBVfiJVn6TzGaf39GTajYuXhKv9Wg372GbMfE5HfRM8/rqo/7g8i8usA/JyB7lcD+I8C+FWq+g+KyC8D8D8D8Es/VZAvesZMRH4BgP8QgH/iKYJhxBXXJPdnRfG1j0OQlXh8rqud6PZ+S8sTpTDKDApFwGTrZ3KujBXjjA/4mHbDoMbqamTSyzfuzlzRFgaDkexpiUb5pf3uBrYMHlr5OsiXzQJGBLZ5LNNAy+UoiNjT4lqvvc48YXf1e8RXmgy9XirGCaGe3JenlenWM2wbVNYU0qQoYVjd3dxJmNXVyGFSdK+TZvKqjGyQUFSlZaK462KTgzKLx6CpF/hMbS6K3tU2jUUa4+A30bIwl9sX2QBXPgwae8H8VsYVjoE2UMg+eq2ZBbm/nOvEWT7rp1+bnNhBoMI7mfGacJ+IxzZWaLNzp0aU+t8DwYvNoNfaqpQ8LYToKt+Ur9+4e4mhyDiAZNhHd6C5fCQpyTstMv3UXHle0TGEZe18Cx/P/wO42CFo2zQukfT7xFadz+C+y9oxlXco+rmxNnzgqIYrDbulLvXcwuMQwenHltt1XNI3fO6cLnQzLyp3o8l8qbJGG0DlL1i3zj9xZGmqmnZBPZ4TUIETYT2rKkSpM6tPpedINPSNYpq33FrS3h/b844/fvPuDBzrMZfNanAsR7EZ9WzyAAKhe/fSuGpEWanLDnzb1+UrPnti9hOq+ide5q96OdESkV8L4K+2x/8lgP/p5wjyxXYmReRnAfgHAfw1qvqvD/G/UkR+k4j8pn/7u/8/fxnxrM/e99nIaHuewuYjXyxdtwK1J97VqzZ67XG9DF3mjU6v08pOdxmmgcokJK7L9wyvuQyPXtJ7vU92G3cR8ZR+2sAkyvoMMePZU8xu8mmDinh/q3y9eRry0OGdPWtPd5v2Cb49QbThoQff4WWRQ3e5HhLSm6l8j2id75DXnFXupEW8/VDXM42gNQCpTz9z8rEOnkvQKlYTWfmttUyltCcXk+sWllaNPvKSKE/SJh9QfieWa0vy8WcUvs8Exv0/8Ad+fxadeFZEzPrfcLH5oI12og9AOLNHNqMIfv288ZX2dkhbdbbj/ibPwOcq4efYjMv0DbNv3+v488Nhy/JzB4FPCqOXD/dpn6sfqpQN26httn/KFXOF15NwnbbFfYj2ToYxi6vGMrxS7J2O4hiOB2R+2J+TR+fZ62AWdy6u1oinJgE0GL3QZf5MnD+V8F4Tf+s/WVgdvw3LFXCPAb8QY+UhYSsY953vaf/YZjjefxT3v1Y4rZyf8u8zw+8A8Ivt958F4J/7nMy+yI6ZiPwQ1qTs71HVf2hKY1uCPw4AP/IH/9ytfnMBUsEHO/MMBZmz4QyBJSa6njY4NTJfOtFYRlGKYja5UrjS1p0yT6rRMVLmKmLpq/2cwh3g9DjXmT8QXy5up+18bjubRwot6LAcFzLNMt7Tdt3c5u118oDvWB5//wyffZFqXITaVtX66te2GoZ9R4odu8syHmXjzbfndVf2M5N0N5WSULBu3IOt41GZpJdBLuSXRbuatRNLTTvppgpRThlHm9to/RszpLeh+ButRAkpzvq+UFkbbe7OmeEKV5KVyA8ei+EYf6Tad6jcqcRp4ravaM+C93e71RFiF55pYg6wblSE38BIrovmwuKlW27OGuVRCOTMojntulofsULtrnznaa4uLre1oyPZPAyM+z/8s35ejt1cdx1THevpYJ1SPFeuRMW47pCNhXcSg0fyvRF4sBk1dPOTuLjTbjkNNqPz3VQ7Yc4Flm90XQjSRewYdRzkvy2ry3CDxw9tRhNTJzkmzO3Pd5h7gzmbzEoY2eprkzHIGLuvZPLGwqBC/O/w1p9Pen5UnrO+uGzVE9/zKjGwtSvGfaQNAZY7tEznwYD0zaOuKiSHAnneq+vtVs+IxXnhF477ggpgTYZCKyQDY3lkm/gv9hwiRVqyA2dtkPz5g3f1KZHzcTxGca923I86C9rEy2LHQd/jlXVeWBq2skvl6V4ASNvg5XkW979G+Mq3Mv7lAP4OEfkOgH8LwK/8nMy+xK2MguVP+VtU9W/7EHE3ZNYAPW41eknbKoj0qsBmQNkd8aBOMqUNGVCu4Y/OOAEdbHBDtCqZdbhXlufKqrpLDK6MN7QbsnqH8YyvjP6Wlvhs5dvppKeV67RbuOG7JS26uS7DGOamMPOh33d6HdNeBW1pH4z/bmXc2qtube4jodjDqcJLArJm/UzV3QBpyLY2yAue8a7yLXXAg6AuYx89ihsje7ENCLlTKXrjFo7rI7FN74lFQkKywVzPi08MXMBptWJGxOQVy1z4wmeTIw922+XPlo8U2jquOmwAZN+oaYY64kTjMv13/czv2Yy4mApQtwNC+hDWdafNBz1Y7yjqu7MDiU/XwNjx6UO4D6YdFvV4QFfZ1hd3eNz5Dhj6NJYz3yewbcOnjqEfwOMNF5/Fu9ad7ya0Uxv8iB24x+72vMVfgGjX86O8J9pJrl7ZAy5+1Hbd28gb/L3D1MZ3k6nTNlalD3UFXFVg2NbaiTbzEtE5qSllAhJzy+ZAxaOiVvYYC5foI54jjeOxskg5Iay6Uft/3pFADvrb+GHJxLpQQBzdNSyJRNk/A/d/CgdV/Q0AftGXyu9L7Jj9aQD+YgD/rIj80/buv6qq/5uHlN1IWsfUFte/GJ99YUaQ7Wx1SWurv9uADWlwtefFA5ppYLQD+/jc0z9JC6CccZjKt0E9M5CLtE19Y5djMBgGKpsBGGT3qNtrke/K26OfNNT7qvTOmB/H1iRD2kFRnXYrn14xaDaTkl9JefCZHAy+55y8GV9p8eMZliiQdwrqA/Gqnp3ofPt1+C5pStwaXlHY5GHt5qiNvuQA11+voH4usEpc9cpXNyNMkifN78ZsQQA/TD6pcZk+bnS9dUhacbBD0NaKoPRO4tlT18+BaKNX9SVq7RKtlKarE7BVbqK1vBS20P1gV+k6aMFYbY2/4uIF7tsIRzODaNzleF63EV2dVFkLn7Q8Z0QR8QvgvtuTWr6SyEXWPY+Jjz9y+yytm22GY3drkiOWD6HziZdO9ojWBdubd30l2OwAjz93o5cZlGZ1hXUXfC9gepYR++dEdSrbUNa9kmt7KLt2lqcnCxmFnhnrpZWnyHQxYJBGyzj/LO6XfGVLq5tSemi1EPXZCkVxmVO1MMyH3+xcW+X0Plfa4U1LEUNWoicTupVz02PHZOpTSnhcb460FKGboZFXEeELdeWZpCq47x4d8A3OT8X970/Qj65af6PhS9zK+Btwj2PP5eP9bHPty8YfRu1y90vhqx3syhhNzXfhIj0ZLO1pQX2fDDS8mbKMLY5QcjPMZOjHtHdW4UKm6DoFne9ou8z0PPC/NDQt74kl871L2+O+FO0jGTlu5NPKLI2ObWen3dxhbmTeG0qlk+Jj1y3zdV5jsdnFRVELwc8Aih8DqutF6JlpL4J6XrLM9aPV0vrcyjulhdumahWL55osfKkDHqG0WtIKl09RsGPZQGKcxQsRE8q06Ip3W9aV95mHNEvuu3G+g3VSnmLGOPNK4ZYLirsqKkQOvGO5FQmVTUwWcXX8/9n7n5fvtqZPDKra132e533bVgd2pDEGFEwG/sDJi39BTASRNsEGf4zMwEmcioZODwOKILRRMC8BR0rMwDaBBGIaBBEMpgcZpBOEqAHjRDLQmHT3e8597XKwV9X61Kdqrb2/132f51zPm7Oe5z7Xd+1Vv1atWlW19l57bQ/u6qdDXgnE+7hTfH0IWz/+vqVltYduoSNbvz/GYY6x64pgBZSSfFvn4Bxs0tVhK6N2gSWZ8ejvGGGQURLffJeaZAPJcecDyhfTfDXfOt8GsLqC9RjYOQqaOy19lksW9DY+tYjs/himcjcf24Jbpt2XPfSxH4k3IROaHPJSoO1g1Ka+bbusjgcG2IhvC1Sim+Qg2WMKbP1+5j23FGZ/dOv3eWy7cTLJRwwu/HFu07yPjmhbwbVEV+HORGzfc9jk94Fv2A0sJ8eiyHGtwU1xgGw4lKfHeALlqJpil+v5ikkTVtVExw02fxKnow9TVeN6bKWfpy6KKnR3PnUbtcln0A+/LyN3/qjf/x2VX/A7Zt+1fNdTGV8usAhzR45bGUVE5DjA8GUaf+f4D5hUsD1RPPFRSD7QiQrActU9adpKg1FW5g1+4DPr1F2EFZJZJ/xuO6InN5nvFLrz7Qxb1m/kB1MT9gFkDLQFLrYFbmV5taGMHS7WjWQi2C1uU263tHjxoA/2yCa4HDNp+ovB5U43KRBpqodzHX6d747vkos0fjZNuOB655IN2h6X+wMyn+jk05F1gIBBOdpNUtZnmaeRjPnx90g0IOBmWDYEqQPhC1RsHHySzsVPZxs4JumkQ8f1wD5FMhhAD75+KAjI61G/7PP0LSzToXiA9+Pzr8QCtqkOvMtlwpPBCOJzCwvXXy0a+pq6uhaQeOSuLH25zR7NLgOsqusZVJP8E/l55Ilzu/GpZScFkgJYJt5OwZVfxC1MUn72uCsfQ7gr/8TdWMIy3KJ/rW9bxQxbt6USfiPDfNj/dm13uoLxL1vLVr6cpygLwXMB/VkRKvsrXvyGblgMa/giQCNHLg/8PoG3dAX875j3hS/LkGiR7wbnr6xH8vMso6aYAgX9LMcfuWRQoLva+TGf0HG8GZMhJuf0qxEz3P86b9wKH7Qn34ghfFNPj+wrRcZiDRZ17m5k0NX5lFNja3z++1mL2Tefyvhpyi+7MFs93RF3dprri7aLVq06jsUEaLz5AnfymVdamdiZ79pKve+fNxk27IIz/LgLTiKS8+BOb0YXsHBy0slfOtP7+gK+yPWKnMQUx7otGERd5gVCtptNwGGZiGbhcyfzBne9sa+Rn49nfjIWIOKyS4R0yTiJ+V221I8FH9O61fHxl7EwsDWcVsfMXjaUt4CY30V00o2u5vjZkPPqQNRiXCdw+y4X8m3Y5P5liJRUANFxNMecsBCXu3HkJF2hQel8eFxEGhDP9dfL0u9B0hk+qNHtWHnNyzdxIKmyfSIBzeA/07a3pqvsJ9lvIB9VguU6yX3ZWHUy4QdXfhL8BsO2uOwXEbYQB1HYl2GsormdYhjhpkXlzilB/4K2SRmbopo0f0nmDUsGKHFgDZp21nof0USTfzJoG31hc87+l7xbejfARqvWMW/4sm7u7D3jNn6/k5kupLg24kfa4fCkhMz7OKDUP+web8ONjd0xdmRUQDezq3FAM6II9I+3CSaVU2xi+QNuXLDZG7oZenXWbP9CwIxV2DpvACbXi8gfc/u/lhfLL7sww+LG121lVJ1JVZehxCWHnQHBT6gxMu46ny0cTtlmoxmYExNMIuLeDPBL2JRl2crrN92TxAfrGzor3Ob6LS7R4G/9rFA7/JQ8LGRZ+usb3azkd5l3uIaXOtiGbnt5kRBsE5GVjKtETGL4KYmVdf9O4NOTXTCZ9ZBxqX8FwIbcnW4SIAl7J3hM7ms+pyCc3s2r9ObP6Qv6CEVyy5B18M3PxHyr4jR4FfAivh3GCRKfa9ugB/4ZdOsbYslVynxte0pzDjF88X7KeNiET+nME5VzbnscMH4qJXjn14v7K5A7hKfsJo2HzCTIcS+xhhweI4aC0pZ1oFD4EoyLEm+lhL6hxyVpmmPOfnFprg8m4FLmzbxin7p8zxZ+tzFxJ+Nu/hrxZXyUsZrwktdjf4Ww3Ffm80A3IlJv2GwEYt9WcFkO3nq5gy3tOhms/P5KZvaBA9fdQSk73Du/b1nUGHvG5RcqW6Ps+O7KxdwK847PjBkK6AGz6V/8BOPznKwVU13PmmCn7gExXuw2InZNMNwSOWXQ2Pl5bXych0Ghg6qfKs3P4/yj0h4zns7BX6r8+o7Z9yj43L6ZaGpwzGcbiRZ1D6RwPHXQlH3QCJgVsx1fxO0cR4v70MMwn5TDvaAbIR28wnfmbluf2eK/Elk73q+Wzp4eoLlukllGxibVbjCA6wORKQimJve7u2QCrjtseufHM5JFUE+7R5T61xR+gJOmGejpuoCd8qcwPW5mAsI4HBj48rAQxzVumwA8/1MQM7lWJknGwcuEOucIgy1PAtXwNwVaJX0MN6UIwYe1oxMGArbvqvYA5O8dOI7iewshh8Z/j8C14UOATrxfcOnNx+/iCXW0t1fLynmURGf47p3fKn5OQ19802jp83D+yrRpvNF1y3foo1v3awe/SezQx2gHv4g37by647uTsQX6QFn5MG5HPjwmksdgFfac3ialWPrFxEzq1L8z9/ZG1aDZDW/ydS2AzL5C/EmgKvMoekINwgaw+F4Xyw98+MFyK/Njv3/zbhK++2X5nSc+ATHVh0/leZiFBo2A0LoKai5LGcz5m7cLKmxVz7EXnEESi40TZYTTcFOuMRKDA2402vT77q9CNSpipzXzYPw3YC+nNXfZjK2MBjeaDGKG2sf9/u+k/KLH5X/X8nmemI0SR4teFUlHjdJrCCVClW0tkNwwrBNJkwMSnARCMqEMmgNBwqUgUWBVk8jlThX7BqqvAlA3d4rP0DVsQVzYOjvrNuhzgDNqwwSqH75JfxFEkVbAc5BdtN3R4vdItnJoMw5GcA7AQQVxKalsbmslWCWmxoLQKC9xGbKxxz5c9eAMgUukO1NPwZCyG8PA38ZQnBg5mKRtniphkBak1lLu7hcmXA+w1El894bMJhd60sc5ULnW2aMnGuQpDQE9sAu9xC4TN59nBmczbrah7wrnIsHOx1gTZFo8zu419caX+5PD6K7QkFS3LwAeYzlxWUbEhWSNZCyMdYpa/GbTpqRr9kGptTMsqCPu5r5D6/fL/Ga/x/gIuvLV+mBMQK/pWmNHxXez3wc+r/i+4mN3MYT5rOhU8W93oOz8bxmDTduWz5nl5L5365qdlNmtzHnCN7KK3ychSxxoH+0BsbQ1kA2tkVbdTtebM68122IUFr5h6ecbQeYGgMvIEruF/L6gzbtDOJ6Rwyh3mpyWyIH+FtX2cbf/Oyu/PjH7HgXvhnSBE+va13u6wr4B6OU7sSN3mzA6obzOk5Rfgcwy7XBpPnSRpZW5zne9lUP6th0sMdpI19O9Q2joPy5PhHmxfAvJFndBkG3sZdxX+bJt77CN2sYkbPk0i8kuOXmk15DR1nd9G/gsOh85bJLv3jYENcPOxHgnNehmJSXbNsW9GVxrdJtPzS5gTFXwI9VTuRBsDRN39wzOB8VTORLvmQH7Lw/iJgZnBY2rAyhgX5q82Fl54Nug8Ng0vhz73fnyaHvRt70mY19f4T7z1a70RUa06UDwpXF7CfdpWSE8DSBP/SKY7of8om1gsfycud3dvFn47mX/GtwKZulUwp0crV675GEVb3qye5l2MYPjSyNDe4T/nTvHivvTFQ74/bonYsXXY4YC7k6OgeY5pD89NI8I9tBoc0yY7/Ch35cSb+bhI/lzLadZnK004T5nMfn18I/vXubWoBGE4pHODEp1K0qTDSkEaJx0A1bJiwTfU+IIV0M52kKJGgWXPS6REYJt5nrJB1d873gtcCsjqFpuQwfW8txEzOL8MEvRPW6pfwfYotcVrheQcYsL4MlMbF4vSSQ7aYBN1yGQpYLjhHxUIJRoc+oXIKpcRyo3Mkdyh4w5aQLc9E7BlH6yOm3AXgi4TanFTf3T8dMTbgo2JyIqyegBTudfgzrf2gfYuT1kCMgva580CMDX/C50vMeKuCZ2Dv+kKidsQ/EBN5BRBx9/ed4PG5m4Xp8qUR0fiD6nrua2R5VDZRyNfNVN4JtEQw0HHLedVPyRgkPW+kGos+Pw/rEvd1zw5QlF0pCgGOVgAmTJsalblMYlmtxIM/pL19q6E+uu7/wm6wL7yz6i8Gtgd+WB/7WufeEzO92koc+uKuMKwXSyPvX7TAN822RGaBtf/kpR7g+yRJfTDTBPyrR1T9Jx84k+xQwRilWNPaWxwJihklwo+/LpTh/6/Y4nCibDD6qI8qoh+f2+v8Ec27iOR4F6HEDcxDPDXvEGO5llNAA3qKiKnOflty95smJVZwy5YCcfj0UKtPDTH9fx+TNmvDsfjy86bw6q6hW7SKW/lp+3fJ53zEaZWxdHEFxtZbwyMiHk6487SahjItTN/bwtcE44FjHdMRmOMq8hd7iZzzqChiBtmz9OX25lbHBRRtFa70QIOSlAdNupZp8W/RkyJN9Kulnqwn8m3S0EJtrtWMPvO76pnA9k3pQt36d0KLko/Wtsbk8Lga207+ykwGJ1B8+dN3sJt/YPJ9xeRh6FpMekj0YXJHPltZi8yDeyuNl4HV+f/d6+Ewq/ZpaRXhxnrECbulKon+67ggLcOTWau3ci3hUeX/LVl38Cvw9y9j51tiXfJhMvLiyO7ZwxY4qURCb9pDyc/T7hp3oTM1Ii2ODWGIn9a4TdwO784l1Z+pwNMOt164994fHQ73djtPUbubqOkQ1uofXCGHzPgjZXO3QHu/ZtS1z/z9aX5/rqfkpQBkdSws9H4+mN7y51hHXfru5/17haYpdkAy580fibfJdjlzkqTJyIGVNmFHPGjN6As+/ynVYzZgzPm/o3WqPN65/6JTOrKczva/k0Wxmx1HmUDXrOjX4m8xG1lmDrgSCVbs8njLPBX+P2fUpOM2RsABZy+scD17rp8bpFWHlHheW13ObX+JBMTN7akdlkLLvXhu760ANNkXdzFdtbvpxALmgnX9/IwbSORqh0addHuPun0tgOlGOafUvWUrs2CvP0Nm89EYGDedA+bJ3/lv5hVgP1I0FfhrUaQz52/+LvM3W8LL40gMlUpdkOQ3LjeyUmRzGNYhx4KcSY77wZAMZCiO6MionoAbiNxS7tZmP4zIaHHecZ+4hLpR/NRMFfNT6c0g9qAyfj+vR3BEmc1k94J2MABqHIfYCXuma1pVXN14+7JkcooGvtdRxT0KpK8N2R67Im3ERw4X9QTp+fjxyjSKW/cs4dLc3qXrIFetvXR1e2Db7NoI+rPJ3lKHxQJo7PRAvS4Va0lrGAjCBMiSHZDVQZiVE52hzhY74ML3I7/pdA1S9WAyjv20HhOJAXX9rAkm8L3eSDQFg3RxqfGsfSe8mlQBzoAmpjlBBhoBf1BZOs52x1xgnDia6DLLR18m74sN3cRQz/vpqwINFSxuuDzYd74jQxPmf59QPT37lEzgdbGWfgxbQHAnshYsNIwSgVUhlbHaNMuVAcXed8yRE5luelYPuxp1dRZuik9LBTRim2H5eA7XwRHfhs7ra3d9io3p1mlmDRPyiJ2SQuzOfWT2S1Psd1oZT+dn14kW9JTBa6SYnVDhbbSe40HBxEuvEbSIpbWBRwm8So4FLdTsaNDFGSAfiWrgZXma+TQNiVLqIOfPGJGuMC/QiYcWIhAeOYOk8FZIEBVM1zhp0EThR1v+WJlubxctyRNBjSGgOAOywdJnYgnUPoQXduYfHvAHld5jxO3buSGj+R0mXE7uuQydtPVdFzphoq/vHRifuxAkY8+oLbzpPvHgo1k+TbUiLR2HsaOPTlOO5YzC9jooM+FgDRIeHcD/rd0pkq0xSyyTUqQhsLGbv+4F9ER5FxPm5wHLZcdvW4ybGNd7Dd3F7Q5fnZ6a3gUMFtdQZj1BaYgsvj3Jt6gaU+rNix3ErXlNqJbOtTsbCfT0+QYbeH11GQ6o9pYMHv83gq+UU8MTbhYqeU6uJ6RSFnn5SF1I1umGfqj/MhbB0/3QFqjyuCYqikRZvLD7iWYhfGDPwMypQj3SgFJ27n9OtuKFPP89MerrrpQ49Rt9F2NeI2SAp7o24iesDJ6LQw/oTlChOfW8an5dNsZeQtLOldM5wkadsKDQLcwddjJjARyHTaeqAgKk4SEiNElvVWRuTT4yIPCOiBC+2YW1D3ivCBi7ohUIDl7SLY5dZnosyA28XGLS7UW9ydrrCtC7ab+fgtfFPxJ1UruRB2E0ALcAO70+OSzqiXsWb4xsYCF37XO7AwF9PC4gluAwvzhNtzwpP5LseT5tuVw5LMq74nAZzWpG5d/7E/xUCzHMmPlfen4HRWs3CGFjIMo7P8DMl9oMsZ27+jexN3fiZgHPDhdf8kgdmkI+NofYEtLeO9Ax2Mj2/Z0oK+jf2+uMjsF6dv4zmX/aJKGePuJhmwmpUOV4Jv63PARxvjdigcMxCvkakLc7sdEltc8l13uCxTiZtPfKrJdo4Wn8m6YcFWDJNgD2VEksXn5HrxVxvYQvwbynJMHsQXXBTvnqbJdDmz/WG86fzi7kllyIx2sfT7DSLHAZSjm5+DVh2/RQeNmO9yKRFJ349tcPG1mBQkW8MesLitMcaw/5B09AcyUx8Tvyl3dXf6+dEadQ0fabGl3Qah+Gh5wH6D3/+1PC6fciujCOet2ZvbDW7BV7TyfSn58iqI3NS7eedzLl0IGYnWRtSdbkQkbVtgPkyg5WPwZ4HbtjHYJronGbnvTKxxjC19hu+c6kq2ppSXnm8CztH145VAvYAtuzCSQ65JHqKnrSRAp5ihvYqrJfDjc5SyhYV+c77IZT08OUXkhDHJW8YvvTl1bz8AEwskr0MPTUROWW/uq08NqtR56BWUpFIWeigjD+SGT/vhaxERtfk5t5G0XDaHicSg5bnDhzNP3ALLiUpn5wQLk9/IiPJ8M4AFerfJH9BCI7rp7lwyN1uUKvn6ILcxZGuuowUb9a87aGFlHrz97Hbug94KH1LzzuelQ1Z2uI3QacOJyT6k0xjfxcTob57meKnCNiIH7Mq2mNiztOTiu3OUKHOTY/BuPGiKG7VLuTcy1lhM2kn7cwFhXMPtwyXVQJsTcme0es/bILN9m2Y+B+sfZlUc4b/1E6s4Rz4nAuslj9lBQw+HbCBu7tokZqmWiwarfM+vkf/aPSHx3ENEYjHnfi9ihBMO//BRv/+7KL9+x+z7FLz9GQYyr1mCoT38YELK9HTWbTwy9u1DvpWR51reDgMWbjDJx0TzxHTKCPI7Lsz+dJeXnM2UcfJZbSnEx9xTJg0G8QHGLvg0ASHxgRyk9UOF7/xbHgCsCspl+XI8fu9kXmUXq/4xH07IVv2DentC1E1gXMrJxf1viZA9LLapyrVlEBMpW8jcyBQ7u1h+vubjirhC1xwc7TuEhDQAjAMDR80QZCYYj2AhGgXbi0jbR5IxAuPK7lIdJkeavzJPAERljHeD1K4PT8shsc0q0U/9m9tGnEwkTdDfsJ3Rdh0eYhMQ+MydM+MMR29WkfndtfFx7OH71FTOkaDYKaLHpdFD5vbON/lYuewHlsfuY9FOHBANViT7chiE9BwxbV20+Mt+v5+eNv7vJ5lNH1/gSyLksULn9p9m67zTQ38bF8n+eV4U3IhrEjGkZdbiVr/fqaO7pK1CFrzhd3ujq6PR+PLi216RjeroQysBgL3TDccMIT/IvBu/X+LAJtbh6Xi7WJTINH6TZSyLbOh/Ggfqc/h9nXQT35gXfvw74o5c5ZDwV4HiU3/wSDJjf8BW0voPXPWFOy6cAAv+158ihUxO+6x8ZgeorX2ULzlfwpt7Csoe8zfGwB206+awS4fH1MXp8wHzZRsd8pMcw9H7JHLYq36d4KtyHN7k8WX6+cOjZOi1mXifqHT3MH8fy6d5xywGnoPzMe5J2DBUTPI4sB2zTUXEDgzGmic7TTI94BrSCgCIbjwB+RYa3PlIc8EnsoPZlHFeXCQNLqMADfDSl1htCCkyqkhZhOF6NqEirsOw/8E+EdtSmsDlDrV8QLwLcis+K9iiqz2u988vpfjdbGXMhKDNpCRKZ/aLFbejBcE26Dbsi8wrGRmflQHJSdn+QgEtyWYCCS0KpIOnpbEuMgLfNAYMi7THb2xjPml8TUQBNz31sfgPyKMJNydugH1iYL36G0FeRMQ0L8o4Ww6b0qznZuzT8R+xDSUnNTYHQeZhETk5Mt8W6Ujid1E9FMMRSaN/A0rUVN4/uKUF/a/fRLp8kUZ/TST5ck9i0rtNTotihrnvxoGPJ4CS5kls2fE6+GODcVnFDDnAd4mIHT7EwBf7kPjkcQ0bAPuf/UH9aepD4jNVgwiJrxyMi3bDyIlFIsfb+fipfRGB+az8cZpjEvZd/LHe4yaloM4aH3oXB7Z6xb+Nv6J8mJjmOt/E3eEmsyK7Ke+bEeyqL0HHFrDgB2M8QcZ+SyTMg8AdW6r9WHfmh+NPuCHKCXMTO8KxiuMa+XmfPe6DzuOMa8XvT6d5FTZIWvGnb7WlbY/cQdTd8F/vAgtX8I9mIIdNuQYjU53vFDLfFBQvTZzvwxfyjSS7DtMIL+mx5ROXX98x+5nLZTua69y+8u5Uil9jWJzsLV9dtzEuX9jZySsyTwYLvh/ns6LDfNqSMpsbmTZ6Z6R2zJiXLWA7vgs5t4c1Ca3P3Tdy4N/x9WJ5u0zn327H8SHgQclJgHd4myB9NHeVEy1MICBQ98lMHoSDHglbRQDY3LY7BazcJeEB1gXkMPa0fY9lSnw9Exm0SB4dRyn6HDK4lWeaz4W9ezLb3gVMycBlUPO9sdEXzLCKL0IZ5tP2AEv2kw/o4NMSXyo2t8n4n3ZqJxY6E7psNlcvQNaKOzsznzpKm+jh4+RLJqX6II7JU2Mrsz+QfC3tiGUlWroYfyLR1UsBvre43K+iq9z88tZGvsZ6XgiXTt8jmXZbDFdjFTLzpU28KYXGj7dFphtHBFtCIuvjBdydD926TCP1dLraxOrinxGOY4jDNn6zxERy3WULLfiEMoV43oCMB64E8U/IRBsUV0lCN4n47jLg5q2o6XzV68FZitvZbyefnKOHiODBHDNJQb+YZcqw059ygkPhTrTq+RMVM/l1YfZdCi5yFkEVDaM4ziVdag+rnomH00p1yErmXU+ef3wgam3vstm0t14bOA50XG/4oIyr0uYopJvHAX6Tj/UyPsN/lOZ9Qy74c+BGMrIJ9iINrsN0W2kWgUm7tqeF+SxkTGa5KptEBXXxbDxhQsAdPT6AeEfwNbvJAm5xS9J8Y/hSm8sBAZj18ClfQkkJBme622nQhxgCFfh8xqgXPigMscH9X4EGg+nMRr++OfRxZ2G/T9kF4UEBF43YvNsnjvkXJbnb8oSvX+1Mo/juCdSBhy9ZiMH2w34/J0/3XXPYbTx9oiMXre3QAmcO9b0PBdhHci38E7/X9qi84nNWg9rx7PzxatzucLmg6W989QZ1HQe4/jRmcAEbyHGt+sUiI9pcdln3Y8I2t5Otuy6L2PSEBsa5nnQPi9u4ZdxIa+eCyvz+2iWAgl5xsRI3skAJiWSbkrqzsJeG+tfy8fJpnphpmuUQRfkFpt0qAwNpJBS0XYX5Iim8UVJenNnxHdXwblXmkhvGNpdexlbmwqfp0K5/De7tRIvsbc/3Ln9N9IhOkXFVX9H5CG4S/AFthwWZt05+hSuL+o6lZj5bviolgO9kjB0VXZtW3KijgONvHJe/kLm/5XspU8d58fNDn02/KlqB7Q5AQATsb3l/BLNMFUlPRxq9ZlhplCXU7rQoSKv174/E3SrNDX56YifjwInnUo7i77yByP4fvz632l6+aeLmEyLxtYWXikm1G9xTnegOYSIBs7CNBBs6AAfVLNamj2ElkHx+HXxAem+p5Qu4AjT8D2SSirCdP7UOt5FzyFO2G69gN/1b4mLbomjX3tFvaOL8LdvZvlU26OutrbJ+unY8hv8V+2/8PNaL29jECFPJn0ZxGP9JvnzjQpcy7oYsiQjjl/IaaXRDRP0miUVlAHF/xdoULOwG37Vu9JxMqPF7CRCVB67ksh+ViE1C8UbcLzaMU5Dx/tFgp/dA0GhRtuHTYZuhdo8JbeKa9HyDOz8UCd8+b/x4OLROrk9afj3843uUZvGTjvVUhbrkp8SYRE3k6487Cqjj3tjOp+b4iu9iZDbt5xYBtrysxb852CcZAZSDbsMn7UWnSV/eu0DH1ckx2rqXnU163K7wnbpt/GI6q/7ewbLMoQ+A5YDnBb7vEuiMC3QxEbnbelEMRTZ1Kql7lJhsXQ/L0LQXPgvdaLMNpdC2+SeB8uKQWZcgDMRjEbCAxXoX23C+KtOd7XHzpisRlbDOMhtdm4w1nbIyfrjdpCeEs4OtX+J653zgEIj2fZR0yYNu3IMVETxOf8BDIjPdin8TpxHsYbnU4cEf9OeEg+/ol/8eeoyX1EGl/m6Ipx7xEjvHCK7z3Ad/mi6EjPwXBnE311f+Z+FHeAtWnqNa6UGFd3Mkeyj9I74s87Kx0mVx2A6N2zbMc5yj9p3d7WRscFEmjiGlP0imsf+Vz717wpzCKRNhH3qz+4EX6YnvLhbfxCIuHGvx790WfRV5vKhVSoBS9aTxNSLc2a82v0PAOa/Kyb1k69VlaALPPsJIxoxd1BUyZiFPFcFDk1g37ZYL/8P5QxsjNFCSi2TbZ7RPVn49/ON7lMUTqZLDcrIlsrWQtG0lYOdswbcr0nxd8rkaPPB3R0XfycTOoPiGkoH1uGvnChFvB7sKijvHDTKmILKQscWVBvdBgsfBsyW4oRP++ufwKD8H3S6J6hKqLumwfdsjcXdG0ASpYMHEd/a8ous/0zx5sH0EydyBdkmzN3zkxeYRyLX7VkLoqp84y2QOxNo+uBeT9MSJkTlRW4g4CxjaUKb7PE9AeAH3oYL+eOMXi/81iRc1rgRodmodM4CP39hr5kJ7YmAnFFdthds7uS3fbgw3xRKfZzgZl2V+gX3nf6fZvI7LlxcxAnPdNAZPZN6Js/Jt5FODzw4W2lsz2tFiOTon0fjfJayQD1nx5bKQcdv/Tv672MW4LINs2pGllSuV1l2CI828aJlJtfVdbJYujpGMhY7OJ1Um43RGwN1NsnYyTAZliIANi6+E+7PkUd+x/PqO2Xcu8x2zYXSeFJTjQMnLJK+9g83tUXQ2zQCRZ11diA3gBrfMWM8LVNKTas68YjI0k6q8f9d2Pyc55QV9CoClvislm1jLWPCGaI+mSzOcd3y7tnaf9CIZKP3oYJFYJ5P/3AUSrbDb4/L5Nw8Se1HUNQcFA9CmfVmaAJOOej7XsCVBQ5+uUp8KgIyXKY+QwCcJqIz3qSqt6F9DN2BdOEc4NQHvZCw6H8CqKvYOL2DPTsw6DXbanYi31VXSE7VLDviodrJdMnhF33XBzp00890Cr8eTNu+D+QdELyQ9L8MaB+0PdvptCzOy+ZlUTT94dWF2dG7Z1OhT9N9hux0CeGHunbr4uBzJZmH8XLDGlxe6zrMZmzg4pfMZaKtsaw1sujZsO54Io8wrv08+ovv0SXSfQ2U35o1P9fFLYDu/qYTrcq705XOd/ZLLnC4QwOL9ri5GKPnUtOXbaSH5jT8WxJVcT/7Ifze4IV7yXbl/Jfxg/+DpcGtzXDYyM+7ST7LMAv1d2H4SiTqkXCGZbDqzm5iR37sKIjp0hLue3LAa3DTlUMZkNw6rRGt8ooT3WCa+g7hfO2f//J2yZI/kFwWq6RRIw8+VcEzUGRIFfK+MGPEun7Zcx/x/S3D6POXTbGWMfID3EPr+WoFJI+50eHIBrUPm9kWHhWqgBF/JXp3ECJElHyfKL5XbYiujct2DAAd9CnSIW7Yusg1Ce9rKWNqkX7yI9L66yLwEqdeT7jKj0tYPZ3Iiy3LXn4fzNRydNLq4efmaD8BIhS9wMH5Bxkd0V/rYBWNG6GDRjjZibIuRnllmtA1qMzeUGY3LvZciP8usDayIpFUdLoZYxkgI5mBbyT4a2l5wAeg+I3UAQEXIRzRGBjKHbsz5ZFxlXEBV7DBIcLnP2XF+efzl0vo21KWQ3OiPrcKWusyYQb48ffrjnMMyYwZ3n/yzSPHdXg/cpn9Bzv/TwCYYaF75RUYo5ky4rd/f4cKP1rc9jCFbn9rgljiXGidSuQHFlRsHdRd/sHHpY5gX87k7sINxdrRWOAtY3LK2P8n220rqHummbKPz/9i9He3kLU3gulvdpBs3ddu2DjgzyR9pZMPYxRvuBMWbTo7dWKs7FTWxA1bWBv6x7W8EqMo38mrqXyigkmLUX8vPXz7lVkYR9lXZIixwu1nR0HKjewyLfCbuA194+RwP1F3jA75dfck3ujX7hy+Jbn1xJEEPYCXDPlRnprsJlru4wW23rMnR7w6HKIRYJiXYF3ATDv29e8/CGJdhILhxsFs9UBYbeWnXj0WyYcxTGj7ehP3ruscyevxoDNDgb4IFOln4q9BBx+kds3SHctBdLVTzhmcRfCm6K+WI5RLhBD5EjR0ai6VGDpOaUPFG7Lw9Jhu3GQ0GvZyXMMfToZJUQ1BObMrh5E+KyTUmuU9xh1eD/JQSHap64zSGlb81/OUv76c5aJKYBjPmO2iXfaCc/CjAcv+kKhBhoc9KYq1sdJqRxyabekS2FTXETVuYAJjrYrKlWw7cAb/RHcYz4yp2praHPjSLEr6GOleOywd/dBczuLslcSffnfwiEHDZ2R8WH2uzf+07P7uY0fluAb12pmbkf0lmrL8Ub0g3XHafMCi2Dbxx7Lv2MH33qS/hHskGL9cH/pjfbdv06EgQTbxZ+PYL9yZmREcHbGl2DJr7dEfbPYTT8/d3BXDZnQmPjUij1M9XVv7u9638Hm9l7KKV40rg+iKlrRPqlMU90OAbUeKqXaBuoDmpiK/IiybH021dw/5NGUEXnYw68bMTVcBlGQEWgwry2c05gK1817iFbkefgtWWLsuxo4P8AKHc6N/AFnhIpBKu4+Gg+e8VvyZ4Iq4yLsvpJyC6jdmsI98IUi6/SD3Za5MUrLboqErdyoi4jcyKpzYu+GHgjXhD7XV74pyDME2veUUH4oRNypgrhyRclyeeHkGw4wM9DLNq7kvClUvoE2D8I8jH6GD0D2RUGXfcLevIcRVmeqN3vSI6fBjdQlfquNH3i3jZCXfOwzTk8O2OR35C+EJxe0zbE0VgkBu/OGBN4SPTQAsdgyEtdG5py5+Nf+gYRHAL+9BG0mXyqZrHN+FG/1CXk1fAis4kN/qSQKGj82euT1vICCHYY7+/G9HO1Nv56NefxgyrqFPnJCPystTLdQeexgyZtHnB0PWvPEHEEwLZxyM8+lCn536hixmgy3JyK8Em3ijX8HGrrYxc5y2hZqAbxsW+DplwzLI/Jthz+N9z4np7WoSifwZdqcr1EWbi0+LqxI1pfzquxXorFlJgXEmv2vVvzsF8g0Kz75bpf3vdNDHDf58Gft/BYO7T9v4cT31gL9hrt5VvsUZcf69Ns27CCI77d/B+yWLy61bG71LutjKKiBxjxphck4e2rUxaMr/gNxyLHXA88ViweVzmIKEHXCNa87aWiwxB1uUa5UokNPPBwECBwBIfKTImXwYVE5HyhdzEl56aQUULbm5fHvjT8MXEguMXtnXtQu0leir93NG6w4Vyi7sqvpug6+8mOUntHa8OtsNd8OGk/BQKTitcSVMwxnd5B5f5Yn+Q7woXxwS2+Jj7/R0fqHP/dAFbtz2K4LdgzCS9p3HHJ90xUavzguUAPmbwbhae1OVMUly14BMB2GVwwQK2mRTobCLZyU7PRr2MV9SnQ4pt4/50pp3IzwouWvz9wSsxOjJM8Yt5UeZwqOhIigDXkxDJ3Y9raDuMi34/O+DIUypuo8sLFQSg+ML+2cULPjhGSrBUTzvnNG/7vGRc4yZT8nqyS/q98cffK2Ykxuan041rJ4Fy3ELhdN7jSACdX2bf1si5i03pJLsT2rt5w/6ZfHkZ/6VA1ZejDHf5Kk+PLR8p6kq+u/hjA/kAwIZsSTf8F2ktdGMrXO1xU+yRy4caXDvP6tuVaWH/0M8TbMSf4VPLvFjZkcEcVL2+xI1+V6WypAABAABJREFUnwbhxEgwfKriXc3Wb1qWUWTGuEEIDujv7fezld8HGR+UT/PEjMtlL5rr5Tdbtazr6E42sD1fXbdtaBV/eitj09RM4KCdgoymtiRjVwz+lIgLiF1wWiQfu/60ctwEiw7WqN7SaaP9E4GkSeCa35A87fwAH4jiuV4rE9Vx33sfBde4y8ObuC4URJDnoJvGfDVeo+1Y4XaF5sndEOKFgybWio+KLLaVAR0igqCFTxr/fGfjAl1IoiZHmki+9ayBxYSYx0NE+F2v3bsjJWllZ6SWEvD8dDIjVFFfmbxYbN6pRdHa9yL8twsoY03b+PHQl/IatOg0rtFcLD511UcFWMZtUK62TQxheaCBfQyu6btyjKzLEnHwzw8Tl2T7Lhv7wiYB7krZsga47bbADhf0HHOC/RkvQMgGuoNTt2Uh811B/5vk6OySWdKcV5kx424nWfIVaCe6ER/8jOPfxgz2UVhnPqt8yPiC9PrJbjPFxJBXqowi2eaWh141PA8aLxV3tLKNiSmOWQeL33tyPlNp6HLLjgQ7mnk2cY9w4C6zRseV+MyczfuUZZh9iC+3ya/ld1s+zTtm5eRBv+7/Oahtl9Rwm1YQNjXDRoH3SZRh+V2THO1tdIRyjyYpX3vZlYxLFOajIvMRNBBjvRLuisfKEYmsk5HimLpyE2i2fDjJ2tFZtD9ivwN6EihX9buDRHawC9xWnIe4QWBHMLY3NCQ+6LtjXjywgxfM5QGt58fwsxCtHDxhI/jRh5FFst36X/YJDr+bj3yV3y1ISVOJ6sCH+UKQH9fi6aOI3K4ONiV2HKAu+HeZ19eP67+aaTkg32Fww1r448SoM8LGp+Y+SIvLTzjSGMj0zbv3FVNhPS/Qppt33V6ClNN5V7hNjFzVy8VX5+8LuPH+4NBr2jonaAMLhiu+S+GgfEvMWNXPfLmY3d28+si8e4WmyV5+vsZ/2Q/yt9jmeuE6fOeQyn/Bu9uu/bSsxoxdQmx5TPapBEDy4SXsP+ReyQZvy3jPbRhDoGxzBm35ttS7CcG4mqvO4qN+/3dVft3K+J2LdsYiclkR3+ryppJcQQBPwQn4rAQwyTfBa/QtfGpVA1dv+U7YpYx3UQByEK+0CeMG91EbTdYl7syDetiH/Xkk4x3ug/JYzzsaTx3VInF/XDYBC2MiX/QAiJeLzJuoxe+jFVWtkuqOLMsMtmL0sV82g3QN+WjtT1JzcSc6+GpVBgu8sMdWXSa0xdkmn1HXlP0SFQXidFx+VpyRogyUKOJbtqdYtnxKm05ijORXAzafagtyfMt84QvLJAH6aYDb2UhJRBx3AuNa8mLHyshOyhxJcDs8+djwvw7T+P0mnF2yzv5tQw1f47Fk3WAsWsAyfRfHryfxTMpiqBQVOq67lzkleKv+LeplN2oni2UezS6uzGPFstOX5Z9L2Bte6HKwL22/KEbcTruVX2fd3cj7zWF4I3N6/fOg2KQNbmcrInN8Zda56KrS4aLtLh+teuyw1JhusnAMpPmZ1K6SOqjoqMF+L188vpWZ5G4msv/F/bTlOEWIGUzHnR3qOflA+dTlW7bZf6byad4x8+KJgXHdJD8JpkRoAF9/wqBnHU/V6sYu5wDzfZDyTpnQ4sc0v/cwDHnyRSZSDdtlJMHYKVkAET3x/oKMEFQDr1fV+olXB0t8O5FYufx+RNG9LWBF0qP9XVsIskg8Wj5w3V7ATeUVJ8U0vqMD2YmhfMeyi7orYkbNRryw0rwrsNtWxOO5XVztxoT5SCPjJtlJmZsR51vcnczT2LukSItu5iQzZcVnYPKYxHn+Pofvwrw6UWoeA5XTub5jCTdkfnpZl0mLXO/HgtNJYroHttn1QcuGHudieOD6Irl1qkg/EPKWyVSc77QbvAkYuLySQD8W/YVr/RBO+XLO1vsrY9hxAfTKJo4sEnuenxVlLW/jUxN9mlOcC6aFkFJ3EPXm6X+JqZs+8fzk99dXN41c50s3SuPaxkttYEXmAU9O85XEmHV1BwsytE/xHvItKcrKlpuY28YqFJPiDbrN29Uk1ld24zLtYmJ68Zgbh9AcM3YypaouQcv3PEXE2Jg5ZnQJW9DqAxmLx0P1mYuJ/GJPzFT1Py8i/wsR+bMi8m+KyH/LzP6dj9L7yJnH36/QVsb4zW0iOThTnUv5xlfy0HUjYvzuksOBO+frIsP2+biYlAustmD/Oj9RCvQPDlC9xSt63CTHtzJscL9LWRB8xOehMC/L/HN4K1v847YdLMPJps7zaMG3XcB3fBZdSjJ3AIv5XHA3vF4ZDuPKC8hxqt6u/xgzMTkk4KgjrVMq/Svq9HxIhuuwkcbjPO6jxkmfBv+w/uFCb+pv/eIrTnPFBvULiRfzKaRLhinJJxe/fydz4NL4Q/50190P2/fgk42SAHRtyhQ+t/6ojaE3c//R9HviYx7itHr9lnxu5Y9X8xhgQz8M2+FKg8t8z4mrG76FD+Axn7T4WdHZ0dv1i+nu+HZygm9K7YzX8fGq62o1Xqes+/P4n6W6UZ114+s78/90fbobg4bv03+2wv3MxUQuh/rBf99W/kkR+R+Y2X9ORP6qiPz3voXYp9nK6CWOy8e63wH1/672fdD2kAzrhe9wTNQUPE0mrTYj1bZqJEewQaPGhSNvZWRaG7YZVpPMe9imXZr6gDNue4rLfO05LNbjMjtrpTuTfOdR6W8HS3dC+eSo29LpAtsS8Yc0CdeEk/vmTuSCzxZXJb3zwP1AWM7r2sRusS1FqS4iOYFj3RBu6RP+bmCXW1wYVsAfOw/YyldlsvFTCx9TmPKebIOefevkxM20sj4123A6x5v7ZAnWYlJoxvU6HDedtnqp0nFyfnTy1MUJsPYurxcO7skmLmHmnWHwoZ4kxDZNcgy450eG/8aXWaAPsR2R5o+KpJPZ5kk21c8rXlA6Wp/8euB5f4X6B/4m+TKZ1xPfbt4Um3DY2fekZ7Qj/kt9DX7sbxbwLGP0gZ+ocx9AVekAy13MAHpdF1hOnEZIO8m8iiFYb+KHcjvL4D8t+8FOXqV66griNnzSkLBe+TMpCz6lvmt7hRbqUiV/yuMB366/TvY2vtBW2y4OqEgZ187uyhNf9L/0CY7ZBxWOIYZbqpwO8nVXoTp1hazxQJLiF6ZQ/P3O1NEEO2hhIEsxRO7H/t+/5e8Rkf/j+P0visi/ICJ/+aPEPs1WRjUROUTwuHzTEag9jqhIWnjttjIeYGAEm2zYAwpMhEiWsogDl2fqhI2dI93iqHPk0J+guuSLQETTpvzMtsPFebnbyhgJA+UXK/hOtCXfLVKua9O2e13nqYwdaKvnp8i78rtyaK/wuQugT3DRBrG5NcJZ0piukiD/SbS29kvz5u7GgAKcUb0mnuhDLNsgJRRpPjbJ89yybVvdmHClyWxDb51MK2WwnnaKczbonL7BoLsbV0DbDnI67idV6riIgN+HmIFsMMkBp6I0ZkjY/BtLncgm1/sxHZ+me5xQG3z2pcyDZh7RYW5EOOsj4aoUP4mvCrCdMS73vZmePV9pYFcy3sS5u1i1cTEVgAR8HCMZt6G1bd8UZZhWeR/EBRsvMbJb9Dzk+1JpZML6Jv14jU0XI1CGlUxY1SnTElfIdeHR+xsXOuuz8+lVF+Jz+QyNeyinWXW5HHsTLQW52KmsZMpkr+bvNUK/m/ILvmP2N0TkL4jI/05E/qKI/F3fQuzTnMooIiUXmJezxU8n2htNOaacYD2+F7yg2/Ppx9zpzo9XZ75QVvZtWeZWjk3xj0qLaH3i2Im64LOSrYV9Zb52fF+gEYlNw7/VzcqBdTBE925v7/advJXDnyaSjQ8CAQcGBdzle7vYz0U9PVyWB7jwu9N5+rjvaiJJ85k81g3zBBlRjy6vO1zm243XYmivru0CIeMubO6iNT85bELH4St8SFR6Pc0qH0ls6X3YYmoGfFd3QpNumNPAVvhA9mjF19hVszb4htSHTrREOdPjCqJtLiP5ikuwPnmNcYFPAATZ5j272JupNKZQIMrr4axGDPEEznFt6Cg97pHIjwxJAl0bRuk2ELL50zR47w+7H12HNnxqwNOSczH2AfzaCX/uDBPQzbTPMnr/LcuMPmnHNzFzPbr/syrEwXMMBE18qT/cJ/YxjYn2fmLho8IPG5Bhg8Sx4MHy9iYWtIMBcvs4FN2YVL9k8O87xfqtoTDZb+B7Gwc2RpuaCC5EWPhwfvpZWOAY+QmUIdD0EzOHI1rjx+Ef+wSiyTunlzGzAg7WjknshrgOh9Klno+UlLxiCL9QubG3m/LnVPWvQ/2PzeyPvaKqf01E/nyD95dE5B8Skf+pqv5lEflnReTHbxHk02xlnMflD48RLypPY3BT6k8DkPA2M+5DfbSXxZPkPOGSxWDyiORtKtn6cQthx6c48Im6kFFwvlL/qC0FfiWZn+F27QX1DnY3X3d8GWfTv7Yd5EvBs6PbXV9d2/VHCQxlIv/WnWaWgq6/3K1NnXG5D7AlLSUpVO/OVyjbbrC+OsHREwsP+hyFKMFKW0savmVrLxTDH5TQcCLHfESyjGFHzjcxmLQi38f+EW46Shnm2nXABp5+qIGT/qKcmkHnlhYIhAQ7SQy+1iiH7RZkSDdtOFMk3ZhOvySq1xYc4PPhO5NseyLTSH13BEz+8M0H1JGOTFjGvfrhBHTY3ZwYcUKnX4oEZNyp9hfAcNyT7CjTjAcKcpTDopzu+D0PDgE5RcHOsvHi09c0BQctPrTCXF6RFG9Swoh/oWvazWGgt/SrKCOYsgj4jYYv8i48pgoyK5QJFUL+qU3Md/GG+7bAjS4ArfRuF/bXyF/JvM6Lu9QHy7DclnTCvk2vvp946q2CjIDn/TZsX8UMlBH4hhp2uAcA8nH51IdWH9ykxJdE28Yq/+1y+EmRxT9D/yxQa3zhvrjvCOT5F6vXgYtg4DoYnSKqJnYqzFvNcnBQVNYN3cATibqqzrgmkheISYGojM9aVL7x8I9/28z+aNVoZn/vDf7fJyKiqn+PiPyXv0WQz7WVUSVtZRQRkeMgY9XZTEEojjn12MNbGd2RohN1+APpwQTxGbDYQqki+S78kBGdk0gmnX6W7ZhEy6vuPDZ8ux2UK1zkw4elsFp1A1sQuJT+klz6EHahJpdxK8OT9oewr/CN7mHA7uAxiHO9ZCL3uM1OsZ8HVzJueTek688CFwsnGkawK52WrYoEK+YnFQIv7HsnU9c/q3OsbH+GTD66z3Ihq8QHaJFyytDg03EL5gCMPjFnNXwMksXHSKNHIOGdIT4sZsPf6tSlQpt4spCdQbybZSbyRpLRXmtLMSWPy1StlnFQiC88/5IGQmadajhcTsR9FgcMLl7hZn5a4ULtZQo6Cx9EoQo6Ods7XJVmdC33P5lWk4wuc7ibeMMXeG7wOGgCbOTFuS8kF8qAWbI0MZ1FXMmIKEoyNopleyh2Bv4K1dbtJi668SnGdgO44eaQFv1u+brp2+QVbAxgGVckPgSuIvm9TubNZaU7tkcmOfDwRh374pDDv60GtNt5hDJwzMCflvkigOMqt3kfXM+qV37qi6c2fmpStAJj1k3pA1y8YBX4fNDP//usqOp/1Mz+36p6iMg/KtcJjR8un2srIxSj9uI3VguaVb2NjhW28pkALd+GlNO438poAYy0O0e/Cr6TtMV/icMt7gSU9NSnpfUdStB5IlfD3MiZHQzW0V0Jz7C7ThIsbw8pxwx3NDv6iNcE0SUsMEJ9pN8sU4fPjnmBm5JokbJ1ajUmQQuYJJ+vkIA0+knXuyCHsnMTJVshl1XY5edrjGxOE9k2YTDNGjhgrmM+L9xvzeTSc3er7chfua0E8CyTUmaH+st0NN9JNZHyqZIXiqkfvmFDl/7dMBA82aS6GCnLCRzUC8sFT8tk2GuZK16F7ZVzfHSON+jTdRGXbPYhLTRdZiiJFnWbB1k1L82DT1PKcfBKfNRoEQXxlece1k+ErKVMW54PoM8yd1lmbkZc8De8YFjODWiO81x6MbPMhLyD7bbRoY2hbywy029FXLfZRthyKJPrhtxFkpH6riJpkRUyKskIcSCmm00YmMoFtuBynGOBurrHHfSVm5gRIIiDMlaUgo8yYL1sJSVazpff2XvCtxeiIir1iePJ9UQNDziaxNQJAOHyHbYEO7fOt7nHZyuPFfzdy39DVf/h8ft/KyL/y28h9gm3MopkO5lex4xmiQgDhzMzusQgPH7p0TZhZdiS7aTfc0tL5uPOLFDBuTj6ni8RVb6kBfQOl9uKbhoZHxfm5871G0vRI1wvvB8TfAGW+D6Cf9K++k3XTKR+v+cVPk/gH+KiCEUl7SSDvyR/l3ws5fmAHYXddHLJ5ro389xlWdzGpQ7NcjHc9YPn9sP+Muxraromp2En+XY3Mflo/Lu+Q+Z03VFD9ofXoS8ohIkICmZlbJot69bow4B2SW4kK5F/I0uIGc7HnKYNbc1OS1osLplUXhdDk3T3rBE5UVqQxCi1mxZxcficR3bF/NB3bWLzjn2YHl7g+bb4PlWCWTHsfBXDPpxQ/PRp+TSq47PATXGPcVkv1K6aVVO6xjKezRRY+H2sw/SrcjqME1S5nlLhVsY7PMmwu5ihBOsXV/PC53HkoCzDSkaaOIUvB0lb19P4vI8LePAPn6rJfFg3XeIrIvmOqpLgNxPoo47/d1FMvnUr48dZm/0VEfkr34vep1mY6WrGRLUqvJrRuBLB0eYeWucjG9sCG82HaGROuTZnO75X1s3BjtcaYFNArGvLZpXqCS6DF92sEsdV2w5XK/1npxjl30iDg8tHEtrCh3F2dLox3DmuFa3uuvXNCheX3Vvg7kRYkdniNlP1KaNyNDDpbUeLcW3XX7CbAtBlshgoqW4ycY3bVaTcN/I6Rv1os2zIjaKn28uKVHrckvkq4RIfLOhbw3G5E9SK6/3oaD0sl0g2eXP/TMa2QJOyAFnNrbS3Kl8SGv/wDY1xL6dva8sYLCDexPULKdlD9A9jiYYfD2NGQ+sUjbqxHkrxB3Wq3WzyxFGsfM7Gdzm/7ulGG4pgzGgIM6yPIYvC8/WOT9e2Kkv7u6cVMjCsynrh5rCk9+4dtZ1ccTrnAbKsxhKVznx3sAMgxgYR0Ef6dZfpo6WbrBt6PPbFZNnQVrQezCfmizRXbgRhk9rcHx4G3ytpZCA+bEe2BBZJN440Hz4lInl3xLeM2e+i7PKv36Pyad4x84J761PdpDm+mCNMX7/i2N6i8msK812LyicBQnIhZTFQXsZWKYa94oOqCVtbePt4l8ImPC94yil4G3UUf0qwlhrzb3fM6IA72qXSJMZMO6Fthp7fBdo6kya4rAUGHMR9Uoz+Nu27WFDoUP0p7isL1rttkOXUsx0xBkCdm5SnssVOKJlB3G3c2NnULoPi9rtg3CUJmGCWcd8Q6JIOhKQXXLKujGw680kb4+gQCDzZ604tHysWi0ojB6W+KIn9dypp8epCGPwIRwD9CKWPZ1jQx/CpKiJmossXDmX6TDTwwneKlRSJel/54Z6UiPXfWJs/iA+/7LSYhBHXXI4qWp6eLqeJ+Ikj+RmkVlxOwAGAb2IsC+uG5Vr87sqdPyoxA5tpDvI47ebAMrwatfHcxbln8O8GPn7vJmnTph0s81zQjioeQoW/kZYCLCgg/CLC7/wvtt3tGmF5d7gDnt1NK8Orer6LN4zr7kbHbA070CZPoeDLOQbqnd/3SHrFCdsJ+HGP/7svD5ObT14+zTtmbHdxPWD7elf4+y0Y0PyuZjdX5iEZsO+25E9zljvFNghTvckb2vmA9eV06Ca4+Z0O9kIEpmvV8fy+dSQNgY88SX7E5kVZPuxKXu3zBxlHUHoRN23JQgf8hC877qe4u/YHSd4jmhis73AXfL5l6NrxYN2sEoodXZP89AboJObMV4YXuptQq0QcDpBY8nH81p9whbYvfqf41+oS9bVZeEzc4omTkCZyDcSxdqoXGfadPd10Ncma2A7Y5jjqdISfpFPwdvZcTkXclN5Ga1y7j6c2RcaCqvzgREwyWh3ubaCi321/u/n7UX+1mmfS6IblpPy5lRvhV7gdXAPLcqvIPM3zLua8QruTd1XHprv4s6L7Udnh9zLccSz9YN+4Xeul2+Jj7YfkqMkLh6QMK4uOgp9ayHhD6dfyC5TPt5URjssXgfr4WW8ZYRSEwOpGqTmhKN/fATa+39lQjq6EjFkM43Zm0wVvuIbHNfd8B2yL22QFHe6q3mG2fAh3RxednTTXwIe8LPMr0XXX1l1/6pHuEuxdaRzlim05aA+CjIikI+458rRTZlV/EiRBkPQCOuDG0KIcvDAhvkyrBG+EHUGKYVmOdM1h6dhzPTNc6r5mWCG+8k79Y7ooI94tJvfg37IK3HcbuNrrgpPPlu/AZYPCI96KYTW0HccIF/r+uHjCo3Idj3mMTwzEggkGD95pSs4iCI0nS0fTBBeCbJecwLU5lzCx0Tzezjd1CPgk23IZdYrvJ/+yX2S5TnLzrnad7VMtNgWEsUu+AewOCx+tj/jxbpxVU7na0Xa0xjx+eoKCsc5R/CY+tDHFBg8DXfFcYX/1gt8oAlKbgpkU+EUc4NMKW9qL94i6d6zClyxkFJHxMXOZx8Cv5Ov6R3yWhfuzJhuDFVsrMbcAfxz1Tcx4HG916jzcWKcrHE/0hxTHeLtsawPOF97XYyWVk6bBvYZOHPnoaEyEGddGJ06A0TGXNzJineVYPqT4jOWVHOwTl8+1lVEFti5ebbutjLuti1cQnHXcOpPmtztYnW189PVq5vFxzHi8KRDLqGTjZStjqkN/M+uMS03tYR0k42qSFVrENzmNBj/hbviwM2/nE+vuaRtc6vR2Wz7qgF4JFlg2ge1l2A8G0FtcBm0NZV3KlpWOr9vVKct7E5wo7N5T5Fw/FkRdUMZ2lusBn2Wi5birtg43+SrLfmCXBBWfaEXlSY60dZozM4AeTINW519eKd4H95fokIj2fIoFcaD4xd7vi9l1LD/KHYcNXIZQ9bPgg3WTudXI2+BzK21sgn7jwSSB6/bcnICIY1ZwYZzKuKD/HTJV3Nz/zHTQPa9dJolUAs6389NUb/wE35TgmLHdwk/zl+dOwUWhdrBsdxvUylikGNIKh+cvLbhwrBXbRfLhJ9620YWoiI6j6csiYOWDpfJd+uumFJlBsPCx3niK2NtDPl3bqu9cbMqhQt90I/pG41A+BXEXIynOpRSo+DZJuul8uxrd4yiOHPBWsiV/ZEXGAks/F0ctfM7ykfzrE5ZPs5VRRCBQ5zYjbz6T7d5SOmePGR1uZWT2yeCZjwllmJluOQnMK32MXi4euC6DbfjwNkm6frCuCl/UTaO+8vL0glSbmO9k9matsI/m0s4pLE7jcnb57vuGzmNhepnCEsDBLlmNYUpOdejGfxYaEDwSrgANgQuUTGYhK2ypb5INlvmWbyNCwoXfxW42toYkGKxzEcb9AjqtjE7L7Welixs5ytMJktHb+Y6syjyuuGzD1rzVMV7PCj4a33Tw79pMGf29rsqnL1PT+tLJOlT4MYWJqFnWHWTM19H6Fm34Xpw5Pa+r5jvsSvxUxPwdrtNK1pVMWfNVVU22gzKLgs0mvj6Y2ciCj8sdPsCXqK0lx1zIMpIxdVtfm7mSdCNuOw3ueT3V5O24edGanYCWXSrNfM6St3W/iYJxL5Jsy0Q7n8I+qD2qHXyo069zcD1/u3Lnn9OwGcUMq+3xl/2tTR1lAapMyrANreLLH8SMFCp2McNgfLyZ9Uxmf+dmykLmLq6hHIUYtNPY7GQq713zjxIImjaUqYEv9u51GoMurpU+ru7GlIGcfsh9lSm/Z/rJiknv/34Py6fZyjiPKrUwngi8EJjCG3XG50/ZHE2gPtrL4klKjLqOjU5GTNkbGqxnCMQn18nZo3MyrDNf7t8Fy4H9+qmPcVPHob56zy/zaXClqRNsx/cmvrUy3jqfjk+xkyxDYqF7sokMw2LgXclEfxlfHd8yWgkWGDSM+oFOnB36gu9WTqw2QaXDLVufoA/too3oLGE1y4HzKhKolYxKulXg61Mc+HJ/+f2XhDvdVo+76u+KL7oefyI0MpkJqxWW/54olIGM2mwXBb/KA4a+ZXPj57b4gRtOX3Vck6EnFTst2sI3x5MwA183aI4YMYe+1v3Z2NyeZ2luxKKW+UZGC3rxwv4YhXICmnVqhJtkinmn+d0r3xYZMgLf4YSmjytCJXESLslWs0yalL7t1+GTeSCt6ZySzA7bxJ2k0xAYuqDS+kD0maZrGYXqyaf6nPOtjuzTSJfdYaFlgUH+OQDRV6MOqZ5iBF7jJ6pn7qCiwkTEfAvcuwBjSbrDOvJen/6YHUfMJayDDOyQ7SA/x3xkU0+cc/vOK3WuDtv8WpgQ+tA7mVYydLjYtrmh7EbtuuI29t0c10r+0ArY851bF4dNQcz47KU84fw9LZ9mK+PcUqi5Dbb3XUWnw15sZRQT0UNoS6F28WrOP5VsveBTjPnTL7wTdwUe5EtYizrK6N0vk4j4rNrvcGWBq0KTWMB5IhlyaqsSwbKTo+PTEfCfzHPnI9gsmM/P5V+I0ZINxytCvVPq7XHJTPc7Oas09kZkO5tbFY7bHSrzQduHOtt6u2Wy0bfjdgu/qJfsC/hKg7uCNSn0eGdJmdtIK9FWknEC7F6LvfxYnkSqlmQMvWKmEjKuIv2LxQazY9D3RVU45ggEAKvRZiaibyjXiBmOe2iKAzb6oSJpYXLt74KvP2JC6+N1zHraSq8w/hBA4l2w4KMlfqSY4T4Xx+WEieUJcjI61KPEN8OVZRx8+WbCKg6s/H5sn0N/tpuTzndHWJfVGm/0eQzZzX0+OIWfnHM8Zd+28zm7ovTOWOuPYby7BR7C6OK3iFFcuDrlWxnlLcDyX5ahk6ODB+B8Ew7l6JmoqZw6dhV3uciaVamyea/gffzCFVObQTv731du1m4F7GRb6NV5qox7a7vc4i7ObdqwKWijnQt0fm8Iv5bvWD7XVkYoVmqa215YvcdphQ+ml/HvF2dkwt8ElO/J1+K/+hrujUp2U/B7Ts9XaUWS9YHCvmW1NaHokZ3hBrcUm3+cf/K1TV8ewzZBGnFXSRE+sXHY7bcm2dkrycS6WtUXMi1jeQjUoFs+Bbgj0T2pRrJPzag7WC/hdhkC6xiuIW55Eke4jxdCN3t/or+GV6YM84m9FMVcT+eu/12YH0pVJLZUuiC4Xy2eDNr6PS3crzkWAJhUYVv5RApsi5TT5KCjzhTs0HCxpyCLGulQxhrPXKD8GYlk93xxoHi2eFp9WkMDwdvwE0kyMpX8VDQloOFEIWY04iGuk+4S1SST8KZYiN1kW7z9luvLuWzX7928ShJobuPTw6kDqfCsYp/T6aLEmU447MMKltqj/+NJWdmeCB3KqiYnSnxY5qlXo6AI5EA2ValPgM4MO3fkDETTzJfiQrgAYI+waXsm8W1xUd8LA8ZFZizAV7aBfGHuoIzl/S+AZxkTPYzT2swLiKnphpDjAk22V5zvsT248/kN/DftlvhdlJUD+D0rn2Yr4zREy4OPe/VL5giIDjueOnmQ9ncU4h0OafOOlKhaymAzi56vT8gJ7I5gu02DJqNVZiRkFgs7c/edts7xsTNY6Sbz2dBc8I2Ayo73AW7yDjv4xkl+JHe0ZeUDZNnRMb0msQhYJmUwXN3JXTBwHNg7mTq+5S5i5+Q8oHT21PBp610iAVPbbdvjAC6CWt03CQNWC9zOhiGBSHJ90NaTrhp7KgGRdUGJRHoPBjp88dHkItMTIql6bfmSvllgfP/r5WIulMxOtUY2+qQi8/tmIv6GneFABM3rqdspMuMALpZEYFEGcwn9/qB1bXcfi4uxXTRiiKnnlNVfp3hDMqK+B9PYVj/ek9PcnOZCihHD33NSWt4/C13PmIRxh2NG5/vMrtcU/VASfv/qtoAhOi7H4lKSfQOs88WT+4xoNL5gxSc9+aJklrtQ+ySNgAt4nmeg2/RON9Y7/20iZjYXF74QIjouXoikInJO+03yhq3lgbk+8wDxBvVi2X+4LClm4Lg4nNvn2/he8uhLzKlO70gPZOZtrUb6Krijw/2ckvjWlw5bFyUauoiJLDONF5tXiU2NvkxE9F2ubYxjIO1dBA0LcZexGGRnvoa4wJ91g/Q/4vJ/5+XXd8y+Q0nLfrmMX+GOoJnIMdb74Kkb33ldOCYtFRE7tMCmhAVwr62PA6YYIiNQ0PV93DDxi4zRv3Hdu6OL+dNFE54sR6a1w013DAduockyN7DoPG4TVcRp+tLyI5hl2QzJLe4GLvVPaiKiHfCrPBtwvhtcumcZhwP6KpCLwEF0wPepk22TEqK/w0WxWA4EVLjbmuzF+01jjbacnnSwzM1cR999KAV1iKTdWOOTCQXYkuio5OSSgx1eFyl39Pl1rpRjc1IE70BddZuwR4MLfFN/wQjrYSEyF2Ufjn023icbSyyXR3UYB3Tq0OsD0GKixzGSVpuwXtwRDnSVCxfWZGVxGxmiiejpCzDXjxvE8OWnhY7VrmQp4I/5YrwOmYeiknjl3V2b9GTQnlmwjRsvI6L4jcY03qNTblOnJnvD5ArfJbxi4lomfEgoCvobf+PJXjP+2afkBDjZLHYVup/kgPHFqSUA7+N3nDT3m7mu3D/ka4Tb+RugP4ElE/PrPK/IL0dfDPrkPC3HABGRwyz5p8MkJ9Vnxnc4lXGjApxuesrdyQ4XDxwj06RnxuX4qCAj0oqxt2t7nr45AuBKVlmKGRTEWr6lT7N9Pu0HPk7nUDnBvg1tEAwwXEQWZakbIbjSP5YZY8Qpco4tqKpXfakbxB1MljJmNllGmJ/Y59DVunuforx00+gTl8/zxAzKNISNGbAX3oBe9DawxQA113crgFu+VCwbOvNhf74lTjzucJcOZNEla9paWt9QXqLzxLMw3B3somAO96hskhYOEF1QZLTldpkFbspHjPg0DnWpEkg6yvSjhKoQwYRFMwj/TTj4l0h1SOUu+YY+5RtZF5GwNHx5LCnJE0omWQ5E754ydP0rfeBkDgJuh2sJcOD6e1Qb3OhfIqgJRFuBPlhM5FqcwaWw1X4C6fD3Zk0nBrKOjjYPzCaPUMY5nqDpHFMXbSgzTnlM9Wl8xUTQt8ckujhEm2d2WNAJvvslFyjOzwwCHPpCFrRRvA7k/UJaHIEttzHinPab5gYgOX/WDdLiMUltXleqS+6PFzUr48fba7ffnNJcZ511MaQcFtIVF9z/Sf6rImXxlaQO322xEI7++T/HNaRlRPfq3fVkirjwYx/Lv5NOHsSuiBXjDqEazikYI3zCF5MB6LwSM1x3wJfnMvfvgLFJvnw4v8N8+mn2181gJx/dxNfSL6uwRc9o++P3Ydfx/nbMtug30ChzNnQsRa8s3/R5JCPVH+0a+bV8l/Jp3jFbnggYsPMn+5kWVqk+LIwDRqrbhG0/qkfRJ1NsZGr8Dj+tswS74ytpkiXcllbGfaRXD54r2B0tnrQPJvGSzxP6z9k8BPpg2XXCiP1ywMC0Fri8971seYHfyCu9QP6k8OTYlY0ML/HkSclj1SRJiLaFZXp3Y9LJhXRswXdhX+Qy1kBMix2UzPm5xe2KyrVA67J5LMe8/PPdeYRBbvqdfKpJ7IK4/LPBDgpQjRZPPOgBrsgccJPxpEGzzbEdjuwm9F7a6drSP/HAYf/gko0q0i/+GXBhHlS+/jmExmiQr+N3fn3IFAsDhEfZ2EaT3HNsVvHjURzzui/Mx2KRD57ogm4bmtjX2IYvlzsf00uzliP5aMt18OP4gejp1+FzBiRb6Pz0mGG3yud5n7bNd7DOpIk3afHvftdzM5T31ZjBumLcTk5ceAj1c0wTGTo2TtLufG4/AetvW8CijANEVeZizKZ8iWYjl0nub7L1FW9oSzGR5ojB709ZNvr9fSuf5okZ3pm8nqeus5E5r9kRj0Dq9GTWEZdpBSlITNqARsGGquAv7vm2Qe2W74BTmECb4Lzi09alSfoY1vvYOYVVnYNjh7sqO9jRxmPwzeVbaCxw28VDs1goIEb9W/1lQ4MjlX0R96hbKoLnIdwdC824+O5HSWAf8A0UzbaYDjbQ6Ss8AUwvRWuWMSfq9SeLmPo75IiA9A5yaf4tJvMGcCcj65UTqJUQSpc2usEnEgnBRPzkQgXGKdCqiMbTmkAjOTbJypNiIvIO55mr/1URPUbf3P+Nr8CeIua3uumRS0q4dHhk8PsiUm6ESZoLJvIOGYlKHsQjWM2FzKkT9gQ+MurxQeurbarb5e/qFvPYROR4x7kwJ2FsCUTjGnVVvRI5fz9m91QOdCaDXJt0ebJq43t5fuCEq4lv26NtxsEPHgc3DrrzhSgj/vXuDyC32cApKwt82ihpTi5lWSS9XfxMcY3aEgmbcL6YjPeHoE1g8RV445/B7wvP5IitjDY/FeCoaiJvIvqmou/YgctZsXxJDcA/xSIDYDeaFG+ukyCD9oBnXsfb6G7y7eTMtwXmktFc47/uu8nnJj93yKUrGX4QX/XguEZibOMc28WD9pjn75dMLlfK95KPT1Nwyqxzri4XZ9y/AaMN+N0xBr98UUlPYX+Py+d5x2wUjYBqM2iLLBwjB5+rHgEb6viiczc/MpvpVUtg72YmBLjLNpDvgo87b6ir7vhK4bNUTYOLsKkbBFtQvQ/sNKTXYykUu1e5XaFFwXili7atK8nDPIB/UnbfIYF8r+VP9ZRTeELU4Q50BbjE58y4eXHn0R3nAmQQIxdOCRCO105v7NxRN3eGgvI24OkazylyIUVEyke4tLZObSpZbSl/aMaS5wwnbzu9Yt7TytHIb/jjRueYImmbqSzqO1t/pSwO+0i3sXgBY3gNlQqv9JuIuTGE//VBs8l6bIdUEZF3y4u70M44+iOOLJM4HCCSnTkLYaeBTlt2eeG6X/Y+o0wB8H7J7dRhIyNoaGRaAzfgzsRALALSfE+uHQYVWkBOv+Ci6bs1wz/0KpTkl/npO0EMjBXgOt+MppniwIyt8m7pgWM/OQzmRmPAHF8sX8604DfHNQYnX45kWt/d+HIlX36YwBO2a1HGT6hmHLB4B/IUg09OjPHiDlr+rfQ72Ufq2zyMxETkOE/xj95f9Zpq+IPqM9mdzLESQmhlzEbTPdlz2maWF4tA+DrcxkL97yqX/JZpYSdS/GG/uInb2GYidaEIPGMHmQ4WydCbWNDJxPZVu5/eURSSSUTmu98cXz5rWcS937fyabYyYqm6tQob1taEC83glmD9bK/JK/lkTpIQN2aPAi7UlaRZGHHrE1u+jZAsc1RcmkZXC75FxjXq1awd317GjrcuYB/NpR2/O4fxvR3KQuCwMIovxclvRNqK2tBJSHS3NbY8ulAdreLhN2VOoVmwzs6fr+1wGfwDgSBNz0XiEfnZrv8eGFnWxIgEXgVulEkWXer038i41U1HGPnS3H4sh4jg4oB94GvF5lMlF+i0kb3BqRpx1wq2dgfLSFslsintRQ+/H6c6XYBqlxzTH/H5ikM2dHJ8Yw/trFUFKtz704DjOL9fyXdmRKXYGcYmwvVrK76lzjKPP/QEhPmqzFMoi3m0fJrr0nShi6feLx+/le8KR9x1/p7vLRBcRtG2W4BbI23IG8GOMYjrY6GBujgQx9+5tKECWrRQOpQF2PlwPClFZNrFmBAK7yLK4BvbePE90PP6jpmRqa10k+pNvCn9QTz+BIVJpYN4/N6bSNULimNNvYuJFDNiTAZs86A3tzG9F4rRDdeg09nZSo8j/ii//P7Zygf08xnLp9nKGHcIbrcyWuOxpcCaR8+4o3hdjCOKG9Qpi1shRRFeWdS4G3x4hRP2DsFSsC4i8ztCnNkREU9EEq72uNi/XSK3UWvtn1TAVeAjVWWZAWzFu6HVXnqSDGzoPC4oNA+T0eVXnIQtxPLr6Jg94Pr1Ebgx0ZzOXmMLUuGgI0mNuqb99e3ipAtmXX89gXAZEgBHicHXp71pnhc0tpz4Gei9Pc4bu8gBkOwxyPoc08mzbBtkGaBNADf6sJMRULi4HNrwKlsXuQ47B4uMOOnqkIA9N40fKSYi5/vcDnjqVKT7Lid9nNdpg8eVWOTTcDR8uZifWuc2a6Ew72JybmZi51gAmYm8n6IIO7ZSRmJ0DN8qNvZd+XUbd6Y1ulaMyW3GJ/DqzpbamL8DCT4yfaHbdfKvG+UBce688Odpxhfd4Ot0dMTWoCrNmGuW+ZSwHzORI76dpRJP2sHZxZMY2FJ54RIs6qLz27t4Y0NXruuyfQ9pEd/ILSQVfgKuadykFoTN1biQfDbiuO/Gukjx75cP17kDwnFOWACdly58Ma+nRRwwMTE10S+XkPqT9wc61H12RbKvigvUl/S+Wyx+xpZXHyMx/35F6OY0EflicqiK/CRyqs5pwfYoN3X+vYiBJigjtAucbGgm9uXaRmw/qdibxQ6m9LnD5BezHFwP/bheXRcxLxV0O43w8kU6nnhfnsyPz58AOc7wE/BbvRnJi77CCMfno0ocTvRr+XnLp9nKOLfnzYzD2q2M6NAbD+u0DpnbFyHor1IM3KIXgJLjZ8ZwmTHYep7BMhOf0Zae7BGtJ1sZS0K5wS3bpSgIJrUSW+4f8r0tiz5w0y2tlS66tldpfRSXhea2uzqiUiL1RIwIEBTUc90icEfiBOOHNngdECFrO0oJEsnayD0DkGU5vR6/5t1vExE7TA5PtMdcbmWQ5EImPMrAQnE7BiQGQ92olAMT+IFIkoHakt5flREu2zFeY9IBBltcTOQ6gtrrmIPe2GORqQT2l2brohi9Yzb+HfDBHtGrk87vNJE3dDgW73H5N83y+1Ta+F93bgZjateThnefNOPbZZ6MHXbJZYOPScgRpA5QMDgitFnezj5DDMQj1WuhMRKst68wN8aiS04RU7vet7MZ5+wNqFK8KTZ6wHfuOIYgro0YNo70UxE53tGPjKzOdTXmRrA6hx36kOK8MSkxMFRCMs14in0YeO9Xsnq8zyZTmBvI13y8oF5006hxE+dKPMU2rBhcbPwMJvrou/32Maoj1O6op4z3/+RaoH21aZt2Xgvo0+TdVE63m6fxxfD3EN7Hc8iB8eaqX3Z6vfd2wet7XhAdctnH+7uI/VZEx6ceamcfiErxR+Ga2jhB1eV7zzKHLY8YaW8qx7vI19/Y9U4e6Cq9BsJ+9E4+7LuPr187YZEG2y193puIyCny/uWa96v7qzGnOL4sXDY/gVvlD9d2YYqBn718NDR9svIptzKKsH4twdoNLuNbZL33lmX8+7Ex0kdFZW/IlQ/37yHX6Nb14w632O0HJ1u7cNzB34Bz7p0KI36rg0AGrzjZByCQ/61xqR5bTrANHaeQ85QJ6072qs/gqSLljmj5MLUm04E7xxeTo3nq62xcBpR5mqJFvwTkcPpx3ZMSFUoMbfKLR1eDByYytbnKpKRX6EzqHW0tCd0g6obvbQFiBzI2ae0GxwXjbDwQMpkfRI1GScBY5ZLcBvQHkxeUOb2u1Tx1eFxie5nla2EAYEwiZZFlbiwjc770ZqEnTJ7Ke8W4n+c00fdzysHKh8TOxuSIj06bXO/vlMegIrGVHOwvSqMzc94u01eLerE/GR7ep7n6u0LzY9gxn1wsqCcXwgkwyRY+x+R6F48OQPB57pJei7lRU6X44LFpoZtFcOD4GXPfLt5v7yZ6zicu6ePjOEFTwo9fs4L+o9mxGXa2DoNy0EB1vjzNKxyIePI0FzDs2y84OH3R7FpoxKIsbyOMp0OHXU8rB5yhX5U8n3Hup+k9nkiHf0rym5SFxlgsot3M2DTsQOU662f0ZZbGCAEk5CIbDx/m9FimIbeGjJOPfytRDpHTdDwVt8CfH4GXtnB86eKN8xW8/p5lklPmInX4SFW7ZHK0Tgb086An5BVVHz/UG9mjAoy8S/q+qOcIn7ZcTvGXluK7lE/zxKxsZWQY/ivuZDQ7EYU7MF43/+r93MrINo53GdKWQncCIRZ6+zkhJh8FvhJbImAnzXQ4/p+QTSrfCT4ryrgy+E5aydki383f3VbG9DkDwuUhQ3ED945/MyaZ0Cg4eJy5vDInkf8OtxMqDUqFjW6Z1PFrfmOcXqgm6InIdfcc6Y8ESU84IvuUuOvnyVy8WxneeX7kN/ah8xc93R5dJg8mYcwSMIp1h43gczXokAMVcD31uC6pXt9tmXe7bb5+lOY6BUEeD2/3wIIfsMaAFNvINCvZswCd0xGDb2zx8mBlwHMMQbGxoTdM3BJLuO51UH+eaz5nRpIT9tA9XdRADz+gDGb52kxsJm4K4h+JfyZi7+9jHTMUdaionSL6Rfzpmb2fIl+GXZiKnSrydoB706m7SKKygzJfSMUBHu7k5Nq+eNqYJ/DVVh1bJ01EDxObhjfGFHz6KVfii3zZyaY9t/Oy3/ww0TnfYBvalUzaQNEhyyXbKRpbGfUw2OYJT/w6P4PzNX2CQPJdMUQ85XoqdY4O40EOetFxSpf/Gf7ktPFh89G/U0PG6LePSRNLnH6Jn25/p8nb+/x97T7V+dFiN+g4ZVnz3PB461tR23gqVTYcTXbOcG0VQxMq+NjLT86toGYmh/tuWLDJ+Bj6cfr4+BiNhbPr4v2ybXu7xudQlffjFD2O6TTdHoZip//VsYaauxh4Z4bb5rWoufx+LAxNLpm+DtnOc267NLts5hgnN34V0d9Mf2jx1Bi2EnPuAHrknSGhV3PZZJ5G+X7N/cPlGG3gyuWQ8WTqHRyuDDsCmZIL5CmP8caFcx/q+vOnd2PLsn71LaCXrvyj0/bFRA+T41A5fhI532T6G6furq2RhWHiBrAPu+cRLh8eBOLvu/rEsBEjP/k7ZmWnx+9p+TTvmJWtjHI5h/huTWQXOa1LjtIDhU/0AxK5YdCYnAjgKmxlcFqzmb8BBFSHw9dx3ZOOlI/5XHI+SWZWhKbm5ORBPhXAVfor9Zs+KbkTagQZi15R/tFf5GtZZCaZ94/v/hLPdn7tYBcytKUoZwPLbWVQeljdgCVagBBzwOJSLwYHK3Gc6y7+4XfjhuOP7T4KHxvWq34ekuYU3iEzEXq8k+dbzCMVETtHgJ3I6e6bCRztfI7gNBaKhwUvU5HjmB/R9VcWcCb7YrKbUzznSvBEfdnV3ytAXQE01oPH1E0stpyuzjmPO/BQJjaAdGAeJhf+1+mg3jygjjGxwdfQV/lCQiB5BT2Ve1zNws1B+ICxFKiN+vqRAGgm8tNPcuohcp7XVsDjEPvyRfQ4L19/egLpsgyHY1M2T7DDy/m2wJFE2HHMcSD7vsZlBgL9iitPHUnhpez5BAjmAiaRAnzUxDfgzuRpWm2oy9yu580IH6dDTFRM3r7G0kXiRMOxCLvIHhHHDPiQO0lJnNuFHXAiX8xdkTTwMm1Kx0Q/fjzl7acLzr7I2Oo4XhN80yv3xM/NyOxfxIkhk/oYNHHY7RzDQ7opqCJvJvHE84d/97KH84vK8QY7RmDMnIYziMQ07VGTJhYX0dq25TUcFPTVCebygv5ulnaExrwz0bGwkGur3jmPy9cxRvrTV9H39+tp1d/6Ezl/+0Xsz/5G3v7sD2Jvv73I+Y0c1WSXYVSS/QjGJIcNOf0JldM4bWxfHAvKryZvX0+R9/MC+/FH0R8O0d9+Efkzb2I/XGfB2+F+deZwSecYb6A+NaWTJ+jn2l45TrAc/+R9zLHzkul4t8uWf6Mif+ZNzh/eJLwL+P2QCYYnzArGqdRdn+Tb5dR46ismcvxoYOcm8vV6Jfen4bf1PCJ+8/Zh9MsRM9GM6F1MhcVilmnc9/GF9vuM23bMG0a/lp+3fJeFmar+l0Tkr8j11YV/0sz+h99K8zLOzvuNtnaGyLqO03wDy3yNARi5FzGajC8kPlSHVOS2FNz6uytPaG+6tOT7PUtLdzNmsZ1rBbujxcyaJOVRcQfX4dr8447cc6JbEa3+TY60BAJNF/Rdo6oe2Y5ex3GHOmTwgxX8QpYYFxoeqDFQBTS+eD2cv75fSKoyD1UQGx/VzEaW5hELTpOMtwl2vy8Z84dZ1QOkD4wnwb5olCvYR5JpdWgKK0jK8MPBysAgR8Izub6pYzKPaofgG3qHJMZVxzK0J6CR7tJWIZTJHyp5nb4J9FIxE3n/KnaeIl+uBCi2PvF2gjBdr8ythJGhQD+Nr0lqznP7PK9F2QkGpnlcA9Tlji2TKmijJVY1ulEeB8K9DmuQKwvz0wagP7GYEJGwSIsZN+fpMM6IJ934ky1Ml3E14iE3IiL6fsqXH8/rBsahYu9yTTSHo/6iTRZaoV8r49XO8VWIN5O3v3XK8VXE3nS+A2paxm/qZsZ/FU27ZNThtB2+pUzeRyUYrhcao55uXg3mCm3F7zttf3fL7FqA4Na4r6fov/M3r6fBaiI/HSICj6ZOuW6KgJxoH3krY/0bMox5m7ZYnlB/P+cTKjPRH38S/fGrnPJFrkeeb1OmxpnyVvryZAjlkEbmJCNs+/xq46miiL6/i/50in3R6+NqY9cJbtDyuRH2urCFVBpbSGN9XjdQ47TNr/OzA9cCfWz9fdPIK/AJcnowjnNacHwaEbtr0Ja3MvqW2YHzk1QH9tnKR+PSJyvfvDBT1TcR+Z+LyH9RRP4tEfmXVfWfNbN/7QFy/Oy2+mXYm/pD2Ehgunrwxr3qTHwKOMIYAFFbx5f6l30ye5xGyEX8T/bY4K4mcaeb9YWG16ow7mpcn9J9gP8h2G8tM0fqTQWK7mA7HDZWvG4V1j8E63cG9f1KqjQ50zMmmx2aTilHWu221rLNeP7wbV4h9gjUEchNIoE4zsvhh13qFYDMLrnNI5DJOIBAx2E+/ZzKCXftS9bbTCZkbP8RGx/1Pa/9nLG9U0XE5h13Q3paf+Nc7hLgTibc1ojJmN+txEAZR0xHcjXEX80zbuPCAf2Ey2BfNtquhJASxleKmdiPX8Xs9OXG+IDqcW2dgiAwt5MfMt/lykY5fexll/6EdXaIOu+Z1nmK+btc/u4HjrmI+G1n31aVDqKC/khk9TJl40NiBOWiOTT6q2bX1i60fZVru2Kw0bxFFu0usrEkYFxUhXegTdqnQ8aZr5noTyZvP9qV7I8F2XGqnD9chnuIxms511y/+HRzgWOi87Iq+MRFiYbdy7svyuza4nVeT9G+vqn49+Z8qFO8he7XPSXAaLNdaxXHt/OBfUbxSTJsQDM8tIcfGP0Ps3c/f15PpeTHr6L/339P9G/9idj7u4i8X+uN/+BvRd6/xILaxmcr0pj4lCMZ0c9yW/Lz7iDNrm/Muazvp8jf+kmOH3+6tjLrWAONxX7ohm8YLpNBl8WmfL7AcV3507GT9PaTyfF+3ZTRryby07vo+ynv5yH6JnL8qJI/FM98Yc7zWHHd4B/MqXlAyhUT9et4ojfG1d97szcd7XI5//fL59sx6bbvuJFMMabSxJvQJfwd8TnyiHgHrlfJr+X7l++xY/S/ICL/hpn9383sRxH5p0TkL7xKBPdcXxfcSVWPN6cMW+CcqJGEERRPN4yX2dHee1rN1RmQDB5JL/gSqX3hfKB1CgtCDLtyKF0TXej5Lsq34D4pCzpsRrdlaRCvFR3/+YBqIpZhI/dj2jTUS2IAmZpPI7kWaocHg1OuI29hq8IMqoBnMhNELDAv5i8ddZu4A9Qdvp3XP9wycb0cPu5kvsPdVg8GIqIGc4qTAmkKzxVuB9lcTwfqAra8XAFRQC7Lc34VlG+MID+VlDz+IiKQUKhdiZe/iH0ttiHZwOQDZbr7uym4wMagbe80fh8pdoqYib2/i71/Hb/P8a6X/xN4Wd7t2eC3yGXZuc/zyQjFAUFfbTL2DYq/UKb+7zyvBchplzzjXZ144vt+Qlwx0CnFKpx/kPAoOgkccLNxf8DkVI33cdSfNIzESPygAtfDqZmfkQzRXxEjvsg+6RFktNFPEwl9qP8b7xC5fJ4Y+/t/8R4S2N16QW/Lqqs64ulI+n0dqn/yVY4f369E+ycYK58boP/0rg/qgsZsN0dan2OL3wzsQ6O5+TLnJqNGMmw2Y474GInI9RT4x6/XWH19F/n//U3Rv/m3RX/8Kvo3f4qFStKLTD891kb15iyN29TXtL+5KJNr0Wc2brac1+LnHE+n//aPon/yk8hP72PcLMmUjrXnebIoyV856umHlmgsdvQUOXxe/WRyfL2e6OlP73L89PX6+/UU+fHMftV9XTBYyGQb0/H3Ym3KqzAGYnL5G4+D7yLHj6ccYyvh208WryawXSeTa3SRdNXJyfMS4onHnuvGpcnxddXBz1Fwa+ar/z5T+R4Ls79TRP6fUP+3xrVUVPW/o6p/XVX/+o9f/+Z1sVt0qQdct97mLlLUyfP5IQXW1ZfLuQCdEApyFEjiOxHjUTTLseQDdXQiSyEnH6Z1h8t8Vws0k6LVLd/bQkFoh8ia7egs63h5S+g7F+JVdLyRBXVSbu4TbUUEgkfY8s2gM7Mfr9zMOYZjaVXkajc4S1CGdAzPAB2C2qDjhIdM+BAizBHmbpIB5mNR641NLcRPMrqLSM34jqpN5GJjd/Pizg5ADyYEi+8GhG563Ggz2Yzf4vdCbKzE+NktKsgHft/+togew08Oj2UmehzXe2XgaDSNv85+zP0+U8i0r0fA/5KgZnGeuh6HyDiIRJzckCvqqllOJQvnlwZxEDsFNTJesMdlh286DkuwMZ8mwjzkpPLN468wPnP+MW6biACd6x2ySyY7RPT9kMM09GP4qQBn5eTHj3a+WkIRsITUhcBFH+hjcqicbyLHn7zL27td2+XerxdEFZ90HNnvOF1FRqgLGs5dQVpuuQrXM7Cki4lNmvuEOewIF3KqMj8XoeN9yHj3Ua/3NL98EfmTH+NGg72/i/zmh2wo/c+mo1n+MO1xzfsQW+xs+lQncMk4noqPg3f063k9+XEf6//hfG/xOksWDlB1hLVDU92fqIuK6LuNXa8KVHQcciOiX9DfCPk8drhZHG6ZffPuXPgGAHb4e8wzi4sFw1hQ2pvWp3g4Lzq+i4J96+JNDMWgO8/t2VrK5yimH//3icrv7IwVM/tjM/sjM/uj33z5M9dF2soYvzsCrcUveJEjzBEhu790l6VZpCRcyxhGFMrYLmS8W2OWNSfL1erKpeFkZM23yMgJ145v24l1KXdonsC9QP9FsO9bdkz5blQHz3ewpJhaxrPm2viteL15qhEkdAQmmicuLs6hVfcy697YYxuaA58+7fP1eDjX5CbpN8j0ZKxXMOoS25DRZiCK/sMML3MuJdnQ1iXlJluB8S44vteFCX5KgCRfuyuvzokCD7LzWueWFvp9/QMZX1mdsh9dCNIsx0iMDNqifWec7VZGuWR45z2vVGLh4Su2KZPyQKSMbOFESzxC2Yf9fT2v0/gQtdhkw5cXFn6JnXQnQ1O/5v7A9ae0PhdGIpnmYfIT4My6sVFusLWL7GS0q19vf/IeTzSvQ8LW+Ej/kjdz6/OFvg+v+JwS89gcSTA1gk8w0DieVMa1+B7WpQ/52z/Op1YqIj+89dn7Qq7SvpExxZuEd/FXl/P9vLY0DmD7cgieDqpMBMdkmxRQfDEysRPqZvFAHmUM1DcZB6NomHGNP3sLaFtx/DzeUHt2GRYXTWQcdvTCXL4xUnQ7+ekk0Bv6Sk+8X44kv5aPlu+xMPt/icjfBfX/+Lj2oZLeJ7guMES2rIycf7aPwfu7DmlniRhNHk1/SrBNuD3fsG8Konu+JPK6u2LiLzPf96+jlfhs+IZany6UO74PF6xbgB1wF+mf0HwkxAbeCH1Fq1nw3D1KD7MZASvA/XeXD41bubDzQcK9em519oK6HfO6Cg3pLh5EyNPxe4y96XXs95UkUd4RNmfzNEQPZqS3lRvAspRx3LUMGUdAPgdSWrTB0f2rDod+VbbydDIFaZW0QPWEN8ZPJbaumMq1E+/sia78TZlDnbth+9QM2u1wfVzGHX71RdkYYDv9MeoxeFskZ3Za5lcypoVTDTicHNdWSlERectzI20LM4n3DzFRSUYXscp/gnND5aU60EL5hwHYoXHqZJ4bflqkTfnD1oiWs1XmQ3W8zpdMpnIOlfffiJyHzPfQPMHlJ3JNwEnb77xjCQRkhushLo/1u4moyvmDyPsxDgwSvU7+c79xSPZtinQXQfGFWPXE59yiDicT8ZSTbZpnUxXwHp9vxxxPXczGQRZ/8IOcP7yJ/faHC+lv/Sjmx3qi3YzfluhnOdThwSeVuCAyfapRXeRyXF8OsS+HnF/erkXZV79BMumWOz9P7wSVmGiTroqY+rf+Ll35+7p2XP7ofBM5v1z+SH96l3KDO+TBDrZiFHBsSDERgr5pfofYn5fb28D9CrpwW9454Zs29uURu5TGz/MHnTb2aYt9479PVL7HqYz/soj83ar6n5RrQfZfF5H/5iNMs8gCdEx8hQVZeuE6nKROx9LdEXVaGEQIFsdg8hWYVTonUnHOSrgT1mnxR1ERC3eh4GEGlyp2fKXw6VSzwkVVGcBy8GljEfHtco1lof7vnGzyx7vGDR3dtP0sBfXIrLlDVC86gU5HPyzXMSdLZbwQfPpPFZFT4ywME5kHY4yDNEzd8QO1QVzh9+TPRgV90WpI1xYWETtNdGyJMhORryLHAd9cigA5f3tAMrmSLP54O7IvCQ3I0BqzyvW+25tdL8CbXO9PeX9RN+loep3th8SCLelKaX7xb5frgN8m5R0/G4nliQsv5zvkMhXRtxlcUYZQ7Wred3KhTNgvm3/tbejqI7f0VEV/8xuR9/H9hi9v1ykAX95Ev7xNX6oqOr5fco3/dHbmulMQP7Yk+XfFvNHji8cMu/i9iciXq02/wBnvKteWK487b8e1lU/1GiA9Lr2qXLYw7EEHn5nwgy4bX2Sjj9OuDpG3U+w3h9jX90sGmfgxNwT4OiOOkSGTSDouv+MLPFKssqHzNxH7zfVdJ/vxTc6hCxO5kv+3IddBcwU+M5F04Hx83uglY4hjMzF1OdzOo39vKvbbN/lqKm8/mrz/2bfrVMY3FfuDt0smnw+4bxv5+n/Rt/mP3fxg2FdKOOHs7q/taxbJshLsjOl6DS18D84P7xBVsa8mbz98EfkP/KHIly/X9T/7hyJ/+IPYH/4g53/4D8V+OEA3WvsKZpS6xxfc5Ezmd0CGnz8OuUZUj7kYOlTsy5vI8aPoD29iv/0i9ts3sT/4Qc7fHvMzC8ew9WCrN34Gndv4Ftvhvl2vp4Z6uZs3n8fHKSrXHDd7u57k/eYQ++EQ+80h55fjsqMv88Yh+hv/TMRLRWV8V8J9mcSnL5y+fb2G5Bw6jU+kvB3XQvK3h9gXmFMQf4LHwnY7Uy2+3W/yHZdNjnOwxL8eGfnDJ1vAlPLZ5XtYvvmJmZl9FZH/roj8CyLyr4vIP21mf+MR8mb/sHGtCyYPR8EIdsU1JiLKcMtnZlR8N2F3d8H4d8v3vvBdxy2u3S94dmy3Wxl3hfne4LbNfNHmn/iuEzunJwwYl+tPaeoILBq59lZ2vFFjzbikOsngdorJW/wc7+BEbIf++Dew0rZqb/M62FEkufF33Sd/2hR9SvJRB96ugHPdqdR5t1f1epJ22Egg/G+jCyQJfWAZ2uKLQU8ePTAd8+8cy5Fwh4zNWK3mLsCjTk685tfRbtAWPeEd34w6wcbSuOlCDm/Deidjo7tiy47zNv59pKiKvb1d78Ecx0ju8WUgiWTa4vd1PRZM6cUj6AexKot5f+IkIuYfnnV6I+t1Hgbj7Yujy17qhp7MJ8eqpEsSOSruTN/HB7FdhpBLp05G332RlRflGhlXLMpw/IG5cRvMfRHJpwCKiLy9RZJofpPF+4Q3LKDPwSfmsYFMsJAFXaUFArscBRFN5PzNcf374ZD3H2B+Dh9YfKRfb/pvRRcwfigXDXUp6Ms5yDfw+bLVsUJ9MLyP+fgdY/Km1wLtz/yByB/+Rs4/+9vYOhj2HTpq8pbmH8pVrqMu0SYdzmF+80Xstz+I/fAm52/f5Pztl7BvnNsxz7SXxf8lf+WLh/mfCIKa5NJkw+cXlfOHNzl/OOR8O64bEW9a7Chk3JVVXhPxhn006ArjzqEiX/RaJL6pnF9E5LCpD7aJzt8s9VTbQ1c0B/Ap2RV7TOzTfPm4L7/U4R+q+hdV9W+o6qmqf0Rt/4iq/huq+n9V1b//Cb3vomYz++dF5J//JhrqMcokJYFcl83xug7rxjWeuoU/h3qHOmUZ3jX4akyuaco6pNGA7figg4oYDJNKUp35spA7XE31tn8cVKjuY7DiO/t3QwsuI+4ONuB3hfvvl/KQ3JcuuK5wX5iwPLlxV1Ghhb+HYlNfGjGUYcHAYuzsClDvKtcCSK9TnWJbID41AzFi/sH8UTdYftqs3jaTgutPFh5V60Hx+v+8m5m2u+CiQ0Ybzg2auy4j2jYPY1Kz03KgsW/xFBH9IvE+QmwlGzKlY5zt0isvdso8H5Uyp2KcUDkz2KrJfA/ikHkioo+ZM/Agjv2koMr+RqDeyRhgnUzjn3/U9KUbM9j3L2+j/zaeSH2ZjFXz06KBZKeNJ1fZJsOXN35fRME2IGaYjOOwxx1of+H/OOYR4m/OaPA/sI6KmnOj5cNPkQdu2vY4dK3+5OGLyfnVUce3jFTiTv01vhduLFSUjsKPwcyDG7pxmf0/cXsWrkNyaz+8ydev1wlxQcsumexNEi2fO3lMdIiiuf8H8kPdJNWUeWQicv72kJ9kzIExXlfuMGwjnlha8M2G7lsI0W7mcLVxDsuqTdc+PPnuqM+FUZxAK9OvBYtjwML4xmcXVcYTomus5Lc/iP7B9WT6/c/8RuQ313aKU3Hs59M2jbmuIWYICt3FfoQZDSN0WqFff2p6mhx2iL0dor8Rsa/vYr99k/MPv1xP38XoncVpNzH+7ENBnSjhhL1swUSuJ26mEjnZl6t6fBWxH8a8fj/F3lTe/+CQ84vOMfHdFCiHVpl4zFg+n6dxgqLKOBB2zLQ3uQ4r8RMPv6icg/HX34icP4yjgNL4TdoxDFBHAcINwV8DOw0/MuLLOEtG9MvYNWzjACDVb17A/Ozll5PvXxWRf1BE/gm8qKr/abl2Ef5nROQ/JiJ/TVX/HjN73xH7Zde/u62MMgz3gCxpeLOYsImWzC0ew6HhV+TTZGenamMCa08LJ8RV5m9NwUjCUyrW/Y/zSTIjbp7t5Y4/5gYpoFJ7g5vWugTrzhT1mtABViXztQKc0fhuzu6mEw3JurG7vKFbgijXd7iMtwvWzfW4tMMTKfbCibvC70jY5bI9PeeCxV8U9kWbHXDar+9zjORk/p45pE37FUnz4KqPKuSVs39ZWS4zJvRio/6WDS7syEm8Tfp4SEm8A4a8aQteO7YQYF03+gYBbugm2SvIc909JBlhHlz+huyR5xRWis8A3eiENZEyl+O9AwWZPegfgE8yYt3pYndQN9hgfBBJ55ueFFWRH75MWgcI+zbeO5HrXSqLp2hyLeAO+E4Z+PKgG+KZmMLq0WnKSN0OEfkyVjjHIfLl4m8D1t6OqbwvOhcPQ9dz/kxnHgdjyJGTsUWsQpu+4sdY4JiJvY+FIUxQ3MqoKvNdD5WxtdF52nKL2pRr6IrsTnTox2UevsO+HHKKif4wF2ERE4OvVL8CWyplzB28z8kJZtZNvRi+Q0Xsi16L10Pl/G32T4ZP78BJXHNj+rYracfJLv2chEtF0FWdfDf/Vqx7sus6Oi1uoCXfN/zTAXNdReYWtHeRU9+u0fPvcH354bqh8UXExlY4l2/e5JC4aYY+J16rMJFYUejwT6fO91sPCATjnb5r0XEtylTf4lU/O01kbBv0XRPnD2Svi5MH4yYn6zTghh7fJH2fPV4phfpxiLz/Zgz2Kde2Rf/3di2E5G3YJ26HddYkE/tF1KvYzAVNbb4jfF59xWPp9W0IOnQsh4j94E/2ZNyAQF2RGaZ5TrHIi+vRg6FdOvBvo+Hi0sZ2xnia3OWcvxYRETGzf11E0vpllL8gIv+Umf2JiPw/VPXfkOsTY//nHb1fdmG2ydJt037ZTT+Bl/WySuphmW/lteeLfmO3sOIFDTr+3WJnSWv07w63BJg96Qd8n5cV3bv1zi2hF3TFAfelgri7znPbXd1pexst0GzBEx1vihF+Z91yIIuFQ8plht2oCNwdqWPS6dwWalACQPlDh9fbJdNeL2Ev5z8VHQsTBVJQx2Ja7SgFKtdHaiDd4OWRbKaX8xXaEHYzL/jJJus16Zj1CjaH71dx/3E7UbRt/E1UkY5NuKQLWFRfiMs9CzdFJe5MOXPYwhSMVx939c4N2PDN+NQjaOUy/bjNK6qw8FLxbcBOy7+W5YusqIcok6/xuCxsdPYd5aLGYf/+FC7GXyW2VAZfl434JfsR0E3Dd/7GOXfNzrizrv5jyKHTT4i6/WmaN5MW8Wr0FDppbBTjabgokbkAdxg6LTKengVdGj+UiWTejp9k2OJzyLcEHevbUh3pgT9wwmZww2u8lHS9y2vByG3Rt8ad8FTRee78oss6YckppbGadiEi8ZTpellKrxts/tjJ7Xps17MfZG5ldBlwDLDw2HQ6BOWpXrq55Dfxd7BFr62K6camythSfy2AZBxNX3YbSHYty90QLpNNPJEhE8ZElbhret2Y0RkTYRv79f5mtm1lPTX2aggPDSGak4QbEvPp7QCEFUIXQz5dWU7YX6z8nSLyL0G9/ZwYl0+zY3S19WZaMTc0szIlfnCpASlJXXKiwKsYYifH9BSesjCfqDeTXQB7a/krXJP1/mf31ys1NropF6Dhsd0zbtO1l+ZQVvNVFJzOU4fROfNX5XjadlfHJgOROgP160AH5wwG2igjGKVrvg0sCEE0ievE766+mpqEk7tECVJJ8ma20AUbpL+TueB2CRDBohzpjiHdLczyg2z8V5q2hYypcKKi8x+e3JeuE+6tjMxvFN8mFXWTa+Gywn1afNHtNPD9Ml8oQQI5F2nXwigPoQ7fNkYyxsfteuF0RlAw1dnPoav8XtdAj2uDq4pcp+Be9O3wd8OmWChiFWD0wjS2qMVAvZnY12H3LpjKeBI0JrrPDVylLP7lE/9yXEu2gmXA+s5Af78x3YzAvsI/ny8xh4RsVzZ8WUUAm0bylOvpw6Fz2y/PgTFGKCM+AS9zA+Wi36WgXjkuKcmKBkv+R1TKJ018oWRjf2GwAF5X/dradj1dBl/ptm3ntdX0B7nep9JBs1F68anUp/lhicknqaPRpbi9+pF+Pp4mYl/G9jx88qvzHJFHpcsHQIY4xVevuan+wfq3Cz69UmJyPSn7jYyn1dlWUD/FL0qn0SJOFtPHcsytEOaEA0fkaju/XO+YpffTWFeaVXDn2+c21D5fUIH44gtH18dLSdvvtnyHd8X+nKr+daj/sZn9cdBX/Wsi8ucbvL9kZv/MN3Gm8mkWZmkrFXtLD44OKxBfExXwXKOulGxubQv8eH7XrUvhaFaoCL5X1vngtqTA2TctyyroYq0Nuj3x0kTt68VzUxa4S/AnNHdsmgApXdv3LGyq+twxLMVpDLTAusm5Y0WnOSJkOF4TiROr2BHLfM+gY7i1H5FbPZfnKh0tgy4rtWn9zQsLlrGVmQvomAMOJ40pmRPJi93NvGV2O5kLPsikJAMnuV1CutQjyajOoCkq450GoDNr3zBZfWt6LMZGQyzINLXjIRaxSPaEhvuJ4h05MU8x4xCx009kxKP4VeJrqsOfp6dxrIcQF7ZKerzpVIQD730YDVeSffFMWwbFYFFIB5Lg4lGq7fa6sfaJ5ArXZOyiO0ROgy3TaDud7aWhzDcsn5aINwJ/XW9jq9cJT7qTD9Fxhcev6WPqrOuXLi/R2AZXyQYQ4ZtwUcfOhr4ghzlkLuSGHzq/yLW18BzzecCoHPPJ1CFyqqaFdUlSoB7b2YpdwZMmJKUyXwXx9+BEYssj87QvU6540oz+eFU2MrLqp450zCONTyhcb24O4/KFxxc/Ql/l9C3LTQIX/pjEwgovokNmE0nvgvr8Fh3f97R4Uqdy2bb4t9XQ32kvR469wm8WJJh0k9JfcThBJf5jET8+bfnQHvso/7aZ/dGq0cz+3g/Q/NDnxD7NO2ZefI8mOoO4QIZW9nMu6mlCLEp+NKyzXiy8oeOTlmSMxHnJRxKf/H5d7Q6zzqrZ47aPvifyxKWmFGBXtHaFcJumntbdXuabIXmJ1itlxReDa75cQEvjAGhffG9wOaZG8POLlsc5tkc0NrYamLRffuB2WzcSXwocS4G5P4CHh1uEjF0SrlOmCDadjE3fOhlLYmm5HomRSlmUbRdEVvvHel1OjqZ/T3UTMsE7ZWkuxx1lag+ZbKmLeyWvivYLM53X4x0yfGqF75uJpK2uIhrvCpWYEb8nrr7pOO7fxl+EnbjmfJAvLtQcVituyOjzGOAM2/3CSATNVPTdchvierfxSHF3OigHysO6QV/Y2Wxy2DYXQSrziWnIBbTZ7oDuPN218sW51MmI9q8i1zazd7m27n2dvs+6+crbWndzY6MbxWvN7zQVkD/GBJX49ls8YRoyK8IruYS3kajHguwC8HzBxk0390/O7xwLel/Ix3Y44JOEh2Dj0z+3j7G24TsGThxN7/ozOCBCTeI1NIfXudDwb4iV+CFNvZExLWixfQDZiIVil50YtOE8uU7dleudY/zsA40329hKZvSlqMcT6wZ5W9CdxHxxNE/alDgJt8hBOogtjAp1q6ClD4v3kdsY8Wt5Wv5ZEflfq+r/RK7DP/5uEfm/3CF9mnfMMNa3+RsbxMZAUuITsDM7jERVsl222wwRNzyWAi4gbWQsCx7JbSVwb5xUT8vvSlruPADf6hUCw10pME8c6xM6L9KjIfllyp3CeMHQyLvrggfzuiKTZJoY6NuiEot2I/zSlZXj7+qb/qQgJTc2CHJ122NKYAAZU1snW2NPeEd+yRfrGPCa/oUcTYJ3q1eed9yXJ7o5ej5Z/gGxS0pZbu8vyiAfLJgs48IMtrKmxU+z6OpsqPWb6SafG77BgIt0Y2Mg29xWNE8IRR/LtjFlgLvyKUY0uF6BhKuzyXIqWzNmUx4y+HauwORY6DU5FuIbCR/qifiUp718o0Ak8+3mM7aZxBjiOzRxaqsuaO/mxo7vTRzq/HbEJBk+Br9FyL6b+wZU0jfedC2KicQC9fSW8bQj3i/DQ2HGNGgLxBAa+hYuP1mCb1MOGL85jexMRc43iS2WaK/Tp16IbT4ygphCnU/BTiJjf48uNl30zmPIxTe7kKDSb2vqpKakL5SR8GG9G3MKv1vJ/rjUS8dJXhcFcwBqjq20Cz4f9vu/q7Ky65+5qOo/ICL/uIj8HSLyz6nqv2Jmf7+Z/Q1V/adF5F+T6zPh//DdiYwiv/TCDEqcTBRH6IC1poUGeI7iJSFwuVe5feyUyV5YwzL5thIGZrRSl72Rg7mWO3tbvoy8w9UtbncS5dL5rPjKxlnf4AZK46CWhZ1e08ZDckvnFZ5P4e9wlZobmHLUvl/DaUD0AnZkccpjdEgcdY7jsUp6eHzSyW0i6QkwB251OaAx8XFchnUZXY7xDsCJuNhvDkaNjKgjTMyU6p2MceqjUBvwdZYhY5MRIO5Sj3dziN4RtDeJ1za2uOgjxCLIq0EiVCYQ6cqovzZpXUn8ByLgwM0LMwXd6jhJdx6/PbnQ5NL5L05UjK1WE9YQV0ViNXGoiB+RH64zH/ttyAdoWCyOLMsI2wTrO0hgBJZxFcbIDpHzfaAcl+JP4BvjcOBC1kLm4iQwFtGYQseXQ2ZDjiu5npOf51Fcx7mDCzhwUEvL6fwGqm5UrgW7iLyZvH8dCbo/SRLJfFbzBHWhUpPRwpfwV/IL+SCb9P1a+PaxfSzaD7meQJmUhYaXE+jqCUfEHyLy7jt9LoK+Ldbe9DpZczHOic+Q5fSLcWgGqkUTrIHjV7PrExRDDvVDQMAc4+lPbHEdfiCNQR7DkNFE/DTDc5xyeI09fDJCJOVZ6orz+XHm/orJ+OzCHB+fU+q0RIqtTwGzfpK7CZklxcCQEfpXYojKGD94FXFhjzx+bewlEV3tp83raZcXGkb4WvnU5Zc6zt/M/qqI/NVF2z8mIv/YK/Q+11ZGlek8fKLxVkYFi99sXbyCCeLCpEUUn0QzZoqSI8mTQQl3wsbicrX9EsVwh53i546vFD6FzQb3I1sZ2ZEEGtPaFU1/Ki3gu8Ld0f0Q7Pcs7KBXfHlMsN606UrvNsc/sYKTlQRgY/+/t71J5ct2g0F50SdOYgouyn/DpyxSdnWmzbDdkx9A3doNyrhpV4K9k/mEuXoHKxs9hk3sZF7o5sK1PBE7Wi4G3DWOJBIdw0fn1AECle2JrtsjbQWcfl9zHxXaRER94gTdkYz6QitsWsdpdkZ8SaZYQIKMAySe5oGMhvAJdypLRdK7YcFXLI4gV/54dxrDjOtbKrsnVuIyCsICLsHjkKaE34/uxnZQ052NTt1CKAabRbPimFjnhsIhBTZ1RbG4dKjTDfb7kHWM7H43Oiu8urpPHZjfuQ598Ix52G4ccT7ozBsRkrc0Ygw45Hp/0Z+aXcB5rnMskps6GMIl1zQoG3YcMvI7ZiLxfc1TdcajpzEjyYwDhkJJKj7v8QmVMZ/h306fM82T3dAD1jfvupaY2OV0CAv44atcf7CVcasrjqccx+9isRAu1fkArE9XPvnC8Wn5NFsZRWROmtJmFVYBgQq/AmEJNm9lZPZpYrV8Vhl2/Xh1+x4iO/8t376kbZ8hzvXDOl11dNEZAgDvgkyVlTO/K0Zj0iwGbwvz2vH/Ds4j4p+Cejcsi8NGIqMd7zZFkEB8qO9Oe+pwOZng4cV2XdURV2vS5H1sxSbcx3xV0nsV2L6UEeTAO2RFZtIJFkwQjWBT/zT3T5TkWOGijMDvcf+k/sX2hAv1qU/LAZjlb3AnL88C80mZmwcrL5TRWVxoHZKJo29QjcVVxAUlYTzpJ9vIN+MsOqsjA/FvN1nIZRXX68eU28T1Cf7W2zTXxWHx6HYo6WmK+9/0ZGlOpjL+cKhG8JE8boyX7CFkyo6/+hIjmWb7rp51s4lzjU2nhBHrgMzfjYs5vZKpme8GMEp4xYlyf7sCsa6cHyaSFwTOh+JC+DVy9JZ+wBOwARu+RkWuw3sk/sXNIVCSy3iZGAox+uHEDy0yTr7QXxHp7oylXrjNHZa3FU4zv48ZoNdpU0fqT1KtxkylQR42KipyaJw86kfod3FuTPu1jJb5Bq6SzES3yHzA2MECDeeMUl2ATojDsCwzy8i4UnXxaYuHrT8F5dNsZZzOLAeJui0wB6NM5IKNCSpQH+1l8STgoEIWIy/PnhuCX7T1fFLC5HxwgqY68+X+SZ5UCXcVmaZq2o5DPTvYHpb5trSkwmoD+yTIFW9NDihAdrBPeTQytVsMF7grPQQtBDW4xkrXSmYGaxhLk+vuZKPISDgM1OEneXl9mEwEL+vrjstbFVOy5YkH8I3C2wYZVjLfNH5DEbHF0Gaw6QKtBxgRKdsy0nwkPSUfALYV7RCc0jxpgp7DxF9IYLxwQMW+pABqWU/J/kN343tTI8m20fn0nThKJgpfG35vTKZ0mm3IYeN3Y6CPis6tfmNVfH0jbWgaF2AD/jrg4OqP6ZFDg4ux2cJu47/4vo6f0JY+nK0y40paUEn25TCOkdTp5JOdiV0HHMikHXAQM7weB4oALzV8Vw3tWaev1yyr19VlhKdVu5jBNjznLPRpMfdxTsYpjImvZb1KjTdG9FHmdIPMJLb9xQ0smiuJrtdRRvRHaM7eH9AVy4hpQSlDjrYZ2hIv4I/NNoDmtkf4oM74VMD1W+I9NhPXzdhxNN5Puvp/jUE6WTH6C7Y0Ol+2CY54U+JAoTWa3e+naaHxVMrH49Q1bvL7xIf1itvQGfeE/iGu+5c4lGS04y4Hk2ZcYMz4FcI5d6vM0T/n0+Civfq2Xb8euCJ12z3xFaTl7Q/0ijK6bn4tv9vyabYyzu15Gm2XkznmDBiBS4UnuwxnDTMJ78K6N3UjBVyfxHHcq1/F4AQvXQNW4Mbj3Qgo82vviU/6MQMKy+iqKZ4dYN0hd+13uO3db5rAAe667GQWmNBNiWAIsIsb48nxtQDMA4Jm275zJp1+VmxIyJcOGuEO6rq5FIf3IA/Bi3K/FIwS8QUs2gkmPCc6fki2EizMxZQs4RwlPkI2FHBNgC24QnLIlKOcHCa5biij4wrhrk44RDlsJg9pt1QjE8sQc8DbG5lXuNiHVJrDRdQlCV8FT6MAFH0Vj+ek13yoXgV0ZWJ8x+JJGbSv3wr+XtMWx0tOEG78ZllDPNxSCLRF5nb4GFb3cyai7NdRPpRRZoLk43jZETBVTXaa+nJxFhE47RefUHnfTGJLGtowxwxf7E2ZAQbejYk+DPYx/p0NkyoiuRxy6YGTHGwH5wnSTTaqWS9CsChKG09hWjrfE+QjWK/6WKe++txXyVvuUGbUqUn1OZ0/6wrrp/OTstBDR+eAEw9NruMOXUamq/mfHZLff3Q+RjiuGwNFwlxPccAaGlD4Rlesov1pkB9Mgn0Ae+RtrWGj0N9lrAK2Ucd+ot83uTJhp/Emc1FJY4B20m0/RN2kp7idjLh99oR2GwsnP/hD4Tf3R7Kti2S+bYzsdLWQUVTy5zuKcX6y8oGw9BnL59rKCMWo3TZtF61aDR+WZmSFTYlQ4cMIe75YihHvYFu+m1Jkvvr3BPcp6R2tj9j/iu8rtEIm5Yv3jDrc7vH9Uj+ax3SJaw0NClxGdd7yggHchGAbuga/EVcRt7FHxd+cOHSwurBVwk1pHNdZfqQHfFD0Tubd9iXHRZlx6Hlutts4FNp4vmE70sU+rXTV9C8lACRzx+eqQ8IkGZj1UuayzgVA0jHqNPjSKKjI6iCBu4LfJcuLtCk3fmS69fv4ZI37uMINfgY2dmRc75zA+Bc+XrfoB9pDso1UByNq2q93dca5uorP9+ZAdP31m4Z5/OldPJFFHXC7PqD+JC9uqzwYf0hmIXi2u0531DY5AFGtyfFq7qe+NP6p6AbbALbbLp3qdaqkyzxrIg5YA+vyLBj6E41rSk0Ocyujzv7zzZxNzEh9UBHFFwyRl6JvUP9/wPJNMdV5o8T1iHrQRT0WGYs26XANcGWaZDv2RwxBLHKiTYnuRmZhGRcyr/q3mge+iC18oC9tXWQdI1cyO2/XQ5JjuVft85SPJKafsHyarYwx+Ljl4bogvvTHLR3trYCAdVyfpJaCCfseR3VyhlO3ZJTM18CiJzDzMRZ5AJRTGXemT2Ihk7vvtC2jSdPVYtuJz4bmAqc4fwB5WrYvKK94d3zucL+lWP35lA0mEokA603peyjjWstHr/fHuW0pE/HhAeoSlqe4LexijMr7dUTbuutQtw5WyHYb2MS3w9UbXO1xhXFt3858MVG4ZLQMy7jayBTXJ3WWIfVHM5/270cK9lUk+2ugfW3BO8ZvnVlOu5CI7HTGjAOcTvDEbI1PlvSkcTos3N4lSjYgEDMOiFsqFbcrgIv7jX1LagadMbGM+U7GEl/Gf+J9FeDDNjtg0S+l7cllTmrmCzIXvQnjVr5drEhPnOEn+s3V3N/6DQHddDbOuAawHJdYRjSDocPEnscHyfn0Y38a8LMBDwJxWjYOt7GDfAFMiydl975zatHxXTVozb4MbhiM96Yw+edYhXxLvtbUE1/QWSwCdzaoMp4qVp+KcDsZuXC82faPfHfMZX+/bDOHupuMy7KyfZCxxHLYm/tKzvZLlF/fMfsehd/iJKPRdARq56kX9TEB/M4j+7Tl+1buRHkBsluBpFshc+sK8ynYDbnkf3eLHpaR4W5wVwGI/X8Hm2BecQBPo8CKN12+JdkFzKYUMXd2dQNbAugTvhhACM2DOcNqIiAZmecQjjPx6UoS+cmYrfrHckjuH8OwSRYZGRbmFW4BaWXigMaBB/myOwKhlk/A9QEu1SdDkEtINwE3tYF8WnrwVymoSpJxPANhP6ezP5wMTFp3DmZT0vY/kjk9UdLQmybdL3iH754xA29WuaqDngi9n0nvkbkSVEIO5pViBki2va/c4F6HkBgk7fQedTe+YVNXDFWWUUR4UrGNIkAbE/0n9DFhdfOo+Zvmfue3Nv426dXoWupL5tvKCHVu287fHS5OIe479gn+pmHJhlN4ictlkt+Li0WbJro4SLggTiKh3gZv3CYYJNk/Be05qLXvOm2pCTQmkg62SHOI9FZm0cp2WEbne+S22K7ncIgbn4SQuRjyNqXxuhFJiA/qqOhVG1z47TrqZF6OD8ksQkPBfUdaKpehUf+vv+nLer+Wn7F8nidmo/jdwstYdNZNcOfJsBnyrGXWaDS1gQ7qycnjOwkFoZmZC1stvqmBzcGF+aJMe9zlJOzE3sgcjkSBzsIZ3SX4IrLdi39LZ6H2EjSZByjEuvZdYd3s/NCdj9Jm/IdQmFgwqaT/G9igt5DlFreKvC6s1w1wmz53SQI2qdStSQ1CScg4IdrJuKDL799xwlECI8AG7tHg4tg0vLt3iJx2OVmR+IrkepbRkky1f0q4eQGX+ZAcKdt4sdD7UbHF8KCX4eD9Ljk0xYW8BVMLzfSu8Rs4d4Gf6QkX6odoNbr2GJE+fp0+RSCJdrIzpKsT9OqHiL1Lij+IH7jl/a2NzM1pbo9xPUM/rUzoNLfg+y3lPVaim+0b+g/1lcxFJ0tH0sjYtCcZoY4ypvYd77CrRia67C7E+xzvranMxZcvkHjxQ/6xvfnLY6DXyX6YP5UNR3f1rjNK3YXFXeos6JHtPz7LYbSY4DrzJ10UOJp7Pqarra/pqRR8UsbBIxY/kbGzV/bd3TzpaBwSp0WWdyBRNsJd2UIY1GJc03t97KdMv8uJ17+W+/Jp3jGDmzCpsNNcLRYyXWpPRpyfoqU5bjIMb7EVJbyoAm7nGTu+ozp+eF6Q+5P5Lhcs1rXvZF4RaslOugvcVq5Ophu+u4XdUriHbS/R/l2XxtCX3WsCXdkO8wJf+16KeUWAD8zdJWxTX9rcK7DevuLHMmluE1nI3PWnkZH9wI7v/omZZdgVnwiwzYJM+raK+8HicqnIfDTomSnD+nbGybvqeXhipY/oppt8VQa/6XHRvbKSfnFwOevJl+oIS7xWTyaTn1eZDyNxvrOMevEOXOZLNy7LNlbZ4Lb6QeY1vqBuMh+Sif2XPKwvksdUJdV+T7+xi3PL+pPi8O1qDUhT37ptc8u+G/kJ+t4W9w2nUnldgRjRtEsNrU7pejwFwsXQYn62uuVrLPNqPDr/PklcbW9SbpYt6a5kXOm5iRnLPE8lLYzwu5Id37u4Vo4KJRi0HdYl2tEHXy3+3ZVPnfg9L5/midnc2j8cPb75Ck/NauKA1jkDpvpKKwLoBcuPYpOT8ZN4UI4lMHhNXpQ0uApwiRZcswVu6W7Ld4HDsNrIwt1b4E4ZJ19lWKw3Tn0naim7IPhKgHy17Wmw7WR4Wlg/tolDHLRVyvsem1hUE4CPls6Z62zi7htXVgFY8txWgDWqF76vwHI/fK77v85e72wX7VGmHNiW+PpYl3lso13XMpOMmNB3/e1ltDx3m0SB+zP3Tdu324/yBZmDNvqPL9ekLYydX3SdHKPifRwnNW6/t5hussHR9fwe206hDusIsXCkeOMydnOI5yfYEB8KgPYwZaydTPN+dXqvrAu/w1oOXEjCZbo8F5Yxggrb84zjDS7PJZHryHjWFeC97De6wu1Kvs+nSecQwdcpwLKMKLdJhkngNvukIuVpkInMhYZIWZQo0UX50R+kLZSNjG1c7vyITDq+0GC+7L9W/UvqxcU/8h1zjnHbb+KppENAEp8mTq/sSjrcxncvdcP9c121fGzAqiwfrR4iccPJnYLv2TwaGZX4QMxI4/UZi5Hf+j0un+cds1Hm1sWrbbmV0aQGat+6GIY26+l44kaUvC1wRqEyiXFbjMtAzt4yMcCd9fB76Kxpaw2/g7PKD0oA6pKRJiB1pfFZ6YIKBEKWSaHqzm4hx6PCutvRYVOYYnyc56tlh0tG1wW2LeuFM3/kKTlYPe1jZwyLMWlfgn6Iy/XybsQisWxh2eZ2c4hhV8flr+TfzO10YAeP7Y4vLX7KHALY+L5R11/+y7gvwIroFcTBrX3TPBGRuPkWCQEQPGabyjzJLTnNwBt195eJVn6CluXW9Da+Bt9ZL7pnecdvt1H0i3xwiAtw0QU+vCDY+H1cpE0ZybiQXyN/c78z6tWOEJiawGEVe+jsbCcjksP+dbFqMwfjWG+8zHbqMpMeW9oNXlffPWUv/hn1XtOfzKdZlJbE0zJous794c8QNHS6uvH11dx3f7Sruxwq+aaYyF7HN/WCz7liJ4cQvMsC2wYT7orOwm6Yb5eyrnBP0Im6b3nrYc2MtjfT4B0wf307Ikzt7vMrT2T8lOXXhdl3KIsnQ9VHZA+WVv+NpeA+Wa9P2HogSKXb8zGZvyfclKE7PjX9JV7gn++d0KZcfC8d8Qe6g1an6kZ9SSYCDQAPOIsAtD0VCEHnkNw7hLtFAtC1o+9ui7vSzUpGaf62QlD7Dna0W3f9jhQmR3e42tjoptweDwz826HRbDclT9kJojew2sOugl9SNcnVyrgKuNqsb6ltJ1fma5PvCpfb0O9AYtPhznd3Jp9ej1b7Fz50eD2qf+y4fDxOXbIC8Umhet3id67LhAeZRQBXEXbGEBOBb1HRNsnw8+hDh0XAd9ay7tzfKfRvMHGZIT5gW/DGedWpFWyh8AHJVzGjyGSkG/S/aN/eZVjFtLEo6aFvS3waGVt6LgP5Rj4K/a7s4mfMT7fvzs/vaD2AYR/KsRLz6NTMThWv+ZR2vTI+6g38ftibLfyruwLHtaaL7G+cr5J4MM2tw9NsMwkX0qy2jsXb2M+v5OBtvE5G578Wt+tfIxPzCRHBrh2w9EczX1EbJ0ZO/9X2b6Ub8PktLLwXbT65yLcubfLX8rOVT7OVMSYDbGW8JiQENv/vcqvf1aaOJlAf7UYvVjt1dG7mXiuCJ/Mj712cCMlo5IBxohjWme+abXVW+hh3VV++54eBu8PlPiHIQmbEWdK9CZKtjFL1XMpuOFmGHf87eXcZwU4ebarQJ3bO9cJj0i+LFWIYBFWymxhnIoLJFd+x3gVUbijbAAEWcUtAGeNjgLtKXIRwcTuPSa6XhRPIOKekpeS6HOyxwc2w85j3nq+BjYyL6gKDkpwrjg8fYOGw6CBDtqfGzfQU/ursv29D58cJWm+I8ZOsNmbg9neZfj/Q1MQoK5y61KyjA/QW7h4cprhqga/Mv2luqFxXvDvNhMwHDMzPxJRtnTz+Itl2nC/ZfMKFmJjmLxaeD5u25BKbedTJmAdGkm5KzHB8m+2M6iS7uY9+I81nkpE7cwsLdX6qtXTPCv13+s0UFJP5moWDqqQ+eEPUT5C52QrX+jaihTKhvKk+cI1hh4wGMqYHOb5tEPqe+jf6ey74JJlRNzq7wLCr/qe4MJ4mnTp1jLrrPhkRMgr1l/gY1JVxeQzcx+rll7vzA7g/rW4WNhoxZcSTCxesG+bKGfGmcVafrXwwLH228mm2Ms6DnTS3pS0skgPuYiujmIzHv2C1sTWmd5R5uzwEXMts2qOQwdmrMt8MsqqjjD1fRBr9IL5S2ba4wnWQqcPFXGn5YuyKPMn8JMgv65u2+oT0Yfm5YBm+6/BTejwoTBamSHjoZFfPaN3yxUSF7CC+rYbJxoovtXGQLPbKv3d1gG/p+D9K1FqZkRbasVIbywl80pzCQeLtI42McRm30gDurn/qEOjgbnTHPiTJeKikY/s/GqNxYRb8NBY/XjWIAwqLuNjyPcr1pCMbu8GWxPD73O8xoO3WohjzvpNxGQ8iEc36VISdbcUv8rzwa154W6AoLbIAj7qR7BuTz8DVLBPgYsK8dBkNYunfYNP5ZCW4QtcaXO1BubRzkhGVmjZ8yuWFn0i/eWytxtOtr17RkrlASLSAD54sGDpc9K99iheVDM8+Z/eUlMcgHUfv1+lUxoAl2y7veZFeEyzzpT6U3wK8h0zs4zs+S93AWK/4LnXDtA6ZwvhWxk4O5NvZ/NJeDeo8IYT0+rlXPSry6ztm36Vsorul33mVYje4Bb/sUXiIJxnlyZhnvtRY6hr9+Ba+sZVR6hbNHW7i08zJV2i9Ul6lY6vhU4ht3dB2Sc9dWSQ6TNPEk8IspzKsk13J18nayXQzkKuT+m63I94svopIPBZNctONSTtGm6C+CmAIxwseXuAhraK+hk+g3IxFNy9iyxXd8jbEaWgu+yfu9xqZkW/Qbwwk2bLJ3MrGtKzUjzRYeDuKYT9QeDtisV2fWLDSDx0Srl+TLrFRSVtzds4N+E5YwiU58idYLGSOBV38nf2LxJQTMGcXiZL/moNouZrqyY64nvRBR9ovkrCoOyGD+l1sYhkd9oZvKzPTxQVEx7spCW41nwz+dH6K5wz7jYVtoX/qZK43DNb9Uq6otE9wkp6GXuMJkF8uCceiCnhBEmIg+svW54MMiUdnA9y/VZ39oNY4AFMqLbI6GwtchQVS6YTkPku9jpdS7Gz4Yl+s4VFsBt4vs5UcIsL7YiMrXO2k4vFKc9eWsJ+2fK8k9Rcun+aJWRiDkRHBlw8N9zCMEUifvKNv08Q2DTPxkxZ52waiuhxpS6EnvckLTb42LuHiaPKduOutjBVWACcLSW1A12hfR7HPBhcDDn/ru+iGA09Doy0rvtTMlaRXD5ow9Evd4O8nMnZ4m/484ts0l/hphNI490QEkUt0r/VwsneOqnHyS1wIGmkbnYuFiUHDp9BxWuNnTDnLdf8tQnyVDh1BWJIx0VKwo1X/JI818w0/MRpPGWl6WgiMw9Ih0MVhRkVXkxZuYUlHrYduLJ4UGfYwaA8+hnSdpw35ddIBn2qht3OOzeCjmvl8qDgfcX7zgCdnmLcfEqzAtp7Qifv9CTv5iPD2g2kLsLXdtwwmfzz8v59eBjyd0twaP2Aj3gCtxHjIG8rNDiTik/u+sDOd9hnxZlFPupHg4/1LuvBq40MSHYXhk1kv8wroCsNSe9zMAFZhsvrgr9MRaTpPMkr93cXaiDea+8Z+0jYyJdJujiwjxF2vd4u0AFXYlSAEB3KGzCf0qfm8RUnukRzFppPazwYpZLSsDoQNl+T2dGTcEhPnpTL/eLveSfozhIc+l/xh4IZMIKPLzLgoI8cX1JVQG9cDF+d56GPeEPJtn0oJpI26e8XLr5uoaekfu+y5HR5iiOqIpzNmXH9n+6cu1syP39Pyad4xi9iTLNjmh0dN82NdCEaBDx8WVRGxAxdhGrGwW2gon8h2MADyncHWna+O2lXX6kjgd/y0KeNMghbqMUlbADLf13FLENnMOR6StBVhw5dhCt8uGMFPfmKjTKvj013nti4ikaxLWKhzfzqZ0jUMxiAXb9M4hcTu+G8j1wwiSrC6gWWZi01B30+CPZ3+SjduN+g455TKiaUCbeyvzcC34sN0uU8RfJGu60pGEmMgkzZ14iO+VDgcaAYy7FP+xhbJHLo5h0xw1Dp+GFZxXmAAnXwVlZO+26zXCV0Dd75HoaGbKaKKAuyUY3i6j0ZAdHbqi1bw8+Jz39u8L+5bmdbV5nQDN/GcBnCmhZKFOJM+jpllvnjTz2UCVc8EC+TByQSHEs1+KJzIq9MGDoVDSiZTt9Hcvzylg4fHNb9KtJLfJz+nNO8EYW/4ikjafnvFuTy/w+cwXySkkvxBVsJapq2MXX8dRjN/pt3OfcRBH4p1aE80yHeHbjocTzq7UwENVOm+DU8+dHEJN2TUTDL97WSkeuILPDvcWJDhb8BdxUTk47kf1hV9XRNPfUyCD9qnDvt03tCO8ab0D3SR1kzIF3EF+j7qHm9OnTIqxgHID+dWRku+8BycfMu3qcyben69myc2cHXAGMQxtF/+5uWv5Wcvn2dhRuVyUjmIlPbi0fvCPnKVyK35att2V17hy8X493O2L+E+mmrsiL5DebVPK921dDiQd7QgsKJMKVnZ8G3r3MYKa3h2NHTgYpDEYM31nWxL3Af9KFsZu+mmtd7pkZOell4zZpyI3/EpfcH+dDAYjKlNta93B3dkvWq0l7noMEgr8SXfk/rSzEC2dRW5nhxxzmVlPDFnFzFYxFc+ObZ/B0/gC5HgD5SxLdpBAJ6/aXwnbhczkqr0INxexjb2MN/O5yiN4UgouX9psSAiPjL8VLWXcbYr1JOtyaK+6AMnwSKSP1VDtHhOYknv7khWUerfg/nMuuQnGOXGSSejl01/Wr67QuPUta98+XJxhIm+06D5y7jJJ9ukY7rQjTS4q5jV9a/jy+1NP0TALm5o7/iEKeg+JibSxId3wJhI815n34eJIHWuO9/imwERTo4t8wJzULX8yRWSQxthfaeFjf+1B3fohEvyxRhZtZuVjX+W8qdk7fhp3jGLO+aLOzjF6e8MpJ30F2Enz47SsCL5FJw81hzeO8/YJKZZjIbOhOv5krDUv37h2hS/6wO4W1CE7UVu25pP1O3luisru+C2nYwb0i/jfgvsC3r8SH8+jPuNsMuX9FfJx4LW3WJriavUvgv2TIuPUG5x8yKqwGrT5tfLfLWCk2RK161PClKQX/G1vq6Nnhl20L3gFjK8UiLw56RjbsVpsqGVXrAM2/KniU9jRvFFiu+H0fimxOuSleNCGzMiyZGpfzJuE0l33JM/Oigmsi0hjaa/uJUxydzBUj1d8EXlomxprdq8f6kTG9oo0/j9su/u/EiD28qPfkx3gA3Oon6KpIW5IhzSb2Rc4pK9+LwocgE820VqXsTyrhRczX2KOeQygS4/zJfHZFxr+2ySbxJ6PoQyMU7DLvrT9W+Bey1yst9f8lOJrYqi0n6cHnEqX/blvUwVFnygt5e48InLhxPMz1U+zROzeVInRFmRPDuLc+pXAzPQ1QC6nHcjSDCtrow3R4oY09Hb3COMfEBcfLehuyu7Lei0g+9NZOoCys0kS3P2Dpfq3ZYRg3rLfrEoeQW2lXHX1zQmdZyW5Qltpb98neXocPQZ+or/h3B1/rm1S01/5mUPjJwILfSGiwQ8in4i9rghI+BG4Pc63x1fKcUktvpVXO3lH//S5wOYrorgQR7qhjaCrxopsX2jHzqrBMtbTYIv0OXj8tvj84muApn0kqw9MIxnRctgyHQUtO9r9f3J8PNdzGAHlI4OBQpdgkX2O4XWJCP7jd2iZAJMXF5srPxG954ykq58JzF/by7FxCd+sQmDW/dINooqL3DNtRInoR4+opke7UFFTZcI7TFui0j8kdH2yR3HLdQX6h1l62RkXJZp/Gbbno19n3gMlrhNne2zHXtvx3/S4HJ/kI9I3v7IMWPRN6EttYzLT6mTuTUuxbfpRkn+GLCPy+9PGav/TXHMx3MsyHj3xoVOMx4UluOpUswQ2NJOuLE3lDrP9U9afn3H7HuUZvETL8f7N8miLnk7BVreRL7+xISddbwL0I0drv1E4IV9EpGWZBddcrp+57Qka+yEUEZq79YdK6ejpIuoNhO+9PduEaKsmzV8m8wwLpPYwa4c9Aa3LSwTFFw8LEk8jtrfUL4TD9ZzZ0eF1Su8m+Ak0gTJ8s5mQ8dhfVwVYF/BxWB1bOqITwscEyt8M65lXD5Zj2Vm2kk3BrBa+aSj9I3apkMy1hXqRkQOxDW53hnD9zBQjoGr3RgMmZK7bQ4UeFR8UcBbGQ8apFGfPmX6WcTlbT+iIppwtbRH4eQTYFWk3FhAf122O+1wiY5xfxVsXzNLlDlixO7pbrI7ze+UAa5KnRurmNHdo9zFI+bDcY31odK0Q5tx/11XzJqdG+qcZSTY9PRp07ensNEP5DOupwcQjGsZNi4ZLbDGHDWos6tCvqfKzJ92Mb/hk95p7PzxBna5FW6MIy5qeIGccIlvGv6bmMGxKdkf4vq1zamp0S7Dr/MqPNmcEZ/s91s+Crhw7dRT9A2AO98Uv+kU3a2MknRzHRw1249dbPq1/Gzl02xlxFKSS04CJdcLfusMnEi+84qk13yuBhtX87fMGiR0Pg/AHsmxKXGymuQtQe7QV7oqetzIWGR4QUYMHiVYEa3bvj5ZaewCD8q0w31A41WeS9hXeW3Ifg86UXZ2gwkew3ZBY0XrDnYx7yNhW+B2CWAXbC/57XXc4WPa5DglEHXxs+ZjG91BoGZcnbgm0/elQ0IaPnjgypWU52QA+fL7Zy+8aptKLJbSlZxG6EI/iGuEWxJv+B1XNnyLfVLMKDIiJSX0XWxiGTv8hQ8qumFaKVatdbMrt/63o7OQqW1vhuCOJ9LhmLTsEuhvd/PREJbk5foj2CdlGVQ3bQuZsB5mg3132IVPfSzrE9w7PmTL/HRqW7qTJYmuah4j9bHHw8q6eDL+eX0e4tP3J2IGXENZwkS6/hPdlk/EjOmnn8bIWbeb9k1s4niTXjaVz10eO5PPXT7NVsb5jtmYUbHdAhYank1321RuYXN7FJ1NyWAhCtaPSg/gRgyWOfXPjQYnVjwZrIuF3WIIYdVlTDLn/q1wO11wfbcYug3kiLtyxMQnUF6R+W5x08i83br40AGlRB1od/G7dd4iJdna4sqej5C+lRDLVqid3oyCJ+MK9L+hy08jHfaa5zLH2mVocFf9swUf7GuSb/Cx8RTp4puPGcZ3hJgO8sG8OevChsxw5L3AkfeJliVawQsCctKcBmLgdgFT6SlZ3KTiYCsiGvKCctOEwANBnL7IR/eLtFi8NWF0qdxgahYa85MlF6z7WP7uZfHXwZvkC907bPapbYee+H3miTJiu7cB+8QncGed/fyMVUNX5RMyQKvrQ74UpJaLG5A5zeeNjLKoP/H7aMZFVp26UZF94g8+JIZ41T+ZdJM5rPrDzpqrNgUvfh3aCvkHMQ59Usg8fEDxv1637Idvhmlb0i4hstfkM11GgOUj8LXDhbYkIPVdZJyKePQyxW8cg2P6gDhsI52ye9XP4icz3xKbUA6Amb5LLv8F/jnFxKPZ7u4MwlGg31ea44PggOWncSkutLo5x/x4xRJ+geJz509B+TRbGcMplECt2SHiwmu3lfEQeOdAUnBKczr4SvbwJEaILPm7NLiV0UUwZMTzyesx8QiWaAGr3CbZAXCwxVN4OlzsX5rsCIe6WdHqHJIs2ktjX2ddtXQWMrdl0d7xeYrbtdnid1vf6OWV+lKn/JfbV3Vuu9MzBzwIRFi6hCH+dHyaubqUadcnts/E19L7AGlOdXTGv0gKui2WAsF2UI1TsVBXTmsnswdNBEpbCq1/r815o246e6BrM+HUXBd3xTAa33RcPi0WkGf0gZSjgCskX8LVpIMg6PYZ27m0+M1r/Nf+uPKdpMVxF21BweT6RAr46t2hGiwf+/k2ZmAXoD+87bedO8hHCL4AjXLQZeKjejOv+Cf1J/l7p22TdhRe0O38AtS1a+Oi6c9jn1NXuZJ1upLZk3ju452tdDKDvyl8hMYGE/NX651NIV+ywe7wjySXbNqQn8jSFyc+jUxeT3Khj4V3bS/Y3QJI1nXv+zHJZDkynzNuvomIXtvdddlHWlghrvs8gEV7Twtll6mbz42Mn7H8+o7Z9yibFXhOPrN3ssDtvF5DSx3rASz/Btx9wjzoo6O9CwxFxlz3SdHy5ckEjPE7Pq2dDtztlslG1p5vL2PByyL29V0B9d7isuNlXKH2bpxu6Jf+Pu3bz+jYujH4kMqfyMgJheN1uBumbQK1kOlu/CJHaGEt1SMnasb+1k78A1Orp9OFFvoOy3pKf6uMHLx5m7YyrmJdE+48EXBudFOHHXBY14Tb8PlgKf6pew/M5YyFFtdRAQL6uvrYnvLYzfMmQZnvpDit0ejtCXc8aeU2YbpIK7fhicSBeuP3exlf7R/xgXrMDR/uJ36f5wom4i/i8k4Lg7/a4VB/sTz2MVxejBkOi+P4YV/b6OmlQ0qARun/IiisdFzcd6f35q9BtbMxtMEtXSouDz4JTDKWRU/TF5BxPu21LN+NLO2ujqVuspSmUnx5lhF2c4hd7wc3u72qnO7359/JJzxZTG7UhSjs7rikDD8Q+0l+H56a/Skov8dbGZsRgG0bjps+GMp1QhWROUEha7M0ow3NWyL6YJJW+Ep7ohb2r8CCjOGI2OE0HtTfN8syAqwu+OyS54Ujn33og0ah29HH9g/yEdJrwdVyaS2DFwouxQEzrDc+jsh7OORTDtCjerITshHe/vLYrTbBNdVXgbxjgrQWts14LWwTBGPrGgg1Axpu26B3S5FW+J7cFpxUBLeaXO6nOaUx9dUmrbSVBHqoQSxkzDJzO+HiTIdFl9O6EkTGPYeLJL6NHM5HQTmqJuUDzi+U2H7ovnRs405+XmZ957vzOGW/X7aw8+EiA68ccZ/47Hyqibnf73DB96RdFFLjS3IZMFdmUpSvZ79IEzBsZnb9qd9Pvo3UhfMe5VgtFr5XzOB6gUca5JyrnTQE7nxOgyIy+4d6jAcoSJN9r1Vdbgv4FT0l+fbicxAW+KQPOgvYlDR1wtWmvoOVM9sriomHlcQHx5VwR/9Uat2IHs4RbE82yrijgn2oW/vy32UOQL5eDtqOKBQzIP647jo6xo7gDepprGccyL7by2i33L+rdg7UjJtjhoLfd940yX4tP0v53FsZRcaxMHLZwyFp1pVH8MdsU5Fry4i3jdkbdkq4Wk71gYkB3565RKbAR49+PdlAB9UFBt/WMvlIK2P4CJDPROjxPSQyo7/Jf0Pl0k1WwXZrTdFzbUdeybd1DnpFe8cX+FjXfCfzK7iLtnPQery1xNttUX+Im7ZZgJ14PcwbYNMD5UUgT3X83cgYQf+Y9WVQXPUPgiLiCtQT7LjOO0ZSe2owAhycRlQ5I0jCwgJPuIP5V2U6xbMuhE3yrOxVz+zbEjwEzaGgvB3NKl04Hl/LShxoqRS58lMwAztxGYH2AcsJFfH31zT4vl5yYgefDDmO1AXjhRT61CnSJKqgzmMOYvomD8KPPnb+eF6yzLd7AocyqxYbDpngDkn4fXaaPhZGuMutRayIxsdSV5d+n0p3E7CA7nwqngD4YsyoW44nWvrQLvNczUFbyLjQ4zbhb/yg1328Voe5dL472O5ihNdXJ782sHHiJgrS+G6xEdeg/jTeiF3j4biRC+HYS1MPvzhpRz4DYyBv0B+ZfMs7jByrSI8RQxxXheYUvLcrInY0H2QGWuv+YbwROYdm06eT2Hib+mWvEDNc2Siz98EuQU4dMo/kzaI+gOF4/Oy7zwFyMVe12DJpdsUHXeJ+vvLJxXtcPs0TMy4pEApMtvQboyoRKFEE3P9dYCt8dd3W4WKw3sm0CIotLhTmy8SUYdegqdrT3eM+bV7KodI7Lahzu1J9x5iT6Ba3kSlw0Ww4WXmCi7ygjslI24fd4obq2v1uYI357vT3At/Qsc3fZaFFdBTgUL6OXwebshnQeeWL83Eyv7M5ESO+a8M3sRkIG1r5ulU7iXqdJbhIQ5kSE8Cd42sSMR349mNyYanT9wUJyKxp0fHR6DeCv3hSVv33zqfigi4vkNE/W8YdMN14K68WyqcHpsIu855JFym3+gW4mbeE3/1+6hc7H7rCJRn1Ca5Pse6o8sanFstQSXy79jK/F7ZQukN2wq8DoS53Pq+3jf737esJKrgGrwsuguUY8zhmPPHd2L8jt2v3e0frAS4vSJfxRrPtsrylkJ3dvjPW4boueEsh4bu/ad/77LYjlv4pyDsFN2i++Fz/KzHDSaQ808SOM11jnR7BizJWHt8UM93vu37y7FQ8EKty/pzl14XZdyhofMOA2veeTK7H4NjW2ccqcdYKYl096DdbXIACGyu3dwxNhB5dt6n5REESI8bffnMMcC0x3rJb2/IDfktQYN+Wro1kNb6+Y0zBbftC/ap0Mi8jdC/TRxfipXzU/zUyLhO8b5ShJE53YwRwdzreJ6WW6veLrOd8MXC1sMk+8yJrSRdlHvhBe/lx6HFVRZT6W2ChzU9anFQvb8XvGTjduc4wSbcboX6EYx5Bnz9O+kohmcNfxTZ0K4lR+LKR2czxvq4b7LyIHuIY1ezkgitHcIOhsguHrCpO2mycwExOlXDXOmD25QbFyi9KtdHiM1e+s7Hvnb3fxZ6t3+P2VdsqZjyJWxz77xhiPN3oqJVxc9BEqT+IGUnmj8YMhkMfowuY71RQ1eUbb8Q3ydT4TmzfmtzOxl6NGa6rpS+nDO/pGJEtn+jLVzTg79wiKcWmLr9CRr6LxXiyZNKF1TrsDLhu1s2Y8akLdeX3uXyaz8Vp8nxQym0waCqjYPO/NnCJ4nJOsRcwxOr5lGo42GodtQueeVWj91gR9V0gpwrjLjtsDQkmy7CboFeaHvBZFia2cwg3zuKWb2ccLLPSP+Z7E2C6f9pd57LA3f4bvE0lb2eZvvY57QbW4F/bZ+wf4gvgMl2UOdquhcH8iKcvFGzCaqWjK7odXw9SEZwMYK3QXiU67ZH4iW6Dt9SxjW01c2EUui7f43EZG14Dzu0sFmU8PqQLVfgnvmXxoo/Xv1cE1FLJfnE/v7WvLjK6JDU5SvZt25iRXmJZ+e7pj9vS4N75st4fT0nvFkcJt7/8SJTtyK/84pM4QLA1qGwE1Dwl2rmmTVtHS6atFJvhOci+rfGRUT+ovvGzj2PGwtdFMo/bAxcybmV+CL/yKyprWJbZqE0lwye4Fjf78lXMwMN6WO/u+234YSPctJ1Z9zJe8XDKkWA5ZrjxphtkNj5KPRyaUp8Cl2IV0TLSRYJtbM/9fizKXP4uxvxaREREVf+iqv4NVT1V9Y/g+n9EVf8Pqvrvqur/7Cm9T/OOmRcPesZ1k7ydwiBATuTrjwdmqBvfUZUWNcIpvuqWHyvXEw8RFrcyDlL5N4mcZYTLVK8yTlrmjbDtZsq74gt/yFFy//BjwoVB1x2tOm5xFzIlWgJ9WMHCb+7vrczUd4QtKDbhTbKumNZGReuyQOK7kIu8s6XVutEFcpesLW8KNLTQbspL+UoAXkc7V5HrAIUM2y0CEy7Mv/lkqOGLQcnGHczm/Yf4kWwDFklEt36nzDIuBk6jbY/uAvn9geBjmW65e2rSLYJlLMKWWxnNRN8W7SZjEYYy5Xp7lsbDwv4KfXXwO2YcUGhn2zfNsKJaYkjQdL7pAsmVtnxNI0a/Mn9DXGAb3eESn9a/YcH3IBn2dksl4dKWttv41Fxnn9rKhTLDoCnBpbnvPxu9PS6LOHHrBzmGLGiF31/w4XK3AC5jv8l7W7+/4/tBPX4o9VbwvyzfakwU2qlz1ZejH+SYQXThd+FLvptPKL0WQwuZKSeLONfFF+prtKf6mfwaH2sf+GqXv8VYxe/y4S4G0o2m4/9F8jbrkfF635Vh83z8pt0SP3N51VV85/Kvisg/KCL/BF3/2yLyl0XkPzv+PSqfbiujCATuVJdlnUueLDIn3LDUdDobkGq3UQ5cA+nqvtsHMlFzm9Qv6rh+RZlEtPIdhB9PH+JTcF8Mign30QpiD2ZPgZ70eTMIj/SlG3ke9nUJ2+AuE4RdedUzvWovGz67hCbpuU0OrYftkscVXYZttgmm+cK0rMoY52otgy3ztUUiXfvX4vJvgp2mY1V3fAhR1K5FlcUdqzPOVML2+ruvH8crxp7Lpdv1xEHfXf3+dIRGuOuEl1cFlS3bbUlqRx31mfhyzDhcWs+M6Dh7or08LEJIF9B4GxMf9u8ONxFYzfmFL2t9yq6NZX4i04NSQJUu3uUWdzHxe2eDN3HuldL6xe9Ubv3ipt0XNckXKwwNTwg/6IJ9foeL19GmgJc2scDAdz+RP1/jRZdsaFmqZzkM+glxC/xi0U3EhXm8fbQiXokp4Nv93TQ8odf90vCjx6x83vILrRvN7F8XkfKwyMz+PRH5P6nqf+oVep/u8I/yvgCsliIYl1viATwDtzGsF22ruChrj8vPUsq0WqEFXcZNoBjgogsUuDdJe1k4lmBV+xsgHPQ2gTvx7YLyKkA8CRwIk9XYDmdKRhvcR7Bd3cfAIEFa4XYJCcq9C3yrYNXoyh00qt1Ebo/Av+ObchDLQ9q/5LwW3aDNNrA9bQ9eCr8vwBmkTRTqqatNIMOTKDtdpY89o06OGfdKcIYepi1uad5CfxpbScE24Q6BdeIGR4RJuFQXooe8INgqqltN1MZ2FNQ19D3V4ZjkeAdM5ppq8eWsfWnnSTOhzccN/SL49tnTa5Tch/rcSX5w47vddkTqOIvbQp0FcSQ++m5iZ3iBksOYgyp1UQY0wlyITI5VWTdMI/wi8Z24ErrgPiRaNNzGFZobLHPB3fidW3+MMrGPX1cTj66vrVzIZ+FjCu0XyhKFdY520vkCBmcbAz/5gFWlxX7fC8emFS3Nv9Ff5TgA/toIF8as+O6mfyYSp2WGTGOBl7aq21jSHNd1pV1PKYbIPAL/sgXw5djpCbCIA+4j3B+DlIfksT2An2ZSUy6brAdf70Y5YVV8i+Lk60/MLtAzaBuCBfHPW349lfF7FD4u/xDY4uPfuNHpEMNC3Ng4GGValqx4wrLTEZ2Gd1XnxCyfxBFF+853eJ0PT9Jm0vbbLQEWgk74o+SElPg2+kDWmq9hIrLcJrdy5qtoQl0vc+SOzqKur8Jy+0P5H+Hi5a7tLjgr/W1K6E03fJ7waHBLYrbDXSVEREdkbLfc0Up1DmS4uNBkc3dj38Iu+o9JQQubAlgTbLv6ghfPqQmr5dhrXdFu+MbONe8z3N2cAXbipq0ntKUl74Kbx/S7K1FIKg4P9B2fVws6VXJuc1w0ZLECK9Nng9OZ81cLrPc5tYFq3B/nu/gN3/ijUw4nl/hAf0FZy5ssjUwsv/NFv19jYoMPfCpuz3bvyLNchS0f78+VlX/q9LyZ+ztdVeYN7q59MR/vfMz22pPyVP4bHsUvdtvzHJbrpJttzGBdkFx8EwEXV7Ho8mvdNjnki3TRVrqF8kL+aMNtgHCzqr4rzLQs65XjRMfLy8bvl8+i4A001eSLK+3utN5ZT1sZC6wJbocHd3LVVRLvz35c/jeuG/+cqv51qP+xmf2xV1T1r4nIn2/w/pKZ/TPfxJnKp9nKKCLJWVq6nFcPc6J13lXKXUgjWJ/LBS/o9nyKA3uEC+XOkW7qHAinTLuVVSNww2eVExhXOofbOeaGVssf612SoA0M1RMslg6X+KaEmenu9Nhd38CvbG1pDttGqTr3/qz6u6OzEYG/eZTvaFRxPe/NY2IJJ+niJqC9AgtSy2rrGBYTVDMsDFl/Ld8Jb/BXoW3WYXqO9vYhPuP6L0xcxLdVaqaT6Fpqz9tY8DTBrI1YcAnjDhnE34vzQ0DkwyVuKuEcnFI24zD7hIs0hs11Y8XXp1Pw/aF5E3DCJhpBCurOVz150aBVMxzq0xiGsu0e4HvfNuw7TrGUPPfZN/DvBvbOl7e4zALHE0RNfFCeZg4sF4fAN7k4ek8vnRO28xcgr+PGtV0cYF12C5gb370LgXflUcxQqNeffXmiqwXLFqb5zbC4bRAP80B31doj2ED8Tf5334/rYI/GTlym1TxY9S/qtm03mR+fDz9Pcz/m0ZAjxRTwa6EafMoGPjLoOXz4ovw5FIdVnb49+2MDN+Zx4E91+bfN7I9WjWb29/6uBPk0WxnLNhRPrrZbGZnI1aaOJlAf7XNySNCc8C6LpZluKSLEt9ynTOBReBtkmeQJlmQeF0MXnYyB23ijD2xl3PFdy3zTp11pokvXvxa24dP17xaXA8Fd/6Spc9smGJlIvVO+IVdo2pTZ5TUAw+1YS7poJkALk5LO5hKuEl+kNzppCcmqLhR0gYSgv7tEKZQJfDygYuhZ4fpWmaspy1h0lQ7tUOBrgy/KjbAy7yzqkEnrwklE/Cz6yc8UcJ1PvqMpcsLTohlcHcdPz8JF1uzjObozvluGQThOXRSge9H20zG9/tGFmWleGk6fQ76rbFWw+PhzPjDC6k6F8kTOCt+rizPWxA2F5I81+cWpqew3Muw+3ki0DdzG9p75X4V6zyfhauaLtLZ+w2XCic9/wR91vq7ls4oZRJ9x0ziQn1aWjWga/MYt3ZPgjcw72Eb2DpG3oT/aln4Hi2OA7k8zjLeXeSANLnWh9fsiZadP2X6I2L5VUeT6iLMDJd82Smw5lHBzZdux5Pbw5WPQIi7AFsny7TCV2KYdspBtp2vIBydGZ3MQb0qcgY9Du8yGvlzhJIRjavxyc76d0sAopn/OseqKIPkzKg47+Xh7gMRviANdrPxspUzq38/yubYyqghuZRQRkePIE2W1bcNkvgAxyJatjO4sADfmTHrUDxbq3gf4poltQo/FM2775Mt/mogdKCOwXsnY0QrnWGdN0OKDAVL/Jt/ikBtcoe6nPgm1dfJSvTxZaOiuHIKu2nd1SKi4jQPa6sX8li7zRD76IAFCOgtAo3Y8CSuNXydXkzCFTHZtR3TcohsyDHNymnWWn9DAT83JY9wtRJl0ouE3pnawIrY9ta59aRqDTmcnDC8ioid0UKmvciXmHkCVZPaFFK6Q4GnN9C9T8bhFDd2YiMXBHSawkBIYD5ik5ZCPeOfCj8N3xPkkzOkdsLVIReQNt7x8cEsLj0VUcUeE+3LNSN1QmeOijpIBX3WcG8GHKpfdId/J3qge7TTPkoyLxdLl9yffcucc9gV3/jXHFE18S+6Oc1CkfrtNJemmxXWZocltLeC0oKRrvDOj9U/NvHPdJ7+BQnDp6DalvDYgQnH8+pcWGtrDFn8l1L8yKJvS5TWdva3i0JAxnXhIMEbo6Mt5gecutsMFNzPblXARxr+FqCoqc7HEC6X0Wydqk17luJB86iTjx97r4CsiefwU3m3TC17R8Pwfxc8Y/CSzJ58ybWYoqs1pQGb1xHUYXtyQ83kEh1kdAIt+3yJfzQvQpOJgAb4jteeJdRw2u/+ZtzKOUPpLFFX9B0TkHxeRv0NE/jlV/VfM7O8fbf+miPyHROQ3qvpfFZG/z8z+tR29z7WVEYpROweFgsukCmle6fSwlc8EaGW6xaW2hw56t6DbJRiJb8OLE/uu+MRtbXzX9oQP465kvKPLuA/0msZgEbCYVrpLWRxzxk2xsoG9vTvaBOTb8VISh+ykbNsg5eLdbWa/2vLhRNCh3+Pm4BsqvZu3iU4WfndwCbb7gqad90v+sMjChtF/vvN6qFTdxA8FXv0AhIchPafATLj5Y6Xdd3Kw5EWXYp3eMRCxtC7yhWV6uiYfLSgEMMUnQFwfsGkuRH3qhBdlCL/zZUvckfzc+VS/7DxufTd+W0qyfDgf2R+FZRVdAasdbunvrJf5S9f4pmDhs1hAFL2HzS3iQIerFUxE+q+wNrq/jTdK/dUMr09hEZ5o7OTb1se1MiadPRpcM7rMdmJNXcBvwxiUVAtjU5JnLrwCF8UDX4jzzTa8kP6UK/vY5Zgku9GFHsGHJr/ZLbry36AFflEAl/3vkY6pp3a9OKtm/FRnhCTvuAoOBPvBMuroe74pXrcy4vMK/Nj0py2/kHhm9ldF5K8u2v4Tr9L7hFsZhQLZuKAm1t4uo6hHAaM4Byl+67oO5Pg0LkoHOfWqJzrCrCzOKwQYk3Sz/ZD7YJZpYEpylyot35lKssu8O8yCrAJtQ67FtUUi3eF2bXeLmk3/bvk2/WxpNm1L3EWAfVqKzCs+DW2TBYxfVwAkuCUuBETmV3C7gSTdbJOlUs98lwmdJxeMu6LP42UDm3zIhLWKFzLBDGzps+4i9RfVs+BEEkJ6v2AnkKa2C1a5HhfOeV090OqAmXAHbGP0tlBLavv2Uk9SvIwS62l7qux9d8Djb8F2+G0L3+10n0xY8sUr3x1sh89o51nnq5KPuXTCJxcnWCZZ4um+K0ira1vFT/Yp5d2shzIkme/8Lwv4LfFm54NQr9/o118tywNlurKT+cbHoq5Ozc3lYKcyJtkvIl/GLTJ1vrKrZ+zW1ncxb+vLjeorudyuCj+KC6AH3NJeZc2xSVkGjxGap7sVv595xEehZfrwCTv5atN+QJ+8PcWBT15+D0R8VD7NwmzewWkiSWQpuVRfNaNkhHTV5HTaoIKNDpOC3xOvKGHsMc8LClzkxdhGxkLG9WRpdq049cUBdrrpY3/7InYLSHVOWArY3cLoWVNuXCQYLS4P9ypodNcwmCGdOx6NbG1ZBYobvMXUicbdIu7CtebixdWg0xy4O753TxLy9qbM1xQhCZh14+8xFBGa0ecF0yrYFhmV+F7bYZLO2CCQdrrUzAzAzYFXS4DM7RTs6X2w+tTMEo0DdIjbJPP7Z4+84aNS6dCVpyvA5Dfcdy9Gv5lD4Z/g6H22oNbnQDJkBu+qdb3p5hv60dY3rGPGhwah8ftdWYUulTqP06xazfEnvrzxF9v40ig6v3+4kLGRr/juDngHizK0Ak+Qp7njE5+KBW2rk/FuoZpQwMfcoWW+edCWMmudj128Wcmszhm3OW8FtaWMMR908Oet0OhT037WJMzoU/a3NWYYwD5wbwf2ldild5GJj1S/j8g5hjAsn9JoDc6v5ecsn+YdMy++Pci4bpJPYbLZBsht/XpxdD8DvHmY4KwTHzwunx2Lv4Qe7cZ0hZy3wodsKc7YPpEV1US7zUuW/SM5IFAnOv5j8W4bi9dO20WgQ0fKMjyB56BV8Bb9Rd/FbUt6XiCpWeIu5GAyy9PYdrSa3zudBx/kzbbBAcivUSZTaWlp93q894YTZTW+430AvcNFJJRJsD+WbbnwRZkzbMvX93EMOgfIPD/ECTLefFBUG77RfxqT+fDIpt9z2PR+BPUf9JEXZfWUxiPxAVp2wR6EexDuhwuPqYrwZKifSQFUnIOqFDOM6mCxPqYzO2nkEMCajRgH2F+xL2da3c2PHF8afSS6rBuiuxoLJViZtvPE5y5/r1B2uAt/HD+1ysR0kx7Jj935cqR1B/soLix90L68ktqm+N/4492YWAdLfqLFp7lZ+rdaYA8/kt4xY5/KKPhe163fJzFVIiC1caDrH/hU9r8prh+2xMWbVWGDQEspZkxc9vuN7072VWNGvFts7Mun/C6j45rLHHm0tcfno9/nmIHHIByffXH2ycV7Wj7NO2arEwH7BY3UiYM4ndGOmWJjaeV0cP7Mgy5222fqtsEsU8Yt/UkTduN9yDmyj9ZbOSpycdYL2CTzg4BjnZArwC6YcvuC1pJPGkRp9d62PZH5e+ACyhL3JuBxfXn3c5d4dLRRMp4zBq27JKXji+27BQsGxA73jk8YxVO+FTYnLha4MSTc1snI7YNySdoiKbiEj0UWP/Uav7Xle9UPeBlcEh8rScq1BpnvT+CL5KKwfXHIMrtoUB8wB96e+kBJPmDQio81g392f4xjfmRf7J4QiSZcdCrlVjZUtZsuC1/OPuwuZnRxoKFV2lzm2Pa+lqOjUeLpCrfxy9q073zqsl7i50O6BFZk7mju/AbCL2Re6nWh56XcH4gNpXQy2EPf3sG2/mnNd5kD7HSz9KkMO+VITzhvxq/IWOAX/bvz1SpxIuI6Vk15lfnw3w2fITnJaLexat4ItLk4KnzpMyciVJ8HRym0R33w6W/mfePNuN9R+ezrxqfl821lhCOMRUZ9pgjVoFNEgeDr0Vnz64oloSBHwvv5oy2VAaS5OtlSEtB2OMu46pJImnd5gjPfFR+RvCBc8CmBT8HQSa1d8tGWopte/laOHe6KD+EmlK5/Hd0uuXiKC3ysXlrjdkmHO02t9SLqQoarbUqSv31Sebd8H/DBujnLMh4WRNKHOgG2xS0FcNPePJvKbYOgpj9iAscZS8aFbXuONBNW52NT7tm1xHd2wYLuhesnNU7c7klmqCJgc0D14Im64UXZ4XIC7gVyynVSmcsKB4IYnNrYvWMWZ3h+W1GepPQoab4/1vnUrCQ+cCb7PPDlQ5dtEE9JOvO7GiNECMB2fpJoirzgc6ITcH3l2x7EDPblO7+YaHa+b4Pbybjs3wOfuvT7WuGWfuPF+q2vs8Yvbnz58lpTOGa87PcR2bd0q8QJfC4sb0NfxirZ6BVlBl/uT8063OT3QV/P/H7DOXBz/8j55o4l23aBZd7I4SfpGENM4cY/4GoDW+KN5f6Vo/bRd2vQ0rjBZNk9Rn3CRlvIeMUMP5zK5dYk2gl5gccMJwsxJJT3ScsU//e+fK6tjCrpkWtsU/HJpxl1tV8vtqxAHbcyFicEk0VDkF7EdK/Yc6wEu8OFust05zyaNh2EeCdV8OkCtea2Zt1bSucoVSTdqUp8bwISJvooUwTwXcD8YLDdBVj2n4/48uUHsCKNzljvGxnaF/gf9K+lS0cJ75KI8lmJm/H1Os8pKfUckPCo6RZ3y5MC4SGb/tW+521hRCvVKWiyjIkvLZbSb018RcYXQdK7blPx/m5XNB10umLzvpnrUFMA9i0sQEsBXvJx+fO3NXw//h2zKTj/1tQcehLykzu/T3T1kjTzhZJ8Efm65Oemsns+sPhpZcSfK/+786mlv73MbT8XsI9OiL3zfcsLEz9UspwP82/nU1PM4P7ilOlk3vnFTb3t9p0u7nzqkzYq5V2+J/644aUitD1PEy7nsoVPd/plwydkZhkXujl1fsushd3ZKM+X4rvX8NlXgz9WmQvWhcza8VmOvUm+KUoJ4UHvCyc+Z1xT+DfbsX7xialEnzmRo3mHDEVWgRtuma4eeVH2Yb//a3mpfJqtjCKS77KlhZRRXYbF9TO3vFeTYGGrTPKqWnCZj6GQkh0aLyzaevNbhIKzLrtF/Rsy2Uo3UMLpEB2GvQvWhByL0i54rvhw/xq5XsGNwnQ6PhvcVBiWywrX7XfFh2k0be34cWC0DSwHhkVpcV+R8XGxTa2HbmfYrp9tP2xtY2NO85bnA9oCruVr2eAjPivw9XmZF0IB3/LpYb0tm1Q96lgJF7ehXAHXEl88ldG3qahfj2CNuO4/P35cfuvLZ6dIH+y7BfSkFVcz8pUkwjh0C5wyXy5Yy8rd+o1rHTaUbZCc4vAzL/QTxYdcsrYxg2OEEi2nLf3vLr5w/LEKgqqp/njB69bvd86gk3HUyysKi+PyH/lf6FZb2nGBPm39Ll0HXNbrKyEXcW5jU4oR4xuSTxmBHRQZO5tleZIvq7Y8p3L2A+z343tid7J2v4scMseA/O81f11WiZzmUf9oFQsepPjnCBQ3fr8+VbQKC/Fn+nslWtfvA32guH+HevLtWTdH+PpLhrs1+i9eXktOPm35NFsZ67HJQ8e8lbELsEHkalNHE6iPdvzIbTh76WCD7WWaqU4ycduc6cVOMAgmWHSo1L24BHN7ykS6WugmHwvd8HnAl3E5LotkGnd8Cu4HZIymOz5prF/kK2u+bX92sYT1I6THXaBxvBI4wNE7NR44BdyVXE3Q9SSgjHWXoNHdRA8wpX8tH0uBDWXeyhjzvIH1ORa4CjJCpqkgr8AU0hWuwM0RCXrpRC4ViS0irBugmxZK6lPYn5L5e0v5yZfDMq4CH41UZwE72lWuRdnlSsbL3t6XwJ2wOpzrx++caugvz1cLP4i+bOm7BfDLtvOBq9NPMm7v26ZP3fHlLXe6lLn6HJ9P3RyYNjv7cql76iY1aOWzize543tc1k1uWNBCmQlt62OLLfSwxeRIvkcxA/RgIn3/rPJN39piOWT2l31diwsE7qZRkrEFttY/4WIoLWgXwuPTYSXdtHMu2dPO7wORJmb4VvKrCf2x19cyF7sBX55iIvBJF8EnxmWduoi1C/p9ZCHuV+bo87tbOd5cf9UdK25Ldz5eHz76+m1EVyesDF+uJv7U7Dod1oqfn3PounbojGPOC7fKIyw/sfuMZajqT0X5NFsZ5xYPzW0YkNygxQMOWUrgiugh866nw64CEOL6tSYIXtXmtfcEO+W928rIwbYkK+yXALbc1QGh26c9HAx2fBmFcJdbGTt81N1iuAL3FRk3/Sv1lR6bOvdvGzm5P0I6uKMD5nlH+7mMFIDIFtLWIMbnvyzjLpkquFb7t8KF9naMdnw6WtTfaX8QrP0iHIKhhJt/W+ZVEoO8LSWCr4io1kNA8IRZDHozKA+aMg/qcPQDEoW0LUWFAjAeEHJdO2Cby5G2PY67owk3P4VL2yQ/GAFV3C9OZfB2vcu+yRi8Coq85lv2odXvyxI3/4B5lWwMnjSksZHMV4FvFrv6NYH52yaYCKspZiT5uH+ze8FjiQvCdNO+XbRU4cpvftDY0UJ9LhdHALv0dWSCMX4dbCfzqp3aeKG1o839OUVmbrPC3RXu751/Clj0EezrGh5kN1s5NrjF769iBv1Wwn3El9vjt5XrKQ5wjBRJ+tOVnF09zd8aQxT+k2MAbS1Xkby/eG4t90sHHp0v6IOz3xa/kQbXDo43MHnSgR+aT15UsYgDlnh+0vLJxXtaPtdWRihGtfKO2AvLd5u3JIg//e1k6Bz0g/p3w73tJm67eWiXY7IvPz66SBTsrg3x6fdyMbCje4erJPMO9y5Ir2Czr3xdN009AhaXBSy/FtZwzjKAzMvjildjvysQgFjGBLMhWBOxbecq9iYgm9DND4dXQsEgyrKrhMInraksD4z5xojN4F/EgoWSTtxexuoVUsDt+Kb+DBnbJGFxhivIhPUjwZ+gxith+OiWFvbd5kzxiZdKW2f/dLd4MIb1gWhsNMPalLHhYyLpPZXK56auhJsm7OCdVvGVT1dHePZlT3ysdjLzb0q0ee4bgQTuSsab+eylG+v0+ZxO5kV9C+sL2K69KW1sAgXgHDSR+8+XLGmZ9Afg9H6f7aTdLZIEkfv+YiDisV+V5djvffleRuvb2W5anwoHWwxo9pNF1lD75WN7f+z90dSGMQTc2oBXklEh3kiKC0caPz41N/c3qujbA/kMOeJEXOoPyoiv46mccjyZFL9g0XZ/9O9f+TRbGWdcms7nSmC9fn3As04gjJjT2B3XVEXNynYC6ypjJvH3Q/IdpNjwlNhOpzAqTXBpYSGTvDWphCsT16zerX2E2/SvIbN836ro5gaXfpdgyzLh+BCfoqsXcJcyrv566XTD/Fd1lnkX/FdjEjJZqhc9MnzXH7eFVf/aAAmbeDkw7+h4f5Id2IJHxa3Bh/pAMrLMEcIwcLU2AXoVkfRmBL+kbRPeDr80319NL4nDu1qXa8i0arfx/QSL/h/QLuptwMZhxb89c+Y8TSE50PmuGD4Nmyczury+zWUkJXQYycsF7Cj5SfDzIuPd2WNqFfEzd/ChOmDNxI7Gp+KxhBM7/+58Ks4VCjezP4oZXJkb6zhAyXaXeJMv2b3/Wviu/BLFg/ZJesenixkNX4RlwFdiRvuEsON557sbUV6OGcy786krvqs+3/CpH6tf0G3kSH7xJo5t4xH6xTu/37mGpGfqz4pvKyP79vz7Ng5Abpi2ofPpiLQATk+15JRYzhDulZ6eglswcQvi5Z0xDpzA46Kd6slfn3Dd/fNQKsY1QdH93WFYyOn8HZ4qtrDP9sDReXIvxpdfy89bvmlhpqr/YxH5r4jIjyLyfxOR/7aZ/X8eE+Dj7cMKB30zsWOmI2nedwEHvoSnImIH4QjMpeKscDJNHGNmRkHMJG0RCFyrtAqsSSQQCbfrn+S6puSj9jOVlu+k+QrfLrlnVunyTRBuZXSZVnx2Mt7hdmUVJBoayxsyjTxNTvJMN9pUHwa0SD01/93hcGDLOFZgPcBcsOHeMy7xVcCxWFAkg85IiU6dkd0ThckMgqVAYG1xGXY2ZYka/UeQvNrTk6qa8l+woz9K41lkBFnwDu9cJGEd9B8Lqwvn0LSsGXVLsPEbcK93z/K7ZIee0fYtpWKbwAfdsi9v/L4qL9Zmh92nTpw5inEibSeUXv3yxRjf6KpJvWUZb3z5OmZwfxtmJc51HWgKw5KPTbJ+g9/nRF1lDftqzEgzX0tzxfmg38eYsXwX+Qk/H2f2qfi3uD2e+6R4cKqrRW16L8pJUP/2Y5GNbsnHs41VzNgprthNjiFXpcYb4kSwPW7sFBkgOQ6QLNrEjGW8aU5SPGSuj0of0MfKdTomsC+7LNKY5SdYuLX8gvWFnC+i4G03PeEwq2Z7ohrA0rZH2LJ+1fEG3ydemP0pWjd+6xOzf1FE/hEz+6qq/yMR+UdE5L//LQTdAC7nNlM3//hzau8SuQVNvut663lTEIBUC95RcAfMMiWZdQOL/aNulLRuI7NLpA/hq8xZxgJOTjjJtaC7FJRpLQJ1K/+TYEug7TwdtJcyrGRiuTbJTNFlp5uFXrMMVmB321KU6ljcb5Wb8i1u5Zthleqz3URoi45VXNLNVNCQst8XOOfxApa3YuSERGH8rIzfHneggz4SbGOvvC1ltaUl4/rdydnGsAfVZ1DNW1w6WDz6+NCsZv/CiC/+Mm7eTnN8OALC3WZPJIpf7P3TbNeZhLBPKeOg+VfeG0q/p0JUpB79vZNx4cvRD+gSV3LZ9ufGH9/5tga2LeznNrg893e+u8jlumhkXvLZlRWfrr70bWvcTsbiU7X92Vw0ApiV6Ds7+4USyhgwbBoTq+2wgNnzyUpivtml+oFIbMBXW/i91YIpiYcMEd6m+OTL0NcX/4y6sFy/3v0iQOBbbt7t+BB8UQW946zUv94fJ1cVDOdOhyynCsJOvw9TMMWb5PcF/b6lBd5nLJ9cvMflmxZmZva/h+q/JCL/tZcIgJUuT5UK2L7e06X2MHYdd+vRwtdJYJFh1BZvawQffCG99IecQHY4mVaxMcflBQHyZfm7xQPJtbXlRo4l/IIXytTielDY4a9Y+vCRbpYyYhvza/gvYRu67uOj3v0GWo8XZCu6D8vjBWgJeg/5LvuT+9DyhaC2bBeWox9dPga57V/x3COwHwTOyVPb/xEAj0yzC654ilbCpfGuiy483CM/lctbGfEp2oAVEdyyo+l0L17EzffGHC7oHfMds0N8S8sHDBEUMLUz/DJvZfSmg+B3/mj48s5m75+CcFyglls/mP3vK7CdJEvRtv2ntp1f3PnjhSCtL7jzt3ftSPfh4gBhU9nhdnpexdNXZVz5tntq6xalv3e0b2Je8pudLp7yacrW77Mc2NbmaQvauxjR0OaF2hJWwOMkeR72Aa71T7+s1pXNJi+6Jq3p5/GADo4Z6Ymc5B0Vfj19jxLreBKkxxyUQya8Hpz5fsKydWi/P+V7vmP2D4nI/+ajyBHr62fL43dN3OmCzcCsHtk1P3zFw00vHMcfsDhjls5uTGWVOU8x0G33zEzapX9Nl/a4OxkXsCTzrR13utjJyG3MZxFQdzIvaUvjfBvdLNXJfFZ8Oxnxmo89JU96h1fYWQbg4Mz9eeolwTaV++oBaQAasgfYHpflwCCkxKOZD6ug50YKLqBs34o+zScwntenBZpp3b4F4zUvXbD5sBQjGS3pJoL5wM0fH8UDNTTq7uI4kPNXq7K6znCJ8zj9IcR0HwP+pCEaQT9gEbfymd8zw62NF65vbcSj+D9SMmY2gnk0/ejYGMK8dZCojTE20Y3fR+6VTvC1HW7TEcUQUnGXpfg2GMhVWcWmlZPD66/EjJuy9UGNT8W4tg0dFJuCDvNxA1/Fh52/anz8Mo53XWyEn/baweGgMYGZR2zLKk7tYLEOfrHzsYXcEz4Fwdllv6/ky5NMLHOSsdJOsA1u0NXhy6X35SU2p7/W8AFfnfiIqPHOCvTrmuouz6R18ZrwZ4t7LYgyrNk8YdftLz8FOwE278IQk7nI0gk7cQmW4sCv5ecvtwszVf1rIvLnm6a/ZGb/zID5SyLyVUT+Vxs6/3/2/jZmu2VJC8OuWvd75sx4gBmhGb5mzEdMbBNsxYkm2JYcGSeDIR/IhgTF+TBC+UBR5PxAxuCARSYywo5DIIotJRwrlmMSkshKxgMBGzGykkhJQBocMCD+mPAxMQEzJsYMA2fOflflR3dVXVVdve77ed699/vsc+7eevdz9+qqrupa3Vd196rV61cD+NUA8M3f9G3jYuOM/J0V+yYMLcrSKUx51Bnz+OODJ/LpnYEOcAovx7On45xpEEtmjWOgU550LrSjfYX2gncHSkv7LhYW1Vk5qDQOCWhogXUXu8hwNTo5tT18W6oOGzDfljdl0tBW17izVSvnlXKvbLXqmJ1DWiztdMqcrY71Xq9ySv5F/aRe0awsy7XTvVq7Ck52XmhorVwBkTN3nKPSNhMmb1PZ5ZwvOne01mIv5nAXBXDUuhgyzsR7EG1aaM3KzHmLlRnuqeI48vrkOLj5OUySw19kOuMdry3gWC6HLhpvYN5jHjrh/pe/jQsygJZ+xu8uCjWqlep9YdLR5wXqUfxbPVufQQRL3xK/Ed4NFrm5uTF2xO+pJoLgT+OMNyXujEmRC15c83L5KUn9pNM93quyFhcnPXeHpP/u9lU5F7apqQ1TrXWhz5+kI3Y6VkxF5KUS3euefE82cq58vkLXvtvdI/RylrD0Oi6sLlsNu06S5Rbc92+LGe+RG5GmeGV+lHyXzQ13cotfy5DQhKwnbFewv0HFW87b9x27utU2tsR5cyh5DltnnyEyNv0O8gOy49XAZs8fZ6I9SvtYjxQyaQs4G5sz/5bTN0woo6p+71W5iPwqAP9FAP9Zta/T9fV8BcBXAODbvvVn1K2CTLvk8yolgLJDIyxHhGui7XkSL9NeOHWu6R6Yc5uaKezDvDudU7oA+nqwJefvhRKmhWW6mOu7rqBZDFEd24nXTscr3pfQVtYL3k7Mldx7C9hL3jv35FKPF1C/hHelLVekXJJC27Snl6/+fx+5zLt9UXxTo1hd2k82rnTe1lvb045u/y3sqRFOT1K5vWDPu6BzgkDW8F3Nmc8PBtdQxcyrzhs7phQ6U3gP08nzjyXG/Z/0E79Le+yO39eYeoHHdG9Hpjmp9lFcxDWmttCwNmXJa7m4LGiqTvfw+AK7L3nv4H6LZw/KvWB7EbbdxfIr2l2KrnFd1+be3/NNvjChvvyh6eE6tu3p8fZ18pq6ZPN7yWvpY3rNW9MVxt6TC0ZJWxjLUtZiOfkIn1fOFU9GrBrKyAvwtd6Ot/UDAkjjBzgON05enD7DzTB9hi8I1eUP3tN5jb6e9sj5D/lMyueWPo1B9wbSh57K+EsA/DoAf7+q/tiH1OXvmFEoowIJRX0Y7ZxzDXuctN4lzVkzMEvm9SG3zAL3vuGRI/B9GNmPOSC00j640GBaA5xO57u8ssrd8ba0lSe1by83JSs3xwk3z6fC2+qBF8i5cuQvkZMAWihPoFl5ZdOeIpKrXOy/OEVQv7ngbeVoYUCajKR+kfqIZraujwjpQzp7Nf5Do87lqDa9yEcgc9r1tLpkvIMqTpB3PPPTt1xPypNT9aakp2K0G1p4hzMd/8IJ5hDCfFpX5E1Ho1Wq9yBeD23kPDSHKmo8fTuc9lwODHlx2mKMskHgizDHnBX3uyHBtNLwMqZe8noe6/uHRecFF3mslXGmAosiLbSrjtuxn3A/l1/x3sP9rW0E6TTaZBvpbfMQLt7jbXxIUk6vsXyRS3/be98l1pn9S7c1P8GitU2FqY2cRSnCxVrXyks6qcAWPwPTrhVwWmCEHzL+7pTeYXnxNyzXF2TmM4TLpFFv0uvEZsb9Mta2/nTir4kb/SaeIvlot3EuPe7H6KyLMKtrlQvGfa28I2+n7rJvso0z/u1lsHuqdiAk/D00ZLliIevTNse8B4b74ymfRUOET8i0Z/mO2htN2g/LL2L60HfM/gUAXwbwB+Yj2j+oqv/dh7nJYfo4jefC1kOjRwjCeWn89sR1HYgdU6MtTjLKqK4pll8922FaAkoHsfyeTqXlyZqKpHwCqTIPqXVOrFraV3WuCtRQTZ8PFKfZKn+PtgzeRWchnisdG7kLCD/K+0LaZNd79VzUvchZeNl5NY5s8rTtucp3f7dOsrl+ISfbRoty5Gg7HUUCNS909fF5Yffog9LoTHIWXl3GVIRHS9TttPye2HRSVMGRtg/5GOUIaRlq0uLJqOlF6uUQD8l63Ch8RJBDGcNxT3npaVccsez/qE1HouWF2bh4491XQXbeXX99IAX+djc1sBsNdtf+IjU/Ly7YneoKkW5Vhs7F32yGRKn30mfw/WoXHY2QJKcrQI+LF7xp/Da8ua+XejXK+K/VueDUFV5tbLPQPoL79fIjtI2OGdsa3qrzPTmEZRWeOtpe0VzXlV4rLy2sWpzs6zG8Wu79rr3Vllf9FWx7Wzjy4LvgTRtb0stNCu94sURUBV7b4ifjfj2W/yiPjdJCK9mG3+Maf+mLTgEhYjo0UQ4SJmK5R1lsps+ieH1TxgGve8Ar47wWPwD3NwrghihX5GP332R64+o9mj70VMaf+0HSL7y7pt95laJ3eBf+2E5uF001H5/R3X24mT2vNLqZXCCf+hi0uX1Zhza/0M+6GjBLoSZW16a+hZboO96dTilJo/POYW90dNqr9knR+Yq36tQ4l1RX4a11X8nVO7yt3M4pNcn2zuQhHt3nHmifvRLQ1bXyFE+e+j2VLDqHEyCfPZ8A6V7HNin9CufqI074hfDsjMypiiC/KyBR7/jAMslhh0w7DlWuO0i6adWu1l53xElu0B5Fxzg9MZy08R7oHX2aBBRbiMvJT/gOkvMhIS2PYPdCy6ct1v7AO0XYY3fCmN0YrLi38BY9Ol5eTCScYN7eD6TFzx182sspvE37L79Z1rSf6+3ugRDNw1he21fbsGtfreMKX7Xwdu1C48uqLdL1FVOXk4E7cRu5LRzeGx4ZmBfebr4Q1ep6L+4ls/OVz3BJG5WhC28+Rn+GV9M1sf8tci9mH24bSe1dcH8Z3wrH7oL7eAD33d9ooUXYnaFKSA/jXfBYIu9PrHToylhecd/lel32JI3eOSadmDdwfujofkDH7/b8pWf61NOneSrjyxOHmMwO0oYyTtRTf8QuPgDT4+8ZqhhPoWZeNU72osWMD9Y5M44TwUZh8ErUZeUmguXQRQt/Ua/L1KY2G60gXjaPecXynsMa4pHbs9SVmIOmpWUdl/tUdCqgzlktbJ3cbV3VWdzTudPxQmfjhRSxFzpWx/CIbUIOv8skC1tXv6fkTEiuZJpE69f1cd6ilPqOGHmCzjm2Tnp1vl4i8VeSjqOiZCLWv9OTnhCN8c/5eE9K50mJJic2IcaTr+GK1Z92zD1cnyDwR0bHJIIP8eCeEE/LPJxk5o9Slzlid4pUV+zaEq8Z2xZD9GK3lLw/mQOHHwri+HvKc7mVCWDvk0Gs7HQ5w64n7F2GVyfDbgXWCAmkMHSzVmCdum/IO9UZkCp284wiui4fxTB/q8YHqrkvz76Wm7FiecIJ7XmzXwueFlPNHl29Tb5mNelAhYaDYeb1sBPSKd3tylvLGzlbLL/yN9S+Bbutrh3ugzAHDe6b3AZ3t1je8XY4WHVsmpfklXzt2yNPY0GKHqbKxBKbi6T2OWaqV+AfizZJkvNZt4ntS6Mkymq7yJ+ov+dkmCuub8L+RXYjlyctk1mpnmGvk3A/FmkJ9zHqlXI64qO4z+9tieg8gZI/+jw7j8Cx25slMKBb/IC/MzZtdxMNXll52WfUTUH2A1FH9gNXPmP4HRm4X+/RG0tuiq+D9HEXZpTaUEYgnt/6STudg52Zw448nn33SDAzBiG8CzutDXzGsLSwIt7qCAYt8U5VE3wZkE4d0dBafgEoa56CTmebdeftD5dTfGo+blxWuel64PaWdzeBqCkBielVdPUylpMqeKB9nfwdbzEZQF1KVh0X4pqa+pOc1EGj8zDNTk4CwuovL2jtxDGthmrqauV3DvPe36Vuifvp4xF2avsc68GQwwQlTn+iiWW68Z7X0m/EwcSd1JQTL0PbPahPt2yMxUXbBQVqiGEOXRxy2PFhTjrFf7PjryEhcfQxhbDMug9zkoXWTSE7XuCQM92qg75JJhJ62OIsXiQ32iiPkBeltr8s8ZhNn1Sg38PkUvp/tMKnj4TdTkbY7R1lgxtZKQm5nVie3cPwuADhDr+6xQMvFCsvz3NLWYu1HR43OgiQsJwjD9pUMYd+5MVDaV7xGbu/6R5eyE2YKpv2XeR7PL7gLTq63I53Y0Pp2m0dsOBiy0ud1Z5YMG/F9tN5JdZgFRfLqYdSVsXLibSF3ZWGGriF5I5XJurSgo8XaM7GnauTO+WoYffsENEH16dggc/XuG9P8g4O/ZTAblNhi/sS+Bsh67LyTv6E+zKx3NiF/dGMTCBM5BBD15lo09q1PN3KfiDwWwqtLLThB4z2Taf9+YNfqPRmFmY1jc4nOb/8fgRIqC7hejuP0FerSxnx7pya896hrWBPji/r/0C+EXOP9iW8NfHCc2HeyWnK26HU2eJKx8393/LaDxJ+pcfaB14oxzLS2O0i/zJa7Wnu2YZzF/d7SeysSx/L753QonTxvTnefS8jymMzwJ7qUF2lbp/YUGVziuATLubNC+mdXlr6nO0yFr0FkEYnKbzLCf+koz3F2ulYu37mLY4+0eeQFWDKIZ1D9/EZAV4sPvi1rjUJhwLm36PmJk+p9IC1bINtmqjMKKlzLDiyQgTryL0u8/XYPeTew/JOj11Z296Ovsm3uNJ3pJ53U/4SLNem/EoOmbHnq1he7+UD+lcdK6bc4+W817PbEbjC2oI521NCq20mbR4hupd9F+87TBbSKStQ38OtMgKvCUNN+Rpjm3SUICXbxJMmIVWUyqKiRa7TComN8hXjHsD9WVfitX6U4IawWEqefeLUkb+RyWGQLMJsk63fbPQlu61yVp+hoRfednrr68ZH08ddmLFzmx1ne3RvBf1LUFvzaYGUnLMCFUg2i6m4at20PPqvNUhD24WwuI5rHSnvCpCTr/XseHf5B3hTwc75Uvm2ruJUtV7f3fuNqFb2PR0fqcvSA21d2nBBvKW9slu1TUtbncA177Ig65x2nQBZPtGuC7LsTDd6Wdm81j29XfSxusjpjacW5xhZU8exq6rX9djEhXcG2cE3+vvOrA1hYITATGerduIWMJ/26VI3P8HjJ1EcynIUWn5aNpxxOMm4Zrw8IZnvBExa47UDPIR2d313ltp7eEij6XvOBaSSDi9P1kfqQilC2MffZXFjiTA14tMGj22mZ59R72n1AZuB2/ibOm6abYANLfeGggVX6R4u3sO5Zhw/Ire4mVZux5OZN+Xo7mfmvdsmlnNPxw6flC5c4SLVdY93w7nqfPVyZoOZD895gHywyzF/sB3uDdrUHt3i/qrTHueTeQruTxDNvNSGNFIaLHc/MPEpj/NGR8J9phU6tbA+ETKs7XAfMPqMu9xe1j8thiiqovMVftDS/HsQ7vfhillXg7rAdqsvb+ZVPXqfYb7iYeT6OCluxRc+vZknZsKAEL0YSyB7GnQVlcOpj766542FEiGByHLMMN/ndbxnHetJh7zIbBdwVrnJIfpr59TY5l6qAKub3y/gbdmu5Oxk7WRfydmlR3S8FnfJ5EVVjvcbbXgL8aPt57JlotH3EO/Xdg/KxIx5L23zQrlRJtPZgfrBfN/rYlKSdlptAC8TjayfpBvRNUYbXnZi00BzgmDvpEVTlXgleN0mxYmz82Q6Vk9mvRKLMMOLMHV9EhZHKqf3EmD3m+XyEzgOTxy8cfKXrnmfEASv/YPCT5K0/GtTN/VJBmLsbgdkM1tkDOVqC6YKM9DFK9zfN+S+z1hTwe4rDH4AFx8FOH9XCsG7w+571T2EGxc+Y1tfqbTqnGRUbCs0D+m4yb8OF/dpLAaQdU520URrZTYOlznMVqZ6+fKu2N3+xQsgBqONNbZ1Sc4rZggl5WsbvHmyVJP9TtM5feyNzpJCjy9w3xY9XrP7m7GVczS2qbhvc7wIQ8fYYEqh1Hkh5WGU9p6c6jg1EToOdELm7Y6xdxdyZNwPOBEAJ26hFD01q1hu/KAF2bXPeKbPPr2Zwz8s+QuivgsqQXpk1nXmM7ulD/4YeZJe/m6WSYk3AMDfM71KRS6/x7R0403oTJUjpZyb6++BkW1qg+QuLx7mTb8pX51pd/Ki1Hp2tuzKqpyNHvzby45CspHL4WyVttNZuvId7yJXrnW+cpzJQe15l56d7KaF9o7MC7n1tx8aYi+Rpfg8WcI4XC+elUkpIzkLr6cT23cWph41xFDcs+Wy49Ce1uVQEU8CoDhYjs25JWhdt+mI05H3nNc4edF4D5KTeRU3ZJ2Ndzx44ncHFHLk072svWJtIOct4Kd1JjcmAvXI6JekOtcb+CSAgt7nCWwTMkgdkyooxqzYRn3D+yUDY9GJ8trGmLKx4/KS7/BXaN14UHuItyYt9bRyQOWVnn1mxboL3rOMDRD9p4nHnW2SnANrXY24rW96iY40Vq5sU3m7qcjOZ2Ts0ksdfbrPvBtbrLhY8qkvV1qqf1koNgftLO1AsnsK1xOkd+pcD5PjbdLx5IrHa5VTn675H804X/0Pz3mmXH5fX4qPuDV935+Y3cF9zytgB4E47kvF/R67B898r8vwWBS3YteWVzGfCJofKLiP4ud40eY+w3pewf1Z11tOfvbKFzy9uVBGwICQysruB0+Iu7R8p0KMyx9+RwUllNFOZ3P0uHgiVdc0KSTLdaa6iLrjTYkBWEu+cxqfIq8ywdYRZJqr4brIaRaDVyn1jcVwjY4P1F1t05Y3cjrb3OW9yF9NGNb89aKsVcRpNbrhXTkotFe8ura3TmJqG1pangyQw3VecV4bycstSHLrAo+ccTOJkUrbldPvIFf4xzynjkkOkJ/CpVCSwZueUjW8WW7gSQ4rjJ1XIZleJkYrlLd2TOfN+qrJorBHjFMaP+xjo4GpFYsrhuzxaoYRyiO8D2J5bdMFb52ILxPzRuek373xq6s/uDfW2Vb9BH/DJBveq8TtewkeF9or2yyqkq61ulbnl+rIhS/xr7X8Hu7nmre++Srd03lJBcvu4n6Vs8Puhv5yAVfxl3C/w3ILPuFPn+REMlrcb/C4wXn2PPHkTLycaR/DfYCf3nFIoh8/V+7JGo7IeIzkI2AYDwFwJtwH4frg1SQ3fYiadE6LQNKh+ow3f1z+QwD29tObCWW0pOUpmueVhnDaGikIzE+RlklAkgQfZguteYA7vdDVKHLYY1CdwrSlCVJ5Seft+3f1ieODvFVOa5YLudeOrVRXHWojd1t2YRtPpgfdzqrjTucaguRlF3K8OufVa1tUfSjvpydy9Z2TVCBC+wZjPrii1zH0Uv8r4S02fOQ0bBvNr0uiTd+mKe3zrimJmq4xL3u8Mt2ak+/8XbJwdICd+kVsUiYISSerJz6/4aEliz36BRojSt65tKdqkmnn/Yv84LXwRH5ZXZIcLbzmlGPxZXr4u2OJN/KH2KcbziVc8ZiD3I5EFpjMeHI2aE/ftX29f854HG5/g/tGm/KS6yohhSte9X6gtmGdiJIczVknpjG8xcWKqRrtbTFIMlvCNpaLIlcLr/nMKxzc6LzDaq6G9UDJO+7vMLbRh8fvTsckTqKu7iPXd33Gwttgedf+V2P3KIh3gjcNuxhcgeU2TgtBV4/3G93qWJ+m6tIb9rzWvnGfJx47pjJvqac2XwjLEb6CUIEgghi935CPxNhEYrkpegfhB/zBHeGxbYh5eLvr/Bjum6AcQqilDYMoDjDtfcZhA5l8iH1yhXHfbCXMCwuRnLhPC8DwN4T77jNG3Tr9wodtxn1+qbxd8IVNbyaU0cYwH5c/jkyWAEAfPQb8patwXQegNBL5EblyF5u0VY/0Iu2mR9aQycRbVet0ZLpdni7xgFey1dWipONNjq+2T9afde2XaAj8l0kA5Zf2clkjO+WtmzCw9rd+cTJLXd2l0ubEf8c2iy12OnZHaSendKFvao9s7XgvL4vBa931dzON3dTtiz62W7KXoF/8IL+DUB0u6qlXyLZAgYEUlrLutArVy6EjmPrl3UbmpDK7BdSeGuKSY/41lddTsoaT5wlJftrF7zAISkhh4uVwxEHMC6kIadGgZTnTHuboj6JTPi4fr0+MT/5XcjHhfiLM67eB5R3G1JvY6MuTb7PX3bD1KofyW58hlXejc5VTmvBibJNqq41e5V5ssZwr4nqlIb1qX/lNw2ZpX36iUXi7dc2juMj371HepnzLK811U5qZLvoKBNtyqbT38jUsl8vL33W/d7Mos9/pfulqFL7BJCvT0hyPuXfjCPlbnRn3q8/Qpd6E+4cWDOWxoKjfH3sE95mWx3F94hQbblGX6cFPyo4jnqqNKWuOtDDct3F7kP+Jegb/QTorNNFCdHw3bdpYjv7gkWf6bNMHvCnwKaSLu6zp9zqAR/7B5THRBgfx8s9Ur24cdS93CT95gY49LyWJf9raotB2vHiAt0tT5tWRvV6XRt27BY6XFd2W8g0vKu/GNtX0ypcqb71WdKynvSWZAFQUJ8vYtY9tuXGMmVfBsfhXvEp6jn+K9gj9xq7Dae77qgLUvrXm+EbMAPQD9u2TuZtHYyo+tBM6uM3sSc0cO/FUaErmHT9a8MTipjoRWvgU3ooyNYwjlYnJm7wskxY43RHD5kBDriQdl/ARz5+Jd+Tn7qzLPS94IxwFMzRmCU/0ukJ3c/S+6JP3OMqpjAf2feU60WcKrsa3NBNCZEztsW/eGMjcmIs6tpiKjA2BP7qOOcaCdhw1vC5r6LSM3w6zGpqE3ZptlXju8CadO6zr6triBmUb2mS3IqfVsf5bfPMqPynSySl/E5aPmuN+dTqW/tneP6F6UP8R70bnnY6B5wVxd/ezTSF51c7qzRjrvkTovVVh3NCMfTHsHMeT77J2ua6a/xLub+tC6AH6GzYf9bnPoHo5n95ta3xG6JFxsup3hfu8MZfyXK+cjs1C7Y/wds3/Ju8hsRAD64ixILsl/2M+Qxfa4acLbfHZR/Evr8f9zyEpJjC+8t8HJBH5FSLyJ0TkFJHvoeu/SET+sIj8sfn3P/NIfW8mlDHCUBS2YFMA/MXjGp64VjLLJHi11mXO2pJk3lE6KlDPR12SmHK9QYsIWSH5knQIWljbmZe0NN41HLHYgsrrpbuhjA2vNbU7ICS3n9rbEVzJZdILnaptPk3eK9qVl2dOJFeaE6W6ujdyV1pyNJAXto+cnhHt7rUvknpaBV8mWqVdSa6rGsGM2MlJItk6ZTfUaty0L7+DoJ4Xp5nl1knn9YidHw5vaJDDUgALOcyLGjAv4n7JHATmAA8Z70PZB0wHLb2c7fVRHsHrE4fqqAXzZflSLuFA8wSBHHJZiB2k80HONxZho338TttmCN9NYXUMTD3WUMYe25TwmDDVHGrB/RXL72CqYJnMG287fgVrmUYdl7zIvKnOCucFfx/F7o63TRe22erY8Hb1Yo7BFn8ftE0N61z0qFh1DycRtgkceYDX+gg62yhhnKR+xHZNSYKV83ssb3i7fCrTxY4tHqdQ8kYnCt/r5WrkZ3h48E5sn5jq4dlH8IyQQ6H53SxwuYG3rvOUK44bpKPfoMzLeiQUWRZ9FecB8wtsi4z7o7Ey28P+CBJH0CdeO4WR/IuFlqsSlhNWW5/iMPXqB0YL58LPfk9biPumEeYpsy+I0Mab0frfD8f9zytd7C1/1umPA/jlAH5Huf4jAH6pqv55Efk7APx+AN91r7K3G8po5ccRY7KcqLU8HTmiTAB3+g6i5vg118NlwYuFt3NWokNOrmuDnayj86LlZYfqPmQJhyu2YGAtvPxs1LHpDq/box68gkLD7ZWoXwudlHq3u7iNztweWqv3vJs8O8kdr/kWadqXeYuzmv6mDVncpa1DRThKlcWOO17X0e+BrLTbPDlUjh/i/gmZDnVaQBTtiYiV14TInpeHJCDp9KfsIEnWvGb9U6eOR+IlnWQ6I+87sSiy2g56Udwc3Zxu0WJvVHjYccVqvDzZCNrDHBvdDg4TBIDbEfksq4QUTjlWfwqFQeykWvturZxB34Uq8imONyFaqOsofk9envK4kvUEXewwVaJbjtkFYU6AwRaPqUsDoHYjaEdDKYV/GlVRf20wtT90qoHUim2oBIgxfIXdiGFZk/fLK+w2mxWsXjZculR5KznZVUD+FHWsl9TZlehXJCi0bJvOR/C1BvcT786uhTfhoi8uBsGZsyuvlHzxbUt7d/V0qdqxnNDJm1X+aoQJTPMSwuM5kd8PKL1ony147EbYUx9Zae3U3ANxYxL+zks+SLKN2ZdYJ4z1Wyw0jCZOSBQK9RsMpqL1w6P6DF/kRgihzvamKAtg8U0Vg01vOxE3QtUDf/35A/sBWpQNVeibmOSrhOobhPNJG9GazzC/92ng/ueWPpJ6qvonAeT1y7j+/6LsnwDwLSLyZVX96lV9b+ZUxpq0lOtF2air1l3ofaoCGqEb+XcdUl355GLTVe/QPuL4urw7UXJWj/J6nnmrc3hQ7lK3ORS5GB+7sq7e2j42o5S6HrUt6Vhpa121va1TvmfH2t4rxypAG3q4oV111l7HbdJiR0Z2xb2+O07po3p2sslxsaRwDvxH4x5RhYuc2l50ToNalXZOrUwSbX7BOWwjRQ7c2Ub7pNSVF3/cNWiSAAAzRDDp6+U6nTfpCE30MRHodUThJXSCGYdDWwBz6ur3LT4uHW34oBj4C9y/W86Dv/yMck42vaAyoSL+eddnXNAueNXIbXirpi72Co8bzLnHu/UZgt42F3Zd8Jh47mGoFz2qc9FJSn5L28lh6o0t6s/WNul3rl0lE8bGw8qr8PVHLis4ec9nrPmiExS8KbbWJyHWJ+173I8yLdfrb13WaQGMvOkVecZUx/0G1/PmQVnNJr+SN7W8XtYxqZ9nmixHlvasPmT1GepYPrA6elati/FVhN8T4w8/ozy9mgs+QfIDOZS++ozBq1R/ugd+6/XTxf3POAmarvKy9B0i8kOU/4qqfuWDaszpvwTg37q3KAM+9sKM0vbkQfvfMU9RWwCxEBcQjFAIrpgBZV5vTu6yHZJafa5HUkniVVyGMu4S15ryUQnGsDHdc5u7uirNdkHT1bE2cxFQdd7pci1oo2OV2znbKx031bjuhfch21TeDcmlIvRXd05uw5N1vrAseyXuDCZ3ob3QY3G+muu/qqurV/iSRj+i8hwKA8RioZfju5N2H3l30xabDiMjn5y8h7VkObxQSnUZm2jhCTm+Q5nyU0/Y0zRxB1zrdKfJvBxyg8HLOgqmY1dyvhz2aKEwMMc/6HlSYSEy/sQP9uJ4XQS+NAV2d6f25UzGVgFyWFnt1wsItAC+aGLXOd9Mb1MFS4hh4s2CPhNcbOQurDts+0C5HSnzPIyLUgoaPL6nYqfrwNQqR3N7Ghz2+ykb2eyMGae69tT8rn2LU7qSu+ra8srssRt8Xp/gPYj7wN7fFNvEybya6hH7H2F1vpE2ts/CtC7IDA/Gu7aSagjsLvoW7Oa6/LAPwnkOs/fFo98DCiGUwNSgZTwnzJ8XGZuZJ4WjU+g562k+Y33XLeyaykURJ0MKlgUZ/4X5LML9D3wP6wuQfkRVv2dXKCI/COCnNUW/UVV/4KpiEfn5AP7HAP7BRxR5Mwuz2NCp3kDjXOmSVmyq3mdMWroDPEKcZHGzY6pS6IzpuGqdxcqKnZbb+hfi5VpXuc1kowX2VsO93Gv2zCL9LXpETjchuiv3gfYtyWg3OiqT7RzQMkmsBFhvxYVtuKYktzisoJtPYDp9Kq3US9oTNjqnXVQW5d0rn27FZX3iiU92qHMkck1tDS7bnQlLJ94ysUi1kVPlfHLGM8+ONl56JoeabrkW3rwbK6n+vBPrvFJ5jY5esgaHFM4yoXppYTdsdCYdki7TwZtcP/p+tvdGMjOvejiN7d7eysTj00hszwX3RXxjy2hfgoscsWC8bc/jC8mFBPXlosRwf8GNC0sRtjHvS3DxkRMkPRUsufSJV/reo3sIUzdV38W2cv87XLzwN5166eIOY/nyFa3s29LW6z5D7xt+K/eiZxLtQ1jO2L3oo0tbs3yJ9jv+phYEbfIR2tpVvM47iwEhWl+MVN0aLC+bS+nAqYLzzBsYGWMoYzkt6oze27b6tPRki+T6NVqU1c3CYx7HJYina4F3Gffzu8iDV6ktB+nD7xmDcf/TBP7PIn0Kh3hcV6/f+xo+EfluAN8P4Feq6p96hOfNvGNmyY+Ar3lFjpfXKCPmPl9o57S3pRVDFhtc+oADTLx0GcAyjdmEYFY5rVzJGQY+dkY1v/JmuWk+RLxaaUt+kUOg2OkgoPva6Vyek+/a16bNM/a2DZv23Zc7d/B2tqntKXWHA8oOaq2r6SNb2urUi1NN+le59cbazh+xFiey67/rIjPrZU9u6ELZ/Zx/7d2Cq2Ejua66eFvKyj1IT5a8w5Y8IjzE6q68+VUmTSGHVtd4HaPy5g91Wpk7XOMtcsyJHw2tyeXwl0FrzvycdcVE4EYLvGUSAH4/bT5Rc7lxpPKrUpkVKjXSa63vl25w0sudVwqvlPtfDV/qOqJIqUOMfKEnWgDxriMA/nSEN1fW9tV8VYdltrRdOf/eYEHHW8fKDuflTjngZmvvZ+DgxjYPymn98j2cbOS0vNv2brC73r9Gt1anDW1c3+Dtgvu5rPvsQMWyPX+Rc48W0ZZcb8Hy+T5b4H688zs6gtJ8b/UDXvfE1LjY4P4mnw+GirqY9lblej4vrKT6DF3tnL4ZudyD7AcOskX4jPE9tkMUN3/vj56kuRxeENLhUhb1kHCf7EeLM/YRo57eD7zl9NZegRORbwfwewH8k6r6f3+U780cl78c446SJyDkfJcWBzoHlfOyhBIEvRxxf6lXuSKpsPBm2qX/XABfaw/+/5VtCvPVpMZ4/fdFJ2/vgRLvvfSgznfbs9GjIXW5r2rfvLBt38X9igvEfTGp6XlrvbOuOw5z4W7lrnXl9jfOufJudF6ni5q/qeNegXRIjl2jDApJ36tpdCQ5ecEWL1KHk6QnTyQD0HEIiHBd/AQpP7WKnU7jjR1KzKOKMy9CLoLWX9IWK5t/S9hhcsaIf7ciJ44+Pmeo4un5ePo1rt2OXB+f6nhIzvOhIK9Km7ESE9cV25ziapx5P2Jewv27PqPH/VbnTX6VqxlzOtpGrzqq2sUEYyhh3j1sW3hrvVvM2eh4j/eqfR/ibxaC5WdI+iDcTxrn+3dPL+zk3rlBl7i+x33F+omfmA91GIs+f6GjjbDL+U8np3xLzTDYcD4tWorO62mJVFbsauHWGfej3hX3Z9nEwYTHEl6fF0PZD0yM9QNENPQgfA575usHzixXTsLg2JxjPGaczjqv/iZh9xH1yzwe/3C+2LizupPPoG+pvdmkH/DvA5KI/DIR+f8A+HsB/F4R+f2z6B8D8HMB/CYR+SPz30+5V9+bC2X04/J554SmPWMQ2wiOsklMfJl2tbvxSqCm08pSNdZs6GFhN7VqqsN3aulIf6ZdeDu5pPKoaiO3Y6Yy7fJdHQ/wLsnaY018iVyTSaZKt2Inl3nLpUtVH9DRU+PspMh9lNe2/ZcjmFtaq9t7P+pBE9TJ4lqq0CYUWe5KW8Qq5umJninOtueNNmmiy6FJxDsLeDjxsfbVFu64nXfQjhDkScq0VT1ztgrAvgtGvOkJVdE587LOZTeVeEVj4uFx/sIwwIs15o3JwNBLp9maxZv/pbBHWkAeolNHnR+dzhOPwT+dM4aOXk7vJtiL5LYr+/qUB7cyLk7z5m7OuG82zlXZ73z0fh1g1WdE1qNgdhjDuFjwasU2Iubrs7uu7WPeIppx/6WYU3zGI/7mEfy95zOcd4exDe+L8PieXDD+9O1Dsavdk2t/02D3Vb+JVsz28U3cNCxdIpy0R/DMm7qyJrvJrMuewsRJkyvviseBv6rZ4+SQ7aLzALz522xleC1EQ+ZnOXIShlZ78OJN4v+EYak9XjfzVtw3OI5TDM0WJMHxFYzlQPNkr8fy2cKM6enofU28XhcwN8JOt5Vg+mXC/SSX2ndMv1Zxn+uCL76GMWzzkP1A8D5Tl1T1+zHCFev13wzgN7+0vrcVyiiA0GhREVhIiGKS8sKrOGrraTZYlXq5LN3dM+kYfl8gVvBukmRkyby7HlxoXT8tfBcOswu35LraF68LLbePzVjj+usEgvF1kcN0dUIwVeb6qtx7Om992IW9Wd/6dwV+A72GJymyaR/IrgtvUYjvfaVdGlB11qx8ZzdyFIm27FouelZZ93i9mDrDYrtpM9ptk9R+TTrnV0qvebOznl/XSLTZmYgv4uAOyHmF+2QODzG5Q7T4bmnwslONBZEAwBE7nwJAjnzSojlBKXJl2ia9b3bkXVxeWHner5XDRPypGLzMfpvcg2zD5XnX9nx9SIv3DfE/A84MVHgCSTh/Mca52w2fwbzIvIvPQAwhkRfifs5veUmm0bY65uZEVVRv6yMueHfYsGDVlc/oKqff7bfMim12vK3uZcyldtzrdxW7dnI5X+/njpYLHpWztE/Xhj6iI4D8aKjhTb5AU/tEQPFRHW+RwzresaPUNhKvpggHDawHCu4L78dnvRs5cXpk1JVpNZlj8QlEu2Jm1hmM5YLkU6qPsG+W2b3O/qeENh589H7+LIrVY3UdAgofn2U73oND2pGwnH1G5fUnbNTezg+85fTWH+g9mt7Wcfm028VlWkZoAHXvPTV65EKrUUPw8g6dd1oZktueuJNbHOMiN4u03r9MIC4mBTs57GOS02Q5rEMjp/bpqz7eyuH6d7TN31buTsduslV16HgL4KfrVQe7b6xjWlFmWq31LXJzC2tfSDoV3iVcpKYkVxebRPVKuuSx1JtKVx3XFgSzjZopIz6Do75j63KqGSdP3k0ucma+8nKYTtI7OaZcV6ZjWp0LBFrMtHI1laHwhlMDoHTMMcz5M6+Fkkxe3wkd7xb4UzbnVdJJi1zeRT39vTDYwgsnDpKzLAZJbhzLP0JfxkQAgJ7LYvfxZHhsxlyfaSx3P2GoIm5qHkdb3OOeXbGAhN3F/RficR5RG39R613Gfpa9IEHh9QXtlW2ucLDqVWmrXBrXrY8pWL3gZJcusNvtvNPZ5Wrfniq36tvJ7erq9G/b9wB2d3Y1SVssv38l7t8VjhfeYhvHQTV8gttsjpIey5mXaYlEocCRMbaq4NjO7yc71o8L4vk9zhPcBG2SmRcedkoul6Ngu/sMDexGwpDTsTf5Bdch4z4M1qy9rA89LbMndgeqjrlubtPAcpOTfQbAfuD0xWDoyD7Dfr/RpADOr4+V2ZsJZYyTrWIRpkBCO19U7ZbtF7RrSMtMQrzi0yOfQXrXtyd4xORdIPEinKQiHLw5FwrZMdrkBBsd/dL84cC26EhydqZp5CSdG96OdpevbEtZo6MD/QM6bp3VhZw238m1qxe2Sak640WO1TUnlrNt9X5aXfw3QhcNRJu2b+QkG1pdLtu+DYM0lBynUwghKctOb6MH78KpOSNqVzjy6P/pJe4UpsPD3PLWPiWZcdpjOsLeHV2UjVCZCGkR0pHfSUi2ILkcQugTBOLNoY+D96A6YvEXvPZtMQ6lsadxdjKWv89gv42XnbyFOUo+VSveM5j25zYwL4z3bHgnrdY2vCYV7Ky4aGULTlRsj5SPrQ9cdAEJj4OYu5dgYvUl7oc+Kx7XPMklLl0qWfNbXLzgrdj9Ibxb2qb8Lq/c9wPLpUfxd17PF4pcbHhx7W9egt1r+woeY23rDvcDY1feOmYS7RJmPhtoehPmpDh8WW/EUF1JN950i17seIxMy7jvH5kgTFVgfrCasdzGR/gIO55dil2lYCr3vp3PSLRKuO84iMByw3NRiId1lid0ht12PY3zFcs5/LPifuJVipAgPzDsx4dzBJaD5ZLfMdwftOOgFfMD0BM3Cat3/iZ0PN1W2/Dgt5LeuHqPpjcTyhghHhJlwIxNmvTWq624Av18Tuw7HBQew6CVwiA111tpubwCso9zPiZt8oZqExgMO1kOEOEFhheNB3G5RCuYckknNh1PnNKJljs55mBpcuFqSiJbQv0mji5jwq673TeOOWG66QhqL9eFVU7ibXTeOcW8C2e8AnFnAe+Y5lcSOd8Ta1KV6wZziuBv7nXVW6qRNnTJQHXWcxTDl77qjbM+xDpTv5lbhCQ3y4n2zzGdjhYqTmQJExwLJXsyORz3JJVcb/6l4agRvNyn3NFLOGBrNNMCEiEfYjpZCe1aTrkHyzFZ3B6nJ+c6eeOkK7iztXwNi7x5+4ajfHfEPUihjLYoc53zQR0C0EmMOQwndlatS8wX0s3Rg5+qIRbUL0wVQz1bB3A6IIbutmbaNOasyxRczHhMvBsczLyScDG14ai0nFfnZSUtrwWPu4Vu0/yMbW37NrwNpnY4mLC8w6dGbsXFqqNIxv4WJ4seXiSZfl1GcJr41GB3xysFu1tM1dzCDrsZLjF/x91evMY1lnvejKJuBEHtN0KLI8x3uSRE8r3mOYAvPqLTpg3ARqfufqX2EbbxXIPD0t2FMP6CbZXxdfERrQ/xG5VPuq33wDB1js2DMNRxX2xRA1/A2kKNHk4l3Hd62BSUfYJGe2c/upFcw+CoR/1u2EYdL8LeER77yb5qUMTv5o0NNt7Pvcm4rkD67Ikk3nH9Zu1Tzn8Y7n9e6Y2r93B6W6GMlLSU60XZqAstLbA6Bdq+WXgta3X0pxj2vKuOcITQQlwdQcvb6BZ65ILWKd6Rk5gLqLnO3WrLgPaeIy+gjI7mirYp14aeGbbjUkoZ61z9kbcvr1LlYd6shfchnrlvddRLO2ZhqyxXwuqq0xHJvMnHtvVbvvRQcgJML1TeV6ktreuz2DrLzZO38fxPSnt2qLHyZtr2ePwHeWPCEWX8ZMzyOhc/+R5oqmfRWczO47tjuX1adIpFXOz+zvZNHUa3Pt0+/BTN/sYCDcAMZ2F7HNiOtMv0ED51eOVj7g6Gdn7BNvMuxl4dz5yvmFOxrKcdHaLFqw3etqmzzZXce+3jPF/rsJx1utCDya50TFU1eIxCu977eV0KT1OP+9uN3GWBV3DRfxGedvbIdiQvX4F1Y8vKa3mtxFK0buoQWDSElmJd3g9Wx83QuT3Uo7cWNU8QfmQsIqNsg7+cd7uuC7xYFPe4D2vvOuMrtJQVRX3+fVDbE7ZLx5vxNx8wnDfjcv+KxQ3LYVukaArw/ZhH3Dv96a1XIayWrFNgddjENxgR8jIvyZbwNzLlvulQxq+j9GZCGR3oCAPULszZhKaYBM2MzHzYz5m3MY7KO9ltBWIOnKhE432DUE2YIsvl4sX56HJoydLeq5RoR6N2oSRLvmLrirUw1a70yLbB+hQMaG/JVTISp61/Ue241+tK5y0tydMZEpbCQx7krds124NAmA8kt6bufrGx2Gskp1v6N4gXmu3KTWz1zc6Vu3ydUPKL3db3paEd14N22Z+R0QavShqn7rQ2ceAJETk4fiok5Oy8nw89hGzjE5apo5gO4Lrp9zyx0HjTe2IlpMR2OXNYIDnIkj+g8S0aAOOo49Fu09n4/OmZxGEiLkenXnbqFtnVaO145tsss53Uwft+yq8hNK9LWjLLe8QV6+xGeO/uaQ3s9bB7nbG74kia8DNh6oFEy/ktdq+8rQFeiot2/QU+Q+vvC7lbbHuhnKpjJbz3XVD2Aw9/RDu54l5460MucHGh3ejox2wWn3VP18Vn1PYaDm30WJ9iVVrNPCS3ffJRMDbhPEC2WnVx8JUTtvRxnE86ZzxOWA7A3icbcs8kmxc2ccx+bg9vZAVt2CawPHjDD1nkwUm0wXuwvoa/JJdx33xDu1gjXll4Q8cDjPsKOwrfdBSIf0Ta+fhkXSGfZH5FB80h8yPUSa75g5PyoYfxvumkTb/+AqaPszAz2/GoJ4doI4UXRQsSVAC0PA3UdSFXZTX1AGlOzrAhlb4++p/N8a5RncRO51zFVq9VxwECVw71oTzLv5IroeMyyenSI04KnV3vVMvztHuym27TEyO17yEvu+jMVrE6pSVPSTDvo04602Bzk9Lfax3T/qA7T9axMeQmz71NOrmtbmwC5m00beTe6z68SBCvZ5VjZayP0D93bkLOkxzl4I0Fk9XPT7/qhzn5RETwSYbTUR7+OxZFfJqjyU/fQCOaqGfqBt4tDR3YeUddp8sFIowxvn0W39FxOWKO/wOd3x2M6S5tJba4YT01Y/e9zalX+Rvn5Un1y3h3+QUXO7m4g8OEg4n2AVzmxO27C+tXOjeMXrwZ/9f3PrA7Md7RUhadKnbHQN+tRRKv63GBi0n47voe8x3L+T5cYTe1L9FKtU5uIdN62KFEU/OBVPXuSMFjQTx5qrTrnc1yl2a0D8RBPJe0Ei1kDB1lgXvxvu+kXXiz3Ir7+bCma7n5W2dGG5tfvihCLKICy89GjvmPcZCHkhzzAwPnT4TPoHfi2GcASa4sTxvfXnqGMn5Gyb/8PjKRV6wx4dVDlS0krisdl99t93ZIgMYxUJl2cgkcWG60J/OmPDJvlhPEXnYQjwRzXXcucoh2SbLy7mir722d74a3q3unY823cjcOassre97QQ1YdmRdYP9F+j5czTquFbuWN39Wpy1oXl0vmPS54s6wqR/11h6ALvfO755r6nJOX9nCoH5fnCQfvOGZ6+31Q2+twPKTPr7S2CLrPu9JWB1yOYDbbFN6RnbuSFDYT75iFcx4mM9qwcxxh3/Aiv5/G7yxA57sGrDP4qVs+Ylms7kl7e6UHFGzw6RDKZ+xGpa+gkV4uiWIBjdMm3+Fi3ieMeh/BVGloAaxPfdJ4LcRUvsMY84OtbSpmtGPuPsbudPKiylt4qo7bJFHffTy+o2OiXbEtyQEexu50LxcdN3hc6uxp829NArVvJ8k9atkFbZw0OItavhhd+wVfxozR3onJ/o2vzNz7gfXJWaZVnvIg+4HoVVyX02pz5D3TYv1ciSRsyzpL4V0WWkRLX14q+d5nXOF+bLQNLPb30zT7vSGnPKFzPascxc0XWdbe7DN4oRnvFoecN5uma/t6SB9vYVa2e+6G5F04gYVhbhtvedl11tmm1HKsXJKvXOmY21Of4l23r+qrG70Sr3ZyL+zWtE/rhV1q5CyVdTpWPUznwnN1rxcdy99LOTudr+R2vFd6XdnN62oc9Ubu9ih8t+umLmTebeii2177fCJEPvSEHJXnmdc71QT8o5S1thrlR1kAVCeeT8rSJOdwHde6pNg1nq8YrzqvzLqPIkvo95hHTdqDQkMQDs5S+pbYYTKmE64veAOw8BHfQTVeueCF0tMvzAmTFh2JVzL9AfjJbIMmPkKavpnzwmQT2wXbPHqiw9S5jDZsN07fwQ0eDl98EdaxfkS7x/JKS+GLD2BM0qnouWAM4+KVHl0i3ErtfdSfdqnxN7X8kfbv7kFHx3J7otF/HvIZVv6Iz+h4+UptQOPz7tHWftSmisdXPqOySin2/rDWxQc25nylndhQdKqbb6E8l8ViyEnN/xf8FaJPTah+gDeRKi3r4O3OPsSxjQ664Lo8T82KExdzmdk146QuZeYzDLuzrxm473l7WpZ0CnrG/YHf7G8iNJFDFyNUknzGkj/psykvg4nPOwngJ3l+0dObeWKWJ0o0wvkY5cUJ1Jm8xjFANsjrU6aFN9NqKW4x1ycIGx0T8Uau5Kzr2Dk6JrDRr2vRpdxabyOnsjqgP6Rjr/Jix40jvyf3Ud5Oruxol3oz0xVvcmBuG32ZbVw8hQjs2uN/Fb4Fz3KvZBTefAocO1xJPLkpc3wUcF7A2hxukqOpnHkjKdgEMRLrMfej82e56nLsG4b8LRYhWbFQme2j0EXr3Lzg8addXp91lZiYDI2Yfs97iE64iKdTlo+F5pmehJmOg9d2NUkfWuiJ8ypAtL54JLn+3RphXp6UTKcsOr/XwxOETyHVPgfE0fRpoi2BuQp3Fj5mGBcpf6Vl6v4N7/h5ZzB/KC7uTnXcyKi432LqTocX2GbLt/7s8aro2GJ5w/qYv6mrhkbPO3JRr1/h8S6xgDx7b+vc0eqW9t612OTtFkO+F2flOrcsCAeX+2FYJnDn5kO04G3HO+QyVgM5lCIvLKwufnLGCx2fKslKm/yAv3sSGKpWzrRunqHHYe20BVKjo1S5SthOmJqeooGa7EfNw+W4jtTeDvdNx4G5Z/IpivBlht2hg7VXk7+5zWgJUdDpvRP3TQeP4Mj5ugn6TJ9tejPH5VuK0MVRtg1lZJQJ5lRv4iXStN/rTnF26Vmvz31pHpx1HywKyWLpmJ5ObgxwpAnyckDCwovUnt1kopoieKPeK14eerL8YOBey9rEoM5yLhZZtkjf6tzJ7fKN3ES7tCE7zSXkn+3Q6GSnJA2lG7kb+R662NFQWzyz2IL59ZJXFl4Wes07REXHaXdHzeB0/wCBHFh2SL392ezpGiBjF5Pax/Q5lER8KAvVk7or6XUUWhyZ3mjNSdYyDkuxjznbJQ6lye8AiDtFpz1AiyVdFmUpfzRhj8i8/p7ZgVLXKid9TNR5Z+gM0ZpjZ95XpW7smXLgcRX59Vj7AkgFu3n8Lif41TFbMCbnifACY/0I/5TPrEs923GWi1LbC28ZmnmSv2BMliWF5uEFArDgYvsZlI2Oi25du8v9advlwgoT3fvWzvx7k+8WZcv9dPra0IvfDa1IM7+4ypORLrG82va4oEVuX3ffl6CiOoYkfu8WXrU8HdhhKnP7Dt3K5ad9cchSUDK+VuzmcZ5wcdIsp/NSXRn313yVe5T2Mv4OWZppXScNXebfG+l0oByvn3gjukEA8hl5o05ILp/kGHro4jPqlPvNpTd+Nsmj6U0el1/X5cuJXcDs/ZvZLzvJQqtJwsqr3gllSC46Wn0VTKtj28td9x0e46WymnZALkRffs/mrQC9kbF1jk0di5yqU7cYrE6m0tbyewsfu//WFapcA8RJq5W/yE1PyBcnpgvv9tyZ7t0ctpHWvG5ptQtvFF6IK0d+Bb/V28jtedV5+Mme0Y6nOHaZHGa1zayLnWI+QVJLk9enTiS+1K2pOYl3VnpIUy7MSzuQ7siGlszLTm/opDg0aJfTuSpfkhtHFHc6R5hNhJ348ccSdQL8krbxIrXn4DJbZAkgml/wPlwnW4SdifeQpl89kqw/pJV4Hsh1WGulEWB92ZF5L7B7gxdb/K04WTEoYerQyUMyK25IkS+r3Dr2L6NyeGNvwbbchrt4jOY624J5LzbyFlm1rGJbw2uXV5201b3TocXuTq4U/GlSvkfZZyy6XGH3Vm7f/3NVulSR9Ojkuo4m53QifohV9x8Yr9iy+UueRNvg8TJ+HXNWOal9hIuLHGpe1qtgJunAmDr+ZjwOvOW/BbsdpxvbCBIuOh4XOZnXFjiGx2FXb0PFfcd/a9/wN4fdE8dugWg8/bKTK9lnhL8RxNM89j9sg9VnvAr3P8f0DGX80FQBXmz8qo9QBRKq+uJmt2y/oNWK/JaEeIXgZyIWwxGfShW8+Qj8GsqoRSA77pBD9epjvCi0lq/v6jnQs7O6w4sdby3oaO1CI6dtb1dJtU2ns5RLG958P1lQXLxqn/E2J+dPp6+tHCl0o2j2Sn83Zi83JgFlUkr1JNuAyaJ91od4B7C793tecqiSQxll1uUnNIpNnnJvSA7TmcORDbfPzsE+nAp3HPZ73rHFgfOTLeYTaJrHc1jG/gAQcrLUfnbgLMeOJk4hhmmRBNjRz+6c/QVuqyufBDbyMani3VZbUB1+l0r4JeVjEmD3PvLDNuWAEJy+KDv46GWMyUAc+vFaB1j7cg5djPHLeNzjfYx95rVOwtid3/9iPNFS3zIGFRFeWeQyprLP8Lqw4rG3+x7mEO0W23Y+hKu9wNBLbHtEx8bfXNFubuMduQ1ecVH1A0DvQ1o5Yxx1eLz27opta/Gqc0+b3wcmuYZTwqIauemeKNVTfIaHWwcAdjhpvHXhtGB58U0t7ivTEq4nXAzeeNKlRJPbExgaOubwb9IJOX/IHP0SslULdsdonboabkZdjPumnuEvFP4UyjG4wX0OgzwqretMh2/IGVgtCqjh8Ww7fVQaht3WRYTfDwP4GH0OeQ9/Su9BK8mdPiLybzjxrfyCp4+3MDPPZoDhziaNPEYS8CxqG8poAyi2X5JjG1ni87KgFQnAZ2crRG5lKjk8ES8IZWwd5paXbYNtiEuL4RdyPDUO1s2ebFd4hWjob6djsivW9m1pdzrzJcnXtNTV6x/OqtWDyKzORQWut/JufreLskbm4ritSKTsvhc0Il6uIhqjmbbVZbUN2zHzzGP0fcitvKDFlpX5qBIeglLK81BOfXL22IO28cQcduGdqJGcucBe9rZUyoTbEE7ULt2KHA4tOWgSAXeucOe+8kZZhCeOum6k40G8ajpQOGNyzknOfNLl4YjAjXZMgXFaF08YLJTR6/ad1Diq+VWpYGoAF2JOueD+jpfyzovMO8fB5adAdrjfjHnvehfYRi3LddhiRnK+4heRvwgXhdqdXOQLfEarSM3TeFzWb0172u+Clb9pbIvVNSV0OFWr3OIT5bs25CNlM6uUe1CBqJPldZF1Unm5w10/B9KrGwGS2CTNSrMNJz7L1jaabC6pXFaVC1GoP8cLd3ZgxX3xEZkWW8B6YBNjaBrWhy5tOhKm0u+C+0PHvJDj8ltpw1Hk8Im0cdT8qgOk+gFQeDgmjhqW5xB1w1t+//fdUcvHX+M9Cq8gZEU9OVQRJCdwn3xGwf0P/lTKMz2U3mQoI5AXCH0o46O8SCCk6VcPssp/aaa2r+slcjd5R4hVx3u8i/5702Q6duzS1Asqx0X7mr9dXYmfQLJd1HS0pY7Oybpe5BMvda76mS2KbRLLBLHWUTb5Vuctb2O5dA9sW6go5cDapOIoF9sYr/BlXmgFtzmR7Pu1tGXtsS1tq7MW0yy9LtNKpvVFHC3QpNDWfKdjdkDrbvKRlIzFTkdrTtDqzo7fnlAVHadtOPbf5KbdWC8vExdzqMXJxtM6TTrFAg3hnJ03Qhlj9/T1Drr9XIlbixu8dNI1tHHDm3xGg90g2qTXHARLqPodTM3Y9mj7mtGuTVmHbR3vBf4+4jMSxlZ80lJGf4XoO16OLlpwv8Pj1D4lWs2KdhhKcrp2psZ0ZaXLpU+Z7G6r6VFCy2P6zVdy380HMc3qvI+/og2EG4nWdQyeLCd92KfVmTeLE62UuggXo7oN/hLvivtZJ8ZFz1tdkMIbtpCFtsf9UT9vOK281TaBx71fW3nZT6j3G19ILby8ScZ6RT38Xhsv2JIPEZ0bV3yISF68RZjj6jPMNm87lFEz2HyB00c+lXGdYCqNfh0XfCai/pjcEMaGpFU36zvs/mh2tC7OIZ+q0hyyophvxqsVZ72cbIIPf4cnZrCLXK31KKBHYGbmzair7WO0VV5Ypze13snXrO5o519W60qu5e1Ew2Sb4jR0Q+unIcpex2obLbZ5uH1UXncBu/Z09+JKbrajxl8YA42FBfg73qndBN24KZp0ko1cfw7TtH102wngwhUN3hQrTw0U10mjjnly11AxeHc7rcsEgsNhlh28qHcYItdlYTeHtzOckn1A0xc8tjCx6wheAeYihXmx/p3tsnBHP+XQyuZ1c3wiMo+mj6dSfJw9oPOp4DmQbzrLY75DYoux26Q9nDZ4DnnvvALgJpN3hkze7N7ZAk510OqgXXbfX5DsHd4Y39OuhosMhEfGe8PnZfuhDQ8fwKTzL29rt2OQwCzkmI57TK3vko5hoTT2y9s5U52wBSuDaENuxmP4a5hTTLPDxRf7jHKdD6y6i/t26Q4utjZnRgm7zC4eOtJfqToChFd7W4RN1P/G8mD+rvjr/XdUYJsHCnHscp1Reas94xS9RVEpDEsbyA9MuWm6MPFqnJzYYTsbK+6opLqKHiKZdgii+hl/Mx6PRdnqM7weXyTZPRhlx5SbQ9xPr9f8n79HRXLjG11w3A1/E5g6u7Vj3foELmwWPIFOETrItiPfoLMew2fC/RR2aFjOvkNDd5ETouJH4t/IZ3jbWY6dXqnkXySelAH1qP4TBwQi7yHmt99weuPqPZzezHH5jj0ZSeLZtkr+el/jFG3rwDpu80Xq+Gm8Bmy0KBPFWCy5jOpBCjBasC6srtIwn1zDP6TqbTgyzudMNgXzqqL9QKZYWXXGJdxr93FNb+KOt7QxOZzGGXNe0EwCmPfoaZf2yVL1avdqRwkn1PLaz6LH4lA5Tdr2vpE+3mWb9sTf2XHZ0bHguiCPuAWaANglLbzlb+I10uxgnZU/Yg4DZtN15U1iC+9BvL7zOn9IsU18Rwyxq6oAcLpcrjfx0g3hUJklpAU1bBA4jpPKEBMZqsvKb0Xuzb+9E+EvLIdP4EqhjIn3LLy2GMq0Vu9wxpmXX/S+pW+bRV28E5t51XnfGa/AHXfwvc4D+sQcCMxl7Ibhsw1WSfisMIaCv4znPn6pg+sFbswfA/fXhdQVpnpTCMuVGF0nxgN0vqvUjeCVWtaO3z4JyTVzVpxkXGzlFBZvEmN3Yxvmpduw4iKxu23cVhNrZi2jngbbkO9BldE2ZIfZlB/Tf/XfLQ8EOHiFhNJfWY9dHYRzZgRrlBlOWQ7ZbfLUvsD3HmA8ztjttRGz97l5w+TQ+ZtxPvV2TzZl8/rn/WP8NT0yttfTXsnf+KImNPa6dJrgyJh6SHz4IIehj/B3vj/xxIpC++bi6ag6HgX30wLyTO3LYZDES5g6shX3OfQchOWBgbfDNs/OFDI52j7qs/cZ/URdqeGJ8S4xY3uOnrDNOCWLvdH0fGL2KaRuIk9FDBTV3AscyEWZ3SzpYKRJ1clUx0bA+KiOLW11kgtvldvnO/W1Xtjkr+RseRd7vICWwGOn47Jo61SqtrvsR1auiXcrZ6Mzlz/E63lz7IVua2u50FFLHu6wvHxrGwNjcsBNvf28Ry/eheGFVtSVenvT3rwTC7dVJqOFE00GbFSJ5DbQ8My8JKLyCvM2qb6P0OpI/ToTh64DSrRMmHgxZLyaeNNEBuwc52Kv7Oaa0w96kxtP9lwu9Uvm7UJaUsjlBzjosThjXAx7VJxceMEWBd/AC1zU+HN1zn/p24o+v9W5DpwdPt3D4w1v618umnOFvy0ed5h0py5tylsdWQ7rbbdvh3VJrqx2afG20JS67mO3prLlneAyfjm5jhXLNvefx3eqqzI2GyEV647S1uoTlirR0RfsTk+YqvBadoHdi+6xCBGWU2zRD6nKu7bHMJaQYtEx8JgiHkCHXCz9Y4P7pHPcz3ovwxaCnOf6V1pBfJtykgmFuFPbwzYF98EfnM4LL4DfpY5Fm/HGIm7yfgDuf+ZJAXkel/8pJF6ozI7XHqUOZEAF1kHDDAc8pCR5U94l8V5+sTp0uZmmQrEP18ZJLLT8onED1stCyX/JGspYeJ2y5ptmbXW8Y46q447eLt9bZCVarmtDX9uXBG36TQVJZaLKe+W4Ue5JY+h6v1+eRr2rjjFZ6E9RWxdstX0cfRi0DR/YJO10MDvx4kwrr6SStWz8rWXTOe1eBmfHRidj8sIj0QqKw5oy6eQyDy8BfPfV6DiUBUQLo2Ve342MCchR5HoYpIfD8OTAaOZOLh/FTP+WkxiZ1/NDri+0yglbTOunLzK9OWY93cHLMkF5QVomO/MOpfFLmQtss/6rNCAU1Mft71H+FhHthbtyG3xueNu6mrItUgjZpsOYDWa2mMpy7ul4hX1XvrjqWBvc6bjQZkxqdTY5d31G1LXFfde5wcJdR+cj6bXquLmb9V64C6r7yLEAAQAASURBVOkx+LIur04X2rj3A2PiCeRV+4iX67rwNXInf9j9sfxBuG6YW/Dc1Sp9IfmMguWsF/sAoWujDsJku5aeHNmTtKCDMGzQ9aU+dbsxDS+IDqI9Zthp+Cr2GUifLBHhw6FWneNpV5S5XLFPuSCwnGgZ5/2zKeab5tM490PlHj3TZ5feTChjHoiOJIxe952pv0sg/YKBrzl6SXgwkQCijn+X+L04G4db3ph4C9FeT+GlzzY6bv0tT845v1GRkC3x7uRuNa42b5RcqpIX0lKq3egxJXu511VI1tGyZNfWoW1XzVxZMzH1v4o1JmvTe4oeMv/PE6/dJCzdanc4dWa04V3unzrLsptI9ZnD9gfcRpsggZyzVxrx97b6NGelquPj1iyn8CZny3niHf9mGCVMn8ZRu5PMiyyAX9KOxREQi6Vw8vaOmcniI5PJsdMkIC2kkpM+8wKO5I5DPXion7i58z1TyEuEwER7Xpvy9JGvSlxaXlxVCG9YLDVKro7LOH7afAT3USDeLzY/QDWkahuV4TF6ZXw3acHjWtdFeolvWlzfS3k7H7D+3Ave+JsrHVe/Njc9K6aaXhXcFp+xx8VLnQ3r7vmPrOx9n1Hx2NtIeNTJZaxeZMdvw2phPhuv6eTJmW9Ocqi4H7yahO9MuPiF+TQq6cv9ivDYcMHusSJvaGXsRpIzjsAP/F11jPfG7Dh8P+JeJ4YadutJuC9ACk/MOO9tgNmq8vIGWWDoFFp8yHrYk733BVsk+T3BcmqjpFt6xgeppbw7DFv4BW8s8EbY4o3sZBt3+EDc/1zSM5TxU0i8FThHo8WP29OhyCO/MtbNKGkxJxynxE6G/zW8oqVcAY5pX6cTwmKHjpyXTGsjJzmYKbe+uM2PyRXwd8y86x1RhkK75NP7Ptjq4XVbnnWsZZVXUAjTLbnUEYj762WcL/Xy705HubJFvf+1bGOb5Fh2vK5HobXK2jZkWjU6Lifjy8H9aqNTy5v7pzuU3TBKO5qTvtzbbejJkWn59VBX0WyVwljGruVBdj2OC17k6DQpcpejjwkWrB6/RQdSyIjJtVHHbYgnVhtemkTEgSAmNx9JLEcNF2HaM71nIAeHohgt5ZlWzvSNsir3liY6o4w/TsrvlFXeAx8YMzI7j8D62ay5zi7H7CwP6NmHB2/BX+77Pub4hocKNXRv4GTtaFRGfY7fgzJsy23YN53xOMnapYptG1xs8Zh5JZvxChdPFFxo6lp8xk7nCznIP5POFQcXE3Xt2dh1kav7MilyF0VpkeI68vtbjbKBG2cDuNwgzueF1xiXwbvsAUi+lu+f5ncVF2zPOHlFm9lWnxDYrQvu8ydI/EmQzGGtmnG/6mS8mjFVC67jgtde2UsLLcJuAXAr/lXA9PldYUH5TEryGbHggVJ7ketyXo6Y4HfBVHHI6e8hW3tqiCH7jBwqmr8/GT6j8mqi7XH/jS983rh6j6aP+4Hpw37ICpRMWhwdO8m2XhqhQTsqqWGJKHVtD2ggvbp7X3Va5cbv/CvkrjqtOrfOuOpxoSfzLm24uAcLbannin5vmw0tlW/rpW7zarlde7f9Spe62MfnenVfT69l01+TVpFSvfuFIqClk2kaZhbmwjWJ86+9StJVLZsGVlc3KanhD3UxaIuyWJzJjleVys15FJ0qL8nh73tZkRBve2y98bpuw44xN2OnZrRZT3e29Dt0pne3lHVseCn0JOTQU7MUDhNPwyqtLaz6xd9w6inEhR2yTRLwyqRYTkhcf1PH3eBi9AzG15LfjH0tIj4EU1+Cba0ed+grr1zp+CF4fMV3sdC8uwil8bzD370/vfbViXZTlsofLZPSOTZ4vMi1D1bPSy2mtv25+X0520CRs8Fyot1uoCW59fTIBvcTk2bait3D0Xi+/8RIxWLmReG1J5nrkzHG32Fzs8JJvNMWLitjt4eTF+wGWFaWk/KLzyDMXfxafmc3sFscu+1aPBljnRiP2RdatMW4VnE/83I0Bdy/RjsVgaw1/zaTPJ+YfQqJ8U9iwmhbGsOBqiNFOgK/VnBFKzTEut2qUu/quDfexyYJhGY1lNGHgg0sOtqZm8BqLLyQZJvuA6PbyQbu0F7xNma+K6eKveDd0e7eN+zk+qV7OnZyrZxskSq9cqhN+wC9bF/LzPcgyYkW2v3PXT0vjpxXAT7GflSuqS3Lk9yUD9p0rhi9VyRsG3OQFCojsBCksmAzNqu/lglgoSUux2ygPJ8Pp8gTDXY6cSw9LwTDsVTeFBooUS4K0pMmBLSLfMDukvEXWgDCDlNnXuK9LvH25QXRSCMU5fB32+xl8KC7Oe9JHxvVJGelXXnj/TMdIT3Ee2h+ivYhqXKvY3DfSZel/g4XgfjuGWM7rLvmd36Tv3kAU1dsKzp3aQ4ptd91/Hap2OYKUx/G/Tu8wj9kLbyH5S/BX2dZcJ8q6OwUUNGGTF7quGAuY3cnN3uc3F8z7pcuB8bUHFLY2WLxbFSew9B9k2hTldEyXrcLNApVdCxPfmBtj3i5eL1pEk/+AWJ4PHGFdBb6p1LaM/MJy823TT9ndal2uK8J991/KOG+4S9ymDZ3Az86nn2HFNwn/yO+wdaUzbrD32TaQ/ip1Bl5HfgccgHR+nTrdNy3BanzSonwQIRJSlnMxeYcHPf5QJBn+uzTx1uYSZ/1R/W0QDMQHQAjXrwusiTAhZ5XpxAXmcOuAv2k9bksgWf9dCFjG4fSQAHapk4OVBwlOU+V7fL254K3hvBUX6SlXrH2NXLX9uXKDMe5LrbNkiptYxunK+1b6q70IJpOx0rTyeXy2t5Fx7ggzOu2mw6u6Lj8reX1niRayf3Cfu76jRTedG3qTjrWxZ0UuWueeP2vzGOcwzo2pKTwuoOq4TE+1KUpE8R0vO5q0vHMTp9p43TxlffWHLFsvIdkp5pDTcKRAUinWVVae0fMw2WEJwGgxQ/cObNc+7joWLxZ3hw8nC/vrmrm9fYVWrMTIpQx8iQHvCg7U9tflATwUHO3Vh2Da59P+EeXGcs77O7GD9eR9/iirruYuvDGhaunSIZNW8zZMVH7+vGKdS3LDW1w/2GfUdOVz2CdaZyl+qTQlZ8vso3xNLa5x5dtJUjvUVXeGMyNjpN3oa3V9H2x11mos9gVLbRZbjcdmioiFilU5m3lrQ7BgvtgTC28tFiyS8ex442nN75g4g2upIeVM/6S2AW3Vx1ThIBk0/JTpoHlgYu3ZCsteuVPhfCR9qO+jL9rWdZbSG59MjYWVrN9R+CxAri5vdR1chtP/fnkRvY366Ze5n3HfgwcOm9P2N5wej4x+xTSxU3W9Dt7nOFwBBuXUHiNxOCJ8s3uppfLuhjQ9EvuyLHFIVo5i1zp8hcefpF7kX+B3KXuO7zkn9ZkAK40GRHk3cY7pmknOTvniXz/wI5M7uhYefnULedtvO2Uk96vY53bvxo6VVtwOAyJqzudSY7keoNXV955H3gSJ1TGvDnFQsMDySTL4fa53BQeMcvSfQvny+XG6yanuhbapKOuZe6IMu9ReP1bMBdyeAfW7QYLS5Gwcb0HRG8fgR4QQaGPfghImVDQDrDxJtrCiyLH67LwRaZ12+S8h8AoMD5ibbyn6/yaFNhN+VreYugGy2viDbkWUy/0SjreyVPOF4fNeHbamm/qrbiReBe5mec1uG/kD/HG4O8xu2tv5WW5xRYJrzs77hZeXZ5Dycl23N7cDM11pb+NNbg9E/u3mLrTs/qIBfeDN2GrIIWhe1VF7ljQBhaI61jxuOjFOhuv1d9guV1gnIxEm1MdhlaMhX00mhabidc2dLhdAj/YY4O3HW9aeLFvEIYQ8/rBK4n3TLhvctHKPVP4OwxfxfA498fgnRthhs+Y3yhTts2Z7OhP4ITax08Rra3Oa7YaIeocqRG2iWiKN5vG2vHrIr2dUEYYPsVgVyChXQ5lbADT0PuQJexRHfWszoZ3jg5jZfBl9Mv7J02ZIk75mnX7k7XSZssL5eMQsbCDsJxWxyaf2ofsPJOcJt/x7mg3zvpe+2rdV+1ZaMulPrSEJnC7CcWWt2/vyqvXOqa8pstLGeksXF4caltv4tVEVMMe08662HsFlTc70IV2hruMuvwuZBulCZI5xPz3mLGCER6izjvkircvdluJ1gzl9yccry82pm0qL7fPQlpYDlhHr5tOSGQHarJYDws1cV3pdCsNuSNsENNJCuw0LD/IQyPERczBp5DD4aytfeMEruCttDnPT/eUjmk2ufY+2ZwM+MeuG/y9k+adid8V29OYC+BosRxXuKiOv2n8WrdlnRIuViwn3qbF+oDchLlshwucWHgfoP0Q7H6Ed5e/y3vhbx7BxS1274Q+qKNPvB/E1PAPs5Q37qyqLU6ual5iN8sFyBY2fsMG8X7ZxGOTa4YX+IIs2k3FpAePKiR/U3QsGM74Wxdd9gmCfNqtHZ0feByybXMMI7SReAM3zTaGx7TgMPi8x6uB3Uwb+DyxbvomD6NUM18NVxz32o+rLz7jxvjPT6gYjwsvhyfGJpy1064Pn3HQgR/BazhffYaFLtonUOzUxiHXFnLDFkX+K3D/80rmz74e0ts5Lh/AGJTl6EV7Lq5YTudKmKfwuB5x0CTehGgBQ4kXPkbjdCdyvqZSAEPmdUyrjkBook3NEwU0yYGDlCawXuXIomOoVJ2TaqYVDLlSeFln6Xjn9RSKY6Ypk4+lfczLcvgeyp6Xd1rRsKSFBxydJ8DWe0+p2AaQcrKXbm3jmU0bIM01vpS6IOkM24UVw/V8Shaqzlyhkq1mn642K3WlBZBkemE5KvP7XjEemLc2Nx9TH87YHbdY7w4nErRhmSGHnJXtNM7yW22fTwLgtMa7hgnmxSSHNsbirfLqJe/oUmfmtYlD4bV/Nw8FPceO6AQBgeJ2xBMqASikMEJpwoY5dJM/JrrwlnfVbvSOQoQ2xuSHeTmk9dFkE6e4MO+C9e9a5saM/hYTtoKLZmsF9Fg3NhIerypEIWGsMi/Nz1udWW6pe3n1rGCOAgvGJn9zZNYOYwwqFjwmfFqwm+i79t09OfLCrq1cawDpsNMxiUw42ejhheIh1U7NC+XONhuds2NpkD/FdGkqEv6fNLxJLuN+TDcsL8mZ1/bxvZyf8hAZOA3uN7Mu49Xxv3TCo9cnpd5ROjA1ysZiL+ct1YNND76JkvHJ/YDpdFTewK6QM+5JLI5GuhVe9hlH4a1hkzeKLrgln3EmPwDhEELinW2ri6OMx+YjbLmafUjnb8YJiicEJ96Zb9IsN+sYeM1yj4T7fNjIPZ/x4bj/uabnwuyzSDFUBnCW/PK7B7ueV0oZAd4F8C9yCWSudASw7tB2jmCTDHrigqwEOx1bnR+Ty8WtLQSr2auju1N/JdHuYkcvhbaxbadjul9U3spNvOsgX2yz5WUG7W3jOmvhlcgaEO5sI+vdNyeWe37ITD3WBVVaXsBMOckBmzOi3yRXmrqKGn5XXE7Lyzpry4uikxT6wbOOjMp7lHITlJ9Adrxn4pVkO3KYYnJKORR8zmDYkm0xTusSmkDkxTAtYKfOvpOLmCTk0EazVSzsjDd9w8x3TUG8r3eAPaYiLYbSeF74Ci5eYWwjc1tesZz0EMpX3Ogw9i6Gcn4TH3TlizphBB+L/vfwqm3fJrWLqarPhdy7ttnouOjVYXWilY1tKt4WxZa8kG0Uae7Q6VGwfKl7ozPjF1/pMRUFjyX+L1psxePeiVaMlJxPOlE+6B/D1M5nMEaaztlsYRvGOteZ7jMvhlbevj3MW0+LjN5D98fugbINeMFHvCQ3tTfVfeKAZLsm7J510FM0tk3GcrZBLLYi/PIK903Ozmd8erj/TI+nN7MwM6jTsr3o4+BADunoHLD1mXlsDb/3k7pTkuGSwUDOzreeylhBz4cHyamhb15DwfQuKSo4z8FTKs06Uuqc607uIqeD5k26cuKNPJ7eSqNzvRVbHRrDXr1wf2mbVt7aqp1tru/nxjqm8668Osiq4+JAC+3Ms535b7eYg5VNgNeuLqJnZ1nrEuZlJ+whI1zGTgs0MZnlWmhFU/6YYRpGOyIsWW5MAOJjyYP2gFJ8f/4bp3WF897zguTQMcjs7Gb7jgk9WW4sgkbI4giU549+Hsbjcq0t8Ts+GEpO1eQYD/11p0//RvcwefO9gsIbJ3+9LMW0pMGYMo62+Ms0dk92XzGu45InYC1uZCxnXTq80kyxp+3au9Oxo32Bz3iY94H2bfW60CX8+J7uYf9Sy1qfrwkXnb71IVov9PhffYFI5mUcTgJDh7bpbJwkd28Bw400JxCrgkZTEchYDuZ1sfu7kMIRDVOnjHroT5Iz1fCIpYkxppwURpkfPgYGmdDTwGgqP6mJdrrfcPw9020J7KYTEDveaUfHNt+AjKdLbiuFY61jKrU3NrjgvBHpED7E5dIHo7PO87CoKbt+TzLbZsX98EGndd8W9699hoaOKf9y3P9c00d6YiYivwLA9wH4eQB+gar+0Lz+CwB8xcgAfJ+qfv+9+t7Gwsz8apdU87NxsrvS43UvTDFtljdGIUrjlbXYZNxxhlVHh1C1D6cGyb59o7DScveSSrzJPpTqxKSV09Mu+SZ5UZVD+W4Ccanj4mBJ/K79yellCz4ql3m3tvE8GfTeza7tMYdxOUHY6bv9mMOq4jIsLpwza+xOR4ptNjI3k4IYyuG8eIJwOC/XFY4tnFd+kuQLRHd82ZkH7ciHHHNSNMEgOY/zTlotJ3Kl5oywlKyjkqPjdyVicRgOHuFQLcSwdbB5QmFOesgd7yHcnHd+L8d5z/TB6iPxssP/jJxfgvKC+26ljrwAlNpkOtOmhYUQG5A/Z3KsvGtSZ/L3iedpkw9Zp/obxtdHeS98xpIusPuSt/rEO6k+GX/EZyxp4292vqXj3b0T3Ct9peNqnTTrWOgvGtr4DIUQ7u95I/ST8co4SMfqP1LIno3l+4nbtzyRQnOfnSlwc33n2coz7nMoZOC4tZXxOPQKX7Dj7X1Gz5s3x+J4/GjPAfhGkOEtY3m0yfA3+4GwS8bygzcRk18ceP0uYfxJ09l7uH+6jmbHwP0cWn9Qe8MP2CLYfIbp/IaT4mMe/vHHAfxyAL+juf49qvqJiPx0AH9URH6Pqn5yVdnbWJgRHlmMs6+NMgIFi1IZnJgLo65Cmw7mWHiHnFzVOgUIHQPpZNajlF/82ZXjopncyrsi6jrRXvNex9HnlyTr36WuO07eaetkg/JS8trpyLboeE1WN6nxemUrd7WFpny3e278XfhhzhdHSV7Dw2GmYastfFFTbdfVC1CoQb2g6f6t+dWW4SRn7y7v21VejokHQI6uyNnm44OaYk5E1vcUmJfDRzwUxfQr9jDaNT8dmZeFXKe1dszyzMvhJYPutuHlkxbFaWcfmIs5jvm3dxwG/Vm+VcPvAGh6NwKIo54z7ain7r7eyHbmjI+FNyYUtzRJePnizLp0hQ2FQA5rgdmT80EtivHuad7+LoLoRnD5svERHckv06cXUgu7ObOpELsXRccsijFHNlhX676ivYexC3bLC3irTvfqqjpbWV0zLzrGpkrrq4i2YlWrQ/l0hqVVbkNUcDLqFspnH+ETb6FKtnU32J0wVUo5YyoW7E5lqdz4YtNHBMv7W5FYh4rdefFjMrtyWzTW72WlV/AdE/M/LLzq0QWWKu67LovPiE0x2fCm34TlgonjBCG3pn2GTtUP1KP1+WAlkfVo+hvdo+QzEIunEVZ+0jt0sy4Eb8b9/M7Z0Dnjfu8zwt/YbylteOuhjB/r8A9V/ZMAljWJqv4YZb8ZzZKgSx9vYVZ2RNcFD9NSoaWaT7QxqhyQbVgpkB9NlMo7J1J0qvtn5lU8tMbc+mZB1zbpotB2fxwOpNiq0CYnd+FA7/WQy3tSdb6gu+J9SKfNvX5E/67faMmn2nZ6+G3eSJVC3Npmz0t396IvaLnUyCHa3I0qbXbGQHbq6vlJC7ZJ2YWdcuvizMbBfjKRnWv8ZjlZT3YSeYiRAzTaI5zt4iQLbTowJOWHXisvEu9xwcsOLX/DjHdqbRKzto9DZWx3M3SebSinK4ryN87iSZl/LBoabfNTH42X3y/LO6xH4X1pUsL9MT5Tby60mBPgD8BUHs+8ydCEzNdJbkoLHlNeGrkl32HOsqDpcH+DRzvc79KreDeGXXg73/yQHMX6C6ttHtWp9A2mWdt3oXTBSZ4/rHqsC61eR23ElhaSrmLYfdHnQs9BzThYafMmH2N3xef6RITH+Uo76g4eSfyMvSPvm0AeyRD1R5icFLmTt2B58hku27xUwf2j4jHVQ3rL1mdooQ/b5A23QitI9R+F97jgHQd/xEm7eTEYx9jnNoTPOFJbz/JkbdabTvuFh7DzgU/8VC58zzO9JInI3w3gXwLwswD8o/eelgEf9YmZdGgT75h1j4OU8g54xUvQUzIG6wQ5ipgQNHKUsQgd1OXyzOvo05J6VRtnfO0zymSiOqcdr5KDkTu0jdJXxzU/zNu0N7km1nEnh3nv6LQtL/L5HaZL29R+amG01dkuXhFLGkd3SyqXwus/Ux+jknJMf3bkBsrTzfvRx2yEQlv0HPpM2slrVaxyouoxdNXHX0tbdLT3GCzM0bRLYYPghYbtsgetOTAbvJW2Osk0KRCbs7NT14b3XHhZTuY9l3rtyZgd25wWaLDTJRX2XR5/n4PePxvt03jiBoCPvAc9GRu3YOy2xrH8mp/ApfDL2CEdfdkWnSbndDmv2Tn1HmBdC4CHA1r44bSnjV8fx8vRhqXihDExkBj30tisuP8KXMzj1cZvN+CJTgbmmF671+NcDNMi28bbd6Gz21Hu8O7w0nCx3G7P3pPb2ACbvlNt0/vIwGpoTN+Nl3W6+m7dWm/Wa2+bgovUxuXWL3kLXcxYzl2bFw/uoKQxBfW7HcZ6d3TIZz/AeaHfuR7xe38m2qrjshkH5EVbqZsjExy7E4ZG2/OmVzZELEIKLy54E35PnEPFwRyOGHWFnMpr9ZrdRtvOrOP0xbG5FaGO9i7x2ItSYG7aHaIQPQHSMZ70WXuzz1DEe2pIuM9+IHyVHfZktKyz8Yafe8Ppw56YfYeI/BDlv6Kq9n4YROQHAfy0hu83quoP7FXSPwTg54vIzwPwvxaRf11V/8aVIh9vYdY5ISAeBer4JkxalFmPd7CslcgEMXO2YlUFqdiwwlrvzPMxyFehjAOjxQHacIvfp1rBef4pjm9nl7gkPa/pTPn6ap0eWAAtOeeNA1vWrqwQo2qn/vRfu5CWxTZEu+hVeXFBW8oXuVVXycTC969lsJ8S14QIRHvbSFwQcrh9g3Tp2kmG0Zsz6GhZHuVzGEo/hJw2lVtdxdl6t1Sqex6vTGXj/mZeVjNMZry8e1gcgmTadKTyAXShJSlPso+iU3pHbOFFyystLzlysVMOe1ohWkm8ACj8xb4nk0MZg2/kzdGP63wsfz0mOWhj4cchQKyHQPHO2352r3/dTdb2NPTFxi+PjfgnU7tuDC9DwvPRoRIutkpluVvspnzFXwtlbEOqka/1vBs+FNqscuA85Zd6ipwt74Vcy/IiK8HVrs00ri2fsLr87XRMelwspMRWnkVn+5Hl1g6DlZfbVxsmSEpK4d3+Xjsqw/SiR1f2GHaXcg08drmEme5DSC4f8nAczaKG7m2whs9gU3NdtkASyjvGpPbVxZ2mxRwOfloFx9Q9L8/6OIQweO2p1c3rClxM+lY/JiDsjvaNxRHhvjItyS24DyjksIVVHBjFWC/IPoRx3heOfm8q7sf1ivsAqBwIH6J+795u0g9dmP2Iqn7PtnbV7/2QylX1T4rIjwL4OwD80BXtR3xilraJutKe1pIY1cqsZSHFtCPve1yr4ArILUBTXUmuXZ3D8qIXe93VaUT12LXP9RxiYgEkxZlZ3YpWDjvanZhFXzR13bl/7eLvQl47SeByA2hp+onRd7a4WgyXJ1Bu106n1SM1f22W0fGq37O0W8p6SNB2NvAyiT0K/gi1EF3drbTfLHflJT1UFx0r7bJjKpVWE60gXw+nHI5nofWQvqCtB2wcC2/WIzmvIvOKdwlpmbxxUiGXxeSFdRzlZ0xWmJfqCl4OQZn5eZIXiDZ4T7JN/TDo6S+PVzlS6gKF0MB5Tc6ZFtgvTWpYvsO+Si+Az2iuMJXr2mFd6qOrHCn5Wn/G/dEBWkx5gXGW74o9gMVGduWrPi3epX1FP/cvXAfZYsFqotku0qSTq9nGRc7SwCSn2Syr+MqJeadcvk+MC1vbUN2Gz4x17JOvsBsA9Q/FOErjAeyufHPBsPobG+dAOkSE6yn1spxs/rI4EMauZbYUixhZeR2Xal1TaTezY6wm/duQwoRtpEeq3za5cn7IPXFoia6wNjT+5Uh6Be5Xn5HkTj08wkF0yDWa6jPcX4Yc/wbmbG+H+5f+hqIvKu/uaII3kRR4a98xE5GfA+CH5+EfPwvA3w7gz9zjexuhjDQJvgxlHBcWOIgimgybxxCCEJK3VMHhiMg0NUwl772oe5gBfJNGMswtay1Z5WDJC10iHQqvy2E7cnXs6Jr2rXLzpZfwLrD+Sjkt7a59QHKS6/3r5QIkuKGVS172rKwgYIuyek8W55S6ts4uyJ30npwNb3oaF6EyY/G+Ou2edwJ9enqnxbFr+QuInKGY3xNydjLqtbHAu5wwq3F90wHaBEKL83Vd5ZqXwwIhFEoy67Ud0pVXE68Qryy8Vg4vv7GNeAFHji5CCs02uoQc2rsAB+yleFpwqYUuCg4LS5ltOdIkQOe7ZzRpqaGNoAnDDIO8TTkR9ui9+0VpWiiN9Tx+C/6CsAu6wdQ5wBD1XWH5Cj6Dto71DlOd17u3DaykUGpwdzpgleNJMn/YhmTeyS/Jyl6Ki7jG49U2vdytbyKcrGysc4updhu6Lph01CnXel3TwGLzlXclGbA4cbG991lnCrgE4zHTMv4qrLwYX4Zej2A3VFxHkx8LOPHmH4RPEU447hI/DQJiLGbcn3gFw1/m1ZZXQEfYb7Ec80PywWN4LH4/WW7gr7jt+Xj/Uc4LGh9/ajpY+Lw65hqv4SIfVnNgfn9yNju+LWZh52bX08MTBeEz+CkU+wHD4/iMCcqirPoMIB/4IaHHg7ifP5cS/gbevpD7ptNHOpVRRH4ZgH8ewHcC+L0i8kdU9RcD+PsA/JMi8rWp3X9PVX/kXn1v41RGIDqMH0E135E46Igm63TA2j0UHrjsMdx8nJXvusa0buEF+YoEuOF9lB2KAwh5nMOLElh73k6NsgbYFoTNL5IHMODL7TN+rdsX7Pji0gAIkpPkIuY1KH+lXrdmU34bvmNt3LXvwjZJ+UanpX2FVrhNVswTCk5F7sJrJje5rg8JYyWsb1Cf2/nuJJe3UbPmpaEkZ7lP3chQ/z7MmPQIDv5ejOmv4eiGBPHyEC3pWzMhm+XGh0vl0HT7Rl1Wr1LdWvJYQk1k1iwN743kGK/lbVd26MC7lJP2yL0pDr2An47IvBEmiCmXnLo7W8x3A3ZyOTwE5JgnrZzgUJpbcbLMG+Ev2ZEPuSeFPY763yVe+zC2Ijvn8S8f1cyhNJgL8JeniikJ26zIsE2o7B6mSlNXwfKE3VWhOZyUcVKiXi1yh1sI3hbbGp1T+4i3e2rW4aIPVbKjD0ErQy5vcbFgebsI6/C45H3kFz0yLmZZQOBGvSerbSzsbkXRdooo628/4dMm9Bc6FgVn+8qM4Y4/DeLgjtrKvY6VRBU9Bdm8ZeJzsqH3xKSftTH2twfdcUS9NbywGuHgewCJQzHSfZw62XWXE/WpY6rxqr877JjJvNS+AzaUp0608Bi0G58x5fBtPqrP4FW9IIXr3Qx/FWD8s7rcZ0zM4ANDcphjfioGQfIv1j7HYxSf4U/GVtxf/IDbJhag7kMUxWfQosvkevviiH5vb/JVb3xh9pHS/DbZ9zfXfyeA3/nS+j7uwqwCPV0YYL8QRFllllIu0tJHWfXwTHtRjwFDjL7sdKmOPhym1sVyh05ZDsHmzonU9GK5TZlQvrSvqycVNo6P60rt2bWj8ladqvxGjhdVuZ3OO16Xq5ftc5RO7bO+kZ2AFzFv1572foeTY966OAuQ5r1ihRwNb/of7aoVHUOlkCnS57P62pYlOZQ/il2jvXkBVicqHa+lFB8/68oHWMxdzrLDyrwx9MOxjURhKgWdOGST5XK4iDk8KXYz5xz12u4piFddJwFSPtOuxyRzewTczjwhkCXE5cNCWq5wsc0TVjNvHa897jeYugOdTd0xnjXweIOhV/U8hKmd3Fp3i090fSPnLi5eye30oN+LHumeWF5XWlNkZ5ukU13hFj20+ek2eWBRJh1vjJMlv/CSloyLni86VZwUarO3NTa6IECP+7wgyXmjze9YcTFtPhWdx4/VD3S0jgvCpsm4z4ITHjutLrZJNm/yLBdJRwEIU2lWtspRKyeMtbb778DFaEcNU591NJgK6IhecFr2GdYm5tWMx+4HBm9geyOn+OrjYDu8zGdkX1V95ttLH+u4/E87fdyFGeGs/dT8nJ9LgtivI1+zSweWHcB0uzQPzIH8mh0EcbYLwVAY7m2Eh39onZpq5JM2hwlmGUmPzgTNpSqXm7w4nqYM2kycqNK7J109Krerp96zC52v5NS6XsxLdei9HaIaBmmpOiMkE89i7e9rcVjRP6Oben6jetQ1wy2SbYh3yzwUi3AYZIfmzmxSV6dOoSVM6/XQJC3HvU+HkWyz8ppOx4bXnRbtlPIx7+z0IOrrMQvbcGdFIRz5nQAUueUjnRI0/J6Y62YhOQr4u2E+gYqTvIznkOnY5Uy8NnlIulFbxzthEdIo9NdDdgrPjXgPQYROpjquOt0+7XGx4D5huQ+BwuvjLg2CGe5aMVWw/rW5WMXUzXgOfB5Mq69q0g6DrvD4gvaDedHYcep5F5+bSh7xN6tHvZBbdI5zVze2vvLzO6Idb5pqUE0Fy/0EyK59ahh1oUbF352t6QmQu5nkB/Y6Mm3ImHml30m5ydv4Lg9pL3INcyARBmh1O+6Tz/JPiRiuyuk6GdaB8bHIsfwO9719CVOHHuEHQk60Z8i7TVBgea3PsDL2Mxo8jKlAnDDc+wwlv4MFj9kPiPuBWLwdRVfPm/2YvsH99MSOfIZUn1H6yZtMz4VZJBH5xwH8VgDf+Uj8ZFsHA53bdl70x/mTFjufOunsT3oHIFNHbvVajilXzik5+iFnumso1nBLKbxL92l0vJusncTSOclO1HYxcofxtbz13TDgBa1tfSovYy9que+P9wRL1zCAlrWCh2yjxp31qOFVpWIu9dCjKe81E2RvHjn+XFo1oP/5uxVdL+NdTjKh6cpO0Ms18aZQHYScTMdPbGI30J+qkfM3RxyIwXlyuhI05tQOP3yDnXHo4Qs9d/gsVxc5h9Nm3gO0kLpymJLDDW3Hds9Lx+QXuTIXgLdk0zhs5MAZC7SG97UO+hIXLdVTd6g/PSRVA495BdF+yaQqEC7kIm0G3YdgKlXxaKqbZI/ZZvUZl7yLT16LtV5Y8sIri4ZoL9sOuwhJDfZe6b1oeZ95fW9ubXxuBbVPmu9HGo3QYoz+Xq/vp88QzhmO3u85dZGVMXVtXxoanU6Fl5/kJ7JUmWEsYTVdz59FyX4g5MDLInW0sWmUj9HvfYbJjWgCDiUP+vw5FU0y4+lWXSgFJls65oLRfYYtemTFfUl6vSf/MvFYWWb1GWfIlewzboiPUzPuj3y8ozzGgeXZB7/RpADON67jg+mDF2Yi8jcD+AcB/LlX8c+/trmyfDnbfxT0amgrknhseaG1l8iveVlsA2Exq04ThwTXNBlwvoJgWznUXOdtnV6W0+WTHMuvr+6NfJkTdXJZ57t+jnRkn9o6ows56dYr0icNGIwXndduk3cQge27FL44T46UGkFllg89dC133ukUDrrOOicAnBPjVKa570vhZZ0ByEHGQNx7m/bsnLE99eF66zHpMckoiyNg4U07rfREKZ7IBe9Rm0dmj/cSBi/H5S+8Egsno4HLy+0zXjPfTYpcsM4cHpR5h47ULnOcxovMy8fYw343tEeiHSmHJ7KOZ+LNdQ05N9BustdNzph4q443vD4NfOqxeqygAlgUWN8/2445u+BF8f4v4t44LY2TDp8TfYPH7l8KL9c9dNhjasXQConaXSRMrbi/tOclvBNTW97OVoSLSc96TxKvpDyzddidfYas7Slt2+Mvy9W+Pfb+t09oM29a5ND7WpkWBa+5862bT0i0urKIJLl52GiRQ3gkK+2xmXsY97iPE2v4fbQNraWDeYWHKy8kMq39OxB2zbQVyzOedj4j/AsdmGFyTWZpD/uMUfeMEkhtIAwV+95klmuXbqTbaG/F8lzv0WI3+4y5cBKld6dXP5B5z+IHOFokh7Rn3B80cfhIfBMzaN9yMt/xxU+fxhOz3w7g1wH4gRdxTUewN6MiPWZZFmEX9c4emoGen7GwN2w8Y+Ocul3BwanBcJT6qmPD6oh7Hccs4OEuVm1R6k+Or7av6oGre9LpvKdJxdWOD/Kyw2956wlsNbW8upSz3F7HO6tQl7M66mANuWmOUR0z/Xad5pOqzq7WD2OYdO1rJhC1CVLlhzXYYVre6IaTNeCv9eqymIuFVPzz3T3NbZC0sIAfKJKcpYWw+PVmEkMTa5PJhTkUJC9Khs6x8zn0DXssO52ssxZe5QWcOcGTJgiVFyl0sb4snndmo/2ZF37CYg21AcbO6yEcwsgTFWtf5b0YC/dSGnOzLnao3A0fwH1dcoy/1I8ZUzeLmC3uJ8wsC8cHfEaHTXXRckXbpgb3PzXeBr8eqftl2H2n3hf4DMbY/WJ2lbTzC4x+9zA15gFo21exfFfPohXzFlx8ZPh5GLo0bSA5CW89P65JoT1qvuA+0zOmGu2QNxdwE2dZlmOS6BiyVuZDOuO0qZIWio6RPR6PXQnDRcAOMhqHJWVstGoD+3jkZ9xPfqDiPnghlTfLVl6dhzqd4Y8QT+3i4I5rXrsnHAlhCz32H8sJvmrhpeoHRIV/eabPI33QwkxE/iEA/66q/tHl6dVK+6sB/GoA+OYvfdu4WJFKdRwoyejgYSlaFmpNBcu2Jk/aC8r7IxxZeH2O4CxVTqO3yFx0ST+Hr9dkva7mpXa2NNrC+5DDJFpZ2rdJrY5NWx7g7SZEq5JI7dNHePmetU7xyj6zTwEPtG8zQawTglbHJq/1VvcOt2+uJN5+QRTV+jtmUtvbTxerThEUVuXEbiDrN0braCSH8wFIjgrIT+xG0+KtkvadLgwHKrLymjNnPQCF2AdWwbrOCYWiOMz4t04uYmcRRbfRAVnP03ViBOJjokO/6RD9nsRhG2Yrc+ygY+tB/FFv/X4Z82rhPdMEYuH145g73kdQJ+P+l7/526nE7n/BS7t/inxCImF5SoxlXgdPla2/9wPLccP8CpftGzV5r3zGjrfINWLWv6Z7uP8CTH3YZzAf2+aOuB67tWfa5RN2b3irIotcW/Dvld3f+9h4WFkNQzXPQR5on0z8rbifI0J6Q1voYlyyvLpP2DXWcC7kEl7TX54KGdZx+4JXYZ/1iLbNtkwSxj0gFnQ+Kue7TuqYGv6FF0ZW98j3uG9P68zf9Iuyc9xTCqUPvAaE9ECp374NFjg4CkznBVOB4ifm4mcuBiOAxRZelthnWHtoQ03PBvdJR+8LYQtexN0k6xPREvd8BtLR+m86faM8MRORHwTw05qi3wjgN2CEMd5NqvoVAF8BgG/7m36G4zX7y+RorHCOHEHMKQODFuQLsBRBDmUMXq1CEyohhcltQxmdxEd2+JXGwZj+KWKH8q5jzbPcjSNfwnuKXP7BISulqLKucu3nlF3LOEmjI0r7do4s6SwkEyS3ssbty5V0DWIBrGORm9on3IhVZ+j8jp3nNZNyI3Q62qSjOY1SsQE8dxxqL+vr2VImRUcOf+FvkKW/zktOSnLd4TD5WzYjn093Mt7sEP27XRziCCknUE3nU/NmB3cwZtccyshPmKKuMNlRdLp5mfpx+bwo83fOJHgF4XB72rzbGmGQ89+BNKGovAfx5iOWSz3QueMbbcihjJn3Jnki0/PGJOcmWcdHEuP+T/xJ3024HxXkBdS8q4xRZnAjFvHLFUP55lr5FgtQeXM+4W8ZgkOuOE7cw25B5SW5d/C4xUluH9EkP8e8L/AZLKNLDGUL9rS4H9i24L6stmGdRSQOYLpYZFW9lxMYm7/13icHUNtVFZZSQnOPBZsLr5RrOcS7yJUdrwRGg+VaXbHosHoiPHEuqhpb2lALPyB+jXVaDx4ZtPUUP5rChR4k40bNrSe/yhFP2Vy3tOAKW6fvk5GPsLoO0lk05Fgdgftn+kyKyeXTFw1TtcjN2G16xOKJeb19TAvC4+Izbv7pk9kelMWfZN4DeyznaAjBCEvvfUbW+SW4/9HSN8rCTFW/t7suIn8ngJ8DwJ6WfTeAf0tEfoGq/oX7olfPZ519OBVGbFQ0cxDs0SWuaaHVuLrhTRqu+U53u+oDZbSkvkdhRbXrrDrq2oaNjiZ3yReAt9/tJKGTI6RXbaoU2wjyjjG30W4q6aQ137WL5LqOVW5JrU5si0fkuhxNdaUfdq+6egS+KLMJGK/RFodWF3DUR6TIcUluRyUHOnTOCyxdfrOOlbZbnLkTSTaivNWFUl542Umyo+ZpeX5CdM3rOk9mdtjcPqdVdk7hkKMeDkk8w/FPuekUMLDjMkeoLodPdRy2Yd4z8oVXdrxi+p0x8XHaOEEr63gmXm9fkTPyZyy6Wl40vK9P9VWhiXheZjeuG+uMbYxXW1rC4w6zO959nn0IWh33PqPkGZ86hbjuBmOWTaPy95J3h4sPJsbj1KimjsW/dJtbrLPV44dphI67V8wW/GU5FzYaMjX0nLZJm1MVN1HqAcvRhN1KuMh4yXjs94nw2OoNPM6LE7Zg1J97mghFCQiXa+ENH8GYmvC16CjM2+Bx+g2FfwyabATHI4V9jy32KnUu4DTraHUzprp6jc8oeMx6pMWU138u7ct1nql9B5ct2H2mxaHX7bY5ffE02rfiPr9jlt7JpuPyO3+TD3xa/cByMvAjuF/s/SaT4nn4h6r+MQA/xfIi8mcAfM/DpzIqBngqCFktYyiJ4gEGzbZ71JfGyRkrqL7ON9wLZYyZMgx9VTKxAGMxNmlNFABfPLFTVLeDyZEkZ+liiTbyQvn2OHtqs8iet6u7Ot2WtpY3cvv2btp3oWN/YpasR+vXe9zIHQsZKWV6ycvcSa45HaJdnDLzdv0w8SYtw3HTzrOQ3NFt6k2bNdC7BqYj6zTqysrEjmrhpfbIrIsPkBDnZSeo3p5wmgH4bJvBG7QWTgGEnERLdvPTAqd4P5XLQ/2G/XhnlcNLYvdxOsxZH4dxhLMKh+bOVePFcHOAwRthK7ygOhJt8PL7F+P4YnasJ9IOqfOagz+TTnHil8bR+7M8LcoKrzlwf3Hc31/g+/byFOhWBqTQXbUZkHVJwrbl3Ltu/MKnYeO65LfifKRc4EaLz6B8fb/1Xl2TN5VR+5y2YPiVz1h4d+17QO5S3QarZSHc8457wLgoC2/SWTTpWP1ATdn/XMupWiov/ublcPGEqctJWihyqs/oMdVL0yKs8PrTmorlQ7k1dDG3Ky3udNQXN4SHlOV1HKqSMDX8jdNqxm7nReUlWgrJS4tdVfoItWGWug0q7ledvSzZingJ2w0X7eRDIV2F6vJNMpn1gn1eWcCRbSyUMWP5uciNI+8D9znsUR1/V59hXVT0veMvcM53wuJmJ5/B/sZ9Bj+VvOczUHwGLyKf6bNOH+07ZgJAT8tl8MEEALVj0YxkAlI4nAqYwUuzycUZtQu7SSuKHFpicrYOSlL4hYBwnADX8F1q2SZ/L5RRpJFjYNH5gx2vFZEj3Mpt2pdoi/O81BkXtCxHMrGUfDI863TRhuAsvPOacpjh9q9kfRTzBLgeuHJXpU5RLi35Ksd6HYX3RHutLCrzkwft3kLiWluvVTXcjud11LucrOii2ZlxXTHx4Hm2OxsMm/GpUgBwo7Cb9oQtq0XYkcGdbdDmCcaRdObwPOONfJxaOK5xWAoQvGh4Y/EDd8y8+EtyhUMZg9fs+o6ctofamI5i7Z6TB3pZG+ATteBOP3jppXBoyi+8MpwFL05fnSo+pfGqcwxKpiVsW8Igl/FL14g34bEV0/h9OR6HjnLFm5u3yEn6FtMkPL7H+8L2VbmL/KKT3/FaF9PVAY4Y44/JzbTVZ1S+bKvJW/Va9DTF+Abp0l7/XwygjR5ZLmOqL874vnS8qMNC0PkMxrJuUZLUTmNfclgg3RueKplPzCfbIuF+mGSGsBdMZXwe2BF4LIShsXAIO9xYR/BmXMZ109F5wacWgkLWJ2+yLWgTDBMLw7aB1dPOyHjMOh6+SDPsjvfA3Gcg6lr9DdkG1WeMUM9jPjV7l3jDlyk2/mbSjSPyg9fCRx/yGYLE+yEbcp99Ul5UfKHTp7YwU9Wf/UIG25DOwCm2hqfrBbKSU+yqrr+ly3erl45X2rLOKQ2aUa/LoTbt5ISs4Ynu0S46X8i5l9gKyVay2q7qsg2DbPJ3ecnxtXnXRVcdq57Gq9k2Tl2d7EaPR8NhBq/mhfcsr86z4zWK3tEq1VPr3ZTXuoiWn35lHsrPclvUsBwrY+BO+SRHU91Mm+Qm09Q4dkeDVsfK6xNkBSDnJa+fQggA8wlWnNg1d4aLI7W6bGcVkze/PG0OMfMmxychN4eLBC/MuUrw3yw/2ycLL90/sByqSwGRk+omO7BtvOt3T+Ben3zsa2CsduOs8k3alLe0GVeGcLvNma6uLXYzPl/q2PFSvoz7Nj3qMwrPLvX+ptfxXnpZ+Lte26LSJ0zd6CTr7/7zJJa/5zOIVwlDWluslmRsM55lw6vKMV4Q7/y9TG0k/mx6P+IpltUrqW45lHCx0mLNVx1dUNY5N7Oe3DcxcoP72WlUTImnWw/5qqRzPGkC/UXJOy6mp2ln0n/FY83lMnF/YmqoRXUmTGXcz3aM04VDrkVX7HxG2Dx4+f3k5Oce9hnRX4/E+2G4/7mkb5R3zD6zZLGgqgvS2667nnBnmJcQkxDI1+xR0WH3Z/LaBJ3pKvjZlmh1iKqTtzCYOrMjRKgMoShK2KVgeZrlL3+jha5eppUp/OSydpJyj1fQvgS+hENW09ulhvZK57u8jY7JeT4o55K3sY1WWlawdc7Mq/mWJ3XugATJ4R3JCINBuRb1Gk1jXtT2RtcWAGfUNetIO62lF3oYpLXHh2MsTMxRh3PIOrNjFASvOQ9f1Jic5OBCJ+NNO8G2GBKbA5z55W6qN46Xn098zDkR76Gmk7rcA3EtOTQNXgjJJfn5PQE6ldLaMfuAO+LCe0DnaVw6d2ftVMaOV33BVeUcNnGwUMZCOxz66e0FtW84+klL7XtN0lmvL8TSGHVjTtwth/I7poIZkyuwsDk9Ojwuf3WDORtMrficwt+Tjh3vyrrD6StcvOTtqntB+zpdansex33tbfGAXDUhO5+bLukFzYXPcAyjUut6VTUhbpuK2HvEYDxOXSLzNvOPDufvpcrjD/3Ih/Dpg0ET2B325eFAWD4FxeLnzG1PEQqxgDoK7cBU8hnQjMdpIyuwPOs1/xp+WSSHyyY9+P3X9CSq/Eu4rwDOqSOFeFP9B/01nxH+jDFbhx+QzOO86HyG3TdNuB/4f8YTLvcZ5D/dvszLWG5+7BGfgaRjfCYFYasHceejJMXzHbMPSqrA+xO+uj28i0HlIGRTxNdwo0cYPuQ6ESPPJq3xJV3M6OyNPlT97Hvtu1pVDqXi76fzuuNYzEka5jcOfMcrCuhB8kC8nZwd710HW3hZXrXRPbmdrnd0bJMDRH+TmHdUSxLvTWpUgIO1LBPAi/atL44vlUeJ/xTYpM+d0oWztk0LC5F5JLTAR1fi7eT0dfnQUMFxKKtNQyE7VHY0cJuE3PUpFOmpMnZ4qXzPa44oiP244elE+ds7eSfVeMPhxEKPw0GQnCHI2cXuI8sNncz5hUMH/AOgUy4vjmwRl0IbEfXCHCzCeWZeLXbJO6QeyihnkcO2gdslFqF0OtcrF2V2i7Y4nDoLL8qWUYxSFGwaizKmTYuJ2umYplu0oFksdHglPe893Ej5exMf8xmP0JZUMfXSZ6BHg7s+o+okWc7jtmkad9Xeaj+vg3C/yktyDfebVPoY79dlPA7836Ukvurof9dKpOTWwz56ebEoI0xdaO9hN8mTjBPGyzOt/PQ9TlZM71o5NW+6Td0k45DpEx9JjjLGdsZ920TSIsPqY/zN2M30FRcz5rtcwt+E+w1vljvCCN0Os/3BdxLun47lzuu2Adk1/vJi8DGfcY37Zqs3nZ5PzD4siSqg9t0LGWB/HOOfIE7n2iUt5Qt9OHat+SXua5VVeTMtXauzy6Kj72hN2iWf5OR8KmPHsJFb61p1Jl4q6t7luuSVDS8MWEmH44K3yLlnGybe2WalXH+lwdvI7bgxARFL+4qWBNiy6GWN6mlr+Et4KyRHUNsrtRzkkAXhZBc5lZeHQqVVKtvQch6FV+A0AB2ZbA4t9Y3s+Pm4YdbZHU3i09TeY5GrSe76nbGQxa+4guUX2rvtQ3acR5HLH7Q23vVI/HCanPfQxq59bjtBd+LWyovMy86e2icA3jWj8tHEuOFjbnMO8ygnJb0G+ymZt/xMWjaLjx2OVN6RrwOnEGx4W0w9LsorecEnmX/v+oUFf0pdKO3n3w3vFvdfoJNQ3mV6+byy2ZBr9drcgyxsMIvqiKZp5Ay8ImukurJ1KraNQyhKx7P28L3oeFNeEi9fbvFXdnUZtrEt8mJiqYt5wUOq+p+grbjhCzrGxUJrw5U3tLLPiEWq5Zl32fhkvEq4r1luwjI+JKPifhyXH+3LPsPeTxsHf7AfwDUven9jafm0CcJWN2neeys+JC/q1vZa/qW4z3JveKbPI328J2afvB+/D487HGDN3n8DwOsEGrlwbnMz8OtCJM3vkJuchlGKYt3HLXLtKjsmllzEZTn5qd6Wd6Njp/PdVHQRqqfmd47aaaudN3asyeVc2oauSvOciJXd9JuVZdzP7RTTnCvVs0641kXWIlcL7djADMmtjppYLaQwmledOtdVWrRMSIM3O9DGEtSdheruTcxl6vnqBIXzwk4BEblMvJJo153BHJuvSU7Q5pfOQ97g5Ze4ffFD9yjzzDa4XKMb/+KBhjptdbgcLgLSOz09m6dhcdij5Q/nPRMv22SErpTj9P1Uxmwr20U1vdMTOw+/CbkvgZglpc4zO5jHvXoHIFrCxQ6PNTBhxWOj7VVZFwerjoZtKc/S7vGyPMl1XeLTNEWLi9S+S4w186Lgc+MzHl5qX/iMpGOnU+Mj0pWmDY/5tcaPc+OV7IbZz4pttlhOvyv+6oF0hhO3Z6Et2LbsOxcfcZVfFmTlN/uMWNDkcsf9hTewu9bNGMEYC+ezhsIxq8XjGTZYv1Nm7TxGA1peGFQkvFLPc4gkkPVzbCPsjvC/1Ucs+dm+If/M9Ta0+alV4L6FENb7wLhvT8hu1j49tz5DqP3t07LWZ9QnbRn3/WkZhbS/+fR8YvYBSRV4/36MrvMEvnQDcAub2jY3FCk+bKZwBNVjqYdFOgp3T90UMSFwDxW0rkcCP3udtihixba+ZC915Ugqr/1+CR/l73bH0txlxtCILc1f67rgtffXrnS+5N3KvfTOS/saVYlUEu1qmztWTe3R9p4I6+SCe+Warr6yTt7k5LUxzdJodd4o1pZ02Q2eOuuc3R53bRNlvNvGw9FCMoJ23THlY9nzCWOaHbXR2mLJ6TXqNT7nDYedDslQ9ZAfPxCE7CVUd3qPjRzqoDvdlsGr7hhjwsC8phcfJhKOdpSftIjq5doEw18SZx3TJCbeKTNdfDLh+hivJNo7o/Ay5Z7ToE7B7g/GY6B9L6qKZLxa5tpdfvqbit1XvGhoqyty3pJPuDhD4P2k83s3pPilh6YvD9S7LU4YegeIvTK6Saxj4t1Yd+fXtPkt+d1cn2rY7wvrGJ4braFp55p2uMo47/sR205mMjcN04aW9PcFzGyf4YSCIvYnT+2CQrQgjDE5QavFZ6zdOfbb2eeo80b35MMsuJzwXsx3zyc4c/EA2OJo8s32DVn8XbGC3co+peLixFTmJV1sg5Xxl3nZNyX8JZ9RN0iP5LvMb9fFZvYZ9k5ZeHd7MmY67HwGEN9U4zpX3B+8H4L8n3UK//9FTx/v8I/38yXRQ4D3AhGBvrtBxkcd4B9Z5tiLiksLEma0E3Lsacezm9yTHA6r0iqHfxaH6iBNTmLZaU31wrchxHS4am4JC+yAPtVNvMt2x8aRdd1adjuzF87WQbG2N6E1/a12LLeey2ue66plsvDqIlu4LNVbPAztDgIoR1XPY4fdzo0lnd6UC0NKkqu5eHHcSnKGzMUxevsN2E1kALJPLrhPJ95SduTwGHuKZfUavYfOHfkWr0cwT9p0QqC4ozPyQ3L7wjGO67XefFx+DKsxnzXeKbfc0yPJ4dufT6wS8PHMw8acvxVa5j3Ax/RzaOP4l3nPdHzxgXhPLORkuTyJSN9gU8U7liM1TIWeukkcxW/872g4fNDuqc0Q7b5wXI3jRHRSoc7Q4vHMtwucmkflpaucrwu5BSelYDetKQovYxJDS6fzghqNjotLTLZp+Cex0o2r7XWzsh61Lm5QbV8V6zpJktP6DC+XVUdu34LPusdqp53TfVqUwp7MElZL6tSzvPYbwjrGbiT8ze2veDzKgrfzGWnzyvMSepKMjItBy4c6mc439hlFx4PzJQwylTX5wPJaL9zfSJM37Db6QzOWLdhecDHlj15nqytjdzku/+DPiDCGDl4OTzTcHCUoYej1NNvVD7Cc2EAbfXt9ehX0Nzmzv0HVmfvNGfe0yAVqKGOP+0Bur5n2gz6T8lknxXjQ83WQPs7TSTPgfM8Mc7fDixeHUEESM7/pJGWBw7T8/54XW97KV2vRSrtxXp105lXdy1lkuo4X+Qu51a6cfSnvotdGp3t1XPEudWn7s71Q7ZpJd31srSz3VqMl/irnUrHB573m4t53WqeclnpLXWneUpz8wlt05LnzCDHJyR1vx7uRG04znADvSIZcfnKU5YX83Y5v6Fx5Ey1KWAcv2DSH+fHTNluUucNSc4BI+Whfd6TynGQkOSh2PmFPw+z+JFtrHCgi894nOQi9lvbZpED5PlD7QOdN6GrnF6eX4jFTWb7B/3ZR45h6rdJyoMWFv+nlXOQflKvLj0Jbf1/h4qXQkr0HVzW9xGfU8OiNjqMnvxCfL6gX29ixc1LLNevVOli+8yt2e+6OXduKba5xydzjMdOK0yHRCv1z3iKnHlOPQhuhbRX3GcuV6Ds8LjpjXYgE/VyUkdyE3YosR05I0TW3r8fUGj3RYXuE4WdeOO0e97PPyPiceAmzzW/zd8huyxH+9oSMfQbXlZ/2hZ9Y+wnj/uoz1n7zQbj/TA+njxbKqO/fz52jGwbsCvD+hJ7nPADEEavOsLA9xpy2DB1IxYf6uCizsIYGpFBGmjlaH5b5P2YrYC7A2P1VkNxexRquJ0nHwiuZ18hYlzbf8boia34x66O83aVHeA3ThPy39Ly1fVs5XLfbStf7lm69Op3Ue+y84+Lia5123MEuHHGLZponCFehjF4mmVak47UOOXVmXnM0W7nhTCzPiyMbUm5K4pXEyzaPvIfWTNq80OB3DmzHNGjrgi500jmGwrGxHHs3iyc47FBXXloYKjtnPoJ45n0CMWhvQropf4z0RCwsdb4vQDH9iklLO6omdx6XH9+j6eRmh+92rLQoEyKlj56K5vb5uwU2QcqHo3xIWscRdSyhPAp2UwUqMrtz8DpOOFnqNFgq2mCMUD5wkeuy/i0Lb2rWDgsaOYtfqTq+BBc7Xsn5rc+ovLv0kCumyhvbePuJNOuk9/VIvLq2h3Bz5M0J62KLFLlAchkPdfKKBFEXtbI7vdTe/apYnrT2+Ylh38gLDK8mrfNOzJMz+Kbfcj9Rw+YSb7RHXf+M5UlHKs+4T7r4dfsXmHscgfvOS77paOSa3o5too6ho+gs7eMQQ/Yv6jqGHHuvODA4sPxMvsnfS4aO3tDiPvMyzq/YbbZSfzpm+FwWnPbZFM8XuTMkURH3hRe3na9KuC9xfz4r3P/M0zOU8QOSKvT9J9B3N+Cbvxl4dxuLsdsBOWyY6QxxqcBOaN7FDxggEG+e1JKzrryY2BAvXZDO8w9dT2EoBB5XoYxOV+UsOq68HD2RRknjuJm2vnDOejCvrSnrXOYuL1Zz1VBG0yMRVl7JvFvbNI56K6fW1SVrPyskVOYCFHz6llZarMcYJxk1w/1Gwgm7OO5r3h5JdrUJQAofCW2c10NcAOTQxspjvwU5pGX8yAun4uhTng/uCB3YnBxuEqEjHMo4HHOEu+hSL8DherNe4520fBhHPqWRnNPktbANc5CV99jxIuTawsh5Je+A5roUh0jaXb258wUg9PI3LLwl5HYLssybIeqd/Z6LOXbs/HkAgG0xwnStLn6p/VVJUcYRdQxLjuV+AwYtAaEwLQI3bPyLERlv5kr1Jl4j5noK1iWdJz4tvLPeNiRyh21oUtGx5ZWCzZUXpbzBxapmi5mS/y4+o/zd4jG1x8XY6cxJJ76mvU5Vv6oDyGdYpxAisEXUhW2yH+B7Jny5/O79QfbjAn56zbx5WEhSedD6XU2KehO5XtSQ7+wzop8Y/moq2uO8Ej6L56O2HOp3cCgj8kFCQ8csl7E8h0VyvUwbdhwyCBepPIfrhW1sgyzhIulb5S4nGjruxyIr56k9AGoYZPUZt1nnDSeFoWfbVLkA5iae6RiLL0H2cS/Bfbtfbzo9F2avTwoFzhPypS+PxdntgB4yFmdAOBniQHLkyAi11F9+S5dvZveIPRwnyVpfyg0q6eVe8fmALbyNw32ofYLGjo0erW2av4/wsmz+zc656tTIqRr7wlI2cog/tZ92RLmc/WJbz84G6Z7oymvaKeDbkdSRQjbtYtJko39apmWyErxp59UdjSZe3tsYsjTzIvRw30pOidvmsmjnNcmhvC+Api0qbbS7tn/uWorGhMn1UHKCWY6Vx8EWNHkgnswbDst4zYbxwdA7vApAzniHQVfe+GYM6cgLXP5nOFBoUziMKMk5k00W3qLzeFHentZRexG2gjlqiXs23v+Q2a0Fx37AXqaKoRULeEz22DYBJTr8Wj+ueO/oZr+tb/JiQUYd3aJlkbvB3yuZL00LLiZ8it+tnKq/xKUWF7neKifhY8bFdD95wdPcCq2ZZD8NHSte82/XJVZ9FiLJG5TzVoYwwjaTK1zm9HNcF7lCvMkWXG7jrcg1Xim8nq121Uan+ZuxPGOubrEblmde0tHzD+B+nZ2k7ypSH0v+pGCO+U/HshQBMWkXnY0W8NDGhIukkz8Zm7xuWoW9d7zgPt8Tr4zkvAb3lX5PTA+5xjtxf+dvjE5Z7qpz3KczPaVz25R7YPfsmCPBcP/NH/7x/MD0ByRVnLMz43bMJ2YzpNHQ+zBUnhNcLX8NbLmr6Awz8BP4jQf59KoFfCev7dLSvU3RZuxcrHz+T2EgMSueR+crWGfSweoCPJRPSVcxfbLZgpfr4vZ1H0ht9Gbe7i+TP8R79MVcUdW5mibTDqPyR7TtHjXkZUdUcyHzmq04TUeQFF1sMjL8HgSzpa7FYShEVBc6tUv7X4w67G8YqvJ68GXkdd2ltUWYhXFUWlUri4+DcthJmkh4+6xdSI5sDL/Kq04r8wbYEGbnApdLcsiwwzFJkiugMgCwD3a6E5uO18uHLrfZHnZSkHCeh6rzHkLHFC+8Vc7pOnIoo4XMMC/rD5IrhdfkDId7Tp3MGYeOUNt9Hzut8HYH7zGvHaTzIUwL/1ZNPjFs/D0E0zZ4XZr9IbBgdISBhUK4uGK34eKCRdGR4poNZRsKCffZZyCH47mcQbdgPacOFxl/EyatuHh9uEjWqWJoxkX2IVQn4361DUNUx9vJtUt0TxImsZhG59S+ecvcl3VyXRhGmJfHPhpzw0gKqvOGCRwxJXBx8RkFe7qwxITVhKnUeRCxgj0eV17HbpcXvELtM18BIbnWOg08RsJjrheOoWCdYVhsDQy54SOCl082HPmpbsFUprUFF3+OpPobmDoS2Dee3ujEoLzhlG1DeE86C8slOSmUXjjUfMVUlgOhBZBW3J8+Q8PnMu67r/S2T16sPkNw+tOvrb9Bxn3r0slGSv7S7FhsdrM5gIcyjuba5qd9NuXNJgVUvz4O//hIpzJKDDwLYzSHaQ5W7UlBeWVf7KDUdHU6xZjwjV7Lr7VmMK/O2XaDhyM/gbkzKjIB3k4Rk/ytMTEnaeqBFwDiTgCYdR8ss0wK5sU5RLl1o4h4AaorzLpOFqZcKQunVL3En96ujZySb+ZEbpvERjKHfYserotc2KZRgxWAFJ2JV0hfYVtIrqtMcMJDkzDVfIKYyjxqnbQk+rFjS32HdYGWvKlEN8daozJj9CXRyvRo8SRMvF7eNDAd7bqV5d3FyjtphMCedUy7qYM3h7jE4m+ESE4nOPU+5EyhNn4ClTkFN0PsFlo6io5x3C8SrS1QDtgiWXE7YjQLKIxD4B/1DN41TCV2SEPnccqktUeveUEnLQrR0mTgJrT7CuCd5BPJfAEn8Q6C6WxhkNG+sM0NccKYTUoYbfOpjBTSIsDtlR7a54GA37SBT2mwF6yuY7/IpkWZAL5oGdh1gfuToeIVdSUvr7CqBReZ12kJk/RCTq0LlZ/wyDCsa0PFxYT7cz7ZYTnzRgNL+6xdkvkcCqXRmdq7bNwJZzZyJzbY9+psU0x2fU8F+Qx4Ke2ju7/4U0lyuT2Bc1Z1xWrbDHMAJNxbLOtyx5x9+AzDbgAJMzv8jeskt8Hj4wj9DPdTl5r2BWGNSyp9bNRltanLkSR3NCreqx00fIDGAXpfiTenTI7AMTXkosF9gb1TFbwauCiEi1DEEyYAKHKFsU4LLsYnR+xeHoTdGVPVcd+edvH7vItcgBZSjc+QOPI+Tudt/A1OHFpDRON9M4BD3kGLMNPZ/Kvcxf2Pc1rgN176KAuzcZMF+NKXfEQPbAzQdECtj6yMNqE7wL091WV5VDkE4MmJaDhSiUmBDa22MVVu4ze00PZJ0i/ti5a6eKFVdWxpazmIt+rY5ek2Jbn3eDu5pZ4uX7V+gRn3vH5vC32Vm+xKyJcWXiOfFpnmaFMXlQ1t1UOTnOT4fHKSaYV1QuR98eVyNfGGWHb4vZyxAMoyhHSMNOQg8WZbuImMFjYiV9vw7qLxsW0gSry2wCF7SIzeNhwGgH+zbO5wwk+zIl7R0BlZTvoWmtXptCCH2vEi2SYWuNEe0+NAsSsUYLkcDlN4eQeb5abw16RziBqTQFmuvyoRdlfcX05HDM38lwottmJILe8nLbh/L21wMvwN5Stt917yjrZi3Sbdx8Wt+o/JpfyVv0Gh9eKK+7LRcStXl3JOq46F6OGOqI+1r9CTFtRlr7B65Y1Nsqgr4VgRnRdiRadU1vSchIsZU0FYkOvSzN/4m4rtJmedEa20x8TUGIWhQwaTwHLnRWDRtn1XmAq2tQZvckUa/IhNMQh3a/W54LCNyTlLPmzHvkNIbrLNwfbofYaF8ndh92ybeO+PrgvbL/u93L4ql8xdcP/NL8yeoYwfkATAl79pONOl0Dxg8YS8nQ7wyFrZm+9u6UIk5fdURhUW/6IA9DjyOwabWlinLLdQWbZzXkzSsLRhlF37lvZu8tNWL+3Ke7u+gLfTaTFoXfystum6yz3e5VjmC97Vma+OrK1mqU9W2u59hlJvhDn2Tr7qkEE4hKmsh2jwRMMdAfHw/sUyjykTDXYI/i+FbRRnRU5u7NgN2kNnOYUn8mIrOR7SMRYzblx6QpXbl98/yHLtdK78kU17mjT1t91Je0pI4YexS8rOvvJq4vV3Brxd6pOZA/DwxpvVP98R85AWkuPtmjoejY5HY5ukI2KdIa6zwAIHxhPH1yWbbJfAt+h5c9HFGOO83g+FuKKTWgSCL+54/Er5u4z5kqyeri5uC9V5hYuJlssbPe7jYpbr1XRyi7/p7FqTi7uQu/cvPVOWWzE0dO3a4DW0TrH8beSYbeqtXyMiSTJvCBOGhW167OYNsVrvzq+7yhf3JLAt9BqLqxizNp4DF2ljjureYTcKr/uFGcoNYIOpZYFgPqW44Ni7UFg0w1Hk2gPAsWmkXl/2Tzmf8RchP/Fm/E910OInDgUhTHU5yHJSXr09He6D5GJezx+I7n1GRD0gtY/faQtarP4GmkL583tsyO3DZ4f7n1tSvU/zBUgfaWFGHu+T98CXphqaRmVcOyQ5J8PhBdombXgORl6iVYzwCA9HrRNZR6QLr0hXuWqjv+P0k1jJ7antW6rqJhf3Jhq1XAF/1t1MDBa/IjQxupB1xZvydxn5WhQuPrjqvuiYeS/TA7ZMRXT/TLHqfFsloxvObjbvtndXAvNGD8Mep22VKiKn8zHeg3jzQ97YbRuTaHUnqbCXgFsR0TSJpa+/0D3FpQUUzFmNwhj2NGkQHRMMrI7WFi9COuaJgua6yCHzISEH2Seuj7EcT9WC1uS4c0+LI7tuR+sH763oGE+7NCZR4DayjjaBoGP3rS7Xc8i1hS47edAEoHfGNmEIpzwO+QAsdGzwGx69zgGKbhYHht3tkbY7XKSBZBtMPCatXpvtC9UrSE1IuHEU3l1KtE2bdjyWeCDsMOcSF3NV2zvS+Jsrmdsm7LC743Zwy3J7kfN+Vr0SvhXkr5UsbdJUxHJXeKaGTd4KqbvvZFsoYcLuK7taXVKat5JnPsm3z94NFidgn9H8ps0e8wO1a3NdKghc1Dimf7EN8zruko5Ttjiv0uRf5xDSWJAzluvEsIKLLC/hYOJF4T2L3+hwcXyYOY60ZwxG0qP6m/AbK+5n36qpXl6cdT4jHWZlcqFJD7YNh10ejVz3mcqnOpIfaHE/L6rfbFL9uvnA9EdbmMkh0NttvGM2kx+Pn1A0JgXcxQOsc72jbKCOdayRpeEhBDSqkPdT4JwXqAAawc0ZhToE5bkEvSuxyAXys+CK9PSyTOdouXmQkt+/TpdMpSi8pUld3uout2QB90d4+RNx3H4tOjGTupfY8KKUkVxF8ahZmzUruYFCcnUCPcuSg5gNwXIrJnGAu9GG7WTm+9ndeGKUdY53BvNxyyYjnq5pKheBH34KIH0y0NtE7euOWOa6eKEVjn3QpuOLMWzJ+VEusSNLjiIdSXwgtwFKcpXeYZjOmSYgNyDpfIAWW0LvNJiDIjNHDH8MT0ydAU28IF7BfHeAdSz5eMeM3ymbZawj2I52xD23Ly9EKy+/ZyHgo5DHuwPpCGm6jyKCm+TQRc6/5lTG0fWt/zIuxrvBjg+E3dxBBXmq44anoZNxsgLURm+Tze9VMXZ3WMeRGUVuK1ZKnnhrc5z3Ahcr4IpivNPL1y50rO404WTFTF4T0X1q1MhtSossxPtmqf2SdfYyLXpIztfVU7JxppVSLlC61/MiY6rRW21ku4zds5z7zVHLWS6XVT+ALKf4J8NUS3vsjk+OjN+nY13VURbe5vehSc4Nq1w3d9URGWMCf0fb+RCQ2FAabZcj12V6jdu4nrx4Y7kCL7NFSrS14CJhqmC8dxxytcjN/oWx3LBbKi/ZsX5Um/0A89rTN1u03fwds1lv1XnxNyDaBudr3u0rBecr7r/xYMbnE7MPSQK8+5IjxV1T+qwoV7GlpV4XTiJ2tnjbVt5jLMxkODUVgd4kdmBZbvG41S8kOaRj176gIgRsK87Z6sg7x76Te49Xy9/FOd+r60HeuzoucuoMhMr223erbcoNW1iLs620yz3ZONAc5sJyNj290ZF6USlEMUWmqU6hltVJQFSdnW/mb8po0WK7sb5ASSrGrmfI0VwX8dRuk2hp+EnhDZ2y0+RyXvwschC25MUeiNfK6lPD4bBmuWpa0Fl7ObQkP60jZ6304rjzFjumtmsKieT2QZEWdKxjyCXbsP0thIWuHfT3g0NabNFF9k09eYPdsEk9jaz2vaOOl8p6nfa89p5xh20vxtSqY1HR8v27do3Om/zV4u8hH3KVGpPXe/mojnv/ope8lXqfm1cKpnYHqNQ67NLV5mPmLTi53FcGjhXbkz9x0h2mstiVl3WCMI7mzbWMx4yPAsNU1vFAxTYzQcVUfqIzyxmfqG5hGtfRZAnsw9EoclPoNS1akm01L7KAGlJZsLnBbm/fvCeBmbEgk2obx3iyjfMb/ely0jc/px+wJ3i3Um/2Gb3OsT+sSWfGdMf9+ZSs4v5Bthr/3vpx+V8/6eO9Y3aT4ezen+O4fAAlRiuupadoim1MHQGf2qxduEsa3SQ4FXIqRv8/gdvYuT05lLGid0Jsqs+cYHokFNP/ReWGt7ahpmWXs3Hoi9NvaOuCZrNcyIWfIa9d0mKb0FkKIdJ7JKls4S3lneRalnTMCwO77jv85lA9ZIRoyHGkRDqyQ+W8FB3jaOfR+Jh4ycJ7r30e8UvtrV0uOVhhfXKZ24J56yJtdnx2bO6skuMPh5EnHysvkMM2qjO6pfbxO2HnmKgYr3Ke/0190mKJjuIvvENHW8CF/v6JAsRiyHRKH4dW28VVYMo5SI6duCjEO27c+Ms6hlyUSYzOE7m813ie7e/OmcNaptrxIvjrHbRgvqOdsIw64RxX6REFjf3gawbSHL6JhnkuQtNXfKogk4lZzsO46LhRqn0Eu7c+o1eR5SwY2+i8sF+UbVPnE7v8he524JcvvC/1mLVRSGHYirBcC9ZY0cauUvJL85R5+9DAhde7qzomprpSe7JLW8ICyd9UXg6vTB+cdyyfv7c+A7DDkGzzOH86Q9NeafZV4U8Ook2LMrGwuWiHvzObsFy9vTJ1AnI0hWOdvTvFOsIWZYSLU761L3AxRyKwXTvcP4QWZu5vdM9r/oy+IRlYbryn68xP0YL29A9Ud3IZ99Xq8cfbCopNAxj3J6Yz7h9i36o0H/GhqP/5JP06CWX8OM8lHdEEcjuSz2lmeYSSwJwJ9Z5v0voj7tnRbCz6v3P8O+zvJ+9xvFcc72dZ4c1oTeJIJVPLnkpU3hqlJlbGTqFrP4n1iWmpC02e21t5BVnHAP9Ci1IJLnizKQK4mbc6wdLkJNfybI6qB1+6sEXl9XuQ4jWocKl4uhSuQ4t+6Rz+0mADPMlaS2ls31aiNTncx0B9juzIP8QAeqYafVmfotl9z+GIQ784HSp2Gy3kgg/NOMSOm4+dU3Zmh9gLxYDtNh5g3nhPyn5XXrOfhUSatfjI4ZsobkfofcgM4cNwyjeBv1wdcoFxPPEZvLjDCw4TVNfXbMovT3N4j0y73NxOVm+84/FOZkimZt4DincYu2tHw2vH8JuON8nHJt9gYSpj8RV1RZnXJYJ3tEh7reMYtyYmW9FnY6c2deaCsVTL2s/n/xZ8onweoFGdj8zKi02e5FxialHfcPESY6Xwlnxf8dKkdN2G/7VtVrtsr9FfW+CM9kkuV9KF5aJcrzJsTHeGbFP0idQeqTTjX8buhpbk7qYag9fqmyO/El/120YXvtceOj4Nle8X8cJwxGukfMhMT9ClyrK/40fCfZaLwN7ZYsJ+w0F+CgVqg20SxbUbyRKqwyQnHyEZF6u/ST4CxGe8YjiccXJgHWafO6M9zOv1nROPK+5rtoXhMRhTz4THzHtg4LxjuUy/N214g+KdGM6vvKleb+fwOTdEuKKFJpqvqrhv5Wa7mwgOWpS9JoT980tzgf7afx+QRORXiMifEJFTRL6nKf+ZIvKjIvJrH6nvI4UyIo90mM8soE6pfmwZgu1OmtbfQqQ6dxDO6aw+Oe2zZVCd77FJ5l230vqkRLubA6yazoaIrJcvuBxRbUOk6FF9TkdbdUz5jUO65CW9Wl5q1/IxU3Jg3L7xuxikk8tXim2SLah9Ve6ST3KHA4h3PjToeRHq+bnfa7TWByk/rlEYyuyDeYGl9Dt4ReATXKbt8jWMBYU3lflMiu0YT82EaMXtuIZIpN/ToUiqK+TOh+cu30M8QHKdV7Me9a8o/OXvVudop4fXKGAnI44mnS4HD/D6t24EeWfZHWdMPJgXdrqi7U5T+0YFJ33HJhZuttM65Ox4NSZAsw35hMawzWjD/CYRLXJ8cwrwz0MF7WuWZusMOGGZUwQualnBtRjb8PoTN+OdbR4fIDVeKbxFp06O7Gib9jQ4uOWVUlB5Jde9xbKrZLwFrx6akmzlFvxifVtczM3kVO9nrGJL+7id9ffEUEhgNT/dWrB7SqYet+JvwUnn5ac0QtjtbYgWBm4UWi6rdnV54uUy7ZgWbV1dbr/AnAXLaVwkubbToFYHEm/VMW5Z1slvnT8VC3tG2CC3M/4mLNthG8s1fvYRFRcn7Xr0vD0dtL/YyJ0fe3afEbxu85hoTv3MZvZO3M5nhBxJvMM/+OdYKDS+8zcuV8PesQi3snHv/e+8OQJb9NL3UXUel++4fw9kPmJSfMzj8v84gF8O4Hdsyn8bgH/90co+2sJsvMd1DBBdkgTIT3QXTKes/AFnADb5HsSD105xhPfO0enPwS/zBuoniuMUyHmOum6jXrxXaPkwKctdnAvNN2ooozt3QRm4cwjFbN3llBlzQDM5Om6uYajbglTyfJJb9WAhWBdNDa0WuTZPW+7mPV4j0ez0FUq80tfFl6YjuLLNiik0A2Jn6g5JPG8fhOWQPut/adFEvEJ5TS2eLSy8Oh0uCm115Pd5J5+VTtr1JEZ1HQ/XmR0ewpG7kzenCeflY+0htAgzpzAnB0xrzjq+c0NOmhw586Yj7E1/NxMtwDTq1MljoX8RImL809Gx47IdX39iN/UBL45ATpJtYR89Vdi7A8bLE4oIMYx2DF5xvfxdNXLGVi/nhW0D21ENXtsldqctNlxl2pUnA/RegYcyUr+g/IuTGg7pxMnor7yQYuyO8Tvxl+6018m8FVMVs0IDNsbneUqp8yaVoq4NtnWYWnGxYh3TJiNyXQXu3EVK/t3xLpc2PmOrR1tJR5uxLtlGkHzVrq74cHQReoH72ZLVT2qitfbLwqsGqkt7rjB2VDrb67jItIHdOywHdliefYYwBspZ6r3ghY1lCZyXYZu8WRU4YrzivHB8svrMrhG2HTraI+Oj8NrIHrxnoIbq/Ni1EpYPvLF2rVgeOHkj/DednDfR2uJPXI4fllSw29oztnR0frA57JmOwm95p75SfETyGT3vIbQRqeFv7KRIf8dso3Oua95PryPryAuv7ftkjvtxDz8I978Bkqr+SWDYtiYR+YcB/GkAf+3R+j7a4R+iAj1pQGHC1xFeUACoP1M3ZOBjk602+zFo7VsNfCSVXbKhJwLINwn0PaDHDbjJWCzOf0KO3XZtu04pCj8JS8yJkzOyJ32O0dLw2m+bNS3WQpoghG1WQnfkBqqdXJRreZ6TfT7LnWV1kclzoEtemjMpyY37R7Qqc5se7sQ7QenezzKBZtsItRkx8SHPk5Uwo7ntrM+ZE4sG8mlccJ3Fs1Ll+N8AT58QuJJ59qWq6SRFqEzHVpoxt1MlyY0JhGLufDmvuCMz2pQUcZLiNNpxqFtACq81YUwKhs4mZziC4E2nI2rUZbKOwxZRdeGgaYhBIjzPEofrWWiHWTMOr+C64R3yNtsnGKEh/F2beEds5FlOzVv7Vl6FzJCWCLuRyTtPUwO/15bDHAUj5MXkjLCTmEDcFh1jESbIJ3Dx+ycW0hO8wE0icEUAvJuWG7yvc9EydzRHPxSoKPSQdJotELi5jMEy9geeEC0X2JxQYqonBB4KxOmQxksY64ZStJtVwrSAb94wL7MJ8bKc+mFspxf621VUeZtFyT2fkfYEqz9gPN7KFVrgEAZz+4DkB6zCeH8scEEL7mOD+3GBqlRJ7UvRCIlVsm1CobBfsoESs6RynbhxHFk5ISxfzJraYIuGnrdw0qFEFmIYi79Qf+SPQwlXhd7N4pN87Ul5llvPWov3ryws3G5HfXpFG4DG6/5GE+YY7vhoLFhuGAWm9T6o2WcAjo8CCnUHYJ8QiSYp2YLaBPjCL+O+8Wc8rrwAfCNMCi8a3orlO58hsw3Z3/BmHGiTb95VZb8n4AOpjulz+B581rj/uSX9oHfMvkNEfojyX1HVr3xIhSLyEwD8egC/CMBDYYzAxwxltHTCR+dwvASCV52gFrGDqbw6F4D2xAsCf4pxDCeih0BFcB65MvX/s8e7kLvT4U4bdE91V25Lu3H2NblcyYslL+vqYWcnd3gbOcaXaB65n1LqkY5el7ocy7mM/1ZemgfEKkfL7dQyYVruvgMm68QOX4rcyLPz19K+2nRNtHVCYTuFrvNR8oU3Qi+4bOSPpo1IPCG30np4jPPVfOjhT4aKnOWaT3oiPz5UTeVTTgqZYTlM63KV6greHGoSEwOY47auYnVteNMEI9WlqZyf4PlOtdsCoWtx2CyHJz6HnEhhKknnJqSFRB1BOKlf95bZwHi7BbQBQi26j/s2JUTSqeb99ppvyR06Efd4RXJaPYg2z/wWWmHaijGbetHRXvmMe9i9xUXKyIa33qOloh6gcl26lI+sZNqdlsZXMXyRM64IyZWlvJFFvLagT/6EcbLIucbywJ5MOynINvwUrssvY5/byjqm5mpsAjovCi5yezTJyVOiqId9RWAqEqYeiadguZQ2JNpzbTvJyWkNT/Sngqwj15Hwl/PngvsZj9mW6nsIWQ/GfWx9Rj62vvcZ9ndtX+H1KSr5bSF/Q008IO4HQsecd9pPCfc/j6QA9MNCGX9EVZf3wyyJyA8C+GlN0W9U1R/YsH0fgN+uqj/aPU3bpY92KmOE2Cmg5qwlnPUB84vxdyYF4gkT5T0ZL5TG4/A4Hndu3lIOKMau7ViclWHfyG0dsA65msqtJtkcJEmZbcVEZT8u7m8bJsg2XOdCDcy52lmBavNqq66ufbMSz2qbrMfuniRBfJ3qSov9Tp/Cm9u/aaFYf1CyK9G2vEUFuhdrk3JdHsLSjgkNkcjO1sbYcHKa2stdrso3h+K8/s6AObK8GHDHg6iXedJkoexW8jsAwWsyAPtoZ3ZWI/mTpSkvwkWAg+zCvIuZZWzSD/uOxaudYMWLJasvv6ul4HcEwhGSUwXt5upsr53O5f1m/DvsXQSua4bVDLlntE9tcjNtQffAXlT3ts/28V+HQJRv2WBgsf9VDEeu40Xw8d5BNeSD6f2cKB2g0ET1Jw8LEFAnja6fB2sOZZz9TZNZ7WYOmiPq1nJuesaczeAwWsLjBW85X+pNeFYHP+nqvDtcvEpXeLepZ6n3Ao+3RI65fLniYua8lht426WVV1u57fH4FUs3vKh8CFxcNLkcF+ZEQZhO2F18RlpQ+LhV0jXjfMJ9WvRwiFpgeMXjaPsQyxhHf5E3+xJmkD1tPs/ve6Vw6u4f16+GX9LyJKxbcBiAnI2O6rx2r40XE1tX3FfC0cBjs6PRAhwRAec97FRGe5L2Qp9Rj8ZPfofaBsrnuow+TlzkRRgv2kZ+h/uA6PF63P88kio+8InZner1e1/B9ncD+C+LyD8H4NsBnCLyN1T1X7hi+mhPzByQdcz25QRwM9CSeJKmOt4ZI8SrYM67BcDg1UMhvIpAdEgF/J2yUcExwxHFB1y3oNj2SQWFRfSe8HJBF6jcpsWhFF4Os+EFa1trcdhbJ9+pI+QTrngfre8RHQ/7kaku5hsL3XpNcRkt/UjldVElA5IlOfeeqYnSejjd59X2d9n4cjDveCsdy8nvOKxNNWec81Q9TRh4V9MdGk1GwrGHY2XaRAd2dKCnYUzLExJzpjwpse/HBO1RZB+uUzhuwww+Lj+/Y4BCe8bEYob2xCutAkmhM+Gg+RRMdsb8XTR2zIdG6JPd/ziIxHTKT9BiEhfvIOTdVEGJOnw8KfybkeNTJYLzmEvA2TfUToKZBtni/ry91qUEitNCCZmQOqwYViblm9WHbMr2zQpdCi5eDk/BZsNuw1vVes1NaHxGVetliYzdANlon2DZOMMF7nv+jlZXt0fW71Ruye/Kvb/oim62V8pwMWO3IO+69aniovniUIsxt/w2zJXg7ZrD9VXc57wkWsLYqWPF2PybFyGEyYuc4aP7xST7DySctyd2oeOKwy3uI3xGDV1kTOVr8PqzP6i07CMOau/A6PBbnc9gv5ZxX3yhBqj7j4rl/HvYVVIkhZTfhvuYtNEXjmUO8RbTBz4x+9STqv6n7beIfB+AH723KAM+8qmMAtCpW3E9zfzn7qZA03BYYUz96uhg0YvUkayM/kmjJpeq4Yno5UyUryninYWOd+GXxHu31zdx+gDWxVjJL3LJ3tWOvMb1Scymrk4ONwcAv+aXUzMfSotbvgfIyyjVWW9tE8s5+DL1haU20D3SorOu7Se9Fl7JeUlIaR1rbR+pT7zIzphsk8TM31f5eNcLyQkO2poPNQUa75jN/LGljTzL4WHNT8qWp23Oa+0L2mPhzTryewjpySByhJkAJdSE3zXQKAcg/NI164H4x8dPuz0WOQinKqNeliuAL7qGTvbEDBiLoNMdsr2DwAsjf5nd64o2H3KGk110Bm44kvMW/w9TDi/aBAct444FjB5LMiMkcAigOjbk3sPfzz0Fc5NsvhnXYFuAjM531qZOhr/z9vthEDY2dbZU7ZtQ8S6x45V41em9t9bdEw4mTN3hb4NX0pVt5HiWdOQObs1LHb7To9GR7aqF1n7LRo77V+ZbbMOGLfXOvyveSsmvd8G7gpUdUZJxkOuuCy1dMDPjs4CfTo2ykAyA8FmK2Qs2VJ2ABX8DR9hPGD4Fpx1qEbyaaQ/CWMEWu7NcTa/1cb0r7UgRmh2+KXVBxm7uG8K4mPG3kxu0A0c5JNzkJJ0Q2J7wV/LBHiw3Pv3Cbcj9LnRSyMELqonHYjy1fYb7tIhjP1d8YryHrfPTM1kn9m3LJwy8ntFX+aCP27wWcuG4b7RuU8J9yz/TmkTklwH45wF8J4DfKyJ/RFV/8Wvr+7jvmPmsb3Rj3qhKaxpaoI28przzysho1Dgu0OjOxyhjnAwlNPTY4Vjea8yT+rS2MCdJ0rkP11CKrCO6wju8lOpYkT1tG9JRssukYpcaOVs7XvEmeetyu8rZGUPt/5tHUOkds6Y06zzy3C6petZFWakrek0AeVG5ucYLJS1yqyV1aSov5iIf9bPc+oJ3fP/Lh2XIgSbeFIIDRQpt1KzzErq48JETKbfvSKDAO6t5AiFo2ue/htOLF6DVX45Ojns60/GiddRr5S43yQmna7/5RWv7QHWEtPACL8JdqkPNbSyLuKnTDZrCGv0D1GTHqKvZJaX3btMiTLPjHruz4vW9+ls2Csg5wsahGJ8pme0xywMAfQl1g20a/O+JRgE51Bd9bAi1CIxJ1+N8zdMIpk7ZYmrt4FyWTbClrWmRk5va6txibZcauz7C28q9aERuvy68495vJDeY2us08ZZltbyaBVMLdnLq/arYzQsNlLL8FG3VuuYD6+zJCMp4Doste7RVh9LHYq5xFtw3LF/v5Ip1gfsjyxtMOl0it6H6DKSycTCTuv5cdfYZ5WnSHOL+HnMJK63vN/NiiHHQF7D+d3y7cuSnrcimiy0QYe1HiXKQYhvRdVFWoykcsy10Hba4yz7T/KT1aY7qsPa53qrrooz+pRN3Vcrib8X9N78w+wxDGS/Fqn4/gO+/Q/N9j9Yn/XH1n20Skb8E4M9+7oKv03cA+JGPrcQXID3t9Fh62umx9LTTY+kt2ulnqep3Pkr8xP0vdHra6bH0tNNj6Wmnx9JbtNOLcP/zSiLyb2DY67XpR1T1l3xa+nxI+igLs7eYROSHrk5keaaRnnZ6LD3t9Fh62umx9LTTZ5Oedn0sPe30WHra6bH0tNNj6Wmnb8z0ds++fKZneqZneqZneqZneqZneqZn+gZJz4XZMz3TMz3TMz3TMz3TMz3TMz3TR07PhVmkD/rC9zdQetrpsfS002PpaafH0tNOn0162vWx9LTTY+lpp8fS006PpaedvgHT8x2zZ3qmZ3qmZ3qmZ3qmZ3qmZ3qmj5yeT8ye6Zme6Zme6Zme6Zme6Zme6Zk+cnouzJ7pmZ7pmZ7pmZ7pmZ7pmZ7pmT5yei7MnumZnumZnumZnumZnumZnumZPnJ6Lsye6Zme6Zme6Zme6Zme6Zme6Zk+cnouzJ7pmZ7pmZ7pmZ7pmZ7pmZ7pmT5yei7MnukbLonI/0VE/tuv5P2ZIvKjInL7tPV6pmd6pmd6pmd6pmd6pm/c9FyYPdMXMonInxGRvz4XSX9BRP5lEfkJn5Gc77W8qv45Vf0Jqvr+U5bzq0Tk/WwP//sZn6acZ3qmZ3qmZ3qmZ3qmZ3qb6bkwe6YvcvqlqvoTAPxdAP4TAP4HH1edD07/z7no439/vhKJyLtHrl2ll9I/0zM90zM90zM90zM902ebnguzZ/rCJ1X9CwB+P8YCDQAgIn+PiPw/ROQ/EJE/KiK/sOMVkb9FRP5NEfn3ReRHROR/KyLfPst+J4CfCeD3zKdXv05EfraIqIi8E5H/ioj8UKnv14jI756/vywiv1VE/pyI/EUR+V+KyLe8po3zyd2vF5F/G8BfE5GfO/X4b4nInwPwb4rIISL/lIj8WRH590TkXxGRb5v8P7vSv0aPZ3qmZ3qmZ3qmZ3qmZ/ps0nNh9kxf+CQi3w3gPwfg35n57wLwewH8ZgA/GcCvBfB/FJHv7NgB/DMAfgaAnwfgbwbwfQCgqv8ogD+H+WROVf+5wvt7APxtIvIfpWv/NQC/a/7+ZwH8rRgLxp8L4LsA/KYPaOp/FcB/AcC3A/hkXvv7p96/GMCvmv/+AQD/EQA/AcC/UOpg+md6pmd6pmd6pmd6pmd6I+m5MHumL3L610TkrwL4YQD/HoD/4bz+3wDw+1T196nqqap/AMAPAfjP1wpU9d9R1T+gql9V1b8E4LdhLF7uJlX9MQA/gLFgwlyg/e0AfreICIBfDeDXqOpfVtW/CuC3APhHLqr8e+YTPvv3p0r5/1xVf1hV/zpd+z5V/Wvz2n8dwG9T1f+3qv4oRmjnP1LCFpn+mZ7pmZ7pmZ7pmZ7pmd5Iei7MnumLnP5hVf2JAH4hxoLoO+b1nwXgV/AiB8DfB+Cn1wpE5KeKyP9eRP5dEfkPAfxvqJ5H0u/CXJhhPC371+aC7TsB/E0A/jDp8G/M67v0B1X12+nf31LKf7jh4Ws/A8CfpfyfBfAOwE+9U8czPdMzPdMzPdMzPdMzfeT0XJg90xc+qer/FcC/DOC3zks/DOB3lkXOt6rqP9uw/xYACuDvVNWfhPG0Tbj6O+L/AIDvFJG/C2OBZmGMPwLgrwP4+aTDt83DSl6bOl342p/HWJRa+pkYIY9/8U4dz/RMz/RMz/RMz/RMz/SR03Nh9kxfL+l/BuAXich/HOOp1y8VkV8sIjcR+WYR+YXzXbSafiKAHwXwV+a7af9EKf+LGO9rtUlVvwbgXwXwP8F4n+0PzOsngH8RwG8XkZ8CjHffROSzfLfrfwfg14jIz5mfDvgtAP4PqvrJHb5neqZneqZneqZneqZn+sjpuTB7pq+LNN8P+1cA/CZV/WEA/xCA3wDgL2E8Qfsn0Pf3/xGA/ySAv4JxYMj/qZT/MwD+qRmO+Gs34n8XgO8F8K+WRdCvxziQ5A/OMMkfBPC3XTTj722+Y/afuqCv6V8C8DsB/N8A/GkAfwPAf/8F/M/0TM/0TM/0TM/0TM/0kZKoPiObnumZnumZnumZnumZnumZnumZPmZ6PjF7pmd6pmd6pmd6pmd6pmd6pmf6yOm5MHumZ3qmZ3qmZ3qmZ3qmZ3qmZ/rI6bkwe6ZneqZneqZneqZneqZneqZn+sjpuTB7pmd6pmd6pmd6pmd6pmd6pmf6yOm5MHumZ3qmZ3qmZ3qmZ3qmZ3qmZ/rI6d3HEPrtP/mm3/XdX8IN40u+cS6k4hMITghUgU9wfNDXcNW+E6z5q7piQiVRMSPWi98YKd+PL2j6jO7fh9jm68KuX+/pG3jcvyb96T/+Yz+iqt/5KP1P/smHfvd3v8MhggMxHhQK1ZxfR0zkdeYVA72DLyg939xTmdyyFm1S6CFJLynle537/E7SI1rtdKpy7un4WLqvV75n1zo9kv80dMqUq14vvX+fVXrcNtqW3av9NW143Da6lD92T14Htff6Os8mX2qrR3V6/bjXlnevz+ixj96/x23zIffvT/yxr70I9z+v9Iv/gW/Vf/8vv381/x/+t7/6+1X1l3yKKr06fZSF2U/97i/hf/W7fxZ+gii++VC8h+D9KfhreuDH9IZPcOCr54H/8PwmvE8deddhFFCBiszcoDWnfSrwHjfAaxizABHgwIlDGLzGJEEk5FYHrqkeocKq4xDitKQBTz9QyhWYE5UjaKtOU/9HbZN0FHNQLDekK7LOPvlR4EzWyHLNho/ZpuhYdKq2EaoZU0dg2KnqdO/+Jbl3bZPvJ9/7qhOWfOUNuw7qY8sbmwqNjiXPLcyWC1vYNPaQbFeWG7yNI+n0uGgfj8do72obmeOPteht8Trb1DvPTqjqdGWrzjb13ie97tim6qjLPVhtIY5Vud6+z730/nF67P79yr/1D/3ZTQVt+q7vfocf+H0/Bd8CwZflgArwXhU/rifeTxnvVfGeWr7RDicEn6jgx/UI3Pe1wbiD7739jAWKd1AcOPElOfElyfWyReqEaI8j9xPXnbE7yke7kGzd3SXW6yU6aZG71tvrZHrtJOVx+3I7pTbe0dGknI1On+X9S3xFx2rXmrxbNkrem3I3M4rCV63PfNH7jwsddfP70bTTqa8vdJKJih0kVVt1el0h2E6vfT1kK9yz+evTo/fPqLb3b8L5jveebR7RaVf3f+xn/vkX4f7nlX7kL7/HH/r93/1q/i/99D/1HZ+iOh+UPsrCTFXw1/QGxSd4/3440P/gfIcTN3xV3+GreuCrEJwqeO+98V43G0PcnJrtwp4QvNfDu/g5axIZTvrEgZuOSdhYDOXpNte6c5MxVZO1RI1TptwqR5d6bFEWUmWZEh7tBPHKNkStDAZ5R0ZSXTFjVgVO5Qnk1F9CyyPtg1e51zqKyh3bpKmN638qAByu4/X9ayXfsQ08X3eBBaFz3B3WcdU51S3iOq9yLB/t6YAzPJfghIKjk7nf+GJET6o/dNTEK9j110XuRV4gtHAu7RH7dUCVax86mW1CW3m9bTjNe2WTurXPmeanz/Qftc2+r19hxixXaSaas7ViVw+onjgetM3L7l9N1/fvkKsx1acxXhVfE8UNilOBr86F2AngvcbCJNtnrWfcRsU7vIfiNjQTnfyH2+OTi7tik/uMWPl3N0Hj8ketUNG6PjG0PmmbYFc6cbonv+r4kvYBYaOz6S+MItxDrO+91jacdpPOWHR/dvfv3szjJQuabuFU7/MjqerMdaztq779vn5W30vu366+vn0Cm0XcNvcv8urjodJ16Z7OrNM6LoZeB3q9r3hfkl52//I9y7OrT9c2Nb22f37cpHiv58dW4lNJH2Vh9h6Cv/r+Hf6GCP4qvoYf12/Cj+sNX9Mb/gbGUzKDdpv0zhw8J4B9HNsCY5gWMIdy4MSB9z7xOSCieP9+APu72b1VFcchuOGESDyDycB2AGJydnLNzc7ZlH/AO9qTp3E8tdL5/7FnExO1Seu8OibhOqeRyRaP2IYWPEQLACKn62hWt8VPTBqo1OUApy97H7ONquayS9u4xs6r4KeiR/CSTjve19w/EYVqvl8ofS63j+VGv9H59NZ4KQNgb5udzjYurN9kV6yAxs4bT+aFdByLW8FZ7sFiG+3smNvHOprkchfmAnHkzhG8jCRJzcp5qmX9NazzmG1cZ7fVuAepvWq9adT03qeje9usT54ft03tc8lWCmA+vdN6/15lm5fj6en9c71/7wkzHk0K4GsYct6r4r0M+58Avmbbv9Nevh1cEvdZAXATYCztZh7AOe+cqHhJGbVQCE4c+CRhn/ptHOHutIUh3FcQEHWlowQpE4vY056o7Awomb+F9Mi88oBtTLBWnanXWJ+y3yflMcX6YtGxL/oZ2yZsJY/ZJuXVnwaIZB0Sb9IJUFGcGq1YbIV8/65tE33OfaKsNnJeFN6EDFnns+FNE+okN9vm3OgI4rd+ExuEYSzBnNDL/kAB05n1Oqnvr7a50hEpLHnks10N91VK5E+98ZI3Kbh9j9iGdTSdwlZEK4CoTl80bcZmRL1naZS82Dass9tK1vYNWu3vX7UNiBcvtw3bYnf/3npSYG5Of/HTx1mY6YG/cn4rvhk/juP48lg4QfBVvMN7V4kmOl2+LHhWWgNL2/EWCI7xBO088ON6G0/SVPDJKVDc8O54jy8fX8O3HD+Od5KHoXfNFKb0mI7RrRU8ydGljCVyiJ7tQkqiyDq9zDZeV+nHogddtv9LoxO3wADhIEkvvX9Dp51tEjQohTJCXCfTVuVRW73w/iVbxSR+z0tal37TBVjq8uMBHWl6vdYdu9dmrYP7UaMj3+uoi1N3/2o++k3fXgUotJiW1Jv2Ea+W21BoL/PKtop6c7+xyZTgcM3Q2obHcrJVun+9baqOi62ktsGcdO7bn6Ztqo7X9+/lzloB/DgOKBSfzAmNAvik9jOeYHaVcJYmdnFHwkbvJsOZ9J4RFRgbd8YtNBkdi9QVJ2OMVhtQvmLq/L/1bw5sZW6FzIUqYarm5+mqK2+qJOWLv1GkEO9jo4fLmv39xNj44r6Sns6eCgjb6nHb5Hvd61TJzVbvFUC6f8i2au5fVFTGL+ux9L+qVx37lb7XO/SqTzqubFP9wt5n8Bg6NUaBQnHoSZiy108ROu1tc6XjOpbdV2uMKMHoN4cw9dpvsq0qRlzbJutQ872tjnmvz0xOKd/3l92/tc+xz0g6nYC9BtPfv2znasW4j7hrm5zf37+O/JlGEpHvA/DfAfCX5qXfoKq/77X1fZxQRgi+qjeofBNu54lTBJ/obe6bW3jXHCxCc4aUn45L5u6OzMGu0QXFd7kjtOK9Cj7Rd3ivB96fB37s/BK+dh44RPAl/QQ3vIcegGq4eIXS7kceDDJ1WHWkpRTx8u6NldWdrtjdsaAq8U05AwKZOl3aBnOHvdimPtExO1ZetesgnVRGmBkaWv91zzZrXiAUTtrbptvdORUY787E0zy21e7+dba5f/9c7ACrhXfVccm7hfr2xG6VRN8m2r1dhXipfQpAlAD19pCOJzBC5rDqVG3VjYtjGs55NfoSWXBOn45w1g/a0e99GlOP9rmJC9RPNNnKdk8rb7YNkOvt71+DGW2f6+6fYZd6/pH792G2GX3u3v3buPm76VTga5hbOMJPh2IHmPGamtTOe2QqV6Y8jl1CmyvqoDDu8PAbEaiqxBtaNE+SWh1rfiwUrO5U73zXr7bHwvNOr0tX3qnJQ7YhnaqtRnt5E67yjpotjPGkuhZbifVSK6869vcz7DoMJZCxOy/X7VNENEz4nly+s9XWNpf3LyIzhh2FxgKAml/aR3KpfafTymO8jR137eMwzwMA9HD9WU61K9+ze+Nxp2PWSZ2X4g9G35ZRahhz1Hu/sdWjttnbKnRiWwHqmAvtedlneDj8q+9fP5ZPwN+bFbNXvX+bcZJDs+XFtrl3/16L+59XOksswuecfruq/tZPo6KPsjA7Ifix91/GXxfFl+VrOG0/aiJh7Bgr5LQd5OlkdToUUYhaaM4Y6u6EZQ7fc073Zm96r2PS8V4FXz1v+Ovvv4Sv6jfhq+9HtPO33Abt7f17fMvtk8EkYzC6HJMLyruOJneUiZxjICtV5Agzu3sgjiPFiZjkjQJTIvPetY3puNiml2tyQtQsNHKxUM5Gp4W3s40CpyYdoWGr88I2Zkcluep5xON2qbZi3r1t1vs3+uNy/7i95Ly9faaTle3suukLdu/hvKsd13u/2qbeE7v3CoWcuUk73rPe+5nhPrcbF++LbSjjv81N+zhhnU/iDSXaex86PTIu8j1JY8ptFfde7thmvX8zf4UZS59ju673j211yonjM7NN3M/9/YPj6cuT4Gs6QslvSU/uG5OUZWmqYs0DcwoSC3y7dsx7JSoW+e0TxBEmOictJvolcqs9GvvYZCmHIa2W0Yn7OrFMgTHho/H7KtswrXitOOcbwftk7xcCkDgp2W11Ife8Z5vm/o2eIDilNU8kjfDKc9pKgAiF/Azun6LoVBV8yXiYtAb96v+TD9dZ2ZXLxI0RCXDK/W8jOS8YI3s5j+soBFG86T76EbOeG7va0+4Iqbtjq7s6F50wDtegov0t/Rzvn2psgiz3r8MQr47maA/K3eu42uqtJoW+KsT+LaaPFsr4o+c345vkE+hxTFC1ycoMh1Pbc4i8sve0UW0TDo411xPQw9HaeXHM3eoT70TxzbcT+v4TfFVuM5zyhlM/AeTAJ2YaPYH5lMh1LHLV5SpUbxEuorYLT7w2vHTswaX2zsmDDfbT2/Bp2warbWySp5Of5A54F6jq2LkRa8O50Gq1VbKNuFxDaGl07GxTdRxh0/xE5xa0dK6S8Upq32P3L9uqt029fx6cTuimJueCV+e91tn+TJt1tPth+fPi/nHYkag9k54TvyJn1z7TCXQCXrVj7XMjTG1tX/SbuPeHymiXkK1a3qyjTk8WtKtttOp0dQ8odPHQM+kUmzwvv3/deMw6sl3XMeV9efK+T33787NNHVMvTYoZOqiKc9q22mP0V2z0RDN+AYiFUOv8yxJHXeqbflFXOgZHrS5jLf27bKL4gn2nIwgHMSYNAOfjnqr/mk8Q6R6m98leYZuKG477LjfsBLdeyDF8PV0nOP66v3mpbRod2VZ+T8g2rKeSrUD4lHpkkvOIbUiO3z8UDa7vX7al3LUrt8eyWnW80DnJpfbZPTMNRQeyRVcq7U12td+BGzs5L7n3amIUeC+jNjnnuJRruw62HKL/Wtswrek01YJMW03n1NiqjAtkTP1gzHBbKfQc2GS2OjTu3/W4YJ1ebxujjXrt/r0c9z/P9IHvmH2HiPwQ5b+iql95Af8/JiK/EsAPAfjHVfX/91pFPsrCDMA8jIPj3wfw220fi5LAfjt4Q5xWnV5npw2farz8RG3uSM4dtkPOucBRW3ZAoCOUEQxu4u+e+AIt6RFtOimvOsKdbAewtm/Jz5MFjXfscknL++naRhLtGM8c8BcD9b0KVGb4SLGNT+rEHr3LDPfSZBvjNTlmizimvLRX52TOeGE73DLrjd/VNvHEwmw1nG2UZ9vU+yeQRMu2ae8f4Jv/vviZtGeR29/PsfjFPEp8p+NorgwnB0m0Ox3nNC/CjDSezl3zSpFrdq206vTnonO+JyLRb6yHWJ77yco7J0tTjo2T1TbWb4TsOjc97t6DYav3GP2X7wGw57V7Mt5NOoocxTLGaEylPifrmPL7V8bJx7CNjSkaci9K9nK9tzEhzZpPfRSGOYEFULtns3wOujxxmbSktCocm102yUGSG/eo07nV0XSBzLfqJOssxOs6Tm8kkU/6vdQ2lVYjL2C7CdUR0084LxadkpyX2qboCMQTCxdAtql2ZVtxIlbXa3s/q45g2wjMP+q8fxHK2dy/mec+V9vndi7tM2pbHCy2eUDn1a5xD90eNF/VwlvHCW9YVDkvHRd2arPpZKfx2m8Lt+/sKqq+pxUnrX6obbJdzkTJsjf3M1a8iG3OD8eMyquS9eT7V/tcHhc2k32tbcr9A98/vBr3vyDpR1T1e3aFIvKDAH5aU/QbAfwvAPzTGGb6pwH8TwH8N1+ryMcJZVTB1/RLECje6fvoFKcSwAHCoWyW957qvXL871SnHUKi0w36MRmACG4KvJ9SvnQovul8jxOKL8l74DjwySn+fg0gSa6FN5WRzR4htTNdPsOpefskmHhAqIovYD5z25zkWMh5DxYNnQDonM1U2zivRkiCnhoKFtssOy8nEO+uRfuU7B6VBBgqjvmiLFW/tTMg/nRmb5vIy2obtXoFko4+4j2q0FmtynlPkk5sBmXwz6ZZ+tgMXXOnpSRXJemIc+o1gd6eg5hD0ov21T7X2Sb3OXFenbZJ90Syjr7QA1ynMU5kY5v47RZvbcN6TX2mndDYpt4ToS4r6O5fb5tRl4Qe7XjEQ/evjikz1nHqgmuvts18wfwR2yxjqvbRB5JNzhTRz9JYsbqnPgwRy7gyXIQmPD4KbaeE63FmmT5+2bZFx9PGPvRaR/rN/ZvL+mEeuI9iq9faJvESz4JXpIMZKibG0Yd5Ev0q29R7D8A+C9vdv5SfOtiWKvu5D7aNuyubbo/0fubYNpc6Xtg1PysLmPC6m3FxFh0ftatt1gAP2NX1mdhb5XD+4t5XuwKS8qGTbRRm2+RxIW6jT9c2UnQ0vcZ9vzsu0GPZy21zzRu2EtgHnx4ZF2ar1/abPC7C7gCW/vKWkiLm9Z9J/arf+widiPyLAP7PHyLr453K+ONfxrfegHfyHrfxdipiNlK6oE84dIZ2qF8PWus5K68ln0woIDjxJXmPU4Ev3wSfzF3h8xR89XiHr72/zRN6zvF0jV6XjpOxWM7GLSvgj7YbWkm6q18Z7xkwRHy2tsll6hN5o7PdlLFbU75XpuSs5hOD8dRhcj1qm037ep3CVkOnCqeZ13SWySuvtY3bm3W1v/keqNOQO68iEo483m+MN2Rc3fuBrAdOfx0peo3Vy6Lu97lWJ6LV7p4kO476BeNkLnho2xQbM0LS9zHbsI5hH6W29vfee5SaIySdUO/f47Yxx1gdO8tNRyoQrRCtQP2JE9smOWe80Db6mG3a9r0ivddiw3t61vvf9dHJm+yT0jomFSNMiMeOJINOSr0vdzGKAhDDq9HLBxZOWql1YeI9RTF8yrbJLRfY2Fv8GPHq1Cv6aBmTr7ZNlDlazFCGse/HmFrsNOvVpNOnYxvjFZuk13Hk909KHk16kBfl3ovgCjdWnXftC9oxLsyuvY4VJ9sNwg+5986rcF+syHZu7KpJJ6sXn5ptFltVnaqtaMN+sdUH26byKmwuFU+vuM/14wKwcdu0Vwvvq7D47aaPdVy+iPx0Vf3/zuwvA/DHP6S+j3b4x4/rO3wrfhyQg7oW33UL/8ilbHaVmF7mPa7Mi1TzBIBZ4SGKG05/NeiE4Gv6DjeMh+c3vHcHa+VXcpeeK1G26KS1vZwDTjmwLCA+NdtwqnY6/v/s/V3Ids/SJwb9al3389/vvJkZJzrkg8xAFIweCI5kFDEEkziCxGDAgxglQU8ciR8kagjEOfIgEIKKcyDISzIHQfGLBBVUggPOQU7MTERQM0JEBCcJxkE0k5m99/+5r1UedFd1VXV1r17ruu6PZ7937/3876vX6ur69a+qe/XX6tUaBmrviemDWt4xC3mU5Xvb0G8nucnLV5q+zcBkcydiylqP1lBLW36ZG7sfLNqPBu0WlxI0ZK3j00pDcNITbhAQR9ne9lwbdzlfjDQrDnIlN8IaNx6T6O0xZbaX0u/6rghJUssNneNmzpVwM65TUK7KZEzD1Lhi1UNOdoWbzH4+r758fQdBfgY/Ipvmudw854lcNov7rA50UYx72dgObnHSKAhKp2pXblu7EU9SoyAe6+8Ih7QvzDZt6PSEzKV9iDZ8FjeqFz6NFfS5GUzRR2M2B9z0GNncJc8Vt2eIV9bbb9rGJNys2o+pvrkmD4soEe03bPiTenjC9jxpN3JeB+VBPfHQPHFGvHLIt2vLn2j7EicDq+dVdiD4vpHlZqWeYHyvs31903hi+4YpcOXshwvcmHskLx9k9oPhKq8XQ24O2oxT7c0nC4xr39d8UvgniOiPVBj/DwD/hUcy+5jj8pnwfb/hZ76BQeZDpjb0FTJrgsuDw8/72a0WTtY4shwDvBHjG8pWxp3Lsf13Jtxoxw0MbIwbZCZTnL3Xy+5ufOT1GNu9UG5uecOtmj2PG485dkZs40j6or9iApIHfFKOmtcVbnr71ZysQbn9aaszkuuoAWmPyGdw05WXc9l+Dr9qMbyKLyxxY0oZH7CtpP6azbc9hiyO9gA+y43teDg/wdgm7dFWOnxE0Hc6HuHmqD5KulkPo6S9YSM2mFomrRNDmt8ZbjymlkcffAvBwkKcWeZWzxpXT+Ymtd+5wIAeXOLznuma1ee+BR0PkBsG6+OsNiXdziR5msfFAubYVlhbzOSb/W23GUt2OMdNvDLvwnj/ju3JTG6O2aeigJDTVC1E+7V057mJ8XWfPvJhizZOYn6M7X29GOFtei2evk04w+vc9t7iPTeZv1ofeL7tbauZBctFSZvbb0Xvsf1i+53n1XPyPG6i7OcOH3VYPjP//c/M78PeMfvV6w2/pJ/wq9sv8U0nUdt3JCQujYJUAW3KCXXbnE0buhsssgzGDv2AKKGcClbDjfb6gL4BYLzyhp1v2GkH8wvud8aNZNtVkS3voTRUKY6KsZ9Zl4GGOZodbRkaKLMyslT/JtxUPTYnAKWDvO9ND21m4BzKG/UQ9HtfsvXzHDceYzmoRRrvepIfCCACsz+lyXPjO58Ow4AbG1/nhsHGfsfcGIspVwTfKacUY297Wz4TS8tHoLpa5n0udASoffdvaJNO76B8Ha8I3LQ7RAzez3Fjc32Emyhb2oy6FZd39OUr99tA6BnczPxG6oGUget7kckAL7Hf87iJA7p5tz4LzO2wE2fDOgBuce8fLeSykHYdMrDqUWt91lPJyoFJOlBk6vyVsLe8DzC3dRFpr1i/BScoyOjt27r69qfx/WdwY9vQNuhMZLUMFSPYTZhy5NF2FY/s2WGUFqf5u3JF/Wq0HeBE++1MuM5NrL+Nq/r6Zc5NtB9l3AiPB7Iwkz+d7QVz5O6q7Sf1AkaPsz11tne/z9gerR4028tBxgu8Otu3vsY1bmIdu2h7wE3euYHZaW5inbJcBfsl3JQ87CeNnsFNlD3f7n+F8+HDtjL+5dffwl/18h203cwotzgf628AnUPIg9TGOfwqDzlTdUByrG4B0L34aTuAN7Dueb/vBKZvus1l490cDrCG0d61GN0R8ZLcJHbHyz+RGz+LV+IqwT6OnWFPPeyOvO/0nsMYm4poP+XKYmbPVTteelXv4B4ipmNu/Cqeibeee01bfkdZVlEyMGonzYUrtrcPlRIj25ERcetzTo/9AK3YNn+oXLG95hB94YAbZwP4Gcs1veTuNZ/ztifbhrDP0X8I9y24ybhikBuUhlDbDDagn8VNLns2UDlhNXDp+UniNgRZYnaIpQqO2jr7UWW3GqoyVm/7REB5L9VYOGCMvmMP+/DQs3plPh7r6mDCxQlupGMnerYDbmb1KmutW1sG37Z1GG1j7WW36ne7Xu25sRqj/a5yM7KfcgVvz8bNMUbPI9K0sd3IbT/HPCvfM2wvdzLbj/RObe9FQPUApWu29z2wh2wfucLI9jHLYD+Y9mRB74wbX6eO7Wf7C3E3n7xvdoWbKa+fLDD4TQ//eM/wYVsZwYxbnfECqh8yqfMxSE9usw0DSVoTF/feqD1sqd5sL4iWvHSWJTjkzm37z20rnwRllINKdm5Nxrd63Ks0oiOMcd5P318IGIl8RSK0gwJLY13fTXoyNzTkJjZJYjM5na6kmenFAcYRN0Qn7Kc2kIaVTnGTY6zlXeSGpDzcxyWIPaPPjdJavcINLthe9ZjtWSXdNvQ5+4iIfhJtIrpXeM0xt85r9ibimMekvBaT4eqM7VvcckW9zyUYH+ZGGckx+6FyYr+AkfituPFluxL2IMlaRtHl41pGmDYUrR3Z9FdFHjtsSRkZZE5Zi2nLqmM7Ka6EDYWADKPtXgkmBrt2wZU3tDmiWU8afJCbJut/F5/hKTdWL6B7FfRKKmsUn8Hc1h4MVwk3sW5Y+13n5th+4JW6MbJnZvtEtvKsJ9Ian5xh7rnJ9b657ScYj2wvn9PRNnSB11h3r3Fz1fYY2i9y9Qg3sU5JBlu135HP2dyebb+r7f67BAbukZAfNHzQd8zKUutf+v4Tfu/LC27bXStp6xdVd1CPsL0Rgr7QU+8RWAc0pjfp04a4NISyhQcoHZeNgR3l4607ttLxZ5QtVwy82LPqI0bjwn4OPaQdlK/NAhr8i7LP5Eby2tG4YogspWm7+JO5mdovvmO2wk1orqiWlxa5WcH4iGwrH45lZ+VjSdpOwyppkWM+wGhneFf0jsp3r/f8SXqLvIa0zT9xiRsfp7oq/k7czPSYONFm/PMduen0uAIuB0aZ6JrVwS4+wUkg7MTtG1gIedOWytp3phqM2v4CkG8m2c1dO9rqzgxjjylym2CE3c7W3nt7hBubVurWTm3gOuKmxcvW8T3DtNLuL2Bcsl9SN5pt7Ez+NW56ro7sF5+vFvMCN135TvD8EbZHWC05w+sp26/xqraf1ZP3sj22c/XkDMaOq70eADLmJsqK/WA1X+RGZS+0++8VGB/3jtmzwwcNzAi/5G/4LX7F/+f1t/FtY9zojl9sr/hpE2oZMI7VtqBJp6E+NEOHHwDSr5vDuKjpxLNKbyYta+WXrVPSGWEQ7u6rID3GdoqjxcXmv+2exGz5WGDa8rrwfG6aLCpKXz5J1XNlMKUHcFznJmL2XAGp/SJXA24sRhrozbnxmKMeMrLsZMnZ0+ZwaBMC2p7xme2jLHRrl+hxM3EsWyDG5RtihC8f72T25R9h9Bg2suUqf9sHu+fcdH5juZpyE+5NuTppv4e4iT6YcWUA6xdu3pCbmf1OBG07O3lXu308a/qMr2zWbdWHR1w2u7DaaFNRbfdBzp4l5S1MIHiMsX3ajHTX8UkwtgG9fXf2CjdpSghXWRvaxxngbYzpQG+PcYSZ6ySoed5ctV+qdxFjjHHYzpY+B8YYXVq7VSaVPcHzO9u+SL6d7ekB25f/D+rJA7YnDqezzmx/tp4scxPvMzY22ykP7QfH1WX7pZi/wnuEDxmYETG2bcev9w0vrz+Bb3e83Bg/sa0sfXcZWoXr9gdQq6DU3GnnFhef1Y8XM/RFypIW9RjxXoc4t00v21kajhbYOLCmoZofe4wuroMWuVfy2jV/ecOqPcSfyQ0cxvJuTWn8yqmVkuzOgH33a1PNDdPzuSkzP7psrx1maz+rq3E144ZQ5UxjY7kacaN5OcyFK2s/ArXj4+t7P5zJssy2TfTCcDO1veW+bMmSa/IKtw7DuM3yHZdv4DeWV2LjA7ntCaQLL8INqaWqTepxxMvcBL9Z48ZiLP+VLRBiT+fbM/s9jZuImeSMj3pF6v7Ifs/jRr7aaDEKSubBVpvFsFccbPkig83E3cQupF41Wc/KjEtfRoCqn0FLJmPP5qNWqm4Fd2mbj7a+mjwxmv6sXdTkJg6jlw2Oq9zoWBotobC0WjfkGdj8m3K95P2y5yZibizYvt6Im8x+zPLNs94ma9xEXhtX3n49NzOMnte+7meyrV55no95vWr7nNesnPerth/aJLPqOq/W9sL0eW7GtrdhxfZaT87Yb8hNzuu5ds5uPfTt3LV64TFebfffJ1By6u+PGT5mYAYARPgV/wTcCa9M+AUTthfGy7a3ilWdQRv3JK6/66lu8gFd2W0o9zcbB9WZOoDrVkW5R6axr6JVqHRrZSuR5Atuj/AUs+itL4LoS+EGs8rWtPGkMDLbvd6CG0q4kUHKXmUFk33pdicdwimoZ3NjMdsGZ2Y/mfFa4QbOnmvc3PVeb78YZ5iGNJGd+esu3BzxmJavvpTMrFsXqZ4+2vSSrv13vK74zYzXFHN7l0J3A4Ow0a6fV+aKaZkb5zfn6kXBaDAx9P5O0Flm3af/ptys2A/YeXf1BG/EzX5kv74fsxSkHaFSMRpOMjy7QwFs2hLfWM6HKe3izZaxptd2pCujvA9S9JY8qp66stk2qpNilPeMdzb2t2l3mM5UO2qKK3mu3QAbjI1kHYiXivAQN1bWZuva2MCNq/s107sYro7GOdNbubnXBjjjplKpGFl4rfYbcSN95lg3evsN9DZ6Xd1Yt1/OzRHGKHvJ9nXlbsir1eNsEm1fpuVmbUFme33vbYevJ4ntZ/Uit33BdQOft31VTKBlbrJ68Qzbg2FwWPud52bEa1lUCPZLuAFae0Nqv6Sdu8BNlP2MgYH2ys4PHj5mKyMBt+qQ3/kFGwO3nXHnDd+5QJKT2lqn1m8PaltjbUeHnKxNe0dxTonvuo2rNppm65R9lDk9YGxsHgQJxhbPMd4jxvpAJa4tFur2PCadERdZpe8J3ESMlHClXJhTKxtXLW3jBg9x85raz9gk2A+189rbz3PVc0MV476OscZfK1ep/SCYWBtZ6cwUzKJX3mUZ631dst+B7cGQw/0J5SOVXHlkVNPqyaBe7yn7hXguK/WNzcxdfQhy/eCvPB0BMPutjDNuot9cqReFq2pbMDZmw1WtAyfs5/Tu9WF7gVfxcQJAvGPDht3YDxBcb8dNlG3v5J4Lpa6a01alPlOb6STlvMVdWpQ2iEy8dRoWyqh1svibbpkF105SyzfTKx3IiBFk9KBs0XLPn6p3Vje47k5oJ99e48bK7iat3h9wIxit/QVtWTHeUm5wyA07WWu/zXC1VDem9uu5kfcFaWe81v0CG+/YyO5HsfYr8ZH9lp6nkhalUl22vTzbRrxavcEmb2P7uc+N6oXF2NfdC7avOzv2ytUKN7Fe3APGR21fODKvwFzgJqtTJIPBYL+Zz0mca7yrJye5ibx+5vC1YvZAIDCIpHtcv2NBrSsCtIaBTNznAHOf3L5gK0vmN9eOjDSGqHnYvDlIeVcsDaWptpcxymysryjUMBGMbo/mWdzY8klDLd1AZnk0tPx3WF0ewzO58fZrOMBN1nHV2S/yWq/ICaB12yHBNOwTbhrmti0lsx/pHitTPm4NtuS9J+W9ws1clgw3BeNeMTbZFiTfttrY61nlJsfY/jG1q4z2krJwZb1qd7qexY0tQ/QjNvm2WVoY2cx+U27oiJsMo8XHen8f2E8wN1yPcZP7Z+WBrj/8mP3R01wyhGS5h3iOs7XSpmEwHdFeVvmX+snSDhj7q14KGMmh6DGKLKvdSJ9nJE3CBCNV+5Q2RTi5wk3Pa2vZC6bYLvYYY7vvubrCzRZ4bZuX25a0uf3U9gP7ZdyITzOXzuadX3RrPnP5aqmXbd3Vkf04YPSYSR5RhpvSIe/TettLmaztLbNvZfscs3nms/g2jWWHGLM6ZTaum3Yx4ya2qdb2ikMmyk9zEzH3ts+4sRh3xHpi2+wr3LR7ssop7Vy0X/e8ifYbtnNXuEEi+/kC42tg9nDY6hRtGcuXfzvqnliTzndLSuBwT6o3m3s2PeBfEfYdP9txlNDy83rbY0j0SvM5wxwxSm4boIMFG3ajo1U/pOV7hJsoi1oaP1xrjQyDHCav93ncWFkJ8ateEtbtV7Yb2HdtyuHjOMTYmLB2qUfr+t6xz8jl2JDtsB31sd4jbua2b7Nz7Z6sUPX4dhM76zeRm7EsdeWT371HmY7VMjdzjJlsezgNuApB7IenczO2n723Aaftl5U/YrT3Vux3JTBa22ZztRj6+DgvoOxgiDmOZFt5bHvW/O1Idoa5dZTK33YoCcN3aJrv+Pz7SbKr3IzSbhyHUR6VjVlu2PB1LHsGc7Mfa6q5j52xHwNgLrty7ih9iw3l8xz62RuTX26/npvcfiO8120/53UWYlo5/GOl0xpt3z9L1vXOMRfby+rdMa/W9jhRd48wzmzfo+kHM7n9jvWOMcf8zrRzbPBk9WQWHmlvvsIzw4etmH3DK5g23MF1ppfwfb/VXxtuVB7jIlFCq0JlZZkhw/lsGOXSozVMZStt214BsFlN80iHekXWvqAkacnHy68t5GWrjx/esGDcTT769Mq6UyOMIuvT5lxBZUsRDDemFHIikufqBDdRL5G5wknaJhHt10pybD87eNtBAJfzsHbOMPm4IPS8tnmrfg2jcTXzOdv5Ep417uwX4xmvM9sLRstC5KZcagPNrcfU2f5kvXB5FSECV5/joc9FrtrxBfZ00Iv1oqu7katoP8Gxbr9L9cLKKo5RmxE7gI0bvwJ50m8OMZ4LDOCVGy7b1eBg/5HuhrPc3anVzzHOlsLbEGYrLwZ6BzbM0rK1E3SWmiB2sHXfy7ZVgH6iAEd6O268rNSa+prYkJvoKx4TA5Grk9xEzGK/Uu3G3Ng4a7tfcTHGepmxYyur7nzDHQRmKeULdtx9281tCiW331FdmPF63vZLvA70Svmb7fmi7dtBYEvtxjvZnqi+l/cANx7jddsf2+8MN15W1hN3ahOJR+Vr7Vzrc3bt3CluYtrPG/ZkoeNHDB90KiPwsjHuvEM6EK98q+9Z/QQCcOcdG23meOjqILrOyq1/BAZR/Ext/DK6cT11WgKYa/PsK5o71r3Ta9LuSVqjtzQ6WWiYWOPtkN59953AqOc8Ro9pxJXt9JTgj+OOXJ3mZsBV2z7QY3qm/dio1Zfgo6zRa+3HwbbRfv3RzfaIW/tICg1hl9b7AteXd1XvjNfQqIrt9aETeHYHQ4fyRUzl9NJrtk9tUjX3XVHjcwlXbHj2H/4+qBcpN73tU64esN+lehHbucpT22Jl9Y64Apbtt8LNsJ1bDYQdN4Pe425lGrcFraNaPaH74vzm41bW5K7vgzgMff1temNZYvtkP3XNbmWzE00wsil/vwNgrHfEjdxtvrKb7zMlsujveUz2APm53hlGG2dw+zacAJjYz+Kwthzp5VqGsm2uvJ/Zuq4E4ObKt2a/xMemPhfKcML2Rz439QWcsX3Mq9VNPrT9ON8j25MMHEe2D3Fr+zIoG9t+HveY57aP9sNF+61zU2T9M2Wze8tPt3Nj+x1xs5724wPjayvjQ0E6Y7JtrswKE1738tAm7LjRBlCh2a6GyIk4fmGXQFyPNLZpqVUOSW1lpRrqYjoDdgOQ6/RJPwZkKm1Lq7Km4+TTIsdEVm/DyNjmekw85UZlN9fl0XuRK4tRuZE98iXtjg3Se73ETc1bZS1Xl+1nlv0XuBFpLR/v3gZmjJLZrwXPjZYvcqN52Ty2UL7mMYLR6tUmNSmf6k3qRfQpQtmmEW3fyufrlEKpesT2az63p5ij7Xe00w/FJpA2gVe4GteLY276uitc2Yezf99qgklncQsXhIybhXpRFYkPWt+5GftZ+zpcJv3Ifqe5CXXq6mtmd2NTwU2grq5bbn0Zq3/U39JVsP5LJu5l4cokM+95m5Ovgzs9XXvFkJn3nYIdNPQYRUnxZ+m4NoJ7PWNuok7SVwbae4Mjbjwma/96gIbhaqx3wE3IW44C4Zp2xE1ve8GEQ/vByBKoTWEw6rttRpYB2sb268o3iR9yE3kOthe/9uG67c9hbFfXbL9SL3w7KWiknrvyTblqtgf6rYznuMGi7RNZBPsZriTFFW56zOzyO2rnYhtX8jpTdxNuIsaL7f57BIZ8Y/jHDx/0jhnjVs+uLS/SE4gJr9iw77VbR4wde/tWCaF5GwigOquL6j7E5qjM4tTNEdtOZpiYVnAmdxeQ2fOkCSK7qmLTAtorN5jM49VgAlAHTLaytN3WRUrKYzHZuDa6GTcOo/bJamPYZK3evpI2zI4rww2H6s3w3LSsybSqz7YfHrDf5uN2xZB8E2tRqKbURhmvUTbas3U2ALtQEnwssX1b5cyt2WxPun3kDEZr+3Wf21Ju2sCj8SwPwjE3lte29ZJN3R1xk2Hs861xM8W5k38wzuxnfUGxmXuHbQZ7bro6ZezHwX4+9TPtl3MV7XcmyOQOG/HMDnYwkfKBxgewp+2GPDNc3TD2l0FB+05gX8ZM7wiz9TsCu5NlaeB3zv4wdb8xkeo5i5E0N4Nxwo3Nq1wqk5fl/dxr3DAaZmA3kwG77rSfcTO2X8/VCCOk9aDSqX+1ep3PNfsNuRnZZIXXlOdiJT2l8MCeQOR1bnuGKd972962G256NLd9MX1o9yvm9tTI68kZbh61vT5vTtpvxM28nWv9I8tNtKe2N6n9LnDzhHb/PcPXVsaHQiWPGDf5LhZx7WTVb3bxjhvf2umE3NwUGpcKIZWpd700mFvqwM6giWyDXHMnk46GGMll0TqVQz2CR4tIaVp5wMgtl0vgpq1NVqS8xo29kGMaBHJ/jOCa/QZAhnDP2K9wNbCf4UowJlSkF458rjXhE4z2LkOPu40YPY/ztpIBt411m9m+w+z9lW1mzp6s/NstMGs24bDNZpB2EORRlnNzxFWsU4Yr5uncm+Ums33jKnIT2wzo34kyRfg29gN8fVy038lQ2vbCqq4Mwxe9DGq8zzqcphtRcozbss06YuSU/SW/SpHpGeuN91y7od20+ptTT3PZelymXh1iGmMcY4La29HsgvedvdsOtc5NH7/V1AyC7JJJnnNvYr8tveff4NH11BxHVxfmmI9kc55tulVeW1rLKB2V50NsD+hAaGh7g0Nt356k9lWPx+vuuu1Dr8DEGf22wTPcxPKIdIbJc+XaULbta4bpEfs99gz4Cmvhw05llErVtjhR9REC6s8dycw0wc+MEMBM2MwgZQ9pVVpkzV8725rpUTXV+TeXBwmEMAPTMMoWqZ3RMGr6Mca9lkVecs1ka5LWFCd6BaMkVt4XuRG9EdNQFo2rsq0zt5/nik5xY+PWfkNZaz9AX4K39mvcILXfETdZ+Ua8cuXQy7Z7rqm0GCWOZgNpo0fcNC8pOe4zjGh2cz6ndcr7OoyP2XLZLXnjOiUd1ozfMTexfDk3UW/z18x+XhcbP6ET3NDQfr58Ys9j+4mMdWQ+wY0tX1t9z23SfJ3SLZVd3b34fN7D7gT9sGmtfcz+2JKWEkmcahvTbtr21/KR8SO2kPKpHRK9qg/1eCpGJ2v+OL++if5hu+Hb/UwPhKEJRhsvu1CaLNC2DTJzG84e+I5iEj++yM1I9mbqxBE3I/td4SbjtfyRzf+5H51u94WjBVlrew789rzOyye2b/fX68UZ2494Pba9+ODM9p4b+7xxbawp73vavm/3yWB6hJuGXacRyK4Qe70RI6jZbOfHubEY2yD68wXG1ztmXSCiG4A/B+BfYea/a5a2OFhZcgVI343fpZfCDJYOwl4rIRUH03c4pGNXW72yBdIc6FB7PbYCa+e7roRIXgyYD6zWTsdu4sb5d6qdNtPaqpNXjK4zY/TuPMcIeFkA4HoyY1lFbHpQ49KoiB7LTYrRcZFzs6F9VJFrj87OcDtuII2DNCkGE5u3Uyo3zOjiWOAmYm5cta1sdpWCLtmv/HAfS7bcoKzuRG6WeA2yNJMtJjTvK3kfA+8mXynYwCbE5ftq6ifsfT1iRMO4z7iJ9bHme1+uUw37TvLpiAVuIuaOm1BPGB1X8zpVZOS0P1rh5sh+iPVx1wfhof3kMV3tt/N6XY51KnIT6yNMfTysU7gW7tKZrnr3+l0z9QcCNuz1Y+iNS8Bz29pI+Rh46bxk/u06L8YO5bvcrX1qkwWJHvLc7TGtKZO0fRLZYfy72sV3jFC39cNMuFBJG/RmGIfcBFnCrjbU7cPOzwJGlo/cbnULLT2PGxhuxO+o56Zr92t93uWhd2C/ETc9r7sek76LrBHsuAn2y31uzKveNrbXOlhtf8ir5Sa1SY0N6oVrN0zdl3ZxB8qkieP5nO1d+mh7Ol8vwDJwOqgXE24ObT+xZ1cvysPiSdz09pOyn6oXKO2pPm8e4iaR/bSBcOevd8xi+AcB/HkAv38lcTmynEILVX5Lp4JB+rXzjd2cfRmwUY3XAYB+sbxOT7YZDLs3uTxgiPyd3W6JMI2qXLKDIf+1eqOHvZ6WQ+tgzTC28nNroKlhVp5k+tXlxZhxE/XMuLkHWStV/tteQ7XcqD1lYGWtGrnhc9xEXhHuqP0CN2rPxH4dN3zAzd5z09lPuFC66oYyFl9O/CaWL+HGY7yBYWzC1Os1NlG+gj17vZPyRW645wahTmFapxhkMLKUdMH2c27y+sgWw6ROea6C/Vbr1ISbIhvsp1w9aL+Em2GdmtTHzn5ZnbIfTlsMpT3fWiewDo4Y7d0zYsar2Xpz47qOYOovB370ycCVVRrUXw1ttVI2rKb8DNq2ed0QjB7zXnE1y/W+I5283fgo8YF/h7bNx6O9b2pBz5XYt3El5WNAn0WWq8e4geGG22QV1+NJBvaz/s1AteGa/Y64AW6mU7uHOlhTkucm2i/DPOO1cSNH0qOuAhqM7nl6UH8H7cZRvfC8Cjf1RECD8THbi2xeL2a8DuvFRW6yepG3IePnzXPrxUi2csXVGtRzk9ULcN2B9gRu0jr1SYM8R34TwlMGZkT0hwD8xwH8YwD+aysybosdqmNt/j5zqwZ3bNCvs5uldTJ5SXZ73P6lj0ORbfuKOxzmS+fq6NRkzcRur8dtG2ydjlWMMZ+RrMcoWz79vWdwI2VIy5dwA2rxpoefwk0zkLfB3H6VV2r3MtlH/MbxDom3YbbVK3k9x28oLZ+1QcuXNW/L1d6V7xl+Yx6YqU2a3wgmIuiJcfvM5y77TcOEgWzHVSjfWb0zv5FJoY4b8c9V+z2pTnnbH9nP+9zZwKaMxS6t80ooK2o7E8onPYpX3GL97fjx+adllLIpP6zbQoWf2KaO2jbBQZksUxmHk51qa9vL9ppG62ywAwjOV6KeaNOubZtglEjtfkMeMh03aO1LkWXAfDak50YGnWvcwGAmmZUXLgb2k/o4s9+j3DS9pa8B1SeTBrUmmrwze0YeR7zeTVugtg8YBdfZ8q3XCzLYUAa71Iy06yBayjt/3gxtr7K2XtRPeKS8Zv0hego3b1kvHuEm1qmyItfKSDatjtPyesG1Pj6zXtjyfYW3Dc9aMfvvAvhHAPy+UQIi+uMA/jgA/J6/9veqc9lQlrVL5WBuWxwJpXMjX8CRWQHSuIz0TbeK4ePmtzRScp/blzdLcN+MCIHlQZvrsbg8xnFax5Okd73XBFOIt0Y36l3nRhtHvedlWfUOyAn2JLFlKO8KNxlGJPlctd+j3FhZmLSRA7nET/Qb2V6XqOr1754au73HPnCe4zeSng79FTYauMHD3HgadKYy4SZipFCn1Mee7DeArxfIfpvyKqZgv8e5sbLn7LcSbLv/V//1vxXafd8BZGy4M5UOa/3fRgTi+6CMbHYHlLBhVEYKHBB4lw5fTVfLmNsw15vKBptpPbOdS3g96vO1MGrDHZ0eGx/bv8fY/Luk2iCYKZSXPCZsav8l/17gxvPanl5j+9XfB/a7yk3Hs7GgrBnk9svtqfVoyit5XlNuzDNjuXwtrYTrvFJaL3CC10wWho8r9eIZ3IzqBQF1oupavXiEm1inYO45e0WurP0qV8/gpq8Xnzt8vWNWAxH9XQD+dWb+F4nobxulY+bfAfA7APAH/t1/Dd/3hEBC3Z5QPOFuGu2N6/5XyGMOgP1NADjeg4tLp4sI0J2RAECs7500wKPyIgya0iqZxwPGsmRuMAed0jDqn7h9yKWX6nWNG4mX8pntBiKqKdm3+BYB+bQ5plzvGfu52zXJqv08NlziRu1HvZIhRALuDuN1v/GcHgT1G+l2e9FWnuf4zbq/tmTqN9QSMkdMud41jAOuAkYGdPsG2TRy39b7h7gZ16EOomlvbAfRoh5ydQJji5+z31Gw7f4f/vf8fm7vAHhd0vliQLc7bgSAN7zq+zIRt3xkVWzGuIORVMtQjNouEfVt+aBt72xYCjeXpYKqaJMBed+mNlxFvt0b2HDp+bN1sm2ajJp5OxwGo8WkPrvCTYLxiFciEPYBpj6U7Nbt1+KT+pvYT64UN5vYb6m/8Aa8duWrcVcv1ni9Ui9a/Cyvsg6JOa8wXJl68TA3k3pBNrkG0ousaGHa8idxE8tX60WKifufbVUx5HuRm7Hs5wvMX++Y2fC3APhPENHfCeC3APx+IvofMPPfNxPSDyibzlh5Ab5c2BmuByIvUOvScSdLPt59Rb7lFSs07xvMfgv4LUMxba3CUlNmX6s/wMjcPv7c8aOyNCjfJH6amxYvq0+tMnp0BbPjasrNRO8D9gtM1Rm+if2eyo3Vu/nBWcibLTe6ukaHei5xM5Dlncy2HAqd1nCU7hO5OfRXfShCZ+UKNgbap2CfwM2Z+tj8iIGug+/s9xA3E/sldQoT+zmu3pCbtE6dDPZ9DFcGrvcIupuBTJFK+bIHrsfJ4NYnVY2dBAAC2Gxb0jtbSGk+hN3xTsO0GueGCSoRMZW85KoblHU8zzF2JQ2yzO09RjnFd9yqNkyFq3jk9oybGUYbl0kF8YEtYIo8X7dfLN0xryTKOq64s/04Hgfz67y2ZwZ1947L59v9z8nrTq1FLXd7Hlu9EMzFXx7h5lq9qHotTrboz+s9bm+O6oWUPn5W4HncrMt+jrAnlvsRw8MDM2b+RwH8owBQV8z+4aNBGQC4FTPr4NQaets0APWNg90MFtxDrFYdDvGaYqszG74pgK7Q6bsVKB2hpqd2jNysiMXME9ma0MhaTKWbYmeCamOkL12il7V62WNc5ybKSvraJMctetUmuuf4LblZsp9RldnvqdzUzl8SSnfR2I8SWVO+pr/Nz13j5ohXGBv0HVWa1IOHuJnJJnWKbGqGx1R9jjufy8v3CDfR57QUzp5GlAn9zORzuYm2l0zK1Tijbez3Ztz48l1916BtNfEdLW3viOq32ioKkvdNsimsvp0Am0+aDKSk48IuheHH5ZoVNOqdyZK+6C+yG4pv+UFY+zgtm2vrelYw2pSkp1nmgSArJ3Y94dnceEylbdoCN86+eD/7tfapOBQbeb87hBB5jrpcfInXLJ8MY3hmLPGa1Bt8AK9c7sx4bfViM3k8h5tz9ULWrcpuotbevkWbYSXq76ReSFthB7S9D65ws47xYrP/LoFRdlv8JoQP+Y6Z7eTLkeO64YNdTGdQQcBet9YQSqeiDeCsrI8TACLCq/w2siX5Vhpdo1c6iSUtdNujyO42L5yQVUw1BZXTJ/sGqTRCmaxnZ4xxzk3EaB4RVHK25WvHfgNyrPcVbhyGITeia2Y/gLXxtPZ7C24Mprrl1XKl9lv0G+WRpXwk0Sk3Q147PVmdkqa1rfBZHgWTq2+L3KzaPuOm8Sj2yn3uqHyPcRN9oa3YsM1X2wxrPzKyb9RmUJ39tvYLbaSkztqMdW74ZHvTP9aPAnM98AAwqAt3e/1NgE7aMgBic+qi89msjGXm+87Q96cwafcZbF6dI8Vp7YkgG/loqYMNY31WHFWSyWnaKyaQbOGHTQ2f2qKYc+N59v69Gz3kyrcpr3KFo41ivml8hZvWPlH9ipS8YyiavSyn9uu4SW0w46bHKNipTpRQ1UvouYoYbfkazzWtbdsOuPH198j23gY7U11PL5h38TmDUeK7xguvR9x4+2W2H9TtmhtVnxNeKeGm5VXqxf5MblRLTZ3Ui97nipdOn4knuTG9B4eJwOW7YtV+sParkvoJo4e5Ce0pvKy33/l2/yucD08dmDHznwHwZ45TlmOTEZan22/0cc7imMiKe2vU7HYLjSO7mxO98kCVDhqjfMl+UdZiqsk9JlsGiysrn9F7mpseo2p1XJV70gHtuHpLbuqVsf1aXiL99txYffD2W/Ab99DhItzKG1f0+nrBevOofE1WZj8lYzrwOWNGkWiRhfrIJ3gVjLKFkYyvMw8wPZGbiNFxxXVyYtBmgNmdCvdW3MT3F5z9hvXTY1rnRmRW25uzgXBnOcLJlAmxLkzy7/oFlQOnpXxnSG2oSW0HS96xMlvHbF0Xz3d+1+tN4zGt+Lf4u5MU/K2t27nZ37dAjas0HGI0ra3rjNl4ggk9VzZfsqPOVO86Nw5TaNmL/ZpPR0yOm1RPvDDHaPU2XAHTQj+ll/Dl4yk39vJBvWAfBUmn2m+YtDxK4oYxYIp6V3hlCrdDJaLKkKufzed8bgMeH+Umtvuyg4PnXDEe5CbKjriqdars1A6YIleMNkgzei+3p2aXSG+/K+3+e4Wvd8weCgy42TgCTn4ZfS5bXKfMsuiMRZ1ptnmD6smP0ZGZUr1lBqPpkCOQVzAyyglj8vBtONnpbdscqjQ/l5tYPpL8SNsCyDtmrbwGE2Os54ncAGHW09mvcaX2eyduqtuYGVVOZVNuqnC2igiTr9o+YMRJXiVta0vtw8jz6HBUXHJMsrN9Wr7WmVrh1WMmt7rRMOeYnslNVqdcG1IFM67OcCNvkg65mWFsFDSuFuxn68WzuLGydgizGhj1A9PiK1X5VuvYqO5L2iyuR3lb36jOohgJdVZ40/idUTs2W82Xq15WWXmtLq37xv7KyAgjmu0UhWKqfJCcTAnsvNXtUg2TLJSWjwU/xg0rN+Ti4vM7Q9tj5uLDEVPGc9ZurHADyJas4lcZpoyrXcrwADcjjATUdx5brZP7m9DayTaMsgpFxud2p9fsS5n6Tfu7VC8At9vATstkPLY2VTCfs9+M12JT8n5DqB9z3ku9N9xYn/Pl7bl6iBuq5WdpScuUMFVMI66a7OPcqOyAK6orl7KtW3cRDOzHj3KzaD/76YTPFhj4+o7Zo+G+b4B54ADti/OlYhRP8XGRpqmsNNC2F0e76WRIJ7/WQGYYPZttGQAir4cOMBq9RFL5S9jJfEZWHmoyOyHlY+kwwMg+k5utVDKDccbVXh9/8lIlM65zM8SYcWNtAnNC3JH9rnMTbZ9yw3ZSwdpv0W+kcY/lU9tr1k+xPSArUvU2vM8pptrQu/Kxp35m+zO8iqyEXR/WUp69ytKbcjOSbRi5lxWuJtz4eh/qxYgbhZn7jcDYwdiSNgOGK8nO1gvZNv0oN+o3uBbu9cARUn/YsNOObR/pQigjGx9t/q2y4HIMtUkrenTCiQHmrR4G1+ovgdsJpk52Ta/Zc+nTVtl7TbuDa3m9zXR7P8sqaMEs3BBtIK0b17kRvVn51CYQzGblbCcj2+xHtPu8LnCjdcFxU5+Eak/L1aYHBj2Xmyi7BW6q/QJmi7G1E83n9FkFuUTL3OyHGM0zETXv2j6VuxsYozaVGo+CeZkbYwCJc7HZHS2v6Deljblhl2508Lkd0O9wIfjrMjfOb3puXL1n+Wra1g6ZO7TfGjdTn6sNta52KS7bNy6F2XjXSXLrNyxcPcCNk63229F0e/vhU4f7hUOpPmP4oBWz8hHRdqKWeDRBPYezOJpTcm18yOfrkuoNm1dtKIxeBqBbIkZ6YfRKXGeBTFr2US1Wuz3Uw0aPdgDPcGPKV26LLECBG7i4zHrW2kxW761VUIStbyvcLNqv5wbIy/ug/TKfI5+WptwE2VWbdNzE8on/1t/uFDyCmTI7VT6Z8QKgAw1fL6xsLB+c7V3cPoBGvC7W5fIQqTxz8bkZN/6EQHMSkz5cTtje1b/IlbV9lO25sXVKi4xiS3JP7pN+Y/zTsJCkbbU9YpSkjqtH7XcylDnpWyNI7X/TQ0GoHmHJ9fRdYjmyE40PhpFtW3oo4CTmpsbIlg+wSmfkFsoIk1fTo4P2gV57oqfodWkZdcDeOj4xLVf333XjUsG8O0w3o+c8N9xx03wHzBoXWXGTXQaKwpWxH/hWXUdkG5er3OiAHHo4eLBfi3v7bXrPthvEu+/EHtgv46Z/Vtn2CqdkQfVtOQbYYD7LjdhEZdHKJ77PaO8vi8RON/Vu4vq+UtVTJmrpIW6kfAQqkx6oPoncbwg7iG5ob1CWvPTU1urbfJKbmJZVb+OmhIaJq/8KV0wBk+GmPCesz61xE+sUST66bdDbQBuDyhXTLbQZ0kZWTNF+F7iBlB/Wfp6r9vD5Cm8ZPmzFTL5ArlWgPmC0qxPiUIdG7UAB5dCA5oSatrRKJpDTE/VmX5mXZ5048EgW8Bh1ElseKLWSl2+DNURd+dhunSkVZcdJbiJG6XgZxR1XKjkon8xaVptJV3WJm4C59QGi/c5xs2y/GTcD+7VOcLOdzRcYl++U32Tc6D0CkzzkrIXOc2NK1vrhq9wE28etGGfKF7nRDEDqB1n5Mm5anQLs1or2AvQiNxFjx9V6vdA6VRNZ+wGY1mU7L0DBb1CLq+kH9STDyGTrhefK+tUp+3mGTwfZKhXt4ri09VlmjzUta7kirt3EGwfN74haL59NB9mXsXaetUMoLhva54FekY3lk8TsMLLjfq9tY+8r3GQN+1e5sThK50xkN88VPC690JWvdsmlXaD2GZgVbjJeCb6PAHlGOPtZf47llZXZk/YLfhN5pdqP3YysVisGdvJ1UgtT47upkz03cPaL3BQ9RVoO0REuSrtht8b5Ompjd9M2iOy+4jc135yb0tbZZ3GUFb+RlZ82lBNurA22fs5hwk3ELFzJFubWtiG0i8Z4+stzsRuutI6c4sZizO3X1ykYrlrb3NuvbkF9EjcYlQ9omX7SwKCvUxkfCrUCo3Y4xPFsHGiNqsbNb90nL43VzqbTQp2sk2dp+FsD5tJynzZi3ENaiZi+fO2UyV3S8eKofKhfoHcn0i1yk5WvpWXfKa8TrcrVpHyy7U0waSVe4KaznwEb7XfIzcAmFtcZbmT7QOkcNSXy4C3RI26u+82RrMyklX90iZuM9y3cm3JT/UbS7rvN+3Fu9BZXv1/lxta4XZPo9bM2UZ4A4wutTzWrF7buumd8Yr9H/CbFdCTr6rnnSmdQV7mJdRnnA2Ol3ae+zNU/Slrqyqj3AP0mXub7xPa5sGknLZV1GMrFDaxfQIh6HI4DLiWttD+0y2W7SkVp+Z7JjfcdcuXd6iyHbGnSCSO0goxkZSJBfW+BG60by/YjHUDFtL1ss5+mv8CN+Oe2Fz+wspiUDza+08RvDtrUuv1Mt0+rDXydsXHJkblMQ+zV73buZS/7DVP1E/s9MFs+cuW5V9zFJlAuuY7MrnLT8Yq2+tqgk8dk8qIqATbPI27pmuw5v9Hn6c6mflv7WTlKyte2u6v93oqb2O7voY1kfOqwfx3+cT0wgD35NlQblEwkZdkFbYaaqnA77rnpkbjNNsYBuBnzWcgxNk1korHTB9L6NcZoHy7cUh5zk2CSpW1dxjN6E4wp5nBfGoIsLGFUgqL9FrgZxIF1+/VwyGxdwNB+MZ5hnGHeqBw4cEUWkJWE86E8YFr5rH2Oy0cdRtspmPlnVgYfgn9O6m6Mj+pUw/VAXaaWOw3KM8Q48BsQ6qc+ztsw2i9iijg6bga8Rvulep/9EGYy7wAccFHJFD+kxKOGvLu47b5Kp5Egybp2w8WtbHnfinhSawb2j3WfDejWjagdNpbtpgZHhzFwEzHRBNO0bZN2uU3ICFc7KHAV7ddktSXtuOpDzk2GsW2wUq5w1BGb2E8zP7Zf5OYOqYfUWsiumC0Xe2KebZ8ObaL1t93pnsWzelQnPzfsYJKTSm1NCDhMbqM61RRHTMJS8N0oW9MSGBtVJCw+hmVurN9o2H2UU4w9JpkUJgAblffMxHctV2vtTQiOKwpcBUwmkD7XyhDqRoRXw1XqRzXM6lQrs+XmqC2e3/4sgfH1HbMnBNKZcqA+BPYWB+Dui4ztTDCkA1EctuXVtogAsn1Gc22dXCpK2FS6qDdi2OvsmK2kbmOgube7fDymiFHisHoV8Qo3/h6I9OHRunXr3JSGoTa0prAcGqhDbiLmkrvjapUbixmGV0zsl3PTGixvPxrab8TNqs/JB9VXZUecD3lN/LX5TV4+dp5htgJKnUowZv4JAHstcM5dhrHVZXlwlEvHto91apWrpfZmUpePuBnazzxAI44ZxsLr3H5H3IzsN6vLZ9ub1VA60/HB6X1QOkPkYq2TAsCXKaSN8Za3bwfbbgnbyo4LGLswzN7PrO/7fgy7F9IbxvaumZVrL91LC7XATS2fJtde9io3rXxVEPZj1+lgcRDsAEavBa5cu5hyEzHKu2fefh5Tz5Ud9kppBBXv5P2Z1rjp2he9EnuvpFJs0pbUFOJWj0S4vjpgkNRVS8U43Fomdb/kuGMzG9aaXovRlmfqJ2zjxecKDEowZXWKXXm5ns3IYOyr3FS/0dxZZI1ey5UnEVmdEg07lwFjbz86195wkz1vv4K5veJRB4vmTF7vRz03tnROCQfbH3Azj3+uwKCvwz8eC6SdXOb+rt1a5t/9aO+ilLh/YMPFvaxWBOvMVpaaXgL7FQqOjaaN1yZfZNljbGWJ5Y0YM8x9WOXGYeQyi7LKTdPTx6k2oKmeLh64CbzqCUUXuEGQtfY7xY0rX/nhm/h1blL7LaU9Ll9sfGP5LK/TOuXKR/B7N8+VD45XmvLa1SmHKdblg3pxVKdwkZvMbx7hJvrNQO9Re8Mh4ux3lhvDa6zLp7i5+PzrV36zePArtHdQm58Y2di2BVmb2p6iWSZHyMmud0TCYKPml6Xr4rWPFXcI7ACY7az6MTd2sBG1Ue34zbmhTrak2nTVtB/EopONCNqMv+C0uDK0BpO1CcNvHat/c67CoOGy/WaytUtcy6fd45iUKS7gtPyDz2V+w6k/FW3OX9OOqG9zSH7os8SvmKWywW/kOZ4OQzUdaQ7jOlXsSSj+KSm44lrhJpav56r+Dm1qlM3yslzJoKarjwt1qh3x73XN7RfqIxlumLQP11b8F9ubYL8u3VF9dO3NV3iP8IHfMdPdz/WqOKr8tiFzcNnicywbH+Zn9EY9/kEoDcBEb9STlmlR9gQ3UXb/hNx09kvL9PbcvJXfMB9wcwbjI7Izbh6yvY3H8h3IBm52J3uyfI/IvhE33m9OcnNUp86U7xHZKTeMs4FRjzN2BDXNNMNpVikZei7aMU4Tb6udJV5WFbPuRhIn6YgD+qYma85oh8H05SPiboCM3Qyv7SFWIPeNzyVuLMa94ZBvP66Uj1z5BDPVYkpH05YvcuPfWiyrZKLHcEUl3rhinxcQ7Fk6rySytcMrHfK2UrLAzar9BtwgyFr7yeSdrUfagY62H/kryTODNK30kzzmsay1QeGtbBXfxaYJJlK9TbbbPVDvcYsM9Q7rVIVVPiy91RU9IbLMVMSJryFGYvOenMxykJG1aROMmrIYV0/jJejB1NLKLNvPUlNld/WTbYkbWz7eZWXdfLIhKV/khgw3Htei/eBl4X6fb/ffM3x9x+yRwAizXRIWHpAti2XZmLbU4Yuyb4Txo2S/uPni5opszw2F5F/caPw3nJv1UD7hmnei2htg2T3dtlM7IGVnsL83koWRtauYzDAvts9lBXPb9uS3XYFN08AZ5j5f1cvtDjjfoncGIypGrpis7IgrjuVjo5dLJ5VTPdKx89xEzNF+PVfz8rGmbXcY7bCUp9ovxdx4zexna1LcKkZa4JHfN4z9KvuV8qEONqC8bcSAfR/PPMuy8kW93ao8jXkd+quztUErZnXP16TuhrxaH7Ik54Fsx01Sp5rphSvTvimuA/shsZ/iWuMm1qmaqztUblR3I1cj+zmuFrjpfe5zBub6nczfgPCBx+W33zpbZ31FKgyN4g/KsmmGTsjaKiZZjfX0slhM+8XNFzdf3HxxI+Wr/b9Pw409ev9MsKtBdjsYHA6Pi1BPsjNp9Rh0x0cu2/IumClsMxvJ+niVLaVH/X/jGW21RLr0bGSFLZ2bJi8rGBmAHnm9wE3E2PSSdqnUbwJXkRuLcaO2KhUxZXpb/aXgOz4t1cIX+xmuEm4iRsuVO7n4jP0qN5meZfsZ26tsosd9voNzWYuRQZB35fuDlHrMK76gga0etPLYtMZvkGASWcWU1IuZ7aUAJEyy5RVTbmxcv1/HRhZrssM6JZhAeqR8/PxK5jdL9uNFbpI6pZ8WoHLlTDsnJZrbb4Ebq+diu/8+oT9p8kcNH7iVsR2tqrXS9hDCdgN1NnW8J8jiSDbRE2WdngXZNO2C7Bc378zNQvm+uPni5j24cZg+CTf29mJg1Hbfnb1/gJPqCpuktV/3BYF0i09Mi9qDgpfV23Xr4EnZVn5DQMBIZFcCEtlB+XSW+xFuBrL248gr5ZMtnyWJTfsYN6n9YGQXyqcdV+eD17k5bb9h+VrWZ2VT2y/6zaHtQdgp2v5YNrf9tfIt2f5I1tpeuHqQm9gOygDorN/0XF3gJpHVI+/B9UTRdVkWya7uXuHG6P2kgfGxK2ZE9F8B8F9COQD1f8XM/8jVvD748A/qrs/jZ9KOZf3xDkeyZ/V8lOxVPT58cTPW88XNFzdX9Pzmc7Ma7FZGyZPrX8k/xDmJM0oHo3YadBK3piUna/SwffG+dVyGeoLsEPNAtuBqsjSRzbeKXeBmijFyZTAl5ZtvX3uMmyZbykWmvDSRHdrvYW4es98Zv4lbQuM2s+bb13m1p/YBrN+7G8mykR1jWivfKkZKbN/Vi4HtO66u2j5wRYN68t720w+PmQmVZfuFdq7le56bHPNXiIGI/nYAfzeAfy8z/5qI/ppH8vuwrYzMgLxgHLfPtPsSMYN2Oidblmdr5VuUPdIT/56RTcv3iOwXN1/cXOamNLS/kdw8YPvPxs3b2P66LBASnAjlSH+z9a2+f9f6HCbOQLdtkNonA9pnCMLBG0a22aWWDS2vnSjVW2zo9XjZMeYm217WJ7k3kjWYOOg9zc0MY+BKymQ/q9C4Yo3vDHDl6jnc9LIbB/sFXH35xva7xE0na+0n79Ctla/1YzNeW7wdh29W/67ympSvZodaLP0Rt9VF2b1ikvtjXq/bHsroGq+MwBV5rs5yE9MC0AOKW10tsiv20zb1mfWC2gcfWm08Lh8DHVePcGNtf7HZf7fwgd8x+wcA/OPM/GsAYOZ//ZHMPmYrI1cHYlP5UU5+iuky2fJ3XTaeRHQkO04b/56RfbvyPSL7xc1HcPM5yoeT5fvi5uO4eX75HpEl31NYDMz1YIvWcyj/iS9ztP07VdBmEmR15r2EzXSQAJQP9JpOKLh9K4yjnixuMRxhNp0Wu4uJ2MCtsg5jvS8fIm6YH+QmyEpnTH7bAwU4yHLpDdcsB1xd5CbKEurHj0HYuOdGi1f1MOoHr4/sd4KbKOvt1967yuyHvfkch/J1vFa9+tkG1A70gJsp5oXySUd6EywL9QKwh0f03Jy2fYjroNBcTuvFbutF4IpDBk+wPZGpqyI6sB/DZnvRfgu8cpUlaeeszxn7+TakyOjvJ9aLK+3+ewVG+wzXxfAHiejPmfjvMPPvLMr+TQD+ViL6xwD8CsA/zMx/9iqQD1sxkw/u2uAc/HRIDMLN51jTmH3N/Y8mmOUH6IzyVO8Q4fXyPZebcfkekf3i5gw36+GLm5mWL27GWj6KmzwwgNfdbgiT9lg6W62lRhc3v7nFSx6kcfnUgOuo1PeZt5CXfAtLjhUvtwLhnOttvUd736clqq/uy4iIzSoBwenlKtsGr6Z8dJ2byCvJeyMFhdHTripGk1fhqmxDjfa7wo19FrPhapc8LDfk04oso34Xz9nvOjdlZNV+k2PlwH5VViU4YLayBlfpFyfv2yflTXk1GEVP9Buq9pMlIT1EIrF9wSTrqiNuxvbMMJY6Zod8eqSFcuJ8LvJa8ZbVuhE3Ca6Jf1o9DMm2DoC0HN5+zm9G9jvJjeW1t0nhirSdC/UitgmmvDs3rs5wk9WLaJPPHB5cMfuLzPxHRzeJ6E8D+OuSW38CZSz1bwXwHwTw7wfwPyWifwdns7AL4cMGZtpAcXsWmlVl8UGNx65LlAUl9+uV3VFTNxpJu5XKUq6X5UE/1muDlX20fM/lZlw+lsb7pGydYP14bmLePyg3z7L9Fzc/Pjc2/hm5WQ8E4KYTw1yVelykKRF+6TND2m7ThbJppblvH0YuknfX7tvOJ8CQb2+1ErdtO73eiLHhqL9JcJQfcti3HBAQy8tGFhVXhsnb/xw33Mlxd6+cz0CwVo5cRfvJrTPcyL32zSiblpUbUpjxJM2IqdYxw9XMfhk3FH43W8ztxyxlIrfoYTEThFefJ8w1yw0nmCOvML/bIMX6MgMulXBFHUau9zkwM+LG3vMYW2sWj47fq4RMmhQqyfhcS91xZSCd5sam7TDVxk7RAyDSbazWfm0VcWK/KTfxfptY6uwHkgqmAKz9+nJCZQGzLfIMNw7TyH6/ewMz/7HRPSL6BwD8s3Ug9i8Q0Q7gDwL4f1/R9XGnMpoVM/U/6aSZGxxcwTc1E9ka9jJV1LZwkLxsOpP1ej2mqDdi9NUzys7K1zeKb8XNrHy/Adzgx+dmqueLm99V3Mzr/cdxcyXcbQ+r/twOdSU4B78l7c7Qzrt04bc6g8xAW5kadKwIcFskV/QObRjSlW1lfXlkVaB1/nq+txX7L2K0QbSxudIwAZzhMfY7o7erU+G3s8GgfM1+ecpiv+vczO3X+hMqy3NZrho4+Nz0mdhdy+2nq0kaYmcc5St0DmPRy/A2z7vex9zkftOXjwywjaPPQfF4TOMw5mbsNzOuCFkde5b94v3IVcBELb3las5NhuVMm9GG8zppOhjWfbbAkNPePyT8zwH87QD+d0T0NwH4CcBfvJrZh31getcZZHGDNl9jK4t3DJP2UHaHvMfWGk0G84Zt4yJLM72M/tVLq3eEEUla0eM7Q+dkn8nNddmW/v25oYEsPpAbuLRzbvbL3BxhnMt6jD6+//B+8xg3v9l16j24WQ+MMjBTXVzy2wmAKWNTNsYpKxTRnwHpUGyQF+EB1A1BRad2PEy+eoXttTZ7HO3QXkJq/JSR3MiGLc+9w8wNK9lOP7UCQbgiz1XCjWKinps83sqn5YVs06Kil3vM1n5WNnLT623263hNOo2x3ddVRrXvyH7ZM2NgP/Jyuf1qeYP94hOKg2xr93N/tXXf1cEOMwKvjYuI0RZhI7Gj57bECOhk8zqV2SjjNU46dOXl2sIQB12xXZT7g+fpfq7N4A6/9ZtmSwKcfx7br8Xn9ov1YjRRUmXr9qzCle8fHXHDoY3gA27G9hv1Hz5jINxTPt8l/CkAf4qI/s8Afgbwn726jRH4wOPy5UhPu41HBmsYxN2Wn+BonSxu6kPSaPmVsu2S3r02KqsYO1m6KvtEbh4p3wdyAyPrTkvaybU5H8VNO/ZXr6guWbldxfiI7WeyRLcmF7j4Mf3mferFm3Lj7v443FwJZcBkOxTSqW8psG8GCgPc4mVAt6X3pMMlq06tk1eGGXcGNqod4DoYaoXymGIHhN0+nh4j8+bL4MrnGSjtl0+rmLl2Einj12wDm3Ej8T3o6bjyNnB6SHgTv9oMAXPZmf00PuCmx2juMgNqv7jieWA/x01iv33rbOLL13wu2o/J256N7G6+2wUZAEy4sbJHPgfeqp2s3whm6MB8Z8ZmJw2Y1Z4siS2PiZ80NhOfs4ODvWFKy2vbGOwgg8mWJ5f1fuMwHbQZzFszmoNRuGjbZ6sF2Miq75+0X8LNyH4x71IvGibd87vITQsL9rNl2LFsg88WGB+3YsbMPwP4+56V38cdl5/EaXJvFJeucCdrEtmG1A3QTB5n9MbrZzGfSSvxp3JzEI95XJVdwRjjo3uxmyIztFd5fQY3MYif2YbRxj/Cb3qMZSuvxUR4PjefxW+y+NXyPSL7CDdn0z4iu1q+a8Myed+XnC6Ayqw+A+2tC6k3Jq2symj/KuYDyKAmn6skfd/Ybkka1VfRVQbHTQm37qRJK/ey8kUU7fkj79iIHunYuVMBE0yRGzuAL7KMzIajum6H/1zzEB7lkJRx20aaT+TG2zPaLw8WY+OqylZ9d025ar+mtPex3N8tNy1OXVqxX8RhfT3jONVTfW03caDHPJpUcd80NrrlO1giG3HZ8nlM5UeUjT5nMXaYYLgh8RXGxu3QjCIbJ1RGNvAkWkzR53rbG86dEUoBZXUKkHeqfPk6DAOuiu03J7tkP4PL67Z/F7ixwdhvrzxnbYY7FHKE6WrD/07hA1fMnho+bmC2D5wueFZ8wE47PqOWPuTD3ssv6b2CMU37QPneUtZd/wTcsElZFqYolM9XyPfgpqTlhgnotnGweWPdNqJnMKZpT8naR3U/mO1w2b8/uN/MZD9VnRroSe99Am5mthsFZqozmn23ph3QVLsXaZxAxKB6PDmZeyW+AfbsctOjYGzaay0+H0cHm9OjNzXuMe8GI7Veax0MWEwt3uuB9pikI+QPWotcBNnATcRIYFVNsXy+txwwEqiSXFby5BS789wc2s9xFbnxHyMv3xNDO9adbVsWuYn27H3OlbdyJdxou55w08mStT28PYGxbC0fJ37DmtdY72r5NgCv1N7lLNyZtNFfuzqV+Ocir12dMrwy2ckDMvnC1YtZncrr8jo30U+ojlh0SDKwfeSmTZi0vOZ1OeHmoE5R4KbV5TE3tk4xUFbDnmC/r/C24cMO/8j3Ib+f/t+McfXzw+flxs4wScvSz2a9Zci40RldweT3ewX5j2HWztPGAx+ehenz+s3Hhy9uSmDUY5xTNvqa5X77qdzWgYTNjwHcmqTr9KB25Js1uF6b6p3hc5io1TM74AHDvr/S5WU78DXePxtPYiTJ2GCKXClmuU3GURngm8PFkcvAa2/SRftpWZs9x/ZrvGrf8hn2i1xxxtXAfrUMZLbktNPsfKe9SdiBhNfTNGlP+lL5WAYZKO8Rb8zmsBT2NmM/WdfXKTKYOWC6Wpe5fh9OuGaflls5BGO7zwazkR3immO0XJHzz5hnwKT5WPsFv7lal8U+wtW0XgT7JXXK2Q8UBl8xrPrc5wpt4u/HDx92+EdpsGpEqqfpwZR46ej65tievvQJZU/pgasjP0T5PpCb9qJza3jiGO09y+d73NJ0ysO1bV5ok0zv7zcdRjK8ddqfx81Mtkv7Qdz8EPUCLXwubq6FXY40rwpKPyFs65HtTlUZmRlg+QIS6l/30VW0Th9X57fvFRPJhrh6aiOANrEi4uT11jiR4UfuWzYCt5Izo2zTlHah6YGWyeq18svcCEbhlatebn00WZGgBlV/CzdQrsgcGAHH1RI3gtmUxw+Jjf0Af90I1qya/SAX2hZLb78JN5ftV2Tlt7Mf4DrenSxTPeDClMHgry6qdvB6yfGS8Zra3pTPsU9lEMQZr6Fe+Lrv/SZiGtrecWUwkV2ZbDVwrwMRXy/q9kY2z370ftOO2qc1biLGaL3azmm9MD4m9gPqdsWh/XqujriJ/srwq7i2XsilUj6u9m15iW7bRrLhbpmbrk7hU4f718DssdBebCV1eNk+oHGgOKI6qn+IjmVbg9LLknPEVVmdMVyRTTC2ph2nZc+V75rsqfJ9MDdEkqbKfhA3MsOpDygC5FAbovY+C1Z97g38JmLUd0VM/Xtvv+nK91WnxuWja+V7e26uBTlIjdjj1Id/9dkWhx7zzQzsVDcsMvTDwxvbtObdUyJQ3Upc8JK+S8FaVq+HB3qrdMMIbmWonaTm360DDQA7meMFiHSrlBZfMGreaNwwG4xzbhyvRHWlRDg3Wxs1rfUSMofGNfvH96R6vWI/GmOs6SI3XEGIPXv7Vfc3uBpXBKOu8UrPs58tg27ATew3sr2kIu5l9R2ymSyt14u8TtWKSoB7t/ioXgDGbwblG/GaYIx+I3Ig4EbA3drP8Kq2Vmv0fqOyOMFNWqcaV7N6sWQ/+Ph5bmKdSupF3Q7c1Quxn+GGZEBn7TnVO6tT+LSBYT+h8WOHT3Aqo1Rs1usAWhwtLmkBXpCtekLaEqePkc3KtyA7T/u7l5vWfH4ObkpbZmRNY4dP5Dd2W8PvRr/50eqUxfR5uDn/AGQQ7tjM4KB2BLSeQCp2EtdMtMMovRT9CGx4ZlC1odNTsUu2zJuRlbrBOiDQYtp4ipF9nFn1bkx4rTgocCmyevT7XjFoZ5MgWxtzWc9NxLi7tM1mmhcl5VVySLMsWWya1tuPTnLTosSE18qV2o9ieW35ZvbLuBpzs2o/4upjpnO9Wj503FCztQIZc7NPMbefnU1AmqbfnjeQBUH2e+zL5UPKq+QL+DolA0ThlY9kZfux+K/zm2NuIsbWxlk/8VyRycrJcpNdsd+qz6X2Y1Ku1H7Uc6O8KncF/6tshTzBTbtv9XiuovhXeJvwYStm9uFZnL7t8wX6uGlWIPtvR7J+z7trRjXtUNZ1OHKMj8jOyvfFzTo3sLLu8sdxw10j6DESPpnfmPhh+X5D/OZKnbrEzQ9QvmdwcyqwdLTgH/wUTjm0M88WKReqy0qCXe2onUmp35qcWiYg040qsrv0vWta7YtLx6Tm1cZ7fmXI4rIE2T4kM+Feb5UOFAG2vDBs1g7WbtMGjL3sjJs4g2+4Eq22IxZk5bbnqvGIipGol51z09LKvAOJ/UyZNG8rW1NE++0JVyq7xE3wOdMusrFf5q8UytdkoX7jnw8tb+F0zM0Ac5WS/v0u15zfSHedSge/4xE6IaP5aR2iBW5a+aLfAHVVO/EbGQQSyUH0uWwLxgYnuIGJWxvkfqPDR2yJ34is5y5wtcCN9TndFWbLK3VK0qDZz/GqZaTOfq1OrXOT2eBeM3btz6cO9LWV8aHAMKfVkbYu+v5BDXpM8SCPmSxPZPlIFlGWtEYeyfbhYvkekf3dxg3ILbF/FDctTcQofz7eb2LnwD5pDm3/m+Y3J2TPc/OM8kV7fU5uVgOjdb6B2ukBg3bo4KUow8QQ8Dfd931QZ3WDsEZZtw/JVqS4Vc+g89t2Ur0zzCZSOzcs+cby1jTle7LS0bJIDKZMdhkje65cctbtX5qXdNoFE+e8uo9Lp3ox5SapOQaTVyk99He3Hx7wV3aoGpwFvVPMJqMuX/ObULa03hO5KMuZnrP10eWbfHCa6nCC5ePyY1k7oDvUO2uggg3YlV8GQDUWSTxlvxMYu/L2osKAbteG4TWRYQduASMSjOY6Z/b7pCE+X37k8HErZh2BBNIqIlf67py5aRzw88iOw0k9j8h+cXMZ42Pl+/zcPILxy2/eRvYA5ufn5kS4a7vP2vsggusQEMF9ZiJHaH5whi3qAez3+4A24PBpWzfN5qjvWUww+kFE7c3X8u17wxjLW1MHTAYXz2Vj8NyEO44rz41La8qr28lc7mPZY25aNoXXHFO0AUJxcvuNZZ36BR6lrSyv2rD2WVLZdPTQ+007AsViJpvAye4HvObqyV3cgHB0+0y+9zkAYRARMEWM3KdzeXGxzkbhg+kBY4fJtEEdFwttxjTfaoMNwE6Jv85kk08/KcaL9mtpCRv2rrucc2Nljf1OcNP760jP5wz3T/wB7DPhEw3M6jWaxF3aTyo7C2f0PCL7xc0XN2+B8Yubt5GdYnxE9p24WQ4E1u+Y2Q15TnH5xiW1uNNd+xtcI9Sl3XzcfuQ19DjK1seWMfNmFpTYlZfdrHOP0W/3ZBBbvb58sbz2uOuyXYogvdSYbya7zg1NuXF65F03wcSb4wquA+SGSwvcNGIjNzMbSF4K8YT9/LwCY9/HmELiJfuNeHZ+w9Dtb+1C9Nemdz/wOaenTnI0Lki3Mu4ob+WRtd9EtvcTzw2Pygeu8eY3s7x2Wcqheu9Qdlynpm2G1ZvYoPiNHOpR32Bs+/fm9gv1YM5NxBjK2/mc2G9z9ptzE1e4TnCzZL/PO/Bh0NeK2cOhDfDTtk7vHcXPyB4N9t9L9q3K94jsFzfraWP44mYcvrgZh1XZR/W+JTcnAqOd8keqq73b1Ton5p0HEEBlkJHRSSJhOjYuXsSrbOz4hE6RK2N9kd6uYOmPXE/pa1XsTm9AzOaEPJPX3uVlSFauguwZbmiBG4up2sS9c9bZD6Ej+CA3UlzrC93K2MB+katoP+mU2nxE85QbhVJ+RH8lc5BFZpNQ0KlNYvkCAF8voKfzSRKfD6n6ctLgXNbZPmBqvrDlPpfKtnzVflRXpWAmLyayFGQzv9HDKYZtBpnyWTnPlYWcl88U6WFuxjZoPmntR4vc+IZ5jRtfL5yewJV/1/grvFX4sHfM1PtGHYGje4/KZpjeQ/a9yvfFzdvIxvDFzTh8cTMOH4H5PcuXBYbOKO+760rX95QA6Z2ULU61Q2XfR6Yyq6tbK2tnhoIezSpud3JlqisLZlDiOklRLyPBGDMm7aiREe/eQXSdQvthYdTytdTx/b7L3NiyJ9y0fXOtfCrt9KDfRpba7wo30kmUqPSoSfVo6mg/mHcjU27IYSx8tLwtpp4b+GB7yNZpEr3e1hjXq+ifkPI1zN72BgOJ31iIXBRQ5YiNX4Stbt3W2sTnNOjWPetzCcakfNi5vutWfQHebxxXkZvd26ivy6N6AfDu34Psy1droNvuXO23G0xP4SYWIGKGYm72w9xvHuJmYj/rg51/fr6wf+IVvTPhc21l/Apf4St8ha/wGxvkFDTA9i0YwGbi5aw27Te7Tq3rEtV+tcz+2k8cAOAwf8y+P1N0hBUV1yns9fby7bd2ZWrvRb6z1spL+l/ftetPOoyYUr0nuRHZCrKLx7ey/KmWfVzT1Y7c23BjMRoMquMcNxkmwcE048aVGP2WrrnfeFmn2elp8tXuTCaLWb1wf2p/3gxgiaFnSc4GigaT8xvzbqjbzndYL/o6JRLWFkh+d9yg+QkYnismMM24mdQpwxXXkVNrQ3rLP48bWz53UesU1QhTrJ+e10LHM7iZxD/5oIzZvsP8Y4eP+8B0YmTZ0jKKH+X3GWR/BIxf3Hw+2R8B4xc3byN7JvwI5Zvn2zLR1ROTsd0yY58RPs519tZ34+WYcN/v8Ks0XPNqq1CkfZmZ3v6vdORM4YhbnEi3FnnaSieJkOuRDpDM3D+bG3tOh0VGqEfoJ+WLmD6KGxt39lvmxsSpFoqlQ9v844gbu4Jx1m9gytd4NX1elrxIr9ttaMvlA1xp5F2hFCN8vRBMJQfjN1a2YrKyzl9H3NT33mSYyBbXETfVKu44eefruX/2Nol1qihrbrEppnflxqUVRFLeWKearLHyG3DjMT7jGfCW4esds0eDfSGRwz2pIRziNu2zZLO0j8hGHB9dvkdk34Kbz1S+R2S/uBnLfnEzlh1xQxdlP7J8JwPDfGuMub1Txe1w7NIL2Ou7QUlaKn27dkw6a0dEehCtY1LWcex7bcxmix6bdRrCXC9MnAjYy5fAmqx/F0p3QFXAtrMEbrKCCVxwUCXqrbmxneCStedKMMr3zpjZfIftfbgRPSzcBK5O2S/1OTK8zrmpSh03DVPTS1VQfQ4mbrhpvKLTu+vWOW72XLI9e9tXzktneoxRALR64TFBbV8xWh/reI22D5j3tpOuNAVcv+JA4BVuVC83rpSbgX8eYrRcHbUZb8hNV6fqu3hExceCz0HsWfl8G256jJ81lMM/vrYyXg/c/nXPeR7/dWmfJTuRuSx7EeMjsl/cXMD4iOwXN1/cvBM3h/o+oHzXQj01ixE1tTgDsmWrxU1a0S2dZRB0K1FdCpET9uR9JJlnb7PLkr50Alf0lk7iQdqOzIqxlrl0sBjATfMSjGz0xI1z57ihXs5w47iqmIQbyxWwKTeccnWGm4iLp9w02efZ79jnAlcJN1Buov1uxn4Md3rgjrpFkmp5WvlkRWSX9+gYcFvnOOI/UT5zEiZXe9pVF3vyJ7rymZWHzm/gQ8drxNj7gtrTxhgAbsbnMm4Q/Oaq7UPajiuz9dbab8SN9Vdrs/CNxWNuYp0CCFvxKfL2Kz7XeOSOmxoXf+SL3Mx4/QpvFj5sxax+TL2MwEkaZ5MgxuHTPibLVf/z9bYafR5jzOeLmy9uftdz82D5fgRu4rMu6v2M5bsSSgeCoD0xIr81DOjiWRkL9tq5NNj6rYxmxcAd2V70ltOsaazXYJSZ8wwzWFRyw2ExohVZZ54Fpu0UsufgDDdtxcnYVBkoeslwY7c86e/KFTHBbmnay+Q8nOZFbkaYj7hB5UZN6o7tXrTfgJsV+0VuBKj4b28/btgqLh3TcC9bcFmb2FMBm+wMc3xmuLQmx2hPNmj1UwYGY+YnjqFg+zN1uWVN5q3Sas8VbozfCFf7WW4ixqohrY/Bfh03IS6Yjuy30t7IafuEtpURKCtjWh3Me2wdN+wx2TItczNqiz9puP9QaMfhY4/LZ0BbXrkW07gQ00qc4WYqDmXJp7ms90D2dPkekf3i5jzGL25+CG66fH63cTNLG++9V/kuBG7vaUTdHNJFdb7T5V9Oj7trut02LNdZO6g7A/5jzpleMrI9ZidK6DjrqrSE3WZVlBIJN+FF+wVu9FbFqB/HlcGAxWCEI742GGndOxaeTnITMXtRGnOTyMq4AaftZ26dtF+KL8iK/ezAxSYV7qJsl3fEInjP8BrTSqGo2FO+HthWy0yyrFyJn7R6dc72nd9U9bv1e/Q+NuLGhv0KN6mfyICazWRDb7+UGxs3sufbOc8rgeriV2K/pAyzuPpUduNkW/xZA+PrHbMHA7mvpdvL17yAzsnGtI/IngkfIvvFzVTwi5ux4Bc3Y8HfaG5Olm8xMMqpWTZrMvdm8S4jWkwrietfMmUqqy6+W23zGplshim7rx01I79zy42MYlkJ0uuJ3iOMlNxf6640aYsJqAMhc8/q3ah1kM/aTzrmGWafU7n7EfaLgVDe/VGugm05JNbBS3Y/YrZ5LfCaldcNL6W+mUI1FeOSdnriYGSidx5nyCcQNrOy2/Jew0Qk7+JNMC9iLIOpcoUo1EfN/YT9Eq7O1uWNgDuXd99W7NdxE/2m47nXe6kt/lTh6x2z5wT7FAHa2u3ovo3H37O0Ua1800Luz/RmGDG5fyR7pXyPyH5x88XNFzfPlX1vbt67fKuyl8LmRDlknMd9kI4TB1wM6Ix1S5xsxQLALOtCcv0Ih8dsjo4ouQ86rjbuzT/Ku5VyjZuYj2HM2DDnJpqf9IbriB9wtXMzQ4ax46oqFEzg1vF0OxYBZIeEr2B6pv0Az5u3X1tpEVlupSzfextUfe3EGxvZYLeQni4fkw42+oZJ7jfZVUytzlF3/4y/SpmafT2mFJe5LqtrlGKac5P5J+S/oZ2LdeaM/Vpe5+vyXgvJVT7k7O13xA38/WfY7yu8bfi4wz928xtwVbQ02jVuPYeM3BVZlp9JWhuXDb4Rc4ifkR1itHk/Wr4P5OZS+T4jN7F8n5WbZ9r+i5vPXacGej+cmwvBzuTaDmxbVerj+sFkD9NByWeEGRv39JRb7aSxpsfK+pW9XqOAFJl2sptNArB2+l1e1DDbjp6sGKxz4/OOA74z3HS8Vj1lO5fHNez0pZiD/YjhlgAiV4EbduWrvxP7Rb2Rm07hqv3Qc+gxsv7Xc9Eime1V3m3JDFzxmNfe9j6tHbQS97J266Dqrz7oyxyHsQkfSxhJB6nCt7sX8lbbS72IfgN0tl3lJtapZr9SL6zsyPar9msI5tzEOkW0YL8lbuRkR39zlRt7/xnvGr9l2PHJAS6GDzz8g6zFuw5H98ph7ES8peys83JRdohx1Jr/YNzoisCZ8n1Gbt7K9s/mxoYvbvLyZbK/2+uUDc/iZjmQvrORd6jyePs56G65zo+Px/6/64iydGYGmOaFgZyo6INwx5BOWnfoCsy7MWm+Jh+sciPxNW6ICPeAqXMl20HVsuZc5WVoubnZ9hST4YqtpLe2G0gG+0W9a/aTnOF/n7Bf61ILN+33Ma9Br0vZ45vbPsRjGQaEjOtFxGXrX9KeLGAEs/JzzGto6nYa3LF+tFaX+zrVuB61GRFjqxdNr08pqZ5vv3PcwHET/eqQm8m9zxSYvz4w/Zxwxshnn5qfUfZM+BHL98XN28ieCT9i+b64eRvZM+Gd9PClB+eo05Pfax0+doOnvgPy6PsIKzjkuPUxDo8py+vZmHynL8MUB1KMt+KqDmCUq9CRdZgCxjAoex6mEl/nyk9e2Pek5ICLdi921M/49nooW/BsR3w8mDquFzOMZ4OVPeGDiFw9D9OMq2NM78FVb7/HuPnNGLxk4esds0cDF+dys7HuWcDuiNwubZLfp5ANlWdUvkdkv7j54uaLmz7tI7KftnyPyH4UNyPoLLPNrSvLQDhyuvyn7TILaSVO0qFqePsBD+l/7T09OKDqVT31vY1Mr83RYs4wiQ637cjiyMpHwg+lela4ifHtCjeSi+gUTFObhL8TXjv7VaXtdD8CEc/Lp/ajy9xEjDS0X89VVz6QI5KNPMH8BWo98t+t6w6HoXYgyqHfDMrXG5x6PZ3seLuibmvtZH18Znsbz3DlsjlXlpv9JDdZnfLlHHN1xn6nuYl1ils91G2NqniNG7XX0H7H3FiMV9r99woM+jqV8aHAAO3UGVkdA9BGwsYPsuzTLsrGtA/rxUQ2NpiLss/k5oxsivENuLFph3oHsjHtbzo3V33uUYwfVR9t+I3lZobxCPNA9hFuHrbfIOz7Vjreiqt2rWRAQvVDw6IrvBshHRR9byu2GYNrRbbdK50O880n2iZ6KcEsaRlEm8M0wzCS3XfT0XTbyFa5iRjRHaQxxhW72X3e7TMHZ7iJvPZcMRBVm/jmblq9IseXuOlt0NWVk/aL6VvHnOG3BYpss8xIlsFmJWTA60H5COb9IlWZYNLfebDlsZjWbW9swiUlUVBvfExtP+BKku32+jI3eZ0SrjwV1+0XuVriJmJmRvvItFGi5c25ceaGHyjO68VBe4Ov8B7hY79jht6Bli3PyYPnjQbLWZ1YVcXA270wOeIq4yaGJ2GKXESuzsi+lf0cTyvcxPBekzDsf34Exh+xPp6SxfvUx6wf9BH18cyT9H3qY/1eEcsgi1E6YUVZ28rW4nbmWLYFctqh5Bqz8a3ebh0dzRuoukXP5ravtZPPym+PuXW4YmfR4zIdRBhZsuVtyUrx5P4KNxnGxlWOqXHTmJAOKdW8bIfUYlrlxqYtg/HGVbSf54p026S1Xy3/xH5r3Kzar/FUYjP7xdVnQxuoDviaLDsbxJ5FSFtXRsa8Cje+TukBHiidawplbrYVTFYvAIfRxuEwrdkeJo66AlP9yy17I+Dagk0ixhgf1eV5e3PMVbDJkJvoN4XndW5yf+VkMOgP+uDEfhi2kc1+x9xkdeozh6/DPx4N0lmRehk7W6G+Jm1WW3bNOmpSn2oaNnpYZGIbbfSS0Wn1dHqPMIbrbNMGWe00JhgVEwDsJ7mJ5QtU2XbniBvbBkX7Ra6eYr8Fbo7sB6PnkJu8jW2YQl4zbiJG64PRnlNuRhhj2c5glEuhXizVx5j/yfp4xE3WV1n1safVx4SbpfqYcHHYZly1Xyjfu7SnDwY2jY389n2zPt7Sos7wylYjvy2Ku7PWS6GonuDXttMVHXui1xUY0hFpxvWYm4DtBPrtUBR8iIIJqf63Xw1a5ybDiI4bitzAYKrbB4krGpO4fMzZUrvCTc5rZj/L2dh+0Bl74cqvAp3hZmw/0SvPGz12nmlsPzU+av1tq1QVBQhlJXRkk8xvWrqj8tm44ZxkCEGugDI4LjySa3+zOtXVMYMp57VhzOtUsSFIBkWNKwn7ATfRb85y02E0XBVKevtF/3TcSN4wvlxbzHPc9P5Kif3I/AZRwtHYng3TGjee188bGF8fmH48MNrWAUb+1J9di3/lN+XXyVyzekuFCzrkYxUx7yP9o7QZpiR+hJHD9UO9R2mTjtohN/YhO7LfFYwR00lupjpmemc2GdnvLDdGxsadPa9ilPgFjMCA19GJe2exDuy5wk2n96g+ZhhHad+6Ph5xs2i/FYz22ru1pxcDI3YIzL2Qf99pkeu+Y8idYIz49zCAui0PsYMy1+vjsePn5WLnh519GBx82b/T0ncsrmKM3HRtAZrPyCCHg6y11zluImYKf5H+9d/Py+3H5nf0y2fYL17T7ZIS75QaGOqXJmp8bmbLvtM8xuTLM4hzOwKeGxjVpT53UKdmeLzeke19Whns2EFhsav1ufgtvQO/SfTkGAdlYjJ2Hdtv7m/xmtW5xk3ErFw1MADapFJvvzlHeTjTFn/u8HX4xyOBAQrfMQPQdb5sv+CCCj8LNgkxGQPjzmnsIJ4JNC/PrLyu43qQ9ihEWQKmmcXxm0s6sd+pkMjO7GdxpPa7iOOIV8tVpnfIVcbNKsaTvJ7B2IVZp+BI9iDboT1XyvcO9XFqv0Ttcn08wDitj2fbxDeqj2fa02Fg83K2KchpmIzpLK7tYKVGddFVi8fbfc2avXtXVlEGmMB63LV2gmoBr3DTeD0ymB1iUCfbj3mvcxOvOdYZYVb/qv0OQixfl9OK/TJe536Td2wlvZftqu+ZRrerU3Meu4kDV8F94lXbZ7zGvJpnx9v9wGfWIj/GTdRiEhz4nMc1tl+v94ibKLveZmi6Jurr1FjLY23xV3iT8CEDMwLygx6C89kTYoaVhcJvKzsMNTORjXqTpBritrMoMMKc6On0HjYGJu2j3ERZ1eczc/Wdg2wMz+ZmEhTXWftd4UZla2vH+f2Oq1i+WXjAb9J8FjEeyp/hxtapTHYUok1WyodB2iPZiZ7o20+rj/sCN6P6GPQe2s/ifTY3zwhsukA1z+5I8RCPMLXDCknXd7M6IZWt/9Uy2s6M2T6FAXWSV4eZgu94TDTpJaVDgjqAvcLNiNeeqyQjkTV3I1dXuIm8qrtRz9XcfjmmTG/MYu5z6/aTExNVlgZDuqTO9BhJkHUDOLXBiFfANQVT22f4LIoZJsPNke0zXse2r1cS+2blFVyOpydwEwd4dtv8KibNJ0A7y40rlskv2u/ofEQZqLV6kuBawjiuU58u8NepjI+HruPhK2kfj+ltfCA7VGxqA1gfgkM9Wb6p3kVZiQe9cZ91h/mZ3KQdrUGzm5Ynxp/AzZL9onzk8Q24sWntxSt+s4rxbL1IQ89Nexk9A17zXbUf0HMzkx1hfLQ+nuVm0Z4M6Paz0/bL9Jzh1eox8bH9Yj5P4OZsfVwIfotQf30UdyF2qloMRzhlvn5lK9yheScYechdbge2mA70TPWOb53ekiTJM67OcuPiD9lvjCnTewbj2r2CMcKOxdNqtJj3SN8hr5O0tvs9w+PzFRvUcrK5PMJ0hNGRYzAl7fyKjYZcneCmz8PiWsXU/PWy/SyvdtQKOxmQ28+Vb9DeZPbrZE9g/MzDHsbX4R+PBQboTn76BKQvr+fxEFZkzfan9szr9QIoL/BLWptXTDvVu4BxNzdp4vRkMb0BN6mswSRcZWE3t5/JzZL9Er0W0xtzg4n9Znrm9nwWRhxgzAc8ZNLO7HfIzZGsWVF1PnZQH7vyPbPNWKqPx/Z7hJsOY8SUIHKBG5Xv1Z5eCQxg3+37VDX3JD7qRBIBu07rcjgooc87ysaBgH3ZfkVWLRAxmmOn55iS8pusSvnkas5NxEijewTY94XioRJZ+cZ64sEEc9l8pHLefpGbt7Of58rV/sR+o/Ih3lJ75mWwcSKAJ7afPW/yfFsnZr1eDNJO/Gaf+E1mM1nNWWkHfJ0K9wxXnT0x9psjrmL5xrIJV6ajcmS/I5vsO+uq4jo3b22/zx2+VsyeERh+gO9e/E3iNu1J2dksc7dS5fZxvC3G4bbu2Al6Q26iLMm1iIl90g+zH/t7U/s9qLeTDXom2/J7Pe+FMcj225kG5UnK9wg3Q1k+WR/fkJt3q48z2Wfa753q42jgdBzscfk161DGfTcfRw44/apSf1BBzMvqiXo5vCh+JOsTI/BDclr3IaYubvXYzuaCbMdNtKH5ynQ2Ez7ipnQK5SbA2IaycWtfZz/D1Wn7BZ0P2e/Iv+0XuSd69x3YrOqsHg78prdn45kZsFvU+ET9TTHGFZdQpiXbA+BwEuXM54791eSLue1tvMcYMJ3kpm9vYgdoVTZwZe130GbM/LXUKVLfmnF1hLGzH+w9nLLfZx6kMb4GZg+H7DS62FlLO2+DzuSRLFvZJK3r/BzpNb8fwSgDHUnijtiW/Ad6nslNlE3rnsmr23P8BtxM7Se/K1en7XdCbyprrh/ZL8qP7Pl0jAbYqo/F8Ag3z6yPqZ43aDPevD5ewAi0h+Gy/d6hPb0UODzY2ZTJQuEeFsHIEuqx7gDVpT1WQTJ5VbJifoKj3XYAurQWg/xOOt6kaUtKm14mG3iEUfIy7+CNuLFxx0u4Rg5/KShZrkbcxPKZ48hH3Di3PGE/z1XOTbYqcdl+3H4DWLZfV95QP2ftVbN9tKeUl3wZbHmNrM2nxxwwZjaIPIZytPp4gAmeSynXkr+OfKOTHdXleErnMaa+fD1G/S19isznhhgXuEq4OPLXRkHdgB38wuEIddlNgGSYTPyU/fAV3iN83IpZdiQ9JvGuRVpIGx4EV2VP611JK0nkQXFB9lncRNnD7U7vxM0l+z2i90L5lu33hty8K8aPqo8raR+RNYN84GR9fMt6YbjqHoof2WZcDGy2MjZ18X0T7ZG0voXhwMqyxYmt5iVpN+hR00Cvl1sHhmrGMuMa08aOmoVrO84uXmNyEDd3GBlE5SO6bLdtM2A/Ymu5IfQYHRCDw3Pj73lu6nfMGJDPKXMchTH0yPARN9aeq/bzXA24ibwa49sOaMbN1H5Dbkb2K9zYTu7I9hJi1WETURsIr4O8mr/68oHNeVudDWxG1JnE66kfNG6xmhH1WQVZuZfV5bxOBaOg4XLc0Ab5ILW3gdg6mi+0IVNusvYmxzTm5pr95txEf212sLuItQ513Pj4o/aTEjuM+Nzha8XswUDAOSvHtDPZo7QfJTsL7yX7xc31tD86N5+1fF/cvI3sLLyXniy7ID/Nbiktpb+1c5J0/FoKyjFlcdZ+m8snp8fiiJ0FwZQfrmBgTamPqz9rdiGPUbmpvS6zfbFTRjlXcSvjEHACMXKVcmPTDuwXb52xXw45sR/1RrlUfXmkZ0FW7h34K2zehzaIPe5x53ZYnkRVjpGW/FUH3MqVx3To6hbTYRtCw5szbt7SfjsDZD8OHX3OxSM3z7FfjH/mbYxAKfdHDcyI6H8C4N9Vo38AwP+Xmf/I1fweHpgR0R8G8E8D+GtR7Pg7zPwnDwVN4+QqapjIiHVmeDumtY3we8qeSPtRsl/cfHFzCeMXN+9fvhg+CTfXAiE/cZMClz5O4CLKKC/DMwCinnMTl3eXysx03R5oTnSSLXo+Azoso12EkIdY2WLGDRNaIsXE9r7JT8oXByK6jBAwJRi1VKon8ccjbvSBLFyFMg8O/kBy9bT9jrhxtjZcPdN+kRtYjHNuLMZW3oXyRb9JuWnxlfK5cpptCbaD3/EqN7BYp0CuvCqOBGOH2a5g+/poPxsS68Wh31Dzz3Syw0GI7U3kyug9zY3FyOqjqf0m9hS93l+N3lPcRNmWtt0YYDrhc58hfNSpjMz8n5LfRPTfBvD/eyS/Z6yYvQL4rzPz/4GIfh+Af5GI/rfM/C8NJRi6lVHaR7fVwHYCuMVdpwGt4cpkaSZ7oHckq/VsJAu4BnCmR5eFL2KccmNlG7TPxY3EHy3fM7kxmJ7GjehZkV3EiAcwPsKrK59wlXD3btwkPvYpuLnSVmV6Kjdy7yFuYvkE00VurgYOL61rJwKh823ea9qdbjL5UH35vuWlJ4zV2WYVY5TteaIXUsiydUf0ysqR27bDPeZOL6jHyEA73pIaZnDzFwKYSbfWKdWL3Li2QTA+yk2UVUzsZEfcRMyp/Va5MbxyrRDlVm6/ETeH9gvcdJip50Yw7qifsDCYZaBR6q8pH3tej/3G1JnOF2oZhzaAs8Ehxlovdq7v1y1ws1KXbZ2ymJVXy42x/S4PBuGjclEaq+A39QTD+G2wVYxgGL95Dje+rTrHjcfc/OY6N3D1wtblY276Ad6nDPzxWxmpzBD8PQD+jkfyeXhgxsz/GoB/rf7+S0T05wH8DQDGAzOYRkIzah0DiZtnTWsIgph7eBhZD3ISPykb0xKgx0jLZTfomuhxLvQgxhlXBF/RZ+V7c26C2HvY75CbIJra74JeG1LbL/r6CCNwYM8HeQXQJhJN3NkviF2x5xE3UZaNzKj+AW/LzXu1VWe5ib8z+9mkq23VDONyqLxIZ4ZQT+UjKqcaAnXmmdC+N2ZrAPeyXVpoWlY7VEuo78pbGL3eTM9QL1tZhrwjpWlJcLRZfdUTX6zhbagHnGHsy6vvgF3kRsvLXPOosnKTr3KDB7gBtEfK1j8wsd+ImwOMZLgJssSeG63tzGjHtaD6uD/REjzjNfiNsYkOEIa+cFA+y0UczR3Ui85vjO3pQG/ur8Y/acIre1451ovoN1OfW8fYJib4A7mJdYqG9eI9uenr1FeYhL8VwP+Lmf/lRzJ56jtmRPQ3Avj3AfjfLwuJ7U3bpvnZS+yvWzmqF1fdhgF/uhnN0zvB+ldnLwJevW9FMj0rek9gVK4MRhD8IQs45urNuDF5HdrvvbmJuEyWdsXCTPCex3iAufP1EcbEnt0k0RX7JbJ1QrNdt1CsPX1bv1YfT3ATg57amPmYjePtuFluq57BTby+KDuyn+KymCTJVW6WQzy6OZIRFZP7fShL5ncNHOLl4jk9nd4uTn1aIZRgZpspmGIgO9SzjvkyN1Ou3psbk7a7dqT3BEYO9wwmVz8QtySSW6Xp8zvCaLiJ9gp6xnkd23783tFb2z5Jq4MOEwWFZidwY7OSwyjO6h2lTerJ+9SLA1njk765ekdupvHPFRgPr5j9QSL6cyb+O8z8OxIhoj8N4K9L5P4EM/8v6u//NID/0SMggCcOzIjo9wL4ZwD8Q8z8byT3/ziAPw4AL7//r/bfBWIzIBiFo1HXicG8bSAO9QYVcQY61Rt9I9GzrPckxkNss+t4Y24W7fvu3CzisuW7jPGMr1/AONR7JmSyAx2nMB3pOcnrkp734GZF55n7Az1XfM51dlYGeo9wkwTb7t/+bX/gVDt9Kazm/9Y4gMbtZ8F00d/fJJzlJoaP5urMs+0Z+h4OnExGHIu8SfjRbf8eGADfNn+WNuSThwcHZn+Rmf/o6CYz/7GZMBG9APhPAvibHwEBPGlgRkTfUAZl/0Nm/mezNHXk+TsA8Hv++j/MFI7Lz+jsfMzOIBHcEcNuQvAQ8FzvTMzKZrjiLZnNOD33cBFjhukUV2/ITQIxxfTe3ETMNupmo57EzZLsO2Nckp3du1gfL3GT4Bo9w96Lm7doqx7hZph21FadqX8ngm33f/E3/iGWrWcutJc58njA6Q0MP8k3A9/Vo6gnG6mO9J6UtdGsnbTZuMQfxI2Ns/znI7g56GmyyeQUNwcDlUG70TCyTzpsgCJGnLD9ScydrMGY6h1girZ/iNcn1YssXObmuu3flRtTd0+/3/Usbs7IfnD4yFMZa/hjAP6vzPwXHs3oGacyEoB/CsCfZ+b/zrIcI591sj4Rhez9+EX5yZffu3A0c/yALGV5vYGeQ9nAzZSrZ+o9IUvBnh/FTZSlmf0e0TuTneH8KIwzTCHOb1kfT2L6CPvN2qpDbmbhEW4mmIBQ/x7h5hQEIQWGH78dJ8YxwVm4bRe7l9TjM8Pc2lnedxHZid5gsw5zJ8s95oE/xFXRopdyPW/IjfON3SfjwNV7cRNPhbM+W97pMfY7xU3E6Lmalw+Oi9nqMqeyQa8TQEtwwOuZ9tjxFGUzv3Hxt7E9yTtMUtyMm8O+VF5P5tzMbe9Oh3xXbqLsABPekZtM9iuMwt+LJ2xjBJ6zYva3APj7AfyfiOj/WK/9N5j5fz2Vmhk4uyfOk3S0nJNmHQwJUf5I75FswKT+zfDOP8D9dIzJdYcpwFrSe5XXGTcx3VEH8QhjljaLh+tDbo7sZ/E8G/Po3hHmZ/t2Jj+y8wjTo3pX034kNwv3LtU/G5/wvoTRKj7y9UEZuvgo/VEYtYNHdXelfKgPAm4Z8Dw1AAEAAElEQVQXGfHdndDZOqP3CsbOhpVstglojuuNuPE4YPrMlTfF1Kd9CsYFbjL7gdF1mE/pPcQUucKENw49ZJOEF2Tt6XoZtrO8pnJVL2Hu+zFYm8T0F23vx+TtY+XDehH1WK6ucjPF3+w5PeviDbgZy0b7vSM3WfwTB/7AFTNm/s89K69nnMr4z+PsY5rhZuTOyGUh7fC/VzB6OxI+gUNHTO/qtjNuJmnfKxxy8wnsF8NnsecsfFTT+KHcLIYPxfQZ2qor7f4suK020nNpcVfOsx3TU8HoldmAVFdgnvoPKT8N1wE3XXL7qx49XvA80WsJiKtgnpsPsl/H1TBhF2fyd7TvDHtBUkQbcM/vs+qIAiNv+oivF+wxPgkTWW6dS2b+GUFjPoB4JCxzldnvjTAZPUwwNohcHejO0v6Gho/6jtmzw1NPZTwTnvVy+Vf4Cl/hK3yFHyQ83MmvD47RanUWTFq3W+2ps6t8HZORKQOPJ+Hq9smt44qvGjyNqytHbr+H/c5yZdKmJx9LtvqfVRyjnE4G2xdn+G2auGCGZ+FyuXwSTI4rRtyZeN1+D+JyuTzA1Rth+myB+eO/Y/as8GEDs+E2gtiqrfL8WWTfS8+PKPteen5E2ffS8yPKvpeez1i+R2Q/qnyTPLMJufhebveerk/dJtMBUPcOUliNcR/eq6sT9Uuw2wGOWegwd7lNZAVLxJTwc46bqMdj6rjpQFmuqPyrA7TtEW5c3Nuvl432g+mFfkb7IdQNnzF19j3wV/sV4APMU4wirwMOSzpXvSM9ESOGaY8wpu/cS9x8nw4ANutzCY4uGK4esr0tV8D0lvY7xMyQT9whVpptYr9Oryh5hv0+efjIrYzPDB+3YmZfjIwOU53BfYw1pqWDtOzvz2SHaa/oDWWYlS/V+4jsFzcPc3PG5x7h5kz59NJHcwO0mfRPys3TfW4R48PcXNQ7k31zbk4HKh8EPq2L8/v2ot6LcdvLqNd3hPzoov05IXlB1qWlVi9sudgKzrhJ8la9B9xEjBTTBn0A3DbEZR9lX/dtOTvZiNniumC/GI++87D9ImYKssa+SMoHLvhtWbp68UD5tJ/FwJb4XEjuMrQ2SNNSYr+DuGCSa1vkMSjhiU0sV5l/Or2DMkRfl3oQfW9kv6y9OWM/TuJSPjBwN3oiVyP7jepUDFld7rhJMH+FNw8fMzDLHkT23uSvfSZqnGt9kvo1yiPqmOnL0ta4bWMyvRFjmt9ZvQeyrt58IDdHsqn9jvQ9yE1MN7NfylWm9w24iff12ZBheiNuZjIE047PfP2NubG+ftl+R/qeaL9YH5f1XNB7lpuntFVnAl/RFTsQ8bizkLfrQJgLDLhOCgM6cLtif5uPkG/j8f4Ic/c39IBO+Sj5SjqVjZhqPMs/4yrim5VnZD+LI7VfyOsZ9tNwwX5yeZXXLD7FGG1ysXwM+ENJ2A+IRraP+aV1NUk3wzj0bQbujOHKT5f3QZ3aF/wzw9oN5szxkCv2m9apB+xndVK0X0w/8dcsjOryDOsor08TPvy4/KeFj9vKWIO6U2yQuU1cxKATgfXvaPk11mvR417WzR4EBxgJuazNppuISMp3Vu9MNmL6KG5sfGi/INxhejI38d7Qfok9LaZncpPJumKcsN+R3v7GWGhov8zXn2i/I25suGq/qZ5E7zLGxNc7+424SsIl+9Vwhpt475G26nSwW35WdDnCNsMphTQhbjtYeisxQKY3YrR/Y6CwFc7OkpPBFTFHDJneGcbsnuRjMaV6E+4yXrPPOziM3GQyzF3YAp9Gb2e/TH7RfvHeGfs5ewVcIx/Ta3SifBNZC2ClDo620THm5eswTzBmHYcr/qphy/XsOMnrQZhhRIiTxRT1HNgv8jqy32F7ExMM6nJqvxgf2C/Ve4Dxk4evrYyPhuog9lmSHYvr/oZ70gFJZUPoOiIzvRNZi4V5LJu256PyHeidcpMp/kBuUq54UsdH996Cm3AvtV/shMTO7UzvAKMIjPyoZdiuk02z8uBJ9F7hJpWd+ZG9R4nsAcao9xBjTHfCfsPyDfSOMK60Van9ZvVgoneGcRRS3561VUf2O+mDQ0XuZLFB3jMbRjxHuGJHUgvJ6A4i6fJKMHL9z/A49QHGw8EKjD9PuBmWl5Fu4zqS7TqHyd+MK4fRdhKTtFnnOeU1CZlNFNdR2pG+RfvFexTiM9mUx0m64TUa89qFZFA2yjc8bzqsRxjluvPXlToF0zkJA6sVnximYY+jc+xJncrCI/aLeoEL7Y2ty4zOtllZVnnsbH+lvfl8gfF1+MdDgYDuuPzZs9deyNLJAMhtXaI8rQrYDtSZkMly32ZL/PQX2wcqT4eK6aO4gf/pOqopVzNMByqvhsx+gOfK2e+J3KQhNLKq44z9gsqrIXmsHdvvLbmZhVX7BZVXw+m2ytjvtK9f5Gbk2wGiSytcvemjbU9yT8s4aEhiKqoHGWhS9h98HQbyHcuF5O0lPSp6ot5RPgS/ey9gdh3JiOnQ/g2TysudjJuIcQDZybqB15H9xLkbEOYDblzxIzeTcMZ+InDGfoNB6xKvNg/nyj7ttLyRV8Vwwl9FDyUYB351zE0Y+CgmOuevipEaxqh3iZs6jlnlKsNoZ6Im9J6q953SCaYs+W78lRK/6WxgZCftAOIA+lR78xXeI3zq4/I797XtQZwUCV+NnzrXg53AGY70FKL3Dp+EmyP7fYovyif2GuJ6pt+cwXTGfm8ZJr5+5WRul+8qNweYPsqvZr7Oj9jvUZ+b9Kc+oq3SPnvw7x4HBSFzz96yh4kAfUfuTF2e8SVbq3SA7fVMT5CT8g1kh+/sWNkhxnF5U25m9o6yo3QRR8QYtqFNB8qRm+xUxgzHWfsxztlvUheWZDNuuE877dTPDkiLetI6ZWyACcaQ93H5aIzrrL8aXBQOBlrmJpF14Wx7Y6Oxz3LG9hOOU1xH7c2oLh/YILYDj9kvKcdnCQw/gf0Dh487/ENWzEyj3MWj88g99ted73Brg1PZUVjRG8sQ4qrXYpyV76zeo7Q2/lm4ibIc7rPB+F7cZGHVfjE8k5t433IT4+/Fzcx+BK3H6SP0rbgZyEaulmTP6rHhSNZyE+vjVftdwXzk24/4zdkQ2qf03tH1meygHk3Tz/KfYVp5LozyNLLqEwftUxqPdljhdVT2mO7IP1Z4knuzunQCc8fVW9nvCO9iuzjEMKvfWbqV8q74zwjjUZtjZBnovnM31BfjWSd/9Tkw0eH8YrVtmeGPH9Re5Gb4+xn+muVzoU49zX6fMHx9YPrBQCuVcvGhFztj6UNu5oQX9cb7S3ofKe8PzM1MtutMX9H7XvYbyD6idyab2u+s3jfG+OGyPxA3D2O8KPvmbdNiyHdKMBC22riXuCfP2m5rEYfksw5Vfe+DbOLJNjo7G3tq21WHGfOdU64MPTcI5XUZaQ814SZinNiwTxu5mgVvv34r1Uwy+EgoH72X/a7W/YMBTyzfod9wiEQbDHFGGxi9GcbdSU65Sb9FGDBGzBqLXIWinOImSifbpHPpSXuTDVBPcJOpinqv+WvgJrZzk9DZr8O1br+r7f57BAa+Dv94NKxsZfwKX+ErfIWv8BsSGMsPdrfwZQYbl4LNzA6ITj6DXHflWZg0w/b3TLYdpkfDYEXjbFEf4mqU9qPtt5J+ZQLjDO7ZAP5AbnhgaYbxIqazuDL3yi9eCE/gSv1i0Ga8GyYktKysjq+GB3B93vB1XP7jYdRgRW88MWHyKWTfS8+PKPteen5E2ffS8yPKvpeez1i+R2Q/qnzTfKnPavYOC9C2YCahe2fHTbvXHpfKlplxIiqz4EaWQ15Hxd3C3ek7ZppjTRuuC6b8JM0xNxlGy1XPTcTIZoXAc0W1d6qYTnAT00auEoGGsbvunXBkv0zvzH2P7cf+t/Ujs4ighzBUHmM8lotMlpCVjMk7eHKSOQ5skNYpV15bpkTanJAYMUVu9HT1bMB+VKeMakK9wCauMIVH8qYYBaYhpqX2RgsLENjoPMdNB2tmv6M6ZS5G+5HB1BLmQK7aL8af9Qj4Csfhw94xo+TFVjX8IN4FGqd1z+eQdiorDntF9grGkexZbk5gfBo3AeOR3rSMz7a9bXDek5sHZZfL94jsZ+Em+s2Bry+X7xHZyM1J334r2zscmf1Wy3dS71T2gacz2YNQIg5TRol3g7KZryg/tTMXO3VExUbhQ60U9XCCUbISvZTonfo3tbSwaRsmS2v6uYIEY3cCKfciY/82/MhgJ8i6Vw6qfPqOso2jcUVdec9xs2q/jBsEbg7tN+Mm8iq6w/ekSNIO3qH3NqFDv9Hymnw6f0Vep7S8Uj49drXn1WI+8hvnr5Jl4q/xnVZVa7kxgxzXtAg3Nm3gxgmJfwZfSP01KOzaG1DL/yQ3EaPzV7k84CbKWq7KeLDZz3NDnWws3xX7pXXqk4evwz8eCOokprHXB0FNM4rLb3WyRVnR62TJpJUGm+vsBA9kQ3yEMZNdKl94gDjZ/UD2mdzYtFLv2X3msFQCfkduop6B/TKu3owbk9ZxE2UXyjuSfUtuzpTvYW6MH3WyB+3AU7mxaQ2myJXz7TfkJi2faQc07cS334SbKBu4uhSk3c+u178U4gJs2C5G/7Y2lMRV1mFn+IFH9temNdF4ImnXLhqMDnOCKeo7/J5n5MqkYxzU/Rk36POzvym7nsXheSWj5xI3sXxy74n2y7jSbAyvXTjysR3dIoTFeOg37LlZejdfymuUsn0QZbwazEd+o79r+TpeFm3Akt+M1/B35Dcj+6U4Qr7xdFoO6U5xY/Ow9hP5M/Yb3X4GNyOuJvmnPH6y8PWO2YOBaksje3pJPKrW0rYlpcWlcXQPlxOysLIigpB2X5Qd6oUmosO0QU9NJw+yrnx4J25Gem0h7QPjPbiJ5aNz9nszbs76HOVpP5Kbp5VvJmv9qPPtEH9LbqJs5tsiO8P4VL+BBmkHYocWyO33ptyM7BdwnQoMcFVOdgRh7se4bxfri/qElDsXD3qlR6IraoG/WCZmVowdZhMcH5z4txhGyjEqr/oKr3ODgNG0zWe5sVgdxniE9hE3EXPgyreDJ7ipD5wl+2Xc1O1uMW3KTeCETL4ZRltMsnlgwmusv4nfcE2kHfqsvAf+CfYTY7B5mXwo3htwI9s1W9u26K9d4LalNOEmriJFv+E6qqPgn7FdPOOfnd6z3FQuLDegA/uhpbX+ao8J2VzCFW58XDHGzzeIh12y3+cKzPgamD0ckqOkMfudpJW4NvZnZJMHYvf3QO8VzNO0saGWNLHxOIHxEjdJGg3dN3kOZJ/FTdTzBPs9hZursskDYSb7I/j2VBb+evTtd+PmAJf9+27cHLQD6d9FvW9iv6N7MxkG2oeLB3kN+WDoqWYj2do+qQj5tNrZYfNvpNf0uDvM8jvaSfUkGEe6bJvKXu+xvROMhisXDrgZ/WXuT56bcjP0DYZaYJWbjtega3Is/Rhj5WbWQZdkgB9ATtJOr2W8St4mTeSmlaGCGHBz6J8HmCi5lsqILtcHIMXKcS9ZxgsBelLgjNdZX0O42Wsk+vqMm5W268ncpOmX63KS/pAbG7e+E7k6aE+vtPMfGL4O/3gkMNr+WBu62Z51kvuZohMGOiNrG5K31PNE2Ye5cbb64uaS3h+Qm4fK96Nws+rbj+g95GamB5/f9qtZAv7DxfbGlA/padhRkHRcYkdDj19oSZPsVDXbfE8GXRoNmLp0rW+UYdJOaux0CrRTnSPDVcZNPG59AFmPkzdYHuYqkz3gJmJU63JJew6TZJ5zY/ORbFM/imMAPkDAMUImm4IjlSeY9onCjeMgK0U6GJ8MCjrABlOoUcFgHlO6Yudy5sorKUZyxieXNrYXZH9wuLrqC0mdYkvOkTHjkfdx9NQdL3+hLhPqaluOKfu8Q85NRChcjduqH20w9psYPm4rI9D79NFXxzG4x0naeD/eg7k205thxOT+keysfCPZo/LF8MXNnBvB+MWND49wE8v3xY3HCFzn5kr5HpE9y82JcKndD50Iti+7J6eIudS2w2U7cmzwjPTGeyIQO4QAQNQuJ+VzhzUoCQKRmkDEddqG5PC5PpZs5cvKVYDotSmmWbsY20i93y7wCW5iJ1FOixQfndov40Z+dy9+UTycb8hN1DPcnghAvrXWuCGPwyausqo76jr9rGoXKJYBIS3VVBETii/4rXMBs1xaahebfzIBG2PIDSXcaJAdV64+zvQG2QlXzrEOuMn8yNUTW77Tz4ygy7Rl7nTIWP7wvOntN8Fw1O5nXH+i8HX4x6MhnKzkAg9+x0p4RvZMnBBm0h+QPYPhSDZe++JmnH7GzZGuL27WZM/Ez3Jzpny/6dw8Ur635OZKGLX7RzgTHK7PwH0fYph3vUbZ/bP2P9CR9nNcZzTB9IgNYzoKOJZsaFDzRVxZPNxb4mbS8SY+0Lni3zPZ9F6COk4cwPah2yCy43WEK967+sywEDf4FbMjDCKHJ9je/LYLlTLeKWVc5ybW+1TvyXaxG7dc5SZrqy4+M8jU3VXZYZv4rOfW1Xb/ncLXO2aPBDaNxFFjOQqjBnuUNn7pfrUyHck+C+NINpkleqres+WLD82P5MbGPwM3z5T94mYs+0xuVjuT783NlVnKZ3KT3bfhih7b7p8RCzaj9tNhSTtrcYnIPHekeZ2OTy7gmmEioB5mMsBVfy93LwLGDlPEMZIl26nxqeUgHMfViUEO23iGqcPYeu6xPM5+EdMEQ3p7wX5Nr2CiIBsF8wEQSdqz7U/0haMBg70n6gj10Afy93Fsz7RZOPLPCS7xBQLAGzyvHPIecDPz5WX/jOJWnnqbRj1HOGx8aL8DWTZtlDsuH33XcMTNyH5Z2qVw9fnyDoFBXwOzR8PDA7MzcjHtypbJEb5H9J4Jmexqfs/kZpb+s3DzVnrPcjOT/eJmLPuR3KwOOD6KmzO6n93exPvPeOZdwKgz6yvyBmea1FzcHuxkdFvYFsMRriuDV5XV/4wU5SEeWy4nYUo+9hMyvTCmvnEKk8Vw0KmllfxmqlbtZ8vHPVfTkGGWsDJh9qAvEHwHf5TnIc/PxGS5lDgHex8N/p6ICQaTm0TI0p3V80D/lsjgOvDPGVfPtN9XeJ/wcVsZxdN0SgAwZ8TWy6wzKdqwjGa9z8pavfHJwk2209PFx3o6vWcxOp1NVuPvwc1E9kO5Gch+Fm4O9X5x8/HcPFLvn8pNKF/UCRt/f79R2XNdpTykOMf3hnyY/Bwsky5Dq51qm98KlzbTgMXSNQzm/hbSqttxvex85STGzOcSDDE+pJjRtgzO9B5hHkDI9Ek+mg0FWUK3Te3d7MdJsUey0RcDN4jXDvRa/MvltfpHmOwFa+uIYYTJyq746wCXfi5hlRsbJv651N5YTKFsmmaFmwmu03UZ7bc7Lr9en7aLGYYE06W2+BOHFTp+hPBhH5h2pzLqB1Pbi5NbjVsZ+7tvE1qKVdnmhxQqF/Vfel/Wew3jFtLrw4fsBZvobbmJsgxgI8Dup/8IbvK2aNjcvws3UfaoL/Cjc3OtfEbv6ME3lL2mZ4mbp9X7x20PVG6yFbak3r8VN8N6/4SHsn6PTDKXv5XweI9sulEwBZEPg6twKBgxXKeewl+nN9PN7Y/dkmfjXZjhMphcfVzlJmKM9WqAP8OUHkxnry1yg5BP5GoWumeglRVh855i9p2xFYyX7GfiFtNUNmKwnwkSxUeyFOJYKy9bjAzfqU54IXMrnpkzfT/Nxic+pG4f7TnKlw2uvAFPMR5yE+pUh2lg6wyT/eD2FFwo2xn7aYJYVwMuytJibr+nt8UfGRhfWxkfCoz0uHzC4OGQhHF3c0GWaz9j1lDZfIzTn9F7CaNtHSe4gHGD8Cg3NoHrkwV978lNlOUskU3zTtyMZB8t3yOy78FNd2+BG20zH/Cjp3PzHvX+CjeL9f4tfa6r948+lAftvr0/vLzyMOCQjPv7sSzLW5OCDQ8xRVzs4107b3/HcsR0E4hO7xGmTDjWDetrIwxx8JDhWuTqyH5s7pHwesEvn2m/mfqlAdtRmtiJXg0WYxBOO+oL7WJ27youHSyO9EbOVwdAq5jsgDHadkXvqv3OYLJykZvZM+LZXH3mAdgs/Ki4Q/jQUxndJGzWMIQ4A21Gg+C3pYxkZ2mtA0enr2l1r/2i3ksYbZyNXnsvYnxDbtLtPh/MTZTVdB/JzUk9v5u5cTqzeh//fgQ3Js4459sPcTOr92/RJq7IIshGbnAxXMBJgVv3N8IN8u5dKcBvFxzJjTCav1vECJ+Ggw71pyR0mCZ1Ia1XNW2caMwmHkNVbEWuP9JvXdkV3Av+vc3sF7mK8tYfpZySblSYGu/q/sx+oR3gxL9G9ovlUyjsLjfM1j/NPfFVokFeV+pvlXFb4XiAkZuIbYM6bjLZxXYxYht+A479PRF3XJi/0ddPtYu96rwYif0cJntxwX5L7c0gzOxnYQy5ibKr7c3lhv99wteK2YNBZ7skDvQvOGqLTTUNw244J/M3l0WX1sVh/H8g3x1ScqA31bOCEYGPyE1Spjflhpve4TL4hJu0fDM9R9xk5cMHc7NYvlF8RfY3hRvAPPhH+X40N5AM9fOn78ONxXVQnjfnZlrvLTcXAyPlJ8PZvDRJm/hXlIeVl/io7Up+pxjt35j55J7zu9DpiljIcHRkQ7mm9rJ5x7RRr71lMGd1g8I7XWfr/gqPQ1m08ll/yLZz2XDKfhN/ovB75nqKyySM9aqzPRm5gFFks/q49Nwm+NWyga/EdtHpi3pn5VtpF2HoJ3hujAxlvy1A5H8ZB9wkBtRj/GnM8+h5Gid/Mr2Ickk+oz5qJjqyX5r/s+yXxb/Cm4QP3MpoaxeZ/w4Ehr9z2ey5OUpxLJs9PY4wH+s5DiuyH8mNt1/k5jic5WatfOP0x7Lv5TfH4YubK3rG6c/Iskn3GbiZZrysZ5z+jOz1JzMxtINvyxzLH1qVJOKvH25HNLJudSp0ajIc0747jdOSvR9s6O6JrOBJOlozTOm1ieEPX943993AJ+konnqezexnVuRc51R0USJu+Lpkv4N6FW3UiZ4pPHtXCLfG23sJ/p20kMesvFo8Mv+sPE9NMq/m2cBm8HtatzNs7NM6jFZvZr9Qd2Y4Yr7qYwkmntgPwPx0zQlXy/5a8cSvHaz4zTCE+2fam88cvj4w/WAolT+Y/MhT81zStIenLHUtVcunlw16Zk/kExiXZKUB+ihuoqzDkNjvPblJfqZcndD7EDefyW+Sn5+KG3s+8UdxM3tapz2vN+JmltaGB+33VNmLT+uug8PoBgtp5yQ+cEftYoYrDorMtZloF6+60hn3A71unE99HzPVfcBNvNZxFRNnHGa3q94zXNnydZ/Lmunl8PfIr+xAkR+w30m/0TRHdWjQuybz2xrMZcX+nvNvSTtpN6K9FG9MEO05Sj/CFe4prkV/jWo1HwomGelldJiPzDlrbyKo7n08jO0XZYfP2zP2i/lF2ZN+c4T5qv0+W2DgayvjY4GBPWkBMkc/keWnkH22nvjgei+9byH7Xnp+RNn30vNhsuGpNcvrhyzfA7LvpeeZ9rv6yM5mcldwHQ0yZteTjjID1w6O4EH/9WjwYYUyvaN7Z/Glo9pByAYZ3HMzfC8vyy+ku8zVLL1cY7jVjKWwar+I68h+R3nZ67N6md2zZTzrDyLTHft8oPuo7cgGByv4qCVTSq3PncE0uH/oDzOMdsJnJPde9ouDzth2Luid3b9kv88cGDi3lP15w8ccl89oy7BXHWE0u3NFdvWhf1bvaYzmqXQG08N6T8jOcL0pNxPZt7LfR8n+buDmqn//CL59Vu+RrA2fxn4XFcm2tUXx7jEbV3koQAl5s5UxnS4daFz0O/2swRCo18shbdp9kPxXPjycqTvA1B2EAp/W0uS4OuLpwJ5TGwpmyxUPksdOM59ww2fYz8RnPjfTC8B1it2AJAtPaBfTgx2i7H4R04U2R/2L2u9ZfUgHNdGe8X5UeIJHd1Lke9kvwaE2IfNvgCOTXcL0yDPjK7xZ+NDDP7oWOH5so/v4hk0b4w/IIsg9ovdhjNz+2Hv7/jHcdGlDPqdk3wjjM+33Yby+kZ5Pxc0E10z2vTA+4tvPsn0XQrrYDrwXxpn9VsOokx87jVkn0vaE7OUkLcf72Q0G6L6gN5PN0mbfnhuFUVo7EBrpWcEo94OefjtxIitRMbdgmpXviJuZLknLIT6SM+nezX4RYwxR1uad3KPs9zMwhrjdLZ5O8FiMJjqsMxPZIeYQ78Y7Ex+0ZejuzfRmPB5glMFYtzEg0WMxTe0Xw8xPYuDA1YyniGu2shb1nrTfZw9f75g9GuxWxtjozSpWTCvxlUp5NDsw64wdyi5gzNLOZKVzZHG9NzdRNsP0EdzYeIZpVfaZ3JyRPYMxS7sq+1m5GeE6izFLe1V2xbffipu3sF+WdlV2tZNzNlzBmfE44tZgZ2A8mx1OGVzGeBRWMI3Sygy5JLpiwwzvFZup/0066mfrfpb/JDiuov54hH+WJtNzpj0egYnARja3v9n8NhiGR9xzIpvlvVK+LI9Z3pn/Zf74rGei9V0bD3+V9hnfj7aLkfsoGzEd2c/mc5YbaTMSvWnliDY5Y78zbfFnDo8+nz5J+OBTGY88evbEeaYsQtqremPNewbGlbzekpusfPtC2pHsM7mx8bgv5aqej5LFA7I/Kjervo0H9J6tF1d9+y1tP7Pfkex7tBnrYfqB6VSgV8Wz+wT3PSYnEJsvvoBnoLfDFPR2mLJ8TJW4hOsMVwbTKK/upMirmAKQZfuN3My+BsEJp6u4ztgvxIfdh6Ngmz2gX0GeledklWOgYCeAs4X2UX4JpprVw7gEEwCQvPcW6+Ug7+xTIjRIexpTxaXbGClLYOKWk1WuTtYftV/93X2XcNUHM0zXmu9PHujr8I9HQ6lkR541q2mPyGZrym+h50eU/d3MzVHaL27G8S9uxvHfdG7Ww+lX0yQ9tej00TtJwKEItB/klYVkoNHpPQIZ0up3zeq/eNrgVUzdztUTGPXxLJ26s1yNMM3VJiDgbK/X3tN+K1wdqBsmnlSrVOVq/RHM9S9v/vaZ96LiLubDMi1i49AsnnpX64irE5j0G2ZVznGV1UX2P7sJoCfhsgp4h/tK+NH3Lp07Z/a73oR/7vAbUq4P3MqI4nBIZqNqnOFnzfRbE/yoLL2d3hNpNf708n1x8+HcRD1f3Hxxc6V8ku6TcXO+R1xluf0kez2W08aN3o6OkDaK2jwIaJ2UveWpsoz+W0FGngF/ctzANoJrWKTIod3CaDga6rEYCcMOLVW7SfrYQZtxtVkcO7q5hSOTuWBuWheSiPOtA9tn36EbgXiK/TLuBoW3Zh3WKyvLcDuVyciPVNkbUxuE+r6xv961VxZj0EOzehFlow2CbBaG3FiMliNJN7FJLM9heyM/bb4jvRLC5gpKkkztd8CrzXuzFcfKWoxZOym2f4SbK239V3gofNhWRtStjFSfHgQCW+8GVUdjEzee1MnCPYnkXpQtly/IKrQj2QowlYWpxFl5Z+VL0iblW+Mm5zXnZsEmT+GGNO15btZs//bcnPGb1fJl3CTlfRNuHrH9j8DNQvnehJtVjI/Ui2dz4+2Hqw9rOWggdGYER4xbPa4jU3/ry/pyL3bwpWNdt3LZTmA8ntsNDuB1gXLMERN2j4MANwAm04F3mCw3jGVuyJS/CLd7ukK4e/xO1vJsZRG4Mr8tN+IWyg0FjAZTZz/hhhpv1p7Ofjy3X8cNsGQ/52PRfgl3FqOWR+5F7IE796qoYAx/I28qK5fJYMrKyx4CuHDMO3TrIAOd33QYHUm1rGx8eaR3tU5JkPLYcgdM0V87PTSQNfc7HkNc/zLaypT4rE0bTpXVe1bPTG+0X+TGYpJ6M7KfkXfcCLXWT9HyivX+iBvL6+V2/z0C48O2MhLRHwHw3wfwWwBeAfwXmflfuJrfxxyXD9T96sWrigNwbYcLsVw9obWZkrZ2MFxcZBFkucuLzfUj2aYHqpeIgf1ILxKM8pxpmHLZWflieSxXZ7mJvEZu5jbxeqQh4Tr7e4Ubdmnz8lrZY/ut8/oIN7PyIeHmrO1H3OQYr3GTYT5XH2nRX9PyaZ16C25G/rpavnPcjDCutFWj9kbe7TlXL65ys9beyL0zobX7Ld7aRcFV4/WCdMC0w88tjXQ4VJbhZvfth4TJysr1va0kSGksjqi3w2z0aCcILQObFhVXtzISMTF0i94yNwavYjaYFD57rrrysc+M7PUBV0aFK98yj4TWLib2PGO/M3rlniQecdXZM7GfHVQpr9zrlTzcfAibtCaNRnevr7OflTXloyBAQHfgTTcxYcrXYZT82XOQ6W3tldFt4iDogDy4XPceY8ajq1P2XqLX+vasTkHwEHTCRH3NpE/LJ1yFtFO9HGQDZs2DAGyJ/QyOGTfRnvbvKjed/T5z+DiQ/wSA/yYz/2+I6O+s8b/tamYf945ZbWW5REDBq0lvmHhtSYts7XaorE2b5OXutdnjTo+xrH0YaNqpXqNHZWlQvpEsL8rG8i1y46t9uZ9yk+iJ/2X2aXnC6yE3i/bLbLIkO+L1EW6Oypdxc8X2sXwh/jA352zfZCnIjvxV/jOwfdcOPIsbi/9se/NIvegxTjHP7MexfJHXiewyNxlmHOhtvnAm9HXD3kjiImg6D4iyCGlNnJ1QyC9ed/UBqpCaSKp3qXymDJqXyJBPIziG3NjLwYYI5dW0vmnreAUCV/K7/nNcRZ6MrMXkcFlo0e9ieUP54iGpijtisnkn9pP7FHDGA0+zumFl7SUPyuua+dfwfoI7YhjJRp/r3CDI2nw1+4hxR/fNXve62sjXfTaad7egEWxv7Rvz6fxkYOPUPw/qVFYfU/tEPQhpIv7VujyqUzavzH4xSWLPeNQ+xbRHGJNnxucNHwaQAfz++vvfAuBffSSzD9rKyGUrY3hQxUYdCK2Cc2Z2DRJh95VhDgBUp0RWZAuuhrTXO8II2A5h/0DPlLW8BFcui1AzfQ9gitFOvSSYDm1iZH01yHidcRMxYpg2hjP2qwJGLz+JmznIjpsj2TMYZ/56lpshxliI5EUTJzvzdS8acT2XG4vR5LXU3mRlk/IdyMJitHmca6vKFhaz2lbLMOTVyU7q30NtFXx5Z585GAWG/2YSGy5jiCeYUeB9Jht1xo4J+79d+oHsCHPsPyHctwIp5gyT1TOjenKP4u1MOaUUlcGLwdJxlbXlRnaGySlk8fcxN8+yX+c34ftdU66OMGYhXNdVzJFcjduBhx2UOF/I2g3kGN3AxsobB3F6AkbipMwWr9V71Cww2gqQCDP8KlwsQ9DjrtW0R37QcTPASTBNW2a/LP8Q79JkejP9E0yif+gzg7juIrB5BPlDbmY++xUk/EMA/jki+m+hzF38hx7J7ONWzOQ7ZtGxOg8feSupl5H+16SdORBR+VCryMZzeVNZAdrSNr3H56AePmAz5WT+zDCZtIqx42aC0fUoouxETybb8brIzRn7mQRvbr9DbhbDkuzA9h3Go/Ke5WaG8WJ9POOveDY3x/a85NvP4mbJ17mz31obEm1/ghuT6pz91kO3VWkIwGuNzZsmGww0YloV4PaP90mnc4JJ9HKgNrp0holGaeUwEoZu7TuLCwhczTABOkaPmMjcw15sxntYKcnwY2ATHNjE/gz268ogQQ4kWbUf4N+PSoSu2o9HGDVByNJ0hrN0DkMYlNAsfQIdVPDx5vVnf53P2XuhueoCG9mFPo68L8UbdBUm6j1arYq4o8xR2jSQsaUzcJC19rPcDDAO6/L0WYx2QB7BD2YxGWBNMAONo2naHzk8NnD8g0T050z8d5j5dyRCRH8awF+XyP0JAP8RAP9VZv5niOjvAfBPAfhjV4F87HH5+pZpDfEJ3AWTIJ61amesJe/RdpvMq+3PmWxn+ROfc99n+R6EKDvjasZNFOYYD+Wb6jmQTZ88o8xO2C8HsibbbZB/gJsz4QyvXTjw9WMjraU9jXFSHx/x12dx02E80d48Ui86ve9kv5ls1BsxxnzP2O9E2LjPKpolBgp/u1o4M78NtgPFZcBh3vPP+mL+QkhAMxNGamMBRsrqe1NZEVbMbwetHa8nMWrnkwumIVcLzfyQqxVuYnmv2A8n/egExm6LFw9+1/h0cJXIii2PBmXxvgyud8E4wjXoxGtI5nJGaSPOlFKqPrMDuJk8znAV0lJmr1HaiKlyxVn6I0yRG56kDemi23T2M1nG1c4uX160yYEfrTYXnzY80EUD8BeZ+Y8Os2YeDrSI6J8G8A/W6P8MwD/5CJAPPC5/VBul1tZb7igjmCdOIuvuSRL2CbLONSV6oixBHwip/BCjkV3BZN+gznSNZDuuDrg5ijtxk2/GVXwD2eYxtV8Ib2q/wNVM7xluuvJl5TW/o+K3wmixSr6cpB1xl2E8Ux/1ITnxVycSZd+Km8X2ZsTViuyR3oybUZvxiP1W6t+Um5DW2eTCI5rRjoaPwdYTDnHy8bT/ZdLKgELvd+1v6dRnW8ZmehGoGOKfxMUk6bPkXg+zSLZxpoODka5RWMTognBlTqMbcjXDvKrX/HZcwVwzq2WKcZTX8DkKf4jKhnX7xbyCPTVNwmWWHoS0g2/1zDrT0wGAEVFMB3qHGBnjAdAMk/EbBhrX2aBskRsb7PuEQ87j7+jLJou0vme+McKMPu9hXYhpR3WKcVy+WdzaL0s748bGLzT77xYY6F9ifLfwrwL4DwP4MwD+DgD/8iOZfdhx+VSPy++mWIZTQ6Pa0FLRkWzsXMe0I1kOXmriJZsJxqPyjVaZJKur3AwxLmJ2amIL9iRujuyn8Qft957cdL0Ik1W3YBHKN+NmyNWiz3nQAdMTuVn118MVqLXyPR3jIVe57NO5cXUq9Ezk/kfar+sBHAdCa/fZ5E2gukJnUw5UVTrclqPQgVGUiawUmaRjf2ezmtMEaNQ7AbXmiNod3z4GNyL4LURZ30EGinvhiIywcEUWh83ItDF2cTYrP5vflPDqZGWroLiJ4mpniJZYwpVdFLbmjPUo48qkTXmULajBfp6rgInIrwLXvLXZCdtSO732iPPkPmLU3o/VKA407GRFfHwYWW33rVIbZ88FgLJdcANwD5gAv604Vuc4gTI60dFhqLwHcmKbw0xlK6PUQesfCTdOL3x8iMnhSjDFNhaFq20D+I7OpkNMGebM9nIttnvsubH1HszgjfSY/GmTmzy2XJO0aL+cm+BznzgM55ffPvznAfxJInoB8CsAf/yRzD7wHTNADT7oC/lL9sk2TIQuWbwhcbt2ra1thjRi5P7PEBPnmDikGYkT0M0AzDBqbME7TXmmXJmZ0vaEsI8KXOcmw5RylbRKoU95aD+NPZGbwaU0r447e58PuBrkyyOMMYvEnhKcj83slwAw2WpjvmDmc/Z8tv2OMF6rj4+3AyOM1+vjGfspV8v2uxC4tfuiq5SOwyCCYUZLJZh+KGFcLEtLX/dM9oy2QqV2aeXi6mkUMwvjM7nDBjK4d2GXlwMZMFWOyNwYcyWYTHfO0hb1WFoTTF15YDDd7TtmHLLdUb7VFxQJTwaHGwwlXI14jLKZ/TxXif0CF9aGCBit3qxOWJ67+YuYNrnm1Lp21PxO5MmUFYOyt0IQiOs5a7exniNMHa4o687L4lAGm7j8lgH3xsB+a+WL7c+MGy3iQDZyM23rmIGNyruUwORlygRTptcEuyqvsto+s7On95PS0Csmu7o4ApbpTXDMMbPDOC3cV9DAzP88gL/5Wfl98Aema7APmvhkqQ28mwmS1tv8Jfs+xM5OVjMcbfWTRrlLazBTSFf/bvGjMoDTUx4O5DF15YtPq/p7r0+1A24iRtpEf+XG9SKkcTR6u/LVvAUzrN7I1XVubPy8/Uyw3F3mpnGxxI3tQWjaoNe1tNJRSdKqeQbcnLYfvI1ENtoTgH5xcma/yg0ZTEq7tYkdNAztF+JupaTdGvlYbAce4+ZMfaS2OhVlIc/y3H6gMpPftQNZHYpxiyGtj7aN8LKbrVPMx/Zb4sbouBJ2U4IKvX8dlFVl+d5R/aHwBsqrK7GB7QZ84kOMsvrD5l7iK9o/YwCb0FS53rxxyNrEwquy3RHfVqf83rnbYqmY6h+y6dUc9b8E6GcRtPBJcG1Oj5ks5h3AnbGZum3tV8pH+j0xaeN8cS2mwJXdQmh9IeGRTFONO/tB2cx+lZvmVFJIV8HdL/vpAPuB8BjUJqP6a8sS7Q3j/13aUCfthBqjrYCIbCx/rSVSjs1y3qX1GJ2fycCgYqIoa5oz/Tj3QE9xSeux1GwUypfWWYnL6qVyE9pUOYgm48bypkA4nO5o2z0TuvY44cJyZfPYg/9y8JvOf+sXJfU+HfuUtYH1G4uJg6z4YfSxpHyzJuXThKSO/ojhgz4wzaDd7A3oBmnSnHOLU0grHr5LRWfvXLKlgYMXuoedqWlGL6zeDiOVylK3RTCbGUz5YaYji35T6yMm4tBYGID23gFGthjZY3azrNoRY1d8u00FxMDdPi0nXD3ATW4/bhg7+5mnRMfVe3GDevKktIKSF5m8DDcOI7m0nW8fcWMxylSotJQdxlCn9sCNFND5mOeKiZzeYs+Bb4trRD2jOjW0Z+9jzn6hHRhzM7Nf3t60NmJkP/jZYWO/oj63XxGtdWrUNqnv9XVKbf1u9htw0/n2+aCrQYZLBrSDXvpWDTdRKYfFJMf6SxlhyqRFkaphiqP4ZbvgTm1FSJI6vWhbumrG+vHZOwXM3g+52qXIGt8RFyXAgWXUgRm1rXoBE6hmUYsMMvlJso1UL1PABChXRAYTWl5qEy64yKxKWa5sWh03CzfcVs9IbWRsYn2WDVdEPTemWpayFvzbqv1aFSz20vKSswWD2yCRyK+KBF+3VTyziYyp3NjP2t74UymbaTfEP02lpLq1jsxjR4GIHmOTki2Ba3k3Au53rts/yWMynPkteqyEyvZJ9y6X1WtsoFx0/RbjC3LC4J0LxnvxF6lbdoJP67qZQCJrANl2WMvVfXQ5s0nEZJ45Jblxcut/IqrPlyoAbph0QK2OpTplq7DYUeYkc/uhGK5ysrcGr/mRqRd+IF9LdW+YIq/Z9tlu8JvY72q7/27h494xe2r4uBWzO6M9UOPN8tc5ArPWBYl3orFS7uGC/HR7D7TFqEIcZOyT3eIixWAx+qTsHxozTPGaTuGYJ1yHKXJFqtdx5ZKyawxKBbdYzLQXy39CzbVcOSMYm7HHxAk3VpQA7RRK2tZJ5MBtyMvMqGf2i35U2i7qabeNW/075AbsZYa2sRjRGk2LVZ8aFVPm29F+hiu/bYG9attoR2wOExC5IrMqyB037KuRey9moM8+HUf2jE+LxLf1GdglrT9MFaOZ30RMNp6lDW2+bYssbxztx3vprJps+3bA+rpVwgGTybl7Bnmu7LsCh/br/CjB5uwX0y4EhnYytfNc4dK9JpF+YzN37cy35sjan6TTUcvo25wK18hKR4m4dHq2oFdNSr0sSdaCyQxiov0J3NoY2+bYfFS29tL28nd7LdeUG4PpFrmxeQG6AiO/EbixXLl2MHC1KU+AHJm/SXmD/VAxmfk055tkiHVjkHpBuUrsJ3mpDU7Yz8lKfjYvwy3B2nPOTff8NLyqj0nhzfyzpk2qUyOHq+1J2y8CtbTyXpZgZpgCatWqzwiA67H0m3NQw1PALFnFLZN+EBYwGdktYLR5yeYMbOX3fgP41dQpkU248tz4OAI31kbOb7TACaYqtLHUfUq5sRjdQBG1jRVMMnqq9VvKs5nybTC6E/vhDtAG7DKQDfXC+ZH1OcuV9hesjlLIzn41Lqvf0ReUq08cPju+1fBxpzLWN7jVCRnQFgx6wYVNWsbawrpOhR2FxO1RXB9MdjClFcjUZJEFTEsrt02VMV68OUVJMesMc3ewxW7yQstPf7tZePM0U2rI50c+D8tVt93LzJoR2MxScnkg7I0rx01XBnj7UV014sBVgGoDZZhC3PlCLaOzyYr9TG9C8JbHn+fG+REn3OjDwD4dUQcm9j0LQLvn1p7a8Q49CcFEPtsV+7W9W2zVdWl7n4PHRIEra7+Iw+IVm4z0sl0mQfUb42OAWKLG575d0kn3ZW4//7v6p5JkHKc7Hp4bporQtwOeh+jr7iEpM6fKjUng9B7w6HYL2IQGCkn9MZiQ+HrEONOb2O+g2RuGhs1gMOWgiptj3XCZoKUN/mifzNZSLi2jDID2dlHfeXY40CgklNn+0YO/49W01aYdI8VIUaxwozPZsu0oYmJdgSJ4TB1dFlPkSgPrPcuV/y45m5VwuNUQSSt5UCVr2j/q7Ge54pgsLxtnmDxX2uRLBrKqQr68Kdj6kHDcaF5GL8O3OU681SsIRwiYSVXVtGTStpK71UrJlL0sMj0sj4XQLlobdBiNnj34AkMvxO255AYmaFu/Q3m1eWEdwkBHF6a8nV4EvcZv3Aqn+82Kpa2gJ35TlbHqaRNVrl4YSPZ53fQaXzZOFgcMVLdfum29xgYMdBNKTk/wQYep5jzCLLjiHDZFGwzs92lD4OlHDh80MGPdF0zSYMr1A7H2O6TVGWH27bvMashvmZWzGdoOk8Zb1q0xFpngnZ3n1wy0/Qs1nE1ejL4sNY02JCbLFkItkSVuLWvAJA91ro/NWL6KQx+plauufGTzg7efYI5PitiQdjE2/Fv9XpflwPF6xn6t95lzZfzIFtdxY1sA1xjEVtCXh1zHTp5SBiXZVYzwVBL7QR6A9rrZo2AeQKWoPMXo7Qe1X/PyUKaB32jcrXIGefOUoGAz37dJfDsGEozs7uusOxuudADIWqb24nXAZ8pI4cnbZGtHh3tiUvsJpj34nPqaf4HH1fv2pM1DmCyhvjcT0kfZVg6t2uLrlp9Q7688oAlA926MvSmXyMyEU5os9UmFaPmweqQe1xUgYnSz+26MEPuy1OOxmDjmI7gYfXmDHQSLrlDZNKGvZ01BdYkscw+pYk4ntXsI3Gi7AeGmtCdu9SxrY02+XIWlwzlQ38syUvvBYpJrO9p2zyP7GVxkRln2g8sjezpuoKL5yrIB3Z6hJj/XBvvyjtJaHI179nEy9127Ucoo8TIPxY1Lu61tohe1vK1t8LpcG8pw3aRuMgRoH0tm08pzXL2vet1gynMnwa6K6T0pq8MIj9HmS7UJrrg4TNLZ+i2/U71S7mAHkd2i/Ux5ov30sUymXtrthcF+ijPas/629uv8RhLuPm0slyPjK7xp+Ljj8u9mT4s8bWxLKkldI921iCYdacPTKji730051feEAGlGaeR50iLrUgaBzZa2Mh5quHxeAYN25mzDHWqvU2wwEbWaqZiMaC2XNiLE5rfZJ57hYvPDcSMPoobDtrUNauPGzeKTP1b5cJ2Zw3aqbsXDJV7DlMQtV7n9TPaWpyE3xuq6khaOCRb7Wa6cXm8/S8Sab/dctdp1nivtiAQfsykdV5UblxMHXpOBTONGXqSwyNHiFCTVfgSKx8nXRPLQj/URtRwM6ux32A5Amqn+CcXkV9iabK0XI/sBaGdHw/AW6v1R2+QKjtpW2TuJ/eyERsWU+ZVO6GQ4VgMD9MpevJaBYSim0n7BxO2qhHtMUOi3EY2bGYJuy6MdZavQqz8kQXPbxK3blkJ9Z6vq4c3n3S3WGnf279wY0KJXMO2M7TsappoZoWxpgrlOtX6SbSs2w1V0DXiuRjypjGIC6Lupv+T6dqDNvBsW7KftyEbWLb393DyMt1/XLqLZj3aAvhv7macNEVV7Nd9iMpyx4VFwGCVJ9TZpyZVfkGqC+BjfzcpIturq2gXzV/zVppMqWR3MDUxlO7kI3LkcS/8ij5vafqEUflqLQzW1AwZ9TnO4jqKjP5rdc0Nb2cZYXoEj07xH28NzZfVUblxzJ22ZqLNbDvfoQxYTVx8F6FbTSd1OHkWxzPoMDFyJ7jawbe9EQmxgJyfZqNuo2PMO7C81bvvKoPBOoC0cvN8YTNqs6jv3piyMsopp3zO2RrjY7L9fCJX4Bw4ffly+NKjaEGV9DxszDys3q7Gb1j1bTbOdxNqBLKk5LNFyxUUtGjEZZ3UNIQD7Xk6PYzcV2HSITNx3imaYfN7udDUAdtsS7fsEE3puzKoSWUyQTq6/0k132UbJPeFG9vMNam4/r9UWoBtuyEPX9gQsN3GVINpv5Ee72bupDW57kg4HlbVF1Kz1YWD8N2BEtN/Mt2NcuQqd/9R+8D7ucPjNfHHLjitv4CZiin5kMcmMqZuG7Opf85XOfg7TxH6hHSDevSeHdqBbfCK0jlWwX8e1vWcmgWYr/fav2M8dVLLQNrmOH+9hQBPtN+AqYortQDdJshg4Hm9ei0C7L9Mmjm9cAjKYhuc2cpBxYu8Buhq0vcKdJmhn+PmOOvCSFVi0QywIAO26Opl6ounQdbjidfELBmiCabsD2Mx7zdy8TrtttiN11JOa8CR5KVeCBb65L/MGzfcFjSkCQHFbWKJ4ANm+QyQJZ/bTdp9r/TWDaXZGiY5CvXlokNTOrwXMYQG7Dh7Mc8+2MeKPlgPXppq23Phu62SbZ45cEwzMQB0w2zmfgjEMyhLfjI9zuwMpW4EqerliavXCfvqBuZ6vwoWHfQe2W1He8SY6R7hsmaTNtNw4zBX3ABNxqevEwJ39M8/7HvrBUMTt6rbhavf2Kpxyh1nKyHfGhvLNN2mL3LbHqDP4p+Tj7Gd4cNzs1n7+HTM3UE5s9OnCxUfTZwsfeFy+eI+pxAQ9GanEw9ON4DsqsYMgrRIbX9UZCXaO2TofkjB0mqwH2iN9teG3hTGyMsMdoLVDGkpajccyOfC2bORvG670vp1ltjPhDYQvspstj9yY7QWxs23LX7fSuI4rYhEmuOJgRGbplavdPLCsbGZ789sm2SKZgW9ne4K+PCd3GdDVBoEXV6zse40j+5HYHl0n2bWC+hCPnFvfrtzYoLNgBryVdXmZ3/rE8hZLbe9sQD6upjPdRevrTtYChPqQ0ythM3pkJtMOHrpBbdMj+UUMupVRZNV+sR0g/5fNdkRpqwjlMwyxfN0AJnCnA8V60c5ijtqBjpuWdbfvx/Y+5K9L4n29ccauI5bar6tTa4HkZMpQHtuEMLh+1gJmRVtOFfRFdMW0F53vh+s7ymmDe+1E6mQGl3JZ3snotVnWrU/jgqLj1eGIuHZge63H0puj/HV11tZps3JGxgdtnsJjBzziiC6KcO+OchjJvbV/BLiTMqke5qDusbGuomX2mqnLtpl1iXaAXtFWPu1kRj2JsHBT/SbSwEi2MgrZJoSVn5UCtDYzyCZNwTAeBxqC2dTJ9lkF1m2dotoOHLXoLw1He25N8FBLb9sj+wwEV1eU+iP/DEaltd4rK9EGXMRksVgM2X3Dk5lDMpM/hhup37Jdr9YpOxkn773JwHEYDK6Uy4QrtxVYJiotpmCLsrJLpW0UPJaL1bpsZTh8YsJumTaYJK37nqKU52K7/25hsa357OGDBmYMvN4B2aJFpA8grvs1xDHttgy4h7pv/Rjwy7Oix3RK3LadfVbzasWt/9jOjst1C2O4/m4f+oJnrxWAPT657zI2cSLIKphy5fa03EMnMnAVO/Gugu5+m9l9VwQOV7blTbgRrmoatV8s3wBTeShzeBDshqeAIwzs0xUoArBt4Hvgxu4hD/bzH30kPT3PckHiS0AyGOKeJ+FKGtrAVSPM/DZ7EdjgaL4t8YbdYcr86sh+m3RC5RATmkyERJ9qNmnfUir20/eVJvbTdsDyoX5uOZ37dvGjFum28O6CqSaWAVmcqHHcoHEEY7/6SQndJjSsb75jXTAG++3Gp2y7IFyZ8pN0wkHgnTxG2L+WDEOQ/g73qt/4h/XAfvcguxCIuWxllOwFKqENLIhqR4u1rLzVegO0KXdTRmkexGXjgKcBQB2U1YMjdtatcEqN9CyJgDvAG5exWh14a2dpa6tCxfzcABDa6ZOj4Dr9XLZV3tEwsZ13q3nLce83USx1o/qkfGvNPhbsskN4dM0GB0QA7sBNuLpzKBO3rYE7mee1FIn1ecVqvJo+2I/s34jLPqfEfq9cP3fAoJ9NvuDW7hPVLZKs3Ij9pG1jMj4IlHeLpH4duXf0K/vbruZIXjPeXb5mhRZoAzBxSx0E1QR3U83rCttWM2AQ6AWgFwJ9F72mbVgpn/ZdbBvarjFbjFwqskwsgHWQoxy/AvTC2G4A01aA2G2DNkz80+Movua3V3J7DxGGGy7MwLbdlbSt8sO0gW/Nf2f2ky5N4ya2qWIb6EpmGfAYbkT+Xm0r7aEM2r4RNl3BH9hvxJX1GwFcHV/5st90jLzZ/isqd1/hzcPHHf5xN+utphNtX5x1e/jdk1cuxGzZpzcdHDkFR6/ZCuS2MAmmTb2Tts1l61rzrGz2t+mQ2RkwxZsMiNKwyVMQhivJhgtem6+DN+DKdL4cHotpD6DjwMMMyrBtrTPL0tla4cnkLdlaLIzWkY8DIskrYhKb3e/efnH6dBTUf9oF/44U2gDIYYrlar6t3BF7+8l/7CDTrobGPNkKxUYXnitXhipjudrMksvd+LrWv4n9Ol82pY6+tO+hfmYNfOtU2XTOfneuPY9ZO2D+Wg6jr4v97LsIHSTTY9y2Zj/adNKIGeGDw9FeoYGx9pOBkFxkmHaAzZ/627aXIG+v1iuzBejLpDiS9rJebx2tiqsb7I+zHesDbq/m0V47ILy1wSYTl0GQ/aCq1XUH+GaYZm+iaWeu5rUxyorZz4zba7slB2mAAN4Y+0a6LQvV7xQSh2Ol7bNJXGHGkbtHuq2JvjNuP5ttVxbTjjpAROuNt1F6+aZTeO+ts/8iptKJLNdoL5i0vNJxFFxU2graGjeuUxttkD3XV3AJHi6Dge1nxu17vVX7+DLA5636kdSuyo2qYt+hLu5GXt8sxDKNQuxbnAj6/TijR1c16jfc2mQmu1VN6QNo83vT3n7DvIhLuxOW/ywOCoM0YLvHLf61yd3LO4D7C3n7rmCyzxn5r/HX8tu84717bsqnH0wmO4NvAO/11N4bWr0/8gX2kF07ZDHB2K7e3/ZSt4Qveu2fIPxSZPi3rttPMTLg3nOz9hNs9+ZTxGi8nVT5YeHKc+kThg/cylhXMZhMJ5Sd9252ZEYAg1o6uUiAzpgA0BG/dmpYZ0vKbFbduiMz5dqJrU22DnCkRTWtG6Tx9taXxyjL/YqJYRqtuLKy720mvLRU0OlO26GVDr1+lZHrdhuDiXy80SRlah1+hynrPMt1IuB+Ny2EbWGo/ZUHLYd7YGzw9ivZ5FzpjJfg6DrQ1R5yTzDqVxoNJgC6BVL581RYYFxvCqbGjXCBfmXlHjHubSXO2kK2RikHlZOd3QdqAySw6ZjKWEDk2olT7OuDDjT2Zj8JdllBFG5b45Wp9yvuuel8W2wgOoQr1cnennaCRLhSPwp7wxipr7eoJc88TCRfaz+djLH2CxgBj8naT7iirTQNm8Uk6nPfFi6EK1K8AdOe+Lo0N5IXEdqk0Wa2YLbtfy00+0m8t59wY9JJe4mK5W4wantx4RHNKKsdVFnSQaQ/SENW6KTZ86cywE2Q2G9NKSrHOxqHgh+M7XUvncZ7K3dZndOY67S3lbpaDiZPK7cBp7c/ehtan6/gS6dox/bKoPte20PWbz6hDjzEHzmWU+O289budZicTOBqlzan1Av63jBxdTt9NFZ3bGVptmjcmHfOOszU22hkv1pfCQC9CldVZq/+JHzBNprRBgaTVPeZ/TquakbGfjoZCeuDEuFmF30+jW1Q+gvw6XZ2fQk9VZRr2e+yuk11V0D1ZTlEAoB8nFsPjInHX0Z/ZakJpvlxdmYfF4zSntzrgEjbY24cdFvSUTMfYLLByghXFpONW65QMZlVyOJPjL3WfbcnN+Mq2E+46TBZrthyU+1l3zmTgaOsLNa0pd5vdTJZAImJJlzF9i5iMiuN+swEOoyys0BOk5atqJ82MIJP/7jhw1bM+H6vjV9t3VE7eFtt5MoeifabqjO6Drg4XfJXOjy7iZtOItuGQqeECES18yUrVADqUVf13950AwAT5FQsCpj0SG3bgeaABWiYTIdWn7F1Gx7tu1k1k4dZ40ZrMgkmNIy+XxPwwK/8uM40HFcl65aZbveUDfvMrXNtuTIdhhFXjp8Mk3Tuq12Z4bd4VSxlAnkzXASedMuZtR88Jr1t8Ni/ZnDI0nmRh555mDEA1K1mxX5bW1mxHU7RKzhRfV1n7aj5qsUEi635E8ugX+4Zn3J8KSbTy9q29rTZ2+ER3l7Wj6QekfdtVBuq3fbKx946CTUjxSUDEvFz8XUiVx8dN7EddvUaPaZov4pR7WXs59um3Qzyqfl6bTeK+faEK5M+cmV5MnWODb6SE6t7FH641Xliv4Jofuo2LrV7Zr/4N/h8tB+biYGTgbgMiMST5V2kfd+BlzI420BlrLkJ/7WcG/TUy7J9E9rmuPprOyJCv9kFTDuDfr23Tsdr4bws0lF7/uyo7+WwDoZwIx208C4H1vhtfDLPCMcROU4Z/aw1Xnfcvpdvq9F91/c7SueMwBth2wh33kE3apgYjRuCX7mtPDHkNU2DqZu8IMeVbPncfq7fe7sD2PfWbG0lU32XzPofFxyNE1aOyhhO7GowmSobV1jch7wZoF/fcXst9VrsRxuBNy42shMU4keCWeZb64SG8raTaxptXYlc1Sd7498UoDvrkDTDGjeFG/mr5ovWeddOPMynHkpd3e7lkAjaGXS/g/aSL9+KsTbacP/1HfSLGxjUPjatvhDKK/4qkGybUTGVjnoxom7P49ou36EDjdLZ33UgUopG2LYN/DPAN4YjfoTJTniaOuS24Il/MHRyaZMDVKS+76XuEhef1nm4CmPbgP2V9UvudGA/NjxZ27mJVMuNjct26jva1txqZwZKvd6A243AP+/YN/L2U24m9rOYNF7arq1iEl50Qq4OqDfm8tvZAZ86xJ37P2r4mIHZvoN/+Svw7QbabmU7ziadQrF8bblth8Jt14t7BEyHwlzS66aDgX0vA556befyMMRG4Jdytux2uxXdt7APWkPSMeToFWyucZvZsf/2O7Tz+P1VO0YMlA6atBa3G+h2qzzVine7Nb3SSZQnm33nJeKynVT5GwdBdQWI7/e6urArJn3H5uWl4JIH+1affK4ho2YHe33E1aCh0xWpfS+NoXClT3gU+91uwG0rXElDfwsrd/owxYH9IkTjR/L7fi88MYNfX8sAjAHeSqNN1acLVwxi4+Pi72o/auV22Go5OWCRCw4TF5/a92K3fS/vc6JiQulMFd++gW6ADqyls2+DYkq4YcN9PPDGYnI+tYP3vU7MVNHbrTwct63YbtuAl1vLy/qQGxCNcBkSnT/ZdoBdO8DM2F9ftfj8cgOB1H64STmrbtv5k86748Xikd6u4TIOzJSvaq/K1Q4UXyfU9nIzmG46WABx6Yi7VcdJG6DXTHvruNo9LmkH9r3ME7ze+/yOws64/ZXv5dh3BnDbsN8I28sGphuwA/tWur16vHptytzx3hZyVn+7ekLaWaI7lS1Edwb9+hW3X5beWdlOWezMG2F/Iex32R9XB5Cbz55sfa31xz69LAZ95yp2KIGy7aq+X4bXO25/+XtppjYC3TbwrUzo7BthuxF4k1XbSkbc4mR+al8344oNcD0BsPn1TVbvfr3j5S/9Gttradv5p5eC6baV7Z4vhL1+X4DrgE2HKEq/j7umzrphKIN2aNV+jNvrDvr5Fdsv77j9G78uqwrfXsA/3Qo2AviFCyagDAw3QN7Jbo8A42NAbzyN73X8mNiPzeCp6pKBruiQJl+LZesk+8I3P2n5ixAzsKFtLQOjHbBxZ2zfd9D319Je7Dtuv/wZ9Isb7r/3F7j9/l+AX24AyWmV1PPvcMEHi4UlaRhY6sCjDTDotUzG4L6Decf261fcftpw/2kDfvsb+Be/aGOMzauLXLk6pKlIdVs7yKNMB7P3OulRVxe3n3edbKL7XjYffLvh9bdfsL1szX7A3H4OLHSwqjxZIfHh6nBlQNYGZduv73Wuotl42xl3JtDtBpIj/6XKD/2VvR/JLeVGO4pNXmy6l4G+YMLrjtu9+ClTbSc+c/jk8FbDUwZmRPQfA/AnUeYZ/klm/senAozy7k+Rrg/ezW1RqRkngtSeOHrZXNe4+W1WX2SFQ1epXu/Avb5ogBvw+gq8vOhMCO3cBjoFbo4p/OwqrR2gwXbESpRloAiUAdl9B+/3MsCQWUV594K3fttXFyxX9rJcZ6df70VMr3dIx5Lvd+iL29tWvkXntgqGp+7Ufhkmi8Pc31unn5mLjQxXvMs2rnpwzGa2eJktZ53eeDG1X/hrMSmuOii7vxbemMuspYCWbXB2+1MHwz5Rkl5L5tuCw+ahA9gyqObXe/Vh1A688R/a2+B+xJFVRzFh/Tsa+CvGe6t/+17sd7+3g2LEpwh1cGH1csPE8AOiiEmx9w/MFKPZYrl/fy24pHddJz5Kh4FA+9a2k2l+1rcMkAyT2DJ0xPzq3e7bJuFKVuskG/GPfa+DNNHTOffEfiZBxo0tmpmcAe/g79+vP6Dv98JlnXwi2uqqpbxbVovB7Vh46UgUxo39yVArZe3KaLYmo3aigbIV7td30H2vhxQRcNtK551rh+kGdb+inDV/q5flSuwgGUxti3RoAuqzqaw67Nh+dQe97mZbap0wVP+iZi8ZnFUwHOwvbpxh9twE0NLB5aKDfvUztl/+XLb/3WQV4Sc9jr7sA4P+sx8ybvart8l2VkOH1zQDWj4ptzkUAwzg+w76N38F/Pq1TOIQQN9uygnvKL0RNZI/Dr/r04ZmxTYlslKrcVNWyDtUlWzZ9iUCjFbeOO+mdVaet/B+Ilbxh38IN23wo6swskXv+w78m3+57nj4Btxf4LaAM/QAGe3odwUf2IRhuGDoYKPWD7fF8nXXQ3aw76Bfv2L7/h07vZS6RQV78+GmSDjVZpN6bvR5KnVaMGp/z2OCcCW4GKDvr6DXHfytTljqKdBVif3+nqFoxI36mWlTJW4HZeI3ZeVzL4ci2T4n17ONZTWUysCzvZ0SPkmhetC1N2Kjxg2a33BrE9WPJK86SNM2yvTDvsLbhocHZkR0A/DfA/AfBfAXAPxZIvpfMvO/NJJhZvD3V8ieFdn6w8Rtyx6odkgI/q1dyaT+x9YS24l2s9JmQCYz5HXQwa+v5TcA3OpAqBSszMTVThHFh2FjAK4103eRtLANb60M7cFaV39e66qLrCi8vtYZptqgbdJB3ECyHyOuupjOW9c7iVzpiXDmnixja4fwDtzv2GXAqANHBm9bwcRcV6YAfRpyxULmr91GGDE5fOx5k1l7FJ/BvXRU+V45kmuM0qmT1buNALy0AZGsJMiMj6PnwH6Kpf4zHWeNv74Cr3fs319rg7arvZhRVspAKO8G1ZVeXUShNrjVh3TEaHwm4pH0MiBjLgOhe7EhVb40/zrTDdzqliz/ravmJ7UDuMWV6aSDqL7EA65QJxvuwPfvZVD2+qrl5W0Dvbw0yu/lwaN1v5x60OxnB24MPyCxPj3CJL5V41wHZfz9O6S3T9tmvGLTmXA3eeTebxTFpmOmA37LVf29NwzMZkAmbdP9XnDd78VGW/Ef+vatZCMDtX0HkVl5jYOsLsQ6aPny/9RmZtDIP/9cMB3qSTQzg359B9G9rProgIGAm9S7dppeG4Cyrlhq58T1Jk1Q+0uc9Zq+zP7zjtvPe+kQfS9b6nnbSudMGnhCbb+22gmSremeMgDm/bPY8+4xMZtOrPy+l3/br3Zs9710HAm1/dhqHdwqPVyfQe30QJ0PWzF/xGX/2ndMKle3X37H7VevwM+vpcO43epBKKXd34iwb01x2YZVeJImXwdJaB1uh4E8FuGo/DVb+Lh2qn/9CvrLvwb9+mfQL1+Bn16K3MtLadtoK6sL1X665ax2/OsYqtgApJ1d+xhwLR7D2bDr1O6m3tsRlAzOKOZogplXsx3pTK9ys7ftjXYrHO534Nffgb/0V0C//DX211cAO7aXDftf9QvQt5uuDHN9Jy+ao3ETbDT413C031xXpW6yLfd1B/3qZ+D7vTwrqfgD/foO+u3KAaFsf3XblBMbuOCfP/JZD6Wf0Y58l3emvrPWMbzege/1GcllN9L2KwL9Hq5b51EGRreJ/QwXDLTng9qM1SWAUhd0oLjvZYAmp4y+1u9qyvvPtzIhQzuA71z6EVv1V3mnMkOWtDfCjWI0mCD1axc/Kri2171uq2bgtU1ifoW3D89YMfsPAPi/MfP/HQCI6H8M4O8GMByYlQ71vTiJO8q8dtLY1EqZYnPHUUs+C+jESV2HGtrh0U4Hy/scBGz3NhjbtjbAqBhdZ1CfilWf3Qttn+LSgLkBI3wn//6qqx1gLp1FvgEvAN0JuMvqxtZaHn0Y2A5XiGdcsfnh7tXOL1gfjDoI4vpuIO3ltCCCvgOnU8x7XYXhlp3qW7KfwWMbt11m7OuNe1uF0Zdpqz5+La0MybsiZO0XeVmwX5e+3pJGTPxn942XbtdjBtPWPvQtHTkdjA3slT0L7OSDBOtDMsgW3651zXbcpZPJZN5907y4dILtQNHaMPpaIa3nSgcf5p/BxK933RILoKw4ojgVl31HrR3QlcYEk+hawSRp7b97404GsPLeDFEdPMpTzLYDVq8ddM38XWQamUWqPjhdm2Bt+vpatzMXn7IneiLazw0Qan5xBTZbWZP7tl3Qd14B2nfXDriDZVYDlwc/A6D9rhWWth281wk6qu9u1dPDuCRReftogDFNznVL695FIcZOtUP9XVanynWGtF0b6Eb64VlI82MXmIVrmawz3KcMs7le8Uj5brv01lAmVKgNVvleT5ij2nGq9YErLtnhz0KQq6+ev9kYwXUwgVI3qK5cfn8FXhnbC8rK3PfmdxsYfKtbnTb4CQsGiLiem2MGQQZDN1izsOukRvN3aXPr37/8V4DXb+X+yw38rXywq+AXPGiTOcF3bDMxqhYZRzooqRhlLAGUutw2ktXBhlm9czaw/mwefc4ONh58SI5eL32a+koGuPjQX/5lmez+xQvoV9+B3/5FEduaD2nzRR6SK7JrF2yoExaCiZuAHqbCtY9X6z5+9R0EBr0Qtp/voDuXVVigfhvQtPGRqxjY//SDN9suA3pKsPRrXovusn2YQfwKIsL20wZ6vQMvsg0W3cr0CNOozkdbSl3WPgS337ad4u9liyXdCPRKIK5b/oG0O5zpzp6K3bORQwLTFJXnz+7eifvM4TflHbNnnLHyNwD4f5r4X6jXXCCiP05Ef46I/tx3/FouutaQzOqZuVh/JIzb1rBXWG7WloeoLgcDkENF9JsnbDu2Bkf9130M2MZDGTwuanHb+rsymyV0eahvFZOE+sB3OOTBp7X+oJpartz6ewjSuaDAnQ7Yml6W1R6nh0JFn+DK7Bft32EC5LAGmcGW7ZVceyv6Ho7kFzuuUd+h/UyamF7ejUxmk2yu5OTI2M+WeyCchcwHtbPR7Md2q6PFkpVFro3sFzHnwEznx/iQxOtEB3mJhokB2qKvm9+d/RYxuYG5cTx3yA87kbgCPW0HYnzFfmZQJ+2TX2Vu9uP6X01X8/AnnnHAQD2mjCuy9wGd5ZV6b/IimahanD217f7Pr3+lqat2YKCsntUVNLa+UwPr9/UiYIN5jKAO8MUv5bmANkPdUrZnROXKqTRVLGJ0PjaG0n4q12j4NgLue3tfSdOabUnyjrHkJS4qHbquYtmMkHPV2R9qfzlykTSO+i7vpoXgesAG2QxH3AwGYcNgq6tt224AfvmzDtL4vgMvL7V+oKwsuk8LNL3OfrFTeoTFiFpuKSQkm9A5zUSPmFVgs0+v1bfWUZKDkcxzWtvYn7+3ARIz8IsX7zfnqlCfwF6jOoBxfmK8oWLiva5S10Ekf9vUb9I6dQRMyGDhpraZzt9LvLUxVAZABmNJtpVbIPPuPsZ1KuPIJojPWNt1kjZW2m95H932y+rAXw95eWl5slc44cf+tJgCLrUj181Y5p6dFEkGep8uyLc8rvz7ROEZA7OlwMy/w8x/lJn/6Df8QvdtayCg/3idbcwT4nSGJOkk6DRP8yaWRkplZQagOnwc/CDoXbVdnGFi4/12Zlww7XUtX6DtgYnuIRfyP+owOkzcMKQ4TRrtFJb/hZFGsF8FNeJrxX7KDYVOsuXOimaD9UhOdv8gZLxwxGjuyeAn66zG1RzbQVnFnOVp/+m1cD++f6a6qLef3LMPmMjVCOKIGwR7Cabgz97XE0zDuOR/xF3094aT46oeknZAe0R51ukA9yg4rti3TZJvN6g+6iFkGGydToH0/t5QtZU8WVXc9+5dplmw7f5PL79dYVLzNe1byTtlrVwMaIdPLrgx+qS0Wf0lQGd+6ZU7m0k7pwu01KhhMh8kjgotxiM+tGDQRxPJhJL9ZhBBu/dqHhKUNUhHjX08QzPjyj4qAVMjZUV5b0p429T+zNCDJJqtgGm7H6pvh8n6osElKwV6hP+vfgZkC3C9ycymGLYTG63G4S/yquOAwVch86ga1TrrR6ptpeqEJjQ+t3k3pRN/BurvO/Dzz42P21Z3QNhsQyWaYWL/j9hfLzaJmA1Z8u9+rxufygQqv2xOhXsKrGASPbE/B/8uoviN9vWkT2P6QPJo2G9bmSR3daxXm0Hxbai0mx6T1m2pZ+aZZA980WcSSpuzb1RW7B2mE+2NBag2kQNCJBGXVz4EoPYhBFQ08ld4y/CMrYz/CoA/bOJ/qF4bhzrzqoMz07GxJ9npzMK2jSsrAelo18xGa7WXGUDpaNVZFDlgg15uehoYA9o5s6fkdDpKigZuNJOsDy2DSzsosjWxxm+3WvSCqeznr/vB5f07y81hSxaAaNIq5zrtMPxUjnbSkw2JyxYWqpiabP2PbIWzrVDsTMfpOntsvOS3Uf1+ksVV+dluAJXtPkzVNhuBbi/t3Rv1I8vTKJzgTzBqZ138iNvBFLYc9ZRI5YK5vUOpvi36DVczSN2AKcibmVOS/DdziAzBzJ4GjhlmFj7cc8Bsp4aMnVud03T1wVLsVeu+zGBW+XK9rshweTQSbUFnJCTGD+xI5kdtX0gOVtg20LeX0g5s5VhpEluO2gHrV5GrI5cynDG8zXC/F85uG2jfChe3W1tVQm0HyLBtZ8PTQse2KrRTXbtkxExbCZSTRcsW2Un5BlD4VuxYvhtEbdts7bTpBB2jrXgwWvsov9FWkaaTnRwnuSqOjcDfNuzf7yA5eVeCvLLn2rLacTG7tFtdNnE3q91UahEQ8NZOEVdM+8sGemknp8r7WryVOsLS2dtIVbr38YzOLJI9naTp1kcBFd/f5VTIlw382z9h/3kHXra6gsll1craCGg2Ym54qcU1ranOnX1sGnDre1P5d6Ny+i7/4gX7L76BfvGt+NX9XgRp831XbZfIv+/FKN/6IvTbZgMkSaOLHwbnTuqSqtOVqbapAsPKq14jLhCl+dE8pc0i4bI9e6l+UgHbBnx7AX7xreTxe34qz5/vr0B9drvnfy1QPLuIbSQUxW4Xc9ipkaTb9ahev23gFwK9bMBPL6DbVrYx7ndge9GJD/Vt6ZoMuHH2oZaWdI67caML5hvqMxHthGJmgG9l9U5OAr7vwDcxmOdl2t4IfouTehmqbWr57ATre9M7oW5LJuBenjf6pSbXd6jcs3A9b29g4loX1WbGL6t+tWN9BjHXdhDmk06fMTDyBu4HDM8YmP1ZAP9OIvq3owzI/l4A/5mZABGBfvFTcaqXb/WF3XIkKOQwCdtRcZ0El1G7nhlEOqW8t8HettX3pFDuvZSTGMl+u+zlBVSPzS8YpVNE/p9iirWuhvhg0L3KN32PRI9T1+d/fdft+yvw7Zse+063W8EkW1nqEfrdoEVxDLiKNXiXzny9t6MMulBfEgZKx4UZvN/A/K1+3mBTrvT3bet5sgOiEVfWfqVH1A7sYC6zbS5fgOinknxn7DuXb/uIDb+9lEGaG8hR42NmP8cVt6dj7LjKCUUvANhsfZUgK0PCifi2+iHl9rMYjwaLylsd2Eun/qW8yKwHWMiBEbVh108JyKSEParf4iB9UjR9vXJ/TbgBtF7jXlxeB2Xfv5tDdgA9vEJ9ffM2k/tCSbRfDrDFxXZ2ZU/rvzkSf6tb92reJL5d2wXHldjW+dSIK8OT9uzQtnUKT9I2VYx0u2HfbuV7MjKYf7k5HFoXbVlnbYKL1MezcCHp9zIlL36ip2cSgfilDKpfGPiOU4GJwL/1rXUwbhv4RuUY75etfX5QOpkSZNDpuIb/F4MUzwwcyorkppPn23cGfqsOeKoefqmY7HY90VFpJqodLTcYJo/D4HKd3DCA4Vpvy6eeCLjvuP3im/LONyrvu0i7fyv/tCO7EepJ9dCONvUY6ARXcvgKfdvAv/UCvpf3XfAT6TZG/umlDdJuVLZaCR9b40YHEYYr934Mhb8RkyRmeXVtw/57vgH47XI4wfatPIO+3cB/1S+Ab6Xt4w3ArQxwLf+ENsCzJ+7pt9kihpH9NrGf8QegHWRBoifxVVNW9zp9V3aTvq5mSMe9HLxV2/2dsb8ytm83gH5R/KU0IqDf+ob9t37C/vt+qx6Xn/mux3XYt5W0tb+gA6la9oKxTijJoOSl+sO3+kmDbzfcf8838E83wwt5G8ww6XMZ9S2Q+lbfhnZKcx317gxsdSAGoE7afitbYF9L/eJvN+Dbhv3bDfsvbjohI+3CsA8abeb6NKY+1lVnZz892I7ArzvoW82D69ZcQsF2I+w/beVbj1qHGldxEJ35K9l2fiNd5eQ7F8h2guWG0sYDZSvsVocJ++4G5Z8yfHZ8i+HhgRkzvxLRfxnAP4cyh/anmPn/MhUiagOfbfODItcpJCeT1wi5b0Gh74SZzjaRfAtmB9V96QBMp9l0tLcMR6JTFQ/u20ors0lAXU2oBw7cZCAJ0E8vbcZeO26Go9iZ7rgYccWGC5iGhjxXwpEc17/v9Vsau9fvBkyDweshpshVbclc42bKar/fdqPyEUnXWY6DwyA/DMF+Nn23qkits7yjfGPKphOd0nHWfwP7aRmNfSYmdMSpW8n7SfXBfAO2lxeDHeXhJBMhcTAhkyD6EKIJBsuVzr8FzgAdMNrVpZeXdnpVqHtu0K++CPMvYIyYtJ0YTJ/pwIh0YCQ+tSmfNfNbbQccporH+dQBV5YnNzFS89CBIlzbpJikXPKwtHXPctW97zngSfJ09guCpu7pexByQubLSxksng3/f/b+KGS/5msPg66179/7/r8vSWOTJjW2ibRQA7ERT2JOPTCmgpbYakARRCsEoeKJtlpjoScFi6LUemA/BD1RVMSYQgu1H4KiWMpHrZi2JxaLWBHJgSht8v3/77OXBzNr5lpr1sze+77v57mf3/t/5uX9PffsPWvWta61ZvbM3rNnS3kiBKAMoLYy6LCBjz016gNaagug98zq8RGBwj/TVPil6aXOslJDygBW7T23qrNNyuzdqY6r9YuwgThhqpsWtM+JJMlNnhgTtOovT/n1W9Vrg7g6Ud3tG2bmnxZz1S6+m964ot8DmnHS0p9USGtB+q1MxGSXPmmtk0W9ofjQeKq+U/RjDQNsIkNcBX+t/Uc2bTfob/4GVN4KFvu2msXP1v1n7dXxQLy0bf/76Hp0HmY8Alo+D9bukUXe1b7Nl9ZIFaq337qGxkWtozUL01O78Wbvtxvwe3+z1Pcb37D/vh9rOzNMdaWJ1Cefq+syP+kkhjpGWrVSH9HY8laREtdlPZ5AfvxWvg344w37b35r75jBbjKEWIlcudjgeK3s2L8dpLTxnvUbdsOlvZ7xQ7Xh24b9h61MytrTahTOGlcHmOLYavB63VSqOlXtUz51wmafCylFt0LbbcPbj7eC2d1kOBmvGSZFmzRL5b5jqiI7Wr/T1PANwE+aPv3E8WR6ynfMVPWfAfDPnBYQgfz4Yx8c2FOFUhv6c3/qRdHvFkDsmw42qKH3ZexurK2L37Z6q83u4t96eXtaVQf6EgfLN95KqQ+M/EShd3b8ToChJqOpl6XB6o42wBJbG1Ttalv1t4Gt9MEYcTlMXKCtcwTguGp1xclZ42pvPX/bQGMvgzGI9B3+2vfVFphcvqtz/otc8UTMft8EbTOU2w0S7eXJoi3t5AlQm4CSTNOtg/+cE4fJhk28tt7pb4Bs3zrm9qRW61OyoDeblFnddteajg/ctL/kO5toiA2pbIJKkw+hXRi3ejW3ZsYf4abJSefG09I2nfAIPUY7V3e9kxpHbQOJGCfsP/NXa3NoeJXwuX5gqzuptuvVxo70+G7lnNS+Rm437LdbCX2LnX33fZNxlba/o9iuIze++PJkdd/rXdqwvPt2q9vlbz6+Yn+0ka1JezMcWvW2fgBAX0qMHoNv1EfYUm9RQOoy62RTmcMkwP5jvS2sCv1WBtiAlgcC0gcCagOPxqt2nsMkuNtY+81qqGzSX9OrDxeK+8vGA2+/aVvQo8Wo3uoNstovtEkZyG3NhYSxN4xOqeOd/V++TYTaBHWvh7cb9l+g74pWfaSCNiFqXLFeW0bduKhUED434K19HS/yFNDr1hva6o7y8ehvZfPSN1Ruan3E1W4D7DYx6QNGHiAWC6jvc1w1prr/DOKGMjHUsoJFfuOGfdsgP5QVAjao1Q19sm+Ty/B0KPMfx1FrJy6vvb+1Abmg8KhaKo3dTauXJh7RB9ZfofSp7X0t7uZtAN1iqBhhG0ZYN1e+MVeuQ/KLH6D7jrff860+RUT9QHrBqdpf72hPtdwkWJsPeNfMFl/hUrRbv9nwa3kibjsN/uIbRMtKof3H8lRKb8BuS+ZCvI4+oNio1XOTU+fRPlm0HVfLDYHyBHX/Zv2LArgBP+zlqdQv6rJdaJk0tWugOLsZk7/e1PImWnl19wulHJNbnaShblYGhWh9IiVb3dVSsf9iK0/NNOkTJ/7z8co+refavvn94F7jqA+/yiqkfbdPRUl7iPCp0yeHdzY9ZWJ2OdXlZiUKtj5wBfrTEAs0GzyiRQwAtAubRWmPQe7RTK5fuNq3tm59oCNuOV/9zYNnvisNOBzNnioax6it32/bkAPArS8htCt62/a6tmh7oVcCN5blgfWAScgeHsjYmv96J8cWzrdtseuW9yJl6QEPHO38t1vXFf0nMj5hHAaxxg3xGf1Xv2/X/GcTQyu8Uw9iyw05hth/pXfuPWXGVfCfuxnVRmMWI3Ybfc/91yZZu6u7cWFP2QTAZntvK4aYCoPrtsROFX25h/mA6tn5uwEK3GxtDfw21jzIdxPHEOt1IJbHtr3nQxcn02vvtKlxQ8L1e3itrDk/9gPNRQGTxViIbcu3Wqxux5X93lsdhmlzNyy0LtNlTHTDSDDGdosjH9s7AFlxJVufzAtxpQroBjctdn0iQt/E/tN+vor29xzE9031fHnRe+v9gNYGsO/A9oPzn9iHqS4k3QT7b5QbZW0yhDrwseVXgvouCA1maSljGyCRLX75U/eXKsqW82y/CHa5AbJD3m54+81aly0zN70QGuAXTEo4ACnrQ6gb4fdIygYyTTVchm7rFowC/XErW/jrBvxCvF9u4rm5bfTeTLe/P9ljzs9hUmh58tN0Arpt2G+C7Zc7dL9hp2WFprdMOsRjRODKJmwNB5z/2nsuRiSFv+NKChf7ditLv/SG/ffevA+2vvR2/zbhpvmX5AiT4ybhavAfyB7OW/dj9rXMRE+trJWtEygB+oYfds/vrZfT+pLb1p5uKPRNgNu3svztm006yN98qUoG8IazYFT/JIKXvN60PA2r3QZQn/6olGVy29Yahr4Vo/SHujzvJtAfekyh2pdhUiZZUScp/TJGs+2+wbVWroS6wV2hb1vvMurnJ9pyXFs2eGNd5JPkppd/v1Bbt44bIDtxBbuRK2XC+gOKfxTQXym2b/ZOqX1eAtAf6hPqHyrGiGnClUIo5mzcgzbJb0sZ97AEVEq/pnqDvmm5LFnd1kd+pXdPr5mYAWiDQx6Q0qC+tDUKLh4gAXQFoQ6EBmHlGqJtLON6b0i5y2jpRnVHTG1wzx0p9eIMK/ZtdBenNWCg9+bcsuLd/XaBJRxx8mEdwJZhiiOvjjG0VT/IgdIg0XRaj0e9ecZVXO6D8BSKb9PM/NeooSsbD8rN3nYBTOyc+i/EgLPdylS7eUBf/0h8GuS42GgQqDTJJm5Yht6d7Hs2EaZ4x1n6D5V6p65ibQscGlc8YaDdCuwuYKPBeDKOQqy7eGsK0JVV7I4vw+TzfRKt8JN9JR7HfqDzMQ5kjmLbF4g3OqQ9vSgxtbVyvb/hOGK+gDZBB/mH7aXYbstEqiHBs6WNtLuYwSiXD+3Nzgsv87PKY5sIXHHfNOiKO67WWM38dzHtG9p7PxY27X0Jy9vgWhhltHFcWjRGZ7fE7kGVQXh/CtVkrc0J+nI8w2S+B+mlSVmzgTC5cTxjFED6S2FtGZHp30Xa/ZpmO8W/0oS1Tyb4iUznyn0nMGDq10XDEN63qmVUyrtvW91OvGDwPugTHuam+8/u9Gf+Y2pTrlSGc1onCvvWudqBvnEB6itZAzfwONB5be0oXE4U4K44959rzZHXYA/bF+ytnYX3j/aC+XK9Ulg28tsupduv7Wi/wX0kWaN9BKJhovqVMtx7ofmHBhOtDdD4ofax5T3jDVqf3um3JuR4TDEOZFW9Slk2oP0t71C51VYb2iTY3rfSrWxI9PbNCKH4TDAxXw4Vd81qy6aZmzjwqksKb+iTcC3jXrsZtN+A/daRxJjL/MeXoIErwm1LUQ07L54oYb41OnUb7f90KTrkO00vmpgJPV2owWvLNuIAlgaLQGwcVCa7pW8XJR4UylYaOS+l4mU5tazKVpZPtI5dqJHRhc8unKmZAu442o42dMfC8AnQcdjA2p5w0ETJHsnbxcTyjhu+8PFEonGDzv1waSCfGDfuqk5XdLro47a1Ds75hC6A7orXD3r/WR+ydz3ljk4YFLL/2D7zX534OP81GAv/Ddsn2QILGZfO8lbrbXc5wshPX+txBfoL6eIucwNXzbftqRJCIv7bEek3HZr/eBTm/adtaZx10vVc82Pir8azcdZPlTt10i981d7mI/Yf0JfEWjWMLfqvxXfghlO8MNtP7YO2UsVG7a3+w0uSzIYaY+Va3f3Xlsw1n3HjW3DFmGu7UnS9ouKfbFpMcT0Ct3ssNnHc9e3+T/ZNrj9A91/to1L/Rd7PJClPMcTEpWKvNLf3ywC0d8EE/amo9NbouiSuP5joVt4IGrf6bcNelw61pzl70be3CZk0rku+6rtVHC1WrR9V2J1qBXp8eHc39/ZQ7YNE/QVhtvePUTFtfeJQMGnjytqE56rz1bihLtctRrV+F9x11yVg3+qS0Lonkwjqx4DRfWRzlQ0Jpo5HmKvG34IbbuIWOOS/HRUTgB1lEF6WVVbsW9/BsPuzx9fgv2rPwM3Mf0k3yHlgIYu+V4grCPQnUNzHWD+ptnEEtSMItrcq/k1q3yZ4+wFlySkAbDU+QctWZxjZGO2trn0qgcWF/aV1RadAblrev7Y+tQah3tCeAFl8NL3iuXE+oPh0EzLONxydGxEpmx8CkG8oT/J2w4S2gcn+o8DeKSs2+bY0+M/atXW11l1HrhTuvjtfQ7AL9FbGD9tP6O3FoH1DeRevctv8Z4YG/3Wf0fnWgOq7csH3DXeNqa0uKsMGyBvqTRB/6fqMSRTuRsj3nF4zMRNpW5PGO43tSYKNKcJd+2EwVvNlIGI9KH8UzwYY1qK0djxbr4vv0PMARPva+bYUCf1i1EBtQdYNvqjF0sBQd3WNR23ZUiZrMtvWy1aMItrusAj3asyVePtybqRxY3zaoL1B4ImHXSSobmVutOqPT11W/lPS41ZQKpWpmG+hp8j8B8UOG1TbS6/198R/YsfIB5lPtG5x2yLXJmmZfWbHEOu2vI25Gf03jW32CflPGDM9mfNc0VXOZOvAxb1wPzypZi5inrmKsb72n/lFnf/68TIZ7u9OdvdlsU2xEPXawE4V2G7dPey/KTc06RQhbkMMHnDlnkc1vcj9x8m4mnEDw9gA5H1T42bhP+12WV8lghHThaRSllW1GmiEtYd+ok2GgP6+h9Y2ZOcMNj3sBAB710epPsvrZoM0hewb3n6jlrHZEE267cPJNm8edme7sQK0u+88iSt2B6rpvGo1oL4ntv+kkF8YCQpR6dwYrraFf79pYXrg3o2Ba78C0ptxQxi1+kT2XlBr+1FF3aCk6y27S1ol3X8t1Q0yWpui0w5T5GbAKOVVaFHcdMMbLVEDKleNG+3vnlWdbaBt/o3+40MTblKM21i25XUhq10PO0gVZYW6Lftt5KAuhQO95SHADrxtdM1oG+ugbtCCMmFL9Gb2taSFc6G/rR/au6BIzW/lmgugLKdM+o3ybmLhrG10Y2154fteF1rh3k11Q7R+mkUqn9q46ef6U+FqsC3N3Wr7om+/Db5nUaOrYbS+iZauA9A31B2cpXGnqG1CSzt7u1GgmK66HHeP/gvcuJgTz5V9cgNqN8G0Y65tQwTl3daNbtbv1U9Wz2eelVnijvc7Ti+amKG/RAz0YLTOs5bhQZcLiWQA1IK85lujcC3ZzmmTKR04DWb44oHQUXPdUtcG8/WHcdXf7rLIHVSzVd15bXzAD6rEKeoXDpp4WJnIletrB258WQEftw6sYyx36iXYOnLTjpv/GFSqN3ARhcxfjoeO0Q12mZsmI24wMPNfi6PoP47ReiLapG1gFrAEuVZfemzivyy2TYbK2nLLFts8eXRcjW3NcaX9OECdf9TZ9AY7HMY6MGptywl7Odf+fDHfHsVjWnHVMIV4Cu2x9wOxHcd+gNsf58/1Vd5/ZreSD9D8x39OcVPrm8Z2hmvoq2qGeGz9AMfGPYk2qShmV5DxCUD9v7f5GDcJBjk+17ozKYOwNvGwp44bFbYnp1wHY+Jei9qSKx9/ZrgE7emIAG0FhW0aYQsoBq5IPlboME3LekwzjO2pRrU72qfkn/aU0M7B8I59W+RthsvxrjYZtQ0dal31CaLXu3mbrW1Ym3PtKmA+4obKupUqwbZ2kyWz0fii9iSugh4LoWbXzku+6yk3aGynT7QbEqw32sP5PtkZk2ZlXb39nda2cqM1drQJsX3HcKexl+uiJ205zEnoFAlbvJBf+2oC7TcJULgSdK72OmGccTOAGEghbnjixnjUuKox2+ZhnQiexO/U5mfcZG03dWGLG/KNs9fzSENBhFuKnzN9B3PHM+l175i1SQeokwyRYB2X5enPOmkIdPTn4gK49RE8omwtCBgHP9RoGIf4sq6NxgG5G8hbyyMBxggqLwFfe69qgmnFldYvvkf7GsaEG8bYrjiJwclEQ925ZDJomED+gnZbgXJnesoN+8965AWmOGjJBnwdGNzJwYcYuZEMo/i/g167aPj81H8SuOKCGVf8e+Y/5pv9x3izybxVI9reB2lPgLg+u9LM/Ndi2/4m7U+8aDs+TX3pR8Ox93ODvekFN14Qs/YXcK0wRf9xTA39QIy/JI4sX7ENse3smftvOtti2fjix9UkdeBT5d1kwd5DoiVwrf+nZg2Woe7JtcUF/Q3+ZgMeOJusrt5vjZOatoyRz4W/2eDedAz4qLko7ZnDIq1e5kLCccI5TMSGGMU8hQFk+S6Y+uVvjXs5zc0prgZs6vqh9msT7LdBkvT02NfIwYRDM2vAGOB4jpVRBTHbMTbIcl0sECqZtMh+nrvZuvSxqbJJkH3OIG4KM6s3mxglRYR4EOpT+w24DlJD3OyC+tRM2iW7LycNeigjMjkXE3MDtGuiAvUGjLqbqo2rb2g3aJa+P0hCZfvvagDV0Z5cVozpk7Ct4ud3CFfJhm5H/rPMjfy31d1ilfLhGvk9PDT7OaTXPTHb6kuFbbBA70zYHdw2mLO7vb0sANcztW1LBbDbRArbh1j6Bdjah6JtIiGqTu/saQRAAU2yGGTt4lSXvBlG01sxtm21zfCt6/LcRIwmm2Nknhs3lpfCR39/Bu5C7LjZlTB2+wauiBvr/Do37L+As/ms5B1XO9pa7yZJf3pnvw3+K3l/IRr8V21njB2TEVHf/zFuUPPNPsORx41yfFrexRzptQBwmLusG71FbhpvhHHgIoujif9aXPj2NviPuAFzU7f79hj7oLuZy3obN82CwM0c83jOKi3g2tIOSN+4wNqQHnFD/msKt7H9pU+gGWHnBsxNBzftb9p7gKojRjcCIFkZuYl5hdJdao51oS2Yq4i9dxBj/UJS0JJF6hDaMkx7WqVoywidFmmnS9qSc9kNAOmH9rrhJCDYvin2t17W9RvC/i5m7/YjDLBsIDgM2ijf6uJ2Zed3bS/WC6TvKmfcqDjZfLLa321rl0fCF7kACLM1d+a1+l/s+7+K8l5OrIu5Yf9ZrAhGrpjXwFXqPz4PqQNGYLuh7xRZMXr/9bq6/wI/jdcEI4gb5s5hpMLtqW8AbT81ymb2kV4lrpTytmTU4qT1I55XRVmKphtd75Pk7EvygRoA/YZref/I+hHuUyvmHX2MY5XZUylBe5ep3RDmm9zalbdxiXGD8D4pyPdaFHVuahnDBNSdLLsNttmPPTmzvqVxQX5wsaud+obbMHI8IoxpFJA9jP92X7cqqv8sdvn6aQ2UlXZuUv9VTDBcFkebLW2s196dMYex1PVu/0PT1ztmDyUp3+dxFyhq0EC9AG0uEJW3iXYD4hJorX20cWrs7awq9Xrg9QAI72bIWFXtKXbZ/BiJOi0oaIO8ap/VoAGWe+5tGPtssk2WGmbPVRswOIzEDWMa9HJnqGi90qatk+llA1eCrldxzX9kg9QOonHDgy5V/86ZMrEKDXv/lovXwn/WS0Gxw/vP3bVTgIeGTq/pIYzKE6vGlYdhceMnjp5XHlCYrFCsFwjqRB3GrRs0+CRiJB/5UBgxKcZYtyQsHO86Nv+FNha5qfX6C7nH6HmldwhNduk/b58ySJ3FOplLV70Y275sHHxxmwrLduMYLnDl+yq70PMVd9YP5NwMfdUZrlTbx477yTuSoL+7QWbsKtysajshOXqqlZ53bgj8sGytq209HgY2O+Y43KC+9k+ubHjyxrL+mmEYqax9mmQH9CdA6Ko8ciOj7SEM3QCS9UQe7R06hzHYZ3sH1feVrLDzH8tWWl3MRq5SbkDcsP8kYC4xLkB59MJfURn812WnkzL0vGvOfF2LGMPkwW1WHM4L98+hz+xjgN4XuO6Xm5nWcTu9kGffneK8pZ1uRpenQTK8b8g2DHpi/6S9LGP0fWj1ActswV5Be/pTljOi+Ukg3mYCp4Df4TLB1n4nPLuqjRvCjBvakl3w+5OaVMWYMv0EvYnWTU+Eudo8V95/tfKt/n+D28Lf7UzdgCY4xOej/xxXCij1Nw0jlb+z5/+49OkBnksv3C4fvQOT+k+8Y8x9Q9sSnuSz312inxBwqxz1OG8KeK26ay2h9vY0boZDeuPtiMSXdaqpF5Bg4AoTXyiibL245piUEfW6Ah1ej4Y8lbnXf+hjJOvyhnfGHKYw8pAj/5Wybic1i7d4260jGg9Kgp+v2ilXxBFjqoNo9pe0y+EQ0E6vj6kVVwFT4yrEmPMfbSJRBxkNU6C515QsGQxq3YUjfbLEvyVgQtWCtimIVMunsdokZjEnKLcwOR/PJyCt34qxrfTEIgJx9iZ9U1QzxPoE05KrpL0t/DeAiXo0tjHcldyA2PjibtRw8Tm0N0H6u2DSB029rN8VkcPcdf/og7DYXBymgANWNt5f2uAx2d12wqhUP2K92immB9ROZoWJcVh/0J5OEzcwbhRtmRJjZA6s0jJh6f2m00u8MlZ7ssOYWv+b+K/rXfjPeDU+pQzsbxf8N3AXuo/OY8DBiZ+kBC78iVpfbL7cb5CYB5BjWzY56YNuZ5+gPQVyN2li7Bv0eDBeX1A3GyPbnM4AWuP5eg3WTd2377ir1l5sXpfjo/pLPSakZavtynFDbYW4GtonQlKl90FLPr4iEp/yzTCt/Ge7xLp+ZMpFdF/ElHBlMcm+iKaanmUQvjgpvp6YPZLK2mdaggZQ75vkh4HcWFbcrSN7Kbb8FmDYqr5pFrpCA3BbfZss50NLkzjQZcx0Z8XKeL1KVfGLvLyD4DE3HaPZ4THJNso2TDLa10pvXm/hRhqmjBvvT9rv112gcnuUMHsfCPkPfclRk6X6U27s3DihjdxE/87t2zw3Gzqvg17fEY6TX4uNnBu5wlUWNyZuA5uI0fwZ6w0+i8t2HVeYxDYAkW1sU4M/LYMQvt4+S43nA67W8UkjbObKYEResxizwkL+A1wM+tva1Dcl9rVYZ584//U25Qa3zr7aN8V+4E7/uViXsHnJlSQou3zZQMCOEUwLSrfte9vwobeTvvQR3qfoT0eklfV5SDVpo63p60ke+Kj5nGXr+Z1HjkJ66DMGJR8x+nzpvrSArssGaUV3x0RczTCh8mJcUQv0fUx9+skY07qsW71J+zoJjy4bV65tVHus4MaYR/95vYTJuMkwas3f6Es3B/5rei3P10vWU41M4ybqga97KAuECcDY7RdfUxxxvxhvqI6XgV7W2hTZ15cyUpxRvxEx+xbdHbqr9lAX6e9rVYyxJ2j5Df56VAHugvJRdSG8oR8wblpfFeoWLTtzNkx07YqXPYF/quuvkaivBqDtFAlY3b3fbzYpYNvg207SStzsfN1jUuzpM50cJm073ORIUXxnTxib/0Cx3Uwgnlx/ahuJMFej/1xbJszRf/d0+1/penrddvm3OsgHfG/WBjZZXijaXdj7vNZQqwPxvsSlVKTWQ1sL5otG0KusV+sFxS7KfMXIcCwwRXvaxMoGSXb79AQ3GrnhK7flZxjDYM37RDtPDdMRNyDMG+73X9DjlrRQj2a/t7PcxPxJblL7hIrahV7GfJx4NFUnubnbf9HWzJ/Ma4xtwrjCMYwYvGzapsyfdkG1i/AqxpDZ9Ag3mPrAt0dbErpqjwsczT7DFPomp5e5qTHn/Hc78B/b1319iauz/c0diSdmjku33KsPOgDkS8UCvS4xl4KBW90AvKF/EJ70cpy1pmKDpKjL3echP0QcGU53Ttpd/B3aVyllmAC3XG9YNuhcHv09x5Tlpb4TqW+AfKObGsF/LtTMf7zsMV4GFlwdY6z+24Fd1X0X3tUTuIixAIQYk7DMN8ZN7wqGehzGULb5kWURyrYDcMvV9KatO26+J1khuzX4pP0WlIH9Ju3zDnFw7fIZJuo3yjfU6HS92cdYWNa1GWrr5Ume9A+1J5hSe7neiqucUycLoE9Wg30DJlsuWPnqn6MYeZ1iamWF8uq40Zu3IdrLy5BbGNl7b3U7/1Y2xmfEpLEuofPa9PMl/7T/PnP6HjCeSC9bymgPyNsjdenBA1inKb7NZh1iq683RLvr5WVtSmXbo5p+0ypLvQ4rYbdxwsLQhmm0rzSSrqfrtfGR2EX7BDczruJ4zHFVr6h83VDjii9WNW+a59yM/nyu/9Cx4aL/HuFG0Da0YHt7B9dRDP6c+BWBxyk3l/3n/xoiewrRMLYYlITXMbaHcb2L7dimj+JVB33Rn+8T26v+ZtYeBeXDuPP2eNgPuDozvfP+hv0X54JA9F//e9p/za7z/jtla5LU/uU4Y1xiBCTbsnNeuk+H80i4RP+7mY302GH0g3YMAthTPBFbiidOL7ftppryvu0HzHVgVAZNbSuUMbal4zRpj6nbPONuhSmzoXEt/ETW+w8auBJpYCx2cEXvEY+NwxP+a5zY8kRrK95/aYyRvqFPjb6PnJnZmvXHRcj5Ukmm1Tn2E/z0XakzsA93c/vVar+ifiAYPqX9IhdgsokYDbIQHfyT6WmBbn7heDZu2vU08JJgdQrqemIf50oXBPHFrc7mzP4EL96zZ/85TNKr16Ruu1Y4M9qskbgijIMvrF3xpG2I9dh/eq48APR+XoP/GJOzo/sv3c37MyU9LvI9pNdNzNq3WGiXMd3RH0eX/F4bTew0XFBSB2jngFFW7Wy9wNgFVsvClFZ2lGWMPS8iaaPkPHc8o339Y4yifhmHW9ZxihtaRqcJNwSDceX29QuD0vIvqb3ITlx52cBrwyw5N+gZ57/KVe6/At5xw/5LZZ/HDWAvR1duXMzxTvXRf0cxd8BNxJxhRNamaIkHLOasrogxxjbLjhcCH9tedvT9I+0xxtyzuCGM9UqVtkexmuaxPXATMVJsj9wctanuP98ejdncvqNY94P8hf8mbepqanfJG9ZOlptIDgMsym+eW15mROP0UtcW+o16d3+v5/a9c9g5oMor5uLDznXDJK4otauulwdZisQe02sjIlpmCLKnFWaurGURjkzvgCnBwbKNx53ywlxF/0mTF8IY9UY9ZnyWn2FusWG+rIoMc/Rfx+WXJ7rojf6jGNOAMbOHMcfk4pHy7BzD5N7Nky7Esu0GIDdeQesjmn11xbPtNGhtZdALDDgax8J6q6ogq9r7SnudO6yQTtuUfbiYn/i6pYyEYcDIhGKUZee0m0x2zL+BYJeBjsX6jMBV2zwm6EXghuPAFkf4duF3qO64kz7RcNwoLrbug9jfRC5czDE32u1zT/ksBokrOJvCBeMTpq93zB5J3AAgbZLCO521HfAobx3sOAHQUifLtmV0Wjts0gOpN/ns/viWyzY9jLHnc70IsljYJ94+tYvfGdnITcS44gZzbqJ9dvtITFYW3EjQG3ldcYPz9gGBqxdzc8q+wA22cXvl09xgzU3wiZMNmPnJwRjbE/saNyvZC22K22PKTYy5Z3Fzsj0aRjkR21NuVrLrNrXyX7N30letuYn96cJ/sU0lmyKdSrSS2w3iF8t0msk8WJGkThuQHMgKUHZmzJYWSc/z4Iwnju3az8v1LM96hAYKtS436AHlFW4jIsPMXGRcpfZVvQ0TvF5BqFvpvTzp9TZ73tolwNnLGN1AL/oTaEvelPREzMi4qfXyO1StqBI1M64Weni5ZdR71n9RtndQ49/W1BFkCa91Qw0/uk84aZB1PlX0XQbtSYst10swav3rYo71xDw8j7tS3MDb5x5WsU8MGz0JyvQ0vIHPyJVE38P/dmVJlxpXG2Gj5ZVRNk7KIuYBE/s+6G1tKHJl9hlP9vtbzk1rC5OYi09mY/wx5l0mmNDPf6X3Ty//wLQtWHFbOSd5CD9ZEHehWMtK7dirHil3km3Th0xP/B0xzvTmsgcYtZd3mKm6d+cm2sdcsRFc8ZSbK7xesE+DrHxQ3Ky4uRw3AbOsZC9wc6D3UFaO/Zdzw+f67l2XfY/En6/mhvKOG0lkWc9TuDnvv0bIvb53evOyS9krSeA+g6F0vA1YgKALPUbD8TagsPqo7CBr9WqoA4l8qMNkGz+JXgQ5yc5FHVyQbdwOyif2XdWrcu5cG+hJ8BfGvOPZymS+DHpnmAduqlLWccZ/jhuTWdjv2u8JHt34PNrLJ8kGp4fKsN7eHkNZVzC3ibEr3CeyvB9cOx/16EQv6xu4orJ70GVyDVuMZQ1lF9yknLuCo+yAKUB2899Eduo/zlNZhznh2tmbxXvSJ2T2cZ1pW57EjTuU8Bj995XyJCL/XgD/fQC/D8C/DuA/par/33vre91SxngLQup3d6yAiO9MOIUOGYgBpIlsz/GdZABeLzTGOziClc8I5hgTzDtLS7/TlMN0zWtoIF6vx7TmJsr6Fqpcn2r5jgUJ61nZlf9iiphS/0WZif9WstF/eJCbMEBdx43P25KoiXHuZ7yojhgn8pJwowk3kmG82h4X8YrITYxXuq13hRsc+S+mC/1NWPenIFBRFle4iQODtf98f7PwXyLr7bvQV13pby6m7OLvJmMJzmzQaTEbY0UnOroPUZYuTTaNGLzh2kZPu3hMw4QyYGZM0/i2h5Jv3maeAB3qgf8tC72DjqweQdyANtcd/HcYIhO9wPEErXUXbpfZgDuRjUtPOaU+ueK/ib32NKqBC+VWbTLakojnybiwGDWuJnECPqXjxCUdp0wAD77DGJOGxz35TvQe1hPyV3ql4SaDtXPmLBO64L8oO0xSZ6AZU827J1k5FKZygB3zZ2NuduzTpteB/R8A+C+r6v9WRP4+AP8AgH/43spe9oFptTew6RgQ7iRoncBxxMUrNnXObbmOUl2++vZTWVapQWayoRoF+gf+lDCzYMvXXq22QmdfbJxpa+ujgniXZbwIhZbruPF6FJ6r0b56Lna2CVeD7Mp/jhtvb/s48p7YF3mZ3C068l9L9IHGh7hBlM3tm8bcKpE/B9kJxhFs4OZUzCHncdEei30L/yV5axf2Pt7zuGH7bFRBlUb7XLzCcTUYsOFObiLGA/+BZIHO6xn/OViy4CbIZv6b9Td3XgDd8rG0/cL7YVU2yw99CoKNcN/DwluQndTl+rZETxqz4v70fNKnOsxxo4ajfmPpf495qTfU5bjbQvmD+B44J3/qo7waHvMf613VhUX+gBsum2E+6ob5ae3QL7KuJlAPKR1jvVzJqp3wboPw56O5fJD1aMBkw6xBT+w3uOLoe4GfnOlItysfkvOBjpS4mMvqyNoU4wnlB/9x/ghjNg6rf2d9eWtTtqxSkhjL/I2RmyFU1PMesQ9tGRj9+RmT4pXvmP1xAP+7+vufA/DP4rubmAnKh2IVnckWANSCs4nGqk7Xq2R1W9VWt+R6omyru7+I3xJjSjGaUroqJ5gG+zlNZSdcTSB4jMyVJtyc0BP81zvkCa8z/zmO0be+X3G10pPKLq6cA8Yr3ES9ESMCNyvZzPcBI9YY7+Mmx+wwHfizdOZH/kvqUrtZcU+7wIQbxkgjnqv9TcrrSdmBm4hx0VeR/5TrfaRdNL05RlfRFf9dSXXw43TPfMg2UX46+MrKhryTs/e5bkEWeb7pFeR6AK+H2z6HYMQUuNA39O3Iz3CTuYEGjSkm1ht5tcGc0CDOvmGmQdayXFfApIrxcwdhqeYU0xX/Abn/Mn50fJdmGIxHuejPiT1Rtr33WI+7ao3P+PSW9ZAfU9ksBXsa3sAPVzEd0Ibjzp4OraTIw6xNVTxuiZ7U+05UMQ8JYr0KCrWIPdPLv2dtSkI+6Gs+iG1r0hXGCezQ/haYOfYz/7nxBDxv2v4ZsQ2YznAzwfgp06pdvG/6lwH8OQD/KwB/HsAfe6SyFy5lhG959KcEnYR8OB+ThHNCd+Jra+p5juigJ5UlJYd6Jxgb/hmmM/ZNymY2nMU44BInt9QjVHC4kGW8HnFz1n9Heq7y+gxuMoyKnJvcnudgZLkz3Mx4jfYdtMfExqN4hZPjfuDZ3HD+an/zXtyc6G8e8t9B+3uwv0l6wlNp2LgjbfvoCwXsvLi9MXJZgbcxGcjwZg6KO/gRKlvr0AxHNtiHP+Ywu5HmAkPGTYJxwGSnZrLidThBsmEZ38wNxvpmbSH+jv50em1geeQ/y0ufTAx6F1yk9oXfMT41FBs2+0CCOZadxY3Cb3yCXn52PWX77B0nG7S7SSkwPI1x7mf+kg4jxl78qHYWJ9xu0lhT9MVG0b5QtMXCSm8gfBaftllKixt4rhSeRwSMwzuFB3rj7pOuPXI9wX++MJVN2mz2nqPTe4SRMMWw/JmlPyQiv0P531LV37KMiPw2gD+SyP1FAH8fgP+uiPzDAP4pAL98BMhLJmalAUjtkCj6lba2rtHAAaGc50bIOz61fN1xUSTICn2PZdRTAEbZ3sNO9YbGy5hNVTnH9vqBju0iN8humawG2SvczHhlbkY9a/vO8HrEzUn/BZ8cyxKvH8KNLLgxWQTZ0Z93YbzMzQn77m6Pemxfk83bxfO4yfScte89uMHp/mZ3shJ4veL7O/wX7Y0+uJAUaMv0lm1/D/wg70ds8DScE0fBeM6OvdEuY1f5SereWZb0pFt/S2KfYdjrqTM+xIiZeXXve2X21XNxQhAnM7zI5B5uOO+WMkafRK5A5+rfdn6PbWPiv61zNZRNuGq8LjA6TAiy5hS2N9qX2FtNcr5vOiaYXawHPY2vjeTsGPe/M4xVvwr84J7qiZMh18YmPmlxJhjsdDikl4+8CtDftw1cAJ6rpe9pCSY/KeP3CFN/kh2hy/VKL/qP25SVU25TLBt5jVxVG1xMGTfiqppzk+n5zOkxfH9VVf/UtGrVP3Mg/2cBQET+OID/8CNAXr5dvu/9xTd+bgyhioH/2HHYlRujnmE54iXZA72HGHN7z+lZyR7pzfPH3Bz55AKvlzGufCCh7BXZI725nmNuVv48kH0aRp9/rF082h6vxOuiH3iImwt6ntouot4FZtJ1uR+47PsrGM/573Syfp8HZ/zbKr+FfDwvBG0yYHQ4sz5oh18GF/Rolre6JphmelO+MkxhAHioJ9huA6gU4wGmiFn4RNRzxE207wJXK3+6xBu4ZPUecHWX/87EXOazWQrn3KCXdQhGnSt76283maxt71DvAcZU7+RcVpYnT7aU0S2T5boUfqJP55Trn+ll+w76G4crLr1dcKGKtvR4CIusz+BzC//Zbp92TAV+iTNXFTDOwig7cMjNqg19siTAy94xE5G/WVX/3yKyAfivo+zQeHd67VLG6vkWE8lFprfZUBb1G0WprKLd2U1lw1/XAV+TXWF8xL734OYe+764+eLmi5t35maFsUP8VNzcu5hR7YfVJ8FGaafHspRvQkuctYj0vALt7r8QoFSW8lZHw+x82DFleof4zjBRZWbSKW5CXe184CfTy3VFOwdMtcApbpBwgZyrWMcp/1G55r8zcROwWnJLxiZlnZ3R9zHJyLdrz5FHymd9IPtzulyP8+QDw8mfqXBliYyI0XGjiSxGjEPxSdtVoL9DReUcN/FJp070zHyfcTVpU4wjxkGrO8qS7nZMcxnN7DvyH+HKNvyZxUIsGt/dm/r+RH8jsfLPlqaN8t3Tf1JE/v76+38J4H/4SGWvm5ht0r4Y3wLclpzBLgRlW+pyOpZdycqBLJ4im2EE6Ivsg+x5+764+TXl5kH7vrj53NyUolF21S7CRfETcXNP4ncl5jYSHxsCzl529mB1p6yTBdySPX1DH3xsQe8EY8uDMG8oW/AHTFbW5Fp8737pm1hhqvcUNzLa5/JxSaiO+Gf2OUxS7GtcHXGzh3owYjauLDEu9l/Ls/+A8uT1zWNacrPyn3T/IcHE/stko49a24jcmKCE85TPlhQ2Ee1LbyVyFX3CvrfYmPgv7vEzPBnRiSxhTuN10qYA9CXNJhf1xGV1RB//bVwEPY2rzPfRX+x78ZiG5dJOMfkrponvr/Y3ANoTvCHWQyy0eE1I01C2XzOu9zefNile9sRMVf9xAP/4s+p73VLGGmgKbYMT9ziZLgqWd3cdrsqGsj4vLWJV1d8RXcguMU5kr9mHNuh7HTdRz0bc6Au5mfvvddx8lri5wM0F+57LjY/t13ATZUM/8A7cpGW3I/veKbYfkjXEFxNNtNqg9gxOKttcpb1OVDs43+OsnGuDEQGw18HR0oe53jZ4IT22/JL5tLJAr5vLOvtQMLXBxRVuTCcCV9mS0Ljjo3FTyzFXNnjMuFpyk9mXyLYJQeRq4j9n3xn/DfF97D9Q+cx/qezFuGktx+rmfPC9ySqfy+wDch9Ir9qW7ma8QoO9E4ypTxTn23KVFaAtZYwTAravbaobuGnHZKHHuIk+iBgDVxFTtE8Ik+sFF/6DEs4DboZ+Tib+I66A4L/IFYLsvf4TfKUPSC/9wLQAZSAACxah84BbLiMUiLDGfUVWgmw50YLU4TqSXemtv7VcOKZlQ77oUYep2ysfzM2xfUVWPpCbaB8cV11P5r+P4uZVcfMINx9l3wyzfDA37xXbz2pTC/+FfuCSfQ9zk8teStIHNlE3JnmHs/4Wq8vKU1msZAV+oBK2bc/9ENtVglk8JivYfk/KurySTpI/zU3EmOixeb3JDhiiDTqWvZubKHuRq6aHMYVdN09zM8NIfCwxnbGPzvH5ME4e4ncmu9Kb2sf2AP59vODvNsFZYdJRtmGcxetBm0p9zf5F4Ev6X8fpIn/oeyRcRftI/yX/KXFzJW4SzHGb+ijbypE/Xb066j30X8jf3e9/ZIoO+k7TyyZm2MI3wWT8ivr0q+qxgWy0Q89p2XpWyhKdu/QmmPVs2US2Y4qyD2C8i5sZRsbhuqQP4CbKyrTsI/57leyvLzfH/cBzuZmVfSy2n+J7LnRS9rSeh7gZubr7Ep3sEHcaJ3wsDIUSoTjQaumGvvthTQ/zMwMd5GNZdye9izzmwwyTzMu7gbJt0GLH9oXH720bC/+luBL74qD4Q/x3pe0ja9vrNNi+0HPUL3I+TgyyZDEXFZ+27wQ3Q/uVedlVepSbGDcNE2NL9FzBFZ8uXb1mOBsS/53lanW9eaQv/pTpa2J2f1KBXwpDnUG8WzfwHDsOy8u9sn0odkZWLpR9nn3XMA75u7mJmAkHRv+9hpuPk53a92nj5uNkj7lJPs5eY+pzcLOO7Uf0nombIX26uGH/PXCpTkTjoZgfuJJr551NUk9Tv3ivVZHLYZkP+XAIKfHl3JMg9WVjlYeYgr0rzFyhUt4NAul9nzMcZWVmerP4HvybkVA/es1PAe/y34KrGabBf5jYp/3kMBGnOs/2G1fsc7L1r8NsmLQX1jvGC0fxOcXMtsu8bORqxk3swlZp6ma2O16qmIvQEM72qVfbMheS5JjTS36Uj/DfJ02vesfs2elFT8wEuCU9m1zIf5RsKBs7t0+B8Vn2PSL7a8BN2hGe1PPFzUT4i5vvJG5kfv5CGnaHqzbKIp8NlNJzMxt5IGODuHorWPh4pjc14kCvJR7wWtGJbHuHiAdWZ7mZ6F1xEc+3GK2yu6B/9LoeZ66OYvas/xo3CeaBqyh+wNXd/lvonflvmQyjhKI0mM4wxuWn+xX70M+394ZizFGZoV7GFLmJdgXM03iNMBkXx1yiNupO+8V6fti85ADjoGzDYPMp/ymGJYcr/025SdqmCtx2+en7gFTv0n/U1i7574F+/8NSxsl3mF68XT4l6iCUfyw67veRXbSYDDNfHE7ouU+2nHgXbvCg7FPsy2Uf8d8Vvb9u3HyuuAkn7uAm6nmK7z8FNzH/eGw/i5tM7DBJZlOSTwaOU4Uy2iRHspndJ/yvofxUL9c545f0TMc7JzFqdjzzISb+n8i6dLFtmMigd1be9Cb+47GCRCx84ln+OxFzMT4bz4ltbbJB3e9p2cnxQx8o3KR3l7KRhumNTxaUZRNMspAdsAUc8bjTxf+HQsp6V7pO6p2WZVwzPIZp5b9Er6smYp5dM6RnXfnQZ6RpErPOf2dlszb1lT4kvWxXxraUkR2voWOk8jEvQLq17LTsadmkVVHZ4Uv3ONAb9MS6l/Y2buSTcDPBaLJP5ubQvjRu5LLe09xE+45kPyk3h7Jn7eP8BW4MF8d2PH/Zf1dkP7q/uZsbBG7ujG0q/4x2AS57ISloYHMRpw3S+km0JXY7lRX4PONO/RIGRzorm+jNMDr8rAdelm3lQbQI/PbdZ32YfKdqwKgTbuL3okxWep65unzNSPINc9SDuf9YtBXU5PzE93f7j+1b+Y/to7hS+2crPLp4ZftZMftA55hTjMSnGmZ4PQ1TIivBJ1Evy6aYA0bXpkzO6op6QszxpxL4khGvGdOnZGf6mwWmrM9Y+o/rBZzvD7kJelo9WWyTvTP/yUTvwNWVvviOfv/DkrW7n0F63ROzG4aAsJ+lAFxQDo2H81fK1rzrSIEx8EK+ZWOHdEHv0JmFcwMmU3yA6dncRNnZ082P5Oaq/96NGzwg+2vOzak4emK7v4ebw9h+J98vuXkH/52RPfLXXWm7D6dk52NZg5b5l2FXWQXc8qBTPjS9vNxp1V4x4TFiNM5r3XKBmzR/VDbjZoIpcnXmmuH0XuEqwxET+4AFr8T3o5g4n02KnTDmA3OZt2fXzh5pv5LIEu7hnbcjTNG+C/0i97/GhTBOqpe5GnwQ+kWZYULOzar/5Y02nN57/Hey7c62z3c+mbXdxH8zLh7x3yD7CdPXO2YPJm6gHBOAD0g5k5f7ZK181ggFvbFIKNuuV1cwkh4sZFMc0T5csPdObmZ6jY9XcHPKf6/i5oR9j3LzcGy/mBvGwXF0j+8/ut2/hBsEbnBB73u1e/p9Txr6/VDXql9sSSZ/6Tdfn+NyqEfalWEexjcZJwn21g4zTBZ3huskNylXCUZIPOAxMa7o/9NcJXGX4oi/w9+Z/zQRAa73G4/4T8iuiGmoOHIT6tT2T6JzVs9RXuBWiJfN1kbbXHuO/RBhyrZ2n9rHdSzi0+XZH0oxl72POsGQxdiVfrHl7Ri3T32O/85wM+NKIibAPYmfcnXU/gjbGf8lTeJzJT0u8j2k1+3KuPXAakGgtPNXzJtsO+fzyrelT8pa2Z1CV2pdWqMwYlSNdUXMd2JkXHRxymQdxnfiZiZbP7v7Em4u+++DuQHFzVj2ixvu2XUh+3Jukth+xPfHsh1Txo0bMLwzN4ftPqHydBJM+n1vY1suBPOLP+f5oHMRlxr2boq3kcSrcFhF2MpGzMOgSJNziYsjBsu0Cesd3GSYoqyELfAzrngAr3TcZDlMV9w4vYGPiDFylaWdypo/bcnnVW4O/WeyhCly5eqhY06WuAJ695eeO+JmYl+L18wHe48p51Md7WX8MT/lZqb3RJsC0CaP6aRRMXxWw/nggCvDPOUm2pM4Je0zMGLiYzNu2ICr/Q0Q+Il9Rj224ir2A1lfdcp/kauv9G7phd8x6x2nAP7iVPOIeaBHnST5k7LtzgBHcFymAco/Se9h2ZBvd2gyTB/FTYbpE3DjZNHPvZKb99J7mptMzyflppUPF5gP5+YD2v1d3JBsB3VHH3kvNzNMzM09STAMxFb5YYC0wDm8Y4NQls9Ff0c9oQq3o1oo335nOGig4yqY4GijJKvrHm5Yx6TtL7kKsFThlggdcpPxGO2J8T3jI2Bq9SqGpwRXuDntP4z2pudWvtfenp1vQ5WD7AO+V1qq2SYMYemi9b+rNI2bmd6TbSpOYuy8ZIUjjuSacYmbRXy237HP4DxjAvIloVf954v2HSq5bU2WXbu4Uvh4zvx3hZtF/jOmr6WMDyaFtLtpgA1eutfzPP0OF6+ZbCsmF2R1Ics2rDCmsiftQ2h3VnbJ1Qdxs5L9QG7ukv25c3MBI0jHK7jxsf2JuEkGrO/Pjbdv4OZMu/8Ibiyxw+5J2eD7KMkolsZOnEBYASaq5pnbI4xx81B2lJvEAMPSXIcxHgu42IeXEwXQKa5YNWO2vBtJU/6Im5jOYgLcZEvjOUGZkGWYjtJJ/0Vcgz8DMD4fyzZ80jmN3zOb6Rni9Sgd2Jf5p2GK1bB94fzA+ZW2HOLTtU0dTT3bpg65OhmfQxVRJvYvMxxnMB1glMCVOx3a0tjvn8A4acvfffqamD2YZGwEw90YzPMaGsFKdnmHVoBdfcPn72mkd9reAWMqSy1v19DgnqT3iJsoy1+Cfyk3JPtZuFnKLjA9gvFI9ogbV8+vIzfc7jG/Rn04N9lA4SD/TG7Sdv+MCzj3ayfTlfh2T2/EpHOF8f3GAecsHweSEvrFBf4UikHUbl8bbF0ZaMgcEzDmh+tv9ttgVIw8CHQFXGF/+nTbTzBnsm1QT9+iO0wX/LfEfNH3Tn0WrytZ5vwoRYxhmecuY6zP9C7jJmI68H1U6GKM+7pE9nSbqplTbXmCUV3Zecdw1KaGSrnNHHAT8xrPTRQdXSMG/4HMu+K/z55sBvszSC/cLr/8VOsw4i2AVQ9nkyYcyMZ6FrIaz2+Tskl+pfcQ4wXZNln7YG6G8wsuXsZNJsvpg7iZlk3yV+w7wvXFzX2yQ7tPLpCv5iYduDzCzZ32PXzN434fWPt7hZP5yHyIoKO9sFHekxO3Ew+e4kMB2jWjVbWKd1Gvn0diEdsVbkiPRK4iN1FW1Mm6zzPU7PA+zj3xnWCacuNkFSrdf+19xSfEd+Mq4abEly5l+zb6FZDla+wpxZx7F5XwW3HZSE9m35m2b+9obb1Yu9tcSVPmVQWyEcbYLoLu6RjgRN8G4d8a+uOcm0FPPSA8Tlu05bN9WxuPcp9xwI1rUyv/3XHNaDIY24WLKV33N67uq/77TpJ1Kz+H9NJ3zIBAZGR1xrJckM3qkGuysewjsmnZZ8iG4z8rbpLfX9zMf39xM//9PXKzxPjRfcaj6Wq/HwYL2kbCdkxHgTqhECDwI3VsSqOiLF7O+JDKlQGTtkJZOWGZzF6lQRffrb/ADZ92mJpszzs84adWebEMUCZDGZ5o31Cm4giTvFR2xk39a5vPaK1FZv4zRdO2ETDZiDpyw/gmuFTQl4slBUeMgYEkbngi7AfWAcSq7TuM2iccFbR/YsILsetf0qUhjtw3tkg6BTFtU9r8bRMQidGxKZGbx1iHsm7Ly/7GHeu4znCTxY132T3cxGPBf00vWp8Rl8G6phD9F9ry6b74K31Yeu12+ZzSi1VyPEtXZI+OXZGNZd9L9grGq3qPyq7yV/Q8wg0WsjNcr+DmFXGDhWwmPzt2j95V2bOysfxHcXMvL2f1rsqelZ1h+mhuEtl7r9eX+30eMMXyk7p0dn5E0wvd5UM/OFrJZhMS+1uf47lT8W55qifVq758kD3kn49R3Tpb93mGmwM9K26G41RYV/47y43Myk7i6GL71Vg2KZCumpPsgQUVPoo5tQE5uo1UNm4CkVUx0zN9kHKKGx15zeJARlEZflCteoGbJK8Ur2nbm+E48sFK72Gf4eOVl36e5uaIq1XZJ/b7H5amwfl9pZdOzAShg4gfEELIx374GbKWcYF6QW8sa+ke+6Is5V/CTSabfsDsBdzM/Jdx9VHcfJa4+R64Wdn7EdxE2awf+DBuOkYne6ofeJCbO+275/qnQH0SI3U7fquy5hsWgXsyloy/e4ZOIMkHO1t9tuzwSG/EyHojNw4Hy/oifC7LO27UYxowkn0FY+BCKB8xhsMOc9w1QDxXK24KZnTDVTrn93AT45WOLf1HMo0bVBxH3ES9UX8QUco3CJlNPDMWABJ9xph9rJfVdSv7fJsyW+PEP2v/3qaACeLtC+KX4pXrHfy6bsvD5x4Ysx04w03ESHqsf7rCTVoWaJ9gYT2H3BBmvg6M7cKfT7mhel2fSVwdchMwPrQj7wekr10ZH0kC4CaJk6lVKYAt5ikbO/qh7AnZ1smHsgOOcPoejMjqTWS5AbgG+8HccFnXqUauJtn34CbK3uO/Z3NzVhY4X/bnys1k0OP6gY/gZoppEdvvyg3GvPSsx/SB3ETZif9OJ0H9TIqGtqGcgW4+v+wXM+4Qyma4baxBNqd6Jxix8YBKPB8HbX/fKNQqt60NKPwOmWe4afZqaPsLTBk3jgsa5BimLSl7iFGc/65zE2ywc/tF/3HMhZi6FEfGTSwbYkyzuiKvCM0o4yaYdNa+9j5S1ZJt/uHqonMrTEPfHcpGHyx9YvVMeOX3/COusV+cYx64iRgDVxrbxRVuYtw4ey5wE4yK7eISN7Ev59NH3CwwfsoUY+E7TS/cLh/uZkO83sZzy7zcJ2sHnSwdS2U5XcGIi2WfYN/TuTlhH8tesvdK2ZV9hPuLm++EmyB7yd4rZa/YR3a8Om5OYTqSfSY34k26nE4KN91n/UDVsyyfcOOstHGew8RbpM/a+rTtB/sVSL9XeRkXvb93DzfD73jsTq6WMcsp4SaebxQJhs8jLBPVq9F/VCTNb+HgEWYmPrOHzluRVR9kZZehMfHfUE+GK54bf+Z9kAbxs7Er3t6jsqZYMfqIy8V+z9WxwiiYc3WVG8z9eU/Tjrv0unSWm3iO/Sd3+O8rvXt6ycRMgb6jEnoQZzs+8UBAOf8EWSSysq31HH3NfSWLB2Sfxc2g5wo3Bxg/BTfxy/Zf3Hxxc4abZ7apA/uuyu5WONn175Xc3JO437e6XT45j2AT5/P41ipHAgJAy8IcM0J5H2nWG20MGGc7d84wlh8dh3ChzTYkQeqzFTd2rWKejrnhsp4bhzEYyU+NVtxc9d8RN+188x/Vu5MvDrhZ+i/jRpXyIzdtA5K2qYk2/HFpWLcn5G13ySU33YY4TnFtMsbN3s/1STrzOve9MkEpN/M+Jvpg1m/0yfGEm6RdTLkJ/aLjKuMmxGvrYMVsfB43jHnpP0ww1ybguaJNjBrGk9xEzBf7G1f3Z0yfHd/J9LqljPGiQh0/MObj0ou7ZRXDI/Qreh6R/RD7DmTTsl/cfHFzD8Yvbt7dvnRZzWfh5p6U9PvRxpXNuIATqh5n/Pr0DS6vM36CD1s1vDTuCCPnwbjst3RZxSlupks1T3GDOTctn2BKuGnfjjsRs/dxEzHKNf9Zvoqe8h/zGHFQPr7zFd8Z2mWHuF0QOQZr2fj4LnKTYDzsN279XKvmkFfTox7TLG4S/x36oOabidMYTNoF6Rni5oirCcYWRw7HBNNZbu7136RNHfqvTbJlzs2s3V/oix/q9z8i6diNfa/ppUsZXbuTEC/iYwkY28NdstYx3ys7KZvJvsS+R2QvcnNWzyOyX9x8Tvsekf214+Yd7HtE9pncXE82iAD9JXJDXrksWKb8dRsbyDjucOVbhWVgIzzjijgixuD/uEnAdIOFBPswIAXa4Ir9cMQN168hn3MTMDr9VbbVp24eJEJcBT1uN+7ov8jVYB/c8YGbdCB50X8hr2e4ib5f4V4MwoV4aKeovqJ3xJjVJ0Ms5PY1LugTBed4TTCtuDFbrsardHXcvh03OMlNxNi4GsssMcZNWB7lJvQZ5dC5tuzalOT+i1x1O0a7Y6xzJff2N582fU3MHktuJo4SdLv6eN6pvIjPv0SWOumZrIJigy+agnaDjGW/N/uiHr0g+8XNFzdnuYmnf87cRPu+B27uuv4J2hImNW3SlyyZbg15AH1w33Aq5AgI28QYap4HYnbeqnMYIQPmYWCb6vUYl5jZd6QncgPNMSrEc3Wam8hr18OkKMlk3ET7BtXi/57mJnI889+Cm4f8N+PmAGP7q4v8Sq9h1O5PtxQOHZPZa7IWN7FfiLrSdpHZFzFqx9jn6tGf6zalInSeZB9pUwrnqyaacNMwcn8jvuxww+cMNyzLXG3H/ot9oovXhb5lfM4wV67Yf2f6m8+evp6YPZIEsC/Tu8ZBgRLXztv7EBYsbVnwkax6PTF/WVbOyzLG2BAOlyI8wM1H2fdz5yZi/Chuouz3wM0uPf8Mbs7Y91m5iRgf5QZ32HeVm9P9KXFzVxLGKdVGCTaWvLBYGLRbXkgWWn+yIMJgRZmfXrDYKAmXMuaR6e2yA2axqk0WTraVcX/X3HTM5RhXN+cmYCRMkSv3YVzjBsfcRIxF8gI3pIoqOOe/CTd3+S/jhn8w4REj58Xno31CvLZjkZuWj/Ha6121qaYyfK4gDuIb1OD7lBtujxVb7oO8TTX6qK7YLg65AXyss33Uli73N9E+4uqQGwTZpf8W/Y1Q3swl+1ocpe2i6876AVhdwX+n+5uv9O7pZU/MWsOq2aNlO0PDSepK85ke7W0k03OEUbKyiezKnnv0rmQjprMYBz1P4uZI9nvgZqj3g7hZYfwobj7af8/g5nKsH2B+Fsb3jO2VXszKJrJX/RmrO53O2mjtLBs5Uj5dkpbd2k1k29KneH4Vo1XHdCnciRgclhYJ/GCz/jjtf7FarX7MuYkYM0daWVom6L6rFLnJ+kWy9RI3cdnjDGfw3+m2ccV/jnxv02XfW9lgX+P5hOzVeE19MJEd7NPz9s3i9cgHlpbxepKbKDtM4EzXM/qbC9xw/pL/aKJ6d38Ty071XuxvPnP6mUweX7uU0R2gFx5r4k2zLK1iQ8PvWVmnO9G7lE0ycRyQxsZJ+2ZKr8om9LrfH8FNlI24dFH2PblxACJGTWLTTr0zN5ym/jshu9LzCK/trlzEhGP7ptxEvi/ad8V/UfYKN/fYdzbWVxifzQ0m/ouyd8fNEaykklh3yVvn+oCyg4vFHiZxGuI7FIdjLGugV7BmjmmTjF7ZwE2K8SRXK4xHXOlkwovRp4P/rnJzFlPwX85NEJrVfYQxGdCelk3U3yO78kFMzgeoOlad21HntZBl/8d4HdtU4oOs7vYIaaJ3lbROsCZcnepvZpjiuSv+u9LfCCvEdf+dPa/39DefN30tZXwgKVA+kGcZoGzNCfgXMCPJ2u+utLI1HxtNe1c51iWjHt6aNOqZybbHxouyzoTEvkwvsvxJ2dghvoqbM/5L7YsYJ3pS2ZO8HvoPvawz4cncpP6j83H5WOtcZe2/Z3DDZWM6jPWr3NzZLoT1LgYW6c51d+g9VTbEPvdVH+G/q9xc6aum/rua+CWGWl+5k6xko7RzsJHftL8Sx/twhz36HySr8HrpXNSDmZ4mKwtZjLJZWVtepPVgxo31lEm9XknCTYYx8mKygUdpHeeMm7n/LnETAV3yX8LNkZ6r3ACP+T5UOrxbtZJd+sDnne/Nn1lZPtayR3Hj42z0/UGbknAsxo3ZcIWbzJ4JV8v+hje5OdPfXPI9cFd/k/hP1J+/EutlLboE2Qv9zWdNre/8/tPLlzJyp6AxP3QYoSxn4hfX4xfKZX5+uIu7yBtGN+ha4bhg3xm9K9m0r30BNzPZKVc6ln02N7HsXf57R26W/ltgeIbeWdn41GTJVaj2vfxn+XgdSjEdxfoFvUdlr/RV+k7+s/wZbg79Fys40nsmCfrkw21VTtoVwMZ5KWVdg4iy4vN8izfiVP4rHseCn0EvY1KtmGUiG1LEvNU6GJezj/UmOHrF/Y8CELr/3WQXGHnwtVGnrOh+SGUv+E913KbeVbPw3zBIj5hW3CT1PM1/J2XNvsG/iawC9t5P0ZnUNYtX07PRyY14zWT595F9q8fKKx/EvMW2xWvUE7laxc0m3o4BV7Qv5Lm+TUe+p5gOfB8neRmmVDY4ZfBf5IrtifVGjBOuLvc3nzDNYuA7S6/b/IM72NlFPpyzJx0D9+F61C9Mk7qOBhUr2ViUMVW9MX/Wvit6j8o2jl7IzdJ/zNWsE3wnbrKip/z3jtxkXHE7Oe2/B/Wu0jLWD4WfiDGOE3Ch/b0TN1f7qrv1Ppkbh/GK3nuTxXSIb3d+2ub0WHamMz1OijK9M5szTHz8qN+PZa0wO+wsN6keHeWP+rJY9gjzKW5iXvvE/B7/CeCf1lz0X6r3Dv8d8Xq2raQ+4QM0GI+nVnqjfQjHM06u+OSK74/acsQ207PCCPQO96rsEVertPKf8rGTsgOv6su/l//u6ou/0numl75j5j6NYkEAytsh6adbXsPkI+bpt6t6Ihv1XpGdYsSBHmq8qZ4Dbi5jvFP2Yb0LbtwAOtP7Am5m/ns2N9OyOMD4ibhZtcdH9F6x7yjm3oubKPvpuTnCeIEbd/50UvTBtM51kY2AYFiS5HBKkJWAWf05M7QtG9RQnvRG2QyzwP/gemZl3XIvQbqsKMqmdU0wsh6J5ZFzqYB/gkFBIuiBeIWbmf2rONuJi5bU41fk/jviJj6hYSxX/cd1WaEVN7zLxIAz1O38ctK+WZtqcRVjLtrP9k7aVCt/wffud2jLwBhzVr0AiEsZHSaEsqC6T3IT8y3uHvSfy1/gZtDLti3Oc1rZ1+qjtjxrFzEfbf+EyUz7OaTXLWXcesz6C0A9FvJH2z2fls0GII/I3iZlE9lBz5HsFzdf3Hxxcw3jz5Gbz2rf1SToy/ZOxrcry1i4zgnOsSxdteO5QTZiDIOXqAfIcbGeTDabdOik7CE3Cca4/OsSVwFTq+siN7N8xs0tKduSzs/dw80ZjJafyaLaP42bsJwUOPZJ1Jlyk9g3a1OmM5ZlXKv2eNROZtys2pSlIY5OcJVhcmUvcJP6M7HvCBPnuexZvas2ZTqdbOBq2d+QcRlXwBxjFnOfOelxke8hve6JGWosiP/bzteMxYtl5FFZQbtpGmUzPYNsov+K7Lvb9yg3D9r3xc052RXGL26+uLkH40dyc+9OXW07ajEAbjPnmgeEtVlZvupKry/dRrrp61jbUdX6YKJ/UHWpt10wNMFcyraPOscUD4nH1Ito2PDnTm6c7JqbiM1zpe2gipl/LzcZ5hk3c/85rnDBf2diLm7Tn2DrGDNMY1kVEoDm9i31UutMeD20rwe8ez2pp7E9DRg5H+OTsJ2NVxXUdqK9mnq8bEVP6GbcuM4J3Sf3+h4dE4A5VytuYmod6cR/K8xVpn/6Q5sGw6TiuTpsU8NTzwvcuLKJrZ8oiepxoe8gvXa7/BqcCrQ4cRd+DR8+Tco+KiuCskkNy+J9ZQ8x4oubnzs3Uc9TuHmifV/cXLTvnbmZ6XklN3el2u+XpFWX+vMKNA1c1uXtdxg0qM/zNthqZa2IUn0rvQ7jDLPM8QZMhUht+NXVKx3H3dzoKW4ixjlXFVO8i3+WG8a4HXAz+C9yRbK8t/dVbgaMa25cfiduyH9SZd23sA59EPMsdoHXaN+u4HpLeDIOrmtlr2H2UM+3C49RrOEJoKwXVY+suIkYye5HfL+j/CMY/cdcrbiJ/NzBTSzbucr8F7lKuGlVim8nV7gZMN7d83+lC+mhiZmI/DcB/N0AfgngXwPwn1XV/8+xIMpSRqANVqBwy3aypTZcdrd2eYdsu85IXrZh1BzjWVk3gDqDUXrsP8INY/zi5vvg5rPZ90h7/Llzs1x6+g7cfES7uNyf1t+XU11Cw7q57jRP/Ayy4LIKu7ZYvt11VgDYa9Hyr7ovI496I8Yl5hVGeyJjARCWB4k9dVIAsmMXgdsq/CO4kb3KGlf9Lj2gNR46V+/GjZPVIFv9VzHqTXvhy3onZY0bWXBz0wFjn1NpuWtvGHHCvoZBvZ5HeOUYQ8BY7QO1C6+XcRnmO32/alPY6/xLYE+x575XqKrDGLm62/dZeyRudrnAjTyJGydb/cdt12Tfm5tM9rMmxefHeDI9+sTsnwPwD6nqTyLyjwH4hwD8V84IWgC7GBA6DwoWAKCy7rfVVY+7fFLe6p3qDXroT5eNHTmSfKhnat89GDPZgCnaMNgn/fxLuUkwvYqbLG+4nsLNCmM78Y4YZ3pXGBf+vKs93ssNy56JMZZ9L26ivXf0VbFd8KErGKeyJ/wX/bOM7cSmK0mq8zw/PvBjnvWOsgtcAvhv+HjUG1/FUxwrvRPMk/YrWb2MiwTK+Es/nJu0z6nqRq5Wep/Jjf3WcODYf7GeNUZffsWNL6vZwV5WgbbEdeaTAbaewry0zw1Q1TfoM/a5vuwJvk9l6YCMX35YxUn/k7cTDLIrjKG8sJB0XB/KzZhnPdtQ9r24mch+0vS1+QcAVf1fU/afB/AfPy28hcmthK+Ox3w/3PXT7x2+78lkrYKl3iuyB5hcgZP2ncK4kk0wRVyRq9N68Rg3MU0xfTA3K1xN4JncnMB4hPMujI/wehHTM9vjUVrFeivwztw80ldN0yPcXOw/lU9eie0rSZ5RyUk9s8RGf+RA40yn82puYvoUmIYo7TLvPQg7jSu0jmHw+4IRrQANowDXe/MPSp8AQpo+I67PiOmzpa+J2ZD+PgD/szMF7WXimM70tRoL1bxgrHNW16SKS7J8N3qFmQc8V/TM9K5kB0wTQjOuZnqezs0T/HdUZSZ7lpuYVv67h5uprKIsVaCDs1hfYTzSu8KYyaa6EgWS5J/ZHgeZk/58T27O9lVnuDmr58p4NOpFJsvnJD3c0lOuedNbmk/UduaOR6v+3hZ8h6z0Ug7i4QToA7lZphdwk0EQLvgINwdlJ0AixnH7h7HEfel5rbBdl6/UtWwnR9rO6Lnoe4fpUW7u8/2I41G959pU7r+ZyLO5+X5mO696YiYifx7APwLgTwD406r6O3TuHwLwnwPwBuC/qKr/7FF9hxMzEfltAH8kOfUXVfUv1zJ/EcBPAP7Hi3r+AoC/AADf/m1/IPlCehisJHk30KDfw/bNB/k4II56po2SymrExLJc5qyek3qnsvwEMuJiTK/mBhj893JuouyEq2dwM5U9i9HyM39ewXgga58USjEFf/J7SIft8QDjGV7TGAM+jJsrfdVHc2PnTvnv2X1VSNzv3/6mv/HBicFMyRqXgx77oNMX8juu+G0CoQ4b0d4ORP6fli5wE9Nw82CCq7zfcgeuM9w4kMnOlS/gSlzZ+k7SMLswu0aMA+TYtuYlr6WAUVzMewOnmC63k5O4FHXXxXxYkOJyBfVdfT91yYAjK/B4am2qciUy8vNh3HylM+mvAPh7AfyTfFBE/t0A/hMA/k4AfwuA3xaRP66qb6vKDidmqvpnVudF5D8D4D8C4D+gOt+rUlV/C8BvAcBv/C1/TIcoy/LJ4M8Ou3InZKeDiSNZUD4py9cWO5b0xe+LccIVl2+YXs0NPth/Z7jBxH/vyM2nwHhR1vlz1n7P2Avcz80KUz32Cm6O/Nf+fiA3MZ/57+6+6mTifv8Xf/sf1XhLs1dblBjG4ZFoonOQlVBswU/7JI9EvamCk5jHspGzVsy9AEgVZ2U/mJtYSHXNzfAeZIp5Uj39XXITZIr/NPHfHdzEYrO+bTio67KCvAzzOqs6w0z2rXhNfR9xTZT3w+/fLvLJ/MT3WThw3NzLTci3D5e/gptZm2pcHXPT2xDlH2kXUfZK5/+KNOk23l2t6r8KAMknU/4cgP+pqv4ugP+biPxfAfxpAP/HVX2P7sr4HwLwDwL496vqv3VF1i4UcVeyXnnJ2yDCTrt8Jmu8UN5VLRgGctOYOynrdxM6gfGs3pOyA0bObx6TYbxi3xLjgeyn48YwAVNuYsyt7FtifIYsY5xhjrKPcBPKDtxIrudDuQn2Lf15IMvnH20XnyJuIjdB9hnt0ZW9mPxde9A1X1u+D7oRCtd/eCc8FdhW14Ka591hxMtK3Y5SuK4mS/Y60HB88K5yTdYKhXpjBQ2jbc8NL9btk5Sbls8wAg9xE3fCE9bLO7wdcMP+68Xv54Yxpv47zQ1C2b3n98pHc8SkAWR6FJ7XKOt4FQjrHRq1L2ukR/uciYl9hWL2Pci+KJvwahgZl8MbO6vRB2mbYt+7Ld/N3t2dl9FpvcIh1s9xM/Q3OyBCet3fe7hhey74j/MZj6KH3DRMk37AKTzBzRjrd3b8H5GUmuHnSX8ryv4blv4f9dgyPfqO2X8PwC8A/HN1pvjPq+p//lBKyv82KBjOWaKvnceyD8lGuUVdl2XvxPiI7Bc3c9kPte+K7CP2xfwXN/P898DNAuP3wM3pJCR3oe0Ly/GW48NgJebjQNSXVVVgowILbiNej2miNwx0UsyhbuVBfKZ7hZFxPcJNrDfjaoEhHlv67ww3Gear/ltiQroF/pSrwffIZXlQy/aBZOOgNytb83rBvsFels0w87ls0plhJHOnOBaYy2RIRq5aAebqgNdbmznlS9gf7W+QYDzgJmI+7GNX7Xrw31VuIuaTXB3F3GdLj03M/pCI/A7lf6uu+ACAU691PSs9uivj33G3bOjjFS1Wyvl6osVaKDuTVToxLRv/PiB7D8ZH7HtE9ufOzRmMj8h+cfPFzbtws9JDxz4TN4zrfFK0b+zw4bCmR2TcTsElCX+zc8Ox0UpexqlVr1WQjVdm1acnZhjd8YCpvlfiPrwb1zslGFNMl7iJiXUWHANXmZhVea//Vtw0Pnp+WIa78N+SqxWWFJfnhjG5vAQbDF80LdPrjmsRF4Ue2NeqEc7rHGNs0WdihPxz6INpvCocn/xNwWD6gGOBh02bxuvQ3zBCPIGb+Hviv9P9DXNjGCdxtMLjjmn76W7+nehvfsbpr6rqn5qdPHqta5L+DQB/jPJ/tB5bpmfuyngtxUEDQgOfHJvlj2T1IH9Wb6bvEYztQ8sBU2iG78pNLJtxlWGa6XkWNzN/Ra6y9F7cxL+Rm5k/s7rfA2Mmu8L4LL2rGMhkZ+3xCNMjGM/Ivkd7vMpNLPsR/rsqu2p7q9QH7XFUwVbGfB1EtFGEjmJAfz+Eq+W/7bQ22bZcL+hdY+x5AYBN+vK9DnQl5nDNMOUCxxjbwJSXO20C93hjNpBrSQcfy0VuvALDFbmZcOVw7a3snKs1N0uuzvqPB9qO14rRyWqwL2kxQ7yO3GjA7H0AzOwdJ2GAZBgtPzx1MYwjNzNMsYJ1m9KGQzJuYooTHhc3Ag35UuxMvIZzbdJC8TrlJlZ71X9n+5sSS9NlnQM3HpPzX/Unc3Wtv/m8SYDPuJTxnwLwPxGR/zbK5h//LgD/wpHQp5iYTfrxef74GrCUbQObmlf7/c56V2VV4T5U205/MDdRVhOMbUPND+ImlrVLykv8N5HVgMPlr/jznTEOeYq599J7xZ/tGvjB3Hzq9vhZ/Xc1SfWxDXykDxJ6u6mDgKaLdr1TQEWBOrnTVqda0abD8lLLND1A10t36KNe1TpgFB7IFMxIMG+8PKiV7Zis7gzj5uxDmVAx5gk3jBEBo2rhpT/51IGryA3g9W683Ameqxk3EXPctVA1+m/kyvkv+F5Yz0n/lfa79p+wXpisYYrcsGotuBg0+0S01k/cbGxfr0xVK1/S9ErgFSfsG3yAzF7itcUG+0CoLDV9i3V0Pbpoy32DFvOR+UBgo+g81qtO4qqU7dx0roL/gg8u9TeAw4CUGzofuQJxc9Z/gZuhv6mdsuc14yb2N5L7b/O+X/nP83FyEv3K9KJ34ETk7wHwTwD4wwD+aRH5l1T171LVf1lE/ucA/hWUnev//qMdGYEXTsyGdyesH1vkkf2+KDvsUAT4UHtQbzy/LEuKHS46pxPZ9+AmymZcNUx36I3n78FomFj8mf67Ijvzn40ZMl/P/PnRGDmFcddT9D7Tn8/Qcyo+1Z//qPYYz89kP6P/Licb5NZKZFhWZOd7+bYwThSiAkUJmDhImNVlv3mBnf3VqSwS2Y4j1SOlRkftAtOQFwB1UnZFljEpAq+t6siVx+i4CbedPVc8WPTcDJgIl9UguM9/tmuTDYLHG14Hsqf953Hl3Ajxx2fLQFsHPatYdwQMZaM/U3uzNqX8fENZ7YTXHFNrBzz4r5pMD2RlH/m+2te4mWFKZCFmjzZMQ6wHWZ1xE8tGruicHrZHz5Wq50blhP8WbcpsnnPF3GT1Fq66/8b+9Jz/xvxnTK96YqaqfwnAX5qc+0cB/KNX6nvNxKzHoD92L6knZPm0X1P7gN5Hk5BqyWG08cE7chMTY9rxOZriu/jvUd/LnKupLz8yhcHLzJ8prnduF1N/flTK7Av+nIl9dJ9xl/8eSe9kXxmw+IFvSdEqn3flxd+1HSeqsW4q6+pBv/PcdM17u6hTNcN8HdOYb0O3CaaY97J9gGYYZ5h8Gu3r+TYhm/Ru57jpE4G7/RdGXf2NnRlXue+v+m8pK1Fv+BKQjk+uxqStbO9gkrqwQ07YVw5Ee+KgOueVn14ZJBv8d12sJ4u5Wbxq0IuQTrZdoD0JWvm+4Trqbwau6NTAzdx/7gkvkHIjS25IL3F16L8Fb7n/Yn/K6Up/88mSD6/vOr3wiVlhUQG05QXJ5MRfHnyA2L0Q4KRsG3CQXi5LA5K5XrsgBNncSo8x0ePRSlclZUStkZtTGJ/EDd+oscm0rmRX3BxgTCh5H//dwU2UlSBU9brrRHEe+bN26iT7VG5mGEn/6M+CUTNeH22PGWbSk8aN9GOHvn+Em+j7d2+P1/qMyI1hvey/RM/7tIvzqQ905gONPB/P0UCDBk9tedgEJy8r6/2HUulzevtgaV52HJCvOfPYo+wqv8Lo0zH/Xfbah6Pn3Jzh9ayelf/G3+cxrjGN3AyyPGk0NU3d2veq0V/RnrMD43XZ4QndRLY9+Rni95zs2vfht/i+3NUa2rLWJ6ZjG7+GMS/r28Ws7aYrFk767552wcn1c1hFFEL7GOsa9dzbF3+l90ive8fsBgAybFzU0hArEiKRmnMWV8LHxJ2zx8s2RpQtkdVc1nUkM70rjJKX1TP2Tbm6g5tYUbuQ0H1RDVVHruLobcnNA/4Lsryz0SX/ndXLBrlztgRgLDtwFWTd3b2I8RH/zWRPYvTsXGiPM25WmKftsRzL/SnBlidwk2GKXJ2xb8bVg31G+3PkP5WhPX54f3oxdbwn+UhHIPVV+WTiIAdcihtE9WcuvY0miWJvhVHcgVBFHOjGuCP9TfpObjJMI1djv9j+NK7qoYjLGWahNOcmnSCmmCaJyqz8N+Xmov8yruKkub93k9hn56zrWi4J8LpGe872G2PZbg/KoH7pSF95X75Xzs18f4Rx7nu6JnJfR4qiD8znA6Y7uIllO1dVj8P0Pv5b9Tf2Cp49wYz+k8DVYO1ZrrDGeMzr50r08PO7Ti9bynjq2z4cCDGfyLVYFX98qsOwZLIT3EP+LMaI64TsdG6R1XeFm6ysTI6FvJ6xL9NzAuMUz4GshvyQHuUm1k3YTskeYbzCzVleZ/5MBvsre8/al+Xvbo/Rvll6RntclQ0Tktgeh2vjBW6mmDNss7Kvao8LlUdpXHI16nGwYp6LTkFoOx/HR82X6rJLPXMfVhJPkOGeVkiogkZpZTXbpN4L3MSDZ7gaZOvor21kNNEjId9/6PP8F+o/9F/m+wFjnl8/aUSfUGA9sXQ0EuZVwPSd98bKrvuefCvzuuPmLjHR9LfVuub1yPe8WUfARDGXguU6qMi97SJytW3Hfca6weuD3KC3KdocxT2NS/qM0/67yE3k9f6e/4PSYrL6PaWXTMwUyG6Ed1JXHWfaQ5TfLj6TvMkLqJFJif+dyg7vOAY9h7iiXun2qfRzzeRENsPoOoqMq7PchPLc32R6WZYxT/23wsX5jFfmaiJ7iHE20LXEug64WQ3Oh7hB4CbDSPm0jzviZmYT5aOemf+ibPOnom0FfIobUJ6UzNrjITcRo12LnsDN0B7p3NX22G4uZe3xgJsVxtR/jGOFEcTVvdxEvAlXd21+JX03ONtG+ly3oZSXMFDMalCXM24AqTvfge4kx3csZqGVYd6pLG87vcaU7u7WBtECre91XO9STdY0rrbCjqme4xhTJf48V8fcRF4V9/jPrpmb+cvtFLf2n8+vMY5cxRq8/3jHy3UqmN0TIuzuPH8AQwMma5TnfL+wL4k5w1SWvM0wjb7vR4/1Rsyp70PMARlXY5ywXv9v1Jv3Nz6W+Z00jH1GiinLw9nHC8SPuRkxs//cLquhzxgxcR941X+rS8Q9Hf/HpVdt/vHs9LqljFsNLlvaEgnlc0f5MHgGwu8g615nVEBDvbr589N0BWOCKerlspGbJaYjbrKlfhOuznCTYoy43tF/GTcR4ymunuy/FTcOxntiZJwHGI94nWKa6eVzC3+e4Wap9yymz9IeV+dW/otVv6f/HmiPZ5MA7S65u/C3QWuejwN83l6+rF0pJbTmeVmd/4ir1gF+Ed33viX8Gb0rzJvD4bcjZ4wNEy2n3+h7SKo6+PwKN5zfAjcy5Ds3UJ4014lQwwTs6rm6wo3PX/TflvsPAN7ezX8hboI/o//6IB697bS8suvbv12Pjxv36YS48cKd9gkqj/SEZXPVqpOLPhni5qTeFebSF9R6pWKiAiNX8zZVdprfIbSu+x6MDRv7V3XKVcbNFuPmDm4i5s/ov0+ZFHjVdvnPTq+bmAG+EVp7o3Mxn8mmZc+pzesFdwfzMpcxXk2JfZzcKyJXuDng6oibLDVsB3pPYzxKMvkd8RyVvxpzszrvSJ8S4yPtMdRzyZ8n0tkY+5TtMdRzmser6UX96SWIw0twvLua1jI+31MYRAxbsfuyTg20ziX74G7bxJXN9eb5uPFE151hJDw82qpl3TfBBODdD89xM+Nqzs3AFeEqG5GHyWO60cZJbpqywFXg5or/VOuE9jI3F/0H9QPV5NMI9u2qmKwdetef84m63fKu29cgGkbpUx0JZV1+0abaU5dFLOS+n8SnUB1WTusx9bLLNgVAtjmmEWM4N3Bl1oLe5TIcJ/3n9Ji99/Q3VjbwJ0Db9Ym5WrSp5/jvPa4KXymm1+3KuGn9Jg01jkXePpZ3tmyJVz0sO8huUpcP3SF7Re826j1tH2O8g5u77dse4PVBn9zNzRXZj+Im8f0jvF7hBq/g5sF28em5eWGf8SHcSODm3BquNPkBxux3lm/Q6rky8OHtq8VWYUQfDoNcBeyt+mGgcYRDh+MjJpnkSa35bMBkeT+kuobRcNFytBk3DaMVVIdJAWzoS7LO4cjxACuuMow97yd3zFV82/8x/xW9kZvoT2onK3vgh+tjvC700L/32MeekvaJgj4wZ147pKxNEUagbpzWuRpxZL4fj0mL/5yrLfh+1abgYmOlN+9vcq4ipjU3Me/9d4WbGVeES+zXif6GecQz/Ddv258hfS1lfCRJ+V+T75JwK+H8cG4hywOMrOwu/nsSV2QP9Z7E+FT7vrj54uYe+764+RzcrPR8Vm7uSQJsm/Zrex0jKOBu4sY8lwVscif1d6KGBmrtvYxWb5FVVexC7xWd0LvCHD9m7fHwoKnI8bsiXVbruz+C9nmGi9y0842rk9xIP98HxFIxKnaVbtegt+I/6c81V/3Yiqv39J/5qmM69l/7FHD8dENtR1628zrq8bLsz6l9ib1c1op0zLT5hvO90LtwDYnL21JbOcnrCrOAls9We201YsYVJ/OJySrjvMAN5yNP0N4PnvEfc3XGf+t4VSgkxWVLJO0pYc4N5wkh++8CN67sZ07fA8YT6XVLGdnZEo7FMkjKHsnGY1RWIHfLHuq9UvZVsvHYFzdz+S9u5vJf3Mzlr3Cz0rPScRXjM2XvSIIyWPGjUV4elOc7kdpqGQGXvIjUhymzZY/lqAiwqT/vPqAswKj3BEYobMttt1TLioa6Yh6gbfXv4EaycxXXETdNbXLbub/Tcp0bz2vuv2OuvOzaf0i5OVUWWgfgcof/6iog6ef4Mwn5gLk/vRrLen+uMMc2BfW3gsYJYBY3GjCZ/ewvWtZ6l+8jJvNnxiul9oSUMXXZK9wMZQNXw7nT/kObtJnvW7u5wk30feq/ACT115iXA72n+5tPmAT4emL2aKr3AwC7UFBwtXP1N1DClO9GHcqKl4X0+7zPl7WFHnPZmX0se8m+z8aNAKIfyc1a9nNwU/Nf3JzgJmL+4qZxg8/Hzb0pLmUsd+nt5XTLaztvx3t+Llv+9l0Jh7vZ9NvLZHru04umV0OeZaOenXISuIh63p+bHCNC/orevGz8HTFFWXFy7+m/zJ8sO/qvFTn0ffmtUNg7Qn3gz2URlhie53UoK4C4Mhmv3R7/JCjj5hHf9+PHvHau7PppPD2NGwj65hh6ou3aeW1LBrv/juLmDMYMM4LMPdw0VJe4mbepr/Se6XVLGTdgtwuFNUq7JgFuHTe0lLWBiOWvyFrZR2XVGsNF2WXZR2Q/Ezfyxc0XN1/cPJsbV/YzcXM52Q5nZWBjukSAvnwtLLNqZW3AUbCV02XSKGITGy2nu9uKGSxLevlbmrwl9lh2hnlvsoryVKla0XBYkhDfIrleFa3159xY2c5Nhhmj7MCNcZdzA5Ld23s0GRfH/lQtS1hH/xE3lN8m3Iz+61Lnucn912QDV3akxNHKf2RfKzvjFY1XWx4X46YvKTyOhZV9A68nuNkjF6hdgZM95/tcjyE6wyu1C1C7FgAaYz2XPYdxP9VnXPGfj4Ur/uv53qfYjo8nuWltSlub97LX/Me+/7RJ1cj87tNLlzL6x6Tj+VXZV8mWPzKWPSn7iN6zZb+4mZf94mZe9oubedlXcvOpZGPZi2l8Ylb+mhKXl65a2jmPKdutzMk0vVavctE+OSC9Tk/DOObbYelbffMx/5Pto3P81NIA1R9nuXH1aj0u/S8D6dxI4AawmSq/v8NVKCJ+bYNSoXzEbAPD1H/BH6lNznYur9Ar3DiM3lfM1cBbxlXL94lLn8x0PWV54sz3GLE4TOrqGmNhYZ+CfG2TIeYm1tOBbBEnqe5tZtYu8nj1NylieSvbC2X2+fBRzhBXJ7iJGAeuoux1/2WxcIabsU0F/8FzdciNndOI65r/Ypv6rOlrKeOj6YyXOTqvpo+SjWUfkb2SvgfZL27Ol/3iZl72i5t52e+Bm5rKwNtfOXlQn+VZ1v9IBkMBpj9fR1/tBSBTEa/kx1f2dlfd9Cx4yU45G62ARqee5yYqbNgCV3Nu/ME2aNN+vDwsyPXm4fi4/4b6Fv47xU2o817/uZpsYD8UrIPbBR6mOCqMA8xH7IOEQXga9zmmwW8L9XOMSSw0TFUiia9ZlxMxiVrZ89zEuLFj/VNoPLM6x5UH50+e5caObFj7r9+SmKt3efLfjNe7+pvPlr4jqKv0oomZor1I6JbJWC9n5UKeLhTHslz2HWRnGB+RvYTxQW6s9d8je699j8h+Jm5avV/cTDH+OnJzFuO7cRMwfgQ3F1NbjgNvAucdrCEvAHa68yvt3zzf6ylLU/cyOJFeaqW3Y+TnM0lZBWTL9Zps/450xygw2vud8t2w3sGNw6iA0KBuxQ3LbiRr9ajIgOM0NyFvth5xw8m4AsUPIO4TzJe4iWUHrlb2Bf/VCjbaUbBJi2BfxCfb13DANhApZY2bI14dZunaWtO12Z7A8Rbtiz5QSGv6PC/OuTnC2Hkrlu4t7nXA0WWNZ6dXlbi6wE3Il1e0SK/j6sh/gSvzX5WN7e08RoFiB3+qL/pvyY2Lm9F/p7mZYP6s6euJ2YNJrfenQZ5uvnHEPDZXg/s5yuIlsq5sGMS6j0Yeyn5x88UNfv7cKHxv+mvIzcq+a9zoi7g5l0SAm71rJG3sWHFKg4EhzwPXOnhuo5E+xFQFNvo0QayLX8xXBdpmLGf0hsFXLCt0i7vgqBUQRmmy9I6elrv0SnWLbU1/LzeVVwyYIldUF783qIBsfThaXt2IXJ3nZuAq8V/GzeA/d3MD2KH4dtZ/gZvIa+a/jJuZ/9Crbjcfel1IZQ1z9Emv64hXhPPUpgCa/Gq9aWD2lG/TdYyRm7FN2Yje0N3re8Zs7/jFCcOaG2pTtDEScIGbiGngytvXuJpxc7f/Jphj343SHuf+I65Cn4gj/93RF3+l90+vW8oIeCc/4vD3DJZn4bpazxc37yN7r55Xyf7cuflI+764eR/Zi2riu0Yr1UPeRhDDyfydCT8cCXoFeVUH+fycjVoCDtrowPBnS67aPIX5uIub7GTODec3wmiyfmA4nE5VnfefHHJDQ8+hMpW+mcV5vf3kiHniv8CNiz+Hr4LxMyL/DiHbMqSql2Yoj/heWiEdy2vAFXhl3of3qsLg/C7fhydJHdOeSCU44rb1C0xdbz85YJaOKcqzz9bcvIP/0G9EzLjSQXZsU4inmasH+uJPlxTAPmtf31d64a6M2u54tGPMKV0IWi+TLbV5VHaLsqHsI7Kfwb4vbi5gfET2i5v77fviZo7xs3KDO5Ji23Yo6ZIGo+a3nrd3UPwuZFVWGGYfUFm+DyISWaW8XNQbypa8lfVL4QwHUyXtbJQ1/E/gxsli4Mq4WXOFztXWuXoKN4pS1xVuMv8h13uem5nsSW6mencqu+BGJPFJ4r8lr+d8b7wectPQJG2K/XfGvqlPbBKD1v62U9z0vGv3d3FDsru3L+0zjrhpkmfbxbV4LY91jSviMWjP2pTn6pF2IS4mP2X67PhOptc9MbOljECPHgFcK3R57Xlq0M+X1efK3oPxEdkvbr64+R64wbNkfw24eW/77pW9mAR1Lkk72SngnhKNefV56QMSE3CD6ZCPH9O1beLd8p/TemeYrawO9rYjFZdWHPxdOeayf5pAHucGa24MY84VY/LCD3Mj93HDT0pGTPf4L/jrJDf+yUnMzzEPZVV72zK9zI3Y6SwWDuxrmDuOM7xC4dp34yJg7FxcbcsUn7Vvk4zXjBvSYxnmqrflK/GJsnRxxtUZbuj0Y9xwWQWUJovSfQDolCuONs/VndwkGD9z+nrH7MHUXiWW/tdv2WwNmMLLgl60tuIXyHLXFzs7LpvIjnpWsr/u3EzKfnHzOblZ2dc69y9u5gOklSzr+Szc0PlLqQ8E+t9uZ8zD/bK84VP0ZUhmTsfe5eLVOt6FP6t3jVmYn3pCwu8uGxGxIiGMz+UmynqbGAltRV//iYM+JPn34IZTOhhO9B5jDDYTV3Zuxo0MekI7XSRXVoBys4Dq4qZJVj5sn9OyBOgwNb22RM9G6+Sna22Z47Mf638X3ES71OefEp8B01DJu3ITsItvywLPI3M1bMryRG5WMfeV3ie9drv8Nr2tDcI9u0eNphBhLb+QRSyLSdkny85axdS+leyvOzd32reSfU/7HpH94maN+ZTsgX3Ad84NPhk3mQ0HSfzL8kBcelOfZoGwuKGA5bXJMrciAt2Vri2jrJgdwkMbrjfqzZYLZRi1yXet2pfcKWGMstpx8EeT352bxgWj7nqMK+XJ3UdzE+wTwtyHqme5Ycw9Oa5OcpPVexc3O8rTEYl1mYTMZVf20enuN2DWLpzsjjK/EHu6bDxk8XmVG3VShukUNy1OUJbgWT+VtuWFfXSu7OqYxWfk6iO4YYyRq64nk5WMm3ruIW6mMfdJ06dfa3kuvfAds8W5Vf6oXkurOMqOP0v2KD3Lvkdkf525eU/7vrh5H9mj9L1zs0rfAzcXqtvagMEu/GXoYLuZ7aq1nM/b+w9tu+2ah6AtQ1KoW5ZUyo4DmSKrNIApZaGjbK63DFcYI+Bf+euDTcA+ENsHOtr11IGdjTFpqFX+Jpiexs0wGejc2ESp6GmgOlfBf0KyV7nhgbnZK6ynydZBr9kbMGVczbjRFos5V4wRLo4S/9V6oYYZE8wl5pyeDX0ZZ6tbSLbYcNwuDKePmz7YVmzbiNl8oiw7xEn1U2Lf2C4UW4sbBbR/QLm0MXVL8kSQxpyqQjfx3HDcSK3LvTN1rl1EH0Su7LMJacxt8gA3sV0UrpRluV04rnZsG3GjJ7iRO7gJ/pMYr7BG/DmTfG54p9MLn5i1HqFfG5KlO8vRwBXZWNV7yT6C8VWyX9zMZb+4mct+cTOXfZZ9MX0W++5KfUCLOhiywWRTE5bsbAxBDEEtI3XALF7eSvWjNqCghaBSytp1XKqNfhlkleElRVXvlmC0AU4bvIj2uhQNr7eXIFpB22gjYIpcPZ+bbl+DYnJtENhhev89zo0dZx+0cAyhd85/IzeMsZUJXHluIkbvA+efoKfgYz0A7zxomOFrLPJiHokxWNLoe/sMhcUNcQd198Edl9U4IR/4CXuRt5eapDJg5UbfB1zSP7vgfVknBDHmEq7accaYcjXjxte7RUwTrobV2sF/17mJ/ZzHyP4zD3iu3ouba/77tMm6sp9Beu12+cBj3r4imzSyl8heSV/cvF72i5vzZb+4mZf9udl3twobgKMNNux7Ri2d2lyEB3LJgMTprH9pkLGp1RDL8uCU65r9pWyC2Q2m7K/uQ1mF2DgK+1BPv6udyY7pPm7ieTNJFfVLXuoER//dz43DMvjAVwXIBf/lNbDcjJuIceTKxLJ4ZT3SipUjUY/ntf+hZWxTPVS3pGeqj3ScaJDsbOmjNBOYL8Y/8bnVG8u3uNE+Ocn8nHEV4sTlNbMvJt5VcGwH/ektQl25/65zM581RP95DFq/q1dOvA83J/33iZMAkK+ljA+mw45zll+ls7Jjh/5c2VX67LJf3Pz6cvPe9n1xc1z2mbJZ2Y+SzdNN9lZLHPvYrvzxRfY45hzz2mXRJwyW93eBtU1+VAU7kMr28h1g1OMwDph5clTQsH1utzMtEttWlg3a0xw9I3vIDQJmdbLxjYJNeBhZfhWOhND4eg2tyR5zA8eNYieMZQIYY4NloQrduv9uFWMmywPSY25m/qvcUDmH6cg+3bFJxxh9YAzm3Oi8XdS4kXrOZGPc2Ow6xlz/iHnB5vVea4/MjarH1NH4euxJn4ubiWzX26TX3ETZaq9xs0PTuDFO+MmSqjb/mazXe85/8Xxm79p/Y1luj6NeOccNgj+16N3Fxyu3k6/0vull75hJvCKcucLMZv1XZBV+UviesvdifJXsFzcP29fW02s89z1w80G+/y7j5oubU7KLJALcNhsk1aoUENnb0Ebrvz6fDyKyc0BfMtTqspcx6qCrmSHAzcrW801vHMgiDqYjRp/3dBX77F0TXpamZkCF5iaCCoC5yWSX3ByVDdx0KFQC7V0WybiqGKPsGW76Oc7v7R2X0QfdiB3ef5JydYWbFVe69t+BrGW2YEhm/5qbJG6cLPtn76dVIVt/d8jJVhduyvgfaY+9cVtEtfMtbqwYvd80kWWu7MwpbiIu62/q35uVSbjaNuqfSNb8ty385/Ue9xkpVwpo4j+JZR0O/m3+01PczPy3xbLxevQZ035c5HtIn+eJmfAP7b28TPJ3yXLZJ8keYRxk39m+mH5u3ITH8r3jfH3cFBgl78z8RHEjlNcP5OblcfNdt6kL9n0UNykxx0mw1/ZL7aTVFt9mWOXHJ1L2vorYO0OtlKK/w9Q3R9hAAxcJ9Uj55XExVkszjHRegL7ELrdXA9VoPPl6MGA64iZiEpTJTy/rl2JRjb3qetffc7OSXXOTYUSru9mX2KvVf2VwHP13hqsZN4/5L7PP/+oyFoPF3LPc5JjV5dl2q7v6SAKPUa+AMB1xk3NF4ZKcU//kpr63OAz+o6yAVnBe44bz3mrrJEeuZFN0r0xkD/035yaWVeOGzlkb6ByEdsEmxLqU6jnJTeQ18x9gTzYj+58rfS1lfChpf8G0bVOL3jPEPF9E2tVL8rKWRyaLtWzo3J8ve8G+u7g5wPhz4KY/24cfV36euOG7bb3//KC4OWsf6ML969Km3sO+D+Fm/3zc6PVbkwLFrfb7ivEpS8/337EswnmW3QColjvN/YlcwdysVbVxqntv6kivkjbWm2HqiKztAyIeh5PlnQshU/uOuTngVYH2Dg0ArZM/8ryXrVyh4pKpnqvcxLIlbZULfh8qyu5L/7Heq9x0//Qza//1utb2CdVlMbgBdUmaLGURZCOvc590jK1dCE7zuuaGMY6+X7cpyie88lLUvpPhrF2sufF6728XMcY0tAvm8QxG5uZMm0rbRX36b/nRf6SX7DvDzRn/fcpUL2c/h/TapYx2K4R7MO4Zb5zXcD4MIqJsLOv0PFH2dkX2on1f3Eztc0sGX8SNve9hsiJUpnWa0jpGBfpE8j3j5ghjK6r9/LN9/0nj5lPYd1V2at+Lubkj3SQfvLAqny9X2wyK1gNu2dHWdxbTWpGEvLXJjdZU5nrzfNerXVb7Uid7X8fKqqC9vJ/aK/2Itjfu5SQ3OVcRU5MljDfRtG6zSiqGurM3cXXATcQcuHLcAG1Amfov1LVVf5Z38Yi3U9ws/Ifcf0B512bpv8T34POBm8ZjJVcS2VYWAG+7ciYWMvtu22rJHdoTVGsXrk1R4S47xsLltiza/Hm2XVicZLwul5MeYWSulu0Cp/znZR9vy1vWLsgnzn/wXHHFj/vvMyft17HvPL1wV0YaqEKQb89cz8WyS9mzZfVJsvdgfMS+X19u+JV4Ky71Xz2QfQ9u7POfHZMG2fLbML4ibjrGKttv9ZUi6GX7OPXnFTcPy76cm3e276BdUADBx/a1ZG1FGpd23GOlL/nUskWA7zBb6Wxr7/ZNrHam55svpP9sZkrU204Nm2RIlW96xPSWsszOZnbD9wcdY/kdfXKOm46RuQIU/C4Uc9Ux5lwVjK1HLcfKNojnuLngv7YAgmRX/uvLVdEBnOaGyjII4ir6L3LV/diVlycZXdYwlTy1ffSBdrumBZ94Hms/HWLhqn2CvQzWB9m8XQxtStoi1uIDpX5g0pad75NYABRb0032AoSJ7BOvx23EYmgn8XnY33CbwVG78JOdmf8iV+e46bLWZ0BoYxLiZtWvtS6E7HP+gwC69l/MZ2W/0vull0zMBOUOgLagLXcdbJchAOgfWdxb3pedy27bkSyeJJuVPSP7mH2/3tz4jqP0Mb0j/zhupH0kUgDqlU22Qyx9pnXnHxs3e5X1nXXtwNVqfT439sHQ+2Rzbt6zXXxk3NzHzQzjK7m5njbZqXGo//BwyNs7R2Zjey+qYrvVsgrQwJraJKjeZl3lHcDePjCt1Q9KejOM0vO2ulTq7me7AvUJACCNv/KEsPtpSzGaXjtaMQ7cRIzMK5etXNVb+I2bXdvTuz7k2sMgd3cDzL3q3RWAbBNucn8KFLIZV7Y8LPjPcTXz394HlAAUe9lRTwV16U3CTcbj6D+I4tb8R9xEjI6r3pff0PUyr/ZUmZ+9MM9lUmI+GeOmyxLmtF3YQDz4gOLTWBPDLiMms+mGImvfiRMI9r32Ce4m04RX5/uZT/b2hNGw2STDjvWbFdqejA4+aVzZqpQZNznGFjf2BfV2I6N43LcLn2+Tt9imBv+Nbbm1C+fPrE0VrvgGL3Pjo4v8V3FM/acW63P/zdvU506ix2W+h/TCzT8A/kClNc1+18DuRHKeLihHsm7sYAOhUsC+Q2J3uY70Oj1O7xxjKvtM+54oO7dvlN2ogb6Cm97r9kF873wft++K7zcqi3YegFro0USDLkQfGTcbyXacVbZdGPB0bmLZZ8TNZ24XD3FDNxsyWb74fhZu6vDzUhIp75i1AZiNEaRO2IA+wOIYlRqjddAjG8Vsw560owbRb6PeJp71SUcpW+xtdak2DqwsID3PO7dp3MlNO+bGMLV9tYEcD/ykTjK1DoqlceMwZVzRb2ffxnoqb44rNAwCQGr93HeVCZDZZnqj/yJXwX/GjRIO5kY8N51H6/E75hg3jGnkSpfcsP8kcuUwsP8Q/Gc+0WYfBG3g3ScbpRbjy/uE4oYwtrpmvEqtVxNuNt93SOtnUG8oEqZWptoX4uR26xzsGjGFdlFj18o2nzSMSpOy3q+o2qqEKjvEwqRNmeykzyh6zfeVqxgnxFXZGp+nVIZ15b88Pk/5rza4PfrP+uPe8eFWZUdugv9Cmxr8Z+0vaxcz/xlXFlCfNakel/kO0ssmZvZ4VdpX0ynSkOUBUNlDWbo497sCgAW7yBm9ZaDCehHzE73WRN7NvpfLfjw3Yj0taJBWe3Y9kH0vbnpp6hCsU2SMkDbS+Oi48Ri7rtLpfz9x8320iztkV77HSs8LuSFcl1K9iyttFFAHZ+F8y9ISTJEyeCvL3wQ2efB8oA3G6tCm1lYH0PU4pGy1rk4PxSjxb3pbmTbglSYr1ujtaJs5WLxbvm8H3zELbIMFqEy5gOztUwAzblpfI0o8zfzfMQKgmyf+fRZBn7B36jsXTXbCDRPTJsgpN9GfO9lvejoO/12xMW5G/3VurvgPFq/GDbuEIqxV4biR+qcM2wffD+2KeZSQz3jluKGyHEfw73JtrVqKn6kPrH8m2cN2wWUDN2SnSH3P02SFZIuRnpvYpqzfSvsM01uAt6f8gtCman9EstYOSr+I2i9e918Zs6z8V+0VXgLr46a4ti77rOOcU9wMefZJt5XbhcNUVXhe8bmTAvHb799ret3EDBbYfDS+PhnyoUNsbU8A1VG2NQVBW25RJmW+Yaz1RoxHmHu9z7Lv88q+hhsgdhJ8AV/Lvi83K4zxbtOr4iZifEW8frWp8/ZxP3VV9h3tuzNtNmUqo4k6CIo1R5vpmPS8zMrW/r7POYoOe3psVdgy36jDXVsSvTnOgEMCRgH6MkEd7LVt4AFtu+J5+7QNikcv3IuxDAA3s9vqF7gbz+2j03ww9d9JvWA7dOQKxHvCVXdOGfw2OO/uP+1cDZjmsvYR4rLMLHJxoPcAM994sPgp6uxpVJ2YwN8A8R9GNoyzNrVoowmvzUOa2Yt200PaNXF8essWdcGAUXycDJhJrk6xahW9ZqurcKOdN7antpNbimqBUY78F7gK9hk3G9l5hZuRqyTd4b+v9P7pNe+YiUJoatuunxD4zVqBGMgSjlheJJMtncC+l3q2sK5X5B69/aJ5FeMj9r1OtpT94mZuX6z7iuznsu8R2TPcfMXNzyluriYBcJO91eLe2UiWD53H6WVFy7Kfn7QM/242ykB5ErSJLc/rzxx3qrfr4GvEsd455qLBv2NUUsOMssxqFzsvDpOzT674cIUxvjdT371DvZ5qkX2zMvXOUuo/xOvp/fHNg2LDpPa/Ajcp3CgEWuPmff1XrO72Stu4IuqN3HDeMCOUnes9g1Ha8jwlPeVc35ZfMC6f7ZhM1mLuKjcBcx1kGSbPTX8aW55UlffN9nak/DJcfep4Dzf9nCroXcl+nrmydibQdjNi5j+WvcRNxGwf9ib/aSu118m8+W/NjZd9zH8irAdOz6dOX0sZH0tbe3Zb3a6okzXO9/P9kSsoHA9ktZaSHsSlArujcaz3OsbYZD5Ktplm/9wlq7wsIHLxa8YN6ync7F/cfHHzxQ1xcy3ZO2YI/S+XAHiJZswjnPNPyxVAX/LzA79E0fTXnwIoFPGJS1vGNdioTbDUuuMMRjSMfTkgL4FqfqhQBMCmfWC1wnTETcQIqONKHMoqK7ZdegGkQBscGgW5/xjNOW5aWQXo8eawjBJCMUpf4r7uvzk3Y8x5WeOqvcdYK98O+g0VrQ9OpNoVfdLR5xhB6LJ2gcpFr7CFeP1h2983arTX1Z/i+Zi7wk0/57mxmGuTDyspqO9I7a38Zn1O8gS0/7rKDfHalml6TMyVVHI26Rj5qWz0X+fhAjcRYw9XNre9I1m48U/6M244gsa+6nx/KuibM0WuCN7nTd8FyOP00nfMSuq9ibtIcMMA9dvZxTKTrb+tI/ABSxeWA725Hso3TEoYr8hG+1ayJ7iRx2QHjB/KzRHGj+WmHNYvbr64uZub9v7ARPa+PuMTcBOGIGcT37X31Shc1uUF/v50P9cvCX0JUufcBp0Y7Kq7v9uYw18vElysW9J8xEiYxOoZZe3juXazkJ+aHWE64ibiKFwRpon/24Sm8mXvaSvxl/vvOjcdLE0UpeDsR+nJbRW6z39zbsbzgtF/iSzpMeyNbWGOxiWoZYOIA26W+cZK+eW4IE6k29AwqsBeyOG6VZmxNTdIz/UktcIxbgo3/X01dTE352rFRcxnvHZORq5K7VvbklTpZG4fY+rnz3Az2hfju7/j6ifVTbZ3fBNMmZ4ZN9f895mTvOiJmYj8eQD/CIA/AeBPq+rv1ON/E4D/BYB/H4D/kar+F87U97onZnaBVsvb795IjeJpfiVbA7fn+0VnWD9/pHfQQ3k8Knunfe8k+1puNMh+cfPFzffNTWrfz4GbOy6AAr+jYKzbyij9Luc15PNzNmBpO5FKXbJIuNvO2AIoBLzT2NRmjPnmhynG3WFqT1HSaxU9s6gFpFbWfCj3cJNjbEvJxP9t18wqa58hUQF2KRtEzMpaOseNphgbVw5Ttx2oO8Up6tIvSa7ra//NuYllu//s2Hk93V5qgk3W7Fex3fjsiaAk3MDXteK1ctfjxgb45aR7aobOGxB5LSi2qu1MzE0xCoa46ZhQnwoxV7FdCHHFOrtX7ok54bipFfNukRxzesJ/nasL3KR5fz2d+6/KUr9mmNRs7NYccDO2i4Y58d+nTq8D+FcA/L0A/slw/K8D+IcB/Mn6/6n0onfMUL9jhhZs/Bu4lr8uWzvDq7K147oH4yOyH8aNor3o+sXNFzdf3Hxxsyp7NYmgL2Uk+XFggHTQkJUtq336cEI2vxTOdqNr+Vq5wt6lIr1yXm/EOGL2g1PeFS/q4dlN+XxC15zdrb4XY+QqcuMnWr02+8VcXfHfCnM5N/df5Ool/sOB/47qDrINkwI3ArZDL2Eeyk64AIrftwVX7Zz6yu3jFg/xmsSNAHW3wdrnJGXb7A3MlT1HWk2qT2BkPTe0CXj5tEvO5bP9N2Dmuu/0H7TXjTpRfA//fSWfVPVfBQAJBKnqvwngfy8if8eV+l64KyMvA6BtRQHAArz9k+QfltXrsuLv0/B2xedkP9K+O2SbfV/cfHHzxc3n4ab++6m46V47n/qudvF415fl5/VB/Gc0Cj5mraeCvtd9u1vvCjMNiyTkm0SXtbw9maivlZzQcwWjNgAZJv7rMfVqbvIMbrJyVWfD9X36DwvM/jdNKQTtRgig9T2rFf77fS+HvNbfUv5Rm6Fp2Pb+tN4jzLwJSM6jm1JQFeMzvJWeKxj7k9t1u3iW/873c6P/IlcdpMAwzbha67qf1xcnxXxHlu8svWhipu2JmeVLgFMnuPWALwdi2feXzctmeT0pO8f4iOwXN1/cfHHzc+am2vNEbh63r5+/kjbaldGqUgX4PY4hz2WbpDoYIqMspyi7Adjr94kyvXPZFcY6vVI0fnkJ6ZG9G8qSwebfu7nxmMzeBiuMs5ayCsgmj3FT81P/Se6/le/LLnkHXF3BaPZC3T4/p/zXZM9xI4Ebezoy+P6U3qOy7HvtA/dEVgImaCHgqn3Hbeqk7xXtqZoGnE/1fcoV3JM8Lpv5DwrodtF/F9pU61sCV6n/7JgWGwau7uJmLP/ZkkAffcfsD4nI71D+t1T1t1r9Ir8N4I8kcn9RVf/yI4pjes1SRtQlLdLzWn/YNSPNh7L3y5amd0o20XNa71WMj8h+cfPFzRc3P0tu3tu+e2WvJkFfyng3TqC982BlV0t8Msymlz+2eujDA8xumaCgDzbPyBp+Le/HlcGf3MWN06PjZituWdKCG1DZXW35qdzFzciV95/jauK/WJdxZSUuc/NM/wGI0xfbgfNQL2V2KEC+P2wnK/vQ7bFkO5LuidxMz14Huva05opsjplWSEhZtmuyw7LdSb75nrl6wPdA4Yr7hYbpQJYfkO160X8n+xsrsernBtnAVea/U9wkej51emxi9ldV9U/Nq9Y/80jlV9LLljICCthHQGEdWw+ZVV6g0NOyo55HZM9ifJXsFzcxD3fui5svbr64eUy2DD5wZyp1SZl9nMPZBjv2/oeXlQNZ1CcRJtHP88Ak8BEwaoK5693bEjCWFdKLqb19u/+4R95ZbqZ6BYNPZSIbMVp509gmiie5ueI/VMzH/utn917iEjdz/0kTZ8yRm5ZP/OfbUUEmbXv/uX0qAlt6LCBZ1CWFJ7hZ2QeoW4rav1Q0t894tYm9qdtQx75nfR/bVDtS4pOXNsvEvhI3xAUt07aFhYz5DDcRI8fCxufJf6PvexspXHW+y58D35/ob/r3efO2a9wM/nNcef+1mLunL6b8V3q/9JqJWb1g8B2duHympHn+iuzwQc4HZFeYHsH4KtlfD256+uLmi5vzsj19cePP35fsHTNFGy0c4CoKy4Bga3JlkHDKxqqHB4NtaKgaSqv/HTFaXaRXAqah7IGsDeIV5UPYqgr/We9z9nm9e6mrWXqOGwjQJpnouAxN5/ocN11P7r9pXYls56og/ibAm5abHte4iRi7DySRjf7bJv5rIu2JcJ84KOkZufFcaI3PUq3lZ9ws7KvY28BcaLKtaPXO7ItNvH3flGTXvKKfd7/LZKPsnGrnir17bI9p2/VcNUwT/53CKMRVXdIoif+2iX0uAtl/R74/6G+ktmVvd87NmqvRf2lfdfGa8SnTY0/M7k4i8vcA+CcA/GEA/7SI/Euq+nfVc/86gN8P4EcR+Y8C+LOq+q+s6nvRUkZt2yaXfL2I0J2xGb3xXAmmPliwfCobzg2yVnc95vQ0vTlGzh/qiedXsniAmyY71j3DeAbz3PYT3MRzj3DTZJ/AzQk9ZzDPZSvGJ9q35LXZd4KbR+yb6g3nz7Spu7jJzzv7phjfmZvoezzAzcSGqxgH+yb1DtxoPflAEgA3eseM3x2R+v9OZXsi7kzW+Erar0+eO1VgEynb5gvaEGwvRWnw7zGWY/0dFNZrid9HUicriWwf0LHtexmplycEF7lhvZZE5tx4jN2+Xm/R9GbDuEpO5j/Os3123r3j5rgK3JCNvW/bvSyANwA3bHXAOXLDvOX+6/HNXB1xY/Zx3YLyZKlxocV/O9C2L98Mo5R/Zm2/xCfq5KlY7rmRwE3uAxt82y6WQrYaJn7K5OzN2pR22X3gpscry1qbMl9rLW0xZk/LjJvtiBuENqVlsrQnfFhNmayS//gz1YLOmVDZfWJf2qac/wJXwT4duIltSl1b3jjWtfTRp/ob9B9Hvs+5cVV83qR42eYfqvqXAPylybm/7Wp9L/yOGRCv9hJWwGaPeyHwHzutQejuhAKIO4u5y5m7q1Vl6c6btLt0JzHS1dwuhAj2HWFUUtPuduhFbnzt1by6pCXTO2C0c6bB7r4FbvQCNy5PatE5PsNNu2iKsWkZbZguccNlnf/qgOQkNynmVHafy6b2dfwr++TQvj23L5ZtmNf2KSSPT2dE4vusTbX4XLTlhJvYprL4jPZdbssUn2e5Yd+7IZ/sdUnMBW4YY/NfaMspN2uMHFfG0yluVv3phTT2+zb4KPmtoh+WKomJ+Vix3936UdZS2YreDzCU9SY29po6rv4NKPZD1MuYdmqtvediBNK0+fZ5ihuyr7i8DFpjvz9ywyg0YNKGxs4qned2pdD6jla3z215D4Uk7WrOTRaRnQ8FsKlAKZ6NmxjNnhv2n57yX+TGfm+Q4VzTXIO1LxnsTEX7EPTyXRvBXrZjJ246JmsDWfu1HQKtqnIj3MqPEWg2zNtUn5QrbuplexRYGtsU12a/NwG24a2nOTexTRmvttzS+tiIyNubtKnWVkq60XuZCu/rjJvMf/bUcuU/w5/3v9y2C74W+0tuamy3WqpeCdzoSW5CXN3b739UetUHpp+dXrddfhvkjt2E5a3DRDhXrgI+aJ1suIg7+VaWO8pedqU3xQgLXoXUliMudgnTAmO/MyS9mNzBTcyLdTorbiLGckxCG7zMDZXtXNUyUnXgHDdjn3Ddf2vM7L8r3NzJ66F93tKVffyR3Ll9AC/ZiGV9mtgXVXB8ylzvUVvuF8Wz3Eww1VP3cBPbMsdnVHC+v0HXdUdbPvLfPG7O+U9xgZsB4/UksIEYD3Jy3dZf8Xsb/DRLnG/WdXF9dr7c1W7PMejuspu6BhwKBL0W+1yWh22e9vjkzwZCdkTbk5aoh+tymGrciSvZuZJDbnKu+H56e8KIUY/J2s2a+Nthank/oUQ4P8fU0wbF7p4RjPVw05j5Dw3vGa46juaD1L5atgKw833QG98m5D4o6Jz0Q6ojvijbOVbwQF8x+g+tXG67m5wSJteqNCkb6jWflCdT2vBtivre05ybERPVnbQDvoF13N9UTLTkM3J1pg1xWW2FZv6LXI2YANSbBt5/YxzN+5tRD9xNiSNustj+tOlrYvZYKk8QpK9nFtT14jxY8Hm/7LCea7JWby1b/3WyViUEqjvsue1eK1jqdbI8MOplaQxRBvmDfQFToqc/SxbsV7kJGNtdlspbXKbTZXWUJb3t7qnULX31WG+GEeSj3H8Lbhzm6j/c77+MV+v05AI3A2atE7wDbnL7JNiHU/a1owuMm+PiCjcIZSkWTvLaMEduBG6wcp4bHzer+DzDTY9PzxXH5yE3Tg9aH2EC67YM6jNyn0z9l9oneZ8YucJF/8W+6moSW8Jur7c789OlcaZMWsbLctkoW/J9QCMwv5Sh1y58r5nijuq230IlmNvVUqRuX4ZZcbOcljZenjDUuHIac3tLwSRGZSx7DuPelnGhctWX4EngKrdPiiAgxE3C1ZqbcUnXjTDxRiQR08y+Z/mv18OYJ3FjbZ9qs2H/aZ+oDjz29subaQQe612bG2mx10cU9jy8s3PkA+F8OpaqvA72jdz0J7+FHUjBa+XPxyttpV/UeK7oYu53kwyYAle+f/VcXW5Tw/hv9N865vrNm75zpLQp2SluEv/NuYn25P3PV3rf9Jp3zAT4JqVbdY9kZfcNYMgrzfR3N5j2j3ZRLgxV33Be93a7UYHS6SuXTfS2/N4xWNmGqQwgehCXHqx3ABHTqAck65YMnOGm5WvHUjsD2VZl4SaVqjtk83pAZUeuDrg54b+z3PglA9rOXfNfGLgM/rvGzXmfHHNjyeLG0kanz3Lj2lSIz2m7SLjBgLHnN5XHuLHHxLK3AcZZbnrcBEwDVwfcRIzE1cZ6TnAT+5+OGXVJyxn/xTzxqoBsuvSf4yqpd+o/4uas/64mAfX74WLvl76hcb2rYot9KihWAFdPzEvUU/Xv1X442T3Ioj2VtHeZeoyu9fr8OGjvUwtARPGt/t5Vsbk3vfah3o25CTFquM5wEzFujAl9AiTal3N1Wbap7hpXrzcYYvQ8NxFjxhWAemOoW8oDSqDfdJCEq0f8B+PGlQ1tA7793qrW+PrLKb2uz/Ht92aHULbaZ4w8QbeJRveJb7v7gQ+GfBJzXNZ+jFxY3jDpAhO8PQOOBLPjimXH5ZcOUxuLlH5paFNBzxxTgvHAf54r+H6/HbvK1YE/E264z/D2jf77vEnx9cTswZQvRemk8ntkPU9lKbg4KF3Dr2cyWR3uE3DZhV7GG8t6IAOubcDk9ShNNkJV17hhuQNMNtgQV97b5zpc6lxG/42yU4wOyDE30T7fOV31Hwa8GaYz3Hg9lHfYznDTXx6P7PI9rfP2xTal7eIzbRdkveH1vh/Pt/y93NDyE1nIzrmJmCJXmX1H/Y22CTlji7avueH8PW03xs05//F7FSPm0YbxvI7nppivJ3H1C2wy1J6gt7pLfmt+EMKGeoSHHXZvt5fdGi887CglypOgaL9SXaZLxhgliYhpnccUEyORqV+87FVu5vm9DfrGBVwRa+TK/Mf9un/ed5abs/7rlvWtFQZutGMBtH3DSy5z4zH22OBS6kq4vh6ATX0eiZsuxbI9XtsTxcBi6Tf89dUnpUn3fdzoIFu9pICIl+C+dxts7O//9ZUU57mJ5/zTHqV8lOhl7KmUuPP2m5+bXvFffxsw81/hSmAbLnmucv/1kt5/93ITfW/vjWLw3ydOCnxNzB5IAsW27Y7DdrfNAnPrebd8RnxjKfXxZcS66tqB1s6Zlx82vW1XH2oQQW+OEUPZiCvDCN7oYBvttXX8ZdBAmM5yEzHKyA3nexdTfwvaEqYBowKyUcdyhRuXr2UvcXO//6bcRF7lAW4Svde4MfsS3xOmU7wu7BvbRZSdxFz0vdF/2r4JN2K+xwnfn+BmytUBNwnG0fcT2YSbvG864malB4P/clnTdoWr69wAvvzZVN7h4OnQjv5B5ToM2zDEhz1piEtzVlxL8IVbxlMHOSpv4MW02jABXHNcgrfWuyrblxe5oZQWvyoEIhqmqmxP991j3Bga48KXazZoHfSJ4o0wddn6lld9OuNWsFzg5gxXHRPaALncyOw3Ytm2dj2V+7iJvBqm7rexXc1kFT0ed75xdDc3efvl83tbEmu7DNb4CXFTfstD3GSYoQC2voyT48YmZYaP46brLktruR3cxc1Qb7+V0OwXu2HSuQLGZa7SZO/nxskq+j5V0pcnxnbfd6/cm/+47sx/d/VVHEfBf1H206YX7cr47PSiiRnwTRS7jMHkvm4O9KUIwNCAY4e9UdlN+p0EhV/2aI3BGsemaO8wDEsgIkYZA95hhG+kUfbm7FOH2c5B0Ts0uYObiDlwI+plb8MSJq6r36nZa0/SuLrKjVzghsqWJQF6yn+XucEVbsaLsZNlvQk3TlbiMjK0tNXesflege0J9rWLYpC1ZMsCO0Y6R5ju4nXBTXn3yOdNudupTOsFNHLDcRPb8gVumNdybhJzXHDGTdAT+67og9YukrjhZWFn/AfjJb5v9Cz/Bb1X0rc2MaMJgQQ/uLZv76TQecKJ9Fz320a/e91SlwwK7EqeyZrNq4FNxDTDyPYK+pOzzmW5AbEDZYIt/v4163cxegc3lo99deTKdlncFZB2R7/3fd1/pY9kru7hhjF5+0auuv8W3MhVblivDmU5f2NMJLujLjGE8Wh9quT2kOacmwPMZm8tZGV3VepXbAfErvdWazNbWU+/Csy4OYFRyhhmG+riDW/Kk8xM794wjVw92h75+aWiLDO3DTYAu+ZTn1Fxda4e5MbyArcU1bhqsu3d4oLHdouMcbNTlN3FDfmgYZISu9n7dZ85fe3K+GiyR8Y1CEqn2oNeQCfrv1wWC9nynon1Utplomw9INJXWbdOQ3K9tZ1QnV4vtdtElu2pT4iiHgAqUncp6tgHbhYYj7jJZUvH1KYhjLlyVTqJvb4s+57cUOGl/wCIOP+9HzcVUZP1/jsdNw1F6F5bZ8j8Padd9EU0dtc0iTlI/U18V1AKE3kur35pXtDLXNUY4MnRs/sM0yvSX7ifxhwE5r8z3MR2MXCzbBekP/ivb44x+s9V9CA3qf9wPRW5vbzb1eq34U+P0V666BWbNdrwg9ogl7U+xHy5oS/HESdbBq2NewC8ZXjRyfZq53emtwWCVi6FygpQN60oT5k6e+VGQ+HDPpjbJ09x+Rk/5/B6rnIjldcymap6qs3+NYNi1q2qVJRlgq1xNNs19d/ITcTYuRH3rLDiIllJ/WdIH+Rm8B8qJs6PPtmCbG9XY8zZpMSNNdRMmHGzwhzsayUUm2zou6hyzBlGaZiE9HgGj2N71S76m5IhbsRw+PbJMWdt1zYF2SB1xZQ+zM2NNNmNv/5h6Xmf0WUe52ZYMqpCN6e0+0eK/xhzjzmy7hFupmVBS2TNf/f0/F/panrKxExE/ksA/lsA/rCq/tUzMu37FdZIpS9Xc70EX7hbTOixrF0oaifeayy/tAb8Bum7y4V6Rz2odzNXemcYQbvy2J1sL9sHnjbokwM993ITZa15K3XmXda4EhVo67Dek5uq99B/esF/93JTzm6iUCW9if+O4oZjzpYMiLOn5zNurvPay/L3sNh/s5jb2AcH3Ejl5nrMoX6Dprf1Wcy9Jzcjph1t4wM6zzEX/fd+fYbZbhuTjH1kqT733/O4CfbdlRQ3eQMat+xD7usilzmWjlP6OduIgq4vPd7RdmD7JoI3BfVnwd8Z1yu9aXx3H5YQfqt+sc0irNMrum8og7ndBqopN1HvNW4AoWtvjXfCYbujlvi2AXO9JSC1bGwbbbB2lhsr29uGNG76tcj8lfsPeKtPFp/Czax/ovOZTzpvOs1r8Ke10cLp1evpGfsA27VYsKcxZ33qFngVKddTPcHNlFeahFupHjf96U9vF2PMRd8bV8/hhmKbZLeDPmN7Bjfw3Fg/YW0KxE2Jstx/ncvncxPblEJcu//U6euJWUki8scA/FkA//fzMopvWw/8EhAKt4RJueECJVC4Y4yyaJOK/j6SAlrDj556ANrugLXdmkSCbKYHIYhneueyvWyxqm9h2zGVFYM2MZGlnmLfSu9ZWaX3VfqlA9I7710Z03tyQ7LmP6s3+E+1LolN/PcINznGeN77D9rXpTfZ+qssNbEL3zO5OWNffduo6ulr57VeE6TF3P3+u8qrurGvxdxeY86a/a6M6T24iRjr1s9VZ/Of46o+3Xg3bqJ90X+1PV7138PcwMleTSJlCXtsG9Zv2DDDlvJJPSXCX6xi2d53gfIb+9ANxgxH8WHxrzhZSfUkegV9AJmVtf6pnpA6+ETl1vqNvdJR3qUsdRW3C8mSniO9K4xa4xudm424EfD1p/eprd+n2h7ihvMCQPe2WyYEuDE3gMPY/Wd9BvnvEW7Q+5zCld08LUc2jiPhnTFHjI5Hyts7b6d5S+VTqgAAQQ9JREFUtevpPbyC+g3ilXnMeZ23i0d47e2CeJXOa3sfMPDa+rakXdzNTVb2sF3IMFbc9cncOIzMVdIuFNhqn9GWfbbrwBO5SWQ/bVL0wPnO0zOemP13APyDAP7yFSH+VlDxvlpbg6IGl7BE3y5UUlkqLCRKgSUtYOkxtdQ74EPdMz1zvceyXEBbh11hBsy9w8xlxZU9r3fU02Wt8wtcVZ+4d5XenRu2r/uv9elVVqUsTUi5eoAbxtu56XET/Qfip6tRoN7Z4oFlKfcsbo5lxcn2Cwt3zuLqOuu/FTfHvApQ32GssSN9SUuf+FrJ9+EmynZ19Tz51HP1HG7O9DeZ/xR1qZCABlOt4If1GVdTX36psJmeRaNC8abUF1dM9t5GbFfFFwyo3FXemnC/SEvrR6onBaXfoOu4hL/9eJVzmGWQc7+FyypEaxS0frLyQeWMW7tbHvWc0jvBaFy5G52RmzYy89vdWxusc8qBG/vW5Wluou/FYjDhhtr+2n8PchNlK6a2AZD2trFRrYzLY0S7YSCVVyHfT3mN3FyJudAulr7+EF6TNjXhtXMTcWHSLh7g5nK7ME57fdrOCwjmab1p2ZbvDyWYq3ZeKLYkLBm1vHafPrVdfOqkcB36d5wempiJyJ8D8G+o6v+Zt0U9k/qThvLvEJwq7o7BZo0kNI4uG+5eWD8a660XSgtEfhF1JtsG1OC7Btw5zPVmGIG+a4/w+fqPye6JbNeTcXEfN1G2J22PsL2s3sfNCYwA2k5fmf86Vyv/vRc3GmT7ce4cm2z9cauS7Q66KXoSN0eyRxh1IevKXuLmWFZg7dFKanvvoi+p7TWfw/iI73t/08/LwBVS2edyM/qPuQplT/eJz28XV5JA63Ih9Lu6FHymeVdpGzuUb5ips93LKqg7B8T2D1zZaGVZ67xs82HUe6jHfxwWJiaxbI2zeq71+6QHgOtjp3qXGPtxXpSUy+b2pHqF4vsMN9K54UGnKPHkuFn771ncRNneP2mPlWnc6LyuK7wGbrDEvLbP9N3L61HZc7yO9l7jtctau3gGN5ZaDC7bRWy7vZSfTj7OTcsTxtx/rB2Vzfge2P3cHMbJV3rXdDgxE5HfBvBHklN/EcB/DWUZ42ESkb8A4C8AwG/+239fn5jVkUUZtJbggpZ1tmUzY213LgS1IVnjUG15vsOuoA7ABlNK8QrAlk/YLlgczy1wLa+tPTa9N5PFWq8qY655Omeyptkaf8Esg96OsYxEGOND3ATZm3Tb7AOMiv4pzRU3cZtZtvc0N4ls56liIsy7YsnNgPFBbvaJ/5oaqsuO7lo+sJvGzR3c5Pbl9rq74tJxaR0QHtl3lptuT/DBBHO/hlCM1R/PipuBi4QbwMeNcdUn08F/B9xk7THyeqW/aTFGywrNf4zzcpuqevQCNwTjMHG//wf+Hb/hbshxzO5aNzzC1nZnvcneBiU3GqhEWXsizYMKIZv70x97V6O2fUh9j6XXS9V2PfVoe/IteVmfr08ECPUm1OdIvznH8aD1Bz+tVaz0sI6MGyqrhSP+HEBfep3YZ+0btd8PXN3PTZTdy80r6bzNPlFgbaP1+6f9d8BNkLWIZ+mV/+xpCtfDvN5QdlzNeN2kvz30FF6HdpHzyk9FM155y/c5r9Lqxp3t4iaVm8hr4Kq1i6dwc9wuGjfwfequdrO1bp//inYRYq5hav6rG6Y8ys1E9tOmX5cnZqr6Z7LjIvLvAfC3A7CnZX8UwL8oIn9aVf9fST2/BeC3AOAP/ok/rLcabBZaCmDfQY+V6xav7YI8fpHdDWwkBM8iz6P8fkEXKtsf4Y75vvW+hHozvTwZ5HxaFtoKKPpSjsKAvfxvsjthio/Z7+dGVd3W8zNMc246Jutkn8GN81/AVGJjxk2GkTv7+7jJfF/eZ6l6tB81PvpHTo/1rrmJPkCIBeZmd3VJlHWx0n+fwRi5wcbnVm3I8qYrxNhB/F6Nm1424ybGzYyra/5bx83Kf5GrK/4LXJzghvsMOFld9Ddmw3Hifv/f+Sd/v95ouTTA3/0pYET38pkCqe1Jy6TM2cg2gDYwQLm15/oCBBuDbPwb63Z96umyFTtpE4AmXrEt9EpsEHhWz6h3UVY8Vxvg276T9XF2w4qrq9xw3n+eBXWzg1Vd/PsKV0cY42cpon1z/4U8cm56CeY1tmeOmjWv3Fc91i58PUDfuXDENLfvkXZh/aLn0XMTd3l8hJvz7SLKem6e2S5GWbsdBkhsF4GrW6hn1S4ucZPkP3X6dZmYzZKq/l8A/M2WF5F/HcCfOrsro22Nq6L9iRWFwCbWmZR8uWijRgk/QOaug/K8Mw0At0VojEzK+HqSfB0wNDvc1qMzvccY0exXwiTwnzScY5Sm4DFu4opUl3WjiBlXvisXtu8RbkK+4WO6Tvsv4nyEG+a57yIlgvLUSBgH434gbpoFWsM52tvr6e3KlmkETFHvQ3FTW4ZrYjOf0Png1+e3KXoa5DAtuLLHiJLF0XPiZu6/PB/9t+JGnLbjNtUx4aT/YkSfS9L6szLsoPvtAMrSafuej0CBje+wRz6sTmmyoLL9ty9vNnYTfLsabUzaL9Wby3rMMsiOGP2U1fw91zPHPPE/PFd5eY/RYpR3yHucm96DtR0hqcZj/1ncoB2JemZ659x0THF59Tn/sZ5Ml5fty+f6ud6qY10me8a+1orvahdRZ8Q017u+Vo3tlT/zPLPPcnH68Dg3H9curnCT9yG2M+joP1/2vdpFLvsJk+Jr849H01ZfirerpGDDLuX3Zg1E9uFuKYA66O1H0jz9LmeSsnXspaHxrHYigsK9eLnSM9U7k21rWqzb6p/3U2IgYrS8PI2bhGfHVc4NNwl7F8owPczNxH+dqzv99wxuWv6C7JGeFUYtpcsSCcHog5gvzyV4qcYpH1zkhgcbV9qUe/fiUW6CrO2ctaVxknPVBgxLH1zjxlLn6i1wtWpT5L+jGHsgts1/cqFNXUt9SWLf0axsbA/5qQxC6Brgnj5L5IP7xTf0myK9T+zWd1lbjrRJWT5pNxQESN7By2LFygKQ/VB2Q2+rvi6Psc2RjY+lHr5bnsXKRLaed/1AwBS5KvQIdi2fOXgONxbPfcgdcWT+A/oH2AGgf4LkrP8W3FRez3KT5WcxN5R1fR2XCb5vtR37vuRH+4oN59oFfxzZYVIc+P6I16jXdlnVtF1EXL1dlJZ0lZtjjCV/V7vAW6vncW7GNmX+O+pDXLtAmJo/xE2O8XMmBXQ/LvYdpKdNzFT1bztbtgW9Kna17gCAoq23BhTfZMfNLY+iAJFeV+03fOOn/E7nNcoq6rsU0ssiyJIetGU2CaYkH/XOlvYZRjvZt8LuHaWTVbgBliy4mWGacSNB1lLZpjXnyjAKYZZNl9xAvJ4jbtJOSOvStxY13faIsXDzmP8iN1OMj8geYOJOdlcF6LMSg0+0Lwc2e4znezBayvxnf0qbQoqp59XJbnKNm4h5xlVb/tzalBy0KR1k7/U9Y4KTZf+Z3pGrjpH8t+X+m3ET2xRCPu0ztA/SWlkE+3A9CYBvdfjIH1PtiyTLka3FrI4xCrNRqd9Q2JBBEPjBKGs29QmzTm2c6m1ldexjUOKo+Rt+0JvpsbRr2SXY9PQYXevNMEZZXu1h50bZjrGxo+YjHsaxbInnM9z4vML6/RU3nOclW4/4b8ZrGwSnMXcOY673Pt+fjbkdM/tK+aHfX2B07eTQ9/dgLOfLRFjOcYPynp5Nz/o97Ee4ue5734dYn0N9+RO48W2qlJ/5z/KuXVRt7VmePs4Nl/1K759e9MSshPQOG57R5huiKPdr9/qieA+FGBSCHlTiSvhHtFsb+NROTwW2jXWZaEnrGbb2wnvf5abgsjDv3UjrYALG1pja796xncG4i2LjESf8Fr3WUMs/4+N2LtmxmLYDbtDtZMw7Sidqb+ZqkIWdrzMze7z/bP+VvMDetdltkEsX6W6p91/nIfef52r034ybHKPntcfNWtYw948q5xgbh9JaT5Xt3AD1vQLpXuxxNG8XWbz2ycHoT+/XUoctBYxxMrYp+yDwdV4NjQ7cJDEnqHr2XpcrEdtUP3+Gmxhz3n/MjmGsecGUq96mTHbuvzzmvH1A7r+YbzEVt6d2/rt+iS7Q6t1y7fKbw7u3bwW19z3I5naJcLFjKO0JwUy2t0FAgc1PP12MJrLcjvn9u+Z/ih3D0X3t+5WoR62HaTcmqf22dA0jywpxY9dfzg/2NUzl0PYIN1G2NVHatXLBDedBeh/xX+S1uQ99OduKG+t1h7Z/xM0V34d45fe3M26cXgltCut24bghpHqn74Fj3xeO+4eTZ9x0Lrq/RHhf67nvM8yP+J65KTb2yVCv905uomybUc39F9tFj0rqdza5m5sR4/V+/0PTr/s7Zg+n2uOr/Ra0BnuD4raVS8cNCr8YmwdjpUnEDnv42nkLtviF+dIp7Kr05fTeGQrJ2gdC5yt646RNKYi73jlGq9t24pE6eNnbxw658ehe659yw3ljh78eP+Mm5+qGylEddEqQ3aqsNNmMG4R8Ob8RwiP/WTHj6hvKkiTz30ayx/7jITL70wZXK25G/7ENEPsdfZ/JdkyA0k5jK4ydRzVMwOiTvTAhkvk+YpzbZ4M0Ib2eR5JFkfVxEn1SJGxJc48bH+uRmxgLvCVF3h49RuNq3qYA3mBDTvgv5kf/HfQZivY9t1Wb2qTfHvD+G7kZeESfkq79V/NtcjlrU/dcALWjEGv7gOpe69zLTmLKgxriHT1rE+fGh3Tc/cZQl7UBFGqfCqD2++XMdkaW80NZu4RxXtvT2aWsWlRYOxPiBo3vFUYhraxH2gQWaH6XE/YBELVYlRoP233cxDz5r8Oe8epb7j3+ixPkDTryGvzX29zavlMxd8BN937w/ZFs5GbwvdnbnACRyA1GWXTf2zfNrvp+6hPXdq0LW3BDfY1dn4q2vdZyHzdnfN/nKGObcv0kta4z/jvb3yz9t+gHFLvnqo6P7uIm1fNJkwJf75g9kBSCXTeobthRtmUt37dR/OL2Vjb+UOAmb20p407vK7X3IdyFj5Zs2brYujOEwt5ZsAFHKe++5m7Nsb2ToqQn6i15Ltsw1o5Hm6VdtmEijPw193Z3Quuyq4rRMLMebDVfy84wljxom2rCrD3fMY5c2Z2et7beWHI9coabi/6reYcJ7D/UjWLIf7Lmpl8RvF7n+9R/zNXovyLbMXpufMxF++wiYEsz7aLU/TdidLzOfL8V3wv6uU32yk3HZP6L9knQO/W9y+sYr4htqttsg6USN6h6uz+Zm3a5k85V1nabbMQo3idZmzKuZn2G2RfbslT7Rv8Fbq74T9RhAuZ9xtiWvf/4jmfeny64iW3qjuuzCPADdMDZ78p3Lt3nVKjf4LrswI224C9soOcrR3ZOrf+qdQjevJ5CNPUxo15XdpCtMRj6tojDYTQfovjBPi671HPADZcVaDvvuAqYhry1QdhNlreHuJn5z55SpNwA7pz3Xx9cpnqBNvxUlbrUtxTYZO9cPOq/mD/g9bTvz/CKddnP4vsoW07yk7E5r5nvy6RBH+ImYjSu7m+7uO6/Wdk6gjjq52YYjauyFJxWFdzJDec/dWKjvuP0midmCuxap2K0w9qP2xt+2Gy4uGOjd5RuFBC8VMtavaB3unzHG7XB8RfmAZQdyWygVjEVPT3s4+DD1Ys+iLNjDaPVCa2mFRvdY2DZ3eP5zdlk63wt75ddOb3S1xdnGG0dd6eDcDTbrQUaNz3P76j0bynhfm7Asrn/IlciPQ7a74n/Mm7srm+noQsxHzeJ5bz/AEm5Mb2t9hpz1nPnmNk+JpJZPPD9wOvoe6E4FlDMiU0gesx1Hn28Kvogfep7XnobMN9axTL3PbVPvvDZMhrHE/lg6vsT3ERe4bjSEVPlqry7JXndwX/nuLF64JJQPBaJPcV85L9etnN1lZtZf3M1SfBZ1BXz7uklxyDgbgTZCV4uJFYQ/ulUm+DCoi/zoW+/ptfFXZDt+upOeOKfFJivREjW+ibt738ocj0zvZEblm1sVF45vgduGGOtywbBsKMJNwqE69wMY6+U/WdcTblp/2rwHz2fzPTW3Z7fKre73mDvI/aYNtkH/LeIOW12z+zrPNv/V2Iu8jr3fW8bfiXJY74/i5FlT/teuDbve2L3Lm5im2rds/U/hjdyQxgjV8/yX29T2ria+6/KTvo55787uUn9+ZXeNb3sidlPyhvlKn6QN3zbdnyTN/QnKeo/Khxq8X/z3+3xtJjmelZKiW+oTw6EZWNdR8dnZdE6enHleG09N/Ny37qtWz7EdBbjQZ4vRvBcRUZLG34SN8P5NiRB9J8d7/6rS121jpcXXLlIUSFe7QI9iyGM/otcwfsPnE9iDkBdgJHzIsOPCa7Lvu82ZDz2mKsyinZxcVBmvk+PH8cht8929ztI6NInme574/Ncn1FiLteZ+u8UN7MU/VfwzfsMLuvbzhzLDM9ZXs8mxa0+p+XNRsoZPyE/bpN904/NjRfWdtivPl8+bvvT/DR2rI2t+PO/d0j7JpIu9RycG2RL3q43nqt13VZUkfjkDm58WfLfsryXtcG49aHjOy+EX+gtGpXa2yjs/ast0XOv/8Z03mc7MPa/li7zuvK9XmonVtQ2a5rq4QH+Uew+yfeK/vrJGdlDXOi+L/hiWuGidvIwN1GW+7kn+e8yN0ex/onS1xOz+5MC+FVbA1s/3Fovkr/YfgVBX/3cB2sl9PvLlj2flVXAdbw2GK0LiQC8YYO0zU7ZnYJcb99Ie5/qnWH2X++hAUJjpPwqZcuRuDrelnw8ys3IldKHEm3tvFLZknaqr3P1fG72Q/+ZbFmeYuWNq+g/VdTtsXts3GpeoLRr4RGvtKaduGL/reJGGzdFMnJjr+wecbPGaHfK+tbL5by23NhO+uDL8ruc91/kZuZ7Sz2eLVcWXbAsl/UYH+MmykZMBVcfpHlejZvO67O4yXyS+Y/xLf33BG6O/Hc1Ccry9EGXoj1J4/wRTkMTN6ZZtg3p/YbSk0w91Bt8GMtS3vrPs/2iAvhWcez12KPcRFnGdUrWHGaYaOfXR7gZ/Yeh7S/bhvS2Yd/hm3FTlqXVDWLkBuiOb5WDGxQ3vJU528J/91xPr7b9beb7GDcDj4vrTfD92E7O+35b+p5k5bzv+3X6Pt/7fjLnZno9Pdl2T/eLif8e5YbjJvffwVhD+vh29N993MTrwOdLiq+J2QPJukYoUNZVK3YVfJO3tsSm3bVuMmOeLzirslamrXWWt7aUEe1fcbIb1WX1lGC2LkEexGiTgprXft6QbU3SY3omN1y2HCgvvZY1xwqI1heBiwwvM2rvpTyZm4yrtouRoiyDUDvTp0Ssh/1nFW0osm0ZQF2j7souuFHdqYOrFxX2n0zsqzyW6nmB4DO4yfO9G+0+avePQ8xhQHQ9bgo3K98rWE+3p/BoyzPaTlQ6YnoGN76sx9TxlCMCuJi7x3/nuMn853HY2cF/E64e52btv3uSoNwQGXQJpvkcp4/xVfvN8s0C6Wd1obf82tcYBQ5XfU7T4uyoXzRU3ddyJzex7HmusrbRMAWuuG8+xw3r4RjX+v+1ttFPWO+fc2P4RX/Ct21rFtxkb2ONlf9ybs75IOVmkA081xJp3Hyw71uZ2E4O9ZKeQ99zO7ng+8jVZW4ixnt9n/vvPm7sN9BvN5cj1/3Xa3qm/z51UgD713fM7k8KvJXbztikrP/+hjfcoHUAU4NFAV7nze+j8cDHNwiTlWF5VIlPbX8BYFO+L9E7CmusWusa9XqMrNdO9K6Ng79f6ns+7P6kiviMwL1HQXru5SbKtjXRPBBwx7S8QN3qsUEhnsaNxwjwlr+j/4rEkf86NwyQO6wLvEoQQfcn73bVp9JocoD4ZWaKvhPoHdyM7SLKgjYhsaU7e8NSMAOqGyD8bCZSs44b5sbxmNqAhquX6E8sYRcCjVyF/EPcRPs6pjaIc5hQbY4Y7NcTuCFZbknx5l/B1Rc+lfDZ6rJKRnOFm5N9RuBqZPBcEhqornWVPD+d9v1oP1rZcrE/Pu3z95ntaa1pYL3c53iMC8wKd73xmCzN2oaV7v+v21HEOPpJ3F/P1Zyb0d44zLuLG8KsVZiXSfdJSCZ7v/9sxYlI39EUsI3G+g2Wuf9W3IwY4xOM89ysfB/zi/Yd9DzD9xv9jr6P5U/Fa+r7Y161/ervjS/7ujS/brtu/ACck20lfVs5Lzvvb/wkdt7P5X3AcTu5D+N9/f6Hpa8nZvenEsClqW/6hl/Ir3DbyqBsq3eXy5NfAWgwuduDWsuHncUAtAlOC/JatuzgoxFEHRzv4E7I0tb0KtB2hxMo4fAYqVNueveGwzDWU233na12Cm278mpDWfQj1Hn0gV7Uw9xoffHzNDc2WKqyZk+rpc7Bdndxq81XdK73EW7IB4p6nl7U1cR/rfPSgv0UN7vAPhpuYbHmRikf/Fd9ZV1X2/WwSrUl4pl9Ua/jRlptGa/tI5GtXextcsPdqe0WCKGy+AmAkJ5o3xzjOuaC7+m8SpHdYLtrobV5oMSZ6FluOsc4xc0Yr8bJm5YbRf2OqbrYtW3cn85NbMu6wyZrzR7nv7emd69Pj9+DGxdzwX+K63cmBfSOWTs2DvTiAGXMWz9AgzrJZDtOy+/qF3lq3ZUxl41DHp2URZu0c+x0TAeyLQSLVTtNHK5zE8uOXHHfNrcXdSlgqaFNcqZ6LmC0m6LtOHO1kr3iP7Q6uT8WrDCrxwTubxf+CxiZ18/p+6NYR79WfWrfj1yd5ybm/Xv/ALeT0X+cL1y92n8+5pS4Kv57e4CbsexXet/0momZCnQX/GL7CX/wF38NP952bPKG37j9su3KqAD6rjDlYmxfZI95BSBbCB4qW7Z39nW1jzXWZZT8UUyhf/ew56vIXp7spRhHzIYrYup5bXneyWfHW1sbXM75sktu6I7UOW6ok6mbYTRZ2DeGAFGtmDxXzAXrfZwbw4jgP+qgMv85rtbcxEkZc5VzEzGT/+Ax3ui3DdSaxGDfQi9WPCJvF0IXDSF/buqWRNzI9ty+iU9U3c5+KuGClPpemn03sgni23L5dqGVXXPjMCpaDC65iZik+6tzNfY3IK7OclPOneEmYBT2fbfJ+y9y9WxuIsau5970TXQYICv8nfkKveoay3Kfs0EXshpku1/CrRzXioHSr/h707vnNsXYa+FrhAYcg2yLFa2yHdN1bqKejom5yrjxsiWuGm/E1Tm9I8ae5+vLfLv8UfbIf172FjBynstmfflZ/52JubXvLaJz31/j9azvo/9y35s99/o+x6xOz8wn53y/0nPEDck+5HtrJ9f890g/l3Ez+JO4mvnvFDdJ2U+dvp6YPZZEd/wN3/46fvP2S3zbFN/kJ9z4ZVV6QgUo9RU+L/WJSQynfknl9f4cfn1Pp/4RQz9wsZc5d1oWucFewuQtQzJMXF/78kq3v+FkTLU5Snlhsw+kvOwRN1byCjceoxIu7twjpm4Nyz6Lm7X/6AmVRA6PuWl6xV6M1UF2xg3nezcM4m1EYhfflX1TvbLR04+1fXRNhRBHAO9AOXavPPgffZLEjc0chnhJZAkTUHaG65j7gBeIGk9wwx4Ve8J7xE30Zz2HHmNuO20q2bk6x80sbkZucv95X+2t7xlxvQc3EWPVo9bmrqXC707b7R+3/bEs5/sWCalsq7rKKupTZGlPgsz/cTCi9altObHT3fSRH9s4qcVOw3XcLxrGhsAtL32Em9D2YTfc5ty4PHGBcC3K/ZfHN5cdZfu2SII5N5zXmvf+u85N5HXtv5msUoxMeF1x03w/8nwYN0teve9t3HLV9wqQfbjIq7/WnvP9yM2jvp/HK5rs0vepP6t9h/67l5voe+7ncm4iRlvq2ZeC4y5uxrLX+/2PS4qvD0w/mH5j+wkbdvzm7Vf4xfYTtk3rLnmoA3i40OYGUDZxQAtBN4CSGka1IccLbntzS6usAG/o721skLp7n9YNQmoD2QHZFGVS5O+eWjgzZneXO8EkCPbV8zbA2qU3k5WelBtk3Eh/GnDETdRbuYLYTn8XZO/lxvcRif9qhyVlyadhGnidcsNlBTb4ahhtnHRonzSew3CmpbneBrGd5/jsyJQG62faRe/M9ybH7+vowr4uW3xC9mkvrxC3/f+SG/HnDfO07R5xEzFSaX6ydcRNjM+damFcmyT2vTM3oyzdcKk2fiQ3EeN9qWy6sOwnQh6Y81Hy/W7x0LdNbLTlyTt2lB6/1GHXnzKgkbpMum9Xbf6at/3et9nf1P/c11Hc9X5fHuDG+9CwCGAd+ZKb6H9FARlv6VztF0N3DlB/ZOUyblx8h/zON1fv4Cbrj+f+m/SLchBzUU+Qdcvdpbfyw+spAjcLez6f7/uugKPv17yufG/pDDenfR+5mbTduf8ir3NuIq92tCz3V8jFmCt18+7MJ64ZC64+fVK0pfzfe3rJxEygUBF82xS/79vvuoEPbx0L9fkhWBRuwN+2Pa+RZBdRnvC1Nd3S8zeU5Udag/it3nsWAW6q+GHb29MGgbYne1p1zTCare19j6qzYWR7FX1pn/qGlem5zs0+cAMlnC1f72ARV9tmGKV1EKcuGo9wE/0nnhv2H28He4qbCcZWbyXmFDfsv4gRIeZCPspyXBT7pdqnd9u3KdrTHyu7wmz2pj7ZSjxC+3K2076neCzx6SeHGy5wM2CUWrYIy0luIsbI1Ra4cf57JjersrCJQU/X/PccbrKYu5ok2OL7gpJW+S4ZJs71jNmQLf3TdoyXB5k1dembWH+rzYdbq8hPykq9XS/ngd5m25HQH7N9W/ht/cwj3Lg+tuX7HfJU1mE2Nm3lCD+DyfQeccN62X/9CfoZ+5TyMik7xxi5iWX90rE5Nwf2BXtG33dZewJubTD6Ptqwti+5vqJz/n34fpTNfH+2nZzn8Yrvu+w24WrVHufcrPq5svz/jH39vD07fbRd+PynTl9PzB5IAnzDjt97+130l/5tE4USBuXdCc6jtUz3qN5kKYT71tTl3E26sEjZZKOt7ZZ+Ydy1PC3b9zLqKtuhK77JXu5WKC0Hm2F2O6xJ+SggJGACbCe8Jku7+pWt1atFdce1Z3PTVAGl44HUb/wAbejV8qU72aTotUuJoi/3affUFHdzk/vPuJn772bLtM5yM8HY71Vf4yb6L2Ls9ulEtpxSkbbkrH0OoLWPe+0jHtFfCG56Ha8bGCNFK3jjnNZmTvLKmHt8KnhZa8N1ihvmtWJCj897fG/vanWu+n3i6E8I6nOWJ3FD8Ze1qX5h3A9irvvv+dwE2TvThr0+7WYbe90ur5Vb7je0x04cdLSYEq7ROLQ+xw+SrGfxu891fkp9NUaJH25H7Cet5TaxeOrtyfoAXgYqtV/sg0CjWu/khjEKcVOvYQtuuJ+yrqEPPsNAjWNn0DvBXG1l/5UbMoWrlJv6K/PfDQpNyp7jJvef5Td0/w3cRIwuj+brU7KVS7v54X0v7nqaYbbfY5v6bL63ItR2qZ2seM3bLui92avcjGXNLpGLvg9c2U6393ETeTWuyq6i3X8jN3ZNtHbPm6X1b9Tew03N+zD/Su+cXjIx26D4fT/+LlSkvbPVBx/8u/zb8qFjcUsehpf+7IV7BXgAU3s/u0dQGrvdsSrN663q+AHAN9nxTeoTMxrszDFqglFd6dLA0X+7WqzMWxtGb4J6R/xZ3IR87Xi2xlV/AO4wNa7U6cn03s+Nx3jkv/K007qje7iJvPq78We48XfBRozs3y7bEUHRlnA0FPUUb9RxxT7A4oZjjjvvPOYa5jRuCo6G6YrvXb77vvv3PDf9KpZgusRN7vujmBOUmzjxOnU/N2O74LyVOtNnhHu9T+QmYr4nKbWj8dyQN2Vcnt51aqddnidQse7+PolI2YXT5Fm7QPv39ECxZ3xVfrxUud5s5Kes309trRN/oPSRWasb8ktuvJzQ3xU39tf46L2F/WZdHv+YJtcc8p9d92Ocz+vi94H6ZhJD2QNucv8RR1Zuys3B9TS1Z26fog6eB99r8FWOuYB9ve9zXjOcvZ2sfe9tZd8r9Vez8hnGVdn4MXZfbub7wNWlmIs46XAbK9lCxOi/kRuHMcyi5G5uan7g+pOmr80/7k83UfywveGbvOGHuvUzPz8S0B2kcOfXZv92dLOytv7WybJkf1cEqE88dcMbBG878BPa5t34Jjt+qE/LblD8KL/y3xmDdr2IAy6/ztfn/friNpiwMahSWSmd0FabpnViz+ZGg2zGlf2w9daxO2X7hne17uAm8pphMq7KkrP+rCuzz/zFTfYsN4xxwFE7yuZP8onZ2J+s1DtfyHm1S85Zbjixnuh7W5rZLzi762RjzCnkLm66vcwzxcnEJz3t05i7yg3HXMRkXB21KfPaKuYwyM64GfsMk1WrV0b/dfvit7/8hVJ04r/ATVy2e50bb9/VJALcbEk1YqyMEyRLOU4uS/Ed+0UN/b50G28ifUKE1pwbVkC9/1lvGKgU2f42hz2g7NcMavvq5RUALw8vbzzL07lhHxo5U/sgbeCrYDvO6p0nvlnAMRr7UMYc/cd93l3ctMkz+75bKapz2fZUZOLPEHNeFoPvzSmj7/tTxRmvbPuR77dFu7A+qO0fS+30ku8DrzGxPVItnHKjAO+2bKsRrF/sb4jew03EuPA9c0V32JQrQt52r3ETeaV2EvwXueJ2UbjZn8jNd5JU8fWB6QeS1InZ77n9sj6Jqu+YULTZOyc8yOpTghK0NjTq4dgHS7zds0n3jrTofAOgu+BXWj5vbUsYvskbvm1a83t596B1YrxrD5xeHfLx3B7sUep4/N1obnfvw02ut10SpC/06bX0clnaQnmgL6M8xw1hHHDxwDA81SJMbWkM1Z1xI49wUy+YEDj/QfwTLuvemu21d7Y8X5CvcuMmPYEvS1uzXamMuosdqN5u41luPH7A7PMRovA+8Xhpqi9szxluEowDLtbYfTJvU52rrVfqcG1BzzE3fQlpXC6iVZZUucSrCRxXxI0twbzmv6vcRP9dT4K+/CzaMO9Du6zlvawfMor4yedwM8CNbRSQjc7H4acfoKwxRxzSrhmCvZU3fw9tR3u/v8V+4yncFB+6642wff2a0RZ4qu/3mRmnR0eeV5gdJpvM2vK2cF2L7Wqru4r2p2XHeu7xH3+yYuAm+i+2/aFfZ1kM3Kx9fw7zo+3ClhNa2+cbFv4qc5XXhe9VW0ym3ISnOUqPyKROPObtZMXNRd+7a/w4tuhcacB0Hze9TfU+OfrvqF08j5u5/z5l+npidn8SKP6Gb7+Lb7cddrcsDheEyvqOPKbssjE/Z7G+1y2efqU3/EpveMMNN+z4xfYr/LD9VJ+W0R1QwjkOba5hGDDV+t0dSt3cgrmP4GaGq1RcOuvZU0LGBMfVYxh6EjguasdZlqJurpTJ+c6nHNuQ+e86Lh6n2pK82HH1btGj4XdVon1nMXDd/dI/1mj4yt/68XZ/GTrAEXXPMRoipXy3OrLQ4yt+oy635L64iVI+XmObyjH1MxW5jWMG7lYYM1ydlXHZYOY/j7P/yp7DzXDczw1juu/yZ58aIV1q/4z5jA8XFTXAWh9T/SIDP+zL+hRCyw6IvdR4YyPqyTACPQpiXzde28ZJNmNUBD88mRvO9x4z2h3jHm0jmXEQd5abSX889KHz+GZZ6/cN0xE3Qw+X8urjJuLAYT6bRM1l/fL3btcZXmf9RJQ90y7mPZiXTX0Pn87Gq/m+3whbc9N/j5hWetL8Bd/HlTLR3sgVt8F7uYmY4Lhibh5vF+e4eUa//5WuphctZdzxi9uv8IPs2OqSQWDsSC3fdxPiztseZcPJzjrlFlBSnpX8pIpf6VY3/BD8pIJNtO7S+BN+FFtaJVANH18lHNMgr/8qPe0w2fbIWS1v1tVCIvQ+lh8mXeHmCCPXFScU1gl0WaGtY4Xsyzt7QcQ0cjP6j7hJ7WWbtHH1VjXNl0miyUVca//NuBHq/Lz/pEAq9qnnxpanellv79nYNl0Kfh5T/s2e9LWnIPXdma1i2qXHp7Nv6oOOwz4yYUf5w8MKW26UyfZlnRsqJNnJdlSMGTc5xpn/3HbGsKU6vmzDqKgvf2cDBsE++O9tGq8ZNxxz0X/cdsc2tVObMn9+MDeT/NW0id3Trf6WbiNgA65x0NFx916pvLchaBvGVIL8ALSc6LFVF2uJ2fFW+1Bt3PLTBMM46B0wCnq8dPssz8sclZbCmWxfplUw+ji7kxvGZFxRv8ITfifbMNXBqViMutsTF7nZnR7ve7pO1DY443WXukRLrI9hvbjITYzBk9yoAEJ6Bn/yNeNAlnluvveY1ryqw5hem6btgq835uFao3gfCeJqn8S+Ba8xbsT60qFdeF5Veg17gukaNwmmyBWOfd8x1XZxxvdTbiKvQm1qb1wN/nMxl7WLR7hZ+e9zJ/1aynh/2kTxC9nxTX6FH7fd3/2of/MBsm/gPFgZy/YdhWy77jINLC997/gG+5zgX9t/gGLDJsCP+Am/EMUPm8mqW14B9IZ7jLl/2NOfq3mqt21fLeWsrZ+e2fdUblzZOLBT2NK9HWVDlI45TnDGDmrOlYbBZl8KmQ0gJcuLx5DpibLM1Rle/da5xs0Eo/blBjtsN9Bur/N9k1X0AbF02QWmkreytoNg1+t9wvb2GwyG5Ibuo84VL0bkWGB7+OljseJGHleHKfpPG6biR00weW5iXTNMkavNcdXrTnmVwBVyrtK2TEeKTxiXcXOP/2yK2zVYO/lQbiZ6riSBTVb3xEbWdRQ7M1ltk32P055GaVliWGVvri4lfLN+cYVx7sNtYS9vYKFNltmdb95yjZuRq9tStiPrg80u/SxuouxG9mayNonewUP6kavHuPGy1+1dl8WQ71F6C+eu8tpjXZwNI6+Y8srpyL7xJmfEzK2wJGl/9zBOiXo4BjX0oY/EnMfkubrWLrifv87NyKu/nqz8N28XnB5tj6P/7un5PyopXrWUUUT+PIB/BMCfAPCnVfV36vH/IID/BoAfAfwSwD+gqv+bo/petJQR+FF+hdvGSxn5XkMPDj81MWml8JAm28OHnyEoDUB2vOmGN73Vv4LfffsBu95MLb5hxyZ7a3r9PZ2IAw4Dh20vG98tGe3zGHut5Y641fne3HBZK8f5kvxj8plsbLqem4gx3jU75oYvXtJ82y9HuWzGVeQVQ9ns3SBNZW9V2LaAv8H6iJlPcvtKZ9/v2c0wWt4v4lS6UIy+34LvoWhP93LZjqnrWPnTx2sWJ6NPeh8AiNsN78j3nbMcU+TqRkeP2lTkKmtTUdZs3qg2zw3L+v5FE3s5CkoJHkZ8PDdjf3o92VNb3lyEB6d9+UzJ3xgK/EBIgHL3mt+PoaW6pQ1yLEpTNbYNu1kw6o2WRsy3GWbpHuD/Xdlal9b3uYS372xt4z5uIq8DVySeyfYNXcVvpDX47w5uoqxxFfzHyfzZB9LUL2qQvYebmt8Ms23jTnLRf7k/E/uorMYz/tKSy57wvVJM80229pkfWfAKXnWisPcqVnqPfG+y7fpBsS2tzaHf+I48ip+kWOYebiLGjgk19jpXImjxPshGTMTVPdwwZpXuPx4htFcQxHPDXN3jvxk3Z/z3KZMCL/yO2V8B8PcC+CfD8b8K4O9W1f+niPxJAP8sgL/1qLIXPTHb8Ru3XwIo31bqSxn7kICDEzU/3pEYy0qrpeqq9e5Q7NrvPe478Kt9q/Fb7hvc5A0qG37aBT9uP7kPXx/pRchvramcl+W7HQVzv5Pjvjj/VG4Y89xeBSBSvvNWPnNwPzf+nLbOJHJ1ZJ+lXffWkxpX3EGe4SbiYv+tuFnZF/11JNuvz8H3B7JL+2gg6pdooD5xXGPsx/pirFXZqX01fuOuYYPvZc5Ntoyu8CSu7BVunI+IK+Ba233Ef0PcJGXNf8bDu3OTcNUC5+6kuMlOn0pgXX2Q5vN9iaz15e5OtALsK0a+VRt3KESlfRRcay22aoDfdWkx2TY/mugNGLX+Z7JwslZ/X7pry6HaagQpTwR2QbVXqA+6k5uIUX1c40hW6kL8yplxWrDfz40vKw6TtglW50ZZj2jDws8Xy0YJZN9Vbqj1cJ795/sNwqjqliMu46bKFpts2XZlIeFm1S4Gblyr7Rg2UZTvcXbMGTcms6Mv12P/3cOrrY5As6+kW6vjmFdUPbs8xk3EqCg7UdpHRgpXxsCx/+yayFxdjbnYLnq09SjfoHWX133gJvOf4+pObkx2b2j6rp2fOulrEKrqvwqgTZ7p+P+Jsv8ygN8UkV+o6u+u6nvNO2bY8fu3vw6F4vfIr6Ai+Ek3/LI8rwKQL1/7hvUggpd82J1GBepdtg3fpAS3iuA38Sv84vaGX779Cn9NfsAP244f5Q3f5Cf83vr+W6uL1hSv9I7LGPpyrwwj0C/YCn5frHYA2Ob2SZe9zk3EzPfVrcvx+VJWsKk4vc5e8XWtuMkGn+PyPc8Nl+XLT/+wbr508dsd/gOd87LqcHDZWd5+xzwvZ2O5/qR0FTcd8zfYIAbtLneUtc7V3qGyuiKv4LqcnrjEI/JY2pvX2+2D5rJ2YjvktWPy9mnKuecm+r5zlWHqFyJdcjMumetcjRgjN1Fv5Wriv2ahZMtcn8nNef9dTQLgh1r7j9LrerPOI8Xpl1iOg4i+LNvap/27A3gzjxLg9qRRtF0A2X47kg5WkPkwKxvjuT+RQSJrv98wLmHv/h9lj7mJGLlPpWtkakNpCW8Uv+e4OuJmzpWgXwcyWdA5EIYM03VuOO/957m6at/YzrTK9hUf52SzuDGP9rothnqZLfAauUG1r7wb22M14+aI147Lbn4I2H/8LtcNx/btVfa25GrtE1CeUUauLP7msj2x/85yk9lnOPi3RR9z9S2RVfrXfo1cXYnXOP7pR+z1mq90d/qPAfgXjyZlwMu2ywd+2H7CD3jDj/JTff1a8ZP2NwT4QtYCrYwsWzCh5XeIG770Fx13FezwA5cbFCo7oIIft1/hVj8gfZMdP8ivcBOtD2Bq0PLX6p1ef7Etj8L5nMJuyfNyLSsLkub9DncjqZXR9m6ElegDvTu40V6/QJp97YlKfQLVu4c+6JGtD6GjbNHLXK24iTz2DiDjRgLndhnaAWDrQ9DyAdvOTbvbdIKbiHEL/oOz12+5oYOswLbva1y0vPkCHXNbJqAQbHVJH2FmPaFd9KQQ2Ro3PW7s4rLTAKN2+oQZ2OqTkeLxjfRuIca+NczMq8fsBpYbMMYNqp599FGzEUB74dp8AM9Vs/64z+BLWIll8oH0S9kGxUaxvOZGHY9bwzjjJrQL9IvkFv2H7j+Q/96DG0y4Kv7rQ3oBnA1nk6BMdr8B+EYtea9NozNajdB6B7tmDaOg53nZUeNJUW9s+bYWh0J8o6G3ETQwrGfQO2Ds/U4NJbqGMGMK/vSAtUHTuNUljd2HINSa6D2B0fRUTNb2Gx7yj/2VCsrQt5s5SoNFU3qVG1e21yXQunqGMEds1tQg4Tz7rxSUK9wQZo4rV6/5I2KkJWiRx4HXie+n3ChGzMYrJ/pavPdjqWSTvqok5ZXtQ2+PKTesZ8Krcj1SKartHeZrrXy0tjzntTwl8hjPcBMxNroS+4u6PeWxV9j7lHZDSHHITS/Pvq/XBG3MDLLWxm7Rf8RVj9Lya+TqHDexXTiuspj7ZEkB6GNLGf+QiPwO5X9LVX/LMiLy2wD+SCL3F1X1L68qFpG/E8A/BuDPngHymqWMUPz+7a+197l+0hu+yTfoLvjr6u/MlfI1L2Peglf1zYVUbSvtcW3TLYryWekNIm/4QXa81Yp/kPKZ6bKRQ7mACt1Wz/XC6x3KqivLQ0O798zTRoXgVgdbO6Hvd27qhbB2IHdxI9yUlTrA3sNE++xeCS9NiLIykZ1zg/PcRNnKzDcIfmoLx7xsmZQd+W/kxpfl6LG66o6dPICb2AcAN+Oi9oCblCcjDnNb3gIAb+sYw8iFdbwqby1iur9QJz/FXzJgNCRvdRkW69UlN3NerUMX2s3Tx43AlrT0vJOtuNpullX2qN1nPohcCYA3vDkf2A6qnSu70OXcuHiVPuA1jEfcMGZpXHn/9bvM1hvwe49P5ibzX2uBcSp23wXwRyhuYu+01Xv1Wr4p6VNvt04xNxnzgzOy3//vfz3yfqee+zKgDWTi4GWmd8CoY9lWb28rfejaC+1a3xURrU/5tPUxkQa5wk2wD3X34Uycqync9Qncm9nRBGiALATnAjdep3r7Jsli8laX58XJtvOfnPBfrJ3s69c1b4piInuQmNf2W8pNqojRCUXMVM5C3/pioCw9tR2Beangpjrl36S/ofh6LDaRTXhl+9oyWLrpJXZtFn4ilPNqN5H6UyTi4oAbxtj6PrFVCdxplH7/FpboRm7K2LDz3Ks/z012zehLhbuQfWRdUDcR09F/nWfyPR0f9F7wn51qPmmN6r5+/0OSKh5cyvhXVfVPzavXP3NPpSLyRwH8JQD/aVX9187IvGRi9g07/sD2K2yi+IOyQ+UN/+b+E/5/2xt2/SV+BcG/td/wS73hjbtptYae5219Z3eN9AsKtjKZ0XL+F1IGCGUwvJeOHuUJmwLtnAja3X0O1x60PWZb/DMmUMBLv+tgE3vboh9Ul2pd5607NRbp7+IJ6g6AeoEbwgjUi34fJPQG7DG3l6B1L74ImJosSrdgT5LOcOPyB9w4TOid/q7ARt3oXkeb29R/V7nxA1XHlWFWsm9D6k/YE0obhEmJ1z4AXumV1lGnPFbuy7bWdJ7iply8AcHeJooRI7ejne0znxzEWNYeDZMq29fjBpXTLfCaYbqLmwlXtp19uzRT3BR9HtMZbraNyl5oj6UPmvlvq5sRme3df4fcPMF/QJ80Cbz/riYB8IOUmym/pz6S+EnL09dyI8p2zCV/su4Gs0wZ9urHn+rTTHvWuGvdt1KBN9m8NPUFm+74YYPT1XlGG5QbmnIs3NlOZNHKy5A3gZt4e75JfQ+66R31WDI7TedUb8SoJa6bfdHfMR4EDRMvSYt6Bq4kX3p9lpttgclulL2BxoqJnof9p0W+c2VPzztGz+txu9rDufJ/uDZNuGHMJguyx/43zDfp9puvbxOM0YbSh/g26P2X+3NvGCMmUMT2dzvLqgTyyQKTovveuJhxEzFGrqT5nttR3zl1034DBYA92KK4CrLD9WXdHs/4r3PVdbo+Y4ijICvnuIkY+Ubfjm6zOunPmx58Yvb0JCJ/I4B/GsB/VVX/D2flXrSUUfHjpvh9UPyeG/CTApAdN/wSv5Qbflc37AL8VIYhrSFYT9zzluuDPG48///2zi9Ut6IM48/z7eNBQb0IhcBzsMCrQwVCSOBFkWFHOyRdFgXRbYKCIZrglXdBCRVEdBMkiFAiKFYG3SaWHQP7h0Rlkqh4oSjSOft7u5g1a96Z9WfP93ncs/b+nt/FOXutb9aad56Z9a55Z82stTZgxRRMhBaavlNEds4BaYQhLpT1k4DY9/v9CKvPN90hUmczpo8/5FOA4pSNVZ/YO0LfcQ0209lknU3eSRysjStPdyGWziZ/OtRlHe0isbL4JCAem0+ppJtSVaNNZiPSzXlKG3+OuDetxnDHTtTfttokLdD/7qePxURxKgYzEXMdg43upyKfcjt0rrM9vc19eaIGBqeZbzfRDOs6+UMby4GHPkDxN7My3+wkXkvLfgpTVtJ58m885SOnSStfB930um20Ka+LaJ+lVIBvN6k8KUib1iYci/5G2DeHA7Vxefe2oXsjXGxQBmJ/sv7mtCn9zVz9HeRPV6knlF33m8KurCcBnOReF4AZjOwCMiBOJRob3HeeJASLBlxYE2vGdcnxaVlap2z94rJkP7pf95jnkdpkLLm7LosST9nGkRRR5aBd9JPJc62A/slY0Cg/NrVu19EesYPFnoGN9OU377qSy+i3DWZ0AVY5ycl5Xhuea0yrbbSJneheA0s6xG/5+XNdsvqj98WxfNEf5M+Pe78/cnICfpZhFxgzsws2r82czdnTkYl2E6eI+uUQ5ZrLfLt3eFm+Y1c8i399MOttGl5n1gfd/dOhUpty2w7Wpm83RX6+d1Wuk8qvqe6TMq7OYraG7bUZSzOlVcwstf28/gxx4NmdewttyhShfOWgz7D+xBCSXwLwfQDXAniK5Hkz+zyAOwHcAOBBkg92yW81s9fmztfodfmGD/ECrlitcDnDW3GuXu3jHQDv2BqXWXho/O5+eHE4s8sqNcdyO5w7jiCkDsgJAGvEqX+hI5BGk1LquM6rH9HvPKZvqOmvdZFvZ022pmwqejf3f54vEBzSytBPXvIhSOzI5t3mWm0scwb5sflFmZc3pAoj9dl4bkpFvz2hTX+RD21OU1nmtPHlC3+FDjWRv58ozktfd/VXHru5NnR/p25KWb6pbbi/kgrDtEnX+NR3lZ1haLMvT3x6l56vpHbDvt3YZPmGObiOCcbqL+/8jJ1hFa+h+DrwUlHmdT/VbnxHYxttUqqwZ6+747qxXpePIb3lbVqbUgtzXcW8lse1KdOmbwv6luoDqaTVlDalx+nbhrNmE5+R15/XqnwlRR0nSZzkHk4gjFHvkVjZPi4gLaZ/ry/3eBuN+lwEsc/w2RND8JexhGnFrr9O885X2pfySV2fpIXXF4Bb3lHaOGJzlzaetzxf8nkpCOpbY3lsv51siwyeUDkbY20Nyzdmy7ATlqZw5eXrj6XTqutQbqvNmB1jncKVAeu+kEOtUvksK+OcNpPlG7FnzrYy/dS+WI82o01evhgapOm63o7eH7t2QljWya+zMU2Sm9IGGLa5VW/zfPni3ToMjI/bQaQ6mCpfWfdTbS7z4oY+4CuvKT/ts6z7VN7ttCltTHfn6fJN1d9Ym1xvrM3wnlHWn9eqvFctlnZvZXwcYbpiuf8hAA9tej6an9N0SJB8HcC/Dj3jea5B+OaAmEc61SGd6pBOdSxRp+vN7NraxPL7RxrpVId0qkM61bFEnTby+4cFyV8i6LUtb5jZ2Utlz/uhSWC2REj+fm7hnwhIpzqkUx3SqQ7p9MEgXeuQTnVIpzqkUx3SaTfZbj6KEEIIIYQQQohLhgIzIYQQQgghhGiMArPEjw9OIiCdapFOdUinOqTTB4N0rUM61SGd6pBOdUinHURrzIQQQgghhBCiMXpiJoQQQgghhBCNUWA2Asl7SBrJ9/PqzWMLye+Q/CvJP5F8vPu6uQBA8izJv5F8ieR9re1ZIiRPk/wtyT+TfJHkXa1tWjIk90j+keSTrW05zsjvzyO/P438fh3y/fXI7+8uCswKSJ4GcCuAf7e2ZcE8A+BjZvYJAH8HcH9jexYByT0APwRwG4AzAL5M8kxbqxbJRQD3mNkZAJ8C8E3pNMtdAP7S2ojjjPx+FfL7I8jvb4R8fz3y+zuKArMh3wNwL9IH0UWBmf3azC52m78DcKqlPQviJgAvmdk/zOx/AB4FcEdjmxaHmf3XzJ7v/n4b4eZzXVurlgnJUwC+AOAnrW055sjvH4D8/iTy+5XI99chv7/bKDBzkLwDwCtm9kJrW44Q3wDwdGsjFsJ1AF522/+BbjqzkPwIgBsBPNvYlKXyMELAsG5sx7FFfn8r5PcT8vtbIN8/y8OQ399ZTrQ24LAh+RsAHx756QEA30aYzrLzzOlkZk90aR5AmJrwyGHaJo4HJK8E8HMAd5vZW63tWRokzwF4zcz+QPIzjc050sjv1yG/Lw4D+f5p5PfFzgVmZva5sf0kPw7gowBeIAmEaRrPk7zJzF49RBMXwZROEZJfB3AOwC2mby5EXgFw2m2f6vaJApKXIdyYHzGzX7S2Z6HcDOCLJG8HcDmAq0n+zMy+2tiuI4f8fh3y+1shv78B8v0HIr+/4+g7ZhOQ/CeAT5rZG61tWRokzwL4LoBPm9nrre1ZCiRPICyKvwXhxvwcgK+Y2YtNDVsYDD3gnwJ408zubmzOkaAbOf2WmZ1rbMqxRn5/Gvn9ceT365Hv3wz5/d1Ea8zENvwAwFUAniF5nuSPWhu0BLqF8XcC+BXCoubHdHMe5WYAXwPw2a79nO9GB4UQy0V+fwT5/Y2Q7xfiAPTETAghhBBCCCEaoydmQgghhBBCCNEYBWZCCCGEEEII0RgFZkIIIYQQQgjRGAVmQgghhBBCCNEYBWZCCCGEEEII0RgFZkIIIYQQQgjRGAVmQgghhBBCCNEYBWZCCCGEEEII0Zj/A92f7p95HyaQAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "targets = (16, 17)\n", "vals = np.linspace(-5 + EPSILON, 5, 100)\n", @@ -384,22 +326,9 @@ }, { "cell_type": "code", - "execution_count": 119, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAJICAYAAAAUzce/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iV5f3H8fdzRpKTk713QnbCDISdMBVFceCsHf6sbbWt29ZRR22r1lHrqNUOtdvWPREUJWAIK+wA2SQhe6+Tc5Izn98fBxEEQiIBjvp9XRfXJZD7ee5zwOfwyfe+v7eiqipCCCGEEEIIIc48zZmegBBCCCGEEEIINwloQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHkICmhBCCCGEEEJ4CAloQgghhBBCCOEhdGd6AqMRFhamJiUlnelpHMVsNmM0Gs/0NIQQQowBeaYLIcTXiyc+17dv396pqmr4sX7vKxXQkpKS2LZt25mexlHWrVvHggULzvQ0hBBCjAF5pgshxNeLJz7XFUU5cLzfkyWOQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHuIrtQdNCCGEEEII8c1ht9tpbGxkaGjoS18jMDCQsrKyMZzVyPn4+BAXF4derx/xGAloQgghhBBCCI/U2NiIv78/SUlJKIrypa5hMpnw9/cf45mdmKqqdHV10djYyLhx40Y8TpY4CiGEEEIIITzS0NAQoaGhXzqcnUmKohAaGjrq6p8ENCGEEEIIIYTH+iqGs898mblLQBNCCCGEEEKIE3A6neTk5LBs2bJTeh8JaEIIIYQQQghxAs888wxZWVmn/D4S0IQQQgghhBBiGI2NjXzwwQf88Ic/POX3ki6OQgghhBBCCI/36/f3UdrcP+pxTqcTrVZ7zN/LjgnggQvGn/Aat956K48//jgmk2nU9x8tqaAJIYQQQgghxHGsWLGCiIgIpk2bdlruJxU0IYQQQgghhMcbSaXrWE72HLQNGzbw3nvvsXLlSoaGhujv7+e73/0u//nPf770NYcjFTQhhBBCCCGEOI5HHnmExsZG6urqeOWVV1i0aNEpC2cgAU0IIYQQQgghPIYscRRCCCGEEEKIEViwYAELFiw4pfeQCpoQQgghhBBCeAgJaEIIIYQQQgjhISSgCSGEEEIIIYSHkIAmhBBCCCGEEB5CApoQQgghhBBCeAgJaCep0+Y401MQQgghhBBCfE1Im/2T0G61M7+4nCmqgRy7g0C9vJ1CCCGEEEJ83SQlJeHv749Wq0Wn07Ft27ZTdi+poJ2EAJ2W78aE8ilezC+uYHVn35mekhBCCCGEEOIUWLt2Lbt27Tql4QwkoJ0UH62Ge1NieJABgvVart5Tyw2lB+i2y7JHIYQQQgghxOjJmrwxkKI4+Sg3nT8caOfpA6182m3ikfQ4LogIOtNTE0IIIYQQ4uth1d3QumfUwwxOB2iPE3uiJsLSR094DUVRWLJkCYqicP3113PdddeNeh4jJQFtjHhpNPx8XBTnhQdya3k9P9pXx/ntgTyaHke4l/5MT08IIYQQQgjxJRUVFREbG0t7eztnn302mZmZzJs375TcSwLaGMv2M7Byajp/amjnibpW5m0p58G0WC6NDEZRlDM9PSGEEEIIIb6aRlDpOpZBkwl/f/+TunVsbCwAERERLF++nOLi4lMW0GQP2img0yjclBjJJ7kZpPh6c2NZPd/bU0vzkO1MT00IIYQQQggxCmazGZPJdOi/V69ezYQJE07Z/SSgnUJpRh/enZrGg6mxbOgxMb+4nJebu1BV9UxPTQghhBBCCDECbW1t5OXlMXnyZGbMmMH555/Pueeee8ruJ0scT1bNOhSX/bi/rVUUfhQfztlhAdxe3sDPKhp4t72HJzLiSTB4n8aJCiGEEEIIIUYrOTmZ3bt3n7b7SQXtZPTWw78vYdr2n0HTjmG/NMngzRtTUng8PY4d/RYWbK3gpcYOXFJNE0IIIYQQQhwkAe1kBCXAt/6L3m6CFxfDxw+Afei4X65RFK6ODWPdjExmBhq5t6qJS3ZWU2OxnsZJCyGEEEIIITyVBLSTlXEuW6c/CznfhQ1Pw5/zoH7LsEPifLz476Rkns6Mp8w8xKKt5fypvh2nVNOEEEIIIYT4RpOANgYcej+48Fn43tvgsMLfznEfpGczH3eMoih8KzqUT2dkMj/En1/vb+aCHVVUmI9fgRNCCCGEEEJ8vUlAG0spi+Cnm2DGj2DLn+BPc6C2cNghUd56/jFhHH/OTqRu0MrZWyt4uq4Vu0uqaUIIIYQQQnzTSEAba95+cN7v4JqVoGjgnxfAittgqP+4QxRF4eLIYD6dkcnS8EAerW1l6fZK9posp3HiQgghhBBCiDNNAtqpkjQXfrwB5twE2/8Bz8+Gqk+GHRLupecv45P424Qk2mx2zt1eyWM1LVhdrtMzZyGEEEIIIcRRkpKSmDhxIlOmTCE3N/eU3ksC2qnk5QtLHoIffOyurL18KbzzUxjsGXbYeeFBFM7I5JLIYJ460MaSbZXs6D/+fjYhhBBCCCHEqbV27Vp27drFtm3bTul9JKCdDnG5cH0hzLsDdr8Cz82E8g+GHRKs1/GHrERenpSMyeFk2fYqflPdzKBTqmlCCCGEEEJ8XenO9AS+MXTesOg+yLoA3rkBXvk2TLgUlj4OxrDjDlscGsCnMzJ5cH8zzze082FnH09lxjMzyO80Tl4IIYQQQogz67HixyjvLh/1OKfTiVarPebvZYZkcteMu054DUVRWLJkCYqicP3113PdddeNeh4jJRW00y16Mly3FhbeB6XvwXMzYO+bMMwZaP46LY9nxPP65BQcqsrFO6u5t7IRs8N5GicuhBBCCCHEN1NRURE7duxg1apVPPfccxQWDt+p/WRIBe1M0Oph/h2Qtcy9J+2Na2HvW3D+78E/6rjD8kP8WTs9g0dqW3ipsZPVXf08mRFPfoj/aZy8EEIIIYQQp99IKl3HYjKZ8Pc/uX8vx8bGAhAREcHy5cspLi5m3rx5J3XN45EK2pkUkeVuIHL2g1D9ibuatuu/w1bTjDotD6XF8U5OKl6KwuW79/Pz8gb6pZomhBBCCCHEmDObzZhMpkP/vXr1aiZMmHDK7icB7UzT6mDuze6W/BHZ8M5P4OXLoLdh2GEzg/z4ZHoGNyRE8N+WLuYXl/NxZ99pmrQQQgghhBDfDG1tbeTl5TF58mRmzJjB+eefz7nnnnvK7idLHD1FWKr7cOutL8Inv3Kfm7bkNzD1GtAcO0cbtBruT4lhWXgQt5bX8709tVwWGcyDabEE6+WPVgghhBBCiJOVnJzM7t27T9v9pILmSTQamHkd/HQjxE6FFbfBvy6E7tphh+UE+LI6N53bkyJ5p72HecXlfNDRe3rmLIQQQgghhBgzEtA8UXASXP0uXPAHaNkNf5oDm/8EruPvM/PWaLhzXDQf5WYQ5aXnB3vr+NHeOjps9tM3byGEEEIIIcRJkYDmqRQFpv0f/HQzJOXBh3fD35dCZ9Www8b7GVg5LZ17kqP5qLOP+cXlvNXWgzpM4xEhhBBCCCGEZ5CA5ukCY+Hbr8Hyv0BHBfxpLhQ9DU7HcYfoNQo3J0byyfQMxhm8+WnpAf5vTy0tVtvpm7cQQgghhBBi1CSgfRUoCkz+FtxQDGlnwycPwEtnQdu+YYelG314b2oav0qJobDHxPzicv7b0iXVNCGEEEIIITyUBLSToKoqVVW/RVUPnJ4b+kfClf+By//hbsP/l/mw7jFwHL8yplUUfpwQQcH0TLKNBm4vb+Cq3TU0DEk1TQghhBBCCE9zRgOaoigXK4rygqIoryqKsuRMzuXLsFpbaGl9G5f6IKVld2G1tp/6myoKjF/urqaNvxjW/RZeWAjNO4cdluzrzVs5qTySHkdxv5kFxeX8o6kTl1TThBBCCCGEGFZvby+XXXYZmZmZZGVlsWnTplN2rzEPaIqi/E1RlHZFUfZ+4dfPVRSlQlGUakVR7gZQVfUdVVV/BPwYuHKs53Kq+fjEMGd2AQrn0Nr6Lps2L6a27jmczqFTf3NjKFz6Inzrf2DuhBcWwye/Bvvx761RFL4fG8a66RnkBhi5u7KRS3dVU2uxnvr5CiGEEEII8RV1yy23cO6551JeXs7u3bvJyso6Zfc6FRW0fwBHHK2tKIoWeA5YCmQDVymKkn3Yl9x38Pe/cnQ6fzSay5k180NCQvKoqXmSzZvPprXt/dOz1yvzPLhhC0y5CoqehL/kQ0PxsEMSDN68MjmZJzPj2TcwyKKt5fyloR2nVNOEEEIIIYQ4Ql9fH4WFhfzgBz8AwMvLi6CgoFN2P91YX1BV1UJFUZK+8MszgGpVVWsAFEV5BbhIUZQy4FFglaqqO8Z6LqeTr28Skyb+iZ6ezVRWPcy+fbfS2Pgv0tLuIzBg8qm9uSEILnoOxl8C798CLy2BWT+FRfeBl+8xhyiKwrejQ1kY4s+dFY08UN3Me+29PJWZQLrR59TOVwghhBBCiFFq/e1vsZaVj3qcw+mkW6s95u95Z2USdc89w46vra0lPDyc73//++zevZtp06bxzDPPYDQaRz2XkVBORZXnYEBboarqhIM/vww4V1XVHx78+feAmUAl8H/AVmCXqqp/Psa1rgOuA4iMjJz2yiuvjPl8T9bAwAB+fn6Hfq6qLlQ2oKpvAf0ozEJRLkVRQk75XLQOC8k1/yK2eRWDPlFUZNxIb/DEYceoKmxAzz8wMITCZQxxAVa0yimfrhBCeJwvPtOFEEKcOYGBgaSmpgLQ+/snsVVWjv4iquru43AMXunpBP3s9mGH79ixg8WLF7N69WqmT5/OnXfeib+/P/fff/+Ibl9dXU1fX98Rv7Zw4cLtqqrmHuvrz2hAU1X1xtFcNzc3V922bdtYT/ekrVu3jgULFhz16w7HAHUH/kxDw0uAhsSE60hM/BFa7bGrWmOqrgjevRF6aiH3B3D2r8Hbf9ghHTY791Q28X5HL5P8DDyVlcB4P8Opn6sQQniQ4z3ThRBCnH5lZWUnvd/LZDLh7z/8v4OH09rayqxZs6irqwNg/fr1PProo3zwwQcjGn+s16AoynED2unq4tgExB/287iDv/a1ptP5kZryc2bN/JiwsEXU1v2BTZvPpqX1HVTVdWpvnpQHP9kIs2+EbX+D52dD9Zphh4R76XlhQhIvjk+i2WrnnG0VPF7bgs11iucqhBBCCCGEh4qKiiI+Pp6KigoA1qxZQ3Z29glGfXmnK6BtBdIURRmnKIoX8C3gvdN07zPOYIhj4oRnmTb1Vby8wigt/Rnbtl1Kb9/2U3tjL18452H4wWrQG+A/l8C7N8Bg77DDlkUEUTgzk4sjgnmyro0l2yrZ1W85tXMVQgghhBDCQz377LN85zvfYdKkSezatYt7TrBv7WScijb7/wM2ARmKojQqivIDVVUdwI3AR0AZ8JqqqvvG+t5nQn2XZcTdGoOCcpme+zbZWY8zZG1l+/Yr2Lv3FgYHT3ExMX4GXL8e8n8Gu/4Hz82E8pXDDgnR6/hjdiL/njiOPoeT87ZX8tD+ZgadUk0TQgghhBDfLFOmTGHbtm2UlJTwzjvvEBwcfMruNeYBTVXVq1RVjVZVVa+qapyqqi8d/PWVqqqmq6qaoqrqw2N93zOhvX+Ic58p5IltQ1S0mkY0RlE0REdfyuxZn5CUdCMdnR+zecvZ7N//exwO86mbrN4HFv8SflQAxjB45Sp484dg7hp22NlhgXw6I5NvR4fyx/p2zt5WQXHvwKmbpxBCCCGEEN9gp2uJ49dSsNGLny/JoLbPxdJnCrn37T10DYzs0GedzkhK8m3MnvUJ4eHnUHfgeTZtPovmljdO7f60mCnwo7Ww4B7Y9w48NwP2ve3ubnMcATotT2TG89rkFKwulYt2VnN/VSNmp/PUzVMIIYQQQohvIAloJ0Gv1XBt3jgen+fL1bOTeGVrAwt+t44XCmuwOUYWsnx8Ypgw/ilyp72Oj08MZWV3sXXbxfT0DH/Y9EnRecGCu+D6TyEoHl6/Bl77Hpjahh02L8SfddMz+H5sGC80drKwuIKinpFVDoUQQgghhBAnJgFtDPh5KfzqwvF8dGs+05KCeXhlGUue+pSP9rWOeH9aYOBUcqe9zvjsp7DZutix8yr27LmRwcGGUzfxyPHwg0/grF9D5Wp3NW33K8NW04w6Lb9Nj+OdnFS0Cly2az93VjRgckg1TQghhBBCiJMlAW0MpUb484/vz+Af35+OTqvh+n9v59svbKG0uX9E4xVFQ1TUhcye9QnJ426ls2sdmzYvobr6cRyOU1Sp0uog71b4yQYIz4C3r4f/XgF9wzcumRXkx5rpmfwkPpz/NHcxv7icNV0je51CCCGEEEKIY5OAdgosyIjgw1vy+c1F4ylv7ef8Z9dz95sldJhGtj9NqzUwbtxNzJ79CZGR53Og/i9s3LSYpqZXUNVTVKkKS4Pvr4JzH3Mfcv38LNj+z2Grab5aDQ+kxrJiahp+Wi3fKanh5rID9Ngdp2aOQgghhBBCfM1JQDtFdFoNV89OYt3PF3Lt3HG8sb2RhU+s4/l11QzZRxayfLyjGJ/9BNNz38bXN4nyinsp3noh3d0bT82kNVqY9WP3AdfRk+H9m+FfF0FP3bDDpgYa+Xh6OrclRvJmWw/zi8tZ1dF7auYohBBCCCHEaVRRUcGUKVMO/QgICODpp58+ZfeTgHaKBfrquX9ZNqtvm8es5FAe/7CCs578lJV7Wka8Py0gYBLTpr7KhPF/wOEwsXPX99hdcj0WS+2pmXTIOLj6PVj2FDTtgOfnwJa/guv4jU+8NRruSo7mw2nphHvp+P7eOq7fV0enTappQgghhBDiqysjI4Ndu3axa9cutm/fjq+vL8uXLz9l95OAdpJGGrKSw/148f9yefmHM/Hz1vHTl3dw5V82s6exb0TjFUUhMvJ8Zs38mJTkn9PTs4nNW5ZSVfVb7PZTsPdLo4Hca+GnmyBxNqy6A/5xHnRWDztsor8vH07L4K5xUazs6GNecRnvtPWM+H0SQgghhBDCU61Zs4aUlBQSExNP2T10p+zK3wAOu53/3nMbuogYBnOnYfDzP+GYualhfHBzPq9ubeD3qyu48LkiLp0axx3nZBAZ4HPC8VqtN0lJPyE6+jJqap6kvuFvtLS+TfK4W4mJuRKNZoz/SIPi4TtvwO7/wYd3w5/nwsJ7YfYN7iWRx6DXKNyWFMXS8EBuLWvgx6UHeLe9l0fT44j01o/t/IQQQgghxDfC+tcq6WwYGPU4p9OJVnvsf7eGxfuRf0X6iK/1yiuvcNVVV416DqMhFbSTYDUPEBARRcu2jbxww7UUvvx3zL09Jxyn1Sh8e2YCa+9YwHXzknlvVzMLn1jHs2uqRrw/zds7nKysR5gx/V2MxjQqKn9J8dZldHWtP9mXdTRFgSnfhhuKIWUxfHw/vHQ2tJcNOyzTaGDF1DR+mRLD2u5+5hWX82pLt1TThBBCCCHEV47NZuO9997j8ssvP6X3Ub5K/1jOzc1Vt23bdqancZRVb76Os7GWyk1FaHU6JixawvQLLyEgLGJE4w90mXlkZTkf7mslJtCHu5ZmcuHkGBRFGdF4VVXp6FxNddWjDA7VExq6kLTUX2A0ppzMyzrezWDfW7DyDhjqh/l3udv0a4evjO23DHF7eQNb+swsDPHndxnxxPl4jf38hBDiJK1bt44FCxac6WkIIYQAysrKyMrKOqlrmEwm/P1PvNLtRN59912ee+45Vq9ePapxx3oNiqJsV1U191hfLxW0MWAIDWfZLXfy/af+RGbefEo+WcVLN1/HR3/+Az2tzSccnxhq5M/fm8Yr180i2OjFLa/s4tI/bWRn/YmrceDenxYRfg6zZn1Iaurd9PZuZUvxeVRU/ga7vfckX91RN4MJl7qradkXwtqH4IWF0LJ72GEpvj68nZPKw2mxbOkzs6C4nH81deL6Cn2DQAghhBBCfHP973//O+XLG0EqaGPii99t7e9oZ+v7b7KnYDUuh5OMOfnMvPhywhKSTngtp0vlze2N/G51BR0mKxdPieHOczOJCTKMeD42Wyc1NU/T1PwqOp0/yeNuITb222g0p2D/V9kK+OB2MHdC3m0w/07QeQ875MCglZ9XNLC+Z4C5QX48mRlPomH4MUIIcbpIBU0IITyHp1TQzGYzCQkJ1NTUEBgYOKqxo62gSUAbA8f7MDf39rBtxdvsXr0Su3WI1OmzmLn8SqJS0k54zQGrgz+tq+aF9bVoFLhuXgo/np+Mr9fIm4AMDFRQWfUQPT0b8fVNIS31F4SGLhjx0skRG+yBj+6FXS9DeCZc9BzEHfPv2yGqqvLflm5+Vd2EQ4V7kqO5Ni4M7VjPTQghRkkCmhBCeA5PCWgnQ5Y4ehBjUDDzv3stP3rub8y69CoaSvfw8j238cbD99NYunfYsX7eOu44J5M1t8/nrKxI/rCmioVPrOOtHY24XCML1X5+GeRM+ReTJv0VVXWyu+SH7Nr9fQYGKsfi5X3OEAwXPw/feROsA+4GIh/dCzbLcYcoisJ3YkL5dEYmc4L8uL+6iYt3VFNlHhrbuQkhhBBCCPEVIgHtNDD4BzD3iu/woz/+nfxvX0PHgVpe/fXdvPLAXdTt2j5sV8P4EF/++O2pvP7j2UQG+HD7a7tZ/vwGth/oHtG9FUUhPGwxs2auIi3tPvr7d1O8dRnlFQ9gs43sGiOWdpb73LRp18CmP7pb8tdtGHZIjI8X/5k0jj9mJVBlGeKsbRU8e6ANxwhDqBBCCCGEEF8nEtBOksvlGvHXevv6MuOiy/jhsy+y8Jrr6Oto481HHuDle26nausm1GGuNT0phHd+OpffXz6Z1v4hLv3TJm787w4ae45fpTqcRuNFQvz3mT1rDbEx36a5+X9s2ryI+vqXcLlsI34NJ+QTAMuegv97H1SX+3DrD37urqwdh6IoXBYVQuGMTM4KDeDhmhbO21FJ2cDg2M1LCCGEEEKIrwDZg3YS7HY7f/nLX/D19eWKK67Az89vVOMddjulhQUUv/s6fW2thMYlMHP5FWTMzkdznMP0ACw2B3/+tIa/Fu7HpcKP8sfxkwWp+HmPYn+auYrqqt/S1V2IwZBIWuovCAs7a2z3p9nMUPAQbP4TBMbDhX+AlIUnHPZ+ey93VzbS73ByS2IkNydG4KWR7yUIIU4P2YMmhBCe45u4B00C2kkYGBhg1apV7Nu3D51Ox7Rp05gzZ86oO7u4nE4qNhay5Z3X6WqsJygymhkXX072vIVodcfvvNjcO8jjH5bzzq5mwv29ueOcDC6bGodGM/KQ1dm1jqqqR7BYqgkOnk1a2n34+2WOav4nVL8F3r0Buqpg6tWw5CHwGf496rI5+GV1E2+29ZBt9OGprAQm+/uO7byEEOIYJKAJIYTnkIDm4TwtoH3mgw8+wGazUVJSgqIo5OTkMHfuXEJCQkZ1HdXlonrbZra8/RptNdX4h4aTe8ElTFy8BL3X8dvQ76zv4TcrStlZ38v4mADuX5bNrOTQEd/X5bLT1Pw/amqeweHoJybmcpKTb8fbK2xU8x+WfQjWPQIb/wB+Ue5lkBnnnnDY6s4+7qxopMNu54b4CG5PisJHK9U0IcSpIwFNCCE8hwQ0D+epAe2zD/Oenh42bNjAzp07cblcTJw4kby8PCIiIkZ1PVVVqdu9gy1vv0pTeSm+gUFMO/9ipiw5Dy/DsatIqqry3u5mHltVTnPfEEsnRPGLpVkkhI686mS391Fb9yyNjf9Go/FhXNJPiY+/Bo1mDM8oa9oO794I7aUw6Uo491HwHT7I9tkd/Gp/M/9r6SbN15unMhPIDTSO3ZyEEOIwEtCEEMJzeEpAe+qpp3jxxRdRFIWJEyfy97//HR8fnxGNlYB2Bhx1UHV/P5s2bWLbtm3Y7XaysrLIz88nJiZm1NduLN3L5rdf5UDJTnyMfuQsvYCcpRdi8Dv2X7JBm5MX19fw/Lr9OF0q389L4saFqfj7jPyQarO5hur9j9LZuQYfn3jSUu8mPPycsduf5rDB+t/D+ifcLfrP/z1kX3TCYeu6+/lZeQPNVjvXxYVzV3I0vlJNE0KMMQloQgjhOTwhoDU1NZGXl0dpaSkGg4ErrriC8847j2uuuWZE4+UcNA8QEBDAOeecw6233sq8efOoqanhr3/9K//5z3+or68f1bXisidw2b0P8p2HnyQ2awKb3vgfL9xwLYUv/x1zb89RX2/w0nLT4jTW3bGACybH8JdPa1jwu3X8d0s9zhG2rjcak5k86a9MmfJPtFoDe/bewI6d36bfNPzZbSOm84KFv4Dr1kFADLx2tfvHQPuwwxaEBPDpjEz+LzaMvzR2sGhrORt6TGMzJyGEEEIIIY7D4XAwODiIw+HAYrF8qcLLSEkFbQyc6LutQ0NDFBcXs3nzZiwWC0lJSeTn55OcnDzqqlRHfR1b3n6Nyk1FaHU6JixawvQLLyEg7NjLKEsae3lwRSlb63rIjPLn/mXZzE0d+d4yl8tBc8tr1NQ8hd3eQ3T0paQk/wxv79Et2zwup8O9L23dI+DlB0sfh4mXwQnel409A9xeUU/doI3/iwnl/pQY/HTH73wphBAjJRU0IYTwHIdXn9b+46+0H6gZ9TWcDifa4/w7MSIxmYXXXHfCazzzzDPce++9GAwGlixZwssvvzzi+0sFzQP5+Pgwb948br31Vs455xy6urr497//zYsvvkh5efmwB1V/UXhCEstuuZPvP/UnMvPmU/LJKl66+To++vMf6GltPurrJ8UF8dr1s3n+O1MZsDr4zotb+OE/t1HbaR7R/TQaHXGx32bO7AISEn5Ia+u7bNq8mNq653A6h0Y87+PS6iD/dvhxEYSmwFs/hP9dBf1Hv5bDzQn2o2B6JtfHh/Ov5i7mF5eztqv/5OcjhBBCCCHEYXp6enj33Xepra2lubkZs9nMf/7zn1N2P6mgjYHRfrfV4XCwa9cuioqK6O3tJSIigvz8fMaPH49mlOd99Xe0s/X9N9lTsBqXw0nGnHxmXnw5YQlJR33tkN3J3zbU8lxBNTani6tnJ3HzojQCfUe+P81iqaN6/2N0dKzGxzuGlNQ7iYxYNjb701xO2PIXWPMb0HrBOQ9DzndPWE3b1mfmtvJ6qixWrooO4VcpMQTqR34mnBBCHE4qaEII4Tk8YQ/a66+/zocffshLL70EwL/+9S82b97M888/P6LxUkH7CtDpdOTm5nLTTTexfPlyXC4Xb775Js899xw7d+7E6XSO+FoB4REsvvYn/OiPf2PasovZv72Yf95xI+8+8RCt+6uO+FofvZafLkhl7R0LuHRqHH/bUMuCJ9by7011OJyuEd3P1zeJSRP/xNScl9Hpg9i371a277iCvv7do3oPjkmjhdk/hZ9sgKiJ8N6N8O/l0Dv8vr3cQCMf52ZwS2Ikr7V2M6+4nI86+05+PkIIIYQQ4hsvISHh0FYlVVVZs2bNSYfG4UgFbQyc7HdbXS4XZWVlrF+/ntbWVgIDA5k7dy45OTno9SOvbgEMmvrZsep9dn74HlazmcRJOcxafiVx2ROO+tp9zX08uKKUzTXdpEX4cd+ybOanh4/4XqrqpKXlTfbX/B6brZOoqItJSf45Pj7Ro5rzMblcsP1v8PED7p+f9SvI/QGcoMJYYrJwa1k9peYhLokM5sHUWEK9pJomhBg5qaAJIYTn8IQKGsADDzzAq6++ik6nIycnhxdffBFv75EdRSVt9s+AsfowV1WVqqoqCgsLaWxsxM/Pj9mzZ5ObmzvivwCfsVos7P54Jds/eAdLXy+xmeOZtfwKEidPPWI5oqqqrC5t47cryzjQZWFBRjj3nZ9FasTI/xI7HCbqDvyZhoa/ARoSE68nMeFHaLWGUc35mHrr4f1bYH8BJM6FC59171Ubhs3l4tkD7Tx9oI0AnZZH0uO4IDxw7I4JEEJ8rUlAE0IIz+EpAe1kSEA7A8b6w1xVVerq6igsLKS2thaDwcDMmTOZOXMmBsPoQo/dOsSegtVsff8tBro6iUxOZebyK0jNnYVyWDXK6nDyz411PLumGovdyfdmJXLL4jSCjV4jvtfgYAPV+x+nvX0l3t5RpKTcQVTkhSjKSa6kVVXY9TJ8eA84bbDoPpj1E/eSyGGUDQxya3k9u02DnB8eyCNpcUR4j64iKYT45pGAJoQQnkMCmof7pgS0wzU0NLB+/XoqKyvx8vJixowZzJo1Cz8/v1Fdx+mws+/TAra++wa9bS2ExiUwc/kVZMzOR6P9POh0Dlh56uNK/ldcj7+PnlvPSuO7sxLRj+JA6J7erVRVPYTJtJeAgMmkp91HYODUUc33mPpbYMVtULkKYnPhoucgInPYIQ6Xyp8b2vldXSsGjYYH02K5LDJYqmlCiOOSgCaEEJ5DApqH+yYGtM+0trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFKxaT1b3n6NrsZ6giKjmX7RZYyfvwit7vPqUnlrPw+tKKOoupPkcCP3nZ/FwoyIEQcbVXXR2vo21fufwGZrJzJiGSkpd2IwxI5qvse4MOx9E1beAbYBmH8XzL0FtMNXxqotQ9xW1sDWfjOLQwL4XUYcMT4jrw4KIb45JKAJIYTnkIDm4TwxoJm6h9hesvm0fZh3dHRQVFRESUkJiqIwZcoU8vLyCAkJGdV1VJeL6m2b2fL2a7TVVOMfGk7uBZcwcfES9F7u/W6qqlJQ3s7DH5RR02kmPy2M+87PJiNqNPvTzByo/yv19S8AkBD/AxITf4xOZxzVfI8y0AGr7oB9b0PUJHc1LXrSsEOcqsrfmzp5eH8LOgUeSI3lO9EhUk0TQhxBApoQQngOCWgeztMC2pDZzj/u3oDez8XMc9NJmxGFt+H0dAzs6elhw4YN7Ny5E5fLxYQJE8jPzyciImJU11FVlbrdO9jy9qs0lZfiGxjEtPMvZsqS8/Ay+AJgc7j4z+YDPP1JJQNWB9+emcBtZ6UT6jfyxiVDQ81U7/8dbW3v4eUVQUrKz4iOuuTk96eVvgcf/AwGuyHvdpj3c9ANP68Dg1ZuL29gQ+8A+cF+PJERT6JhdE1YhBBfXxLQhBDCc0hA83CeFtDsViflm1oo/rCSoV7QeWlInRZBdl4sUckBp6UyYzKZ2LhxI9u2bcNut5OVlUV+fj4xMTGjvlZj6V42v/0qB0p24mP0I2fpBeQsvRCDn/svdI/ZxjNrqvj35gP4emm5eVEa/zcnCS/dyENWX98OKqsepr9/F/7+40lLvY/g4BmjnusRLN3w0T2w+38QnuWupsVNG3aIqqr8p6WLX1c341Th3pRoro0NQyPVNCG+8SSgCSGE55CA5uE8LaB9Zu3atWSPm0ZpUTNVW9uwW50ERxvJnhtN5qxofPxOfedAs9nMli1b2LJlC1arldTUVObNm0dCQsKor9VaXcnmt19j/7bN6H0MTD57KbnLlmMMCgagut3EQx+Usa6ig6RQX35xXhZLsiNHtT+trW0F1fsfw2ptJSJ8Kampd2EwxI96rkeoXO1uyT/QCrNvhIX3gH74rpdNQzbuqGigoNvEzEAjT2bGk+Lrc3LzEEJ8pUlAE0IIz+EpAe2pp57ixRdfRFEUJk6cyN///nd8fEb2b0YJaGfA4R/mtiEH1dvaKd3QTFttPxqdQsqUcLLzYohND0bRnNoKzdDQEMXFxYdOO09MTGTevHkkJyePuqLXUV9H8TuvU7FxPVqdjgmLljD9wksICHMvo1xX0c5DH5RR3T7A7ORQ7l+WTXZMwIiv73QOUl//InUH/oKqOkmI/z5JST9BpzuJ/4GG+mD1/bDjnxCS4q6mJc4edoiqqrzW2sMvq5uwulzcMS6a6+PC0Z3iPyshhGeSgCaEEJ7DEwJaU1MTeXl5lJaWYjAYuOKKKzjvvPO45pprRjReAtoZcLwP887GAUo3NFO5pRWrxUFAuMFdVZsdjTHw1O55stlsbN++nY0bN2IymYiNjSU/P5+MjIxRB7WeliaK332D0sICALLnLWLGRZcRHB2Lw+niv8X1PPVxJb2Ddq7MjednSzII9x/F/jRrK/v3P0Fr69vo9aGkJN9OTMzlKMrw55wNa/9aeP9m6G2AGdfBWQ+A1/CNSdqsdu6qbODDzn6m+PvyVGY8WX5jcNi2EOIrRQKaEEJ4Dk8JaLNmzWL37t0EBARw8cUXc/PNN7NkyZIRjZeAdgac6MPcYXOyf2cHpUXNNFf1omgUkiaGkp0XQ8L4UDSnsFLjcDjYtWsXRUVF9Pb2EhERQX5+PuPHj0ejGV2Djv7Odra+9xZ7Cj7C5XCSMSefmRdfTlhCEn0WO38oqOKfG+vw0Wv56cIUrp07Dh/9yENWf38JlVUP0de3HT+/TNJS7yUkZM5oX/LnrAOw5jdQ/BcISoQLn4Xk+cMOUVWVd9t7uaeqEZPDxW1JkdyUEIleqmlCfGNIQBNCCM9xeLjpfX8/tmbzqK/hdDrQao/dyM8rxkjQBSknvMYzzzzDvffei8FgYMmSJbz88ssjvr8EtDNgNB/mvW0WSouaKd/cwqDJjl+wN5lzosmeG4N/yKnb++R0Otm7dy/r16+ns7OT0NBQ8vLymDRpElrt6CpV5t4etq14m90fr8I+NEhK7ixmLb+CqNR0ajoG+O3Kcj4payMu2MA952WxdELUKPanqbS3r6R6/2MMDTURFnYWaal34+s77su8bLcDG+HdG6F7P0y7Bs7+DfgMf35cp83BfVWNvNPey3g/H57OTGCiv++Xn4MQ4itDApoQQngOTwhoPT09XHrppbz66qsEBQVx+eWXc9lll/Hd7353RPeXgHYGfJkPc6fDRe3uTko3NNNQ1g1AQnYI2XkxJE0KQ6s9yfbzx+FyuSgrK2P9+vW0trYSGBjI3LlzycnJQa8fXTOTwQETO1e9x45V72E1m0mclMOs5VcSlz2BDdWdPLiilPJWEzOSQrh/WTYT40Z+qLbTaaWh4W/UHfgTLpeN+LirSUq6Eb1+5HvcjmAfhLW/hU1/BP9ouOAZSDv7hMNWdfRyV2UjXXYHNyVEcltSJN6jrDwKIb5aJKAJIYTn8IQljq+//joffvghL730EgD/+te/2Lx5M88///yIxktAOwNO9sO8v3OQso0tlG1swdxrxRDgRdbsKLLmxhAUcWqqNqqqUlVVxfr162loaMDPz4/Zs2eTm5uLt/fo9sdZLRZ2f7yS7R+8g6Wvl9jMbHdQm5jDa9sa+f3qCrotNi6dGscd52QQGTDySqHV2kFNzZM0t7yOXh9M8rhbiYm5Eo3mS54317gd3r0BOspg8lVwzm/Bd/hDvnvtDh6obubV1m7SfL15JjOBqYEnedC2EMJjSUATQgjP4QkBbcuWLVx77bVs3boVg8HANddcQ25uLjfddNOIxktAO83s7RY27CtmwcIFJ30tl9NF/b5u9hU1c2BvF6pLJTYjiOy5MSTnhKMbxX6ukVJVlbq6OgoLC6mtrcVgMDBz5kxmzpyJwTC6Bhl26xB7Cj5m6/tvMtDVSWRyKjOXX0HEhGk8/2kNfy+qQ6dV+Mn8FH40L3lU+9NMpn1UVj1Mb+8WjMY00lLvJTQ0f7Qv181hhcInoOhJMITAsich64ITDivo6ueOigZarHauiw/nznHR+J6iSqcQ4syRgCaEEJ7DEwIawAMPPMCrr76KTqcjJyeHF198ccRFDQlop5HTbKflt1uwebsInz8O36mRaP29xuTa5l7rwapaM/2dQ3gbdWTMjCI7L4bQGL8xuccXNTY2UlhYSGVlJV5eXsyYMYNZs2bh5ze6+zkddvZ9WsDWd9+gt62F0LgEZi6/Ap/0aTz2USUf7mslJtCHu8/L4oJJ0aPan9bRsZrq6kcZHKonNHQhaam/wGg88cbOY2opcVfTWktg/HJY+jvwCx92iMnh5MH9zfyruYtxBi+ezExgdtCp+fMQQpwZEtCEEMJzeEpAOxkS0E4j1e7CsqeD5o8rMPQooFEwZIdgnBGNd2rQmJx5prpUGit6KC1qpmZXBy6nSlRyANl5MaROi0TvPfZVtdbWVtavX8++ffvQ6XRMmzaNOXPmEBg48j1kAC6nk4pN69ny9mt0NdYTFBnN9IsuwxQ/hYdXVVLa0s/UhCDuX5ZNTkLwyK/rstLQ8E9q657D5RoiNvY7JI+7Gb0+aJSvFHDaYcMz8Olj4O0PSx+HCZfCCUJjUY+Jn5U3cGDIxvdjw7gvORqjbuz/LIQQp58ENCGE8BwS0DycpwU0AOqKKNw/wOyJ8zBvbcWyow2X2YE2yBtjbiS+06PQjdGZZ4MmG+WbWyktaqa3zYLeR0v69Eiy82KISPySzTOG0dnZSVFRESUlJQBMmTKFvLw8QkKG37P1RarLRfW2zWx5+zXaaqrxCw1j6rJLqQoZz5Of1NA5YGV5Tix3nptBdODIl1XabJ3U1DxNU/Or6HT+JI+7hdjYb6PRjK7ZCQDt5e5qWtM2yDgfzv89BEQPO8TsdPJYTSsvNHYQ66PnyYwE5oWcuf/5hRBjQwKaEEJ4DgloHs7jApq5E36XilOjR5u6CDLOQ01ewmCDDvPWVqxVvaCAT0YIxulR+GSGoGjHoKqmqrRU91G6oZnq7e047S7C4v0YnxdD2owovA1fsoHGcfT09LBhwwZ27tyJy+ViwoQJ5OfnExERMep5H9i9g81vv0pTeSm+gUFkn3sxm7wy+dvmBjQKXD8vhevnJ+PrNfLXMDBQQWXVQ/T0bMTXN4W01F8QGrpg1Ady43LC5j9BwYOg84ZzHoEp3z5hNW1rn5nbyuuptlj5TnQID6TGEiDVNCG+siSgCSGE55CA5uE8LqA57XBgI41rXiDOvBt66wEF4nIhYymOqHMw1/hh3taGy2RD4++FcVokxumR6EJH14DjeKwWO5XFbewraqarcQCdXkPqtAiy82KISgkcfUgZhslkYuPGjWzbtg273U5WVhb5+fnExMSM+lqNpXvZ/ParHCjZibfRSPyii1nlSuHD0g6iAny489wMLp4SO+JDvFVVpbOrgKqq3zI4WEdISD5pqffg55c+6rnRtR/euwkObICUxe6W/EHxww4Zcrr4fV0rz9W3E+mt57H0OJaEjW5JqBDCM0hAE0IIzyEBzcN5XEA7aN26dSyYPx/aS6F8JVSshOYd7t8MHoeadj5Dvudirg1mqLIHVPBODcI4PQrD+FAU3cl3AlRVlfYDJkqLmqna2obd6iQ42kj23GgyZkVh8Bub5iUAZrOZLVu2sGXLFqxWK6mpqeTn55OYmDjqa7VWV7L57dfYv20zeh8DhjkX8s5gPPtazUyOC+SXF2QzLXHkSypdLhuNTS9TW/sHnE4zMTFXkTzuFry8RrcsE5cLtr0EHz/grqCd/RuY9n04wRlou/ot3FZeT5l5iMsig/lNWiwh+rGtaAohTi0JaEII4TkkoHk4jw5oX/ww72+Gyg/dga32U3DawBCMI3E5FvVczAcCcfba0fjq8J0aiXFGFPoxOvPMNuSgens7pUXNtNX2o9EpJE8JJzsvhrj04DFpXgIwNDTE1q1b2bRpExaLhcTERObNm0dycvKoK3cd9XUUv/M6FRvXo9HpMOVezPsDUbQP2Fk2KZq7l2YSFzzy98dm66a29g80Nf8XrdaXcUk3ERf3PTSaUQbVngPw/s1Qsw6S8uHCP0BI8vD3drl45kAbzxxoI0in49H0OJZFBI3uvkKIM0YCmhBCeA4JaB7uKxXQDmcdgP1roGKVO7QN9qBqvLGGfwez42wGW/zBBV6JARhnRGGYGIbGa2z2MHU1DbCvqJnKLa1YLQ4Cwg1kz40mc3Y0xjFqXmKz2di+fTsbN27EZDIRGxtLfn4+6enpaE5QcfqinpYmit99k9LCNdgVHQcmXMwacyguFH6UP46fLEjFz3sU+9PMVVRX/Zau7kIMhkTSUn9BWNhZowuQqgo7/w0f3ete1rr4lzDzetAM/2dUOjDIrWX1lAwMsiw8kEfS4wj3+hINTIQQp5UENCGE8ByeEtCeeeYZXnjhBVRV5Uc/+hG33nrriMdKQDsDRvVh7nRAwxb3MsiKldBdg1MNxGL8LmbrAhxmA4qPFt8pERhnROE1RmeeOWxO9u/soLSomeaqXhSNQtLEULLzYkgYHzrivV7D3sPhYNeuXRQVFdHb20tERAT5+fmMHz9+1EGtv7Odre+9xd6C1fSq3uxNX8bWwSDC/b2545wMLpsaN6o5d3ato6rqESyWaoKDZ5OWdh/+fpmje4H9zbDiNnfIjpsBFz0H4cPvcXO4VP7U0M4Tda34ajQ8lBbLJZHBY7o3UAgxtiSgCSGE5/CEgLZ3716+9a1vUVxcjJeXF+eeey5//vOfSU1NHdF4CWhnwJf+MFdV6Kx0B7XylagNW7Gp2Zg1l2Cx5YJLiz7WiHFGNL6Tw9H4jM1ept42C6VFzZRvbmHQZMcv2JvMOdFkz43BP8TnpK/vdDrZu3cv69evp7Ozk5CQEPLy8pg0aRI63eheg7m3h20r3mb3x6toUP0pTjiXAw4j42MCuH9ZNrOSQ0d8LZfLTlPz/6ipeQaHo5+YmMtJTr4db6+wkU9IVWHP67DqTrBZYMHdMOdm0A7/uirNQ9xeXs+2fgtnhwbweEYc0d5jty9QCDF2JKAJIYTn8ISA9vrrr/Phhx/y0ksvAfDggw/i7e3NnXfeOaLxEtDOgDH7MB9od1dnKlbhqi7GYp2F2XUedlcCis6FYUIoxjkJeMX7j0kFxulwUbu7k9INzTSUdQOQkB1Cdl4MSZPC0GpPrnmJy+WivLycwsJCWltbCQwMZO7cueTk5KDXj26p3+CAiZ2r3mP7qvfYSzRbIufRq3qzdEIUv1iaRULoyPen2e191NY9S2Pjv9FofBiX9FPi469BoxnFks+BdvjgZ1D2HkRPcVfToiYMO8SpqrzU2MEjNS3oFIVfp8ZyVXSIVNOE8DAS0IQQwnMcHm5WrVpFa2vrqK/hdDrRao+9NSUqKoqlS5eecA4XXXQRmzZtwmAwsHjxYnJzc3n22WdHdH8JaKeZqqp8+umnY/9hbrNAzTrU8pXYSyswm2dicc5DxYAuYAjjjGiMczLQ+I7Nnqb+zkHKNrZQtrEFc68VQ4AXWbOjyJoTQ1DkyTUvUVWVqqoq1q9fT0NDA0ajkTlz5pCbm4u39+j2wVktFnZ/vJLNH7zPRiWR7cG5oNFybV4yNy5Kxd9n5O+H2VxD9f5H6excg49PPGmpdxMefs7oAtO+d2Dlz2GwB/J/Dvk/A93wlbFai5XbK+rZ1GtmXrAfT2TEk2AYm/2AQoiTJwFNCCE8hycENICXXnqJ559/HqPRyPjx4/H29ubpp58e0f2/UgFNURQj8DxgA9apqvrycF/vaQFNtdvZv2wZ/dExpH77KvzmzkVjNI79jVxOaNqOa++HWHZ3YO6bgl1NB+wYonowzknAO3cayij3eR37Vi7q93Wzr6iZA3u7UF0qselBZOfFkJwTjk7/5ZuXqKpKXV0dhYWF1NbWYjAYmDlzJjNnzsRgGN25cHbrEHsKPqZgxQd8Qhrl/pkEeSvcsTSbb81IRDuK/Wld3UVUVT2M2VxJUNAM0tLuJcB/+GrYEcxd8OHdsOc1iBgPFz8HMTnDDnGpKv9q7uLB/c2owH3J0VwTG4ZGqmlCnHES0IQQwnN4whLHL7rnnnuIi4vjpz/96Yi+/owHNEVR/gYsA9pVVZ1w2K+fCzwDaIEXVVV9VFGU7wG9qqq+ryjKq6qqXjnctT0toDl6emh75BF6P1mDxmJB8fLCd/Ys/Bctxm/BAvSREafmxl37sRUXYN49gKU3ExU/dNo2jPEd+M5JQ5udD7qTr8iYe62UbWqhbEMz/Z1DeBt1ZMyMIjsvhtCTbF7S2NhIYWEhlZWVeHl5MX36dGbPno2f3+iu63TY2fdpAe++/wkryaDFJ5px/hp+c/k08tNH/v67XA6aW16jpuYp7PYeoqMvJSX5Z3h7j+LPsGKVu4nIQDvMvRnm3w364ff0NQzZuKO8gXU9JmYFGnkyM4FkX6mmCXEmSUATQgjP4SkBrb29nYiICOrr61myZAmbN28mKChoRGM9IaDNAwaAf30W0BRF0QKVwNlAI7AVuAq4CFilquouRVH+q6rqt4e7tqcFtM+sW7OG6X7+DBQUYCoowN7QAIDPxIn4L16E38JFeKennZK9RmpvB5a1GzHvtWIzRwMODLrtGBO78c6dhJKxBHxHeUjzF+/hUmms6KG0qJmaXR24nCqR4wLIzoshLTcSvfeXr6q1trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFK+sZC/v7ueD9U0TPoAZoQr/PY7c0iNChrxdRwOE7V1f6Sh4Z9oNHoSE39MQvwP0GpH2DxlsBdW3+duyx+a5t6bljBz2CGqqvJKazcPVDdhc6ncNS6a6+LD0Uo1TYgzQgKaEEJ4Dk8JaPn5+XR1daHX63nyySdZvHjxiMee8YB28IZJwIrDAtps4Feqqp5z8Oe/OPiljUCPqqorFEV5RVXVbw13XY8NaId9mKuqiq26GtOaAkxrCxjaXQKAPi4Ov0UL8V+0GN9pU1FG2SRjJOzNPZgLdmIpd+FyeKOlHaPuE3wTetBNyIPM8054yPKJDJpslG9upWxDMz2tFvQ+WtKnR5KdF0NEYsCXvm5nZydFRUWUlLjfrylTppCXl0dIyOjCpepyUbplE0+/u5V1rkScio7z4+FX311AaNDI/8e0WOqo3v8YHR2r8fGOITX1LiIizh95yN5fAO/dAn0NMOsnsOg+8Bp++Wur1c6dFQ2s7upnaoAvT2UmkGE8+a6aQojRkYAmhBCew1MC2snw1IB2GXCuqqo/PPjz7wEzgbuAPwJDQNGx9qApinIdcB1AZGTktFdeeWXM53uyBgYGjrs0T9PXh3fJHrxLSvAqK0NxOHD5GrCOn4B18mRs47NRR7n/6oRcYGxTCamz4t1nBFz4aLZj1H6E06+FrvDpdIXOoD8gDZQvt29NVVUsndCzX6W/AVQn+ARDcLJCYCJovb5c9WdwcJCGhgZaWlpQVZWIiAgSExMxjnJvn6qqNNbW80apmd3aBHxUK+cEdnP+tHi8fEYeelS1HJf6CtAApKJRrkRRRhZytQ4LyTX/JrZ5JYM+UVRk3EBv8KQT3A82oucfGBhE4VKGuAArOimmCXHaDPdMF0IIcXoFBgaO+Lyx4xmuScjpUF1dTV9f3xG/tnDhQs8MaKqq3jia634VKmjDcVksmDduxLSmgIF163D29IBej3HGjIPVtUXoo6PHdG6O7iHMW1sxb23GNeBEox3AqKzCqPkInb8LMs6FjPMheT7ov1xQtFrsVBa3sa+oma7GAXR6DanTIsjOiyEqJfBLLe00mUxs3LiRbdu2YbfbycrKIj8/n5iYmFFfa23RDh5aVc5+ZyChjl5+mKnjmm+dh8FvZN9JUVUnLS1vsr/m99hsnURFXUxK8s/x8Rnhn1XdBnjvRuiugdxr4axfg8/w1cYOm517q5p4r72XiX4GnsqMZ4L/yXXTFEKMjFTQhBDCc0gFbYyMdImjqqqPjOa6X/WAdjjV6WRw1y5MBQUMrCnAVlcHgHd2Fv6LFuO/aCHeWVljtm9NdaoMVXRj3trKUHk3qODt34zR8QYGV4F7yWXKIvcyyLRzwC989PdQVTrqTewraqaquA271UlwlC/ZeTFkzIrC4Df6g5ktFgubN29my5YtWK1WUlNTyc/PJzExcdRze23NTn5XUEeny5txQw1cN9HAhZdeiDEoeETXcDhM1B34Mw0NfwM0JCZeT2LCj9BqRxBsbRZY+zBsfh78Y+CCZyDtrBMO+6Cjl7srG+mxO7gpIZJbkyLxHoNunUKI45OAJoQQnkMC2hg5RkDT4W4Sshhowt0k5Nuqqu4bzXW/TgHti6w1tQysLcC0poDBnTtBVdFFR+O/cCF+ixZhnDEdxWv0AedYnH1WzNvaMG9rxdljReOt4hu2H+Pgf9BbtgEKxM+EjKWQcR6Ep4/6HrYhB9Xb2yktaqatth+NTiF5SjjZeTHEpQejjKINPsDQ0BBbt25l06ZNWCwWEhMTmTdvHsnJyaMKsVaHk+c+2MlfNzdjdSlMHijj+1MCWbh8OQFhI+vYODjYQPX+x2lvX4m3dxQpKXcQFXkhykiWizZshXdvgM4KmPIdOOdhMAwfEHvsDn5Z3cTrrT1kGH14KjOeqQGn4DgHIQQgAU0IITyJBLQxoCjK/4AFQBjQBjygqupLiqKcBzyNu83+31RVfXi01/a0gKaqKre+ugu9pYNL509jUlwgRm/dSV/X0d3NwNp1mNYWYN6wEXVwEI3RiHFePv6LFuE3bx7aUXY5POb8XSrW6l7MW1sZLO0Cp4pXtBZjWBmG/v+iaTv4XoemHgxr50P8DNCMbg1vV9MA+4qaqdzSitXiICDcQPbcaDJnR2MMHF1LeZvNxvbt29m4cSMmk4mYmBjmzZtHeno6mlFUljoHrDz67k7e3NOJl9PKrL7tXJkTyeyLLyM4OnZE1+jp3UpV1UOYTHsJCJhMetp9BAZOPfFAhxU+fRyKngJjGCx7CjLPP+GwT7r6ubOigVarnR/HR3DHuCgMWqmmCTHWJKAJIYTnkIDm4TwtoHUNWLn8z5uo6TQDoFEgIyqAnIQgcuKDyEkIJjnMiGaU1aLDuYaGMG/axEDBWkxr1+Ls7AStFt/cXHcL/0WL8IqLO+nX4hywYdnRjrm4FUfnIIqPFt9sX4xBJXi1vQ2168FlB99QSD/XHdhSFp2wM+HhHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDx3V++RwONi1axdFRUX09vYSERFBfn4+48ePH1VQK2/t51dv72bzgX6C7b3kdW/inCmJzFp+OWEJSSccr6ouWlvfpnr/E9hs7URGLCMl5U4MhhGEvJbd8M4N0LYHJlwKSx93B7Zh9DucPLi/mX83d5Fs8OapzHhmBkkzAyHGkgQ0IYTwHBLQPJynBbTPrFi9FmPieHbW97KzvoddDb2YhhwABPjomJIQfDCwBZETH0yg75drsa+6XAzt2eNuMrK2AGtVNQDe6enuJiOLF+MzfjzKSexRUlUVW20/5q2tWPZ0gsOFPtYPY04Qvr670NSuhKqPYKgPtN6QvOBgdW0p+EeN+D69bRZKi5op39zCoMmOX7A3mXOiyZoTTUDoyJuVOJ1O9u7dy/r16+ns7CQkJIS8vDwmTZqETjeyaqaqqhSUt/Pg+3up6x4i0drE3I4iZkxOZ9byK4hKPfEST4fDzIH6v1Jf/wIACfE/IDHxx+h0JwiwTjsUPQ2fPuZuHHLe72D8JXCCZZvru03cXtFA45CNa2PDuCc5GqPuzHUnEuLrRAKaEEJ4Dk8JaNdeey0rVqwgIiKCvXv3AtDd3c2VV15JXV0dSUlJvPbaawQHH711RQLaGfDFD3OXS6Wmc4Ad9b2HQltlmwnXwbc6OdxITnywO7AlBJER6Y/uSyxVs9XXu5uMFKzFsn07OJ3owsPxW7gQ/8WL8J01C4336JYQHs5lsWPZ1YG5uBV7qxlFr8EwORzjtDC81L0olaug/APoPeAeEDvNvWct4zyIyDphyABwOlzUlXRSWtRMfVk3AAnZIWTnxZA0KQztCN8Xl8tFeXk5hYWFtLa2EhgYyNy5c8nJyUE/wjPnbA4X/9l8gKc/qcQ0ZGeypZLcjo1kTshi1vIricuecMJrDA01U73/d7S1vYeXVwQpKT8jOuqSE+9Payt1701r3gGZy+D8358w8JodTh6pbeGlxk7ifLx4MiOe/JAz990hIb4uJKAJIYTn8JSAVlhYiJ+fH1dfffWhgHbnnXcSEhLC3XffzaOPPkpPTw+PPfbYUWMloJ0BI/kwH7A6KGn8LLC5Q1uX2QaAr5eWSXGB5BystE1JCCLCf3QHFDt6ejCvX49pTQHm9etxWSwovr74zZ2L36JF+C2Yj+4YiX4kVFXF3jiAubgVy+52VJsLXaQvxulRGHPC0QxUQ8VK94+m7e5BwUkHw9pSSJgD2hNXs/o7Bynb2ELZxhbMvVYM/noyZ0eTPTeGoMiRtZhXVZWqqirWr19PQ0MDRqOROXPmkJubi/cIw2qP2cYza6r496YDeGtczDTtIqutmITMTGYuv5KkyVNP2Jikr28HlVUP09+/C3//8aSl3kdw8Izhb+x0uLs8rn0YdD5w7qMw+VsnDLpbege4vbyB/YNWvhcTyv0pMQRINU2IL00CmhBCeA5PCWgAdXV1LFu27FBAy8jIYN26dURHR9PS0sKCBQuoqKg4apwEtDPgS7XZV1UaewbZUd/jDmwNvZQ292F3uv884oINhwJbTkIQ2TEBeI/wH90umw3Lli2HqmuOtjbQaDBMzcF/4SL8Fy/CKylplK/y4LWtDiy7D1bVGgdAp2CYEIZxehTeyYEoA21Qscr9o2YdOK3gEwRpS9wt/FMWn/AMMJfTRf2+bko3NFO3pwvVpRKbHkR2XgzJOeHo9Cd+H1RVpa6ujvXr11NTU4OPjw+zZs1i5syZGEZ4MHh1u4mHPihjXUUH0QaVOV0biW4rISo5lZnLryA1d9awy0lV1UVb2wqq9z+G1dpKRPhSUlPvwmCIH/7GndXualrDZkg9Gy54GgKH32c46HTxRF0rf6pvJ8pbz+MZ8ZwVOvz7LIQ4NgloQgjhOQ4PN5WVD2IaKBv1NZxOB9rjFAv8/bJIT79/RNf5YkALCgqit7cXcP/bMzg4+NDPj/caPiMB7RQbqw/zIbuTfc397PwstNX30Nw3BICXVsP42IAjlkbGBhlOWMlRVZWhfaUMFBRgKijAWl7uvl5ysrvJyMJFGCZPQvkSp6vbmgfce9V2dqAOOdCF+uA7PQrjtEi0/l5gHYCatVC+Eio/hMFu0Ohh3LzP962dIHiYe62UbWqhbEMz/Z1DePvqyJgZRXZeDKGxI2uO0djYSGFhIZWVlXh5eTF9+nRmz56Nn9/Ixq+raOehD8qobh9gYrDCrOY1+LRWEBqXwMyLLydjzjw0w7x/Tucg9fUvUnfgL6iqk4T475OU9BN0umG+k+NywdYX4JNfgaKFJQ/CtGtOWE3b0W/mtvIGKsxDXB4VzG9SYwnWn3xnUSG+SSSgCSGE5/iqBDSA4OBgenp6jhonAe0MOJUf5q19Q+xq6Dm0NLKkqZchuwuAcH/vQ90icxKCmBQXiK/X8P8Ytzc1YSpYy8DaAszFW8HhQBsait+C+fgvWoRxzhw0I6wwfUa1O7Hs6cRc3Iqtrh80CoasEIwzovBOO3jmmcsJDcVQ8YE7sHXvdw+Onvz5vrWoiccNIKpLpbGih9INzdTs7MDlVIkcF0B2XgxpuZHovU8cMFtbW1m/fj379u1Dp9Mxbdo05syZQ+AIjixwOF38t7ieJz+upG/QzjlxOibUrMLaWE1QZDTTL7qU7HmL0Q2z323I2sr+/U/Q2vo2en0oKcm3ExNzOYoyzNy7a+H9m6G20B1sL/gDhIwbdq5Wl4un69p4tr6NYL2Ox9LjOC886ISvUQjhJgFNCCE8hyxx9HDfxID2RXani4pW0+dVtoZeag+2+ddqFDIi/Q9W2NyhbVzo8dv8O00mBgoLGShYy0BhIS6TCcXbG+OcOe7q2oIF6MKGb/t+1PzaLZi3tWLZ3obL7EAb5I0xNxLf6VHoDj/zrKPy831rDcWACoHxn1fWEvNAd+yDuQcHbFRsbqW0qJmeVgt6Hy1p0yMZnxdDeIL/CauKnZ2dFBUVUVJSAsCUKVPIy8sjJCTkhK+vz2LnDwVV/HNjHT56DVemeRG39wO6ayvwCw1j+gWXMHHREvTex99D2N9fQmXVQ/T1bcfPL5O01HsJCZlz/JuqKuz4J3x0H6hOWPwAzLgOTtCtc6/Jwm3lDewZGOTCiCAeTosl3OvLdRAV4ptEApoQQngOTw5od9xxB6GhoYeahHR3d/P4448fNU4C2hlwpj/Mu802dje4l0TubOhlV30vJqu7zX+gQc+Uz1r8JwQzJS7omG3+VZsNy/bt7hb+BQXYm5tBUTBMmoTf4sX4L1qIV0rKCcPPoes5XAyWdmHe2oq1qhcU8EkPxjgjCp/MEJTDuzMOdLiXQFasgv0F4BgE7wBIPctdWUs7GwxBR99DVWnZ30dpUTPV29tx2l2ExfuRPTeG9JlReBuGryb29vayYcMGduzYgcvlYsKECeTn5xMREXHC11fTMcBvV5bxSVk78cEGfpDtjffW92iu2IdvYBDTzr+YyWefh7fvsZubqKpKe/tKqvc/xtBQE2FhZ5GWeje+vsNUx/oa4f1bofpjiJ8FFz0HYanDztPuUnm+vp3f17Xip9PwcFocF0cEjfjPUYhvojP9TBdCCPE5TwloV111FevWraOzs5PIyEh+/etfc/HFF3PFFVdQX19PYmIir7322jG/4S8B7QzwtA9zl0tlf8fAwQqbu9JW0Wbisz/qlHDjoQpbTnww6ZF+R7T5V1UVa0XFoSYjQwe/S6BPTDjUZMSQk4MywnPGHN1DmLe1Yt7WhqvfhsZfj3FaFMbpkei+eOaZfdDdXKRiJVR8COZ20OggcQ5knO+urgUnHnUPq8VOZXEb+4qa6WocQKfXkDotguy8GKJSAocNJCaTiY0bN7Jt2zbsdjuZmZnMmzePmJiYE762oqpOHlxRSkWbiRlJIVw33ovewnc4ULITb6ORnHMvZOrSCzD4H7thh9M5REPD36k78CdcLhvxcVeTlHQjev1xGnyoKpS8CqvuAscQLLwHZt1wwi6ZFeYhbiuvZ0e/hXPCAngsPZ4ob6mmCXEsnvZMF0KIbzJPCWgnQwLaaaSqKvdtuA9tt5ZLZl1CVmgW3tovf+7YqWQasrOnsY+dn1Xa6nuP2+Y/JyGYcP/PX4e9tZWBdeswrSnAsnkzqt2ONigIv/nz8Vu0COPcuWj9TnAgM6A6VYYqujFvbWWovBtU8E4Nwjg9EsP4MBTdF5bsuVzutv2fLYXscDc4IWK8uyNkxlKIzjliqZ+qqnTUm9hX1ExVcRt2q5PgKF+y82LImBWFwe/YyyYBLBYLmzdvZsuWLVitVlJTU8nPzycx8ehAeDiH08Wr2xp4cnUl3RYbl06N4//S9dR8/BbVWzej9/Zh8pLzyF22HGPQsY86sFrb2V/zJC0tb6DXB5M87lZiYq5EozlO8DK1wQe3Q/kKiJnqrqZFZg87T6eq8kJDB4/WtuClUfh1aizfigqRapoQXyABTQghPIcENA/naQGta7CL76z8Dk0DTQDoNDoygzOZFD7p0I84vziP/Aewqqo0dA8eqrDtrO9hX3M/Dtfwbf6dA2bMRUUMrC1gYN2nOPv6UPR6fGfPwn+RuyukPvLESwSdfVbM29owb2vF2WNF46vDd2okxhlR6COOc+ZZ1/7PW/jXbwTVBf7RkH4uZJ4PSfmg/3zvl23IQfX2dkqLmmmr7UejU0ieEk52Xgxx6QeblxzD0NAQW7duZdOmTVgsFhITE8nPzyflBEs8+4fsPFdQzd821KLXavjJ/BSWj9Oye8WbVGxcj0anZeKiJUy/8FICwo79HplM+6isepje3i0YjWmkpd5LaGj+sW+oqrDvbVh5Bwz1wfw7Ie820A5fGauxWLm9vJ7NfWYWBPvzu8x44n2OH1yF+KaRgCaEEJ5DApqH87SA9pn31ryHX5ofJR0llHSWsLdzL4OOQQBCfEKYFPZ5YJsQNgGj/sTVpjPB3ea/74jDtI/V5n9qorvKFm3UMbhzJwMFazEVFGCvrwfAZ8IEd5ORRYvwTk8fNtSoLhXr/l7Mxa0MlnaBU8UrMQDjjCgME8PQeB2nw6GlG6pWuytr1WvANgB6I6QuPrhvbQkYQw99eVfTAKVFzVRsacVqcRAQ5kN2XgyZs6MxBh676mmz2dixYwcbNmzAZDIRExPDvHnzSE9PRzNMg44DXWYeWVnOh/taiQ0ycNfSTPIiVLa++yalhQWASva8Rcy46DKCo2OPfk9UlY6O1VRXP8rgUD2hoQtJS/0FRmPKsW9o7nQvedz7BkROhIv+CDFTjjs/AJeq8o+mTh6qaUEB7k+J4eqYUDQe+M0EIU43CWhCCOE5JKB5OE8NaF/8MHe4HOzv3c/ujt2HQlttXy0AGkVDalCqO7CFTWJy+GSSApPQKMN35DtThmvzH+Hv/XnHyLhAMmxdOAo/ZaCggMGSElBV9LGx+C1ahP+ihfjm5qIM04beOWDDsqMdc3Erjs5BFG8tvjkRGKdH4TXcmWf2Iagrcrfwr1gFphZQNJAw+2BXyPMg1B1uHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDz1mx0uHw8GuXbsoKiqit7eXiIgI8vPzGT9+/LBBbdP+Lh5cUUppSz9TE4K4f1k2Kb52tr73FnsLVuN0OEifncfM5VcQnpB01HiXy0pDwz+prXsOl2uI2NjvkDzuZvT6oGPfsPwDWHE7mDsg71aYd+cRFcVjqR+08vOKBgp7BpgdZOTJjATG+XrmMl0hThcJaEII4TkkoHm4r0pAO5Y+ax97O/dS0lHC7k53cDPZTAD46/2ZGD7xUGibGDaRIJ+gUz/xL+GzNv87DjtMu67LArjb/GdGudv85/qrjD9Qgs/WjZg3bkS1WtH4++M3bx7+ixdhzM9He5z/UVRVxVbb7z4Ee08nOFzoY/0wzojCd3I4Gp9hGmKoKjTvPLgUciW0uRucEJZxcN/aeRCbCxoNvW0WSjc0U76phUGTHb9gbzLnRJM1J5qALzYvAZxOJ3v37mX9+vV0dnYSEhJCXl4ekyZNQnechilOl8qb2xt5/KMKOgesLM+J5c5zMwhQh9j+wTvsWr0S+9AgKbmzmLX8CqJS04+6hs3WSU3N0zQ1v4pO50/yuFuIjf02Gs0xwu5gj7sd/67/uF/zRc9B/PTjv18H3+//tXTzQHUTDlXl7uRofhgXjlaqaeIbSgKaEEJ4DgloHu6rHNC+yKW6qOuvc1fYDv6o6q3CpbqrU0kBSYcC26TwSaQFp6E7XsOIM6zbbDuiyraroZeBw9r8z4gysNBcR+b+XRh3bMLV0wM6HcYZ0/FbtBj/hQvQxx691A/AZbFj2dWBubgVe6sZRa/BMCkc44wovEZw5hk9B9wt/Ms/gAMbwOUAY7h731rGeZC8AKfGh7qSTkqLmqkv6wYgISuE7LwYkiaHodUeWSVzuVyUl5dTWFhIa2srAQEBzJ07l6lTp6I/ToVwwOrgT+uqeWF9LRoFrp+XwvXzk1Fsg+xc9T47V73HkHmAxEk5zFp+JXHZE46+xkAFlVUP0dOzEV/fFNJSf0Fo6IJjvwfVn8B7t0B/E8y+ARbeC17H2dt3UIvVxp0VjXzc1U9ugC9PZSaQZhy+AifE15EENCGE8BwS0Dzc1ymgHYvFbmFf177Pl0Z2lNA11AWAQWcgOzSbSeGTmBw2mUnhkwj3DT/pe54KzkNt/j8PbZXt7jb/GtXFYrWDs7rLSd+/C5+WBgC8s7LwX7gQv8WL8MnOPip0qKqKvXEAc3Erlt3tqDYXukhfjNOjME6NQHOMs92OMtjrDi4VK6HqY7D2g84AKQvdSyHTz6V/yJ+yTS2Ub2xhoMeKwV9P5uxosufGEBR5ZMBRVZXq6moKCwtpaGjAaDQyZ84ccnNz8fY+9jLBhm4Lj35YzgclLUQF+HDnuRlcPCUWh3WQXatXsv2Dd7D09RKbmc3M5VeSNHnqEe+Fqqp0dhVQVfVbBgfrCAnJJy31Hvz8jq68MdQPn/wKtr0EwePce9OS8oZ9i1RV5a22Hu6rasLicvHzpCh+Eh+B7jgNVYT4OpKAJoQQnsNTAtq1117LihUriIiIOHRQ9euvv86vfvUrysrKKC4uJjf3mHlLAtqZcKo+zFVVpdncfESVrbS7FIfLXZ2KNkYfUWXz9Db/JY19n4e2hl66zTZiBzqY117Ggq4y4pv3o6guNBGRBCxeiP+ixfjOnIHG68gOgy6rg8HdnQxsbcXeYAKdgmF8GMYZUXgnD3/m2SEOm7ui9tlSyL4GQIG46ZB5Hq60pdS3hVK6oYW6PV2oLpWYtCCy82JImRqOTv958xJVVTlw4ACFhYXU1NTg4+PDrFmzmDlzJgbD0UslAbbWdfPgilJKGvuYHBfILy/IZlpiCHablT1rVrP1/TcZ6OokMjmVmRdfQer0WSiH7XdzuWw0Nr1Mbe0fcDrNxMRcRfK4W/DyOvpwRGrXw3s3Qk8dTP8hnPUr8B7+IdVhs/OLykZWdPQxyd/A05kJZPsd+7UI8XUjAU0IITyHpwS0wsJC/Pz8uPrqqw8FtLKyMjQaDddffz1PPPGEBDRPcjo/zK1OK+Xd5UeEtmZzM+Bu858VknVEaIv1i/XYNv/13ZZD+9h2NvTSWNvM1OZSZrXuI7ejEm+HDYePAWXGbKKXLiFo4Xy0QUFHXMfWYsZc3IJlZwfqkANdqA++06MwTotE6z/C1vGq6t6rVn7wvLWWXe5fD0mBjKWYY8+j7EA0ZZta6e8cwttXR8bMKLLzYgj9QvOSxsZG1q9fT0VFBV5eXkyfPp3Zs2fj53d0kxOXS+XtnU08/lE5bf1Wlk2K5u6lmcQF++J02CktXEvxu6/T29pCaFwCMy++nIw589BoPw+HNls3tbV/oKn5v2i1voxLuom4uO+h0XzhtdvMUPAwbH4eAuPggmfcHS9P4P32Xn5R2Uivw8EtiZHckhiJ1zCNUYT4OpCAJoQQnsNTAhpAXV0dy5YtOxTQPrNgwQIJaJ7mTH+Yd1g6KOn8PLDt69p3ZJv/cHe3yElh7jb/vvrh9yKdKUN2J3ub3G3+S2rbsBUXk75/F7Na9hFiNeFUNHQlZ6HJm0/ShecSl516KHyqdieWvV2Yi1uw1faDRsGQFeKuqqUd/8yzY+prgsqD563VFoLTBoYQ1LRzaPS9gNIDsdSU9OByqkSOCyA7L4a03Ej03p8Hp9bWVtavX8++ffvQ6XRMmzaNOXPmEBgYeNTtLDYHf/60hr8W7selwo/yx/GTBan4eetwOZ1UbC5iy1uv0tVYT1BkNNMvupTseYvRHbbfbcBcRXXVb+nqLsRgSCQt9ReEhZ11dDhvKIZ3b4DOSsj5Lix5GAxBw74d3XYHv6xq4o22HrKMPjyVmcCUAM/8OyTEWDjTz3QhhBCfOzzc3F/VyN6BwVFfw+lwotUd++imCX4GHkyLG9F1JKAdgwS0kXG4HFT3Vrs7Rh7cz1bXXwd89dr8t/QNsquum7qN21E2FZJUvp3E/lYAGgOjaR4/Hd28+aTmTWdiQjC+XjrsHRZ3B8jt7bjMdrRB3hhzI/HNjUIXNMoloEP9sL/AXVmr/AiGekHrzWD8OVSoF1FaG0VPuw29j5a06ZGMz4sh/LDmJZ2dnRQVFVFSUgLAlClTyMvLIyTk6KWIzb2DPP5hOe/saibc35s7zsngsqlxaDQKqstF9fYtbHnrNdpqqvALDWP6BZcwcdES9N6fN/Lo7FpHVdUjWCzVBAfPJi3tPvz9Mo+8kX0IPn0UNvwB/CJg2VPuPXgnsLqzjzsrGmm32flpQgQ/T4rCR+uZf2+EOBme9kwXQohvMgloHk4C2pfXZ+1jT+eez5dGdh6/zf+k8EkEeh9d6fEEdqeL8u3lNK/6CO3mIqLqytGqLrq9/SmOHk9Tdi7G2bOYlBxJTmwAUe1WzFtbsVb3AuCTHoxxRhQ+mSEoow0XTgfUbzq4b+0D6KlDVaEl8CJKbRewvykUhx3C4v3InhtD+swovA3uzpu9vb1s2LCBHTt24HK5mDBhAvn5+URERBx1mx31Pfzm/VJ2NfQyITaA+8/PZmay+9BtVVU5sHsHm99+jabyfRgCApl2/sVMWXI+3r7uqpbLZaep+X/U1DyDw9FPTMzlJCffjrdX2JE3atoB794I7ftg4uVw7mNHHO59LH12B7/e38x/W7pJ9fXmqcwEpgd65sHrQnxZX4VnuhBCfFPIEkcPJwFt7Iymzf/kiMmkBqV6ZJt/Z28vrR8X0LbqY3Tbt6C3DjKk9WJHRDqbosZTMW4SqWlxzA33Z+aASsj+flSTHY2/HuO0KIzTI9Ed48yzE1JV6Ch3V9bKV0LTNqwuXyqViykdOofOvgB0eg2p0yLIyoshOsXdvMRkMrFp0ya2bt2K3W4nMzOTefPmERMT84XLq7y3u5nHVpXT3DfE0glR/GJpFgmhny8tbCzby5a3X6Nu9w68jUZyzr2QqUsvwOAfAIDd3kdt3bM0Nv4bjcaHcUk/JT7+GjSaw6qIDhsUPQmFvwOfIDj/CRi//IQv/9NuEz+rqKdpyM4P48K4Ozkao/bY35kS4qvmq/hMF0KIrysJaB5OAtqp9cU2/7s7dtM95D4XzKAzMD50vDu0HQxuntbm32WzYSneSv+aNfR9sgY62nEpCrWRKawLzWBT9ATa/MK5ONCPC/FiXJ8DBfBKDsRvZhSG8WEoui+5ZM/Udmjfmrp/HR1Dseyznk/VYB52p57gSB+y8+PImBWFwc8Li8XC5s2bKS4uZmhoiJSUFObNm0diYuIRlx20OXlhfQ1/Wrcfp0vl+3lJ3LgwFX+fz/efte6vYsvbr1K9dTN6bx8mLzmP3GXLMQYFA2A211Bd/QidXQX4+MSTlno34eHnHLk/rXWve29ayy7IuhDOewL8I4d9yQMOJw/XtPD3pk4Sfbz4fWY8ecFn7owRIcbK1+WZLoQQXweeEtCuuuoq1q1bR2dnJ5GRkfz6178mJCSEm266iY6ODoKCgpgyZQofffTRUWMloJ0BX9cP88Pb/H8W2sq6yw61+Y8xxnwe2MInkRWShZd2hJ0TTzFVVRkqLWWgYC2mtQVYS8sAMEfGsi9pMisD0qj1jWOp4s0FeBGFBqtewZwaSNS8eCLGBX35m9vMsH8tVKzCVl5AdXcWpYNLaLOno9GoJE/wJ3tRKnHpwVhtVrZu3cqmTZuwWCwkJiaSn59PSkrKEQGqtW+I331UwZs7Ggnz8+JnSzK4Ijce7WHNTzrr69jyzutUbFyPRqdl4qIlTL/wUgLC3Msou7qLqKp6GLO5kqCgGaSl3UuA/2EHYjsdsOlZWPuI+1Drcx+DSVfACbqAbuod4PbyemoHbVwdE8r9KTH4H2edtxBfBV/XZ7oQQnwVeUpAOxkS0M6Ab9KHudVppayr7NA+tpKOElrMLQDoNfrP2/wf/BFjjPGINv/25mZMa9cysKYA89atYLdDUDC9k2dQkjCJOm0S2b2Qhw49ChU6lf3RPvhMCGVycihZ0QF4fZnqmssJjVuh/AO6du+ktCWdisH5WFV/AoxDZM0IJuucHPS+Gnbs2MGGDRswmUzExMQwb9480tPT0RzW1r6ksZcHV5Syta6HzCh/frksmzmpR+4t62ltpvidNygtLABUsvIXMuOiywmJicXlctDc8ho1NU9ht/cQHX0pKck/w9v7sL1wHZXualpjMaSd424iEhg77Mu0OF08XtvCXxs6iPbW87uMeBaFBoz+/RLCA3yTnulCCOHpJKB5OAlonqnd0s6ejj3s7nRX2fZ17mPIOQRAqE/oobA2OXwy40PHn/E2/06TCfP69ZgK1jJQWIirvx/F2xufmbPonTSXbl0qIc1OwmwqA6h8jJ1VWgeGOH9y4oPISQgmJyGI6ECf0YfPziocpauo2VxLaWMSTbaJKDhJiuwge04kMfmz2FNWTlFRET09PURERJCfn8/48eMPBTVVVVm5p5XfriyjqXeQs7Mjuee8LMaFHdmso7+zg23vv8WeNR/hdDhIn53HzOVXEJ6QhN3eT92B52ho+CcajZ6kxJ8QH38tWu3BjpAuJxT/FT75NWj1sOQhmHr1Catp2/vM3FpeT5XFypVRIfw6NYYgveftXRRiON/0Z7oQQngSCWgeTgLaV4PD5aCqp+qIKtvhbf7TgtKOqLIlBZy5Nv+q3Y5l+3ZMBQUMrCnA3tQEgM/kSRjnLMPmlY6r0Y7GqdLgBW84hljlsmEBIgO8yYl3h7WchGAmxgZi8BrF0j5zJ71bP6F0QyvlTYkMugIxarvJim8gY24cBwxxrN+8nc7OTkJCQsjLy2PSpEnodO7AM2R38rcNtTxXUI3N6eL/Zidx0+I0Ag36I2/T28P2D95h1+qV2IcGScmdyczlVxCdmoHFUkf1/sfo6FiNj3cMqal3ERFx/ufBs7sG3rsZ6tZD8gK44A8QnMhwrC4XT9W18Wx9G6F6HY+nx3NuuGd2BRXiWOSZLoQQnkMCmoeTgPbV1TvU627zfzCw7enYg8l+sM2/l/+h9v6TwicxMWziGWnzr6oq1soqBgrWYCpYy9CePQDox6XjO3M5ilcqzn4VVafQEu3LWh8XK7tMHOi2AKDVKGRF+x8R2pJCfUdUZXMOmqlbs4HSzV3Ud7qbryR47yYrvpGh5HiKWnS0dnQTEBDA3LlzmTp1KvqDB1W3m4b4/UeVvLa9gSCDntvPTueqGQnovnCMwOCAiZ2r3mfnqvcYMg+QOCmHmcuvIC5rAj29m6mqepiBgTICA6eSlnYfgQGT3QNdLtjxD1j9S1BdcNavYPoPQTN8qN5jsnBreT37Boa4OCKIh9LiCPOSaprwfPJMF0IIzyEBzcNJQPv6cKku6vrq3M1HDoa26t7qo9r8Tw6fzKTwSWekzb+9rY2BteswFazBsmkzqt2OLm48hmkXgy4BnAq6SF+UyWGUhujZ3mZiZ0MPuxv6GLC6G6kE++qZctiyyMnxQQT46Ie9b3+HmbLVOynfZmJg0BuDppcMQwG+kd3s0KXT0A9Go5E5c+aQm5uLt7e7bf6+5j4eXFHK5ppu0iL8uG9ZNvPTj+60aRu0sGv1SrZ/8A6Wvl5iMrKZdcmVJE6aTGvrW+yv+T02WydRUReTkvxzfHyi3QN7G+D9W2D/GkiYAxf9EUJThn8PXSp/rG/jybo2/HUafpsWx0URQR6xL1GI45FnuhBCeA4JaB5OAtrXm9luZl/nPko6P+8aebw2/5PDJxNmCDvBFceOy2xmYMMGBtYUMLBuHU7zEPqEWXhnLUHRh4NWwTAhDOOMKHRJAezvMLOzvoed9b3sbOihqn0AVXVv4UoN9ztUYctJCCItwv+IboyH7ulSqd/XRWlBFXXlFlRVIdprL+HGTdQYgqh1ReLjpWXWzNnMmD0HX19fVFVldWkbv11ZxoEuCwszwrn3/GxSI/yOur7dZmVvwWq2vvcWpq4OIpNTmXnxFSTljOdAw19paPgboCEx8XoSE36EVmtwn/+2+3/w4d3gsMKi+2DWT0Ez/NLOsoFBbitvYJfJwtKwQB5NjyPSe/igKsSZIs90IYTwHBLQPJwEtG8WVVVpGmg6Yi+bJ7T5Vx0OBnfuxFSwFlPBGpw9TvSJeeiT5qJofdD4a/GbG49xWiRaf/d8+ofslDT0uUNbQy8763vosdgBMHppmRwf5A5t8cFMSQgizM/7iHuae62UbWqhbH0j/d02vHVWonw/pcunm1pNDF4aF9NTQpl99iX4RcRjdTj558Y6nl1TjcXu5HuzErllcRrBxqPfH6fDTmnhWorffZ3e1hZC4xKYefHlJOSMo6bu97S3r8TbO4qUlDuIirwQRdGAqRVW3A4VH0DsNLjoOYgY/uHpcKn8tbGDx2tb8NZo+E1qLFdEBUs1TXgceaYLIYTn8JSAdu2117JixQoiIiIOHVT9+uuv86tf/YqysjKKi4vloGpPIh/mp89I2/x/tjQy2hh9SgOAqqrYamrcTUYKPsXeqUefmIcuLB1woY/WELA4A5/scJTDqmSqqnKgy8LOhoNVtvpeSlv6cbrc/z8mhPgeDGzuSttnbf5Vl0pjZQ+lRc3U7OrA5VAJDGnGqi+hAQM6xclUvw7m5mQSOPkCOn3ieerjSv5XXI+/j55bz0rju7MS0WuP3j/mcjqp2FzElrdepauxnsDIKGZcdBkxkwOpqX0Uk2kvAQGTSU+7j8DAqe5q2r63YOUdYDXB/Dth7q3uro/D2G8Z4vbyBrb0mVkY4s8TGfHE+njG+XlCgDzThRDCk3hKQCssLMTPz4+rr776UEArKytDo9Fw/fXX88QTT0hA8yTyYX5mDdfmP8wQdkQDklPd5t/R2cnAunWY1m3D3uGDLmY6Gu8AUC14JWoIujAHr7hjL80ctDnZ29x3aGnkjvoe2vqtAHjpNEyMDWTqYUsjg7RaKja3UlrUTE+rBcXHgia0knZnH6gupiilzA3uJDR7PuVh5/DQdi1F1V0khxu57/wsFmZEHDO8qi4X1du3sOWt12irqcIvJJTcC5cTMWGIugPPYLO1ExmxjJSUOzEYYsHc6Q5p+96CqIlw0fMQPWnY98mlqvy9qZOHa1rQAA+kxvDd6FCppgmPIM90IYTwHJ4S0ADq6upYtmzZoYD2mQULFkhA8zTyYe5Z7C471T3Vh/axlXSWcKD/AOBu858enH5EaEsMSDwlbf5dg4MMbNiEqWAfji5fNEGp7t+wNeGd6k3gspl4J8YNe42WvsGDFTZ3aCtp6sPmcDdSiQrwISchiCnxgaRpvbBXmqjb2YHVaUGNaKaPJlRcTKCSfLYQblAoiLyah5tzqemH/LQw7l+WTXrksR9YqqpyoGQnm996labyfRgCApl6/lJCspppavkHAAnxPyAx8cfodEYoex8++BlYuiDvNph3B+i8j3ntzxwYtPKz8gaKegfIC/Lj95nxJBqGHyPEqSbPdCGE8ByHh5tfv7+P0ub+UV/D6XSi1R57v3x2TAAPXDB+RNc5XQFNel6Lrx29Rk9WaBZZoVl8K/NbgLvN/2dLIks6SlhZu5LXKl8DIMArgInhE5kc5l4WOSFswpi0+dcYDASctYiAsxahOp0MbNyFaW0VTkcQtgZ/2p7ahTrwCoZsP/zPzsNnwvijKkjRgQaiJxo4b6K7k6LN4aKspf+wvWy9rNrbCoBOozAxxZ8ZmjBC2gJRemKx+jezz1fHHjWDTJ2FeU3v8KHtGf7tdR7P1FzCuU918O2pEdx23mRCv7DvTVEUkiZPJWnyVBrL9rLl7dfY8L9X8DYamXLeDfinllF34HmaW94gJeVnRGdegpI4Fz66Fwp/5w5sFz0Hccd+WAEkGrx5fUoKL7d086vqJhYUV3BvSjTXxoahkWqaEEIIIb6BpII2BuS7rV89LtVFbV8tJR0lh1r9V/dUo+L+/2Fc4LhDVbbJ4ZNJCUoZszb/qlNlYH05pvUHcA4YUBQNjo4yXN0l+EwKJ+CsRfjOnInGa2T7sjoHrOw62C1yZ30vuxt6MVudRDoVpru8SLU5sfk0MWhsRlUcjIsMZkFIKwGNBTzdPZP/OM/CV2Pnlow+rl4yG6+oTHe7yWNo3V/FlrdfpXrrZvTePkw6fxKGxO0MWPbi7z+etNT7CA6eAVUfu1vym1pg9g2w8F7QG4Z9HU1DNu6saGRNdz8zAo08mRlPqq/PqN9fIU6WPNOFEMJzyBJHDycBTZxKZruZvZ17D1XZSjqPbPM/IWzCEUsjx6LNv7PPiqmoDnNxC6pVi2ozY6/fhKNtK745afgvXoRx3jx0wcEjv6ZLparddGhpZEldD7qmISbbIci7FYtvE6rWjo8xnLycRMIGq3l0h5Z1g8kkKa3cE/QJZ09ORslcCvGzQHt0MO2sr2PLO69TsXE9Gp2GiRckoI/Zit3eTkT4UlJT78KgBMLHv4Ttf4eQFPe5aYlzhp27qqq80dbD/VVNDLpc3JEUxY/jI9Ad4xgCIU4VeaYLIYTnkIDm4SSgidNJVVUaBxo/D2wdJZR3l+NQ3W3+Y/1ijwhsmSGZX7rNv+pSse7vZWBzM0OlXaAqOPsPYKsuwNG6E9/JE/FbtAj/xYvwSkgY9fX7Bu2UNPayc087nbs7MJjqsRsbcWltDDn96A9JxTc4gOIDvdQPejNbU8r9un+RbTRB2jmQsRRSF4P3kQ+3ntZmit95g9LCAhStk+wL/NGH70bFRUL890lK+gm6+u3w3s3QewBmXAeLHwDvo89lO1y71c7dlY2s7Oxjsr+BpzMTyPIbvgInxFiRZ7oQQngOTwloV111FevWraOzs5PIyEh+/etfExISwk033URHRwdBQUFMmTKFjz766KixEtDOAPkw/+YYcgxR3l1+RAOSVrN7D9hne98mhZ1cm3/ngA3LjnbMxa04OgdBceLs2sPQ7vdx9TXglZqC/0J3WPOZNAlFM/oGJ3abg02f1rNjwzb6HTW4dEM4Hb6U26PZRjCKRsGlqpznv59f8gJR9gbQesG4eZBxnjuwBcQcul5/Zwfb3n+LPWs+QvEaJON80AVXoteHkpLyM2JCz0Up+C1s+QsExcMFf4CUhcPOUVVV3uvo5Z7KJvodTm5NjOSmxAi8vsTrFWI05JkuhBCew1MC2smQgHYGyIf5N1ubuY09nXsO7Wcr7Sodkzb/qqpiq+vHXNyKZU8nOFwoPlacbdswb3wDrGa0YWH4L1yA38JFGOfMRuMz+j1b3S0DrF25ibIDO3FoLGidBgZ04/jQ5k+f0wWoJGo6uTlwPQtdmwixNrkHxuQcDGvnQeR4UBTMvT1s/+Addq1eic6/m9QlFrR+7fj5ZZGWdi8h/cB7N0JXNUy9GpY8BD7DN2TptDm4v6qRt9t7yTb68FRWApP9T91RCULIM10IITyHBDQPJwFNfBXYXXaqeqqO2Mv2WZt/raIlLTjtiNCWFJB0wiqby2LHsrsDc3Er9hYzil5BG2zF0bQJ86fv4hoYQPHxwTh3Lv6LFuK3YAG60NBRzdthd7L+o2K27tyMxdmHxumNzied9dpgynoH8dJpcLlcJLoaWaLdwVKvnUxQK9GgYjXGos06H132+ZA4l8HBIXauep+dq97FJ7KF+PxetD5mwsLOJi3xVnyL/wsbnwW/KLjgaUg/54Tz+7Cjj7sqG+i0O7ghPoLbk6LwOcaB20KcLHmmCyGE55CA5uEkoImvqp6hnkNVtpKOEvZ07mHAPgAc1uY/fDKTwyYzIXwCAV4Bx7yOqqrYGwcwb23FsqsD1eZEF2FAFz6EvWY9A+s+xtHSAoqCYcoU/Bcvwm/RIryTk0c8V1VVKdmxj3UFn9Jj7kBx6ulzpFDsHULjkJ3s6ADyUkNpM1k5cKCW9P6NnK3ZTr5mDz6KnUGtH51R8/AZv4yAzIWUFG1i+6o3MCbUEjWtB41OJT7+GpK98tCtuBM6ymDSt+DcR8A3ZNi59dod/Kq6mVdau0nz9eapzARyA40j/4MQYgTkmS6EEJ5DApqHk4Amvi5O1OY/OTD5UIVtUtgkUoNS0WqOPGDRZXUyuLuDga2t2BtMoFMwjA9DH2llaF8R5rUFDJWWAuCVlORuMrJoIYacHJTjHNZ4OFVVqa2t45MPC2hub0B16qgbSmGbLhCLqnJJTix3Ls1Eq1HYVd/LnroWXNUFJHUVMp/thCn92NFS6TOZjqgF9Dkiad9XSGBaOSEZfWgVf1KTbyauphml6CkwhMD5v4fsC084t7Vd/fy8ooFmq53r4sK5KzkaX6mmiTEiz3QhhPAcEtA8nAQ08XU2YBtgb9feI7pG9lh7AHeb/4lhEw8FtonhE49o829rMWPZ2op5RzvqkANdqA++06PwigNL8XoG1hRgLi4Gux1tcDB+8+fjt3gRfnPmoDGeuALV2NjIuoJPqa6pwu7Ss28olRLFD71W4doZidxyfiY+enfoc7pUqlp7adizHl3VKlK6C0lwNQKw15nIpsFJ2NV+YnNq8YuxoCOGSdE/IPjTl6C1BLIvhvOeAL/wYedkcjh5aH8z/2zuIsngxe8z4pkbfOYevuLrQ57pQgjhOSSgeTgJaOKbRFVVGk2N7O7cfSiwVXRXHNnm/+BB2pPC3G3+dS4Nlr1dmItbsNX2g0bBJysE44wo9NF6LBs3YFpTwMCnn+Lq70fx8sI4ezZ+ixbht3AB+oiIYefU2tpK0foi9u7bi8nlww5rKrWKgSCNhuunJHDtBel4G/RHjTM1ldGx7R28939EdP9uUF1s7k+k3BhM1LQ2vAPt9PelMNGeSUrF/1C8/GDp4zDxsuMemv2ZDT0mbi9v4MCQjf+LCeX+lBj8dCeuEApxPPJMF0IIzyEBzcNJQBPfdEOOIcq6yz5fGtlRQpulDQAvjZe7zf9nSyOVLHz3OrHsaMdltqMN8saYG4lvbiRaoxbL9h0MrC3AtKYAe6O7wuUzaZK7yciiRXinpR23eUlnZydFRUWUlJTQ7PBjmz2ZTlVPrFPD99OjueDsZCIS/Y893tyJWvkRlj0r8KpbS53JwJ7wEPwm9aPoXDSXJzCju48s134awuczcNbvSE1NQz/MEkaz08njNa38tbGDGG89v8+MZ0HIsffxCXEi8kwXQgjP4SkB7dprr2XFihVEREQcOqj6jjvu4P3338fLy4uUlBT+/ve/ExQUdNRYCWhngHyYizOp1dx6RAOSfV37sDqtAIQbwpkSOpnFQ7PJPBCLd4MLAJ/0YIzTo/DJCgGNgrWqioGCtZgKChgqKQFAHxfnbjKycBG+06ai6I+ujPX29rJhwwa2bd9BpT2YnY4ELKqWbJuWi4ICmTMvnvQZkXj7Hj0WAPsQ1Bailq9g/651lEeo+KRacNkUgkt8mDjYig09j7q+R1XMReQkhpATH0ROQjBRgUcfKbCtz8xt5fVUWaxcFR3Cr1JiCNTrxuidFt8U8kwXQgjP4SkBrbCwED8/P66++upDAW316tUsWrQInU7HXXfdBcBjjz121FgJaGeAfJgLT2J32ansqTxiL1u9qR6AaHs43xo6n7mdkzEOeaMaNfjnxuA3IwpdqME9vr2dgbXrGCgowLxpE6rNhiYwEL958/BftBBjfj5aP78j7mkymdi0aRMbirezYzCMUmc0CgozhnTMdnqRNS2S7LwYolMCj3+kgMsFzTvZX/QXqtSN6CMH0bYqTK4aIFgdpFKXzvWDN1DrdO9Niw70ISchiJz4YHISgpgQG4iPXsuQ08WTda0819BOmF7H4xnxnBM2/FlrQhxOnulCCOE5PCWgAdTV1bFs2bJDAe1wb7/9Nm+88QYvv/zyUb8nAe0MkA9z4ek+a/P/2bLIfR37yOpJ5NzeucwYmIAWLZ0RA5Djz7iZEwj0DQLAZTYzsHEjA2sKGFi3DmdvL+j1GGfMwG/xIvwXLkQfHX3oPhaLhS1btvDxxh1sNEdQ5wohUKswf9CLdItCSJSRrLkxZM6OwuDnddz5qqpKdfEfqOt4AY3BQmipiwmdvWgVMEdMY1P0d/nQkkVxk4WG7kEAdBqF7JiAQxU2nzAfHm/poNQ8xCWRwTyYGkuol1TTxInJM10IITzHEeFm1d3QumfU13A4Hei0x/k3QNREWProiK4zXEC74IILuPLKK/nud7971O9JQDsD5MNcfNU4XU53m//OEqobyvEvU8htzSTaHka/doBt4eV0ZFpJSE451OZfo8Lgrl3uJiNr1mA74D582zs7C/9Fi/FftBDvrCwURWFoaIitW7fyVuFuCgci6FKNjPPTcR7++DYOodEqJE8JJzsvhriMYBTNsatqLpeNir3P0tT6Ij62QVJ3W4n6f/beMzqu67y/3tMHU9B7750ACRKsAEmAklUoWZJrHKc4juM4LnGL7b9tJXbc4yK32ImT2IkTv44tOyqWRFWCDWAn0Uj0QrRBr9Pbve+HCwKE2ClAHFFnr8WlxeHM3Dtzlg7OD89z9vG7CEgqtHoD5N7FQsbdnDVs4eSEisbBOZqH53D5ggBEWfRYS6LpidBg0aj5Wm4y70qJveK1BIKLiDldIBAIQoc3QkD7+te/zunTp3niiSeu2CkkAtptQPwwF9wJ2D12eppb8Z+ZJWHIjEbWcD6slxciGzgT3UFefP6S5r8srgzL6DyOOkUy4m5qAllGm5SEtaYGy55azJWV+IHTZ87wi7pzHLXH4kLP9uQw3hEVz0zjDF5XgPBYI0U7kinanoQ5wnDFe/P5Zug4/00mpp8g0eYlv8+JRgaPJgKzNAuoIG0LFN5PMO8+uoKJNA7O0Tg4S+PQHF0uD/7SKOQIPRFzfu6R9exIi2JDehS5cRbUVwmIgjcnYk4XCASC0CHUWxz/67/+i5/97Gfs378fk8l0xdeJgHYbED/MBXcaQYcP59lx5o8Po5oJ4NMGOB3bweNh++g0XgAg1ZK6ZIws12aS1GzDdeAQzoYGZI8HtcWCuboKa+0ejNu3cbqnjx+93MFpRyQqFTxSFMEf52QxcGKSka45VGoVGaUxlFQlk14SjfoK1kaHs5v281/GM91AfruLhAUvs6oE5Jy7iHa0KueoAcTkQsH9yp+0zcx7Jc4OzvJvw5McUvmQAzLa9jnUo27CDVrWp0cutUauT4skynz19kvBnY+Y0wUCgSB0COWA9sILL/CpT32KQ4cOERd39fNbRUC7DYgf5oI7FVmW8V1YwHlyDFfrFAQk/PFqerPGecV6nFOzZ5hwTQCK5r84ppj1EcVUDulJaRolWH+c4NQ0aLWYNm3CXLObM/Fp/ODUJO0uC2Z1gPdtjOF9W8voPjFBx7FR3HY/5kgDRduTKNqRRPiivORSpqYP0tn+FSKGO8nvcqEJynToq4i+99MkBXugcx/0HwHJD6YYyL9XCWs5NfQENHyyfZBTCy5KtTrWzQTpGpinY8xOUFLmw6xY82JgU0JbQaL1mpp/wZ2FmNMFAoEgdAiVgPae97yHgwcPMjU1RUJCAv/4j//IN7/5TbxeLzExMQBs3bqVf/3Xf73stSKg3QbED3PBmwHJ5cfVPInz5Bj+UScqnZqwsji863S0GrppmWqhZaqFtum2Jc1/giGOPc4MKnsgqXEI9YURAPT5+TRsvZt/cScy6g8jTuvhw9sSeM+eSkba52mrtzHYNgNAelE0RTuSySqPRaNdDkmS5GfE9r8MtX+XnM4xEqa8jHvNNJsepOjtHyU1Kw1Vbx10Pg/dL4JnHjQGyN5NsOB+fhFZzTdGHGhVKr6cm8LDMeG0jiysaI2ctCufw6hTU5ZyMbApoS0h/HLNv+DOQMzpAoFAEDqESkB7LYiAdhsQP8wFbyZkWcY/7MB5agxX0ySyL4g2wYS5MhHThngkI3TNdinGyClF8z9kHwIgeVbNvcPRbOyWiO2eRJZkntm8l18nb2cBAzn6BT6yI4W9u7fgdUi0Hx2l4+gojlkvYVYdhVuTKK5KJjJhucfb75+jv//HeJv+g4LuBbR+iRNTaQxG38PmR95D5vqNqKQADB6Djn3Q+RzMKccOXMi4h09lfoijRFMdaeG7hWlkhBmWPufInHsxsM3RODTL+ZEFfEHlLLnkCCMb0qOWQltJsqL5F7zxEXO6QCAQhA4ioIU4IqAJBKGF5A3ibp7EeWoM35AdNCrCSmMxVyZiyI5YsjPOeGZonWxdCm3nps6hmnewoVdmW5+W/H41vy28h2fStxFUqVmnm+CDm5Oo2bMbozGMwfPTtNXbuNA6jSzJJOdFUlyVTM6GOLR6JRQ5nX30n/8yMadfIGnCyxwmnu3PQ07awNZH3k1u5VZUajXIMky0KW2Qnc8jjZzlV0kP8JWcjyCptXwxJshflGxErb38cG1vIEibbbHKNqRU2oZnFc2/TqOiOCl8ObSlRZEWHXb1c98EIYuY0wUCgSB0EAHtdUalUj0M7AXCgZ/LsvzStZ4vAppAELr4Rp24To3hPDuB7AmgiTFirkzEvDEBjXWldCMoBemb71MO0p5qoc3WhLGll8I+C63GhzgeW4YRPxs1Q+y1zvOWBx8htqQE57yXjmOjtNXbWJjyYDBpyd+SSElVMjEpyuHZ0zP1TDZ8mszWLgw+ifNyFvs7k4hIyWLzw++kcPtO1JpLKl0Lo9D1AsM99XxGv5UDUZVsWTjPY3ITOXnbIWcPGMOv+rkn7B6aLglsLcPzS5r/GLN+qSVyQ1okZWmRWAziLLZQR8zpAoFAEDqIgHYTqFSqXwAPABOyLJde8vi9wA8BDfAfsixf92ABlUoVBXxXluW/vNbzREATCEIf2R/EdW4a58lRfP0LoFZhLIrGvDkRY97Vzzyz++ycmzpHy0Qz5462caqvmDFtGlEqJ1tVF9g0cY7oaIjfs5v8bXvx2HS01dvoa5pECsgkZIVTXJVM7sZ4tHoYHfgl6pf/kSTbPK4wC4ftmzjfHSQiIZHND72D4p170OpWVslkj53Hz5/kH+YseIHP9v+cvx59Gk3mDii4TxGNRKRc8/MHghJd4w4ah2aX9rP1TjoBUKmgIMG6VGHbkB5JjtD8hxxiThcIBILQob29ncLCwtfUkXI7A5osy3R0dLxuAW0n4AD++2JAU6lUGqALuBsYBk4B70EJa9981Vu8X5blicXXfQ/4/2RZPnuta4qAJhC8sfBPunCeGsd1ZhzJ6UcTYcC0KQFzZQLayGtLNiRJ4n9OnecHz/cx69GSrp5hk3qQ8oFOUi60M5wOji3FRFbuIXaikOnGIHNjbnQGDXmVCRRXJROVLDNx4rPENPwOoyfIRFoZB/pLGekewhIdQ+WDb2PdnnvQGVbey7jXz+c6B3lh2s4GaYbv9zxG4egR5R+TyqFgrxLYEtcpqes6zLv8NA0vykcWQ9uCJwCAVWj+Qw4xpwsEAkHo0N/fj9VqJSYm5pZD2u0KaLIsMz09jd1uJysra8W/rVmLo0qlygSevSSgbQO+LMvyPYt///zizb06nF18vQr4FvCyLMuvXOU5HwQ+CJCQkLDxN7/5zS3f71rhcDiwWCy3+zYEgtBFAvMERAypCZtWHnLFwkKahDMOuIbB3heUeWnAzzO9fvxBmSLNGGUaGzkjFyg510aYc56WLBWNuRpc6VvIsFcRPpaKSlJjjITIHBUxqQPkDH2XNNsQbqOO5sS30NxkxTE6gtYYRkL5JuJK16PRLx+ULctwDB3/SRguVPyRb4IPjj9H4tQJwhc6USHjMcQxFbuZ6ZjNzEWWIKsv37d2xa9Dlhl3yvTOB+mdk+idkxiyS1ycjRNMKnIiNeREqsmJUJNqVaMVVbbXDTGnCwQCQeigUqkwm81oNLcu4pJl+bbtCQ8GgzidTl6duWpqal63gPYO4F5Zlj+w+Pc/BbbIsvzRq7z+b4E/R6m0NcmyfPnBAZcgKmgCwRufwIwH5+kxXKfHCS74UFt1mDcmYK5MRHuFM88uMmH38L0Xu3j89BAmHaxXD5HDGBlI5J0+SVzvALIKupPVnM4LYyJuE+nuaiIdSaCViCsxsLngFImn/wmjy8NERir2si/S9FInF5rOYDCb2XDvg1Tc91bCrMt7zqZ8Ab7YPczTE3OUWsL4fmEa61QO6HpRUfj31kHADYZwyL0LCvcq/w2LvKnvxekN0Doyv1RhOzs4x5RDaP5vB2JOFwgEgjuLUJzXX88K2k0FtJtFBDSB4M5BDsp4umZwnhzD0zkDEhiyIzBvTiSsJBaV7spltfO2eb7yTBsn+mdINqvYQB9xwSmyEhNZ73Zjra/He74NgIV4M2fy0xgJ30CsZxN6yYjPYuOu9J9SOnMer17N+Oa7Uad9grPPHKDn1DF0BiPlb7mfjXsfxhIVvXTdfZNz/L+uYab9AT6WnsAnMxMwqNXgc0H/Ieh4DrpeAOckqLWQsUPZs1ZwH0Rl3Pz3c1Oa/yhKksOF5n+VEHO6QCAQ3FmE4rwesi2ON4sIaALBnUlwwYvz9DjO0+MEZzyoTVpMG+Ixb05El2C+7PmyLPPi+XG+sa+dwRkX6+O1FHnbMXjnSE9PZ/u6dcR3d+M4cBDX8ePIfj++yCh6ynYxElaKxptEfFgTe2K/S7TfyUi8kVMlNVjN78DR0E3vsWOotRpKa97C5re+nfC4eABm/QG+1DPC42Oz5JuM/KAwjYqIS+5PkmDk9JLCn8kO5fGE0mXJSNJ6UF+jp/MaXFfznxyxuJctkor0KFKjhOb/VhBzukAgENxZhOK8/noGNC2KJGQPMILSuvjHsiyfv+WLXIIIaALBnY0syXh753CeGsN9fhqCMvqMcMyVCYSVxaHWr6wQeQNBfnn0Aj/e34PbH+SuTAPpC634HHMkJydTXV1NXmoqroaj2Ov24zh0GGl+HmdEGiPrHmRMn0VlxK9Zb9iHXw9ns8L5N60FjzePsr4o9B0zqGQoqq5hy8PvIjpZMTjun17gM51DjHn9fDAtjs9mJWHSXCF0TfcqQa1zn3JQtiyBNWk5rGVWg+61tSq+WvPfPDSP269o/mMtetanLR+mXZYqNP83gpjTBQKB4M4iFOf1tbI4/i+wG4gFxoEvybL8c5VKdT/wAxRz4y9kWf76LV3gCoiAJhC8eQg6fLjOTuA8NUZg0o3KoMG0Pg7z5iT0KSsFDlMOL4+93MVvTg5iNWp5e0EYlrFGFuZmiYuLY+fOnZSUlKCSJFxnzuKoq8NeV4dnZJTJ2PV4i4uoTPgfYlQ2xuP0nExP59ceLX3TXkr7wikYsqKWVagLEim6/x62lO9Bp43gq702/ts2TVaYnscK09kWeQ2xhGtmcd/aPujZD34n6C2QU6uEtfx7wBR99dffIBc1/2cvGiOHZulb1PyrVZCfYF1qjaxIjyQ7Vmj+X42Y0wUCgeDOIhTn9ZA9qPpmEQFNIHjzIcsyvgsLOE+N4WqZgoCELsWCuTIR0/o41MblilDH2AJfe7ad+p4psmPNvLckDHfvaaamJomOjqaqqoqysjK0Wq3yvj092OsOYK/bz0y3DfMGA3lpZwhqoSvXzKh1N86Et3BuvofZhhbiOnzogmoG412MlxnJLCwjzLqVpxyZjPrhL1JieTQ7CbP2OnvB/B64cGS5FdI+Cio1pG9b3rcWk7Nq3+Gcy0fT0NxSa2TTpZp/o5b1i4r/DYu6/0jTm1vzL+Z0gUAguLMIxXldBLQ1JhQHXSC4E5HcAVxNEzhPjuEfdaLSqQkri8O8ORF9uhWVSoUsy9R1TPD159rpm3JSnRfLe4uMDLQeZ3R0lPDwcHbs2EFFRQW6Sw6qDkxOYj9wAPfhp7AYGgi3zjERbaA9OwLHxL3k5H+EuKIoDj7zKwYO1CN7/EzGBzmdNclYDHii343DfBfhag8fSvDwx+lFJJoTb+BDSTDatBzWxs8pj8cWQOH9SmBL2XTL+9aufEmZvimnci7bYnDrHFtAWvxxkB1rVs5mS49iQ1okhYlWtFdq4bxDEXO6QCAQ3FmE4rwuAtoaE4qDLhDcyciyjH/YoVTVmiaRfUG08SbMmxMxbYhHY9bhC0j8z/EBfvhKFw5vgD/enM5DOVpaTx9jcHAQs9nMtm3bqKysxGAwrHh/yWHH9/svou//FUE1dOeFMRgez2zrg8QHKii6r5AR23lOP/skrvk5TJlJOCpiOBwu0aipJaBLxOg4QKb3FSpiCyiLLaMsrozimGKM2uvsOZu9AJ0vKIFtoAGkAJjjIP9eReGftQv0plX/Tp3eAC3D8zQOLR+mPeXwARCm07AuNWKxwhZFRXok8Xew5l/M6QKBQHBnEYrzughoa0woDrpA8GZB8gZxt0ziPDmGb8gOGhVhpbGYKxMxZEcw5/bzg1e6+NWJQUx6DR/fk8euZDjWUE9fXx9Go5EtW7awZcsWTKZXBZ/pXuSnP4Jq8BgzVgttRTrmXVmMN70bo81MTkYAKdVP65mj2KeniM/KYd1b385/WsN5fEomDDeJ9sexz+4HQKvSkh+dvxTYyuPKSbOmXd206J5V9qt1PAc9r4B3AbRhi/vW7lNCmyVuTb5XWZYZnnUvyUcaB+c4b5vHH1R+ZqREhilVtrQ7T/Mv5nSBQCC4swjFeV0EtDUmFAddIHgz4h9z4jw5hvPsBLIngCbGiLkyEfPGBPpcXr6+r52DnZNkxpj4wv1FFEcEOHLkCJ2dnej1eiorK9m2bRsWyyWyD0mCU/+B/MqXkQnSmxnBYGIA11A5o61/hDxnJsneQljiNBc8EyzMzxKdkkbEw+/hR4Y4OlxeHow18VbrKP0zzbRMttA61Yor4AIgyhBFWVzZ0p/SmFIs+ivIRgI+GKhftEI+D/NDgArSNi9aIfdCbB6soVbf4w/SNrqwVGFrHJxjZO7O0/yLOV0gEAjuLEJxXhcBbY0JxUEXCN7MyP4g7nPTOE6O4eufB7UKY1E05s2JHJf8fP35DnomHGzLjuHvHygmRuPmyJEjnD9/Ho1GQ0VFBdu3bycyMnL5TWcvwB/+FvoP4U7MoinDg8sA/sHdDJy+n0DAgnW+D7P9CDMRDhYCXsxxifQ88j5+o7EQqdXyrfxUHoiPJCgF6Z3vpWWyZelP73wvACpU5ETmUB5XroS22DKyI7NRqy7ZAybLMNa6GNaeg9Fm5fHonOV9a2lbQL32Fa2JBc/SPrbGwVlahq+u+S9PjcT8BtD8izldIBAI7ixCcV4XAW2NCcVBFwgECv5JF85T47jOjCM5/WgiDOgq4nlG6+eHDf3Mu/38UWUan7q7ALXPQX19Pc3NSuApLy+nqqqKmJgY5c1kGc7+N7z0KLLkZ6xkPW3WLnS6WHSeP6P3lULmF9SoAx6sUy/jpAuHQcVCUgYv3/9e+nQmHoiL4Jv5qcTpdSvuc8G3wLnJczRPNS+FtgXfAgAWnYXS2NKltsh1seuIMkYtv3h+ZFky0n8YJD+ERSstkAX3KS2RhmscAbCKBIISneP2xcD2xtT8izldIBAI7ixCcV4XAW2NCcVBFwgEK5EDEu72aZwnx/D2zAHgywnnl9oA/1/XOEadho/U5PIXOzLxOO00NDRw9uxZJEmipKSE6upqEhISlDebH4FnPwHdLxFILqUjP4JxqROLpYgY08cZOJ1C9+kxAn4Zo7uZgL2eBWOAs2VV1FfuwaJR8/XCdN6WGH3VFkBZlhlYGKBlarnK1jXbRVBWqlPp1vQVrZH5Ufno1DrwLEDvfiWsdb0InjnQGCB71+J5a/dCeNLaf+GX8GrNf+PgLPYraP4r0iNZHwKafzGnCwQCwZ1FKM7rIqCtMaE46AKB4OoEZjw4T4/hOj1OcMHHsEnNv4QFODTtIC06jM/fV8R9pYk4HA6OHTvGqVOn8Pv9FBYWUl1dTUpKilJNa3kcnv8sst+No/IRWixteHw24mLvJj31Mwy3Gjhfb2NqyAGBIVSuQwxbZV7Y/Qi2xHSqJm18M85MzrYtqI3XtyK6/C7aptuWQlvzZDNT7ikADBoDJTEly6EttowEYzQMHleqax3PwdyA8kbJFcutkPHFa7pv7UpcV/MfZ2bDJa2RBQmvr+ZfzOkCgUBwZxGK87oIaGtMKA66QCC4PnJQxtM1g/PkGJ7OGU5JAf5Z56fX76cyI4p/eLCEdakRuFwuTpw4wYkTJ/B4POTk5FBdXU1mZibYx2Hfp6H9GeSkcmyba+heeBJJ8pGW+mdkZn6UWRu01dvoOjWO12FDDpzgWF48RyrvQhcM8KE//JY/1kpYa2qx1OxGGxV1vVtX7l+WGXOOrWiLbJtuwy/5AUgwJSy1RZbFrqNI0mDsflmpro0szqWRGUpQK7xfOShbo7vGFdeOi5r/s4vykaahlZr/stSI5cO00yOJt66d5l/M6QKBQHBnEYrzughoa0woDrpAILg5ggtenGfGmT85xtOzdv4DL/PIvK0kkc89VEJ8uBGPx8Pp06c5duwYTqeT9PR0du7cSU5ODqq2p+G5T4NnnsD2v6Er0cPoxJPodFFkZ32C5OR3E/Sr6DkzTlu9DVt3H1P6dvZtL2MoOYvCC1187j9/SubUJGEbNmCtrcVSW4MhK+umPocv6KNzppOWKaXC1jLZwohjBFA0/wXRBUqFzZJB+fwkqf1HUfUdhKAXjBGQ9xYlsOXeBcbwNfimb4yLmv+Lga1xaI62V2n+N1w8TDs9kpLkcAza1ZGiiDldIBAI7ixCcV4XAW2NCcVBFwgEt4YsyXh75xg7buPf2mw8LvvQqVT8VXESH3pbCSazHp/Px9mzZzl69CgLCwskJSWxc+dOCtJiUb/4BWh9HBJKcd79KToW/o+5uROYzXnk5X6RmJhqAKZHHLQ12DjX0M6x+EkObFoHwNvOneR99XUY2zsA0GdlYd1Ti6W2lrDyclSamw8hU+4pWidbl1ojW6dacQcUPX6UIYqymGLK1GbKZm2U9p/A4pwGtQ6yqpWwVnAfRKSu0jd863j8Qc7bFpZaI5su0fzrNWqKk8OXQ1ta5C1r/sWcLhAIBHcWoTivi4C2xoTioAsEgtdO0OGj48gQ3z7WzyGflwTUfCI3nrfdk4chLZxAIEBzczP19fXMzs4SFxdHdXU1JbohNPs+DY4J5B0fZ7K4gp4Lj+H2DBITU0Ne7ucxm3MACPiD9DVOcvBIJ/+Z4KE/JYFUWz9/3tfBPdFWjGcacZ48CYEAmuhoLLt3Y91Ti3nbNtSvPlj7Rj+XFKRnrmeFgKRvvg9Y1PybkyiXdJTNDFM2PUy23486sQwK9yphLbHsdd+3djXGFzxLtsjGwTlahufw+CUAYi2GpZbIDWlRlKVG3JDmX8zpAoFAcGcRivO6CGhrTCgOukAgWD1kWebI0UG+/koXnW4f69DwydhINlelY1ofj6xTcf78eY4cOcLk5CRRUVHs2rKesrHHUTf9CmLzkR78PkO00X/hJ0iSh5SU95Kd9bfodJFL15kdc/LD4138Z1iAoAqqTr3M3dN2qh55mCT7NPb9dTgOH0ay21EZDJi3bcOypxbr7t1o4+Je02e8puZfrWNdQE3Z/ARlXi9l+lgi8+9TwlpmNWhvr3XxUvxBic4x+5Itsmlwjr6pZc1/QeJilW3RHJkda75M8y/mdIFAILizCMV5XQS0NSYUB10gEKw+QUnm8WMDfPelTqa9Ae5Bx4e0YWSUJ2DenIguzUJnZyeHDx9mdHSU8PBw7s83UND1U1QLI7D1w/iq/4a+oZ8xYvstWq2V7KyPk5Lyx6jVy3KOEZeXj53q5qgUIGl8mHsP/h9pUjgV972djfdsxtfciL3uAI79+/HbbKBSEVZWhqW2FuueWvQ5ObfU2ncpV9b8dxKUlepUhj9ImcdDWVBFWeJG8gofQZd/L4TdmODk9WTW6aNpePkw7aahuSXNf7hRy/rFlsiLlbbGkw1iThcIBII7iFBcq4uAtsaE4qALBIK1w+EN8NMDPfzHkT7UMvwxBt4j6bDGmzFvTiRsfRz9owMcOXKEwcFBIk1a3hXdRvLwcxCVBW/9MY64eLq6v8bs7FFMphzycj9PTMzupWAlyzJPTczx+c4hHP4A284cprKxDr02ibwte9n+jj1EJpjwdnVh378fR90BPOfOAaBLT8daU4NlTy2migpU2uu39d0ILr+L89PnlcA20UjL+Fmm/HYAjJJEsc9PuSGOspRtlJW+h/ikjaty3dVG0fw7ODu4HNq6xu1Lmv9Es4odBSm3TfMvEAgEgtUlFNfqIqCtMaE46AKBYO0ZmnHxrRc6eK5llIQwHR8Os1AzE0CtURNWGou5MpExzRxH6o/Q29tLnn6CR9T7MXnGYNNfIt/1ZaYcp+ju/gZu9wWio6vJy/0CFkv+0jUmfX6+0DXCM5NzZHo91L7wW2JGu1Fp4onLqqHywT3kViSg1Wvwj4/jOHAAe10drmPHkf1+NBERWHbvwlJTi7mqCo3FvGqfX5ZlRp2jtEw00XxhPy1jp2n3zeBfLN4lSirKzCmUpVZRnn0fRXElGDSGVbv+auLwBmhZrLK90tjDoFPDtPNyzX9FeiTr11jzLxAIBILVJRTX6iKgrTGhOOgCgeD149SFGb76bBstw/OUJVj5VFwUeT0OZE8ATYwRc2Ui8ylB6k8fo6/zHHepT7BZOo1sTUb90I+QsncyPPwr+i/8iGDQRXLye8jO+jh6ffTSNZ6dmOPz3cPM+gO8w2cn+/e/xD8/hkodjTFiGyW7dlO6M42YFAsAQYcTZ0MDjrr9OA4eIjg/j0qnw7R1K9baGiy1tegSElb9u/AFfXRc2E9L51O0TDTRElhgRKdU8LSoKDSnUpaynbKEDZTFlZFqSX3N7ZirzcGDB9m1a9c1Nf+pUWFLtsgN6ZEUr6LmXyAQCASrSyiu1UVAW2NCcdAFAsHriyTJPNk4wrdf7GB8wcuD6xL524x4Is7P4uufBzUYC2Nw5Ws5OdzC3LmXeYiXiWMab/E7MTz4HXwamf7+HzFi+zUajYmszL8lNfVPUKsVCceMP8A/dI/w+/FZCkwGPu6dZuZ3v2J+YhiVOgKNsZKkvK2U7kwnd1M8eqMSjORAAHdjI/b9ddjr6vAPDgJgLClRJCO1tRgKCtYmKLlmmGp7kpbup2mZbqNFq+KcwYB7UcwRbYikLG69cjZbXBmlsaWYdatX5bsVrjanr9D8L7ZG2uY9gKL5L0kJZ0Pa8mHaKZG3pvkXCAQCweoSimt1EdDWmFAcdIFAcHtw+QL866E+fnaoF4C/qs7mA6VJ0DyN68w4ktOPJsKAt8RIs7ud6Pafs4OT+LQR+O75NuGV78bh7Ka7++vMzBwhLCyTvNzPExu7Z2mx//LUPJ/tGmbc6+dDqXG8fXaIs0/8hon+HtRaK2rdRozh68nfnEpxVTLxGdYVe9t8vb2KZKSuDndzM8gyuuRkRTJSW4OpshKVTnfVz3jLBLzQf4RAx7P09r5Ic3CBFoOBFksE/SpF2qFCRW5ULmWxZZTHlVMWV0ZWRBZq1eu3B+xm5vSxeQ9NQxcD2xwtI8ua/zirYckWuSE9krLUCEz61dkPKBAIBIIbJxTX6iKgrTGhOOgCgeD2MjLn5tsvdPB0k404q4HP3FPA28uS8XbO4jw1hrd7FgB/toFBVT2Fwz8lgUkGI7ZgfOSHxGcWMTV9kO7ub+By9RIVtZ28vC9itRQCsBAI8pUeG78anSYnzMBjhWkkDHZz4onfMtx+Dq3ejFpXgUpXRmxaDMU7kinYkoDBtDJ4BSYncRw6hH1/Hc6jR5G9XtRWK5bqaix7arFUV6MJD1/9L0iWYbQJOp+Hjn3MT57jnMFAS1QyzeExtATt2AMuACw6C+ti1y1V2cpiy4g0Rq7+PS3yWub0Jc3/Ja2R/Zdo/gsTLzlMOz2SrJjLNf8CgUAgWF1Cca0uAtoaE4qDLhAIQoOzg7N85Zk2mobmKE0J5+/3FrMlO4bAjAfn6TFcp8cJLvjwmLwETP9NnuMZPBhoTHovWXs/SVJyAiO2/6Wv74cEAgskJ7+LnOxPotfHAnB4xs6nO4cY9vj4y9RYPp+dxGx3ByeefJwLTWfQ6sMIi9yEz1uK1mAmtyKe4qpkknIjLmu/k9xunEePYq+rw3HgIMGZGdBqMW+uxFKjVNd0KSlr80XNDSphrXMfXKhHkgIMhMfTklZGiyWKFt8sXfM9SBc1/+EZlMWWLYW2vKg8dOrVqfqt9pw+6/TRtHguW+PQHE2Dc9i9SsUwIkzH+ouK//Qo1qdGEmFag+qlQCAQvIkJxbW6CGhrTCgOukAgCB1kWeYPzTb+6fkObPMe7itN5PP3FZEeY0IOyni6ZnCeGsfTMY0k9xAe9n0ipQHayeVcxvuprNlLSkok/f0/ZnjkV6jVRrIyP0xa2vtQqw04A0G+3jfKL0amSDfqeawwjaooK+N9PRx/4rf0nDqGVm8gJm0rDnsxQX8YkQkminckU7gtkTDr5QdNy8Eg7uYWHAfqsO+vw9fXB4ChsHBRMrIHY0nx2uyx8sxD98tKYOt+GbzzoDXiytrJ+bT1tJgttMz30TzZzLRnGgCjxkhxTPFSW2RZXBnxpvhbuvxaz+mSJNM76VissCmVts5xOxd/HOfEmZcqbBvSoshPsAjNv0AgELwGQnGtLgLaGhOKgy4QCEIPty/Ivx/p418O9hKUZP6iKpOP1uRiNSoVk+CCF+eZcZwnbegX/j8idb/Gh5YX2MVs2j3s3LWLxCQVvT3fYmq6jjBjOrm5nyMu7h5UKhXH5xx8smOQfrePP02O4e9zkgnXapgaGuDkU7+jo+Ewaq2GlKIdSNJ6pkbUqDUqssrjKKlKJrUwCtVV2u28/f046g5gP1CH+2wjSBLahAQstTVYa2sxbdmCWn950HvNBHwweBQ69imBbX4QUEHqJuT8+xjN2ExL0EHzVAstUy20T7fjl/wAJJmTlloiy+LKKIopuiHN/+2Y0+0eP63D8zRerLQNzi1p/k36Zc3/xT1tcdbQPK5AIBAIQpFQXKuLgLbGhOKgCwSC0GVs3sN3Xuzk/84OE2vR8+m3FPCuTWloFsORLMl4e+dwN5wgrO9LGNUd9JHDU9RgTsxn566dxMVN0tP7TZzOLiIjN5OX90XCraW4ghLf6R/lZ0OTJBp0fKcgjT0xyh6yubFRTv7h95w/uB+Qya6oIixqG4NtEl5ngPBYI0XbkynanoQ58uoBIDAzg+PQYUXhX9+A7HajNpkwV1cr1bVdu9BERq7+FyfLMH5uuRXS1qg8Hp0NBfdDwf34kjfQMd+jHKY92ULzZDM2pw0ArVpLUXTRitCWYkm5rAoYCnO6LMsMzbiXKmyNg7Octy0QkITmXyAQCG6WUJjXX40IaGtMKA66QCAIfZqH5vjqs22cHpilMNHKPzxQzPbc2BXPCdo9+J/5Afqu7yPJcIAaGlQFxEbFUr27iqjo81y48EP8/lmSkt5OTvanMRjiOTvv5BMdQ3S5PLwzMYqv5KYQtXge2cLUJKeffYLWV14kEPCTv2UHSQV7GO7UMNI5h0qtIqM0huKqZDJKolFfo71O8npxHT+OfX8djgMHCExOgkaDqaJiSeGvT09fmy9wfgS6XlDCWv9hCPogLBry74GC+yCnFgxWJl2TtEy1LIW289PncQfcAEQboymLWzRGxpZRElvCqYZTITmnK5r/+SVjpND8CwQCwY0Rimt1EdDWmFAcdIFA8MZAlmWeax3lm/s6GJlzc3dxAl+4v4is2JVngckz/ciPfxj12FFm5SKelGsZVOuJNIWzY2cF4dENjIz8D2q1jsyMvyEt7f0EVHp+cGGcHw2OE63T8k/5qdwfF7n0ns65Wc7se5rml57D53aTvXEzJbseYtpmpv3YGO4FH+ZIA0XbkyjankR4bNi1P4sk4Tl3TpGM1B3A29UFgD43B2vtHqy1NRjLylCp12A/ldcOPfsX9629CO5Z0Ogha5cS1gruh/AkAAJSgJ65nqUKW8tkCxcWLgCgVqlJ1CayPWv7kuo/MyLzddX83wxC8y8QCATXJxTX6iKgrTGhOOgCgeCNhccf5Of1/fz0QA++oMSfb8vkY3vyiAi7xOgny3Dmv5BfehQCQS5o38VznnSm1A4sOhNbKjKxJu9nevoVjIZkcnM/R3z8Xs453HyyY4hzDjdvjY/k63kpxOmX39fjcND4wjOcff4PeBx20tetp/KhdxL0J9HWMMpgmyLiSCuKpnhHMlnlsWi01w8svqEhHAcOYN9fh+v0aQgG0cTGYq3ZjaW2FvO2baiNxtX+KiEYgKHjiwr/52C2X3k8eQMU7FUCW0IJXFJdmvfO0zrVSstkCwc7DzIsDWP32QGw6qysi1u3ojUywhCx+ve9ClxL869RqyhMtC7JRzakR5IVaxZVNoFAcMcTimt1EdDWmFAcdIFA8MZkwu7hey928fiZIaJMej55dz7vqUxbafGbH4ZnPgE9LyMlVNKhez+HhiYYV80RptKzqTAMU9rLuDydRERUkJf3KCZLGT8ZHOexC+NYtGq+kZfKQ/GRKxbnPreL5lde4PQzT+CanyM5v4gtb3sXsemldBwdpf3oKI5ZL2FWHQVbkyjekURUovnyD3EFgvPzOA4fxl5Xh/PwESSnE5XRiHnHDqy1tVh270IbE7PK3yZKqJ3shM7nlMA2fBqQITJ9cd/afZCxAzTLgfXgwYPs3LWTCwsXltoiWyZb6J7rXtL8Z4ZnrghseVF5aNWhWZ2acfpoXpSPnB2co2loDsclmv9LA1t5WuTKXwoIBALBHUAortVFQFtjQnHQBQLBG5tzI/N89dk2TvTPkJ9g4dG9xezMj1t+gixD82/ghc9BwItU/f/oclXRcPYUQ/4J9LKailwHYWkHCEgzJCY+TE7233EhGMkn24dotLu4Nzacb+WnkWhYuSD3+7ycO/Ayp/7wf9inJonPzGHL295FzsatDLXP0t4wSn/LFLIkk5wXSXFVMjkb4tDqb0xSIft8OE+ewlFXh72ujsDYGKhUhG3YsKTwN2RnrebXuYx9fHHf2vPQdwACHjBEQN7dSljLu5uDxxuvOKe7/C7OT59faotsnmxmxjMDQJg2jOKYYmU/W6yi+o8zxV32HqFAcEnzv9wa2TWxrPnPjbesaI3MT7AuCWwEAoHgjUgortVFQFtjQnHQBQLBGx9Zlnnx/Djf2NfO4IyL2sJ4vnB/EbnxluUn2cfguU9Dx7OQXAEP/YSBcT2H9h+kb34YozpIWdYAxuQTqDRaMjL+mtS0D/Bzm4N/6h/FoFbzj7nJvDsx+rJWt2DAT9uRA5x6+vfMjtqITkljy8PvpHDHLtyOAB3HRmlrGGVh0o3BpCV/cyLFVcnEplq4UWRZxtvejn1/HfYDdXjb2gHQZ2YuSUbC1q9HpVkDQ6HPCX0HFYV/1wvgmgK1lpmIEqK3/gkU3KtU2q5x7zanbUWVrW2mjYCkVKduVfN/O7B7/LQMz69ojZy5RPNfnnrJYdppkULzLxAI3lCE4lpdBLQ1JhQHXSAQ3Dl4A0F+efQCP97fg9sf5E+2ZvCJu/KINC2eOybLcP5J2Pd34FmAXZ+Fqk8yNjbJoX0H6BjpJszgpDSrDUN8B3p1PLkFn8MVfg+f7hzm+LyTmmgr3ylII9V4+VlmkhSk61g9J576HVODF4hISGTzW99B8a49aDRaRrpmaau30ds0iRSQic8Mp6QqmdxN8eiNN9f257fZsB84gKPuAM6TJ8HvRxMVhWX3biy1NVh27EBtMq3G1/qqDxlU2h87n8PZ+H+YXcPK44nrlhT+JJWv2Ld2JbxBLx0zHStC281q/kMBWZYZnHEt2SIbh+Zou0TznxYddokxMoripHD0N7AvUSAQCG4HobhWFwFtjQnFQRcIBHceUw4vj73cxW9ODmI16vjEXXn8ydYMdBf3pzmn4PnPwbnfQ8I6ePgnkFTO9PQ0h185SGvHOazWcYqym9CFj2OWi8jJf5RnVDl8rW8UFfAPOcn8aXIM6iuEBlmS6D17ihNP/Iax3m4s0TFseuBtlN11DzqDEY/DT+eJMc7X25gddaIzaMjbFE9xVQrxmdabDiJBux1nfb2i8D98GGlhAZVej3nbNix7arHs3o0uPn4VvtmVHDx4kN2lqYq+v/N5RTgiSxCeAvn3QuH9kFkN2hurIt2o5r88rpySmBJMujUIoKuAxx/k3Mii5n/RHDl6UfOvVVOaHL7UFrkhPYrkCGNIhk+BQPDmIxTX6iKgrTGhOOgCgeDOpWNsga892059zxTZcWYe3VtETUH88mK44zl49lPgnISqTyoVNa2Bubk5GuobaDx7hpi4bnIym9EYnEQ6dmJI/RRfUYVxeM7B9kgLjxWmkRl25QAiyzIDrU2cePK3DLedIyw8go33P8T6e/ZiMJmRZZmxvgXa6kfoOT1BwC8Rk2KhuCqZ/M0JGM03L6GQ/X5cZ84oCv/9dfhHRgAwlpUpkpHaGgx5easSCC6b051T0P2S8r321oHfBXor5O5RKmt5d4Mp+obf/3qa/7zIPKXKtvgnMzx0Nf+j826aFlsiGwdnaRmexxtQRCrxVsNSWNuQFsk6ofkXCAS3iVBcq4uAtsaE4qALBII7G1mWqeuY4OvPtdM35aQ6L5a/f6CY/ASr8gT3LLz4KDT9CmIL4OGfQqryc8But3Ps2DHOnjlGQmIjqantqFERbdvL6aT38W2DTACZz2cn8ZepcWiuEXqGO85z4snHudB0BoPJzIZ7H2DDfW/FFK5o6L3uAN0nlara1JADjU5NbkU8xVVJJOVG3lKgkmUZb1c3jgN12PfX4WltBUCXlqZIRmpqMW3aiEp7a2HgmnO63wP9h5ara45xUGkgY/vyeWvRNy84uaj5vxjYWidbsfsXNf9661JLZFlcGeti14W05r9j1L5UYWscnOXCtAsQmn+BQHD7CMW1ughoa0woDrpAIHhz4AtI/M/xAX74ShcOb4A/3pLOJ+/KJ8ayWP3qeQX+8HGw22Drh6Hmi6BXWuhcLhcnTpygsXE/ScnHiI+/gMobjrr/T/lpei2HzbDJauL7Renkma99Xtl4Xw8nnnyc7pNH0RmMlN19H5seeARL1HJlaXLQzvl6G10nx/B7gkQmmCjekUzhtkTCrJfvfbtR/OMTynlrB+pwHTuO7POhjojAsnMn1j21mKuq0FhuXFxyw3O6JIGtcTGs7YOJNuXxuCKlDbLgfkXccgsHc0uyxIX5C0pgW2yP7JnruUzzXx6nGCNzI3NDVvM/7fDSPDy3ZIy8VPMfadKxPk1o/gUCwdoSimt1EdDWmFAcdIFA8OZi1unjB6908asTg5j0Gj6+J48/25apiBs8C/DKl+D0LyA6G976z5C5Y+m1Ho+H06dP09LyJEnJ9YSHT6FypNE2/rf8OCMLt1bFpxJi+GhRKtrr6NanhgY4+dTv6Gg4jFqroXT33VS+9e1ExCcsPcfvDdJzZpy2ehtjfQuoNSqyyuMoqUomtTAK1WtQuktOJ46GBhx1B3AcPEhwbg50OsxbtmCprcFaW4suMfGa73HLc/pMv1JV69wHA0dBDoIlQdm3VnA/ZO8CXdgtfS4Ap9/J+anztEwtt0ZeqvkviSlZqrKVx5UTGxZ7y9daS4TmXyAQvN6E4lpdBLQ1JhQHXSAQvDnpHrfz9X3tHOycJDPGxBfuL+Lu4gSljaz/MPzhYzB7ASr/Cu76EhisS6/1+XycPXuGtvb/IjHxKAaDC4ejmv/1/hUHY80Uu+E7MTFs2JCM+jpnns2NjXLyD7/n/MH9gExRVQ2bH34H0cmpK543bXPQXj9Kx4lRvM4A4bFGirYnU7gtCUvUa1O5y4EA7qYmReFftx//wCAAxuJiLLW1WPfUYigsvKzFblXmdNeMUr3seA569oPPDjoT5NQqYS3/HjC/tgAlyzIjjhFFPrJYZWufaV/S/Cebk1fsZSuKLkKvufVK5VpyLc2/Wa+h7BLN/4b0SGItQvMvEAhunFBcq4uAtsaE4qALBII3Nwc6lf1pPRMOtufE8PcPFFOUFK6c/VX3NTj+LxCRBm/9oRIaLiEQCNDUdJKu7n8mNvY0KhU0Bj7If6prWdCo+MvBAB+JjCCqMgl9qvUqd6CwMDXJ6WefoHX/SwT8PvK3VrH1kXcRl7Fyn1bAH6SvaZK2ehsjnXOoVJCxLpbiqmQySqJRa16bJEOWZXz9/dj378dRdwB3UxPIMtrkJKw1imTEXFmJSq9f/Tk94IUL9cv71hZGQKWGtC2L+9b2QmzuqlzKG/TSPt2+IrSNOkcB0Kl1y5r/xT/J5uSQ3AN2Pc1/erRpcS+bEtqKhOZfIBBcg1Bcq4uAtsaE4qALBAKBPyjx6xODfP+VLhbcft5dmcan7i5QDhkePAFPfwSmu2HDn8JbvgZhkSteHwwGaWk5TH//Y0REtjHrj+O32kc5ok4l1yHxpVY3ZZYwzJsTMa2PR32NM89c83Ocee4pml56Dp/bTfbGzWx95N0k5RVc9ty5CRftDaO0HxvFveDDHKGnaEcyRduTCI+99RbBSwlMTeE4dAj7/jqcR48iezyoLRYsO6sZSkyk8kMfQhMevirXWoEsw2jzcivkWIvyeEyeEtYK90JqJahX72DuCdcErZOtNE8pbZHnp87jCSp6/BhjzIq2yDeS5v/swBxjC8ua/3UpEStaI5OE5l8gECwSimt1EdDWmFAcdIFAILjIvMvPD/d389/HLmDUafhobS5/sSMTg+yHQ9+Chh8qe6Ue+AEU3HvZ6yVJorX1GYaGv0dY2AjHfDX82vBB5tHz5xMyf9nswKhRE7YuFvPmRPQZ4VddGHscDhpfeIazz/8Bj8NOemk5W9/2blKL1132mmBQYqBlmvP1NgbbpgFIK4yiuCqFrPJYNKtUMZHcbpzHjmOv24/jwEGC09Og1WLatGlR4V+LPjVlVa51GXND0PWC0gp5oR4kP5hiF/et3Qc5NaA3r+ol/ZKfntmeFVW2N7Lmf6nKNjhH68iy5j8h3LDiMO11KRGEXac1VyAQ3JmE4lr9jglo0RlF8t1f+MXtvo3LmJubIzIy8nbfhkAgEFwTty/I4KyLOZcfg1ZNerSJKJOOHH83H5p/jIzABY4Ya/iviL/Bob5C9UiWKDLuZ1PCE0iGIL/wfoTjxq2Ee4L8ZbeXt48GMcowpoMTVjVnLCqcmisHNXXAS7ytkcTB4+h9TuwRqdgydjAfkwNXCHcGn0TidJCE6SBGv4xPC+PRWsZiNLiNqxceVLJERHcLGyd6KOxtJG5GaQ8cj02lI2c9ndkbGE3IQF6DwBImOVnvPc0mz3HWe09hkR340NNq2MBp41bOGLYwr7nx89ZuhgAO3Op+5Y+qD7e6H0mlHKatlk2ESVmEyVmYpGzCpCw0rG5oXC1kGVy+AA5vALtH+e/FwAZg0muwGrRYjFosBi1GnQhsAsGbgVBcqz/+oe0ioK0loTjoAoFAcDXm3X4Gpl24/UGsRi0Z0SbC9TKPOH7DI47f4FBb+UX4RzgRVn3F12tUPiosT7Au7kXOq0r4N/ljzGkiyJjx8fBggOp5iUwvBIBWs4oTVhU9RhXyFYKXKugnbrSZpIFjGLwLOC0J2DKrmI0ruGJQQ5aJWpBImg4QMy+hAubNakZjNUxFapBWwfZ36ZwePTtOQV8jBb1NpNu6UcsyC+ZIurLX05GzngtpRQS0q6+F18gBCn3n2OQ5zibvMeKD4wB06wo5bdzKacNWhrUZV/6OVgEZCZ9qHLe6D9diYPOqRkClrBn0UgJhcvZiYMvGICejIjTDTiAoKYHNG8CxGNoWt7KhUatWBDaLQSuMkQLBHUgortXvmIAmWhwFAoFgdQgEJX57eojvvdTFrMvHOypS+cw9BcS7euDpDyv7pIofgvu/C5b4K76H1ztB67mvMjp3gP+V/4w6zVuIlwN8ryCd3RozzpNjOBsnkN0BNDFGzJsSMW9MQBN+uUkwGPDTfuQgJ5/+HbOjNqJT0tjy8Dsp3LELtebKC3/nvJeOY6O0NYyyMOnGYNKSvzmR4qpkYlNv/NyzV3O1OT0wO4vj0CFF4V9fj+xyoTKZsFRVYamtwbJrF9qoqFu+7lWRZeWMtY7F89ZsZ5XHo7IUI2TBfZC+DTRrew7a9TT/pbGlKw7UDmXNf8/EJZr/oVm6JxzIspJ3c+MsK4yRefFC8y8QvNEJxbX6HdPiKAKaQCAQrC4LHj8/qevhFw396DRqPrw7hw/sSMd48idw8FvKodb3fRvWvfOq1Rq7/Tznzn+JMy4vP5M/yqQ6gd1+B9/dWExKeCTu81M4T47h7ZsHNRgLYzBvTsSYf/mZZ5IUpOtYPSee+h1TgxeIiE9g80PvpHjXHrS6K1eqZElmpGuWtnobvU2TSAGZ+MxwinckkVeZgP4a8pIrcSNzuuT14jpxAvv+Ohx1dQQmJ0GtxlRRsaTw12dk3NR1b5gFm7JvrfN56DsEQS8YIxV1f8H9kLtnxfEJa8VFzf/FsNYy2ULHTAcBWdH8p1hSVgS2wujCkNX8L3j8tAzNLxkjGwdnmXX5AUXzX562qPlPi2K90PwLBG84QnGtLgLaGhOKgy4QCAQ3w4UpJ998vp0Xz4+TEhnG5+4r5MGkBVR/+BgMn1SkFQ98H8KTr/h6WZaZnHyJls5/4v/z7+YFHsDic/O+gIMPbdtETEwM/ik3zlNjuM6MIzn8aCL0mDYlYq5MQBtpXPl+kkTv2VOceOI3jPV2Y4mOYdMDb6Nszz3ojMYr3gOAx+Gn88QY5+ttzI460Rk05G2Kp7gqhfhM6w1Z/W52TpclCc/5NkUyUncAb2cnAPqcnEXJSA1h5eWo1Gsg2vA6oLdOqax1vQDuWdDoIbMaCu+H/PsgYo0EJ1fAE/DQMdOxHNqmWhhzjgGLmv+YIspiFWNkWVwZSeakkDQtyrLMwLSLxqHlw7TbR4XmXyB4oxKKa3UR0NaYUBx0gUAguBWO9U7z1WfbaBtdYGNGFH9/fwHrbb+F/V8BjQ7u+bqi5b/KolqSvAwN/ZIX+57nX+W/xKZKpWiin7/QytxTtYOEhATkgIS7fQbnqTG83bMAGPKisGxOxFgUjeqSM89kWWagtYkTT/6W4bZzhFnD2bj3YdbfsxeD6eqiClmWGetboK1+hJ7TEwT8EjEpFoqrksnfnIDRfPV9Y691TvcND+OoO4C9rg7XqVMQDKKJicFSsxtrbS3mbdtQh63OcQErCAZg6MTieWv7YKZPeTxpvVJZK7wfEkrXbN/a1Rh3jtM61UrLpNIa2TbdtqT5jw2LXVFlC2XNv9sX5Jxt+TDts4OzjC94gStr/pMj12CMBQLBLRGKa3UR0NaYUBx0gUAguFWCkszvzwzxnRe7mHJ4eWRDCp/faiD+wGfgwhHI3g0P/giirt7C5/VN0dH7Q346quIZHsIUdFPV2co9MZHs3LmTlBSlqhOY9eA8PY7r9BjBeR9qiw7zxgRMlYnoXnXm2XDHeU48+TgXms5gMJnZcO8DbLjvrZjCI675ebzuAN2nxmmrtzE5aEejU5NbEU9xVRJJuZGXVXBWc04Pzs/jOFKPo24/jsNHkBwOVEYj5u3bse6pVfatxa7BXi1ZhqkuJah17IPhU4AMEemLh2PfBxk7QPv6txz6JT/ds91LbZEtUy0MLAwAoFFpyIvKWxHaMsIz3jCa/5aReXyL1sjEcOPiXjYltJUmC82/QHC7CMW1ughoa0woDrpAIBC8VhzeAD890MN/1PejVsFfV2fxkfAj6Ou+rASAu/8RNv0lXKN1z+7o4Pn2f+e79moGVZmULvSw8VwXJWmp7Ny5k8zMTEDZR+bpmsV5cgxPxzRIYMiOwLw5kbCSWFS65WuM9/Vw4snH6T55FJ3BSNnd97HpgUewRF1fQT85aOd8vY2uk2P4PUEiE0wU70imcFsiYVYlrKzVnC77fDhPnVqqrgVGR0GlIqy8HMueWqy1teizs9em5c8xsbxvrfcABNxgiIC8uxb3rd112UHlryezntmlKlvLZAutU604/A4AwvXhrItbR3ms0hZZGltKhOHaofx24QtIdIwtLIe2oTkGpl0AaNUqipLCl0NbWhQZMaaQbPEUCO40QnGtLgLaGhOKgy4QCASrxdCMi2+90MFzLaMkhhv58i4r9/R9C1XvfkjfDg/9M8TkXPX1siwzOrGfb3ed4nf+uzCpfNw12Ex8/wQZ6elUV1eTm5u7tFANLnhxnhnHeWqc4IwHtUmLaUM85s2J6BKW2xqnhgY4+dTv6Gg4jFqroXT33VS+9e1ExCdc9zP5vUF6zkzQVm9jrG8etUZFVnkcJVXJ9Iw3U1NT89q/uGsgyzLejg7sdXU49tfhaWsDQJ+RsSQZCVu/HpV2DcyMPhf0HVzet+acBLVWqagV7lX2G16jOvp6IMkS/fP9S22RLVMt9Mz2IKOsWbIispaqbOVx5eRE5qBVr63F8laZcnhpWrRFNg7O0Tw0h9MXBCDKpFNaIhdbI8vSIgg3rv6xDQLBm51QXKuLgLbGhOKgCwQCwWpz6sIMX322jZbhecpTwvlhUTuZp78GAS/UPgpbPwzqq7dwSZKPQ72/59FhI71ks5k+trT14Z90kJSUxM6dOykoKEC9WJGTJRlv3xzOk2O4z09DUEafbsVcmUhYeRzqxXaxubFRTv7h95w/uB+QKaqqYfPD7yA6OfWGPte0zUF7/SgdJ0bxOgPozFCxJ4vCbclYol4fW59/dBT7gQM46g7gPHEC/H40kZFYdu3CsqcWy44dqM1rcDi0FISRM9DxnFJdm1IEJySULiv8kze87vvWroTD5+D89PmlKlvzZDOzXmUP4xtN8989YV/RGtk9oVQLVSrIi7ewIS1qqTUyN94iNP8CwWskFNfqIqCtMaE46AKBQLAWSJLMk40jfPvFDsYXvLy3RM+j8r8T1vcipGyCh34C8YXXfA+Xd5pvn3ueny/ko8fH+7VdWBrnmJ1ZIC4ujurqakpKStBccv5Z0OnHdXYc58kxApNuVAYNpvVxmCsT0acqSnn79BSnn3mClv0vEvD7yN9axZaH30l8ZvYNfbaAP0hf0yRHn2nDOaEsljPWxVJclUxGSTRqzeuzDyrocOCsr1cU/ocOIS0soNLrMW3birWmFktNDbqEK59N95qZ7l2UjDwPg8dAlsCatLhvbS9kVYM2NBTzsiwz7Bhe3sv2Btb8z7v9tAzPrWiNnFvU/FsMWsrTIpZC2/q0SGKE5l8guClCca0uAtoaE4qDLhAIBGuJ0xvgZ4d6+dnhPkDmu0W9PDD8GCqfA3Z9FnZ8QrE+XoOWqU4+0dZDWzCFCnU7HzX66D9tZ3JyiqioKKqqqigvL0d7SZufLMv4BhaUqlrrFLJfQpdsxlyZiGlDPGqjFtf8HGeee4qml57D53aTvXEzWx95N0l5BTf02Q4ePMj64s20N4zSfmwU94IPc4Sewu1JFO9IJjz29bPzyX4/rrONOOr2Y99fh394GADjunWKZKSmFkN+3trsY3JOQ/dL0Pkc9NSB3wl6C+TUKq2QeW8B0/X3/b2eXEvzr1frFc3/YmArjy0n0ZwYknvAZFnmwrRrxWHa7aN2goua/4wY0wpjZGGi0PwLBNciFNfqIqCtMaE46AKBQPB6MDLn5tsvdPB0k40Ci4f/iPstaaMvQuI6eOinkFR2zddLssyPu47xmE2LSg7wV6Z6Hggr5cSJYWw2G+Hh4Wzfvp2Kigr0+pXVD8kdwNU0gfPkGP5RJyqdmrB1sZg3J6LPCMfrdNL4wjOcff4PeBx20kvL2fq2d5NavO6ai/JL5/RgUGKgZZrz9TYG26YBSCuMorgqhazyWDSv46JYlmW83d1LkhFPSwsAutRULLU1WGtrMW3ciOoqB3q/JvwexeB5sRXSMQYqDaRvU6prhfdD9I1VKl9vrqX5jwuLWwpsZbFlFMcUh7Tmv3VkpeZ/wq5o/g0XNf/py6EtKUJo/gWCi4TiWl0EtDUmFAddIBAIXk/ODMzy1WfbaBqa469iz/GZwL+h981B1adg599dty2u3+nkY61nOe22UiK38oX4IVJ1b6GhoYXBwUHMZjPbtm1j06ZNGF91ULUsy/hHHMoh2E2TyN4g2vgwpapWkUBQE6D55ec58+yTOOdmSc4vYsvb3kXW+k1XDGpXm9PtMx7aG2y0Hx3FMevFaNFRuDWR4qpkohLXYH/YdfBPTOA4eBDH/jqcx44h+3yow8Ox7NyJdU8t5upqNBbL6l9YkmC0UQlqHftg4rzyeFzhcitkysZr2j1vJ37JT9ds14rWyEH7IKBo/vOj8leEtozwjJCtso3Oe1a0RbZeQ/O/LiUCo05o/gVvTkJxrS4C2hoTioMuEAgErzeSJPNMi41vPd+Ba36Kn8X9nq32lyCuSNmblrrxmq+XZZlfDg/zld4xgnKQP1L9ng9l5oFcQ339CXp7ezEajWzZsoUtW7ZgMl1e6ZC8QdwtkzhPjeEbtINGRVhJDObNiWhSTZw/9Aon//B77FOTxGfmsOWRd5K3eTuqS8LE9eZ0SZIZapuhrd7GhZYpJEkmKTeCkqpkciri0d6Gs64klwtHQwOOugM4Dh4kODsLOh3mykpF4V9Tgy45eW0uPntBCWud++BCA8hBMMdDwb2KaCR7N+hCu5pzUfN/sTWydaoVp98JQIQhgnWx65baIkvjSgnXh9/mO74yvoBE++jCUmBrHJxjcEZo/gWCUFyrh3RAU6lUZuAQ8GVZlp+91nNFQBMIBILQx+0L8u9H+viXg71UyWf5nuk/sfqnUG37KNR84bqL9RGPj0+1dXFoPkC+3M7H9E+yK//9+Hyl1NfX09HRgU6no7Kykm3btmG1Wq/4Pv4xJ85TYzjPTiC7A2hijJg3JWJcH01X01FOPv07ZkdtRKekseXhd1K4Yxdqjeam5nTnvJeOY6O0NYyyMOnGYNKSv1mpqsWmrkH16gaQg0HcTU1LCn/fhQsAGIqLsNYoCn9DUdHaLMzds9D9ihLWel4B7wJow5R9awX3KQp/S9zqX3eVCUpBRfM/tWyM7J3rXdL8Z0dkr6iy5UbmormGwfR2ci3Nf7RZv7iXbVHznxqBVWj+BXcgobhWX5OAplKpfgE8AEzIslx6yeP3Aj8ENMB/yLL8reu8z1cAB9AmAppAIBDcOYzNe/j2ix28fLabfwz7LW+TX0aOzkH10E8gY9s1XyvLMr8bn+XRrgE8wQBvl/+X90SMUZj/BdyuOOrr6zl37hxqtZqKigp27NhBZGTkld/LL+E+P4Xz5BjevnlQg7EwBtOmOAZn2znx1ONMDV4gIj6Byre+g2m1jto9d93UZ5UlmZHuOdrqbfQ2TiAFZOIzwynekUReZQJ64+07o8vb169IRuoO4G5sBFlGm5iItbYGS+0ezJsrUenXwG4Y8MFAvdIG2fk8LAwDKkjbvKjwvx/i8lf/umuEw+fg3PS5Fa2RFzX/Jq1J0fwvBrayuDJiwmJu8x1fmetp/vPjrStaI3PjLKiF5l/wBicU1+prFdB2ogSr/74Y0FQqlQboAu4GhoFTwHtQwto3X/UW7wfKgRjACEyJgCYQCAR3Hs1Dc3z12Tb0Q0d4zPgfJEiTqDZ/EPb8AxiuXWUa9/r5XOcgL0zbyaGfv5J/xOakzeRkfxqHQ0N9fT3Nzc0AlJeXU1VVRUzM1RfG/im3slftzDiSw48mQo9pYwKThjFOvPQ4Yz1d6MwWdrz9PZTtuQfdq/a73Qgeh5/OE2Ocr7cxO+pEZ9CQtyme4qoU4jOtt7WlLDA9jePgIewH6nDWNyB7PKjNZsw7q7HW1mLZuRNNRMTqX1iWYax1UeG/D0aVMSMmd3Hf2v2QtuWa5+iFGrIsM2wfpnmqeSmwdc50rtT8Lx6kXRaraP511zGb3i4u1fyfXQxt825F8281aClfqrJFsj4timhzaB5XIBBcjVBcq69Zi6NKpcoEnr0koG1DaVW8Z/HvnweQZfnV4ezi678OmIFiwA08IsuydLXriYAmEAgEb0xkWea51lF+8Fwj73X+kj/XvkTQmorukX9W9ihd57V/mJzj851DLAQCPMzveVi1j9zMD5KW9n7sdg9Hjx7l7NmzBINBSkpKqK6uJiEh4ervGZBwt8/gPDWGt1upghjyonAluHnxlV9gtw0RZg1n496HWX/PXgymm5eAyLLMeP8C5+tt9JweJ+CTiEmxUFyVTP7mBIzm27tYlzwenMeO4airw37gIMGpKdBoMG3apFTX9uxBn3pjh33fNPPDy/vW+o+A5AdTDOTdoxghs2uuG95DEU/AQ/tM+1JbZMtkC+OuceCNp/nvn3IuKf4bB+foGFvW/GfGmJZskRvSoihMsqJ7nc4JFAhuhVBcq7+eAe0dwL2yLH9g8e9/CmyRZfmj13mf93GVCppKpfog8EGAhISEjb/5zW9u+X7XCofDgWUtTFkCgUBwh+ELyrx0wY+tv5Wvqf+dbPUoAwlvYTDvfQS11w5BC7KK/yKMo+hJl8f4IN8li3lUqneiohK/38/Q0BA2m41gMEhMTAwZGRmEh19b6KB1Q/iwCuuICp1HhV8nMRPpoGOsnrHBVjR6A3HrNpCwrgJt2K0p2IM+mflBmO2V8cwqhvrwVIjKUWGK4/Yv0iUJ3YULGFpaMDS3oB0dBcCfnIy3vAxvWTmBjPQ1MTNqAi6iZxqJnTpB9MxpdAEnkkrHbFQ5U7GbmY6pxGcIrfPWbobZwCwD3gEu+C7Q7+1nyDeEX1aqU+GacDL1mWQZssg0ZJKmT8OgDs1DqL0BmQsLEr1zQXrnJXrmJOa9yhpSp4asCDXZERpyItXkRqqJMorAJggdQnGtXlNTE9oB7UYRFTSBQCC4M5iwe/jh862ktfyQv9I+h8cYh/HhH6EpvPe6r31hcp7PdQ0x5fPziO4Qe33/SlxEGfl5jxIeXobL5eLkyZMcP34cj8dDdnY2O3fuJDMz85rvK0synq5ZBvadwzKlAglUSXr6HC2cbn0WtV5L+V33senBt2GJuvXAMDlop63eRtfJMXyeIJEJJop3JFO4LZEwa2i0jvkGBrAfOIBjfx2uM2dAktDGxWGpqcFSW4N52zbUhjUIEkE/DB5bVPg/B3MDyuMpG5cV/vFFymapNyg3qvkvjyunLK6MdGv67Q/wV0CWZWzznuXDtAdnOTeygC+oNEIlRRiXKmwb0iMpFZp/wW0kFNfqIdvieLOIgCYQCAR3FudG5vn1E0/y55PfoUA9zHjWIyS88zEwXTsAzfkDfLnHxm/GZsjSe/nL4GNkBU6TmPgwOTmfwWhIxOv1curUKY4dO4bT6SQ9PZ3q6mpyc3Ove1B1dcV2nGfGcZ4aIzjjAYOaKZ2N053P45BnKd19N5VvfTsR8Vdvo7wefm+QnjMTtNXbGOubR61RkVUeS3FVMmmF0ahCRMwQmJ3Fefgw9roDOI8cQXK5UJlMWHZsx1K7B8vuXWijolb/wrIME+3L+9ZGziiPR2ZA4V4lsKVvgxDd13UzzHhmODd17qqa/4vikbK4MtbFrsOqv7K59HbjDQRpH7Uvh7ahWYZm3ICi+S9ODl+0RiqhLT1aaP4Frw+huFZ/PQOaFkUSsgcYQZGE/LEsy+dv+SKXIAKaQCAQ3HnIssxLLUPYnvkaf+L/PS5NOK63fIekre+87msPTC/wd51D2Lx+3mUd4F77P2BUBcnI+Gsy0j+ARhOG3+/n7NmzNDQ0sLCwQFJSEtXV1RQWFqK+QsvepXO6LMl4++ZwnhzDfX4agjIug5PztnqGXB3k79jB5offSXTya9urNW1z0F4/SseJUbzOANYYI8U7kijclowlKnRa3iSfD9eJE4rCv+4AgfFxUKsJ27BBkYzU1mDIylqbi9vHFvetPQ99ByHoBWMk5L1FCWu5d4ExNM8nu1kuav6bJ5uXVP8XNf8qVCs1/3Fl5ETkhKzmf9LupWlo2RjZPDyHS2j+Ba8zobhWXyuL4/8Cu4FYYBz4kizLP1epVPcDP0AxN/5CluWv39IFroAIaAKBQHDn4g0EefbFFyk6+QWKVf2ci9xD2nt/TERcyjVfZw8E+VqvjV/apskwqPmY8RmS5n6BwZBIbs5nSUh4EJVKTSAQoKWlhfr6emZmZoiLi6O6upqSkhI0muXF7dXm9KDTj+vsBM5TowQm3ATVQQbsbfTMNxK3IZctj7yT+Mzs1/QdBPxB+pomaasfZaRzFpUKMkpjKK5KJqM0BnUIiRhkWcZzvm1J4e/t6ABAn529pPAPKy9DpVmD4OB1QN8BJax1vQCuaVDrIKt6UeF/H0SskeDkNmH32Tk3taj5Xwxtc945QNH8XzxM+2KVLZQ1/13jl2j+h+boEZp/wRoTimv1kD6o+mYQAU0gEAjufKbmHZz5339k9+gvcKnCaC79Ajse/mt02msv9Otn7Xy6Y4gBj4/3xAZ5yP1Ngo5GwsPXk5/3RSIiKgAIBoO0tbVx+PBhJicniYqKoqqqivLycrRa7XXndFmW8Q0s4Dw5hqtlEgIyc/5JeucbUeUa2PS2d5CcX/iav4e5CRftDaO0HxvFveDDHKGncHsSxTuSCY+99mHftwP/yAj2ugM4DtThPHkKAgE00dFYanZjra3FvH076rA1uG8pCEMnofM55cy1mV7l8cSy5VbIxLI39L61KyHLMkP2oaW2yJapFrpmupY0/6mW1GVjZFw5BVEFIa35bx6aW2GNFJp/wWoSimt1EdDWmFAcdIFAIHij09d2Gumpj5Dr66BBuxn2Psb29aXX3LPiDAb5p74x/n14kmSDji/GDxA39lV8vgkSEh4kN+ezGI3JAEiSRGdnJ0eOHMFmsxEeHs727dtxOp3s2bPnhu5RcgdwNU9gP24jOOYmIPsZcnTgjHNS/Pa3kFZa9pr32ASDEgMt07Q12Bg4Pw0ypBVFUVyVQlZ5LBpt6FTVLhJcWMBx5AiO/XU4Dh9GcjhQGQyYt2/HUluDtaYGbWzs2lx8smtx39rzMHQCkBVlZsF9isI/owq0d+YC3x1w0z7dvhTYmieamXBPAIrmvzimeEVoSzAlhOQeMKH5F6w2obhWFwFtjQnFQRcIBII7ATkYoPsP3yGj+TG8spbfxvwNu971CfITr73X6NS8k092DNLj8vLuhHD+Qv8ss8P/CkB6+gfISP9rtItaf1mW6e3t5fDhwwwODqLT6di5cyeVlZUYb+Kgat+wnYVjI7iaxlEH1cz7ppgyjpH24EaytlauykLYPuOh/ego7Q02HLNejBYdhVsTKa5KJirx5s9qez2QfT5cZ85g31+HvW4/AdsoqFSElZVh2bMHa20N+pyctQkKjknoflGprPXWQcANhnDI3aMYIfPugrA1EJyEEGPOsWVj5FQLbdNteINeAOLD4lfsZSuOKSZMG3rVWQCXL0Dr8DyNi/vZzg7OMWlXPodBq6YsNYKKi6EtPYqE8Js/ZF5w5xKKa3UR0NaYUBx0gUAguJPwTXQz/eu/JmnuDIelMk6Wfon37915zVYnT1DiexfG+OnQBHE6HV/LMpE5+0PGx59Br48nJ+fTJCW+DZVq+TfvAwMDPPXUU8zOzmI0GtmyZQtbtmzBZLrx888kbxBH4yjTdd3oFrQE5QBTjBJRlUb2fdtRX6dV84auIckMtc3QVm/jQssUkiSTlBtBSVUyORXxaPWhKYyQZRlvZ6ciGdlfh+e84hDTpacvSUZMFRWotNrVv7jfrchFOvdB5wvgnAC1FjK2L+9bi8pc/euGGP6govm/VEAyZB8C7izNf3KEcbnKlh5JSbLQ/L+ZCcW1ughoa0woDrpAIBDccUgSzqP/hrbuy/iDMt9X/QlJtX/Dn23PRn+NNr+mBRef7Bik3enhbQlRfCZhmqn+r7Ow0ITVWkpe3qNERVYuPf/gwYPk5eVx5MgROjo60Ol0VFZWsm3bNqzWm9Obe0YWGHn6DOqBIDqVAZdsR11gIuORLeiiVqdS4Zz30nl8jLZ6G/OTbgwmLfmbEymuSiI2NTR17Bfxj43hOHAAe90BXMePI/v9aCIisOzehaV2D+YdO9BY1qAyKEmKtv+iwn9SEZwQX6K0QRbcB0kb1uRg7lBkxjND62TrUmhrnWzFFXABEGmIvExAEuqa/7MDs0uVtuFZRfOv06goTgpf0RqZFh0WkuFTsPqE4lpdBLQ1JhQHXSAQCO5YZgdw/d9HMA0f4bhUxI/Nf8ufP1DL3cVX30/jkyR+NDDBDwbGiNBq+WZeMpvlI/T0fhuvd4z4uPvIzf0cYWFpK+b08fFx6uvrOXfuHGq1moqKCnbs2EFkZORN3XLQ66f/6WO4z0wQpUpAkiUCcRLx95ZgLo5blTPPZElmpHuOtnobvY0TSAGZ+AwrxVXJ5FUmoDeuQVVqFQk6nDjr63EcqMNx8BDB+XlUOh2mrVux7qnFUlODLuHWz527JtO9ywr/waMgS2BNgvx7lepa1k7QvXla5oJSkL75vhXGyCtp/i9W2bIjskNW8z9h99A0OLcU2FqG55c0/zFm/VJL5Ia0SMrSIrEYQvv/E8GtEYpr9TsnoGVGyKe/VHW7b+My5ubmbvqHtUAgEAheA7IMjnECswMEJPhO4N106Et5NP4YRcbpq76sTZfAJ2LfToshhb3Oc3xt5mnclkEGwqeRVZC+EEXUoJaY8JUHZU/7DdQvJNHsUNTlZeZpqiJGidV5b/q2+8aiGB8vJ16/DqPGTJAFwqNasEa1oNUt3Px3cQU8fiOd00W0TZQx445Fq/aRH9NBcXwr8eaxkBcaypKMa9iDo8eFvduJf04xExoTDVhyTVjzTBji9GtT/ZD84J5V1P3uWSWsqdTKXrWwaOUQdXVo2hDXEjsS5/DRgpcWlZcWfMyplHZCs6yiFD1lGCiXDaxDTzShGdhkZFy+IA5vAIcngN0bwOMPLv27SafBYtRiMWixGLWE6TSoCPH/YQTXJRTX6qr377szAlpslll+8EtFt/s2LiMQCKBdi355gUAgEFyTyECAP5ueYIPbSaOUzd/5/xpX+DjZcXXotc4rvkZCTX/4PfREvhWN5KVo9jfkeI6yIcJNjsWHO6CieT6MXqce+VULM03ASPh8DhZHOipZjctsYz6iB7/efnM3LoN1ykjF4AZKVJtIDMsClUxPWBeno47RYT2HtLj4fU3IYHakEzexhajpcjSSHpdplKn4E0zHNhLUul/7NdYaWSZmWia3O0Bud5AUm/K9zIer6MnT0J2nZThNjaRZi0W0rGj8g36QAkpYA2XvmkarBDXVm6MN8kp4kXEg4UDCiYwLmYv/yxhkMKPGghozKkyoQzbmyMgEpZV/Lq6OVYBGrVrxRwS2Nx6huFb/r784c4cEtPxY+cEfPXi7b+MyQjGVCwQCwZsGWWbr9BB/3N+CIRjkB4G38x/yvaRmdJGW2oNafeWg41BF0aq9izl1MnHBfkoCdaSqRlkvd5KkdzEjmTkTzGFcjrzstWqfmvDRcKzjVtSSGleUi/mUeXwW303fvmncT1azhlJnEVnWdZi14Th0bhoTuzmd1MWMaXWqahq/jujhTGIv5GGej0FSB5hNHmQysxtHzARvlDWnecFHzvk5cs/NkNE1j84v4zFq6CuOpKc0ir6iSHxha7QQ8zmUypprBnyLvwDQmZSqmikGDBbeMF/kGiDJEk6/E6fficPvwOl34peU88xUqDDrzJh1Ziw6C2adGb0mdI87cPuDODwBpdLmDeDyBbi4ZDbqNFgXK2wWgxaTXhvyVek3O6G4Vv+v+/7rzghoYg+aQCAQCK6KYwL2/R20Pc2APo8P2d+PI6qQL9xXxL2liVdshwvKMj8fnuSbfaNoVSq+nJtCUmcLJcUuenr/CY9nhLjYu8nN/X+YTJmXvd7lcnHy5EmOHz+Ox+MhOzubnTt3kpGRcdPtd+N9PZx44nEc58bIidhAclgOKlTosyKwbE4krDQWlW51qjWTg3ba6m10nRzD5wkSmWCiaEcShVuTMIWH7qL51UguF85jx7Dvr8Nx8CDBmRnQajFvrsRSuwdrzW50KSlrc/HZAeh6ATqeg4EGpcJmjoP8exSFf/Zu0N+4/fNORJZlxl3jy4dpTyqaf5+k/CIj3hSv7GOLXdb8G7WhudfP6Q3QOjK/ZIw8OzjHlENpcTbq1JSlLB+mLTT/oUcortXvnD1oIqAJBAKB4Hqcfwr2/R2Sa5Zf69/BP87fz4aseP7hgWJKUyKu+JILbi+f6hji6JyDdfj5+dYyUvQyQ0O/4MLAvyBJftJS/4zMzI+i011+BpvX6+XUqVMcO3YMp9NJWloaO3fuJDc396aD2vTwICee+h0Xjp8my7KOgtjN6AMGVGFazBviMW9ORLdKZ575vUF6zkzQVm9jrG8etUZFVnksxVXJpBVGr4q85PVCDgZxNzfjqKvDvr8OX38/AIbCwkWFfy3GkuK12bfmnoOeVxQjZPfL4F0AbRjk1ChGyPx7wRK/+td9A+IP+umc7VwR2oYdwwBoVVryo/OXAlt5XDlp1rSQNC3KsszInHsxsCkHap8Xmv+QJRTX6iKgrTGhOOgCgUDwpsY1Ay/8P2j5LXOWXD7i+gBH3em8oyKVz9xTQPwVfrstyTL/Y5vmS11DqDUavpidxF+kxOL3TdLb9xijo79Hp4siO/uTJCe9C7X68jY6v9/P2bNnaWhoYGFhgaSkJKqrqyksLER9k8r2ufExTj39e84dfIU4Qyrrs+4i0hMDEujTrZgrEwkrj0O9SmeeTdsctDeM0nl8DI/TjzXGSPGOJAq3JWOJMqzKNV5PvH39OA7UYa87gLuxESQJbUICltoarLW1mLZsQa1fg2phwKdU1DqfVwLb/BCggtRKJawV7oXYfERP3DLT7mlap1qXAlvr1ErNf1lc2VJoK40tDWnNf5ttYTGwCc1/KBGKa3UR0NaYUBx0gUAgEKAcSPzsJ5Ad4xxPfC8fGLwLWWPkw7tz+EB19hV/o/37A4f4v+hUDszY2Rph5rHCdLJNBhbs5+ju/jpzcycxm/PIy3uUmOgrm4UDgQAtLS3U19czMzNDXFwc1dXVlJSUoNHcXKCyT09x+pknaNn/IuqghsqSB0jV5sFsAJVBg6k8TqmqpVhWZbEX9Ev0NU1yvt7GSOcsKhVklMZQXJVMRmkMas0bT4oRmJnBcfCQovCvb0B2u1GbTJirqxWF/86daNZif4osw/g56Fg8b220SXk8OnvxcOz7IW2LIhwRLBGUgvTO9y4FtpbJFnrnewFlL1tOZM6K0PZG0vw3D83j9l9B858eSVmq0PyvFaG4VhcBbY0JxUEXCAQCwSLuOXj57+Hsf+OPzOEx88f5l95YUiLD+Nx9hTxYlrQi2Bw8eJBdu3bx27EZvtRjwytJfC4riQ+mxaEGJidforvnm3g8Q8TG1JKb+3nM5uwrXjoYDNLW1sbhw4eZnJwkKiqKqqoqysvLb9oo5pqf48xzT9H00nP43G7Kyu6iKGE7qgE/sl9Cl2TGvDkR04Z41Kt05tnchIv2hlHaj43iXvBhjtBTuD2J4h3JhMeuzkHbrzeSx4Pz+HEcdQewH6gjODkFGg2mjRuV6tqePejT0tbm4vMj0LV43lr/YQj6FHV//j1KdS1nz6JoRPBqFnwLnJs6txzaplqY984DYNaZKY0tpSxWaYtcF7eOaGP0dd7x9hAISnSNO2gcml3az9Y7qQhn1CrIT7AuBbaK9EiyYy2o30CtxqFKKK7VRUBbY0Jx0AUCgUDwKnrr4A8fh/khRgv/nA+PPUDjmI+NGVH8/QPFrE+LBFbO6WNeP5/rGuLFqQU2WE18vyiNQnMYkuRlaOiX9F/4CZLkITXlT8jK+hg6XeQVLy1JEp2dnRw5cgSbzYbVamXHjh1UVFSgv8k2O4/DQeOLz3B23x/wOOxklVSwqfRBDMMa/DYnKp2asHWxmDcnos8IX52qWlBioHWatnobg+enkWVIK4qiaEcy2evj0GjfeFU1AFmS8Jw7p0hG6urwdncDYMjLxVJTi3VPLcZ161DdZHvqDeG1Q89+pbLW9SJ45kCjh6xdUHg/5N8H4Umrf907BFmWGbQP0jLZsrSfrWu2i6CsVKfSrGlLVbby+HLyo/LRhej5dfMuP03Dc5wdmKVxaI6mwVkWPMrZf1ajlvVpkZe0RkYSaXrjiHxChVBcq4uAtsaE4qALBAKB4Ap4HbD/H+HkvyFHZXIw/+/5zJlIphxe3rYhhc/cW0Bn44kVc7osyzw9MccXuodxBCQ+lZnAR9IT0KlVeH1T9PV9H5vtcbTacLKz/paUlD9GfZWFoCzL9Pb2cuTIEQYGBjCZTGzbto3KykqMxpuzvvk8blpefp7Tzz6Jc26WpPxCtu16JxEL0bibJ5G9QbTxYZgrEzFVJKAxr87i1D7jof3oKO0NNhyzXowWHYVbEymuSiZqleQltwvf4CCOAwew1x3Adfo0BINo4mKx7q7BUluDeds21Dc5TjdEMABDxxdbIZ+D2QvK48kVi62Q90FCidi3dh3cATdt021LVbbmyWYm3ZMAGDQGSmJKlNC2GNwSzAm3+Y6vjCTJ9E05aRycXWyNnKNzbAFpccmeHWtm/cXWyLRIChOtaN+ArcevJ6G4VhcBbY0JxUEXCAQCwTW40AB/+CjM9OHb8D5+ovlT/uX4JGoV3Juh4Zt/toewV8k3Jn1+Hu0e4emJOUotYfygMI1Sq6JRtzs66O7+OrOzRzGZcsjL+wKxMbuveQsDAwMcPnyY3t5ejEYjW7ZsYcuWLZhMN6dmD/h8nDvwMif/8HvsU5PEZ+aw5cF3kKzPxXV6HN+gHTQqwkpiMG9OxJAduSp2RkmSGWqfoa3exoXmKSRJJik3gpKqZHIq4tGukrzkdhGcm8Nx5Aj2/XU4Dx9GcrlQhYVh3rEda00tlprdaKPXoI1OlmGyQ6msdeyDkcV1T2T68r61jO2gCc1qUChxqeb/YpWtfbp9SfOfYEpYskWWxZVRFF0U0pr/luH5Fa2RUw7lc4TpNKxLjViSj1SkR15RhPRmJhTX6iKgrTGhOOgCgUAguA4+Fxz8Bhz7CViTmdz9T3y5PZnnWkdJijDy2XsLeKg85bL9H/sm5/hc1zCz/gAfS0/gE5kJGNRqZFlmamo/3T3fxO2+QHR0NXm5X8Biyb/mbYyMjHDkyBE6OjrQ6XRUVlaybds2rNabM9UFAwHajxzg5NO/Y3bURnRyKpsffic5uZV4zk7iPDuB7A6giTZirkzAvDERzSqdeeac99J5fIy2ehvzk270YVoKNidQXJ1MbGpoGvduBsnnw3Xi5JIVMjA2BioVYRs2KJKRmloM2Vlrc3H7uHLeWuc+6DsIAQ8YIyDvLUplLfcu5e+CG8IX9NE500nL1HJr5IhjBFA0/wXRBUtVtvLYclKtqSFpWpRlmeFZ95J8pHFwjvO2efxBZV2fEhmmVNkW2yNLksPf1Jr/UFyri4C2xoTioAsEAoHgBhk+DU9/RKlarH8v/+m7hyfGY2gdmac8LZJ/eKCYjRlRK14y6w/wpZ4RHh+bJd9k5AeFaVREKO19kuRjePhX9F/4EcGgi+Tk95Cd9XH0+mtXW8bHx6mvr+fcuXOo1WoqKirYsWMHkTdpF5SkIF3HGzj55ONMDl4gIj6Byre+g+Idtfi75nGeHMPbNw9qMBYqVTVjftSqVNVkSWake462ehu9jRNIAZn4DCvFVcnkVSagXyV5ye1ElmU8bW049tdhP3AAb3s7APrMTCx7arHW1hK2fj2qm7R13hA+J/QeUCQjXS+AawrUOsisWm6FjFwjwckdzJR7itbJVlqmljX/7oCix48yRC23RcaVURpTikUfmiIXjz9I2+jCUoWtcXCOkblLNP/JEYuBLZKK9ChSo948mv9QXKuLgLbGhOKgCwQCgeAmCHjh8HfgyGN4deHoHvlnnnCt59svdDBh9/JgeTKfu7eA1KiV7Yf7pxf4TOcQY14/f50Wx2ezkghb3Avi883Q3/8jRmy/RqMxkZX5t6Sm/glq9bWrVtPT0zQ0NNDU1ARAWVkZVVVVxMbG3tRHkmWZvrMnOf7Ebxnr6cISFc2mB99G2Z57wSHjOjWG88w4ksOPJlyPaVMC5spEtFGr0xrlcfjpPDFGW4ONGZsTrUFD3qZ4iquSSchcHXlJKOC32bDXHcBRV4fz5EkIBNBERWHZvRvrnlrM27ejvsm21RtCCsLwqeVWyGlFcELiOijYq4S1pHKxb+0WCEpBeuZ6lgJby2QLffN9wLLm/2JbZFlsGdmR2ahVobkHbGLBs7SPrXFwlpbhZc1/rEXP+rTlw7TLUyMx36Ga/1Bcq4uAtsaE4qALBAKB4BYYbcbxqz/H4uyH0rfj3PMNfnZqnp8dVhZnf1Wdzd/szlmxiLEHgny118Z/26bJDjPwWGEaWyOXf8PucHbT3f11ZmaOEBaWSV7u54mN3XPdgDI/P09DQwNnz54lGAxSUlJCdXU1CQk3JzaQZZnB1mZOPPlbhtpaCbOGs3Hvw6y/Zy96Qxie9hkcJ8fwds8CYMiLUg7BLopGtQp2RlmWGe9f4Hy9jZ7T4wR8EjEpZoqrksnfnIhxleQloUDQbsd55IgS2A4dQrLbURkMmLdtw1Jbg2X3bnTx8Wtz8aluJax1Pg9DJ0CWIDxFCWoF90FmNWjfeAeOhwoLvgXOTZ6jeap5KbQt+BYAsOgsiuZ/cT/buth1RBmjrvOOt4dAUKJz3L4Y2OZoHJql702g+Q/FtboIaGtMKA66QCAQCG6NQ3WvsEvTCIf+CYzhcP93GEm5j2+/2MnTTTbirQY+c08Bb69IXbFwOTJj59OdQwx6fLw/JZYvZidh1i63uU1NH6S7+xu4XL1ERW0nL++LWC2F170fh8PBsWPHOHXqFD6fj4KCAqqrq0lNTb3pzzbS0caJJ39Lf9MZDCYz6+95gIr734opPILAnAfnqXFcp8cIzvtQW3SYNipVNd0qnXnmcwfoOjVOW72NyUE7Gq2anIo4iquSSc6LvGOqagCy34/rzBlF4b9/P36bDQBjeRnWRYW/Pjd3bT6zc0pR93fuU46X8LtAb4XcPVC4V9m3ZgrNc8LeKMiyzMDCwIoq26Wa/3Rr+orWyFDW/M+5fDRdrLJdQ/NfkR7J+jeo5j8U1+oioK0xoTjoAoFAILg1lub08TZlb5rtLBQ+AHu/x5kZA199to2moTlKU8L5+73FbMmOWXqtMxDkm/2j/Hx4ilSjnu8VpLEzelmSIUl+Rmz/S1/fDwkEFkhOfhc52Z9Er79++6LL5eLkyZMcP34cj8dDdnY2O3fuJCMj46YX+eN9PZx46nG6Tx5Dq9dTftd9bHrgESzRMciSjKdrFufJMTwd0yCBPisCy+ZEwkpjUelWp5VrctBOW72NrpNj+DxBIhNMFO1IonBrEqZVkpeECrIs4+3qwlGnSEY8ra0A6NLSsNbWYqmtxbSxAtVNHl5+Q/jdyqHYHc8p+9Yc46DSKCbIi/vWotdIcPImw+V3KZr/qWXN/5R7CrjDNP9xZjZc0hpZkBD6mv9QXKuLgLbGhOKgCwQCgeDWWDGnBwNw/Kdw4OtKe9i930Ja90c80zrKt57vYHTew/3rEvn8fUWkRS/vMzox5+BTHUP0ur28NymaL+WmEH5JNc3vn6O//8cMj/wKtdpIVuaHSUt7H2r19VvQvF4vp0+f5ujRozidTtLS0ti5cye5t1CNmR4e5MRTv6Oj4RBqtZrSmrupfOs7iIhXFo7BBR/OM+M4T40RnPGgCtNi3hCPeXMiulU688zvDdJzZoL2BhujvfOoNSqyymMprkomrTB6VeQloYZ/fBzHgYPY6/bjOnYc2e9HHRGBZddOrLW1mKuq0VjW4Ew5SVJ+4XCxFXKiTXk8vnixFXIvJG+AtTiY+02ILMuMOcdWtEW2Tbfhl/zASs1/eVw5hdGFIa/5P7soH2kaWqn5L0uNWHGYdqhp/kNxrS4C2hoTioMuEAgEglvjinP6VI9ybtrgMaU97IEf4DYl8+9H+viXg70EJZn3V2XxkZocrEaljckdlPjuhTH+ZXCCBIOOb+encnfsSh2609lHT883mZquI8yYTm7u54iLu+eGgpbf7+fs2bM0NDSwsLBAUlIS1dXVFBYWor7JBfbc+Binnv495w6+gixLFFfXsPnhdxKdrLRRypKMt28e56kx3OemICijT7cqe9XK4lAbVsdYOGNz0tZgo/P4GB6nH2u0kaIdSRRtT8YSdWfunwo6nDgbGnDU1eE4eJDg/DwqnQ7Tli2LCv8adImJa3PxmT7oXFT4DxwFOQiWRCi4V6muZe0E3eq0twoUrqn5V2spjCpc0RqZagltzf/FwNY4NEfbqzT/Gy4epp0eSUlyOAbt7dP8h+JaXQS0NSYUB10gEAgEt8ZV53RJglP/Aa98GVRqeMtXoOJ9jNl9fPvFDp44O0KsRc+n31LAuzaloVms/DQuuPhExyCdTg/vSIjiK3kpROtWtrJNz9TT3f01nM5uIiM3k5/3KFZryQ3dbyAQoKWlhfr6emZmZoiLi6OqqorS0lI0N6l6t09PcfqZJ2jZ/yIBv4/8LTvY8si7iM/MXnpO0OnHdXYC56lRAhNuVAYNpvI4paqWYlmVxWTQL9HXNMn5ehsjnbOoVJBRGkNxVTIZpTGoQ7yd6laRAwHcjY3Y6w5gr9uPf2AQAGNx8ZLC31BYuDYLdtcMdL+shLWeV8DnAJ0JcmqVsJZ/L5hjrv8+gpvmWpr/aGM0ZbGXaP5jSzHr1qC6ugp4/EHO2xaWWiObLtH86zVqipPDl0NbWuTrqvkPxbW6CGhrTCgOukAgEAhujevO6bMX4A8fU/b1ZFbDW38M0Vk0D83x1WfbOD0wS2GilX94oJjtucreMq8k8cOBcX40ME6UTsu38lPZGxe54m0lKYBt9HH6+r6P3z9LUtI7yMn+FAbDjVn/gsEgbW1tHDlyhImJCaKioqiqqqK8vBztTe5tcs3PcWbf0zS9+Cw+t5vsikq2PPJukvOXpSayLOMbWMB5ahx3yySyX0KXZMa8ORHT+njUYauzn2p+0kVbwygdR0dxLfgwR+gp3J5E8Y5kwldJXhKKyLKMr69PkYzU1eFubgZZRpuctCQZMW3ahEq/Bvv1Al64cERpg+x8HhZGlF9KpG1Z3Ld2P8Tmrv51BQAEpAC9c71LFbaWqRb65/sBRfOfG5VLWWzZkuo/KyIrZDX/4wueJVtk4+AcLcNzePwSALEWw9I+tg1pUZSlRqyZ5j8U1+oioK0xoTjoAoFAILg1bmhOl2U4+0t48VGlLWzPP8DmDyKr1DzXOso393UwMufm7uIEvnB/EVmxym+8z9ldfLJjiFaHmwfjIvlGfgpx+pVmN79/gQsX/pmh4f9GrdaTmfEh0tLej0ZzY3s6JEmiq6uLw4cPY7PZsFqt7Nixg4qKCvQ3uZj3OBw0vvgMZ/f9AY/DTnppGVse+SPSStat+M235AngaprAeXIMv82JSqcmbF0s5s2J6DNW58yzYFBioHWatnobg+enkWVILYyiuCqZ7PI4NKskLwlVAlNTOA4exF53AOfRo8geD2qLBcvOaiy1e7DsrEYTHr76F5ZlGG1e3Le2D8YUwQkxeVC4GNZSK0F9+9rX3gzMe+c5N3VOkY9MNdM62bpC878udt0KAUmkMfL23vBVCAQlOsbsi/KRWZoG5+ibWtb8FySGL+1j25AeRXaseVU0/6G4VhcBbY0JxUEXCAQCwa1xU3P6/DA8+0nofkmpLjz0E4jNw+MP8vP6fn56oAdfUOLPt2XysT15RITp8EsyPx2c4HsXxrBo1XwtL5VH4i9XzLtcF+jp+RaTUy9jNKaQm/NZ4uP33nDYkWWZ3t5ejhw5wsDAACaTiW3btlFZWYnReHMb+H0eNy0vP8/pZ5/EOTdLUn4hWx95N1kbNl12P75hO85TY7iaJpG9QbTxYZgrEzFVJKBZpTPP7DMe2o+O0t5gwzHrxWjRUbg1keKqZKJWSV4SykhuN85jx7Dv34/jwEGCMzOg1WKq3IS1RrFC6lNT1ubic0OLlbV9SpVNCoApVmmBLLgPcmpAf+ePwe1GkiVF878oH2mZUjT/kqxUpzLCM1a0RuZF5YWs5n/W6aNpePkw7aahOeyLmv9wo5b1iy2RG16D5j8U1+oioK0xoTjoAoFAILg1bnpOl2Vo+S08/zlFaV7zBdj2UdBombB7+N6LXTx+Zogok55P3p3PeyrT0GrUdDo9fLJjkLMLLt4SE84/FaSSZLh84TEze4zu7q/jcLQTEbGR/LxHCQ8vu6nPNDAwwOHDh+nt7cVoNLJ582a2bt2KyWS6/osvIeDzce7Ay5z8w++xT00Sl5nNloffRd6WbahfVUGRfEHcLZM4T47hG7SDRkVYSQzmykQMOZGrYmeUJJmh9hna6m1caJ5CkmSSciMorkompyIenf7Or+rIwSDu5hYcBxSFv6+3FwBDQQGW2hqstXswlhSjWgszo2de2a/WsU/Zv+adB60Rsncv71uzhqZK/k7E5Xdxfvr8Umhrnmxm2jMNgFFjpDimeKktsiyujHjTGh2a/hpRNP8Ozg4uh7aucftr0vyH4lpdBLQ1JhQHXSAQCAS3xi3P6fZxeO5T0PGsoip/6CeQoIg+zo3M89Vn2zjRP0N+goVH9xazMz+OoCzz70OTfKt/FL1axZdzU3hPYvRlVSlZDmIb/T29vd/D758mMfFhcnI+g9Fwc3a/kZERjhw5QkdHBzqdjsrKSrZt24bVar3+iy8hGAjQXn+Qk0/9jtnREaKTU9n88Dsp3LELzRX2u/nHnEpVrXECyRVAE23EXJmAeWMimlU688w576Xz+Bht9TbmJ93ow7QUbE6guDqZ2NSb+3xvZHwXLixJRtxnG0GS0MbHL4a1Wkxbt6Jei31rQb9iguzcpwS2+UFABamblhX+cQUQgkbCOxVZlhl1ji6FtZapFtqn25c0/4nmxKUqW3lcOUUxRRg0oWlLdXgDtCxV2ZTQNu28iuY/PZJ468ougVBcq4uAtsaE4qALBAKB4NZ4TXO6LEPbU/Dc3ynVhZ2fgapPglaPLMu8eH6Mb+zrYHDGRW1hPF+4v4jceAt9Li+f6hjk+LyTXVFWvluYRprx8kV0IGDnwsC/Mjj4C1QqDRkZf01G+gfQaG5OljE+Pk59fT3nzp1DrVZTUVHBjh07iIyMvKn3kaQgXccbOPnk40wOXiA8LoHND72Dkt13odVd3k4l+yXc56dwnhzD2zcPajAWRGPenIixYHXOPJNlmZGuOdrqbfQ1ThIMSMRnWCmuSiavMgG9cW0kBKFIYHYWx8FDisK/oQHZ5UJtMmGuqsK6pxbzzp1oo6JW/8KyDOPnF1shnwNbo/J4VJZSWSu8H9K2gubNMxahgi/oo2OmY0Vr5JtB8z/d08TdtTW3+a5XIgLaGiMCmkAgENw5rMqc7pyGFz4Hrb+DhFJ46J+VqhrgDQT5r4YL/LiuB48/yJ9szeATd+URHqbjl7ZpvtprQwU8mpPMnyfHoL7C4sjtHqKn99tMTOzDYEgkN+ezJCQ8iOomTW7T09M0NDTQ1NQEQFlZGVVVVcTGxt7U+8iyTN/Zkxx/4reM9XRhiYpm04Nvo2zPveiust/NP+XGdWoM55lxJIcfTbge06YEzJWJaKNW55Bbj8NP54kx2hpszNicaA0a8jbFU1yVTELm6shL3ihIXi+u48ex1x3AUVdHYHIS1GpMFRVY9uzBWluDPiNjbS6+YFs2QvYfgqAPwqIg7x6lupa7BwxvnipnqDHlnloR2M5NnbvjNP/bk7X8+m/vuc13uBIR0NYYEdAEAoHgzmFV5/SOfYpExDkJOz4Ouz4HOiV8TDm8PPZyF785OYjVqOOTd+Xx3q0ZjPr8fKZzmEOzdrZFmnmsIJ0s05XbjmbnTtHd/VXs9vOEh68nP++LRERU3PRtzs/P09DQwNmzZwkGgxQXF1NdXU3iTR6QLMsyg63NnHjytwy1tRJmDWfj3odZf89eDKYrL+rkoISnfQbHyTG83bMAGPKilEOwi6JRaV/73ilZlhnvX6Ct3kb36XECPomYFDPFVcnkb07EuErykjcKsiThOX9ekYzUHcDb1QWAPicHa20tltoawsrL12bfmtcOvXVKWOt6AdyzoNErh2IX3KdU2MKTV/+6ghvmWpp/tUpNTmTOkua/PK6czIjMkNf8D3Wf568e2XO7b2cFIqCtMSKgCQQCwZ3Dqs/p7jl46YvQ+CuIzVf2pqVtXvrnjrEFvvpsGw090+TEmXl0bzG78mP5zfgsX+4ZwS/J/L/sJD6QGofmChUfWZYYG3uSnt7v4vNNkJDwILk5n8VovPlFrsPh4NixY5w6dQqfz0dBQQHV1dWkpqbe9HuNdLZz4snf0t94GoPJzPp7HqDi/rdiCo+46msCcx6cp8ZxnR4jOO9DbdFhqkjAXJmALu7mhCZXw+cO0HVqnLZ6G5ODdjRaNTkVcRRXJZOcd7lN882Ab3gYR50iGXGdOgXBIJrYWCy7d2Gt3YN521bUYWtw5lwwAEMnFvetPQezSgggaT0U7lUCW0Kp2LcWArxa898y2YLdZwfA+v+zd9/hcdVXwse/UyXNqNeRLMnqzd1Wsa1iXAjGNsWEwCZvdrObzZvNbioECKEk2RBCQgiEtM3mTdmS3Q2ExRQDJrihZkuy3C3J6sUa9ZFGml7uff8YQgpG1sgz9tj8Ps+T54kd3TK6ztE9Or/fOZooViSteLfF/4rEFSHX5j8U39VFghZkofjQBUEQhMUJWkzvPgCvftHXmn/9P8GWR0DrSzpkWeZA+ziPv95O36SVmoIkHtlZTFRsGA+cv8BbU7Osi9bxTFEmBfqLL//zeKwMDP4rg4O/ACAz81MszfwH1Gr/lyPZbDaam5s5evQoDoeDnJwcampqWLp0qd8JzFhvN00vPU9X8xHUWi2rtt1M6a7dRMYnvO8xsiTj6JzG2jyKo2MKJNBmxxBZbiBieSKKAM08mxico63eSGfzKC6Hl9gUHcWVqRStT0UXoOYl1xqv2Yylto65gwew1tYhWa0owsPRV1YStWUzkTfcgDrh/Z/doskyTHb6ErXzb8CFFkCGmMx3Kms3Q1YVqD5Y1c5Q9adt/v9Qaeua6Xq3zX9WdNa7Cdsf2vyrlVdvz2EovquLBC3IQvGhC4IgCIsT1JjunIP934CWX/gaJtz6I8iufvd/dnkk/vPoAM/u78Tq8vKx8ky+tC2ft602Hu68gNUrcV+2gX/MSEbzPg01HA4j3T1PMjb2KlptMrm5XybVcIff+9MAnE4nx44do7GxEavVSkZGBjU1NeTl5fmdqE1dGKTppd/R0fA2SqWS5ZtvpOzWO4lJnr8Nu3fWhfX4GNaWUbxTDhQRavRrktGXG9AEaOaZ2+Wlp3WctnojIz1mlCoF2asSKalMI6M4MM1LrkWyy4W1ucVXXTt0CM/ICCgURKxe7esKuXUr2uzs4FQdLeO+JZAdr0PvIfA4ICwG8rf5lkHmbYOI2MBfV1i0P7T5f3dp5MTpd9v8R6gjKEko8XWMTPS1+k/SJV2xewvFd3WRoAVZKD50QRAEYXGuSEzvq4NXPgfT/VD693DjP/9ZkwST1cUP9nfyX02D6LQqvrg1nx3rlvD13hFenZhhZWQEzxRnsizy/Zedmc3H6ex6nNnZk0RFLSc//xHiYssWdbtut5vjx4/T0NDA7OwsqampVFdXU1RUhNLPfUozY6O0vPwC597ejyRJlFRvpvz2jxCfNv8ySlmScfaasbaMYj87CV4ZbUYU+nIDESuTUIYFZuaZyWilrcHI+aOjOKxuouLDKa5MpXhjKpEBal5yLZJlGWd7+7st/J1t7QBoly59t8lIxJo1KFRBmD3nskHvYV9HyPP7wDYJSrWvola4w1ddi80M/HWFyyLLMkar8Y8NSCZO02ZqwyP5hlCn6lP/rMoWzDb/ofiuft0kaCsTEuRXd+y82rfxHjMzM363JhYEQRBC05WK6QqFh9j4DqJievB6IpiaWI3D/ueDY/vV0fwkZjXN4aks8czxT+aTOJP1fK9yC7Nh4fztqWb+7lQTGkm66DVkZCw5E0yVDuDRu9D3JZB4LAuNZXGJhhfoiYridGwsc1oNsS4XK6dnyLZY8Lc+Z5clznvt9ElOvEC6UkuRMpzYhSyDUoahiMhHoS9CoYlDllzI9h5kawe4Jxfxyd7Li5JR1VIGNflMqdJAlkj2DpPp6STZewEl1877UzBILhfemWm80zNIc3O+JYoqFarYWFRxcahiolEog5CsIfsq0TYT2KZ8w+EBtHrQxYMuAbSRQbiuEAgSEja3DavbisVtweqy4pScAChQoNPoidTo0WsiidTo0arCCER9NhTf1bN+858iQQumUHzogiAIwuJc6ZiuDTORmHwCjdaCZTYT09RyZOnP99kcDTPw05jVDGhiWOsY4xP2NvaUrmVfXgm5pkkeqX+Tksmx972GpPIys3yY6RXDyEqZ2HNpxJ9OR+le3J4QCeiP1HMqNo6ZMC1RbjcrpmfIm5vD31dyhyzR5XXQIznwAKkKDUWqCBIWul9Fm4xCV4QiIheFUo3smkK2dSDbukF2+Xk3F2dVRDGkzmdInYdTqSNMspHh6SLD04VetgTkGtcy2evFazbjnZnBOzMDXi8oFCijo33JWmwsyovMxQsItx3s7yRrzncSRXUYRMT7ErbwGAjRDoOCj0tyY3VbfEmby4LVY0OSvQBolBr0Gj2Rmkj0mkj0Gj2qRTzPUHxXv24SNLHEURAEQQi2qxLT3Q54+7vQ8Czok2DXM75hvn/6JV6J/24a5Jn9ncza3dxdlsG6dal868I44y43/5iZzH1ZBiJU7//y4nCO0tPzFKOje9BoEsjN/TJpqXeiUCyu0iFJEp2dndTW1mI0GomKiqKyspK1a9ei1frXZMNhsXDizVc5/vorOCxzZC5fScXuu8lYtnJBe5wkhwfbyXGszaO4jVYUGiURKxLRlxvQLg3MzDOvV2LgzBRt9UYGz00hy5BeFEdJVRo5q5JQBah5ybVMdruxtR5n7uABLAcO4h72DUEOX7GCqK1biNy8hbCC/ODsW7NOQdebvq6Q3QfBbfVV0/K2+pZC5n/Il7QJIc0jeeie6f6zBiT9s/2Ar81/Xmzeu0sjF9rmPxTf1a+bJY4iQRMEQRCC7arGdOMJePlzMHYWVnwEtn8X9H/eMc9sc/PsgS7+40g/4RoVn9qUQ3+Kht+Oz5AbEcYzRRmUx86/xMs8e4qurm9hNh8nMrKY/PyHiY/bsOjblmWZnp4e6urqGBgYQKfTsWHDBsrKygh/n0HV78flsHP6rTc4tncP1plpUguKWL/7brLXlC74pd41bMHaPILt5ASy04s6KQJ9mQHd2mRUkYHpzjhnctBxZIS2BiMWk5PwSA2F6w0sq0ojLkDNS651sizj7Op6t4W/4/RpADTp6b4mI1u2olu3FkUwqmtuB/TV+pK182+AZRQUKsjc4PvlR+HNEJ8T+OsKQWF2mjkzeebPBmq/X5v/lUkriQn783EeofiuLhK0IAvFhy4IgiAszlWP6R4X1D8Dtd/zLc/a+RSU3P6eWVA9ExaeeL2d/e3jZMRHcFt1Fv8j2zA6Pfx9eiJfzUlFP0/DBlmWGR9/je6eJ3E4hklKvJG8vAfR6bIu6/YHBgaoq6uju7ub8PBwysvLWb9+PTqdf3PMPC4XZw/vp/nl3zE3OUFSVg4Vt99FfsUGlAvc2yS5vNhPT2BtHsU1OAcqBRHLEtCXGQjLjQ1Id0ZJkhlqN9FWb6T/1CSSJJOaF0NJVRq5a5PRaIOxD+va5B4bx3L4MHMHD2A7chTZ5UIZHU1kTQ1RW7egr65GFRmE/WOSBCMnfB0hz78B4+d8f59U9E6TkR2wZB0EYzC3EBSSLNE/2/9nDUjma/NvPG1k62YxqDooRIImCIIgBFvIxPSxc/DyZ31VteJbYMf3Ieq9Lenruib41t52zo/NUZoVR+LKRF5y2sgM1/J0UQZVcVEXOfkfeb0OhoZ+Rf/AvyBJbjIyPkF21udQq+c/7lKMRiO1tbV0dHSg0WgoKytjw4YNREX5d16vx0N7/WGaX/od0yPDxKelU377Ryiq3IRKvfA9dO5RK9aWUWwnxpFsHlTx4ejLUtCvM6AK0Mwz26zLV1WrN2KesKONUFNYnkJJdRqJ6Zf3/bzeSFYrlsZGLAcOYjl82Ld3TaNBX17+TnVtC5rU1OBc3NT3Tgv/12CgEWQv6JOhcDsU7oScTaAJwmBuIaj+ss3/qYlTmBwmAMr15fzyzl9e5Tv8cyJBC7KQ+WEuCIIgXLaQiuleDxz5MRz6tu+F8ebvwsq731NN83glftsyxNNvdTJtc1Gz3ED7Eg2DssRfpyXwtdw0otTzV3KcznF6ep9mhxt/JAAAmKFJREFUZOQFNJo4cnLuIS31LpSXOVx2fHycuro6zp49i1KpZO3atVRWVvq9YV+SvHQebaB5z/NMDPYTnZRC+W0fZtmmbaj92O8muyXs5yaxNo/i7DWDEsIL49GXGwgviEehuvyqmizLGDtnOFdvpPfEBF6PRPLSKEqq0sgvS0EbfvUG9oYi2evFfuIEcwcPYTlwANfAAABhJcVEbfG18A8rLg7OvjX7NHTt97Xw79oPrjlQR0DuFt9SyPybIPLKzesSAudP2/wPnx/mU9s/dbVv6c+IBC3IQuqHuSAIgnBZQjKmT3b5qmlDTb5GB7t+ADFL3vNlZrubnxzq5tcNfahVSopXJnM0VoFBp+V7hRlsTYi+5KVm587S1fU4MzPN6PX55Oc/QkJ81WV/hKmpKRoaGjh58iQAK1eupKqqisTERL/OI8syvcebaXrxeUa6z6OPi6fsljtYuXU7Gj/3u7kn7dhaRrG2jiFZ3KiitehKU9CXGVAHaOaZw+rm/NFR2hqMmIxW1GEq8kuTKalKIyUrMM1LrieyLOPq62PuwAEsBw9hP3kSZBl1aipRmzcTuWUL+vIyFH42oVkQjwv663zLIM+/AbMXAAVkVPj2rBXthMT8wF9XCLpQjOsiQQuyUHzogiAIwuKEbEyXvND8/+DAP/uG9H7oW7D2b95TTQPon7TyxBvtvHlujMToMOTCWIbjVNyVGs8/5y0hTjN/BUeWZSYmfk9X9xM4HEMkJmwhL++r6PWX31TBbDbT2NhIa2srHo+HZcuWUV1djcFg8Os8siwzePYUTS8+x1DbGSKiolm74zbWbN9FmM6/Jh2yV8LRbsLaMoqjcxqAsPw49GUpRBQnoFBf/t4kWZYZ65ulrd5I17ExPC6JhCV6iivTKKwwEK4PUhv6a5xnauqdfWuHsDY0IDscKPV69DXVRG3ZSmRNNaqYmEufyF+yDKOnfYlax2u+/w6QkPfHfWsZ5RCUWW9CoIViXBcJWpCF4kMXBEEQFifkY7qpD175vO83/dmb4NYfQlzWRb+0sWeSx/a20z4yiyFFz4VsHfFJOr5bkM7NSbGXvJQkORka+nf6+n+CJDlIX/JxsrM/j0Zz6WMvxWKxcOTIEVpaWnC5XBQUFFBTU0N6errf5xo+307TnufoO3GMMJ2e1TftYu2OW9FF+//i7plxYG0Zw3ZsDK/ZiTJSg25tCvqyFDRJ/jU6eT8uu4fOljHa6o1MDM6hUivJXZtESVUaafmxoqr2PiS7HeuRo1gOHWTu0GG8k5OgUqErLfW18N+yBe0i/v0siPnCO5W116GvDiS3byh2wXZfdS13i29YthCSQjGuiwQtyELxoQuCIAiLc03EdEmC4/8Gv/8ayBJs+waUfeqiXei8kswLrUN8781OJi1OIjMjmcyO5LbMBB7PTydRe+n9UE7XJL29z2A0Po9aHU1O9hdYsuRjKJWXX/Wx2+00NTVx9OhRHA4HOTk5VFdXk5WV5XeiMtbbTdNLz9PVfAS1Vsuqbdsp3XUHkfEJlz74L8iSjKNz2ldVa58CCbTZMUSWG4hYnoBCE5jKycTgHG31RjqbR3E5vMSm6CiuTKVofSq6ADUvuR7JkoTj9GnmDhxk7tBBXN09AIQVFPiajGzdSviyZSiC0ZnRMQvd+30JW9eb4DCDKgxybvDtWyvYDlH+VYSF4ArFuC4StCALxYcuCIIgLM41FdNnhmDvl3wvi5kb4NYfQ2LeRb90zuHmp4d7+GV9HxIyrqwo9PnRPFGUyW3JC6vazFk66Op6nOnpRnS6XPLzHyIx4YaAfBSn08mxY8dobGzEarWSkZFBTU0NeXl5fidqUxeGaH7pedob3kapVLJ8842U3XonMcnv7YK5EN45F9bWMawto3inHCgi1OjXJKMvN6AJ0Mwzt8tLT+s4bfVGRnrMKJUKslclUlKVRkZxfEBGAlzPXAMD7zYZsR0/DpKEOimJyM2bidq6Bd369SjDwgJ/Ya8bBo+808L/NZgZ9P39knV/XAqZXHzRpcjClROKcV0kaEEWig9dEARBWJxrLqbLMpz6H9j3IHicsPlh2PDZ990bM2Sy8Z03OnjtzAjqCDW2vChuXJHCk4WZpIRduiImyzKTkwfo6n4Cu72f+Phq8vMeIjKyICAfx+12c+LECRoaGjCbzaSmplJdXU1RURFKP6shM2OjtLz8Aufe3o8kSRRX3UD57R8hYUnGou5NlmScvWasLaPYz06CV0abEYW+3EDEyiSUYYGpqpmMVtoajJw/OorD6iYqPpziylSKN6YSGaDmJdczz/Q01tpa5g4cxFJfj2yzodDpiKysJHLLFiJv2IQ6Li7wF5ZlGG/743Ds4Vbf38dlvZOs3QyZG0ElunheaaEY10WCFmSh+NAFQRCExblmY/rcKOy91/db/CXr4Laf+H5z/z6a+0x8c+85zg7PQowGzbJ4HivL5m5D/IIqVpLk4sKF39DX/0O8XhtpaR8lJ/uLaLXxAfk4Ho+H06dPU19fj8lkIjExkerqapYvX45qngHcFzNnmuTYq3s4vX8fHreLgopKKnbfRXLW4pueeK1ubCfGsTaP4hm3odCq0K1OQl9mQJMeGZB9ZF63RO+pCdrqjVzomEahgMzlCZRUppG1IgGlSgxWvhTJ6cTW1MTcwYNYDh7CMz4OSiURa9cQtXkLUVu3oM3KCs7FZ0d889bOvw69b4PXCeGxvk6sRTsgdyuEX7qzqnD5QjGuiwQtyELxoQuCIAiLc03HdFmGcy/C6/f79sls+gpUfQlUF6+MSZLMiyeGeeKNdqYsLryGCMrK0/jh2hzSwxe2/8nlMtHX90OGjf+NSqUjO+sLpKd/HKUyMPunJEni3Llz1NXVMT4+TlxcHJWVlaxevRq1H4OqAWzmGVpff5mTb76Gy24jZ20ZFbvvIq3g/RPZS5FlGdfgHNbmUeynJ5DdEppUPfpyA7rVySgjAlMtMU/YaGsYoaNxBNusC12MluINqRRXphGTJIYqL4QsSTjOtfmajBw4iPP8eQC0OTm+JiObtxCxaiUKP38BsCBOC/Qe8i2F7NwHdhMoNZBd46usFe646OgMITBCMa6LBC3IQvGhC4IgCItzXcR066QvSTv3IhhW+Kppqave/8udHn72dg//8nYPHhkU2VF8dVsBn8pKRrnASpDF2kVX1+OYTHVERGSRn/dVEhO3BqwjoSRJdHZ2Ultbi9FoJCoqisrKStauXYvWz5lYDquFk/v20vr6yzgsc2QuX0nF7rvJWLbysu5XcniwnfRV1dxGKwqNkogViejLDWiXBmbmmdcrMXBmirYGI4Nnp5BlSC+Ko6QqjZxVSag0oqq2UK4Lw1gO+pqM2FqOgceDKiGByBs2EbV1K/oNG1BGBCH5lby+mYbnX/clbCZfgxNSV/1x35phhdi3FkChGNdFghZkofjQBUEQhMW5rmJ6+6vw2pd9CVvVPbDpAVC/f6OE4Rk7X3+tjf1nRpHDlGStSubX25eRo1v4vqfJqcN0dX0bm62HuLiN5Oc/TFRkUSA+DfDOoOreXmpraxkYGECn07FhwwbKysoI93NQtcth5/Rbb3Bs7x6sM9Ok5hey/o6/IntN6WUnU65hC9bmEWwnJ5CdXtRJEejLDOjWJqOKDEx1cc7koOPICG0NRiwmJ+GRGgrXG1hWlUZcgJqXfFB4Z2ex1NZhOXgQS20tksWCIiwM/caNvuraDTeg9nOo+oLIsm8Q/fnXfPvWhpoBGWIy3qms3QxLq0AtOnpejlCM6yJBC7JQfOiCIAjC4lx3Md1mgjcfhlP/DUlFvmpa+kXfCd7V2m/ii3vOcGHMAtEa/nprLt8oz0G1wKRFktwMG/+H3t5n8XhmSUu7i9yce9BqA/uCOzAwQF1dHd3d3YSFhVFRUcH69evR6fybV+ZxuTh7eD8tr7zA7MQ4SVk5VNx+F/kVG1Be5iBiyeXFfnoCa/MorsE5UCmIWJaAvsxAWG5sQLozSpLMULuJ9nojfacmkSSZ1LwYSqrSyF2bjEYrhin7Q3a5sB079m4Lf49xBBQKIlatInLLFqK2bEabmxuceXWWiXf2rb0BPQfBY4ewaMjb5qus5d8IEbGBv+51LhTjesgmaAqFQgk8BkQDx2RZ/vf5vl4kaIIgCEKwXbcxvestePWLMDcC6//J1+1R+/6JjCTJ/PuxQZ7Y14HL5iE6PZIf376SmvSFd79zu2fo6/sRF4Z/g1IZTnbWZ8nI+ARKZWDbnRuNRmpra+no6ECj0VBaWsrGjRuJiory6zxej4f2+sM0v/Q7pkeGiUtLp+L2j1BUuQmVn/vdLsY9ZsXaPIrtxDiSzYMqPhx9aQr60hRU0YH5nthmXe9W1czjdrQRagrKUyipSiMpw7/vh+Cr2Do7OnxNRg4cxNHWBoBmaea7TUYi1qxBEYB/H+/hskHf29Dxmi9ps06AUg1LN0LhTl91LW5p4K97HQrFuB6UBE2hUPwK2AWMy7K8/E/+fjvwLKACfiHL8nfmOcdu4HZgCnhNluUD811TJGiCIAhCsF3XMd0xC299DVp/DfE5vrlpWZXzHmJzevjSG+f4fcswsiRTvtrAz29ZQZxu4UuurNZeurufYHLqIBHhmeTlPUhS0ocCXoEYHx+nrq6Os2fPolQqWbt2LZWVlcTGxvp1Hkny0tXUSNOLzzEx2E90Ugrlt32YZZu2ofZzv9vFyG4J+7lJrM2jOHvNoITwwnj05QbCC+JRqC7/+yLLMsbOGc7VG+k9MYHXI5G8NIqSqjTyy1LQhotW74vhHh3FcugQcwcOYm1qArcbVWwskZs2+Vr4V1Wi1Adheakk+dr2/2Ep5ESH7++Tl/k6QhbeDKlrLjqsXgjNuB6sBK0GsAD/8YcETaFQqIBO4EbgAtACfBRfsvbEX5zik+/8Z1qW5X9VKBQvyLJ853zXFAmaIAiCEGwfiJje+za88nmYGYCy/wvbvgFhkfMecnZijk+9eIrRPjOqMBWf25bPFypzUPmxRG9qqo6u7sexWruIja2gIP9hoqKWXeaHudh1pmhoaODkyZMArFy5kqqqKhL93EMkyzK9x5tpevF5RrrPo4+Lp3TXblZtuxmNn/vd3o9n0o712CjWY2NIFjeqaC260hT0pQbU8YG5hsPq5vzRUdoajJiMVtRhKvJLkympTCMlOzDNSz6IvBYL1vp6X3Xt7VoksxmFRoNuw3qitvi6QmpSkoNz8akeX6J2/nXfoGxZgqhUKNgORTshqxo0YmbeH4RiXA/aEkeFQpEF7P2TBG0D8A1Zlm96589fBZBl+S+Tsz8c/3HAJcvy8wqF4jlZlu+e73oiQRMEQRCC7QMT011WOPAYNP3M15Dg1h9C7uZ5D5FlmR+fucAzb5xHmnaSmBDB07evoCY/acGXlSQPxpHn6e19Brd7mtTUO8nNuZewsMC/yJrNZhobG2ltbcXj8bBs2TKqq6sxGAx+nUeWZQbPnqJpz/MMnTtNRFQ0a3fcxuqbdhKunz+xXfA1vBKOdhPWllEcndMAhOXF+oZgFyegUF9+ZUSWZcb6ZmmrN9J1bAyPSyI+TU9JVRqFFQbC9ZceVC5cnOx2Yzt+wtcV8uBB3ENDAIQvX+5rMrJlC2EFBcFJhm0m6Pq9bylk9wFwW0Gjh7yt7+xb+xDoEwJ/3WtIKMb1K5mg3Qlsl2X5U+/8+a+BClmWP/c+x+uAHwE2oEOW5Z9c5Gs+DXwaICUlZd1vf/vbRd9vsFgsFiIjAxOgBUEQhKvrgxbTo83tFHX8EJ3diDH1Rnpy/w6vev4lWmYJfjCmpPe8DYXDS2Gymk8WakjRLzyJkGUbsvwqMgcANQrFThTciEIR+G51LpeLoaEhjEYjXq+XhIQEli5dSnS0/0OCLaPDjLQeZXawD6VWS/LytaSsXIs6wr/GJPNR2yH6goKoYQUahwKPVmZuicxsuow7QKvnvG4Z8wBM98g4pkGhhOgMiMtRoEtGVNUuhyyjGhkh7NQpwk6fRtvXD4A3IQHnypU4V63ElZ8PQZi3pvS6iJ05Q8JUM4mTzYS5TMgoMccUM5lYzlRCBXZdasCvG+pCMa5v3rw5NBM0f4kKmiAIghBsH8iY7rbD4e9A4w8h0gC7noHC7Zc87NURE/e92Y6jy4xKhk9szOJLW/OJiVh4JcZm66e7+ztMTL5FePgS8nIfIDl5Z1ASBLvdTlNTE01NTdjtdnJycqiuriYrK8vv64319dC853k6mxtRa7Ws2rad0l13EBkfuEqFLMk4uqaxNo/iaDeBJKPNjkZfnopueQIKTWBe8CcG52hrMNLZNIrL4SUmOYKSyjSKNqSiixbt3S+Xe3wcy+HDWA4ewtrYiOxyoYyKIrKmhqitW9BXV6Pys6HNgkgSjJz841LIsbO+v08sfGff2g5YUvqB2LcWinE9ZJc4+kskaIIgCEKwfaBj+nArvPw5GG+DlXfD9u+ALn7eQ8xuDw+eGeDVhkHUwzaiIjQ8cFMhHy3LQK1a+IufafoIXV2PY7G0ExOzjoL8R4iOXnm5n+iinE4nx44do7GxEavVSkZGBtXV1eTn5/udqE1dGKL5pedpb3gbpVLJshu2UX7bncQk+7eM8lK8cy6srWNYW0bxTjlQhKvRr01GX25AE6CZZ26Xl57WcdrqjYz0mFEqFWSvSqSkKo304niUARgJ8EEn2WxYGxuZO3AQy+HDeKenQa1GX15G5JatRG3ZjCYtLTgXnx74Y7I20ACSB/RJvn1rhTsg54Z5O7tey0Ixrl/JBE2Nr0nIVmAYX5OQj8myfG7RF/kTIkETBEEQgu0DH9M9Lqj7PtQ9BRFxsPP7UHLbJQ87bJrli03dTJ+eQjntIi85kq/tKqGmYOH702TZi3HkBXp6vo/bPYXBcDu5ufcTHhbYZOcP3G43J06coKGhAbPZjMFgoKamhqKiIpR+VhVmxkZpeeUFzh3ejyRJFFfdQPntHyFhSUZA71mWZJy9Zqwto9jPToJXRpsR5durtjIJZVhgqmqmESttDUbOHxnFYXUTFR9OcWUqxRtTiYwTzScCQfZ6sZ88+W4Lf1d/PwBhxcVEbd5M5NYthJeUBGe5qX0Guvf7krWut8A5C+oI3z7Uwh1QcBNEBqnByVUQinE9WF0c/we4AUgExoCvy7L8S4VCsQP4Ab7Ojb+SZfnxRV3gIkSCJgiCIASbiOnvGD0DL38WRk75ErQdT13yhc3i8fJYj5H/PHGBiM5ZvDYPW4qSeWhHMXnJC9//4fHM0T/wMwYHf4VCoWLp0n9gaeanUKkiLvdTvc/1PJw+fZr6+npMJhOJiYlUV1ezfPlyVH7uE5ozTXLs1T2c3r8Pj9tFQUUlFbvvIjkrJ+D37bW6sZ0Yx9o8imfchkKrQrc6CX2ZAU16ZEBe7L1uid5TE7TVG7nQMY1CAZnLEyipTCNrRQJKP6qkwvycvX1YDh1k7sBB7CdOgCyjNhiI3HwDUVu2oqsoRxmAMQ/v4XH5KmrnX/dV2MxDgALSy/64FDKxAK7hfYmhGNdDdlC1v0SCJgiCIASbiOl/wuvx7Us7/ARoI+HmJ2HFnZd8UWuctnBP2wAXzpuI6LOAV+bj65fypW35xPoxP81uH6K750nGx18nLMxAXu4DpKTcgkIRnKRAkiTOnTtHXV0d4+PjxMXFUVlZyerVq1H7OYjYNmvm+Osvc2LfXlx2Gzlry6jYfRdpBcUBv29ZlnENzmFtHsV+egLZLaFJ1aMvN6BbnYwyIjAzz8wTNtobRmg/MoLN7EIXo6V4QyrFlWnEJAUnef6g8phMWA4dZu7QQawNjch2O0q9Hn11NVFbNhNZU4PKz/l+CyLLvl/OnH/DN3Nt5JTv7+NzfbPWinZCejmorq05eqEY10WCFmSh+NAFQRCExREx/SImzvuqaRdaoOBm2PU0RM+/T8bmlfhu3wg/7x4lus+Ca9BCdLiGe7bl83/WL0XjR+VleqaFrq7HmJs7R3T0agryHyYmZu3lfqr3JUkSnZ2d1NbWYjQaiYqKYuPGjaxbtw6tnxUMh9XCyX17aX3jFRxzs2QsW8n6O+4mY9nKoCxdkxwebCcnsLaM4h62gFqJbkUi+nID2qzAzDyTvBL9Z6ZoazAyeHYKWYb0ojhKqtLIWZWESiOqaoEkORxYjxzBcvAQc4cO4Z2cBJUK3bp177bw12YEdintu8zD0PkGdLwOfbUguSEi3rcEsnAH5G655AzFUBCKcV0kaEEWig9dEARBWBwR09+H5IWmf4UD3wSVFm56HNZ8/JLVtGNmK/d0DNI9ZiG9z8rEiJXcJD2P7CzhhsKkBScMsiwxOrqH7p6ncLnGSUm5hbzcBwgPD1JDBd4ZVN3bS21tLQMDA+h0OjZs2EBZWRnhfg6qdjnsnN6/j2Ovvoh1ZprU/EIqdt9NztqyoLW0dw1bsDaPYDs5gez0ok6KQF9mQLc2GVVkYJbKWaYdtDeO0NZgxGJyEh6poXC9gZLKNOJTAzQTQHiXLEk4zpzxNRk5dBBnVzcAYfl57zYZCV+xAkUwOjM6ZqHngK+61vkmOGZAFQY5m3zVtYKbITo0W/iHYlwXCVqQheJDFwRBEBZHxPRLmOqBV74AA/WQs9k34Do2c95DHF6JZwbG+PHAKDEmN5Hdc4xPO6gpSOKRncUUpCy8xbjHY2Vg8F8ZHPwFAJmZn2Jp5j+gvsTstss1MDBAXV0d3d3dhIWFUVFRQUVFBXq9f9f1uFycPbyflldeYHZinKSsHCpuv4v8ig0olYGfiwUgubzYT09ibRnFNTALKgURyxLQlxkIy41FEYDujJIkM9Ruor3eSN+pSSRJJjUvhpLKNHLXJaPRBuezfdC5Bgd9TUYOHsLW2gpeL6qkRKJu8DUZ0a9fj9LPXyYsiNcNg0f/uBRyut/392lr/7hvLbkkZPathWJcv24StLyMEvl7X/rN1b6N95iZmSE2GOuABUEQhCtOxPQFkCWy3a+yzPmvAJwL+zR9mlt9047nMRgB/7FUwXA4ZHVYmLkwh0uW2RCuY7s+ikg/fuuv0EwQnvZfaOIbkNxxOI0fxW3aBAR3eZ3NO8O4qwuzZwQlKhI0WSRpc9Eo/XsJliUvlqnTzIzU4nZMoQlPJDa1msiElSiClKgBhHskkhxuEh0e1DI4lAomw9VMhqtxB6jhh+SVsM26sJpdeN0SCiVERGnRx4ShCVCXSeG9ZI8Hr9mMd3oar9nsq3orVaiio1HFxaGKjUGhXviMQr+4bWCbApsJnHO+v1OH+8Z06OIhPAa4eslaKMb1O+5bJxK0YArFhy4IgiAsjojpCxchjbLG8X1SvMeYVK3kePgDWJVL5j3Go4A3U+ANg4Jwu5fcM3N0m21oFQpu0kVSFaFH7cdv3VX684Qv+TdU+m68thwcF/4WrzXwjTj+ksM7y5irixnPMAqUxGsySdbmoVX6N0dKliWspjZmjG/jso+h1sYSm1ZNZOJqlMogvUwDClkmzuklyeEm2i0hAzNaFRPhasxaVcAqH067B5vZiX3ODYAmTIUuRosuShuQyp3wPmQJ7+wc3plpvNMzyG4XoEAZGYkqLhZVbFxwKmsAXhfYTb5kzT4DsgRKNejifPvXIuJ8f76CQjGuXzcJmljiKAiCIASbiOl+kmU4+V+w7yHfi9mWR2D9P8IlqkDtFjtf6hjk1JydTZpwFB0zHO2eIitBx8M7S9hWnOzX/rSxsVfp7nkSp3OU5OQd5OU+QEREkBon/AmTyUR9fT0nT54EYOXKlVRVVZGYmOjXeWRZpvd4C00vPsdI93n0cfGU7trNqm03ownWi/Q7PJN2rMdGsR4bQ7K4UUVr0ZWmoC81oI4PzLUdVjfnm0ZpqzdiMlpRh6nIX5dMSVUaKdmBaV4iXJwsyzjOtWE5eJC5gwdxdnQAoM3OJnLLZqK2biVi1SoUfo6UWBCXFXoO+Vr4d+7zVdmUGsiq8nWELNgOscH//2koxvXrZomjSNAEQRCEYBMxfZFmR2DvPb6Ob0tK4bafQHLRvId4JJmfDY3zvf5RIpRKPqbW8XbjED0TVirzEnhkZwnFqdELvgWv18bA4C8YGPg54CUj45NkLf0MavXC97gtltlsprGxkdbWVjweD8uWLaO6uhqDwb8h27IsM3j2FE17nmfo3GkioqJZu+M2Vt+0k3B9cLvlyV4JR7sJa8sojs5pAMLyYn1DsIsTUKgvfwmkLMuM9c3SVm+k69gYHpdEfJqekqo0CisMhOuDVzUUfNzDw8wdOozl4AGszS3g8aCKjyfyhhuI2rIZ/caNKHX+VYIXRPLCUPM789ZehylfgxMMK3171op2+P57EJL1UIzrIkELslB86IIgCMLiiJh+GWQZzv4vvH4/uCyw6StQ+UVQzf/S3W1zcE/7EC2zVm6IjWTDLPz67V5m7W7uLsvkyx8qIDEybMG34XCM0NP7FKOjL6HVJpKTcy9pqXeiUAR//5PFYuHo0aM0NzfjcrkoKCigpqaG9PR0v881fL6dpj3P0XfiGNoIHWu272LtjtvQRccE4c7/nGfGgbVlDNuxMbxmJ0q9Bt26ZN8Q7KTAvLy77B66jo3RVm9kfGAOlVpJzpokllWlkVYQK6pqV4B3bg5LbS2Wg4ew1NYizc2hCAtDv2GDr7q2eTPqpKTgXHyyy5eodbwOQ02ADNFLfB0hC3dAVjWoA9NtNBTjukjQgiwUH7ogCIKwOCKmB4BlAl6/D9pe8v1G/LafQOrKeQ/xyjK/Hp7k8Z4RVAq4Pz2Z0bNT/OfRAcI1Kj63JY+/q8wiTL3wJMs8e4qurm9hNh8nMrKY/PyHiY/bcJkfbmHsdjtNTU00NTVht9vJzs6mpqaGrKwsvxOPsb4emvc8T2dzI2qtllXbtlO66w4i4xOCdPd/JEsyjq5prM2jONpNIMlos6PRl6eiW56AQhOYpHdiaI62eiOdzWO47B5ikiMoqUyjaEMquujAvKQL85NdLmytrcwdPITlwAHcRiMA4atWEvVOC39tXl5wEmfrpK91//nXoeegr+mINgryt/mStfwbfXvXFikU47pI0IIsFB+6IAiCsDgipgdQ28vw2n2+hgFV90LNfaCevxI2YHdyb8cQDTMWqmIj+WJiPP92oIcDHeNkxuv46s1FbF9u8GN/msz4+Gt09zyJwzFMUuKN5OU9iE6XFYAPeGlOp5Njx47R2NiI1WolIyOD6upq8vPz/X7RnbowRPNLz9Pe8DZKpZJlN2yj/LY7iUn2bxnlYnnnXFhbx7C2jOKdcqAIV6Nfm4y+3IDGEJgxB26Xl57j47TVGxnpNqNUKshelUhJVRrpxfEoRWORK0KWZZydncwdOIDl4CEcZ88CoMnMJGrzZiK3bEG3bi0KdRCafbjt0Pv2O0sh3wDrOChUsHTjH5dCxmX5dcpQjOsiQQuyUHzogiAIwuKImB5gNhPs+yqc/i0kFfuqaenr5j1EkmV+Y5zimz1GvDI8nJtKvk3m2691cH5sjvLseL62q4TlSxa+1M/rdTA09Cv6B/4FSXKTkfEJsrM+d0X2pwG43W5OnDhBQ0MDZrMZg8FATU0NRUVFKP0cKjwzNkrLKy9w7vB+JEmiuOoGym//CAlLgt9sAXxVNWefGWvzKPazk+CV0WREEVlmIGJVEsoAtdI3jVhpazBy/sgoDqubqPhwiitTKd6YSmRccBunCH/OPTqK5fBh5g4cxHb0KLLbjTImhshNNURt2Yq+qgpVZBBmEUoSGI9Dx2u+ZG2i3ff3ySW+ZK1wB6StgUv8fygU47pI0IIsFB+6IAiCsDgipgdJ55vw6pfAMgobPgebHwJNxLyHXHC4uP/8EIdMc5TH6HmqYAnNZyd4+q1Opm0u7lybzv03FZIcvfCXdadznJ7epxkZeQGNJo6cnHtIS70L5RVq++3xeDhz5gx1dXWYTCYSExOprq5m+fLlqPzsojdnmuTYq3s4vX8fHreLgvKNVNxxN8lZOUG6+/fyWt3YToxjbR7FM25DoVWhW53k26uWHhmQ5XBet0TvqQna6o1c6JhGoYDM5QmUVKaRtSIBZYDmtwkL47VYsTY0YDl4AMvht/GazSg0GnTr1xO1xVdd06SkBOfipt53hmO/AQONIHsh0gCF233JWvYm0Lw3HoRiXBcJWpCF4kMXBEEQFkfE9CBymOH3j8Lxf4f4XF81ben8e8JkWeb50Wm+1j2MU5K4PzuVjybE8rO3e/h1Qx8alZLPbs7j76uyCfdjP9Ts3Fm6uh5nZqYZvT6f/PxHSIivutxPuGCSJHHu3Dnq6uoYHx8nNjaWqqoqVq9ejdrPZWO2WTPHX3+ZE/v24rLbyFlbRsXuu0grCP48uD+QZRnX4JyvqnZ6AtktoUnVoy8zoFuTjDIiMAmwecJGe8MI7UdGsJld6GK0FG1IpaQyjZik+RN+IfBkjwfb8eNYDh5i7uBB3IODAIQvW/ZuC/+wwsLg7FuzmaDrLTj/GnQf8DUm0ughd7OvhX/+TaD37dMMxbguErQgC8WHLgiCICyOiOlXQM8hePULMDME5Z+GbV8H7fzLo8acbr7SOcS+yVlWR+l4piiDCIfEE2+08+a5MZbERvDgzUXsWpnq1/60iYnf09X9BA7HEIkJW8jL+yp6/ZWrQEmSRGdnJ7W1tRiNRqKioti4cSPr1q1Dq/WvOYbDauHkvr20vvEKjrlZMpatZP0dd5OxbOUV7YgoOTzYTk5gbRnFPWwBtRLdikT05Qa0WYGZeSZ5JfrPTNHWYGTw7BSyDOlFcZRUpZGzKgmVRlTVrjRZlnH19LzbZMR++jTIMpq0NCK3bCFqy2Z0paUo/Px3vSAeJ/TX+TpCnn8D5oygUEJGBRTuoMmcRMWOjwb+updBJGhBJn6YC4IgXD9ETL9CnBY48E1o/leIXQq3/ghyNs17iCzLvDw+w0NdF5jzSNyTlcLnM1No6Zvisb3ttI/Msm5pHI/uKmF1RuyCb0WSnAwN/Tt9/T9BkhykL/k42dmfR6NZ+DkulyzL9Pb2Ultby8DAADqdjg0bNlBWVka4n4OqXQ47p/fv49jePVinTaTmF1Kx+25y1pZd8db1rmEL1pZRbCfGkZ1e1EkRvqra2mRUkYF5UbdMO2hvHKGtwYjF5CRcr6FwvYGSqjTiU4OwL0pYEM/EBHOHD2M5eAhrYyOy04kyKorI6moit2whsqYaVfTC5xwumCzDyElfotbxOoydYcSwjdTP/G/gr3UZRIIWZOKHuSAIwvVDxPQrbKARXv4cmHpg3d/Cjd+E8Pmbf0y6PDzSdYGXxmdYFhnOD4oyKdFH8ELrEN97s5NJi5M71izh/u2FpMYsfNmb0zVJb+8zGI3Po1ZHk5P9BZYs+RhK5ZUdnjwwMEBdXR3d3d2EhYVRUVFBRUUFer1/yYbH5eLs4f20vPICsxPjJC3NpmL3XeRXbESpDP5MuD8lubzYT09ibRnFNTALKgURJQnoyw2E5caiCEB3RkmSudBuoq3eSN+pSSRJJjU3hpKqNHLXJaPRXtnPLPyRZLNhPXKEuYMHsRw6jNdkArUaXVkpUVu2Erl5M9r0JcG5+MwgR480sv7mvwrO+RdJJGhBJn6YC4IgXD9ETL8K3HY49G048mOISoVbnvXNPbqENyZm+ErnBabcHj6fmcI9WSm4XF5+eriHX9b3oVTAZzbl8g81uUT48XI+Z+mgq+txpqcb0elyyc9/iMSEGy7jAy6O0Wikrq6O9vZ2NBoNpaWlbNy4kago/zpPej0eOhrepuml3zFtvEBcWjoVt3+EospNqILRJv0S3GNWrM2+qppk86CKD0dfmoJ+XQqqmIUPJJ+PbdZFxxFfVc08bkcboaagPIWSyjSSMq9M507h4mSvF/up01gOHmDu4CFcvb0AhBUWErV1C5GbtxC+fFlAq72hGNdFghZkofjQBUEQhMURMf0qutAKL3/W10p71Ufhpm+DLn7eQ2bcHr7ebeS5URP5ujCeLcpkbYyeIZON77zRwWtnRkiNCeeB7YXctmrJgudoybLM5OQBurqfwG7vJz6+mvy8h4iMLAjEJ/XL+Pg4dXV1nD17FqVSyZo1a6isrCQuzr/BvZLkpaupkaYXn2NisJ/opBTKb/swyzZtQx2MfUGXILsl7Od8VTVnjxkUEF4Uj77MQHhhPArV5b+gy7KMsWuGtnojPccn8HokkjKjKKlKo6AsBW2AmpcIi+fs6/M1GTl0EPvxEyBJqFNSiNx8A1Fbt6KrqEB5mf8+QzGuiwQtyELxoQuCIAiLI2L6VeZxQu1TUP80RMTDrqeh+JZLHnZwapb7zw8x4nTz6YwkHshORadS0txn4rG9bZwZNrMqI5av7Sph3dKFJzaS5OLChd/Q1/9DvF4baWkfJSf7i2i18yeOwWAymaivr+fkyZMArFy5kqqqKhITE/06jyzL9B5voenF5xjpPo8+Lp7SXbtZte1mNH7udwsUz6Qd67FRrMfGkCxuVNFadKUp6EsNqOMDc08Oq5vzTaO01RsxGa2ow1Tkr0umpCqNlOzANC8RLo/HZMLydq2vhX99A7LdjlKnQ19VRdTWLehralD7+YsJCM24LhK0IAvFhy4IgiAsjojpIWLktK+aNnoalu2Gm78HkUnzHjLn8fJYj5H/ME6RHaHl6aJMNsRGIkkyL54Y5sl9HYzPObl1VRpfubmIJbEL35/mcpno7XsWo/F/UKl0ZGd9gfT0j6NUXvnKk9lsprGxkdbWVjweD8uWLaO6uhqDweDXeWRZZvDsKZr2PM/QudOER0Wz7uZbWb19F+H6yCDd/SXuySvhaDdhbRnF0TkNQFheLPpyAxHFCSjUl9+dUZZlxvpnaas30nVsHI/TS3yanpKqNAorDITrr+yeQ+HiJKcT65Ej71bXvBOToFKhW7vW1xVy6xa0mZkLOlcoxnWRoAVZKD50QRAEYXFETA8hXjc0/ADefhLCouDmJ2H5h+ESlY766Tm+3DHEgMPF3y1J5OGcVCLVKqxODz97u4ef1/r2vHy6JofPbMpFH7bwZW4WSydd3d/GZKojIiLrnf1pW65K9cVisXD06FGam5txuVwUFBRQU1NDenq63+cydrbTtOd5eo+3oI3QsWb7LtbuuA1d9PwNW4LJM+PEdmwUa8sYXrMTpV6Dbl2ybwh2ki4g13DZPXQdG6Ot3sj4wBwqtZKcNUksq0ojrSBWVNVChCxJOM6e9TUZOXAQZ1cXANq8XKI2+5K18JUrUSgvnsCHYlwXCVqQheJDFwRBEBZHxPQQNN7uq6YNt0LhTtj5fYhOnfcQq9fLd3pH+MWFSZaEa/h+YSab4n3NIYZn7Hz3jQ5eOWUkOSqM+28q5MNr0/3anzY1dZiu7iew2XqIi9tIfv7DREUWXfZHXQy73U5TUxNNTU3Y7Xays7OpqakhKyvL7wRjrK+H5j3P09nciFqrZdW27ZTuuoPI+IQg3f2lyZKMo2saa/MojnYTSDLa7Gj05anolieg8GNA+XwmhuZoqzfS2TyGy+4hJjmCkso0ijakoou+8pVS4f25hoawHDzI3MFD2I4dA68XVWIiUZtvIHLzFvQbN6D8k+W6oRjXRYIWZKH40AVBEITFETE9REleOPpTOPgtUIfBTU/A6o9dsprWPGPhno4heuxOPpYaz9dz04jR+CpmrQPTPLa3jZNDM6xYEsOju0ooz1743jJJcjM8/N/09j2LxzNHWtpd5Obcg1br356wQHE6nRw7dowjR45gsVjIyMigurqa/Px8vxO1qQtDNL/0PO0Nb6NUKll2wzbKb7uTmGT/llEGmnfOhbV1DFvLKJ4pB4pwNbo1SejLU9EGaOaZ2+Wl5/g4bfVGRrrNKJUKslYlUlKVRkZx/IITeeHK8M7MYKmrY+7gQay1dUhWK4rwcPSVlURt2ULkDZuoP3Mm5OK6SNCCTPwwFwRBuH6ImB7ipnp8c9MGGyF3q68lf2zGvIfYvRLf7x/lp4PjJGs1PFmYzocSfUv3JEnmlVNGvruvgxGzgx0rDHz15mIy4he+hM7tnqGv70dcGP4NSmU42VmfJSPjEyiVgWkZ7y+3282JEydoaGjAbDZjMBiorq6muLgY5fssAXs/M2OjtLzyAucO70eSJIorN1F++10kpM//PQ82WZJx9pmxNo9iPzsJXhlNRhSRZQYiViWhDAtMVc00YqWtwcj5I6M4rG4i48MoqUyjeGMqkXFXp6GK8P4klwtbc8u7Lfw9o6OgUGDdsoXSn/z4at/enxEJWpCJH+aCIAjXDxHTrwGSBMd+CW993VdBu/GbsO7v4BLJx4lZG/d0DNJhdfDhlDgey19C/DvVNLvLy89re/nZ2z14JZlPVmXz2c25RIUvvGGE1dpLd/cTTE4dJCI8k7y8B0lK+tBV28fk8Xg4c+YMdXV1mEwmEhMTqa6uZvny5ahU/iUwc6ZJWvfu4dRb+/C4XRSUb6TijrtJzsoJ0t0vnNfqxnZiHGvLKJ4xGwqtCt2qJPTlBjTpkQH5/nvdEr2nJmirN3KhYxqFAjKXJVBSlcbSFQmoVJffvEQILFmWcbS1YTl4iG6Xiw1fvvdq39KfEQlakIkf5oIgCNcPEdOvIdMD8OoXoPcwZFXDrT+E+PkTBpck8ezAGM8OjBGrVvNEQTq3JMe++7+Pmh08+WYHLx4fJjFSy30fKuQjpRmo/FjWNjVVR1f341itXcTGVlCQ/zBRUcsW+SEvnyRJtLW1UVtby/j4OLGxsVRVVbF69WrUfg6qts2aOf76y5zYtxeX3UbO2jIqdt9FWkFxkO5+4WRZxjU456uqnZ5AdktoDHr05QZ0q5NQ6gLTndE8Yae9wUj7kRFsZhe6aC1FG1MpqUwlJkDNS4TACsW4LhK0IAvFhy4IgiAsjojp1xhZhhP/CW8+7Ov6uPVrUPEPoJy/QnTOYuee9kFOW+zsTIrhOwXpJGn/+AJ/amiGb+5to3VgmuLUaB7dVczG3IXvLZMkD8aR5+ntfQa3e5rU1DvJzbmXsLDkRX/UyyVJEp2dndTV1TE8PExUVBQbN25k3bp1aP0cBOywWji5by+tb7yCY26WjGUrqdh9F5nLV4VE50PJ4cF2cgJryyjuYQuolehWJKIvM6AN0MwzySvRf2aKtgYjg2enkGVIL4qjpDKNnNVJqDSiqhYqQjGuiwQtyELxoQuCIAiLI2L6Nco8DHvvga43Ib0cbvsJJBXMe4hHkvmXoXG+1zeKXqXksfwlfDgl7t2Xd1mWee3MCE+83sHwjJ0PlaTw0I5ishIX3ozC7Z6lv//HDF34D5RKLVlLP0NGxidRqa7e/iVZlunt7aW2tpaBgQF0Oh3r16+nvLyccD8HVbscdk7v38exvXuwTptIzS+kYvfd5KwtC4lEDcA1bMHaMortxDiy04s6KQJ9mQHd2mRUkYHpzmiZdtDeOEJ7wwhzJgfheg2F6w2UVKURH6DmJcLihWJcFwlakIXiQxcEQRAWR8T0a5gsw5nfwRsPgMsGNzwIG78AqvmX8XVaHdzTMUjrrI1tCdE8WZBOWvgfX9wdbi+/rO/jp4e6cXkl/nZjFp/bkk9MxMKXzNls/XR3f4eJybcID19CXu4DJCfvvOpJzODgILW1tXR3dxMWFkZFRQUVFRXo9f4lFR6Xi3Nv76f55ReYnRgnaWk2FbvvIr9iI8pLVDOvFMnlxX56EmvLKK6BWVApiChJQF9uICw3FkUAujNKksyFdhNt9Ub6Tk0iSTKpuTGUVKWRuy4ZjTY0vhcfNKEY10WCFmSh+NAFQRCExREx/TpgGYfXvgztr0Dqal81zbB83kO8sswvL0zwRO8IaoWCb+Qt4WOp8X+WQI3POnjq9+f5XesF4nRa7rmxgI+WZaD2o0GEafoIXV2PY7G0ExOzjoL8R4iOXrnYTxowRqORuro62tvb0Wg0lJaWsnHjRqKiovw6j9fjoaPhbZpe+h3TxgvEpaVTcftHKKrchMrP/W7B5B6zYm0Zw3Z8DMnmQRUfjr40Bf26FFQxgem+aZt10XF0hLZ6I+ZxO9oINQXlKZRUppGU6d/3Vbg8oRjXRYIWZKH40AVBEITFETH9OnLuJXj9PrBPQ/V9UP1lUM+/pK3P5uTe84McmbFSExfJU4UZZEb8+Qv72WEzj+1to6nPREFKJI/sLKGmIGnBtyXLXowjL9DT833c7ikMhtvJzb2f8LCrO2MMYHx8nPr6es6cOYNSqWTNmjVUVlYSFxfn13kkyUtXUyNNe55nYqCP6KQUym79MMtv2Ibaz/1uwSR7JOznJrE2j+LsMYMCwovi0ZcZCC+MR6G6/KqaLMsYu2ZoqzfSc3wCr0ciKTOKkqo0CspS0EaETuJ6vQrFuC4StCALxYcuCIIgLI6I6dcZ6xTsexDOPA/Jy+D2n0DamnkPkWSZ/zBO8ViPERl4OCeVv1uSiPJPqmmyLPPmuVG+/XoHgyYbW4qSeWhHMXnJkQu+NY9njv6BnzE4+CsUChVLl/4DSzM/hUoVsdhPGzAmk4n6+npOnjwJwIoVK6iuriYx0b8h3LIs03u8haY9zzHSdR59XDylu3azatvNaPzc7xZsnkk71mOjWI+NIVncKKO1vqpaqQF1fGDu1WF1c75plLZ6IyajFbVWSX5pCiVVaaQEqHmJ8F6hGNdFghZkofjQBUEQhMURMf06df4NXxMRyzhUfgE2PQia+V+6hxwu7u8Y4vD0HOtj9DxdlEmO7s+raU6Pl39r6OdHB7txuL18fP1SvrQtn1jdwqtEdvsQ3T1PMj7+OmFhBvJyHyAl5RYUiqvfBdBsNtPY2Ehraysej4dly5ZRXV2NweBftU+WZYbOneboi88xdO404VHRrLv5VlZv30W4fuFJ7ZUgeyUcHSaszaM4OqcBCMuLRV9mIKIkAYX68p+LLMuM9c/SVm+k69g4HqeX+DQ9JZVpFK43EK4PzEgAwScU47pI0IIsFB+6IAiCsDgipl/H7DPw+0d8bfkT8n170zIr5j1ElmV+O2ri693DuCSZr2Sn8umMJFR/UemYtDh5+q1Ofts8SFS4hnu25fN/1i9F48f+tOmZFrq6HmNu7hzR0aspyH+EmJj5q31XisVi4ejRozQ3N+NyuSgoKKC6upqMjAy/z2XsbKdpz/P0Hm9BG6FjzfZdrN1xG7romCDc+eXxzDixHRvF2jKG1+xEqdegW5eMvsyAJkAzz1x2D13HxmirNzI+MIdKrSRnTRLLqtJIK4gVVbUACMW4ft0kaMtS8+Tn/+6pq30b7+HxePwe9CgIgiCEJhHTr396xVnS1L9GwxQm6UbGvHciM39jiMkwFT8oTuBIko7iGSf3tU2SZXW/5+v6ZPh/sopTKElH5v8qvJQqFv6uJSNhTz2GJe8NpLBZwkfXENW1E5XTvz1gweLCQ7dyki7VBC6Fl2QpkmJvCklyJAr8SyQkScLrdiF5vKAAlVqDSq0JSDfFgJNBjQatHIYaLQoUeHDjUjhx48TPj/7+l5FkvB4ZySshy6BQgkqlRKlWIvK0xQvFuL78id0iQQumUHzogiAIwuKImP7BoMROsup3JKgO4JKTGPb8PTa5eN5jZOCQQc+PCuOxq5X8de8Md/ebUf/Fq5QsQxMKfimrMKJgLRKfUnhZ6scLtqRyYl16EOvSwwDoBzajH9iM0huYDoOXy4OXHuUUnapxHAoPCZKOYm8KBjna70RNliQ8bjeSxwOASq1GpdGgUF79JZ4Xo5CVaGUtGsJRoUJGwoULl8KBpPAG5iIyeL0SkldG8vr+gSlVClRqJUqlImAJ4QdFKMb16yZBE0scBUEQhGATMf0Dpr8BXvkcmHqh9JOw7Z8hPHreQyZcbh7uGuaV8RmWR0bwg6IMlke9d7mbyyPxH0f6efZAFzaXl4+VZ3LPjQXE6xe+P83hMNLd8yRjY6+i1SaTl3sfBsPukNifBuB2uzlx4gQNDQ2YzWYMBgPV1dUUFxej9DPBMo+P0vzyC5w7vB9Jkiiu3ET57XeRkO7/MsorQZZlnL1mrM2j2M9OgldGkxGFviwF3aoklGGBSQhMI1baGoycPzKKw+omMj6M4o1pFG9MJSpAzUuud6EY16+bJY4iQRMEQRCCTcT0DyCXDQ49Dkd+AtFL4JZnIX/bJQ97bWKGBzsvMO328PnMFL6UlULYRZISk9XFD/Z38l9Ng+i0Kr64NZ+/2ZCF1o9mEzPmVrq6Hmd29hRRUcspyH+U2NiLvttdFV6vl9OnT1NXV4fJZCIxMZHq6mqWL1+OSuXfcOY50ySte/dw6q19eNwuCso3Ur77LlKyc4N095fPa3VjOzGOtWUUz5gNhVaFblUS+nIDmvTIgOwj87olek9N0FZv5ELHNAoFZC5LoKQqjaUrElD5sd/xgyYU47pI0IIsFB+6IAiCsDgipn+ADbXAy5+FyfOw+v/ATY9DxPx7v0xuD1/rGuaFsWkK9eE8U5TB2mj9Rb+2a2yOx15rp7ZzguxEPQ/tKGZbcfKCX95lWWJs7FW6e57E6RwlOXkHebkPEBEROhUmSZJoa2ujtraW8fFxYmNjqaqqYvXq1X4vMbPNmjn++suc2LcXl91G9ppSKnbfzZLC+ZeiXk2yLOManPNV1U5PILslNAY9+nIDutVJKHWB6c5onrDT3mCk/cgINrMLXbSWoo2plFSmEhOg5iXXk1CM6yJBC7JQfOiCIAjC4oiY/gHndkDtk1D/A9Anwq5noGjnJQ97a9LMA50XGHO6+UxGMvdnG4h4n4rGofPjfGtvGz0TVirzEnhkZwnFqfMvq/xTXq+NgcFfMDDwc8BLRsYnyVr6GdTqqAWfI9gkSaKzs5O6ujqGh4eJiopi48aNrFu3Dq2fg6odVgsn33yN1tdfxjE3S8aylVTsvovM5atCusOh5PBgOzWBtXkU97AF1Ep0KxLRlxnQBmjmmeSVGDg7RVu9kYGzU8gypBfFUVKZRs7qJFQaUVWD0IzrIkELslB86IIgCMLiiJguAGA86aumjZ2F5R+Gm5/0JWzzmPV4+Wa3kd+MTJETEcYzRRlUxF58xpfbK/HfTYM8s7+TWbubu8sy+fKHCkiMXHgTEIdjhJ7epxgdfQmtNpGcnHtJS70ThcK/JYXBJMsyvb291NXV0d/fj06nY/369ZSXlxPu56Bqt8PBqf1vcGzvHqzTJlLzCqm4425y1paFdKIG4Bq2YG0ZxXZiHNnpRZ0Ugb7MgG5tMqpI/xLW92OZdtDeOEJ7wwhzJgfheg2F6w2UVKURn3rxqu4HRSjGdZGgBVkoPnRBEARhcURMF97lcUHDD+DtJ32NQ3Z8D5bdwaX6ndea5vjy+SEuOFx8ckkiD+WkoldfPGmasbl49kAX/3lkgHCNis9tyePvKrMIe5+vvxjz7Cm6ur6F2XycyMhi8vMfJj5ugz+f9IoYHByktraW7u5uwsLCqKiooKKiAr3ev+TB43Jx7u39NL/8ArMT4yQtzaZi913kV2xEqQyd5PRiJJcX++lJrC2juAZmQaUgoiQBfbmBsNzYgIwYkCWZoXYTbfVG+k5NIkkyqbkxlFSlkbsuGY02tL9HwRCKcV0kaEEWig9dEARBWBwR04X3GGvzVdOMx6FoF+z8PkQZ5j3E6vHy7d4Rfjk8SUa4lqcLM6iOf/8liD0TFr79WjsHOsbJjNfx1ZuL2L7c4Mf+NJnx8dfo7nkSh2OYpMQbyct7EJ0uy59PekUYjUbq6upob29Ho9FQWlrKhg0biI5e+DJPAK/HQ0fD2zS99DumjReIS0un4vaPUFS5CVWItVS/GPeYFWvLGLbjY0g2D6q4MPSlBvSlKahiAjNOwTbrouPoCG31RszjdrThKgrKfVW1pMzQWRIbbKEY10WCFmSh+NAFQRCExRExXbgorweO/gQOPg6aCNj+HVj1V5esph2dsXBvxxC9dicfT03ga3lpRM9THavrmuBbe9s5PzZHeXY8X9tVwvIlMQu/Ta+DoaFf0T/wL0iSm4yMT5Cd9bmQ2p/2B+Pj49TX13PmzBmUSiVr1qyhsrKSuDj/hnJLkpeupiM07XmOiYE+opNSKLv1wyy/YRtqP/e7XQ2yR8J+bhJr8yjOHjMoILwoHn2ZgfDCeBSqAFTVZBlj1wxt9UZ6jk/g9UgkZUZRUpVGQVkK2ojQT2gvRyjGdZGgBVkoPnRBEARhcURMF+Y12QUvfw6GjkLejXDLDyAmfd5D7F6J7/WN8rOhcVLCNDxZkM6Nie+fdHm8Er9tGeLptzqZtrm4c206999USHL0wvdsOZ3j9PQ+zcjIC2g0ceTk3ENa6l0olaH3Im4ymWhoaODEiRPIsszKlSuprq4mMXH+PX9/SZZl+k4c4+iLv2Wk6zz6uHhKd+1m1bab0fi53+1q8UzZsbaMYW0dRZpzo4zWol+Xgr7MgDpAM88cVjedzaO01RuZGrai1irJK01hWVUaKQFqXhJqQjGuiwQtyELxoQuCIAiLI2K6cEmSBC3/D/Z/AxQq+NBjsO5vL1lNOz5r5Z6OIc5bHdyZEsdj+UuI07x/wmS2u/nJoW5+3dCHRqXks5vz+PuqbMI1C99DNDt3lq6ux5mZaUavzyc//xES4qsWfPyVZDabaWxspLW1FY/HQ0lJCTU1NRgM8y8n/UuyLDN07jRHX3yOoXOnCY+KZt3Nt7J6+y7C9Rdv2hJqZK+Eo8OEtXkUR+c0AGF5sejLDESUJKDwY4be+15Dlhnrn6Wt3kjXsXE8Ti/xaXpKKtMoXG8gXB+YkQChIBTjukjQgiwUH7ogCIKwOCKmCwtm6oNXvwB9tZBdA7f8EOKz5z3EKUn8oH+MHw2OEadR852CdHYmxc57TP+klSfeaOfNc2MsiY3gwZuL2LUy1a/9aRMTv6er+wkcjiESE7aQl/dV9PqchX7SK8pisXD06FGam5txuVwUFBRQXV1NRob/896Mne007Xme3uMtaCN0rNm+i7U7bkMXvfBlo1ebZ8aJ7dgo1pYxvGYnSr0a3doU3xDsAM08czk8dLWM0VZvZHxgDpVaSc6aJEqq0lhSEHvNV9VCMa6LBC3IQvGhC4IgCIsjYrrgF1mG4/8Obz4Cshe2fh3KPw3K+SscZ+ds3NMxxBmLnVuSYvl2wRKStPNXLBp7JnlsbzvtI7OsWxrH13aVsCojdsG3KklOhob+nb7+nyBJDtKXfJzs7M+j0Sz8HFeS3W6nubmZo0ePYrfbyc7OpqamhqysLL8ThvH+Xpr2PE9nUwNqrZaVW7dTestuouL9W0Z5NcmSjLNr2jcEu90Ekow2K9o3BHtFIgo/KqvzmbwwR1udkfPNY7jsHmKSIiipSqNoQyq66NDf03cxoRjXRYIWZKH40AVBEITFETFdWBTzBXj1S9D9FmSsh9t+Aol58x7ilmR+OjjO9/tHiVQr+VZ+OruT569WeCWZ3x0b4qnfn2fS4uKONUt4YHsRhhg/9qe5JuntfQaj8XnU6mhycr7IkrSPolSG5pI2p9NJa2srjY2NWCwW0tPTqampIT8/3+9EberCEM0v/472+sMolUqW3bCN8tvuJCbZv2WUV5t3zoW1dQxbyyieKQeKcDW6NUnoy1PRBmjmmdvlpef4OG31Rka6zSiVCrJWJVJSlUZGcTzKAIwEuFJCMa6LBC3IQvGhC4IgCIsjYrqwaLIMp5+DN74CHgdsfgjWfxZU8zfmOG91cE/HIMdnbXwoIZrvFqaTGjZ/pWLO4eanh3v4ZV0fKqWCz2zK5dM1OUT4MeNqbq6dru7HmZ4+gk6XS37+QyQm3LDg4680t9vNiRMnaGhowGw2YzAYqK6upri4GOUlKpZ/yTw+Sssr/8vZQ28hSRLFlZsov/0uEtL9X0Z5NcmyjLPXjLVlFPvZSfDIaDKi0JeloFuVhDIsME1hpkettNUb6Tg6isPiJjI+jOKNaRRvTCUqQM1LgikU47pI0IIsFB+6IAiCsDgipguXbW4MXrsXOvZC2lpfNS2lZN5DvLLM/xua4Dt9I2iVCv45bwl/ZYi/ZIVoyGTjO2908NqZEVJjwvnK9iJuXZW24OqGLMtMTh6gq/vb2O0DJMTXkJf/EJH6/AV/3CvN6/Vy+vRp6urqMJlMJCYmUlVVxYoVK1Cp/FvmN2eapHXvHk7t34fH5aKgfCPlu+8iJTs3SHcfPF6rG9uJcawto3jGbCi0KnSrknx71dIjA7KPzOuW6D01QVu9kQsd0ygUkLksgZKqNJauSECluvzmJcEQinFdJGhBFooPXRAEQVgcEdOFgJBlOLcHXr8fHGbY9ABU3QOq+ZcR9tqc3NsxyFGzlRviovheUQYZ4Zfe99PcZ+Kbe89xdniW1RmxPLqrhHVLFz5PTJJcXLjwG/r6f4jXa2NJ2sfIzv4CWm38gs9xpUmSRFtbG3V1dYyNjREbG0tVVRWrV69G7eegatusmeOvv8KJfa/istvIXlNKxe67WVJYHKS7Dx5ZlnENzvmqaqcmkN0SGoPet1dtdRJKXWCWspon7LQ3GGk/MoLN7EIXraVoYyollanEBKh5SaCEYlwXCVqQheJDFwRBEBZHxHQhoKyTviWPZ1+AlBVw248hbfW8h0iyzL8NT/Kt3hEUwKO5afxNWgLKS1RAJEnmxRPDPLmvg/E5J7euSuMrNxexJDZiwbfrcpno7XsWo/F/UKn0ZGd9nvT0j6NUhm5zCFmW6ezspLa2luHhYaKioti4cSPr1q1D6+egaofVwsk3X6P19ZdxzM2SsWwlFbvvInP5qmuyk6Hk8GA7NYG1eRT3sAXUSnQrEtGXGdAGaOaZ5JUYODtFW72RgbNTyDIsKYxjWVUaOauTUGmuflUtFOO6SNCCLBQfuiAIgrA4IqYLQdHxGuy9F6wTUPUlqHkANPPv3Rm0O7nv/BC10xY2xOp5ujCTbF3YJS9ldXr42ds9/Ly2F4BP1+TwmU256P3Yj2SxdNLV/W1MpjoiIrLe2Z+2JaSTFFmW6e3tpa6ujv7+fnQ6HevXr6e8vJxwPwdVux0OTh/YR8urL2KdNpGaV0jFHXeRs7Y8pL8H83ENW7C2jGI7MY7s9KJOikBfZkC3NhlVZGAScMu0g/bGEdobRpgzOQjXayhcb6CkMo34tMA0L1mMUIzrIkELslB86IIgCMLiiJguBI192teO/+RvILHQtzcto2zeQ2RZ5n9GTHy9exiPLPNgTiqfSk9CtYAkYXjGznff6OCVU0aSo8K4/6ZCPrw23a/9aVNTh+nqfgKbrYe4uI3k5z9MVGTRgo6/mgYHB6mtraW7u5uwsDDKy8tZv349er1/SYLH5eLc2/tpfvl/mZ0YIykzi4o77ia/YiNKZWDa2l9pksuL/cwk1uZRXAOzoFIQUZKAvsxAWF4sigB0Z5QlmaEOE231RvpOTiJJMoacGEqq0sgrTUbjRzObQAjFuC4StCALxYcuCIIgLI6I6ULQde+HV74Is8Ow4bOw+WHQzr9nx+hw8UDnBfZPzbIuWsczRZkU6BdWFWodmOaxvW2cHJphxZIYHt1VQnn2wveWSZKb4eH/prfvWTyeOdLS7iI35x602tCfIWY0Gqmrq6O9vR2NRkNpaSkbNmwgOjrar/N4PR46Gt6m6aXfMW28QFxaOuW33Ulx1Q2o/NzvFkrcY1asLWPYjo8h2Tyo4sLQlxrQl6agirl0tXYhbLMuOo76qmozYza04SoKyg2UVKWRlBkVkGtcSijG9ZBN0BQKRSbwQ8AEdMqy/J35vl4kaIIgCEKwiZguXBGOWdj/DTj2S4jL9u1Ny6qa9xBZlnlxbJpHuoaxeiXuyzbwTxnJqBdQ8ZAkmVdOGfnuvg5GzA52rDDw1ZuLyYhfeDMHt3uGvr4fcWH4NyiV4WRnfZaMjE+gVAbmRT6YxsfHqa+v58yZMyiVStasWUNlZSVxcQtvpAIgSV66mo7QtOc5Jgb6iE5KpuzWO1l+wzbUfu53CyWyR8J+zldVc/aYQQHhhfHoyw2EF8ajUAWgqibLGLtmaGsw0tM6gdcjkZQZRUlVGgVlKWgjgpfohmJcD0qCplAofgXsAsZlWV7+J3+/HXgWUAG/mC/pUigUO4E4WZZ/o1AonpNl+e75rikSNEEQBCHYREwXrqi+Wnjl8zDdD2Wfgm3fgLD5qwoTLjcPdl7gtQkzKyMjeKY4k2WRC2sEYnd5+XltLz97uwevJPPJqmw+uzmXqPCFd/azWnvp7n6CyamDRIRnkpf3IElJH7om9maZTCYaGho4ceIEsiyzcuVKqqurSUz0rxooyzJ9J45x9MXfMtJ1Hn1cPKU7b2fljTejDV94U5ZQ5JmyY20Zw9o6ijTnRhmtRb8uBX2ZAXWAZp45rG46m0dpqzcyNWxFrVWSV5rCsqo0UgLUvORPhWJcD1aCVgNYgP/4Q4KmUChUQCdwI3ABaAE+ii9Ze+IvTvFJwAu8AMjAf8qy/Ov5rikSNEEQBCHYREwXrjiXFQ5+C47+C8Skwy3PQt7WSx726vgMX+28wIzHwxeWpvClpSloFziwedTs4Mk3O3jx+DCJkVru+1AhHynNQOXH/qOpqTq6uh/Hau0iNraCgvyHiYpatuDjryaz2UxjYyOtra14PB5KSkqorq4mNTXVr/PIsszQudM07XmOwbOnCY+KZt3Nt7J6+y7C9ZFBuvsrQ/ZKODpMWJtHcXROgwxh+bHoywxElCSgUF9+d0ZZlhnrn6W93kjnsXE8Ti/xaXpKKtMorDAQHhmYkQChGNeDtsRRoVBkAXv/JEHbAHxDluWb3vnzVwFkWf7L5OwPx98HNMuyXKtQKF6QZfnO+a4nEjRBEAQh2ERMF66awSZ4+bMw1QVrPg4fehwiYuc9ZMrl4Wvdw/zv2DRF+nB+UJTJ6uiFL1s8NTTDN/e20TowTXFqNI/uKmZj7sKrSZLkwTjyPL29z+B2T5Oaeie5OfcSFpa84HNcTRaLhaNHj9Lc3IzL5aKgoIDq6moyMjL8Ppexs52mPc/Te7wFbYSO1TftZN3O29FFxwThzq8sz4wT27FRrMfG8M44UerV6Nam+IZgB2jmmcvhoatljLZ6I+MDc6jUSnLWJFFSlcaSgtjLqqqFYly/kgnancB2WZY/9c6f/xqokGX5c+9z/HLgG8AkYJFl+b6LfM2ngU8DpKSkrPvtb3+76PsNFovFQmTktf1bEkEQBMFHxHThalJ6XSwd+C2Zg3twaWPpLPhHphLLL3lcq6zmF+iYQcEtOLkTB9oFvs/KskzLqJfnzruYcsisTVZxd6GWFP3CKySybEOWX0XmAKBGodiJghtRKK6NfVlut5vh4WEuXLiAx+MhNjaWpUuXEhvrf2Jgmxxn9PhRpns6UajVJJWsImVVKdrIK9MQI6hk0E1C9AUl+nFQyArscTKz6TIWg4wcoOaMjmmZ6V6ZmX6Q3KCNhNhcBXHZoA73P1ELxbi+efPm0EzQ/CUqaIIgCEKwiZguhITh4/Dy52D8HKz4CGz/LugT5j3E7Pbwzz1G/nvERJ4ujKcLMyiPXfhLqcPt5Zf1ffzkUDdur8Tfbszic1vyiYlY+DIzm62f7u7vMDH5FuHhS8jLfYDk5J3XxP40AKfTSWtrK42NjVgsFtLT06mpqSE/P9/vzzA1PETzS7+jvf4wSqWSZZu2UXbbncSmGIJ091eWd86F7fgY1uZRPFMOFOFqdGuSfEOw0wKTDHlcXnqOj3Ou3shItxmlUkHWqkRKKtPIKIlf8MiIUIzrIbvE0V8iQRMEQRCCTcR0IWR4XFD/NNR+D8JjYedTsGz3JQ972zTHl88PMuxw86n0RB7MSUWvWnhpY3zWwVO/P8/vWi8Qp9Ny740F/FVZBmrVwitqpukjdHU9jsXSTkzMOgryHyE6euWCj7/a3G43J06coKGhAbPZjMFgoLq6muLiYpQL3Of3B+bxUVpe+V/OHnoLSZIortxE+e13kZDu/zLKUCTLMs5eM9aWUexnJ8Ejo0mPRF9uQLcqCaUfA9LnMz1qpa3eSMfRURwWN5HxYRRvTKN4YypRl2heEopx/UomaGp8TUK2AsP4moR8TJblc4u+yJ8QCZogCIIQbCKmCyFn9Kxvb9rISSi+FXY8BVEp8x5i8Xh5vHeEXw9Pkhmu5emiDKri/Ftid3bYzDf3ttHcZ6IgJZJHd5VQnZ+04ONl2Ytx5AV6er6P2z2FwbCb3Nz7CA+7dipIXq+X06dPU19fz9TUFImJiVRVVbFixQpUfiS9AHOmSVr37uHU/n14XC7yyzdQsftuUrJzg3T3V55kc2M9Po61ZRTPmA2FVoluVbJvr1p6ZEAqqV63RO+pCdrqjVzomEahgMxlCZRUpbF0RQKqi/wiIRTjerC6OP4PcAOQCIwBX5dl+ZcKhWIH8AN8nRt/Jcvy44u6wEWIBE0QBEEINhHThZDk9cCRH8GhJ3xDrbd/F1beBZd44T0yY+HejkH67C7+Ji2BR3PTiFIvPLGQZZk3z43y+OvtDJnsbC1K5qGdxeQmLXwJm8czR3//vzA49GsUChVLl/4DSzM/hUp17bSjlySJtrY26urqGBsbIzY2lqqqKlavXo3az0HVtlkzx19/hRP7XsVlt5G9ppSK3XezpLA4SHd/5cmyjGtoDmvzKPZTE8huCY1Bh77MgG5NMkpdYLozzk7aaWsw0t44gs3sQhetpWhDKiVVqcT8SfOSUIzrITuo2l8iQRMEQRCCTcR0IaRNdPqqaReaIf8m2PUMxCyZ9xCbV+LJvhF+PjSBIUzD9woz2JoQ7ddlnR4v/9bQz48OduNwe/nrDUv54tZ8YnULbwJitw/S3f0k4xNvEBZmIC/3AVJSbkGhuPx27VeKLMt0dnZSW1vL8PAwUVFRbNy4kXXr1qH1c1C1w2rh5Juv0fr6yzjmZskoWUHFHXeTuXzVNbNnbyEkhwfbqQmszaO4hy2gVqJbkejbqxagmWeSV2Lg7BRt9UYGzk4hy7CkMI5lVWnkrE6irqE25OL6dZOgZWVlyV//+tev9m28x8zMDLGxsVf7NgRBEIQAEDFdCHUKWaJ4ro51M3uRUNEcdxtdkesvWU0bDNPxvwmZjGsjWGuZYqdpGJ3k9evaFo+CQ5ORnDCHE66U2ZRopTTWjsqPd+ywsAHi4t5CGzaK07mEadONuFzpft1HKHA4HMzMzOB0OlEqlURHRxMVFeX3HjVZkrDOmJidmkRye9BGRBCdlEz49dD18S/ILi/eWReSxY0syyjUSlTRWlSRWvz6RzQPr0fCNuvCZnbh9UgolArUETJJabEBOX+gfPKTnxQJWjCJH+aCIAjXDxHThWtFlHuSyqnfkursZji8gMaEu7Go5+/06EHBwVgDb8ekoPd6uM00xDKb2e9rjzlUvDkRRZ9NS6LWw4eSLORHuvw4g4xef5qY2EOo1Ras1mXMTG/B6732ZoY5nU7MZjN2ux2FQkF0dDTR0dH+J2qyjG1mmtmpCbwuN5rwcKISk66LOWrvIYNkdfuSNacHAJVegzJKizIiME1FAJw2D1azEwk3iamxATtvIFw3CZpY4igIgiAEm4jpwjVFkuD4v8HvvwayBNu+AWWfgkskB2fmbHypY5BzFge3JcfyeH46iVr/XoxlWWZ/+zjffr2dvkkrNQVJPLKzmIKUhVd+PB4rA4P/yuDgLwDIzPy/LM38NGq13q97CQVGo5G6ujra29vRaDSsW7eOjRs3Eh3t33JSr8dDR8PbNL/0O0zGC8SlLqH89o9QXHUDKj/3u10L3GNWrC1j2I6PIdk8qGLD0JcZ0JemoIoJC8g1QjGuXzdLHEWCJgiCIASbiOnCNWlmCF79IvQcgMyNcNuPIWH+7oBuSebHg2M83T9GlFrJt/PTuS3Z/8HMLo/Efxzp59kDXdhcXj5Wnsk9NxYQr1/4niyHw0h3z5OMjb2KVptMXu59GAy7r6n9aX8wMTFBXV0dZ86cQalUsmbNGiorK4mLi/PrPJLkpavpCE17nmNioI/opGTKbr2T5TdsQ+3nfrdrgeyRsJ+bwtoyirN7BhQQXhiPvtxAeGE8istYAhmKcV0kaEEWig9dEARBWBwR04VrlizDyf+GN78KHidseQTW/xMo5+/a2G6xc0/HECfnbNycGMN3CtJJCfO/y57J6uIH+zv5r6ZBdFoVX9yaz99syEKrXniSNWNupavrcWZnTxEVtZyC/EeJjb3oO2zIM5lMNDQ0cPLkSSRJYuXKlVRVVZGUtPBRBeCrVPadOMbRF3/LSNd59HHxlO68nZU33ow2/NrphOkPz5Qda8sY1tZRpDk3ymgt+nUp6MsMqC8x8+xiQjGuiwQtyELxoQuCIAiLI2K6cM2bHYHX7oXzr8OSdXDbTyB5/hbuHknmXy9M8GTfCOFKJd/MW8JdhrhFddjrGpvjsdfaqe2cIDtRz0M7itlWnLzgc8myxNjYq3T3PInTOUpy8g7ych8gIuLaHOw8OztLY2Mjx44dw+PxUFJSQnV1NampqX6dR5Zlhs6dpmnPcwyePU14VDRrb76FNdtvIVy/8LEH1xLZK+HomMbaMorjvAlkCMuPRV9mIKIkAcUCk/9QjOsiQQuyUHzogiAIwuKImC5cF2QZzv4vvH4/uCyw6QGo/BKo5q+Mddsc3NsxRLPZyub4KL5XmEF6+OKW0x06P8639rbRM2GlMi+BR3aWUJy68P1YXq+NgcFfMDDwc8BLRsYnyVr6GdTqa7O7ocVi4ejRo7S0tOB0OsnPz6empoaMDP8TT2NnB017nqP3eAvaCB2rb9rJup23X58NRd7hmXFiOzaK9dgY3hknSr0a3VpfVU2TrJv32FCM6yJBC7JQfOiCIAjC4oiYLlxXLBPwxgNw7kUwrIDbfgqpK+c9RJJlfjU8yeM9I6gU8LXcND6eloByEdU0t1fiv5sGeWZ/J7N2N3eXZfLlDxWQGLnw5g8Oxwg9vU8xOvoSWm0iOTn3kpZ6JwrFwgduhxK73U5zczNHjx7FbreTnZ1NdXU12dnZflcsx/t7adrzPJ1NDag1WlZu207pLbuJik8M0t1ffbIk4+zyVdXsbSaQZLRZ0ejLDehWJKLQvPffRSjGdZGgBVkoPnRBEARhcURMF65L7a/C3nvBboKqe6DmflDPnyQN2J18uWOI+hkLlbGRPF2UwdKIxXXVm7G5ePZAF/95ZIBwjYrPbcnj7yqzCFMvPMkyz56iq+tbmM3HiYwsJj//YeLjNizqfkKB0+mktbWVxsZGLBYL6enp1NTUkJ+f73eiNjU8RMvLL9BWdwilUsmyTdsou+1OYlMMQbr70OCdc2E7Poa1ZQzPpB1FuArdmmTfEOy0Py77DMW4LhK0IAvFhy4IgiAsjojpwnXLZoI3H4ZT/w1JRb69aenzN+CQZZn/GjHxje5hvDI8lJPKJ9MTUS2imgbQM2Hh26+1c6BjnMx4HQ/tKOKmZQY/9qfJjI+/RnfPkzgcwyQl3khe3oPodFmLup9Q4Ha7OXnyJPX19ZjNZgwGA9XV1RQXF/s9S808PkrLK//L2UNvIUkSRZWbqLj9IySkZwbp7kODLMs4e82+qtrZSfDIaNIjfVW1VUnUHqkPubguErQgEz/MBUEQrh8ipgvXva63fC3550Zgw2dh88Ogmb8b4LDDxf3nhzhomqMsWs/TRRnk6/3vpvcHtZ0TfOu1NjrHLFRkx/PorhKWL1n4/imv18HQ0K/oH/gXJMlNRsYnyM763DW7Pw3A6/Vy+vRp6uvrmZqaIjExkaqqKlasWIFK5d9yTotpimN793Bq/xt4XC7yyzdQsftuUrLnH71wPZBsbqwnxrE2j+IZs6HQKplc6mHV32+62rf2Z0SCFmTih7kgCML1Q8R04QPBMQtvfQ1afw3xub65aUs3znuILMu8MDbNo13D2CWJ+7IM/GNGMmrl4qppHq/Eb1uGePqtTqZtLj6yLp37PlRIcvTCEz+nc5ye3qcZGXkBjSaOnJx7SEu9C6Xy2h3oLEkSbW1t1NXVMTY2RmxsLJWVlaxevRqNxr/xB7ZZM8dff4UT+17FZbeRvaaUit13s6Rw/q6e1wNZlnENzWFtHqXfPsLavxYJWlCIBE0QBEEINhHThQ+U3sPwyhdgZgDKPw1bvw5h87dsH3e6ebDzAq9PmlkZFcGzRZkURy5+HpfZ7ubHB7v4t8Z+tCol/7Q5j7+vyib8Is0e3s/s3Fm6uh5nZqYZvb6A/PyHSYivWvQ9hQJZluns7KS2tpbh4WEiIyPZuHEjpaWlaP0cVO2wWjj55mu0vv4yjrlZMkpWULH7bjJXrFrUKIVrTSjGdZGgBVkoPnRBEARhcURMFz5wnBY4+Bg0/SvEZsAtP4TczfMeIssyr0zM8FDnMLMeL19cmsIXliaj9XPP1J/qn7Ty7dfb+X3bGEtiI3jw5iJ2rUz1a3/axMSbdHV/B4djiMSELeTlfRW9PmfR9xQKZFmmr6+P2tpa+vv70el0rF+/nvLycsLD/Vtm6nY4OH1gH8defRHLtAlDXgHr77ibnLXl13WiFopxXSRoQRaKD10QBEFYHBHThQ+sgSPwyudgqhvW/g186FsQPv++sEmXh0e7LrBnfIYSfTjPFGeyKmr+mVSX0tgzyWN722kfmaV0aRyP7iphVUbsgo/3ep1cuPBv9PX/FElykJ7+12RnfR6N5tqfETY4OEhdXR1dXV2EhYVRXl7O+vXr0ev1fp3H43Zz7vB+ml9+gdmJMZIysyjffRcF6ytRKq/N8QXzCcW4LhK0IAvFhy4IgiAsjojpwgea2w6Hn4DGH0GkAW75ARTcdMnD9k2Y+UrnEJNuD5/NSObeLAPhqsVX07ySzO+ODfHU788zaXFxx5olPLC9CEOMH/vTXJP09j6D0fg8anU0OTlfZEnaR1Eq/dvHFYqMRiN1dXW0t7ej0WhYt24dGzduJDp64YPAAbweDx0Nb9P80u8wGS8Ql7qE8ts/QnHVDajU1+4+vr8UinFdJGhBFooPXRAEQVgcEdMFARhuhZc+CxPtsPKvYPsToIuf95AZt4dvdBv57aiJfF0YzxRlUhrjX2XnL8053Pz0cA+/rOtDpVTwmU25fLomhwjtwqs8c3PtdHU/zvT0EXS6XPLzHyIx4YbLuq9QMTExQV1dHWfOnEGpVLJ69WqqqqqIi4vz6zyS5KWr6QhNe55jYqCP6KRkym75MMs334jaz/1uoSgU47pI0IIsFB+6IAiCsDgipgvCOzxOqPu+7z8R8bDz+1By6yUPOzQ1y33nhzA63Xw6PYmv5KSiu4xqGsCQycZ33ujgtTMjpMaE85XtRdy6Kg3lAjtIyrLM5OQBurq/jd0+QEJ8DXn5DxGpz7+s+woVJpOJhoYGTp48iSRJrFy5kqqqKpKSkvw6jyzL9J04xtE9zzHS2YE+No7SXbtZeePNaMMX3wjmagvFuC4StCALxYcuCIIgLI6I6YLwF0bPwEv/BKOnoeR22PEURM7/4j/n8fKtHiP/bpwiK0LL9wszqIy7/BllzX0mvrn3HGeHZ1mdEcuju0pYt3Th1SJJcnHhwm/o6/8hXq+NJWkfIzv7C2i181cHrxWzs7M0NjZy7NgxPB4PJSUlVFdXk5qa6td5ZFlm6NwZmvb8lsGzpwmPjGLtjltZs/0WwvXzd/kMRaEY10WCFmSh+NAFQRCExRExXRAuwuuGxh/C4e+ANhJufhJW3AmX6PzXMD3HvR1DDDhcfCItgUdz04hUX14TCkmSefHEME/u62B8zsmtq9L4ys1FLIldeIXH5TLR2/csRuP/oFLpyc76POnpH0epvPaX8wFYLBaOHj1KS0sLTqeT/Px8ampqyMjI8Ptcxs4OmvY8R+/xFrQROlbftJN1O29HF33tNF0JxbguErQgC8WHLgiCICyOiOmCMI+J8/DyZ+FCCxTcDLuehui0eQ+xer082TvKzy9MkBam4anCDDYn+NfM4qLndXr42ds9/Ly2F4BP1+TwmU256MMW3tzCYumkq/vbmEx1RERkvbM/bct103LebrfT3NzM0aNHsdvtZGVlUVNTQ3Z2tt+fcby/l6Y9z9PZ1IBao2Xl1psoveUOohISg3T3gROKcV0kaEEWig9dEARBWBwR0wXhEiQvHP0X3+w0VRjc9Dis+fglq2nHzFbu6Riky+bko6nxfCM3jRjN5XcKHJ6x8903OnjllJHkqDDuv6mQD69N92t/2tTUYbq6n8Bm6yEubiP5+Q8TFVl02fcWKpxOJ62trTQ2NmKxWEhPT6e6upqCggK/E7Wp4SFaXn6BtrpDKBRKlt+wjbLb7iQ2xRCku798oRjXRYIWZKH40AVBEITFETFdEBZoqgde+TwMNEDOZrj1hxCbOe8hDq/E9/tH+enQOIkaNU8WZnBTYmCWyrUOTPPY3jZODs2wYkkMj+4qoTx74XvLJMnN8PB/09v3LB7PHGlpd5Gbcw9abehXiBbK7XZz8uRJ6uvrMZvNGAwGqqurKS4uRunnkHHz+Cgtr/wvZw+9hSRJFFVuouL2j5CQPv+/gashFOO6SNCCLBQfuiAIgrA4IqYLgh8kCY79Et76uq+Ctu0bUPr3cImX/ZOzNu7pGKTd6uCOlDgey1tCgvbyq2mSJPPKKSPfeaOD0VkHO1ek8uDNRWTEL3x4tts9Q1/fj7gw/BuUynCysz5LRsYnUCrDLvv+QoXX6+X06dPU19czNTVFQkIC1dXVrFixApXKvz2CFtMUx/bu4dT+N/C4XOSXb6Bi992kZOcG6e79F4pxXSRoQRaKD10QBEFYHBHTBWERpgfg1S9C7yFYWuWrpiXM/4LukiR+ODDODwZGiVGreaIgnVuSYgKy/8vm8vDz2l7+9e1evLLM31dl80835BIVvvAh1VZrL93dTzA5dZCI8Ezy8h4kKelD183+NABJkmhra6Ouro6xsTFiY2OprKxk9erVaDT+DfS2zZo5/vornNj3Ki67jezV66jYfTdLikqCdPcLF4pxXSRoQRaKD10QBEFYHBHTBWGRZBlO/AbefBi8Ltj6KFR8BpTzV2TaLHa+1DHI6Tk7O5NieCI/neQw/5KD9zNitvO9fed58cQwiZFh3PehAj5SmoFqgfvTAKam6ujqfhyrtYvY2AoK8h8mKmpZQO4vVMiyTGdnJ7W1tQwPDxMZGcnGjRspLS1F6+egaqfNysk3X6P1tZewz82SUbKCit13k7li1VVLbkMxrosELchC8aELgiAIiyNiuiBcplkj7L0HOvdBehnc9hNIKpz3EI8k8y9D4zzVP0qEUslj+Uu4MyUuYC/0J4dmeGxvG60D0xSnRvPormI25i58b5kkeTCOPE9v7zO43dOkpt5Jbs69hIUlB+T+QoUsy/T19VFbW0t/fz86nY7169dTVlZGRIR/g6rdDgenD+zj2KsvYpk2YcgrYP0dd5OztvyKJ2qhGNdFghZkofjQBUEQhMURMV0QAkCW4cwL8Mb94LLCDQ/Cxi+Aav7KWJfVwT0dgxybtbE1PprvFaaTFh6Y2WSyLLP39AjfeaOD4Rk7HypJ4aEdxWQl6hd8Drd7lv7+HzN04T9QKrVkLf1HMjI+iUp1/exP+4PBwUHq6uro6uoiLCyM8vJy1q9fj16/8O8XgMft5tzh/TS//AKzE2MkZWZRvvsuCtZXorxEdTVQQjGuiwQtyELxoQuCIAiLI2K6IASQZRxevx/aXoLUVb5qmmHFvId4ZZlfXZjk271G1AoFX89bwv9JjQ9Y1cXh9vLL+j5+cqgbt1fi7yqz+dyWPKL92J9ms/XR3f1dJibfIjx8CXm5XyE5ecd1tT/tD0ZGRqirq6OtrQ2NRsO6devYuHEj0dH+zbLzejx0NLxN80u/w2S8QFzqEspvu5Pi6s2o1JffIGY+oRjXRYIWZKH40AVBEITFETFdEIKg7WV47ctgn4bqL0P1faCevzLWb3dyb8cQjTMWquMieaowg6URgatUjc86eOr35/ld6wXidFruvbGAvyrLQK1aeLt5k6mRru7HsVg6iIlZR0H+I0RHrwzYPYaSiYkJ6urqOHPmDEqlktWrV1NVVUVcXJxf55EkL93NRzi653km+nuJTkqm7JYPs3zzjaj93O+2UKEY10WCFmSh+NAFQRCExRExXRCCxGaCfV+F07+F5BK47cewZN28h0iyzG+MU3yzx4hXhodzU/nkkkSUAaxUnR028829bTT3mShIieTRXSVU5yct+HhZ9mIceYGenu/jdk9hMOwmN/c+wsNCd3Dz5TCZTDQ0NHDy5EkkSWLlypVUVVWRlLTw7xm8s9/txDGO7nmOkc4O9LFxlO7azcobb0Yb7t9+t0sJxbh+3SRoJSUJ8n/+5qarfRvvMTMzQ2xs7NW+DUEQBCEAREwXhOCKHhtj6amzaBwOxvJyMBYWIF9i9ta4FMWP7Ddx3JPDMtUQX4zYxxLVdMDuSZahaTiDfz+1hnFrFOtSL/CJVcdZEj3nxzk8OBxGnM5RQEF4eCphYakoFFdmn9WV5vV4MM/OMjc3hyzL6PU6YmJi0Gr9rXLKOK1WZifHcVqtKFUqIuMTiIxPROnnTLb3E4pxvXTd/4gELZhC8aELgiAIiyNiuiAEn9LtJr2tnaSBIRx6Pf2rV2JNiJ/3GFmGA+5l/Ny+FTcqPh7ewO3aFlSKwL3Lur1KXusq5IW2Fbi8KrbndfKRkjNEhbkWfA5JcmC3D+F2m1AoNEREZKLVJgDX3/408A29npudZXZuFkmS0UVEEBMbQ1hYuN/nctlszE6O47DMoVAqiYxPICo+EeVl7lELxbh+3SRoYomjIAiCEGwipgvCFdRzCF79AswM+WambX0UtPN3CRxzuvlK5xD7JmdZHaXjmaIMiiMDuyRuYs7J02918lzLINERGr60NZ//s34pGj/2p01PN9PV/S3m5s4RHb2agvxHiIlZE9D7DCV2u53m5maOHj2K3W4nKyuLmpoasrOz/W6eMt7fS9NLv6PzaD1qjZaVW2+i9JY7iEpY+GiEPxWKcf26WeIoEjRBEAQh2ERMF4QrzGmBA/8MzT+H2KVw648gZ9O8h8iyzMvjMzzUdYE5j8Q9WSl8PjMFjR8DqBeifWSWb73WRkP3FLlJeh7ZVcLmwoXPPpNliZHRF+np+T4u1zgpKbeQl/sA4eFpAb3PUOJ0OmltbaWxsRGLxUJ6ejrV1dUUFBT4nahNDQ/R8vILtNUdQqFQsvyGbZTddiexKf7t7wvFuC4StCALxYcuCIIgLI6I6YJwlQw0wsufBVMvrPs7uPGbED5/K/dJl4eHuy7w8vgMyyLD+UFRJiuidAG9LVmW2d8+zrdfb6dv0kpNQRKP7CymICVqwefweKwMDP4rg4O/ACAz8/+yNPPTqNX+zRS7lrjdbk6ePEl9fT1ms5mUlBSqq6spKSlBqVx4JRLAPD5Kyyv/y9lDbyFJEkWVm6i4/SMkpGcu6PhQjOsiQQuyUHzogiAIwuKImC4IV5HLBoe/DUd+AlGpcMuzkH/jJQ97fWKGBzsvMOX28PnMFO7JSiHMzyTgkrfmkfiPI/08e6ALm8vLx8ozuefGAuL1C28N73AY6e55krGxV9Fqk8nLvQ+DYTcKRWDvNZR4vV7OnDlDXV0dU1NTJCQkUF1dzYoVK1D52QTEYpri2N49nNr/Bh6Xi/zyDVTsvpuU7Nx5jwvFuC4StCALxYcuCIIgLI6I6YIQAi4c81XTJjpg1cfgpsdBN38TkWm3h693D/P86DT5ujCeLcpkbUzgK1Qmq4sf7O/kv5oG0WlVfHFrPn+zIQuteuFJ1oy5la6ux5mdPUVU1HIK8h8lNvai7+rXDUmSaGtro66ujrGxMWJjY6msrGT16tVoNAsfEg5gmzVz4o1XOLFvL06blezV66jYfTdLikou+vWhGNdFghZkofjQBUEQhMURMV0QQoTHCbXfg7qnQZ8IO5+G4l2XPOzA1Cz3nx9i1Onm0xlJPJCdis6P5h4L1Tk2x2N726jrmiQ7Uc/DO4rZWpy84H1WsiwxNvYq3T1P4nSOkpy8g7zcB4iIyAj4vYYSWZbp7OyktraW4eFhIiMj2bhxI6WlpWj9HFTttFk5+eZrtL72Eva5WTJKVlCx+24yV6z6s+fw/9u77/Aoq7z/4+8z6QmEEAIhhJAQSAihKhCK0osgWBZx7RVFFHUtrI9t17Wtoth4BGy4ytpFRUQURLqU0KWlASmQUENNz8z9+yM8v8fHNeMEMplJ/LyuK9fF3OF7z5eZXAc+nDnneOO4roDmZt74pouIyNnRmC7iZQq2wtxJcHAbdBoLF79YFdicOFVp5+nd+czOP0rbIH9eTmpD37BGtd6aZVksSz/MM9/uZPfhIi5o34zHRyfTMcr52rlfstuLycl9h5yctwA7MTG3Ehc7EV9f19e41UeWZbF3715WrFhBdnY2QUFB9OnTh5SUFIKCarYrZ0VpKT//+D0bvvmS08cKadk+kd5/uop2PVIwxnjluK6A5mbe+KaLiMjZ0Zgu4oXsFbDqVVg+pWrjkFEvQOcr4Hdmq1YWnuLB9DxyS8u5JTqCx+OjCPGt/YOjK+wOPlybwyuLMzlVWsFVvdrw4IhEIhq5fmhzaWkBu/dM5cCBufj7RxAf/wCtosY12IOufykvL48VK1aQmZlJQEAAKSkp9OnTh5CQmn1EtbKigh3LFrN+3hxOHDpIRJs4ev/pzxSUVjJ4yBA3dX92FNDcTH+Zi4g0HBrTRbzYoV0w9y7I3wQdRsOYl6Gx8y3XiyrtPLe3gFn7jhAd6MfLHdowINw9s1PHi8t57cdM/r0mhyA/H+4e0p6bL4gjoAah8MTJrWRmPsOJE5to1KgjCQmPEd60r1v69TYFBQWsXLmSnTt34ufnR48ePejXrx+hoa7PSAI47HbSflrOuq8+ozB/H+GJydzy9Atu6vrsKKC5mf4yFxFpODSmi3g5eyWsnQFLnwXfALjoOeh+7e/Opq07fpoH0vLYXVLGdVHhPNE+mlA3zKYB7D58mn9+u4sf0w7RJjyYRy9O4qJOLWuwPs3i0KFvycqaQmlZPs2bj6B9u4cJDo51S7/e5vDhw6xcuZJt27Zhs9no3r07F154IU2bNq3RfRwOO1mpa8jIzmXM1de6qduzo4DmZvrLXESk4dCYLlJPHMmCeXdD7hpoN7RqS/4w5xtslNgdTM0+wMzcQ0QG+DElsTUjIpq4rcUVGVXr0zIOnqZ323D+NiaZztGuP5/dXkpu3ixyct7A4aggJuYm2sbd3eDXp/2PwsJCfvrpJ7Zs2YLD4aBLly7079+f5s2b1+g+3jiuK6C5mTe+6SIicnY0povUIw4HrH8HFv+jagZt+FNVh1z/zhlom08Wc19aLulFpYyLbMpTCdGE+/m6pcVKu4NP1ufx8g8ZHCsu58oerZk8ogMtQgNdvkdZ2SF273mJgoIv8PNrSnz8/bSK+jM2m3t69jYnT55k9erVbNiwgcrKSpKTk+nfvz9RUVEu1XvjuK6A5mbe+KaLiMjZ0ZguUg8dy4Z598Le5RDXHy6dBuHxTkvKHA5eyznItJyDhPn68nxia8a0CHNbiydKKnh9SSbvrc7G38fGXYPbM/7CtgT6uf4xy5OntpOZ+SzHj6cSEpJIQsJjNAu/0G09e5uioiLWrl1LamoqZWVlJCQkMGDAAGJinM+ceuO4roDmZt74pouIyNnRmC5ST1kWbJoNix4HRyUM/TukTACb8wC043QJ9+3KZdvpEsY0b8Jzia1p7l+zg5NrIvtIEf9csItFOw8SHRbEw6OSGNM1qkbr0w4fXkhm1vOUluYR0WwI7ds/QkiI80DakJSUlJCamsratWspKSkhLi6OAQMG0LZt2998Hb1xXFdAczNvfNNFROTsaEwXqedO7If590HmIojpDZe+Ds0TnZZUOCxm5h1i6t4DhPjYeCYhmrGRTV0OTWdj9e4jPD1/F7sKTtIztil/G5NMt5gwl+vt9jL27XuPvdkzcDhKad36BtrG3YOfn/vW1HmbsrIyNm7cyOrVqzl9+jTR0dEMGDCAxMREHVRdVxTQRETE3TSmizQAlgU/fwbfPQQVJTD4Eeh7D/g4X7OVUVTK/Wm5bDxZzPBmobzQoTVRAf5ua9PusPh8Qx5TF6Vz5HQ5Y8+L5qGRSbRsUoP1aeVH2LPnFfLzP8PXN5T4+L8Q3eoabDb3zQJ6m4qKCrZs2cKqVas4ceIEkZGR9O/fn+TkZGw2m1eO6wpobuaNb7qIiJwdjekiDcipg7DgQdj1DUR1h8tnQGQnpyV2y+KdfYd5fk8BvsbwZPtorokKd+ts2qnSCmYs282slXvxsRkmDmzHhAHxBPm7vj7t1KldZGY9y7FjawgObkdCwqNENBvktp69kd1uZ9u2baxcuZKjR4/SrFkz+vfvT2FhIUPq0UHVzre4ERERERGprxpHwlUfwJXvw4l98OZAWPY8VJZXW+JjDHfEtGBJryQ6Nw7igfQ8rtq6m9ySMve1GejHf41M4scHBzIkqQWvLM5gyEvLmLt5Pw6Ha5MpjRt35Lzu/6ZrlzexrEq2bh3Pli23cLoo0219exsfHx+6d+/OpEmTGDduHL6+vsydO5f09HRPt1YjmkGrBfrfVhGRhkNjukgDVXQUvn8Ytn0GkZ3hsteh1XlOSxyWxez8ozy9Ox8LeDw+ipujI7C5cTYNIHVvIU/N38H2/SfpHhPG3y9J5vw2rh/S7HCUs2/fB+zNnobdXkx0q2tp2/Ze/P3D3di197Esi4yMDNLT07n00ks93c7/oRk0EREREfljC2kGV7wNV38MRUfg7aGw+EmoKK22xGYMN0dHsCwliZTQEB7N3M/YzVnsKXbfbBpASttw5k26kBfHdSX/eAljZ6zm3o83s/94iUv1Nps/bdrcSt8+S2jV6hr253/EmrVDyc19F4ej+tnDhsYYQ4cOHQgNDfV0KzWigCYiIiIifxxJF8OkddD9Glj1MrzZH/JSnZbEBPrzcbd4Xk6KYWdRCUPWpzEz9xB2N34SzWYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKKl26h79/OEkdniSl13xCQ7uRmfUsa9eN4vCRH6lPn6L7o1FAExEREZE/lqAwuGw6XP9l1S6Ps0bA949CeXG1JcYYro1qxvKUJPo3bcyTu/O5ZFMm6UXVz8DVhpAAXx4c0YElkwdxUaeWTFuSxeCpy5izcZ/L69MaNUqke7d/0a3rOxjjw88/T2Dzlhs5dTrNrb3L2amzgGaMiTfGzDLGzPnFtRBjzPvGmLeNMdfVVS8iIiIiIrQfCnetgV7jYe10mNkP9q50WhIV4M/sLm2ZkRzL3uIyhq9P57Xsg1S4GJbOVnRYENOuOY8v7uxLVFgQkz/fymXTf2J9dqFL9cYYIiIG0zvlWxIT/s6pUztITb2EXWmPUV5+xK29S824FNCMMe8aYw4ZY7b/6vpIY0y6MSbLGPOws3tYlrXHsqzxv7o8FphjWdbtgHet3BMRERGRhi+gMYx+CW7+turx+2Ng/gNQdqraEmMMYyObsqJ3EhdFNOG5vQVcvDGD7aeqn4GrLT1iw/nqzn68elV3Dp8q48o31jDpw03kFbr23DabHzExN9Gv7xJiWt9IQcEcVq8ZSk7OWzgc7l1bJ65xdQbtPWDkLy8YY3yA6cAoIBm4xhiTbIzpYoyZ/6uvFtXctzWQd+bX9pq3LyIiIiJSC+IuhDtXQ9+7YcO7MKMvZC12WtLc34+3O8fxTqc4CsoqGLkxgyl7CihzONzaqs1muPy8aJZMHsh9wxJYknaIoS8vZ8r3aZwqrXDpHn5+YSQm/o3eKQsIC+tF1u4prF07kkOHF2p9moe5FNAsy1oB/Hr+NAXIOjMzVg58AlxmWdY2y7LG/OrrUDW33kdVSHO5FxERERERt/APhouehfGLwC8IPrgC5k6CkmNOy8a0CGNF7yQub9GUV3IOMmJDBptOFrm93WB/X+4blsiSyQMZ0yWKmct2M3jqcj5JzcXu4kcuQ0La0b3bO3Tv9h42nwC2bbuLTZuv49SpHW7uXqrj8jloxpg4YL5lWZ3PPB4HjLQs67Yzj28AeluWdXc19c2AZ4HhwDuWZT1njAkBXgdKgVWWZX34G3UTgAkAkZGRPT755JOa/QnrwOnTp2nUqJGn2xARkVqgMV1EAGz2cmJzPqVN7peU+zchI/FOjkb0/t26TZYv7xDMMQxjKONKSvF377Fp/9+e43Y+Sisn67iDmMY2rk3yp2MzH5frLcuOxQosay5QhOECjBmLMU3c1nNd8MZxffDgwdWeg1ZnAa026KBqERFxN43pIvJ/5G+BryfBwe3QeRyMeqHqTDUnTlbaeSornw8KjhIfFMArSTH0DqubgGBZFvN/LuD579LYf7yEEcmRPHpxR+IiQly+R0XFSbKzXydv32xsNn/iYu8kJuZWfHwC3Ni5+3jjuO6ug6r3AzG/eNz6zDURERERkYahVXe4fSkMehR2fg3TU2D7l+BkkiPU14epSTF81q0dFZbF5ZuzeCxjH0WV7t9ywRjDJd1a8eODA/nrRR1YlXWE4a8s558LdnHS5fVpoSQkPEqf3t8R3rQfu/dMZe264Rw8+K3Wp9WBc5lB8wUygKFUBbP1wLWWZbntA6tBMR2sdvfNdNftz1plZSW+vr6ebkNERGqBxnQRqU6CPYenS1+nsyOLxb69eTrgDo7amjqtsYBSh4MKh4UBgnxs+Jo6+swj4HBYlBdVUFlqBwMBIX74BvlSkw4sqxK7owwsOxhffGwBVO0XWD9447i+Y/LQc5tBM8Z8DKwBOhhj9hljxluWVQncDSwEdgGfuTOciYiIiIh4UqZPLNcFP89L/jfSv3IT84ru5dKKpU5n0wwQZLMR7GPDGCi2OyhxOKireSibzRDY2J+gpgHYfG2Una6guLCUynLXZ/OM8cXXJwSbLQgsB3Z7EXZ7CRbu3a3yj8rlGTRvoDVoIiLibhrTRcQlRzKr1qblrYP2w+GSV6FJa6clxXYHL+4t4M28w7QM8OOFDjEMaxZaN/1StT5t4Y4DPLtgF3mFJQxNasGjozvSrrnr6+MqK0+RnT2T3Lx/YYwPsbF3ENvmNnx8gtzY+bnxxnHdXWvQRERERET+mCIS4JbvYOQUyPkJpveBDf9yOpsW7GPjifbRzD8/gUY+Plz/8x7u2ZXDsYrKOmnZGMPIzlEsfmAgD49KYt3eQi56ZQVPfrOD48XlLt3D17cx7ds/RN8+C4loNoi9e19lzdphHDjwNZalGbXaoIAmIiIiInI2bD7QZ2LVAdetusP8+2D2pXAs22nZ+U1C+KFXIvfHRvLlwWMMSE1jweHjddBwlQBfHyYObMfSyYO4smcM76/OZtDUZby/OpsKu2shKyioDV26vM75532Mv38zdux8gA0br+TEic1u7r7hU0ATERERETkX4W3hpm9gzKuwfzPM6Avr3gRH9WEnwGbjv+Kj+L5HIpH+fty6PZsJO7I5XO7aTou1oXnjAJ4b24X59/QnOSqUJ+btYOSrK1iafsjlezRtmkKvnnPp2HEKpaX5bNg4ju077qO0NN+NnTdsCmgiIiIiIufKGOh5C0xaC7EXwHcPwXsXw5Esp2VdGgfzXY9EHm7bku8Pn2BgahpfHTxWp9vZJ7cK5cPbevP2jT2xOyxu+dd6bno3lcyDp1yqN8ZGq6hx9O2zmLi4SRw+vIg1a4exe88rVFYWubn7hkcBTURERESktjRpDdd9DpfPhEM74Y0L4KfXwF79OjM/m+G+uJYs6pVIbGAAd+7M4ebtezlQVnezacYYhidHsuj+gTw+uiObco8x8rWV/P3r7RQWubo+LYR28Q/Qt89imjcfQXb266xZO4yCgi+0Pq0GFNBERERERGqTMdD9WpiUCu2Gwg9/h1nD4eBOp2VJIUHM75HA39u1YnnhKQak7uLjgqN1Opvm72vjtv7xLP/rYK5NacOH63IZ9OJS3lm5h/JK10JWYGArOnd6lR49PiMwMIqdux5i/YY/cfy49+3G7o0U0ERERERE3KFxS7j6Qxj3LhzPgTcHwPIXwF79zJiPMdzVpgU/9upAx5Ag7k/L45qte8grdW0Wq7aEh/jz9OWd+e4v/ekWE8Yz3+7ioldXsHjnQZcDY1iTHvTsMYdOyS9TXn6EjZuuYtv2eygpyXNz9/WbApqIiIiIiLsYA52vqJpNS74Ulj4Lbw2Ggq1Oy9oFB/LVee15NiGa1JNFDEpN4739R3DU8RnGiZGNmX1rCv+6uRc2A7fN3sD1s9axq+CkS/XG2GjZ8jL69vmBtm3/wpEjS1i7bgRZu6dSWXnazd3XTwpoIiIiIiLuFhJRNZN21YdQdKgqpP34NFSWVVtiM4bxrZuztFcHzg8N5uGMfYzbspvskupr3MEYw+CkFnx/3wD+cUky2/efZPS0lTzy5TaOnHatFx+fYOLb3kvfPotp0eJicnJmsmbtUPLzP8Oy7G7+E9QvCmgiIiIiInWl4xiYtA66XQ0rp8Ib/WGf87VZsUEBfNatHS91iGHbqWIGp6bxVt4h7HU8m+bnY+PmC9qy/K+DuKlfHJ9vyGPwi8t4c/luyipdC1mBgVF0Sn6Jnj2/JCgwhl1pj5C6/nKOHVvr5u7rDwU0EREREZG6FNQULp8B130B5UVVG4gsfAzKi6stMcZwXatmLE9Jol9YY/6elc9lmzLJLCqtw8arhAX788QlnVh4/wBS2obz3HdpDH95Bd9vL3B5fVqT0G706PE5nTu9RmXFcTZtvo6ft91JcXGOm7v3fgpoIiIiIiKekDAM7loDPW6GNa9Xbcmf/ZPTklaB/nzQtS2vd2xDVnEZwzak8985B6l01O1sGkC75o2YdXMvZt+aQqCfjYkfbOLqt9ayff8Jl+qNMURGjqFPnx+Ij3+AwsJVrF13EZlZz1FZ6doZbA2RApqIiIiIiKcEhsKYV+Cmb8ByVB1u/e1kKKs+oBhjGNcynBUpSQxrFsqzewq4eFMGO0+X1GHj/2tAYnMW3NufZy7vTOah01zy+ioemrOVQyddm93z8Qmkbdwk+vb5kZYtLyM3dxar1wxh3/6PcDiqPz+uoVJAExERERHxtLYD4M7V0OcuWP8OzOgHu5c4LWkR4Meszm15u1Mc+0srGLEhnRf3FlDuqPtDoX19bFzfJ5alkwdx24Vt+WrzfgZPXcb0pVmUVri2Pi0goAXJHafQq9dcQkLak57+N1LXX8LRwlVu7t67KKCJiIiIiHgD/xAY+RzcuhB8A+Dff4Kv74aS407LLmkRxoqUJC5r0ZSXsg9y0YYMtpysfj2bOzUJ8uOx0cn8cP9ALmgfwYsL0xn60nLm/5zv8vq00MadOf+8j+jSeTp2ewlbttzE1q23U1S0x83dewcFNBERERERb9KmN0xcBRfeD1s+hBl9IP17pyXN/H2ZnhzL7C5tOVZh5+KNGTyzO59Se93PpgHERYTw1o09+ei23jQO9OXujzZz5Rtr+HnfcZfqjTG0aDGSPr0X0r7dQxw7nsq61FFkZD5DRYVra9zqKwU0ERERERFv4xcIw/4Bt/0IQeHw8VXwxe1QXOi0bEREE5andODqqHBezz3EsA3prD9RVDc9/4Z+7SP49t7+PD+2C9lHi7j09Z944LMtHDjh6vq0AGJj76Bv3x+JihpHXt77rF4zhLx9s3E4KtzcvWcooImIiIiIeKvo82HCMhj4MOz4EqanwI65Tkua+PnyclIbPukWT4ndwaWbMvlb5j6K7J45ENrHZrg6pQ1LJw9i4sB2zN9awOCpy3htcSYl5S6uT/OPoGPSs6T0mkfjxh3JyHiSdamjOXJ0mXub9wAFNBERERERb+brD4MfgQnLIbQVfH4TfHoDnD7ktGxQeCjLU5K4KTqCt/cdYUhqOquOeW77+saBfjw8KonFDwxkcFJzXlmcwZCXljF3834cLh4T0LhxR87r/m+6dnkTy6pk69bxbNlyC6eLMt3cfd1RQBMRERERqQ9adobblsDQJyBjYdVs2s+fgZPNNxr5+vB8Ymu+7N4eY2Dclt08lJ7HqUrPzKYBtGkWzIzrevDphD40a+TPfZ9uYezM1WzKPeZSvTGG5s2H0af39yS0f4wTJzeTmjqa9PR/UF7u/COg9YECmoiIiIhIfeHjC/0fgIkroVl7+PJ2+PhqOJnvtKxf00Ys6ZXEHTHN+Xf+UQalprHk6Mk6avq39Y5vxrxJF/LiuK7kHy9h7IzV3PvxZvYfd+08N5vNnzZtbqVvnyW0anUN+/M/Ys3aoeTmvovDUe7m7t1HAU1EREREpL5p3qFqO/6LnoM9y2F6b9g02+lsWrCPjSfbRzP//ASCfWxc+/Me/rIrl+MVnjsM2mYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKXOvL3z+cpA5PktJrPqGh3cjMepa160Zx+MiPLm/t700U0ERERERE6iObD/S9C+78CVp2hXn3wL8vh2M5Tst6NAnhh54d+EtsJHMOFjIgNY3vD3t26/qQAF8eHNGBJZMHcVGnlkxbksXgqcuYs3Gfy+vTGjVKpHu3f9Gt6zsYY+PnnyewZctNWNY+N3dfuxTQRERERETqs2bt4KZvYPRLsG8DzOgLqW+Do/oz0AJ9bDwSH8V3PRKJ8PPl5u17mbgjmyPlnptNA4gOC2LaNefxxZ19iQoLYvLnW7ls+k+sz3ZtbZkxhoiIwfROWUBiwt85eWo7lrXYzV3XLgU0EREREZH6zmaDXrfBXWuqDrpeMBneGw1Hdzst69o4mO97JvLXuJZ8e/gEA1J3MffgMY9/NLBHbDhf3dmPV6/qzuFTZVz5xhomfbiJvMJil+ptNj9iYm6iX98lGHOFm7utXQpoIiIiIiINRVgbuP5LuGw6HNwBM/vB6v8GR/W7NvrbbDzYtiWLeiYSE+jPxJ053Lo9m4Nlnj0I2mYzXH5eNEsmD+S+YQksSTvE0JeXM+X7NE6Vutabn18YxjR2c6e1SwFNRERERKQhMQbOux4mrYP4wbDocZg1Ag6lOS3r2CiIb89P5PH4KJYUnmRAahqfFhR6fDYt2N+X+4YlsmTyQMZ0iWLmst0MnrqcT1Jzsbu4Pq0+UUATEREREWmIQqPgmo/hillQuAfe7A8rXgR79bNPvjbD3bGR/NirA4nBgfwlLZfrft7D/lLPb1sf1SSIl6/qztxJFxDbLJiHv9zGmP9exerdRzzdWq0ynk7ENdEzrom14YkLPd3Gfzh+/DhhYWGebkNERGqBxnQRaZDs5VUhrfgI+IVARAL4N3JaYmFxoKyCnNJyDBAbFECkvy8GUzc9/05vR4vKyT1aTLndQdNgf2KbBRPo6/Mfv9cbx3Vz64KNlmX1/K3vaQZNRERERKSh8/GH5klVX/ZyKNgCx3PAqn6nR4MhKsCf7o2DCfHxYU9xGTtPl1LqZHfIumIwRIQE0D0mjJimQZwoqWBr3nFyCouo9IL+zoWvpxuokYgEuOVbT3fxH7YsW8agQYM83YaIiNQCjeki0uAVF8LCR2Hrx1WzaJdNh9Y9qv3tgUAny+KDgqM8mZWP3YLH2kVxa3QENuPZ2TQbEA34nSzlxYXpzNm0j/Bif+4fnsjVvWLw9bF557h+a/Wvm2bQRERERET+SILD4U9vwLWfQ9lJmDUMFv0NKkqqLTHGcEOrCJanJNE3LITHM/dz+eYssopL67Dx6rUIDeTFK7vxzd0X0q5FIx6fu53R01axMvOwp1urMQU0EREREZE/osQRVeemnX8jrJ4GMy+AnDVOS6ID/fmwazzTOrYhvaiUoevTeT3nIJVespti5+gmfDqhDzOvO5/iikpumJXKBzvLPN1WjSigiYiIiIj8UQU2gUtegxu/BkcF/GsULHgIyk5XW2KM4c8tw1mRksSQ8FCe2VPA6E0Z7Dpd/QxcXTLGMKpLFD/cP5CHRyXRpfl/bhzizRTQRERERET+6OIHwZ1roPcdkPoWzOwLe5Y5LYkM8OPdznG82SmWvNJyRmzI4KW9Byj3kk06Av18mDiwHd2a169tNxTQREREREQEAhrBqClwy3dVuz7Ovgzm3QulJ6otMcZwWYumrEjpyJjmTXgx+wAjN2Sw9VRxHTbesCigiYiIiIjI/4rtCxNXwQV/gc3/hhl9IWOR05IIf19mdorjvc5tOVpRycUbM/jn7nxK7d4xm1afKKCJiIiIiMj/5RcEw5+C8YshIBQ+uhK+mli1Rb8TI5s3YXlKEldGhjMt9xDDN6Sz4URRHTXdMCigiYiIiIjIb2vdA+5YDgMegm2fw/TesOsbpyVhfr682rENH3WNp9ju4JJNmTyRuZ9izaa5RAFNRERERESq5xsAQx6D25dC45bw6fXw+c1w2vkZY0OahbIsJYkbWjXjzX2HGbI+jZ+OnaqbnusxBTQREREREfl9UV3h9iUw5G+Q9i1MT4Ftc8Cq/gy0xr4+vNAhhjnd22FZcMWW3fxXeh6nK+112Hj9ooAmIiIiIiKu8fGDAZPhjpUQHg9fjIdProWTBU7LLmzamCUpHZjQujmz848yMDWNZYUn66jp+kUBTUREREREaqZFEoxfBCOehd1Lqtambf7A6WxaiI8PTyVEM+/8BIJ8bFy9dQ/3p+VyoqKyDhv3fgpoIiIiIiJSczYf6Hc33LkaWnaGryfBB2PheK7Tsl5NQljcswP3tGnBpwWFDEhNY+GR6s9a+6NRQBMRERERkbPXrB3cNB8ungq566rOTVv/Djiq37Ux0MfGY+1asaBHIuF+vty0bS937czhaLlm0xTQRERERETk3NhskHI73LUGWveEbx+E9y+Bo7udlnUPDWZhz0QejItk3qFjDEhNY96h43XTs5dSQBMRERERkdrRNBZumAuX/jcc+BlmXgBrpoOj+l0b/W02/to2ikU9OxAd4MeEHdmM376XQ2UVdde3F1FAExERERGR2mMMnH8jTFoH8QNh4aPw7kVwON1pWXKjIBb0SOSx+CgWHz3JwNQ05hwoxHKy8UhDpIAmIiIiIiK1L7QVXPMJjH0bjmbBGxfCypfAXv06M1+b4Z7YSH7o2YF2wQHcvSuXG7btJb+0vA4b9ywFNBERERERcQ9joOufYVIqdBgFPz4F7wyBA9ucliWGBPL1+Qk81b4VPx07xcDUND7MP/qHmE1TQBMREREREfdq1AL+PBuufB9O5sNbg2DpP6Gy+pkxH2OYENOCpSlJdGkczIPpefx5625ySsrqrm8PUEATEREREZG60enyqtm0zlfA8inw1kDYv8lpSVxQAHO6t2NKYms2nSxm8Pp0Zu07jKOBzqYpoImIiIiISN0JDoexb8E1n0LJMXhnKPzwBFSUVltiM4aboiNYnpJE7yYhPJa5nz9tzmJ3cfU19ZUCmoiIiIiI1L0OI+GutdD9Ovjp1apNRHLXOS1pHejPR13jeTUphrSiUoauT2dG7iHsDWg2TQFNREREREQ8IygMLnsdbvgKKsuqtuP/7mEoL6q2xBjD1VHNWJ6SxMDwxjy1O58xGzNJKyqpu77dSAFNREREREQ8q90QuGs19LoN1s2Emf1g7wqnJS0D/Hivc1tmJseSU1rG8PUZvJJ9gApH/Z5Nq9OAZoyJN8bMMsbM+cW1y40xbxtjPjXGjKjLfkRERERExEsENIbRU+HmBWBs8P4lMP9+KD1ZbYkxhj9FNmV5ShKjmjdhyt4DjNqYwbZTxXXYeO1yOaAZY941xhwyxmz/1fWRxph0Y0yWMeZhZ/ewLGuPZVnjf3VtrmVZtwMTgatq0ryIiIiIiDQwcRfAxJ+g792w8T2Y0RcyFzstae7vx1ud4pjVOY6D5RWM3JjB83sKKHM46qbnWlSTGbT3gJG/vGCM8QGmA6OAZOAaY0yyMaaLMWb+r75a/M79Hz9zLxERERER+SPzD4aLnoVbF4F/CHx4Bcy9q2rXRydGNw9jRUoSYyOb8mrOQYavzyDT8qmjpmuHqclp3MaYOGC+ZVmdzzzuC/zDsqyLzjx+BMCyrOd+5z5zLMsad+bXBnge+MGyrP+IxsaYCcAEgMjIyB6ffPKJy/3WldOnT9OoUSNPtyEiIrVAY7qIiHcxjgrisj+lTe4XlPs3ISPxTo5G9P7dus2WL28TTNeKYib6V9ZBp64bPHjwRsuyev7W93zP8d7RQN4vHu8Dqn21jDHNgGeB84wxj5wJcvcAw4Amxpj2lmW98csay7LeAt4C6NmzpzVo0KBzbLn2LVu2DG/sS0REak5juoiINxoOBfcQMHcSXbb/s+qg61EvQEhEtRWDgPGVdn5aubJejevnGtBqxLKso1StNfvltWnAtLrsQ0RERERE6pmobjBhKax6FZZPgT3L4OIXodNYMOY3S0J9fQj67W95rXPdxXE/EPOLx63PXBMREREREaldPn4w8K9wxwoIi4U5t8Kn18OpA57urNaca0BbDyQYY9oaY/yBq4F5596WiIiIiIhINSKTYfwPMPxpyFoM01Ngy0dQg/01vFVNttn/GFgDdDDG7DPGjLcsqxK4G1gI7AI+syxrh3taFREREREROcPHFy64t2pL/hbJMPdO+HAcHM/7/Vov5vIaNMuyrqnm+gJgQa11JCIiIiIi4qqI9lWHW69/Bxb/o+rctBFPwfk3g+1cPzBY9+pfxyIiIiIiIr9ks0HvCXDXaog+D+bfD7MvhcK9nu6sxhTQRERERESkYWgaBzfOg0teg/wtMLMfrfZ/5+muakQBTUREREREGg5joMfNMGktxF2IsbzrkOrfo4AmIiIiIiINT5PWcO1n7I8e7elOakQBTUREREREGiZjwNSvyFO/uhUREREREWnAFNBERERERES8hAKaiIiIiIiIl1BAExERERER8RIKaCIiIiIiIl5CAU1ERERERMRLKKCJiIiIiIh4CQU0ERERERERL6GAJiIiIiIi4iUU0ERERERERLyEApqIiIiIiIiXUEATERERERHxEgpoIiIiIiIiXkIBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJeQgFNRERERETESxjLsjzdg8uMMYeBHKAJcKKWblsb94oAjtRCL+IZtfnzVJ/V59fB23r3RD918Zzueg6N6VLbvG1M8JT6+jp4W9+e6kfjeu3dyxvH9VjLspr/1jfqVUD7H8aYtyzLmuAt9zLGbLAsq2dt9CN1rzZ/nuqz+vw6eFvvnuinLp7TXc+hMV1qm7eNCZ5SX18Hb+vbU/1oXK+9e9W3cb2+fsTxGy+9l9RP+hmoUp9fB2/r3RP91MVzuus5NKZLbdPPQZX6+jp4W9+e6kfjeu3fq16olzNo3qa+pXIREamexnQRkYalvo3r9XUGzdu85ekGRESk1mhMFxFpWOrVuK4ZNBERERERES+hGTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCWi0zxoQYY943xrxtjLnO0/2IiMi5McbEG2NmGWPmeLoXERE5d8aYy8/8W/1TY8wIT/fzawpoLjDGvGuMOWSM2f6r6yONMenGmCxjzMNnLo8F5liWdTtwaZ03KyIiv6sm47plWXssyxrvmU5FRMQVNRzX5575t/pE4CpP9OuMAppr3gNG/vKCMcYHmA6MApKBa4wxyUBrIO/Mb7PXYY8iIuK693B9XBcREe/3HjUf1x8/832vooDmAsuyVgCFv7qcAmSd+Z/VcuAT4DJgH1UhDfT6ioh4pRqO6yIi4uVqMq6bKlOA7yzL2lTXvf4eBYizF83/zpRBVTCLBr4ErjDGzAS+8URjIiJyVn5zXDfGNDPGvAGcZ4x5xDOtiYjIWaju3+v3AMOAccaYiZ5ozBlfTzfQ0FiWVQTc4uk+RESkdliWdZSqdQoiItIAWJY1DZjm6T6qoxm0s7cfiPnF49ZnromISP2kcV1EpGGpl+O6AtrZWw8kGGPaGmP8gauBeR7uSUREzp7GdRGRhqVejusKaC4wxnwMrAE6GGP2GWPGW5ZVCdwNLAR2AZ9ZlrXDk32KiIhrNK6LiDQsDWlcN5ZleboHERERERERQTNoIiIiIiIiXkMBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJe4v8BszKEA6cVlZ8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "z = 0.5\n", "ns = [4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12] # np.arange(4, 13)\n", @@ -439,6 +368,59 @@ "# _ = ax.legend([f\"z={zi}\" for zi in z[0]])\n", "# _ = [ax.axvline(x) for x in zeros]\n" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "bests = []\n", + "N = 200\n", + "step = 1 / (N - 1)\n", + "a = 11 / 8\n", + "b = 1 / 2\n", + "x = np.linspace(step, 1 - step, N + 1)\n", + "ns = np.arange(2, 13)\n", + "for n in ns:\n", + " zeros, weights = np.polynomial.laguerre.laggauss(n)\n", + " est = np.ceil(b + a * n)\n", + " targets = np.arange(max(est - 2, 0), est + 3)\n", + " rel_errors = np.stack([np.abs(evaluate(x, target)) for target in targets], -1)\n", + " best = np.argmin(rel_errors, -1) + targets[0]\n", + " bests.append(best)\n", + "bests = np.stack(bests, 0)\n", + "\n", + "fig, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(5, 3))\n", + "v = ax.imshow(bests, cmap=\"inferno\", aspect=\"auto\")\n", + "plt.colorbar(v, ax=ax, label=r'$m$')\n", + "ticks = np.arange(0, N + 1, 10)\n", + "ax.set_xlim(0, 1)\n", + "ax.set_xticks(ticks, [f\"{v:.2f}\" for v in ticks / N])\n", + "ax.set_xticks(np.arange(N + 1), minor=True)\n", + "ax.set_yticks(np.arange(len(ns)), ns)\n", + "ax.set_xlabel(r\"$z$\")\n", + "ax.set_ylabel(r\"$n$\")\n", + "# for best in bests:\n", + "# print(\", \".join([f\"{int(b):2d}\" for b in best]))\n", + "# print(np.unique(bests, return_counts=True))\n", + "\n", + "targets = np.mean(bests, -1)\n", + "intercept, bias = np.polyfit(ns, targets, 1)\n", + "_, axs2 = plt.subplots(2, sharex=True, clear=True, constrained_layout=True)\n", + "xl = np.array([1, ns[-1] + 1])\n", + "axs2[0].plot(ns, intercept * ns + bias)\n", + "axs2[0].plot(ns, targets, \"x\")\n", + "axs2[1].plot(ns, ((intercept * ns + bias) - targets), \"-x\")\n", + "print(np.mean(bests, -1))\n", + "print(f\"Intercept={intercept:.6g}, Bias={bias:.6g}\")\n", + "\n", + "\n", + "predicts = np.ceil(intercept * ns[:, None] + bias - x)\n", + "print(np.sum(np.abs(bests-predicts)))\n", + "# for best in predicts:\n", + "# print(\", \".join([f\"{int(b):2d}\" for b in best]))\n" + ] } ], "metadata": { diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py new file mode 100644 index 0000000..90843b1 --- /dev/null +++ b/buch/papers/laguerre/scripts/gamma_approx.py @@ -0,0 +1,197 @@ +from pathlib import Path + +import matplotlib as mpl +import matplotlib.pyplot as plt +import numpy as np +import scipy.special + +EPSILON = 1e-7 +root = str(Path(__file__).parent) +img_path = f"{root}/../images" + + +def _prep_zeros_and_weights(x, w, n): + if x is None or w is None: + return np.polynomial.laguerre.laggauss(n) + return x, w + + +def drop_imag(z): + if abs(z.imag) <= EPSILON: + z = z.real + return z + + +def pochhammer(z, n): + return np.prod(z + np.arange(n)) + + +def find_shift(z, target): + factor = 1.0 + steps = int(np.floor(target - np.real(z))) + zs = z + steps + if steps > 0: + factor = 1 / pochhammer(z, steps) + elif steps < 0: + factor = pochhammer(zs, -steps) + return zs, factor + + +def laguerre_gamma_shift(z, x=None, w=None, n=8, target=11): + x, w = _prep_zeros_and_weights(x, w, n) + + z += 0j + z_shifted, correction_factor = find_shift(z, target) + res = np.sum(x ** (z_shifted - 1) * w) + res *= correction_factor + res = drop_imag(res) + return res + + +def laguerre_gamma_simple(z, x=None, w=None, n=8): + x, w = _prep_zeros_and_weights(x, w, n) + z += 0j + res = np.sum(x ** (z - 1) * w) + res = drop_imag(res) + return res + + +def laguerre_gamma_mirror(z, x=None, w=None, n=8): + x, w = _prep_zeros_and_weights(x, w, n) + z += 0j + if z.real < 1e-3: + return np.pi / ( + np.sin(np.pi * z) * laguerre_gamma_simple(1 - z, x, w) + ) # Reflection formula + return laguerre_gamma_simple(z, x, w) + + +def eval_laguerre_gamma(z, x=None, w=None, n=8, func="simple", **kwargs): + x, w = _prep_zeros_and_weights(x, w, n) + if func == "simple": + f = laguerre_gamma_simple + elif func == "mirror": + f = laguerre_gamma_mirror + else: + f = laguerre_gamma_shift + return np.array([f(zi, x, w, n, **kwargs) for zi in z]) + + +def calc_rel_error(x, y): + return (y - x) / x + + +ns = np.arange(2, 12, 2) + +# Simple / naive +xmin = -5 +xmax = 30 +ylim = np.array([-11, 6]) +x = np.linspace(xmin + EPSILON, xmax - EPSILON, 400) +gamma = scipy.special.gamma(x) +fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5)) +for n in ns: + gamma_lag = eval_laguerre_gamma(x, n=n) + rel_err = calc_rel_error(gamma, gamma_lag) + ax.semilogy(x, np.abs(rel_err), label=f"$n={n}$") +ax.set_xlim(x[0], x[-1]) +ax.set_ylim(*(10.0 ** ylim)) +ax.set_xticks(np.arange(xmin, xmax + EPSILON, 5)) +ax.set_xticks(np.arange(xmin, xmax), minor=True) +ax.set_yticks(10.0 ** np.arange(*ylim, 2)) +ax.set_yticks(10.0 ** np.arange(*ylim, 2)) +ax.set_xlabel(r"$z$") +ax.set_ylabel("Relativer Fehler") +ax.legend(ncol=3, fontsize="small") +ax.grid(1, "both") +fig.savefig(f"{img_path}/rel_error_simple.pgf") + + +# Mirrored +xmin = -15 +xmax = 15 +ylim = np.array([-11, 1]) +x = np.linspace(xmin + EPSILON, xmax - EPSILON, 400) +gamma = scipy.special.gamma(x) +fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(5, 2.5)) +for n in ns: + gamma_lag = eval_laguerre_gamma(x, n=n, func="mirror") + rel_err = calc_rel_error(gamma, gamma_lag) + ax2.semilogy(x, np.abs(rel_err), label=f"$n={n}$") +ax2.set_xlim(x[0], x[-1]) +ax2.set_ylim(*(10.0 ** ylim)) +ax2.set_xticks(np.arange(xmin, xmax + EPSILON, 5)) +ax2.set_xticks(np.arange(xmin, xmax), minor=True) +ax2.set_yticks(10.0 ** np.arange(*ylim, 2)) +# locmin = mpl.ticker.LogLocator(base=10.0,subs=0.1*np.arange(1,10),numticks=100) +# ax2.yaxis.set_minor_locator(locmin) +# ax2.yaxis.set_minor_formatter(mpl.ticker.NullFormatter()) +ax2.set_xlabel(r"$z$") +ax2.set_ylabel("Relativer Fehler") +ax2.legend(ncol=1, loc="upper left", fontsize="small") +ax2.grid(1, "both") +fig2.savefig(f"{img_path}/rel_error_mirror.pgf") + + +# Move to target +bests = [] +N = 200 +step = 1 / (N - 1) +a = 11 / 8 +b = 1 / 2 +x = np.linspace(step, 1 - step, N + 1) +gamma = scipy.special.gamma(x)[:, None] +ns = np.arange(2, 13) +for n in ns: + zeros, weights = np.polynomial.laguerre.laggauss(n) + est = np.ceil(b + a * n) + targets = np.arange(max(est - 2, 0), est + 3) + gamma_lag = np.stack( + [ + eval_laguerre_gamma(x, target=target, x=zeros, w=weights, func="shifted") + for target in targets + ], + -1, + ) + rel_error = np.abs(calc_rel_error(gamma, gamma_lag)) + best = np.argmin(rel_error, -1) + targets[0] + bests.append(best) +bests = np.stack(bests, 0) + +fig3, ax3 = plt.subplots(num=3, clear=True, constrained_layout=True, figsize=(5, 3)) +v = ax3.imshow(bests, cmap="inferno", aspect="auto", interpolation="nearest") +plt.colorbar(v, ax=ax3, label=r"$m$") +ticks = np.arange(0, N + 1, N // 5) +ax3.set_xlim(0, 1) +ax3.set_xticks(ticks, [f"{v:.2f}" for v in ticks / N]) +ax3.set_xticks(np.arange(0, N + 1, N // 20), minor=True) +ax3.set_yticks(np.arange(len(ns)), ns) +ax3.set_xlabel(r"$z$") +ax3.set_ylabel(r"$n$") +fig3.savefig(f"{img_path}/targets.pdf") + +targets = np.mean(bests, -1) +intercept, bias = np.polyfit(ns, targets, 1) +fig4, axs4 = plt.subplots( + 2, num=4, sharex=True, clear=True, constrained_layout=True, figsize=(5, 4) +) +xl = np.array([ns[0] - 0.5, ns[-1] + 0.5]) +axs4[0].plot(xl, intercept * xl + bias, label=r"$\hat{m}$") +axs4[0].plot(ns, targets, "x", label=r"$\bar{m}$") +axs4[1].plot( + ns, ((intercept * ns + bias) - targets), "-x", label=r"$\hat{m} - \bar{m}$" +) +axs4[0].set_xlim(*xl) +# axs4[0].set_title("Schätzung von Mittelwert") +# axs4[1].set_title("Fehler") +axs4[-1].set_xlabel(r"$z$") +for ax in axs4: + ax.grid(1) + ax.legend() +fig4.savefig(f"{img_path}/schaetzung.pgf") + +print(f"Intercept={intercept:.6g}, Bias={bias:.6g}") +predicts = np.ceil(intercept * ns[:, None] + bias - x) +print(f"Error: {int(np.sum(np.abs(bests-predicts)))}") + +# plt.show() diff --git a/buch/papers/laguerre/scripts/integrand.py b/buch/papers/laguerre/scripts/integrand.py index 43fc1bf..0cf43d1 100644 --- a/buch/papers/laguerre/scripts/integrand.py +++ b/buch/papers/laguerre/scripts/integrand.py @@ -20,29 +20,30 @@ t = np.logspace(*xlims, 1001)[:, None] z = np.array([-4.5, -2, -1, -0.5, 0.0, 0.5, 1, 2, 4.5]) r = t ** z -fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4)) +fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 3)) ax.semilogx(t, r) ax.set_xlim(*(10.0 ** xlims)) ax.set_ylim(1e-3, 40) -ax.set_xlabel(r"$t$") -ax.set_ylabel(r"$t^z$") +ax.set_xlabel(r"$x$") +ax.set_ylabel(r"$x^z$") ax.grid(1, "both") -labels = [f"$z={zi:.1f}$" for zi in np.squeeze(z)] -ax.legend(labels, ncol=2, loc="upper left") +labels = [f"$z={zi: 3.1f}$" for zi in np.squeeze(z)] +ax.legend(labels, ncol=2, loc="upper left", fontsize="small") fig.savefig(f"{img_path}/integrands.pgf") z2 = np.array([-1, -0.5, 0.0, 0.5, 1, 2, 3, 4, 4.5]) -r2 = t**z2 * np.exp(-t) +e = np.exp(-t) +r2 = t ** z2 * e -fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(6, 4)) +fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(5, 3)) ax2.semilogx(t, r2) # ax2.plot(t,np.exp(-t)) -ax2.set_xlim(10**(-2), 20) +ax2.set_xlim(10 ** (-2), 20) ax2.set_ylim(1e-3, 10) -ax2.set_xlabel(r"$t$") -ax2.set_ylabel(r"$t^z e^{-t}$") +ax2.set_xlabel(r"$x$") +ax2.set_ylabel(r"$x^z e^{-x}$") ax2.grid(1, "both") -labels = [f"$z={zi:.1f}$" for zi in np.squeeze(z2)] -ax2.legend(labels, ncol=2, loc="upper left") +labels =[f"$z={zi: 3.1f}$" for zi in np.squeeze(z2)] +ax2.legend(labels, ncol=2, loc="upper left", fontsize="small") fig2.savefig(f"{img_path}/integrands_exp.pgf") -plt.show() +# plt.show() -- cgit v1.2.1 From b2f6c58490cd3517d1a813e1b51b4e2aafc945a0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 2 Jun 2022 08:09:02 +0200 Subject: Add relative error plots with shift --- buch/papers/laguerre/scripts/gamma_approx.ipynb | 205 +++++++++++++++++++++--- buch/papers/laguerre/scripts/gamma_approx.py | 97 +++++++++-- 2 files changed, 269 insertions(+), 33 deletions(-) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/scripts/gamma_approx.ipynb b/buch/papers/laguerre/scripts/gamma_approx.ipynb index a8280aa..82adca6 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.ipynb +++ b/buch/papers/laguerre/scripts/gamma_approx.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 73, "metadata": {}, "outputs": [], "source": [ @@ -48,7 +48,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ @@ -86,7 +86,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 75, "metadata": {}, "outputs": [], "source": [ @@ -132,10 +132,42 @@ " factor = pochhammer(zs, -steps)\n", " return zs, factor\n", "\n", + "def find_optimal_shift(z, n):\n", + " mhat = 1.34093 * n + 0.854093\n", + " steps = int(np.ceil(mhat - np.real(z)))-1\n", + " return steps\n", + "\n", + "\n", + "def get_shifting_factor(z, steps):\n", + " zs = z + steps\n", + " factor = 1.0\n", + " if steps > 0:\n", + " factor = 1 / pochhammer(z, steps)\n", + " elif steps < 0:\n", + " factor = pochhammer(zs, -steps)\n", + " return factor\n", + "\n", + "\n", + "def laguerre_gamma_shift(z, x, w):\n", + " z = complex(z)\n", + " n = len(x)\n", + "\n", + " z += 0j\n", + " # z_shifted, correction_factor = find_shift(z, target)\n", + " opt_shift = find_optimal_shift(z, n)\n", + " correction_factor = get_shifting_factor(z, opt_shift)\n", + " z_shifted = z + opt_shift\n", + "\n", + " res = np.sum(x ** (z_shifted - 1) * w)\n", + " res *= correction_factor\n", + " res = drop_imag(res)\n", + " return res\n", + "\n", "\n", "def laguerre_gamma(z, x, w, target=11):\n", " # res = 0.0\n", " z = complex(z)\n", + " n = len(x)\n", " # if z.real < 1e-3:\n", " # res = pi / (\n", " # sin(pi * z) * laguerre_gamma(1 - z, x, w, target)\n", @@ -144,7 +176,13 @@ " # z_shifted, correction_factor = find_shift(z, target)\n", " # res = np.sum(x ** (z_shifted - 1) * w)\n", " # res *= correction_factor\n", + " \n", " z_shifted, correction_factor = find_shift(z, target)\n", + " \n", + " # opt_shift = find_optimal_shift(z, n)\n", + " # correction_factor = get_shifting_factor(z, opt_shift)\n", + " # z_shifted = z + opt_shift\n", + " \n", " res = np.sum(x ** (z_shifted - 1) * w)\n", " res *= correction_factor\n", " res = drop_imag(res)\n", @@ -153,7 +191,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 76, "metadata": {}, "outputs": [], "source": [ @@ -161,6 +199,10 @@ " return np.array([laguerre_gamma(xi, zeros, weights, target) for xi in x])\n", "\n", "\n", + "def eval_laguerre2(x):\n", + " return np.array([laguerre_gamma_shift(xi, zeros, weights) for xi in x])\n", + "\n", + "\n", "def eval_lanczos(x):\n", " return np.array([lanczos_gamma(xi) for xi in x])\n", "\n", @@ -177,6 +219,12 @@ " lanczos_gammas = eval_lanczos(x)\n", " laguerre_gammas = eval_laguerre(x, target)\n", " rel_error = calc_rel_error(lanczos_gammas, laguerre_gammas)\n", + " return rel_error\n", + "\n", + "def evaluate2(x):\n", + " lanczos_gammas = eval_lanczos(x)\n", + " laguerre_gammas = eval_laguerre2(x)\n", + " rel_error = calc_rel_error(lanczos_gammas, laguerre_gammas)\n", " return rel_error\n" ] }, @@ -206,9 +254,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 87, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xV9f3H8de5O7lJbvaeJAEy2DvsvUFQUdQqarWto9VWW1dbbbWutr/WqnXUhQMERfYUCHvvQIBACJBBBtk7uff8/jiR4WQkuRmf5+NxHvdy5+eGS7jv+/1+P19FVVWEEEIIIYQQQjifztkFCCGEEEIIIYTQSEATQgghhBBCiBZCApoQQgghhBBCtBAS0IQQQgghhBCihZCAJoQQQgghhBAthAQ0IYQQQgghhGghWnxAUxTlfUVR8hRFSWmkx3tFUZTDiqKkKorymqIoSmM8rhBCCCGEEEJcrxYf0IAPgXGN8UCKoiQBA4GuQCLQBxjaGI8thBBCCCGEENerxQc0VVU3AoWXXqYoSrSiKCsVRdmjKMomRVE6X+nDARbABJgBI5DbqAULIYQQQgghxDVq8QHtB7wDPKyqai/gMeDNK7mTqqrbgPVATsOxSlXV1CarUgghhBBCCCGugsHZBVwtRVHcgCRg/iXLx8wN100H/vI9d8tSVXWsoigxQBwQ2nD5GkVRBququqmJyxZCCCGEEEKIn9TqAhraqF+xqqrdv32FqqoLgAU/ct9pwHZVVcsBFEVZAQwAJKAJIYQQQgghnK7VTXFUVbUUOKUoys0AiqbbFd79DDBUURSDoihGtAYhMsVRCCGEEEII0SK0+ICmKMocYBvQSVGUTEVR7gVuB+5VFOUAcBiYeoUP9wVwEjgEHAAOqKq6pAnKFkIIIYQQQoirpqiq6uwahBBCCCGEEELQCkbQhBBCCCGEEKK9kIAmhBBCCCGEEC1Ei+7i6Ovrq0ZGRjq7DCEuqKiowGq1OrsMIS6Q96RoieR9KVoaeU+KlmbPnj0Fqqr6fd91LTqgRUZGsnv3bmeXIcQFycnJDBs2zNllCHGBvCdFSyTvS9HSyHtStDSKopz+oetkiqMQQgghhBBCtBAS0IQQQgghhBCihZCAJoQQQgghhBAtRItegyaEEEIIIYS4OnV1dWRmZlJdXe3sUto9i8VCaGgoRqPxiu8jAU0IIYQQQog2JDMzE3d3dyIjI1EUxdnltFuqqnL+/HkyMzOJioq64vvJFEchhBBCCCHakOrqanx8fCScOZmiKPj4+Fz1SKYENCGEEEIIIdoYCWctw7X8PUhAE0IIIYQQQjSqf//73yQmJpKQkMC//vUvZ5fTqkhAE0IIIYQQQjSalJQU3n33XXbu3MmBAwdYunQpJ06ccHZZrYYENCGEEEIIIUSjSU1NpV+/fri6umIwGBg6dCgLFixwdlmthnRxFEIIIYQQoo16bslhjmSXNupjxgd78OfJCT94fWJiIk8//TTnz5/HxcWF5cuX07t370atoS2TgCaEEEIIIYRoNHFxcfzhD39gzJgxWK1Wunfvjl6vd3ZZrYYENCGEEEIIIdqoHxvpakr33nsv9957LwBPPfUUoaGhTqmjNZKAJoQQQgghhGhUeXl5+Pv7c+bMGRYsWMD27dudXVKrIQFNCCGEEEII0ahuvPFGzp8/j9Fo5I033sDT09PZJbUaEtCEEEJcHVWF+mqoq4K6SqirBnstOOrAXn/J+dqLf1YdgKqdqmrD43xzXgUUUHSg04GiB53+u6cGM+jNYDB969QMehMYXbX7CyGEcLpNmzY5u4RWSwKaEEK0Fw47VJdAVdHlR3UJ1JRCTdklR/nFy2rLG8JYw1Ff5exX8sMMFi2omawNp65gtGp/NruB2QMsHmCxNZy3XXKZJ7h6g4u3Fv6EEEIIJ5CAJoQQrZXDgbG2GHIPQ0U+VBRAeV7D+UuOysKLQQz1hx9PZ9DCitm94dQN3PzBFKWFHKMFjC5a8PkmCBldtPMGE+iM2kiW3qCd6ozaeZ2xYSRMhzZSplx+/huqQwuRqv2SU0fDaT3U12ijcZed1kB97SUjehVQW6mN7NVWNJxWQlkOnC+H6lIteNprf/xna3LTgpqrl3bq4gWuPtrPw+rXcOoPbn7aqcn1+v8+hRBCCCSgCSFEy1RfC6WZUJKlhYvS7MtPy85B2TkGOupg67fuqzNoIcLqq516d9ACxjdB49uHxaaFMoP58sDUltVVa0GturRhBLEEqoqhqhAqixpOCy+eFp+GyvMNIfd7mNy0n7V7EHgENZwGg3sguAdfvMxgbtaXKYQQovWRgCaEEM5QV6196C86DSVnoPgslJy9eFp2ju+MdpncL37QjxgIHkGknSsjtvvAiyM7Vj9tqp6sxfpxRot2uPlf3f3qay6OTJbnQ0XexVHL8lzt7y1rrxai66u/e3+rH9jCwBYKnuGXnA/Tzrt4tZ+QLIQQ4ns1e0BTFEUP7AayVFWd1NzPL4QQzaa6FArToegUFJ5qOJ+hnZZmc1kA0xnBFqJ9aI8eefEDuy304kiM2f07T5GVnExs4rDmekXCYNb+Tmw/sZ+PqmrTSsvOQVk2lOZooa3kLJRkQl4qpK3+bogzuYNXJHhFgHdUw/lI8IrS3g+yNk4IIdo8Z4yg/QZIBTyc8NxCCNG4HA7tQ3dBGhQch/NpDefToPzc5be1+msfuiMHa9MOvaPAM0ILY26BMurVliiK1nDE1RsC4r//NqqqTZssPnMxuBWd1kJ8wXFIW6OtsbvwmDotGPrEXHJEg0+sdrlO3ywvTQghRNNq1oCmKEooMBF4Afhtcz63EEJcF4dDm4qYewTyjmgjIPlH4fyJy0dBLJ7g2xFiRoFvDHhHXxwJ+Z4RMNGOKUrDOkFfCOn53esdDi3kF57SQltRwyjs+ZNwdg7Ull28rd6shX6faPDrBH6dtfehb0dpYCKEcIp77rmHpUuX4u/vT0pKCgCFhYXccsstZGRkEBkZybx58/Dy8nJypS1Pc4+g/Qv4PSCfUoQQLVdlIZw7qHVH/CaM5R3VOgR+wxYO/p2hwzDwjb34YdjVR9YQicah02nTWz2CIXLg5depqrb27fyJS46T2sjb8ZVa10sAFG3arF9n8OvYcBqnvXdN1mZ/SUKI9mPWrFk89NBD3HnnnRcue+mllxg5ciRPPPEEL730Ei+99BIvv/yyE6tsmRRV/ZGWy435RIoyCZigquoDiqIMAx77vjVoiqLcD9wPEBAQ0Gvu3LnNUp8QV6K8vBw3NzdnlyEai6piqc7DrTy94TiFW/kpLDUFF25Sa/SkwhpOhTXiktMw7IaWMSoh70nxbYqjDpeqHFwrM7FWnMW18izWikxcKzPRqXUAqChUuQQ2vJ+1o9wtgiqXIG1j8Osk70vR0rS396TNZiMmJsbZZXD69GlmzJjBjh07AOjZsyfLly8nMDCQc+fOMWHCBPbu3evkKpveiRMnKCm5vAvw8OHD96iq2vv7bt+cI2gDgSmKokwALICHoiifqKp6x6U3UlX1HeAdgN69e6vDhg1rxhKF+HHJycnIe7KVUlVtmlj2PsjeC9n7Ieeg1l4dtPU9vh2h4wgI7AJBXSEgEZPVFxPQUidgyHtSXDGHXfs3kJeKknsY17zDuOYewe/MTm0POgCDiza6FtgFArtCUDcISLjq0TZ5X4qWpr29J1NTU3F3b5iwtuIJOHeocZ8gsAuMf+knb+bm5oZOp7tQS35+PrGxsReuy8/Pv1hnG2axWOjRo8cV377ZApqqqk8CTwJcMoJ2x4/dRwghrllpjhbEsvY2hLJ92p5WoG2iHJAIXW7UPoQGdtUaORhdnFuzEE1Jp29oKhINcZdMYKmr0tZT5h7RpvXmHoLUJbB3tna9otMakgR2bfjyohsEd9e2BBBCiGukKAqKLAn4XrIPmhCi9auv1daMnd0JmTvh7C5tk2fQpmv5x0PniVojhuCe2p+lXbkQGqMLBPfQjm+oqtZV8txB7Zv3nINwdgekfHHxNl5RF+8X3EMLbhZp0CxEi3MFI13NJSAggJycHIKCgsjJycHf/yr3omwnnBLQVFVNBpKd8dxCiDagLBfObm8IZLu06YrftCO3hUFYXwh9EEJ6ad/4Sxc7Ia6OomjbP3iGaV9ufOObBjrfjEpn7YbDCy5e7xMLwT0IqfKATHft3598GSKEaDBlyhQ++ugjnnjiCT766COmTp3q7JJaJBlBE0K0bN+sHTuzDU5vgdPboPCkdp3eBEHdoe99ENpHC2Yewc6sVoi2zdVb61zaYdjFyyoKtC9JvgltpzYSW34OTvxPa/8f1FX79xnaG0J6a10lZVqTEG3ezJkzSU5OpqCggNDQUJ577jmeeOIJZsyYwXvvvUdERATz5s1zdpktkgQ0IUTLoqraepiMzQ2hbBuUZWvXWTwhfAD0uks7DeoGBrNTyxWi3bP6Quwo7WiwbeUXDAgzaCNsmXtg9wew/c2G2/trgS28H4T119azyb9jIdqcOXPmfO/la9eubeZKWh8JaEII51JVbfPdUxu1I2MzVORp17kHQ8QALYxFDNT2cNLpnFuvEOIn1Vh8IWEYJNygXWCv0/YUzNwFmbu19WzHlmnX6U3aGrawfhDeXzu1+jqrdCGEcDoJaEKI5ld89pJAtglKs7TL3YMgejhEDobIQeAVKVOhhGgL9EZtxDuoG/T5uXZZeZ62jvTsdjizA7b/F7a+pl3nEwMRSdoXMxFJ2rRIIYRoJySgCSGaXk0ZZGyBk+u043yadrmrjxbGon4HUUO19t8SyIRoH9z8tXb/37T8r6vW1rCd3a5NbT6y6GKrf1tYQ2BrCG0+MfK7QgjRZklAE0I0PocdcvY3BLL12nQmR722CW7kQOg1Sxsp84uTKYtCCI3Rok1pjhgAgx4Fh0ObFnl6q9Yg6OR6OPi5dlurv/a7JGoIRA6RL3eEEG2KBDQhROOoKIATayFtNZxcC1VF2uWBXWHAQxA9QltbYrQ4t04hROug00Fgonb0u19br3r+ZEM31y1wahMc/kq7rXtQw2j8YO1UpkcLIVoxCWhCiGvjcMC5A5C2Bo6vgqw9gApWP+g4DqJHaq243fycXakQoi1QFPCN0Y5ed323wVD6ejjU0LLbFqZNm+4wDDoM1aZTCiFEKyEBTQhx5WrKtGmLx1dpwawiD1C0DaGHPQmxo7V9yWTaohCiqSmKNrXRJxp6392wRccxrfHQqQ1wdCns/0S7rX/Cxf3bIpLA7ObMyoVoF+655x6WLl2Kv78/KSkpAMyfP59nn32W1NRUdu7cSe/evZ1cZcskAU0I8eNKs+HYCu04tQHstdp+ZDGjIHYMxIyUlthCCOdTFPDvrB1972tYC3sA0pO1Y9f/YPsboDNAaF9tHWz0SG0fNp3eycUL0fbMmjWLhx56iDvvvPPCZYmJiSxYsIBf/OIXTqys5ZOAJoS4nKpCbkpDKFuudVUD8IqCvvdDp/Ha5rJ6+fUhhGjBdHoI6akdg38LdVVwZntDYFsP61/QDhdvbWQtZpS2VtYjyNmVC9EmDBkyhIyMjMsui4uLc04xrYx8whJCaOvJMndB6mLtKD4DKBDaB0b+GTpNAL9OsuheCNF6GV0aRs2GA89pjY1OrteaGp1cB4cXaLfzT4CYEdroWkQSGMxOLVuI6/Xyzpc5Wni0UR+zs3dn/tD3D436mOIiCWhCtFf2eji9GVKXQOpSKD8HehN0GA6DH9NGymRhvRCirbL6QtebteObmQMn1mqBbcfbsPU/YLRqo2uxo7XDFursqoUQ7YAENCHak/pabWrPkcVwbJnWCt/oqn3wiJuirSmzeDi7SiGEaF6KAoFdtGPQI1BboXWGTFujHceWabfzT2gIa2MgrC/ojU4tW4grISNdrY8ENCHaOnsdpG/Qpu8cXQrVJWC2aSNkcZO1NRcmV2dXKYQQLYfJqv2O7DReG10rOK7t8Zi2Gra9Dlv+pf0ejRkBHcdroc3V29lVCyHaCAloQrRF9nrI2Kht4pq6RBspM9ug80RImKZN2TGYnF2lEEK0fIqircH16wRJD0N1qdbR9vgq7Tj8FSg6COsHHcdqgU3W7ArBzJkzSU5OpqCggNDQUJ577jm8vb15+OGHyc/PZ+LEiXTv3p1Vq1Y5u9QWRwKaEG2FwwFntsGh+Vqjj8rzYHLTGnwkTtdGymSxuxBCXB+Lhzb7IG6y9ns3Zx8cWwnHV8LXz2qHVyR0HKeNwEUMlKmQol2aM2fO914+bdq0Zq6k9ZGAJkRrdy4FDs2DQ19Caaa2pqzjOC2UxYzSOpcJIYRofDodhPTSjhFPQ0mWFtSOr4TdH8COt8Big9ix0HmC9jvZ7O7sqoUQLZwENCFao+Iz2kjZoS8g74i28Wr0SBj1rPYhwGR1doVCCNH+2EKgz73aUVuhtfE/tlzbV/LQPK1TbtRQ7fd0pwngHujsioUQLZAENCFai6pirdHHgc/h7HbtsrD+MOHv2royq69TyxNCCHEJkxXiJmmHvR7O7tDC2tFlsPRR7QjpfXG6pE+0sysWQrQQEtCEaMns9dqePPs/076BtdeAX2cY8UfocpO2zkEIIUTLpjdA5EDtGPM85KVqrfuPLoOv/6wd/gkXw1pAgjQZEaIdk4AmREt0LgUOzIGD86AiD1y8odcs6D4TgrrLf9xCCNFaKQoExGvHkMe1KetHl2kddze8DBteAq+ohtG3Kdoom07n7KqFEM1IApoQLUXFeTj4uTZalnsIdEatZXP32yBmtLTFF6KJORwOVHs9ar0dh8MB9npUux17vXaKQ9VuqNO+IFEUHegUFLQPz4pOQWcyoTeZUIxGdPKhWlwJz3Do/yvtKM/TpkGmLoHtb8HW/4BHiBbU4qdqrfzlfSVEmycBTQhncti1ReT7ZsPR5eCog+AeMP5VSLwRrD7OrlAIp7DX1VJ9/jw15wuoKiykpqiY2ooy6irKqa2spLaykrqqSuqqq6mrqaG+tob6+jrs9fXY7faLh2rH7lCxqw4cqooDcKCignZeARUFh0Kjj0wrqoqigsI3p6C7cCjoFQVdw6FXdOh0evR6HQa9EYPRgMFgxGgyYTCZMZrNGCwWjBYXTFY3TO7umD08MNs8MXt6Yfb0xOLtg8FqlWDYmrn5a7Mles2C6hKtff+RRbD7fdjxX3ALhPgpEH8DhPcHnd7JBQvxw+655x6WLl2Kv78/KSkpADz++OMsWbIEk8lEdHQ0H3zwAZ6ens4ttAWSgCaEMxSegv2faqNlpVnaFMa+90GPn2nTXoRo5RwOB3UlxZRnZlJ+LoeqgnyqigqpLimhuqyUmopyqqsqqa2poaa2hjq7nTqHnTpU6hWwX0XIUFQVvUNFD9qh6BpCj4Jep8ds1KHX69Hr9Oh0WhDS6RvO6/Xo9XoUvb7hch2KorswOqZTFNDptNCjKKBqo2iqqoJKQ9RDu1xVcTgcOOx27XDYUR0OHHYHqmrHYXdgt9fj+CY8OrRTh8OBQ3VQW1+Hvc6BXa3EjoodsCsKDt2VB0dFVTE4VEwoGHU6THoDJqMRk8mC2eKC2eqK2c0DV08vXLy8cfXzxzUwEGtwMBYfXwl3LYnFBt1u0Y6aMm1T7CMLYe9s2PkOWP219WoJ0yAiScKaaHFmzZrFQw89xJ133nnhstGjR/Piiy9iMBj4wx/+wIsvvsjLL7/sxCpbJgloQjSXumptA+m9syFjE6BAzEgY+zet3bJMYRQtmMPhoOZ8IeVnT1OWmUlZbjaVBflUFBVSVVZGdVUl1TXV1NTXUaM6qP2JYKGoKsaGIGHS6zEZjLgZXTGZzJjMFkwuLphcXTG7uWF288Dk7o7JzQ2Tmzsmdw9MNg/MHp6YPW0YXNv2thL2ulrqSsuoLS+jpriY2pJiakpLqCktpbasjJryMm1EsbKS2upKaqqqqK2p1oJvfT0lVZXUVZZT9xPBV1FVTA6VAFVHX6sPeh9vDN6XnHp7YfDxQe/tjcHPD53ViiLrYZuH2V1rDNXlJqgph7TV2sjagTmw+z1wC9BG1RKmyTRI0WIMGTKEjIyMyy4bM2bMhfP9+/fniy++aOaqWgcJaEI0tfzjsOdDOPAZVBWBZwQMf0Zr+GELdXZ1op1zOBxUZGVSeiqd0jNnKMvNoTw/n4qSIioryqisqabaXk+1Ao4f+NBntDswo2DWG7CaXfC2WHBxteLiYcPV5omLtw8uPj64+Pji6h+Aa0AgRg8PGa25QnqjCb2PDxYfH4i4vseqr6ykMi+XipxsKvNyqSwooKqokKqSYqrLysg8n8e5uhpUu52a1KNUFBbiKC393sdSXFww+Plh8PXVTi85b8o9R01oKIaAAHRubhLkGpPZDRKna0dthTaydngB7P0Idr6trVmLv0G7PqSXNJUSnPvb36hJPdqoj2mO60zgU09d12O8//773HLLLY1UUdsiAU2IplBXrS3y3vMBnN6ibSTdeZK2riBqqHy7KZqFw+Gg/Mxpik+kUXI6g9KcLMoK8ikvKaGiqoLK+rqG4PXdD3BGuwOLosPFYMTP6o6r1R2rzYartw9W/wDcg4JxCw3DPSyszY9gtSUGV1c8IqPwiIz63us3fvoBe5cvIvLTTy5cptbWUl9UjL3wPPWFhdjPn6c+v4D6/HztKCigJi2Niq1bcZSVAeAFpL/2HwB0rq4YAgMxBPhjDAjEEBiAMTAIY3AQxuBgjEFB6KzyHromJuvFsFZTpq1ZO7wAdr0L298AWzgkToPEmyCwi4Q10WK88MILGAwGbr/9dmeX0iJJQBOiMRWkaaNl+z+DqkJtn7JRz0L327XF30I0Ikd9PfVZmZxctIDi0xmUZGdTVlhAWXkpFbU1VCrqd0a9FFXFxQGuBgO+bjbcbTas3j64+wfiHhKCR3gEtg7RmDxsTnpVwpmMZgv2em2dnE6vrWlSTCaMAf4YA376d5ijupr6/Hx2rVxJYnAw9edyqcs9R/25XOpzc6nYvp36vDxwOC67n95mwxASjDEoWAttwcGYwkIxhmqH3s2tSV5vm2J2h643a0dVsbZ3ZsqXsO0N2PJv8O2oBbUuN8mm2O3M9Y50NbYPP/yQpUuXsnbtWhld/wES0IS4XvZ6bcPRXf+DUxsbRssmNoyWDZPRMnFdKvPzOH/oIIUnjlOceZaSvFzKSksor62msmH068AltzfZHbjq9Hi6uhFm88LDzx9bcDAeYZF4xsbiHh6BziC/+sX3M5rNANTV1GB2db3q++ssFkxhYdTFxmIbNux7b6PW11NfUEBddjZ1WdnU5eRQl52lnZ45TeW2bTgqKy+7j97LC2NoqBbaQkIxhoViCo/AFBmBwd8fRX7PXs7FU5tG332mtoVL6iI49CUkvwjJf9P20+xyEyRMB1uIs6sV7cjKlSt55ZVX2LBhA67X8DumvZD/pYW4VmXnYM9H2ohZWTbYwmDEH7VOjO4Bzq5OtCKVubnkH9zP+WOpFJ09TXF+PqUVpZTb66nVX/7B02h3YNXp8bK6E+HlTTU6OvXui1dMLF6d4zBLu2JxHQxmCwB1NdXXFNCuhGIwYAwMxBgYCD17fud6VVVxlJRQm5lFXeZZas+epS4zi7qzZ6k6fJjS1Wugvv7i45nNmMLDMEZEaKEtIgJTRDimyEgMAQHyDb3VB3rfox2l2ZCyAFK+gNXPwOo/ah0gu9wMCTeAi5ezqxVtyMyZM0lOTqagoIDQ0FCee+45XnzxRWpqahg9ejSgNQp56623nFxpyyMBTYiroaqQsUWb35+6BBz1ED0CJv5D21Ra2hyLH1BfVUXBgf3kHz7E+VMnKTyXTWlZKWX2uu+EMIvdgbvRTJjNC0//QLzCIvCOicU7IRFrYNBlt01OTibuB0YqhLhaF0fQqp1Wg6Io6D09cfH0xCUx4TvXq3Y79efOUXvmDLWnT1N7uuE0I4OKjZtQa2sv3Fbn6oopMhJThw6YoiIxR0Vp5yMi0Lm4NOfLahk8giHpIe04f1KbAnlwHix9BFb8HmLHaGGt4zgwWpxdrWjl5syZ853L7r33XidU0vpIQBPiStRWwIG59N79b9hwWtufpu8voM+9MpdfXKYyP4+83bvIO5LC+dOnKC48T2l1JRU6UC/5Jt9sd+BuMBHm7YeXfyDekVF4d4rDr1t3Wf8lnMZoaRhBq3ZeQPspil6PMSQEY0gI1gEDLrtOdTi08NYQ2GrST1F76hRVe/dSumzZhX3sAIwhIZhiojFHx2COjsYcE40pOrr9rHfziYahv4chj0POfjg4XxtZO7oUzB7ahthdZkDkIPnyUYhmJgFNiB9TdFobLds7G6pLUN06wJT/aAutTTJ3uj2ryM7m3O4d5Kce5vzZ0xQVnqektprqS0bDdA4VNxQ8Xd2I9PXDJzwS305x+PfsjWuATIMVLY/xwhTHGidXcm0Une5Ck5FvhzdHdbUW3NLTqTl1itqT6dScPEnltu2XjboZAgMbAlsM5o6xmDt2xBwT03ZH3BQFgntox5i/amupD82Hw4tg3yfgHqytV+t2KwR8d0RTCNH4JKAJ8W2qChmbYcdbcGw5oGjfJPb7JXtOVjGs53BnVyiaUW1pCbm7dnLu4H4KTp2ksCCf4tqqy4KY3uHAXdET6OGFd0AwvjGxBHTrjk+XbugbpowJ0Rp8M8WxvpUGtB+js1iwdOqEpVOnyy5X7XbqMjOpOXGCmhMnqTl5gtoTJymaOxf1m5+DomAMD8PSsSPm2I5aaOvYEVNEOIq+DY0u6fQQPVw7Jv5D6wR5cB5sfxO2vgYBXbSg1uVmWWstRBOSgCbEN+qqtG8Nd7wNuSng4g0DH9GmMX6zoXR6sjMrFE3I4XBQfDSV7O3byD12hIKcLIoryynXcWHvIJ1DxR0dAR5e+ASF4N+xEwE9euMdnyCdEUWbYLykSUh7oej1DY1FInAfOfLC5ardTu2ZM9QcT6Pm+HFq0rTTsrXrLmwToLi4aKEtrjOWznFY4jpj7tixbYy2GV0u7rFWUaA1FzkwB1Y/DWv+CB2GQ7eZWtdimVEiRKOSTxRClOVqLfJ3/U/bu8w/QZvG2OVm7T8o0ebUV1aQs20rOfv2kHfqJIXn8ymur6XuklExV7uKl6uVDv5B+EXHEtijF349esqImGjTDC2gSUhLoej1mKOiMEdFwdgxFy53VFdrI23HjlF97Cg1qUcpXbac4rmfazfQ6TBFRGhhLS4Ol4QELPHx6Ftzh1WrL/S7Xzvyj8PBudrI2oKfg8kN4qdC99sgPEm2lhGiEUhAE+1X7mHY9iYcmgf2Oug0Hvr/CiIHXxgxEa1fTVEhWVs2kbN/L3mnT3G+pIhSHBcadugdDjx0BiK8/fGNiCSwSzeCBgzE1U82FhftT3scQbtaOosFl8SEyzpMqqpKXVY2NceOUp16lOqjqVTtP0Dp8hUXbmMMCcHSENYsCQlYEuIxeHs74yVcH7+OMPJPMPwZOLNVG1U7vAj2fwqe4dqoWrdbwbuDsysVotWSgCbaF1WFk2th6+uQvh4MLtDzTuj3K/CNcXZ14jpVnz9P1uYNZO/bQ+7pDArLSyhT1AuB22R34GWyEOofSEBsJ4L69MevRw/0RpOTKxeiZbjYxbHtrUFrSoqiYAoNwRQactk0SXtxMdVHjlB95AhVhw9TfeQIZatXX7jeEBSES5cuWLokaqcJCejd3Z3xEq6eTqd1eIwcBONf1bo/7v8UNrwCG17WRtO6z4T4G8Di4exqhRPcc889LF26FH9/f1JSUgD44x//yKJFi9DpdPj7+/Phhx8SHBzs5EpbHgloon2oq9ZGyra9AflHwS1Q+waw193g2gq/wRTUlpaQtWkjWXt3k5dxkoLS4svCmMXuwNtiJSowmMD4REKSBuLZsTM6mX4jxA+SEbTGpff0xJqUhDUp6cJl9tJSbZTt8GGqU1KoSkm5LLSZoqJw6doFS2IXXLp2wRwXh87Uwr9EMrlC1xnaUZIJBz+H/XNg8cOw/PcQNxl63A6RQ2QKZDsya9YsHnroIe68884Llz3++OP89a9/BeC1117jL3/5i2xU/T0koIm2raoYdr+vdWQsz4XALjDtbUiYDoYW/h+euMBeV8u57dvI2r6VnBPHyS8soFS5OE3RbHfgbXGlQ1AoQYldCB00FFu0jIgKcbX0BgOKTkd9rYygNRW9hwfWfn2x9ut74bL6oiKqUw5TnXKIqoOHKN+6lZJFiwFQjEYs8fG4dO+GpWtXXLp1xxgSjNJSp+LbQmHw72DQbyFrjzaqduhL7UtSW7i2Vq37TPCKdHalookNGTKEjIyMyy7z8Lg4mlpRUdFy38dOJgFNtE0lmbD9v7DnQ6gth+gRWjDrMEzWl7UCRcePcSZ5LTlHUsg7l02hvRZ7w7euBrsDH6OFsMBgghMSCR08DFtsRxkZE6IRKIqC0Wxu0RtVt0UGLy/cBg/CbfAgQFvTVp+bS9WBg1QdPEDVgQMUfT4P9aPZAOh9fXHp1g2Xbt1w7dEdS5cu6Bqmp7YYigKhvbVj7N/g6DJtX7UNL8OGl7T13j3ugLgp0gWyiW2ad5yCs+WN+pi+YW4MntHxmu779NNPM3v2bGw2G+vXr2/UutoKCWiibck9DFv/o7XLV1VIvBGSHoagrs6uTPyA2ooKspLXkblrOzmnTlJQUUpVQzdFRVWxoSPaN4jAjp0JSxqMf6/e0tJeiCZkNFtkiqOTKYqCMTAQY2AgHg0dJNW6OqqPH6fqwAGqDxygav8Byteu1e5gMGCJj8e1Rw9cevTApWcPjP4tqNGR0UXb7LrLTVB8Fg7Mhf2fwFe/gGWPaa38e/xMC3PyJWqb98ILL/DCCy/w4osv8vrrr/Pcc885u6QWRz7liNZPVeH0Vtj8f3BiDRhdoc99MOABraOUaFGK045zet3XZB06QG5+DsUOOw6d9h+yi92Br9WDoKhoQvv0J2TIMEytZcG8EG2EFtBkimNLoxiNuCQk4JKQALfdBmhTI6v27adq3z4q9+2laO5cCj/6CNC6Rrr07Ilrr5649uqFKToapSXMNPAMg6GPa9Mgz2yFfZ9qX6ru/Qj8OmtBrdutWmt/0SiudaSrqd1+++1MmDBBAtr3kIAmWi9VheOrYPM/4ewOcPWFEc9A73ul8UcL4aivJ2fbFs5s3kh22lHySoup1F/c9NlLZ6BTYBghiV0JHzYCr06dnVyxEMJoNssIWith8PLCfcRw3EcMB0CtraU6NZXKffuo2ruPiu3bKF2yBAC9zYZLr1649uqFa5/eWOLiUIxG5xV/WRfIl+HwAtj7sbYR9tfPalvf9LxTW6Kg0zuvTtGo0tLSiI2NBWDRokV07iz/738fCWii9bHXw5GF2ohZbgrYwmDC37W57LKxtFPVlpVxZs0qzuzcTs7ZU5yvqbqw+bPJ7sDP1Y34yGjC+yURNnwEBlerkysWQnybwSIjaK2VYjJdWJvGrFna/mxnz1K5ew+Vu3dTuWc35evWabd1ccGlezdce/fG2rcvlq5d0TVsVN7sLB7Qa5Z25KVqQe3gXEhdDB4hWmORHndIY5FWZubMmSQnJ1NQUEBoaCjPPfccy5cv59ixY+h0OiIiIqSD4w+QgCZaj/oa2P8ZbPkXFGWAbye44S1tTrveid8CtmOV+XlkrFrB2T07ycnOpMhRf2G6orsDwr39COmcQMTQ4fj26CWNPIRoBWQNWtuhKAqm8HBM4eF4Tp8GQF1eHlV7914IbQWvv0GB+roW7rp3x7VvX1z79sGlWzfnBDb/OBj3Nxj1LBxbDvs+ho1/144Ow6DXXdBponRibgXmzJnzncvuvfdeJ1TS+khAEy1fbQXs/kBr/lF+DoJ7wpjntV/Q8oG/WZWdPUP6iqWcPbCPc/nnKMEBioKiqniip1NQGGHdexE5eizuYbL+T4jWyGg2U1VS7OwyRBMx+vtjHDcOj3HjALCXlFC5Zw+VO3dRuXMnBW+8Aa+rF0bjXPv2xdq/H5Zu3Zp3PzaDCRJu0I6STK0D5N6PYf4scPWBbjOh513g1zLXVwlxPSSgiZaruhR2vattLl15XmvJO+0taZXfjEozTpG+cjlnD+zlXEEupQ15WOdw4GMw0zUknPA+/YgcMw6zl6z7E6ItkCYh7YveZsN9xAjcR4wAtI20K3fvoXLnTip37aLgzTcpeOMNFIsF1549cR3QH2v//lji41H0zbQ2zBYKw56AIY/DyfWw90Ntf9Ntr0P4AC2oxU+Vdv2izZCAJlqeqiLY8ba2j1l1McSMgiG/h/B+zq6szSs9nUH68qWcObCXc+fzKGsIZHqHA1+jhejwDkQmDSZ81ChZPyZEGyVNQto3vYfHZY1H7CUlVO7aRcX2HVTu2E7+P/5JPqBzd8e1Tx+s/fthHTAAU0xM0286rNND7CjtKM/Tlj3snQ0Lfwkr/wBdb9XWsQXEN20dQjQxCWii5ag4D9vfgJ3vQk2pNoVxyO8gpJezK2uzKs7lkL58Kaf37CQnL+fCCJkWyFyIjexARNIgwkeOweAiDViEaA9kDZq4lN5mw33UKNxHjQKgPj+fip07qdy+nYrtOy40HTH4+2MdMABr0gBcBwxo+n3Y3Pxh0CMw8DeQsVlr07/nA9j5NoT21YJawjQZVROtkgQ04Xzl+bD1Ndj1HtRVatMUhjwGgV2cXVmbU1NUSPqypZzetY2snEyKG9aQ6RwqvgYT0RHRRA0eStiIURLIhGinjA1dHFVVbfoREdHqGPz8sE2ciG3iRABqM7Oo2LaViq1bKd+wgZJFiwAwx8ZiTRqANSkJ1z590Lk2UVBSFIgarB3jXoYDc2DPh7DoAVj5JHS7RQtrQrQiEtCE81wIZv+D+mpIvEnbuNJf9sRoLPaaGk6vWcmpTRvIPJ3OeUcdakNTDx+dga6hHYgcMJCIcRMxWWXKohBCG0FTHQ7s9fUYnLlPlmgVTKEhmG6+Ga+bb0Z1OKhOTaViqxbYiubMpfCj2dom27164TZoINZBgzB36tQ04d/qA0kPwYAH4fRWLajt+Qh2vkMPj07g+Yg2qiZb8ogWTgKaaH4VBVow2/muFsy63Kwt/PWNdXZlrZ7D4SB3+1ZOfr2as8dTyauuoF6vA1XFEx1xgWFE9k2iw8RJ0tRDCPG9DCattXpdTbUENHFVFJ0Ol4QEXBIS8L3vPhzV1VTu2UPF5i1UbN5M3t//AX//B3o/X9yStLBmHZiEwbuR/z9SFIgcqB3jtVE148Y3YOGvtFG17rdBr7ulA2QTy8zM5MEHH+TIkSM4HA4mTZrEq6++iulHuoEWFxfz2Wef8cADDwCQnZ3Nr3/9a7744ovrrufZZ5/Fzc2Nxx577Cdv++GHH7J7925ef/3171w3YcIEPvvsMzw9PXnttdf473//S8+ePbn55pvp2LEj8fHXvwZSAppoPhUFWqv8ne9CfZU2YjbkcfkFeZ1KT2dwYvFCMvbvIafkPNUNG0Nb7SqR3v5E9OhN9KQp0vZeCHFFjJaGgFZdjYubu5OrEa2ZzmLBbeBA3AYOhD/8nrrcXC2sbdlMeXKyNh1SUbAkJOA2ZAhuQwZj6dKlcbtDunrDgAfZWR3PsEhDwzq1d2H7mxAxCHrfDXGTweCkTbrbKFVVmT59Or/61a9YtGgRdrud+++/n6effppXX331B+9XXFzMm2++eSGgBQcHN0o4a0zLly+/cP7NN9/k66+/JjQ0lFmzZjFp0iQJaKKVqCyELf/WfiHWVWobSw/5vQSza1RbUUHGssWkb91EVvZZihUVAKPdQaDVg/D4RKLHTcKvW3fnFiqEaJWMZguANAoRjc4YEIDnjdPxvHE6qt1O9eHDlG/eTMXGTRS89RYFb76J3tMT66BBuA0dgnXQIAxeXo3z5JeuVSvPh/2faFMgv7xX21etxx3aqJp3VOM8Xzu3bt06LBYLd999NwB6vZ7/+7//Iyoqiueee4558+bx1VdfUVJSQlZWFnfccQd//vOfeeKJJzh58iTdu3dn9OjRPPjgg0yaNImUlBQ+/PBDFi5cSEVFBWlpaTz22GPU1tby8ccfYzabWb58Od7e3rz77ru888471NbWEhMTw8cff4zrj6yBnD9/Ps899xx6vR6bzcbGjRsBbfRu3LhxnDx5kmnTpvHKK68AEBkZye7du3nmmWdIT09n/Pjx3HrrrSxevJgNGzbw/PPP8+WXXxIdHX3NP79mC2iKooQBs4EAQAXeUVX13831/MIJqoq1b6i2vQm15ZB4Iwz9Pfh1cnZlrYrD4SBv9y5OrFjK6eNHyK+twq7TNawjM9IjMpoOw0cSNmIUemMzbiIqhGiTvglo9bIXmmhCil6PS9euuHTtit8DD1BfVKStXdu4kfJNmyldulQbXevaRRtdGzoMS3wcik53/U/u5geDHoWk30D6etj9Pmx9Hba8BjEjofe90HGs1ta/DVj/4TvknU5v1Mf0j+jA8Fn3/+D1hw8fplevy7twe3h4EB4ezokTJwDYuXMnKSkpuLq60qdPHyZOnMhLL71ESkoK+/fvByAjI+Oyx0hJSWHfvn1UV1cTExPDyy+/zL59+3j00UeZPXs2jzzyCNOnT+e+++4D4JlnnuG9997j4Ycf/sFa//KXv7Bq1SpCQkIoLi6+cPn+/fvZt28fZrOZTp068fDDDxMWFnbh+rfeeouVK1eyfv16fH19SUtLY9KkSdx0001X8iP8Uc05glYP/E5V1b2KorgDexRFWaOq6pFmrEE0h5pybQPJrf/R9jGLnwrDngT/OGdX1mpU5RdwYvEC0nduI/t8LpWXTFuM9gsiqt8AoifegIufr5MrFUK0NTKCJpzB4OV1oTuk6nBoo2sbN2qja6+/QcF/Xsfg54d16BDchw3DOmAAuuttbqXTaYEsZiSUZmt7qu35EObOBI9QrftjzzvBPaAxXqL4ltGjR+Pj4wPA9OnT2bx5MzfccMOP3mf48OG4u7vj7u6OzWZj8uTJAHTp0oWDBw8CWoh75plnKC4upry8nLFjx/7oYw4cOJBZs2YxY8YMpk+ffuHykSNHYrPZAIiPj+f06dOXBbSm1GwBTVXVHCCn4XyZoiipQAggAa2tqKvSWuVv/j+oLICO42D4UxDUzdmVtXgOh4PsjcmkrV7BmfS0C90W9Q4HAS5WusUlEjthMn7dezq7VCFEG2cwf9MkREbQhHMoOh0uXbrg0qULfg8+SH1hIRWbNlGWnEzZylWUfPElitGIa9++uA0bhtuwoZiu94OzRzAMe0LrJn1sBex+D9Y/Dxtegs6ToM+9EDlYmyrZyvzYSFdTiY+P/87asdLSUs6cOUNMTAx79+79TifPK+nsaTZfXCuo0+ku/Fmn01FfXw/ArFmzWLhwId26dePDDz8kOTn5Rx/zrbfeYseOHSxbtoxevXqxZ8+e7zyXXq+/8PjNwSlr0BRFiQR6ADu+57r7gfsBAgICfvKHKpxPcdQRlLOaiNPzMdcWUejVnYxOv6fU1gmOFcGxZGeX2GjKy8sb7T3pKCmhcvd2StPTKKyuoMagTaVwr3cQavPGvVM85u690JnN1AKHi0tB/j2Ib2nM96QQAJUFeQDs37OH08Vl1/QY8r4Ujc5mg6lTYdIkjCdOYj50iLpDh6jYsoXcF16gPjiImq5dqenalbrISG107BJX9570gPBHcfG9heDslQQe/xrjkYVUuIaSHTyBc4HDsBta9tY0NpuNsrJr+/fbGPr27Ut5eTlvv/02t912G3a7nUceeeTC+erqalavXs3p06dxcXFhwYIFvPHGG4AW5L6pvby8HIfDQVlZGdXV1dTW1l64TlVVysvLMZvNl11XWlqKu7s7hYWFzJ49m6CgIMrKyqipqcFoNH7n55Kenk58fDzx8fEsXbqUo0ePfue56uvrqayspKys7LLnvfS82WwmPz//e3/u1dXVV/U7sdkDmqIobsCXwCOqqpZ++3pVVd8B3gHo3bu3OmzYsOYtUFw5hx0Ofg7rX4SSMxCeBCOexjtyEG21gXtycjLX+p50OBzkbNnEiVXLOX3iGAUNo2SGhuYeUV170HHqdDxjpXmKuHLX854U4vsUncsmdf5sOsZEkzB02DU9hrwvRZMaOfLC2dqMDMqSkylfn0zlmq+xrlyF3tcXt2FDcR8xQpsK6eJyHe/J27QZQoe/wrrrf8SeeIfY059C1xnQ5+cQmNhoL6sxpaam4u7u3C6sixYt4oEHHuDvf/87DoeDCRMm8Pe//x2z2YzFYqFfv37MmjWLzMxM7rjjDoYOHQrAoEGDGDBgAOPHj+fBBx9Ep9Ph7u6OxWLBZDJdeF2KouDm5vad655//nlGjhyJn58f/fr1o6ysDHd39wsh6ts/l+eee460tDRUVWXkyJEkJSWRlpZ22XMZDAZcXV1xd3e/7HkvPX/nnXdy33338c477/DFF19c1iTEYrHQo0ePK/7ZKaqqXu/P/8qfTFGMwFJglaqq//yp2/fu3VvdvXt30xcmro6qwtGlsO55yD+qTWEc+SeIHtkqh/6vxtX+gq8tLeHEwgWc2LqJzIJzVDWsJfNwQFhIBDFDhhM5fiIGF9k0U1wb+SAsGlt5USFv//JORt77AN3HTLimx5D3pXAGe0kJ5Zs2U75uHeUbN+IoL0cxm7EmJZEVGkLvX/4SQ8Oap2uWtVdbzpHyhbaXa1h/6Htfi2vVn5qaSlxcy137/2P7jLVF3/f3oSjKHlVVe3/f7Zuzi6MCvAekXkk4Ey1U+gZY+xxk7QGfWLj5I60JSBsPZlej8Mhhji36klOHD5JbU4lDp9PWklms9EjsRqcbpuPd+fr3yBBCiKZwsYujNAkRrYveZsM2aSK2SRNRa2up3LOHsnXrKV+3Dtv69aR98ikuPXviPnIk7qNGYgq/hv1BQ3pqx5i/wv5PtbD25b1g9dMaivS+B2yhjf/iRLvSnFMcBwI/Aw4pirK/4bKnVFVd/sN3ES1G1h5Y+xdIT9Y6G015HbrNBL1speeor+f0qhUc/3oVZzIzKG2Y9u5qV4n1DyY6aQjRU6dhcvJUAyGEuBJGaRIi2gDFZMI6YADWAQNQn3qSLZ9+SqfiEsrWriXvlVfIe+UVzLGxuI0aifvIUVgS4q+oScUFrt6Q9DD0fxDS18HO/8Gmf2qN0jpNgL73Q9QQ+QL7B8yaNYtZs2Y5u4wWqzm7OG4G5F3a2hSkacEsdbG2kePYF7Vvh4wWZ1fmVNXnz3NswTxO7thKVvF5avUN+5LpjfSO7UzHCZMJ6DcAXWPs1yKEEM1Ip9ejNxikzb5oMxRFoT40FL877sDvoQepzcyifN1ayr5ey/m33+H8f9/CEBSE+6hReIwZjUvPnij6K9wDTaeDmFHaUXRa21Nt72xtKYhvJ236Y9dbwOLRtC9StCky/CG+X9k5SH5J+yVjdNH2MRvwIJjb7yhQ4dEjFH81n0/f/Q95tdU4dFqDj2A3Gx169qXzjTdjDZFpDUKI1s9otkhAE22WKTQE7zvvxPvOO6kvKqJ8fTJlX39N8eefU/Txx+i9vbVpkGPGYO3XF8VkurIH9oqA0c9pn5kOL4Cd78Dyx+DrZ6HbrdDnPvDv3KSv7VKqql7dqKBoEtfS70MCmrhcdQlseQ22vwn2Oq1D0ZDHwc3P2ZU1u2/2Jju6fDGnM05SrGj/wKx2lY6BIcQOHUmHSVOkwYcQos0xWCzUVcsUR9H2Gby88Jw+Dc/p03BUVFC+aRNlq1dTumwZxfPno3N3x234MNxHj8Zt8GB0liuYQWS0QPfbtCNzD+x6V/vCe9f/IGqoNv2x03jQXeEo3TWwWCycP38eHx8fCWlOpKoq58+fx3Il75tLSEATmvoabaHrxlehqhASb4IRT4N3B2dX1qzqq6o4ufgr0jas40xettZ1UVXxUQz0jOlEXUQHRv38fpm6KIRo02QETbRHOqsVj3Hj8Bg3DkdNDRVbt1K25mvK166ldPESFFdX3IcNxX3MWNyGDEbn6vrTDxraSzvGPA97P4Jd78Pnt4MtHPrcAz3v0tazNbLQ0FAyMzPJz89v9McWV8disRAaenUzrCSgtXcOh9Yqdt1fofgMdBgGo56D4O7OrqzZVOUXcOyLuZzYuZXssmLq9Dp0DgeBFiu9u/Wk040zsHXQ9rJITk6WcCaEaPOMZjP1tTKCJtovndmM+/DhuA8fjlr/HJU7d1K6ajVla9ZQunwFiosLbkOG4DF2DG5Dh6Kz/sTG1VZfGPw7SPoNHFuuTX/8+lltOUniTdDvfm3bokZiNBqJiopqtMcTzUsCWnuWvgHW/BFyDkBgV/jZvyF6hLOrahalGac4Mu8z0g/sI7e2CodOwWR3EOrpQ+yAwXS8cQZmT09nlymEEE5hNFuoq5YRNCEAFIMBa1IS1qQkAv/0Ryp376Fs1SpK16ymbNUqba+1wYPwGDcet2HD0Lv9SFjTGyB+inbkHtGmPx6YC/s/gbB+2vTH+KmgNzbfCxQtjgS09ijvKKz5E6StAlsYTH9X+/amjY8M5e/dw5GFX3Dq2BHOq/WgKLjaHXQMDKXTqLFETZyM3niFC4GFEKINM5rNVJeXObsMIVocRa/H2q8v1n59CXj6Kar27dNG1latovzrtShmszayNn4cbsOG/fg0yIB4mPR/MPLPsP8zbVTty3th9TNax+xes8DNv9lem2g5JKC1J2XnYP3fYN/HYHLXpjL2+2WbbZnvcDjI2byR1CULOZVx4sL+ZDaHQrfIWDpPnELwkGEyZVEIIb7FaLZQdr7A2WUI0aIpej2uvXvj2rs3AU8+oYW1FSspXbWSsjVrUCwW3IYNw2PcONyGDkH3Q03FXDxhwAPaZ7ITa2DH27D+Ba0vQMJ0bfpjSK9mfW3CuSSgtQc15bDtda07o70G+v5C68xo9XF2ZY3um02jj65axunss1ToFa3Jh85An04JxN04A79u3Z1dphBCtGhGs1mahAhxFRSdDtdevXDt1YuAJ5+gcs8eylau1EbXVq5EcXHBffhwPCZOwDp4MLrva92v00HHsdpRkKaNqO3/DA7OhdA+2ue3+KlgkNk+bZ0EtLbMYdf+Ya/7K5Tnav+oR/4ZfKKdXVmjstfUcHLRAo6t/5oz+TlUN2wa7W+y0K1rD+JnzLzQ5EMIIcRPM1os1NVIkxAhroWi12Pt2xdr374EPP00lbt2Ubp8hda+f/lydO7uuI8ejceECVj790MxfM/Hcd9YmPAqjPjjxemPC36uTX/sc69Mf2zjJKC1VekbYNXTkHtI+9ZlxscQ3s/ZVTWa+soKji/4guMb1nG2KJ/ahs6LQa5uxPTqR9wtt2ENDHJ2mUII0SoZpM2+EI1C0eux9u+PtX9/Av/4DBXbt1O6bDllq1dTsmCBtin22DHYJkzApVcvlG8vu7B4QP9fas1DTq6FHW9dnP6YeKM2LbIddd5uLySgtTUFabD6j3B8hbbHxk3va/OX28AmhbVlZRybP5fjmzeQVVpInV6H3uEgxM2TjgMG0XnGrZi9Gn8vESGEaG+MZgv1NTWoDsd3PzAKIa6JYjTiNngwboMH46h5lvKNGyldvpySrxZSPGcuhoAAPCZOxDZpIua4uMs3mNbpIHa0dlw6/fHAHAjrD/1+AXGTpftjGyEBra2oLNT20tj9HhhcYNSz0O9Xrb4BSG1pCalzP+X41s1kVRRj1+kw2h2E2rzpOHAYHW++BZO7u7PLFEKINsVoNgNQX1uL0dK6/x8RoiXSmc14jB6Nx+jROCoqKFufTOnSpRTOnk3h++9j6tABj4kTsE2ciCky8vI7X5j++Azs+xR2vg1f3A0eIQ3TH+9uks2vRfORgNba1ddqe2hseBlqyrQd6Yc/1arnJdcUFZL6+RyOb9tEdmUpdp0Ok91BpJcfnYaOJHb6jRhcf2JDSCGEENfsm4BWV1MtAU2IJqazWrFN0kbO6ouKKFu9htKlSyn4z+sU/Od1LF26YJs0Effx4zH6X/L5zmJr6P74C0hbAzv+C2v/Ahtega4ztOmPAQnOe2HimklAa61UFY6v1NaZFZ7UNpge84K2p0YrVH3+PKlzP+H4jq3kVJVdCGVRPgF0HjGamBtuRN/wgUEIIUTTMpq1UCbr0IRoXgYvL7xumYHXLTOoy8mhdPkKSpYtJffFl8h9+RWs/fvjMXky7qNHX9wQW6eHTuO0Iy9VW6d24HPYOxuihmgzqjqO1W4nWgUJaK1RXiqsfBLS14NPLNw2HzqOcXZVV62mqJAjcz7h+PYtZFeV49ApmO0OOvgG0HnkOKJvmCYbRwshhBN8M2omnRyFcB5jUBA+996Dz733UHPyJCVLl1K6ZCk5Tz7Jueeew33ECDymTMZt4EAUY8PaM/84mPxvrWv33o9g5/9g7kzwitTa9Pe4XRt5Ey2aBLTWpLJQ22h69/tgdoNxL0Gfn7eqBaE1xcXamrJtm8iqLMWh02G2O4jxC6LzqLF0mHKDhDIhhHAyGUETomUxR0fj/5vf4PfrX1O1bz8lSxZTtnwFpcuXo/fywmP8eGxTJmPp1k1rLuLqDYMehQEPw9ElsP0tWPWk1gGyxx1aV8g2tu1SWyIBrTWw12mhbP3foKZUW/w5/OlWs9H0xUYfm8iqKLkwfTHaN5DOo8YRPVVCmRBCtCQGU8MatGoZQROiJVEUBdeePXDt2YPAJ5+kfPMWSpYspvjLLyn67DOMEeHYpkzBNmUKprAw0BsgYZp2ZO2FHW/Drve0047jtBb+UUPbRLfvtkQCWkt3Yq02nbHgmPYPaNyLrWLBZ21FBcc/n8PRTevJLC+6bE1Z3CiZviiEEC2Z0XKxSYgQomVSTCbcRwzHfcRw7GVllK1eQ8nixReai7j06oVtyhQ8xo9D7+EBIT1h+tsw+jktpO1+H2avAP94raFI1xlgdHH2yxJIQGu5CtO1BiDHloNXFNz6GXSa0KK/4aivquL4l/M4uv5rzpacp16vtcSP9PIjbuQYYqbdJI0+hBCiFZApjkK0Lnp3dzxvnI7njdOpy86mZMlSShYt4tyf/0zuCy/gNnw4tqlTcBs8GMU9EEY8DYN/BylfwPb/wpJfw9fPQu97tOUzHkHOfkntmgS0lqamHDb/E7b+B3RGbZHngAfB0DKDjb2ulpMLvyJ1zQpOF+ZRp9dhsDsIs3nTedgoOt50CwYX+TZGCCFaEwloQrRexuBgfH9xPz7330d1ymFKFi+mdOlSylat0tarTZqE7YapWOLjUXrcAd1vh4zNWlDb9A/Y8i9ImA79f6WNuolmJwGtpVBVSPkSVv8RyrKh6y0w6rkW+Q2Gw+EgY/kSjixfSkZeFjV6HXqHgxA3TzoPHkanGTNl82ghhGjFvuniWC9dHIVotRRFwaVLIi5dEgn4/eOUb9pMyaJFFM+dS9HHH2OOjcV2ww14TJ6EMWowRA3WZnDtfBf2fgyH5kFYfy2odZ6krWcTzUJ+0i1BzgFY8Qc4sw2CusHNH0B4f2dXdRmHw0FW8joOL15AemYGVXodOodKsKsbnQYMIW7mHZg9PZ1dphBCiEZwcaNqCWhCtAWK0XhxvVpxMaUrVlC8cCF5r75K3j/+gXXQQDynTcNtxAh0416EYU/Cvk+0PdXm3wW2MK3zY887wcXT2S+nzZOA5kyVhbDur7D7A60d6uTXtNanLWgjwXM7d5Ayfw4nT6VRrldQVJUAswt9evcn4Y67cPXz/+kHEUII0aoYGpo4yRRHIdoevacnXjNn4jVzJjXp6ZQsXETJokVkPfpbdB4eeEwYj+f06Vj6/wql3y/g2Apt+uOaP0LyS9D9Nm1UTdr0NxkJaM7gsGubB679C1SXQr9fwLAnwMXL2ZUBUHj0CIc++5gTR1MoVlRQVfwMRrp2703i7XfiHhbu7BKFEEI0IUWnw2A2U1ctAU2ItszcoQP+v30Uv9/8msodOyj+aiElXy2keO7nmGKi8Zw2DduUKRjungQ5B7Wgtvcj2PU/6DgW+j8AUUNadBO71kgCWnM7uwuWPwY5+yFiEEx4pUW0zS87e4aUTz7i+IE9FDjqQFHwQkefzl3octudeHXq7OwShRBCNCOj2SIjaEK0E4pejzUpCWtSEvY//ZHSFSsoWfAVea/+nbx//h9ugwdjmzYN94n/Rhn1LOx+T2vVP3sKBCRqI2qJN4HR4uyX0iZIQGsu5fla+9L9n4B7ENz4HiTe6NRvHKrPn+fwp7M5tmML5+qqUBUFN7tK9+iOdLl5Jv69+zqtNiGEEM5lNFukSYgQ7ZDe3R2vGTPwmjGDmvRTlHz1FSWLFlGenIze0xOPKZPxvPFGLI/+Fg7Nh+1vwqIHG9r03wt97gU3WQJzPSSgNTV7vbYR4PrnobYCkn4NQ38PZud0OayvquLYvM84sn4tWRXF2HU6XOwO4oLDSbzhJkKGjUCn0zmlNiGEEC2H0WyWJiFCtHPmDlH4/+63+D3yGyq2bqV4wQKK58ylaPbHWBISsN04HdttK9AX7odtb8KGl7TtorrcrE1/DEx09ktolSSgNaUz22HZY5B7CDoMg/Gvgl/HZi/DUV9P+tJFHF6xlNPnc6lr2EA6yieAhPGT6DBpKjqDvBWEEEJcZLTIFEchhEbR63EbPBi3wYOxFxdTsnQZxV9+Se5f/kreSy/jPno0njc+guvov6Lsegf2fwb7P9XWp/V/EGLHgAwAXDH5VN4UyvPh6z9rb0yPELj5I4if2uzTGbM2beDQl/NIzzzV0BbfQaibJ3HDRtB5xkwMrtZmrUcIIUTrYTSZJaAJIb5D7+mJ9x23433H7VQfOULxgq8oWbKE0mXLMAQH4TltOp63rMV4bhXseAfm3ALe0do6te63gUk+f/4UCWiNyWGHPR9o3RlrK2DgI9p0xmZ8IxYeOczBz2aTduwwpToutMXv128gCbffhcXHp9lqEUII0XoZLRbKCwudXYYQogWzxMcTGB+P/+OPUb5uHcVffEnBm29S8OabWJOS8Lzx77gFlqHb847WJG/dX6HXLG1PNVuos8tvsSSgNZasPbDsd5C9DyIHw8R/gF+nZnnqinM5HJr9Psf37iK/oQOjt05Hv8QedP3ZLDwio5qlDiGEEG2HQbo4CiGukM5sxmP8eDzGj6cuK4viBV9R/NUCsn77GHpPT2xTpmAb/iCW3EWw9T+w9XVIuEGb/hjay9nltzgS0K5XZaE2YrbnQ61jzfT/QZebmnw6Y21FBamfzebopvVkV1Xg0GkdGLt1iKXrLbfj36tPkz6/EEKIts1oNlNXK01ChBBXxxgSgt/DD+H7wK+o2Lad4i++oHDOHApn12Hp1hXPCS/i4ZmO/sgcSPkSwvppDUU6TwK9RBOQgHbtVFVbY7bmT1BVrM2rHfYkWDya7CkvNPtYvoTThXnU6XWY7Q5iA0LoMuVGwkaPkQ6MQgghGoXRbKFeNqoWQlwjRa/HbdBA3AYNpL6wkJLFiyn58kvOvfhv8lxd8Rh3O56JZiy5C1Dm3wW2cOj3C+j5M7DYnF2+U0lAuxZ5qbD0t3Bmq5b6J/4DArs02dPlbNvCwXlzOHk2nSq9Dr3DQaiHFwkjxtLx5lvQm81N9txCCCHaJ63NvgQ0IcT1M3h74zNrFt533UX1gQMUzZ9PyfIVFC+owtwxFs8hE7GZ96Jf/TQkvwQ97tDCmnf7XKYjAe1q1FbAhldg2+vaPmZT/gPd72iStqElJ09w8OMPOH7kIMWKCqpKoMmFfv2l2YcQQoimZzRbsNfX47Db0en1zi5HCNEGKIqCS/fuuHTvTsCTT1K6bDnF8+eT+79F5JlMuA+5Gc/IUlx3vouy823oNAEGPAjhA5q9G7ozSUC7UkeXw4o/QMkZLZSN/gtYGzck1RQVkvLxhxzdvoVz9dWgKHii0DeuG13vvAdbh+hGfT4hhBDihxgbZmfU1VRjlm1ZhBCNTO/mhtctM/C6ZQbVqakUz59PyZKllH5dhim8J569fLEd24Lh6FII6q4FtfgbwGBydulNTgLaTyk+qwWzY8vALw7uXgERSY328Pa6WtK+mMfhNSs5W1aIXafDxe4gMawDXWfMJGjAwEZ7LiGEEOJKGS0WAOqqJaAJIZqWJS6OwD/9Cf/HH6d05SqK588n76u95Bs9cO/VA8+qDFyz70NZ8yfoex/0uhtcvZ1ddpORgPZD7HWw/b+Q/KLWEGTUs1or0EZK7Vkbkzn4xVzSs89QrddhsDuI9PIjcfxkOky5AZ1B/mqEEEI4j9HcENCkk6MQopnoXFzwnHYDntNuoCYtTVurtmgxpdurMQZ1xauzii3/eQwbXtU2ve7/K/CNdXbZjU5SwPc5uwuWPgK5KdBxHIx/BbwirvthS06e4MBH73M89SAlDZtIB1msxA0cSvwdd2Fyd7/+2oUQQohGcCGgSSdHIYQTmGNjCXzqKfx/+1vKVq+maN488tbvIc8QgnucD145c3Hd9R5Kx7Ew4AGIGtpm1qlJQLtUdYm2p9mu98A9CG75RNuT4Tr+smuKi0mZ/QGp2zeT27CuzEtp2ET6zrvxiIhsvPqFEEKIRmK4sAZNRtCEEM6js1i0ja6nTKHm5EmK582nZOFCyg7ZMPqF4pW+D9uhaRgi4rURtS43g6F1dziXgAbaFMYjC7W1ZhX50O+XMOJprVPjNXDU13Piqy9JWbmUM6XnL64rC+9Atxm3E9h/QOPWL4QQQjSyS5uECCFES2COjibgySfw++2jlK1aRdHn88jbtYf8fSG4dyjD8+CjuEY9i9L3Puh9D7j5ObvkayIBrSgDlj0GJ9ZAUDeYORdCel7TQ53bsZ0Dcz+5sF+ZweEgwuZL4vhJRE+dLuvKhBBCtBoXpjhKQBNCtDA6s/niqFpaGkXz5lOyaBGlx30xHTThufffeMb8E32fm6H/AxAQ7+ySr0r7TQz2Otj2hrYZnk4P416CPveB/up+JGVnz3Dwo/c4dnAfRYpD26/M7EL/AYNJuGMWZk/PpqlfCCGEaELfdHGslymOQogWzBwbS+DTT+H/20e1DpCff07e/v3kp+jw2LsczzVzcemThDLgIYgZ1ST7Fze29hnQMvfAkl9rTUA6TYQJr4At9IrvXl9ZweFPZ5O6cT3ZNRWoioJNhT6du9LtrnuwRcc0YfFCCCFE05MRNCFEa3JpB8jqY8co/vxzShYtoiTdjHnvcbxW34VHrxD0g38F3WaCydXZJf+g9hXQaspg3fOw4+2GJiCfQtykK7qrw+HgzKoVHFq8gFP5OdTpdZjtDjoHhtH15lsJHTq8iYsXQgghms/FLo4ygiaEaF0snTpp+6r97neULF1G0dw5nNtzlNyDldjWPodXwvNYxszS9lTzCHZ2ud/RfgLasRWw7HdQmg19fg4j/wQWj5+8W+GRwxz4+EOOpx2hXK+gc6iEutlIGDWOTjffit7curvECCGEEN/HIE1ChBCtnM5qxeuWGXjOuJnqQ4comjuXkmXLKD5Zi2XLbLxi38Fj3Fh0gx+65h4UTaHtB7Syc7Di93BkEfjHw80fQVifH71LTVEhhz56n9QdW8iz14Ki4Gsw0K1nX7re9XNcAwKaqXghhBDCOfQGA4pOJwFNCNHqKYqCS9euuHTtSsAf/kDJokUUffoJOdvPkrt3K55Ra/Aa3BHThN9A54lafwonarsBzeGAvR/CmmehvlobMUv6NeiN33/zC63xl3CmtBC7ToerXaVrZAzd77gLv+4tJ1ULIYQQTU1RFIxmiwQ0IUSborfZ8L7zTrx+9jMqd+yk6NOPKVy3nsJj2ViXPIJntydxn/FLlN53XdFsu6bQNgNa/nFY/DCc3Q5RQ2DSv8An+ntvem7nDg7M/ZiTZxpa49sdRHr5kThxCh2mTEPXCjq9CCGEEE3BaLFIF0chRJukKArW/v2w9u9HXV4eJV98QdFns8laXYJh03/w7Ph/eE6bjHHMI+Ad1ay1ta2AVl8LW/4FG18FoytMfRO63waKctnNKs7lcPCD/3F0/y4K0VrjB5i01viJd92NycPmnPqFEEKIFsRoNlMnAU0I0cYZ/f3xfeABfH7xC8o3bKTow7cp2HWAgoOrcP/fIrxGdMV15uMokYO+kyuaQtsJaGd3aaNm+amQeKO2r5mb/4Wr7TU1HPv8M1LWriKrsgyHTsHdAb07JdD1znvw6tjJicULIYQQLY9McRRCtCeKXo/7iOG4jxhO7ZkzFM1+n5KvvqJsdhqmr+7Gq6cntjsfRN/vNjA0XaPA1h/Qasph3V+11vkewTDzc+g07sLVmRvWc/CLz0nPOUONXofR7iDWP5gu024mbORomcIohBBC/ACD2UxdtQQ0IUT7YwoPJ+CZZ/F77AlKly6m+MO3yd2QTd7ml7DFvITXTTdgmfYYuPk1+nO37oCWtgaWPgolmdo+BiP/BGZ3Sk9ncODD/3Hs8AFKFBVFVQl2cSNh6AjibvsZBlersysXQgghWjyj2UJddZWzyxBCCKfRWSx43jQDz5tmUJVymOJ3/knJum0Uv7AYl7e/xGtkN9zvfQZdeI9Ge87WGdAqzsPKJ+DQPPDrDPeupt4ngcMffcSRjevJqa1EVRQ8UeiX0JNud/8c97BwZ1cthBBCtCpGs4XKkmJnlyGEEC2CS2ICLq+9h39pKSWfvEvRnDlkf34E/cJb8Ozhg9c9D2IcNPO62/S3roCmqpDypbavWXUpjsG/52xtVw7+7W1O5edQp9dhtjvoHBxOt5tnEjJ4qLMrFkIIIVoto9ksXRyFEOJb9B4eeD/wO7x++SiVG9ZQ+M6/OL8jg/M7nsct/EW8bpqC9Y4nUFyurfFg6wloJVmw7LdwfCXFLj05UB7Psbe2Uabbhs6hEupmI2HkWDrNmIne3HSL9oQQQoj2wmiRJiFCCPFDFJ0O6/CxWIePpe7sGYreepHiFRsp/8dCjO8swGtkVzx/+Uf0kV2v6nGbNaApijIO+DegB/6nqupLP3knhwP2fEDt8mc5fMqTI5UDOYcCymm8dTqSuveh690/xxoY1NTlCyGEEO2K0WSWgCaEEFfAGBaO/wv/xffPtZTNeZuizz4mb2EK+UtmYOvmi9e9D2AZMfOK2vQ3W0BTFEUPvAGMBjKBXYqiLFZV9cgP3qm+hvSnx3DoWAUZukTq9XpcHA4Sw6PoduvPCOzbr5mqF0IIIdofo8VCXXUNqqqiNMPeP0II0drpTCZsdz2M7a6Hqd69kaI3X6FkxwmKH/wrLkEv4nXTJDzufupHH6M5R9D6AidUVU0HUBRlLjAV+MGAlnf6LF+lR6DTmwhz86LLuInE3jgDnaH1zMwUQgghWiuj2YKqOrDX1WEwmZxdjhBCtCqW3kMIen8I/gW5FL/1V4qWrOfMG4tIW3z4R+/XnEknBDh7yZ8zge8MgSmKcj9wP0Coty9616FUR1lRuoWSY/MgZ/Pm5qlWiO9RXl5OcnKys8sQ4gJ5T4qmlHtW+287ed1aDBaXK76fvC9FSyPvSeFMdoed46EhZA9OxJZZjaLaf/T2LW4oSlXVd4B3AGwhkWpmgBcR2RHkZCukh5yj76hYhvTriaKTqRai+SUnJzNs2DBnlyHEBfKeFE3poL2GzC3r6du7Nx6+V74Zq7wvRUsj70nhDKnpe1m9bDal+9JwrVCwKUZ0xs5URcUAy37wfs0Z0LKAsEv+HNpw2Q8K8fFkkT6Yft1q6EkxyhEPUj4qYdcXCwntb2XyhMFYrVf+jZ4QQgghrpzRYgGQRiFCCHGFikoLWLL8PTK2bcd6rg4VFaMlAKNrT0rcYxh5VzeSegXxzF/v/8HHaM6AtguIVRQlCi2Y3Qrc9mN3cDUZeGxqIk8sOETc4J48fFcYX65aTdGOKs6vtfG/5A2YOlcxblJfoqJCmuM1CCGEEO2G0aRtWyN7oQkhxA+z2+tZs3k+e9Yuw3CiCINdQXGD2shELEX90Os8oJsnj9/bHYvppzexbraApqpqvaIoDwGr0Nrsv6+q6o+vkANu7RvOkZxS3t10ioRgG3dPuxHHDQ7W7N7Ezq+z8DgSyvLDx6gJ2E6vkVEMHtgdnV7X5K9HCCGEaOuM5oYRtGoZQRNCiG87dHwHXy//hIr96bhUKegMDtS4ACK7TCB9ky+uJSp5HgpT702kZ9yVTxNv1jVoqqouB5Zf7f3+OCmeY+fK+MOXB4n2c6NLqI2xfYYyts9QjmansXTZZuwpHqR8Vsyer5YS1NeFiROS8LBZm+BVCCGEEO2D0aKNoMkURyGE0OQX5bB0+fuc2bYTt3w7DlQcoRZCBw9jzNDbWfT5abJXFoLiQBngxzO3J2A0/PSo2aVaXJOQ72PU63jz9p5MeX0L93+8m8UPDcLPXftPo3NwLJ3vi6W4uoQvV68if3sF5g0RfLhxC8aOVYye2JuYjjL9UQghhLhaF0bQamWKoxCi/aqtq2FV8hwOJK/GlF6C3qGgeIDLyEQmTLybyJBOHNh1jg+ePYC5RuWcl4E7ftmVuAiva3q+VhHQAHzczLz9s17c9NZWHvh0D5/+vD8mw8WpjJ4WG/dOmYF9kp01+zey/et0PNMiWPXPYyzx3Un34REMGdodvUGmPwohhBBXQqY4CiHas72HN7F+xRyqD2VgqdahNzqgazADxtxM/x6j0el0VJbW8L+/76LmRBmVegduo4L5y/Q49NfRcb7VBDSAxBAbL9/Yld/M3c9zSw7zwrQu37mNXqdnXM/hjOs5nKPn0liyfAN1h9w5Mr+Y/YtXENDLxIRJA/D0dnPCKxBCCCFaj4tdHGUETQjRPpwrOMuSpf8jZ8c+rIUOHIqKI9yNiCEjmDjqZ7hYtCVUqqqy7evT7PjqJDq7SmaAkV/8sgfRQe7XXUOrCmgAU7uHcCSnlLc3pJMQbOO2fuE/eNvOgbF0vieWkuoSvly3ktytJRi3duDjbdvQR1cyYnx3OsWHoyiyp5oQQgjxbQaTrEETQrR91TWVLFv7MUc2rMN8uhy9qoCXgtvY7kyceC+hAVGX3b7oXAXz3j5IfU4V+QYHMVPCeWlcLLpG2qe51QU0gN+P7czRnDL+vDiFGH83+kZ5/+jtbRYb90y4Bfs4O2tTNrF1TSoe6WGs/c9JVnjtJ3FoEMNH9MJwBW0vhRBCiPbiQpMQmeIohGhjHA4HOw58zaZV86k/nIW5VofO7EDXM5wh426hT9fh37mPvc5B8qITHFmbSa2qcjbczKP39SDCr3EbE7bKgKbXKbw2swfT3tjCrz7Zw6KHBhLq5XoF99MzpuswxnQdxvH8Eyxavp6aA1aOLyzn8LJV+PTQMWFSEj7+Hs3wKoQQQoiWTafTozcaZQRNCNFmnM5OY/my98nfdQhrCaBTcUTZiB02hnHDb8NkNH/v/TKPFbLk/cM4Suo4abbTY2oHHh3WodFGzS7VKgMagM3FyLt39eaGN7bw84928+WvkrCar/zldPSL4fG7YiirKWPBxlWc2HQe/c5oPtu5EyWyjCHjutKlWweZ/iiEEKJdM5ot1EsXRyFEK1ZeWcLS1R9xfPNGXM5WoUNB9dPjNbk3kybci7938A/et6q8ljWfHeXs3gKKdQ6yYlx48p4ehHn/9ODQtWq1AQ0g2s+N12/ryd0f7OR38w7w5u09rzrFupvduWv0TThGOdh4dBsbVx3E9UQIm946zVrbIToO8mP06H6YLK36RyWEEEJcE6PZQl21BDQhROvicDjYsHMx29cshKN5mOp16FxUDAM6MHL87XTt1P9H76+qKqlbc0ied5z6Gjv7XR0Mnx7DUwMjm3wAp9WnjqEd/XhqQhzPL0vlX2vT+O3ojtf0ODpFx7C4gQyLG8jpwjN8tXId5XuNZCzz4M1Vq3Hv6mDS5CQCgn58vZsQQgjRlhjMZpniKIRoNY5lHGDV0o8o2XcM13IFRe/AEetD4oiJjBp0E3r9T8efwpwKVs8+wvlTZWTq7eTFW3nuju5NOmp2qVYf0ADuHRTF0XNlvLY2jU4B7kzsGnRdjxfhHc4jt82i6uYqFm1eQ+rGc+j3RjF/717qw0oYMKYzfXvHy/RHIYQQbZ5RApoQooUrLMljyfL3ydi2HbfcelRU1CAzAeOSmDzuHmzuVzbAUldrZ/fyDPauPk21qrLN3c7U6R35W/+IZv3c3yYCmqIovDAtkfT8cn43fz8RPq4khtiu+3FdjC7cOnwK6jCVXen7+HrFHkzH/Nn9Xi6b5x0nYoAHE8YNxNXV0givQgghhGh5jGaLBDQhRItTW1fD6g2fsz95JcaTJRgcCjp3MA+LY+z4O4mN/O5+yT8m42AB6+cco7KohhRjPRVx7vzfrd2abdTsUm0ioAGYDXre+lkvpr6+hftn72bRQ4Pwc//+LixXS1EU+kb3pO9DPckty+OrlWup3GUnd7WNd9auxxxfxbjJ/YgKD2mU5xNCCCFaCqPFQnVZqbPLEEIIAHanJLNh5edUHzqNpVqH3uiALkH0HT2dgb3Go9Pprurxygqr2fT5cU4dKKBQr5LsWc+sGzpzRz/n7ZXcZgIagL+7hXfv7M1Nb23ll5/s4bP7+mE2NO7eZgHu/vzy5pnU31jPiu3J7F+fjS4ljOWHjlEVtJmeI6MYNqA3Ov3VvTmEEEKIlshoNlNWIE1ChBDOc/bcSZYte5+8XQexFqk4FBVHhBsRg0cwcdTPcLFc/T5kdruDA2vPsnPJKWrtDjZb6tB3dufDGc231uyHtKmABpAYYuPvN3fjoc/28cxXKbxyU9cmSb8GnYHJSaOYnASpmcdZsWw7HLaR+kk5exYsxK+PgRsmDsPTQ/ZUE0II0XrJFEchhDOUV5awbPVsjm3egEtmFTpVAR8d7uN6MGniPQT7R17zY2enFbPhs2MU5lRwyuxgo3s9D07qzM/6RzTJvmZXq80FNIBJXYM5fq6M19adoFOgOz8f3KFJny8utCNxv+hIWVU5C9eso2RrNRUbAvlw8xbU2GJGTuhB146dm7QGIYQQoikYzWbqqiWgCSGant1eT/KOxez8ejHKsTyMDa3x9f2iGDHuNrrHJV3X41eW1rLtqxMc3XaOGpPCMmsN3rE25t3UjUjfqx+FayptMqABPDKqI2l55bywPJUOflZGdA5o8ud0d3HjZ1OmoE5W2bx/D9tWH8VyzJ9NR7NZ6rebTkP8mDRsOGajqclrEUIIIRqDwWyhrkamOAohms6h4zv4esWnVBw4iUvFtbXG/zEOh8rhjVnsWJROTU09+6x2tlnq+e34ztydFNkiRs0u1WYDmk6n8I8Z3Tj7diUPf7aPBQ8MpFOge7M8t6IoDO7Rm8E9epOdn8uSpZsw7Xfn3JdG/rVsMa7da5g8cQiRfmHNUo8QQghxrYxmC/W1NagOB8pVLr4XQogfkpN/hmXL3yd75z6sBXYcqDhCLAROSGLS2LuvuDX+Tzl3qoSNc46Tf6aMMpueeYZqIqNsLLm5Gx383BrlORpbmw1oAK4mA+/e2Zupr2/h3o92sfDBgfi6NU5nxysV7BfAL+6+ibr6elau28LRjQ5024NYuDOF8shV9B0dy6jug9Ep8p+eEEKIlsdo1v7frK+txWiRbWWEENeuqrqCZV9/ROrGZCxnKrR1ZZ4KrqO7Mn78XUSGdGq85yqvZftXJzmyJQe91cA6LweHlBp+N6ETPx/cAX0LGzW7VJsOaABBNhfevbM3M97exi8/3sOnTdDZ8UoYDQYmjxnK5DGQeuwUXy/fi0daGGlv29nm9RGB/c1MGzUaf6tfs9cmhBBC/JBvQlldTbUENCHEVbuwrmztYjiWh6lOh87iQNc7giFjZtCn6/BGfT7VoXJkSzbbFp6ktsrO+VAzH5cV0znYxtIZ/egY0Dwz6q5Hmw9oAN3CPPnHDK2z45MLDvGPm7s5bV8DgLhOUcR1iqKspJKlyzdTu9OX+hVW3l+7gbq4PEaO6cWADn2dWqMQQggB2hRHQDo5CiGuysFj21m74lMqDqbjUqGg06vUx3gTN2wco4fMwGho/J4MuRmlbJx7nLyMUlxCXPnKvZxTlSX8ekxHfjUsGmMr2QarXQQ00Do7nsgr519fp9ExwJ1fDo12dkm421yZOXMMjhkOdmw/wq6vy9Af6Myug0UsDn6NjoP9mN5/Ap4WT2eXKoQQop36ZoqjdHIUQvyUzNxTLF/xIed27sN63tFk68q+raqslu0LT3Jkaw4u7kbyEtz4KDOfzkHuLJrRh4RgW5M8b1NpNwEN4DcjYzmRV87LK4/SwdfKmIRAZ5cEgE6vY8DARAYMTCT79HnWLNuNcjiOqrkG/rH8C4xdyxg/YjC9g3rJqJoQQohmdXEETTo5CiG+q7SimGWrPiJt66aL+5V5KVhHd2P8hFlEBMc22XM77A4Ob8pmx+J06qrt+PXy5fXcfDKzS3lwRDS/HhnrlKVN16tdBTRFUfj7zd04W1jJI5/vZ/4vB7S4RB0c4cNdD4yluqKOjWsPYt8YjH6zhXU7z/BpxEp6DI3ihi6TsJlbVt1CCCHapgsjaDLFUQjRoK6+ljWb5rM/eSW6tPMY7Q37lfWNYuiYGfRKHNLkNWSnFbNx7nHOZ5UT3MmTA346Xk45Swc/K1/+LIke4V5NXkNTaVcBDcBi1PNOQ2fH+z7azcKHBuLv3vIWPVusRsZM6cWoSSrH92ezeVUKbmlJlJyo51nfd3DvVc8NA8bSw7+HjKoJIYRoMjKCJoQAcDgc7DjwNVvWLKDm8Bks1ToUgwO1sz9dR0xkxIBp171f2ZWoKK5h64ITHN+Zi5uXmdgbInnhYAZnDldx76AoHh/bCYux9Y2aXardBTSAAA8L/7urNze/tY37Zu/h8/v7t9i/SJ1OoXPPEDr3DKHoXAUbV6ag290dZaWehZv383aHuQwc3IUpsZNlrZoQQohGd2kXRyFE+5OavpevV3xK0f5jWEvBoag4ItyJGDyU8SN/htWleboi2uscHFh3lt3LM3DYVbqPDWejvpZnN6QS6uXCnPv607+DT7PU0tTaZUADSAyx8a9bu/PLT/bw23n7eX1mzxa3i/i3eQVamTqrH7W31HNw82l2r7MTcDCS3NRSHgt8Gb9eBqZ1m0yfwD4yqiaEEKJRSBdHIdqf7LwMlq/4kKxd+3DLtwOgBhjwGtqbiePvJsAnpNlqUVWV04fOs3l+GiX5VUR29cVvUCBPf51KWl45t/UL56kJcbiZ206saTuv5BqMTQjkyfGd+dvyo/zd5xi/H9fZ2SVdEZOLgd6jo+k1sgNnUwvZtvooLsdGoWY6mLNpI691eJdhffpzQ+xUfF18nV2uEEKIVsxwoYujTHEUoi0rKStk2ZqPOLF1y4VmH4oNzMPjGTvuZ8RGdmn2morOVbB5fhpnDhfiFejK+Ae7sji3kN/M3Y2Pm4kP7+7DsE7+zV5XU2vXAQ3gvsEdOFVQyZvJJ4n0tTKjd5izS7piik4hPMGH8ISBlORXsn/9afRbdMTs6knW4UweDHqakO5uTI+fxoCgAeh1LXMapxBCiJZLmoQI0XZV11axesNcDm34GkN6MQa7gs5FRdcngiGjb270TaSvVE1VPbuWneLQukwMJh0Db4rBJd7Gb748xKGsEm7oHsxzUxKxuRqdUl9Ta/cBTVEU/jI1gbOFlTy14BChXi4kRbe+USebnytDZ8SRNLUjx3eeY/daI74nQ6k5XcmH25bzatS/GNtlBDfE3ECwW7CzyxVCCNFKGExmUBTqa2UETYi2wG6vZ+OupexctwR7ag7mWh06owM1LoCuwyc0W7OP76M6VFK35bB94UmqyuuISwqi75QOzDmQxatvbsXNbOCtO3oyLjHIKfU1l3Yf0ACMeh1v3N6TG/+7lV99spcFDyQR7efm7LKuidGsJ2FwCPGDgslOK+bAujOYD4xEzR5B+pHD3Bv4a8I6ezO903RGhI3ApG/8XdyFEEK0HYqiYDSZZaNqIVq5PSkb2bBmHpUHT+FSqYBORe3gSfTgkYwbPhOL2dWp9WWfKGbzvDTyz5QR2MGDSQ91o9rNwD1z97LzVCGj4wP427Qu+LmbnVpnc5CA1sDmYuSDWX244Y0t3PPhLr56YCDe1tYbXhRFIaSjFyEdvSgrrObwxizMm4xEpXah7HQBH+5fxMshrzKu4ximxU6jo1dHZ5cshBCihTJaLDLFUYhWKDV9L2tXzaFwXyrWkoYOjKEuBE4cwIQxd+Hl4fxZY6UFVWz76iQn9uRh9TQz6u54Yvv4M3dXJs8vO4K+YR/jG3uGtJsmeBLQLhHm7co7d/Zm5rvb+eXHe/j4531b5e7j3+bubaH/DdH0nhjJyT15HFififspXxxn60g9uYN79/6KsLAAboi5gXFR4/AweTi7ZCGEEC2IwWSWfdCEaCVOZ6exauVszu05iLVA68CIvwHbxB6MG3snoQFRzi2wQW11PXtXnWb/mrMoCvSZGEmPMREU1tRxz0e7ST6Wz8AYH165qRshni7OLrdZSUD7ll4RXvzj5m48PGcfT355iH/M6NZm0rrBqKdT/yA69Q8i91Qph5IzMew2kZAziPNnz/Dx8a941fdVRkaOZFrMNPoE9kGn6JxdthBCCCczmmWKoxAtWe75LFasms2ZnbtwyalBhwJeCi4jExkz9g5iIhKdXeIFqkPl2I5zbFt4ksqSWmL7BDBgWjTu3haWHMjmmYUp1NTbeXZyPHcOiGzx22A1BQlo32Nyt2AyCir4x5rjRPpa+fXIWGeX1OgCojwIiIon6cYYjmzOJmWTGZ9j4dgzaziYvYGHjv0GHy9PpkZPZWrMVGksIoQQ7ZhMcRSi5SkqLWDFmtmc3L4N89lK9KqC4g7GgbEMH3ML3ToPcHaJ35FzopjN89PIO12Gf6QH43/RhcAONoora3nos70sPZhD9zBP/jmjGx1aaT+IxiAB7Qc8NCKGU+cr+Oea44R5uzCtR6izS2oSrh4mek+IpOfYcE4dLOBQchb6Y2PoeWY050My+CLnK/574L/0DerL1OipjIoYhYuhfQ0zCyFEe2c0W6SLoxAtQHllCSvXfcrRLRsxZpRhcCgoLir63uEMGHkD/buNRqdrebOfSvKr2PbVCU7uzb+wzqxjnwAUnULysTx+/8VBCitqeWxMR345NBqDvuW9huYkAe0HKIrCS9O7klNcze+/OEighwsDon2cXVaT0el1RPfwJ7qHP4XZFaRsyOTodgPTz/wW/KvYV7qOP2b9iRfMLzAuchxTY6bS3a97m5n+KYQQ4ocZzWbKCyucXYYQ7VJ1TSWrkueSsmUd+hOFGO06dGYHStdgeg6fxJA+k5zWFv+n1FTWsXt5BgeTM9HpFPpOjqL7qHCMZj0VNfW8sDyVz3acoWOAG+/P6kNiiM3ZJbcILfNvs4UwGXS8dUcvbnxrK7/4eDcLHkgixt/d2WU1Oe9gK0NmdqL/DdEc23GOQ8mZ9Dg8kT4ukyjukMHKqrl8mfYl4e7hTI2ZypToKQRaA51dthBCiCZiNMsURyGaU3VtFWs3fcGBzWtQ0gow1TXsVdbZj/jBYxk56EZMxpbbbt5ud3B4Yza7lp6iurKOuAFB9JvSAaunVvPujEJ+O+8AZ4sq+cWQDjw6uiMWY+tvzNdYJKD9BJur1n5/2ptbmfWB1n6/Pey/AGByMdBlWCiJQ0PIOlbEoQ1Z2A/ATeofsHSo55Cykf/sfZ3X971Ov6B+TImewsjwkbganbuPhhBCiMZlMJsloAnRxOrqa1m/9Sv2blyJ41iutoG0wYEj2pvYQSMZM/QWp+9V9lNUVSXj0Hm2fnmC4txKQjt7kXRjDH5h2gBHTb2df32dxtsbThLi5cLn9w+gb5S3k6tueSSgXYEwb1fen9WbW97ezr0f7WLu/f1xNbWfH52iKIR29ia0szflRdUc3pTN4U1ZxJ4cQXffsVR2zGJF4RyeynkKF4MLoyNGMyV6inSBFEKINkJG0IRoGnX1tWzYvpi9m1ZSdzQbS7UORa+iRnkSOXAo44bfhtWldczeyjtdytYFJ8g6VoxXoCsTH+xKRKLPheUwqTmlPPr5fo6eK2Nm3zCenhiPm7n9fJ6+GvJTuUJdQz35z8we3P/xbn49Zz9v/6wX+nbY9tPNy0K/KR3oPSGSk/vyOLQ+i4qt/kwyPop3FwPHvLex7MwCFp9cTKA1kMkdJjMpehIdbB2cXboQQohrZLRYqKuWJiFCNAa7vZ4NO5awe8Ny6o5mYanWoepU1EgPwgYMYtzIO/Cwejq7zCtWWlDF9kXppO3KxeJmZMitHYkfHIy+odGH3aHyzsZ0/rnmGDYXE+/P6s2IzgFOrrplk4B2FUbFB/DnyQn8efFh/rr0CM9OSXB2SU6jN+jo2CeQjn0CyT9bRkpyJsd35eK1txePRg5FSSxmvXER76W8x7uH3qWLbxcmdZjEuKhxeFtkKFsIIVoTo9mMw16Pvb4evUE+Oghxtez2ejbuWsqu5GXUpWZjqVZQdSqOCHdC+w9i3Mjbsbm3rs9H1RV17Fl5moPrz6IoCr3GRdBzbAQml4u/I06fr+B38w6w+3QRE7oE8vwNXfC2mpxYdesgv2Wv0l1JkZwprOS9zacI93blnkEtYzd2Z/ILc2f4z+JIujGGo9vOkbIxi+KlBnq53cpN/X7J6dADLM3/ihd3vsiru15lYMhAJnWYxLCwYVgMFmeXL4QQ4icYzdrv6vraGgloQlwhu72e5B2L2bNxBbVHs3GpUkCn4gh3I7hfEuNG3Y6Xh6+zy7xq9joHhzZksnt5BjVV9XQeEES/yVG4eV38TKeqKnN2nuX5ZUfQ6xT+dUt3pnYPlu7fV0h+y16DpyfEkVVUxV+XHSHY04VxidLBEMDsaqTbyDC6jggl82gRKRuyOLouH5Vg7kn8E169YLthLctOLWND5gasRiujI0YzqcMkWa8mhBAt2DcBra66GrOr1cnVCNFy1dXXkrx9EXs3rqT+WA6Wah3oVNRwN4L69mPcqDvwtvk7u8xrojpU0vbksn1hOmXnqwlP8GbAtBh8Qy/fUDqvtJrff3mQ5GP5DIzx4dWbuhHsKXvoXg0JaNdAp1P4v1u6M/Pd7fxm7j4+u68/vSK8nF1Wi6EoCmFx3oTFeVNWWM2Rzdkc3pxNxqFa/Hz78/KgaVT3zGXVuWWsOb2GhScWEuAawISoCUzsMJGOXh3lGxYhhGhBjGate7E0ChHiu2rrali/9Sv2bVqN4/g5zDUNoSzSg5B+SYwdcVurHCm71NnUQrZ9dZL8M2X4hrkx/I7uhMV9d0rmsoM5PL3wEFW1dp6dHM+dAyLRtcOeDddLAto1cjHpee+u3tz43638/KNdfPmrJDr4uf30HdsZd++LTUXS9+eTsiGLHQtPoTMoDOl1K/cOfJhUw16WnlrCx0c+5oPDHxBti2Zih4mMjxpPqHuos1+CEEK0exdG0GqkUYgQoG0evWbjPFK2rUdNy8dcq3VfdETaCOs/kLHDb2t1a8q+T97pUrZ9dZLMo0W4e1sYNSuOjn0DUb4Vukoq6/jT4hQW7c+mW6iNf8zoToy/fC6+VhLQroOPm5kP7+7Ljf/dyl0f7OTLXyXh7y5rqr6P3qAjtncAsb0DOJ9dzuGN2RzdnsPxHbn4hHrzqyFP8eepZtbnrGX5qeW8tu81Xtv3Gt39ujOxw0TGRI6R5iJCCOEkF0fQJKCJ9qu8soRVyXM5un0TupOFmOp1KAYHjigvIvoPZszwW1tV98UfU5xXyY7F6ZzYnYfFamTQzbEkDglBb/zucpTNaQU8Nv8A+eU1PDIqlgeHx2DUy7KV6yEB7TpF+lp5b1YfZr6znXs/3M3c+/tjlT0dfpRPsBtDbu1I/xs6kLYrl0Mbstjw2TGMC/R06tedfw6ZSLWthBWnVrAsfRkv7HiBl3e+TP/g/kyImsDwsOG4meRbGSGEaC4GyzcjaDLFUbQvhSV5rF4/lxM7t2HIKMFo16EzOlBjfYkZMIwxQ2/BxdJ21mVWlNSwe3kGRzZlozMo9J4QSY/R4Zd1ZvxGVa2dl1ce5cOtGUT7WXnnziS6hno2f9FtkCSJRtA9zJPXb+vBfbN388Cne/nfXb3lm4MrYLIYSBgcQvygYHJPlZKyIYvULTmkbMgiKNrG4CGTuHvCPZwsP8Gy9GWsPLWSpzY/hVlvZkjoEMZFjmNI6BDpBCmEEE3s4hRHCWii7cvOy2DN2rmc3rMbS1YVeoeCzuyA+ADiBo5ixMDpWExtq+lFTVU9+9ecYf/aszjqHMQPCqb3xEisNvP33v7A2WIenbef9PwKZiVF8sT4zliM+mauuu2SgNZIRsYF8MK0Ljy54BBPLTjEKzd1lUYXV0hRFAI72AjsYGPQzbGkbsvh8MYsvv7gCJvnpxE3IIh7hvyCR3o+woH8A6w4tYJVGatYc3oNrgZXRoSPYHzUeAYEDcCoNzr75QghRJtzoc1+tQQ00TadPHuEtV/P5dz+Q7icq0WHgs6qovQIpcegcQzuOxGjoe3t31VXa+fQ+kz2rjpNTWU9Mb386TelA54Brt9/e7uD19ed4PX1J/B3N/Ppz/sxMKZ1N0BpiSSgNaKZfcPJKanmtbVpBHm68NvRHZ1dUqtjcTPSY3Q43UeGaa36N2Wxf+1Z9q05Q1i8N4mDQ/h97z/weJ/H2Z27mxWnVrDm9BqWpi/FZrYxMnwkYyPH0jewLwadvL2FEKIxyBo00dY4HA72p25hy4ZFFKUcx3reoV1hA0NSNAOGTqFv1xHodG1zRpS93kHqlmx2Lc+gsqSW8AQf+k/tgF+4+w/e50ReOb+bt58DmSVM6xHCs1MSsLnIF+NNQT7BNrJHR8VyrqRKC2k2CzP7hju7pFZJ0SmExXsTFu9NeVENR7Zkk7olmxVvH8LVZiJ+YDAJg7rTP6k/z/R7hq3ZW1l+ajkrT61kQdoCvMxejIoYxdjIsfQO6I1eJ8PuQghxrWSKo2gL6upr2bx7OXs3r6Iy9Qyu5Q0znXz1mIfHM2T4dLp26u/cIpuYw6GStiuXnUvSKS2oJijGxtifJxIc6/mj95m9LYMXVxzFxaTnzdt7MqFLUPMV3Q5JQGtkiqLwwrQu5JbW8MzCFAI8zIzoHODsslo1Ny8zfSdF0Xt8BKdTznN4Uza7V2SwZ0UGEYk+JAwJYXDCEIaGDaW6vpotWVtYlbGKpelLmX98Pt4Wb0ZHjGZs5Fh6+veUsCaEEFfJaJERNNE6VVSVsXbTF+xat4Kt77+CuUaHXVFRQyx4De/OiOEziAzp5Owym5yqqpw6UMCOxekUZlfgG+bGpIe6EZ7g/aNLcnJKqnh8/kE2nyhgeCc/Xr6xK/4esva/qUlAawJGvY43b+/Jre9s58FP9zHn/v50D/N0dlmtnk6vI6qbH1Hd/CgtqOLI5myObM0h442DuHmbSRgUTFxSMCMjRjIyYiRV9VVsytzEqoxVLDqxiM+PfY6PxYdREaMYHTGaXgG9ZBqkEEJcAb3BiE6vlxE00Srk5J9hzfq5nN67B9OZcgx2BavBQX2kJyF9+jN62C34eLaPL89VVeV0ynl2LjlF/pkyPANcGfPzBGJ6+n9nL7Nv32/xgWz+uDCFeofK36Z1YWbfMOmv0Ezk02kTsZoNvD+rDzf+dyt3f7CTL36VRLRsZN1oPHxd6H9DNH0mR3FqfwGHN2WxY/Epdi7NILKLNqoWFufNmMgxjIkcQ2VdJRszN7L69OoLYc3b4s2I8BGMjhhNn8A+GHUyj1oIIX6I0WyRgCZarEPHd7B5w0LyD6bikleHDgXFRYWEQDr3H4ZB9WXsqPHOLrPZqKpK5tEidi5J51x6KR6+FkbcGUenfgHofqLTeHFlLU8vTGHZwRx6hnvyzxndifRtO1sJtAYS0JqQn7uZ2ff05aa3tnLne9pG1oE2GRZuTHq9jphe/sT08qc4t5IjW7I5ui2HUwcKcPe2ED8omLiBQVhtroyLGse4qHFU1lWyJXsLazLWsCx9GV8c/wJPsycjwkcwKnwU/YL6YdK3vU5NQghxPQxmM3XVMsVRtAy1dTVs3LGEA9vXUXHsDNbShiu8FIwDY+k7eDz9u42+0OQjOTnZabU2t+y0YnYsTic7rRg3LzPDbu9E5wFB6A0/3fAk+Vgev//iIIUVtTw+thO/GNIBg2wd1eyaJaApivIqMBmoBU4Cd6uqWtwcz+1skb5WPry7L7e8vY273t/JvF8OkI43TcQzwJWk6TH0m9yB9AP5HN6UzY7F6exceoqorr4kDA4mLM4bV6MroyNGMzpitLZmLXsLa06vYVXGKhakLcDN6MaQ0CGMihjFwOCBuBq/v9WsEEK0J0azWUbQhFPlF+WwdsN8Tu7Zge5UEaY6bT0ZQRY8BiYybNhNxEZ2cXaZTnPuVAk7F6dzNrUIVw8Tg2+JJX5QMIYr2J+ssraevy1P5ZPtZ4j1d+P9WX1IDLE1Q9Xi+zTXCNoa4ElVVesVRXkZeBL4QzM9t9Mlhth4587ezPpgJ/d9tJvZ9/aVzfyakN6oI7Z3ALG9A7RRtc3ZpG7LIX1/Pu7eFuIGBhGXFIyblxmLwcLI8JGMDB9Jrb2W7TnbWXtmLevOrGP5qeWY9WYGBg9kVMQohoQOcfZLE0IIp5EpjsIZDh3fwZZNi8k7dETbn0xVUEwO1Ggfwnv1Z+TQm/G2+Tu7TKc6d6qEXUszOHP4PBY3I0k3xpA4NASj6co+a+47U8Rv5x0g43wFPx8UxWNjO8nnVCdrloCmqurqS/64HbipOZ63JRkY48v/3dKdh+fs49dz9vHm7T1lyLgZeAa4knRjDP2maKNqRzZns3PJKXYtPUVEF1/iBwUTkeCNTq/DpDcxJHQIQ0KH8Mf+f2Rv7l6+PvO1FtjOrsOgGIgxx5B7NJdhYcMIsLaPBcZCCAFaQKuXLo6iiVVVV7B+20IO79xA9fGsi63wbaDvG0XPpDEM7D2uTW4afbXOpZewa9kpzhwuxGI1MmBaNIlDQzBZruzjfZ3dwX/WpvFG8kkCPSx89vP+DIj2aeKqxZVwxhq0e4DPnfC8TjepazAFZTU8u+QIf1yUwt+mdZFuOM3k0lG1kvxKjmzOIXVbDhkHC7B6molLCiIuKQgPXxcADDoDfYP60jeoL0/0fYKUghS+PvM1S48u5fkdz/P8judJ9ElkRPgIRoSPoIOtw/+zd9/hbZVnH8e/R9uyhqe893bsTGcPEnaAMNKy9yy0dC9eaEvpAlraAi2Ussree4adkL2Xndjx3ntva5z3DzmGQIAAjiXb9+e6dB3pWLZvJ8fy+el5zv3I/6UQYkLTm0wM9ff5ugwxAVXUFrF6zUtU796FvrobvVuDqlFRYwKwL8lh0eIzyUye7usy/ca3DWYAJU3d/PTZ3eyt7eQ7M2O5+fRsbCa5BMdfKKqqjs4XUpT3gcjDfOgmVVVfHX7OTUAesFL9gm+sKMo1wDUAERERs5555plRqc+fvHhgiNfLnJyeomdlmrwD5CuqR6W7DtpLVXrqvfsskRCUomCNBo3284Gru7ubXlMve/r2sKdvD5VDlQCE68KZap7K1ICpJBoT0SgyOirGRk9PDxaLdIgVR1/pqlcY7Owg+9zLvvK5clyKL+NyOymt2UF9RQHUtmLt9P697TN5cMZYCU3IICNxLibj6HUOnAjHZF+LSnOB95xFa4DQLIWQVNDqj/wNYo+q8n6li+cPDGHUwmVTjORFSs9AX1i2bNl2VVXzDvexUQtoX0VRlMuA7wHHqap6RG/B5eXlqdu2bTuqdfmCqqrc8OJent1WzR/OmMIl8xN9XdKk19Xaz/4N9RRuqKenfRCTRU/mvEiyFkYTEvXJH4jVq1ezdOnSkcdNfU2srl7Nh1UfsrlhMy6Pi2BjMItjF7M0bikLohcQqJfWtOLo+ewxKcTR8ubdf6O+pIir7n7wK58rx6X4rOr6Ej5a+xJVu3airerE4NTgUVT6HHpCs9OZt+gUZmYvGem6ONrG8zFZV9zBtrfKqd7fjilQz4wT47/2iBlAXUc/v3xhN+tLWjk208Ft38nFYZXu4r6iKMoXBrSx6uJ4MvAr4JgjDWcTmaIo/PmsHFp7h7j5tQJCAg2cNjXa12VNarbQAOauSGb2qUlU72tj3/o69nxYw673q4lKsZO1MJrUWZ+/CNlhdnBOxjmck3EO3UPdrK9dz+qa1ayuXs1rpa+h1+iZEzmHY+KOYWnsUqIsUWP/wwkhxCjQm0w4B6RJiDgyA0P9rNvyJnu3raG7sILAdu+AgGLyQFo48TPmsHTxSsKD5e/i4Rxcx2zbWxXUFXcQYP1mUxkPfq1XdtXyu1cLcHtUbl2Zy3mzZdFpfzZWY5r/BozAe8MHwyZVVa8do+/tl3RaDf++YAYXP7SZnz67C6tJzzHp4b4ua9LTaBQSckJJyAmlr2uIwk317F9fz4eP7WftcwewxHhoTOjCkWj93Aub1WAdWWvN5XGxs2knq6u9Ye0vm//CXzb/hYzgjJFGJLlhuWg10iVJCDE+6I0mXEPSJER8scKyXWzY8Dq1e/PR13Sjd3lHyVSHHuOydOYuWM6snGOO2ijZRKCqKpX5rWx7q4LG8i4Cg4wsOsfbLv9IuzJ+WnvvEL95JZ8399YzKyGYf5wzjYRQmdnj78aqi2PqWHyf8cak1/LgpbM57/5NXPv4dp64ai6zEoJ9XZYYZrYZmHliAjNOiKe+tJN96+o4sLWBF27fRkh0IFkLosiYG0mA9fPXEeo0OmZHzmZ25Gx+kfcLyrvKWVO9htXVq3k4/2Ee2PsAwcZgFsYsZEnsEhZEL8BulPVGhBD+S2804RwYRFVVeeddANDZ3caaja9SuH0Dg6X1mLu9+xWzClkRJM6Yx9KFZxIaJF2Pv4rqUSnb3cy2typoqe7BGmLimAsyyJofhVb/zQLtR8OLTnf0DfGrkzP43pIUtBr53R0P5KpAH7MH6Hnsijmcfd8GrnhkK89+bx6ZkTZflyU+RVEUolODiE4NQoluJDIgnX3r61n/QgkbXy4laWoYWQujicsOQXOYFz5FUUi2J5NsT+bynMvpHOxkQ90GPq75mHW163ij7A20ipZp4dNYEruExbGLSQtKkxMgIYRf0RuNqKoHt9OJziANriYjp2uIzTvfZ+fWD2kvKsXUOIRWVUY6LloXZDFv4ankpM2RUbIj5HZ7KN7ayI53qmiv78XuCODYS7JInxuB9hsux9Q76OLPb+3nqc1VZERYeeTy2UyJljeBxxMJaH4g3Grk8Svn8t37NnDxQ1t48doFxIeafV2WOAytQWHK4himLI6htbaH/RvqKdrcQOnOZgKDjGTOjyRzfhRBji/+/7Mb7SxPWs7ypOW4PW72tuzl45qPWVu7ljt33MmdO+4kwhzBophFLIxZyLyoeVgN1jH8KYUQ4vP0Jm8zAefggAS0SaSoYjcbNrxJ7d49aKu7MDiHQ0OwgnZ2AtkzF7Fk3goCA+Tv1NfhHHKzf309u96rorttgNAYCydcmU3qrIjDvtl7pLZXtvOz53ZR1dbHNUuS+dkJ6bLo9DgkAc1PxIWYeeLKuZz9341c9NBmXrh2Pg6bdNbxZ6ExFhadncb8s1Ko2NPC/g317FhVyfa3K4lKtZO1IIqUmY4vvZhXq9Ey3TGd6Y7p/Gjmj2jsbWR93XrW1a7j3Yp3ebH4xZHRtUUxi1gUs4iMkAxp4y+EGHM6gxHwBrQAq8z0mKjqm6v4eMOrlO/ZgbOi6ZOFogNU1NQwoqfOYvHC04mNSPJtoePUYJ+TvWtq2fNhNf3dTqJS7Cw5P52EnNBvNXNmyOXhrg8O8J/VpUTZA3j66nnMS5ZFp8crCWh+JC3CyiOXz+GCBzZxycNbePaa+djNsmigv9PqNKTMdJAy00FP+yBFm+vZv6GeDx8r5ONni0mdGU7WgiiiUoO+8sU3IjCClWkrWZm2EqfHyd7mvayrXce62nXcvfNu7t55N6GmUOZHz2dB9ALmR88nLCBsjH5SIcRkNjKCNiCNQiaSzu42Pt70GkW7NtFXWjvSbRGdB6ItWBdmMGf+cqZmzJNpi99Cb+cgez6sJn9NLUMDbuKnhDLr5ASi04K+9dc+0NjNT5/dRUFdF2fPiuV3K7KxyqLT45oEND8zPS6I+y/O44pHtnL5I1t44qq5mA3y3zReWIKNzDo5kZknJdBQ2sn+jfWUbGuicGMDtvAAsuZHkjEvCmvIV4+O6jV6ZkbMZGbETH4080e09LewoW4D62rXsaFuA2+UvQFAenD6SFib6ZiJSScjr0KI0ac3el9bpJPj+Nbb3836rW+xb+cGukoqMTU70aoKHo0KDgOGY1KYlncM82aciEFv9HW54157Qy+73q+maFMDHreHlFkOZp6UQHjct58S6vGoPLSunL+9W4TVqOP+i2dx4pTIUaha+Jqc+fuhRWlh3H3+dL7/5A6ufWIHD16Sh0En71qNJ4qiEJUaRFRqEIvPSad0ZxOFG+rZ/Fo5m18vJzYjmMx5kSTPcKA3Htnc8LCAME5POZ3TU07Ho3ooaitiQ90GNtZt5Mn9T/JIwSMYtUZmRcxiXtQ85kbNJTMkU6ZDCiFGhd44PMVR1kIbVwYG+9iw/R3yd6ylo7gcU9MQWo+CBxVCtWhnJ5A1cyGL5pyKLTDI1+VOGPWlnex8t5LyPS1otRoy50cy/fh4giJGp8dATXsfP39uN5vL2zghO4JbV+YSZpFAPVFIQPNTJ+dEcevKXH794l5++twu7j5vhrRGHaf0Ri2Z86LInBdFV0s/hZsaKNpUz/uP7Ef/9AFSZjnInBfp7RJ5hP/HGkVDVmgWWaFZXJl7JX3OPrY3bh8JbP/Y/g8AgoxBzI6czbyoecyLmkecVRamFEJ8MwdH0JyDEtD8Wf9ALxt3vEvBrvW0F5djbBxA51ZQUSFYgzIjltRpc1k091Rpfz/KVI9K+Z4Wdr1XRX1pJ0azjrzlieQujcVsG53GOqqq8sL2Gm55fR8Af/3uVM6eFSt/2ycYCWh+7NzZ8XT1e1ulBhq03LZy6rfq7CN8zxYWwJzTkph9SiL1pR3s39hA6Xbv6JotzETGXO8USHt4wNf6uma9mcWxi1kcuxiApr4mNtdvZnP9ZjbVb+K9yvcAiAqMYl7UPOZEzWF2xGwiAuWPsxDiyIyMoElA8yu9/d1s2LaK/bs20FFagbFxCJ1n+FwhSEHJjSJx6mwWzTuNiNAY3xY7Qbmcbg5sbmTne1V0NPZhDTGx+Nw0shZEH/EsmSPR0jPIjS/t5d19jcxJCuHvZ08jLkS6fk9EEtD83NVLkukedHH3B8WYDTpuXpEt75JMAIpGITotmOi0YJacm07ZziYKNzWw9a0Ktr5ZQVSqnYy5kaTOcmD8Bo1iHGYHK1JWsCJlBaqqUtlVyab6TWyu38z7Ve/zcsnLACTYEpgdOZs5kXOYHTlbGo4IIb7QJyNocg2aL7V1NrFh6yqK87fSVVZNQLMTreeTETLN9BgSc2excM4pRIbF+brcCa2va4j8j2vJX1NDf7eTsDgLJ145hZSZ4Wi+4RpmX+S9fY3830t76Op3cdMpWVy5KEnetJ/AJKCNAz89Po3eQRcPrSvHYtTxi5MyfF2SGEV6o5aMeVFkzIuiu22AA1saKNrUwOoni1j7bDGJU8PInBdJ3JSQb7RopaIoJNoTSbQncl7mebg9borai9jasJWtDVtZVb6KFw68AECyPZnZkbPJi8wjLyJPApsQYsQnXRxlBG0sVdeXsHHrKioKdjNQ2UBAuwcNCh5FRQnRop0VT2rubBbMWU54cJSvy50UWut62PNBNUWbG3G7PCTmhjLt+Hhi0r+6W/PX1T3g5I9v7OO5bTVkR9l48qrpZETKmnMTnQS0cUBRFH5zahZ9Qy7+/VEJgUYd1y1N8XVZ4iiwhphGukA2V3VTuKmB4q2NlO5oIsCqJy0vgox5kYTHW7/xHwGtRkt2aDbZodlcOuVSXB4XhW2FbGnYwpaGLbxW+hrPFj0LQKItkVkRs0Zu0Zbo0fxxhRDjyMgUR+nieNS43S52F25k9+611Bftx13TNrIOmapVwWHEsCiejKlzmT/zJOzWEB9XPHmoqkr1/jZ2v19N1b42dHoNmQuimHZsLMGRgUfle24qa+Xnz+2mvrOf65el8qPj0qRp3CQhAW2cUBSFP52ZS9+Qm9tXFRJo1HLJ/ERflyWOEkVRcCTYcCTYWPjdVKoK2ijaVE/+2lr2fFRDcKSZ9DmRpM+JwBb29a5X+yydRkdOWA45YTlckXMFTo+TwtZCtjduZ1vjtpEFs8F7DVteRJ63/b9jJkn2JJlyK8QkoZMujqOus7uNzTvfoyh/K+1lFegb+jA4h0/AjR6IsmCen0rutEXkTVuGyfDtXu/F1+ccclO8pZHdH1bTVteL2WZg7unJTFkSTYBldBp/fNaA080d7xTx0PpyEkLMPH/tAmYlBB+V7yX8kwS0cUSrUbjj7Gn0Dbn53asFmA06vjsr1tdliaNMq9WQNDWMpKlhDPQ6Kd3RxIEtjWx+rYzNr5URlWInfW4kqTMdmCzffmFKvUZPbnguueG5XJZzGW6Pm5KOErY1bmN743bW163n9bLXAbAb7cwIn8F0x3RmRswkOzQbo1ba/AoxEWk0WnR6gzQJ+YY8Hg+FZTvYuWsNNQf2MVjdTEC7G406/CaXHZSMCBwZ2cyauYzM5JmyMLQPdbcNkL+mhoJ1dQz2ugiNtXDcpVmk5UWg1R+9/5f82k5++uwuipt6uGhePDeekiXr4U5C8j8+zui1Gv51/gyuenQbv3phN2aDllNyZc75ZGEK1DNlcQxTFsfQ1dpP8dZGijY1sOapItY+e4CEnFDS50SSmBuKzjA6naO0Gi0ZIRlkhGRwYdaFqKpKRVcFu5p2sbNpJzubdrK6ZjXgDXc5YTlMd0xnWvg0poVPk+vYhJhAdEajNAk5Qm2dTWze8T4l+7bTXlGFrqEX45D3xF7VeiDChG5eAqlTZjF31ok4QmQKua+pqkp9SSd7PqymbFczAMnTw5l6bCxRqaN/fdmnudwe/rO6lLs+KCbUYuDRK+ZwTHr4Uft+wr9JQBuHTHot918yi0se2sKPn9lJgF7LskyHr8sSY8wWGjByvVpLdQ9FWxoo3tJI+e4WDCYtyTPCSZ8dSUxG0Kh2k1IUhSR7Ekn2JM5KOwuAtoG2QwLb4/se53+e/wEQY4lhavjUkcCWEZyBXvvtR/qEEGNPbzThkhG0z+kf6GVHwcfsz99MU1kprrp2zF0qCsMn9DZQUsMJScsgd+oCpmUuQK87OtPjxNfncrop3trIno9qaKnuwWjWMf2EeHKOicEWevSnlZY29/Cz53azu7qDFdOi+eMZUwgyy/ExmUlAG6fMBh0PXz6bCx7YxLVPbOfhy2azMFVGKiYjRVEIj7cSHm9lwcpUagvbObCtkbIdTRRubCDAZiBtloO0ORFEJNqOyjuAIaYQjo0/lmPjjwVg0D3I/tb97G7eze7m3Wxv3M7b5W8DYNQayQ7NJjcsl9ywXHLCcoixxMi1bEKMA3oZQcPpGiL/wFYKCjZSW7yfwdpmTG1utAfXHjN6UCICMUyLIzV7JrNnHCfdFf1UV0s/+Wtq2b+hnoFeJyHRgSy9MIP0uZHoR2kWypfxeFQe21jBbasKMeq03H3+DE6fJiOpQgLauGYz6Xnsirmcf/8mrnp0G49eMYc5SdLRaTLTaBTiskOIyw7hmPPTqcxvpXhLIwVr69jzUQ22MBPpcyJJy4sgJProdJ0Cbwib7pjOdMf0kX0NvQ0jgW13826eKXyGxzyPARBsDCYnLGcksOWE5RBskguihfA3epNpUl2DdjCM7du3ibrSIvprmjC0DqF3f2qqYrgR7axY4tOnMGPaMSTHZcu1Y37M41GpKmglf00tlQWtKIpC8rQwco6JISYjeMzeLKzr6OeXL+xmfUkrSzPCuf07U4mwmcbkewv/JwFtnAsJNPDEVXM57/6NXP6/LTx25Vzp9CMA0Om1pMxwkDLDwWC/i7KdzRRvbWD72xVse6uC0JhAUvMiSMtzYA83H/V6IgMjiQyM5KTEkwBwup0UdxST35LP3pa95Lfks652nXexVbxTIw8uB5Adms2U0CnYjfajXqcQ4ovpjRM3oA0M9rG7cCNFRdtpKCtmoLb5kDDm0aoQqkczNYaIlAyys+eSmzFXpiqOE65BlR3vVlLwcS1dLQOYbQbyTklkyqJoLMFjF4xUVeXlnbXc/FoBbo/KX87K5fw5cTKLRBxCAtoEEG418tTV8zj3vxu57OEtPHn1XKbGBvm6LOFHjAE6shZEkbUgit7OQUp3NFOyrZHNr5ax+dUyHAlW0mZHkDrLMWZ/qPRa/Uj4OifjHAB6nb3sa93H3pa9FLQUsK91H+9VvjfyOYeEtpBsMkMzCTHJqLEQY0VvNNLX1eXrMr61ts4mdhWsp+TALloqy3HVt2Pq8KAd7qjo0XpQQySMjXeqqtJQ1kXB2loObFFRPaVEpwUx78wUkmeEox3F67OPRGvPIDe+vJd3ChqZnRjMHWdPIyH06M1mEeOXBLQJIsJm8oa0+zdy0YObefqaeUyJltEG8XmBdiNTl8UydVks3W0DlGxronhbI+tfKGH9CyVEpdpJy4sgeUY4gfaxbZkfqA9kduRsZkfOHtnXOdjJ/rb97Gvdd9jQ5ghwkBGSQWZI5sg2zhqHRpEpRkKMNm8Xx/EzguZ2u9hftpPCoq3UlB2gu7YOmnsx935qtMLogbAAtOmRxCZnkpU1m6yUmRLGxrHBPidFmxsoWFtHW10vepOWoGQ46fw5hMZYfFLTuwUN3PjyXrr6Xfzf8kyuWpyMViOjZuLwJKBNINFBATx1lXck7aIHN/PMNfPJiLT6uizhx6whJmacGM+ME+PpaOyjZHsjB7Y28fEzB/j42QPEpAWROstB8gwHZptvTlbsRjvzouYxL2reyL7OwU4K2wopbCukqK2IwvZCNtRtwK26ATDrzKQHp5MenE5acBrpwemkBqdiM9h88jMIMVH46xRHj8dDbWMZBQe2UlW6j9baapwN7RjbXejcw6NiqKg2BU2kDUNsDPEp2UydsoCE6HS5ZmwCUFWVxvIuCj6upWR7Ey6nB0eClWUXZZKa52DDpnU+CWddA05ueW0fL+6oITvKxhNXTSMzUv4WiS8nAW2CiQsxj4ykXfjgJp65Zj6pDt+8WyTGl6AIM3mnJJF3ShKtdT2Ubm+iZHsTa54+wMfPHCA6PZjUWQ5SZoQTYPXtO8t2o525UXOZGzV3ZN+ge5DSjlJvYBsOb2+Xv81zB54beU5kYKQ3tAWlkRacRmpQKon2RFlcW4gj5G2z79sujvXNVRQUbaGybB8tNZUMNrahaxscWWMMQDV4INSIZloMYQkppGVMZ2rGPCxmmVky0Qz0OjmwpZF962ppre1Fb9SSMS+SKYtjCI/37ZvU60ta+OXzu2noGuCHx6byw2PTMOjkzQDx1SSgTUCJYYE8edU8zrt/Exc8sInnvjefxDCZ4yyOXGi0hdBoC7NPS6KtrpeSg2HtqSI+fuYAMelBpMx0kDw93Gcja591sH1/dmj2yD5VVWnsa+RA+wGK24u9245iNtRtwOVxAaBRNMRb40m2J5MSlDJyS7InSXAT4jO8XRyPfkDzeDyUVe+jqGQnNZVFtNfWMtjcjr596NAgpvOgButR0h1YY+OJT85iSsYcYhxJMio2gakelZoD7exfX0/ZzmbcLg/h8VaWXphB2uwIDCbfnt72D7m57e39PLqxkuTwQF68bgEz4qWBmzhyEtAmqFSHhSevmsv5D3hD2rPfm09cyNHv1CcmFkVRCI2xEBpjYc6KJFpreynZ3kjpjmbWPFXEmqeLiE4NImVmOMnTHViC/SvQKIoy0j1ySeySkf1Ot5PyrnLKOsoo6SihrNO7XVOzZmSapEbREGOJIcmeRKItkUR7Ikm2JBLtiYSaQqXjlpiU9EYjrqFBVI8HZRQCUFtnE4UlO6mo3EdTTSW9jU2427oxdLpHuicCqHoPSrABJc1BYHQMMQlpZGfOISkmU4LYJNLdNkDhxnr2b6inu3UAo1lH9sIoshZG+3y07KDtle384vndlLf0cvnCRH51UiYBY7CmmphYJKBNYBmRVp640hvSzrt/E89cM09CmvjGFEUhLNZCWKyFuacn01bXS+mOJkp3NrP22WLWPltMZLLdG9ZmhGMLDfB1yV9Ir9WPXKP2aU63k8quSko6SyjtKKW8s5yKzgo2129m0P3JqIHVYB0Ja/HWeOJt8SNbq8E/ThKEOBr0Rm+XV+fQIAbTkf2Ot3U2UVS2i+rqAzTVVdHd1MhQSye6jiFMg5+EKw8qnkAg2IQmIYTg2HjiEjPJSssjOjxBgtgk5XZ6KN/Twv71dVTtbwMVYjODmXdGMsnTw9H5SfgZdLm56/1i7ltTSpQ9gKeunsuClDBflyXGKQloE1x2tI0nr5rLhQ9ulpAmRs2hI2vJtNX3UrbTG9YOdoMMj7eSPCOc5OnhhESNjym2eq2e1OBUUoNTD9nvUT009DZQ0VlBeVe5N7h1eYPba6WvHfLcYGMwcbY4EqwJxNniiLXEEmuNJdYSS1hAmIy8iXFNZ/SOkjsHBkYCmtM1RGXtAcqr91NfV057Yx0tVdWseeGf6Dudh0xJBPAYPSh2A5qUcEyRkUTGJZOcmENm8nQCTOPjtUIcXaqq0ljRRdHGBoq3NTLY58ISbCRveSJZC6KwhfnXG4D76rr42XO7KGzo5ty8OH5zWhZWk97XZYlxTALaJJATY5eQJo6qkKhAQqK8DUY6mvoo29lM2a7mkXXWgiPNJE0PJ2VGOOHx1nEXUjSKhmhLNNGWaBbELDjkYwOuAaq7q6nqrqKqq2pku7VxK6+XvX7Ic41aIzGWGGIsMcRaY0fuRwVGEWWJItgYPO7+bcTE5/Q4ae5rpr63nsKuQgD+dcePGOrtRekcxNQHGvWT41ZFxRCgogaZUNKDCYiIxBEdT0J8FqmJuQTbZFRBHF5P+wBFmxso2tRAe0MfWr2G5OnhZM6LJDYrBI2ftaV3uT3ct6aUuz4oJshs4KFL8zguK8LXZYkJQALaJCEhTYyVIIeZmSclMPOkBHraBynf7Q1rO9+tYseqSizBRpKnh5M0PZzoVDuaMV4odLSZdCbSgr1dIT9rwDVAXW8dNd011PbUUttdS02P9/7Opp30OHsO/VpaE5GBkSOBLSowisjASCLMEUSYI3CYHVgM0pVVjB6Xx0VLfwtNfU009TXR2NdIY18jDT0N1PfWU99bT3N/Mx7VA0B4u4GTlUg8Va1g1aNE2dGGhhAcEUVEdCLxsemkxGWzedNWli5d6tsfTowLzkE3ZbuaKdpUT3VhO6gQlWpn2UWZpMxyYAzwz1PVkqYefv7cLnbXdLJiWjR/OH0KwYH+0TRLjH/+edSLo0JCmhhrlmAjuUtjyV0ay0CPk4q9LZTubKZgXR17PqrBaNaRkBtK0tRw4qeE+Lzz1mgz6Uwk25NJtid/7mOqqtI11EVdT93IiXB9T/3I/Y9rPqalv+Vzn2fWmYkI9Ia1CHME/e391O6vJSwgjPCAcMICwggLCMOsl9/tyczpdtI60Eprfyst/S009zfT0t9ySBhr6muidaB1JHwdpNfoR94omBs11/uGwfAt0hKJ4zoHFqO8USC+OY/bQ3VhOwe2NFC2qwXXoBtrqIm8UxLJnBeJPdx/X788HpWH15fzt3eKMBu0/PuCGZw2NdrXZYkJZmKdDYmvJCFN+IrJoidzfhSZ86NwDrqp3tdG+e5mKva2cmBzIxqdQmxGCEnTwkiaFkag3b86Qo42RVGwG+3YjXayQrMO+5wh9xCNvd4RjYOjG58e5djSsIWm3ibe2/Le5z7XrDOPhLUQUwjBpmCCTcGEmEI+eWwMJjQgFLvRjl4j10v4M6fHSddgF52DnbQNtNE20Eb7QDttg2209bfRPtjufTzQRmt/K+2D7Yf9OjaDbSTcpwen4zA7Rh4fvB9sCkajjO+RbeF/Dl5XdmBLIyXbGunvdmI060ifHUH6nAiiU4NQ/GwK42dVtfbxixd2s6W8jeOzHPxlZS4Oq8nXZYkJSALaJCQhTfia3qj1NhCZEY7H7aGhrJOyXS2U725mzVOtrHmqCEeijaSpoSTkhhEWa5mU12YZtAbibHHE2eK+8DkffvQh0+dPHxkdOeTW10LLQAvlneXsaNpBx2DH50ZLDgrUB2I3eAOjzWjDbrATZAzyPjbYsBgsWAwWrHrrIVuL3kKALmBS/v98Haqq0u/qp8fZQ89QD93ObrqHuukZ6qFrqGtkf9eQN4R1DnbSMdgx8viz02E/zWawjQTvBFsCsyJmERoQ6g3opjDCzeEjQd2glSlYYmy1N/RyYGsjB7Y00tXcj1anIXFqKOlzIkmYEopW7/9vBqiqylNbqvjzm/vRKgp3nD2N78yMkdc9cdRIQJukJKQJf6HRaohOCyY6LZiF302lra6X8t0tVOxtYfPr5Wx+rRxLsJGE3DASc0OJzQxGp/ePtsr+QKNoRk7OP7tswGe5PW46hzpHRloObjsGO+gc7DwkHBT3FY/cP7g23BfRKlrMOjNm/fBN96nt8H2TzoRBa8CkNWHUGjHpvNuD9w0aA3qNHr1Wj16jR6fReR9rPnmsUTQjN62iRaPRoGH4sebQY0JV1UMfo6KqKi7Vhcfjwa26catuPKoHl8c1snV6nDg9TobcQyP3nW4nQ54hhtxDDLoHGXANMOAeYMA18LnHfa4++px99Dp76Xf10+vsHdmncmhNh/t3tBqsI8E43BxOalDqyEir3egNzTL6KfxdZ3M/JdsbKd7WRGtNDygQmxFM3vIEkmf473Vlh1PX0c+vX9zD2uIWFqWG8dfvTiU6yL+6SIqJZ/z8hohR9+mQdu5/N/LU1fNIDJMWx8J3Pt2+P++URPq6hqjMb6FiTytFmxso+LgWnUFDbGYIibmhJOSE+d3i2P5Mq9GOhLkUUo7oc1RVpc/VNzLa0+McHvEZvt891E2Ps4d+Vz99zr6RMNLn6qOpr2kkpAy4Bxh0DTLkGTrKP+XYMmlNI2HTpDONBNKwgDAC9YGfC6xWgxWL3oLVYB25HXwsI5FiPOtuG6BkWxMl2xtpquwGICLJxqKz00iZ6Rh3r9WqqvL89hr++Po+3KrKH8+YwoVzE/yuk6SYmCSgTXI5MXaeunouFz+0hXOGQ1qqQy7+Fv7BbDOQtSCarAXRuJxuag90ULmnhfK9LVTsaQGKCI21kJATSkJOKJFJtnHfFdLfKIpCoD6QQH0gjML7Nx7Vw6B7kEHXoDe0DY9AOT3OT0aw3M6R0atPj2p5VA8e1TMy8uX2uFFRRx5/rnYOPZHSKtqR0baD9w+OzGkVLTqNzjuSp9Ufcv/g6J5BaxgJYgdH/SRQicmsp32A0h3NlGxvpKGsC4DweCvzV6aQOsuBLXR8jjQ1dg1w40t7+aCwiTlJIdzx3WnEh8osIzF2JKAJpkTbefrqecPTHTfy5FXzyIi0+rosIQ6h02tJmBJKwpRQFp+XTltdL5X5rVTmt4608DeadcRnh5CQE0pcdihmm1xv4280ioYAXQABuvF54ibEZNfZ3EfpjmZKdzbTVOENZaExFuaekUzqLAdBjvEbZFRV5dVdddz8WgEDTje/PS2byxckyqiZGHMS0AQAGZFWnrlmHhc8sInz7t/IE1fNZUq03ddlCXFYn54KOfOkBAb7nFTvb6eywBvYirc1gQKOeCtx2SHET5HRNSGE+Kba6nop3dlE6c5m7zVleEfK5p6RTMqMcIIjx//lES09g9z08l7eKWhkRnwQfz97GsnhMqNI+IYENDEi1WHhue/N54IHNnHBA5t5/Mo5TI0N8nVZQnwlo1lP6iwHqbMcqB6VlpoeKvNbqNrXxo53qtj+diUGk5bYrBDis0OIyw4Zt1NvhBDiaFM9Ko2VXZTvbqF8VzPtDX0ARCbbWfjdVJKnh2MLmzivoW/uqee3r+bTM+DihuWZXL04Ga2MmgkfkoAmDpEYFsiz35vP+Q9s4sIHNvPIFXOYlRDs67KEOGKKRiE83kp4vJW8U5IY7HNSU9ROVUEbVftaKdvZDEBwpJm4rBDiskKITg+acItkCyHE1+FyuqkpbKd8j/ca377OIRSNQnSandylsSRPDycwaHw1+vgqrT2D/O7VAt7cW09ujJ2/nzON9Ai5xEP4npyRiM+JCzGPjKRd8tBmHr5sNnOTQ31dlhDfiNGsJ2WGg5QZDlRVpb2hj+p9bVQVtLJvXR17PqpBo1GISLaNBDZHglWmQwohJryBHieV+S2U726hcl8brkE3eqOW+CkhJE0LJyEnFFPgxFzG4e299fzmlXy6Bpz88qQMvrckGZ287gs/IQFNHFZ0UADPDoe0y/63lQcvzWNhapivyxLiW1EUhZCoQEKiApl2XBwup5uG0k6q97dTvb+NLW+Us+X1cgwmLTEZwcRmhhCbEUxwlFm69Qkhxj1VVWmt7aFibyuVe1tpLO9EVcFsN5AxJ4KkaeHEZgSPi8Wjv6n23iF+91oBr++uIyfGxpNnzyUz0ubrsoQ4hAQ08YUibCaeuWY+Fz24mcsf2cp9F83k2MwIX5clxKjR6bXeEJYZwvyzUhjo8U6HrN7fRvX+Nsp3twAQYDMQmxFMbEYwMRnB2MMnzrUXQoiJzTnopqawjYr8VqryW+lpHwS8TT5mLU8kMTcMR4IVZRJcc/VOQQM3vZxPR98QPzshneuWpqCXUTPhhySgiS8VbjXyzDXzuPR/W7jmse3889zprJgW7euyhDgqTJZPNRtRVbpaBqg90E5NYTu1Re0Ub20EwBpiIibTG9ii04Kwhph8XLkQQnipqkpbfa93Kve+NuoOdOB2edCbtMRlhTD7NO+6kYH2iXU92Zdp7x3ivt0DbKrfTnaUjceumEN2tIyaCf8lAU18peBAA09eNZcrH9nGj57ZSd+Qi3Nnx/u6LCGOKkVRsIcHYA8PIHth9Mj1a7VF7dQUtVO+q5nCDfUA2MJMRKcFEZ0WTEx6ENZQk0yJFEKMmYEeJ9WF3kBWva+N3g7vKFlwpJmcY2JIyA0lOjUIrW7yjRa9W9DATa/k09bj5ifHp/GDZakyaib8ngQ0cUSsJj2PXjGHa5/Yzq9f3EvPoJsrFyX5uiwhxsynr1/LXRrrbedf20PdgQ7qijuo2NNK4cYGACzBRqLTg4hJCyYq1U5QhFzDJoQYPW6nh4ayzuEOta00VXWDCkazjtjMT5YTmcyj++29Q/z+9QJe3VVHVpSN63MVLj0+3ddlCXFEJKCJIxZg0PLAJXn8+Jmd/PGNffQMuPjRcaly4ikmJUWjEB5nJTzOyrTj4lA93mlFdcUd1B7ooHpfGwc2e6dEBlj1RKUEEZVqJyoliLB4C1p5B1cIcYQ8HpXmqm5qCtuoLWqnvqQTl9ODokBEko3ZpyYRnx2CI9GGZhJcS/ZVVuU38JtX9tLR5+Qnx6fx/aWpbFj3sa/LEuKISUATX4tBp+Ff58/ghpf28s/3D9A75OL/lmdKSBOTnqJRCI2xEBpj8Y6wqSodjX3Ul3RSX9JBXWknZbu8a7Dp9Boikm1EpQQRmWInMsmG0TwxW1kLIb6+g2/4jFwDe6CDoX4XACHRgWQvjvZeA5sejDFATuUOausd4ubhDo3ea83myrVmYlyS32rxtem0Gv76nalYjDru/7iM7gEXfzozB628ayfECEVRCI4MJDgykOxF3sY6vZ2D3sBW2kF9SSfb365AVb3PD440e8Nasp3IJDvBkeZJ0VVNCAEet4eWmh7qir1TputKOhjs9QYyW5iJ1JnhxGaGEJMRjNlm8HG1/umtvfX8dnhdM+nQKMY7CWjiG9FoFG5ekU2gUcs9H5XSO+ji7+dMkxdDIb5EoN040iUSYGjARVNFFw1lXTSUe0fY9q/3Nh4xmnVEJNqISLIRkWTHkWglwCInZkJMBC6nm+bKbupKOqgr9r5p4xxwA2ALDyB5Wvhw46EgbGGyrMeXaekZ5ObXCnhzTz05MTae+O5csqJk1EyMbxLQxDemKAq/PCkTi1HP7asK6Rpwcu+FMzEb5LAS4kgYTLqRddiAkWmRBwNbY1knW9+qgOFRNluYCUeijYhEG45EG+HxVt8VL4Q4Yn1dQzSUeoNYQ1knTVXdeFzeX+zgSDPpcyKJTrMTnRqMJXjytL//NlRV5fU99fz+tQK6B5z84sR0vneMjJqJiUHOpMW3dt3SFILMem56eS8XPbiZhy+bTZBZ3ukX4uv69LTIrAVRgHeUrbmqm8aKruHRtk5KtjV5n69RMNhUPFX7CY+3Eh5vJSzWgs6g9eWPIcSk5nZ7aKvtpbG8k4ayLupLO+hqGQBAq9PgSLAybVncyJRmmbL49TV1DXDTK/m8t6+RabF2/nb2PNIj5A0rMXFIQBOj4vw58QSb9fzo6V2c89+NPHbFXCLtk7e9rxCjxWDSEZMeTEx68Mi+vq4hmiq6aKzoonBHBeV7Wtg/vCabolEIiTJ7O0wmWAmPtxEaE4jBJC/3Qow2VVXpbO4f+X1squiiuboHt9MDQIDNQFSynZxjYolKsRMeZ0WrlxGeb0pVVV7YXsMf39jHoMvDjadkcsXCJHQyaiYmGPmLLUbNyTlRPHK5nqsf28Z3/rOBx6+cQ3K4xddlCTHhmG0GEqeGkTg1jH5bFcccs4ie9kGaq7ppruqmqbKbyoJWCjd512VDAXt4AGGx3hG2sDgLYbEWAoOM0oFViCOkqirdrQMjv2fNVd00VnaNNPPQ6TWEJ1jJOSbGe/1ook0WrR9FtR393PjSXtYcaGZ2YjC3f2eqnGOICUsCmhhVC1LDeOaa+Vz2vy2cfd9GHrl8Drmxdl+XJcSEpigK1hAT1hATydPDAe/JZG/HEM1VXbTU9NBS00NzdTelO5pGPs8UqCc01kJYjIWQmEBCor0Lcctom5jsPB6VzqY+mqu7aa7qobmqm5bqbgb7vGHs4Eh18vTwkWY+IVGBaGQkZ9SpqspTW6q49a1C3B6V36/I5pL5ibLem5jQ5K+wGHW5sXaev3Y+Fz+0hfMf2MT9l8xiQUqYr8sSYlJRFAVLsBFLcDhJ08JH9g/1u2it7RkJbS3V3RSsrcU1PCULvM1IQqIthEQHEhrtDW5BDrNc2yYmpIEeJy21PbQevNX00FbXO/I7odVpCI0JJGWWwzt1ON5KaEwgOr38Phxtla293PDiXjaWtbIgJZTbVk4lPtTs67KEOOokoImjIjncwovXLeCShzdz2cNbufv86ZycE+XrsoSY9AwBOqJSg4hKDRrZp3pUulr7aa3tpa2ul7a6HlrreqnKb8XjGW4hqYAt1DTcxMRMcFQgwRHerSlQFtkW/m+w30V7fS9t9b20N/TRNhzIejuHRp5jsugJi7UwZXEMobGBhMfbCI4yo5WRsTHl9qj8b305d7xbhF6j4S9n5XL+nDiZLiomDQlo4qiJtJt47nvzueKRrXz/yR388cwcLpyb4OuyhBCfoWgU7OFm7OHmkSmSAG6Xh47GPu8JbX0v7Y19tNf3UVPYjtv1yYhbgFVPkMOMPcJMkCMAe7iZoAgzdkcAehl1E2NIVVX6uobobOqjrb7vk0BW33tIENPqNARFmonNCiE0xkJoTCChMRbMNoOEAB8raujmVy/uYXd1B8dnOfjTmbnSdExMOmMa0BRF+TlwBxCuqmrLWH5v4RtBZgNPXDWXHzy5g5tezqe+Y4Cfn5gufwCFGAe8U7sshMYceiG+x6PS3dpPe4M3sLU39tLZ1E9VfiuFXUOHPDcwyEhQRAD2sABs4QHYQgOwhQVgCzdhCtTLa4H42lRVZaDXSWdTPx2NfXQ09XnvD2+dg+6R5+qNWoKHg1hIVKB35DfSjC0sQK5h8jNDLg/3ri7hno9KsJr03H3+DFZMjZLXCDEpjVlAUxQlDjgRqBqr7yn8g9mg44FL8vjNK/n8+6MS6jsHuO07ubKYpBDjlOZTI26JuYd+bGjA9amT5T46mvrpbOqjfG8r/Z8Jb3qT1hvWQk3YwgKwhpiwhBhHGp6YLBLgJivnoJuu1n66Wwboau2nq3l4O/zYOfBJCFM0CrZQE3aHmejUoJHR2+DIQCzB0ql0PNhd3cGvXthDUWM3Z0yP5uYVUwgJlPXhxOQ1liNo/wR+Bbw6ht9T+AmdVsOtK73TFO58v5jmnkHuvXAmFqPMshViIjGYdCOLZn+Wc9BNV0v/8G1g5H5HYx/V+9twDXkOeb5Wr/GGtmAjlhATliAjgXYDgUHGkVuA1SAjIeOM2+2ht2OQnrZBetoH6GkfpKdtgO72Tx4P9DgP+RydXoM1LABbmIno9CBsoSaCHN6ptNZQE1qdvOE3HvUNufjnewd4aF05DquJhy7N47isCF+XJYTPjcnZsaIoZwC1qqrulneyJi9FUfjJ8elE2U3c+HI+592/kYcvm43DKnPLhZgM9EbtYadMgnfa2mCvi+62AbrbBuhpH6C7bfjEvW2A6oJW+rqGUNVDP09RvOvCBQYZMdsMBNgMmK2f35ptBoxmHYqEuaNC9agM9Dnp73Yy0DNEZ5XK7g+q6esapLdziL6uIfo6vfc/G77A27zG23XUhCPRhjXYhC3MO7JqCwsgwCqjqRPNuuIW/u/lPVS39XPB3HhuWJ6JzSQNh4QAUNTP/rX7pl9IUd4HIg/zoZuAG4ETVVXtVBSlAsj7omvQFEW5BrgGICIiYtYzzzwzKvUJ/7KrycW9uwexGRR+PstElGV8vPvZ09ODxSILYwr/MZmOSdWj4hoEVz84+4a3/erwFtwD4BoA1yBwuD9tCmgNwzcj6Ia33seKd6sHjd67T6P/5LFGx6QICKpHxeMC99Cnbk7wjDxWcTuH/60HwT04vB3isP/migZ0puFbwMGtgj4A9GbQmb1brX7i/9sKr54hlWeKhlhX6yLSrHB5jpGMkKPfTGgyvVaK8WHZsmXbVVXNO9zHRi2gfRFFUXKBD4C+4V2xQB0wR1XVhi/73Ly8PHXbtm1HtT7hO7urO7jika14VJUHL53NrIRgX5f0lVavXs3SpUt9XYYQI+SY/LyDozl9XUP0dzvp7/KO4Az0OhnocXq3B2/Djz87vfKzFI2CwaRFb/TedIbP3Ddp0Ru0aPUadHoNWp2CVqdFq1fQ6jRo9RrvVqtB0Xi/nkareLeaT22HQ6B6MO185k+0qoLH7cHjUVHdKh63isdzcOvB41ZxOz24nJ7PbN0jj12DbpyDboYGvFvnoGvksdv51f8ORrOOAIsek0VPgNVAwPDWFKgnwKonwGKg4MBujjl+ISazXkYtBeAdJX9jTz23vF5AR5+Ta49J4fpjUzGN0Xpy8lop/I2iKF8Y0I76FEdVVfcCjk8VU8GXjKCJyWNaXBAvXreAS/+3hQse2MTd58/gpCmHG4QVQogjp2gUAiwGAixH3mTANeRmsM/FYL+LoeHb4Ge2Q/1unEPukYDjHHTT1zWEa+iTx26nB5fLc/gRPB/RaBVvaBy+6Y069EYtBpOWAKveGy6NOgxGb9A0mHQYzToMATpMgTqMZj2GAO8+vVF7RCOJpU3K1/r3FxNbfWc/v30ln/f3NzE11s5jV8wlO9rm67KE8FvSoUH4VGJYIC9et4ArH93GtU9s56ZTsrhyUdKkmEokhPAfOoN3JCwwyPitv5aqeke13E4PbpcHt1PF7XLjcnq8UwjdKqrHu1yB6vHg8eAdDfOofHpWy8jr4KEbNFoFjVbzyQic1jv65t3vHbn7dCCTJirCVzwelSc3V3L7qiJcHg+/OTWLyxYkopMuzkJ8qTEPaKqqJo719xT+Lcxi5Jmr5/GTZ3fypzf3U9nax80rsuUFXAgxLimKglaroJXXMDGJHWjs5v9e2sv2ynYWpYbxl7NyiQ81+7osIcYFGUETfiHAoOU/F87itlWF3P9xGTXtffzrAmnDL4QQQownA04393xUwn1rSrEYdfzjnGmcNSNGZsYI8TXI2a/wGxqNwo2nZBEfYubm1wo4+76NPHxZHlH2AF+XJoQQQoivsLG0lRtf3kt5Sy8rZ8Rw06lZhFq+/bRhISYbmX8h/M5F8xJ4+LLZVLf1ceY968mv7fR1SUIIIYT4Ah19Q/z6hT2c/8Am3B6Vx6+cwz/OnS7hTIhvSAKa8EvHpIfzwnXz0SoK5/x3Ix/sb/R1SUIIIYT4FFVVeW13Hcf/Yw0v7Kjh2mNSeOcnS1icFu7r0oQY1ySgCb+VGWnjlR8sJCXcwtWPbeOR9eUc7XX7hBBCCPHVqlr7uPR/W/nR0zuJDgrgtesXcsPyTAIMY7OumRATmVyDJvyaw2bi2e/N48fP7OL3r++juKmH358+Bb10RxNCCCHGnNPt4YG1Zdz1fjE6jcLNK7K5ZH4iWlnOQYhRIwFN+D2zQcd9F83ijneL+M/qUsqae7n3wpkEB8oiqEIIIcRY2V7Zxo0v5VPU2M3JUyK5+fRsaeQlxFEgAU2MC1qNwq9PziTNYeGGF/dy5r3reejSPFIdVl+XJoQQQkxonX1ObltVyNNbqogJCuDBS/I4PjvC12UJMWHJPDExrqycGcvT18yjd9DNWfdsYHVRk69LEkIIISYkVVV5dVctx/1jNc9tq+bqxUm8+9MlEs6EOMokoIlxZ1ZCMK9ev5C4EDNXPLKVh9ZJ8xAhhBBiNJU193DxQ1v48TO7iAk289r1C7np1GwCjTL5SoijTX7LxLgUExTAC9fN52fP7uaPb+zjQEM3fzwzB4NO3nMQQgghvqkBp5t7V5dy3+pSjDoNfzhjChfOTZAmIEKMIQloYtwyG3Tce+FM7nz/AHd/WEJ5Sy/3XjSTMFkYUwghhPja1hxo5nev5lPZ2scZ06O56dQsHFaTr8sSYtKR4QYxrmk0Cj87MYO7z5/BntoOVvxrHXtqOnxdlhBCCDFuNHQO8IMnd3Dpw1vQKgpPXjWXu86bIeFMCB+RgCYmhNOnRfPCtQvQKArfvW8jL2yv8XVJQgghhF9zuT08tK6c4/+xhvf2N/KzE9J5+yeLWZga5uvShJjUZIqjmDByYuy8/sNFXP/UDn7x/G7yazu56dQsWdRaCCGE+IztlW385pUC9td3cUx6OH84YwoJoYG+LksIgQQ0McGEBBp47Io53PZ2IQ+uK2dffRf3XijXpQkhhBAALT2D3P52Ic9vryHKbuLeC2eyPCcSRZEmIEL4CwloYsLRaTX85rRscmPt/PrFPaz41zruu2gW0+KCfF2aEEII4RNuj8pTW6r426pC+obcXHtMCj88NlXa5gvhh+S3UkxYZ0yPISXcwvce387Z/93In8/M4ey8OF+XJYQQQoypnVXt/PbVfPJru5ifHMofz5xCqsPq67KEEF9AApqY0D59XdovX9jD7poOfntaNkad1telCSGEEEdVW+8Qf3unkGe2VhNuMXL3+TNYMTVKpjMK4eckoIkJ7+B1aX99p4j7Py5jb00n91w4k9hgs69LE0IIIUad26Py9JYq7ni3iO4BF1ctSuLHx6djkemMQowL8psqJgWdVsONp2QxMz6YXz6/m9P+tY5/njudZRkOX5cmhBBCjJptFW3c/FoBBXVdzE0K4Q9n5JARKdMZhRhPJKCJSeXknEgyIq1c98R2rnhkKz9clsqPj09Hq5HpHkIIIcavpq4Bbnu7kJd21hJlN/Gv82dwmkxnFGJckoAmJp2ksEBe/v5CfvtqPnd/WMLO6g7uPHc6odKKXwghxDgz5PLwyIZy7v6ghCGXhx8sS+EHy1IxG+QUT4jxSn57xaQUYNDyt+9OJS8hmN+9VsBp/1rHvy+YyayEYF+XJoQQQhyRtcXN/P61Akqbezk208HvTssmMUwWmxZivNP4ugAhfEVRFM6bE89L1y1Ap1U4978beXhdOaqq+ro0IYQQ4gtVtvZy9WPbuPihLbg8Kg9dmsfDl82WcCbEBCEjaGLSy4mx88b1i/n587v5wxv72FDayh1nTyXIbPB1aUIIIcSInkEX93xUwkNry9FpFX55UgZXLkrCpJelY4SYSCSgCQHYzXoeuGQWD6+v4La393PKXWu5+/wZ5CWG+Lo0IYQQk5zHo/LyzlpuX1VIU/cgK2fG8OuTM4mwmXxdmhDiKJApjkIMUxSFKxcl8eJ1C9BpNZx7/ybu+agEj0emPAohhPCNnVXtrPzPBn7+/G6iggJ46fsL+Mc50yWcCTGByQiaEJ8xNTaIN360iBtf2svf3iliU1kr/zhnOuFW6fIohBBibDR2DXD7qkJe2lFLuNXI38+exlkzYtDIsjBCTHgS0IQ4DJtJz7/On8Gi1DBufq2A5Xet5c5zp/u6LCGEEBNc/5Cb+z8u4741pbg9Ktct9bbNtxjllE2IyUJ+24X4Age7PM6ID+b6p3Zw8cObOTVJz8LFHvRamR0shBBi9Hg8Kq/uruWvq4qo7xxgeU4k/7c8i/hQs69LE0KMMTnLFOIrZERaefX6hZwzK443ypx89z8bKG/p9XVZQgghJohtFW2c9Z8N/PTZ3YRZjDx7zTz+c9EsCWdCTFIygibEETAbdNz+3amEuZp4oqiPU+9ey+9Oy+bc2XEoilwPIIQQ4uurbuvjtlWFvLmnngibkTvOnsZKuc5MiElPApoQX8PsSB0XLZ/Lz5/bzQ0v7eWjoiZuWzmV4EBZM00IIcSR6Rpw8p/VpTy0rhyNAj86Lo1rj0nGbJDTMiGEBDQhvrYoewBPXDmXh9aV87d3ijjpzo/5+znTWJwW7uvShBBC+DGn28OTmyq5+8MS2nqHOGtGDL86OYMoe4CvSxNC+BEJaEJ8AxqNwtVLklmQGsqPn9nFxQ9t4YqFSfzq5AxMeq2vyxNCCOFHVFXlnYIGbl9VRHlLL/OTQ7nxlCxyY+2+Lk0I4YckoAnxLUyJtvPGDxdx61v7eXh9ORtKW/jHOdPJjrb5ujQhhBB+YEdVO395cz/bKttJc1h4+LI8lmU45PplIcQXkoAmxLdk0mu55YwclmY6+NULezjjnnX86Ng0rluagk7a8QshxKRU1drH7e94G4CEWYzcujKXs2fFyt8FIcRXkoAmxChZluHg3Z8s4ebXCvj7ewd4b38jfz97GmkRVl+XJoQQYoy09Azy7w9LeHJzJTqNhh8fl8Y1S5IJlIWmhRBHSF4thBhFwYEG7j5/BifnRPKbV/I59V/r+MWJ6Vy5KBmttE0WQogJq3fQxYNry7n/41IGXB7OyYvjJ8enEWEz+bo0IcQ4IwFNiKPglNwoZieGcNPLe/nLW4W8W9DIHWdPIzEs0NelCSGEGEVOt4dntlRx1wfFtPQMsTwnkl+clEFKuMXXpQkhxikJaEIcJeFWI/+9eBav7Krl5lcLWH7XWm5YnsnF8xJkEVIhhBjnPB6VN/fW8/d3i6ho7WNOUgj3X5LJzPhgX5cmhBjnJKAJcRQpisJZM2KZnxzGr1/cw82vFfDW3npu+85UkmQ0TQghxh1VVVlb3MLf3ilib20nmZFW/nfZbJZmhEtnRiHEqJCAJsQYiLSbeOTy2Ty/rYY/vbmPk+/8mJ+ekM5Vi5Kko5cQQowT2yvb+OuqIjaXtxETFMDfz57GmTNi5BpjIcSokoAmxBhRFIVzZsexNCOc371awG1vF/LGnjpu/85UpkTLYqVCCOGvCuo6+fu7B/iwsIkwi5FbTp/CeXPiMOq0vi5NCDEBSUATYow5bCbuu3gWb++t57evFnD6v9dzzZJkfnxcGia9/LEXQgh/Udbcwz/eO8Abe+qxmXT86uQMLluQiNkgp09CiKNHXmGE8JHluVEsSAnjz2/t4z+rS3knv4FbV+YyNznU16UJIcSkVtvRz93vF/PCjhqMOg0/PDaVqxYnYw/Q+7o0IcQkIAFNCB+ym/X89bvTOH1aDP/38h7OvX8TF8yN59cnZWI3y4mAEEKMpfrOfu75qIRnt1ajoHDp/ES+vyyFMIvR16UJISYRCWhC+IFFaWG885Ml/OPdA/xvQwXv5Ddw06lZnDUjRrqCCSHEUdbYNcC9H5Xw9JZqVFTOyYvjB8tSiQ4K8HVpQohJSAKaEH7CbNDxm9OyWTkzlpte2cvPntvNc9uq+dOZOaQ6rL4uTwghJpym7gHuW13Gk5srcXlUzp4Vyw+WpRIXYvZ1aUKISUwCmhB+JjvaxovXLuCZrdXcvqqQ5Xet5erFyfzw2DQCDNJERAghvq2WnkHu/7iMxzZW4HSrrJwRww+PTSM+VIKZEML3JKAJ4Yc0GoUL5sZz4pQIbn2rkHtXl/La7jr+cMYUjs2M8HV5QggxLjV1D3D/mjKe3FzFoMvNmdNj+OFxaSSFBfq6NCGEGCEBTQg/FmYx8vdzpnF2Xiy/eSWfKx7ZxklTIvjNqdkyBUcIIY5QQ+cA960p5ektVTjdHs6YHsMPlqWS6rD4ujQhhPgcCWhCjAPzkkN560eLeXBdGf/6oITji9bwvSXJXLc0VaY9CiHEF6jt6Oe+1aU8u7Uaj6py1gxvMEuUETMhhB+TgCbEOGHQafj+0lTOmhHDbW8XcveHJbywvYb/OyWL06ZGSbdHIYQYVt3Wx72rva+RAN+dFcf3l6bIzAMhxLggAU2IcSbKHsBd583gonkJ/P61An749E4e31TJzSuymRJt93V5QgjhMwcau7lvdSmv7q5Dq1E4f0481x6TIu3yhRDjypgFNEVRfgj8AHADb6qq+qux+t5CTESzE0N47fpFPLetmr+9U8SKf63j/Dnx/PzEDEICDb4uTwghxszOqnbuXV3Ke/saMRu0XL4gkauXJBNhM/m6NCGE+NrGJKApirIMOAOYpqrqoKIojrH4vkJMdAffIT4lJ4o7PzjAYxsreX13HT88No1LFiRg1Mn1aUKIiUlVVdaXtHLv6hI2lLZiD9Dz4+PSuGxBIsHyJpUQYhwbqxG064DbVFUdBFBVtWmMvq8Qk4LdrOfmFVO4YE48f3pzP39+az+PbqzglydlsGJqNBqNXJ8mhJgYPB6Vd/c1cu/qEvbUdBJhM/KbU7M4f048gUa5ckMIMf6N1StZOrBYUZQ/AwPAL1RV3TpG31uISSMtwsqjV8xhbXEzf3mrkB8/s4uH15Vz4ylZzE0O9XV5QgjxjQ043by0o5YH15ZR1tJLQqiZW1fmsnJmjMwWEEJMKIqqqqPzhRTlfSDyMB+6Cfgz8BHwI2A28CyQrB7mmyuKcg1wDUBERMSsZ555ZlTqE2I09PT0YLGMj3VzPKrKhjoXLxU7aRtQmeHQcna6gWiLxteliVE0no5JMXmM5nHZM6TyQZWT96ucdA9Bok3D8iQ9eRFatDI7QBwhea0U/mbZsmXbVVXNO9zHRi2gfRlFUVYBt6uq+tHw41JgnqqqzV/2eXl5eeq2bduOen1CHKnVq1ezdOlSX5fxtQw43Ty0rpz/rC6l3+nmvNlx/Pj4NBxWuXh+IhiPx6SY+EbjuKxq7eOhdWU8t62GfqebZRnhXLMkhXnJIbKsiPja5LVS+BtFUb4woI3VFMdXgGXAR4qipAMGoGWMvrcQk5pJr+UHy1I5b3Ycd39QzJObq3hpRy2XLkjk2mOSCTLLxfRCCP+xs6qdB9eW83Z+PVqNwpnTY7h6STLpEVZflyaEEGNirALaw8DDiqLkA0PApYeb3iiEOHpCLUZuOSOHyxcmcef7B/jvx6U8uamSqxYnc8WiRKwmva9LFEJMUk63h1X5DTy8vpydVR1YTTquWZLC5QsTpVW+EGLSGZOApqrqEHDRWHwvIcSXSwwL5M7zZnDd0lT+8V4R/3z/AI9sKOe6pSlcMj8Rk14uthdCjI2OviGe3lLNYxsrqO8cIDHUzC2nT+E7s2KxSEdGIcQkJa9+QkxSGZFW/ntxHrurO7jj3SL+8lYhD64t54fHpnLu7HgMOmkmIoQ4Okqauvnf+gpe3FHDgNPDwtRQ/nRmDssyHLIsiBBi0pOAJsQkNy0uiMevnMvmslbueLeI375awH1ryrh2aQpnz4qVETUhxKhwe1Q+Kmzi0Y0VrC1uwaDTcNb0GC5flEhmpM3X5QkhhN+QgCaEAGBucijPfW8+aw40c/cHxfz2lXz+/WEx1yxJ4YI58QQYJKgJIb6+tt4hnt1azRObKqnt6CfCZuRnJ6Rz4dx4Qi1GX5cnhBB+RwKaEGKEoigszXBwTHo4G0pbufuDYv74xj7+s7qEqxYnc/G8BALluhAhxBHYVd3BYxsreGNPPUMuD/OSQ7jp1CxOyI5Ar5Up1EII8UXkTEsI8TmKorAwNYyFqWFsKW/jXx8Wc9vbhdy3ppQrFyZx6cJEbNL1UQjxGf1Dbt7cW889G/spX7WeQIOWc/PiuHh+grTJF0KIIyQBTQjxpeYkhfD4lXPZWdXOvz8s4e/vHeD+j8u4YG48ly9MItIuLbCFmOwKG7p4Zks1L+2ooWvARVSgwi2nT2HlzBhZwkMIIb4mCWhCiCMyIz6Yhy6bTX5tJ/etKeWBtWU8vL6c06fFcM2SZDIi5d1xISaT/iE3b+yp4+ktVeyo6sCg1bA8N5LzZsczULWHZQsSfV2iEEKMSxLQhBBfS06MnX9fMJPqtj4eWlfOs1ureXFHDcekh/O9JcnMTwlFUaRNthAT1f76Lp7eUsXLO2vpHnCREh7Ib07NYuXMWEICDQCsrpbXACGE+KYkoAkhvpG4EDO/P30KPz4ujSc2VfLoxgoueHAzOTE2rl6czCm5UdIIQIgJoqNviNd21/H8thr21nZi0Gk4NTeK8+fEMzsxWN6UEUKIUSQBTQjxrQQHGvjhcWlcvSSZl3fW8sDaMn78zC5ufauQC+fGc96ceMKt0kpbiPHG7VFZW9zM89treK+gkSG3h6woG787LZuzZsQQPDxaJoQQYnRJQBNCjAqTXsv5c+I5Ny+Oj4qaeGRDBX9/7wD/+rCEU6dGccn8BGbEB/u6TCHEVyhr7uH57TW8tKOGxq5Bgs16Lpgbz9l5sUyJtvu6PCGEmPAkoAkhRpVGo3BcVgTHZUVQ2tzD4xsreWF7DS/vrGVarJ1LFyRy6tQojDpZ+FoIf9HaM8ibe+t5eWctO6s60GoUjkkP5/crYjk2yyG/r0IIMYYkoAkhjpqUcAu/P30Kvzgpg5d21PDohgp+9txu/vzmfs7Oi+O82XEkhgX6ukwhJqW+IRfv7WvklZ21fFzcgtujkhlp5f+WZ3LWjBgcNllCQwghfEECmhDiqLMYdVwyP5GL5yWwvqSVRzdW8MDaMu5bU8r85FDOmxPHSVMiMenlXXohjiaX28P60lZe2VnLOwUN9A25ibabuHpxMmfOiCYz0ubrEoUQYtKTgCaEGDOKorAoLYxFaWE0dg3wwvYant1azY+f2YU9QM9ZM2I4b06cnCQKMYrcHpUt5W28ubeOVfkNtPQMYTPpOGN6NGdMj2FOYggajXRhFEIIfyEBTQjhExE2Ez9Ylsp1x6SwsayVZ7ZW89TmKh7ZUMH0uCDOyYvj1Nwo7Ga9r0sVYtxxe1S2VrTx5p563s5voKVnkAC9lmOzHKyYGsWyTLmuTAgh/JUENCGET2k0CgtTw1iYGkZ77xAv7azlmS1V3PjyXn7/WgHHZTk4c0YMSzPC5YRSiC/h9qhsr2znzT11vJXfQHP3ICa9huMyIzh1ahRLM8IxG+TPvhBC+Dt5pRZC+I3gQANXLkriioWJ5Nd28fLOWl7bXcvb+Q3YA/ScNjWKs2bEMCtBFsYVAmDA6WZ9SQvvFjTy/v5GWnuHMOo0HJvp4NSpURyb6ZBQJoQQ44y8agsh/I6iKOTG2smNtXPjKZmsK2nh5Z21vLijhic3VxEXEsCZ02M4dWoUGRFWCWtiUunsc/JRURPv7mtgdVEzfUNurEYdyzIdnJAdwbGZDgKN8uddCCHGK3kFF0L4NZ1Ww9IMB0szHPQMungnv4FXdtVyz0cl/OvDEpLDAlmeG8nynCimRNskrIkJqbyll48Km/iwsIlNZa24PCoOq5GzZsRw4pRI5ieHYtBpfF2mEEKIUSABTQgxbliMOr4zK5bvzIqluXuQdwoaeDu/nv+sLuWej0pJCDWzPCeKU3IjyY2xS1gT49agy83msjY+KmpidVEz5S29AKSEB3LV4mROmhLBtNgg6b4ohBATkAQ0IcS4FG41ctG8BC6al0BrzyDv7Wvkzb31I+urxQYHcHxWBMdlOZiTFCINRoTfq2nv4+MDLXxY2MSG0hb6htwYdRrmp4Ry2YJElmU4iA81+7pMIYQQR5kENCHEuBdqMXLenHjOmxNPe+8Q7+1vZFV+A09v8bbtDzRoWZIezrGZDpZlOgizGH1dshB09jvZWNrKupJm1pe0joySxQQF8J2ZsSzLDGd+chgBBnlzQQghJhMJaEKICSU40MA5eXGckxdH/5CbDaUtvL+/iQ8LG3k7vwFFgelxQRyX6b2uLTvKJtPExJgYdLnZUdnB+pIW1pa0sLemA48KZoOWecmhXDwvgcVpYaQ6LDI9VwghJjEJaEKICSvAoOW4rAiOy4pAVXMoqOviw8ImPihs4o53D3DHuwcINutZkOJdh21RaphMIROjpn/Izc6qdjaXt7GlvI0dVe0MujxoNQrT44K4/tg0FqeFMS02SBp8CCGEGCEBTQgxKSiKQk6MnZwYOz86Lo3m7kHWl7SwrqSFdcUtvLm3HoD4EPNIWJufEkpIoMHHlYvxonvAybbKdrYMB7I9NR043SoaBbKjbVw4N4F5ySHMSwnFZtL7ulwhhBB+SgKaEGJSCrcaOXNGDGfOiEFVVUqbe71Tz4pbeH13HU9vqQIg1WFhdmIweQkhzEkKITY4QKafCTweldLmHnZWdbCzup2dVR0UNXajqqDTKEyNtXPlomTmJoUwKzFYApkQQogjJgFNCDHpKYpCqsNCqsPCpQsScbk97K7pYFNZG9sq2nhjTz1Pb6kGIMJmJC8xhNkJweQlhpARaUWvlelpE11z9yB7azvYVdXBzmrvtnvQBYA9QM/0uCBOmhLJ3KQQpscHYTbIn1chhBDfjPwFEUKIz9BpNcxKCGFWQgjgHS0pauxmW0UbWyva2VrRxpt7vFMijToN2dE2psbYyY0NYlqsneRwC1ppPDIuqapKTXs/BXVdFNR1UlDXRX5tJ03dgwBoNQqZkVbOmBHN9LhgZsQHkRQaKI1mhBBCjBoJaEII8RU0GoWsKBtZUTYunp8IQG1HP9sq2thb08me2k6e317DoxsrAW9XvpxoO7mxdrKibGREWEmLsGDSS7t0f9I14KS4sYeSpm4ONPawv76LgrouOvudgDeMpYZbWJQaxpQYOznRNnJj7TI6JoQQ4qiSvzJCCPENxAQFEDM9hjOmxwDg9qiUNfewp6aTPTUd7Knt5IlNlQy6PABoFEgMDSQ9wkpG5Ce3hBAzOpkiedSoqkp7n5Pyll5KmropbuzhQFMPxY3d1HcOjDzPpNeQEWHllNwocmJsTIm2kxlplVAthBBizElAE0KIUaDVKKRFWEmLsPKdWbEAuNweKlr7ONDYTWFDN0UNXRQ1dvPOvgZU1ft5Oo1CXIiZxFAziWGBJIYGkhgWSFJoINFBJglvR0BVVVp6hqhs7aWitW9kW9HSS0VrL90DrpHnGnUaUh0W5iWHkhZhId1hJT3CSmxwgExTFEII4RckoAkhxFGi02pGmo+ckhs1sr9/yE1JUw+FDV2UtfRS2dpLeUsfm8vb6BtyjzxPr1WICQogyh5AVJCJ6M9so+wBqAeT3gSlqipd/S6augeo7einvnOAuo5+6jq82/rOfuo6BxgaHqkE72hlbLCZhFAzZ8XHkBAaSEKImVSHhbgQs1wfKIQQwq9JQBNCiDEWYNCSG+u9Ru3TVFWluXuQ8uGRn4rWPqra+qjv6GdjaSuNXQN4PpPHTFpwbP2IkEADoYEGQi0GQgKNhFkMhAR6b7YAPVajDotJh8WoI9Cg88lokdPtoXvARfeAk67+4e2Ak64BFx19Q7T0DNHSM0hLzxCtPYO09gzR2juI033oD61RIMJmIspuIifGzolTIom2m0gYHn2MCQqQhZ+FEEKMWxLQhBDCTyiKgsNmwmEzMTc59HMfd7k9NHUPekeNOgao7+xnW0EJAcFBtPUOUd85QH5dJ229Q58LNZ8VaNCOBLYAgxa9VoNeq8Go0wzfVzDotOi1CjqNgqqCCsNb7wPvYxWPCkMuD4MuNwNO73bQ5WHQ5WHA6d3XO+ii3+n+0poMOg3hFm+4jLCZmBJtI9RiJGx4X0xQAFFBAURYjTL1UwghxIQlAU0IIcYJnVZDdFAA0UEBzErw7kv3VLN06YxDnqeqKt2DLlp7hmjrHaRrwEXPgIveQRc9gy66B7zbngEX3YNOBp0ehtwehlzeIOV0qwy5PDjd3v0ut4qigAIji3QryvANBY0CRp0Wo94b8MwGHSGBGu8+nQajXoPFqMNq0mM16bAd3AZ88jjIrMdi1Mki4EIIISY9CWhCCDHBKIqCzaTHZtKTFBbo63KEEEII8TXIHBEhhBBCCCGE8BMS0IQQQgghhBDCT0hAE0IIIYQQQgg/IQFNCCGEEEIIIfyEBDQhhBBCCCGE8BMS0IQQQgghhBDCT0hAE0IIIYQQQgg/IQFNCCGEEEIIIfyEBDQhhBBCCCGE8BMS0IQQQgghhBDCT0hAE0IIIYQQQgg/IQFNCCGEEEIIIfyEBDQhhBBCCCGE8BMS0IQQQgghhBDCT0hAE0IIIYQQQgg/IQFNCCGEEEIIIfyEBDQhhBBCCCGE8BOKqqq+ruELKYrSDFT6ug4hPiUMaPF1EUJ8ihyTwh/JcSn8jRyTwt8kqKoafrgP+HVAE8LfKIqyTVXVPF/XIcRBckwKfyTHpfA3ckyK8USmOAohhBBCCCGEn5CAJoQQQgghhBB+QgKaEF/P/b4uQIjPkGNS+CM5LoW/kWNSjBtyDZoQQgghhBBC+AkZQRNCCCGEEEIIPyEBTQghhBBCCCH8hAQ0IYQQQgghhPATEtCEEEIIIYQQwk9IQBNCCCGEEEIIPyEBTQghhBBCCCH8hM7XBXyZsLAwNTEx0ddlCDGit7eXwMBAX5chxAg5JoU/kuNS+Bs5JoW/2b59e4uqquGH+5hfB7TExES2bdvm6zKEGLF69WqWLl3q6zKEGCHHpPBHclwKfyPHpPA3iqJUftHHZIqjEEIIIYQQQvgJCWhCCCGEEEII4Sf8eoqjEEKIsaOqKm6Pistz6NajqgAow89TFGXksaKAgoJWq6DXKug1GjQa5fDfQAghhBBfSQKaEEKMI6qqMuD00NE/RHuvk/2tbpz7GukddNE96KJ30EXPgIueg/cHXQw43Qw4PQy43Ax+ajvo8u4fcntwD4ex0aBRQKfVoNco6HUadBoNJr0Gk15LwPDNqNd47xu0mHRazEYtVqMOq0mPxaTDYtRhMemwmXRYjHqsJh1BZj0Beu1IQBRCCHF4TqeTmpoaBgYGfF3KpGcymYiNjUWv1x/x50hAE0IIH+sddNHcPUhLz+An254hmrsHaesdpL3PSWef0xvK+pwMuTyHfoGthzZT0igQaNRhNeoINOpGQpDFqCM00BuOTDotJr0Go06LQadBp1HQahTvVju81Xj3axQ4GN2GB9NQVXVkn0cFt8eD063idHtwuVWcnuGt27vfGwbd9A95Q2H3gPdnHnC66Rvy7u8Zco18/S9i0GkINusJCjAQZNYTZNYTbDYQZDYQZjEQZjF6b1YD4RYjwWaDjOgJISadmpoarFYriYmJ8qaWD6mqSmtrKzU1NSQlJR3x50lAE0KIo0RVVdr7nNR19NPQOUB9Zz/1nQPDN+/9pq5B+p3uz32uokCI2UCoxRs+EkLNTDPbCTYbsA8HlGCznvID+1g0d9bIiJPFqBu3o0wej0rvkHfUr2fAOyLYM+Cie8BF14CTjj4nHX1DdPQ5aR/elrf0sqOvg46+IZzuz6c7rUYhJNAb3CJsRiJtJiLtpk+2w/ftAfpx+W8mhBCHMzAwIOHMDyiKQmhoKM3NzV/r8ySgCSHEt9A76KK6vY+q1j6q2vqoae+nqu3g/T4GnIeOduk0ChE2E9FBJnJj7ERmmQizGgm3GAmzGgmzGAi3GgkxG9Bpv7qP0+rWIqbGBh2ln25saTQKVpMeq0kP9q/3uaqq0tXvornHOwLZ0jNIS/cgLT1DI48buwbJr+2ipWfwc59v0muItgcQExxAbLCZ2OCA4ZuZuOAAwixGGYkTQowrEs78wzf5f5CAJoQQX8Hp9lDZ2kdZcw9lLb3ebXMv5S29tPYOHfJci1FHfIiZlPBAlqaHExMcQJTdRJTdu5UT/aNDURTsZj12s55Uh+VLnzvk8tDUPUBD5wANXQPDo5veUc2a9n4K6hpo+8z/q0GrITY4gIRQMwmhgSSFBZIQaiYxNJDY4IAjCtNCCDGZ3HXXXTzwwAOoqsrVV1/NT37yE1+XNG5IQBNCiGGDLjelTb0UNXZR1NBDSVM3Zc29VLb1HdJAI8xiJDk8kBOyI4gPNRMf4r3FBZsJMstUOX9n0GmGR8nMX/icviEXte3ewFbT/snIaEVrH5vL2+gb+mRaqk6jEBscQGJYIMlhFlIdn9xCAg1j8SMJIYRfyc/P54EHHmDLli0YDAZOPvlkTjvtNFJTU31d2rigqF91RbYPKIqyAlgRExNz9RNPPOHrcoQY0dPTg8Xy5e/OC/+nqiot/SpV3R5qezzUdHtvDX0qB3OYVoGoQIXIQA2RgRqiAhWiAjVEBGoI1PtPAJNjcuypqkrnkEpjr0pTn4fGPpXGPg+NvSoNvR6GPjWr1aKHaIuGqEDvLdaqEGvRYDcqEzrIy3Ep/M1kOybtdrtPw9DLL7/M+++/zz333APA7bffjtFonLSjaCUlJXR2dh6yb9myZdtVVc073PP9cgRNVdXXgdfz8vKuXrp0qa/LEWLE6tWrkWNyfPF4VCrb+thb20lBbSd7azvJr+2ka8A18py4kACy422sjLSSHmklM9JKUlgg+nEwbU2OSf/i8ajUdvRT2txDSVMPpc29lDb1sLe5hzU1n0ybDDbryYi0khlpIzPSSkaklfQIK4FGv/yz/LXJcSn8zWQ7Jvfv34/VagXgltcL2FfXNapfPzvaxs0rpnzhx2fPns2f/vQnhoaGCAgI4IMPPiAvL2+kpsnGZDIxY8aMI37+xPhLIIQQeEc26jsH2FHVzq6qDvbWdrKvrovuQW8YM2g1ZERaOXVqNDkxNrKjbKRFWLFMkJNi4XsajUJciJm4EDNLMxyHfKytd4iihm6KGrooauymsKGb57ZVHzJdMiHUTE60nexoGzkxdqZE2wizGMf6xxBCiG8lKyuLX//615x44okEBgYyffp0tFqtr8saN+SsRAgxbg043eTXdrKjqp2dVR3sqGqnscvboc+o05AVZePMGTHkxHhPdtMcVgw6/x8VExNTSKCB+SmhzE8JHdnn8ajUtPdT2NBFUUM3+xu62FvbyZt760eeE2kzed9QiLaTE21jelwQDpvJFz+CEGIc+rKRrqPpyiuv5MorrwTgxhtvJDY21id1jEcS0IQQ40ZH3xBbytvYXN7Gtoo29tV3jax9FRcSwLzkUGbEBTEzIZjMSJuEMeH3NBrF22gm1MyJUyJH9nf2O9lX10VBnXdKbn5dFx8WNo1cIxllNzE9LohpcUFMiw0iN9YuI8FCCL/S1NSEw+GgqqqKl156iU2bNvm6pHFDXs2FEH6ruXuQrRVtbC5rZXN5G4UN3YC3C9/0uCCuWpzMjLggZsQHE26VaWBi4rAH6D832tY35GJfXRe7azrZXd3BruoO3s5vAECjQJrDyrQ4OzPjg8lLDCY5zCJLOgghfOY73/kOra2t6PV67rnnHoKCgnxd0rghAU0I4Tc6+51sLG1lXUkzG0tbKW3uBSBAryUvMZhTc6OYmxzKtDg7Rp3MZReTi9mgIy8xhLzEkJF9bb1D7K7pYHe19/bevkae21YDQJBZz8z4YGYlBJOXEMy0uCBMevm9EUKMjbVr1/q6hHFLApoQwmecbg+7qjtYW9zCuuJmdtd04vaomA1a5iSF8N1ZccxNDiE3xj4uOioKMdZCAg0sy3CwbLghiaqqlLX0sr2yne0V7WyrbOPDwibAu17blBg7cxKDmZsUyuykEOwBel+WL4QQ4jAkoAkhxlR1Wx8fFTXx8YEWNpW10jPoQqNAbmwQ31+awqLUMGbEB8v1Y0J8A4qikBJuISXcwjl5cQC09w6xo6qdbcOh7dGNlTywthxFgewoG3OTQpmXHMKcpBCCzLKwthBC+JoENCHEUeVye9hZ3cEH+5v4qLCJokbvdWRxIQGcPj2axalhLEgJw26Wd/KFOBqCAw0clxXBcVkRgLf76a7qDjaVtbK5rI0nN1fy8HpvYMuIsDI/JZRFqWHMTQ6VxiNCCOED8sorhBh1nX1O1hQ38+H+RlYfaKajz4lOozA7MYTfnJrFskwHKeEWX5cpxKRk0muZlxzKvGRvA5JBl5vd1Z1sLmtlU3krT22u4n/rK9BpFKbHBbEwNYxFaWFMjwuSqcZCCDEGJKAJIUZFc/cg7+5rYFV+AxtLW3F5VEICDRyb6eDYTAeL08Llehch/JBR573mc05SCD8kjQGnmx1V7awvaWFdcQt3f1jMXR8UE2jwBruFqWEckxFOclggiiJdIoUQYrRJQBNCfGP1nf2sym/g7fwGtla0oaqQFBbIVYuTOSE7gulxQWilzbcQ44pJr2VBinfq8S9P8o6IbyxrYV1JC+tLWvmgsAne8E5TXpru4Jj0cBakhmI2yCmFEEKMBnk1FUJ8LbUd/by5p4638xvYWdUBQHqEhR8dm8by3EgyIqzyrroQE4jdrOfknChOzokCvI1+Vh9oZk1REy/uqOHxTZUYtBrmJIWwNCOcpRnhqKrq46qFEL52xRVX8MYbb+BwOMjPzwegra2Nc889l4qKChITE3nuuecIDg72caX+RwKaEOIrtfcO8ebeel7bVceWijYAcmJs/PKkDE7OiZTryYSYROJCzFw8L4GL5yUw6HKzraKd1UVNrC5q5k9v7udPb+4nPEBhRc8+js9yMDspRK5dE2ISuuyyy7j++uu55JJLRvbddtttHHfccdxwww3cdttt3Hbbbdx+++0+rNI/SUATQhxW/5Cb9/Y38urOWtYcaMblUUl1WPjFiemcPi2G+FCzr0sUQviYUadlYWoYC1PDuOlUqGnvY3VRM8+v388Tw90hrSYdyzIcHJflYGmGQ65FFWKSWLJkCRUVFYfse/XVV1m9ejUAl156KUuXLpWAdhgS0IQQI9welfUlLby8s5Z3ChroG3ITaTNxxaIkzpgeTXaUTaYvCiG+UGywmYvmJRA7UM6cBYtYW9zCB/sb+WB/E6/trkOnUZiTFMIJ2RGcnBNJlD3A1yULMfG9fQM07B3drxmZC8tv+9qf1tjYSFSUd7p0ZGQkjY2No1vXBCEBTQhBdVsfz2+v4YVt1dR1DmAz6Th9WjRnTI9hblIIGmn0IYT4mswGHSdNieSkKZG4PSq7qjv4YH8j7+1r5JbX93HL6/uYHhfEyTmRLM+JJCE00NclCyHGkKIo8qbvF5CAJsQkNeB0805BA89urWZDaSuKAotSw7jx1CyOz4rApNf6ukQhxASh1SjMSghmVkIwvzo5k7LmHt7O9y7Lcdvbhdz2diFZUTaW50Ryck4kaQ6LnLgJMVq+wUjX0RIREUF9fT1RUVHU19fjcDh8XZJfkoAmxCSTX9vJs1ureXVXLV0DLmKDA/jp8el8Ny+WmCCZbiSEOPqSwy38YFkqP1iWSk17H6uGw9o/3z/AP947QEp4ICumRXPa1GhSHdKESIiJ4vTTT+fRRx/lhhtu4NFHH+WMM87wdUl+SQKaEJPAgNPNW3vreWxjJbuqOzDoNCzPieScvDjmJ4fKFEYhhM/EBpu5anEyVy1OpqlrgHcKGnhzbz13fVDMne8XkxVlY8W0KFZMjSYuRJoTCTFenH/++axevZqWlhZiY2O55ZZbuOGGGzjnnHN46KGHSEhI4LnnnvN1mX5JApoQE1hNex9Pbq7i2a3VtPUOkRweyM0rslk5Ixa7WTqpCSH8i8Nm4uL5iVw8P5HGrgHe2lvP67vr+OuqIv66qojpcUGsmBbNqblRRNpNvi5XCPElnn766cPu/+CDD8a4kvFHApoQE4zHo7KupIXHNlbyYaG3O9LxWRFcMj+Rhamhcl2HEGJciLCZuHxhEpcvTKK6rY83h8PaH9/Yx5/e3Mf85FDOmhHD8twoLEY5nRFCTByKqqq+ruFzFEVZAayIiYm5+oknnvB1OUKM6OnpwWLxz+shBt0q62pdvFvhpLFPxWqAY2L1LIvTERogi8ROVP58TIrJ62gelw29HjbVu9hQ56KpT8WggZkRWhZE65gSqkUrU7bFYUy210q73U5qaqqvyxDDSkpK6OzsPGTfsmXLtquqmne45/tlQDsoLy9P3bZtm6/LEGLE6tWrWbp0qa/LOERz9yCPb6zg8U2VtPc5mRYXxOULElmeG4lRJ50YJzp/PCaFGIvjUlVVdlR18NKOGt7YU09nv5Mwi5HTp0WzcmYMU6Jl3Ubxicn2Wrl//36ysrJ8XYYYdrj/D0VRvjCgyZwAIcapkqYeHlpXxos7anG6PZyQFcE1S5KZlRAsJyVCiAlPUT5p3f+7Fdl8VNjMyztreHxTBQ+vLycz0so5eXGcOSOGkECDr8sVQogjJgFNiHFEVVU2l7fxwMdlfFDYhFGn4exZsVy5KInk8MkzdUMIIT7NqNNy8vAaah19Q7y+p57nt1Xzhzf2cdvbhZyQHcHZebEsTguXKZBCCL8nAU2IcUBVVVYXNXP3h8XsrOogNNDAT45P4+J5CYRajL4uTwgh/EaQ2cDF8xK4eF4C++u7eG5bNa/srOXNvfVE2U18d1YsZ8+KIz5UWvYLIfyTdA4Qwo+pqsq7BQ2c/u/1XP7IVpq6BvnjmTmsv+FYfnJ8uoQzIYT4EllRNm5eMYVNNx7HPRfMJD3Cyr8/KmHJ3z7iwgc38dbeepxuj6/LFGJCuuKKK3A4HOTk5Izse/7555kyZQoajQbpM/HFZARNCD/k8aisKmjg7g+KKWzoJiHUzF+/M5WzZsag18r7KkII8XUYdVpOnRrFqVOjqOvo54XtNTy7tZrvP7mDcKuRc/PiOG9OHLHBMqomxGi57LLLuP7667nkkktG9uXk5PDSSy/xve99z4eV+T8JaEL4EbdH5Y09dfz7wxKKm3pIDg/kH+dM4/Rp0egkmAkhxLcWHRTAj45L4wfLUllzoIknN1Vxz+oS7lldwrIMBxfNi+eYdIdcqybEt7RkyRIqKioO2SedJY+MBDQh/ICqqqzKb+COd4sobe4lPcLC3efP4NTcKDlJEEKIo0CrUTg2M4JjMyOoae/j2a3VPLO1mise2UZMUADnz4njvDnxhMlUcjHO3b7ldgrbCkf1a2aGZPLrOb8e1a8pPiEBTQgfW1fcwl/fKWRPTSepDgv3XjiTk6dEopFgJoQQYyI22MzPT8zgR8el8f6+Rp7YXMkd7x7g7g9LWDE1mssXJpITY/d1mUKISUICmhA+squ6g7+uKmRDaSsxQQH87btTWTkzVkbMhBDCR/RaDctzo1ieG0VJUzePbqjkxR01vLijhryEYC5bmMhJUyLlWmAxrshI1/gjAU2IMVbS1M0d7xxgVUEDoYEGbl6RzQVz4zHqtL4uTQghxLBUh5U/npnDL07K4IXtNTy6oYLrn9pJpM3ExfMTOG92nHTSFUIcFRLQhBgjjV0D3PFOES/uqMFs0PHT49O5cnESFqP8GgohhL+yB+i5clESly1IZHVRE49sqOBv7xRx1wfFrJwRw1WLk0h1WH1dphB+5/zzz2f16tW0tLQQGxvLLbfcQkhICD/84Q9pbm7m1FNPZfr06bzzzju+LtXvyJmhEEfZgNPNg2vLuHd1KS63yhULk/j+slRCAg2+Lk0IIcQR0moUjsuK4LisCIobu3l4fQUv7ajhma3VHJfp4OolycxNCkFRZJq6EABPP/30YfefddZZY1zJ+CMBTYijRFVV3txbz61vFVLb0c/JUyK58ZQs4kNlnR0hhBjP0iKs3Loyl1+cmM7jmyp5bGMl592/iamxdq5enMzynEhZGkUI8Y1JQBPiKMiv7eQPr+9jS0UbWVE27jh7GvNTQn1dlhBCiFEUajHyk+PTufaYFF7cUcODa8v54dM7iQkK4IpFSZw3O45AmcYuhPia5FVDiFHU1D3A31YV8cKOGkLMBm5dmcs5eXHSmVEIISYwk17LhXMTOH92PB8UNvHAx2X88Y193P1BMZcvTOSyBYkEmWVauxDiyEhAE2IUuNweHtlQwT/fO8CQ28PVi5O5/thUbCa9r0sTQggxRjQahROyIzghO4KdVe3cu7qUO98v5v6Py7hoXgJXLUrCYTP5ukwhhJ+TgCbEt7Szqp0bX85nf30XyzLC+d2KKSSFBfq6LCGEED40Iz6YBy7Jo6ihm/+sLuHBtWU8sr6Cs/Ni+d6SFLkeWQjxhSSgCfENdfY7+ds7hTy5uYoIq4n7LprJSVMipYOXEEKIERmRVu48bwY/PSGd+9aU8fw2b+fH06dF8/2lKaRFSIt+IcShpMWQEF+Tqqq8uquW4/6+hqc2V3H5giTe//kxnJwTJeFMCCHEYSWEBnLrylw+/tUyLl+QyKr8Bk6882Ouf2oHxY3dvi5PiFF3xRVX4HA4yMnJGdn3y1/+kszMTKZOncpZZ51FR0eH7wr0YxLQhPgaGns9XPLwFn78zC5igky8dv0ifrciWxabFkIIcUQi7SZ+c1o26284luuOSeHDwiZOvPNjfvj0TkqaJKiJieOyyy5j1apVh+w74YQTyM/PZ8+ePaSnp3Prrbf6qDr/JmeVQhwBl9vDfz8u45/r+wnQO/njGVO4YG6CdGcUQgjxjYQEGvjVyZlctTiZB9aW8eiGCt7YU8eKqdH86Lg0Uh0WX5coxLeyZMkSKioqDtl34oknjtyfN28eL7zwwhhXNT5IQBPiKxQ3dvPz53ezp6aT2ZFa7rniGOnCJYQQYlSEBBr49cmZXLUoiQfWlvPYxgpe31PH6dO8QS0lXIKa+HYa/vIXBvcXjurXNGZlEnnjjd/qazz88MOce+65o1TRxCIBTYgv4HJ7uH9tGXe+V4zFpOPeC2dibi2ScCaEEGLUhVqM3LA8k6sXJ3H/x2U8trGS13fX8Z2ZsfzkhHRiggJ8XaIQo+bPf/4zOp2OCy+80Nel+CUJaEIcRklTNz9/fg+7qzs4JTeSP5yRQ5jFyOrVRb4uTQghxAQWajHyf6dkcfWSZP6zupTHN1by6q46LpqXwA+WpRBqMfq6RDHOfNuRrtH2yCOP8MYbb/DBBx9Ic7UvIAFNiE9xe1QeXFvG3987QKBBy78vmMFpU6N9XZYQQohJJsxi5LenZXPFoiTuev8Aj2wo59mtVVy1OJmrFidhNel9XaIQX9uqVav461//ypo1azCbZS3AL6KoqurrGj5HUZQVwIqYmJirn3jiCV+XIyaJ+h4PD+4dpLTTw6wILZdkG7EbD31np6enB4tFrgcQ/kOOSeGP5LgcfXU9Hl4qHmJboxurHk5LMbAsTodBKyMQR2KyHZN2u53U1FSf1nD55Zezbt06WltbcTgc3Hjjjfz9739naGiIkJAQAGbPns2dd97p0zrHQklJCZ2dnYfsW7Zs2XZVVfMO93y/DGgH5eXlqdu2bfN1GWKCU1WVZ7ZWc8vrBZj0Wm45fQqnT4s+7LD76tWrWbp06dgXKcQXkGNS+CM5Lo+ePTUd/O2dItYWtxBtN/HzEzM4a0YMGukq/KUm2zG5f/9+srKyfF2GGHa4/w9FUb4woMk6aGJS6+xz8oOndvB/L+0lLyGEd3+yhDOmx8icaCGEEH5pamwQj185l6eunku41cjPn9/Nin+vY0Npi69LE0KMEgloYtLaVtHGKXev5d2CRv5veSaPXTFHOjQKIYQYFxakhPHy9xdy13nT6ehzcsEDm7nyka2y2LUQE4A0CRGTjtuj8u8PS7jrgwPEhZh58boFTIsL8nVZQgghxNei0SicMT2Gk6ZE8r/1Fdz7UQkn3bmW8+fE8ZPj0wmTjo9CjEsS0MSkUtfRz0+e3cWW8jbOmhHDH8/MwWKUXwMhhBDjl0mv5bqlKZyTF8tdHxTz5OYqXtlZx3VLU7hyURImvdbXJQohvgaZ4igmjVX5DSy/ay0FtZ3845xp/PPc6RLOhBBCTBihFiN/OCOHd3+6hHnJofztnSKO+/saVuXX489N4YQQh5KAJiY8l9vDn97Yx7VPbCch1MybP1rMypmxvi5LCCGEOCpSwi08eGkeT109F6tJx7VP7OCihzZzoFGuTxNiPJCAJia05u5BLnxwMw+uK+fS+Qm8cO0CEsMCfV2WEEIIcdQtSAnjjR8u4g9nTCG/tovld63lltcL6Ox3+ro0MQlcccUVOBwOcnJyRvb99re/ZerUqUyfPp0TTzyRuro6H1bovySgiQlrR1U7K/61jt01Hfzz3GncckYOBp0c8kIIISYPnVbDJfMT+egXSzlvdhyPbKhg2R2reWZLFW6PTHsUR89ll13GqlWrDtn3y1/+kj179rBr1y5OO+00/vCHP/ioOv8mZ6tiwlFVlSc2VXLufzei1ym8eN0CzpohUxqFEEJMXiGBBv58Vi6vX7+IlPBAbnhpL2fes57tle2+Lk1MUEuWLCEkJOSQfTabbeR+b2+vrDv7BaRDgphQBpxufvNKPi9sr+GY9HDuOm86QWaDr8sSQggh/EJOjJ3nvjef13bXcetbhXznPxs4f04cvz45U/5eTlBrnztAS3XPqH7NsDgLi89J/0afe9NNN/HYY49ht9v56KOPRrWuiUJG0MSEUd3Wx3fv28AL22v40bGpPHzZbPljI4QQQnyGonjXT/vg58dwzZJknttWw7F/X8OL22uk26M46v785z9TXV3NhRdeyL///W9fl+OXZARNTAgbSlv4/pM7cHtUHrwkj+OzI3xdkhBCCOHXAo06bjwli7NmxHDTy3v5+fO7eW5bNX8+K4dUh9XX5YlR8k1Huo62Cy+8kFNOOYVbbrnF16X4HRlBE+Pec9uqueShLYRZjLx2/SIJZ0IIIcTXkBVl44VrF3DrylwKG7pZftda/vZOIf1Dbl+XJiaY4uLikfuvvvoqmZmZPqzGf8kImhi3PB6VO94t4t7VpSxOC+PfF8zEHqD3dVlCCCHEuKPRKJw/J54TsiP4y1v7ueejUl7bXccfzshhWYbD1+WJcej8889n9erVtLS0EBsbyy233MJbb71FUVERGo2GhIQE7rvvPl+X6ZckoIlxacDp5ufP7ebNvfWcPyeeP5wxBb1WBoSFEEKIbyPMYuQf50zn7Flx/OaVvVz+v62cOT2a362YQkigXNctjtzTTz/9uX1XXnmlDyoZf+SMVow7zd2DnHf/Jt7Kr+emU7L4y1k5Es6EEEKIUTQ/JZS3f7yEnxyfxpt76zn+H2t4bXedNBERYgzIWa0YV4obuznr3vUUNnTxnwtncfWSZFlDQwghhDgKDDoNPzk+nTd+uJi4EDM/enonVz+2jYbOAV+XJsSEJgFNjBtri5tZee8GBl0envvefE7OifR1SUIIIcSElxFp5aXrFvCbU7NYV9LCCf9Yw9NbqmQ0TYijRAKaGBee21rNZf/bSkxwAK/+YCFTY4N8XZIQQggxaWg1ClctTuadnywhJ8bO/720lwse2Exla6+vSxNiwpGAJvzef9eU8qsX97AwNYwXrltAdFCAr0sSQgghJqWE0ECeunout67MJb+2k5Pu/Jj/rS/H45HRNCFGiwQ04bdUVeX2VYXc+nYhK6ZF8+AleViM0nhUCCGE8CVF8bbkf+9nxzA/OZRbXt/HhQ9upqa9z9elCTEhSEATfsntUbnplXz+s7qUC+fGc+e50zHo5HAVwm+pKrhdMNQH/R3Q2wJdddBeAS3F0FQITfuhsQAa8qFhL9TvhrpdULfTu23YC437oLkIWkqgrQzaK6GzBroboL/d+/U9sniuEP4g0m7i4ctmc9vKXPbUdHDynWt5blu1XJsmAKipqeGMM84gLS2NlJQUfvzjHzM0NPSln9PR0cG999478riuro7vfve7o1LP73//e+64444jeu4jjzzC9ddff9iPnXLKKXR0dABw9913k5WVxYUXXsgrr7zCvn37RqVWGY4QfmfI5eGnz+3izT31/GBZCr84MUM6NQpxNDj7oa/VG6gGu2Cga3jb6b0d3DfU4w1Gzj7v5zh7h7f9MDR83z0EjOFJmUYHOhPojKA1ercGCxgCP3WzHHrfaIWAIDDZh2+fum8IBHmdEeJrUxSF8+bEszA1jJ8/v5tfvbCHdwsauXVlLuFWo6/LEz6iqiorV67kuuuu49VXX8XtdnPNNddw00038be//e0LP+9gQPv+978PQHR0NC+88MJYlX1E3nrrrZH79957L++//z6xsbFcdtllnHbaaWRnZ3/r7yEBTfiV/iE31z6xnTUHmrnxlEyuWZLi65KEGD/cTuht9o429TQO35q8o1l9rZ/c+tu9W+dXTEfSGsBoA6MF9IFgMIM+AAKCvVuDGfTmTwUlA2j1w9tP3dfoQaMBRQMo3iD06fsogOodGVPdw1vPoY89Lm8IdA2Aa3g78njQux3q84bJgU7v6N1Q73C47AX34Jf/rBqdN7AFhoE5DAJDvVtz6PC+UAgMB0sEWCO8z5VAJ8SIuBAzz1w9j4fXl/PXd4o46c6P+fOZOSzPjfJ1acIHPvzwQ0wmE5dffjkAWq2Wf/7znyQlJXHLLbfw3HPP8fLLL9PZ2UltbS0XXXQRN998MzfccAOlpaVMnz6dE044gR/84Aecdtpp5Ofn88gjj/DKK6/Q29tLcXExv/jFLxgaGuLxxx/HaDTy1ltvERISwgMPPMD999/P0NAQqampPP7445jN5i+s9fnnn+eWW25Bq9Vit9v5+OOPAe/o3cknn0xpaSlnnXUWf/3rXwFITExk27Zt/OY3v6GsrIzly5dz3nnn8dprr7FmzRr+9Kc/8eKLL5KS8s3PYSWgCb/R2efkike3srOqndu/k8u5s+N9XZIQ/mOoD7pqvdP9Dm47a5hasRf2u7yhrK+Vw45iGe1gDvGGDGsUROR88tgc4g1cRhuYbN7nmmzex3rTmP+YR43bCYPdMNDhHTEc6PTePzha2N8xHFxboLfVOx2zrxX62jjsv6nONBzWIj/ZWiPBFgP2WO/NGg06w5j+mEL4kma40+Mx6eH87LndXPfkDs6cHs0tp+dgN+t9Xd6k9dEj99NUWTaqX9ORkMyyy675wo8XFBQwa9asQ/bZbDbi4+MpKSkBYMuWLeTn52M2m5k9ezannnoqt912G/n5+ezatQuAioqKQ75Gfn4+O3fuZGBggNTUVG6//XZ2/j979x0eVbU1cPg3NZNMeu8JISEEAoQaeu9SpAgIUizYxe71qveq12vvXUGUKtJEEARFpPdeEkghpPfeJ1PO98dBvH4CQtqk7Pd55pmUmXPWwMnMWWfvvdbJkzz++OMsW7aMxx57jMmTJzN//nwAXnjhBRYvXswjjzxyzVj/85//8PPPP+Pn53dl6iLAqVOnOHnyJDY2NoSHh/PII48QEBBw5fdffPEF27ZtY+fOnbi7u5OQkMC4cePqZUqmSNCEJiG3rJo5i4+QlFfBpzO7iStuQutjNkJxKhRdktdtFV6+L06BkgyoKvx/T1CAvRdqhQN4tgP/npeTBU+w9/5jpEfvKZIEkEfz7Fzl282wmP8YcSzPlUcly7KhPBvKcuT7vAuQtBsMJf/vyfL/EU6/J20B4BwILsHyzTlQHokUhBYmzMuB7x/sy6c7E/n4t0SOXCrkgxld6dXmJv/+hBZtxIgRuLm5ATB58mT27dvHrbfeet3nDBkyBAcHBxwcHHBycmL8+PEAdOrUiTNnzgByEvfCCy9QXFxMeXk5o0aNuu42+/Xrx7x585g2bRqTJ0++8vNhw4bh5OQEQIcOHUhJSflTgtaQRIImWF1OaTUzFh4ip7SaxfN6MCDMw9ohCULDsJjlJCw/AQoSID/+ciJ2SR4Rkyx/PFZl88dJvF+PP07wfz/Zvzw6c2LXLgYPHmytV9TyKVXyFEe9O3iEX/+xl0c5peI0zIUZmIqyMRdnYyrJw5RSgLksAYvJhAUVkqTEggqLrQeS3geL3guL3htJ73k5ufZBof3rlByFApQqBUqVUr5XKv78vVqBWqNErVVduVeqFGIdr9DoNColjw1vx5BwTx797iQzFh7k4aFhLBgailolin41puuNdDWUDh06/GXtWGlpKampqYSGhnLixIm/vC/dyPuUjc0f6xqVSuWV75VKJSaTCYB58+bxww8/0KVLF5YsWcKuXbuuu80vvviCw4cPs2XLFrp3787x48f/si+VSnVl+41BJGiCVeWWVnP7wkPkllaz/O5edA8SV9eEFsBkkCsR5p6Xk7D8eChIhIKLf14LZesCbqEQEA2dZ/wxsuLaRh4FU4qTmMZksUjUVJqorjRiqDRh+P2+wkh1pYmaShM1BjPGahNGg5ma6v/3tcGMyWjGYgLwu3z7G0VX+2EVUH/TkRQKUGlVaLRKVBolWp0arU6FVqdGo1OjtVX98TNbNVpbNTq95o+bvQYbvRqVOKkWaqFLgDObFwzgxY0xfLQjgf2J+XwwPYoA12uvCRKav2HDhvHss8+ybNky5syZg9ls5sknn2TevHlX1oNt376dwsJCbG1t+eGHH/j6669xcHCgrKysTvsuKyvDx8cHo9HIypUr8fO7/nvxxYsXiY6OJjo6mq1bt5KWllar/dZH7L8TCZpgNXllBm5fdIjs0mqW3SWSM6EZsligOFkuDZ8bK5eQzz0vJ2PS5VLwCpWccLmFQehwcA8D93by93o3q4bfGtRUm6goNlBRUkNVaQ1V5TVUlRmpKrt8/z/fGyqvf3VUpVaitVWhsVGhsZETGp29Bgc3HRqdWv65VolKLY9cqdRyQqT+/WcaJUq1Uh71UipQ/M8ImEKpQGmpQVGeBUUpSMWp8vTW4jR51LWqGAAJBRalDotTm8u3YCyOgVgcArDYemK2gNlkwVRjwVRjlu+Nv9/LPzMazNRUmaiuNFFWWE1NlelKgnk9Gp3qStJm56jFzlGL7eV7O0ctdg5a7Jzkr0WZdeF/2duoeXdaFwa2c+eFDecY+9FeXpvUifFdfK0dmtBAFAoFGzZs4MEHH+SVV17BYrEwduxYXnvttSuP6dWrF1OmTCE9PZ077riDHj16APKUw8jISMaMGcNDDz100/t+5ZVXiI6OxsPDg+jo6L9Nmp5++mkSEhKQJIlhw4bRpUuXK2vgbsaMGTOYP38+H330EevWratTkRBFU34T7dGjh3Ts2DFrhyE0gPxyA7cvPER6URVL7uxJdEjzOFHdJaaTtV5mozwqlnVK7t+VdVru52Ws+OMxLsHg2UG+eV2+d23boGvAWusxKVkkKstqKC80UFZYTXlR9ZVETL6XvzZdJelQKEBnr8HWQYvt/9zr7DXY2MmjRTo7DTZ26ivf29ipUWtUVnill1UVySOw+fHyRYC8C3JvuZLUPx6j1skXALw6gXckeHf6oyDMKE7SbwAA3X5JREFUDbBYJIwGM4YKeeSwutxIdaVRvq8wYqgwUV1hpKpcTmgrS+Wk12L563mEQgVO7nbonW2wd/n9psPe2Qa9iw0Orjp0elE0ojVKK6xkwXcnOZlazNTu/rw8oSN6m4YfL2ht75Xnz58nIiLC2mFc05IlSzh27BiffPKJtUNpFFf7/1AoFMclSepxtcc3yQRNoVCMB8b7+fnNX7FihbXDEepZWY3Em0eqyK2UeLy7jgg3K5703KTy8nLs7e2tHYbQwBQWM/qKFBzKEnEoS8S+PAn78mSUkhEAs1JHmUMI5fZtqNAHU24fRKVdIGZ14xd8aKnHpCRJcuX8cjCWQ025JLdhq7jcjq3yz0v2QE4KNLagvnzT2IJap7jyvVon31QaUChbxposlakSu8p09BWp6CvS0FekoK9Ixqbmj7mT1TbulNu3+Z9bW6p1nvXSJkCSpD+6HVSDqUq+ryytQWHUYKwC0+X2ef+/GKZSI7ef09j/fq+40rZOYy+vtRNaJpNFYuNFI5svGvG0U3B/FxvaODXsuUBLfa+8FicnJ0JDQ60dxjWtXLmSEydO8O6771o7lEaRmJhIScmfC0kNGTKkeSVovxMjaC1PcWUNty86TFJeOV/P60m/UHdrh3RTWtsVuFajNAsyjkH6UUg/Bpkn/+gRZuMEPp3Bpwv4dpXvXUPk4hFNQHM+Ji0WifLCaopyKinJraI0r4qS/CpK8+WvTcb/ycAUoHfU4uCmw95Vh4PL5Xs3HQ6u8uiMjZ1aFMP4XXkuZJ+FnHPyffZZuTjN71NvbV3k49m32+X7ruDoW2+93f7/cWmxSFSV1lBeZKC8qJqywmpK86ooLaiW/78LqjH/v/9vBxcdzl62OHvp5XtPO5y97LB31aFsIQl2a3coqYDHV58iv9zAC7d0YE6foAb7G27O75W10dRH0Fqbmx1BE2vQhEZTUmnkjsWHuZhXzldzejS75ExoIcwmyD4DqQch7YickJWmy79TauQErNtc8O8Bft3ApY1oSFxHNVUmirIrKc6poCinkuIrtyrMpj9OytVaJY7utjh52BLQwRUnd1scPWxxcrfFwU2HSi2KVNwwe08IHSbffmesktdKZp2WL0JknIR97/+RtOk95UTNr5vctsG/B+ic6iUcpVKB3tkGvbMNXm0c//J7SZKoLK2hNF9O2EryqijJlY+TuENZ1FT/MVVVpVbi5GmLq48eV1/55uZrj6OHrUjcmpneIW78tGAAT6w5xYubYjiaXMgbUzpj3whTHgWhKRN/AUKjKKkyMvvrw8Rnl/Pl7O4MbCdK6QuNxFgNmScgZT+kHJCTsppy+XdOgRAYDf4Py6XsvTu1rObMjcxoMFOUXUFBRgWFWRUUZpZTmFlBedEflSsVSgWO7jpcvOwIiHDF2csOF289Tp622DlqxQhYQ9LYgl93+fY7Y5W8ljLz5OXbCUj4BXk+ogI82kNAT/DvBQG95OI2DVBdVKFQoHeyQe9kg0/bPyeFkiRRVWakOKeC4pwqinMqKcqpJDellMQTuVemTqrUSpy97XD7PWnzs8cj0AG9k81V9ig0FS56LYvn9uTz3Rd595c4YjNL+eyObrT3/msiL9wcSZLEe2oTUJvZiiJBExpcucHE3K+PcD6rlM9ndWdIe09rhyS0ZMZqSDsMl/bICVnGMTDXyL/z7ABdZkBQXwjsC46iIXptSJJEaX41+ell5KeVk59eTmFmOaUF1X86WXbxscM3zBlXXz0u3npcvO1wdLcVI2FNicZWTsACev7xs+oSyDgOaUch/QjEboQTy+Tf6Zzl0bWgPhDUTx5xUzdsAqRQKK5UivQNc/nT736/KFCYWUFBpnyfmVBM/JGcK4+xddTiEWCPe4ADHgEOuAfY4+Ru22LWIbYESqWCh4aE0j3IhUdWneTWT/fz31s7MbW7v7VDa7Z0Oh0FBQW4ubmJJM2KJEmioKAAne7mLv6KBE1oUDUmCw+sOM7ZjBI+m9WN4R28rB2S0NJYzPKUrUu7IWkXpB6SqxQoVOAbBdH3yclYYO8brmYn/MFsslCYWfGnZCw/rezKlDOFApy99XgGOdK+j88f083cdShF36zmSecEbYfKN5DbSRQkXJ4SfFS+ALJju/w7tU4efQ7qI1/48O8FNo1XiEFjo8IzyBHPoD+PthiqTBSkl5GXKh+veWnlpJ9PvVJxUqNT4RHggFewI15tHPEMdsTexUacyFpZ7xA3tizoz4JVJ3lq7WmOXirk5Ykd0Vmzgmoz5e/vT3p6Onl5edYOpdXT6XT4+9/cxQaRoAkNxmKReGbdafYm5PPW1M6M6uht7ZCElqLwElzcAUm75ZGy6mL5554doMddEDJYPlm0cbBmlM2OxSJRlFVBbkoZuSml5CaXkp9RjsUkn9SqtUrc/e1pF+2Nu788IuHmq0etFSdPLZpSCR7h8q3bbPlnFQXyOs6UA5B6APa+C3veli+M+HQhRBUM/mb5wohW3+gh29iq8Q1z+dOIm8loli82pJWTl1ZGbkoZp3emYdkuH992Tto/JWxeQY5obcVpUmPzdNCx4u5o3v81nk93XuTM5Qu8bdwb/zhqzjQaDW3atLF2GEItiXceocG8ue0CP5zK5OlR4UzrEWDtcITmzGSQTwQTtsvrYwoS5J87BUDEOGgzGNoMBAcxQnujJEmivMhAdlIJOZdKyU0pJS+t/ErfMI1OhWegA52HBOAZJE8NE0UYhCv0bvLfXsQ4+XtDmTyylnIQUvbjn7YJVnwvF94J6AVtBsl/o/495D4HVqDW/HW0zWy0kJ9eTk5yKTnJJeQml3HpdD4gjw67+dvj09YZn1AnfNo6Y+8i1rM1BrVKydOj2tMjyJXH15xiwsf7eG96FCPELByhlRAJmtAgvtqbxJd7kpjTJ4gHB9e+k7rQihWnQeJ2OSlL2i03wFLZQHB/6HkPhA4Ht7aiwuINMhst5KWVkZ1UIt8ullBRIq/NU6mVuAfYE9HXB88gBzyDHHHxshNrdIQbZ+Mg/02GDgdg345tDAxS/zHKvet12PUaaPTy6HbIYPmxHuFW/RtWaZR4tXG8XFlSnoJUXWEkL6WMrKQSsi8Wc+FgFmd3yZVeHdx0V5I1n1AnXH30YlpkAxrS3pMtCwZw//LjzF92jCdGtOPhIaHiQpHQ4okETah3G09l8N8t5xnbyZsXx3cUH17CjZEkufz9hS3yLeec/HPnQIi6HcJGysmZFaZLNUfVFUayEovJTCgmO6mE3NSyK1MVHdx0+LZzwTvEEe8QJ9z87VGJ9WJCPbKodBA6+ErCRmWhXEk1abe8XvSX5+Wbo9/ldgDD5VE2W2drhg2ATq8hoIMrAR3kNasWszzKlpVYQtbFYtLOFxF/WC5CYuugwT/cBb9wF/zbu+Dobis+8+qZn7Mta+/vw3Pfn+W97fHEZJbw7rQoUYpfaNHE0S3Uq30J+Ty19jTRbVx5b1oUKnGVS7ges0lex/J7UlaSCgolBPaBkf+VkzL3dmKU7AZUlBjISiwhM76IzMRiCjIqAFCqFXgGOtJ5SMCVhEyUHRcanZ0rRIyXbwAl6ZC4AxJ/hZjLVSIVKnkKZOhwOWnz6dogJf1vllKlvDI1ssuwgMtVTKvITCgmI66Y9AuFJBzLBcDe1Qb/cJfLSZurmBJZT3QaFe9O60KknxOv/nSeSZ/uZ+GcHmJdmtBiiQRNqDfnMkq4b/kx2nrYs3BOD1F1Sbg6YzVc/A0ubIa4rVBVKE9dbDsUBj0D4WNAL5qY/52KEgMZcUVkHLGwcuchinMqAVDbqPAJcSS0uye+Yc54BjuiFn+LQlPj5A/d58o3s0luh5H4q3zb+RrsfBXsveSLNOFj5CmRTWT0XKFQ4ORhh5OHHRF9fZEkieKcSjLiikiPKyL5TAEXDmYD4OJtR2BHN4I6uuET5iT+FutAoVBwV/82tPd24KFvTzDhk318dHtXhoSL1j1CyyMSNKFepBZUMu+bozjbaVlyZy+cbK2zCFxookw1cgn8mO/lkTJDqVzKu91oaD9OTs4asTR3c2SoMpEZX0T6BfkksDDz8giZBgLb29Khny++Yc64B4rpikIzo1LL1R4De8PQF6AiX07U4rfJPdhOLpcv4oQMgnaj5PcNp6bTH0uhUFzu86cncpA/kkUiP6Oc9AtFpMUWcHZ3Oqd3pKHWKPELdyGwoyuBHd1w9rSzdujNUt9QdzY93J97lx/nriVHeXpUOA8MaiumlgotikjQhDorKDcw5+vDmCwWvrsrGm+nm2vGJ7RQZhMk74Fz38P5H+VS+DoniJgAkZPk9SZWqubWHJjNFrIvlpB2vpD0C0XkppQhWSRUGiU+bZ1o18sL//auxCYdZ8jQLtYOVxDqj95dbijfZYZ8cSf1AMRtg/itchXXLU+Cdydof3nKpGdEk5oGrVAq8LjcFLvriECMBjMZ8UWkxhSSGlNAyrkCIAFHD1uCIt1o09kd33bO4sLKTQhwteP7B/ryzPozvLUtjpjMUt6e2hk7rTitFVoGcSQLdVJjsnD/iuNklVTz7fzehHqKvlOtmiTJzWzPrJavfFfmg9YB2o+FjpPlkTK11tpRNlml+VWkxsoncelxRRirzSiUCjyDHOg2KhD/9q54h/x5yuL55KZzYioI9U6tlac3hgyG0a9Dfrw8NTpu6x+VIV3bXl7fNgF8m8a6tf+lsVER3Mmd4E7y1O3i3ErSYgtJiSkgdl8mZ3emo7VVX0nWAiPdsBH91/6WrVbFRzOiiPR15M1tF0gpqGDx3J54OYqLxELzJ94BhFqTJIkXN8VwNLmIj2/vSvcgl79/ktAyFSXD6dVwehUUXQK1LYSPlpOysBGgsbV2hE2SqcZMRkIxqTEFpMUWUpQtryOzd7UhrKcXQR3c8GvvIk7WBAHkUbLfG2b3fwzKciBuizxCf/AT2P+BXBWy/S1ywhbYV54+2cQ4e9rh7GlHp8H+GA1m0s4XculMPsln8kk4moNSpcCvnTPBnT1o08UdB1eRcFyLQqHgvkFtCfOy55FvTzLxk/0snteDjr5O1g5NEOqk6b1zCc3GikMprDqSyoOD2zK+i6+1wxEaW3WJPEp2+ju5fDZA8AC50EfEeLkvkvAXFSUGks/kk3y2gPTzhZiMFlRqJX7tnOk4wI/Ajq44e9mJ9RSC8HccvKDHXfKtqgjif5aTtRPL4MhC0HtAh4kQOQUCeje5kTWQR9dCojwIifLAYpHISSrh0ul8Lp3JZ+/qePaujserjVz0p203T5GsXcPQ9l6svb8vdy89ym1fHOSjGV0ZLppaC82YSNCEWjlwMZ+XfoxlWHtPnhoZbu1whMZiscClXXBypVyF0VQNbqEw9F/QeZrcs0z4E0mSyE8rJ/msfIU8N6UMAAdXHRH9fAmKdMO3nTMarajuJgi1Zuvyx7q1mgq5wX3M9/J71dGvwMEXOk6CyMng171JrVn7nVKpwCfUGZ9QZ/pOCaUou4KkU3kkHs9l/7pE9q9LFMnadXTwdWTjQ/24Z9kx5i8/xgu3dOCufsHiYpfQLIkETbhpaYWVPLTyBG3c9XwwIwql6HXW8pVlw6mVcHwpFKeAzhm63gFdbm+yJzvWZDZbyIwvJulUHsln8ikvMoACvIIdiZ4YQpvO7rj66sWJgyA0BK0eOt4q3wzlcjXIc+vh6CI49Kl8IanjJIicKhcbaaJ/hy7eerqP1tN9dDDFuZVcPJH7p2TNO8SRtt08CevpJXobXubpqGP1vX14fPUpXtkcy6X8cl4a3xG1KMAiNDMiQRNuSoXBxPxlxzBbJBbN6YGDTlTha7EsZrlf2fEl8oJ8ySxPYRz2b7k0vkZcvf1fphp5LUnSyTwuncnHUGlCrVUS2MGNXuPdCIp0x85RFEgRhEZlYw+dpsq3qmKI+0lO1g5+Cvs/BM8O0Hk6dLoNnPysHe01OXva0X108FWTtQPrE/Fv70J4tDdtojzQ6lr3qZ2tVsVns7rx1s9xfLH7IikFlXw6q5u1wxKEm9K6/4qFm2KxSDyx5hTxOWUsubMXbdybRtNQoZ6VZsl9h04sg5I0sHOHPg9Bt7ngHmrt6JqUmmoTKecKuHgij5SYAkwGMzZ2aoI7uxMS5UFgB1fUYuqiIDQNts4QNVO+VRRA7AZ5De2vL8KvL0GbgfIUySa+hvZPyVpOJXGHs4k/ks2vS86j1sYREuVBu2hvAtq7oGylI0dKpYJnx7Snjbsdz284x5TPDnBve4u1wxKEGyYSNOGGfbAjgZ9jcvjXuA4MbOdh7XCE+vR7efzDX8D5TWAxyWWtR74C4beI0vj/w2gwy9XWjuWQGlOI2WTB1kFDeC8vQrp64BfuIvoZCUJTp3eDnvfIt4KLcmuQM6vhhwdg8xNyJcgut0PbIaBsuhdZnL3siJ4QQq/xbci+WELc4WwSj+cSfyQHW0ct7Xp40b6vN+7+TTfhbEjTewYS4GLH/SuO89/DZjpElYgKj0KzIBI04YZsPZvFRzsSmNrdn7v6BVs7HKG+GKvlhfSHv4Cs02DjBNH3Q8+7wTXE2tE1GSajmdRzhSQcyyH5bD6mGgt2Tlo6DvClbTdPvNs6ibWYgtBcubWFIc/B4H9e7uP4HZz7Hs6tk8v2R82EqFng2sbakV6TQvFHgZEB09qRcq6AuMPZnN2dzunf0vAMciCiny/tenqhbWVtO/qGurP+gb5M/3wv0788xMI53enb1t3aYQnCdbWuv1KhVmIzS3lizWm6Bjrz6qRIUdigJSjNhKOL4fg3UFkAHu1h3PvyWgytmLoKcqGPtNhCEo/nknQqD2O1GZ29hva9fQjt4YlPqLNIygShJVEoIDBavo1+Q157e3I57HkH9rwtr8HtNkeeAtmEezuqNEpCunoQ0tWD6goj8Ueyid2Xye5v49i/LoHQ7p506OeLd1unVvN5HublwAu9dXxxXsW8r4/y/vQobunsY+2wBOGaRIImXFdZtZEHVh7H0VbNl3d0x0bddKd6CDcg4wQc+PjyNEYzhI+B6PugzaAmW8msMUmSRG5yGXGHs0k4lkN1uREbOzWh3TwJ7eGJf3jrXdMhCK2K2uaPSpAl6XBqlZysfT9fnmnQaSp0mw2+Xa0d6XXp9Bo6Dwmg02B/clPKiN2fScKRHC4czMbF246Ifr607+2NrUPLn8buqlOy9r6+3LPsKA+vOkF+eUfm9g22dliCcFUiQROuSZIknttwjvSiKr67tzeejqJqX7MkSXBxh1yx7NIesHG8PI3xniY9ZacxleZXEX8km7jDORTnVKJSK2nTxZ120d4EdnBFpRZJmSC0Wk7+MOhpGPAkpOyDE8vltiPHFoNPlDwlPHJKk559oFAo8Ap2xCvYkX5TQrl4IpfYfVkcWJ/IoY0XCevuRafB/ni1cbR2qA3KyU7D8rujeWTVSV7cFENuWTVPjQxvNSOJQvMhEjThmlYfTePH05k8NbIdPYNdrR2OcLPMRojZICdmOefkRq0jXoHu80DXsj+Eb4ShysTF47nEHc4mM6EYAN8wZ7qODKRtN09sWtk6DUEQ/oZSKVd6bDMQqt6GM2vg2New6RH4+QW5AmSPu8CzvbUjvS6tTk1EX18i+vpSmFnBuT0ZXDiYRdzhbDyDHOg02J/QHp6oNS1zxoxOo+LzWd3418YYPt15kbwyA69N6iR6pQlNijgDEa4qPqeMl36MoV+oGw8MFqXVmxVDuTwV5+Cncpl8j/Zw6+dyU9ZWXo1RskhkJBRzfn8mF0/mYTZarlRBa9fLC0f3pruuRBCEJsTWGaLvhV7zIfWQPJp2/Bs48iUE9Yced0LEhCb/nuvqq2fgjHb0nhgiFxXZlc6OpefZvz6RDv186TjQF0e3lve+qFYpeW1SJJ4ONny4I4GC8ho+mdkNW9EWRWgiRIIm/EVVjZmHVp7A3kbN+9OjUIlCCM1DVTEc/hIOfQbVxRDUD255F0JHyFd+W7HyIgMXDmZx/kAmpfnVaG3VRPT1oX0fHzyDHMT0FkEQakehgKA+8m30G/LFsWPfwPq7Qe8h94/seQ84Nu2CFFpbNZ0G+xM5yI/0uCLO7kzn5C8pnPwlheDO7kSNCMSnhRUVUSgUPD6iHR4ONvxr4zlmfXWIb+7shZOtxtqhCYJI0IS/evnHGBLzyll2Vy88HcS6syavqggOfQGHPgdDCYSPhf5PQEBPa0dmVWaTheQz+cTuzyIttgBJAr9wZ3qND6FtVw/RQFoQhPqld4f+j0PfR+Hib3D0K9j7Luz/ADrcCr0fAP8e1o7yuhQKBQHtXQlo70pZYTXn9mQQszeDS6fz8WrjSNcRgbSJ8mhRFWzv6B2Eu72WR1adZOaiQyy/OxpXfdMe+RRaPpGgCX+y6XQm3x1N48HBbRkQJppRN2mVhXJSdvgLMJRC+3Ew6B/g09nakVlVSV4VsfsyOH8gi6oyI3pnG7qNDiKirw9OHnbWDk8QhJZOqYSw4fKtMAmOLIKTK+S+an495EStw0RQNe2RGgdXHX1ubUuPMcFcOJjFqR1pbFt4Dkd3HVHDA2nfxweNTcu40DU60odFc1Tct/w40788yMp7okVhNMGqRIImXJGcX8Fz35+le5ALT4xoZ+1whGupLISDn8DhhVBTJq9zGPQMeHeydmRWY7FIpJzN59yeDFJjC1EAwZ3d6dDfl8CObi3qaq8gCM2IawiMfl1uhH3qW/mC2vq74ZcX5OqP3e+UR96aMI2Nik6D/ek40I9Lp/I4uT2VPd/Fc/jHJDoN8qfTYH/sHJv/iNPgcE+W3NmLu5ceZdqXB1k5vzd+zi1v/Z3QPIgETQDAYDLzyKqTqJQKPrq9q6hm1BRVl8g9zA59DjUV8hXYQc+AV0drR2Y1FSUGzu/PJGZvJuVFBuyctPQYG0zH/r7Yu4irn4IgNBE2DnLPyZ7zIXG7/D7+23/lJthRs6DPQ+DW1tpRXpdSqaBtN09CunqQfbGEk9tTObY1mZO/pBLR14euowKbfUGRPm3dWHFPNHO/PsK0L+SRtGD3pts+QWi5RIImAPDm1jjOZpTw5ezu4opRU2Os/mMtQ1WhvJZh8LPgGWHtyKxCkiSyEos5szODS6fysFgk/Nu70H9aGMGd3VGJiwuCIDRVSiW0GyXfci/IsyFOLpcrQEaMl9ev+Xe3dpTXpVAo8Al1xifUmeKcSk5uTyV2fyax+zIJ7+NN99FBzXo6ebdAF1bN782cr4/II2n3RBPm5WDtsIRWRiRoAr/G5vD1/kvM6xvMqI7e1g5H+J3ZBGe+g52vQ2k6tB0Kw/4Nvl2tHZlVmIxmEo7mcmZnGvlp5djYqek01J/IAX44ezXfk4HWyGgxUmmspMJYceVWba6mxlxDtakag9kgf/37z8zVGM1GTJIJs8WMWTJjspgwS+Y/ff+73yvNKfjzvUqpQqVQoVaq0Sg1qJXqKzeVQoVWpcVGZYNOpUOn1qFT6bBR2/zpZ/Yae/RaPXq1HpWyZay/EazEsz1M/ASGviBPfTz6NcRulMv091vQLCrwOnvZMeSO9vQYG8zJn1OI3Z/FhYPZtOvpRfcxQbh4N8/Rp0g/J1bf25uZXx1m+sJDLLurF5F+TtYOS2hFRILWyuWVGXh63Wk6+jryz7FNu7lmqyFJcGEz7HgF8uPArzvc+hmEDLJ2ZFZRUWLg3G65klhVmRFXXz2DZ4XTLtobjajEaDVGi5Gi6iKKqosoqC6g1FBKaU0pJYYSSmv+39eGUsqN5VeSshpLzU3v7/fESqVQoVKqUCvUf0q4lAolChRISIA80gpc+R64ksj95SaZrrrPv2OrtkWv0V+52WvscdQ64mTjhKONI05aJ5xsLt8uf+2ic8FF54JG2bQLRAiNyMEbhr8EA56E40vlVinfTgOPCDlR63RbsygoMvD2cLqPCebk9lRi9mQQdySb0O6e9BgTjJufvbVDvGlhXg6sva8Ps746zO2LDrH0rl50C3SxdlhCKyEStFZMkiRe+OEsFTVmPpwRhY1anOxaXfJ+2P5vyDgGbmEwbbk87aUF9Z65UTnJpZz5LY3E47lYLBLBkW50HhqAf3uXFtWLpymRJIkSQwm5VbnkVuaSV5lHTmUO+VX5FFYXUlBVQGF1IYXVhZTWlF5zOzqVDketI442jjhqHfGx95FHnjR67DR26NV/JDW2Glv0aj22alt0ah1alRad6s/3NiqbBh2tkiQJs2SmxlyDwWyg2lRNtbn6z1+bDFSZq6g0VlJeU06FqYKKmooriWe5sZwKYwXJpcmUGEooNhRjtBivuU8nGydcda646dzke1v53t3WHU87T7zsvPC088TZxlkc762FjQP0fVheq3bue9j/IfzwgDyLov9j0PUOUNtYO8rr0jvb0P+2MLqNCuL0jlTO7sog8Vgubbt5ED0hpNmNqAW761l9X29mfXWY2V8dZsldvegZ7GrtsIRWQCRordjmM1n8HJPDs2PaE+op5ldbVeEl2P4vOP8jOPjChI+hy0xQta4/UckicelMPqe2p5J1sQSNTkXkQD86DfHH2VNMY6yrSmMlWRVZZJZnXrnPLM8kpzJHTsiq8jCYDX95npON05VEop1LO1x1rrja/pFcuOhcrowQOdo4YqOyzkmkxWLBVFWFobCAmuJiDCXF1JSWYigrpaa8HGNVJSaDAXNNDaYaA2aj8fK9CbPRiMVixmIxI1kkLJLlT/eSZEGSJBQKBTrAVqFArr2nkBMohTyVUql0QKlyRqUKAaUSSQkWpYRFAWaFBZPKgkFtoVplolJppExZQIkynURFBYXKSip1EmW2FipsJSSlAq1Si4edB152Xlfufe198dX7yvf2vjhoxft3i6LSQJfp0HkaJGyHPW/Blidgz9vQdwF0nwfapv1+aOeopc+kULqOCOL0b2mc2pFG0sk82vfxoee4Nji4Np8iTv4udqy9rw8zFh1i3tdHWH5PtBhJExpc6zr7E67ILzfw743n6BLgzD3921g7nNbLUCYX/zj4KSjVMOQF+QqqpnUVajEZzcQfzuHk9lSKcypxcNXR/7YwIvr6oLUVb1M3yiJZyKvMI7UslbSyNFJLU0ktSyWjPIOs8iyKDEV/erxaocZb742X3otOHp2ujNr8ngh42nniYeuBVtW4JbRNlRWUpaVRkZVJRXYWFXl5VBYXYSgvxVBRiaG6CkNNNTVGIzVmE0aLGSNgUiqQajHapJAklJKEUgIF//+m+OPry9v+Y/rkHyTk6ZQSYLn8vUUBFsX1Y9IDemzwxQb4nyvzkoTaIqGSJJRIKMhCUmRgUpjJUZlIU1uo0lqo0pkx2mlQuTlh6+GBk18gXgFhBDkHE+gQiJ+9H5omPj1OuAaFAtqNhLARcGm3XPHx53/Knxl9H4ae98ijbk2Yzl5D9IQQOg3258S2FM7uSSfuSDaRA/3oPjq42ZTn93TUsWp+b6Z/eZC5i4+w4p5ougQ4WzssoQVT/P5B0xT16NFDOnbsmLXDaJEeWnmC7bE5bFnQX1Qnugm7du1i8ODBdd+QxQKnVsKO/0BFLnS5XS4A4uhb9203I9UVRmL2ZnD6t3SqSmtwD7Cn28gg2nbzQCmqMV5TiaGESyWXSCpJYs+5PUhOEqllqaSXpVNtrr7yOLVSjZ+9H/72/vjY+/xp1MVH74OHrUejFbowG2soS06mNCWZsow0ynKyKc/Po6KkhMrKcqprDBjMZgxImK7zf6+yWNBIoFUo0ShV2Gi0aLVatDY6tDpbtDpbNLa2aO3s0Ort0drbo3VwQGvvgEavR22nR21ri1avR623R623Q6Vp2JNEi8WCxWDAVFmJsbICY1kZNWVlGMvLqKkox1hRgbGyEmNlJYaKcmoqyqmprMRQVUWNoZoaowHjlWTUQg0SRqXimlOfFRYJjcWEQjIjKcygUaCys0HraI+tuwdu/sEEduhG2469sdE3zNqgenuvFP4s5SDsfQcSfwWds9z0Ovp+sHW2dmQ3pKywmqNbLnHhQBYqrYqoYQFEjQjEphEuxNXHMZlZXMX0hQcpqTTy7fzeonCIUCcKheK4JEk9rvo7kaC1PlvOZPHQtyd4elQ4Dw0JtXY4zUq9nHSkHIBtz0LWafDvBaPfaPJlletbWWE1p3ekEbMvE5PBTEAHV7qODMQ/XKwv+50kSRRUF5BQlEBSSdKVhCypOImC6oIrj1OjJsgpiADHAAIdAgl0CLzytbfeG7Wy4U98LBYL5WmpFMXHUZycRFlmJqX5eZSXFlNRXUml2UT1NRIKrdmCTqFEp9ags7HF1k6PrYMDds4u2Lm6offwRO/jg97XDztPL9S2rWt0+VrMxhoqs7OpyMqiMjebyvw8qgoLqSwuorQon/KyEqqqKqkxyaOLNSrlX//9JQmt2YwaCa1Gja29Hic3T7wD2hLQuSsuER1Ru7vX6m9SJGgNLOOEPKIWtwV0TtD3ETlRa+Ijar8ryq7gyI+XSDyei42dmm6jg+gyJACVpuEuzNXXMZleVMn0Lw9RbjCxan5vOvg61j04oVUSCZpwRUG5gZHv78HX2ZYND/YVDalvUp3e4Esy4JfnIWYDOPrB8Jeh09RWVQCkOLeSE9tSiDuUjQSE9fCk68hA3P2bx0lFQ6k2VXOx5CLxhfHEF8WTUJRAfFH8n6YkOmgcaOPchhCnkD/dEo4nMHTI0AaPsaa0hIJzZymIv0BRSjIlOTmUlhZRbqimAgmL8s/HsdIiYSeBnUaL3s4ee2dn9K5u2Ht64eQXgGNQEI5tQlDbNa+iAc2V2VhDRUYG2QkxpCWdoyDtEhV5+dSUV2A2mLBYlJiUKsyqP0ZUbYwmnKprcFSr8XBxxz84DH1QMBp/P7RBwWiDAlHqrr6WSCRojSTrDOx6HeJ+AltXuZhIz/lNfo3a7/JSyzi0MYnUmAIc3XX0mRRK224eDXKhrj6PybTCSqZ/eZBqk4VV83sT7t26P8OE2hEJmnDFI6tOsu1cFpsfGSDeUGqhVm/wZhMc+RJ2vgYWE/R/XF7o3Uw+QOtDYWYFx7clk3A0B6VKSYf+vkSNCMDRrfWNhpTWlHK+4DyxBbHEFsQSVxRHSmkKFskCyBUQQ51DaefajnYu7Qh1DiXEKQR326uPZNTnSYfZYKDg3Blyz56mIOkiRdmZlJSWUG6qofr/XcxRWSzoUeJga4ejowuOHp44+fnhFByCc1g77AMCUTbxHk7CHwxmAymlKVy8dJr000cpjUvCnFOKslKBgstr2CQJ++oanCsNOFUZcKwy4OLkgl1wMNrgYLRBQVfuDyYlMXjYMOu+qNYk/TjsfBUu7gC9p1yyv/s80DSPYhxpsYXsX59AQUYFPqFO9L8tDM+g+h2Zqu+LBsn5FUxfeBCTWeK7e3uL5SLCTWt2CZpCoRgPjPfz85u/YsUKa4fTYhzLNvHJKQOTwzRMaNs8FuY2NeXl5djb3/iaDYfSOMLjPse+4hIFrt1JCLuXatvW0wy8qkgiP0aiNF2ugeISCm7hCjS2rWPUsNJSSZohjbSaNFJrUkmrSSPflH/l964qV/y0fvJN44ev1hd3tTtKxY0nNjd7TAJYqqowJiViSE2mOi+HqooyqkxGKpUKpP8ZCdOYLdihwFarw8beERtXNzSe3qj9A1C5e6AQCViLZ7AYyChLJjfrIhW5mShyirErsqAxX/6/lyRszEZcKmpwKa++kripFEpM3t6Yfbwx+fhi8vHG5OOD2dMTVKKlS0NxLDlPm0srcSk+S7WNG6mBt5HlMxypGfTdkywSRUmQe1bCbACnYPDqrEBjVz+fF7V5r/w72RUWXj9SjSTBP3vp8LEX74nCjRsyZEjzStB+J0bQ6k9RRQ0j3t+Nl6OOHx7qh0ZMbayVG74CV1UkFwA59o3chHTMmxAxodVMZ8y+VMLxn5JJPluAVqei89AAOg/1x9a+5V4YMFvMJBYncib/DKdzT3Mm/wyXSi5d+b2fvR8d3DrIN9cORLhF4KKre6nm6x2TZmMNuceOknPqJHkXEyjMzaK4soJyJVeORYUkYS8pcNTZ4ezmjqt/IO7tIvDo2hWHgMA6xye0PBaLhaS0WE6f209aYiylaRmocivRGeTPFQkJhcKMi0XCq7QGt5xCHKpqUAJoNNgEB2ET1g6b9u3RRbTHJjwctUfDTGtrtZJ2yyNqaYfBpQ0M+xd0mATN4KJKTZWJ49tSOL0jDYUCokYG0m1kEBqbuiX2DTXtNjG3nBkLD6JUKFhzXx+C3cW0beHGNLsRtN+JBK3+PPbdSTafyeLHR/oT4SMWtNbW377BSxKcWSOvNasskBdtD3mu2SzcrqvclFIOb7pEakwBNno1UcMC6DTYHxu7pn/19mYVVxdzKu8UZ/LOcDrvNOfyz1FpqgTAVedKZ/fOdPboTEf3jnRw7YCzzrlB4vj9mDQUF5O5fy/ZZ06Sm3yJgqICSiQTFuUfIx32FnCy0+Pm4Y1721C8Okfh2a27WAcm1IuUzAROn9tHcvxZ8hIuYltoxKZGPv7MSgtKnQJXlQbfagXeWcXYZGRfea7KzQ1deDg2Ee3RtW+PLiICbZs2KMRoW+1Jklzt8deXIOcc+HaFEf+BNgOtHdkNKc2v4uCGiyQez0XvpKXfbWGEdvesdSLfkOsi43PKmLHwEHZaFesf6IuXY/OYWipYl0jQWrlfYrK5d/lxHhsexmPD21k7nGbtum/wBRdh82NwaQ/4dYdx74NPl8YMz2ry08s58mMSl07nY6NX021kEJGD/NDqWk4Ps5yKHE7knuB4znGO5xwnsTgRkHuJtXNtRxePLnT26EwXjy742/s36GhAdUEB6bt3knHqOKnxF6g01fxpVExjtuCs1uLm7oln2zC8O0fh1bMXWkdRElpoHLt27WLgwIHEJZ/i1Km9pCfEUJmWg22BCZVFPk6rbSV0Trb42zgQUq3FNS0XY+JFJKMRAIWdHboOEdhGdkIXGYltZEc0QUFipO1mWczyhcPf/gul6RA6XC5S5R1p7chuSFZiMXtWx5OfVo5/excG3R6Os9fNr+Fu6MI1Z9NLmLHwIP4udqy+rzfOdi13xohQP0SC1oqVVBoZ/v5u3O1t2PhQP7Tqpj+9oSm76hu8xQyHv4Adr4BKC8NflBdnN1J/KWsqzKrg6Ga5VLJWpyJqRCBdhga0iObSaWVpHMs+diUhSy9PB8BObUdXz6509+pOV8+udHTviK264YqdmCoryNi/j4yjh8hOSqSgpIhShXQlGdOZzLja2ePu5Yt3+wh8o/vi0jFSFOgQrOpaJ8PVhkqOn9tNzOkD5CYkoMgsRVctH6s1Ggsmbzu8PLwJt/EgpATMseepvnAByWAAQOnoiK5jB2wjO2HbNQrbqCjUrq5/2Y9wFcZqOLJQbnRdXQJdZsCQ58E5wNqR/S2LReLc7gwOb0rCZDTTbWQQ3UYHodHe+OdsY1QWPZCYz7xvjhLp58iKe6Kx0zb/z0Kh4YgErRV7ceM5lh9KYdPD/UVDxXrwlzf4/AT44UFIPwLtRsujZq2g2XRJXiVHNycTfyQblVZFl6H+RA0PRKdvvlMZC6oKOJJ9hMNZhzmUdYiM8gwAnG2c6ebZje5e3enu3Z1wl/AG7S1WcjGR5B2/kHH2DDm5mRRbzFdK2GvNFlxtbPH08ccnshMBA4dwMjVNlDMXmpwbPRm2WCzEJZ3i2IkdpF+IwZiWj75U/p1JJWHw1uEW2obO3u1pX6PHFHuB6nPnqI6PB5MJAE1QIHZRXbHtKt9sQtuKqZHXU1UEe9+Dw1/K30ffBwOfkvupNXEVJQYOfJ9I/OEcHNx0DJzejuDO7jf03MZq/bDtXBYPrjzBgDAPFs3pIS6MC9ckErRW6nxWKbd8tJc7egfxn4nNYypDU3flDd5ihoOfyouw1ToY8xZ0ntbii4BUlBg4uvkSsfuzUKoUdBrsT7eRgdg6NL+pHBXGCo7nHOdQ1iEOZx0mvigekPuN9fDuQbRPNNHe0YQ4h9xUVcWbYTbWkHVgP6n795CZGE9eaTGVKvkYUlokXJRqPD198InoQED/QbhGdvrLyJjoNyU0RXU5LjNzkzlwZBtJZ49RfSkbfYn8c6PaQo2PHR7hYXTp3I9OCk9qzpyh8uQpqk6exFxYCIBSr8e2Sxdse3RH37Mnui5dUGqb33tUgytJh99ehdOrwM4Nhr4A3eY0i9kfGXFF7P4unqKsCtp0caf/tLC/bdvSmO+Vq4+m8o/1Z5nQxZcPpkehVLbscwOhdkSC1gpJksT0hYdIyClj51ODxVzoerJr1y4Gd/SRR80yjkH4LTDuPblSYwtWU2Xi5PZUTv2aisUk0XGAL93HBqN3srF2aDdMkiQSixPZl7GPfRn7OJF7ApPFhFappatXV3r79CbaO5oIt4gGGyEzGwyk7dpByt7dZFy6SJ6hEtPliqo2ZgsedvZ4B7cloFdv/IcMR6v/++IdIkETmqL6PC7Tcy6x/9BmLp09iTE5F7sy+ecGrQUp0JmATl3o328C/pKeqpMnqTx5kqqTpzDEx4MkodBqsY2Kwq5nT+x69sQ2qss1G2y3SpknYds/IfUgeHWC0a9DmwHWjupvmU0WTu9I4+iWSyBBrwkhdBkWcM1kqLHfKz/fdZE3t11gbp8gXprQUaydFP7iegmamBzbQm06ncmRS4W8NqmTSM7qi9lEQOp62LtabjI9ZTFETmnRo2Zmk4WYvRkc+ymZqjIjod09iZ4YgrNn82iyXV5TzuGsw+zN2Mv+zP1kV8hV48JcwpjdYTZ9ffsS5RGFTt0wJ2umqirSfvuV5AN7ybx0kXxjFabLI2D2ZolgV0/8OkQSNHgobp2jxLoxQbgKf682TJ/4CEyUv0/OiGP/wc2knDkJyYXkJe5lw4a9VDiBbagfHQb0Z8DTj6E3QuXx41QeOUrl0aPkf/45fPopCo0GXefO6KN7oe/bF9vOnVG05hE2365w51aI/QF++TcsHQftx8HI/4JrG2tHd00qtZJuo4II6+nFnu/iObA+kcTjuQyd0x433/rtd1Yb9w8KoaiyhoV7knDRa0WRNuGmiBG0FqjCYGLou7vwcLBh40P9UYmh9borvATfz4f0oxAxHm55D+w9rR1Vg5EsEokncjm0MYnSvCr8wp3pMykUr+Cm36IhrSyNnak72Z2+mxM5JzBJJvQaPX18+tDfrz/9/PrhrW+YEU+LxUL2gX1c/PVn0hLiyK2pxHw56XKwgLebBwGdomgzcgzOYfXzYS1G0ISmqLGOS4vFwvFzuzl66Gfyz8ejyzagsigwKyWqfXX4dIpk4ODJhAd3wVxWJidsR49SefQY1efOgcWC0s4Ou5490ffri75PH7Shoa13tMNYBQc/gb3vg8UIvR+AAU+Brmm/90uSROLxXPZ8F09NlYmetwTTdVQQqv/p+WqN90pJknhm3RnWHk/n5Qkdmds3uFH3LzRtYgStlflkZyI5pQY+m9VdJGd1JUlw+jv46SlQqIiNeJIO0/7VokfNMuKKOPB9IrkpZbj56Rn3cBcCO7o22RMWi2QhtiCW31J/Y2fazivl70OdQ5ndcTYD/AYQ5RGFRtUwBUyK4uO4+NOPpJw5SVZpEYbLJwR6s0SIuxeBUT0IGT0Wx+CmeyVaEJorpVJJz85D6Nl5CAClFcXsObiJ88f3oUjIpHTrcTZvPc5qJ9C3DyKq9zAGPLYAL40N5tJSKo8coeLAASr2H6B8924A1J6e6Pv0kRO2/v1bV5VIjS0MfBqi7oAd/4H9H8KpVTDyFeg8vcl+9ikUCsJ6eOEf7sLe1fEc3nSJxBN5DJsTgUeg9fqQKhQKXp/cieIqIy/9GIOznYaJUX5Wi0doPsQIWgtzKb+Cke/vZkIXP96d1jp6cDWYqmLY8gScWw+BfWHyl+w6ldRiRytK8qo4sD6RpFN52LvYED0hhHbR3k1ycbPRbORw9mF2pu5kV9oucqtyUSqUdPPsxpCAIQwJGEKAY8OUjjZVVpC0eROJ+3aTnpVO2eULtFqzBW97JwI7diJ09DjcOnVukP3/f2IETWiKmspxeTb+MPv3biL37Hlssw0oJQU1GguWYBfa9ohm5JAZuDrJsyGMGRlUHDwoJ2wHDmIuLgaFAtvOndEPGoj9wEHoOkSgaE1TkTOOw09Py/dB/WDsO+DVwdpR/a2kU3ns/jaOqnIjXUcG0vOWYPbt32u1Y7LaaGbO10c4lVrM8rt7ER3iZpU4hKZFFAlpJSRJ4s4lRzmWXMRvTw3C00Esgq61lAPw/b1QmglD/gn9nwClqsmcdNSnmioTx7Ymc/q3NJQqJd1HBRE1PAD1TfSXaQxGs5GDWQf5OflndqbtpKymDFu1Lf18+zEkcAgD/QbirHNukH0XxV0gbuN6ks+dJruqHLNSidIi4a7WEtC2HW2HDMdv0BCU6saflNASj0mh+WuKx2VBcQ6/7VlHwonDkJSPjUEpT4X0syWwW3eGD5uBv5c80i1ZLFTHxFK+Zzflu/dQffYsSBIqD3fsBwzEfuBA9P36onKw3uhMo7FY4OQy+PUlqC6Vpz0OfhZsmvZrr64wsn99IhcOZOHibYdzZBVjpw6xWjwllUYmfb6fwooavn+gLyEe1l8nJ1iXSNBaiV9jc7hn2TFeuCWCewaEWDuc5slshN1vyo08nYNgylfg/8ffTlM86agti0XiwsEsDm1Moqq0hva9vel9a1v0zk2nMuPVkjIHjQNDAocwImgEfXz7YKOq/3jNxhpStm4lYecvpKWnUHL5grmt2YKfmxch0X0JmzgZnZv1r4K2pGNSaDma+nFpNNWw79hPHN+7jarzadhVKLAgUemlwTsqkqFDpxMW3OnK400FBZTv3UvFnj2U79uPpbQU1Gr0vXphP3wYDsOGofHysuIragQVBbDjJTixDBx8YdSr0HFSk532+LvUmAJ2rrxAeZGBnmOD6TE2GKXKOqOgqQWVTPpsP/Y6NRse7IervhUXpxFEgtYaVBvNjHx/D1q1kq2PDkBjpTefZq0wCdbPl8vnR82CMW/+5QphUz/puFGZCUXsXZNAflo53iFO9J8W1mQKgJgsJg5mHmRb8ra/JGWjgkfR26c3WlX9f6jVlJURv341ifv3klaUR41KiUKScFNqCAoNJ2zUWHz6DWhylRZbyjEptCzN6bj8vdDIgd0bKTl3EX2xfF5U4arALaoDw0bcTvuQqCuPl0wmqk6domznTsp/3UFNSgoAus6dcRg2DIcRw7EJacEXSdOOytP/s89AyBB52qN7qLWjui5DlYm1H+6hJBm82jgy/M4OVqtGfDyliNsXHaKznxMr7olGp2las1WExiMStFbgk98SeOeXeFbcHU3/MHdrh9P8xG6EHx4CpRLGfQCRk6/6sOZ00nE1ZYXV7F+XyMUTudi72NB3ciihPTytXgBEkiTO5Z9jc9JmtiVvo7C6sFGSsoqMdM6v/Y6LJ46QdXnqotpiwVfvRNvu0YTfNh29t0+977c+NfdjUmiZmvNxeT7xBLt2riXvVCz6fDMAFe5KPLt2YsSoWbQN+GMNliRJ1CQlUbb9V8p27JCnQgLaNm1wGD4Mh5Ej0UVGWv09tt5ZzHB0Mfz2Cpiq5WUAA54AddOZgfH/7dq1Cz/7CHZ/G4fZLDFgWhgRfX2s8n+z5UwWD317gvFdfPlQNLJutUQVxxYus7iKT3deZEykt0jObpbZCNtfhEOfgl93uG0JOAdaO6p6d6Wh50/JYJHoNb4NXUcEWn2dWWppKluStrDl0hZSSlPQKrUMChjEuJBx9Pfr3yBJWWnyJWJWLSfhzEnyzTVICgU6s4U2bl60GzCEtpOm3FCDaEEQWqaI0G5EhHYDIC75NDt+WUXFyRgqtp/mh+2nqfBU4929C6NG3kGQbxg2bdti07Yt7vffhzEri7LffqN8xw4KvllCwaKv0AQE4Dh6NI5jRmMTEdEykjWlCqLvhQ4T4efnYPcbch+18R9BYLS1o7umsB5eeIc4sWNpLDuXXyDlbAGD7wjH1r5xpxre0tmH1ML2vLntAkGudjw1KrxR9y80fSJBawFe/ek8EhLP3xJh7VCal9JMWHsnpB2CnvPl+fRN+OpfbaXHFbFnVRxF2ZW06eJO/9vCcHS3tVo8JYYSfrr0E5uTNnMm7wwKFPT07sndkXczPGg4Dtr6X3j+v0lZnrkGFArszRIdA4IJHzmWwBGjrFLgQxCEpi08uAvh98oVkc8lHGXn9tVUnI6jbOtx1m49RqWvDSF9+zJ+9F04Obii8fHBddYsXGfNwlxcTNmOHZT+tJWCr7+mYNEitEFBOIwZjeOYsdi0C2v+yZqDF0xdLJfg3/w4fD0Ket4Dw19sskVEHFx1THy0K6d+TePQxot890oJw+ZGENihcdcU3z8ohJSCCj7ZmUigmx3TejRM5WGheRJnJM3cgYv5bDmTxePD2+HvYp351M1S0m5YfzfUVMKUxdBpqrUjqncVJQb2r0sk4WgOju46bnmoM8GdrDPCapEsHM46zIaEDexI3UGNpYYwlzCe6P4EY9qMaZDG0ddKyjoFhdBx4hR8+g9scuvJBEFouiLDehIZ1hOAU+cPsOuX1ShOJ5KzbhdfbNiJqa0zUYNHM3LQdDRqLSpnZ5ynTMF5yhRMRUWU/bKd0m1bKVi4iIIvvkTbti2OY8fgNGEC2oBmfnLebiQ8dAh++y8c/hLifoJb3oPw0daO7KoUSgVdRwbiH+HC9q9j+fGj03Qe6k/fSaGoNI3zuaBQKHjl1kgyiqt47vuz+Dnb0i9UzIISZGINWjMmSRK3frqf/PIadjw5SCw0vREWC+x7D3a+Cm5hMH05eNz41ILmsK7CYrZwdlcGR35MwmSy0G1UEN1HBVllOmNWeRY/JP7AD4k/kFmRiaPWkVtCbmFS6CQi3Op/xLcqL59zK74h7uhBckyGK0lZSFBbOkyc3CKTsuZwTAqtT2s5Li0WC7sObeTIjk1IcTlojUqqdRZsOgYyaPT0Kw20/5cpP5/SX36h7KetVF4+x7Ht1g2nCRNwHDMalZNTY7+M+pV2FDY9AnnnoeNkueCWvae1o7rmMWmqMXNgw0XO7kzHM8iBUfdG4ujWeLNMSquNTP38AFkl1Xz/QF/CvJrmyKNQ/0SRkBbq55hs7lt+nLemdGZaz2Z+9a0xVBbChvsh4WeInArjPwSbm+tD0tRPOrIvlbBrZRwF6eUEdnRlwPR2jV6pymg2siN1B98nfM+hrEMA9PbpzaSwSQwNHFrvZfFNVVVcWL2S87t2kF5RgkWpxM5sISQwhMhbp7bIpOx/NfVjUmidWuNxWVFVxtYdyzm/dxc2KRWoJAUVLgq8e3dj4vh78XLz+8tzjJmZlPy4mZJNm6i5eBGFRoP94ME4TZyA/cCBKLTNtAy7qQb2fwB73gaNHYx+A7rMsGpJ/r87Ji+ezOW3pedRKBUMn9eB4M6NN5qVXlTJpM8OYKNWsunh/qL8fishErQWyGyRGPvhXoxmC788PhC1KKt/fdnn4LvboTQLRr8uz5GvxQdFUz3pqKk2cXhTEmd2pqN3smHA9DBCojwadX1DZnkm6+LXsT5hPYXVhfjqfbk19FYmhk7E1963XvdlsVhI3vwj5376geT8HIwqJRqzhWB3byLHTiR43PgWnZT9r6Z6TAqtW2s/LrPz09i8ZTGZh46jL5QwKyVq2jrRY8R4RvS/DZXqzytMJEmiOiaWkk0bKd3yE+aCAlROTjjeMhanKVOw7djRSq+kjvLi5NG0tMMQfguM/8Bqo2k3ckyW5FWybeE58tPK6TYqkOgJIY3WM+10WjG3fXmQHkEuLLurlzivawVEgtYCbTyVwaPfneKj27syoUv9nvy2OBe2yP3NdI4wfcWfGk/frKZ40pESU8CulRcoLzTQaZAfvW9ti9a2cZaXWiQL+zP2syZuDXsy9gAwyH8Q08On08e3D0pF/X7AFF6I5dSSxcQnXqBCpUBpseCvdyJi8DDaT5+F2tZ6xU+spSkek4Igjss/HDr1K7t/WoUlNgutUUmlXsKpezjjJtxDyP+U7P+dZDJRsX8/JRs3UbZjB5LBgE2HCJynTMFp3LjmNwXSYoaDn8rr07R6GPee3OC6kd3oMWkymtm3JoGYvZn4hDox6p5I9M6NU0Bs7bE0nl53hrv7t+Ff4/56bAgti0jQWhij2cKI93aj06j4acEA0T/jWiRJXm+24xXw7QozvgXHuvW0akonHVVlNexbm0D8kRxcvO0Yckd7fEKdG2XfRdVFbEjcwNq4taSXp+Omc2NKuylMDZuKj3399g2rqaggZuliYvbtJsdUDQoFHgo1Eb36Ejn7Lmw9Wvei6qZ0TArC78Rx+VfllSVs2vY1iXv2os+qwYJEVYAtUSNvYczQWWjUf53WZi4tpWTzZorXrsNw/jwKGxscRo3EeepU7Hr2bF5VIHMvwA/3Q+ZJiJwiN7i2c2203d/sMRl3OJtdKy+gsVEx4u6OBLRvnFhf2hTDkgPJvD+9C5O6+jfKPgXrEH3QWph1x9NJLqjkqzk9RHJ2LcZqeVrF2TXyerOJn4CmZYyuSJJE/JEc9q1JoKbaRM9bguk+OrhRKk/FFcaxPHY5Wy9tpcZSQw+vHjza/VGGBQxDo9LU234sFgvpv/3K6fWruZSXhVGlxNZsoXNQKFGz5+ER1a3e9iUIgtAY7O2cmDn5cZj8OOeTTrBt0zeoTl4kYfF6zny3DpfoSCZNegBfz+Arz1E5OuI6cyauM2dSFRND8bp1lG7eQummH9EGBeE0ZQrOUyajdmvcEvG14tke7v4V9r0v901L3ievBQ8fY+3Irio82huPAAe2LTzLpg9P0WtcG3qMCUbRwOddz98SwfmsUp5df5YwTwci/ZrZiKlQL8QIWjNTbTQz5J1deDnq2PBg3+Z19ayxlGXDdzMh4zgMfQEGPFVvC5OtfVW4tKCK3SvjSI0txKuNI0Nmt8fN9+YKndwsi2Rhb/pelscu53D2YWzVtkxoO4EZ4TMIdQmt131V5eVzavEXxJw4TIlCQmmR8Nc70WnUWMKmTkOlEQun/z9rH5OCcDXiuLwx1TVVbNq2mAs7dqDPNmJWShhDnel3y3QG9hp31bW0lqoqyn75heK16+QqkBoNjqNG4TJzJrZdo5rHeUHWGfjhAcg5B1Gz5LXhuoZNRGp7TNZUm9j9bRzxR3Jo08Wd4Xd2QKtr2PGN/HIDEz7eh0KhYNPD/XCzb3k9WgUxxbFF+XrfJf6zOZaV90SLfhlXk3lKTs6qimDyQogYX6+bt9ZJhyRJnN+fxb61CQD0vrUtkYP8GnQEtdJYyaaLm1h5fiXJpcl42XkxM2ImU8Km4GRTvx+k6bt+4/iq5VwqzMGsVOJogQ5RPYi68170vmKN5fWIE2GhKRLH5c07Gbuf7RuXYDmXgcakpMJFQcCA3ky59SEc9c5XfY4hKYmib1dR8sMPWMrLsYmIwGXm7TiNG4eyqa/JNRlg95vyiJqDL0xZBEF9G2x3dTkmJUni7K509q1NxMXbjlse7Iyje8P++55NL2HqFwfoGujM8ruj0YiiIS2OSNBaiAqDiYFv7STc24Fv5/e2djhNT8wPchl9Oze4fRX4dK73XVjjpKO8yMDOFRdIjSnAL9yZobMjGvSDIacih1UXVrE2fi2lNaVEukUyp+MchgcNR6Osv2mMNaUlnP7qS84d3kchFpQWiSBHF7pOnk7QmFtaTRXGuhInwkJTJI7L2ispK+T7TZ+TtvcQ+iKJGo0Fm+4hTLrtYdr4t7/qcywVFZT8+CNFK7/FkJCA0tER50mTcLl9Btrg4MZ9ATcr/RisvweKU+QZL4P+Aar6H6Gqj2My7XwhPy86h0KhYPS9kfiFu9RPcNfw/Yl0nlhzmjv7BfPi+GZayVO4JrEGrYVYciCZgooanhp1442VWwVJkq/A7XgZ/HvBjJVNoilmXf2+1mzv6njMRgsDprej0yC/Bpv/nlySzDcx37Dp4iYskoVhgcOY3WE2UR71O2Um78Rxjnz9JRez0zGqlNibJXpFRtFt/gPo/cSCaEEQWjcnB1funPU8ltst7Dz0Awc2rUZ96BLrDj9JTagzgyfdQb/uf163pdTrcZkxA+fp06k6fpzClSvl29Kl6AcOwO3OO7Hr3btpTn/07wH374WfnoE9b0HSLnk0zSXY2pH9RUCEK1P/0YOfPj/Dpg9PMWB6GJGDGu5za3I3f85mlPDN/mQifZ2Y0l18RrYWIkFrJkqqjHy5+yLD2nvSLbBhr9g0KxYzbPsnHPlSrgo18TPQ6KwdVZ1Vltawa+UFLp3OxzvEiWFzI3D2apiG0+cLzvPV2a/YnrIdrUrLlLApzOs4D3+H+vsgsFgsJKz9jhM/biCzphIFEGDvRNT4SbSdNFWMlgmCIPw/SqWSYX0nM6zvZC4kneLHdZ+jOp3Gobc+ZYfnl0SMGMHEMfeg1fyxPkmhUGDXowd2PXpgzM2leM1ailatIvXOu7Bp3x7XeXNxGju26TXAtnGASZ9D6DDY/Dh83h/GvQ+db7N2ZH/h7GXHlH/0YPviGHaviqcgo4L+08NQNdAUxOfGykVD/rnhLGFe9nT2d26Q/QhNi5ji2Ey883Mcn+xMZMuC/nT0FRV9ALlS44b7IPYH6PMwjHgFGvhEvzGm7SQez2X3qjiM1WaiJ4TQZXhAva81kySJ4znH+ersV+zP3I+9xp7p4dO5o8MduNvW39pGQ3ExJ774hLPHD1GmBK3ZQvugUHrc9xAu7cRIcH0QU8mEpkgclw2jsCSXdes/JmffCewqFFTZSXgO7M70qY/h5HD1MvAWg4HSzZspXLIEQ0Iiag8PXO64A5fp01A5OzfuC7gRRSnw/b2Qdgg6T5fL8esc67zZ+j4mLRaJQz9c5OQvqfi1c2bUvZHY2jdM4ltQbmDCJ/uxSBKbH+kvioa0EGINWjOXX25g4Fs7Gdrek09mivLiAFSXwHezIHkvjPwv9H2kUXbbkCcdhiq5UlTC0Rw8Ah0YPq8Drr76et2HJEnszdjLojOLOJV3CledK7M7zGZ6+HQctA71tp/CmLMcWfgZ8RkpGFVKnCQFXXoPoMv8B9A61N9+BHEiLDRN4rhsWEZTDZt++YaYrVvR55owaC3Y9wpn2u1P4O0ecNXnSJJExb79FH7zDRUHDqCwtcV50iRc581FGxjYyK/gb5hNsPcduYiIUwBMWQwBPeu0yYY6JuMOZ7Nz+QXsnLTc8lDnBqusfC6jhMmfH6B3iBtL5vUUbZZaALEGrZn7bOdFqo1mHh/RztqhNA2lmbBiKuTHw+RF0HmatSOqs6yLJWxfHEN5sYFe49vQbXRQvU6X+D0x++zUZ8QUxOCr9+W56OeYFDoJnbr+poSm7djOoeXfkFZZggT42znQffI0QiZMEtMYBUEQ6olGrWXK2PuYMvY+dh76gX3rv8W4L4GlB+9H2cWPSTMWEBoU+afnKBQK7Af0x35Af6rj4ilcupTitWsp+u47HMeMwe3ee9GFN5HzDJUaBj8LIYNh/Xz4ehQMfxH6Lqi3tjn1JTzaG2dPO3764gwb3jnBmPs74deu/peiRPo58e9xHXjhh3N8uSeJBwa3rfd9CE2HSNCauMziKlYcTmFKN3/aejRsv6tmIS8OVkyRy+jPWgtth1g7ojqxmC0c25rCsS2XcHDTMfmpbniH1N8UVkmS2J+5n89OfcbZ/LP42fvxn77/YVzbcfVWkdFisRC/+luOblpPrsWI2mKhvXcgve9/CNeOneplH4IgCMLVDel9K0N638qJmL1sW7MQ5ckMNpz8B8ZwV0ZPu5duHQf85Tm68Hb4vvYqHo89StGyZRR9u4rSLVuwHzIE9/vuxTYqqvFfyNUE9pYLiGx6BLb/G1IPwa2fgW3TWovv1caRKc90Z/PHp9n00SmGz+tAWA+vet/PrOhADl4s4J1f4ugZ7EKP4KtPaxWaPzHFsYn75/dnWXc8jd+eHEyAa8MUiWg20o7At9NAqZGTM9+oRg+hPqdIlOZX8es3sWRdLCE82puBM9qhta2fayaSJHEw6yCfnvqUM3ln8NH7cF/n+5gQOqHeEjOzwcDphZ9zYs8OSpQSNmYLHcMj6fXI4+i9feplH8LfE1PJhKZIHJfWk5hyjg3ffYTldAZqs4LKYDtG3H4vvaOGX/M55pISClesoGjZcswlJdj17o37ffc2ncqPkgSHv4BfXgBHP5i2FHy73tQmGuOYrK4w8tNnZ8hKKqH/1DC6DLv6dNO6KK02Mu6jfZjMFrYsGICLvokVfBFumFiD1kzlllXT/42dTO3hz2uTWvlIRNw2WDsPHH3gju/BtY1VwqivN/iEoznsWnkBCRh0ezjh0d513ubvDmcd5tNTn3Iy9yTeem/md5rPpNBJaFT1k5gZios5+tF7nD1zjMrLZfKjovvR9cFH0errd82c8PfEibDQFInj0vqy89NYvepdKg/FozUpqQyyY9jtd9O366hrPsdSUUHRmrUUfv01prw8dJ07437fvdgPHdo0ErW0o/K5QEUujH4detx9w1MeG+uYNNWY2f5NLEkn84gaHkDfyaH13h7nTHoxUz4/wKB2Hiya06Np/N8IN02sQWumlh1IwWixMH9AiLVDsa7YjbDuLvDuBDPXgr2HtSOqtZpqE3u+iyfuUDZebRwZeXfHems6HVMQwwfHP+BQ1iE8bT15Pvp5JodNRquqn6trVXn5HPrgLc7FnaNGpcRNpaH/qHF0nHMnSrV4KxEEQWhKvN0DePSRD8i7I4tVK99GfegCB9/4mB2BXzFsxj307f7XRE2p1+N25zxcZt5OyYYfKPjqK9Ifehhdhw64L3gE+0GDrJsMBPSUpzx+fy9seRJSDsL4D8Gm6SwBUWtVjJofyb41CZz6NY2KYgPD5nZApam/ddid/Z15bmwEL/8Yy+J9l7intZ8ntkDirKqJqqwxsfxQCiM7eNHGvRWPSpxdJ78R+/eQpzXqmm+LgbzUMrYtOkdZfhU9xgbT85ZglPVQCCStLI2PT3zM1uStONs483SPp5nefjo2qvopw1uRncWh998i5mIcRpUSL60tfabPou3EyfWyfUEQBKHheLj4sODh9yi4I4dvV75FzcHzHHzrY34NWMTQ6XfRv+fYvzxHaWODy4zpOE+dQsmmH8n/7DPS738AXZfOeDyyAH2/vtZL1OxcYeYa2Pce7HwVss/AbUvBq4N14rkKpVLBgOlh2LvYcHDDRSpLaxhzfyds7OpnJgvAvL7BHLhYwJvbLtAj2JWoAOd627ZgfWKKYxO19EAyL26KYd39fVrvItBT38LGhyCwL8xc3SSukNVmioQkScTszWTfmgR09hpG3t0R3zDnOsdSUFXAwjMLWRO/BrVCzewOs7kz8s56K5dfkZHOgffeIjYlEZNKiY9GR99ZdxI85pZ62b5QP8RUMqEpEsdl01VYksu3375N2f4YtEYlFQE6Rt5x/3XXqElGI8UbNpD/+ReYsrKw7d4dj0ceQd87uhEjv4pLe2Dd3WAogwkfX7extbWOybjD2fy27DzOXnaMf6QL9i71Vzm5uLKGWz7ah0IBWxYMwMm2/hJAoeGJNWjNjNkiMfidnbjb2/D9A1a8SmVNx5fCj49CyCCYsQq0TaNAys2+wddUy73N4o/kENjBleF3dsDWoW5TDiuNlSyLXcY3577BYDYwOWwy93e5H087zzpt93elKckceP9tLmRcwqxU4m9jR9+58wkYNqJeti/UL3EiLDRF4rhs+opK81n57VuU7TuH1qikKtSRW+c9TmTYtfuNWWpqKF63joIvvsSUm4tddDQejy7ArpsVe7SWZcPaOyH1gNwTdfjLoFT95WHWPCbTzhey9cuz2NipufXxrjh51N85zYnUIqZ9cZARHbz4bFa31nnO2ExdL0ETjYmaoJ9jskkrrOLeASGt8w/tyCL4cQGEDofbVzeZ5OxmFWZWsO6NY8QfzaHX+DaMe7hLnZIzs8XMuvh1jP1+LJ+e+pS+vn35fuL3/LvPv+slOavIzuKXJx/h66ceJCYzGT+9EzMeeorpy9aI5EwQBKGFcXF05+H73+Kejxej7NMG9aVitv7rJV5/ZR5JabFXfY5Sq8V15kza/vIzXs/9E8PFi6TMnEXaffdjSEho5FdwmYM3zN0EPefDgY9h5VSoLLROLNcQEOHKpCe6YTJY2PDOCYqyK+pt290CXXh6VDhbz2Wz/FBKvW1XsC6xBq2JkSSJhXuSCHS1Y2TH+qvs12wc/BR+fg7Cb4HbvgF1/ayjamxxh7PZtfICGhsVEx6NIqB93aapHss+xptH3+RC4QW6enblgyEfEOUZVS+xGooKOfDW65xNiMGoUhJg58iA+x/Bp0+/etm+IAiC0HR5uPjw+GMfk5Z9kVXfvIHqdCbrnnkaZbcAZs17Dh+PwL88R6nT4TpnDs5Tp1K4ciUFCxeRNPFWnCbdiseCBWi86r8H2HWpNHDLO3IxsS1PwqKhMOPbJrUuzSPQgVuf6MrGD06y4d0TTHysK25+9bN0Y/6AEA4lFfDfzefpFuhCpF/zXa8vyMQIWhNzPKWIU2nF3DOgDap6Lsva5O19T07OOkyUe5w0w+TMZDSzc+UFfv0mFs8gR6Y/36tOyVlmeSZP7nqSO3++kxJDCW8Pepulo5fWS3JWU1bG3pdfYOH8OziRdB53nR3T7nuMaUu/E8mZIAhCKxPg3ZZn/rmIiW+8hqmdK9KxNJY+dj8fffIEJWVXH5FS2tnhPn8+bX/5GdfZsynd9CMXR40m9/0PMJeVNfIrALrPhTt/AmMlfDUczv/Y+DFch5ufPZOe7IZSpWTDeyfITSmtl+0qlQrenRaFi17DY6tPUW0018t2BesRCVoTs3BPEs52GqZ297d2KI1r15uw42XodBtM+Vq+GtbMlORVsf6t48TuzaTbqCAmPhaF3rl2SWalsZJPTn7ChB8msCd9Dw9GPcjGWzcyOnh0nae9mqqqOPTWq3x153SOxJ7CSWPDpNnzmbliHQFDr71IXBAEQWj5woO78NzLyxn+4nMYAxww7o3nk4fvYNl3b2I01Vz1OWoXF7z++SwhW3/CYfhwCr78kosjRlK4bDlSzdWf02ACesG9u8CzPay+A3a+BhZL48ZwHS7eeiY92Q2tjZqNH5wiO6mkXrbrqtfy9tQuJOaW887PcfWyTcF6RILWhCTllbP9fA6zewdhp21Fs0/3fwi7XoMuM2HSl6Bqfq897Xwha984SllBNbc82Jk+k9rWqoS+JElsTtrM+B/G8+WZLxkWOIwfJ/3IA10ewFZdt35pFouF019+xlezp7L/+EF0KjXjJs9kzqoNhIybWKdtC4IgCC1L1w79+Ncbq+n++L2YHDTkbdjL6w9PYdvuVdd8jtbfH7933iZ43Tps2rcn57XXuHjLOEq3baNRi9I5+sK8nyBqFux+E76bicpU2Xj7/xtOHrZMeqobtvYaNn14ioz4onrZ7sB2HszuHcTi/Zc4lFRQL9sUrEMkaE3I4n2X0CiVzOkTbO1QGs+xr2H7v6HjZJj4yVUrLzVlkiRx6tdUfvzoFHonG277Zw+CO7vXalvxRfHM2TqHf+79J+627iwbs4w3B76Jt77uaxEvbfmRZbdP4tfffkKpUDBy1ETmrfqB8Okz67xtQRAEoeUa3HsC//poA/63j0JpsBDz2Upeefo2Tl84eM3n2EZ2JPCbrwlYtBClrS0Zjz1O6tx5VMc14siORgcTP4XRb0LCL3Q78QwUNZ0iGg6uOiY91Q17Fxs2f3ya1Nj6Saj+ObY9Qa52PLX2NGXVxnrZptD4RILWRBSUG1h3PJ3J3fzwcGh+a69q5cwa2PwEtBsNkxc2u+TMVGPm1yWx7F+XSJsoD6Y8071WpXMrjZW8e+xdpv04jZTSFP7T9z+sumUVXT271jnGvBPHWTN3Bt8v+5Jys5F+3ftw94r1dLprPkql+PMXBEEQ/p5SqWT6rY/w+GffYTssEk1mBb+89F/efO1uMnOTr/ochUKB/YABtNnwPd4vvYghLo5LkyaT9fLLmIrqZ8TobykU0Pt+mP09NoZCeV1a+vHG2fcN0DvZcOsT3XDysmPLZ2e4dCa/ztu006p5d1oXMour+O/m8/UQpWAN4gytiVh+KAWDycI9A9pYO5TGcWELbLgfgvvDbUua3ZqzssJqvn/nBPGHc4ie0IbR8yPR6m5+aubO1J3cuvFWlsQs4dbQW9l06yYmhU1Cqajbn2ZZWipbHp7P8jf+TWZlKV0CQ7nny+X0fuZ5VDat5AKAIAiCUK/0tg48eO8bzHn/MyydvVGeyWbZ4w/yxeLnqa6puupzFCoVLjNm0PbnbbjcfjvFa9ZycfQYCleuRDKZGifwkMGc6PaGPKq25BaI3dg4+70Bdo5abn28K+5+9mz78izJZ+uepHUPcuX+QW1ZfSyNX2Nz6iFKobGJBK0JqDaaWXYwhWHtPQn1dLB2OA3v4k5YOw98u8Ltq0BTt7VVjS0zoZi1rx+lOLeSsQ92psfYNihusuJmVnkWC35bwIKdC9Br9Cwbs4yX+r6Es865TrHVVFSw+1/P8s3j93MhN5MQJ3fmvfYBw9/+AJ2bW522LQiCIAgAvp7B/OO5xYx48XlqvG2p+OU0bz18G7/sWX3N56icnfH+1wu02fA9uogIcl75L5cmTabi0OFGiblSHwj3/AbekbBmrrz+vTHXxV2HTq9hwuWy+9sWniMjru4jjI8Nb0eEjyPPfn+GgnJDPUQpNCaRoDUB60+kU1hRw/yBIdYOpeGlHobvZoJbGMxaCzbNJyGVJInCBImN75/Exk7Dbc/2oM1NrjczWowsObeEiRsncijrEE90f4I149fUy3TGmKWL+XruNI7Fn8PNxpYZjzzDrYuW4hzWrs7bFgRBEIT/LyqiLy+8vZaQeRNRmiTOfrqc/z4/85qNrgF07doR+M3X+H30IZbKSlLnzSP90ccw5jTCSI+9B8z9UW7ns/3fsPkxMDeNdVo2tmrGL+iCo7stmz87U+fqjlq1kvemdaG0ysQLP5xr3CItQp2JBM3KLBaJr/ZeorO/E9Ft6tbMuMnLOgMrbwMHH5i9Aeyaz+s1my3sXhVP1nGJgA6uTP1Hd1y89Te1jZj8GGZsnsG7x98l2juaHyb+wJ2Rd6JR1m16Z+6xI3w7ayrbftqAAhg7fhqzVq7Hb8CgOm1XEARBEP6OUqlk0pj5PPbJt2j6h6FJKmHNP57i0y//QVV1xVWfo1AocBw5kpAtm3Ff8Ajlu3aRNPYWuSy/uYF7eGlsYeo30P8JOL4Evp0G1fVT6r6ubO21THwsCjtHLZs/OU1eWt16yUX4OPLEyHZsPZfNxlOZ9RSl0BhEgmZlv57P4VJ+BfMHhNS5v1WTlhcPyyfJI2ZzNoKDl7UjumGGKhNbPj1DzJ4M3CNg7IOdsbG78aTKYDbw4YkPmfXTLIqri/lg8Ad8NPQjfO196xRXdUEB2x57iJVvvkxeTSU9wjtx97I1RNwxp07bFQRBEISbZW/nxIJH3mfiq69iDHCg+rcY3nl4Olt2LL/mc5Q6HR4PPkjIj5uw7dqVnNdeI3n6DKpiYho2WKUShr8IEz6GS3tg8SgoTm3Yfd4gvZMNEx+LQmOj4sePTlGYdfUk90bNHxBCjyAX/rXxHFklV18nKDQ9IkGzskV7k/BztmVMZN1LqTdZJemwbCIolDB3EzgHWDuiG1ZaUMX3bx8n40IRQ2a3x6uLEuVNrDc7k3eGaT9O46uzXzG+7Xg23LqBYUHD6pSMWywWjn/0Povvm01MVgpBji7Mfe0DBv3nddR2NzeqJwiCIAj1qX1IFP96czXh86cBcGHhal55djrJGdcusa8NDCRg0UL83nsXY042ybdNI/u11zCX1y05+Vvd5sCsdVCaKVd4zD7bsPu7QY5utkx8rCsoFGz64CQlebVPrFRKBe9O64LZIvH02jNYLGKqY3MgEjQrOp9VytHkIu7sF4y6Fk2Nm4XqEnlaY025PK3Rra21I7phOcmlrHvzOOVFBsYt6EKHfjc+4lVtqubdY+8ye+tsKowVfD78c17p9wqOWsc6xZS+eyfLbp/Erv070ClVTJo9n8mLV4h1ZoIgCEKTMm74HJ76ZDU2gyPQppTz3TOPs3jZfzCbr165UaFQ4Dh2LG23bMF5+jSKlq8g6ZZbKN2+vWHXT7UdAnf/DEo1fDMWkvc33L5ugrOXHRMfjcJksrDxg5OUF1XXeltBbnpeuKUD+xLzWXG46fSCE66thWYFzcPqo2loVUqmdPO3digNw2yUKyXlx8O0ZXLlpGbi4slcfnj3BGqNkilPdyeg/Y2vlzuZe5LbfryNJTFLmBw2mR8m/kB/v/51isdQVMjWBfez5tN3KLvcz+zObzcQMm5inbYrCIIgCA3FVqfn4QfeZvwrL1PjqaN4yxH+++gUTsTsveZzVI6O+Lz4IsHfrULl7EzGIwtIf/Chhi0i4hkBd/0M9l7ycowLWxpuXzfBzc+eCQuiqK4wsvGDU1SW1tR6W7f3CmBQOw/e2HqBjGIx1bGpEwmalRhMZn44lcGIjl646LXWDqf+SRJseQKSdsL4D+UrVM2AJEmc/CWVbQvP4eZvz9R/9MDV98amDVaZqnjzyJvM3TqXGnMNC0cs5MU+L2Kvta9TTLHLvuHr+XcQm5NOiJM7d324kN7PPI9SffN91wRBEAShsXUI7cEL767Da+pgNCVGfn3lDd7/cAEVVdcugmHbpQtt1q/D85lnqDh0iKRx4yle/33DjaY5B8hJmnckrL4DTlx77Vxj8gxyZNzDXSgvrGbTh6eorqhd1UmFQsGrkyKRJPi3qOrY5IkEzUp+icmhuNLI9B7NZz3WTdn3HpxYBgOfhq53WDuaG2I2W9j1bRwHvk+kbVdPbn28K3aON5Y8ny84z/TN01lxfgXTwqfx/cTv6ePbp07xFCfEs2buDLZuWY9KoWTi7Xdy66Kl6P1a6IirIAiC0GIplUruuO0p5r37GaZ2LlgOJPHeI7dft3eaQq3G7a47Cdn4A7rwcLKef560e+/DmJ3dMEHq3WDOJggZDJsehn3vN4leab6hzox9oDNF2RVs/eIsZqOlVtvxd7HjyZHt2HEhl63nGujfUKgXIkGzkjXH0vBztqV/6M310WoWzq6DHf+BTrfBkOetHc0Nqak28dOnZ4jdm0m3UUGMuqcjaq3qb59ntphZfHYxM3+aSUVNBQtHLOSF3i+g19S+WIfFZOLAay+z9J+PkVFZRtc24dy1dDWht06p9TYFQRAEoSnw9Qzmuf+sIOL+28Ei9057/eW55BVlXfM52sBAApctxev556k8duzyaNr6hhkFsrGH21dD5BT49SX45QWw1C4hqk8BHVwZOieCzIRiflt+vtavfV7fYCL9HHlxUwwlVU2jB5zwVyJBs4K0wkr2JeYztbv/TVUEbBZSDsIPD0BgX5j4KTSD1gFV5TVs/OAUaecLGTwrnD6T2qK4gf+XrPIs7vnlHj448QFDAoawfsL6Oo+ape/eyZJZkzl4+iiuGhtmPfsSQ994V1RnFARBEFqUsUNm8ejHKyE6CHVsPl8+fs91S/IrlEpcZ98hj6ZFRJD1/Aukzb8XY9a1E7taU2th8lfQ6z44+Il8XtMEGlqHR3sTPTGE+CM5HN6UVKttqFVK3pjcmYJyA29tu1DPEQr1RSRoVrD2eDoAt/VoYVPVCi7Cd7eDcyDMWAlqG2tH9LfkMvonKMgoZ/R9neg4wO+Gnrf10lambJpCbEEs/+n7H94d9C7OOudax2GqrODXpx9jzafvUGE2MbjfUGatXI9n95613qYgCIIgNGWOemeefOJT+jz1EBaNggsLV/P6K/MoLMm95nO0gYEELl2C179eoPL4cZLGjado7dr6H01TKmHMmzD0BTjzHXw3E2oq63cftdB9dBAd+vlwfGsKsftq13w60s+Ju/q1YeXhVI4lF9ZzhEJ9UDTFRYIKhWI8MN7Pz2/+ihUrrB1OvbJIEk/trsJXr+Spnjprh1NvNDWldD35DGpTBSe6vUW1rY+1Q/pb1SUSKbskLCYIHKBA7/n3o2b5pfn8VPMTRyuOEqwNZo77HDw0HnWKw3DuDMk7t1GuVuKl1OIzdSYqtxY49VVoEOXl5djb160QjSDUN3FcCjfLYKzi4L5v0V8opNpWwnVAXzq2vX4FZFVeHo7LlqNNSMAQGUnJnNlIjldvZ1OXY9In82faxX9OsXMkZzu9gEVl3fM3ySKRukeiPAcCBypw8Ln52UrVJonn91Vho4b/9LVF3dJmdDUDQ4YMOS5JUo+r/a5JJmi/69Gjh3Ts2DFrh1GvdsfnMffrI3wysyvjOt94X60mzVgNyyZA5imYtxkCelk7or+VdbGELZ+eRqVWMn5BFO7+f/+mfSr3FI/+8igllhLu63wf8zvPR62sfSVFU2UFO//9HGdTE9FaJAaNnUSnu+bXentC67Rr1y4GDx5s7TAE4U/EcSnU1u7Dm9izaCF2ZWDq7MX9C97GyeHarW4ki4WiFSvJfecdlA4O+L7+GvYDB/7lcXU+Js+sgQ33QUA0zFwDurr1Na2rmmoT379zgtK8KiY91Q2PAIeb3sZvF3K4a8kxnhzRjkeGhTVAlML1KBSKayZoYopjI1tzNA0XOw0jOnhZO5T6IUmw+TFIOwyTv2wWyVny2Xw2fXASnV7DlGe6/21yJkkSS84tYd62eSgUCpaMXsIDUQ/UKTlL27Gdb+ZO50zaRYLsnbnzw4UiORMEQRBavUHRE3j8o5VI3f1Rncnmo0dns33v2ms+XqFU4jpnNsFr16J2dSXt3vvI/u+rWKpr39j5qjpPgymLIe0IrJgMVcX1u/2bpNWpGfdQF2zs1Gz55DRlhTf/eoe29+KWzj58vDORpLzyBohSqC2RoDWiwooafonN5tauftio/75CYLNw9Cs4vQoG/xM6TrJ2NH8r7lAWP31+FhcfPZOf7o6ju+11H19iKGHBbwt49/i7DA0cyj98/kGUZ1St92+qrGD7kwtY++UHGCQLo0bdypSvV4rS+YIgCIJwmb2dE0898wXdHr0HFHDmk6W8+84DVBuuvQZMF96O4HVrcZkzm6IVK0i+bRrVcfH1G1jkZJi2TJ4xtGwiVFp3/Za9iw3jHu6C0WBmy6enMVSZbnobL47vgI1ayfMbRG+0pkQkaI1ow8kMjGaJ6T1bSO+z1EOw7VloNxoGPmPtaP7WqV9T+XXJeXzDnG+ox9m5/HNM3zydfZn7eLbXs7w76F1slddP6K4nY88uedQsPYkgexfu/OgrIu+6p9bbEwRBEISWbGjfSSz4YDnGTp5wNI23Hp3O6QsHr/l4pY0N3s89R8CihZiKiki+7TYKly1Dqs8y+RHj5EJoubGwdAJU5NfftmvBzc+e0fd1oiirkm1fnsVsvrnX6umg459jIjiYVMC6y0XsBOsTCVojkSSJNUfT6BLgTHtv685brhdl2bBmDjgFwKQv5WpHTZQkSRzZfIn96xJp282D8Q93QWt77emJkiTx7flvmb11NhbJwtLRS5kVMQtFLVsGWEwm9rz4HGs+fvt/Rs1WoPdtIWsQBUEQBKGBODm48uwLXxM8dzzqCjPbXv4v36x8Fct1ki77AQMI2bQRfb9+5Lz2Omn33oeypKT+gmo3Cm7/DgoSYMk4KMupv23XQkCEK4PvaE/6hSL2fHfzo4YzegbQI8iFV386T0G5oQEiFG5W0z2rbmFOp5cQl1PG9B4tYPTMVANr5oKhTL6KZOts7YiuSZIkDm1M4ujmS7Tv7c3IeyJRaa592JfXlPPU7qd4/cjr9PPtx9rxa+ns0bnW+y+Kj+Pb2dM4euEM3jZ2zHn3MzFqJgiCIAg3acrY+5j5xvsYvG0o3HSQV5+7nez8tGs+Xu3qiv9nn+L90otUHjuG639fpeLQofoLKHSYXCykOAWW3AKlDdCP7SZE9PWh26ggYvdmErM346aeq1QqeH1yJyoMJv675XwDRSjcDJGgNZLVR1Ox1agY36Xpl5//W788D2mHYMLH4NXR2tFckyRJ7F+fyIltKXTo78vQORHXbQweVxjH9M3T2ZG6g8e7P85HQz/Cycap1vs/vehzlj/3OHmmavpGRTN92Wocg4JrvT1BEARBaM2C/cJ5/p012A3vhE1yOYufvJ9tu1dd8/EKhQKXGTNos3YNkl5P6l13k//55/U35TFkENyxHsqy4JsxUGLdKYLRE0MI6ODKntXxZF+6uRHDMC8H7h/Ulg0nMzicVNBAEQo3SiRojaCyxsSPp7MY28kHB53G2uHUzalVcGQh9HkYOk21djTXJEkSe1cncPrXNDoN8mPwzHAU10nOtl7ayh0/3UG1qZqvR33NXZF3oVTU7s+juqCADfPn8OuvW9ArVdz+1L/p889/oWzC00AFQRAEoTlQqdQ8MP91BvzjUSwaBec+W8G77zx43QIiNmFhFD77DxzHjiXvw49Iu+9+TEVF9RNQUF+YvQEqC2DpeHkJiJUolQpG3t0Re2cbtn15joqSm5uu+ODgUHyddPxncyxmiygYYk3ijLERbDmTRbnB1PyLg2SdlkvqBw+A4S9bO5prkiwSu76N4+yudLoMD2DAjHbXTM7MFjMfHP+AZ/Y8Qwe3Dqwev5puXt1qve/krVtYct8ckkoKiPQNYu6S7/CO7l3r7QmCIAiC8Fd9uo5kwfvLMHXyhKOpvPXE7SSmnLvm4yWdDt+335KnPB46xKXJU6g6dap+ggnoBbPWyWvRlk2ECuuNQOn0Gsbc3wlDhZGfF527qaIhtloVz46NICazlHXHrz19VGh4IkFrBGuOpRHirqdnsIu1Q6m9ykJYfQfYusLUb0BV+x5gDclikfht+Xli92bSbXQQ/aaEXrO4R1lNGY/89giLzy3mtna38dXIr3C3da/dfk0mdr3wD77/5jMsSEyYPpdR73+K2k5fl5cjCIIgCMI1yAVEviFw1hi0xUbWPv8MP25fcs3H/z7lMWjVKhQqFcl3zJarPNZHefnAaJj5HRQlw/Jbrdonzd3fgSFz2pOVWML+dYk39dzxnX3oEeTC2z/HUVZtbKAIhb8jErQGdjGvnKPJRUzrGVDrKoBWZzHD+rvlYfvpy8Hew9oRXZXFbOHXb2K5cDCbnuPa0HtiyDX/zS+VXGLmlpkczDzIv3r/i3/3+TcaVe2mn5alpfLd3BkcT4jBT2fP3E8WEzZlWl1eiiAIgiAIN+i2CQ8x7qWXMdqriP9qHe9/8Ag1xmtP77ON7Eib9euwHzSInNdeJ+PRxzCXldU9kDYDYfoKyD0PK6fKxdSspF1Pb7oMD+DsznQuHLrxAiYKhYJ/j+9AfnkNn+y8ueROqD8iQWtga46loVIqmNzNz9qh1N6u1+HibzD2bfDvYe1orspstvDL4lgSjubQ+9YQeo1rc83kbG/6XmZtmUVpTSmLRi5iWnjtk6lLW35k+eP3k22sIjqyO7ctWYXeuwUUghEEQRCEZiQyrCdPvLeCmo7uWA5e4o2nZpCWde0EQ+XkhP8nH+P59NOU7dhB8tTbMFy8WPdAwkbAbd9Axgn4dgbUXHttXEPrO6ktfuHO7FoZR25K6Q0/r7O/M1O7+/P1vksk51c0YITCtYgErQEZzRbWH89gaHtPPB101g6ndi7thT3vQNQd0H2etaO5KovZwvbFsVw8kUu/qaF0Hx181cdJksTX577moR0P4efgx6pbVtHDu3YJp8ViYc+/n2PD0i9QoGDK3Y/Q/18vi0IggiAIgmAl9nZO/PPfS/CcMgib3BqWPbuA7XvXXvPxCoUCt7vvImjZUswVFSRPm07Zrl11DyRivNwjNmW/vDzEZJ3eYkqVklH3RGJrr2Hrl2epKqu54ec+MyocrUrJqz+JsvvWIM4mG9DehDzyyw3Nt/dZZSFsuA9cQ2DMm9aO5qoki8Rvyy9w8UQufaeEEjU88KqPM5gNPLv3Wd4//j4jg0eydPRSfO1r1yi6IjOT1XOnczTuDL42euZ88hVBo0bX5WUIgiAIglBPZk97muHP/wOLRsmpT5bwyRfPYLaYr/l4u+7dabN2DdqgINIfeJD8RYvqvi6t821yO6KLO2DtnWC2znouWwctY+7vRFWpkZ+/isFyg0VDPB11PDgklO2xOexPzG/gKIX/TyRoDeins9k46NQMbNc012xdlyTJFRvLc2DKV2Bjb+2I/kKSJHaviiPuUDbRE9rQdcTVk7Pi6mLm/zKfny79xIKuC3h74NvYaexqtc/qUydYtuAesgyV9IrowrSl34kpjYIgCILQxHSPHMjD7y2hJtQJw85Ydm38iILinGs+XuPjQ9DKFTiOGUPeu++R+fQzWKqr6xZEt9kw5m2I2yJf8L5OktiQPIMcGTQznIy4Ig7+kHTDz7u7fxsCXG35z4+xmG6iGqRQdyJBayBGs4XtsTmMiPBCq26G/8wnl0PsRhj6AvjVvux8Q5Ekif1rE4m5XK2x+5jgqz4urTSN2VtnE5MfwzuD3mF+5/m1KtZisVjY/+pLxO7fgQRMnvcAA156VUxpFARBEIQmysXRnX++sgLHMd1xzDHx6dN3czb+8DUfr7S1xffdd/B4/HFKt2whZdYdGLPr2Ncs+l65NdG59fDjo/IFcCuI6OtD5EA/Tm1PJSXmxtoA6DQqnhsTQVxOGauOirL7jUmcXTaQQ0kFlFQZGR3pbe1Qbl5+Imz9h9zvrO+j1o7mqg5vSuL0b2l0Hup/zWqNZ/LOcMfWOygyFPHVqK8YFTyqVvuqqahg473zOHTmGK4KFXM/XEjw2HF1fQmCIAiCIDQwpVLJ/HkvYz+qP+pqC5tffpnNvy675uMVCgXu992L/6efUpOczKWpt1F58mTdguj/GAx8Wr74vfPVum2rDvpNDcXVV8+OJbFUlt7YerTRkd5Et3HlvV/iKKkUZfcbi0jQGsjWc9nYaVXNb3qjqUYuqa+2kRe4NsERomM/JXN8awodBvjS/7awqyZnv6X+xt0/342d2o4VY1bQ1bNrrfZVFB/HirtuJ6mskM7+IQTd9yh6P/+6vgRBEARBEBpRRJs+THnldYwOKs4vWs1nC5/FYrn2tD2HoUMIXv0dSjs7UufMpXj993ULYMjz0HU27Hkbji6u27ZqSa1VMfLujtRUm9mxNBbJ8vejeb+X3S+uMvLhjoRGiFIAkaA1CLNF4peYbIaEe6LTqKwdzs3Z+SpknZIXtjo1vdYAp35N5fCmJMKjvRl8e/hVk7OV51fy2M7HCHMJY8XYFQQ7BddqX0mbN7LyuccptZgYPmwsI979CIWqmf1/CoIgCIIAQHhwFx59eymGto5U7TjH6/+eTXllyTUfbxMaSps1q7Hr2YOs558n9933kK6T1F2XQgHjPoCwUfDTU3B+c+22U0dufvb0mxJKakwhZ3am39BzOvo6MaNnIMsOJpOYW97AEQogErQGcSy5kPzymuY3vfHSHtj/IXSbK5eIbWLO7clg/7pE2nbzYOic9iiUf07OLJKFt4++zRtH3mBwwGAWj1qMm61brfZ16K1X+WHZQtQouG3BP+hy74P18RIEQRAEQbAiJwdXnvvvSmyGdMAmoZj3nryDi2mx13y8ytmZgIULcZ4+nYJFi8h85h9Yam68XP2fN6aWe6T5dpVnK6UequWrqJvIQX4Ed3bnwIZE8tJurJn2kyPbYatR8eqWa/9bCfVHJGgNYFtMNlq1kiHtPa0dyo2rLITv7wO3UBj9urWj+Yu4w9nsXhVHcCc3RtzVEaXqz4dutamap3Y/xbLYZcxsP5P3B7+Prdr2pvdjqqxg4313sv/4QTzVOmZ/tAi/AYPq62UIgiAIgmBlSqWSh+9/i7C7pqAtNbP6+af47cCGaz5eoVbj/dKLcvGQzZtJu2c+5tIbb/z8J1o9zFwDjn7w7XTIi6vlq6g9hULB0Dnt0ek1bF8cg9Hw99Ul3e1tWDAsjJ1xeeyJz2uEKFs3kaDVM0mS+PlcNgPDPLC3UVs7nBsjSbDpEajIk0vqa/XWjuhPUmIK2LH0PH7tXBh1bySq/1cVs8JYwYM7HuTXlF95qsdTPNvrWVTKm5+KWHIxkRV3ziSxOI+OPoHcvnQVet/a9UoTBEEQBKFpmzjqLka/8AJmrZJjH33Ft+vfu+Zjfy8e4vv2W1SePEnyzJkYMzNrt2O9O8z+HlRaWDEFSrNq+Qpqz9Zey/A7O1CUU8m+dTe2tmxu32D8nG1555e4uveJE65LJGj17HR6CZkl1YxpTtMbTyyFC5th2L/AN8ra0fxJTnIp2xaew81Pz9j7O6H+f2v6iquLuefneziRc4LXB7zO3I5za1VGP333Tlb+YwFFFiNDB45g9AefodJo6+tlCIIgCILQBEVF9OW+txZS7aUla81vfPzpk9ctHuI0fjyBixZhysklefoMqs+fr92OXYLhjnVQVQQrp0L1tdfCNZSA9q50GxlI7N5MLp7M/dvHa9VKHh0expn0En6OuXZPOaHuRIJWz7aey0KtVDA8wsvaodyYomTY9k9oMwj6PGLtaP6kOLeSLZ+extZew7iHu6C1/fOIZF5lHnf+fCfxRfG8P/h9bgm5pVb7iV2xlPWfvI0ETL3/cbo+1DRbCwiCIAiCUP88XX15+s0VVIc7U7MnjjdfuZPqmqprPl7fO5qglStArSZl1h2U791Xux37dIHpyyHvAnw3C0yGWr6C2us1PgTPIAd2Lr9AWeHfN+ae3NWPEA89722Pw3wDVSCF2hEJWj2SJIlt57Lp09YNJzuNtcP5e5IEPz4GCiVM/LRJldSvLK3hx49OIUkwYUEUeiebP/0+ozyDudvmklGewafDP2VI4JBa7efg66+wbdMa9KiY+ep7BAwbUR/hC4IgCILQjNjq9PzzpWWo+oWijS3grX/MoqD42qNEunbtCP5uFZrAQNLuv5/i9etrt+O2Q+HWzyF5L2y4H2pbJbKWVGolI+7uiNks8es3sVj+JulSq5Q8Prwd8Tnl/Hi6llM8hb/VdM7IW4DzWWWkFFQyJtLH2qHcmNOrIGknDH8JnAOsHc0VNdUmNn9ymsrSGm55qDPOXnZ/+n1SSRJzt86l2FDMopGL6O3T+6b3YTGZ+GnB/Rw4dRhvjS2zPvsGl/D29fUSBEEQBEFoZpRKJY8t+ACPKQOxzTLw6TN3k5hy7pqP13h5EbRiOfroaLKef4H8zz+v3dqsztNgxH8g5nvY/UYdXkHtOHvaMWhGOzITijmxLeVvH39LJx8ifBx5/9d4jObGTShbC5Gg1aNtMdkoFTCyYzOY3lieK09tDOgNPe62djRXmM0Wfl54jvz0ckbNj8S7jdOffn++4Dx3brsTk8XEN6O+oYtHl5veh6G4mLV3zeR8TjrtXL2Y/vVKbD3c6+slCIIgCILQjM2Z9gydHrgDTYWF1f9+hoMnf7nmY1X29gR8+QVOEyeQ9+FH5L37bu2StL4LoOsdsPtNOFfL0bg6CO/tTVhPL45svkRe6vVL7yuVCp4c0Y6UgkrWHb+xXmrCzREJWj3adi6LnsGuuNvb/P2DrW3rM2CslBtSN5GpjZIksXPZBVJjCxk8K5zgTn9Omk7mnuTun+/GRmXD0jFL/6+9+w6Pq7gePv69u6u66r1YxXLvFVeM5YJtDMZ0MISO6QQCgRAgoYTQEyD86C10QgfT3LDce5VtualYva36rqRt9/fHGhkhyd6VdiVZOp/neR+/zJ07c2TuS3TemTnDoLBBLs9RnZXJRzdeRX6DkQlDR3P2y2+i9TkF/n0JIYQQotPMm76IuQ/8FVWjsPrZF/hu2btt9lW8vIh98klCFl2G4a23KX70UdcvtFYUOPvfkDgZvrkVCrZ38CdwdXqFMy4biF+AF798kIHtJCtjs4ZEMTohhP+sPEyD5eRl+oVrusdv5j1AZlkdh0rqTo3qjQd+hH1fwxn3QeTAro6myaZvMjm4uZgJC/oydGrz8vYbCzdy0/KbCPML471575EUlOTy+EUb1vHRfXdQo1qZM3ch0x5+HE03SU6FEEII0b2MHTaNK//5AuZgLQff/oL3Pn26zb6KRkPM3/9O+OIbqPr0fxTefz+q1erahDofuPRDCIiCTy6Hms494+Wr9+KMRQMpz6tj1/LcE/ZVFIV75w6iqLqBjzefuK9wnfx26iY/7y0GYG53T9AaquGHuyFqGEztPtUK96zKY8fSXIadEc/4+cnNnm0q2sQdv9xBQmAC/533X2IDXD/jd+SbL/ns309gB86/4Y+MuP5G9wQuhBBCiB4rKW4Adz7zHvV9fCn/ei2vvvVAm30VRSHqnnuIvOsuar5bQsGf/oTdbHZtQn0ELPoUzHXw6eVgNnXwJ3BNvzFR9BsTydbvc6gsNp6w79T+EUxOCeeVtCOYzC4mo+KEJEFzk5/2FjE6IYTYYL+uDuXElj8MdSWw8CXQdY97vnLSy1n72WH6jorgjMsGNrvHbGvxVu5YeQeJQYm8NectIvxcPyu29523WPLRO/iisOjhp0iaO8+d4QshhBCiBwsODOO+Jz6gvl8gpuV7eP6FO054V1rEzTcR/cAD1C5fQf7Nt2A3uZhkRQ+DC9+Cwl3w7W2OqtudaNplA9F5a1j14QHUk1R1/PPcQZTXmXl3fU7nBNdLSILmBnkVJvYW1HT/7Y0562D7uzDpVogf19XRAGAorGPZ2/uI6BPAmdcNQ6M5npxtL9nObStvIz4gnjfPfJNQ31CXx9/6/LMs+/lrghUtlz//KuEjRrozfCGEEEL0Ar4+/vzlsfewDI/EvjGbZ564Hou17dWxsKuuJPaf/8S4aRO5NyzGVnviwhstDDrLUWV731ew+pmOBe8ifbAPp188gKIj1exdU3DCvuOSQpk5OIrXV2dSXW/ppAh7PknQ3GDpPsf2xm5dXt9SD9/d4bi5fkbby/Odqb7OzI+v7MHLW8vZt47Ey0fb9GxX6S5uXXEr0f7RvDX3LcL9wl0ef+0jD7Jm02oitd4sevkdAhMS3Rm+EEIIIXoRL5039z34NsrEZLzSy3j64WtoaGx7dSzkwguI//e/qN+zh9yrr8FaWenahFPvhFGLIO0J2PdNx4J30aBJMSQMDWPj15knvcD6njkDqWmw8vbarE6KrueTBM0NftpbzNDYIBLD/U/euaukPQUVWbDgRfDWd3U02Kx2fn59L8YqM2fdMoKAUN+mZ3vK9nDzipuJ9I/k7blvu7yt0W63s/Tu29mSsZs+PnoufetDKaMvhBBCiA7TaDTcfff/4TdrOH5HanjmgSupMVa12T9o3jwSXv4/GjMzyb3qaqwVFc5PpihwzgvQZ4LjEuvCXR0N34WpFVIvH4QKpH108IRXBwyLC+bsEbG8vS4bQ11jp8XYk0mC1kElNQ1sP1rJvO68vbFwF2x4yXG/RkpqV0eDqqqs/uQghYermHnV4GZ3ne0r38fNy28m1CeUt+a8RZR/lEtj2yxmltxyPXsLcugXHM5Fb3+At77rE1IhhBBC9By33vgU4Qun4pffwAv3X0NZZVGbfQOmTyfh9dcw5+aSe9312KqqnJ/Iyxcu+8hRPOSTRVBb0vHgnRQU4cfk81LI3Wfg0JYTz/unMwdSb7Hx2urMToquZ5MErYOOb2/spgmazerY2qiPgDmPd3U0AOxemUfG+iLGnZXEwAnH/94yDBksXr6YIJ8g3pn7DjF61/5OzUYjX1x/JUeqyhgel8S5r72L1qt7FEIRQgghRM9yzeV/JfmK+fiWWXj1/hvJKzrSZl/9pEn0efllzFlZ5F5/A7aaGucnCoiCRZ9AfSV8cZ3jd7tOMnx6H2JSgln72SFMNW2fuesfFcD5Y/rw/sajlNSceEukODlJ0Drop/Ri+kXqGRAd2NWhtG7b21C8B856BvxcL7Lhbkf3Gtjw5RFSRkcycUFKU/vBioMsXr6YAK8A3p77tsul9BsMBv53wx/IbzQyftAI5j7/stxxJoQQQgiPuvjc2xh+0+X41Np59+93cbTwcJt9A06fSp+X/kPDoUOOwiF1dc5PFDMCFrwAR9fBL//oeOBO0mgUZlw5GEujjbWfHTph37tmD8Cuqryyqu1EVThHfoPtAENdI5uzDd23OIipAlY94djWOHRhV0dDRaGRZW/tJbxPALOvHYpyrGLj0Zqj3Lj8Rny1vrw9923iA+JdGre+rJxPb72OMpuZaROmMf2xJz0RvhBCCCFEC/NnXMH426/H22jn/b//6cRJ2vTp9HnxBRr27ydv8Y3Y6k5811gzoy6DcdfA+hfgwI8djttZYbF6TpvflyPbSsnaVdZmv4Qwfy4Y04f/bcuTs2gdJAlaB6zIKMGu0n3Pn616AhprYO6TjoOmXai+zswPr+xG661l/i3HKzaWmcq4aflNqKrKW3PeIiEwwaVxTWWlfHr7dVSoVmbOOIsJ9/zFE+ELIYQQQrRp1pQLOO32G/AynTxJC5w5k/h/Oao75t98s2v3pM17GmJHOYqGVHRe1cQxcxMJjw9g9ScHaTS1XU5/8RkpNFrtvLchp9Ni64kkQeuAVQfKiAv2ZVhcUFeH0lLJftj2Doy/DqKHdmkoNtvxio3zbx5BYJijYmOtuZZbVtxCRUMFr8x+heTgZJfGNZWU8L/bb6BStTFr1tmMvuV2D0QvhBBCCHFys6ZcwITbFzclaTkFB9vsGzR3DvHPPoNpxw7ybr0Ne329c5N4+cIl7zv+P94/u8pxjVIn0Go1zLxqMPU1ZrZ8n91mv/5RAZw5JJr3Nh7F2Nh5Z+V6GknQ2slmV9mYZWBK/wiULl6dakFVYelfwScQZjzY1dGw8atMCg9XMePKwcSkOCo2Ntoa+eMvfySzKpMXUl9geMRwl8Y0Fhfx6R2LHcnZmecw6qZbPRG6EEIIIYTTZk45vylJ++Dhe06cpM2fT9xTT2LavJn8227H3ujktsDQZLjgDShOh5/uc0/gTohKCmLo6XGkpxVQUdj21sybU/tRXW/h0615nRZbTyMJWjvtL6yhut7C1P6uX6DscQd/gqw0SP0r+Id1aShHtpeye2UeI2b0YdBEx1ZQm93G/WvuZ1vJNh4//XGmxE9xaUxjYSGf/vFGqrBx5rzzGLX4Fk+ELoQQQgjhsplTzmfiH290KkkLPvdcYh9/HOOGDeT/8Y+o5rYrJTYzcC5Muwd2vA87P3JT5Cc38dwUvHy0rPvicJt3o41NDGVC3zDeXpuFxWbvtNh6EknQ2mlDZjkAU/p1swuQrY2w9AGIGASnXd+loVSVmPjlgwyi+wYx9cL+gOMOtH9u/icrcldw32n3cXbK2S6NaSzI59O7bqJGtTNn/vmMuG6xJ0IXQgghhGi3GZPOa5akZecfaLNvyIUXEPPooxhXr6HwoYdQ7U4mNTMehL5nwA93O1bTOoFfoDcTzulL3v4KctINbfa7ZXo/CqsbWLK7sFPi6mkkQWun9ZkG+kcFEB3k29WhNLf5NajMhnlPgNary8KwNNr46fV0tDoNcxcPR6tzfGqv7X6Nzw99zvXDr+fKoVe6NGZtXi6f3HULNaqduQsuYvg1N3gidCGEEEKIDpsx6Twm/fFmvOrtfPjIn0+YpIVeegmRd91JzXdLKH3uX85NoNHChe84rlH67CpoqHZT5Cc2PDWe0Bh/1n9+GJul9WQydVAkg2MCeX11VpsrbaJtkqC1g9lqZ2t2BVP7dbPtjXWlsPpZGDAX+s/usjBUVSXt4wNUFBmZc92wpqIgnx38jFd2v8J5/c/jzrF3ujRmbV4u/7v7VmqxM3fhJQy96lpPhC6EEEII4Tapk85l8m+StPyStgtshN90E6GXX07FO+9geOdd5yYIiISL/wuVR+GbWx11CDxMq9Vw+sUDqC6rZ/eq1s+ZKYrCTdNTOFhSy6qDpR6PqaeRBK0dduZWUm+xMaV/N9veuPIxsNbD3Ce6NIx9aws5tLmECef0JWGo4wzc8qPLeXzT40zvM52HJz/sUmEVY3ER/7v7NmpRmXf+ZQz9w9WeCl0IIYQQwq2mTzyXiXfciLdR5Z2H/4ihqqTVfoqiEP3gAwTOnUvpM89Q/d13zk2QOAnOfAwOfA+bXnFj5CeYclg4ySPC2fZjDsbq1oubnDMyjvgQP15L67zrAHoKSdDaYX2mAY0Ck1K60Qpa4S7Y+SFMvBki+ndZGKVHa1j72SESh4Ux/qxkAHaW7uT+NfczMnIkz05/Fp1G5/R4jZUVfH7nzdQojpWzIZe7ti1SCCGEEKKrzZh0HsOuvxTfKjsv/+0maoxVrfZTtFrinnka/wkTKHzgQerWrnNugsm3waCzYcUjnXYebepFA7BZ7Gz6tvUEzEur4frT+7Ilp4LtRys7JaaeQhK0dthwpJwR8cEE+3XdGa9mVBV+vh/8w+GMe7ssjIY6Cz+/vhf/IG/OvHYYikahoK6Au1bdRYw+hv+b+X/46fycHs9sNPL5bTdgUK3MnDlfVs6EEEIIcco6Z/ZVJC2ah3+phRcevoGGxtYvqNb4+NDn5f/Dp39/8u+8k/p0JxIuRYFzX3KcR/vyhk65Hy0k2p9RMxM4sKGIkpyaVvtcNiGBEH8vXlud6fF4ehJJ0FxkbLSyK6+qe21v3Pc15G6EmQ+BX0iXhKDaVZa/ux9jdSPzFo/AN8ALo8XIHb/cgcVm4aVZLxHi63xstsZGvr7lOkpsZqaddjqjb77Nc8ELIYQQQnSCSxfeQfjCqejzGnjusRuwWFsvq68NDCThjdfRhYaSd+NNNGa3fXatiT4cznsVyg7A8ofdHHnrxs9Pxi/Qi3WfHWq1GIi/t46rJiezfH8JR0prOyWmnkASNBdtya7AaleZ0l0KhFjqYfnfIXoEjL2qy8LY/nMOufsMnH7xAKL7BjnuOlt7P1lVWTw3/TlSglOcHstutfLtrTeQ32hkwpBRTLj3rx6MXAghhBCi81x7+QP4zRqO35Ea/vXUTdjbKKvvFRVFwltvApB3w2IspU4U2+g/CybeAlteh8PL3Rl2q7z9dEw6rx/FWTUc2tL62bprpiTj66Xh9dVyFs1ZkqC5aP2Rcry1GsYnde0F0E02vgzVeTDvSUe51S6Qf6CCzUuyGTghmuHT4wF4ceeLpOWlcd9p97l0EbXdbufHO28hu66SkQn9mPbIPz0UtRBCCCFE17j1xqdQJibjlV7GCy/8sc1+Pn37kvDG61grK8m78SZsdXUnH3z2IxA11FHVsa7MfUG3YcjkWCITA9n41RHMDdYWz8P03lw6PoFvdhVQVO35rZc9gSRoLlqfaWBsUgh+3l2TDDXTUA0b/uMoq993WteEUGdhxbv7CY32J/WKwSiKwrdHvuXdve9yycBLWDR4kUvjrbzvTxwsL2JwZCyznnneQ1ELIYQQQnStu+76D5YRUaibc3jljfvb7Oc3YgR9XnyRxsOHKbjnHlSb7cQDe/nChW85fk/87g6Pl95XNArTLh2IsdrMzmW5rfa5YVoKdhXeWefEVk0hCZorDHWNZBTVMLVfNzl/tulVx//jm/FAl0yvqiqrPjpAfZ2FM68bhpePlp2lO3l046NMjJnI/RPvd6mc/pqHH2BPXiZ9A0M564VX0Wjk8xRCCCFEz6TRaLjn/tdo6B9E/cq9vPtR27uGAqadTsxDD2Jcvca5i6yjhzlW0g79BNudvFOtA2L7BTPgtGh2LsulprzlKllCmD/njIzl4825VJssHo/nVCe/AbtgU1YFQPcoEGKqcGxvHHwOxI3ukhAyNhSRtbOMiQtTiEwMbKrYGKuP5V+p/8JL43yVy83PPsHWA3vo46Nn4atvo9E5X4pfCCGEEOJU5KXz5p6H38aY4Ev5dxv45ue32+wbumiR4yLrd9+l6suvTj74xJshZQb8/ACUHXJj1K2bckE/FA1s+qb1io03ndEPo9nGh5uPejyWU50kaC5Yn1lOgI+OUX2CuzoUR3LWWAOpXVNAo6rExNrPDhM/KIQxsxNbVGwM9nH+72jfe2+zbut6orU+nP/qO2i9vD0YuRBCCCFE9+Hr7cedD79BfbiWg+9/xYadS9vsG/3AX9FPmUzRI49g2r79xANrNI6qjl5+8NUN0EbFSHcJCPVl5IwEDm8vxVDQ8qzc0LggzhgYyX835GCxtV4YRThIguaCDUfKmdg3DJ22i//ajAbY/BoMPQ9ihnf69DabneXv7kerVZh19VDs2NtdsTF3xTKWf/8lIWi46KU38NbrPRi5EEIIIUT3ExwYxrV/+zcWH1j1woscObq31X6KTkf888/jHRdH/u13YM4vOPHAQbGO+9GKdkPaEx6IvLkxZybi5aNly/etnzW7ZkoSZbWNLNvXesVH4SAJmpMKqurJMZi6x/bGDS+C2dhlq2fbfsihNKeG1CsGExjmyyu7X2lXxcaKfel899oLeKtw4T//hW94N7m6QAghhBCikyXE9mf+n+9HY4WP/3k/hqrWkxhtcDB9Xn0V1WYj/9ZbsdUZTzzwkHMcVzGtewGy17o/8N/wDfBi1KwEsnaWUZbb8t6z6QOjiA/x48NNss3xRCRBc9L6I+UATO3fxUlEXSlseRNGXARRgzt9+sIjVWz/KYfBk2PoPy6KdQXreGPPG5zX/zyXKjYai4v44pG/YgMW3vkXQgYM9FzQQgghhBCngLHDpjHmxivxq1F5+dFbaDC3XpbeJ6Uv8c//m8bMTArvuw+1jbvUmsx9EsJS4JtboNGzF0aPnpWAj7+OLUta3num1ShcPjGRjVkGjpQ6cWVALyUJmpM2HCknXO/NoOjArg1k/YtgbYDpf+n0qRvrrax4Zz+B4b5Mu3QgRXVF/HXtXxkYOpAHJj7gdMVGq8nIl3+6lTpFZd7FfyB+2nQPRy6EEEIIcWqYN30R0RdMR19o5vmnbm7zIuuAqVOJvv9+6n75hbLnT3I1kU8AnPcKVOfDyn94IOrfTOXvxejZieSkGyjOrm7x/NLTEvDSKny8ufWS/EISNKeoqsr6TAOT+4W7VDbe7WqKYOtbMPIyiBjQ6dOv+fQgdVWNnHndMBQvlT+v/jMWu4V/p/4bP52fU2PY7Xa+u+MmyuwWpk2azqBLL/dw1EIIIYQQp5arLrkP7ZR+eO8znPCOtNA/XEHIpZdiePMtqr/99sSDJk6CCTfCljcgd5ObI25u5Mw++Oq92LKk5Vm0iAAf5g2P5YvtedSbT3KnWy8lCZoTjpTWUVbbyNSuPn+27nmwWWD6vZ0+9aGtxRzaXMJpZycTkxLMv7f/mz3le3hsymMkBSU5Pc4vf7mb7LoqRib047S77/NgxEIIIYQQp64/3vE8DQODaVy1n0+/+U+rfRRFIeahB/GfMIGih/6GaefOEw866+8Q3MdxgbWlwQNRO3j76hgzN5G8/RUUHqlq8fwPExOpabCyZE+hx2I4lUmC5oSm82ddeUF1dYHjosExVzj2EHeiGkM9qz8+RExKMOPmJbEsZxkfZnzIFUOuYE7yHKfH2frvZ9ide4S+ASHMeuYkS/FCCCGEEL2YRqPh7gffoC5aR+7/lvLLhq9b7ad4eRH/4gvoYmIouOtPWCsq2h7UJwAWvADlh2DNs54J/JgRqX3wC/Jmy3ctz6JN6BvGgKgAPpJiIa2SBM0J6zMN9An1IzHcv+uCWPscqCpM+3OnTquqKr+8n4Gqqsy+dih5xjz+vuHvjIwYyT3j7nF6nIP/+5i1m1YTqfHi3JdeR6ORT08IIYQQ4kT8fPXc/PDLNOoVNr/yJhlHdrTaTxcaSvwLz2OrrKTwvr+cuGhI/9kwahGsfwGK0z0TOODlrWXc3CQKDlWRf6B50qgoCldMTGR3fjXp+S3PqfV28lvySdjsKpuyDF27elZ5FHZ8AGOvhFDntxO6w/51hRQcrGLqhf3xCVW4O+1udBodz01/Di+tl1NjFG/ayM+ff0iAqnDh86+g85e7zoQQQgghnBEdHs9F9z8GwOfP/J3q2tZXyPyGDSP6gQcwrluH4fXXTzzo3CfALxS+vR1sVneH3GTYGXHoQ3zY/F02qqo2e3bBuD74eWml5H4rJEE7ib0F1dQ2WJnSleX11z4HitLpq2d1lQ1s+PII8YNCGHp6HE9ueZJDlYd48vQniQ2IdWoMU0kJ3z73OBrgwr8/gT7GufeEEEIIIYTDkP5jGXX9FfhVq7z05G1tVnYMufQSghYsoOyl/8O46QSFQPzDYP6zULQLNr3smaABnZeW8WclUZxVTe7+5ollkK8XC0fH8e3uAqrrLR6L4VQkCdpJrM90nD+b0lUraBVZsPMjGHctBMd32rSqqrL644PYbSoz/jCYbzO/5avDX7F4xGKm9Znm1Bh2q5Vv77kdowbmLbqG8BEjPRy1EEIIIUTPNH/GFehnjcAvs5bX3nqg1T6KohD7yMN49+1LwT1/xlJa2vaAQ8+DwefAqifAkOmZoIEhU+MIDPNly3dZLVbR/jApiQaLna925Hts/lORJGgnseGIgUHRgUQG+nRNAGueA60XTLu7U6c9sq2UnHQDExemUKLL55+b/smEmAncNvo2p8dYef89FFrqmTB8HAMuvMSD0QohhBBC9Hw33/AE9f0CMa5M58dVH7XaR6PX0+fFF7CbTBTefQ+qtY0tjIoC858DrQ9890c42WXX7aTVaRh/djKlR2vJ2VPe7Nnw+GBGJYTw0ebcFslbbyYJ2gk0WGxszanouu2NNUWw5zMYezUExnTatPV1Ztb87xBRyUEMPCOS+1bfR4B3AE+f8TRajdapMdLfeo09eZn0DQhhykOPeDZgIYQQQoheQKPRcMdfX6Y+RMPutz/iQNauVvv59O9P7KOPYNq2jbL/vNT2gEGxMPdxOLoOdvzXIzEDDJoUQ1CkH5uXZKPaf7eKNjGRI6V1bMo6QfXJXkYStBPYkVtJo9Xeddsbt74JditMuqVTp1332WHM9VZmXjmYl3b9h8zqTP55+j+J8HPu76FowzpWLv2OUFXDOS+8KhUbhRBCCCHcJDgwjIvvfRSAz575GzXGqtb7nXsuIZdcguGNN6hNS2t7wDFXQt8zYNnfHdc6eYBWq2HC2ckY8uvI3FnW7NmCUXEE+3nx4WYpFvIr+c35BDYcMaBRYGJKWOdPbjbCtndg8NkQ1rfTps1JL+fQlhLGnZXMYc1ePsz4kMsHX86UuClOvW8sLuLbfz+JVoXzHnsK78BAD0cshBBCCNG7DOk/lhHXXIZ/pf2ERUOiH3wAnyFDKPzL/VgK2ki+FAUW/MexKPD9nxzXOnnAgAkxhMb4s/WH5hUdfb20XDSuD0v3FlNa67nLs08lkqCdwMYsAyP7hBDk61w5ebfa/QnUV8Lk2zttSnO9ldUfHyQsTs+AmaE8tO4hkoOSuWvcXU697ygKcgcmDZz1h+sJGzzUswELIYQQQvRS58y+Ct8Zw/A9XM0b7/6t1T4aHx/6vPgC2Gzk3303qtnc+mBhfWHmQ3B4KRz4wSPxajQKY+clUVFoJO93FR2vmJiI1a7y2dY8j8x9qpEErQ1Wm529BdWMSwrt/Mntdtj0KsSNhcRJnTbthq8zMVY1MvPKITy9/SkM9QaemvYUfjo/p95f8Zc/UWRtYOKo0+h/3oUejlYIIYQQone79canqE8JoHb5Lpau/rTVPt6JicQ+8U8adu+h5Lnn2h5s4k0QOQSW/hUs9R6Jd8D4aPyDvdm1snkilhIZwNT+4XyyJQ+bXYqFSILWhsOldTRa7YyID+6CyZeB4QhMvs2x7NwJCg5Vsm9NASNnJbBT2cAPWT9w46gbGRYxzKn3d7/xCun52aQEhjH5r3/3cLRCCCGEEEKj0XDbX/+P+kCF7W+9z+Gc9Fb7Bc2ZQ+iVV1L5/gfUrV/f+mBaL5j/DFTlwvr/eCRerU7DiNQ+5O2vwFBQ1+zZHyYmUVBVz6oDJ7gaoJeQBK0N6QXVgKP8Z6fb+H8QFA9DF3bKdFazjVUfHCAowpe+swL4x8Z/MCJiBItHLHbq/aIN61i1/HtCVQ1nP/+yFAURQgghhOgkoUERXHDfw2js8MmzD9Fgbn31K+qeu/Hu14+iBx7EVl3d+mB9z3Dcj7bu345EzQOGT4tH56Vh9+9W0WYPjSYq0EeKhSAJWpvS86vRe2tJidB37sRFeyBnrWOZWds5Z9+2fJ9NdVk9M/4wmH9sexSzzcwTpz+BTqM76buNVVUsef4ptCqc/49npCiIEEIIIUQnGz7gNFIunY++3MbL//fnVvtofH2Je+ZprAYDxY/9o+3B5jwOKLD0QY/E6hvgxeApsRzcUoyp5viZOC+thstOS2D1oTIKqjyzxfJUIQlaG9ILqhkWH4xG0zlbDJtsegW89I67zzqBoaCOXSvyGDo1lnUsY33hev48/s8kByc79f5P991JrQZmX7CI0EGDPRusEEIIIYRo1SXn3o5leCRsPtrmJdZ+w4YRedut1PzwAzU//tj6QCEJMO0eyPgOstI8EuuomQnYbSrpafnN2i8al4Cqwre7PFPu/1QhCVorLDY7GUU1jOzs7Y21xZD+BYz5A/iFeHw6VVVZ+79DePtpiZvlxb+2/Yup8VO5ZNAlTr2/8+UXyaw2MCw2iSGXX+nhaIUQQgghxIncevfzGINh57sfkVec2Wqf8MWL8Rs1iqJHH8NSUtL6QFPugNBk+PE+sFncHmdItD/JIyLYu7oAq9nW1J4Y7s/YxBC+3Vno9jlPJZKgteJwybECIX06OUHb8uvF1Dd3ynRHtpdScKiK0xYk88iOv+Gj8+GxKY+hOFGYpGzXDtasWkoYGmY/eYKKQEIIIYQQolME6UM4+4/3obMovPvMfdhs1hZ9FJ2OuKefQjWbKXrgwWZ3kjXx8oW5T0L5QdjyhkdiHT07gQajhYObi5u1nzcmnoMltWQU1Xhk3lOBJGit2NsVBULMJtj29rGLqVM8Pp2l0caGL48QkRDA+qAf2GvYy98m/Y0o/6iTvms1GVnyxCMowIIH/4HOz7ky/EIIIYQQwrPGDT+DyLMnoy9o5PW3H2q1j3dyMtH33Ytx/XoqP/649YEGnQX9Z0PaU1Dn/sqKcQNCiEwMZPfKPNTflNY/e0QsWo3CN714m6MkaK1IL6gmwEdH3/BOLBDSdDH1bZ0y3fafc6irbKTvfD/e3PsGZ6eczdzkuU69u+z+e6hU7Ew/8xwiRo7ycKRCCCGEEMIV11z+APUpARh/SWft1tYvng657DL006ZR+uxzNGZlt+ygKDDvKcedaCsedXuMiqIwenYClcUmju4zNLWHB/hwxoAIluwqxN5L70STBK0VewqqGRYX1HkFQux2R3GQuDGQONnj01WVmti5PJeBE6J5segpAr0Duf+0+516d/8H/yWjJJ8BoZGMuulWD0cqhBBCCCFcpdFouOm+52n0g7RXX8FQ1fKsmaIoxD7+OBofHwrvvx/V2nI7JBEDYNItsOtDyN/m9jj7jYtCH+LDrhXNS+6fNyaewuoGtuRUuH3OU4EkaL/za4GQTr2g+sjyYxdT394pF1Ov//wwWq2G8lH72VO2h3tPu5cQ35CTvld56CArv/2MIDvMe9YzFxgKIYQQQoiOiwyNZdrNN+Frglef/RN2u71FH6/oKGIeeZiGPXsof/311geafh8ExMCP9zoWFdxIq9UwckYfCg5WUpZX29R+5tBo/L21vbaaoyRov3OopBZzZxcI6cSLqXPSy8lJNzDkzEj+c/DfTIydyDkp55z0PZvFzJKH78emwIJ7HpT7zoQQQgghurnpE8/FL3UYfkdq+OB/z7TaJ+isswhasIDyV16lPn1vyw4+gXDmY1C4w7GS5mZDT49D56NtdnG1v7eOOUOj+WFPEY1W2wne7pkkQfudXwuEdNoKWtEeyF4DE270+MXUNouddZ8dJiTan2/83sFsM/O3SX9zqmpj2kN/ocxuYcqk6cRM8vw2TCGEEEII0XG3LH4CY5w3xd+tZVfGhlb7xPztIXSRkRT+5S/YGxtbdhh5CSRMcpxFq69ya3y+ei+GTonl8NYSjFXH5144Jp6aBitpB8vcOt+pQBK030kvqCbQR0dyZxUI2fSq42LqcZ6/mHrXylyqy+oJmdnAsvyl3DjyRpKCkk763pFvvmRX9iGS/IMZ/6d7PR6nEEIIIYRwD61Wx9X3Po3NS+W7F5+kodHUsk9QELH/fBxzVhaG11spq68oMP8ZMBlg3fNuj3HkzATsdpU9v7m4elr/CML13r1ym6MkaL+Tnl/NsPhOKhBiLIf0z2HMFeAX6tGp6iob2fbTURJHhvKfsidJCU7huuHXnfQ9U1kpyz58G70dzn7mRTQa+WSEEEIIIU4lSXEDGHr5hegrVV57/YFW+wRMnUrQuQsof/NNGrOyWnaIHeVYSdv8GtS49yLp4Eg/UkZHsm9NAZZGx5ZGnVbDOSNjWZFRSk2D+y/L7s7kt+3fsNjsZBTXdt72xj2fgd0C4671+FQbvjqCalc5PGQdhcZCHp78MF5ObKlc/uB91GsU5lxzI36RER6PUwghhBBCuN95866ncVAIlg2H2bRrRat9ov/yFzT+/hT//WHU1gqCpP4V7DZY3fp5to4YPSuBRpOVAxuLmtoWjonHbLXz897iE7zZ80iC9hvHC4SEeH4yVYWdH0LcWIge6tGpCg9XcnhrCYnT/Hk/720uHHAhY6PHnvS9jI8/4Eh1OUNjEkg5x/MFTIQQQgghhOfccNczmH1Ulr36YqtbHXXh4UTf+2dM27ZR/fXXLQcI6wvjr4Ud74Mh062xxfQLJrpvELtX5jXdfzYmIYSkcP9et81RErTfSM/vxAIhRbugdJ9je6MH2W121nx6iIAwHz7y+Q/BPsH8adyfTvqeqaSEVV99QoBNZdY/n/VojEIIIYQQwvOiwuIYfvlF6KtUXnvtr632Cb7gAvzGj6PkmWexGgwtO5xxL+h84ZfH3RqboiiMmplAdVk9BQcqm9oWjopjQ6aBkpoGt87XnUmC9hu/FghJCvP3/GQ7P3J83MMv8ug0BzYWYygwYp9UzJ6q3fzltL8Q7HPyBHTpQ/dSr1GYe/2tUlJfCCGEEKKHWDj3OhoHh2LZeISNO5e1eK5oNMQ+8gh2k4nSZ1rZyhgQBZNvhX1fQeEut8aWMjoSH72OjA3Hz7gtHBOPqsKS3e4999adSYL2G3sLqhkeH+z5AiGWBkj/DAafA34hHpvGarax5ftswpL8eL32WabETeGsvmed9L39H/yXrJoKhscnk3zW2R6LTwghhBBCdL4b7nwasw8sf+2lVrc6+vTvT/gN11P97XcYN25sOcCUOxwF7lY+6ta4tF4aBk6IIWtXOQ1GR2GQfpEBjIgP5ptetM1RErRjzFY7GUW1nXNB9cEfoKEaxvzBo9OkpxVgrGpkT8oKrKqVhyY+dNI7z4yFhaz69jMC7TDjcfcfABVCCCGEEF0rKiyOEVc4tjq++tr9rfaJuOkmvJISKXrkkZZ3o/kGw7R7IPMXyFrt1tiGTInFZrVzeGtJU9vC0XHsLajhSGmdW+fqriRBO+ZQSS1mm71zzp/t/BCCE6DvdI9N0WiysP3nHAL7KXzf8Bk3j7qZhKCEk7639G/30ahRmHvjHXjrO+kuOCGEEEII0anOnXMtjYNDsW7MZMP2pS2ea3x9iX34YSxHczG8/nrLAU67AYLiHatoquq2uCITAolICCBjw/FqjueOikOj0GuKhUiCdszegk4qEFKdD5mrYPTl4ME7xXYuy6XRZGVZ9IckBiZy9dCTX4S99523yK6rYnhCCklnzvVYbEIIIYQQoustvusZzD6w4vWXqG8wtniunzLl2N1ob9GY+buqjV5+kHo/FGyHA9+7Na4hU2Ipy62lLK8WgKggX6b0i+DbXYWobkwGuytJ0I7ZU1BNoK+OpHAPFwjZ9QmgOhI0DzFWN7L7lzx8BjWwW93C3ePuPumdZ8aCfNJ+/IogO8z8x1Mei00IIYQQQnQPkaGxjPjDReir4bU2tjr+ejda0cOt3I026nIIHwAr/wE2q9viGnhaDBqdwoHfrKItHB1HboWJHblVbpunu5IE7Zi9BdWMiA8+6RmtDrHbYdeHkDwNQpM9Ns22H3OwWVW+DnmDcdHjmJk486Tv/PTQXzBrFObdfCc6f9naKIQQQgjRG5x75rU0DgnDuimr1a2Ov96NVr9te8u70bQ6mPU3KD8Iez51W0y+AV6kjIrk0JYSbBZHUjhveAw+Ok2v2OYoCRqOAiEHimo9v70xdwNU5sCYKz02RXWZif1rC7EOKiNXk8m9p9170qRz95uvctRUzcikASTMOtNjsQkhhBBCiO5n8Z1P0+gLK9qo6tjsbrSKiuYPh5wLcWNg1ZOOSuVuMmRKLA1GC9l7ygEI9PVi9pBovt9ThMVmP8nbpzZJ0DheIGS4pxO0nR+BTxAMWeCxKTZ/l42ihf8FvMy5/c5lWPiwE/Y3FhaydukSgu0KqY896bG4hBBCCCFE9xQZGsvIyy9CXwNvvftIi+dNd6MZjZT95z+/e6jA7EegJh+2ve22mPoMCSMg1KdZsZCFo+OoMJpZd6TcbfN0R52WoCmKkqgoyjeKoryjKErrm1y7SPqxAiEjPVliv7EW9n8Dwy8Ab8+ccyvLq+Xw1hIMAw5j9jFxx5g7TvrOysceclRtvPmP6Pz8PBKXEEIIIYTo3s6dcy2mZD3GNfs4nJPe4rlP//6EXnopVZ99TuPhw80fpqRCygxY85zjKik30GgUBk+OJW+/gbpKx8rc9EGR6L21LN9fcpK3T21OJWjHkqpSRVH2/q59nqIoBxVFOeJE0jUC+EJV1euAMe2M1yPSC6oJ8tWRGObBAiH7vgaLCUZ77u6zTd9kofNT+Er/FlcPu5oYfcwJ+x9d+jOHK0oYFBErWxuFEEIIIXq5y255CFT49NXHW30ecfttaPR6Sp59tuXDWX+H+grY+Irb4hk8OQZVhQObigHw0WmZNiCSlRklPbqao7MraP8F5v22QVEULfAycBYwFFikKMpQRVFGKIry/e/+TxSwCbheUZRfgJ/d9yN0XHp+NSP6eLhAyM4PIWIQ9BnvkeELDlWSu8/Akb6bCQrUc93w607Y32Yxs/LtV/Cxq8x8+J8eiUkIIYQQQpw6BiSPQD99GP45Rr5b/m6L57rQUCJuvhnjmrXUrVvf/GH8WBh8Dmx+1bFzzA2CI/2JHxhCxoaipoRs1pAoSmoa2VtQ45Y5uiPF2exTUZRk4HtVVYcf++fJwCOqqs499s9/BVBVtdWDTIqi/BnYoqrqGkVRvlBV9aI2+t0I3AgQHR097tNP3VcRpjVWu8rNy03MSfbikkHeHpnDz5TPxC23kZlyNXmJF7h9fFVVyV6hYjKaeWvkA1wadTGTAyaf8J2qb74gsyiHgX0HEzjvHLfH1FPV1dUREBDQ1WEI0US+SdEdyXcpuhv5Jp1ntjay8ZMXUewwYdHt+P7+aI7FQvijj6L6+FLx4APN7vUNrDnEuB33uvV33qpslYLNKskzFfRRCjWNKneuMnFuPy/OH+CZ3907w4wZM7arqtrqyo2uA+PGA3m/+ed8YOIJ+v8MPKIoyuVATludVFV9A3gDYPz48WpqamoHQjy5vQXVWJetY/7k4aSOjPPMJMsfBkVLv/MfpF9gtNuHz95dxn5DOruH/EL/iBTum38fWo22zf41Odn8Nz+LSC8fzn7iGTQevDC7p0lLS8PT36QQrpBvUnRH8l2K7ka+SdeoXpXsfeVDDh5cxp13vNDieY3NRsFdf2KUwUDoxRf/5kkqVC6hX+nP9Fv0DHj5djgWyxQb7+5eh68pktTUoQC8l7WBzAYbqanTOjx+d9Rpv5mrqrpXVdWLVFW9WVXVP3fWvCezJ/9YgZD4EM9MYLPC7k9hwBzwQHJmt6ts+jYLJcTM5uCl/Pm0P58wOQNY8Y+/YdUonPnHP0tyJoQQQgghmpk7/TIa+gfRuOEwGUd2tHgeOHcufmPGUPbif7DVGZs/nHYP1JXA7o/dEouXt5YBp0VzZEcp5nrHZdizhkSxt6CG4mr3lfXvTjry23kBkPCbf+5zrO2Ukl5QTbCfFwlhHqpgmLkS6ophjGeKgxzeUkxFoZHVsV9wRsI0JsVOOmH/I199QXZdFcPik4mdPNUjMQkhhBBCiFPbFbc+jF2j8vmr/8Rub37vmKIoRN//F2zl5Rjefqv5i32nQ9xYWPeCY6HCDYZMicVqtnNkeykAs4c4Fj1WHuiZ1Rw7kqBtBQYoitJXURRv4DLgO/eE1Xn2FlQzPD7IcwVCdn4I/hEwcK7bh7bbVbb9dBRrqJGDIdu4e/zdJ+xvra/nl0/+i5/NTqoUBhFCCCGEEG1Ijh9E6Kyx6PMb+erHN1o89xs1iqD586l4510sRcfvKkNRHKtoVUcdVczdIDo5iNBYfdOdaAOiAkgI82NlRqlbxu9unC2z/wmwERikKEq+oijXq6pqBW4HlgIZwGeqqu7zXKju12i1caC4hhGe2t5oNMDBn2DUZaD1cvvw2bvKqCoxkRb5BZcMvoSU4JQT9l//xKPUamDa/PPxCQlxezxCCCGEEKLnuPbKv2EMUTjwxRKqaytaPI+8+25QVcpeeKH5g0HzIXIwrPs3/G71rT0URWHIlFiKs6qpLDaiKAqzBkez/kg59WZbh8fvbpxK0FRVXaSqaqyqql6qqvZRVfXtY+0/qqo6UFXVfqqqnnJLMoeK67DYVEbEe+iC6oxvwW6BUYvcPrSqqmz/+SjmgDpKog9zy6hbTti/4sB+dh7YQ6yXLyOuW+z2eIQQQgghRM/i7eXDtGuvx69e4a03/9byeZ94wq6+iupvv6M+/TfXJWs0MPUuKN0Ph5e6JZZBE2PQaJSmVbTZQ6JptNpZd6TcLeN3J726QkR6wbECIX08laAtgbB+ED3M7UPnZVRQllvLhqglXD70ckJ9Q0/Yf/kTj6KicOa9D7k9FiGEEEII0TPNmHQejUPCsG/JYVfGhhbPw2+8EW1YGKVPP9388ugRF0FwIqz9F7jhUmn/IG+SRoRzYFMxNpudCX3DCPTRsTKj551D6+UJWhXBfl70CfVAgZD6KsheA0MWOPbiutn2n45i9aunMC6DK4deecK++z98j/xGI6P6DSZy1Gi3xyKEEEIIIXquq255FKtO5bvXn21RMEQbGEjkHbdj2raN2hUrfvPAC6b+EfK3Qs46t8QxZEos9TVm8vZV4K3TcMbASFYeKMVu73gC2J308gStmhHxwZ4pEHJoKditjgTNzYoyqyk8XMXm6J+4bNilBPu0vQJorq1lzTefEWBTOf1vj7k9FiGEEEII0bP1ie5L9LzJ6IssfPH9Ky2eh1x8Md79+lH63HOoZvPxB2P+APpIx1k0N0gcHo6Pv47MHY7iILOGRFFW29i0K66n6LUJmtlq52BxLSM8tr3xOwiMc5QZdbMdP+dg8zaTG7+bq4ZedcK+G59+HKNWYfqFi/DW690eixBCCCGE6PmuvOwvGEMUDn77Ew2NpmbPFJ2O6PvuxXI0l8pPPz3+wMsPJt0Kmb9A4c4Ox6DVakgeGUH2nnJsNjszBkWhUehx2xx7bYKWW2HCYlMZGB3g/sHNJjiyEoac4zgk6Ubl+XXkpBvYHr2cS4ZdfMLVs9q8XHYdSCdG58PgRZ65h00IIYQQQvR8Xjpvxlx0If51Cu9/8nSL5/ozzsB/4kTK33gTe3398QenXQ8+wbDWPatoKaMjaTRZKTxURajem3FJoazoYeX2e22CllPuuPU8OdwDq0qZK8FaD4PPcfvQO5Yexa6zkt1n+0lXz9Y8/ThWjULqzX90exxCCCGEEKJ3OXvWVRhjvSlfuZWK6uZJkaIoRNx2K7bycqo+++z4A99gmHCDo3he2aEOx5A4NAydt4asnWUAzBoSzf6iGgqr6k/y5qmj9yZoBg8maBlLwC8Ukqa6ddjqMhOHt5WwJ2o1F424gBDfkDb7lu3excHSAlKCwomfNt2tcQghhBBCiN5Ho9Ew++qb8DFreO/df7R4rp8wAf8JEyh/6y3sDQ3HH0y8BXQ+sP6FDseg89aSNDycrF1lqHaV2UOiAFh5oOesovXaBO2owUSQr44QfzdfIG01w8GfYdDZoNW5degdy3JRFRuHEzafdPUs7flnUFSV1HsfcGsMQgghhBCi95oyZi71A4Iwb84ip+Bgi+cRt92Graycqs8+P94YEAljr4Y9/4OqvA7HkDImElONmeLsGvpFBpAU7t+jzqH12gQtx2AkOULv/gqOOWuhsdpx/syNjFWNZGwoZH/kJs4fteCEq2dHl/5Mbn0NQxNSCB002K1xCCGEEEKI3u2i6+5DUeGTt59s8Uw/cQL+48djePNN7I2Nxx9MucPx54aXOjx/8vAINDqFrJ2lKIrCrMHRbMg0YDJbOzx2d+DeJR43URRlAbAgPj6etLQ0j8xxIN9EvxCN28cfePB1ojW+rM/XYi9y39jFO+3YbXb2x69hfuWdbcat2u1kv/l/eGHHa/qZHvv7663q6urk71R0K/JNiu5IvkvR3cg36X51A4IJ3FfG+/97jcTo5gsCXtNOJ2zbNrY+8QT1M2Y0tQ+OnEbktvfY4D0dm65jx4z8I1X2bczDHJ5PhNmO2Wrn1a/TGBfdLdMbl3TLn0BV1SXAkvHjxy9OTU11+/hmqx3D0p9YNKQvqamD3Dew3QZbF8OQszhj1hy3DdtQZ+G/X63jSMQOzht3NueMa3t1bv/777JDCxOHn8bpCxe6LQbhkJaWhie+SSHaS75J0R3Jdym6G/km3W/QsBTeu+tmjm77hauevbnZM3X6dI6uXYtuVRr9HngAjY+P48GAIHhzBtMC8mDSza2M6rz9XoWs+uAAw/uP5/Q4Pa+mL6dEG0lq6qgOjdsd9MotjgVV9dhVSHJ3gZD8rWAsdXv1xj1p+djMKvsT13L1sKvb7GezmFm35Ev0NpVJ99zn1hiEEEIIIYT4VWxkIgHThuOfa2LFui+aPVMUhcjbbsNaWkrVF795Fj8W4sfB1rdAVTs0f9+RESgKZO0sw0urYfrASH45UIbd3rFxu4NemaA1VXCM8HfvwBlLQOsNA9y3emZusLJr5VFyQtM5a9xMQn1D2+y7/YV/UauBSbPno/OXS6mFEEIIIYTnXHPVg9T7qWz45APsdnuzZ/6TJuE3diyGN9/CbjYff3DaYjAchuzVHZrbL9CbuAEhZO1ylNufPSSa8rpGdudXdWjc7qBXJmhHj92B5tYVNFWFjO8gZQb4Brlt2P3rCrHU29mXuOaEq2eNVVVs3byWUDSMvPEWt80vhBBCCCFEawL8g0mcdwb6chtffv9qs2eKohB5+21Yi4up/vLL4w+GnQ/+4bDlzQ7PnzImkopCI5XFRlIHRaLVKKzsAZdW98oELcdgIsBHR7je232DFu+BqlwYssBtQ9ptdrYvz6Yw6DCzJ0wlzDeszb7rn3qcBq2GMxZdjUbTK/+1CiGEEEKITrbooj9hDIYD3/5Ig7n5ZdH+kyfjN2YM5a+/cXwVzcsXxlwJB3+E6vwOzd13VCQAWbvKCPH3ZlxSKCt6QLn9Xvmb/FGDkaRwf/eW2M/4HhQNDDrLbUPmpBtoqLZxMH4T1wy7ps1+NUdzSM/cT5y3H/3Pu9Bt8wshhBBCCHEiXjpvRl98If51Ch9+8nSzZ4qiEHHbsVW0r746/mD8dY7dZ9ve7dDcgWG+RCUHkbXz122OURworiW/0tShcbtaL03QTCS7u0BIxhJImgr6CLcNuX1lFnXelZw2cfAJV89WP/UPbIrCjNvudtvcQgghhBBCOOOcWVdjjPGidOUWKqqbbzHUT52C36hRlL/xBuqvq2ihSTBwLux4D6yNrYzovH5jIik9WkttRQOzhkQDnPLbHHtdgma12cmtMJEU7sYCIeVHoCzDrdsbK4uNlB42sj96A5cPu7zNfqXbtnDYUEy/0ChiJk122/xCCCGEEEI4Q6PRMOuqG/Fp1PD+e080e6YoChG33461sIiqr785/uC0xWAsg/3fdWjulNHHtzn2iwwgOdyfNYfKOjRmV+t1CVphVQNWu+reFbQDSxx/Dj7bbUPuSsvFplgJG6MhITChzX5rXn4Rjaoy/c9/ddvcQgghhBBCuGLquLMw9dVTv/kQhqrm58D0p0/Fd9RIDK+/fnwVrd9MCEtxlNzvgJBof8Li9E3bHCf3C2dLTgW2U7jcfq9L0H4tse/WFbSMJRA3FoL7uGU4c4OVjA2FZIXt5vKxl7TZr3T7Vo4aqxgYk0jIgIFumVsIIYQQQoj2mH3p9XhbNXzyyXPN2n+9F81SWEjVN984GjUaGH895G2C4vQOzZsyJpKiI1WYasxM7BtObYOVjKKaDo3ZlXpdgna06Q40N62gVRdAwXa3bm88tKUY1axQO+Ao46PHt9lv/asvoVFh6l1/dtvcQgghhBBCtMfkMXMwJvhSs2Ef1bUVzZ7pp03Dd+RIDG++hWqzORrHXAE6vw6X3O83JhJVhZw95UxMcdRt2JRl6NCYXanXJWg5BhO+XhqiAn3cM+CBHxx/uilBU1WVLSsOU+6fz9lTZrVZadKQvofsGgP9I2II7tffLXMLIYQQQgjREdMvvgofs4ZP/vevZu2KohB+3XVY8vKoS0tzNPqFwoiLIP1zqK9q95zh8QEERfiSubOM2GA/EsP82ZxdcfIXu6lel6AdNRhJDte7r8R+xncQORgiBrhluKIj1dSXquQk7OTsfvPb7Lf+5ecBmHqHVG4UQgghhBDdw/SJ52KM88awdid1pupmzwJnz0IXF0vFe+8fb5ywGCwm2PVxu+dUFIWU0ZHkH6igsd7KxL5hbM2pwH6KnkPrdQlajsGNFRyNBji63q3bGzevOESjtp5xU/vjo219la/y0EEyDaWkhEQQNnSY2+YWQgghhBCioyZfsAjfBg2ffv58s3ZFpyPsiiswbdlCw8GDjsbYUdBngqNYiN3e7jlTxkRht6kcTS9nYko4VSYLB0tqO/JjdJlelaDZ7Cq5BpP7zp8d/BFUOww+xy3DGasbKdhTw6GoLVw6vO3iIBv+8xyqAlNvvdMt8wohhBBCCOEus6ZeiDFKR/GqrTQ0Nr80OuSii1D8/Kh4/zeraKfdABWZkJ3W7jlj+gbhH+RN1s4yJvZ1nEPbfIqeQ+tVCVpxTQNmm919JfaPrICgeEfm7wY707JRVA2R43VE+ke22qcmJ5tDJQUkBYQSOXqsW+YVQgghhBDCXTQaDWMXXoBfvcL/vvpPs2fa4GCCz1tIzZLvsVYcOyc27Dzwj4At7S+5r2gc2xyP7jMQE+BDfIjfKXsOTdfVAbRGUZQFwIL4+HjSfj1E6Ab7DY6KMVV5h0kzZXVsMNXOlMO/UBE2ngOrV3c4NtWukv5LA4XBWQzVJbX5c5e+/xZ2RSFw8jS3/t0I59TV1cnfu+hW5JsU3ZF8l6K7kW+y8/lr+lATomJctoYVUePQab2anmkHDSLCbGbnU09hnO+oudA3IpXEg1+x6efPafRtfaHiZOo0Klazyk+frSHJ38K6Q8WsWrXKfbUnOkm3TNBUVV0CLBk/fvzi1NRUt41buDkXtqazcNYU4kL8OjZY8V5YXUPM5EuIGZ3a4dgObStmf+N+6kcVcdXc21rtYyzI583aChL1wcxZfFOH5xSuS0tLw53fpBAdJd+k6I7kuxTdjXyTXaOy4TA57y2htCqdyy9sXtgud+UvaDduZPzjj6N4e8PofvDiV0zW7YfUh9s1n81m590t69BbI1g4OYANX6bTZ+h4BkQHuuPH6TS9aovjUYMRb52GmCDfjg+WfWzVrO+0jo8FrF+2n1ofA/NTz2izz4bnn8Wm0TDlOknOhBBCCCFE93be3Osxhigc+fkXbDZrs2dhV12JraycmqVLHQ0hCTDwLNjxPlgb2zWfVquhz+Aw8g9WMiH52H1op+A2x16VoGWXG0kK80ejccMyZ/YaCOsHwX06PFRFoRFTLuQlpDMreWarfUwlJWTkHCbe25/4M1I7PKcQQgghhBCepNXqGHTWHPQ18PVPbzR7pp86Fe++fal4731U9Vg5/PHXgakcDi9r95x9BodSV9lIiF0hJsj3lCwU0qsStKMGE0nuKBBis0LOeujb9mqXK9Yu24tNsTJuej90mtZ3nW56/lksWg2Tr7reLXMKIYQQQgjhaReccxOmQNj//U/Yf1NGX9FoCLvqShr27qV+5y5HY0oq6KNg96ftnq/PoFAACg5WMTEljM3ZFccTwFNEr0nQ7HaVoxVGkt1xB1rRLjDXuiVBMzdYyd1eTU7kHi4ceV6rfRoMBvYe2U+MzoekM+d2eE4hhBBCCCE6g5fOm+Q509FXqny/4r1mz4IXLkQTFETFB8dK7mt1MOIixwqaqX1bE4Oj/AgI9SH/QCUT+4ZTVttIdrmxoz9Gp+o1CVppbSMNFjtJ7rgDren8WccTtB1rM9FYdESepiPYJ7jVPptffM6xerboqg7PJ4QQQgghRGe6+Lzbqder7Pr2m2araBp/f0IuuojaZcuxFBU5GkdeCjYz7P+2XXMpikL8oFAKDlUyIdmxmnaqldvvNQlajsGRObtlBS17DUQPB31Eh4ZRVZXtv2RRqs/lkmkLWu1jrqkmff9uIjVepJyzsEPzCSGEEEII0dl8vf2ImzkZfbmNpaubb18Mu+JyUFUqP/7Y0RA7CiIGwZ7/tXu+PoNCaaizEGyGiACfU+4cWq9J0I42JWgdXEGzNEDuJresnhVmV0KlD5bBpfQL6ddqny0v/ptGrYZJFy7q8HxCCCGEEEJ0hUUX/Yl6P5Wt33zerN0rPp7A2bOp/Oxz7PX1oCgw6lLI3QiVOe2aK77pHFolE1PC2JR1ap1D6zUJWo7BhJdWITa4gyX287eCtcEtCdrqlbuwKhZmpZ7W6nObxUz67q2Eo6X/BRd1eD4hhBBCCCG6gp+vnvCpI9EXW9i6Z1WzZ2FXX4W9uprqb79zNIy42PHnns9pj8AwX4Kj/Cg4WMmkvmEU1zSQW2HqSPidqtckaEcNRhJC/dFpO/gjZ68BRQNJUzo0jM1mp2xvI0URhzij3+mt9tn//n8xaTWMnjEHjabX/KsSQgghhBA90AUX3I5Vo7Lim+bFQvzGjsV36FAqPvjAsdIVkghJUx3bHNu58tVnUCgFh6s4LclxH9rmrFPnHFqv+a0/p9xEkrvOn8WNAd/WC3o4K2NXLrpGH6JG++Kl8Wq1z64VP+FrszPi2hs6NJcQQgghhBBdLTo8HvvQSDQZZZQYCpraFUUh9KorMWdmYly/wdE48lIwHIbCne2aq8/gMCwNNoLr7YTpvdmUfeqcQ+sVCZqqqhw1GDt+B1pjHRRsc8v2xg2r91Gvq2P+Ga2PVbhuDaV2C0MHDEPr49Ph+YQQQgghhOhqZ55/DTq7wpdfvtSsPWj+fLQREcdL7g9dCFqfdhcLiR8YAkDBoSomJIfJClp3U15nxmi20bejJfZzN4HdCn2nd2iYxnorDUe8qIjPYXDkoFb7bP3gXTR2lfG33tGhuYQQQgghhOguxg9PxRjjRcWmdCxWc1O7xtub0Msuw7h6DebcXPALgUHzIP0LsFlcnscv0Jvw+ADHfWgpYRRU1ZNfeWqcQ+sVCdqvFRw7vMUxOw203pAwsUPDbFi3B61dx6CJMa0+NxYXkV1RQlJQGIEJiR2aSwghhBBCiO5k6Jln4mdUWLLsv83aQy66EBSF6m+O3YE28lIwlUPmqpaDOKHP4FCKM6sZn3DsPrRTZBWtVyRov94e3uES+9lroM8E8O5Yope+IZdq3zIWTJ7d6vPtr7yETaNh/KIrOzSPEEIIIYQQ3c25c6+n3k9l7/Kfm7V7xcSgnzyZ6m++QbXbof+Z4Bfa7m2OfQaFYrPaCTHaCfbzYvMpcg6tVyRoRw0mtBqF+FC/9g9iqoCiPR0+f1ZpqENTFIi1XwVhfmEtntssZvbt3004WhJnz+nQXEIIIYQQQnQ33l4+hEwahr7QzM7965s9Cz7/fCyFhZi2bgOdNwy7AA78AI21Ls8TNyAERaNQcKiSCX3D2JwtK2jdRo7BSJ9QP7w6UmL/6HpA7XCCtnLlVhQUJk0f3OrzjI/ex6RVGDV9VofmEUIIIYQQoru68MLbsWlUln39TrP2wNmz0AQEUP31146GkZeCtR4ylrg8h7efjqikQMeF1X3DOGowUVzd4I7wPapXJGhHDaaOV3DMXgNe/hA/rt1DqKpK7vZqyoPymDG89bvPdi398Vhp/cXtnkcIIYQQQojuLDYyEeugcNR9RRiqSpraNX5+BJ11FjXLlmE3GiFhAoQmd2ibY0lOLePjQwBOiW2OPT5BU1WVHIOR5A4XCFkDiZMdS63tlJNVhE91EIHD7a3efVa8aSMldjOD+w1G59eB7ZhCCCGEEEJ0czMW/gEvm4Yvv/q/Zu3B55+HajJRs3QZKIpjFS1rNdQUujxH/OBQVLtKUK2NQF8dm06BQiG6rg6gNYqiLAAWxMfHk5aW1qGxas0qtQ1WLJVFpKWVt2sM78YKppQdIDNwInkdiGfr5lx8lBgiQ31a/bmK3n4Vxa6ijpvY4Z9beEZdXZ38uxHdinyTojuS71J0N/JNdlfeVIeBcd12ViavRKvROppVlfDISI7+97/sCgvFrz6ZiahkfvM0eYnnuzSD3aqiaGDLL+mkBKqs2pdHWlj3XkXrlgmaqqpLgCXjx49fnJqa2qGxduRWwi8bmD1xJKlDots3yJ7PAeg3+1r6xY1p1xB2u8qOr7+nMiqPPy64vsVzU0kJbzTUkhQYxuxLLm1fnMLj0tLS6Og3KYQ7yTcpuiP5LkV3I99k91VctYeCT5ZhsuWxYOY1Te3lVxyk7IUXmdK/P959UqHgbfoZt9Mv9UWX56hJ30Gjycr808N58qcDDB03iahAX/f9EG7W47c4Hr8DrQNn0LJXg28wxIxs9xCbt6Xj06gncVxIq8+3v3astP6lf2j3HEIIIYQQQpxKzjvrBhp87exc+n2z9uBzz21+J9qoy6AkHUr2uTxHn0GhlOfVMTYmGOj+96H1+AQtp9yEokBCWAfOdGWvgeRp8OuyaztsWXOQRm09C2aktnhmt1rZl76TMDQkzZ3X/jiFEEIIIYQ4hfj6+BM4fhD6vAb2Ht7a1O4VF4f/pInH70Qbdj5odO0qFtJnsONqq+AaK3pvbbcvFNLjE7SjBiNxwX746NqZXFXmQNXRDpXXN9U3QHYgDUmlRASGt3h+4JMPMWoVRp0+s91zCCGEEEIIcSo6/6LbsCkqP331ZrP2kPPPx5Kfj2nbNtBHQP/ZjqNHdptL40cmBeLlo6XocDXjksPY0s3vQ+vxCVqOwURyRAcqOGavdfzZgQRtedpGdDZvRk5JavX5zp+W4GOzM/J6Ka0vhBBCCCF6l4TY/lj6h2Dbk0917fHkKXD2bDR6/fFtjiMvhdpCyFnn0vharYa4ASHkH6xkbGIIh0vrMJmt7vwR3KrHJ2hHDcYOnj9bA/ooiGz9YmlnHNpSgtGnijmTWt59VrxlM8W2RganDETn38G72oQQQgghhDgFTTv3MrysGj7/+qWmNo2/P4FnzaPm558dd6INOgt0fnDg+xOM1Lo+g0OpKjExMNAfVYWMohp3hu9WPTpBqzZZqDRZ2n8Hmqo6CoT0PcNxB0M7FJWV4VsUgdcgE96t3KG27b9voagqp910e/tiFEIIIYQQ4hR3+vizMYZrKFy7Fbvd3tQect6xO9GWLwcvP+g3Ew7+5Pg93QXxg0IBCDM6xt5XKAlal8g5VsExub0raOWHoK6kQ9sbf16xHg0aps8c3eJZY2UFmWUFJOpDCO7Xv91zCCGEEEIIcSrTaDT0TZ2GvgZWbfqmqd1v3Di8EhKo/vpY26CzoDoPSva6NH5EfAC+ei/qcusI9fdiX4EkaF2iKUGLaGeClr3G8WcHErSSXY3UBpcydvDwFs/S338Xq0bD6AWuXbgnhBBCCCFET3PuWddj0drZsvK7pjZFUQg+/zxMmzdjKSiAgXMBxbGK5gJFoxA/KISCg5UMiw1iX1G1m6N3nx6doB01mABIDGvnFsfs1RCcCKHJ7Xp918EMAqsjiRzp0+rzA5vW42+zk3Luee2LTwghhBBCiB4iODAM+4BwOFBKnel4AhWycCEAVd9+CwFR0Oc0OPijy+P3GRRKXWUjI4L1HCquw2Kzn/ylLtCjE7Qcg5HYYF98vdpZYj9vCyRNbvf5sw3r9wAwZ9akFs8qDx6gxNZI/6T+aHS69sUnhBBCCCFEDzJ25ny8rRp+WP5+U5tXfDz+EydS/fU3qKrq2OZYuBNqCl0a+9dzaH2sGsw2O4dL6twau7v06ATtqMFEUnsLhNQUOc6fxY1p9/zVh+zUhZSREBPb4tnuD94FRWHU5Ve2e3whhBBCCCF6kllTL6TeT+XgujXN2oPPPw9LXh7127fDoPmOxkM/uzR2SLQ/+hAffCssAOwr7J7bHHt4gmZsf4GQol2OP2NHt+v1IwU5BFVFEzbYq8Uzu93OoYP7CEdL1LjT2hefEEIIIYQQPYyXzhv/kX3xyzORV5zZ1B40Zw4af3+qvv4aIgdBaF/Xz6EpjnNo1Udr8dNpu20lxx6boNU2WCivM7f/DrTCXYACMSPa9frq9dsBmDJ5ZItneSuXU6uBQaPHty82IYQQQggheqgZ8xahURV+/PHdpjaNvz+B8+ZR+/NS7PX1jlW0rNXQ6No2xejkIOprLYyOCGC/JGid69cCIe2+A61oF0QMBJ+A9r2+v456vxqGDuzX4ln611+gsauMvPr69sUmhBBCCCFEDzVm6FSM4RpKtuxu1h583kLsRiO1K39xnEOzNULWKpfGjkwMAmCYnx/7i2qw2127T60z9NgELa/CkaAltLeCY+EuiBvdrldLa8oJLI3Gt58F5XcFRqz19WSXFhDvH4g+Lq59sQkhhBBCCNGDxUwYg75SZdvetKY2//Hj0UVGUrtiBSROAt8Ql7c5RiQEoCgQp2qoa7SSeyxn6E56bIJWXtcIQFRg6yXuT6i2GOqK233+bOX6jejs3oyZMKDFs4xPPsSs1TB0xux2jS2EEEIIIURPd878a7ErKqt//qypTdFoCJg1k7q1a7FbbDBgjqNQiN3m9Lhe3lpCY/X41Tne6Y7n0HpsgmYwmgEI1Xu7/nLRseXUdq6gZe0uw6JrYOLYlufX9qetwNtmZ/ClV7RrbCGEEEIIIXq6uKhkGhL1NKTnYLGam9oDZ81GNZkwbtzo2OZoMjiuxnJBZGIg9SX16BSFvd2wkmOPTdAqjGaCfHV4advxIzYVCGlZ4ONk6hqN+BREQKIRna75/WvGgnwK6+tIiYlH5+fnelxCCCGEEEL0EkPOSMW3QcPyNcdX0fQTJ6AJCHBsc+w/GzReLl9aHZUUSH2thRHhAbKC1pkMRjPhAe3Y3gjHCoQMaFeBkJXb1uNnCWDwmPgWz/a8/w52jcLI8y9pX1xCCCGEEEL0EmfPvhqzl52dq46fM1O8vQmYPp26X1aheumh7zSXz6H9WihkhL8f+wurHZdfdyM9NkGrqDMT1p7tjeBYQYsd1a5X92/Pxa7YmDZ5bItnB3ZtI8gO8TNmtS8uIYQQQgghegk/Xz3K4Bh0R6qorClvag+cPQtbZSX1O3Y4yu0bDkP5YafH/bVQSDxayuvMlNY2eiL8duuxCVqlqZ0JWl0p1Ba2q0CIxWbBnqPHEl2NPsC32bPiLZupwM7AQcPQaHrsX7sQQgghhBBuM/nM89DZFZb8/E5Tm37aGSheXtSuWAkD5zkaXVhF+7VQiL7ODsC+bnYOTdfVAbRGUZQFwIL4+HjS0tLaNUZRpYkoXb3L74cZtjES2FkK1S6+m1GWSYipL/aUohbzln34DqgqlqEj2/0zia5XV1cn//5EtyLfpOiO5LsU3Y18k6cuuz0Ao95O1eq1pEVNaGoPGTSIsu+/J2PSRMYF9MW25RN2WZyvH2HztlNXAPjC9+t3oylu5847D+iWCZqqqkuAJePHj1+cmpranvcxLvuJ4f2TSE0d7NrLqx1VYMbMuwp8g1x6devbmfgDl110NpExIU3tdquV1/7vGaK9/Zh9uVRvPJWlpaXRnm9SCE+Rb1J0R/Jdiu5GvslT296M77GsOUR8cjgDkh1V0ivLyij+29+ZFBuL77hLYM2zpJ42AvThTo25257Hus8OMzjGD5N3MKmp4zz5I7ikR+61q6m3YrWr7dviWLgLwvu7nJzZVTt1hxUag2uaJWcAR775inqthiGTTnc9HiGEEEIIIXqxOWddBcDSn95vagucMQMUxbHNcdBZoNrh8DKnx4xKDARglF7PvqLutcWxRyZoBqPjoF94QHvuQNvVrvNnO3P3EFGVQOQQ3xbP9v68BJ3dzvCrrnU9HiGEEEIIIXqxwSmjqYvWUbk9A7vdcW5MFxGB39ixjnL7saMhMNalcvsRCYEoCiQqWvIq6qmut3goetf1yASt4tgl1WF6F8vs15VBTUG7Lqhet3EnGrRMmdJ872tjVRW51QYSgyPwCQlxeVwhhBBCCCF6u+TJk/CvhQ3bf25qC5w1i8YDBzAXFDhW0Y6sBEuDU+N5+WgJidETaHKU2N/fje5D65EJmuFYghbu6hbHot2OP9uxglaW0YjF10RK/9hm7XvffxebRsPws85xeUwhhBBCCCEEnHPWtVg1KuuXf9nUFjjbcXVV7YoVjnL7FiPkrHN6zKjEQCzljoSuO1Vy7JEJ2vEVNFcTtJ2OP2OdrwADcLg8k/DyRAL6g6JRmj3L2LQWP5udfgsvcC0WIYQQQgghBADhIdFYU4Kx7y+iodEEgHdiIj4DB1K3YiUkTwMvvUvbHCMTA2motZDs78M+WUHzrHYnaIW7IKwf+Aa79NqqzZvwtvkybuKgZu2Vhw5SYm2kf1I/NLpuWTBTCCGEEEKIU8LI1Dl4WzT8sPKDprbA2bMx7diBtdYE/Wc67kNTVafGi0xyFAoZE6iXFTRPM9SZ8ffW4uulde3Fot3tOn92dE8FNq2FEaNSmrXv+/QjUBRGXny5y2MKIYQQQgghjpubugizl52Dm49vYwycPQvsdupWrXJsc6wtdBT9c0JEnwBQIFnRkVlmpMFi81DkrumRCVqFsdH11TOjAarzXD5/VlRXRGBRHF6JZnTezRPC7Ix0AmwqMZMmuxaLEEIIIYQQohlvLx/sKWEomQbMFkfVdp8hQ/CKi6N2+QoYMAcUjWMVzZnxfHWERvsT1KBis6scKK71ZPhO65EJmsFobkeBkGPnz1xcQVuxYx2B5lCGjUts1m4sLKTMZiapT7JrcQghhBBCCCFaNXD8ZLwtGlZv/g4ARVEImD0L44YN2PGD+HGQleb0eJFJgdgMjmSvu2xz7JEJWqXJ3L7zZwAxrhUIObizABWV8ROGNGs/8MWnqIrCoDPnuRaHEEIIIYQQolWzUy/FplHZtWFFU1vg7NmoZjN169ZD8ulQsB3MRqfGi0oMorHWQoyXrtsUCumRCVpFndn1O9CKdkFoX/ALcfqV6sZqdLmhqNEm/IOaJ4SZ27fgY7OTNPcs1+IQQgghhBBCtCo0KIKGeD8aDuQ3XVrtP3Ys2pAQR7n95NPBboW8zU6NF5noKBQyNkgvCZqnqKrq2OIY4OoKmusFQn7JWEukMYGUUZHN2s1GI4WmGhLCoqR6oxBCCCGEEG6UMGYM/kaFHfvXAKDodATMnEldWhpqzHhQtE7fhxaR4CgU0lfrzYGiGqw2uydDd0qPS9BMZhuNVrtrWxxNFVCd63KBkPTt2QBMmjysWfuRrz7HptEw4PTpLo0nhBBCCCGEOLGZMy4BYOPqJU1tgbNnYa+txbh7H8SPhZz1To31a6GQ0AaVRqudrHLntkZ6Uo9L0Np1B9qvpThdWEFTVZWGHC1WvYmwmIBmzw6vW43Wbqf/+Rc5H4MQQgghhBDipJLiBmCM0FK573BTm37KFBQ/P+pWroSkqS6dQ4tMDIRKRw7RHQqF9LgEzXAsQXOpiuOvBUJiRzn9SlZVFuGVCQQka1EUpandbrWSZygh1i8Q78BA52MQQgghhBBCOCVsxCD0BjvZ+QcA0Pj6EnD66dSuWImaOBXsFsjb4tRYkYmBNNZaCNVo2FfQ9efQelyCVmF0lMl0eQUtNBn8Qp1+ZeO+Hfha9QwentCsPXfZzzRqNfQbN8H5+YUQQgghhBBOm3rGQgB++eWzprbAM2djLS2loTbIpXNoUUnHCoUEdo9CIT0uQTPU/bqC5kIVx8JdLp8/O7K/CIARI/o1az+4/CcUVWXIxYtcGk8IIYQQQgjhnFGDJ2MKhILdu5vaAqZPB52O2tUbIG6MC4VCAkGB/jpv9hVWo6qqp8J2So9L0JrOoDlbxdFUAVVHXTp/ZlftNORqsOrrCYrwa/bsaP5RIrTe6OPinB5PCCGEEEII4TyNRoP/4AR8CxowVJUAoA0Oxn/0aIwbNvzmPjTTScf6tVBImBlqGqzkV9Z7OvwT6pEJmrdOg95b69wLRceybhdW0A4ZDhFRlUhQcvMS+qXbtlCrgZTBw50eSwghhBBCCOG6MVPmoFUVVqQd3+boP2kSDRkZ2CLGOs6h5Tt/Dk1TZQG6vlBIj0vQDEYz4XrvZoU7TujXCo4uFAjZtH8nftYAhgxPbNae8e1XAAy54GKnxxJCCCGEEEK4btqEs2n0sXN428amNv3ECWC3YyrWuHQOLTIxEHOthUCULj+H1uMStAqjmVB/Fys4hiSBf5jTr2RlFAMwdERys/bsQxkE2xXCR4x0fn4hhBBCCCGEy7x03tAvAm12FQ1mx7ZE31GjUHx8MO5MdxxhcrFQyCi9vyRo7lZhNBPu7PkzcKyguXD+zGa30ZinxRbQ0Oz8WU1ONgbVSlJSivNzCyGEEEIIIdptyIRpeFs1rFr/NQAab2/8x43FtHmL4xxa/janzqH9WihkoLePbHF0twqj2fkS+/WVUJnj0vmzjPIMIquSW5w/O/D5p6AoDJ6/wPlghRBCCCGEEO0264yLsWpU9mxc2dTmP2EijQcPYg0d7fQ5NG9fHSFR/kRaoKSmkfK6Rg9GfWK9O0H7tUCICytomzN24WcNYOjw5Gbtmbt34GezE5860+mxhBBCCCGEEO0XpA/BnKjHcqgYu90OgP9Ex33EpiIFFA3krHdqLEehECsAmaV1ngnYCT0qQWu02qhrtBLuaoLmwgrar+fPfntBdWNlBcWNJhKj4tFoetRfqRBCCCGEEN1a0phx+NUrbN69AgC/4cPR+Ptj2pnu+D3fhXNo1joL/nY4WnHybZGeojt5l86nKMoCYEF8fDxpaWlOv1fR4MiaywtySEsrOGn/ofuWEeQTxaYte5wa36baaMzVYfY1smPv5qb2upXLsGsUNAlJLsUrTj11dXXy71h0K/JNiu5IvkvR3cg32bMFBvSlhDUs+/5jGqsdCzUhffti/mUV5iuT6JO3hHUrl2LX+pxwHGOF44LqGLuGtTsyiKrL9HjsremWCZqqqkuAJePHj1+cmprq9Ht7C6ohbR2TxowgdXjMyV/Y8ydImYizc+ws2UnMlymED/Zr9s5XH7yFl83OnLvuQefn1/YA4pSXlpbm9PciRGeQb1J0R/Jdiu5Gvsme79FlH6MUGJr+PRsyMyl99jlih92KJu9rzujrCynTTziGud7Km7+sYYCXDwSGkpo6phMib6lH7cerMJoBnKvi2FADFVkubW/ckrHbcf7sN+X1bY2N5FdXEBcUKsmZEEIIIYQQXSBq5FD0lSoHcxxHmPwnTgLAVMSxc2gn3+bo7acjJNqfPqqWXIPRk+GeUI9M0JwqElKR5fgzYqDT42dnlAAwcFh8U1vW999i0WroP2GK84EKIYQQQggh3GZ66gUArP7lCwB8hwxGExSEacceiB0FR50vFBLUoHbpGbQelaAZfl1BcyVBC3Pu3jKzzYw13we7vpHAcN+m9kOrVqCxqwy68FKX4xVCCCGEEEJ03ND+4zEGQfGevQAoWi3+48djbLoPbStY6k86TmRiILoGO411FqrrLZ4Ou1U9KkGrMDai1SgE+Xo50fnXBK2vU2PvKt1FTHUKoSk+KIoCgN1uJ7e4gChvX/wiI9obthBCCCGEEKKDAoYm41dspsTgKBaonzQRS24uFv1wsJkdSdpJhMfrHX/aNeQaumYVrYclaGZC/b3RaBQnOmdDQAx4650ae2sr58+K1q3BpFVIGdE1BwiFEEIIIYQQDqedfhYaVWHFqk8B8J84EQBjgd3pc2jBkf4AhNgUjlZ0zTm0HpegOX0HWkWW06tnADkZZQD0GxLb1HbwxyUADLnwEueDFEIIIYQQQrjdlLFzafC1k71zOwA+AwagDQ3FtCPdcQ7NiQQtMMwHRaMQalc42kUraIqqql0ysTMURSkDjnZ1HEL8RgRQ3tVBCPEb8k2K7ki+S9HdyDcpupskVVUjW3vQrRM0IbobRVG2qao6vqvjEOJX8k2K7ki+S9HdyDcpTiU9aoujEEIIIYQQQpzKJEETQgghhBBCiG5CEjQhXPNGVwcgxO/INym6I/kuRXcj36Q4ZcgZNCGEEEIIIYToJmQFTQghhBBCCCG6CUnQhGiFoijzFEU5qCjKEUVR7m/l+d2KouxXFGWPoigrFUVJ6oo4Re9xsm/yN/0uVBRFVRRFqpUJj3Lmm1QU5ZJj/63cpyjKx50do+h9nPjf70RFUVYpirLz2P+Gz++KOIU4EdniKMTvKIqiBQ4BZwL5wFZgkaqq+3/TZwawWVVVk6IotwCpqqpe2iUBix7PmW/yWL9A4AfAG7hdVdVtnR2r6B2c/O/kAOAzYKaqqpWKokSpqlraJQGLXsHJ7/INYKeqqq8qijIU+FFV1eSuiFeItsgKmhAtTQCOqKqapaqqGfgUWPjbDqqqrlJV9dfr5TcBfTo5RtG7nPSbPOYfwNNAQ2cGJ3olZ77JxcDLqqpWAkhyJjqBM9+lCgQd+78HA4WdGJ8QTpEETYiW4oG83/xz/rG2tlwP/OTRiERvd9JvUlGUsUCCqqo/dGZgotdy5r+TA4GBiqKsVxRlk6Io8zotOtFbOfNdPgL8QVGUfOBH4I7OCU0I5+m6OgAhTmWKovwBGA9M7+pYRO+lKIoG+DdwTReHIsRv6YABQCqOXQZrFEUZoapqVVcGJXq9RcB/VVX9l6Iok4EPFEUZrqqqvasDE+JXsoImREsFQMJv/rnPsbZmFEWZDTwInKuqamMnxSZ6p5N9k4HAcCBNUZQcYBLwnRQKER7kzH8n84HvVFW1qKqajeNs0IBOik/0Ts58l9fjOBuJqqobAV8golOiE8JJkqAJ0dJWYICiKH0VRfEGLgO++20HRVHGAK/jSM7kXIXwtBN+k6qqVquqGqGqavKxw+6bcHybUiREeMpJ/zsJfINj9QxFUSJwbHnM6sQYRe/jzHeZC8wCUBRlCI4EraxToxTiJCRBE+J3VFW1ArcDS4EM4DNVVfcpivKYoijnHuv2LBAAfK4oyi5FUX7/PwBCuI2T36QQncbJb3IpYFAUZT+wCrhXVVVD10QsegMnv8t7gMWKouwGPgGuUaWkuehmpMy+EEIIIYQQQnQTsoImhBBCCCGEEN2EJGhCCCGEEEII0U1IgiaEEEIIIYQQ3YQkaEIIIYQQQgjRTUiCJoQQQgghhBDdhCRoQgghhBBCCNFNSIImhBBCCCGEEN2EJGhCCCGEEEII0U38P6cU2w+0/a30AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "zeros, weights = np.polynomial.laguerre.laggauss(8)\n", "targets = np.arange(9, 14)\n", @@ -219,11 +280,11 @@ ")\n", "\n", "lanczos = eval_lanczos(x)\n", - "for mean_target in mean_targets:\n", - " vals = eval_mean_laguerre(x, mean_target)\n", - " rel_error_mean = calc_rel_error(lanczos, vals)\n", - " axs[0].plot(x, rel_error_mean, label=mean_target)\n", - " axs[1].semilogy(x, np.abs(rel_error_mean), label=mean_target)\n", + "# for mean_target in mean_targets:\n", + "# vals = eval_mean_laguerre(x, mean_target)\n", + "# rel_error_mean = calc_rel_error(lanczos, vals)\n", + "# axs[0].plot(x, rel_error_mean, label=mean_target)\n", + "# axs[1].semilogy(x, np.abs(rel_error_mean), label=mean_target)\n", "\n", "mins = []\n", "maxs = []\n", @@ -233,6 +294,11 @@ " maxs.append(np.max(np.abs(rel_error)))\n", " axs[0].plot(x, rel_error, label=target)\n", " axs[1].semilogy(x, np.abs(rel_error), label=target)\n", + " \n", + "rel_error = evaluate2(x)\n", + "axs[0].plot(x, rel_error, label=\"Optimal shift\")\n", + "axs[1].semilogy(x, np.abs(rel_error), label=\"Optimal shift\")\n", + "\n", "# axs[0].set_ylim(*(np.array([-1, 1]) * 3.5e-8))\n", "\n", "axs[0].set_xlim(x[0], x[-1])\n", @@ -244,9 +310,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 82, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(-7.5, 25.0)" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5ycVaH/8e+Z2U12N2XTSdkkm152U0gPIaGEKgFCAAWvehEV9aI/5AqK4hW8XhUERWwomiJIb6EbShJIKOm9l91sNr237fOc3x8zs9ndzOxOk3km83n7wiS7z8x5Zvbsmed72mOstQIAAAAAJJ8n2ScAAAAAAPAjoAEAAACASxDQAAAAAMAlCGgAAAAA4BIENAAAAABwCQIaAAAAALhEygU0Y8wMY8x+Y8zaBD3fg8aYtYH/vpCI5wQAAACAWKRcQJM0S9IViXgiY8xVkkZIGi5prKS7jDGtE/HcAAAAABCtlAto1toPJR2u+zVjTB9jzL+MMcuMMQuMMQMjfLrBkj601tZYa09JWq0EhT8AAAAAiFbKBbQwHpf0XWvtSEl3SfpzhI9bJekKY0yOMaaDpIskdf83nSMAAAAANCoj2ScQL2NMS0nnSXrBGBP8cvPA96ZJ+t8QD9tlrb3cWvuOMWa0pI8lHZD0iSTfv/+sAQAAAOBMxlqb7HOImjEmX9Ib1trCwJqxTdbaLgl43qcl/dNa+1a8zwUAAAAA0Ur5KY7W2uOSiowxN0qS8RsWyWONMV5jTPvA34dKGirpnX/byQIAAABAI1JuBM0Y84ykCyV1kLRP0n2S5kp6TFIXSZmSnrXWhpra2PC5siQtD/zzuKRvWWtXJv6sAQAAAKBpKRfQAAAAAOBslfJTHAEAAADgbEFAAwAAAACXSKlt9jt06GDz8/OTfRoAAAAAELNly5YdtNZ2DPW9lApo+fn5Wrp0abJPAwAAAABiZozZEe57THEEAAAAAJcgoAEAAACASxDQAAAAAMAlUmoNGgAAAIDkq66uVmlpqSoqKpJ9Kq6WlZWlvLw8ZWZmRvwYAhoAAACAqJSWlqpVq1bKz8+XMSbZp+NK1lodOnRIpaWl6tWrV8SPY4ojAAAAgKhUVFSoffv2hLNGGGPUvn37qEcZCWgAAAAAokY4a1os7xEBDQAAAABcgoAGAAAAIOWUl5frggsukM/nkyRdccUVatOmjaZMmVLvOGut7r33XvXv31+DBg3S73//+yafO9xzTZw4UcOHD9fw4cPVtWtXTZ06VZL0xhtv6Kc//WlCXhcBDQAAAEDKmTFjhqZNmyav1ytJuvvuu/Xkk0+ecdysWbO0c+dObdy4URs2bNBNN93U5HOHe64FCxZo5cqVWrlypcaPH69p06ZJkq666iq9/vrrKisri/NVsYsjAAAAgDj87PV1Wr/7eEKfc3DX1rrv6oJGj3nqqaf09NNP1/578uTJmj9//hnHPfbYY3r66afl8fjHpjp16tRk+eGeK+j48eOaO3euZs6cKcm/1uzCCy/UG2+8oc9//vNNPn9jGEEDAAAAkFKqqqq0fft25efnN3nstm3b9Nxzz2nUqFG68sortWXLlrjLnz17tiZPnqzWrVvXfm3UqFFasGBB3M/NCBoAAACAmDU10vXvcPDgQbVp0yaiYysrK5WVlaWlS5fq5Zdf1q233hp3kHrmmWf09a9/vd7XOnXqpN27d8f1vBIjaAAAAABSTHZ2dsT3F8vLy6tdK3bddddp9erVcZV98OBBLV68WFdddVW9r1dUVCg7Ozuu55YIaAAAAABSTNu2beXz+SIKaVOnTtW8efMkSR988IH69+8vSVq8eLG+8pWvRF32iy++qClTpigrK6ve1zdv3qzCwsKon68hAhqAtLH34E69t+iFZJ8GAABIgMsuu0wLFy6s/ffEiRN144036v3331deXp7mzJkjSbrnnnv00ksvaciQIfrRj36kv//975KkkpKSsCNe4Z5Lkp599lndfPPNZzxm3rx5Z4yqxYI1aADSxmNv3qW3nbW6ZOyNyT4VAAAQp9tvv12PPPKILrnkEkkKu66sTZs2evPNN8/4+qJFi3T77beHfExja9RC7e64b98+lZeXa8iQIRGceeMIaADSRpWvXOVeJg4AAHA2GDFihC666CL5fL7ae6FF46GHHkrYuZSUlOg3v/lNQp6LgAYgbdhknwAAAEioW2+9NdmnIEkaPXp0wp6LrmQAacMGIprj8yX5TAAAAEIjoAEAAACASxDQAKSN2hE06yT5TAAAAEJLekAzxtxpjFlnjFlrjHnGGJPV9KMAAAAApLNbb71VnTp1qnfvsS984QsaPny4hg8frvz8fA0fPjx5JxijpAY0Y0w3Sf9P0ihrbaEkr6SbknlOAM5iNjCC5jCCBgBAqrvlllv0r3/9q97XnnvuOa1cuVIrV67U9ddfr2nTpiXp7GLnhl0cMyRlG2OqJeVI2p3k8wEAAADgcpMmTVJxcXHI71lr9fzzz2vu3Lmf7UklQFIDmrV2lzHmYUklksolvWOtfafuMcaY2yTdJkk9evT47E8SwFkjuM2+Y9nFEQCAhHn7HmnvmsQ+Z+ch0pUPxPzwBQsW6JxzzlG/fv0SeFKfjWRPcWwr6VpJvSR1ldTCGPOlusdYax+31o6y1o7q2LFjMk4TwFkjuEkId0QDAOBs9swzz+jmm29O9mnEJNlTHC+RVGStPSBJxpiXJZ0n6Z9JPSsAAAAAkYljpOvfoaamRi+//LKWLVuW7FOJSbJ3cSyRNM4Yk2OMMZImS9qQ5HMCcJYKbrNv2SQEAICz1nvvvaeBAwcqLy8v2acSk6QGNGvtIkkvSlouaU3gfB5P5jkBAAAAcL+bb75Z48eP16ZNm5SXl6fp06dLkp599tmUnd4oJX+Ko6y190m6L9nnASANBJaesUkIAACp75lnngn59VmzZn22J5JgyZ7iCAAAAAAIIKABSBu2dhdH1qABAAB3IqABAAAAgEsQ0ACkkcAujoygAQAAlyKgAUgbwdtTW4cbVQMAAHcioAEAAACASxDQAKSN05uEsM0+AACprrS0VNdee6369eunPn366I477lBVVVXY448ePao///nPtf/evXu3brjhhoScy/3336+HH344Ic9FQAMAAACQUqy1mjZtmqZOnaotW7Zo8+bNOnnypO69996wj2kY0Lp27aoXX3zxszjdqCT9RtUA8Fljm30AAFLb3LlzlZWVpa9+9auSJK/Xq0ceeUS9evVSr169NGfOHB07dky7du3Sl770Jd1333265557tG3bNg0fPlyXXnqpbr/9dk2ZMkVr167VrFmzNHv2bJ06dUpbtmzRXXfdpaqqKj355JNq3ry53nrrLbVr105/+9vf9Pjjj6uqqkp9+/bVk08+qZycnIS+NgIaAAAAgJg9uPhBbTy8MaHPObDdQP1wzA/Dfn/dunUaOXJkva+1bt1aPXr0UE1NjRYvXqy1a9cqJydHo0eP1lVXXaUHHnhAa9eu1cqVKyVJxcXF9R6/du1arVixQhUVFerbt68efPBBrVixQnfeeaeeeOIJfe9739O0adP0jW98Q5L0k5/8RNOnT9d3v/vdhL52pjgCSBu1a9DYxREAgLPapZdeqvbt2ys7O1vTpk3TwoULm3zMRRddpFatWqljx47Kzc3V1VdfLUkaMmRIbZhbu3atJk6cqCFDhuipp57SunXrEn7ujKABSB+W+6ABAJBojY10/bsMHjz4jPVjx48fV0lJiTIyMmSMqfe9hv8OpXnz5rV/93g8tf/2eDyqqamRJN1yyy2aPXu2hg0bplmzZmn+/PlxvpIzMYIGAAAAIKVMnjxZZWVleuKJJyRJPp9P3//+93XLLbcoJydH7777rg4fPqzy8nLNnj1bEyZMUKtWrXTixIm4yj1x4oS6dOmi6upqPfXUU4l4KWcgoAFIG8GJjWwSAgBAajPG6JVXXtELL7ygfv36qX///srKytIvf/lLSdKYMWN0/fXXa+jQobr++us1atQotW/fXhMmTFBhYaHuvvvumMr9+c9/rrFjx2rChAkaOHBgIl9SLWNt6qzFGDVqlF26dGmyTwNAirrjb5dobrN9mvO5N9S1Y89knw4AAClrw4YNGjRoULJPI6RZs2Zp6dKl+uMf/5jsU5EU+r0yxiyz1o4KdTwjaADSSPBG1anTMQUAANILm4QAAAAAOGvccsstuuWWW5J9GjFjBA1A2ghus28d1qABAAB3IqABSD/Wl+wzAAAg5aXSXhbJEst7READAAAAEJWsrCwdOnSIkNYIa60OHTqkrKysqB7HGjQAacOySQgAAAmRl5en0tJSHThwINmn4mpZWVnKy8uL6jEENAAAAABRyczMVK9evZJ9GmclpjgCSBvcqBoAALgdAQ0AAAAAXIKABiCNBLfZZxdHAADgTgQ0AGkjuDcIW4QAAAC3IqABSDtsCQwAANyKgAYgfZjgNvtsEgIAANyJgAYAAAAALkFAA5A2Ts9sZAQNAAC4EwENAAAAAFyCgAYgjQS32WeTEAAA4E4ENAAAAABwCQIagLRhxS6OAADA3QhoANJGcGKjw33QAACASxHQAAAAAMAlCGgA0o61vmSfAgAAQEgENAAAAABwCQIagDQS3CSENWgAAMCdCGgAAAAA4BIENABpo3bcjG32AQCASxHQAKQN7oMGAADcjoAGAAAAAC5BQAOQdtgkBAAAuBUBDQAAAABcgoAGIG0E16DJYQ0aAABwJwIaAAAAALgEAQ1A2mENGgAAcCsCGoC0YQPBzMqX5DMBAAAIjYAGAAAAAC5BQAOQPoz/D+swxREAALgTAQ0AAAAAXIKABiBtBMfNHLHNPgAAcCcCGgAAAAC4BAENQPoI7uJoGUEDAADuREADAAAAAJcgoAFIG8E1aJYbVQMAAJcioAFIH8YfzBwCGgAAcCkCGgAAAAC4BAENQNqoHThjkxAAAOBSBDQAAAAAcAkCGoC0wzb7AADArQhoAAAAAOASBDQAacOKXRwBAIC7EdAApB2mOAIAALcioAEAAACASxDQAKSN4BRHRtAAAIBbEdAAAAAAwCUIaADSRu19qtkkBAAAuBQBDQAAAABcgoAGIH0Y/x9ssw8AANyKgAYgbQSnNrJJCAAAcCsCGgAAAAC4BAENQNphBA0AALgVAQ0AAAAAXIKABiBt1G6zLzYJAQAA7kRAAwAAAACXIKABSCPBXRwZQQMAAO5EQAOQNmqnOLJJCAAAcCkCGgAAAAC4BAENQNphiiMAAHCrpAc0Y0wbY8yLxpiNxpgNxpjxyT4nAAAAAEiGjGSfgKRHJf3LWnuDMaaZpJxknxCAs5M1gU1CxBo0AADgTkkNaMaYXEmTJN0iSdbaKklVyTwnAAAAAEiWZE9x7CXpgKSZxpgVxpi/G2NaJPmcAJytAkvPHIcRNAAA4E7JDmgZkkZIesxae66kU5LuqXuAMeY2Y8xSY8zSAwcOJOMcAQAAAOAzkeyAViqp1Fq7KPDvF+UPbLWstY9ba0dZa0d17NjxMz9BAGcPawJ/il0cAQCAOyU1oFlr90raaYwZEPjSZEnrk3hKAM5qgU1C2GYfAAC4lBt2cfyupKcCOzhul/TVJJ8PAAAAACRF0gOatXalpFHJPg8AZ7/acTPLJiEAAMCdkr0GDQAAAAAQQEADkHZYgwYAANyKgAYAAAAALkFAA5A2bO2fjKABAAB3IqABSBvBYOawSQgAAHApAhoAAAAAuAQBDUDaYZMQAADgVgQ0AAAAAHAJAhqAtFG7SQgjaAAAwKUIaAAAAADgEgQ0AGnHsosjAABwKQIagLQR3GbfioAGAADciYAGAAAAAC5BQAOQdtgkBAAAuBUBDQAAAABcgoAGIG3YEH8DAABwEwIaAAAAALgEAQ1A2nFYgwYAAFyKgAYgbdjaqY1ssw8AANyJgAYAAAAALkFAA5B22GYfAAC4FQENAAAAAFyCgAYgbQTHzRhBAwAAbkVAAwAAAACXIKABSBvWBP5kBA0AALgUAQ0AAAAAXIKABiB92OAf3AcNAAC4EwENQNqwxp/QmOIIAADcioAGAAAAAC5BQAOQdpjiCAAA3IqABgAAAAAuQUADkDZO36g6qacBAAAQFgENAAAAAFyCgAYgbZweQWMIDQAAuBMBDUAaIqABAAB3IqABAAAAgEsQ0ACkjeC4mWPZZh8AALgTAQ0AAAAAXIKABiANsQYNAAC4EwENAAAAAFyCgAYgbZxeg8YIGgAAcCcCGoC0YU9HtKSeBwAAQDgENAAAAABwCQIagLRjmeIIAABcioAGAAAAAC5BQAOQNqwJ/oURNAAA4E4ENAAAAABwCQIagLTDHo4AAMCtCGgAAAAA4BIENABpo3blmWUMDQAAuBMBDUDasLV/skkIAABwJwIaAAAAALgEAQ1A2mEEDQAAuBUBDQAAAABcgoAGIG3UrkHjRtUAAMClCGgAAAAA4BIENABpx7LNPgAAcCkCGoC0cfo+aExxBAAA7kRAAwAAAACXIKABSBvB7fXZZh8AALgVAQ0AAAAAXIKABiDtMIIGAADcioAGAAAAAC5BQAOQNqwJ/MkujgAAwKUIaADShg3xNwAAADchoAEAAACASxDQAKQdhymOAADApQhoAAAAAOASBDQAaYM1aAAAwO0IaAAAAADgEgQ0AGmDETQAAOB2BDQAaYf7oAEAALcioAEAAACASxDQAKQNW/snI2gAAMCdCGgAAAAA4BIENABpo3YEjTVoAADApQhoAAAAAOASBDQA6cP4/2ANGgAAcCsCGgAAAAC4BAENQNqoHTdjDRoAAHApAhqAtME2+wAAwO0IaAAAAADgEkkPaMYYrzFmhTHmjWSfC4D0wAgaAABwq6QHNEl3SNqQ7JMAAAAAgGRLakAzxuRJukrS35N5HgDSA5uEAAAAt0v2CNrvJP1AkpPk8wAAAACApEtaQDPGTJG031q7rInjbjPGLDXGLD1w4MBndHYAzkbs4ggAANwumSNoEyRdY4wplvSspIuNMf9seJC19nFr7Shr7aiOHTt+1ucI4KxEQAMAAO6UtIBmrf2RtTbPWpsv6SZJc621X0rW+QAAAABAsiV7DRoAfGaC42YOA2gAAMClMpJ9ApJkrZ0vaX6STwMAAAAAkooRNABpw5ravyXzNAAAAMIioAEAAACASxDQAKSN2m32uVE1AABwKQIagDREQAMAAO5EQAMAAAAAlyCgAUgbtVMcGUEDAAAuRUADAAAAAJcgoAFIG1Ym8CcjaAAAwJ0IaAAAAADgEgQ0AGmjdtyMbfYBAIBLEdAApB2mOAIAALcioAEAAACASxDQAKQNG+JvAAAAbkJAAwAAAACXIKABSBvWBP5kAA0AALgUAQ0AAAAAXIKABiBt2No/GUIDAADuREADAAAAAJcgoAFIO4ygAQAAtyKgAUgbbLMPAADcjoAGAAAAAC5BQAOQNmo3CWEADQAAuBQBDQAAAABcgoAGIG2c3mbfSep5AAAAhENAAwAAAACXIKABSBvWmMBfknseAAAA4RDQAKQd7oMGAADcioAGAAAAAC5BQAOQFhyfr86/GEEDAADuREADAAAAAJcgoAFIC449vbU+42cAAMCtCGgAAAAA4BIENABpwXHqjqAxhgYAANyJgAYgLTiWTUIAAID7EdAAAAAAwCUIaADSgmPrjJpZRtAAAIA7EdAAAAAAwCUIaADSgnXYZh8AALgfAQ0AAAAAXIKABiAt1N3FkW32AQCAWxHQAKQFh41BAABACiCgAUgTts7fCGsAAMCdCGgA0oK1Tt1/JO9EAAAAGkFAAwAAAACXIKABSAvWqTvFEQAAwJ0IaAAAAADgEgQ0AGmh7jb7jKEBAAC3IqABAAAAgEsQ0ACkBafOLo5ssw8AANyKgAYgLTh1NgkhnwEAALcioAEAAACASxDQAKQFyxRHAACQAghoAAAAAOASBDQAaaHuJiEsQgMAAG5FQAMAAAAAlyCgAUgLjj09asb4GQAAcCsCGoC0YB02CQEAAO5HQAMAAAAAlyCgAUgP1pfsMwAAAGgSAQ0AAAAAXIKABiAt1N8khDVoAADAnQhoAAAAAOASBDQAaaHejaotI2gAAMCdCGgA0oJ1Tm8SQjwDAABuRUADAAAAAJcgoAFIC069aY2MoQEAAHcioAEAAACASxDQAKSFupuEsM0+AABwKwIaAAAAALgEAQ1AmnCaPgQAACDJCGgAAAAA4BIENABpwTqn152xBg0AALgVAQ1AWqi/SQgAAIA7EdAAAAAAwCUIaADSAjeqBgAAqYCABgAAAAAuQUADkBas9dX5exJPBAAAoBEENAAAAABwCQIagLRQbw2aYQgNAAC4EwENQHqou80++QwAALgUAQ0AAAAAXIKABiAt1L1RNdvsAwAAt0pqQDPGdDfGzDPGrDfGrDPG3JHM8wEAAACAZMpIcvk1kr5vrV1ujGklaZkx5l1r7foknxeAs0zdTUIsI2gAAMClkjqCZq3dY61dHvj7CUkbJHVL5jkBAAAAQLK4Zg2aMSZf0rmSFjX4+m3GmKXGmKUHDhxIyrkBOAs4dXZxTOJpAAAANMYVAc0Y01LSS5K+Z609Xvd71trHrbWjrLWjOnbsmJwTBJDyHPbWBwAAKSDpAc0Ykyl/OHvKWvtyss8HAAAAAJIl2bs4GknTJW2w1v42mecC4Oxm5av3LwAAADdK9gjaBElflnSxMWZl4L/PJfmcAAAAACApkrrNvrV2oSSTzHMAkB6sU3ebfQAAAHdK9ggaAAAAACCAgAYgLTiqu80+Y2gAAMCdCGgA0oK1TtMHAQAAJBkBDQAAAABcgoAGIC1YW3eTEKY4AgAAd0qpgLb14DpVVJYl+zQAAAAA4N8ipQJapZF8Pl/TBwJAA45l1AwAALhfSgU0Sar2VSb7FAAAAADg3yL1AlpNVbJPAUAqqrOLo2U0DQAAuFTKBTSmOAIAAAA4W6VcQKuuqU72KQBIQfXug2aSdx4AAACNSbmAVuNjiiOA6Dn1ttkHAABwp5QLaD5fTbJPAQAAAAD+LVIwoDHFEUD06k1xZJMQAADgUikX0KqZ4ggAAADgLJVyAc1x2MURQPTqjqAxfgYAANwq5QJaDbs4AgAAADhLpV5AYw0agBjUuzm1YQwNAAC4U8oFNJ9lF0cA0au3zT75DAAAuFTqBTS22QcAAABwlkq5gMYURwCxqLfNPgAAgEulXEBjF0cAAAAAZ6uUC2iMoAGIRf1t9lmEBgAA3CnlAprPYQ0aAAAAgLNTygU0xzLFEUD0GDUDAACpIOUCWg27OAKIQd37oBHWAACAW6VcQHOY4ggAAADgLJVyAc3HLo4AYlB/kxAAAAB3SsGAxi6OAAAAAM5OKRjQGEEDEL26a9BkknceAAAAjUm5gGbZxREAAADAWSrlAhr3QQMQC6s6a9Asq9AAAIA7pWBAYwQNQPQcQhkAAEgBKRfQ6u7EBgARI6ABAIAUkHIBrYYpjgBiUPfm1EQ1AADgVikX0CwBDQAAAMBZKuUCmsMURwAxqL8xCGNoAADAnVIuoPnYZh8AAADAWSrlAprDFEcAsagz+s74GQAAcKvUC2hMcQQAAABwlkrBgMYURwDR4+bUAAAgFRDQAKSFetvsG8IaAABwpxQMaExxBAAAAHB2SsGAxggagOjV69xhAA0AALhUygU0S0ADAAAAcJZKuYDmOHR9A4he3U1CrEniiQAAADQi9QKaGEEDAAAAcHZKvYDGFEcAMai/zT4j8QAAwJ1SMKBxYQUgerbOJiG0IgAAwK1SLqBZpjgCAAAAOEulXEBzHO6DBiB6VrQdAADA/VIvoHGRBQAAAOAslXIBjV5wALGot81+Es8DAACgMSkV0IwkxxLQAMTOsNEQAABwsZQKaBIBDUCs/MHMSLKMoQEAAJdKqYBmLFMcAcQmeIsOk+TzAAAAaExKBTSp/r2MACBaBDQAAOBmKRfQHKYmAYgJN6oGAADul1IBzYgRNADxYQQNAAC4WUoFNIn7oAGITXCbfcPwGQAAcLGUCmhGTHEEEB9G0AAAgJulVECT6t9sFgAiVf9G1bQjAADAnVIvoDHFEUAMHLHNPgAAcL+UCmhMcQQQq+DaM0MbAgAAXCylAprE1CQAsQmOvhuxzT4AAHCvlAto7OIIIB5McQQAAG6WUgHN3/NN3zeA6LHNPgAASAUpFdAkdnEEEB9G0AAAgJulXEBjkxAAsai7Aywj8QAAwK1SKqAxxRFAvBhBAwAAbpZSAU1iBA1AbGztNvsAAADulXIBjRE0ALGou36VVgQAALhVSgU0Yw0jaADiklKNHgAASDspd61i2SMbQExs7R+WeY4AAMClUi+gMYIGIA5kMwAA4GYpFdCMVGejbACInGP9rYeRWIQGAABcK6UCmsQIGgAAAICzV8oFNDYJARAbf9thxFpWAADgXikV0Pw3qgaA6Dn2dEADAABwq5QKaJJhiiOAuBDQAACAm6VYQGOTEACxCmwSYhmJBwAA7pX0gGaMucIYs8kYs9UYc09TxzusHQEAAABwlkpqQDPGeCX9SdKVkgZLutkYMzjs8aLnG0BsbO0aNEM7AgAAXCvZI2hjJG211m631lZJelbStY09gCmOAOLBGjQAAOBmGUkuv5uknXX+XSppbPjDjfZmWE17fKg81sjIyCMjj/X/aayRx/83GRv4Ux5ZOf7NRYzVGf8z/m1H6v/99P3Wgn/WPludck3g7/XLMw2e2/9sjpza53dqzyVQbm35/lfpL0OB1+aRkWRs7SurU67n9KObem3SGWX6X+npskzY11b71TrP7ZxRltPgPax71zorG3g21flZ1S3TU68s1Z5nqJ9bcJv02p9sndd/+r08/bNSvfLqvJO1PzfVeR0Nf371n9cGOgnql2Vs/TpS92fV2Gvzl+HU+fnX/qt2K/j69fH0e1n3faz/M/PU+/nZwM0p6tbHuj8zqWH9r1/7TaCW1Pt51S0r8G/VKy9EnQzWf+PU1hFbr3z/+9jwtZ1RXuDriuB325GVz1hVG0cnPD4p0//T3lOnHfE0LK9BO+Jp0I6cfp/8NcExdd7TMO9l8HWGbEfq1A1Pvd/t+u+jc0b5ocsJVR+DZanuexn2tQXKq/O6nEbKCjQtjb+PZ/yu6cyfW5jft4btiZVt4n2s3x5H87sd6vUlsh0J10YGp+7H2o4k9H2s2ybb4HsY5rXVlq/a16dAW9OwnTxds+u/j2e2//7y6r8ep96/w72PTdX/UL9rTb22uvUi+NoallvbRkb9ex19O3L6rKMrzwnxPsbfjpxuj5PTjjT9MwtXTyJpj+t+jrq9HXHqvI8hy6qtF2HqY+AHUP99rNfKhH19qdCOqJE6Gfz9i7T+h2tH6v+sQl/XObXXJY58TSzZSnZAa5Ix5jZJt0lSl+7tNLg6q8GLtKoJXLr4/+0PQD6p9u+ewA/T4//51/7bqH4YOt3oKdAInZ4O5S/TUY0UKEuBc5B8snKMf3SvYXmewHN4Q5Tlr1iq++tZ+wN1Aq/LJ5+sJF+gLCdQlq9OWf7nUu15h3ttOuP1+b8aLMsGXottUEb41xb4e6Asj+q+ltOVO1iyAu+jzzinX0vtz0y1f/epbpir/z4Gv2ZsndcZ/HrdCxoZ/8/HWNUEyqn7Mwv+u255dcuqX2dOv4+151H7egMXSoH6WL+OnPk+1oR8baffR1PvfTz9wa/a4OJ/L0//Djgx1ce6r63ue1u3fgRrTbD+15j6daTuzy34Om0TdeT0+1j/9yz4Pir4+xto4HxRvLZQv9seSZnWoxbyKNeXoUG+HA3uOE4fHZyrYFgMNpbOGa8tdDtiGryP9X/X6teXur/f8bUj4X7XFPigaNCO1KnnPo8TeF0N2pEQr62xOnL6g1Dy6vSHVTBg2Ebex1C/a6aR8kyI13dm/Q/9PjZ8bZH+bjf8mQXrZFPtiE8K1P+my2r4Pga/llmnrDNfW6TtSIzvo6xqPPXbkaba/vrvmQIdNKdfc213jT3dvtjA89QELvDiaUfCvY/12+P69T+edqT+NYKkBuWGex/rfq41LCueduTMz5rY2pEmr0ciaEdCvbYz62OduhJHOxLJ71rIn5k1MnUuuGuvfZpoRxq+NhOiPLe0IxkKhufg8/p/10L9Xoerj3XrXvC9NLbuv898fZG2I6F+r0P9rkXUjjR4H2NpR8641jrjGrZ+/Q/1ux3J71rda5Hg17zWo2bKlDeYqMMwwXUZyWCMGS/pfmvt5YF//0iSrLW/CnX8qFGj7NKlSz/DMwQAAACAxDLGLLPWjgr1vWSvQVsiqZ8xppcxppmkmyS9luRzAgAAAICkSOoUR2ttjTHmO5LmSPJKmmGtXZfMcwIAAACAZEn6GjRr7VuS3kr2eQAAAABAsiV7iiMAAAAAIICABgAAAAAuQUADAAAAAJcgoAEAAACASxDQAAAAAMAlCGgAAAAA4BIENAAAAABwCQIaAAAAALgEAQ0AAAAAXIKABgAAAAAuQUADAAAAAJcgoAEAAACASxDQAAAAAMAlCGgAAAAA4BLGWpvsc4iYMeaApB3JPg+4WgdJB5N9EnA16giaQh1BU6gjaAp1BE3paa3tGOobKRXQgKYYY5Zaa0cl+zzgXtQRNIU6gqZQR9AU6gjiwRRHAAAAAHAJAhoAAAAAuAQBDWebx5N9AnA96giaQh1BU6gjaAp1BDFjDRoAAAAAuAQjaAAAAADgEgQ0AAAAAHAJAhoAAAAAuAQBDQAAAABcgoAGAAAAAC5BQAMAAAAAl8hI9glEo0OHDjY/Pz/ZpwEAAAAAMVu2bNlBa23HUN9LqYCWn5+vpUuXJvs0AAAAACBmxpgd4b7HFEcAAAAAcAkCGgAAAAC4BAENAAAAAFwipdagAQAAAEi+6upqlZaWqqKiItmn4mpZWVnKy8tTZmZmxI8hoAEAAACISmlpqVq1aqX8/HwZY5J9Oq5krdWhQ4dUWlqqXr16Rfw4pjgCAAAAiEpFRYXat29POGuEMUbt27ePepSRgAYAAAAgaoSzpsXyHhHQAAAAAMAlCGgAAAAAUk55ebkuuOAC+Xw+SdIVV1yhNm3aaMqUKfWOs9bq3nvvVf/+/TVo0CD9/ve/b/K5wz3XxIkTNXz4cA0fPlxdu3bV1KlTJUlvvPGGfvrTnybkdRHQAAAAAKScGTNmaNq0afJ6vZKku+++W08++eQZx82aNUs7d+7Uxo0btWHDBt10001NPne451qwYIFWrlyplStXavz48Zo2bZok6aqrrtLrr7+usrKyOF8VuzgCAAAAiMPPXl+n9buPJ/Q5B3dtrfuuLmj0mKeeekpPP/107b8nT56s+fPnn3HcY489pqeffloej39sqlOnTk2WH+65go4fP665c+dq5syZkvxrzS688EK98cYb+vznP9/k8zeGETQAAAAAKaWqqkrbt29Xfn5+k8du27ZNzz33nEaNGqUrr7xSW7Zsibv82bNna/LkyWrdunXt10aNGqUFCxbE/dyMoAEAAACIWVMjXf8OBw8eVJs2bSI6trKyUllZWVq6dKlefvll3XrrrXEHqWeeeUZf//rX632tU6dO2r17d1zPKzGCBgAAACDFZGdnR3x/sby8vNq1Ytddd51Wr14dV9kHDx7U4sWLddVVV9X7ekVFhbKzs+N6bomABgAAACDFtG3bVj6fL6KQNnXqVM2bN0+S9MEHH6h///6SpMWLF+srX/lK1GW/+OKLmjJlirKysup9ffPmzSosLIz6+RoioAFIG0eOHdDSdfOTfRoAACABLrvsMi1cuLD23xMnTtSNN96o999/X3l5eZozZ44k6Z577tFLL72kIUOG6Ec/+pH+/ve/S5JKSkrCjniFey5JevbZZ3XzzTef8Zh58+adMaoWC9agAUgbf3j1Dr1ds0qfFKxL9qkAAIA43X777XrkkUd0ySWXSFLYdWVt2rTRm2++ecbXFy1apNtvvz3kYxpboxZqd8d9+/apvLxcQ4YMieDMG0dAA5A2ympO6qSXiQMAAJwNRowYoYsuukg+n6/2XmjReOihhxJ2LiUlJfrNb36TkOcioAFIG1ZWkuT4fPLE0JADAAB3ufXWW5N9CpKk0aNHJ+y56EoGkEZs4P+dJJ8HAABAaAQ0AGnj9AgaAQ0AALgTAQ1A+vDnMzmMoAEAAJcioAFIG7UjaA4BDQCAVHfrrbeqU6dO9e499oUvfEHDhw/X8OHDlZ+fr+HDhyfvBGPEJiEA0oYN/mkJaAAApLpbbrlF3/nOd+rdbPq5556r/fv3v/995ebmJuPU4kJAA5BGGEEDAOBsMWnSJBUXF4f8nrVWzz//vObOnfvZnlQCENAApI3aKY7yJflMAAA4i7x9j7R3TWKfs/MQ6coHYn74ggULdM4556hfv34JPKnPBmvQAKSPwBxHywgaAABntWeeeUY333xzsk8jJoygAUgbwRE0a20TRwIAgIjFMdL171BTU6OXX35Zy5YtS/apxIQRNABpJDDF0dYk+TwAAMC/y3vvvaeBAwcqLy8v2acSEwIagLQRHDdzfIygAQCQ6m6++WaNHz9emzZtUl5enqZPny5JevbZZ1N2eqPEFEcAaYRNQgAAOHs888wzIb8+a9asz/ZEEowRNABpJLAGzWEEDQAAuBMBDUDaOL1JCLs4AgAAdyKgAUgfgYEzh10cAQCASxHQAKSN0yNorEEDAADuREADkD6M/w8rpjgCAAB3IqABSBvBG1Q7bBICAABcioAGIO1YhxE0AABSXWlpqa699lr169dPffr00R133KGqqqqwxx89elR//vOfa/+9e/du3XDDDQk5l/vvv18PP/xwQp6LgAYgbbCLIwAAZwdrraZNm6apU6dqy5Yt2rx5s06ePKl777037GMaBrSuXbvqxRdf/CxONyrcqBpA2mENGgAAqW3u3LnKysrSV7/6VUmS1+vVI488ol69eqlXr16aM2eOjh07pl27dulLX/qS7rvvPt1zzz3atm2bhg8frksvvVS33367pkyZorVr12rWrFmaPXu2Tp06pS1btuiuu+5SVVWVnnzySTVv3lxvvfWW2rVrp7/97W96/PHHVVVVpb59++rJJ59UTk5OQl8bAQ1A2giOoDlMcQQAIGEeXPygNh7emNDnHNhuoH445odhv79u3TqNHDmy3tdat26tHj16qKamRosXL9batWuVk5Oj0aNH66qrrtIDDzygtWvXauXKlZKk4uLieo9fu3atVqxYoYqKCvXt21cPPvigVqxYoTvvvFNPPPGEvve972natGn6xje+IUn6yU9+ounTp+u73/1uQl87UxwBpJFAQOM+aAAAnNUuvfRStW/fXtnZ2Zo2bZoWLlzY5GMuuugitWrVSh07dlRubq6uvvpqSdKQIUNqw9zatWs1ceJEDRkyRE899ZTWrVuX8HNnBA1A2gjGMtagAQCQOI2NdP27DB48+Iz1Y8ePH1dJSYkyMjJkjKn3vYb/DqV58+a1f/d4PLX/9ng8qqmpkSTdcsstmj17toYNG6ZZs2Zp/vz5cb6SMzGCBiCNBDcJYQQNAIBUNnnyZJWVlemJJ56QJPl8Pn3/+9/XLbfcopycHL377rs6fPiwysvLNXv2bE2YMEGtWrXSiRMn4ir3xIkT6tKli6qrq/XUU08l4qWcgYAGIG0Ec5nDCBoAACnNGKNXXnlFL7zwgvr166f+/fsrKytLv/zlLyVJY8aM0fXXX6+hQ4fq+uuv16hRo9S+fXtNmDBBhYWFuvvuu2Mq9+c//7nGjh2rCRMmaODAgYl8SbVMKvUkjxo1yi5dujTZpwEgRX37bxO1sNlRPX/+3zWoz9hknw4AAClrw4YNGjRoULJPI6RZs2Zp6dKl+uMf/5jsU5EU+r0yxiyz1o4KdTwjaADSRu0ujmyzDwAAXCqlNgnZf2SnamqqlZGRmexTAZCCghMGLNvsAwBw1rrlllt0yy23JPs0YpZSI2gHnOOqqqlK9mkASFlsEgIAANwtpQKaRM83gHgEAxrtCAAA8aLDs2mxvEcpF9Ac60v2KQBIUcEmkhtVAwAQn6ysLB06dIiQ1ghrrQ4dOqSsrKyoHpdSa9AkyefUJPsUAKSo0x8hjKABABCPvLw8lZaW6sCBA8k+FVfLyspSXl5eVI9JuYAmUjqAmAV2caQdAQAgLpmZmerVq1eyT+OslHpTHFmDBiBGwVhmHaZKAwAAd0q9gCYurADEKjiCRjsCAADcKfUCmo8LKwCxqd0kxGGKIwAAcKekBjRjzGBjzPPGmMeMMTdE8hjWjgCIFZuEAAAAt4s5oBljZhhj9htj1jb4+hXGmE3GmK3GmHuaeJorJf3BWvttSV+JpFyH+xcBiBmbhAAAAHeLZxfHWZL+KOmJ4BeMMV5Jf5J0qaRSSUuMMa9J8kr6VYPH3yrpSUn3GWOukdQ+kkIJaABiVRvLCGgAAMClYg5o1toPjTH5Db48RtJWa+12STLGPCvpWmvtryRNCfNUtweC3csRFcwujgBiZgP/TzsCAADcKdFr0LpJ2lnn36WBr4VkjMk3xjwu/yjcQ2GOuc0Ys9QYs1SSHLbHBhCj05uEENAAAIA7JfVG1dbaYkm3NXHM45Iel6TsXtmW7bEBxC44gsYURwAA4E6JHkHbJal7nX/nBb6WMJbtsQHEqPZG1axlBQAALpXogLZEUj9jTC9jTDNJN0l6LZEFOKwdARAnNhsCAABuFc82+89I+kTSAGNMqTHma9baGknfkTRH0gZJz1tr1yXmVP1YgwYgVrVTGxmIBwAALhXPLo43h/n6W5LeivmMmiyXnm8A8aEdAQAAbpXoKY7/dg5r0ADEiDVoAADA7VIuoFkxxRFArAK7OHKjagAA4FKpF9Do+QYQo9r7oLHZEAAAcKmUC2g+NgkBEKPaKY5MlQYAAC6VcgFNXFgBiBk3qgYAAO6WcgHNYQ0agBjVjqAxxREAALhU6gU0Or4BxIuGBAAAuFQKBjRG0ADEJji10WEXRwAA4FIpF9Asm4QAiNHpKY60IwAAwJ1SL6DR8w0gTrQjAADArVIwoLG4H0BsakfQCGgAAMClUi6gOUxxBBAz2+BPAAAAd0m5gMb9iwDEKth6OA4j8QAAwJ1SLqBxYQUgZsb/B/dBAwAAbpVyAY0RNACxCi49Yy0rAABwq5QLaA4XVgBiZI0/odHRAwAA3CrlAprlRtUAYlS7RYhDQAMAAO6UcgGNETQA8XIYQQMAAC6VcgFN3L8IQIxOtx509AAAAHdKuYDGDWYBxIt2BAAAuFXKBTRuVA0gVsHNQQhoAADArVIuoLE9NoBY1W4SQkADAAAuRUADkHa4UTUAAHCrlAto7I4NIFa1I2js4ggAAFwq5QIaI2gAYhcIZkxxBAAALpVyAc3hRtUAYsQaNAAA4HYpF9DECBqAODHFEQAAuFXKBTQurADE6vQIGh09AADAnVIuoDlMTQIQI6Y4AgAAt0u5gGZZgwYgVsb/ByNoAADArVIwoNHzDSA2tB4AAMDtCGgA0gb3QQMAAG6XggGNqUkAYuUPZnT0AAAAt0q5gOYQ0ADE6PQIGu0IAABwp5QLaPR8A4gX7QgAAHCr1Ato9HwDiBFr0AAAgNulXkBjiiOAGHEfNAAA4HapF9CSfQIAUh73UwQAAG6VegGNCysAMWKKIwAAcLsUDGhMcQQQG2uCf0nqaQAAAISVegGNKysAcaKjBwAAuFXqBTSuqwDEKNh80NEDAADcKuUCmiPWoAGIlQ38PwENAAC4U8oFNLE9NoAYnd5mP6mnAQAAEFbKBTTWjgCIlQ3xNwAAADdJvYCW7BMAkPIcOnoAAIBLpV5A4z5oAGLECBoAAHC7lAtoDhdWAGLEGjQAAOB2KRfQuLICELPAjaqtmOIIAADcKeUCmkNAAxCj2taDdgQAALhUygU01o4AiFXtFEfaEQAA4FIpF9Ach01CAMSHeAYAANwq5QIal1YAYnV6kxDaEQAA4E4pF9CYmgQgVqdbDzYJAQAA7pR6AY2ebwAxYg0aAABwu5QLaA493wDiRD8PAABwq5QLaFxZAYiVNbV/S+ZpAAAAhJVyAY37oAGI1elNQhiJBwAA7pRyAY2ebwCxsg3+BAAAcJuUC2gs7gcQP9oRAADgTqkX0JiaBCBG7OIIAADcLgUDGhdWAGJj5d8lhHYEAAC4VcoFNHZxBBArNgkBAABul3IBzWFqEoA40YoAAAC3SrmAZrlRNYAYsQYNAAC4XQoGNC6sAMSm9kbVTJUGAAAulXIBjQsrALFiBA0AALhdygU0dl8DECsCGgAAcLvUC2hcWAGIkQ3xNwAAADdJwYDGJiEAYnN6m30CGgAAcKeUC2h0fAOIlTWBG1Un+TwAAADCSbmARs83gPjRjgAAAHdKvYDGhRWAGNTt3KGjBwAAuFXKBTSHNWgAYmDt6baDjh4AAOBWKRfQuK4CEAvr1OncYQQNAAC4VOoFNBIagBjU3QGWVgQAALhVygU0pjgCiEXdKY5ENAAA4FYpF9CYmgQgJnU3CSGgAQAAl0q5gMaFFYBY1N8kBAAAwJ1SMKABQPSs9dX9V9LOAwAAoDEpGNC4sAIQvXojaEyVBgAALpVyAY01aABiUe9G1Uk8DwAAgMakXEBzLLs4AoieFbs4AgAA90u5gAYAMXHqbhJCQAMAAO6UcgGNCysAsah/o2raEQAA4E6fWUAzxvQ2xkw3xrzY2NcafQ5xYQUgNvU2BqEZAQAALhVRQDPGzDDG7DfGrG3w9SuMMZuMMVuNMfc09hzW2u3W2q819bWmENAAxKL+fdBoRwAAgDtlRHjcLEl/lPRE8AvGGK+kP0m6VFKppCXGmNckeSX9qsHjb7XW7o/7bMX22ABiQ0ADAACpIKKAZq390BiT3+DLYyRttdZulyRjzLOSrrXW/krSlISeJQDEqX4oI6ABAAB3imcNWjdJO+v8uzTwtZCMMe2NMX+RdK4x5kfhvhbicbcZY5YaY5YaS883gBhxo2oAAJACIp3iGDdr7SFJ32rqayEe97ikxyWpRX62tdwHDUAMuFE1AABIBfGMoO2S1L3Ov/MCXwMA16nfuUNEAwAA7hRPQFsiqZ8xppcxppmkmyS9lpjTCo8pjgBiUbftoBUBAABuFek2+89I+kTSAGNMqTHma9baGknfkTRH0gZJz1tr1/37TtWPgAYgFo7jq/077QgAAHCrSHdxvDnM19+S9FZCz6jJk/lMSwNw1mAXRwAA4H7xTHH8zBlJVmwSAiB61ql7HzQAAAB3SqmAJnFhBSA29Tp32GYfAAC4VAoGNC6sAESPbfYBAEAqSLmABgCxqD89mogGAADcKeUCGmvQAMTEYQQNAAC4X+oFNK6sAMSgbucOU6UBAIBbpVRA8+/iyIUVgOhZy+g7AABwv5QKaAAQq7qdO3T0AAAAt0q5gObmCyvrOKqsOPaZleerqZLjq/nMyvssy/LVVH2mZdW9RxZiYx3nM30fo/251bsPWpRzpZPx2j4r1ZWnPrPXZh3nM21H3Fwf4+H4alRRfuQz/bmdrWVVlB/5zOqkr6ZK1ZWnPpOypM/2M7uy4thn9nOrri5TRfmRz6Qs6bN9Hx1fzWf2PvpqqlRdXfaZlCVJ5WWHP7PPts/6M/vfISPZJxCtSAPaB5/+VjM2PqU1qpTXSoUmS1/qf6MuHne3jCexufTA/nX689z/1pzyXTrhMermk65uW6ivTH5YrVp3S2hZjq9Gb3zwU/1zx1vaZGqUIel8b65uG/19FQycltCyJGnT5jf010UPaFHNUZ0wUl/r1bTO43XTJb9TRmZWQss6dXKv/j7nO3r72Cbt8kqdfFYX5uTptot+rXPOGZrQsiTpoyV/1Ix1s7RCFbKSzlWWvl7wVZ03+vaEl7V/31o9ueB/9O7xrdrtsersSFe3LdDXLv2Dclp2SmhZNdUVevH9u/X8ng9VZHzKsdLYjLb6+ujva/DAqQktS5I2b31bf/z4//Sp75iqjFRom+kL+Z/T5yb+VN6MZgktq6zsoP7xzh169fBq7fJKuY7Vpdnd9K2LHmqyjsTSuTP/099o1sZntNZWyBppiLJ0y8CbdeG478f6EsLas3uZ/jT/h/qgcq+Oeox6+KSr2hbqlksfTXgd8dVU6aX379Yzu+drq8dRtmN1fkYbfWv8verf98qEliVJ6za+rOlLfquFNUdVYaTejkdfzLtYN0x+WB5vYj+Gjh0r0az3/ltvHdukPR6rtla6OLubvnnBA+rc5dyElmUdR3M/fUgzNj2rdaZaRtJIk63/HPRlTRzz/xJaliTt27daf533A80pL9Vxj1Enn9UN7Ybqq5f/SVnZbRNaVnXlKT0/9y69svdjbTU+NbPSGG8rfXv0XSoYdH1Cy5KkFav/qb+s+L2W2jI5kgbYDF3f7SJdd9GvEv5ZU3Zyv/7+zu16+egGHfIatXGsrszpqdsuflgdOg5KaFnWcTR/0W/1xKZntVIVciQV2kzdNujLumDcfye0LEkqLv5Aj310nz6uOqhjRurmGF2RO0C3Xvpowq9Haqor9M8539Fz+xep1Cu1cKzOz2ynb477sfr1vSKhZUnS2vUv6B/L/6C5NYdVZYwGOV59scfluubCXyS8HTlyeJtmzr1L7wQ+s1tY6ZLmnfX/LnlUHTsVJLQs6zh644P/0TPFb2mDqZZH0kDbTF8bcJMuPu8HCS1LknbvXqo/zLtb71cdULnHKN8nXdthhP7jkkeUndMuoWVVV5fptfn/o6dL39Nmj6Nm1mqiN1ffPe9+9elzaULLkqTlq57QrFV/1RLfMZ30GPX2Gd3c9QLdeMlvEn49cuTwNv353e/qnbISHTFSJ0e6ICdP37jgVwn5rDHR9iQnU6v8bHvLT8bqD1+fH/YYx1ejB1+aqqfLd6iHT7qwVW851tGHJ4tV4pWuzTxH9934mjIzcxJyThs3vaZvffRjHfdIVzY7R91bdNGqo1u1UKfU3Sf9+eI/Kj//goSUdexYie6afYM+VbkGOB5Nyu2vUzXleutUsU4a6Z4uF+sLl/8+IWVJ0rP/+q4e3DtPOVa6NKur2jXP1dLj27XCVGmUba5Hr3tFrXO7J6SsnTs/0n+9+y0Ve6ULTSsNaNVDxad2a17NYTW30q8Lvqnzx3w3IWX5aqr00MvX66nyYnXzSZe06iNJeu/ENu3ySjdlddc9189O2C/zouWP679X/V5lRhrvaamBLXto88md+sCeVA+fNP3KJxJ24XjyxB597+VrtEgVGupkaFTr3jpWdULvVezWCSPd0/lC3XzFHxNSliS98t7d+t/St9XSSpfn9FCLjGzNPbZZxV5pvLL122mvqmWrLgkpq6h4vr4z97sq8UoTlKOhrXtrZ9levVN9QNlW+t25d2nU8FvCPn7nzo/1ubnflCRNqm6jP319QdhjfTVVuv/5z2l29T718EmTWvWSVx7NO7FNJV7pC1nd9aME1pGPl/xJd619TNWSLmt+jjpnd9C648X6SGXq6ZP+cPEf1Cv/woSUdexYib4/+/raOnJem4E6UnlUb5XvVLmRftT1En3+st8lpCxJ+ufb39LD+xb660h2nnKbtdaiY1u12lOt85St317/mlq07JyQsrYXzdV/zbtDuz1WF3haq1/LPO0q36/3qg+quZV+N/x7GnPu1xNSVk11hX7x0rV6sXK38n1Gk3P7q9qp1nsntmu3V/p882768Q2vJayOLFj8e/1w3eOqNNJlmR3Vu1V3rTq6RR/Yk+rjM/rzFTPUteuohJR15PA2fefVG7TaU6OhTqZGte6l8poKzSnboaNG+knXS3XjZY8kpCxJevKtb+qh/R+pgyNd3rKXmnmb6ZPj27TB49MY21y/m/ZqwsJFUfF83T73uyr1WF3szVVBbh9tOb5D79YcUisr/baJdiQa1ZWn9JMXr9JbNYfU3SdNbt1XzbzN9M6R9Sr2Sl/J6a3vT3spYeHi/Y8f1D2bnpRX0qXNO6tjVjttPrlTHzon1NMx+svl09Wt25iElHXsaLH+3+zrtdxUaayyNKrNAO0rP6A55btUbqQfdr5IN13xh4SUZR1Hz71zR+31yJU5PdS+eRvNO7JeGzw+TVCOHrru5YTVkQ2bXtV3PrpXBz3SJE9rDWjVQ/srDurNyr1qYaVHR96jc4d+KSFlOb4a/ez5K/Vy1V71dzya0LqPfI5PH54oUrHX6gtZ3fXjG15LWB1ZuPgPumvdX+VImpKdpw7N22r58a1apAr19EmPXfoXde8+ISFlHT68VXe89nmtNNUa4Hh0abuhOlJ5VK+dKlKFkR7q9yVNnnBPQsqSpMdmf1F/PrZG7RyrS7Lz1KZ5rhYd3aJVnmpNMi318A1vJiyA7tixQLe+/20d9kiXZrRXXs452lG2Rx9UH1EzSY8M+38aO+K2Jp/HGLPMWhu64bbWpsx/LXtm2e/8bZJtzAPPX20LZxXaB5+/xlZVnar9enVVuf3jyzfZwlmF9t6nJlvH52v0eSKxau2zdtyMAnvJ9AK7Zeucet9btvIfdtKMAnvR9AK7a9eSuMuqKD9qvzxzhB0+s8A+P+d79c7/2NES+1//GGcLZxXa5+bcEXdZ1lr72tx7beGsQvudf4y3R48U1fveq+//yA6fWWC/MnOEraw4HndZ+/ettZdML7Dnzyiwi5f/vd73SkoW2htmDLUjZhbY5auejLssa639+TNX2MJZhfaB56+ud/6VFcftr5+/xhbOKrT/+8zlCSlrxZqn7IiZBXbq9CG2qGh+ve8tXjHdjptRYKdMH2IPHtgUd1lVFSftVwJ15OX37q5XR44fK7Xf+cd4Wzir0L787l1xl2WttS+8c6ctnFVob5s12h45vL32676aavvCO3fa4TML7JcTVEd271pqL5peYCeFqCNFRfPt1dOH2JEzCuzqtc+HfY4dJQtt4axCWzir0P7X385vtLyfPXO5LZxVaB996UZbXVVe+/WqqlP2oeev9def56bE96ICNmx81Y6eUWCnzRhqS0o+rve9xSum20kzCuzk6QV23941cZdVXnbY/seMc+25Mwvsy+/eVa+OHDm83X77H2Nt4axC+9K734+7LGut/edb37aFswrt/3viPHv8WGnt1x2fzz4/53t22MwCe+vMkbaq4mTcZe3Zs6K2jqxc80y975WUfGynTh9iR88osGvXvxh3WY7PZ//n6cm2cFahfeTF68+oI7958bqEtiMfL33MDp9ZYG+YMdTu2LGg3vc+WvxHO35Ggb18eqE9sH993GVVlB+1N84YZkfOKLBzPvx5ve8dP1ZaW0den/eTuMuy1tpn//VdWzir0H7viQn21KkDtV93fD47+/0f1n7WJKKOlJR8bC8M1JGlK2fV+9627e/Zq6cPsSNmnll/YuH4fPb7T060hbMK7WOz/6N+Hak4aX/x7Ods4axC++vnr4m7LGutXbPueTtiZoH94ozhdv++tfW+t2TFzNo6kqjPmi/PHGHPnVlgX5t7b73vHT601d4euB5J1GfN31+7xd9u/2OcPXa0pPbrjs9nn/3Xd+3wmQX2P2eOTMhnTUnJQjthRoG9dHqBXb9xdr3vbS+aZ6dML7TjZxTYbdvfj7ssx+ez9z19aeCz5gbrq6mu/V51VXntZ83DL0yNuyxr/W1FsB0pLV1U73ufLvurPT/wWdOw/sTixPHdduqMoXbkjAL7xrz/qfdZc/DAJvvFGefaYTP930uE5+d8zxbOKrQ/fupiW3bqUO3Xg3VkyMwC+81ZY2xNdWXcZe3ZvdxeOr3ATpxRYDdsfLXe90pKFtqpgeuRTVveavK5JC21YTJP0kNXNP+16pllb//bxLAv9M35P7WFswrtr56bEjaABUPaW/Pva/KNa8yhQ1vsxdML7BXTC+2e3ctDHrNl6xw7dkaB/dLMc+OuFA8GgsPbH/ws5Perqk7Zb/9jrB0+s8CuWRf+IjUSRUXz7egZ/gavbsit6+0P7k/IRWpNdaX9z5kj7egZZzaGQUcOb7dXTS+0F08vsIcPbY2rvNfm/tgWziq0v2mkwQteXL383t1xlXX06A578fQCe+X0wnoBpq5lK/9hR83wX4DEW0ceeG5Ko3W7quqU/cas0XbEzMgajsasWvusHT6zwH5r1tiwF05vf/CzhNWRL844146bUWA3b3k75DGHDm2xlwfqyNGjO0IeU1z8YW1A+/bfJoQt79X3f2QLZxXa3744LewxTb3XkTp4YJOdPL3xD8VggLtl5sh6H+Cx+Nkzl9shMwvsuwt+GfL7VVWn7G2zRtvhMwvsug2vxFXWqrXP2mEzC+x3/jE+bN0O/j4+8PzVcZXlq6m2X5812o5upI4c2L/eXja90F4+vbDeRV4sghcDv3/582GP+e2L02zhrMK4L0D271trJ8wosFNnDLUnju8Oecza9S/a0YF2JN468psXptrCWYV23icPh/x+ZcVxe8vMkXbkjAK7des7cZW1actbdvjMAvvtf4ytF2DqCn6uN/b7GImqipP2xhnD7HkzCuy27e+FPObwoa32ikA7UrdDIRZPvf1ftnBWoZ3+2ldDft/x+WpDWrztyIH96+3F0/0BLNxn5Oq1/gB326zRcdeR/w10YL39wf0hv19Vdcp+PfBZE28dWbxiuh0ys8De/eSksOf91vz7EhJ2fTXV9iszR9jxMwrO6CwL2rVriZ00o8B+bnph2M+aSL3y3g9qO3lCXbM6Pp/9+bNX2sJZhfa9hb+Kq6w9u5fbcYGOwHB1O/hZ87VZo+IexLj7yUl22MwC+9GSP4X8/qkT++wtM0cm5Hpk5Zpn7PAmAlgkbXYk/Ncjw+24GeE/Iw8e2GQvmO5vsyvKjzb6fI0FtLNmk5Ajh7fpV9tf0jAnU3dd90LYdWbfuvofKnC8enDbizp+bGfM5/Hnd76rQx7pkQm/CDs9rW+fy/STXtdppanW8+/FPtd8w6ZX9WTZdn0hq7uumPTTkMdkZubogWtfUDtH+p9F/xfzwk9fTZV+OO8ONZP0wBV/DzsV9IpJ9+nmrB76Z3mxVqz+Z0xlSdIL731fy0ylftzjKg0acG3IY9q07aWHJ/xChz3S7+Z8K+ayDh/eql8Vv6oRtpnumPpc2OPuuPZZjbTN9VDJWzp0cHPM5T385q067JEePu/natO2V8hjRgz7iv6n5zVabqr07Lvfi7mslWue0lNlRbopq7uuvOD+kMdkZubogaufVitH+umCH8W8WLemukL3Lf6lOjrSA1OfV2bzFiGPu2LST3VzVg89VVakVWufjaksSXr23Tu02lOt/+l9fdh1De3a9dVvzvuZDnmkX7/51ZDH1N1mP9zE7oMHNuiBHa9phG2m/3ftM2HP6fvXvaBhTqZ+vv1FHTm8LeLX0tCv59ymwx7pDxN+EXZdw8AB1+hH3a/UUlOpV+b+MOayFi1/XC9U7tItrfrrkvN/FPKYzMwc/fra59XGke7/5P746siiX6iDI/1y6gthp/ldfdEvdFNWd/2zrEgr1z4dU1mS9Ny739OnKtddXSeHrSMdOg7Sr8fcq70eq0ff/kbMZe3bt1oP7XpX45Wt2695Kuxx373mKQ11MvVg0cs6eqQo5vIeeOdbqpD024seDTtduGDQ9bq35xQtN1V6Lo52ZPmqJzTr5Bbd2Lxb2HWWzZq30kNXPakWkn764Q9i3kChurpMP1nwI7W20v9N+WfYdWafu+Bnur5ZF806sUkbNr0aU1mSNHPOt7TB49PPB3xFvXtNDnlM23Z99PD4+3XQI/0+jjpy5PA2/XHPBxqvbH31qr+HPMZ4PPrBtJc03PrbkXjqyK/nfEtHPdKjEx9Q23Z9Qh4zpOBG/aDLxfpY5Xp1Xujf/0h88Olv9XzlLt3asr+umHRfyGMyM3P0wFX/VI6V7l/ww5jrSGXFMf10+SPKc4zub2Qq6JUX3K/PN++mJ09t07oNL8VUliQ9/c53tNxU6Yc9p6h79/Ehj+nadZR+N/Ie7fJYPfp201PYwtm/b61+XfKm/7Nm6rMhr1mNx6MfTn1Bgxyvfr7pnzp2rCTm8v733W/LJ+l3l/wl7FTQgQOu0V3dLtEiVej1+T+Juaxlq/6ht32H9c02Q3XeqP8KeUxOy056eMrTamml+xf8OOY6Erwe6eQYPXjtc2E/a2687BFdk9lJ04+t0/qNs2MqSwpej9ToJ72mhV3T375Df/1f4Te11ePo969/JeayUi6ghfPX976n40a6f9IDjS4o9mY000/H368jHukP//pmTGUVFc/XixU7dUN2Dw0ccE2jx1416Wcap2z9Yc98nTi+K6by/rDoV2rtWN1x5d8aPa51bnf9eMCXtNXj6PUPQge5prw2/16t9/h0b+8b1Lnz8EaP/d7V/1Ann9Wvl/0mpt1yTp7Yoz/umaexytK1F/2q0WMHDrhG/9Gir16p3KNNW96MuizJH6rLjXTfBb9udF2IN6OZfnrBgyoz0l/fvzOmstZvnK1Xq/bqyy37Nbkxx9UX/p/GKVt/3vuhjh0tjros6zh6aOnD6uRId141q9Fj27Xrq7t7T9M6j0+vzb836rIk6eV592irx9EPB35Zubk9Gj32jqumq6MjPbTk1zHVkePHduqxvQs0Ttm6cmLoi4GggoHT9JVW/fV61b6QdSSSTUIee/9OlRvp/gsbX1CckZmln03y15E/vxvb2siVa57SWzWH9LXcIWE7J4KmXvygRthmerR0jspO7o+6LMdXo4dX/UldfdLtV81s9NjcNvn6QZ8btMHj09sLfx51WZL09sL/01av1Q/7f7HJdSF3Xv2EOvqsHlryUEx15OiRIv1+z3ydp2zdeGnj66KGFd6km3N66YWK0pjbkUff+558Rvrp5N83ui4kIzNLPz3/5zpmpOnvx9ZBt2nLm3rHd1S3tClscg3iNRf+UmNsc/05xs8a6zh6ePkj6uxId015otFjO3QcpLvyr9VqT03M7ciz796pDR6fftLvi2rXrm+jx975ub+rjZUe/iS2+njwwAb9/dAKTfa0bnLThYJB1+vG7B56obxERcXzYyrvT+98R2VG+uH5v2h0U7KMzCzdN/EBlRnpL+/GtqnM8lVP6G3fYX29zVAN6HdVo8feeMlvNcI20yM7346pHamprtDD62cp32f0nWuebPTY9h366797fE4rTbXe/bjxz/dwnpt7t0q90v8Mu105OR0aPfbOq2aqrZV+s+hXMbUjx46V6I97F2qiaaFrLvxlo8eeO/RLujmnl16sKNWWrf+KuixJevDdb6ta0v9e9LtG25HM5i10//j7ddgjTX/3jpjK+mTZX7TAntJ/dRwXNngG3TD5YRU6GXq0+LWYdsp0fDV6ePnv1Mlndctlja93b9+hv+7Kv1ZrPDV6a8HPoi5LkmbP/7G2ea3u7v9F5bbJb/TYH141S20c6eFP/y+msvbuWaFH9y7QBOXoc5Pub/TY88d8V9c366KnT23Tzp0fxVReygW0UBdZ+/at1nNlRbqueVf17XNZk88xeOBUXZ+VpxfLS7R378qoz+HRBfcqy0rfnvy7Jo81Ho/uHPtjnfAYPT0v+sWQK9c8pQX2lG7tMDqiBbAXj/+BhjgZerxkjmqqK6Iqq7q6TI+VvK0hToaumNh0wMvJ6aDv9Pyc1npqtGDJo1GVJUlPz/uBjnmM7hxzT0Q7a37jst+rhZX++mn0jf3evSv1csVOXZeVF7b3tK7evSZravOueqF8R0x15C+LH1JrK32jiQZK8teRu8b/VMc9Rs9+8D9Rl7VgyR+02lOjb3e/PKLd/j436X4VOF49XvKvmOrI30vf01AnQxePu7vJ41u07Kzbul2sVZ5qfbL8L1GVJUnPfvBjHfMY/fe4eyOqI1+75HdqGaaO1B9BO7Md2bVrsV6qKNX12T0i2pCjT59LdV1WN71UXqL9+9Y2eXxDf17+qNo5Vl+9vOmF9Mbj0X+PultHPEZPz4t+V68PlzyqjR5Ht+dfreZZuU0ef/n5P9EAx6O/bJ8ddc+mr6ZKjxe9pv6OR5PHN32uOTkd9F/dL9NqT40+XfF4VGVJ0j/m3q1TRrprwv9GVEe+dfmfYm5Hdu78SG9W79fNLfoqL29ck8cP6HeVpjTrpGdObNHBgxujLu9vix5UC8fqyxc90OSxxuPRf4/7sY56jF6IoR1ZtOJvWuOp0de7TY6oHZlywc812PHqbzveirodqSg/oul7P9JYZenS83/c5PG5uT309XMmaLGp1JKVM6IqS5KeW/i/qjDS9yY2fuEd9O3Jv1MzK/31o+gvGnfu/EQvVOzU57N7RrRLXd8+l+na5l304qkiHT68Nery/rDi9+oQwcWwJHm8Gfr+6B/E3I688/GvVOy1+t6AL0a00do1F/yffwObLS9E3Y5UVhzT9H0fa5yyNX5k0zNnWrbqots6T9QSU6kVa6Kf1fPs/Ht1ymN0x7ifRNSOfPPS3yvbSn/9NLI6VdeWrf/SO76j+s82herZc2KTxw8eOFVTMjvpqZNbdPDAhqjL+8uav6mLz+qLTXRgSf468t/Dv6P9XqNXYmhH3vv4Aa311Oj/5U+JaEOOKRf8XH18Rk8WvR51sC47uV9/3PmORthmmnxe07NLWud21ze6TNISU6klK6ZHVZYkTf/wXlUb6SeTH42ojtw++RFlWukvC2IbMEnBgHam5z76uRxJX5/4vxE/z9cm/q+spH8uuD+q8ktKFup957i+3GaI2nfoH9FjBg+cqommhZ4+vEJVlSeiKu/Pyx9Ve5/VzZMfiuh44/HoawNu0i6vNPfTh6Mq652PHtAer9Ftg74U8a0Ipky6X118VtM3RNcgVlee0jMHV2iCciLesjk3t4duzh2sd51j2rnzk6jKe3rhz+TI/3OP1NfO/5l8kl74JLoLueLiDzTfOaab2hRGvKvUgP5TdL5a6JlD0deRJzb+U+f4rK65MLLeZePx6BsDblapV3rvk19HVdZ7H/9ae7xG34iijlx34S/UwWf1z/WN98o3VFlxTE8dWqHz1aLJEaag3Nwe+nzrgXrfd1SlpZ82+G7jI2j//Pj/ZCR9/YLIP3BvnXC/HEn/XBhdA7x12zv6ROX6codRTfYMBw0rvEkTlKOnDyyNegrzrI3PqIvP6sqJkU1b8Xgz9LXe12mHV1qwJLqdYd/56Jcq9lrd1veGiHceu2bSz9TBZ/WPtY2P7jVUXnZYzx/fqEu8bSLe1jueduSJj38hr6T/vOAXET/mG+fdp0qP0QsLI297JGl70ft6p+awvpg7qMme4aCCgdM0Vll6+sDiqOvI39b8TZ18VtdeENl5Go9H3+j3BZV4pfmLotvR8c2F/6dDXqNvDo18yvqNFz2gdo7VE6tDTxkMp7q6TC8eWaPzPS0j3lG5fYf+ur5FL82pPqB9+1ZHVd6Lix+WkfS1CyP/3PjPcT9SpcfouQ+ja0fWbXxZS02lvtr5vIh3pxta8AWdp2w9E2U7Yh1HM7fPVm+f0UXj7oroMd6MZvp672u13WujbkfeWvh/Ouwx+vqQyHddnXbBL9TGsZq5KrrOwPKyw3rq8ApNMi01oP+UiB7Tpm0v3dR6gN6pOay9e1ZEVd4/Fj+sbMfqS1HUkW+e/zNVGaMXPopuFHndxpe13FTpP845T82at4roMaOGfVVDnUw9sfuDqKe5P7tttvJ80tUXRDZKZTwe3dztQq33+LRqfXRLIWYv/JkOeY3uHPX9iK9HbrjoV2rnWD25JrqOnqNHivRKWYmubt45os45SerYqUDXtcjXW1X7YuroT8GAVv8iq7rylF48tkEXenMjftMkqVu3MZqc0Vavntwa1c2lX1zyW3mt1Y3nRTet4z8GfUmHPUZzPn4w4sfs3PmRPlG5bm5/bsQXcZJ04Zg7lefz/6JE4/niN5XvkyaNjnwYPTMzRzd3Gqvlpkrbi+ZG/Lh3P/21DnqNvjQouq1qvzDhJ/Jaq5cW/ybix1RVntDsE1t0kbdNVFsMd+8+XhM9rfTSkXVRfZC9tPR38kq6aeL9ET9Gkr40+Es65DWavzjy0cjtRe9rkSp0U8dRUd064sIxd6qrT3qx6PWozvHFojfULco60qx5K93YdogWOiejGup/f9Fvddhj9OWC6OZw33z+T2UkvdygjtTtnXMa3F6kvOywXjm5XZdldmhyam9d3buP1wXeXL16fHNUdeSFZb9XprWaNiG6ef5fHHiTDniN3v8k8s6XouL5WmYq9YWOo6OqI5ec9wN18lk9syn8es1Qntr+mvJ9RpeeF/k6l2Ad+die0p7dyyJ+3Fsf/ULHPUZfGhrdWpDPn/djeaJsR8rLDuvNshJdltkxqvsg5edfoImmhZ47vDqqOvL8kt8pQ9KXL2x69Kyum/vdoH1eo4+WPRbxY9ZtfFmLTaX+s/N5EY2wBl049k518lm9sv21iB9jHUfPlb6vvo5Ho4aFXi8aSlZ2W93QpkAfOMejakfmfvobHfQa3TTgCxE/RpK+OP7H8kl6KYrpedWVpzT7+CZN8uRGde/O3r0u1nnK1iuHV0d1Qfzcij8r27G67vzGp383dFP/z2u/1+iDRZF/1mzY/Jo2ehzd3PWCqLZ8v3zCj9Q5hnbk+Z3vqZ/j0ZjhkQe07Jx2uqH1QH3oHI9qVsPsD3+qIx6jrw+P7h6oN469W9YYzY6iHTl+bKfmVO7VVdndwq5ND6Vnz4maaFro+cOroxqxfmnl48pyrKY1sUSgLuPx6Mt9pqrUK32y/K8RP664+AMtMZW6vuPIqOrI1RN+opaO1dMrIy/LOo5e2L1AhU6Ghhd+MeLHNc/K1fW5g/WBcyyqz5q3F/1GlR6jL46Ibiryl8/7iXySXvk0us5wKSUDWn0Llz+mIx6j6/vfEPVzXT/wZh31GM1b/LuIjnd8NXrz2GZN9LRWp3MKoypr/IhvKc8nvV7yTsSPeWXJo/JYq6kRTCWry5vRTNe0G6olpjLinp2dOz/RclOla6P8xZKkq8feJa+1enX5nyJ+zOvFc9TFZ3XeyG9HVdY55wzVJE+uXj22MeIPsg+W/EFHPEY3DLwpqrIk6fq+1+mQ1+iT5Y2v/wuqqa7QG8e36HxPa3XoMDCqssade5s6+axeLYp8bczryx+T11pNHR/d9FlvRjNd32G4FqkixEhTaLt2LdZiU6lpHYZHXUemjfdPP3hjWeR15OXit9TN539fonHOOUM1zrTQG0c31JtWU79zp35LMm/JozrlMbp+cPT3trmu3zQd9hgtXPrniI6vri7TW6eKNTmjXZNrbxqaMPJ2dfZZvV78dsSPeWXZ75Vhra4dF92UpszMHF3bZpA+sad0YP+6iB5TVDxfqzzVur7TmKjryDWj75A1Rq8t+V3Ej3l91wfq7TM6d0h0P7fOnYdrkqe1Xj+2MeKpV+8vfkQnPEbXF3w5qrIk6Ya+03TIa/TpishGf6orT+nNU0W6OKNd2E0fwpk0+rtq51i9tuWViB/z+uqZamatpk6IbkpTRmaWrm0zSAudExFPvdq6/R1t8Ph0Q+cJEfd6B9047h5ZY/Tm8sjD53PbXlU3n/93Jxrdu4/XWJOjV4+sjbyOLPqNDnuMbhwYXRiUpOt6TdEer9GiFZF91lSUH9Gcir26Iqtz1Pf/mjT6/6mjz+rNKD5rXl39dzWzVleOj+56JDMzR9e0LYiqHdm67R2t9dTounPGRV1Hrh35XTnG6PUoQtNrez7SIMcb9b3N8vLGaayy9NqhVRFPz/vXot+owmN0w/Do90CY1vtaHfQaLVoZWTtSWXFM/yov1SXNOkZdRy4ee6faOFYvb3o+4se8tPR3yrBWU8dFt5lVTstOmtqil96tORTxplvrN72irV6rG/IujqosSZo25r/lGKN/LY/sM1uSXt/zkfo7nib3nWgoL2+cxphsvXZ4TdRTOFMqoBlJDS+s3tj2qto5VuNHRF/Zx517mzr4rN7Z8V5Ex69Y+5T2e42u7Bn93c893gxdkTtAi21ZRBXQOo7+dXSDxpqcqHrigq4a4Q8+by+L7KbEc1b4pwRMGRX9ItQOHQdpnGmhd45tjqgCHj1SpE/tSV2R2z+mmy9e1esKHfQaLVsT2ZS5d4r/pXaOjfpCX5ImjrxduY7VG1tejuj4pav/oYNeo2t6RzZNoi5vRjNNyR2gj5wTEW0WYh1Hbx3bpHGmRdRhUJKuPNc/vej9VZEN9b+z4q+Bx4XelakxnTsP10hl6e3DayOqIwcPbtRiW65r2hbGVEeu7nm59nhNvZ0BG9vF8a0d76izz2rU0FuiLuv8kbertWP1XtFbER2/ZOVMHfUYXdG78QX9oXgzmumK1v30sXMioh29rOPonWNbNN7TUh06Doq6vCnnfluOMXorwjWmb674izzW6qox0W+uk5c3TiNsM71zOLIpZXv3rtRyVejK9kOjvoiTpCt6XKL9XqPV6yPr2X+nZK46+axGDol+V65o25FPVj6uox6ja/pdF3VZmZk5urJFL833HdWpk3ubPL6mukJvnyrSBd42ap3bPeryrhz6NTnGaG6Ea0zfW/uEjLW6fFT0m+t07nKuRthmevvQ6ojakf371mqJqdTU9sNiumH41J5XaLfX/9kfiVeK3lBXn3TeiOh3G7547J1q4Vi9szWynSoXLHtMZR6jz/W/MeqyvBnNdEmLnlpQczSizUIcX43ePVmsSd42TW4MFcrV5/5XdO3IysfltVafGxN6J9HG5OdfoKFOpuYcjLRz+iOt9dToyo4joy5Lkq7sOkk7vdLGLZHNRnl/z8fq6ZMG958adVkTR/2XWjlWb26OrB1ZuPwvOuExunpA9HWkWfNWuqpFL833HYmoHamuLtNrJ7boQm+bmD5rrh76NdUYo/kRtiNz1v1TGdbqktHRtyN5eeNU6GRozoHIRtB2716qNZ4afa7DiKjLkqRrul+qUq+0en3kYVdKsYAmSXVnJlVXntLC6iO6OLtbVFN3gjzeDF2ck6eFNUci2q3m3U0vqrljdUGUoz5BlxV+WT5jNC+C3r9NW97QTq90WdfzYyqrR4/zNcjxat7BlREdP//QGhU6GWFvGdCUi7uMV6nX3zvaZFnL/6IaY3R5QfSjFZI0aeTtynas/rXpxSaPraw4pg+rD+vi7G4xfUBnNm+hS7K66sPqQxFNT5q79TVlOVbnx/ABLUkXD7hRPmO0MIKF8Ju2vKHdXunyvMjWVTTUvfsE9XM8mhthI/XugeUqcLxN7gIVzpVdJqjIa7W96P0mj523/K+yxmhyYWx15IKR31aGtZpXZxQh3Ahaedlhfeo7oUta9oopDGZkZumCZp00v3J/RFNP3t32mlrEUUeuKPiS/4NsWdO9f+s3z9Yur3Rpt0kxldW718Xq73g0/8DyiI6ff3SDhqt5VFMA67q440ht9jgRrQ2bv3K6rDG6bOitMZV1wchvK9NavbOx6Q/NspP79bHvmC5pmR9THcls3kIXZ3XWgqqDEbUj721/Uy0dq/HDY9vGe3K/qao2Rh9H0I6s2fCiDnuMLuvZ9AZbofTtfZnyfdI7ez+O6Ph3j6zTCGXFdBEnSVd0Hq/tXqvikg+bPHbeSv+mM5cW/mdMZQXbkflbZjd57Inju7TYluny3H4xfdY0a95KkzLba17F7ohmh7xbPEftHKtRQ2N7bZcOuF6VHqOFEWzMs3r9czrgNbqke/SjFZI/NPVzPPogwnbk/WObNcpkR7zOv6FLO47QBo8votkh76/yr3u9fERs13UXj/wvea3VO2sb39VS8u8UudiWaXJu/5g6lZpn5eqi5p20oGp/RHVkbvE7au1YjR52S9RlSdLk/tdF3I4sX/NPHfYYTelzdUxlDep/jbr5pHd2LWjyWOs4evf4Vo01LSJen9vQpR3O1TqPL6JZZvNW+TcUuSTmz5pvyWutPtgc3S0gUi6g1b2wWrr2SZV5jC7Ij+2DRZIu7jNF5R6jxaubHo1ZeLJYoz0t1aJl55jKGtjvanXyWS3cs6jJY+dteE7GWl08MvrRiqAL2gzSKlU2OWJ36OBmrTZVmtR2cMxlXTTcf8+YD9aHv3dU0Ie7P1Inn42pB0nyzzMfn5Grj8p2NdmLunSNv45cHMNoRdDEnpN1ymO0cm3jr806juae2qHzMnIjXrDd0JBBN6idY/VB6QdNHrtwk/+XfeLQyNdxNHRRm4FaqcomR2MOHdysNZ4aXdRuSMxlTQqMTi2M4IJ4/t5PleeT+ve5MqayWrbqojEmR/OPn94VLdwI2uLVs1TpMZrYK7JNJkK5qOclOu4xWrmu8UXO1nG0sGyXxme0iWqtT12D+l+r9j6rj3ZHEGI2vCCPtbooxosPSbogt79WqKLJOrJ791Jt8ji6qENsnTySdHGgLs9fM6vJYz/av0x5PqlXzwtjKqtlqy4abXL08Ymm7z+1aM0TqvQYXdw3uuktdU3qPlknPEar1jVe/301VZpXsVeTmnUIe4/Bppxb+B/KdazmRTA75MMts+W1VudFsR6sLuPx6KLcflpmy5scjdm3b7W2eBxd2GF4TGVJ0vkF/yFJ+mTjC00eO2/vIvX0KaKde0MJ1pH5x5ue9fLRyumqMUYX9ZsWU1mSdHGPyTrsMVqzofHX5vhq9En1IZ3fvFOjtxVqzLkFX1Qrx+qjCD5r5m1+WRnWalIMM5WCJrXupxWqaPIWEEXF81Xktbr4nMjXizc0edjXJEnzVje96dCCgyvVz/Goa9dRMZXVtl0fnassLTy+pcljP139D38d6R97HZnQbaKOeozWN3FPQF9NlT6o3KcLmnWKaQBD8teRSNuRD7a9qWbWanyM1yPG49HFrXprsT2p8rLDjR5bsvMjlXqlC+OoI5MG+5e8LIwgWM/bv1R9fSaiHTdDyc3toXOVpfnHoruvbsoFtLq94B9t/5eaWasxMfYgSdLIwv9QM2u1qKTxDS527vxIO7zS+Z1iG+KU/BXw/Owu+rTmSJM97YuPbtJAmxH1GpW6Lhx4gxxj9NHqWY0et2jdU7LGaGKMgUny71bT3/Fo8ZHG1yFUV57SxzVHNTG7a0w9SEHjO47Qbq+0s7TxXtuPit9VM2s1KsaRGEkaN/Q/lWGtFmxvfL5+0Y752uc1mth5bMxlebwZOr95J31afajJdQ8LDq/VIMcbc0+0JJ3X+3NyjNGSNY1P4fkk0IidH0cd6dzlXPV1PFrQxKhudXWZlvhOaEKL7nHVkUmdRqnYq9OjMTb0CNrCHe8p27EaNTT2G0qOHfJleazVp0WN3xNne9H72us1Ou+c0TGX5fFm6LwI68jHRzep0GZGtRi9oUn9r5PPGH2yalbjZa3zTyedVHBzzGV17z5e+T5p0cHGpzlWVZ7QIt/xuOvI+PZDtc1rm9xQ4JOSecp2rM6N47WNG3aLvx3Z1vhUqI1b39BRj9HEbrFdDEj+Ud3zMtvrk8r9TXZiLTi+RecqK6bpjUHj8y9TjTFauq7xTqyP1/p3+z1vYGQ794bSvft4dfdJH+9vfDSmqvKEljmndH7L/DjbkREq9lrt3r200eMWlH6gXMdq6ODPx1zW+KFfkbFWn2xrfLr0hi2v6ajHaFyX82IuKyMzS+My2uij8j1N1pFFx7dpqJpHvY6prol9r1aNMVq8pvEL4o83+KccXzAk9uu67t3Hq2cE7cjJE3u0XBWa1LpfzGVJ0nntBmujx2nyVhqf7lqolo5VYRz1f/wQfx1Z2MSo7vpNr+qYx2hiXmyzJ6TT7cinkbQjJ4o02rSI6BYd4UzIv1RVxmj5uqcbPe7TQOfM+EGx/6716XWJOvusPtq7uNHjKsqPaIUt14RWvWMuS5ImdRimLR4n4nWYUkoGtNOWnizWUGVFtcNhQ1nZbTVcWVp0srjR4z4JzB2dMCj6xb91nZc3SSc8Rms3hZ9DXF52WKtUobGtYr+okvwjdq0cq2VNVMBlexaphWM1qH9kW5mHM6pFd610ylRdeSrsMeu3vK5THqMJ3S+Mq6zgL+YnGxrvjf7kRJFGmJyYR7Qk/728hqq5lh5vvKd96WZ/j9aYAbH3jknS6HNG64jHaGvRu2GPqSg/otWq1LjW8TUaQwffqBzH6tPSxqcLfbL7I7VNQB05r2W+VtjyRm8lsHbDyyr3GI2L4wJVksYGwuTSzf5pjuFG0JaV7dJwT07EWxCH0jq3uwpsphY10UP2SWCKw4TC/4i5LEka33W8jniMNm8NfyF34vgurTVVGtcmtmlCQYUDpinbsVq2p/HpQsv2r1B7n1WvnhfFVd6YnG5a6jvRaCfW2o2vqNxjNL57bNN7g8b184+IfdrEBcEnp0o0ytsyrjrSslUXFaqZljXRjiwJ/EzHDo5+U6O6xp4zSge9RkU75oU95vixndpsfBrbNvo1rHWdO/gLEXV0frJnkTr4rPr1vjyu8sYF6khj07xWrX9eFR6jcT0ujKus0X3864mXbZrd6HHLKvZrVEZuTNMbg3Lb5KvAZurTo41f6C/a8oYkaXyc7ch5ncdoXxN15NjRYq03NRrXZkBcZQ0ZOE3NrNXyJkb+lxxcrW4+RbXjcihjcrppWRPtyIoNL6jGGI3vFfssLEk6r5//c3HR2ibakbLdGu3NjXnUU/KP2A2wXi1r4rNmUaBDeUxB5DschjK60wgd8BrtKAk/9fDgwY0q9lqNax/7DBtJGlHwRWVaq4+Lw1/7SNKn+5eri8+qR/cJMZdlPB6dl91Fi2qONtrRuWrDC6oyRmN6xPe5NjJQx5Y3cu3fUAoGNP+l1amTe7XB1GhkbuwjTEFj2w3SJo/T6MYMKw6uVgefVc8e8V00jghcvK8umR/2mDWbXlZ1AiqEN6OZRnhbaWnZnkaPW1a2W8M9LeL6YJGk0V0nqNxjtG7z7LDHrAp8gA+P80K/R/cJ6uizWnlwTdhjjh0t1lav1di2sY8wBY1s3VsbTLXKyg6GPWbJgRXq5LPqnhd7r6YkjRnkX9C7ZEv4ravXbHxZNcZoZLfY1igGZWbmaISnpZaWNT7tZHnFAY3MaBPT+pu6hncZqypjtLGRYLG4aI6MtRpVEN8Fap9el6itY7V0n7/n29GZAe3YsRJtNT6NiDPESNLY1n20RlWN1pGVh9ari8/GPJ0m6Nx+/nn+q4vDr+dbvv45OcZoXBxTwCV/L+owT46WN1JHrONoaeUBjWzWNq7RCkka022CTnmM1jVyQbyixH9BeW4cPdGS1L/v59TKsVqxP/w6zIMHNqjYK42N8+JDks5t2VPrTVWjt3ZZcnid8n0m5nV8QWMG+j9rFjfyPq7a9IqsMTq3e+y97JK/o3OYsrTk5I5Gj1tZdUijmrWLu46ce84onWqiE+vT4nfktVaj4rxA7dv7siY7OvfuXaldXmlk++h2dw5lXOs+Wq3KRqd5rTyyST19imv2hCSN6OsPn6u2hR/5X7b+eVljNKZXfKG6WfNWKlRzrTgZfqq046vRsppjGpV1TlxlSdKYruN10mO0YXP4EetVuz6Wx1oNiWNmiOTvDG/hWC2PoI6M6ZiAdiQnT6ud8kbD5+LD69XP8cS8ji9odOC9WdLIdd2Kjf7QcW7+JXGVlZ3TTsOVpaWNtCPWcbSi+qhGNu8YdzsyvNO5OuExKi4JP813UfF78lqrkQXxDc4M6n+1sh2r5REscQpKrYBWp9t75YYX5RijkXH2jknSkG7+FL6+kUZqZeVBDc9sE3eF6NipQF190urD4XvI1pT67/EytH/s6x2CRrYbrGKvDTv0fvRIkbZ5rUa2ja93TDp9sbSqkfC58tAGdfUp7osP4/FoSGau1lSGvxheE2iYh3aPL1RL0oi8SaoxRqs3hF/kuaLqsEY2ax93HenadZS6+qTlh8JPu1oeeI+HD4r+9hINDc3tre0eJ+xOTYcOblapVxoWZy+7JA0LjFis3BE+WKw5tlW9HU9c0/Ikfx0ZmdFGyyoOSJJsiCmOKze8KGuMRvaMbfF7XcO6jZfPGG3cEj58rqw6rOHN2sddVreuY9TOsVrVSB1Zs2exvNaqIMKbfDdmZJv+2mJ8On5sZ8jv7927Qnu9RiM7RL/j7BllDfTX6dUl4Xv1Vx7ZpHyfiWsKuOSfLjrEk6M15eF3KVsd2J1tWAI+a4Z3Ha9qY7Q+zEWjdRyt9J3QyOzY1jnXlddtvDr5rJY3Ms1rRelCea3VkIHxjfpL0rBW+dpiasIGi/371mqP12hY+9jXOgcN7+tfU7yqkU2pVh8vUn+boZatusRVljejmc71ttKyRurI8k3+UfoRcY4MStLQruNU00gnlnUcrfId07Cs2KeSBeX3mKRWjtWqA6vCHrN6z2JlWKuCBFyPnNuqlzaY6rB1pLjkAx31GI08J/alJLVlDfDvgNpYO7Lq+Hb1t964puVJ/joyxJOjVeXhO8PXBH6ew3rEth6yrnM7j1a5x2hTmKmwjq9Gq5wyjcyJfUpqUM8eE9XOsVrZSDuyfPcnynKsBveLbYOQuoa06qnNpiZsJ9au3Yt1yGs0LAGdIcP7fE6StHJb+NvWrD7hb0di3XsiKDMzR0M92VpxqjTix6RUQDM6PYK2LpBChw6YGvfzDu7j3xxg/e7QyfbggQ0q9UrD28X/wSJJQ5u11Zqq8LtGrju6VXk+xbw7Tb2yAj2j67fNCfn99YFGY2hefCMxktS+Q3918VmtPbIp7DGrq49oWLPYpxvWNaRNP+3w+kNmKGt2fypjrQb3jX2DkKBhgQuYVaULQ37/0MHN2uc1Kmgb/0iMJBVk5mpj1dGw3191bIv6+ExMWx6fUVaXsbLG1NaFM8oK9Jwl4gK10zmF6uKzWnU49FpF6zhaV3NCBVkd4y5Lkgrb9NMur380VSGmOK7ds0Qea1UYZw+qJBUGGvu1u0LXkb17Vmif12hY+/g6JyR/+Bzqba01gfAZytrjReprvXFNAQ8a2u08WWO0IcwH2frASEZhnCMxkn9UoJPPat2R0FN4/CHmuIYn4AJVkoa27qMtxhd2g4vgBerAvp+Lu6zhgXZk9c7QPba7di/WcY/R4ASEGOPxqCAjVxsb+axZc6JY/W1GYupIIFhsCEy/aygYdIfGOTNEkvK6jVV7n9WKMBeN1nG0zilTQXb8IzGSVNi6l3Z4nLCj4+v3r1Iza9W/T+wbDdWWFdgYaW1p6Cllpbs+0WGP0fAEdIZ4vBka6mmhVRX7wh6z5kSxBtgMZWW3jbu8oV3GqMYYbdoeujN8/Y75kqTCBHSYdepYqA4+q/VHQndOO74arXHKNCy7a9xlSdKw1r21xfjCdnSu2btEmdZqQN/468i5gRlIq8LMoCgu+VBlHqOCDvGP1hmPR4M8LbSxsc7wU7s02DSPeVOjuoZ2Hu2vI2EGTFYHPoOG9YpvtE7yd1DkOlYr9q8M+X1fTZXWOuUamh1fJ09QQcse2mJqGl0GVFdKBTTp9IXVxmPF6u5T3KlW8gehbj5/MAplfaAxGZKAECNJhW0HardXOnw4THnVR1XYLP7GUJL6Byrx5n2hF1Sv37tEkjQwAR8sklSY2UbrwlwQHDm8Tfu8RoPbxLcgNygYKteGuSBYe3y7ejueuHtQJalV627K80mbTxSH/P6G7f4APKhr7BuE1DUot7dKvAq749WmmpMa3Dz+iypJKuznD7BrAyO3Da0JXKAO7h9/75gkFWS20aYw4XPf/tU66DUqaBf/aJ0kDezsv7fNpqL35NQbQfPbeGKH8h1PXGsUgzp0HKRzfFZrD4fuoFgXqCOJuECVpMLcPiry2pAXBNZxtMY5pcIETBWSpAGBqSub9obeKGHD/pXyWqv+veObThlUkJGrdWEuCPbuXaGjHqPCBIQYSRrSdZwcY7Rua5hgcaJYA21mQi5Q27Xrq04+q83HQu8KuC4QdAt6xB90JWlQ63wVhxkdt46jTU6ZBiWoM2RIP/90udU7Q69nXb3Pf4GaiKDrD5+ttLEq9EhMyc6PdMJjVJiAXnZJGtBpuKwx2rI99G52m8p2q6/NiHm3vLo6dipQp0Y6OtcV+c+hMMbdSxsa2rq3thlfyPDpq6nSWluhITmJCTGD8v2jR5t2hV7PuuHAajV3bMw7s9YVrCPrKkK3I6W7PtUpj9HgDvF3mEnSsG7nyTFG67eE3kxs1ckSDbKZca1jDTrnnGFq41htPhJ658h1xf6lJAVxrgcOGtSyu7YbX8i1446vRptVpYE5iQkxhYH2YU2YmVhr9q9QlhP/OlYpUEc8OdpYGbqjs3jHBzrlMRrSaVjcZUnSoI5DVWOMtjWyNKGulAtoQZurj2pAZmzbVIcyOLONNlQfDV3Wfv/wf78Yt+ptqH9n//D9luIzF1QfO1qsXV4lLMS0at1N3XzSpjAL09cf3eYfrUvASIwkDW7TVzuDIxYNbAp8sARff7wGBMLn1v2hp2dsrjmhgc3jn05WW15ma22uCj3sviEYdBPQaEjSoM7+Xf42huhFOnx4q/Z7jQa0iX/9peS/aOzss9oQpoNi66ndync8MW8L31C/lt1V4rEhp7kEQ8zgvNgX/9Y1MLAwd8PuxfWmOAZH4jfWHNfA5okZ0ZWkwsxcrQ9z0bj5wGoZa9U3Ue1I4ENj244zR2N271mq4x6jggSM1kn+0fGOPqtNYerIxhM71MvxJCTESFJhm94qDtNBsTmwXqB/l/g2EQgaGLho3LL3zHVo1nG0yVZoYHZiRuskqZ+3hTZXHgr5vXX7VyjDWvXrdWlCyiroMkrWGG3aduZUwAMH1uuIx6h/gj5rOnQYqHN8VpvChM/NJ3ept/Um5AJVkvq16KZi4wvZG72uOBhiEnOBOjDfP6KzadeZG1wEg+7ABAVdyd9Bsb4yTDtycJ281qpPfvyjTJLUv+NQWWO0vfjMqYAlpR+rzGNU2DH+0TpJ6tz5XLV2rDaGCZ8bTu1Sf2XGtYlGXQWtw0/f37LTP9Ohf4I6VQcERv22hOgMt46jzbZSgxIUYozHo/4mS5vDzKBYf2CVshIUdCVpYKdhqjFGW0Pcw7R016cq9xj1T8AyGUk655yhaudYbToaOnxuKdujvgmsIwNadNM24wt5f8o1gXZkSILa4wE9/JtabQgzE6uhlAtoVlZlJ/erxGM1oHV+wp63X6vu2uWxIW9YvfX4DnX22bi2mK1XVuCXJtQv8vYS/w+uT4IaRMkfLMKNWGyoPqpBmW0SVtagzv7ND7YUzz/je5sCF0AD4lxIGpTbJl8dfFbbjhef8b2TJ/Zor9eob6vEBE9J6t+yh0o8TshgsfF4kfJ8imur6roGBYLexj1nLjoOBt0BgdGhROjjbaGiMB0UW2tOqE+zNgkrq1/HIf4LghA7h20/6N+Ctn+C6kj7Dv3VyWe18egWOXWmOEr+qbF7vUYDc/skpCxJ6tuyu3Z6bMj585tPlKinYxIyWidJfQMhduueJWd8b3ugh7rPObHfk6yh/t4W2hQmWGxIdGdIJ/95bwuxeHvTfv+NRfv3Tkwd6dhxsFo5VtuOnhksDh7coOMeo7658e2WWlf/luEvCDaf3KU+CQwxA/P9FxYbQyxM37TD30E4IEFBV5L6eltoW5gZFFt8p9QvQdPbJal/hwLVGKPtIXratx7aIK+16p2ggNal8wi1cqw2hJgul+igK0l9W3bVTo8TMnxuOVmqno4nYXWkf2Djsy27z/ysCbYjfbvEfluQuozHo4EmS5vKz5xObB1HG22FBiZoWqok9e/kD5/FO8+cHRLsMOuTn5gOs8bakX37Vumkx6hfgjpVJal/i67aouqQO5luKtuT0KA7KPB7tCnELJvNgd0dB3Qbl5CyJKmvydK2itAdFFt95eqbwM+a/h0KVW2MinecOfK/7chmNbNWPROwj4Ek9ex+vrIdq42H1kd0fAoGNH+PsTVG/RMYYnq1GyBrjHaEuK/WlqrD6uttmbCyOnQYqHaO1ZYQv8jb9/kvPnp3S0yvjuQPFjs8zhkXjRXlR7TLY9UvgSGmV+CXtCjEqNbmY9vUwWfj3lWorj7ebG0LcdG4vcT/y9Y7QdMXJH9PoxNmeLqo+rj6ZCSujrTv0F+5jlXR8TN3M9ocDLoJmIMd1Cens4rkO6OxLys7qFKv1KdlYoKnJPULBIvNIdZ8Fp8sVSefjXvRdl19vDkqqjpyxghacAR7QAIWpAf1bjdATph2ZHP1MfVLYGdIt66jle1YbQmxVmv7Af/mIb3j3HW2rgEt87TN+M7YOezUyb3a7zXq07pnwsrKD1wQFu87sx3ZdLxYeQma3i75Lxr7mebaGqI3elugl71Pp+EJKUuS+rcvCHtBsMNXpl4JnBnSseNg5ThWJcfP3DlvU6CDsH+CRnQlqXdOZxWp5oxtq48dK9F+r1G/1vFt/FNXv27jJUlbQkyXKz61W90dk5A1MdLpOrI9xHS5rcER3QR2mPVqO0A+Y1QS6nqk5oT6JbDDLK/bOGU7VptDbFy27ZC/w6xXgi5QpdPBomEdOXR4s054jPrkJq6O5Afa9lDtSKI7zIzHo75h2pEtO/0hpm8C60j/dgNV4QldR4qdCvVKYIjp1nWMMqxV8bHtZ3wv0UFXknpnd9J2VZ1x77Ujh7fpkDfBHWaBXbdDhc/tZXvV03rj3uE8yOPNUB9lalt5+DWf9Y5PSKmfGSMrq+LAxX9+lwQ2iF38Iz9Fe+qvsaiprlCR8alfi8QMTQf182Rrc4jGvujoNjV3rLp2iW8b7rp6tOkjxxjt2lN/Cs+O0o9ljVGvdokLTJ3PGa4sx6ooxC/ytspD6ueNf45+XX2yz9E2VZ/xi7wtEGL6BD7EE6F34L4sxfvrL0z31VRph/GpV05iLhiD8tVMxSHqSPGJErV1rNq2S9zIT5+2/VTpMdrdYDSmKDB9rl+HxKzlkKTueePV3LHaGmKtVnHlEfXyZiesLEnqkdVBJaqpN4JmJe0IjNb17JqY3mFJ6h34AN6+u/77WFZ2UDsT3BkSbOy3hLiNRtHxYrV1bNw7YdbVM7eXaozR3n0r6319R6n/Ajk/QVNcJH/4zLBWRSGmVG6vOqa+GYkZPQjqk9VRW23lme1IYPF43wStCZOkPoG2vXhv/RkUVZUntNtj1bNFYtb7SP6Lxp7KUHGIEYsdJ0rV0WcTNuovSb3b9FGFx2h3g8/RLUX+zpB+5wxPWFn5PScpw1ptPXTmhkPbq48rP8F1pEeztipxKs/4+o5A+T0TNFVOknp38QeLhtcjZSf3a5dX6tcqcZ0hHm+G+ipTW0LsUrn9RKm6JLjDLL91vio8RgcO1h9FKNnlH8HrmaC1pZLUPW+cjLUqDrFWa2v1cfVNYGeIJPXJ6qBtIdqR4DKMvj3ju29jXX0DyyCKG9SRkyf26IDXKL9VXsLK8mY0Uw/Hox1lZ9aR4lO71TWBQVeSeuf21kmP0f4D9XcpDnaG9O2UwMGZnheEbUeKak6qd4LrSM9mbVTiK4/o2BQLaH4lR7fJWKu8rombmtEz7zwZa1XU4KJxz94VqjZGvRI4NC1J+VkdVaLqM76+vXyv8uWN+35TdXXv6G/wShuMagUvEHom8EPT481QvrwqKjuzh6BUNeqRwF4dSeqT20dlHqN9DXrIth/ZombWqlsCL767BtbOlR6rv55v955lqjJGvdokLjBJUq/m7VTknHmfk52Vh9VdmQktq09gaurW0vprLLbvDY7oJu53zZvRTHnWo9IG4dM6jopUrZ4JriM9W3XXCY/R0ZP11zOVHCtSprXqnMiLxh4TA+1I/d7oXbuXJrwzRJJ6N2+r4hCNfVHlIfUyzRNaVvcO/nakpEGwKAm0Kz06D09YWRmZWerheFTc4ILAOo5KjaMe2Ylb7yNJfXJ767jH6NCh+u3/tmNFynWs2rdPXPjMCwS00gYzKHaWfirHGOW3TdxUOUnqmdlaJb4zp1OWVB1Rd09i60ifwIjFtga9+tsDQbdPnPeIrCszM0fdHKOdDXqja6ortMPjqHeCO1V7tuymg15zxnqmkuM7lO1YdeyYuGDRK9AhsP1wwxDj7wzp1S5x9VGSejVvqx0h2pHtVUfU25uYUcig7u39G0CVNAgWOw76L8Z7dkncjIZmzVupq2O049Tuel/31VRpl8dR95zEBU9J6pPbS8c85owN4LYeL1ZHn03IztxBPbr5r21KDtefQVEcGPXv1T7++7/W1TOjlXZUn7lJSGn1cXVPcKdqn8Bn8rYGN8cuClzn9UnQGnXJ3450cYx2NejEqqw4pl0eq14tErO0Kahniy7a61Gj98IMSrmAZmVVUrZHXRyTsDnYkv9Gm90co+0n69+jIBhq8tonZle5oLwWXXXcY85YBF9UcyqhU1wkqXvg4ntng1/kHYGpUT3juBt7KL0y26jIV3/u/Inju3TMY9StZeJ6hyUpL3DhVNogoO0s369ujidhc7Alfx3p5LMqPVX/A7ooMHe/dwLX+0hSfqvuOug1Onmi/gjJTl+Fuidwiosk5Xf3XziVNOig2B2YYtk1QRu7BOVltFBpzcl6Xzt8eKtOeIzyEzhVTpJ6Bn53d9R5bVbSjvL96u54EjZ9QfLXka6OUVGDMFga6AnslsDeYUnqln2O9nt0xu5axbYyoVNcJKl7sIOiQYgJ9k73SOAaBEnqldlKRQ0uCA4cWK8Kj1H3BI5ESlL3QHAuDUwxDyqtPKweyoz73oZ1tWrdTW0cq50N6khxYMphfgJ7hyWpR4su2uWxZ6xn2ulUqkeCdgsO6pnnrwM7G0y73X2iVBnW6pwEv7Y8b45KG9SRXbuXqObf0KnaMxCKSnbVn5pdUnFQPeRNaB3JyemgLj6rohMNrkcO+Ef98zombkaDJHUNtCN164h1HBWrRr0SuEGOJPUItiMH649Y7Di6XRnWqksCpwFKUr43R8XV9S+G9+9fo2pj1D2BI5GSlBfoXNnd4HqktOpowjtDctvkq5VjtbPBNWtRYIZDrwStGwzKz+mkEo9zxjKInapW9wRutCVJPQODLzsbXI+UnihRM2vVqVP8tw+oK8+brV0N2pEdpR/LMUa9E9wZ0qNNX1ljtHPXmUs8GkqpgOa/D5pUUnVMPRKc2CWpuzdbuxv8kIIXI3kJ7GWXpK65+ZKk3XtPXxD4aqq012OVl+AGsV27vspxrHY2aOyLT+zSOT6bkHvg1NWjRRftbnBBEJxemZfgUaZuHf2/qLsbhM89NafU9d9QR/I8zbWzwSL44sA8/fwE9g5LUn4gWAR7xCT/B+hej1X3BE+nbN0qTy0cq92n6ofB3WV71cFnE7Y7X1BeVgeVyldvKsjOwBbuPRPcGdIz0EGx40TddThWJdUn1COB6waD8rxZZ7QjuwJT9fIS2DssSd1ye8oaoz17V9Z+raL8iA57jLq1SGwd6dSxUM0dq5IG6yJ3nNylzv+GOtIj5xzt9Dj11qrsDExd7p7AES1J6hoYHdxzqEE74itXl8x/Qx1RpnY22KVvR+CzpmeC25Geuf4p7qV1pi+XlR3UAa9R95aJHWVq26a3shyrPScbtCPlB9TFMQntDJGkvKz22qn6a5l2BaagB0d8E6XHOf5dU3c0uPguqTmpHgmeTilJXT1Z2tPweiQw6pqXwOUdktStdQ85xmhvnftBHTu2Q+Ueo64J7lTtfM5wZVirkgYzUUrK9iovwZ2qktQzu6NKGtSR0kCIyUtwO9Il8Nm1q8F0uT1OpboluONdknooQzsbzETZcXSbPNaqewKn3EpSz9zeqjJGe+rMoDh+bKeOeoy6t0zsKFOH9gOVYa32nqw/8llaflBdHZPQGWaS1K15W5U2mNG2K9AZ0r1j4vYxkKSegXC5o0FnYCgpFdAk/wjajn/DNChJ6tystfbYBj+kEzuV8W9I7N06+Iefd9WZh33o0GbVGKMuCa7sxuNRd3nP+EXeWX1UPTyJbQwlqUvLbrLGaH9gjY9Ut+cvsZW9S+fhMtZqV4OLxr2qUZfmbRJaliTlNWuj0gbrEPae2qdsxyo3N7G9cd0CUxR21xmx2LVnqRxj1D2BC6klfx3pYj3aU1E/fO6qOqquJrEXVZKU1+r/s/fe0XJc15X371Z1Dq9fzsiZBJiDSIqUGJRlJStHy5YsyR5nj8c5yPJo7BlLHkkOkmVZOUtWzoFiziRIgiCIDDzg5dA5V31/VN3u6n7dr7tf133ro0ZnLS0CEIBCV1ede87e++wzQUYTLK9UD+kZWxYy6nKDNj5+ObppcsZREJuYnFUglQMY8fYwY9aijFPJc4QMk95ed7+3CXtf3DnHXOTMrPXjUZdZJk33MGlqnK0bgj9biCvJI6PhMUpCsLxcnWc9a+fLTW4DZvbfd87hCGsaBtPCZDzgLoAFsMnbw1SdpGw6M0PUcM8tWIZUf5x3zHNM2TOSm11mmYSmMWpqTNc5sJ0rJhjX3X9GNkUmSGqC+Eo1/8/GTwEwOuiuxGuzPc98xmH/XSrmmNJMNrsMmAGMeCPM1p01U6lzxAx35wYBJmwG+dxc9RmZtnPKuMtnjccbYMIQnKmTpp4tJdnkcXdGHWA0NEJaq1WinLUbKFV5ZNpRjxSLGWY1GAu5f9Zs8vasmmeayS4waOCaQY4M2cw688hZG/TZ7LIsW/f4GDYE07laA7ipUpIJl30MwFK0LWu18uUZmUdcZqul0uTsUuM1As542jVoOcokNcG4y/pygLHgMPO6qJELTWXnGFeA/E3YNP85xxzCtP3gj7qoU5axyRNlqlQrcZk1Cox6e1y/1liv5bAz45AwSORvwmWpnM8fZciAc46ZN8kgjLmsLweYDI0yp4sa/fBsfokRU7gqcQEYtmca5h1SqClF6DDAmCfEdLlWdni+nGPC6z46LKUg56araNxs8izgfkL0ekMMGDDnKHYSokheE4y7DIYAjAYHmdeocTucyi0w6bIMCmDSRvWnHEPw03bxMdrnntNV5XqeMOfqpKmzZoFRn/t5ZCRqFaGzDhDrbOIUmmky5rKcOBQZps8wOe+QLy8uPUVeE4wqOGsmQ8NMa2aN1f5cIc6I6f6RPDxgFd9zDifHszKPuPyuAYzpAWbqnpFzZpFJl+WUAJN9VoM55ZhnmrHz5bCLDr4AwVA/vYbJnGOh88Lik5SEYNxFQwYZI4F+ZjWzRmUwlV9iEnfZA4BxG4A+51CiTNvA4OiAu3Oz0FiaOkeZEZ/7LNOI/d3MOfNI/BQel+ePwZIvRw2Tcw4lytzc4xhCMB5x/xnZFBpdlUfmiwmGhbsz6gDDdhM/69hxWwHeXSYwAEY1HzP1ShRKTLospwSYsEGIKYeR3kx6Go9p0t/vbvPZE9tE2DCZbeDTUB9PuwZtRSsDMOQy7Q4war/Isw4UaaqYYFKBVC4W20LIMDnvoHCn7eToNoMAMOSLMS+qid4ol5jXYDjg/sM+Omj9+2eWq83nVPo8UQXIH8CE5ue8Y8+bZBDGXGYQAMZ7NtVcA2CulGbYZX05WHIhr1n7Is/ZyJzb6DDAuK+P85QrPy+XCkxrJuMKWKYJu3iacrCs0+kZQoZJNOp+0zQoPMyJqs3+oma9C7IJcDNGw+MYQjA/X/1s50ppJhXIKYeGLsRjmpyzm1uAmRWLcRpT0MQP+XqYdzwjRrnEggbDCg7NkT5LDj27XB24n87MM6IAHQYYw8P5fJVBnpl7DIDxXvcb3fHoJspCsDBfBbFmS2lGFJw1Q3aumHPIDucS1vMy4rKiAWDMF6tRomQzSyzqgvGwe/utZMhZrClH8T2bXWCgbCp5RgbRmS8mKj+fX7SAkeEe9/PISGiUoqg1nJgqZ5hUAKqODF+EXpdHpm0J4pjLc4MAQ94oC2ZVdljIJ1nSBMMK2OoRCRg7lSjZeUYM4bqcEmAcnWlHHpGM07jLhT5YaqWyECw6pNlz5RzDCpjIEfs8mXMAxnP22Myogjwy6o0y4wBVk4lzJBT4GEDVSO+c48yeyS0yokBOCTBkaszmV1r+vqddgzavW/8dUpAQx+z5qBlnsjdLjCpAdYSmMW5qnHfIriSDoCQhBgdIaqKyiHtp+RglIRhxeU4FYNSeC5txJPvFQoJhBegwwLi3h/OOF1kyCGMu0+4AQ3YTv+DQz88ZRYYVsExC0xg2BHMO2eF82mrWBhSgmmPhURIOmn9+4Ql16LCdEOcc7loz+SVGTc11lglgSA+S00Tl5wndusaQy5JDgFH773QyyLPCYFhBHtE9PsYMwXS2iurPJKcQpsnIkPuo5qC/n2VRZQeXlo5SEoJhBXmkUhA4mJ+FUopBBegwwIQnwnmHXEhKi8dVAGY2CLGwUpVvzpklhn3u5xF/IGYxP9mqNHU+M4dumvT3uStxBBgLjbDgUKJM27MW4z1bXb/WsP3dLDiAzplCnBHhflEFMKT5mS852Ar7HBiyZ8rdjNEeC2CUDLJpGMwKk1EFYIjHG2DEEEw7npHp1DQBw6RPAUAxFOhjUaNiOLFgv2sjLs9EAozY0jwpfQVYLKUZ1tyX7gOM6xHOO9RK03aDPe4yowswGLWalUUHGK7qrAlFhonU5ZGF7AJe06Snx30wfCwwyKxmVmaQpV/DhMuSW4Ah2whkwdF8zhSTjCoA3gFGdD/zdUZ6jeJp16CZwiqyhhQkjTEbaZy2H3ajXGJZgwEFs0wAfbqflVK1IJhOzxBRMIMAMGTLdOYXLPtvmfRVIH+hyDA9hsm0g/lZLGcZUJQQ66Ug0zbiPuai7bGMQfsgXrARaKNcYk4zGQm4PxMJMKz5mHPQ/Au5RXoM01UHUxnjtnvitM0OqkSHo9FJfKbJYraqMZ8ppRlVMKcCMNikgR5WgGqO2lKQGfs5LObTJDXBgAK2GmBQ87LksFGfzs4pmUEAGAoNYzpQ/VkbDFHxjPT370I3TWYdcqFFI8+AApYJrDwy41AZTNuN4eiI+4DZoP2uzcctRrxYzLCgwUjAfbYaYBiduUKV+VnILzFgoAQdHrMBnRnbTGPRlkSpAFVjsS3odXlk1sgx4rI1vIwhb4R5Bzs4bzMIQy47vcFqBjmbWSCnCQaCas6aAeFhydF8TucXlQFmg6FhykKwYj8bc3aDNqSg0B+22Z1ZRxO/YBQYVJVH/DFmnXlESvcV5pEFO1dlM0skNcGIAtULwLCpMedgfhbyywwaKHlG5AyyXH2yYDfYKsAQuVN20SFfnjUKjCgwiAIY8kSYM1av2aqPp1WDJhw/HhxUkBBtHa18oeLx05SFYCDoPu0O0KuHWHEk+2mbQVAR8nBcsJvPOXvwflQBggowil5D4S4YBQY8ag7N/kA/JSFI2/MjC3ZjOKRABjhoH5oLtlxIMpHDCuQ7AMOecM3s1GIhwZCqZ8ROfPM2qr9sH2h9Cua0hKYxYMCi4xmZMUuMubw+QMZQkwZ6UAE7MmbPhUkGWRqh9Ctq4vu1IItG1ZRktpBgVBHLNGAjtgt20SjzyIgCwEz3+BgyYNZhOLFAmQFFh2a/v5esVp0vXc4t4TFNehQwyNU8Yr1jiwtHMBUxkQBDWoA5RxM/X0gxqIplsovsefvZWExaqHS/guJb0z30G7DokJTNUmZUEag65O9nQaMCBs5n5tBMk/5+98/REZtxmbWb+EV7zrRfgdkEQJ8eYNlx1syV0ozoahiEIftMWbDHOmbtM2e4z12XZ7Dm1PsNk1kn8yMMBhTMzYKVR5KaoFi0wPfl/AoRw8QfcJ/VGrTVGgv2OzZnS/SGFDCRAEO6nzkHO7hQVKdokKDf3KJFKizZNVe/y2ZsYM2pxwyzkkeMcolZzWRUFfAe6Geubr60UTytGjQZPkWHZiDYR8QwWc5LGaCVNPpDaorvPl+UFapf0FI5y4CihChf5DlbkiFlQ8MKClSAET3IrKMgWBQmA373ExRAr91Ay0J4OR8nrIhl6u3bjsc0mbeT/ZzNSKqYZQIY9vcxJ6ov8nw5w6CiZ6TPll3FbRnlclomRDWfbVB4WLCTfamYY1EXDCtKiIOOokaY1ixav6FmTiUSHSNgmCzZjcWSXXz0Kyq++71hlhxzYctGgX5VTKREbO2isZpH3AdDAEaEj1l75qdcKrAiYFARE9lnP3vLy1YeWSkk6FOEDvcP7EaYJgv2uzZjM5EjCtBhgBFfD3OOmZ8FI8uQIgahzy4OV2zAbDljLYDtU2B+BTAgdJaKVh6RDMKwIlB1KDRESQhW7LNmPrdIv4GSWab+/p0I02TeXqC7aL9z/QpmcAD6PWEWHc/IilGiV9EzMmQX2fP2fZSzTCMK5mYBRvAwU7CAl0I+SUITDCo6a3rt/BSPW7lxuZikzxRr/ZF1hxx1kHlkzm7ih1XlEW+UOSeDbOQZVOCqCNXnfEWC4Rmr5lKWR0yNpYKlVlqJn7KAdwVGcwDDoeGaPNIsnpYN2pDhvmOejJgpiBcsB6olu/joj6pJiL2BXlY0gWFr9eNGiZiiwmpoQGpsLcR2Nj1tzSAokHgB9HhCJE2raMxmlsgolHj12ezVcsJK8iuFJL2KEqLm8TNgmCzYTbycRRtUlRBDw2Q1QdJGyBaMojImMmYjVst2Ily26X4VMwgAA5qfhbKF2MrDrE+RfGfQYTwiM8cQupJrAfSYELelqUu2HLZfgfkJWIjtsoByyTo4V8wSMQVD4gBDNlOwYLODs+kZdNNUMhMJ0K8HWbbZweXl4xgKFQ3VPGIXVqU0vULNM+L1helz5hHbJn5IUfExFBhgUaPi9jZvlpvKfruNPjuPrMg8YssPexXlyH7Nz6I9Oxi3m5heVXnELholqj9fTDKkiInUPT56TJO4XTQu2nlkQAETCdDn72HZwQ7GhUGvorNGMsjzdh6Zy8zhM91fVSNjQPOzbJ810lBjUFHx3WeDgcv2s7hcytCn6BnxBWL0GAaL9py6fEZUjACBZQa14JgdXKTMoIK5WYBe+7yUAI9UNKgwEQMY0Hws2qRC3K4lY6qAHptBnqtb1l4fT8sGTRWlCtAjdBJ2slcpzQDoCw5iCEHSRmxVJsTe2FaL+bEPzaV8nD4D19cHyIh4QqRsdnDRljEMKEqIvRJpSVrN53Ipo6ywAhjEw4J9aMbtJqZXUdLoCVjW1InkOUzDYFGYDCoYAAaI2UzZii07XMov4TVNworkmwPeCIv2AtF4UiZENYWVU7deadA0NegwQEzolfnSRYXSDLCkk6YQrNiNxYqAXkUywAEb0JEy4qX8itI8EvMESNhAjxyEH1TEIPTZf++y/SyulHP0KjxrBtCZt+fCEva+n5iq4iM4iCkEifgUpWKOJa257LfbkEX2iv2ZlgpxYoaphGUCGHAwP3EbgFRWWEkGWTJoZXVMJECvqRG32cEl27ypXxWDEBigKASp1AxGuURcQI+i4ntQAsY2y7pUiDOgiK0G6NGDJOxnZMFWRg0qetcqQI9dP64YBXoVAe9gMT8LRYsdjGfV5pH+4AAlIUilZygWMyxpgiFVwHvMqrtX7BprqbBCv8JnZMATYtGeC0vY71qPojwyLBVtDpOoRvG0bNAGPOoSYo/mJ24jtotpmRDVoBG9tnRyOX4K0zCIC4gp0kVruodBA+ZtxDZZzhJV+PVHfVFSmsAs5itOZYMKZKkAfXZjsWzT/CtGnl5F7jtg6bDnDcvFLmHL2HoUsayyQUul50inZ8lqgiFFA8BeX5ioYRDP2zM4eXUSL4BBXy/LwqRslInbzXWvoia+P1YFWTTbbb/fqwYMAYgJL3EbsV22JUp9fe67TwH0h617thQ/SSGfJKsJehXJif2BGFHDZN4uBBKlLD0K80iPN0LcJsOlxGtAVR7psf7eJSnNM4rKJF5gOQJKxDaRWwGgR1FhFbVnshLpGRaXnsIUgiFF71owNEjAMFiReaSYpF/R3CzAgC/GomZimmalsIqFVeURq0GTZ82SWWZAaR7xEC9bZ82iLavvVzCnBdBvnyvLKydIpaYxhKA30KvkWoFgX10eyRFVCKrGvCES9pqVBXtVzaAiwKzPzk9yRGDJLNGnCHgHGNT8LNpgYNJ+53p61OTISh5Jnq8YRakC3qM9m9DM6sjRcjFDv8JnZMDXw6Jt7pKwWbuYInC6x5aBJxymJI3iadmgxRQ2aBZiayEtS7lFNNOkVxFi1WcX9SvxsyST5ygrTIhgsYNJ+0VOlPP0KKLdASK+HkpCkEvPKpdmSOnMim01vmKW6VMk8QIY8EQqO1wSdkJURbtHbEYpmV1gyWYQ+hUlRLAQ2+WiJfFdLqXVJsRgP4YQLCfPEbcZmVhEzZxW1DE0rWEd1FGFz0hM95OwtfpLWXVmEwAD9mdbip9lxZbKxRShmgD9pqig+kkjT1RhHon5omQ1QbGYqwzCDypYwA3QJ5kf+9CMC4M+hcX3oCdccQRMFBJoCtnqHplH0jOs2Pm4T9G1EIKYKVixVQZLpSx9mkImMthPXgjSmXniaVlYqckjkYh1z1J2Q50UEFVYfMc0Hys2YLyUWyaqaLYaqrODS4kzxG02vlfBXjIZMVOQsF0jU0aBqEpllDdCQoBhlFm0WdYBRY1uReKbnsc0DFaE5TegKgY9IRbsZyRRSOAz1RiSAESD1rmSTM+wZLPIA4reNc3jI2aYxPOWymCpnKVPIfA+4O8jpQny+SRxW2nWo6oesXNvqsUutKdlgxZWWFj1eMLEbWneUn6FXlOdfKdXonGp6Q1JiGHhISNfZKNAj67mcwFEJfOTPK9cmhEJj+BxIi3CpFdhQuzxRUnbaFyikCSsUL4TtfXsycwiKbtwlElSRfQKnbh9aC6Xc2oTos0gLy4fZ8UurHoUydcaFb4RhcV3rydE3JbmqZZmSAn2UvIcK/ZMR68iaQZAWOikbLe3pFEgqmh9BkCPLeeNJ6dYtgGYXkXId09sM5ppmbsY5ZIlFVXERAJEvWFSNliQKKaImgolXiHreUhk5klnLNYirBAM7ENjxTYAskxr1IGqEsFfXDpG3H5GehS52EmgJ1lIUCxmyGqCiCI5MUCvJ0jcloEvFhMMKJqtBuiXDHJiqqJoiIXU5ZGI0EjbKoOkWVSbR/wxTCFIpWcreaRPwQ5MqALGS7lFsrkl8pqgV5GrKFhAY0oyP8U0PWsbA3YVUvKXTM+TstnPqMJnpBeN5ZLtCWGWlALv0h11celoVRmlqB6JOPLIWvG0bNAiKhErXw8JW5q3XEzRp1Ca0Wcv3FvJzLGSsCVeYTXyNYCQ5iVtMz9Js0yPwkMzIpGW1DRpG0mNKkIjhKbRa1qua/lcnIwm6FNYWAU9QfJCUCoXSZTS9JjKLkXULj6SuSXSdkKM2M2viujV/BVTBtUJMWrLkNLpWeL2kHNvTA3L6vFWn/WcvUsxqrKJ90aJa2CaJsvFDH0qmUhbgr2YmalKRRW9awBR4SVla/WTZpmoIldRgJidRxLJ82Rs1k4Vy6TpXnoNk5VCnGRyypJ4KSysQp4gGWE9I4limh6FxXePfc+S2UVS9rsWUTTvCRbzI00ZloVBn8ImRhaNqdRMJY/EFOxcA0vi6zNNksUU6ZTF+kcVMVoAMU+YuN3Er5Rz9CpkIqV8cyk9y4qUiirMI2HhIWWfNSnTIKpwTitmn5nxxBSZYgaPaeJTlP+9wRhRw2Alv8KydAJXCZh5AqTt1KFccm6f2YnMPGn7XQsrBIz7hKcyy70sTPoVjQAB9DjYwbiUnMfUqF4CgV48pknKNiRsFk+rBk3WwRGfwmQf6KUkBNnUNDmjREhhYSWbsaVCghVbr9yjSnYChHU/aRvVTwiTqEKpaMRuLFLp2UphFVSYpHrRWS6mWZEuXooG4AHCNvOSzS6TKOXoUfiMyKY2mY9XCquwwsKq1xMkbjfxy8KkX5HTG0DIbqIzuRXi+WV006wgSypDLruPKEz2MX8PBSHI5pZJGQXCCmWAUbupTebirKSlVFTdfQxrXlIS6BEmPSoVDfaznkhNky1lCBimMkUDQB86y4UUyyvSDVAdYBb2hjGEIJdPkCznNySPJLLLlcIqohD57tMDxM1ihYlUCZiF7Pc4k48TL8TxmCZBhZ8takCymCZpNzERRaZNYAHGaU1QLObJGCXCCmWA0twlnltiRc7gKGIQACKarwIYJ4RJRKW3QEDmkRnSpSwhhWw1QK8pWC6mKnLiXoV1XdATtgDjUp6EkVMqOZfMdDK3XJH5RhTmSAkYF/JJ0qqBd6+VR7K5OIlikpBh4vWqOduEphExIeXYKdconl4Nmi0rU1pY2bMbicRZ8mYZn8JDM+gJ4jFN0uVcReLVq2ApsIyQHiCNgVEukVTo0ARVdiSVWSBTyhI0TDRdXeLo03ysGDlWpF27wjmtkI0Gp9NzJIw8PQoPTScVXkmIKiUF3gjLwsQol0hrgqhC5DtkS6wy+QTxQpKY4kOzPiIKJV4xv+2+GT9D1iwTVHho6t4gPtMkW8pWrM17FTEIABHdTwoD0zCsGRyVJgm2DDaRmbcKK2VXsq+neVkpZ1mxnRyVzWkBYZlHMvMkVEtFZR7Jx0nbspqQUqAnzDJl8vkEhhCEFapegva8TSWPKJQTA0QRpEpZUnYTE1WpaLBzVDx5lgxlQgoZtIDNFudKuYoboMo8Etb8pMyyddYIiCoE3mO2fC2eniVdzhFSqHoByfxkWLYVDX0qATM7/2Yy8ySMotrRFds3IZlfqdQjYYWqrz5PmBXKZO3nMaywHgnaTHg2HydRTBFT/IxETFHxhGgWT6sGTUprwwq7aKnVjyfPkzfLBBQ2aEIIgiZkyjniOTlfoUbiBRD2BMkKS1JmCFGZ71ARlcYiu0hmAxJiUHjJmmXiabUuXlB9/jK5RTshqpN4eXwhgoYtqbENScIqTUJ8MTKaqBQffo862UnQLggyhQQrpTQ9CuXEjSKq0Egj5sgjWcWFFUIQNE1y5TxxWzuvak4LIOIJksIkm1uiJARRlbITu0GKZ+fJlPMEFcoAAYLCQ84sV1y8elTmERsgy2QWSJglpXnEHxzAZ5okismK5DyisPns9UVJCCqy7IBXHTsScuSRRClLTHFZExU6yXKuOhOsEDCL2cxPPDlF2jQJKWziha4TNEyy5VxFKtqjEujxBEgLk0xmHkMIogrVGj2RKtCTLecJK35GAsJDziiRtk0gQgplgGG7sc2kF5SProRCw2imSbyQIFXciDxiAcbZrPU8BhSqNYJ2XZfNJ5UrowCiQiNly8CbhTpYV0HIBk3lDI50f0qkZ8hj4FOIfAMEEWTLBeK5OELhEj6AkDdMWggSK6cAa3BWVUhJTSq/TKacJ4TawsqveSiUDHIFizIOKGQHQ36bCs8sksCgR6E0AyBqQqqYribEiLqEGLKTvdxwH1DYoEkEP1NIES/niCl+1+pDqVTUbqLjqWmypklQYWEFEDCFVVgVEgQMdS5eYO04TAtIJi1ZdsSvUNHQYyG2iewSGaNASKgvrGbJVfOIws8m80g6u0hCGEqlomgaPYZJopjCb79noZBC+aYvgikEcdt5M6jws4WCvQBkCykSRo6YSjAEiGhekmaRpJwJVijdl8zPSnKajDAJK8zHQAXoKRpFoorlxGFPkJSwZgcBogrrESnVTOSWSBsFwoqL74DQSRoF8kWLIVFZj4SlxDe3pHx0RdM9RE2TZCGFaZTxmCZ+hd9b2BulJAQJWxkSVMiyBm22OltMETfyxBQqowAiwluZwWwWTy8Gza7xIwrRCImYxrNL5E2DgKa2aAwhyBoFMqUMQYWOkWDRw4YQzNvby3sUFqgROyGlcnEyZfWFlU/3kcekaFPGPoVJSs5OpXPLJAT0eNQlDYAeNJKlHOlCSulwM4DPLgDkfIVf5X0M2Q1aMU3CKBJTyCAAhIxae6uoQmmGRGzjmTmywiSo+LMFEeSMItlyHrVwgeV+aQjB3LK1B6dHIWAWsSXf8XycjFFUX1hpHnKmQb60AYWVzfyks0vKpaIAUTQSpQypUpqwYsm5z0bx5eLogMLPFgzIPJIibhSIKXSeBYhqflJmqSLxUplH5B6mRHqWrLDGFFRGAEG2nCdfLhBULfHyRigIwaK9l0yl5FzuKU3kl0kbJYKK6zq/8JDDIGc7IvuVAj1WPZLKLCgfXQGImhrJUoZUKUNY8ViCz2O9y3G7HlGbR6xzzAJ6ivQoftcimo+kPYPZLJ5WDVrFJEQh8ie/pFwpTR4Tn2I0LohOxiiRN4qoPVYgbCeJmRW7sFJ4H0PeEMKEZDlHxiwQUsyO+DUfBUwKJWupp8+n7kWWcoWV9Aw5TdCj0MULICI8JI08qVKGiGkqToh2YWWbTfgVIt/+QB+aaZItZciahloZIBCuKzgiIXVMpN8eOM6XsmRhAxo0jaxRoGgU8SourKQ07/zSUwBEFQI9uj9CtGwQLyTIGEXleSSg+cgJk1xRfWEVDlpnzVLyHEUh6FEoFQXoQSdZzpMpZVe9C26H3y6spGlNQCHyLfNxppghaRqEFb9rUT1IEoOkLV+LKNoDBVTAuFR+hZIQhFSyrMg8UiRvFPEpVr1Iad7M4lFAbR7xh4bwGwbxfIIMZcKKFQ1B3UseB9CjskGzG9u5leOYikdXwJLmJco50qUcEcWSc7/dJMUzdoOmkkGz80i2mCaFQURxgxbVA6TMtXciPK0aNBkqGzTNdm0pF3MUBARUN2hCJ2uWKBgFfMoLK+vFnbadhVQ6RmpCI4K1gDJrlJQXVj7dTx6TQtlq0LwqJTX27NKMvbuux9er7FoAUc1L0iiSLuUIK57TkoxZ0pYUBBS5GAEIj5+QaZIpZSlhoqvWfNelu0hUYWFlz9zkihnymiCoWAYbFDpZo0TBKCkvrKQUaSZ+yvq5wnyMEISAXClLxiwrncEBCOg+8kC+vHGF1bTNIPQotPQHK48kjAKpck75DE61sLLziMLCyhuI4TFNMqUMRUx8muI84g2RAlJyli+qzgBCAo0rWWu2NKQwHwMEhWzQSvgV5xFp9jaTOAVAVKEbIJpG2IRsMUPGNAgrZln9mo8cJnl7xkipDNAmFSr1iMJrAfQIH0mjQKqcJ6xYGVUBeux5z5BKN1gbIMiWMhQF+BSzrBFvkJRYu+h/WjZoYYWD2x6bDSmX8uSwpHMqI6h57AatrLywklr96Yy9v0XhjhOAsClImSXSpmKTBKwXuSAEBdvSXymDZkvzlisD8GoPzYjuJ0lpQxKiz/4sCbsg8KuUXdkmOdlSjjImHsUNWn1RGlRoEuKz71tCDomrLqw0nZxZIr8BDZo0yZm2V4NEFQI9AB4ERaNEBpOQ4nwc0H1kheVkB4oLK7sgWJTzFQodygB69ABJs0S6XCCi+F3z28+7dAMMqpRdaTohwyRbylmFlerZEW+ErCZYzscJKLTihqqiYdk2/wkpPNfAmp3KmiUKZgmf4rNGShpnUjKPqKvrwMojJbNERpiEFLOsAc1HDsiXNqBBs01qFjdgTgugR/eTMIukjTwR1coo+/lfkbWWwjzi9YXxmCa5UpYCKFfPRT0RUi2O6qdlg6ZyuFm3C4BS2WLQ/Iq/pJDwkjENCkZROWJVQVoKlhtgj0JDEgA/goJZJoOhXOLl0wPkhaCQtxb/+RQ2FhIgiNumHV7Fny2iB0ljbkhClAWBbCwCiguCEIJMOUcJ8CguCOp3CCmVikqzFdt5M6i4QQsILxmzTNEs4xOKGTRbCjKbl3v51JkkAHgRFM0yGWESVCw78esBSkKQsaVJKgurkG0kkyhaOcuruPn06z4KpknaLBJSPYMjC6tKHlErAw9huSEXAa/izyZdS2fyS0QUq1689jkWl6sRFDodgu1iapTIm2X8qvOxzRjP5GyzFYXmVwBeoGhYlv4hha6iYDPxAvLlHH5D7ViClPjGK3lEca2leSmYJimzRFg58C7rEfscVTin6ASMNyaPRCo7WZvF07JBU2mkIWVWhWKGkhBKbcbB0ipnMe2da4oToo3YzpSzaKZJWDHyXS2sUI5Y+b1BDCHI2geZSgZNDqXHbbZOeWHlDZBnYxJihfmx76NfMaofQiNTLlAWoCt+/vdoaptNZ/h9NhNpH5pBxQYQQc1LDsNCvlHMRNrP/4rdxHi8anOkM4+EVUtFbUlNophSX1jZyPeKvazU61GbI3WhUxImKbNMRLFUtMKg2TLAgGLZVRBBppynIMCrK0a+bYfU6VKaiGqpqN8Geuw8ElLc6AaEhywGBbOMXzHLGrHrkaWyPe+p+LN5bUO2guK9fGC5H5eFIFXOKfcWkITFil2PeBTXIx6hUQbSZpmIYqmoVPSs2GB4QGWDBlaDVskjau9jO+7HT8sGTWV47K45aydEv+rhfs1PVpgUNqJBsxHbaWEQ3YClwD4EBdOwGjTFhVVAzk4VJYOmLtnrHi8BwyRemXdT7KzlCZETYkMSot9ubGVjoXJ2BOyhdLNoMWiKEatf3fUr/MvMHBdli/gNtdC3RL7loaladhLQfWQxKZiG8jwi9z4lzCIAuuLvzSqsihQ2wCShwvwU08oLK48vTMAwWJF5RHlhpVcKq7BqJlI2aHbzGVC49gEghE7aLr59iptPj33vEmZJvTuxvI/2TGRI4UwkQFD32Q2agVc10GM3aHHDziOKAQovonJmq5acyxnMlWKGgOodsMEBhGmSMGQeUXsfPUKjhEkK9Wsf5N6zFdsNUymDhgX0JMtZTCHwKgbD2/menlZ70IKGQDfVPu2SQcvYhZVqBi2k+8kINgSxCtnSvBVdZ1NZ6aUA8AmNjFmiuAGFlWR+Urb7mkexhCGEfbDo6hNiwBuhLARxysoTomwsksWNQTVDmpcVo0QJlJuElA68jt/4RoTkcogXHlA7f6l5AnhNs1J8B72qCys/Oaw8ElEty640aGUQoKk+yIQgbhRAqC+sKgVBOau8sEIIQibWZ9PAsyGFFaSEtWxcZcjZVVkQqy6sQvbeKUB5YaXZJiRFQFc8luC1FQwr5TwICPvVrbQACEpzCwz8is1WIvZ6ghWsYsSrcMEygBeNFaMIWtWJVlVIU6hEOad8JlhoGiHTBsw08ChudD1Cpywgg7UTU2VUAQqZR9Q5fYJlkpOwjV1UAz2ijXrnacWglc3NXCH+U+k1dDsppe0Fg37FSGPQY81OZc0yPtUmCQ4UU/WWdACvsBMiG4BY2X9/spzDp9iKHqzZqbg8WBQnRDkHtqLryiVefpvpkUlKNfIdFB4yZpky4FFcEGBCEus5UYzzgKbjN03iplU0BhWvYgjqAbICChj4FM8peu1iu4BlEayrbtDQiNv7YkKKJbeSiU8YBeUzwQBhBAn7PipHvjUPJdiQfVoyH6/YTVNA4a48gJDwkLDPGtXGXlKKXRImmuJnRPME8Jgmy/L5t42+VEVQ91t5xFSfR3y27DVrL1BSzaB5hKg0g6qlon5b9h03CwQ2Io+YEDetz+ZR3Fjomk4ByGlCuTKqAvQYBXTTVA68B4VuAWaAT+EoFbQ30vG0atBAfWHlsZNSxu7Y/YobC/mAx9mABs0bxmPfvx7FLzGAD424XXyoLqwqDFo5r3xdAUAYnRXbItWruthxHCYhxbuSpLlF0pavqZ4dCek+MhiUBMpdHJ2PhfIGDfCZsGIfmkHVMzgeawYzhYFX8X2UhVTR/rmmeObHKxx5RPUMjgRDzJJykwSwnEXjMo8oZsetGTQobYB8R+asuFlCmGZln5eqCGreyjOiegZNIt9FQFdde2saPtNkRdjPv0LnWbCZeCHIYio3SJOARAEQptrF6WDlkYR9CoQUr7QI2DNu8Q3KIyFEJY+oZ9A85OznXn0esfMxBsENGMsJCI+lDAG8imtk7eetQRPUFlkqQjJoGRuN8ysfSrdnHjCVI1aa0BixrxFVjNaCzaDZT5hyxMpuLFJmCfWtp4XYZu1k4VWNIjnYl5BiqZAspBI2YqvSxQ4gpPlJY1AWAl3x8+8MU3kmAR9UDs2QYgZBukTGMfErngnT7INLNmi64oPMKzSSmlURhBUzun5ZWGES2IDjMSB08raTl+oGzaPplOxrqZ73rDDxwiSwAYVVSPNWADOf4jldKcUugXIGDcBvQsH+3qRjn6qQeSS5AQ7Wus0y5QWKp92s8KKRs/OIyn1aAAE5g4ypfHQFLOYnrW1MHtGFtuF5JG7nEdUR1LwkZB5RXCNrP28SRwBTMfStCSvlZmw0zq+aUrVf5IwmlCdEgDHN+jw9irXDAD6hU5QHi+rCSjI/GHg34EV2omLKJY6Ow0Tl7i6oNmRJIX+ulrELeQKVXSCqk70zdWwUgyaff9UzOBWTHE0oX7Cp2wxF0f7elDNojmMqqJhBlmYuGU1sSGHlVE2on0GrPheq3zUJ9GSFQO0JakVID1Qsq1XnYzmDVhIb06DJt0uYJgHFDZrMI1lNqJeK2s+7KURF2aMyvI4zW7XkXDLxWU0Q2Ig84siRyvOI5swjql2lrXxcEoLgBrxrQc1XAQNV30etjXU4T78GbQOuoSPI2F+S0kW9QMjx96surAD6deuB1wy1KAvUFh+qbcZ9diOR0oTyoVwAv6PYUc2gOec3gooPaLmeIKEJfBsgOwl6qoWVrngGbSNYM2c4n0PV35tzybF6kwTr7y/b35um2sXRkUdU52O/w21zIworZ9HoVQwGOmc8VTdozr1nAXMDCitHU6Z6lk9zSBw3okGTeSRommiqZ1kdIx2qF/Xqju9pQxg0x7umck8q1OYpv+LF6UCNc69HNRPvyIuqHXyd6qHABkhFgw5QwqcY6Pm5MwmBjUG+PQgy9sOguiBw2m+rRqwAtJL18mbSGyDxcjyAAeWFlfUipzRtQxo0ZzOturDyO9iXUFjdknaoJqWyEPg3gmVyzO+pbixqGDSlV7KitkFT6z4VqAF6FBcEmobHvpnaBhjy1DRoPsUujo6CQLVUFKiRtauXOG4c8u31RRD2M7IRJgnOBebKpUl2o2sKga54KTxU80jINEExiOXMI37F9Yhw5JGNELfX5hHF62McTH9gA/JIDdCzoXlENdBTvY/BDWhXavKIYuD959MkZAOuoQutoudV/SI7Z7P8G2DcERDW4VUyiy1+Z/exkci3dIRKaZryPVBQ16CpZtAc7EtQ8XJxj/BUC6uNkJ04igDVDJozNgLo8dvp1WOaeBUuTgcIOqSoyhs0qgfHRhwgG5lHnIWVfwNmImsljqpnRxyFlWojDW8Qv8wjG4F8O5ifjTBbkSE2kEELbQATWaPo2YA5dSlt3BgGrXoV5Qyao27ciNEVJ9CjmkFzPv+qHSM9DqAnuAH5OOi4d+qZ+J/HBm0DKisdjYyNCm8k0rIRhZVPSOekgvJrebWNkzg699X5NuCx9tcwaKpXCFQbQNWzTEKIyoLejbAZdzZoHsVSEHONn6kIn42uRw0TFCPtQSfQswFMvG7W/ldlOPOIcomjo9ENKG5ioJ6JV5tHnGi3arYa3VNx090IqWjAMVPtU1ygOgsr1XvQoNqghTeCiXTmEcUSL6g2Zhsyg+bMI6rdYB15ZCMaNO9GShy1DQR6PP4q0LMBTGTQAbb7FCujfu5MQjZATQBYCz0zQjJoal/kmEP6pFrzCrB54u1sz0FP5NeUX8uJ6vgVMwh+B9qxIQyao5lQLXEMOhZ4qt4nB+C1C4GNkCbVMmiqTUJMx4+VXgqoAgWRjdiD42jcvRshlbYb3I1h0KrPhU8xYBZw3MeNUDRspFRa30CJI1ABejYC+Q44Z6cUKxo0R6HfzqB/tyHPs+AG8ExhhyGVTzGjC+CRO9CUX6k2j6iuR2oatA3Ix94NBXoctc8GyOnlqEVwA3JW0AH0qF6f9HPKoKm/hi40chUGTW2D1hOqzhT5N0BS4Atv4+DJ/0XBt1/9tRxJI+BVex+d83uq98lZ13MkKcWOmE4kM6i4+ADw21Kajdjf4pRIbKiLo9IrWeG3C7noBkiTog7p64bMstr/3ZDCqoZBU9ygOQrUwIasIqnmEdXIt3cjGTSoFFYbgnw7zhf1Esfq59kYBs1620IbcK71OfKIX/F9BNDt3LgR99F5vvgUuxPXAD0bkkcc77bixmIjGTSoAj39inM/1El8FQNmoo2Rjqdfg9aktIpni3zuvjN8/9AMj03Fu7qGk3psZjN+eDrBbCLHF+4/w1cfmlr3tYLR8cqPm2m+f/jELP/4gyMcOt/d5wIqaXAtR7sjM0l+5/MPc9exha6u5ZRsBpog35lCie88Ns0PDs2QzK1/Ls6ZBJst6s0UStxzYpFvPzrNTDy37msB+B27drxNZFePTcX54I+P8oNDM5TKxvqvpbdu0HLFMt969Dxfe/gcqXxp3deCqjRvLZtx0zSJZ4p897Fpzixm1n0tpyW2p0ljsZIpcGwu2dU9bDdM0+Tu44t86p7TnFvJdvV3yecw2qKwOrWQ5qnZZFfX6umZrPx4rT1QZcPk3Eq2a6m4/ERrHSDpfIlcsdzVdaC2IGgmOTcMk3tOLHb1LAJovjBe+96sVViVDZN0vkS+1N3nqwF6FMs3a8CQJoWVaZqcXcoQz3Q/oywl0iNrgHOZQomDZ1dYSncnuQ/6HS6mG1hYbcgMmp0/Qms01aZpMpvIkS109zz2xrZWr9ui0E/nS13nEU/df1WGbGI008TThGUyTZOZeA7D6O5z+Z0mIWsooxK5ImeXMhRK3Z1tTjDcs6FMfOMzu1Q2uq5DZMhMNBpobrSVypd48PRyVzUk1Jr2NWMiy4bJHUcXuP3oPMUuahK9DcBl4zbDuhSN8sGZxQyv/cjdnHcU3b/x7B389+ftQaxDguC0I27UoN16ZI5f+c/7a34tGvDynAs6N3AQIafEcXVC/PKDU/zhlw4C8MGfHOOSTb1curmXdz17B8PRzpESeTua5dVP33Oad3/zCQplg28cPM/LL5ngD5+3h/Hezl96Z9JoNJT7jz84wr/eepySnQzDPp0PveEybtwz3PG1nCyTrwEyMbWc4U3/cR8nF9IAeDTBtTsHef+rL2Yg0jnC5WQp6hOiaZp85t4z/M03D1EsW5+tL+Tlfa+5ZF2fLeA4KEMN2Lq7ji/wzk89SCJnJcSAV+PdL9nPq6/c1PG1QCK2RsPZkWyhzF9/4xBfP3iOUtmkZJiEfTqf+NWruGJr51byrSSOH739BO/97pOUDZOgV+fARIxXXjHJqy6fXNe7LaNRYZErlnn7Jx/g9qMWMPEPfg8ffvPlXLN9YF3X8gsdTIg0kXgtpPL8jy8/yo+fnAPglZdP8js372JTf+eMrNM8ppFU+thcig/+5Ch3HltgIVVg22CYt12/jTdcvaXja4FjBq3B/2eaJn/zzSf4zL2nKZZNxmIBnnfhKP/j+XsJ+jpnAZxsj6dBHplazvBbn3uYh8+sAHDl1j7++fWXMdyzDiRZ0/GbJkUhGjJopmnyrUenec+3n2A2kcerC/78RRfwlmu3dn4t6gqrBuDLlx+c4ksPnCVXLDMQ8TMaC/COG7azZaDzZq6msGoAhpxdyvDfPvcwB8+uEA14+G837uRN12wh5FtfmZC1X5nJYOOc9+RMgrd94gGmlrNoAv7guXv4zRt3rutaTlv/RqZN51ayfP2Rc/zg0Cwz8RzRgIc/fsFebt7X+Zldw6A1yAvFssEHf3KMrzw4xb6xKM/aPcRzLhhlNLY+ZkMCPeEmDdpsIsfbPvEAj52LEw14+Lc3Xs51OwfXda1grHpmNGMQHjqzzOfuPcOXHpxisi/I3750Pzfu7fxcg2oB2oxBOzKT5NP3nObuE4tcNBHD59H4u5cfQNc6z8eSQfabjWeCHz8X5/e+8AhH51I8Y3s/v33TLq5d530UDrdZv974Ph6fT/GKf7mLeLZIyKfzkTddwTN3re963hZ5pFAy+PZj57n3xBLffmyaHUMRPvi6S9d11nha5JFjc0ne9emHmEnkeM6+EaIBD6+6YhP7J9a3C3fF/q5HwqMN//+DZ1d4+ycfYC6ZZ1N/kC/8+jXrqlehdgazUR4xTZP//uWDfPWhcwBct3OAT7z1Kjx651yXaIMfe1oxaILVjUWxbPCrn7ifTLHMZ99+NV/7zet43VWb+Jdbj/Pubz2xLoRHdxQBTlTTNE0+cdcpfutzD+PVBb91006+9M5r2D/Rwx988RHOLq0DvdU9aBKxrXsgTi2k+fOvPcY12wd48M9v4fefsxufrvHpe07zlo/dv67uXSJ+je7KfSeX+MuvP841Owa4/Y9u5B037OBbj03z0n++k/PrYBOcL7Lw1hY7Pz48ywd/coznXDDC597+DL7w689g62CYd37qwUoT1Un4NKfEsbagyBXLvONTD7KQyvPPr7+Mr/3mdbzt+u3ce2KRt33ygXWh/M6G0Gkzbhgmf/pfj/PnX3ucZ+4c5ME/v4UPv+lyxmJB3vaJB/jXW493da16Bi2eLfL7XzjIYMTPZ952NV9+5zVcvqWPP/rKo3z23jMdXwuqMw/RumawVDZ4+ycf4IsPnuVFB8Z5x7O288lfvYrBqJ/f+fwj60KvnHKM+rmYu44v8J5vH+bmvcP846su5rVXbSKRK/JHX36UD992ouNrtZI4/uMPjnD70QX+8sUX8N3fuZ6eoJfX//u9/NnXHl9XHpHPYbRBYXXofJyXfuhO7ji2wH9/3h7e9sxtfOPgeV7/0XtIrOM+Cse+uvoZnLNLGV75b3fxk8NzPHPnIH/6wr30h3382X89zsfuONnxtaBaUGkNbst/3HGSj991ipdeMsHvP2c3l23u4xN3n+I1H7mbuUTnzLVEvnXTRNQ1n5lCibd87D6OzaZ47ysO8Mcv2Muh8wle/9F7181KXpG1/40NWKZ3f+sJfutzDzMU9fMnL9jLdTsH+atvHOKffvTUuq4lgR7RYOfg1x85xx9+6SALqTw9QS9nlzL810PnePEH7+DYXKrjazlZs3rk2zRN/uSrj3FiLsWfv2gfF0/28t7vPsmLP3AHdxxdn5Jizk6Lk9HJVf/f2aUMb/6P+yiWDf7vay/huReM8r+/f4TP3be+nOWc+fHV5a2Hzyxz4/++lX/43hE0AdfsGEATgnd86kEeOLXU8bVqZtDqSijTNHn7Jx/gAz8+yrbBME/NpviLrx/iGe/9MX/7rSfWxcxIqXSoAWCQK5b59U8+wPH5FH/2wn2Mx4K85WP3rV/V463mY3/dfTQMk3+99Tiv+Je7+PJDU7z2yk1E/B7e+ekHOTa3vndN5hFPg4bps/ee4YUfuJ0vPnCWoFfnqw+f4/P3n+Ufvm8Bdp2GbGIatbmlssFvfvYhkrkSv3njDh6divP6j97LX3zt8fWxW5rORbk8UJubZRybS/LGj96LRxP83cv3M94b5Lc//zDT8fWpNqRaSW+QR+46tsAN//BTfu8LB/n2Y9Nct2OQE/Mpfv1TD65LAaA7AbO6HDmXzPH6f7+X5UyRXcMRbju6wJcenOKXPnTHus8auSd1NLoacM4USvzO5x/Gq2v8/S8fYCVd5KX/fCfv/c5hMoXOGbwaN+QGDNoX7j/LVx86xzuftYO/+qULuPPYIv/ru092fB1oz7X6acagiVXSvM/ff5Zjcyk++uYruHaHhT5cPBkj6PXwsTtPMh4L8vYbtnd0Fd1jHV4+zVtTfH/szlP87bee4Ppdg/ztS/ezddBq3v759Zfxog/cwV98/XE+/tarOv5UAdMkI8QqScHff+9JvJrG+19zCQMRP7998y5+++ZdfO/xGd756Qf5xF2neNv1nX02mjBo0/Esv/GZh9jcH+Kf33AZEb+FML7s0nFe9a9387ZPPMCX3nkNYX/7j4yzacKBtCyk8vzRlx9l31gP//TaS/B7rAf1P3/lSm5+38/49U8+wD+/4TJ2j7Q/t6ZrOh4EJcxVC7//53cOc+h8go+++QpusVnOSzb1csmmXt71mQf5068+xvtec0nb17I+WxM56uFZPnffGX79hu38j+fvRdcEz7twlGt3DPCHXzrIP3z/SZ5zwTA7h9v/bE4Gof6lfs+3nmA+leer77qWizf1AvAfb7mSd336Qf7sa4+xdTBUeS/avl4xB16N8YE9Nb/+qXtOc8exBf7XKw7w2qs2V379fa++hFf921389Tee4B9ffXFn13IU3Loj2RuGyd99+zATvUE+8LpLCXh1fvnySUzT5J2ffpD3//Apnn/haOUdbCecuaP++X/w9DL/ccdJ3nD1Zn71mdsA+N7vXs/7f3iUj915kv6Qjz98Xu39aBWyQYvUPSsz8Rxv/o/78Hk0vvzOazkwaSGLLzgwxqs/fDd/9l+P84HXXrJuhrBeKv2XX3+cctnkG7/1TLbZ9+vXnrmd3/jMg/zddw5z0WSsY/az2QzauZUs/+cHR7hl3wj/+5UXVT7DD5+Y5Xc+/zC/9bmH+fyvP6OjzyYLKwFQt3Ptb7/1BCcW0nzm166uoN0XTcb47c89zOv//V6+8zvP7Fhp8LKhK7g18wRps/aA/9rD5/jPO0/xlmu28Je/dCG6Jvi1Z27jf3zlMf7pR0e5etsA1+zobN+d186RZt39mE3k+NOvPsYVW/r4zNuvruTIM4sZXv4vd/Kbn3mI7/zO9R0xCWsVVt8/NMsdxxb4m5dcyFuu3crbrt/OXccW+OOvPsabPnYvn3jrVdywu7MdjCX7M22K7aj59eV0gbf8533kimW+/K5r2T0S5fn7R/n1Tz7In3z1MfpCPp6/vzFa3iyCTnMLhwFEoWTw+188yFDUz8ffeiW77DMlkSvy/Pffxl9/8xDf+M1nonVyHx3KgnqTkFuPzHPrkXn+7IX7KnXHsbkkH7vzFP9xx0lGewId1yMyjzRq0P7y64/z6Lk4H37j5Tz3wlFefeUm3vXpB/n9Lx7k/EqW37xx57rziL+uQH33t57g43ed4kUXjfG3L91Pf9jHXDLH895/G7/7hUf46ruuw+fpDPP3WLD7KgZtajnDu791iGu2D/DB111KX9hH2TD5k68+yod/dgJM+JMX7uvoWvJda8TWfeWhKU4vZvj3N1/Bcy4Y4bdu2sX7f/QUH/7ZCZ6cSfCvb7ycwQ6VNr/qn+R3mUerY/2zhTLv/PRDFMsGn/q1q7lgvIertw3w0g/dwds+8QAfftPlTPZ1xmzJHFnvhnlyIc2vfuJ+JvtCfPyXr+RZu4cQQvDjw7P82ice4N9vO8F/u2lXh9dy5pHae/KZe84wn8rz7d+6ngvGrWYnkSvyh188yLu/9QTP2jPEjqH1zZKN9Na+N2XD5Dc+8xBnljJ8+m1Xc+2OQS7Z1MdffO1xPnL7CWYSOf7pNZ2do0FfNY84vQUKJYNf+c/7uOv4ItfvGuSPnrcHTROcXszw0TtOcmAyxksvmejo8/zcm4Sk8yX+74+OctW2fm7eV6XYhRD8xYv3WUXCD47wxPlER9eQCdgpvzJNk4/fdZKrtvXzibdeVVMYbhkI87u37OLWI/P85MnZjj9T0P5Qzo79zGKG7x+a4U3XbFkljXj+/lGu3zXIv9x6vGOdb6MZNCntyhXLfOTNVxBxNGF7R3v44Osv5fBMomP2p2ZtgONefvWhKRbTBd736osrhQfAcE+Af3nDZSylC/zBFw92zFrImSnnDNqRmSSfvPs0v/bMbZXmTMbz94/yrmft4KsPn+t4vq+Z4+Zn7z3DaE+AP3renpriKRrw8t5XXETAo/N/f3yso2s1i588OcuXHpzinc/aXmnOAAJenX9+w2VsGwjzu5/vnNlNYKFqExPPqPxavlTmAz8+yjN3DvKaOunk5Vv6+M0bd/KVh6b4fIcIuHPXiJNBs76TBH/0/D0EvI6ZDyF490v349M1/uxrj617BsL5p3LFMn/05YOMxYI1h3404OUvXryP1165iQ/99Bj3nFjs6BrS3CJad4j93XcOkymU+dSvXVVpzsC6j793yy6+efA8X3qwcwRcVPJIlUF7dGqFnx6Z553P3lFpzgB0TfB/XnUxI1E/7/n24Y7vY7MZtPf/8ClME/7mpRfWHIzPuWCEP3nhPu49ucQPnugsR0oZTf21fnpkjs/dd5Z3PmtHjRTp2h2DfPbtzyCVL/K7n3+kY7T9pld8hr/f9BLe+sy/qfzacrrAX379cS7f0ldpzqx/m8Z7Xrafzf0h/vBLB1nucJaqmaHLlx+cIl0o8w+vvKgmR24eCPE3L72QI7NJvv3YdEfX8jaRJhVKBu/59hPsHY3yhqurwMu1Owf53u9ez67hCH/wpYPrnimZGNxb+bFpmrzrMw8ytZzlo2+5sgLC+T06H3nz5RyYiPFHXz7I4enOzmzn+hGnNOkLD5zl5EKav33ZhZXmDKAn4OV/vGAvj59L8J93neroWkJ3Mmi1xd+//ew447FAjeR153CUv3vZfm7eO8z7f/QUC6l8R9eT31uojhk/eHaFLz4wxTtu2MFzL7Qa2ljQy8ffehWvuHSC//ODp/j8/Wc7upYznGMJZ5cyfPqe07zmik186HWX0h+2np/haID3vuIAj59L8MGfHO34GhWb/br7+NHbT2IY8L9++QB99rV0TfD3v3wRL7pojM/ee6ZjhsSrO4AeR0zHs7zn24e5Yksft9h1ZMCr8ycv2McHXncpj07F+eOvPNbxZ7v5zT/k4xf/Hq+6/q8qv2YYJr/3hUc4Npfin15zaaWJ2Tkc4UOvv4wzixne8NF7O1ajyOazPkf+++0nMEz49K9dzbP3DFdy8s37RnjRgTE++JNjHc/tNpNKl8oGX7j/LNfvGqp8LrDetb97+QF8usYnOnzXnDHcX9tIfvLuU9x6ZJ53v3R/BYTeMxrli++8ht+7ZTdff+R8x2dNMNAY6Pnk3ae46/gib3zGZj70+ssqgM6fvWgfV23r579/+VHe98OnOjpHxc9lg+b48SfvPs1CKs8fv2Dvqi5ZCMF7X3GA/pCPd3z6gY5oainNcyIFD5xe5uxSltdeuakh2vbma7ayfSjMu7/5RMe0ccB2MnLOoH3k9uPomuDN12xt+Gf+4Ll7WEoXOi6IK/fJcSM/cdcpHj+X4P2vuaQha/XsPcPctGeYLzxwtiNZZU2D5mB+vvPYDPsnetg3tnq+7/pdQ/zh8/bw2Lk4Pzo81/a1oLpvxOd4Sb5/aAYh4B3PaoxavuNZO4gGPLz/h50dLvVyVLAOsduOzvPqKzc11CT3h328/fptfPPg+XXLhmSYpsnffuswu0ci/PbNqxGwkM/Dv73pcvIlg9/7wiMdJY4FvwUUjPdV50F+fHiO5UyRt9+wvSEi9Ts37+KZOwd597ee6Gjg3+m45kz2H739BPsnenjJxeOr/sxIT4A/fN4e7jy2WJkXaydqJI6On/z7bSc4Pp/mf/3ygRpwAqz35a9fciFDUT//90edPSNFOwGHHc/KdDzLdx6b5o3P2NyQRX3Xs3dyzfYB/urrhzpurOVicScT/4X7LXnQm69ZPWsWDXj57Zt38cjZFb5x8HxH15KFqRONPreS5WsPn+N1V21mosEMwOuu3MSu4Qjv/c7hjvKxLFCdcsqyYfK/vvMkWwdC/N4tu1f9md0jUd79kv3cdXyxY9mc0D288Ka/o6e3es++9eh5ErkS737phatYq6BP5wOvu5T5ZJ6//fYTHV2rkTGUaZp85cEprtrWz/YGaPML94+xazjCh35ytCPJnF5jElL98bcePc/Ucpb/8YK9q/JWyOfh73/5IuaTef5tHfJsqJ1ruu/kEvecWOJPX7CXq7bVsrZ+j86/vOEywn4Pb/9kZ2d2wN9X+XFNYXXXKS7d3Ntw9vclF49zy75h/uF7TzKXbF9622wG7dhcintPLvGma7auYpKEEPzJC/eSKZT5cofgi6/SoFUB3LJh8lffOER/2Mdv3ljLUPo8Gv/46ou5ZvsA//PbhztuCIOGdd+dQM8n7jqFEPC7z9m1Kv8/f/8Yr7x8kn/+6TEePL3c0bW89t+lO4rVYtngmwfP85wLRlYxSUIIfuXarSTzJb7QYfMp67l6WfZn7jlDOl/i/7zq4lWf7SUXj/NbN+3kR4dneeTsSkfXQ9O5/JJfrTE2+s7j03zv0Ax/9sJ9q+bNbtw7zMfeeiVnlzL8w/eOdHQpbwM5djpf4isPTvHySyYazj/+xYsvwKMJ/vBLBzurj53GRo789dMj88wkcrzeoa6RMRT189JLxvniA2fXJXMH8PZUa4HzK1n+z/eP8KzdQzWgkox3PXsHe0ejvPc7hzvKkTVAj/38l8oGH77tBM/cOch7XnaAWND5+TX+7Y2Xc8u+YT7w46OV2bR2oh2J49OuQZONhWmafOWhKa7a2s9lm/sa/tahqJ/3vGw/Z5ey/LCDTrrCoDkajB8+MYtP13jehY2lFz6Pxl+++AJOLWb4zztPtX0tgICdnOQS1ul4li/eP8WrrtjUdLD4kk29XLGlj0/efXpdemz5J/KlMh+57QTX7xpc0+TkdVdtZj6Z5+uPtF/IOecrZNz21DyPnF3hhQfGmv65V1w2wZ6RKL//xUc6ctIb8/Va1y1XkbUfPDHDZZv7msqcYkEvb79+Oz86PMujUyttX6sRg/b5+88ggNeuYc7xGzfuZDwW4N9v73yGyhlH51KcXEjzlmu31iDsztg9EuUPn7ubB04vc8+J9mctsoaF3k1Eq5T9fz18jtGeAM9sMjTt0TX+6pcuIFss8+Hb2i/knGi3lGCdWkjz5EySl1/a3AjkdVdtZjwW4P0/ah+1avS7TNPkiw+e5fpdg1y/q7GEK+DVeccN27n7xCL3nWz/Pubtf3rAMST+pQemMEyzKfCia4L3veZiNAF//Y1DbV8LwG9/QnmwlA2T7x+a4aZ9w0QDjQ0GXnn5JJdu7uUvv36IlUz7jXUjBu2L95+lbJpNJVweXeNPX7iPU4uZjhpCiQ47n4S7jy9yZDbJ79yyq6ms6lVXTHJgIsbH7zrVtdvcNw6eZ/dIhAvHGw+6X7Kpl1+5biv/9fC5jmbfGjVoD51Z5sRCmldevnp2C0DTBP/tpp08NZvi+4dm2r6Wsynz2rJb0zT599tPsms4wrObSBgv3dzH8y4c4bP3nemokPv0+RneNzsPkeq58om7T9EX8vKaK1cXVQCb+kP8z1ccYGo5y1c6mKMKhqo1gJQmnVxIc3QuxUsuHm+YR4SwDF6KZYOP/Kz9fFy7B6367H3+vjN4NNH0e9s5HOXKrX18/r4zHRWNcuemcwfmlx44yyNnV/irX7qg4bsthOA9L99PpljmQz/pTLERtP9psrEolg2+9sg5bt47wlissfnCX/3SBYz3Bvn9Lz7S0Uy33gDouePYAovpAi+7tLFk7IotfTxz5yDv+8FTHbkxexsw8YZh8rVHznHdzsGmcvm3XreNkE/niw+sn42U8e+3nWDbYLgio6+PK7f284art/DZ+850NIsvay3nU3XPiUXyJYOXXrIa5AQYjQX4n684wH2nlnh/BzO0ut4Y6PncfWcYjvpr1GzO+K2bdlEqm3zop509j7+3tMxLkylwNLp//70nKZsm73nZ/obvtlfX+PUbtnNqMcO9HZzZwWAVNPLZ7rM/PTLPfDLf1AiqP+zjg6+7jMs29/K/v3+kbbdp8fO2qBqq0rwnZ5Icm0vxS00ePhk37h1mojfIZ+873fY1ZGfrlJ/cemSOq7b1rzmD9ew9w9y8d5gP/vhoRyhB0P4aNI+VaP/11uMYpsm7nrVjrT/G267fxpmlDP95Z/vDl4ZdqMiC5ZEzKyymC7zpGWu7ud20d5iLJ2P87+8/2XYClglRPoaGYfK7X3iEvaNR3rjG9fwenQ+/6XJS+RJf7AAl2xmxErrPsBq04/MpHj+X4PlNmmoZb71uK70hL+/7YftJqn4Q3TBMvvrQOZ69Z3hNB6GAV+cVl01y+1HrpV9vSMDhlhYuZK+6YhODER8fv6vzAd3xsPVu5Utl7jy2wHMvHFlz5mXXSJRXXDrJf9x+kiMz7RWpnhqbfevHsuh83oXNP5vPo/GbN+3k4TMr3NYFG/nQGYsZf1kL/fgbrt7CYMTX0eEiGzSfY/D+O49Nc8WWvjXds8ZiQd717B38+Mm5jobvK/vrbKDnwdPLLKQKvGCNeR6PrvE/X36AeLbIp+/pIEdWCisrDMPkqw9Pcd2OwYbsmYxn7xlix1C4o2vV5xGwWJ+wT+cF+5sDPUII3nzNFo7Npbi7Q3mqMxZTee4/tcyLL1r7rHnns3YQ9nl43w/azyONdnZ9+cEpgl59TRDrxReNs30wzAd+cqzt5rPGJMR+7+4+vsjh6QRvu37bmrMar71qM0vpAj863D7QeXG+wHMyWbCvlSuW+emT87z4ovE13TyfvXuIizf18qGfHGu7IfQ5GDSvbbn/IztHrgU8bh0M88uXTfLxu061vZ7HuYZHMsn5UpmvPDTFcy8cYSjafFbpzdds5dRihu8+3n5j7ddlg1YtUL/56Hm2D4UbKgxk7BiK8IpLJ/jcfRZD1G6EZD1iA2bS+fWXmzSeYLHxf/fyA5xezPD1R9pnETz2tZxM5HcenSbq93DD7sZgoBCC97xsP2XT5He/8HDbz38joOdnT80ztZzlFZc1z/9hv4db9o3w3cemu7JVP7WQ5uBUnDc+Y8ua5+hv3bQT0zT52sPt38fKLKvj124/ukDAq3H51sYEBsBLL5ng5ZdO8LE7Trbd7Nas67Df7eV0gZ89Nc8rLpvE28TRcPNAiFdfuYnP3XemI3XIr8aTvGdhqeK8mSuW+cGhWV55+eSa5+gL9o8RDXg6aqyDgWqDJt25v/v4NP1hHzfuaT6Dq2uCdzxrBzOJHLcemW/rWvrPm8RRiKpM6VP3nMana7ywxTCxrglee+Um7jy2yKk2EQmPqJU4nl/J8tRsime1MST95y++gELZ4H9/v32KWi7yzOVTJHJFPn//WX75srUfPoDnXTjKLfuG+ccfPNW2ZrkeuXvAliRc2cIkQNMEv/uc3cwm8m3L8yq6aPuSR+dSLKULvP367fQ0QfRlbB0Mc+2OAf7r4XNtJ+CtYSvJJssWE/BfD51DEzRFkGREA17eccMObj0y37ZEo36J58GpFabjOV58UfOiSsbLLp3AMOEL96/PsQzg9qPzXDjew0gLK3HZEP748FzbDaFEhQP2Z3zg1DKZQrmt5//PXrQPv0fj421qzZ0Mmiwgv3dohgMTsZaD0q+6fBPjsUDb0ivncyR/+OPDc3g0wXPXaAbBkrG94eot3H50vm2nLclHSVdFyQw+f42mQsZrrtyMRxN88YH2WYQAUiptXe9nT82ha6KlucO+sR6etXuIj991um3wRav817rmo+fiVqPbBPWWIYTgDVdv4ZGzKzx+rr2CWMp3ZElj2MzgLReM1MwnNopfunic3pCXT97VfkNYH3cdt5q761tYYPeHfbzt+m1879BM2wBFPRNvmiY/ODTLcy8cWSW3dYauCX7zxp0cnk60XezXmoRYufkz955hIOxrOeB+w64hxmKBzmRl+14CDle0u48vki2WV80C14cQgt+9ZZclmW2z2Bce52ez8tZtR+fZPRJpmUf+/EUX0B/28d7vHm7rWppjBkfmyh8cmmU5U+R1DeRdznjhgTG2D4X5l1vbb6xlHRK2LcCX0wXuObHEC/aPtjRA+OXLJ8mXDH56pP1xgRsiFngq5V53n1jEq4um6onKn9s1yAVjPfz77SfbZghlYyYbtWLZ4IeHZ7l533BTZQhY9cGfvnAf95xY4s5j7YEvcsbZWfS+/0dPMdkX5EUH1q4RXnLxOMuZYkdKrPr42VNW4X5LE4ZJxnBPgEs29XJrB9+ZZOJNx+Nw29F5nrF9YM37CPD7z9lNsWzwmXvby5G1NvvWdX/4xCxlw+RFa4BKYDWfQgg+8OMOxgVe82l44f+p/LSSR1qA00GfzssumeA7j00Tz7ZXHwcCvQjTxGuaFYPAQ+cSXLKpt6WV/k17hxmM+Ph6m+qQn1MGDZbSBb784BS/fPlEWzusXn3lJnRN8Lk2C2LJoMkHUb5Yz16jg5axbTDMKy/fxLcenW672HnJppsB2DRyMfeeWKJQMnj5GoiODCEE73r2TrLFctuHtNw5JtPn/aeW2DUcqQzirhXX7Rgk6vfwgyfau5YsPnT7ag+fsZqfSzf3tvXnX3HpJGeWMm03Tdt6rMPxlGkhQd9+bJrrdg62tQ/pLddaDMn7ftheY12/1+17h2bw6qKtvTo7hyPctHeYj95xsm1kMzf9MrLnXwVYQ/2PnF1ZNcPRLF55+SQlw+S7j7dnKvCtl3+LT73gU5Wf33pkDp+uteVQ1x/2cd3OQW57ar6tAqS2QfMxE8/x8JmVNdkzGT6Pxuuv3szdJ9oDX8yaH1s/u/PYApds6m0qAXTGKy6bwDThaw+3l4AL9jWkG9rDZ63nuFWhD5Y8++Z9w3zlwam2WQS/nc7lZ7v96AKXbuptCYYA/PoN21lI5fmvNlFbWVhJF7sfPjGDromWxQdYRWPAq7VdEFSlSdbnOj6fYjlTbFkwggVQvOaKTfzw8Oy6Geu7ji8QDXg40MYenzfZ6Pg3DrZ3H+ude4/OpVhMF9raY/XSS8bZOxrlb7/1RFsLir010iQ/hmFy5/EFbto73LLR1TXBqy6f5Laj8+2vXHnNp+BPqg3dbUfnCXp1nrG9dd569u4hNveH+F4HTJMMoWnkS2XuP7XU1n2Mhby8+Zot3HV8kRPzrdcXOBtdySR/+9FphqN+rmvhmKtrgrdet41D5xMcbJOxk0qekN3s3n5sgbJh8pwLWjtdXrm1n8GIr6P7+N9f/mW+fsM/MTJyEQD3nlji4sneljsMhRC8/YZtHJtLVWqmVuGxG1z533tPLLGSKbYFYr3y8kkGwj4+efeptq4l56UkqHRmMcOjU3Heet22lu6TN+4dZstAiA//7Pi65dI/e2qerQOhtnYY3rhnmINT8baVWPKzyX/Z1HKGE/PpprJ9Z2zqD/Gs3UN88YGzbcnzPDV5xMpf3318msm+IPsnVvsKOGMsFuSNV2/hKw9NcbyNdw2Afb8EV7298tOfPSXzSOt65DVXbiJfMvhGu0CPphEwwWffyGyhzNG5JPvH1/5cYMkqr981xN3HF9p6RrSfywbNNLn/lNXEvPLy9hbxjtizM99/fKatG1c/g/azI/OMxwLsHG7PHvS5F46QLZbbdn17+c3/wIOvvYvx8Su4+/gifo/WdhNz2eZetg2G2957UpU4Wj9/5OwKl29pToE7w+fRuHHvMD98YratorEyg2b//KEzy/SGvDVucmvF8/ePVvaftBMHNt0AwDOGLubsUoaTC2luanOBZsjn4deeuZ07jy225WpUvyPjsak4F4zHagZI14p33LCdlUyxbclQceUZlOKXA9YOrVzRaMl6ytg1HGHLQKht6n1TdBOXDF9S+fmtR+a5alt/2wtrb9g9xLmVLMfnWzdNXof8T9d9lea/XZvtV11hgS/tuJXVmoRAPFPk0XPxtpe6bhkIc/mWPr760FRbeeSW8FYA9kSsPHV4OonPo7G9zef/tVduZjFdaNsZtt8+pEulAsvpAo+di7d1QANcu2OAC8Z62t6dp9VJHH/0xBxXbu2jN9Qa6IkFvbzk4nG+9vD5tna+1RdWD9lAz2Vt5q1XXDZJuQOAoj7uObHE1dsG2lpGOhDxc+2OAb716HRbz0j9zjp5ZlzTRvHh0TX+7EX7mI7n2sojel2D9uRMkpVMsa1CB6x3zTTp2ORCxhPnE+wbi7ZE9MEq9m/aO8ydxxbaaj7r46HTK+SKRsuGScar7TzSzmfT6mz2M4UStz41x/P3j7Zl1/+yS8YJ+3Q+3uZoglxXE/JZReIDp5YI+/S2ikZdEzznglF++uRc24Cxxxtg+zYLNE7nSzx2Ls7VbTTVYElvR3sCbTdNVYmj9d/vPj5N0Ku3pdaQq1d+emSuLQWR11Nbj9xxzFICtXMtXRO8/frtHJyKr0subZomD51Zbvtde5GtxPl0m/lYguEy40jzrGc1kYnWxysv38RsIs/DbRih1OQRj59ErsgdxxZ4/oWtGV2A37hxB36Pzgc7YdEccf+pJS7b0tsSVALYPxHjwvGejtxMg1R35T05k8Aw4cI2l2xfu2OAhVSBI23MIf9cmoSYWMWwRxNc2EaCknHLvmFOLWbaKhrljfPqXkplgzuPLfAsh0Vpq7hm+wAhn96RxafPb8kX7j6xyOVb+to6xMA6yF5x6QT3nFhiarl1Y1EqVxm0lUyBlUyx7cYT4OWXTbRN9ctdYfKTPHxmhUs39bZ9H8N+D8+9cITvPDbdlmRieHAvd738+7zphR+tJKh2C1SozirIxL1W1O+IOTGfZsdQ+zu5rrCRzU6dKoEKo3hFmwWqEIIb9wxz1/GFjpdyn1vJcnQu1RZ7LONGuyn+9qOtC2KPY5ZP1318/9AMO4bCbe+JG+kJcOOeYb784FRH8wGmCQ+dXcY0abv4AItFOzqX4lAbqzt+KbaHh06eYZM9G3l4OsHukUhbhT5Yje5w1N+2ocZ7X/gJfiN2gAv3vpw7jy9gmnB9mwe0EIIX7B/lsXPxtpimyqJqBCsZ60Dq5F17w9VbyBbL/FcbrleV2RE7BTx0eoXekLftRnfPaJRdwxG+dbDzBm05XeDkQprLtvS2/Weev3+U04uZthBip1MeWA3aRG+Qyb7mc3zOuHbHoMWQtGEW4txZ5PUGK81gu8//pv4Q1+0c4IsPnO144bJpmjwxnWjo3Nssbto7TL5kcPeJzmdMHzxtGQNc2abKYLgnwDXbB/huGyBurcRR576TS+SKxpqzbs6IBry84Rlb+MbB820ZQUgX2GjQKu7vO7nEZVv62s4jL9g/SrpQ7sjxVsZj5+KUDbNtENerazz3whHuPbnUFogrGzMdDdM0+eETs9y4d6glWyfjOReMUCyb3PZU689WBXqsuPPYAqM9gbbP7VdePslgxMdHbuvc4Gs2kWclU6yxn18rtg9FuGXfCJ++53Rb51o9g1b9bO3VdtftHEAISz7YKjx1DdpPDs9RLJu84EB7oOpgxM+brrGe/3ZqVmek8yUOTye4vIkxYKN47ZWbOHQ+0bYJXNAUFQbtcfuc399mgybB3tvaYJB/PiWOpjXvsGsk2lYHLeMmW3rWDhotZ9B8mo/peI5kvsTFk+19QWAhO8+7cJRvHjzfEfqXL5V5ajbZNnsmQ859tDNU6jQJOWUzRe1Q7jJu2DXERG+Qz7chF5VLiIUJ8WyRo3Oppo6bzeJZu4dYyRQ5PNPeXpxozzia7uGeE4sdJV+AHUNhxmIB7jjW+uXyORyFUvkSM4lcRwsYdc1CiG/tANmUcf+pJTb3h9qSbsq4ae8wuaLRVuJwxr12EVdvCbxWTPQGeebOQb74wNmWDqNeR6ObL+ncc2Kp4yW1r7tqEwupfBufzTGDhskhewaq3eQL8OID4/h0rT2HOd1nIXH2Zzw8nWDfaPsFqq4JWzKx2FZBPDi0j3e97LNouofbn1qgJ+Dhog4+27NtK/Lbj7Z+Rpw2+4/aUq1LHbv4WsXFm3rZP9HT1kyTzCPysHr0XJyLJ9sHesBC9u8/vdSR6xvAI/ahfkkHn00i8u0w1s5lqKZpcu+JJa7e1t/2Z+uEIXEugvfoPh4/H2c46u9oKe6rr9jE1HK2MpfXbkwtZ0nmSh01aFdv7yfk0/nJk52DWI9Oxdk+GG5b0QDwggOjnLTnRNcKp4ujjqiANRdN9rZ9rbdfvx1NiLbO0Ztje/in2XnGezaRzBU5Mpvkii3tg0rX7BigN+TlK+tgPqVxSief7dodA2QK5bYKYsmgeYTGuZUsc8k817TJegJctrmPvpCXH7fBIHvqGrRHzq5wZQfvWsCr85orN3H70YWOVsmAxcQA7GmwxqhZvObKTSylC9zbhgOzHBWQp8Th6QQXTcba/my9IR/7Rnu463jrRrfGJEQPcNfxBfpCXi7d1H5t98art2CY7YG4znjk7AqGCZe3qR4CeOmlE0T8Hj52R3uMdVBoeO3z7dC5OH0hL+NN3NTrY7w3yIGJGN9+rDVg9nPMoK10VHiAVTTuG+tpi7FwShyl28zmgc42u7/myk0kc6WObJBPzKcpGyZ7OijiwEI2L56MtYUiOWfQ5NzOtsH2P5uuCV5yyTh3HV9smaTkXjcdk4M2dd6uLEmGnHtqB9lxxsGpFS7pgK0Di0W4bucgdx5bbNlY+B0zaCdtVraTZhAs6VUyX+poKbFpmjx4epkr1nBmahTX7BigL+TteLntkdkkPl1jZwfNJ1gW5+dWsi13x3gdDMLUSpGyYXLN9vYPaLCax3YKuXpg/PFzCbYOhNqa0ZIRC3m5ed8w33jkfGtkUxpA+EIspPIspArsGW3/gAYL2VzOFHmiw8W9dx5f4Nodg22j7AAXjvcwGPG11VhUZtAQlXd7fwcgFsDLLpngielEy7kfrz3noGGtDjg+n2L3SGfP44svHsM06fj5P3h2BSE6K1An+0LsGAq35S7qZNCO2fNn7cqgZLxg/yiZQrklQFE/O/LkdJK9HTRMYBlTxYJevtCh5bhcPN1Jg+b36Fy3c5CfPtnePKszHjsXr1kC305IOXyr0YRaiaPGofNxNveHOmoGh6J+rtkx0JYSJeQNcXMmC94QpxczmCYd5RGvrvGGqzfz/Sdm2pqxc8bBqRUmeoMMtjHrL+Pqbe2zMRUGTWgV06B2Zj0rf16zz+w25n4qgDGCdL7EuZUsuztQD4HlDFg2zIpDaLshm/69HdR21+8aJOjV25r59zokjvlSmVOLmYY7bdeKa3cM8NCZlZZAT826Do+fx88lODDZ25a8V8bmgRAXTcb4VocNmswjnTwjPQEvr7nS8oVYbGMnYIhqg/b4+Tj7J9pvdMGSpx48u9LSqfLnblG1AOYSOZYzRfaNdfbwAdy8d5gHTy+33PcjO1vD0DkjG7QWjor1cfW2fvpCXu5sQy4nQ+7P6QRlkfGM7QM8cnalJWNXaTxMOLWYRgg6QlABXnTASlI/aNF8ehzb7R86s2wXOp0dmmOxIFsHQm3JDmWsZAqcXsxw0abOrgVWUoxnixw6v/YAt89heXxiwTr0OmHQwHpGLp6M8ZkOLMdPLWZYSBXanj+T4dU1nr9/lB89MdsRY/fUTJLtQ+GOCn2gYuBwdwtEzskgLKatJNiuvEuG36Nz7Y5BftbCmKTGJMSEQ9PxtrXlznj5pRMspgutn0nJWHjDFSnTjg4LAimZaHfoHixGd2o523GBqmmCG3YNcdvR+ZYARcVmXwgOTsXZMRTuqNEFi9USojWK6pQmTS1nKJQMdrUpgZWxYyjCBWM9fLPDhdyHzifYMRRZ01GxUTxr9zD3nlhs+a4513XcY+/r6bRBu2bHAD0BT0sjCOdSWaF5OTafYm+HgEHAq/PSS8b5/qGZjtQhR+esHNlpY33T3mHOrWTbmumQMZfMMR3PdVTEgXXWjMcCLU2pnEyk1aAlOhq3kPHcC0Y4MZ/m2FyLpik8BEKH8OC665FfuXYbAjraYwpWo9vpmd0XlmxMG3K5SoOm86g9utLpM3nNjgFmE/mKIqhZyJUWAgsMh87z8YXjPUz2BTueZz0yk2QsFiAWaj9HBuxZvO88NtPSvEPOsppCVID+3eu4j4WSUZnxbRa6p9qglUwfT822Z6JRHzftHeaxc/GOVkBMLWeJ+D30dXAfwXLhLBlmW3VkUPPgE4JCyeDITLLp7stm8Vxb6nxrizNb+/9TgyaE2C6E+A8hxJcdv7ZPCPFvQogvCyHe1c7fM21LVHato4m5ed8wZcNsiWxKBu2Oo8ucWszg0UTTBY3NQgjBFVv7Kzb27cSRmSQeTbRtouGMZ2wfoFA2Kk6JzaJcYdBMTi9mGI8FO5KKgpWkNveH+E4rZyjdKmp0E47Pp9nUF2rLLa8+btk3wp3HFohn2rNKlZKriztAvWVca8srWun15cwgwNHZFB5NdMyyWoPwIxyZTZJqM0lJlHE9n+1FB8ZJF8od2fc+NZvqmPUByyxh31jrQ9rjkDjOpw2EgLHe9qWbMp69Z4ip5faMSQDShRJnl7Jc0CGDANZsWNintwQokEijL1RBrncMdlYQjPQEuHhTb0dM/HoZXYBn7bEkxa3kSZpjBu3UYrrjhgmsRakXjPW0HLp3ShxlMdtpYQWW5f4jbSCbzjg21zlbB3DD7kHyJaPlklSfr/odHZ1NEg142NTf2Vnj1TWevWe4ZfGhOxq080mTQslYFxh4095hCiWDB063vwD2xHyakR5/x/n/Rlt2247M8TnBSbZrQQ5PW81cp4UVWAqPh1qc2c4ZNNOE04uZdeUROat7RytJ8d4XwX+7HyLDlQat02dkKOpn/0SsLQmbjFyxzJmlzLry/zU7BnjwzHJrNsautTxC4/HzCXZ3OLoCVUCjFfPpZOKPzVvPSCfz92Cd2c+/cJQ7jy22ZXAk4+RCmu3ryMcvv2zCku+3eEac+xQl0N9p3rpyWz+agHtandmOPHJyuUTJMDsGQ4DKO9MJ+HJ2KcNkX7AjRgusMYaegKctwmR3aJydvj6emk1SLJsdgy/bBsNM9Aa5s1WfobUG/dpq0IQQHxNCzAkhHq/79ecLIY4IIY4JIf54rb/DNM0Tpmn+Wt2vHTZN853Aq4Hr2vm3yOiUrQBLphILelsmxIo21NQ5dD7ORF9wzcWCzeLKrX2cXEi3be98dC7FtsFwS8vXRnHF1j7r5WqRpGSDZhjWw95pogfbUODAKHcdW1iTjRzw99FfLvNH8TTTK1nG2tTx1sdLLhmnWDb53qH2UCu5g2g9qOZQ1M/e0WjLF9nvmEE7PG2h7O0auzjjwGSPxea0uRPqzDoltwDP2N7PQNjHN9uUFSRzRUsGso4iDizJxAOn1z6khV5NUnOpMsNR/7ruozQxWav5dJJr51csoKdTtg4sZPPZtpvpmkzTxOWw7Qbo28qJhTQ+XWNiHdd74f5RHp2Kt91YSHOK9eRIafTR6vmvShxheiW75nL2teLKrf08fGZlTbmoLAgE1Qat08IKqOwo/E6bMsdcsczpxXTH8l7A3j+k8bMWclGnG+ypxQxbB8IdFx9gzcjNJfPMrmHL7SysTi1a7+R6iu+rtvXj1UVHqoYTCym2dwhOgNXEXzjew0/baNDe9+rv8vU33cdTdv5fz2e7fEsf5+O5Nc0LnBLHctn6rrauA1Sd7AuxuT/Ena2YJk2HgR2Alf/7w751AZ3X7hjk4TMrbTMWU8uWnHI9gPG1ko1p0exWbfZ1Ti2k1/Vebx8MMxz1t5RUSvdBIQTH59LommBrB/P3Mp6/f5RC2WjrmZRxejHd0ay/jJv2DjMQ9vFfLVa7ON1g1wv09wS8HJiItQTMpMRRM02Ozlu1bSfSZRnyzzw53UGDtpzpWPEFlhT22h2D3HG0tRT2j171df7+Dbdywla9dFr/CGHtDLzr+MKazKebJiEfB55f94/QgX8GXgBcALxOCHGBEOKAEOJbdf9r6nUuhHgJ8G3gOy3/Ffa5FfF7GOlpXxMtw/qSBlp+SZJBw9Q5eHalYzmBDClDa9eWdTaRW3ehE7VfrntaDJRKk5CyaTKXzLdcdNwsXnRgjJJhrolser1BfnbmHM/LFpmOr/+zHZiIMRYLtO1CdT6eJezTO5oJcMb1uwZ54NTymhIen6/60j4xnWDvOiS3UDWoeKzNBu3UQppY0Nux5AosW+5b9o1w21Pzbe07OW1LRtp1y6uPdg9pGdMJk4l1PiOTfSF2DkfWlAKaDpGjnJ/slBmXceOeYRZShbWd+ob2wFu+Cb4wJ+bTbBkIrQvokbv12i2Ij8+n0NfB6IK1x27PSJT7TrVgERwMWrpQZnwdrCdYwFK2WOaJNVwxhV6VSp+YTzMY8a/r3d7Ubz0j7a4/ObWYxjBh5zoAioBX5+rtA/zsqbWLOK9jltUq4tZ31kgZ2mNr7NaS0iTdNJlOWUX6et63kM/DZZv72pbvm6bJ8bnUuhgEsJ7/B04vt70T6qnZJENRP/1t7PasDykpXuuzORm0gu2KvN6z7dodA9xzovXMswwLVF3fM3LdzgFKhsl9p9pjPk8tdG4iJkM28a0WZEswXNM0zq9k1wVgCSF4xnbrPq4pcZfXssc7JvuC6wLDL9vcR9Tv4YEWOVJGPFtkOVNkyzq+N69urTa6vYXs3LlP9PHzCXaNtLfOoj6esaP1qIwEejwmTMWLCLG+53+iN0jE76kYqLQK0zSZWs6ui1QAa1b9fDzXUgor47TdoK2n/n/e/hESubX9BVwzCTFN8zag/q2+CjhmM2MF4PPAS03TfMw0zRfX/a/pW2qa5jdM03wB8IZ2/i1gyVvWgzKCJU86H8+tKT0RtjG8aXpI5ErrLhovmuxlIOxry2EIYCGZ72gYtz7amUOTJiGlssFsIsdwdH3X2z8eI+zT1zaBsA8yU2jMJHLrZtCkXLTdhdWziRwjscC6n5Hrdg5SKBvcv8ZBpjmYn+l4bl0IEsBwNMBYLNB2g3Z6MbPuYgCsJJXMldq6nnS8G13n93bVtn50TXBnm7Ka84nyutAxGdfvGuS+k0tNm89GZ/d6n0nJzh5u07zj5EJ6XUg0WFLFoai/7cbixHyazf2hdR3QAFdu6+PBU83vI1SH+zGtd2y9z6R0o1vr3S5r1WbwfHx9RVz1en08eHq5LVfMo7M2W7cOBg3ghl2DHJ9Pr8nGOF1Mp5az60L0AS4Y70ETlsNls6gWViYzyTI+j0Zvh7McMq7bOcih84m23OwW0wUSudK6GF2w5kdMk7bXTTw1m1yXLBWsnZEjPf41xyCc0qRSyXqO1sPEg7VuJZkrcXKhPfOOM0uZdQPGV2zpx6dr3NVmY31q0SpQt64DNIgGvFy7Y5AfPDG7ZtMkJY6moVEy1g/QPWP7AHPJ/JprCwwboNMEFjgdXV/u1zTB7tFoRanTKs5U3LLX973dsLu17Nznq/7dh87F1zUTBtaKqGLZXFO+LKXSOibn41YNuZ5GV7PnDdtZWQMWqJoplNm0zhpBzsW3lBTbcXIxzVgs0PbKB2fcuGeYyzb38i+3Hmv6e1Tb7E8ATiunKfvXmvxjxIAQ4t+AS4UQf2L/2rOFEB8QQnyYJgyaEOLXhRAPCCEeKBSsw2A9CUPGyy6ZYCwW4L3ffbLp70nn7cLEtG7gelkmaaX+0yfnWjq+mabJfCrP0DobJrBsiQtlg4fPNi92ZGGynCmSLxkMd5GkLhyPrV3oVxo0QdkwGeuisbhiSx/T8RznVrItf+9MPMfoOr8zsFyofLrWkYSn08FmZ+yfaHEfHXFyMb3uQwwsxBZoa4B7JtFdgxYNeLloMta2A+f5hNFV83nRZIx8yahIE1qFEOv/bDuGInh10dKSGyww5PRimu3rLFAlQnz38bURYhnnVrLrLhgBrto2QLpQrszyNAppEiJJyfV+b6OxAMNR/5rP/1DAkl2+Pm+BIWNdvNtXbO0nkStVTCvWCulyu17mR8pu13LXda7rKBvmuou4kM/DruEoj61RxFUaNGA6WWS0pzsQyzTbc+qTsuz1fradwxEuHO9paYIC1vl2dC61blm2JU8a4o6jC033eAlHg1YsgVcXDK0TWJXnRjt5xDRNpldybVt+10fQp3PZll7uPNZePj69mCEW9La1fL5RPPfCEU4vZtY0QZENmmFYz+F6wZeK2/MaIFbI3su6zdBZSHZXa+0ZjXJkNtlWPj69ZOWR9TCRANe3werWmm0VOjaIknHl1n48mlizPvB4qnnk/Mr6lVFgzXw+NhVvy7hM1n7rPdu2DISs2bAOnv/15iwhBC+6aJyzS9mmsnPt/082+6ZpLpqm+U7TNHeYpvle+9duNU3zt03TfIdpmv/c5M99xDTNK0zTvMLvsx6M9SZDsJLUG5+xhYNnV4hnGw95ZvLS6bC7Bg0s9CORK7XU2cazRYpls6ukIXeMPXxmpenvkQzaefthH16HVFTG/okYh6cTzZF22+1KgtXrPViAyqLM+9dgPnPFMlv/+Ns8dGZl3YU3WM/I5Vv6Wkoq/3z0Rv5o9LeB9UmFZFw0EePEfJpkG0PH88l8V8X3QMTPruFIW2zkbCKHJrp73y7d1McTaz0jjsiVdAYj6ysGAC4Ysw6lZnK5+rN0KOLH26E7pQyfR2PHUKQtBu3cSpZi2Vy3VBQsZLMVQixjMd0dE3+VLc2+92Tzg2w1g7b+9+2iyd410eFooJfHTp7h9QXNAl9cyCOtzJQAphM5+sO+jk0LZOwYijAeC6xpf++USsP6iziwAIrHzsWbFo0er3XfPCbMJPLrGhOQcfFkjIjf09YS6bkugR6wQLPHzsVb5pGVbJFMobxulgnghQdGiWeLTb83J4OWL5mMxYIdWYw7Y+dwBF0TbbExK5kihbLRVT1y3Y5BnphONK19nHGqC8ktVBmLtdRKcpykZNfnk+s8R7cOhBjp8a854rEtNMK/zMzxV6UI8102aHtHo8SzRWYTrf0F1uu8KaMv7GPHUHhNtZJTKg3rm78HCPs9XLNjgG88cr6ppFIyaF7TqiO7adCu2mqRCgdbrOMBmLPvdSf7X50hhOCSTb1tSypPdaF6AbjEdhFv9tk0xQzaOWCT4+eT9q8pCzk/NdBF8QFUtrk/2aS4Mk3N/q+ViLs5yOTS6bVYLYAFez9DNwVqb8jH9qHwmsWHfOnmbOOS9TJoYBUEuaLBsWZzOJrdoNlo+3rnfcBy/BkI+9Y0gVhw7LjohkEDSwp4eDpR83fWx2ue9wHMnucAVhJdb8j9UY+fay9xdFMMA+wd62mrIJhN5BiM+Du22HfG/okecsX2WK0S3nXPDYLFdPg8WtOdYSa1B8565Y0y9o31tDXgLC2d18vEgGXwArScMQVYTBUY6OJ5HI0F2Nwf4r41CivNZl5Mw2IQBsPrz5EXTcY4sbAGQGE3gwaCVL7U1fO/pT9E2Ke31VjPxnNdFcNCCJ61Z4g7jy00VVA4pdLQXd66aDLGQqpQcTpefS0fmmniobv5Y7DmWS9oO49YObSb60l2vBXzuVg5R9f/PN6we4i+kLeppLJmBq20flkeWLOKWwdCa7LVMmaT1vfazX2UZ02z2scZ51eyXX22zf0hBiP+NcFAjyYbNOsdXy+DJoTgmlYqg4EdXJ/NoV/zeyTzpa4aNMnQtlPszyXyRPwewuuYG5dxyaY+HjnbHHxx7hOFzlcnOeO1V27m3Eq2qXOk18HEn+vyGblyaz9CrN3Ey5C1WDff246hMGeWMuRLazN2qXyJxXSBzf3rP7MvHI+ha6LiKl4fqhu0+4FdQohtQggf8FrgG138fS1Dsj/dNDFQtfdsdkjLBg26Z9AmeoMMRf08sgarBdWGqZuHDywW7aEzK01f5HpUpFsGDdYYTLcPMsO+n900upomePaeYW5dw+DCOXvXbfEth8Vbzf3IGYzeLhoLaVH7eJsyx26aarDQv3Mr2ZaM3Uwi3xXqDZ1+Nq2rBs2ra+wdjTa9Vv0r0Q1gALBvLMpMIsdyizmcE5WF8OtP9tukU1mL5zFTKJEplLsGsa7a1s/9p5aa5hENCWJZTOR6GQSwim/TXAugsOdm7dd+tIvvTdME+8Z62lr8PZPIMdpFzgK4YdcQyXyp5cL2FxoW1jnQxdl2wF690ZSN1Dzo2AxalzJwgJ0jEZ6aTbWUec0mcng0Qf86pXJARbK1lgkKwELKehe7ASi8usZ1Oweb74MSGrr9mQul7s+avWM97QEGdqM7Glv/M7nPXpTcjqRyNtFdEy+E4IotfWvOcks2sliCvpCXkG/9Tcwztg+wkMo3BwMDMfjrOLMTzwO6q7WkNPWpNiziF9OFrmvWSzbFWEjlOd8EfHFKpYF1GeTIeM4FIwS9enMG2SFxzJeMrpRRsZCX7YPhlntnodqgdfNu7xiOYJhVA7RmMRO3FGbdgIEBr87e0SgHm+RjN232PwfcDewRQkwJIX7NNM0S8N+A7wOHgS+apnmozX/7ukIW5oNdNjHDtsNTM9SqcuAYVoPWTRMjadVWB7Q8WLqRk4E1q7WULjRFGst1h+l6TULAcvcL+/TmxbeNDpcRCMG6tewynm3vaGo2VJp2mqOsc7ZCxgVjPfh0reVs2EqmSDTg6YplGoz4GY8F1hzwd8Z6HBydIdG/p2bXRqO7ZRAAtg9FCHhb30cZ3T4jF03GeHQq3pYrWn+Xh+Zeu9g53AJFPTGfIhb0dnVoyjm0B1o4sC3aeaTbguCqrf0sZ4pN50ecEsduv7MDFSfTlca/wbTyvmzQui2ILxjv4fB0sqVRyGyiOzklwNX2jqa1WITH3vIYsZF/xO/RCK1jIF3G3tEonjUQWzQPHtPEgyBbLHf9bu8ajhDPFitnV7OYTeQZjnbXxG8bCBPxe3i02TNix2LaLuK6PEf3jfUwtZxtvOtKSA9TS5rX7fN/yWQv51ayzCXXdqmctYvzbgC6kR4/fSFvy4YwlS+Rype6fv6v2NrH1HLzORyPsM6yQkl0DTxeZsuXW8nl5lPyPq7/GekN+Rjp8bfV6C6m8l0/jxJ8aQZQOCWOvSHvuqX7YMn3D0zGmo7KaB4/mmmi2+mz22dk53Ck9bJ2rBo5GvCsW3IO1dUzJ9ZyXwZm4t2z/mDJ9w+eXWl41ggXXRxfZ5rmmGmaXtM0J03T/A/7179jmuZue67s7zr9x3cakkHrtokRwnKPebIJ+lE2pEmIlTwGupDvgCVzPLGQXnNn2LxLDNoNu63B9Gb7d8rl6oMS8GpdFfvSKKRpY6FVZ9BiQe+6LMadIQu5ZrKCjL3fxe/ReMH+0a6u5fNo7BmNcqiF7HA5U6CvywMaLIS4XQYt5F9/goL20T+LQeguQema4KLJXh5qwSDL6IZBA4tBTuVLbSGbPevYJeSMdve4TC1n2dwfWrchg4y9Y1Gm47k1mc95FyReYDFoQFNLbk1UGbS+cHf3cSDiZ6I32Lyx6NsKwxdw7wV/CnQvX75grIdUvsTUcnPDoXypzEKqwGhPdyxrf9jHpv5gy8XfCylrbrCbZyTg1dkzGm0OhmgePKaFfEN3wCNQWU5+tMW7NpfMrXtuRIamCfZP9LRk0KSioRsmEqoqm4bvtoNBK5UhGugOMLt8q9VYPNjCtl02Od0CxvvaYOykg2+3YMgV9jxrM0t6KXEslmEw2t13tmMoQsint27QXKq19oy2J/G13u3uPpuUx0tnzfqQKzSGS2bXuR+smvWJ84nGUkDJxNswxXp28jljx1CE04uZlkZ688l817W/VLEcn1975EK+a92eNZdsipHIlRp+b/IMXSs2zCTEzeg2+YL1UJycbyzPKNuIrWnfnm4bi0s29QKsyaItpPJ4NNF1gTreG2T3SIRbm+zfcTJoPQFv10XjmkYh9gNYNruTt8jY3B8i6NWbolYZm0H78juvdSVJ7Z/o4fHzzXXfYLlhdjN/JuPARIyTC+mGiG09+tItgzbRGyTk09c8XKaWM8Szxa7mpmRcsaWPQ+fia65/kNHt8y9NIBrJk+q/xm6vNRT1MxjxtSx2VrLuPCMS/VvrcJEMWrc5cstAiKGov+kcmkdKHA1Bb7D7z3bxpljzBs3jh9+4mycClwHdF1a7bAb52Hzz53/OBTmZjIsnezl4tnVj0Q3DKkMyyA1zlhB4MPHY/1e3zI+0sm81FzabyHUlb5dx8WQvh6eTTd0VwULZhaBr0GzfWmMQmu4onDR6uswj+8dj+D0aD7QwbppN5ugLede9PkPG7pEoR+fWlqbKBq1bBuHC8R4CXq2pzNHJoHV7ZuuaYP9EjIMtmnjXGrSRCEfnUi3VGoupQtcMWk/Ay0DYV3GWbRT/uu/X2Zz/064kgDIu3dRHoWw0NtwSGh7TrDj5dluP7ByOUDLM4pAk2AAAXClJREFUlrLD+VR35ldgmaBM9AZbMp/Swbrb5/9iu/ZvdLZpbkkc//8W3TJaAFsHwyRypYZ7XCSDdsXmAW6xl8R2ExdN9iLE2g1aPFskFuy+YQJLi32wyUCpM5l0M7QqY/dIhFzRqDzQNWE3ugZi3ft2nCH3jzRjLNIFi0HrlmGSsX8ixkqmuCbSvpwu0OfCZ5MShkYsWr0stRudPtj3cWTtPS7SjOIZtkSrm7hyaz8lw2wp8wW6fk4294cYCPtaznxC9w0a2EYhLZJ9wn63u42dw3aDtkZBLE0Sui0IhBBc1cbuwVLZdOXdPjDRy5mlzJoqg6V0gZBP70riAtagOMDxuebFzqxLBzRYjcW5leyahkNL6YIrwOOBiV7i2SJnlxrnLItBs86Yni6Zn6Gon56Ah6Nzaz//3c4yyTgwGaNQNtZkxxdTefpCvq5B1TWlgEKrFk6m6JpB83k0Lp7sbd2guXQfdwxHyBTKjc9sO2ZcYhC8usYlm3qbGpfp9hhEodg96w+Wu2gr1+DljAWCdtvE7xntoVAymrJaYI3lLGUKrny2rYPhNV18n3nVb3E6M971CBA493w2YpAFHqgAPd3WkfJcO9Yijyx0uYZKRjsM8mwiR0/As64daM7YNRwl4NUa1nU/twzaepbi1Ye0vG70wEsG7YUHxvnoW67o+loRv4fdw9HmCDGQzJW6RuJkbB0Ik8o3az6rxX438w4ypFtQwyYmZMkbPut7lSsyQIC9I833j0gGLdxlAyNDMp9Nh8VxUeK4huFKPULXLWIFsGckumahc/fxRfrDPvasc5+QMyrrH1o4mfo8WtfFtxDCmjFqIIOtd3HsCXZ/H/eOWvdxrYIgni12XQyD1Xx6ddHcNRV3BqllXDBuzeE0klSmK6tINFee/4ukCcQaMl+33rXekI+BsI/ja9zHilTOBTBwty0pPtGC+XSDQbvYtnZulrN0pPUVXZ83Qgh2jUQrC70bRaFkEM8WXSlQq7OKzZ+Rbh1MZawpBRQaWiWVCFfe7cu3tlYZrLj0/HcCUHQ7X2RdL1Kxmq8Pjz0GUTJ0V56RfWOyaWrOxqTyJQJeras5LaiOCqwFdC5niphm9zPBYNV1azWDYMspXXj+J/uChH06R5qMk3jM6i7MbgGKXcNRogEPn7z79Jqs7kKye6koWM3nifnUmu+aG/PHYLG6m/pCnF1e/Txq4ueMQQt0Se07Y9uaDZr1xXk0927PloEQ59ZgYhIuFXHyWgCnGyRFJxvjRiMjd3I1bNC8QfjrOJ8xnuOKxAusYmcpXWjYfKbz7jJoe0d7iPg9a7pQrWSKrjAI/WGfNYfToPioz1lufL7do1EW04WK3KM+Dk8nuHgy1tVgv4xYyMt4LLBmIQfuMFogm6bUqqbJbYmjda0e8mugqKZpusageXWNLQPhNQeq55P5rgepZewZaT6r6LOLG0H3rCdUHWHXArGW04Wu591k7BiKrNmgSTY+4kJO3mLvP1rrGel2d52MvaM9xILepgukPYBuulNYgWUUspbEUTb3bjz/k30hdE0w1aDYkbGYzrvS6IJV7B+ZTa6WsAkN3QZ7TLSuZ1nBkoG3UhkkcyVXVC9VqXTz723OZhDcyCOjPQGWM8WGy4ilxNE0dVcY5N1r5CwZyVyx67kpsJgfTazdoC24NBMMsG0wxGwiT8bOTfVRKBkkciVXriWEpVY60uQ+6oBm55Fun8mgT+e/P28Pdx1fbAosyc/WrTIELODRMGn62UDuiey+QQOrRm5UHwtNR7RwwH1aNWg7hyM8/jfPc+XvmuwL4tFEQ0tWKXHU23BZaTdGegKVPSaNIuFS0oBqg3amAYrkNAnplr4FGOsNIARrHpoW8u3OZ5MzUY2+N8mghVw4VMBCPy7b0td0wLlQMkjlS67M14HFIrQlcXTh87UyCsmVyoRcKAZk7GohqYTuVhU4Q6Ko9eBLfSp0o7Cqzqo0n4ssGaZrzefOFo3F2eVsVztwnLFnVO76Wf3ZKvIMU+t6lgmsAn7bYHhNM43lTNE1Jn7HcHhNRiuVt9l4F8CQib4guiYa5mOwnpFc0XClsdA1wdXb+rnzeOMF0h5EBfl24/nfORxhKV2oSGvrI5mzikk3mkFdE4z2BDi/0vwcXXRJKgpWjswVG4AvQlQKJ2EKV87ttWZnZaQLJVfu43DUT8TvWdPJLpkvuVaPjNhMxFyDpc7SatxE69oAAtprmpK5ElEXzjZrh114zWsturD2QcZWm1RoNqvlloOpjD32md2I1fJgMWhCuFOP3LhnGGjO6qZs8N0NEqPVmi2w2Do35JRgAUtnGzHITql0k3haNWhCuCPvAmvR5kSTztawJY7taETbjZEePytNUCSQEkd3PttkXwghGr/INQyaC8WH36MzEg00ndPK2sWHG0UcwI7B5jap6UIJn0fryvK+Pi6ZjHFktvFg+krW3oHmUvO5fyLG6cUM8UytpKwewXXj8222Uf2GiQOr+fS7eB/3jEY5Nt94oHrIvrfuMWjS/n7thtCN6+0YDuPRRNNkH89a36Vb8uWdw5bjVTOjhDNLGTb3d+c8KGOyL0jE72lYgDhKVNfAF2lw0SyWMwX38shQhMV0oekOO8nGu3HeeHWNid5gQ0UDVOWUbgE91+wYYGo5y3R8dU72YCHfbsiJocpYNEOjpemRW8X+eG+A8yvNlSjpfImo3z2gBxoXclLiaKK5cm73hiwFxVrMTzpfduXMFkKwYyi8ptlQtuDOtaA6x9lo5s2jS6dndySOAa/OloHwmvcxlS+5woyDda6txcQs2zO1biiItg7YTo5N5tASWStnuXWO7h6JspxpvEZDN608EvZ5XFHZjMUCeDTRVGVQVUd1/72N9wbx6dqactF0oeRar7GpP0giV6rUApVwAD3N4mnVoLkdY7EA0w2SvWTQ3GzQpM1wM0mZJXF058UKeHXGegKcXmrEDjpn0Nx7AJsxaDJBuSU7megL4vNoDQ+XTL5M2AVW0BmTfSFMk4Z7XGSR7MZMJFRZrfoZo1aLYNcTo7EAmqBpsVMoGa59LrCkUIWSwekGSTGw8l7EkT9wj2UajuDVVzdN9ffRjev5PTrbBsNNd8olXJR4gfXZyobJmQbvtmmanF3KsMklBk0IwY7hSEOmSbMnmYRLDBpYM0bT8VzTfVDL6QL9LjWDlX04C42/t1SuhCYg6BIbv2UgxJkmBYG0snZD0QDVxqKRpNiDQDeFa2eNnAtrJs2TDJpb8v3x3iDnGzSeMjL5smv3UTIWjcBHmRlNU3Ot+dw+tLYJRCrvjsQR2pH4ll2rD6TRSKMzVLdn0ExT79pmX8bukciaTVMy5w4TCdY806nFdEsG2Y33TT6PJ5vkkWxR5hF3zm05vtII6PEi0BCuEiab+kNN2cGK5NyF6+maYLI/yOmF5qqvTN69518qWlaNOAkN7edJ4uh2jMeCDQtUaRIi6B4ZkDGyRpICKXF0T1K2dbAxQlbj4ujSQTbZF2oq35HosFsou64Jtg2EmzJobr1UMuSgaKPnRK7L01xw3gSHNLWu+G5n6XKn4dU1RnsCTDVr0MoGfhcbtIoDYaPG2oiSMIZ463XbXLmWz6OxYyjCk/UNWt3vc+t92z0SbepAJdlQtxo02Vg0mkObT+bJlww2D7jToAFM9gY51/AZEZX/unVIX7SGk2mpbM0guNUMbm9hlCCLYTdcdcFirJsxaLmilUjcet/WmjF6Z07wkrTPNbVGX9jHjqFw0x1eiazbDFqQmXiu4eJX0zTJFMuumF+BVQxG/Z6K5bwzqt9U9y6OMrYNhjk5n24IyBVKBoWSQcSl823HcITpeK4iHauPTL7k2n1cq0HzOBo0t/LInpEopxczTdVKqZx77MgNu4cwTbjtaOO9s8kKg9z99SJ+D0NRf1MGTX5et7waxmKyQVv9vQUAr6G5xrKCzJHNGDR7fMUt8GUg3DQfl8oGhbLh2rWqPg111/t5kzi6HeO9QWaT+VUFsGGbhLg5g1ZNUquRlkLJIFc0XEM1wS4aG7gd1jBoLiWpbYNhzsdzDV1xJIPglsRLXq+RS5ObsgwZ473N5RlSLurR3SnimklT62fQ3Irx3mBT45p80V0GrYoirf7eSobJKy6b4Jm7Bl27nuXAVts01d9Gt6SwO4ctl7JGBYGUNbjWoA1bjUWjBk06RbnFoIHFWJ9bya4qiCviDFOrHEDdxoXjPWiChjvDVuz76BYTP9kXwqdrTVmEdN69Ik5ebyVTrEh1nJG3mXi/S2zdYMRHLOht+IzcXPawN+9z9ay5fEsfD55ZbthYVBgElxrC8d4gxbLZcGVBoWxQNkzXWCawALpGDZr8pnRN79oNUMa2wTDJfInFNQyw3JLmSSfHk01kjm4yaD1BDwGv1vA+Vho0undVlLF7NErZMJvOmKbyJSIuyWD3j8cYjPj46ZONG7REroiuCdeK/W0DYU41YX7k+eNWHpHgdCOV2V9lNV6RjBBxMY9sHQhxeiHTMI+4KTkHuxlcbAyGZIruNoOy9jm7qtb6hcRxzRjrDVA2zFWSGsP+0txl0Cx9dSMUKamgidk1EiFdKK9Cv2saNJdeZIlGN5JnpOSQuEsJEWAw6mvs4ujioSJDokiNBtPlvXSLQZPS1Ho20mju4N5VyOK7URTK7jZogxEffo/W8Hplw8Tjgo7dGfvGoswkck1njNyMXSMRDLOxjXplBs2lgyzks1DURrIr+WubXJpBA2upeaFksJCuK4htB68Lx2OuFcRhv4ftQxGeaDDzI79Ht+Y9dU2wrYnKACw23s1Cf0wWOw3kQlLi6BaDJmeMGrp9ah7yhu7qWXPxpl5WMsWG77brM2j2fWzE/EuA0C1ZKtgNWoMzW35TXn1jnKUl0+XWM7m9hZNjplByDewUwjJ3aTiD5rEAl7LprTjDdhtruc+Cu2olTRNcubW/6eoHKad0i4nfOhhqKnGUTLxbz/9A2IdP15hu8L3tN70MFH1EXATEtwxYAEWj2k46V7pV320dCJEplBvO18k84ta1+kJewj69AYMmHOs6Gsf/0w3aeK8svuuaGFviqAv3Hr5Y0IvPozU8oBMuOl3JkMPb9XMIzgbNLa3+9sHm8xwpl5E/sIbpVzKFVcxnJu/eoSIj7PfQE/A0/N5kI9/tUlRnbB4IrRpeNRQxaBO2XKj+PpYNk7Jh4nOx+BBCMNFELlcsm+gurrQAa4ko1B/Sau7jrmFplLC6sZDvtlsMGtizsw3Q6MoeQBcbi4nexgCFxP48LqoMwNpP2WhO0a3lss6wnBybzKDly4oatOazrG5Lihs2n5qXvOHO7i4Z22zzgkYyd/n8uzdw39zcKF1wF/kGazRhLYmjV3fxPg42Z7XcnMEBS06va6KhQytYkjI3wc6RnsCaM2gC3RWzCbDGO7y6aDiHZpomqbx7M2hgNRZTy5mGowhueguAxcZYUvbVao2KxNHrTh7RNMFIzM90I9dUX4SkGXBVZSBHPBqpo6SrrlvX22YDFE822PNWMSRxKY8IIZjsC60GVYWG1qIm+X+7QWvCjoTZbP3/kXHXriWEYNdwpGFCrDBobkochxujSE65nBsuXlA9WBoxCG5T02DNPRhmdb6hcq1CmaDXXQYNLBZtLQZNdwkdA1sbXS9xVDCDBhbNXzJMjtbNT1UKRpcSvYyJvsaSyrJh4HVJJlq5VgNpqnz0P/Kmy11b1wGWXCjq93DfydVzOPFsESHcBV9GewINAYOS4T5gIEGs1d+blTvcBLHAKq5OL2ZWSSrlALybAMz2wQinlxo7YloSR/euJe9jo2In77LZEFhF40Iqv3rGyB9lxQi6yqBtrszOri6skrkiUb/HtWdSus82MhPIFtxzepMxFgswn1o9BqGiQZvoDeLVG6/+cfsc9Xt0Ltvcy+1NZqeyhZKrhlsjzRg03QJchHDvefTqGpv7Qw0b3UyhjGm6W49sGQhRLJsN59TdNCSBah5pBBpUGzT3vrexWLDhtXjFR/iQ9gZXQawtEuhpMIeWrjDI7ny2K7f24fNo3Hpk9fMvgU63CAxosgvtFy6Oa8dEkyXLI8bzGEr8MZcMX+Lq9aSNdL3uVdqjunloxkJeekPeVZ/NedC4hdgGfToTvcGGcomkggZNzqEsZWrpaTdlGc4Y7w00leYBriF/YCHfi+lCzYyFKgbtOReM4PNofPbeMzW/LtE5tyQnMpotbCwZpqtNBTisnR2Hi7yLQZ97A+lgzbJdta2fe06sXg6cypWIuGRFLGO8N9iQiZFNjcdFNlLmyHMr9QWxdQ0353TBAijyJWNVMVdxTHWR1d0xHG7qiJnOlwi7zCAADR0IKzNoLg33QxWNXsU0vfzf+NviG10tGsdiVmPRaOg+kXW3QA14dUZ7Ag0bNLf3YIL1vZWN1TNvup1MdBednj12Y9HIBELO8rlZED97zzCHzidWj3gY7pqtgCUVnU3kV9U+E0P7CRomSWOza9cCu7FoOE4i1Uru1Vpb1mB1k7mSq8C7nIlvVI/IBs1Nie9YLMB0osEYxNAejhf6XNknJ2NTfxAhaDhjJxlkt57/kM/DNdsH+MmTc6v+vwoY6GL+39QfYmqpbr5OaL+QOK4VEb+H/rBvFfJXNgVhtrh+vQMTvcSzxVXXS7jo9OOMoYh/la1/TYPm4ou8b6ynoQ47nS+ha8I12h2qDVr9fFGmUHY1OcnYNhjh5EJqFapfkTi6yKBdMG5J8w6dr1Lvqhi0gYifF+wf5ZsHz9f8utvrA2RM9AZZTBdWmcmUyu7PoEUDlu67kSmPm7OlMq7ZMcDJhfQqZitTKBFyGTQYjQVI5kqr2BEVDFosaN3H1Q2hlDi6+4xslTKXuiJVxTNZdcRsXBC7Kcv2eTQGI43lQvmiuzNoAFv6Gy+1Nfu2crbU62ozqGuWhKcZg+Ym8AgWY9e4qXZf4ijNveqff5lDNOHumW2dNc0/m5vA0vW2KdN9J5dqfj1XslgmN5nIkZ4AhZLBSt2Oz82bn8ktvZ9jif2uXUter5GkMpW3ru/muy0Z5IYAhcvu3M1UXwBZewZNBYNWX/tIqaibgIHfozMeCzaUuMs60s0ced1O68xeqQP6JVvnNoOWzJcqZAzwC4ljO7G5f3WyL5YN15z5nHHRpLUzpr6RUSEDBBiK+plPNW/Q3GRILt3cy4n51Q+7tLR1a0gWqnMo9W5XZcNU8r3tHI6QKxpNDVfcLIgvHLOekUPnq8+IMzf+8+svc+1aYBWpy5lijcxLheQKnLa9q++jm8vFZdQf0oqISMAyy4DV8yMpl5kYqM4zzay6j9b35nazOxJrUOzYJiEqJI6weg6hULZZXRefybWMEtxcVCpjvDfQcOA+r0BS3GwRvWzivS4/I5v7G69acbtABYuxaOjiW3Rf4jgaW83Eg8PF0UUGDexdaIvpVQWx2xIvqErK6qV5shl0U+I4usay6kLJwOfyuT0a8zPXwKG7wqC5KoO1GeQGz6QlcXQPoFjLWTGnAOgZiwUols2GtVbZMF1tBqH5OhJrJlJ3tY6U7or14EtWwSyrdDo+W2MU0hoq/kWD1r8a+SuWDdcsX2uuZSMt9ShqTtHMz1C0BYPm4ot86eZeAB4+s1Lz66l82fVCpxmDVjZMV9ksGbtGGu+ekgyam/K1WMjLRG+whkGT1/nQ6y/lRReNuXYtcNxLR2NdKLtvWgCOYqfukC4ahutNBayee5DyAgWPCEP2ktV6QCRTcNdsAprvp1HBoAGMRAOrmEizwqC5vHewJ4CuiVWSShUMWsTvYbQnwPEGbodpl9FhsOVCDQqrggKJYyzkJRb0rtorVCrL1SDuvttbbHOjegmb2wUqWE38fDJfmd2WkVFQWMmcVQ9QyLunufz8bxsMUygZq6Swki130w25J+Ah6NWZidfnLHcd88BqmKBxg1YsG3jdPmtsaWr9AmkVpmW6Juw59QYGcNmiaysmwGLHBiO+hlLpXKmMz6O5Wo+MNQEo5FnjNiC+qb/xGITba0/A0eyuUr24L3Gc6LVq/5rPJjRaZar/5xu0LQMhzq/kKJarDEKpbLpuWgAWauPTtVWW1VWJi7tohJQ4Og9Np0mIm8XOxZO9aAIePlM1SphN5JhJZF1/sSSDVj+DZhjuuwEC7LSR9nozDfnIuN0U7h6J1DAxKsxIZAzYDdqiw2427/LiXBmNlrUbholput9UwOodRvLJV9CfMRixCpB6296UiwtfZchDc9V8qSy+Xb6XjXdBqZlB0zRBf3j1Go3qDJq7z+SukQhP1b3X+VKZYtl0PW+NxRrPDuYVuDiCdbbVo/pFm2V1+3zbMRQhmSutAgQzBXdnmaCqRHnwdK0pT0aBzX5/yIdXF6u+N93OIm4//7JonEs2bizcZNCEEPZsWO1nq7rBujvLBzDb4Pkvlg3X3+uRJtJUVXlkMOJjsa6uMwyTVMF9gGK8t3ETky8aro94VNYMNVC9gPtnTV/YcuiuB3rSBXXnaP0zIveguSlxrM5y1zZov5hBaxGb+0OUjVoHnmLZcH22AqyEOBDx1RTDUD2g3ZzTAotByxbLNbMqTgZNDpK7EY12GF39P3/MnccWXUWrwHpxgl59FYNmmU24einAShqDER/H62ZVqiYh7l6vP+yvkYqqMCOpXstudtOrGTS3JY5VuVD1IKtIrhRJHOeSq/XzKjq0WNCLRxOrzAQyLu/TAuuA9unaqnUMqhi04R4/c8lczaFpmraLo4I8ORD2rWp0Vclu94xEOTqbqsmLKiReYBUEqXypMnMsQ5Upz3A0sOo+FktqZLA7hxurDPLFsusyqMu39OHVBfecqJ2dyri8Kwxsq/EG80yi8v+7+9mkoYSU4slI50v4PZrrzOdIj38Vq6WCQRuOBhACzjdZM+F2/m+m1lCVIwcjfhaSdeBcoYRp4upKC7By1mPn4qudbgtl12vIsd4mDFpZ3kd3r9cX8lEsm5WVGTLSCpRYw1FLrVH/2TIu2+yDtQst6NVrWVYhfjGD1irknp9zNQ2aGgYNsBu02iIuVywjhPsH9FDUQvWdqGbZMHnZJeM88pfPqWhw3YoLx3t4wiHNk+F2gQpWY7FKF22aSpoYsBJw/fVUmIQA9Ie9lb1PUJ2dcmshtjMGInKer/qMqHDMA0tSFvF7aoqdko3oq2DQhqN+imWzsixa5QyaBF8W6pDvtMv7tMC6V5sHVru9lQ0TTeCqTh8suVCxbNayWqaVqzSXZ9DAftfqcqQq2e2e0Sj5klEzmC5dvFxfet/EIjtfshgEt3NXX8jbEMQC9yWOFcOVunm+XMlwvWgM+TxcPNnL3XWuqZmi+xJHsJ7/1TNoamYwZTFfv0Im57KrooxGn02F2YrPo7GpL9Rw72ChbCqROMJqaWpZESA4EPGvAueSCvbbgmVItZIpcrhuh1eu5D4Y0h+yllXXM2glRfPOfSELoKjPW+l8yfV8rGuC4ah/leGKCiZeCLF6zZDQfmGz3yp6bbmcMyGWDDUzaGAjLXWoZq5YJuBxdwASmjdouqZVPrebccFYD+fjuVUvl5sDuTKGon7mEqslBSpkgGAxJPWHpgqTELAYu2yxXBlWLVcWYrt6GetaoQYMmqKZSLAR27izQVMjlYDqcmjJWJg2WqXCxRHku13foLm7T0jG1oHwKre3kmEqYf6r0tTqZ5MzaG4XqGCDWBskcdxrLzQ/4thPqcrFdNxG9etnVfJFw/XGE6w8slwnA5dSfvclZX4ifs8qBk2ebW7HgckYx2aTNaxutlBGEwqk2bHVO7zkFXSXZ9B66nKWjFzRcH0EAqzPVq8yUMGggbUvstHy9GLJwK+gYRKCVZJb+fy7fWYPRXwsZQo1TLyKvWRgNWgAdx+vBShUvGuaJhpK3MuKZtBkXVrv9plWMMsNtny/bo1Atmi5gbsNmE30BldJHMUvJI5rR6/dsTsfiGJZjascwEB4NTqcLxlKiuFKg5aqb9BcvxRQdbJ7YjpRM9OngtWa6AuudlU03d+nJSMW9FaYGOf1wP3PJ5smWVxVJI4Kms/ekA8hahErVZIrkAmxmuxVzU2Bo9jJ1sqFFPXwDcEXFSYhANsGQ6sWOhuKnv+Gs4MKGTQrR65u0DyacP1dk9I8p5OjbNDcBukkg7ZqLqZcVpL/+0I+8iWjZq1F1STE3fsohLAcCOtAA1Vn20RvkHShXPNuW/Nu7joGA4zZLJOzGaw0aC6rDCTbUi9xzJfUPCMVdtzRyFckvi6vB9kxFOHE/Op1NYWygdfj7nema4K+UAOVTYVBc1niGPVjmk2ATgVuyOOxAI/XuYFniwYBBWBgPagK6oBVWfusZFfvuFXBII/FAqvycVrB3Dg0qFmFQP+FxHHtkCi7s/gulg3XbYhlDEZ8LKRrhyBVoYxSz55yJPuSIiMNqFqJzsRzFZoYVtPVrlzLRiNksjdNy2xCRRMDjRs0eW23Wbt6Vss01TB18u+sP8hUMQgAoz3BGtckaVqgK2gGK3IhiUbbr5yi/mwVg2aaJumCIgZt0Fro7JSeqNgnB9YBDY0bNLdNEsBi0FL5UgWBBtuKW8HzGPTp9Id9NbMxRUUzmMNRC9Wvd3LMF903SYCqXMhZfFekSUqu5yPhOGuKZcOy4lZwtsnRhCmH22emUHJ1sF/GaCxAtljbDMpzxm0GOejV8WhilVojX1LDslbs7x3Pf0bBwmOwwJB8afW6GlWu2QNhH0t1QE91dsr9GTSgJv+rPEc3D4Q4W2cUYtWRat7rVeB0RT3k9gyaLXGsY9DyRfel0lDd81bPxKvII5v6QiylCzX38hc2+y0i5NPx6oIVp8SxbCqTOA5EfBRKRo1xR07RwydRAOfApYWyu34pwIn+FWtQ23oUy40Y7w1SKBkVR0xVrkIyGjJoiiSO0rhDsroqGTR5vY0wCQHYNxZlNpFnzi72K4imUgZNShzVxmDUMgCSyT5bdH/hq4y9o1EAHj/nXGhuoCuYnR2Orh64N5UyaKv3HBbKaho0WG1/r8qQxKtrjEQDTNU3aCUDv8vFMFgSR6gFyIplde9bJOAh5ZDmqZJ4gZX/oXZhb6ZQVgKGNHKykzNoHt3dd1sIQU/Q28BIRp3EEWAuWb2PFVdpl7+3HU2MZFSYhICcU69VK6kypZI5q6ZBK6uZ5YbG66FUGPKApTJrJpV2u96qShzrTaLUfLaxWIBMAybe7d2lUD2znXL6X9jstwghBLGgr0biWDLULKqGKtIiC7kDf/19vnHwvJLkK1GAbKHWxVHFnApQsZNN5kqkHdfcP97j+rUq5i42iiQTryqTkFjQS7ZYrlnoXNmD5jqDVot8lxVdR8ZA2Fdj66zK9hvgsi19ADxkr2NQhWjC6nkOCZK5LYGSMRTxUygblWSfUuAqJ2P/RAyfrlXuI8gZNPc/m8+jMRD21cygVRk09z/bQCVH1qLRKlgmWG1/X5U4un8vtw02kgGW1cyghVbvOFS1Bw2sWWMn8KhiAbeMaoNWbZosFzsVzeDqfUnyyfAoYJCjAU9jiaNSBk19/t9jF6j15hZFReBLo1lWVaZUg9FqXSdDrqtRwqD1h5hP5muA8JwCm32w8kj9TJgqcLq3YhLSaAZTzcgFwLRjDi1bdN8NE2DfmFUHP+l4/jVz7fv3/3yDBtZDEc/WSrxUMWhynuPcShbDrGrNVTwQPl1D10SN3NByelNToPo8Gn6PRjJfImPr2H//Obv525ftd/1acq+ERFANhTJAsBa/Qq0UtrIHTYFJCFSRb0PRdWTsGonw1EyyItlUxSCA5fTp82iVHUaqFl6C0xFt42bQoDrzmVFk1w7WzsQDk7GaXVDWfKmaD1dvNa50Bi2yejefKokjWChq/ZoVUANQ7BgOc3wuVSOpUSVf6w+vlgsVKxJHBQya31Mjp68waArAx8GID59Hq3NfVnMfxytOz9XnXzJomssMGlijCatdHA0lzeeQLbt1suOqGrSegJdN/cFVTs8FBXvQwJplrd+nWFI08zwYbiBxLNuz3AqeyU39lgP32eUqi6aqsehtNMuqaJbPq2tE/Z4aUMk0TRugUMeOOwE6a95TzSxfb8jL4ekqg/YLiWMbUS9fU4VEg1UMg0VzSjQH3JcTgMUUhHz6qgZNFTsIFouWzBUrTlBXbOlTcrBUF/9ZCUrlMmdoPKtYRePcvVZvUBZWdoNWYdDcvY6M/eMxkvlSJdlXhpsVSDP8Hp0Lxnoq0rxyxa7X/VQU9nnQxGoXR1VRP4egkkEDax/UY1NxSnZDocrFEazDpbZBk3vQ1CC2UDsonlcpcewNkMiVSNvfl6o1E2AZJSRypRozmYIi+ZqUCzkljqWKxNH9exkJeEgXypVcnCuqY9CEEJYr2rKzQVMzmjAY8ePRRI0MVrNLK68CBrkn6KmZ5QN1DJpX1xiM+GsWSOdLZXweTYnS4IKx1at4iiU1a436wxbz4zQsq7oPunsv5a5XJ4OsynkWLAYN4IxjEX1OocQRapl4VTNoAL1hb43EsWSYGKYawKyyrHqlFqBQcS0hBHtHoxx27Ar+hcSxjegNemsljgr2csgYivgZCPt4ciZRY8mq4sUCaw4tu0EMGlisRSJXqu6SUMAeWNfxEvV7Kge07HVVSRx7GjRoVdbO3WfFo2v0BDwV9E+VW6QM6b55yD44VQ43g4X+yXmOokIXR00TRB1odEXi6PqVrBiM1s4hyHdAhZ4drPtYKBvV58QwXV+aLmM0FqiROJYVMmgSDHHmZJUSx/E6FFXOjrjtLAfVfWFO10hVTof1QA9QaeZVMWhARd4u3WBVNJ+wGjRQpXzR7WXVTpRdrurwKGjQon4L5HRGvqjmGQF7F5qTQVMkJwO4YCzGycV0BQwBtRJHqH3+i4r2d+maBYanG0h8VXw2ucN2all9g9bX0OlczX0Ea/fakuNaKqXSw1E/moAZh3w5r2ilBVhrXY441Eq/YNDaiFjIy6HzCb7y4BSmaVq2r4qKYSEEe0ajNoNWbdBUJcSQz1MzD1Y21bGDUNXPV4pTRewB1NqWVnaFKfposTrDCXBIHBU0vNayXilxVMsO7h6N4NEEh85btr2qG7Rx29rWNE1lWnYZTjRavm2qJY7ye5PvXchlu2oZI1Hprmg1TioZtOFogMV0vnIwG4a6GTQpTXWCIQVFqCZU5xCkk51K5HtHA1v/fKms5FoS6KkxCVEkTYKqSZSUOUoGTYXsCmzZrcPcwrJrV5SzemtlsPIqbpuEgJ2zsvUMmrqisV6+rPJaO4bDmGatNE9VYz1gyw6dMkeVa10idTOYqmz2wZob92iiZnY8pwjoiQVXG3eoPLet2scxE6nQbMijawxHAw0kjmryyL6xKNliuWLw8gsGrY2QxfcffOlgpbFQtQcNrGHZp2ZTFB2GE6oYtKC3yqDJglgVEwNViaMsTlUMrcqY6A0yVTEJUWfXDo0ljkbFmMT96w1F/RVnLdVNjN+jMxz1VwbF86UyHk0ou95YLEChZLCYLihz1ZLRaJ5DFYfWF/KhiSqDJtFUVQzacN1+srJhKPvORmMBTJNKQVCZQVPQoHl0jYjfs6pBUwUYSNdUibSrdDEd6wkQ9Oocn6sahahkR/rDvtoZtJI6SXHEb691sZ97lYUVWOj3XCJfmecrKpplAouxOO2Qk2mKXBzByln1DFquqEbiCPD/tXfusZZd9X3//vbe53HPfc69c8eepz1+4RiDDTEOBAiPEB4hhJKqjaPSEAFKUHBVJVEkorRJpEQqatVWqE2b0oBCq5KIVnk4DzUF1Ma0SYhJAhgCxtjY2GObec/cua9zzt6rf+y99l7neDz3ztz7+51z9v1+JMvj65lZe5+9ztrrt76/3/d3/XxrqAZNb6zhQyxArwbNf6/DsXqK79KZIXMXzXUkigT7Z1oDAVqaOZXU5X2XqWXVrB3fP9MaaDC+oRjoAs83k9FKcQQqoxCf5kgFbRuEeex/+XjenV1rwwjkJ1brvbRsCAlApX8FkDeb9EGnF+xMFDTl+hsgV9D8qWamqGYBlw/QUkVjkgNz7WAznP9MMTMV80GvE83NMBA07D2/UaZcqSlo7Ubg4qhbgxZHgsXpqheaP0HVUxDyzY6fJ6li7azvcehrHvqKfdCA59cFa9rs+1TA88H8B/Q2VjctTz8/xVFJsVjoNAdTHDOdJtxAVYfjN6mabrBArupu9rNSIc/XLZ35f9eReTx3caPM2NBV0BpY7aYDtVObfR2TEABYnG7h/FqvXB+1Um6B3NwFGDTT0EpxnJuq2v540ixveK9RXzfsYqqpxAPAgbnBAC1zTqVOfWHq+TXBVVuj3b+35dkWzqx2K9Oynm6qdKcZD/Tc1FyPbz0wi0iArxVW+9EWIRoDNADvfc1x3HUkr8P5P4+cAqCTAuLxL8eNfhCgaSlozaRsPKllMRuSB2i9ckyNjuyeQwtTuLjRx8pGLwiWdMZamGogiWQgFUTTmOTAbHWKpO1QCQDzU0mpNGluhoGq5ueZC+uqJ3HAYLqQdoojkG9ATq3kL7Ky9YPSgPtncge27wQ95bTmyE1DtVNpln+vI9E5gJmfGlQ+NWvQhvvlaW+sbl6eeV6Ko1YQkytol+mDpliD5jepmn3QgHyDCgCnikwDrYbHAHDPjYsAgC88cRZAUIMWN3Z9rMv1r9OcIz7LxQfUmjU4lZFSsUamGTKndGBQzsfAfTDVWyPzPoCXSXFUCnZzBTmf+845OKfTQmbhMjVofUUlcnm2hTRz5bqlfdDTbgwa6W0qqtVTzRjHFjt4rOgFyBTHbfDKm5bwB/e/BrdfP4uHT+R1OJoqk385huYdajVojbjsg1YaaSjuUPMUx9xmPxK9+wKCXmjn16t0Q6V7S+IIR/ZN4cmgOWSmaN6xPNvCWjfFpc2+ukMlMKhYaG6Ggdw1DwCePb+uehIH5BvUkyt5vZuP0BTjMyzPVgpaqhx8NuJooIedpvvswbk22o0Ij5/KU/MuZDfjur7DDQdfrjLe/JBxk6aq227EaCVROf97iqlJQB6gnTi/Xq7/mvV1C53GQE+hfmmzr9AHbbgGra8boC0P1WBquTgCeZPZmVaCh4oAzb9nNBS0/WXT43yDmtuM682RqSKA8PNRMxica+cHnb7GqDowUHDxLQK0taAGX3ONfKEaNK136fJsuzzE9ckhGvufdiPGbCvBH37pmbKer69oEjLcrkbTJAR4AQVNaSwgz47y98YUx6uglUTlZNCsQfOL0XowKdQmXysuUykzZZUJyF/Sa90UKxs9dJqJWlNgILDaP7euXqcFAMeWpvHkmap2RFtBA4CTFzdUA0HP/FSjTGHQXqCWpptoxhGevbhRboa1ntsdB+dwbq2HZ0IHNsU5uTTdxJnVKmACdOfkgdl2eYqqqaBFkeD4/hk8fjo/+Tub3Yjb2p/A0aOvVhnv8imOemr8QqeydlZX0AqjBP9ZbmrW13Uur6BpmSQAwKXN/Ln5Rr1am33fU9TX6moq/0kc4eblaXz7bJ7iKEWD2aZCgOZrp/xmuJtmcE6nFQ9QBdB+P6IZDEaRYHG6WdaFadZp+drfMGjqp5na3m6m1RioQdvsZ4hEby95oEgF7KWZeiueX3vXnfj6cyv44y8/A0BfQQNQBp+biv0UgVxBXgt8GjRTHIE8y8Yf4lJBuwqiSMrJoKkg+JdjGLUH6ea7SqcZ48T5dfzjj32+nITaChqQ18VopjcCwJFAQdOsB/PcuJQXivtc/TTTC5wOzPrNx2aw+Ord28JwDZri/BcRzBbpIGmml3IFAC85sgAAePjp8+p90IA8Xc6/pDNldRAorMaLDWo/1XNxBICbl6dLBa2fZqpjLXQazzcJUZyTAwpymkFEby25cWkaAPBUsdnX3BDsm25irZuW75q+omIxXIOmnuJYHmJVNZ+ac2Sh0yyD+LIPWrL7KY5L3khjdUhBUEy7AqrnlR/QaW5QqyyDUq1WWP/bjQiRYMD6XlNBm20PKWjKpQI+xffMpW5Zp651iPuOlx5CHEmpVqeK5l7DdYraCtpUMykPJ/yBgWbmV+jQLaxB2z5JJIGCprcZ9l9ab0MMYKAgeDfpFKdIn3v0ND764GMAtAO0fLznLm6oGoQA+URvxlEeoFkoaIsdrGz0Szcjzdqwqr5iU9XO3zM/1cBGL8NmPy1O9HWD66miP5+2ynT79bNIIsGXn76g3gcNqFwjnXMmCtpsu1GmlGkqaEAeWDx9bg1p5tBLdRveDytomirT8Hh+o6+ltB4KDpb6aYY0c2obgrLpd7FmVSmOu39vw4qFd1/TMsmZaSVoJlGpNOU1aHpzcl+nUaqRZYAWN3d9nKUh90FtJfJ5CppiDQ6Qu+adXh1UqzU2+iKC6VYyYMaWZnrrlk9x9Ae42gcG1SFulWWjtUXIXSObpVptqaBtKJuEhE7n2ochQN7+4cJ6D91+tmUAxgAtIBIpm2tqbnT8yfNmYBKiFaCFNvd/8MVcnta8Nz/e2dWu2smpJ4oEBxfagymOikHMDcXJd2WUALUxq5f0pqqdvydsxK198gfkyu5aNy1P9LXUmHYjxi0HZvDIcyv47NdPAtA1CZmbSpA5YLWbIlVqihrSbkTlQU9f0WYfyE82M5f3w9G0NAfy+bjZz8qXc1exLgbIe/34IEZ7/u/rNDDViPHM+XX102HfZNYHFmXNj8L3LY4E0824cnEsAwud94CIDJQlaJqEAIWCVtTz+W+ZRg3a/FQDcSRl4Fk2/FZsxQMg+K7ppTgCwPJMC6dXBhU0rec200qGmmLrZRnMtBOkmSvXY+2DzrIx/GZqkmVzYLZyltasQZtpJWglUVmDqa8gR1jvpXl6o1+zNBXk2SqFmS6OV0EcSXmio5m+czmTEK0AbTpokusXYM1aJr/Qrm6m6pt8IDcKCRU0zXt72bEFzLYS/Ks/fQRZ5oLasN0fy+etpw42KY4+QFvrqZ+gAnlawTe+s4IPfvJvAOgq1ovTTfzZN07hk5//NoCt0wp2wly7cgS0UNDajbg0Y9BW0KrUq7x/nbaCBmAg7VBbQbtomOLrGx9XzWz1UhyByhGw3FgpPbvQ3GWjn6IR6/VTBPLPbbOfIStUXd3AuomVzT56aVauIc3G7gdoUSTY12mapziud6vAQrMGZzGo09U25JluJWVPVqCw2VdU0ABgZbNaRzTfo/4z2+ynVYqj4uHjgdlWmeKo+W4TkTyjoVhHNpXXyE4zKbNCysMQZQUNyFM4qaBdBXEk5QmjppFGabMf1KB1+zr1MeFmtG+gMvngc6OXquSVD3N4YQonzq1X6YaK97Z/poUP/eDt+KtvncWfP3ZGVbXz655zzqS+bn5IQdMO0DqNGI+frgxXtHvz+bmvjVciVzb6SBUNGTxTjcqBSrO+AhhMveoZ1KABMKuLfF6Ko/L8P7yvgxOBgqY1nk9xPFemOOo6i+a1rHkwuNFL1Qr7PbmClqKn2N/NE87JMkBTsNkHCrOhS9XnCOhtUP0zqmrQUlWTqIXOYDo9oPfcppvxgM1+T/EQa9jFVPtQyb+ju/3MRkGba5UtLTRr0IDBGuTN0g1WOcW3m5qkOC7PVjV2MRW07ROJlEWCmhO9cnGsVLN3v/KYylinhhpCArqnLEngUKm5gfMc3jeFkyubZVqBZhADAH//5Uew0Gngtx/6tmrdm59/mXPqLQSAoQBNeTMMVKe2Hu06rRDNFEf/kr64YaOgtRoxNnpZHsibKWib6KdOtd4nnI++V5LmZmehUzUH1mqcG3K4UNC0T2wPzOa98r709HkAQUqZ0tq80GmUwaC22QSQp4Z2+1l5sKprEuL7QXUhxdapoRWgzTSDFEdtk4RBV+m8D5ruYQgAXFzvV89NqcH49FCKY5o6tbk/3Aew209V52MZoKUZnEELpeXZdp49kWbq77YBV2nlVGlvZrfeS9XHAioF7cylLm32r4Y4EvXeRcCgygQAn3z/9+Blx/apjHXT/rxu6vDCVLkYqqY4Fn+3ZjFuyMH5oqfWhdwRTfPegPy05S13XI//++hpZM5BRMe23S+0aQYTA5TwdNhCQRgO0DRPvn3QZEGY4ugDJk1bf3+quNnP1L9zSzOVgtbP9OyqgSBAW+upWnE/b7xCQdacj0DerP30pW55SqyZ4viuuw/jE3/+BE4WbS0i0Vsn9wVOhxsGqdLNOK9B65VKjKZJSKVGigMi59BQSHH0Y5WNeq1NQpRTHMN658rFUWe84QBNs063DNC8gqb8Hi1THHv6NvtA7hjsXN6fL1WsQQN8RsNgP0W1A4pi/q91+0G9p6KL42yQ4rjF3oABWkD4YWmeRCRDKY6aG+8ffcVRfOZnvw/fe/NS+TPNNMBw06atwgDVxsZ/lpopXp59002sd9N8A670Wfq/NnPOJL/cu32uFjK/RYpjiKWCponffHgFTfO7BgymJ+UBoW4NjkhuXNNLXXkYo4EPmM6v90p1XHM9mQ0s4i0UZN/D65nz+cGS5vftfa89js1+hv/32OlC+VQMdIPUpDOXuuVz1KLVyGvQqiBeL7DwAdq7f/PzyLJ885QkOgGad7kFwhQvfZOQLHPqKe7hGtlVDqxnhmrQNGtnyzYTm1YpjnE5jkWv1OUig+LkykaloKnVsjbLmuBN5fV/KlTQDFIc20l1qBptUXnBAC0gfP6aG8bmUICmeeotIrjlwOzA/ag6VAb3YqGg+XvxC71mYO2ZasToFqlQWguivy/nnMni68fLMmeioA33yNNKOwGAuSEFTdXF0ac4rveRKrsqAtWmbaOXqdegxYV5gU+b1lTQFqbyzfCF9R6+/uxFAMDx5Wm18cLTb21Lf6Ay73iuaKCueWJ7+/Vz6DRjfOmpC3lgrfjc9nVykxDnHL5y4gLuODSnNhZQ1KD1UvWNPlBlGWz2M9x2roH7z51Hoph2tVbsDzasFLRuWvWBUpyPPsvAZ2vk42kpaDFOnFvH14o1JNXsg9bK7+tS4GKqedBTKWiVSYhmtsZCp1qTy1pWVQWtSpVuxpHa/mcqmP/a9Z5AtddKM0cF7WoYCGJUVabCxdG7KhoEFeHk1hwuXJA0N3DlGMV9+ZMP7Q0xUOXsX9pM1eZJVYMGkxYCsVSLhoXN/lRzMGjSOokDnp/iqOni6NW6lY0e0kxf0Q3rR7Rr0IDcgc0HFZoHMLPtBCL5ZuDz3zoLEeC7b9BJA8/HK57bZs+kBm1xOh/v2YtFgKa8IXjJ4Xn87VPni9RUTTfYJvqZwze+cwlnVrt46ZF5tbGAPGjxh2WAfp2i58a0g/ddWEGilJo3VbQhAQKbfS2TkOCQx6IGp6pB65X3phXITLfytidv+8jnAEDV3MgraJeMFLRmWINmkOIYpoGXpUBKn+X8VAOXCsdUbdOajrGCJiIQKQK0LX4vA7SAgRRHAyt6fzJmYaYR3o6VgqaZAlWNV8nFgK77psefuFza7Kt9lv6vDVMcNZ+bD5BSr6ApbTw8wwqarovjYJqVVyQ1aCYRphoxLm4UCpqyihymOPazTD0gXJpu4n8/cgpAdRKuQRQJZlsJLq738NATZ3HHwTnV8UIHNosUR58u54Nd7YDw7mML+NozF3Fpo2/ivvm5R/M5cudh/QBts1elOGqqgzOtBPuLOsyu36AmOnOy00jQLepKfaPl4brd3SKOBM0kKjao+jbjgwGabmDdCWoEvZGS1gGFb2lUmYTopooOujjmP7MyEusrOxT7dcTPEc0Dg8u5OGo5RnqSSJA6xz5oV0O4Adbc6AybhFioPqH6oqoOBi9/7UL7fLxBBc1CjfRf6NXNvtqJlQQKmg8oNG+tVNCcUz+xAgYbqN+41DGpL/L4Pk2a4/k+aNoBU7sxWIOmbZLzA3dcByBX0n7k5YdVx5rvNHB+rYuHT1zAy44tqI4VOrBZKMiLRYrjsz7FUXm81992AN00wx89/KxyGmB+Xw89cRYA8F3Xa6c4xrnNfl/fxVFE8Nmfez0AwBswN5Sd5da6fTx5ZhXNJML1Rd2iBr5dh4WCMDeVf9cuBAGa1nhPnq1auax1U/RSvSyDVhKjmURlo3btUoEkypWYzb6NSUjovtnPMoii2ZAf67t/7TP4/ONnVOfjQA2aQYojkO9Ts2zrAM3O3mwCiK0VNN8U26BWK7wf3XsLa9AMArR4sAbNJsWxOinTvMdI8powkxTH4nPrp7lltZXN/q0HZvDpn32d6ljDCtr+og+JFnNTDVzc6GGu3VCfjz6QtqhBA4D3v/Ym3Lw8g6OLndJYRouFqSaeOreOlY0+bljUqz8DBtOTLBS0uXYDkQQ1aMoB2vccX8TRxSk8dXZd9X2zrzj5fvLMGtqNSE318fgUx1JBU/4cK2tzAQRqNWj+c/vco6fxpafP4/jStHLD+6hQELyLnd5zayUx2o0IF9Z7ZUCvNf/ffMd1+N2/OQEgP1BNM90azJlWgkubQe2UcqpcM44G+qBpOwY3Ysn7AIquiBGaCz12ahWHF6bUxipTHLtpWVunvR57x3jWoF0FYeBiUYO20R2NgmbhUAnoFmx74lJBs/sspwYUNL3xIhFkzpnY7Pu/u3TMMzIJsVA8vYL22lv34y9+4Y24XflUf66dFKeMTj19uVTQ+ilSxdPhkDfcfgC3HJhRH2d+qoGvnLgAADi6qPeCBioFbWUj782kvdGPCsOV53wNmnK/sCgSvO62ZQC6hjw+Nemps2sm7qmtRp7iWPZ3U37nlAGaV9BinUMKvz7+9H/7G/zl42dxk6JBDlAoaP1U3ZDEMz/VwMX1fqCg6cz/t955EB+5724AubtiL9U1bpppJQONqrU/x7xRewZnkOIoIqV5R6r8bpsLArR7jy/iHXcdUhurstlP1eejJxaf4nhlqKAFDKQBWrg49u2s4QddHPXGCevOLGrrGs+rQbMN0DQ/yygSZA5lAbDm6Zj/2HxhurrNfrEBsXhePkCbn2rg4LzuRh/IXy7nVrtYnm2p319pkd1NkTp9Bc2S+alG+b0+sq+jOlYryU+HrRQ0IHdyPFM0I9b+vgEo574/JdbAKyKr3RTXzeul5Hl8HzSfQaH93EQErSRCVmytIqV33HCN7vH9ugFauxEP1OBoH9DNtRsDLo6a44X1pbmCphygBTVo2vOxmcRmKY5AlR0y1YhV3zU+BfwnvvdG/MoPv1htHGAwxdFvsbRLPKIoT3FMmOK4fQbSABU3wz6oWDdU0KzvDQAaiV3gWaY4WtSglSmOKZqKi30kRWGz058jIoI4Eqz38peL9obRuzhazH1vLjGn3JMpHO/JM2u2NWj9PD1Dsw+aNeHzOqocoIlIefptYbMPAIudKtXWYjzfe+1sERRqEKYm2ShoRQ2agYtjOWYSIesX3+tIK8VxcGs209bdqk01Y6z3UvRTm0DXKzEWAdqMt7/f7KuvkTPtBCsbfTx1dg0rGz0sTrfUxgKKFF8jkxDAK5897J9uqhpgHd8/jd//4KvxEmWTISCf660kwvm1bpm2rz3/Y5qEXD3hM9HM0y9THEsFTf8xWKmDgy6OBgpaNKigaZskAIOd5zXHq1IcbQLPWKRU0NRt9ovP0OJ5tZIIC50GDioW2Yd4k5A00+uT52kHNWiaPX5Gwc1BWtd8R3+zP9NOCgUtNVG09k1X92Qx3nVz+WbRn/Br0IgjzBbposP9BzXwG9SqD5pBgNaIkfmNlegraPfcsA/vfuUNKuN4vElI6vTT6YFcaT231sVmP0USiXraIQC8+2Ofx7dOr+o6BhcK2kcffBxJFOFHX3FUbSzApzimJkZiQBVY9wzeNXcfXTA5wBUR3Lg0jW+dXlXvueaJRJBmWyueDNACrOq0fFCx3rVLy7OqrwtfkLaNqgs10qhRNZCnA2o+uzxAy10cLYSROJJS1dUO0PxjMpgiEBH84f2vwftfe5P+YKjSQPqpgYJW5Mr/xp89ZtIHzZIfu/eY6XgzrQZWNvpY76Xq5hZAlcYD6J/YAlB1AQzxwfSwe6oGrSRC5qrUbIsArd2I1AO00OX2l9/xYtUWE34830sR0C+7WJ5t4fSlTXWnQ6AK0Hydlua9+UOeh09cwL3HF3G9cppvszigqPqg6T43n5pqVe9sxU3L03j89Co2jNb+OEJ+gEsFbfsMBDGaG+/ixMjb7JvUoAVfXM1apvBeTGz2Y28SYu/iCOgGhL6ZYbYNt5/dIE9x9I1DdRcpC+OTkKOLHZOFF8hfYr3UYbWr1yfP4+/pyTNrAGzWEiumWwn+8P7X4Pc/+GqT8WZbCc6tddFLHaYN5sr+mVzRasSiuiZ7LGrCgKrH22xLX/X0m3uvCloEuq0kRlnerxWgBfNv3iA126fm9Y3W5eWZvP5yraevVg+nh2oeHPs06TRzJqq4dzEtMlPNUhwtDLAsOb5/Gt8+s4aVjf7A4YgWSRQhzYAPpFdO3WcNWoBVrzAgfyn7AM0izSt8b1m4AQI2Lo5lH7SeXYDWDr7Ams8ujqSqQTMK0KxMQu4+uoB7b1zEL73jDtVxRoHv83NutWfmKufRboxtzUuO6NcgeGbaCR49uQLg+TVAGvgArZfqmXaE+NRDbRZMFbTB5sBWNWipcoDWMQ7QSne+sgGx7ue4PNuCc3mbCe1n5htIezTvbaadmLhFeppFo3Yrk5D5qQYubuR90CwypKw4vn8a/czh0ZMrJge5UZRnRs3iymPVJwTeBcIvlPbhQCOKytMqi1PvQXVQbxwRKTelFicsSVmDZm+zD+gGTmWKo0EDYsA2xbHdiPGpD7wKdxoUAVvj05HOrXVNzF1CLAL5ujLTSnDy4iYAmChoy7O6BgLDWKh0QOXkaGISMqSgWRwK5i6OPsVRqVF1owpuLQJdr4x4sxXtV7c/nDhxbl3d0nz479dck2dbCbr9DOu91CSAaRYKWhmgKb9vZtoJ0sxhZUM/O8QS38bi7565OHAAr0UseR+0rQ54qKAFhJNbO7hoJBGQ7wVq1QcNyFMbe2lqo6D5RtX+xWKwCWnEUjUaVK1BQ7Hw6hZRV+MFKY4GJ9F1xbsPnl3tqrsPDlOnl6Y1M+2kTJXuGKhNfpNqyUfuu1vdzXRhylBBK0xyVjby5sDa/esAn+KoXIPWtMnS8MxPNZA54GLxOVooaABw4vy6ep3WMJr7kuli3biw3jNx1G0lMS6s90z6oAFAOzgQqVM6/VLhttnPHKaULfaB/DudOgZoV8VAEKP8jJKBYNDOTAPQ/xL7+zGpQRu22Tdy/ZlqxLik3AdNCgXNwamnLgD5Z2mloNUZvzHd7NukuYTU6aVpTRhQdAxOUffPNLf+TbvMO+8+rD7GPsMUR18r65sDW9Sg5SYhPsVR5/tmvf561d/35dNet/zhxKXNvskzC9EMnPyeZ6OXmqzFzdjb7NukOLaDHrB1qkGbDg7kTExCJO+DttX6UZ9PeBewcjoEBoMXK3XEajx/b4mJSchQo2qjNB6/UOmmOObpjd1+ZtOKIRKsdW36oNWZ0HHNOk8/Nt7s1Imw1qfTql+KoxXzI01xtFEtMkie5liTlOJS9b+UB2gWLo4e7abAw2jem1fnNnp2NWiWfdAGArQa1aDNhAGaRYpjtL0UR77NA6x6hQHVCVkc2Th4mSposVfQ7O6rNAkxWjSmmvnzs+iD9vS5NRzeN6U2jid0cWSAdu14kxDA5vDl0z/zfbj1wAwAKmg7IQysOwYmITNGph3WeAXNpA9asbk/tbKJ6WZs8n1rlTb79Vkj/eHE2TUbBW26lZQbYWsFzZdDaBAepFrVQ24GCpr2VtL33by0qdtiyJp2IyrVR4saNL+3Y4B2FYTrhHbet99IWU1yqxYCQLVI2ZiEeJt9uz5oQFXEbWES8uSZNdywpF/LFEdSOspp2+zXmXCjbzEfb71utixyrtNL05pQQbMwCbEy7bDm5uUZJJHg6KL+muUNIE6cX8eSUU1fM47QR4xMySAkxOrAZT6omwVslP/9s7nS2jLYEP/1P3sT/un33wogV3+0CD83SwXNqg9aayDFsT7rl4hgujiUs1LQ+jQJuToGTUKM0gCtAjS5/K81aBgqaKVJSN/GfcrTLjZwqgpaBKz3+nj2wgZuWJxWG6ccL7gV1qBdO+1GXKYwWAVM0waKT92ZG0hxtPs8LTYEltx1dAEP/8pbTGo5/Dp1+lIXLz9mZ8jz39PX4UV3vgJvUhzjwZ9/g0mqLVCp/j5AszhYWuw08dTZdRMFbWmmVR4Y+DprDcJDaYsDavMUx+JAZL1XLwUNyFXdlc2+UaPqIsVxi6H4Vg+wdTq0VdAGDVBsgk8bk5DR1KB5px9tBc03IL5xv/7mI3yhMEDbGe0kwmrXxmoZqIqcNTcfdWegBs0oaPrSL73Z7FDJEqum8GEqtpWCljqHJ9xBnDj2YtVxjhlkTXiGFTSLfcm+aa+g2XwBfG+5NcU1MjbMVAJyBXmzn+WGE7AwCQlTOOu1cPnDECsFbTspjgzQAiy/XOYKmqEBSlKahNjUoImg7ClnFfDOtBrq40Ui+NbpVQDADUsGClpwLwzQdka7EWO1m5pYLQPVy2W1q5e+U3fCmikr5WK+o2+kUWfChs5WbQv8ZrhjFIRaMNNKEEdSpTgarFuLhZlMy2ijXwZoPb0ALcwaMnFxLPqgpWUNmo1JCFC/dHqfhWLZB+3Zle4Vfx93YQEDTodGRhpWGzhLA5QqxdHm3vxCKGJX1+E3c5pqpEh12nd4Qd8kJHyhWKSn1hl/sm91ADNTvFw06yvqTqigWRsXkGvj0MJU+T6zalvgDwPrdIglIphrJ+X7xsJsyytoVp+jN/5ZU61Bs3Xn9u8Zb5JmZbMP1M+Qyj8vC/U/ioAsA1Y3r3xYUJ8VZhcYcDo0UtCs9gGW91b1QbP5AlemJHYLxkwRoGmOGQbVFi+xcF406ph3ZUjZhsFoTvqaqa0WfPLChDVodTXwqBuNOMJisdG3UtB8U+DaKQhB3aXFu9Q/N6uv2ncdnEUzifDBN9yiNsZAf1uDzZ1XBX2Dce29XZjiWLf572/HzGbfOaS48mfIFMcAP7ktFqcqxdFmIxx+cbVvLzG+N/+8tOsGQ3wTVs0xLXvXAeHnqL/Q1x3vdmV1aHDfK47iy0+fx/1v1Nt81J261VTsFZammzi1soklIwUtLRS0uikITWP1Z6FI77U6VJptN/CNX3ub6hgDAZrBZ3isMD7xpRDqClpSBS/TNWsTUipoRjb7aeaQOgZo26bcoJoEaKMzCdFvwl0EukYKWmz8WQJVE1bNnirhY7IwP/FjcKO6c1pBn0MLplsJPnLfy0zGImScyJWzldJyX5t+ZmNpbs2ARbyRiyMArNWobtbaZv/4/rw2/bFTeYBmWYMWpoTXAf/ZtY1cHDPnSvfNF4I7sQC/KFksTtYmIZY93vy9WdVxeKXOysERqJrMauazhxsACzHSj8EAbef4VJC6nbITMm541filR+ZNxnvR9XlT+Ovm2ibjWeHXfTHKoPApxZdqVDc7aLOv/xkeXewgjgSPnbwEwKAPWlBqEfb7rAOWKY5JJOinVNCuCr8oWZx8eMcYs0bVlgYovibM2CTEMi3PpzhqWvaGQZlF8Fk9NwYVO8WfNDJVlBBdXnnTEp748NvNxvuZN92G1912AHcdXTAb04LE+NDYp8hpvkOtsVbQGnGEY4sdPHbKB2i644Xvs7opaP55mdT7S66g9RmgbR8fT1isTwvT+jbtIQMmIVYpjkb3lowkxdG/XGwUNIt7q2owqaDtFGsXR7I7PPjzbxj1JZAxJ4kj3Ht8cdSXses0DA+oAWB5Njd1uXl5xmQ8C6wVNAC4cakT1KDZvW/mahag+c8uc1vkHe4CvlH1VimODNAC/AOyWKB8/nW3r1fDFDJgEqK8/04MG1UD1UI4ihq0VU0FrZiPVu0D/OfYpIK2YyoXRwa7k4Rlc2BCxglr47LDC1P41E+9CncenjMZz4JQQbPKIArdSy0DtLopaGWAtlXUtBtjFS6OfdagbZ+43Ojrfyz7igDt4oZN/rVpHzRrm/14dDVo66oBWv5vq/vyC5TVi6XOeLcrKmiEkElgFJko9x5fLPuT1QFrF0dguIWSyZAAql6wdeFtd14PALjJQNGNRZDRxfHqKE1CDCa5t5j1/Su0sUxxTGLbjf5oFLSi75RBiqNVHZP/HFmDtnNaDVsXR0II2QlN4xq0OmLdqHp4HFMFrVMvBe1HX3EUb3/pwTI7SpOyD9oWCXQ8Kg8oTUIsLGanjVMcLRW0MsXRtgbN8vRotpV/iTXTlSNDV1GgmhdsUr1zRtE8nRBCrpXqPco161pphAqaVZshwx63IXVzcRQRk+AMKExCMmxpEsKdWEBsqFgsdGyaanpsTUJsa9DiUdjsG8j7/nbMnD59gJbwBb1TGtzsEEImCGsXxzoSvqut6o/DMS1q1T11q0GzJI7yhvcM0K6C2DBVbp+xPDzQB0359spUOePUPMvNcGnJqhiE+jGsbqt6blwWdoo/PbUoOCaEkJ3i32VMy752whRHsxo0sTt8D+kYNHSuK3EUoZ85pHRx3D6WfdCsTx/8yUpk4AjYaSXoNGOz0xzrgNDzsffco2oRbOkqGo5nlZpaZ/zpaZ8BGiFkAhjVe7ROJAMKWr1THC3VuroRR7md/1YVTgzQAmLDmh9rp7zYcLP/nlfdgO+7db/6OJ4yd954wfj+77pO9e+3TnGkgrZ7+FqEfmZTY0oIITshoYK2Y8K6M6uDTmuTkAOzLZxc2VQfp87EIkWK45V/HwO0AL8vreMC5e/J4tRjaaaFpaA3hzY+oKjbcytdHK1s9ssaNAZoO8Vvdvpb5TAQQsgY4Ptf8oDu2gk/u9HUoOmP95mfex02FNsL7QWiSNBPM6QZbfa3TWy8If7NH78H+6btXGMAWyMNK0Zhs29BZKygeVG3UbPPcRT409MeAzRCyATgD5VobHTtxJFAJHd3HkkfNIP93Vy7UTsHR2tiEaz3UrgtVFYGaAGWJiEA8KY7dFPkQqzvzZJRpThqY62gldbwrEHbMQlTHAkhE0SDLo67QiOK0E0zu4PVEZmEkGsnjgSZAzLQxXHbWJqEWOPVkRreWhlYzNass731fPSLu3V9ZB3xnyEVNELIJOBV/zrufyzxn5+ZghaHAZrJkGSH+L0dA7SrwNJIw5pSjanhvfnndWh+asRXsrtYpzh65UyzdcBewW92+ikVNELI+OMPOinC7IzEONANFTQ6K04G1TNjgLZtyjTAGk7yOt9b5nKV4tBC3QI02z5opYJWwyDeGl8gntJmnxAyATSS4lSfS9aO8O/PhtFB56hs9sm1E1NBu3oqlWnEF6JAnRW0U4Xl66GF9oivZHex7oNW2uxTQdsxb3jRMg7MtvD+19406kshhJAtafiNj2OEthOs2xVYm4SQnVMFaFfea9WraGeH1NlIo84Kmg/QDtdMQfOPytxmnyYhO2ZppoW/+sU3jfoyCCFkW/h1nwrazmhY16AxQJs4/DPb6qtmdlQuIjeJyMdE5H8EP3u9iHxORH5DRF5vdS0vRFz2QaufglDn4PM7FzcA1C/F0fqZ1bkGkxBCyAvjlZ+MCtqOiK1r0MIArX5b11riA+mtFLRtPU4R+biInBSRrwz9/K0i8oiIfFNEPnSlv8M597hz7n3DPwZwCUAbwNPbuRZNql5hI74QBfy91fGAZbVomnj9PFMcd4IvbpYt8qIJIYTUC6+gMT7bGT5V1KrhN232Jw8vBrkt9lrbTXH8LQD/HsB/8T8QkRjArwP4AeTB1UMi8gCAGMC/GPrz73XOnbzM3/s559yfich1AP4NgH+0zetRoc4qU53v7eM/cQ8e+OIzaDfiUV/KrmKe4mhsSkIIIWQ8aFBB2xXKvZbRST9THCcP/5x2JUBzzj0oIjcO/fheAN90zj0OACLyOwDe6Zz7FwB+aJt/r/egPgegtZ0/o4l1Y2BLyvS1Gt7bG2+/Dm+83a7ptxXWCloZEDJCI4SQPQXNoXaHxLjhd7g/qOH2rpb4Z/al7MomYjv5Rh4G8FTw308XP7ssIrIkIr8B4GUi8gvFz35ERP4TgP+KXKG73J/7SRH5goh84dSpUzu43K2ps8rk1XZuvieHsg+a0arrD065yBNCyN7Cm1tQQNsZPlWUJiHkhfBz44Hs1Vf+fRYXAwDOuTMAPjD0s98F8Ltb/LmPAvgoANxzzz2qS0edAzR/TzW8tdpi3fbBp7ZwkSeEkL0FUxx3B7/XMqtBYx+0iWO7QslOZtAJAEeD/z5S/GxisU4ps6TO6Zt1JTI+MHDFi5kzhBBC9hZJabPPAG0neJMQsxo0moRMHNvNitpJgPYQgFtF5LiINAHcB+CBHfx9I6fOvcLqHHzWFf+orBZd3/+GizwhhOwtmoWCxvBsZ1QKGmvQyOXZVQVNRH4bwF8AeJGIPC0i73PO9QHcD+BPAXwNwKecc1+9xusdC+Iypax+s7zO6Zt1xTqorlIcTYYjhBAyJnhzCwpoOyMZYR80YYQ2EWxXBNqui+OPvcDP/wTAn2z/ssYbnzJcTwUt/ze/wJNDZOy8WZmEcI4QQsheIin7oDFC2wmNEbo4kslgu8+MvqoB1v0rLBERRFLPJtx1xdr2vqxB4xwhhJA9RbM0CRnxhUw4cSSIIzE76GSANnlYmITUjjrXoAHVwkEmA2sFjTVohBCyNykVNFah7YhGbLvP4p5u8ijLqbZ4dAzQAuKaG2lEItx8TxDWdYO+Bq2u858QQsjl8bbwWTbiC5lw4igyS28E6iso1Bm/x2o34iv+PgZoAVWvsHpOeCpok4V1iiNTWwghZG9SujiyBm1HNIz3WQnrViYOBmjXgIhABIhr+qnEVNAmiirF0WY8x0bVhBCyJ4nLFEeyE5JYTBU0vq8nDx9jtJMrBxs1DUWunVikljb7QK7E1PXe6khkrqDRZp8QQvYift2ngLYzlmZaWJxumo3HrKjJwwfVWylo27LZ30v87Jtvw2tvWR71ZagQR0IXxwnC2iTkzsPzAIDbrp81GY8QQsh4IMjfMxkjtB3xT954C9776uNm4zFAmzz8M2sxQLs6fvr1t4z6EtSIhDVok4R1o+ofvusQ7jw8j5uXZ0zGI4QQMh7MtvPt4A++5OCIr2Sy6TQTdJp2W2vu6SaPuFTQrpzEyABtDxFHbEI8SfgAzeqZiQiDM0II2YNMtxL87T//AcxNNUZ9KeQqsKx3I7uDN2SbooJGPLEILVknCL/u8pERQgjRZp9h7RTZHWgSMnls9FIAdHEkARFt9icKbw7CJ0YIIYSQYXz/OjI5bPTzAK1FF0fiieniOFEIFTRCCCGEvACMzyaPjV7eDZ4KGin58VfdiB++69CoL4NsE6YuEEIIIeSFYFbU5PHKmxYBAO9+5bEr/j7WoO0h3vcaO+tXsnN8vaAwyZEQQgghQzBAmzyO7OvgiQ+/fcvfRwWNkDGFKY6EEEIIeSFo/FZfGKARMqaUNvsjvg5CCCGEjB80CakvfLKEjDnsXUcIIYSQYRif1Rc+WkIIIYQQQiYMKmj1hU+WkDHFjfoCCCGEEDK2MD6rL3y0hIwpzuUhGjMcCSGEEDIMFbT6widLyJhDm31CCCGEDEOX/frCAI2QMaUQ0KigEUIIIeR50ESsvjBAI2RMcUUVGpdfQgghhJC9AwM0QgghhBBCCBkTGKARMqYwxZEQQgghZO/BAI2QMcXb7DPHnBBCCCFk78AAjZAxpVTQRnsZhBBCCCHEEAZohIwp3iSEERohhBBCyN6BARohYw77oBFCCCGE7B0YoBEypvgUR0IIIYQQsndggEbImEOPEEIIIYSQvQMDNELGFOfYqJoQQgghZK/BAI2QMYV90AghhBBC9h4M0AgZU8o+aNTQCCGEEEL2DAzQCCGEEEIIIWRMSEZ9AYSQy8MUR0IIIYRciQ+87mbsn2mO+jLILsMAjZAxxTeqZnxGCCGEkMvxobfdPupLIAowxZGQMeWHXnoIAPCOuw6N+EoIIYQQQogVVNAIGVNuOTCDJz789lFfBiGEEEIIMYQKGiGEEEIIIYSMCQzQCCGEEEIIIWRMYIBGCCGEEEIIIWMCAzRCCCGEEEIIGRMYoBFCCCGEEELImMAAjRBCCCGEEELGBAZohBBCCCGEEDImMEAjhBBCCCGEkDGBARohhBBCCCGEjAkM0AghhBBCCCFkTGCARgghhBBCCCFjAgM0QgghhBBCCBkTGKARQgghhBBCyJjAAI0QQgghhBBCxgQGaIQQQgghhBAyJjBAI4QQQgghhJAxgQEaIYQQQgghhIwJ4pwb9TVsGxE5BeDJUV8HGWv2Azg96osgYw3nCNkKzhGyFZwjZCs4R8hW3OCcW77c/5ioAI2QrRCRLzjn7hn1dZDxhXOEbAXnCNkKzhGyFZwjZCcwxZEQQgghhBBCxgQGaIQQQgghhBAyJjBAI3Xjo6O+ADL2cI6QreAcIVvBOUK2gnOEXDOsQSOEEEIIIYSQMYEKGiGEEEIIIYSMCQzQSC0QkX8gIl8VkUxE7hn6f78gIt8UkUdE5C2jukYyPojIr4jICRH5YvHPD476msh4ICJvLdaKb4rIh0Z9PWT8EJEnROThYu34wqivh4weEfm4iJwUka8EP1sUkU+LyKPFv/eN8hrJZMEAjdSFrwD4EQAPhj8UkTsA3AfgxQDeCuA/iEhsf3lkDPm3zrm7i3/+ZNQXQ0ZPsTb8OoC3AbgDwI8Vawghw7yhWDtoo04A4LeQ7zFCPgTgs865WwF8tvhvQrYFAzRSC5xzX3POPXKZ//VOAL/jnNt0zn0LwDcB3Gt7dYSQCeFeAN90zj3unOsC+B3kawghhLwgzrkHAZwd+vE7AXyi+PUnAPw9y2sikw0DNFJ3DgN4Kvjvp4ufEXK/iHy5SE1h6gkBuF6Q7eEA/C8R+WsR+clRXwwZW65zzj1b/Po5ANeN8mLIZJGM+gII2S4i8hkA11/mf/2ic+4PrK+HjDdXmi8A/iOAX0W+0fpVAP8awHvtro4QMsG8xjl3QkQOAPi0iHy9UFAIuSzOOScitE0n24YBGpkYnHNvuoY/dgLA0eC/jxQ/IzVnu/NFRP4zgD9SvhwyGXC9IFvinDtR/PukiPwe8tRYBmhkmO+IyEHn3LMichDAyVFfEJkcmOJI6s4DAO4TkZaIHAdwK4C/GvE1kRFTvCw970JuMkPIQwBuFZHjItJEbjD0wIiviYwRIjItIrP+1wDeDK4f5PI8AOA9xa/fA4CZPmTbUEEjtUBE3gXg3wFYBvDHIvJF59xbnHNfFZFPAfg7AH0AH3TOpaO8VjIW/EsRuRt5iuMTAH5qpFdDxgLnXF9E7gfwpwBiAB93zn11xJdFxovrAPyeiAD5HuqTzrn/OdpLIqNGRH4bwOsB7BeRpwH8MoAPA/iUiLwPwJMA/uHorpBMGuIcU2IJIYQQQgghZBxgiiMhhBBCCCGEjAkM0AghhBBCCCFkTGCARgghhBBCCCFjAgM0QgghhBBCCBkTGKARQgghhBBCyJjAAI0QQgghhBBCxgQGaIQQQgghhBAyJjBAI4QQQgghhJAx4f8DcOrC0R/sqQ8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABTRUlEQVR4nO3dd3hcV50//veZPppR79W2ZMc9dhwndgopJCEhhZCwEAIbWMqGLLAbdmH5sSwL/NiF5buw8IWlJZSEkiXUkEJCSILTEyd23OQuy5LVextNn3u+f8yM5CiyNJJm5s695/16Hj+SJXnukcee+9bnfM45QkoJIiIiIppm0XsARERERLmGAYmIiIhoBgYkIiIiohkYkIiIiIhmYEAiIiIimoEBiYiIiGiGlAOSEKJeCLFDCHFICHFQCHFn4uNfFEJ0CSH2Jn5dm7nhEhEREWWeSHUfJCFENYBqKeVrQoh8ALsBvB3AuwD4pJRfz9goiYiIiLLIluoXSil7APQk3p8QQhwGUJupgRERERHpZVE9SEKI5QDOAbAz8aGPCyH2CyF+IoQoTtfgiIiIiPSQ8hTb1B8QwgvgGQBfllL+XghRCWAQgATw74hPw31wlj93O4DbAcDj8Zy7Zs2apY49p0RiGo70TgAANtYW6jya9Dre50MwGkNTuRd5Dqvew0mrgYkQeseDAIBlJXkocNt1HtHSnRr2IxiJwe2wwh+KYXVVvt5DSrvj/T44rBa47Bb0T4RM93+OiLJj9+7dg1LK8tk+t6CAJISwA3gEwONSym/M8vnlAB6RUm6Y63G2bt0qd+3alfJ1jaB7NIALv/oXAEDbV6/TeTTpdfU3n8XRvgn84WMXYXN9kd7DSasfPHMCX33sCADgrtvOxdXrq3Qe0dJ95Oe70D7kx9rqAuxuH8Gzn75c7yGl3Vu/9Rzqit1YV12Abz11HCf/81oIIfQeFhEZjBBit5Ry62yfW8gqNgHgxwAOnx6OEs3bSTcBaF7sQCk3SahxoLFZzm3WJJQJC5bE92mW546IckfKTdoALgJwG4ADQoi9iY99FsCtQojNiE+xtQH4SBrHR5RF5rjLSilhUSMfTX2fmpSwQJFvmoiyYiGr2J4HZn0FejR9w6FcpMpP52b5PjU5XVkxO0siIWkmee6IKHdwJ22iBLPcYzWFKkjitAoSEVE6MSARJZjlHqtJTCcHk2MPEhFlCgMSzUuVe49ZmtFV7UEiIkonBiSiBLPcY6VKPUgi2YNkkiePiHIGAxLNa6GbiRqVWb5LtXqQ2KRNRJnBgESUYJYgqEmp0D5I8bdmee6IKHcwIBElmOUeG1/mr/cossPCChIRLdJzxwfm/DwDEs1LlXuPuZq01UhIbNImosX6U3PvnJ9nQCJKMMs9Nn7UiN6jyA7BJm0iWqSu0cCcn2dAovkpcu8xyz1WrQoS90EiosXpHGFAIkqJWe6xah1WG3/LChIRLYSUEl0MSESpMctKKLU2imSTNhEt3PBkGIFIbM6vYUCiealy7zHL96nSYbVTZ7ExIRHRAsw3vQYwIBFNM8k9VqWNItmDRESLMV+DNsCARCkwy9TTfMzSx6JUD1LiFcwszx0RZUfniH/er2FAIkowyy1WSgk14hHPYiOixekYDiDfZZvzaxiQiBLMco9V6bBansVGRIvRMeJHQ0nenF/DgETzUuXeY5adtONnsek9iuzgWWxEtBgdwwxIRCkzyz02JiUsinRpc5k/ES2Upkl0jARQz4BES2WW4DAfs3ybUgJWRUpI3CiSiBZqwBdCOKqhvtg959cxIBElmeQmG9PUWebPs9iIaKFODcdXsLGCRJQis9xiNQWn2JiPiChVHQxIlC5maV6ej1luspqm0mG18besIBFRqk4N+yEEUFvEKTailJhlJZSmVA8Sm7SJaGE6hgOozHfBZbfO+XUMSDQvk+SGeZnlJhtfxab3KLJDsIJERAvUMexHfcnc1SOAAYloillusVKqNMWW7EEyy7NHRJnWMeKft/8IYEAimmKWm2xMqR6k+PcZ03QeCBEZQigaQ+94EPXFDEiUBibJDcqIaRJWVVax8bBaIlqArpEApMS8u2gDDEhEU8xyj5USCh01wn2QiCh1HSMBAPMv8QcYkIimmGU7g5iUyq1iYz4iolRMbxLJJm2ilJnlJqtJhabYuIqNiBagc9gPh9WCynzXvF/LgESUYJZbrKZNH8FhdoL7IBHRApwa9qOu2J3SaQMMSDQvs6zumo9Zvs14BUnvUWQHK0hEtBCpLvEHGJCIppjlJhvjPkhERLPqGA6k1H8EMCBRCnjrMQ4pJaSEcgFJ4z5IRDSPsUAEY4FISkv8AQYkoilmqEIke3FUCUg8aoSIUtWRXMGWwiaRAAMSpUCVe48Zvs9kUFCnB4lN2kSUmukl/gxIRAtihntsLJEUVFnFltxJ2wzVPyLKrLahSQDA8jJPSl/PgESUYIZ7bPJ7UGcfJFaQiCg1bYOTKPM64XXaUvp6BiSal1l2mJ6PGb7PWCIhKZKPuMyfiFLWNuTH8tLUptcABiSiKWa4x2pTAUmNhCR4FhsRpah9aDLl6TWAAYlSoMq9xwzfpqapFZB4FhsRpcIfjqJvPMQKEtGimOAuqynXgxR/ywoSEc2lfSi+gm1ZKStIRAtmhkbfmKZaDxKbtIlofu3JFWwMSJROqtx7zNCknVzunspBjGbAjSKJKBVtyQpSGafYiBbMDPfYmGJN2jyLjYhS0T40iVKPAwUue8p/hgGJ5qXKvccM3+ZUD5JiAYlTbEQ0l5ODk1i2gAZtgAGJaIoZgqA2tZO2zgPJEjZpE1Eq2of8C+o/AhiQiKaYoQdp+iw2NRKSYAWJiOYRjMTQMxZc0B5IAAMSpUSRu48Jvs2Ycvsgxd+yB4mIziR5SC2n2IgWyQy32GQlRZVVbMkgGGMJiYjO4OTgwpf4AwxIlAIVfjgXYrp/x8g01c5iszAgEdHcFrMHEsCARAQgXokwwy12qgdJkSm2ZK8Vm7SJ6EzahvwozrOjMC/1Jf4AAxIRgHjFxQw32djUKjZFAtLUFJvOAyGinNU+NLmgI0aSUg5IQoh6IcQOIcQhIcRBIcSdiY+XCCGeEEIcT7wtXvAoKKcZPzbMTwhhiqnE5Pegyio2S+IVzAzhlogyo23Qv6BDapMWUkGKAviklHIdgO0APiaEWAfgMwCeklKuAvBU4vdEhmK2CpIi+ei0CpLxnzsiSr9gJIbusUBmK0hSyh4p5WuJ9ycAHAZQC+BGAD9NfNlPAbx9waOgnKbCEmoBYYqApCl2FpuVTdpENIe2oUlICTRVeBf8ZxfVgySEWA7gHAA7AVRKKXsSn+oFUHmGP3O7EGKXEGLXwMDAYi5LlDEWYY7VeppiZ7EJIeIrEM3w5BFR2rUOxFewNS5wk0hgEQFJCOEF8DsAn5BSjp/+ORkvNcz6SiWlvFtKuVVKubW8vHzBAyXKJIsQptiNWbWz2ID498oKEhHN5kS/DwDQWJ7hgCSEsCMeju6TUv4+8eE+IUR14vPVAPoXPArKaSrceoQwx1Siaj1IQHw6MWaC546I0q91cBI1hS7kOWwL/rMLWcUmAPwYwGEp5TdO+9RDAN6feP/9AB5c8CiIdGaxmKQHSVOrBwmIV5DMsMknEaVf64APjeUL7z8CFlZBugjAbQDeLITYm/h1LYCvArhKCHEcwJWJ35OJmCA3zEvAHAeeTh01otIUm0VwHyQiegMpJU4MTKJpEdNrAJByzUlK+Tzi95HZXLGoqxPliHgPkvETUnKqyarQFrDxgMSERESvNzARgi8UzUoFici0hBCmaLZKhjxVdtIGEgHJBOGWiNLrRHIF2yIrSAxINC8zNC/PxywbRSZ7cVRaxWYRnGIjojc6MRBfwdbEChLR4plumb9KTdoWsEmbiN6gdWASbrsVVQWuRf15BiSalwq3HrNUkKYPq9V5IFlkFZxiI6I3ah30YUWZZ9GrehmQiGCmw2qTTdrqJCSLhcv8ieiNTgz4FnXESBIDEhESG0WaoFYWU+yoEYBN2kT0RsFIDJ0jgUUdMZLEgETzU+DeYxECZlgpruQ+SDxqhIhmaB/yQ8rFr2ADGJCIAJinB0lT9KgRMzx3RJQ+S13BBjAgUQpUuPWYZxWbej1IrCAR0UytA4s/pDaJAYkIZjysVp2AZOFRI0Q0Q+vAJKoXeUhtEgMSEeKr2MwwTTO9k7bOA8kiq8Uc06NElD4tA74lTa8BDEiUAjNUVuZjMcdJI1OVFLtCh7Fxio2ITqdpEsf7fFhVyYBEtGRm6UFKHtqq0hRb/LBaEzx5RJQWXaMBBCIxnFWZv6THYUCiealw64lvFGn87zQZFGwqNWkzIBHRaY73TwAAVi1hk0iAAYkIgHmW+UeTh9Va1QlIFh41QkSnOdYXX8G2ihUkyjQV7j1m2SgyWUmxKjbFxqNGiCjpWN8EKgucKHTbl/Q4DEhEiK/6MlUFSbUpNhM8d0SUHi39PqyqWFr1CGBAIgKQ6EHSexBpoCnYgxSv/pnh2SOipUrXCjaAAYlSYIZDXOdjMclGkawgEZHK0rWCDWBAIgJgpmX+EhYRr4ipwiK4kzYRxR3rS88KNoABiVKgwg/nZlnFFpMSNota/62tFnCKjYgAAMf707OCDWBAIgKQPGpE71EsXUyTSk2vAZxiI6Jp6VrBBjAgEQEABEzSgxRTLyCxSZuIko73pWcFG8CARClQ4dZjEcIUU4maVC8gsYJEREB8qr2lPz0r2AAGJCIAgMUkJ8JHNU2pJf4AD6slorh0rmADGJAoFQrce0y1ik21gMSz2IgI6V3BBjAgEQEwz2G10ZhUr4LEgEREOO0MNvYgEaWPmZb5q9aDZLEIUzx3RLQ0R3rHUVPoQmHe0lewAQxIlAIVdtIWgGmm2JSrILEHiYgAHOmZwJrqgrQ9HgMSEZKr2Ix/k42yB4mIFBSKxnBiwIc1VemZXgMYkCgFJsgN8xJmWeavYAXJLA32RLR4J/onEdUk1rKCRJReZulBimoSVgWPGmEFiUhth3vGAQBrq1lBIkors1Qh4keN6D2K7LJwo0gi5R3pHYfDZsHyUk/aHlOxl1JaDBVuPcIkFaSYghUkG3uQiJR3pHcCqyvzYUvjT4hqvZISnYFZjhpRchWbxYKYJk3RZE9Ei3O4ZyKtDdoAAxKlQIUbjxDm+D6jmgarUCsg2ROBMMoqEpGSBiZCGPSF0rrEH2BAIgJgth4ktQJSsqTOaTYiNR3pTX+DNsCARATAPKvYYpqEzapYQEoEwkhM03kkRKSHIz3xM9jWVLGCRFlm/NgwP1aQjCsZCFlBIlLT4Z5xVBY4UeJxpPVxGZBoXiYorMzPND1IUrkepOkKkvGfPyJauMO9E2ndIDKJAYkIiVVseg8iDdSsILEHiUhVkZiGlv6JtE+vAQxIRADYg2RkVvYgESnrxIAPkZhMe4M2wIBEBCDRg2SCCkRMk7AoNsVmt3KZP5GqDnbFV7Ctr2EFiSgjzHJYbVTRjSIBIKaxgkSkmubuMbjtVqwo86b9sRmQiGCuKTbVjhqxs0mbSFkHu8axrqYgI72Xar2SEp2BRZjjwFMVjxphkzaRmjRN4mD3GDZkYHoNYEAiApCsIOk9iqWLahIW1QISm7SJlNQ2NInJcAzrawsz8vgMSEQALBZzNGlrUsUKEjeKJFJRc3e8QXtDDQMSUcZYTTLFFolpyu2DZGUPEpGSmrvG4LBZsKoy/Q3aAAMSEQDAao2vYjN6FSkak1PL3lVhT/QgRbmKjUgpzV1jWFuVP/UakG4MSETA1PEcRq8iRTUtYy8WuSpZQeI+SETqkFKiuWssY/1HAAMSEYDpm6yR+1iklIjE5NSqLlXYE9saRDnFRqSMzpEAxoPRjPUfAQxIRAAwtfu0kfdCSlZQ7Ir1IE03aXOKjUgVzV1jAIANtZlZ4g8sICAJIX4ihOgXQjSf9rEvCiG6hBB7E7+uzcwwiTLLDBWkZAXFblPr5x4bm7SJlNPcPQabReCsyvSfwZa0kFfSewFcM8vHvyml3Jz49Wh6hkWUXcmAZOQiRDixD5B6y/y5USSRapq7xrGqMh8uuzVj10g5IEkpnwUwnLGREOnIYoIm7WgiIKnWpM2NIonUMtWgnaEdtJPS8Ur6cSHE/sQUXPGZvkgIcbsQYpcQYtfAwEAaLkuUPslMYeQqxFQPkmoBiRtFEimlazSAockwNtUXZfQ6S30l/T6AJgCbAfQA+O8zfaGU8m4p5VYp5dby8vIlXpYovczQpB2OJqbYFNsHaWqjSAYkIiXs7RgFAGyuK8rodZYUkKSUfVLKmJRSA/BDAOenZ1hE2WUzQ5P2VAVJrYA0vcyfU2xEKtjXMQqHzYLVVZlr0AaWGJCEENWn/fYmAM1n+lqiXGaOVWxq9iBZOcVGpJR9HWPYUFMAR4ZX7NpS/UIhxC8BXAagTAjRCeALAC4TQmwGIAG0AfhI+odIlHkWEwSk6VVsagWkZAWJy/yJzC8a03CgawzvPr8+49dKOSBJKW+d5cM/TuNYiHRjhqNGpvZBUmyKjRtFEqnjWJ8PgUgMmzPcoA1wJ20iANMVJCMfVps8rFW1KTZuFEmkjn2dowCATRlu0AYYkIgAmKOCFI7Gx67aKjYhBKwWYejpUSJKzb6OURTl2bGsNC/j12JAIoJJmrQVrSAB8ecvwik2ItPb2zGKTXVFECLzPwiq90pKNAuLCY4ame5BUu+/td0ipr5/IjKnyVAUx/omMr5BZJJ6r6REszDFFJuiZ7EB4BQbkQKau8agSeAcBiSi7DHFFJvKFSSrhWexEZlccgfts+sKs3I99V5JiWZhioA01YOkXgXJZmUFicjs9naMor7EjVKvMyvXY0AigjkOq02exaZiBclmsXCZP5GJSSmxu30EWxqKs3ZN9V5JiWZhhsNqk2exqbbMH0hWkDjFRmRWnSMB9E+EsHUZAxJRVpliik3Rs9iA5DJ/4z53RDS3Xe3DAIBzl5Vk7ZrqvZISzcIcq9gSTdqKncUGAA6rBZEoK0hEZrW7fQT5ThtWV+Vn7ZrqvZISzcIUR40kl/krOMXmsFmmtjkgIvPZ1TaCzQ1FU9X+bGBAIoJJptg0LvMnIvMZD0ZwtG8CW7M4vQYwIBEBMEeT9vQqNgUrSFbL1PdPROay59QopATOzWKDNsCARARgevfpqKErSBqsFpGVM4pyjd1mmerBIiJz2d02DIsANjcUZfW6DEhEMMkUW0wqWT0CWEEiMrNd7SNYW10Ar9OW1esyIBHBJFNsMU3JFWwA4LAJ9iARmVA0pmFvx2hW9z9KUvPVlGiG6QqSzgNZgmhMKrmCDWAFicisjvROwB+O4dzl2W3QBhiQiABMHzVi6GX+mqbkCjYgvsyfFSQi83m1Lb5BJCtIRDqxmGGjyKhUNiDZWUEiMqWdrcOoK3ajpsid9Wur+WpKNIMZmrRD0RicNjX/S3OjSCLz0TSJV9qGsb2xVJfrq/lqSjSDKZq0oxocqgYkVpCITOd4vw/Dk2FsW5H9/iOAAYkIgFkqSJrSFST2IBGZy8utQwDAChKRnmwmCEgqV5DsVgs0OX0eHREZ386TQ6gtcqO+JE+X66v5ako0g8UEASneg2TVexi6SAbDCHfTJjIFKSVebh3GtkZ9ptcABiQiAIDVDKvYYmpXkACwD4nIJJL9R3pNrwEMSEQApitIRt4HKRRRuwcJAFeyEZnEzmT/0QoGJCJdmWEnbZUrSI7EDuIMSETm8HLrMGoKXagvyf7+R0lqvpoSzZDIR4hpxr3BhhVfxQYAEU6xERmelBI7Tw5he2MphNDv+CQ1X02JZhAQsFkEokaeYlN8FRvAChKRGbT0+zDoC+vaoA0wIBFNsVmNHZDCUQ0Oq6Kr2NikTWQazx0fBABc2FSm6zgYkIgS7BZjbzYYisbgtKv5X9rOJm0i03i+ZRDLS/N02/8oSc1XU6JZ2KwCUYPuo6NpEpGYnKqkqMbJChKRKURiGl5uHcLFq/StHgEMSERTbFbjVpCSlRPVK0hGff6IKG7PqVH4wzFcvLJc76EwIBElOawWw+7EHEpUTlStILEHicgcnj8+AIsALmjSb/+jJDVfTYlmEW/SNuYNNhkMnHY1m7STq9hYQSIytudaBnF2XREK3Xa9h8KARJRksxi3BykUjQGY7sVRTXJ7gxArSESGNRaIYF/HKN6UA/1HAAMS0RS7kXuQklNsiu6D5Er0XoUixnz+iAh46cQQNAlcvJIBiSinGHkfpGTlRNWdtF2JqcVgopJGRMbzfMsA8hxWnNNQrPdQADAgEU2xGXgfJFaQEgEpwoBEZFTPHx/E9sbSnHkdy41REOUAu4H3QZquIKnZpO1KvKAGOcVGZEgnByfRNuTHJTnSfwQwIBFNsVkshl/Flis/eWWbzWqBzSJYQSIyqB1H+gEAb15TqfNIpqn5ako0C5tVGHgfpHgwUDUgAfFpNlaQiIxpx9F+NJV70FCq7/Eip1P31ZRoBrvVuBWkZDBwK7oPEhAPSAFWkIgMZzIUxc7WYVy+ukLvobwOAxJRgpH3QUoGA7UDkgUhBiQiw3mhZRDhmIY3r2FAIspJRt4HKRmQXA51/0u77FYu8ycyoB1H++F12rB1eYneQ3kddV9NiWYw8j5IwTArSC67hT1IRAYjpcSOIwO4eGVZzvVQ5tZoiHRks1gQMehRFVMVJJUDks3KVWxEBnO4ZwK948Gcm14DGJBoHlIas6KyGA6bQMSgFaRAJAa7VUwd2qqi+Co2BiQiI9lxNL68/7LV5TqP5I3UfTWllCiUj+L7IBm1BykcU7p6BHCKjciI/nKkHxtqC1BR4NJ7KG/AgERz0hRKSDYD76QdjMSU7j8CACebtIkMZWAihNdOjeDKtbmzOeTpGJBoTgadcVoUu9WCiEH3QQpEYnA71A5IbrsVIVaQiAzjiUN9kBK4en2V3kOZFQMSzUmpCpKB90FiBSk5xcYKEpFRPH6wFw0leVhTla/3UGaVckASQvxECNEvhGg+7WMlQognhBDHE2+LMzNM0otC+Qg2qwVRTRqyMT0Q0diDZONO2kRGMR6M4MUTg7h6fSWEEHoPZ1YLqSDdC+CaGR/7DICnpJSrADyV+D2ZiEoVJLsl/p/UiHshBcOsICVXsRkx4BKpZseRfkRiMmen14AFBCQp5bMAhmd8+EYAP028/1MAb0/PsChXqBSQbIkl8kacZmMPUnyKTZMw7IHDRCr588E+lHmd2NKQuxNPS+1BqpRS9iTe7wWQm63otGgGLKYsmt0aryCFDbjUP8AepKkpRq5kI8ptwUgMTx/tx1XrKmGx5Ob0GpDGJm0Zr2uf8XYqhLhdCLFLCLFrYGAgXZelDFNpusKZuMGGDbibNvdBmn7+2KhNlNteaBnEZDiGq9fndk1lqQGpTwhRDQCJt/1n+kIp5d1Syq1Syq3l5bm3YybNTqUKkjMxxRYyYAUiGInBrfBBtcD0OXRc6k+U2x4/2It8pw0XNpXpPZQ5LfUV9SEA70+8/34ADy7x8SjHqNSD5LQnA5LxbrCcYov3IAHgSjaiHBaOanj8YB+uWFuRc4fTzrSQZf6/BPASgNVCiE4hxIcAfBXAVUKI4wCuTPyeTESpgJT4z2q0KTYpJQMSAI/DBgDwhxmQiHLV8y0DGAtE8LbNNXoPZV62VL9QSnnrGT51RZrGQjlIoXwEpy0xRWOwgOQPxyAl4HWl/N/ZlPISq/gmQ1GdR0JEZ/Lwvh4Uuu24eGXut9rkdn2LdKdSBSlZ7g0ZbIrGlwgEHqfaASn5/TMgEeWmYCSGPx/sxVs3VOX89BrAgETzUKpJ22bMHqRkQPIyIAEAJsMMSES5aMeRfkyGY7hhU+5PrwEMSDQPTaGElJxiM1oPUrJikuzBUZXHmZxiM1YFkEgVj+zvQZnXie2NpXoPJSUMSDQnhWbYpqfYDBaQOMUWlwyInGIjyj2+UBRPHenDdRurYM3hzSFPx4BEc1KpB2l6is1YFYhkxUT1KbbkKr5JrmIjyjlPHe5DMKIZZnoNYECieSgVkAy6D5IvFAEwPcWkKotFwOOwsoJElIMe2NOFmkJXTp+9NhMDEs1JoRYkw/Yg+VhBmpLntMHPJm2inNI/HsSzxwZw05banD57bSYGJJqTSmexOQw7xZZYxab4PkhAPCT62KRNlFMe2NMFTQLv2FKn91AWhAGJ5qRWBSm5D5KxKkiToSgsAsrvpA3EN4v0c4qNKGdIKfG71zqxpaEIjeVevYezIAxINCeVepBsFgGLAMIxYwUkXygKj8MGIYxTus4Uj9M2taqPiPR3oGsMx/p8eMe5xqoeAQxINA+VApIQAk6b1XhN2sGo8kv8kzwOK89iI8ohv9vdCYfNguvPNs7qtSQGJJqTQvkIQLwPyWhHjUyGo8qvYEvKc9q4io0oR4SiMTy4rxtXratEoduu93AWjAGJ5qRSBQmI9yEZroIUinEFW4LXYeNRI0Q5YseRfoz6I/grgzVnJzEg0ZxUatIG4nshGW2Z/2SIU2xJeU4rjxohyhG/fKUDlQVOvGlVmd5DWRQGJJqTahUkh9V4FaSJYIQVpASvM15BUukMQaJc1DHsx7PHB3DLeQ2wWY0ZNYw5asoalfZBApBo0jZWBWIsEDHk/H4mFLjskBLwcZqNSFf3v3oKAsC7z6vXeyiLxoBEc1LtB3Gn3XgVpLFABEV5DEgAUOCOV9LGAxGdR0KkrkhMw69e7cTlqytQU+TWeziLxoBEc1JtqsJlsyJgoGXioWgMwYjGClJC8u9hPMAKEpFenjjUh0FfCO/Z1qD3UJaEAYnmFFNsis3jNNY+OmOJSgkDUlyBK/73MMYKEpFu/nfnKdQUunDZ6gq9h7IkDEg0p5hiFSS3w1iHnSankgoYkABM/z2MBxmQiPTQPjSJ51sG8e7zG2A10MG0s2FAojlFFQtIRtuJmRWk15ueYmNAItLDz15qh80icIuBm7OTGJBoTrGYWgHJ7TBWD9KoPx4EivIcOo8kN3CKjUg/E8EIfvVqB647uxqVBS69h7NkDEg0J+V6kBI7MRtlewNWkF7P60qsYgsaZ5qUyCx+u7sTvlAUH7hohd5DSQsGJJqTej1IVmgShlnqz4D0elaLQL7Lxik2oiyLaRL3vtiGLQ1F2FxfpPdw0oIBieakYg8SAMP0ISUDUoGLO2knFbjsDEhEWfaXI/1oH/Ljgxebo3oEMCDRPFTbBynPEQ8aRlnJNhaIHzNi1K38M6HQbecqNqIsu+eFk6gpdOGa9VV6DyVt+KpKc1KtgpTnNFgFyc9jRmYqcNu4USRRFh3sHsOLJ4bwvguXm+qHNfN8J5QRMc0YvTjpkmewKbahyTBKvVzBdrpCtx2jgbDewyBSxvefPgGv04ZbzzP2ztkzMSDRnJSrICWn2ELGqEAMTYZQ6mFAOl2Jx4nhSQYkomxoG5zEowd68N7tDSg02ZmQDEg0J/V6kAxWQfKFUep16j2MnFLqcWDEH1Hu3y6RHu569gRsVgs+ZKLm7CQGJJqTshWkSO4HJCklp9hmUeJxIKZJbhZJlGF940H8bncX3rW1DhX5xt8YciYGJJqTavsgTVWQDDDF5gtFEY5qKPOwgnS6ZGAc4jQbUUb96LlWxKTERy5p0nsoGcGARHNSLSB5nPEKks8AAWnIFw8AJexBep3k3wf7kIgyZ9Qfxn07T+GGs6tRX5Kn93AyggGJ5qTaFFu+0wYhgAkDHFUxNBkCAE6xzTAdkEI6j4TIvO5+thWBSAwfvXyl3kPJGAYkmpNqFSSLRcDrtBlio8FkBamMTdqvU5qYcuQUG1FmDPpCuOeFNtxwdg3OqszXezgZw4BEc1KtggQkj6owQgUpHgBYQXq9Yk98qfGwjwGJKBO+//QJhKIxfOLKVXoPJaMYkGhOKi6VLjDIURUDE/EpJPYgvZ7TZkW+y8YKElEG9I4F8YuX2/GOLXVoLPfqPZyMYkCiOalZQTLGafA9Y0GUehxw2qx6DyXnlHocDEhEGfDdHS2IaRL/cIW5q0cAAxLNQ7WjRgAg32XHuAGatPvGg6gqNN/eI+lQ4nGwSZsozTqG/bj/1VO45bx6065cOx0DEs0ppl4+Shx2mvsVpN6xIKoKGJBmU+Z1Tk1BElF6/NfjR2G1CPz9m81fPQIYkGgeKlaQClzG6EHqHQ+ikhWkWVUVutA7FtR7GESmsefUCB7e143b39SoTOWaAYnmpGQPktsOXyia0w3qwUgMw5NhVLOCNKvKAhfGg1H4w7k/VUqU66SU+I8/HkaZ14nbLzXnrtmzYUCiOam2DxIQb9KWEpjI4d20+8fj00esIM0uOfXIKhLR0j3W3Ivd7SP45FvOgjdx2oAKGJBoTioGpEJ3fB+dUX/uroLqHY/f+NmDNLvkFEDy74mIFicUjeGrjx3B6sp8vGtrvd7DySoGJJqTigEpuTN1Li8TT974q1lBmlVlIjj2MSARLcmPnz+JU8N+fPa6tbBahN7DySoGJJqTij1IyZ2pc3kn5q6RAAAo0yy5UFMVpDGuZCNarK7RAP7nqRa8ZV0lLj2rXO/hZB0DEs1JxQpScmfqoRzeR+fUsB8lHgfyXXa9h5KTvE4b8p02VpCIluBLDx+EhMTnb1in91B0wYBEcwpF1VvmnzzsdDCHK0gdw340KLBR21JUcqk/0aLtONqPxw/24R+uWIW6YjVfaxiQaE4RBXeKdDus8DisGMrhgNQ+PMmANI/qQhe6RgN6D4PIcIKRGL740EE0lXvw4Ysb9R6ObhiQaE5hBStIAFDqdebsFFskpqF7NMiANI+Gkjx0jPj1HgaR4Xz7qeNoH/LjSzdugMOmbkxQ9zunlKhYQQLifUi5WkHqGQ0ipkk0lDIgzWVZaR5G/RGMGeDYGKJccaBzDHc924pbttbjopVleg9HVwxINKewogGpzOvAoC83K0jtw5MAwArSPJJ/Px3DrCIRpSIc1fDPv92HMq8Dn71urd7D0R0DEs0pHNXgsKr3z6TU48zZfZDaBuMBaRkrSHOqZ0AiWpDv7mjBkd4JfOWmjVMb5qosLXuGCyHaAEwAiAGISim3puNxSX/hmAa7VSAc03sk2VVR4MSQL4RoTIMtxwJiS78PXqeNu2jPI1lBOsWARDSvQ93j+O6OFtx0Ti2uWFup93ByQjoPVblcSjmYxsejHBCOanDYLJhULCHVFLmhSaBvIoTaIrfew3mdY30+rKzwQgi1drVdqHyXHSUeB9oZkIjmFIzEcOf9e1DsceDz16u559FscutHY8o5kZim5CqG5BEe3Tm4TPx4vw+rKrx6D8MQ6kvyOMVGNI+vPHoYx/t9+O93bkJxYqNcSl9AkgD+LITYLYS4PU2PaViaiXafDkc12HNsiikbahJVo1wLSCOTYQz6QlhVyYCUimUleTiZ6Nkiojd68lAffvZSOz508QpcouBxInNJ153vYinlFgBvBfAxIcQlM79ACHG7EGKXEGLXwMBAmi6bmzRpnoAUiUmlK0g9ObYTc8uADwCwqjJf55EYw6oKLzpHAvCHo3oPhSjn9I8H8enf7cfa6gJ8+prVeg8n56Tlziel7Eq87QfwAIDzZ/mau6WUW6WUW8vLzZ1SYyYKSKquYst32ZHvsqEnxypIh3vGAQCrGZBSkgySLf0+nUdClFuiMQ133r8Xk6Eo/ufWzXDarHoPKecs+c4nhPAIIfKT7wN4C4DmpT6ukWkm2TpISomwoj1IAFBT6EZ3jlWQ9neOodTjmKpw0dzOSkxFHutjQCI63df+fBQvtQ7hyzdtxMoK/sA1m3SsYqsE8EBiRY0NwP9KKf+Uhsc1LLNMsUVi8e9DxR4kAKgvcedcg29z1xg21BZyBVuKGkry4LBacLxvQu+hEOWMPzX34K5nWvHebQ34q3Pr9B5OzlpyQJJStgLYlIaxmIZZptiSu2irOMUGACvKPHju+CA0TcJi0T+QBMIxHO/34ap13KMkVTarBY3lHhxjQCICAJwY8OFTv9mPTfVF+PwNXNI/FzXvfBkmTTLFljyo1q7oFFtjuRehqIbusdzoQzrUM46YJrGhtlDvoRjKWZX5nGIjAjAejOCOn++Gw2bB9967hX1H81DzzpdhZqkgBSPxzSHz7Gr+J1pR5gEAtA7kxjLx/Z2jAICNDEgLsq6mAF2jAYzk6NExRNkQiWn42H2v4eTgJL7znnNybgPcXMSAlAFm6UEKJAKS26FmQGosTwak3Kg+vHJyGLVF7qk9mig1Z9fFA+X+rjGdR0KkDyklvvDQQTx3fBBfuXkjLmwq03tIhsCAlAFm2SgykDhexKVoBanc64TXaUNrDmw0KKXEKyeHsW1Fid5DMZyNtYUQAtjfMar3UIh08ePnT+J/d57CHZc24V1b6/UejmEwIGWASfLRdAVJ0YAkhEBTuScn9tBp6fdhaDKMbY0MSAuV77KjscyDfZ2sIJF6HtnfjS8/ehjXrK/Cp6/mZpALwYCUAWbpQUpWkNwOdf+ZrKspwMHucUidn9OdJ4cBANtWlOo6DqPaVFc01cNFpIpnjg3gH3+1F1uXFeObt2zOidW4RqLunS+DTDPFpngFCQA21BZiLBBBx7C+K9mePTaAmkIXlpXm6ToOozq7rhD9EyH05MiKRKJM290+gjt+vhsrK/Lxo/efp2wv6VIwIGWAWZq0k6vYVO1BAqZXjB3QscE3FI3h+ZZBXL6mghtELtLW5fGpyVcSlTgiMzvSO44P3PMKKguc+NkHz0eh2673kAyJASkDTFJAOm2KTd2AtLoqHzaLQHO3fgFpZ+sw/OEY3rymQrcxGN3a6gIUuGx4sWVI76EQZdThnnG854c7keew4ecf2obyfKfeQzIsBqQMiJkkIXGKDXDarFhbXYDX2kd0G8NTh/vgtFm4NHcJrBaBbY2leKmVAYnM62D3GG794ctw2iy4//btqC/hlPxSMCBlgN4NvekS4BQbAGDbihLs6RidmnLMpmhMwx8P9OKy1eVKV/LS4YLGUpwa9qNzJLfO1yNKh+auMbznhzvhcdjwq9svwPLERre0eAxIGWCWVWy+YBRWi4DLrvY/k+2NpQhHNew5NZr1a794YgiDvhDevrk269c2mwtXxlcAcpqNzGZn6xBu/eHLyHfZcP/t29HAxRxpofadL0M0k5zFNhGMIt9lg4DajcHnrSiBRUCX6Zk/7O1CvsuGy9l/tGSrK/NRXejCk4f79B4KUdr8qbkXt/3kFVTkO/Grj1zAabU0YkDKALOsYpsIRpDvsuk9DN0Vuu04u64IO470Z/W6Y/4IHjvQi+s2Vis/zZkOQghcubYSzx0f1GW6lCjdfvFyOz56325sqCnAb++4kOerpRkDUgaYpUl7IhhFvpPLQwHgmg1VONA1ltX+ld/s7kAgEsNtFyzL2jXN7qp1lQhEYnihZVDvoRAtmqZJ/NefjuBzf2jG5asrcN+Ht6PY49B7WKbDgJQBURMFpAI3K0gAcPX6KgDA4wezMz0T0yR++lIbzltejPU1hVm5pgq2N5Yi32nDn5p79R4K0aJMBCO4/ee78L2nT+DW8xtw123ncgFHhjAgZUA4ao4mpPFgBPkuVpAAYEWZB2uq8vHwvu6sXO+hfV3oGA7ggxetyMr1VOGwWXD1hio81tw7tc8XkVG0D03i5u+9iB1HB/ClG9fjKzdtgM3K23im8G82A8IxcwSkZJM2xb1zaz32doziYIY3jYzENHzryeNYW10wVbmi9Ll5Sy18oSj+fIhVJDKOHUf6ceN3X8CAL4Sff/B8vO+C5dxZP8MYkDLATBWkAlaQprxjSy2cNgvu23kqo9f59a4OtA358U9XncXDJTNg+4pS1Ba58bvXuvQeCtG8IjEN//noYXzg3ldRVeDCgx+7CBeu5Kax2cCAlAERE1SQNE3CF2IF6XRFeQ68bVMNfre7E/3jwYxcY2AihP/z2BGcv6IEV67l0v5MsFgEbt5Si+ePD6BjmJtGUu7qGg3glrtewl3PtuK92xrwh49dhGWl3AAyWxiQMsAMFaSJYBRSgocczvCxy1ciqkl87+kTaX9sKSW+9MghBCIxfOWmjSyfZ9B7tjXAIgTufbFN76EQvYGUEg/u7cK133oOx/p8+J9bz8GXb9rI7T6yjAEpA8wQkAYnQwCAMi8POjzd8jIP3nluHe7b2Y5jfRNpfezf7OrEw/u68fdvXoWVFd60Pja9XnWhG9durMavXu3ARDCi93CIpgz6Qvjofa/hzvv3orHcg0f+/mLcsKlG72EpiQEpA0ImmGIb8oUBMCDN5p+vXg2v04b/73f707bn1b6OUfzbg824aGUpPnb5yrQ8Js3tw29aAV8oip+/3K73UIgAAI8d6MHV33wWTx3ux2feuga/veNCnqmmIwakDIiYoYLki1eQSr3cfGymUq8TX7hhPfacGsXXHj+65Mdr6Z/A39zzCioKnPi/t5wDKxuzs+LsuiJcvrocdz3TirEAq0ikn45hPz7801fxd/e9hpoiNx75h4txx6VNfC3QGQNSBphhmf8QA9Kc3n5OLd67rQE/eOYE7tu5+ArEa6dGcMtdL8NqseAXH9qG8nxW7LLpU1evxlgggh8+26r3UEhBoWgM393Rgqu++QxePDGEf712LX7/0QtxVmW+3kMjAFyilAGm6EHyhSEEUJLHgHQmX7hhPbpHA/jXB5ox6o/g7y5tSnlZvpQSv3i5Hf/xx8OoLHDh3g+cx9UpOlhfU4gbNtXgR8+34l1b63kKOmWFlBJ/OdKPLz96GK0Dk7h2YxX+7fp1qC7kWWq5hBWkDDBDQBrwhVCS5+AurXNw2Cz4wW3n4oZNNfja40fxvp+8gqO98zdu72obxi13vYx/e/AgtjWW4oGPXojGcjZl6+Wz166BVQh87sFmSJMcNE25a3/nKN5998v40E93ARK45wPn4XvvPZfhKAexgpQBZtgHqWskgBqeDD0vp82Kb797M7atKMH/+dMRXPOtZ3HxyjK8ZX0V1tcUoNTjQCQm0TMWwGvto3isuQdHeidQ5nXiqzdvxC3n1XM5v86qC9341NWr8f8/fAgP7evGjZtr9R4SmVDb4CT++4ljeHhfN0o9Dvz7jevx7vMbYOcPoTmLASkDQiaoIHWNBtBUzimfVAgh8Nfbl+G6jdW458U2/P61TvzbH5pn+bp4Y/C/37ge7zi3DnkO/vfLFe+7YDke3teNzz3QjM31RZzupLQ5MeDDd//Sgj/s7YLDZsHHL1+Jj1zayHMuDYCv0Blg9CZtKSW6RgK4ZFW53kMxlGKPA/901Vn4xytXoXMkgCO9ExgLRGC3CpTnO7G+ppAbb+Yoq0Xg27eeg2u/9Rw+/r978Js7LuCmfLQkx/om8J2/tODh/d1w2az40MUr8LeXNKIi36X30ChFDEgZEIoYOyCN+CMIRGKoLeYU22IIIVBfkof6Ejb8GkldcR6+/s5NuP3nu/Gp3+zDt999Ds/CowWRUuLZ44P48fMn8eyxAeQ5rPjIJU348JtWcE85A2JAyoDJUFTvISzJycFJAMAy3uBJMW9ZX4V/eesa/OdjR1BT5Ma/vHUNe8RoXoFwDA/s6cJPXjiJln4fyvOd+ORVZ+G925ehxMOVwEbFgJQBEyFjbzrX0h9ficW9OEhFt1/SiK7RAO5+thVCAJ+5hiGJZtfcNYZfvdqBP+ztwkQwivU1BfjGuzbh+rNr4LCx+droGJAyYCJo7ArS8T4fXHYLp9hISUIIfPGG9dCkxF3PtCIQjuHz16/jlhcEABgLRPDQvm786tVTaO4ah8NmwbUbqnDr+Q04f0UJw7SJMCBlgNED0rF+H5rKvdzmnpRlsQj8+40bkOew4e5nW3FycBLfuXULCvPYZK8ifziKJw/34+F93Xjm6ADCMQ3rqgvwpRvX48ZNtfx3YVIMSGlmtQhDnw4upcTBrjFctrpC76EQ6UoIgc9euxZN5R587g/NuP47z+Eb79qM85aX6D00ygJ/OIpnjw3g4f09eOpwH4IRDVUFLtx2wTK8fXMtNtYV6j1EyjAGpDTLd9kwbuAK0qlhP4YmwzinoUjvoRDlhFvOa8DKinx84ld78K67XsLtlzTizitWcR8rE+oc8WPHkX48ebgfL7UOIRzVUOZ14J3n1uOGTTXYuqyYKxsVwv/haVbgsmPUH0EwEjPkPiqvnRoBAGxpKNZ5JES549xlxXjszkvwH48cwl3PtOKhvd34zFvX4G2bathzYmCBcAy72ofxQssQnj7ajyOJo4JWlHnwvu3L8Oa1FTh/eQn7zxTFgJRmFflOnBr2Y2AiZMh9cF46MYR8lw2rq7iCjeh0XqcNX33H2bh5Sx2+9MhB3Hn/XvzwuVZ87LKVuHp9FSsLBhCOatjXOYoXW4bw4olB7Dk1inBMg80isGVZMT577RpcsbYSTTwbkcCAlHZVhfFdUnvGgoYLSJom8ZcjA7j0rHI2aBOdwfkrSvDgxy7GA3u68N0dLfi7+15DU7kH77tgOd6+mQ27uaRvPIjX2kewp2MUr7WP4EDXGEJRDUIAG2oK8YGLluOCplKct7wEHidvh/R6/BeRZtVTASmg80gW7kDXGAZ9IVyxlg3aRHOxWgT+6tw63HROLR490IO7n23FFx46iK88ehjXbazGDZtqcOHKUjhtxptmN6r+iSAOdY/jcM8EmrvHsPfUKLpG46/DDqsFG2oLcNv2Zdi6vAQXNJYyyNK8GJDSrKowvndQ71hQ55Es3AN74ocpXs4VbEQpsVoEbthUgxs21aC5awy/fOUUHtrbjd/v6UK+04Yr1lbg8jUVuLCpDOX5PGoiHSZDUZwcnMSJAR8O9YxPhaJBX2jqa2qL3NjcUIQPXrwC5zQUYX1NAcMqLRgDUpp5nVbkO21TP7kYRTAS3yr/6vVVKMrj1vhEC7WhthBfvmkjPn/DOrzQMog/NffiiUN9+MPebgDAWZVeXNhUhnMainB2XRGWleSxb+kMwlENPWMBnBr2o3UgHoaSb3tO++HTbhVYVZGPy1aXY111AdZWF2BddQGrQ5QWDEgZsKrSO7Uawijuf+UUxgIRvHdbg95DITI0p82KN6+pxJvXVCIa03Cwexwvnog3Bd//6inc+2IbgPiWIBtrC7GmqgCN5R40lXvRVOFBuddp6pVxUkqM+iPonwihfyKIrpEAOkcC6Bzxo3MkgK7RAHrHg5By+s94nTY0lXuwvbEUTeUeNJZ70VjuQWOZl0d6UMYwIGXAupoCPLinG1JKQ7zQ+cNRfO/pE9i2ogTbG0v1Hg6RadisFmyqL8Km+iL83WVNiMQ0HO/z4UDXKPZ3juFAYlouEIlN/Zl8pw21xW5UF7pQXeRGTaEL1YVuVBQ4UZznQLHHgeI8O9x2a068voSjGsYCEYwFwhgLRDDqj0y9HQ1EMDARwsBEEAMTIfRPhDDoCyESk697DKtFoLrQhdoiNy5sKkNdsRu1xW7UFbuxstyL8nxzh0bKTQxIGbC+phC/ePkUWgcnDbFc9GuPH0X/RAjf/+steg+FyNTsVgvW1RRgXU0Bbjkv/jFNk+gdD+LEgA8n+n1oHZxE92gAPWNB7Oscw/BkeNbHctgsKM6zo8jtgNthRV7il8uefN8Gp80Ci0XAKsTUW6sFU+9rEohpGmJa/G1Uk4hpcuptMBKDPxz/FYhEEZh6P/52MhSFPxybdXwAIARQ6nGgzOtERYELqyrzUZ7vREW+M/HWhdpiNyrzndxriHIOA1IGXNRUBgB45uhAzgekJw/14d4X2/C+C5bh3GU8QoEo2ywWgZoiN2qK3HjTqvI3fD4YiaF3LIj+iRBG/GGMTIYx4o9g1B/G8GS8ahOIxBAIxzDqjyTCSzzMhKIaNBkPO5qc5eKnj0MANosFFkv8rdUi4LJbkOewTYUuj9OGMq9zKpB5HDYU5dlR6LajwG1HUZ4DhW47itzTH+OWIWRUDEgZ0FCah1UVXvzxQA8+ePEKvYdzRrvbh3Hn/XuwsbYQn712rd7DIaJZuOxWLC/zYHmZZ0mPI6VMVIzkVGiyWkT8V6LCRETTWNPMkHef34Dd7SPY2zGq91Bm9afmXvz1j15BRYELd9+21ZDHohBR6oSIhyGHzQKXPV4NctmtsFstDEdEs2BAypB3bq1DmdeBzz/YjGhM03s4U4Z8IfzL7/fjjl/sxqpKL379kQumdv8mIiKiOAakDClw2fHFt63H/s4xfPp3+xHROST1jQfx9ceP4rKvP41f7+rE375pBX5zxwXcvI6IiGgW7EHKoOvPrkHrwCS+8cQxtA5M4vM3rMOWhuKsXb97NICnjw7gTwd78WLLIGJS4sq1lfj01auxqpKH0RIREZ0JA1KG/cMVq9BY7sEXHjyIm7/3IjbWFuKaDVU4f0UJ1tcUIM+x9KcgGImhfciPk4M+nBiYxOGecexuH5nacXZZaR4+/KZG3Hp+PZaVLq3Rk4iISAUMSFlw/dk1uHx1Be5/tQN/2NOFrz1+dOpzFflOLCvNQ4nHgQJXfGmsy26FRUzvVRKTcmoZb3IfkqHJEAYmQhj0xZf5nq62yI2ty0twbkMRtjeVYnVlPjdZIyIiWoC0BCQhxDUAvgXACuBHUsqvpuNxzcTjtOFDF6/Ahy5egeHJMHa3j+Bo7zjah/w4NexH26A/sRttBOGYhtiMTUucNgvcDivcdivcDitKPQ6srsrHRV4nyrzxkNVU7sWKMg88TuZeIiKipVjynVQIYQXwXQBXAegE8KoQ4iEp5aGlPrZZlXgcuGpdJa5aVznn12mJ/Uos3KOEiIgoq9Kxiu18AC1SylYpZRjA/QBuTMPjKs9iEbBxjxIiIqKsS8dcTC2AjtN+3wlg28wvEkLcDuB2AGhoeP2J8dGYhpODkzgxMIkBXwiDEyGMByMIRjSEIjEEozEEI/FpJ4n4jrBSAhLxt1ri2GebxQKbVcBmEVPv263xLfPtiffdDiu8Dhs8Thu8zvhbj9OKEo8DlQUulHocPBOIiIhIcVlrVpFS3g3gbgDYunWrBIDjfRP4n7+04MnDfa878FAIwOuwwWm3wmWP7/rqsltgFQIQAhYBCMR3ho2/H6+w+KNRRDWJaEwiqmmIxiQimoZYTCKiSURiGvyhGMJz7ElkEUCp14m6YjfWVOXjrMp8nNNQjI21hTxTiIiISBHpCEhdAOpP+31d4mNzevpoP27/2W447RbcuLkG5y0vwVmV+ajId6Ikw1WccFTDZCgKXyiKyXAUk6Eohicj6BsPon88iL7xENqHJ/Gn5l788pV4caw4z463rKvC+y5chvU1hRkbGxEREekvHQHpVQCrhBArEA9G7wbwnrn+gCYlPvnrfWiq8OLnHzofZd7s7ubssFngsDlQ7HHM+XVSSgxMhPDyyWE8faQfD+3rxq92deDmLbX4/PXrUJQ3958nIiIiY1pyQJJSRoUQHwfwOOLL/H8ipTw4158Z80cQmwzj7vedm/VwtBBCCFQUuPC2TTV426YafOGGCO5+7gTueqYV+zpG8YsPb0N1oVvvYRIREVGapWUeS0r5qJTyLCllk5Tyy/N9/UQoiqoCV1aP3UiHwjw7/vnqNbjvw9vQNx7CHT/fjVA0Nv8fJCIiIkPRZblWKKJhQ22BYXd33tZYiq+/82zs6xzDvS+06T0cIiIiSjNdAlI4pqGuOE+PS6fNNRuqcelZ5fj+MycQjLCKREREZCa6BCRNStSXGDsgAcDtlzRi1B/B4wd79R4KERERpZFuOyKWeY2/AuyCxlKUeZ146nC/3kMhIiKiNNLtVFOPw/gHqlosAhetLMULLUOQ83+58qSUGPFHcGrYj1F/GMGIBk1K5LtsKHDZUVvsRqnHYdjeNCIiMg/dUkqe06rXpdNq24pSPLi3G53Dfr2HkpPGgxE8ur8HzxwbwCsnhzE0GZ7z6wvddqyuysf2FSXY3lSK85eX8OgXIiLKOt0Cktdp/AoSAKytzgcAHOmd0HkkuWVgIoTv7mjBL185hVBUQ22RG5euLse66gIsK/Wg1OuA02aBRQj4QlGM+iPoGPbjxIAPzV1j+M6OFnz7Ly0o8zpww6YavHfbMqys8Or9bRERkSL0m2IzSUA6qzIekI71MSAlPbyvG5994AD84RjesaUW7922DGfXFS5o6mwiGMELLYN4cG837tt5Cve+2Ia3bqjCP111FlZW5Gdw9ERERDoGJLfdHFNsHqcNpR4HukYDeg9Fd1JKfPOJY/j2X1pwTkMRvv7OTWgqX1zVJ99lxzUbqnHNhmoM+UK454U2/PTFNvz5YB/+9pJG3HnFKrhM8m+IiIhyj27NHTaLeRpxa4rc6BphQPr2U/FpsVu21uPXH7lg0eFoplKvE5+6ejWe/ufL8PZzavH9p0/gr37wIjrY90VERBmiW0CymCgg1Ra5la8g/eVIH7755DHcvKUW/3nzRtgz0Fhd6nXi6+/chB+9bytODflxw3eex/7O0bRfh4iISL+AZKKl3OX5TvjD6u6mPRGM4DO/O4C11QX4yk0bMx5+r1xXiYf//mLku2x4zw934rVTIxm9HhERqUe3gGQ1UUAqyrPrPQRdfXfHCQz4QvjqzRuz1he0rNSD33zkQpR5HfjwT3ehbXAyK9clIiI16BaQhIm2tinKM/6u4Is1FojgFy+344aza7Cpviir164qdOGeD5wPKSU+/LNdCChcxSMiovRiBSkNitzqVpDuf+UUfKEoPnJpoy7XX1Hmwf/cugUt/T589bHDuoyBiIjMhz1IaaDyFNvvX+vCucuKsb6mULcxXLyqDB+6eAV++lI7Xm4d0m0cRERkHjquYtPryumnakA62juBo30TuHFzjd5DwT9fvRo1hS586eFDiGk8GY+IiJaGFaQ0MMuu4Av15OE+AMA1G6p0HgngslvxmWvX4lDPOB7Y06X3cIiIyODYg5QGZtkVfKFeOjGENVX5qMh36T0UAMANZ1djXXUBvvd0CzRWkYiIaAn0W8VmnnwEt0O9gBSKxvBq2zAuaCrVeyhThBD4u8ua0DowiT8f6tV7OEREZGA6BiTzJKQ8h3pTbAc6xxCKatjemDsBCQCu3ViNumI37tt5Su+hEBGRgekSkMwTjeJUnGI71DMOANhUV6TvQGawWgTeeW49nm8ZROcIz2ojIqLFMdFaMv1YTXSuXKoOdY+jxONAZYFT76G8wV9trQMA/HZ3p84jISIio9InIKmXJ0znUM841lUX5ORUaW2RG9tWlOCxA+xDIiKixdFpii33bqqUOikljvf5sKrSq/dQzugt66pwtG+CZ7QREdGicIqNFmzAF0IgEsPyUo/eQzmjq9ZVAgCeONSn80iIiMiI2KSdJg6rOlmzYzje/NxQkqfzSM6sviQPZ1V68ezxAb2HQkREBsQepDSxWU34TZ1B+1AiIJXmbkACgAsaS7GrbQThqKb3UIiIyGBYQUoTu0IVpFPDfggB1BW79R7KnC5oKkUgEsP+zlG9h0JERAajzl09w1QKSF0jAZR7nXDacnv/p20rSiFE/EgUIiKiheAqtjRxKDTFNugLoSIH9z+aqdjjQGOZB/tYQSIiogViD1Ka2G3qVJAGfCGUeXM/IAHAxtpCHOga03sYRERkMOrc1TNMpSm2wYmwcQJSXRH6xkPoHw/qPRQiIjIQNmmniSoBSUqJockQyvMNEpBqCwGAVSQiIloQTrGliSo9SGOBCCIxaZgK0vqaAggBNHeN6z0UIiIyEFaQ0kSVA2sHJkIAgDKvQ+eRpMbjtKGu2I2WAZ/eQyEiIgNRY14oC1QJSIO+MACg3CAVJABoKveipZ8BiYiIUmfTewBmkYun2mfCWCAekArz7DqPJHUry7146cQQYppUJshmUziqoW1oEhPBKIrz7KgvyVOmJ4+IzIsBKU2sigSk8WAUAFDgMk5AaqrwIhTV0D0aQH0Onx9nJFJKvNAyhHtfPInnjg8idNpxLl6nDZetLscHL16BLQ3FOo6SiGjxGJDSxKLID8wTBgxIKyu8AICWfh8DUhr0jQfxrw8048nDfSjzOnHr+Q04p6EIBW47hn1h7GofwR/3d+OR/T246ZxafPGG9YaqOBIRAQxIaWNRpII0EYwAALwu4/zTWZYIRR0jfp1HYnyHusfxwXtfxWggjM9euwbvv3D5G46cece5dfjcdWvxg2dO4AfPnMDejlH8+P1b0Vju1WnUREQLp0jdI/NUCUjjgSg8DquhennKvE44bBZ0jgT0HoqhHe2dwC13vwQAeOCjF+H2S5rOeB6fx2nDJ9+yGr/82+0YD0Tw7rtfRtvgZDaHS0S0JAxIaWKkwLAUE8EI8g00vQYAFotAbZEbXQxIi9Y/HsTf3PMK3HYrfnPHBVhbXZDSn9u6vAS/vH07IjEN77/nFYwFIhkeKRFRejAgpYki+QgTwSjyDTS9llRX7EYnp9gWRdMkPvmbfRjxh3HPB85bcB/XWZX5+NH7t6JrJIBP/nofpJQZGikRUfowIKWJKlNsE6GIYQNS1ygrSItx3852PHd8EJ+7bh3W1xQu6jHOXVaCz7x1DZ483IcH9nSleYREROnHgJQmygSkYBQFbmNNsQFAXXEeBn1hBMIxvYdiKMOTYXzt8aO4aGUp3rutYUmP9cGLVmBLQxH+/ZFDGJ4Mp2mERESZwYCUJqr0IPlCUXgcxqsg1RS5AIBVpAX61pPH4AtF8fnr1y95M1SLReArN2/EWCCC7z/dkqYREhFlBgNSmlgUCUihiAaXffaVS7msIj8ekAZ9IZ1HYhz940H88pUO3HJePVZX5aflMddUFeCmc+rws5fa0TceTMtjEhFlAgNSmiiSjxCMxOCyG++fTXl+/Oy45GG7NL8fv3ASUU3DHZc2pfVxP3HlKsQ0ibueaU3r4xIRpZPx7nQ5SpWjRgKRmCErSMnDdRmQUjMZiuK+l0/h2o3VWFbqSetj15fk4dqN1fjNrg5MhqJpfWwionRhQEoTFQ6rlVIiGInBbcCAVOi2w24VGOAUW0r+eKAHvlAUf3Ph8ow8/vsvXI6JUBS/54o2IspRDEhpkjy83MxbvEQ1CU3CkFNsFotAmdfJClKKfrurE41lHpy7LDOHzW5pKMLG2kL8785TGXl8IqKlMt6dLkcll/lrJg5IySXyRpxiA+J9SAxI82sbnMQrbcN459b6jFVGhRC4eUstDveMo6V/IiPXICJaiiUFJCHEF4UQXUKIvYlf16ZrYEaTXMWmmbiEFIwYPCCxgpSSx5p7AQA3bq7J6HWuO7saFgE8tLc7o9chIlqMdFSQviml3Jz49WgaHs+QkqvYTB2QohoAAwekfCd7kFLwxKFebKwtRE2RO6PXqch34YKmUjy0r5vHjxBRzuEUW5okV7FpJp5jC05NsRnzn02p14EhX8jUz9FS9U8EsadjFFetq8zK9a7dWI22IT9ODPiycj0iolSl4073cSHEfiHET4QQmenoNIBkr0bMxPfeYDQekIy4ig0AitwOaBLwhbm0/EyeOtwPKYG3rM9OQLpsdQUA4OmjA1m5HhFRquYNSEKIJ4UQzbP8uhHA9wE0AdgMoAfAf8/xOLcLIXYJIXbFYuY7Dyt51IiZpwqM3oNUmBc/Q27MH9F5JLnr+ZZBVBW4sLoyPTtnz6e2yI1VFV7sONqflesREaVq3kO1pJRXpvJAQogfAnhkjse5G8DdAFBQv9p0KSLZgxQz8fRNIJzsQTLmFFtR4pDdUX8E9SU6DyYHSSmxs3UIb1pVntV9vS5fU4F7XjiJyVAUHqfxzvkjInNa6iq26tN+exOA5qUNx7imV7HpPJAMSk6xGbWCVJTnAACMBVhBmk1Lvw+DvjC2N2Y3PV7YVIpITGJvx2hWr0tENJellgL+SwhxQAixH8DlAP4xDWMypOl9kMybkIw+xVaUmGIbDYR1Hklueql1CABwQWNZVq+7ZVkxhABebRvO6nWJiOaypHq2lPK2dA3E6FRYxRZKLPN3WI0/xUZvtKttBFUFLtSXZHZ5/0wFLjvWVhVgV9tIVq9LRDQXY97pctBUD5KJK0jRWCIg2Yz5z6YgEZA4xTa7/Z2j2FRfqMu5guctL8Zrp0am/o0REenNmHe6HJS8qZg4HyGS2MPAbtAKkstuhctuwaifU2wzjfkjaBvy4+y6Il2uv3V5CfzhGI708tgRIsoNxrzT5TAT5yNEEj/d26zZrzCkS5HbgRFOsb3Bga4xAMDZdYW6XH9jbfy6B7vHdLk+EdFMDEhpMjUrYeISUjIgGbUHCQAK3DZMBBmQZtrfNQpgOqhkW0NJHrxOGw52j+tyfSKimYx7p8sxAokpNp3HkUlRg0+xAYDHacNkyHwblS5Vc9cYGkryprZCyDaLRWBddQGau1hBIqLcYNw7XY5JVpBMXEBCOKZBiOldw43I67TBF+JRIzMd6/NhdVV2ds8+k3U1BTjcM2HqzVaJyDgYkNLEuJEhddGYNHT1CAA8DhsmGZBeJxzV0DY4ibMqvbqOY31NAQKRGE4OTuo6DiIigAEp7aSJJ9kiMQ12A1ePgOQUGwPS6dqHJhHVJFZV6FtBWltdAAA40ss+JCLSHwNSmqgwxRbRJOwG3QMpyeu0copthuP9PgDAygp9K0hN5fHrtw6wgkRE+jP23S6HTO2DpPM4MikS1WCzGPufjMdpw2Q4BmnmJLtAx/omIMR0QNGL22FFbZEbJwZ8uo6DiAhgQEo7M993o5oGh4H3QAIAr8uGmCanjk2heAWpvjgPbof+Z+w1VXhZQSKinMCAlCY6nM6QdZGYhM3gTdpeZ/z4wYkgp9mSWgcm0VTu0XsYAICmcg9ODPhY4SMi3Rn7bpeDzNykHY5qsBu8guRxxAMSG7XjpJToHPZjWWluBKTGci/84Rh6x4N6D4WIFMeAlCbJjSJNnI8Q1TTjL/NPVJDYqB036o9gIhRFXbFb76EAAJrK4kHtJKfZiEhnxr7b5RBh/nyEiAn2QUpOsbGCFHdq2A8gftRHLqhPjKNzJKDzSIhIdca+2+WQ6aPYzBuRIjETTLE5443Ik2EGJADoGEkEpNLcCEhVhS5YBNCZGBcRkV4YkNJEjSZtzTRN2j6exwZguoJUX5wbAclutaC60M0KEhHpzth3uxxk4gISojEJh8EDksseryAFIwxIANAxHECpxzHVm5UL6ordU5UtIiK9GPtul0OSTdomzkeIatLQB9UC0wEpxIAEID6VVZcj/UdJdcV5rCARke4YkNJEhaNGABg+ICU3QwwwIAEAesaCqC5w6T2M16krdqN3PIgwN/MkIh0xIKWZmfdBAgCLwZutXImz5IIR3nwBoG88iKrC3ApI9SV5kBLoHmUViYj0w4CUJsLgwSFVBm9Bgs1qgd0qWEEC4A9HMRGMoqLAqfdQXqcmEdi4WSQR6cngt7vcwym23OeyW9mkDaB3LB5AqnJsii0Z2PoYkIhIRwxIaWL82JAao0+xAQxISX3jIQC5GJDi4+lPjI+ISA8MSGky3aRt7hKSGSpIbruVPUiYrtBU5FhAynfa4LJb0D/BChIR6YcBKU2mdtLWdRSZZzVBBclttyIQZgUpGZByrUlbCIHKAtdUhYuISA9Cj4qHEGIAQHvWL5wdZQAG9R4ELQifM2Pi82ZMfN6Mx8zP2TIpZflsn9AlIJmZEGKXlHKr3uOg1PE5MyY+b8bE5814VH3OOMVGRERENAMDEhEREdEMDEjpd7feA6AF43NmTHzejInPm/Eo+ZyxB4mIiIhoBlaQiIiIiGZgQMogIcQnhRBSCFGm91hobkKIrwkhjggh9gshHhBCFOk9JjozIcQ1QoijQogWIcRn9B4PzU0IUS+E2CGEOCSEOCiEuFPvMVHqhBBWIcQeIcQjeo8lmxiQMkQIUQ/gLQBO6T0WSskTADZIKc8GcAzAv+g8HjoDIYQVwHcBvBXAOgC3CiHW6TsqmkcUwCellOsAbAfwMT5nhnIngMN6DyLbGJAy55sAPg3zb65tClLKP0spo4nfvgygTs/x0JzOB9AipWyVUoYB3A/gRp3HRHOQUvZIKV9LvD+B+M22Vt9RUSqEEHUArgPwI73Hkm0MSBkghLgRQJeUcp/eY6FF+SCAx/QeBJ1RLYCO037fCd5sDUMIsRzAOQB26jwUSs3/RfyHfeUOsLTpPQCjEkI8CaBqlk/9K4DPIj69RjlkrudMSvlg4mv+FfHpgPuyOTYiFQghvAB+B+ATUspxvcdDcxNCXA+gX0q5Wwhxmc7DyToGpEWSUl4528eFEBsBrACwT8QPdq0D8JoQ4nwpZW8Wh0gznOk5SxJC/A2A6wFcIbn/RS7rAlB/2u/rEh+jHCaEsCMeju6TUv5e7/FQSi4C8DYhxLUAXAAKhBC/kFL+tc7jygrug5RhQog2AFullGY96M8UhBDXAPgGgEullAN6j4fOTAhhQ7yR/grEg9GrAN4jpTyo68DojET8p8WfAhiWUn5C5+HQIiQqSJ+SUl6v81Cyhj1IRHHfAZAP4AkhxF4hxA/0HhDNLtFM/3EAjyPe7PtrhqOcdxGA2wC8OfH/a2+iKkGUs1hBIiIiIpqBFSQiIiKiGRiQiIiIiGZgQCIiIiKagQGJiIiIaAYGJCIiIqIZGJCIiIiIZmBAIiIiIpqBAYmIiIhohv8He2jICechzzMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "targets = (16, 17)\n", "xmax = 15\n", @@ -256,6 +357,7 @@ "lanczos = eval_lanczos(x)\n", "rel_error = calc_rel_error(lanczos, mean_lag)\n", "rel_error_simple = evaluate(x, targets[-1])\n", + "rel_error_opt = evaluate2(x)\n", "# rel_error = evaluate(x, target)\n", "\n", "_, axs = plt.subplots(\n", @@ -265,6 +367,8 @@ "axs[1].semilogy(x, np.abs(rel_error), label=targets)\n", "axs[0].plot(x, rel_error_simple, label=targets[-1])\n", "axs[1].semilogy(x, np.abs(rel_error_simple), label=targets[-1])\n", + "axs[0].plot(x, rel_error_opt, label=\"Optimal\")\n", + "axs[1].semilogy(x, np.abs(rel_error_opt), label=\"Optimal\")\n", "axs[0].set_xlim(x[0], x[-1])\n", "# axs[0].set_ylim(*(np.array([-1, 1]) * 4.2e-8))\n", "# axs[1].set_ylim(1e-10, 5e-8)\n", @@ -287,9 +391,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 79, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAALYCAYAAAAXYuFPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9f8x23bYeBF1j3e/37b17TjmNOQiUU1u0iBUCTShRFG2qxBKpYGJCqq1tAW36h8TURElTAyYIIamKQUxINUiQovCfiRppm6Yi0WPSGlI1NcZiTxtqW05/2NPTc/be772Gf8x5jXGNMee6n+d9vm/v593be+79fO+91pxjjjHHnPMa88eYc5m74xme4Rme4Rme4Rme4Rme4Rme4RneLxzvLcAzPMMzPMMzPMMzPMMzPMMzPMP/v4fnxOwZnuEZnuEZnuEZnuEZnuEZnuGdw3Ni9gzP8AzP8AzP8AzP8AzP8AzP8M7hOTF7hmd4hmd4hmd4hmd4hmd4hmd45/CcmD3DMzzDMzzDMzzDMzzDMzzDM7xzeE7MnuEZnuEZnuEZnuEZnuEZnuEZ3jk8J2bP8EMVzOxfNLP/7tec528xs3/z68zzGZ7hGZ7hGZ7hGZ7hGZ5Bw3Ni9gw/kMHM/qCZ/QUz+8Z7y6Lhq07iJv3dzP5y+/vFX6ecz/AMz/AMz/AMz/AMz/B5hefE7Bl+4IKZ/TIA/wkADuDve19pvifh/+TuP9r+/lRPZGYfXvPuUfjU9M/wDM/wDM/wDM/wDM/wvQnPidkz/CCG3wTgJwH8iwB+8yb+x83s95nZz5jZ/97MfikA2Aj/jJn9WTP7S2b2fzWzv2XG/ZiZ/Utm9u+a2U+Z2X/bzJb+YWa/zMxcJzRz9+6/Yma/AsA/D+DvnLtcf3HGf8PM/ntm9ifM7M+Y2T9vZt96S8HN7I+b2T9qZn8EwM+a2S+f8vzDZvYnAPwBMzum/D81y/ovmdmPNfkj/VvkeIZneIZneIZneIZneIavNzwnZs/wgxh+E4DfM/9+rZn9NS3+NwD4JwD8OIB/a6YDgP8MgP8kgP8ggB8D8A8A+HMz7n803/37AfzqyeMf/BSh3P2PAvhtyB2vXzSj/unJ81cC+OUA/noA/9in5N3CfxHA3wvgFwH4ON/9agC/AsCvBfBb5t+vwSjPjwL451oemv4ZnuEZnuEZnuEZnuEZ3jk8J2bP8AMVzOzvAvBLAfxr7v6HAfwxAP+llux/4+7/hrt/G8DvxNjB+iUAvgvgFwL4DwEwd/+j7v7/MbMbgF8P4He4+8+4+x8H8N8H8F/+GuQ1AL8VwG939z/v7j8D4J+a/K7Cf9TM/qL8/bEW/8+6+59095+Td/8dd//Z+e43APgfuPu/7e5/GcDvAPDrm9uipn+GZ3iGZ3iGZ3iGZ3iGdw7Pidkz/KCF3wzg97r7T8/nfwWrO+Of5I85MfnzAH6xu/8BjJ2j/zGAP2tmv9vM/iqMnbUvAPyU5PFTGDtbXzX81QB+AYA/zIkWgP/dfH8VftLdf5H8/Qda/J/c0Oi7X4y1LB8A/DUX6Z/hGZ7hGZ7hGZ7hGZ7hncNzYvYMPzBhnsv6BwD8ajP702b2pwH8dgB/m5n9bZL0lwjNjwL49wD4UwDg7v+su//tAP7DGO6F/00AP42xm/ZLJY9/H4B/ZyPGz85/f4G8+2vlt7f0Pw3g5wD8zTLR+jF3/9HXlPkidB793Z/CWpaPAP7MC3k8wzM8wzM8wzM8wzM8wzuF58TsGX6Qwn8ewB1jUvUr59+vAPB/wDgTxvCfNbO/y8y+xDhr9pPu/ifN7O8ws/+ImX2BMcH6eQCnu98B/GsA/kkz+4XzspD/BoB/uQvg7v8uxoTtN5rZzcz+IQC6o/VnAPzE5A13PwH8TwD8M2b27wUAM/vrzex7ebbrfwHgt5vZ3zAnpv8UgH/V3T++QPcMz/AMz/AMz/AMz/AM7xSeE7Nn+EEKvxnA/8zd/4S7/2n+Ybgn/gY5Q/WvAPjHMVwY/3YAv3G+/6swJkl/AcO9788B+F0z7h/BmKz92wD+zZnHv3Ahx38VY6ftzwH4mwH8HyXuDwD4vwP402ZGd8t/FMD/C8BPmtlfAvD7AfxND8rJWx317+94pJgW/gUA/3MA/waA/zfGBPQf+QT6Z3iGZ3iGZ3iGZ3iGZ/g+B3N/ejQ9wzM8wzM8wzM8wzM8wzM8wzO8Z3jumD3DMzzDMzzDMzzDMzzDMzzDM7xzeE7MnuEZnuEZnuEZnuEZnuEZnuEZ3jk8J2bP8AzP8AzP8AzP8AzP8AzP8AzvHJ4Ts2d4hmd4hmd4hmd4hmd4hmd4hncOz4nZMzzDMzzDMzzDMzzDMzzDMzzDO4cPLyf5+sOXH36Bf+vLX7RGGL96a9B/epr6nC8e3i+5y+sV8W4XCRY5Bn/byfFCOXZyK8mr8nshzl+Iv4rz/es13VWiT9S7P4h7U3i1XP5C/GviXqGtEr1vsfaQd+khF7RXPcHgrvm7xKwy2kZGlc16XPxywGqeGmfsJPNfX0rjiw5UliWv/q7TiU6spdnl6/Fv5sSyqu56HpVv161vdWfb9Nd1rBoP2qV8Kc+uDlbZ5LdZK9f4tXv3f/kj3/5pd/+rN2Juw5e3X+Df+vLH9pFZUWIH5sMVfl4385c/n24Ts/YNbQlbO3Ah1yXrB+kfdturfD8Bc1+Nq1dx/kL8jPuksj+I99fQMOGbsFrjLyz3W/PdddJLvtd5b0ltRcsSfZGvi4He4X/hF/yv8H2fJuk3GDz5mfzqUu5wPd+vmGjTzmzfK61V3lf4T8repAq+t3K/lOegeWxvMq+XcN9Q893rf5fP3u7J7y3uJ/J/Fdz/foVf+2t+xP/cn7+/mf4P/5Fv/+vu/vd8jSK9ObzLxOxbX/4i/J1/4z88ms9hAykMcDPgNjbxBjDbjMeaFoAfgI7MXCdpBtgh3UCMcD4jeqFLvjAfvEA+OThwa3kZ4DfUfAstKq3sUXpLW3rEWR+Vlmldn5XP7rn/fiXtOVUOnzL5ddrUTYtH0/kV7ZEg4w/ScuAfkadVZUleW77m+U7iIt+Q2Zd4UznMGy0bE9YKnRMq5mfWJh/zXfKRSYdNvoyD0juOkpfjUFqcMBtQfZ6G8zR2oZI2ni2fBw8O8Mfv48jnw04cJa8zaA/mFWlJ6/EMGE6ff2IAgtY8ZBp5jb9b8OVv4SO0Ix7x23DiA5L2sBO3GXfgxGEnbKb86IY7jmmYJq3wJZ9jxh1wfBA+N8k7dAUEn9sD2g92zrjB4waHw3D38ed2ZL5b2tTNbbYX8r4ZJD67lQH4YBbPNxhudsw4wwHDBxv6GLB14Iu/7o/9FD4hfOvLH8N/7G/4LbM/H4KhFGSATdgBk250yDMb3QnUlQafeEXwagOUc/bX2wE/DPcPBny4TRkwMVXtTRJv7UDD7mIHxDY9sgM+nwvGis529ubVdmBnbxqm6oJal7HIdCIayuuwvMr4yA54x9RHNkNwP+CSwWp5hm68PEcZCnZTxk1aTDsgMprIuMX9vkp5eClfmRhRzxPLrdmUguXFbng8R9oFu6c4Dtzvlv1CaHd2ILDWVtwffBDxKHiMaRPSRnXsPqJrGj46cPotVH3YudiIivvCu9kBxfzAzcVmKKaSlrgPuB8D931gU6GdeuBvxXK1A7eJ1wWPaatwb/ZmYzNo33HigzlODPv43Ull5NvtzcR25j3sy7Sl1B3Sdn2YEzEDcDPDLerA8GHiPXH/ZkdYwrfg/vcr/PSfv+P//K//xJvpv/jr/tiPf43ifKXwLhMzQCZeQAV77ABZje/6DIhh5YujPpc1saPyKzltDYFSyxqFAWWmcmVEdmXvz9OoGDAGHMLWH9D2AnS+C+0DGZc6eBCu+OzoHvHZyojU6apHD8NqblIj1iiHQdL6KXktdeNNNx66N43fltI3+VkVhu0n2lNNWh4v2s1Ou8uCvz4XZayZXtFu2VtL39rJIbTLWmgZQEg+7jGWAUxrKcW3ml9f7fXs1RuBM3d4DgquWjejz0hms09WWvdVnSnjHGyJbAkhV3xlQh5p58Bg8nJPPb1My98mPDcoIpOaQ547h53EPdVrQ8H9eMbs0xa/a5yttKwDsxyAzokdjH0fOKIyAdwsJlS6qNcXlLLYgvcbO1BkPCRuVz593pSdLwYb5tH4PKJ9ic+OVsMrq/OTsVzr0zdptV+hqGKbNmykN3jtcl7g1YDlF6xbsRmrHbiulWDQ+PVWM2l3dk1Je7wQPMT9Rla9JF7GfQfmRINPpXSXfAVtr2AjwskXMsbxlrbYkQt7Q8puane0A7fqzhnkWZF0EV/sKG1ZlXk0dPOsV7s25NtgNHhzmdIx6i50JWJE+TztTRHWHbAXW/rkmw0km/5VBb4N978/wXH38+VkPwDhfc+YTaB1YKxGQoDQbMbNRmO264KDphhygx9cR2A+4+804JRJWfn3POfox/nPEtz2fLX1j860Evu0JoyKiaTXrq3Fc5ERQKF19tzCtz2jPj9MK4PNAKje4aW+Fj4Xhn7Hp9N6T7uhDQsTSSaQBFZ4ykg9G7LdbEcn3oTySat8Kl+FOl+FzFAwrBY6BhatfNusaARmJAGZbdR7EZS0TAToilGNiqqhSuuSr8igz/U/S6i0q5CjfXGQn5qNpMO2LHpuzQSna3lsuO3MhnVOWmttW2W0iTGLobU03C48iBlnTCwHHz4DhvuFzMmXubF9ZqlOoYi+GTpzqOk5C21d01nqb6b1SGuJKSKjF5mqHKUtvCUolhvgY5l3aHn218El9eGz3OxT49kG7c1wHgb/YPAvbnA+3wz+4cD9ZjhvhvPDgfM2bcMBOD0zWhm1plz0o4F2gDrgxFmBsNapln+WTvQeP4gZupOoaS4wdbEDm7QLxm5os3wb3Nf0G8yJ9tb5QtJq/TXs25WvtmFJ4pJ2ET7TeQO2gu3a4C0I4sXWDhCQIHW7W2xptrkPpmu78MRVivagaynuazuq/KXP4mqC4FD19F5wUtpo61of0gDkvdqmtaGlzebchfZozAuEVsmE1meCmLTE3/QIEVrFxagOzxLWmhW0MVJLXk6bQj6TxiwwgpzuqPboLlNEx9j9AgC3ucfWaAc+E39ZZosyncwH096Y8s2FzlPKSN2ozpIvgm/oRhTP+qaG3oz7z/BJ4f0mZhztTEMdk3TO3MGOK7MfxtelkZnEIi6y4f66gb48wyXsQKY7Hcd377h998Tx3RN291w1UD7lv8knjSn/sSaj5pA/Iq+e1tZ0O1prkaGalqao5hB2JeOUfyuzBqmGhY8+ey2e+SrjUuRIa/kcctlKHAidEphPQ3TVbAqurAqN+uMIovG1XmLL9CHawsjKMweh2rSD3pqIoguVOUWyUh/ey6f9AV50G7nNNAstkgeKXm3RqywUbmlVhzGmuWj42j7DtAota4JmKFdPs1AeaQctjVm0pUk9dlsshMqaHQYyHUcYk5BZBzx0FTK4cxI8nk/VBXSwxHYhtFGeubZr9S8dXfK323g+I8ec+MDSkLNS6ACj7c0jbmrG6vMQyeP58kzpS4E6m27p0f7YTplGgEN1lw1P2lvk5eP3h2P8HQZ8YfAvD/gXY6LmXxwxKSvYpHWmeUtX19ajQkf/6mkf2QGxQYAtHh6atmTd+JR3a3S+d9QEG9pFxiaE9vf4fUUrddSrr8vBByuCIT3Fu4yMX9Xbymf12bgMVPkswk/c2JVv5irY3RMEuNXyysvo+7ODWpF5r9ekhfQHcUvf2bWZ3r1O4JzAMGm32M3/5hAt3oUdsPRVKdVTKjx/Bu6TL9HdUv5uE9kAYtLVFloD6xqtUU4tn9Xmp407yjD56iQmF/V0WdZqgSKt2oG0FqRd7E3gPmVkXqFtkfuI8nIwOxwTmS7jtXxFN9KOIm5ilU5Yww5MvB2/dLr3+YUxIfU3/31O4Z1cGefse0H1hkiBCF7cXDziEA1K0SGewUHGJi0wtnDvJ46POWQb/uC37CCGaSEaH8PK166fL2WUOPU80n70GtqHz13znyCzHxX4+5xl4bvj4w90wcxfXb4JFCaTjAfLC27pmFDOjCUmX1GGzDGp6TK39JGfD2ClMWCEM49CK3TKp8dHVi7dpKfFQhvQzAGE+TQGK5897UW44FvNypqfdRl9ltCx0c0LtMHxwu3Ghtbzr4bebBg/JjIGn7BgbAueHDgZ1IGJGtfktboyhrH2lFGmR5JRLc9YmT1CX6fVoy6xgjtfZKlzOOISqz5OMViQQUb3TtCnh23jpbBUogXWOyBnib3EXdsBi+dy3PSooGJHlmFUR+o3vBACY8hHcf9lO3Adl7Qucjmka2Km8853kzc+wQ6Imq9wvtOWM2Yh28v2pvPpYWtvgoGvdBuZ1UOZFVrL2zEVuQsY9at8RT4g2llgmp5JfqF8Re4qoggtMZIX+Vxh+0bSZCfdhPkaHO67gq60u7juQ5DvrmiFS/zweFQPjngr27OPimvkPl30WJkm+TPfRdcX5cNC69OLoNluAT56d/Ssww4odrcC7exN4JBdl3/skB6hqmYtUCanWBfNqr1x4YtoJwWPEEtxCEsmQ4jPOZx4ujJ+pVBMvtmcpBlkOX0OQNhI6GLIhqeuVszUYyIVDSwMOuDmctDYx6Ts7sDdYR9P4OMJ+wj46ZkXZsOPhjm7gAfL6mqEToviJihjpLmSVTt55CPq2NK2fLfPaOk1Gy+YuD53gfjMvDtfyZtGMnRzpYuuq56P8A7XEiOYWhjY6YBY0o7/8xwaaWt+8hDMtP5GFcxChA6bsUq/kjpWoPHwjLGSKOs+3VwnB2lb2OqmueQgQbcWqv5rondrtCXpopbUczYeiZfMehtLWqwyw2XA1Ny7XNOttMnYQzfzqZSD90OQNuuwVE2Y+CyzZRueAwg1VlK04MuBPsfWdBvsJxaC1lxcNSmHPk/cccN9yuGS0DzLpxPHaFdlpdzGqqAwuzP/qA0UHaib34kz8ofw+OQQjXDqVyZkDozzX1FL9go7kOVMnJk5zMst3Mbvc2L/GSMoHdJA8hXgE9yISS/b+6zfHdYxvtMWGQ2t74zW4matPEi+8yH4AmtalUOqSbpuSYsdn1JnEn+J5TVtlxEzbVEPCOeenXRTPqXNMUPKI1CQ+Vgt7+hnHn2yFlj7CntsEuZiRwhc9LqU36Q8WNUZ/Spwn3z4nO2xh+yXlXY+5W59cOYSodb6jnYt06gDy/4V/cSLclXt8VvLECyHZNz9Stz32pZnpCPrxEk3I3m+XF23Q6XxnEJlfK0NneiMq5+074eUQVv3zOazZ9s8pS2bV9qz6Hgu1HJS5gi3e5WLe1TFZuFI3BfZhyiWfJXGq72JSZlXXaV2xvOJE+5nJPzcdpY0OBx3f/vf5xTeaWJmiGOYdAehgRL/BHMHDm7X23RHnF2HPUHRmmm5Yn3YvEWPqD4PihO0zxP+3Y/Az34b9ud+Bsdf/FnYz38bdj/RV72hRkVkHuACkRmNFo02n4dI6Y7gs/iF+IrWW5ykXZqYA6orw+toezwkvqRlXo2xCR2azAEDtnct6e6ks/qi5YzdJzVB8ttZP6no7saiK0GRedAynbRRup30Rqf1NQE6Lm9j3jNBDmLoSia8nCu0op3Z0D3KPuNdb1ZEpu0NZzKNdjY5k39MNBZa8snNiyiApA21iStp4W2ZD5fg1U5XM8AzpesOuLlhOScRvhhyu19p4IhxcZsLrHUPTnAyNlabu1qQk7LaJ+aAGnJYe17hyXMBvLvLnWkPnPNfn24pvJ0yjsnN56PpivwCiOLfLHC4cqEpgO1PRzJLcFEcR1IcIkjhPzVo9zGpV/GWMDCOJB64H2U46AI2G2lx07a0bDcAHwyY59H8Nt5FO4uRDwdJwodyqE40HNkPqWZFpEK7VJG6ys0fduSksOfVdBh8F0xtcgjp4l6O9lv+eii7eo3PdkhDGRyfZqukfEVmyrEIIfXOB2Lklb3R7f342cYOQdik3CoC9Z1LAXoCR+B+yEk+4dq4rwmOD9JVLm2GRxkyX4SN7JM1ofUobf5HJ06cCBnAMVvHFbYjzPRWXlhkSS3qRVE0bjEuZnm4mmLieg2E3jK5Bd+irlYHpWhlcoS025JR2BJOfriD7WnDhs1IGYn76rngoKv5Js4Np003dOpXbCRlOqLMWnYrupCqTL7TuyLlp70Zi1Pn/BdSvuHWR1jkwlNdVPqcw9OV8SsF2cEwXuKJ0sM7AOd83sT9waLRKFA4MHtZy8tQ1e+Af7zDfuavwO4n/PgCfn4YZxC0ES582HkzrvAttC60tpZPceVAFVDietoFt3flewXtVjf6rHwuJo6Xz70jL7rh82aA+CDfGFQyqoCyL7Tpp73pfF0X7Vr+zMYb+Hc+DuN1y55AZpI2m3cv794lMdImxwHPG9qeNjMK2E5jU3LM39W2+dz1c3lesw/arpsuxoaWItPgjdDuC5+0V7DpseRnGHd6dx7p2rcXgD+89IGzGfqFusvY5QLqivcuAaOWtq8dLtOuJfBWm7Wt6H8lx2iT65Sjd7h1vPN1hMBCxdAux84OKO4/shmrQiuenYDZuOwp2mDbktnjYrcDkvbYyFzardqMxkeXR2N1TvR0gccdrwwxtt/L+Cl2oON+y+/VNuNBeIl2h8cl9HbTcLHagFYXDbsXviUrExzclCJ20aQiaopiB65k7HgceW2zfYzHVnS2go/SSpMrMg2E6JhaZb7Excl2sVWk8bn7IucQPBrBxK1SaV7q60U8fqCb7VhjhrOmlAQeNj3PcU05NUuTiRJppHm45J3lheS9qS0xJMp3X4bq00M+dTlNdZ7+CSMbVfqqxL7j+Azfm/Bu1+UDSCOXL+aEbQKhySRML/KYxjcnaExLNOC/kW01AgAABz5+hP3szwHf+Q78432spn7nBvgJx23fgQ1yzoGIVvlVI1FRNcu3kav1ty5zDH674dvIeUm7yXtJ2/PVfvposNnyt6u4K0P7oHzVqJpk4igTtS2tl+f+u+hV5bL++wWZ+ewO+LGoJwxOJPd4iGx215ubElmh6xOyZYJHkYq4vk8rXYbNebvaDUdxmzS9XllkXWT0pHW1udOtY2YWa4buc1IWe02VL2nFvdVyC6TRqkGTPIq7GeaAYTVA/KZa5e3w+Q2brFk2m8QhrdMwlOEuO1wMaSptihRlmkY53GAsTf7hNOb9DJ1I0+oi6sRRVkDb+CkFYV+bq9q5cv42X/6BjWVZRTCVja67jplsyq6NNs+EEY+TtmjlgLjOIV1OJ8+S99ZmyHOJb2jXaL3bDNAlSjqWp0yFj/SMrc0g+dJHM1vF1E/G/c0YcIuhO9qCW/O3TkIX2qmbB3is+MTVkypix2vpNh1/Y3EYzcZoPr1uK2CH7SHu90LbTiUe/a+ostmb2iezbdeJ1HgxFgVXu+VLxbRgvsQoVo6dXbE3WhDwe5SVtv720LNZNPPJenXY4oK9dgsYd42yjPwmWeE1MZU7X+7DXtjSqU4srcbZ0/K6DsICuaYrY5QALm+6q+PIJu2Az/LpJDgtAhF8bYXJkWmTNnA/6sRqeclfmuZw/616rjyznVWbkbb2cwwO4L4FrB+88D6ujD4HHOfmlpfFAHuC5oq55UOeAZbx7Cu4y5N/MPiXN5xfHPAPB3A7hm3/+e/Cvv0R9vEO3M8Hxqny7Vy2TaTZf76LAcJVmsJXGDSDYldpd++ueFykezFvjW7WKMDFXyB9oXwxqAldWabptFjr4OFgayFaV+au6rTqZoDhlVHsRid4OeC+104mTYjetbl8aqOqF/0QMnedhPSBXLrtp8vFMGpy62GRy6PefQrtoTAHyq5cpndxfQR4va9VvqTwNCR0FdQBW6Zf1xpPyY9q8o1i1+tD8mbENGQWaXN6yOeWln8y2FK9htKRK7AcuEVZLPlq+XJn1NIlxVjexBqHx7XJ1XVl8Mm0Pp/nWY9Nv/j0sAHzNthkoZ3PwDXf0vC82gHDOG+G2Q0OjOv0bzbxyGDntEffPQfm633SyneL3bkrq6vij2VE9Kk1jTdWgndsOBtMfcxX6Dd8H9K2Orq0N7uMuh3wNSofbB+p9tV6Bo1hwVRsdVPINjajjje21PJU5Um6NZShiNiM7fGWRY+JEwWfWV4XSfRHWRAoWc3zX3u7EDe8xvkyFU3PQTf8DJlyD0YxL+0209R+HWkLBFfMJ8afUhfeaFfsVbVYnZo1F/3Ks9ubpA33RGIo3QGdV9urG3vNh/aA5+3o7phprfA8IGVHtoXML/Pl3x3DVdExrsTXZ7VPd3iRjVM+RFruFn511P9eh6cr41cNDoS/9wT/MZ6a6x0xthAEi9u65rNgyjC42ZvLM5iPdLzbAf/iA/xHvwk/HefpwO0GfPiAm9+Aj6Ph379IWQKi+7hN+TS5ILRnjq4uDb1nDyxF5YCi8l35aHFVN6a0qQpWQy3TRn6ARmGVOfhIem+0ES6WAlzievkMelB+DKQib3q+hV690SZgDzIZ5MzfqZtMN14Y7GguI5uBCmUObJ8irO4UOkoB7MjnUaY0tvX83N7VkTl1T6hjymxaehtnpkzkqKt3Wb/j/IHXdsL2yEK6p82XZx0XadrR16fE0Y5MBhSqi667PG8UDTYGUZ58mJOkXfRYeCkfSjGM4MeSzMZ16spn5p27LmnIgLzynsrLOQJlnHXhp+gGQAw3Jh8bF8Vyx+yMzuzFgMKPYV6MAwVP/IRN02M4rA4yKHOuBXvsGB6srzn4OAx5ucC1r9DDYJOHHbcAOL0BL7CW37X08ds3WB7NIL6BOYPagRukHhE3IhrOuE6fiY+7j0kbDKfeAKnCRxmwYFm5ZdjkT2id8gsty2A+m4NupTSshq18d3bAgHLMZsVUIGwuMn3Iyd+Ozedj1meNWmzkS7RaP2zeWOszL0eZctWeskmLaxsZ+IPA3cQ65wmLKmPQei2PCGEBbizQmtYKmHWMNSGtuDGafQAfgMSk4Rmw4ePzrKwAc8VyseuaL6q7XrE3lrGB15M2bJW4f/ZFWkzcHJd5zOvet2lXm2EhGUrtszqZ3Bot65oTjDGhnLhoPi/M6AtbQzmHsa1VvorlI23F8m63TdKS9hDaWgecGo+XZ3R84v4RE3THifL5lTDkWmeAuezuhT4c/fx2oqm0G9K+Efe/H8GBz+4Sj7eGd3RlTMBKV5IZmlELYxaUFfxcXFi6IVgmGqSdSxXnN7+En8DtfsKPA+aG4+MJfhsIH241Lw2Nj3e+B6Ulaj+WMeyxYPkq/+PyPTKK27R9gNCM5ML7Km37d5t2I0dPvxryCyMYienKqIPRvcxjdNny7XWg5Fd8mZdYK+txfhR8lJpv55J94dsnC1dhcWkRWgPixqfIyassV7SCxiVOe2B8ELQ9R5E07+JOMn475qbE8NsTXuIOMgdNS3WSpEhIoylyqPuhn+huop2WIZz0okPegULbXFaWlURV9Kb9arriktPL6mkQISu06LUDxMAs7Kns4oDDCN/S5uBxppTGWLqaqOVBoR6GguU5dpCFuMw60pa2ZCJD6a2vw33ytXHw/piDDtwddsou9035XmN35wvgIabOjoloqSrzWZvSgqkP+H4apkrT1rwkbhHiojyfbG82z1m+RzZy4iQH0Q5wu+gq7XVbWEokTx2Ptf9uNVvfuPafSlta63bCVvN+NAY2OTucroxdlkJxwWd9doAf5cCYaCReVhF9rBoFXd9JF/xVEdxxL4OLHaZCaKu9sVLejuVomFqgLd7szmmNJlUb/+5oQaWV+MJ37klpW9jSp5DGH36PNjhw3zTZyreUb5P3ZeCkM4zGlONBw/uU7J/hzeH9PjANjEGHuqhow1KQZfJ47g3HJj7NvAK3N4MiGvqbwb/xAf7NDzh/7Jv4+Au/Bf/Wl8AXX4ytrfs4w3F8dPh3T+jV0aV1uvCRzhTyc1VYV/J2RsMEIBtmBbeGB17FWJ7jX0nroh+V4aq/dffs7qpzScu8XyGj7hRdJi4EymfqV0u8CNUUsNRfT9vYbvleyMTmycmIr0DMZq7XHgO+yiH/Ms4u9KrdRuxPjQ/wX/W6rcOljYkLC0uVlag/pfo845bDI3O1rg82S/mmwXbViJXEkdamXKGL5DtWBeWWqvl3+vTUN66WDmKbdZh4s3FpcbqsjOuL0/vtSPxJVTaZuWBT09INEo3vqbTxp3zThYXyOTAHQFre/H2Hj/JbDgAUH06vN3SdkbOVEn1SCJwUZC+DdcFy4g3bEWkbtvbOoHgcjTS3dwfnA/APhvPwXBh0jPtjTsDuAL7rmN8paO0P9YW+C9keaKj0fclgNAcp85qkY9slpvK5w94FblzJqTr3FnXJd8GNx89dnhVzpPfoFl8fiDZMdd/zyfTeHrWXVuI+DhGQkZfEjZ6316QtruP+1acoVr1po9TlHZE16nAzaapNuMha3AR7nfjKl2yCp+JXqCqxKNUm5S98SFtxMApUymtB61OmU/KqruUTF8nbiK82vRHQ0h71QhBvugkZgYrlie0sz3BdLCOV0FVcs+KUyQJ7abgTi6erolNGw33aIw8+yHJBcX/Y01PG3VGe+Q9x3lFdA4cN+Ly/E3Z+hb/PKbzPjpk78PE+poW3L1BceY5YN5g7CzLw5v57G3kyLS8IsflydX+pRt0MwwgfB+yLARCnnfDbrbhN3k4AH318B+dAcY9xuqUo3zI6TkkdVlanyipxLVIuqK3FFd0gBsEar8jHPPgXSZRv/xeNVoPXyYFOJhVw4VXGkinTSsHqM3KwpMa3l2/Wn8oEN/lW3VX5tF3IyqTP+hRXlaID3+Sh5eFzGKajvbzim1d/r6uks40Xvh5dQWXkeKCknd8ugXWjh3SVWWgHD4d4hbnNLpGZZXccxukQvgavV+1H4/Pgc5jhXi5hrPmil6NocVR+thuLTlMmr4EfI/WtNByIG8oQKlwZnbzy3MBhdIY8p25IW11YfPrXWtfzjE2+c/Bowz3rBC9RyYPg8xoiaBFTMdPpMPiqa9OQcRyjUrebUDas04qErrqZbTmuZfET/uir7g8C3fXwgY23ds7EKz6Pekm3Qo86TdKkVTsAyG/tV4eNKmMZb4POj1FGA4AT+HA6/O7AYbh/cPhxJF/DdHsUGS6wDu1V2J7Qvfw+pfhWB86pG2R3knfb4XzHsUZ7batEJq9FCZyw9sx4yLNitcq45Sv12vo++cRhGymclkUxVW90jLGyElQ3hzrWKErq7l61wPQAyP80ECpAvS5GmZQvXfA6bqSboM3yDZxkGl2uMgBJ6+fA71pflpjabUbkNQDH9FMUSOyCpQtlafaW+aiaPbB9YOx9Vkrkp1USahxx7hySjefTG7ZFm+FYYpSPOHpAZYpeHh1udmfcPTQNYCxOfRDcp47oBhn4NPNSl/YT52yuswyz7pOWaQ+cfh+QGDvGQ+YDw6369CP4njiHHbO0GVQe7Rz5xkX9pU7SDVy/IUe1578Oi9oVvX6mweE/NJd/vLMro+lT+cDFMAwWnb+PWIdBkU4hI9WIY74KtjO+eE8JYvnNgMPGIMwnizMHfOfBTiouFMJHb2rMm7h27hbtWX73yx4f0Za4SaMTvqWILa/+b6cNI5tzlTWfjRyPZCxjyxfL50v5+D7AVQTTbtn5jH9zYNdTVzkaX8mT0MkmFwNiNSqwaYhKQ9vwBep5rmsXFo0PW2+7NCltYP2ysnntykjf9Z5XTVzflrEH2HFobKtrSeqTfXRuE8hhcE2ryU34Gvh9L4+8Op94lr7EFHppMKDOfzS0s1J14NTKq3xd+O/dmVrxSxaJGVXG3AE7pUFzyKHrxlrOvW6wpKkF46BllVG6HjbOpa8PzKQ34mioEhfnvFjSjc3ouKHX1kuZwg5ouYk9BLkbG4gDH08cJ+AfxiH6IAy8kkP4IsdqBxRT113louxHuG+4pt08Q9Jey/iKZ5c/jdvVwaZMD20VHFeLk3s+s4/pLEHlamkFjfYNugAL8/HIzzSu5p558HnqyrG6MoYNVZvS84o0GbdgaknLvHxLq0LG07xV7zU2Iykb30pa8BgQTA0d7nH/1JvOZtpjkWOlVXszzol5SRC2WDD1Jfw1od1hm24Q3iLvZMGJl8HmLbrkWxs2P4odUke7lQk3GUp5x46lCZ+kHbd7Eh9JkWmzHQv0Zskm/pXRVKt1zfUzvyzfx8T6hyG8062MU3v3c7r05HtvjTa2haVT6/kSB2SHRAD2kSGAZHd4pv9g8G/c4F8Y7h8M5weDHw67A376SHSX/I7eiGe38YS3KANl9pTLOzHyWXFlSytqVNqrswNKq3w6rep1MfBiYB2SdkeLVcZIu9D6Wj7fuHSILqxazyLzlW70m14FelwmZfBC3PPqwBSXIQhBtDHrgkje/rILS7qEEJxF3q6aKN++ScXKpm1SeH3HXRnlGXQq0/wPJ17k08cdYctmZowft13TiM2dNBoYj9cIdxfL81bMS+sn+eTzGbphljLRKWlzGHLOUtCNSm9b1DyoJ4sVU5ovXtZRy4tGW/tBau5Euv/QreYeppNS5jF4Fz6UI9x3Sv/zghEn25yRVjCr5Kvn1dgeeyt7XQi0P12fMgQuZudmSm92ILFt5hM7WC52IN0zqaOKG9ON9YPhvBnOA7kgd3fYxxPHOWxAVFqXgXagFMYeYuoen6oOlgvzNtjW2xJfuibQPDe0HUMXvkfyXvhe0D62VUOQbqt8o5t0dcs2XwpnFQvVK2DlS324COVbe7N3ZWyMBIMUc9Bwv+Tl7DsejXFrB0zf5L+1rr0y589SJ3OXZvYRn5VU9VqzUX4greKVC195H+g0/5M4KLoJ1VhQ+Jk7d5lZx+d9UfmnWJfPXtNqfUXIs7eO6QWhZ5MxMWLKfAd3vMZzyjhKd4fgUchX8dhnnkobH3opeIzpcmgo7U90w8s4zsY3y6n9QPbuJC3tzdBbSgxJG+3kjbj//Qis9x8GV8b3mZjdT+Av/CXgZ38O9hf/Muwv/Szsr/w88N07dOlgXF4g6H3YuL0KKBOFMN90cYGMwRX5ec5rTsT4EWqXvAEAt2O42twM54cD5xcG/3AMF8ZbZhfZdz6WYhuAuIENNZ3Sanx3Myy0oZsLvqjAE9mITOi0Uxf62LMmmeDmwreHRzIqmu92vuhmldXvK5Omy9C519+ZVrXDkdusH6PRn0znb+arOgj6SZvps3zh3rJsb+VfunjwefzLiQDdD9gNVG51adG0VS0WakvXjawUL6NVk8JJDiJjusNIvoZosJVP1oGzw3EHYfI5mmLTrTBFCCNu00CSj1U+0Y+7y07Q0ixl0EsuSDtcGW26h6jM2jtSjcN4Au4HYAfo/2/gubWhN8o+jEe2mZBL+NhUvMp7SCej81CeP8j8AYPbkYOY0Nv8d+ZBGSttO0kjrjG59rr3YHhtsLvDzvFxZ5w+ML4Ze4OnW3qoyspuEhRTxXWRrkUFk9gOi67Fi0E/Incz+JeG8wvD+aXh/PKGk1frq4skUPg8xDqJat14BG2HVmk7llunZdoLvqmX7K/VNm2zW4K39I9kLD98pxub9WeV1ne0tANywZPIVGZ33suXOxGrHagFtVCizYlLaXyBbmUbq9efISXseQmBKV24sSPSjRvzqm4INhTJZ95pI0QumVmHzhht3LWptKkWq3aAE4eoa+LGpG2qCGgIfM76SbtW+2dxjwuZBm2556XImB3FpA4i7bQ3fDbl0+cWThigthKrA4Nn3ia6YfvLxQmbE7usexF6+TloR9ozvDMqlltgueGcju6nlI98h1qynZVJWchv82yd2CaW2fTKfWJlbcuybfIM3+PwTq6MDv/4Efbz3+aoZlwl/40vqoVJ99YyIK5+8RdugurSguwjeXbJs8Oi0jonKby29zZ9cg25O5eYVfnu4q7SHhtamf0Q0zotdrSQ35/K95W0ge8qh8br+43MURZsXFheLF/WZUfiXn+azwIjpQDedOOF76Id06y9yezTYM4nr2mt6Mibriofa7pJA9bykvR2le+iC0N/s0u7e74ei69gfeWWs1CFwbVt2mFY09mkf2DaW13taX0jQy9fpa0raGtaGv00jShq4IDCJq0OEMLIM6vOa/sbc1Vz18lGWm37Bgyj7zr81eP3Lh2SMg7BPFKkg4v0vkXiTws+zvWeJ2BHmVxSpwiM3mGqRXzi+po2pJW0+j6mvfKOnyoxB/w4cJ9YcM5zxdG3d3wWLPdWHlzKyO/s9onJi3g81VG8Qz5Jxk2+HY+lqWzluqLVcMG3Y+Y2NFrLUTBygtDkIJ9otb7EX/6LlEtlVJm3ddDEECFXm6FpD8WdZgdKyj3u9+ewA5rdQwX3yJQxs+eOkQee7WXAWr6OufKz26PVRiRQVqe88wU+u7yE8YUdcMyN/JOKdFR9+GJvehOs+T5U/FY3w0ZMPCYWe/3umF3Q5u98JnqHLYq3MRKrmb2w4PY5nzEDxo7mu3A2+10A/nMAvgPgjwH4B939L741v3fZMXN34K/8PPwv/xzw898GvvNd2Hc/jgtBwi9JUCU6J2JAz9/lPFm4pGXD3B1u7h3GN3F00/APY7X0vA13l3IGxFoGhiXuKm3uREj82m8u+fTwEt/CB02XhjJR2srcMKbrdYGgLjMIrtcuLL18i7tXZyBY3eMX9x6misOFAsg+V4IK6Apw7YAvZNa0UgyrhUq3kWqcsrwt35YoNxaywPSnp4xXkORRDpX0pZNC46yEuglmjJfmOoyTnk1Aygw2Z1k37oOpssKr5RvP+1W6jEWT0RvtWtrWcOIp1wStlbie5UoXQp/x1W1Qdq9wVBcdcBettRfG6gRVynQiVzmVJnezpirF7RLuRUYa+ZDZk5YyUtRM65NP0+tbXFrYntiYZccsVHRgXM6BxHJtZws+GUrawWa1A6Vvzxly1btH+c/b3C37MHbO/Mtj7JiVAbrUv+JgyLROBi+xXHS/S/uIttfCQuvXz0u+Wgblc5E30/aetZRP81Ws6+HKDmC2wwU31vqt/UpwfQd2C7QrBufvxM8NdvPnUiRvv33l2QbXis2rvNJ/vQ0X2rkxk7x5U18gnLe9cVvH4rUaOk42PF52uzdFENr6LA/zZ7cZqfd6s2IiemqNWekGuKGfXSNt7heR9JzUWtfWjFW3c9oM8zdRsimglX0kTYtDz5mwGaxzrKe72BYAxNm1VmMgqCSWG7Qdhe6kz8BdyqP15W/H/e9TcIz2/ta/rxh+H4C/xd3/VgD/TwC/46tk9k7X5Vt8H8yoFXfgfhcQlaHQAVwOIxWF5FkbavxXQCjyNqQBn7QG5ADhsMH/Nn6XXrn5VweKl3XdDSrBvxuey/JS+E9Ie0HbZfRd2s27MjDvyTe0w4BbALaC+8u0qybLAOCq/NvMffNe8ro0nPs8F8kc4aJ+qVt9jiZlMS64YsZLOUj7aYtXm4O7F4pXPiqrGgNvbSl85tsQRtvJ9sygKz8v7hTKp5470V91yqS8YydhSqJnA5LGhdZKveV5ALlKvtBY4RcDB6uy5DX2FlcTu/IM3VRnkV6eMSJz8Yufefq8Phl0PazXKufzOAOhz1VOb+9iKWXWDcv9RivmDvvudwfOf/c+XNo5OSMwaDAOB6jtHlefC7jbajMCY0kruO+QmxKJ+18Y/Itj2oAZ+QKm7gZjl5jabcijsNVNDoQfZnFBq+ESy/sLW9O+yg5cynhd91W4OVlfJtt7Q+bmYW8ehi1faeG+yfwR/Ssqk7gfz/OFLWUmWlUZumdG/fZW5USHURNayhkuf1cyQjFgPm/Kq9qJtJYoGe20nYEuWCNYCwj+d2UJ9p7lTcfhPDNYrebIr+Kx7iUpBtoGJ63hJG2Ay78jl3vEmfCt9k3tivI6Ja22gMoT0SeUT8mHrpJFRrUf9Xp8LQvfj+vy0z58zuE+7eBb/r5KcPff6+4f5+NPAviJr5Lfu7gy2mGwb35z/P7wAbjd4McB//ILYF7DHAZUlzvavaxczQj3RLoezvi8YnnG88EnG0Ne49ItiiTXa/g1z2ikR6PVZ01vPW0+C16OcstufWBTK5/m1Yq3GNMrvsqzPO9++0VaLR/2cfBefltp9ePPImOZUtgAjrIhtZmhpN++N5kNfSU92hH5ynamlXMlvpR9WamclwfgHqehZpYV0gzR1EXmKYdn+eKcRKFn/DAAR7Py1T0mjWK6BK58Jukw+m4wGzubR1MtzzdYoR0raYcxb4+0VVlTxz7znUlpfFz+m1XgyKuPkbRR5jN0EQ2UAxd3Occ2GHW3oXol/Hg2n8ZNOpWVdjZkqes0eQUxml5NSE35zLxM5Ei9Ji9KYQD8HGfIaPrV5c+QRjukjLMEZ8EFnyAo67VldVhlYji0n6xd7hVhTsJOR2zHuk9M5XXQwUypCo7yX7rxWXwjEsUOAGlH1A44MCeDaOXY0Gqai7RbO6Dy8jlkrGl90vJTAgU2d7i+oS1stphaZWQTWxYDZ1sKvo5x8UnB0Otn38Vh80z5vemxyLyxAz2fGPVXPja38hZs1yB8HYrH88Pjxbe00QuOxA2JbuOSsG749HezGUCBlYbdFpJHM76g7eeQw6th4r4a7/BeuKAdNmXHhzif+V2mdWK24RDsVnfL0QV5aH/iPgXCwN/Dsu70ynsXO5CYKjKIvckLUlWfNstN2fICDn60BJOWwO6UG8fYLefFM2aAH2P6YtxxO2Dz+vzhijhsKj+5YjinnQWGL/N9/dwMpq2dEyNtRzzv7cGXXhjHyNu4A3fO42g6gUybkXotmouw2Iwf7vDjZvaH5Pl3u/vvfkM+/xCAf/WrCPI+Z8zMYN/8xmjsxwF8cRvny2ZYjCmwGkFpWBljEbc1GsXAes9AjErLS+Mu+LyOtqetMk4sGy7UXuOuaGvH2aRvtkzOjK4y7uTS4O1np30UHskceCOTqI0MHNSXb9nYpAMNcP5ypu1ylFKI4Q6+fdC2G8TVEUEa5yxUTjRaarlKe8dntxOWxjOH4O7AcXij9fwtTGOnS2S69stPHhqXyetZL4fjsP2etgct5fIwhuFCcdGAvJSny5zv9PCW46x6bnwjqrCVXz4Hi/OPxvil8wK6z9Un0cO8irwtrsih5ROXuwEL2THYXjXX7mLk7BuBlbUt6gUmGlQ3Fv/V9nw8WKV/IdwJcGMQq2e3Aj/LJCYbniMxfJmwRB4r/kaqiy3mR9id+W7kfGQHmp3Y4WuUR56P+WPvgr/h8yKmIm3LBvcvy8ewa/Ybm3HZO3pej+x4KbO3Z6blTpjnwHbDK3bMdnZAMbG1uUXm5dk3CeZrd0z3HszrZKs9aenNal5lkQwdcyXO17j1zFHFWC+0/gKtxImEDuBQbHOHHZc1X2RRPu68Lr8acvVeSFvnjY+HvdnJO7LSvSHFbo+qiW/HwWLBcrhrV433ycj4nmfSYpH5ui9Ui9llVr5npHH4/BqaXdOGAIs1QXU9FRfxSJFLc1ROcWGMn0T/N+L+9yE48FV3vn7a3X/VVaSZ/X4Af+0m6ne6+/9qpvmdAD4C+D1fRZD3mZgdB/DNb8Lc4X4CH74YH3mG4fx4Hx+LCNeRZqhzqQQ0tol/Hu6GdQhyBf6QnRVkOv4ndjAqTWuxYQg9GGBp0EFZ+8DUR4N7ExGUqyZa+KJl0kKjrTJuwm58Yugu5S8b5N65q+qug8gYdUnaR8jEJ01rS3SljIE9R0RV5i2ZGHfresV85/UdJ8nBCigTjbpyuS+ZCXGci5FBQK+vJhZsowjf0cJzbKH5TBn1pILNnMfHkL3ku9Km4nLn0+bZh+y7p6PswHEXr5eH7ihHdJZxdurGfEOvxIE0qgbPXUMZQI16mgbL8zr8M9oCaSE7DjawzICx4noPwwgAp3P1dxrbyVcHj9TFOcXRFW3FpRickk+h5aUWlNli/ffE2Onkh1lPnDDPz3edUbeD/8ndSmrOh2vMgYvBwUvBAb9/BHCD3+/AeQPsy9xp/HCEMGPcpm5SzQ6UfEdjiY0BeHU7723eEBduMLOi37JN3DqHZT/uDZx4HAl74dn7mHZzkCAmUA2jNRvlE3K/CVOxqOZR+q6VV9sbfS595opnGj5veojLP8Q2C0yUtMXePJI1+DJN3eGpQRS9YCbG53fOjcKET8V9bHF/Yz4XmVi+nc3QOywHUqRr2miH52UZirpM+dJN70y+bstRA07+KIfPRn/CcHjuWO1MeeL+lGNit087p5ia0y8LvDoKplrRlery7oabTs6AmKBp+7RpT9gnz/nvbfIhph4GnDhguI8vMBFjw27R7Vxtk4XMdJu0ZqsC6W1YlDxZZxOvHTnB5X7ZLIRch2qzDo5Zf/xANzFp2OJpq2Y+wyXfcXfgZtTq53axfA3nWxcMXxHc/e9+FG9mvwXArwPwn/aveBjvnSZmBv/mB/jHE8BtXE8/d4mOcVp1rKR+mFZKjZ0uHtD9hwOrfgas09pKO4DdSxKYybfR5N/2EJ3YhBa1Yy8uOM2V5MqVEfdK1lc8dUXVvMqxSNtlbGmV99KaNqitgL0Y6x198JlgcUVbVi29ype+YCiuVA4ZKWn1WqZtcvTC5eS8tZFu9IrQK20aI6B8f8+kjYFpJW+CsVw8091ZMi1p1d0xm1k38szWDbjH0jHbvocclTYbVjTfGReGzzOOh4J1IlW63yyfurBwUqIrlB7lW11VTXSzc2V0lanpVfnmmLu6EFIoszF44O5UmThK+aLuVXYaNk/3SgcNXae1oEvXkgOnn/hQ4kTnoOGZ+YTMlCEnjuSuMrNO8rlOdvuKb16t7XCTdiOcPikcBv9wAz5+BH7u28CHG+zb34Z/61s4vnECH244PxzwL2+AfZgyjDLyez1SiHw+pNSGdha49WntR2I7g3bXqVhtBbs3+e4wpskR6t/s4BiQh08CV2qysAMmc47SV/b8g2/gUahhwc54z9/ab3p+WDHHlZfK0fnYKnIcS5h91uy6fMvGdCmftgGxAyqSKqFsSsy6IoMHetUJDGBSfwpCla7YDEm6TNCaHUi39nxjFzaDi1429USHaGIhae2CNtYt5g5RLCLNxZrol/ClKe9wkrQwjE8ggBPFXCEpXTtwH1HRxjKHzKzw6egnYzq34Rvs4GQvO/Ko7llz89yuwTAcCpPTEGODqVH556yPfF7w2JRWMbXKPPKyaBcn7riR0sZEkheThDOqAVycY0Kf2jiabmr7NZlku5SMC3lZBcMVNXXxbtdSvCI4vvKO2ZuDmf09AP5bAH61u/+Vr5rfu0zMHAY/DthtKvEYwGinA3cf3gDHNMaz8ydYs3MRdSwMQawmsDPTsDUj0RbdoId98jKQxtc0b2TegZ4iE1KmUu6d8ZLfMb8Y/TvP/JCol2diX5+UrTLuaV/zrIZHXe6XtBLX4/d8Ure1jrzIXIyizVjDcFVpu1ssu7W0pf5bHeiAFNMHPPk2Y26aXo0k+dCQD4Y17zSWPRBDs84r3yo6J5rr5ECfmdaoL5WJcVe0m8s/hlr4Lmn55mh6XfOVt5YpTx+TM/djGotV57ahDb6R2c495IpvhwQaZ/Z7+TCqDeOmE7pEmh3DkYfJaLIMCoAAgpG9TIxmHu4cOo24uOzDTd561c1yrq2PWovaEXZdw8WWrQPzTAXm2Z3NRTKvDG4Afv7b8O98B4YvhtwfPgLH3Nc7ANj8bIp52IAxOVvxOMFJcHSxA2IjBMfGWT2UtHG2udB6LvqZaLZg18YO2GoHdrivkbbBvNdg+UM7gMe022dkviGSrTJvn3dxn8i3Y3dxO4TBzrmbELryoGXZ7SIvTUdKtbXdxZDtIic1gmmt/qIgEl/sgIRHrowRL3xrXE+75p9ifRptfaw7TY9oCxcr/+TviX1xZsrzny7EI9xf1B4Ro7WW44Gdtv2IRS/Ny4Dcjq34rNKmHA2PiUKBtSd6FVno1nNBCAZ+ZZLPd7rWC1PlA9qbyfDI18XesMzxNDEjziW7z/OAm4W3r4j734/gMNzfb+L4zwH4BoDfNyfbP+nuv+2tmb3TGTPAv/gAv52wj3MWAsvzBx8OmDvO+zncHtsyUm7nIo1tvJG4gnscziRi+DirCb8DlcMOvdPFJbpEIj/KJIOGnFlIv1KZVR8BwAEKCIPE76qpK6OWz+SZLjrFuD6gRaNV2AnD2UBuMb6edVBoFz4+nvXD3hDaOGMmqNJo/ZirfYr8Mis05dPRuwF0+FNHnAVtWfXzlEnBdkR5b55hCMdEK1enUg7PbElLFw/lmyXPurZgsimfq2jl3zAcO2SN8lGUeZHFlCnBXPl60OrkgtXLwU4b35T2enoaRcDhJ3AchvACkLSdllScQHFXqdf9cA/J1WM1m+nmiLhy2KM5WNQT+yEkTq9KJ9/hljKe7sKXrokcBpwYAwd1YaEH1HA5Grs5bmq6mUfiWOq5T5TlhMUsnxfd0LXRcUjf1eEA9XZY9ikvaRUFXhfGWfT7+PfjR/h5jsufzlzVPY4b7t/5ONwap12I1tUa74L7ir8RYwXbAtn74BtYShS6PNqAZIupYgeUNlb9UQQIbOXf1G0UZYPliZMtn24HZtoio9W0SrvgfnbJLO8F7i9nxhgvL7Rcla8uP2zsAFaZKYibhSeAuaMs84cuvMjYQ53sYcH9XCRTKUm74n7x/Z47MYpwFC6LNyp62XEUTFXEIm2EyW8rRzw6YEfoNE3lakMsKbKfMFPHPLc3UpiUl5gZJ8b4H0uM0fp0z5zjUqqlfU7X+DQF4p03e5cTHw+cds7XY0dvYCy17MMFu9dZxoIWLi82QbM/XnQ1OU1cnLuImLtVvf0OjQXuW5SPaUfi+8R9LgadwHSIz3oZvw7c4YHPEHsDlh1l2ieYMcsr7eYe9UlbVad9XJQ70L/v+QwM7v7Lv8783u3yD3w4gNPgtyOAzIYzKzA/6Gy7K+pNOrEFvGW+krysIJq1zoIxKeO8UAAdJrTCN+VH5XN02qX3p+GzfC4yomBS+a02SfAsz0lIfLOBma/Vl8vh8mbYQ2Zm1nF8Q1tEYZkKHyJrkUwGSyncTj5I6vCJ9paLT2A5FBzlrEwxZLKirdW7FGb+h7sGQSs7bHxDPc4KMm07je8hBmbcxuWVJX+5lxvDhoxCG26f0/JaozXpBhzUTF1AaJfBBthtLI0PJ2nTSupApqhxjAcirZE5EK5Rh9l0r7RZLyI/q4vvp+UYvvE66sPUzTSLOhDzwYOT2eoGOQYEmJ/iOHHimP5M2cYs6s7nM+/ISlcSml3hAws+1ahPvlLBWT7NK1Qy8pJ3o73PkwIO3MJlh6acB7Q52aHzzZCZg6gTjg/zmeXTU3QetIKXoQtOCz8x2AH8wh8ZOvxwQ15BNwck5wn3I88Y29Sg2YqpWTVlEWz0PcvfwPDGEJ3mgkkWjv1BN+E1n8Z6ixt8HrSD0RZTr2gnHQeyO1o8oN3JuMUyeecvlU9kKJclWo3XPJx9svFZbQYHj+MFo6utqjOPxXpEhUKwDFn4NkkpdkIwdZQ36U3/sxi+ak84CSHO6SCYbcqiYFm+UGNggbpxq5tZasei3dMN8rEdsEg38Ws2dHVlpPt4lG/aueDsADiJ5mRAvIpKVQf+EqwMdqS73IExSeIkShsgF6FDfkw7DsSZKBfd3KI+xkQjFgmKzeh61TaUtHr+Vy2ZM53lhIa7TDxnHN9ddOCwY565UzyWsh6JvwdG2jF5HfWV5RvF4Zkxd5vu5I7TT9wwjtucwLRb3HXzOFes0zO2t1N0k/YFYgdyx8zmMzvzOHi0AZvPKHwvz5h9P8P7TMww+2N0YGTL4OUdBqiOOyAH6No6uM54zWtN28ewhY+hNOjMt8nRri4OVxiVqT8zCKIFTgEwThY1LOXr+ngd3+XZ6vPS73T85TXN0gd6HouB7Xxtm3ZbvpKvGFggjeSmfOPRMrboxpe0YVAmH3VhAUU2yWuVEn6iKSeNgnUdBa3XtMInSEziW949bSnvZEgXuU+n3YWlR9ZwoRtWez6zT2p9XvGSiWAMxFhfUj8PaWuMnjHloMp9TADL1gHjWDRpJrvyZjWverzqNr0OgnY26nH89qitxfnbY9JFXHPL8pWB9ixE5kMjzZMXNM7J/qZbI4uOXx/cDPjWF2NhjsLeczDkZvBbnK5IGR9gWfm3Y+qsrJwY1B2BkvawtBnA3r68FlMhvzttm7SEkqXepNorRvXyQX6/JGOj9S6z8qkw0R/3fExk2urGM05BrfMt5bOaT1nIaXlf4gbgxWY0WwTHMrtQmSD9fof7shC0IKG6jhW8jQSo+C9p+3Oh9SWuyCT4VHaoSol2tAgmXJZ5GY9bceTfLlfokbaoJBBcB8SusyB8Phe+m3Wb+HfRTQvqhn864KdN3mfBydE3R8OIPaUy9pgpPTtzoQXKmFPlYlsfdXUubc9NjyHMknlyzb7H6RhRfA1W7Jrnz5DZ0tYtFbzL8fMIjvc7Y/Z1h69tYmZmNwB/CMC/4+6/7kWCw8bH76Sh+n1eo3ybO2k+m90cfLmCuO4usAOkXxJk052p8p8NFmyfw5hY6el19U9cK9VlrRtPxRirz7sJzm7SqKLEGZgr18X+LHydfDeui9ZpNVIC8VNX3IvNCNqNkbOWNZ+9pWvPQyZ5SRtdDrixcJrWS7S358gHE5wcsWy9+rlXRYzbBCkH8+qV0BWU5es7mUWOlhYYQEkXnaNdVWzxHz7nqh4vI9EdGUJ3FyFoxV3vmIXYnYFjXiqH1udcz0uXlqg39p58qbsY2u1SETRUM72fS9qAAaBJpXLPPiu7oPWDpbx7MLQosdPwzU5adTNbzWx/0kVRBlvSlz2ERmknDsPhw2nwBGB2hFKXvhod2wA7Qz4adaJhtDmfZ7a6cruuDTjmDvbYNT1Kv//k8I0vgW9+CXznO8N1/XTgOx+B+wm/2XBdP+9wHn3X/j77XxmyCkbHgfbYGt10Om1/5X02yrAzbBivwHKNi151RatwxWfpE5FkYxcK7UamR7jPvtM3OzseZ4S8ZJ2/xBdZjtSNF3tzybfLzLjS2KUt0EdYue9wFtOtje09+HitAzja+kOkzyxnT5reBXK0Z9Xf0ktn+wJyky/sTSNd+hdxPz0giDnHZvM69mlaQ+IlTVG+DcDG7YRIl3YAscNWdNO6p1ZH7gQmLaN9wJRkQL2OnIZ+TvHi4K2/QNWp2I+JbcRjm3qtRRzeA0rLnMYpsHaFf9hzOgjqp5qJqQ66vN7nrmlKyF9HlMeNUnjc4Bh11fQ0PgKd13ZTW9xly6GG1kx+Ynpnb5TvcAfNCWi3vWqbVofezy0Y7osb2Q9m+DpL8V8H8EdfldIALv+MSdhwWfQPB/x2hNuKAXnyvRjnCoIF2DvahNGcjWsBbUmuyEI+Vyv5YqRSLsMy1tkF7Xkism/Ktgs795MS/wJftU99qNqNpBonHYDsaPcPr+C7E/hhIRzFbaXzc4l4VYVINh77J13KVaY2SJJMZrQAfGfWB1hR+dc1Gzt1njTlzIHImIBsSaztpgnk7UnHZJyWuF8o3IcJ0FJ7r+tpdFaG9QwGV+rSWNJ4KA/NpPvDJ32aX1/i9G/kMXSXu2Ki59k5T1jK4El7wkRGOd81056ez2f5V8pnHLBkHFDLTKOeefCPMGnxr0sa8jm1DFbThSzQck2+4So5y2fatj8hmAG3A34c8G9+A/iRb8K/+QX8G1/Av/EB+DCGXccJ2HfusI934PS4PVGswhZ/WYflpaR1U70KvW3SZqqHWJvYJozXLYaHtOW3Zd+5Bth89ypOF4m0+K+xOfG7xy2JK4M861PbzcJ3I0Q5CmhNjgX3Oy35Xu8eLHSObQG3clL/HXM1gfuSPSDpaW96YfzaZsTw4QqPSxwJZ0+PAfje3lRXZl/UsesRO/wFhqs123LFsSm1qWSqei4m2pYfmSVfj+fE1DEBGf/W/BP3mCZlo61THC2Y6oq7htOPgsMQmpG2lT3SWNSx4m2xCWpTDRI/Jmsnqj3R+D41O+XPYbi3d6qjskDpHvF3+JvOFn+/wpD9ePPf5xS+FmnM7CcA/L0A/qevJyItho/uMY32h2Pc0DUN5BhPzh5efLym24sMaNR1cfwrHbp812by19JPVwafQsU+glu6V5KOmEa+/ObalK24U4mhd+FZnlUX851rOTZpYcgzPE0ua8+44ttpG8475idZKI/oKarhIo/L8j6g6XG6MlgHYhQAyGhbdWGaUWYwzkrNnEu+Y+XLHvaKquhMO2npy+7VdWZ1Nal8SryO8Wa+R6uvR2O/MkAwlz5Uy8APKee/Gu/CR8q75Wuyw3uR1tLQOKRKYsBUG0dxd+TStBj65OMvyHjUBqz+fjNvGr8hk8UFHNpmdHzooZvaYMdFMkcAhU8D6vw99Wwsk2rMj6A11s/EOP7PAfhZy2PRuXmXO2kRMvIUSOQzaddFeqGVQVwMWqJvdzerV4ZR8NH/bvOM2e0GfOMD/FvfAL74MJ59fDbF5shuwY3pchgDF/VFIh6zyVjKz4aXt+dmvpH2oc2wLZYP+oozdnyaHYgyOkr7DZuDRivy7/jE747zr8Dj0MVsagG12cU6DNaw46NnZC/4XtoBJFaMc1Q65ByJum6KTjFbv/oCzr5RrnXpfTJCdUccuC9pVX7v1HXhaXFl1OfNhLDIUGg3dkEDi2n95VqJ7vmnPMfkbrUDXe+dxcANrUwL7Na6PHmojD7XqHzGs9iMphqVZtXrAdg8nctJHsso2MwGZvN+39O5Q9VtRtpH3iJMLO8NzgOPdffr2t4MmvzcjJ7fnarCeQ6e5MtC58cKah2mzfCsFOS41mKMy3zms+hRsZ8PS19/hu9J+LpcGf+HGHf4/8LXEuQEaAZznDHT2LQMAdSd618ZLizX3SrPJoSeIwDW0cohjXPh22gTg9b0lMEzXU8bUtP2NJkXV78Nn76btuyuXcjY5dC0pVMuSJz0L/K50g2fnWnKsdV92uCraVtCRz2xbklT0+XEb+ir8033E5ag65XGOXZlTAurAmF7bq0Ub6ffdonHPi1dKqp7osuERrV1XPKlLkdhmkfXSmsB60txc12DnXnImLtXXQgyohugpdtQ4VtGEKWuQq8RN95V3GD5qLNJ5fOAdGydpcyNsvBVqPJWJ/rbwZu7qNe6ml/HRnNiglzp1Fzp1uryLrvBGEi4edR3HuseOlmaJ/U2ZYPPNjGfx/eAHPNz3m8PJosAt2O6rU9XodNx3OfBeTtgZxsglEkYos8lpgaIlEWkSH8p+c5mrK7p+jvrbGMHGH+BXTuMjfbNvnqR9hF2R2lMiktcuypDzycy2b28LlPh+xqZNzi317NnfW7k0bPCD+1LIy6ujBoftthXWgVVLYvPd+J2tpWDaa0mA3r97F3MSX5Efe5tSNga1yeE66PNtzs7MPIjRTqwjbR6Tsxhx7ZCFjwmH6ppyFXdBqMTlL7c8TfLq3uKKx7LHv9OiVL+Qeq5GHfOPr2xGdkuZDeRWG7Fr2CBE2qx+JZM+2RIHKNXAtWR56Ya31L21Dl1M1x4x+K6ict+6qbTeslH8x9IeDQPnc8v/LCcMfvKO2Zm9usA/Fl3/8MvpPutZvaHzOwPfee7P7ugt9sxF345ChSkfY1rCBuW6QBmA9iannz4m+fRSfuidgRpCAjM4JHIJh2iAWctzz649tNWtkubqTI1GR/2tU3ml7a6RxQ+/jrdqNAPZI6kZbl4Q+ui5FfyrODjJXpJ3mUExMtSMpKfgYGukX4Jemq6wr3Es1voxKtfzqxcxwqxX8RLyilg3qjshZfSxngEdOWo+dsmXZ2M5WnQMJOeH1Jm7Z1ODTQXH9eVvymHW+R8Tlq68FV3PfnNHVQMxdocGMxhQZhTPo/yWomny+K5jTPJp55yGLtp7Tn+jnDNAUZbVzcV6pWttLrtWIlTGX2eodM2F3RTneHiMnVzgpPE17u0KO5/d+J+VOXN4B9u8C9u4/MpH6abozn89MBIp09U7+ftOdqYe05w+R9Jb0E/kd6yjMVmuBJEZlVhYauEdk25hg1uwLMOSjk7nbefO1zcPXTcfyU0AmJzdrZ0x/cSu2VBYJdRKZ8U1DbpSyE3yku/5JcF7vbFr/G4iL6ct/X1XeMTeK71sNRzWpCOoTvc73Zqb6/mBMdR+r5vaHhraUwiPKclYasMUJdL/htXqhuxu1vDQbyrUteUsUtl4iquWFdtQWCuKaZ23Ofzisc+O1NOr9JFUTE1Fsms5n3OBatTsHxxKXTF1C6X1qfhPv8U90+MuxkcB+6efO+ax6Sjx4W6tEcZXNNeyMhy8awyxEZ/hsF9nDF769/nFL4Oaf7jAP4+M/vjAP6XAP5TZvYv90Tu/rvd/Ve5+6/68osfQXT5uQcdrj2HDYN9GPyGcf7MkK4VavimUQwXhSOXSMPFUJFKtnOdLi3FWkvazcosgHSPYNaG4bbCpIZ6IUdLGx5HzKu5pfBddeUUWinS1h2x8Q2ZuyucuEEWLxx9Vr7cOTyQc2bb8Fl0w+gJ9Dv3y2mws3wmerUsa9n9ogH0OR7KS87HR6K0sKLjlbG4os5y53KkFCjjo8mYrj5KsmPIkXpUZaaC+mRn+WQf9TZ5+VSyobqwZN3Z/DaYBsdx+LwoxIscfeChrhpVRpOJAWlZq0PC6sqYMme+6T5K+05tjBsQh/sIeQ+3wJW286ErY3UVpFsHdb+nHTKyMU9zb7xqGKBLCg0ZG30MhoUPSl5Zd5g4Rz1GC4iG5Att1p+FFJws36erjeMYBtTprmM43Wv5zKEuk8onV6zH75j4dpemOVrgJTec+Lw2KO5/MXE/ReQE2IDbcGv0Lw74lx/g3/wQZ45xO6JziNizKVv0X9a1HwJSctPiVEDBfV0RX2xGKJ5uPiZ8UW7jA1DsQMFFeSat4mB4QR2btMj+XfhK/9nZmyjbzt4w3wMP7UDgvtV8S/nsMV+mLXZAky+TrRfsAAm52RK6sSwD8+2LdpVz5Bv4fLS4nR0ouAikazKV3EFV/+20czh81KTQ6HjfMJXZWaalm+fWjov8kV/BguST/HPRS+3AcAtF5GWFNt3kErurLsxs7p7plFDLJ/YGh7joGehbW/Bq9s9envKJnFY2K/+OTwDkbnXtvKq/yWkpz5DFF72aYioMZjmYcmf5jiivG7Gd/EYFnk5bdABh2+jaqMcmVDeHYHm6OuqkkvWmE1btMi56jJ28zziU83+f+Pc5ha88MXP33+HuP+HuvwzArwfwB9z9N76CsvSO6A/I3zIWEjSbKY5Gq8GAWA2tI5007CCstJFs7ZO4qi+uJpR8d8arx/P5Ks5EpAKY13k95PNAxiXthU0pbPzltHvd+LVeW2aVts80fLYJX9M+WqncPjcptf685+/7trbLN4BQyhDpunZQBkMuutiLXmXuE7nlmSmdY+y0kle0y62LLd/eV32J35Sv6CD/PcX4d93kWEZ0ErRq1KUvL3zyubtBbts38vA0PNNYSVQkajI6X8XzEczmQGzhW2n51jgZmlR57m1Pq+UbRa+NcuHb25pn2qv+TG3bktvrwhaPJc4PwzndG3kxVN3NbHkp/RZ/VzvQmkX2+wubkUSrzBHXJ0evoF1xsIhRwooar7ADF7RbG3FlB7z++yLtjk/B/bV/76XsNpL4K4IYRK6rfGe4wP11F6DVvdqBpeG0ZyZSwe1Cnm5vHuFx5wPIhKum1aTUaP8ocKX1xkfT5dB9y2eRcUHvKrfQjp371NWCxV3Xzd7o+13db+3NNtC5f9/HTOonUyttlUXxeNtcSm7yZNbiUi/3Le7zX7U3ic69WYaV3LQT/syFy719fEGRz/A1hvfbv5vooOcrgRyY0r1kLCpY2S3xOQLptOLPlZ3MtNO5fJTZE0fXblIGyPFeDcxGZo0rQGKoH4OegCxnXgvzcubUtXxJ7/ocMmMFsJBxk7Y9e6Pd8e2GZuFDkoVv36oX6m35vNWBF2KLQ66M9c2o4OqZfGnBEkx97g7kII58W/7x8co1W/4wGwkK5Iq9KnXAXYllkJOui6Fn27RPV4opYpPR4t1KW4ohaokJHfKWq8LHqxFkE1SZUy1ichw4T49JG11rwt0uZLZCC8mbr8+Qv7oFAvyshO+aWCkrTN1Kpj+9VXcmysVVR+U7XGH4xLa+GjiXtDtayjxuYBTsijLoGYN01cw6Eh0Vtam7zgj3hTaHqT1fx3BpOefT+Qm7ZiUQ94FyQQNx3j+MC6DO+a9/mN9t4zfriIlAuh823FeN66pwvgNwrE45rPurWUroYodXvu+TV5ja3ci2aRRvN3xzF33NY8H919qBHR+Wscv6Gr5A9G3mFrRt0Ns7qQVtZhaDzhyZFmxc7EsFoPEXuNj5Sl2/YAdyVwYljM0SL8rKATppqyZ7u1GM1V/UW+Jy5cNEsbA2CY58mOWS8lXSytdH/0EUmylchBH1zkBXvnStoR6slH+0q7QpjhVzom7B228RDTTtxBE6Yb6D1stztcUsq0X7HLuOhnGP/6r/1GKWr+O+Yrtjve1Qb+gd+MtTv9P90DX9XIybuk+9WMFubPnmDb0nxjX+5QZHR7g53qln86CpdsDBjwS8Gfe/D8EB3HG8+e9zCl/rB6bd/Q8C+IOvSizAWhYE6DI2/+PFHdFidSC6nNIesiJgaO4USQuhHdjr+gqxstBBF7WTGvM9Who1Ylb+2T+rIZ7BKb5taKdhEo+zEl9sHmUWPpSxJLKluFne+YP5qv1cJxLX5TN59poKuqNmM2PXK/EpIK1cEQLy0cQJ8ZvyMb1Jnl7ijB+5l8Q1g9J+tPzO7yhNA0R9WBNUpMxxpTU3xq5JLzJboU37Bxj4nZpOm4ODVIzTiLNPhW6kh6mMHHTMjlN3+rC0oeRrIqMHnwM2zg8VMBDrGjJlAU4HblJWysC9pcCNWd4jJgKD9gNpp/OCSV6H0VHFplm6Rd4nfIKlATxhNWbe8MJnGmp9npJxGDAUNc94ISeB4/syZ7j30cAOjzqbg5pUulNaA8bgxMONKGVM+YknzHPwoCbycD41RPmjdsKtb5b3q4SJ63mzpYWbtLoUzqKFFNqnTPNCZlPsBNudNjHD/IisFzLYBvcXdzjli5SRcjfMkRa90kJkBAb2OB5+zqT8cOor31WEUUxZdVH00/iUM2Vng9NmCBI3Gl8VWCcLSruTupSv2QGJU4HVlZHxoz58KV9it0laKYTjZTsQSaUdHZizkqPKWWhd8Gy+lQW0xNTEt0qb8eOf3JnRuPhIM3ShatK4x62h43Hlo7+JIyY4STuQmIOg4+2C4MS2tRNzi5wdpmqPruxhM1I3R+CFT3tE5SbWJR/m60FLvEvVJ+3APsP9BOC3uejDs3SJqdSOS9kDy91x2AHE50XGh/YSjy3weJwM67Qsw5Cz313k0393fM/tAOwcufgZOOWssckn7U1kImlH3Qq8Rs3nMqCVuLd6Snx/wg/Pd8y+1onZ64OVCgfWyUMYYLMaZxqXQ514r3mVfJR2SuGRoqT3nvalZzTaXp5OuyuvGp5zNXRXunq1jEq/49vj2Mk5gFDl9rJv+I5RceV7rbe1DrrMJV9bBx1Jqxa785kFkbyPzkdTa51MowgTvtbSz1c+C5A2WconZei0C9/5HOysp11ltp5vL/+DtC89Zxlf70KptNE8aN3m29Ac++UF34xLK8OzZbq4UuUg3yrzKt/kNCc/sVJswM4DvUy+kYfFDeKHP/EldsDzVcOqjHVLo1/qwPNClCoH+Vc+AHWbytb71bzk0GlXV8bCVSvwE0N1Syd2WzQMB8ptigXrSKu3IEqaPcbWtFpqWN6gJ2PXUfqdzXgJ91+Lx0el1QebeRUNP+D7Wtz/VDsQfF1+A22n64FMpXzyX935XGSuNqPgNX8TJ7p/XgvL4pzw0fKUtCJrKcHGDmzXJXyi3Cdge+mtM989zu92eyrtVVpf3iAma/F5l428ccPvUtbGt7WRq8CLR8g/zo1h9OlYXBU8ZLbVvf5l+7PaDIpYkQ+Qo6Ke30ALmGr5phXziuWBIVLGjscuaVSA2S6SVU4AAchZYi0w7c0ZeMG88gzthUt6dLzON8vo8etEeKFY2r3PMTjw2X2P7K3h3UrhBJ8GmOHic7Q0YGeW92uu4x/pEJE29qoz7TnzLjCg6cVAJF8J05jEoUircUpbyoAad6qR2GE3Gq2tMm2fRY4FPGdeOuHy3kmJDl7EKB181c2MNajnR5U5aOku4otuioClThKsax21swJes/EorGW0yFQIi+Az8UWlhNuJDlwweBlQ3GEaTIcicmXPSx7q7qSuGnRHwUV5S/B0pzBDDvglrS+0c4ohPLUIWo/ZtgnlHlnR3SaakRTIbY6tLGvETyl/yFJdYON2rnDb8NJu6GbD7khDGxOtkM6CF1sU885bxXyh5Z5odwv0mdn4d9565QZvqxP8MKiWjy465JN6pyuj4SPGiE0ds8P0RuHrofvuQna2jhyumaRtTZ7PMQ6WhnlKPp8esu4WnOS/1CXrwKVlaZ/ThmyItGeMTUyq26Gqd4mOiQE7CmV03+K+fnzXLdO+xmYo747PfhWv2nOVufJZnjUtYa3xdYgdEBl3Mu/qKzAB8qx4FTKNilhl9mwL2iYlv/IJHPmZgrG8ktdlWl/TxvjAoy14KGyji97+p3KCLfksK5+znUgGdcdRXAxX0mjfJs+lfppcJ9JdnJpWviHThnY0Zyv2pvClPEDFdtWx4DHcyjENs6Tlx5jHJGQUPlRIWqZtFVovilp1kRin1oj/nZjvxP0cHwx+iak+O1FUnx9xFpn1fxcc9QWPh00gcBUbQv7asUFd6DebgOoyaZN2tSEj5OVQLFtxnW91n5rxSMs+ZN5PHH5+4e725r/PKbzbxGzYTCvPAMp5suFOY7mKpG5XJFIjM2nDU4Cd3xgnnc7GrUu7j43SlS5kMhTvBN4clXws5FC+fC6eC1L/ugBIuexANZzq4sabCUkjl4+pjIv7DlBWIoOv1bQJWU1UKU8samlaq6wgaYK2lZe0QzcmvxPEI4OS76RW1xMtkCnz/Ek+5cQJ7V/BeSt8op1BQSktoa6qsf5U91YqSP6ED29LYlperRC7Q65Fm2mablJ3aw3q1OCIsnA3BUtemou67Hirk5BRGqzeWEWdh2Fo/b2oyoeuwl7Y5MkHA4pBDsGstj9JS7dEVpLHn1xBL3Xnof2R2pU23FmONGRGOuoma0BVSoOp8rvINGSW24yifAbMlVKeEzmlbOcsi5t8xDpkxZDVarnr9ckm8Rqsyi8yDwedtgjyCYE36I5/UtfaIAwA4gPNs60fcr02b0u0yDQX3i1pR+aeF3PMdAX3WE5p2uyFzDv4ahcudDbhyEo08/LOA5poho77myTZT6S/bzB14WNCb1V86uxqEsjANl3+bPNuxzf6qGVuTeaiVsl3wWO9RCq/55HZmiE+HK1xRYm26LE0gPlsylcymMODjXJiOJ+0tqNNrKCbt3782DROBQ+ZEzcSf1V8C8VWl2P2NtqbK1qLeqC1ZHnCegYeMm3yLPYk8HiqyVtbUWWqzZizt2IHMvOc/EDO+kZaK7SUxYM2F7w4gSImQc9ZRTogz/sm1p7Mi5g668+bbihzaV6hG4s8lZb/0nUTpp98MbGnaVe6HThp54BpN7gXl/WXtKmP/NzLLDPrz96O+8/waeF9XBkFSHmdMRsAe3FMYLPPBpLKIgMCLKTBa9ryTv7lb6OlVz7dBW8irw7S2fG1/21pibGoabsuYmFkglNuHaOWj7rp5W35lbhFN3s51LAvMo8euxRt68Kz4dN1YxK/yuirjCUvU/uZLhAd+fmy0fY1t64Hjcxm1AGJ+WbLOg6PZHn7oaR98Gw9PsTIuNE2drRe9FxaverVeylqb3hEuz7XOK/El+UjR952Dc8PezKLdCOcerB8XsxC3KQ3J92LjNZ2LWtcZGijcTPpGQMlKYUmv+jHu3Ct8yl50BpcOpnPug3IOQE/VVdnFIHn4sZAQwypc3CSOzwhru37QllV30i8Lf+nhIb7K7ZlJyyYW9oQaXNHK3FfZO8rJ/PSj5D/EV6VFbXsId2+PMK+DWoUvvF7Nn7fubHr7xcwdTfhfEnGEox6k3wb7r9Y3gf4OzK0IvNDO1DsqZV644Rv1/eqe2KPW8u+uLSXZ3GV3mG13BDrvRAv0i6SLb+7Hdjl1XfdSp/iH9KWvYZ2TN7OjR6zwT60pSl8kZmLb2dlvPBROxAWcQK0FwK6tEfvHP3eGZcyO8vuLMP4abPRD3ydnxGZyuGYYaStbutqt1In5Jb+trVmd7ZKvVgGvzhvhznpC17V3jONe9aJOgrEBCtL1cJI7DizOqbuan98aObePTjss7vE463hnc6YpQFOQ8VGPjurng0A9qDZ/nIy1zp8P0WpjW9jmBgFYH47zQqtd9472pbPlueGtjzahn6OB7yUF+sksZXXsXm+4LGTOUD9fCz/Wp/78hW+hAyOih/q1ZM40SbRvuTZ+YznKJalG4S2IbHHKNTyHOkmrU6e6mB2b2yLSFbjXxr0ajTBe4i/zz+8dICc3G34jLFmDjIsKr5XiaP4/Fs4TFQZfehJbwUjbQ4WVq/1MHKT9+mOmyUtIj/yyYFGqRMgLguZcBNGlmY5BxbjevpwpemuDa2OQrF6pXR/nuGwXMfMHGje59AhaCl/6lNXhyG0NMJSZGmYbPiOfkX5iE7aXi7zHLdwwdZt6GXcyWFrd/uUcDRceAnLtQFeYa8I75v0gX/RDJ0NAlMdZeKtDSmxlfkqXlnlEbS1fMuEqYcpl0axKruuLvlsaBXbXsL6ra2S7lbsjTLb0j7G8m35dnag8angmnY+qzNxo9MW21Rwf5zLqbhfZeqBF2bEDmzIZSvtQr6XsS8AXtkB93rfzWXawNiU67W0OzvglhcEEaO7Hej4a1Jh7G7EstyLJgKj2IygZXV5tpntYul0O6ZsMYUSt+O82Im4OeQ43eYHm3Uhr0+Ga8fgf4e7c1/+8mLXrXBUkanDIcOAkzN2UfMbW7RbQi/NuCyMSoJwGVb7ImXINBwLJRB542Nej918juH8Ibn8411dGTVUNyWIm6M0ks1gwPuDsXONF95olwUaQ/kmWsn06rnHSadIgN6KW+l3tHzdjZ/QRXm0M14x2xhsvEbGXQdsBvgxre1lvCpU/3mp12rKiwGnYQZepZt6gcP81WXc0VrN2lr9Id7Ji13bdaXV80Br4pKWzyp2GxQU8K6i13xbTLi40BhLdBgAzD4mstC1Q01TXN1eaOmqAWlDdYLh4PfNkj+/e+Plfbp29GuJ0WhPt8iT8rO8Olgg3ozJY3VrKS4eru4eY4TG64i9yZMyTvcU5JkG4txZ0tZmyPfsVvcp0zkXPu4zr7wiWa5JxvgOTrjBuNV0vuE7d5mYhvV3zlo6wWvzPzGwr17hQB2xhB1gy7iED2+03WZ4HWAZR3YFN0SuB/ZmEXSDV8XedLKGSYHHXZYd7YbPlb15iRaN9mEwrJOy19Ippj7STX9zIXOJE4wtK/2lHbV/d5xnAy/4q4fzemGlgjhpCZE4CFY+zRZ174JyNuoFve7sQBcrpyb51C/yqOdPd3ws1etdjV5wI5qRVDXAnez0PKjNLfuo/nWbcRZ8ZhrF3/a+0Cb2Voxf3829tCYT8XKHz+muGPwnVhHbu12C5Mf+RDlUnnRZpLyIyeUJdUusMtXnWcaJ5feWRnWz2qpa39UufL7B8cNzXf77fscMCGMVHieynJNuLfOZ1+Gz81jSu6Fdj4+609VdDA+s3xYrfLGl9e4i2fiaPHMglbSZl2Pyl928OJ9Uz3oOWsoh8pqcezM989b4Qvja1bPqUY3wccIPB+ZA9cpVk/nIAvIiYx2YeOE70ub5qpBxlt6Oltfh468NbGLdU3xTikxtNdbM5WrkerZm5KvKqWU3cxyt7qN5xGr6oK1eUQPWK61eX2zL+6P11OreiM3AcxbEWrxUePfwywPdVmg1zkhfqi+fw7fe8yPEnJDp9dQqzjDG6Wev5UOnVZ76X2fHypOEHvpb+VY9WowseE5o0M+DP+lkD7juFvGZLiZHPAM5aYtJMweAMJgdsPj+zgQCP2TyesCbTjhQifXkSWtBmzXCQYbJvd95ZoH1lc/JR36bnDOYg7oH06PXBXYEvXmx9JOJ8eUzKQ3LC+ZY9nWWTbcEDlSbEueK1/5c8oKlvQFyMB18iVcik/ZRxck+ELcaF94PxH2JLy6FOz67Z6VttmixGXKGOfBL893IFPFRoGu+gK22eXcVvfzRDqzlG3Yo/nrotKi0S/kaGCTmaELJ2ybWTD0m3XQ5PhwLqM7yBU4Zsg82vt2zry70VTvgO9qmjkOK4dKQOEnYLShqLrlYLrSutFaqD8RjiVMZFX/jywLR+LP/r3wgfKxIJZrNKivYVmlZ/pR3noK28TmYxGrF/vHHhTsTzqN8U/4JEh1ji82QOKetmrifk70jdjbNxvVR41KRxHl3ptvYDMrqtBGUQ+LkPNrA+WMu9gF6LjnsugN5AdMzfK/D+93KCDkbkH24huxX2eP4RgFsl7aB6pJ2M74ok70tX0ou5K/k2/kszyZ5nJWt97Q7vr18L/AqMm6e+0HPorcHfFI3G1p9c6kbb+l7XXtioANYwMJfpFVJF/1c6nVjcOW3iW7OM33ehfoidHeJa+Mc8SpBq4NH7i9j7pHUdkm7Ml3GKXG2i7pZ+4jKX89ZkNZihXTbIQdh0nrSkuKUSWzJoYyoK9/6HkElmll3aIte1VnRYuAVb8QN6ALZWqA+zrXNOcuVLi2Z9wvnVzasI3XXa8ggbaWVNPNog99PCFdnf3T+i151j/pzD821Siil6cvNd/r+EXZbctxi2yN7c3E9/tJ/L3B/Z2+CzyM70Ohfk3Z5nh20dJ2tbvZ89br7l+zAgiBFrxP3d0bxlbS7tLt4PcvabdHDoanPNiw7RJe0G2B/ZAe61IrHHfcVe7Mve2H7Eq2y9karMRWPd9rZ98d7W51QzNlij7QhvclZLJCkVXfyhvtQd8BKezpd7G1P67QTXvJSGa2XwjNy2ycLLQt6ptunAx8L7fWYpceu0s7Lc7r8TTBrOZQSvcacvVNwvP1GxuetjCBgWU5GUI1mNTjybMByfgxMmwP6WIRpjXQ1DAgZ/Oo5GUgHEHTzCljReBufPk4sE4BajDL2UreHhbbx3bomlFF8lu+xfWH5WqKp/93lAL1d72RclNVEi+vieduWDp5QB1NWfnmpv86405b606SsgAZOvJ64hKCt5aGhO4xnqbI1BZst7d61RM9jkbbX9VV9xmB7JrAwNC3xVVtY2rYHszBJF4YH4FW/My6EtvLMbr30v54vaYsro08+fJfueqTlNe+5NsooE90kX14hbzY/4OlZ1nTxIB8E3xPqUnhMN0EXmWb+sIg72/PcR8UdJvnOP4JX3Bo2DVHk3WmPoNO8OAAyyJXL1twvyWPKyLKzPsfQ4a0WuvYkbw2Arn0855GLdgmEiTnSges4L/NHsyHw9LoIO9Hsz05kGzqE8A28UpY6gFyLW+RCT2Opj50Y3Q09+CzlFTkWvb5M66pHm5gj5ehmsIRX2aa9HYjY0KsvaeNMcMuu4/GOdkE+xf2SNM9V9UHq3oMgw9iV87aDRdSoMjKuq+JKNb6ozaMMG1Tf6z25bml1gYZCE78yhdKqd4LKTwVkffFsqn5qwzE/vTHbfMRZtS+B3c0OUAbWn+IxL8NAyOgI7CZt4L5nGeycbtsVF2HpQkmpTtkNM1/5poti4vjIr+IziN1qbyauc9jLfGjXhswetMU90dNFUu2Hb2zTXdqAI+1Y0HvGvR33vz9h2N63/X1O4f2lmRO04sqoz90/j64uEqfRfI5rsq3GQdPy+6KWz6bPHXTnf/NKbUlnkmbjWmI1ky0tRA4awsU9Ee25l2krc5XDdmlbGVKHk05cU+IK6x0fSaVVYBwtdL+7LmPhm2npmhDuCSGkt90cUdwE7IWWxK6uF8gRjTyHS0TIwTiWbwJ/PGN8hoFSG6XPyZ3vaEWnO9cSdbNpqon6tAe09AzLIYK6V3RaC3Woe2XUS+iV9dvdIlVmy4xkMhRuRabDhZovZRxn0tJYUTYasJ3rDAclxAHSpox+SWtGw3UM1zqMyR9bAJcBGDf0NvzCHOlaEs/Ut2qo9AFxKXRfQNnA+vNpQI4oO+Z1+ScOnE5nmyONuLgjWlSKTvR0oqvGH0KbbU4HOG8K2tmtPsY/0imNulrsQHbx1f0dmXen1YYnRcisNa38LUXIPCKJtuUrWn3fPndS3eOkzyvfVr4dFhS2i14371qIV+LK2PN7rBtV8YpXqTvb0mb5bE2742tA2aS+oL3Szeh/UheR6fzpK7XiYtGJZ37XtMpsxf2X7IAB2dDjuYrBf49wVVVeieWdtleoFxtpYRNRnjMftLSaJS9MyS8X+ZTJFtrE/TYxnMpJO2D5b9h8dq6JkwEK4r6H6frnHM/Y+LSA1Fe1GVbqI23P4Js4KXwjrXwc2iyeLZ4tF3/DDqTNNlm029qXYudq+UJey4W5ohuEM2ehBTgB9VKVCyh9RsEduPvx5r/PKbz7rYzs4NkfLBtCIsJc3UwTMc4JOGJlRQd+QSu/4Y0PlsuZUq45coTn2QartFVGpUWVAe25x1tLa6jXE2/4oD3rYKQ/v4rvo2e+UyOxSVsQWi2D5SJX5uvXfJby9bQTKOYuSAf/Gi5oo6n01R9faDUtcTtaWTzQqiCWlmwaEx2M5A2AlU8ZrDmwuF6YFnGeZ7AaF1zKM8HeEZdTOF6k7QfFV92g6XuVcQ0C+dov2JB0gHNZnplBLN/L9b7glFOmeYZqalpeYraKhI6JL1Kt20Gyli5WXOe0LcSQC4jQBrm7vAqjlB0+zxmcFt4A1SuA7rM5cVRsE/SLdli8dIok6WAacjAvH7rZuTi+JiRWA6W2rjAoMEDxt2J5+be9q3yFV/PpusTjEtflqPFRE6/BVMk76kjx4gV8fhV2KxZ3mVt36zLHwqDIWcatr5Cx6m6X9tPtQOA+WpoW4pY5SlHqs9Z9sRPkA/abDQ7ucNEQ3ab08au0+sykCx67vH+Mx4/iztadzV6mLXauJM5/TJ5b9JJfx9BwJJGGuNCywYQ7rC6KTdr55pggV3Z7J3n0ywlgyYf7qgNo3OfFGmeeCV/nIVb48g8pTuYeEyWXBMmXWGJwlFtBJ0Jz8jnOfuXdxtRVtlHtXHlEKNM3pXiVOTEo6z7r38q7zzvobuYPdnjHM2abHj3Buhi6smw0G8kEqugYLIUYW5+P7Pux5a4XeTCtoQ2ebDZeaZQuZ+KUVlusNPLiLiPPJa234iHjNf9LsNng/E5Gqkb1unM12dNOXQRvzzoKpvRdlqDli3xX177iRlh+V+WQNpOk9XSgSFQFFtowACLDNPYIg0vabA2MLyUMvaqhSLaOYQDp1rHQ+upeScMR7Zx5OevPY3CyuFBKg4j/RnkQxuvalVH0NStfq8Akr6X+rL5b8o02V89usI2ZlEvzdU0njTk+Ds2a9GgKvSjprtf5NtrI2+cqKeuNE65SqJWWfHk+Id0Gc+Q5KLuLzqxXz5xSbdlS7xirsfX82sif7i+lTrB3XWS+hnG7YxwGD934pKXePMacenN9n7q9NtR68IK9rGIvwLC2nZqT/G7Y5mFPVrzSNhu0Lm2wYzkTxT+CR3JZU+A+5bjAY+WLHtdxX9N6UU1rh/K8sxnS9bWv1PYNGXVnGdQ+Kp9ePnVhj/pcZJz4Vc6p1jKmbmqBdTEu+C2CYX7bUmhd+TItE2PBVJu01jMmnqqMDkTnmrSKxykU2epzTwt5vrID2NK2bACM8866COlRhGqbSr9hmnjufDztUZTOW11XmZomxnhhLq7TNu/asj6kivtkgVhn0QEjLfE4GvAx5ZHdIvd50ywAP2B2NsygUhKPR9wxabLD0DZpusRjLZ8Nt8CwL+RfbdVHz52r0L4N90OWY/Dd2IHJx0P+8ay4P9LRThzp4jmpTyXF/PbcM3zPw/tdl89+Mtu0aQTtn4/nPDLimdYybdDKLVrm4I7tTJ+00V/77YeFbxEF0BUNMVwG5A2HnrLJgnvK6Ekbrh56MxZdRyT/qptVxmJRrZCV6FgBmvbwwjuo43pmNm+xZGe3hW8fCUg98dnpMiKb5xvdFIEKHwKpTWBnRFtF9Qe0qNv1cCyuJdG2RHeIkU3K55IsBsCsn/k9pcWtI2jVfW380fUH1IvqbuqN9DbLwwZfXU2q4rWeM44uHnzZGqwXgpARjU+uXLYG0fPNrccYF5crJOZ2QRuTpLENRa/upyyfA1n3wUf4Fv1Po8Y6SBFwm33dfXZO0Gc/3VDWQWn6pcVV061tkA+crpk8gzDcEfN8nKXryfw75syf192PtMeQy9J1Ud0+s0GKe4vlVc6GdBVS98dsBtln4MjzGHuUeFWwACEAx4ojUSXi0m6Uhc2SDYC0h4VboAEFj9mRSMsbGfMaflSooU1RrEYOSaVag2+8E3lVRC3iUtb2nLZO+QoPSQug2KrF3vS07XnUwaS1jNNdu4JB/JO+f9HzL2WMaGP/r4i82IHo+8QBwX0evNm0oYUW6bIWqKP5Qm/TE0XwXSmYZMv+EgrxjCf2peZmnPDxtBHesNx9rf20l2kzYOlujMIXOPTmULCdJF8XvmCcpA3dSb48ymCwbAvCM+0Y60DKx/ROjA2htJiCZWl7LIWqHWUQRLF92hv28ULrtYzJ1nDMjq834sYEhhjr2WJPPk++vDE3dsqCdsWa1I2FbgwIO6C4z/oe58Xm7bt+4LQjzpAhZDS4M48jbch0d3dUGU+fbpYhY//XxWZcjA8/k+B4ujJ+tWBrBYfJk36mZ63SJMqg45DBnORJ2pL3RDTlG5huLe1mV61gLFrcBe1SPjEaW9ou20aGV8m4k/lRXmIVBziIbPw9Rm3VHWHLxyqthiKzgqMXmQpf1PpLSos0i2vLoptOm5yt8F3lqOkN6kYIq/oIPSEnHxFFWYV2kSMlLu908mddT9BJ3GZ3R/O4Y4K2yCFp+xgnKnbr2lhl8EK8wvdCy07slnWUJVr47g2C6tGw6lUnGh5GOdYeI985QBTDfhcwWXaDyS/K/MiBYtnLDR5GCXfE1I9ls8rv2pgkspiAxg4UyUtfzUPl1p6BsVp7xATWhY5pkbunLe/XBxO8FiyPIplgm+A1n1U1SjtfjvFK6meLiwitbbC72Z8FU1X+TosXaOV5h+VZwY9tRO//wlex+1W4z3yXPuMIt03CbNf/Rfl2GNptohXaTb4aGtaFyxcLe1G+ylcarom9kXy7Xei/tc3XRbPsowD7iBXakpe98FyCGJQFJxzHsbMbkq9rjJX4FY/5Is9RDHuzYmrmuebcQx8vHJaXM92pqznhTpe8V9ibLk1L+4j20XPuuqG2b/bL5cZdS7scOGmSDjQ90lZtiz951mxgedgjTAsz5eq74Q61ZRPLI6+MS4l7YNqdTIfQ7q3w5xQ+t++RvTW843fMEBOvXK3zaGzdD5pX2Ebag5lMuo1RiMaqLZG0W0ATWuWlcdZlrs/qysaOXTqlV447GXVuU2RaOvgFn9fwLfFz+NXKWwDA52DGJa7wuei0gmMxwJv1FE5G3Y6JLruMqg++UiOx081KGwWadkDiNZSBRzMUJlltqbVCuxmRSonyS5qNsV48COhmZqnV3lyBsaLpPs4Z0GWB+anZB1Zj5jNdfG8lxFl1cawHlqQv16LFdfl+rTcauDBSjTbKpzKhq9JCN5K1SrK4ArlPt72yy6b7wer647krJzHW+BxxfTP5mJTdlpXIdC8c8Jy3bB2hHXFsyf+aFlJdWHxCq0e7AZ81ddFb0qZc1MHbXVpGn7Q9vkLaRqQV1x7FbsXfyGvSmmCZYsrBNIk5K05I+o5HmrbbhZZX+f0IjxXLbD+gvECngk9Xm9aFj9W8Sr5GvTU8jgS+py2dzpdB4zIKLDL4ItO+wB423roQO9rC16XszUFNXRlNnvdCzHwbHnM31oG8ja9jefZRRLoVL/vEa8HjSeYzraDJ5USEu0f6XCXsC1+bCgsZmfYCj5tN1CqgZu4DgnAHYK6ugTZ1M37bhq8yOspZMSt8l8/8lX6Ru7TERZLSjS8uGqGuQs7cXVSHwzyikfaVnh159b5Jnik720I0PxbDxtvTTSYb2QBSbwB3TFMXHo0l5c46Xu2NaktaAstdbMbnG6ivt/59TuH9XBkvH7jqKwg/EAA1FdIgl0Gw/E00CCMgKQkU+x2ebIGlzXaZOx95vqzmbkBFRjXqi5vlTg7HltGlzD2RVR4cXrIAC3lsdy8nBIPZdlXFyM6ikJerL1u70NM2w6cfQV2SXNDaJulDWgGtDe0y2TDVRS2U7OHksxPULwyj8CDtvnp9/9sGvTjxXfNZcphXGgswq2GgMRWbVGiHbc0zOXRRYV/Idif/utLmdcY6xeHziSpPXvte0+3SZh59RCnyhhuJOl3lVchxFb5vZJD8lT6e5/YBr1E+RUbukKXhHAPnTDfyu7vyyXMGyuecfOI6fbNwT1G+vDoZSxlGnL57S3ho/gwykPEYnMTzlq9HO8oFD1Q8Lu1RhDjqc7RA0jabsS3ABZZfla8/LzJd0V/woZh1SPUCbeOnr3e0w50sU607bJl2qV9tQAuftnCyyNyJ2sTqqjFd0F6nbSmWOqhLGDXKFwVs0+50I3zXiVXWaN91KnbgQWMJqeenWwruOxZ7kzVhIlPtdyv+y5ITcXDyrmeqerux4fEk9bTQbvn5xFqLtB1zz2l7id+n0s4yp4vfAAguQLL0ittaPgQ+i0tj2IeUg5hKzwREftUtMGxI/JvvaU+mhAX3z4L7aHHp4kjeCz8HKv6nvYnn2c4i7hG2fSbhjuPNf59TeMcdM47K8t90RclOXyZOuloK/ite6kdDN/X/bwhsm7NcO9qUNUVVY+Y9rcoJSW+oF4/Q+LflHb5zoZ3FzPNyTK7PIpcBLeFL5UPNSHYLnHIfUlaxFHTrCBkhtMIn4O3IdLzCPq7fDZlm7e/KR0ZypmR43dQCqi9+CdP9JbKbel3alUk+1uRYVTUHR8O95JjbVMXFst+EhX6Vcc2rh7EqW/UOYHGZXCrasgzRn1hHjbas2CH1AylJPWvAP0u/fkFvTQtY1pHXLsJD11e01mizo7Bnj2diRp7do+QznSdFxLBvxyDIcNgcUIi/P6bhdpdvz4Q73tjNOmxeZe/6Xibcs3yFNgYEx3AzFVpKdUg7u/tIx4n8KO/ga1HeNjj05DPqilcuU+eUK3myrejA6yhV0AHlFSGqojaALQ43LHfphMVDYcE2W67P1/GnU5k2gU3qELDCR10bVbaHuL+UdT52DGmu9sTZgvtW89nZjEUO0s7fW5sh2KblWnjJUQLFjd3nLbMy1rIrj9URZp79YqS5lGcSHSzrqNs861zFrw+2eW4KFbdXA2DS0axVWOfRm3+4N3bcL3jVaSdyXIzCYndGMJG4GBgtfqERH8XL2wVdOkr+TgwqhUPdwSFvxeNIK3aAmhp43BrzzI/yHcgzWei0DRgCQ7VRlsHJ+G1SHi/X5etEihda2PxLPIudT/3MidDGJG3iNPNNLGd5csC04LEZ9PxaxWOWfWA54edwx0fXz6SMdIu9ucRyaSejZaB/ygWSPs6uO8cINnbPPvdZ2TsGM/snzOyPmNm/ZWa/18x+8VfJ7x1vZXTtzcv4ebQTn2nR0LeNKLUvt+eIVyg3pHWV1nZNKwZ+kXFPW55b+bYrufos1+UTf65kXHVTn7vMVy4vmpfjgo/8KIMdid/RLuhdaL2d4fHG10OmwtdRGW+ClqfLPGTosxovP9WAZnvdM9VJFUG26kwYdV1Ie3bNq8sk5Lu0daLlRYY08jJkb+3m4Vi7uHJyBVYk1LrWsgetF1oO/vlRzNTrSnvpJgtsBxUhRfd7Uhmg+5k1//hg88UWuO1k3PJRufJ3a+3XSWWANFwse4W1fKy+7rpZ+Ja+vAeNqybxlYx0aWizvkxq7gLbe9xSHrEZQVvqBVvcX/lU2uVM0qvsjSDFcYWL7bnCjwzm9nlf2YFX24wrmdW/a/4073qVzAUXP8Xe8HlxMdS0TWanr3HTVWWKNUHBJ5Zv/i72udqbVeZNu2GM67lNrZO9bspYGas74kP3RKjXQ8VXtu3EjZR7yOQlr25vul0p0cunXBp2ShwEZQsf79+UTIrtD6m/aCnNl/6StvfdhUJ2lQru72l9oZUkxQ6clzrs9qYmsMAbdrmPfZi+tEcXVTlKnykkbIdeaZG0vI24dRpc6fFzCg7MC7He9vcVw+9y97/V3X8lgP81gH/sq2T2jvt3thmgAtLm52NvEJ60TMe0ak9qm8tEytOA2KmT3KNtzrQPDz0mDlbem3RavB2tlj1kcpFN8+i0S+bXcTsX90tSl7+NPh6x7MpY7WVTSlNkvb4YKzaY/MUIYs1qS1tkbC+KZXXNNvPsZw2UZE5EDJ7xG3nynMJ40XesaoHShKhaXZ/bgILjVBeCckhZaK+abLowWRj68aa6FK5y72izEVGmkJEySf154xurgHRj8epK6FOus8uofCUdnC6SJs/zxkID3M6Md3VDGc93p8vJIc+A+1FcQ4aM1Z0xZZ5pow4Ocb3JFV5+PFpdWngw+3TWqTW+hrsP90V1fzkn3/uUS10th8tKTRtuMA6R7WHPfzlIHcWzYboWzQYQeDMT7EaqjNfBtdBWsJ/Rln+PRbxyL042FH17bIgy9PcNTxe5UGlK2ob7DWKTjLIppjgW3KjlvQihK6/pth3f18x3zK7Cokcv5Qvvis0E71KWeP9AiMCn8WBKq5Syk1DYzudDcH8rYqu/yrfmtYgYtBMXoe7h0ifbpHxtvVb0uvKTDzoz78DopB3vE1O5cBTYZjWv3GVyGcJVF/XExYqTIP5K88odrEqLyCtPw3U8TpduVFriPlbcJx7cNT/fYSrrR90bh4vhfbEDJrTVdtG1HDbGG4G9k+fd6XquNqS6VUYZnGU/mq4OcVEn7jeXS/eYcH9F1P8eh2Hr3vr3VYK7/yV5/BF8RVW92wemw2A1w6Tuhz4nTvFi7ss7aXvadnVx7HJrPO2+bF3Hd9llvqduh0WGXgRDrHw5VO6WlvGtvEobNAfg97zfJMYXKobVd8DmWflZzct7fnzfsggPDIMsh9lKiwva9ClM3fTEXc/AnNxYnQgKbSmXKm/mW/Qq5S/BrV0Ew0K56EILKidenFf/J5/0fuFKoUW89lN3g+mNWs50nkmbftPl0bUrhC7KUUmj3J7PB2BEeZaq0dbV07ypcBTQxQ1qPouMSVtlZNq8Gt35iFlkZGeeaUNnNgYeh8VE+ARwixKci27ymeXLNnQ6cGO+GJe+H8ZVTx+Y4IYDwEcH6C87DKvjhqQdbSx5evA5cI6pXbSDE1buthoyUsgz2wkA9xP9BrybjVu2cAKn30ZlclBmB2DnMLh+R15awpVv7XCpnDE4OuK9z/rkZSvA6H8pdY40Ofh5S4gBfriMzdayYJusK4duM459XLu+MW1xwZM/FXszyeueDIVe5BiT9oyLZr7jo0HwYidTeSy6zvc7ewN5Lol73l1mYG8H2AYMo1veAzFGrF/oCjPdRjdb/CVfbe/mJe3IL/G4lKvJ7eU9I3WGpAQCdg7YIelcwClk7DInT8X901v6bvTF88BnF4w+yz6o8SI7bwQm7hjfteIY+WBgmYc+ks9wc/QNH0DtHBEhbAoTW6BmtI10B5/8JpYvNgSGmwMfowVb8NzS2uBzYLpnig0ZtGfSRr/Y2RtDxnrKNIkPGPxMXa24z9IKlqfQgd3EpfGMTAsIprrgHrF7Yst8vpnhcMPhjnHV/TGt1gmzY+5sG875lUvq6fRzujk6fHTelJGanJ8FOHHiBp1c1/JKhaJ8A/AzDGPC+Z6ns+yfBPCbAPx/Afyar5LXu7oy6srlAFWi+VzBtvxzM8RtW5NWDVKstIN5evBRsI4Dn6aSMJ4yWaQN1GX+jS8gvy3jfZf24llpOU4tt7IKn51h2upi85y6eVmmUr6pJ7ERU1ep2z4Qqrrxhe9i2Muz5Dt/e4kjjKAJ6RkftL6Wt5OErA69Dt+aTFZ04pmGhstTRDKKplYsny98NaxG0kO2Xit9fBmHvNvtc/ABrLtzav2ZEF4j8fC5LDi0pMP+eHmO6vPZslyGfrqdwbTNx52ayIkzpwuNT5cmzidMWlkBz1Vg4O4GPws4FVrK6AV4EGlNnnkPGJNllXSZu+FzmOetUXeY4FwqUHcXUzbRTeEr9e87vgk8Xt7kuYia8+tD5CeY6iPrGDzELqfiivbh+Zz92dJGoHk/lLRCM9QWabSKKw6mXhTfFNs0jx2Goj1rD17SajXMd9blUhk6Vr/Et/1+jR1YmoXkc2l/REblo9hcZIz0Lu+YtmE536siJf667Mp37WclyE2gADGVWK5yTawl3tKFUBG0lPMFnG96tfLvS7hfn4+QYF7chMTPl2hjonXFVzCGbHZeF4p1M+NQfZ7zyrSdfqGVdCnzZu+e9bTNqErokoDu4ucp59gC9/szcpdcbJWiZnzPbL5Vm8CdT+d/o69RwZl/nitG4ZueMBWPD1VUsW9e8nCtR7EZ6g3TNPnDHn7czP6Q/P1WjTSz329m/7fN398PAO7+O939lwD4PQD+a19FkHfbMeOOVYToeLM7R7/X7j07kFwQMvJCPhOMg8TEOHjynQOaCkpXfMej7sAp3zIm4vMm7WSbMqph0bykHOQbGKnGU0S84hvi79K2Zz9yPaiUD9PYzAX2WBlTWpPnoPW9jB0ojQp00Y0a6clT83KMgaUpV+qmpg1bvOHrsPyY7JSytgs+5+1KQMbnToOUkfphkVbL1/hYyMzzV1bSdr15qc8YZ2wuGAGmCxqtmZ2Tn13SMmvWV66sctczXSqr7rIJZl17yHCbQpGWMtlMN3Yhq5uNYS7IOELPI/l4wbSGoWftUxy/mSgjDc7c2WIdWLqWjPXHoSufnc8e0A4XEB+XjM0V3RM2ZRQbOctzApJ2xkk7St0Z+DHnsdk58kyDOeJvdJ2x5Gs2ZDycK+MH7vBBP9vjHWM11rkKLTKGu5LlQOqQfpFnST4x6O4X5m5oxGGPbWwfxP+ZlrJp41hwjzSiXMdwOXPjYAQLHuuPnBRSzw2PscpMQSLtLr2+d3nHtntFu8XumnZrM1r5Om1i9/x1Is47s8+P1lFpS3moo4ZXC+4Xm+HBN3dlmKxheTbS+OGnC+hgQyuIps8be0M8Nk0rOFbsj7H/FwWM3hP9rpWfP6OdeH2OvLPQ5JULU5Rl1WtgKdlO1dyJEY5CW86IUS1FDltssYP4VaQZxZP8zeYOzJRJcX+ofpbvxLiMTWVTWqS3jTW+ilcQMXd9iRjbDaz7CbpNHjDY9EBgONHsTWRBjJ3eFxPbbYKK+bghciD1gXvYDAfsmDZjegaFXUhAOgF8hE1PDhkX2MjrcOCc2H0P3J+u+MjdzIHzAwPH3uI97E94dEw7wJJzH/SEi51DcXH9HMNXdEn8aXf/VVeR7v53vzKf3wPgfwvgH3+rIO9/Xf4ExgAmWU21+dx3Y5LWGm1mbIDcAMi0MhAyGzc8TUMLG+ltJi2jbXS++dz5KGkjH0FuALTJk3wpg4Ljji8gALXhq0lDN7wsyERmvY3wEICbwFhkPnSgQOFT2b07jNh09xvPvtVNrTT+JGFQFp6hu6DLeJsD/LjxUfN2ZdPjDJi0kVfo0AD3hTYnaKkHs3TuqLcJJh+HLExwfBB81paThtvSjXLmlWoxHdOADekwunLUwVWnVRl55spK3OxvkLM3Ub5oGVleodVbznLlNiXlTjaNHhXizDXKxzqbPTkmP+JHP5/LjndpdaSVV5PxYcN1kJMZls+1Q25praS1kHHd6eOgFAhnTMSOz4zgdfY8I3HMCSyvQuYZBMBw2jHeTyALWh+6OOPcmoVxjrMXnS9k8DGrPc5y2HLvwqcHxQr2k+JuJvgk/Sn6YuhV8SlBRau6/64wYfUdavomcvll+khaT5lLHLuzPGt8SVvsVbS01NuOtuu0P1slqXi8oUWgAy9vu05sSxGCVvlE39jYDO0bidWZdtiQxHI3pI2M5A3nLfMbMljzQLF1ooiKx5rWpXSQ8gGIfmOz/uyoEzwBsy2tw6J9a16AuJOmMFM1bIfNDmzKd1TWMvG05KPeCUOwKDc3WVTmqtfWJ7oMMWiwMpkdbVsWGKfOA7snbXnWOimDQg9M5eLaYgdm4XU3yJVx9K/h4pe3Ms66seGMzjrjWS3MCQ8w3VjtgLcbD3kGbFe+ivu0gZxAsd2nvHGNvh84J59znrshtqd9GLYCPnBebUfa2im72gxUPaHk+/mGcZbufS7/MLO/UR7/fgD/j6+S3zvumEEsTTYAggjxzEu8xnVaBDpkvOVz4Tt/O5am5pKmY2o8K99+dfFraK/yknc06AEdvXxHe/4UmS2fim7IWN+0JSqPSUcdTIXsIuciY1D6mvZB+Qgf8XsxoE3mwreW0ArfXgal7RCUtARwHWeUlJwgaHTjY52v5os1Tp/zmv0u55rvkDHPC9XMWu2zvTjmql4tl23KGoXctYWLMEhGAx/uI8hR1kPamPHE7MfXxhCFyNIZgHPJ1zflG8Y3D0c/bOuNtsrRZSaZi4yMzzKEsWyr1AAvAVFlk9ah9RdjHZuTeNb8Bm+cXFWvlEFSaDf1nT5eGeJchaU2gIa5co154pksoM0l3GIjgjbVo/Vf3OnytcgFkavx1fQdYyF8Na+e7wWfIgd3p/AA9xst7cQl7j+wGaqT7p5Y8NmBK3v76Xy9pu1lKuXTtNKGo2vYmu8mDJlWT4SCZ83eKB5XW7XisXZBPMSNC9oqaYQtll+XcOETHp9nT/HIZiCUnFXCSZUUclsevGwzvP0MIyq4GLuTFRdzJk4st0+wA9rJZqeZMT6fDfPbYMFHykfxGCXtsVZT043AuC48mujdNuSqt3EJyJjosV3pznLsOM/y0o5FnpAJNrhDJ7qRMviOtlnSzznc3++M2T9tZn8TRnX9FIDf9lUye7/LPwCkQWDL8Gj54TpGlxOgugFap0UiotBGZDc8RNAZlwMEcVlT48J07JzSQv0ibQkXxmhJ77UoJW8pfzwvriQvyxGuKky7GEavuuojDWtCzjwKqyl81c062CxytPLV7Z+kjWoLJa2DLX9I2yY/ruX1Wi7+3OQVpFpWib4EMRugGuMdE8JdoEgG8OC3uvZdhpkvffmHgSWhuCM2NRSjN38S7C3+g3B1AxBuFKXsnrRaPhr6uCrf0+2iqsMXWurCp4zh2mfZX3T38ozy0YkwBaO7krZdnjMwO+YZLFtoYw1z0vI8x+KOWIYEapJ91P+sg3l1R4WmWT4OJ8dNWQdo2olSpK2r+nTRHXeLJZ90QYoLHMSoU490aB71my4tw92ljDc+PWjDKO/mz4m/6dJeXYgLQWtoo43Oc5S0EWwImoUnTfJVGzDifeFT0y54pXk0iZeJj9J6Emxxv+WltC/h/tZmNMzZu6GPF4EJLrrc8XmRr+/d7G3zW10MdzbD9UcdOFabTlrp7/Ic2G0V+5hr5dtqIbAt8TjPXy61X35W3J/lXcaT7KApmN7eeJi0UKk/aYpw5EKOYqPS7iZ72ga7m+C4LMlb6gy6M6mqs8OLDOluhyQAXdi1L1PG4WY32iIxjnhkYU9TF/VIgvLxeefieD9dzx34eBrGRRwzH89dJZ+AaUEHmvGhS2NOWhOK0rQZjrz/YCoj7GlVWn5k+gL3oy2Z0B7QDyTQs+IQW02XSd0xPW1wUctFd9yYlPtwzfxcg2PzSZnvF2/3/8LXmd/7TC9NgKlj2JxwuSCGxX8ci947sE+0Uft/tRifuycKwtPtwZtgO77tnUtWfGbaktRago2BvWxfnRarCpe82rOpQpR6ZyT198HBzkq7LV97Z5eF2tCWQvUDvnMkw0ouLo1YdPNwECl1MJ5tWz4x1RFVYtmmSzn2A4alPGHU93xLUtfzVz1YlUtHdwHTZNjyvagbwrRPRfoF53St8zC+SpsHvUOClNoo3bwS2OsV7a4GcsPX43elTVnT8Gk+ce0+cjfKJTeXfE6hPRvtvcRL/loGpPuho15hP1wweEWxXs8MwOWmt2nYM12lHVfj0/WQLjTpGjOu8adbotW4wldl9aIjLdNbg054ykK3tXaYwC8DdazYDI2zYgcq3/l3jPKzC8Ri20xkyTwnFruCdBvgVeSF9sp2sWwbm3LJK7B8n/WWT7M3JiXN1r6WP1fR95V+2RQusHxL/MhWCaDlzpjvPL5X2njxYN3fd+QPNBoD4ilHAbOL8l3lQ5xc0iVu9UufeA6ZHgfL1j9MbISjfkMShdZ3dkBsSD3vS0GTxr1ickra7EArn8GR33IRfZBWdKOlj+dwuatX6Ecaj9Yif77QMi2mPDYvmBl4ZyXvxWY47YEJbstV835kPpP2DuHtKJhbP02iruyjZHqlvQvPeqW/0uZnVbq9uReZBfP9iE8JnJbynfL8DN/78I7X5c/OfYzfDkwjIAM3kz+guLjAUVfgWtrhi96MvDz6WDaaOGoLMlvPeyN6xOk1/Z2XyrPLV11gphjOq835fCWTTqsvDPdV2szLyuqdSwG5IgXM9B+HMU97a1h0HjL4nq/knbTeZOq0Y+Umx1mWC0NUUC97+OE76tbS3MonXylvyCF8Kl8sE7DMehrAeQj9/AgpgKPXz5JP/zfiu0xN5BakW4DmhFf4JuGU2GsXycFG56uDhB3XMaE5IGkf0Dq4ajv6352jZQDDTcWKHMaRJAdXmm/UT+Vbh2Q61BLG0R4N4wpiB3yuG7oB4bv/iDb5WNxAMI+Az3YZLdHnzlvcOMISsT7m8XF1G7OxMnpOxd1xA1dQk5Z878E3+xdXcWmqxwTNcQ+9URKEwZ/rjpOWJx6O3nc/NWzwKR6OzTOrnf9SJ0codZStYWi1GY2X4gbT4wGm9n+nLMUlXvN+RLvh4/KOK/DRfg1lzL2j3eFKKVuXaacrRu7Kd2ae2lKUr9FOaFkf2RuJWtpS143QAoYjNwRE8dn3u/1RzFHvBOsyAlWO8qJOPazIVPM9P/YGqCVesXx0UQrpolPmnbztAutIejQ95sVGgcA1XmjzdcoQyLThw/zkBFfLt8pI9+zbkXh8+qqMajOIi0Wa0HWvn7owShuiJReZlud5QYYDY9dsXClvnY8B9FHA3HnLMQ1FG7TcKXPajKkxOMe5NmyGzys4Ip+JuQJ+w0WPH105BSQmlqPKMK7cn7bIUGT0+Zwla+0T9LAZKdIjyJuSP7dg7+nK+LWG9ztjBjRAziYVjU5v4nrJCEp8Oa+AGhfGLiziRiahXQx3z7cbFdTnPlAoLh6d1hC3YC0yvUSLqpudjJdl6HwYq7Tn/JaSy2BhQ4sNbU0r8eU30v1w6s0abclLK0ifBZqYlkPOhW/B3HWwWYG+GqAOyGEUZ7tSp4csS2twykd0eSwGRQZsaiTRjHGRmSAqO1agjm0tH1Y1B5PehlG7n7vjOK723CotH32W6e76Zvwu+4k2dT3fHlq+FKC0v+qydC1Uurt4ZDNusDTNZbl5MmSU97HOOt39SjOUtqyw45JXxxtNQeN+ip5aK5/YYE0mJnTJbZbADJyseZXg4r+sB+H31kD5ol20QVfcmod1YiW/w+Ww7JKtruiFtipMeFZa3U1jmi1mCv2CuVe0GzzmZKO7Xqk9ew2Wdxmp2j4G3pVhSzs7qrktuN/xG2i4jeS76m6lXcvXBoIBHJiLHClH7aJiRy7sTXQLqefV3vgKdmKrCm47+wSHsytf10fWh2K96hEd27PH79zYbUnLqjOccy2ImHscD2g3XSfd6FaZbIexC15m2qGnsYxnWuFbWkFLbTeOOTGWuKUMnn96Oya4N7TKzd2kaBzu8LZgNCQPI9/EH+7sTtqdzWgl454ed0Gl5gK/79XaFhsysu5ePsUZfEkLeVdxfzbisBcWKWwUYaO1zyc46Lr7gx/e8Wts+ZMDFAXJxU2BjcJwcdBaV9ORKDTzKkYQ9V+NJ1m0xh2t8pZeUmhfCIX2Sq4doe1pr2QkM45DOq0OyfaEyEPpGzkfFrXrhvm9pu9s9Fjql6EbhjYgIUhpXusAxKsBLRaUaSrjWEVyAT8pa97rvBFZJgKZv9e8uqw16ZpWbFSKX3uH2TDKCu6OLocY6lBbFsy1jFFWAJ6ujCpn0rq4NyJ+m3G/x4s86UJicunFYFbk9nZblI/zWGqetHzhcjhpUw/q3sL/Uma6edB1ZPJptJzQnfLHuLu4pjiOkDHKI41SXUvGs+M++56ZuhROVxnPOh2ujOnqeEe6rVAOl/jkeyxuLSkjotzabt4UiFebgdRU6+xLHr/T1QibzoSQpueprT9oyV9ucqw2Q9JMOba4z3dHo++4/RIevxb3N7QU75MxtQ1yH9EaMFbXORAO+fa0ZUzd9YroVS3xdfkSKDKr0Q88P9jENsDGErrxvTIbhgVoek0UcjyokD7At7nL0jz0cnjTRRJMrflesHXhseMzqVP1PiZTRxYwJkeNgZq86Aahy5pn2gFxJZ8suNxT2qikZfojdpXY12qdJKamHUjsT9ynm3y4V9MueOJvx/mwGXPGcXrWd9oiA+2augoSY4HpFhi4mHhcbYaF++TpQhvvB61iLN0o72IlovxW84p/IbhfXOOPfKZePPVxl3QuaR01//109vMKdxxv/vucwvtLMwcbYaQs11GKK4YDuyX+SqtxFtcoz75Xw4F51qCRkU2/+hjr78iXgyZgrOT0VV4laFci1/Ll32LzQil72thkRKaJZ9HN+rwKmrR98OJo5MvYZlXIfOuS30VaXntsjTbKt1SUFohpx+9cUdSCUzdN6iBP2pG06qZOYChz5svno+Q3NSlFr9cicyDSr2sutVANZOPLeEOOS1z5UqYYBFgtT5RXy6l80i2vp6WE2V7zv5U2FXAiZRqeSQ71XVv4zvZAY1R0K+49PivACiiMKyxd+Gq9pyvjNI82XfY6rfCddn+6g+TAga5/OR60RWYOEGyCDNPlldnZJ5n3YYYbeF3+Dfx+BQ364HsI7TCwmi/zo8zw6WLFK5dDp3kNiTHf0JeUd4WNTwsKWMZ6k+5csNvySnzGs43scF67dWwzJ1/vYFIbc7zLa9qb6Ej+S1eXLDqNQcuHVWaTeYW867StOHuGW13UtOW69QsZq43U/76Br5Gn4PyGtmB32xoyFZLYoLZFFFI+mdIxVZtAwzbm1zfrUsCkdbEDdqD2Z0s58iyD0rKII26ZoMlzXIxU6stKXtZIA/eNNseEb2ZUF9skTyRd5aNX7UtVUD0Sx3fp0sd6cdxd9+AR9ccJS1Rn1DH1YFJeK3xjQWuxA9npaBuHy+K0XXYMes+Jz9beTBnKJSHFDoxvTKy4L21BdOOC3am8Y+L+wP4DjjNkP2KxEHIt/8BwYnkt72ScEys21sD2OoG1ReZaB8/wvQ/veCujg9eHam1770tYMDXS0ec1pgua3ybPgs9sZF7nfC/xBVpeaPnimtZ3cVhpuUOF/v4VMnZ3x4Ir8HRp6XmZpOu0k1Ecpo7y5oywyuFVN00mNNrgxDptMtegloCMBwMHy6hnqsTlZJntepGJV8SbXawDNNo0HBPCeNvX8rGnLNUO2F7iU8VOV5atTFFFUxuTOFbIZCXCDDHCdqVlWxG+JjrXtCxXP6u2lKfTzkQnR/mUkxlkU5uZGvL6Ygv58vB646p6oQGN3+OF9dEMKJOnW4vNaafR6FOv4uq47NrWk5hpFCdSxUBouLDImnPr+D7/b9Pt86iDN6mnrf//KlZEcHJWDbGQzrrgH29nU5h4S+Dim5aRPBS/i0sh+5WW0erq+7oDV98pXBgwXY4ESkh3hYMXmHplmx7Sqlz6Tpu3hjfw7WXGA9pHMi43pL+mfEHvWxlZRl/imx3ocaVPy8PSGGta5pVtXTF0b1/U9ZP2o0zUpC/Fr6kn5RN8N7yusLvHR15AgMdjm5GiuQPnCYzLPuTMNPHYVr7qKmmt8he+Q/JEhwDFALmRitg9r/W7nwbnrB9sYom12z4gkqhL+4B0xVtJqO1gVkz/OHYcO/C5a+T8Hs3EbmK9HrchA07sevsMZVFDvZ0pf8E7N5jdk4tjei5wojTHHWEI5jg6dt48zgKHvvZmpcg08j8De8PORaqxY3fbluLzCNyh/GEI77Zj5rpiCsHZ4n7VgJ9NLwC7IBf0C/UbuAXHgFujsknbXy51btl5slyr8Y3ySZwOfBYZ9AOaylfAptNSjjgboeVFChmYlapaype2uNWFyE3qlS9dSj11o/UXoCgAF659anw8FWuAz9uSqnGu8jGtkU+TsfuaJ7iihGX1sdAmn0XmYCSg2X3/5GHnyiixKLBINqLH4h/ellvHiprIjzlVKOXobnStPc9sWaJzk3ZUCeXRkldazZc1z/Nlw36pK0mj9fyDp9sG5Q+3R6s3FQ53PNLpAKDySakw3VJsTtLPMYCfiYsLoQtfn24lkxbOmxrznIALbboQjsPfQ6/ZP8+sNNCF5+OsT5rMs+TFnS3ewoX4TVegkzdz+aADjuGKKeXSm8Wqm43hjuqK+lVuZYzAT6Eo/gW+SN+HxYSutCfFVAg2ueY1z3xE+oEjXHw5H9E6z4x0uSfNpi/o80M87vnNtl/Kgz3tFd+CWT3tzlZB3PV2MrK+tU5mouiPcn6RabuQXUaHnMVR6o6pwbPmtSz0KQMBDvJhsCs+gamVr+omM/FaPBNS9zmh6bivrbaz8VZextfTPzB9qDKW3EUXfJeTQp7xErvNv1Y+padMxILuIso8ASQOemJXYvfEssC+Ucp0AWdan/jqUZ5aza3NQfE3+Ybb3vxNGUbZicHHcBk8h0vf2Oi8I8YxLq6Zre64KzYwVNwaU2yxGdXWDluVegKm67jUz/h+2dzhxxl6GXg8eOWti6RTDKcuLG3TTHt64vx9dvDFXVTsK8O9NtXPLpxz5/Atf59T+AykEcMce+8y7ypG29BdGyDR4RvVaGMeYInBkHeLKJ2vxCldJJG08dzTysCjkLRByew7YacLX3F/eVHGrpudjC+VTye+86r8kmZDm2JV14vt7ZdNyhyjdQVLmXt5rD+utAjaC+3MtHXrHjmYsPK4lRmet1vSOAPpTlHFqXxiZ6bx3aXVxqcuHcU9ppfSECul0rtyt0nkCBHCxUPjpDMVVxNpr1oELZ/UPd0xb8ZzBnI+1Btt68Th4sLEIYPVfj11YbNCaJyZwD155vR31NdhdEekmyDvJRQDW2QMJYdBSzfBetYsyzpKcc7BQbilTD3Tm4BuKVwF1bw4ucszB+mq4yKXHFeX8lTadMXMtG5aXgva7uL7ScGmxnb9sVS11fNXpe9nK9YfkWy6k1uktWhb0Sdt78a30JpVPoblOUTYxC+0jWHET75a5t3uxCO+u3x13tvTLq7lu/LR5pCY+RnzVkRRWhJZ8gVKH7UuNPMycUEkc9b56FYbuVko5Wuo7qjJxyafwrvpZov7DfeI+0OudOpWF+IUNcsAKO6PtNXF3R7aAXUxNJGr96sj1dHkmnWpdTTzqYHYMH/7pBHdLBRF/mwwtCc34w6bxJdiTmybGFDcAmfa6mLY8ClwETEJo2CBZaSddmC4DWKurx6Bc8TfzBclD+Jk6MIapqLiLQyRl7o9zlYjro0GcxtXpDgwPnVyG5OIsKe1vOM6e4u2odjtxb1S7M1sQyflir9DypRx+63ZzyNwd/Gtf59TeBdXxmjMYnxjoFPAMBuC7tRkWs/O1i8EmXnpAKrHWTIqfHPAJjJd5XVU2tfwjdBpgdxBn2U2tLy6XFixdNkVfEnGePZF5sC0UEzjq2V6qCt/mFZdR4B5SUUH7LQeqRyN3/HpwcSdk9Cp+Yq83MlhQwkDrM9CQfJ18OpNHpd8yNdLXEnbZLzGRubrIWPyHbdz+fy2Sq6iimqWfGmIvaW9druJ56XhRI+Guv6NldF62DPPhEw6ExO3kTHzX6cMxTyGgXGWIlangWzrp3t8m2z8b15PXNxlTKrcJ4fx2w1tFbqqr9+kKRK0Cy+Q7dr1gLYxdbY5meDqqqzueo8PpsqwxFJ3C4b0bXrm5cOIb88HvSJwkLfb7VK86h4GIYnMNNrYbNJm57/EulKulvcj2kr5Skzd0G5wnw/lpsCWF3a0j/hYS1sw1bc6ztSjjc/7GUaCjcyD1qNeVr6Jx8tOV6MFvJVPsbz1fe1TJv9q/Ub5vPHtNmJnM6Tf2FLi+jzxyU/tNxuZl/AIU19+fmQzAKpoDsbL9YIv05Ie6FiOXPDCuZav24EWHbjOxa9Y8Bs2ne1pVFPlGw0s3DETowLKCmzR8yG1QYzUsvL6fz8xzr2dR2Bj5BuFIXhxQtftQOatdsDIQxqueVKcKgfbo2ccvy0m1MVmpG7OxYbkAkPWBi1W0E5O0TK86uZtaP/9D09Xxq8lJEBwENxd4dBdSQrosyPzWVfB0xCQyzKRYLyk6XFFSpP0LR81ckWmTVqWg65ZSzzfdb7yTHybOJUatdqJCCwxUGy6Sb35vnxCbzRy8IVPd9mJ93RZ6XXY9XqhG3RaVc6Z70oZJK9iRnm2SAUxTFeSHK7zKmSl3U+iEvwiho3JalodqFsYpW4o1jxjYcJ3fBXmsRjJuETCucLIgXqvpTWEGsV4cmDOopUcqtDRxtKISzudLhu8sSpMJlf6XIyKVn4fqEypwghLwzLk171CpgYkg2c2Orq+3P3AWKssFlmMb6VN3eSAQldlq203cVV0KXvKmHIec/hDV4v5nbNEvnSzCd1NXXPF05WvR7sBELdKAmN11p1DuWxz0isQrmu97j8l9MbTsC+7TcNyg0YOUsGneKasmi/0tzQujY7rqi9oFRc5eVC8QsXUS9oNHm/zWiSUdI/sjerKGh/q9QKPB9Z6KZ/aUIhuBNkQ/UHl8MTja93w5aQOnorlASLJI2wDstDx3sNmLDZB+GT/bQAupeLLghuBx/mcLoGWBneD+5FjgZXpymibdFVZBRdLXrampxSnExkf4L7KKEaE79SFPc5jkYvoxoCygBuo6aOFqEzDa0L0WgYQaW+yiqy4KqoLJ3NPl8opIzHE1e61ErD+TkxbxDuCqd9MPSa5ZalrTGWcS7HpCth1k/UXiAt+m9JCqrQZzPHuBxw3Od1hje94P3Qz26rsYlhxnZd6FXBN19nsZFr3pv1iC0zP8HWH97n8w6otqkaCI/45oJk3binoB21ZbUPZYocDzpOKakyFLxfBjWk0f5WxG2oNDnF9ma/av73shc9RRA7D111eFlqftA3Qi171fV8w01OcpXzFaoyOPmXk5CzqpmWxe1Dwje+U7WgWOVCVqi85wj9sOD2b5aqez886HpJFybBbNsDEfXY8J9w/onWf34SZco4J3Tg3E+4cIoEJuI2drcq3DlRaqdWGOa+9rzsg3eiMxEOWw+ZOh01jQ+Auq5HzzA/f+NCjTQNpMODwaYKEr0sfpVKj+Dmhy7bOXUDHYb7soNGmnZPP4TYGkz7qnsb5hOPwA34Mc3hiHOz2I+fsx0wnU8uQf/TdVd8cxNCNxZivcSJ5DpmOY0x2ABx+wI4xEOSe1jnN/OkHDsuzYTcfuEYjfvj4cO6JnEyeOMZtXH7gsJPDlFnuY5bCI73jxOk26nnedTl0k3wPHHBjue5z6nnEOqlBaAWEHLPNHIN2t9v6KcHNmoucvItK0Cn5bOVhB6yOe5bd9YYZisfkM/tb7lBNTNtscVxhKhRjZrtLPih2TnN1oS15edLsYE9/F7gW++Cd0cbzQM1J2LmFqYeMPkdnNj++vgrWbAagm48phzyutJKj0A77o0NjpM3XgmD9bWrEbQ4ykc9lJyx0VbSzkTFd37Kws1mZz7stuiGrfNIV0xLLox4rHneFZ/MkbeJisTSy45EnprISwhMiaGfdTeNUi+fR90YuRNKhG00bquOzp81I3Ae4COAUAYndQE4oiTmHLpaGvRFsEywPj4Ejz7EhLBYxdVxEfzo/JwAcs52fpf6IuYbDTwwXwHO2pWF/zoPI7LiBros5WTPR63ApnLYKNu1cthi6PZqn6+eYYNpEZZ9xx9RNtQbDDgBndKJz6nXmiwPmjnN+amJMRWlJzrkIOMp24oS54Tz09uTPN6Q7/w9+eKdbGcUiE6AkCsgJkTeyClSWtFZpw0CtliTei00ORo8mYr1ZlrQmzywi5bA135KWz7LEn5OgB7TdIG2ed+6Jy7OWSbbCBq2OFoDtoIcG5YFMTkOvIwqRsboyejXsl4Dgizyb/aeWV6ffPKtxt8ZC4jvn40iDd5bR2LW7iMbvm+oj47zKUQeBc6JIo7uwrnJ02kU3l2k3Y4heGEsTCdT50H1ZhmPn9EnKMwfeGvBc/ec7llUGOTrEqMMr7V9yG5gP9xQ/LUFEcUgL3gbFaxm4s9w4mwmprwxCV6P+cqfRm+HhgImG9Q4WYqjEZcW3Dq5yqJv/utLGf2UQ5vnmzUcNrP4YciawlZ16soyDMqvMWhfdO+GxHfDyPnRyhbEc13ac72mXdi//WpNJZcxxrkxWa55bO6ALjr1TvkTbddPwuBbBrvPyB3GaP8QeaTuIHS6sLu097RghZubq+3mleyC8IEi4664q5Yr7BLidG3rm4XT71Lw0m077EESrTI9k3GH3gEbG2EKrbFU+fWc7vlWqGh7UATAXCH24yN5PNriJ3SGUJ/GsYy+ZcfLFet/ordmbInFgJvK/4sUR5dd2N7E8baiFfUJpguk+zn4zJp8WtGlv1CfjDHZlScrH353nwUQ72bm8yqpgIjKkV4BNOQ4Y7lEu0zJp9qWIbwX+70+4f+byvTa823X5l7tJswVY6ahYgH5xt0M2wzIZAupqHdOvPTb5XNAucfoshvuRge5+9gufKH/l8ZB2YwQDkh7JvMQRLCotXGyGow126gCHIaGhx/teRhZQsVriE0RTJiVZZH5EK0NPk0z6oMBaPtU+5QiqTKKZvBkZxfk0qC58Ot8akofm5LETwyjbLBilC4wXg/P4DEMSu/Wxcd3lWgcNrbqjLrO8YXC8GqKS55SVO5HRxxg/6XLqaYh7sNznJToevFNm3e3Lcg9qHgS2ouleOq7Wmu92kMTtj4OkkIPuIWNSmSUYaetNdWzb/JhoNnzHaGPqmtoxtcjA//Kd1elipqknEbKl+dihJLcr/HxNmPWSO18T6y1l07RREYqrHQeFdsFU07y8VNWKfZWm2BuN2zxDnq9s0xV2sxq3ff8F2iUvED+x6K7rpk5kOx5n5txcWfjOidG+7WkZNnZikX8qQGQuLvNs/o5Sh0sQnKh8m01Q4BRhTDHmApvV3d1mef2UBNvyEtDKP5F2h8dLe5hEPW63WDf6aXNjc3pbZHa7M6+1mqbCJ63KfbTbirs6C87O3Xt37smrrqbEMjl14VtxH7nrpm+dWKsye3jAJKYqJg4MHbc6Tl8HEaf8uygn8Xi0m5FXrpXQhgk/R3Gbzo6vTZpp+ZHpQ9qJt19Y+55lCtdfpZnvbUZkKn1zyDwE9Fbfn1NwPM+Yfa0hdenxfCrAdQC/zAh7Iym/l3aoBjRAN/PaGb3y3NKq2/qlvNY6k9Ka/LtrYxuj+ZCXhmPPN8t+PSoY0WLtX2j/pUqNwOAvCyrlq4O/HW3ehNhpC5hejCKLCbUJ2I5lUJGJhLZMyrIy0jCto4cAUs8/FbiLaZ0QyElAa2Mhc8tDjagpvdJNbgXs418ragw3EUlfduTUcEw9hDkUWi566+1nqQnENcfkU66mR16ZPyYtes2vxXdf8qrkKaM3mT2viGfeMbGb513PkEX4zAZziiw0oo56VTH53pG3M2L+zhsWj+WqZ9XpcJfkRST1envqinLewbNjFrq4w3Da4HPHfGZaFz0K3U6v3urkk0Mbs9afxJTZTrhCHU09Bxm1byZA5RkJbwOdRkNsPYRWV1bUDryiTLHjpekvaMtr9SAgzy53l39nb4ClvPYCLfX5sCI5yDWbLma+8lXjvDMfm12FhwylPMQ5F5kzqYuLozJEzJTqYHRN24uQtONhV/8LRrd2tVyUVMyW4iRgD9uZZVNWm9hkebTJxsW4nMS40InLXyFKPrQXgY2WeXY70Gm5M6pthRjJl8OpL2UiHjvYHxPDr3Dft7TEq6nHhvsjr45t6aFQ0qJjPDGVsqi9GXTE1PL5ET9w+pG4b4nP9Xr75H0PPQzljktAMr+kHfneJ023N9TVPWQS3alNAG2E2gTG8ebGzzkMV8a3/n1O4f2kmQZNV+EcyMuDOJjS5Zw2gdLfw9BunmdeZTcLKDd/RV78eUHLSUAs7tqUtxvYzS6btTg92rPIxDMyjdbkPFo8d11Qp1xSM6u6aLoJVwWRo1xXzPfHFNpmvCprKmbvhkQ+M534pix8ShzG2S/L59TzWAXLG5eQ+YSeJS/m05U1KzJXSOd5LNWzFGg1yj58/FOzo07CJTVptZq1jMA0erDFUDvTGpa4UX6R0JRGyjONzXHU98yrDCw6X2z4zsYYriTcXfKqW5O0wdVSjybpznmbmUvDDNrJR2kHcGSnsylH6tFyIjE7KI0qaSNtABGlPOZ1+ZOHGN1oB/MPIpPPTjI+mloqAXHGQQYShrxwY2RNOVNj6W6T1+XfccMY0hxzgEW6W5SXgwAPvc1yOKS848zQiDti8lkuHzGeW8jyxkBM282nBILo7JO8ur6A62Hwm2CPIXfUshpgUBtBHGHeUZ2q0JE3scFbHGxeeX5BK5246MBX+3N1e2IUs2E5DgC3i7SiikirtLZ/XnHexWYYm9w+L6rohrwshFgM355dK4FNaLaloVcFLCbMnaEhlheZbMqcL0Y5JukaYqeM7SwFUj426yBF8lYnNs8es8y1YHHtvGfzpSdAabhdNaxXkb9gm4aY0JAwaSsed12MPsrzz+GhILivUnmjVfaLbcLsabMNreWlXg6Rm9iC6KM8Hs70cUEUG3mzNzlMIWardjUPkYlX0RNnJ+6PuaXJANBhUyY/MbH1CJmZf+pP86rlSzzOeE5wom6caSkzbYZNnD7meWHGDhf2YVuEL8bFIFG3Qpt2gHg908szbUjy5SSbV+kPPaV9zTb0DN/b8G6ujIFoQDUGkN+LEZwDHKVFpfVL2vWZWdLmdtouk+u/jf2n8AVQXTR6fl6KWzB3wW4dXPS8YrdiL6Og20K7eGf7NLIqUymfa9I1FBclv6TdlDD4RbFUx6KA3fmyqlfJa7MlbyKjCx/mVZtrmwJZtqHdOYNaTZ22xgafDQY+aJ6VtqUYBmef9pq2xhXXmfmvS3yGPoPdy0xXxgB7ewVta9vFvXe8aYz6c77rrY7P+vHNYfDrtdCNS+HDhY4cNAi6mL5j4aoUyWcOGGTXb/etlVyv9liFnU9LWg1jJdYjreLNo968g+pPCx27pe3HWKm+WxuP2AHtjS9hdyyKecH9zmeL3RdLmC/hvsqxuBz1tOdiBra/S76PZI7f/moZFxZ6nou5vZIWwHDXDUzt9sZFpgvs7raqGOELngB4ZqnU76vCXsadme04su58qb3ZsLqwLxFd7MDG3tiatrN3HwtfO/uy8GmiZc/yJe36LJcbAYJrDX9ndvczsYqpSta2PmtunS+WtDvcb4LMdLwyK9zFBQfXcV5ewb+TuTTQplcv6RRLp+2IhnLKTiXPl6kMjQ9MaNMO0CLlfx31kpgZ45g0Z027CW/H/e9POD97CV8X3nH/rrZO763XRpeLq2QNS2NjIK021YATQ3Qi92ocw+DahRFkvr4ZjG34Ku/C11A/I2Lyt2n/XMgJVx6Rg/GMWwYjkUdeAKC0IWW3Iq7688ijlCvqQd9PdwTy0TIuLyrfTpvLgHRjEoNQ8hKpwuifU+ZZ5s5HtiIsCusbVXhzDyFt1UXoZGkUejZg0jYo7aue1M1SJTsZF73mc3ejNfMoqxs3n9eWHO1baFnL2fYt3F+if+kPr6XMeMqfadIIArlW6oiPPoeITs2U9km3Pb47nWxk5bKk9fKs+BAuhDaw5e4j79Fd71Pukae60bhnGc7popN86PI4aWca9/xEQNCCbogsLd08PeS9+1xdtikTlI/F5JbuL5TxDrrZjGfyJe1d+DK9ujWmeyXKs4GfX3hLqKBZhgkXeTZkCTvAXTTixGbeWvF4vnFAdlZSrMAJoau0KHy0vy5YoL9NaDqWM81cOOGG6y6rxUZuZAy5g0/VzZLvRufqfsi2otQ6V1ppdzKmXjNjL/GVjT+gRTZCDRtMTZxvIvUdN9rbJuPCF4gFvbj23GRRAwC/f+UKlBHvvehbPgup5FHaXMNjpuGUh315dJORKtOKLJqH2PFsVyZpbdZJw1GRv+CxKx7bdMfzYo/GOEbtzcw/CGkHmh6beoNv7EilPVE7EPJOGU/3wPbhmTAxdtqYdKEkzufu0T3KOvgO+zGXury5ysOE9pgu5cRS4nHKeHfgY4x507XebbofsqzEbpYH2NiBWR90VXTqYcT7HEyyfgbtEbgfeW36/OcSxkLvD8cHpt9tYpYgOYxrrIDQbRAT5NQtRSc0L9Kuq0qQrCI985V/Td/p+4t0xUVC5expm4ywzbMBpgdsVWbJa8vH1jTqIpDeQBvl6CPl0EIdkMsK7JoP/xyLTFk5e1pNxzoEsBrQkFfPmB2TLoSPxMP1ojGWH5l0SiN8oy1J+TptuAaFWh3uZ+aNdr28pAVobOs728kIAN5oRadcZQsqz7yOkp8JX81Lg5SPejSTNlTbYI6VpJQzwZifWBkcDpmslmNmNO0/0m8/aU/XElQ+TfRwnSnnASOBhxzZqMYVxodxkjh8gYZPfyl1HbRIf8pvxhjUlWbQFB8tGWgcM+0RH7VWF0LD0NXhgIcrY+7odb45GEi3zlgLFT7KV3URZ9ws5TDh81Vuvmoer60iJY1pWuq30ibuW0LSLNYln7ApBtCtj11I+NiWNtMWsSjL5szYbGq9iFs7QBfowJym5i6TprOWMOCOLqOCEwUGt+WzlHG6sHfbh07boyWvwlsFNPbG/N94kQWI/qvbOv1YgvIv+hDFlDmXKiCfTfgCqx1Qoi3+8hxek/mKlg29L9SF/AWQG1+3isfSbpj2AHIiOfMw4ctqSOzmQF8mXaIrK9jWZNZSUgYdA0xa4v4RMz2rfUTkx7QZ6Uqe8TkRtCyfUWbaG3UjHBXEcg2WFoQG4GaD2O0GLv6cC+6neyLLk5sGWe+c9CSNyigu6xNjT08ZT9oBM9yMX1YjFtP98JC0qfi0N4n7HmWf7u+4we2GE7doF868ZgfjpGzY3no++nMOPyxnzN73VkZjj5QV0NlROTgDZBA0/8ZzAoamjfTQtJ12Rrv823ld8r3Ie8rwWOaNjFjzDZcW7QOtT+hK0fJ+x3cjV3Fx0ecujyK16kfs2CrHbgTtkrbGH0vame/cgaIRQZMxFtWCtmq2Dm56+XR3q9OvfPvzoQMWeBitMmjWPLUMS2h8sZbXSrp9+fpgTiv+HMttpexpWDd5dQnDiF273TSurXiWMk6+PLyspTvCqOverNDWTGf0qtNF102ohOKaxk+uVHKyfw4jHz74PlZWfbZzJZbbZGNIFIM9uQhlxo3J2XzSg+dt0gwgLu1g3meLd+2MU8nexAuoM1WHB22MpTyR2UU2/e7XWwLd0DtOuog+yiLxIjuiTmkz1ngdBG1xn1nQGJNmh5lX2N3iFzx+lFe7FS+qC1W1r8Jyyu+buKIbfyCTL+WTY4aznSMXfujyvckLwifzy0YYro09LeUoZ9d8zbcbTk3bzvXRRXfIvsNczShlrbhxbQeCdtooP/s5sQ0eL3idONxvur2yA1rCPZ9aVte2/iLtFDLk8ah/mMtnTgbWrbQ9JOKxLdmsGS545TXtbFAN9zlWCPydruVuYSPyC3t6qU0wzOI2PXmkGrLcAejnHyrf2XbVpSbwuNo1pR2/ZeGBmIosT1m0nGRj1w/4eBpOv4UuaB9YJ4nds75qAw0sdxuTxYM7etOuqR2I/zJ/sQknfHuD5zN8/eGdp4keDSaNorxDNRIRJlDFQEYNpP72lo/XvAiiZzNmC9+wnvNRDBI7z5Xffcmry6iGjazOSg9vclT1lZ8qcxmcsOxRvrkjEKtp1dVvZ6wjq9B94h3dDyIvBUPXPBFuC8y8uzFE2ilwDAZCxgTtdDH0xmxWilxLGy6FHTiFb+ab8uqzajZg0PksMoXqfEsLjROBQg751yQu25wMuFksfYbW33DJOB3zEpQzEhV+m7rudcv8x3vd8cnMsh30dqEyzhXFEzEgyXgax3wuhsj1OdtQlkXqOGia7LMzq0zcFTzPMQEalzmfS2MgLW9nZJ2E62LwkcPSwRdBmyrlACUzyyuu56qnHWOiaEc7bYCmmykuXZy0XXAFVNx77u0522MOmrhSy7MXbqLXtwQd6fdcVNXa3gOvpPdtbIb22Y57ZQLn4L0uKwZ7+y3PyjPyAYqN2eJ+Kb/Ey/gp6gv1b6GVdN3O7YLicW0PqddwXzPAdcHMMc6mlvK1vmOVU7FbTa9jOCiCqP0hbWTspe5LJ2IZFBy7bhgd+FLtTVSCasO9eMHXrk+ZPOOKCNr4xCW29xXpZ7pTtsi4+XdHq9jGBCYSnyfmRJgO0imN5u/yHLSzkZ6oeHIWWltpKYtlVTLTE/N8medExedEQfvA2J1HtiNX3BRMnc+n0iJtU9LqoE0mLROP7w58dCC/z5G0LnyjKPP5LhWsunHRDZXTZTyjnUzbEzaDfA0f3QA7aHGyvFNvFDRwQECBrvSB3UFroXPyRdCqvUq3x7wJ+PMNdBV969/nFN5nYmYyqVeXDgDqSsKJQMZ5PpukFaPLPwPCVUV5GZAGVm9mtMgu+TZDLHZUi1JcK1aZ988qY3l3Q2X0Aq0JT74vhqDTAuMSjwOo7gfVnUTjqLtx/sEj1iU+vttlKPl0vhbxzZWMv7WwRkkkHjyqe+FeAyB3hSyik09djUsZaMjFhSV0k2mLUlz0L2mTH2Jlj2DMPw8+NE71WfkWPuL+Em6bpXyUzsKYWKx0joxc5FAZiwpJH2WfLhKii1SpiX7EkG1oXaIOmwDEiYSJQTWIsa58Q5XUx/wdkxnSUtdLmY8wnNRHPY8BwBwnDuRB6rxOOAwnad3gfgx3ELkJS2l1guOe19dXF0OZDJmljCBQD5nu82+4sQy+hY/xezwq/xwo0JVxAs9CG+4sttCeLC8HTW8IQ7dGPyvRt1U8k9+MT5zL3gTSah82JO6LfYmx85ULu2fajqm1k89/j5q+2w/lW/JCytftoMp2tQsdtFpedDzepy3PZvMmwoER0xlr4gzSvXLqfCIPW0eVQWIgMsEx7E3glehjSl3RqD10XNSJoyqEUqhMghuBACUvYUg+JuVZKh6B5SbpVM8H+VkXcpKLDLwtMO0aVhkjJB+lZflcaEffH/V5OxjLPBJnzNLtTd39dbGKWDfKly2ENqPKjLBVQ6cIhRJHDiTu5268TEiifMSrqXPOQSKvGAW0OJbvCLyibmIXinSxWDXKdKOXgdH9UbDRUhdxDf0cRJ5Wr6b3cA/PZ7oqqnulB3Yfi61i/kdsw1l8ZPqcda/25sRYwKMcJyRfR2I3JyJiB7qtOoN+6tOOyO9zc/nrIT4H8Ia/zym8462M7LgjhKk1fUZ7ZuOtOXlG5XNzF4nfL+i/5yVsa5w+K22/RviCiTcegWGxYoJqcHv5NrTTGgUIRZrCy5fpOF1LYsoieeXqoqlVmcl84cPzBKsroy+uJqYy97RFhz1e/PJDQVqeImYtT4lf+fBMhfI1pQ0xVveR4/Bp8JoLGbpb4MuugLu0o0n0aXeVMeZDWqaokznQ99nQas/gvE2lmuRtIryRcSxazwTizhdmsOsZKWj417MyTfnOAYILXeEjz8hVwGzNzFNK64UE0fE42DDgPHPVxpvOPVmkKPJMA86ye/yKcUdRferGMD7jLOlnWg5A+M2c8fqMeMoZ3ZQigAMTWZU27jFRrxZuKt7EG7yyYE6lXTeGx8HqD6cCdCdGOvuCqY44U/Y6m9H4drE7pm6eo671oqgHuP/I3mxlpMJtDByPnUz2QEbJ0l9Rni4jABnkE7s95Of5wlKGsBnCfIP7vQwkrfWXOLy4tHfXxiKzJq1YvrpFqgwb3G98F9yvKghpOEF1qb+aoonQ+F73ohXntzbxitayqMPDwqq+bOyamHH3hK+7vcGqK5WuQ0GTaelu0tbvugXN/j9x3yZ13eFkAzpTszNecT8YKx43+YspSaiOSc8O92miaI/igjXhM+J6WxQWs0MY69MT67uUbFcO4COv78eoo175Y0GPDooILE88rdLQAyGfZ4l3BiooX+O6+n7Bgc9u5+ut4V3PmGm/BDA6IFfXDNPVjogtaTutGm01CmqMe1qmR0vbQzc+LY6yaPxijCw7WpBqGTRv9umN8XUt30KrhrSWy0hcdK3l8/quPweiJBB2fST4SJytfKuLZKYd2W4MpsYDE7RlV6aNTrwb0F2diXFR3XTdqWHO5xZmkz0Iou450Vhk8IV2tcwX4DfTjgPfns+9aJuyu+f5sgH0g75+H6h3Dw47RlodtAPjfJ2GMdjKyZAh3WOPyC8HOWPAMN0ouBpZWpGH0T/hcUyZbSF3bpOPTbOUz7z5UZqyW+BK5sOc6NZCiWVgVZRjGe/z+zdII83LeyihTvTH+zSMR5R2rleWSjzgfsKdt3AdIRPzPuE5/pz/ydymexbPh7HE3DkVd7Lkm6UmLZqMMTH9xBADhXmRUAzuOZGfbQjWFt8IPR2/mb7YjA1eK1aqIGhphdaPFW8L306rz80LYpF9JyNJN33/SsaCv7ZkNd53myG06u48+uAG90/Ep8MqbS97pa1ujhIKbUs0B9h6cVRJMXGD2FGxinybndvZG1XOg/rl79p0eM6I6QL44Scz8ppX4S+0G75a3t1kMO1Afal4zK4U/Q16uqlXy97eSFOtqjR5z1t/e1AZhdiM7pFjUmaRNHEfgvvlOTB1pD3kabUDgr8OWPnW6IyNdmjTLho+zm9j8phHVC8s+FpgprQ58rFxw+ONOpq0TEvc1wtZYjF07rqFyoxHECiX2Bj+nrKEd8XkoWcVI72UKWwIJ2eOnGRqvNhIm7paJqufWfjcd/ReG96/FKxn6cCL4beWdhfH3woGgoPbrGgwxX3EG+1l2Awcuog7vsEne1IdEOwGIC/wXWEnjWQxar182KuUuuk8y+C7ydfLVzJX4/2gXy8DjtDrBlg1b3X/IWmQVNfFSzGNBkLA8kEoq4o7w6bgfTHr95Y2XPH6+EH4EJy3g6RucqWiCPYB2jbkSjVZkUld2Er79Bbf085Mwt8diBU7Fx5pViNV5R9pB/NwD4T86yPdOd/RLeVsfHnF8SkyR9WQj08d+GgHOVVMfiMPli1lCv97R+ghffLVPSQcquLmxHC38Uyf1zNPvtLeDXkVMt0i756XqNQr+HkFfrqp3D1luWOcqxhXJCct3RkzL7rB1Cv+3xR2WG5TqZatQRdLrjC1vN3YjMvdKgD8tnaRqcu4o92kXfgKwYKLD2wTUMv7EqZqWzZc6aZlRL4N/LYDLg5yzeGCG8sO8o7PldzFBlhLJ0iguL80gNkrKcsr7c1WPyICJ5O5gIGlEZnIWBFz/rbWM1xtkS2mq8bXTuFotqiZTxfaOkXKPlQ3V1zVnPZBdRTYXVtFugAOvdZPlNS2uKTxmgdPu6WNtBgPeWCqugvm+8RKS5sweQS+m7xHxePAX9o+lsHVoXvSFLsD4cur8y0mT8TTsANuYh8m5hb8HHLwEyVqmyrGTo+Yw4PHnbiPatsCq7mQJ5h/R7VBd5HlXvjrrb5ZHtqqz/mM2Q9TeD9XRoLFPGsATKPE78vYfG897fztqO6KTGfyfPXtsJm1nxi7BicqQD+gLTg933HnYbE3lFFlskqbfDxWPdOjS1a6ukzAXkY+9PLETMLroGShBUwsQXgPHICfDp5Fm7FV56j5jPJlXgaT7wd51i/m5ETSrjLVCZDdfNzacs4r1LvxifLF/loKWdzsUHaODL7sJGn5SvGsFAH8UPRxYPmoZ2a28uWK5v7msLEvcizup5PW2yq7CMkdpDhLcqZhGkldbrPSAQJi4NPdWrizQjcYpc0PZbfzHHN0EeVznjOYEsqyPuuq0nJfKRhJOaf2fJSVTT/T5p6UySjHqfkYqUyzZEcY5nBpMSStIwbP4XLmDrcDmC6C7nfkcnHuUA2Z6TI6OrT7OXeL5m6Yn8kHAG+xM4ydhI9+G3Rj6IPTDhwcQpHvHECwI7g7TraDeHcfMk9a87uc9aCLMvnMNVPe504ZPzVoJybuK7Zr0EbN6i3YOV1OFRc1HeumubPFRYxz1KHtu+CXY3wpV58taToeB62Wp9sBPnZapVHV9rJ0HhC6RhMeJxc2w9yBW/K22c6T52iAfsO6saVp+U+zN4lPE8tFRpPf3YPCmm6g8dTjXL10XmwRFYNxwdHMV+3NyFvB2hc9ZluoeNwX6hYbMfM+nLivCmnuikU3tUtgwtXiMkn+l7QDj4sdMMTOXk6wKpgvLouRJtARsZulfGGIBVrX/Tgttg2DQ1szZ0HjEymDgpeAAIL3Ueasr4WPSfy0cRApGKdtUN3sx0ewtVEl7sMxz1NJgUtDj0YItrLADkexA+YaPxRumFvxc0dseFsQj6ltg/l9emwbbu64n0fwda+4736vukOWl3xpBxzzJkZi/+Q7awcnzpmvgW71MUh+zYr1ewb//C7xeGt4xx2zCoy7CU/52KEVypVWDezOmF3Q9jH71hB2yXcDgB1fmbB5o68G1qPTO1CMcy97Ly8elG+VyR/rYj7HYKyXJ0Y+r8irGL4+gfME3AC4klMVqfDxsB25GudJu9GNxBaZFo/DVicFg1Y7XiWWSce4bXCXmqPBxldLv2BfaTmFdNe2rdfBTBO6opieA49Buzn3JjJ1iXqdlEllNpOQo6znUp4zP655GcIYoo3RPFZERSoRqmiJIwrJtupVr9s/T67qisvso6AycoCItWUvnJ1SJ61BC8WB4Vht/RjGNosYfNyrGNCdslLS4AShLZFbafPfdG15S3jQkQbDFdus6hbAupO2weOFT46noGp+hN1FDiFfZdzzfclWlc58SlLbVMeOdvOcZwj3fAP7NuVj/cY7Qpbv0tbnFck71nWbkXaPcX6RtnV+4HSR6cK+bPPq1hj12Ts2PBqL1t6VH12nIJsy9Hy7/Ymkax8rTc40fcNfgbzhxm41qtu1TflakkYreCE6n014R5WZ+sCb+9kKL7TbHURtYwXqK4ISsAumapuLpr2C3enAR/G4ANo4rOE1Xd8zrvK9anOLun3kZSHZGf3fHfiu5128VmiakJN7rc/00gic01irNvWquUYJXrKF7xhG+/vhuPzjHSdmMqqQVz30QcUK9g/SFuC4aFO2xgXtg/zj2YWP5mWVxvuzMopBxUwUh8y9dsBVGZcyr7KSz3QV3SljsQQt0bwYo0+jtvItQnE3QQGKKDmBzutzzc9z8BlxLiuMIpPX8jG6macYBPuGT3lTDEF774S+HOiaYe5w0T2xGeT5auUr+ZbEqpt9XfextWr55ATIIO4jDh4Yjqude/kKn9FolE+PL7lE+cSUSVq66sFSc7EYgDSCjnYFMSxcBqdI6UJojLealhXYXFroFqPy3+cq51g/PYu7ztlkUNfFIQczO6a7CfNNmcOlUvr1fdKOvI9wiaGMJxz3KSNXv0dcXmc80h3hvsJBw3BZyRu7wh0Tx3BrdBNadZ9Mlx19Hpo8cN+C6WtCBcLAyqXxKcZw9GBlwM3JRm/zW9F2kyVbr3/2lnYjsmB3xjc4rnag5yd9v8g6y3aJzxv5V76zF+4wlB2WprcTdw1Gc547ZF2zvv6Mf32rjYjrGKtJF9od2E1bVjg3WmuGYFkkkfoDrvG4hMVWoTyPXZyzLHZ0FdfidT7cYV9Zd7tWPg1SpgQefBw6+O56zbasWlpSek46Q+ONVtMrTha8Ju5PodSFP13WhdatYGy9ir5e4e7CF8RXGZjlR2JG3D0mKsT9cT7JzGDnfdKny2DKJLTINCNv4rGn/KGHsQtXXQht6nWMa0jLuhyLcUNmnmEf+D2x/LSQU+0N83b5fXfBdeHrSHdKFMwfuon6kvr7nMPzuvyvGOiud2UEaYeLYVt8x/Iv3EOsznOWfJT2Fdcdq1zbHYWej6GtZpVireVrbih05UiXgQe0Vt8p3yKH/I5LjVXGph9Nq+84QyH9IkYpsy2RvGZ3XaGreYp/TRl4lRXGg0ZQlTMaQncPUd2h2Dwr+XJlabk2WJucsOQNVqrz4xh/NApWCsZ8rbSncHPY6oZ5J21p2xyj9OegHC4ut4MXeMwyTsXurknuuomr90URVTcmi8Mz3yhLngnIiZPoCo7ltP8sL10Uox0KH3WfCTcY12dE+WCDdzrWxCmSqHfa8MNoBMfV9DAaSYu6cmlTMcGbBY5vkk1BaAwHz1z5jOuJ3TBWF3h98dRn/I16uxlwm44m4R7jgM87zcfV+aN83X0mB0d8phxHPjtg4zLrMMyZNkFgDAp2I9bXBbHxtaFKu6cuvceZZiAkAhfbfDtuyOUchcUjWvnruBn9bxPX8+p8iPe4jb+uH9U0acNO7cfvM60qRfjKtYd2JaOC+1xgir6tDCvQzDwt/k2398oo4jbKMvJX4YTP7CrLbhPTqdtvMYA7XbUGtNoBoH7kvqUFxN78/9j7m9DtluZdDLqq79+z3/9JdCAEjSSBZOAkIiocMnEkBFEnwZkOMnEQJwpCQCSZCJmFaHAgwhEdCIITHYg4MUMn4jFEo0YhSFBDHGTkV867n3t1Oai6qq7qtX7P/nrf/35OeNfmt597rdXdVV3dfV39Ud3LajIu4nZlsE/i8nMdfY+OyzYocbV+8bh7FqyO5WjXlZhvlYesFd72Auag67SSH3IbU7M5Euo0lzbTUR4wI8Z64Zcelz/5BlUeo13ABh5POYmLxJCRP8FF3qctlhleeTjGtleF3WVXQzKGpNWN3tNVkA2UE2NTbpRNhGWFDkz1KpN+vyxcLhc2ri0DMsFy4j5g4DH/PHxsi934ju75p1wenV/H4qM/m9K4b8Pef7n+fNfv6spYs4PZDtUdhSN2VvKzx6pxWKc7ZUnH7u98NeFFI1aZ93vG13THezzrf/DRN+Ny9q8GrHgI+3D/pNNwYYOkJUlnCWCuivkR18ez4eOtcqBh7/kNfR1byhoyqDEJC+M7uiD4rQNR39wxmXmVuGd+VEs76oTqcDp9nYMkzvDVv2IDPSJfZ08j7bNX4EcH86DgE/vOuN8Iy85Eb6LpaHvP6GYYs7DaHzvl1CPODmq9P3T0I7pJ3HrgtLhh71cRVQw4ZEXpE1so0fHJdCVRwZ/ERQ9+Wq7lx0YN7kqgp2Ws9awE8n1Wsv5QdMuk3K6AXVTMsHYeIgvx7L0XPL+MXLmqGXevgW8N6IbPNfrjuV7rKinLJxaNsOe/dHj5lQRtPjEfxFwfWD5Xxbzx6BsYO+7RaVS+5LmzifzCuJ/h8e23xL2lpeHVDtoOP8vfJzoMrvsWZ6DLuznEe4Xt0G/WTbFN2cqrfG48h7PMzvLzqTeFfJJurfbTa6M6mVP1yp9a/bPqmrIm31B2Y3vzhJdIokG8824jCrpnnfjZWN5dYOrlI+y34wbG5j9nJwjEfeu4WSEKGc5Keehyyj2qSOXbjmcMxBUv0RiFqbwvcGAgWZ2izpK03tjJN4KLBht8Q8zdDry3FcZ+Fpc6EQ9LWbOWq0BGO4ud2jbx1DUucTnjvX1h57nEWqcbu6lP1cjCaIfFdwQPECrOwF1nflLHz3zi+x6WRRn+vitmZvZPm5mb2d/3W9L5/VbM1gGobOAu7dFxcxk4CWjEzXjg0aouz5mm1s9sHVrhn/DogZtal+P5aKvysOS6xlWwPdiXxCXopp3VT3WU46YHGY+4pysJCS/vSHyis7vnRvoGhGj4n7heWMbxfmDMT8VlGXg/Fp2G66KELZ22C1F0STy6TLpjDtI6LV0Bwc02CmIS9SxPCdvkvA9eUztP24wOtlZG5lWA8dxf1Sa91abSqdxHykaiOhOQ9jLyQxVpC5fg3qnV/yWslozmawO4dgApj3r2DZh3vaCrjoswU5HoOhY1KmcpBTI0rFUWIzRdY+Ja5Z64nbP94ZJUbjZQV79Zbzaob4etuBnHM/BGRw5XEtpKBmVSFo785s8yLLzBTqkj3E7gHceph6brADzcbCoswoUFJVdnQ61O/qI+W+I67i6AP/cqGSyYauDdEfIxWwAZqFvzAvwZU0fFPpEhf+TS6eDiM65g++PKHY62ISo/TjRqH006qOdl1qYZvHbIPc1YTYt6CLZ1+xVcf+KBk1e9ZVW7OQUduN+vlUPEOHxXI+NiguaWk5tGgwd9oBvvtgR9wn3FvDMtyc/km9MNvWuSobOjk1vtOrfhvg97dV7mRNgnroxSQRQ3b3wiOp7qBm6EJRT3a0hJMwjmRsdcVBYeH5Z4MOF4l7bcoiOrPVd8lvYBJC71IMbqCYF+5M9dZVILm/jrgs/EMsnv5V77y+KD6xc4zQfnKYuO+iA1eg9yuaU73RxFJymZcGPsAaHqyBZQeJxhthu+bg6urrINT83VSQDe0zXdS2/yQANB8YBwCPF1uoe2i2S7zn/PQ7Pfd2BmZv8QgP8UgP/bb03r9xmY6Zgslyuqo5uHz9RKCj8Tz3dKSJ1c/zB5Ji6G+tuBGGS8Zpp8zyNmbx4VR9mVOCUztP63exM9LOBS49YpWpqw2Gqs7jimXOoIznopBJ+2sYfTIjuAyX+l/yssR7uru4ue1DjtY0Pn1sOOn1po+cNNVRphiUfGwf0oBMaVwhthZs3xVgfsOanrxtBxkGLmoTpLfb8MWCud0kbc1q9cRMqe9/qlJm33FtEx5doI250LEstwGxIhuhqkM5XsfrjP/PVHaFOHkmsYvVfvn9SD+4SYjqGbdhG/ycCKZV2FrfeQopR3QNjWlMRpqDnwSMVklanb48uQ7j9ZKI6HuDbdEX3Bcx/XRVsaOx49wOH9TvdDzk7yKGJPPXe5noTb4TLA3HHh1W4leeTgNpLLqv1ktdeM6QBwX7jK7dEy7qo8kKSr00HXGKQrS7pb+rDlL7smrgtq5OrIifvV/k5OEBcwxUzjvWIuqwDQJ9Kq+g8wovg6UENgZZw0qHIln7cmfej8AF1Dp+O1CJNrSZiyYeLROp4dSk2Xw4d0eTLl8lLq5iYocQ3o9ltAZIdM1fGcnBQbucS1xhAs5Qb/JG01nh0/TTAm7onHWp6R1q0ECxeVu+LkW8NKO43TIjWu5K+wUO4rDxnXRkbucRUXW53OL10Z1UbN4ZVTFSHPWCEn37AeEDeGhbzT9Sy/wth8F03bMb+HqmXSgx2kLW6re9o6vKtKTWoRn2WgU3WoBk7KL4ZX9jPbZTAwlYOSSIuu3av4hp882bkqoLxAV3YfOpKfyBntmZEHTddA4WU8rNXazZBYL1iunDGPz6cdBfeFf5ozuOeNfCH9AZM8/IlWlv4cl1eZ/W4rZv8igP8ajp7ir7l+83H5OUr8HwL4D6RCf8vd/9s/FS/ag437sZoFQL8VpxMiSpJsh3VfaR+y+PsgpnsnEoPo/QxqD+8e5I6wp06WdHQONE0SFTJ7TOs8cnjkzyS8f64H1Skm85E/EgNfNehK3ALpe9wp12/p3sJ2Lp47T2dYHUlIXBtxFfxbbuXD7nFN44rcMu0nOvOYfIcem/wcdpoxB9E2/9W8j7inrb4hh30Dqsxvy5wuKR2FJJZfUZGwtz7KTS7JtWcbiwI/ievImUJ2AixdMzRvpdPRWFnzM15qWQTPVd14vqtjEU/bBWTUEQ8f/viY8yo5Qw+Iy/GJJaUqA3ilO+U0SWtPtHLIPDBrjtykna6MR/545yLH2xTVEYGrm5ehenTWtiMZs2mdw7DfyjouGWw8tpT0gPv5/sRuYtn49zzCnr8fcP/Eaw2jmPtNLMcncjXuLe9676iPZDOA2Qz7SVpAU4bbQ1jBuJMzIu63sNuPyPaJbfxZR7X1yadiyzG+O94V/yhWqQ6HrVxxvfI3uVHTOnEex/3APdUZenmtmsET94cOI/ANu7+F5XMu7YFDfgqP+Y+3flORG3nmu/EPAA5ghoM1YDvzzkk677AmYYsT5sUVJCtlO2zEnGnVQMqeztCbcuzEVOW1J7sRY3NwRQM+tl/RsVwBE6OslkOlvOR9J+gNv4LHxFu+c9BT4zX5hQFoF8Ytt+/OpPIAhm2aF0KPUIb3T9z0eZ37Pq7f63RFM/snAPyb7v6/u0/m/PLrT/EdszeAf9rd/2Uz+/cC+N+a2f/S3f9Pn0UoIs19BTqQaGAncWeVUuDGGRYFRIMkngBfn+0Dj890gel+oqTwidxHQhx5nwQzdB7A2Y2u5GpY1eSB8E4iO20Tf9pt+yRuvVbgbE685eckUOn43fQ9OnwYYQ+dyy6tUue5Qarx+SQy3O9V7E0OC4OQyWdyL3GpAmfgbH7oZqSl+evxt8o7KoOHncdMcMZdEqOR/hTjeSpTJ+vOw0BUvsjlIClfaVgrojzswGipB4F9ZfpnXLoGzrQ0bqS1D7jVUjB42xwAbEeddIdZx42Q7fNUTqHenE19rtJ4Ns4pF+Uqw3agoXf9nivYvWp2bwt8ECtqHnvE4HBfeO+F7a/Sg8I2+ngOptUk3/nzuk9rW+oveyOj2B1xAMiFJbbxLGOW74lrP/cinipe3TG2B+deK5f4/I+WG/n/dliuqI0V2DPugT+f5pnvn8LaPWjoOLGgVGT+FffPtE6+kWvwp9lPxP1p3K/vRbm0Bztx/dDjU9tNDuEEjp16KMdUvIdM/oz8NW4fKzvGvKEHbEPn0zYqvFfuLStRYcGh6Mhfgja585lvbpJm9oRvNOStL5h4z0+33JP/RgtON1PF91ba264H3+gEGYmNGMS6zQ7/BZ58OzUili+WX8W1rnOJsIxdK6/FvUB8g4vln9jHe/K9IG+4MvIblt4GNoCnF8Os+hU9GG2+WSYHTDmR36qeI917a6KJ+IxoY9Sm8dtweaxqFYukXTeCH9g/bh6lnbxSKk7NLG0Ayx387mhxhAtXWffN2E5YNf5dfP19Zva35f5vufvf4o2Z/UsA/v6HeP8sgH8G4cb4J7l+88DM3f8tAP9W/v5/m9m/BuAfAPDpwOwxnfo/G7QguuzFBBrb4+ZI6AakEteUGFGgjAXgGm1xwtZAKJFjx2+mf4Y/fz/dF1BkIgvxvdgzM4963BUsHP0srgDtvCY5TzLz9izBc+fsW3JjdskfMqV5kbSSgHrufkiRGcUeBMwQOAhmlP4hu9MPXP68+3nLXs3w8bejj6V/qpCojseqBK07QT9D7oz7mPzI2oKXLdldeEqdnYFKI39sn5+B0rbE2uCQsnhIa7rbdDaXkqT03SoNtxyAQEg233MQgxh2LXDfWnfMKnSGBawGM1qzjB1R5DDGUZZi2apemyl45KGOFbZyRGqd8gkp9kJ4Uu8k+Cs7Iyu7FK1b5D34PWTp6ZIv53HOjoVVdTG2gy5s416PKKUL/Kj4QjioUNPce4CV5y4uXOXUGP/xNMYY8P6K68Q+sT3fu/5Yakvtph7pZLpuT2l12KrT/F6qfNC5wj7xDe5p4ele2vVjHlXHgfv39H8O7le7OnU8IzzZ6gjdndhTTq9U3tznJfajko+ZuOOxcoZiV8HE6EgLKR2rerfVJ2fX2HAbaIhKCke37N0i9U19gNpElaW4/5TfI+0KbYenxCzRUw3tID/ZLsL4rGfDXFYdlds30ISDTo1Y7z6r44XzS3D/SKvnpHq4FIjUnFF8Y413a6RlNSnVGJv4qVxlqgFqEBIfmW7bHxrWaYxaLubR59jJHyHPsGtQZom1tQYYeUF+fNx6dXBJHlDx4ldwWKJd1ns3T5dFjyoGw5UDvrH7JcvvqjQX4BtvM7yq8A1X8uhCTyawJBiX/9+Sm1v7+Z4ux291Sfy33f1vfpq8+z/+9NzM/iMA/hEAXC37BwH8y2b2j7n7//PXKPKnWDGry8z+YQD/cQD/658RWshXHq8jjHoTvY6wBCTWyk/cSTSs/qszZY+DCZLkbT/WJzIyP1wsqfci75bO0NH6nbPDKvpoukO2TR2BWq4uV5OyDXvDz3kdOsPR/umGQsCz1yJ5VBcCGGIfGIT4V7/vWUN1WQF0v0mVgb4HsJbDN20le6gqgKh4xJ0FFiSi92vNkGKOqrZ071oa1wLY1gKuS+VYgex0tZnp9qzUQZZp1+6aeunIJqQqzqKNyr0WYDynPsuPs37k4ppBRg+0ug5SflrJdXAnnSv2Uio/QozSIXjlisWC471R+6XMdhE1nPVX9DxnPdLmITepsg4+CGtwFtCqRAGeQqc6BtyQGFnCmW9tGOl61h0iF7kO96ttY+z/MK2NOAqZXQnSMQ2LBBAHZNaXA/YLL9Twznd2PPLPL7FNlgG4/yRXoSjXt8gxuPfMFMsoZqmzIyKN6LPvLP28KyMee35v6T3tgdV72tZm3Jpowz0sgBqMgdX0SS5wb0iaBmWe758w9ZB/5qdm0Bn3iuPEZ9hWqeSeurACneELJ6o33AoZuq3SIJmmS5p2WYdBdrxfKudEAtz4htXUgcPVXMtg6l/vFY+XFw/5pZ3KzlZlQvF2YGrUOq4EYmABamKutJIVAyuuaty3JOvljuu6V8g7lh/5G3LlhUMzcNhK48aknmI1LFEidd0ue9JcuRfqbEIQR+/puttmHQO3G/9Yc1jc58An+zQstfe2bJChb0/K9WpT5X64tfTqWMTdA49bq5zCq/KTuuLcV8hjLuRbYe2DIHyTOqZtPOWGGinLOVT0wpd2CacdlQe6nsVhMQoWF+p8PAPedXKxwa2myHrFjUNRcyD5h3KDI1bqZ3JvcF2RwEJ8kMWSfbgqSNB5Win4fi7Hbx6Y/Tq57v8qgH8/783s3wDwN9393/61af7JBmZm9u8B8D8B8F919//Xw/t/CsA/BQA//D3/vnyoAc4IwFgJUrLR8CcO4hMy43P5N2vuiHsjhod0BumeJHiGJyHdiLnz1ml7uh3MFY12d7vneeRP3t+JGAUYReIjrhCq+dA7+psOzcitM/XkFqlpM60nvTR/sirXZORDZ1ton/mzIeYeJeUozeFwYTjs2n3Pz0lwcJ/Nd1TZT+McfiR0XaCk9SDndsnspxKQ1JLA5ScPSvTeMpLwKdd9DkjPiy6IlKMdL6b1qDcAdYuIDpGXLtfWBnfUIUDKPeT60eEj+SSNwnUtR+PWveT5/CU6kXyrlR4N0CVOrOJx7lPcPvJ/n5UJkril9UGPLdfZ4cuRg7Kpu6c7SzSFhwJgs1WdgeqAlRwbwTXkkPf5g+frc9xPa52r/YqNLO9PMNjP55/g4kg7q8O5SPBN3H9K6+fEPXW96dh2z57QHXNOHRjX9d5v+S3bnKsmTO9h0Nk6inHymLbyUNP8adzHNuaPOrKddPinyuQ3u7LKetpq6uAHIJ/3mnKvpNO+Jw9o6p/iGpoznC6DZ0U57SEP7Cl/ElI9CW5V7OSB26pXVnUH9hat/DM5/eR8ZrewjcefYtsRN3T2oo9v4n6ZKdFduKkGWmMy9cRj1XGGrWZTdZgDVsO1Fy7vkwkBacOCxdNNsHmI43ziPkouHuqB/JuGHRxmUZ/iCP9VwTqnz2m7+yiTcmGnRYoLsg0OLyM/a+9xGb53X8bv7UPRv/b6iWb18y4z+4IYlP2P3P1/+hTG3f+Wu/9Nd/+bH3/19943YwOTharNNkDfCMpG9RxkVQ2E93bEzd++4m9LOHb6z07Q0EvlMi00GD5edk+z4hIt+O+6m+J8oHDj+mDols2YvtEMN2x1J0HN3OycKChpuDNygrC3loOMpSPQ8EwSukFPvz3FLM9afBDTiOzDFb6zQ9tISMc3sUf7Q2dYYwhHHgGfM3uHbUYHo1T1m1xNr19xUHMQA2c4fWa91ppy1nCNjn/nedqhOwP9jHujevZzfhbN0pWvMxXHInuTg8+wnATVHV1sP9u5npSzdyXXap2pjvaVZySzrc+ds4dCulkum/bKtnFlOrGCuKvD5d6nXDG9S2wQcj3veSpiE3+dkIUY8O2K26dCqY5Mx2GlEwAs23WkP49v3pv2tD6NMU8WiwNDDDwpLOTGISLXYZurZOd7vjOb9sTPd2VU3P/yh7+364vOkh14zfLRgdfo+I/enshivGykt8GQ8sYD7lciB76Oa3SCPolrn8TVbJ9MoJw0G/yRwJTr/ojGN10bZfT5Z3IOpFyAS2e0OO4bOKm8jSPo6SJ+S6bAOjI7B6H5vFzFfUR7wv1Pc1emv/PAZ3EZbbyTiscVGD22/0j2Fvdbcr4l9/wczahRmW4vNB3Gkbgar/o+M+gIS7yLB4fc0rEj8L6wLRNbXIGSfKW3tmBq438fm09MJc5j4HF9hLkUmoMtAGMA5rD8dEt2wbbwtjf+Ms3LyUvE7tybfPKN080cNdGncRmf+buod+L3lWnCevVxyk2PBtEx3q3CfZ7SGBN7jftqK3IG61Dza57+KLh//WmGDH+WS+3ye33HDADc/R/+LatlwJ9gYGYx9f/fB/Cvuft/6+dHlH+VHMcxwoZez51heW+ND2PFyo77W9wlssgDHBetn4irWZB3dj6T33akUUcXj/zm/Qv3js8hZ97bDIPjnaEUKLvIEgePS273jU68ZuZkXb3mBSfb3hXOuKYKSyfGHsLe7qWTo7OEVUalR1eEMROZ7+xM7FFH+W0zWTv+VdvMuOE2yO+TPK9+idyhY993SVilrfnr1Tt5b7r/qISB7pUkR5ZFubDQdELybaIOa6Jj97vivx74huFGudOQRvCM8rOlB2ckWWUnzFh3xTYAB3+to+OQc2uE4TNZciUesrzo1gELl72XscOrcXvA44fcWLXCkNNhp87VPTrkRtw+xr6IG9x7ZgAc1/6odKMTsyRu5I/xHFY6scPDe3i6v5jB8eqjnnNAhwq7egU472915NdcCjXZPgf8DCyXCu/3JBT+NO6oBg9pm9/UGCcIPsZFt7VH7D7CDjNJ2NE+mN6L2etnhUFnfvjT7K7jiUnIej/k5st1pIdDzgsghlCJUw8QG/K/VGwkPD7ZcShpN6VVP5sn5a5OS7PecjsDxKt7VbVWUQROirBhK/s0Lm1q4nEgef0GzynW1b1qJIXvh1y6wTUGTbMByM+2pDO3rFDRtXryz7QFr3J/VLmYcp+TsMJjxeco0sDYrZVbjYl2u5w8IPZ44KrJAxGZ2N272DgIkbAIN9CXOcyBbR1ul11ZDqLzN/gGhcfkAtqi02l8XsCBsVtthZ3H9vfnSkq/jNuTcStPlmz+CVtEh6k/d5DH76dcncxj57iLp3nvL9dfz/WncGX8TwD4JwH8q2b2r+Szf8bd/xc/FTGWVT0LHt0oWe8b20bb5b3j/v6prftD3LrPfUq10qDpfBZ3ALjEOd+NuD7Djt9s/dnStxANphwXN8MnuQcT9GXAdBOUsKWzl91N08qZItsa867HaZvuvIbsJjMfuIbDNpXUxFjpbMiGasctLt8N+anzHCB7ycHtXci5vZf7fqb/enfqf+Z1Dt7CddNFD81i++JH0/Ej7mmOJIGds1/bhk3PuO3nz+7Y3QVU5fhxz2fzCGUGtM7XDiGx2vPCWDnhLOw4Gcq6DrmN5JBhXeVI3aVBbvk9605WWh6X3/sQvFbSvewrkUqOtR7ojtcyukZ2PR/tQ/LQRjTAduJSEOp7r1pBNOTeJJYPcTRJOuoh9c9npXwfL+LO9mQ9C04MbksVPrbcX3klvri4munJiye2fwvrTqy/Ye4TdvN+dKok3YewIy37RM4Z9xu4ONMR7Dvq4yPvSXp3WxyIeurlDHtyxBMPRIFbdWoPW+l1xq1nP5NfBI/1Xg9VUoxFtkUls8mvz+n+Fr6B6qx4X7p54expm5OH6tUZ9Jv3wnk/Iy4M4Deur22duZ8TF1a4AKAGY27t+klliMcADrdkLbvWiTpw5f6bfJNYprgf6XB/oAneitySY10HfT6igNCYK1xxMmMPXqic8hELNOP6KZdG7rhVHrW62GF4z0+3cN9bcHEMht77he1LK3DzR8Ulr3vGPVzXqRN8cOZI0HxQkLYWy/w9VOPv6vqev7P2S64/xamM/yv8ivJqUjlAv6vBqFZ1r8B+EOCN9I74lEt8dZ7I5XdZpdNBpmda9eDhnQ0y0kbNdE8t7Z6WA77Y5ptQa8bIiDs+5KruRsCohjXllusMP455AocjNsGeh4+owW4Hk/iDbRJCq8gFxASkoYQgYOCO8hc3p+tBAmhNP9JoSjgucQ82Trvewt7uldZlH1HGtQwXAx/OKFLuk8FaZdqCYaWK3MJquhEgy4v3jpzw6HpBVzdDuI9c7g1gGUcHeEWW3m59JyGXCV3Kq14frosWp09pH/Ry4L25wTgdWrbFYTHe6fGYZAWYbe296tYnRsKYT9b1kPvyh7i50dkyU5aDpyv/YhV5l4tD9AsM3IR+lTtO6KHH44eNux1dIBakXN+lI5BHHXusipnlqZJpyZ0d5HcC1/I4VzFOBuuTyajbtojL0yqvggzDZdGOX4iBF99xVa5PP+MHRVvHC8jj863uf9VVjTnyM/cM2h27De0Wlqv26spnEvUxLiQs28dxEqPC+E1Xa64S760b4d3i5kNit2YRkLavDa10ZkOxKZ86jXRom3g58gu11R2PS+sDnxW7lXNYjxQLfGl3WnnO7zoq7gvf9N4WKjt1VOSN8kugpK2Ef4bcgwcmr1m/e+Qb5Yy2Vbs9Ju5n3H3R1tZxbRgXPDSogqXQcV96aE+I/wpHij0UfwuP89XlueL4boRSuY3/Ip+PhQcayg3uuaaee4WJqTyhkNkOLPNYdOWgzhFug1pkG7CV+JW2OF3ygXQ7dp5oyHsrOWVuT75JnQyOywyvbAz8RAj5ZfvG3oH74Z1w4Y04SdEAXIbgENrCuqyVB+L04D64BPC0Tbpxpo48AIU4z9XVC3GADF0+AeCrG9wMyzboZrqTqwKPg8feZvji/Fon+QswrDiJt/Iep+1G3sIWoQdCrhmPlkr+jHJxo3vlrzqP96/t+r2+Y/anvn5fh1FpeWXORMaCkPyhGGefxpUbe4hLskJ2CF5ol0a9JB1ypw4QKi0+E5cWFa8/atZxadx204h0vE+s4moBV8arRVunNgTGu7nsL4D76UleGXU15fYMcFLxQnyC3pgTNvzB2IfZ89fqtMqdJf96csOmrpDBjaxAkOhIKMaDSlQJx+w5ubqAnI32efWoysNN7gONmbfD7ADCleW1PFwieNqezripleiSKAWi+TcJO8hYwp463Ope2mMtlCvjSF8HZ1D3kDPvkFlEhpU6mHWuypyizndZEF62Al62O3DNGlI8dbLetHzOiFVfrut9h2XcdueLGt4DR4blPgUzVnUPN5Fsb5ztbLfAdpPZzgaU+c8TK7ZZrXAxbneG2/9/uhxmK7TeM2fo5nfhhZ0nM24Ss4ULC90XL+TehhyNcO9YuFwucWGRuOWqmZ0CR+4tk71xovNvucwA9noax7K+QZ/xldWgjJjI6gK5n+k9/MaB+xLmlNvKHu1J5Q4dH+JyQk3fqc5Lfr+A/oasuIsfdhv5T9vY0J8d+Wmb4WZIWwzFBUeYQerF36cxDDctHznBcMOoNrZMuojcwmtrd0SHxbtlNdC8c5FVnviu2vAU/sv4Bve4JvfEWE7gfeY6r4MwXdHmvco943IA1VzWFVjmUFonCz7iajqfExfara4rpw+5NnDfSo4NOZXyoUOfIti4aWmnPkQkdHHBX9YKH/kjj1vlt64T96WAHBCu6vwXlue/tixOCoZj5/HfPvLQOjYPCGZ6uqxb4yTj3vDV5b4wNfKwRWcAeFkM9GKf12r89ROPg28cXa9qL7BgOXHfrd0iOcjdI0/r4IzD5t/hxf12v/cesz/F9Sc9Lv9nX2z7CYRgheIz/f1wr+FuYe0h7tM7/usY32cZcuyTdDUP4wScjvNr4lZnGIgl8jPvFdbvJ0DquyHXR1wgwY2HU4x3PsmTxqGAodOUgye5a6ZdmcPRKaNck7Bj0KXvq3ddtCBrfPpi3hvz7uSC1kPkDjmY6ZC4T52N7+H1395rxj1Su+mImdebXIicp7j29A7gYMfQgD2zxcT3Q7r4JGy8049ssk5rW3q6jDqSTIHaxNz57MRomdhjlTqKHn0SoQzQJW69Gq4lnm30iMtBtBve2+B1lHN+iV7izgz6TTwf10qrd6ZJ8vXNO4gesnJJMewQkJzZn6mXiPYW6XbnjwPSXino3OrglC7O1XmS373KLfrj119z0kfarfKANKzCVModOIiBrYWpD5jbcjvyz+IbjfutsE9pSdxu3X7LQ1Urf8B9Sfs5/y7vXADpjvtj/xzIA59xRONrCVZ8Pm2s9pV7lqeuyNsRtlYzH/jnhvtlgwGKN06cuP/b+aZVvuN+fLrFAzuOBYXPXM1VTumAz959ovM3wpIjAVSHVTG2FzHp+ib6fqrjKfvp3XkdWC4N8XITuamNZ7rI+lmkgsK24CpiKtNmZRQgzncTuxW/iW2JsQ583T3QadzXrEydbNRW5YFZBsRUCYlzZdmqRmWdS/Kja7162BAryR+dMgZnxBiO/Wtxs+e9aR52edsUjVv/Zo7/cv35r99vxayAu1dAokL1EjvbWbXlo825PBoPjopZ70QODLmXq9M741ayQuLOv1MPJZsHlZRA73F96qANcKjn1WidepUdHbr/TMOOi+9cbCOAFflTAEt9NoHlTDcVFoK8va+8S4mpgYssEi6EPOgzraVdalVSPt53ZOm0sAyGYXN1YtQr14RvOlb1qdm3kF/pZGXQb718imVHPdPnt0dVBzkrFgELpx/ExDMv9xED8rsstJmKOmbERv5QcZrQpVOdDWL0Qao4ZB+GsIIDdbpgnRSZDUOP9i///9LxWIFi2MqtlAPTojUcI62I23sUePLWGzGbTCLTQUpkKUgyTmzsuFOuiY5NiYV3YtgNh2ePzmR1tS23Yu8DFujz1nINp20Yx9MYYnap2q3jYGMEMHgLaXuP5vUrCdrajjqJNXgAWS4uqhWuoTD4rPTa6ay0zrak7fgBj+GHrOcs3OT4T8VNTLXzPfuLGR+rEHQ2aB8qDrnO9CvDPvlIf2c9bq71yYlH2D7BgGF96vUEOrRNqZSG+gSPKwliDnNVePxkC5dq65L1jvuL+IZ48w2+CRUPXLTOqzvat7lycqy4MVwlLPk7bDnrD+VqzfLHnypnbwOw6uiGp1WP2zO557cMlW9OOR34/mzihuXphSi3wRH5aIyf8g2scNslbkMqJ52Y5wfOqCdWA9e3r1x9bdzvla6OyzSRq2Q3HiideiLUcxDaYYn7bYE8z1NstfB2w4XXqN5WcbvtDh6QisRVzpMHmgh6gHefPs7DQLQ8nwDxO7p4gvKv+fuert9nxQzKmY4x7SLkYMDw67/HxZ0k7B6m4po8TzBUAtOViZ8sp6f3ovNdR+0R3CPWxlpOxZVLxLNc85kvfe/4pPVUXINzv1X5sj/olW3SAtthWz3Dn5vyTZ9xf5IWX1mnZdJJsTNOS+50c3/QZ7IP5jh1HpzvCb7GGbuTdRL6jlUNu4Vw2ZuAAD87bJXl11sjOKt85jdIqCfCNe8zPw6LgRfbTMoOG4my9DdXonV2OoTADZL2tNmNpD32NOnZTczNBrD4fmQxS1/Krz9ynXE9yeWYeabO4aIRckNO7j3I3ya24C4LBweEub9K4rIrVZv5kf1J48qsV34ui/1ascct7pFlsCws5B6nfJEurXTkpEC6jXB69KgBPBbaKhcOfr7aPT4iSxeWBeTer9irYGZ4w3KPXdS0Kz9OGosL/JRoVMb4jnDWF6dO8Wy7pc5zD8SvuuYSsDw/MG31z8/bt8RFBvzENb0mzT/BfQ1+yvsm33wT9+f9yF/p8C1ueIg7orBtzDbyQDH1L4dCs10pHucTQ+z5lAOynpL9tK/Gl4Urd2x7QhbVd+KQDyOYidY35ZnZn8k3d6VLn8kZYuNjJsoM9ZmU5/x9g29uBrbuhX9y1YFItzcil54xistpGx76M/xNRA9ijLaPRLhIT+SPPlWFRBXZ9Ijo8xH9zLLKyUk7rQO1KlUTZx74a71vbfBAplEY6pb7vtKFz9l/6OFXlWDKre2f3vvZlnnuuw07kkuKI1LHbmnAyxcuu/CC4v6Gube7PbHVUZyBkU/yTcTl8Y1WUuK6ZJbqZZb71wLzaetXskX8f4Xzoq/y5GD12cYyj/1s3+/1/bkk/trrdxuYNVFElfrMXWTM/B2uGBVW4z4SH5qsz3t+QPOIS9CuPo2Ahnb2VJb0NYkCzzpqbDlily4d7ECsIy4PkSjO4b0D6RadKZno5I2EjG2dX0eSr+jVtogOattispjK6XSt0xn5O/OPu7uI6GjjXsP2ffzL2eWW+7mcU4/TPSRfSTb1vQO9ulM6Nngy/FrA1zdTE1vU9ZC/8VbvW0d9fur8HBdJnKt8+rcveIFvUSoAA4/4j/QlJbKUuCTN/m+Q0SptpI7VvXV9c8cyywMv4hAQ0tA9L/l/76e9n6QHDtFItpAhO1QmOeT/M2zlGzVTbsgB2zZwr1j0P7zjWu4frG3odCfhNu/WkflVnS0rmXbhUGldlWsgsrWkc/T2Vw7iUfHLpRReOtF9hVvPu2uycrb5qjbtOaTTVNx26cjDQeJ+wXH9DBemh0uaKPcuPa18ORuhxtO4Bx4Pl3BJzwE5XKTlepi4PP/4auiov49/zxW7wv2fEXfkp7Avu/4LwBu52n7kR+MWD5wDGROdJr/cVsbgtQeu2uWhk0m6bBu3tMDwM6926nhg+cyTl9yJi+QFaSWv7DjnErV1F18Sz7Qwr1/CN3cOEZdyo/ufoV3jY7+4vyWzFV7U0t8Uo3X703bl97iCsY2/Ehad352nDfKeZiAGVLRyvWadkEFboanUTxe1B2c84LE7Xqsnzt57FXLOzOtoLfUrDM2Gq42u8FjyPyadfPRLqB/zVywSYvJo+jDuiftE+7BlniJkdRxJapH3vtGeAFzFVjzmoHDB/WobmyHwOApwwfH2Dzhegd1WX7VM21yDT3gqNL2oXHRqHjC4v5DDy9TJchC9Mjc7sWjBfYMfvv6er+9t5evXXr/bwMyB6RL4KXHJMxxEdYQ7B0rfjOvylw1S436LqB/ljA6Dz7gniX2qo6P2mT30fBojvBriqSNPxbrpcMh9fK/6Aj1QrPX5Q6dC95+XP84on3FrppkdJZvvTQZDQBK1W7kFtNPZ/bInvc6wgr1axkvi2hHvaUCXHIC9bZbfWZRn/g5d7qc4Th3tUcfW6xbVw32E7hRAzEIu7dA+pMUXLJ8mulNHHx2XM25v9O7yprvi259O32FkvpIhzCjPdlnpDsoWHYtuQthxwlr/Pzt71Ck7DLt7LnNio9pXu5PUPKv7HAywXUnF35CVQ+u26g74WQhZbtemrVC6mhzocm+eVp0m4ixnkmPyh7ZKMXSVqmRioL6krs20n9vbz7ruWZSBzufYdrunbkf7vcXlvz2Ovq/+fAv38/5x8vAp7jrinPmrjqjIoV7noEz+7fAnlou8I111dxpaVx4ecPHkyPx9S/vWJlVu6/cpT3xats8cwo5zuIR1/Z5trOP+er451DoBWssvHzmAvQ9jHDhZbeuBb57k3CYUv6HTuZcNmT848jtejTHrmKy4cSQgDUTymjioFlgj7sTjGBDswkbL1a/gIxPMTjkeDdP9yN8NfyOciY6Nv6h2UBhtI2dpv8Z92uXauYeXOXZPzyLJn4dtSmc6ILoX35xyR41hHgUbUqGhC1bg/nbgx/2CXuFF4fVp2ThJsbWMirNR7JfhOZnHlcXAXT1JstvTaPqFIXaz4/d0OfDvmhWz332P2ROoPz5/aFzAMwlrQ2QD+Ky8ztU2dnoUi256q2xteQDG0cCf5U83KfsMo64u986WPBe5XGGL159llPoo+GpCd7nlgVIdDZ9l9K1mqvuGGFb21RxZGjeqVq/spStK2S0CrBshn3L13bOqlV9Rs03aCt+iU8cpBU2Uz5VI5WhivSfjWUdm1UXHUuNJBlgfvFYHXmuuFJ0y6rfwHBMkyEcA9duPAJsVM7in2yAaNJOiYwDLpO0YWDtQ+wKcewBQcXelR5LKZ6njpXHLNtFQNpB/kZcI2421KMl6XhMkt9SZulzeeY/3JkRIyrbSadMGqod32txTcZ1xwWOA2y2nTnRk3LRFxXWRS7cZX31CI/RUyLQb2p2G9xXWFy5v2+1fSR0DixXj2FSOle/Cches1uvAfX1+G9CcYdeBsU9NVvFO333GVUeahuN9AY3oofyzRDavE+cFy296HqIe3wmmfivu8NQYHif+7biHHM0DY3/r6oX7avT3VablWC8mPMMqwIoTwIh/uz/xOOPes1eZSG8Sr/AABPcHiQy5rvc3HujQxC5tEuo5IGIrPDDD9mmGMw73cGr4foex8uAqN3GKpwhKk4m+jxO3mEHyQrrpJZbD0+2PcZIMeEhJ7clisRb2KGbSHTHfK7+AA3eRC+7FatwnXl+QZgUvHfipmcb9xnJyzFU6rspfnfZX5WgD28kZhaneeEywuzw/d2KxOheHgAh37bz3/swL5b4lPf4beq86FXLDcGGlTnlaLxbemJywhYO+3XL/cv2prt9vYAY8MBAazAZ6YQC7hq2OexItec+OeyU/GMKl5WGy/qfiKpFWOBloxdHOoquGZeIEvZPU0x0ijk12fSy98uxsUzZwO9NiZubU0UofQ9+rnU0SqOP8xVVyCniQJ3I6CI8ufpKD7gBInk2mgcbsocc74/HE2hNS26I7zqrMrRpp2EMOcGRjKDw7DCtttVaS1Cc9oz4WmTQQYW5uVRK3XNe87yMtqbNoAu18h7vE4lHA3pXzNjAb94cdaYss2zPsdo1nEpiDuZ4hZfkty4FGETfgQy7lyNHO1d/pBtE63W3DQiKBj0yhy6DK2gwvYlA2mq1Enm4unmGb9ClHZ/L5nuW8Gtqk7Pt+Zf7yd75fxr+Nt/dZ706STkJtO8qHqFNOfw6ArjNqG5VrR/5616AZDyD5bVfg1SyrKvajEZ543A8FF9VzTMIaJB7LVOMQg5RrTtzHEVcf20N8eX/Hd5UfGTB9Xrhx5Oe8H5gqelAnsY2ZoT4SXcZs/Ll99kT+wu45CHMVbeO/26U6deWR2J9dJ6ba5AEmkzjrG6XBdKtn3HOPtmZOcaLtUZijcf0hBUNxjaWd12JrbkUeuzgDn+73dbk+/0xnlM6CaoChju8PjBWdHjB15o7i7cE2Weqis0HxuHWi/kswlrZ6vTZ2cqQfcodOQ27r2IdyaOeLOp9xRSdoUzZwPL9slQvx5a/EPasJLvcD+3KG6eQBYvHEfeaRdlxS9gzTnQ1HTIItM7yW4YWNa78qv8R91JH3bZcYOAKN5QfflG1m3B7QAuE8+arJQA17dxD+ji7XiYVf/vc9Xb/fHrNqpah25d1+498173G+P/7NVGc4povjPQHlIFWdlR3pn9of9bPCnnqcadgcdNU9dXbAdpPHCP+g42DM98NbXQABAABJREFU8/2jjrH/pDtE2tS8dD03Nt9OX+G/w9bUs4cFxc5MV+UI0TR0MT9Vemc1kTjhEjF6JgyfdhuD2pseHZ7vTjnSn5BOj3S7My6TgPWM4OfXtO0Z0h6imuTvW2HVNvqL7iPVQc+w2jk403JYHjLT+Rv95syjlxtjNCy6UMSm5qN4OhjgnrOfS4g366drutkRqY3m8+SsyJAfCkLqtjZ46mhx8MGsDABnH/cqUtZ9dc4fYwrfy8ZhGyvS1s3xo8vtXT+77jgr7ihQfiPn637BuaRSFbMcZwDLjsRwQ6LFDjnHvZ5+Wc8r11bYFOWDX3UpHt8wlTii7VXub1hu06ZPmPeI+3x2nsj7c+Me4W/pqi6Y2H7nKp/PNp6Pyz9s0HZpDv0lfFOeD1IpzgFy6e2SeP1UJL+nNeQaZFA9cb94RjBVdZhHt0+sZcd8W2uyYGKD5rnRXI2tX68Dj4/6fcdUx+BNNtvNUxDvcZ8u5ZansCV3Nsh8NoHrSY4nD13bbmEHn3wSt+XmypZ9Q8fHXlJJyLbWFfN9Ley9Sk7QAcuLvN34FlxFYdzjp+2UBa35MXThWNU3LcfQrVfywo1dMzihsPaAjf3NzKDirlP9MdFAHasH4UB8BiYmUOJx7O0Kl13gq78Ewb1khe1CQE9oxf7t04+XbaSaCOOOPAQfemWJA9OQsc3w+kY5fw/XXz4w/ZsvrTjdwGrGnw0vK33dM+xJkjjJSN6x4YschmcdPuPeOh/WckvXQ64nqJwyNL06wtVyY6a6PpZSXo23j/PWDErKNuMOvb0jjU4hvMGEOifZRAiXuPLb5NmRvyZ7JebOb6f7QATmpQdJur7xpGQwovpBHmrH9PkeYafeQAMTdWTX9HHmUl1UHuLyqn0GBgA7Ce1I8KgLJcS7zhfEa6cfJHPvYqFWhwiX/OxyiQDohDGswXb2gLnlJocAaJ1hGkfEe7ua1KpRKmaeec16ZBnunfJWfmQ6Vp7WnMVKFxBVWF1twoWlddxDdrqZeHbFSseeIdS4l6PcQ2KFMcqPti03GyHycnk57i/E6V31Ac8aFDNsk/NVdg4dL/QA2mkrRKdl4cr0mBbdbRYuj1MY6wOj1AmAfsiUs6SXt9ytOor7Swxg+1MCEJ1/1VV45QNT53XHmMEV/BNsBzBxHP3u5IvBKUfYn4pLOZWOaisJ8Cj600W3uepobOnKZatx847lIlfaxoEi+WriUw3W/SGhG5+ywufrdWps97wpH4ncbPw3gKpOpWbuwLqA0Wyppu+TF/LjyVWeI3tWPKY8APd6fl+xmvmp/oZqqa7yjGvEfeC1At38jHzkXW9u2J2Vyc/wPvOHwdP60+sV9xYtOcideXWpwC6pqNyyqaPy5FrpKq6N9jX6QRJnIw57co+DtAxebozuYUdiaGGvtxyM+2c8ZrvYEv+qPM92S0bcO9z/Ysy1yx3RXbFb/jKdwtANwFdg8ab+E0cHRxT+cppg8gC9ML4mf6zcq0d9LrdyY/TE/RmXaa9ygSxucuEbzHfkT+WB+t6cf9+nHka52K/++56u33ePmQIw7fIz3BHH7N4Zl24tn8VFhy3feQlTchlH/n0Yq009gJj5eEhD5YbOOfNy+u+ny2B/k0wOktB/evlmvDh1oiIVnC/VA4C20KUpzUR6T/UMpg1d4u8oFFjZo3TUpZPxuHXUNMQDQsKnY4Bl53npag3AnpQdtqkwg6jlnaEAcq6KTbXrcrErU1vAxwJeiwPLBdPyucWNdzUbJnW5OM1V/4hLtx3L90NHn/GBcIn4WOkcFwWdYbUByYc1pZcW6XYh9EBZ3LBETz5IHC9CcrNxvwx4Wa58OeDpV1wDvkz8HldyJvihLoRuGSfrAX/v4dcWYemGEh1Fg61wZYzBLF1aVsntQSfTTFDPRjTcAi1Ptyr3R9VR3Rwj7k45lmXC9A20FXDlXgAlfFQeIm4NTvMd0225a8gNnbv8OLiGqdvjqrSu59HUL7vY5sczaafWdfwRj+14rmETUy3Vhs24lnjGlZsH6Oq6fWZT5VKOiVybcgd2K46cck8Xduuz6k65iuWfc9UhV7mm9Le7HtqoqdMZ5tE2B27Q1RyqrIRUOSONjstMD4pbyFOEeyiheDThVgx+4L7art3MxMbEOkAKQXQU1clFr4XsoSfu2+O4TAaCkj/eq22+IdcVj/NBmzQChfszV6HaMLEy1a6Mh3bP91mHiJmF++h/iW03/fOeE6kvC46M/6IBnXF7MlBxEjWZspVvOGizyTeNi1TBRprseDmiXn0YYHBsvIbctHwNxmKgtmpQRJzmEfkqN9LvSTlY4zMrobo9Kl4DMdCPc3Bzbxjf2eQMgBNoMhDES1w+hQdswW1Vmow7bcN90MxPepDYWT/+cv05rt/1VEYFa3aokM/r/SdhFT++dT/iHukaMF1aTPSwT+IeuijxR3g/fgu6n/nT63RNkA7ocBfB1OPuKjMYqOXakVbeWepiGhYESK+TYJ2zQmW4B7nDNj47AXCJ40KA1ENdSHymgwBMJHCOcN4AeFgHPsJ2fmGSv8FNqofM0sq9nXFVrucqKPgdkyM/+Ma9UNwtXUxbzcvH7xpU2nzniFOnJtfHHWevzVC2fDrl63Md0yYyRWpVsYqdsrPTLh6UfeXxvN08SFziIgqTetNyqjGpWwaAms+nXOwhV+1/VlF35ObpfjE7MX5YIzLiaTc/5Ug0t9SxVGdaIdytOzjDFZM6+atIXU/Xgppfs5MQROu0JIaJI044EJ4odNY2o0GPUD//Gt9pNKmPhrrXUy1L1xOPcdwf2H7qfr47PV81rdsK23mPaetvySke0NZruJnPLE3ic1+UiT4ODExV27Du3GzxIEvQuu5vmKP3/SG9eKvvDOlybFWf3Wb0pXiU+TG5V6y3pXEbjwvLKykxzKd8c+RPbVE6iNwDrwvnMXF/ngjo2eZj5WOuKNxxcl7fxv1vlknKjSb5SdhMeu9wFw/DN+Z/Kjd/PfMceuKpyiQDZD0fq6Hy7ob7W/da4R4XdFjHTU5wlbon3vmGnOHViKLsyAvKGRx0vXdPcFnWa5XjZVif2EGRgvtTrgSq32I3xTTisTc/XuXOqPkDIHzT/NMuiIrr8af52QeOKWkpY3CFvM37fV7f94reL7l+txUzJ4hDiM4eiDh/f5rGE/lIOrdyUoLNjlKdsMP3vNFwouOQcxK8M10fAZ7iVg4ZttqDzaP3Dz2KAHMgECnlf+JS6Nrg3SWtVNq6KU4i53t9KcSkOkHStX4SWfc2EGZaqrW6qDSpeM10jSIs1vAmCNMUM10XN5e03STtaVdNmp1Z1fk2EGEqicYaN9w0rPSYnQRI/rTyCFl6p21n2dNqIrf0eGwnEfa6QrB5W75coU75R178yJ/qM91CWKJWbo4988k6GIHD3cKxseJ4CU83FqhLoMalvE5rP8jZaijQhUUJiYOBBgne82Srr75gvsQLy+LTDCN/Fh/kyYa9Mz3Pnme7VFrZOUsg9yCyvqsdMyzoOrKSmA1fN5c7rpvdu9xytvO0m7dcLWN+yBRC1qxINasLwOkIJULPuvJLryrHNGHpqtiNT955v28jYOD+1nRZTGniGmis+VzTrnRVZ9HpxlV26FtyoxEPrqINTwxySMfxE1dG1kkd7LgMhgo4DqXBuqt65MvS3buTSGDZXniVGo/OWbQGdtwkLi+xK58bM/GZi3fqVUeae7sfjrpHvhFMmnzTcqpMJAMjHfd+V+lWK6o/7lEaAwp+oWM3R1bbfqhMU/+2jR/vb02s8i6DJccY8Mysx8l9Zlbu4proT8ltuzbf8P9sJ9tNsKH5xLOiuZYPeGJh/L3GGe+dPx4W5WzIiLQK6wWbWAO/xRlwcbtXfMwVr3D1I8aO2jw4uVbFaqVshQtr7Ss04Rsxt3PwR1yPsBviLpvpK6BsLLzzCP+FqxI23G1Bz43Nla0qp3Tn360Xy2twYsplCTuoo5URHPV1te/20vr3S/++p+v3WTHjGER8MnRM0gCO+U2gJNOIK8/4W4iWcSus4S7nlTdPnW6NW24pRyDVkfdm8JVkZZ5xrQc1Qw/rDwsBQQqvbAjZ2NvdAulu2Arwm2XTrjLLJOxsY6Y15cKKiGJG0YaOxAlbEczp7ig9hrOZ0qe9FfKhMxZ1Frmp8xo2jhP7yjRdVWpGjacfLmvA4MyZZf6qmogcrTqVNm3qyNO1wpJllrZchYV77kWq2OEGZ63jnAlkMtFRW6KII2eWu2bUrGB//LgDM3/8f5Hz6OyEtmbA6wVcnvUxN4NrXMppvlO5WafcYg9MBmL5OOSgD5ato+o+4EEACxVuGbCyjMuy1itlKLslgUj+ghu5h8TyWzNRHuG66EXkL96nXg6SmY+qvJFexBZNML5J043ADeUyQqfIzbJ3YGFhL4flsrKZ5fdlYo+fGUlu42VxaMFCfLhzw7DWgqM/SOoW9/AFw45OzMVOSHwg3Dw/F2rJvOjTupZvGBZ27g8y31i2BtGaAZcB4bwT+/ti1Wrjw4FrxbuIb/DFD5ECW9YTf9FFmxMHiUmC7XVvVQ2+jcfHva8jXZO4BtgH4G9p9/zXW85IF5Obznug8fGmI9sOG7ToPNwNl/whwg5szfx56ZVoYHbwnFfcDsskEo/zwVYbGhEBQ8f06w0Ze911GnyTNj9sE7jRcp18lPq0F0NiX+nVeMx3LLDaX4YOG+9bQxecBLrOM6eL9gqpgr8sgiMubXjoyJXtVS6YzEtZo9P1DoPsQK/8LmcEE68AHWCrXBIGGqfs5FnEIPK1gF3uG63DkJv5HE4ODJq/lznU1ZKYSo4M7BavEuEMEEudnEEXzF51oh49EZl1pWwjn8bJWQhOksHV80U4g987LSxoF8KKCy/Hpo/l+HGjjpVfWd92NvoIZ9i4sgxydar4JvhfvwnpAHbW3RfoMsiiXaljYr+hvkkWam6sxclUw4VXTmLug2+Ca2AW9xarbFHZNswjLAveENwF3zBb2Ih/yTe73IQ3zIG9VvxOvvqer+9tr9ivvX6/UxmPJYjqENq8P//VMCOsHWGPMCXH5F9H92NN0lifxJVwz3L9kCskUeT8EJapGQoJ3b3AfeSHOKXEd+S3VpEIQDY1Gd+wHVykBESdyACSUQ1fgePlOnU6wqpZpnuIVglxIyy9utMQpJruIzWb96TTg5zj3k65EHIAZHAonRbrsCrXlsN3jn0O/PrMXeTpfnYP/Hj+uesJgDkArDqVd5tuLcrh7T7SJyMCsF3pdbkxsfi3idoPnc8bDJuyN9Wbj2VFqcgV1eERCr83BhI1Ijxn/2pgzJUgbei1GqF12tnjCOLaPZvIw1ZuGXTKnPmqno+oNgqiwvKNScGJfTM5/R7b5f3dimn1Bfh1X3HKuDEQHC0JtTqXuxi0tW0DXvl+A3lKGEvhp1y0fuJyFMY+Yps8+yaWH88cau/P41Y+JcMDU22U1LPc8/nAZGmzn/GA3Lt5nkJqwG76ufON/0T+XPT3YdexEpZpmdzDXQa0uTJU9rEj7pRbAz7KHVk+5GjdkUkkq3c+8XhMRiqO0x1LwkKv57hzgrQrwJ0HjuJV3D901H3PXo22LDWvn+CB59+i8yfvb5yhcONeh2o0dynkCN6kjk94/OSeSDw5xrQjrZl9S/UM74sz6dYJVGJ+JITmLfWWKT0mZ7ikVStlbGuVh6yzNUMne8GogZo56zc5hQP35lyHCco6RG7ZwsbbwQNi1xKYGX/7q2iFGN8NwCQ/1nWQ6p+ckLaMgWpPBrId1wpnlX0OQFEZ/S6vXm39u//6XVwZi0B1Yzb/tE7q38LodNyR8/htUoH5m885q/WAm9UWGPfUEQ86HK5/JWsBPH2x29jh8sG4x7L+HJSR9I4OxEPey40Q33AtoVyu6HWOcuYt/qqOb0u/p2Jxya/8HnKOToTm146OnaGIInTAmFyuewv9apXFGUcg59DjJufJbulf0IOeuF9SQcy4Vz7DFbdn3Oy8u3ud6ie5x7iE5Att9fWT/k91FaGTM8CZv3zsngMN9GBIOBtd9hBSlGGnj+RuHSLGfYTEqvo+wtL15DzKGZDw2chONwMSWzsatc71Nll8i1zm1490KNW9j0zu/LNSCqGpXNe0SHgdJvLrQ1p/dBR570fcslTl8/I4NYzlST3646okWnFPER0ibLvTbLOx5uW5mrYl3m6/m8okBwe/ad70YB3i5U9NOJEHTm4orMZxv+azsXrEk+CYw1Pumnr5etDx5Cqmdup48gDxeaxyANg9GTftw3XKI38m72VgNHGfeI75vjYnNg8U1AjPVWMX96jZXIWb1BasO7TZ4Iy+CnPUFv4U1qsdldqKQQ9ytE4orlf+aNLj/cTfO1dF3Bk2sKzVGfk7H9/qzT3s1GuYoYpk6HnIpU6BDTLh9hDmCbhn2sTUrAoDoWaaej+yl6taxKu3W7QLUapw/dAxBB8PB1dJ5oRvvHjgpjHOwU98jsTAz5E0xireQ+I6xv+zUDa6rdqQ2y6EM78T9zV/PMjjq7+AmhSLl09xb2aj7rfE26y1gif5xCd1lnzzl+vPf/2O3zHrQr+V9Ul+OmhRUj/vNa68/6wu1WRN1tuTbyruE3jZPSxnbs783a6nuMgWFttIikTtht6pDhNfCQ6Zjt0UPeQKkTwOUuS+HuVKEGzHiKM+HvNJDk0UBZr0XV1PnuOex9Dzo510k7hlxyLM5nnwaUcH6pjnx/KTq4rAmqw5sOqo3ROL7KWe1oebMYZJJ+Le4+usN8Eyz52Fs5xuVV+esx9Es8s/IjDs91ob7xoMaRkYuE/AakYSE6ilIzMI3aPeuYl7UenIjlS6kVpYCO45aDK8dDDoYmWpJ3vnvr3qXFLrHEikzgvh5x8ewTmIcJavVVy6M4abSnw6tDZMI8jc4OG0kulWWK5C5b3BsDx2fy3LSlGzy8xLGIvngNG7iHsP6ALs3t9minZuuJydoiiby4Elsx4XIHJR9q5ytVj9gtHlNDogZhtvj1MoZzfFYODB/NF4r8SiFyxz8euGZrdBVL0o4xTmcjCkQR5R48T5T3B/VFkD7AX4Je1IjTAN8vllrS8HB9o2Riv7BodENTHsrE8mdeCz/LEtlOxv4rEokrg4YZH3xyoOO8Bno6+fP8E3GdarCfgR1yWsj7jGsKUzEmsCnArfZTm+cR8N5g+8Ub/tCGpti06aiDRroFHHFL5y0tBsw7myLe4JWgw1keV93y8pLV4uyTu7CHedjxzSk4R5WA6Czo2LWT6aOyny8ltITOUAi5iahVLWiUOJ5gC40mKRuhcWEvcjJWInOaKxzS1dtz1cxIn74eUQWL6yD2YeE178HtjmStqJ3YntyQQ1MR22iwzstMoCJ6wMWI6Vtgm+8dqOyb27bgtmV/MN0q2R2O8LF3bUGcF9em24x0e4DQhvnHds2XA0zy04sBcuk9Zv8SmaDwue2GYZLwrCEBN9lHsZe5mcBIxyfTGucztAsOD3fP3l8I8/xZWAoFivGrFPU5fOgMq78hw4N5Oe+9NKlsNfHv69yyuNR1lCgqbpUA/r94Ac7UvQlnsfewjyrwgWuVcGodvwmz5tkzOkmr/D/XKuOvlBbMgjh5sxDHJroral6wbzKH6Rnp2+7mw1CUVC8z4GUfKIM6X5e60mOQ64qMdrcV8S7yP8Wp7Hx5rI8SlntRwODiKPkZdyv/S7jmqmIrI0lln4lNuQa3i9UIOcvrTT1ETXcedg8CnsSEFJD+gVVtc0QoCZZZ4ce/fS83nEfWl6+nXBxrNyGeBSAvobKl5fhSfUc8UrKnu7Gkbn38zzJKz1IBcSV1eZ6H7X+rt3AzDVmcfwDz04M8gjo3kUMACsWIX0OOY+/P9XE3WeINldNSudLDcJtW0k/3XPzoeEhcHqPsK683hkHm0d0viRac5ebqR+4PHNK+KWfSIP2e0AP5cQSq/SOZou88uO0qpyqQ35NUL4FQSoeGbaIZVGqFh54qzNdMoD6eQFiVuDO71fgMemurmiYTPu+M3m/IjH1JGKYf5BMJVBFuspmgdekj88pwGgTy7MdkQ97En26gT2kb+VroutmwwiLFyzAztTFrpTP1YFT0zFlHtb+VnzWfONFdcoLtqSlr7iby2Hb446WLfDri3XZnkNW/rwajA2yaxDyyB81LbhoHnGdXk2cX9iedrqcOMdg0MbQft5Ybk+k3sccVMfWzlIuthYODjpAqxFnIGP9ike+4HtpjpmLXFfoneHXTkweJnhuhqvzoo7sVowKGX36r/gvs24lnl0t3AT1FXfIc9htnLPXbiLe+EgPQhWezowf+A0hklY8s2q+8Jm9D2/HcnG76OC8sPbkaeFja/71Vg/5LzyAJaUg5WrWondqS+Um6C8B+Em5umVHCLtKMOezrff21WD/1/x9z1dv+/A7CxjgowJRoCdsb78DHsSJuvhgxyHzwNFvP73M+IeemoyTMcktM3wI011bxxpeh/hf8bhe3u4fwyLw10mfvvSuJ/ojKnj6TVAnW/lUtCngXO+6Fs6H/p/SjiIDkO5aTxN4HyWH2gH4dARs7MQA7iZu3FE8oAoeed5LL2/MK8Hxv0sfz8T+8643dGV91Rr390QNH93YHp6J4FUjp92lZDsQKDtYxLv2mrJGfcm9+y44GbJGRY+5T4XwREHeTojidigs95UompPdnZaTk5k5FON+4T9MafAfO+j7PO5p0vLfnXrSqK3CuO3Mmk9H6xkGnfP967lQC+A/PPbmsovvyxTP+pM/To6mLf7W6xv8MApNw1o38CNR5JWuU9yPsGcG1eNvB74tOkhgcLW+rOJ5Xe5x++B1T4HtmdY8sI911HeR1pTzsT1R775VMfTTXDGPSdLe1UpP+I7cONgIs3P2fZnBm963Twz7BbkMQnfDt8c0JxyfZT9E86f2P2EBfXL5vuzSOpfp7u4Rp7YfsNFHwhXej+5GJ4c8ikep5Ix4ZXH0qtt/ND7MesyGDTm+eCblNOFcvD4A88x+N6xsjRUP2yj+7BH+3Qb0VhGHWY2sJN+uuXH6l3YKvKquN9q+ZDfnHr6bMndyafJNxoXtzBSC+wbbeA7uf7ygenfeh2g6zqLlO+rMuqq0uwjjDjVsE0qIcPiYZXJO51dnaM7MLC+us14g8gNgHG5WMBeSPmWf+qutiBwiutKuwRMsJt71Q6dD3E9xRYIeDZg3f9wS5NRF+mlU680ZB/cfCHp3uRmUI2bhNNuGL3vq1xYJGnu+6Jku9lqZn9a54lwvFQu+HMXc3i9YfgxoEvFY7Vv94B95PdZp1Pnso2GlTIps95FiI6exxNHJV2mnXC76VF1nb+PdyQRhx5BfI83n+nxvnm/85RItCujxu/jjy3caJ3kxtlSFElvSZfHH7OULsh7l09jmNWxzWzbDuCdp3IZgIVwJeH+rJ3xIy/WR0Uj3D8ibKy09b3V7GjlXeTCw1Uk8hurZFeVnJXst+fpmrYlH/H8cu5HWHgz7shf1BTWA86SXuBgPeJczvbdq4SlA2zY+frNRJZ1rxqWVOgj2Fm1q7zseH/wwRClf4LfA3/9fj/in3qwnhux2IcOuiBdGH7gk8uEDoBwG3/guie5lc5D26/PqCjuH/YY+9FUzLHfy8xDLwlbrb3yeygxuMoPnjvTimfKR4GpiTR+DHCIxwaUoxn384hcU50ILmILhu39wVOf4j2xzXA7p55AHkeengm2Ww8B5zs3pW0+Md2tWG94fMR1Ddg4Slv2FQT72UAo7Kgd+tn2XWzDVajK3wMeD9yX99EV2zVhyInWwv2MyKIbHOLtTM2VrD6KX7Audbig+jcPwAKbL88dJAYsXIX17lYHZrX+7TWyyUdp16vyQG7quJfH5wt24vVV2B1x3048jpWty4GvbnAzLI8VYuL5e0dakfbquN5YzQ9E70p3lgFytfJC81jHtdKZ+pNPv9er69tfBma//UrUM/k9ftoMN1ES1ZEHwNXaBm0N++RG+MrwubxOPUzTl3+buOQfw3APqQ/RHr5nFVfcHmGoD1tavrMXgFeA300N6se45Yp15IthDf2+8h8v7CFsd5C8yMuMOnnLhEHFUrjJ/9uYyE7AN+Te8pdujIvve/aUZl0LWK92x2GitVZx1qVDFgP1O9fHMhiccTtZE/edYItwfzG8VpImlujW6btb5SXEpOWGK4aEhegu91VcaHNPkg0hy+K4/DjyWNxG2PEwypKoh9zQ2aRjqe1TgY3lcNQ/aeTuUe9fFn7uHJSg3Blbf3fEnqi0TW9ktyRtaxu7Zi1dWFIuBzgsVR3ocsAHi/1WH+nCFCcgrvpGTARe3RkZ6bYrSa9W0bWk3W7apUXccW5uKFYHcezM34eFhHe5tFCndmVkmWwZVNGNiEf9D52wEId+vOIIfjA9Dgx6hjrcliV/P3dZ97NL2rP86DqlECL397iYrubrOeyQ+6pinBj7iZxnnU8d7R6X/7qGzXDFVdZujC8Z4Dxgzs1V8UluxU17Fr+IXMZd1vuxHvJnC7APLeqjUAQYTf6btoswn/GNoG7/knphllyQLvXEfXsBPBXPAMBN1YGM+FuOTVkjX8wO0IHz2W2ABHreto3XCoxlYfcHt9UYU267lfFe8l963HXu/PZeRDUhy34tujN645dg3ZR7Vv545q48Z8k3FKoTOz0AO/E4Jhoa99eKyTjPwQH32Xb+usDKVZC8UHLjnitRN1f7VHq4W8JKF8aN1bfgyA8DbAMXPgpf96YdGtcDlxdq9azyR76xMbgtV/jMIONGZgW7Mwv8PudasVf6ZTsHT4HTsXUj/FQjLa/8bJgc9LVk4tGEF0LmVXzTcWNSsN0vrXRsvvnL9ee/frfDPxQ3AQFOO+71uYaXdxN05/3tnQF6BHyvdkn4M13DXY4liX6qkx9xfeZnxPXiOxhywtLmhtwnHXGXgwc54wh7qFtLu1MQQqhH3SeMOaek4Ak8rhhfWuk9YZX7ujQPfThG69EuYP08wvZf6xxETbBskvW7nDPuYavhoij14xywnray1CEIyIdO99OLqiQxS1DlTzlnWJX7HBa3uFGnQsdr92oTbSLjkyN/8SsIo9A7nnEjNbPNVU2Pyut4hu8yvZgiPu65mtCl01/1Rm1nQLmNmGNVqr1hnzq6Nh6uAvBhM2rpTBHuMVPJGdncX14DFiC2QWvceseBZJZSHbZBu41BTW5ur3R5MEfGrVX8iP/jXrjia2vgwSZe73Mq58gf9851Sw5L8YhoehJomG4+WhNUR4wFmF908SAJ6qdi1MbMitTRb+G8hiuctPtvrQ71iasT2z+JO+TYc1zWS+bxxhE4DdclY4i9MDbSOuSULHEtetLz4IHbaherL9jkZg3RNl97exIbdUA78Db1WoceLmGf+KZP6T3dF+8cUdlwwB9OdA18mLjveMBUYrukHekLF5m+O3UUrvLG0ktdGXHH41PdofqJ3abPz7gnhyiGe9kBAK7rxH0fDcEkLBTbU45OYn2bbyLQE2c0/sZjruJ0zfeKO468F/v2hNi+8Y0kfZPro1JlaIkb1Sw8M77uNblbMYk6uXfcDDD5pkV8xjfof1pH4j528EAOCt97xb43hF0dQH26JOPqUfvNN2g0L64Sbko5aOs/2NFG+/lG9f0url9LS9/b9bsNf7UzQ9yvF8Bw5RuR0GE1/qgx6yH9+i1svBu4K3HGFezSxhYNrl0xho6Zlh6Jz9/te5+y9DfTvuVRXEAOnSinbcN0m+zGveiYbNvvS7/jL2db6frEjylOV8ZOx0f+Mt0i+8wPkVDInZu9h80nFMJFZ8t0dq2rt6MYE3p0Ezx6k2VyFn3ZRuV3spQdpOkd17qa0BWDh4Lo8bhDcOrYb++ujDWLVrbRzsA9rKhbdgNiRerauaJnVwfyGddx/9d9vvcjnrqW8F/Tdy7DAa8aDQfSFcPwCmbDvtqG9d2dTOPusUVqEbdAtMsk88cTsspskLCOkb+NOPHwvS2GP45wUSL50q3Dz7h5n2E5MPftudqWsjfgWJHvjVo9K/cXxs08cEVtu+HrFUssL1xpD2v5u21bJ4JluhE2wqubzfZw3anVMP6btSze+bhHhfn1Z3NVbUh9if2F0fz3qHNSpILluGHbaLp2j5sFHf88xcVDXHuQe8oBWcQVNOvwjDrSvlas+F5kOZJ/JmbU3QFYJvk9EKa5ipo98k12ar/pxm6lf7ccSUsmtca92AaC3SgradzOX5e9TpLFH7G3jqrnYVlHXB1wBf5MOSfuNx5PO5WcQi3cVrOYFtt7HBbVcbtCtl10ZQwQTjz08uOecR3db9G4lX+Jd12IFaGl34ewI93z/pCfcmplRvjVMdi322tixfb50pH47sm37uAW1+YMNCZt6zRLKau0Gn9N9vdN1/kqnyRrv8WNUwx/9PBwWZlfekqcuA+IHNoi/+j+6I86Sjuve8HuDFw6I3B/Y2EFecRkhHOg7WWLC4x78I2Lm73TtTHqarUokburdUfatRWAZdfV9Pu7soz+4sr4G67bCgpf5KlZ9Uzfq8uKyb19End1p7/jWpPkC02ymXCNY5gukVzl8Mas0y4XSiv3SF3NurkUUoi6WC7vPOT70fdQe81pS+mkpNJl31OuidwEkMMdsF0XMmq6WMa+Kboy5ulLQ66qFC/syIAtsUXJifsYOJQzYt6j3mncZenSsuIkxC6gKVddG/MQ2qmjd3654tCrc2JCqXeGB50tjsz9WPG3Fjs9EXqMoxK4m+TpMkKlW+fTxSMwVN0e+/1h+ZQVOn6k688YJjttlV0XdQdhTyczXeAl913sCmrSDaqwCZjWhAvQ1caLlOguwY5Hy+2TAvm+CajtwJMhWe7lvmdNliMurGcMHVWvP7L9lbufhxtIu7AkSSP2ddXHqI2DMsrlKVcdl/sJNmc1mT/LUxiZ16GX47UcZhsbsWoW7oj5V64m8e9lq3TYdF2EyJGTvXaG1fxd1ItuNrSvWaWzfyt1ZMOyp8fAwHozNEbl78YsDMw88XiE5d8LgsHdeauqbHcdBvZSWeEfuiRaARbjGrgCMFz9CtysdXqhJw7tyV2cihKwug1W2BOPDYJnNvjm0SNAsS9dLBUPed34ppW766G4kfnVlXDV0dI0vahMPI4E6Z7HU2YnnqueVnFJ5F2EgpmiV3Neyiq5inBiV5H9sjw5OE/2K3wexhC5QOGIYl2/t2nWITdx7ohrR1y6sMcKWbfXIdcPuT51npzI1TDhDNi0jXAGCmN1gIJ0Y6cuNv6F5Kf4RgdHmFjOgQYiWGEVhG92TS5wP9jkAYdhmeEjT/+sfWNiG5ey5DiMLvgxUWXFF9vkd2K96kjTODnCVmM346Tc13K8EBNY+i4wWFwbYbjsFXvC6KaobvT5rFzqbRWHRNhIq7nuNXjgyveX/0bc/3Nf/hv+vqPr93Nl5P/kYA997tbvTozqmRO5P9NY+t5nWLdaGTNGNnnfGNr3j+/8kNPvSMquqzTWAd0cvvpRESNT3k0KfsZn/kSXAvubj9HdjaNdBvOeyTzGZWE49rapAxxnM/UiVR/6FQGLHJOw9f0QBPRFn6VLtJNi3IRKl5MZWaC3/IpOgHQMcv5fdVzixgOX9MRF79BZ5UQ9dFyXKjE7H3cUmGV0rjLqL3IeHt4DwJwxxug37W3wvWYY73RH90rJVWbLdYVwajyfuQpA0nem5bxP4L+DPTsAHNx2KqUAmJaLhJ4x7DIkobo0UK7uSv713sP9x29xmbd7CXb+mGdaVFxemJpp6e4ZhQIyf1ow7oa3rwobegvgFHC66Gj1WPUunE1x5qj81r48eV8dx2o3v/Lq/lrrwfsHu0qRnZVu4r5yhr6v3932AdSg3lUPw6Mej1x1tFf/VC6Kb4gNt7jlWgb5RqSEPXU6+ecTTNGwwDwevvG523aXa2Ogwatzd+MbrWOCkxOj/OAqn78x/+1Vsta5B0w+/ka7hR8W8P7Ei+j4Ge5PTJNBKnM4eG1yxAK/yYjkSKmUh05nHT65+fn3U9wH98zj3Vg54bKW1r3C9o5ekwwumG6cyGK6NmQ4rMunwRr3/gTTjtDX1oqhoPYZ31D5PeVywlHzo8BgEEzl8pw92BR5GAf1ottgl1Pcc/Kw17YLpkV8fesNxF6rPDndndFptDLCFfn39lfiteE8nfUzuQO78/+KmS3h8zwoFwNnff3L9ee6ft/hrx2/5XCO2RBQnYqaccjVLpnkv6Vbbnfa/g39vZgnAFHgSp2UukQrGQxBKnw0Gj8GCOr6GDrbSKv6nEDsM1hNRQO7TrsRz4Tbi3CNurScPn0x83DYxmSjdZGRI90+Be3ttOskN9cCLJ1Jamzo047F2cnEliixjrgvurAUmUyyVtvYYTcTW7ADUS4rB0nxw9H8G3v1TMyIrLrppxCnc7UmowMg4Agts9JpEq7OrjKa1YOjg2x4BE53PTJ52m7Ya5B2E0ZvrK4HJ58dTTAqOskT6FMJedEF8dq5jqkNmR0KWQ2Tpe3WK9853R5FRxL61qVKUx16Fpb37IC+92saAyYyWy5P64r80GUwKp2SrcYu4nM6Cd5tw5AMG26JMYBdR4dle0tS/XiQSrk+SadA81R5P/K41VgVkC5aVi4vv/TSYhLx/XN4FKDL7CewfnCGqZzG1wYn9jnubfQzvhlMWdWUbuqH3KXc5OWeqAOtulecGLg/Gad0NLZNFwxxmchs3J+cceebemkYPGASt+dBBDCUbx5c5aPPq3LE7ge21eEkUn4sljnBxEkzpnUefKVA6bOt2wOmCu7jyOJ9Em9yVWUP0rp3YpnGZbqCBvpT7XLLb0ee4dieB5adg7TGbbou0+3zoVodRXRuA7AjbHXvP1fRj/ortqJ79XuvPIzqiCe4r3lGpUtO0dfCN1LliAHUuEratRDobWH4eiXub5fyVWNYVneJq3oLljd02hFW8VrcIDFPvgyMjRWqH/eSfcgpR/I78ftW4w675vMEK/1GHFdH27iSn8zfb5iS+2u5fi9XRjP7b5jZv2lm/0r+/Wd/S3q/24pZcUYB/3w5sOFp+OifvHsgbkcyrTWgOYIUemnZa0Dws3V0CbRmnR4AZjhIRDJQnQ0nox15OAQ/2sqP8NHg7ZjF1ez1+0azW9KFKRxMbcBeM+P8eeRP1hoG6d5WdCoUwzX8FKFyEFnZjzD8AHV92NNs5G+ddYNLA0c6I6/5lIOwWfRNzpD8LeqalYUD2xh+vG55VuLoFTiDP5SDxmWNYpUzTexQtqkjQlvWEbMN3L6xFiHioAomYSJfyNpaflkv7erU0bXjkM9d4ljIopSl9pS4WpY8JCMGPbGXyhxYFqS04DVTuC1nDLNJ7WpSBrM8cIPvqIWHe03st/bquIWc6HBtRD5XrrRwlhweh4Fc5ngh9h2wrm7mN3MTch0X6Fkcn0Et333j2YisD4ad090LDvPYB0e3IzPDlfsHli1c6DVEwOro/Vi1MVxla6u8U86FPlk1XF9mLbqc9uvy+6XXZ5jqbAwKLQem3ngB33hnD3HZ/NP10V+AvwP3Tyw/L5d0HjN0xpUGeq7W1W+bv52u7KDFRXq5jkl4yzUDZ/4/6TYZCuNbj9OSzzqWJ8MCpOI9GGDGJe7PtAdqyLvTYyDcw6VrKVhAbBUcPnWSOk7Xuyn30CHD3+U+BFPOIKamTq+1cVmfkvdN2+Dz+zPuzTZyE3a20t8kbtgq4t+qdFF3c2I8N0iV6rqruMz6Jnx65thGGvlvAWLbLvS0W8bclRtFPRaPGbalm19iOeUUvue7beQ2z88HcGLJE/cDA4ezoofX0rZAw+2Z5opBHE8TXuij+F/JS0A8736QxVZTkwktD9tfssIXh//Ey5gE313+Kc+NczmGNzyPguotL2FncZqmW5bv2MsdzIJLtjVcUm+Yn65HC1e4b6V+vw73/7qu31m9f9Hd/4U/RUK/z8BMSel0V5SWXPf8dz3EhUCl7hvQmgoDXnqfK0WOHJz08bb3uIeOJ6GKHoUmTwTMFaVzVXDIyYyz13i4g3V+faRt8rtAdXVcUx0pXtxy6sj5jKJuG2YOWwZ/xWEb44QjRxylX/ZoECepqzuJaf6HHIPZluXy0/Uv9xWIXV8rcGstD1dGYS+DyDk6WtGBxQi7xKXU0C4/jtg3pgPaHiRFfjk4DJs6lseKXpwYJoU9hxojrbZXUr9rRyXiBtFxfvazsKiBTZeSw2zVnoztL3B/wflNObqGBO/pAEvlppWO0abOZprtzmsSpMmgGR71wjzK7/1V9zJo99K735Vpx0qT7m9j59RwfjU4Otur2ouJGyT38hhWGo33sbfEAWy84J6KuoMnJm7baV9amEWYsrLjUN1KkVtuNzkKcd9wGgMO+AV1T9xwLIs9EGaOH2uDlMSFZSfkyn1hjl1dD6vOyUpSjrLa8NQ38nV1fox17lj5s9Db/Rpl/4uuA1NrAM82x7I+V83O38oZ6/ldpGOzw7eqqGG1wnHX6/ZbcYRyDqxvTPU7VylGKvaj7WA5m2BMyCAuT5Je4X429GM/G99v4i8qudvKXx38gcTd1JEY7IvunkmWDKtcO/KX6orNDQ9yDr6psIaJqeCes6iJr1eMD9dyvD0nCiU/ozzgg290A/l8F8/XsYKqLv+67y0GYd2JtxXdXfJGDfQhgx+OaAy3pvPppGUNgLq+nGH1/onX9g5935tHtCPrmFRtV9xPwTVesKEH+YQD5NprTPsyjRq03XEfHNhchrk5VC/lS4x5hdDFYbnKM/hGo9rEY3JEZEPxOLB7pREuvOCcJfIc6NTgL0K7pKXdP7OFQs2Dbwr33TOuFWd4Dn5C/cDYV3Lmyzw/Mr1Snz34ZvvGKp5zmO9DLkthCWegOMPYGcaFbcCLOvGrZWbFI/5rcf+v4XLgN698fS/X7+bK6BASfnoHNPAfgAsc90rEfsQFhFCnC0i1H3wj7kM5DzcVIZXWQ1won3KoriZnfnKmRiBpzvzijDt16NUzr3fnzLGG11WxuHf5neAPcTnwI63Kn490zjzZoec8ol5Ju2Xy/RKC5D1nzq7zeLjDteYzElRZzMF0eVEdZ1z7JC6xeF9PFZYhp5PSvY6dbjdn6/g87Jk/vfTDmMBDJ+DQY0gtQn6W4+M+ieuWbpcnsvzcgfc1K6hD6tgTMGhddw3ifDrE3fXgT5PfGTcDX9uw96qOyJHB6BCUjg+6m8CLP9cEClQnm7ny3XnhwSZfNw/taLX4b8TVVjNapTzrtlnv3I/ym1r1/8tgv/o6cf/E+pG+H/c2fw+PJ5vvR5oceEu6ttsW33SRlPthz7Pt173IIRayQt5w/6gcW+ullIDd5cZzf9SZMbsj+wkP6K3YVSeFWMcGSX7GN5/JecINO+7xhKkYPLEMhRtz4usACqr0VCZHVh5UPHDRZcDmQ8figXzX7mWdiRro3MDsju2fY2rLK/3tbrt7/nJSZls/PfFoVBTB3iduPyRMDjkSqnsB4uJIl/1lmGFEB7rpTQz1b/NNcZUkol44LHO7ZTTdxW3wj0lFuru8TbmKmifwc3D+hMuqo+d9TJwG7v94vQbXnfjfKkxb3bD/lD8M6TJR+1xffwvu/7VcJJdf+wf8fWb2t+Xvn/qFGvyXzex/b2b/AzP79/2WrPxurowARudggOU5G/cQ73HAJHFP95Fzlani5KzERrsyPsqkLsSaLEuj4PTvvxGoknGBdD4vdpJ0895fgH31FmLoxn4S+5nfB+QdIOpP4IaHWdzByDnTuaHT2eeKDbIM+K0Uh6yaqVwT22AOvPR3D8o480rJMcO0LFao3lfkkyY+ie3ZhbJJYKVbkKf7wLLDjFRX9fV2f4m4tXMkZ303tr8+JeCT2J50rFUrxxjAPq2UQXTu2hWudTwg5WUbe79G3ksvoDpVMRs562q56GSYci8U+UpUG5zFjZUfeHx3LKq652wusGxn/nvmlu9iTrH8X2rmknOC7uGKwfJ6uWVbJhlGZVg5aNlKyBzdW7uCvD1dHw1Y2PjqH1gI98WdfiRuhpVKlDtZWCjkONDrT7Fa1YwZRlrwWsXafmHD8TIgXAhjtWthYePCdsM7V9A/cOHv+Bc4Iu4bF7BjRU1B5IWVq2aG+hCvt2ujI5aOok7H6ZKXhdaGFXUGO2b/bWHD84OjkVa7Of7Cq/Cqqkmr/bRC9Q08rmJkFOUMcu2Jv1kvbSG8sq9PG04n/MnqnWJ9z8xjRh7Yf7ynfvUkvROga9RtCxc1NY7KHamZdB2rDUP2k514LAlbYEytfNCVMYXc+Gbk22a6fHrjpnv8wuPaTxYP6ttoOckXp/ESgY7ye+Kb02pqS9Yh133FYVe1FScMG0KamzxHZYunp+4V/YlRJ2i7b3NTeyocUWly4YCyIeZPz/fdZThakdpGuhnFQ5UYB+eNm+WBYO1+T/dByu7ytMQRBGa6jzIOEF0drxaOEq93e4sA3rgvegMoV/lwY6c7uceqkzfuLzQ+14DbgbfH4WbE/R/3CkxlxUj77Moc178s+cexsHD5lX2CKZezP7aZVn7qBVHnCn/Jb26Ab1xZMB+2gc2zgZJv6M+PhWs7YME/OxtalFR8l21jFwbEfb73dF00FBddVRcC7Fby6a7c/rv2+rfd/W9+9tLM/iUAf//Dq38WwH8XwD+HqDH/HID/JoD/4q9V5PcbmB1kzJVmNuhqfAdZnCQ54kpaMAuffYZ9coNcKPfBMYN+6DLk6D1ba+lkg+Rqpu6Uy0QrLpEqDGIb0UOMEU4mnWhttI2ieZKYdmRKrolNGsi56Ro5cLrNBJYtgq3WC9jvkfl8L5HQ9g4XAx8uk3HMrhcZMBn6yLMTz/ys1enSlYSDxWVIt8GNP6L9KR3WeallfI07LzM/3FRsDIC6+GLItRg+0+RR+YDDXsALho+X4+uVZSl5EuOgiZ73aRvMoLRNpZNEeLoyMi11ZaSwZSuOcoZj66B6Y+5DdO901eYit+J6u/5o7uhu2PUr763bhsP72OvNb2+lS56znAydX7paBDG+rKXFAAXgBobel2SZQav6t73rmOeyNN31LAdoyyyOpr82Ln+BHeS9Ha9lJWeM3L3bI+XEICsC7G1Yixusdw3urA1ZOrpvqAvhxsJrOT4ceGHjax6VH9/acXFdDN/eGoBm5z50WunuEiARnflwR4zx5YL5hY8s+7KT2UiXaUHcbn71JbikHTljUdoM+rQKU3HXEVf66rxny/cFrBfylDp1if0G35yqZ9geaGT5CV5VIzzvAcyDk6xw2V4We96gtmkwKF2Zf7bFwwWP6U6vjU6zwxrotsi4gwcM8OXZ0es0Ao86f/39r0OORtPsS/qTB1D8UIMgy4OUeJ+8HZ16wQnQzvXrEcsr34WpUZjtXun1rj8qPcyeuM+nuZK3DK8X8DU5Uid5x35BSZMu5X0vZVCZaLvawRm2JmfYkc/+tIB0tFQOkz7L7+CqLhNrQVzhqbQYj3oYesKachP3d5Tp/opuNA7IiDdhvzmHmEq99s4tAzlCc9GfLnflki5xo3RbDnVcZni9HLiAy18Vllio++licM22R7nExVUSBt/U5GLGE0zwxN9qT3RlXIbXNnwgXBkvrIQOB9YO7LaF+iA187sN6yW4v8IeLq6Mjh3p7QtrxcRcTDTkvj3ExBx5wJVPv+PrnGz+06bt//jPCWdm/z0A//PfIut3c2UEMIDb9RnvBQ2H28pT3EYZ1MeS+UTqkuc9VzZqhubp7xY30xUd5yytvlOwi/ud37Yq+SYwUZ1cR/XKJK22h7iP2JRZJjRdXcrEinxdnp/trMlJN1gT+Kebgx/lIgTI9A8yPkm/Rae7iMhdCRKaD9WZYncuQyuZw878audD73tPxbAN0y92jPcvkctPMdagzACuwMRpgzw/7+mab06sGydiYnYO9N/RuXhIyyW0e7joxfdSbgn1vfdfn9bEsJ1W/GvlLlP7vBj9FvdQcoclw23wdVpEM9D5OeVKPh1lfqmnRyM9evi1TkYMyXjbLdxHVAWbcuqPHVFMOdbuETnQEttVwtlGREfuY+OUMDeebwd+3PHdmYKIInmrzoJLWlV9xarZneotIKJHt7gIraejWdl1tutfdB3YOp7nv6WSYMv5r1YPP+KePOB2ptedq6rSGvf8e3g+6oSh5KTUg6v8yJ9jUy9rDmDFNdkvGzop6BDLM+3TJmPiaU4gNS4CPThQTCXez3/hiNUgPdV12Ecwk3LEF2wMcOrfiW2Kx12y6HcHD8CQbl5r2kb0GpzO/N3kQvTywZuqy9Ax9cHQOX67c9+UYIzWoRvu/xQP6L/TBf5buE9xxJqLH16WBFjywyVbGlO7vbWDXrWRbHjVrgoLM6luYjf89axHO0+xnHBoItvvctgLqPQFU493lScaR/H44CpLudvzMynHrLzK5b42zSd/l00r85/JZVoSWDhD67g78HUbLn+xFQwOIu6rnY1l0oU9cL7Ug8O1oRQMdX0xrTf2K3H/r/Py3/D3Gy4z+w/K7X8OwP/ht6T3+33HTOs+5Lej64nPMKe7lGJKNTOteIMQ81/L2b5tJatdPmaDU7LtcCJ8Yc4WWrt7+XL0RxjRgCarVgRbk/e1arE+cSWj3U43Bu80h3VMjCYkxjwrCfW3a+LZyjCxSTQPxVibR81VoTjQx/Fa/1tZljTdOYPX17Cp9fH4pUcGstIxZ6R2EOJau91smD+fZPUo92a7vNFyylccOPJvMa9cscp4ewfArxUH2MZvzWD/1vpt1HnVzpeu0yQcq2MfiOWdat5r6TPsdsujnBfMwvWNDnjlrWRBHC51oAkmnsQMoN3KdnRWvQ8W0VxvyY8hiut9Rem+YsNPnZjVM8fh+rh3yLX8eGtPXlrpH+USriQf6Laj28INyZMOmKWrH5uUhZPGeyOPcs4yOjrKgQUxE2l577Dh1gmky4mHleOYDbp3LVzOYze4ulXrWBU3zv8xIecX3Fa4MuIL4HmqoudG+mVY7hknVtIuT1fG1Pm9YwbUc6D4BvADy8/brcax8Pb6tDTcImyaH44/hUNLYuqSzgzLh8ZmX2HgdL+bnQyG91ng6LisAOUqZuWU9cg3qsN4xoNK6r1gNeU5OcNh+r4wSPDK0QP2lZWbvloVAH1wyYlX579GOZIZNvYRr12xtdM1cNEBi2UOQL/NWFx0AK0d7zNzXunmvbXcMvVIRuJniIpOt+zleBfWPxdWpOvjniv9LtjtSBdFm3JNsK4wlfhjve9tb66MA7Y29pXeEkxzFiVqVekTrqpvONZ9xx021vtU26Re8zMpa21c10vMmX2AhVy5az1UHhVQsxJT6ccweMf7t9n8lpch7t85QfhKu9ApwrNsyUXkDBO57AtQ1kbwDV0eOQZTuYDiceo/eOBKPlqwZVi2y27UeWXb5Im7QKyy7c16HDh2pTOFZ3521i8D8TgR1OLTAbFeGDWQLvnM9Xbgx/wA9MuuxujkmxcaezaSBzKuFTfe+eZyFA9seLh1wstNsvkocP5VhR+c+f1eHFT/Ltc/b2b/MUT1/zcA/Jd+S2K/ryuj/FsdQXVHRBOqAX2AjxKthAVPkMpO3WNckuQCrM7HbrYlXvrQwUSOt1wgGqS6TFrLQeaHIOx2oBSys8nOMF0OUqdyleQAb9Q5gw4ebq4xJuFKDwK5uG4A0+0M8ZynwAExsHi9kH70CcmMW7KqBIfOHNBUX0ryP90IvQdOkjZ1VBfCiLyBV/j2l+7Soehv3nSeho6Y76zIGlivJoRluu+Af2HjMneWt702PuDYOzoMgMlA4+goUUegepwapof0loPKihadcekcLrFTueUwdla5jwVcrFP5Nr5vI/UcLiaMo3F5aml3jr1A3xZXCoLlbgPdUR6sr1Ydole6MlIXytE6xYmKGIymbbJTUT2kIrP0nNdO2up7DuJIZg7UQCBcJMPl8GNxpWqJRcDuW+QVNuICK07BQw+qduqdziZV314wcN8W/IKtBbc8JzFdLGMAafBsh6/lWNvx9ld9zyyOb45j7VeexLVlYBz7w8IdcaULS+x52IhvZi3sOtGMri/RRfgw6gjA03lyebo9ArZ+PUFH0Ul7fcBy13viMcPSDd3uf1Uu1YB9prsQPZra2tLlyypV3H7udSb02cFVGfvmOr+ojz/zgIQ1oFzYzXXXomA20NhuhV5QN3eI+9dogwWqXLWydDOfHFKrSIi2v18OuzYMr9EW1O3sCVPbbvGjBkMw2T+WpyNCVeU+rcbXtWTVbDleL4fvjTetVBjUZeKwxnXjtCu1UU7QuD0iMbPaOxymUUz1wRFmiYWv3OvsPMGUmCp2E7lc6SHvcYDU+Tl53KuYlTN4f8Y1Sz0vx3loRbUJGVGZYmqpazWILjnVl7AeeAI33O+PknsFfeUYvw/nyG0kmU7Ve1ZzloFLHCUWkevGo/EReMV+Vb23MQnWPBB15ePl+PHyOAAkZZJvOU8SLug7dYxh0F79uZaPxPU4AXgn9kfYF3VI9VdiFT/JsjhJ5Z5H8m98LMdHDri2rzqmH1i4LAZcMTnHgR4nA3svt+4Thu8YjLKN52ReIDzSLhzgXfFpmLVSxy2nff/l0svd/8k/ZXq/34oZMAiVnSR97+sIf/4+SLMwRogBmLM94ySr6gjb0ONRx1u6T/dAD4xcSDveqrs/4Jk/19ioDrmMDE9bARgdkyOH1cEogjVJV+7LjaWSnStoAE9AzMHVOJbea4B8Dljr/SB+0UMHEkNup8Uj/OPxHnasuFlee9tMSz9EOvTqWbXW2ceMKo/OL3tUx4gdPK+0xj6x0jGgbboyavmITo/vT9u0ye24/zlxqxeZgL73agLN6A4leMaL//WgEoNAIy4V25Ojn7C7wnadA4KE3vv0qO7ESKBBMjuzY2XzSOMg7bOzACsdNePlAqIZrxUqblYzkWNlK221hlkmPuyovRWv9z1LbqhvwzDdcmvM4VzeX27VGVURlWaOYiiRcsr0ZayJOoqfikIjbtlOVhd+xcUBWXsjQJTL+6cBkXVxDMQ8OGTsJxst0EdYAJzO/iSu/B64lhY4ueks/8rXHetmbXfoHjFd4q2WovwDzPuyzR1TRnUnLg4tE7PsM45ArSxMjjwwlXJOHuD7dbynaWqQ2JhqJkFx4Hgl47lKpZZ0wfUp5wn3Z5EK31R9nzqNmnHouFZ8W9CRn5Spjsy97E9s/PlY/lC+j3ntdxzcxEqUjWC1Dphl4OcbV904MZdDGa4aMa73pIFO7T3xkQsY3d39jdLKOERMy7iRXuPxs1w0DfCJctUofeEyj1OCnRuV+fkVWaonLrZnkAnnpXcR89CQL/gpthn8Y7Ww2ngTK0CXWx6Xf+cbxSlN+YkH0KYHOfLEu8ldbUdn7n8l7v+1Xd+7fj/z+n33mGF2DEYlYMVLQs6tFWOljJfVfcZO8ijffw6AZLYRQLRvR7q0tGuZ3wpXqn+S4G3Wk3k4a4YM0oa1b73vQ9TqWf0GD0neE3ALsFvOnByz0ZkZOhrChUAAWr8xY2Irz68O2rDxg/76wNuWOnhr0veyj/rr10c+3WG5ATVmfvoPnjp5LLAPYUSis7OidUQ6AYy2JH+xmif61rtOKuJGKelHkrdbfeem896yqwgHzg3WxHnDsFVNvCH4QdCI7w5cbwL1ruenqFHvvZ+RTF3DmPVHkcsfPV9BTA060017OMJOnAWkz7yXTMpK1zzwd9crPyq2SZ2jnruyEhTFXNeMqHu5XW4PN4+v+5WHdzTRqW089diiM/eBMbw4raQ8ptbuiU86FpGytKnTtbD3CveVkmUlkw2/m8DqzyM82VVxzqMzwr0FJjpCdezCP2vez7r8+LcuO376fPet8JWg39uZ8sAT7hcm+Ww6zRnoeMT9wluB4zXD3PQzNA8sHDzARKL87LUq7elW17hMzKn8qYWGvgALcbjlH43VbMZD8oC7l2uZy3/a4aScTncWgVRoqOt8r+70ICm8E7rSBR7vCrvSjsSdV/tYofZbjvx2yx/FQVvQBCbtxHtQ09dcHSsdyRGJIXRlnCtOaoz5c4R5qDczmOJel4m8vcV1N1zXAnzd3PhH6qdOVNUP9VlPNehI1iRerxqyWtRJhKkXeXzo4OjB26hSB5EPc4lc8bwoPhlZ1MrrFY+fIwmdd6W7XSapFF9zVS1Wt8gh7UrHKV1dlYt0XDDai39CqpVcTzu93XD5io9DS57IN5S1ucqHdfQrJg8AxPK0han7n4JtD4bxG3H/r+2qMvp1f9/T9butmHG1Rfof8lJ+O+5EBmlaZ8fb+NOEvPqddnx8xZIuO2G6MtHgJzoo6TxM8tcPupZQS+0UFEnP+wIpnmK00ovYDoPYvKUcH49F7kHaNuTG+/opg6Pzg6Dz+GLvfE7BIkdIY5TL1FEHPEp6JMEeLPY8EGejXq8FXOEeEUjdNqdauio4VDxso5vP2x6nzm0v2orumITghZ2uhQ6kJ/icfbxRjPzSnsxTiLOcqce3rkhPT+GsBiGiap/BGfvoxGhbnZryY8heewHoNkK/+DhxkJ0GQO3tz1mGe8bdxe7zmH7j3rfczyfv21aRLx4RXEc7Gxco6DoTOUqnjyRd1sHOrSH3F7js01s55M09B1xcXk65OdvrUV+4R8tyILSrzVrSa5B+zBrT5Tc7gHSVSvfFa7fb9pUGXu6wFcfjp6FgtlJu+PGx7dH0OfdCbctmK0l/W7qeWQ/vf/F1Yuhxf8Nzb64YM/sHpt7iFSZ0WA5U6I7Dyb65YvBwjyn3U65C1iUdCJ48MPRXHvDaX9YrwhM0nuQOefAb1tBu7caO9kQfXEI8E8xcwHpt+HtV+ne+OfFq6ljtj3p8EnbgL/UVVzQr75Jw671kYAezma6dun2uox4Kde5vHubBXf/y/kj8ea2dPC7H+D/IPTHckTgwsFzw5uQqoPCKrmq6XaDieuj0rg1ceEjfmkMcgIdLrvkMojrXYIPuk9SObTVtw31e1bfXpsDyk+6E2salj8VPpwC5D9kbj1f2QR7louVylUt5wNAu7D10CoVDTuRv56Zfg+FleeCYpSu56b6rdCPkiiLysyI50rfiGyR3hCs5OdKgQ8Jgqp4I93RVzIyuNsgr8biakIVbo2XGX2Z4m+GVeQMseCIttsGTkcOu/GiKJc9clZujnX2P13eu3s+9ft8Vs5OcgbtG6+F39zWKcMdKGu/7vG/MZSDE/jIONtjRscKmR53qUX5UpahkHO7QNaNW+0Aqa7Jhp37s9Xqlusu7lyTpnANU661e7S6SaugALAZW/awGOxU3CUaytxB+08tioBEufkEClp1HUzmVruiU8co0GanlODiLWitUop/unerj8uP+I/chvF5e33jSa62ph8rVAXgNOrvUOinvPXLDNpYT3zb3ny1D7FEyh+8A3pZUEoe9nq4nbAnisXqvAyY9dfKpG1BHTsOx83QnrvqgKKrvR+V/0FFnDkMg7w3t45UrWKJzDDKiMi+L9y84Lp5kpn8jLofj69Ax27I9y/VcaudqkC6/Zzc0anm5KMaAa61ckaoj/BmGdpN8EwfUls7Vu8POnH0F6wZdeWLQRF86Exts5i/r2Y/7Y+iTNS/Syng+5Eb+SfFIO3a5MS5SJ+OrApW56rhqvPObrhum9quBvzQF5vsn7B9VB2CBTuDgpwlyn5lJI5xYjpnJszfNsBbYPt37MLmIOuPgAYuE1aWvTqRm+2Y+Bm6wjqPqxSMPAJj4LPt0C6vbc6BPcewJpxDN7+HZsxxXFTM/B98swae7jjoR1/aoZ6tr+sfqYr2Ga33maY3bgeXjNF7rPc211lA2Qbvhl20OrlpitxVxX4tyWoluN1JeRz26TX7NyGNS7FtxtSYbEPvLUt9dH3S+4+fEDRy41bYsnPcD06rhCQ66cl/j5tLyu3i8UP/dG761XHnGVTnKmVwGNCa2SzqPM2I6he8I7OsPmKsc6rBucl31uoVdgweQdrXUqYeBJ681HpMjlzn+eH3A/SVyyR+v+rbawP3kiA3uN2Nexc5OLF+oz9UUkPauysELvx35/8zXUx3/uX/fz/X7Dszsk99Pz77dxx1ExhnEQZj5vFwQdYzEqwYPPcSaq+qc7pEB2CmH97dVMelgKObwUQ0kXHrewiqnoqIjf09bTB0jWq82MR09ibHJOAcj1mQdcQ9Bkk7r9SCXZC36z0GYmOq4B2TjccLKK6aqAIRPf9lN4kPSG6Y56kwR24jb5N1BHS/rk+qKwPOd7tG68hjn4lMZjEstGnL1wdTZxz+p9s/LH1PwPJpY9xkcVar45eG6v5PZxUw/DMGyl7d+CEsXU7qafL1WDBQehLOzYZ/ozEfDTZC/XfVhqJmQSwr8paeGbVdXQb2sZhjhpzUw9wxJh15aRmcQVpjBdq2hDdFR4D4DNYNnEopVZ93Sj567xslZYt739LVIcLVZv4q4v+GSovaHZxPL5Teq/zDjHmmXLRbDTRc8B2LRsN4dcU99bvdnfUaV4XR1PAZsJw9ouo4cKEq7Ut46MFVPA546Sz06ufLANsXjHkQ1tnlVrp6EnHxz1tkjbze+uWObus4rHqsuIZL7nYlns0hufDruDyw/aZWc9wnuny7tZ1y2oWs3hjCM8olku/Kn11jpxAOXafRv8VzKLJfpPY8fGfVE8OkW5Ph1rsZi3GtCD3icduWk1nWNSjnASV39Ih8YZSmwmU/ugHIgnoSMCqSnO/O6tuWBT53fkfnUja1Bcb9W5FzQ9tGbpeWOWvFgV88Tnn98f9SLqF/NS8TugdyFR4dUV7d5/jvLzBD18gn3P5tI/sv1p79+/4GZP9wrqD4BxxPpMKl1f9/fi5F31pXY10GoJ46WDokGtX+0UKDlHETUICgy4UIEyNMY5c+QZ5QeBxaobQ4dCwOOvBF86Tuv+twGRWiCMtGRjktm/Hq85tFnHgmadpfrEFebh44C5S6xxbJd5GbwPqHLNugW9npRv877Ofs4wV3ANYmeg7/KntVayLBFlV/ORSFdF+uQlHz2Wg46jp26nLOcTPN09+hSaZqbK2VSFY5q1yXCWdAIv/i5A/LyRn5sN+/rz9qOx7sqDa9X+V46cD73XA3CTWLZSSrxodAmbXfUB4Ar7O7S2N57FRxWnyig3lfp3nngLOFG+9iXjqw3Hscfxz6rOOlwp33iXbzfqddVRGetlwPbV7xz2snqcACudm2x3c68Zy3GBWTtWthYeHsc/AEDXrZzL1x0Ii6R61jxHPFue+xP2NmqLuf73OcxCD5cVnbquD30cBh4atcecfHbLto9slz3OhAbuH7ygD38+9Q5JT7pH9N6tZzSRWBsYKzGIw9ooxt6PEzMMdWaNARq31n+Nk4aDmAXuYKphaeJ74/XjW8yqQO7daVK8W7l9xEKN0SQsfEfncAyowxYiZvlnsgsGwa26/Cv8djjrzwXdrjpGveYecslPsnN4JvjakyVfBnVplzmq3XjlIYZW1byEeII/2VX5/9mmHtx3VbKcOC6YL6aVfcrMT8j/u73yzYK/Arvs+ILrvNZfffsxP1sGNNjAqMO6Dcma9+rYnkWUkyw+uQj0QmJuQGSjfFssLX/C8RRDGWanzouOYM4SOx7O13EN4y4n7I2Tce4J99wksdztzvzjCW4H7hMfOaqF3mQmBp4nJ+4ccd7hwv8F+ziK8YPLooB5VV4Hum/N4oHLl+4NooHiP0O4ILh7Qxrta+Nn1TZqWPYd4mNv9PLf8Pfd3T9PgMzJUGTR0/kerqWaJj8XcCrxx7y3gA77oH8/UK4M7q4huAByJ/IF5Ku3Iern5CfQdDe00UiIoWbhgRZiP0P3OGfAHO3TaSn7iKnbTpoh613Zsd9u3EA00VvWej0Wkmst0JSo+VFgFU7eMhdek9d0mZ6HH64BVKU13H5vF7L8fFyfLx2nsrYLmZq/yYmUbVLS8Jam0vDnvcdMzoHPM0LcdzuawFfXtkp+GyZ11sWbcH6ULcP5m3XCYywhjMtleblZhOzcHpSQdsh7DcrEfPKd2orz/JkqE1XFuqodnUrI6lLy1qGl21cF2aHQK5azTnyr1Pkocdq2xTxoQYWJGeGIL/TDZKfDuBx+Q7HhRcs10j3pkVW2dgk3XbDETdBrCQ82mGV3JjlFBcWox1F/9TztYAPc7zg+Lpf2Fgzf5SVOpKcWWCeAzIfcjPvtpKsWdbpwmKA1bsGinKD/K3Tp2zrNu/vWJeiHlwMB+7bcc+A50Rd4r7HR4AG7t/wU9NSrio5Exx6kssa8g1HIzU0D2TYhbh/AXqs6YEa+CbfnHkY1cq6TAcH2uC6wGCmmbjx4fFpBCfqaWYbR8QKQ45n2MYnwXqbSfFvJdfQJfK1xH18hYte4L5Y6eAbz5snXKzykTJ5xPmjDpaLv8W+dHO6+ztey/DlRYfhF/q4/Eyt2rnoePDAbYA2BkNTR7bfc5KvolrabQEvc+z9Yq7u9Z52FB1phRoIDh3tprOetsh67VLvvXQOvV+vjSs/LdCyW3Rj+dSD/58DyQ7b/NP1swe3eV8Zz7gW+7A+cm/d9rbV5iT8WJK15AxCYfNNuTwOPF7zYA+6ohtA/GW/JVRKV8bsd73WhR89Jum85AY4MWxOWWBj5TfY6MrIrDBsN7RNzrTmkCgyq4Ek96twcvU34/6f+/p3ycDs+/jAtIltBB/alQODkKpzw7TgHbZ6/PL2CNuujBY+/dWbx+d/Fb+fST8v9fUJyMaZtZHzDD//tfptOYNkIw8t556/p4Ek2x/llaktSY9dSZP0EW6CI4whBxm5CVaNaYeaw15e8obc236CzAOfwWe4uu/3/DAlHP0hyE/wQjstlV+RO+KKTiZxTeK2zlv2l6WOWTQ9I/Wk1B0BTt0/zQtwS/FbcaWUw0XvLa4aHDzxJ0lUOqAB4l02NVuZ9UIHiXEvB4jkjJweIlMCGNfjyOTL+fWVlJ+VqlZbfcZl2kDs5fM6nS0HK1kWMG5Wps6ssCHNqteR8XPn9Xsb3vkxVrUNiZi26fxTmwhLVz/eq1y+MPClV3pmXoNIVch3EOqP+4Wd+wI44ExEE4JFKatnEJiUiduOZlxm6/KMfk5nVF3eoj7tzMonlfQnrhPb+aywnw9/Cott8ilxvznj6KnCy7XRYKjF/09kKD/5+e5B7uAmaePRV1MecH2DPuQiEq7TvHG3xad8k/eKY0C0n/quGXmGQYi1Jw/k81VpIF2qbNilYaLtXlgurueNqWd+432tjHG1TjHXep9xYSxr4T4ncVyVatwpuVKG6DBMu2UL/5QtXKI+cBWQOsXH6RXhZ5lM7FdeK6x7iEu7SvZ+Fmc4on/zvtQle9aD1k3w69znmJhsghORiB86ygBKvYkyLLEbMLzflpOEoi8H17UinHHTNi4KNV5Fxmqg88gZLKFQaFWFpY6R7sZ0rW/+mXxj9d05lGyD9kEnD1AG8bXKUPDXyzYAbMdgL1ftfrwC95WPWR/gyRm1eug5UBTuKtrxsldpmtxEXjDavDy6uD6MyRnf41VK/t1//W6ujK5/3oXu0lbUzhVuxPVR2fQ0rLFnwzqs+v0GcQH7JZ0R0WEoC5Q7ZOs8fXF5SpISeVWT5ZqUDMRaT4MDO+fJ6cooDX4qJt2D0WAKzlpOaUnUlM6BoEQfqRt60cXSc3/SWoCtPKPeK9g00inXRU71ZJ14C3euK4XhtVOQczb9Pt0GiaubLi3iZjPlnpfYTMISYcuMPtOCdAqYzvmORzlf6V7wsRwv2wnuYlfRRetz2RRdzzVOPBPwd/mTOCqJkLrdcV0524y3NKAGf6khRbzRKZuy8PCvKjziHmHnwAZ4X3H/sUJIu/6hXElOtz+6c/B+I90cMy6PBuZK1JV1jBG2qFt5TaUuj07MtblCvMeqVLkqol1Q1J2Fbo50L6Gc4T4p6XCTNnWswSo6XffQ6497wQ34st5tcm93lnJz2dQxXBPprkjXRhe578pDykHP+tK1hhvKy44JbDxV8tdcXv/DnUerQ3a/10GBA2MPmWL8cFsnSOnhInnCp78mfmtd4H3J4r1DeKDl9CcdAA6Q3VC43zyA7qTmC0th5kB8EH1Xniq/0kbbNNVLvg06qtOspijb+LBNf7YknhXupwHWAuyVOjG6q2X4T+eLuoZLe+Nx60S5qHT4uRI6mfXnSzbW4gApBkAG4OPF71l13idFHnt5+M6YP33IyN3xrUFZ2WyHSyAc8HQoy3rHdvRlxUmIPLa/BHvbyYdIvw3KqJeP+47b9dFvdRRHWJ5o+FoXAsypvosLezeqOw8cdV8mpFTf0tkFF1mShTmJjRcA5IfG3YcrPehC6Fa/K4/Tm7ZlI/H04IwtNlQeKB5ylnLo9L4Mr1dwpEvd0f1c8S+xvT0ieAjKlTpQVXITXSGLq1xcFwcPdPoXuK944Ytd8HRnDDntdr/dcl90591L7grXRJHT+i7Q9b/d6KXMIDplT2wPkPn+rtEv+oV/39P1uw3Mzhkb40Pr96drQQ12hNQirnWEck2Q32h3kTqFawH2gV49yzS+KbcC9P2xrRY3V8Y8oIdTgVb38Shc9tptY30A9iJQr9I/E59GUDJ+2Fs37Lm8T6wSHQ2xSvYql8q8p27m+Pi48OXLlfsMdApeC/Khh4VpCz0BDfA8zcrAWaAl5WNIe+QK3sscH9QJji+28cMH8LH6MNdIVeV2a7uVqWq65NQt0M0ufr8sVuiYj7hHdRpe1iedvZbjh9fGD+nSwmPNx3dC5K9W824uJPrTRH8rrm+7Wlf9MMCIbwhdv3xEHh3q0pJpJxFyXxeEfGk39z65lK4brI4kxpJI4jMltm7kdBt8vZD7ywD4gtXHCpmrdDGs3qnYcvRGlCxThgXYEgdOHStq6h9ho+y/5N6Va78q3drrkJ0YPQUsXP1WEXWf9kWXw66bpbZZ7t2KCujiarKkAD2x68sKV8Yf90ftG4s9D+HectUeMKu9ZBxUbbq/uOUsLvcKrBrA1dH/7Ggkhu7Sn3H7/tdeE1P14YSwGx6TQDVumL7qpRU2ZiAekMayNsC+APRWIraWHNHjpmOm1e1AYPjA4+Ib1VGg0zjxZQCWY70A++DK+8KNWezETz5/aPjVLnHjBbPkAuJr4uRKLCvXbAvX7I+PDVu73P2NNqs0D3wStdi2YFaYCsS/fWpu8wAnu9YKXCB2fSQ+r9Tphw/Hl48L/ACwHXqwROv0YAFDrV8VT9/n79KH96tPqbS0E3H/wxwfy/HDRxyXv53fw5IVbJF8Yqq6hA+9RmfxyF/FlftZBKHnK3Hf8+Q9N2CXM/5djgzSCueEv+gKF6953wOWW13gElGGKdfU3F/mWdfVJbHkwHLiNyaGw2YoPCZvlL5Z2F5KNF6ZvOu/nmoN3I8Y21/Ng7VNghOVPdHFe0Bxku6Gi18z0UPvq01UvRg8wN/JA1mvXmvj7QvbY+UsuIh8s4pveAIjeaD2hLkFv4ht3OLzJxvJlbDijLACtwZkXNwH5H+5/nzX7+/KyPbLFydW8P4M+3TPtIWkbh8XhRfgmtGlxUZa/kncEyeHHnaG4GxaExCeVl0krqXuHq1Z5E7S5TwvV904a9dyOj0SXZsndchZ0vG9GHFN4Kzia4XbiHmcpOSS/uw5MA0Cs8w2VvhdxGZiL6Ns9POp8350aQG4SbZ8lNKuMsuZaWv+hgulHbYZ9aTLX11cIDp25K2FjffWSncimrrG8P1RLx4uO/69p/0UtytvfGx0VEqw82ASt19zwBIyeoAZeW8i3je5NZiScqa7HgxAusXuDbyv+a03hwHu1dFwpgfKUbvmb+u6RJO064UhGnqSbbmDMPGa30+dDF8v7dG2K423hmX5s5TPsWMEbrl9umnYoj1qui1qerzebunKyBWZnDFPZbZZuOmAs71VeRvTHEXEmj/q2BnKwXdZpm3XWPPLr09xn/ppmHx/boG5YbXYy6XYxnpYuguZAX5lh++aLbDyrtgO4QENazNsr/wJ3qXcqHaCz2OwRB4IlyRdinzU6Yhb8sqTQFZ8DFC+IabW+6oFrQPyfkkF921D5uDbA8s735o/6QprxXmI+xLcN3pIUFfiftb76zpwn5+/YZonzuuqoClXYe7XRqz1qG20ppDX6v1Cre683yYFd+LxM2fSqmfYn7r/nDPYnuNuXwa/lnrMavci4lbbv2PqmBlh8iZ4XHHl64b2UN5MInW7rt4XXGAvchqlmU6/v08EJFdV3o96KPlzgolgLRATk+/3wt7pWu9ZtqJj0IU1Z5iWQvyf6Ot2yqkE5L7bML0MLV3NOaB7b8O7PrrY2F6rlAMP530daeAZp+xGud5u6YyXZTRgxuw34f5f23WS5t+l1++2YnZeOjvFe/ZdBOc+j1sBXEhZGif/NdQqGfdg0KWlCeeg/Nl+G7dOMCw3lSbLdoPAaMQmcsZAhXsfluSBcdPtoXRsnJy6HTp27lqfImUlT+MhGzmDmt83g8cyfB8AchLMgaslFwWWBIehapLl3EPfH/nkgOxVuJEbrZM8dn4r7FXuJTSNV0f/s0EO0CuCjBgzoO2iMjowxtWxnl02OMz5Uekob9+Oaxs+VpfMrX7yzoFZuTrY+ZSrQSb3pC4/wp2JbQfe7MTQyUL9VKiZm6RF9weMAVnl5wg7rxw4VH214h8mEycLAnuvdEUVWeWywp6F6tQrYz50FJ1TJbN2Q2Hja1pjXNYbupY4vu4VdU56DXM/S7YeBzha2NosmA91nbGWu0moWiJDViaSFefyhR/3C+6vcI9lF8DpulldxJHfdrX0UZ60rH4KoMveU6dwgeV/p46/2aVF4VWwojoHfH6vWvM340Ljpsueui+iOyi208NwNUfc+KbK34cshgW63jkL/cBe1bP4TTA0OvXeQi8AL1PmGn3VSU0+D7Ni8Coiu/GNuvPXB5uTq3pibLrv7YsrOnQTpW2mbVtfm/3NUvoZBwtry/Mg9Fjo+0W90k48JfWDrvfDTZCCvZQoHdQYUn5qV0seYH2pwa05zLaslHnxkTtxf+H10slXKSuojqpGujJKNkbULtmub1WeEsc1vOVeMcvyW1hrd/mPxP3A/ZZR38Xa/exWek88kI2Xa/DVNLJe7CsmeV+vmd+yTY0sXIo29GhbkJ3bNrx/Qqbm2lSiJpjoeg583SvL/+riEu8RzW9/rw3dNtGHYHXvoeWGDbsMus8ZYccBIZnW1x0rZR8Ztr0gvA6VcqA/heP3MgnPim4Lu9pJhM8NM5VW5DusE6to0ehs1uzv8yJp/Jq/7+j63VbMBrY/2ISAmZ+EarIkGQvRVTpCxAarmU6H92lUROEXgEtnAXSJhgzsQ26Rdz4b+tfIw4rsANQsbamYgzfOUPLDvwEIDn/FKXXhhvExGoKN+pNybl3zuLfUf8gtkkKRoWG6ZQA9OCP5fLw29rrwda1D1r3TEmkLLEjHgjaswSDzlL/7KPyAiI/SOfZr9UxlDBp/WAtf7Y21wi+pD2GwHHC1bTjQ6hUAsY2pziazoZxx6vMVl3QkkHqgSHrjy8vxZb3xd+yjpNdKkVrOWSbZ6akwUn5HWMIrJK7DpdqfdQGA5ylia1eZxrJCdnIMeeBArujkVGrV2+ZIsM5t1/pCkboSlc/4MV82ZnKidXkseHSSOSvv2flzErHHSaUbPYFhKELUEb/u1XAPAnotA9I3PxtFvEOcxOWZ7408FM/io9fIcuOpXDVDmzqsFatXliulywx7Ab4da6WTkIB9hUVMNLiUu8Pga8FxFd5w1XBb1OUXNoAr9gvuF7btmF+yBYNj2xXuV2vhyk04ZovHh8TsLwzbVpOs9YmRdcJkFpRh5axtbJZ3Dx038mPDv5Khn7Bcnz1xwo0HjvccoCgnSB8nbZGt5wX4h2O/o27QYfCZb7q8P5WrWpp3fSy+yXIWjHF0ew4xDns58HK4bcBed1k/yTcqR6INbKO7+HzHSblXrTgltr0c++PC9V5YtrGre6i8JqXCtodnTG2ZwgOlA2MGJ3IwRqwvHlgb1174WBeW8WjNsAHlUgk36UpKXStbMK/kI+6tszn44qCw9zrzW5rNVV9ejvd644/2GhWanX/FZcUowJqboZd1pdSnDZPRDtcnnAHk9gUHl/NsL/RE72xgtc2BKzzctZB4bACwMz+LnXWW38E6ac/ijNW8Ncof3qvW2W6ryiS224o9aDzNOvaH5kFJ6SpAVXltj9Mz6+wBoPuJmS5dMLcHD5ixzwD41acmxicsFvbuVdZNrt6Ar+STPETOVr5P4ywzxEehw2ODw/Ywn6XLffaAjLWLbYjO8LGMfl2rJjBgK1dqL6xluLJzSPOFF1Gj+Y4OL66dLur2gvkb29JWsML6RPiYdDaD28qJuvvWne/t+rW89L1dv++KWXWWnonv5rqi5AupxHzO+ObTDdEAfsvMdbBFH/+Hk7B6yVffpcTS0SVG3q3ZuCoZIUCGLmLKWVTup1oL5VN928P2iR3HMcie8igHJLaW22bsAZjOmnKgWCtD9a21NZUwSR9eBFlEIXZc69C+XCUoO8kG/AA1B4j8VhjGn63Q79rrE7mZvKyKOe+lIyCljnFSHlqvcUhLksrLeoa5bGXhMsRvnnSBHFl/IFwpzsd3ld4vwUbpEAHIfVNd6iY1gY2r9ZZ33ZCCAEbDO+/vHQp9UK4SWddrNU8bvPf93GOmcphekJ90pUR3EuMx8wkSdc++0kZr6cdGY3NQn3pllRZ1mTJXZv/MS8uFhOf9BI9zhQ61X+nr9QXcxO1pxEiLH+VSOdkBqG+ZiU2qTDiqQeUP2QYtdeI+BKZtQHViftXl6FWyNs380+DHfFBPciqePojhqplOyrHtp/vZp22J4K2zEycP1LMHHkDrGEl5ydej4PvfLmPll3Ydl5SV/06+kbDEcr2nnuP0WbRcDtZeKw9eSh13uotblX+bx25y1WxqJ+uJGXldOqhOhsJ9YmpzgGcbnd0XLSqU7m26RrLm4kK8IZedX4lr+o42tMkDMedxa7tigG9g90+B+hOmjre3sFo+O0+ZjQ63YbllU3iaZCFuKv6ejRJged5W+nzaYKz0ZdrLgOvrKrShvPaImLjaK3bWaeo99R0cdqZbU5uZhuTJkYOojKs47C0nwgrfuMoCDNzLFw1z5iXTcbvprsgLIA/XCUxYcPyd65VpLLELgp+OGale6O9vtVV+RBdH7KWzE4CFXxox5mmjf7n+vNfvNjDzJ+l2/12kc7ilTDeO7nTr4O3m0sK699KEoawyGQM+XQpxvFM51EFrr+iohKt7ndhsuTHagNgOw77qA+GfMDxWDc17UznT0+yp3CQTBmRHOchwg24dcMQxsQkgw1Z6mTx6IMlw2eiBnkBLz5iK3Fqx41YCiwMQXstrnBQzQEdHSTsJg3X66ONTX04612wyyVmyw4NHDFNHujbGYqhjX6tdJA/7U49hNpuvZni/RbFPwp5VuZ6nnTbdZG/JThvVU4//tZuI49R9uABXnqVHU3btBheznZH+17fNPBwi6HJ4annKkaFIa2Xiwjvqgg6Zvf9Pnbi/TAUOuzb5VRBx+/ND08aJQ3+X36KNPjNEB+K944SuzlHkYtfHTQE9pt8hHqHUWfIYRyxLWY965GVRHaYDGPtUfs11Ynll8gH7q6/hgu3lIuwz7DfjkgekItWg7BM8Kx1zMm8B4xTez3ig5IiOP4XHTOrKmuldJ+0zOfiEbw5beP+UlbL21EANKojD4lru3u5jLnoMOT7Kr3musU8HbePkX3AycuJ+1mxxcQ938Y88xc88XOHOeb6R9WMwf5sIU/1xcLF1C6gJ0wyrAzTyQJoKe586cfL1ADVWIXso3yPu2TVhW7i9U1IgU3u4+4c745SNGfx4IDrJ7zu/nPwqeRsPFMuSj955QAoHKdVk1E4i91BbXYKZ3ylcsFh07HJsznAg3f2tTqCuIhnZyxjWepVt0jiebpLj5NVhdOEbDvDZlqlbKsrTF/94faQ5GgjVtVQPtYxVOLtNfHXtllL1kjbVO/tTLKCz0n1v1z3Dv+zvO7p+f1dGxwR6R80CVqCH8UC13+7V90slegU+9HOn+8RCuJC8HTxZywv9RJCm+aAzZE9RhO8Ga9yrxeYhLiM6SDHkOcC2YiWBjUHlHJ34ss3TO+kQAKiZ2tJDfwPQvQX8cGZ9r2vFiVMfr40f3+vTBtouem1H43d8Uq/0PElbNFgCvfrEra+v0mfL3i4gji5+Ya2NL683gC9VftSDrjbtroq0cgzwBm7SXca7jAjuKCKO+wVk/NRp7RygbYQ//4WPFZ97vLBEl9Zh6pjWculQ2BEW7UZZcdnxzDpQeyMkW+3nH+tja23gLUnXn4XLSX6nJU5OpPtCp7bBubN0fagOmbWLh1N+pgUgfNnDNWIDdUwyV2a5j4zfYGn/lEhsb4RLI4KgPDuly/iNJboaWbqyNAXy8IgXesY0ZlhJkK3/9uxwwQHf2Ds6EGuhPrgZOhsud8RBpUFYtnPWHAuXX9U2zQxvBz4MMF/YtsOFMOunpW14f2UcFubeXhMjHxYf1t1msQ/OYn+EG4AdJyxG5hdsOa7tiQMtx0j6BhjdbmzhitihI5BhQ8jydKgxjxl3/PrLHOJamhd9SVnk7KgkH9Sl8RQac+K4OorEX9bvAwthnvu5UpY0GtatgecuOo505A+fvKPa2WHT/R7IQQmSi9YyXDmjN/HpsIHyjfCAA+LdEP/EKb/kIGT541glQmAqvCfmlmGlC/n6uLB/5ISFcqkIXm0vnioXKsT7tahqYqrYvFzbdI+vASY6BT80D8Rx+VJZmK+Df5bYbkziZVidrBsDmKaT1gsofHjR9R6Ol12h29pYduUKo9hqdbou6c79ZnrZTX+2mfVJ3NGkPHAyXJiBhfyuBjNlUoYcfJdrPSTzyZ7eTJpolUHYAek6FRM/Wddy4GXGdJofLN1Bq/GFb3ZOmkRidGN0RDPxFeksh3BVRiMPhEBsTzdsoHEvNd5ON9CQ6WXQqGPXxWXsLC/3aA/pzbRzIsMRR+TzdOGd9uRWg3L+S0y/qgxjtW1n5TcsbN85uZb86vm5HSCciHd4frolTmy63S46wQc+r9DJVqZrCD5KI2/EZ32wQo93QkNQSPLPajtdRnjSk42/x0uB/O/u6/dzZWR7ZscusfU2m6orY+qSAq/7IrgjLjv9xt8vtPvIK/8WYJfQoOfvkmvoqbt06Uk/hzo2Wbz7eoaMOnixH1ekmHlDrlAhdHq94njb18dGnbXKDB5yNP/AJBzdT0OAtREWfTw+dciZy4VdxybHUcUbH6+NH16Oj/TvVy3awFb39C2PtI8BmURn3sPccmR/EvHHKwZI/P2x6NKy8eUVf3/4uHBd8a0PXW2pQZm3inrPpyyTIsYqo9SRVSE7DnVUvqWr5ypnN3wsx5fl+MPHTgLWpdr7pYMs6oLOwi2swz4l46cZUZKmYWV5Ovz9Ao++LrdEuurlSYnqFkjdR19M9KAdefhFu7903ro+sLMSbcdycHFdVqc0nu6MtU9B7sMOS7Sh3hIWdMVZoHvJrvRX2TAGQMH8K0nulSPcnd+QgfP7MyG3j4vPkvdqzfkelU8gOxfp3tLFo6tyxJfV+EO3kyTJtYCXbfyd9xdsf5UejjgUxP2VB4EscV2MTPbx+NEAveTEUdWOlaup1LHBeX5IO8vQ51THz76YTSmmcc9/GraqnOa+sYhoicd9KGsOuwtzkRgvLmsvh314TEluiAJxSbWK/SPWbaD924QHJP6Nbxq60V4SWZavxlx+ruTFadLVkV3klpvTyTeK7QTU1Kv3ojLpHpy9Xj6+D0Y9lsUR8F8W8OUj91Pt7qhGQl1OkWDP9HOyUct05T3NVkfPgzrweeK8tXv4i/fwOsL/y8cVncteBtR/bpiKLIP418D93f26XRRpN9WxbcNBYej8MseXtfHxAr587JwcW5JqWoCYYaeOqMmPG/C7hvssbt8TDQF23qMDv16eroyNv8Q1uuu1q5+17MLzsmBiXaej3/Ca2LtKf3Jx9QEMeH04/A1gx2dSjGjk/Vd1vnAfpV9/87Ir4skD5Jv65ArEpbCAI+y6zKr/UbYqV0a1V9qk8DdxqGywMqzwhNiwXR3PsvfWMY+5X2Z4meHL2vi6X9j+0bhfOgjfoLm8fXuI5AfflI5enLDLXXEV/0R7bR27wX+nl/+Gv+/o+v0GZsAsYz+e2/HeJFyjEMqqQhDVZ5J0xsdIBZDtOhRh3FOuTSW5X61wTNvgob9Rz7p3Wb0KnU3Sik6gKOEq97SN3zD94Kp5JflFGhyMSbMu8N942a6BiLvHcfleufm0jfZM8HxWxKgkSJcCJXi60wA1W9q7fTY+LL6rAwe+Xq/K+1N+b4MdO/49wg53tyfbADGLa32YRu2FSNq4LtQ3sJ6viQKn3p95C5xN4qfiVqcAiNm2NwGdVao3ZZ9yBlj5XbZ2CIY7lUm64/EYMRbRvq8Frz1m6BeanDxoHXKmVE5oLoUksLo4atyRP87sZ3ld2/C++C0bkS72OGcOraytVv+kIWrTuNU55lhW9/LbOX/n/arBGsCJbqc1pnVGudx7fHuoJJ87OMtvYFi+sd9IzwPLp3o/yY8DmycPuFRS6au0TD0FbouBfopvTn5RHuC7g0ld/62BI2qAVmIEi30jJyjOVELO4Bs+f+IBXQ3Jd+wQMw8meNWrP6jJOeKZb34mZXJk58+njYdc9GRc6ahtWdzFBfd5v4QHDDlgy4odR62LYR8w1Q499N9ZsX2orp9jMey2DfzgI9op4m23cIfTjvgn9ebUce4l/Eznn86fXp4eAPu9Rlu7O0zPKjf73wceH7Y+8bhw8XRx1MAOXF8B36+J+SeWP8lhd08UPt3fI/yNRArP+1CmbgNA4P51rTtvp46Rv8+QTx0jmbYkofmziaGW2GUMhzzYKQeZf7xecTrisIof/zK8T3oT27RbJ2Pws9Ko+5Jyq6+t43d9+W/4+46u329gNst8uJI8BYkHbJUzhB/300fWwx9ZXdTSVS6ObXPgY+7GcD8kJxlQTvv6Ysq3AxAqKnWma9wuYDXbNVAxOLA3lgPrtWF2pVzv7A/rSFNV/DQIwGrcngsHepbSExX7W2ExKFv8ZGHm9+Pl+PL6GuncKvQn9hO5jRRqR+kkON1WSI47V/B26nvFb3MAF3xHvB9eb9TJeylUXZGUhkzUKChVsE8QjkFgdo7TTaX2QkA7NTmAXWEr31GZf/h442O9Yw7hiaSeytNbF9WZYR1aB+UP8q/EYufi2o53Hnv9Wld2ABEfGmXVl1P0YwO7x6lTPCo5QZ/1+anjP/SQvJRPvDeJugPXO36/Vq4wbsQMaumXcs8T/mWDvSPcHEtH9hrz7/JwY6FecSS+BBGjbQsXj/e18iPr70g7/3bu09uZn71RM8bxUc+sYekO4iLXkcfPe2atbGitU86EXlVLI83LgR/TteYL3nD3kL0X3lfKytnrd+oIhE4XbZWuiLsUsrINvOXsXA1jegFd+QFUwhjWvQ/1M68TLnQwdQbyyMbRTvimcbEUyw6P4nEJrFUljzYKwD8S+842V8kOgKvKPXgATMNbpna6BCi9sCsanNnuk2h3YOr6cGBdTHXIudnQmtemaezo8PdqFuUbcT914POF1ont9bUcr4/3MFLxqYtGzvRpOmKaq2kq/11GdLnLNLHBow6Cl8I1PFz90wUawA8f79RzFtFs3JTfmEX8Lk4ckw/kCM/BYT9fhfOenJ08uS7sveEX8OW1E/cVkKVyDdwkJt478VqqLmnou7MTrkUB4lO6ra+sU9iAbYNfPmxVmMu2kL/ZxJRvIM/0HctXOayKwb1cmK8NwOMIf2ALH00d5uYpu33pJQ+bZHbl8yD8bIhXHupek3WU+/re8b3W1wI+7N0TJMWBcl98ZsUJnmBFTKWMS+r/Rrqlq32yjVniczxrPP5jDhS/ZF8w8rjycKrUC3EfaSUPUW/wg9gBXFyN612UC++yTXtahMqB891+7Vfj/l+uX3b9/q6M/M1/7fazg9Q0kUwl2YzkyUBuNsg4Nwb1gOgDsC+IgZkoETNmD1NXJq4kRt9hiQPOxMy4tpD+uoFc4aViNTP3SrcWWx7ueV8crx+u6OTn2c0tl7KO6bLDFJzxUs8TO9LpTcrh0tEf9tzttrEcH+b44WPjr77EStX2D2jP4zYDCc1fG8czcLsUqCdQNvxlZXt+v4wHbvywNr6sODb/i134q483/saXN/6eL19TqrgNptsoy750SblnP1BnH+PYXD5IW4ieHxZ7hXiE+Q8rZnI/zPFXr6t0emFj+ys6QLdZti4HgO+tymzqqGGt2kzr3LYWU448vpbhy0fovN8v2Lb8A+SIuxioPchlmRho17SjCFFiVruOad9UknFfL/rmG3CtdKXDjYy5OkqXwvMq9y3qwiyh2yosyHRJO2A2XerjWsCXj6DI6/oI2Zuz80GCo8yGu0vuPtnsaFkeslHWK9KLDdrWOpbrWu+V47WWhyuxXfjRP/DeH3FkvtNNceGiq6bFkfh1ULJxTbftsG2VXGDlEfpW95x2oJtNlTXbkB82/IUX8UlgpIujTfyAMejGYUCNkOof63ftI537wrJSEfe/RGInhvPG/HhIIwgPTLlHZqgDwyy674Yuga9R5768Nj6+OD6+XMiNNGB9ifz/TL5xLSeMuB0v8Q3xWYfeIxouea886fZjhZv4X3154+N1wenCTrtThuHgccErsc+JC2ULD1epVYXs5cm5zPHFPHE/dGqM/REGP0pw4iIrTmDwQxEd+pZdAbxMtxNufAgffaT74pd0a/zBNv7Glwt/7w9f8WFX4n5j3Ux54n61/RPbIXY98wd0e5Wwkh0AwHo5Pj5yX/G1YNcaroLkgVg+F/1Ux6M8/VO7tuC2axvVLfcWZ3/n9YrRjF0rT4gsgTVpWDahe6LkbfPzKvnQb3U/scvUY/lY+a38Rv378oqR4b6+hHxu6Cqc7wGdunjTiyEmDKSP4+xniV3TLbnGt8Rn5c/E41fi/pe1cV0fuK4X9vWKvKcb4+UrJ+JQuL139n9N/DeEbygz9PbS0au8W0fq0+7w3/nlv+HvO7p+t8M/sq/yqQsg+2WP7zgzWml5uQDzydgEbvlv3tdeAEN0/K4enzrTK7ls8ZxVyMuOe0j6qeNY9jfU7GnNBC6uFrVrnJcLyckiapusSdbyVA8daAC5x8Jy6uiwDcevvK9vhaVLy8drxx4gd7z3kkML7nIBQL9JM+E+u4fWYZQol7QQy6V8E130JMlwsQxAubbh6/5I2V2CZTKxxZArOjJWwVGuqNI2fF7uillmr9cu3V64al+Eu+OP79dtRen58tu/57xAFc9D3Keyf4oVK1QkmwxtVSW6fVSnq9C+kvF8Tzt6zcyL3LL1g66QdpfpxqxuH/XOGjBm4jPhplWSYrj+1UlYoqiD7fxu1+Z4KivCEbOrX78u7L1ygLLLTizTPuBGysUNsF37kjgnicM2q41ZfZfQ2G+GW4jvDsOBH68Xvl4f0UlArJrpBAs7DfDGV4Ji2c7T+EuVd8HOuG9XYwy7R7uY3ZtffEkHyo9nhQLy/uSBn8UZtHvtN3P5qDJgF7Cu/l6YcnPZjvfFH8IDD/U70jr4BoKHWYleNcYhJkb9dQfwtTP/yDeV33ZlOuX0fbYLwc7G0RyCpxcAPQLMYi/jx3LwLKorT6urfJrW+9MWJ9aR7yDY6xV3DR332Gdswl3G1SnivluenkpF7nqQb36aq9Cd+nKpVNsIhyAO+KCXB90ZV7bfH/fE/ZvcT2zl38By+yR/n3NGhs0g+73g10uDi1tvc2VjPQtYZBBvlwZ8wnm+OH+ITgic2u9uxLG6NXGx4zd2OdtN8Y/YkE1QMKv4Rm1TSft47w68v/ZAR4Nz4lFduzjhlncTPx4w4saR1ZB28UC0q8SEDPj1WvjxelV+Y4DICTLvfbAuGFG2JN+a6ETLKP9QpwfcF5L7Tbj/576UOP4uv37fPWbAnRGro4jRhuJ994yaLI8Gn66LAG4dovKtp9vgFR07ujIKnjZAwLq3U68d6p5YlzUfS58IJKfqjxjym17iEpHuI3AAV2yOJfmqK+OYORLMVHeCYVwBaAIaPIiOgwxgHvrxyoHGh3yc8tqGj7Xxel2V7igu6Yy0i4OXjuxA0som4bin3py++1buJ30SY7gyfrELH7aBHXu54MBfrR/RQNlKOS08i6/14AwS+zvZ+aGd6uhm643e/K7ax2pi/rB3fMA53TIuN/yNjzeW5alKj1gxXXDUbqV71cEsX7SbjbqVONTm085AdOCvd2yuXuI2aPsoxIrCes961RWtVBL3RCWBcu+qNL2a0Ehnxwcz/Vp4rQvwGKSx/vdlLVfLM9umukcChj38FHPPQxlWG066fFTbCLe/61p4f33hZVbl6Tz4g5UeuXKnK2UOOOJ4RNZtSzvpbHC7BYZxDe1eyCbkpWN4/V9u8R0bX/iy3uF642GL7XRVaR2ZW7qweJxJlm6NLNR2VdRDAEIntpkGnMsB8x6sH1X3F106MG9QfKrDuPOA4JkCIMPypE3tezhxzjxc5nhg5sdGuTI+tdEhh4n5ePc4SLPjt3WYxpjs0L8Sb+jK+AWwRZ8uihK+YfGdcqjSqSLzYN3+2pUv/n0BWd8D9+Nj9NEY92X4eHnjPrMleOGqAH9W+ZbD+PGucXEhsP9VSzB7cKKZ48O4t3hXG/+rL+nyqbiZOMOxRa2kiC1ZJuVih24XVW2Kf1q/4EjU/rIPe+PLurBwAdvxfi/8sMJ+AwcxjaUDCFQ5PNT/498u+5m/eldmTszchuttMF94rXe4nxIfxS1Qy3IUFdMS97uq9xVeVpLQOpX7nvQBAuuAfRn8bXnIkpfbZFf5LDDeJ9Z13e4CPTm0y6910HIYXcJ8vT245+vXhZdZbJeo3S3E+MyrlMPgG3RacPRq9mEnGslg6c7e+7w2yyJb6LUNP74X9n7hi4Ur8U5XyutCcZ870m2xK5aDQ0Urd8pRJvVebRPhrTIY3KNt4zdOyf3ZL53n+aV/39P1u62YAUIuMlug9wzDRuRLXvCquJ6/JQAHaYbYZ8ZWax57uH4AvA7/mG5cdJJo4uV7If5SQNBfiJgdfJ4CBSCO56WrBoCP184T14Av641Xutr4jzEzfrpbIEd8DiDPhY2GvlpPSAPlb6s8eBmtZhOX1yliAN1G6LJxwb44/ALe7xf4SchIxiHqTdnVE2lapiscN7xzj1uZjXbK5z0QAj7WhR9WkPPLNr6s8AN/Xwv/n/WHSN1YduiZNEefkFZvUxf0jFlDr7G6BGGWi6dXXXxlHhY2flgxgH1h46/Wj1gfwPXF8O/88YfUKWe2jpbvbnlCWqbukHudyUuXiMXS83BDWblaBM58T/tb9eLCXenj5XjDYZfB3qs7BUfHNzo1SZgsH2u3DZ7bpDqNDhvYuapC7d6RsKGtOPHzWunS8o4TqByA52w9sj64GZZni9SVMdYqtr+S46Xz+IQCZtwyWVbn1wr3kS8fG3/8o+cJlgtYuZK9E4Ok40db0A0wOlrRuDcsZ9LJxzbIE7bgHk6GWLOOaVm+DPjDKyYk9rVwXa886jkcFrcBtnauM8cgbMPwykbu+RxId5aUi3KraUxzy2OmZWmZbXfbQh64PyvNL7lotyecJ6yg/80KjtHPYdxyzSmjpS0b9z3xFgt1wuv6Ieqbsf42PIv9W2bxQJbb4BudBpdEvPC189ZeAnkCb+Lbl1fMRNgF4EdmdhXuSAUWT4x+W/zDd2qPkkn8zfaN3mNsCwBdslOvl2381ceG/cFwvV/DJSvKRHmRton/OeY3IIkSBJE4mTdLucrUKm8voztjutIL7v/BvgLbcL0X/n9//NJpi1yuooeboNYoVN5RtmgdY+UrMsiJOQ7oy90/J3Y5AAt39je+wIFt+Pr+iGxVwlqjOu0wR/zg6ruN92cbs3rHiRMDEgeaB1RUfN7GcdkGrg/Y1xVeclztX9nHydkgDgo4Idw8kJ8+KEzFsOs58cg+TzmayoTty6J6v16Od+I+V7/8lbi/EG71CzlaSWyvPkrbtstTLdztuvaZne7uatMsgx8+HF9/dOC9yo3R3eOwOG/ujc8QSGazwZdc6pPYxbqJtHW52UNBwuvEamr5Ms89ixfgFtsQVkyzrcWDSDZsb+xlWFhw7Bx40S8rJl6I+9t37p2nK+OCr6t/g0f2L2y/mv8t14TPkfBfrj/L9SdZMTOz/7SZ/V/M7F83s//6z47ojz9/8n5stua98KPDsft0U9QGaAFaElh4KxwNVjFV/Ph1ufrTDJ1TiToc5ztvndiUuUK1kpTelz1KqLg3uSPA48VcrKXm6pMHAcdyOdzCrpgRzNlL357H5Yt9bul/8hI5ACzbeBKAdFvFxaXn/S3dRbpT8wXv0mvZxh+vJeTQs6zSdalfE1e8y8daB5a0nX/eYQ25kpe/P+zCD3k4yQsbX+vY8Sdb4CCzSW5naO3g3Q3tn/xmWMn/BlxO6DpnQaMaSa8OXEW563hrkZ7k+okrgebhVjN+fPUM5UbtOeg+ZjvTPfHCKXcGyZWkzC/3hs1qwK5dxvD82CgD1ZSwdJBLZuvlw6ZHgfpZG+WldA4/R77Q+ccr93gelZmz/7XfTWZ5Adm0XXsj5tynzhsMC7noUOD4G8j5qABnffgU9/0eOBf+pFgEf5lHOaYd8BxQ5N+7066s5d/QieVnzQM3Lceyg9rWs4jlncixxNZy0buWhDyd5adcuvAPY0nzle5rPhCsJQ8kpq74pkNh3Q+Fr3E/cP8ssQNTC3/tDPsUl2FbNq84EbH56ANvfCk3ds+2oHLndR8wzDICiAcpt+rSHFgeaIGXtTvvyzb+sN7hTWI7VqWrUL7F0z/DNj8R91t4zDpfzfdrDvQTJ8ZkpPe+qKqvo61NHiD09IqNckZq8BlESLD944p9bpm2FXaFlHH2h8+bnxwf2ImDtMwEkTOZcNvtzqMB6D3OjNN8RE+DWk+SgWNx4lAgB3w3hY/ewgFAP6YLe9tHW3IFqxVQl7w7Op7WGw4i7dCpy/rep9NPSnyXl/+Gv+/o+s0DMzN7AfjvAPjPAPhHAfwXzOwf/VacssEpXcHwbOs1o6wz3Q8WJTlJL2kcR71itnLBsbgMremc/Y5Gs74fHQERfALnmrqF3g6sXd+PgW281hU6JUH5FTNKnZJX1gID7WabofKaJFSrI9ko6abBFb3y7zevAxleFqtBPJ1x71zRMXHAttP6kyzmx6zVrj04NC1P9ICHbqcvu8KlxWMd4Id14curT+26roUv6xpy7KxH1I2mq8GXdEJdQSfrR31WoWfV2FHpY5M3vtg7yflKcl74w9qV3bsro49/znePhOtd9T6tco+yohlcbwN2ztyxWOZhpF3X2eNNIQ5IJ0vrFJ/Zza6q/oibHTE2z/11xaB7kHMqfTLOaMunjbIzctS56qzb7BzPuHuMdb6+47s6TWaG7hmUodpWVSiZf5v7f+h2XdglOg87+nEv2f96Lfz4fqV7pdfAcLj3HHFZGu0Ca61DLfnl/XkMPVAxpJWipsx/C5M91VFr6J4jRsW9M+6Br7O32fvo4MCi22BWB87MV735ho7mo3zHe8c9Pyfm6B5fGYS8bOMLcR8ObMX9luMmQzTtIx6Y+syn0jZKJ+WBwFJ+U3JZnHL7sS68EC5dC3lMPa+yq8gxEXlUFZMJuFv9Fq7iyn/s2c19bgjc/7Le+OG16yS/a8f3nZ7sXngltjlxwyqkD+wK27SXg35fzbDxYVceIOT4sDf+6vXGBzY+cIW7v5YV9Tj7Kd7v7CijoeNTvXTJ3xFWcp9doHAZ9He+THdZc9Rpu4OLFPcrPRpSPIX8STcf0ZRrtezjBEbH/nHFSmHKbRMddiJGneVnPYmqERquiXw+8EzjKz4HRy6sbXK845F8Nj5jIcAwJjvKsyRtsaZcReUJcWFQvuckwfY4vv/H90fgPgek44+I3pbnPrzi+rZMwz51sbt2ZlKD2S8rV8a/XH8d159ixewfA/Cvu/v/1d1/BPA/BvBP/KyY93bVFelsS09hz7M77+0PxRrlTE1sEULWAdRNrt9rY530a7c42hjGZlZWfMcxDhQA8J2rQzFTWA3cTzl+3Gues7OmJ+y5RjFJgh3kfEof5L0LCOPkyFihiqX1N24GcebdYu+SEDP7rfSZU9/76lDSrEfZm/fsHHL2FoiDGF640qXxwl99XAAuGYBK/aEsMVOcXjffB0BZBY40+KX77hXuKvv4fziN5ScPcOEDb/zweuPL+oov9nXkp6/uFoSNuywEKR/C+qwCR7XQoUc/t7AZeoaX+wyMbciBOr5KN/l72MD69lO7AvaJXb2aQNzL7OvOzs/Kl3nEL3haJNBtqHS0Sov2qqPzWQdlVSzaAvU35XqpWyb36WIGx/JLjnG2OACBHRrv7Rqem9UKKmr/VutSJ2c56yCtbKJH1rlRiuk6g/7gbg1qvY9qjr/V5J1pd5sSe6R8/YwAP4fQbTWPVbZex8gvQeSnAR5GVz/38uMPmGfN6HN9f8YZoxTg5mbjHazat66Qf/gMevY8iEN8IW1O3/up16kjuqPfmBw6hMqJ+ytXiISnKu8PciffdLugEbuNQOpmN6mozIiBnwOelZ1o91pvvNYFs42PD8F9VzMpCM22rjygtlJ7mcf+nrDwjECOWtb4FRh74WNd+MPHG8DVtqFcQcuuEmd9zbZpjSNa9g6vz4YUR5rmOj8n4x4Tq7jCpfEV/5ZM5nXCasuRMrrph2nHswqecUcyzvaQ++RsjyPxif2WmHars7W/y8tWyuPc66T5mJjKQYSVfVuE5ZaO/BTPOC6fNjvKy+3IoNWBNF3H7fi3+x6njclVPS5OHjePEyM30l6GPsc+01K5bqPfUvUFxFQU3xFDp86SdIEQ8xz1/mWOL7YrINPT7dTX1rVAPUHRqh8T7YH1qobLuQ+5r6sqWe9hju7B939cvsL7L/37nq4/xcDsHwDwf5f7/0c+G5eZ/VNm9rfN7G9f/87/V17IPzrwP94HIsmSu4QdfvUmEcv1BHo2O9xzxeaFOC5/Pwg+0zEea/uZjt1V572PdwkE0tFJu4C09HrFoSDr5Xks+JSX2wgedDxskO9c4vexvJ55YQKOOqo7fbn5pfftlidhxQbwZRtvulKlYTt7Vr+VDDV/fV9qqGmwaBtjcRksdzXFL8DxguUq2sdy/OHjwr/z/gDQp2EZ7YEmNjt19h641pHSPnXmCiP1dLUNYlAWe3HC//rDgNcCfnhduHzhcrranBVGygwNyDeXxSOszrNp2JG6RC5XBVtY+UmG/X5hHF+tkav+aL3RZLv81K6650EJteqYz7hA7k9bhvXhuN55XLvW96HH0ZarSTJ/nVst+6hjXZ4mOo72x70e6PYHANvzwOwxi2zVBrtupx2q3sy6Xfv2iAFA1SPWR61zqw0AII41/1ix3/PH64WGbR/507aMTG1l/mpeNdsY35VtMm5Xn6jbJPLWkTsUft6luP8+cV/q13AC0OyXbMwHXRwD8+YLkeGZR57m8AHY+xCkaZwNS4DAVI496HHqwPhoTlirI7yMbYGdLq08WYePdtUq2JOY0tNEZ70nLlSZWteH7ZZujBZ74ZbfcV/zeg5+FDcOTG0dI1C0ldYJrLO54WaBR+kvmO/A2Bfwh9fGH98vAK+JeZn3iak2uaHyj2rbpx7dNtawmyvu53eeeGjWD3mYDE8JbtNMDJm2Ebkn8B+d+Oe4fc9Wj8wW+zj22vBLvt3gTEsqbTWyLAcWx2FX3jzmIfsA0Y3oClKfQvDe07heGzv3cRXyS93FcT/HLLNvpRgyWoZi7NFILY3U2LawPgBYc2SltSRukYjVoyV2Oz9/cHK6YurQ2V3ChgvUWhafb3ld6bYr+3O0D6f8ojxQdup+i2d26r0fYZHtQ2zDuAb/kwwY/qyXuvL/0r/v6Pprs7O7/y13/5vu/jc//sbfe39f/3uKjEl6R8CxSsWrek8y05VCbKFnm94PgGhPvxmhn93l6szDdKEEdPZO3AhLx3yzY0l97pnRVB8u65djhg0+/qEebIJsdJavqJPlg/iwcyT2vha+XnoUMIadyj1Snj25H1T+dVZ4mNHrWVx72Co+v9uzQP/O1y+fll91kCW5m21Mb1VOf1yUp9XVKY1w6Cd2y8PcI+zf+fqB9359Y1XhtMt8ZZ9FO1M58q35PeX4Nuz3saIm3HOm5NJRaMDu2GpXv9V1PNi1exl95C9wfe3vXNz1bwn8PY9H9iMc2iiUK3G1Lc86xlzEz+uy+ERE3o+TXiUdk7iQelMdZ5+Eq2Zp/eW97+PQBK/6t93w4/ucFDFpRxqXNrORTutw1L9RU9ve/P9UqU8R+znXI+4f9R2Q/oY8O4Lc4n6TMxrUcmWklmXielj4Hwl/msHHHWYPsjv0wC+tC95l4R7uxvvq/SpVAod7nMr0WbAtVZvN0ZApoXlgs2sMwPNExriubfiqn/44MKE7yK2CNPXM80Mb9AjQEHRzyEIfG564z+2xbvg774/BkZp/rrQp1g/cmChY8vRfDNtIOrpmkC6ozOcf3wvv6zXMfuMbVdeO90fdPrFwQKoddWn0U/KXhwdLYOzt9aPcG37f3nzGXV6rMDPticehF2oyjk/v/eJZRqcvyLNburx/6Gto+HZdReV1X5Z9L2bO4+Cn1jLLVBqXH/WnZM2V79nPmXWdBWr5xuhan32cP74/0HwsNoX04Yp/zvo6TTQ4HPoBdcUFict0vfPyl+v5MrP/ipn9n83s/2hm//xvSetPMTD7NwH8Q3L/D+azn3cNAsG9nY3+hWP0Rk920rSc4XM0zHNMYf1V9DdilehjKnF3ifFuVI7pQllkHyhs58jFNSDgtcYs+0M8msH7DbwvwLHw+nCsdc3sftYj8FKxw51yy8VpAk+ZJiPEEdtMxPDecRDC1x0+4X94fZ22Ej3oytj6moB1L6cTqsLdi5FNfqOPMgcAs/g6fRL5hYWvbvGtMDP8jY+vY6A0XHhUWx//gOWjOtI3nTq1bbq8mId0l89nhj/uhT9eL7w9jk3+w/qxOgl6nbONpZVPe6q2lc5DXMfM75nHvR3Xhfi455fokZbXIV3zPusESD3S+qUf2DztamXXabsSlHF3evysjwtYGzUbWU012hQzOL7X4rTjdFPpDzqHHl3nDh0t/yfT0Q7HtYG9V34E9Q3nt5CqnbZxtkxbj3qDWW/EaJU1xZg4NllsU8LoQuj4ehmwgL/6+BHAlfs9+YmBMAbDVtbgcZxzPvDUw0pH6txxIzvZbefAkXaTjvRvdmlRewJj62q9B+Zg6vbO7++rwWcF2XyYtt3IQz8M/sVxS9yPdEbaPp+N31XppA7Ttpb7Ar3ckIgjjjj6+roA34b1sbFe76HKaWyt74Nv2OZGs+nGWfcebYPHaFNWfa4ChssX3tvwzhNc//AlcT/zJ/OeN+MpHrXZiLAmuNA6saY1psbacR31nTp9vQx/fC9cbvjh452Th9LxHZij2NmDAFDWMJ1wlU/c2KJjtBsedR73X33hj++Fr9cHXsvxh9ePw+6jEvlpG8fZ3zixfNjxiFvleoZnHbvy1McfruD7F3JiOmPIQtq4OCd7DHZzxHALHhBkD2HbzsTjfaXSLwde2mGA2Cvl8HVVaFQ5tC2n3LOOdZ+nAWcPN8zA/WvnCnFyJNtxYRPpp+TEw/4MRbqWpw5QPYjB3m2o20n2azwMz2c79YIBf/j4CsvvfJjYovpw9e2T4I97ncoJItBVnhWHH7d2kHu6NbLOMa3v3JXRf+Pfb7jM7D+J2ML1H3X3/zCAf+G3pPenGJj9bwD8h8zsHzGzHwD85wH8z35WzGx/kFF7jdCP+wjLaSLre9xdoNrdUcDYDPAVKwd7RQfuZTEjIsv80X4EqT6TAxz3qlPc+5Z3fJp6bE/C9oXLX7j2gtsLWAv2crwvYO9Xzr6nbsYsHkZyfSd2LWQJuVaowoHRyoGUJQmuJJ2Ft3/gj/sDl3/gjS9YKzpvf9xfWrC3GMl2/WgXkAYrBazAl94RwA4hdznEN5xeuHLPyxsf+OP+Ae8dv23FN7D+zvUFG69Mt90pTHSsIqLOaZuqGyb1JGX3x7Sz4+Koo2Sv/MLNhRd+9P8/e38TslvTrYtB16j7We/n8fdET+M0TEckdkQCORERQtSchogtG1FBMAgeCAhqR5DdsieJNgQbYaNpCCJG/EknIeZ0BBtRTkNEMZiuBNTTUDjZe3/veu4aNsa4xrhGzXk/633X+r5vrX385vve67nnPatqjBpVdV31M6rmJ/zsn/DEG7Y98PZwfPaFn/enw70i0/Iuz7inEZt/+tKw/VBnW8/8TonpCveTw942tr/B36yPIF/Io4RxTcwkXcx6GOXVwU+7dlOlkp2YAzlIdDx+2tHxWYYswvirK1S5A9+YPa1v8GHjElnNUepcPe86V4GBdN0CPv30hK0nnnjA3sQWaitDuTvZIQfOY7vFNuXiwt/VjTC/m0FJnYZ/LOA3nzb+bW/v+OwPrHwLr9lOl1CaQlxW0kXosRq34nChzvtKnT3bY8cN2/XzPpihdfyGS3FfcEOgozHWJYzGBTCX2RDufnzGvSoM92SnyeDL4shwujI6et+vyK7vjn59AzFscJdkhGGB+q3at6+qwMS2973wtAd8LeARnUN/PloOum5deQAQq0l17t+muy2y/NgZi8rz9Edh29Mf+O0zVvzf/Q32MNhy/Pw+cX/YqABrumixXY426F2PCuxY7yoNQ+zaip1cwUU/4fN+4GmfgLXw6eH4+fnA0+uA+8YrtjOx33UsQQ+Iq20mF61sDwvuD7z7I/H/gc/+Cb/dn/C+3/C0Nzzegk9+fv4EHkRTgwgtMZrRbeDAwHbauUtSIRRwKxkMWzlhe1iO9RNgnzZ8P6K/U1hm49AwnyrOxqhycTZI6twVYXCe1Vs5AlMWsN4Mj5+4v3HFS5sWGvdZd8z6uPmjvfFe3dkHVw3cF46oupHpZtjA/Q17JEc+rGxCj3bJbKeTOmi9Ofs4ba/G3DKtYOoqLAlyfizg05vjN2/veM/3foSHr9crjkLB5psuopSTyU1XRhPh0g6UjxiWnGHNnz/09Z0GZgD+aQD/XXf/LQC4+//rWxL75oGZu78D+K8B+FcA/N8A/Avu/n/9RZEnp1zvX4Q9n/YKBz/ZkUjCtZwZiEdZQfeKDf3vNmb9hGPy41POXc2UgtUZnGir1h2IJB0XQaGT4+kxI7ix8P4Mt7PbyyS/qqv81B326n7mp5flOSvTG67joy+pdY99Nnsb3rfhL97jJbdDLq637LjPZ5lmwbsJGxBs1VZUKzes8gPHu6/sOBj+/PMn/LzfblaQ6F899euOINcKQiY7o5oT1852ZkyP9N3pYuYOvLvh3WO17Lf7gT+n+0Fp9Po6ee6G90SrXxs38+Kx8ll7urnawDmJvJc1HdTJV1WeYqEbuX1SFm7qY6+2aNy9YyKAD+M9L94nG1ZcV159LXcIJrE4jEdciwtL1eRD572Bn5+rbbM8j12nPfpeOyMmdry40jCeiOsRQXx3cFWwLx4c6O747TNfv155Qr+/MF31+nUgPCyH+U0Xl3quUtR+SdbVS0zUqmYgrppfc0lzAmbLuONHgc5LXCDtXtjVQohfdAFyIPA+X4Pg74h3FWXaWiQXJVhoVU2EBzS8zsIfuFO45/LJ1rb3wt4Lz+d0Nx5yDtx/2Z+QBzp50fk7cJg84MTBXD1Fr5r99vMj2qhkaLS2G8zpFXUyD+04A/sF98lHae/S1xNjYwLxL56xQlUGhg9j3OGEH3wTX6ZtIHVGclj1qZezIn9PN3xO3P/5+cCfff4kuK98k6m86Mfc9S10Tutk/es2gZluDYo9X8Fgll0RP7skcCvGjw8n7QR7rXDt7iM4eNFH9JZ+SuD+gfeFk52HzEbjj8m92HCsMlquvb7Aule47w583oadLozgO9+oU7q0Sw8pcTdrqFmVFctaeWAdJ01Y/RuNtdXczX/b8PNz4d1N4ib+Z1ju24uy2MV5tIPBxRYqe3IaT2jtU4z3aAfj8KIf9FIT/9rPN17/EIB/zMz+D2b2vzOzf/RbEvudvGDa3f8lAP/S10XOjzTaTlfCGBqs7bjHEfdMK+pcvlgx39YOAO+AecxUdsIQFwEnok8iNvm7PeOnaGVLEzBnOiUmZ3CXR5fJHZ/fDc/P4aeORzRyukT18jykt3bKCSDw1KPUFmSk2SJ+NHbfBl+5G2LRndHwjgf+4ul4JuGYPfC23vG+H5UokwqTeJvLgDrlTcskXUJMdI5N1M94ibB52ybt5IZwNQAAC/fFhY1/6/NP+Oxv8bLp7FzYWfY0+4EoXMUo1y+0vZfFoB7meU96ypc7epTZcwPbDJ+xsHdA9Z893/Bvvf+Ex0IenW/1AtFDg55RG/deRcPyBMve+gWo6jmlYc/qybDP58J6GNanZ5QfCacSIulIgaLL0uQeJs1PiE/vWS+CsCDtKURtz4GiG9ZPT/hfxLsHbYmbpZB0ZL8qGnhKWrv3eO1BYQMweJZvxFulf1S8jT6QNco+XVp84dMb8FhxBHa/vD3i85jn6idkXWfFW9ZlGZ0LK1xo25D8eqLGDNkGtJbEAsxvnw/YMvzm7Wf8vfdPcThD4kDM64dexJtuX5H/2HTuMO8Ozy5bQOpYHKu6YfA8IrNe2Mvyu6vOv/TSCnqD2aX3GcdnuAY5qzTN0h1PXyP1RHSYEmvhgP8cPVN/ZJ7c5itHDh2JSQO/Tx03mgcszKiDKrCeWtb5zfMPF2w7/D32t9jDsl5nApTvqGPqxbMo2oSAcPOAfM+w20kd0QifO1Zj4yRQcWPfCz/jAWzDbz9/wrYH1uMJ5MuT2YYB4pOWSd6WXBttlX+ZCSvbpLvijsNQlsWEzee98VgGeGCWvxv+7P0Nv31+wtvbs2UpPpGHkiNbdnOSi47kgXrzZNoqzgBiWzA4NjYMn7flQVUL2wP7/+L9E/7e559gtvCwJz77ai5i+RUOKqaePIC2E6O42Inljpk/iCjaHB5bI7AA+/QO//yQ8yMyjvvVY6LkVYWZOhaHMw2MyZqwqw8udiSPerTR7Qb7yePsFkMOgEQPfZVFdzAkk15t4TIIryYxcZuVlk3VPV94jThl8v3d8EiOfH5ewSGryUwH2SzD5uHkm+1YeR4NT9ANLrLS/8oZ0ebZleRqVwwUV7qwv+Pv/Rxu9av6q1wpy4ZrudJLkvG8l8reE+Txb9evSKudDhL3KQrpBvlN4P8HuE5c/nXXXzOzvyP3f+ruf8obM/vbAP76Tbw/QYyl/r0A/mMA/lEA/4KZ/Qf8K9/I/TsZmH3NVY04ezeX/jS5MAObI9ydWHG8Z5cLpJCJ7OyF8a3xbOSbkVd0INcK+RsotwcggA3dmDigo5ya20hOb/QRWdV6hdSR3L55KvnCM2do3mB4LsOO3ll1OEWrnjXiahA7jB5xog1aA9lhVQcHHnmsNjxWfczwzLfG237kvvggGFsPbDzwSDB4uvQ+CnQKXkSedUEaG3+VepgjO0Pt8cnZWodh4VlGDpD77AtPbHxKWetheCwvN0bOEhZppG36fSK0JsuWKNlF1MAVHZZw7+ly31h4RwwMYQ989oU4k/GZJnngU8rb6W5SAy653C32CeX3nnmku0HPetZgAJZkHHFZ3hq2AbgL3Rbw9tPG+3P3nkrmuVzhopG5sZy8yLStxvf5pFwSAQnUjjrQDIR+x1Sn+/bm2G9P/PzzG/Cgy4tFR1QORLRl+S6oVHPFiVU18DGSWZSRkQjB09XaHqoj1SN3LYv3SH16e+K3j4292n2Iq2b1Ul6TFcWsj9FVyyLQjoYdZYJp41IE0Vmfr82Nuv9XPj3x2/0ON+DTw9M9JfR5LJZTHvVPWdb5d+NL2umciHxBeuPKErtFx8pgtoA8cKdwmrO3X3lZYepEqBq0HmGJE4RaduJqUFt6pV05e6CDMRhsB+77SjcwIZ8xeW6iY8npHtXgm9YURQgb8DdOSmX75+xQ/t3+4CgI8T7bFS6WnvZNh6Mr38jqpZvwj2Vb784obSoAHBNLCGxay/Akl2DlPt6Vx8CnHon7e2uBWXMP802d0G5ZXbiK+1Z4ww6iG2tc4p8/8NwOrA3DA5+fhqc5PsEA2zBbeHu47F2acjmREHU/VwOBgQtqG9qYK0lhm+CacONN11M84OHciPfcZ7ZsA/aGJ8KFPSbzHsV1o/zylx5ExpeauCOfHliu9YtYVi77izZDrsiIqOV4/AQ833du3UCVk1lMxpaedI2z5AEoRlm949OhXIXipolt/Cd7BZysc7oyOtanDfzs3cbYHB+AjPoLOztdFdQ6Tith8g3xWOph3FmV71qOTz9t/PyeLaTcFz1G6KvvzSA8wPwl37CPajF5S+/RaRuUfLXN4AwAa2385tMTPz13nmSJ3FucuJ+cycFa6OSto9hvGc+3DhELdMk2sU1PBjRLdD4d/rtYWfqRr7/r7n/j1UN3/5uvnpnZPw3gf5UDsf+jmW0Afw3A//trFPld7DH7qqvI2KFeImCv+Pae370rGOHvuhwpLcD1vgGlJiyO/acXPb1Bdj673nMCs581+V8cuY2+yXSlowvIylOLbpTJQUJlJQ1jIxDmrLOLuwhG27/IcPnEpueeMXx/xh49LQzDEd8PO49PD3rIOy11om7PpEZmysXS4/CPjdgP9/Q4cENzYEcGpxwp+xv9myGu+xL6jWXtFsv3fMS7nVbqZvjtU08Nu6LZqeP87rdhB0e/iHvOHmrYvWOgSVO7lhEHGCalNaprvwC9CUpL96P8nTq35huxr6bkGF/sXS1DLX58WlYTkrpmnNIOu561U+Di/cm0I63qgwo597XFpTDS5QD2rhG3awnvj2c3miPt9PRHwUm4sUw7DTsCDbD1zEvHFnzaZnbw/JLfb3NpkcXFC84D3R+r50fYwRmH6tdqF+7HfUhGVf5cgpe07bi/fBce+EL9bhdoGaBpAPKE87CLKMH9pB/ZB3yjPHC5GkdNMJ/3wzVbbYHGRQfdtBNjt43DEqbkm/p94tNhG+a1cF9cDJs/gT4UhDohXf5DpzilVOReNUkMvseoy6mOxQsmwbUP0fG28OIT8dlu+O3zocdQfcEWN89/R3EbI7z4SXGfeJ8O1JVCd8YbN04emDrc1cG+Li+B9v77fF/VmOPkW58B7HovPYiRtk4wAZcq98JOQ1O4A++DIyV95rfSEL45dGpn4XsU4X1zqaatYa3q/c++cjLEUe6K6M8aLQUD99uVHujTIv1G7mm31rHy/y3A/4e4/Bs+33b9bwD8JwHAzP4hAD8B+Ltfm9h3WzGriw3JB4dcZ08NGD1lspryraZDY7NHlWH5ri5zi9O5uM+AgS0IIZb8vUcIokfR0uS1C3B5/kN3mRi4cZY8XCoXAF/Acy3gubG34flu8Y61SqfWwUQJadTHLe3Hh/Qhd6BcmjiB23usQkq8dJaZWnhHvFPtt+95DLCdtngtN3sPcbcMemRj54Z2V4rQgzbi9atPz9kaC1/LJxy/fT7w8154szhOjJupRz05y8+1A84VqNRiZWcgdYmZ15xJxYL7rjrq6EFZ2Amwp+N9G/78/VOthk2bHNcw3ijdSyAuAsjEXZbnTOYsj8wy3p85u752bLiWDnzVY/PbuEC6yTFKEr+6kbCrVfprEdD1r/sGuXIcnb9VM7kue970vsmRM4yVtszqMFupXrr2kaDsqHMZh3Gzem43vD8fqZMSG+usElrct6tqhl/telr2KCJnlUxCXSw0hu1OeUlyw+fcX/bTesdf2KdaLYuVrSDqJmvZT0biTsOY5/OFdA3ly9GPuK46W02G6Qr51153K2PaoWJdZ9hXJ4GZeE2wfumgbyraHIBnQlG5hFu7weZPdBvsHz7I9eCbrHxy8JOb18CwXlrvjsXBWL68/PnZxONC1D7k3vNNGKBN17gftwa3Xe5TUd+538j6MCrEnrd389jf8jnc9YbL4qomNW1wpyBd4YCq+z4ysAv7O8NpKwvb7CzjdzwA3/j8XPjt8w2PMa3cfEMsb1K0YwDRZXmLnZbONmEpEN1CS+EiBC9AcP+C9dK2h22IA/LjadJ5H3ZxmnXg/tlhjokI93jth/uKd5kdWD/3F7eOxQMkmMHj0663bcJbpxbp5WrteQLievM5V60flq1yFLsKwCjPyrtwlVjteI1Ii1C7x6AsTp6mO3dEbtuc/FNYnt/LlfwF37jgvh7YRM+GaJk9TN5ueN8xCf3p8axJx5WcaOh7xon89kCtJjgvfEPumLaBxOvqsZMnvg33f9/X7XzsH+765wH882b2fwHwM4D/8te6MQLf2ZWxuF8bVt4XcSon2k1cvRhH/2aE8p11pMtIvsjVoiNVlyM6Ijs7WBRy9ulO3Zg2DMaNSWwuxY3W+7l2uGM983jV0IWnNZ626s5H9VzUJkOP+OIbsIez3eegJXyp15K3ByCPaa1R8cL7pquTwddjrGgsLaRiQTGfB3j5WV55v3Nfw07g2uk6w5nZsGswz7sj3QQT2reFu5lxgGtZXgmc0lE5q1UTYgw+H0pEGZfFRlLeyEn1TYZpHVf42AEebj8PM7jFJvBejejyvxucUcdyqaHL36gBSs1zD9m6pHkHnaH7Wnn4xdo5Mxm/u03daIsSa1meWQrnfoL+3nb1kRbjOupENsZdSSyPDaw8z59tNXUwLU+Na1dyVmKTrUepo3RvRf8z3YWNt8cTZm94rC0Hk5BAAV1Bs8KBXLU/OwVaEtKMS2cSOXEPxAPGjXbytp54syfeHk88nrnXIAdjq9KOsHG4mXen6MTPyn+Tr8u/LE9UPW69ULb9Rga8w+5HY2XBTNY335h7CLXgEu/9xH/HPCExM+eIVbSqI1UOGefwI9F9gKduBRQ1kIvEhrfntnCf3OG6ZR5YthEDS18rfdtHbZ+2usN7MC8CMKkX3Y58W7jGJ9/szQ5y7Bcxwbb3HKA9bMNXekeUVwe6MIYKwgNtsG77ylk+7R3FE/v/7IFsaxvvbrEHaFuSFbAsXi69fYFdxMJ7wUytFp5lwbahtdYKb1WXzo5ZeBjQNgH1C8s2HoX7aSs88NwPWB3dz11Md3g8abxMduCwxlVeg8StqmCdty6drAOJsQEoESLcYRMRpdoYcY7pL03r4JuTe07uNcHiu7iPwP/mIvSnBmVe4ac3QFvyYhsTLdJIbLs1cTfy27LWY+ffJ56YBcLTEJnPnngVL43M7eAmR7ji66Tn0YbVlrp1gLj/sCc+rY21drmsT1f64NfYmxlxvdJqImQzqYnBtHPzslfcifsshG/E/D/Eda6C/6HEuv8M4L/0u0rv+62YNULWJe1t2nf0ZDAj3FZwCeTdna0K5rECxZbp73KEqerFGmr9k/aguCm7iKD8dVFMH42A7I0iujofz6J7xFW6iBMvGm0U8pbvyFW/8Ug6hF6dZw7GNG7EiSnPGNzsso0DuWIUw6Hob8S/TO+pu3RH/0HIkXJzNOxpj5UnynnO2nNFrObgLVYathkMCw9nl/4ZNjKH+yMOCknbrAX8/IwX744VHAKUe5ECiXqxTHRwVnFjYBUraRsoHWPFDLKKtrEjT+AKZNpqxQu5u77eE3TXm0nMR7eswnLdVInu0o+8RHYYVh6rHqd/6shq6QpVZL8HRQR+baPcH+Ke+w6RNvL0p8+9XtZ++EgTaB1duWfr8eZ4/oV1hmo0kaRq0fHoPQ6o75W/xTqeM4arZ3xNtkQWiVKfIquoC/TXf3CPIG2Q4c/9ZVyhottg7bXwjfUQuxUJRj1YaFKsGc3qm+zen5PP13K8PRxvjzi4hYMy6rA4wMUO3WsQKQNhkyPvYdGxfKAKaPlT9jh4Hi4S+tbUSIY1aVO/6krVHKhKqzA7rrTHdMlmOOrBRO+U6b1FcevlopTNHPaeEyyqiHWnl+23al7ejxMshQfqcA5RlwnXDkjPVSvhspBnMbh80jg8qCkna17xzTCiTnwQUxU3uGcwMBj+qNJ1e8KTFzbIhz0p4U8TUraWM6m2213ZM3jAcl9zhGu+icfxbFsMdpD8w60BrJjuz+p4Bu6LTgP3T0zlim/rXV4obj2gkrg+dAjbBCdGGis3ScZbFHbqZBmuEdmrJGmYa3W1obQ80PpYmHzG7ahLyt4Tz9Yy2GPn5KrUf/Oxp6m+mzUGy6X74OwBlNcEBI+zrhB/q7bY5N7gBs+Bb8ThaZHnPqsaKFrvp2q5qqGPk3KNeUrj2GPqqJN6cehF7gez8NBRjqSbuhnGMfWWq0gy51McYKpTl8rgAThqUcAhOln0D23txP6Nz3tJ34ZlS9k+eLw9JDqvc8Jw8o+8RQFcKeP+1Zj0o77Tbn+8fn/X+nKQ3+P1gtyLf89B2Mu4PsNK3CJJTo/yJZobsiQy40xg6Id0e5u+z6cceSZxL4NK2HDpcMRqkm/g+TSJ7ORckXNk1ubvl36Kn7c1DOvHzk5QMVfMqub+gs/PFat72us4y+CUrbNGBGDa8dDRD9tUkTrKzSb8+oNSnx6b1X/7/sDlErvriVV6/8I0bRedbQOgq9IC/aDz10a7Nv78fERn5+XszZQ6bHbpZ141rJpxhPUzLbn2jrKMBDKP4gIRZZK/3xDznNE97SgDHio4+hp+xEWZ+fmurOAjbiUlehXRFQlp7mfcGjjBi6xM0u3m3nWELi2uvSALYjfRca6ytY6GXZ2YGtJbP+fqVtUedY1RQqXO+e25rciZg0OumEW60iGSQSZraPUHACyfe+AMzxdl2/pXJwW75H/N5cCLSbfX4W+aAAYeaxA/fnAA2xtfiPvvirBHGqJPYWURkh86veCBDi6/5CBIcB8IzHdHTMbVu86yIwRMvjFJHz5tqXxz0dHSnWnqSq2qpQjuR73LY/xvbHMtl1fYeuXLyJ5XxzHZYzATbUW94gj/+Pz8/kCdIHOjBjvMwImTahvmukr1wmsc0KlOtE1Urdbpc75XrXC/5N7kH4qpWsdEjQNnhtnPZ5o/ZsXjdOO915h0iRGEyC1MJQe0MMMp54r7L6+B5ZOLn0+riZJz6/2Fg+wsvxseEOMo39xhquZJeeC58zRoabw8dKrKgthnvTLG5F/zDXsL7aiu+TXBY0dMhnMifHvgPr00yBdr8M3sjXCirtwRzzIY/NPPFjh515wC5YKjzv2Ql3/D5we6vu+K2cmI2krO+zs3Fcblb3k0LAxxGhf9/NONpNAOSYbpPmIPwN+9m42OEookBTf0SOZMq2aAHXL6I11XMgxrNQ8KSFfG6Eil7GcCw8pVJV+RZvkvHzakPiacIjMctGPrGAlsulGvPnxhGdLtxeAL3Sl8ombclqV7lwpUc6XLUdgxH1puPk6AWuDeLANXLx0Lz+cuuRGJ/tJxpHS4Ma4sW49VKRgei70tCm7yKgVJVmmb6gq4xkyyRcxSL2+Xy4WYQQo3GxJMuLzGs4W9Hb99Rt7WcjzsHZ/3dd/Bqw4Dy9dGOZuE7UrYq6KdRV1IZfUwxOlhO0lmvW08P3vXkSRGks4kR9HXuikson0OXm3I7g6Oo10r4HnCmYl+jlg1e4QPOzevFB+rPiRHsQrbBRx5SmGawtGuqgeeVDfMabbomLCDxOeP9cTbesfn/ZYuMEmEHEglefFkQ2aoX/qJIkBY5xXZCW33ETZO6eTozLmFG5rD8ViOv/L2M/5iv9VgrwiYxF6ELASbRG7ZaQFfjVH7jQycNGHWong58EMXfur81TyWXK/zV4Xh8wyfqsv7ElbswxEDO57lixxGd6Cn1skBua/Y6arOQ5G6SideNjjUSl+bQM6fT9WKb9DH5bO9Zm0zC7n7iez0hSu3Py3KeSEi79XYerwCgHoAeqiJ2OzEY7bfdGWMDmW3/67AifuetnnGa0qAOLVuP2/0oS1KJ0BgP9JkkSSO7nSvXM4BH0+oDUWfG7mCko1+p/u6LTz3jv2yMKzC/cfElMJIn+VKvEzcGJxk+eoUA+KQlDDmstzjlnVpuQFr4/NO70ALnnt/ht7Ldrxm4537ncU+WkaC45B7zKCF63dhXfidVaX+OsD97GaO9fYEPj8SRKWCCM5chAvNg/xTWM6q0/WayZGriCXML1fNPHn98ZZu9XIwSdfJlm2HjpMWZLLBuYpkiKNRver+NA5506tANsv34Xg83rGfn2I1izqlfNYL9SYJb5EthTbLrFxCzQtTW2f+3vyZTTsmI3KV6jdvT/zZ53fA+PqdxHl6aeQ++1aZg8rmFJ7kHHlw4cu50s7XW0S0BeBzuUW+nmz+Ma6/Xxb0vt+KmTaW/tOdGd5qhyxJr+JWlCbWbtP9X4clQaNnkBaA53RlLDfHBFa+V6LCZGu3InR5BlFCyEnzzZcl61QRj2Z3WzFQTJeWOFI10uz8jYyWBEu9+owNO7J+ztZygMSwK49FTpeM1M9slU/1rjN3ZxlcCjLdbCwbdHUkOEtWZW+1iBlE1nKri+kAjyh4YuG5V9hpxXH5z/2ADspwyC09zKTP26RpDNCGvNjKc/9f2Um/I4+dXgtrLTwesUL19Mc94UpHMO5pm6pyl6s78ZK/Q2XlkPo9wfstj9oNdyWrSD0T2J2Yrv6eL65k56VnH8tdkXGKT9MJyjotJlyTD0lW6xHH03sXGJhouaXICpUkNfJctmF0bRfGOneUfc08dmNdFvsfPz0cWI6ddazsLLOndCVB2s4M6foXaQ3dnPu+4lqUa7Sj9QBWyTWL+7GAnx6On2zjfb/F0cdGd8Z4HsltvJmXS86Cj+Oa68CQDLtYJqJjFYHtck1FDvJWZ2hg9K+5WFcULvWvnd+pU5u6KpZJQK1qQx7/c+sJM/aod6O6dYRR0Ww1h7zmgSmrj+Fngy6Gkg5t41NVqDdLMCif2W4bzANaj0vmqxPfluD9xJRpWXojeOL+ZoJZ/2EoXpig03L5I6c3ezLHR37LxTDTIo4G7mvCwQNcC9h4pOtbzMAsumVnq/K0w+gQw8b9sJfY5vKhHpa2qc1neuB484BnPXk8Ir/PvZrnTmOdOhqKt0/sPvl19IVYH7v5Vh1j+mvFQCNcGR8SuQDi2sjOKgJAX0vCSqZ82uEg4Wz8BpaS4P7OCZZ+FYqnTiQT70kx5YGBIXdykJhK48ysS6zK38OAT28xeIm+BfVIHYaLP9ug8kAIKrkpuE7NpckLQ1w4st3/m6tiIu7TA/jN4xl1fZGPvF6TYqI/eQAI7GbxPkzdFX1y16EHcvKEqLhsV/0031hWncsf8/Jv+PxA1/c9lVEamKuBBDir4Rt0gqPBLf8Z/IAkAfnFaqTvScoIAn12ugpOMdNzl7AVCobsvhf8KZ1rYoYB8ofhEsiwuYK3323ku10oGVx7NoecwgRjJoosxyy9CiZx534GvqeIbi0k7nce4X/I8UrBEgSloHTww98gOrK0TEqrggVAuU0d3aKj4G74+ZmHk+S+tgJnkavH1vO+5I2NETRL2i47VZW/LGo36ibZsVxp9HitwPs+me71Zfbxff3+K+OG+bNOee57g5SFdceJeaCNyh4siSJGIWlZwZv3uhEdWfVnr4Pt/bnzQJXKIEk50jPDPIr+lAtIuTs4A4kkc7Nd6ZZtjC4tJHxvgyGP5abbYFqx3QSBduejTp4EBpjlIStdg2ugBEs3FdHRVEddjUvZ0W6jXn32laubXnIW9zlg94Au5ZbbpMX0QbvaRNg+iXEOJGsWur5z14x13vGVF9vlNHlhhUsYXhcI1rA3hyxd5CmnbIsDL96BercYcVUzZRpXlC1OslKCeNCoJbKBdBnuVZg+9ZZ4lEk9EV4f0vexxMBfzDfVNKxsyZNLPdM7mXLYj5ieH54SzFTJiWM7lFFOJML8sD6p7ZjfMo1QipZVr3yRCz1PjwyefH9av1uNyosdrE3c4+NhVcoizzVlXnlAcX9+B6xw//kMPtKK1JijBXU8S7u+wnJimzaLL3KGhZ18I17BwN9YfqvTVSwFAB5bb6rzMXGnuH+ni3KKDtjovr03EPvGUenzYCXI3+ado3kWXpHlegWrVrb4kdWtkc/q+MWP271WYycet9zFeGUblQPB8j1sY/DG/dKZDX22Z+JxtEHg571yb6PXZ1lzxzyifxffWPJNOUoZOl6GXaIjOaIGpNjh3GWosN9379MXLqHyv+zXd7Oz390cRvV981w/9ICKJZX+eLiY8T5mS2/iPwNhne/PqDbDSj7x9OxEyBfR8QBfkesb4sNM/+/cx7VXkOAzidt42EWn1+4/1nLENi4/RDYiByq3/M6de7dQ92XWCrPwvsOd5fnkARLPFnYsa9MkzB9NWcfz+7BYyuSesfTd9zwef6dLi1vq0TqFXz/w83t8pytjDSRV3k1DVdtsQMIm8TNe6etZ3TiDmgPVzXf8AE9/4H0bfn6uOHbXgLX2cAs4tZi69b32Mao8ndQsYdSmaXxtKpa/7J3HEy9gPZ5RKZX0ByHK78fFjuWlzuvg5mJolOva8Lpy5ImkwFuehsV9blZ/MUmHREkuTbleOrFLivrLo8ll8jR5kL0s1ETtTp2eDrwtx1pP0GdfgYOuKTVoqc5n6JD90yLY6N957vFJHZ34kqsIfJ52MtXZEa5TBvxmfc7BWLpRIshZ95vxPiLv3rOQtZiTpTvzw70FUUiRNg+/ISE7HJabocy1Jn7FdY4NWHyFv/KhWRU49L4wP2xWQKa4vxGn7LJNP9POZZNM9sIRYRM/5WLK7Z778bzSSB7ICSTPvcROfNsGf7c4xt8MWFsSUrnHb2UcMa3PAN3uONgiFxBP41ju+L2xjRMmz3eDrQXYEzVB6Fc5UyfFJsXjKw9EleMk15o84LGv+Zl6PTfwvoHPz+AEHtJTA2XmVRIf+Cg6s6rs0rEHWCAPJDfBUTZyFx3Tju/b8PkZR5s/LDiy9pq7GOT4GroHxyvcXrD8tGtlz+f9TRnsdDt9vD3jcCrDsb8MECiU/WaQv8JNBCT0oMklSusQz7aIstTnuYNL19tz4H7NV6jcs2KJFwVto5MbUZoY/aZS2eehRZFMaL2347mBtzfH2+MdupeWGBuDLuK2y6ArrlW2CIxdqWC9ggSt+jLBfQhXKR551HczC9xHvNycrz5hXnvNWCbniOUWtjDfoodMyFU6PRvEnpHifk0S4o/XH+L6bgMzHfDU/fHc5KZmsjRu3duIxRdpDjcWxiFZA7H3zDBdWqqxdlpDLi9P4tfBSbllyGfmJHVvIuLzmq00nr7jnY9ELLplDbkW6VH3yl/zQFoomvB0EwxiITGNl4r6I9zzkO+x4cym0ykrOxllDjWSFVByiTy4s8uJq1jsLDAhJUC6LpI8n1h4ergybli+7X4n3KyWA3Vh0VILuaMfLfn3dFkpyOKzdFnhRm8e9OEIN5aNR7q0RNk9VnaBd5RX69D1IVbtVEeTwVDrSFuqewjv+ZtBnp+86khXRg4Q6ZI01Onw9ZvV/RhYKrEdjXbU8qFj1N0+kCLcLt4ePSiDIV1GIoDlPRPR07oW95PJfbgt+UUXuuvVPdrV0UC3QoYF3tJtcCXg8NQsM5GLJOzVxyb38yTL1f7/JPEpV3RifrP+Vt6SqB9r4zePjbf1hNsql0vK5DHJZjGgbFfGne4ubP0p10KnN8k75fK009YxGj5nTummsyB14ldeiuUsqzEj7lI1fQS9xIWEu+C/tH1iqCPqmLNcYZ2GfInvtEW3KwbhYzP0IKV6yBNztH8O0TNcx1NgVkSDw3Y7E6lAOzNefCNyj0j81xk+bdODtXQZ9Fg/Jc4VJj3oeXLwqcoZVSE9DLJQa9DEZ5L/xtrmAU98fdJNkK7iyUPh6m/plt160bzlCpYgEu7xmR+q4d2mIXGZlZ19gFo1zD3VwY3NmZsu7RY48bbysJ79QG0rwMxvy1XcZzkeeh125TPLPKgrY7nLartajsdb/N0MX3uSAOl+FOZW3PGb1am+Z1vlxFTfj3+6TmZ21iOw6/HYFaFwHvm9BoftvslnrSNXjho/oHrYdFEu93H0QIhxFoKLfnpz2NrRL0uXwdBPvETAQ5fY/icPBAeYhJ24P21n477cHiMq3pbjNw/HT+sZ/Lmib0GbN+6H/Ee6fZrF6bwP2i31ZWe/41l1o6VXlMgkuFhtqmv0D3v5N3x+oOu7uTIWPmfNcH1gx3OgNhRfnvF+GJazJvH9EheRgDnigAlO1Rx61LjqlCMtvmZrLvrflfSgyWqAvNkJrhsWG9Qr72OUhVr2l7jCOnWvDWn2ZyQzBiH0q9bcg+aep0Vu2soHEFKZHkSgiNlKThoMe+gc1E9CP0YWgAySAFgcs0+I5WrjvDiYoU4Eyj7tCCmLbXLYRmym9c+GHlImSmj59zlcGU+rehWB1fPu3d25hmja8/msfJeVLqmgHOC2viHXMj9TTrtNaNrqNjhcCC/5y48in7jv8d4BPH31gBAuew4oh+56pzy5T93riH4hpSGXLjk3OtpycJbgcxVJ55OzhkFcWux7zsRCDsxW15zKg/fv0LzuMbgcrtjWq9yt9y7XFIhLi9qK8gzi/kLb8cPVtuFmg34Orz0XvXb8ddeJqeNSTL15VHO6Etd8hm3cZx5bbsBWtn2uYEmSH/LNiQv6hdhQkTszLgk6y9tnXMZxoA4muciRtnnhG5IBlwELyyffKL/Rbo0/uMRlHdhPAPsxuU11GvyjLyjnzx/g4GGEiYSspZGum+WZDumavc8Tea1Xn9Ik5BTifjyLmqRcVTpby44y3VUfW0tOpM78OIDPUqeueNw49fL5r4j7pbBFUTsnPAX39aTCwifFI/1bK2wMf3DBcO3LqzAX85IgMXHZD3yk0fjVEbMl2jW/jaspPnGmJha1v3LwgC0Az6g3z+eqOjNcGU+szvzpoBS5omXEyOFJIvjKuHIMv+rc6YZO2w3vfJ9m6jxdEjH4ZgywIe0hOWbaWHlx957xlE8d284/+HVCzF/S6/u6jGo7Pn5XAhpkrpeNPxC/jXIlIMG2e5qwbR6Vr66MsA7yocJ+/Ylx/YxyfOguwWOSi/i39T6DGnlpYxDaUoY99RgrhJwR5axhupakkaf7npU+YaoFutq8PzkLeBTCTUPo2dhOywRiQzBnT/sIaerAuKUX6FpCUgw3m/dnzFrShWt0iG4b6NnjW7VS1nvpIHr3Ufhlp8qyzi5n2HT/+fxceAiZKfmcdehWzUsFap2qc5C2O0vkmp73oBqA+H3NBV0lHAH3clMhaVKuzWfaXHoWN/4WyXg/o5vNdp6uJhFCa5A4ItHOvJLlWCWzmUz1V0WnrB09WSxhWQff9wOfcoayVkWkE9KzukGMj+pQ9Cxu1548IRFJdFUsjuXpckhXE+O28LaxZfm9PxfMFj49npXmg3a1GBjGa8lyIFuD6h6UUS7Dsx7UCWrUUcOiw5oDfEvTNzozzusot4GX6L9SBebllRXQN7n0E5fCcm3kvuLRmluO3wo5dDxVzAZazld0WXdJ8A6PYbkXyIB3A/KkyGFd1efgm6nEVLxgkR4W2iezlAviK1eumhP2zn3F0T1Mvfzg4p5UU2UHJqk7KJh36qXFrc8E90snDsgMz+dDXvKbcg8qfI2LhpMfmHd97vW9+crzkBJdOasj/J8L9wMRKST52pjquGtRp84ouyAHiz4yq2VgqR9PU36sxn0w7rkcnWIm1naAnqB6EWU0DFnzFQxuF1KLdz0ywJzpGg1S38M18Vi4StrCSoLpCXDrrKb+ecRZYFnqFFsQAh9rwESMTTxeiwd68N1hkwccSJ3UU+PgG1dvUmJs1wPiPrdLAIafVvZELA4FKWxf4sJecvpVKg/aymNvc8/h7Aof5dN7/OL3Z+oUYblX7XeI+r+XS8e+v/bzI13fbcWMk3sArghqqGPXPY0WFR7VyB24HtvLdDbCXcUdtk85JlOvQkbIhugNIAf/dKeJRzsrA1jKNYv9bWaAeWyy3Zn48pGvdOJFHeuftcMJnGe+KEfv62h+yZ/50L8xzmPgl3LreGfwGGUurVvpUr7Q2juSwqj0wXWvVIUzlxlte5dJRTK6jYSc7QEUT0+3g9qz7IAt1B4c82OPg9rKqyz1BdtFujq4ZFmn7hzFbwBrpx1H6lbH5+/UcbMiex6bD9T+nuqkiR5apt5ZlDCj1oGdhOqki96nzUPoQbZZ+R8Ph70jVoWeIWeU6UVuJzkGaaXz1FFJdEQfLO7DFS3cPsLdLva99Qxqz3TKPVD1sjsIBu6pMipZx9I3YZ2cP5pwNsPYF7Dxyd7xW3vA8czBEkle/fvRnQ0TMmSHB92JcREc2afdrWxK+1z1DbfBT+uJ9XwmYe7L7CrlRgdBVrqgM8k9AKP+sz+kAzTam22jbV+qfsU1VriIUdU25bti6pLf+SyPgfeF4oGRLrkhlxrNbIyPNlAdqaED+UY6ehe+Of964v7iOhNBD8UDAMN66Mp0n/K72Wwvd7ivfzdkY0s+KD6xxsmya/ONWx68UdyDPPUwO5VrdbJaaRT3iwf4yHGpKo7cN+e5QqJ4bIm1Dr7/OHiAh3Mk0C260jr61N5e+VXcYxSmb1qYVjQY5eXRNnQCuPsCeXx+YW8gZnRaFxwbO/HskWnx/VFeFePE56M4aT+b7bLsfGK5loAngttR50SGw3t/rBygpOXYoflMsVye3ehA+zeE3fDAURl6YMUVpaMTZ8CYGGT4oZMEV0xKzvDLc+oo/ZMMHzyQg5j1hK1HeGxkuyi5S/PYfFMfI5/3ahf5R70pOBHGPt5ZvGrThR24n5hP98nJN9z3pgeC0NY+ZPTK9uT/HtCh65IxB21Nr3/+eP2+r+86MIsv8efSP7kjqPM3sw+DD1mXuCAmwp7o/Qij5V7lqo5+l+ZIQncFZGOwGZZy4lQmaerPbIGwl3Lqp0tnXDD2kpFOIBqayk1izZlAK3Ra4NG4Y8+WK1DOgdjUkWlLR5Qz2MYeRoQbrpClY1moy8z68/7sl3oWibJepbyicpdSGUe/nrbx6lR0h8/BbrrVqS7WsVIxQ6xQ9U6c0yieJCLSjzwPLCcgE0zPuPjgMhlwZyeFRzkzcteVlkVgX4eO6tpQboOp8xoE7DKj3cTP8lw5YbEMeH8e9Sh1bT3EZshn/GskQgM3bNe+gyRFpRYdpDBPHBQvA2zF3kX/DBg3Vh755YBnvMiTcvM5jzImuZcLYcnJNLmhW/ajsZsSZZ0EvGPAFa9gsEyvN3ubdAqQtqnj8TPvy/p0yQW+iDRst84TumyXjhVX7PoYqxW//PoS7t9iHfsKYKfkiHtZpsjnPkIVD1R9f9oV99GyLlxw6lz8I51Gz3Zqo9ZdMmuXH/KXg4uqX/vKNt76XVf6VO7BA350CwcPENtyBcg99mG7aL3OuKmAkO2VChztVm55j3JNZwwdahCz3Rzw3W1wAe9Pwyw4rQoc3GXexU6QMKFPzVAWxupEnrmLjpkPWGLpTu5e4DvNrjswX+G+pJh19UVVvok78xulNUXqPqhdHi+d1iSZ5jA7npVLGy1k6Pp09gHM++XPiV/lCumI4/sTl7iap+mOSSTyQIbQ/bz8a8nFfVIh8XbqpdzEwRHzFvhpzXVj4A/ZW6cDn2gnFx4gjlvzDyB4nHELu/PIRPMdk6c50I5Dp4IjH2vjs/OU4E6X+8QMjDvlmsot7qJc8umuFbj0GRrt5iG4X6c2/vH6vV/f15XxJQjl9aIO+HnjN2H9JrDnICa/1z6D12g4dKzZA+1JvNDPL0rqgySg04XB8/ETh073mavkDCONU2/ap2eF+cPMm5qRpEgZT55YpWmeZruMKFpcg/mdDdV1JB5e8iOqu6EO4nh/z3fGaEAllbvOTOlxJ0dsc0OCPQMnJzrmc55m+XnPNSUbeZ0zen6j47nKdNqh+OMIe0lLwj3rVE7JIwm4Vni6MZ06T7/+JrZ+Jt084f/Iv6yEoWepfUfnavXDa6dAmucY4AxRnZ923+uDLRi39wMceTnaU+0TSXJSwp0dJG8zltwbUjz0AhCrv5grXyZ6scMQiymGJ6K+043GvA/5oGtjuYxab/bmIPIhzzkIAzuDOI5crpel5uCPeqvbzbdcYl5+6RZ5E/ZsMDju/eb7eR1h7P1Vgh/rPBVWUL2Kn61dnrqkkcn0CcI3Khe+H7qKHa+5OOXOQUCvhtzxAE9njAmmvVe7OqZc17Tv6HMo1ZbogcSd657Vy8Tr1Fw1Nazcnxv3xRY67pD8vcLF21p3VsLkmw7d791snUPPz8/eYXSnx5Axv0QWjjo2BxeHisezidf5Tdz0FduxMAfx5c92LcvXcu7vhwoD9wIL2WSe2wY+u5ZfxtU+Qg32kq+Ui3FEXRe5M1nFRcoJF3ab5feCb9SFsuR4vC+sa4m8O+zE43GUvtepuZ1tr0E+91I+XNNuuQsbb0vleB7uEToOuXRlFLm98scVOE2bZhBeu21HP9Dl3/D5ga7vMzC7I9rzL6/zCOONXug4jXocUTzikvh4eMUTAVpAHEs/AO3Qh/xDNBNXyDOMu/dz1SH/eh6ZnIL72N1tucn6MJQdcnCkzWCHLXoQZvMeCRs8otjl+Pwdz3gEfB/n3K6RCobTRtqZRc8eiz7tmx95qt+2EBxN5XE8Mvdxkfy4N+N951HAhu5IYso6LFlfXG3irC45MOX+Dxh0X4Pq4eg9BhyM8QhlHpYSKxO9yVwvXc3rfqcPjyQJLWb1EbfyqveXPEuCBjze+hTEUWEugOvVAePgYdrVcDmSmDpWjqS+qAtr9ewcaxkeD0e9V0J6pjUITsHSteyBRP6ovv8dNwyjRxJTV37C5jnQzB7yQqwIPdbnGLRwL8G5d8uRM4rd+M69XezORme478Gy1M7kTclpHpY5frL3MXPJbmJvcOeeNuooLi60Y8mNfQecifXSufVYVedaZ79W0l93+fEBcDThgS01cLngvNxrfOWBfcTlHl7g9YDi1POi0w0eH/nqo/fJGfaaB559hL0vNBcpvlJhn7+f+4yab0zkND/wFTScGKm9cDnoGXic97FSPo/6tQKeQ0Vp7m3inNTT/WOlS+Nmvcczw/F0SOWBZ742BWbZWZdCUHxK/XoOcg5My/tDy0ywdAM1KCye9gP30Vy1y4HCYchXymgzkXZePx1YPq+eFNWFLnWOOXlOy8A8XDHTxFg8/bY3N0XY83j8kVpUnFOP2jM4BmzEvL63xEiSiJuVWQxxQiN4BL02KcHQU7cxZk4dtItU7ntn3fSy6EgpzBEFZTmgedjzGDyhcb0GUDI56fQWYYG/wGMOePK3anzCr4HPE+iWOT49kpcufNP68LUntIHyANyxkmOLB6ixK0CGHn3svtF4Ubr3lfXHuNrkf+n3mH3fFbP2IOgG13V7PjgNJ3VpdLgSlOK+jzqWw357bwCXd/f9RtVKj99LxyCZkmM3cnqaE5wOYrqjQ5L/ulOo5f6FNI7f2YZy2XhUOeShhwadhqrje8dUme5xSVIkkrvM/lkel29eM5ldJnb9uMF93cjto4F3dRBEx7znyYd1LhgHSgk1MdsWaa2FOs440usi0ntePYBR24gt6od0cynN5Ih8fc0B9UofK1vxfp04Brud0iDpzGOR246DnI6LHWI/4rrU1zO/dXalxeBnLcdzl08DwJUsEw2t7aHpwuezCnvJXf5nx4pVrZolIa74vK3n2N8YdvA+Ht8Ay7BotfNv7vkwdF03u5FrZVdpialjlkeS0WMZ3jhQtAfW6mOX21UE7YZirAWSXyW2jPuwI40a7aKOsR/3pWu4mrwtx5ttvPsCj2Pmalyl7Y5HxcNwZQzZPsOmraKWxB5J1vdImzodK4G5EfyrL+lQVVEZBkGGjqg5hCpzGYDZ8eUaV1HfCveN2E+8VrkstxtMJf623C6zkPsB3wCTB9QWC+EayD1fgjqV1kd8M3Su0m4VXXAj8adxN0s05bpgqSXuwxyuR/grV2X+2lStIxSvmN1bvmnbtFkmHhP7bMVnmWOrK+MFF9nGU48x8O+wjan9ccGSWsWTNFtOYke250dtWu2XTDskHBhW09N7zMv19zMuLnHb0sGfPJp+4D7DVKVRi/BGRk+sXxq2sFoHg92HYp3jjUlgs2h/b2+OzdFeAZbLkfhWYXtwpLr2hJL+FSUbY/lMAFxboiXWva2de7bWyCPxulzIeZ86rmoykQ5x0312sA3CN7hiN10To/zCHf7TAn56PPF0K50K98W1noM9y0GYvNQo988hu5ZyKAhEZ7ZurpplwcbeNpbsnjb+ES//hs8PdH2/gZkff/n9DpxufjvJbY546XqD1z1zujHyhK5zsKRy9XkNCK8zM7ChlUA9ZRzk45yFmHL8acip05HfAur+MlZOVA+XuEVywxQaJsk6la7sCoG7G/azZw6ZnbP4BKkHuSoZtRwr3feWufqMNMi5zQMA2DsGQ+9PwzHho0mE4WSwBxOblR36GRXtsNe4bR8Ry2ceLhFcWbte1wp9gt0r8GvKnWG7nGbc6hQgwjzzFQxNbCOE7Ck6YwunHR8GMFZQWS2qTe2jD9BhAM935RU7gbOSvfIV35n3cUpj1yDQ5dD0e6XnoJsHe+Ea9gSAWAVdkneuxokuQmzcT1e6yoiCpNlxtuRjrsD1EcvIuLtndB11ZHLvdejVsD46/5CDcJ3hqVpRTn3MPveq1cmSZ1xwJpadhnaP+arrQ0yNP+fs5YnHA/dlUHCNOxsrO0AV78CNC+6fStzpnsCgE3sjr8JVxQO8K+zO2s7F7DsuwrkR30fG1QthyNcYt5hkBx42jjmyLbw3f9zzzZR18g0RYfDY4AVilEz8jXwQZFpuudYL34xMZEVQ/rl7p2VaZqyWtdKKWs1VHMwNewH5Uu65v0zHQlfc/2U8YLdxZ/g7zqBXzPOpDwXziP/EKpFjpd9sdFb4E2H7vtNS1/bCYdXRkby9BBc7vOpU+rDxpBx1FycGqxy+DPri5XDB/dxTZXGg15OaSP60scecDuUdh4AkloacXXxTq4dl935hc+Gteec98ZiePJ/3ykNQQmbgPtPgfdvxwfIxdVdsjmieEDf74puOW/vNtKxvwfGP1+/6+m6Hf9TFOq/syq/8nX/7sKMOu+UZ8vuyOBlx9U+8L6zdiNPpzPJkI4AvaSzuVB0HB3iTzEFKl2kS1dmRR+FLxDwhyxADDOdA8extDFIRYs6wIw7OuAeHbsRpkZkBnoaoW7A3YhUDOSB7z9McbW0432lDBQheVFOw/GzG+tv2TDPBdudhEDC6q/TBDlt90i2Pt30G2ba7XM5yuUt+7TjFEUXwRqLXsNiX6jiqguVpXQneawPbYrWhXG1yo+6yjefWI5SnNdQdxDDLqbghNaDLHX9v1xJr2zO5rKsrG9d2w/PJVapnnI5WgvMEqNpYrWRk05UGrPc+bNMbh+NH66S7g0RS9DrILk+Bi5eN2jsPd/EshybryveFrL11qmfdFkzlahFUHlFx4xQ2YD+jbsWLmt/heAOPEb7ubeAgy8DZAQ7QWF7jRaTgkfgOeK9AudzX7kTvwzfcHe8OPGzjN+szfva3GiwRQLnfLE6a04M8qGOENd91aiNdWIZrDF0ds1NAu0YbYgcidf6W64KpwEhSAOt0m+IKTUFiYqoZ4tUnTGslUJynIqSnGd0G61CLk29OHXE8U5yj/xsbYMn10nnwwBk2sYzHv0WzEWHDHq3RGKAB4jqW7W5r+0UNbGwpD1jpyIWV7WGnOsXX+kRYWByIcdrI1DaiPVJOg9O17oR3osXgLDlxwRKNk9YRNvr8Hr8Qs3jS8cDAqOFDH0PzxcD9bPtrRz2n3Ko2WURAx90IL8CdHPl8hsslT5p9PzD2LErF1ImxxPY+7bCesxpYBxztII3OuNtjb7GtcGV8lu8/TmOVkXpiSDHWSqfUWDyJem863asr7JDTz7hK+ng8YRZTRiWHKlnzTHFSypzvXBTbEdvFGKx225G413WhsBu7vArfFvBpfcbP/gmW5c18lNyDUzjo6arWgzVmyKTMCpsTUyOvzPuuduTovXi/sXf8RQ7G+h1nPQiLA+B6cu7EfXBiruziWK5Y7nXyZL0kyMhNjfs//PWNtPSjXN/XlbEaN4roWKHrw9+23JPYJJzelQtLun9YueelOwjxSYhSXULG7FOhqCzVS9q6t8H8iEwUdX4oL++1aQcThUsLO1Gdo84e5Vu7mlnNMuZHXUtSbuMCbYTSv10GUStijEdSWI8Zn8jRgHM227SVdTw78ztsk5DgK1+iGx9H3hcUrXBdNMNaQc5etM3ZLnFhkdnWIRe98tcD1IZch6Xc7oNtb/27eEP2TlcDWG8Cdl9Qd4pZs7Xu528C4LNOt45N7Nf8GbrPo6WxLFxHgljEJ5Da2BkDaUMWg+vPRZpNMF3VRypVN9h6rMKuFUf4v63eY8BBOHWuE61gU+7Skxdv9Bc7LoSbBvWIwU82erRMQ7h7PB7AT7kfw9cjXE9SlnhXth6rbdGuJVEH+Prb3kZA+p0znAuckAgibNfGUPptOX7z2Hhb0V2sE7lSJz0E5G31LChnXsul5ZDbm8R53/v0+Jyac7XNEJ3nr5k5LdtJh9D04SzFuJf+nQ6GRlh11ySm4MoDcthgDBS861u1Srafc//uRqWHI05hqeg8tDx5QPcoJ+4H9mcHr/rGhh4tivuiSb40f5Sb+G3eOFE8IB4QYaMI71vjZnwzOX2RrlspSwtKOERXt0LdqHC0WLnlEUOdLSL5hyvoOPDYTSZy1hWTymNA9KBcKQLKrHgnhpo1vh7PHcjVRLbk8Nqge2W4MnpOzDXWae1sucLFL/TCWY/Q+KKn67Lenli4Es9iMNnyB1irbTKB2QZFpzKTaXb0a8hV/W2GpU5vjxg4uBHbMy/VDlD3JcdOPabcep6/N9YhcfBot1mKhsDuT2+BmRsPcFBGXFRsJw6KycrdLzCVeiSmttEzXIQlzq8cddZkW87sPczx08Px03rCbYmc5psoitwTPeSSFxrL+/Cn+Bvm2MK1bIkTF4trvxL3/1BX6Pj1nx/p+r4rZlEf67ve6mMFVej9DcG7/Nthj5S1YW1gCamd/DbleOtoL9JuZ+/jaGd530flZWoNkpJbH1Ki+OzXKADCN1tzfNjVq5GpdRKUbARtYK/ZqCQmbrquAWavDEQU5uHIn/ezIRf3V5PUQaZgtrinKAdLG8fgi/d0N1BbyGqG5FVnA8NKTadeEMW4Vvk171lZA6rTscETnnidrf7uvmudvTCOHX+vad3F7cr4pLuoSVgB8yI9grSpXXr1pGbipNcs/ZiQOvRwgJupMcuEboMjD+rkjnTfQMcVJ6LSv06Sqpdv8jlRt91ZqGa5mlRvPOS6x0wzlxdKrrV8HRhOu0u9q/xq+fYArkqItiwbx6fqesZ9bsPzWI7X09ZOd50+Pjp1Xi0H0IEm3W0w7NyYt8Huc7tf4quuaC9Wg7PdDybWyc8D/wVTz7ga7FzRK6xOwcaDll5wyMRueVhqNE74Ic8Plr/wgB3JySSVPScXNYZG7MIvtZW230PLyUdENEUm5QH1mQDqZc9qK3jtzyvZB8ZKEnFfgHvVUQdVhc+arUt2siY6DtxInqv8aj5P3O9ym/ltneo9nKXzrFmD5vIHnjLbk5Rnfv0mU69w/0txP+IMH0WyB+53eOI+H5UtClMz7AJ6xaTxTXGxOINYNPIWVx+wlBjrOghsbhk6Hvg79T/LunJ80be9TTpsDeIWgN06OZhfiZtpqQdE20LzrXJRhi1cJSeNtLs8Ahv64BEzx9NjH71B5abuB3ZPnutB2ZVvWsd1xk0+iom9mfZ4J9uPeJ0E8pf0+n4Dsyz/cxleDVsvvyT+bvkOTEIAUEv7d2Hz3kk/STjmbAw5qzRIht/9WuDxhuFwkUSQsW5ypYuMm1/1YE3fSdLlsgTg6bBtiu0vriY7cGb1tI0G3cjZKRdbJBnnW57rhd6g7Q3PHeGfHJRJIenehOpsjzI5BqOuQaxCVIdgB/AsC1eSmJmLv5szvis9UB3tNljMiAIcdVW8+6u28TQYCbnex2PpWoPOADsO5vFy6cX6kZ2G5zP0euTM1vbcHHwpTJ5s1YPU4bKSf3Wgipx9456I41VCMrutL5aMev1ehwq0O0uYK221RlfjolMRgaPrGTFcOZ+kweKwmQfW9TjpMmz2WLs7Q1ZF2O+PwVWOSdqsh4vlh45LN8F202iCdOaH6SQ5v7vFEcSWJ0Jad1mVUMfqV7qyqDuiucOWHhWz8zQukj5PV9ypY7tPWdWbcEV991gh/sne8bM9YOARA92BWHJfex+85XCly1asnm04VrqpPMDOyLP3rXnuSRCdIm4W0NdcXv9k/cmumI2fJ+TyoCADLN3i1JNucsYN3mrdppdA/jRcGYVvCgPVHV6xTTmCvrkn7qN5wfX0u3K7JyglF+VrUjo7Aqgucbn9mPqoO7/y5akn3fkx82dArvw01tWesneEwXVyQYu+CFQLQZ+j8MxYpoIhxR0ZuN3ZwzY7OcFXT6DuJ92gm4cqDQpQ10bFfzEbbxonkPVeWI7USvxjq99Stjtf3bKjjcK8XEjnpN/UqX7KdlW6HbqecWGJdfnbHWc4mo9gBpMXOb/C/cJrlZkKORRTU46WoWBs2ZU3qqN8HitwVMuP2jCu2mraoxuiclNNQGUJjgGJO3gKpaXhOViMyTjLAzk23rMv2INDumqeAzsvrlrolw4FHnutMvH9kTRec5WnXXlmgRfGuscEL7Dwyd5hFt115RvKoV6x+sVJuXZbVx4AT+NduprXro4rJ+IWWZIc0Rn4MS+fMPSX+fquL5hWUi3ik+dAcgLDnY6XJxfQFSB/GW7wBK2G4UZbj8R1Jp9cFO3TpqwkDZOEK0wiQbt7KDMKtDDfFJKZVheKdg9Jwpej3oqYKXcdck5jVlapHwdEjYoESA6KzD2X//P0QyMwN2vU7Itf/zoIZjbue18YWgfJz065nrahv3+MPzsuT0mSyG3X5Z1XzsS6hk9byCxuhSdZuZfnkbk6MfW433O/4Oj0LpJxuJtcBoOpZwBy234tVri0f+nF0/UM7PiRyFO6DIxJPF0PbAFvD8fzGS+t1JnKXv2okm17kmytScUeXoSggy7UoKob0XxuZVfq+8i9D/Z8AMZTAENQH6aR6ayrXAbnUfnMhW7IprtIO0gdHxO3QAMecPy0Nj4bXT8Zlhunm6z74I3IFeWi5DKuV1yQ6HmfdYsukYzbnRHLvWUbn5/PsBtQchdyBS7TbHfEtgXl8EXWhNGH2IbHK5etPNx3rpvbRzX71ZfUDsFAJoqu1LwVyOzaIfzRkFg/yCJRYUglzUF2rlqukQDxPgK7Dsoq/eaqgX2Zn6ub18Sl2G9V3c/KjFVF1+gm2eqwUB1haN/QxlpkXq8Zo42yHZEHTPddCU6+GTcDd6ZEfZw8J5NaSkWDugvXCPkzbtXsVGhbDMqcKwwLOQhojK0E2XgodwwcreqUAcfAInE/vSDo0tj0KHzlnv0Sy4mbrEuCleNlzlrBqkNPla1xP21ReKwVmfhMs5KPqi5Rbsc1czwewPMpaUo1qLjWeRga5z+Dx0E8k/xkfk10KC6gXSkz7bSW90uOxR7NnSFpYKrpAJnYbW3z4eLOE2e9eKC2f/A3aWsPCxf2z3nuQOE59ZU8mc3TbslVyHQeq+2nbuetcxUFukvnVXXDxdPxwMZPa+Nne+JhdDns/NSeOcPhhg7Zg4wL3ywH1qMHZX1Ko3Aoy9ZZJhMD/3j9fq9zqPOHvfzmq6M68XqvgWxEuNaVrl4Z/hKAvvl9P+QaWtYhx8eXE3LnF92kHWETGEgMyuAAYrY0758+BFaeHRjvuaFCqmf57WsnSDWVBffDNr2/rDsFnhq4L/g4LdKHLTB+9iO+D3nuZ7SQ2f787XRwp7M+e/rqmbib/OqphXXKYj3XsC7paz1qxlKdT6DSI9Cf+6wZR0x9fEPWzI8+k37TqYXExbykAvMdcmIZXC4SZQ46pktIh3EkgVanMmVxZl0GLcAk35hkiHALsaqoOtkr2xxyAdHPe8DXiXnlhXLZ+HgoCOAXO1v9NvdbVDZFDu+Z55bLTJ0t0aFVyuQovk6b9z2go4yndK4MO2divQi901YdOn9tSn1uuRG8bbJG+bEukLS/8iXT0xTzd/k7zHbc+xFfVLzW5i7u/l44AIBugxpX733+prA7foeYmYlLoJMHllvvbQCgldaf3joi66z618Nm/od+2or8eDmzxJW0GlO7dnfKEf566u00BN9rNeSMiytwYm/lAeGbqUPfMx+K13trfkQntmf5WfdMVy5GfbLizZbbupeOooNyCAdK43Thy3XiPi5Yd//9Lq6fT8fdmS735/VzGUQBA7u1rTe29ACi+EHyoBhth5zhCih49XyuSrfwSBrdGbdXqgRL5Tc77afgcHBTTwBI4zbUYTPZ8gZPhJx062YdKxwXXqAdBID8Lj+DB5pvAdTBHPx8zvWrUFNw3m74SCYLoGGP8uR9rbhZnvZoresSALWvxf0/5OXf8PmBru+2YkZ8g6NriXzno7pGx+5FgmdaDLj6WTnObfTnlOPyV+KeuqhbpMqpPQZMo4jDJC1hJoYtnXTTtbgDCu253F+/qbKO4UdC2c7T+HB1nZAZK0fos58ksaOQtDRO0fr4Q0KimQj2aYy0DT01rfLQAxeC+23hO+QIeC+5doBLu7EcCpV7CcsoLO/eGdC4fFF3vHNEsm6a6Msq/9I2Z8BRFzRtu6YFoNw0KickNmsS7oS7jmlboN2KOIYN/TIrWEnZ2ZZDXpWfbJQHdFWsv8/Ogsit+yCRmI3sAcacXVWXwjkIK97KpJ65XO6UDRmoUA483UN6LxfTmytl6JlO7fB479UyyceZzoLufTA80Pnrd6MFuXLWc5Cv75ql5YEguorG+6430w1ymZdMurTovrevvm6XkW8uxWHpYMy0jt8Vc5yQJfi7AXsGTr/sRCvf2PU3FdM/5C+rn94h9IWrhIvWeGdFYreu7Ggaqhc56Q6e7RI7w87JE6SdSFfuCC4qjhOuApkJR7m4Brjw9kn5iscUoR4UXorkvacb9Fahv6AufrHeNGdg9YrijOoSsrmKA9NnDn568Dcnhu7lioo3HHnnaeHVnl/HBYB4ETbyYCpWutRH9bpNp3We2NC/nTxa/DM4Y2IhcX/vJe//kvweeSfXLVlday46wxHbfeRDB5Y9udSrTdT5+eTUuZeMen+m5mXI70EhXSjJCa/5Rge3ezwHdBUN8ZJwB96YLsRVEVfcJ7Yvca0n38TKWA8AH9xDxnumz7RoH+/8fDPu/76vH1y9X3p9txWzMTnCe/Rvgm39l6R6niB1OVHqfO4SV0gDEFI5BN/95fecQTSdscv03VtWbZh2NLvzt20YJxJWOMJ+C7RDB1eZh3xo/rzv56lMJjOWIds34r0nyL8J6hE22MAC0VAEJpz5yl467qQvt85UehJHfLcuLo99ZSQWRwx8nvnbc6P8+Je6SiRz3b0Pp1eiaBOM+yBZ9IpZZzNgXHUR3es5WP7s8GyxfV/VnUh+ZP27W4BUfXRQMmZ+eX/D/yiiSfBd+Z4Vu6ZziZ1ypyvs7A6xc1L30rD5Lwc4cOkGk7xBnfp9MlU/ZJbz1JOEx6sGCymq71k600BsDRzwVznYBn3z38qPv5VuuV52hciy0tennKFzPqPQLOAG4x4YRYgNvhj0E561YmVC7OPIe0D2HczBKtAkHo1e7SiD1LxftSGr476sMr/kOjCrsE0x/PjrfH7BOvnuN2EkbJ1aKKs/xgpwhj/0tEO3E48vDVflMq7qCFzzkHFjsOhpm8lVV47MerZpJ+/np902MXbmjbjPZ97VoubGHEAdMUoVXGRRTmQgnx9ybsqlPDv4bsyUtxWniwN4UFBj1tJOxGEb5ZthD/T3WVxcMbPK896cbLMeEIpulYYbPA0QkyC1ibAF2ZQdYb1tJboxLquWHXGVP04emHG9vUprteiwjc2Yl8tYzyjDO+6Q6nwaOgrm6yA3HsbK01rayOTxwNAjbquVt8dKWQ2gQvbF+6Li2hjQ9aFGnnued0++DQ6JdPTIeuI+WdCE56qsQZ1kIOldvuX2qXIynbUcnx7P4IFasYsPcZ6H1Uy+mbzXK3Q9qVj5QXNEubWnvrW2OLsxP+TFLsPXfH6k6/vtMQMmUJs80Nqc4VzvgXG4x2Wl4wxLUmbjlwM4zII89bhjjeuSXuksPS2XCAGC0nXxm8ps/N1HtrkXqKY56rANO/LSnXnFxuEqlgeTtN4HegsQuEQ22oZ2JeFwN+oTORhNnervaW8AaQftL/MFtWVXqqhl49yorIOlTMlkj8BCdDYsX6ApLpBqsiY2O+QeJ5BlB9nEkD0ICb03LBdFj71qGTj2vC08FvDzZ+A67zGNNMlq7ilrNazCxvosQdYqbMyeRjgl8nSuKZ16f1/rYWPWUldwTFZ4rIyhA7pHV7G4r43VVsSrZFGLAd6+94/l2J+tSsNgsKXvY4m81eZpoJ6pHOoRs5x9fz0BUdPlLGfYKQY/C285Owsz8HWxbJacqY5N4t0JqOPyGTbtjRyg6wmJy3SPQq+qqW263u1Me+OxN95tyb4K7g9oUn2zXrGrY54pB3GsMu8fK/MAS9JvW63c0wBYzrZSL95/HZMNDOV1YGr93MXQnVQccdFxdZW60+WhPomDzKMB9rSBT8o3mi4sOOLWewKBWRNTZxgeWHIf1wvmsQBsh7lWWu9x8ZE/7mOugVwZIhQoW2VneAqmIdixo50E25bsZR2nDUpUE84obvEhp7e3iRxEON8GTs2PiacwDno2MDvAy2qy8UkuKsAvwBac6xVAhdRyOMw60mWTOsLQk0KeJ1p2q3TaME/Qgz3K+2SuP3e9iMqsk2JWeFvZPQ9uYd01O+LiElcPgyIG7dyzdeI+zC57v8iTfTJfKFGeCMSGsQ+sMVU5o/caQg6/ivyZx/6trTSPsA1XxlSnltsYSr5pnZtvqh6O7AqnWg9KDOSBhbeHY73HsKTLv/dYxb6zXXZmmsRyuOfrCVru5DEXTvSBz0B7KhTuP8Jb4c033n3VHmy+p/JRVT9wvQ7NObB88IDnypjwntZss52HSrX+PMiMK2d/vH7/1/fbY3ZHzndhfkFc/1JY/e7H9+eV51/K9/mbz5vr4PHM3+6v4wszkOnHaZFHBk+5Elf14MDDJeJlVeuiYkKFn7boGUedWa207srPzh9uzOgTvNjpkgxVd7h/t3HP2dXnU+Mecu/yOzLot19PHcv8R97OcqStnnvlGUfn5fKRqIdOd24p95df7Djvpy2eo9NwlWP1udNROgU4XKDu7l/qGWFZ5s+9jhXFGVeJmeRFXW/ljLgcsESemlTmLOuZ3z32Oh5xs7N2yhlpl9uHQV0bWfZ3OlIPJT7LWsSV3neXQ1soxzruY7UOa8iRw0cYFyp3S6fumIHOJRdNa5bJr7xOkLlpgnewe5/WTfyBizcPcjnEnrgHiFdyXvHNQT6XFE9cEcUu4hP3uyj8ssf5Fe7f6ny66V8S8hs9EvPJVW6v95gxrk1bX/H4Ts5ZFS6Gur3nKtGuQdlNhMyf6jRw8ag39zrK/VH2GzNMHswcryNxtF4+ses0wOkK+BGW33GG8tMZN3RvT5PxtHviF7l3ra0Yw6/P7+Tq3UjbvMzw9HWVdOg0VvK/wDczHT1Y6cRU9QqYeByLz12ZFY+Vb9R9cfDIIefkm+JXOzGVPBAxORFG3H9usknzxULzWvMN5cpg78jvMq/TMxd2ucOHrfYIa/gd4v4f6vJv+PxA1/cZmCmp5efginh8Gm7fxMXRX2Z6tfP5iKv3W6O5xD3CngVXv9lFD8/j5U9ZdHH054s8JQFSNt85MzJ46kCXSsYV29hBAtNdQvcRWG/nknKI9NKlkYMyAJeeQuVf7C3PhyuJuEDo75b3dFNxWLi3lF5WroPt3hIvHLVaaaJgu8kvTk6ssOW+Q3XKd6d/hzeMXrJcca1cXxwxm7ewc4B3I/yi0/WQAKDjFimSjC+9nOstq83O1x2YGR6LLyWSsH7GlL9OMjP0zHwMOQBHu9t1fF0JDOLIulzqR7thh4HulSPumRsnKXSAXmXyGly0mTw15MqSEBBI/My8Vx3aO2aX4wXR4T5Sm7btzm1QXFi46lZy92i6lAuV2wV6dBj2GAhvj1PGfrJ3LHte5ZLYzXNWN/cuOFcCM+yL+5JZeQoQCJ1z9dvPAd/XXIKZ0r70Y8d941zfj8mmF5gak8fR0DquRXiqMhr/oeodZrzC7jMvh4ti5y3yPzhmSx4MGPuqPpBrdDO/sWFdd1xWmW/9gdaJzOPP+JjZ4cLeuEnZ7VXoM3+wYSc+I64PmwEHHlu9pzI+C/uZvIBqwJ2lS/7uJiXpfaAmbhfG0WWXMj3zS5rfyUfPd/SqlD1nuVC4dVp9Xd20R9QZdIQdXDXCc+LL83UDhrV0Q73fyNXG19dYrbbAcpWrYzwOUlyetWJRud1RrxiK1SO6gLrkubGM36U3NAYIhrmKyPDE/cb506I+4tJN9bE23uwdxvdusnMCHoRRNVMGf4m3hSccsHnJ6ZUzpsVMuXAGYIL78NhfBnPB/T1Wxh45CCXfXLCc+vqOvcLRSQUE9/uIf8uxc9iwtwOQF37w68S5X/v5ga7vfyqj9vcPoGejYj2sv45wP5R7NWyEtZx9tJFuERvQiTOcyFEdVQ+N2O5XqqONuB0jwxp1Ht3ElpPC6OhYbXDYSg2DTpe3JJgkjdYrf0vbFDlTBlD7ywJEmajVQRhD8MC5m3sBUKZZB9Z6p1MEYQljdNEJdM4Zye4yPtPt04ab2jwdwFTFoUfnoYFe80skF4IU8BZFK23mwZbBHuF2F8S9QPegUdZo21gJMNFDzOiSHy0v1RmV5CRFWmYBb49wS9i+UpZoZDN8p3+SYNeHqo75vIuwU+qNx1nyUkGp09uKPUxDDm2jM5BjNWiWdriaWMuUtJaZ1JFx6DdIkJWOOd6W46dH7OPychuM548ht91HWLNXlWG7J5YeEs9SrwUDB2Qkaq/8Wen4SL0+2Y46BTkK2ix1NAAbb5BN28Yj7yMdPTI5OgR0twQM+8jfPOa5jvBPOXNV7VdeimX8TerK6PQRjw8CtSOu9ilN4jZWWctd6FdvCIafcYd8mcugjjb+m7qecStc6jHuKZgHMY1UD7mIuq78VmEP3Fc7X3Lo+lv01eJLYkrGLVfGAlLqoPglSpJvCoAHgJzJ1CBtnJSbwDLd74ixIdyEFAtDq36GXJO2PwZhLD8NCxxhLf+/cpVXWKtw6wHZM9UHGl04c8hJ5Dh0vLWrxGV+KUPrHNoiWCtfSbIa9yF6D4484lbNOGzDDjyyWIW6Kw5dniuvijkLeDwMb4t7iteoS/NIfBvxT0w1hoHglcbNiM64aCwf7Zb4+ogJr71m+RWfjLaUNk63wOIIUxf35gzarm0zcZ8433nYeCzHp7Xx03rCs82nk2W9JiWKNAZow7UejeV8TYqtHlA27qdLZXlubOHIPlxk7Kn7ga8aH3zF50e6vu/ALOqndDYFN4A5c3oXV8PKT/r4JCAmXEvHe4Kgj3ii490znUXwq5p+96Oow0ZGAtcOvB4scpWL0VE55RT40J5H/ms+xy9JXUxVs6Nychhl5mLbKKLTJbHtGCQ6zOqTMEkCrZR1X0OTMuQKHlfSVid6GDwGRpP0zgxfV9eEVNjJgQ8iUp156arevtlcWLPBH7q0nKtG/exMkZ3tM7+nXCDK7/mcHQHuJbCshD0gkrSHi96sW7c6c4bumGmZJy0CnFV0R3YaWu7YA2D6Xi4vXSlHT0BUOUyvh/OQuEleCRo9kxn3dBuk9QzTNgY5EVHLofLeNX3MWkqekCR4F/fMH6n83WNutcun8+3gDK+Ljl7yTQhX3SAtib1P6HTUxnfpJPQejX07kP/F17EccGLbqM0v4LMCupSB8MAlrmIMu2XbsHiuiTz9kG/OsJJ+r3zOXATEuOTvmrh5DrJ2foYt7Co3ZTg5TIFxSh5/OJyuFanE2I6q8+JW2N97izH5pjDVu4Nz0VnC+tXGlNvYqpgqrvR8xEnDbfD9GN4Oo1RMDv7Iexx803H1qK3mDCWrk6tq8OqoyczA2OaPS5GUAe6vV5jauHik9VFctM2eY4VRMELSv+K+8oKPOI0FXvesAIb+rno2Z8QzHuyllePLfKNhgcb6My4uOqt+fbquYC6ifJ9Zz5UzdFC6DrnDE2Ng6pUz9Fj6sAn1zdNui6t29VMMdJFdbWsoJ+qpu81rLZfeFL2Kp94W65Bbx+Nb35vY7fsOGH7B5d/w+YGu73b4xzCEyW9yMEc1UZtxKqqufOGIy+9cIxai4OyiP/mYBGcFwky3OHXoK0QrMgH0Mv8KsnYJe+pYL3AiOTH/tSn2OM5ZiQKdrrqKtUFc0jnkonVssmXnwi/JtNsJ89MFYRJWuTji6gEn4gq38ne1NVoHM5+mgZQBZ5U9CIcbsOVse5DQh26lkxWAm6ZLfZgvdgKq/CK0Ep6amC+S5omR2X2IfBgjqF2906F1Kmzm2XvjdOjfbnJ3YYtgoKUYJPgED6R41kCIz6e7pZKGlU2LGFOPKq+ya9t5lZGA3pvWcan2M90+32xXGGMHCrMDUGmJ3uNExCINldMn3F3jsg156Ui7Pj1dUW1X56GPCp4uLTB5Oaf34NOzUCyrEJsobUPi1tMjSc6QuAEJhs87Wucb3vFzvtOmiN77aP1yu5ETzzgoi7LO4/KzjjAuN3xXWKNOslvSt+j4tUymlTSwWNtTtVXF8lOU1rnkALNo2iceX9R0lCtjLfKr3DPsealsxWMC1vLpYpgBigdK7xuA26h6aBMcZtxqo62C642qq78dfMPBiyLbSEbKgS/qDmwUvjkw9WK70fanXoWx8HRL90FTdNHiWVbMC93F40SWt8a+wo1Wop9ZvcZGzVjQfIPHdYbWgbWUU0LTtM+0jRldCDHwUuPqQGjir9imVRv5g7VtIHErT1WvDc90RV1rY+/eifRS7vl6GcFQS4PVibOCdSyzkecss6oiKSNWZ70O7xhclold+Ebpk3gbuehJsswPXc3L/bIM55U/qrlSqe2Op1seiLTxHifxFD61a3x3mx4G1GmcicdaJs1H3gegpLlX2jHSjcNQpBRLxnPHpMUnPPHniPCPge3dhw05faKicQ8ZuTVtRZ0eyjfoAerKKZzy2hjc9LW4//f3ZWb/cwD/obz9qwD+P+7+D39tet9vYAZpay5/6oSb/E0wXz0dCuc1rs3fJnMxQoISkCc8TW0Kp1bHrQWZ4peJ0qWXp5J3J3B5StXesxpBAKhJwCo/oa/ay3qt2nEZvM5LgM2r9d3gnidMiM7sHPNUPwolSQ6bO0zzZ9cytsUTovxCzn26kSZqPagimGVvd5mFfJMejsgBgHHylTNpQqDBvMG6VspSRwDS+berna1XNDyJK0iQM8DtijPJx/JdND0h4MAEbw4W0lZBRtzrY7XW3b7/XdpW/0YBLwPeFvBcMtCnfui0Z+WJ/JqcwOVudTJW2GbKimrS6ViWjdNwi+Xp5YrxcLoyZsuysy5kx8JC25rJlO/qcodDx5Wk17OWV3c9xl+wchtcuwdOhib8npm8utXUyVeG4R7C987wnTFxOiJlhlkej9brgemW8rCNnx4L73iHrU94bNU5B9xiC13Ne4z8Od7klMYH0O4zCEIu9xfv08YMiAHc4lajOJ3sa65q1ulveeJ4XYJtjDjCev9Wad/gNa/q5CLLTMpR5QwsP+LWjYTrsJYEYRLMmjOEh7xG6gxI0CICp7vxjezgyI5r5v2aStGp26TNuIJfRsUuo7rEmZTVqprCinTCJSrzU1hWDTFuvdvIlcRTZ05qelrBuP82n49ljJ5oBZQjre9FTltFMLPwWHQ0cpMXJsUzK2zWFOPkVAuMdXLShVFT/5YDWE6i2IHl1sbKMmFcSz0M5DnLCTFO5iSvWZwSuPdGve+ApkqcVNUol2VvEsFWkXW47BvzVT2C0plbDPib8tOycK2sExW1KEG7kxcBe3SeFasL+8Chk6erXtclPaUxJiVZ+h2f398W8JvHxvsz9O8XPJ+4zwFO89BD8wer/WbFN6qz1DO2Aw7+1+oJNu7n/bQ2fvYNGPeT9WBMB11TDvmGtvTBAw+gTuelnfpdaG0bpB4xSdn2+JGvc37oD3W5+3++dDD77wP4/35Let9vZZLkKrf6+yARPpfwJ3Ge15jhOsXq/iquuvgR1zu86nrhIExBppHEz2KE9RE6f/LiRwfy2GSNiw9s40PHaVe/7P++9Gj0uV/DEu72YavqcGR+DSNixXPqKLqp3z5tMfYZjGcYriS1JyG/b74Hx69y+N1vykTl9p1BR18u+bvWs+nS0nkA3o9+66yPftSaObDyU/nz2zl9q3enkmZtq3T/JNEpEF9bUa7+SI8yiLzv2X8osDZ5frS/V+0RCLdP1WO8nwiqQ9a5Qy8Nu8xrZpxx+W4oLx2zw5T6ns3REHWqdLJe+e1+ktpCNmxb3otNHNf89G+7B6FhjdKLftYlt1xkO265RVZPhhNFLumoHTlLy5W/tuGoC5cykI6W5vfXXgOjRkOs68QRHfxObJvp+t2Do5qY/i7AeNXiGveS/I2O9Vxw8uwsnHvHqofqyJMZ7+Xc5g+HnPMZNO5r3OA+V5dSrtpwIZC5+jx5LvlGYfamslRynrI5KLtRTfMiXe8a2IwQQ08rTpgrmF7xT9fGygfdOCvcwU117xyPAEAdSKVyhtwPcfEe9+/j+iVu2fMIu1n3FfcLy73SqoGHYZRvPzuvmwNETs4YGMT8RkrhWdK9BHV3D75RzHXBXMVy0V/C2sFV48N4hZlt7zgzbraT7qkQU/lr6H7yzejmveSbHpgi06bbYAjr8Aa0z4NMXiiYDc6QvPp4BpRbOstjHBgyywqlEyruulaCH+vyb/j8Di6Lxv9PAviffUs6329g9qqAXR6fRjsJ64x3hr29J4LGh8vqFcbm7YeDw1OOAXwp4hl36KA/KTnwVKw8SemSRZfot4TzQtSryifE03kyIcoMk6eGWboLSg5vkiOz3cmdBTkGW4c++il3p9Ixw9XpbHdPJb2Lpnzu8rWHJ63XL0AhAfKIxxP0PugEyWz5fOJFjJegFVBkYVTX6MTf1Dl3xGlmwBgqn9eIe8itznHeryPssklnbBtj0hdNbrRzuAspGUl809lFr1UrFaIduZqBdRJdp2Wio9qYYQ0sP8PTV6xekhgZtwhdZnQpRwY97eMfJFgznbZlxrNnNdno57vfOpwjTgzbMLxV56XlskNz5s+yAGuG17oD0Lbpl1ezXlRHJONyD0KkRXL+Oiar+ZjxY6d1aXHS6b3FM6nKlz6uNg7tKx97y0Zc/yDumf55r3E1mPWzMYmmuL8R+8vsmJP2GfSVjiceU87gDI2L5KoBvBLEE1+fkEIbkYdWMvXxUscr35wTVFbqEH/7RMa4H6cXj8Y/s3Jer3BxRPGZo9bqiCpxudHaPfaXnZ4Hwio4v35Rxxf9B8+wF119hiW+cn8SExirvcUZrdjAa7OaqHZwRa5trvuXejVP8mNsaznA8Kh3Tzes9p/uuQnJnzaUwS+Dbzzje32/7vsqMfWJcY2umqIPFUN7cdRkZHIUMZmTU/YVfFN4a54YyxMdaSeetGjJR+FeaXna7nB/R3gOqZy1epBXtigegPBAvwMUoDdJ6sP9ZgB4KmO5TP6o1x0v/JrP7+b6xwD8P9393/iWRL7fC6Y3pgeFA7ImPmdiGM5Qfvj8jhWVvV7g+dGVA54ImwlWw/RGu5Q3IJYAI7r4cV+90DPumQ/N73EdfNfco2h5Et4vkXOEbfDLmx0/+JqdllrFczRAeT6QlYSyyaEqfygsQZKXdl7E9Keew7xUyHx0ONYCnk8tlCN/JYeneXXqlNnAKPpC2q2rH3ia1aUOW/9eM2v14KJI2Yon6PHnwzRlmw4m+aM5KvBVFB+0Fq3XaYsi5iMNEwGhs9d3tRPBXXXUDv8ZgemGG8W+TEbEnoaU5UK+1YGQ77kKZZc8MOyRJ8kxCacGT3jCbGFhgy8VZ/yRH+mM6CpUzQBjNnF9v0zpmiRpzucG4CmdB6Rby8bDNh72hPljuCfSbYn5pT5neVYHqurnlrBqq64XVv/IKts3MBnhA/D2gyYem01MBXrfFTFV6w/vucVUse6GM5RvHMEZCt0j08oDjnuuusPyA5dHvTOgTtQ9zUe7kGeISXf5kTjNN9Yz9y4Ye6fj5boBPN2bfQL8mc87nXhJ2dTPFXeC10c8UJFcxSqJtHqssw5y9mHwOztCsHRwEwukw3Y3QfnA2VhlsvRe7kW8YOElv5jPRjFWnTmnLmc2ecADla8pOgfstI3EvmCo4RI214wGN0XYice1bzXbIvdBnenRlVF31/c8pvIYMfvEq+aMwEXNQeMfN2V44m7sUd55CmHsOev+kZfOxNWWSx7QhjbWdUsv6jYP/9CVM4cl34S5duK+xymWm4OwxnDyDW2juyFUR9aD+K7H31vZQm07373Z7eJHd2X8xuuvmdnfkfs/dfc/5Y2Z/W0Af/0m3p+4+7+Y3/+L+MbVMuB77zHTdvkK3O3mN713zM4p0OSuchTdchDCisij91/HbXlFGieYejYr5S7H2HDMqJqXxj6rVmVmOaubTUcZ7bQDZZ/kUckegQtwBLFE51jCaJ0CNAxYBn/P36pzIYQwp/Au5ackQBvYGRb3xUzmKgpx5N6B0OP5ZK8r9NAim3J67xjvTyJuuRa2Io3ZNM0gfzTAGwxrAf75TPgKaA38swK7kkLmROcMNG4RC/r+XPkyM9jDge3wtaJDDNLAJH8dBMaM4dS5/PbRexoUzKuvZccsJyBH3gOPh+P5DP/13z5nJ8AMuV+AOtlIa+w14Kym2kbk8BStNkd3InQFjqTmFvu9bHvIbcsKoeZertXEx71eLVdX/1SO+P8DTfrMj+864p56rkdu6PaNJ9YgZ+7VC/333DNmuZdDOgvjuPyFwoJxjDJkX0XqzD1ztMVXuVoQN4FRSatNHnW3O9bHPfq3+v4CFy9xc+LJDDBxG7xi+ZGucNWNM0MpEgMQH7pUm3SBKZaue4/AF4DPs4N08pxm/cpVOVTQ3wqkZlvkq0HU9fuCx6yYuWrWOks4n1H8UkDHqhg9E0ghuZcnuHNmaGJZD9wq5U2jmOSvgVFdxebA8JRxcHTaBjnhwf1cEcglLvdPWUzkrMwvJxjA4psVRqQPdS7YTW7m73YNqwOPwRkWbXQn/j01MhIHtRFrpRt1JXUcuN97zOws3zs8pn090vEdPOLvyjdegzIzTavT0WPoQ49WuyfFpH2vTnu65IluNThaKSt3eUrahcfGQa5wj+leXD/2wSmOyj5jxCDvAdmXTDymvX0n7gNvvvF8X+WFQy+GOnUX7ZWB/O2BnrBbUiZV1LS773Hcv1nGJa/Z5IzX2Pf9r4GbX3f9XXf/G68euvvf/FC+2RuA/xyAf24pOgsAAQAASURBVOTb1PierozAIM35ZT6/760fl7949iouifZ58+xOB31+6n2XwPFQX8oYj/2qs+hkMoAYYRn8bhAkv3c/4rVOurrEL7Niyx4reQl1RbprBaNHcdWp5JzhLpXg/F0oIMnKd7joHZkaX4eck/jOWDekeJ9W/nSoSBeX/byDiIMVRh16pfPH10Vn3MSljrIP70ajFwO6TuRywMjoJOqM4Uw7Ogzq5pH7wLIuxUumpcMw+w+g2wVTW6PeHBX2IO5zQKbuL5fSkR/2DupEdRnFJQQkaOkUcCVZ5FDHGXfO+FLHXgncR7tIm6cr191ePJ0FHR0CykpDzz5Ylic6rh06ijWK/MMquweV33T1BI2Wo0PqKOuuzXtJ4nxX+oAPf/E7NoD3+2h1fdB8z3SHzhfg7z9nW7+8HPrpA/cl0hQ25EnYE79OnUZcvzzWGz/tpdrflMdFVU3kBVfdeeH7RRfRJ3F/e794euh8JHLPN7jWjUOkHXJnm7yuGfD9lvoy7Du5Z9Y+wiA/7oHD7CdOHmlTd7ozXuQMbMfL6w6PZybucd/k03Fp0ziF83UGcPDNxNQL3xxJTZf4Y9JPPlUI+TzcxTVZkSurCH3c/nTh75VJjAOehns7gOEGKXLadnRtDNx/30vsuQ9X9DycgzocHBn81HIuk5QD93e5MwKdl2vYH/jyb/h8+/U3Afzr7v7/+NaEvu/hH/qX17nRWD/yHq2K67hN6zKIOF+4Rb/+6Ht1+OO7xvFDpl3CWb/vS+V4DrT89b1+d3MefzYBnBhxlye9H5ddKp6790DxzAc0HSt79Ms+NSFcv5+/jXu/dLr4nQOtJpUcSCSM7h3Et1OXIMEwzth3JDqrnH5p9mGeI6x7u0nqWJplf6mSu8P1q94sZ+vOzdGl4ZQLG3JnGTpNJ5Ex0j11PS93bgIOX/UzZPWfqn61zDoaOX+4y4+opcPnXj0AG5mEzluzOIXwUq+8OTNuOQPeg0SzqLuUw21hsQgh7jU+CaVIruTUG55S2zgJ8YF38HQsXXWybhQp16oQLv0WyZJ2VDpd6jhnqWtwJaPpZcAnvMPwlBeCRpg5+Iu9CL2a5/PeVK7mvWdzo7x7/5llWLXF11w9BrXZuLYXFlk2Jhmvzn1hXiaL6w7bJZ0R9xk4MzqnJwbefdB/C38PbMN2VPN6wQM8FETxV3Xk6yLuec5KVIs9QerUebYrFz1s+5Bzwo4/oe8DweVgpVfVgIAkKvhZRvK9x29hG2Iq8XrTVC7trDrjR/5Ert3ZZoSVW7/qoTqMqsDmL8nufFcYX/Q+Bt3UR2S90mPa4/r7WfZnWvWndHTh7Rn4fn/6zW+XcvazWgE4+ykeA6b66qi+SD4LXNk3ImM1juU53AL9HPD5aI/GuBdMnYPF1Ca7WV62jFMRn9BDmNQ7QXluoSomHukWDnjHTWAxSQM1sHJYbpZcI3/etsxGsxbwaT1h9uy9zrIPrFwkoRN/OXCEJ6Zuee6H3PmMLqg1KUoeeNngf5yL/PE1n9/B9V/A78CNEfhOA7OqPHwHjRrG+rdRB/huKALyDeDVvTTeBgb5/XjXTX097gfuuzZK6djpL6fcDRjy5aEZ28zqtzMuv4YrRPwQnU+beXAM/QcyGnU95Wg+qA+BsgTXAKYOAOGjqimSQ7+7pxy7dH4gcv20HUi0qYPEnfwRL6a0hTy2F3lSnehdpN1xbejROtLeBelmfe/TCWVLfnv1TsJauHk8lhepX1YGgcpfy+2wZif0qW1S57wfdTvvT1tRTrlppK2q9hk/QggsJesP0jbrkMs0XGWidRK/FCmTIJvHimN7fbgwyesNuBpk7SbZJdBttvdm4SaszXvqnyWocXnU/Fu6/zlWlFHGnS6U7d6icUlm4Woiz6Fy1c3KS0d2NEcHwMJGb8vxyZ7YZngY65qXS2XEOVwZU4c6hn+40uw+chnAcscb6MYSz9+OsuarIeBzNvVXX1ncWo4s7htPuEmaW36Xvwo1Ytp5cU/yQu1NO+vSxFD57Nc6xoBKGsuN3OIBtt/CZzReLcHFow43Zs/8jWc394WJgjnt3lgNrWxR4QGpo6oH9IerrcSlHNQp5aJ06vg+dETpCKQtjKfIzueCYBX/IkfabskRwzYe3cQdeKUKM3vUMe26wqUtXEkbN+5aicqtshc5iu3D+jaf1cEc6KLW9HlEPF81wkZ38o1EPUt4yhWOGK8KaTOLfLVVK0Wd3hYHhqtXdOgaKOkuiXuRW/rKQD2NE5jaihWm1n3ndCWmfsp3gMHSXdwoMzF5DH66DrWOnhzZSrZcL1ms+JOrfOTPEStubyveYbbdSmeGm8fl9+tYILgf9as9IsxbTlQHrpLRNF73anOGffyORjC/t8u/4fOtot3/KXf/5749pe+6Yjat4S8MZOcXDaODJiFq7eZdDE6wyM/1KOCP414BU38TwvAjIGdvXJPWsJ0GT+iaYUdSQ996eWl+puujYx169xx586HmpZ5VAKuTGcdbWSUwz+Taosq1PG2YhTOAdYCshk3Zs8MvvvvbcuXMgOOFyUNuus3V5KlNOXXiF7MjxySb8Z4gbIedCWWZbpbZc9NFb+b9omNm+kKF44dpgbM22BF5Eq20rx2nTnmFaRAvwi0XjTagkqbOXJKoO+7U+Ch2aEl2ZfQ6nri5rHUi35VbHuXINFdtKte8nLOVklb9rmEZ3lunp5fz/9SH+hF0EMS3Ss6uDkYN0o7lmO63UMddNhm2h87Khk6903KDG9Z7JrZxrWZTRa9e7Qp5qvMIazmbqvfmYr9Zm3/VJfX+Du8vPHA0mzOts6l8EfdZ5BtYImPg1Yu4r3Ssg0Hqt9kYLjqqm7rxPjF2z67x4BuNmwp3fr1/L3g5G6X1M5N8KJZX8Jzjd8uVM5u2GTjYeOZoOaXCca/2Ow/wOPH3LA9i8d4G3wvDndEloZG/lutqGy2H8tBA1YeKKpxRLVN1Si5yT9xXqPugoVzcv19heVYC/yjsJfFWYx8DwDnhRtxvbDXo88YFDdvYhzHgoR7nX+Iu03PPVzML3xg0XZ28gugn+VfcPzjj5IHuIPZhHzr7zxOun+IuXmmWXL/KNVnat8Bd4vMFy08eMJ6QKe/yFJt7VlhOPPfg+I5veoVrrqLtMehSjxOAA+HmoYXOb/NC8t7J43+8fm/X9xmYadkmGkqfbIK/uqWQCM4wN2HVpXDEpdw8Cnjw0RH3lqzPv4ccp3sIPFe6QuHbtNSVxC3I75n35F+ZIe7j4YHpijhhWZfyNW7LOeSWTf3a6VCb070SLn/mMcnakXBNj8y4J5FXLJImk3a6LQbsbuaB5qCtgQJzVaDzYZIPH/limUxXFRnIiS5+hGMa2+f9M/cZFJneuYvoM+lJuvdfytXZ1K56Puoyw0rpjDqdZo/Z0/KbEn0cMvBIFYdcn4m1FqGjFKaepsUAnDdgMJ6Gxf1l5cro3QFgBJJ1D4hE59KJJBp1zlSOPtcisBykZjorOzJsGuG6ka4k0mlx855BzHTrJMq0TcvdY1AJNCGGK2PM3EYWI27hUbqesCyfHgT6Zu/ggLQGpUqgScb1kuk82YtHLJO4HwmY5rnKhh60PZDk7TylrHU0Doa/9brbS+Vo/JCPh1qXsHW/+/lwJT+epakKR869a2PA4J2OtqU7Hc1nXEjcTvxGZ0/srkmvHASkMhr9VdzgG6+6/CpsJOlHHqU9n3lov2ycrnATOmJ1QjFo5NftKleen9h6+c11Ys3g23pfceLCwD5Rwlh4qQdKR5/5vbENuVDzxVU31a+y64FncRomXRm18sywenNSRPHAGV7sxLze2lzyxwnC9stoLCpb1H3jLD8cIEwdHYqpfFTzlpkuV37OdvJMt8+xIn+0RZUDlVMVvfWuV0xIWLV9HaDqub9ZJKgtnh7eEsueCLcq5RgvDB1H7bsdfJNyIO0x2whtwD1nANLF0PowWdeBlOGZg+pP9g5OqdcrVpzeDbTzrn1uPRmX8onlx327wytXaVyknIj7ww/M/Bs+P9D1/U5lzErKF9JX45bnAPrAOi9srUaq/fHEzDEwgDT2iitYqTNHOuvDyTQ7C8tbTuWBYbVHay2QcGhEDpM/RXj5ZzVCRQez3U68Zjkks3o2quZ1/ICcDTF5fuZBjS3GkhwMNoZJ3CnXzboMbD7PniLYvBW43LjMjyqvxbDOWZ3Q0VNns5suIle31B+MIJpdXV3VrI42ALou8lS/Ol6/KkdXCHZHWHfcrU4sXO6wpwN0hUOWZ9nCMn+HaazLrQcaPPlLbJ91peRa52+UZ+psFm4PT6mwWl01bF8d19CutWu1LIPK9VzdsuoQ2er0DTMfdMF7+IbZklk6kfsqLvTUwnZH5P4CPWxkoU90NG+3FOZQMWMBeDPHT8vxvsL9g6/aWfVJOR6nJVaHxyGnHMombGNZziOJx2bwtBXnPeiOyLih08Yzen54eM+KlhskUMT8KLudq2jHaY9AuEVmfVsAHrS/e7pIOvg+s3lS5mVJ+BddhQ1ZCK7NCy94gMrfkKdimZ2RD1wEGqtLD+KUyrEOy+RukrrqeN6ncj1ZIZwwzrXO7ztxPoHzhOLS48ifmw0sZX5c8hLxxYiJQZohpaOesUCsmBnmap20TXZ1i6tIcBXWDo45jYd6FkegEzNnmyJp2ELsjxtMR9w4QfWIa533ds3N/JngfskdjFGTacoZtFXo6oAL7sO1CAoXO27vkZ5Yb9I4NH8zbulM3LUOyxMD1xYtrG1WnFh82nH7Suua4r4ceuETiytd0Xtg9wIeDjz51usS0fnrckBibMaFYGZ9DJb7u5Qz4MpVgePjACr4SO/NgJ8ewNOTQ9B11kZcFL9wgLZW88BKPGZhT7dAH9wEB9aymhSt1Sp4VqkduO8bfw6MQ5fINzzx8QGvCTZ+HpU/PYgk7N9xrd3uqSM4YZg8t7qsz1XeH+pyXPvsf0mv738qo89bXn784JhhcYY9k76Le8iqyiYzrGdYdVNR7htCb+I6kC6GJmHt7o+k07/Y2N/UDaP+DNv5oeOZsh1xla3ujdq01yEuG7iHbbqDSkOozqecJpTW0SWsHVE8eiAgeBcUXrLgR/YPufmT3+pIPbTytFwAPVN6txKG3EPihudw/fFRH0vurY5+gJ9a6D6tGTdJm6u1jFvqXFpZkUH2B5scjmr0JbnDxZDfGbbuZcYyOwnqPsL8k6zOuPNdZodcxu0ai+GuyM6m5HfkIX1+6dKinRncya1r308EnHLqfqY3D+7oQam6S8I4+71E9lzpOuuNHeXZgzlRJ+Oe+bvYZmDW/mriGCsJl2p+raElk9gmuHcHLWedHbLtKP4jm4UFiuUjgSPsGffDq619pjVsoUWhOt3ELaznveDxGfeVRvW5wxzVSQ9ruUtLXNx1AqKyJ0XeK1Uip0FhmqZcDNszQ6MrSxpOHVuDWAHGsE3r1NiuJqCeFVZ19FNuruaN+Yorhr5qV22ID56deExOvPBRhzVLr44DjxsbrnxjEveWu+i+Zwe+on9TLL/MoGfl2Jj4hKGLyzH0/Xy4DUp4O/O3JOxo7MIBlb/c5+yOd892RKw0+WCehkgdp20od4ttiOWVmaFjD+pmXikrvDi0cU++oV4XOxqfEVcjLgesujLWclFydOK5cP/LQPd9L/+Gzw90fd+BGTDB5jSSkuQRTNu63cR95UlQcaOO4m7iV8V/sR76eav0YTPYlypF6nS6XZxxO78vatRNpgexHNHahcMxpmhJdOUOZJfyumrQv9QAZvqCINw3ZL+YRKO7yNBL8uQkRRL2mCaL5xr51E277UC7pbxqmGfYvm0d+TNPjXw6YCeC3cbVSuq3Ya+ujFOuzeBHNjrse7nmHgYlCJM8jhJVOR3Np9wCeZEqAZY8N7TLRxxLb7GhOIm2Nn+nnDPu4Dbq7JpbJDe5pENbuuRRMgidifY4YGPlSYYymCF58d1oOgNqWXl7RlTjyUwmm5DTFrU7sw7z0DKoxRQH4r1qT3C/2KMzgVit7DIsks7Vrjqsw4OM+yTM1rHyx3TqJC+XtHa77HzNJR2iy+/1SIDFMNvded0B/C1uTNzXxnPOsh6e4R136HgjR7Cg5fpwNR/tSOKaBxeVKyMf38gtzBLbjDaaci/A8MI2kajd5gdPTHwdoK35c/3x4up3wbjx+1VPnaS7PHZguqlQtyN/imPH3QxrF51fY6rmT7A4Px+eXKx6ptgKc84SXKLaYZcs43p6jewO7Gc8Ha/LODDmlVx13Yz0OPE31Spczu93nMFVMwdiAOtzZUnjAs0ZKIz1UrUHFR1XFS/O8AirrxEJnGxMUx3f3cDj4slho2dRHHXF+XXivkEmKGQgRDwunUOP5gGuxvnodr2RiwbfbMT+X9Wj88f3WrYOfBdlroQl1nPSo3lAOUNw32ad+xGvyzzsr/j8SNd3G5idE7SXPQSyOqMrWuOeewBu4tqruARe1jl5fIl76ngS2klijp45rP1lU+4lPT/jowCF4S8dB70/Nxv7EeascMPmdsg/ydlnHPM21F26N3J9BLEphwG2hE0CGGM5VcO5n0H3r3UgdtT58+Sck8hPw1IGxowofxswfcTt7Iged0aoTJ1qjWHNy6DcA3eJhkEzwyJAnxDYpGynqNuLYM2K1WneDJQw822A+PRbl0f2Xcpn3wAeWT/2QmgHvspSXHFUTurYg7au2GNwMeLmvbDzgoerIBzlIiMWbRKk3I57laP3Mrsr4Z3hRjlPFxi44w1xBD4HeO22NAdPdEnUQeFYQUR24uzU30ruORA+4360KvWly849YAcuNpYf5X7isU6qyW+3uMqwfteernEHZ2xcOOSObyrukZ92//ORramAQoQM4k4s1bgcVN7ZZsi9+ahsxw0PHHKGdjLwEDkV4sj/4KfLiPd+RFDcnPt13VEHKw39Dnw49ajj9S9Ad+p8Fso17KmjRg2VsmM97GX3kTQtZx08h1ZSD44y0DB12JZhlBIFcNXGxXDktw+znXKJM156aPqv7ajTnwe0xeACHGztkUq7MipWt0gbSfmwTfPNxLvz6nkZwWZsPPKQo+CRPZ+f7cAAusYWVsq+tG4ljcOlk+RF80c8Jrsu34n7XnvHXp+eeHOcv6yU6eTc4KXkzOHwcdHJx+D2j9fv//p+e8yAAbI10XT3Fx88uwsr4R0Ys518Vo2dBJdhtN+K8/udHmd+IL/XBjmNqkp1YM6AwpKvnuELDDsgzttWrv700lsfhH4DaCM7qaMSmp3547TTUxTUjgHD3MU9023BI657JXHZK6KHZFhmtY8x93SxFEhq9VLOjHwlmAmiLVdCmcG9M1a6VmTP+hMzgZ+3SfrSmZHLdPQ9TXVLKGUGa1u6A7o454edg7xWkyzmyaG6D2zKTRBfWk7HfgKZ5XUcpyfCcy+FpRbIemaAp8/7zmoF1TnT0P1Mec9ridzYc9LEPFxpMn+aJVsHmS7KyNnDFXu48ARiD6PKzTji3tLEB3G94dHFLaf3weUpWhKWesT9liOUm2DfASzb2OkjWWSbZRIkPU/R6r2HkfkFtYeXHVVuuzFpByI7AWKrt68gaBt/pab5EegWX15jOcPWwg31PsK61gdDT8Kh0/goLo6w2m40SzZ7sWOyqvFxtn0DYj/XZ8diJ5247BjyGE33wFX+RttH8Y1rRguvGsTmQURSUpK4kSt8Ds79xFjVKTlLAWuI0YGdNX4MXQXrbElaT/TAUIKeNNzGEJvbYU80HsfKkKQ06sIs155siX1p/g7M6RrgMuS6yNX0Tp3l91udQ7rTQ0DU7AmYXg+5yy85ceCtaVLEq1BGMfXkH9WJ9qu9fOlGtzewluP5bqXDwFUxgBbZWo1XTNc0rvLAyAPxuvPWUondFv2tHXU5Xsnggt2oQSMnf2sVbDU4tAu/t/55v8wPvmkeoMcEqj5trAdgG3jsHYeAaHlA8ZicIXykuH9guQHFzTbk5opc2c5zsIrKz/d3sfvC9etp6Ye8vv8es7xu7WkvvitYn3G8eKxJTR/roMUxD6i7I/3zq/6mZH0qcsod/9w8zMrvpZNdw9TXI/4L24SOfujo9bXcYc60zg4JcP+C0AvzvVT4Xs4Z9s7euOlsJFlh8x1mr+UqQGF0Pm7CHk/stMNBjLNrhTo1c+8mnAh4U15KGodKtysS0tsYA6kXJD+iOurF3NoJ/iju3bNJmEqC3L901bFI8Ygbs7aO5zZcThUdevglrX5YzUZ+6hWiOjYY7W4yIMUAYyO2bhNPZ0cvWlq/IwaVF02njhwuOaJvyRUXl+O5uhaNvGYn1mFZrxb6PVicRWWe9xjs1QyoumoaZe4bHUUHknc2su6o8Xj+3831Eg+O9vISy8fDjxJH4xXDP3+pYhL3Lqi0y9uwx/OB3X64qT/lACRV4xXXSTjFcqccZx32M7TcnafDZhjhxwhuQ87ruCN7ov8N/jKtl3h3c0R86uVPq2DNaDNdP+7FMlf9btvgHca6pBIJ16rZPjJzYPlZfnYEv5N7xzcRdpbp3R5Buldu57mZLecec1reFcvT3e1om4NfLzMVek1se+7jrXh3fDN0FP3h4yTZi52Eq048bnxr3KecOI+kG3IMSDlQkUlHTb8wlYc2yQrVmrgPTL5pPJ6D6pi8C77eO/Y7L9FJB4jrBZarNwn/lh7CA3P1TtzYwRdQt80eX3ng0x/y+qMr47dePv+ebhv1/e7DZ/v+bxlbN1Lz6F9JRyfeNV3XNHGkL3oVbujhIe6/KO59fqzDkVjOMLiXexcu8mhHWLuEtSP++W43f0p4vUZZ2aHLKScNq3Y+4p4D3b07Go6/6sc+VkVOckgj+p1cDiuOOnfuMyi1fIb1816+DdeHw3bdT5mCyzw3th4hDx39zMOQlb0ZD9M81jnC/ijuqYscIX2Ea+pXxa75K9pjXbZ4gTKS3LTzxQEC3VZHxwRNPkAPVCJ8ne0o9uxeUBGz07deB1uRZhD/xvLDpaVTBbxfyMz8Tp0w0i13kizAIHyryjxdDr3It+Ka49N6h+EpYaM854qjxMtOBE9XpNwKO3TucsgS69nTjKvPvuYqnB8vPETjXqkhz12wvNV8jal3x+WfYbJgjur98qj9ei55OHHjIv+GB5qP/KrTeR3P71zrL5ODlf5NJ/kS1z+MG2lnB/oYUI09bDcybm1TcV884/O6j7ahPFDcVKsPLmFPW0zcr1QPmTpuVEVOHojvtM3hHJ2DbK6in3vxSg6utnmFv36EPfmGOlKHyqryKc5BDsNcj+k/Ui4codwxZaB6YWJn/Su2oM1Dpg8uGoMGoFfOWO9xyB7fcoCRYZfoHau8XQ6aDsuxqlA2pLU2lr2j93IhT0qNAVNlgm6PWQCrrDAn46SGHDqj4pqG8A4fR+knR9qz3D/D9T3zZ217w3nS88R2G3GvA68+KNZFVuihbpA/7HWDj7/q8wNd32+PGZJscQyQgHtDScNSjBleTcezD+NKKy09GNYEzDLseI7W++h9weQ/7Th0/tgjkKkK0YkzGvN9LP0sdLDjfuoQ8kSP6vF2T6SeuVrOjhXEhIwC9qtdLwZ4mb9cRRrpSFyR0UcBJ2Tnuc91sDddaSx+2VvSEZ6OtDK3I/9TZ3UludhVwurqHHUsOegj0Ndi+alNcIlb+QN1jPiz+k4d4R1u1MeJ6yoNZparKY7tq2SVhJHflnuVY6MuaJ3eJ8HcxNVjgh95XO9bvvOn3StFBpOyjmujLVu58vGEspKj7TEVcYln4EoXA0dHYpnhbZGoLJ5nWkvSiyP7qShXwvpeffbd572umpn3KprdxIXFIPGxgDd7xqZ5lgPLtuwscQ29N4H7CEyO0uf7ckrJfexZ2BUWrpvb49myS0X75dcGm3x8XP4OfEJjp0ncNk38tY7P36/1GWPSC0DhPhiWdVabrchVGXdyPpLb+ZuJnxxS72bU/Gna1djtltcG7iPqlMEuci9hX+Gisc86w7a71wWwLm1/JpZtVfSo68DFKJPGKnfUaXRmgG/JQ+GxyJG4l/xJOV/5JsK+xlTGpZ0aY2kAxZz7uJNvTjnXejSxtzjRwgY6cKIJ1gp7LZsvKY4wpqaShpD5EVtd8LjkYgws+Hu5bRfuW8WNY9oDY7lHjPZrHOx8TLko7FMsh8hVHQuPXfdInbXcaxD2thzLHcBCeeFDDvEwKxys90+aTR5Iucx/Y6oX3ywYeDjVfJ+ZFw84ws3xsYCf7BkpG3mrn0U+9mW17pFylwEP47sqUQMuHo+/cnJxHBgi9S/Cp5XHpN4fr9/n9f1XzHIUNmbv5LoC1P397YrbR/eO8bLRyzMXoDwHii5/jvRthBG0Ux0rrg071EtmdxD4ZYaYJjI/7g8dDaKjH88Ekhimnp8jZKCa+jaAbmeMZ5r2NIrD5QXRR1iRO6KLLdTtjkA8iiD12NvEjqKD2GIs1tm0uV63g0+xU2C8ye8he9gRvdL30VX5u5r8pR4kkkHgR9g5aJpl/azXDWQ9u3FLmbOrdH04VgA/knujew0i0Kting2ijwLu/FFHhtW9B9Rn9pAd3FvGhmYiF5ku3Q2Zj1qVoosjy8/TRTY7FEGGKtfrO/NheoKjJFZuKox/HCiip3zxOOJewcsZa8QekidiQ2ANRIwnR3ZaHOW0vTmDuzu/6cKictSVpk4l47MKh0P/X3kpxvjxkbb70nsCGNgGdHGMewlfuvrRIbsuHM88HTqOZzc6XuJqWL1VmR74Wi8cy72ymietlz7shagLTN0rwfqu6TgwwrJ2VrqYbs6l0+lxwfp9cspZVoW3+c9ZfhL3xFTXuE5dUsyxmtciXXS4A9WDB77AN/q8dxsdSarpM/15XH48OIvtjP+le7ZvH8++zF3MZ7jWQ3ACSg2CW1IrFE8BwZxKudIax9YLNvJZ7W+UtvvcgPsaaVZcyrNDruAvMXO8PmXE1VPcVOfOX+/J6jLfCfg98eXXsGV/XRXbyTu9XG5ig3Y5b33V60EHpTUp5gDc8e5LbJt7lOvQp902yjAPsU2Ha53KdnKwiFm67EPu87Ap0/K81OIf7Dp55dd8fqDruw3MGhNN2o6Xi4eRDNQFJO/9zqBKHo4YcJ1xD+x2b07RNNV97q7QKjwfdbtsV4tTJwqnThAyyYEY3CT8jIahk93rqHnA4U6hz7YPd0VTxmK61FNdgdihBuOZRFC5amTVWZ+Z4KXP/CXLlVppV+7hio6qRR6URV/IRZWvhKHKoj5/GO4hlY6POBpXw+4d+rH3F3swzlYfiY6BKWb6PsLKb9ZhNSt0ETligQPk7TwkQiu09CzGoKWJ9u7kymFu7x+ph1GffMZBiN5XJ8YMb3T78JaLkZ+Ie+2MtCJFGEZze/cDONMn9WOJnO4ctIfZYzkW3mNlyZRE+3sdfVzJsibwnoO1JmXOnvZR9Gk5We1SnWm7jQDrT/5eZKty9cXZ3EgecvcclGV+eDyzuqlAAUp1ZMfJZVB2Vulfeg0XZ7/8XmnftLdS0WdUvR/Ypdnh9QT8OfqIJfcjzD/l4JCjfPMlHc+42KEXV4tZ/pc4R/5DbtvJeBIwfOStuC9mQTKuBQ+Ijt0PdxZ/HIZQA4OrTudAs+KWnjbzUqfqdh6Pvv4Rl/fWg7YnAKzio7HPTTJ0yzclRHW/4RvGbdjC9Xj8xpCd/LSWoXD/5F+V20peJvGI5T7uccQl97bxXP/JsPGaDQ4Y5iz0/UqgV+pxL+kpBnp31Jk9s94zaVKwA489BmUw7skKUp+4f/SPBk54YTVzXQNYR2EqAxjm6baav8D9CL13WOexgDe8o0+77cTqyH6buM8J9VXqclWN+e4TEQPX5XRfwVTPRrckv8+U92ZPmMk7xzjJZz1paIL7wRE9aCMn1EmY3vv0Qo9n8kRwRnysgLG56se9dOz+NZ8f6fq+x+UfLoRw1HKtsV1bG5yBGf6Y+BnPx2yLd6AiQnRnjFEvcfWeMu8+aDl3s17xrDseHddGXKTMAjTVDUEtsZJml/wNl47TxUMv2lj1ohaMq7OlVKAOqBMHGJKaddghV9PZdHXgb6pTxjWVq64kuYx/xLWlc5kzLiQtliFwNyuMIQcip0pA4iaM9SyvRZ7dESfrpetICFqR1uWAks6flR6FoKPM+a3qlYQ16nzoeF7L0u2hKuh0E7Mp+mIb1aVnXtuuw/VEtR46dWNyoFwxHtbLi2al2UxX6gIJsd8Royce4qLToqtJpjuOoa+4aQsD3gz4ZGxTaxzGUHIt9VjiioI+BCS+9yqUnonWOjJP4jKZdZsy2PF4YOOTxeZrt3ZnYbOkm0q4sHi6opCoxa0N06XnYTpL2y46LMcH417qSawQfs1lQGMmMVEwtHiAelwwc95rh95UT+qqzeOCsVIefoQ/+UXaVdVx+xVxEw8HD2TYrshUsd2WTttddFa+dHT7Ht4YKI6A5t0mZ9COAxdXj12qhQ3sm7Y53d9NDZVhWUas75WYcEjgRiSi2Gf0z8pOe9mqdGod7zhj6qj5+TLf8FmJkWdm6sK+RtwuR42LS/5epX2nsw/OEFdGqYiN+/xNbCntfPa2Z63zwTeU0+Wp1fe+bKcL5lrA20K9T8slD8y7VdlixLXKf6aFLH9I2NLDhlskq01aT9pnDDreluPTcizfAB7DXbwxVeP287WaUxTLHXQTjMgLXuURbXauZJZ7PAzwjQc2fjLHp/S5XkMHukxiDPYiu5twwlI8wupJmRC5AKzjcnWv05UJzR/18m/4/EDX9zkun0YwZKeMDb9vXcMSOzWeXZPT58ZONMMecSsJPRAEM+xtXMzvJrq66H+mVfmD5O/Mg3e0IlY7kspGzPwdOIpCtCGX81pXO9Htq34++KAGFsdhHm5XORHZJX8awPtP9WRQeXSJGylZhwV6wJFL6j0ZeVSGYS2RSVuk4ZxpZdqTHNUlTW0B6ZTs1qvqLmGzSXYq8OqaPcwpt+Pa7fN84qHT7bNMZe/TEUF6sx/IHXrRhYO2lLiC9Td6eGrjo1rEPO7q+PA8FlnrDWfyRIehs9ruGpcNXV39Kqwg84LjiZiB58mMoy5I3OkWueeECuUbdb7KPU8Zq7QuvzdWxeJIna888wRZFbPWebgzSlrML10o1Z2p3S81busC9B6LX3tlv1XKJ1NVrDOZzZdKdYd3BSOKk4rfBx5XdC2+G77R7yX3xOMvcdWNXEdg6ng5sBcUw3YnOCDk5AH+zcw6Ezgmai7t+IbniKmnaYJKTDw6DtswnSKj++dL83OUrR1xOS/PEq9VKeL+ZvLCR4a2Z+noI39nmQI2Vtq+yDelYj/XQU55sRzzFecq/6y/Pr6f+HuH5XzJ8xc5Q8rXj4Fn43d+B8b9qeMrLL9/dmh84rEssTowdEJhl6R98E1h2ompJ2fIzM0Z9sTpZcgTGcPdn+7prQMm37zkgZywKr7puO0qSo8L6qwwMfmEv/OIlBq0Yh5yomFH2Wb4R+E45fAjXEGd9BliQKrXj77HzO5mpv8SXt/Vznb5F1D3huFKADTQaHh0e9PLz980LtPdM53byycETlZEu1deo12XR6UNZ9sN9zwFwyHsjEdg6/y1XvHstI3KHJmoBMQtMu81bD1zzvvL8cs3elJNtQ0z7FqgZz4nZvf93UXxRdJ3iV2CR0jXwYmVnJYlp3GNNJj/jutHPhyoY+mNs7op5nU+bjI5frLSxQHAjvIaerJX2DE5+7jrAAJWQHEBudPNptzqGnuT6dR8GkOzVoSgZQuS4apZOKfYaiPXgzBuLNNyrLJWcQESENdyI87CXJlfzKvHEOchJEjypD3HzGutjIlbSmaepHnOdNKwpztMxJ0925W1+5l2f+AdfPkpdZyriE3CJnIeZaudG7y9dFywendW29xbR2kQlnG/9lTGyprf/EAYpLgyhb+O29VZzXb77uLqQ+VknImpb/nmksBNHvJ3jau47z7vifsjH6lTHIpyPeD+Is9nVGk91zinaz0g7zSb4OWad8rZxJj44dQr3GFv5B5hBr/oE8Vjzd9hw/rrtKk3VQ2XQbWIGOuoN81rLfsV38zfrbHN854iuC9VEmWXV23Tg77kU9ahU+7NvZ96Hph6ytk7dNL9Yt3IehA07yW3B99o7i5KDujqAcOJx9x7Po55t26DYQ6rTF34RvA4dJQsQHDQ/TJoiZS99KKL+/YYlNHd3zJdndjqe/KATFyJh0R7HzDf6lqunIHGWHRcckZ6EgMwvKV7YewDk7gm7ogVtyfTGJZu98T9clOXxsfDQcgv4SQVYdfvAvf/eP3i65sGZmb2z5rZv25m/2cz+1+b2V/9xXEPolGgAyahMSzx5BL39O3f4ILGfVzqcKeYpG/nEceHPrr3quJc4s6BDmXMvWiWaQm62vGOmyO+iVyX3JgSzou4RY7DdaTvC541TyC4SzqH3VoLeW6aPxs6DTmYHSXn/eGSA7eL6GNojzqhq6F75E91Ljkg6XGfxxFXCRgu5JpV4VBq2uqqM+tN1/ezDKR6OJpgxO3vpJzSTX/zqCS1CjV8p4bGlSd9oi+U5h4YeA9aasCSedTyrxm+05Rp3XDx6PeujFWkI05rfK6RTte+JlTNGfXViQuSvpeOJLUHNsKf/zioQ2oFBvmKWTNPdtFT5UpHBABXiq2Aq+M64iSwNyF4vlen96Z16ZOQTWxsoILSGTING3KtjmEJ2/Rx0WG5Ov0S6Mr5K6/GUh84yfQUu7i/9YKplP9qP+8Zd085d7h/4RtJs+Ry8HTuW9s3cTP+iceXTrWkdTTpib8HljffCG54dEYHeIzOMuMShyc31aqRrJBN90cbi2NM69YbY9hAKhIU9y/AMOIXHmvYajRzBWHyDTp/ku7JN/PZyTf3Ojr/KdwXnsbp6mVHgU++gXvxza27u+hBGSdX3XdikhGNPMRP598v8g4loXGFB1gPRM5FunCVT7GRFojTUdnu+cabb6B8MwePuh+r91B3dnslqAdGrWhzZryrsj0Q7leYOs+6Uqju4a2rNkJefuTPx+BUaig88/awcGlc2DXQK+w+8kfcbzs1RxTfGPkypWQZL5HLXPrQMS3ylbj/B7lOnPy1nx/o+tYVs38VwH/Y3f8jAP7vAP7bvyZyuXDwng3IZ8emOj7H/Yw77085GubEKfiMP9I95TL8SbB3uinh8SOdA8tn9Z/RIdzg21B96UqXvvSSFuUUEd3sK0M+u/jGiD4u+0mE1EyCKoFHWLtWatF5iS0CJWX+yW/A/UhL+xhjppB5qdk80eNlA5v57XBWrh6lTWG7uiWqnnYTt2usmckR/kzpRh291eTLdTSMfr9CdX9ptY6EHeUPn8sEmt6pl7pAnBvBhwl8xtW07lxNRoMA4uWbudfgCU0siadW9NqtrnV0+exwCZG42gDXUU27RKgjM53prdwrAoPbugwWhysNTp1Q4Wv/VtpjyfN5dPPuvRAmpJ/6l6vJItG222eTM//zSosnNq7VaawBmrniZlFfa4+Ctf272F10jDBvF3eAX3hV8Vjjo1vd3+P4Fesu+HujzskNo9cBzIEcDtlHesoDd3IucUUnu9GvcVGyYYiXTLtdno+wp85V3ckohxzXdMaunP7Ufj/WLAS+Gu7zM2SYcJNkRlfvb/nlyjeavxNXY4JL9NsAfOGyT5o4fLlvS96V88d8IzyTuK/Yj2xH++SKszxO3NebD7nrDDyfTyzvymOGWF08+gQvk0Jjq95P971IoNpXVTL5+yIPjU9x8i1fK3DPN8QuZNzJE8TvKx47i6SlCy4qTtdKWIV3zJk94Rok34y4V76BsY0JxxQHvOIB4jFrbu4bQ5yO+DSejW8ltw+W2nkSY6elfDNdKnfrlGk9BNdneB/lZfaNr0n5A1xVHF/x+ZGubxqYufv/1t3f8/ZfA/Dv/+WRb75e2rRfwurtLQScP7yIqwnoSg3QAH0bdyJgfz9/x839yPONASh4z4L5sM4ccovPLnLEWsxIuUX2f8X08BEUzz7CYPDmqaXNe5IcTIjuEvcuU/11Dlo6rp8z1wjd7/ZmXHozh5yLG0vj6VWnM6iEDfeRYyB2yauPb+f+jqmfuM7ks/uBVdSddciy1M83OxOM6ZjEdbp9ME8ZFqPkrx0MIdDSUcxdJJ6kER0fx95W+5WSKy6zkWqtZX6j49U2JQfT3YTp6Kx1zdpm+T1r0sBTB/XTP08mbBIEOPN6dVupmU1vu3JQxsT6/WBzYqrnQZt4i4wz3cW06p4TI8fqnfdGcR9xxU4FA2d+vVYRv4nHpP7y29GtmlirjfND3JDLX/wFatXLboJfb17k1eXzpbgDcyS6Hz88Gayx85dm9zawq4pRqEPuja6uD5KLcA66Tn4xwO10c5rGuZyeOPD4zpBTx4vOG+UGOXTmV8WNG9v4q7uDb4Br3Dsdfd8dlf+Cb2ZjbjEHn5q054k5J07eH8qgrtkXOcoht3x5J+fAY5OTCjU7N3iMxMLW6YZDqDR0Yu6aPx3UzLjKIY2jivsRtrGubWV4Op35UOGGHFP89Y/5xjZ0Ym56vJAHqOMWuzaWpy8Dnr7EXXG6RS7s431m+8pV1lg+DgTBdL+c0x7ynkuJ+4vx6Htd/g2fH+j6Xe4x+68A+Jd/aeDRVkgAel+/+wzjaDfFGxfGl/ck41MO/1zkSiU85L7WtdrdVQeNAwGwO50zQAHElyqTMPwZdrhSfmSrV7o6k8/OqpKoVuZz9exyj0ZkTdePe8n8IGMJT3A3GnKwwWmbU9Grjud+Br/LHt1wfIa7hDUHTp/+S6Nvud3Jna8ZONV3yeqd3BqwSljKcngRYXf8T8X6lxvHS9C19s59hqG33Gleql9QOht/Rr1XBTLrWfljZy9+GwNJTGLlEfB05SqXjrpXbU2+o+p1kGe6jZQrYw9+aLdTLjPcE7qG3rLNlS6pr/ydxO1xfPE8nEM7Ox3+sd6L9NuaRyfm0LkP+Ri1KuK62lHfdda7KrWD2NdNHfkF1yWp/Gtpv9r/Ja7oURX8BvduVLnDNp3AEfdzXQ2yM6wfz+7kHeFextVn5/6ywx7quf1F3Acw3v956jJsc8MD8Ns9aIrdPDnOpW2qDhfX1i/p7BKYSX7Brn7HGYbeIJQ6zyoegV3vj6sn+Sa2U0cXeZfiOpLjYVjdVo50KcePp36rGk4Uvin6gwc0fMtxJMZWgXbkyT/XTncPJmZU2kZzKpIzrl/y50eeam/ukbM7V8jWcUo8eaBWthxH3FsjC24m3tuu/VzjPW4XOVL9/OSbU0fBEOQ+LimH/r4Pr4EeWD5s1wRa28EPHlD+8Bq4sQEVz2WhKO5r/LGbXiZmKeeP1+//+uKpjGb2twH89ZtHf+Lu/2KG+RMA7wD+px+k87cA/C0A+Onf/g+gSGGxwy9FXq1QupcENza2jXiVSYGeXOdv5z3j5s91kA6iHp4raKZyRY9zxseP316G9czwJazVbJbLvoUzL3b81m6BrWP9Ush6koSkd2ObaTNB6N1HKIiJxIBTbq09uMMO45ikX6aSPN+ViaeOltM58T4eg7oXzvKz+fXUQ0KUvz/DywwvdTOjaaYRO+5KNw01SlYCJWXD1LMGc1me5m09C53Zp9F4DroshIw47Fd1dJgtPFa+1FO7/h52vNTjLrW2R8pdq0G6XUlCHl+DyWdWDVs7LVZlb4iBzRY54Xa5S059yl2x046aGGHLzjKLC4+jjO/cEed36uhYaSvbYVM1TR8tjxpQlsVMVivd87UJXQN00HXOBoddRQ50n1iQ8QPAAxvxUlZuYI/VuZ4hbTejyJVXugYerc+OgrgnJuA8rPWMzkB3EGIlUO5/oe/HwP2/8le7gZsVdo8FMetuAAdlS35roOh88ncD5mq5hHFEmYLHVfsV9zW9k1e0036H+x/FVZ2JH61Yt6HiGcFQtnnaZqQJNC6Ujn6ELYHCBfxjMaC44bkKboltXDVjU5GwcX/DCZL3YWdRbXT47fgrtonbqKDOhqs811nKG0vMcblXQyQPOOr3iXXCBQdXjb4AiAlLykIrzmFXO+Vc76ft5g/3cQ3u2kkPOSt15GrM4D0zwUkknzb+Ng/awKtIT7gKOrtPu2ZZlTsd7ZarSiv2zH5+bpg9MiaxW6qBTb6ZL7rvVbXiDMWkA1NNPkx7YPmyONo+XvxW3AlgyFmyEsZntYLlcRz+xH3hyxpIGXgSrg6slKsccYT/23a82Yajj8cvTpDTbdv91AFxjzfwmH4vXnnA8Vb93+OALQTX1MElJw8c2PejXT+aS+LXXl8cmLn73/zouZn9UwD+swD+Cb+8jXak86cA/hQA/h3/vn9w4leBKWbrUWI9K8QLAr57dkvWXYdHcHxQ8c7MFaaf+bgJS1k8JmcMVGRU4jBYntVdbfjQb8g9lJjjgZviuKTnHzz3+ZX7BF6l9SLNcndRLc+4asdzJGbzMYkuXjjtHcjOhEKXS9xXah89qourRd63pTVsr3LtDbjPxegZ+hfKOX+/1qov6AjRKfY/nJ1g1fCMe6aroHx2IOq+ymAoPpun3Dxr30iDvyZlEALF4apZHULCyRFX8mN+DKSGgtJ5A182yuFPE5SGPeVI9xjDrRMOG3LvOheUr2Fj0BmwEJ2a5wCyPuKeeR9uRRe3sX2jo6dOO98r1DqqbaZdz/x9fCnu/zv/gX/wABTDaAvGgcjZQz2iQAYsiqln8Fe4n5PIFwm/C755JVduB96rCdKj40yamH6KHfd3PCR8enKVW0+/XK6BxTYMO/jl1b1eyk2pxND7hjtxPtO0si3whdwt84r7ow4Z7mrcLUf+UlxkR7haDuvjkYfL+Op4fi9X7+91tA/iUh93w/PY7/wKj4WRbjKiYf24v/KN2St7RaC9AR9Tedd6/zp/frXVEe88DIq6qcte42KinIv+uOEbwW51FdT8qTvg12Kq+U53/9Bp615Nxj04gwzKl0qfcpLZ0n0xJ/F8Y0xa5nPaZg2d1XvkB75+cPV+6fVN7zEzs/80gP8WgH/c3f/sV0UWcuLsVjMzv7Kl6PzFnSLXhzWLmUlzha3quLq0pD4DXCTNQT7aseWX3Tf1+BV5Z1gz63jKUvQ5I6DrChZDWQ5ISu5Nc+FM6K3h9IcMcOoLpus3G99vAzf7i9zxvp5DkQtBlz3CDl7l18RuUi/cvcA9fgi24vwAZ+qs6pHIUj2q7EPpU69z5dM7VUk3AnCfwVqO55MraUfXwbSj0ra5W3Hle344uK0Z95t+SMUrHSMv27kqFR93dVbwypeWC0F5jpGzLgxhGOBOY5LkSBpnXIceAe/4TLvTHgzLjkDJ0U6Bj2ccIDFuke+Y8Z6kOGaevd9f9jDHsndsX8fpV1KPc5Wtk+6TGvtEK5LZHnJVpyjPLbYCdG8XXVEfC3jz99oDx1Mt1f2wOhvlShTP+lj+Q84YDLKzkWlKWFTYL6LxL7u6MYzfRv3mzxv5MiwrnLATy2/giPRC7wjPuFxFgFanQ+5tDrtwrnxzE+wVTIbO3tyk2LcAfzr6JMNO0A65mr8huNpZ82nFJf9grpbd5tMBehgUMo7BkORf83nahgCreFwBrRezzHsvmxixzZjPNnLVTJ7azDZBaGBKZa8x1USWhsUdHue/hp7gsuQb33nARlYs9b7orIb9KIeYM+VeeUF1H3js1F/4peQQg/vQiWhI7Q1xl7+B5dTzlNsi496aMyosXJTGwJydGXrYhmWnrL1FUofEfZO4TGyOuRVTccHjC9bpKhM4ObHhvrGxsBbwsHe84+2yktT7cPM4+bSNFQ80wDTuY+KzO3RF0oaOPibUdAvCJzzxWeQyfzymP/Kn7z8THEeUPQ8XgWD7Qt+vkttcxbhaD37Yy2e9/Mt8feses/8hgH8XgH/VzP5PZvbP/ZJIxOiYHRTfcOK3d5+szpBSg2frrnSKjDJ94QFj+PxrhQwdXr+y0Rvkr+g09PcZ+U7uuGd+xC1E4w6VaBuTZya6FLLfnGbmouVwLWRaJ9t0Wpe4ZXddbWmErhPhxJWw4hpQ74/KQZPKmaeDQZ5ZqwQICbbOtpDvCuO1Ki5Pmuv8iMo3DbfdQULolMu0UFAFdBdb45pkseOqvWeZFIjyNLUPdbSWc8QtETaaQem4zMI9TwL2oHXauUpDiqTDWj9kWAlcbiX5Sx23XnWMtoqwb6YvypyrsaOuU9983O/sAriS12eusRwy71J+qHhW1qlTDT2+vxnwVqS6sETwcEdMgmQeV6YVpvG+j4LAkhzW/rIRt91neHgIG/PDNj6Z44EngDgshYPF+C5xIXvVrI/XD/1VZz1pMeLGoNJm/liWkMHt2J/w6y5zXHDf5BM8IMhQnJAlLHunxjj9I3zm35oU698ucqTeKTTdYfnI0wdpnYOp+Hvipso5cP/Mj+qk0KLcxVMWqc9tfqzw+SXui3rKxcRYxr3YpuQQj8UeCjLSfz+5ioU1sDwbrQ62Kr8X28jgaFRX4pXkl/UCQL+QOVvCbdyWbgbYshyTef3Wdr6Lixd8c9abQoxLXBODVn++/+m2flQc5aYxeKxLKourXE8sw4irxTlt0+2Axbcs3KkfolMPJtpdPJ9I4jIpZMpVnYEzbpevF8bOGNFoDKHTp+X5zsZHHUhFPH6IjppK5M8ybT94oFfuho6JfYWpxVVS9nmQxydzvOE55Brolp49Ek/cr/wnL1SB+HRhh/LN7vwZDwSxkT+6UHJw+kNf/g2fH+j6phUzd/8PfnVc4IIKVr/fhJeG4SNw4/nolZ5hD0HS3vsQkWxM4/s1as1o1fMbuSNDNm9bTv5iCNcSgiBJ80X+nDowrctUqh8kJ0jWVsm0dZbSh86OdrWpAe1u49UuKEe/tHSMDCR/KpYAMvhCf/AjrPdPuTKiG8Iv07UV18fPKpflMIvN52qbhCV+9szh6c7Vq2XhQuLjGY6wt3U8Zw7PWcsZdqZ7Equ9COuOOsK/9D/CRp6pmw/yVfSyV3HRceu9aRLXNK5Ul52bRSf4u6TNGTuRo/nTFR/p4VtW2pbLD+o3HMQJi5nkpzYnuoeobeJBXnIEcdnNs371rDZX+CYB634ysSvtyFUN63nM6YZIW+0jf34MJHfNnFPOUhsxzfyrOs13DelM66+/Cve1Glee2fbuhn3+kjOACXcvedZmlVwMeMKHtP1KdODil/LXccfp6ScP8K8vVPWSZnOH+xd+O5+dcSHPB2c07vPgiise92CYTfJqG5eJqPzJWq9Wkkn6zJ/Nd12N5q1fUw49XRr/G8TrMIbiyJZLDlEl+5TI1unkm9pfdVNfTyxyt3lSMNPCNW7nTrHrCPoS978Ud5an011c6vBHcplhq+f54Sr/C6wbYSUuBHO0fGI1SPQAZgM9cP/8q3ZYmHxjA/db57GSRz5jfdmB+1y1u7ptyx5e4Rg7vl90JB6LLZRfKWfuK0atFm7PMxGpfx5OFZM33KtGXfOZpFUvpC7bKGc0Dxi5FpJWhRU7//H6vV+/y1MZf/lV5ZytQMteX+C5I4xHG+1nuPBTpevdNq/p5vcimae0ZXRcqnZJY2Jhxznl7sQf/sbTGjUPnsSRfy+nJ4IvB5x5O/v7Jccx07qxt48MqlxJ2FMy71Nfz02x5TbhMShz95kuWo57H4s+dCGJlc2lDkhAzwAzrNi83uo8C6f0Px+L3GFD6sCf0gY45crzCncX14FyaDuFFWl6yxnxgH7ZtOqYYF75qyxhqCD5Yy3Ynp5T7GWRBCUflxnokVcfXDYO3PR+0GQs7QfSEfNO2IHcM2U9q+jS4feD3DKNwdskKtGRLpM2wjrYL2ldXTrqTVY7yyEOwtgjro240VFRue2OqBmmnlIm5kGoSZp0ewxb9d9yJ0Uc3LKAnD3l4AkVNgg23MTMhVATeBiWq13L9QXV8e6sUM27DrjK2ZluDmi+9mKDqkaMy4mFnhXWj9/je1Zm5Q2ethtFMDlEzFA4+TwGcBecOOJi1rvSiQee4dSx1bvmXcLI6p+L7FOngUGi0126A5PSHv6Cb26xW5XYgD/1sUi9iTufAxcDeIDH1NE6Xzj0P5ItG21N2C92/EV8c+roX+Cbu6yozjtX1nL04Ydc1UcnVSt9G6rAGVfDi20uK4FeWR1hd/oNVmdcBqiX/KkC4OtzvHlcuxV+DBy9OYL6Bw80/ptns9mAux1YX6YDoO56M3/NIW3V4i5PzqhkHGPiTQrSJC7zl2fRBe6Dg6W0N09EHJNiKAw1TB4IfTKc+9Cx5UfjDDyG4IxVMT13jN4eeMJSr3otinNghZYDtHcBPFfNmm807ILjQY5yTuTNuLSjoQ8V+1GvGn9/5edHur5pxexbrsIHm/flA1yGuq4cXSa/MniNG9h4OUnkEkiSV2BhZ2SAZoHAvCqIhB1YIadFMo8mOnVcy4ZuyVFeDUOX7S1B8QLGa+oQ6WpGrexW6ZVciFw1yjFY5UxTHvHksHYHc0HURBVHp2smGfeEssXMyKoD/fHL1hl/9feaMeWGhNRpvORTCkjrUdmuZld9POuTkiRu7QUgqEp+EcQCfZaRaWf+PuPaITdsk9BY96Wf1k8jXGb2lxfdLjJbbdZApclDLx5m2Ag3hefBsKXr2arcw2WU9ciPUxnR9cpYRmInrcOgLTPHhnAZ3DkzBzykvqSpannTKr8kxG67hjGr6VYjh2py1nkzoNJhWevKEnViWYx30UAHP0dcN6y6z7CM6y55D9FrtU7L4wQxPucGbWbiAcen5Xg+k8Q17bQFZ1vPZ+puaRA3SWCEDSLud66xI8KXnHZZZ535SopWdKp2j+zQQLCep/UqBg8MJaagphc7Li5xRxKyZ7fqssa9YCqqCVceWL+ZIQlbvPbCRNRZqvf1EuicEVF75vjb2I5G+7jdcIZluompLNjKH9sYys62kJOhEYF2dboTlo6irKPdzAfPW+Or4PEeSThMycAxOIOVWvsAg8fFb67qBl0ViZM48k8c1WcWeNV7hFuIe592Wl4OWW9sOwrLRq2T7NTPKZf5YxGJTnOarbG66uJiqBxE2Az7eAB7dxomYc7VKp1AqmDl5tl8o6tfVng9MdW0ctjU0YlX2gfIBjZOCS7cJy4euFc5uuFLN1i1E3Xf82pXivsPc3wyx9NcXB4dsOmybk687ftVJzFOOeuis66MRf7W6sEfbcKJygXHp7Xx/myX9FpVo1yJuzJufQfKxnqSpvH3tNdCv/tsucfJk3AQ52tLAixdPX/g60fX7xde321gBqAHURByERwynO+xsBlXsFt5sIm/0xqX9JHh8hFOugzm7D7dl3LtqCMnRt/GFUI5jsu/2gbTNmJHde+46HTY41KND7tGpIy4AfXln4v8/PEAybNzVLYx1OysyTNGK7/BeDA6S5yFvKwyZtijvIeWLvfMp3QuPnYfsQpfZJ2dCcbl+IuzcBHtmu5ZJS/uJPcZwMzAqSPfTUOD765kXYRTj+oIHIee3MhpN8EbuaeaFzkRt4sx7qMWzE4C7cX0Ts+3cY2KcT1qzyD17Iyqq1vUEchjpm/akHybLqdeenuRGfPQtjGR08ev7O6o8rnKO2ahdnV44jOOvB8HjMzy4gy2yumOyXWgZZd0u47S1fGrrqP9dRNJrS3r7+yrSrvCxDq8uL+pjH4UF16ldcT1m98Vj78k94qp8sW0bkSa+vaHC7brfSkiOomCt5whSl147oYnC95ujXIK1YxQfz/Cu+TnxGNZyVdCKB3biF0PjkIp8Qd++XF/KTN1bVSey0M9ysg+8IjtpurCANhixRb7IQ/4i+95f8FjvLi8yqVW347n5YJYignXsu2fpFw6tz10vjHSEfUH3uRjqWtj4bNw/x6/CguFq/r+lOMxYK0OpjR0kTM4nyYr3NG6d+rg0zbsBhTGNubCPDFNOS0xVSZRO67Yg/XHdp4SLPlTfhw8EPHaHTH5ZthVsTxW3aijPieXUFa7Nv64l/3Y6v3i6/u4MvK6dHzk0WArDJY5+XXcSGKX5+f9nr9fBtsvyOqWZO/k2vzt9jowY+DPl+KKPp2MH/cogj09PO5dGI608sYlQxX3lNNBcDHIyOKVZPxVRi+/dVw/M8m83xGF3n9BxwI3O38TOaL56Yaze6R3kxlvHW55+J5w1ZXxw+xVp6F1KJcW3dRfciRdu9Ga3GPz+WXwq6tWDJdx9dC4GrTk8xiUHWml0hzkaNzLqWHMILja7HKPSmPG1dWrnhVkUk/npu0muT5EQ0jRMz+0x5EW5TwqH33Soo2wIkeArKtJvuoAVjOmGGHny0c1Lt1pSgfPsM7umpY9dSzftyBun3HPqvu116j+UjXdBA9ODH3ZGT044wg74ib2j37pLd/cKMrbGwMoLvL5BVbuLuGidfxsRz5eYe7Ve/2FMILmHTeVzo37dPsccxB3djWJC+LiCXDyrICFiTdqCeHM6CY2vlSGjMl6rTh4EupHtffkE1yxboZrpTzffThK6I5vHDfPZse6Ht/1Py6/3x/KoEiiVVsvvkur8OKCxROfiamsQx9NKM7sBW7SC3m7zYmhgzOUbwZnZMJ6qFGLiMj64uozbq928Xl3LbfzMBvyv8b14rV2bwz7wflCas23D/1r8isxtebiDh5QrrJE4u0rVrQsXoBN/Sm392RzxU73qx18w7Kj+6VN/SLuvuC+YX+bC/sf4vJv/PxA13cbmNlpkOOvf/DcdqdhJDUNA9wbneEz/SK9O/C704vfRf4pp/SW/XAv83vR0fvWmuTOuP5KRzCiEKva5oVN+rnN57sN09wiws7KrHw6NiIxqk85mGEvbUO47RK2bOEzgJYDdTpyceo4Fvl8ZrFtzrg87SnNXD0i/uYAuAIkBXZTN71ixg8c/L7oz4xbnQnX/I2otHU99tZLBiJ6Oa7mrAro0m5EraylWdW88uZ5z9k4P8zB51Z/W5nSI9vBvYcC99pxDvco6TOPN2m41AkO7NrNZg94aNscFjcSn4T166poESqOI7LdmwQhnSSRt+Rwj7hHdhRc+p1WOTKxcIO8ELVhkm9qFR0POlT7sGPr9kFv7AvX6KNK3a73dzlxXQbviRsn3p6Lt/NAoCPsue/MAH3V4CXu3emP1HVg5jUv+tdObnqhn2JCjZ3u0j1+89T1unhrH8blJBLlaNPQPcqcTddVBG2LJumMuB9g2K1Ocn87QXqXjnDkhVOoqNpKI57pMl/WKFr4eZOXjuozG3Yo6Z0uwZpPP+IbzYJ69/jxrDHVZv7yGV3vOOi74uJsy6NsmUPV8QVvqPL0KHExluImBwPrpvM2bOgdl+3ixOMFxS/riclhGzb5WeE058bBiG282bMGNWqLlus9uHPNE/teMhCbZuvvUk/0VQEdlq6fcZDWY3FgheIAs3a/Jd8Qnxl38oAOxLqeb3TaI3+idN/fFvz/319m9g+b2b+Wp9P/HTP7j35Let/PlVEaer+74QBMrRknIPP9XkewCnvpXUryCVYllsRm17inK4imOQ4+zN+G25VitN3HrWbonRGz1knwvGUc6dlhm9kZP77c9Kxdg7h0vMQnueIij3g24ILOtN8LuXpsubsYusgwM8qeQkUV5wnqKD/sw8WySIBAd9aFufFCOtM2yjleAj7tpO6KnaRV/sxWu1xVSmfFErnehHI5wWsaUlwoW7677FkoJSNe/LxhFvufbJOai3LTn74FtFtd6FxyoAQfP6wyeRDD0nilYxtMXzCqR7H3CqPsBRM5Zsi9FCmv3AQtZhDXLEd9V808QrlJifeqc+Q33mWD91BiEKq4WHI2texmsl/L556xSNerbvHIaKatOqqczkMQ5SPfQ1R7JZJ8Sdp1mhddMvMZCfoBLTPPY6tTJ8R7bjhzy3vabGV41elXX9rDsy7rchsd2Nu4yFMaCQ1lZAl3wfzjt4orbqN2uIufqk6OwtBxQO4rvsm4v4Srqm3ddD5vcSx/147oGai6ui/sGvnwuncmJvatbavOG8yBnOHCP4EVWfOvsNeYWjgpad3YRgAZzW8WK1TcY1xcRbmTb6KzLEAwQH2ajiEVY03sV1VhcLHVitBZgiWOqh7p9r2NfkkfoIFa0b2Pq/jbtlyW74qEi16ti83bjtg1R7DuwDYpq4HHuMPjLuSVA7a1HHv3JGfJkT3MECwzz/3NKld41DLNzoas9LnPuEcaMbm2kiMdbnxpCLlo4r7GXRbvlyTODyxPnVfVTRfbuPCAgcfWl3dJlucC8OYbf76BnizjEf49AIzX4bCh7jo9cnIE77ve1PvNJE+PsilucB8/9GX7y2F+T9c/A+C/4+7/spn9Z/L+P/G1if0ArowNAupKB7kfRDfiymPHfdiTGPz4rttS/Ih+R7gv+iO3M0i/MG7JZZjnvcqa1Ic6vrIN/KrCbVyRKvaynjoVVrpPb0g6jENf/u44aOhDQz9SI0n57OcdEYY+o2pIYV/sqFoMMs6kXoESTZVm46lT9wGvlUAHZNdB3/Ua/Zwj7IzrFUFnyEvXkfrh6icrPnc2noPI416qSdwfs4fUZ2N2GO4uGaT0LKvIPYObH9+bCKcr40xHe5fbaTurf4dLyyFX96ppWNbv7kyccf2G6EX/LAP3dGk5HN00/OlCSddGuidqTNqiN3jvEXeOudolJuLOzsnXX4ovL7DEjxZzfnGcG1VGY7/FOsH9C2W8wmfGvQum2P0qjV8Sl1ykpuDv0oEesPqBuifU+BHxin36UAKkC7SuhJ1pqX4XJP+gooxB26nlBZ8wy89nO5rp+vzVD6P6Bwbw7vCX2F9Y2RsnX3HkTbrHYEpD3rp4S1ydvBn4KxjvztekyKOD8+/yd6/WF3D/bMdjgmnade+DJGzqceKi7sfCwONXcSceD52hWN7XlvZ4Hew1ds+9WD3Veb5UWuXqeyDVRb50stPOVc3x7j2b1G6OHVYHpMMtVDiCE3e6glYTeeBH95BFH2B4Wxw8/kNe/g2fb5f8787v/x4A/+a3JPZdD/9QlKiK1ud65z0ujR3HDGuNJSTswEi/+Z6BBgkaLrOBRTwfFJyCnc6OaryaeTzzgyMPJ1md8jXsnY72Io1daHPtaH8wsBsVlydREdguxAopE46I2sj6XpkghHlfBxRcdIkANWiRhqQzzRVNnlX2NO6xEtiDoTAOSXGsrNqL7MqPhl794bJ/n+rV1/1MrF/kRZq930bjjXTkuVaBcnPYrecyx7PcHgyOPZpUGzZL2fulmP0eiMrtjVG8/oQdvXJhEtfh4cRSq1JSFzKPy7zk2rBJfqoAEStnbGNFRmEJzj42WWnZk3BYx/LkUTMsvGP7Y3aAILNZR1yunGVKecKVZ25dFmscfP9M3/esc+RxjzoQzSheMv2EDdcSEzk8AKTe6VQDNBbKrlO3PPea9R4FHseceeI7ckb+JL9fcx34W0lt7+U8qdDmjakG9OFG/eclZxgyrnXbIHaw/oxcKD5/hKeaD8q5I/ebuOfqUllSsL9XTGYaJ8/1yvz1upy0e6vzGXniseLseM8mu2din+EB4ofu0AyJmV5wFfE37HXodJspk7jNN2dcHx1ajWqH3Mk3U8XIbIVVTK4TgidXyTlCl/wp35RtXvDNBfc5OBVMLZNGc620G2OlYlA35TAZAJnYUgeZJ5azYAxdv4kT7eqXK5jetinc4emsVT8zbuK+ylEeYK61bp94HA8XgHZPLHzG9AgB8mTd9QS7cXecESm65HePybglPBBxqaOBsy+rKkefuOhp5yU235nHhSdWIvEqG12x3SzrvTUPxATf5BsMbpJX6JTOe+hhR1n/qNfXOHLI9dfM7O/I/Z+6+5/+wrj/DQD/ipn99xBF9B//FkW+63H5cKDefudZNeSoY9dphAK6/I0th2CvLioHolXn+fjLIDVLKcTlp9y+HXk4QVenpocLC2VTR1FHdbwbeBSAKqbaGff44bQFXQYStZXjLi6GilarFfEnxQgbDabTZ4AvTcvjCGUhFZVjdsi1I+5BgpaueZeVa7c+irrSwqHn7AnYyK+QU9rGbuzaL4Nm3YmjfVei2fMZiU1AM0lXSMHblfE6e5mEVDrkEcIlF2P2tFxcxI50ZVzZxsIFMCoZ1TOJS7mG6WYXR98nZXOwc+qR3TY9Yrh7B7Rru4Dsp+MdG4ZHEbllXEZufVVOf2rgqHHTGGukJTpl2j3o5CoS8IaNJwzAmxCo5NVQedTBIuU4ptsg/DgyGVp+kXCX37OOtNfZzjdz7B1nc/WR/S/yyxK0eE1CpLXrKOcQtnPwybh7xKU7TA2MGTfD/tJVBL2kSMGeZ9QmVsBMvsqzIxZexZsV4mfhjLo/2sLR1KN9y7vHTJ75iRsnlqtcm3FH2JNvNsS99h7L2ePyz8JLNjnilY53p0KWeMENjUtso2X7njp56RT9czlAgjhxSavjDs6kHOp2xIXoOE4oTSyfp7SgAK/qjpCdSQZd+Iau5qLVhedO2yjmdCFY54E6Um69WiBd9Aq/7uM6j3Q/sA0ddcg9OWOVba6ujCz7ZcAuvtdXUFDvQ4w2xMRU9kvueEAnoxilOM9duLh1DBc+x+fEdm2jt3JS6Tp6XurRK76pdBKPT7haZY32Hnizjfcdlb4Hd4Ld9ZepcZCF1pE6pF3pFhj6CqbWi6FZYDlAq7oQz97g2DXp2Ic/9bH8APyJeCVOcAbrXPMACuuDB/LVPAcPWD0X20ie9H1sf59ef9fd/8arh2b2twH89ZtHfwLgnwDw33T3/6WZ/ZMA/scA/ubXKvIdV8y0Uy8LpGzvx30jil7WYQVL+Mc1vootssGlZ38hOcGpjwiwBkvZ2VC+uFwvdKzZJmdDGNm8rM6M/CmWcir1yPcklyRkmQktMj7IkhugzW3oVHKAS17rZK+yRRcUOyKlogL5jY6XsOZwumc4pGDypyH3cM0yteONSxYLj6SlZTBIbNZFvvOGn1kBznp7jTuo0WbYAva7uCizDlKbIeL55gEHXDE8wuogoxpIGe/U+SbumOHwiqODQFaFalMA+JrlEVd05KEXxSUixw55dcTyEdYgpCIkOvWNe985v8p4MjHQRxC3aVtu62QqV/JR5ZkN2oRMOVLo2pMzqRk2+3wR3uUwEGvS7GKZ76JhOYyN46Bd901cmkPKkNPw9g0+8NL2BmgIjtUqMfNOkC88zs7oKzwenDEvvoi6qpjGPbF74MiNHBE/OOKUe2ST8s/j70eTu8nPl+S46HjLpy/iOjM/ECYCWVZL8qRTQV21HLbx1lmy3+Xpk9do9NSRjh2N3XYk1Him6Sg+RX4sqyqNKkG6AXaMgzPKFZ24r/k5cTLlbLdjBdO76k4QV00l4XuMJcZpi3nlhSG/VPKbE39AY441dpI39P6i6k3e7VWgu3iMyzpYbU28BojzeQ+5n7jful44wxvneiClmvTBSSg8VgS2xu3iEJSctlHEWIdOPek2BzE14BG8L87wXfUssHyXrbg/0GHFPZGeaGzpXWLNGa22ui+ePMDJODamDqsDPNrt3JLww10OHA3wd5u8+8uBlpn9TwD81/P2fwHgf/Qtsr7PHrPkd/ZFBouI/7dLfYp2YB2XAe5O4kLU9cuJhDJTmn2b2S8jYZ5y0emef0sOcYFpnOlKFocciau6lYi7tI64I22cOvvVNrQbAPN0tHIfadz+rVaaJKHPstzi/V2SluoMnq7ngMvsHeTkp8qDz7xBy93aVrfMoHm2o72qXMz6RM6XuC1X6uU12wFlmf9+oacfs/Y+YqtOENuU+dSMFG+0saTmU8f63Tq98BQzIT6xlhTmWV2rPGg07x/rq8182RlX5Kjtdpbfw+KAErgMYjzJjaFTjqY9noEdKBJqkwt8Y+ZOyMo5A+lpq3A7fCCOuT8HT32Efw7YIK6AzveI0f20V74ou9xQOBOtdoTlAoVXXJ5tthHl94b3ktn5dyFNn3sDRhl0fg18bzAHaSy7fi0AG8LIb84uvzyO/QtX5XU0nvyBnf8nBq57gQN/s5niC86Q4o76QpXP191pu76J7xruTJc6+wvZLs1DTKZYN9LyGz0w/6qcgZk3eg7TXeJ6v3crBxWXtr9nkrR/FZsa7sT9VEqP31ePipJ7plUfchM0saubxG65c0AoxhxyfOqYkSfu+wwrKgCjynVVlkzc86kPHU3wWTRuHmDUs+xFZwGPimv9NA7GqpElH7roSLzqe7FI4caoNyD/iFzVijpJ2WtYDjRqNUlWYhj35JuJ+zpAkIGk66CjK7tibBwk1Ji2qkI5NvKQJTwzwZMnkHHyb5qVPEA78ojXPrJe8zMxloOwgfvJN258dUvoxLTWoVNNwPkeMunpQNsAfbgTvF01HSjOqDEolDPEPf4Hvzh/+DWfb7z+TQD/eH7/TwH4N74lse/nyoisEDKz4wCGWxkD5r3nrF5Pso3xfM/IeMZbRzrGdPInrYUMpuFZ/xNBOFF4rsAMJDRW9Bv9VUfcPD/04YxUTWbqM0e5b150Hv0Wu7jOAPaBbW6IqPLl+dM6Zj3ji3t/r7RErpkYEXEaf9jDJB20oWpZX55X/lwiqCEzTJ/9Oss59bKyjboTRDpxihTz46VjxCu4CkBePXgjAC9DuHE+cRuX4blpl3Yr26WEWKFL977KD21BotPBloFEVPyb6S7LY3HJ0QDUHbNcctSeKbdsBfQJW8OulM48Rh1iXJ6qacvrPk6KQg5i2em36kyZuF2Z5JFFq3Ul5EjlkEHmAmeLewb01LHCJlm9GfCe/m59AmI8azfCiEtvIkO6i6asha5XHTebmsTlc5YREAPCiusxCPuEBccTwCPSpr3d8iSzyFO5I1IPE6L2OFGNOj9sPqeOLEu+D2cdOpuE+7WXdfWBltooOhOMLiyoSON7cYZgFleOzNG+REz3gI3CVqanbpGCryd2R1uYabcCck84lfycXDUW2Bdgx+FPqusFyy/YNk00XUInHg+7EjBG+WT+M+44Cp+NqbjhfNZyDJZu7a1jlZniYnGGpEU7172kXTpKWsMWk2+aQ2zaLW00X/SeGHtid+rY2yETs8xgy9JNtk8bnNYMDO13JsaXJZiqfDpGWcT2I25zlYPuk8VNtN2zy6qQ2nnKYepUaecz4iT7XFWm3N8qK0NqtsJUEo3ldoh2ZXys2Ivty2OShLgPcRsULmae1/E8sK7xuVcFJW7eL60bZdHmgYcBnwzYy4G9Mk+JqadedqxKmWKqiUulTnpl8zblgdz+kIa7csbGJ1vYMjDSwzrKTV9sg6GTgRN2q1Yfc/BpvQ952qYHf3Wab+oc/KiI9ANe30+9/yqA/4GZvQH4CwB/61sS+76HfxwIqy4sAAo0AGKy1LxLXMywJ2EqqWtsEriEVZ73I+5FDjruWSfcXse91dmPHw6dR35OcrrTCW2yi443ZNx2fVG7HTCfBtSxk5aLM9A5hccg5rV9zU3yr8kfangKrGckbm8OuBK3z+8K3kVEHed0e6B5FPQ7KgkxHnDQ40DPRFeW42GkdSWJtnvry4HhrLOXWnbJ36urTp2S8OrCckn3sEUQud/ocZV72tEWG1rHHZPKUqjLzrD6eaFjhr/a9bWOdzqz/DYHopRLYquymDqWqx/zABKo/t5hdRWtB7g9u9qrdBSTK59Hh29d7CPyKh2m3Wnyvm0z07Aj7pxN9W8m6BqAQYr+uB+DDLlXoCi0OnD9xMGRNh/IcrYfgU7c1+su7Qtq3uHvi7AJh+02eIfVGvfm+ZCtdqt7H3GRMvn8LE2TDxxYfhhQCudqqwP3z3Y2Rt0QW8m96Bz3ouEJDTdyf13t/IgzDtxX/qn8Wb0H71zRugwGbuSMVT6p45ewJ6Z+CetozosxZkf89plNXlMsgGLdL8DUU7X66qgJxjvcv/BAcWH+Jvd24tfJN1qZ73A/v28/1wHv5GLInScSd0O2cX/F2PHi6xvO6DkKS9zXuBhcVIeRYMpTt/sIvo+B2BZzeIfL/PU7PSNPP/KqGXH0e1zu/r8H8I/8rtL7rna2Y+l8tAUA019rBruNK6SG+6iN8QyvYRTIhLTq8ZGgye937mcXLlEdzw9u7s+4rzKE4/eRdy/CuLhBHIm5HxVbZR7uP1du9Hubjx8kltslrob9/7H3r7G2bVtaGPa1Mdfe59StW4BQFQYKMAQbQixkJ6ogW4oULFWME8sicYSC85AsJ/KfyD9QjB0b4hApxlZi+aVEsitRYpmEOLESDMgWiJKT+EdwonIkbIjjCMdAGcLjGup17z3n7DV7y4/eHl9rvY+51t773LvWucx+7zp7jjF66+3Re/9af7TRh3L2njrz8JwN9a0haS+Y5TmzK8Hz/JfeOwDgQ1y3a8Cmz1D5bX/0wC+pejC/1o5CzGiPdWTH/mIp09moHeQmqB89l5a1Oywk37opoTmo87zKTib5KuoqX4REmM3z9CstMk1fSDtDRl+/o0JhqUrik23S8jwcjkbT8lpTV7Hdo3wYvpjvWSONhXZrcxGW4jqR7l3GCBv00xQlrwEPj/GJotSQFpLdbeMyhpPWzJvX9f2zeehK1Sf7k8Z9Lounde+ddoO1TXExeesjS+6H0QlrectOmJenGisUa9vhzDvavLdgnea9J1NWb70H6jvoPyofl7GovvNVHfg7xm7049BDpVDNnTxBy49PMFULxxTCAunoUcqsmWkVuidFU9eNqrV99QkhA2UZmLvU9c2as7DVyZeRpJre9VgnShsZFxWl0O4mbdum0sJwdPOrmKZgXSBs1FNM1rDtsqXoGqWTEQ9DPTS7qldo/bYC5ZCMkHP1N4Gp3d9QVEDeN5nIWV1N39htFJTJk/ONcEEvSHNyhCifI1mIb9Mv8dj7R4ZBwmwFqT4y8XkQbRogsD9arkWkQO38oko77TKQEzzbMXM7FNy/p+9GerGJWYD5oD+gOoQA6fp7WUxfYs7peXOAgcmOg5uWtl3gwAoAfaIWtAPlJfMiM+r957T0ZRWg09K/stzboP0J7xiLbJyOeA4H2UWmZUjRylfE1tgi017GIGen0/P29Eyb8kyk+HF2sGUmmnkbFQADUHVwTRAlZlklqmVAFUfKa+Y9S2qEexWrA/byok5ZyRu0XQKBJt9mm3RyYt2uTIMh0t+VYFt4CKP9pkbFdX9uG5p2SZZJZCG/5F1yXKu+goFLyEJhgIvTS1o1ScIWhW92InaW7MizP+UAlQcQ83RFDy1Mp+sANd8PyEGATyqFZZC0Q8q47qLlqi2ddycsf9J+SGqLxlsMKx0+cJoxx/zA7h3iM1w8e+bFsb85owWWZ51vx9/dhK6kzTPt9ztfuubJZZG527jrQGldZMnB+G5XpuZdr5fMYZubM49T2ywTmej0N2hhC2kK1NAVvyaZUTG1Py2l7mxIYHXbXntsV5PxjO8uosEnhx0Xvad6JoEuE4SbmEpsEqn5SP9S210TktmxjPG4YmiZtBS+1Q9Ik0koV8fmg/0ALRY6BY9S+mKj7w5N7ByoOF99gZAuTq/U6WpkQn3phne1HGvdpfZw8ovJcZGcOHkZkdewvYTLt99Oo8iFuYPuJV+JvDVUlXfOXmniTvEhf68ovVwoozuVDq7C/9LgOJFhXnJnZZpelv8m1OUdDseaXJ2t5UiTiWm2uHRDhh0OxiCu0epACfWLrLq53pblwu4bXIJ3/Gd2cKKN0JIYfU4hxepl2vFEOLsX3KMu2WkI5WMD14G0x2pHlnJW9bRVOVmy0/ZKabY5a4IzK7c5pdcq1sbg9xV5sEV1IzXx+wIZUmh2DbazUvg62dZv4LD85dri3q/BVDZ8kphtsK5UZtZLFCUB7mS9fFfCapc/U3U55sDpULerJK0krducbXPQ5wI4lCR33TQYHeW9EW2hoRrvzOUE5pjlXzdhSOSk5vsAPMmavNwJHkkUA4ZwdPGbHKrMtiP9KHpRXFQxRHHRgYFyQHixjWDMo/at//B7I/5dNA5hOjZy+OArP1CdTp5PHz8Po3oqKWG5r6JL4Eu8A4TWli2sXRhEBdmI1U57JWxYMNUboXVuHQSPRru8v8W0DodCNCfqsc9gH9IiwSsqGKZeiDdDeJ/XdKgrhTF+OF/NvsE+0GXsfoR9ZQgQeavP2NFW1RxzSLns7lv9lmKcdGu8ll/rJEn9QA+XmcuERLOZTaP6pmiXzIcbimcVtXNIypn/VYfSB2tZ2vnQmCTC0U7weGmvVq5QnnLwihg2LqSJ33k/Px2gsHeX3PjWprxaKqamXTzvYRO2Q8RsVRVin+HXakZIX5Tvq3ne5JuTB94NKz4D1WfM34dFcqi9Z0oygHEwP7ESu0yuv/kbriNeSDug4SPYD6TupbNFuYH7krrOstz/jAg/hV370fuxC0bNub6rpuTHyQ+wDC3k8jWnlwpl/LLTC4Yy6uZXu+aQA6EnbXarpxdezslzhX+K4lm0PlhX+o0z2g1QLmI2BxPOv58adiL+Uk7JMAvrtllstaEtoSX+SIF8GQxtAqtP1kkJYyFvv/LSSq/9uqiXJ2su2lY+QSD0exFYy7U02oyzr3m1qVZXItd62AJye94Ea9fkOFv9nQ2Y4yhnKm6Z0J3QxmCG7CFSK2J32mMSa7HbIXnK11hs1dq+rLT8vNcHjwuXGH6pz8v7YnQ91F3wnHBO57WGpYQMUu1RnimvNHZad6z+u07K3EkqxMJRZeGbK6ijThR9tdhCZdI2SoMJo6XTvOZ1tSzLHKu2H+oAFyxHxQPFErq49P39Zb17huXeQZcPICIcQV+cC9oTvjc38Xdl+aOGZdCW1TFONup4Few7w83q2e5AFdqKg9DmIzeThzO+SoSquqVN/Rrffh31l3JtU6Nd61Nblhu432Q+fUfMfFHBsq5vF3jjX/jO4ieYlJ6dYbebaBS5dv6HC14xWEjPrn/B/Y0MFX9T/zFQ0exGf6v+ZtZe8T8bf9pxv5aVkyXmF+9gh8+qp9+WBS/470wVU1sUQxs7+KSoYjeINvsp435MEnkiFWXngpr7BT9zx/mJJPCxbYT4sq/iJJt7ry7pR/y9ovRyE7MIM6A/NA/kTjt+i4VkECKB/Hw5Yrle7/7EgUZQ+GqvLF3LL886343D7WXI5rkQbdlm57Lp3uJgN/r2kJZtKNGtRuoyh6HDrTGK0XXNm3UkKPF72srhug798lp2cililWk3mGA+t0JQ8plUu3b9livPK/HM/8RepGoqFbrC90TGcPrULgAJJxIH+uoqbjQ5swF/9HTVIe8K/bGMXeZl8t601BDoTD+lycUwh6Ohz3QExkdRnEKZ4Kg7UXMqipiM9I6iyIEGtxPfkfXj8kUGDlzjpMaZnSdWs9zDZHTa+bwGwUgcJMK0gxz3AIfdMC3fmaEtV3goStqmhzL6wCX/Do+xprx8PLPrB/jAxu2oxV5S5HrPdAtrNOtYrNEKHSGPoesCmve9Ba+UGj9qGJ/rIID00SxjDtO3dtvG07cx9UTvUx/j/zSZi37eZoHyuRbOt4RQun4Usrn4qqCVpnsMzWveHS3qvWjBO12aPrtrD/tO2hhJ7ielBf86rf+2/npGa7hVFtyaHtvFg2i8e9q4bjY4i6LS9qxHXLFtdn7G88+J2GroU3+DahtfGJrPJeyaqJSMJf6lhcwo0xFqzBNejy6T89dy7ZjjudcJQ44lJe5M5WszYeXqbqI/mifr+mdPmAdonyAnU16hB0vmNo+8yDMR/JMq1DGKCMqTLphPUTwY7kdIoY75h/QhotU/FT9AeQUjrhmUPFrCrV92HEG7yPf0HU8v944ZUMCbV124E5TGjmzwMjKfh4oI0fLgcusMiGnZsAggs8d8WAL9GzJK5uc8wafTNv2KjJLlqevlYNP04+tum3lt//NjdXHCd2CxVaElmRwlI2ZaS8nFxMFHJIEzDCWVT1SEP/PQvsybQkirP8sfMvuzxqeXRTJLK5fD5jhvdX5OS3VPbcFDdrxstpA2/ZxP5Zv2C9MYbfAK/Ygv1wE5n0PqZIH59HaU1PyMQy+ILzottbf4z6qfl3UI4jMY8+Hkyx9/FpFcQEHlmxMy5ytGK1ZLYkfeVyfvjqjoY/I8WGZB5Rsrk/ZvlZFDNWlQIvaZgrCrrbTSipDL6HLUQCg/Fnk6x2EHRAtgO13OVwDV/DYQMCe9IjP0SHXJy0csAzNEiR1ChhWRvq4D0b1XmipHX516CPzj9aX/Un3ndmYahttd9QOMT5TiBByp/NHxCrVfAelvOC9ShgYp275xSss3CO+Xsna436639t7SykZGwuP2MK222mbBAuIT/of9AKdiG+LrMkrixoL7rZxqWNOk8E0pAyKMD9P6hKP6jDRo8U2sryD4CDmG7DYSeVnm6gdSlD1fI1UU21Tcnyk+3yFYfEyU14jXxQryA9EWnFbqpqCA9BPSD2kLAQ45cBHF0DrYdwydbcFxMo3B71Blu8lOU+0668DX8kv75eatGdp3EbUJFPUB1x1VjvQ3zQ+A/UDzGUJhkIG/3sZ4J2zqdMgMM7wU3Jd4LzuP5U8/MK/rCY/OJ/okpPGlQ7ZMRj+gK0IdqazXnNwPfMjfa0ovZGdF3QrIwwViUYOwMoCDnueDShtjeGLVkwjC0WJQFgeShQ/R9rI878bhaJN5AcFe8O4lctA12WZZAGP5hfI6gRddQgKqENtr/5jPcEBBtU2RozmxqBNd8/oswu200Erl05MLO1Jxha5hRcTHr5sF8vciI7KJguy6sz0QK5StaZN8ySudcHo2Nk3VYeXF6u2us8ZJNgB8suRTtLp51mVyFR3nebzCeUtsOrXPoSZTtFfboZF0VPnisZefaBp+LFYx/P4aspI6nHSc6ZPjA6gaQEJhOLbzVMZlEULIsirRdnNQyItYeInvaJUO5jtb9t4ijyh8MBKSehikEo8pG+g9gSlKftTUB0EllHHTiUUU/M7pjSZ5O3WwbSBZdpI4rz9gPbTJ0XCymwtATMbQ/A1avjMsiLylc+xkbvreoI0JIlc/+4FOu5GxY/fCf6GlxYJFRs0uNppct/h6N6Znq7/peFxlLKecixo+UFmxgwrzESctsYW+VfeyAe+WfJco9CM+qrJg/bzfi+58yUd4uczxDI8ltCjPmP8OniMUbhPK2PmUiRdfS33V4EzGXdKuItX1lT6Z0Hf3U6aG+/T8YD+w4bP4m6DMcO8asjefDp+6OHY0rI1JWPgBwuGNH6g4TbQyMRuG3YmphvjUp65BnTzzfTQlWpex2pM/5RI2lfQZfNgIT1IOOh4/of/pvvNiSWFHfn7g3ytKL3P4h6JWr/dgQqwAFlFAYl0kss9kTVlgIUh5T71Mb7GjXQP5fhIBavMTNW1AaBuWIJgfCu0AXJB18u8yFad14ry6jLkiRmAodKHEyxwO842y+jUpVAb0UPhKmr9UHpPFEE7j2Vkq3yXqh4Yo1yYV5EzcOYvDKrUKtluKAw8ok2bvPAbYStLkmx/cTodBpCmW10HUnwWaKT3rjtaeuQzzWRyDwgLOe9LuScK1uM1dFrKaD25kZxyUAlJPeL17VsEMl8i80T2PHW010JA81IDlAiROllKdL0cr/Juk5DQV4aS98DSHlmdS+FicPdnKtYl2YX1BYRAkviJ5hepBE9ZZuUfYgvlqGJ3lWt5vIBl91Tl1QB59rCMmg7Opz3Z70WtM0PzYZF9BTf3oRLEm4zxcZA4gBhSH8vsNrqeHAsHsMHO7zB+1mmftUAeAQ+dHgDsuesOKQ4YYe6KVU0NC4BmHz4YPOTI7dB76cSCxKyCl027xkH4Hpi4qJIQ3DOoyB5+xltHtFhi7E6c37o1QJTTc+/aRdkiH1egl0CAU6t+U6/oxp0VG7nxcjxvaroSa7QqGW1uqkzQKtS79F9HXo++7HqQvNL85GYaPfxOPY8cqPtVjLZSwHd1WSrcIs+OOVj9Q/USVWUv5CHxWJMbypCYjLjT7mZX1NJbbHdn4AZLdBRGZ0QIXM7Y188hzOPop7cab7qVO2iKClBBIPW9OVP2z6hIn40+mVGrh5g8CHPKIYQfLJ98RHwKP93iNk0QkkdWmYW5OeHLRTPozop3NeCReCzDGnGg94BGP8F1u728j/IAGtgPpVdjf6OJvdrRJ57U6TMbXv1sGoIH1Vze9ilDGuIYNChS5SicetrPSCpejPqCgQY93QsrLK3/bUAwHTQfzDa3wX8/rfOk5r0Kw0+y0IKBnn0ILL1sZ2SEvdm26igFftQ2FLjb9QlYfxKTVK99WP16eh5KsYSqsjyRhlPtUCIu2n8RnY5seXsGZMmTFJC/XREvaeVkZWpJhb+kIqSxK2vkYUcpI+bXJCJskG8gqtQVf5Q1Sk/EQPzEwT7IqOtlvLSZN/bIehJmZYyM7LnZNWg4NcVtdBLG6J0CEHHq5AnfiUvTz9uUdv+hCowRVO0GM2gKHCebkKNv7RdSccw2DdH3nYELLJGXSSoSAiObpXZNPrqSyjKVcSdnm0fhJe2DgQQYOG80LJCdl4BAnxQXV6fM3fWadzNBGUeACDqk0mZGp4KPp57b/UMfhtvZ2tOwIhTQSuCJEJ7T6H7RhKxCeMZ9KG+HF1N63tPTMNzNp8bmWLbUtFdoNpi55S1+pdVbKSvWf5W86zucqhKDbLXagfAebsYyMWeoksECLPoz73J9Dp+izpFQLe5w+o8osB+onIktZqHml+p/Ya91gaj8BmrGtuAx/X5SwTIGQyz99ssN9EKYmbebV7m+2vipp4X3f5EozSMGVFIVxn0MyuTo2MheM8Xbk9tBFS5Yh7GqT+xmWzd9vTPkELKvpRHyd1rPM0Ebvr7kT5DIWWtTJXwhqDvMiFsqIAaFwcXQszz017PzABe4zJGnZkmS60Clo6SAPnXj/RuzIfLebLaodCgtTn0IeXpehQ/2+5uSj8OgIroOgnVN5dF/FE7qyIPIKUxmbv+ffa0ovsmOW4Cy5WolZ+UrXsYLHgIAYtyMyS4V4Jt16OLgjQo7vmS9fN9/Blz1vuZn4f563XZcJGDeW5/DlIncyFz6Stmkyd0sW8ymafppKsg6CWr6TMZ+ooHkdHx0WYtNtE0LRA2dU6s8AdwcizBewFftsBAuJVgH6imBKkoX2j3rm5KEIQivY6VBu5Y1VtxvgONVxEB1rHYDBlY3ay502uS1XzVuvuQFze9JcSbYKS3PNmpej03J4yEbhaDE7GSvtEnJIQDDf4ZrtoR+EIaFT6sEgwuEiLofzMwLSscqXk8VctUzafJ7dJTtihrTkSmvqyeGLmkfpK8yBeznraZBdn/guWqH9kDR3ybx6YzzcoYTxOyhNOaKNB04r9TPGZYenNBXN30/Qdh+yw1/2NwvWtcR4XKxIk7+dL8Lu+pn+5mlf1ZnQ7IdDGZvMGsqTnQsfTX17cvxsGJt82EdY3z47FGXRL2nV+ohwWT1vuW5iStV4gSDMSZUOiQ9yR941843nT+Px++T1Nql8YFrQnuE6Y/W8jrDByD8Klp7rh1X/6Bwzoqaerth29zd+IOrLZWK/zX7NOlIJKYTj9iqjR7tcw1S0mCauh9lK0mbdh/A7Mo7FcFsRLqdd4Z2AxNJYbGGzMZYv4Yrkj9iHVP9Ctgo+WmSKieO2fr8iu2bfA+lF7exbpPM3wAHYAeaEzYzuQl47x3QExiBaasMFezuwu0NgnG6dg8uSdr0U1e/v8hb99mX1Zyz/iQqntKzHllZbfv/jsE9Mp8kfDOUyab7BVdKUbo7C83Z7GbV22manwpdoK+8Tz7urJ2zkbqEyXb8p/94B7gYmOclbxeEr7hoBzabfOmDfy+hhg1rjLbtESSkUCpZcrf1VvoD1ZVKH20o4WpffFgb88LxDIzijzrNQ+986MMmQu/lb4pGAwgLhz5N22QmjSlTYmqmwPVwvctb2OI4YLnyt06B/78z5zpVNP9Z4npLlE5Z5j3VQFTucoz6bogzSIZ8nH3KoOgdWR9SN7QwqbGdvBK2orTQr086j+D80KdmqJKltzHUIogUkW6Fafxe86JmX+PPbtB0Xd3I9iak7ef2+n6y4k1g3/56YQPqzE0xdxTEs3+Cg2ju8jjfRhaMcjf5cqygZn9vGfUg15DxtsCkB4rmDL2YefOn9qEaoLOPG4KUNlDB7xt+mLsw4jc/SW/xGTCCVJhkblTzz0nTVO9SS34savuvoFLuuuyOEF82F52LkWeIxT5knIX3GtEk7aAg55lP4zpjtSKFNCMqkwfE4jRMHWbgcypOa9DVTn3xf8Oq4T9jTJy1efseniscebZH07jtq3sl4Yqr3rvyQtNtKROYHpu3vWPhK8J27iCYv6Ph7bR+oVsN5TZ/jtDNf56O5eP6aU/TpD/h7RenlQhn5Jd7NMfQ0Z8u89tevF6dlLywDq1M8A45ItDq4paW01KWe0LLMzo+ccXkWzCo966c7WtZJN7RdRtOnYPINJyJxae6nvUC2HXwsZQn9q+t9plV6pu3fnvocj2jryj7Nundyeh/dFOuDj7zefX0tf+12l0r+hW+6gmKafq27Y47DdWzqPhcvcseJG1Q6rW39g+q+yFVzuvvq7yTsFxGc7/QsvuLYB+xSCqi0IYWmU0oh519uePDukA8Aqg3qKulAHE0cciUtK8ODDRAfd77szCTspmBuqRL1p/I3j+73iRwf1OGhRDyQOArtmhcQ0nfmUZLb9Qu6Xgebtv3cVBarCC/zUAeaIDCWc15t12w+f9ZolrxA9X4b2qi3HbZ1fD/J2xf8l+P3z9q7nvBt17ew/EzmoPHWsJkccfQGx1+t3XGlPZURXcabM5GK9ztg6qMXF8NlbbS9m1U8J36EmxP3C/CtohSlNnK2vCyHh0Kuhe6wvBUVtGsH9cW46M/evynygxeq8qdQKROvyuIc2wY1L0ux25mq/mYQ7udjgYe3AxE2Wsr19sTPNGm5DTtWkn+pk7Jst/O9L4s66KHnTYZ8tbQ2BqW8glxcSP2k6VvBjCegCgFEcdg3QxL33QCrr4rICsUiv8uhwXfWwXwLkPiWxXZdaLvff23JIw4+5O81pZc5/MMSR0/kTyng6mmGfuSzldZv1ENAgk9cRLusbLzcJqM22shr4txKnfZWdm06K3/4uk08Ol/1exu9sp8tms27jC1SbVXCf+zfWNWX2Ym5eAU5w2WrEWl7KYJFXo/LVlY8bL1tLCQXFVdsw23CuJRK55QVvDN9bTBS79stj78fV89jYNzMX97d6nyaLGh5nd7gP/uNSV4d7lwVTPtVF5qhcDP3wbRdRgG9HF7dcoK7bGlBtIr5fpNi7sa8A4izO8qmK+9eIScUIrq+sH6kc5zH8WdZcVx88EmXI8bsgACDduCclvgeojgO3gmrx8nHAIGuU2bQWHeQHPOaYUZlvjx/CCCqGP5+FPHNWh0ksdnGu6PzF5dnxPsnoRP82gc01t99YEAY1k+afG4KvBHXEGnnMlpc23YYxWi10K7j0xlhR7XoPsQvrtmslrGtWp0E1tGjsGkW2/nmRVVrkbH9GwuDKzye8yWfWLC8PS/qaWRbsDxeMbO+w/085Cl+YQWydVjIXpntSsI9YdfwfdlV+mi41q/jMWCh4PnM+3qRmwxWfC/7EAo5Cxs61h0d952X67vBVFDfPwu/L7kRSrMPUW19UiaiDhrYVGyouoCe8S9vH+wzpeU+KKQQHY8j1G+my6G42i6NTxw5nE78JCjyIb7Xlr5pRn4wlp/5gaCIKlGyhSBOVoR9ZoUO9PGyDqEwRHFpJK67H2BanghOWziuaXlnDpjH0lfMnetUh84Q+8T5KU9+JmZkmLrbMS1FfoB81eF85idW3CaB/cTLJ8oCxNH5rzIpNqDx1Uwv+IFpEIjbf3XC39a25MgD1EH1oO1fztvYFnzjCVB3YDtaotfdw0WOZ4mVjs7+boixpyVySDrXTrjI3MY8lZZA2o7L9zL4HYlSD9ulaawKRX2yIzip/Q4GbKuxHwB0GWtZGxkV9Z4PAoKuT66aAyMHqXxjseR6xYONJJ0yng4CGt/1OhXwEMtpk+Sdg/b6bxfV28X5RDId1k7NY0PrK7rX0iHRBki0eop0Eu7IwsGSOeOoevvNduSBSTWshp680sy7YBfiG5MqX3lUIHfKtEzQ/Fq6HMb3SEGqXORgFRLhP9zj+hH328GT5k4kh7TUNsbvIXAIkJWrKfOXHdKiVi73yPj9JGgC+1gxNIzhwq2Djg0NJ6NlHNmx2EVN3MbUljcKwh73daXdyrTju2HV8+6wPFJEs+htH3nGd+dv4r5hfevvT+rn3bXhfnk7kCY4hQ8ZucN9SWzvs7r3DLQDpXa4TCB+2ZWvvsX5sFzdv9BGJWm4nsQIYOubph2nMrxYsCwKFj9X/kFqtJ4e6bjPtAseUxmHKEWN8WEllJl2kVj3ykcJ5xnL5z/T31A51HgFaLiZbEM/xz9omTixPTLao5ZbMJVoFzxu1znhUfjiXEIVn66QC3zz98ADTcgO9W9ZznLSZOSbQuYRC4gT5+v7aFMn+r3DsFeUBKbnB/69pvSy7/KRQ/IBdmwrxv2Wj50Y5+kjcEW+xMI0/VthgvmpLqLTE75FLqxjfGValgONlv1EC5uJxMB5xpdotZXPfuqWzDyy6Hz4XS5fPa3OsjmbrgfbBgbtLNczaV0/3dmKdnxSQeLbHnfWcYO8hG5ss4QyWnvz8pV5dgW8jpxy854CVGtZZ7Ii2xkP0/kzHKEOMfBPAhzkSDbjDZMvC5plaR/XFF5Td7Fmr+WZ1foEPs2xSNrCQci/6aJk15mrhzi6foYYkccPtmBaNny3ScgGrxOyqOiM6Qc3qb4bidhZAmgiE3LX5pjXk8dBMu5CizL/sCP8FQ8WunJEiW7XLKuEYDov4XJrx8qBl4Yd0zZ1UCTt3/dO3GBLyLmy6SGjLUo4lpcyKMMt7GNaWojjQVjJ7/21l+W69/LP+OoOU0n23X2aNAjJvMiIZ8io9d5Cy/3qJN9sgxn6WvJ+CF+0975O7DavdbkO27QJQRiu2KbiRpGnibjIDJoAaRG/6tt6Ai8MBYmX43Kx2F6HS5KmjiGBb2HGQtuiVpYNw6wYYbdFpca3V/HERdeBdlSVw+kzVqlP5pJX1SGwU8i3gPql8fUwyubSSV9ZHnhYtlj9V0zNBSB1yWM3aCR+S/2366f234PsyBFb/F3IwFTi75McwBe6qJZ1HZTPXa18R0yo4RxInOawzZS5TkKjwS22obqm8vxGLeOevtPpVRyXXzs1Ayxt32rmEyDfsSJazgvMwZbzYVofDEDymhYSAhgWvrrn4wJEGdSDuQy0ctHy8uXONh3oFj5dhxu0eS0b2vxfFULbpSx84mpzWuM8wjaPku1S5tHGzY6kA9smUhm4CGX2F1uJj5ZWVfJ2PtrjjjYOtMhkxeQL0kstABDUY5HduUrTr9umytRt4dex29Noj3mT5MIyaXW2Lo/rEn2S+RaNON7f73RaqcAveVTwgMJfu/Z85bs2yKPaU2bPq8SHZU7azjcsG3zMYjIPBblYnjiow1Q4trQIax/iR1/nscY+Ui206LtqXV+ul5n3AgtpUQ6xJFqbZez4HGSx0Fc1+qNzO7LmKDSTabnP4MPTgk/UZqLtSckbDKmv+33H+aP5jMRJomXxY2KH0kZdjiLjDlMbnwWfT/Xd5LWH2vLGX44hC63srolP6Lv1GfIkbezWhV9IWwVu7iYWjW/1N+RfTjDV81aZaZdFyHbeJ6IfCOm39zeRlcUl23i7Whu6tTp71iMZtPEJf+Ormty0aZzCZUU69TeyNO2K5VIwFkUuV08WOdg3+DUfyx98glaAxjd347Jue95DxHbP2GtU2zDu+zWHbYN+xx/XnzheAdm2pdBGA4dCxHg5LhqFovLNciRsXkLYZR6X78LErpm0I/vh4e9ZQR5K7tJ5qOODTe/CPyr7jLzmlsqfX+HdO9Hpmzjs1d+FnjasIetFvzZeeJVpfMTfK0ovGMpo3pC3rmn1tszOlX/YXwmoJ8fDE5zujJDX09GpbTWMlCMC+gnLi9z5rIvVr2VDt6UlmQDkN9y0ZkFV+VS/vhK8tUXop1X+oM06EMBWmqsjFanKMJ8A+bhmu2p1rJRXO63J4rtECsfSZsjFoEbnTilHF1QXNe/aTipfd3AZjlGTO7EZPiJNNDmRMccSxRanaUO7ud6t2qajPaE9ue8Pq9NMabTRLOGoO1rL4qdFet/rK3zTx2W/jHKkHlfRelVVyJ5HWKQ0fAHxlQyoddGk0QrqyqHY7tosdz22vvC1U7XcYU5HqJG37k5paa4jyuy08+lBZcQ7ZaHfiEGaEL/5eMQKb/+j1mu/lHY53zNxH+R7/gX0yNJBMtvMHFyQjWjlX/kZjzbd/I77XBaJkjuzq4wFQ0H+xoTrz2/S8nWXKbCJcYv067Tteuczdtfhb8g2XUaOXvF/ubtmWbLq7nx3/oaz3KD1D/HmpFIxbNesHEvPwrFM5FMcu5MF+RdNxAr94nr1C4r9JMplKhoKl3kL93WDu4tjKLTSrpfkvoq+/XdG28Mbk3tthAsfGsFvEPjUrY1hQdG9fVJeP4resZRXJzICoGM5ArM7X62XRGsoqZQnds2Yj09inG6w+kYzzEeMCLtPbPeM2amUfEZi7bD39ua9q0hGK5mfSbweBcsz3H/SC/kb5xP+Z4nwGFnf4vT+G4b7O5B7Pel7JZTxZQ7/6D3YPY47aVsB1Xw7dOYbAnAQLBTxdvJs360TzoIFyDh6otU4Ar46h5OjH2rZm3qU/W04C7gclpnbQlGJyxuIM7MV57Qhk7SbG6HqwLkP4TE74vISLPGORxXihPl1Ry8C7Y2/5dVyX/M3hAZNzk8WGWZZxCccUKOVBuS78DZJAUtoHNvXScUkzNlPUUOky5gi5YQlj6Iu6tvk1/O6o+AwG2E7gtyNObHYkQPCsWmzW56E5by0/gaKXeMfzbzeNuKYemsUYrSC2v+G2u6YmgOgkwaEaAHNtuX6ucyqxTa9HwwoLlp3qFL7SR+7bpoLZ3PCcwX0oIEMhykRbRTtEx6B2mJPmUiFI1eIuoOtZcVRzLYc69wGbBVUr/4GQqHlVU6A5NLpnL3dON/5ernbnjsrnf6liHKU6mAHC89OtuvhrVB5O5PxSxt2H1NO9TKU2lJ2wrnw4DNYskexzph6Q6XATNZko239Nw4iHME24UUb+U6MM+wmv7gbJ3S77/xNyLbg785n7PE4Fr6sAXpbWL5bqSttrZgdH1llPKGdvabSuiylTtxXNZm0LN4K4ZTVvRcjCP8iVCGlKpvxeaeMJ9De17U0Gy167nC/NLHAPln5eHmwPM1kjpuUKwbuEzcJYFvTnnk3bcJ9W/jEMcfqxCfxmHyGMG7kItNVByAy+6ApUE6LFMZnJD7brX7KYsd9CZkSf6cIffKb2DbUPi0tgkOuGLhAAmNn6u+QJaYqICObX9m+nPkTq0fRx3Heo05yUJpyHwAuuOKKA7koqKFP8h1hx/Q5zJf6o+YkbdqGvqFZaGeGg+rv1Sbqh1/19OLvmEXomgKzhfZAM/uvIhvO7AfwbzDkihoyL6jsHv5CvJiLMB9ZwyBhvPiPnyct80mZIq+yjHnPL0qIhaR+RX9p16h8S7mUxG3u/+t542OUgrMJa9RQ1w/rdZWxh5ZEwS2vpIIuB9cX415yjLwz1ML129HWFlb4CIWwkF0RTpJlyrpy51raDjK0raQllLHyrabc5AWH5wlnW31CyJUg7haIUFShAoKY+ZotRGoZgjYhaPXCdjNCX5E7BLjQjk/KQbQ+EIfTzlTDNOh0qtYPRIGL1YEPHhwXYuBV9JunTl0Etpp4BG0ePV1ps79R/XloiV37+388JRGx0x8tdObwfmG28bIPKC5QPMQq6fxfpXU5/Fhlt+EI2+T7E/kNnYPaEduVrymAhvpuhgS9b6qYROV48wuczNDG0j51zRv1t6n/kN1pUcsLJOBxZ6d1XEQ+83IKLTottQ/2GcQn9HGI8sfU3htaFdqy67LB/TMfIdafGRe7foWp4+mmrMpXVr4NjwstpxaGvmJ5N4RnpyA1ei6QImPnk4N9rwAycPMDvRYYjwP3Y9H4+bQF94tckqSN1n1KhP9RHZRGTKb0huZlS/xGWwSgMputYjJhGXzXsVcJY2oWJjFZvYjkAhTXEepBUSwjNEMB4zm3SZcxbOGYyrStzxPtRYA3h0c3CIUV2gm8ZNbJJ2lh10VGM2zi8fQJjvPZhxj3tdCK4f4F17QH5hQubMMyhq0mbQ9lnLvPGULpfcYjNhBy5vc2BdUP3D8w/d1JL3pcPnsi5R+EsX4rVtn89xO0flcbHy84nPrQZVKB7pi6M20q+GMlWt3QxiXpt9D6wKQ5cQHKS8S++Nf5bK9vpGUdRIoRUc6cVcxJrsx827IbuV8v8zCR9Aiy0sZi56ZypBsuzne2G6H7OoOThW8rLGy+hpY43zko1yAJycjR+d7K3vyrXFEuOt+eV4OHLM/34TAeWplhg7u8tLtTPP3Ku9CSs6pcz2jTjhDMKGK+f5NWm2z0r6UI7VNEJ+LQvl3ahX0OEZrIbdrCSVlsxypzqsxhKslfLW9OoHjFVrxNRSNUwwWm5UGHv7OQu3wxbjTb1HAYBx6nNdu5Dqa0T5SOGxa4ldRnE14/yEFNjstraNkcwPqOsvdfCVwEiBYVJ4nrCtb+x/jk1wELmv7mBI+zJqsskeh666sY95vonU+n5QiMrb8506/R6gke+6RUmPY5/ob5EqZ2d7P1r7ewnOuNcH9/lrPmfxc/UttJg5FCV/zN6WDByiunRW6we4Pl/nv1N7efb/GY7k+xxULvdx/t29NWaPeIgtpxznDxFix0O1LtuKRkX8I15xP+fPUDHAoY1zJxsoTjRUdLmok3ijG0fF5g9XO00+XYJWknoIWlO13gcu7yVVPlgtmkzUOn0mRHpSV9Kq0G3eQxcvFTHdO7v6G6RpU1js5ns7zapGirDF/Z9GIT4Ln7a4aMdsLXFq5lJ2pJtqVN3vYHtA9Xa/z57rlXIq/I6EDlj4YTWPn4x569PRSHt/uX5Cq0GiKRY7rBtz3rfJXzNL7MS+j5DDtoIw2i4zCuapudRwP89CYPgdvZRqMumn5eX1yol2PZ8yhCrc+RH3cs5VUWOLuhjY/LqKhDeFWSH+CxdoDbEr7pD719k3sKkTftRhcZEYOG3hYW9dRMpR7mqTmwQy87RUxZdB1kuU248cJbRrVb0pKdSIdYnVSysPp11YvbnNvYZfHQRuh0XBk+0m1Dzqg9VoWtT3L98Q5RlSm7KlVStBsNW+afUN9RO7BCQ/fY6bBrf99tmDzzQ9PToTqtWN/ksgLY/Rn1EZGBi1pd6ZQwdjI0l2pSFjKQzEM2Nk3meSkaRtZV1K2/o+O4WE5dpM5Y/sVcXBtZJNdpwRXDi/J+kudBpV1xvwFFbfZIDK2+qmBs+yv93P+on7Uuv6elvCyzdppmxlPaxi8mdhNATmxTTRFV228UmhYqWPhm/gXLNfuVF6ajPm8QkqNKYLFb2qbiMcua97PgmMMKXUcodp5aeIs282qZPKdPlCpO2DX7KE8ud+IPxyBrhJ22TKyovuI9X8PUKWJiX/dVXEfVr83GwWGPQ+fpkrlQRItZ6vztX9Nv8QOcx81ptHHiIZdLwvbd6JAbviM1AUiCRtHfw3UbRfsUP05+5i02VH93i+X3vD7x0bgGLNQaapEagiNOLc6IhzgCn2jn81xwK++TGe4j8tpkTUkO6kTFbqIm0+tOHJnwvn+vKb3YjtnhgG/Xscgdy8vW7Y7cjm7h0XVS5dferrz3FYNTMBE/pwEUh1MIyygF34Mvr4hEuz3omRds8rPMQaskNourSVuWQdRuH9SgpOXlYhS58UX5pckoKrVAtrn9d/qeaRs/QjnrrMqYCEijjboBZ3Vm+agcIdsAcyGyhPp4Js07bJt80Ql21PhexhIKZHJKq78SmuEOxuLi+eQuP5o4naWc8J12PLgCVOwDmdRowzZaZFQFjmNWgII/8BlwH3nDOVldTJNJ9JkMYzDBiy00P/jpSpmMsTLXaKOHRZtjWgf+yeYQf6VU5+A6bOkymyRWFjvieC/K7BabMJAyCHAZ57+8IpjlHnwtigf1Y45hoSYaO0U72mhLIePUk0/C4j4pCrOF2PuOHrKTtuHdQ4HiAYor5sJJditNvYx+fgg6J3nHUb9Nc/E6Eg9p4RVU0tdkOOhenIwpRZ33ShW7s0+pn6hpO/J6ODZ4tsTumCZbWR7D41jRYczzRjPdCB/5Dy5nZnasE9oKi52iHa3kcwHjAUgHu6W1rBBZ8nnxMch2iB1fp20+o1w3n7HzayUC3Hj4u32dtrSHjZ9T6/uJgWbXsA37eKqgjuXiJ7hK1IEAkMORgfBLrZ0cUXltfIHsvOq6piE0cIRrzH/SLriV7Ts6asby9r3GTfBisOE3+aosWwKD0uCJ5b6IKqSft5to6KZvtncpm9VyaPixYBGGJb+Aahsgw+YcKw7Z+ARvDMbH6WYYe24u8juuHibItG6L3BWiOiN/A8OMqZ8s/mbi2CDarH8R4OEYuA6BzAD41I31U8JF43Mcrq1jefoZlnnaiSIVwkeuvmp2GcWDDJvEahw84otwju2w+/1E3mjJOjKveH2RTOQzoPVVAVDeuuX5StNXYPL4nPSyoYzanKkPKt0x2G8A5gQIkJXqgJwW8lY09syn9E8ga/IJoKBQGs7bZOphG8GX8RybvGe0RKMtfKTbotOWZ80QRaYmo7a82gcfcYH6MW6h386S5V9k1FoXnBYdap3EC8Rboi5oKIIYqHS73UhKtGXHxttO45MvRddJmV4VET4iIOcYXGpJN2WT8D15kEOW1UvOdpMvEtNM+gYt66c3ZdqM5apOJ7QxlqRGOGxw5i64LmHZ5JAmWyX10XjjK4kqmd/blPFyvi6BiG2uhCF90LfSzuc8KDKZJenzWzau384iACFg2tNWKoeorapW58vvo0XZJuNRysoV3lwNdwtVOeYYh1aiMVdf+b2KDwllzIFC4swcrxEASJrdMSVCHVHhTUtGysva+JjTu3UpoPsf6r/JILAuQpW57DNM5SaH1KVcb8rSa8NVz9x9omxouwNkBjs/QDbWztNosxu0+m5+IMif8Dc73xS8Gu5HJsdyRU6sgJwoh20Iu5ttlhMynsLj5SoPXBI2vk1YVK2H6UpdhLnJV6t9ipPd4DG7QG/bRWSJZ5W+lrXSKt3fyCyoB2gF1mFVveMxtYHljJ4naKsUT+TtfZXocm4uDY8Fc6EP5DMY99M/+XgVULNFYnwWOFAmSK2cxHFQvp2GGpNYxvJcvBuF1hcofLFOUH0EX7Pv6qGWKH5rPr/cqJMXT4pynsRXOb1cKCOw7zzuSE+o2AEsmZbeunnO3qy/X9a9ZfPuhXcvdsd7o0Tz2UlLDrhj4U21ihMju96wbad1mbxDtwgKGiRptY2wPvbfTgvdG6fIzIVqua/d0TKtZ/cBWlNNm20Wx8gDgZ7CWZFMvazdz1C3x/Q3+U/GOQCWiZfSf5chw87RK0reKZPYuEXOaWXTZJXyFsdeW3GnlUYrPImR9hmCzTDIqyp3wuZfWpUpud14BfguGjlNISfpOik5H+NFB6EaD1+NrHmdD3/Y0/OC+BxI2hRf4zn3wPouh8OCxDeSsxz/yHTy5faaxSRfIfoDHtY0P1idu4zcx2lll+vE871nymZ5DtxKf3mvv8+65+39RDdZ2N9M8ylDbu2TZ5i6E+EJ3F/wuDXVJnwdMDvZE/6m6HAi1uIHNjJ2LPfOMNdJqISb/maPi3u+2eaW9tT1c9reODZszuskkXTmc6OjHwbZWuRauDZBAveFkcM7TOdLMnGf3eHxbgyhtbkCK5b7iaMVYxlzzmgTd/nay82dMsfFuuPO+kmj9QVvl6lj+SmtrrjoeLz4AaXfG0xN/K+4qApcrY3lIWfrN72E/MC0nYIPVlIuv/kBcV0CU9WuB9FW+3uN5YFNAxe3uw4cFq4I4pu2GXloidq1+wMPgyz2qDtlWQeZ9/1R/54+JL3cB6a7c9L6Fw7MezH9Be1Y6Up5I6+l0yp3/CYc03a+nUfHpJ08O/mA22UxMD6H9iRvt7PeoI1ZVZcpypFKVOwm9d4t2zTS5b22jZ0Vm+tdaiJC2SHKqm9JJJyg5e18c9ITVyy/sAKdL7KNh0L0XkLJ6nykDJ7KwCzK8j0Rp2WBfUJRKyXLSXfGJtQsqchcpxlJ61TntOTWbNQ5nf3AMnmx3xK2WRuVmm3qgNaHDaxj3lvHOhr1LTbhEVFclGVKSslCTQUxfNCSv9Ky1Yi2icANj69F/IOj8/2Hw/mCnLylHEAkz3zHLMv10JVuuXUwkjW7GSe+V6Jx6LxuDdongfPbMpR3tGs2q78D638lr8Yzp4k6k2Vs3HAxZeKyyoepQb83f13muO7+hcoj1Kg31ua/+hunbfd2vku7TFFo4pVPDGN3smUttpPZqphP6bYub8hIPmMFnfW6z0al5Sv3s7132lVfFGyLmwr4lmXBybhP0QnxtIaSs0yet9TvwrfS8m6W43w/pn41QUUdxn0xA6jptI+KEP9q0cJHTZDuB7oH4IgC3oWOYBR4+eNJ2ohaJwm3VchhmXbzDK94euo8D//TDDcMDFiua30W7Oa2AjROtLCHDJlPq/DOWy4oXmwBLcIRydfs/Q1FPChp7D5jow9H9h4kR9SZnNvz1aRYjfiAv1eUXiyUUaD2ja75HswWZAk1YgBst8SXtaNntLxtYlMaldEqyJlPoba0pWySb7fwyysfPZxj1a/d49EQh7RI9Tdq98KXcZvqEwqp//b3CeQZtNKeSey+UFFSVUi1Et19ByPlSCLNH4vNJh+t8pGdpX1AE8LObAXr+IfbBN8Ikfk9CFSgt8qofJL5csBAM7QDsk8aclcJW0POUKzUhZ31cYDaog0kfNBA8e7NpQRtmIDab8TYc8cIu85rjp2HYr7vYM9XWnqPyvjMeH3buYmXIM9o03GX8D3JDzjn+w65cygbvukwNUOj4vtex4QVe+eN28dx5ArqAX9fC/AV3Tzq2N8lSPsIycxHKnM4ojM6UFeT+ahjiB2Vb041j3UW+Ldqss1oyLjlW65R+B5IWrcYh7EczOiZKQfEpaGFzRgCoo4iqwRe0+P6WwEluRi7g5axZQzEceDY5KXMZULRVN/7jPq842TP620kdqh6Xl35dn/TsZt9RsdnbbSLHwDJMADqCfuoaGZAIR9hCzmhtT5a677iYHYNvshswpcVoE8aDBVulS2cRx0XXI7mQ6i/uh39eqgWW8XYhGzDPoP18+9uBanXUeBY4iK/Axt5QXVseOSHKPtnVlwmkYr9RTn/UiK1uYL7B71/RzL7wRnHoaXE46BJgpniosCjKoDLOa0gsB3I96G5rJ0fQNgm66DjMZd1mEEuAB6HLn2KaeNdrqAlXNSK5b0+PRTQUcbftXNGuVslUB3zPTwFLqr4XMUwV8Nv8gIaH7UvYF3V2pznHOQzjJYnceIn8nqdKGF9rddXmb4CIj4nvdxnCbo3WcfO6Q3Z2Foy3M7r10IPaJDtgwThvFvaxls22XW9Xsra6Ui04VhGZXtKhzpg2Mm8PO763LjuMvokdpv3Voe4aZuTkwtLue25TNBzo51RT3tuaJl3ebYa+nxg1MulVUR7QUlLQ9mMKJyUBjLux2+l/UCkDQDNMFFdYypeuslm/HCiXRlQRGOAV0GGi4QzWGjJadJgqUdIPUW7/1A04jebbnuEMuU/G7LFIW/qzbw6/RkGUvmUHSvJMDnn6854kZloRT080eXKyXuGJLG+rN+gAVLaI2QGnQyGFsqjSnz76Vsbu+IjUx99Fm71osJ9axtTrZu0y0Od5XTMUS5+8U26dt8l7wlfoPTtrYyBG6i2fobPKA9PIKbz3fqMs2vajYzHpz5Dl8L7wSZnnxLY2WZRwnG/6fBc2pZh8zsLLk2gDdRPU9Bmb2fbLH6OjLpzgWf+xn1i+gHdYvcON1ymEmbX+HRfUB43DGVM3YU314WiFO7qgoQ/0kanZXGKF+YApclEx9QVj48uM9Hyu13ZtmJ6tKF1H2UhiA33XcIa0l5GA6jvnqUcnhMYdsLj/Lu2jp3+hPW138oTPJcFzVZh9DwOn2TsPrXq/rrTjLT4sL/XlF5+YkbhhtU72k9/uSLaPCHNEpqWDU6zj3SEPBUli5FVJgY4+7GEi6DxRX0eAwnd04o/ZzaKeAG8jZfOHSzdjzkpybzaZk9b5Fd+THb2K2keoC2yTNvUPKqaVbOxW+rXZsI6V3OqmNURn9KCW4Js8q6ebB2wufzrM189d+cwr/e2KXx1H8oYFlf6XWjpunUHlHZjgN5DGTd6TVJ+V0fzjnIOlOuelGlZSPj7D7bD5aXpSivBx2mTaZknoj4Wol0n/t0Za4wgfFJ2iEBkwI+P58mOH8c8J2j04rVq4cu0scLtAqoD33wqttuVZw+S05dJfwAR0lIGF+oyeK3RxJBkAgDRpI2jnXmQFsZ02mpnPuL6gxPjQAkx4D+qY/uMSTnsgdtd8SFaab16I7+CVaRSpnMuYZAuW+tYDducLWMdY32HlI77kZcfMQ3r0Gi3WG6iVzut19rKyzppfMI5mV17fsamDZYvtumy9h/dWHTfQyWXOctSJ1LbWci4gEz8ZJyQhTYeVDv6AFoNrUQC93lQC+TEpPubZb3hpGtl03ZMzclebZ55L8uqusf72y15fx9spvKf6gd4eYg3VjzqIdo3S8H1JfOUxE6buOgyOX5VHcoEJ2yeeQ+itRqCHwjFC1XQed6nh4vnJIUnaWwn2hnV+e4XY26XMW/wbp7GYlzHcqrBubspiftebmK7800sr/4G4WvZN83IEikye1kV91mfe9olEfkbReSPisi/KyJ/UER+3seU97If8vYVwnA6AojkvWzB0en8ezvuyKrPkHBguQqAtTWxI0cd4jvfHag4H6E/liEOwSsgQzIiyw1cas89BbDLhtZ6Dsso2Fyf8F31Ezf2qi8JmeDb6gSA9KVQpvW8Ik1G+189kz+QoejLMhbDgQa0K+1eP/9tbU3yeuYlmUPnPsiRsGsI5HzFd4IsjC5GK5128lNv95s2F06G7O4yS+ggWVajc9oe7lh2V4yvnvDlUJUgKG1O2kCkyay1IG19rIxTrCY9JCTcRQvZKX2W+YD01Hl64BG26n3Pna3EJMqPc56OzN5/s6L7SuQhXoeodVCcr30SgGidr4cnhr4zd4TOuIweAjMP7Ji6HLAwE0i0henkuQY16gfuqN0WRntI4t+xyeuSu4xeTR8SyhgpsBwL7mXdND/gTxz3w2esZU1bYD2hK0Kera93nOTG3kcnPW/DyY6p2TdQ/dEJlkfXIh+StiBRukztmmXa8dnKJC7zxOKCx4wZkCoT6RvtpGG5bGTstEW/wtcNQ51wyWxlbfxN1qekfqwF4b7jduKIgNtDsOu4H7TzL75dWOqkCt39TfcvW3+D5BtYJow5m7xg3Gde7jOSTzMp/faQeBQ71mtuB8SvtUFo4uslJlXp9wSEg1EHCP3EbGfNlbSsduP6UzD+SjzO82W9vgQX69jc/BQ+gam2YZx0PyCYoYkZzlgncz7JqrZJORJDJCaVF/HFOG6/NSx9Tgz50I8a1tivC60/k7QktVTTz/1NXw5/hSm2iT/g7+PS/xLAf19Vfz2A3wfgt39MYS8zMesgSrfKoJQdd/RW8sa8wlWLIyD1f5X4WrNT1A88++PI63zyeW+YfL074n/Jqxs1jV2o48fSd77d8TKf3TWaXZV0dRUbrfIKdqE1Ap7U7mxz0r7Lsc+hAMvY+BZ9NK/VT3bayLOhFaaFtk3WjZEaXy46ThOcJU2KXb8259WdZaf1zNJHp5G/NqB1LKw2GMh6lc1zl2mETdqzVr4Ddr6EbQVU8bZ8ZJc3ynPnyneNStNtCo2ypTlL6XzXkkifDDeJSYrkvyUOn0tV5LtK5uy6rQ6eGdQWkeOJZhsAJIffqCu3ed/lNxk1N9MjlCb0mR2hLL5gHUzEC+2xU6lpG3g4xy5kpR3LLx/qoKmjWKNVvnbZqFP5ynA28JS31H9UF9VH6fsIvBLzHYyhDve3MdXreW3fZ3hcMJZF3fFVesaYaj+6jH13ql/f8hnKZTd15uUBX/TBkMDZwLSdflHOOZY/7QfO0jQOh7BXnk2/hvu1TjqnBbzBUkX1ke0Yy+O3Tfwb7C9l7/mu+F7fJ14xSDV9TMdFTqMtUHR/E3jbVkqkNyCA+hli8rJ5vE1S+hCV7RgfMqDKsdFPSuPVhS+H5Z37jCqzYjb1ufPZaM0WNZSe8dciUuLfscXyQhu/ps5HYHrFcoVMfxT1Y6fokm9iX8ZyoIWEIrDTRLMy3ObVZ/hOYOLvh3wm5buWpmk+/O/j0q8B8G/a7z8C4L/6MYW96I5ZG9ekAy44qZRX0jnwwBxGP5JW+zNHW0WsUoeTBuezrqv5L8vRHYJ6pTros5PVWm6n14GMaNLo+4R6RNv52n8UlQ/fZycaZpX1Gf+7hqkkYQkHOuFb7EjyToChsA2VKgfryHy93sO4bh4JWzHUF4F2tMqDN7eFohorZQw9QJDe7Aq406nNxCdyRTrST5vyU+WpFIuU41ST2Wi7uVgntHKGO7O+3B8ESpe6tL9w0o1PhqUw71ZutLnNhxGE8ug6CAoxNAfE2W6yDbkYNdzSy9JSVtakG5lDG2e1TyfpHZTbDIUYKrVFIMJsYgzo/YbsGuu9qjE57G27NCTj5R/WnacyusxKZVXaakcttvEXvOMa7X2OYjc6JtmM/LGuOZugTY5G2hMwk1P/L3UY/Vrz36E5cWh4zB1pjlM0jsoPTYK9Fr7cwWLXnjsc89X2b4pc8CL+1c01Z3sGbURIFxnP+RTf5Nf+vd2us+vhH/zezbU6v/KQ+DYZK6109Zs9uC9wbwKPXBda6bGcOutX6ZpXszgscBadbaHUB4vE+tPALmy7q2AFlPgC2vIybfM/1DwX2p2cAMbQMsHK9pm0PNcow6HgW2XMyahf228aW/CnELDhA/hu/1Sq7naBcLHxqaud9qSG1Ytk3oVWKq2Al3Lm96xli7ED0u7xSbd+PzAEoOerX3PbCOVVMrrj9TUwOBcY/cCQGf7OWJ4HR7kviE+1mPzsbzg0MsbEROuTQui06YUr6BUmX1x8oXfM/gSA32y/fwuAX/4xhb3cqYyGO24Ob7glJA2AHjkhUMkcJa8frnUIjxHrx4gc59hZ+A/vr/z8IEfnSyeKejCU6xAdpSmDeq0uE+nPA+AgJ5ljwN/yylZGc3xNRouUq4rXDzVxBWQivkK6HlRxaiPC+bygzibMRpIvDcgBwyM+r5X31jdlDQzEaV5QCK8xqJSypOk3wPZRiC+Dndim2C4bI1TyxCK1Z76DJaIYOGroQpQjU0TWHbATqTz+HUkLCkmbhdcwFOEQifo76zaHojEtMVr0/NSAk4/RH1r4iJddOp7Rc7le9+bUPWwuqlUVcRKaAnL4AGfWrJ/sNWPja51EXtiAzE72UgUu4quf6fC4iXMzg8l1UWCIAiPfGfF25G8oOF/0shwLQOEjZueD+Dit41gcGKK1HM91EcXQK0SPWCF1Ex8HwmmXkxZVIXQiGiD0XoHiArF3F5C09nS2P8nuqkp2/vCVU/HRiUj0g6aqdRfJ/GpK9WcA1SrBT8eRTbl5E4225q+0VluBqRU3/BvnUMxRzC1MJb79G1oR/neS9xTLJcvY+gyh8sj/dBliwtfqhvvJUz7jtr+RRpv1sPiBwA0r2z507pllJyThLLsFhjYNI6ccsrFNuSYlOZRRha6NScVg5qNLu3FM7VheT/WT4CvOF+Yz/HfHcgDHIdAr2cD6gCgMG9IjsL9Je1jfigHAlF8MR0S7b0qcjMZAeOwh3AcEV8GMDpJOazKC7YEV24TwyrDOww5dn6ClCAkQVnqa7+8qhmi2f6sjsb7OfsC7tyidOun6Ee6Xa5Mp39OV4ucylNGjAoA3gtkOwnZThgNquO/y+0ElZouir70zTWgZ9tD1REdrwWknKaOr150+boL1gyLyE3T9Y6r6Y34hIj8O4Bdv6H4HgL8XwD8nIv8DAH8AwBcfI8iLTcxy5cO9mTdQe74BxTimHSidJ76xwnkN6LbjB6XbWrNwhyzADDU+UhzxIqPsyyj3XG3XN2Sm5/TvaYjkIiPS0YKuN3x0Q3vyKlSRhd8hUH7WHMJSdjBGE9CyE+mqn5KM1lbI0OX9Nnao2NCW+l7DQ2JE5M9Dpmyj8awQtiFfa1e3wym01j31CZYxq4ydtpZy1iYv8DDBuZK5be0bWl3suNiKaQvxCo4LrTceG1RwhjVsZXN65qJ7DihW6ejHVsY5Qph8pnMbNGPooU+6kdHfRUuZETJqsfrGrntp43fpSketo+owlQYy2rqCpuyUt+KTWr+2ch1rFxndcX9EchwAMcIe6xjLY+VevCdkfq+yHe4HVhWCotDTtASg3b+0sXbFxR2mVtZZVxTlsbdFytjbte743PAZLNrOZzik90+3JJMb+p3JWGS64Qd2fKAV9wsDLPV2hkfRq8hX8cQiiXWhfbL/6ulFXrNfOydGNW7H3/V6kVHXJztanjv6s3O84jK7T1zTzu95Ex/QnqHJqMUPsi1md2x+IIoadSG3PD/za7NSRvv0TkdjD2GfWKPZR7gs8huJnalPYqrrpGGbait+7sl91UaH8DdrOVrkaPXdtK1+o6aPerf49advqOqPnD1U1R99gv5vAwAR+TUA/o6PEeTlJ8LW8bS20Rpx1b3dijR5/yyvPSuP+7tcrdwtG9Vd1mS347PDlh2jrn9X5xbticzhCE98zC5lVk27hYx7/YvDpZuq/fbOTZw9SsaK9m6HCzH6G0I7Lfp7IW7kE7k9icPcJkMMQNrzsHUdWZQSeLtrY7SOfZpmAKF+jCMKbG8GlaoeLSY5sF0cQae1nYHu83Qjo7QjiVu/5bwCQKjPd+37uPkodKgroghfFPqw752L9FpoUzAeSddJzHTAqcAMIUzH1vWs4SH5EraHivC7XCttLXWpg2iB05secaU4FPy0vP8w9UmZIoQ3QmMk7Yp+bLJxJ1og28KhZ33u6aSbX1Xj9ihmIpueEn1tU5Zypka0a3iburmFjyXk0W86bkvL24k7HgeW5b1TTNxg+a6o9aIr0NTsMrs8dEDXSnRiIjdxl/EJwc4f042u7K6QhfbJR6nzzvDSHrJuLbJjQWSizSbZjENFsUQ7P+C4WAnPF80mTfbqxWfcoJ3icxSSRYQwVkjVdTtP0ixrmA5DJ450Wu9W8c6U4RZ/swuy4rGIh6NR+J7jpPAkhydF9Qjs+VFtiU2DianZ2HjnLqMKCPc9H/iaDED68Jxy4q9jqutjlDpLdHndp/CpjOlvlLC8+hsJGb0RtWukz4iQTa19/3CBXnMKfP+Av49IIvKL7N8DwO8E8M9/THkvNjGLCdFyfLw1z0Sx6ozGmrd4Fs67Az8iqasdnZac0Zm35PytjGUxsIuyoS1ZulxP0AaZ3r7WRssOaXW+KUSZKG+8Q+ezyOYotJF78Qs39FvuGYKXqmHap+zYbz/B96xJSGt+ENRd4UKre9pox+cgkXs6u1WtvubWn90yPNW1rEboZu3dzOF86VO0C5XvxUkJsxIqsepnBziAj4VeJwWxGlgm0hrN19+J4LcEuo1CN7VQkMCP5Oj6SZZaSuLBwK758cRHKZ+/a5B8lGhn7jwSPyd8Efai+R2yfOk9Zet10m0lqBlSxpwQ830Y3w9JBSd6g0LDfbuf9VJpy6IaNv9y3tHyouX1l6iWiRzRLjqc+AG67rSF7w7nuJs+hak73md5b2BqnwwvPqORFXG7K3gPvgSIKccuD9GXJa4bE4oneW/yKd3I33121GknIU86l0W03RVPhLfyZUMou1v0OCFqWTKqWsTO07pTtt3CLSKSASXLzK8Y0ZRHObe2f2Hho8gGJwp+ITQxk3wG6ZIo7Lm8uPpExTE/73OOgm2Bf4mbObEBlZ5pNH4hv+nFfPtkKXbRCLykgBnjPmJB8SIkU5mIuZ16H9KWBxEFIUU/BB25ZAsbTQ1ffgfnGcmb08sc/vF3i8j/B8D/G8CfA/C//pjCXiSUcc7CvbNL9JJoWspgRCNeSajYLX5HintS83rxSmytT8TgpZWXg2VnL4wNlS2VC1SnVValNjKXcAIBdJx0Bk0sFaZt+rG+TLsM0qg8v+Y6AShoSTlPXgdfpK13Mq6riwn4s87F9GsG3ulH5Yju6sRpNWP6sdomWhQ1xyLj4skQGYsYSiEgAuhQiJ1stg5kT2hDZKGVyDQ0txGezB1dxLBn5p0+g959IL5MO0OJJMLc+moqvzvh5QpdZ7OxsDrSOUJGtLwytHQHIf28Dnp4nvMVGXSM+yZMgwry10oKr9LxgTxxcNKW3T5a5jwAXA6vSXs/q8f8h5ya9gSvciJ+8/UFtGIsGVZ4jAHogXjfgWhDR2Rb8xfD3Tb+jsbMqhSWkiu8/t2fA9f5fl7oc5RV6w65z02iNISIdmkFBpBZDRcXcYLl4TxWcOt5oYiG11ettQpitNYSBGVhKrEt0KPpWMQoG+PSDahIOwjyuHzyiR1Tz/h0POb7N30Gae6Zuk5F1o3P2Pq5kzICFbLblWvvs9rrlJ5tBXyKlvwNVW+yD+MQVtl1+p26M18rVNrY5YS2gFvF8orHE4f7fc679wPTkIdIvk/Nu2Yu7ZZvVgq3CX5X1d+J7X4ApdxE9vBlJuMV899HTbwNrFt8RtJOPvVdqeivIGz3cqNzV1qFj638fVoF5Ij3duOsAmN80K6iv1uXiMRtchS+6Y9mPj/+vuN+8CG5oNOvDczIiAEPI8zoCH53jQ/9CP8i6YfKp06o7n1HMd5HEz48ZMfnqQ7+sumlPhStqv8sgH/2yyrvhSfC3Pz9P/vrREKUAbIuP+bPXHltLHk0mDh9npd/uFA733DG51bRTcaQeRTSvZP0Z7tBwC2+twpu1yXSztQ+nRCTD1O+AWDbV07k6BHSW5lk/2yhb6OP1Rmv7y71F/Ezny60RaYmY9ln0a7VbduczQW7WF2fXiWrTMx6DWGR0hFkeca9lUNYpm2qoMWMQoMio51NS8pClWAjP9Nq5bOGpzIfJM1G5mpYbujm+lpH4dAZHtRETbOjgzZb0ZBIu23IwaOfjjjL2Uff8aor4B8qLTJFhVegkYWWBpvQxbm5s8/r3Vtn75Nao73hTEvNbHazVoLE6gWfA/cXY67ldvWe2fefon0KjzubGONuZNzqd8aIH+3MSD6tl7u86vNc/bTj8UbGQst23QgpnOcMUc9p/ecyNpBm+CX841aqODI/N/OMvvFkKON63Uk7xu7yzUiBlPO5tEI/6uJU4bCEMq5aEW7Q86G3u1iZGBPf2Alr4T3dj3d/k3nrThPT+niHdz8XnAcKbeFcZG60VN+1nPn8QojqR+17W60+stq8+xsObWR/k76r06YpZ3g8hTKi1Qm+At8x+x5JLzcxq32F+pnmtYL3zONaVAptPkM6s8i7yVexdHWWy5HL0uT1jrWW1ycznrZhNyRz0Rk1z45PARBNEO526frHe0MbPv0v7Yh90vbzloz9+cb3FYfa7YqNfttyvG1oygCcj/0WGbWVTXXd+TRargMHx1JHQSpFxPlbT2TUNe+NaxJ50a8tg1S5T1hXPkp8pFWR7wLSkH2RURHDfLXJRKzWVSF9Th17Q04bx2szHw4P8esch/s1CyWlDhRlpR200qnrUfISRhs5cLbrbliWo0zowgG29prWSitL7miJzPcM0hmbHG0AEfWgPOFTaBz7LGEbDvmctmFaNDvP9EEOuuFd7cfeUWlE4vg1sOK+/3OjrBLyvvymQrZl2H9U+xgQ2fezzhbc35VXZDrPW/pw7WTl2pvdKRZuaJ/CkS1tH3B3fvRw9VWy6ntGG923C5m/MzpiOwvYT8rs360OdK09Q7f7Nq9kU7K+BtG1Oxfayny3sNcT88iitDbtxs7v7XCfaQsfu8P/XdoRbvkBl1FjVWG11cTXmEAoYwzzEVpbdbxq8x975nzVrofd8A8j15y1ec6sM2x+7gxOkOKQRtnQ5se9PV/6qtXfuNwjrgHEgpq6l2i07tcuku+X7fB40mawvtd77hrSZ16gsRjHZghf5fhCCn9lJmSxivkBf68oveyO2WhhAWqzcndgQIYWZW8wWrvkvP6nlu0s7KF/cLEBp4cIRFlUrjvX4Nt6LNOCaYMZ/dN7uz+LESXxZfmavgufLvPGNqcydlq7iDrgHtodcuEziaTTSqXhW7OuJWiLXXFSVthqXgQIe0zijjbkTxn9WnqsGzMiPp1W2a7i/dzLa9bxo+cLrRDQd/5UBCT0cVqugNrUkzbDLFMfBmAGZG6kJbwSfAw0W6Y60NC0tDHXj221CQazEyTzlMM5aTosRESJp4PGIhPVXxytL70JZkhIfIfMZMqXuMVCQKq+zrOEVdH1AlXFsbmjdqEmcdS9l+11hAw9meF3YuEkYk69hkHW46ItXMZs5aE0AOy9NKp7sk1MGVtfPSSlejJk7SxZQwt8dZMEtvrQKnGf2xWfWihcJjJfPbBgQ+uNpOMX9xOlG50v1bcAW0wtaaSuPUpb6Lc3B77HRSVf6ldC9Luxhdygxea6y+j0rb4KLRptdMI9lrNcHUcmL/cDWGn5mi5CDkmcWXTYkQPw0EX2A9NYizWTX/RfNoIQ7p/QOk5QxVUsf9oPZBiaLPXHakUYWjQo2dJq6QcseBquY3ngJuNiGdBLu7YJi9Edds3Pa3tc/UDVJ9sMh2nHEfCQDNUu2M10nnd+G+zBryUxdk/rursP8faqwZefZ+C5Urtx23iJ9k0yWlwMnTT9b5EpismJbtJmWLuA+lTUvbhpSj+GgOSv7dN95utN7zEJu0/MNonBOZb8eO1Fo1EveT2/UP62qqnY5S34mUCmCsWoebXxpZTN2bbUW96F1kVk3fsf5RVgOQlraTI8KOkPN+2rRHB1GRsdTwq1yVvqw8piHfrzbgteLeayt6KU98aqneMkJK26hQCFr1Q+0sIKC70WfQHqt1E+01bwUrW9CnVIJCaFtmos/ZlwLm35NrQmR3Gw3VtjOobMcx7KuDv8o4SsAEVGRXvPDS3r0jDy36HmVlVK3/KK9QkJXzPfHEjsjvvX0LOGgPh9y+P6apaTL2kDYk6THV1VkEJEqC/43aPbmSUWbim9jLr7qMD8/plvIwnn8bLMZmK7agYkIq5v2rPuqrF8q44EC8hhzQekUFUNe3V5zrheOqTvZrplfeBD5us7UiVsydsQN+8dLSvM+MUykn9Rwg3d0HI/65ga16F7l39Pu+PT8bjo1/U+8wOkPneN0jTZr+2a7iKT0LVWGbu/oeIiLDDy5sEKUcbmUJc17BxbP84RjEMT53XxA5p678r2iZxnKjZptKxhD/9ufmDxC6d512sg66a/w3yblnq54+eSNxVc8biWVELLGfe95JODSxyfA3eb7VMOwoTAe8J2tzOtsAtA9zLqQZN14Ma0m1ZMDb1yd81PpcuPNtf3UXqYuttVk2HI4ZO0+cgsGAOz1DeF1cD6/v5ywcuweqUN/8oY537Dc1ojftXBjArcJ2ZfQlomF4oMXfTVpzL5yd7DfW7Sagl7ZJ8uSs+Nj0Bjx661U/hRpMXJ0IppcTQ0cucwwfiXil8dSJWxYI/nY8fDxynTtTQZt+EylLfwpd9xv//rehiwedrWH/3b64DLX8YQaUa6AWLM5fuKDii1zkW8vfrnBUGLNZ66U8RC1KOCN96DdJRWlgEvDyRapWiTv4RGUVnRDajNscyct9O6Wfy4/N2kq1a808oGr2ol+k///tcsOR0O16eScfz5MFoxp8aHkcz+wOF6ZFMrS1BFF9iJWaWNKTzkkCd+ZZCNqOmQV8hWInQkfqP1vGFzcTnmjRVgOSRHiDZt47TJcf7FBLPLpHksv1e4lxtH3ltesS0Z/5QANHfZuKpTRvp+sckUL8l/QIpQKW19g5qlWujicg3Gq945PK8G7Zy/yhpdMXxixcpiLqgUWbIDrP6m5o13X2oX3+rHzxYMfUbSwpfKeoLvGR7HLl0v0/OaoF38W5hT+ShddyxfabeYo8CC+96pnQdwuw7iX26DZFTiUxex2g4s00neA+je7DAntCzjuR/ozSaaemlzO9WywKFzl2ZZAAm+ig1ZmGRGQ2ixsRtgCWaXKkNiWTXLoOvA/Sb/LEtLWS6UV3tgGvuMmCNnw660mrz9Fw3c5q5cDroqrRiF0kRLCi4qyZjfVJ/twG2RpWijNbtK6ub+9MA1cPwQAdcX8+Wj8wE6gMrqMo7lX2RGOSiq6o7wN70Vvbr0cqcyfqnpRY/L5yOMe+iiDG+0s7eL7yIJOaBo4u1ac6ITfCCASHWsHE6A2oA9b5RT+GrjI8HHZeFrLxdeDvOS+hxIH2H9OYCd83baLmPnyw4kQkRSlcSnVkfxrE3IzvjGU58ANT5VZgpdbLYpISIhxyx3/mk+h9ayXD8H7JAxT2WC8wDppqjtIlarkL85uSOA75JxW/TnEnzIcsiTvxA7bCU8Bll28skyaviLM55yLP1BMiSEW7vLvI68qASSUaNOJBxM7NghwyTYNuL6hV2z6jr4LCFIoV8Nu5khHi2MLAik0B5hV6TMyMFSXz2O0EAeVIGbVNXPN7BEJVYqgXnU8OETO3VHnquXceiHqoXPJO2F7O60F1sV9QYZEy/Tzweshw0u3ISlT5kdj5BRym5enuolhTbL8hCf1W7PTRI6IXDTBwH858yjfqm+Q8oYF3asprze7snHMDAVP0G4WMpiqPFyleQNPKY26So00Ci04ZtILNTnDDrcZnd8tn6g5V0xNcstMqaZ0SG18OFrKt53aOZzaXm1+aoTPxB4nDLX9/qUfKQE3nJZEzSqvtjmdXwS+ASQ8Zh9hoLav5cdRWjlU6ZETtt4BV5Zu27hblFg9AXrMWTXwH3SD8gPAnM/Dry2SowpR6N1edUayZykWX1F3giwK6LGnYLHFp7Y5PEw9WhTYVumzf4YdgdccuKL8OMZKs+0UrJzn/JvVzL+AYmppW3HvzWMkE8xdDxOGRL3e1+G1tMSPc13sEf0sYN8RpzYq2IyRm01OyvqCb2SWF74pg/nd/NS991C4z19J9KLHJfvKwG9FU6AQcUGHoD7rkSAQpbBfRJw8KJ7bYLCO23eMYIv5Y3wkGSfPxysmg5eBNO6A1z1o+v+HgM9Z322tlpk3Fyzufs12jOS+XSThS46X5Q6slssk9QCQh8nl9SvKGIIFY5I+Zm5wTO9LB0kR6lvYIaKkSLcNvy3jw2XEBB7FiuaBGj8zzLSK9Zcn9UQlDUEcZd3V5ZPcp7L90yOHd+euhwLLbVvsvSWdi2HhjqS4S61lA2j9rDzOcTWJ12maH9dvwyb8b+jXXvz79pleAzxLbJ6KI4Pi6bjHEBOpLeJwy2ND/1NPjWMpU4UaaBCg4mw1XL9RCc7SwV31Eqy6Aiho/QZKxjnGBhosFTG4QUXM2+Ecdt9IWGybJLvBFMDy4s9Ol49j7bgjzWfwJkdbfcDjjleeSe43/1NL3fbtLw5D5QJJsNIh5RnXRc/znI87Qd4x024AZzy0XRi7JtK3qfxmP0AYLtIBZctd/eVRcTb+Bz0J3nPr1d8ctebu4LSaPXEn7BeunnO/DTmlztbrNfKpA0HOPzwRK6NjMnoFt9WzkZf7j7h37c21/Ivv/PWcb8eHHKO+4RARVfuHnrUdpSLaMD8Qifrw42wY/lACfPcyMCh7P7G9Qei/Xc9vdRx+V92etkJcAd7GtsIXQeulNgJbS133ovB/wmt+X97qEsfnf/0vHuZg1EPMbTf0slYP837pS1tMKfQtgfNp5f7xRlv6HeqnWLwhidMdr2Rl/kuMnWhzuj7BbePeFpDAZey4qacFpsDmF05ug6Mw+nZZStrD7irMUTajY3U7GCXNrPkXmX0/MOE3L4rRcl3M5yOfajTamZuYG5ZNduUh2RIe+4DczBt6UPMiVdnKeTD81JnEPTQC15C8TfIal5rRVDMl7h566CcaGUSSKFdy4rQE+SOWZxA6btomtLMvHW0epg8sekfz7gOBtld4Y7abSPIxQivvwMobeigGKmoJ60DFv+P+KjvA5LWykeGHGnqkMw8B3XD5JsQoonpnicaXlolxiKDfivCRk63YMDmsmKbnmY7peUPT9O1bLJv+e6K1hUyS7jeht5vLROvDV8FyutUp8Vu+M7nus17hosoNE8JaI+UH5OBC3ZbPSt9BiVAVU2/M5nIyN0Ao7+D442wsV4qZaPUAs6J+xoia+TtE5EY/6j3aOdCYYK47QPiwIkoZ8V9BHbtQrz7db7p5PC6xKFsaIVo82nWrbQGGT2+l0W0XWbVPKQp3xMDLWYlph70rxsnQxvV6D000GkpQgLzWPowrOnA+nlkjwIW5eD50mdM2rH6G03bur+RIiPZSstlSBHlQNPP3QSmV5J4NeJ9/15R+lImZiLy3xMRFZEffDbNXAKO+M4M6TAgVgBXBa4KuWrdTaL3LQtIZj+o7wToSlshk7pu0OgzJmXrg4hkaDJxyAr1x7VMHr22zrPj/XwZ6Zpt01gvzmZXxi49xRdaBs5P0j/BpzjqPiM4LbMNe05ss5/ftWnWTt7ajPZ9veWJ33ryoJPWkcdmZZCmELv6ZRayf+rvjO3ogn4Z5/g3yepAurhQmuXFCn+EXyj4XbWk9QonJ4qlNhAvMG9lNEwpzs/vNXmVdpnKJEDIFrVzK93bydFfE2X+kDpR4wkKm9jl6lpM469Dj955OSIs8/FHTeugY5/05tPnJGnGCFwcAB4H9HEA7x6Bz6/AF1fgkfCfJzOoE/FZnqCbxsG+D0D6RdmpaJ3jFGM7343PeDY+L53zaVoFqp97is8Zrpz5gR3NUzh9w9/EaLzlvYWpEaIYE2xdO8cpvSTfUtnrZOmpdNMPJHgQFmz47goNmJGK5STjgnXRzP09YClmrkgJG+Tbk057Q7jwA0Jy5H9Cuo6pnWegRkQCuB7WN5cS1/KWAVWxRa2d7J6JfVwvPnXKKZSQfdJmMV9HrYNhuSuWa2uTqTfvbsVksE1q0w/m1BHI8MOJ0ya1ZDle1triNLQCXfNv56tR/iyBy2W9+RyeV5kUc3b9oX+vKH10KKOI/HIAfxuAP/N+lFpi+qcPtfhqjXYbrxNhaATyhkMSAKqEYdmkl3eUeNah3vxQnWkZvIg/Jl2pPIDCZyiv9wxB0a88r7erjM6PXljvg+BeQHGs3Rec+KBQpeEJi7zw1Rv8Tm3jfKTYZAmviArPMuu3pahAf0bIGSt7IU/3+k7LlbxYI4ffatfVW2YzkrXKis+yZcGMpGKiaXR+tyBCdpxPM01GWdUK5QMzJj+l94b4PSS3WwpZaRGRwVOe2a/qiYKa9Kd80yJ10iim/qzji0wT9T4ydVXIoae0hY/4YEPC0dQPcLo70nhfqcrI7ndeHwo8Wt3zIMFPNQS0vktg3GPQo1rsLGQ3IT450cpBmbQ6AWznT1DfzTLalEOQIS32XxnwHUehOgmZxSsgbRX6gY/hz+OnWd8PSRJ9nCyryAHRVSFDA/dVAOXTRhQFXGL443azsjX8S+dDsjD2NWzgvhi45drvVC94VRSuc5ET/I9uNehwFW/ijZbEuu0HKO/iB5ruPQAlLgjgROt1ec7/NtZcnGNdkeM0zhmLH/DxAf+FSIypLF/9EU/TZzQptbdv9gMVuxeJtRmhxM+6jJU4bXOCx8h+eBYqWN8tzsYhku18mbAVu7I0k6P3S0Vi7upf+ntHGjTO8/AJq+njGDRa/8R6WfzAQbQzr9ejRkg7SZGRKA333ZZOO3F0ToGuI0rE6jOAibEdU92OI/KK5yWfwaGR0nxI7m7l9YMAj5jRDFpsNSgscuI+14GXPd8jG+UduViMI2y/EGWPfBG4rzI/8GGw/11K2sD3q5u+jB2zfxrAP4gK10+nTaec95X+QPHtEmTIy225yjnZwRbaTSVqU6Jj7MKbgKA7pTPaLhbf85t0iMg23w0ZT/m2C20yx9BUcLoysnvXbCn6pEoLn40Dr2Vp/jqbOZosvqK3OXj7hm20cEkhue14uXZ9K/SEBzXRdNeBwJkBb8fld3a1ze1j4K0cl17pwFJN453zrYaLQU9cdSdojvFMbEkHyI7brqpJ2qDHncnKl+2fdmUZ+jpyeX+BaMsOlM4j/L0TeJjhhfTvegq8Ne1kzMHDWvfeDncyIuLltZSUtJeweQslsutJXldKPR3NxvmR77qzLe3fmf+pQNgbqeH+FDEaJ+RRIe8G5Dr/ykrmjrYVvYP7cs2+RbpdO8DS9Q1/A1BZZ5hzhotN+A1qnK9UPxf3+/UJHi9tjGQqTXon5BkfLqrz7To0Wg5j3PoB/kmz7KXcInPFreoFrG2UvNz4O1MvpSmkrXOdpSbjDo+3mBr9sOZtgkXeEjWrIKze+QHDq/BV7QCksspQ/UDIpNnkGfdyEpmnBO+Sd/M6iamYOk+SNfk3tijYX3Bf498eeeC7j8xnpUWj7fol37JwRxXA4YKhHyiv0Ua0I+vWwtYFo+oOrfq3bpN14nxJJ+Xvn2V+TwfoUJ17+o6mj5qYichvBvBnVfWPPSPv3yciPyEiP/HFu2/Om9GG5yopxqCtRbvvjnQocMX2/YCMFaIGryjH52e4Sf2LY5OpH6qX1bC48HVOCvCxz8rPN/xuYT0Pfkrq+fqs7ezfrcztWjcsd3ndufVBAjuJDZ8YfPiqz0bGRaYk2etV9DsZtbAnOqNdGDWZAUgrPJ/Jkjdsoez46NmZbezG2WJPbXL1HbP+b38biguZA/CVyT6kRekds6YHdpcZysjlFh105iuNSNKRxHA/FNZGuxFBJ5WABjJKk1L7Tw/R613UO5VP9A/RueO0DaG0Kwp7rAOStDJP2IvYsft1xHMxCm5i/X02/7zApXXghdZ45xzE7e4hLhK0bBNhob0cApydw76VGPffBe6r4TlNvr54BL64QtwHPNpJZFeFPmrF8t0faAIxlN4nI9pVuqTh/HFN7ZT7wSmmNqwpz+r1Dje2dP1+K0tP8j0b9894N5pSzJlcz+K7WUDb8MtLrTKeEjc89vrY1V+TeZVx8t3icbfHMpuyvxv2XLFgI8+ZiGwb1RVjgybl8oUXfzpDH8/9TZHJcdTs5+iRMkcsyIoJMREjb2j/yUlBVX7ioGlACvN/U7K2b6910uSYutvdV6e300t8d37u0E36s7Buz8E75G6FCgNpmy5oQqpSmRr4bGAEfz/tIgMSu1/2LHwTv5GWMvpOoje6fF9OiZbsKuWK3kfrB1S94lQ2dt7z7xWlJ0MZReTHAfzizaPfAeAfwQxjfDKp6o8B+DEA+Hk/8MNz3V4zRECB+b6BNw5RQBQae64KcGiRZt6Jg7Sy03uDgk7bs+eH/xbarkbsQkSzHYBciJZ0EsU8LYc7KPVm7TLSKhCCds1r46cCdkzreRfa/QhyfXas+rJtuozxbNSibiVZ9JNT23QZxcMeOZRxo0MZiPhUiG3BbYAaB4eSlNNBVU3GZxhHARxasx6mt4gtCfLbO6Rw0KZ+IhKrj5Wt7U9QGztEFxE9rGGoxndOzOXYAH+ue2QwnBMjJjTJNyrCnsmS1xl4aT2UUVDzTv3M4prPcsG11kEPufOmM/VnGTN8hGX0dIgUBxN8/S8MOaLNHaq4umYWH5d8UfRj6fOY5BHfBov8wTdXRLmsuFZeDZ4GOszWh2rBKteHy6rHOvtKrMDDHOP4bB21zUU+14dX0ie6zlDGzfHYN1LB/a//cDCTQ3JyNgbk3RU4BCrHVOjtBXoI9CKQhwQSHTrjYOF9reMVVTBpA2COc2ircH+CV/bRFa8kcix8Je23gw3qUivuG5aJoHxPR3pZG1ohXW9jKupIc0NbZMYmrxdr+n6Yv1lDGZ/yA/5XDurwf+H4BCjjMWAgonmjTKLIDxht8QO8XdWNI0w7ecZJ0V5/W9tIYCo/e5YvDj9AmHrwUfterqMmha8p4b4Re/i0BKPKp1ZK9QOBG7KGMhZcNNwPLAyfMTH5WiYHqV9geYytNNqgN4fqB2Ydr3z9epTdR2pSpo9C5MBF/duadIgL+QwAtKMkUW7aWeMTJEJ8q2283PQ3M7GMYj4k6/adZl6xZ/lZlFFwX4vMzb+Y7LkDWe0KtjHy0zQhWV+IeG3plU2wPjQ9OTFT1R/d3ReRXw/gVwH4Y1ZZvwzA/1NEfoOq/vknOVsnjTH38F5rEzII9GIBNjEaSZCN/hqNFeVoZSA7cPkhxFdRDhUJIsR6MsILA9TyiYevAErNW44vjrxZprZrgPBxhBm2tCxvPyYZG779WSmr0fIlUE9zg6JNnnEzVT4K8e/BdL5B4Kxymh0O1jtc1J8u2+rFPuUuGVz4VhNALJ8PACTNuPh16MbmtndignSfXMWS4LMsurZrDz+MiQ0Vd4tWwfKnPQOwjbdY/3Da3Ueo2TkxH891NL6rTHR3l5eqqfQZMUu6uaRkR9bOBpCjM039DmuH+9N0anfZycH5itl9IuU4Q86NwyDjqOXg4yGgJpO2c8lhEQPwoCupR0Cir64q8VeS3/K67iSjF1X1W+3j4Yv+3tYHvWOm0z5q/VmgwOMV8sUjZFyBywXjjUDfPACXwyY/EmplP6NBxUgMnHVGPVbqYp3DiNiN+N3q9sxnnGG527u0mWf6gXB5RitoeVmeTkt23foB+u3wF8+aHwiIJb51JzHp+mdgVmw751Nemma+nLyPS/MDmAtA5VRQauPBx8smvirkL1of01bOoo/kHnPVrwkezMgmftkxkPQkNttrtgA/Y7+wGy9r/LvScq7uB6KrnfiBs2saNSX+BeZwXp3LRNa3d3wCw+iadTpaZVQ89oMyZhlTN/tXM8KBQyENja1tVyyPd8KtzXl5QRt5ObRwnZT15JhRdghFAFxpUmZd7+AzLZsO4V+Qfo748i6i71QmvZ2+SH2oYKcI8h2zD8T971ZSvLpDPD40ffDhH6r67wL4RX4tIn8KwI+o6jeeJkZ4AcHIo4JtFUEPgVwEY6hJaI1hgFvR5Os4Hy1Y0pkdStcV3gKDRWeYI93XIeE0Zja1f9lbot5DzYuel52Z3dd2vfULA3OVtNOyMk2mW3y32exm4ILrJlUeXmEtZZ3S0gCqwiyPXfKdexoHaTMjQl9vNzu7bwyz8fzqHltQByteTuhsK4PeTsroxvJTXi83i1T4QRrFWTunUtdKDryqzPYozpPAez6sfGKw6CXRCnL+tztN00nmIEitXCHbcNNOx5pjON/M7KvhvtAgwUcR+1kybXUcpZrDaZZdbbizCfFjpZVlzPapza50HHFM2OobaUfIhLK6WCwbExyBWmjJHBQgnudHPynkEWo7Vu3I5YV25Sq0CjuP1h+Rl9tSjlt88sfXMEotcNoHcL4q7dbygUOGRb1vUmAMiFgLefc4J2WPA7g+Qh8AuRzQMTAuDzZqmGFG69YKXY4Q1PqCY0T1A27D2b+pPEXNCz+Mp/qM3KJb1Y+Pry+2vO0HNkXVvGS6fo7E4kOw0sTtlpf5BivyA/Gg+yO31c6R7PiitiuBVH9DtKsfkArnds9AiRhoVUiIb+B8M57a86izim0VbxkfDes0B+XKBjMsSV8hRaeKV/PBfqesIHfxtfvKSllRaBWQAx51wr4i58iOUc6X+gU1HCU/IM7HypiY6Zhq5QjnTV2mKJL8eBfVyi2qUJcrEQOp+Qnu57UbNneHHI8dCSfVDJgZAA7C51lYTpQt6iHsyLgP8A6dptZRt0fYJowBGwnjKLtsCnjUg9bj+t1nrP5mtU3WpRItwi/UQ7WIxn6JNdCl6Hv6jqUX+sA0bIdM5/sAftMbwAEMDMhxQenR4REMK5aQFsp7ILqdg0fkted2h/6bfEp+A8Lt+JqJvVxJGRlwOPxDTvm4nvk7gK3RFr48KNjwlSZj/wBpABgpWEJWHAfYAJ12MYkUPnLoypf0SUCS8k+1ndRK0HB9kZQmIOEFI38LYYnl6swrhZb4bkZLHPIiUBq3TUNLoa0WytBFsfC9BO/lNMhmG6Y9IoSnrewaX1chd2GzX/Bqa9KmvGJOg8MtJ+20MU8O6+SAzO6Ot+jnOmbDz4FFmjlsQYONQ2hSAiUb+1Gm2ZYPoRBK1GguDimUcNqTz0CG+8w2lx9wjoGM5w/beA3whMaVSLsqvA409OM6uJgtoumqDXpEZriMye6Dg3J6ouTz+ZtP+/IJ3NTjgqxPgb3cHVauJ3lNW0hoQAGiz08KyGfvZgk/9y1690sM9xV6pRAfbw8HSmQENzK3JdjE3L/n6GkWVbqg0H+RuO917rQuxlNY3sIEU5jbtNEoO+SkCinxc/0A8ZH+rPHtkyGX2quF5e+22vobf1z4SMN9H4w2vt0PbGReojQ6M/4pQicuskJADUdc60QOKqskw1SpZXl91x1NqXUStFX24geEsFw77iffwNtG29zT7LfqXaSGMiKwHJVP1HW0BLvnIeuOxxnKyGyLz9PZr728A4phOMb82DY5AWJ/k6cyuv5JNzbt1WVkf5NmT5sO6woT1QYGRB/Ap+Y6hk75yJ+6b5UcTrpvcr9wtPy+yOd1wgeE5Om6QAllhC9M5vL2DEdE4bPulKW2FU6lyMXh/qwfV2i864zXnBTQ8XS2r0D60iZmqvor35PAQgmthY658qA0afDBSR8QpzN2JE/n6VjIXlgPyXG6tbrAa6VwPfEhl3s1clwkRYF6qdegsjjzbkLSr0MmPuAEWAXYyIGm3xlfbTL2sJSzo6BB9rqZl+VtMmuhJS/LMvo/u3Gf60AhLkUmYs9AXR9KCBLvBdStK8qrtWz3Nfaskmi2vx1zG+31Kk0FtGeFu76oc3eqUmkzynN9xsI7pJcct2hPUbjnxXrd8oO4c17RcG+nZXHjcxukTby2qfybtFUHnox5X9aodh+xjJDbHdyxKlnk90erXdemzcgm5X6tPz7JzJ3ulEmRHzFN/vk7J3ECxGp32cFzWT2PTX1TjxglBN5+SNIxgJ/7JvDZ54iXCR8e5m/X95KgpC5d9P2UgW3HUFL9gCs8jcG4L8iyghvjptv7GVjuUJFh95Se8gMj88TiyVne3TXb4Bbut+uKx0n7VOWyD1n8Dev7LH9z4gdY5lIuK9AEah2rxAt0n0G4r+06y/SsHD7enA0rruvTJcKi8Sl9f4NPldgW3qLh3sjbJOze6iYulvu7ss9oKRWflXRhx2g4ZHBu/FHBJr0/c5kauzNM7f5m06oK7fD8kmGJ/Q/I0MByoIb/7niM9APpG/pnBqwso10klsr/cHtQpEViOIcubmwTdibPy34Qzc+5EOILoq84LSEEX830pXxg+oOSfTharvPF7+NxzA9Kj9nYMGReq0YsdUW9VgF1RFUwO052tNSdc3dasSsXtK1AvqYPVrNMPB4AaBCwKWur1g5HidZ90bYZNpFh6uuGtkV3LGHzZ2lHu8h6IuNcAZJ+M6vPK2XF0EpbKo5tr8Z3r0y3Ta2HPGZ8+XDQ4tgxQ0QYDOw7KHUgpWl/tosbsTsv5SG5ZNM24+Tvpt8yHsydAj85tBzNfiP5SqvXifeIaENaMpfywtUSbWkvys/ZsQE8z2K3HWWTuaKX6srXr1epJk0cD68+aamdxCc87lxjddJOxsqtd9erdjCvn9pqMkQHXcbSOf3HXFl268yVzXS8fNLarC9/E2xEntQvBROZIYwatMj3J0BH57uMUV9qk5vdW2jPSQr83LfmpOyb355/3/oc+Pzd5Ogjl8cZnlmwwC3SHa91jqwDJC1nU6LV1mS1tpXdZOMpLM86FQKy59ECyE+knI+fSd8dpu75FHjSItopLfPpON7E2D4DKl+umuozbvgBomX5lxmbP9j5jFt8moxJq8kKLnA9FmfSKrwHkRSrXFyhJ8YrCwmVzVq2ySzGve9WJrmGjiy/h2CmfqvsjLuxb2S2kZaXL4LO9Ks+IydTCpBr1ZU2rn2nqE20iowaMjpt7G5FmCDzqi9V5L6YY+x8b8RDnQNXNpM0nrT4tbrcBY83/iY6xby+hPjmb8LbTCkPdRlyQieB5f7ZBw055r9K4ZVsm/Sj81+eaFb9Jq3zWWr/dSXF98wHpl9mYjZ0OuMv3gGfP0Ie7Rx8zFMYPWzFgVi4JytyN8n/+EMdnAeUt91fygnZ8r64IwCVxYnLGgCGzH/9+kzGdj1pyUkAyyC+842wj/b4VMYdLYHgltbpSRZtecsg+YR32lPsunnRM5nJ4cRWekyadckeef1Ux92WXmsni+0i3n2xLOqArw3+NjJnfcryPB6pT/DYkk0jtjXPOhbvXa8VVK55N3aONfHIoB6+m+9jiWXbjRpiKECOnCceaGFFhfP8kzptVKJlR6ysubep0DcHKksLofrW+p9SPSI+USMVNfkSGXJH042blovxfesrLkHqoDn4EH6mlFfRRqjFNv7jzL14aw3bGLOQQdxBkx38WiZ9hFFtO/sz0tB5GqMCOA7I2zfAJ2+AhwP6yZt56MdxAHIkTg3E4ljBY8bQwFg3gCTmgGjJhA3aM0wbhFeWUTb+paQFU2Wldf47P+CyNKy9heXVR21Q4xamsn4nfDpyLhh79qDzQrcN833aD/TQ1c3I/FSO6m9OZHQ+XrZmG5rPzvE4cnFdMHBah+z1Uop3f7NMUNfFDy86onS0vgtZ8i6LivOPaUH/0iinTN7jneuCqaufCS6hX/qMCM1sBNFHlvuaOrTGydJm6D3pBy1VWHezMiCv6+el1l2y7GDBRxNLtfzHj2cia0i1jbcldt1+Aq/TxunDRjkX4vx9ZFrE5NB78QlZ3b3junG+Xkfss3wvWRpV/e8MC95191eVfLXlQ/5eUXqRd8wEiiNmqvM8eh2Avj2AhwNyCMYh5sTVx8RgdE8nzT27vWNjDTBpQbSexwc9PHAVfpyFiblc9yMND3lgFbS0nLVxD5Xee4YgV1AVNdKDrhlQ2BfswuqXVGyTsveovrIa56/wbGhb9Sx843bQ0ipe6Ge2pdhw1sMnXHEylxUcxypzdsrbbdH9PMuYYGsSNWMm8Eqhyzu5SxVNQYD+3hrHvDutbvlmCIRG6Sh24rSsoJrTp2YZktb30bLpcQMsk1SRljc178flQ7ocyROgVzEVNmGTLLPbRgTsEso3VURjQhdtOPQgeyHfMYsrQb4rEv0bFpYmG33P9MudNdfSX/Dm52apeB/Ad7d4lTLeA4vnU+aBeby0sgyBfc51hIw8EaM1ZWpDtPJKdgbdi+OZgeWo/OMD1vTE+qocF+CTT4CHC3C5AN/3CfDpG8jlgnGReHfYBx8MNkV/wv3Mi8g3+5RUbIvqNv/jFqNmELSotAEO7geIFzOVKIN8F9mSkxKdd7uiALKbn0R+n/uBbozdb7aN3259yE0d2J1k8zHZNfzATtGsRrLriR9gAXdjJmX46yiWt0/9gDSZb6U2OVOhdxalhfMxENkN9gMrtu1omW+2pe4zOO8e9xNjK4HeoE0cXPl4r8hrf8eM88ZEc4kGmRORgewj5TtGssrhPBm7E6+MZrGNxrOttw79pFxHnQbygvT1vI6mHraI4kMqLuSnXDR8FdEWyQbZUeCRGQPz/a/pIw90X+OHl/QDqlykaRsKS20+XwBcWnn+iZW4JxnA2Lv1PX1n0svsmCkgnz9CHh9txDHmC8LHgXE5pnPu528HurUBu9/V/Hd5yLT8YFsQ/dg+XsGm8NlMBJ5RdHX+45zF1ol0PpL3Sv4T23i5QbtjSvZVuFPayHTLNniC9lxD46uIb5qVrKVW7V/KeypftontgknPK3xPy6Mip1b3BYPiLa3x4TvbuH3S1feVlOy6p9WQx99PonWzk3eu3LB0cM4iisfCO9N8yZlUCloxzsmXQjuBXNmmPw4p5P07aTZ0Pkmbq4Zzwma/m8wxXmlb0xHV0Mdxu+11k3GeE5B86jfK6mEdKfPMn2cMMK2VZeWGraTastqC7a858ImFp2I25NQtdcxn7T6k1NGHTMrgsjxeIW/fzonZ27fQH/ga9JO3GG/fYLx9AN7QgU/O8RwSyo9SQ7uHhBsx5sOGtnHYY+oJkLc+2TF1h/suV4erKKr1ccbQpawTPosf2NAu+pOtShgyY7mc0J4JwbRWuC5VTODQZOQKPmkWpa2f+gE4Tk/ldG30J9c3GqMqKbOzyInPcDY7f7Nj1V3RQusYkWaMvSVFCQ3c09bffH2UXRNdJwRNVml5CcmXncyC+6HDbAt1gTS/9SgR7IfAOt45kiKjla35PEpUKonqr+yAhZztvp74myDjEPZepvmB6AO5WOc58gtFHgbJ+llepedQ0zHfVRP1kPUsuOoxn03bSVz7Kw2Av1/2yqdm3yM7Zi8zMbsO4PPPIZ+/Az7/HHh8hI4r9Ho1z28fGfVG760T81aOkbyjzUcytIU5No89MENLnkgznHcF0c63lI0Ut4bYaJMZibmUt4wPF4Ean86XUh8/9uvFZ+zKpD9+vHTJnby93GIbKnBnwxP95k+jFax8eVTJ9D3vYrPN7LXl0bO8mo5uPtW9PZyW+762ayv4DBuKSDZSG3H8I78D0OnsGY3uzt8Ocn3y5K6ikjkO7xYlaELdRbi0KbMQbV+NzNU8XeRagvlaV+5y88RraE7RnNbXBLM5cvka1Zurr72CVqcUZbCSdF82eVknCVobPMIdex2Q57tuE0jCrjGi3/RNbx6ek5pvHVTsJmL+mGSxBvuxp3PJ5QLxMMavfQq8eQO8fQNcDuDhAj0uJrgmBnnDa/i7+AG7d9MPgO9XveeOXqelwcyg697pTjC15GXaHoYJbg+d9kRut82mS2/D9BlTvW8/kU/oFj9X7B60Mvp1Nle7J7f16zKXAmW9V/JaXyK+u3z7e9OwynI1vl7uMrU4NgZpQJiLLIY+WxsKWPwQUWtfPh9Pdsmmgv7pFn8/7YxC6Wby8RgLftdYVtMqqNPU7pcoPNpiF78llf3Ad5udT059uFraVRhMSZeqrId6xqRU/ITfLKsjXe8LFVOBGE4vjTLpg5Z8U8fjnnKi5T4gx8bsVaqHch1qtEZrvvGU/U1E0rhvgtKhH6cN7hUk61zfAxOzlzkuXwf0W9+GHoe9U6DzK+9vH+aEjOMdFPNEJQU4lmM2aIkWVjbYqaVpuVZn33bksiFO4JNwWtFAmQ87rVpM0jrfHPFRRvunO2GpWWLCuUPMhS/JyG2sjaA6n937BXpjuh5m7M6O5y3Mw9UP2+yUd1pp+inVgVQenOij114n8T5MKHUucx5BbMwCcSk0wQeLZGeUrBIhdU7rbmjma46BxTHbZFm8GyJLvWbYhoeSMG1Tz3eyxA/RSZkqn2xHMTmjMJ1YaaWO4lUidJ3urNPWCd8cmPBBEtxgRu7AmWNmWuYDCheZzxQXomW+qliPFI6Yl2F8aIUwm1yUzRZcV55d4XXLO0NLmK8rOEMF3VhVP3uBW/JzXBzKSV/nmOVAKTSSbAGBYOBC7fCQujLXQ2urjJIyQlFCkJ6bBPbhaIE+zPfJBIAeErgv0f/YHo7H1AECj8kPAPl+Mm75AbMHDWy0GYBDslUB+7RRZN7zCZGLzqd+wBm3dsZ+J/C0ihd5JVVf/QDna7yX8MgdLnZ6l7Xn3VwvJ0q2tlX0bw80fxBjLL6KxtBJH/pIud7tr2XRUmwb36SDlia3EFs7kLhB8rABqL0WTDXvUnCyq0RtvGCqF9fw2YXzd0LF7cS4b5zr51moL9FoaneE//wEiQYfDsELGen9sAYjEJnhcldlPJ34dBxlJJe4X/IxlnvInW75sM8IC0jmF/h7XpN4lMmO10GWHZ8j8XYm/LmSDR7359ERR9D6ddJOu/qBICqOKV7wPEr/0vh2ORzf12dq0eK1rrMO/de8uhDWv+pTGRXz1ajvgfQiO2Y6FGo7ZRhX6HVgWTHX6liW7kId1ldzIrt0Wnpe/tHmRYF9u9P1t6BJXGUqZW1AvdN2mc/e1dry7dKd8QVqyMbmugww+qOdI1yY72U85fMs21Ddxr9esdpkXvM+h6+H1ayjkVpa2nc3SuCsUiRprbuSNj48iK/5egU8nzZXHNe8vaw+ifRnJTsNEEqbWyR02k2/gPoXaOL2EgPfaHsoYxY2Jem02NJ2+1TaMjCEO1RFudlSWfUMW9F/t2TOt9JGmcqBpz6Q8zKV/mbeg8tpAwx/qd3lyQHbzD/DYXIAdCsJyfF+SeaE5nKkEB4ZkZIXW60HjbSGpv1n9QO1YIL7ZQWDabVOLHohjX6Pbc/wA37PhR9YYYTyPYmpZ3k/Bo83zf7ZtLfyfgBt7IIBi9++7TM6lnf+rf2JLva7ScsiLY48y1yxex17lJZ+guX+bMW6mhwzRivhjHbb5G/6m3pdNDxr65YzPv2x64ZIX9AfOg/2A7tx2Bltlu13RtG7YmTF/bLzFJatz/P9L6VFsI7HtjvXyk3OeZpilTAtkGGeeSw/4H6g562lp+lqHImHzvf8SVeo7+k7mF5ox0yBd4/zY6KffgJ8otCh85TGT9/aLhpgn0KfDUJAEzBr0kKX9EyMhb9sOZ8QDZAnfXF3DCevVKaBh+3qxdJ1nKbUVOsNV2Ze9Lzt+rS5+0pto+2rsstO7GKbLdt63fNyuYxaoHxuOkW1R/s9L3XLfDl8aaHNHUy+VwRgmbt8T9imOO7Nbm08ZjmNUToJqfp5XloGzTNKJG0WQmlzOF7UbP+5cpu0wcxfKCIHq0jA5XL6ZMUz8PkpuXNWneA8dhphBP8pdK3wj3V6HySzm8KFD7tFzr/hszjnJu8Z7dwZ1LBxUT1oBRpvGfgu5Ih+vnNW2vjwLuK8HrGLWi2E2J3N46idVgz2tI9bZk4dEFvB7Efgs4yx26eACJ00ZjIfbg3XHyt2xcdk3X1bXgnl3zMJ5jfLYvn2gMp8qwFDgcMP2/B+JGlLxlHHxMCeHTgRLe261ff8qLLYv3j7t44vghlFYHxrqBTxKbr2yjvxAzsbKfUd+rf7m6UoxusNli+0J86g3y+tQp+g3fBabUN6UabuB8JnhA5s0+5niVn0K11lbLrwfaWypWFqF5dplwgVQQH3CHNnG1FBC+4rFj8QsSZLm1pps//MHaBJ5n4jfYY3yc6H9c3+DsI68wOeVxL3Q/7iUxF1AmiYZpY/hRAPAe02t7K8zQlFefSm3sM8HY/jGPsWISLwnbIRus+x5gzB2U1ShH57QxeLkIj2Gv7GbAUKkXScd6Oqwg8Umbg/CDrstMaY1Pnpa1L0m5KOKMv9DAXz0zO/9rq1A0bMeGpc+X0ysWe9+7zK9MpCEj80vcypjMcB+fr3zWbzA98PvH2YJ3S9tUkZrA0dBiiSjaP0WkoKzFMc/eJAPXY/QJKcnt/h5zqdcLbvYYNPYBwALsh4KMvLtHXAQKDpINj58PP8EEaCl+xpeYAQg9YbfMs2P8lYvAQ71o3MS4RWsyunLtMEAqmDmhP5Xb8emlAcqF/7ex+RVxa+LYKPCprMhNoJ1ycCqFnmc1oRWmn3E9/seVkA8LJDH4lv7c7rFsoIfyaFNkMIb4RBOjj7AIIqWE3mcCrKfJT4ThkPQVZWcTCI0JLiyMKpC3VdpbBIqd/SlMrXfZdY6IwUPu5QKfTPJztEezTbZNflAZGE8r4X5OeAefjtUOCB+AIphzvAmG+ovZweTTEPRzHLk614wgyojhlmQhMJgU12hV/ETtosa0SozTSchzWmjD5QmfILQYFG6IvL6aGLeZ0tg09wfHaKuB+Zh3wchzeE2gcHIJe8Dj8AzCP3L9l+4bL4uE5Qy3KloyzxcQuCCBX3RXXyuSpwAEME4wHz1GAlGyz+BnFdXNUz/IDbuXzPzLEbe1oo5pcFOl/K2/3Lk5jqMnX5cVuOxQ9QWd1XKa903PADUz9BTAj8eVRbtkGnrfoJ6aCc/URYqs8ih7b2TmX1EPaG+8ssa4v73nhhfSFlXrA8ivYwyLQNP3MjHeLvBU+5PLxv+jUO+W58Qlyzf2ljfi9DGVnDLkPvBxzKCMI+p3XUCf1kYu4MybOlrOKrBvFFqfuC3SYvtZqgdUy8wr7XFT5yEO7Rji35G0gsA5h8CFoOGVz9DePoKD5CyK6PMg/8GPZ1MyE7wkqeYZB5LWHB9FWJ7VIO60p/Osvw+zFmESnPX3W6T8w+Ignspe8H6Cdv5kvfby4zaJYANL/BBIrpt65ReuFsWA7cCtDK0Mwr9AwikDzFIMCJHcR0kjo/hK0ALtZ4Lyh8uJ+a0ABk7rS0AQM2fNSfscOxkJb+HgDT8sroNlzkhHYrM1tSWl5/oJyJ+J6UVQolfxe3RWhkteYt8reXOCZpxoUv+nV9OMmOidNqUXrBIGGFK220y+DbDFjK6uBRpS5sSIdYZWt5c4DaZaa8FMooRLvwvXGdfe08DLKJXGjD6WzbipR8VQ4breqGL9F1vtMew3z0+u5ADflIu6zBJSvf/s0Yn+DyrpkQbeq9DmRKPfVBHF/RDg3XRcrAMpt+knLGyq0iJrredl1eiNNKddK0usH33zf5R6SVjOT9Odu5BH5PLE8/kP1KQ1bu5+4HKqbSAIr7tzPY4L68UxxXhV4m5gsf6+5FF3/jhqoPixwdUztf9kVWVufTaRe+lBbagqnn10XRhv27vE/5gcVXxbXufdeGOPxAnAqx8on7Wz+w8TdbebXu3EnDY9qNWmWdrUr4RsfQRlN2sE7wN/C6M6OKqeoxn/4OL9NXPvU++wn7M9w4py1sl+STSEEe0NT9OsvhuJ/4u+Nbj9JP9mf+Rpe2IfRkbgQYZr+Hv1Hjc173Z/7G9cn30/hbagqFjtzb47agQC5ItLL5d/qqee8I/lpk3nWLIzhuIeaVJX11H4r+0PQypzLKMXfKvv790O/7FPq1T+e3bI4DET/F3UUxJ1JD8zn/ntkA1XmwR1zDdnDth53sxZOy/LOT0VRjxRSPgFwBuSrkUecO95XKB2IXgsMgQn71kK4NP6Lt5W1xsjtJuxedc3fN+YqMrSxFOfWyDDT6v3S5vHazyYMN35VWF/1U7cXrGGVVmeKFf8Uic9GVbR0ji2pI9boPARWl+FurMN2w1J687LS/FiFDJnM6MRjtMjc2bpuuM+tbRJylE8TSoHRLm+GTy1iG+AZ/KkzjX8/D19QPYGE2NHhW6zekdh4jrIgBUq0TLTLy5LqPy3kU6KEjaLTuwjLsZmZYBvSNdgpmk0DX22lDqzw6H8qhJm7IiT1q1zwe9OCaKfWIssBlBX6NrIlFxqkMy+hjXrJ+yAC4c67t5mafuJVE7B0zAUTmwR8xy7B/Bqh/OGtbcfZGyW1paOCX0xY8CbX9gm5C05nPj8VB3gHHIyDvFPJu4PKokGuYvchUr8O8KLOD1lfBYuDk3sm/q7/pfEk1Ktdpw+fsZOLE19TvukyF74bnXkal+qQMBM3dzPOmFPe6ZA4dtdFWG6TyfL/LlEZOHFvrO8p0/SqjbGPI6951Ot733b2lyRE2bPGfRtoDijKz7LTc9bpcVifhb2xSWvJGO2o2b/7P8VcxcZ/rkP2e29rXXwKXlv6grGbIxOsG7G80jFQXlSKUHIAidxSz4DRQ7osxX9dv4u8gbIqFd8Zy7bSJv8VnRFvwHa1h2O9H6xveS/UZTpsTq7SbYB4oAqd1Pgrkcfr0zPX1Z4xprzEpoDo++O81pZeZmB0CHDOURd4+zNBGBSAHfNPUG4hA5mlk0SGFBhH2FyMsiWtvnIf6c2tajJfI3zKAy6PieFQcnw08fDZwuY55+u0hUHthPfqtNj5A7nJJOue5YkMy2wpFdB4huorHAbJbWsPbYhshkPJbG9oC3kzb7VoKKiLF95fEy+ZrovfQqSIzOq1sbOMr80d5XhIhc+HJZXmWAFlS2IBGbKteVBDxP/bb66/YyunVC/b8KYvnF37eLJRhDYJ5+hU/RzxXs1uGbiStct7d8nO0qfpf7bTNXYWVQvUpI6SWlXyl0kYbE6Kt8nkImvepYuesnrlbYWXl7pPnpdAfu4626n1TnF9qHe270UZfBoUJSqV1grJCGvU3RcjQEinOOHUvlii7UAfqarlgRlBzR4/3LkFhgGFyCf3qKq7bT+w0OWpzHiLkmAUNmTQ5hfIfumcmblD7V2gQZ0VXOWLQIPTNN5MmsI1w32k1rwWJVzysiigtBeQ6d8iOR83ufxHomwv0wezkdaJZRvEDssHjE0xlXCx47DZw2dh2hG0LpnJeF5XKXXCRrzt2bwZfynQsxwlt2TVebON1X44tyH4i5CP8HU/1YWJSRJ8lfb19s20KOjHWETZ7X/ARiJqMjm3CWjruC5VM8KbsFyriGFsuSxJDnZfxrXtkUvTT8FWkj/90fwnGsqwzr1BpeeM/fM/HMQ03mK+ETlkHyUjCZBptQbKNMq2b1fkylnf5o/QV67LdMFpM4tSJEo/hCNsmP480oHLh30qb1xwKmLteWebBcpW2nXlTPwmbCfLkRefh3ywr2C5ZNtuotB6vP7eaZJueofbs+3h3DviYCIm/WpKI/BYR+RMiMkTkR9qzf1hE/qSI/Psi8pueU97LhDIC2eraLR/U9XeRNHJYXkUAV26CpHcSqf0vijPauBerA3bzUXG8G7ODHAK96FzVTdyMvD58UCqbHlDUg4dspFDb0EY2htbnkqLeDk9kO6LREh++3ss8r+Pjhf7HJDyeYpn8H0Kcbhu+XmgX2+jKW2hw2AfYu+R5ePLSRj7RxnjFshdY8nPeugs1ZaSws165GweT7xRUpuzw+zsFPW/eTz6xElvgttNqGx8+LXOhbe1JvZJt5NnntiyJspI727Q6Ko95FHxm1zr829RJpY3+0/kG8Yln317zewl72oPiluswzmznJSwTbx66WS62s7cVQqm0XwuTLE+a8pt09BHS+6SyFWvaOoiV0e18xJ/ZyEFvPK642PxAadG1WkBmB66a73cB872oywG9zH48LloGivVgHe+/VZWQ/8wPdFxs/3Zc7Fi+YOoOq05oAZKrOIwN39a8l9b8vn5ga5uUq+TlPkjhpLP+srGXtSFsaNFSsQ0JK4mUWTiX1XyDUBghN2niWsoiPlvcuMF37XKMsWs5y24obTsVTN34DMsFQd9J0Kft6g+6uwHvhPmO+LHSbvhUFmbXEv6pxQ4iurGL1e0NPm2NyMpKX+thotO3+6mM+cdz9Xrsk793THWA2jZWPK4y8kizmoYmiuQzqhaZpPy2A54ILwWISS2HsIPuv9r0cqGMfxzA3wXgX+CbIvKfAvBbAfwNAH4pgB8XkV+jqte1iEwvs2MGAS4XpDehsBsK/ym3aKa1ADk4c/vtAKG1qXOodOxWPSou78acmD0O4DrMKc8/vVA3ZK/IfIn9Ciy6y0oy5t+ZI+Ri0zYbvjxAOyuo9d1TWl2ze96uz/Za988zEki3tNO2yx1z6GKmb7SLM2D5zbBSOXFEUqHhwU9fvoZuf2YdblaZhNr6aRHnMf9WSHlUssrGebfmydZaVh/FHJopL0mwOhF2eoLyMnHmUhoMs/PSUrVSwktpMqt9zNgGTPFT6ZnmdQyy6p/TStCOoFUPZ4IUmkOoDN3zVb4OQEunXt3tvM5QE7VvkJGd0AE6a9EHj/lCuummnC9l7H2dJwvVrszG7ZQuHwAOOZjDe6XZR3st6oo5G3mi1vi6NsOFJkKq+L7SxEoxwxeviuPxCrkOQMfE/DeC8SAYbwVK3/JxvjEYD0yh66LvKlzHxZRrY4cnsLxg346+J91c7sZbs2vEb+ZTEFQQAQNB2jA19L3pq7TmZVqWsQHoDn7ZZqt+3E+4R3JIuz0P+Wpevubw0EXIjb8p4EeJcQI2GdgMIRoKrItiu4mG74KsTHfvUdEAX3xnjYom+x9t8tPFKHgr/AbK6qgTjxN/A584lrH4myzbw/9i4mb9vHxGBJyH3gvXPJuR8xxCMmD6xzkJGjkkUMsbeuS1xHUymrSO1zNEMUL2Gx73FioYOILWvklWnvPOX+1Erl1qXuu+TsG8DtIfx+LTa04RD/sBfx/FVv89Vf33N49+M4B/WVU/V9X/EMCfBPAbnirvhd4xs/8o2ntfif4JduTw7N86MELQhDe4ReuOZgzg80fI5++g3/4C+CvfhHzzM+CLR8h1BNjJsCbs70JYCIac8HW5JV8FSZm3MtrfqNBdzFWAf+NTiDABYE9b7dVo2z1xfaw331wr6TyaHEB3YJxHVn1OypN2O8MqnkMrZWVzydcd/3ZLsGX2dlIe7Twq0OskSrfGNPGhg58UUcp7aDz4cNoz9Rb5i0jER3KA0GSsXaouUkyX0apCE9Kjb7ibcp3DICmROi05K6ftUkf5cTf3nLyfjNbl2ErzWhY9pSiPSiG5izWhTMKCewmBHIi0+rRRj5R8PA3KxBO18mHo6JvZO1gOSRHzGdXx0rJL065DBKrRD0/hDBHvM/hKpwQ++r/WH4ZOTPX7g7Cc+4Tl7RgnhMXxTpqqHe6UtlbVOGhq2K5ZxB9xWRAamKHKvMX9YsaGLWd2qrQ7LFdd803pWtktT/xUwvnO1wra1vXawFdaFkTbvxt9pPuBXXlcJhd4yzZdXi0NfNUBhkLNXoX9rlzHq1u2cbk2k6dtXqD1QOdlKOUZlBCjH9MZk0MjdfWV89bkWM7vM6eI+f7n1ufo5OdIlH4AZfLZd5tywgb4d+jYZ2ihlLCNY3XaZhLummTFRQrak5x4cdQCa+2lBOy0SaljeR+W7lI/w4anUbXLTFku2sNRfYJotmsya2oWXqFMkpXz9t26ivsapbHErzCpznH9h/59Z9IPA/hJuv6P7N7N9HKhjMCc5MTeNlW5NUL6T6JZ67BWjBdoeSttrhqpTbbsWgfk80fIT30Lx7sBvLlA377B+L630LcH9BCMC+Z7ES4jO5YN3xJC2VFVat7eG6T3Dk0SLpOLibwkSoQmkF1DDDcjXUuj5bJK+Ur4znw4Mbo0/dk2W1pUGmVbhfdGHcdHfVreCN9iWYSyr0bh1XMORfDYqGhqWs3OSFiqd8GujTFA4KcKySU/kyM5lZehm0qKjGuftFK5+cqiKDIUyPtFHh/P+sfkjFZT/Vm8o6EUd0/XCepa8kLqhM/fQxAgPzZqGqXzSftJG1iU9wma4TkqEke+g0Zv1dm/I98/o2cHgEcWCQIJfSXsme8OaKmDlIHr10vy5764M8g2U6aso9ng4hM/AlzFvrFGfLscfn1A4x0FXznm9x1Y5nkttMo7d8bimQgu4pxbP3iP5D1K4ug7OcGrbKP+DTJAy3uBdieITv2AIk/aOzRwTB7VbGtvL12OGRUhmEfYU+cQKqvgMT9zdOkyLj6jKFDwOHSE85F2Xfku/oZMwHbt42+hNuXXHS6DxHGv2YB94hJuXKGuQ1+Vka85a9iGQYjLqG2xDCgJjzx/I0vjeRixeJuzcmgXtDetYhy/VmsBNZ6tdRYlbK94pYr8BAO87ZNeUZYGRvcj0zmJxViqVsNWLO/1Z9jtbbnLCDqy3vpNnjJrUQYC6nCtLZjM87j8yreEJloj6j4jd9Jq7TutZ/dPrHg6pGJwvDsMTZkxDyZp1RV80fimbdw4Hcs3O1KxiKcmV9IWW2DgAo/3UFyD7yy3+xvHeS/7sJmX0LU/X4/Wr+DgT/y9ywud/XC0vK8ufdzO1w+KyE/Q9Y+p6o/5hYj8OIBfvKH7Har6+z+GcU8vNzGjlhWmHIDvyxYHt/MwfeBKQEivAuTIlT3qgTwK/6e+jcvPfgZ5VOjbB4zLAX04gMuBwd8s47TD3AWA/bqPDjb6kQ1CXdT7nBa+x/5hpz0NJeHnR3vO6vCNzjcy7WXc18k+7Wj7w6hz5dpfrVVpda0jerSMqKovbDJXQ0vno0dOdCLnpjZNJuYsxVDnaTe5ZdoyyLH/sCy3aHuqm4AZWqLt2gUrZffYeslQrnlqF4+28n0i7yQ7vq6MFplb+IbQtX3sueattJ5i7Swa7ZUa/0pbjzCgkMIYJZAtim11I2PLqxn+XPsvrxsDUibZtgvU6nOV2YZ86jCXGJkDiPnfumLaDyZ4flokMaV2C/fKNgzsbgDW8O4mbtCuF64KGRoTknnYxzE/hyIb3Dhqa+GLaL7ZCCpf6ZepT+fj4VgJCrmDV43zBKbe8APvQ5uND8WNYUMb/uSsaez4HCwfoVP3p6qWN0OqRNOalc8G50/rpFK7Dqe43+VaWEt1I6Xua0hbL6f3/QULyDbd38QHmuttLv2Ez3o9VdZ4yFhfRap8+9u0HVedWFRxpZcC568mfxjfxSB/o4oj+CrQ+TKmNt8kds3+eFkQb3l7qrKSHIXvWP3Alj71DazVa5kIM9YuIYqwulIvgyao5j+WaAkqK04J7oMQV4lmyhzY+D2avqGqP3L2UFV/9APK/LMAfjld/zK7dzO90DtmiN6gHHYCzdBGHo2wc/BGGP+CQiDS7Stdp8dAXj8O4FtfQB4fIV88Qr79OXB9xPHuEePxEdcHmSuoGfybQOd8/TeHwrQQRg/T83Cu0M9p/QPJQIQ/lpD0ij+N7yaP/2zYoe2ZkowFPjuOctm9T3Z80ZN7LNNG1m15Xd9FNq8XhyC9QdsNUPlUW+lNG8QjRs7OV4DYbdIzpwP09xmqI63yxrOgbWz36ieMB3B3oZte/X4pNzOWck0w+kkyTcbZH9Mhx4vY1Vs0/Wyiton3yY9Om/sSc1tR9y6jr1JzTWT9CaoDmmVjDoqzQpuNvBN5GhQSZ0EjffWV+MYx/Jy3yLjy9Svpu2rqoDHp2DlPGeqAUIJSYteFpctV6sTT2T7TOW8HF89JczYOHUoYpBlaaNfcNxYsJ9yatCQn5eXrgrf+bUpV6FVjZ2JOgmCnBnMjTh+QQmHF46Hkt2oeT3sZqX0Lgp+2vDu+Z5gat25gaum/nE9Q5F8G8guTpmbTe8tnx9fLWvA4676c0MvgLJSff26aaTkk5oRvCWVm/WImHxlLCrk2K/cpYq2Ujvu7T1Fs69MEm6rI1qQJuTtD78wz7wxSTJtt/Aj8eZEBcrUKCL+iitL7zB07rXYm/couqfsQu56+f8XyFMs/hdInE9mO4t1jMfw0LeZOkx9NX+1SS8kIi8RUO9DeZSQKrvtqK8fnlFnbTNEtLDGwTNvwzuV8X23mjdBGEpo9b2AicdhP2HVjx9ebdIwP/vsOpT8A4LeKyCci8qsA/PUA/h9PEb3cO2buMGV/NKfjSL7P5Z3Kco7Emzi8A0mbAxeURhlYflwgn34C/frXgE8+gXz9+yGffgp98wb49C3koPfIJMWGJs9YGfPVZXXAaQN61of163nDCPmPCNOi0Ha84evQd0MrqHy7bQotybSA+MbpdX1DF3fwRebCueTt+nWZI7/XhRPEuc5MK4jjYatPbLbxCvGyjAldFz4ksxa+BGDlutIKxZNMGb2s1TYJsHmd9SU5qM8RRChZAJrk4MmeAJVWqYpMv3yfT1qdSFsAFuIp7IlJPwvjUO7/tdwssNKW/JJHCYdm3Y7i0xmig5IzktLuLzQ48vypH2kpUnTOi+ngY5OFJke+4ukhhc73KLRWp1RsNqNimGnrmNDlYMEPBjhae+T1BFmuM59Gufm0nsRYGtSzU+zEddyHGqZq6DT7pGvc/ADTimzxGEw7x1vUh23AYa+QqRvnIFqhOu5Y3nBStnztz4/TJxmrH5D4633SNc+82ff3mNptgy3tDlNZnyhE+mSA+BDfLS3/XJvthlYW/RY8Lrp67TLfzHvmb6KdR97KN3F/tWvH/bp9mK15u3DnNco6YcX9FcuZFvHcZczd7bQH559jLerbpJ+g16/U//YxTcg/C++uOnjuMMcxNcpyB5z5Oy7WBabk3bF8bcuJX9VnhOqhHwiLFNYOPXeb0PgkKq2s1F7nQRwcWp67c5M+9LMyj2iDwz6TovU5AD9wBEXKbAe+wMlwfTgt+pH985MQB3UOzwPikDKQHbOyXmmamP7Bfx+RROS/IiL/EYC/BcC/JiJ/GABU9U8A+D8A+H8B+EMA/rtPncgIvFgoIwNXjujmAK9dAwTIZjyFrWhy3sTAYmLlhwRkOr2kqACfvJ0ruG8v0E8f5sp76QcJICGT9Wl+NsOq83kRSqwLKdNag/e+qakmq1sANGjzWYsEW/oO0wLI9wk2MiY6NT4+qNjlLYxW/q5jd/hZ1qZTNP3KOxGSJ+dFeZ2ZGTFDHjFf1t3hytY22nzwJrSk6KNRkQFgxRYUoocK1j2rN8/I2+TgxHkLOAdXhnnmcx7KmLddMK549EwbWl30CeeJVcYsY+Vzm9bsGJ2l0ov1uTnoX/Vt5+xFzcVqMeOO9Lw1C1uZxi3oYY5hd+uUsWrsz4ACBByhVMaHmnxSkFJz9GHovFdpqaOHDaXkZdoYtAgNbj8gTXx1HentjWhDhJMiTQukfbSWVXZIHBcdsQ2/YoXe7KUq9ROD3t5jtsbPNr7JWfKOlwAFPKINtV3mjt1K9e++ii6Bit0d9/v1As8nuK+7a5ezO9UNn477ITMojxdz2rD2+tVrWbsi+yrQg8an8tWFb7xPbFjuex6zmWz8U1eCGRTwq5jbpKqldGxbKpDz3qKlUvglQu/bJ9gdfIPdBo9b+au/6T8SL6WZKCvZ+WpWuIe/Rz8/47vU/GrrE/1WLOelLZY589UTDw2/A8vJ32AsfoDf3wXyMyliIez5fbPafuduaN1D8dFEhrKTIs43ZDH/6XbFQCxWBd+6yNhD170OPhz1vwtJ8WLH5avq7wPw+06e/WMA/rH3Ke+FQhmpC9j+czhV2iZXNzQ7Bw9b8V3d7WlbsJDCdMhRoN+HAiqQT99Cf+D7gK99Av3690HefjJPaFE6wp+R32fXzkeT/8QUbbTtX8K6eeJRDhQE9flNWronjc/Wj2xoFZW2X5d/N2nJ22TmgVL4mCJjs5W2Iopdydn77g3pUw8iZ5tK2vlMn2KblCkHchpNYPngQdQLDa/9MSvt9UTtiOse4JAWSftJ2jLNnSdlKectZVBeoKxWLs6MKqaIiDzeOFxBzxuNZrFM6hV567sAGo0+HW0fdEW1EW3qUzPtfHVEyAnRdvmJNqtOkAsAWZWlyZe2Te3GrW6hJQffM2p3vjGIUK/N7A9RLuZRzjngyAndbAsKCNM6TRXU688d7EAuQLF+aUfegfOH9f2M905s9OgD9mfYrnmm9uz71hBL23YH7BU8oshCK6r2jTLLQ+HiZWfeF+OssbDPSBM2PzA6X2Q/X7BNiq/y0+7CHvG34RP9LunBt70dlsZJ+fh2o1XKW7KfVa+ufLoPKQVJvbf4G5zQet1zXiUfySLRkf7cSAptMNHCw8uq9UGT+SplKsAydLtHow0TVHnLCv3zQhmjD1NTSVq1/yetFs674TTRIm21qCMStskmWStGG030I5RskcrY2WwV+K+wyY5jqFZ8cpzc8O1tTjdtIacy2S4YmRP32xtzpI9b8/A7IWPKrMHJ5KW8Oc1KP3CYHF3fEeUMKifDOk3dwPo5edSmleWNnbdUxF+7daz3yaG6LYLWyc6A4Z6+zPRih3+UxSClVYwj3yQWKPQ4YH0lHGigdF/gTlPwAAEAAElEQVT78C396GXk4EY+n3kP4K1gPA4c4wHj7cM8kesiwMOMb8lyNMqKD4Qy97K4IKe7Q7xDvgu7KYtummy3tEBOq6Ms+o1WVht56rHKKE2Gfl3Ydv12fOjZIiMwV0CjbtuOhnb9pOg3bNUnZOXfKtA4ys50i3bTwMX5CNOS/5WsgzkobULyMlIbbM9wMCDvZMtRUPhayMh29JU4gQqHQEw9/LNKnHee1NWAM5j6BE4hRlz4QIqDjOsjf08k15LXZXTHFLTuJTyvewEbEEyzUQhJkVNb25EZcuaDJa9Pvw7IqB1EFbiILOEhGcoGKzdtNb+KobN96SXpdJ7sFU3F2g07MV8ZVZV5SlbgjTvQHPDtaWfeC7ItTIhQXCC4wnb4yTQCobbhp3VJWCPtPDnl6VxS9HGnXL69Q6dxAYqDT2U8W6J/Kmnqj5BrCirAHLUdtM8YjaWFlgceK4SMqS5bjokIcnyQZOvIfgBV2Lo0JsNcCRzkHUZN425Drxnb+kEbXcaZN7FFXOcdLfEpfJ/wN55fjxPaBmt9Z4vheOdv2FV2WwiSL9Nmv+c2rVvagsckV/DjOglanbTBl8MGtX3bWIgJ2y77UhHgZvOXokPmdUxNGQHEARp50mLKyHisOodHjtfzego7w5aFhkc0gFBFfgZl8gGM1suJWa+EH8vfiaFqeJOKaTWHdyEeuBT9pi+7ap7BlhFMqHaDQI7ke2H8dazjjs91DbGunD6j18nEgYmpc+dI5gKYHtRW6qsAERLsxZh+KSOFaNPwIP5Kf5bwP4n72Zkdk3086bjsH5M+JPH6Amor3o4IX9O/GPqRDskXha/fkS/hNN7vWtLv2Lti39X0cqGMZ6mM7u3aSSg8RN0bSA57GAR5Trb8EIFwuReZh3wI6ovB1NDzn8bHRXR+5CA55KOEhwQthUwi/ULKi+okn8G35PV/2Jz8o+XdXcckjP/IDIXvGZ+u0pavRF2HzFu7Wm0rDdRG89ZtHziHlhu+vSmWay2T8wR9+9HzugoaJKVcaXlLivBL7Q82vUXIabfGsmRNJadsh49RVtqNPktR27TKvBF5uez95bm0u2ethp8hYy+XHVs+zpA/HjisdVKvu131RuZN/bItpGRFXcHvH6Tmd9kQu2puG2lyFb6tcuOdTEvHehh3l/qjkuOxh6sx7pcFouYHJg5m3nKcMy3z5wBeS18sC1GEx9k2eZC68QNFjk6LLaZyUDPgtm75Ou4Dez9gKt7MmwpuaXcyL7hPfG/5G2xkXJrKKf52DNrrW7KW+kPxp+FTGCMUNaT9REb/6H3stLe6XuzKspZnHNa9YmzXD1Yn5eh4L+oJfI5uYPqd720z7Qa7dzJurzf19YTM/HOsGZ6g1TR+r4T38VVPyFy3Zjm/FrzwZ3tWHfc3fv3UzkoO0v45uLv04/J58tgb4CrXbjzBv+s7dM0vfMm4/2UmBWa0xfdAerFTGQtYhaNS0D79bVptDd+duXsNzeLYwShgH7M2ssuB8VYwLoLxcMyTGKnI/qtM2LpQVZPdGLv1Gy3/ROqdcku7FsF5l+uNWXdFbWVuP7uvPuUL8NjoFDKiynRDuxgAFZfPALo3jQ3fIrDW+1qYaMizZCYhNcVDbSS7Ci7qlDyyy3piW2oqW2dU1aMwjka7S6GulR18oJVWuGSgxA2SXDlhIJmky8ADa8YIf6wtb4bZ8FRC4AfrpdRrEAsCIFwfNfFzBd1CSITfBWMDodBWThoie3hb+lLjq97aUg42vKiFu5TOa+EwxF/QPjrtptJ8JsY3QmmU6sT4uDsOPIUPUqdhZlmygskzU9SH6a90V1vOktWf8yEGqETRJv1TKPw37F8136GIY/F9d6vzZT6iTcIT/bX96pga9Tsoc3RufsOlirNwK9hRb+8g8xZtl7Hb1a+pSax8Ou2G905WKQTnMi+3zppgKcrqQPNf7Xy00SJpowbLaJxCHp9K4qjURCxtH2S0Js7ODh0KnOpk8qsOsmtJJuPqN6r/kehYjpol1LIJczKfsWeE5sJ1j2XCW2nXN6zKAhTxVaINPJY9LeNxVCnt3nK5TlneLwt7pMw5RuB6J6mKv1FkaCZ70Nw48D7CY+UjOiT7gSpTYc06tH7M/rW/ORyHoPgOq/I+2itMqoCOD/97RenlQhm9wdjxOjJjhci7BgygNwYBPfKsFGIVrbmFKUkfIfojuXAMD/zl8+BDZWTvs8HLQWUCMdCSQBqmrQ6XBJu/nOfWg7XrYowbeTsNPe/6yYYPvZu7LgDtbHMmi5DpnuJ7K3GzAKodvU5K+WvhWRWNKelHETFZJ7KotE2uZ+ol9aF5kIiKsTxxzG4fJW0YeVhLvVdDGb0b6EbXtcg06lqt2R/cqa4hVvOpABZe1mntvdJNG3Fnz2EcUERUGeI5vESkK02+cU8VOPhVbi+yHsCSFMKfUAwLeCQQO+8jHHOWkUZQW62uHViRn2j0f50v9y9vX7tuJqb5wX0y2pK/k+HSr6VM2XvKxlUp8j7jmIYFPtw9yyBgHSbrxXD7oPofEi9AiKh9u7U2uvQhs57HQcMhb/xXagP2vgwOAS50HONstBt3My92uLj6AWMB1F24Rsuhe6U8GGH4rwY2nA953wdane9NP9Dun4Wwu31L9if8zdZW/mzD90kfYve9yXQf2QNsSlHqJ9b1PcpNZhDvgr/dj8viB0oZ/LC807AmxpU+fduGpTvdpj0tC2P+7pbjI4eq3fI3IZMv3mgUuV/Fr7YNVI6dQsKe/n5e8+PKpjuhzUmVhW825MoiNRrLioYzZNFxWPiJL0ahTqwSJbm7C7R+GynyplWyDjgxX3bPPvFz/Q84FKb+2QHMF5ltDlR/x8+KgdpP9gJlp0z4/lFoX2v6Xtkxe6GJmbbBWHmE0j3pXRIAOUjQvJC13YPxJnyhUrgZDTigA/7tiK0jZT4hIzJUkZwk9zJeTCpqkiMUyruEKjAfz9mcaPAlvXe2OOtUZQNQ6vUuHKa8l9b4KqrNIc1mNwYZ8ZhtQ7T5/lArq6MuZXO67sikl4GqaNZJa5+6IQlSLfoJeoXWxsiOx7PmOwBMmsFrPsFhu6aTSNoiovgYQePdAs57bGzj/ATpxMM2YjaNiZLJqB69bnoJ6Kh2myLJ/AXiG36Z3zMRjUFJDFoWWmfePsos1ew8ZGGnnvrYwCXqfjq4DLMxnWhi6PnnOpI5SGFb5nsA0UyiDyffXHnlNqqLPv7PbpzGtAKWERDJ751Vvs5HqBycXGdHObhD3ghBOk02TigTZpE8+7rEdYMac2J19EnvOCP1uHTstu+Kxa2RR6gMW7hzh5BYbvVLuO+4uPiBsCTAA/iOx6d+oKk8y0qcj75ouhY/sKFd/EAWmpHSjDEuu3i9bGhdlnpZsxBfijItjxKPV39TQdv7FNFucZHKWUa5WN51kzbB0q1A+bD6DGZsLagPBjJ3FbK9cM4Y62VJLzv4ru1l68tO8vKC7y7vub9RHITlzFfhOKCUd8PW9FbMd1m7n3Mc6NO96m4rLfuTNHPuYuX7s3af6ni/K0h+IHTvPsP2C8TrKutfMMpR9IC/o8wa0G8KT3VfxD6jT8QPg8ZDEyJn70++Tsv+hm2R17WLsN/nz6BkN8mOwT5j6Sv39B1JLxfKuEMS2k0sTZTBe3Mdp40pMuSEwkOKZ1Tk/aH1iCDd8PXODWQ5LDa/MLyl3ejT7vDCq99YB2HaqPZ8nuJ7a1U15JCdvM3x7/gizVtGpU/I3ItduO9k9mreFF1+nzebmruFZMQR3F2OMho4kdFvdOIdrabzi5xnMrb0lONe6rZLeIt2yVzfS+g7c9lPNiMdsaOBG60q5vsejaL8jhDCzre/M+W0SrQhHfIjonSv0Tjf4VeaQ0TWfal6GhDkiVuZn8Nf0J6h3Ld8Ss897G5Xf422l7OFq8iLfaFw57/nlqV8mIeeg6zWMCk+Lk/b9FvUb8qqkQJX1FDFRwUeh/0eOB7nfajdt3wL7m+FpB8LXumaV/Z541pq9vUC4cPKNVp53iJ3Temmv6Fn7+MzWkEL7SJfy9uL2vibnW0yJKzSxu3WnbZ+bgMqQXam5K6uue/LIlXrgg33T/1Nf7T6mzM/sKv7LXZH16rGuI37joUaBS/RIyTIU58SWPF4FjTcVpnxebRWAPuBTt59xjpwWfFYwNWY07Sj+Ruf6AhGq0PFhfiK1oNKalPU9q99w0zz+eH4He6gSsf+5tKuy8EdqJ+Fkd0zTRvOhaydN3a9XmzK8Lz0PRLKKPujWb/DTEX+EoA//V1nfDv9IIBvvLQQX4F0t9Pz0t1Oz0t3Oz0vvUY7/bWq+kPPzXzH/a90utvpeelup+elu52el16jnd4L979bSUT+EKa9PjR9Q1X/9i9Lno9JLzIxe41JRH5CVX/kpeV47elup+elu52el+52el662+k7k+52fV662+l56W6n56W7nZ6X7nb6qzO98n3Je7qne7qne7qne7qne7qne7qn7/10n5jd0z3d0z3d0z3d0z3d0z3d0z29cLpPzDL92EsL8BVJdzs9L93t9Lx0t9Pz0t1O35l0t+vz0t1Oz0t3Oz0v3e30vHS301+F6f6O2T3d0z3d0z3d0z3d0z3d0z3d0wun+47ZPd3TPd3TPd3TPd3TPd3TPd3TC6f7xOye7ume7ume7ume7ume7ume7umF031idk/3dE/3dE/3dE/3dE/3dE/39MLpPjG7p3u6p3u6p3u6p3u6p3u6p3t64XSfmN3TPd3TPd3TPd3TPd3TPd3TPb1wuk/M7umvuiQi/xcR+e98IO2vEJGfE5HLly3XPd3TPd3TPd3TPd3TPf3Vm+4Ts3v6SiYR+VMi8m2bJP15EfkXReTr3yE+P+rXqvpnVPXrqnr9kvn8PSJyNX3475d+mXzu6Z7u6Z7u6Z7u6Z7u6XWm+8Tsnr7K6e9U1a8D+JsA/KcB/MMvK85Hpz9qkz7++3M9k4g8POferfS++e/pnu7pnu7pnu7pnu7pO5vuE7N7+sonVf3zAP4w5gQNACAif7OI/N9E5KdE5I+JyG/c0YrIrxaRf0NE/mMR+YaI/G9F5BfYs98D4FcA+IO2e/UPisivFBEVkQcR+a+JyE+08n6biPwB+/2JiPyTIvJnROQviMg/LyLf9yE62s7dPyQi/w6Ab4rIX2dy/LdF5M8A+DdE5BCR3ykif1pE/qKI/Esi8vON/lf2/B8ixz3d0z3d0z3d0z3d0z19Z9J9YnZPX/kkIr8MwH8RwJ+06x8G8K8B+B8D+IUA/gEA/0cR+aEdOYB/HMAvBfDrAPxyAL8LAFT1vwXgz8B25lT1f9Jo/yCAXysifz3d+68D+L32+58A8GswJ4x/HYAfBvCPfoSqfzeAvwPALwDwaPf+8yb3bwLw99jf3wrgPwHg6wD+Z60Mzn9P93RP93RP93RP93RPryTdJ2b39FVO/6qI/CyAnwTwFwH8D+3+fxPAv66q/7qqDlX9IwB+AsB/qRegqn9SVf+Iqn6uqn8JwD+FOXl5MqnqtwD8fswJE2yC9p8E8AdERAD8fQB+m6r+ZVX9WQC/G8BvvVHk32w7fP73H7Tn/5yq/qSqfpvu/S5V/abd+28A+KdU9f+rqj+HGdr5W1vYIue/p3u6p3u6p3u6p3u6p1eS7hOze/oqp/+yqv4AgN+IOSH6Qbv/1wL4LTzJAfCfA/BLegEi8teIyL8sIn9WRH4GwP+GynlO+r2wiRnmbtm/ahO2HwLwNQD/Nsnwh+z+Wfq3VPUX0N+vbs9/ckPD934pgD9N138awAOAv+aJMu7pnu7pnu7pnu7pnu7phdN9YnZPX/mkqv9XAP8igH/Sbv0kgN/TJjnfr6r/xIb8dwNQAL9eVX8e5m6bcPFPsP8jAH5IRP4mzAmahzF+A8C3AfwNJMPPt8NKPjTtZOF7fw5zUurpV2CGPP6FJ8q4p3u6p3u6p3u6p3u6pxdO94nZPX2vpH8GwH9BRP5GzF2vv1NEfpOIXETkUxH5jfYuWk8/AODnAPy0vZv229vzv4D5vtY2qeo7AP8KgP8p5vtsf8TuDwD/CwD/tIj8ImC++yYi38l3u/53AH6biPwq+3TA7wbwv1fVxyfo7ume7ume7ume7ume7umF031idk/fE8neD/uXAPyjqvqTAH4zgH8EwF/C3EH77di39/8RgP8MgJ/GPDDk/9Se/+MAfqeFI/4DJ+x/L4AfBfCvtEnQP4R5IMm/ZWGSPw7g195Q42/ZfMfsP3sjf0//KwC/B8C/CeA/BPAZgL//Pejv6Z7u6Z7u6Z7u6Z7u6YWSqN4jm+7pnu7pnu7pnu7pnu7pnu7pnl4y3XfM7ume7ume7ume7ume7ume7umeXjjdJ2b3dE/3dE/3dE/3dE/3dE/3dE8vnO4Ts3u6p3u6p3u6p3u6p3u6p3u6pxdO94nZPd3TPd3TPd3TPd3TPd3TPd3TC6f7xOye7ume7ume7ume7ume7ume7umF08NLMP35v/BBf8kPv8GDAAcUAwL/7u0XemBAMFTwTi/2zJMClFfiPy0L+ld0pVHuSKRd7XP7XdlwOZXJ8u5u78RXCFSBEfNmp60ynpfTtF8Y66l+Z3INAKoyZSM5tqouZeh6T87y1vy3ZNKQaWerWzJla1jyvqetutxhH4W13efT9rxntnpfmbz9q/WrWzJt2UU5t2S6Ldcuu8v0MbaSTrK0q/fRU6NFqMpNmXa0z62/M+zYZ1f7rwQuKI73oK/l3Kq/M1v1PuPpJ//Ez31DVX/oVJCWfv4vfNBf8sve4GGjwRdm7wHBox7Wn2/bfaj34JRQFYC4nRKrHCsA4JD55BDFETze3z7P7r+nOtSGO7D2UZGp006u2/XVk954tpbnmqjdHXqYLc/a9/tj0nNstS+32+qs3t4HjzZji026hSdsqzNG7+/nbviqW/pZu3GZ3HfvZHqqrFsy7Yrbt++VG9ffXq73Hafcqrvn2+qp+tNnt6un+twN/ej2COx/f1vt2/ltbFr0a2z/1B//5nvh/ncr/aa/9fv1P/7L1w+m/7f/nc//sKr+7V+iSB+cXmRi9kM//An+md//a/ALj3f4+vGId3rgs3HBT18f8FPjU3yuF3xrPOAb1+/HIy5GZV1Z0g0fILCS2tgUChgYDYCcXaYBwRiCx+mm46kAEEmH7ZA27/s9IIZuopWWnL0/84FA5lOIdj5zUPKoBz4bD/hM38CniItMynxr2ZUvKK/Ch3VZFkrePpwRmUD1qAc+Hxd8a7wlW3Wd2DZKtpm8DskpQuXbbQGrZ11k4kHtox54HBd8c7zBI96kXYXrwGwf5Yz53MtXMb56k+9qq7UORBRXveBq7fkzfYviVDXbb5WRbUXtg+rA8+5tlTL1fiGiUD3wiANfjAPfHm8xep8KuzZ9+vViq327kS1tkxnAIw48jgOf6QO+sLa+tu2drZTqSVp/8/vW5sguZ/XHdpxt/YIv9IJvjzfRcnY4cF5/a1stOBB800lWWpJRJo494oIvxoFvjU9w5fpbbLXWH0JfKThQ23pv981Wza4C4O//df/nP433SL/oh9/if/77fzV+wfEOXz+GYcqBnx0X/OXrp/gCF3w+Lvgr10/xBR6W9s/2HxBcVfBOD6jO6dVVHZUdrx7wblwwcMEA8KgTCd7IFW/kiq8dn+PTh8fFPrs6AxD9anJQWvBSiEizT8XjY9PuOm68M9z/ln6CxH0F1Ntb9zdcbm07LBMa35RpxbrD9BMZGHrBIy74bFyi3fX27R722PTXfd8nDGy2EpuOs11Bbdafv8MF78YF39I3+FzfGAZknXQ/hJCr4VPBDa4/DdzgOtr5cbeb4/7n+hA+8mP83CrzCNwo2EbXve+rwnDjQrjxtJ+rY5xdez3zzXVssfriWdYjJsbOMQ75yJvt5rn+Rk/qiNqr9D41cf+dXqz+PjmvPyqv2nHXbob1sUlzLLaQbf2Fv7L6ezcu+OZ4G2Oc23Xgz0mWjt0LDlQfgLDVaGPFme/v/bV/9L1w/7uVvvGXr/i//+Ff9sH0b37Jf/CDH0orIr8FwO8C8OsA/AZV/YkPFgQvNDFTAN8aBy7m6j7XA/+/d1/DF+MNfm58gm/pAz7XC0asWs90zP4L9W5DCCa2iKPUQNW4iTk5Xk3w1YfYCbJV1pqf+Bq1qJc98x0wvkqdzpbxJxkNC1VwGCj4mlPyEdgjvNMDVxwmowQv3h0QIKBDoDNvAKoED7eVP3E9OIb1UH9utJKWEltJutrkzIf9hS/ZVgShb+U787othapjtYVChuA4ACV9GYycxzuSJ3QbXgfJfQRAmtWiDmTly/pLynVLZndgqnMAeMVRFgNc/rDzEAhtCtT6RLTlWQdCbb/biusPrV+knsMc4hV15S3aL+kXumO2/awDOeFb283UxVtIlTUpcuAwNrZK05ituN0UW0gMJACUdiNuQaal/ljjuHXuUusc4D/qgasewcz1C331vD8C7HCF2s18OoI3FcC2Ciybda8KXDEHpGpDiT3fWSdcf4yFXH8C4NA5OqkYsSZ1u1K/+JAYeAXwuR74mXFAdOCdAn/x+ik+07f4metbfK4XfIaHWQ+StXVwp0D2fYHijVxt9wT4RK644sBVH3DBFXIorjp1vgC4QDAw8CADb+QRKoYOWyzo/UqjX/kw6CBrLbgBHuDOxUGvi+wbOYAeCtspvBDue/tW8je1X40xfUrFDZMhcEO3+kErpiauCsR2yALLDDeifYMHfNlvfcBZcaP6uUPdM0nBOi+H+xH74wO5yBq4r9zLzBbNZ4RsHbvJGBU3DKFEilxOq+TH477V36NecCWNn+XnnvQ3k3LApwsuoUQ/FOTYJCyncwHjEZfpA+LpLb6GbaRv93OzP6644W3niDvAQdidckmMcXh8d7vdPMffuISAWr/we4zHh/Y+ZWMcTMz3HaqVb7Yb9k213YDa84FBJanmGNakKvUlmvXg2WZbJ9xnP7fBm7Uvd7uu41uUdpOLU97Ojpr7FSfFVcdLMf/jAP4uAP/Cl1HYi0zMHvXAX7l+gs/0wE9fD/zs9VN8e3yCb443+NnxfXiHCzkhwPpgNP4J5gLoSPclCtEctAs1WXciDt8TXBXvxmEr5ILPxwUiggeZATXHYc5AgOuANVZfVROTSaCqkJFO0QfoU6YptNP4ANnF91VaI4Wq4hGxThETU+8sMjJv1dMDQjX4ig1MIcfsYgR2EMUw8J07Yl6m5GoSXV8HYpCqQ3GVYwI0DlwxyDbEFwI1Odjyk693/nRfs/5Snzrpq8B1QDBUbaI4S3a7EvfgOwBrG0fRL+rTZIKBN9sGpM9huxfs7H1BQGzYcAXmpBqCYY4x6w/Gw1zBIGC2OvG2gZHAPVevqe6LXa0dSOoE9TqZdrzaoEH1AAbwSMA8yGLerrhOxqD6U7WVZXdsoH6lYSuJus/FiT6AiwmsWjtXH3Bkm+R2I0udZPsUFeKh0BgMyOwX/twwIiTiwYj9eoTvoM/+eMWR7TVw4Ji6SQ4sub1G/VlDcRwTw4xDfcrt9tMYVDmND/0FiiusrfskrfQLjcGNYE7g2DYH9Quvgxx0aeTV0taPfX+M1qEYPCp9Zrqq4Kevb/C5CL4J4JvjU3xbP8G39Q1++tFxH8TbrCej1b/huUzbHvLOJFM84IqrPuKqDxBVXFVtp0dil+0Qm1iq4Iurlzsni96+IRoTaAGgIvO5YerEiYojI6057yq10ZF9dA6WNOoaAB4B2/PJdge3xUjdHdsKX253rW+M1jdE3XfRAgN80jNsAJu4cW244e1MQo5jTlob5hSZWv8diug7ghGYKtbKhvoQ2Fuu+88DqgOPKjO0MnDDeIrORTmnlj1uVH+TdlRtfcMALnDe+6Rw3c9/HyFz0QsKHcAVz/RzSv231F/ifOAGBtw0W39KecX66Du3keaOMvu5yjf1E3oWPlKsP2JE2w7cID/gMjlOHKG9j3EydH2M2e5996qEprr+3G6obae+3qe4TiouwvsigCEjFvu8zU1fZJP9oeYjrQ/dqr/Sbsjf+A4sT8Ks3cR19Efvn6lDGePMFSRcddp/W3+YC20CwSEy+yNhOePAvj9mn4ZhZPQF8pnULV9dUuCD/NKXwlv13wPSf39sepGJ2RUH/sr1+/HZ9QuoCN7pA97pBT83PsEXtl0buwWm52xi/ns22kOOAIDDZm0aOSq4O5QB2ZEHLvjs+oCfevd9+Hy8xcNxxaeXd/ja5Qu8wUT4q/J7CC6ZBl9vshO31RybC220kkAfQK1KKzrz+SGA6AHRORm8xmZ0rkylLdhFO0hUvhIyAULWK7aKiSMiv8ul8NUxWwMbgqv4DpXL5UMXH+hpXM3BB/Hlmi22WuvvQA5eY+1H/JfX7yzxUS8lPO+gZ5m36SvOF4B0mcgW6c2pLbjNwyNRHU05xhALHbGWWCboShZjW7V2E/JfQgcJW3W+1i+sTvzpLMfkUNjqaZae+uzqD6f1t2u/QjLPdsT9MXpJk8sGDSZjtgWuP7JV1J/bQnzUlLUuztH7hbP1sA1Z+iPLJJDZ1tlWS91XmXzXYl7yeuucLPkOWSIG1bV4Xyb9QINfn8yrWFvnOlnrz3/n6rpbx1MMy/OJ1rpPefP6Y13ewIGfHl/DZ3iHoV/DO0zc//Z4i8/1TQxQGAtiwrvBKx+Su1XV7HGRGOLj+y5XKHKScbXVZ4WFQeJh0ujAIYIHVCxw64pqDlbsN6gf7du3DxhrfwYU6b/V1tVn+38cgnd4QLQYbg86AOG6aHxLW2r+xmUKf1pl9AG0FJlygfCd7WwLsm15YddGW/rVE+17eiYf+nrv4H2Y7G/Ox7lfLcTXB5zebsKuJ34uay7x122auCGtjjQknPrlUJwxdmxw45af29cftxvn4oNslslrcrWrWF0nbjwkbtwcp8AWr7zNmUzcH5/EDbYr4aJhGfQyZWIfaWMFnhq/zzilYlSt67U/ZpsLSc3fzFdbHk7qDzh0Dv19wWHql7tLax2xv8l+v++PI6QfgRHTb7/jMc62/kZEBalafzQZ937uhr+ZSzSISRzZkVz+PX0H08uEMirw2XjAF7ZC6rHZQ4+yypGN3Ro3NXiBpMM2/LZ2GLTiz5DhiJlmj/+5x7f42Xef4t244O1x4AFX6IN1bd0NSCYjj2SoDVgiXM9ph6+qm1wZHJUg4vr6C9ZXZCicOwDl7Se/LrbxfLNTDsmQkBimmwwR1qfUuYUHc6mrGi8dMxROx2G8ptGHCK0m5nRpgpftDZFM4bwhANcfUHaC3G3GsFOKYAG9j+OIQwPcxoMHCSZT7l5KTmqcL9WuD/Rd5ozUzLJcvoOEcr5DBddxzJ1PWw1DlCWhnzSZ9NRW0yYHtTmNBlhlKv1EvYbyMJ1HnTvEg2Ta1p/VyUF2mvpl/UU7CT7ZjqCzakez2wFvY37Qw+z7j3igVdbn1F9Uyawzqr8VM3w4ZXwprKMP/zwk7jpmqNRQa+uLrdyJ+e85eVALo0oEW+uEZWSZin5B6XY+5oChtPW0ozQ+Lttwh6zz6VH4MjY1uwLwd3sYT3MIkn3ofZIC+GJc8Jk+QAznPh8+CJIZtun2sfYNWHvo9a8JBwU3ZP5n7nYNvBFYOJGXPXm9G8DjeADsOURxiNDQaFcPNCD1HNQeavt2uWgQRHbgcj1M8DrEQtgPQCSwYDLIckq/ksaXQmyf8jeTD01HbEvOc6jjmWZfCFzsOgR+bfrVU+3b+tWwylx8U7cVLNQYD7ZbYXUrpufie3v7VsQuXVRMTu+rLbI+HTfm7lXW6DC+c6J4+Ntu2Y5OxinbdqPPaTcwW+CGXa3+Om54Xzgdp8zn7p8U3g1J39IfMyP3R29/YW94O+QxTkYEffA4Ra3uwt/k5PG8P2ZfhrcbnbZ6Z+Mu9xu1/rICObwxS5TwF+znen+s9cn9MRuHGO2gxbh92Gf2oWmq2/3R+1Cpv8A1m1hTf8y14tqHXmsa+KhQxh8UEX437MdU9cf8QkR+HMAv3tD9DlX9/R/DuKcXmZgNCH7m8WsYmMPGq84VJpERTUTkwMCY8cDonT23fmFAOfPO8uOlZ81VAA49gMwdqZ/94i2+/e4tPnt3wTcfP8HX3rwDBHg4HnG8eaTQkQRwB/MRQx0fGknlJblK4uDh0C9GO/SKw7exZUL945AMG8RcwfGyfDVKRHDt4QaatlDbbh+m7LAOGNvVgSYSO0SHAxytx9sYJ2L6JyiNGSa0q5PGN+3uMoU1s/7IMjJyJUjhoWFT36xLs60q3sVAxkPffCLrKzspEzbX0W5Kq/IVJqt7RayQcpsD2TnqT4c5Z18PU4xxlDoJjS2cApBwGKPVH1tnqJ8mZ/3C2kXspHX9nFLGdDgG7grFdciJTFM/t+VQ1y+dWk4DzIG6v6QBh0AwdESb8vh+n3ypDfgfh71LiXzXU4oOSQsOyQpn4+3E+gWOopOIUOhinv8a/QIcIidQHfMlcPi7lAPX8XBSJzmkEHN3vngSoapmC2m0/t5BTDp9VENtLBy/9bF3mBNDDA+HOWy8oEvbFuTgKhqx81Lv11KxqbQbClcyfTT0qwPL90lDBT9z/dTC42bEwrADCaJviWzat84w4E37HjJ3vb0eVC3OQBQXUYjOHn7IgWMoPsOclCke5i7auOCQAT0AHQNvRLIevJ2Jt7Nh+s++HvgljvvUr8LWdekk2132deg8CMXb3ei4AdsZ9n4lbgvDjda+uU5H6GDvNhJeIVbdXV/vKzbQHYIv9GKRG44bMU4tOjh+1fZN+m/9zSzr8EEgeD/G+8Ls+95mofMVhMQNCWzwMUDxN0+27+Tr7zIKpNmCcXH6fKW+gXGFHzijOACdPhLNZxiSL/jUdWd/s2831n/Zrowb1l4nbhwYckzcwJwY1THRia3gExHzN6B2w/51aTcVg9TbrttK1d7fvQDmu6+2gBnjFO9T7zNOsX+9fhf9Sn/0wbvppwNXO/xjAoFinu13YKk/s5Xzm5M6r0/EGIf5Zh1xu7HoFvXxH2GrW07neQMDB6C+cOjI3seZo777x/2RQsH37SbbvsL7I401QiZEXb/GNCMjPkq+b6jqj5yWr/qjH1P4+6SXmZjpYScOYjb4CCu7ZOiFKgQXjHLtA0EHglzDPLTlVYEcFIqSXclGZgceroLjC8G3fvpr+OY3vwb95HO8+YFvAj//gvHmao1ZbcLIA34EQB1xUpXzyMGSQHEQrTstz3PYaWEpc64ozUMILvDZT9mdUa38/Npto9P18CQlV7/n5CdWUWwr2wd5c9ChVCcOgTPWmUMiIswm+EyUyi10yYG7D/IPrjtzAAHeiMnYIR6aiBnCE3wweSgww3/maq6fVOeTB+bLMoGBMOqAZUonwDLCbOJ5YA6p66c4IHrMHUZ9iDYnja/opdWf0MRZMU9GI5cjau8PUVuP+nRAN11ZP8UM07DdiGscRb7pUyqkk9qOmYcu8iCTBszeLhWNluwafDIMEi7XwHwnQzmUsdcfEhes/Wr0oexTT9NK648X0s8nIDYg1ll/sTbb+tQR67E+/LjQwTZuG+oHvT+i6pMHDFl/DFovx/vfJU7Hy7au3i3gk8zADAcnZJvudeLEfqpdhCiTnUUvALW5LPf5aeDAO32LobBwPal2wuzrByovKWqM2r4HEve9zdq1TxBip1AUb3VA5cB1KK46T7m8yMAneAc5gMtxzXohXIz/Ej4F7tsL59zuDozEQdiAPPStfX/uFB7z3y1u+A467aBh3745bG72Rxv4aw2dWuqfsQ6KQw+omEwAtTuNsm76m9K+e7tTi0TwQW7FK+7r5V/DWMgBjPl+0qN6KOPA4W206OfqMV57/ZGfngBW2ne2uarvgQODfYRc5hHrMvvoO7yx0Lj9OGXBJ3D73bSbWKDkNrfzp4P8uOe0Q1xwwdWGe1u7tvqDqrW5gSPC2Ykvtxth/fgwmgHBJdtcoFqOcR7xEGOcW/jE7WY7Thmo7aa1Oa4/sQXK7I8yF4jEcF8esDu52PUDtWkOn92NU47S5g4MwuPalyuuZbITZyG1/tqYLl4bMJsU/XbjsO5PwzZaaA+VkDkWSl5xeql3zL7s9EKnMs5wr+PgDp7NsTfN7LY2oEN2/vmcT72ygawVGOtQkqWJzNUIBfDuswd8/tOfYDxeoHLBMYaBnVFKDh2AHNKJXfM2v4IcwYbWBQ6AIkDK73HJDGvxYAl1Co7V5kFAluOlO+z0NpqyC9h6UY6VG09ULERgWtZf2nW5xHWgOkkQThgOLUNMso2PC0OaHAQNoiWz4pAMaRkKe+kaYUcusdYJ2cZlpDrJuiKJuN0gh1cSD6NlTlBVdzgU7GLASE2F7ASSh6PVnYDAm3RiWtaoh96qtScAdpiMRZir18l5n8p2XtuTc8xQE6Oluq/9sSbWb1j4T2lzpCX15vlcrARrrxoOZv7X3xyYbYFpe5uTHMRRHcwxSYbZgPXzHWr0OnNc2Le50m7IHNFuNPvj7FNMi2ijQyXa+i7VdgNbzW0MKZ8i38Q8/v/s/b/PbUuyLQiNmOs751TdH08YQLcBHoJ/AA8HCSQQPFpCwsQAjBZeSwg1emobA+EggfVsMLBaGDg0Em220Ug4gIWJg1ri6XFv3aq918zAyBgRI3LmXN+3966qvat0purU/tZaMzMj48eIyMzIzLVsFintGuj9/Zrn9DigOtup09MUxdKeGyJwDpsvXfVsrsR1GbEdA2DHwBGrB38Yb3h6HHQRp6S6y9pFmUfYRuFG07PkR2FBsxcL+XtIVAKdxFyf/31W3ID4G5/65VYrUrpijainUlv1xL6rNF3qBSJNr/GrfOQpuEHBKI1cq9vrd+HIVXOrf3y/DngIvqo/Jd3BK+LGnd6wHwifoXaV/U+btY1+U+dqtRFQPkVrVjj7dEtffh+nXPHpXm+O5MeFD8FvAxLbyo+L3ToPthCqVW8geuNqj4VKqTcRE5A/F73x4mvhhvg0keETDyg87fCp9Ca02ot+9RmKAx2fVn9KO8HFHjXdn/zVkw9Vb7h3jitfhQMhHa84pSbBix4Sov6+7NESb2aMU5lBKT9hmfda8TJO8e7Xc8gd7Ta+Bk9sofnX5/qY2X8XwP8awH8GwP/RzP5v7v7f+Nr6vtses8/+wON0vMmRhppGNr8BEJ+pZJx94DHI5SpZdpqKSV0EHGqXAxjjwO9/9zM+/8MvePze4J8eeDwcz9/9jOc/M3BBL9uh8aI7gkNoBFCz2EBLI5mvFY1AAH0ri0qFyws9KyhqQC4gA3Fmsx3O0EfjMfvE/QajrSrNijgr4itfIz3v0zgw/IExUPnMMJnR9wuvrvJz8DSu09FmcPXEJfbP4g/yk/0bsZng6XMm8HKtAtsldLrKT4HmqjdHBCRMcZGx5tyfBA5AqiwPBTg9TkAEN82X8H2RUZMfukNxfEBvpK65KpZvpqyBeU7kXP0JhzNcjiIXPov8co8g3bIM/F3o0LJXvQntFb7SchiYn+Fw5mC2ZmVLfsUbrtZNR1c/nm4XzLCKl0JGYY8rX+WkPDquobxyCSZcdAUGsyF6EzN1ztWrRW9g6ciVNwcYJNSspgbLyqtPcV0FHM3pKl9p98TTIUEMgDgVVPQGHqfHVbCR9kj5XmQtPP7CxzFTanOyYMFyUoXFDxzuslewY0EGppSCQVLSIPUChw0c44hshDc45gEEx2E47YHP/kQeMY+5enOPi042p54xqGWwxlXQ02PChLgxJjYf8eYZtvAZld6lQayB7muuErT+3eJT8Mq5V9Qv/rVoKv2mFXKC8OlzNWiMCPZMsEve3el3yaj8TWHTpHENIGlj2b/hYmOTIdzLNXGD3mGjN2ob3vVmXV2uVEbS4Pkbg2td7Vht4xxMO3tkylnqdtK06V9kS3DFcR5qNt89/Yav0j93TjTHADnK8gTXT5JN0vYoje4Tq53iVW2M3djjgotH1uXh87uPYX9d/Lan347/wi4a7jv1xpsMbu0RIr/QOQ6G7+zx4BYE7uVyzxXP1b9Qo+roer/gzWqPeWK0VX+CWVGOOtDtkbw6k1fI2pve4EZvFp3bxqiCl5NmdL4ucfTxQ6cyzgOCvkvb7v8+gH//j1XfdzuV8XfPn/CzncCDIO4VNCTY+mXgkd8DYLpXBW7zYY4xnWW+m2UNsIHf/vb3+Ju/+xl/8/uf4T8B/gY87cC/+sPf4B/8xE+PE788nvj58QmPsOp5D0VlhdcGXMs2uQoYO09ocqXwrmVHBaGO2vwNOd4WatAMvlzqmv1LQ4IaV/2txz/XbwEzskR/6GccOL0WsbkhFa3u+e6cXap8ZtaXqVykPcoMkUntqot3mALg87jXgw5NBgiDQUysJJBXI0GIPFv7B+mfiY7FvSO26I2sbOrMHGWSA3Bw78Ps7dwrKMcGZCDvotscRFuCngbrQAUmTW+gOmiNdwYCLFMKTf47luPWxaYMIhWvAZ8LzexH6pDq3JD+leO0cHb5PR1kOJzJqxv5hTyoTzP/vevNzIcU3Wo6J/boiz360gfzdmrf1PtuuwwSzI+wXdFt0Rso3lgfcDV79KoXLvbYbCp2mFrNoLKeYay34wDLqt7oZm/OqF/s0cUesz9rWWS5L3mGGz6Nh3xTbXmcijjTsbo+n2L7K5YrnhlmQDqE7pqEYaA98Ih7zN7sDWaRDjeAc/wCM+DtGPjleOLt4AH+qt+H8AxYcZ9B0RG2hvjtjPCX9OQqTLxzRhqcA7VXicGk2Ns8hGYs7ZaOnk2GszzxSfeXJF9Fv/VktwMPnKGJbnN/49NtDlzhzQapy4UFXX6IlEoOElXPiDnmeURD0zuLfgCVkjrvv5qHkTxjLx7XLdQmayDS8emqN+FPiHUWfBWdY38NTL3sNNZdb7yP7sh2Zvqt8GSNF4JWHnc+RCanF6Zykqv6V3TUqmWVdXe4z4mImcVhJRP1LyI/xdS0R+8yOZtNUX6WsnKRAeL31GGfe0uJ+8/YT582lVhGXoXewC46Z2JTrF+xXPXGwKP4J82n0Dx9Iu8vmzo/fTf7KTa12KND9CblucoPqQ3Kx+mjqfPddulnJ22Un/DKRW9sozfSP1vsgrpY8tC42mBN54qvR0jgR35+TWX8lsfjfhSr6/cqlJOXxAg5m8PgxeGYuSdADjNszpTMr9ayVK+agToOwy+/+Yzf/t2neab1wzHeHP/6+Rv8bCd+8XmMw89vj6CG6R1yM4eAd7abRhOzlTljUtT0oVHtheOUybOtmJWDWXk1a3RAaKrkCRYjL2r2r1LY6NgZ2HC2qGrnsGMMnjh1PVsIILg/5Htrv/OpHmu7u/7RwSRbhBfzezhT4Y7ldw7g1v4h0986Taoni964cJW5FNmvDpBz8/AMGLr7Twlf+5efPHQsdFt5kzRTn8jFiMx9+RwtZVAf5c4b+VH2ZVMXy2sDVJc3ijtXe6xclS5PldJn300nrDKg85m5+qRxBpJ72aOVFXvU39Dp4+W+Yxg8Bmmlr8vrGSoWDpDr9zpHZVa9WcqqXai2+BxE8My1jmuFA9ruvU1ZkBE6RzzNdl+V5SDny5+Bx7SntCPOglcY5Vyy9lXvbOmztz7OL5Xa9d1Z71wVm2HYTzZd+TkMvx8/4+0AfvKZMPp2DKzD1ytNZQWU6QyZawBKHSoSaanUSTTcHxmAhU0m+I348+jtenon0bvsNUuCaavz/yW4Tg2gXY3Q18B9Rx7Q1evSML+wADd6B3hec5NlJzPj3UNoirKNV3V0BRxx3QExg2s+C2828jPUqiL72/GJ0ajYRlvnKw7Xd1NmZx5sMesbIpMrtimv5mBX91ZP3q1lFY2K5nlIw2OhLGTjwOfcL3tnU+IHWJaQxyUvdHmu8mNYTN1fNg2gYpxZz9MP+DDMCad7myIfD6z4dOdPQ28iHuy47/Ff30PGGsaw0HXD1aZswZuepNlprrKlCV06Ghu0TJTGq6kjT7G/FeHmgUAP8dvY6JzEB6JzQC2dFvXkzRzMIQbH8xAl9a0/1uPAtx7+8cM8322P2XM8cJrDZfGx0lJQiokyA6YheapoOYVD6gYAGz0/eM6iF4yPWBr++W8+4+/wOxyfBj4/DP/68y/4/ac3/OKf8fQDb8eJv8VnyZ0Gx16g026pX04aK5iiX+39K3e9OqMnV10yYF1d+13/Jg2TxhVECobHUlctZYtjEs5PxzxnTd37ipkuv2tazSo/W2QGIGeffNc/1g0GVfrrBK55WuTs8RCa17raiUPwGiuIprl8o/u0OIhV10xIW3VuHmKBHCh2+R3goRW7/s1TF6uu2s/grTfv65xznDbpDHk9x4HPMdBY5ae8KZsqOpNbH9G5pLF4TF1o+99Cpz6Hw/HcA3HXv6rnPZtSXlX/hCKvvmlZDAua6roK0j/T/Io3cxYXjeaXNoXrk3rjGvZpuuXsu/uk6/QKE+9w7mJTQtTVpjpvVp17bY+bDr3zOAyfx1FTAypDq/BYQ6+7PrpgudohV3Q0zKxUauTqgQP46Tjx2U989gO/P3/CH843vB2OXx5z4PYb/5yUGMironkn//nfkcEMpCwLc2Cj8qctDLecHOAgfa74VlCldkR/xKelJaF45AB8cBKg+Fjw4WlT0/dwz03su4ElBs+A06Ts1SfudAco24GJvXrvT+nZhleYvPqU6cZcA4g+rbyRzw3LhU8s38oKrvT+zZoL2edz+tTtyavquWGP5Xusq5V80l80umSibHiKeSKtyoTymxh7TWV8DzcGNcP79QCGpawjTiBUvQ1Ohc6ln0u65AoGWr3wHFCppgtoNCJkovy405sJ30GTc9V7fuY2kXnJdPhIafuCi4k/gZsQvSmR5W+DvPGuN1ufka146DoHZZ2mLv95UXn6RDJMac5yOi07Px1QvbGIU6ibFRNQp37k55sOy/+Bnu+TyuiGT+cjDPwz3sJL59HYQBpe36uhwaMBcnRwDOyjLAAvIWUAaSggPByPX+b+m797+x38D45x/oQ3PHCeB37/fIMdjt99/gkP/ISf3+YM6mHz5KQjZhRroBNOFMyatkxzy2AjU7JolN5TFN1z8zBgOJ3AUu+yP8DcK5a88trrdJhhjFH1Nj7WcjZ5Rb4aeNfRSF4BhhOoI64dmQrHspl+YAwZy3FniqLxiOIwf5unarEdM+nfRd5M1JhCNNShH6RyuMx7yYw+Az6mjLHylIMBetwvmsxkX1LoGAZlv9E5IO8vc0QQSBqDWckbIPeyAbVfQGluepOpejNQG27Z+9xTudM5xOW64RjgdpEfUyjn6Y1iU5D+hTe52BT1xuZR3kVzt13aCdt16jp1LB3DDGpr07HaFKbeeNe5dOTz9Abw0uHSuaLpqnOkb3Zwyo8TI0XzPEGy21Tj807nQLxxCQwina3pTZ8sWe3xDLqmEzV8GooDtYfBzHCu/Zt5Nklb3pMEHUDvseoQJ6w4MZPeKlD76DMc+HzO4+kfprz00iUZgDf+qAwblsdsM63fZjCjAVLxcu5BcLNIWTxxjBM+DkwINfzhPFK/xjnw08Px8zHwOBwPO4vmCDLJd6BOBJ34pH7AY2I6dDN5zQDM8Qzb8sA2Jr8RN45ox+GCDWV/1IfhhXW8+xDEchc9s+k/uKZ/2IGny9HYNvcfnpFWaRG4MmW7ju1H0djk2bG8ZNqRQGVU/rR0QSflqINPGHj3WWHZxOOx2FUOmMkb0iA6lz6kapryjE+KbYaZKtsGEWYhv6BhIPE5yy68UTtz6QPf7XpTdFEnLPCpaOC+bZUfMrXeMFeFU17wSok2bHEj27F+3VDpftSLwjp3z3KIeI53RxIneYgY4JNX5OwSHyEwiNjs3vF36pz6xJJJuKvk24xTqAucSCwMSdw3YJwesUVhefNrwivypusc+Vg6N720/AbPOIV9TZ9h0xJO95QfgMjiQA1QrWTvjcbwN/LZJF5wiN4g9Eb4Wv2rAbXGi78+f/rnOx3+Yfjd51/wwD/BfqqZ8vlwuTaCF0kBsvz/6WAP1OzUIe/WjE2YimyMZFkaxJytfMDegF9sYPinUP46Gecfz9/ikw+8HSd+8/bEL49nGquuEThquT0mP/pMkyfKVp8zTSDnrQEggJ4pEZCpxpitkVQTTYsxTIdbB+t6ll05zLKxs2oOJuB4tFSEame4YVyW1DVAKwhzr+SSiRxMkSyZWHHhIj/ybSRvDuEd25yD2M+jjoAXqTdeNd5oWlnjyDs656pzPCq3aJq9K16dIj+dYZv66DFbSDpk1TflS9l7ys+AOZC0O53zrnOIfTHTD0T6T5cfA6Ez0oy2NuXv2JSkKFXlykeXn2h/BzDm3X11U04MFG/7121qr3NBZ0vLhQTwwZtmj3RWx5wRHbEHjm27Hm/8jk1RvvHNtKlV50pLrX3v6cJn+emuiVWfRqdJ9WRrUwtNteq3yMT751qbU2rLHnWF76OPw/AZb3j42VZuOFxQ3a6ktiudqnelvdGCDJBpk+oztK7neAD2wE+PmbmBxDfDH8YD//j8e/x0DPx8nPjbt9/j734WGWaERJosU752Nlkz5RM3asXBA1EmVihuePBjBnXISRM9mXLVO/UDc58QKXbhaNQbM+MOZIohh0yHR7htBh/Ile3EPtIU/Tvgt76YfqDQVPwAiuYaDAViCB6Z1GWYx/h/bmmfE+Du+kvcYDuIPY0lg9WfIq1w+gzFzNI5C3nOKxAMYxx1Lys+4Isdcd3DbOs1lle8UNZppWPi55CD7qlon4ekMr7ADYRuOKqduh9LeVV87iuaYo+BOTyVtHBjcuTMg0lqGLX6Yl5LUC1Eu16+C0Jj0VT6qDSnzJLO6hUA+DAM3PMKztUkiM5p3Sm98BmF5YdMbUmLYo8jY4La5DP//zkeFeOknVvKup1uvsiTOgfRmsKQBTOWrQcufFtl8KM9Pf/uL/v5bqcyjsHZ0VpUNr+O9md8ReOvZ85cxTJ6QpS132vmi0Ax/8/AVaC45NbjtncHfn488bc/hyk78IfzAYw3nI8TP7vhl0dsfXUFf7YJDG4OD5q5p4tAtxxam3/rusdMiXhkKhUNovVPeDXTCSVIAIQ3NWMIATPOQrXlftJhFVOzD0w/OIf1Y/4thxswjxQeEPJUHjGLmPKds4tH0HyVX2pL0GSyGZsrUtM5c+NuvV/947uUQW0xv/KRNGiqlGZ1dp3j2/yLKREWJzzZIr+a7TIQ/wRMjasQ8a4zZSt0WeSXcalT5wqg2T/VOQ/5ffZj7hNU+bG/GzspPSneXGxKZeTV7tQ5y1lptla84qTIEae+WSrpCv55J1DIZCw6p3eyXHQ55Vv6WpjRU3QYUJwjeJV7WK42lal4F14JVolOqU3lbHjq85xZT52TPnC9J9N/sKS03OAAnIcL6btFVGKVi86BM6c6y53VNb66rVL6yGMxO1vHd1CGeQls9ElX5HIWX+0oZDhwbOzXcyKk0NZjxYy8fHANPmxg4JfHE6c7nueB/9+nX/B5HPjlceJ8PPE3j0+5CpI0CS9X/tShUIHAoStEfU/bRsr06UemsXNiIQcAERxy5j2x3AA9yIgydLiAF5JO8nyH+5qqiMDcUwZAHCxl/7Kue1+8tckVy62n5alFTj30nBgZ0TbxtdI+gUy/oy40XKQvrtAUojdFMWmqnZwrpprHXpsoO0Ke54jVPP73xb7Y5AqSTbtJYelNabDlD+QVfeTTj379B66xlpt1X1xwLTZWMmh+ILBtBF6pXZQ4rjEOD0zJaO8dX6x+rmM53y4MGRJbpM83DqYCJ111LnQdcdhZ+qK9L6btsi3Kc+pyyV51f+7RUrvf2KPYBeOuzzwtUuWXuiz2uMRHqy9OHwEekCTYJLziQ9NQXVCf8MM9PmP6v4bnu62YfT7f8A+fBn4+PuM44gQg40lAAGC1pA7EAGBUcJNggHRWh/wGMLVkpgLNiyur3jG8ZurdAR94OxzHMVNcPo83/OGcZ+b/08n5bsc/PH/C4zhj1cXqeGY4mErFS0GZLlHBAbEzzCbLlhP/PHiEODLPH5HS0dKfZHl6pnV4pgkGzkuqTfHRAlUIKgR5gwRA4qyGjTwK2INXPEGvvSs0sp2a3fZM99F0TPNK6dHUEsO8M42zp0oz2/Xh89CI2Ew1PFwo3xVZUwZ58aKThwaeQARpx4VX7vc612i2A+6jcsJ9HmIwLx4VpxF6SOCk3pwj3XamWgyK0zHTC8DJDOAYVbYuKrUMcKd/NcDGTCFL+Y3cnD4d1YiUyqNAnHxWnbuzKZU9QudCH0njnPUemRrH/Y/UdWe5iErIG/L1dOoNMWGjc1R7L+dBmm2xIQZxnnzydHOn10lhU37GiqaesZ2wKdUb6pWnXlF/EWmsr3Su3uXAgzSTVwNT1qdTt6t/igPI3+9sKrCKOifyq/C/UMtgcTJi0cz03y95Zj+OSMGRlC248Gra3JH8Eb0LY6jrIVYdnT2IQ3ORieZiG8M9Bt1TB90d5gM/H/Mks0/nxPvTDf/46Sc832Yo868+/QY/P554hCOpk8soMwY1gosiw9LR6J/KOyZyztgzNTH2kLpKh+v0yujv6LioMqz1sAoAVVc8TgtU+ZOPjpk69RzH1JoVN4iLxFRcfTH1bB5MYWBQu2L5PDCuAkoPA7DwNyNkOYIXekBKu5IE3jDm6osjbTBops0h6j7Ebmb8XrhgYfvk7EynJY3n5BUP/SBuADJoIW93vpjtQHDjiuVuyleWtaSp/Ev0zyvGucMN8mryhvglMU0MYCfNloemHEJTj8Moa8qzgn3S/GnMVeFpg+ojR9EUtj4GJ8HUF5eN3fli89FjCwB6THwgEuY61sDpR64KT12fen/xxeRx+mLHsfgB5SPfJ80jdW7Wocfd+JLyOiLumplKLjEOwi5i64lVmxdfnDbGwWzY4+hYpRh5gDZ6YNgIPz77N74C9/9cT8YRfwXPdxmYjfPAv/pP/h7jb3+H5+9+xk9vJ356e+I3v/wBv/3NGW9xMBWOxSs/f/7s6dDpuPOGci7r83MMiWgCPBUNNi84fGJeLg1ESsdjntZl9nmC5QH8dAz8ZI6fY0CWS/NLuwDSmJmKQJIP6EywRxqDFc0Ipz8mECjQ5+xflDWvYCbTFqKuwXZzMLTSlLWg5veKN8xzZv8QAx4fwBNvuaTOJXRDBGripCmvPIvIPZytVdkMyKaTqEtcq2yjuYqGXCcdJw6cVOUcdEYAkjQSICO9It99wIRGDTAmjw/WFIOfHc0se8DxwJy5BZ7+1uQHFB28W6hoFvkKzRd5uceKg+rcqgtlF4ggxuIFlV/2j2URaTka8H/EpmJCoNOcB1jPo/IlRbJmPOdJUnMvSwR9EXhq/2YQ461sthPRrZP++PfKxy57ykDt0egqQ9dPHJkKOTeTe+qCYlMGgKkX1BvKgMmI7+vc7JPoZw5Q5mTNEw8Mnr6Wsi/DUNkfERWuNlXt2pY3fBfKm9QLtL+/5Dlx4B+fv8VP9gmfjwce5jhs4KfD8cAZAb9jni7XZRhxkeAI6bImh8Ms0594NYLa1dTVKcmTvLRIczyANzj+9pfnnJ03x0+Pmcr4y9sTsMB9kWEGfDWbJcE20jZS7zD71+RgADw47vMEPSTmVJBrcfraVobZ/1cyLD9AvC45dppnmh8numa6f8P9SEebp95d9W4khkxb4KP3S5W/0esPEoyQeIlYGXCmRc4B7Bl0BQND36sdoNtoJlDmwF998RI/wCPFkDJb+Jo66VMmgV9jWDsBcdIsV65sfbFlXaWv5A3te6Q9K40aE1AGNSgCYA/A5x15p+BGDu5SnlV23lN2jR9Ufi7ybbJX3UbPrLCYvPKcePbFR1bSJ1e20vbTx5A37/vi7hP12hv6JMXFmox74qdNjIP0N5z4mL74sfhitIHggZE0N38KplvqNIpcJs54MDgyJMapLAcUb4RG1rfTOcpP9QgAOEmbp6AmzY9lYPvr8+d4vttx+f488I//+BucPz/xyy9PAI7f/IJSRS/YzGKiFQqr8ArM+P+HtzdyLObhJDOVavC0M9Zp+Z4DeBwnfjHHw4Cf7InjwcVjbRHEUWjKZVIQMybtmPYNzXM2dQalZ55Sx5pA6uQvglf/pS+hdz4AiPQPr5+FJovZl/oqhm4DcZ+GpRwiZGz97dRKPdG/a4/is4vsIbKOL7UuwqlDaGr0VP9a99BPk1p5M8MN/n3tlcm3Wpr/evSBlxRrO+pAqRONjoqQF6qqb3c6V6xaU34Z0iBXXVzklb3zhTe0E2nNATxEbxwlI9rUVV+lv6u+hszyKG5xws1+aFeLfkDaXldv+qdVFzLsuUiT8h2uh/DEr2pjvtOE6mvbf+WdNxy+Qz6rzrHPs8rSMHfbYFVjxMXSc/5JP4O2Jh/UYohVSw+vWvkVu8wceA4AxxswBvwYeDjwsDMPLio+Xdsmb7uOLnIQ43AWbbUwNRS5apa/Uv/c8ctj0vQwx0/HZ/x09CF8l+H0N7UzRxoEB45lXCsuzrJWuOHSzoxZr7ZxkeHG31xk2NvlREDy1fT3wIrAjeHHtS7bYOrGrz1oWRti0q7U52xeJI1515TXgVQrPSsuNtuwDW928YORIX6hsfDJEwcL9y2xjQ1/my+WsiuOZNkrjaXLkZkwOPwNecvMyuqLb8PvjV8A2USOZFfIm8J9lnJw4vIhtay+uMuvq8j7vviKGVUB73DMPsVPc1JkHv6jMY62yza+xhfzl4oXKmJxVOEqW2nsp5ffTttdMRHEDE0fvvI1p70akwvXrjSTqjbN9QM+loe2/KU/3yeVcRh+969/AY5f8Onvfo/fnvMSveNx4uef/2m+ZBFix4zhXMqWAM2YQ4z4jbNr/D+Hps2pBQ03wHloxJxRmgMizxjZfR4S8fY2cMaRr2/HyMDpvEkxZDqFB81pBFYnZk2aDHUZ83zX3Mvh2LzjI+9Uccn/XXkTBkU65hL3bDhThLJd5Q3L6sBITpGDAThxOvAZ5FWkHkTlTGdjagxPkYPp6XPsX4EI5cd2mKaRwYyPnA1POUpdcOAccxaJAcSIGcXZ35qd0hMZ62Qu8hGoNCOe3lR0VP+iLhCYY46rvPSkyQ2fxwPAERP0kyY9EUxXz5IUZ76+t3anPxGlh9XMlQTeeiWArDeAx1x/HnN1wAdz9T3z7I12AQ23w12QNxYrEKvHckT/aku/GTLVkUJI2ZOZXkcBg4HpoMwqfTTikeYsUtctJRY/WaVnUZu9Zrg5y+nxbsokip8++fXZ56EQQOiU2IkLn3WexVAz9m7Aw5FBCve2YCl7q3P5OWY3I9Vt8E4cnmS22DZWm0KttjJdqfGVNMfnh4f7tbkH15f+pT1ai5I+/Djmnt1P5wO/PJ742Q2PAO3DlrnjZHCXoQZUsBngHclL4LQhNhmYk4HWpPs5Djz9DbxKQoMrOOYq2ePEc0z63o6ZxaFHRXcZzg++wdTUOwY8kXpMX2WYB+ecDnwevDqCh6wUXnngmWM0zCkZhr8RW4msyHyZM+IlQ09bGcRyn7py+gkETcMfM5UKuc4b7SZLJ+Ysvnhi3QCa3+6+yiSANTvkMvHon/g98pzpxi7H+M9+SNo5/xNdOOBxyuG0uhxEbHzxtCEPCmsgzncr7REY51z1n6lwjxnYN3RP8XyjL+5p9Zq6CSAPGMr0vmH4xBgHor+hF2ssVb54+nH+2GKctV3xA2a6pYQDy5HxkEUqiV6TkvsEA+fZm1q9o+WUH4nqk1eZUnhjF26GB+1vWgEeYDrq9BnnMHwK+RUuTKE1X+zzlq8TBsZszY8LbxRzalWXPlLlOftP+2NZ87lw8MxrblC8Sn8TmJh9L19cvFiwCoKJrv50hfVu57b8+qM9DuQJmX/pz/dZMTMAv0xD+Sf/GebA2zgjtUTTJYA8gt0BGhkCrObljchBS7oNzgJm2b48y8djsDdgucy/pkg6gMfhATpx5LLLXiYQYKss0zhaSkCkLWR6BNNBliVlvQD4lFTGeGnDG5atpWtkgCW8sc6bcgpovNHPBodHCgtdU6b/7NqxCX9GGm1Jz4NLCkSXyeExKHG6wgd0j0zdk+IJzsOYEmE4fUlllLraMr9xfsou73K2KA+LMDkdKfrDwQpTTAoPpwx4kqYv8uNgRQcHehBMzuLluyPfPQCc2p+lf5ruweAtDwSw0idzx2kWA2tUCgTtwoG6PDhoJW98ys7EpjIdRNu1AnNfaB7CVwBp647YU8MBoz/qIstM2eFkQNfPw+d9iNkf7+kwPOkKYAAo8kSnceb1U36eR4V3XY/+ysAfQc/U0b1NkVdMe8tJA3iuiKx8pCMPCwmdOjZYRbs3kd/oaWEbzOj2OCWi+2Qr9lpo5uD2C59zHPiHP/wWPz+e+MP5hl8eJ345PgNm+OngMQDB8cV+R9CshwGoDIkTB47MTCibRNM7DxnOCTa9aBZlSwB+elAeE3meXmnNfJdYkDJExw3ab+qsK8YhU6z0BN6Zwn5kXWer67HpXwy6QBkGjWOVoS0yXHGf+5siJc2OdG4Dj84rrt5k/0a3DbYZeuTBG4gtEAEGccOJOcj+1dpWpSlPXtEeeKmyw/GowwkWP95tMC5jVozxh/ii8DdaFr2sysDM8/6rGRxyMJSXbSzxgocMYjLiC3xxt1/uexsxyCr8ZVlEjDPvQXxEvbN/u1iKAX/1933ccJEf9wLyXceRqcXUV7dHxnNrjNPlVydW7tIry6YGeAhJ2QVPdPTEKy07MNN1K5X8iFVSj0NJrjEO8ecp9qgQu/JmtmtN9pUWOM/qVb4mz3Pg7y9jHA+fcUi9u7iF8V/GUui+2KU/Gj8QM+pgpq/D/T/n8+uK2bc8Bhw/jekwD8AOhx/A43H21ARQ6QOeMxIqQJFP7W9O6rZFb68a+TZBqzebtdRXHt/aWsemc+FgBuQgAqFR69zRDJ+zuvp+L2/y/54OYf+mDB4Ww1oTAq68yu5MY46NxH5DEWlH49G1FwZbvt2lTWn/9LvQBUf+99yl2QhNjcpFrPouT8DKdhKo+Lm6ti74u/zrKT9rfDCuqGDHPeENZ7IZSG76hlainnmqlsX/xF5s6iNPGiTPU2YXppj85bkyUd9kzCa8sjRLpVlZTj7G0QYA6i4ilr3wxoTDDLCppvp31ugikzjcBzGbu+vqpb/z2Ouyq1UQG92mbpCzSZe1/pPoHKziqnNUusQb9m+sWGXyQu/UzvoueCmrJld8XftHbUPDtS95HHNw9snf8DgGTnM87QH486IvSmdpq+XdW3cQ7F0ki442a4wTEPls9D2J6TJcsVxlCMEN6kPSjKuk8tTekGvhhrSUOVK+9K9W32kbXybDLv9yQIjVthhoAH1lsfGKe5rv2y1+Gfo/wRul2dmzXqbw2dIuM+3TbCkjLYftk+8NKy/98dZO81UrG9eyMRg98wTLsud2gqnY4IDlBNRHfTH/8cYrq4FG69/ssTuv/lhtqmq79u9qYE0mi95s8Wbz0A7d6+Lra/29smssdY1kvPem/VbyrNJA12fHXLk7B0+O3NfWY5wd7aU3HduvdPmlBNuwlp3iwIJVWov4NZTOseLq7azJl7J0N9K7ytJC+aEs+xW4/+d6HL8OzL7tORz47Vmnmr2deLw989h6mCpDMZpBb1aDspHrDeUKxNdNxXWseWzuF7RdAZwpWAaAhy+I7rd3DUinzLUZvnvIuyvN7OAY88hWjxO62H9rZT35QbN2oQnQ4105M4ubuq7vciXIgZhpnKdznZEQwBWXbId1uu438Lio8MpX8qZ8gtX3NqVO2SbN3ml2VNqgg0vYvX8184qcxQK4p2ORn/X6s3/O37rjd1ijieWGR+qBCw8BCa7mo0f2A95SDaoXwtulHeXjaHw3sYu54jJ83hV2xhHhegx+8Sb6C5Gf0HLHG2+8qV8HXtN8eu0v42EMLHEpK7yh7cJKP9vKleoSsAR+SJmsNHnoK3V98OQ+oaTzZuVJnyA5Vr5atV/nX3ZeJVZl/2zOunqktMQExLtYBQ7w+343W97nPXwasLkEe3dYRXz90sfd8PvPDzwOw89vwBGpgk+vQfCdnq2x7U6Gu7KlO6GjHqlwI071yxIu9bxnG+QJXtI8sl270NzKuuAGyIugKVIPGUzv+nesvPkCGSpv+MMsHntbxoHT39CvaXCxfSz9u9pgBXfCR6v3lOZjS3P5iHngB/cnHfDUX7u0oz6A7fJAom4bnWYystPx2q4yPc/nIUekqfdvo6drO7b4YljugVp94E7vK+7xHGhwAFvXet/IJH5zLzr4W8MNFG4kX6XdlnqK4hVRb/gcaMBxG+OsfYTw/sor4afQxIcrbSzr4BUMpWPcH8hBtWKsxjjJG7ZZV2FeZDJXzxaahS8Xmg25akz+zRgnsGqNcUzqkRhH7X4bS600pt1b86d3cdivz5/++S4DMzsGfv7NJzzPB8Y5V8tOPPCH8YZ/+PSGNwPeHicOG/N44lkqUhHik5kAWJ8DKZAlPM7zb1KJrTZ/s4a6/6CXBZBpNAabp361466RS+d0UTV7ccS7BbBUbA2esyKfI36uUJ1ewbYtZQn4fFbejAAMLmProG32L88elKN/o39Dj221PGAD8DitroYLemzwYZ7tvuZN8DhBwKDBAQE3sTGDh2g3ZK+zuKe8nM7Ai0/VHxdeTb4evns3RRIOcYL5iZLDBMeSn8VeIHZ5DN75EjOjwxe9UZkUTQf768KrFfyFxjnj7rPXkorFmcWp6xHwDc9ZJd3vx7qo65yb1qPn2+yaXe2iHfcrfEI4EA4EKOd5F1HwyhfH0cp66b6pLYddDJZymFXuPS1fOVL3vVi8W/SZG84YCCXf2JJF8JEyoSxrprrmI7Ud5Z06XbWLwoFDsMoAeNjfM687MNF1ZPoJO6GynzTVMLfsjafulU0VDghfJVje4etXPc+ZtvdPvzOcbw/gNw/YeeD5dPx8AD//9MSBgbdHFak0K0t973KY7x0hoxyopFwdFnteK0Ni9uYcutaFVpejy5AyNVrWC9so70Hvs9QVL/BAiyesVqi4hzB01OISJt50aK1/nseCmxmOGxusyUWVoWCM8XTE4KpxEHTkwEL1ru6F4mFaO9tAnnyqgXLxEeJPC68qDZurDtTRaTd6b+U5KgJg6praFGnCIr8p37q6mrVMXlnHGNIcv5VdUcaIPZmTb5Tf2r8uE9pgl8kQPcqy/FV8RvYvdazwt9qdWM+3zsDJ2S7XhRQXrzGOUW+kXcUNCM0HAO7Z4tvKu6Byrv6EDT69Bt2XeKHh1SH+Jfo3kP2dd8Ut+JuDlF42sZz9sXl3GX3k2MY4ous3MU7aVFBxSPxX+ovUbR1UghgSHx82fdFzcJLeLzEOr43pfnxiBlIm06ZaLCW+SGOcxBunTo2cFBAyf+hHB9R/yc93GZgdBvz25yc+PR3n44Ad8zScxzhgz9/gzQZ+8id+eZtOup4cqSDvyIq9StMZ156VcqARBFnNiDktIBzh51D+/oiAM0r0mQ+vC9Sj/877u0jHIUcFq6cf4gQDe6LWCf3nQKxM2aYs++tScZkPB6xwSPqWLe8+GlDwt9MHePZOgf8xgSPuamlu1igT7nUQmvo6eckioL1ftl0853H/erO9DjiQADa59xwPkZ9rRs7SDlCHQwj5pjSxFPWkyp56dxEi513kN0Ftymzm9Jf8BrRdlYXKJJyMe+2xKsqXdy1pzBz+4BX350z9m3svpvwipSWO5h7o7XDwUJyrdAt3zwApyZB3Tx847LgMWknTDGQfRRccDLmew0TX6fFc2iE9Hrw5ureQDxZ7FbmHcQhNEJoYtPEAlOSVz1n4MXjB9LHhTbWbNGWvkxDha2FVhYM6Lwow2WZcMIOr2AAGclZ+pYPvckO3AzhsAC5YtdJspZ8MtnJWXvJ2C2/WAeiXPYc5fvs48en3D3z+3W/w+W3gHz49cP72wKdf3vDz24mfz8/4218+4YG6NqVj27TJxPKc+rjHDVZT65STJ8+hWNbtarXB1TbI07TBhgVlg8DcL3oIbhAXa6+Lp0yHc78z7Yw1xz6Yiw0W7ZM3exscGE1HK+wM22RZfu8xX07c8B2von83eKW20S7HtdovRtxImjJo9LSbgUdSbTBwlJz3kM6W2kEYFRMojrj8OmqvbXrCWb/aYNP33Hvl6SPpKxC8GueceOBaw7nDK1MbjLK42uAZ1yOU3rBs0NRSU+fkAyU0PPbWBk94MEnJZMGQhTeIfazMJDBtV2Ip1YV58IdjmO77o47Nf4n7wJwU4TUDDj3wR589Xp2uvAq7N6UJqE/lW7v2T6rnCiflx7TPvuZWaqT5HGLLUBEHzSg9KbxiRaP7gYxDZn9OLmNFW8/x1mlytrPz4xVrMP5TTJx6VtddUKdm25OqWeaY8lTf8QMvmTl+TWX8psfM8fZ45szlccyw9Q/PnwCcOI8TsIGfEaoXSgjQ8hg4pyXOk2i6dWC+SYisAIzDB6YtzRlyMbYIQhTUOWN6+NEGIxqM1bIwAdPSH9BA4qeEqhpwTJN3L4ej4UfBmfgYHYFs+q6s67yJdhlQJk0AV13Y0ojvmQ7HucU9bxaaoh14gTSLzvjRpJrKt6/wyFv31BHOVaCgKfkZ5YUOphOUvLr8MnedK4KWksxApqjSZLZOI2euHbyCgXu5eFJV6SrgtVEnO8i6aoWC786WbflbHgnQylXPp2YBqesZipVdZCX96bn5qM3iy7uTJj1ot+yCvNF2Jk+YKvW46How5EIX+66tM7Wkc0v5sxiGl4r2vUG1anfGqtR4QVNpA2eV9b0ImhaZaPiXB80kZ8ilK2a496PUrzKz1g5/G36Iw653XUssODZtObBKZMjTRTNL4Sv83wHH2zjx6fc/w3//gP8E/OH5E4bN/V7P8QTc8be//EFow9Y2MhjNJDNiRLdJXaE0cJ8lIl3VbtrpaYsrn2sCRx+lsctBD6Fm3aot1Lt5WuQjaGJ9RwZDDNuuE1o3tpH9CCTi0odLWSMWWH6t+sFUuIGVV2zjDq9e2wbTPBM3vKTU0+pIc7UwhvrI4r+GzGugrFKah8Ec4m8cNZRgCQOD2ByiWdnCmgo3cZ9ZLgai5L1M1GpBp5VE3slkTXXU4Q+rYdmJsZx4Jk07mSBw0ZM368+kPbHcS69gxKv5MNZIqoJmTpqQpqes0fI5WmvVP+4tbHhl8qZfUxtnuzwcQzAzMyoUAwP3MSfjmq6jcBFuC282uEh1Jm8weUV/U3LvWNXZbZkVdLU/9a89vk0N22BGwZz68cV2/Ug9MCmrdP2oj2PK76/h+U4rZo5f3uaFov/k07wHDjzHA+dnw2/eJkg8Pj9hFqYb+SKcTTIjOE3l0lvV6ZzbnJaPSBGL5duBXEYHLJb554rXTDlD1DtpZrDvYlIZajkvguQ8g5R1LuXPmfxJY4VpNmoZHz7v+RmInHAHeBiAee1ZOMzwBHBEHpjlIATxmTQF7QDG8GrXPG9+58xu0Rw8doAnBI0xHfREpxHKX7zJY2fBNqodDKZ0TEr0xnmupEBkQt4+UXuDyBsGi0zNfEpK0hgRENg86rvzppwY6+JKoJlHu5PmM1LDmM4DWQ2psgiZyApadPfpc9ZmFp3pB9yzN2f4ypmBMgkaDy+ZcCaQx2vnyUiR2pabxpky5LQJoC68nTSfY/KKHvL0pX92wxuw3UnjmamYlS6Rg9ekOXgDz/0xTOZSPvrwyOkPBzS6o6du6LHedmln0jrc0i5O1L6UtGVK38oRqVuk7B3cixdpn+6Z129CU1o+McgMY6i+Bv5I/MAV1uC80HzkasYa5LCN0vVpQw2rRF+ZVqOyT0zkZJF76OxMV1plX2ECBz5efB8hVzswNDf6g4+Z4yd3/OY48fl0fDofON8Mn84H/jAMf/ObGfD+63/6Bf+pv/k92rHu3uU/0ga99J6BmCmdhfsIvZvXpMQK1aj59NTZ4PuKi7V6aZKaqnKooNdW3o7SlZW3gOM54rRfAO4jVxLSJn36s9OoOxCdfGUbCPwNG+S+7uRr2CfLJi89ccN9gnOegEh/kzgi7VK/xVddbWMeE84TNGmLLFv2GbYxrLI+AlNnWm+ks/t8tyYBmdbKGKDwiitLnrwRfxq+HZH1wtWMtHPXWCN8PgxulrgBHEHjsZeJ18rOIfrZZY3eLqi/s10OaMcm1nDVsTEzkbhmco4pv6tMABCTmh9PpEOd0tdt6oob3jHH6fMdbgfgY/IKvE4Goc9zanqkP6VNUT+RMRz7y5W8S7shI+q6R3BxOAobSLPNISzviJzyG3kCYsZwYRvpxyXG0Rhuq3NsNzIadpgRHxveuDs+00dG/0QrBavswptun6MwY3IkfcDc2oG0L/ImYyBXmQD4Ctz/cz6/pjJ+a8PHwHDgb36eA5ExBj6fc6aGlxofx4SgORGwDIgifSIVLWYyynA4gxNBEo7MOyZ48+YlnqQEoOULI9qd6RQoQ3INdMIgwSBBki8J7nRSObgLmiF9YqpYpntJKpwXSDoYfMgSswQMSTM86dDVFgaMg/obRpl3W2UwHTRZ8MaOueqyXmlAgE7ecFBbvAEqp3uY0lzv6p04k+ZafvcA6JzFYdlwjSfquoOP8Iafp0zsVibIukSe0t+23hIpAe4PzAEej72+4w0DhAimcZVJXbMwKaIdtF1WUeewcqJ1rlvwFUc662def3DTPwDcj9NWDMX+kkZD43PaYwTHsaw7X0a3i0PoHUAel7/jDVJe1f8MSqm3MEl9Kt6IJbf+The82MVsCPQ/LX1LeIP6dnLal3Qt0sFoDDPFp2RvEgwRM7rtNhsCdc1SftU/pKu+YmJhRg7AdZJglUn2wRtvCrt6f7/0MQN+83ef4A78/TH3mjzd8Ae84fN4w/N0fH6eePwW8CZ/Ymjnj+5H4bu5n0v0aMVjRFD49ANPud77SFyvdtLPL+023Vl8U+Gmtjv9zRyw0SZmDUfg6xwMeT8u38m7WDkQH1LXpOAq//Q9Lj5jTZFlsOat7OQdaZoMUL0rW2C7glcZOk7Cz8UXIWRCDtii76veUUf1XUQ/TsQewcUXA6/9DQ/wYjseQa3a1eyf5+eLTVrsN14wdjjyjq4tXq282cULKhMG8Sn7oBk1qE/9bHGIxcLQpOPpb5kSOoIXO5nU4WZXvFptqvpHPjuOOGbe9TcwyI8V0jgu3wPPiFJMr+w2pdh2xavyeXV7J+0k8TfaHcZYgpED67VM+5yreW9N1w9jjIYXvKHeuPjx0jkPzDigmLHEf5dYI2Qf21pOwSodPO140+POI2OriCD37Yo/zfghpJJxyg+cyvjX9Hy3gRnA+8HGXP6P1AKzuTfisIC9DD5CnYzOjOrl6OfX9tSvLBsA7Y4M3OfghzPkLF0zEtUuH/nF+SsBnsFKqLF70Ryv05jnF5YOhWWZmjGDemvtFnUIZ7LSaO1tl+81uKC7Y3pI4w3WtLAy43n7fKTGmbZTZduN8ne8kVnNTC8QEVp8cHGcuvLHmgeOPBhheD8KuPRC2vEq65BgnjIhzYtMXHlvLHvVDodlltCJfqx54w0Qne2ahZTJwpvWAjlUPV1euuiChyOfabtxcWawo6VrufImajelUWn2SzszjcRyMJZH9maddRAHBwDuQF6orrypaVjWDtWFMveitQZnK28so8fVdpVCABkAjtFXY1/r6yoTLO2QZkv7q4epW4u+qk0JVs3DUqzVDVt4I/0z4y/Rmqs8ISWU+uiP2GOenNYw4+tSRtyAn35z4jg+4dN4g58HxqfHTLPzwP4jKJKBF7ml8lecT6xrmKNgJjprKNxPnuxkuLYruFEVY4d1HpGQg0F5rM5rWRe9c6YtUYcnFVSbwqvFNlL+K17Vw7Lcj12JxepPlS6AWQnzWHMejFDS2PEmBWxS0YJX27JNBh038mJxmTiY/gg440Re6rvi03z2/katsK8PKebc6By3TLCsl97NQZlBT+Rd8aoe4uSGN1uZdJ2bvprtXGWvnEjc8GpZJwdWzCnxdbwqmwpd91X22te97DngOb0flIWs5+pvup5AePWVMU5gWvqqkIO74fOYaf/OiZD0awtvemeTRvVdO53z9mnTP8PSX4lRm25u8Cb6X378GuM4LAf6a7slN+TAuWxS4+of85mx149L35c8f7SBmZk9APzHAP7f7v7P3y/h+OnhOMeA+YGHHTDM47wfNmdlzgE88ngsLrPGjI15HCVdgVfd0G5zmT8ckUU6GNM2RgDq5zxgY6azERRnO5XGcBCvw0keGfBYvWszzeTw+ZmGo3nPJ7w2KFvMQMQy/mmTvmcOFI90jPP9KjtnT4cYSV+Cjm7MlDWLmbloBzY3pR48zSra5SrgSLCd/RvuMYtkM71G0mxgVpc3Rh8uvEH174DnFQlZNmZ3uA+LK3cgzTYHOkcC3eyvu+NzHAE/+QRJxdCN4DoDND8f4GxngOALmRwxs4W4ePeAT1lhpkAc3p3C6byLaK58kqYzQdBFl0XH4MBY9XVSP2wEbypcIG+on0BB55EOiQGDxf7AqesjrjE4o2xNgsXJk06ujc4bFG+c9pd2ofumEKdkiS5YrMYCOMMnzvSfN6RzjA5a2hCyrElZpXlYBAsZNPfgwabpbHgVZcNWg1Nx7HXwyuVqiNRXiL4yNcq2MiFbHZrjz3ejnE290f6q/OZpb7S/mFFOrDLRV+ENVt50PcrhoK06CAnehDcGZBqcrGp+zfP2yxM//fLE89MB//wTxvMNvzkM//SHn/A4BmAHfv/5wC8/LTKM/1T+pjifseHI39xUV6bS+QA+jSMDnZkuflQfMwJTTC0sIJa76A6Y0ii2npdg56o31zgmzY/gO2gLIWN44caU4fQ3e5u0G7xixSMzAgzSv+SrrMApX+PXEYHqPJiEh2WovaC3W6OI5m9Sl3RFHJSfMwosPYzRFn9nqtgZ2PB5zKPpAdSkAYgi1e4rfzP9EeW88RkL5rhgTrcNx/ATp0+9cg/cCE5fMNY2vFlkMnWOMU75jJF8RWAuM1z4W4T94cfdgU9nZN54DSIvmHPx4yMGfeTrEDtAxjhX2Zc9MsOh7HP2D+74HNgP2TP7nr/J+EFw81WM4xHjqM6lrjuHrOT6DOg/jYi70gce4bcFB9KPLxiRst7w1YuvnnYwuVUZOzFhEv07Q0afI+0z5efWeWNXGTDuPF184osYx6k7IbMH4lJ7Mzxjpc+y6q/D/T/Pwyyzv/znj7li9u8A+H8C+GcfejuW/Y/Q03M43o6ZJMy819Pf8PvnnHF8s4HD4pj6DDrRPo8YTEzgfyQa0klW+qHFTxGoeqXC6TIw3wWqXSdI5zzFBOf0L8YZtUlLLXsDhxdN1U7NUMxqYhbXecdT0Zw+JgaY9Xhb1ibI8YTI4g0dr2X05jHwyFSLAAlL5zjBivnowx4xMHP+rwWm81ha4Q2KZo+B211ZOmg6iEhNn5KWFJ2KaOYL8066R+cNG4bLfWqzLOuvdvnqVSYQHUPMUJozne2RNCuvWB3TNOCc/QzeEBhFnsobdrF4c6QHYXg3prIhT1VKnZuBe+135ImjFg7owIhB4yw7ijdZNtpVPja7iLKrXQDgUdec6U4ZOPnKYLLWUT3215BX2k4vW04vaRa9YaBYT9hFylNsOW2qHPQcPh1pW3UC6U5fkQ62bAxbvnqTSQSckiblqD2DKf8tVi0pLa+wKnmDtCG1C8+gh/3vZXUWtdlU1OVJ75c9Hjx4+3ngt2+f8XhOjX48Bh6PmVLzHD/h//tPDzzM8fPjibfHmL5hpdM3NohH4vHhDrcu71kJ5YYrbiSh4jOCz8qfK26g/MAFr3LNCnMw9MAZ/Dt8hDR4nx9i0FGpjMTUVYYdr3a2Ubyx4A3tfOqhy/4ppM+ozzOdcQ7SiPssW7a+8qbZVfobz6abr0ofBYDDGbGN6l9gneDGcD359uv9TfJmxaugadc/tP7xxMPpkxQ3GBo3G212pXY0ZUK9KT9+5Oce4yD7cIRNZlnqXIzqB46m66958widI1/LpiycU9e58VLnXO0CHIqGP5IY50v8zT7GWfja8CpON11inHm6QZxUHAO+0yvGueLNzo+LfgpvrnxdMBRHui9iqgGwOFUxt0s4WozTeLP14wbPcxJQGNnK9hjHb/o3p5+rf1+H+n+eZ2rIrwOzfMzsPwfgvw3gfw7gf/KRMlwJUkEfD0+7hM89AHPtQU7Pmy3GTMtCRxWdE5XySw/X6vv9MvF8K+cb6MhRJ0bt241wf06ngA4Mqfy97fr/CLeNqQ11KeS1Z/xK0z60d4iYjI3Vb5btAHsTiyB7rTJ4zQtHK5RdmjX9XrlCuDDhTWt14U3Ry143vtEpBaGnS0pEVNZ4k8FogKBVWbqKrF1IU7fZysp3SrMFE5wrVEKCtz9ueIMeTFd39rKuJANcZJ1l5afhTNko+/Cgibrby0q7fqVZ7cJErAa/2OfV/gwc6D7xWtcv8pLKer1lTe33LFtJXNvWrOo4NyeZNd5sZSK8ueErG2tYhYVX0t85+zsfnhb5Eawi5jU7v7ELYpamo13KyuCC+vqlD/WU8ifVP72deDzqTqnfnw+84cDbceI4DG8oPiqdTb8bPxDhBXIFLO1LaOgYW31c66oy0u4NhiZNIdgr5qC1MBAn/MV3PC1SSFpSMjcydGl3sY2Vwm6TloTWWncV5rvDeQCB1rzw5l1/w9atvyH+RuVJ/Ol1xV/hZ84tTV/jb1z0UoihhjadI8ZI2aQ7Tr6F4IZzEKtlhcaXOvcar8jXqUc8FVnfs/RHTBe/+BsWaP5GW7r3N1fMudc5fq+Hxz836bEf8TfJG8Gr9V27watESvHliiHnWbi/yr7YdKfr0vd3/XghNKRc6n3aZWAV+gmkF97c+JsLXe13T13Vb8hPlWXxFb8+f4bnj7Vi9r8C8O8C+Pu7F8zs3wbwbwPAL//Zv0fmVksw98gVrukIzjHTGt0cfjiO4TgOgOoyzHIZGVYnmQG1+Zd1r2Ax8/kRpxyFHYT6zVkMLt96BioAN+zScOejIN3upij7in4JP5pBznbnfqk4QY8pGt5p4tt6AARQKzCc4ambLMoxALK610CF/3UwKF6aBAwOvTPMUwaRxmAMHDlD3IHAlOZ0WOkHNV5sTqkueZx/zNlupuhJsOeveePmIhPP/gGz/jyhqMlTAy4hEHVEMMsOB57JzSjpPAGvpN54EwqYvOGslvOdUUBftV5keJXnnO8abvh8znu5xggH4eXQi1M166z6UHxcaV7KpoysBaIWtllbu2f7T5/OefKnuFyz8SKTRV7s/3QkdBjxO7Ssy36Kuvh5hxnUqXlqn8XeH1rRnGktfV14o/JcZLLy9Q6rVLcpa+59eLrFZbp68lTxaodVQK3s7DEjypNZDTORs6lalr8fbURz/yju/+bf+PtJu3ElCHh7O/F4G/j8nGnsf3g+8IfPb3gbjp8fs7WfHqfIrOhcceOVbZC3SBnPmfo8dXPHH5jUNWYqseLVpY29HTLLAlakmtgGfO5r+eSPHAA507Iwmr3yxN2iUdqNuoo2z2B99m/FK/qy+RJTtNK2whZOn9sKvs3fkM++xdDCKw0hHeVpkAyc6cYzgG64ga/1N9Z4AyBXVlasI6q3w3+ASPvk6mJ979Dj8T3lXbJfaEwMnQ2rzt3jBvlV+jWCz8TY/Qmzi66LvylJ7GyKtuEXnbPsedc5i/6eQcfnWOmk/LaYevE3RQvMJMYr+le+8ndd4T5dbWEeC3eOiQkDx/Tj2W5hquHOj0cPRE8ofNr62j/iDb9lUyxMl3Xy7lgvrPqYv8HNOy6+eNalMQ6vnSq86dc7jI/B/nd7ft1jFo+Z/XMA/x93/7+a2X/17j13/5cA/iUA/P1/8d/0M4bfma6AGrt7lokjTB/TETwBPDIdBVmWiVrqJtUQFBgReytmEH3A7ciALDoEyIWKDP44u2E2l4lhdbJP6mr2Zz7VrgJxkr+Unf+cbhkMzmOx4wdXmghFadIwofGApWNhDUfyDCscJP+4PymPWI6yT9SsyxjIq1/7ka9TRkMcmkk7JsbOL47sE4+EB+BzF+DsSSHtBDgNIOpQBMMEMPaVm/TJmQJEv8pEaKykmBJKOb45SXCKQzPjLKXnQOLpqJWW4eniuH8vnf3S7p08LeTpEpBpYHDlK8QeDObHHPBL7eeossydb84Wlm3orGo5E9WjsotyQFbyRCWuZHAVzxBenRIgU9evMiEdwhvjiamv5FltHqDOkV4NBnpQNTIY9ewTdXHHmyZP4WtiRQYaV6yik5587TqWWBVpzqdLycarwqrUOTCw4C9lUwdoUywpnDDRMfaH/bPO01dPw/3/0r/hT0clMsXmm8McP2Eex3468DwZHEUQfpIX6/1vcQvWgqtX2+i4caZVe+L+KxssTEViHQ+yucp/9TdWezbau8h6B46cjANK72j7xI0jMNYlAi0dPpImtcloJm1I2601hXxNbCNwI+wTXrj/rr9xVBpVwFbnTZUtbKe9MnQEdn7bUSv/gCVuUN7c+8hDDezCq9lG6Q13ne8xdNrkpKmVTT6MoKOiFwb2pH6o3nilAU/erDpXGlV7mwrLru9edW7SyP3hlt9+RNdT5xZ9vbcp8qZ0jvt4DSq/Wvklr6Ysa/h8wVTFHKBRxNgr281SdWhK4VVouheNnKDjpoQTxP44kCr6u8XUIXorelO6jfy2+xvqNnXoisc5SeIWWBU9NcY4H/A3qRvkUy1MlE9csWv+9bjEf7qe2wd5P9rDleG/huePsWL2XwHwb5nZfwvAbwD8MzP737r7f/9VIY/c2crr5g+i8JEHXcGCpNFJ2VzGv6gNYd6WPRzWZuU/ux6LXRTOf2bwAKmfOfEDvKSyHCAisjQgZ1dY1ugM4o1aQfBwEMC8V4PL/AXHnThHW4oDksbpKkbuCcufwmZ7u8EPq76dXhcK5j0pMrt1oo4C5tGzLY2QstHP8a7eTg8ZiDE0RLa74ysl7xg+Zi/C6XwaIr+EfJMagzdmF5mQQVNe3tvVsgBOv+PrhK+5qhPH5Q/uW9S6rP6NaKdmrlmZVC490nokDgUvO93zlTRNnZqreV1+xVdrvEI44Nt2m01NJ6ISqNPyPPrX65oaNTHgOfa63mSy8sarrcqvuCtb1HfeOHT4cSTlcwWDF1833hSb0eSp7cIbb1Im5I2vnETq76TraGXnoHdWQFzQGl71l7zxCNzLppiiEz2jHjFOWGkO+XU7+dJnunuWt2gXQK4S/HQ4xtuJ4wAeNvA4ThzHUVjf7Lf3oXjJPhWdiRtG3JjHYud+JfDwhI9h6l7+V39j8MCNY4M5Yht2RPB1NNxgBgb8lb+xrfzv/E21ezRdudrGIwPxJ+a+G2rTPW82tuBRF3a2AfHjI949lncf5W9oo45IFxfccPJVy159SGoIB8IXvnruuZlvq/y6v+SAEU7cOGISRbBM8UrlBe82SULD3yhfB0bik77a6pL+DdQ18Q7gObiPKvRkbfeL/M18izaleDWhmnyjdVnpHALr3PA8eaCRbfzNDZbHL/d+vPubK16xN8pXTD2KWGbwugPrNkXu8xCr6QM3NCYr7/3N2OLxfJeyB2McBz6ftcezBtQ3/kakqLFxYdP6nvBV1r7bPXmiAz/yU6v6f9nPNw/M3P1fAPgXABArZv/T9wdlKmS6UrukxxwcmJlHFgrdQp+v5afa/6VBos7WV4uZdpapcKKolm4tvq3ArOcmT6PhwZHVbhgipqFzUycvGiTAc9+cp9GgTkAE59XVJCrsOBYOMNUt2wXnROLEJulf7r1IqoumwIb2/ZxtO+ri3exfQRzfzXtzKE8hc3gHMr+h6Z6vBMcjeDXTR7TGDHwT6CO0NgZqNVvHUjUrFjQ2PZqzrkPe2/M1ZrojdYRBPVvhBdBz75XoVQ7yLU+0nCwyzP1FwotYrZtAXLzTk0k7X2tGUo8Hd3TdhtKUfmLWqbOA3WGTtvrWhSamS3CWc8iAX3X9jLRBzoAXHSITWKNjzxuRp5R9zZvY3+MM3GfV50DpuneaVHpXvJF2F47tdH3HV37WWWkP3Tpj36LDqr9W7TJo4L603HMSjrnwZk+d6kXZ48KrS3++7FG9SBsMg3QAhw38/DYl/nicuTpRmGMxoZCQlTixo1tTCA/ESlymnXXcABbb32AqpO/6rkH13Rd6an2Nb6zpQWPMdPFzgxswaeWlv5ny/5i/KV3Z20bcETkCz7zPvV958wJTF/t97cf7quh6hPiApd/uA6Dyi7e4ke8VH6/+ZmcbtUamOsc2bczvJ24QX6uWXbuv/E3a76pzglf5bupRxTjT9o84QI373ogb0a69xlRLXNz5GzSbcgiGho6RmFXnpvxof6Lrzd9cdXvVm73OXXVbIbDwplZSe4xD323JK9KevI2yyXl/x99ICiUxNPVo1fVmF1NmwxETz/SR8b6tPoT9WPx4YlWt0M3tGtWnI9/lASUu+tp9pMxN/XCPYx5u9tfwfLd7zMYwmb0BQDjP1ANkWkLofx6NClimBVqqGzBixoTHmurlf9NJTYU3m0eGzyNbY5ZnCBinQUfhnKmzDK6ppAM2Uxvj/VNTIC3eC4AzwzwtR2j2uK0exkA1wMVnO7l5OfjBugeQvGonKUr6ymEeqRI0swobXGg6ZaWIfOVx3vMSz+mgLYjkLO4gb6JJM5snIE7BzLkX4Y1bb7cuLKyBE93siZkyYMlXyYuO5fan89eSAZimMIQ3XjIYBE1LCddpSNH5yok3nF5BG2MkruRqIMsVKab/zFluz7+HsYaSPVNxPXiRs6lBI2e63JC8yKB2FM2nvHvlq82AYaRWzuPyQ6fq1NBodyB1YQ5UalByouRD3qQE2C7T/Ry5LY79odNket5zBF8GZMAa/BjCJysZ3POmynqUtcCE45XOUV/BmeVKh5izp4o31S4vK6U8z8ADtsP9O+xvnRQ2eTOsBpErX+F0pIJVbsm/wVRUlN2rbmf2gIkdAHCjTc2gLI8M1/5JENUxo7BKFhO+7HHAR/Eu0zcTJx3HI+RlZ2ZLDJ96WZhKfs6jrUfIMIM1U9uoAapjpnc9R/EycaPJ9GpXHMMwLWn1NzwkQPWb/saNMvLI+vDK2pgWOfc7x2z5BTfE31xxsfsbyn/rbwzBq4kjvC6CvDIfF9wovRs4xyPrPRc9w2JXw2uABnjITW1j8TdwwGIvVOjDvDR34BDZF25MpzP9NsNvyr5sXTGVq/pVF21Q+Wpx1Lisuhj1L2QNweNYZXnm1Tt22c+VMU7SrP4GkTYomMoVGdW50BvqOo9yD+8HwxGrSN0u5qriNFgfqsvk8x5Tp07FYN/E31DnQj9TtxlbwRNTmU2z4sZT9iu2I//D3xSmlr2V3ggOaFwGiN7EYHIs9ggHY8yyqRkvPMc82AyYMcuJm3ih2eOkUTH14m/QY0fFqjNkjND1My46z3fPuhcP0U6AU65MrrxRm8r4YuHNNcZBrlQXVpVvapiBX58/x/NHHZi5+38I4D98/81Ywo6gcBgzlWW2Mz1/GbCmz5QDPRJAGFwxwIDlxE0o1ZGOj7eqzwHfkYu2OQoM0DwZQGRwSarmvihNgdDBUdFBQCtH5fF22/zZgIMBvuywkXpNypIXRgQC8u6NkTQIbxjIWQUB643zE2CslQWYe12nTsEhv3PQNXmDL+BNOgXLeabkhcvvvMfrTGc1Sz/dSn7ZLoNrttHbTVlrO/JbfkZfHmcKnkv/kkZDkx+Pcp59p5OIuSuPQORCU9FMu4DQ7xe9me2W/BDOK5JGmBp0GPzkEfA7+Um7KQO85A37k3oUwSP/xtJOblwPXecgZAAhP7vyhn1IWCjeUFt0T8GubN7/9q7OTV7QsY1MJ762247Lx17Hqr+dNwykAJ0UWXQuiODR3JZ4JDTtbAoV2CqeOjxwL9oV3qDpUbSbYVbwquENmr5+9HGEnIMHGfQQNyIwPSZApb6TIu1jBT0l/1vbEIwyC511rtbWEfC8y6fLu/yRYvnqbxi0rpi6tY30TdS7A5nqN+oI8cINLdtxsR3gssh/9Te2lX8MUX0Gh2Ub9EXE2Edyt7fTdXj6gaUdLLx45W9AWVEXjg0fZ4rXAGfIVUPKXnfxAjHVnCsd+q74/IXGlK9PW8yV3NTXR4w8KhUu27WIPWSg2DH1tR4ZELGGlM0Wuh7VQQ6zXYutEac/mo/UCQaVJ2vjpLaLXdzHD3G8e+JG1JJ+oOuN4YG5By7uRoXl6lSLF9aydzaFPaZywDv9Tdmy5X9WfDUO3nkC4s43O/+HPE5e9eYdfxOwFtTSLizkU7qeMjocNqa+nsMKqzZ6s9XXJTZW3kRvFn+DhsWrTNi/H/f5dY/ZNz0T0MIHuuV316NjI+CHLHHTMOKdGUgCehfT9GHLZ1Q7DLYdTA+KmZ2s9+hl6ZthspmZ/VjaoSNPOpADxEcYJLvoC81MfztHPxbbCdQJwdeyzkZQtBW/13eZxKA9RQJYbedhwDN59HSDZ/qIADt5w7qEXxSYtgvgMuvezT3CCpOypr8iN4CfHikt8sJMYdF5VEuaGm/c2jeTppVX2q69lP08xY8pLfzdLnVxbvGir9LfcoSk85XsO2+UF5GinqlwY9hWfte67NrOOzalMrroHC9yx5wtZLrIGEdeEl5UbNppuqA2ZhlEZ4n4UO+KrqvOsZpQ2hFtnV4zlYpG7C9UBlT4C6+q6tWmLrh2wZAicOqVpm8VLlxsSsom3niGU7C13Z0eObnKN5f+bnjxJQ/H2Fp+tW9N2ckgr8lU+iippre2IfwaOBI3+jUp7+lZ0b71Nyum3sp/hxsWene9JsXgTXeGl9XW1IRf2mn+BvxhJ3+kTaofmLgx8WLixnK0ubTTfXPpWVa32qC002Vv0h/S1D/Tbz+H4TneKjsBSBtUH18XJyP/3wE8bNGblTcoB1UYRL4i63QwXTxSZDPlE63d1BtfeLPFus7XO39zKavydMsyn0et22S7XhJvMkFqXedNs4tV15Wvva6VxoxxHO24/PYuMVXLljiuNuV2kb2epjsPz5JWgjcxjgYziJwrjFh0HdXONW7ZY+pqFxmASJ31btDovdYR302serzk64pzjBkVq973N/GNXXWOqcTtyoIf7HGgJh/+wp/vk8role5li3IdPtWgXbAKxxnLtxYvsyyXnCv1wGFHzN4woJVZMgMiZQXzCHFMRzhPiAPyEljmEke7VHrGz3OZPWY+HMhZbffcR5unEzqW1JhJ0/B587sz/cAjbdAPwElXQLsFb6Id3nQPSLvW251AWjR648Xs32nGw9FAQZhndycNY+57Aw7AB05USsuFN9FupYNYaxecAQ7gMGlUZX/CcYzqnzlyxokxkaZpDOG5+2yH7UJkb0Ij9a52qYnOGWdGC4jZXydfbZU9MpBBHlE80zRceGXG2SeRHxw2ODs+Z/IIlJQ9qCcYrezOLhQ+uX8F/oA5T6UrPipfTfpLe1QaVV/TpgyVcpXg7qWvuXoXaVDxbqYNumCC0Q7Llskb2s3hPDkqZIDijdlMffLQBbi0C654UvJd57j/6DnmCga8TjXjqWq8tmHFqpnGKTIBLrxJnWMKmU1Z2KpzLjIIfvCAFOpfYlUwS7HKgjdMVWTKy4C0KzRT9ofa/WIXQ2VPTPyK5xwQLIjJgYYbhZNJJxyWJ4lu+rizDVtsI8r6cDxPzqwGbig+D8GrsEHFDUe0e4ep4auOjfz3WHfAxzyum6n1hRszEFLcoB1RN+6wXP1N+lOfAWD5U+pD8ZEn3wJlC+5ziDdog7HJ7RB/2vQhdMm48jk80nod59H9Dfcjqb5zP+7EiaAxZA33eZ1FSzeuYHLSVP3joCLT7G58MfVGy1oGqX2ij9hNzCVOMEUWPnD6m+irxCmLz6Af73rU9ebO31xiHPdM8R02+/o5BhrE11rNpL6itgm4xDTgSaIH3MbFLtaytthFxjhYYpzh7ZoUyi/7Zwum0iczXrjD1JRJYYb6m9I56oOm5cW+NzfADpgPPOOgG42lAO4ZZXrqccUqL91guwSg1M9c7ervzt9nB7lv+hzMBlqwKmKriv86zh0QnSONwps7f5MxDlW78THikh/4ydPV/8Kf77fHzCswp8PTJVXuraJDnArhFTlaOUkCSd5fNBw8MARRls6VgJQBDTgjzWV+gMbrbpUqwlmHVOAwQtIcTs00EuBsXTpF5IzD4QQ9dotzINF/eKbCka7pF0mTYYSBk8Y0JXHOyRsyI5wVDdDcccat8dNxzTCMgDiB8pggEGk2mTC08AY0aIu7QswS/FyCwCpb7fjCG8AyzYq55BaOumYdLSLXkl/xpmSAYE1PKWQdBOjujD1448Kb6l/wxitwYn883DhcUpKof1E2D/HYyC95g9H4Sh0LaSx7baK86HnCk8dev9CFeU+L9XYNSVPjjUNSHGY7I9lGPa/+AAuv0mFc9TWkMfm/8IqaDFjYMmi8AIMcDvjbSmOk8zTZy15I2JSnrDp469+0Pzq8M1OSvDkud1xsipjR5C3BRZenJR85l632SJ1DBGl0xkDshYnTuRIjccUqW3jDsHJIOxwt0Da13dpPUHW5lM29wF/wTK1+CB5ThmUbp2DqSmf1WftYenZkINnpLNwPzToQ+xo7biC1gnIhXhE3KmXrPV/ltAWVP270zo7YnxYyfhc3IDrbdWdQhtRn0dFcKUDxxgVTV6zjpNKkyZAHxodNarptYlDweZVf3p82OqamvxF975jqtWcwA/Epbx/iI8Umr/FC6L9NbS6c9+TNe5jq8jqvLyFN88B9SfscbxlME4rY38Ov8YLilcYLihssu/LmGuOUTNIZg7gh6ZWLvo5ohzrmcnQKeaN2MstSp7pduMjgEuNEbjG9/pq2yxXeshvpn6lMOm8SU0V+igNbnQNhZcrviKuTeHJx+eLiqztDxxiU4SpP3/CGsRTTqhumZjsj5Bu+0WMtzZn2ucQ46P1F2B8cOSjDViav/U3xRXRd/Muvz5/++X6pjEjMBBCqyoAvv6nPxGPkr/P/PbE3/t8YN+q3gU+sxDhcqcMalDZtI6E1ypr1l7gcXV+nJwhaLDvrC024lC0i1lzZ4orUiYS0RvU8LMH6+8qLpV4exU0+9bJV7+lobWVdyVcsaVYL5fmyt3YQNGj6hAJA73vQGIOLeQjI0d7VmLHzBpM3Xv3Tx4XGpN9tocn6+4vGBEQ2mpZGsAaAFX7teJNeu/7ypV21i3p91k5eOeII+Bv5pWLbQuMrfV34qHa0vHuVyVztnPtEih/pX0BSwj3rAFvayYH+wpudHrEsy9zZhXukDYrtN74aceeKTatmJc6pzl10+6pH17+Qs8t3vJrVrLa81rS0EwBqC18bP5rt7ij7gmfBEJBOxY0VZEX+duljx40LL9VMskNxUM8oBl1sf7Ex2uTeBje8NcEN7MvudPQpNH3UJicH/OJvFFMXbU26GQpT/sKiLPkcgHNlW/mg/tSlxlVXclVnj6lF4YZGV95a9sPBVZfi1dUmRSvE8Momi/dXTF3LFs9q0YCMnn8NjyPgk4oaNFR3dhiqSNSqXWSy6vadHs1viLM8/bbo7rEVRAZK0V5fGQOJ3qDkecfH/NaRg5un0CRm3XnReCXVLrx5F1M3OkceeNIeW1sGr0nxxd/Y1d8sPgTgwKrrNpBQK+WKWvKqLL4s90z5GXq8pzhQjOhW/1q3V+YtyCxvrVj34z0O+/VUxm993I/anAmFEQGNsNYWNwIAeAGiBrFe7wKIqTe+HqdkRUuxhP6M/S2TntVQVvUm3Q4uHTtiaypnPoj2YlDpD3ze95KrEmvZKMojbudAlW8yeiinVxt/e7ACXAHgwGjtFMcnrTl7AsNZR6RkAzMVbsrMvfhdjlTatQBeyCmKrCiJLV6UPFfeaEfmezwN8pzHS82TzOiEfH1PIFFYONKx0Mm4pBt4olzpETJtjhvZW6XLrBdP0JvkszcUFC4PaSh0XXkTthEDCoDboaMNY7rhpJG317A/1CkONHx0+dXxxmEvjUa6iKtuRwdrkBMv1YwbU99m2bpawLPqk7ruGuwIv6KedohFRlUoXnnN/h5bmpPc7LNtys4TtixP++TqMmVZtjzrpJSo86GJJVeUvh4NM4Cu26/lCe9pn51XnrQWkFx5szrWxC6ziU0+EtfmqsxsN8v6puyXPs5MCRc6ZR/EgqkwbavLn3i1lb+WjXYaL4kbBnguVxSNehJp46XojjWcLF+lMky8infrJLTaA2Q20zuHI1KpiFyLTJd2VL/7AQLY+htafdczLTtPhOPlsgbk1S2OI6/dmCTUegplUoPr2c4huMh7CPeYWnzMAbbKk2fRB80WmEEbbbwyycRZ8EpXvA2l72TtFVO9JO0LplKOsKQgT0CE+khk6nP6m0zt6zQ21KD8gsaSiW/5SrHqgNERMc5pmZZXPnLRo+z5VdeVN0Uj+77q9k2Mg9JXD7t4MqlW5Rj6yxUn0lO6LjQ23nBF8QZTAdFt0gix5Yn7dYR/xIj8Xd2Wl99M3rTYSmxKdPtdTE17pC+ywKpAGnP4qCkoPXxoHWedIk+HhQ3Vu4fgym38kJwrnuu7P+ozfj3849ue4eFcAyiBUpop+3AClp8agGjZOUDj7BR/tyyr5zaxrjlrU+B5ipEQKvj5kCXcWu6fjwbWTB8sR1jAPeu1rDfvlYiyzPGu+5M88mWLNzr7lgFeGqrOW1VvrdFY9CRcWAU5pNmF9jzWNQcbleIE9AGDBdrlLCQ0gCNY6+ei+ZDPOotLH2IQGm0OMObyvoUTU9dSOoXsn/BK5Zlfr7JPP5y6VdwVWjONbkr1DHqoV9nXmd+TAQfpUvqUNypPTaMgaFuTb/HmaJ8RzsvSUV/lh0qrMmSahOovhcnc9eKT2FQYle6vcup2lNVt+HDELPysicf5p95atZl1kZciv7z3x1VzV8zosr3KzzKAmIfuzBrIN30qFVb0hIFpaU3TbQt7Jm+4ulH22GlWeT6sVvVjKkr0KupgimjKr3hTdo+ki/KaWWalY5Y0MkUHWXa1C11d++gzeTpr4D6ixAGhewYTZVeeGONJuOKTynDFVA8dStvw6byHM91YcCOD6KlTihNqk5SZi6SSt2HP3SYXTHVLfeYR5RM34u6inDypSROmyZn4RHLvaHKR/tIn4kaGK42CdQc8DsaatU9/FG2GrtQKjhXvqMvib3j3E8VnTSbKm6DRCusikQ5gmw6MUSn+dQ1I1N3iBcEvkVvyxoVGq3c7hu4wlfu96SP6AVQjj4NXuyqaiIsm/G40bm2Sh0uIri8xzkqjDqY54Zvt+MqrROacQCtfrPhkoo8b3c53xR6Fr/C5+oO4P7ZiHHmT/nCDsYqp80RF8c13mEqsE10v/ZiDp1OwvjJL6CPFJyb+CNUaA+Skwi6WKkwl3w/pX1lBDA8Tq6ZPGktmUMZWC29U19X+yDO3BSNf6TrlRhq/HPb/bI/j13vMvvExcARfcACIzq5vo59a15NXANR4hCXCkRsAvZG9HGoUc+AcjxkkSlU6G3qhKdtiNOZCEz9HO0qmTG0MHLVJFrGiIAyYhzUUXOZloVJV9sIjuPbiJ51bEStzLcIbl3wOBpBV8xEBxAFYHY7Q1utytWcRAQps6l3locoTS5rGIXxF8FHCHwZMETQ+3aDpBuzfliiCS3yvee0szn/6muDKm/XdyXMLD8zTPnvjnQ6YsE9oAgM3/UF1OytAeBwGPdZ0PahOnjjqVLriVTlc1QVWXTPFMUBqMull56SF0jnlNA+OEJpFg+DIU8OIC7O46ueehanV2ehOt/l5GRgCoghhj+H9zeIUOhe6EDZ1S4P2D6Lb1ni1lJISJjRXWb3jyIEMlvtz5dWVN+i/VVQpsldcXPDVqgJX+X3hk6dz7mQ6jWijZ/lj6PneJoftMLV0dEhAZQA+j0cbYLqh6aXiRLdJJJYnlxbaLzbZMHVDo89rNsbg1S0VFrdsCIhNRhBYp5IuNokFr/IX0ZVcASheIUsdssox992sPqM5uAVT7/1Nl0lbfV0xVeTgsCaf5+j2qVWkfjf9v7PJ8mcGxgv3vFGaAAhu1GENGRav+MVBF3q80CqH4vHVJqfeHHXYGSTGIQdk8hgAni3GWXDiZWy1yC9l4yU/jQHWGGfla7YKPE/6IiEm6y9MXWlS+SV3hDfpNolX3nGg2wWPdTmCxjgNkcQIb5LA1Kn6d49VhQPz44r4vYY7rAJ4gmVJVKGo17TTqUWe5KttYmPrmNFlfuuKf4jHYb8e/vGtjwqZ6shLWVuQYwwtRcGhUErAXmqUdxV8WHautjDQ6Uajg55LCKU+ScA1g/il3QrtvVUqbivfHeHUnyc3xKIKwNvnulBQ/M9GJx08Gahmb7A4i4spE3/iXYfO2q+uvvp3SN+BvixeeNVbS/llronKcw8GySuP0yLbyoZf2yG4QuU5mTaszxDW5ucoa8V7BkSNZiu3MUalDXJ1IyEtZq3IP9Xf6qh150hHG06hacHq7GMgfiR9BfB68bWm2XQ3KzRle9yEPGmavFKZXMsi+RtWGw6Gd7uw5QHy6gCGOugykrQucYomBuhib2yX6SxNb1x4LvLrEjJ4XJ5O+Y3G5N4/vdtHB+/VYMcbdqOV1eBJMOfQsk6HA5znzv6qbsUbF3vc0bxi5EojFt6s99d8rf8rjeuYWstlZZNN/gtu8K+md1zp2rRTuD9n6T8JLxOLvfpVPmPSpD7havsNMYpBapMLph4b3Ph81up26r/gBlCrEIUT2Pib0h0ozfBFz9Dkr/1D4AYv3lXsV7sir1KvLvIrf3OHG8qbC6aiT5ISNz6NAy7B6tYmF73Z8sa0rOjNhjeJqWIbgOEM3Jj34hVulH6KTS7UXHT7BW4A3uyC2zNU11s2j89A9fMgv682RV4Zqo9czW54JRrO1b87vTGwPHW9aCy/feQAKHV7i6nCq52vIo1ZSvuHqmPBVMVFxjhPt8pYUiyXvnfedBvaQWLyNdq3/J7xUbVzh1XPU/02JwuuW06SRiua1C5Wz1Gr0lfeqK6rzi1u4NfnT/R8n8M/fC4X9/SnqTx5uzmm9Zt8Pgwz/SBWcnI5Poy5pc0Z8ojlw+Lo1/BibqjN39N1YAxpU9OBGEAZ653gOcEnHGRZGwwex7yjZjNZFmG88R3vqYhmgTBEgpW75wwzUznAOsyCZmRbmRJndCwTsgY8+EhwMBw8fhrIPRXskwdfp2M85r1ckT7ig6lwfJc0yUlzOjtFMGLKgRx7DadTsHYpY8IPvxOZkMZzlPzcAD8DdiLtQ/XGrGSf6V6EHmP/izcVBgUlojcWNCMcj40IzEIH5v1lwSv3HHCY8MZQA5WkMZC19Ir9rdQIgjIA4WPwMHTSk0ek65iDMh63nrqO1ClLJpduJl0u8vOqv8uEvPGsJo/8J72cdEHl+6cTjACWM/ElP5O+lN7wWOjG1yYTyPvElwgAnbxSubHPx7znzbHYn9iU6qvqGFAz1tT1VW8i5dCjbKWLuGCVJVaRrzmBhEi+IVZNxoKH9/CKCsrTDbVSGbw5LnYxy3JeSoOu1C3yVezi6/zzpP2KqWKTqWfCH9vhxpVO2AyAchLAZPWDvBTcABD3+hV+WcNUR54OJ3Z1laH4sKirQjvLAIinyjmmn7Ps4TxgQ0/Ny+tkVL9BXFSbLP1mf5tNYikb8m+nmgJNR2fZua9sBK8Om/uVGm+ogokT95h6tUnFDepZ1DCU5zUhaWbws3wRDLFndtY9zG5wf5atVQjhTfgvt07jMG/XEsCnfZHP5GtY3twnSOZ4XbPRMTXilGTE/Hm1SfjCG+pc0NV4MxRTmdpHXZj7F9kr/p26KDblqWNHxQM5WLUeW4ne0AjTHoWv1HWXWAOoDAnDpNlD1/eYWrw6Fmxr+or6G8StDaZeytoc7p6DKbLAGN5inFp9XGOA4NhYaex+rvFGMHWNNXyNUQOrZuoh4GcN3iyzmSr2aLFx8KNoFH+aeLXHyOIr9bB07kcfl/16j9k3Pk6HFQrBb9tciDtg9dnphYGciQxvnAaWtUu6BY0DxuVqz4AN4B1BViQwYEA5Osjv0uzaqaa8jcYcboVpBA3sn2NJaXHEsdhWlVmfJyq+IfvLgHIaXnNrQqNnkO7JK0jZonkWmGkTTzcMOzJYzdk5UxrX/gakt4BfX1UadT6xnBHIKyiNIT83jPMog8x3rbXV9AYIXq7t0AmWTObPpTecddZ2SNNhMb9rHhv6RX4aqKX8+rqZtbqQdRs6TaVHaDZUZT3fPUJ+DPBmSoTyqnRjSF1lQ8ciA+WVtsvAJfon9qcaAfB+O88Ip44Ctov8vNUQ/UPJs2zOrjRmKeENA3jhLu0xU5IimGgz8nSwL/S1MITYUmW7XcyyLmX5jEX27CqDeB4wkFyR1eAuP8B8RGpR8aZjZL666JE3vl1l4hvwe//x6PcOUyOa2sowf4fgk5HCgR2dagu5oT4xd/LyHIIbW0xF6r/aJFb+5F+CGxCa85dD7LN4ecRRGmYzoB9DMyaiLnuNqWqDK250PVv4GM/wja+yx4TJESvbwpsmk6TxFaauNil8bZha9CuWkebj4MQKZBXhBlMb7hduqO07NnwN7OMgg+lenvLqPD4wyo+7hX88kq+28FVjjdUm53cdU7kuRZ0r+ZWmnYuu85oCBuDPUb7oXUzlSzlBeI8bFVtd7aLsj9MXsRc+BhptEvNdTEWsrIof3/Cm4wBplImMtf8Sh83uGiDyy1RUjXHY3+TNlcY1XlgxVXGAvCHPjXwVXX9qjJO1HEXSljekEWjxniCLi24DqEP1QN3umKH2+KM97tfTzP9Sn+94KiPA2U+gQtP+LIGd9V8qNiiAzd8QAQsxnwCNWCYekcp48rCNqMkIFlrXQpMMEqz/gktKpOznmb5MHU3v34ABsXQ9luNtNSBYKdP+zc9Whr57F0v/Fr6qTCiiEReg+tAwcpVX55Pmm0+wmXnUOTtn9e6aI76W1SAtXVxc5swUvXpXS6zSs9ZfXyQ8/Misc+P70tvXZacerjTd8afRJHq16hxpqgILb3IZ61p2BgqWl0yPOuSMvqVRlE5GdG7X39J1/mIXTrey1nWO/DnHsej6TstvcKBHegBM7M+Lr1td74EvnSFQxxOvB8pc+6c03egrv7npH3ZlFVh88jmxyvWIab/yRj6rTgFXvNkfv82asSkrKK1B3EcfRw5w7zAVQAxTPN/VhCkLIbq+q3RedDSbnrgfuPGMS4o7Pa8wtQd0636RPTLz7QVznCFS4b5jYv5zvMKNK6a+ssnhBw7JZ7zq2RVzElvDPokbPjYyyzKFPysvZn8rGXDFCdrk5ANg7/CVR9Gf41iOgC+aAMHUGz+3Yur13ZIRD41hzYobEJqGW+4tbj5DbXIng0azUtR5pTRVWY01WJI0Twx7nhwE72m6xAAaOmz5GJ+9PlM2U52ufG32h4hx/JX8bnCRv+cqHy7xAsgbif8aBAcDy1MgfFEMgHjgDQpv7nh1lcFdbGUx+XHFVPJGaWw+csF9IPbTpi5sPG/T13f8jRYWHcnTctUO1NB/uOd++8Ff2vP97jHzMizYVAC9uHS9fBQ0RKsyAPK7kb/NPxwOi9w6swPwZYZ41F4Sc48BR7yLmmmiDnPi2VhFRE9MB2rtukkAMWcszELRBw3piLQE6e+Io5PZiqMHh9G/PBnSlv6RPutQaoAsvx+oFTWuOkHKss8e4dGII8Tre56sluNqLQ+AKWnunWZg8rnkWTKxJj/SiFsa3eex15M9sZrqUq/yhr83+TFg0nZmu76UtaV/k9dXGplylidNeaQkSfThsQql6bJGgvyqc8lT4U2V3dOYZc1CfnWEv2Gu5qUM2F6TX9mq9u9seqPtSupW8CY/x7vn6DblDglCmcqI5GP1z5puq14l79KmaG/Kx5qhJW8yPUb6R16MMfdz2QHYc+QFqCzvwbC88FR12QQHFNvSFsOmFr0pvorMpY9zJtAyFbNhVeq69jccq1nHG+xpnh9rMod2zbK29E8n1L70qRT2PaZy5Yh2zUtu87QzTuBY8cqlj92eZ9/anhK/XrNBvXuNqYobFbTtbYO2JjrmSNtIvybpms/lmobTDTyR1BI3NpjadCdoF5tM3mzwytRXpW6T8Dm5xJMY4R4DjuqDBrivMHXV78KnxWdQ1i9sAx73qmU5YsjUmw9jamDQvb+p1GsKsmSxyACB+yM65WNmS5BucJIh0vUWzJEM6OD1HlNXGn3lDVDXJVDXmQrXcOMeUydulD1C8LiwrePG1I2VT4HHYhec6HieBuchFIxxPoKpIgMqwHnDmxMz/lPZcw8p11RG+GL4CNznjwPnKNwvnUReYA5XTBU9om0pXqjObX2VgxeHcz8qJwOm/CZN7o/o5yZOcVfTTfmb9dh4i1Vr/Ed7bBhYNP6oj+PXFbNvfnKmqClCoQr3LhFxNPXCA3APqEOVEb1r2kmU5Uf3eVO7MbisfV0TSMrBhS+NdhPJEzizH1zOdkmXiIDzSCOZRlCzDtMpHq1/YQxgMFbpI4XZHRhZ9hDeuHdHzSjCo+J615bPjjoO/MjPjknn0wNQdQkdu8DhSF5Zo3n2JOlImZAaS5pceSXyZNk8wjboa+mVC29AXnjN/Ew8CqS2habguEsQ7+4ZJlLnJo1adiaS8OhppjIyHSJ1S0cW1DHMQf6qc1wTUV5YtJuyF/V0dJonqh6iZw9oGlEFA14SyMCSDuS1/Dy8crfHDY0h6snXCkor/ad4VTKodku+ojg5kLAsAzguuh26eljM7KLuR0udshEyPfAcwOkPuOh6OfkrVhU2EQdqhFMOOAY/LHeDVZn+ogOF+J0nvlE/xYA6VkngnHiDRV9LBVv/dK9fyh60R5b9Og/tibFB54KpxK/1bqsvxdTS0XkYhXnsMw4EmGJ8jRt3mLqzyT2mhi46mm3A7GLf5C8cORnwLZh64c3WJguXJl9jbw0Dclji1MDR9sDNn74MU682qbhxbG2y0rIhE7dxrYBzX1DZQMkPESDfYCqD4MabTiNT8M6LTa40xhEJZoDiRmLqvS+eeDtp1gHaxzC1eENeUX4VtE8MGv7ICd97TMUlBkD29x6vStVnbEW+0n9QyzVdnOI6JYX9fUwN3gWYX3lzpfGKA5PGnNykrpuBq3DnWHB/wVQXed5hqvob5WtiU2BR2kaTX6UUlv1Z7oG7lZ/Y3/ux8Y5XlH0MxlwP8lH7+/X5Uz/fbWAGIIWcyt9kTiPdKQIB1/JNIOMQTPCpshkDyLv8YshdLVmPAKRtCnv+n9YX7WZH6jSipDljpaiMQJ/0W/477+eqmvmn2frFQjNWXioQaDvFm5ZOYZ6fMyAKftZx+YBgxjLOEI74huekoDMOBIY7XhUrPIGfYRZpsnpFSUjnxDhDeXVRMVPeLCttW3kWX3lp7YjUwUVEra9NiZRW8uaSXyofF5OoOQ5vNCo/psOZO3K6TPjFtKne7sKcJaUD66ta19K/DBSiWJ7y5i/kl7Y3yzp4jHXnzaU/7aHTR+Mr9eKaDGh1MuNiF9q/q/wWmxIFV2fd6Lz0r59SV7VOXR9Mk/Klivjj2j8l0dJx73Hgshu14SmwK/t1z2tM5Uo8+W3Ska/AVCMPo6wTM5AHvXwcU+9tsk5PiZ+WTIdWtV9VnD0+R/c/l8a+BFOXRu5s8spXJOa7Rwq79yvFTeT3ZZgqtN1gzr2Odtw4x3oWc2FM59UXYOoN5qx939nCPMVS2ln6d7XJTjOzaxrblFe38uunI7IblCFT64tZO0yVkhtMVSzQdPEK8ku3oWWXulx4cY5DdPQ1plZ/56MyoS72eGHhjVVt+i+CT8jU+qLxWzGVeJNvL9hEXW89dQDWsaoO7xIZbHQ9ufHh2PhSS4qh6uXK3sWCf8jn13vMvuUJI+DFoZZK6KlyAMLJ9uXoqAA1hwzkTH84WQsHybLUeq2inXgTVp1qGoV4qp6ZFHZrjrZo0QYMM8Dr4Usdsztf5CyG9u9kwMCZcdkz0IxC9mpxDwODlA4gAcDCa2i/IAURs4RRdtZ8zlQ43p/kyMHKbN/SMc8gZw3vgnb13pffwQbr66x/DYomX+GOM/LUmSaUYX/wpsHwIj/2T3UuT+5S3iyhgeoQJV80zhSkeerbkYya5FlzulqW9BmDDgQfBWwrvQ8588fVLVl0aJydlI8clAGWR4fpyg2aTkhF8D5j2PYHWq4EsAtkP5y6rqmLEaBYle2HfhSPtaqSndiU8MZhkqI8v9QLNecdRFRQ8c6YRw63C9J9XqI7DzqozfxqPyy/kz1xYE354PEUEzc4+8g+ciZ31sXVnZQ7RgVXMXfZVsoom4v81mO9lTdFs4Ypl+Biy1ct++VP4f49pmqKVmHTDlPlsIMXmDri99OndZ3n0Q7mqUDsPUxVWjRFKE7L81olcOOJmIUhyVtT3iJS2OcAqA54oo+8w1RW/QpTkfzBomdd/itfDcPPOdDg/pahIeSs72sx1YG8J0xtkhZrW181++LukTYoh21Qy32g0si+BlORdA9DnMq44c0L3HA8or1XNilhs+lqLIQ+lI7cYGrjzYobPnJQnbgBQCcQsO0fPYPlyYRMq6s0w2vZ1HLzZhcQ3N+l+5fsXmNqD7o6zd5qspQzcYC8KRwYOIz9M5ifJT+fmUK54rmTX5PTNbYiN4ZbwwyV3+RrZAdE1yqDaNqME6vGA8lKwZNsN8tRfu/FxsQ5bPg6UvZGe6RMkts/5pMLGn8Fz3dbMRsBRrpknQMivhRgUD6sFE7NGghQjakR42fuVwvDoBJzRtbD+Q3oXi5rOdK8qLnv4yjgyWAswCWVn+2aBg2d/nJTBaqDF0u79+Pwo0TNppI2Aochj0+Fp7NMvnGwEn05pKw6TYtogP0w6B02noEVhVSzfCuvvLcfET4NvHgzHy69q7+f3Zq84NlNyTu3jfyi3TawKgDbya90yaLfNcuZAVp7T8uFTMA6i1fTQcmbM24QOqRs6o7KDxmcqtMu3Z5cY0pnuVNvNB5edyNFDJXHrRe4e9Go9hjtevBiiE7NIku7SbPnv0h6ha+hxAqieUqy0M4ByHR6EhaKPWoaJ/tUq77T5sSM2t6+Q5z4LHe0leo6KGWHVavsV2za40BiltLsyJOxdjrGAB0eNIleVeB+Iz+hv3hzR3PhKVPTEk+lrGWJL3vc56RTbsqnDA1zn6BZMosDnBZQNF4GPw3t/rE5WVByOVQPDXl40UxNDnrIg3cxVfQ7/Q3toQI4dsNFZ1Unyp4t9XlI2nrR9ApTywb3mGqZ9Kr7rNQnXm20MO3AEZM5COy3pCsx4Wsx1U0XldImS6bB68SNKVgLnMz0RdcrY7xs0ovOL8ZUj/2xtpcfMDF1npjHPsxrNmZdHrgh9mGCOYndqSTla2OQmrq/wVTV7fLjG9wwS3yZg4RVrxZMpbzA1bdl4KO88V628SZl2nGjdD38olPXhU3fhKny7ooZ+R/fPeAcxMNFfvOtynbZY2rDAbHRLc0pb1xjGLXvxPLZAOVHH+k38qtsM2s0ttgY8g6IVRov6LvzO9I697lqnP3luP/nfH5dMfvWJwJYSzn3pKL4CgAdQQEpbK5m8akZlXIk5aBq8JTVOhUwPnMwVBX2d61m8ZUul3eVcl3BMPnFG01IpzD9TeQFxxunAMWlgSRBA0bPBhhI8z3b2BL7Myd4CjgLhCGpEnNI6XG8dJ8/XGsUXnm9lLM4uYrUpX09IQ7pu+bvxU2XegEOZo9WtEnfShYJsmSXL+02HhUBLLvKYeUBQfB5LvID+43eB9ZRClODpQ1ZnoqtK3nKm/p2rt4A3FMD77o+ZV0zbLSxDPaF/uv8pEOtQnm18oaTFkDNp1cQaBddz6BN+91os+IVSdIGF66XoXr7vZ+sF541dH066gqWaRer/Kw1hMKm1aaknoXU7EfZI7+uDwxOXWhqzV54RAYJT73e7U9IRbHYrdPc+LbHlPefCAGWmeTSYYiIrOQr3zcc5k8qWuvvuHA/6Q7d4x1d0oS8e4+pxQiWU5sU+W9sUv9teGuT3+dJmrS3fyRMbaTHm+5SUoJGA8yOVHodOKae4U+AqU7q1gQx6qjl+3nIUrMta9V9PaYKry6YagkATA6fAbrJ1oiS4a1MXC3sY5i66v9L3BBs4p2R+ZXg1ytMrbY6DkLqufguVFo0fyybsqyAh6+pfULr/xJM7d3teLDK3gBfA3g7AINMYt74RMqV7vGLMTU+Bb8L/dQ3Mb4lBlq70mnl1bux8WojyqtFflnKAdicmWww8lW4/+vzpc933WN2efZY3oNYdcIHi5loKhV7TSQs3TtiuX0eQX3VtLvAg+1woAa4rBxEC+K0hFwEQsQRpPVLrrTBY+VnDsq6exGjVvSRdnqals8DdaTjVbYcaXP2ltQg4SJ46sGn4Ya2/KD0LHyTsOOC9AUVnW/6ux4WIXBUjgjIFKD+5quggE1I/6x+4wxv9wzV7kHeSH8MZP3kK3VK5guR8su2FGLjG3o8yi/qdRgOAenkVZOfyeeSrWPO0FKnOKvb2oUJxyQU8mtQoHzs9KuD6TRP0lzKhuMOuvoA1qR/G5sSJ+j1f1tHowFLt+Va/VXXTD80gOXI61UXVH6kSXjlwpu22t80Rq3jQrPyag7G5t6H00sX+7PiESqYrEgAsCXwlAa71cxPlQZH3Fsw42ser5676HPJd+VlBThXTK1+iOksvOy4wZWD5wU36s9bTE27+oBNSiCkd+fRJqv6wo0nj+zTrv3RMDVozklGpZkz571/vKD4dGVK59ofDVPRbTInUxe+Ejc+n4esHPeq087UsL4YU9F4tWKq8tXCrzPd+JV9rvi7qJ78dsXN9MeiN69xY6YOPnPSUnCC795gatM5kSlt6JDPOsiHVfps6dwiv0GaCve/GVNjBRzkDXpsxd9I02rLYzCVUWkKDiyYWir1NZgqkymiUzusciCuO7CqdMur1kROPjX5KW+cE7aUCXGONqEA5UKjLQ3+WM/k168rZl/9OKZxttkaoDlfvpjLs4aaccHcN+InoGk8ma4AwOzAuUAW50GorJmq4bWkbgBgmkYYxpd0GDA8lpIDuAfhQWdJJk2npGmwEp19GWGglaYRhuKIu2OKNzyxhw7l2i55YTiDNxb0Z9loq/pL+qqd2T9Pmk6hafgVzFV+Q/o7V0Y8+aanCfUUASseBZDmkb3R0nEpiyUlQt5us0ZX+Z1DeaU6FjOfzKvjMr4Vz6F0sEGfOmN+ZJog5cyZr+KNtNuW/hb5edEzRLfnzDpgoq9mHjTPsjNlcoY9bg4fNRM4eVV8nbyRdrPsypseX5F+LYsbmjN9SGKh1eZGV9AP2FQEbqE40yxc6ppljbofsh+i27kvI2mynLC5ys+6/ND1plJCo7+LvmKhueY3wrEPSFnRRaPNScCgOqZ6A8OJVX6kCYDPPqfo4alHh1nDJUMva9lusvyrnrQP67aA0LupZ9bbdgTdIWvyJ/h5ZLwQNpkCxxY3NLYYnSE3eoevs8ko62bz6oHorxvyBMbCjUqH8pR3x1TS9fWYKtiGSHVceFM0TizL1Hq89ol/LEx1yHUW8fMhekfesI1Ok8qPovl2TD1a2aP2VWU8EvdDzmhd5Oc3uKHyex9TeTLlYcBJee5scsWNEddTOGBuDRcVU5F6U/gUbAlMtWYXlvERbbdiiFX2Dmt8BcIXca/zqKHIHwVTQwYGq1TUBVNzzpGDKjvisuugyX3GZTeYysHZt2GqcQEw5adYdRD3ZdtBphJD5APaxRIbLzT32FhTgHlCcui6l91oWuZsl9O4P+pjOH9o+j7+fKfDPwB43aelUHrHVg7gqOLprHK0X+Vr547Ulu963ARvAUCatqTzFUXsjibP/5PqQRqd/qac87YC0McJEE6j/OyatmRY54lsqWpiuLV2ayaEDaFFJflT1qZpKRkJwOzIfoAHWwSvaoa2asvuVRUlP85WFdEXujpXoyWrz+410wrUBYz5brS15ZVfeQWSkiQIr4IX4X+kXjqe6jAdNxADbEmV6juI2H/p6UZvLvLr3N3IbwK0HmccoU6+O9a0XSlf+kqa69dVPEV/1zm2iF3ZVdcjbfDMk8yulkabIjWKA8kBlVuUKhzovKHsq/Lq6Ex3OTJgwujpWxDeKKlXXpTewGSgkXJcOERnr2UXl0iN5wb1/psLr3rZ1tfsaNEGj8GsBstgRRmpLLZsO1F97PG1X2ifPQKmzktrtphKlHIWuZtwl4FPS0cEuNtjxQ3SQN2pfTqlOxe5vIupG5uU2f1M64zj1nMwlFjRDa/PdH8JprIuxdRuV4fwarZeuH+Ozqs/G6aSaqt2KKNxApra21eY3sFUZWaWWOXnQiO/ExZC9BIz7dMd8FGpjJejzRf5Vb8FR9xaf+llNarxrU2WXRTP50s8ZXbt38Wmmt1rZ1dMpd7U4En52PnroCQS9y0GjoH7q2n9qTHVYbEw5PFfbNcI+VWMc8XU1LQ/KqYiYxzq3FSh+fnMzBKlSar6wthYn6ZXLV2z8DXL3mTR/AiP49cVsz/a00Kn+KAB4e7d5ndWf3PzFESIIbjm9H+QXi+j0PNvJDS6JWkdqHWaYtOyA+eJODVMC78i07e8aWAfdShOLHEp8ieRA7FvrnDUqsuOLO2f/pK8WR3OQrTyQ58djQPoqYyXTtw/O7Vpi1fxkslLV1554y3B1MFjuNUJAGgObBVmTym8lV8QuurQLvziw4nq4QY/K3ShTF6y6h17XF7r3zS+dV3QoOTkaZ8ZVq2zctvaq5/3Cnh5Gn+XPqmPzRNb9beViht73GFT1yNfynYMWXsOt1zleZ48GEjeeNHfFauWisHZY/at2d07WPUlmLlUi1Xvrrix/HXHS5840O5jk3p3ctAUdlflXmjUdrZ90HpR771vk+vAw/MKi3ms+YFVVH8cTO0d3dIoZTmhPsJHbth04cmfAlNXVVfcGJdk5E7RS0xtdHVMXdtuQbD2Qz5P3OcR/i9so2Gq2L7wJrOQW7sW3zk2bMWa9lm4YXGypiWdAFdXlDlIm2KfvRG2f654dR8fUQbuiNMGS9dT7F+FqVrBwtctjeWLHcixxunE/e+Bqfv+zhj1jiObMrjy6pU6XnW788aXXvzYK2b4dcXsW5/BU7jcZWCvqRYAj/UE+rv8PFUmjCGUnsvaevqaOi4FwlGbKHJpHQtNnAVrdUUFFvnk8zfOsHJZfykbtI1Rv9VRz57vngNxESRQx/VjvjVc6i1wvfKGxlmzvjzq1pM3lu9ioXkCNFM+HOOUS7i9ZNJmsrOyWXbOICpv6sLqenWXEnClWflI8M5BWTqg8GgfkN90frXa91J+/N1KVpyhGsBMUcqogcHV5BWBdVbl+R1QwRR5M2lW3iBPdFp5UTO4nrK/6hxlPNNGOKj2nKVk3V1vmh8We0xbE/tLmQQtYRbgLJ/yhjPXSePod8bQYc+TEdd2+ucLZggfFQf2ZclLA1N8LXs4+TTGke3kjG5gkU5C2oIZrZ2L/BDvxMlmo2iu1MzST8rTVNdpf4OpSGv/sOj6xIzQuEXX79r1lJ+r/BpNBMEve+ZsdKXclY3W7zS0lu51wY05GOPfY1xto6VkebXDCSZERFd6t9GVjb5napcBNr4AU0FMPfLI7UnjzBw5z5m5MX3ZzJZoQdOfBFNL/gxwM13JmQqH2S79pfDiz4GpDsfhVrriwPNEDTQovwiIlTffgqmnR0qY1SmfiV+w8ONlKzzC38I5DY+/he+p27T9qNkWGg9Dtpt2YdHHUdjW7Tf0NfhInjKor4nf0rnLFhLBnKZjW0xVXb/iFTM1KOv8LeTX08Upe/9KTNVU1I9hqqVMDjhG4P60P/MRl7zfYCp81vdhTC3erph6RNmjYRcSq846lEDiwQ/4RKzxn+hr6DZxt+LQYPAckV3wlOnAvz5/+uf7nsooCk/gS20hGIpSwuRXJyhy/rbciho039V66D7SKWkaVeHnSli1izAOaRfoaQue7WbBtNDp3x1M2SHNRzjq3H9AcJeAoGgKq4cC94bG7DuX333pD5Jm0EGiAMjC21Xbcipci+InOSqz1mcJjtZ2+8lcpDkCkYWPEYPPvGiCixvyVMaPyG+jNx+RHyVAIEQGIrPsDBaZ/26REhF8Tb20LkLYVn4WX/hSJoPnC81Img+r3yaqHvPQqdyzSFtQ2aP1v4SpbOw6V2Le8Ya1XPkK99g3MQPNSfdC85amjgNhFqlYHU9sW/ZIOhyM5KJHdQfWMdOkZloEdVDkFQEQmp6rjnXnyif3Pi7900tat+2gOlZ7BdVu9vLb46vyirqp7R4X+SHt0fJd7nv58se2fSzcWPQuAiBOa7Ms2RKMfYGp9XvqXfoCgOl5r3mpetd1R4jM511MhcXNUqSpcGPuJ3wgbbvJ6oaPfyRMfaiN0j9GFDvvsFxxA1kXjj8dprr0b+L+QalgpkSuSv5RTFWf2GnOC4x9rqQcB/swrY9YQfkBcwvC0z389nGhqTPPVM3bT6TpdMNxfAGmRjO63ygnsHM/tonzoU3RJ6J0G8Srj2KqlG2YuvLVcdhRq9wZ41AXVpta7PGbMHVhdHkRwOZewicC9wUXrC4Yy7Ypp49h6lV+xFT2eSw0wwPF0pdb4ML7PhFJ41V+pGNgqrynbiPjPbVHs1XXvxb3//TP3CP+ayrjNz+Z2hUangaXRtudkX4SXNl+4WUCm3anEB3ImRJXK1PDh+8KvyJEoCiq8zKSoow9KhqZmjEv0rTOD+/tKKkrjasPv7A1Nybzi6qhd8cSx+dpZnL3FJ2e46YsNrxa/yxeKeARiJRL1VdEAHMk+Lkfi/y07Cq/DY0Xvdk5TC7xZ0iQQVrKz0lPzC6vjNfnBb6pH9897+r20qz7bC/varnwKmo16kbVpXRqikY59fmerUT70szC1yGBmjOlZWN/WnZpIb9oRZsezReUxvyd/fHOitSpPMIfyIMOND114Y01xfJGly3ObKUx7VFq03iOv+Re2K38VjT5iPx0NrXzKuWnTj1rd+y17wsexfZ39K7xUvSuGHSPqW69XuLXCNy44yV6LRdcdILWgjkfx9TqIFOgX+GGL39cxmkQGZIL72Jq4ddqGzO4tqBprtQUr7wCQNvJ64+HqauvGuEXhzvGOF674pU3C886blQ7Ra1olFurZ4WrSVPEE02X/cqbG5+40kU8NmnoFaZ2+0bGOGdkAeya1fr0xxbQv8JU4B1M7XycE0szE2GcGuNYTNCsNtV1/esxtZugNqMxznkG9guTPu4Ti5YvwVQhqbUz45rYd3pJce5Ss1bWs79XHCje4CI/A6xje6fLLu3+aM/568DsGx6fQO9p2VQan8PzWL6tfOpako1wAggl4p816RUpCO6zHa6seOWvGwwYwPkUJaVlGh0nmhVN4xIEyjNhmQpWs1QIgKnZqurfcaihOnDwNvnZ6Bjc6IlqN4jxAzlT7+7wI9wY+wfAEhXkEIzgyyxKvslqWpI96zusTs00OMaIvXg+r+tlQOOsK9JSnYLkdAyKJq4w5uDUKt2CM5kHRQDy2lIETEfS1NWZ/hMz/CHvKR/Zcxf9v+jNRX5oNGmKyZQDZ5Drb85y6bvD634kR6QeMMcg9aYA0Nw5JVU0ir5a07/QA3hcqlt64yFjzluTr3Tuz5OzbmEHUaGHDdGNmfkMwlgvL9FlKmw41s6b6JLNI7aPCFynPB12WJ5AqSuAIwOG4HleMhw8DfvIwxIkWihnU7oFKxnrrPFFfqPU4DiCZqsglButnXzc6Hr0PHgT73KQUJ63cMBWB+lif57t2SJ7w9SZ59My6nFi1UGLQOKAuYcNBR9TfiLzJr/iVepN0HtIM1yJXWX/pY8P0bvEDSx6N7GNM7azYLVNV+Ghc68w1dIvIMtNW4hUN/d5oFHaZNlg6V3QdVBHqx0fmDPqX4KpoiORcTf1Lg5WcnjaQi7MZb6R6jfEFq6YWoOZBVN9tjsvjpVVPPpRhoxDDx3QVDiZhiDjj2/E1ODjBVNXvjoHigddTOqsb/Sm+UTaTvAm4wuTtT6xhYnb1KPO18NqfyNTxUfwyjDmHnHRm6tPTIht8iPRdBmHOc7xcUwtGic2nc+pU0YH48hF8ZS+Yk4Yih2Ik51Vb74CUzFTUWHEp3m4zZCrIVzjh2QsPWjv3z2mrryYNBMHDs+v8v1zwf1xWjTsE6e8dEMx9YIDiYvU7K/D1DRv0YXzjJUyYlVmMJVPzNhKPpMFvvOJYVPTTufabsXGyM9mevCNZ2j3oz6O2gb0537M7H8J4L8D4BOA/xeA/6G7/6uvre87pjJy/VRmI8vmGfMEm60pjms98YXl38yLpQJq4CiWDMCOA8hN4EWPJrTzbRatoKA7qVmUg58gxpkT3J0Hm2HgkF+wQ3bM+pmzjgI1dYYW4FqOKMw1wYrL/MJ2RzqcdNJcEQiOn+XHgqmG44gjVv0A/FFSiA5nqoinHwdQDnz+jgRNL9xLRyWib8oQMVATeAtcYUETZdYDh+ak35VfzeKSdSVPwH2UHpnNI6jZPwt5gAH1Qynp7eYvlscNlyui/LrTTicESx7n/o3eTDkn189RtqW0SP+Q3SpQZ52uzid4o4FzlrU8TnpQNsMz7z0DBFSbUyaW+oOU4PQEaY4QHqTQoIt+8pjwpuuS4s2I1A0eaW2IY6nNgTGTzqqDyudCpwz20gGi8Url1J8aUKwHWKjsgZluMs746MUbWOOi4A9tvf4uHKBue+ej93ZzpY7YpQHa2pUPPcTZKbSms03vGHS+w0tnX15gas7oBAM0iG24nxRWO6veDeGP+B2XyZbXmGoZjKU+MsCjvsML9ze8UV5ynx7rc7ZWZpTPBVNz4q3UQuZjgodWuJOpjORNx9U4UzzB+iWmuvZZUm5DnxumZtmgKerz6DHTxTmktjhePD+TM4kbgosNNwQU3Hlw5y2mclGFg14nkBowzgc42+bJ2GqHf1b/lFdd1rS9j2Bqyd4jJc1hD4OPGYfkqZpBtPSYzEleuep6Pl+BqUCMAWqiY6rRrDzll+BTyujWMZX3ne8xtRBJB0Wo6qJJDkeDr6QRNkV2Tpo8YpwGHVJZw4HkzZ1P/DimZgqqGjMcwBG8UmlUu/3zVY+6/CZWkfzBdqND3AObcTPCu4XP+PXZPv8BgH/h7k8z+18A+BcA/mdfW9n3PZVRcDAtWD3ksi6uwcAy3tgs48dnRQxtLwIRd4efHYCasauHy8oFBJYuaSCeKxDsztqGZ6H+js8grNWtH9TzXmhVJ4zlr07+hZ9ijIXY5br14IgW5CQKROsSuKzc0QBhJ7/8NeXXuz9/KxrmbNcNr8T5q+xNWr7K7/4p56xf+uUlQz/Vr+oVXt3Jz8r59dJVW+teJ+5iF1qU99qoQ1HHk4Hmrv4NHfpCTjzw66bbljOBFTQB3AtZdwCxidXuK/he6aognj+uikeahK+LDEp9LYO+cVrpGcm5w6otr4TGrL8+9zK1arEbwDlqtfOadt0F1+S3ccwrb1Qmq85RToqpr/r57uNkeeBi9MP0N+zaUEzFlT+KFQumslBNikVQ75iHqLzUuwWzdzRt8EnpKkxd/A+uOmHAkt5ViHnRu9DXmjsPPNb238HUAsR1sG1pt2z7XdyQzqyQeJFn83e1upN4vVYQhXz5V++ubKeDyD9VVo0muijvLKYeB6qQN/eY6guvzuUy4Ev8cHUXSy+lqCj7RzB1pZHbIaauY+ExpH+cCOv9U1z8Nkz1rOEw5Kh2Ht7FKjc+cTUqlVexZvuq1rudFAuBeyvEDBzLBnT/1qUxZVZ+FEx1h5h98qJ1qelW6Y3Kk/an7fvS7habLjR18lN+atQQnMDu+SYP8Cd+7LulMrr7/0k+/kcA/nvfUt93HJjRmaBQfuep9NXmWEx+8rSw+U9X6jVq4ejfl7umovaYULpq59wsaTNtgz8tjrI20hK5g05bnKY6kqAp95YNXT0gm8q4uBJNBqRzTgDps0UaYO54VUGnwIfY8kyvjN8bPgtwuVefjDQKzaiZZBXuKr+VVxnwe9FFdeFAA41XGcqoyMURc5bqlfyyKhGBKKSj8WfSFIPESBuEW5efLD+Ze+19SflNWZgX0dM3OHqOe3d+DfnDQPiVY6ZwkCZvB7fUP5Zl1QN50xsRVn51tUcv3rR2vH2kI9C0z3wUB1Ya5fH1D+s0kVelNzu80QpjpjHSt7oj3nR8IajPngoNqussxtQw0O5KT9teVCMeIO/FuwYeCwELK/s7C69WGn1SpTPlk9z5RZKu9valz0bv2j6aF3rX6VTMKl6tmFo2VLbjo1+wqm1sabySf8HBXOED3sdU6ylO9EOnpHfNNsgbKsiNbQgd9d1rTE0NEJrEYwCBr89z2VB/kV/VVbTsMFX4ECsqisOOyas8iTAwtdta0TUnvnTf1GKAiYueevO+TywbnCmViyGgMLW+87TP58nVH6GJq3/Y+8T8IbkTrSy6/FFMnRRavsI99ClfilxYaotP1LvJLoPsL8TUSU/x9Rzcy3XkRB5w4xPlDII7X7zD1DYQ8aJ54gQnGKRj4Yc4qM6Dwb34SptK3EG9Q8Z1nyi8QY+n7jGV/OMknaQ4+7oyhsbrFY6T59jFD55lMoWUX6jsF/o37u2Hehy6cPBVz3/azP5j+fwv3f1ffkU9/yMA//tvIeT7Dcx0BoCKaSgFoP4QP63+pgNmoM9Zq5xL83LIQM3OMoBkXrhH+tSBOJZUH5N/4z+2g5PGaYVLCtZD5jvoGMIZaQBi4odjdTmP7Scmz1cteRIfE6wFkzpN0l8NOIpXM7/C3FoesiFOg7LpOA861jhBb/av6iOxyZuVDqUxnFiCnZX8ZpngGmnKPsyGBnkhKaogD/mhOc09by40Un7kF293ZEAEFI2ZWz4/kzzjXohIpWkH25AJo/Oqy68CmZmPjwRnneFeZ/Bysjl1HZE2NcF9GA8UCK67A5kSEW2mEpZtrXqT+zHUTow0zSoyH33R9TodquwRXjY4eS5CW3AAGdCgBg1q29QZXNNIcpImg0HR9aA3B/yyqpINkb60qdJdKE1A6k32z4hDZY+Z2txcfrGVJjbpl5UlN3C/ZHvZS1e6/ISuJZCruKYcsMnXLTBLVlvYn/D0a55BAyz+vad3xI2k05TOWUYHsyumjniHchlpoysvV72zWklZ9O5ySqRxas22/ofp4ZTTSN2Z7wwGRRwkuPLmXu/g3vqnmIrUddatvCmfyHTBGhdaDE6EDvcLr7r85uc2pk5IIwhZ0CU+0abvpdyGlg0Msyib+8zdcnBXeNQxdXZ2ozcbHSte8euwybRnJH5NTPWkMUtoZLziBuFkh/sInyLdoI+wQ+KWD2Bq4pkM/BnjzJNJUhUEN/Y+Mm1LBzDs54qpUDo6pnJ7HaSqnAx3K5p2vHFDXsFAX3zB1FrJNWlH02fN5MRDwdTcCmHIdE/qgDdehb3QBjUuET3STvaBP2T7yGtMtVG2zQE/7TN9JOtZY+gl3lVeqfw4GKP0FF8OlT3xdCok8nqJH/g58U0rZv+Ju/+X7340s/8zgH9z89O/5+7/h3jn3wPwBPC/+xZCvtPhH6W4TWkwlWD6WAEEGiFK/5HGcVWVUsZ+1DUDj7GUPTVtaaFJJxManmcU0+myTmV1YE9qNZPBEmkij658ou++gKrSZMXCfbNys728laAHApyj8XG5PHlX+YU3SdMkylvRAGQsfJTgsfbpiZOUGkYcTJIkrfK7482WRuGN9+6teqQrRt1JBrC31SCH1uZ3vEma0s1gTcO5dM8k+Mj+WfIPJisSTNWQ2lw6kZONXanFHKknMjOLa7qIBmi+42s42XSCXM1L/hYOKE1thtSWxpLk4rna46rr/GemBbGDR+nHusJo1V81ruLNITRagoamtLDMBUdSfqIYpgUssEt0yoG8s2bDK2HIVp4X3gj+rHzs9ShtX/ikrIqXupLRngsvqXdK71J91tl5qYPjPHzmqbhRu5IYuL7UuwsvgYapykvBjaV7DTdggJ+IiRODEqB+78obB6wCy1vhqH1mMOb5udtFbWC0D9iC6rv2tFRxDZg6b4qG+HWxK5Uf8WycrKd0tmxho9+dfbc86sHrBlMXOufA/AVuoLOGasTfrnSFLgw0HV8xdeUNcaTRx7LE/WiM6L2LHxo2XYBkg6lW30Lf8rLW+f+edmHwq/y2vDn2PjF0bochRfaRvEpdVUxVowr5cRKz6zoqXsXuof75hRKWcuvv7jHVwVggj+ln2ue5XN1yR8cFM2VFrL2mvlin5UVhF5i/b/fHeBz2rStmr+t3/6+/+t3M/gcA/jmA/5rr3ouveH6gsyVFUdujTvn6m8f3nQ3XN2M+ouDF53/zJJ6PlA0S9ecL7yuDmHTh9etQVfco1I419027WnN0Pn+/kO8JsDuaXlna3NtS/PVlALspIH+/oHFt/EJYfcEjf+ueq6p+OIOrOyLm51verDRuFVBAWj67fKYu8b/zictG3T4Y+hL5bbvU6Lrqdjk61jt8s2/x3TaUxquq7OyxByS3IXfO5p6DKZb8YRPBrryRf/c2taMLlw5sVBQOnvp2Q/j6rLy5laNGWPtXVH5pez5XLsYHseqWN/n3hr+7Z+UNiAe2seNvexrGKBYI/nXSrvq90l1+oXipZXzl5Ubfb2WZjX6Ql2vVi/wT9/PuvIWOfJZUVgd8rUwGKRefcWMbF3YLX903e3hfdTorscQ8l3Zes0t8FeUEXOWnJ+hdAt0e6CueNBELPin0V5v1+/zelt+teMXVlXXSMp8+SCs+7bgR9PvyOctbts3ffXlXZchj6W/blX7z8yXGWfjY+gSxx03V5NWQ3937QKMR8rqiLR4U/VdfXd3qmMpqh+paZHCsMtzx5oJV114kDWvZ3qXC1AtWDfJq045XnauZX5kjdGxebfavtpJYb5cyvz79MbP/JoB/F8C/5e6/+9b6vmMqI3ImotIngErw5Uy+zxkyOK6pJT5H9TG7xX0DOeNg9bmG+3NmYub1o3Qu19uZLmby+lKWMwm5jG6tnZZaMslOWhqNAGxJfxpxTGvuh/AqWykPPbWR012axpHpGdHOCL6Sb0qTt6rYLmf5LY8DzuV7veejFUZZLusRXs3PVj8vdDQZlAbkTE6dFDbb4WlodmDONHu1o7zJ9KDkDXLmNWcaDZHWucpXZvkM8BAKZ9apG0w79Ew3QMlPZaVAt5NfvJyz/fw8vGhKvSmdc7UhzMtG509H6nqmuIzertLBvYpJ/8ILyOeuc7NAO7o5acbGHkufqVZ8MvUmPvFI/6v8gEp34ZfovGK7VvOB6r5H5JLkkcMnZcjj1I+Sn/CKKVlJ08KbtudTZt+TikyVmXxsvFl0PbGKfEodM8EmaZed3NqfZxtdJh1rYFY6ttH188SXP6R9o3edt4J1N3qHkCkE9xOHxTYcvFoijoUetdJilKmTlxCZig0GuxU3ipfof294mVifX3qkKE26zGPSxOclt6frvjs2MOsa9BX6k1FvsOCVb/yNfF6wjXpotKuYoDDMvV9D9O6CG640hU1yM7TtfaKILPg1PwyVn/OS6cLx4i0j0wPprwdD3tku/bPGD+WLyycO8iaxfOENmCpYKYRlKxxUW2DbgHucyNtwI2hqmCp6a+UT2Z9JB/tD3c71rpBXl32mNQ9mkLLDJS9bdDv/TZ0iTTzl2heaut7Ayt4appJXpMm5bSTklD7yvZjGhDerjObvg7xpZdlup3nyadI9YFN+SdcAxiN5QlXr9jZ/nFgl/mdDs8poKKYCactd15FYlVfIEAMyfiheAAJjbBf0e0HnEF4N3/KZdJgXXYAt9ogf+hnfb63pfwPgFwD/Qcj6P3L3//HXVvYdD/+wFpAAEM/XvijjPSrirgCwBlL9N6lFgsUZkDAfn1qtGq5KqTRZo6ec044mtisGrACbv10/WxyVP8LSMr+3jTbQ2iU91hr2aFffFaBgOfd2Vjf32DTHbbFR120OyjI53pdzvsuBpG9U5Ljwirwpv1X9Wd5NhBTeWSzHnxCaVt4ITU2erKi+50/Fx87yxhsQ2IOvIDgf5XDdev+FjibPFjwsfI3+WHt3oUlk347tT52aNPNwmYWRWpnwZt+uLe8qr2Y3Fme8OlBphjn+eT9LF1L/25bCtzR657m866UyCxutXk1dd9R1B4tMsJPfK96I/dFh0oGoDupHYWzKE7hg1YWxzf5ueEMHf1RDao8lTO1e8fJyAtwXPYat3i3Ytspw5S3r8bDH+u2KxwxYBn3ImEdM5IXdwp8vto3Ks8Kel8QNpM+g/D3rBXAcsGF4OjDvi6ScaCys4kpjw3LxVcqbq/+581UUR9TN8ueBdqXMS9xX3hS5vZ3Om3SnG1/l0T/3eUdWyd8q7dMRh3Kt9lFlGT/s2knZe/Bm8YnT/1jjm17UO3mFTMvudmdCyHv6iiznboFXKy72aMCTN3wr+mkrrS9wgzLh3yGoih+UJgq6/A/Llk5Z1ylQbcIfxe/gQWcA3o9plDddRvVUuzuXkRzi6CoHThXj2DjgGuOwMtGnau4VViH5eolhqqfJR+q6RZbExKqanu5ZN9JGYPkVI9nQa6xafVdl4DiOiz1q53+sxx04/4SpjK/b9v/CH7O+73iP2fxnlFojZ1/QvpAyJj8piOyqrx8S3JEYOmcDUWmDNSnvGJGbnG1pA7Z80/ZbiReJdyvvf9OfhXim7Y2BeVdG4WHwqcDJWtkMnYrElg8v71rnDVDtJInL4x4nIJ7I1TJWq3hpS/9WsdjCqyrb5eiX/gFY6Jp89XnnyDia2qyZ3isod/kpgeJssyYpddG1m/4Oj7RPfZXgzI+9nUuo+6Kd9Ru7/BBcjZUk99D3c/7bTErKW6tD9CSZ0PWoiYcGlPHH/KP4J/YYjtF9zjK/lJ9ddaFDhKxsbHT9okcbOFkDnOG4pO3qaVbxxULTC96sWa2L81htuZkJSo/GYNqL0LV2alGGxpuFZlvoUB18T9e3QPGBh31pevcuL1/p3SIW7N9NOIy6PoQbSjjbudOzj/Cy2cZV73z4vEdphxs0xXd4pT7j4j4Xn3iLXyAfkWmDQ1PZzPoVFQuz2oAF5M3eJ662caVJcYP+mqeUHk0mtmD3q/gBl/jhhc4t/Vu/YsqZD+JGpViu9pnVNkwtmtQnWgUlNz7xBS5G3e7lt+t3GUzky6/ih2QK9Ejo1f+4fFDdVnKHxDjzwA39/V4f+UVhxqa/8oF602jLn2XQH91xEPd50nPVtYq+0fUKq1av/kod5f9zZ15MILnqevZ/8Rk7THyp22vbVVj38Sq+tAnFH/T5U+4x+3M+3+3wD6a0GD8j9OWAHHwllnhEkBG/JSjkxZaAH5ECdJRmUs0slHfOIs42/Qywc558htLqw3pbdIoDkKPwsG6srF1m/H85WWn0dEN4X0IGpiOcBxAdM/NAT8I6UDTp7Ex2iHyMz5L+5HmoYvTXIiUmHH9Nmk3v7tFfp6yGJRjoPWLW2g2Z7uS34RWAbAcjaHRE+56f7RAaLegatecm07cSjFx4ZSW/C69MMCpA1B1+FF+1XU9mlizYZB577RHEcDUvU7Liq0zh7fLLNCcerSXtJk3Sv3FEmZU3kNQ/tzgEL+4Kg6wOBG9sozfTpgSwM5DQY0hM5FeOkPZhoxxeTaLQuR+o4IoYYO2Vwv9rKpsJ45mOnJML1BuWRem2iS6ox27HPqdeha4PKQdpx6QOQwvoV7v3YQ0zqmHaGHWOvPGcXWZ2TW2U94omqEdpNx0HUN2Y/yr+LHpTUUrR6MHBxCoIH6+m/LEncX/FjQX3ab8xO9/1TvBpYK6UCHaTl7SFWpgI3HjG4Jb9vcUNymi2a4qpUow6mnq32i8VhanzYSO0DR4UNANC4kbNsNuBeYHzIfoO4WM+ou/EI/pE9WvV4ZRjreJM2uh7ziH+RJq6x9Su4tRRtcnuE/MrdqH7ROIkM1zCFvJEOp/9NPJGbWHnf1bckNTapjcX3Ci+AiRLgCSuYJi0D3hcEp59CX9jhqmvA9MGX/lECF8vPhFXn+gFs8SNmXJ8iI800K9hkUnziXkKYPyU8cMRvOjxQ9of/Rvo30rX2NrIfcXBy0GcZBkUDoj8yJtyTKpjpFH8uPoflDrw9NEx6l9u18hzJP2RCtl1vdR9YnrJhKvIdaJlj1kZ48AdF594KGaEjIbjfE5eZT1iUy1+UN0mYzbyI1YR5zKFn76qSM1/eVX6gaDjB30cy9Uef8HPd1sx4wzjwCinIN9jNUBqioI45LN5lZW9Y06rPWigMruQ7Vprt+1pcaSDbBocn9vEMQOL9XPinlWAr4YFGtp8J9PQ5FS/CazKG53zWhpebUd440ITg5MEkcW5NueTdXde9at3HJnyRKBWEvW58MbzmOnsH7Fo1N6HNuuXAbPhcv1Ck58cbxXORxgPKlaCnZeMLGStFzF6IpcvwOapLxbM0TQH5z496mvjhdCXvAmwXmgqGg0Q3pCPl/5d6hddVzGJ8xFBNBqLZgfEMasZrHs5ujPlrHBEFyZmxQ8yK9v0JOXXZSxWBF44nc70WOiQsqWr8YJxwiKCkyEpZUFWBQoLb1r/hWbl44avnrruZfei67T+PNp5GPp1ByaDUunfyviVjwMLjZ03NZ1VAQSvJtB46Yse0b0atET/lD9WPIcGaxJ8JFkLLrrwkiebNcyFwY6jAvKXuLF8tzwXnPfl82qT8pvAghyLHsHuHW4Qc+64v9G7iz8N/MvA/OITq7+GSFs7MbFZ6jLpw4UhO73b8kYyBUQRtZqyXYJ/x+TEjZwQWuSpvGn926Rpb3iz84npe2I1YeqXARaZNuOA+YHqj+Cx6uty6uKt3ohd3PnEGqAVzs1VIabMCs5JXdruhcbEOuUNgjcdB1z4msrR7Gby9TjK1g/Mw58KY5eYZokf0le5TLYLIfSJzZZQ/FAcqLrCtnDgIO770XjFAWhTokUmU54u2OQLb+anxkeqPiwGpV3HHAcsdGpOtKhuL/FD0tSc1KwneSNsTR0R3gSe0jIaZMDkNPNfnz/18x33mAFw4JAjhj3/4s9r+l4vS+eMVHyNGAI0+fpNfq5H2qCCyCHLtZMu+XGJZC7pBQR2oTkHQ717F3+vv/uFpmpHs0r4ha21KaatqSUV1WT5O5rUyAf3contH63ce2lWK68U6sSjLBi4Pu7ygyM3tOdn5RUAR59FsXdoqv6lh2y6Zvq7r3VFr08B7PiN6T97mkh8QWIWX+ophO0kzz9s0z8G9YCNo4tkKe/ywyWFEOtTq3g645b1Lo55te00+gEcTW9KX0uvxOYWnfDdB9FttV+Fh0tKLyz120+U/NRLxZ++8HlNw2l0Me0261rbXf9ozSGmOxiXNkxbMVOfa2pQt3um9CS7VccvuLZ8/EoHTb1o8ySrfDdtXLCSerfY4KVsw9uwMuL+Ke9vcUPqWoKSLU7e4D68gsR9BYzmAH+uuFF66KvO+jt6d8HUxUfepTQ12dAXWZ+Y0LZW1/Ou3ilvEp0W2rMy1pDEpVkOLJc9i/y8f772T3RuwxtbfGJCwNJO50MMohPNQ6YvY5pNXao3UBp3Hdnbvr4498tWn0q3N45gQ9NtauqHfWKviz8Pwdh9TNNpvAxikyB1PL68s3lS3v19x9R1kxhn8sqy4MSvjU8U3aaidN74UiAJ2eK+xlHuaFg151pvYhpR1PI/ncZ3MVPpuPz0lcD/Z3rOH5y+jz7fcY+Zl/K8whY+DdvFQxDl16gw7WD+xlRGIByHY85AjLS+VnY1uCK0C377jXieBHNfnOoSOWgqHDKVqre78TV73igv1s/NJqNecwlCTVhaKZ5M+8wLeKV/jRM9blh8iNe7C43e5Gnt/e1KWdBUKS2dJU1++tsreRJMUyG6/NJltb5k0cgF934Ut8rvzo8aUPtIfO1w6U2CbtWdh23kF9Ik3W/sfUgC3KRdaGVCd82cXflYsJ0+evmdG4hnWTEoq508GSCrh1e2Zbtdby4rNhIUeOON93dNnOy6ykd6JLjKGes7Xdd6l3Y6IUsjO3sMmetMdAYFkfI5D2CQNMKdTSXzQn5XgJJeiM41XV/3PC4VqDy/9Pli3Oi2kJoedF5kKO+suJHYHqmDUmApj25rq8zyh41+X3Cjyipt1T1PvRt+XGRIfN7R+q7ebfuSDS+THZtAjsfSuzDyQsqN3q1ty9MwdVmx0+mOvsdK+Dhs7uVaI0ltaocb8fVkuJUIF0xdecP+zSqvQiCO5X2aznT/K29e4sZKu9lStORw5xMbXYPYzzur1NYW3Fiw23pVwhu0yZyyAa1z/5hZ3hPmkZp90Tkxratut8qQA95mn1Zxi/rNrHvKvq+mRRrqk7ouPG9P8Gbtu4C5J86IrBvtG/uM/hREsV9W+/pd2HvhhajLoiezmpKvrdi9+ES1QNUDB4SvP+bj+HWP2bc/Q4DxPV76+p717wNsuGSbhg2kahXOhdoNAU/IKsKCnZd2NvQ0XE+jl2DD0EBWq2/+0jGDMP6SK0FW/6px0mGvvPH+2bQR5Y0vNC68msZobV9FRIvX/sF4wvhlZtnyj+4F6y/5LP3LJfjsnzDcA0IyiFhYJQRoVkZ+jvpsebcEuemfAqD6sgtvkAO1RlSTiy/fW9tX0uSnRZQ3UN7wXY8+LkKgggmNq5403jBgYvspV5Gf2BTTAFt/o6HuF2uAajEo2zvBaiqPyk7FXYS8OpvFyOh4LIjuPNu0yZfvdH23ZGedV3mEP12thy2BMlPNR8rerUcjBszBIjcyuHVdV5tadJttXQ7SWvHgA1jVffllff7jz7Br24kbxdeZ2rzpI9QGZfC8dnDjMwzITISk/z3cyCPiqYdVV9aiqim44cQYsVcpJY/VBKHStMMNu/79Uu9IE0TvBcNYkWs7Opjwqrv5AcVk9k/1jn+tSrTDVCm7ml9rMOzRI8U/9+ddaMINbvR2k6Z8v35uuAhUnL1ZoUx8xOR4ZbvsedN4YQuLGqYuZfm5+URcK0maHfCj4pGG+ze4sYtTdvondqF64y8kyLpyAjr3sZnU7XvebPq31SP6PilUPhHz/4g3UZfFimK5SWGwoSZNyZuU0ZVHq/w6b/jiwqH0c0JTf1V4LjJY2m68lD3aandrLGXRIWIVjo6oFxj9oZ9f95h920Pt8C7wVfgNd8QH5tcbnNMgj3ZIR9TSJ2wC+4DNgwouaR1eFbYZpd5ma3ehSX0CP+e7Jp+Fxqwgj6U3ebc6xlzlO960viw0Jc23vGGQMQu42fzPgcy/Vpq17AveFEFSlu+/xxvxDC4NuWGuMN6l5Sx/++ZfwamugwK2K2+KhBW847j8pKk4osPAu/SdS0buhairrq92YilAvhDO6Gn9uoNr1Yv8elLL5d2N/PJFDXiClkaz6nped6C6jv630KX/bh0GdWPRz/b5tlzIL4693uo6rjTd8kowRHGgeOMLb5bVBjjmEf6zDQxrwf8tZmLhle10W2edu24r6Wt/1smXjz8h4y1uWJJ1wae1FlXStfokOA4oWOhmkATg47ixwVhbXppVc4DjV727KcvMBNAfKe5HzR03rjTd0dVoWl5y529FXPFVXjRM36j7btb+3+H+K0yVz8kbqatnFwgvhDX+BL4KN1ZbUJqTpitvpk9cV5MR91wXbsxUuL2NrvJbfeQlfnjBG5MaSZVnHY7aw2vAabHvbaFj8/mCsZcfN7wJxhltfNOITqiYzRVGu5xguTBkoUV/38YPK88Vr5LZ6RyrPrMpPwfgR8dYif9exg98V18WO23sMHTZb/RVJyvm1oiN/W1ounzYvbzljYuyLc834f6vz5c+32946cvfjqtmUb/9WuRS2apQqq0uvkbqdEfsL7N6T1vZ0eXylfuV5lsSV6TZeFWf3/vgXi17t+z7S8vr8rO/y5tLUw5gPWp95U3yT8os7aozXmm8NnpPU3ZjAGD6gZbdtr+rauGFfl5JueON/EadGhzoKx2+oOMN0G95cye/zav9c60ozrRd3PJGq9jr9n2Zl3Tc8S945c93yoo8d7p+0e27dm/aT8cH1GqKpI/sy67y+wKZ3GHU7h2fepRYpZc6v4IahLU1+7ymodxXcdW5V3bwRc8r3FgJc/3wATr1/bQ3GTmxiOM6KHuFGxed3ODCpYxtvy9eSrAnuIGP4kb09ZY77stKqfBjwZ57bLPag63Y0buT/7jaa/62wdRd4FeNdpo2snC393FDvriKoFL08w3KZC2zY/DyLnnjKb+N7BfeNF7t+Lqh+ULcDV/Jo9L1oPeddiZJL2x/bfYWU/l5Ta9E8r3tV99iQvHmEv9tbKr/uegg+YHl76V/vuq40HXHm3sMX0lc+PiezDlwfwerbuO/pP1qf3bhjXRn2YeYvLlW80M+A/bV//1Iz3dMZUTzFfl3LteGgvCzHKPPMnksKXhqVbxgU630qHJ46XYeP6wXEw82azWDkmW904pZX61uIX9kKpK2mx9kIo1TcJo+4azLOQtFoleaWNY7/5TGtd0h7cL7srjyVdIRMzUt7nSarFBGQjpAGoSmhTemaVot7dGKXytvOGsUy+3Zh9wnEl+OXrbpyTu80bIen/XnRCSlOXgzhnfaT58HbKCAdTfjSJmQpn41ROfNpX/KVwK48Cb3DrE8A6sYhJjK/o43F93GhTedz3KQhNhbyitOm5sfPfY+sANLJ+7qDd5c5Cu6rayGhz26vBvtq/ySrR6f5SJdrix0HZ8fWqqq9I8ySbnz+o747IlRtDMIb5C6ns2ewiuD4BxmPcqLVbdBfs0O5vUECx/A/Xiabpk0kVes2vt44aOPox+PrrrH34P0bpPvYOoQzAmZm5Ql/cZjys/qfwboW9xY5A5vNDe9S7mgeB22Pk9dnHVZww2pX+6IZLD0Pm5YW0Fqepf261IF9Y5Y7M0ndt2x2pv6EdzI71d8stSlrDptwUTv4l2RgYX8mu9K+Vl1+A43FttYsS33YF7sagog8Ut9ouhc6iP5POKIri/CDalj3Qqw0rzi/MqbxN8oqLgB/xhutGWoorFd+7LEQw60i7DLJ3p8TpGEL/K5UmYSTyQfS34as13iv3fih1vewGa6XpStC9SRB6SscZc3vl5503zxDqtQZYfSJP3NvaZij/TbabeOCoo0/tv4xIuuS7sD3m3ZKSsTvnqRKGV1+/yP9rh/vwum/9jP9zsuH0vApU4BSEPKFJf1rE73m8spqy5b6sqiw1PxLUEn2tEpiFRaFbYv+wjUIpZtsxfvKmSEMTQaj9mWDsoqxUfoWvrn6s2yrvpsarVegYrWlc+QsjTYwgLMVqXdxQ5e8aa9PHwexbwjZMcbDbrJqzgiWeXXADj721lzjXjWd01fFqdx5Y0pzUxpibtKUn4OMkTAU08MXWhaeaN6FKCJV7yxzosWYNKhrO9m/6sd0TgAG95cckley09fnXf5lK60WeaL/KTs8LbOb8o7dTDZCe17RoDLuxOLpqM+UNk11uV71z8sKxeObmOqN72TIXv9LHym3hwGG3En3eVgoBUTlc87vdFnhwNXe01Hne9aK/olT+G+9sGb2FzpuODViqnv4Ya8yWPnY7DgTAuNd6/t9mZf22Avm6CJ8C/H/G7Lyy/GDdEdfVT+LHvDq4v57vDYDHYA48n6lv7dtNtwf3UR6Zs29u6+sYU73Mf7uCEtu/pED58ohBm0LBrs7+w3U/ZIE462Vf3LcMOynVe432i6xX0rIg6HDat0/4/ghpOqamyNH7a4n68sPtHoGEOeR+mzn/5SfpME2tAig7Hgwod84rWtqWMj7W+ajZXNKZaTN4s9vsQqVD3Th668eWGPgVVz0u+4XO1xy5t34oU9nq7yJW/u8fRHfH7dY/ZHeax7F19+ky/N6nePL4boiWkFNuGhPapTnHlzixWAdvB1TE7Mb+aJhVqXEAIe812B2dDarOvx6kfXuvIOllgN0jiqTombrbV9B7bwUT77liZtd02H6XWZgv2JdjQ9L8e9e8ibtb/0C01+1t/NjHnHyqbZB85oDWtHrZPWkh86H5e67ELTog1Njdb+SmVWvMnZNy3q1jktvLHczV0+s5mFWR61P99feLWSpB89Xg35HdrO2tDCm3YVQtqbyqjbVPvNF94sn7O/eTKqoRO/vqs4UH2YPwlvVp276BXu30VowjDgiWW1cMGBpaxe+wFgzkoKDbba50UX6rfyf8Fhjy7mfVI3NF26vuCAH43DK2Y26a7pPl2ZF0z8gsd3uNHrOiKIKVu4yvBd3ODvSaeDpyY4UHv18tWGBC9xY/JywdSL3i3ddpliW3lJPftm3DAM986bF3rnSx9WKEi9W66zWHFw5VX3iR7+p2iwS0Or3ilNOxyxypj4ItyoN/SkuiTjEj+8ik3kizFf8NNgJ+BDLk829P5ecOPeJ14wFcuz8gZiGx68I27gG3DjZfwgf7ETW/uDyMTCHJdUxwuP68t9/Lfo+gv/c5V1x1wAExMii+qOV2vfzVf53ccPvsZWF11X2aOw6pwTcxzn6Z2q2febuGSLVav8Gm+W3+yFPH+wx2G/nsr4zQ9Xq9p3XprMgKssD7nhVF7J2CX+zaXtpSwg7yCWsjlj4+GBIjUy92cYDR7Vrvd/vY8uql06HO1Sfh9f+ljS9YIvETRc0gazHluiE1zeceFN/qvtcEaJ4K+ILk8OMgju8CUlYtMO/1144wtvVEYtdYvOLOsP8Ft5lTNuJT+s8oP1/jvQTn5yiG9f0JE6t6hlMQdb+eXpSO7lrFa8GGiK0XV7pUMaPkrn9vKTskaabM6Y2kZ+jTfLd46eDrTwprdbrAW7JjRdUlEdc/CTbYn8yG+R/VV/0Wm94Q1WnVscUsrPYuP+MEmVcvAGdVujz5aK3VOwwFcXe2y8af3xS38mDySF7LSqJBTWfJO2utSlqUArvubBIxed48mZ8vuYhwCRry/mY14/uxT2O0y9sUnFBo/6triherdMMM20JYc3vauyO9xwxY2BSzuv9C6DNxjswkv/I+FG17v3eDNXCa3e0bKKG8mA4hXk/QzmhDcuNHZeXH11lk29mx2xpBEdY09U4C0+st4jj666kJ8XPVxtwQhCyX9R+A1uIPbwuseS3jhCV6WdlF/ReOsTEzfsihsZP6y8EbuARdon96tHF9zAi7NvcWMU7M6G93xMXr3kjTe5zLgLcx89bSz1ZnG0G1tuGNswA83+LvGDpMz2Sd9JozG1Xnw+eZX0SHt3WLXGnXUoWLdNlm0+Eeg6rD4yaUKP/xZbJK2u372DVerHU5LBGyRfHd+E+78+X/R8p1MZUTP5MqWgp+2tv2lwPPXI6xV1EKxXVzSbEnO9yeE2Z7Zmur2AF7U26nLeYplGWb+nbyFdSr8DdigS82UC4VFGAZQzCjr1FKXZdNHoGiQqr8IiTfqQqSXJc+/Gn+8mcgm5tV9jfmxeo/HKlwFPWT8u8oOH75JO9BQIpa9XRXRgsJVBRL66yG+XwpV6wwCA7/a2U77xbl/duKZtWHks+MKrllqz6HpLcdjwJj8RKDf8mWX9mm4ZTrL1P38nrVLZjU2tvGnvqs5Vpxr5+hMQ6TMnyVTdjoq1DeGNiT3mu3e8afTqF7jIHtxzdUTKG3Ma0yfaXiYAbLFHv7NHLUt2rzzld1GWzprHg7fLbxe9acucqp8DyyB71Tm/plu2CS2ZS3Xv6vQFjyVtC5YJblztt9eRwQx5u+hZ/h0N5rs5OVApqg33F16uuNEwlfxJ3eko3/2YnhBZdyF1XlrxmHtntd2s7oO48UHeIGhwt7kXLnyTDnAMeImxmSaoWCBtrTpqbSl+Aw6J695c0/xJvoOhr2bU//va36XdXaxh8m5PF1ieHW5Qfl+MG51GX3hjyQ/t5ZRR1+1Jc9mX56sxB7xg7AvcgGzXADYxTX+3Y+pCE/E425FTLR0VT9zIZNsups7Rjj6k68prgkoqVgwSDwOemJNzuc8YcMZwiVGl6zTdi/zYvwUH0PTm6qsm7yZ9nnuADXBb5Oet3a4jS/y3YJWtsbH2QQnhZ+Mg2nFNh/+xnh/tEI+vfb5rKmPfgwQYjiugqrHyu9Ab6kjLSGFdmzSlaCTsMcBST8LiK/JxPTxgW6EuT2c5hENej6it/uxo9kBTOxea+L7pu3vetMqt0iX49WVJfdOv3qN4IY8ChgigO2tdrbrQpJ/NoePdnMWyqmvlUHYpwJGpGjY0FQY3ckIApzhVgqy0e4jTI+YpJ3p1K43lyVb5rYUNywyg0m5I3vBd0viu/BKM2Sa9MyIV9djOeuUMp8pv0fuVN+uzTYkgS4TPTMEqXefv0fcrdcmrfhm6BiJ73ihfVj2/pL2p0GNVJftvjjURUI+ax9Jf0pW+dOWNrcoRn63stOoJGQ7A/Gi87+mma8GS13y3NsHMbnq+a50Vl/68xsAPPhlECGPsfdywpZKO+72PW9zQIEgCwTx5U9rZhh0b3DiWdrX0mlUkCNp5sePlO7vrP4objTcsexWy/CY+kXXz31XvVtpN2tnpneiOQ0hS+5Uedr274gb/a7ixVGHxxz1uFIgVzose5bs7f73BDQRd34obIj8A78QPRQcvDmaV7D9XPTJtMLHgSkI10vt3iAwu8rtg6vos9qn7pAZau+/Gf4qhho/jwA5T2Q/VQcdla8uM/45ecHXsvpFffOi63vl6pVloTKwKFvja6gYH9JF2V7/9ersGFj3a4dyP+bBvfw3PdxuYTVnbxpDlSU1dvef87M0K5DXDXEIGcMklcGRA7zIoU9D2rDbW1mjYfq1upTeBRa1eyDR9Ob/0su84dYozWnZBzs6bVmdrt/Omp38pYOmell3HopGnAeGcrVXYu1Ft3POoyW+V76U+R46Uo2wNyABwULa2Fz7c2ldzM/QtjaE3WUFbPaybYm5N31EpLcuKyYcAbXWQUvbWThpurrKPfwdmSgSUV52vTbe/gjfZrtbXyhdNTLOxCGIqwLBru5icL5tedNvLf+140/SmyU/ayyAovj4NOf3s0m4nqni14VeZ7Q1vNL1E+doqCwRy1BH+2mHBqtZndmY1ACVzxxsGr+vKMCS1Ed7i8C9+yuMHmTI7/wo3srDi/ivcaORXHx1xGm/91Nr8GtyIdwrL7crb1Dva8vz/XM2Q0yIvdvXeoz5G5N909h0bp/wVS424ken+UUhsP7uZ7W54o1i2403q3VqePqLjgzHtMxVxz6N73PggpiY9XRtax0F7drRTgj+MGx1TPxw/mMjERMeEr5kCPXSpqfq39jk786W4sfrEvqR96Z9FiqzZMthfH40PNv7mEv8JjRNXgKZYpDl4lhO8wMSgwH2mN1f8V6z5UPwnNK5+b19eeJPfhK6fBl2B3ZTcISAu8Z/QuNM5uymrTdpfQCrjr4d/fONTju5G24DKt133vhCw+B8wZ4yOUF4HOPtvF5CxasMFNgnAiQE6Q2oVS1CxTaqT6SeLnGUWaDnDJI2Oj2UzXx5iCQL02ZBYis0KcnW8pcR03iSNwpttBJIE9g951Grkzs+ZVWttJG9aDr3IhB224k2VX+UQfTogqSrW90blbFv0QzfNZ9neJ7vjjbRrZjN1lftOkkW28AZXmoE4Rjn6mUeT2/qaFJDKbPk7mbp5t+FPM46LnXTg9dB7S9bdH4H/FbyROlwwvmberNWZ7Yzlczt5cTrhkp8tNPotb2aAsuhcUVT0shtDeBUrKquut6e1K3xIpi86t/JG7fHSQFAix9Qnr6Pt3fi4tXuh8R3eGKZ+KL1at0tA9DVPrrh7t8mmd1+AG+zTBTdQX2jlqmfr56jrw7gh7fJo92Yb3DP2Qnec/Qv/Y0FT2lXUtSubdNzhhsqbqsP+bfSuzNMSF2hf5tb6I3MDi96RNya8wfu8CVIueifym/tjkY0bcAkfHLjI5Cq/hTdrBcSYG9wAvGFbQhvxdQjG4kU7ZI5gamHhRue867ZpWVaoMnLMPU/iIyHN+qIbjTerH5Aj2d1W3CgFTZxSnwhUHLaNcTbtINqxhTfJ8M6bKw5MX9UOq1C+OjoWjpLfXI0Ka5R2yJ5b3gCwgyuilmzXuKzJLxvf6RhEXgvuC8O+OP4js457f7P2jzQ7NkV+ff4kz3c8Lh83ki6tLfhFBZEZIKx6XIrr+tr67oWI6SSup83o59WSTL+9xFR9kma+VRmANVPXnJqCHpAnsHWqrP2jHW5Hiq9BL2lae2Z8t5/M2OpC5G7HANKY65y+YEULa39fJjR38lsejd1qklYqaryKgME7b66n4FX7msKVOngrv0469kWSbjvCAZ7UqdKV6xxtryRTE9QuNrqueuPBqJa337rLWb+Qnd7dpzSlDm541XhjW96sfEj5FdlVIP1MyI+z8tLn9dqKtr9ysUcT2a+8WVLv65+d/BC6b5C03epvsxKlieVFfm2DtgYpH+RNo8qsdH2RX+tYYwppWr5uNCL75zvebKoVkr7q6QMmXIUQX34IN5RnuOOtBJArbqSNSn0fxQ02KDSkHBcaV95en+qsJ+5r3R/HDVv5+oI3vd/aXfbTqjAxNtu5wf3UO194s8GNj+jd0pemdytuIOhqPFbcWEh96RNFXo3mOhN59Zk86dH8aDZ6i2X5+66d3oBHV5cs4I4xdtX7XKclnjWbeoEbWjew94nJK5d20YTUIDDkl75KfaTqeiNlI79O8QU7nX+2+EFLBm+0f5SfHL7W37826PrzigMraav9LaJYfVPyiplTK1ZpY/Q3/HYnVu2r0OzCs/lbB97GRyw0/2iP//Wcyvj91v1oPfF3phGlgm4s0Zd/83tPw/X33hVlhiOPkl3p2ZL8XjubOvIrXwuKAbU6fC7zw2pmc+XNUo+Scu3uhmCvpi41rE4tyjJg2PbXizdVk+/f1f5qu16kwv3Fu0udmZbk2d3bMmsV3ghOOtZ2nf3pha/8c8zUPOVV9KvP7H4Bb17puu9fubRDPnH/w45Ha/cu1bySibeuYNEFBf5WR6ZYLjWtNL5jj63wrW5fCi+64nky3lbXWzPdplzf+SgO8LHb7kVn7MqrD/DmijV7ndvyasebD9rUu8/VjL4eN2gLO9wAliB0qZO4ofh4ZxuXZr3TtuqgNrUyd6VRfQ99Uaug/r6T4dqu/n7LGy2y6y/5Maz4cvdu617n5xVjhbwNb3ZBZSvLup/WPvuOF+/hxvKf2sItb3YyZ2olcWN0fCga38GNTmRrbtevS/ygAbV3vWr079pb+5f1+LXMHW6gp8LuwM2pV8tAo8V/vuDAQtudTTWabvvpaBNbi76q377SLu0oTS/ay3fXOGwTP2zrbD6ydGLX3obkbvcs+Ep+64D0Tud+wGeyy776vx/p+W6nMmaaxDn/XWe2dea6PXxPbztn4bG8I5/bkjIvl44BkANtad5tqYs/raf+cBakveuvadTywHI7PQREYzrjuuGhqmr3LEm/heZruxteZVmTm9/5u4F3/jhigNHy323hjSNnBS98vOFNmzHb09gm1lhv6I4fgH0ucmdZ6bds4G40w0IvvAovNBdf2d/O15IfGrhPXk35JU1uva7h1c4tb1Q+e96Y9Xc1JWmmVHLGLF4+RX5aVtpN7hmb3cjzHd6sm+CzS+r4aJvkFatbZbCzR+2D0Lq2+8ouUqdzzwZihtCDpijIFBRpl37uYo/azsLXW94sqbiNr7w/kLxqaUTeeXWjN2mftItXOrfyBqHD2c5X7jVQ3F/tOT9/AW58ANsuM73c28g6Lj5DCtzoTh2iYVXPwveGGzveCm64pGLP9HtfCDdpFx/DDWHNHW9sKXtNZbTSrcOAz9JJnsKYvFlwf8WNr+RNP+20riTJHUCCsasv/hbcMLvhjcnQmQbiclpqYptn/6zpzTu4cccb/n6HG0z3Tcb5nGA6pb9DKjPZF7bDjeTDzqa8Pr/Ejfguy85yM92fe3gXH0neJDgsD+X3LqauNJduN3sNW86rUii7UfL7ovhPeXNpB1J+o+uLz/Dl3ljWy/f3ccpNu4LdVz2SSm2j67o95Qd//lpWzL7LwIz6645+hC2NDovDyXL1RbvtPJCAvxbIWH7RbjsfPhU/9lTaqe32ZieN1U7e/yE0aztY2mllm5MRoGDZAzMwiPuYjBfCJm+kf8KPRlP2v/Om07jyeaUZ/aHhhtPhTNdFfgAuaZA7mqKd9XhuExpXvl5vq8fk1zkBVVPd9LnQ5H7ByJU3d+02XjmW9EovIMz9fJbyW59V11s7oZ/9WXX9Rn4rr6aXm4NXIE+dIskX2WtVr+xxLavtpq7fyA9eOgXMDc6jrPsq+9bMRcc6TS90+0Pyw+R9HJaSdfGwAT4bvLnl1cAGB17wZmX0EQ7ckJNJ1e4qg7WmV/hzj6eNN8nj1U6+7EkY2amSYvuFtze4sdjCu7yNhmfKMULnlJcdY6+4cc/Ll7jxireqd4Gxprag3d/4yFvcWHRyx5tbX5WECm48l8vptfvqI0Hcv8eNL+PNBjcOm0FjpFcSYy+4oSU3NGq17/vErnMXPA7cpy433HgnTvmoL1591VW3BVSBqQtHTD4+Kz3PAeRIlnVdzgf5mE3t5VdPgwmfNNldjCPtZgq9VPeq3atPfMEr7OSHkp93+a3YbVLNJf5Dl8lr3F/KbmJUDGRc2OW34kBrtvm5L4n/bMObquvrcP/P9Th+HZh9+xPy1plXG5B7ICzycT1e78Y1N2gquJYVmxppvK23xBPUeZlsS1sKp5IfNcGW7QpNRzN4A4TmtYPHsLjHY5YeOvsGmZ182iXPufNmwaylncvAw9vbrbTJTwTssTg1/mhx3Hq105e+r63I0cAbmVzyVgTUeUQvQUjvqoZN3TDufRhVVNZldqwBL9fMdqp7oPyyF1vH4Pl+O3bWUHrCmUrZI9jdFfpeD+OehSVY2D6Oruu4yg/e9ApupeujjkyHLZujrduU+u75uuj+pmzT9Yv8Oq/S5vKyX6FYeOMh65KQL73r9tjqsZJnBiPSozGs7kQjYbDpBE9rs5WrHq14A+ium1XpWrPv80aaYSqjuc3B4rCL/JJXHbmaSjLgaPJb+KjpUytv2lHrGlB86UNn/wo3/AtwIzCVlX8YN56IwL4IU15ebB8dN/T4+EKcF7ihvN3ihs0U9rtrUrLdL8ANBnXxrLzpta+4P2myYTOoX/Suye8djH2FG+/xpl17Q145Ms1S62qmrAH+juYvxA3ljTWdE7acf2zcWDBV29tiKvrj8V+erMl6F9ywWHksKl7gRpfJRX4NN9YB0azAAdhz+qL1HjqlosV/G7y6j/+Kxi0OwNoAcqZ9MiYU3xS8anoz5JRufEv89w7uw2pf59M67l+wqrfzMv4zXHil8YODB+Ykp9AHZF+J+78+X/R8v1TGtHzPeAhALpsa0Gbw86hOfZd1WZWjw1mX5m0p6wPAKXeMBE3G4NRIx027CKXVZV4Lo9S2d+3SKa5lHXEQAlmznCrJpWzaYdKIC40ubbdJERZuvOoyMKUbmMf3nwHC5vNYWfbhTiaQ71c+8re1bEuV6jTaQqM7gHPOuCmvtnryDo0uNOXsU/ZvaVfra/XGuydkdcVzJcjYzkZfLehP/i99mPLzame8I7+trpPkMQdnRtBdZGK20FgOeLWL1v+VJ6PizSsf49SrE8oA5EEUC29mncmcXlezA1twABfebHVOaHTuF4n2eprKXn7sD5REbYvPh3nj1Xe+fzL9pwKF1aZs4Uf2L9n2Qn64YojyxkPn2izv1zzDKnA3iLJiy9sP48ZC53u4cSCu/ojKDXbRu0u7OxpRvP0wbiy6A/cInqWhNX3ow7ix96cALrxZabzgRkwwpZwC92994pY37+DGO7xJW0iaUQONBTd2/nRG6aT563FDeePB10bTaYX7JnxDb+td3LjwVfjlgKsfuMMN/j5ChjDc4kaw7s5H7nFjY1Pv4UZ2kPLrqYzsarZjqPjvS3Ru4QU/X3BAZerIGIdf8NTwP23890p+s6w/GeN44oNpPWIGdzbVF1Pv9Sb1UMuya7QlfvGDPr+umH3jU6mMpUk5Fx7Cd02tcNRMTOo+tTIMgoqj7/J9XdoNJ2qRCofhtRLkiCVyz7p0qirb5Vful+Pykyb3vtzOGaTsRjlVkp8G5JOmlq4o/WnTZ0lztWsHig4aJN+3XralI5JmAlbQaEfQwGX+4OOFN2ucJTJps4w0dGg79dkWGtvRvhkEWYLy0eTnrWyjUWVEvioQNj1Z+RypCeoksfSPeuWO49zIT1QrA2mVH9BTE1R+CopSdis/4SvTNADA3OLCSfrEnlrT9AaoGc+N3rjymUSJ3qjsL/I70OkUvUqZsKxhoVF0nTOpq00lb7pdrOkvja/H5AXlpzO6F5sCXuKN8iIxInmDd3ijuBf94Xdc6WddbeYXe9lnf7tur/JrqXqKp1J0Z8sffjzIbXYlyTOr3n0JbpBOqecON2jD5ijcV8fDP1cxqO1/C24ozexfXlXkOIj7bGfFVCV1xY1jlSGEN3bPmwV/d7hRuI+Gsd+EGxu+drvqfMQB4GF5eAvT2L0Ir/dX3P8j4YYtOrfFfcGNS/B8LGUbzUu7JvwTHLzq3JJuyf6Qt5qVsJHfBTeivT1udJlcdW6DG3zfgpfHPPziEuM0/eztfln812n0VX5qC0b5zXc0W2nni1v8YP718d9iF3axR0xd5/ULOoN8weOuN9v47xU2qfyEN6nrKr8f9HH8eipjPmb2nzez/4uZ/T/M7P9uZv/OxwujlAVoAx7+zIe6Wgbvy7sCdsu7BBqaf71qlzSq+Yp3wG40St00xNv+2UJHp/GAtf3l2Ww6nOrLhTdS70rj2i5tNHnwoiwXxcruDe7zvzyEwOu3C2+URqD1t9OoMrnyZq2tvWtAplDKZbH5s6QiXHmz0rjKZHllLdv4ao0u9zie2CMl6UU7r3nTy6r8svRN2ZSfyIipGnUS3UJHNnuj69qHbLK/e73bauGr0AQAnhut0VJRZ3+7XXQal/5e9OQVb6zxZq+xNld1nks9i01d5cffHZpWki/7+r70d+WNr9VEUMxB2d2zyG+VwaXkTn6q2yKD4SawmN7+q54Llku7u89fjBtal/I2cGOumuFy8Eftq3FcTmG92MY34oZi7CgbzVTGVb/7P/tnwY2LLZAu6ZLyZqms/tPTXHGV35U3Szvv4cYL3gzaAitYcKPTvvpx3MrgW3BjoGxh8iLwdcENTiK8kpkmu7/0VascoTrnLe7uaaQo3HhhU/9/9v4fVLdteRuEnhrzXWufc+/v93UHBmLboEEjdCAKjYmRYqAmHZhooBg1Bh0IJkqDBiIIgpnJB5o1mCgo0iAamoifYqKt0AjinwYR/L7755y913rnKINRVeOpGmO+a619zr173x9n3rvPeuf7zjlHjaeqnqo5Rs0xv5438v4j3gisnGPPjM0SI7md0u7H8r8aE5Flcjt3XlC6xoOcdMjxC/I/LTzAYguSXaWVUfH1+V9qaLMvyPlf2Lr9+yW8/9fYfluVcW53AP81Vf0/iMjfA/jfi8j/SlX/z49O8ofZfZZ2fImUjfl0rfEbnawAjUwsBLY5djfFrFYKpwBEx/NSs1RHY3ZF67X9oUzBWOGu2Y884kziJdn4RY3M4H6ulZ05ecRo6Yl5G03+7Q+Az/23cXXB1jeyjANj1SX/qQO477FK7aL0z/rL3Usyk/5CRP8Qo4Wmv5i6pxP8OS61xrwUzqTaYgPCxttvWY74LXCClULIyKIJrihJk4GTnBge4X1QDJSL3Vxjg1z26Ppmv4DPLO9P1iIj1PTnBlT157YgMrHwc6u9KsZos5coEc6P/HH6EMnsz5fZCWIlfjECr/bUFMXNWZJR9ETYJJmqHFd+EbPn4+/ojg6ZTH98ri7YuP1K5hjxPugDXCs2Pm5pmjb9NSv/EdVxY0u25/rTik31R7OluMGt+iuqy445ZFQpB35gC96vXX6Xb7yTN9q88LXdyWzMsJx2JtMHGduHvkEyvIc3yop7iTfczzweOf/TqFn4q2NmPyUZi/7ftDtR8j0E7+Mh778Hmzd4o5xbsXEZ+Z1O6TU3XlZoONTn0ROnVj2BZGSZkI991L/A6vRLqt00StKJ+1zgLqAc5wJX5w2LLztcJ046++pynjY5Jjr4xHljaadgU/3xEW88tG0iTPEVsAkrxayyvLDPygNfnf/xuU2Dixwn3GE3PArpuuX9xafeyv8IryqjMmiQKHEXmbwfz715nygnTvor0FR7Df06ryZgi46a5vyP+lfHHL+rTX8rZYxNVf9dAP+uff6jiPzbAP4FAA9vzNyXZw27/cM0btg0ccSqKNswgobmIIjsGMOgZJ7BNggqZVDMGaogpjxjlYj81CmmjabNLMFkZvYNmchD3CfaPDdK42Q8hyGd+i7IpQgCK70Sch7iJCp30jIs4yUA/vyaFlm59tpH0qP8x2YYJzb2PUyGPnXifyeuYvpMwuRIVfG2mYg5zW+hL+pCDLLO55pMHqG8VMGbINJZcdWUKPSQVvwL6l8p13OcZcxweJnNTic+SpltjmOKEBxlJaicUdC8t0laZBz4kd0p27rrz/unBZvZbuivkB+Xoiz6ZBsgGb30xJMgtnURROI8zEtZA+uWSrBIJsUsm/Lvqw54QMQ762ZTXzRafIqxEZlyhGXufDZ4gM+VxFXzsYXJc1wa5lylrBN4gU7urya+MT9QTH06VsAsnQoMSeZqc19Z0hK877wRnApKeKpvfJA3iI+l+EaUPDl19HJuI99obnd2UX+G6NfgDTr3Td6gUT4VgTDvO2/4Z0q8ddcO212Jp/FoZfIF8uEdb8TNrvfhK3ijxIwsM0ocH3133l1iZKOSS84fdtsv4Y2qe1DfjTei3Qe8kWxug80kE7PdXf4QNoeUZ4uX4Zm/V94YN6t+PZ03dA3QU8bjC+/hjYe2jZTjxIy32Qrrb1xj9anp9dleP5z/0afON2Xuf55DXfF+7HOMLPlfI6yA6buuvwcxMZrR2T+ZP4/ZdD/Xbc1vdqlkNnD0dhuVY3bS+cbqRv9B/XMwyad+2/7i2y8uZeRNRP4DAP6jAP637zq+6ljpHyZJLr9vjy3X5nN1PbeueJjPLe1cbUpkxWdfnJtq9Oux9ntMt9819Slk0rJPslxjI/k7+m0ZAdnIHAV7vfT3Tf2h9O+RjPNffPOgf5y4CL9AE6stfEzGrL9UBlDtaKO/uHE8Mzha+vCwtLHoKb0fB2+UJmxk5ECZV6Jj4dZz39RfvcbiC7xNrfBzQgrYzOf+XOH+X7VTcU3nX5/r/sZlnzEsTL69030t2akyLzpJSMgeP/ubSxvVSmTt3FK6yzpZ2kXd39hcbb9uW5u76Pg7t8vY/lHfIJnezRs6OXbLG5fnmm38WryRukzInpr5OR/4IZ+svPFWPGW7ixJ2+23LG0W2rUxvyHjpz7YlP1OTyw/p2Qzf0smvwxtabI4KB5eEe233I7b9Nm8Um6u8gTd4g9qvMmcs3+CNHcdc8iSVNt515f336m/DA7w91r2m0uOB07z5eMT76XpYbQ7VbtJHKd9nqV1/Yevmf6qYL5ne+OA2j06/Z/095qbMPzv9fa+bYsyYfe2/72n71W7MT+r4zwABAABJREFUROTvAPxPAPxXVfUPm9//NRH5JyLyT84//3kavztCuTl6RFDrzYTunWdzbpzsbcZKPBfn8r+ef/M3wW/bqzKXPm3PtevLORxCL859jI2W/XI8X+IKmyz1+HP6SBiRC/3T0saHsPGSPzrl+lySSUEv5C4syPpiGTftbvEszSx8eHWuyZTftZXJUx+09167qVw6L3who73vLY1IpuvWU9/GZjZfbW5/buwKkq0vHX5vu7s+XJnw0kFkm2N7uedgtnUL+ic7mbE/Nz0P8IbNRXmuIsp/2P8eJbxaOPGRzS3dq3zqWNn/PAF9z/Yu3q/+817f+KW8UbOqR3a2afereAMbmQHEaz/KAMaHeYPsescbj87Ndofpn1e8oRizJezjfyne8P0L3ggffvQ32sltvI83+ITxvdL+ljfqJQt2W4z42LT/fptLvBHPUhJv8HVKjJTSznYgdjXqVcaQo+iP7EowXzmxxeWd2Hwo/8PAZh4+/hvllZyg72wi+ePbPrWcW7Cpx6pf13f88QjImAGtOltynGwMCmzaXuGaMknZtz9v6P572f6h3Jj9KqsyisgTxk3Zv6mq/9PdMar6jwH8YwD44d/3L6rXhbstzBIKO95xqstVix3Cdb6bmvCrcwGh50nsYv5MlZ8oyMtkk4xK30fyndrRa5lJzCiB4+VWO5Y3wS8PZ6f+TXlnuZ4kbHJtdpZh/V42uOpcIEUAhRo2MhM0bidKlBwb64DYMwI7bHY1/Sg6cPtwGXvpf72x5yHBKNcDPX+ybzddK9kNUn8f2Vz8YsYt5dxUL26/6UW7yW70wuZ8nx9iiDIOs0cvbRCdCT7LFNjgw9hIvdZ7ztW57zwQI3OOR3y+8Kli21tc3X5dxqpTlhHmfxG4dJY4GzY0oTbP9T4km7vANb4sG/NAtbET49kQAImrCFcB0vOOVQePbG61z2vbTv17x/Zu3gfi+Yfw7yJnavstOVm+8A085o2lnV+ZNxpGZ9wedP6m3Z8FgiVgJCO8v96f+Vv2DZ0yL76x4Y0rmYn3J3+9wRsnJjaCEkf27TzkDd5CnzoXQgBmqR3xRrabX4E3uNyxlb+VN+JAwF+TsuV9YLXXBRt8NR8zb8RiKQKLxRlzgLjLzhVYgu/PnrHcO3+8lHFjc1r3LUYWbH61/E/K91423vlczbyvgBhWXnKZeL/29x35H0gNV9hMrGX6lMp8Jozi5ZIrs0/V/M9xr7kk6DfG8RGuFy76PWz/kFZl/MU3ZjKs838I4N9W1f/+u88DMrlf3okTkUQWhFIr619rIZ1paDoPIqe0P3fYyzeLGEw6yw+8UbsQ/2NfazlFopFkQ0b4Xt+r50wK49K7jdrN/atnSLkQYzUFUSaz5VxFOyVu0hIJXgroMkoWlWWerc9TSH9phIyDgotWR7oqrvXcne8mbC5sjrGqNuX688Tk9NcdTDHWZmc7Fh72yi62nBxGqx1tdBPPMOlYCWt3DBybR7Zd+ss2t7GFh8t1CzV9Aq3eaKbmpdjNI2MDEq7CD34DdZQ+lTBxYOu2bHkkNUXma2Ef2xzzgHdFkGTMKtDxDEqz58xOklmLKt7wqbGXbW7LA7o7k8zwLfgfbA9537H2flz6xoM+ivURwLJqACcX8g7e5/1fyBvKPqKrLzTnjT554z28P3zDsbkScP2489GlnI+U9CHesFjxi3iDzokr201tDNjdiTdql39t3lj0l09r4OfeZrnsnvilYPMO3vDvmDeA1L/cjAbvi8h4obNy/3Lze+Mms/KB2Y/yRtIfpv6ajPcJ+usqlkb942w3+dQH8j+tOlBf9IzOFQlQWs9Yreg84v29zQnwOKdh/ZHuBRjPTdYcp5ybfKrmf5Ubqn/ucpraW9ng+Nv2F9t+jVLG/ziA/yKA/6SI/B/t33/2zbN2FrD5bgnem/21xOMBAfNxivx8y1U79ZydHDXp212Lf16uo/CpY7ljvCWe5dKZU8S+Tv8TUD+u2q2OV2ReUKvT7WdI8Kb+av8+hs0jmXIDUaph19hVrL2r3Y2MV+fGadXmkk1l/W1LkqrM1Y79HyUf1bzfi+tSqnFBwrtzP4JNyPTg3PHXbL0jPeP51fqr536kf3U/yj7faPfC3x7p5CM4juuTHZVnanbnVo6In/UD7Zbv6rlvIPt4e6Ot5C87f6jnXcqp+z663fGrI9hP8DWc+gHfeFD+JCfQzpX3t9d6l+2Un7+GN5jPdu3WzfkquE0z173lG2/J6H5w6nzuTTe+/yG7KefWYx+cm2Jk1/xKkjftprb7EWzeklGmLk6kG8U39Vd96lF/dudfyByNK2yVWcnnVZ29s92H+d8VNnwy6U9Kufh67oUcb+gvdLH56VJmwupDvM8/q2Z/3Jx7JQZjo8uP3+fmr3b6mn/f0/ZrrMr4v8HX3Eez8fnZPFKgiCnaOoWcRtiEBut8hEnLFHw53o91J1QfQYCkdtO5LksRP8++bd4SX/d5CtrKeuaQBOYzUy0fL3a8AlEKhIqPrc6ltYyEr6OgVcCKzNzf2LFgc04RpSuWae9yrkSbQu0o3oONQGxELIuRj5WY6o8RIB8HI4wrVqNdKdfSxeaQL5u5uthR6s85fx9YFUwduqq/WA7bj1d7StcOrDM2UdbwTlyt/E0bIK9DiNS/S5ytXfapC2xm/2Q5F1KOVYlSG+WSJOIA4Ep/FzKyPkJG3du295WOd/358sSXtl5t5ZFPJX8yLGg4LMn4qH+eXDnwVv6TeIB0EpxQfCrx2Af9cf7mF/+K7Yr3gVTGzbamviS1Yi2R28qp1Md6LPGGY0C8ERWE3sXEqV/PG77N1U/pN8V4uH/DG3xIOi+1wwe6Tr+SN3xlAOcy46WP84ZMX2DfkMwjse14QyR0mWRMcXuKsPAGr/T50G52uL7PN7zzemfesJvGDW+kdr+GN6ic7b28AQz7lXPa+pv6i59k+kX8+wBvJGxlymQ+E89R8rnRP26z/Esy5nahGxu76F90/g5EmbXYDdqO9+lyuW8X+nPbs6b4UZgsk4NRsEgVEpsctfBNnQldfAqYq6Dmy67Y2MWUbX03Q/0dbd/b+8i+dvtVnjH76CYKez8QaDnjedMRlsXGrcD27ea+DySrHO+CmL+nt7W7A8TyqLgshUvVMJp9SeGxWkhGJRmzzEMQ+hMOaQ01k0msrtgTFZ3Y+D5jE89luHOW0pLxXhfG9QJHEyN7qJ0rgxBat/Ifx7xNLOqmLG9goSFz1Z+Q/lTKEvFZpCAhCIBuM4zWZrSLjf627XoHZMFVdjbn3UgyydB9s3MMq6Q/5HMzNhsZTabqF2FztYMmI1+r6kJoNm/xvx02bAtzybb1WMcq+kdLemPsz4YQ/qdmr8nWeYnrLTbU32LblzYXUNG51J/RP4OyDf8bKx/Lvr/cDnDtU1VmANoVcjAWVX8bznC7OyUv8b6zG+8rSH5POAgb5XaqzMxrcKwKV31we8j7INdzW2UO9eb7yvsrb0w5lX3BeYN8WNLzWhvecOHKAMvHeSPz8TZhNLs7NryR4w3150L/vsBByOh+FbZ2wRvkC253zhuV96M/Dzk17+z5eMMb/jvjFDFSIh45b1TeD+DCbqjv+ABvXHBOyoDF44Lrby7Z/z5spg7+KrwBvK0/MvaFN45fyBuBFT3D6+em/k0Z3c+mf2YOUsdSHVYNGKY+CZsa12RgrRiz1g/1h+qPQu3oPNb1518V/UX+F0pggpn6mzewLDNdp8gY/Q0Tzq9NSL9t9JfLHqs/Kr7XTRX/YJ4x+1WXy//QxsRp/1KiA1yXszgp0ff1XC4B4pXQsgPLTOoftUtbakfzsQqUJYq1XCcbTUvfSMxqQDHKBh9hU+UiWZLYmoly7V9uB/6eEW7J+1TKBrdYPcQGe2y2ui/6o/7Ey0ABez5JLttdNg6Kb9pc0d9S0142w0ZNf3LVP83nrtjgDWxA2GyIaHstidmga58qMmr+/dK2d+cWuRZ98rGO1aZdv/RV/x7ZdsLVT2Tb9StL/hkK4C4Zqx1Xpf4xrqtPeZsK+t3PzVcq+pNYhCGexXvL/y79MetgsaOH/eNzV6nfvVU5N1eqfXqE7WPeQDo2XnSsGFiekuR5s6Sd9n8ZbxQdu210POb9nW880P82ZpC+q48utgPgTd6IC2/aeQsb9ivv30PewFz4pA/eeKS/uFLqD7VzIWPCdbnAeu64CZbgjW3/Lu2VZf6VeCMd+07eyFe69Cm8lze8eS1y9fmdnPm3yxyn/B6Dx8luSl+qzAmvoj/71Xnh62Px4/xv+6oEANiVXQdnjDgU+tu0yzLG7Ff1qQseWOMNgb2UsGP/nNt3tP1WyvhLNx1kH+UIguG0bf6NmSBkJ/VRdvWVa+gcvxaPqIxyCqxkegcOHVx/qF84HxanKX1h7YlgjMQ15mClc+vrXjGnghvyQhteKnMCegIHH3+FjbFNTPubnE0Q5YzK5wY2GdfonwDSZXmGXDvyw8O+YhGdK9zOOdrXvmnHOhwPrXsA6lL6V/QXxxLR3D12WeetfGbbrhOLECYhs2zsRhf9VazAn33/NLkw3iPTOq1GSfbKuvfVxZZ2fHvDL6ZMOkuU/EcvY7xrvIKhabxePffP/TGWEs+b9qoTkN1s/FHmP37+J8g9yn+GocY1qv44uEnRwZvYFH9ceIDkVIwSlvuQSUXm6lw7riLf3eqPfaqVc3T+HjGcfdn74YmM+V8XxeEBtXRl548s81Z/dG7CI5UurjiuxPbOTYt9k74e8VP8VVCp9jt5wy4USdNX8kbY8kd4Q2d8SLxRNytbalGCaEok3hDuJwqOsS9Zh/FG713/Jv8m3iB5xvMtQo6Yb518oD904he/isUqqdT+Td6o+gNG2dlpckPiHO6fw73wvgv/Xt5QGDZY9UdKECv7jAkux+oqx3lvLP4ob/DWJ29oU7S72QepKtoljuUcp+oPkIXrEhZFfyjnAogSWT93zozbdWqOg6y/wMlj1Xvyv6q/mgN4jmMxQjY5TtKf+aPPVk1TKPGG8Vn6p4HTFkfTn89+jykheZgD7PKwBZsrnnOb85UlN3Hgt+2vs32zG7M0I2rWofx9B1kNpmHzd77cfceYbudjU7EtEFPDwbejvGRUoI2VsFIWwA6cEhSkN6MHMXsTVo8fx5IQQyyh/mkKFJ4uD3K3lbD43J2zFMKJ47mmmHGtEV2Rprbnl/lwOTCCdAeEO7joZMpYbxiD8HkTBPFk3Qse6X7ob16CyzTErwEKxqw/6pxKxcaFtvZbOgMM6igRELrW0KdY+UHz+nC2E5m6SUnCQnzzi5jd4GO32JAxWrteehBlGmbr0c1NSVnyxypTajf7FOvek4Vpn9nGVDSSXde98DXYd3f4JM4oPlVtO52j+Vy3M9afndJo0YPoj5/b5nGLfDuf8rp+/0rnjsgouYtR0CZURjdCvZffjfItdmxc+NSqz0hQQkZNp/GKjZPU/JKUPShyEv+BbfaRvqz+UO1bEOWt4a8f4Q3M6z7ijbhG/Egy7bYUBx7wht/EMW8U/waJLvxcCTAHSvrs/4w3KPEG1A5jRZgENnaxHW9g+GeUYvUSI6vNkQ/sOZWOLbH4Td5IHGW84clpRzIb5v1I5hkbFovyh4e8UWQe1yJ9Bm9YUm9ln+pCyYQg2etON1e8YZzzJm/4dUC8YbhIn8+lLnbD+uN91l/o5X28MUyrnIuJFYBZ7u8Nu/9tY2KGDadEPP1w/lcMQoDQudiKysAF79c8jP2x5ffPpvxPa6xiTAGt8dTaDipK9krHuT9e+NQkTkwdXNocAUO2Hcd+19s/nOXyv10pIzCZKoL/xX49fntudsRUPaLruVHI4eUjtKW9YoxV7YuMtF/Lcdf+VZlLMN61e4VNaZ/9qR77Jq6l3TjeyP3y3Kv9Xbvv0f3VZgQXJPfelczwQCcX+0mSnc2lI2dtutxXsaV+ru3Wdui67/cLy0ZIRn4IeylF4OvudPJA5it/3Jnl0l+/Y1Zk/fG17e+b/njhU4tbvtk/yYGTf9vZ0ZX+SCb1dncy8zcJGzqX7hD0iqse+VRtq+rg4tytBzKuvzQAVn3T9zsfdUy2NvoR3mB/qGWDD3jjraRk9Y1rbLe8oePbxBsbX3oz3ryFzcbOpryZN0C+8Ig33s2xFQ/+fMUbhX5Hqvsr8T4dd1naiAe8oVMmqD0XfhYbLPz14Vi842c++y3eCLmu/fkSmypjHP9+3sh7BQxewZLk2R26s/mM6/vzv/rKlHT9siz9Je9f+NRWX5f++SCXqvbn+ntHu5f+8I5266MRNff43rffShl/4Xb1rCOAfIcu9Bfz+3pu2uLuv1wPGA878upAMaKgyE8PW7N0rTQSuNn4YfE4zPeVRklZPu5ft893uxg5puxuofnccCzCZhvpcIlr7FYCM6y475f68y6WtlNJ1Xt0z/Kn/umc5XAdkvRCmAFIU/tacKlmtcXmPTL7uR2j7JNnytYuLOb5SH8Kw7KOiO1kRBmJ92NdJpPPiZbK2JcRxG3/ruxGNQ8qeEc2ZRBpUYVzTWS2dkP6y/ZZ7GaDjV7IvHTYLujJlVWlzYF08v2w5SuFXudAa7tbPZaT3P9sdFmMq7To75FPSZFVjZOCm9LCCHb8Us5YZP3oVjGrctL3y4hyjQmbPqZ2kM9deD/KdQvofG61O7q+0GfWw8qpq09u/UpdJuJ9YJb6bfBO8eYt/63tsf6veMNjkduCIvfPrlVj5OL71WZCf+/gjepX/vsdS/ItwKwUueJ99xXn1EtskH0xgSNxfJThGW8Eh1D8uZxcfsippX/htNfnbnnDuJ9znC3vk/62OU6KUR/jjRmMp0y4uoH18knS366/DynoAR97HuaVJDHzr5hlu2/xPtsTtZdmI3c84Pq7iFULV6UY6TOCNAf3HrspPPDwXFC/XeY9i3yXmwL/YGbMvs2NmWJOB9u/ZYTDf9uUlkjd3xFo3aK0T+wZHyMp/v0d7VzaqTuVycxlFGO/esCmXash5qAfgY+n9qsctJ/ObfTXmTtwdbK0Bry/FKz8GQ1Vr3qy0qFOzx1U/XEbV9iEzFJ0TyR5MZcbVd9dZvm611EzAFWf1q7KvHYNDMnm+MdO2Gjpb5yr+VgnPl2xifLKVr7jZrmdNq/1uH8yr0sipIQYgD8jGMcyNl/lj2Iyjs6m5zmKY0Y8oOdVpF73ot3A9ZH+HJuivypzXZAhXccP1tyuEjbbm7NWruPHpmdnNjxQ+19s32+mL7kKhM0j/e3OZbupPLfR3y/d5CRbZ55gLIrNL5zqS7G/lzeij+NiwRuVF+xY+G/V7uxvxXq2Q8qg8rbhY9M3YiPeiAET+15YZ55Yb3hj6cNO/4zNB3kjLiO45I1qO8n3dbZT/fMjvDGTV4rb5DeP+CqwqTJzSdgVNjLtb+e/UVkYM+wrbyzYtDDF1ff9WN5vyM/mfZQ3vI8XvLHYTbUdADtO/RBv8M0H2/c79Jf6V+OrY/lW7ddicy6z5TgdaNxBynEW3q+5GOjzpT/K++M4P+7C197oL+1Xu9nxAOMB4K3877ft22zfbMbM+fhdW3X0nePHD7wpHUtMZMbvRiuvoyYcUmS6bOeiSWquDEY8ONeZHaNG3AmERsgvz62jL7vv+fftsZL3O2Z9vckXNz9Kz928B5siU1LFo3PfI7OYmDL0t10t6Aqb+p1v+uDLQsjejzhyPKw4ZLJETOgme7EHmcFJd9gsIrzPtsdoLckMzJs7WE0/6+8K5yLr3v+yTzE2Y9Sw2olSv8fBKhjvANK1h7+G/sYpE6tUqiHppBScVBWty/qMzluy7fTXZ3+TsOlYAo/0p1C0NpNWqf53xQOPtvBHeg7GM/F0zFsyf3xzyGV2cRW7fJkG3n5N3rgjv+T2ov1Hdkf3VnsZgKT/R7whDZBudrcRI13/0id3JyDreKN/LXYXp5isi9094o2dbNHf0sBHecOfvxTEIi4f5o0qD/OZcyhzwwPe8Jm34P138Mb2t0e8r6CZrL8Cb7yhvw/xxgbrEPv8Bfoj2Sc2D/iqxkiZhwB2U+Z+UWPke2QLnypxnJ19h1Uy/iw6BBG75S45x/kwD2xoe6OrMaPI8hUZv+dN8f57iu98+3bPmPlICTCdjkBNAFewy36UEvC13jpXYdP8tPxrf8e59K/6WW16e27s6nLuGA2cMsnVuSzHA5m1nqtFvnfiCsCeLxv7Ua7A17+SsVxXyv7SPx3k8KbMrnMPzhsZHup+I9uiu0fXWr7Ted0TeVEBl4/P6+XvI5kf4FpfJZDPneCJl5DUfhfctjb3QbtJJ1zqz2z8tNlY96n32E21fz58p+ONjIp6bsaqnVIOpl3njp2sb2HzSH/AmgR5+YvZ+q699dkTLP3/iD8qNGNzce5XbVU/1Sb5uwvbSb7+C3mjtilVps25i53t2uH+XGHAgjpvPHhuSlm2jm2MvPTfD/BGvFYASGXQCZuNfCzjpW88OPdDvHH3QaaJB+vyzfzhHb4Rv9VLVd7wXMZewZDiUb3We3l/J+/X8EbH/rnFcs1kN9X/vpY3dv3yHOeeuU2L/pJcj3yM+vLe/C89ksGG1of/La+G4GvV396w18v8tp6w3JBTv143cijelfMstv0mNkK7mSMemej3snXIV//7nrZvVsoIRbxsFLTY05xynp/TiEPdb7TLo2/l7eZ+LGDfWZ0zIOP7u8bBy6p5tV26DFxOYNYW8/R6DDn6sZoGUVJ/VYA7xoghTXvHiPEjbHYy73BV2BQ7j+Toig2dq+eYKXMRcdryyk7CqWRyg01ql/pTceVyg925td7cZYrp13zeTn9OlMo6qvoT+neBa2xhc+Nk7SNhWPRC295er2XO2FRcZcUmld1ovIKhwcph7mZU3B/FXLb/od08kDHOlc251R8lHv6OskDs+ndhN7W/mF3CO3ggnjEhm1NRqD936ksh9xWrrf5Ku5c2V3GFvK17W8I/LuZloOQXk2/KuZd2c41rlChdnDs7/MHNEptUsiaIKoE0eUVtp1dLuKzMOR/hje5Yut0ZlnaeMh5XnFrahWLvG239mziHeANkd3H+W5zK2GTT2MeMhM0Fb0TZnI79Pn503hilXyRr7Z+Lv/MNb+cKm/fwhi8hDjq39C1hs+XFFcd0Pj7OG7jP7xSAqObyQyEa2cWHDXcxVl/NG57jXPBG4n22GxIhYfW1vBH9GfpT7p9TbNHfu/3Rdz+S/5XcKnIcGSZ22KMutWx4S38XMTIg3+QLl5xabcFt/RFX7Wy7YJNtG3iY/0UsZkLedfz72hT47hbx+Nrtmy6X74ta+AOHAant8MP+aQEM3jdDSc/oKBBJaT1WyIHb+BvT/H5uyzbL9lnl1HIskxw61rfGh+FL7h+s3Tb+qsnk/hg+Z85/iQ3JkR5gdeEDpA2Ohk3FNZXC8cIWHFhh5xIx1f6l8gEmrPhdqF0t5wrJqFN/berPsVp0wvqr2GiRqx5LSbmqTmw8weLo1CZWyqWM3gci3rSQxc7mLu3GzxX7TdMiAOiAtinz6KDbh44RXT+3+pC9myXevfMeu6lYhc1pOTfjiIbxsj67Oaur8qbPO7thmzvm72mhBj656i/OLTbn/qemP+OFsCO6iRBMHlv0xTJt/dHl0g2uJLPpb2ClQJdYNrnaRbzTp3Y/2Q3JOLtufkBYsF3FuW43+tW1FsxnSU7/rcq5sbNIkCXb3ZDzHbxhdhclS37tajssY/UVswfWqZ8XOqR2/Vx3ycob7g/6JZdARyJnNrfjjSqjYwx8jDfivWwwmcXsWFwm5pUpm/PGQ99gc6d2R7x5B2+A7K7RufqG3XisN9+IY7fYTB1+lDc8Hikybyw+WfQXr9244lS2m1/AG0kmg0SL/tgcphBFRlZJ2OAFb/C5IN81/9OuEbd31760deZY0p/3KymXcWXOCBDGIIR4PHr1UlTj/bPoBLmdR9gkripioeZ/rHs/12wqnq2jZ1jfwwPX2OR2Mja04IdiLuEP7BfM+a62fzjL5X/TF0wnJuBAaPu8Qsz2GN4l4/eaY00/TmMbhG1k9YpcdiDzWqkdCnRc3rDI6KJu+pVmZDb945fZxlKydXsvNhcyrtjQeYaNEpbzRAXusmD1of5dtYsVM1F+OezUnzq7+YiWlbRc9bfqb4sNEVj8vNVffglrPteDk8nmJUncLMmywyYfzO0W9aZz58EDG6WGMNleMUflL7Co/pjaWdqlH3TdZ/2NZFmSzL6yIHykktvFis2VrS/+6Fjp7tx88OrLFpBPBV43tp769wY27/ZHG8FmW+cEyoR0rmpFfx/CZnMs5Qm5f9XWkXH86vDHtlI59Z28Eafr7tz38Yb8irzhMrHKfy3eCG7YYLPl8iveWHCdHdzxhkgbNz0dNvBF/brC5oo3kLFKGC3nXvCG6S8WDerAUWLkm3bzyDf8Ul/LG66/qxj5Xmzqj4TVm7xBJ/giWZHjkK1rweJNvioyPra5DW/EueM9qK4/qTHyHXx1KaP3jfqn6UfK/zbthM7ukrDa+RS0/PyAB+pN2SOe403sR4FYiaxf5OLct7Cxtt/mjPmuy+EPE6zxrrivZv7ftg9s3+TGTJANFifmTAvNOG3LNCzPDCOvgULsNyqBEJQ3v3eM+Wqe4aFpYi5nSzNAQCpfGTMjJBM2MnOnebp50z9PVOUEWkN4ktj5XBbxEBtv10iojmSm/gErNo6n/9hlEFYbH5uVMoaLekzv+RpXZTZJXxv9jXOVjt2VbUg8/N0FaK4/a9dvMFPpE2Pjl9Ep7xYbl6uWzfiP9dwTwCk4XM7NCpb6FjaCPDLl7Vi7nEAAKNgQcSb92SUFEJ0L4W772+kqJu+lPhUrVsXWa9lN2Pod+UWmm/KopeytwJKwaXsZxXxnCdYq2SeNE3COl7xz2W6VI/WPbQ4PsHHtsD8Kc1W9gcXMNGx5aWVeeAsb9uULbNzWllLIN7kKH96870luBuYdvFGxXeV8H29EcqVTSUr2F/ctm9Hy6vsAyQykwa0tCAtvmC/cZb7X2Fdx9Nnrt7BhHbLAF74xZM5YbWW82643pnKNTUe+xhVv+AmFc97FG17K2JFWKdzN2F1iwzZ3JeNHecOeD4zJo15iZC/2w7zBMjOEMm19iePMG83KJms8dblcV6a/mMzl/lF85JLM9/jjYgMX/hho3DFyHOtwjAm8xTnUzpL/VT5+K/9zHzAZtAPtjuB9Oc3/ik5qfrRgwzwgF+du+rf8jmFj6lxF/vcIm6QL3nkrx7noXz5319L3tV3y7t/Y9k1nzELN7hzAGEmR6UNKx6fk2IMonRtGmnZs3+ev41gFmsSAgK/OVcuSwPu8sYPXhN0ur+VcLiVJIFg7MS3uyQGv6ifII6cMZcWGZXFchWRiMvDEL47NrxiMSx6I2alYyczbXbwbK24VV//LMqbfi/7SkBis7EyiPCWVohJGFRuOW6DLAgUb1r3LKEB9OHYphxFEgh6rc+3aZciusCG5UvmIXyAuTH1XwN5tkNqVY5C8WElEBLZaHkIyuss4jpFQX+mvdozlqrZO+hsiSw5sVwRbkoiEDQc20h+bz9wkQRfBz7ESs3XIluwTVraTSvR22NBPK1eZAKE/mcfC+iFYyu8WoSpXfQSbKvPO5oirvmZrikW1tQTa/Wfp0yM544R38oYd07ws1O2b26Aysor42i5WrJO4b/BGlNAiVk5dzE6xlLq9mzeWG1TgLd4AMMorX2ELgFCnLmw72kU+dJH5wfmXvIGJlUSMtPM78a++jQ3b0BLHvoY3BFG+LDp4Y8thF7yWYpUfaoM9j3McIi4aiay8gdNsnRpcfL98jHY22MSBlY8LNiGw64/KBmPl2wWIDUC1nXdhw3JqPtZ+HF+ZPx72uUvob9GJYRY3020v7g7Lgc0j25ZyUieuUsgV6ZKMl/7IflF5oHJTuXQtcf+et38oz5h9u4pRJgT7LLvf63cUZ+u5SzCg34NEfMcVuJtS5/OqrDuZ6XvhdoqNSPnAN2m1PzjzyWuAKBvJsMMm9W+XZRTCYlFjqt9XUtqcu9uvMids3pKxXpt1L1QH3QG5y/5cbqf+3QXr3bkPtnSTrVnmtIIeFlNYr/UIm4Lxcq2ETZVx6k9+of7idz7u4tzlWqg6ms8WwPV3oTOh73yAQh5hU3xZ6FzeKo5xb+BYlVK3Rzrw81K/L+wojr2wfb/6/Mo+1RJnzXIsN807mct+xGdOvLDvX+KqX7IVfLb2zG2zffP5fK7Qn/fwhhrvP2r7vVjqTofX173kDSBeUry0e8VX9P2iw+ob1f7f4g3/x6WMGxmqjB85drtd8YYCY1EN5IURSObq+3HJgk2V4RfzhslUeaPaa7WvR1xe9y95I65dbsqIN4RnM/XC9/m3N3gjLiUZqypT4g3Xm4rN5j3wvw02zPtxLGPDx5bf/bOmRnzzhxaHTI2P3WCzgIDN73Yay7ViI4t8mWMl5Eo5zpXd1L/v5IF8iTX/y+1+vzc+qoCqfPW/72n7dqsywsjC7/TdeMwW09Q93z6afaaS+EIaTDSpnpqZVjGX3PURakWMmqZ6YG/DZaojcSxbPYe+f6h6k1m9fER8yXy5TJqW+GZdk461bKO0E13yfcnXSOcqZkmEah7NpWOF9mPkmUZqtRxPOdLbN57wa1ids8k0Rkqn/nhL/dtgE4PpdTQZyA/Xkv5iVkVLc24bnjx76Yjpj8vca3DRgk0pid8ompol/YVfOFZeG66YK9HpbDAIetO/sFcvYyjYhHAX2PA2xNepPxPWV8Jq5KDLuYIoMVts+w1swh9NTl7UJNlRXEujVEpklnuyH0MnP6TsldpM2GBjK/lyW2zSdbo9Z6BeHjV0mLDxdmo54tXQG3NV1T3WYL4V/KMbY+dflevET1S2FfaMwvsu7FuyXPAGz1LWZCVxLmOphE+b17/i1OQbuoGOeEPuSA/tu83WeKOVU3e8X7EpDac451AQVlCZscj2hfgscHmD9z2O6zvi+Pt4w+Syxx9khyn3j/TF7S83pXyBr+ENKzdGy2Xi7FeBFdk25zjC7RdslhynYhMBi47v/iwlGSPk2vfJjqL88wqbCU+2hzc4p+ov9Yt86hE2fuyOB1yeeBzGryt04BYrTN6XC94HZum9z/KzL9ZYRT71Ho6qMSNsyvXhfokLbK50cMEDlasYnjhgJ+N3vP22+Mcv3MSWJh07hcCAYQCeQHf6jcteNgl1GJnMc5HOtcDSZ5AZIznTOlMppczrCRBLHUdZV+0XhnPGuXT8m5uWhyttlCuVkLGDSZHDyzokH7PFphFhEdEwIQYh8cxBRzw3pdSOALNksLZ7hU099y3HN/2N4DAaiv52ej7nqn+l3YfYnPNzwtW+W8TkQKf0nVL/av0226ljU23bz+UkcSdztUm3dei0Iz/dbb30L9l61R/741lsu2CzbApIE1vpbUassHXHxje/jospe2zCH78Smx2ubp+AwBdKYWxChitsKldxf3bbgk0+N/pnMsWoM34FbB7p/urcX7jFyH3byMl/+Rx8RR952/GGn8O+UOzuijfmc8nl2AtOBWa/amlUzcDjhmDHG4849T3YXPVvxxvNZApCRbK7re+7PbKA7+ENvkY59xFvRGLM5+94Axfx5iuxecgbKvOdb765rb/BG4vvfwgb7HUvmEqpvIGN77u8bHMVGyop3PZHy346hlZixJTp0qd22LhOqox07iUvcv7nuAmohFnsZohyHNbde7nKdzhf3GFVN5LZZZpcRY34x02estjNB7hqwfU9Mv+2/erbt7sxA6axgDhOaGeXpHOgu7qw7o6Vy/3mLxut16gy2P5CSI/kuBp1kPmFx2bYIgMQzBcn++E7PHZYXLW769ciCyY2cc54WDhq+v3Go7Zzpa/dtjsXm/0qE7URpXAy9Nc+oL8PYbPr34Mk0JPaWMLfjt3OmHpwfITbI3svtn41K9tMJlWMF2h+jf7o95gBrOfa323pD2NmI5biAc9WQBTsr/dQJlwc474qFJO2PKDzo8vTRjLQNGN16feP5Cw4X2Mji0zj3AmcAvEC22uee/BdkWkZ0b3ggbiEGeq7ZrcvtuWZliu/e9fFyrW231/zhnyQ97ffvZdTH/3uu4J4hvAhb7xnexQbyJ4VRRw6rwHzubd38sbStWqnu3M3+k4xz13DZzrMR30FxDd54614s8PmF/CG60/yoamt6NaFrS8ce3nu4rSJN/xX6UV/j7B6CxviDZ7xnvqSGQcowC05jpXIfoj3H/n8Q16ULVR+XCP5R44zeSMw5P6+R84L/WX8Of/LjhTjdMFVGyZ4j099hKuATZAqDv4db/9QFv/4rp4xS8lPNa7d8f5Vuca2nU1bOBHPAiUS7HTsTibdnHMlL+/SMaMedj1WdSYMwu107ImauDhdy47dYvMerOrm7/2p2BRM0rUcuwtskvvTrNxO5iWI+fVfizzv6d9O5mqDF+cqy0fnKB0QAYewYpwSHDvMtfz0Bjbx/XIZnceY/paL73QHrP27sNfL/YTN5ljVYdOvQIOuvvSe65pfVH/lc+OrYjuLDlkxO1unrcqq9Zirz3W7wiZ2FTFrYaVubGdDGDr3g9hctntlE7t2P7otfcSKV7XNi/MVyL6xOe6SN2y1wcRfj3gf+bc4lv4+4uftVnmjE+/7d9wmy/VBbJZ+XFxi2E7hjRNGACTDG7yRZCztLrj67qM+MW8o7DU3uo+RF/2uuuZu/iLe8D/3lfeXriz9WeVc2q27D84dHwdv8HNv4GfzrmzKr1OPqbhe6H7B8upHBeSuKcfZ+tSV7b4H150srL/4ioygW+zecWZtu17rSt4q4873Htn8Bqv4uzl2u983171qd6c7++17X/gDwG/PmP2iTYcDqJev+YiTYC09qNO3/ree68cyvryv8/iYqvcp5zINHNO5wFh1h6Z2YzCKy9moHV4ulUsC6lS90PExzd2Rlrf1GvnABoQN9TOmoF0+mmaPw2rJB2if/sYLLXklIq9ztrbbOfun1L9dKRz3L+EoeX+HTSrNUDqvwZalJ9nt3IpN6GHXP8OI2wmZHWfGyOvueTgjzh1lJXEDJIB62cYOm6LPJHexG32AjW8xws6611GSpKev9GbHUhkv24OvcqXebtFB1edSbskyV/1Bpw02wJdyHhcF4jmNjX0u2PjLYl1/KPGkcEbYYn3GJA1LGcjx3CKgoiNQ25Bqxatik0pAqm1XfbbU6spVDeZsSFw1yreG/uI5Gn4u4z3YvIerdlspKfrwppjPQVVe7EXPOzkdt0e+seHF8De3HZ8pE0quducCU7/EG8EBV76x4Q1Ue9vwRpQTMW9gyld5w+UP/V/Em2UlNsz9hE3lDX8G264try5IxmaJ44zF0l+KGTuZQTgIRkkl6/+UGSMFiTdqeR6XjcYrDLifbHMVGxTeCGyw8IaoxqI8zBuArH5ltu4yLlxRbbuey/3jc72d0N/AWVOMtOfDd9hU7s5QXMZxxuKKNjJviMnkBoDw3ZQbX+gktfsgx0nXKvqr+ZFCoafMFcEFaKdZUsn/eEvt7rjK9VPbxR7XJWZEjmP6JP1dlaJCkHIch/ghNiT/Lv9b4tx3uim+3Q2WiPy3AfyrGGj9fwD8l1X1//211/tmM2YCpBHCSBrrvv+j7wWIUZw0wuhbOddHF+KfG1oDlZ1RO3xup2vRSMVOxl07LH/tzyJzmzLBkmlfIWiLjeZ2Iz72axnfkjn6y+cSAac+mQ6aZtku9fcI1zdk9H34ud5Z118ZbW4s11X/sG+HdfImNva/0J8Aeoxjm8pjbB7YHOPKbV5hMwOfyaRRtDX+24yoT//tol2DdudDVUe7c3fHDhzn/ziZGAFHxhLFD7Bxt0i2TV1vF9gkmu5FZj+aSsd8Kecx8i2xjH+yr18dm/q7yeR2ZXKpZP1VLlqwcex+CVdd2fpXbhVLHgXeyfkIy/fyRmyeJIUvTI7dcqrLRPhwyfRH9A+65ji28IYZuO54o/Qvtp0OC0+gnPvYNwpvuI8K0O6FNyo2m3ZdxiusZrulf+SgzBtS9Kf9bd7Ycjf1/0O+kTjH8FDzS88lOqxscOWNnYy7dpc4ztgQrmI6mv2TmaUzn8FKUXvhfZ3nRrvkj++J4x/mDYuRsBgpKtt4s8VGN+1+hDOqbehoH0DKcdp5rb+P5jir3Vz7yWKvbf6TU+L1O+9td8kdH8lIOMfxiw4SY/y25e2/p6r/YVX9jwD4XwD4b/6Si33D95iZhXAtr868BKB9/46DjSCvLGSfaeGhNNo427Xf3blesbzpvbbrBhrNybzW7thLmRVpRSN3Ru9zPDQc5SP4Kmxiv57r7WDKsT2XsGKHbq8jkcHVuaX9t7BJuBI20T/uB8mU9HcnmQibBQvflXmZnYxVJ+8/V+I9P3If/7azCu/EZrGbem7RcZxHWI3ZgDltMsp/yvE7n6rtvkfG3bkkY8UqAsDdZmAf2esjffoMzMW5W32ynZgoCplB2mdVdrb+NfrbYcN844cTdwFOkSZgHzi9xVWxeb+/VmbXH+9Th5bE4r3bslTdqp+v5dRl/wFvtLuO1ep0Ar6sNvsGL35E/y7CJW/osLtL3ti1/QaXu68r7Vdsko14E8wbffD+1hdqf69i8YU/K7JvhA9c2vdctKXdgeMt3ijYZL/a+MZ7/YrwB/NGx/qajV/AGw/1KaUPF7whbldv8Qa3A+rfL+GNra2bnPaS6UtfvrLt9+Jaz/WtfucYOU5v2Xrp97uwqXHbZVMsWBNUQB/vVNvmOA/6t8uNH2JTdA8gYneO44UovsNtp6q/Sruqf6Dd3/9SUb7JjZkAcxng8nB7kIxgTtk66SjW8hwffaepWgGuyw/JIWMJcZdDEav2cOmAL4Ea+YTOfnD5SipT8gBk50bQ2ZR0eH8BTMISYLzs0MUYJyVMaruFoKM8qGLBMlP/mKxmBxHlP2jAeQC3F2rHcVXMkpo+TwXJlUq4dO4HkXBJQNkP3Xu7HVE+0tscHapYOA4xN0yEA1l1UHF8iE09F5iJlePrN9sPsKklV9F/mqUEybZgQxvbesL1Pva7ZKxAOqllYY+wAZ9bsKn6DJlYJxgyQTHLJjr9fGHb0c6u1KLKjKy/kCOV1pRjvXykGVY+YlpkdP1tZWRsiqxVhoUHSH8so1hJUpTSsa1TWSTbpD7Chs/1DvXNPsm0s9OPbKLTlsfdEQAru6rYLhznxyi2HHvpG0X/8LJBAF2k8IbaX1mwjWt5/9nH+VjX3YZzIrHa8YbbncthiZg08W4H3+oD2wk+dnl3XHDlG31z7H383tu4mfUYubVvx6TGYvL9xe5cZlC7HF+ZN/z4R7xBsaiTDhirpdT6ETZF91V/oWvmjQYcXi7L2HjXChbb/KFu1SddZv55wxuMVeWN9LJy7lPpcy3P2/oF+WflnMQbQMpx/ByhczkvSXkKx94dB9F3j+JAyMm4nvOYfiiOFwAyFyqptv6hHMePYX+sMm5xlShx7qI2uytLeaWQroL37buF99sG1we657x6EAG+303xTZ8VE5H/DoD/EoB/BuA/8Uuu9e2eMfOE34jNk1gcSEFMrawonMLu/hPpgfyMj6WA6PW9QseGA9FzQVBLGMLDNzJWYqgBiAgzRh5gDnGU39skJaWpa4WNkNv1tSukUemEzHNVDTe/Dif1DiUTkuRA7wfFd1lVo392/cNnXVhm7l8jCLi/pL/YqF24jL5TbYHOjZFYKjtrHvgIm+iAB08B9MR8lorbZSyArT6Zy7mthAWR63FOchYOVjtbL/aa+us6uMKm6F7YT/zfYZfthpUHdsIm/JHtY4NN2iedxI35A1xDTtIfdNq6ejBn22753IqN281VuzxCLoxVwTX0acdEKTHMbg7qn9l2jPLu9Mc2R+e+pfuFq8imfNZMdvrjxIGxYN+uOtn4Y8U1cPQkgBOOD26Jn7vsObVjy/tXcibfeNBH9U41507d8MZ8B1WNRUu8ITwm0SL7J4b+cRRd8I3mA95AH8qOAUMeJHyH7Ygn5A7NI9+44A0IzdZyjOwyecPt22QSLTIScCkm7njDdy7OjXJ/hT0Dan2pNwQf8I2IVVWfvr/hDQApHof+7pNjE6eS/uK6NMDAz8CpXfvS5uogyhVvHKaP+wPeINkrVcd2xRvsJ0DOcXa84TJ7PHoH76f9ig3dPC65BvPXQeemDgH+Prgo+7zL5H1qxwe5OccJLt9gs41NhcvSpANVkqiSTA2jZJdvlpiPim1L3efumt2oc+aFbWd1y/z9q0sl/krbLxPv3yMi/4T2/7Gq/mPfEZH/NYB/7+a8f0NV/2eq+m8A+DdE5L8B4F8H8N/6WkG+WSljJmyiZGKGMOodU3AgxDRupX1PrLUYGjADufQZnFchsQSGuFBtp8pkJJSSPpZp1wf1j4p2pwaVfLa0n2Tz7xfHmjJWLN9KsATkwKdCqAPa5LJ/AAUBxgoTG8ZqObbsV6GCbLpC/EHdwOaiUxt9ppFHD5AuJ8m48/elvyGb6Y+Dl/BBBAaL6vZb7Kj6wYJN0f1V3+XUWPgj96L6Y27fD0slEUV/ad9lLK0ErqQqdB2zjOBzZX9ulRF7HWzLtdIHkqFwRgh5n7MWA1dZzt22u9NBaXfHXb6GwU5//rX0VX/x7j73qV2zxcbSj5VXNiJf/f5VW+X9jW9c8X5avOGRb1y1/YbdLfWZdtEdR+7iyeIbfqBguflfeAPGG69DtjmVtuGNul3EuUe+oRWnq+sCY1W4ixi59SvN1+b9iIlXdncRM97LGzW53PrGo3hT+pP4uMiQaIZ5w89VAI06uIlnl7yx41TvC/ePdV9iVfAGx+34TSan1nYv+Clhw/q74MWtftX74TnObPeK97fbIxyxYrNsSUa6i7krpI87n0V/m3a2tu/fbfRXbQ5Y+6j8I2AljVQGsMFqEXLXX5fR9lVIVhBOD3S/XbL/O9p+4YzZ/1dV/5Xra+t/6p3X+TcB/Fv4BTdmu0nzv8o2Eg3Mmn8FxvK3hdjY+ihTcAf3850Y67kK+p3P7Yr2qnPES2GJmMaUs7qMndrr81hu1wMA73Mwk/I770cXVcfNzx020knvaekYAdvb7ZjlLoRN9Nfb1dwugHhh9IINNp8VFgTHVDpk9ku6ktcWjF3m0t95Q1zOoWN5f2JT+mcyHbSyX+jEE1gtusLEbCcjvDs7mSpO2HxvN4nyilTOIIaVqNr7sbLtV+z4s5Icoau3sPG++jmnjmdq+Lqk2zie/bHs8zks02LrfnzRZ8LV273rGDH1ANanvMPeydYdR52fq24Wf3Q5MfHY6W7iqoDxQqPANM6dHbjyZaHrMT8kf6y47rAp+hSzdVFEYptsfWPbO2wWe9v9Y3yIX5LuUY794LZy6vQNtp1FVmDq82t945y8ETM3F5wqqjO5rRgW3SZ8NjqMvvPv0Sc1HSOqNaId16nj5TNXnfiL23nLxje+Uc+NflKMjJtLtc5WW6v966QLanf7uhU+9528IScgFLfdF9jWgz9qu6UdxrnqL9pF2U82p8EbPlCw2LYSp7qdATMWs/2Szrm96hd8bo3zwRuU42Rb15VTQ+b5PV8zYcPtYP7b8WK2OY2b6uB9P9Z+u8px6oIfO39c+Jjlqrpl3TvH1htxl6naOstEfpParTFxc41LO1MEV8VMmU4MOMdh21j8seKEaTcsc9r4Bm3377dt2UTkX6LdfxXA/+WXXO/bLpfPIzOCXJMvmGVfRixRH0vHpHPZaQQjiaGBhqi5tUPVSgbj2RIBvK5Y1Z1UQ5AokfPpc2pbunVF5l/IPDb+uXMoZhmDOzD93qGxVGr0j65VZfERv/T8B/91bC0RVr3AxmXmEgqXGYB2CeLk0cSQx0o3dNP/wAZItdfRLhMWEZECqTY6cFIXVWbN+s5uCJtU811JuNiN7rCp55Is3tAYjbYlk6vdNNJ9xYZlpO+rjFHGc4WNyQwTyQPj0K0MG5CJTfJB/1xLQWTFRlDaZVunoOtyJFzJFz0IQWgJf5812NmN919oH5ijkeT3zBlJf5jHTpsj/UXALvbJ2Gz8MdncI7t5p83BZPEZDvXnDq7sxtoRYM4SlP7u7CZwdC4i/WuRMcn/kY15/y3eILyYU4OfvtY3gl9HBU/mDVnjzSPeIGwX36jtcsxYfGvaHYg3QDLMJRAxSwhdNlA7psPQ/1WsKr6RYswUKUbVPUYOLGS1u/f4xlW8qbg+4Bx+nkw9RjJvOCiPfINlRubjuAmtvnERxwP8rrN9j5FX2Pi559rOu3mD4zhfXwlC/x7DnpYYiVXGGqtY9ofxZiPjjo8DM9bfGzmOc4Y0jLJwtme2+0ecyn5BulBSW2z+SgZuh7mKcrdHecpiN49wdZcudhMhlPXHfr/JjZe82tuudvNWjoNyLtvTd7rxPMFfefvvish/CEPD/3cA/5VfcrFvVsoYzmCKnh8lOwk5cziRbM6lJHAlACSDSiMpmHXOfA4T2tJO3S7a5T4km44sM/cjko026pyZ5yQijOaLUv/S9f03IayB3G6RcZHNvmtOIGpYLfpRk1Hmubvr2t9U38zYVBz34qTjBEC7V3I1rIzZVGSPzVW7O/nLuXWLr01p7az68wM9csraXtXBroGqvyvbosOaiOlP471E+dgxMxDP4JCYSQGpozOwV/mSP5Z+xG8e2BrGCDh4pb+sP78oQ7bAlJKQFbdkc6AAxM0BEBFIA1rXyIWzftSw2eiPbDvJusNCC37bTvkx9hA6xkxP9gPNclD53RYb3q22/MDGluO+stZCnL/czoCZWJbfkkxXfPWG3FsbMWzkdYPDDiffYd7YJSjsG2RTW/8m7ovfBON1CKXdGDwpMqY2qoxCuF7IuOBWLtNcJsXCG8O+VqFSjOY2NvpLPIFilxuZnDc8Ro6XhBNvCJ3ovHGB+WITlT8e2Vs9F0CzZ4HaKUFttVPBGxV3avdN3qjte582x7Iejnu5bmDkBxd/LP1b2q37D+JQOo70117tVQdi9y9h0Hvev7r+Ykel3d1v2/yDbs63+oPpr2Kw4fKEI9u6d28j46J7x0o2OU6xdVXJfrfZkn8p7V9xxINrfY+bAr+0lPHr21b9z/2a1/uGy+XnvwIdo8GcJfFxm4CZ+GEXADY6itisGE54J++0prV6zntJuv7OpFkF2AnlMtxJRvqJR1sUCiWSEObZq6RlJ+smlsVPhGlaBngT3MclZudC5kJO8V0N3CQ7z9AteJG80jFfelqxouuKElYlcHEf0w9lq2IuG/XHlwGO0gYQtnEhs7GwOSSsasPr+ZvtMpDqWJ3LlyfW8ttbzsUy1u/eaV+L7s3/2ouOGc8r/QnZ+k5XO5mLDb+Hq6darKTM5NvZatg6PZymWvq3E5WCYb0xTP3gXbWEpQ+7ijbesBsB5up4wRkbHVxxpK6mET/y6PRHt4X3M2+JYrxwWSa2q3DIWC4XumjXeeM03iejXnRKMlZeBDBHwhmjjayK4js77rXPKfli3qCTx0tUrTn3v0c+yCP0bXPMlez++wn4st2XnErtVZkTR1CbW95guU3enc2qAsK8EXYzj1niOPNzuWbETpbpg76hHStvbLGZMu247tKMr+yGsIpdpfzBbD3x54bfl0Z38fkBb3w0x4nny5jLyrOZqnve3/rjLiYUWVL3a/+MF+LdX1f66zpGLIiD0qGu3uLbWxzqd3XfKzZeiauqrZtggpwP1nbY3nfqrscsYl34w3e1KfCuYP83sH27GbOyIiNsVH+A62WEA+QU3MwneAoY/o+NFcjTyOVcr7MV2Gi0l+dR8EoOLEQetawBSMacVs2pgbGUCSaZvVzEy08UUUkZ+NC0PnwhAMamyBi4VZn7+vnq3FmTPIQRTvgMoyhrEIVSKYljwyVKaZrfy78ck07nOQ47XXYnp0mSXEYWW8GGbW4pM6o6KbqPc6s+4cdqwkp7fnFxXXZ4Mm3GJmyJv/c+F2yS/XF/NoEa0LFgy4v90DDIXOa+25SAbIExoLa02g0HMPYTkj/p0/XHZY8CCClwliqOWTUlWcNuuLSN2yGd1RKdOJdUECXNrj+VWMlsazfmD/FdJ5kJs9oul/YsJb8kv7ertmSyYB4b3MT4Gk5eahaBmUplWMZUarOTkYM6f6g8+97Nkp+tnMZ37ivoI9EQATrzZdE/2jt9w/E5MWcugHjWRn10Gpt4s+PFqrOLdmN2RwnH6htqOnaOtVI4tIHFjHNz5hTuC212kUtX082gt1V8WXe+wfzTES9g1gNb3pi+UfRp7STfKLhd+UYc28u53pdzcEQkwH69JtkHDSuBrLGqlHkmfqp4vOUbLoMOZaqVnVXeiGt59r7j1GI36Nd2s+iW9AlMm4r+GzbhUyV2uX1F3z0ZL+emUvRdjlOz/k2OA0V+xizIjfRE8egtTt3mZRecuo0Zp/fZhGG+BeaiNS6TCsk4ZY4XZyPnCUlG7mrdL/IPH5gLPHEZMp9bc+NqN0IyLnnZA1y3Nvfb9hffvt17zPwB4jbLzHq9laf53ail9gu48WAaZT6XPvN1/TieUr93HLZ0M/og+BgRi3OdieeFxXep3V1AjOexSJ44l2W0QIwDY2GETt2oUxZB7hbxdeLIyxdvsXiEVU3qydlVBlZRsmiJdfVZL3HRInMaPWUyr/JgfhcDNdQIJ3DaALl3tE4H0OjSJH6dAZRs7l124+TMhCXzmCgbaoImOpeAp4VsepcoCR3qyvoTkZh1iTjpolFbO5vjvirh6gTc/BoNOF47mgolSDL7HefqBJ1x3Ogkfqr6dLlqHzAJ3/HAye/rI7uxi88R6mnrywge+7eLoXTKlYzlXC9JEgz9xYIpJ4Cj2g13KmOU2uj590pxj2wwnn8xWz/uiEV42G44EXlo23wu//wObEL+esw7N/H+VjlLt9V1bG01xcrHb/DGTv70nq4D9pJp+734zYw3dgHT/2U7D3gjJZC10zr0Gr7QgdZnabF2ieW5gQ1v6Kr/FdCLWLXzDTo3ZJI9b9R4E6WNNVZtsIpzi90ldRY7C95w3q+8wbxAeoToKnP1g6K/dCN9JaPTpOvPeb9f80avcduwSrwvWSfJbgr/JqwqdG7rhfeHT30gxyn+FgO2D2RMF/CvTX/Shv/hnDmOertJpoIV1/q9M3/g/dnODHsRvz3vwshxGtdPqiwxH3Af3cQqb7/wflIOym+af3Zcm2HVzpLjLFiRTVzZjeR4wzaX+vZWrPqOt2/4jNmvurW3D/kLbLvAyQEX5pPlu3pMnF6+u2xr057QsthS5YpjKYLRKnbMZY/ajeP65jv7y8fMN71TQ9Ruku8Km/r9hax6uTPxFwy5mr/D7Kpd1t9Fe9tto9PdYo9px7Bqd5JpJ49/+cjmrmS6kG/5TnN/xV+gSasmCeuy/LsS4027uZL3og/yQjZ+6VMsp17K+B672W6ElarZ+jmPTz5f9bfTQcGGS1MfibHYHLd5mg61XKTqcHe9N+ymrjL30EXCdjB44VXXdkJGdjwkbOLwBzyw7cvXnPvmdu0H8fU7sXwo50WzfuBYln79fo/t/hoP29kct8hXriun8Qa3GzWyV75RZaa/D3jjqgtaf+wYz+J1rO1c+sY7jeQN36jHumzOG8K8cSXTI2zqubt2dzJf6fROvLG7ZtHfTo0P26jfbXcQnBGl9MQbD3Mc/26X4+xkfkPGpe9x/eF/zW09zr0A5dH+rv+PftbNPZJ/F7z/oJ2d3Tzyi/fIrauMwGyrvZQch0/a5RWlb7WdhzZ3ZdvA30aVoP6Cf9/R9u1KGWPa2WpjBct06xjhVPjbznk2RzH3Y2SMprIV87PQsT5qKCcAu9HoTXCYcpqMUa3xEmI72cutfKMym2hPpxzLC4y5zIZeOMnTxCFjn6MlCiqJsKGNWBHLR/9CBqWpEcyp7IorMF++aZsyNgEujYx1RAlSPwS3k48z0DRjP2Q0xqPR7/Qyxo2OuNQkbgzblDHO0YGlYJTnOWmOlZt0vFBZDStILrWAIlY261kOthvHcSk9df2RQw971RGco8xD5k1HLfcxLKbdqI060zMkVH6zjIYrX/dCRky/kFdYCYvgeJ0yd1S7kVDlOIhsDpilY7jQiWPB/lj0F9c+Aek6S7BONyU1/fvqb5Jf/moSVp9KcpGtp5n1qj86V1WhpyUMhlXYup0b9tFNjvBHsz3kdtPWV2y2x7KM3j9bqKI34LAEZpS4iL08vA5vFmzYpu1vzMZxu9w/3WAn5dgPbuJ+ByCesjeedd4YuldAZa42diEnyxXlXzvfILnHs0CajvV4I16KJsMXL3m/xiri/ZCxkUqq3SUsjTfM7lQkbDB4X8eMu3Oot6fdYhXxfsgFjNJN8g0on4tL31D3DecNERyE8xVvVN8IHT2yb+eoyhu+77zi59/HrFTEktNmFuyuI8XIpAPzTtaRY1xKtrY+yf1LvjF4w2N1b4LbKwncOceRqZ/C+5ft+j7zBnPqrj+Gy+SNTY5zYBoKV04AgFopPvnU1m4MD/4cvidYStqjlNFivYLKxc1u5qqfG963vGirE9JljTe68z/OgeymDM3056+uoHgDzHOizLapYTNsrfNMXpyP1W4MmzRxWnFV05/a4yHW5+Cbw/hI3cdITsMmrmsy1JgI4NLmkhx+5e/sBiZv8s0W//i1t29/Y9bG525kA8Wcgm2YxNGR3jDviS2XHPD0dMoudRrYSMDMKW6AvgraOd6n5LXlAszEnUg7prxN/jjenQWYwYRktK9n4kE/p4BpDtuPMWPmKylFuzalPrEp7bhRKsYzATp/dhm80Uj+7VjGht+36EQw+iE4fIbRsTGSU6zYDNwoEFYCJSd37FiFHtuT7oXaOzCemTL9weTndtX6GO1SmWfC378odpPkDJz3MmoToCn0sEPv05YdkyZu6zJJNrCRFVcPfNyuIJfAPZAxdOW2Tvqb2GRbT0tTWxmOJ0iXdnMigujijxys3Paa6e8mwGeNlVHVZYYUbBAyphubln/3Z0R3th4yMWeQH2kTSFPoDcAXwfFabJ2xcW7ydmwgIXyochX5lLg972Skc0O1xFWHzzAK5sBHnzeHnezGsUlcteEmloN3IXS85GO/Kv4p2SO8DxiYY5RXdcfHkzO2HZabdJiSDDz2DX8ORJuM93QFlnjMG1v9EywymwmOJnsA87H7s8tEvAFM3pg3QaCbf+KNwCbzfrTr2BBvBF9tfIP1Lf6fG6AvI0YK+dhD3mCZXCkX/FR9A4xN0T2XwvVDcPTxkuK4qfYYScdGVXaxG467fu2UP5T45Ptb3pDBG7jgDW0jnqcch2RkHGssrnYzbuJWbJI/m5y7HCfkAcZia4IFGwAxZqIuR4nFqXyWb4DoA3NwyNXsfLuGrzI7sZGCDeGo8/etPnfxxtutfiF5XxqAJwAvlOMoXYdiYuIbl8ltsOQpuIqJdH7kD/VcWIw8So5DXBW88IY/+tepfPURjm4L3CfX3/e86duH/C1s3+w9ZuoWovYFgFo3K9AZOKhunR0L68+5HT92fpX25a6Q0y0YqdZ+XK9cOEVfgGc4XHZ2fqFuJpGZ+Lg/5j3NRkriHEXBhtqlg9TA4JuymozyKeHUFRv7m4LVXQHCaqu/Ig8TwPK2+l27wFIJw6M2gav/aC9PztjwNa7sRmcHq+FoPXanI+QbWAx7FeuAvICUi7AF5SL0hE1oL//GIlZ4dxv/aIkdl7Q0LSez3UT0k9luaSiV+7PaN9jsZEw4Kob+XvO5abQlsJkNLA/eF93H12/gxYGK/RKqMVIJlfxbfC4OBRq53NkN/63X4lNK4PavBBg31VS+BbXAvdHn+Fz5dHNssa2FMwuGi/99ePNGp50tsrUV251PAsRtb+j6IW/MVq55Iz6YpyjJZF3ZPQoT7bqM7hvcrlbeILlErnkj5HqD9zd+XGnA+8/nCobc8qponXjf7SrxRpYn47qLVdecmrABmYrEn5Gouo/WjnHLi93YAfU5VqwYLZerXdjxxovzRlhKflZRpWCj5AqyxGJ+TkjshyTTjnOKc8pd0e6kP7/Bi3MveJ85VXNfGQP+3fOF6o/cn3ETQbwf1935Y+F9tXuW6ui1z5j6XHIcFFz9Wn3Yupx0fghv2jRw/Dnoik16NpFtu4i8PKpRCZVklrvOyptHXH7hjw9te0eYO39kG/xt+4tv33jGTM2GxEZw3NKHt/so2LALzUGzbjytLXhY3hXtv84VuWDixKh3G54rniQIhifTiJEI0E8d+85QNEqyOHeZ2lYva+Tv7xg1xTSN3iBWnqWEjRo2snE8joLIZVMFG+5/ktmP6RhE5Ul9w1xVyZnDS1qsvCRK0GwWxQm7yswEUJd/dWz4pb1Jn5YwHCfpSuncw8g8RZSd3UwbTKPQLt9uhMjl3pWlnkN/rSECzQgoEiNTbjdegsYjvm7rk9BlLe8xGaNbtC8ks/qxJ0ZNP8agWnO5fBWz6GNm6Gpzy+hoJX8ORPzCYLflGkisfMt1HO+x4f4ENla2gVHWBbESZ7Kb6C8QMwVsN9sAxb55WtR/QdwMjqR5dizUUtpF1/CDsO3aDtt4JEUbXCtXcdm1IEqSRKzcKLCZ6oIlP4lP2R894EamgLXUxwVyXKsPfs3WDcXDG52c6glH3/BGKpujRMH1FwnghW+k9u+KowPdSn8iaXPecN6PcydvBLyGbawUSlhWHbpvhD3arH3S/x3jGdDgHh0ziF7q5qPjFG8WvmLeKL4xOIfaJWziFE4W+8SqCdBtlgXupwkbtdZl8Q3grVhFlyjYrLw4sWon4gZeVOegX9NZwrjzyeIbsfLnTicP8gcu08apoyz7hWRNvIHHOc5BHEexKmDhsVAO7VUmtj87Dxa3Rwk0Iv4AgLKte/BQiZk5x0t5MbGrOFB4w0v10is7fDsxZjpjNpBznNnOlvcD17JZO/wYjFTbNhkTrp7jdKC96oxj5+wfy6+W47gvp1yD9cnt1rjn/eP8z/vAcVwBeR2zrb7Co9iPW94vjYQFUoXMYjfE++mmsvqj243r83vcFL+VMv6iTZFKWqTRVDZNxzrZxnQtMGrBfCvlAkLXj3ZABsmBx68l4x0tqaSlDwUnYnEB/MbEks7WxrHp8ixXLU1w8nSHwHSImHk4AIWXd8mA5KjYIG4GAxuhf0A4XFrK3NqNEg+XSwgiP9YJAQAOgYpCTomyz3mBC2xE5o0u6Fhu128a+SDlAEen1Ws1QW+KQ/MzGSMoT2zGCJs8wGYmDI2wCSzY13lG1e3Xvlezp4mV5Q6C8cGWee5tmJ7X8DvGS7t94voe23YbUNJfzOpZKWo7+7R1qC2bXLDxz/W3VtotCVa0i2kSQt8n/3N/byPoitn60MsQxP1+XEjsErKWbfD1i904Hottg45zn3c+OMa126lovlorycSlqNUfIyEp7dR2Q1+EXZq8JZlT+Z1ySdJ4PmPhAdbhVblllH7R8eSP6Vrkg3Xk+UMb8/4JxPuAFk6dSVrwei2No98Zr8DSP1feMF1qG2lL4g3TYUxqbHwjxSrGFhmzpV0qgeLfoKZH0RGNgzckSp89geMYGRM+7LeBzbQHjj0Lt1UZyUZn8m7tnBQjgS1vJN8oPs++IdV4CqeKli4t+hvtK8YNmohQxfzEpsn0jXRB29dHvM+8UvaTbzDv38x+TxBvVGywcKo/r6TdODA4D0l2dtUUByTrzylNgRmLOMdpCN7Y5TjS7EaVBx0LNgunVv7C5NYljovJBR0rawrQRS85Nbiu8L7LwjGUsdGKDe973kE5jt7M56zEeWIzE6SBjcybGUGO465H87/0CALhMIXFMqsrjrEAOGDPBypxleeb088FSDe/SQbWnxZ9uhKVrlPzasMNiqTf73L77gV83/aNZswUMQPGdRZLAid8Cp2LeS4bNzFX5dXS/OQ7LdP83GySI7PyJKVsrb58tf/OhMQr68QIKstMhN9epwBBNldJUXg1OR8dmcpuSI7Yp6MjUS3yA7BnMjQnZ7WmTTAeVnVpEjaZ0BPMrHsii8DmQkb4SJeWayWQgsaWWdeKRW03bQWb+hNvs8xG1mtqOUNhJRLURAlql7atSJiRKSzNQDelcPVc5ON5i6W5N3jwtViFcS5/70TvMln5zyydLHbTsGmXbI6xecu2dzLOuDv9766Q/oatszxVn+YLtd064Mj64qDMV1y4KjlobnrhTLpDTDwA0gVf4gGfclfTYhzv3AQ6uYEjvZeRq1qikPsw7ILLujPvp8QHWPoYv5GeR7m4vfoDBcL4ovIGy5UbWbAt/ltVxm0K/U3leY6N0NHFD/zVLtWWF2yqnZi/Lv3m67hUvady/2nfSn0uMbL6JF+3glBCL9FT5uB0rKK9FECYZ4NTFfko7sMUt8YMjlFaZA7cPsQbLlflVOy5l/vj7YKOFSw3ZDVeCV2/3QtOMnFYmmVHwsr7i0/ZtptM2fHG4DjTXylp3gNBv8n0x1gwBRnHPGhcBHmjD+MVDDzFhGTP6rqMczKuC58U/T2M49xdzTuJqzb26o0ENtaxsL/ari6nbrfyVMHDY7+P7bsX8F3bNytljCRES0DlsjvoNCovTTIrYVJKQQmYX9R9ioBy6lga9Y7kIQIsq9aMGv5JA/7uiupYnkDUJzz5mF2tb8hmS6y3V8VYjZKO4RIt6m/MvOl883vEI504xhSv/caBJclFPuybqN38dOufSsZGCzZ+2ZqdULIaeNSYtSMswXw4FnNfrCTC++SBqBKILNi4/sb3/rxjeqbK1ajz2ks5CX/22Qe7UZxRwl6W3mWWI5D+Joy08hLhEe2yffK5ZOtJPr4U1c5DZ4IlvpKayZ/8yy+1lDpKvj71P1URVP/j61j5iJdYCj1TNOyZ7WiUbXDpTMImdZxikIvKdkPnJjk5WIX+ch84QQtbt9HbpSzQf2efwzx30R9j4zZHwVy81O0V08780B1X8Qx+yhvMD8jvUfDa2rZDwbb+lSUtwWlKq751hdo7wob/Zo5hTmWecd/Y5nYPeCOeb6m8Qf4ZMl5wKhgP2WC7/I6MZ+KN4XiSeAMTmyb7dgEroS3JyKadmsSXx4rmeYk3Bk7xPk0/t5uOIHveELb98XnhFe/PR3zD7a4rDuONeA5HETPCSUZ+Z2VweeF9hozsJpV9VrkSb4wLeylc5g1Z7YZnCKnPYiQTJWhcbsZYVXmKTPFVn3nOljco9rrZJRtjjiXb1upTgeuOc4qt24qM7QUzx/GydJ1c7zpK/sjX4lhd9y84lfvIrwQDPMfBHMyoPKAy9cM5Tu3vJo5npY0T0829Y8M2F1xVcpxybpUxsODfpXBTKVVNsdrb3snfsPblt+0vsn27Z8zuFnDMOkQQDgnht6rzkqAWsAVW4kJLpbPR+KByTTacPASIemXBMFqbUo/6dPOCWMTAE7CGscQ3yRxlODGYbecKYvQmlXFwUOwb2Y0xVfuofW4wZyeCaKMd9YfDUdrp5OAmM6xEKMomhIIEYTOX6x/nd7uWqOnkhfBwEmNsDDcogFOt5EqMDO15AKH+h4yY5VZOVI2wKuSvqmj2pb8SYHJiWebdsTmm/ly/0e4DbPzaV0vEj36o2Sv9djo2fmNrfTO78ZU4FQUb1p3OdrkUIW1UU8+2Duo/oON6VLZrsWa+KBSYKxta+UjgYf4Yz4Exrt7ETsbqh93kC6Ma153yjpI9NKEgN7BxueF+1WDPkliwNMzDH82Owhd3+iP8532rGfYpUS4mHqBNf2JYuE4j2dn5PT0ncInNYk8TT4HGMwU4qY3myia+sTbSktrhU+YX3ZITxka9n0iDAQBmqTFz10c34wOf5UmcemZsgzdkihFyuu68X2/xBvuGgmx3rMw4Pk47e4s3qk4nf5j/1kG0DafGjArHAbvRgXbijSGjbuIe88ZlvGFuY2xcJ+z3zuXq+JmyzR7kVPO/WQLopakhU+hk8v5I5gvv73zD9frIN5SwawLtGo+6DTpx3iCjW3yj8D7ZjcfoxTeYNxTZxjwH4KmMu8dpjRvXyRt5f7Ebx8ehIP1I1d8OM8fD8fKZk8QbM6ixrTtv8Ct24jk6LzU8CjZuV+7PnG8R10X//D1pJqPch4zzeAlb0s76s9gjLuPkfccm7GnHqRQTdznOiDw6sIkcRyZvmHxrjmr+EbZy7Y8uR4qRLGu1ue4yScQ2z/90Z9uOjdlNYBN5GF2b7VonV13FyBnkv+Ot5kV/o9s3uTGLGnKffbHyFlWMN65DEaW9VjIxpmeFSqAQJK3VWNiAiKhii6RH0EVx+MIWfoJiPIxqiZqIBHGkshu4fJgjrzICmroYxiWX8mGeizba0kNtJSU7twP+sJIYNmKyDCkdG53986SaZGQsghM0vho/k1O6iIcTLsaoUvPykA40e7mO0g1lmkGgEr14D08wdU68An7J+y6M1H0R9Bvw9NrHC7kFW2wa6SgSEVenaip5gciyKFyYkic3yHCGnDLeNYTDnhM5aQT1YnbF5WibMkExu5+jdSRMaheLfvnnBoxkpc2ywTjB7EY9eUj+KOGrQ22unKm/5Geh8yIefRf7dvOnh4wH1Dv5idrj3gaIl9JosvXSnGaZwh9ZLA9c9F0IBViQ0xhNbCfQoJ6bTmwiEDuGo123m8Xvvd13cJViyhjdMmLRpri9dhw6ZzpFnW8KDyjQd3ZDpTbL4ocb/TE8GSt81TaeE9HBG0Ll7DBOTbwx/Xf1DeaYVW4+3jGIpKwJ9ADaC/OGXvCGEm8I8f5s13FvCahrTt3xxrj50zGLfBLXRcJL7ZKPTmym/ue0JDkdycyzaP799CM7BpbzHsPuGr+cvvKGuG9g8gjxvohGXB+nE++TTy5b8Q3v0oiRgLx0tK6pHytvrLF4yohJFISV01Pihypgsjm7IT00ZjiCN5Swcd4A22+xG0XcSPm5O/0lkcu+fxc5Tqs5zhWnUrxhzJWA83MLLAvP4oLr2pBJjzFD3HxAHKPdkeZMIm0Lt9lPHosL70+bozavsCG5m2A8U4YxmxdcbjfNiVPNcMVkDrOGn5dt7jJm8z42xzXmqhPNcgjPcVZsxoX61m5kxYbbvpKNMKs29l1utT9/o1t7+5C/0GaW60vLimK+O8L202cAEsFT02XShysjpzYBShBe1vbqNpdBRyQLs7l8guYTc7uaj9HalvfXl2z1jNCmtCs2GSOd+1WW0pCyXFVGOjkSEmCM1Nx1jOCkY/Xy/JgZoS/jc223z90rPaTgbLqQF11txdtU62zIMgmf2+WS0Yf6u8KGsQj96dSJt824cHlQ2HfpbMipez6seO9+9+9PRXvRacuhN119J85f25XyebG5os9FPLc5O6696EiuXBf2D+namvtS9bdrZ9cuf9zZmCced7N1xqZuPfc98cCF3bAs74pvlau+0HcXpzAPSM++sfANX6eC2Ndjf5Vtxxu9cMglbxQwNzrcqmvx3eELfI2VNzAA67jUYdqqY/B1UtvYPGg4eaPdH/DGTkZkH01xoGchr0x5kZ/l7pNjU4xMvFGy3qo/3djZe7GpMlrbzQdzLnmDbko3GK7+e7E94A0tB8lJvNHzsQtfVX0mIOZ5Un56sLv8MG4GLcfh/i53TJj6ZJuj7ZJj+d5/w8fbkxSxBHzK/5jvNr5ZfT5jU2R+dLO/0ykQq08v7TCnkt2Prx74mKy6ftfGONijLZwbb3krybiJnUWuaOfC7y957nve3La/9t93tH3D5fLHELnbjrRpxV6m4T9qG0vNdp858mEDgIY8MGfCgMu3mc99Be4jUe1Nx5Q5MB+m9rIDkRmbBUY8s47Ya9lTCRotw5yWb9Ysh5ic0jCnkE+1UVxFh40o0WpFXmYz/E0R5ZY+xSjEBj685CVo/iyCLYEag2AXWAmspOMcM3hjRUHB8aJzVbKOMXo5ho8AG8XxsjNYfXOTMdoUrxIw3LRRjf/pmG/kKqUk2jGeu/GSLCf4GBky3Hx4rOksxTDRx8zNLCEZ7Wq8TJv1t7Uj15nQb/ZySm2CU+xllWINqg6szH7jGQghgo/SEqGXnWOMIjpWbpA7bHzfmoSa/k7T3wHgi0Z5XhCvwJWIKNMVRPmIzwQ7Tl6Ck+qIrrAJvyDdKtLrKnxxB7cNYGA47AaQw/rfx+xGkhGgF6/aCKKXoHCplsvk8u2C5YlRsnWM1TOPF+tjzOAUbFgnNjwaZcSVq9zvBanssdNvSZ8uo9k6BOiHRMLdmtiq31NHiaucB+wl4W5zzrXLqyH8L9sz21h9IfVHNwVa78OOmDfc7g6hF/Myb9jJVHaVnr9hTrVyJk+KVv/1Gw21FXO7lTo6byCtuKjNSi+ZXwunChCvTdnpm7FMdsh9sBc46wGcAhz3Trwx+uRxIPPGBhsTI0rQ/Pm9Pn+T5vF0xZF5A6+DK86j4/bFfV+GkFY26Bm1Anvej5g0eX/HGwkb9m2WUTF8QWEvKdaYgZdudtQETdR4A8QbLiNd+zC+8ZlQ12flMiW5+LPL9Tpi5JihGrw/bMRlsnYhe95vk/cdixHnqs1NbNzGgsYXbrO4DaAbVmzCgZvIrC4MjtQoWUWfehg+pfY5l+1Wn5u8SPKeiAqJfgx4IsfxSpwGNJncpiJoDeg+0GD2FHa+8cfldRWMjWPln4Fh66G/juPVbQrooNyO8j/m1NyuUownO6ptXuU41ic9EbbebxI5zh4bu2DN/2IVS+YqDK5iW36EjV58/g633eDj3+L2zZbLH0uuKzo86fOEgZ5/OAB/V1E8n0V3tgpEzaxU41FSkmJJKlRkvG/Cp/lpCXGf6x1Jo01lezvNEkXbBy8N7NdWctL6TrM2ZfX6YwAzODVzwo7xgLNjcwwnc1/zQBQka1Ft+prkWmtnMsNiwUanPzNWAuvjE4DPHTcevWmULBs2qmOJ8S6WELL+KOj6TUeUWwI5yCDUMInXN7/eAfSncdMRD8jGDRgFM7cbuknO2CDKcOTI+pNqNxclSQN+GdjeAOg5sFJE/Xkc5zKqRCLZFGnZ3YSNBfSQ+cjY8HvoGCu3OWkml3QcL4hnzNLNqu9r1mckqJ7keKctiRzhee6zykJ0/44Ba4DcBlbSLTjb4MZYGrnYTeEBUYsn5kMTm1KG4+267bGNsc2b/qSpBcFp60OHin6QDgwb329t1d/CVZrlcTmqvAk0mH5vVlJmXKXGVeK2LtPOkt1ItpuUDPv7aTD3/eYk5FBKmJkzvrLWQvz9UwtvYCRrO94X8sksWpIp5ET2Z/99YCKQG9Bvs1wcxrE4ZGbv8W7EkXx6jj15Y+AY+jfewGxuy6nJL9wemowGbgB63/CGlfbiPbwhYepw3+d449gp8sqa4c9klzJ4X5vi9gJ6xc2Ug9/lOPTpSbbpTxAvQc+cKdnu+Df3aZTvPXE9TFZ7SbivhOz9H5ia/GRHYRfchu/bjaLvh34EK7d5zAj5xGIRgJ9P3F6IN5rlOI6/x2m3G7dtt3VSSbSriUoecmr8bjkOboAeHcedcpymiNUvPMdhf5TVHxk7ibuiqZ/gNhRcBSk3U+P9fhPcep85TqcBaAy+DTvifnqZJbUb/khyeP43bRl5I2OMPM5ynONVSH/GqYn36z75I1YeyHEck6s0y7EY/GFYHZgvmRbysYf5X4mRbts1jivilU6MTS1HDZvi437b/mLbN12VEUA8hDm+0pQYxDKt7n2KZEBzeWUAhSzsm5QEgRzEfaC92rNc/puCRiJtX1muVY4abbOvSZwb75Qq15/n2sezx6huBBod/0mJSTh2lcm9FbNTSV7JxGlfTycGtWn/ukK+6JBNfabTGDwIkJzfLsA3gOLBAlpAIGz8WG8/Okuykczyojju2Pc3sNH0+yTzrJ8sJ+NVAo6TlSKZgyggUKB3eybDVpsCyE43OtnZEzH5DLQkH2HDcsT5LiPJKi/+uoP8QHOWQ3MSlfzNgg4XzrMc8xJJhi2Zu/+/2iqkdFDqH/c3GqDzXX87bPz8DOc8t+Xv/ckt6Qr5gjGKGoqTwgMZm9hnGWePJoVtzpF6uH3vsjUD1W/KkLDRpb+MTcaNhPdgvWsbBSqd3yU+/ZpNyfep70J2B+d94gkewGE9iD/8fyFn/Mi8hmF3x11z59luGa8dxy4+m6+Vls0uXLJLtAUKnB3tC8bstoGsJYnKvCEb+efF62JAgU3ISHKUGBm80THKjRNvrJwaegKg0EUu0XgaOsqsrrDx3yoHO9cJMF4S/qK2AESJ73aybOLPvNQF7zM2pCCnvMcxsg/e6ARs/K6YD7iVflXeSNkwycen7JzWruM/NeuH88ajHGdWnAC++NLCwTtsMHGt2Oy4zQfVRo6DTY4zT4hXKpEMiJ9dxmnrD7GxH8PmiBPE+9DtGeze54+aeT+eYaw6jMZzk8wDob/i+0qfnfJCXjWuekUeYHBsNjHRjUAJR7b19PoD4vIkI7DEle+s2m+/Xen+b2z7Not/QKOUERhEHqNbN03lBCI6p2OBMZICiVGSyBHH3C5i1SyaQhcgvc1eMIJf+9IhCpyH4uYPEWuzsipfncsCJHRMIQNjBLAjVg0ab3r3wF2sN7INidEgCGLmjUAZ0+R3Hctim2YCJ7XvbFSwd0AOncvLUvnBXAlK8iwVEKNTMdLjWJWZhCB5xSizeTGZ2yD6WWrqGbH9tRWb5hDzjGijfTUL8DY44iHK3balJEwuHeNGo4/SAzixyniKyrHxBMNfshlLYnv/+tTPxIJYiEZ0Q1UloIeIquPh/RcBjjFoIN3eP6KY2Lg93GgZ24656l7AYlj1+TmwoYQqkXLZ1+76M/s9LKFRA9sPjtpGuvamXaGl7Ac2ROd0KS0ysv+Frb8CcgL9NoKFePKCqZNkN/xyUVU0yChvIf3xvreTZnc4+nAJR8MY/b+7rZuPvPYJjQy7nQO7VIrr/uiJgmETwzTGDZfY1CSaI6Qnx85VXvbZ28RGZZY6YXConuO3yYlSVifUOYvmeFSs/GeSefr+xzZRRTyj6g0wtwVvYNq++vfWR+P9SPq4BN3ldJk3+h83GuMl6z1WP7GYEqvjGe/D5DDekLBFlx1R0hTxgOMRzyh7klX1D1ipOMazQM4bZ4+y7MDG7drtqrs+nPeNm8I3rGF/TKDaXeFUtjvn/fYyVj08b8YbUS9JvC8Dp4mNpHa16o/0m/iqcJeIxUg6FB3AyxhM9dkknB3xhmggqlhSvHE7kKnrhfdJJuerhE3YnH3nZWddDStJvOHE4aXGozMjJma7ybyhV9gUH+yVUzkOYOpPVEYpajyHNHOcoT9vy3R06rA5+/lcsCm8Mbt1yW2J9+9AexXIzXyXcxy//Wky87+IgaB4o0UnNQ6QHCRj+hw5gGMFjEdbZLz3TVyFQvnfyPei+sZ5n+P4MeO4O73DO6tTsr7id5JZOuJZyn4b5CMdo/QUA799/ocY4BAAnfLnOTsJKPtj5X3mKhfwK3n/r7r9Tdw9vr19s1JGnJ5QYNzBizl7HxFDxbm8hSErECMQMc1uhhI3apjBM+6J4vfp/yoCfRrlQQe/D+sYz0CMmxodK2VJg2As995gpQlt2rM6sZmzpXY5iXDnANL9mmOiDdBDoE8Dl2b14XBsTp8yV1uRZ9apd/cc5wMP0tEgMjZ+02LtFlHi+CCmJ1sFjMt/DkX3hxIs4HUgsLE0duAS2EhA1SPAEzZKMoK+Y+ysf7jZ6k6GFcSxgWGjo2xDZNyUiSUsFDj8BtX7nbBpGYuIGyRHws3qyPQJkJ9mMj3KMmbOHCecLUqQ1ErhXI1KcrnxVNtO2JDNJXLHIHJ90mG/9xl0VPvQn9mN6Cy76T4K7QMTAhuImNiIKS7inGabCzGU/rrNCaCHlWl0f4YRMwHwztlABPuYdv8O89lFwiaNVkuGnDeOMaNsxRKrm8lPZYPSNPo01DSidtwTaeYBD9STBwo2usoi9qHanALQ21hd7ZnLdp2r3NaB4IFRsqKhyKk/hP4A0qfpI9l6wW3i+/Xxr92NU5k3DqDb8vBdHZsW1JF8wxNX1rFj7ZclLEvuOOzuNgYo0DFe2G3+5iscMu/7YECrvuHc1TfYui1ULJmPCV+1FVP7M4CfLBlz3hDMZxBjoMp5w1cInTVwg/fNJwkbb2zOSub94Dbi/eCNBhzBGzp53wxZmsSYyfhr2Nk120H6C76iUkaZf1OpuN3ssqOqALgJ+m0EWueNrj0ehRh1eF4aPWQcz+GYoYvbmvFG3FTLNTaldDeXkg8C0JvhH7yhs5yM9S5t8gbbdslxQPYUfec4TrKyTwZvyFi1uMuQJ97dV3mjKboMfUapG/lja9bH1F7m/R3JMvc5540cZ5QSa81xGsJuVD2OD9tuNigcqxsL0I1/I66WGJnsBhk7vpkcfGh5V8Mo+6QcB8b33fMHtwddeT8w5L5z/GO9AflYktH1rTcZqzx3pMc1Uo6jKPmfDRiq21PpuyDnf8Vuls8yvyhh67vbalz9W92+XSljzNpgWouRcyyGkSzYCEt1Ep0Hx+KEQDZ2/okDEBQjKfRSKouCqawuRotASXzxeCLHWiLhcgR5FBm17I8pdaB90ZgFBMTq+8fR/H6ZFHgxl1SOFzbKFH/KJFN0kn+eO/ejdEQBee1oJ/XMR7QoEYmLKF3Qr2vRbopr/QAFI8x2QZcLHIsypcNmgCY2qVRGEZEx3sPlDxoLppxBTlranVix0ycb9D90jeZLOQMzSXe5XCdLKe5swGfZRrvzeyWsFmxInvTRg9Z5op00BOYGcEVmCzZ03fAhkpmx4p8oX4pjPSgqRvmWjrQ3Zj1iFLf0pujE7ddVWWcznUJCX7RxHuEyu47ly1wtcvKATCy8vCWSLUkXExt95gHHaKdAHgESRC90OadCOXWuGuYZO49GJ6wk/CuwIdzCHum0ZEf0Q3Ax7/+SzbnM7b6ClBq3H67sjMr56ktj0+Z6taaDN3zkm8uOWUYgP8PJ13vgG4tP1mOZIr1f6lUchA3zt3OZLyqjGFy2iZHJR/1SF7yx5bbYF3uGlzrBvA9BvNuQB1WWyDa/dik4od7iiGzWya+NNxYe54MDL/pLcSLzBvmzc0zhEpaxloK53LzKrBrpZS7H5H1gwxvIfOUkV/WHDadW7HTyhsdI5RyH+psDB2GZjAQTs4t22QU7UFWfPrQvPeU4KR75d8wD1WF8hk8mbrubDMeCqWYnkwBzCX//zXkfmM+XJR1Kxsbl+Bps3K2dq7xfHTi+KPFAfs6OO5FzDc8vZBWg9Dtk8uvZ8cnGJJvrd7ex//+Nb7uQ85ffdBChP2Apvq9qzqZhkP4wthsaMA0pbER1/q3E7McpssGp2uyP0gOdFqi7xrVEp7OJluuWtgZhFcug66Rj+Vr+Wwe0DxKFzQQ5NrAyIJbTMRH7jp3ML8rtOlEzToujcZTxrftS66N/gVGn/nSdd00hc+5vxcaXbk8ycR8cJ8G0Az+3j4AzXlSOmaC7HF2njXW3KceEsAVhSPoJbLgfJVlecOs6Shk/D0JUs9+QifSFsHUnX7Jdunq13QjNbFOdjpV8PKx/7XWUb7H+PEENG4/gOL+P46o+kf/FxnJxJ9w0/ITTEwaM2SjHpntbnZZ757Yly8C8sOEBrdgUWbP/6QyCYXPTViY32fUZu8pVrL8dNkk/8+CSp40+mv8dNrrs/j71w7Y0/4r7KOMU2JVn00hHO0rAxbEf2lzewvuTN5TsnWy8ZoGJU/e8wZzKskoHYLyvTQcndR2LkjhvkG/MdsjuiCsW3iBOSfy1SWjiXGu3vWDMWvaCTfHDyWcovOGCTN/ggbWKVZQpBa7cX2vzpY+X06IHl84YybxAdrfBKWNDv0uWtf7m+9FF4/1GMXJwrPNsnzJEHJ/8kPCI7zN8A5srJy46dP2dM3lOsYh5A/a5E6e8wRvBsaS/hCuQB04IZ9ExQHjc7RU/pD+lHCcw8GuTzyz6hWa7KfpcsCGZAO+vjoHng3nA27rGJscqaod4v9pcOXTlY7rGzHGov0kuTf427XUeu+Z/hE2xb86f4lgXUjArSe5qK5DyuUp5Dij/yxcT+y7aJw4ISav+6Ob2V+H937YPb9+slFFe+5ge7zJG/dpY2WgYwzLeMcnHjVYwR0caP4tAfxWLIaVcWwCF1Q2/2Fs9D7HVgKxe5eCyELuGPWsyV7VSuEsMyRWx/C13hWTUEAZ0e2xB18qmcD8HVk3GimGtzRX9gLGUapR6zKlpNEBP+9p/72p4Y44cWilOGgkD4UeAqY8eowOvA4OxDPPUHwDIiTGiY9U1HaOdWF2tYuMyyk5GwqjcFKn9z0eF2v0cPx52YW22xPTQcSXrS76JZ1ywYsMzb3xi+jtKfwBA+mmr0AnkaOjQmNETn03p8zmluIgM/WVsrF3Wn89SlqQ6mbwa5qYqVQVe+tDXIcAxa79cZ6qOGxCzWL66my+/HTMKQv6oueRlwcaCVxzg5ww+ENefrcqoomlVPV+aW+nuRejZn5DxYiYpVtJyvdZj2sCqO+bax/OeYjZL2Ex4ZZZ1Og8IxvNqphC39bTEe5FtMUpPGqxLo9xoLOGP1z7aMK5yPw9bV8RyyNJ1ltqYj8WKetRmXaWU9aYbPT5KVi83VcjrOTh1rIk9ZLy1sdT4MUZYhoqGfHOZcQ39LpzqMwGc/BQ5JX5yYMcFBm9I5g2BPTeckzxJHD8YP54laSi+Qdgq8rL99tucNRl6iWeL+jleBdJgmMh4ETvJMBNlx0GC90Mev67ZqMeB8JPK+7RJ8Ib5qep8buqQwaijpth8Q1K745oWE2DPnx30vKyXnXVr55gpZXDdRn+hRbHZgPs52jb9xbOCRxxqvxXOT7xhx/kKk8B8dgsPeAPzfFW70RfjfV9uvQk6xSI57PU7qvMVH47SFW+wjB4jyf6l9g2YOY7bQeto946xGrXYoxCAr5CqphYvmR2l/wCEnlN3ndaSZ/Y51h8rjnMl51rBeIDNuF3crvwZtuBLmf0Ql4/CH+V/gQPNbiUZgfnsFK8WqjpWklYAOCEvCFsPbIz7x4LPxPse8jh3IP29H5v8tadoLn67mxIsRs6YZXrCvJ6extslR0VwwZjJXbBRwmaXT38N7//VNpmA/Y1v36iU0R5ohMbNRO+Av5MBqvOBRWcZAF5eACCqHzzXEHPu2cLY3Nfqqn+RSjXF0+cTzYK72AO6g2RlLuPqBiuIkbfRrmB6JtJnqtCYG32h9YPd4GgD5OUcIyaw+Gfz2t4u/EF+HaRCuYaRjWQZSUQPl86RwmJsnE8gFnz7nFLnQCWSRgnHw7cmb2QhpjRvVzCDuTqJzBrxVZFIwUAwHtDXG3D8fI53TzmJwGqvu79Tzc8Xw2osNNHVFpxIMiJIyNtBkalyrZP7CGIWYM4eK5kN29EYHe6OatwAaMHGcFNNycCEXKLdpCeXmUD0JaTVbjpuL4qGMVuiHWg2W6UQdCPraTezg8o+ppqwmWYjySySjMnIppB6KNpnK/sU4wEImi2Eop5Iuhwyg6TLLRaUukezZqmg+UEE3+KPyf8swoolHmplg9I9udJIBjo9lxU2EzfKj7hK9/qTjf4YP5F4juX2uQdXqXGV80Cn2QpYYuWzviO5mFyl6vFZScbF8Zdt2vr623u2pgPbZp3tpuNm2HWXuwGXvEGJhAsqCl4jKmNbjoUI9ACOzxveILuLd3IRx17yvkrhjQ1mRRR3fREZ/W+C9nofM6OK8eyRneGVqx4jnfdn5uarWprdeQmW80ZwGw0wME6ElQC29LdhBTXet4PZwdvg1GY81+0mRhrJpGK0Qb5BWKSyQePfiU3V59Rf+9Ij3mDHGzL147w/HIV8A8xts62GuXLdNo4nfQ4OGu93O8csRx/96hi2rsZtEOJ9SuIzb2SfdP2J29glNglUuK33Azg+99Cf30/7oxlRxmt2k0o74XFgxsiBjVK6MwQJv2y5e0mu5s/uwxbhId6X8f65GJwNGZ3LMXl/wcbjBPkBY8MQOXbmqHGtJoCeOOLZcMSrkfzsceM9hBnPaflFDBvZ2Q3x2AabS66ynE+b6Y+5imwbtpiHt+H6HDnOhqu8Mc1fVWzSwJEf+JW8/1fb9O1D/ha2b1LKKICVHGCWC43UcBzgRMn/3JA8CUIciqqNRTdsk2ZcPi3dPp822qKQs8/yh1R+ZpdxuUhGpf3hm/RF/VQFWyL46Ft76eOh2FOjtMYy1lm2QWUIGRsKzoHjG/j4IdsfDK+7Al80XoSKE0FGUC//cZIiEoXLwElM6TJ0jw11L22enHXF8XmsHy52EyOnjlWetFzE5SQZaknEJQSPsKkHqkK+9PEs0Em2FFh5u5rtnK6Zuktk7eaSyiVqxse2TufKXa2mv4cNcTnEW9jsVORBkOULk35EkC6XKg5LrryMcNhRNxzI/9i2i1zc3Ht4efFHzuZV0V7P8QC423TXxEepf+yHgcU+ek1sHkhZ+QDm6+ewK3W+5NKV6vchi6YuVtF0g9YVVz0S+b3b4P3sE1HCDkxs/fOGN7JvTOw9CVpuNIoAkzd6tD+433ijlHhdc+r8l3l/bu/2Dbe7lz549sx+yXhEqSpfZyPjFMB3c6OLtGwXnCDereysd+MM5LhYeaM24qPyYNF04dTApkKz+4J4I8o6+9Sfx4IrGf1CDm3Nh7ft5lOzzMEbHce9Z95wObpzat/a0KXjJWwe6HADnvNGynHc9/wCFRu3aZmXZd4YP+/JQMvnva2Pf+2zPa/Ojx1YSYpU/6sdJIGuaOmSr5gQ63evCnlx/8Mot+dSaMNLKcdJfSZb3zXJnvg+rhrYHF/cZgyXylGJ99/OcSonVUHTI2lXOH6v286v3vvvO9q+USmjQu5nlFWM0jeBzwV7OZSMAYyY7RplHDSDZdP+cyrbysKERgg5cWUH6x14HV/0Q8dIFzDk6R2ih5VANBv3kliSWU7J75PomCOR3RrwVXF8tEUQox1pKptLXFSBF4WeOlYO0z7esWYvl4YC6i9tjvWbnSQyNnISAQDwaS5fPQzQUZIiyEva8nS8i/XaIbZ6WT8U+HxCxlJNQB8rPMkh0LthpXMBDghstTvXF+vPZfJFH6gUjllvM6Wu2kf5m2KUeZ33kZi0NkeImuulTVPwBE7GiNIclZ4zD6OUwrFRmrFZsYFiriCpOsjdRrZ6UxwvfejPajEGNmTrsJk/G4Wb+rNlzmGHnjpLvw7YzZnkwQGXkWUDoHe1MiSMVRBfT2gbI+9dYSWNZuuK8dJnsycHTdx2vayP7cZV5mVzRX+m2ixjN6w67IWnFnwOgS2/ZeU/grEW1mwrSsrE+s7YkFyDB1wIybbEsnCwvitwH6VSZ1O0z2rPQgy7Um3DTqxU0P0eGNgs/hc2RW34KDBkrrpXExElnvBnDVTHymF/HLpsTdB7m6WL2oYfAvN1EfBSNhlYG1a+wiYEUVLlM3ChU9KZc1tabv+jm/P+WErTsCRfsLJa99PQMfF85jaZC/qAfcOOX8p/J29AdaxYd1opnL/UHLDKBZPjcO22aXfAtW9UThWSpSaDSjuvNjDYFKf08ZLi4A3jUN+XHjFTbTGmBZvqG1HmW2Iky1M+66mQe4dgYIU/3wfve6ww3hAV9KNDbfVigc1sNxm0LUD3yhPXJ5cop5k/ZB+l/WELI0ZKH7Ptqifk1eSwGnL1El9b9RYI80i876+SmLzB3Gb6PSiuM2/U0tS7Qu9j5dtT+nilTBvxyLEaZYxm657ziJpfXfEG+aTvu4xkQ1yyFzfW3fRnnI6zj2egD6+OaLMEVMeqkrG66Ekl0pU3/CXxjs1OfxaC0+tzYLp+7WNG6oDlWtZ/5n01oiSfGTLpzPecFzz++iliMnVMf9SKDVK5Ku42e9dGjnN86cFNo+qi2Wx6m5wKt6kH2KSZv6m/kPshV42qDQCTq7rEuxvjuodz0/QxX+glclDK/3rNcdyOpMjiHaz++Nv2F9++yYwZFJD7CTlPSLeRE5tdEMUYcYoRYUzyxgjG7Pwpf6A6Ww/uACIpknGIlS004GkkqsdPr2gvd5PJRuLOcTMi/TSZRuLpKy41BU3xS4xMuLvGbCCJ4cbP8TntNIHcxjL+eD1xfLmjnSfwesbMmc+kxYPMNoIORZSh+UpHj7FZZawLazmGcshYthWK28/nwCX0Z6sY3RVNx6hq44Di+rKRnEhjWX9BDLJiQ4E1kUNrtmwy0L6cOF462muPG37pvnhE1peXvjROjKzdmBHdYQPDumCT9dcgN0F/HgHn+OmOdh9ytfsocWkn6c+vabdgW9tWwOtukh1h6jMJWWxMTX94tldDmP7avdssgdnRiYEZpv5kSkUjb4yNzMSn53ZdJtnhpRjB6SY4nwG8KtqXc9TQv86ZDJ8ZbtCpG7ZtH82s2LgcaijxTRnLSPpzn4D5n6ri+HwfJamvfdi6Ao1m0MLfKjfFvslQeYA9IWwu6y/JaVh52W67zxn1RjyQ9Zdtea7suXJk6FNInyTw1ta/ZlNAXo1nncvu7quZ9+eNy1u+gY1vFB0n3hhY9iegfT5xvJxor+fkjbPPGHDlG8z7qa3CG5J5Y2d3Y78BT4L+3AZv/Pw6MDK5xJPG+8r7EgM9yL5xyambGMl2h/m9iABPAr0pbj/fB++/Wqmec8ddgT4y5HHDYwlgPMM4feOSUwscvBOyuP6OIdP5JMBLHzMvd7vZdp2ZbOEblfdj9mrG7cSxuxgpKLrOesch0Gcr+/zsMXLaUusjx0kLT/ngTPAG9Tl4Y9UfDNapJ1zyhj5ZjPzpjvZ6RvxpNpuXbLtPbNzWE+8HNlKwkaw2lkH5B0SOcz4Bcu/D/+4duBvvu1x9tfWQwvQZtl7b3cpI2KLsCyBHG7wvitvnIVPO/1guw6bPnMa0srebBMya40SMFMRz3jNHHfo7vlgVxyb/E7u5bbv8b5fjVBl5eytH/d43/QX/vqPtm82Y4exmgYMt3UhihsJJSj0+i9XzelyU6ZQKeEnPjJkyz3XDmrlJkHX7fKK9WomX1cOIyHz4uE8SUPfiTemNU6zz0GxqyhUzRSA56Ng47rWj/XzaizPHCIloixdDh7N54qLesqUxYkHSZRQp2Ox0Yn/blCmCuw69tJ/vkNNe7NRhOqQRVJW4SXSGFIXNokzyXp9QmsElYcMyR6JhP9t++9xniZ4tJhNYybSj6Xz5OydyLYFNuTHGRmcXk0MTC8p93JRJvOVSgHbAl1BXsh/Xn6pjNXDkGUcuJ18CXdUfYwVPADBKWn6aCUwajeQo76OfAQymDqu9IgQOn00VFiwTsPojgPZFcXw5MQcXhjz8EnQmz5HguY35jQQV17jdcHJX7Sh3IiAIGe6K20/nCIKKeKdczAi2KdDwvBWbxFXhU5ZUFLO6tHWSH13Rfu5oL91mQTDt26c+/DUQ8MSEZNJxobXrBFRp17H6NcoYx/V08n6816oRb4y/zqIxKAGWu/BGI5zdJqgbYcaFN+TzOeyOeaO3Mfpt05iO+xg9vuZ9JKz3vJGw3fGGAvLS0X4ar7QYdtXiWS0uS93yhnqKSNhseONN32D/xeh/+7MNDtpCRqG3GN3nmXvX37hozCzowEbcZ20/ZhYY1w1PsLzSgfaljzJ24lixFyfPFTMY68kjHo4m344Lx/tUdw2zLzS6dIA7eP/257vNyEpcl23bTxRV05nmHMf7LzDemKVzU5nR5bTvth1fKYCOwRuvxhsOMj27NXkf8OfRU4winxrhyXmP2gHl+NxdPjFAk/G4xmeTyV8UrlrseZ4bOY6CYhGVanP+kOJ4ljH5UOBu/+6K46cxOD/jjsz8TzFywxQj5/WGPRWODQ4r+nM5tXwmrJqV97fP5+D93ucMrHFTxEi6kFQOrNhAS9OSf2e91W2Xe3wvW8X6b3j7hi+YPkeCJQKc7gRjZcSxCEebNyZOAqet1OYPWNq/qGaxTYD8dnoytjjs7JCfhxPenxS3+wnxFz922M2M/ROBtjZWKrKHVX0lPX/mIyzWp41jlF5mqRCPWgti9ZtwhFMhX85RE34bqw621z5W5up34Pk2grUAej/hqz75tH5MhVOfm1jsalNGn9rWig2Rp8cnNcJqP90BAc5jEEWUDMo5ZLq1UfIogLaG1gX91FjcEoYrrExBxWSWVcYtNn4Nl/HskM8ncD9xPin07JBTxsiXnpBn74pd7+mwRAYxVR92MqJN1p8nIB3AQSV6FRu2aVXg9YR8PsfLRmGr+h3NyP1mz/8K+t1KNmzFMF8RLLAxGUeVnxk5rBSh6s+wqkFn6q+Pm2oozqcx6xlBR04ojrhxkKbxAvNuNwBeUomTbNvbZVufXpCfIanBmWxdXjv6k45R9z5K8SJxsCWw9FTgsARMh0+NxQl0DNYLgCZeITfCtVJJUuUBxZosG4nIa4d8OcdLdFsf71g7zLGsxG1iMxcjUdcfyB89gekTg1QmVW296G/auo6BGtXBVX005mYrtsqiL4cdLyc/NbCRhlEmJRqcFDzg+mQeK9gsSdYuaL+1KYbfRtInQ682MOAP4Y+yqY606FKzpAjIvOH6N3NhbNk3Yjs75PNInu9Piqezj1mD4xi8EbKO87UN3hgv3LXyIC5ZesQbknlji53zxssJfL5DD8UJxfHa7QXhzhteFnhGiW/MBBykPvcNnTzhvnEal03fwGp3/tF19fMdEMV5A27nCDLi+sJh+mpDj60Zt+lMjonbgidOk8MHFuwfl3bBRI/7LlNp8MbLabzRx031YQEljhWor2xpA3VRosW+oVbS3TFKql3vi28g88ZsxhYKGvFo8IY9z3vYaqNWqt9E0K2kXIU4tdp2s5vEyhvqShrn9gveCAzOwfvQjvNJ8dS74SrwEnoA0HMMesfLyc+ZY4msvBFxIDh1HBg2SNiEjJTj4OWEvHT0W4dKR7vLLBkWjJJYBfTsMyYCI/+zQXztErqY+d/EZuEBxqVg5TFy6A+4N8XzXQfv20opgwcw8z9YjOwaN2xh2554Lb6u1jTZ2KMcxyYO5BxxW+35a0GDSocvTqQq49EHmkzwgdIl/2NbBkh/vkO/F1sfMuG73qTK+ze6fZsbs35C//hn4IfnYRQ3u/l4us0kFUakvVmds9XGe3Kt8xkcqwYDkHhiJpQKeibM7K4J9AlQOSF//gz84WfocQCfnoHnp0E0hwC3YybzsOCvQiRPF+86ShEhM3lfRuCkyIg5onEM4utPHfp6R/unfxgN3m7Ap6c5Iq4NImPEcpyv40bJyIqfP+oe+GmYj7FRB4V5JIs7EtBPQNcT7Y8/QX4yfX16jkO6KtrzgW7lET2WK/bgqxBpiFkDBfTwc128B9i0KePYH6Vd/VDgyyvaH38CjgN4vkGebva8SkeTNuJI17jeeE7P+sod7rBlsmma/4YZdAirugkAtecvRincCfnjzyOpuzXop2fgPpLpfjSbJZZ4zmcEQsdm1od3asGxSvpTzKXRnVdJnwKMxOCTjBuNn15GsnUcw86b1c4rILcO1QPS7eWvza5gDjawaZP8b5J1sgPFkzPXpx97iJWUKfTeIT99GTfVtwOCWyydjpvVzfvgDdSea/Ggr4C0aUesT536BDBnv6p9i/82Ekx9Hl+0n18gdzFuOqBHGwlMjJZKJODjhsza6W7bNvejOfbOhk3GVrAhW1cMrPQHQf9plHzKlzvQ2hhs8LtRU9cJexYunmWYdpOCb4dxFeZsBz+7UPVH0NZZl3dv/YT+6c+DN/oT8ATgbJBPN7uptDa6geC8gZZ946A+Ma+Tb8D7dRDaxhv9hvFM1M+vwD/9I/Q2fEGeb1D5NAZRnhoULUrt1BTDM0MIX5i+seUNl/OKN442eP9Z0fuJ9s/+FLyBT89m74p+a2Pm3XGKG//RToPiPApvCPGGZt6orwSIGOnm3QB9FnQYl/3pPnzh2Xl/2HwDxrOOY2wluHzqz5+tXbFx3qg5LIk/c0jTp94wEtXXO+SPP40E+ulmfOZE00b/nLvg+pHkg1vfIN6YvoEcI1nm1qDHOUrYtaP96WfIHcDRoJ+e7BkgoGsDniIxGD5o+QTUYtRNQkbmjRoHlHgjsCk2ps3KKw9F+/wC+fl1yPr8NGKFve6mAThvw646vbw8+u45jgkiN5m5/AUXODYJr+D9Yet6KtqfPo9ZoNsBeb4Nm7/rGGwQGQMN8BxHxuB4w0X+x5wqWU9VRo6RgjFQ9YOg/1FHKfGLRk46nlUcK0mOG2SZWFkpcbwv0+ONx6IFmzXHmfGHbEyn/voTgNcT7fPrsKmnY5j50QAZK1meh+V/3lfTXwzOOFFGjjNF88GjGn8YKsSxq66/q21HIn+DW3v7kLc3EflPi8j/VUT+HRH5r795gmLMmJ3d6mMHA3D9tV035cG5BGgSf2gjKYWcg75f9PZyh/zhZ+D+CpwncN6HHL3bDY6GwULdn+dFQ0aZDewSsBHL5+f4nXaifO0E5J/9BH15hd5P6HlGSaV0l4nK3XQQl0/tx28ViyzSAshDm1YdyfPPL8DrfWBl71nLq3SxTFl/GiU5pSXCLre5fqfI5CD3jvbHL8BpMp3nZDa4XYl/nDZDuhWQzRV4/LfLcq6d6ami/eGL4TRKB8ftukbbXpLHLwQepRzWwQ0W8dUFOVZs6iXk8x3y5dVk6jbdMHUSOCRbZ/8rpVLQjA3ri67DcnAgAgC5K44/vUyZvEykI2xLTCj3+yyDFGzmr0EPRbR57uwvx3VAIT+9jgVvmAcSNpOvVl6YjWpcmHgAWUZsZcgcoRDIax/PvTlOZFPez8RN6vsTmp19B67MvbrB5kLOd2+qtpz45NjpD7PDwRvkk/PnfcYQvS76T59Z5tcT7Q8/Ge/fxz9Flol4Y8hE2KLEpsUuLXncEEfiRP62A+2ffYZ+eYHe79C7lVTRKmzCeiK7m1JtbHCDF5B948ruoAB+fkX7+QW4G8d2n3Gn/u14I/SZfeOKUzeUNz8Lc5uOZz//8GXKdPodNHMssg+W3xIcFRs/Zfd9Ec77I6qQP78AL5ZLxHNS7jgaduGzxr5fjXW1mh0o89hL3hdAXs4xc+arTtszZSAdJG7TwhFWfsqelXIctqMiOJ+XfurA8ecvZkvO/eN75/5pN/Na8zqU3+3k4K91OWS/3xXt59fxrsXuz0sqyOyC9wMrk1EkCzM5VYhTc162xB8+t+Q4x8+ncZPpMClQw78UzPukSC4x43YyVSyblB++9/uyfyjbL74xE5EDwP8AwH8GwL8M4L8gIv/yo3PGyyrv0C+WkJ1zyWz1xF2HDWqMjMxkzevVwxDrjYb4L4ha7WR1gnFT+NML8PMXnDjRX16hr6/Al1e74dB4kDiMXxTkk9EXVX93RmpizSGEAhMTqUeJrqMU7g8/o0uHvppMr6/Q1xeoJQ1jJrGDSyP95kgMFZdRmFVMBh/xvcJm+Xx2tD+OwHw/X6H3V+jrHeo3aB5ouuvEsO8TmyQCXduJJFhiF6zzne64xtmBz3fgpy/ocqK/jhtYfT3HAhK2LPwYTuuolxlm4km90ahjw9GKZb7a/KJdR9ngH7+MshhP+O4n8HIfRO866lrsiNtRkpGwSTJd6K9uZlftp1fIeaKjQ88RpMcCLhr6GzINAf29KKw/98eBFRI2j0TwnCjh1dUShleorYoKX3jh9GfOuvHAxM3Pd3+bSLkgpLOqvwslhj+qDlv/830kgt3tqAP3Hr7u1+WBG9WJDetkVERPTctUaLRbA/EinCra5zvayx39wCjb7bZSamAzo+vERmMwRKAzL+X+uhxkjUvyQBAHVz1U+H4bLzd/hb7cZ+LaB+bB+yBOhd1qEO/HtQpkk1OnwqX4hgLjwfnPr5A/fUbHHf3lBfpCvG83QeK84dhhcv9oxrGdZpecmD9W/UuR2XnjDz9D5Q7cjffvryNGuo4VBSubGY1L6tQ/cyowecNwrTpM6vSds6P9+Qvk5RWnnuivNlAY+vNX3ihicEcctjn8FuX+Dl7ChnRY4uXWN84+eONPX9DbqCzR+wm938dAmN/EWoysp4dNJW6b2CSs/Jwr33ROMhs+/vg6Ot9t0NIW7lJ7VsiPTbxPnMrYMzZLHLAvrlzQuU66Qn4ag3Gn9IHRaQvd+IAhDVKC2mE4GKvK+2uOU/aps2Hrr4rjz69jdtUGU0eu5f5nvH/ywEbJcRibnd04CRYeWGSMHEfRfjqNJ/scKLRnsjU4NFgqyoHDjgo2fLMm4Yu63PhCMq7xdR9lu4eV1ms33receRqRhH8537j+ZLloUncmd8K1wERt4bftr7D9GjNm/zEA/46q/t9U9QXA/xjAv/rwDO0WeJzAzAmCLJBnE3hGxjZ+v8RM/M1pugcmP4DOs30VoN8EvWEkq19egJcXS+7n6JLaCNNIJhE3IFNGpBFMUEDyd7TlvlO8tH9psEWA/qmNSp7X15HI2Gp1471mjpVSEqHRJ5A8UToSTAvwA8ZX2PC1vBvnJ1+a+hyJzOvrvOmg962NFYOy/lxfvCBJzLKxCBtstjLCuOgJ0NuoO4fdwKJbkD6d4NU+E9aOlyemnS7KKqszV45N0Wf8lXHK+UMbS0Tfzzm7aMk0dGIVgYY+J3vQjI3rL++v2KTgoIBC0Z/MpnTcZOBuSUy3YMgzsraCGCihCH+6kC+N/FW96bStSfajNKQ/ySjZcC64d0uQO+LdNjF7hniXUswY8EgJ8UCy9SJjxWrKPJ4F6c8yb8xsZTV0mt2nFcMiArIcPV93j40uvxM0U0bTnz4J+iHo6DGYBU8gol2XbV43bmb69EnWXzRZZajY+DWLjB/aVI33bVCnd0DPuQKiy9iZvxSJx4lTeMAny+n+nZv3hE4PQX8S9KbQlzHDMXh/znSoxyO7bsjGftBn+zxrWeMA65cHrkNmAToU56djLLd+t8E4T+5PipHunx2xGlsaDGedF96fsqH4Ys7PJm8A57MYb5xjJuiFeL9rXsGyk77c/pz3d76BK99YfWfKOuTpT1Y2fvdYZHHbZfGZBeYJ532UmW57FQ1jlQYnLngj9CmDL85PbYwFnufgV78RolnYyf+e17CMBZttjmNf9annnU96OWt/lpHniM58q/cYUI384ZzyBcch233KD7yhnttN2PA+++OhkU/oaTc/p3F/5X3n+zPbR+SECRvNPGY/VB5g7vPjVYD+CVCxYZjTFwEZN9rxnlRuW71iAcm2QycX2GSuKngCOcexlafHQK9hxDeOPOgR2Ng/33fw2ZcSp1LbG2z42l/F+3/FjXPfj/77nrZf48bsXwDw/6D9/6d9lzYR+ddE5J+IyD951S/DGFubzzWojhpioRI9mQ+oApqltaGRPPJA+zKGIQLwOmwGjGdvjjZqivk6BxXZNowaaGo3HpolOaifJMP8TefJebCSuhcPjD4daJ/vUe6A3kftdWCjkINW3/H662hz/uN2oy3H7gobyYbaRAKD9tKpfw3S2kzcub9+nZARWxmv9Vd+Z5zMNiAy6q1/4of2x0O7wv1rLZfTXOgIfll+l1r1kEXmvCOGVXvtY2l1l7lJbrdJwiaWyXWsat83MkegXLCpUA2ZVGS8Vy2J3KLdRcZi68L+aNhULK6xKTJaW3pro3yEDzjGogLwZy2oJHbYOmNTZZYVGyZewoZljp9FxvMOXcfy0QLjJvM/cyqV7FNCtr7Hhv1eCi/YIUV/81Q7/hAcnzvS7FajkjrzsUDyApuQ2Z/HUfq9YqN5f+oP79oW3gfsvYbzmddkd4VHwL5B/LWzO+U+8rX8D3GsPh1j5VQA6onL4Q+R2BnB+x69CR9ezAKm+8Qba2zKwEwRB28AcmtjZca44TOucmy6Lryx8kS+7pu84b5xyRsH9BC0L3fqjxjvS7putOu8IdTmO3ijxsSUKzFvNIE+H2M2iH6X223ylbqMs8SfsdCWuS364Ac0wmYn085Hb2NhlHYy77eMeWuBzQxjHCNXfe54JMmw4Y3Qn1iO8/k+OSL0B4zFpiTs1eXI2JBPYfojy5jBKPv8zNJhMt3aeF7WZ7a62nu1xgVVATkYG00yejtskyi4xs5OJsmfRcTyPluSPn4bPDA5tnAVpowkAmHDnDrPnTZnx27j+NBLvzW0nyluqw79WezO5FiwUUCrYO6ThfeT3Jqv9Tezec3z1/z7jrZf5Rmz92yq+o9V9V9R1X/lST7ZA7GkfXKqMFoj1IHbBG5+R/ZT73h9tKT8FIFDMcpHPt/jpcZqwVVcT4WQYh2LaDeeHBqyS67wV2rT3fMi9zJnGFlQ++l1PsQMQG7jrakKjWQrtWHJhFoLaSWpGlBo5wqbSloqgLyc9pJpO8Nudny0cDyrLxMbQRrIqTJrIixGaiOjlJ8Fg9BPtVI4mTjQdbVJaid0GpeauEWziowtS7ULQvyblTe1z3fqvMSNPtv2bENBT6ClxWICG3W9zv1H2KybjlXDXnlIr2WfEz4ayW4Yh2z/bHNvYLNgBaArjp/u82ZCYL6Y/Z7bTdiEjEo4TG3WPlWK4O/Fz1WFfD7naDZg+pttMTe54FN/ww/i2sz9WfoFm60eMGxd7h3yuU/G3vBAsmPGxtrh6w95lqc9EzclbAonvHdbeL95MmFGYKvKZt4nP5GCbU2mNcvJJXQ7bH12oP30MmxNEb4Q+Ui56arxZ8sb5V+y4UeYMe//fJ92CECOI8dEW/xpXG/0eMYkf0q04L/hDe9TxWbdRrmxfOnzqzZvsirHZryzZe19I2O0jYl1vytwAu3PLxBfkdAS2NlfWXljy/sTy+obSe4dNLV3qpCfX8cqjH7C0RZ7dv1RQRztEzamt8m1Gyn4q02cd95oP5/TnkuedWUHKY7Tdalq7l3YLMfYjO/xk73Y3ft8NPhA3BIji/58P187W1zKPUiWCU79caykOR9dwRwo9+s57wc2Kzft+Jg1m7mKZNrYuuc4x+dz8CRgEwXZthNvits/Znll7bvOPwuH1Tj+lbz/2/bLtl/jxuz/BeBfpP1/v313vUmz0chRIz/Ifa7CpTaC6vtxI2WGFoNxnSwMdi4blgc4skBPMsYoqUBuB/Tvf4B+eoI8PQHSxpKoljRAAV/1TFwOe/hSzHm8RM/j35jipn3/o4hZME4sYlOMskVp0E839N89A8+3GLkVxsZLFAMbtV2Jaff4DbPd2VbBRuex6NNB/bmGMcp14Py757GK2XGY/myxDU+0AisfVZoPpCZsEitM9mCSCZ1tooCavHI06O+eoM834HaDNFo3XgQNilhUovQ9wrSWNIJl7MhbRzmW5IXaMsxDf+ePtsqUJVRjZUgD1staZKyKNesGKNukjHjiRZHiApsakeIZj6Ph/vtnW/2z2W89sPL+zQ6ZLJL1Ge36qfAR/X0ACL0yVlbOo0dD//GG/txidDnUU7Fhu6AgIbVkxHkgxGXd579u8w6tL1HdnxrOH9t8h5UD6Tf/6nbDkXtcrDE2mrkqJKHZVC4b3vmjV+TiJjh/9wRtbfyLdjt8qf7gSwCxOIv7p2KuThoyuoBTpoDfcF5u/qu9vXcTAW5jVkq78ZzxhgR3u70zb8wGmVO3OgRxXfENESCeCztu6L9/Rv/0DHm6jeXyfVGExGW80BLJgIEvY5t5Y/rt8I3qlPx38Ia2Bv10oP/+E/A0VkyNGOgzzHZSLLdu5w8fnLwReXj4xrRTFVK3Y8MyIQ4d398a+j/6Afp0y/qDRkPp2VO7VqDl2HieG75hqfmsGF2wYd+Iv70Dx4H+4xP6823MsLc2fSp4X8vF5ufor3ObTh8VJc6s2NS/DuuptuLhgfP3tiqw688Xa/C+2NK6o90ZByJuY3JqlMsW/Tmsi09Sl7tn/reG8/dPY1VPW8kv7gp8NqvyfuQ4ExvlPKzkOIkSih0Jx1AF9ARUBP2HA/15xKLxugC7is8K93mx8CHm/dL3muMsPMBQlriu1j89nPfdiSRe25Q4lGM+8z7xxPi5cqrtu39W/XU+ddiwSkP/YawKPHjf9TfqFRth4zzgL7VfsGC53B+5zNFlSHk0kml8t1v1gY/++462X+PG7H8H4F8Skf+giDwD+M8D+J8/OkFEID98An54hvzwDLkdY8nbY/wNLj4kSnW0PjGpgI9yuv/kaX7J+yjnHgfkxyf0f/QjbnrD8cOPEFsqX354HkvUi8xSRp9Ga1OmaMdlhEZpwpSRbJxkmueTXE0gPzxB/9EPkOMJx9MnyA8/DJk+jZs0aeOZHLlZOYKNjsBm+rjdAvqyn77hwGEE7Emd3A7gd8/Q333CTZ7RfvwB8vw8lyg+7ObjGMQfJT2OlQz9ZWy0YIOMjUzsQj6qLBrLNt/Q/+4HtH7geBoJ1pDJbohkBACXLxJXk6najcYuMxrJUPVZ9ScN8nxA/+4ZuB042vNYWvpmMvny5oKBS9i27Sf7paSuYrPTH2MjcYlxnaNBf3yC/njD7TwgT5/GayBux5DNR3YFo9TEZwys3MdtO+S2ZlK5FmMTuCYYM9scI4npf/cE6YJ2PAFPT2OW4PmI0l0VGWW70Zam67AcEsDNhiUALNhQoEmY3hr0x5HsNb1Bbk9h18EJgsEJNLue9AnN1+1Vf0XGRY6C32EDNT/e0O4Ydm58Of75Oue6ljI6bp5Ds60LlZgxn5IMC0f8gk2kQZ4/Ac/Pg89ullDfjkjOAES5WvAG2eGeNxiyjK3LLcDQw9GAH57Q/7kfcegNtx9/gHz6ZLz/w+APa3/4RZvdbtyQEJaF27hNwjYgLL6BZq8M+PtPwNMzjtunKdOn57GM+DGeqZLDy8cFUQLN7dZy/6X8a/qsEHZXvNF/NN7vN7QfjPefn8Yy/k/H9AdP+N3mSH/+vs24k2gVm2tOlbKPQ4BPT+h//wmix4iRn4xjP92sHBUjRh5e7mVtE+97uV4q46y8wTe/G97gg+XpgP7uGfp8w4Hnob/bMTB6OmIgGofxGYi7KA4kbHxwlXS10x+Dxd/J0YBPN/TfP+G4N7SnZ+Cwm8abxUhv4KCG2uT5uDtvj3jjDf2xTTaBPDf0v3sGVNCa5RGOld/4Q4Ab2REytyUeYJ+MdgsPLP5I8gkG7/9wQ/904OjO+8d8jZPZuT9+M3WQed95YNoNc+rkjCv9pTjeGvB8oP/+BrkD7bCB52Nyph+asQGVj1bDJT1Eu4IEl6Q/v5j3/6rbP5Abs1/8HjNVvYvIvw7gf4nxRqX/kar+nx6eJDII/naYobfxrid7EaMasXpVrY+ZKBuOPyvgo4j1xk02//hnG6k6XoF2e4I8YSbQh42YNBmjYGbk8WodjISxu6wuo1ApH2BOxiUmgxHm8flfzFLdFQcOyNPzSFyengKrcaMh6Fbo3R0D83LHjssul3foVEeLKIFJDFLu707FcZdBWApL7D0Qmu7aIHUF0FvBxjCL0WgfaXXdEbvvsCH4xqE2Gtq+6CCrp6f53hGvY28yyhy9rYZZ4876ozanjq0koCY6LkoiP/99CCivHa03iCfyT+MmKEpsjhYlQBqyuFyYQUAyNpdlURExy/dMNqeivcISYR16ux12I2ZYtRblRrUEz/GaOrOkyxunpHWrvzIE5KvctRdFQ4sgqE/DnjyIaRN0G63sbtsgX0HVoduW+dqVDGq6TjZmM6d3HTdAzV60dxtYha4cr+Ae0x9s1NcHdMDtesnqhf52tm6/ic22the1gRjjzGOO7M7yLf/sl+FSm2rrxE0FC8Y4+vCAT9+1iUCen+agQGvxXJfLtuONFAcSb8xLR3zdYUufxWZC2ouiHU+Qp26DPE/AQRx1GNcKpr4x/q28IRe8MbENOXWXB1hUeVUcvaE9PY3E8vkJuN2C9ydvePsCRZulS6R/Xhki8UaNA1f6dP/Swfs4bsBTH/J4Uiht8OvtiHaq/sIeIanMKvodJYgPuG2ByvTXDruRbvFOxngGrY2FvYJHk58MbNgnmAOCWHwrvFExG/0CxchjXNRiZHBF5X3iNuZ9OO/vsHlLf4k3BlbHi6K1NrIzuwFKMZLsZ/bJ4rhkfWbeUMrDsN3cL6oO2+uJQ83/aXAmYt8xY+LMcajf1O4Omyt5FlFqjHwB0I6Blc16Bkacc7rPy7Dxbn6fYmSzGOl9gq4Y7/TnvmeT0u2LmhwanJl4P8qJTY/H5Cq2/Yld0Ui1KcImcl//7teYyvkLbt/bIh5fu/0qL5hW1X8LwL/17hOaAD98GkZwNOhTs5flWWrkzy/5aI0nOh1j2dDK1iVAQxClFRrZG5KBQTFeHvv0hPs/9zvcvnwZhOrk6aMSbcjRQcTlCXhcj240dOxH0qZjVC4M2ssWZJJCyHQqcFcIDvR/9AP6HzqO3iwpHEkp7CWjTkrijtfHKndB7hxAFPMLyTImbIgc/MZDbaUtOQX44Rn3f/Qj2p/OuOkIIrCRyg6UGxYKdIqZuIZcmPrUIhNjw/1xyF8B3A70f/QJ+pNC2g168yRGbKaz2XW5PMHMhrCo+gsZO4BD4+YOSoGAScDsVe7jpkx/fEL//Yl2h820IG6qZ3I5bWGWqJT+y8Qm/6bTtjtGIGGs/MZDh/7aCejTDfe/f8bRz7gx89p59Vlh74sZd5bxAhuvf8cFNo4rB9ETY9UrNJy/f4Z+stK22wF4wnIgyonHyDsPJ1NQY2zIWETMfo+pX8Ymsg0/r9uzXKdAf7zh/N0d8gWWeAogOgdsoBtbtkSFuaqMVApxk8tYK7KrP6qOpB3twP33T7h9PmMWLxLxKLWxk2MEtfSdeWCx7WEMk6smNvy8Qhb2A1vwviUVN4Faqa/f4IwXrZPczhtSsV7xCj8ibNV8I1StQLvLKGX8539E/0nQjiNe1jpegOszHM771JA85v2dbyRhd7zRdQzGaYP+3Secv7/jOGWUZlvy5UmiJ18+m929v8n+B28MOFbf0KT/ic3kHOcNoJ0C/fSE+z//A27/vxNys8QQGC97Po7oHr+Y1ov7w75lj02CgmKi73fm/eANoMmB/vefoP+0Q1qDHsfgu2Yc29rwwZv7hiuJYsDyEM4j38DkDdsPuzhtNeIO6O+fcf+7O54+AxIzijJnYRdOpRzHsEkDJmw2hfdrddoaIxXyCuhxw+vff8Lt8+scZPK+eLVLiTfO0xKDTxtsXH9W4b3DRjk2iWF1V7Ru5ZU/dDTMm/suiMHChFXz6+abm7guAZA4tuZDdfP+2MAlPt1w//0T2p+7zXQa1zfk/M/16hphrvI4YNggYTPlv9If52HyOto6f3eD/kntptF4HzKrWyJ/8OoJ+ldtm/x8xk/MnNUPd8xBx38N7/81t+9dvnduv8qN2Ye3ZjMbImOE/GhjtLJJOIOX6yknY37jgRJwNk4qOyPz3AUYo1e/u6HbKLT84CNuGEnr0xFJ2JBxOEGdGRr9mQ4rMXph7R6gETfx/+/t5ybADzecv1f0P90ht6c0gpvKbG42y+gjSTbtH227TAxMYEOB2zHj2NUmThAMIv890H8GDjmATzRi83TEc1QjqWnz5sNJ1j6LkUiMci0zTnKNTdHz1B8g//QOPD/PGy8PPj4b5DNDGKSZ9Cckq9sHY9dILscGRGoE7XhG5Ib73wG3n88xykwjuGCsrFTKR8AlZvKI2OP6suqEE8TdjKjEYeMZg9/dcHxWNLFSQcfGZbLgoVHK6H2cMi22HQlPbrrqT+w/yR8PGc/h/R7QP57A8TRlMjtyPeEm+aaMyjRG/x/YuicPWs9l4Uh/zwf674D+c4fIDXgiv3c7Epnc0KZtpyTcccS0s5nQZ94SKZixPwoAfw7vBRA04BmI8uqnFjM9Kp6IGscJomRljsxOucRtD27bpE+Wr+gvrvfRTYj3n49ICtUqJnCb3MrltWK8rzDer/pOvpGxrfrWQybv/9NXtE9P8GdadMcbxqudfCN0RYmaiGx5I9mdg3fBG+fvgduf76OC4xi49CZW6mVY3WTyfgPEbjwiqeKbI9N/5k72jY3dje4M3jga+u9u0M8dBw7gE83QhkygAcPJpV5y7+WWaYCiYSaudK+0lUWmrYnr74cb7r8Hbn88gaenOVhyDH+I1Z6fDDO7hlq53vANofI9a4jbbRQjOX8A3bT4Z5vp778D+p8VrT0BvvR65A8UI5n3mVOD96eczhs+E5P0t/NJsi01/fUXRdMGfKJZxSfLH5rx/k0sv2KumDdGC2/wzEn1R6YRup5gtKM/HEN/fzohhz8yYrYdeRcG78eAPaZPwQZv+AaNlQIgHvGo2CRfmF3D7UD/O0A/Kw404HlWTSX9CXGUN+s2Zthsc0OSN2Gz0Z//roeg/3jgfAE+/bNzDPA2sfyZ+NJtO+UMuZ98YfapCQLyVveB+bzyb9tffPs2N2YgYnRDFkSyESMKQqTq30PCgONOHlhW4Ot+THFGvhFRQYxUomkkWjF6al47/8JGBUlGmzYOwgdC5imjbL/X0of4q8BxNzysb6lsqSElzwkbTNwcqyjZ8m2DBe8nWYig5dVWBZGiP+8XlQmqBQZeqbHjoh3ZYNPyPusskUbX8R6a5kke5iigYJRDtNlOJa/azizboBt/lnkj09Sbxl/xskGdicssP0BKCqbOZG3HZaQuX5FoDT58DWDYuqgMW3ds3Gd8VFeqjLLBBhZMdR7L7QIzQWTdV/0JIKfb+iwP4aTcXzHkGGvxxzHbItP3Gi38gWseqFvo0/TXXmbf3NYnL2FihRWb6n8rV+X9rYykN9+XV0XrUyc9RnG9HT/QTmyS+pVW0EOxD76h2emzYvU1m4BKxF3u8lmMN2Ri2k2QLW+Y/gPbinXpa2xeBcC84UmrjDIqjc+g2XYh3tjpXx9i6Tgk3oBGv9rrkENVVt7gG5pob9q/37wmDmXZKA68aXcs7+tYXMQT47jxcd9okmwplfl6+wLUUsZdvKky1ljk/ZFzlBt7+Zv6gKr7BvVja98PsGF72eYPLC/4Cx2vk7H2UoVE4g06P+IllcCSzLxaY7rp3shY+d6PlVegqftd5Q2XT6b9VH+sOhHqe9UnpgyJUwtW0oHjVaYduf/Z8Z3PMztL8TPsy7j/2PA+pgw7GZfcQm314uiXRFyaPiXW5lUcd5+c132TB6oc/B0wqqjuUy/db1A5PtX8j7E7iv6aJBmvsInPG/19t9vfhJBvb9/mxkwAPB/hbGMUycv1ECP3YTApuTaiSgQG+B1NKl3k9ojfVIDWFfIy3gdx/+HA7WcdZTUuk8tlQTvKJIw8ncztitYu1V7bfjTOCZHJtCQNVtIid8H54w16zNUQASSZujlfjN7IDHwJmypjm7KGTAUbxk2BWXv93HB+amiqtuoUY0XYOWEBA5OiPyVslOUg/fmKYVm/JFof5V0NgvPHA/qnnkYig8gPurknYo+bbJdxi40JQEtTJ5uqm1pJy+sYFey3jtYV/bBZ4KONctNjznR2ESoncqwKNlyWGzN9hKuu8iQb6wp56ZBDcH4SHK9AvzUb+bSEgG1dnLxJXxWbeMHVSNqY3IX1B7ZB2kx/6Bj6u9nKV84D4uWMdKPPI5Umh85WBzbqvyN8apTSSE6uOPj4vr3AV15txbCn8c4wpRnh+dyiYdNIf1FmQ/pzbISxIH1ubLtu0hXtVSFHw/1Tw+0Lxuiyc5Fz04EpF/sfZJZuothNtphItuir6Y/Mt1+zCewZQoGXFmdsEbMagPH+4Z+vfMP6xL6Bt3ij49AxC6l/0swbzPuRLPs+8YbxQ+L9yhvIvFETVcfEeb+9YsyMPnW0U0eZoGNzQ+YNGtBcsAFhwyVorH/BWgLNeoLJ9UUhx4HzueF44RhpWNkiVJHAxgydmj+TZZFvJGyEsKlx2//657MP3tAxm6CHLSVuvBE3jv6cDfFG9lHCpmFyrMvYJ56LvugrEdjLyIeP6o8H+tN4r6avzKj2nLpShYs/75x4f+EN3eY4QH4UYrsJ84bg/kPD7TNxGfH84I25KiHfWO14Q7n8khXmuNpX0mgwlvn4rpATY/XDmw2s3Cbvj3zQchz77jL/AxKXTTtiGQO2qUPCaeQ4He1FoU8N96eGm6LERJnVCIFdjdvOk/t8r/J+zXHqoy2e4xwQnD806J+nTH3hfc0xkn2qY8bvplDPaR5gE7PESx++380XrPuHsH2TG7PhfAcZu1Bg9BFCDEPnQO0jhmR0EZsBcLnQpP6SiPm1jjaS588WmJ9v1K7E82X+0G4aGWkenGEByEd66HwmFC4nIZkFwynd3rUJ9FOD/qjQn4dM3q8gdne8hihBc5lcRi7XQ/RdosHRvpguEFjH5nI6XLeG/iOgX/pYfaq7TKY/f2g3bqob4UQdbBOrQRLyWH+MjUzRnID6D2Oa/3Y7R2lNkJKMqX6Zcs7ZPCKv6CRh0xgbiX4l+8nxJ8mvT0N//fMBfeqz5MKw8tLcgU0jHWVsZvLn+plgjLYLqbpdpWPslGOsNNg/A/p0g37SiUUsoYy4yc72OrESt2khu5EpF+uP7SjJ4+ceAn1u0E+A3nTqDwhbB/FA2LbburUrouByZ7cPUgmU5aqcQWag0oAb0H8H6GcdC7YAxAMyZ3vcr30Gg2TyBD5jo7OsEvm3BRvk7/vR0H8Azp8VT08N+iTTrw6UUlS3FfIFtjF/BkERM54geXf6i/hNsn3NpiJzERXXb4yYk29I5v3KG4tvUB+r/qtdaBurr51f7rg9yYY3jimTv1bCEzEvSxcsvJ85tfAKJo5bu2sySuF+UOhPbcgQzwsPrNTlcH51OZqmcq+pfywyiMlW7W1ndw0YyfHvRowM3ghsZkzszvNUPaGe0AKQNp7xTZ1mGXFhd243YT8YM4ifAP0E9FtPvOFlZxF3D2Te5xVnQTJEu6Ss4s/MZSzj+NyAJ4wbxZ+ZNyRynBjUaZ7j2Lls2yIb3ih2s+GNkJEOGbYweGPkOAf0WQgbId6QGGhNca7mD64MepZdZeo05KF46X4XumwyXinwA9B/atDbLTg65TjC+iuc2hCDD6kcl3QS/lj0V+3Mf9JbQ/9R0H/WgYs5RuQ4HBcpHtXYvNqNlTlf6a/aFH2vbQzwnp+B262RHI4NcYLnOJFHs/6M9+3CnuNE+xfYsFx1rO673X5pkPpOtm9WypinsMkQzZjzFDsZEG1sJIs+mGC0GBSPUgjGQ7s8Td4kJX/ebpQiYCy9zisWcXKTXmNBfx8ZdRCa/W0+dc3ttllvPrEiwmLPJlwm4U95QxYl7Hb4MkmrXTBhU2S0wN9Zpnfor/7G+ktykMz+r3FJhJMp240nqkkGmlmj32xJhxWbIrBjyCO+PuqpIminPRAc3xs2Qtiw/mpQ9KRMAH8Ra7TL+gTyTbVilsOEDjWwkj6Df3qmDLl9xiawBtINYcUmy5ixSTr20Tjrm7wOe/YEcdVfy/pzbDDlCjFEZoK8w6aqUmg/7EPGbIGfzzc50W6R0aOX95Fv5gM32WNTbDs9v8DyNucq0pGtpLnHxmSkNitnKCnxiqsqzguuH9k8sSLeB/N+ZAEXvLHY6LTDd2Er87iFNw5J2C4+6Tokf5i8QcnXG74R/QiZBSpjxrjFoNeGN+JYklHavBi1GddN2BddFN/gkXZ/ldHAAaOE1nxgx6lXsWjqSBL2qd3qg9wHxowGobTpjJGuP7ejsKvCGwbCxGbyROXYR3F8+cu+1wEu+4xn8FwXC2Y73pCMCVZ9Jlv3L0h/jr2343YVvrZwKkg/zhuy6s+Pq3fyLFPRH2M47Fojx/Eb1C3vL9g4N2RsENiQPv13P6jgWWX2WAQFBG3mf5X3W+VUWW4As90YjhfYbO3IvxCMbCTyQSDnxgQAY0PYVd5P8ZjaYWy0YlVl/J637/7O8X3bNyplFPT0zEYuF4nyjXAGlGQEKfn0aVkfRWHO8PN5Hw2jZPDESFSPFoExHhB2mfyBb5crbtqsXRoljDIldwiKmaPfxW7Kb/ClnF9ho1k95J0zipjlXd43Hmm2UfMpo8kZibeGA8f1CjaL8/mqcJjOHou1eAIRo4Gz3ZjyF0Sds5Kc0U5Z4nzZ/KYQ83zpo2ywvSLNIITdyBU2UrAZPef6/ozNkGmLzfJZTX++YpVhTkvSg+07RuJlErUFqNCHYAMJ4dTmbrX1kEsV7d7Hoaav+bCwZP/zkbYIRnbx9sBudrZeZUhBBKOkpY/kSp+sLcbDE/dSQpaxcRw25bnujztsku7tKw+Cqmj3UTaI1iMYh/4aaPR02g2XN6dnyN6DjR+LfK7/Lmpcdbp977EBlSHNJM0wKX4f2LQLGa+4is/9iq1bCeZqd/adzyzseKNNHWr89/28gcQbOnnDsWxZpjRgmHhjYjp5w3jiPb6x5Q1AXsfsaDwHGPFmcm56noufxTPez/onXK7073q+4o1XtRhpPO+8LxUb+y7iOFdtlHYdG2vX47UPzET7lTcEgzd8BT0v561y7HiDZl6Sb0RcJDtpo+9p9uFKJu+JYRWLRMDbnDkFApvJZTXHueQNt7sib2wb/Ylq5DnMqbksVwo2E9NdvsC8EVzA+qlySe4TbJXn9opZjp3sBqQ/xka22HD+B+e6ilvBJt3QxpcjxxHn884xEtn/OH9IAzkTm73+Vmx2n/1azvnyqlZtQ9i4Dg+kwbk1x5nYDK7yXHkeX7HZyrW1+9+2v9T27Rb/OIamu99opClYH2HwkX4jBo8zTqIAQL8D83c1P+UA5D+PV5hpONv5qeH4GWm1ISaKzjceLsdhDqKD4HkUhW/Y/Dstxr6MdNmOQnA2QX8SnE9iZe6cqNCNhiCcrPsNoZO7IhLduDbNgASJZbHSub71SD4HVlCNFd2ittrJCIaNjThGgA590c1s3MROOfhmDmqfN/nXuJER6E3Qnw/0AxDGyYKMyorNtJu5v4wSVXIqxBnHlZxQAfQb0J8azueO43RbcnJv+YaVkxxP9IqMe2zW5aa3mwJdx/Na3fTX7nOFxe7BmPUXWE3c4Den6b0sFZv8cP+SL1c9eiL+3HDeFC38nvUn4Pp5FcaG5PABAm/I/fFChywTJ0QDK0U/gPuz4PaC6ftCn9PNPPOVXLaZeICSG2VMlM71Q90PDsH5LOP+qz47afKlRVb8Oi4j+f20+cwDO9tek5gLLN/aRABLIrrzKyeF3ifQ8xLAgu3C+5XrKu9bF9nX9dbQnxX9mL6w8gZW3veBDboWQqbpG4E9Y9byfkrEAfRj3Liezy0WxJnYGG4sIwirDW/47+FH3hIfW7b4Xo33j/Hv/NTGe/RawYl9spH+4PZG/svcwL7hN0E7OUDHx3lDJ/2p4Tz64A2+fuKNKd92ASJO8DE/X8XIVZbxsUPQb8NH78/tgjfyTRmkYIP1umscII6tvFHsTbtd9xDcPzUcP/fIcYJPNzlOxoZ90vzxLd7w/eqPsTNuEJRyHCUfXHi/2Paj/C/JkWxsxQeUK3UMnPrRhv505oPBVRWbyCfekf+9BxvrpAApRx05jowch2+qyeYDi5r/tYJdJMKkP4pFAOazp1/D8d94++0Zs1+yCSxAa4wwiQdiD9Q+Ms03Ilw/D4RzxEhby5a0HenyQ44Gferoz6N8RNLzWmvCsNYX132XIScynjwK/e773fdDXhk3NZ8a9I/j/Swu/1xgg/p6k9knrxH34w2r0c68OfID0kgJY6N2rl8H4zr61NCfANFuS7vb7+lZIJn1583/Mo6ZRH30zrHQ2d1BJkQWqWYahvkT0J8FcmokLhFwbtwuyUj6FG+T9ecj5qG/iQ0nYp7o5dE5s9/nBpEzklAPHvyMyqLPYtt+7MBmypSwCbvJ+mMbUwHaYfq7jVX9WH/+qoq4OK2UurXtxf9IZpnthm37bwUrbSPQ9GeB/mHqby4aMPUJep5l2ra1QzIm3yAb290MVZsb8gvkpuNZjAYI2lh0ATCuIns+6khzkcMxfIQNbWtChOl/tvhDfwLaOV4jEvojzkz6MxnzkuC5v1WfD2277vP3793c7gWxvLqYb0Qi4DbVim+UwZvAsknwlYB0Ab4e6NzBDeezQE5MO/MkJvlk22O79Q3NWDLfYMogYoURiX+dN8T61UZk3vAG6Lk3j6Mrb6zc5lyw6N/tQjOuKhg3PE8N/cl4g+xOH/KGFGwky+ixodhZ8kk/FvMzgPAF/dSAP5xjZjv5whz4WvRnz+jseIMHCdxu0oAEy0j6BIw3DkV/aujHOXnDMWef3MXx8vx68rOLGBnYbDgmrn0T9CdAn6xE9lZi5CVv0HX595AZ2R+l6I9xK1iNvAXonxr0jxo5zsz/SH+U/8F5gG8YiGN5VnTGcsKK+4P5121dDgGeBHrrELS0kBJj02PmUTJfkT5z/lewqbgWf+Q47ov+jBxH8kJmR7VXKfnftPXBA6XdDZ8mmUjmJY5/z9t3L+D7tvb2IX+ZjUtvssNP4t4myMqJqc5RweoMu57RaPRYwcVK9GhkmEsVa9IepTQN00Fquz4uWUjU202ikLGzPclrny9nZwLfySiIm7/Rrq7k/QgbIiu+8VjO9RUjfaWohggwYGxkXqeWBk4Z3pCx7MdnH/Uy/UWJJdlQxYbr1IO8va8P7CawEBeIcKvEH6Nx40C5d8SlhbGw2U2y7WRHssNG34eNy1xx9cN6H0vu2vUcK9YPl0L5imC7/voo/eKPTN7+WSmBYBldbXeNaqeQiZNaCnSBDWG1+NCVLVdf3RK46c9KSOJb4qqdXbOvT7tRw0avsUHGZhnVtWPH5caSydmmCg8kjthgQcOJWZ9kN7V9lO/1jePe2Ha87zcTMQJc7TL59xRiYKkhz5KM0Qe/jthwcnvVmUjRv8S3jC37xo43dna3wWrxXzpwvHi36Jiw6eQbPFo+ZLjmDcWcLUoy83YVq3z1VJbJsQFxauGxRX8g3jChEi/s9CdIvOF8I2pYlbi98oYsvL/DZtsu43DBqTNuO2/YsuaM1TEvnvqz8Ebl1MkblduiRT9X53VYwMhxqkwPeYPiA3aDV/nzEm8qr+54QjFynD6PqTpAkmvl0JT/vWE3i60Xf522Dshdpv9d8P6CDdm689FbOc4lNtS/lOMQTlv9sV3t8mbGosbiEHCV4yqOf5ebc8NX/vuetm9Uyigz2Fji7KOevjBCTMEu08JcnuCOO8s0fAW2CETstLyvCj0F2hruP3S0F8SoTRhzYzkQIzlMBp4czHYltwnF8txbCVxTJoylZHVMXZ83Qes6boAcGy6PwByljSSFZws2hDVk1OhftMsY0bkK2PNAgN4EL58anjvLYWUHRhQ+wuIzY72UvtXykiBlxqaO4FTZgLFk7zls5XwSnIf9zCNWVB4RhEZBYE7zV7vROdq0wTFtSvICQyYdI5X3J8FxUimnk+YxQI+b6kYBnkgW5gveUKyoFfa56stFivYE0K5DMQdw/7GhnVNHcRN2UPmWyyWkP7e5VIpq+6WkjMk8klvNMkIBPRWQhvunjuMAGsYKi5GkkK0vPIBVfzORrjLusYmNfz9NtqeG+1PHzZabHoHYuIpkSvpb7OYBNtRuYFNu0GYSq1Ze0vD6g0IKV42ASZ8xz+dnfdjfRIZb+/sbtzcaVWeM1dcGMl863HmDed9vjqDz3WHVN8SEYLwwbTQwDa5D0b8C9v6y/txxHv6OLuJ9foZXdL4ewa91yRtDpqF/zf5b9J+wVQxlqKA/NdyfFMdd8yCS8QaXLu58EiCu8/5WbNoeG2BiN3JCs7ub4P6jxGIbHnt94NKT1EhmZcSY9/gG22yKA7iQsSv0PrA6P41n1cXxkWxHC+97/ypvBIde5A9VX+6zNkgLwUjqFcCzjBLoV6XBBkwuc5t6gI1yzLR2aowM/01+MPXnOQ46RinjD5JzHOtSsnVM3o8bkUj4NzGSq18Im4e80QGcgEDQP+nMcUJ/Zheso1hteiiC9Zlvyvb+yPpLgyauSwA4LZ94Erx+Ejx9xli9MPI/yrsImyX/c06t2FwMhj/EjXOcT4Lzsx12TK5K2FD+x1zvpcWpv25z5dgaJ6FIcfyref+37UPbN1ouf5JlTBPb93NaX2OaPwh2V8oYhp1rgKN0g49t0670JsAz0F/GjZCkBTNymdJcZpfa8X0avYCYMzMh8SieOSg7g28juAB4FpwncPwsEJEoV1TBLF20/kwZNZVLePDhJCVjU5I4xpGc0CebcJNRXvly4lABbig6cb1KntpvBR8aheZ2XVczqdlgU4n+EOgz0O8K/Enm4mTyNjZJDskyRUkFybS9AeK2oj8CPGE8I/L5HPoj4mQ72pWS5NLNajf7G8UtNm6Lvn8zrL7YC4oPZGIvCUT4issVfc+2XksZQ38b/aagCIzSimdBv3fgJ/9dFr8PffEiEMUfs91Iwibph/Bkm5s4Dv31T2OJ6Wb+FwkAl6IucmS7qaWMs2yPsNthQzYn1I4+C87XjuduXMW2UUpcdjK5PnjgQ1i3RV9K+wDZC+9/cIuVD8nu4lqBl99Izn54glTlHHjJVs7EMTzQcQjwDJx3xdOfBcL4lPKgBcukf4lZtMoDfqMclRVA9hvGGta3W0P/pFDnDeL9tRTOZbTkv5bQJluS2Q63D9JzxdXt0jn2i6CdErw/sWDfIBlj3/UnBZspF+so+Yf7cJXxJsAn4DwVt5+9jYnN5NHJI+wnW94In5gyLXG8YJf0JwIcGM+qfz7RkNvlZfpDn2w3D3lj6qMOWiauJRnFcFbn/RcrRW05x7niDY/jgcGCzZ43trbNuoTZzZNh9WcNOwu7ubXsK+mRhIoNc2r+LWHjfdjYWIj3JOOVJC86Bp7rOyEv878SqxdOJTt3bGxLnEoyxu/MVX/E5Cpv9zJHpYEaPj7w2Pgj7wv2sQrF3r7H7R/IjeO3W/xDEAlh7NuzW3Okyw4uD1XnO3zJxiWIYMEjcWlUzphLAYiNdLGh1jLBaEeQanUzUdJMkMvK7YL26ft0LT/ORpWS4zI2IaPESFaWSQKzSBLSrFW+dpURdV/Gnpxjh8/3zJKxSUm+jRw5yUGmbKzPKscyisN2InTMifke0LAbCWxmKaOEvthu0igYy0FtYiNP1WOM7rlkd7FvKFFjOwqdaLxIk20/Vnm7kDHJEoRbsML8TRWjPE/54fFC3jFayj4ldC2TqYyW7rC4tKMiIzpG0kcj6IxNLCKw2I1sdbLDZknWCzbTnmxM1lZBjGPDbsiO6LmneGao+uOFjFs5WE7GDW6ToyQp2TqmrSdsyNYTD7n83OcH2Gy5C6ucH9mS3fl+JBhFbjCnItsIx4lHclaZnfdPtruV9x9iGfof/3wZ+ylb4fOKbSv7/j9V4D7lZWwyt1fewBYjzlG2MbH6Sjk25L9j8EbyRTtpi43/PnlDyUYf2btu5NnFSDkxVnS19zPleOOyZt/QN3hjxxnv0ScwbMhfTu/7UyYQb7hMlTd2Nv5Af4TLjvfjHMPqKsdh3q+2nmaNvxKblN8R1mN1TWRduK2HjG5jV/qbOc6b2CR9ze8jvlpsnOXik8tX3q9Y8bH0m6yYb/NAyfInXQqM9yXhnxePudLfxJEXynrk98vfwlVfy/t/tU3fPuRvYftmi390D8ZuYIcrnkpvjKi68IsEzRl9lkYxRjdABrVxAG7bmhm11zJK4Y4XzBFOJ06epQCVtLRptD1a5WBIU8elXd7Xsg/FuFHsgD47MflUPjlhjH6UkgjMAKgLNpZU+2g7Cjbm0LuEFR2QV4E2xXkDvffNa7xJRk9gDy9vYX2OCy8ylxK1aFfnZ6XPkCFDs5KI80lwM72w3SztQOJ+YpKO32yUcyFJR5zkQZEIK4hUB1a4C/Cko8ymK412I9rprK+qvwbEO1nabHS8lDvbjXq7bE8leUeHLXQwSqXi/TEy2wkfiyDpxF5szs8RaqwmEpvPlfRdJumC80nx5PZto/Co7ULRQeU+O7tpbuejYW2l3Y3dM2e4/uQu0CdFvwnkPhYKEOiKjdvYgWt/5JFL80cOug8Do/0+lkwe+dP9aZQk5ZuI/z97//Nq29K0C0JP5Jj7fF9PhFKuaIGCTRUbF7s2vIgNRYTqKlpgacNeQYF1O0L1tKQ6gvDZtmFTEBvW/QOqcRGkqlUgFIIoeEEbeu979l5zhI3MiHwiMnLMOdfa513rfOzBe969xhz5I/KJiCdj5IiRQydXyex3Bv0SbC4H7lWQkLlry6cvHjP1Oj49mBs2VLwRsXWpJQkiK0/wGEezaG+AqOD+DbjRCvhM46o4FROzZrgOXyj070fi1CVQZbu7oz/huDFvEKdaW4VvLCnRHohNfnNsTIaEVcARQ6YfiLxhPAkku5PgC7roD6X+VFZsFv4CyajDH1Rw/xvg2/9PPVB17k52Y7wBwy6lfeY5AhVvkEzhEPgW8M4bh0DeRtxidmO6zvqzXzLvCyIGST8lpzJuMmKJHwBEOm/8PsZKts6xlWODbOvUD3HsYuuET8UXZlO49//0byyOs9gq+Z9x21Z/Qu0r7OZkkZn/Zex0YGH+90OAo6dXyvc4J04ZkeI/k6rWpx/8N+NacKnPYOfgKum2fvsL2avZdoqNQ5pn6FcTV6X+R7vL3K10nsfwBY+v9q7Ye49P/cB0n5gxFT4mag9G+XEtEB/zD0NyxyHDcn4XzFQhe5Q9ftcDOP9GcNo3pwo5OnEBnEJpRGv9SpgU5rlPgNavTDm9rMlijtIA/SY4f1PoXwR6aO/IZea0MvjOg2AZMfuN2EjEhh5fL+k+GcsDOP8W0PFBVttxaj7WNznyTTXJzHI6NqRPIOhWSEZh/cmc5M7fhv5Gu1rob+o+6xMeMCkFy10nsmBjunK7M3JvLK/0dJ+/Uejv0pl12alPAjZhtfnG+qMbOrKpgAfjxDISVuK2Dty/83hlsZuATdEvqN85HoTrWZ/Z1n2SHvq7vymO36VvWz5Wv6944GTcTH9sN0L+CJIJU1/BL4K9dZ/TvzFbP10np3AAP/0x2M2SnpXSF2XKEWRGwVX2O4b+/lZwvim0aeSBBZupT2QZC2ziDR5hyLZNcvvf1sYrB8njPslyXPFG8A0gpOqwnDwW1wNxrfH+eIfrWd5wHys4dVSFNgogN5zq2Ca76zvVdd7QlnzBsPExTPtHi9hk/fO8lf3XUtvcRsnuBOi7H/4tcP7onDh5/wneSCldcb6Rkje2dsd/jzny/pvi+Av8Myk1b6hvUJV9I/C+2Tzrc2BlPuhzJMnr47OdIv9Wod9l8oYwX8nk8qy/kNqYeN8C/Nyv2U7CMMwnjWIc0lGJjdl6q/tdXhNZdmkc5VjXSUZBl0G/9RRL/Qug7cR8Ytdlqvwx49Z5f2LV/0s2V2Dj+iSbE8GMcb5LxyboD6Ef9u3SbtKGcYutz+IpbqS/R7/nbwL9oeB3XR2bkO48bdtxC3ZDMmL6PTBlzNiwvO/i+1/Hu4/PTWUEYJp3QvenKnwd4e7eVzvoPDxFQDSk5QlD+q3RqoDfMHBwLv3/4tMTeoROpBSeaHC7Sa5qRZdXUdp46dP7GzOrYL5oHbAZgi4rs8C80ZApA/cbxxVx49UXvZsE8Xp4YsKOnHXQpsxZf+z8eSUpLIL4ctL8SU5xsquwCfrhpghXO89pg6FsgU04Z/FcfxfY8HibRHuxuljLZlvfHdHmBGJbK1Fag/ufVWJbJzn7y9SElZet/XFr21x3/GBPrjkYCTzAduMtMK5R10F/UsjKuGWbs8nrDbAIIZQNTwep32w3GZvcL50vu3cVf8tQppyt6CfPmvFJBDBxyVwVOqMb2IU/2X6rLl84nJNYhyT3wm0NyTeSnBXHFv4e+lezu8kbnjoV2pFk30V6FxAWMB5x6sJtNGa5j81IZPbvPmm+kH1DJekjpZvTeBZsCpCC/BhP7zReL3kj9TlllMA5gSdSuwuntvW6lZE3a3cTP7B98/gq/w1jJjk2vME24b/p4P0R5W6xGW3aRmdxfIRrjh8K/y3ncepXBs+2c9pInvemjMz7OuWwuxe39Wg/C69nTs3X0dtvzvv0JGrD++VcTFhVvB/65brVNfvNNnEJR+zHGqo4NWOzzNuZuyoZx//Z9ROAvDWX5NxiwzemU3+LjA+wWWx9g+uvYz1E5F8H8G8D+E+o6j97bzuf+B2zOHnYTmr+ZXLOlR+GyI6veRWCSYpXgRHJ3K7LHWMLHfo2hclBDscB19JvgxMYgHmHx/VJZg9GB88FkhCMpHNA7j0lYhKlDjn6b/bNHE6Nu8TGUvOQrgFzZQSbcxvaHZAbcLb5kVEU2MyNPizn2h7r8zsKaeJzornAxnQ3fhcF5NSeVnkb6WY2ViL6Sxktdc53grrGwvEmbNzGeEXxDpzfxtNDtX6tfRkyabLtmaKRsQl2VNl2kifLKIoe8DH2JhP3k7HittvE1cumutHmCv2xzY2Zqm8qMHwfAxeydR0+ZbJ58BXkUMc1689kzEGRy8P+qIYVxkvcOutf2Y3AG9LUb4UN21H+d8HPuaoX0oPf9yCOJHx8vOHpzsBoSIpmO4gVurYxM052WJ0ioH94DJt71idD+l6y+4Bnxs0ODuoTb7SxyyzzhuOw4Y3Str2fgmP5era77BPaOVZvSLwBeoKw4dSW9E62k3kj6AIIY851e3plxwUHoHfZ+v6sG33DecOGSTy/lWvjGyqYu/qdAv12Jt5gLq94I8uceIP9Bum3rL/x70wjQ7ep8QRWz9GOc6ZhN/13zgMTV8Zm0clGhoAnXZcTfbdBoH/8+kccj+s9+F/kWC30F3aKTP9pZXMmF/F+j3FYf0CI+zwOLLjsETbMhajnxGoeaG+AHIKzNX8nr/KtyAXM+wpViU+OuT9B3J04y4j4uyj8HWy99Z1qRRDm4oyNn1MWk9+dY9o6xy0hNt7ZmfH+Vz/eMy/9pENE/mUA/3UA/7ePtvUpUPNd/LwB6pNkdNJBnvY7dNZN7fghqTMbYVIYT/bnMR/na+oXQUb4hJYJvxPSfK8jE0ZemQjisBZGYHoegruTpsR+KmwEKzZMXtBwDXadhSNZGdNTgPvA6Lzxlvix34ANiHDpHAU23meWn2XMukO/GTub9Elnh03WUdCfzDFnmzJclQjTdUT4aLx2iuI8us7uBx7aTZxEpo5YrtAv4vk24MMse8rASoD7NyFbj3Isk7W9Q8hYmV9kOQwrlidhw2Vtgjtbf6fmLhhBzcbWyW6CzdkRuGNvN/5vxnXIesLsCjjpJsjqRZmSffEkaX0ln9rZDY+h4qqz6cTL+yNbL7Dhmxj3P/KLpf8ks9UN2GUbfPVoScbFN9aAw+0wc1zCOXBbISf7d/+4+Xt5oz73BTQGLHMq6X/KqDjBvKErNgc8TW9iE30j2Cpjw3ME26qJmezAeQPTF+43PMcbIgFntruAY4HNpW8E3uhB6nkM3riaI3e8QTjxfLNwbD5K3uj6u7duV/ebrjc6T9pNxgZAySmZ+xw3BBPzsXqMk3njYYwjkfcTb+S4JuNU+qNoT9O7jRjn6P+djWUo/BG6YFPdWJSx1aMYBz3GuQtwjpugCptr3hePta7iv6zPLQ8rRiyIxzGO9UHjr/3xMTbL35U/fsVD8dnfMft3APwbeEAhzxyf+h0zAGMLaplGbN9usXMjAyBsyQsgEIUKyhfrrbtAKsPgcQjOm6Jp34I6lo8BAqdahVUHKWQimXn1VAX+3Z5qfN3x+qq4nOjbo9rvgpjXzTIajjzmJLOm8WmWkQg5lBvqsW2IRRttDGH9JmxAaTesv4aAlY+Dr++wSZOCjrb0NnaLtE1O2I787ynjxAaEjYQxrzJHTMJ/6ZqM90XguCFiU9mNEXsxXpE+YeEgnWTcsu5l1tXRFcb7NE0RbD1+7iBiA5FiV7iLfnf6K2T2pxI36Y9uDkn6yzpY/VFkLBIQNtm2801IDpj4Sa1zyM1Wblv012FHpYxJn/z+itoYKrvJupQko9UdXCVn+jSE6ZbLNhA2conNYuuCBVcb7y7wf/boT3eE5JSoB3r/MixYNMI2y9mIUzN+qHlDxztB8oaSN7zfDW+4/ybeCP1m/ScM47wwXuC/6eimRd4Y/THvBzviMSYdBvslOQA85o2G7guHQrQVvCGz7cz7y3xDMm+wWTim8g+zk28K+f/CtxBfeH/IGL7zmXxDr2KNfBOSfSPwhvTzb/2GWlDxRmE3Avh72a4TWfvFrJ/jiaC7ao48+sJlu2PPG4Xd7GIek2nhgoHrOs+t/KvjPXU5NelPJlY+JvZHCf5oTxj9xijHcBmbJJfVVQDNbL0pmrZlI6xpN3I9jx9JLyWuSY6dzdl7mzfMGCfZeojDMu9t/LHS5+JzID1w2a9+/JwbrJcPEflvA/i/q+r/ReTjYH1aKmNO3ao+Crs8zjbDQnLKfC07XjI0bfCtw/sW8DqvBWIhmbi97FxVvyQjj9v/rWQeJ75Vt8uU5EgyGMH31MeUEseOhs35RsZQf+w81QUs+sF4vB4mkr7UcokNkzCVY1wXGRtm2ufblNFIhDHiMXi/PrY+Fh77os9xElbHKuxYf5ynTnYVUpKC7Q9ZMGyRX+KlLra2Pru+1J8MzFymQNbZbqLNXdl2loPxyCvAXtdM6T4uBb+PuE1fm9iEQLPAhq/5kW/CTP6s16E/GWCt2CAsZORgZPF76neRkeWU9Pf4V06MlBbGIvVr/VhqFKZtV9gs+tzgWOL63ok62dLCG+63Q/aCCwLvF+0/0r+cvaWFN8juWL+PeCNzm/XztFwDA/cFHefGsQGblTdmOmvcUS/0U+GYeSP7hl0f6eJTpke8QdesH8au4g3TAWLdBSvjDejYrQ5BJ3wTFlLQYPpbfeMZbLaxBtkwAP90y543rjm1srl84+qFSzmorvGGxRM73lhinKHnIlAveT7pczkqv/B5W4ZOxt/MZeSPpd3sFraQzvO1XIau247Ydn3iZHaDaWeFjA/thq8RNtV8CoEDGrjK/s03mR5rRflK276ydS6T7TPp4e/h8S+JyD+l879T1b+zExH5JwD+QVHvHwP4N9HTGH/K8Xm7MtpOYuPUX/okYjBHdwMHFnLrdbGQ+0L0yVHVDL8B92+AfEf4qKS/85aJYggSA34KGK0PDl4SCQc56G8oZkrVt57S0nxrepqEHRuajCGjX5IDdb8Zi/I/KtvfvVHgELx9U9y+Yz7Nc2ymB/sTOLte6Y90w4/jWWZvm+VlQib9HX+B72zEN7Na9Dv7me8H+fb4lZ3klazxu8Pq19RvGM9vwP0mOO5kv0PeqbMZgGb9MTbI2JS4otSf4SSG1W8C/AVxRVAwn1RbH47dMEjGpgpUcp9JrirQ6qmPivu3vmLZ1PQ3+szBML+PAJqcTCc8aWT/4psjKqO5/NCfHsDbTXC8Ya7qOjZdxqkzuB0hTYqL7aDoE+nINjgqaQPuvwHtB3z12/u1J46j8gxSLUiMuInYhi7Uj11Pci22/pEj92Vyum+M37McxU25Jo4NQUNhC97WObD8Nh9QzFSyzPuRN/pvnCYnpH9EO7vwjSAbxvi1p3e93YDbnXWIwLFxUSzyRoXN4oeZNwp+s787b/RdEOWeeUML3njsG5k3Ms8vvE84QdCDZxkc28b9GmPDmSVgGaNvMO9fYsO4VnxmL6gqoIfgxzfg9mPyhvlZ4H3mVNKBp142Hjz1p1w2YrPMXUCXqwH3v1l5Y7V1zCfaoDYfYPOUrdPfHuPcgHuTzvtJHxzjRLuZ8Z+3S7Gi/bbMN5WMVtb4Z7wj+PYbcLNPCwjbDdkULUJfxX/OoSwXyeDnSNcE89MCUsc4ARv3t2TP3DaNlzEp53Eg8e+YB5bJ6osdH5Pvn6nqP9w2rfqPqt9F5L8I4D8HwJ6W/WcA/J9F5L+iqv/P9wjyeU/MzCDGy+A2yVgKgBsNEyOV9TIjyOAAWhDrLk6p6I+Fv/VtkwUKoe2ZPTAdRhm2UAZCmgo/fgfgWxCXNz8gGZPMdk1uPXhuf1HfxtXxCmlJMreet3ZDW4wrwpOkOGES1unchoexbWv7oZ2LaXKOu5FJTOERJBklBNM5zWiHjVjZFHjpN+C8A8e/mIGpt3dc6I+xSquDRnyLzWRsKhybAN8U9xOQ34fcWUeOzaq/iI3EvtvsPqwgSmoXpGc7xvs09zfBN9UQXOWUq7B1s/kcjbdaxV3s5sofWdc3QH8T6F80XpeIBdsN20nwx3F4imQqm2UWIZ0QrnKgb+X8Y3RHqW472+4NiAcIy6o06ySN78ofve0DwDdA3wTt1JhKLKQzJBlR8CnZnGMAKtNqbIKdgf598fD3NHIAQak4yvoXQHwBJeLldkZYXflG5n388xmYsr1P34gyVryfF40e+Qbz8fQV6d89PAXn751jp54kpv4xb7CvgeTKcwrjRNjwQmSQEbOufuvbrbcTiTcyNhLGl7Fanh5kW+KxpHkgp6bqN8F5V5x/EUjTeI0WbYUWMb0d98niqdAOGypjZrTw8dG57Pyu+GZ25tcYG0FOuYtPhqTkL7abPI9nGZk3PMaxdPFgC/xenqw6SbFVedNR9Uvz9DbG+Qa0f4GxmcUcX+bUNcaheT3M42l+sfMk41xcmWVnjNNvXpvpj+3P25aIgeGIpB/EvgOnFraedT31B5xvgts/10X34VNSeR7fpDvzPJ7970r3Nuz38v5f4xDgU24cVfXfB/CfdDlE/iMA//DPtysjzMCMRCUYLcDGlSZOFJMfojPkiX0xpoa+OgKMR9fNtTpTRzjQ13nuDiDh5oJXFXh1LawCMmEhXaM69tRFhydMbISwMZnUcfSyNO7lnH9PMsLGg1jGOpWxMxzvnsRYdGz67ydIfxuZWH9LSkTSZ8BH4JtyyB1o2pLdTKyi/gqZsx1lu8n6y7gyjlbOsBpbO3HdbOv+hPhKJiLMYDfJtnd1bTW+b8VtGOywmLauBTZsR5VeFhkxy1cy4t6DvuBjku0m6i/YEadVFTph2YKdk669rtU/AXkDxPQXsBor4MO2vW4OmArfzrafMWOZQ91h6+D0H3TM+MmYlv64jnfHCaHfzAMbfb50eF8Sx82LT4Bj6/Jd+CTb4cKjBZbmo4E3gu9P2a54gxffKjyZO0sZ02+KYXfjaRC0c+h8ZyXzyJDN5qpk49kmsx3mv1lmxxXwLeD7Fv6PeSP4RsB1w6kVbzA2+SbA6t37IsXKm2w35hPFHJkXd5KMWadsR5mP/fAPAmPhjTXGsR01k61zXxfycMCceSfzhrwBMmIczTEO2/oFNoteNnbDN3Albxh+Iz3bYy62G8M5xTjlIsKun6xPtvfkF4yX3CeX6sZulOeqfLOU/l34l7HK46FDBQ6s3HW+6ZDtteL9Rz5V+Z+dbxZ5c9kve+jjIn+G4/NuzOjFW5uclQwgPK6FRAKw1bfxf+Gc27SDiZRWuuxdrvutf+Q2f3Het4wdDeQXqTWtmIbJOhtxJo5KRtsKGNpXyJvM8Q0n9FRG75exofxi64xXoKzvhIkXl/Rv6y+sNoU/5r9/A/C99xuwokfqIdgqZA6T7Th3MQqyDWXHdTESFeD+revPcZWBhT/FGLJxuoEirsaBbW72dWVzgaPELqC/i/et7xgpY9tkqztX1Sxtg7GJ70ks/bJMTPiGUS5r7Q79yQG8fQO+3UHYjH6XdB9M/UEWbILdvOCPijH3nug3Ghi74/3lytZJf96vUvoeot2QjMFuMlZ5wlH1d/H0BtwPGaun024iV+n0A6T2uV+eDJPth6Ar/zvqiHasZPhf+zFshNKOot2wPud4A1ftsBnn2bazX7x3AowcG31SB191nAveTzr28aSg5co35IS/c3O/jf1NGB8peIOxBJYnHuUqeerXG8icM+xO7uhPNW6DN9iPhNoy3kDifQ8gx8H9miwsGwoc83gGx0oD3m7At7dr3lh8o+CNUp+jr4WP09/GG33e1sgbfnNPvGH6o5tEQOM8ADyW0cpm3jC8XuKNmvdNny5D1h8/4TBZrGw+n+vMvsHN2zdF+/FEjMM2V2BTcRtfyzIvvDF4X1SB3wD9F0l/uxjH8VDnvZfmG8KmlHHEXnrrKbL4Ds8WyTGOP/46yKYgtU4GN1U3Q2UcJhNXMZkkxTgcL2z9cfS38ylJ50g4Zn8U+u+rHoovkWqpqv/Zj7bxed8xs+AgpbTwpCdA+Np5fOkY66NfflyLSaLL34L4mBg6b7JMFk4PopfRFVHm0DZPoDTO6nF1KaOlLN3txeHh1Y5NnHwDHhS0qqB4tI1Ylx2NHlWzE/oQW5cLP6Q/RQi7cyX98Yv7wJoKd6xjlyyjyUIklWXsKS2EVboBDVg1+EPRbjcS+t3pROzvUDeWXVIZDwW+Cc7vQM//SXYzSDToCEBOiS1tGySj4SRRRg4eWEZ8A84fgoNtPeHU/VHnhJSuGx5ZJy5P0meVPhEwNv39/sDWW/ZlWX0KUWfK19gfs61zOyLATUcqo3SWp8WYkOYJAJkHlp0kyW5G3xkb69YDT9YfJifq3wD3s4tztcOq7SS49MP2bNCaTrgd0hHbdq4bgvlXDgtsacfD7Pt9HBJ0uHB5walBNvYNMiU13r9Lf6JywRt5vilToln/lYwmTw6sA8cI9JtCT+KNUbjsN9hZTPMteR9xHIH3C9/w4sPuzjfBIXGOXHjjuOB9wibrRKnvhTfGtcAbI9X4vPe0z0veWHxjymQ3SkAh45Bh5xs73jh/61hd8UYZ43A67c5usk8SluW8JUN/A6tb4n1OE+x1H8Q41dwEOn8ixhFr5zdAT4F+7/qTK/3lGCfba2U31K9x6nausp8PAH8D4G1YZdWvYxNtPcyRA2O3m41tL/6YcDU7aQMr/EVX3mesjPd5fEkngcsFi82Futk/Sa5fxx9/fGIqoxnVWC0CwiqfnYcVCK+LafSFwYcJCdG4uD0FRkpci6sFixHKlJEIqeo3O1xYKXkkI8mF+wSkxmZ6S4XNIuOVzLluGo85cU+1abEt1p+xEWKap4+Xscgy5n5pAiplJMDknmSqdA8psVlkLOvuceUx8X+S9SeA71Ipg+xZfzLrLrbNZFzIfCWj6w7d1gUtPSGZMvU2ydYrf2Ss7NoTuFb69jYsnZj6CWXH4MtJIp9nzmDbyzIinRNOsPStUHfa+jK+R3aTeSCXfdLWucDCVRXGFUfSeK9kDDimutzXS0ceo7cVsS1538omOa7mgdIGB6bi6QAP7G7HqS/oP9sklw3+eQfsq8WV3W15v2g380aFDftG9u2FN3iOzLxxxfvPzDfY4FiM0dPYH/GG8f4T2GTef+Qbuay75hsg/ITukf4yp17ZTZ4T85iQ6irxGQ2w5g3i/cpuUj+L3TA2WfdV3cGxrL917k1YXejkkc1VfMLtus3f0T8JxGU5zdOwknqO9H6ekHHh41yX9Zfjrke6z1xenSc7Knmu4NsvfWQF/0mPT7kxc2dowExTQryL9//4cTv9zqt7Vtfaz+TGE8Koa1ujNuo7lLXzRufWDztY6jfISAS3TExs7HTeUyIUeosvvEdsYg50Xv1wGYH5hMZkpJWfxeGEsGCZFD0lonV+sEVK11+uW4w3X8u6DjrKK3IZVxP6BKADq+/cFtmMzDQD74dX3Z6xm8Umsb4cDvhMKPchk8lumPsqpOmt/+tEmu2mkJFX7hzXjYxBf+Ph3Wrre/2V/kg4IfWbn6SxbTsWVmYYpe32ydc0/K2rjTEuDasPEVYZm/zEYKk7sML4oG4LPiVJJ2PCbljlR+wzT9RBxgeYW9qu71q586HcFgUNgSOFOGFn69jXfe/hiwSFnOFDtvYe3fjtzGVZTpJnmQeyfgUzXVx1ZmOQXU97W3cWZN54ar4p/LGcq7S/Q7LwPtvdwGbL+zv/RWqLzzc4Mla2Vfd5wFNAA28U2GR+Cv6Pwn+f8I3MG+1Muy8mfyh5w9rgWAOz3x2nXvqGdNoH0D9nwbzh9i6z3SFbeJcRJFvWSbIb1tEjjhF0LmPesDJbn9rFOCxrljGdPxvjINl65Gez9VoHld0sNrfDtBXXMOz7KGIcs/Wdj+1kzHbD2GROreQcMc7CVU/Yemk3GS+W6cKOxjS3+udXPH7dmH3sMKPMd/D9P5kkbo40yvljfmuHgo/tJGP/Ul0F0MwJj05Uc4GmuBksnLkyeMH8/YrAcl0V9IWZW98yuTUdBC+jrfSSZ3Ikwym0XQUmCZftDQGvBLW+tW373idojHnFJxl6ry04OZL+QL+n8ywjB/KaZPNrB3rfSX/eryCQeyBLtoVHdkMyLcFp0O1Ij7oJ8F1xNuk3/ovdSKib7aWUifVqdVMw5G2kQwdW2vr20jHFLupv6YuxA8ma9HKpz9S88bx/APYA7qLd1iXaOgfs/pL4xoeCXDnwzDJudH02oN0A/d7/Fiq/tRugttc07mw3JoOg0BvbuwB6G0EB2XqvH98zcB6gulW/l8HVDif7DQjvbbxyhACxesLBNxxt9lUGWTs5K9+gMXcspb9PMtI+g91ZMGbzDfdXcepHeGMY2Hko2vjA7V0EB42ZsfHxkn1X9r7MLwmbvFBSzQNmd/g+bI54I3//6pFv5JvXUA9F2cK+jDdwAOchODJvSOINTDmDb+Qx+5hWHB/anNX3OVK7TTVqd2CzYCxprqpwI2yCHEK8Ydc1llUMWz8Gb5D+hIN5a2MX41Q+tNjmitU2xjkAPQRn0863ELepNcaJN2ilHjI26ajmiR4AxjLnATTp8zZ04hs3ASnGzP5IMdjT/phwnv3CUxS15fkochXz6c5uyhuxHW6V7RfYfrXjK7xj9jOOz/uOGT3RCcaZv3XCT0/Sk5SF7Om65rr53zacqaGvSoSVPSn79QDhop9lFWczEYS6mGX1Pn7TSO5dpoiNVtgUWD2SealL5ZxMB1aCiVWvK6ie+uz0FwIowvVkYqnwyuTQANzHE/7xgvqC1QNs+Ka7Omcsyrr8u52aXjD0RzexvS5hlfvJ54SDJmwuZUy4+bbRorD0+Ep/GatM9lt/fLJuDmQgI2A4FUew7VV/YQEm280FD+xsLpxjTmaNsDKbiuOTpR8fX14kWuquvrsNbBizMfGeh+JGXNXLbGwdSQeVTz3wi5i6NtsKv7162CJAxYsFtgAu3yl7yjfyGN/GAtNbxRt1P+EcWPz3Iacm/SPZCvNGK3mDbSfpu5qrQJyafbIYjweqgTfgAeENz/HGzjcWfV7Y3bL4mnjDAlZVnd/TrHjjQif5puwht6WyvJgW6w/eP3NbsujgpfmG7bjw7+343sa8fUb96YY3wly8+GeNzfKEysph/c0XZo5xsTGGU6aSUzc6KW276Nf/traQYpyxUGiiVLZe+2Mhy87meE7JeBW6txvGm+mvwCr0k7DKvB9wrfqt7DPb3Fc+ft2YfeAYSo8OrcEpl5U1diqgNnCkuiDjyv+O7VrlnKshVb/5b5Zl1+8StGf5C5nR5uDkPomhl9+kc3JdlqslGZ7Ahm9yy9WpkTbY+5EFE8eG9BLwqEhzJw/3i3TdzhUz7TOTedYV41/dLOS+GSvEujvdu7yKueU1KC2qWvWr/IBlrHDYyUhlyhXE04yr23vW83ZVl/u5wGaZmDe4ulw6zOlN0zsZydY3N6+L7FnPVjdhsV1dtXqqPYgBIKY/8Ad9Y//l+Fh/ILvZ2fYO1/G38K5vO7spbHlnr2G8IBmvsLnS57NH5ZO8fTfJvYzR5CzwCTI+8A1oP5e7rkEg+0bhk6EdljH3m/Sfff6SN8aJ80ZjbOLKPX9raaejrT/nBZeNb8hIpeonUtvdRRD4cC5ONrrjY69jKygVb3D8sPMNlq3AKQTtmHW28pD+cNrPe94oOZVlBqLN7fSXcS0WTcQGeUZOXXyq4tSrfqmPJQ4jzC5t/YUYZ+H9B9js+NgPasfbB6AU4+Q5km09p+3mdkI/XK44X2QwiMjWM1eVaaY09qsb5W2/9O+j+PbX8ccfn5fKOIzH03J86+diy/CKLMbvAgSjfxTo5zt+bYLzBpxvsR0APgmG1CF2rt3kVhAGEP9eVjBGdzaG8zZznSdhdQcNY2hp3Om/3Q1hFcwu5Dr+zyexJrg3xaGprkTcnRy8XjH5VrIRNn5a6Z512QR66+kjjAcwiX7RX/6X5DI+XLDJq2Itlu1EqmGyux+C42T9JQyQJsmdnRY6vAy+Mk7WswD3Az3ID3VnwKeEVZZxkWFnNywjB7S5rKLrb6TnNWC+j5FtnWzqBOmTjnxTxnZVYjQKL7aLvkp5bzI2yJOA8zI+HrvJaLaUVjIZi9AOYZN1zzZ2ftOx8xvX5RSuiBWwtpn97+EqrmGoc7wJ+qcP63v6pIQxsr3snip+yDeAsToufXfG3ycGoV+YnUVs55MthGDaZdjdlG1kzLyBY/LG2ahik/mOI9DT07DBhsfNuD+SceGNwQNNcN50Ljgxb+wWxayfNPYwP2+eNFR+lTkGx+QNAfxJrOb4IWPCmDE2ud8KG5YltWO6MN5vd6CKH5aFBdnopOANwdRJ6b9JXp63t7wxcCtjnGqsrEOSWah8iNsQ9SA6cdInY5wd7y+8Sf143Z0eicvsnroB0ENwP7qQksa7cCr7/s7/sr6zXEXdZT5tPdX55PfIxiAy7y9ZD7t+inPvN/F8ebP7FQ83+D//8ampjAsR8sopEAzNz7MT8uoATwQXdYFu7Lih78IDLVbmZfZDMoYJp3AmKX4LZdvsgssJ+vhlbOesv+vq6INEneQvxldN1uG/J+paP6IDqzftZBXqSl13o4NFlpYws38eyTjeTdJvAP6iKbiUGNTlybbVupIs2wVWglhG0G3K9fddw9bQ/s4K6+WRDlL5MLm/oHvR8T7Nm/aUJK6bPleRn5rt/t5iw/o0nJHqW7834DwB+a64mV/ImKSLG+GX9AksE+uClRT1moxPQ2gsZw3KOr6nZMw63DwJXPQHQI5h6wf6E/4w+cbt0hcsAq4bHW5wWbgq6fNdR8H7lW9s7Ttff9U3xrtlekd/ipxuSqMO6V3eLHPq59LGQDIi6kAQeeP8rrgJ/LMiPN9UtpNtPvv+zjd2v1W8oYf2OWCxM0nn1Gb+1lv2tYpTs8yIOjH92bx9QnGQ/pg3QjBdyVjJTOcPeSPPW4f0z38Yb2zsKMu0YNEKbBpempsCb9z6Iu9N97xRxjg8htRnuDlKWJUxDuuTbf0v3dZnm7KM51LGHIdt6i76o3OPcYZd4fv4SmAxRy7xAqI/bm+w8pxoTT+S0Wz9BgCTq3r7Un/CoLL1jUzPYFPa3Bc+fr1j9sHDVkZgRpZIxYwnEIDXRTCUvDrATurXuG/pjagtlYylnF52XQUM/bS138opt06ax5POFRiP1MWtrMJmu5o8ZAzjrmRhLDKuVNedGgDuAv7mSGgTRDKJDMqbaK6H1E5lC1nGodB+Y91ewobPd3qqZMzYhL8ZL9MfX3+ATbbX3O9Sfje+LCPr+y7gtN1XbfshNhnXjBsSVgBwAs2XvR/YTdXWI31aOaD2I9aJ9X9i2Prz+nva5ip9bcYHa/scXGWNPdtvsoWHto61brVaqun8lcM/yi2ApcZV+JRcvrG7xTewYhl4QwHcdRmvjndJnvWN0q4ytqNukDH3a2Ipxgs+OmV+0e5CXFL5ZNY3jyHJ5XjdTV80R1bpxiZjlmmj26rfiuccC8IKJ9BUAm8s/vUz5oGqbtK988bASrDpp2r3Ae9f8dXV05HAG7Yt/YXdLNhgvf4otinHV+haBWNb+qi/d/N+hdNV3VBeYdvh++stCautb19gUtnRdg4nbLqMOnxP+4X3xDgX+lvi6ge23uvqamNf8dDHRf4Mx+d9YJq/3g4yFL8eJ7HFAclI1FaULuoubVhn0r/0Lm9jdy5PqZztuIxtVquMVAvjRiq71FUqqxjbo6KvdI1UqoVw0/i8X8PCZKB/l4Agn2dSQZRRxxbi9xvQfiBujJDrJP0EmSsSrbBJ2HG7I32/k7v09DwB/AnVI2xKfRbYaJJRklzAmPgq/dkuWJYjcYFNsFezuYQr+HqFK4+PdGEBn94BOUYqY87v534/gE22m1weVN6wAkbarpDsm/FV2AR9PmPbiHW5rMukgN46Vm1sEe79JJt61h+Xidv6TONzWbIfjDSyzlWFrSd9Zf09jQ0SrpUdZpt85Qi8P1OpypsGxod9h+WuxkTjWPxXtXOZ9M1UTkjCst90hLobbJd+k98FOyPeAza8YRx7iPNGtjskuba28x79k/wnBo+dGOmV6Dcdgv0cmfvNXEcYlf2mukHH9veJsfA1dkFkzsn4JGy2vtFWGa/mJqFyfoygHt/6zrdtbEj1SowTeKPQSearp2KcsZnYeQPkR8EbR5KR5ypg8bGtXxA2l7xBc6Qa72uBf4VNZdvk26VfZJtwuYa32yMWHT55APdDoW+YG8vQ2P3fwrbLOTHjmuQIYx43ZCrj/UmV/u3Y1rlKANrIqxgfEOdI/jf0U9f12JGvY8gFLLbw6/jjjk/7jpk5T/7CfEiBGOXcQPLjV3pcC2AJWrfpEtbPt0HyACR/VZ1lunpMzHLl//I1q4spM7/Eqg390fUJ6CBRUEqLHnEs1WPwkC4THsen8RXXmNxKrN46iUqlkwILofMlPaTAqsLG2yGZvOy3ngrXBk7hxs/ayjIwFsV5fhdgh01pG62T+3n2SfB4hM0TNlfpPoyJscEss+jvt25XTaKt62Y8Od2Hsan+LvslOwnlTf5h6/iOoHsfb2o3jJcXY5J+Q6pXS7hK+GcGtPb3DV2AcfMTtr1OdrPze05bkSz/DpvCl33SPAD9rdvVMYKHhedQyHSFDclZpXYFbIq675mkHUMUvP+AUyveCGWHnItvLGOSzmV3AKKJNzZpoYh8+oj3WZ9P84al9b4BN7JtDki57m6e2803GQ9g4xtDZgGm3d2BmyTe4D4L31hk3P3H/WLV88I5B/qi5W9Ae8PKG1d+lWU8Zrk8JsPm0jdYvhs6x5JMNg8v2Ox4n+whY7GNcQocmTeM963fvKi38z+XI2HD83jlF94WZtuBN4z3v/UYp/TlKxkzNtU88Oz4BP1GB+r6sw+El7YuWGIr9qmATdYn2xEirprLWsMj7jpPoLUpUzW+xcZyv9nmnsBmy4Nf+PiVyvjBwz/a5+dYz9nwuK7UZZXPZf2bz+0pMTQq0x2PjHRZ5QadJ6et/l7OWWa+DjJ836Fr02+F3UU/Cx5XMjIWrQcxCvhK86UMF9gsTw0eycxtF/3o0KNj9SQ2i51U+iZ5t3XD+BT+bREAcs7CW2yordLGnqy714kZ9/jxBJSY9ZEtVOP386trQHiqEPvRIGNfQZXXxlfYcuiXrpc2lvVJ+gNkPmEcWO345iE2CcOdjPnvaWMDq/GD6JRpV7fCbelXLnDNdlT6ctLhC8cl7z/JGy9xXdWPnZuR7vzO/q70/6JvPM0bd+KNarwUmF/7flE2+8YWm8Ebo7JwavYz2FRzMWHzyCdLG7VUKutT0VMsGd8HnFqO98ond7gGGRNvnE/wxrYtkmFj69snIBveUNS8UdnQVgev+iN2dTXILpzCzv3uzk1+Ka494n0ae6V7vQ+8ztnZM5z6FDYsU8KmkrP/NmxKEGOcNL4FmwK3/VxcjCf7Z1X3Kx/6uMif4fi8zT8E85FztRIrZIuJ0CGIK0e86m3l6W8gTZaDtOTefzqPsfpmzsV1JbabZczlw99ZjrbK5bLZMYhBvgH6l9gnj+FkLLIMG2II13g8ebzjP19BUfRtkw8aU9GPFjrxySITAR8bbDKJhv+GTE3QX1Cn1bcrbJbxZZ2RvM9gwzseWjyDE9CbdkIcS4vLylgiwNzPFtcKm6WuRnktzaYBelgql6z9Xuhvse2X6xJOdnGIidsIuuy9lStseOyVjvL1jE06t19E+gSoZus3QJt6jmW27Uu/r2TMus/yMjZJf55SJsD9pj14z+2i8PsrbLL87H8b3X/khsyPgjey7TC2FW+Ucm+wRbrmvKHoOxvStTNjl/5ezhM+YXxV30/wBjJvFDrldsNcdFE2cN0Gm4U3AN/WPPBGxuLFuTj0XdXVec44hblI0R8fy4Y3EjaLLio+Rvr7AtesP+eNY8Mb2a5Q2AmSDFe6x8RjYr7yhu2keT8U8ra3qXK8hVyZ28IYnuENa2DYesdBYluVDA/8MchYyV/VpetuVzZH3musXsEm29TOF9abZO1ON9KbGzpW+h3R/676JTvn86fjPzBXrTJ/ySMI++c+Pu87ZmYQm5UOYE4mmVCtLIA4ETApIRm8Xae/zxv6+xqNvqpu/Vo/BQE4se/6ben3Ssbqb/Rg4Ww9NVzaqCoJGx5fcS076ZWMlZMugVCDBzFngz9hVMOJ+wGCjkqZGddnsGGZ6G/DShrCuzwZm0yMpT55vExuCRs7z9cCVuNG8ZSRZrkpy+1km9vaWIGN/wbUxE8yaaOtka0c6wvY+pTLDBr/0/4omKveY3fPQ/p2yUL+V4yxxCbr64HM5QTE10h/50gfPtsaKz7DN4t8XJ4Pmf9UXCXoWKkAetAOgTK/4QSu+yw23P7O/wpsZpsKWQbzxCGJT/Nq7DNcXtTdch2Xtz6k8z7eADH+YD1seH/LGzyGNsuyHK/wxvk2Px1R9VPJUfHGruwWp4zlaPf8BsgPoB09pdF0oakfYN9v1p9iXzfjJJB+owPAN8MaW+XrMd7nojGwXN7vhf60wiNdf5o3xntcZ/MsyTCmcnyC0n+3AXGuW/Bi4I2b9EXLBpxt8IZh80SME3DNMmeuSDiVvCHiO8yeMvTH9Xf6y/Jd9BtsLusv15X+h/P+iCc4xlnsAlixGv8GfeZyScaIDZ+L38yqzZEtchXLVi1clfphbDbzaRX/leP/gsefQMSnj0/dLh9AnLzYuOxvunFbcsRbqsuTZDYmr6vhujZATpk5vyzHrp9E3NvrF3Uz4fRdKofjDWIwEq0m3J2MfmRCq7BJMq7jVSfTmfUjpdNuVx9fwWYzvnADL6PE0B2S/nx8PNE/iU1lR7t3HktCSzqR1i/ssNndPIZ+dtjwpHnhF3ajav2Jyty4ZcEVtU5Y5gtsFt/djk88fUTo6UA1vqU9amvRX6VPXrHm8dnTgRQQ2ntl/bJssSn9vuIqrHWvfVlTWfG+VHrHsq37IjaV/krO0NRP+qzJK8fOzrLttOK3Kz1gxWPLG1bnTryfbJb7CbJnfDb+u/gVtXN5w6fEGw+weWquuuCNvW8MlxxPW8IcuRvfA9644tSSY7iu/yuz7E5/V/0m/S2bjfwM3gDQjDd24xOUWAHE5c/WZdsueEMb/AmsbOsWuF3h+kj3Ln/NG+5/9j3Noh//7SfHf/mpsM+RDf4et5nalm+SHT2rv2qRaP6mMSYetj65Ctt4sMSmkjFjg01Zx2bFKtT7dfxhx+e9Y5aNYfxWTq5WHmt5YFOWzmd59d/FcolPQNvM8c9tl7vppGCnXCEVGk9xLZCX/WYvvtlOfrmt5EwLNtxPdeNbyVyMxXcqMjkV8+OiKD5mm8nqifGXMnNZFONjuRSU4jX15+3n8bFMz2BTkOjyH1aZ4TLFNoNOuPzF+LfXivExIc+yg1h9G2Cgf8xWoo/Rvzufqkg/Y3O5qpnbMlXaJgwi4brrhPVn15LsW5mTnns7usrP+KFj1fuYWLHvXfo9UNt2gV2sO207j1UsFRUk00/CZuGqjNVO5nceFXbLiv3OJ7H+/ZQeMm8Ag2MT7xNeFe8vvJF83LHON8PA4hs7uzMZd1yueXwX2Gz5l2SsfdlLTd6QB7z/TL+MGV976BsJK+28IQfxRrb3at7OdvYSNg94w2IJMXsjubC2dzk+FDb1Ad7oN1Nk62yfWG29tDnG9QrHjFW+PmIc2wGRbaMa7xrDzd9fif9Ypqqu74rK/RA2oV0eW+4348jyp7H2voibslwe4yj6t/C6XZV8nWz8lfgvy5vjv639fsVDHxf5Mxyf+o5ZMPJ0LRt5eZdP7dhh7xwIlbMgK7ffCQs9LeJtPBmyduxaISvLtPSTxrcjqCxjf9ma+jiAu+hcfaPxqmAa4IYsKmyqVXwfH8uS6hoxnzLex7uPCbHo8xVsdjKrkLoc8zVItL56CsnUn3fViIQ32ITJOOtop798yCAzpTTB1lNH/Fs7hf5ysPIQm2zbNr5Ud/7XO2LCPm9AM6xyP7mdjAWw+uMGG8WVLfQP1uqwJ7kBQrbudRsiz7IPPokNy1OOM5U1O5eRJnVsbrIrbKzMgg3bnAsDXz3O2Pi2eDRW5oUzcVXGZuHLCptsjyzfgg2lLj7yhUdH5ZN0lHbGMj07xke80dDTe79PXwjXiv4WGUbZh5xajM/asiDoijcueSK0dYEN2xnbe2rPT5Kv3W9AOwmrhMMzvnHJbTSeR7wBw+novCGQ5elBGN/GJ13XG2y4/jO8Ye2dDWjEG7nPqznymXlcy7rXvOFYka0DKN/RdJ1W2FRcAUQ7IpkW3lBKyW4xbTfEZFixCf678cd9/EfCVnqx/9qMcZYnVBvbXvwz29mmLsvIi8sLV4l46qe9glCOb2c3ZK8PuWpjc4vMX/T4tSvjRw7BNIr86DobRvUoG3Xd4LyhrtapRbZdt6b0LqvLZc0pyNiF++GyRfpEdlARTXU7Q0lD30r2O/w7GmE8LF/ldLLBNa/8bHAFNGz16t+XsvcyRPY62WHDOq0evycZBfA0xUp/4Yb6BuAvUX+lTjbYZBtb6kqqa+MT4BQN+tND+6npL78HRHV329vy+EJdSrOobkomNnG1Uq2/G/pWzpDwuYNHPvW0/i5xXW1dh63jwGP/yzp6hE0O0gr9uT+GlWHxbwjCPlexs6OsA9PpDpvETcsYmAe4bbs23suARl7YcaQM3w0+9QibnUyUThn6ffXY2Wz2jQu7YzkFaYxL3Rd4Q2I/QcYsc7YdRDsM7SVsS95oQGsAvgH4PvxCqR/DBhfYZP0bNpVvPMsbdvPqn0lJdvfIdh7ICGxuCq544+hztt4A/E7XCp1c9lthw/p7lTfskzK2CdWGy7fzzQ6bHONs60rdj/HGuepv9ykBjqV22LCMy2c0tryh/fM/Ouzqd5Kp8L+MzbJz5tPY6IpN+O/schy9johErPL4RhslV2VstnZTx3+TVzXGqL9LHQ8W+lvkSPor/dP/W+M/1l9YaPmKx68bs48d7lh8noiwzDXf1eWDDDTvJOZ1z/F46j4v55WPst9C3u05kzfX5Tzn0E9f9bLdItfrNFkYMVQybs63MnvZGTAYBsLgPLMtfe4nT2wZGzzC9Rn99Sjm8fjS+SMZd+PjR/3V2AmntS6mjT2LzbPjIf2Ftm2Z9pH+8qSY/fFKDg5EgswXtq4ydiF9oD/mAQ68UJTdyMhl8/jngsmIhk+FnnN7i9KXN/oL/eS6lVyLzHM9VKmSKCYv4AE24iNx1T+NDSps1ImgHO8LR57YA5Yf8Q3JZR/zhvHtU/a9sx37uz2uu+eNkZ56Tt3v+ll4/xm+2pRVL/sEb0isU2KDDW807Oeqql+T6YI3xPR4gcUz+vyZvKFDppI3NtjglRjnFd4Q+Iecxd7lYv1VfFXp95GN8cIG/bvyhk6s1GIcKdt+hA2430KuhzzgsmoYHxTQ/JmbKoZ7xFVZ5gWbnW2TlJmrNJW9spvKH5FkrMqS9rd8muffX8cfcnzq5h+KZOB2DDJXKgtUxgI3zmDXQkaWJwnjAp0Vz0OdKJRlSf1W/9r8ZUbLMvv4wGV1nPfH/NFZ+pfeFRiPrnt6V0WWHnBV2GRZGRf+zbHRcU0dg9nPeIqgAI6+7W57g6/e5H62N44SZeSA0YNIzbgqycE4zYqe0vJGspP+2MZ22ISJ/EL3MvQG/1eC7ueNxsCqKQ7+Vgv3hyexSTYWzh2bRPRJf/4dlAPQQ/uHbJus2BT6dKizXxQ+teI6fTD7MnTIBUBvwP37sPUHPmXt7fRX2pydB2zI/+z3YWgKgdyAtyqlBbVO8CI2AVuTovUfsg8B3Tf0GDsK3mf6VsmR3F+WI2OT7G5nYyxv9MMXD7Pv7FfUN8uyyJnLJjl7W495AzLwRErrBUpO5euLzKyHCkt5gjfshwO4W7p4xbEy1lee0GHGyn3Du2S7y7yByRutp+fBfKHQz1afxsEFrsE3+N/MG0l/OnxUb8D5fUKIWSTI9BCbtvENOw8y7nkDGvWXU+Gqfv0o4qHFL/gw/fn4SKY24VLtbfcdqGv9MT8759h/ecGh8JMFI8aG47ChKJvnMXZFbfoYG29jwwMBngWboqznvM07HlX0nVoPuK0vMRzbesYm80CJTeQBl7fNqzN7ZGLFabsVNiVXbexotW2K/3JaNwjLP8NNWQ6W/6THp9yYsbGbwsOX3+335IjL+QiC3CkbG6jANz/gsnY+0oL0bnVkkSkHEVkOJzAyWEtTyzc/ssgh9fhu6C/sWtqgtWl1MfutAsJKRsf1EY4px9n7PbpcOlbspU1yX7DJOFO/yza7hf4CrkLXOZ2AZLLV3ICVPBhvHh/LkWXM+vNzCXVd/lsneH0bhJhXtiqd2bVC5oAjpoyX2OS6B3p6rD0xa7LYZ6W/5+3mGldg+oUfGauNn3hdGl9pc1jtxmSq9SkLrjpkwpDpwLT1PL4wfpDNIV175I8yBGeuSmU9TWroj2VasKlSWjbYuK9kf1tsrvf37p0Yx1Hxe8CHn6w8sp2dHT7yDeOyE9Df0X0BsZ6XL2xpp/8FHxtPavuSN070FGh0uVzm5JMlNlc+iB020+4q3hDijb7r4LS7Z3k/YLPD8ZHusw4GVucP4OByKPph/q1wxJQx8+9LvGFYWdon3QDtds0VFHPVxZz4kDe4XcB547RvYbW46LrTX+BY+/sRH+cxgHkjyThSiU9ajNv5cpCD+8hlx/kz8V+09bE1/fDB883edaY5csPl/jdjw7FfcT3Hfyav2ZGk8YmlMpr/4Qls2M8zNuk6yzg/aSOrn3DZr3oofr1j9tEjr4RdnZerO7K2FVdbNf49Ksy645X2E+FF3af6rc5BJJXH80zdPB5+0rLr550yXuM4HdOd8j4KVKlwV/2SQz/ul68r9tikAFbhL4Rv+7k4X/LWn5GpqDt+ATBWue5RpjyZPcTmGaygq91IvN4T+kehO6Juf6rdjJOB1YKr/z1xFAFUgWa2/l5sCv3Z+cR81V+s2z8N4U+Ik/6e8vsxnqdxTXLtrvUnBJ2n3mXreQxZZvo96yjULa69erzLJ7ks0r87H7Xx5TFZHcXcYCP3I7nd4jzJWPI+gHJ77g1vABgvdbwTm1w2+CTLdc0bwRcEfefUUeHdcyJfu+r3EW+MnwJvoNbJy75Bcn2EN6SQ4Wlskq1fYbW062V/Em9cYbXB4rrssPMh2zbGkSdkLK6/FP8ln1IzL9+FdC9TqTMg6CyUfXZ8oW6XWYH5QfUP6K/izJWrcl2NN2VJzi95ZMf5kx6ful2+YGPsiH+HsnzOhsRHqBtTBv1R/Sn9/aQ2HhPTToNlygoQPmIMIK5CAKUB+6NrW5G4GN+o0P87rKbEVBnrl+tWWFn/9qg7yDQkEyRs0q5NvAJs29I3gd7T9vQ2PknYLFhMGf1fYZx1i01Ot4QCOIduD0B/PKG/Qp+LzS11B1oBm44Dxt9B79qJFDeFfu8zkHJKUoHNUzZnOEqSyfVHuzohpkTIiW7rtrMTetkFG0nYIMm5w9FtTv3c62Y/sI+MKnq6iErfBWspj73dMDYX+lv6df9TeiIxapsAipH2qThF0HTFKqf3BP21Apt03eUqxhdsrpGtD35irlqwSfrLMpd8wzjnlJZQN+L43uMRp2rSZw5ulid/rOc9LHoAAPiNSURBVMNneOOE88Z5APJjRDwJH+uvknlJVy3Lvsgb9kmE2/BjnWUzHwcuuOANHsOWN8J4py+oAHgb/7Xxcduz4P3EG5e+IaRrobrP8gbzvop/d8qC6ytsXvGNgAWnng79yQu8gVewYRmBuJjHtv4e3mhjFA/0V314ODxpwQarzBtet9Ifpq3/Lis2hg/3k3278Isok53X8V8eU8eqn5+tp6KqyIKNcJ38FCrjSmNBGsP1fEocO24UPcaB/CRsruI/su3ku1/9+PXE7COHwHeGW26u+LEwEB/vjnJM7mzw/Ji/5+Lae0eDzDjAOgD8hv6YuKHnRJDxhYDB2ryQMRw2YSx1tR4f17VUxju1K9QP1z2ew2aLK9AteTwl6046sQoE9A3Qu4xJTDbjG+c5zYMGWBH/giuNdx0f6fMm0DuAptCjrePbYFOmRKCoyzJmOzIyZN0LZkrLHbMsyRDKH1Muw+Y5mxu2LTRgs+3Rh8uPYScjJak1BVrbp+M9bTcrriyzLnULf7yNdypFoQfhlOoaNqDxMW7X+pM5OUtt26HySGnR+2ijyTI+55sjVr20uSdxZdxc5gPAt2nraJE0dMs3m35Ixhy89rpS1E02957DbIN1yP0zbzC2En1ji+UzvDF2AXUsj4RlkRLEfpV5Q2UWXXwjpAfhmjcohb1fm/7A2AAIH2gOtvMQm6hD08UyPvuNuawplO0u8cZHfOMl3mjovnD2tLPzgjcyNrt0y1pG6fYBwdwkQmLdC/35DWyBTcn7Fa7Wdtth837eMP0+tBvqh/3iZd7wHxS4icc4vltg0a9h87TNvRL/SezHY5zxfUP0hMaSU5c4jM+TTy28cRX/Zf0Bj3n/gU/VPMB+cRI2HP/Ftj9C+7+O149P/Y4Z39xmZ7k6X1ZUuawgGpcV5GvUpwIzfQTJwXf9ZJn5vKXfKxnLun3SEfsgpKWdXWGR5SBstLi2PxeqG7HyNA1gbAJCrELHU/08wvUJ3XtFKfSn6wRT2k2WuRpDsqMVm7WurfYLED8yvRsP183YVDJhte14XR0ex0cmLvbSfKhrx7P2WuK66dfHkxckhv4G4YvOgT9lN7lsVdftl8tIxCq3afUEQX/L9at+EXENK6qy0V9Y2Ek2NyIyx7RK32J53u1TuV8uu7G59xw73hgnUV8Fl1Z1fyZvbNqu+n3IsTD9P8cbXSa6Rra8YAHSP8v4qg4L/Vs7Jvo0PqrL/VX9ctl87uN7jTdYfyKApHn7ZWxGwRVnDeNyzix4w/Vn7fAAn8BGQ79JfiDItJR9hTfokcdTvMFyXPrFE7wBOm+AWMYN2/qDfp6ax/16bTeBf0kmHTfeIiMd1Qo8i83Wpwostr5Mo6LHPl0+qdM+CzmC3ZDM4cnaFhuA380r9ZkfQny1IxvHn/T4tBuzs3LmC8MqrzF5Chl3WTde893zgL47l21VfEUEdp5Wy2jOir+FugpwepCPgeSior4jVyVH8bQxtxv+fhlXXdtSlJuaLPqrrmP+/gyJ7Il+4uj6c7lIfxfj8ydm/BtmH8FWWoXNRmY6+qpbpet5fuaV+QqbgMXetntdLcfrfdiNhqZ+ku52+nvGp3Jd8HU+Glx3pr+dzkq7STa+01+V3oQk8yKfoi+KPNDfJVZtlbcKQrlvvr7ob9i6mK2Pdz71CR7YTtQ+3L3dlDY3xvfeQxm7HW9kngHx6SOeeMQbc+D+se7AG1dY5qck+Xr59+D9J3ij+4IsY3yIDRI2oR99gE0MGBlrnOjvlxU6u9Lf4hug81bIlLApeYNlNN441jG9hk0aQyWXt1nzhtgV442j0DWdn6l+KX/AstBfwPVJ3sj+m8b3bIwz+fgF3mDusz9PeJZSpb8QP237ifU02c31XKVRDwr0F80k9J/7XeKHvBBP/bpMO/0lbPI2+j5HnoP30bnqKd5ffIrOF2x2dQd37ebxL3j8SmX86FEQox/D2IWuV8FmnmS8XcvR3RBwaKd1gred4cp+5aK+OQ8F8eFfr0dCsmN7Xe0ECnHnP8WzWiI2coFNajqclbjGwKQa3wymRl7/fc0lzzJa/2oyI7Y7gyUWaB3DOr5OFEG/N0B/IMRdWzvh8aV/H2KTxhdlHDcDgr4z0/iPX9q1up7qUGGDrLdH/Y4aYcKR2GfSnyptEZ6wQnX+pD9yWf+t2YimfjMkGO++NRr/1m4e6ZHLD0sp7Tr7Ctm6mO81zF0/sbGjjI2VWwaJVX8tFTP9WYfF2H0R4irYf+SPld2A7GYZH6ciYTb2jqO6Kcty8rj5KcSU/x28IYk3jPcFe96n82xn7DuTjzXWzYI94A20/t95IGxI5XUrP8PEc6v/4vyKNwzyaW/jPeczvYNM7e44VgUzWHovb6Sybj9t5Y1Zd46h5I1LbJSUmsqVOA6sDuB86/xxnOt42da2nKrX/SDX9bY3vGEYDN4I26Hv7Cbrl2KcyRX8d80bflB8JIZVA7SN9/FojFtskv9tsRlYPIz/Ultm52cDxD5XsUlHXcaX5Fhwzccm/mOlBs5t6J+5sVRoSdjweAqbDby/1N3oT4AQUDXC9asePtA///Fp75gFA08EYkc+D2WXukpl0xas46YkTyJ69P8wvusU5EiTxnLNzluSMcisweB5PE5uLPMI5PUYjmkzjiSZpMCGZTK5in59DNRvxEaX8Ylj0JmDv0B/hQ0qGXf6JP3pUjbqD+hEpQroTYDfEWUKOKPU/XM2R9jIxuYknotirJrOb8ZkbCwzYae/gI08wgYJG1lkgvTJpr/bIHEL+EufusKq8Kk2u4+2Los+fYvpm/Sb6is7ubL13G7SnwT9aT0+l6m/PamHQCxQHW2dFTb0Hs3CGZz/Dw3v17DuJfGAfZ9s8Yujy9UnctLfpU8hlrv0qdgvyOYsyBHXp8Y+nz24/6ftrP9dvWvSyz7JG1Re28DSeN9KX2EJaif/90zdJ3hDjTdIF+XTl6c5la5VdW27fCuQZbKb1/fwBnNq4+vv4A2huuO6HmPHug0WJU9SW9E3Vt6IvnHBG+MdbQFGutng/UInFe9f240GbE7inKd54wbove8UvHz64xFv2PmF/q54Y+pg8IfVtZs8veb9LTYS/bHj+kL8J9SmtQHEd/+uYpwLW39oN75hTY7/Yl3X52kxqqzx4JN8gyDzta1HbtKge/4g+Jc9ft2Yfexw4wFhWU2CfE51l93NtnVjEOH92tfUz1k+T767892Koe76lWgv+3xjhaos30HhvrbYZKdkWUNZWgnisiRztQKjAJQYba27YqPPyBjGv9Ff0L06YXX9pfGMfm2xh9u77ucVGQuZhAqeikZv9bptmM0+rb+Qef6UX4SbFKrrtj7quExF3bLdZ3xqKyPraGIlAyt7x2w7PgtSd3Jxu1tsss7218T3vE/9Zt8v+0HpU8Aa8CDJjKquNaoE444HdvaaZC+xaOEsXhdX34Lzq8eWN3KAhnWMi1wXZbc+aqRwnzoueR7pvMLyWT3kuSrLZAVPhSTeeH6+KfoNMq88WcnIvKEwHx3FNz4YUqu430Xmvd09zRv6gDeY9yveSPp9ijcyrva3xPHIeB1CKh1Joa9L/ekWm4/yRmk3yZ5rm9PtnFHxRimzFT0V41lZ7POB//mwHNfi3btscxu/sPpTLgU/KS154ZE/ej/7flebi3YEIMQ4sotR83gQdZLlffR+s11fXvuxI5//Ov6w4/NSGVOwEtK77FySoZGT9PNhSMWWqCHdJTv7mJN7/CX+jlnfDWe2v8hIl4KDhrK61gWPp5a5yzUb5FTGS2w2DpsdKJPfInOu6zLRBN2GXOfc2atMEQlkgHmzJ+OX1k+m7ostbZEmp0LGToYyUiLQ2xjl/QkH0pjpPPSzxSbiEWxOZ/51ug3y1APTX9ZB1qcfyY7yFsShbjU+jXXDMVbAT93rL9u6B2mmux02Ja48vkT2ZlcC4KY4f2ywKla8SzvJdlTZjVTjm3UdP6B/WqABUmD1tP4yNoQnfJIcL3eDyuYgx/AS4Dx0BMpPcJVG/vG2EzfxQoDJ5A3zGFTTivA7jo1fWV8qQ+5RNgdHQYfv4Q103tcm0Jv21LPBG5d+hVWH7+INmMzko9agoMvUxDcE9CPbmaTf0njV+JBkX8dHdpZ5g53/6OmV2PFG6Vf8ezEXP8sb+R1s6gPMsVUwyv4jiFjIT+ANxtDEpE+SPMUbG/1V2PTfnuSNhLXeFOfgjdDeZnyONftUwvFZ3nCZ6RSCdY6UDTaV3bBPPRv/Sew/YjfGeQBn0/7tsI3+GBs/ruI/q1vanBKOCbchd3/CT1xV2k2sWy7GuXyyylzhzeP9ExxMF3/241PfMQMQHtX7ObBsV96DcJQGlLdpldEAr2hJaguC8VX17iD2hErGtYoY2ClhjraUFYRVGCobxjcaFJ5QGsZ2zgDe4rbGW2xYppYCsezAUhAzybhgBcxUxhv8myjCG5OkR+jlCmGJqxI2kSiy7isZIejpeTcA3+EyieztJGCVdfJA96stSFhpzFsU2zdRfLLI/TLeu37bi9gs45vErzf0TUkAhI0tcqB9iU30qS02y/jM5mgCaOjB4Ck4f/Rdy8NNYJtNQlDeoK1+IYUtJ5mtiaIub6eOsV1+SN/Y9WsyPmM3QuMbFf03rHV1BHh6A2SsMrutX/SbF7Uqv5CtzMnmduN5z5HsKo9Z+No41yw72XeQ88o36Fxu6OAk3riqW84/7+WNNAZtOjv4EfHOvLHON5t+BH2Qab4J6VJm86yDwTkeMN4wfYF4f7dzsf+0440LnLMOFt6wsjcAp0Df0N8DxWrfj3zDZRw4POSNanwDV+MNvQH6pj6Q/GTlQ/ONvIM3mowUaO0KyxsaVZyazxedYMYZi8yScN3MxTf0xZE3jTJdYLMs0AQZpaib4r8Up8x2BJ5+eUOPu9DCawiL/i79cbT3tM1ZP8k/GCt/EivexZXdXHPV8Km2q6suU++nuGn7ysevG7MPHEwo7Hh2jug8y0pJMuK8AheMHHO1ItQ9RyVK77KyS7uz1W2/lzKx41Fbc0UiObJKTxssiSTaXlglst92WC24XqwqTSldpmXLVsI26G/BpsJtEsA6Pr2QadTV8Y6B6ZHkWsg8YbWzm6dsjtuqDhmTTrW9bbb1F2VaZcwybcgdA5ST/YCuP9BfbvtSZpMrShXlEgJQAdGY/hNSkGgMlzywYFPJyDaXfG40oKOY2lbcV+Od1Z7mgVJmRirob7ybZqmVJpykAOuRTkbb+yDnmgeizGmifuWQC973vlY5+AnZozHu9OB9YnAWPT3Y9VvJ9HHe0DD+2QD6N/0e8cbTPljI6H51wRt2mI9qfz/JftvyRoVVxkaALe8LYcNIZbvzzsET6Iu8/w7eGIVXrNRlFZXneKPs9w/kjXPi7vUyxz6BVfbHS95YZE58a3c0la0v45v9Sm63wDVzVLh5LbCy3lQFcsryZPPKNqbNPaG/fHOYZcrnRhWnhIeRr/FAYTeZB0Ldab8s5UdT2P9ah6g+LvQnOD7lxswMmmyvdAaeBLofDwdqlHYI0Ef6dKkbHsXrrAsAele0JjgPHdsCS1039cPneaLlJ1a+4gAg5KaMspLqQtFf9gTQjpGqoIhpNplsAskgBjGMVcB1XEu7NE3iTM58DlkP4GwCjO+QmEyuT9aZPwGxtubq7LI7VCMdhbosk/2gcCWN3OvzUMgbFv1lrKb+lM4zNrOO7GxukQn+BMjffXP9KZQ/UgzTD7Xh5zr65Z2zKJXRsSG74fGkDUd8RfTshCVNRnqsOgEv47Vz1skWmxrX3aSwHOPdFb0p9IcEmStb3+okYJNxJWwQU8jCDlPDmEUBaN/44GyCdq76C1g98KkFGw6INnUXzlD4u5R6dN5yW9e9TjqOG59ibrKgbRlfCqxCXbx8XPI+tbvlfURfqHljI6f9fcKfZp9js5dL3hD+9yO8sfEFJlEAclPo95o3qs8/bHnjgvcf8gbLaLzRdPBtwRsJq8gbMd271F/FG8DggmijGP4JYGySlVIQw/jmb0Ltvswb9PRl8gbpk3nj6Fi1E6X+3Pb/mrzREm/s9LfpN/tj1knJG66HOsYB0J/m2SJric3Un41XWX9JZtYJjy9wHX003HG14Q1bV9Hxupls5rl5/ij+CzywLKj52cTTRzwGYZk3B+bT2MxVScbef2HrgsCRl/EfnS+p9b+OP/z40I2ZiPwvAPy3AHwH8H8F8D9Q1f/Pc3XjZOw6TykS1SPX5WvustYVsMMWdQ9AvolPFjiS1Vld6tvnBUntNS37tXIy5GQZOwlJJwqXX0ckotA3CalEmrFI53zDEORL/fb2xImi/0B/p/oAPL1S79o3K2ptfayfcPYxer9K2Dynv/BiqsszSPUYf+uqP+83ycQ6cb1Aa7u5sDnhyY11YukQqv4tLECewCbZq6hPerxl7mxm2NwyviQj6w/oabsN0TFYHj6/8qmqbraZjE0+FwVu0rfufxMaO5WlbsL1S9vOnNHtxW/KLupi+DcUOO+KmwjAwRVhw8Fgr7r6FGStm3Gv6s5FnaGVkR7bPxAO8I5hIhGbXQpLhU0PPChQMX/EWheZq96ZzO+7sFW8YSlSyL4hc0FNMLEtxyhpjHFHTBzaU421B6yZ95/jVOA9vLHTCwTOG5p4I88363g3vHHB+3484o3BZ3q3nQYlynzFG74rKfH+I9+wo/FvZndU9zZ2GXzrAWvQ4BYblvFF3pDHvAGgy3VXtNYNYdxzrNg8mIsveeOCc3a8YXE+6y9gQ/gE++U5lHYsVL8JfIE3/FrXHxQALaZW2Ni5Z1OUPvUg/lt8mWWmvg5AvwnOU3HwvJ309yj+2+nP0xA5pnHbjjpwGZn3G0r9PeYq8fFNjezjP/Zl72v7pO+LHYovLuDzR3tc5PL4dwH8F1T1vwTgPwTwP322Yny8nAwea9AbVu7deM1QbUJKbWGta1vb+tMs+tD00q9EQ81Gq9DglOHmSfpanlBdl0lNJraisD408orpl4xNws/LyrBO7jfhmGUGZNi0Rqwc1yHLOcikcNJMWGu/jM0YgK/+6CTaUfa0NrDqDz5+5QXUKEeBXZVGtZUx9es2R1iFXPK5bNr/d3+ATbLP8KHJOcDrsjY+O8ZEMafIKZM9McaF/iI2q04yVhObyIi5LoDFl/lJSOx31R/7VH6Clzlj0Z/5E6/6LRMh+4XOxi7sBlkn2afMtiuby/2mmxzSXsdp2FyeeLJPRa661h+g/aZMZh/T5rL+NAQQnhb5zqPiDSV/X7DNvnHBGzltyU+DjQ5rOLkk1qDQrj3U4TO8QUdhd76KnXgjzjfXnBqxKeyMAuScxsTvWRuu9t+7eIOur3xsvnHBG4w5t8W+kPS3YONtfIA3lgWIyPuuP+uD/fMZ33+VN1DX7f4M0sEsrzacjZ884o2wQErjf5o3WGZxZPtmQhc6yTyw+NQr8Z8d6aYs+p/2BVWz9YVTUdat9GfxH9ddY5qElY9PF1703cOt/qO5+Em76cgUMY3hmng/3GR/wcPXpt7x31c6PvTETFX/T3T67wH4V56unI0ddE5/u0NinQRCkC7r9ZAigVjWb8gEviujOaRzWNGuLu1mEnkgU5oQl12nrPghRGI7OUiGTDhpYlvSWBgLwrjCFSegqmhHGy0VxEVy7bApsbjAqrxxLfTXV9pp5mE5qn5dxl4nXEfU0SJTxorl0imS3AT4seosykG2HWyi8gtN5/H6xEsSuY7DiX3oj2UK+rvQCRDsZtVfxibXJblshgLWNKRFf498quiHx7OTKY9BexDTU1rauCarTDJet9zxQCUj25xICErCf2BbIJu2Lcsb/GVw7xOzj0usrMaVP+5sG+n6Ow9luRb7hWdSXPvGA94I15MvkN3p0Z+M8qACX+V+sw65XzziDZZHFrvzzm8C/X7BG1lGb6eQKWOFjQ43uOKE84a+whsNBdft+7nkDa9LerJBHlZ/HhG3NCcu4419lrwRdL4Zg9J/TfZz0VYnFzIuNpf1p3W7pD8Betqd2Xqlv6wTGqtz3Xt5g+dxt/W0iVga/4xv9v0+Ff/t9JfjLkXf5KZ1hS4xjuFU1A1clnWQZa6wKuwv62+mIMrSrxZ1g821JLNEzBeZlvElrL7yoY+L/BmOn/mO2b8K4H/3bGFN/y6Tof0WnH91luUDhfwvZl2htvrvCrSGmQs8CIz+DbJmR0spOSaT53q7wcsiz2LgTmY0vjZlyf3Mc12djEk2f3S5wqeUA/FZ6niMroKeAjoIXpe6o36jH0kmz2cuZA5t5HHT5BNwPdDTIQ5A34pheT9FwNSow2dsbo5upk6EuqOPoUYjcOE+vN9Y9xKbHU6lLk2AFQfTnzYAGnP0A1YbGVds4rWSvLdjGLgOG3db97bi2MI7HokHtv0gBQSE87aujf3oO765/8mMu8qdCnGtszieaHM9BLh0yF7maDjf5u6Vnk4peOxTVzrImOOZugmzF46K991qi/5e5Y0od/aF4ZzMG6Tj2C/+GN6QXHfYtcJXwU9RtEvemLw/XwmQ533jkS9Qn9oEZwOOAz3t+K/NG+HHob/MG1yf+vkpvAEP0y9l1Ia+mErvX/e23onNA5tb9ZfnyD4OPQTnW0/Pq2Kbre4HXgHf9/IGqC4Efav/8TkSQUij4/iPX3d5Jf4LcRM2+gOWVE17D08PAe7znbBtum3Cbfp4gdWCY6y7j3EU+oa+YPMj1t1x4lPx3+Jfm/GF8kOmL3x8tSdf7z0e3piJyD8B8A+KS/9YVf/3o8w/Rp/q/rcX7fxrAP41ALj9x/7j86VSNqhM2IIY5IccYi1fiK3qCrCmRVqA2mTY2zQ4Df1mGedE4v16P7FfXnXp7fJNSy4LeFJ607FAWMuU+0UaH2O14Gjie1sroTNONl7xSVC2Dp/T9RDGKwlXDTL3Vbkamzw+b/uUHmT9Hsl9S3iprYxjaXOhrlK+9ao/lX5dDwA/EGaNZcU49bPYnPWj0W5soghYFXn5JqOnItk7HgJfqbQhomhrxQZJ5j2uoV3CKtx4NaUP9RX9PMkD0S+uZQqfOMD49h2NR0aas78H2oykYluWkrMEBWF8iLhudB+2MbcxsMyWes1clfW38anF3y64aQkMkl93mxNQ7aeOivcDXtLNwH7zVe4/ijfsPd4DwF8K3thyKi5843XeiIsQY+HQbKJNIXjlu5JRc79B/7qVUXLZgOvwBQXkmBiVvJE41nnuI7xBMmc/k9a/HynGG4xj6ucaG6zYvMIb7Aumz7GxhOTgdTMXP7Y5jboM+gOQ5oWSN86+IUnJG5mTGBtKyXvIG9s5sdCfdP2h2b+1/30k/su6l4RNTrd0rLyMRKyquoU/SsAiYiXjZnTaeeTbdc4gWx9c5XEX+1nyv4xVZXOX8UMYX62/X8cffzy8MVPVf3R1XUT++wD+mwD+a6r7vSpV9e8A/B0A/O1/+l9WN0QgGiwKoqCyHilxzLStO8v6NTu3VDid7axBIctIN2TMu5lEq7qL4+SydqMIQEfAikRYeQIqsZnny2NxllcIDXdwHl+qq8BsjuRi/WVsRurFKrMmbJJ8FVY82Vrd8X6BnBv9SeyHiTTYDevgCZtb0jy5rhWlQXFfC64LNtd2U2JVyZjr6hTbd/FL45t2U2HD51l/jA3VZRl5wrSyhlNOy5M5cZQpP49u4LgnDnh22GQZFf4BZxBWfTMZLfqd5/wUK2PztD82izd7eZVu4xVX6VYnsd3c7073lXxLGlmF68XxkPdHn4994yfyhg7eeJlTp7x/Vd4o+0XkWJnX11SrjA32+k+8YTxb8oYk3iAZpox2fsEb5fg01PWy5gcn7a58WXfPG9XTup/NGzvfv7Y5jXUTrkjYPMcb6v1wqvRujvR3iZ7ljQXzjT8q+pPXc4LOvF/V3flU8AtUdYs50ceUxqfzv+CSRd2cmhrGz1Jy7Bg4v5irJOovxKhnbyPMLw/0V6XwR87M/sfjq+aqgkO+4qGPi/wZjo/uyvjfAPBvAPivquo/f6lyuimzqd+NVGibT5oIgnFUdQeZydJPUdfI4ui78fh2pnwNm62Oh4OKzn678Qq1f0Hm/n5TrKtAX5U41J9QeQqCY4MFm+VxO03SOZ3O758Lp+Tx8XNhSwe1rYBnQMAkM/uZMoMm7kSUEqos2ICwyTfvLpUAchOcd9q1LfQ7dJJIKso4bS4JRDJV2CT9wdpUyKE9vSXnVRS2HQhzQ+ZMyB1GthsEGSt7tdVzOQgrGvtqN6S/4rysi/S3T1a6pvSI2ZQALdp6bJu8eWPrgTN06sTbr3At/dHaVmg7ofbELAW/QX+FHS3vgphZZX/Miz628ppkVOIjaZOrqrpl2k2wV8PeBEtl6VjnOPbHTaVHR6kH5o3KN34CbwT/H+VHmtfCsZsbjdU3irnqZ/KGXbZ0PPORgE2WbRP0PWF3eX71uWjwhm23rkXZD/FG5c/MbUHm/nvmjWDT2UYf+MYfzRtzfMRl5Xgl6k9jGd+nk22bZKx5o59Lw8/nja3dXPljLyQNfcfP72nr+8qn3hP/LXZz5Y+T66Sh34ydM5a7jP/A+pt1AhbhUPpXAlb5dRuv2QC5AXrvL3y+J/6L8cO1/iI2tf6+5KHgkPVPfXz0HbP/FYC/AfDvDof/91T1f/xUzWRA2Shzig+XXeqma3Fb5VE05EUPQzvgL1fao2tri1ejL/ttLKPEcpXM7gwSxm2PveUAoAJ9G9vuosKGxiabfhzXVSbOva/qzv5kEvhNoHebP2RTd8o0dUBYpX6F+owEnGWW9eVj0h++Y5umEb499rTdUD+bukF/MP2NieE28vqllbYQdEJyaNWPnfIKfuPrstgC24tPzgfGjlOz/zC+RcaMzb5sKXO4NrY0pndj3NZP9Bx6mtCU+l9TZ4p+LTCBzCd3hQ0u2FBdw1EaILfxjlljABmbWn9Txt1Et9btMk0dZp309BiZ+hPA3/e0AfFstMEm+5SM38rNUawM1Y0+RFtUv3qU9kG8UWL7Dt5wOWfbju2Bvls+8UZl78ti0NY3ZP6OF3hDiDeUeANtldnrEA6j3+rTIH540P6a3UGG/ok3XHbGJo3vQ7yR2pi+n3R/oAf1b1N/S5ugb1CVNoefwxsDQ1E4b8B4Y8F1tJv1VT11WnCtbHuWywuQnlZ3w/z+nBS8scMm2etsFyh5g8s84o2RWnlSjANEm6p0sMUmXavjv3k9PoUc+gPGzc+Qo/g0hB8t9fvT4r+4qCIWW46Y0Agm8MAjbFKcAox5bas/vkGUxIH7t6G/zPHrxgxQ1f/8u+sCwSC2j6/FzyIxsqGFupranf/KKC3jMbFAoOe0eddpqDsJLxJysfIXxpdJVmk8/XrI9R2+AmA8wl6flAVsMhYl6fTrPPbgjEtZW3EyuUb+tfkxCVz1U6ZEbGSKmEVs2LviY/4pc29KeoRFGF9js8eqspNSf5h1V5ksr9+wimOosdnIREjEh25Xtj6wcjWx/mSmDRZla9vfybQJIAoZK5lMf8O4ex598ouA11bGC7l2uGbsHGX61/QHqrvBpuSbgES0m0r+BZvctqVtnVOO0qeyXIFvNjhl/ZltN9BkrvZprTjeV48x1ogBfi5vPGF3Ih1L5rmHvLGR6128sciUOdZGk+sWMjWSKSCTsdnjanLEMaiTjxa8cYnVM/5pvz/AZrE7a1+BmCGRdJKxqrigkmtTluVqKS7x+qY/1HUXbIL+Ch1l3nB5AXv6xjYnXMJiHMVj3ri01w1OmQtMf494wxo8hTNxS5/a9xMxuY7/ijkx4GozOQCV8G7/Y1svfOwKq238V+jP7EkA3OFcZboPMWklE6bMl9xU1GVeDPpLuP86/rjjZ+7K+PwhoK+3m+Osj1x5whTMSd1vWFLdMDEzyQLwlxYbpROc/YV6bTrSNABPQ3I56DF72/U7+7G684Oo1m53j6v0L53FxopgnxyXr7dXRC6x35Duk50wjG/WnS8vs8zw76D0x/w6vx9DOIePatu/kvuJ483Y8OSb85wlydhlUog0aFOcOOOToKLfoL/xb0hfFRjKRFipX19pMtYkXHVgJehpUraSarrPOFT6k+QXXSMf1x/Q05GOE+e9hfqUmUq2DeSPMucblKnHWp9xckoyK/o7ECLQG4C3NP7Uzwym4k5rWcYdroZN2DE146oTKzTpdU7WydRfnuiCbevqjxmzS2zGuX/8Gejv1BwCPRQ4TyDZusuU7ZX0s7w7kPSnO38MMqW6rx7sC4RP9I138kZhowtvnOi8Lx3L8+0J3hDiDalt9GneKGT26AnoO4Ka3ZXYJBltvsm8keem0n/t/Jr3W+u8AeKNkvfJN57ijSXN7Am7U8wt/I9eR7EbL7okDRMbxuoF3mBsdAgSZDLuaIKzaX+HkfSnhFW0V+oXKHiDseOdkPM1wsq4DujvczXijcFFwbZLe11leo9tB/3ZoWPuPEZdredif4dqyPha/LfnAXs6FeIi7Vh13j+B+1gYz/GfYm83IH98Jv57xPsK6Inx5FrHNw47GMsC1yvx36bfh7b+xQ8e2p/9+JwbMwyb6UuEgNBORmEFQmAvoTr5irsgOd1aV+x8HNNQh1Pa42HjEl4F46Ucl5PSd6p+7dK4sfM0Eye+XlbyahTXtb8V0Le5He5ufFUKC0/OYcexjCs9yhbCRoVXcoZTHoOQRjwYUzE22IyT8BFModx9kE4qHE33ksrCMFHgNpZ3GnpKC5NHiQ33Ofpg3PtoQ78I/WrEKuNqGUgKYOjPcPQbVaGtlLmup1SQgl0PSZ4kowQZeae6ob+Gbu/32S5Puq6TgM3oN+kkfJwy1/U2CNdFfyazzr3f3xDTihKu4ckyCs4I2MS6nq5VYhPLGt4C+HbJGEGdK5b0t/VH4d+TP9rvl9jYedcfFq4iW882ZePb+NRWf9yvyMJNUIEcPOu9cwb0dzGG3BZlNR7HO3nDfPqKNw6dWCbecB0m3xcbrftkYTuJU7e8ITVvAOg3Y2Z3BwY26vV88eQp3ngRG2TbYd7vAWsIekxfOvucfIWXeOMKm+kL1pj2VLgTXSvGNdUcKTOI/2m8UXCbASMKv+kveaPqB8/M41ZeAx45nTTOA8Qb9g3LkO4/dIrZVuANioFW/dkl2esPs+HAG037gE+yg8peDYzjnfFfwibwfprHjWNFAVvsReOYhvSX/0sy22sixmtl/Gc4Jn+MMmGMXSLvT2Q2XPVE/HdhN2v8l3zwq9/57Pcf/FMdn3ZjFiZXiY4GjJWH9Ji43LBgEFasmwgZkdwWQkasG2oGGWO/sZ9Zm/sRL5tSFxF5cgY6g6hCSkvGJsq+pgHwyPPqTsaKz0dKTe7LRLMnZSU2SNisOgFklSnrZMiUUyIW/ZlgI8haVpMXOUkmurbo70FqFNduEstycqOoFDLVRMlpSNs0M5Yp1036a9yar46RkoIdmZwrNouNZX/0G43oU6utFykRHaSpP5Bakw6mD3nHpY0h1a1SXFjXi/7G6q39pwm2Wbiw7YwV/cbvhzyNDffD4Kgi64/rBqwe6e+CTzM22fbj+fNHxnK5OVjsu1+75A3S93O8MY4zYZn7Zd/P58viHVa8so1usJ3+L5D7bLJjw7aTZXyeNypsqKfE++QL0gXheCzMkdwnj5fl2vDG03a38AamjwqdbsZ3OY/b8YhTNzbn2Nkppcjmfp/ijdQv6/4Rb+TUOFeF8UbAQ+YZ6X7xz0V/zMeP9Jf+HqQq1ucpQX+l3YSm9ny12DpjgVV/c6Ye6f6Gyb3Xj0/vanst4wcXNuNa8H7ClWWy38WMPOtvY6+s24Uz0/nyJDvbclX3ix9f/b7x2eNTbszCpGdKt7QGNpZcb1mR1FQ3XUuO7nwjmFuRSq9vO071fhD6WSbmIMPoOU8gW+OndmWS1ALQ+BZWDBBiv8s31bYykVwNc1fGfM1k4vGNy6rwtE//8NCVTLHlVSc7rDKRE/kE/Y2JGaJQsR+kHMMaWGGVo8DC+uW6kdiG/rg9w+uoU/Li6Bj3jE3+u5Broz+fPK08r8RbrzwxMzZJhlUnG5kY57ZepwRiBqDr7xDIW6Z91n3s+8qnVpk3+gP5H4/JFDZekFabeZlvslyP9Md+8Qibyk8UY1FE+sdPacewGAwU/ljpbytz4oFlIt609eTBfrcE9B/lDWr7Kd4AgGZp6xJ1mn0fScYUMKJhBk473qC6NW905ekN/RuIoV+Esk/zxg4bvx59ARkrAHpHD1Jt3uCnTcyxOT3qgjdewybZoPsCOm/8iDrL/h1kfCdv1Nio9+Hyng94o4xTsu1f83HJG66SpFu3dekb3jBvJLt5zBvRp7jsyhvFIXzjMapwjMNprdw2NfY4/ivsZsMDFncpOiR6oqfW5++qFXazjf/GOK9tjvU35QAAyePLMSo9wfXxMm9VMm3shrEpeZ/lGIuB+cHClzuY2//kx6c9MatJBwvhl15OxlV9+X16oK5GSufCu9PQUoGQbKsTWn2ZPhJkpDZTv6Estc8rO77LYzMnEZR4CLcRHXbBI/0dd2WklRw7H2UCVgJATqj0ROspV0EAIss4L3XCMubxbfvAfOTYYp/CpF2RGfXHZO2VK/1ZvwlL5Tasv5EepQGnMTlsdMjvPKhj/kD3WX8sIx+eyqhQT5Gak9I6abCx7PpNf7P92s/huszxQztwnmalswL7XWnrF3KV2Iyc+SGjBwfsf6jr87Uw8RV9uv5gQYCs9n2Fja/aFvqT/n4Z6D1Yttf87sw1NtMv4hbvmQfW8YfUnvceO1uqZPV/BXsu3/y9819BT4V7w8Ibjo/7INtjvinLOEvNG+xXKbV+mrz2uo3aAcuVgmTqN/PGsgvv9m+z0prrzBbl1u1OG/q3p9wWUjDqGDzSST7fYGO4ZxmtLOPtKXcJG3kwj1/I5LxR6LPjrN6Hy2wcO9LtAm9s45T5d5gfeLw2vgXHwRsuc34XSP1dWeVUPKrbZX+GN6ZM1/FD5g3Ginh/vK/O79Fu+82H+Sewxn+P/NFwGeX9p4bBB/1zBzJuYvkGLfKIzPqsL/df0L8oyo5x+O95bhp8MHjfFi+9PWorc1XAo8Bmq78xNpaDY4RKFb+OP+b4tM0/wo5DblwIq0rruyWIE0ebdVV0bp07+CiQoT36NasT9BfqrYPNF+hzv2oWyw6/K8v9IpLXWnc0q+hOegIytpLNMq2pGIlUzakLGVWHI1K/LWDDbVGKy4EezAjGSvM1Np7uU21j7x3381UmXfWX68og+oZ+o+H95PFmbBB0shIugg1mu1lSo6iumA027Zd9K2ANdX2DkI0+w/bNi00V+iuwmfobk3XDfKfAPw2hAQslOyrTfbLMhU+x3bj+tLD11jdGwQHI29SfVmW3to2H2EgKatsG10V/GPrTeb0cLwgrv/GS9Tr1W2JT6g8Ik7y95+NcddWvxpvbxbZXv1iwuZAxBETPHm5bCHhw0PwSbyz6TryhRV3jjQPAd9liuXIqVrt7kvcB0LslxUKKjcGevLUW+dWxif1e8cYz2EjTBZup/+ELY0OEd/HGxkevsCntrqWyCuBQyA/BlvdTv+WcSPpa58SETfLfqD/iDRk4VbxRYRH8FwlXO1eP+RebC1xHcg0bF9vQ4lXeAFDppMu04dTF3zJW6HrT0Z49YSxkej3+u7B1qxDGNf6RoT97WiYDSLYr1omMmpW9JmyiDWqtv+QH+YmUxThBf4tfZK66iP8exQ9J95JwRZLvqx1yPi7zZzg+7x0zoK+aVJPP+JtKRoO2uvmxN9UNKQaVM5zzJyMAdyQMucI5gpOhOs+P1BMxdN6adaOMOthoXBw3QhrqFzJtsMkybh+pV+TlK2lEFEa6Wow36G+jk0p/O5kK/QXsGuZjfpVY1scb+93pJMiUseJ+EzaRoIg87T8mRhrTrp9wZP3hGf2tunf9jc8v2BWR3Pbsd5tKvJW5xia845n1x22f/C7eJqjDhf4e2PZiN4sMhJWdkq1f2c0jW9dnsLnQp+vPohRFf+F7SZtjufY+lf3iEptcl3riXd9ePfhmkfH5q/CGY4lpd/z0L/soLvRf4PMe3pCmvsMsFPQ9RsImz20XvMHYyANsvB8/T7ieJsaYJJd5rpDpCf+9xIZtLcnIu9V5cJ/HSFjkfhdfSLg+zalQWGrcyhvDs69S8h5weZCZcMy8scQPVjvzPrmrEq6v8cYVp6KsO+WjsmmOVBpP0F/iHO8n8OjGbi5sPb+HF2Ic/95b1FGQ6QqrrL8r/5MdjnRuMc4po9U9ly91C2ziQk7Rb6U/wvVdi3F/7UMfF/kzHJ+XyujbV2Od482IdZ6vzoB0LvFch+EbqS79WAEBGnCeJ3wnRY1tx3xr7kfjOXR5GrKSMmKqnbc93NSfcFB6U+rXd/0xcmEIeEIssbJJFj7heJoDjaNP7B2jkO7VFKq0Q9hWf2mnMADLCuimruE657mYS7+UPYTeEYz9ZuLf9uuTb8Qmpx6y/lRTmo3CJ2zTn1UO77wl21bMXZyexcbPja4lFSdSVdOlYGIFmW1V/SzYFFhlTJOMMXUx1TUnbWdfchWy/2Q3ywohPwVb3uWI2GS/iGlS067N1r1tX/iRNDbMymM8nrpIPKG5fJbDbYuwcR6I3XqLAnCqm7IvV7pQ+n3BBpCkQ05JCpwCnfaaA6RXD+l+Gjl1yv0Sb1TcVvEGsPbVJm+I3/0+yRtVv4lTc9oZ80bG0jdDGHOR9uX7aAOv8kbWYcamvFGcZe2pmNxHBft8i2G1S1f39gi7p7GhYDXYnYabI69/KPlo8gVUvJFlpPPETzavhSdQ2SeJN2b6sgb9LbiUvLH2u8jo1XXGNIwz80bQy8DuUOj4zAYlq73GGzv9UQol689SF3Mc5q9oHNR+Gm+w9YfzzUSH5xfmAccG8RCet9uwJ3ayF7FZUvCTjMH/kl9MbGg8gHMV7jRHPor/ln4VS4wjfmV5Uuf6M+ew8S0Ifq3jI1n2X+n41HfMrgLm4PxmdWky4TL5BiFsZ8vMa4TfMLaTHSkRZJnSps8EudwZ7XdJziCj3+kw5Zhym15XAW3jpdiUL07BaHiPwBx5RwZpgulbtKZ+M7kx5uObLDjQP1hpDVXEyPgnGQGMZ+Y8jnktElqWSeb4re7Rm8KB/gJ4m0JwW8JtVxiFMcjESgZWKRVOuGxLdW/aAxnFfB9oHCfl8QsQ6noK0gWuc7KVZOv8LkSqa+0PnHA3PLjhZ7EhOTbYMBZx8rZ+NF4/BNCx8Ye/R5F9Cn3TGQ7kkz9OKFZsYr8bHzQc22hrYKW2wluVJx+qvlMWbsRRXOM0FF7hTLiKpTCavYOwSr4c+kkY+jsRoWzuazNWs6NqfK8eMnrfyLnlDeLdLe/veAMIcsvgshCRJLvrfpLkKO1v/NAYW8J1wVY6p/K1Nn6/ofOGp0C/zhv7OVFWuzPfMKm9rsyFCvvMBgAQx672tfkPvY+SN67sjrsi7MwfZmo9FWyx7jVvRBvWxOUePGd75fEYrrbIrAMrSx2sfOmSN/gbUhfxQ9Vuquvvc2Vbl9QvLnjD7JV0MNNWn+PUxdYFHnfhzT7SVegm/8Z2A2or23rQH8mRsaFGRMb3BA5AxuJDuAGpsDEByn59WWe1t4BNrsvjoxj11MBVkuoGrDYyr/qbBev3RQ2bKHf7ync+CvzaLv8jhzkSHf5uQRX4J3K1u3+eVxu1FJ1lOIkZmE1Apr9Tqd1KJqxGDyQDtnWH2M/ijCyTAOb+SjIJdDy6Fq+nuZ+ATYEVTdb2AFwIm/xO0lwX0QS/AkZRKvHD0shtMNnV42WZzAYMq912tlmmgJV0P9RE2EGmrL/KrjYykQoWuQwXxhU6XlVXcMHRnXg7ecKtsGHsskzLNsmMjc1zfn3Y2EhrMWJ2bY22t3Z1gU2wK1sgJrmirc9+pq13uTxYw0x8CbgW+spj2GGTbfBSfy6UhKfm2dZjoJZ5YP7rWGVsJLZzZetmVxhYUc1VB8lupvymP3qn1uQjGQOWy9/GzXmDgRcOId5n26Lry7ViTC/zhtld8ybGv7POwmUXvOHvabB9kxyu652vcFkhmU7MjAvv7jXeyPNcfmLgg8++4Kv2LFD/U63jQu+cGrdy6vx3h9WV3UVeIrujJzHrk8CKyzJvsA76sdiRJL4irMLfXmfYJj21e403Co4NvIFYV/qog62TzEMYkklWnWSZGKuBrWLlfUllLzm1wHEIDb9JgI3f7C+NeaM/tqtX4gc7JMVwXSbDjW7qk60YNqVMGSsegx8Tx8rGKq5SR3XDTaX+aq66jB9MjiUV8gO8/+t4+fjcJ2YKD6qXFJYdeQGYXyiHG6GZmJOz0ASpg7oVMSVCMVbfdGwhT8YPLKuRTFhdptWBc87w+pgfVJceI1uZ01LhMFOVAnk9wGpgw7vuEAhOHtPR5q5103l5wuk8ZS8RazvBXzbc7uzkTswTdcSGd72yKYZXnFwmL4NADiFtlD93kOwmrppLHN9CwDGIUcfGbI6xEZfc6nj6zCHAm87Zo7R161cWbLKMs+ycWiaZDxnLupi23bTr7xz6I1xnSgkRu7WwwcbJm2xOvE3pNsM+QzL3DW7E9We2nieRaNumEwQZt9hkDjGZC1z9CYGOa5aK6i5I2EjWCU27z2JTcEbABvCVeH/Hp2GkEtuYfF/Frd0ossxY/HG1m+HvZhL++zlw/cAMnfxqxxtXPimkh6d5g9MGh5319zhskI95Qy/1v+pw/itBZmOpgKXp1J4OvpM3JMnIKbNx/pl2N1OpND5NULM77SnH9/lY0Bci20zhy/3CxxdxdU711xlqu+sYJRtVjI8To/sC8cbkZfqbsFn1RzKx/szmXT1a+pXbnBJWB3oqozbM3Rkf2w1SvytvXMQP5L9qNmD9aLc9PZ7kDZn9Bh+o9Lfh1ICNl6Gx2WJcI6zaE/HfhU9FHph1F07N85yMtF3t86Q0wXkoMNI+ozwrVoH3eYzEczXvR2xWrlIfhooA7UTYeERiv5lvLrmK9adk69kfZcY2mV+/6vFZIorI/wzA/xDA/2v89G+q6v/xve197o0ZGdjy5Xc3wsqA0zam9k96WZb/zg4j/FX1EWS7aMI3Nrj4t//BL0Wq7GQeR2PLsTQIzHZu3fF6PvhtdUIQVpWDjh8WrDiFIsikQd5w3Qj8ZuUVniN6JRP/S9gIYRP1Z7t+IVZuCcfQH0ZKBPq7D7SLm6DQX0X2hhWng5mMGYs8aZjugw1r19+wKZ1L1kGG8F7BkInHl7EJONpkz3ZUYeO4nv0mEUrfn5tYaRrP0lZl29xvicVqnyLpphYAbiO4ext2RXBF27YZJI8P07a32GxkHloQrtvOmSZ4qqcyhhtFFwDJtklerLgu2PB7e4JkRyQrzp5i4zcUKfDM/JJ5gMYXsEL0x6WtoItebprNB1ZPl9S71VZc7o1Pst1teYNFF4ADF7mNQKwp2O4f8QbjsXLq3s7mzT/clnmnM2mdN1QBub+DN9gXXsRmN1cJdPKG38iygpJM2d5JxuU1g1C2sjtN5ySXP0lQ6H1cvOKNissrX4CE+QZsM4vM0TekjSBetX9gurVxQ0RtcaWtD17xxjgS7y+84TrRPj9Cx87ET/JGwVdq/T6y9Qob0dBWnyPRsXpTqPN+tm0bYGGfkuO/bOuYuue6JlPlj0e/rNqzCtR2aLR+8r+hX9bfxuYy74vNPyxjjFE7Vwm9Kynpei1TidWOq5K/lNgEzvjiN2efK96/o6r/9s9o6BN3Zdzc+MgsYeeh7Lg2Da+uO09zPzGo0MTQmjWb6vK5ogdvS8BCZRVTDhGhYQwH4HNvV1A9KSuJ1Ca+1C5ft1cYQj+j3RiPz7ozGNWxIigzlSrrpPi3woZlkiRjPNTm2yBzCJBHFeW0s6IfxsLJHPO6Isroj/l11d+KTRqflxPbZC3KxOf53SCSKWPDvF62lbHJMltJVZw2mRR2sugv2WvGJteNtn6te3X9WZ9VUEvosM3R9QWbFs8X/eXz1I9Au+7OULjmAfJPTxMcsX7mgStbX/zCZZ1PtRVdf8qbCuzaMawSNo1vRID16SRhowkboWu9YCnEw2ObZjZHcc2pVq+oW/KGrFgCWNKNNenhEW+0hI+X11qmrOMgo7fxKm/QACpOrfzoChu2B6pV8kaWkewu7+bWSEbIi3Y3ynIKNNB5vw//AW8YToUOwjiWuhrHm2ReFyk6b8xXI3KQnbBCxkpL3ngYPzA2oSyhoHZzhuIoeCNhlW39EafueB9DlokwcKmDC5ki/Wx4IGNT+HYvO5zu1L5bK+cTk/6qOPQRV13OiS2Wnf3FRTBP203y7LCJWCp9BmXIPE6fwybzKb7sIcCf4aHeU8fn3ZhZIINhILxNMDCNDgCnWfl2tbZSZhMaxt/e9nx0rbYSMM4hMl6IVfgHGM/kHL7CRLOBWF/jfNkdaV4LqW/UZsy1Jhlt4jPGavZnRUJyiY2tFimMnHo9MVzHI2rvlx/zV6spirFq0/rL6KqOhTv6wOoKG8bRUg9AMs7duApsCqw8uG/oH4RkjAgbp0hnmfWGzMa711+BTdBPT4lQm01HKqNqxDXqhDC+wGaR0VIMyLYzVmZv/Z1FjLRBk9/+Y/1Vth3TOQI2hV8E/QVsphbE7HTMhSKCs9EkFibmja1721O3MmQ29Gx8rL+IDU2YwEiJUhuob8jR9TftZmLD/DTH3PUzy5Y+5eOz/skPKPjy4OLsk7MI+lOeUydQ4YlXhdWUmb3B9eXYmP2Ymwz8nGujz1Co8Nqx8MaQm8aw+q/OPsN1EOfN9r1dRCz7oWNXWemZeXfWS90vzwMK9M2hRlvOqZg+CbC+2d4mB638Y3YnZHcrb8Ck4H7sd7a7xm1X46OyzqmzrED7Qpzxhvc5++X5Zv0AN+vonP6W7G7aLok5eMMwZn1OtPSaN5DS+YP+JkvM+IE41TGpsTGpXN8cyI+dBp/njR3vF5xK8QNbaJ4jm43btssX6amorsuMPfN+tt/VtitOjbvdzvIh7ho23hdFxP3IfMr1N7CaqZeTy3y8wy+m/00eWLBJc6T43DiGKu7Jni4+Fx9rbKbNXXBVmm8iNgjY5DlDbJHG9Wd2jZ5mv8PGOWbPVdZOjQ3janjmG/+/t8e/JCL/lM7/TlX/7oX6/xMR+e8B+KcA/nVV/X+/V5BPuzHjdEF+Ib1MLxjOMHmlG2JenfAPw1rtRs4Bqiv90bVCesqSaHwMznLYF+toiU0ERLIkY+oXIMKSpZkpGwdjYzh6at/RyGc0BDJ1GMb1jE1ctURISQPJXGIT6uqwEoGeJ6QdA+5J3qyHGbSv2ChjI5qwQCCwjI3Q+Jz0b8Cp2j9QnOp2chUnXgbjTNgsu1S2RHaETeyHV6N6+SbAeWoPnu3hBm3pHgiOdHI+wmanv4xN0MnwE0vTOJV2pMsyJZ+yySr1W9q2BRSXtg5PiRDoyFzsk087BWdYeTQZ3JNJn8YDQu0mbMgGXQ7M1CKbmAH0p0ipqu2EpQ2QtAU36z+keWasGJsUuEjgLknYnNH/hPU3inOaTfCxtV1Ntr1+74gCieAXEvQVsGI9vXK4sWbOQc0bE4SN3U1bWnljtCQasAQAuSnOU9Ga1PgE3rBLZ213i4/aD6lfb4uwJB4RUecNveCN2W//4bRzuxb8V+M1gLDphXkBKvN+p/oul9wwdmec/pDnDLukhkVhS8C5PFEDycxjsCKNcZVxm3SOe41neGPYjfO+XSdf6B1R/FBgM2XSkN4FwHlV74P382csFv1Zz5HbMh/v4oeMjRg2Xk5HKiPGXCQjNZWAqnjDfDDILHEeT9iwXOucaLxBdoM+b+upI02bjpxyt/C+NbKPH0z7LcQ40R+jrXcZT9uS3tNlAcjp9sDYSMaGJhd+x8/jB7F+osxCNsfzuMkrx/A/Ya7SGYMOjljiv+QXCw+Y3bBd2XhHWwZBy5lPX/XQcUP9/uOfqeo/3F0UkX8C4B8Ul/4xgP81gH8LHaB/C8D/EsC/+l5BPm1XRiYXM+BM2DMo7kfeTTA0mdrLk9k8V/pJcYrM1RKqG4iTSMflH1eXlJZ6qIVM9bkfp8R2g0wrVhmb5aaVxpdJqcKGy46lmGLThTlAu1ebBVZsFiLdyrTBpsJ5+yTC5Mp1EXYlkl1dayJj5cVXmWSsnlrgEGS0skMme+KzykSdXOmPzpeJn8dnj6ZsJc0nnLWu63Bca+kGhwaf/lwn5xWbBO3YeEExJuitrUd9AoZVvKFiOfY2ZwsHSPJ2LoD9Jwg7mWW5dFn4UDQkrJL+mAfKdC2uGG4sMBZvbVU1YpMnYO5XgD2/BJnibyV/AovM7zp4DNk/7WY59YUczICuZV6obKOSdTzVeJ43pN75d5w/45OLnqiumc/5kDeS3eWbw+D7UaZdmuB66CqrxusLb9C1Ms2TGsszbph/kl9V53r2lf5Sf8wbCZu8c18QodDfjveXuQpqTgpFdEgN6BS8kXw6H/IAm1qfkTf694mnEhW45g1rh/iLx3AZPywy6VJ33C4NWyeZ0vgkYbOP/+r4YT8npvGCb/6CISDHfxkbAcJ485H19wpnzLHrlAOEFV1f4j9qd/uqi8tRzIkC5KfEH+L9v9Ihqwp+2qGq/+gpGUT+NwD+Dx/p65OemKlPOjOghxuZH8mgu0PrUnamT9M5t8VpdeOanph56iYPyeJShJS8cZ0f8ycDdhnTJGAyesJCklka5nsPGKsjmPWDFAUBLdgsFvocNoyrEFa+e5nGuprrMqltnDv3c4mNIJC7PW1Qy7s+baxRDl1u2Ai7Jain8SjJfIFNbGcESGN+BnR8Zyf2o+XNBPZ2E47C1quJjLEaK4Nq37FxO8+2XoxJuC+Wd/U/1xGRu3LZptQ/PGhYPyugq0yWgnelz4ozsMoUJ2qNfjAuu0yF7hdbX/y+kGmxt6TXsDpr40z9nBGrNYWy0AkuuMn6tbqVP8r0x9x2fEL5yjEG8QpvXKbkIdl75MhG/mn677yvvZOm46OtU4aVN7SUMeDVlMTQYDsz0Klt1GQ8dch1rGVX3ki+Uck0bMmvExaZN+Z5wfvMG8scydhs7O4ZTpWC24bMmd8sDQ729JjG4DIFbHZ2k7Didi7mqsmxK2/4jaKqTeOXuneOlQsZN9jM9Lf+Wyv0F3ijafgECKitS5lQzU01Nqs/ks2hP3lxeQbHhpuGV7Gp9DfGH9N6FQs2nimAaVcn6dJkSvaasan9cYdNOjcgkj+6TMRVIidOn8y4vSFX5ur0RLe2G6Sn7WsMgYQjq+tLHnnYf6VDRP5Tqvr/GKf/HQD/wUfa++QPTGOd8Pw3nV5rxrEpaz8pMFKkJiXL4gz2pwJyAq1B7YOHkNlvJRP/G9KYqB/FGkx4tZjX7EzpAxiT+kgZVH8kTu0ZBhXJZhltsrJLhM28vmLD/fjKY+vpKHro+J6ZYCUdxHMlbOzJTTEpSP7Xn/LQGJBXF8eKU5OuP98uP41P7J2SWXfqi0pbmzyG6m8i0jEtuO77ZNzl6ASYsWZsEskqr6YWk6Bjg4TNfO+AZQzn4+mUp0P4FuHpqcHikzLbFrKjStepXwFNUIYyTU49zWjA4DexEm07B3EDX9Zf6BCA2MxvdS0A90Lrk1uzz44F6c/SaPgobb2X09C2xnJ07lwQ2tFQL18TOaHSug/yO2bB7zNW2f+S3ytm2ly2MSs2/NEWHLjbdx2ZczJ/MW8Ui1O5bMBSDMaJZeCNUUBGKqg0jHT6HW8g2Ar7GQdgc76JN/vZzpw3ho3atth9rEO/YjuD7nhjnLtvCL1zOrGZ3aqPx9LrdnNi9A3tftMAkYZ5Y5Z4Y8OTce5Ndoe67rTDiY3rDHD7lnZ2HTbt769ZzvgrvMH9uv9eY5NlzrwhArR24m3syrifQxD1V/W7xQYh9gjvQOfxDZ2JyOQN59gNb7B9Z18vsdGADfujjLl3ytUd2/yuNeA0/S3YJDkuFubCT+GG5NofZdiV6qh3YOzGq5h54zT2jM3w5el76PNPXriyFFWWqeDjkqukv4tn7zzXXLXKyFjlOdF27VwXdRmbOb4Q4+T58Isdf+QTswfH/1xE/svoyvmPAPyPPtLYp96YhXQDHY+qzagVfaUjvbeRJ/IZoK2BDp9LzpP17VEB/FBL1u6rJUb8LsfabyC1bT9IMoK+xzLes7F31XTk9J+AHMD97XSZoOibbhAWeaedkLahUUZpBTbVewmjLV8xVSOvvkGDbbhi7KFjTN4Pp94oxg3dFDGnliz6Y10nHBuXhY7VN4EcCv0xZQI66fN3b9pBOmI5PBBP/VJAWGFj5y33Yy+VH8B5177l7pQqYNPaOWXOWCVslncyHmDj111/gLa+2YE262z0e9D4hk0+Z9t1oFLbOoAWsbLc+nYo7m86nxBrlzHYeuKF7H8s05pbzzcTETtZOML0pzjvUqZ+BVtP49vadtYZ9zvUkf1RUj86bqJOJ8peecHmwralXfvYFZ+2hlJ/rx6u52d5Y7lR1aWupPFnnmT9t9Y59hy8oZe8AWDbb8IuY1vIbOcZyyadW9uB4Qsb3gDSu2lY+euSU/dzotp8RLg27e9+3m0BhT9Jspt/nrG7S77iOXHIkexQFcCheEtY5XlOdr5h2GT95Xkg8eKON4z39QDe3hCfgoM4VRNvYMXqmjcy76/jDTK2sU9QG4uGvlg14ocLbKw/k3+Lzeh3548t4drsHecb8PZ2Am2GoGUK7I73sc5V/CQrz82B92E3rKOLptBTIAq8WZ90AxJigMRVHMMtcRhymmCWSe0rMT7+HOOcijLGaVLEDxu+WebEK2zSDX7Ldd/J+3/fD1X97/7M9j51V8Z+cwZfcXiUUmBl4xOCbCiJ6MKqiczrYxFhPv0ZN4qhX6TVD7s++1Akmb1kJKQs81wFEpKxn91JJmB9N8Bl9NWTVcbeMqWy5LobbMpVFB1wGWaGVRs1Zcrp1Z/WX42NljKRXEMWX9jycRRY8dF210a/hU4iVgmbLBOGTKFxrfVnB9l+XHXP+jVsKplG3Tzp2zWTTeO218F+GZtwaFKsEt4FVnI13nhTctrHRjdlH9pRKdMT2CRcA9SngUxy+Q1FbWOXtn1hc1tskoyeXmPRRGXrG91vcWUZ8zmdhRVrL5sd64mDuHPljTmefl7bWYnfZow1bwxrD4HeI954nlOf4/1axs4brMTN+EjmZzm1xo38N/mGW/4ShxVyPOrnChu7WQBKbBbsBu+faY6ssMm+sfLG+7DhvwPv80ugO2zeyRtXvH/FG1CsTzmyHA0FdhnDPJ5Nvw/8z+Ba9Ifh9wzoBqupk2k3rBXJ889Gf5LOQ5plrusrB4jYULxwOScW43mFq0TstNBLaUe1/tjHqkyb8Pelrr/goZifq/iTH5+eyhjJmIxFaAIcZWbqiLWRgzGQwQ+ntce3Iy/ctpbt19t4KneOCUiow9kWyxQfP2POXLlf5+ghcwps5s49J90AddlEGrRhpmnkwMTHYHUTmekkpzwBre/dDFzAv0/nVqCvJI/tbU9R8DbqMZVipNUYbtakQ/YImylTb2Jsszxk4bZc7mbbBA+ZZLUFDf0K+MZBgv5s3BHX2a/OMukGzjduPwd+TQE5odqmroX0p0TeIgkbxUwdUoTUAyFTI/0B8Ik8vD+lmNdNrvP0hpZtoIPuabtmsUCQyd18CgiC5Qkn6bebevelvkLe0z57ymm2dfg7NnNVXUl2gbq+Vqxyik9c7Z5jtyHoeCG9p7udwx9lYoOo+8w/jE140rnhKp5EA67uu+qFmyhO3vZ6se3Uj5KMIw1m1V/hj4jX4i6HWa4XD7fhzBvER9q5jTk1BBES7Updzkpu8l/F0Ckg0vpTzjvzRrK7NN+sdkdyBE5dsY3vb5CMo6hn0j/iDbZvTBxrTq31bdd5tzolGedGOICoOm/oOXlfpe4XGH4c7K7AhvQV3/dk/536bYSdojlvdH02Cs7r8Ub9YZRc+WnOkcxtSDLO8RiGPU3whBwHIPehP+INt+PJNewHNTaxXzF9e78sB43dUaN5oRm5ifOAX6M5wv2EZPTr7KOYfWZ/dJkw221+I2U8L8ChwJvpL3M5IlY09mUuJlFLGQm/QNs0BkGPteQA0M5JKqY/r8Qd6phiKYYD4PGDzbGF3y8cMfrgLmxH8B4PRq4KPCDT3xxz5uzsU+SP29gq8wDZ5Jc+3jktfbXj03ZldCIlgxaAVjdkGj+AGGzFIh5As+Ek8rI+BdOI9QDuaoQzK+fdB2e/Mg07G7efs+dzMNF/bzS+xdgHSbYD0Lv24GHU1YRNJAJNuJCTkpyTuRQ1sedz6YQlgvOmkFMhh8BXcqx9L4soR0pdnFjU53Hrct3I1HsWAc4DM6ebX0ArJok9VgDfrObUuJy2AsIG3C0E0k60TtPQe+94ltWIVZF6UMo8Ol+xqAJ8P51VR6ArtxN37Z961arwpt8w4yFiFYmasLLrnqYxbW66w3hfEefAqoXJLL5HIROboDth0SJW5I9xUSTZVdiuuEfIesP4XIVbdWrXDJZBBJYglC+JDW1w1ZK6yLrPk2xP+TyNmDh9i7EJ+AgyVoudFD7FtsD+KFj98V0H41LyhqQVfCROZWzHDn9XWPI4bcFn8L6EVLiEl/WTuIIFYHvIN/yZc7JvNEph6i/V9/9+vOnKG437iTKiwIbrrimEfLPBbq7INy4iAG6In2nI2ASgE44kc765ZzyjzAhzZOSNPh4Z74T3renTt+oyNhfxQ56bM7ft5sQ+jxNvuP5kylSmwmV9rnJPmSwgznw1sYm2Pm3Mgm2oYYXE+wmLJaah7Jfxe7zZqedE81PmVF/MYd2PedvSssXGAyzp/NmHqOGIGzBu1JNMXNfHFH0AQ452KPQ+0it3qYzhpgczBTbrL+lk+v0a47AZ9nPC+UB/zeVNcSeu2spU2na0wZWrau6yKpw+HXfZ/HrHFxfv6eNzPzANJOdDNLZZehKDkyiXT8H2sgrHl8cK4eSzvl5AdfM24cumDLQKMW/iVplmHSJ+GtMyvvHTqX1tbdl1ic5tNYlXkpf0H560GRtfb8mTlQZVOFYn5g5PPB7Euvb/jrORbSFTxLMivwcyaSewvrOmlMRSyTRlz/qbdUUGNsX4glxZZrcpHSvNdK1qC/HvrBPGKLTlbF7IBKC6QeBdwxyLQia29Ry4mxzB5ryuLNiQB7nNTf2xzpL+GqJMGRtcYbPK6O0uti5Bxg6tjh0/FXOx5kp/EaudjFa9xpV5ZS0701BtfNWNWGXrWGww2lj2ZRtzDICCP2rG9bUjBFc73pACuwtss/6jL9D5GNrclOABb2zkqPt9AstRN3yGznhDjNXfwRuMTcVXBa6lb3jxMVepQHyHQeLyQqZaf4Rd6LeYx5Mcfp54w3U6ru76qWRa4ocrGbMdXWE1ThSgLJGpn8CpiNjoEtOkIPhCn1mmSr9q/CEy23eZ4oY1HD8I6QiG3ZVM1C/b9iLTqH4mLEtOBRBjmthPmCMhAZup3sq2Dd9+3gwjHe90UT/UOqbdrhybuamKH7LNrTKyTxu2Nh9FW1/mRMYijS9zlVxwU4AZunzDLPrCr+OPOj4xlXFsJhGIbaZ0RcdncjBD5LoeEc8ASSeR9BuvbszN2tJepn/E0NKDhhybNLOQJmRERf2CjJ1XCLMzTAe2sp0I1UekY/OR4YC2KQE7O/fj4xsTqmOj5FU0OVm7o6ww6SqvqOjAb5SjdASe5Bwb0597t6UNYf4W0gRHMd+GtRrf6I5lHL+fFtyb/lJd0HimjKbHSn9YsSGcVegbPDYPKJHqeOICiL9ozW0xEQbiHjKFsulcQ7+W4oDwfo7rbzTraTYj9mtNcJcT9s2WRX+S/S8Sv20DzeOZ5wjYTD8Z8oXV1j4T9nRw8VVSe6+iIzj9NOh+6VcSlmQ3yHVH/2wLLuOQ4GT/u8PSpFb9kYyPsIHhPeUxm+uqIGxMNwGrvumHtIae3mJcJbQrWGHrGRu3qf43p3fPiVqnzMHmlHTBQcKLxyPeCD6YzyO2c/WZdZ54Azq6mEHFeQqaAPcxfowxTqyyL6z+a1KJ63SPJfPGkhYq6N/zs9TexPtuOy4jNlgVXG79YJadOEXfmOPG+CYffDGnL5TcZ4Sa9Wd2RzahPD6sMrGd5ad4jg2UUiZnYN/TBhXSevqZLaLseOO5+IGwkYjNOifCjAv+lH2A1bGyVFSsdkTYTNXWc2LUzUS2mhOFZLYYR8+OVZgjia+Cr1/GD5HXuV+VOEdG3mfdw8udHuM0sP16/GdjLWSa2ES/sLQ7CXWTHh2r2VYbsYDd6rTWWX/O55lT5/ie4SohmQ2PvT/C7VFsTjnHQs5I2cVSd2CT44fEVcFeC25ybNx5sHxu5Ks/LQOA4qXYP+XxiTdmwzndoAFAYwoT2NkxDMuu1l8on83Tl9+BaezoTiwNkNv40LsAZ0758POT3n+IZUAO5fLDdmkCpkHDC7OMVpYhOUR7M6fiflit8f+h7iAmJnOh373alGmeTWx8KFTXiX7UOA6F4Ow7Fx1m+9OBeeaIJLVO2JX+HMc0vmbBY5gQiWQPBfREay3qD9LfHxmzg8uUsWH9yawbsAl2M995c5Ok60Z4GJ8VODmVL/U59TfPeZKMdqMJG4RUmpiaMW/aPJA4esn72SdDqkmruVLiEbBJtpzPqzRBss6Ia1M09BuL/u7UmBTMZv2la5JjkZE4hI59apsFx7PhnlI2r1vKoGpPHZlNn77K3Gsn7hLWX5IZCDoyGdl1xNImJbd9jmsH3k5FEyFbH/bTdthk20bwR2GZF67SsGMYQItaHtC9eJBcmvoyWwr8tPBGxNLwzJzqcjOWNPZ2U6ie3RdSWhnLGPpd/EEhyX8jb8y6eRc4k9mrtu4Dqv09rns7hvwdG35XcbE7cOB4PSdOGedYnEtZ//1usd/43BrOH9o51mvqeG9K9tik3dt4/lnsjMYHaNjJTzB22LMT0Z5eCcV571zrweTA0iui80zvdNoY9wNEm5uBPWFTcGrYEVHgT13sUxY8z+X4oebUgVtoN52P8QRXIGziXNV5X0TxQ3tIfw+7GApA882UizrjDTa2drPOiZFTx86MXrmP6U2F0sV5QCSj2TZxWXcJ8XKVPhesMHew7PZ3upuL1T0Ud/QboRDjCN94RTlKHwu2TToxu9lyas1Vx0hl7J+HCN2MeU5Wn2J9jvFFf5SBzUwjn1yVOSbj+rVvfP4M947PHJ/4jhkR9fhLJKYW7dLMvJaRbbE6wMbvAZn3aDanfoedb65Y2JAWyeRKAQWPbZHJJqssk8TzJn1fBoGEz4xwvysWWY7Zb8TKfuabKWqb66Z+/D5skSPqz7qpscnnU38+njxe8jLJ43OZ4CleU6IdVgU2hYxhdAEbemJm9prs0z/Omz+AmrDa64/GRnaz2KcURcfZsrrrMCvizWCNTdB1aSeP6+Y0wWzrjgPGs+LcLpWt+mW7yX6/6HMrY/+362WsIGLcWP9ggU33U3/bnVILGYHVfjM29XjJ/6AuKx+P6l7J+MjvF/1tfeyFg/2d+la/fIXlWnexqw0evMlCqFK2G+uyDne+sbwzivg3206WsbXO+w3zc34sw5XddZkmeq/MiROCwjdGYZHOr5pWokOaeqqbOVQod3PZwCHJlHVQ293wWM11JXYt8d81fijGb23xacWp4lJ03hibpJyadb/GD8/yfj5fOTXNPy7z1J95l255f/a7xDgsI48pgJPnxNGfY4OlX733v895p1/IVGDlXdacGvUnpczhXVnHFZQujuWQAhtgz1XbOfERp2augsIyFTTZlWzlWLlKEHFc5HAxCmySL+dFsC91KD40NX2l4/OemAHTCI3kKPXNs602RC7jEbT92ngygjmTzrI8yQn6Y/4pRGj7pS/Op+s8WQk5Rjj3iSKuPLNN5fdseNILN0NAWNnaYpVkzLsASiorjtXYcersOyn5e2beFpFVxoZkzB+yDf36RBdvJHxBj3AyveppZCUjeH2n/hCvV3aTsYl6HmWb9vcxdKRfsE4SVll/ARvZ9UtNBfIGZjAW7dHG0p8ADYyD/qJd8IQ8FyVNRqUJONm9ncu8jsLnQgqMzhHOtnTRHS2OBv3N8wusBKXM8RzT1oGxVmOBdg4GWH/D9jD0Z1wFjFX71E9aZJjYaKk/G59I9z17JwPUltp4g//VWKljwYHXnptsRzAQNpyW8/7DeDvpSfxq4HL1J8ORN+zvndwWmMwUwml382VLhb/tQn0CQMgausLS5C9kZJ7PvhD0PxYIJ29wuuosa3bnt0RBRq19Mul46l/9hkFIRra785SxyyyKrbpX3ndsmAsc1+fnxMipE1f/hpnBSXOkcl3DKnHJdk5kbMY1KXySy0Vd98sdK7Mra1j9PHwSBY/nRItxKk7tT+imzqRlG+tzpA+RxmB8NfmEsCnO1xTFYh4IWCHYlfuGmO4UUFn1l7EhGTku8X7zwi3NiUrYdRkirtN01WMcHRuJKajtBYvc77nMJ3t9PuLUcUNpT/dOijBCvzZnSNnPOifGMYDGZ9iw/iTpXgq9f8WjD/0jc9PXOT55u3yNpz5Zwo2suvnp/05HFW5PQMaj4V/h6pYm0M4x8fDV3BewWCTLxWShdLOVJzDMiSKQvf2f7TB4qm8FHL6wyP2wfFlepOvkXE6OIdjPxhxXVfoHULUTSxOs+T9rv1erb/OHK2yG3I4Ty2Srhf23dijO06idiKXCIgVT/ASJ+1omq9BUurn2sXW9ietP18phfLM9P69sTtI7OPFxKrAQZtZfTzc5m4xtr60/tWhvgw3IH0dBiXUXW6QxLfoEYYUxUQl8a3pg7sxomwP5myMcoCx2Q//mdwIWFUTbmMHpsLF2Qs42JlGBf4k+cxUFYBmrkj8YhxAE2+ouY0P2BQByokFwSk/vvY9BWRqiJlzneKXwKQA+XpYvBaoWINB1Tnt79/RngSrrxds3HQLR7rhsYVPpt2plmm8A7EPExzHS4SCL3dW+T/OLYMXyklNnxqlxRQvcNvjDA/kdb7BvECbULuuag66IHwd5E0e2uybaF2RkpBv7x9/W+cIG6Pxs/Q++CnNi4C8B27vh4dgIy2o4nOivKgAA8wYKnWD7bzUn+pyA5CMh1lAv6wuJomjtRPNdug4ao/WHoJ85bzAUJBNDhMipGH2H+Qe0COF9nf5Jmfk+J1Ifta3HlPBrTg3iBk4lGcfCiMVePUVu6M8worE6p7qfUL9FrLBgBZZjxd1VpfB5u42YUE+OcVgnZK9jvtnPiTOWEOtZNPBA5tRw0yiKhi7T7VB8H9vlc1tTJPap1fanzof+8lxMxZkzFT32m4tlKy/9On7+8enfMZvOqPR3dY7l3L9I785O15bz2LbVO8e7DOJfUSenMzloZ5o8wfSJ3qpq/BK8xn7z+0iLTA3Qe7/vub8BvCucPsAmy+yOlWR0EnqAja8MSt8VqB3A/d4plLfdZY+ubkhn0Q1WT+qvLbpXQAVnU+iPa6wiNoRVJdOCVWqLyN7K+nBlvKt4ZP0hTRyP9PfAbrJMO/2NgEhFepzgL4LPftCiHDOYGn8TFv3G8wIb8uW9Tc26dwxbv+v0v9LvafxKMi8yZWyel1EGznoK0MZ78o2FIGwW2y6wKnazqrHp/bZwnnTf+tjauNkPciU/ifqL2GQZF6wQ+20Jt0Z1MzRPHdw/981BlmEX7O6KU/kdj9XuMm+MvTXQDsWPNzywu51vTCx9CIU/X9ld1reiv08SfSFhs5kjfeoCXuLU4JPA3IHNbqTGI6qzGddFY6mxemJODHZ3khy2WBo5lW24NUBUoE3x9nZCGi2cVDIV3OA3Bxdz4rIbXeDU3K5C0OCbhATn4PjhiTnx2Nnvc5zKundbzzHO1fwz6i76fIpTo40ZpzIc7ei3YsfRPw3xiv/t+WqPjfdbyOi23nqM4/4nIAeN8YMvJhoPXNp25qoHnJpwbQLgAA5duSraYC+346pr/cV+/QnnqNuY58w2vvJxPi7yZzg+b7v8sCKjlFbWz69WbwB+ITEFJsV52CjBboDOvkahKqGsr9AMhguTIOATJcAkZGVjeQ4Y8uh9InI2nKsR58njV+pzyqTcVno5M076sa0Vmyhjo9Qhc2hL77IXYXtZjQG+iYcZSKiP6QE2D/SXx9AaRiojlvcMFqyS3cSXmFf95X4CNmHCMRKjuujdr++XxTEu+nvQ74rNiuu0bVoBs/E5TiHhM+gv+2MVAF5ik3HFlAlJxh7vCck1J5ySB9h+L2Ss7KayuZiaQTiGEfEICq5K2MhORoCejID0N2Xm8VY7DXpKy2LrfPaa/pZ+ZS+T2XqUMYD99LFgiYTJA2yz3ckid+LUULffeKtieb8lcxAyb1ximfh3M1d1qtGErXqzXSbyhYTN6hscNMag7xlOjT5pPkuYq3e95Y3AqYb/K5xKPhlvFDfcxrzBdyWGlZ/v5hvm/QtskPpF5NTJbdkTBCjb1tfmRLzOqYYjhr/2GGfljcv4wW2K+Sph8w5OdT8YHx8/z4Y271CLOZFnq8KnSk6N/Wb9MWfMT4LNORJjh1vblTtwOePBi6yZUxPfhH6RyzJ3JZkFgHHVmLvNtiU0VsQ4CzZ8jWwKtqgQ+w3v49IT2XyD9xWPX6mMHzyWydf+BqbBK52P60a+nZfJCGmLeza+GUwToSjQ39o4xmqBQuXeG3bi5C1suR9MUhxPk8TLMpEmmWl8LqNvWTsCMD2hELR29F3hZGzX7WQ3vzDv813RT8bGb1USzssKk2EjLJO3OPq2u45Iqv1PmZO66EiDthWmhI3kuowN/GVXSzcI+oNhPQjtUIyvFI9+CSsna1JBwOYJ/ZGIPja/fk59ngNtsacbd9Be8CGQCvrbEe7Gbjo058BmEKvb+ay7puIImpy22f5sm3TPwaylyMWAp7ZtZbtZZJ7nU58zBak17dv4ow2/MCXEfgNWbOtkv6oX/VLZGXXShKPTW3yLcLTue4SN+IAx7b0IDiM2SP3O35b3VZI/elBg2TW+ZX5tryiwgSRsrIRu+s1ctejvPRPgeoMzxwjH0j4B8MjuWK4dp8YxDT5C/3TE0RTnSViy3VVYCttdtMlHOswB7ZQZ8PfLZNyoCKV3JWycJy0gDgFjwlgZqw2njraExmfvvfVPANtToHN8SiLyRjUXP8WpiTdiytrUr1WZN51Df9L1dzeOFXLJym6e5A3fNY9wjZya9OdYdbn7zo53V5vjZ/0/OSdmu3mOU1l/Ayvtn4ZoclKMQ1Ra6QQTR7ab93HqLNvxOAFt8FdJRoxjorhMom6foJuja07lm/uN/hZ96qDBE9ADrSmayeSTao3NllMxq77KqcxV9r5sE+lp17biS7hu50QhGQr9VX7PA4x8Ghelv+wxIf3TH5+0KyOtQoUVNcS7f8kGHoPzOU1IejxrZDiJXZa2gAOK/sZuI88SL7/rd8ol6fHzdFjhurNZX5l2x+CbSNv6VxX3e2ceIWEk4RRWamWVw2SM5D6d0X5YV2vmeNt4zI/xHpfY0w6Z/UwRNJAYQnqIECFNHThWQt/NkLm9bSWTydVf/5lYzYE/r79oF+Ly7/THj/oj0aPfIEJxDJmWlBbuK2AB7PVH46W/Y7CpZV2/mYfgdoyXm2XsV5XIfGLFY80yrv1auTABCRE+tRt00oDb0N959pvG2WkMYlmmrM/uR+RTwn1FmVifbqK8kk5bb3eZjjmYBavIVRkrTwcyPFKgF3B+gJWtDnuqbZi9V15jrMKqe2E3s37GirhK5vhy3VcP2xQn2x3bf2sXWCL6YC+/59T1qQs6b6jiTd5vd02inkyHz3Bq9SSoB5InzrsMu7PKGtrFosNa/12P+oBTGasZCAvQ73VUcLsRbwzdsU4mzpNTu078ysc4lfAymY033s4TMKyw2s0Vp4rZwuijCY9J5zn4fLZ1ZL8aUWHgMusn8zNhs86JbOvU78Kpq+7jFv46vhxgMU7MdVu5PdsR3ch8iFPpcwcYT74O4IYT97sAcnhbMrDMMrHdvJ9Tkw1aGQik9RvY46a4/9BuUp5J9WD++UmcKouM/ZoOW/+RX41Y0knTnBiwqrnKZAx2k25gjU/z+L7mMW8k/+zHp35g2g3WjThu/2q/+W0wl03n8zDjjoEOX7dvjgjiyotSWT/P/fCMUfTbZROwUwYnLZ1Jfci9piLKnYJ6K8h1MzYsl11ibGg8Qjg3Gr9N1r6MovNaxqq3RZ6fZFxkSli1EhuZ8tPE4BBIv2lUlRKrUn/VOebfMRVj1R/b5GJjBoEOHWZ9cQFnzSf0l+w36zOX5evN1GaclQiYZZokboOJOFX9xgmIsCF9zYlg+rIErGTFKvj5FQ+s2/LvZJrBzcQm2Jy1regbHVxhle2RgrpAETusFv+rsWJXcv1RO/qU/qjtl/VndaOtRxt95aixDFxf+MJi7wIAZ/EuUOTU7M+Mpc5t8caFCyytz0qHQOw3Y4nIX4seSKbF7vzJ2MTMVttrnniFUxNWJGP/bLMCKqB9lQibbP+rzp7h1BWrbGdsH/CElnNIGXlfXIa9TNx2xmbKNOcG03XCjuvS9Hj3xa/N/JN8MssEv1z0m20oc2qqq+PHM8c4WaZ0vsQAkv5+gVNb0qep6dSxaVGy9ajPxINpfDsZa05l20awX1aJ7xbMdpM51QX5OZzKT8oqrKJMdv1qTsxYEWdUPpWwYA7JMkU/+nX8UccnpjKuk2A/poH7drCCsJ1xf8RafT/DjMxuJkC/9/P5LgXGCrSx/WhDgJ6aMGXkfu1L6UZu8ZG5UlvDIVhmktXkdhnHnf6p3SnaWJ10ORCJgfstsSkmGnfA8GjbsBqrqyRzG9d0vMzVDkDeTkrpkyijOf3AJo5vYjBXTGO/HFzYf04cJJNv/T5e1O3peSnIsn4TNlF/KWCQmZKS+41BzCrzeGPRdzw8GnD3VKCpI3G2ndt67/S3tZtlVY71NT/q3QxH7dNxaz3FaM6mjDMTvbUpoV8lXDkoa6T7sq4oZopZHx+A/jFPURwyPu5ZjZcwZ/25TnSWzbrvdlaNj3mAcFXbeU5xCHCXE6fd9PvEZT5O9pp9SllHD/oV47lV5ibzHVgdL2I3OXtoMfQnutefBp/K2LD+RltBf5hlfcxwrN47QfNTiVruJOcWSw3vjuw41fBsoh7c2JPH1k6c/hX40ebgy53diY2B+32ZUzGDMel+dZ697+MQvL0N3miyYB/4KYz3J3CqnQ8MekAIHG2kQHOq+l+JUzt/0fgw9Xe0E2+D5bg8+6vbXOJUw660G+ZUf3+OZMQqY98VWHE0wV1O3J03IjaZU4Otk65zv4tPVpzqMsLe7IB9nFho19tor5FTmct/Cqcm+1Soc2prs272ZfNTb+uncOooq+JjaANj+1bfcQDt7Q77NmrFqbsYZ+GuJzl14t3b7btgk/5EccgdJ6b/XcXGMr81NX1osRvyP4ofwq6ZxoVc94sffwIRnzo+8cZseL0bdLdEewyuo0xI/XPCFTf6+Rs/Mh/noS2vSqSjI+BR/yaMy2TLKuAJZDrUJJ44acybgbUuy2Q/ucwyyGmQRBtpg+KlNb3kmVJ4POABhL7lY+NshBMkYjUDBCOdOL7WxtbSlqbBA0r6W9M2aHykS3Z4m4xZ14yV4yRdl1budiiAE/fWlkAxyBD0N3dVmpMzX0fAiicoDqZsvJzS0oZNKk60U1x/Nh0H8k545NSDfGMyX1bmvuZYp/4mVhjja03HhHiiteYfQVVgGc9yzjvPgbaiX3Bd69qGAiZks6DNJwN7t0bdTqz1+LL+bHfa0jiTmK71CJvsu/TtW0CGPmknOn/iuIwvymickTmmY3xO/ZNOeHyMFePaxD64KFA9Ia35JOz9kkwRKw3pWobN5AnqM/Xbx5f5NMr46jF1ke2Oz0dZxnLg2S8QPw3fOBIvuk8Sz3Xe6Lx4OzqWrbWRflz0C5ZHZuAUdAgwgFecmn3yID04b6ii6Qk5Du+j4icp9PA+Tu31dfzd0k2N+8J5okkLc+Rfi1Odz3zwitvgjTv7nOsk8tPHOJX42X5L3ObjPfrcfR/plY2MWZLuJflVxaP8e9WvCebnHA9hBNUjhlG9O28w14V+EjZXsZVhoy5v9ovEG3RjJM1uJM+uv2Nvn/IHcWqsq64TbGKczKnR1mtOrfrt49tzKnOE6e/mMSpS6rykTYVIxkexsaRXI8jmWmFzxwd5/696/Epl/MAxCDYaVAyu5gusdrADk7ELnTP5pYnAg2EjIG6+qLvI5IQlSY6cflnIyO3SeX7sP0SEyHjFmWVCKhtkJigCsdfYLP2O6/yOARO8PcVTI3ulsT7AisdrpLHTX5i8ksxzjGoxByAWukRcsRmf4Rixkst+42QVxxfjQSK0pD/ZYRPGN1fxPqq/LJO1peB24JNMxiaMh86Rr4NxvK7L2z4D8KwxAXCaHBmrpd8Y7D3y+x02XJdxbPBP++JU9dcMav1djzf0m209jY/j+x2uPcjUpOMh45MylT7F2KS2Fv0lGd91SN3Xldwm58RD6VxJiatPhjESbwDwdHYvW/S75zZEHb7gk2GRzMcweOOs7eivwqmhrs2Z6rxRyvVX4FS75n2Y/gLvVLzx8zg1y8w+2prifvbf/UlLlmmjvyV+qHjDZYy+v/ikaMQVk/fzHMnpbYuMhR1dcWrAIsmU39XrMnVZw+bFT8whP5NT803sCbvpW2OcLBNSWxWn7mz7Un+53UlzOFM/mVOWuixH4X9X/hj1ySR5pn6/2KGw/VL+9Men3Jh1xZuBpBUuUr2vaPi/k/Tmage8ncXxkhlZvZ4/D9+qu8sznzKFSWshOr7JM/l7eXssPmWsJwWIDbuvSAZHCrsYTerKKxWGof2dseHAQsiheKtqq5eD1tiui9lXATV/6T5hFVZmJlZ9dZKf5CnJkGTGlJlxFx+fjpbGb03BqYGBUGkCCdedFKf+pClEL2QSRVhFZYIfKQKW/mOpqCU2bruM8/mU/uIkb22uN9QBq1Nx6tCBxsm4wmbaI+8CxXozDFebCzcS2dYJRwWgp63Wy2yTcJ3YbdrNZYd8bsMPdN9Poy2odttqzZciVv0tOPePcE5OoH5JJmDay/QxC6gEHCwE/alMrjJbe0J/C1agfpv5X+qXdDTta7V1t8d3HFXwuNqdYb5i6XJKWo0v5eTAuvuBju8Ptab9naBRxnQIGF9F/42+/xynBht1PZDMTUPkfBzAj/v0sb8mpyJgBdxP431rZ0Q9D/zqZ3Cq+41G/SmJwR/oBte1MV5xKtnNs5zKMrsOrA3tizmH8wbb8F5/nJK22uu0AXuq4Rk7YRxJf+P8HNutCwSHKE6ZsYXNl9OnWB/AM5w6+41+F2yd44uxGj5TZIEfzDsVD5hNFTzgxUpOTVyQODVzBs6ui/6dvGhTfxVOXebTzlWn9mwu5jnGG/7v4zkxYID5GxIWjOeMpZVk/XX80cfnfmBa2PgRSGIeZmA8wcxrlmoU0u/cQOPtcxt1zKCPduI8+7s3d3txaTTgclAQxDJRpuMi83QgciTrOwXnfA4Pfk/Md9+8E5JptJ1kij7DqRqUX7/IwaRosq/fQpN2QgZWZ8Aq6i+cQ1dsmCSY8PiaoCC3SXCGvzaF3Puj9nt8Q32RadGfgDZ+iUFGxip88ySRU6yr0Haiab/Z6Om6/Pb+WjdgAz5P9sx2ErDqMoWPeAbS7QHoTe84RdCO+R7c1o4MG+pnfu5vDV5YfgntsD4nwVvXXW8jpYxvAkf7NFxMX1p5QBKP7Gx7ldHKzgnOtlCXRX8rVkuKGcsUbJsCIsbOr6f3ZYOtA4Kzv7N4tu6HylcnVhEnkzH69rRtwyzzEXME0jWW8X3HTLlmLAWrX0XXjXLzUydZsK44hn35aCfuZ8PRxs5+w+6yrcSAbNY3odj3bWw7n3TbzzaKzvdo/WlZ543+PpAPPsj1EU5N/YLeQ0VMaQIUR+tptPdT0FobvCHYzYmZQz/GqfkmavbRpO8026RNrMimMicFGdmuLjk1vo++cGq4oeyfLjmkv1/WZYo7ayLrhPS605/Jz/0u/pp5g31WThwieBPpqYzacYNfz1wQ+Xb6WBVbXfDVNsbp/RztxP0+Fr/4kzIJG8eLsbji1HyzhnxetDXG1zkBEGlorb8jOI8ck85+X+fUnX8Ozkj4H+3E2+CqHyfpj/B8PTYuODLVrTl0xeHLHb9SGT928LsPYUVjWIeGa6Os8PlMPxDbRtqs2l7uzgRHxGOka+/f+Nbmqqkf7jdN1FoQyXJuZbNMxXkDcAqaLWZtZXrhfFM3BPJ5vODxKlQbDhXcW5ex0VaywAabC5kmgV9jwzI1JBlbX/RrTXHe91jpBXa+OmgyFXaUsbFzI7xKn0cDfgSZAH7vr/+rJGO2G5LrCdtedsKytsaLw5AeVrTx/sNsa/WpChugy4GAFeYuWgpAlHS0s/V5c9Ua8DZuqn/c+7tTU6YnfSr1o09gk/nGZRpYKfoL4G+sv6XuXl9TB4zNA1vHXmYRBczWxb4BxHLteOCB37P+TOYFG7tU8GkU4enDnyQHPCa2+khuTCxl2Ap/mPcKS6CP+dS+KPBdQVg+z6kf90l6l8Z9tL/Hm7fFjosOH+fUFmSa7UebVcjYZEYbvacW5Hpsd0LYPMOptU+u7xq/Df39uJ/wTwv81fU3MLGMlwYcCshbv+GY4WG2deKrBasrTh22fuEXJW9gvnO5f+9t5VTnunfpD4RNWqBoCpz9vdDvd7l+F2/RwQucWtr65AwfH6atHw1oY/GhjkXqGOddnErnpvuVq/oT4ls78V2v3ltc/fGV2DjbTX5iximXVO1rHn8/7ss+8YmZB7VxZayrXskA5g0UYIahMX1EzKCG18o0rN52nNzsaQl0/NsjArDj5X6tHW43WmkMEIA5wQgAX72numtKi7hMOWDgfoRw437jI3XrN9dVx7DLuMocH4PPrubv69OMqT/CCqyvesU0p0fEI+LIOtGRppHfE8nkHjZoyFglu8n6tZe02ebiKlzsF8DY8noftHRsUMpY6a9MLYEmmSqZ5/hmZobE3deyvT7wKcjEosJxfp4n4lb647i57zt07W19lTH5VMaVy6YnSR5wBN2bjL3+6Zxgrax+svrjaicus8SXumMaYMIJzDdTByfxgqnDru/0KWF8jJXhmvi0xIb4dJHxvVN04oK8OOKYSCi7cir5FaWj2hO1jKXV1YGlPShjvJ7l1OmTCPhc+aSnvO2wVfTsskKHdrzMqVn/SaZwzm37TUj3h3msc+LP4NQVG8KV7WLI1DcyMhuha5gOMu37FU4VAOdTnBpkwuT9yBsUyHPdMRBO+XuWU+d4K5+c5wLFqQ16Drsi297FOMEfw1z1Kjak+zRXmXuey7wNOt7Hqas/FjY36k2bm3Y1SZaxiTJ+iFMJi2xHrWHBSk9MriqxKvSXsCpj4xKbyQOGjf0+edls9+se8uuJ2ceOGLh2o7GtQZnsgHUy7n8DwJkmdDJanUbZnWKkJw2nsChHmvSURqVwgLYTnTLCJ1AISMZJYLEsOaPXJTIWNf+c/ejZx9+k785lS3EEhuFj/c7J+MQk/CmHVfV+xOQAYRnfPZgObZVHrrelnKlVliGz6Y8mPcd4nchkKDDohILNCTOTAtKEMXQ/9HfXe9BfvvmZdmL9TjuBreqRzEsA6HX7/zXrh3DtOeoKOW2FdUZaM20Srr8lIJU51ihzwnHRfZpMGVcA/h5KExztjrsepO08KZJPKQA5XS67MTCs1n5WmRvZnE2o/bzbXBMJaZ/R/7L+Vh5gf+S6rD9gxrvR5kY7tBpueuvfxzL/q7AqxgfWZ+KbEDxiylTaXPSLJifu0nf5PFrfXdN6mfzG+iOfIn/UhRMLHiBsODAOtj7KvnxIDCijX2nyqxi0XnKqL7ytnBpWf2mMTRSHnLjTk+xnOXWxb7AOCyy5rut7PonS8YRKpL8L1NO7DnycU22uiXUDtxlWZd1z+Kaif6aBieLncSoWfU6ZkOwO6DcrhzTcnWNl2neIEa44FRFH18msG2VmfY46VHfyhqDJHbbVQ+8/xilxbibdvoNTs09y3Sb3MUc23ERxElbZfldOjTa34Lrr13lj3FQm3dt4mjTcDsX3O69GvI9T3W5MxpIHZl2hec3GZ1uRtNZxO8Fz5IucWviF2x9mfbZ1AdflWK+nEd+OE3fNtr7yHMBYcb8pNg7l6/HNV38i937p49eN2QcO4fQIgB0sBIlktL1MDCI5sJVQliYzzPZ55bc1jCcultKSHWKVbZLB7KctMuV+eWzReeJX49VTGfU48XYKWv8EvWPmdYUe6wcZ0wQ02SHi2DJWmM6XcW19xf42VnD6qtdkcMZoCRIW/bF+YypN1q2lACw6oTEoAD0VbwBsJUdA2ADQUn82XiwySYtPWrhstsG2yNQ32tBj7NLlMpn+1OWo7AahnymXID+5zU9wVluf6Rr96WJ/R6kb+twZLMrE4y11cqE/CzRd9xTkrDY3cAZwqOItYeXtkr1HHWSdKdXVVUbMtuycOaPXVd+oQFVxP4FDzPtSMGxtJHuUbDfJx3rVufU6j69JHt/ECtJxUj3xHYf7mss9wVl4IGyLnPlGksyMdcCmsHWyi2ePbsfUt/2YObXFIPFDnCrrk6QDCm2K7yC9vMipIlWwudoZUl3GVjDt7o7OVW/3EyI3wvgjnEoyymM7C3JZVkJTnO0cKeyzn/dzauSJidWKTckbo86JE3Le0ZqlMmIspsQYYHaTObXYXj3or+KcC944e1B7P/t4FAC/Q7/DxuYCluMRp15hk8/7k7wT3+UYN8rVzfGD2KrANWPDT63CzV7B+weAb+P9To9xpJDpklNrHghPgpKtTyy53ih7Cr5hzNtNuq0H/a39AntOFZbZ8Wauitj4dZh9DP2h8/4PHGFDsbXf2eeiv0WmhFVhN9EnIxf9Ov7441NTGXmSi8TJE5rA79rpuhuRBTpIzpHqgq7PjR/GVvAivnNcKRO3la8jyjxTItJkFQIhJYMnGccNop5CfVjbcVtklgnkgDY+xm7GpZtgg4IArtufpClsJexUjI0HWEf7foNDp/GaPqYe59/wsnVd8THZx0vX8YHt5kp/yebCS94SZZwB3lrXV1JlfKzSy6W63m/EIlxbxlths8FRVlxNZTqHFcsG0l3lKm1u1+8G12xzbusKqOYtpKlu4cvV+CuZeLLPbcWnxEp+2f+1FGfGMeqv0lce7xOcIcPmyLZn3b6pwDls3VJkYz97rNb36zI36Ra7RbfKdWMQ8NrxBKfK7KvC0mR7zKmmT7oZHvZvn2jY8fwjTs12NjfOqG0WSHgy/sZlp31kfWK1cuqeJxYdZlspsFnTzibv2w6C9nx2se+PcGqBe+WTi4wWMGtvOfBvwibItIw/8nPw30V/GZskI72fuvDGhf687Xdw6pX+jDcszVkzbxT2me0KPl5rd9VXtm1ZZFx5X8j/FOtnFZ7lVJ6LX+EBwyZy4NBfD3N6Hxuslnn8glM5tlqxYZsi/Xk/F1wFAIUt7/WXbUoLnAc2oN+zzJI/Z/HFDoXv2PpnPz5vu3yZNxtmLP2YRK9GXsJ17F0BMyjdfKFc3bC8LIic1HbBAhru/TsRThTWj8mj9O+U2aSE9Utk6zvijLK2RX94XC1K531r1PMERAUHgDe5Q7WNMcTVDRA2wDq+viJvExY5aHDIWVZgK30DU6sLBc6xKYI/5h8jV6F+5+S/7DonJl9vzycNmcTnthGwWfXZCAt7nN/kRE//kaAHjIkAG/3NJylTB6xPmL4yVpWMmE9aBPCUJFV7kXjcWId+Lf0nTpCsvzYm1oxNlnkrI0bAN17aPuTEfYws680IP2+HXtoc4corxI9wne+V9u2cRTB3x1PDiCY66ndOitPGVOOkCFC/yZfVsDNb1Dipq/aFGmjXX5M7zrHZhtvRg3666DzR2hRJAQ6vxCZcheo2mTf4qsZVJ04R159Sv0Lja7Pmwk1VAOS+zP4z2m2Zq2gV+9XjEacyLwIYmQ1XnBp9MHJq5A3DWbVNX/D0ruc51d9P2ek/+Ki6XWdsrQ8di14qlkp1Dn3MMq9xqs5PMaX5xs5bwEYJVxvfOXwLuAlwyH3edAROJawq38DE3edMn8enT84biz3v+4hGCtitnXi79xTL8ATrKU4VhHSvjU829merS+02uyHrpIrboTjud9zHvM2cWvsk4B/oVkHFqSAfNBlZf3EeZ6x6D60pDox06IGV8vjcxuDzTYgBxjjW2GrDG5rtk7BSHe8VAzdR/KBY7tKnFl6c/U5+qmRc69p4PXtCxoelobgdivb2hjsO2I1N1l8eb8WpHEttuYrqtmDr5rmgefuON/SUf4sHvV/3x1di4+gXHFvx+JgD4zvbX+8Q6K93zD56eEpLInDanM0N3OtInAhySsRBhjOJwa6nlJYDgJzAHWhnQ7tjEl+QaU46Jlk8X1MR2Bl4C2JBfkF0PjIGgJvt+it9i9QWhKDxOIZxgp/9gP6WMXb1tswJq/E1dkZ0TOTov/0+Us74heTlxfeMTfhq/CTg6fiMRcImfXE+THRGRqp4k/6uElfOKTxTJI1tDZ1MmKP8XFeWuknGsYPZ271/H6kZWzth17buN5HQBUez34yNZGwKHXg/Rx+jvlkK7xzAWhf78Sefmtd0fmeH+5XVPrmt36D4gb51ub+PItNeY78Tq+XF72w3PvHlfjOuGnAVs3X0GzTebcz0Ax4fLR+GiSvgYHqNwVjlFxlXweyzT/MnWjvGrq07rjKZO45HixPVEXTL/pjtc8rI/sk2956DA6OKU7lvrhN2divktBGz3Cyz6QwC/CYn5E3w1tpIz9Oy38iphYxbO0uc004KyPpxMJaH2Xv/fMvcYMFke8ypbjuFne2wcQ6GzQkVrifOs830LvMBw8ZM/glOzVgBc75pAdc4l2Ue+Q0A9MTbvS2biWROnTfR6xyyvE+2wdWCXKcnzFjD27qdkLvgfgow0gZXTl19ct5I9XbC6xYLrtEnBQnLNFeNiB0A8HtTtJPGGjj1I7HVvMFj/Vk5qztt3bjjxI92h8ixmRNXTl3SOjd8tco4bXBiHu31Nr5Bdj8VjbdZdJztrzT/GDZJB1P311wVsEkyGe/bXHRQKqMIcRWPFXv9ldhQvyZ/xvVIscaXPn7dmH304OBqnPvfk0Bg5B8Moqg7vcHbEvobXtwmlO40qgLVFurOyiSTxHbdeULrGgKpanxCZSM5nj7O/ihdo0xAHJ815nXiRABY2xHXiNU6nkpmm48VirkUS7husOJtEzzAoPEs/TJBB72l9JGJCFQ0fBg24Mp2sxkvTyjrjQkRX1k3yzhsCnOjjNAuSCdX9iorNlKWfVzXV6V1pGqwuVrdna3rrh8jdg1186rh5fjUViJnqoaVzSl4iz8GmWIaZH7vLcuU7SjXvWuX5w6FuhDqvVyNb8GV5Ges4qcfcmpU4RdjOONh3orrTn9Jpia5riYZua0U8KYbqXcdAueqK05dfBJGdRU/aSi7+mTSv/bUPP8EsCSsiTce+VVtZ2nu2vFG0L8F0TNtkNvltq44lRe7om1YXb2sC74m09Z0tFNygaxcXnNqN14PPhM2LmPGZpS1pw3QwfnoXBZv7rmx6Wda6IAXJaq5eJZfuXt5jxU6dq8cz68lpUBf+ORqc3tObQGvM+K4+C9gmzyobWzG/vtIJszrV7yx1k3Y8A28nIPyjdBSKqP3WbfNMq1+cR0vwItTfOQyomeRqGsw8GLoN8mUscllo80VXEW653btdx3nmvrJPLDUZTlC3cfzTbD1Atdfxx9/fOqujJx+0LLhF5MLryjwY3J7qTWSYXSwXldgqyWnCvSUsRJxx3nvJfPX2/vETU4WVmGM9M34KaAhmdjoPQhSwG7GwiQx7vgPAQS0Cw+3A8R+lsBg9APeWUd9fELjE8Jm4h/Hi/HOVBOg6empjD4ea4vGwfqMq/JsBBwQ5nFxXSM1AROPnkBD38nMEyxl6h48cS36U98Vz/UsE5tJyhOrttQlWYW3pQdu4zs7OgZoQdPEZpLctI+5o9Zq63Mcyjr3lAZ6jwa8unhC9RipcIqmUSYTmMcxdQsfb9SJ/ZZw5YlAh2z+28AxYSXaU6XeoLMuc0HqJ9uR80DihVg3YsO64MkImAq8CfADJyyr3uxwp7/AC7aSseMq8uFg26IpZRKTq7Q/FT7kxKkmUwokFp0gYZNsLvmf/T7TaqIfRn7Fy4ePecup0SddRvYNiW2FF/qzvD6OqX+F9E2MBm+43aHiVParKfv0feY14ifCqcQwcN3Q4DDHb4Ke3mVtLLxRcKrZb+WTiHW8XLJR1/kYn6A/9T/PkfJsO8JxPzRnPObUzBv8bg1hxLpIc7FgvEIyzGA+xdHgk0IycN246QPpL/VbxQtWrmeecFniDhWft3XsMMucWn/OgHgjcEPk1Kx7EfX3PucTvYhr5w2LcU7c7620k2xHARuXc/YfbsaJUxu4XR7jbJOmSHp6r5ecWsVWwV6YT6p4IeneUjTnTUm/AzqHjppoXywMMcCGUzHbyrbdEjbMUaDxQQoZMRaQjKtgXIUg+xgi4k1Vmm8S3/BcvPKcuv/HBQL1cX/p49cTs48dbiQwQkJwZIN3JWwAqW74jQxHskESaTRR3FpPPehbksa1yvAIPbXL7+CY0XLKRNyOeJXJt8nGmh50aydOBZoKmpiLrM5YTbzzvYI00Qj16zKea7lCRoHiEIXKiTfpW7dCUz8clIbx1jL7NcPPy04ZmSS4Lt+gGlaHyBiPGwMFmsnGyA64bNTnSWXzJMDtJZnlBKRPzneREQhP1H0BYnSebaP5zWWxMk5+MW0O0z6RbI7qHzihDXg7BcfRoOd4LyNhE8eGOdHY9YwFXws3PbNuTEWONneT/r5Uaw2t3QHGqvCTqJM5vli2spts6xHXEEyibyt9l/kZjWjrZM/Jp/KEK1wv1NWlbkiDTL7R5MTtENzHN9/M1tWvpxuELTaFrWe7YT7NN0pkB3GV9tnDApiVU+3zF/M86/+E36xg6t95InDOxDamZven2bfWn4weTdDOO+bL/plTmdcv+MpxyQHb/D3OV1nG/rLzqcCb3iHSIm8EW7FAytqe6XqP7UxhN16a5My8Ieg3Pt+OO+4KtKP1D9QjvlfsfGRBNeGYfWPyhyZ+5sC38o3T58CmMt4NBJo0NLl3rDb9ct2ovwveSGMqfSNwW99c/Wh3iPLnd658Ms63E4vMxxufHOWaZBlnW4cotN3HDs9tlJ2CLJ9NQOSDOVfNfnn+eag/sXZiLKLniUMwPi3QANgN485u1lgx6yTHCza+aZ9xjN23Z1t9Lurzdmt3inF28w0tEmW7yTpxubOMPIdG+zT5vh19ybm1/gkl65R1bbj5gugi82rbPhdnfBfbXmX+sofi1+YfHzlE4LnE/qRnrK5Xu+3YER/9Up509d0q5PfTRl86J89TRl7yfb6j5Nurp7bCk6khn5Xlb9nw2Hwc5HiLwZvzjG+h6Fh1+w5ArHAeX8Iqjg8IAXWWSXMgw++58SoZwLtNtZGjjgZKcSNslMiasGoXMkfdx5z/ICON3/pt0je1aNJ9MWPF/dBcFPt9RkZwv7XNTfKD26VW+kvY1DZWYRNXWzPpru8LRFy1CeQcE5UIpM30v4a6ri4yTTl2dQOuFblzP0dfDWx9P+fpf4sO9jrJOMpi2+v7ABO7FODS97COBuAugLSAs/n9KlNhc9aPcVWQOWGDqM/of/03HWOBTLsSXe2G34urbJv1GVPOcl3yx6ruOydo8XeLC05NcovLraU/b2/KqK7zoo+xP61tYwdEf59EEewh4jG6DXrJ/WZ8ar1w3anvzmX2BMjfl6X5bzvP5fGh1uHuhraq26+dfZOUc678NxrQkm6M5/W34yvZcCrLeBwKPYFDAb3rgtVzPrm3Gztf3rcrxgfDEf1ZTxObG2Uz3ifjBezqaomrVGVpvIdkW6/ihxgvXM7NuNJfPY+z/51QHOPNjb1MCSseX+LU5+IFtvt1HjhVx7YDvXHWfZ6Lr2KrxW4K/W11AKS6zFV9US5iQ1iZTiRjVfPNLjZeuBhIdfGlj1+bf3zo6CvTYUMDmUZvhzkSgPIL825ctiKj85otaAg0BQO9n1PF5Zj90kQ45OSJjAMCwBxWCxlnf+Dy9JttPGDt2XfV7JgvayqQnH1JpSi+bO84uozwsvZhyuxokuoaxncjUdGZAuN1R1tOhFW/pgOrW8iM2G9Vl4nV0wZ1Pnr3fgPOpAOzmw02aIQ5EOzTsJl1o8y2va1tlX8Qmc1+85H72evTcQOPr9tNWO0iWzcZVckfNOGc+sn2yzJlHbAc8eaH6ypt9EP/qgy84uRlaVase5ZjKkvJ/0Dj0VR3lZH1mbGwd/FaU+CeZGasgkzsn7SSSv20pax6WRuvkMwmUxtcZVtfN8DTbCxIKbHKtu0BzrS5ijPsvGVsiPs+MjnzB1cf+2S07xLbpIfMqR5cDHxOWlVdeaPywdV/c7/9SRz870dYeqpQ4n2FhLKv8H7Vb5xP49y0YFPx/vDPyBu6bE5ScexTPlnZGY2v+hC2qkwfDT53MSdufDLgnDg1Y5P5ixd4+8/zUwfe59Yna1t3+Uh/zBuGlfOEkoyZYwWe8qyjnZNkglZYbWIrie1OOQu+Qj4vYpxxYxXnyOzLEatqrmp8jTmVFo+XJ1KVPwqgp81FEvXBm3UsOon6k2Iu3tl6TC/s7Vg/K1dJyIqpsOn/Th16rBFwjXZTxcaLjGQnvDHSlz1+3Zh97PDVX96yVoeRjXMPRtyxaKKy3yYzBnLtRXiyYlLp6UA9LWjkX49cXox+Y7pIrMtBIbis3xDaGAQx753GMMq2QCqdrO5oI1h9g6L1FIIkk/UjCZtFRuTr03DndQ6Wpk7aAKO1E+0uw3Hv9IK6kY6d19iwPiOu9dfprW4nIKt7hoBAoDhEcG9df2+n+LidV9g2eBLl87EJhZQyRpuTVDdsWYtxQ9ZO3LUNvfb0vNyvaSHY6yU2Udese0GPniI2J+kEc0KXnm6j2qaNBGzE67rN5X5TEB+D9PTSfJCR6w7sRNCk2xfuPSWpP23sk8hcXQQ0rPJpwuaM/WSZ6cZ+fsemT1DB/xTQdo50KUGTO/o6KvkJZr8uo9urljaXfcyiXcciYZVtro2Ap0kbXCVwL5eBVbITxsZONNsNEINo5oGwbXL0ixnsv3bYWCo5d5xqepnYdk51HT7iVLWbu9G/6ngvVXBrd/zQuX1M/55e7fsYOgxPEaF8cfpEocOFU5MeDkufFUm8MX3S9bD1yZpTq7qGa9zlL47PZGqiuB13/DjVseJ2s04QbGf1yR02pYwFrs1kaie+y1vHqjsSOF6ofDJm5JzLvH2FDXOq3yjYglw70bThaHc0EZw4gv7Y93O8sM7Ve5vL8QLbEeukpyxajKP41k7cR9quQ4Wr2OoMOPI83jl1bzdzh96B42LrwBsabk3RTH/ZtovY6pE/vsKp7o+j49bOvju3nDja+NzBaKmKrZj31/lGl35KTi1sm2U8oDjR3NZ/qKWi7rGZMiabq3zqAhsMrlIhW+8TMX4df/zxad8xM6fntIa+3Xj/W21CJTLI6RPCdTmQS22tdU8PAFVPfL8fOCjClILMnfg9NxcQFUg79/2GXcF6u5NIctmByQncjhM/TkGTYyuTtJgSYVj10zOkD+RH14abTwR8rqtO5BScrW8lG7bLR0wv6O/y6Dxv6o/5TZ/8vkPoZ8Em6vrIMre+G+NNT3zHAU6z6dhYVY3YMVaKYEMmU/mY39ua5W0bb8e5nTjPY3xfp0WZfCIHkerUn7ScEhFtezY1bc79oq1j4Bs8bX299FTB73ILt4qVX7D+Jm61vc5TsiMtbI51AkU7AJz9HcEf94ZbM80Wfr7oM9rcDLaSPxZ2NFNaKr/oE09/H6+/u6heU7e+bP3s0sYyh6w2t0tJggdbCvQNboirFDlljlL3EjaKySGznz3PedBC1zKnvHzIsHEKMMONhQDQZN/I88K5tTPJvoHkG9rtTkVxaA+LDgJI2lnjYXWJC/JcFTk08Qb2de0GAKdtGKS0XXfXYeCNjU8udobCRrP+myYZNdiOasPNFgKE0s4WbM5an4X+gJVTs8yhrsynoMaTCsWpJ76fLWLFWCS+8lcUYL7P83bFqYVvJJkA9GC7KUQPaBufuWm8U+zeXldsIses/pznm32MIx7jyOD9Y3Lsg9gq2NzCqeqcmvWXbbuMcVrnom848eO842g3l7/b9mTcyEHrvBCxeY5TDcdwM9JOiDbcjrHA23qqbL/RivEChBfn1vgv+NRi24lTgWhzEv1RGnDixE2B33HM7fKXeGGdx9mOdn6RsekjijbYQP434q6ve3Rs/j4cn7pdfiAoKJEZ383LOO8rw/BzjPOqrj1Ct5liErIFdv2Rus5UDcz2ENqy37tXu4FiOjhIRjuPT+/Gqhn1M1M8SMZBMHofQQbJkWXikDHI6LhusMGKq53zkwcnf/pXvR4I1/GbFPqTqK+JFa3GldhEGbvcUUYo5oLjwM5kqnRvclmaCkAvsRPGlT7DKhmSDQR9wm1LEfuduNuFqD/GqpGtx6cTq0zr+WrrNjwFQppg8IuMu9T9rv4X9Tn9Ivbj2+7ayqYyDFNIq7fWLfoNuwzWMk5som0LkozeDkbqp9Kv/EQqysl+kHW92jqifoYRN73Q54DM/gs6oXGs+uOtjS1ojrYd/K/w5ewXLOOalvvckZ8y5ZS7K06NPmib6+w5tfINS6U6J6XDdSgK22nQcCvtO3OqrPjsOHWxO/MFUU+DfswbO2ySTpd+HsmI4L9WtUMksa3Sr57hjcfzDetzbtetM7CGjlcRWpJptYXKbuK23y9y6sL7U25lW6KymRe32GDyxmI3kvu9iHGIN9zWQ7/RXtluZlZA9MfYT6W/F2IcBc6TWVXnDTlz5VN8VXAqNM0ZZHPEGRKudcD6Gy7icnG8UL5y8ZRts35pfIuMUS6OURf9yQ4bLfrY20013/gY3d+47hc+Bl5/H45PuzGzF1I5r9W/VSJmcsPJxJxhGJGYGbKjTCflr6hLaGs+qeuFFa0pDrnDHvJbWRll59fbzXnhwURLMknu1yNhpbJY6kLg7450Lho7KMkJ2DfWdNad/YzxpH77MfO94xfnE65U1x7rx1XLnpuuGLuYyRvuOHyHJhufi8GBlsTxWXqB/y2TKLCRMWM19WcvxDbccOLNV/nSDQ9MaVGfvMvfMLkFi50+fXykk2aBlZ5dpqb4fva0wSYTK9bPqs/er+rEpuM6g/ps29kGY9sKeyMJ0voGLpSKypOgYWPvFPRmWCerT8V+c1rg9GXTt60gYmChKmgN+KYn3uQOaBu+TTcxPunUPsXpL5Xf+0QtUV62Ofc/Vf+m2nEAx3nHOVIukXQfZEw25n5N/YanU6xP8hOvSyu6UIsTzp5+J3cPfzKvmf6cb5QmWABKNtWSzc3gKE/shc2F4Pv5QwYOE0sNPFLxfO471l198LIuMG5+ut0d9xM/xk51/WnpOmewT8Y0stW+nTcKvrqqe2rf/EMhOBrQ/v/tvW2odcuWHvSMmnPt/b7n46bT6S9INyb+iNAYRWibQBCNaUKrjf1biSj+CIQoCXRoNP1bEBSTHwpykYBgQAJGA4ofachfNbFNq4kfBInRxpC+dnf69j3n3WvNWcMfVeOzaq137ffce/a+98zinvvutdasqlHj4xmjqkbVrDvqTdzIbY0y9Dc1Ko0uCDXepLRQCb7cazWWAiy0oWI1Xnn9TnjFV2Ryl79xMvC2VJzsG24wTnXHhQg6aaRkVxNcROLNczAVGpjGZ5nbbjYRYS2MFc1HznBj7sev49UMU2/ZBQKvWhsLMU5T3BjlV2BxWe5nputWt055k3WwQvx2u5X3orgf4z+vrwU2tplNdcOeyN5lgHhdZ0B2TP2CGgNYibHShg0LSkf6iIsu7ryBNzO7gMjQYWhIcU7jk1IKsNKODSXYX3zW6VHWOaV3jKXyGIQ3qo+Ux/fKy3Er44cXIjtIGEEpHzC038QQyLeT6i6urjmf/lsyLAD9IoyKc1mwyAtS4HOihQYHAAoKjmbftgIBEA+jv5/GVdvZsfd3rOkKZDBmA3bfr5IHAwP5Xm78Ysj2tD0rACeAHK+y5i6TCq4EoqXdXiQ8TLyZyZNcv0YTB755GoWnIUUgywTAqbTXxJ5L6fJzeuLqzlYbDdBjSleWSaCRUroBJZpVtrVfUbwqT1SX/ZgGvRHHFGXn+4mOeULj9HOjqXID+YVH+WW96UyPNDrecKY/O8rMG9U51y+a/W1EWGgxXQcG3dagL+sY8cCbwOPQ1kTnSrS/tntVwXtLJdbJqzj3K7o96H3SOW9jwpsZX4eAgxiFAVp6kFAQsArZLsjZNjGiM52lsKR+PW+CPLK+fpiTbq/eGPvyeij8uIqpQf7PsQ3GIpcV8O5wo8uqOD1DwpzcL0x3Rkx9j20g8nZdWlBPHfeJ1nAxQsQz1t9Yxgse9Ew+Bxp5Jn/Dp2y/hdtrUioDVNYBN8KEDqlukp//POh3qrtQ7ifiIrr82pk8hhNwPBfm2jE6R954vQm8wYh1wqtQt1SUSgAq6l5AhfrJVMMNs8nr/ib2M5FnwtSAGxTlZ/bZWpMYhyC7slG3Y7wQdZ1gvo3Rzj4Fuwi86bfaau/Rj7cYpy0NbrVojDPD1DI5OvA8TDWa7NmOkYCzkzZl5UI9xiEX42T767xz9Qe9cfoqv4k05N1tBLMhozHu5IJayiczQBmrfD+JBrnsJWNV5M0Nf6Nj67r+bcD9L6sctzJ+wSIC9mBg27Dts/w+TjTGuiXVVWNytydZP02Au/5MwfHps+z6FZqcYQWlllWK9OwAJEj9KENYU1oA6ocuEy8Cjex4A/d7dEzZ8Ag8bE/r856vjuaqqV1s/PfnKrJM8ngZg/wU9H1dN74i7Uz4aqtCyrwQYN6iyTubcbLkz1iNepPbWlLA1OQn61eINCHyKsYTKQVkoJkTb67p0Zxm+af2lxfRFfllvQEijZ43WX4DzaGutxMnP7AKcqrrDCClqw0phclO9NlJ3anOeRrRd8KYsfeKylfpV8cbA+9BXld4Q+/ha8YMeVaw6iqvJjyf8uYKX6e6PuNrcvjPLy6Qu4UbSidP+TE8K5+9bcz64aZz0tIUU93O7jXdKR8o/xnmyEUiDAy4n+vKpVWCqeVGP3lyqP2q/Hkcn/K5B6Xc0gZV5s4nhnYzn934Cia8gXvW0wyzkWndjhuduhu8qiNNQX6j7XubHOXHU75G3IC7GKv3GwxlguX6+YqeIMkz66vixmijssNWmWCpqEDbpeGuR+3fMN5ruu79eKCRE1+T31NesPPbk7Tda/r6QZia/I2TIyjL0zZaKss45zJQ+mS8Aauu+xu/0KCyV9rH8QGweIIJ4HSJWLDdK7yZYNV9/sbajjFOhZtzH+U7WL4tEzMi+jkA/zaAH2Tmb7y/BquByOciq24ghNuK0M8C+d9DcCCrwlZXgz4BkgywXdnlEOyy79glqUYNg6xPp/gKJrrS5/rt36M/S86J2S2UUPrNibEOmXti+EoVFzVagzGCp8mNl2S85rCVN77fTiO58clnQFZuGT5toxHZVoMKKqrcgqUy6YDjUkqKbzfIIMtT6sLoz3UDXz2vGmkLtVuUIHz2eqL8lvNaPu0H3Xl1vpakR278QqekVcgLJj1f22UyIj/GBfL+KahOeNmHtARKNPfxFrLfRO5GYwXpax9M9n5FD1yxM7X3tBRG2frLpYP8Iq8ABPmJvEK/RDaGTpfwJvAt25+sIJKXX4UGgnfy5v02FfVo1DkvW8EEC46XLuMKu+xHnp3q2BVeXePNVb4K/jm94S6/UhjFYVXgVXLww0HybH/BxroedcO6B6vMWd9fTGZZDh7LhU6oDajtq6w4tWVnOgY/oLjYdJYBcHsPPBbasc1wg+Yylf6n/kaf9XSYbjX5V9UZ75sEy5ga7hc0G/UZEh5TVZeS/EfeXJN/dePrvHHfy7M7twWBhhstFS4GyiNvZjRd9zeio9HfeJyASzUllmS3Vm8tOy510c+MTFPsR9qOmScTGoN9V9dGtGOpy33RksFYSkWp7XISETXUJxtNg7+Z+KrR34w0qW4rftj4quAG1X5co7ixOh3X8ZreyKThGj7p+Lv8fFqd1y2LpWqKcVoq45kYchmQ14vWzR2YOtPtib/xNANR55oM2+SsFKCUGm+e1rowe5S0yCu6PY1xROeSPpL6U5Fr+7eincVrWNXSKxHsfKavEfc9VkXeRJyDo2vAGQD5BfKvthw7Zq0Q0Y8B+EMA/vbddSBb4wIG8r3Abnuo1qLPA81g/BZsrGtbwXJ20yZ7XVlVKRlYgAdCTz0AFq69Vamb3t5OirEOhGQs1eiGS60h13dvXVOnWMYkBt2+o6XxpaJdvd4hJIzPjxd9vJEmdqDZ+6WosNYWa/DfFlDcNbJgEGq7SYka0C9Cr1ImQTD1QGC8pSj3K3VzCsuQNuf4GoBfx0JgRkuFc1v1kLpsdWkiE+u3jv1y7vcOvvYAlxnYS+ljdyuVPa9dzjQXBcrIm6lud16I3jTdgDlZR2PkK4NaDgt4K1gWhp7/En7IYNVRmBOK6RUyiTI5SN1ZupbYn9JV7FkCQKXxqlLBIoGz2kXs9x7eWF1xJhJ8XdG5TpPylVoQAwb2fibPeG4YonhE0e4NMxxfp/3O+drUoqqOCa9QgEeRHwGV8nhtfCM2ZbwZMYQhwR2u67bjlZ+oPauQ4R0lfgCMWhds3Fata23XRJ+WHWvZsS4ueEhBYBuT0aM6GvCoYRkIwNI+LVRG3KCMOT5oSbwd/I3tQtmzebzcn3W2QRXUYi5UxQ04OdW5vqfxBl/XeTr6G0ejx0XUpKNV33HETFgXKG5c4801/fa8yrYR7Zm13ZkfkAAUAFhTGVvketVHlhu4McP9RLPaZPIDxaeGEaNwBTP1V6W0c8YtjrmB5f4zv0/nOm8U67weGW74Z5el2Spzfy2QLl6YjK7xRm+tzP5Gn2XtR32iPtvllHWO0CZbS/tp54Klzzyyv5EYMOtN4M0UU6O/oemzWecqTn0rqHLpqXtX4gW0xWk5/xn00/FOabjmb5ysxVa97O3CoR0MYC0FO9/hb5yvGnXdcKWU6p5NMQ6yzpkfDJD92goj33TzXVu+HTtmfxrAzwP4i8+pZC/Ak39kFaCVvUomMinw+LQGwILH7Bi8c/RGEOqG7+Nz8rsBrwUjqpg0rxtXVa7UBWArEeagCrWD4ED7157nSM9kvJ6mSH9/LoHSbMU7rCa58bSY1b9E1deJ4yN9II03OdxIZKRpztcst06vA0gdn64EeV1ovw00c+bVWPdevrbDzeIMk/zI60SWwTipGWStP4x89W3P+ArufSUeRpm58UndQJPx4lrdQBMc/xDPWOg/nfc+/Semytzgzcz+XN0gz6zrWV/7GGTlNNtw3LEZ2/U6pr+7Z2NjHCa+ojfw+qFjNPlJP0xsG0kDr6A66fnix5d10pM2YNVE1l6eH1Ku9gWAibHvhKdtAdCual9oR1mS7Xej9RMMT6eVyRjdb1PcSDLNtq+/3fQ3LrC7A3Ma7rcvKmeabuj7B/obj1+3bAOMoKfv403W/Wwr12zD+524+GFpWH7M0h/D9N37kFxXh+bpH+Q3sY1kk9dlwMorTv14vvq67ZE6kW/ma+KNG0sc7/isKjh13HDj+6L+BoEHCa8UsCZ+oABU0dMHk3/JMsm+OY9zsKnR32R+efoDr/SZ+L66oR/gZvrwvf6G0uepzrH0HbFKb3yc2dQQJwlNPHkWk2fnn6Xt153KyDh2zAAQ0c8C+BVm/mWaRfpXK0JXFVo7EUzadePt/RvFP+NWhABoQCNAo6l3nRS7bIKDAQJtFZB923CrPORp8sbX2o7v4rItX2mwTOrae1R8AOxXSHp9WXVyYODP9MQ0Chuvp9EH/npDluQTk4GL1XVjJEvTk/G1G8P64VpdtYwgbHWNN2GS0+kIV4c7sC2ubl4p9O3rZJHRE8MtDdY7+gjCrv5EJrZl7z5/CF+5/Qew45XxIvAGDlRLkonS68fXaWbuL5M2ffLPRr62upW5B3ys4/Dy8bxSE6FkU142jsdeB1VvWOTp9Cvbp5vlL4X76wG7rhen61N9RRhf5o1e+JFpHHhjPPFwXiG73jzy5ibejHpiWOWeu8rXKFNpm0G6y7pA7tl0tjXBG7i2pKlSHFbB2xRGu4DTbWePYxB7f2krsXWqO1wJXAlP24qnbW2/LW2lmOCyH9KCVnF22ybVCfP93/KMYixjc7zMOppt/0P8TZapYY7HXsMvjxvRblK/z/Q3Jn8LHsfFyjluWOaJpPXywJuAix5Tnf2+3zaajuVbEf3qPfftSc64kbA71xXReUy9ylc/tolNDjIwFmN1sjNcnPdzj7+5xps55kSdqz1fnCAvK+58+gL+BurHR974Z61NDs/aKzuAlYCzjn3ib2ii2zd0ffA3Ca+u61x7RyvD+lMdctkX2Y8H+c18FYw3QX4EPeYy6GfvVxdrdGe0BvsbZZ99McL4hptIHd8DX3Fd50jbPMp3urx3YkZEvwjgRyY//QKAP4WWxvjeQkR/BMAfAYDHH/rUHAZM1lybkaHnQouxaaDNtpphubj9sxyAJQEUOKNiBLBAC24WVBSiftagt0kyN4t1LWhttXUHgKNyz+qKoRjguroO3NpuS2u73UzVzNxWdMzxNzY5g3QBbftP8s07TT6geU9dgDW4heSoM/XUkR27A1cxWHM+7qW2KVDyz9NQl2/wxgWLOgbusiOcCmPbd/jzieTTgSa8GWRyha/8HL72sS8AFiog7F2Xr/DGyX6QyYQ3pf8Y+OoiA/tsQWID14oV0NQfufDGT4Ra/aTbyDKIuj3W5XYbWQf1qK/JPgEQtVMPbfV2A6HMx8cIdT1NKhPqMrmnro4jBkdNrXcsBNV1Oe6svMEV3iS8kcUUzxt16DNeBLoizlVwT5+hljZTXatpvBmrvN6MlwTMcc4HHhaAxkDs3hJw/4c/dXzvk7H+ioTPzwBzz3FixkJV06e435Q5p5MdnRKkRdvwuNEWiPb26oFSce64cQ+mfoj8vUzV9j3fiYGeorSg2WeZ4Ibc5naPvxlk6OQfbSPqoeJ+H1uhipU67pe9L+7QlDceF4HRBjNvvH433JDZDYeJI9h8h9FFKOgpZ4IbcLbgMTUvVsDzJr44OWexZJzwuKgBN0nEsqMQgYj6qwWW3oadf8x179M5m6zcE+PI+OTzjnZz5VIqtiovBXqfv3G8yZjqFw2cbtsk2OmcyM995q5XBbWnrzf53e1vEu5ft6mo6+YXRbJd5zojS6lY9h3tlQc7Nn/2fLCpKzHOwFfTo3BNvXyZ8Mnbn/CsxTgFD0vFRbBqIvupH/c6le0i0JhjOPHjHOoqo19z+arsmDHzT82+J6LfC+B3A5Ddsh8F8EtE9JPM/Hcm7XwdwNcB4Gv/wA+zvsUcXV0rYa8FTJa6eCoVa38bfAFjLTAFCbfLIAADVKltMpBzfdeGqljBuFRg7ZVlxc8mCLB+AFj+cKd82q9+jHURd8go0bgSINd9Xmp7b1ijCcE4qBul73cA88AbAykx4FA3O2d5Ft34uQeHPQVBCAm8CuBt4/O7MLZChAgWLL9l3hiN/spWgFEWgCtjZcYTWHklNId+CmLdQSYmr8ybfPNiuG46y7MA4J6Cy4kmz5sQQExohj1rvPHysvZUXn4M3iFRC+t54ZajTsBiA2qpJc6mzOlN+oWTJ0/q+pV0L8+Jzsn5hcoVtBfjlcjrhkwslSTJL9vfMD6HA1PMYBAv4MLYaq+rLdU7ZOJ0o5is421dk36BwKuonxIEUDtt4HDB82qKVe5Miaz+RvuzYCbrka5wo+my1PW2fE+Z4j638W4o2PeC87bg6bx2nlW8XTc8nmqfnG14WKqzf6NTdDyfO/a2Eey3n29Za9O7dzBeTjE1yNT1e49NhrNrJtOB5n6pS/vIuDDbdeMJUwkTbPP9DrrDMZCm5BNLGl+wjQpQu29w74tgq47oQ/xN6ld5U90ODStuSLuZ5tZHu1zjspeAZTcx9Ya/ISQac7D9Xp1jVDjcIBrH53hji7ozP54C9VB3HuMEXXe84IWxUsGOCuwN9+/zN+lWysHfPE/nFs+r0jBsLRVPlVV+9/mbSZyS8Mp0LuOV92vpnGWpqFzAhbHU9r3nVbBdz5tsf2pTho1KV8KMcRGNgx2IjTEYlXc88YLVOcX3+5srvniGA44OibVV54ZYEa+7fFUmZtcKM//PAH5IPhPR3wLwE/fdyghIfjXksoR+cFbAayXuZwzEACNgBQBLv5mSE3wet4G9pTIyy/QQWg8E6EqXbONLXZgxyIqX9qugm/tlfd7asVVDoZlAskjhevETJ7LP4PC51ZjQnCZdFGiUut4xWt0h+CJ9BSTQLwURSoXG4sbahkiuXyeTXNfzWEAPgg5+vI2v7QrZ2ZkM4c/Im+sycXxNvMp6E3SO42+iSLUm+eGZvFHwxpQGpH5pWtfLsDnDKM1JXaR+PS/g7ULsL8os/B2Cq/kY5BZE5N8GXb8lE29/0Ju8rtd1duF+UzmhG2BYgJnIJPMGV3jjgyV9/kOwqq9eIvLVZDLBqszHqV1gpHlWN+HNh/jn1le3/a6W58uCd08PeLqsWNYdHz1WvD1dcFoZa9nCGaNMJyVeetugYcyNt7XjBvPI58AfjLzVnQvVb/es4HfWMx/0OJu03ySI4p4Qovs/EIDxuDHIkDJv5npGxDdtoyTbKNRvmBUbzViHZ/ibTEf47HYTMm6IL3DyRHfa3LM2RtlfwdTBVyV8eqZtwNGIzlu5kddso/ZJqPFGdMp4c2e/sxhHdc5eluxlzz2VcabrN/0NzXzVyKvb8ZEsdKXxdWVibvtksd33+Zv78cr46i//sX8HnQtxoG0O+PFd9+MzPXq/Hx/tkcP4WHU9yS/5G/h+Z1f2T2xqZo+y4DCP/xhxEfQVFsZx+ccXLYSGU5W5X+fdAtoK6rtkhNJ3zUSR2CkWuOXdQpUMqrDxxiAMStmMqV1JWqhgxY5KTTWL6yfkG1M0DlBPf/KTRgWAnLrQ2+mTTq0btpgBllRNKlhpx4VIU338il/OwQ9gnZ5tJOW6GGhsfIt8El6wts1YaMOOBZrSojRMxkcMomppkUCiuUYala/c3+fjeDc46nZlRCmMZa/YaO/yvM4b0xMHXp03QvNNvXH0Nxrte+EVuN0uuJSKpW6ovDSaMm8cKM5pzrzBoHPG10ld1TnW8S+FcaINZ7REqXldDnW7WTi7iKmOoveR5nG82k9vm8E9jZGw0o6NWpJH6ePFUBfuPwtIwWjOKOhN2qES2We7cE5OZFC5AihYCVhpw84LiNqCiQWd13iTMCPxBokmtddrOqeyF6zi92KV5w153vRAO4+/BXgjb6hPTq9jxgeWSgAx9g14elpwOa+4bAvOlwVvqAK19f12fWpnogia9hvOjCRsBrJt2DM02BKBSsFpb3rXJkMzfGJoYMddrwKmSkq0HM7PtpFwQ3ltbRW4gL4wTthxroTKi/mqIMPRrqC86bjo5Y/32Aazwycnb7YxLFRxKhvOfeIz4024nn/qb25h6ogb+VmRfdP3dmOn+siOG+JvDFNv+RsZr+jYbdsIr5+Y+OKt07kSB9yQupE377Mrk8nw2oOEV+TSXG1RQOyhc6vzShLh3u9v4HQb6ost68j8QLYLOWMt46OkcwzW3aOFKgptAC/P8De3YpxbfDWfiT5e2XFkqYt24dBKF+x9f5jcs1PeALjqix3+GvYYLok9hjNrfnxgEBWUApzqjq0vcQy8cTK5J+6c+Rs93xd02/yLt6nXW1r89b1Qvm0TM2b+Xc+rQdiYcN4WVC6oTNgqoYWMO3ZivCmM1b9xPgXqApY9ZgqKExUpAWtX/FMBGBXnsmCVlRxIihpiXUe5AI5/VlcxyLaN5XczcLu+mDt9OW2DmAG9CrgNjDvNeg1/Gp+0lYFdnW/hxBsLCP14Zk6zUEWpABe5wtocs++38ZXv4A20dr4uf3FMtrrCG+tHDvueUIFKuJSi8iNAg5gsA+MVnB4hyIQQZeL5qG2RyUDoYqCf/yEAFXVrvPIBgtfXqGOR5jZ+A1wve+NN0m3HmyCTHsycSgXvBKIVq449poOM+hp5YzRbcHBV59znGV+JABQG14qdSpc9m6NzNElAG2TS+ej1hlw/UdYjr+RzsClqE0IqFXUnFFpUBuwCDWi/WSZzXmDghfDuhl04PgKMh9LebXUu6xSrsr5mzEDnRdSbG7wpiTc+oIAf2/PKfl6w74R3v/kWl7rgwoSnumLjgsoVey14XCseVnt9SSFvwwnLke3Gr/qO+r32mRHXHVspOLH84nGxcXdInw4+xPgzYt0ENzQo5IT7Xe8qA2XHXklxg3s/ggUEhBS0W3j1HNvIvGrjq2AuOC3NFoioBwsZ9x0WqE2mtLqh34kfx6jDwpuIG4y2m03YuAbcuNffZPnJDkV8VngTZY+hbp8A9Ah5rxVEaz8jPsYpIhPb9Xgfb+BinFu8iWmN4jceUABUPHX5GW9y/OB84uDHI175DCZIPfVVI274SbWeW9t3bFSw0AqfVTDzNzObuhbjeJ3zeOXxmZIuUGmXfzyUiloJSyGHizleyH4cSQbdngEwXdc5o5Edn6IdAMCJGEw7LlSi/c14c8WPE1hfwXELM2b2VzKfX/3k7HujvNiOWWXgshG22lRoq4RaFwMhqu58gCmvD+zaZzIj9IFR/84O9bZngWi8zOjQ5doNaXQISqv9Uu+XzTiG1ATYs/HgeAdz/yz5tmSlwugkV9fy1mf9+EBTeJcAzfHR2hc6/OfaecNo/+O+CjTKYMobiCG3vyNvRpmEIDHzxn22FV5o2mfgzVUZ+M/Sz3tkcoM3gNMLcNcbkZ9/T9UtfXWT40Em0jaujk/1s+u6BqV9vAWyu99uOWV2ejGxi+v6yoEmJNnnzzo+Rl8VjDJQ+fVv5ro+k5/R7J2v6k14+fWMRjjZu2BL+N51St4TNNAReGV1r8rEy3PAjFGe0/Eyt/NlDcqu0+RkP2KGc94eE+/EjBCkht+eV3gnfP73HvH02QN2IpyZsK/Uzp4Q47RsWMt+l/z9mcjISx/0THCfepoQEQYZ5n4CfyIuXrMNSrw1Oc15C4je9b1Rsna1/QGvJhjqxkuuXx3f1DbmvCpom5uoBLkJcfDF+TN6ettUJhlDET87vFKWU7aNqrajl4Q5XhHu9Te1LzB6f1Nv2GBMD/Oyh/oMhqR9ekyJvMkyueLHM28cvw1T3s9X7v6oMmwi1Wm9VVcn7IpXE93OvFLeRN3OCyoIMY7n1fNsCnguXrXAhcJ4HYb0xZHaBS11vW4F3vi2Ag03dG6qNzn92WQiu1fMBCa7DOhumVDGyNuYMdpjjf4mTIxfafmqnzH7omXbC3ZecdkX1NreUlZrWzEpSwPJvQIPS+1BhCn7mHMvBg+AXFoZWlBIIH1OUmPaC5PbCsaCtkPVq2vQEg3UVq+oAyO1WVwAJ6Un0JxywBNIBoXvIHoixkbtpZXBAYb+Io122J+MZmdsI2/YXdqRUhup3StFaAebCe1ykqXs2Dupvt/IGwcsQz+dN2x8DgFsGp93KD6lgNEcj6R37R24PMhF3kg/9jnLJGzdk6Mh13Uv5xaaJQ2gdn6cqODSb0CUlbqWltL7c+mJwotRJpk3kaagnwwNvCLNbVeR0XZr17JjAw28irzJ+urTGqL++psmSXlDSpOsWuukVeTHDK5NZieq2IihqSyu38FOkr6as71lF3761/5enANTmip3VjMWai/urdydlOhrGLuTvfbr+glpTI7PYZXUxktUbTw9aAOjpS5yW2lfadMpf7Yhc7LcA1Qaxy78ozmvMmZQ4GPUz+cWZuDdtx5weTrh6VsnnKmgLgDvFeWjDQ/rBaUwLnvBR6h3yZ+SHCIOZzvq2M/Nz6x1x45i/bDrp/db9Cy0yV8CvZltkLPBPPFv30WaTO/afydiXLA3ialPcv7H22CQv9f/0TZ0ty7paKvjfKSmVrHDDWDZG01ZJpbOFnFReH/NNgjN9+pOtPhT5zNimm8FcQNLbu8kxol2nPsLJHLd6/7GYxsnPTG9ptSvpev5SUH3GWoKLcOn1Ip6lTeI40u4OI9xYGlmvt+JPAHblWmhf8OyFU3Xp7xxMrFdU+fHr8Q4FMZnk7ARU6IubH3CcaKKS1v2nfhimtpU9lW4YlMeU5v8muyXDuXtRkbnx3kBUwuIG68w8sbhYvbjN3WO5I7OzoMr8R91vBHeVfSN9IBVnTdaJ8a3t/14jnFiv3GRoyqtkeZXXBjHGbMvUioTPr+csNeC83bCUlq+8VoqPnlzwVp2rFTxuOxY3JvuveKpoUijxHrbk5xJmN3k1Rxs+w6lrdiWUrB0AxOxjmlYrY4qtHSEuJVN/XOrZznsHav6bV19xRYtWNa6xM3B7MBeCoqc+gw0mWOQm7/aLogLILzTFPr9s/KZYQGdjiduixO4n/MjVK4otEBAb+SNb0tkknhT0lkXR3N81uTHQHJsjS+SpnEpi8pPiqREmONwvJG+2T/LSUYwZ+TALgdbXk/ksDOYsRdGkaBe23F1aaJjcsU/ie5k2Ts+hn49b+pI49JSLJkJxfEqyAtehhaA5NSLW3Zh6S9W1+SX2ioMoh2o7eKfBdVmsMi8cWcqBt7kFJfYr9gMT+QnOmadVogqVCYnP3PEo0wskDOar2CVo3kZxueCWvLnN/okshCY9yA/JpMhpJ3QTw00eZoHWwUG5zykDpWoN88tlQvOa8G+EOoj4/HhgrLsqAvw6aef4/G04bRuePtwUVz0eAVIgDe3QaE7304XcKOg6d3e7F55mfBKgx6tzF1O0tZov8HfqC2M8s+8pdInHSBUdB2EEMVukpL0jJJtwGQo+r5kHVW+xlQoWQiIeNyCPt53lKUEXqmOKo/5pm1Y2qdPK5v4U4LSrHxVX9WNs1RwJWzUbu5EX923ulAfr2muNOLVdRvsekaykGG33InOqd9WXrQndq79fXGksrvJmxS3TG1w5k85ptHpNfSCG2gx1YgbQovjjeB3kAl0EdvjldLvGBfwChWLG0/ADeHlQqCdsBP3V2KYj4wY6vHK60mnI/DqSr8ssrRnC9zOLBhAxakQiAnMtcVdfbeIA2/MjytvMmYEXc6xVNTtga9ONoDYZ1tYXajLExILx7TXWYzjafa67jFzhhk57dOnbFuE/ErLsWP24YW5XY1/2Qr2va1JLIXx0cMFj2VruyBlw6I3YZmDlcBPcU7BxD8rqwjaYzdu0micdM4jAYs0FwMwBQVph6Bb0kzewI0OcQKAPetXnWQ8edvf08MyHoogJc8WTHjTaTKQsLEPvAm8Y6VRvrbxcr89r71nLZyLciDuZRB4ow9zaBPpWS8/DWxCP1Fe9reBWPuGXTut39xP5pWCDUW+6kwNXm6ON258Ao5QXrHjVeKNgm6vS+P4bGdw5I3Qco039oU5cTmrSECgy9OkjsV9tlJR4F74rkGH9RvSOtjzxt6Jo2Ngawc9CBBdL5z5agGk8oZG3sj5Oi8zsYNRZl1eiRdyyyf3ftjzBlkmIof+jrHcr+dj/2KGLxlDMmZEX5iChIRjWfZB1n64qR+t6upmmlQHKevGfYUZuNSCrQD0ZgctjLLu+PjNGR89nLGu7ZKJU6lTbAt6BkenPIs5pvpd58LQ1XDF2P45phrxYIOxX2+DzTZ8XS9vYMRUP3n2v1V2+pzwSoMmN95sG3MbJMjEK/KVIl+lHx88Cm4w3ZTJiFfRNqI/tb+B5AcG3KColwJiXQp2TqrZflHGenmazzUZZBvkqzaovPG24XgRccMuZ5jiFXss77iR+er01cctwQ+k2CPwdcANO5ek4yMM/snzprh+ZzGO580Y4wgdFmvI7wXA3ieOEiMI7o94NUk1Bl2JcWK/ao/D7zzwtxD6u1nlaIsyNeG1xVJ+PEqjj/FmsZSTxQyrrI7V3dUDZdnTVF9nmBExMslEMST/LbzxE0vJhjnKd7q82I7ZZ0+P/QpvAsqGx2XH47rhcb00x+yuEfbGdD1/HpNnoVvD+SbDCoKkTpWesmR1R2MSB0i+LZobntCmddJn6GcXDLPDUfLv3+FJ3eRkulHHczdS/Oqsf9ZomtHcMJk7ODRoWMh4mPksNFnqSqYRAbgpAEjkBRiJN93Jkcm+9tUskNupciDqJ9ORN86BMet1uCaTGJzAtadA2nmDqfwaTSsxLknWmhJgcVuUiY5vHIc6wglvWvtWV3UEjLYGTy19qy8GsD6X+/Wyd/KTfvznq3YR+Wjy8zSJpjfnsoCxERDeFeZ4lfsJNoX4LIlcSZ7NZ0fgHC7bSrz82/li8uPUj7TveKX9OF0f5BcDgbjg4z5Pxld7bULCKhk3ket3hjdJn3RW7HiTHLLwEa5OHMfzS2XCE6+gNxVl37CuO7728Ts8lA1vTxc8njasVIN+zmxDgrk4Ng4663HD235Tp3aL3wLWwCdgUl9gQbArkz+cLVCyDU1lQtR3pVnsVWgVWbDgRsV54iOQxneXbeTvMx7D3WI32G+7EIEBfWWNXQd/Qyac+nV2nf1pcf8Ck7qqo/YsN0UCJR8pY2i39fp+aOg38srJikfb8H5k4KuzQVmQW/pNj3DPjrgotAIh/bMbVRtvilvUV3laRtwAbAdEYxy0jITa3xmgu3gTmUSa3W2LQlPmjaPZpxdL+7bo2nd70KcYousupvATBEufG7E8xzizfi3WiDqe/Vxx58IB9B3YCuIyyCT48YwZIuMUW9GkX1I7idjlZWBnw1vfC1WdPI5+RdpKMU7HqhL6Yb1N2qdkZ/7NMcMWG15tOXbMPrzwTtg/azm9YAY9FmBl0E54+9HFGTw7xW6fLU1QFNgmZxkoijd6sK6AE9pV/CsRdipYC6PWntffWyOtC/efAGxMM/OpRECcBMYbDwHZKROaLZccAPdzLSC7Statr0VAjTROeUM81I2fPeAYD/0EBGg0rQzUUrHyjp1ZeRWdQj/8nfoNvHE0x617l+JBSX7JiaJzZS0VdW/y2+vueon9kPImgqM8HmUSeTVOAiwI8HwU8AW1l1NWKii0Q06g+APAvq4P5MXxBYB0NMmV15lXdrh5pFWc00roN33uOlI/nrgrxCNvJjQPwUGwMe80ZHzOYaM55sqEhQqINpDX9aEu4G3ZbEouHBAayaUKyWqvXdTiA5LMR/mXmbAToZCtV468IYwBjgu4dJxW1wdocYV+jhnCicIVK9pZs5UKap9OWGByA6tcelbQLQmYyK4XjvZo56TgsCEuXD2zELCeLgABD283vF03rMuGx3XDJ4/vYqprwquih+Vh+PQM3Ih6184Un5Yd2x7214e62Tau2WD0NxZcBaxzdpRT/Va0MyV7IZS6oU0bJdiqcxt0tmETpOfJcK53ja6VdlTuuIEdnGx7xJyZDXpfFHU0+mZnV05HIbxzfmQhwsLdR/ZL4GV8JfkbP1EjIMqEKkzHYr9mGzO76rtzWpexUutpo4IFO9qpoohX0J6STN7ni2/4Ko+LMUW0tcXUUj7XUrFX8y+mRxGvfIwTbw2OdlSoBl0IKe0azJtdqK5wO8NVRY7TGMdKWFBP8o0xjsjEpg4+DTJiRrQLQnudADOwFWoxDm7HOHprqqNZ/6NkU348yd8MGBLk6bCqVGx3xDgy+ji+CVY5WUYfFvFGMSLJ5XUWftGJGRH9qwD+GNpexn/BzD//oW29zOUfTODz2sLQhVH3in1b8PD2M3c2qBnDkHYVPnfQmjxrythKrNtWo7i23GPmJaRAmHG1oobJzgg9AE76lbK4372zMYBzdaltqVdigHGDptzPLN3ABybx2aFffTbzqv3GKKgFKJsEQjStG3PxY5t5hSnIDyPIRvnF1D+IU6stuH9invLK6nKkQ9san22O39GR6sa87pT22Ouv1N5r46+Wj+8PmshEeNi/8Z8zb5DqXr/uttHP3M6HFLb3r4RnqTeb2hn5aP22S02y04HpHAP+XEke70LA1ttoKS0ilPQsA4OzJs+fGmjKAYVPxQDs0o8ZTUQMVLQzA3vTc3O/ztZ7P8HeCE5HPTZN+EopzZXj+Tt7N03vp7SxLajgeBRP9TDQqN9P0mkdX30/gz1yjXVTW3E6c18pxHg4NYx4WCrWpZ3VeVw23f0Q/PA22HTW9DCeDfLBWmtD9Y5H2y8F4CoXu0zSuSj1c0WGMh6Tt7ONiU1KW/l8SLOrir0QVjDOm+Cr4UaY/ITxSaAeJwz3ynBB9HN+YtaCuIIVjAvLrkNsaz4+s0G/uFJyP8pHv/OV7FfGl3CDuZ0NFEySetdigCBfeNtwPl55xdqP97fqEzsvgo+QOkvzkX43Qn3XFNsaHUug+ZYvjnz0EyIwOxtC99uMioKl7OB6msjE+vV4NbtF12PwtThsGtMgxWHEuDCa/KYxzhX5cX/NwJRX7W/PR+lLvloCTvrMDEY/2dnOBt4R4wT9zXaReGXxX/TbRvMkznR6A2asqHhX5/FgxkT9PcU0ZfJZnvVYNYvhct1XWxjtZcgvUIjoDwD4WQD/MDM/EdEPfZH2XmZiVoH6eQFOXYF24NTv+vPBi3xuTsKcE4AABKPT9I4jArI4M5arwxlREV1fophKBxnowv3ulXY2IYg0Wz+eZkmnAuS9G3k8SDTOeONpisHK1bYc6GuAAQcWsgrDkS+5rl/NRpCJgHusH98NkmTQeTHy0Wiuyqs40RhWcSm3bfKcOet4DW3kjZf90K5SM8paxhfO6PQUk6zrFmw4fXK8mNUlZF5FuwAkYLKxE7hdwDF5Vj9z4k2SX+Bj4keQyYyvTO3sIjcd8c4rOJXEGx94ZHszvfG8yTRZPa9jDROgUsy70UFvlDej/Cj3G35zctW/42ruwEeC0gXE3zwOeKepek9iD47uK3rjabY6fnyt7hd6yTQBD+uGpb8KZS0b3vSbGL1cymAbRpe/ZWyKE26MZSJD5sbQyhjGD6fvpdyQ4cw2OMos0FzmNLe6FXJhkPimgLFeHpSCJB9QJXs23SDXVuRNxi+tx33BpNM1YKvaQsf8JL9sV0O6l/u73KA566TQRrXR5iekpu9uPIGXnufZNhL+lsQbmtU1nsjFZDLp9r9FmSDaq3/5sPJ1xFCTf+w30JVplv/vLqllFUh6XvK/HnPI7wb6fsn69WPUZxFosrqSfth37hnN/nRs+uUQS4UjF8X+bu16ufE4eXB1B113+OXHI5d5ZJqCLWMW49zqN9MssmXlDdwin68rJzjaubeoV9cwcdCjFD/MfHG0zZyFln3VKy8vt2P2RwH8m8z81Mjgv/tFGnux6/IXMHgDlmXHm/WCtTC4ErhWlKUngLEZVFjpgSiLz8PuDgfoQRaHVSHqaWICSBUVhQqob/NX3iA5ulJqP3y613ZIV1dk/Bvme9d5B2pYnQKgkxv5jR3NsAnZQgVr2VGYABR1SGIlyhvyIBPzwYPRuX4LjDc368I5526sa6lY6i6XOad+4mRVtuThr1/upQz9ugBAxkcC+sbTTGO7cIFwKju2fqtZGx86/clxY9avp7k7qTzRd0Aenk3ttktS2g2WLRV1B3OBpPf5Mx1M4rQc7yY0aq59Dw41BYY8SFZnF1Hn2jSjOYBCjBPt2ACn6xLEOJvSfkgdTbuhLOqNvKvNnJydB4l8lPE6JwgGUaNp4QpCS9MQhxT10zsip59dftQ9T9F2I1/FoWS+io55GhktdXAhUvm1szSmCyITzyuGS48RXpDnDbtnfUAQgz2lEYIZXdZcUKil3EioY7xJtiz9SaAvv7EPBp09zvSG2DATsm9YnT2aRdxbClW8PZ27Xe54qxd9tFOsGhBObYP7ldPG2yzDcIues33A2ajTu2YLDjeo2QUzUCuBa/tuLS2kLWVXfogNzvW9y4FMhkTJ9pEmFmjnqleqWGhD7bgB4XcPmKNM3YU+MxliLkO5ujvon9MdS4lqwfzSeXWGx43WsexAR2xzZ8/Unv1ijuNT10nBak5X03OnNS6GEhZasNLedxGK+qpx1ywH/J3eQU9I/Y3JJNEsQXvwvZ0urigoWGlv8kNRXgUaXN37fTEHe7adPVIeS93i6ra2CUQFJ+yoJBepmE3MfXHEDXYysomj7Xx6rCOZ3Igtdz7bzp70W7CWisItldHHOJlXUz/OQIzDsm9qPFuU5hmNpouVG73t9sMc4+QdY9dvZ2TOnMn9eiyPNCc8djZlN20WnGjHRXFfYhzbJaSZ3ggvkp+LiyXyrMUT/sye+DX77/m4/xUpvwfAP0ZE/waAdwD+JDP/lQ9t7EUmZlQYb7/2hFIqvvbxZ3g87VjXDR+/ecLDKlDclDemfHAwPH8gmFLaSl7Z8r8x2ju5wO09Uxf5LI6OGFzb/VfnCnx+ecRK7R1Qj8uO07pDVzjc6pNPjxocAQCUces6roB2+qhi46LGzZ1ndvtc6yPncpsxxdRGmj7rjd/z1QNu67cyg6liryWkawkd2cCtH+uXPagm+SnQO9748XnnJmXp42zv/UGQX3Ey8TSF8aqezGh2fEw0U/pu4GO/cnevHTRJ9DnVg6XScJeV8J0TzQBcmgZcABFpEvo9rwoqmApOVMF7eyHror3G3UjPG5k8ZJuKaUXRpkJKxISPNr6um30iu3HFQkunv+s6WbsEc4IznVsmehN57oIJpxeCL8pXcaSFsO9tIsDkeYUBb5QmHb8FpGrPiGMvma8Dr5JNAUDhvkC0dtC2s0/xRtJYN5zJKJlmz5uoc1k/B5rp+SkjBcDbZQeB8WZpi3GFKhba+4VPs7452EbEFAlO3BjpOi+z3l0qHC+b7tRK2HnBthN+6/yAtb/776P1jE/KZvKf6rvXu2i/PhU7+zUq3Ob4XLHVbitJh3X3ZCLDckWG3jayDOPi4dx+mQgnqqh7C9Qyr8J5GDJfXNhsAY7mmX8JwbbKz9EEwNuVyW/HhckFwIYbhosYdFjGBrAdm0jyjDT1BRXHN1CUJ5X+OpJSsXMJeuzjFrjxme0/wxdT0v3MZ/ILooxTAcAFzBWXQljZ7ILcGAZfTPZZaKYgP/Mzw/gcr4C2IxpsuXT5VcF9kQ7crpjYaor/HI1MyRdT4mOSWdDrwppi2Gy5Yu2Hv/edgvxmvjjfqBx9MeAnQZGPQMRYhAUIn84N5Rij9vf1rZ5XabKV49tAI+KzMwz1k9/ZERNb5HyZVMG7yxfbMfsBIvqr7vPXmfnr8oGIfhHAj0zq/QIaPH4/gN8H4B8F8OeJ6O9n/jCCXmbHrACnt2d8/HDGx49nrGs7AL4UM3Y1cBL18W9O90pmNyd5UGrKSLbqIp+7YjGbQYxOot3WVSvw2XbCeV/BpYJQ+8uvpf/ajY8GmuyzGJ9bBe99xfHZShXDdn2gbfqx86SfCGAjr9zfAqRsq9Sa4iJtdV55AGZwX22KvPIpTvCfPW8mwWaQH8GBQQ00eSATYEL/XN2Nf1MZUORVHG889wVCT6OCe9Z+97sFWSZypoC7HAWkTdaevn51tcr+Ns3m5K/xZs4rkYHQVLv8RE5wTi3ogtDF0abCb4h8BM3oMMedaZYxt2FRGF9uJ/br+6lOb3pfbDqHxEejEaBhFdRoldvoIDtl/gZO6Z+gMgWQ0kOSziWaAc/Xmc55XWjdS9qn8W+OA+PZEOH1qDcl8MYwU14u6s/c+PRZBL7dX4jajt9KO05lh+wA2qTdDp5fk+GA5TzD1P43st4JeMVdda9XQMP9b54f8dnlhIel4nEBPlk9FkQZCk3F2Uak2XSG0N6PFHyVpsKhvXBZgcPru/kQj3X3ybDRHFOguz+d0twvcOo6V7selQlNWd/J0eVxw/vIqKMceDTXO8dnjrjhxyd+7xou2gS26mQ36k3iRcdFDb49hpOXCYOJgSqTVuESqxyif0rtZPzNuEEyPqdzsIUiUWadNEJ8EbVb+NwYva+a+RCjN+NMlp/JKPhTIu2HkMfDnfsW74RdqCs0zfj4Pl+c7d7sL+KxXhwFiXEIpdvh1BcnH3LbF8/jGNOvKPusGzqd5UbpiBkJEwMOXNO5OtgjuX+jbtgtmLGd11r4i75g+hvM/BNXW2f+qWu/EdEfBfAX+kTsv6e2cvkDAH71Qwh5oR2zik+/9jnerhd8cnrC42lDKXLLjyg/IIpEBNu6BrrTaF+KgwFFo22TCJdORNYWYNety1vVKze1px7A7pXwtC/Y9gXnvZ2+X6jgqS54xAa7zr8ZKCimj+Tb6Xwetjwr4xPaGS2dk6jdOHipLfDwqxexHzFsKICM6S7SjzkTaUtXBcnR3Pvz1/jqVc6FsfQbizrL+785V96DuzhnoRlKs5efyh6RJhufd1JefsBaN+y9d2sr0gRUt+3PYXzUByOpUQLARdq5pnOOVklLEVhYqWKjvaXDOjQL6VoTvbFH2ckr0yR8FbuYyc9AduuT1xXcDoI72lvzbteBPG8sGNG0SE6yHi7BSLcAEk9pbtPFRYP1rd9w4VOE4pmKdBOq55ULnoQXuEqj8UZ0QWRQu/yY2iUhC/a+Au55420XTrd9sObt0et21rleV3gs9pho5s60RbCq93gdB+J4ddWdJraadK6EdEU/vibboDfPLATG2/XczpdRu/BjKT7VzfedcaPZL3eaxmvGOemDBajeNjRILYxT3bD3FGhCw5RLpbYYt614t62otU0kP7s84OPTGSXhhk8tm+pdGn+4KEFWrUkWAtBTGSe44eQcbQM3ZAjlo8dmC7CqXmilNCoe16536Old24Abwa9NfLHp/wzLI24U31b39WIb0o4EncwLqDBO2LHVRfVeaUt643dzRl/MjlcZjxsumv06njsdEzTz8tv5Q3wxY+aL446Fkz07THV0+V1CpvYS51PdIOG+H1/2IctVmsfUbBlf8ONsKchNZtXhcre/vqvYbhqsOk44mrL8xviv69kVX5xxX+S3BH01GdTe3qlUbLxjg9Mnj7Hy2S3aNr1xfqDzkV28oOrrZc/Wbvu+orh+KvelpMJY69bTrl0K9wzLE40mr5E3Jnuorpvsha918HOvtnDTvxcq/xmAPwDgLxPR7wHwAOAbH9rYi0zMSmGs645TT18MtwN1RZPV4aU45XKKBqq2Otq15VraBhDTC5tjBoipv4G+AAxsdcFeCZ9dHrDxoiD46emMx2XHWioelw2nspuTcf0wXCpVp2m2Ldz+Frra9xrYlQqq/WpstCvYxBjGt7fD9esdHyfesL6d3laKZ3yNu0Stn9p4VQGmeA2y8DmAQRhvfNO9pr84UJ3JT+rq9joh8Fh0iBigHe2VB44m61cC5hio+BRYoN/ApbxhS6lwDgoSLEx0Tp1mYVBtY6qdV7Z6OurCkII342uSn4C7yjPJHpRSm9DSPYnaddfyLjrtRwMTmUh03vS2nmVTiLwpno8wPZOJyAN2EHG/jtuuG6TUjz9f43lj8ot6szibUn1l35bwMdruQtwXcwi1tN03C/hGm5JUKAkslkSz8mmqc84eqT8vfFI96XwlAhEBO+FCC9buLNn3I7LvuiAJFNdTpzGx5TrYrlBMsEWB1i+eXQoxHkvbjXnsGMoAdFdlYhumo5Gfqnfk5B/0jtV+/e6kHrTf29XmBYStFlQmXGrBua44LYw3a8P5N+uGh35JyYOn2cuw86YEvXOXHXR5yi1r5Pxak387Yznghti+8ntWFwk36lU+Cq+y75ERZcxZSgWq4EaBTCqY3fh663NcHHkzYjlPcdH42OlyO2coO6gCm8cN7gFxcVjeg2/VC2dXwkevN55X8s5HGXMJQW/EFeo7RVTa+U/FjTt8sfGqyyBgud+lZee3u01SxC+dDImOUa+8N51aJVsIc1+suCiTloR1JnvTG78L5e3RuaMgTyKAuvw87s98secVTXjTcDPrXOKN+ow4SQsYAsZDinF8PJHtIvqQOtijYnmnx7AK4dnRHj1NEuPsV2Icq6u80ZrXfHFjRvE6qLzqekOi78abPL5XXb7YjtkXKX8WwJ8lov8FwBnAv/ihaYzAS+2YoV1X/Fj2CDxkE5bw9nYAuj2rwAr9rwEYOcOrbdLV24X820FEHGbbo+srB11LP7us+K3zA0CEldrFJG/WrV18QRUPS039IvRb3G9Ko3MGcRLTnss0m8FIY+zGY4Gb8YoDTSTPgAId8qzxikN7xleGpHW0nYRWt6IFibImkVMIfFAnda0PJ08fwOpnCrwpsKDYrrcl4xtrUqq+xFJpyrya8E1pTDonB36zDGMqG5zsTb9IabbzPyo/324PZEy5rV/ND+dRfqHfQPNE9tpvu/9K6STPG9dO5g0xSuCj0SjjzfqjQ6I0Xl3pFNlCJ8FSvK57mwq8cWOfYcZM50icidMRwDlN56wJkvbZccHZSbapKIOoc/p8xio/vkBHPpSf7JHb/gXruCYymehJlpc/C+KvjGbM+eqxs6VNGX0Lnl9afzUEFAPua1+TMXq6KOMPnFxYPxMy7ttLpaF2xrjUgs/3Eyq39089rJd+6UXFWjY8LpsFguCeUmc0i47p56R32r9MQqVuz7yQ9C65rc7ot1StEa8My70MjY9R3iXoaA3tEkFvwxQ8lV0VmbZFnTUfMeJT9MVznJzUFdxPPqNlGDgcFxP1+j3FxYltkO8n1Q06F2Wb9dUufjA8A6Pf9kn6W8aNgLmJV54fMyyPZ7K9PCWYZleXATaf4nk1ww1lxb3+JuGi2liyiyKTY/mscVdPtXRjf64vRqZRv3dpn3k8ysPI1+rSid/ni4d+Z7ybyg/R7gefkXEfivt8RX5e/rlu9gPt84inWW+oDzBOYKEx+VHGwsxnAH/429Xey+yYEeOj0wVlYV2Z0RUYmGP1yg14R+yMCz5dAhAFVwXsqxcZvNrbYYClFCz9+t13+4p3WztbQAR8cmpBxEfrE9alYiVPlzNCt9Ig/Vq6GhztrGkDkNUVqcuADwZXYlxIXKI5JnmWPS8ANUBZGWrf99VzoVMN33KHPd/j4Wh5RWbnHQEnAJe2JuhkAgNlJzcdH2x81F8GGieoaXxe1o435PmqFLedz4UZO9s4Iq8kCKN+25E908YX+cipnwywQedYaBOZaFc4EXD28oPRBHZOjGScPT9fnlWQNT1SnXN0DDrngbTD+c7t27b6XPu3LlAiWxWUcbcUHsdPvmJTDtj9ZCfylZUWiA2IbqmuN4cjOhVtag8yQefBlK9Z58jpetK5bI+dvDZ+ENpLVEuwKZ1Ui+7f0Dmh2e9Iy3uYruucyVVkUkHt/WWQF9AXtQ/GOD6pe1PnyGQS9IacnjkbD/YobX5AOdFu/U9k6AMs283pOxIB4yNeUZbD7FlqEx87z9O8wKUWPO0nPG0LKgreLhe8XS94Uy44FcZj2TSlTnYiwkF/sQWHBQGvHE2mOyZrQTT0ieAZGTcc9riACQ7LIx/7DgEAuZG3sPGm6Mwm2q8EZq3tip3bFUsLGO2G0n4mh3xwGP2cx43gE25guZe9T80dfAbcVJH6ba5KS8RnwUXA++I5lquesNmK7Mgsrg6yvgpYUE9jJ9nFqMAV3Bh9sfH8GpYbjcLHzhvBxS7PZpOCBRxwo93mKrcfMjDBDdE5IkS+iN6oPbKTSbaxiL/wuKFxWLuEasWOM7UQVC7zirgo7cpkcIZ10RfrRTHuWbU3518VOzptksa+Uu18Xaa+eNh1y3jTZWALDCNvss8I9ogYo4rPWGjHJi8td2eeZeI7YLnDC7EaXXwL/jTpjbNb79PN934Y7n9p5Ytd/vFqyotNzE6l5e4vemKC9TeHE5AdiKYw/nxHNBQ7KGtRX5GXc3bDktWKAgYqgc8FT9uCd5cH/L3f/ASVCFyAB+x4c7poGsvb9dxv7ZFiDtb3LQ5K+4UDDte3PCvj84HOyhUV6MYoayzR2Fn78U5ePtuqow/UPG/k7BQUcCJfwyqJgCSArRAW3s0hOZnYan7nsxtfGXjj+u00KG+mvJJVZsv3ZzTl3VGwUsXe34PnZSLBTgxUTZc8X2y8c/kZLxwfnXOHc2aVuaXZJPkJb1l0lnxdcUAOoJU3pABp4/N6zc5ObHzCyaW3WQlYKSjybZsiBJ0Dsk1Z3Ws6F+3E6jK3yWvllqax0KZUS7ujTRmPR8zwNmVybYG+LMNEeSofe125gYsB7IWwSI7/hDehXyDy/IrOhRsSU93Z+Mw2a+MVtdcw7NxPVHbeLGTnc0VuM8yINMtqfdI5GYPSOPLqQydlhRgPtDv+ONygfv6DLOhRebIsKFggaOcWs56NE+ecxlx6uE0MnOsCArDShlMhPNAZD8uOh7Lj09NTe43LBMttQjPHckkp9PrjcSRmBHBfHSfs/bp86LJYmwz51f+sd6XLf4rlyTbCeUnYQozRBFjwXQEi1H6NP/Rdo5J66hZvYHrnA1Ghy/tnw3Key0gXZBwuCr4x4QRqaXDUzr7J+n8Yr9O5LL+I7RFTLaiF43FMfQs0yncd03ZqV+Z7f+j7vYXl1Hke9cbtzqlumS7oC4HJ9yNlw4mAnYBCBSs3+Q1YnuQnOmcLEHFBQRaA5/YY5Qf3majtSK3dWy+FsO57H+Go2228rt1B55xNJXuMemNxSbBH5WO7lZt5x06EU6cv2FTiTdD1FKOSw2OxR70MLce3AWtHrDp1TDh13I/y48SbRPNMb5TO6iZ0Dtf6M4vjTZ6QvtrC/GIvmP52lxdKZWzvxHqgXa8I5S58CxvNmKWEvNn+bNi+JTPYkG7glMv/DhD284Jf+8bX8Pn5DehUsT5sePPxEx4e2jt23vRJWXyHR1RUBUO5hMA5XLuWNRvLSHMBsBXGUoEzkwMDRjvUKzUzr5DGZ7zxgAfXjwdwXe2Rur0dXZ8kRqlAqaOM7Dxa758Z8Va4BN6uo5jzjzg+RnCaixtbJ7qBfK04Y4njCbwaJ/tZb/wZx5FXPhiPwUukscm+1p6TvcdJp79RbSaTsHKdaB4O9d6k0bfD3RkWMDPKboeUx2el38gbPXcRDrvb7zOdm9rjwCtg494+VxRa7DdOMqEYcCyQQCjTNLODGAAHGify22trv1RGIUIIPJH1JvZ726YSNlHk4zhZ7O2Q2GDbGWaYfZrepH4Vm+y8kezShUBUV1tzvyZbpXGwx+c7aAJjXRqeobev73HSgKHRJBf1GNbNsDyOKU+ApgsVhbG1m4PweX3AxitAwFqAT8pFU9ZPdMFSeGJnphO3sFxwX3kNj4v+XGQPJguwMuO8A/G2Vpc61nm13NAd07tJP0lXprhBVpep7SQUtn7k8SXU9fpyHctlAcCfqzF5Gm+y/PJZXGbGWhlnnaSY7POZyqvYjaQ3E3zyvBzOpyUaAWApQNmBUmzcsqjoZTLD8ps+8ipNMT7yOqcTEeKmV0QRC65gudmMPTP3LxE31XanOmefVwIuDCyVASaUftDtNpZ3vRl45/RmguVLtl1pVycc1g7LgsEOUKERU/XvvoBGxuOM5TP5ZVwTmoNvSnaxEHBhRqkVlTDFcrVHiv3Kzur1OGzm14zXnuZsj6+6HDtmH16IgMdl08OaXnHiaolXkP4dgLgiDXVYAUSR68ago3LBvhF+49c+wWfffMS3Lm9werzg+x7OePvwDqfTjrfrWfuxlQ23yoHYb06PiH8jjM9WuTxtMsjuvFh+88HFyKs8vvgeldFZx9+s7rAt7wBJx6db7h6sXF3ygVeUgW877oT2f/Xa3+SAkkNqIieAmx36cyU5EJtNqP3vozyv8OCa49B+GjGyUvpe+fGMJh8wjL9bn5G2maxl5bCg588rn3IbM/2NfDdZRpqARPcVe5QdO68LTY1agBwPuMtzBP/S06hH1zBjome+TRrH7cent5yFz50X6fnxprRoS1l+xhsku4+/R7mycKHperLfvGMeHHHWm/fp3ERGAYuvtPucQmgpOdLTTIYt2GHFgrjKO8dyw424Y+LrypgrE7gSnuqKjQu22nYVH8uGpbSFwseywS4cadTGXeXrWK7BTJCLtWN1AfFVgJwhTBP4jE8U2/Kr63BtTm2DLMgWmqJc3Zh6kFu52YDudPf/yh1YMGK5YdscY6LPiDaQxsItkM+TJePdeBPjDMs9jZIud91nRKwfeS6Tzqp2Nvr361ju6fdtU+JL6C/pXMQ9tCRQtvG1wwn5RdFX5Jd0+yo+eczpGKNYR3F81FtotMtuvtAw9gvH9/fqjadNnx11aHpkAlANj37gmvxcn5T1Zia/zsOkN6MNRV5JjEPcFkL0NmyH5Vf1xts3Od6EcXtdH3Et4pVkVnwI8h/lueVlUhlRcaK9Bxbpyk8PQLLi5IFEwR7IB9gJ5kDboz6FwBsOgSvj6byAmbDvBU9PBQ8PDN6Ax/2MTz9+arcRAohXhAud5sSaw2y/ZzoM8KE0Wd32t62E9O1utJQlog3tPBfcGYf2LwMaAJhTywAFhLx9mEF6Q9RDrp6vrm6b/BAW2rEQoSUfZJCW4vLq+3WxKgMJSrWvOvCt6UdP1yS44MOuoibhFRGWAqzYsHUaRSDRwXCoGxyk5L93muU2rwxYUj+Ml7y+yqpbO5S9UEWhDUKV1I3jM/mJU7CUEKdzLH1FhxJ1PcrPO64i+faFcMKGMy/w7zFBrovbvAlOYGqPlnJqKaV+vO27hQhLIZy44lxF10V+du1ybKvpgr+R1D8rviOnn2a+yqAzjdxPYiyFsPDWruYeZM/Km6jbcM/6CwSczmVHKE7W2UW2qSLniIhwKhWVdyc/r4MEj6ciL3gcyJihvEn2mGWfefUBhYhxog0VBTsD1AVheucCh2AbhgUenzxuCC8HuejY2tOVGTt7vlacSsVSKt6UDY/l0nHfJua2U5R2vR0+iY+wFx772xE9zeMCCndaFq5YwSh0QTvlmPHYMPTWrmD0p842Ms3OLwbb72MocvkGLXgoO87sJ7sexyf9Ol1p72aLk9tw0cNE74Jdeb3jxpmFCk6oeOqpjCNvIhZEfOo/ed5QtA2P+QOmTmhkEBYQVqpYaUPlgnYuMuqNXIs87Arq3xO9STwW+XleNfnW4MflIotCBadSsXPjVbDvqfw6xna8yHGK6s3AG0AnY4IbMBtqNMulM42mczUfOcRwE188i1MIsBdOK31RbywWHOsCrOnSCxEWbNhpUV5F+QGgrAve39RRb7RuHW032GN/P2KvX7miEKGUghUVF96VJhlv0BuVXZJn0NfIZ4sRJBbwvrc/yx5PPwz7v6zCRyrjh5e2Y7br3wYG4hQAVdquMM15WSDJQZngHGg3Spcik/sBGMvCeHyz46Pf9g7b559iOVXgLYMeK95+tGNdDFj8la2tL9YPrV92NMX0g+CAOIFfieOTPogqtp2wdPGI87jWjwSuFqzE30rgVQaD9rc3UgnIZKwMBpWKWinsXmWZhFt90INOPz5Ku1tkY7PVt1YWsl2EduNYHF+7vbndbHQBsCpwAPFdLn5FKfJqqjdhAhTr6u+unbzCXdHe97bt7II0+1f5pivyniY/eXbgTklvXL/SVrALxytSGG5B6VPnlQWEc5uiPlbv6HxaBgOahhz6VT4lnXK8g/t+QcWF+T3yi3SGHWG3mqv9+rqOn4M9TlYw0fV9q/2Shwn+GH+iLt/SOX/mRsYX7DHgnu+nYw1X8E44w14HYBMSV9fVo+JtCCiFEy6kMfi6TrZAS5MS58yhz/sLgfFQdmzcAjP7wQcKo377HcWs32AfFDWZ+mvPPZkVBKYFVAoe6o5vgfBQGCu1nY4H2rEWx48Cp//J3ySavK9CGgsjXSE+2AZjR5t0b3vFQisybgi3Som20X6bY4HXd/nP+Bp39Vpdj8ft4psTGLW/G8jrXcbja/p9bbw+KPapctHPmQw8jjAYJ4cbAa9yv5T0RnSC/KJf+0/w2njheeVxERGPSwtewRX7XpOtTPTGy4+T3gTcthR+n9Krn4ERR4RXxCiFQNxeeXCua48mJKYZY4SII06HU5ziF2UHvXHHCBq+I8pT+EZd10M7ySdS8s2w8SlfRW8YAz55/Q4ZD0M/7TOXirq3BTAbX4oByOlA/3cJOhZjhJilgqDnVKI8oy9u6dVtd3jHhZcoP7xPb9L4/Gf2fE3+xr2ft/F19FWvt7SJ8vdCebkzZn3ltH1uKqPK78FffxOlJ8jKAunv/gYeFwQSADdBI1VNAH2b+FwI9Lai7BvWt2c8fnR2ARs7sDAaw78E2JkAjv1Q/NwAXb6TMdn4gLZr0s54ynW2gKyGhDNniSbPCwUD4RW7ACONR/jYPtbgkKRtOVouAQe73+zsRLy8IMrHy6/JBNJPH1Nb2BegiHX1ViY3Pv2VfODSQZiEppFXtoLW9Yb6rVaOF9a/59U8PcYHbpLmyf4mNMcrP14E2Y+8os5XTbfxesOubtgtGXkljojZAN3TNJdfpKsBXrSpEvr1LxSf2eOor60zVnMMdNF1Xc96U5xMjWbS36L9GV+HlWgAsrLItffDPnjEWJeMvmafM53zK5m2GjnY46SurFqrNaZVYa+Hg/72lCJPU9S5iLfaprN/n24s54wEEyV0eU4hAAtqTxuSdASvd2Zz9+s3El1RN5qKETYAOy/YmbBXYANhKTtWLlhoxyPtKKW9p9Djk/wbdSleOR1pSpMP9nSJ/O1GNMENgUUQHG7Y+KLfuKXf0fbDjsEgf9O7MGkJuNGDOUBpzrh4S79nKXhev20CYBgb5Ofqet+uu0Gq9+6K9KDfM15N9GbQ71gXQX5eHlDcb6QIjVm3Z3qTsc3pTRq/6Y0bn/g53f0SwOoTjS6Xcac843HWG2ePNNObbHNOvpRxMeoYmFrotbONx/FqljIcfBEB4OoWCUZ/k2lSGRBA7gXYHutqt0PAMlpmWC6oN2LCiAM+/ZOSbo/2KHplNtVuQe1yzPLjid4IXU5/B3vMfE3YlG0u0/x81P8SC+Ml32P2bS0vdivjY9mxc+2X4TboF0WMKQVpyzkph3/jfDNymzwQWoDHqmwtEGcAKIx9AdY3Oz757d8Ent7i7dt3KKeKCwhvUPWgpoEUXIDKjqb2r/WbblaiaNDReHxaTm0pPqVg3SsutAPhEhDY6g63sQO43q/QRt65R74qH3W8AvhmzOIEVyIstGHH0nmOTruftJgDlXYH+YV+O9+cUxJAKz0toDkZdvJs7QIt+W2lvesRQr8gl8IloNoVQ/VGwdbJj23VnXrdKM84TpNfC+oKtYP8W09pKc13NjkmGdyWn09nNLto3+1zvvYlMVI7YKA23si1u2IbWUbwugH3OTsUkTX51Cer2/RGgrsoA7s5CkDnzYl27CjGI9GjmfyC3rgFg7T7FXGgunbg2rJAT1iHrtMrKhba2+UH5HSdauQ5YOMV3fK80LoOM1xAoDTzKIPFTVzR02zatddZ1znUlR3y9jGmJd9tj+L8BYtlZ9K19dxCYJxohwQ47H4BDNvaN1m/e8CX9ZtkVdomCIUNK8VXMwoqtzNmO9qq+APtAAgn2tvLlFHbDgPhOhY43Ij+RvBJUm/b8xlH2nj89e6GG6B2BfzicQOyqu75X3FTv0XPWGj2fM3yz7Zu4+HaMG7p6Xkb2k6e983X9dt8kIwfBL0Qw+s3OXnqs/A6yw43GOACora4e0GBLBTNx9f1Rts2XjXsEjl6fzP2O+BGsg1mAqhgLYyFJZUR1u+1OIVSu1OdE5/hJ4U2Hlvsi3XR6yxEWLGp1Q3+ZohpbLzX+erjMK83JneZ0BZZcABQqbY4jwgrb7hQj/vI9Rt8pMec63EKU3Vxw3X5WRZLHAN35VxLxcobNpgeRvnJwi8jxim3cSDqjV/kEH/uJ4GOJhQU4n5T5Gbjo7lMpnqTzzwSMMiP61DXLwB6vXnVhY9Uxg8uCyp+x/pbODPhbd85e6or3tUTzjgBMOOO6UKmJEDcrtULM+ANEfo06bft/9ey49M3T6AL48IFHz/seFh2nJYNn5zOWDV9MYFQseAFEMfl+lWjE/B3gQ/H28z8BE0+t1b2dt16v9lCfg+3U8HoY7R3QUkqSQPDGHDF9J64tT3eGsWOf9wdm7zTSXjYATPJIKQ2zvqF69fXDaCCkM4G96zKn9prDYiBjQpWD6Ic0ycWNzEGxbQb8Fx+FlBYwBzT4iJdAEClv/STgZ0JBYuNQSZVjlcLor7O0m4yH21yFPVGdSHZQWNGnzRUoNCCFaPsVW/ohvw4/p7TprLeBL6G9ERxRjuIGTudsKBdzS0P+H5ziks89G/2FukSuzC78jrXGk9pb6UFEYUB3tt13KqjNPLK3y7n7d7LBD04yAs5rV+fduPH5xZySg/aQZCJrJdf1PVxtTjgDcfUIH8rIwOKGTLpCo46nDNAsM17y0IVv339Fs51wWOfjF+44B0/4IlXiHXM9NvkEHUBJK+DkHG19OZ2jq3gUhfsKKjcwt8Lr20XkRlrYTzQBTLhOrmXX0dd6UEPRv5c0+9cN6T5IupdKRWFG5ZVLlgg7wNrTxTHe0K/9VX6hQV5g35n+U9xQ9rKuFHbbcS8412lENBqWzICsZPBz030m5J+h0kZB3l6nQw6iwriHZXa2RtZkSKwvmv0lp+b6XejOflTzOXp8anZt7wIewPXhBuu7jROUfvN8jNsmwXe2VcNftz50ra4y1jdgkiIU8SmHPD7+CHrjb+Iw/uq0R5tfPJ7w6626LK7GEfKB8cp2Z9esUfdVUu8Ut/MQKE18Goa45DwVuT5Pr2xZ6VQ+t37DEBsYwcqjzGOlx+aTYWzeEGe1/Rm4m9I6htvvD362OAo37nyQmfM2mrXR+WCB6o486m94JlWVWoBpnC7TDAmQK5m94cV27OWJGnKlFWKFPg+Xs/YsLRzBssl5kz3mj4QhCp9C+RCvwyE6+LB8Gl0fnxqlILQMl4WPkGf9atiOv7+bNFDzKTt+5WU4aA13G9ujBpcs423gFF7P7U7zrBbBJGBjcXq3ug3yM/LFtDDxIqydmhb++X+sljnBODbdiDlx+NlQmHsojedh7PD0YMuePCT27hYU1tIlc8DnaUzZX3NKb1Rfk5vrFn49Bf/m6VptBvfNEhydfXwOzm9uSk/S8NR3ji99HXFSer4KMqgqRLrE4FX+mzvd6ApO2gne3jMyAfnRRdo0o85V3lZLNinHSVdd3afL0wRGxl0Tnjjxm7j8xgxwRuVICZ8vaU3xhvBDFKbSthEntYY4Mvk0nTuw8pKOx6XJ5yIceEVVFe845Om7I76Lek1I3/yrmPTuxb8gxkbF1y4aeLObWVeNUICVR3zHrDAMFV4x6G/9pmcHEgnbZJCmVOAgm0E/TacknNHcOOTvyXAGnHD0XhFvxXrA15N7MphOQ+44eXPgcZrfi7ghk+BTrYhbUXMYdj5WsP9ZqedLqc3GXNmNF3T78Xpt70bzNmVTlTSJBRuJ4HbJIfkRVO47ee8v9FFlWfpTf9tytc2dnu7Z/I374lTfGZHHG/V8VzTmyHGIWiGD8nuWJ/FBT4SEOXnsMzh28z/jP6m0aQ7o05+ftFf6u7UfD6DYgwzyE/aIKDvwEW9SbrteZX4GLNNaqKx+VO5ibFDlvGq84JdqjRUjiZ/OGyKekOQ7J5B1xNvokw+FPm/84WBvsv/3V9e7IzZ96/fwgNtIDDe1R0LHrDzgt/kli7RFJ0D+NjWtRglQ4J4Oz8TAbflNCsyRDqo4pOHM5Zlx3k/4WFpN0W2RRxRdq/kHsT6igVZUCPpKOF8DVkApQ5ODFmclltFET9zIsam/RvfIG2ogQkvfJ41YrpEABSh2Z61CUMErCIA2v1xy+Gv3Z1wXw1rKYW2oml12fFL+lEwUl5hkF9Lr+gOjhjk+FpQoc2BUajdhFXZ80ocgAUSOl6yZyxVCNaPk4k9nydxjp/qcORzE+BKjItbVPC0hVQaYXCYBBo4xhS8BNxh0aLro+qEyL6qdBYwlp4eK+cAxMnckp/S3leGs66rjUhwRaKD5jAab6yuhH5EwMI7SrvNxckeSX7RKQP9bCBbcKb2L1ghspGJp66+uxQeCTQlKEYFqGDldjEJd10f5EdZbzovKPLM8MJjhgWHQoS3R1lOsol1S3ot1CY2zEaT6SBM9tTO3gT5ye/uPApRTTjQ6nv9zLoO8sHw8wqB8X3lc5xoA6HiHT9goRMqCn6dl4l+V/3XB+xQXs5xgxnYeMHGCy61oFLbPZORCOYQ7bAzNL0NRCwv1DEHEe9lApYxp0xlarauu7uqo3263eucqKWwm97JDrEFzINdIfnIbhui32G3VuwK7tmOqa0PS7fc+9UMC2rjFVNsK9DmfXGXlcNUxQ2t6ycqzjbg/YXRXLQtkTVj5YqLyC9goWHqoDfONqLeRJkEf9rtiyb4JLgBVDAVLN0nBtwg4Gqc0vuZ641PYxVeCG7AnhV5ds77HVTA4YbQ5Hyvx9SgN5jpTdV/vW43votfQxxftgv0tE8AK1VcnH08O05BtCl/BlL8jfqIFJcJGuhZz97FQoyltHOwDYpc7EFeb+pEb1IcNvib6NeInE9UGVh8W9uQUUBYUdvkEdHf6Pn4zqsCSV139siC3RZLzfQmLrL4xYyIN6+2MONIZfwC5UQVP7CcsZSKH6Z32Olz/Mb2gF8tF1z4MzzVgm/yI97xijOWkAMtkwUxSD/Xan/LF5L33Z7fQdBXprNMfip2JjwuwONS9TcQUIoAVO6nH5LUyRW3WxvZui7hze9inAAo539zn9jEMVBtwdjKe/uiVylyKrx58nR+gWF5za5fqduDMYbUFRpdah/Huug0F2KgNthcdMtcHHmTiwdzn9Ll+yVAwU0n2DL5c861DwoLVZWHPwvhn2PI9ck1OPRC1Z2B4wBCunIlslZwa3UXqet4kXnlaRa1I7QXQaICTO08EIiUN7IK73kjJIseKR9VBtxpirL3PJCAwc6hseuHLZWzENbKINpdP2nRII1vCTonuh3ll3mlDpMcHcxmF6K3BKBu4FKwV6fr3k46LcEeg/yo25DxY9EgxxYT5AC8BLESABTfj9gHb01+ZQfjGg7kdL7m0LP89MyB8rV9XpLOCQ5Qd7xefn4HfyMC0x50QdLeTNeNHe3sFFTAfnVVzthYv8YXGR9d4euHlJUqfttywUoVP1jOqLjgm/uCXy2M31He4YIFv1VPOPOCc78uvtFmNirBJHdEYCaceUFl04MLn7D1iz6+VR9QsaDf54IdLf3tRBvWUvHxsjleRnwKdqWBijycsVxwg4McBI99+lNICdagnYC6ofaFJiimUg+EDetD+hM73CCzQWGc6pkbH/Rn8z/+AgzS8bVdxFoIp1pRAm4YPrWJbZ30K8XZPjxu+EDQ+zE1exdUO2yjFn/tpeBUiy06DHjlfWLGbrO5QHPCjc7k9/jxGnFDp37Z9o2mUW+i/Eaa22+aNud8FTz/HB7D8XEhAmMXRgEMLA5To95YgD/zcyNu2ISq0ZR9vvliSD/dtWuMc9XPvSdOQfY3wlt2fI366p9vY+j2xYxKhAWLLUwOcQrg7wwY9YaD3gSfMegNFLNmNiUvDOcKbERYvfwwj1MgfHIYFnDA9Zuxydu2x5tsy6+5HDtmX6AQGCvt+H5s+HQBnhioyw7gW/iMT/isnrBvhCdeIAdz5R/KnzX4Yf2hLazZPL+62ix/xjmA+yBgOukXsjIiIMWJJtsR8kFF3EL3/bBOcsQ4xbEz52ctFZtldcaRLWkroV9Po5vEFWDo1z8jNykJX4Um1HhhCPxYycAF5Np1/S7yu+clyMZH8st1vhpLZOLJ+o6lcTyO74E3rl/2udoueFKQ8/1yrDvIz/SC2X5jpyemR6ZjPk/fAzMlmuD4PO9XxhftQv4lfU8eoowcXZI2ppex+H4dr3CTV8nR+2dVBtBgmVFRaDFeBd1me5/ggAMSMGf5mQ76FD3PGyS+Gq+AUgDssoo76dfLT2i+Ij8bf8IMcjQ7HgLejvtvPbVScMf3WzjJr9e9T36exs4n8jSZ7WbbdsdC7i6ENjn7Gm34pABnNJyr+Ayf0YLP+QSA8Rv1jWvfFn90jNyu3mAGLrxg56Y7e20JiTuvqH3CtvOiE7gdwF4XoAAFBW9Q7+OPyp+Dfo945QMr0wUAalcAt+vV3fh0hZ8QEjssfdLGLjJS3lDUH+l3yFaY4EY+x0rhXLXt+hC74HGq3+Z/AnZrv3OcDG0FnxH5TY5HLU2Udeojfp8m+j5id8KNifww0CS0INCSbb92nMJuO7na7x1+7ra/MZqHLAmyfjS9TfSWGZXgcMMwRzB1rjd3+LmAV04/HU1KozBQMJZhmUk0+l6RX9ZX41WMU4wmhxHIfi7pWLApBNxfKN5EPcY4Exsb7F74yiGWinqT5ZfxGN0X2ngzr+Z6k23nFg5g0JuMc9IuJ/qO8p0rL/SCacYPLmd8rQCfEOORKr6fnvDrRPj1+oA39IACxm+eHy2dbxIkqJFIw2xvcGf9LG4mFll/NaUlIJw5IN+SAsIYcEorNdEjPeSgF5iCg6q9rFZm43COXev280rEQ78+sDG62KUFWts6Pm2XQz+70gRQlfo89KsgDAZ0BdDazE5mkGcXg3cMhPFZhQgGwBT4as81mdjYzMHk8VkuttTP/To5XJOfLDd1/FsmfBS1sSCiVbB+MfSbn800R/kZjeKYJW0irHQrXbN+3PiSngRZ00xvROWyXYg+mIz6QSAwxDHckgmlfnnar+cVBXscJ+02pi40Jz9mf4B98hqIZ8gPga8Rt7zeTPnMsuJPYBa7rnpm0F96EoM2L1M/bieTie0qrzjXtQk7qc4930UTGN9XNnxtAT4m4MSMT5cnfFyA/6+ueKg7Cu/4Zn3ordfAD58uBbCmK+61YAfhwm2yVnlpEzYU7Eyo/axZ7dsMpbaLPyzJd86fKFM3afM7XkEOnj/RF2jKFKV+BtyQxFUKfcPJwvdzHbeTziZMDWNWP2M+ohCwc9OFEvgT9Vt2KfwKe8Sr0eaQaFYaA26w08W2eyU2IUV2FGQ8c5nM+vX+ZuJPpzhhfMx+XECDe/qzfj/DVI9tQW+i/IyXWX6jHx98Rv+uLUh43FiQMXWsy4HGwc9d4Q11Htg5MU5ttb/Fdpv8XLuDn5N2Z34u6rvHqyHWeI/OaSwiuE/cF6CL0jX2m2Vy3R4HuU10YcCM7uOYBRjY9B+2yz2LU9QW3Nhtp9/T6HHgCmbM/Lhx7nWW75FURmIHdF9ap0S/CuD/+tI7vl1+AMA3XpqI74Jy8Om+cvDpvnLw6b7yGvn09zHzD9778IH739Xl4NN95eDTfeXg033lNfLpWbj/ZRUi+q/Q+PWh5RvM/NPfLnq+SHmRidlrLET0V5n5J16ajtdeDj7dVw4+3VcOPt1XDj59Z8rB1/vKwaf7ysGn+8rBp/vKwaevZvmQowJHOcpRjnKUoxzlKEc5ylGOcpRvYzkmZkc5ylGOcpSjHOUoRznKUY7ywuWYmFn5+ksT8F1SDj7dVw4+3VcOPt1XDj59Z8rB1/vKwaf7ysGn+8rBp/vKwaevYDnOmB3lKEc5ylGOcpSjHOUoRznKC5djx+woRznKUY5ylKMc5ShHOcpRXrgcE7NJIaKfIyImoi9y9eb3bCGif4uI/jci+p+I6D8lou97aZpeSyGinyai/52I/iYR/WsvTc9rLET0Y0T0l4nobxDRXyeiP/7SNL3mQkQLEf2PRPSfvzQt38vlwP3b5cD92+XA/veXA/vvLwfuf3XLMTFLhYh+DMAfAvC3X5qWV1z+EoB/kJn/IQD/B4B//YXpeRWFiBYA/x6AfwrAjwP454jox1+WqldZNgA/x8w/DuD3AfhjB59ulj8O4H99aSK+l8uB+3eVA/evlAP77y4H9t9fDtz/ipZjYjaWPw3g5yGvpz/KUJj5v2HmrX/8bwH86EvS84rKTwL4m8z8fzLzGcB/DOBnX5imV1eY+f9l5l/qf38Tzfn8zpel6nUWIvpRAP8MgP/gpWn5Hi8H7r+nHLh/sxzYf0c5sP++cuD+V7scEzNXiOhnAfwKM//yS9PyXVT+ZQD/5UsT8UrK7wTwf7vP/w8Op3OzENHvAvCPAPjvXpiU11r+DNqEob4wHd+z5cD9DyoH7sdyYP8zy4H9N8ufwYH7X9myvjQBX3Yhol8E8COTn34BwJ9CS2f5ypdbfGLmv9if+QW01IQ/92XSdpTvjUJEnwD4TwD8CWb+zZem57UVIvoZAH+Xmf8HIvonXpic7+py4P595cD9o3wZ5cD+6+XA/aN85SZmzPxTs++J6PcC+N0AfpmIgJam8UtE9JPM/He+RBJfRbnGJylE9C8B+BkAf5CPdy5I+RUAP+Y+/2j/7iipENEJzTH/OWb+Cy9Nzystvx/AP0tE/zSANwC+RkT/ETP/4Rem67uuHLh/Xzlw/4PLgf13lgP731sO3P+Kl+M9ZlcKEf0tAD/BzN94aVpeWyGinwbw7wD4x5n5V1+antdSiGhFOxT/B9Gc8l8B8M8z819/UcJeWaEWAf+HAH6Nmf/EC5PzXVH6yumfZOafeWFSvqfLgfvXy4H718uB/feVA/ufVw7c/2qW44zZUT6k/LsAPgXwl4jorxHRv//SBL2G0g/G/ysA/mu0Q81//nDM0/L7AfwLAP7Jrj9/ra8OHuUoR3m95cD9K+XA/rvLgf1HOcp7yrFjdpSjHOUoRznKUY5ylKMc5SgvXI4ds6Mc5ShHOcpRjnKUoxzlKEd54XJMzI5ylKMc5ShHOcpRjnKUoxzlhcsxMTvKUY5ylKMc5ShHOcpRjnKUFy7HxOwoRznKUY5ylKMc5ShHOcpRXrgcE7OjHOUoRznKUY5ylKMc5ShHeeFyTMyOcpSjHOUoRznKUY5ylKMc5YXLMTE7ylGOcpSjHOUoRznKUY5ylBcux8TsKEc5ylGOcpSjHOUoRznKUV64/P8BfF5B3vt5aAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "targets = (16, 17)\n", "vals = np.linspace(-5 + EPSILON, 5, 100)\n", @@ -326,9 +443,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 80, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAJICAYAAAAUzce/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iV5f3H8fdzRpKTk713QnbCDISdMBVFceCsHf6sbbWt29ZRR22r1lHrqNUOtdvWPREUJWAIK+wA2SQhe6+Tc5Izn98fBxEEQiIBjvp9XRfXJZD7ee5zwOfwyfe+v7eiqipCCCGEEEIIIc48zZmegBBCCCGEEEIINwloQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHkICmhBCCCGEEEJ4CAloQgghhBBCCOEhdGd6AqMRFhamJiUlnelpHMVsNmM0Gs/0NIQQQowBeaYLIcTXiyc+17dv396pqmr4sX7vKxXQkpKS2LZt25mexlHWrVvHggULzvQ0hBBCjAF5pgshxNeLJz7XFUU5cLzfkyWOQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHuIrtQdNCCGEEEII8c1ht9tpbGxkaGjoS18jMDCQsrKyMZzVyPn4+BAXF4derx/xGAloQgghhBBCCI/U2NiIv78/SUlJKIrypa5hMpnw9/cf45mdmKqqdHV10djYyLhx40Y8TpY4CiGEEEIIITzS0NAQoaGhXzqcnUmKohAaGjrq6p8ENCGEEEIIIYTH+iqGs898mblLQBNCCCGEEEKIE3A6neTk5LBs2bJTeh8JaEIIIYQQQghxAs888wxZWVmn/D4S0IQQQgghhBBiGI2NjXzwwQf88Ic/POX3ki6OQgghhBBCCI/36/f3UdrcP+pxTqcTrVZ7zN/LjgnggQvGn/Aat956K48//jgmk2nU9x8tqaAJIYQQQgghxHGsWLGCiIgIpk2bdlruJxU0IYQQQgghhMcbSaXrWE72HLQNGzbw3nvvsXLlSoaGhujv7+e73/0u//nPf770NYcjFTQhhBBCCCGEOI5HHnmExsZG6urqeOWVV1i0aNEpC2cgAU0IIYQQQgghPIYscRRCCCGEEEKIEViwYAELFiw4pfeQCpoQQgghhBBCeAgJaEIIIYQQQgjhISSgCSGEEEIIIYSHkIAmhBBCCCGEEB5CApoQQgghhBBCeAgJaCep0+Y401MQQgghhBBCfE1Im/2T0G61M7+4nCmqgRy7g0C9vJ1CCCGEEEJ83SQlJeHv749Wq0Wn07Ft27ZTdi+poJ2EAJ2W78aE8ilezC+uYHVn35mekhBCCCGEEOIUWLt2Lbt27Tql4QwkoJ0UH62Ge1NieJABgvVart5Tyw2lB+i2y7JHIYQQQgghxOjJmrwxkKI4+Sg3nT8caOfpA6182m3ikfQ4LogIOtNTE0IIIYQQ4uth1d3QumfUwwxOB2iPE3uiJsLSR094DUVRWLJkCYqicP3113PdddeNeh4jJQFtjHhpNPx8XBTnhQdya3k9P9pXx/ntgTyaHke4l/5MT08IIYQQQgjxJRUVFREbG0t7eztnn302mZmZzJs375TcSwLaGMv2M7Byajp/amjnibpW5m0p58G0WC6NDEZRlDM9PSGEEEIIIb6aRlDpOpZBkwl/f/+TunVsbCwAERERLF++nOLi4lMW0GQP2img0yjclBjJJ7kZpPh6c2NZPd/bU0vzkO1MT00IIYQQQggxCmazGZPJdOi/V69ezYQJE07Z/SSgnUJpRh/enZrGg6mxbOgxMb+4nJebu1BV9UxPTQghhBBCCDECbW1t5OXlMXnyZGbMmMH555/Pueeee8ruJ0scT1bNOhSX/bi/rVUUfhQfztlhAdxe3sDPKhp4t72HJzLiSTB4n8aJCiGEEEIIIUYrOTmZ3bt3n7b7SQXtZPTWw78vYdr2n0HTjmG/NMngzRtTUng8PY4d/RYWbK3gpcYOXFJNE0IIIYQQQhwkAe1kBCXAt/6L3m6CFxfDxw+Afei4X65RFK6ODWPdjExmBhq5t6qJS3ZWU2OxnsZJCyGEEEIIITyVBLSTlXEuW6c/CznfhQ1Pw5/zoH7LsEPifLz476Rkns6Mp8w8xKKt5fypvh2nVNOEEEIIIYT4RpOANgYcej+48Fn43tvgsMLfznEfpGczH3eMoih8KzqUT2dkMj/En1/vb+aCHVVUmI9fgRNCCCGEEEJ8vUlAG0spi+Cnm2DGj2DLn+BPc6C2cNghUd56/jFhHH/OTqRu0MrZWyt4uq4Vu0uqaUIIIYQQQnzTSEAba95+cN7v4JqVoGjgnxfAittgqP+4QxRF4eLIYD6dkcnS8EAerW1l6fZK9posp3HiQgghhBBCiDNNAtqpkjQXfrwB5twE2/8Bz8+Gqk+GHRLupecv45P424Qk2mx2zt1eyWM1LVhdrtMzZyGEEEIIIcRRkpKSmDhxIlOmTCE3N/eU3ksC2qnk5QtLHoIffOyurL18KbzzUxjsGXbYeeFBFM7I5JLIYJ460MaSbZXs6D/+fjYhhBBCCCHEqbV27Vp27drFtm3bTul9JKCdDnG5cH0hzLsDdr8Cz82E8g+GHRKs1/GHrERenpSMyeFk2fYqflPdzKBTqmlCCCGEEEJ8XenO9AS+MXTesOg+yLoA3rkBXvk2TLgUlj4OxrDjDlscGsCnMzJ5cH8zzze082FnH09lxjMzyO80Tl4IIYQQQogz67HixyjvLh/1OKfTiVarPebvZYZkcteMu054DUVRWLJkCYqicP3113PdddeNeh4jJRW00y16Mly3FhbeB6XvwXMzYO+bMMwZaP46LY9nxPP65BQcqsrFO6u5t7IRs8N5GicuhBBCCCHEN1NRURE7duxg1apVPPfccxQWDt+p/WRIBe1M0Oph/h2Qtcy9J+2Na2HvW3D+78E/6rjD8kP8WTs9g0dqW3ipsZPVXf08mRFPfoj/aZy8EEIIIYQQp99IKl3HYjKZ8Pc/uX8vx8bGAhAREcHy5cspLi5m3rx5J3XN45EK2pkUkeVuIHL2g1D9ibuatuu/w1bTjDotD6XF8U5OKl6KwuW79/Pz8gb6pZomhBBCCCHEmDObzZhMpkP/vXr1aiZMmHDK7icB7UzT6mDuze6W/BHZ8M5P4OXLoLdh2GEzg/z4ZHoGNyRE8N+WLuYXl/NxZ99pmrQQQgghhBDfDG1tbeTl5TF58mRmzJjB+eefz7nnnnvK7idLHD1FWKr7cOutL8Inv3Kfm7bkNzD1GtAcO0cbtBruT4lhWXgQt5bX8709tVwWGcyDabEE6+WPVgghhBBCiJOVnJzM7t27T9v9pILmSTQamHkd/HQjxE6FFbfBvy6E7tphh+UE+LI6N53bkyJ5p72HecXlfNDRe3rmLIQQQgghhBgzEtA8UXASXP0uXPAHaNkNf5oDm/8EruPvM/PWaLhzXDQf5WYQ5aXnB3vr+NHeOjps9tM3byGEEEIIIcRJkYDmqRQFpv0f/HQzJOXBh3fD35dCZ9Www8b7GVg5LZ17kqP5qLOP+cXlvNXWgzpM4xEhhBBCCCGEZ5CA5ukCY+Hbr8Hyv0BHBfxpLhQ9DU7HcYfoNQo3J0byyfQMxhm8+WnpAf5vTy0tVtvpm7cQQgghhBBi1CSgfRUoCkz+FtxQDGlnwycPwEtnQdu+YYelG314b2oav0qJobDHxPzicv7b0iXVNCGEEEIIITyUBLSToKoqVVW/RVUPnJ4b+kfClf+By//hbsP/l/mw7jFwHL8yplUUfpwQQcH0TLKNBm4vb+Cq3TU0DEk1TQghhBBCCE9zRgOaoigXK4rygqIoryqKsuRMzuXLsFpbaGl9G5f6IKVld2G1tp/6myoKjF/urqaNvxjW/RZeWAjNO4cdluzrzVs5qTySHkdxv5kFxeX8o6kTl1TThBBCCCGEGFZvby+XXXYZmZmZZGVlsWnTplN2rzEPaIqi/E1RlHZFUfZ+4dfPVRSlQlGUakVR7gZQVfUdVVV/BPwYuHKs53Kq+fjEMGd2AQrn0Nr6Lps2L6a27jmczqFTf3NjKFz6Inzrf2DuhBcWwye/Bvvx761RFL4fG8a66RnkBhi5u7KRS3dVU2uxnvr5CiGEEEII8RV1yy23cO6551JeXs7u3bvJyso6Zfc6FRW0fwBHHK2tKIoWeA5YCmQDVymKkn3Yl9x38Pe/cnQ6fzSay5k180NCQvKoqXmSzZvPprXt/dOz1yvzPLhhC0y5CoqehL/kQ0PxsEMSDN68MjmZJzPj2TcwyKKt5fyloR2nVNOEEEIIIYQ4Ql9fH4WFhfzgBz8AwMvLi6CgoFN2P91YX1BV1UJFUZK+8MszgGpVVWsAFEV5BbhIUZQy4FFglaqqO8Z6LqeTr28Skyb+iZ6ezVRWPcy+fbfS2Pgv0tLuIzBg8qm9uSEILnoOxl8C798CLy2BWT+FRfeBl+8xhyiKwrejQ1kY4s+dFY08UN3Me+29PJWZQLrR59TOVwghhBBCiFFq/e1vsZaVj3qcw+mkW6s95u95Z2USdc89w46vra0lPDyc73//++zevZtp06bxzDPPYDQaRz2XkVBORZXnYEBboarqhIM/vww4V1XVHx78+feAmUAl8H/AVmCXqqp/Psa1rgOuA4iMjJz2yiuvjPl8T9bAwAB+fn6Hfq6qLlQ2oKpvAf0ozEJRLkVRQk75XLQOC8k1/yK2eRWDPlFUZNxIb/DEYceoKmxAzz8wMITCZQxxAVa0yimfrhBCeJwvPtOFEEKcOYGBgaSmpgLQ+/snsVVWjv4iquru43AMXunpBP3s9mGH79ixg8WLF7N69WqmT5/OnXfeib+/P/fff/+Ibl9dXU1fX98Rv7Zw4cLtqqrmHuvrz2hAU1X1xtFcNzc3V922bdtYT/ekrVu3jgULFhz16w7HAHUH/kxDw0uAhsSE60hM/BFa7bGrWmOqrgjevRF6aiH3B3D2r8Hbf9ghHTY791Q28X5HL5P8DDyVlcB4P8Opn6sQQniQ4z3ThRBCnH5lZWUnvd/LZDLh7z/8v4OH09rayqxZs6irqwNg/fr1PProo3zwwQcjGn+s16AoynED2unq4tgExB/287iDv/a1ptP5kZryc2bN/JiwsEXU1v2BTZvPpqX1HVTVdWpvnpQHP9kIs2+EbX+D52dD9Zphh4R76XlhQhIvjk+i2WrnnG0VPF7bgs11iucqhBBCCCGEh4qKiiI+Pp6KigoA1qxZQ3Z29glGfXmnK6BtBdIURRmnKIoX8C3gvdN07zPOYIhj4oRnmTb1Vby8wigt/Rnbtl1Kb9/2U3tjL18452H4wWrQG+A/l8C7N8Bg77DDlkUEUTgzk4sjgnmyro0l2yrZ1W85tXMVQgghhBDCQz377LN85zvfYdKkSezatYt7TrBv7WScijb7/wM2ARmKojQqivIDVVUdwI3AR0AZ8JqqqvvG+t5nQn2XZcTdGoOCcpme+zbZWY8zZG1l+/Yr2Lv3FgYHT3ExMX4GXL8e8n8Gu/4Hz82E8pXDDgnR6/hjdiL/njiOPoeT87ZX8tD+ZgadUk0TQgghhBDfLFOmTGHbtm2UlJTwzjvvEBwcfMruNeYBTVXVq1RVjVZVVa+qapyqqi8d/PWVqqqmq6qaoqrqw2N93zOhvX+Ic58p5IltQ1S0mkY0RlE0REdfyuxZn5CUdCMdnR+zecvZ7N//exwO86mbrN4HFv8SflQAxjB45Sp484dg7hp22NlhgXw6I5NvR4fyx/p2zt5WQXHvwKmbpxBCCCGEEN9gp2uJ49dSsNGLny/JoLbPxdJnCrn37T10DYzs0GedzkhK8m3MnvUJ4eHnUHfgeTZtPovmljdO7f60mCnwo7Ww4B7Y9w48NwP2ve3ubnMcATotT2TG89rkFKwulYt2VnN/VSNmp/PUzVMIIYQQQohvIAloJ0Gv1XBt3jgen+fL1bOTeGVrAwt+t44XCmuwOUYWsnx8Ypgw/ilyp72Oj08MZWV3sXXbxfT0DH/Y9EnRecGCu+D6TyEoHl6/Bl77Hpjahh02L8SfddMz+H5sGC80drKwuIKinpFVDoUQQgghhBAnJgFtDPh5KfzqwvF8dGs+05KCeXhlGUue+pSP9rWOeH9aYOBUcqe9zvjsp7DZutix8yr27LmRwcGGUzfxyPHwg0/grF9D5Wp3NW33K8NW04w6Lb9Nj+OdnFS0Cly2az93VjRgckg1TQghhBBCiJMlAW0MpUb484/vz+Af35+OTqvh+n9v59svbKG0uX9E4xVFQ1TUhcye9QnJ426ls2sdmzYvobr6cRyOU1Sp0uog71b4yQYIz4C3r4f/XgF9wzcumRXkx5rpmfwkPpz/NHcxv7icNV0je51CCCGEEEKIY5OAdgosyIjgw1vy+c1F4ylv7ef8Z9dz95sldJhGtj9NqzUwbtxNzJ79CZGR53Og/i9s3LSYpqZXUNVTVKkKS4Pvr4JzH3Mfcv38LNj+z2Grab5aDQ+kxrJiahp+Wi3fKanh5rID9Ngdp2aOQgghhBBCfM1JQDtFdFoNV89OYt3PF3Lt3HG8sb2RhU+s4/l11QzZRxayfLyjGJ/9BNNz38bXN4nyinsp3noh3d0bT82kNVqY9WP3AdfRk+H9m+FfF0FP3bDDpgYa+Xh6OrclRvJmWw/zi8tZ1dF7auYohBBCCCHEaVRRUcGUKVMO/QgICODpp58+ZfeTgHaKBfrquX9ZNqtvm8es5FAe/7CCs578lJV7Wka8Py0gYBLTpr7KhPF/wOEwsXPX99hdcj0WS+2pmXTIOLj6PVj2FDTtgOfnwJa/guv4jU+8NRruSo7mw2nphHvp+P7eOq7fV0enTappQgghhBDiqysjI4Ndu3axa9cutm/fjq+vL8uXLz9l95OAdpJGGrKSw/148f9yefmHM/Hz1vHTl3dw5V82s6exb0TjFUUhMvJ8Zs38mJTkn9PTs4nNW5ZSVfVb7PZTsPdLo4Hca+GnmyBxNqy6A/5xHnRWDztsor8vH07L4K5xUazs6GNecRnvtPWM+H0SQgghhBDCU61Zs4aUlBQSExNP2T10p+zK3wAOu53/3nMbuogYBnOnYfDzP+GYualhfHBzPq9ubeD3qyu48LkiLp0axx3nZBAZ4HPC8VqtN0lJPyE6+jJqap6kvuFvtLS+TfK4W4mJuRKNZoz/SIPi4TtvwO7/wYd3w5/nwsJ7YfYN7iWRx6DXKNyWFMXS8EBuLWvgx6UHeLe9l0fT44j01o/t/IQQQgghxDfC+tcq6WwYGPU4p9OJVnvsf7eGxfuRf0X6iK/1yiuvcNVVV416DqMhFbSTYDUPEBARRcu2jbxww7UUvvx3zL09Jxyn1Sh8e2YCa+9YwHXzknlvVzMLn1jHs2uqRrw/zds7nKysR5gx/V2MxjQqKn9J8dZldHWtP9mXdTRFgSnfhhuKIWUxfHw/vHQ2tJcNOyzTaGDF1DR+mRLD2u5+5hWX82pLt1TThBBCCCHEV47NZuO9997j8ssvP6X3Ub5K/1jOzc1Vt23bdqancZRVb76Os7GWyk1FaHU6JixawvQLLyEgLGJE4w90mXlkZTkf7mslJtCHu5ZmcuHkGBRFGdF4VVXp6FxNddWjDA7VExq6kLTUX2A0ppzMyzrezWDfW7DyDhjqh/l3udv0a4evjO23DHF7eQNb+swsDPHndxnxxPl4jf38hBDiJK1bt44FCxac6WkIIYQAysrKyMrKOqlrmEwm/P1PvNLtRN59912ee+45Vq9ePapxx3oNiqJsV1U191hfLxW0MWAIDWfZLXfy/af+RGbefEo+WcVLN1/HR3/+Az2tzSccnxhq5M/fm8Yr180i2OjFLa/s4tI/bWRn/YmrceDenxYRfg6zZn1Iaurd9PZuZUvxeVRU/ga7vfckX91RN4MJl7qradkXwtqH4IWF0LJ72GEpvj68nZPKw2mxbOkzs6C4nH81deL6Cn2DQAghhBBCfHP973//O+XLG0EqaGPii99t7e9oZ+v7b7KnYDUuh5OMOfnMvPhywhKSTngtp0vlze2N/G51BR0mKxdPieHOczOJCTKMeD42Wyc1NU/T1PwqOp0/yeNuITb222g0p2D/V9kK+OB2MHdC3m0w/07QeQ875MCglZ9XNLC+Z4C5QX48mRlPomH4MUIIcbpIBU0IITyHp1TQzGYzCQkJ1NTUEBgYOKqxo62gSUAbA8f7MDf39rBtxdvsXr0Su3WI1OmzmLn8SqJS0k54zQGrgz+tq+aF9bVoFLhuXgo/np+Mr9fIm4AMDFRQWfUQPT0b8fVNIS31F4SGLhjx0skRG+yBj+6FXS9DeCZc9BzEHfPv2yGqqvLflm5+Vd2EQ4V7kqO5Ni4M7VjPTQghRkkCmhBCeA5PCWgnQ5Y4ehBjUDDzv3stP3rub8y69CoaSvfw8j238cbD99NYunfYsX7eOu44J5M1t8/nrKxI/rCmioVPrOOtHY24XCML1X5+GeRM+ReTJv0VVXWyu+SH7Nr9fQYGKsfi5X3OEAwXPw/feROsA+4GIh/dCzbLcYcoisJ3YkL5dEYmc4L8uL+6iYt3VFNlHhrbuQkhhBBCCPEVIgHtNDD4BzD3iu/woz/+nfxvX0PHgVpe/fXdvPLAXdTt2j5sV8P4EF/++O2pvP7j2UQG+HD7a7tZ/vwGth/oHtG9FUUhPGwxs2auIi3tPvr7d1O8dRnlFQ9gs43sGiOWdpb73LRp18CmP7pb8tdtGHZIjI8X/5k0jj9mJVBlGeKsbRU8e6ANxwhDqBBCCCGEEF8nEtBOksvlGvHXevv6MuOiy/jhsy+y8Jrr6Oto481HHuDle26nausm1GGuNT0phHd+OpffXz6Z1v4hLv3TJm787w4ae45fpTqcRuNFQvz3mT1rDbEx36a5+X9s2ryI+vqXcLlsI34NJ+QTAMuegv97H1SX+3DrD37urqwdh6IoXBYVQuGMTM4KDeDhmhbO21FJ2cDg2M1LCCGEEEKIrwDZg3YS7HY7f/nLX/D19eWKK67Az89vVOMddjulhQUUv/s6fW2thMYlMHP5FWTMzkdznMP0ACw2B3/+tIa/Fu7HpcKP8sfxkwWp+HmPYn+auYrqqt/S1V2IwZBIWuovCAs7a2z3p9nMUPAQbP4TBMbDhX+AlIUnHPZ+ey93VzbS73ByS2IkNydG4KWR7yUIIU4P2YMmhBCe45u4B00C2kkYGBhg1apV7Nu3D51Ox7Rp05gzZ86oO7u4nE4qNhay5Z3X6WqsJygymhkXX072vIVodcfvvNjcO8jjH5bzzq5mwv29ueOcDC6bGodGM/KQ1dm1jqqqR7BYqgkOnk1a2n34+2WOav4nVL8F3r0Buqpg6tWw5CHwGf496rI5+GV1E2+29ZBt9OGprAQm+/uO7byEEOIYJKAJIYTnkIDm4TwtoH3mgw8+wGazUVJSgqIo5OTkMHfuXEJCQkZ1HdXlonrbZra8/RptNdX4h4aTe8ElTFy8BL3X8dvQ76zv4TcrStlZ38v4mADuX5bNrOTQEd/X5bLT1Pw/amqeweHoJybmcpKTb8fbK2xU8x+WfQjWPQIb/wB+Ue5lkBnnnnDY6s4+7qxopMNu54b4CG5PisJHK9U0IcSpIwFNCCE8hwQ0D+epAe2zD/Oenh42bNjAzp07cblcTJw4kby8PCIiIkZ1PVVVqdu9gy1vv0pTeSm+gUFMO/9ipiw5Dy/DsatIqqry3u5mHltVTnPfEEsnRPGLpVkkhI686mS391Fb9yyNjf9Go/FhXNJPiY+/Bo1mDM8oa9oO794I7aUw6Uo491HwHT7I9tkd/Gp/M/9r6SbN15unMhPIDTSO3ZyEEOIwEtCEEMJzeEpAe+qpp3jxxRdRFIWJEyfy97//HR8fnxGNlYB2Bhx1UHV/P5s2bWLbtm3Y7XaysrLIz88nJiZm1NduLN3L5rdf5UDJTnyMfuQsvYCcpRdi8Dv2X7JBm5MX19fw/Lr9OF0q389L4saFqfj7jPyQarO5hur9j9LZuQYfn3jSUu8mPPycsduf5rDB+t/D+ifcLfrP/z1kX3TCYeu6+/lZeQPNVjvXxYVzV3I0vlJNE0KMMQloQgjhOTwhoDU1NZGXl0dpaSkGg4ErrriC8847j2uuuWZE4+UcNA8QEBDAOeecw6233sq8efOoqanhr3/9K//5z3+or68f1bXisidw2b0P8p2HnyQ2awKb3vgfL9xwLYUv/x1zb89RX2/w0nLT4jTW3bGACybH8JdPa1jwu3X8d0s9zhG2rjcak5k86a9MmfJPtFoDe/bewI6d36bfNPzZbSOm84KFv4Dr1kFADLx2tfvHQPuwwxaEBPDpjEz+LzaMvzR2sGhrORt6TGMzJyGEEEIIIY7D4XAwODiIw+HAYrF8qcLLSEkFbQyc6LutQ0NDFBcXs3nzZiwWC0lJSeTn55OcnDzqqlRHfR1b3n6Nyk1FaHU6JixawvQLLyEg7NjLKEsae3lwRSlb63rIjPLn/mXZzE0d+d4yl8tBc8tr1NQ8hd3eQ3T0paQk/wxv79Et2zwup8O9L23dI+DlB0sfh4mXwQnel409A9xeUU/doI3/iwnl/pQY/HTH73wphBAjJRU0IYTwHIdXn9b+46+0H6gZ9TWcDifa4/w7MSIxmYXXXHfCazzzzDPce++9GAwGlixZwssvvzzi+0sFzQP5+Pgwb948br31Vs455xy6urr497//zYsvvkh5efmwB1V/UXhCEstuuZPvP/UnMvPmU/LJKl66+To++vMf6GltPurrJ8UF8dr1s3n+O1MZsDr4zotb+OE/t1HbaR7R/TQaHXGx32bO7AISEn5Ia+u7bNq8mNq653A6h0Y87+PS6iD/dvhxEYSmwFs/hP9dBf1Hv5bDzQn2o2B6JtfHh/Ov5i7mF5eztqv/5OcjhBBCCCHEYXp6enj33Xepra2lubkZs9nMf/7zn1N2P6mgjYHRfrfV4XCwa9cuioqK6O3tJSIigvz8fMaPH49mlOd99Xe0s/X9N9lTsBqXw0nGnHxmXnw5YQlJR33tkN3J3zbU8lxBNTani6tnJ3HzojQCfUe+P81iqaN6/2N0dKzGxzuGlNQ7iYxYNjb701xO2PIXWPMb0HrBOQ9DzndPWE3b1mfmtvJ6qixWrooO4VcpMQTqR34mnBBCHE4qaEII4Tk8YQ/a66+/zocffshLL70EwL/+9S82b97M888/P6LxUkH7CtDpdOTm5nLTTTexfPlyXC4Xb775Js899xw7d+7E6XSO+FoB4REsvvYn/OiPf2PasovZv72Yf95xI+8+8RCt+6uO+FofvZafLkhl7R0LuHRqHH/bUMuCJ9by7011OJyuEd3P1zeJSRP/xNScl9Hpg9i371a277iCvv7do3oPjkmjhdk/hZ9sgKiJ8N6N8O/l0Dv8vr3cQCMf52ZwS2Ikr7V2M6+4nI86+05+PkIIIYQQ4hsvISHh0FYlVVVZs2bNSYfG4UgFbQyc7HdbXS4XZWVlrF+/ntbWVgIDA5k7dy45OTno9SOvbgEMmvrZsep9dn74HlazmcRJOcxafiVx2ROO+tp9zX08uKKUzTXdpEX4cd+ybOanh4/4XqrqpKXlTfbX/B6brZOoqItJSf45Pj7Ro5rzMblcsP1v8PED7p+f9SvI/QGcoMJYYrJwa1k9peYhLokM5sHUWEK9pJomhBg5qaAJIYTn8IQKGsADDzzAq6++ik6nIycnhxdffBFv75EdRSVt9s+AsfowV1WVqqoqCgsLaWxsxM/Pj9mzZ5ObmzvivwCfsVos7P54Jds/eAdLXy+xmeOZtfwKEidPPWI5oqqqrC5t47cryzjQZWFBRjj3nZ9FasTI/xI7HCbqDvyZhoa/ARoSE68nMeFHaLWGUc35mHrr4f1bYH8BJM6FC59171Ubhs3l4tkD7Tx9oI0AnZZH0uO4IDxw7I4JEEJ8rUlAE0IIz+EpAe1kSEA7A8b6w1xVVerq6igsLKS2thaDwcDMmTOZOXMmBsPoQo/dOsSegtVsff8tBro6iUxOZebyK0jNnYVyWDXK6nDyz411PLumGovdyfdmJXLL4jSCjV4jvtfgYAPV+x+nvX0l3t5RpKTcQVTkhSjKSa6kVVXY9TJ8eA84bbDoPpj1E/eSyGGUDQxya3k9u02DnB8eyCNpcUR4j64iKYT45pGAJoQQnkMCmof7pgS0wzU0NLB+/XoqKyvx8vJixowZzJo1Cz8/v1Fdx+mws+/TAra++wa9bS2ExiUwc/kVZMzOR6P9POh0Dlh56uNK/ldcj7+PnlvPSuO7sxLRj+JA6J7erVRVPYTJtJeAgMmkp91HYODUUc33mPpbYMVtULkKYnPhoucgInPYIQ6Xyp8b2vldXSsGjYYH02K5LDJYqmlCiOOSgCaEEJ5DApqH+yYGtM+0trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFKxaT1b3n6NrsZ6giKjmX7RZYyfvwit7vPqUnlrPw+tKKOoupPkcCP3nZ/FwoyIEQcbVXXR2vo21fufwGZrJzJiGSkpd2IwxI5qvse4MOx9E1beAbYBmH8XzL0FtMNXxqotQ9xW1sDWfjOLQwL4XUYcMT4jrw4KIb45JKAJIYTnkIDm4TwxoJm6h9hesvm0fZh3dHRQVFRESUkJiqIwZcoU8vLyCAkJGdV1VJeL6m2b2fL2a7TVVOMfGk7uBZcwcfES9F7u/W6qqlJQ3s7DH5RR02kmPy2M+87PJiNqNPvTzByo/yv19S8AkBD/AxITf4xOZxzVfI8y0AGr7oB9b0PUJHc1LXrSsEOcqsrfmzp5eH8LOgUeSI3lO9EhUk0TQhxBApoQQngOCWgeztMC2pDZzj/u3oDez8XMc9NJmxGFt+H0dAzs6elhw4YN7Ny5E5fLxYQJE8jPzyciImJU11FVlbrdO9jy9qs0lZfiGxjEtPMvZsqS8/Ay+AJgc7j4z+YDPP1JJQNWB9+emcBtZ6UT6jfyxiVDQ81U7/8dbW3v4eUVQUrKz4iOuuTk96eVvgcf/AwGuyHvdpj3c9ANP68Dg1ZuL29gQ+8A+cF+PJERT6JhdE1YhBBfXxLQhBDCc0hA83CeFtDsViflm1oo/rCSoV7QeWlInRZBdl4sUckBp6UyYzKZ2LhxI9u2bcNut5OVlUV+fj4xMTGjvlZj6V42v/0qB0p24mP0I2fpBeQsvRCDn/svdI/ZxjNrqvj35gP4emm5eVEa/zcnCS/dyENWX98OKqsepr9/F/7+40lLvY/g4BmjnusRLN3w0T2w+38QnuWupsVNG3aIqqr8p6WLX1c341Th3pRoro0NQyPVNCG+8SSgCSGE55CA5uE8LaB9Zu3atWSPm0ZpUTNVW9uwW50ERxvJnhtN5qxofPxOfedAs9nMli1b2LJlC1arldTUVObNm0dCQsKor9VaXcnmt19j/7bN6H0MTD57KbnLlmMMCgagut3EQx+Usa6ig6RQX35xXhZLsiNHtT+trW0F1fsfw2ptJSJ8Kampd2EwxI96rkeoXO1uyT/QCrNvhIX3gH74rpdNQzbuqGigoNvEzEAjT2bGk+Lrc3LzEEJ8pUlAE0IIz+EpAe2pp57ixRdfRFEUJk6cyN///nd8fEb2b0YJaGfA4R/mtiEH1dvaKd3QTFttPxqdQsqUcLLzYohND0bRnNoKzdDQEMXFxYdOO09MTGTevHkkJyePuqLXUV9H8TuvU7FxPVqdjgmLljD9wksICHMvo1xX0c5DH5RR3T7A7ORQ7l+WTXZMwIiv73QOUl//InUH/oKqOkmI/z5JST9BpzuJ/4GG+mD1/bDjnxCS4q6mJc4edoiqqrzW2sMvq5uwulzcMS6a6+PC0Z3iPyshhGeSgCaEEJ7DEwJaU1MTeXl5lJaWYjAYuOKKKzjvvPO45pprRjReAtoZcLwP887GAUo3NFO5pRWrxUFAuMFdVZsdjTHw1O55stlsbN++nY0bN2IymYiNjSU/P5+MjIxRB7WeliaK332D0sICALLnLWLGRZcRHB2Lw+niv8X1PPVxJb2Ddq7MjednSzII9x/F/jRrK/v3P0Fr69vo9aGkJN9OTMzlKMrw55wNa/9aeP9m6G2AGdfBWQ+A1/CNSdqsdu6qbODDzn6m+PvyVGY8WX5jcNi2EOIrRQKaEEJ4Dk8JaLNmzWL37t0EBARw8cUXc/PNN7NkyZIRjZeAdgac6MPcYXOyf2cHpUXNNFf1omgUkiaGkp0XQ8L4UDSnsFLjcDjYtWsXRUVF9Pb2EhERQX5+PuPHj0ejGV2Djv7Odra+9xZ7Cj7C5XCSMSefmRdfTlhCEn0WO38oqOKfG+vw0Wv56cIUrp07Dh/9yENWf38JlVUP0de3HT+/TNJS7yUkZM5oX/LnrAOw5jdQ/BcISoQLn4Xk+cMOUVWVd9t7uaeqEZPDxW1JkdyUEIleqmlCfGNIQBNCCM9xeLjpfX8/tmbzqK/hdDrQao/dyM8rxkjQBSknvMYzzzzDvffei8FgYMmSJbz88ssjvr8EtDNgNB/mvW0WSouaKd/cwqDJjl+wN5lzosmeG4N/yKnb++R0Otm7dy/r16+ns7OT0NBQ8vLymDRpElrt6CpV5t4etq14m90fr8I+NEhK7ixmLb+CqNR0ajoG+O3Kcj4payMu2MA952WxdELUKPanqbS3r6R6/2MMDTURFnYWaal34+s77su8bLcDG+HdG6F7P0y7Bs7+DfgMf35cp83BfVWNvNPey3g/H57OTGCiv++Xn4MQ4itDApoQQngOTwhoPT09XHrppbz66qsEBQVx+eWXc9lll/Hd7353RPeXgHYGfJkPc6fDRe3uTko3NNNQ1g1AQnYI2XkxJE0KQ6s9yfbzx+FyuSgrK2P9+vW0trYSGBjI3LlzycnJQa8fXTOTwQETO1e9x45V72E1m0mclMOs5VcSlz2BDdWdPLiilPJWEzOSQrh/WTYT40Z+qLbTaaWh4W/UHfgTLpeN+LirSUq6Eb1+5HvcjmAfhLW/hU1/BP9ouOAZSDv7hMNWdfRyV2UjXXYHNyVEcltSJN6jrDwKIb5aJKAJIYTn8IQljq+//joffvghL730EgD/+te/2Lx5M88///yIxktAOwNO9sO8v3OQso0tlG1swdxrxRDgRdbsKLLmxhAUcWqqNqqqUlVVxfr162loaMDPz4/Zs2eTm5uLt/fo9sdZLRZ2f7yS7R+8g6Wvl9jMbHdQm5jDa9sa+f3qCrotNi6dGscd52QQGTDySqHV2kFNzZM0t7yOXh9M8rhbiYm5Eo3mS54317gd3r0BOspg8lVwzm/Bd/hDvnvtDh6obubV1m7SfL15JjOBqYEnedC2EMJjSUATQgjP4QkBbcuWLVx77bVs3boVg8HANddcQ25uLjfddNOIxktAO83s7RY27CtmwcIFJ30tl9NF/b5u9hU1c2BvF6pLJTYjiOy5MSTnhKMbxX6ukVJVlbq6OgoLC6mtrcVgMDBz5kxmzpyJwTC6Bhl26xB7Cj5m6/tvMtDVSWRyKjOXX0HEhGk8/2kNfy+qQ6dV+Mn8FH40L3lU+9NMpn1UVj1Mb+8WjMY00lLvJTQ0f7Qv181hhcInoOhJMITAsich64ITDivo6ueOigZarHauiw/nznHR+J6iSqcQ4syRgCaEEJ7DEwIawAMPPMCrr76KTqcjJyeHF198ccRFDQlop5HTbKflt1uwebsInz8O36mRaP29xuTa5l7rwapaM/2dQ3gbdWTMjCI7L4bQGL8xuccXNTY2UlhYSGVlJV5eXsyYMYNZs2bh5ze6+zkddvZ9WsDWd9+gt62F0LgEZi6/Ap/0aTz2USUf7mslJtCHu8/L4oJJ0aPan9bRsZrq6kcZHKonNHQhaam/wGg88cbOY2opcVfTWktg/HJY+jvwCx92iMnh5MH9zfyruYtxBi+ezExgdtCp+fMQQpwZEtCEEMJzeEpAOxkS0E4j1e7CsqeD5o8rMPQooFEwZIdgnBGNd2rQmJx5prpUGit6KC1qpmZXBy6nSlRyANl5MaROi0TvPfZVtdbWVtavX8++ffvQ6XRMmzaNOXPmEBg48j1kAC6nk4pN69ny9mt0NdYTFBnN9IsuwxQ/hYdXVVLa0s/UhCDuX5ZNTkLwyK/rstLQ8E9q657D5RoiNvY7JI+7Gb0+aJSvFHDaYcMz8Olj4O0PSx+HCZfCCUJjUY+Jn5U3cGDIxvdjw7gvORqjbuz/LIQQp58ENCGE8BwS0DycpwU0AOqKKNw/wOyJ8zBvbcWyow2X2YE2yBtjbiS+06PQjdGZZ4MmG+WbWyktaqa3zYLeR0v69Eiy82KISPySzTOG0dnZSVFRESUlJQBMmTKFvLw8QkKG37P1RarLRfW2zWx5+zXaaqrxCw1j6rJLqQoZz5Of1NA5YGV5Tix3nptBdODIl1XabJ3U1DxNU/Or6HT+JI+7hdjYb6PRjK7ZCQDt5e5qWtM2yDgfzv89BEQPO8TsdPJYTSsvNHYQ66PnyYwE5oWcuf/5hRBjQwKaEEJ4DgloHs7jApq5E36XilOjR5u6CDLOQ01ewmCDDvPWVqxVvaCAT0YIxulR+GSGoGjHoKqmqrRU91G6oZnq7e047S7C4v0YnxdD2owovA1fsoHGcfT09LBhwwZ27tyJy+ViwoQJ5OfnExERMep5H9i9g81vv0pTeSm+gUFkn3sxm7wy+dvmBjQKXD8vhevnJ+PrNfLXMDBQQWXVQ/T0bMTXN4W01F8QGrpg1Ady43LC5j9BwYOg84ZzHoEp3z5hNW1rn5nbyuuptlj5TnQID6TGEiDVNCG+siSgCSGE55CA5uE8LqA57XBgI41rXiDOvBt66wEF4nIhYymOqHMw1/hh3taGy2RD4++FcVokxumR6EJH14DjeKwWO5XFbewraqarcQCdXkPqtAiy82KISgkcfUgZhslkYuPGjWzbtg273U5WVhb5+fnExMSM+lqNpXvZ/ParHCjZibfRSPyii1nlSuHD0g6iAny489wMLp4SO+JDvFVVpbOrgKqq3zI4WEdISD5pqffg55c+6rnRtR/euwkObICUxe6W/EHxww4Zcrr4fV0rz9W3E+mt57H0OJaEjW5JqBDCM0hAE0IIzyEBzcN5XEA7aN26dSyYPx/aS6F8JVSshOYd7t8MHoeadj5Dvudirg1mqLIHVPBODcI4PQrD+FAU3cl3AlRVlfYDJkqLmqna2obd6iQ42kj23GgyZkVh8Bub5iUAZrOZLVu2sGXLFqxWK6mpqeTn55OYmDjqa7VWV7L57dfYv20zeh8DhjkX8s5gPPtazUyOC+SXF2QzLXHkSypdLhuNTS9TW/sHnE4zMTFXkTzuFry8RrcsE5cLtr0EHz/grqCd/RuY9n04wRlou/ot3FZeT5l5iMsig/lNWiwh+rGtaAohTi0JaEII4TkkoHk4jw5oX/ww72+Gyg/dga32U3DawBCMI3E5FvVczAcCcfba0fjq8J0aiXFGFPoxOvPMNuSgens7pUXNtNX2o9EpJE8JJzsvhrj04DFpXgIwNDTE1q1b2bRpExaLhcTERObNm0dycvKoK3cd9XUUv/M6FRvXo9HpMOVezPsDUbQP2Fk2KZq7l2YSFzzy98dm66a29g80Nf8XrdaXcUk3ERf3PTSaUQbVngPw/s1Qsw6S8uHCP0BI8vD3drl45kAbzxxoI0in49H0OJZFBI3uvkKIM0YCmhBCeA4JaB7uKxXQDmcdgP1roGKVO7QN9qBqvLGGfwez42wGW/zBBV6JARhnRGGYGIbGa2z2MHU1DbCvqJnKLa1YLQ4Cwg1kz40mc3Y0xjFqXmKz2di+fTsbN27EZDIRGxtLfn4+6enpaE5QcfqinpYmit99k9LCNdgVHQcmXMwacyguFH6UP46fLEjFz3sU+9PMVVRX/Zau7kIMhkTSUn9BWNhZowuQqgo7/w0f3ete1rr4lzDzetAM/2dUOjDIrWX1lAwMsiw8kEfS4wj3+hINTIQQp5UENCGE8ByeEtCeeeYZXnjhBVRV5Uc/+hG33nrriMdKQDsDRvVh7nRAwxb3MsiKldBdg1MNxGL8LmbrAhxmA4qPFt8pERhnROE1RmeeOWxO9u/soLSomeaqXhSNQtLEULLzYkgYHzrivV7D3sPhYNeuXRQVFdHb20tERAT5+fmMHz9+1EGtv7Odre+9xd6C1fSq3uxNX8bWwSDC/b2545wMLpsaN6o5d3ato6rqESyWaoKDZ5OWdh/+fpmje4H9zbDiNnfIjpsBFz0H4cPvcXO4VP7U0M4Tda34ajQ8lBbLJZHBY7o3UAgxtiSgCSGE5/CEgLZ3716+9a1vUVxcjJeXF+eeey5//vOfSU1NHdF4CWhnwJf+MFdV6Kx0B7XylagNW7Gp2Zg1l2Cx5YJLiz7WiHFGNL6Tw9H4jM1ept42C6VFzZRvbmHQZMcv2JvMOdFkz43BP8TnpK/vdDrZu3cv69evp7Ozk5CQEPLy8pg0aRI63eheg7m3h20r3mb3x6toUP0pTjiXAw4j42MCuH9ZNrOSQ0d8LZfLTlPz/6ipeQaHo5+YmMtJTr4db6+wkU9IVWHP67DqTrBZYMHdMOdm0A7/uirNQ9xeXs+2fgtnhwbweEYc0d5jty9QCDF2JKAJIYTn8ISA9vrrr/Phhx/y0ksvAfDggw/i7e3NnXfeOaLxEtDOgDH7MB9od1dnKlbhqi7GYp2F2XUedlcCis6FYUIoxjkJeMX7j0kFxulwUbu7k9INzTSUdQOQkB1Cdl4MSZPC0GpPrnmJy+WivLycwsJCWltbCQwMZO7cueTk5KDXj26p3+CAiZ2r3mP7qvfYSzRbIufRq3qzdEIUv1iaRULoyPen2e191NY9S2Pjv9FofBiX9FPi469BoxnFks+BdvjgZ1D2HkRPcVfToiYMO8SpqrzU2MEjNS3oFIVfp8ZyVXSIVNOE8DAS0IQQwnMcHm5WrVpFa2vrqK/hdDrRao+9NSUqKoqlS5eecA4XXXQRmzZtwmAwsHjxYnJzc3n22WdHdH8JaKeZqqp8+umnY/9hbrNAzTrU8pXYSyswm2dicc5DxYAuYAjjjGiMczLQ+I7Nnqb+zkHKNrZQtrEFc68VQ4AXWbOjyJoTQ1DkyTUvUVWVqqoq1q9fT0NDA0ajkTlz5pCbm4u39+j2wVktFnZ/vJLNH7zPRiWR7cG5oNFybV4yNy5Kxd9n5O+H2VxD9f5H6excg49PPGmpdxMefs7oAtO+d2Dlz2GwB/J/Dvk/A93wlbFai5XbK+rZ1GtmXrAfT2TEk2AYm/2AQoiTJwFNCCE8hycENICXXnqJ559/HqPRyPjx4/H29ubpp58e0f2/UgFNURQj8DxgA9apqvrycF/vaQFNtdvZv2wZ/dExpH77KvzmzkVjNI79jVxOaNqOa++HWHZ3YO6bgl1NB+wYonowzknAO3cayij3eR37Vi7q93Wzr6iZA3u7UF0qselBZOfFkJwTjk7/5ZuXqKpKXV0dhYWF1NbWYjAYmDlzJjNnzsRgGN25cHbrEHsKPqZgxQd8Qhrl/pkEeSvcsTSbb81IRDuK/Wld3UVUVT2M2VxJUNAM0tLuJcB/+GrYEcxd8OHdsOc1iBgPFz8HMTnDDnGpKv9q7uLB/c2owH3J0VwTG4ZGqmlCnHES0IQQwnN4whLHL7rnnnuIi4vjpz/96Yi+/owHNEVR/gYsA9pVVZ1w2K+fCzwDaIEXVVV9VFGU7wG9qqq+ryjKq6qqXjnctT0toDl6emh75BF6P1mDxmJB8fLCd/Ys/Bctxm/BAvSREafmxl37sRUXYN49gKU3ExU/dNo2jPEd+M5JQ5udD7qTr8iYe62UbWqhbEMz/Z1DeBt1ZMyMIjsvhtCTbF7S2NhIYWEhlZWVeHl5MX36dGbPno2f3+iu63TY2fdpAe++/wkryaDFJ5px/hp+c/k08tNH/v67XA6aW16jpuYp7PYeoqMvJSX5Z3h7j+LPsGKVu4nIQDvMvRnm3w364ff0NQzZuKO8gXU9JmYFGnkyM4FkX6mmCXEmSUATQgjP4SkBrb29nYiICOrr61myZAmbN28mKChoRGM9IaDNAwaAf30W0BRF0QKVwNlAI7AVuAq4CFilquouRVH+q6rqt4e7tqcFtM+sW7OG6X7+DBQUYCoowN7QAIDPxIn4L16E38JFeKennZK9RmpvB5a1GzHvtWIzRwMODLrtGBO78c6dhJKxBHxHeUjzF+/hUmms6KG0qJmaXR24nCqR4wLIzoshLTcSvfeXr6q1trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFK+sZC/v7ueD9U0TPoAZoQr/PY7c0iNChrxdRwOE7V1f6Sh4Z9oNHoSE39MQvwP0GpH2DxlsBdW3+duyx+a5t6bljBz2CGqqvJKazcPVDdhc6ncNS6a6+LD0Uo1TYgzQgKaEEJ4Dk8JaPn5+XR1daHX63nyySdZvHjxiMee8YB28IZJwIrDAtps4Feqqp5z8Oe/OPiljUCPqqorFEV5RVXVbw13XY8NaId9mKuqiq26GtOaAkxrCxjaXQKAPi4Ov0UL8V+0GN9pU1FG2SRjJOzNPZgLdmIpd+FyeKOlHaPuE3wTetBNyIPM8054yPKJDJpslG9upWxDMz2tFvQ+WtKnR5KdF0NEYsCXvm5nZydFRUWUlLjfrylTppCXl0dIyOjCpepyUbplE0+/u5V1rkScio7z4+FX311AaNDI/8e0WOqo3v8YHR2r8fGOITX1LiIizh95yN5fAO/dAn0NMOsnsOg+8Bp++Wur1c6dFQ2s7upnaoAvT2UmkGE8+a6aQojRkYAmhBCew1MC2snw1IB2GXCuqqo/PPjz7wEzgbuAPwJDQNGx9qApinIdcB1AZGTktFdeeWXM53uyBgYGjrs0T9PXh3fJHrxLSvAqK0NxOHD5GrCOn4B18mRs47NRR7n/6oRcYGxTCamz4t1nBFz4aLZj1H6E06+FrvDpdIXOoD8gDZQvt29NVVUsndCzX6W/AVQn+ARDcLJCYCJovb5c9WdwcJCGhgZaWlpQVZWIiAgSExMxjnJvn6qqNNbW80apmd3aBHxUK+cEdnP+tHi8fEYeelS1HJf6CtAApKJRrkRRRhZytQ4LyTX/JrZ5JYM+UVRk3EBv8KQT3A82oucfGBhE4VKGuAArOimmCXHaDPdMF0IIcXoFBgaO+Lyx4xmuScjpUF1dTV9f3xG/tnDhQs8MaKqq3jia634VKmjDcVksmDduxLSmgIF163D29IBej3HGjIPVtUXoo6PHdG6O7iHMW1sxb23GNeBEox3AqKzCqPkInb8LMs6FjPMheT7ov1xQtFrsVBa3sa+oma7GAXR6DanTIsjOiyEqJfBLLe00mUxs3LiRbdu2YbfbycrKIj8/n5iYmFFfa23RDh5aVc5+ZyChjl5+mKnjmm+dh8FvZN9JUVUnLS1vsr/m99hsnURFXUxK8s/x8Rnhn1XdBnjvRuiugdxr4axfg8/w1cYOm517q5p4r72XiX4GnsqMZ4L/yXXTFEKMjFTQhBDCc0gFbYyMdImjqqqPjOa6X/WAdjjV6WRw1y5MBQUMrCnAVlcHgHd2Fv6LFuO/aCHeWVljtm9NdaoMVXRj3trKUHk3qODt34zR8QYGV4F7yWXKIvcyyLRzwC989PdQVTrqTewraqaquA271UlwlC/ZeTFkzIrC4Df6g5ktFgubN29my5YtWK1WUlNTyc/PJzExcdRze23NTn5XUEeny5txQw1cN9HAhZdeiDEoeETXcDhM1B34Mw0NfwM0JCZeT2LCj9BqRxBsbRZY+zBsfh78Y+CCZyDtrBMO+6Cjl7srG+mxO7gpIZJbkyLxHoNunUKI45OAJoQQnkMC2hg5RkDT4W4Sshhowt0k5Nuqqu4bzXW/TgHti6w1tQysLcC0poDBnTtBVdFFR+O/cCF+ixZhnDEdxWv0AedYnH1WzNvaMG9rxdljReOt4hu2H+Pgf9BbtgEKxM+EjKWQcR6Ep4/6HrYhB9Xb2yktaqatth+NTiF5SjjZeTHEpQejjKINPsDQ0BBbt25l06ZNWCwWEhMTmTdvHsnJyaMKsVaHk+c+2MlfNzdjdSlMHijj+1MCWbh8OQFhI+vYODjYQPX+x2lvX4m3dxQpKXcQFXkhykiWizZshXdvgM4KmPIdOOdhMAwfEHvsDn5Z3cTrrT1kGH14KjOeqQGn4DgHIQQgAU0IITyJBLQxoCjK/4AFQBjQBjygqupLiqKcBzyNu83+31RVfXi01/a0gKaqKre+ugu9pYNL509jUlwgRm/dSV/X0d3NwNp1mNYWYN6wEXVwEI3RiHFePv6LFuE3bx7aUXY5POb8XSrW6l7MW1sZLO0Cp4pXtBZjWBmG/v+iaTv4XoemHgxr50P8DNCMbg1vV9MA+4qaqdzSitXiICDcQPbcaDJnR2MMHF1LeZvNxvbt29m4cSMmk4mYmBjmzZtHeno6mlFUljoHrDz67k7e3NOJl9PKrL7tXJkTyeyLLyM4OnZE1+jp3UpV1UOYTHsJCJhMetp9BAZOPfFAhxU+fRyKngJjGCx7CjLPP+GwT7r6ubOigVarnR/HR3DHuCgMWqmmCTHWJKAJIYTnkIDm4TwtoHUNWLn8z5uo6TQDoFEgIyqAnIQgcuKDyEkIJjnMiGaU1aLDuYaGMG/axEDBWkxr1+Ls7AStFt/cXHcL/0WL8IqLO+nX4hywYdnRjrm4FUfnIIqPFt9sX4xBJXi1vQ2168FlB99QSD/XHdhSFp2wM+HhHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDx3V++RwONi1axdFRUX09vYSERFBfn4+48ePH1VQK2/t51dv72bzgX6C7b3kdW/inCmJzFp+OWEJSSccr6ouWlvfpnr/E9hs7URGLCMl5U4MhhGEvJbd8M4N0LYHJlwKSx93B7Zh9DucPLi/mX83d5Fs8OapzHhmBkkzAyHGkgQ0IYTwHBLQPJynBbTPrFi9FmPieHbW97KzvoddDb2YhhwABPjomJIQfDCwBZETH0yg75drsa+6XAzt2eNuMrK2AGtVNQDe6enuJiOLF+MzfjzKSexRUlUVW20/5q2tWPZ0gsOFPtYPY04Qvr670NSuhKqPYKgPtN6QvOBgdW0p+EeN+D69bRZKi5op39zCoMmOX7A3mXOiyZoTTUDoyJuVOJ1O9u7dy/r16+ns7CQkJIS8vDwmTZqETjeyaqaqqhSUt/Pg+3up6x4i0drE3I4iZkxOZ9byK4hKPfEST4fDzIH6v1Jf/wIACfE/IDHxx+h0JwiwTjsUPQ2fPuZuHHLe72D8JXCCZZvru03cXtFA45CNa2PDuCc5GqPuzHUnEuLrRAKaEEJ4Dk8JaNdeey0rVqwgIiKCvXv3AtDd3c2VV15JXV0dSUlJvPbaawQHH711RQLaGfDFD3OXS6Wmc4Ad9b2HQltlmwnXwbc6OdxITnywO7AlBJER6Y/uSyxVs9XXu5uMFKzFsn07OJ3owsPxW7gQ/8WL8J01C4336JYQHs5lsWPZ1YG5uBV7qxlFr8EwORzjtDC81L0olaug/APoPeAeEDvNvWct4zyIyDphyABwOlzUlXRSWtRMfVk3AAnZIWTnxZA0KQztCN8Xl8tFeXk5hYWFtLa2EhgYyNy5c8nJyUE/wjPnbA4X/9l8gKc/qcQ0ZGeypZLcjo1kTshi1vIricuecMJrDA01U73/d7S1vYeXVwQpKT8jOuqSE+9Payt1701r3gGZy+D8358w8JodTh6pbeGlxk7ifLx4MiOe/JAz990hIb4uJKAJIYTn8JSAVlhYiJ+fH1dfffWhgHbnnXcSEhLC3XffzaOPPkpPTw+PPfbYUWMloJ0BI/kwH7A6KGn8LLC5Q1uX2QaAr5eWSXGB5BystE1JCCLCf3QHFDt6ejCvX49pTQHm9etxWSwovr74zZ2L36JF+C2Yj+4YiX4kVFXF3jiAubgVy+52VJsLXaQvxulRGHPC0QxUQ8VK94+m7e5BwUkHw9pSSJgD2hNXs/o7Bynb2ELZxhbMvVYM/noyZ0eTPTeGoMiRtZhXVZWqqirWr19PQ0MDRqOROXPmkJubi/cIw2qP2cYza6r496YDeGtczDTtIqutmITMTGYuv5KkyVNP2Jikr28HlVUP09+/C3//8aSl3kdw8Izhb+x0uLs8rn0YdD5w7qMw+VsnDLpbege4vbyB/YNWvhcTyv0pMQRINU2IL00CmhBCeA5PCWgAdXV1LFu27FBAy8jIYN26dURHR9PS0sKCBQuoqKg4apwEtDPgS7XZV1UaewbZUd/jDmwNvZQ292F3uv884oINhwJbTkIQ2TEBeI/wH90umw3Lli2HqmuOtjbQaDBMzcF/4SL8Fy/CKylplK/y4LWtDiy7D1bVGgdAp2CYEIZxehTeyYEoA21Qscr9o2YdOK3gEwRpS9wt/FMWn/AMMJfTRf2+bko3NFO3pwvVpRKbHkR2XgzJOeHo9Cd+H1RVpa6ujvXr11NTU4OPjw+zZs1i5syZGEZ4MHh1u4mHPihjXUUH0QaVOV0biW4rISo5lZnLryA1d9awy0lV1UVb2wqq9z+G1dpKRPhSUlPvwmCIH/7GndXualrDZkg9Gy54GgKH32c46HTxRF0rf6pvJ8pbz+MZ8ZwVOvz7LIQ4NgloQgjhOQ4PN5WVD2IaKBv1NZxOB9rjFAv8/bJIT79/RNf5YkALCgqit7cXcP/bMzg4+NDPj/caPiMB7RQbqw/zIbuTfc397PwstNX30Nw3BICXVsP42IAjlkbGBhlOWMlRVZWhfaUMFBRgKijAWl7uvl5ysrvJyMJFGCZPQvkSp6vbmgfce9V2dqAOOdCF+uA7PQrjtEi0/l5gHYCatVC+Eio/hMFu0Ohh3LzP962dIHiYe62UbWqhbEMz/Z1DePvqyJgZRXZeDKGxI2uO0djYSGFhIZWVlXh5eTF9+nRmz56Nn9/Ixq+raOehD8qobh9gYrDCrOY1+LRWEBqXwMyLLydjzjw0w7x/Tucg9fUvUnfgL6iqk4T475OU9BN0umG+k+NywdYX4JNfgaKFJQ/CtGtOWE3b0W/mtvIGKsxDXB4VzG9SYwnWn3xnUSG+SSSgCSGE5/iqBDSA4OBgenp6jhonAe0MOJUf5q19Q+xq6Dm0NLKkqZchuwuAcH/vQ90icxKCmBQXiK/X8P8Ytzc1YSpYy8DaAszFW8HhQBsait+C+fgvWoRxzhw0I6wwfUa1O7Hs6cRc3Iqtrh80CoasEIwzovBOO3jmmcsJDcVQ8YE7sHXvdw+Onvz5vrWoiccNIKpLpbGih9INzdTs7MDlVIkcF0B2XgxpuZHovU8cMFtbW1m/fj379u1Dp9Mxbdo05syZQ+AIjixwOF38t7ieJz+upG/QzjlxOibUrMLaWE1QZDTTL7qU7HmL0Q2z323I2sr+/U/Q2vo2en0oKcm3ExNzOYoyzNy7a+H9m6G20B1sL/gDhIwbdq5Wl4un69p4tr6NYL2Ox9LjOC886ISvUQjhJgFNCCE8hyxx9HDfxID2RXani4pW0+dVtoZeag+2+ddqFDIi/Q9W2NyhbVzo8dv8O00mBgoLGShYy0BhIS6TCcXbG+OcOe7q2oIF6MKGb/t+1PzaLZi3tWLZ3obL7EAb5I0xNxLf6VHoDj/zrKPy831rDcWACoHxn1fWEvNAd+yDuQcHbFRsbqW0qJmeVgt6Hy1p0yMZnxdDeIL/CauKnZ2dFBUVUVJSAsCUKVPIy8sjJCTkhK+vz2LnDwVV/HNjHT56DVemeRG39wO6ayvwCw1j+gWXMHHREvTex99D2N9fQmXVQ/T1bcfPL5O01HsJCZlz/JuqKuz4J3x0H6hOWPwAzLgOTtCtc6/Jwm3lDewZGOTCiCAeTosl3OvLdRAV4ptEApoQQngOTw5od9xxB6GhoYeahHR3d/P4448fNU4C2hlwpj/Mu802dje4l0TubOhlV30vJqu7zX+gQc+Uz1r8JwQzJS7omG3+VZsNy/bt7hb+BQXYm5tBUTBMmoTf4sX4L1qIV0rKCcPPoes5XAyWdmHe2oq1qhcU8EkPxjgjCp/MEJTDuzMOdLiXQFasgv0F4BgE7wBIPctdWUs7GwxBR99DVWnZ30dpUTPV29tx2l2ExfuRPTeG9JlReBuGryb29vayYcMGduzYgcvlYsKECeTn5xMREXHC11fTMcBvV5bxSVk78cEGfpDtjffW92iu2IdvYBDTzr+YyWefh7fvsZubqKpKe/tKqvc/xtBQE2FhZ5GWeje+vsNUx/oa4f1bofpjiJ8FFz0HYanDztPuUnm+vp3f17Xip9PwcFocF0cEjfjPUYhvojP9TBdCCPE5TwloV111FevWraOzs5PIyEh+/etfc/HFF3PFFVdQX19PYmIir7322jG/4S8B7QzwtA9zl0tlf8fAwQqbu9JW0Wbisz/qlHDjoQpbTnww6ZF+R7T5V1UVa0XFoSYjQwe/S6BPTDjUZMSQk4MywnPGHN1DmLe1Yt7WhqvfhsZfj3FaFMbpkei+eOaZfdDdXKRiJVR8COZ20OggcQ5knO+urgUnHnUPq8VOZXEb+4qa6WocQKfXkDotguy8GKJSAocNJCaTiY0bN7Jt2zbsdjuZmZnMmzePmJiYE762oqpOHlxRSkWbiRlJIVw33ovewnc4ULITb6ORnHMvZOrSCzD4H7thh9M5REPD36k78CdcLhvxcVeTlHQjev1xGnyoKpS8CqvuAscQLLwHZt1wwi6ZFeYhbiuvZ0e/hXPCAngsPZ4ob6mmCXEsnvZMF0KIbzJPCWgnQwLaaaSqKvdtuA9tt5ZLZl1CVmgW3tovf+7YqWQasrOnsY+dn1Xa6nuP2+Y/JyGYcP/PX4e9tZWBdeswrSnAsnkzqt2ONigIv/nz8Vu0COPcuWj9TnAgM6A6VYYqujFvbWWovBtU8E4Nwjg9EsP4MBTdF5bsuVzutv2fLYXscDc4IWK8uyNkxlKIzjliqZ+qqnTUm9hX1ExVcRt2q5PgKF+y82LImBWFwe/YyyYBLBYLmzdvZsuWLVitVlJTU8nPzycx8ehAeDiH08Wr2xp4cnUl3RYbl06N4//S9dR8/BbVWzej9/Zh8pLzyF22HGPQsY86sFrb2V/zJC0tb6DXB5M87lZiYq5EozlO8DK1wQe3Q/kKiJnqrqZFZg87T6eq8kJDB4/WtuClUfh1aizfigqRapoQXyABTQghPIcENA/naQGta7CL76z8Dk0DTQDoNDoygzOZFD7p0I84vziP/Aewqqo0dA8eqrDtrO9hX3M/Dtfwbf6dA2bMRUUMrC1gYN2nOPv6UPR6fGfPwn+RuyukPvLESwSdfVbM29owb2vF2WNF46vDd2okxhlR6COOc+ZZ1/7PW/jXbwTVBf7RkH4uZJ4PSfmg/3zvl23IQfX2dkqLmmmr7UejU0ieEk52Xgxx6QeblxzD0NAQW7duZdOmTVgsFhITE8nPzyflBEs8+4fsPFdQzd821KLXavjJ/BSWj9Oye8WbVGxcj0anZeKiJUy/8FICwo79HplM+6isepje3i0YjWmkpd5LaGj+sW+oqrDvbVh5Bwz1wfw7Ie820A5fGauxWLm9vJ7NfWYWBPvzu8x44n2OH1yF+KaRgCaEEJ5DApqH87SA9pn31ryHX5ofJR0llHSWsLdzL4OOQQBCfEKYFPZ5YJsQNgGj/sTVpjPB3ea/74jDtI/V5n9qorvKFm3UMbhzJwMFazEVFGCvrwfAZ8IEd5ORRYvwTk8fNtSoLhXr/l7Mxa0MlnaBU8UrMQDjjCgME8PQeB2nw6GlG6pWuytr1WvANgB6I6QuPrhvbQkYQw99eVfTAKVFzVRsacVqcRAQ5kN2XgyZs6MxBh676mmz2dixYwcbNmzAZDIRExPDvHnzSE9PRzNMg44DXWYeWVnOh/taiQ0ycNfSTPIiVLa++yalhQWASva8Rcy46DKCo2OPfk9UlY6O1VRXP8rgUD2hoQtJS/0FRmPKsW9o7nQvedz7BkROhIv+CDFTjjs/AJeq8o+mTh6qaUEB7k+J4eqYUDQe+M0EIU43CWhCCOE5JKB5OE8NaF/8MHe4HOzv3c/ujt2HQlttXy0AGkVDalCqO7CFTWJy+GSSApPQKMN35DtThmvzH+Hv/XnHyLhAMmxdOAo/ZaCggMGSElBV9LGx+C1ahP+ihfjm5qIM04beOWDDsqMdc3Erjs5BFG8tvjkRGKdH4TXcmWf2Iagrcrfwr1gFphZQNJAw+2BXyPMg1B1uHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDz1mx0uHw8GuXbsoKiqit7eXiIgI8vPzGT9+/LBBbdP+Lh5cUUppSz9TE4K4f1k2Kb52tr73FnsLVuN0OEifncfM5VcQnpB01HiXy0pDwz+prXsOl2uI2NjvkDzuZvT6oGPfsPwDWHE7mDsg71aYd+cRFcVjqR+08vOKBgp7BpgdZOTJjATG+XrmMl0hThcJaEII4TkkoHm4r0pAO5Y+ax97O/dS0lHC7k53cDPZTAD46/2ZGD7xUGibGDaRIJ+gUz/xL+GzNv87DjtMu67LArjb/GdGudv85/qrjD9Qgs/WjZg3bkS1WtH4++M3bx7+ixdhzM9He5z/UVRVxVbb7z4Ee08nOFzoY/0wzojCd3I4Gp9hGmKoKjTvPLgUciW0uRucEJZxcN/aeRCbCxoNvW0WSjc0U76phUGTHb9gbzLnRJM1J5qALzYvAZxOJ3v37mX9+vV0dnYSEhJCXl4ekyZNQnechilOl8qb2xt5/KMKOgesLM+J5c5zMwhQh9j+wTvsWr0S+9AgKbmzmLX8CqJS04+6hs3WSU3N0zQ1v4pO50/yuFuIjf02Gs0xwu5gj7sd/67/uF/zRc9B/PTjv18H3+//tXTzQHUTDlXl7uRofhgXjlaqaeIbSgKaEEJ4DgloHu6rHNC+yKW6qOuvc1fYDv6o6q3CpbqrU0kBSYcC26TwSaQFp6E7XsOIM6zbbDuiyraroZeBw9r8z4gysNBcR+b+XRh3bMLV0wM6HcYZ0/FbtBj/hQvQxx691A/AZbFj2dWBubgVe6sZRa/BMCkc44wovEZw5hk9B9wt/Ms/gAMbwOUAY7h731rGeZC8AKfGh7qSTkqLmqkv6wYgISuE7LwYkiaHodUeWSVzuVyUl5dTWFhIa2srAQEBzJ07l6lTp6I/ToVwwOrgT+uqeWF9LRoFrp+XwvXzk1Fsg+xc9T47V73HkHmAxEk5zFp+JXHZE46+xkAFlVUP0dOzEV/fFNJSf0Fo6IJjvwfVn8B7t0B/E8y+ARbeC17H2dt3UIvVxp0VjXzc1U9ugC9PZSaQZhy+AifE15EENCGE8BwS0Dzc1ymgHYvFbmFf177Pl0Z2lNA11AWAQWcgOzSbSeGTmBw2mUnhkwj3DT/pe54KzkNt/j8PbZXt7jb/GtXFYrWDs7rLSd+/C5+WBgC8s7LwX7gQv8WL8MnOPip0qKqKvXEAc3Erlt3tqDYXukhfjNOjME6NQHOMs92OMtjrDi4VK6HqY7D2g84AKQvdSyHTz6V/yJ+yTS2Ub2xhoMeKwV9P5uxosufGEBR5ZMBRVZXq6moKCwtpaGjAaDQyZ84ccnNz8fY+9jLBhm4Lj35YzgclLUQF+HDnuRlcPCUWh3WQXatXsv2Dd7D09RKbmc3M5VeSNHnqEe+Fqqp0dhVQVfVbBgfrCAnJJy31Hvz8jq68MdQPn/wKtr0EwePce9OS8oZ9i1RV5a22Hu6rasLicvHzpCh+Eh+B7jgNVYT4OpKAJoQQnsNTAtq1117LihUriIiIOHRQ9euvv86vfvUrysrKKC4uJjf3mHlLAtqZcKo+zFVVpdncfESVrbS7FIfLXZ2KNkYfUWXz9Db/JY19n4e2hl66zTZiBzqY117Ggq4y4pv3o6guNBGRBCxeiP+ixfjOnIHG68gOgy6rg8HdnQxsbcXeYAKdgmF8GMYZUXgnD3/m2SEOm7ui9tlSyL4GQIG46ZB5Hq60pdS3hVK6oYW6PV2oLpWYtCCy82JImRqOTv958xJVVTlw4ACFhYXU1NTg4+PDrFmzmDlzJgbD0UslAbbWdfPgilJKGvuYHBfILy/IZlpiCHablT1rVrP1/TcZ6OokMjmVmRdfQer0WSiH7XdzuWw0Nr1Mbe0fcDrNxMRcRfK4W/DyOvpwRGrXw3s3Qk8dTP8hnPUr8B7+IdVhs/OLykZWdPQxyd/A05kJZPsd+7UI8XUjAU0IITyHpwS0wsJC/Pz8uPrqqw8FtLKyMjQaDddffz1PPPGEBDRPcjo/zK1OK+Xd5UeEtmZzM+Bu858VknVEaIv1i/XYNv/13ZZD+9h2NvTSWNvM1OZSZrXuI7ejEm+HDYePAWXGbKKXLiFo4Xy0QUFHXMfWYsZc3IJlZwfqkANdqA++06MwTotE6z/C1vGq6t6rVn7wvLWWXe5fD0mBjKWYY8+j7EA0ZZta6e8cwttXR8bMKLLzYgj9QvOSxsZG1q9fT0VFBV5eXkyfPp3Zs2fj53d0kxOXS+XtnU08/lE5bf1Wlk2K5u6lmcQF++J02CktXEvxu6/T29pCaFwCMy++nIw589BoPw+HNls3tbV/oKn5v2i1voxLuom4uO+h0XzhtdvMUPAwbH4eAuPggmfcHS9P4P32Xn5R2Uivw8EtiZHckhiJ1zCNUYT4OpCAJoQQnsNTAhpAXV0dy5YtOxTQPrNgwQIJaJ7mTH+Yd1g6KOn8PLDt69p3ZJv/cHe3yElh7jb/vvrh9yKdKUN2J3ub3G3+S2rbsBUXk75/F7Na9hFiNeFUNHQlZ6HJm0/ShecSl516KHyqdieWvV2Yi1uw1faDRsGQFeKuqqUd/8yzY+prgsqD563VFoLTBoYQ1LRzaPS9gNIDsdSU9OByqkSOCyA7L4a03Ej03p8Hp9bWVtavX8++ffvQ6XRMmzaNOXPmEBgYeNTtLDYHf/60hr8W7selwo/yx/GTBan4eetwOZ1UbC5iy1uv0tVYT1BkNNMvupTseYvRHbbfbcBcRXXVb+nqLsRgSCQt9ReEhZ11dDhvKIZ3b4DOSsj5Lix5GAxBw74d3XYHv6xq4o22HrKMPjyVmcCUAM/8OyTEWDjTz3QhhBCfOzzc3F/VyN6BwVFfw+lwotUd++imCX4GHkyLG9F1JKAdgwS0kXG4HFT3Vrs7Rh7cz1bXXwd89dr8t/QNsquum7qN21E2FZJUvp3E/lYAGgOjaR4/Hd28+aTmTWdiQjC+XjrsHRZ3B8jt7bjMdrRB3hhzI/HNjUIXNMoloEP9sL/AXVmr/AiGekHrzWD8OVSoF1FaG0VPuw29j5a06ZGMz4sh/LDmJZ2dnRQVFVFSUgLAlClTyMvLIyTk6KWIzb2DPP5hOe/saibc35s7zsngsqlxaDQKqstF9fYtbHnrNdpqqvALDWP6BZcwcdES9N6fN/Lo7FpHVdUjWCzVBAfPJi3tPvz9Mo+8kX0IPn0UNvwB/CJg2VPuPXgnsLqzjzsrGmm32flpQgQ/T4rCR+uZf2+EOBme9kwXQohvMgloHk4C2pfXZ+1jT+eez5dGdh6/zf+k8EkEeh9d6fEEdqeL8u3lNK/6CO3mIqLqytGqLrq9/SmOHk9Tdi7G2bOYlBxJTmwAUe1WzFtbsVb3AuCTHoxxRhQ+mSEoow0XTgfUbzq4b+0D6KlDVaEl8CJKbRewvykUhx3C4v3InhtD+swovA3uzpu9vb1s2LCBHTt24HK5mDBhAvn5+URERBx1mx31Pfzm/VJ2NfQyITaA+8/PZmay+9BtVVU5sHsHm99+jabyfRgCApl2/sVMWXI+3r7uqpbLZaep+X/U1DyDw9FPTMzlJCffjrdX2JE3atoB794I7ftg4uVw7mNHHO59LH12B7/e38x/W7pJ9fXmqcwEpgd65sHrQnxZX4VnuhBCfFPIEkcPJwFt7Iymzf/kiMmkBqV6ZJt/Z28vrR8X0LbqY3Tbt6C3DjKk9WJHRDqbosZTMW4SqWlxzA33Z+aASsj+flSTHY2/HuO0KIzTI9Ed48yzE1JV6Ch3V9bKV0LTNqwuXyqViykdOofOvgB0eg2p0yLIyoshOsXdvMRkMrFp0ya2bt2K3W4nMzOTefPmERMT84XLq7y3u5nHVpXT3DfE0glR/GJpFgmhny8tbCzby5a3X6Nu9w68jUZyzr2QqUsvwOAfAIDd3kdt3bM0Nv4bjcaHcUk/JT7+GjSaw6qIDhsUPQmFvwOfIDj/CRi//IQv/9NuEz+rqKdpyM4P48K4Ozkao/bY35kS4qvmq/hMF0KIrysJaB5OAtqp9cU2/7s7dtM95D4XzKAzMD50vDu0HQxuntbm32WzYSneSv+aNfR9sgY62nEpCrWRKawLzWBT9ATa/MK5ONCPC/FiXJ8DBfBKDsRvZhSG8WEoui+5ZM/Udmjfmrp/HR1Dseyznk/VYB52p57gSB+y8+PImBWFwc8Li8XC5s2bKS4uZmhoiJSUFObNm0diYuIRlx20OXlhfQ1/Wrcfp0vl+3lJ3LgwFX+fz/efte6vYsvbr1K9dTN6bx8mLzmP3GXLMQYFA2A211Bd/QidXQX4+MSTlno34eHnHLk/rXWve29ayy7IuhDOewL8I4d9yQMOJw/XtPD3pk4Sfbz4fWY8ecFn7owRIcbK1+WZLoQQXweeEtCuuuoq1q1bR2dnJ5GRkfz6178mJCSEm266iY6ODoKCgpgyZQofffTRUWMloJ0BX9cP88Pb/H8W2sq6yw61+Y8xxnwe2MInkRWShZd2hJ0TTzFVVRkqLWWgYC2mtQVYS8sAMEfGsi9pMisD0qj1jWOp4s0FeBGFBqtewZwaSNS8eCLGBX35m9vMsH8tVKzCVl5AdXcWpYNLaLOno9GoJE/wJ3tRKnHpwVhtVrZu3cqmTZuwWCwkJiaSn59PSkrKEQGqtW+I331UwZs7Ggnz8+JnSzK4Ijce7WHNTzrr69jyzutUbFyPRqdl4qIlTL/wUgLC3Msou7qLqKp6GLO5kqCgGaSl3UuA/2EHYjsdsOlZWPuI+1Drcx+DSVfACbqAbuod4PbyemoHbVwdE8r9KTH4H2edtxBfBV/XZ7oQQnwVeUpAOxkS0M6Ab9KHudVppayr7NA+tpKOElrMLQDoNfrP2/wf/BFjjPGINv/25mZMa9cysKYA89atYLdDUDC9k2dQkjCJOm0S2b2Qhw49ChU6lf3RPvhMCGVycihZ0QF4fZnqmssJjVuh/AO6du+ktCWdisH5WFV/AoxDZM0IJuucHPS+Gnbs2MGGDRswmUzExMQwb9480tPT0RzW1r6ksZcHV5Syta6HzCh/frksmzmpR+4t62ltpvidNygtLABUsvIXMuOiywmJicXlctDc8ho1NU9ht/cQHX0pKck/w9v7sL1wHZXualpjMaSd424iEhg77Mu0OF08XtvCXxs6iPbW87uMeBaFBoz+/RLCA3yTnulCCOHpJKB5OAlonqnd0s6ejj3s7nRX2fZ17mPIOQRAqE/oobA2OXwy40PHn/E2/06TCfP69ZgK1jJQWIirvx/F2xufmbPonTSXbl0qIc1OwmwqA6h8jJ1VWgeGOH9y4oPISQgmJyGI6ECf0YfPziocpauo2VxLaWMSTbaJKDhJiuwge04kMfmz2FNWTlFRET09PURERJCfn8/48eMPBTVVVVm5p5XfriyjqXeQs7Mjuee8LMaFHdmso7+zg23vv8WeNR/hdDhIn53HzOVXEJ6QhN3eT92B52ho+CcajZ6kxJ8QH38tWu3BjpAuJxT/FT75NWj1sOQhmHr1Catp2/vM3FpeT5XFypVRIfw6NYYgveftXRRiON/0Z7oQQngSCWgeTgLaV4PD5aCqp+qIKtvhbf7TgtKOqLIlBZy5Nv+q3Y5l+3ZMBQUMrCnA3tQEgM/kSRjnLMPmlY6r0Y7GqdLgBW84hljlsmEBIgO8yYl3h7WchGAmxgZi8BrF0j5zJ71bP6F0QyvlTYkMugIxarvJim8gY24cBwxxrN+8nc7OTkJCQsjLy2PSpEnodO7AM2R38rcNtTxXUI3N6eL/Zidx0+I0Ag36I2/T28P2D95h1+qV2IcGScmdyczlVxCdmoHFUkf1/sfo6FiNj3cMqal3ERFx/ufBs7sG3rsZ6tZD8gK44A8QnMhwrC4XT9W18Wx9G6F6HY+nx3NuuGd2BRXiWOSZLoQQnkMCmoeTgPbV1TvU627zfzCw7enYg8l+sM2/l/+h9v6TwicxMWziGWnzr6oq1soqBgrWYCpYy9CePQDox6XjO3M5ilcqzn4VVafQEu3LWh8XK7tMHOi2AKDVKGRF+x8R2pJCfUdUZXMOmqlbs4HSzV3Ud7qbryR47yYrvpGh5HiKWnS0dnQTEBDA3LlzmTp1KvqDB1W3m4b4/UeVvLa9gSCDntvPTueqGQnovnCMwOCAiZ2r3mfnqvcYMg+QOCmHmcuvIC5rAj29m6mqepiBgTICA6eSlnYfgQGT3QNdLtjxD1j9S1BdcNavYPoPQTN8qN5jsnBreT37Boa4OCKIh9LiCPOSaprwfPJMF0IIzyEBzcNJQPv6cKku6vrq3M1HDoa26t7qo9r8Tw6fzKTwSWekzb+9rY2BteswFazBsmkzqt2OLm48hmkXgy4BnAq6SF+UyWGUhujZ3mZiZ0MPuxv6GLC6G6kE++qZctiyyMnxQQT46Ie9b3+HmbLVOynfZmJg0BuDppcMQwG+kd3s0KXT0A9Go5E5c+aQm5uLt7e7bf6+5j4eXFHK5ppu0iL8uG9ZNvPTj+60aRu0sGv1SrZ/8A6Wvl5iMrKZdcmVJE6aTGvrW+yv+T02WydRUReTkvxzfHyi3QN7G+D9W2D/GkiYAxf9EUJThn8PXSp/rG/jybo2/HUafpsWx0URQR6xL1GI45FnuhBCeA4JaB5OAtrXm9luZl/nPko6P+8aebw2/5PDJxNmCDvBFceOy2xmYMMGBtYUMLBuHU7zEPqEWXhnLUHRh4NWwTAhDOOMKHRJAezvMLOzvoed9b3sbOihqn0AVXVv4UoN9ztUYctJCCItwv+IboyH7ulSqd/XRWlBFXXlFlRVIdprL+HGTdQYgqh1ReLjpWXWzNnMmD0HX19fVFVldWkbv11ZxoEuCwszwrn3/GxSI/yOur7dZmVvwWq2vvcWpq4OIpNTmXnxFSTljOdAw19paPgboCEx8XoSE36EVmtwn/+2+3/w4d3gsMKi+2DWT0Ez/NLOsoFBbitvYJfJwtKwQB5NjyPSe/igKsSZIs90IYTwHBLQPJwEtG8WVVVpGmg6Yi+bJ7T5Vx0OBnfuxFSwFlPBGpw9TvSJeeiT5qJofdD4a/GbG49xWiRaf/d8+ofslDT0uUNbQy8763vosdgBMHppmRwf5A5t8cFMSQgizM/7iHuae62UbWqhbH0j/d02vHVWonw/pcunm1pNDF4aF9NTQpl99iX4RcRjdTj558Y6nl1TjcXu5HuzErllcRrBxqPfH6fDTmnhWorffZ3e1hZC4xKYefHlJOSMo6bu97S3r8TbO4qUlDuIirwQRdGAqRVW3A4VH0DsNLjoOYgY/uHpcKn8tbGDx2tb8NZo+E1qLFdEBUs1TXgceaYLIYTn8JSAdu2117JixQoiIiIOHVT9+uuv86tf/YqysjKKi4vloGpPIh/mp89I2/x/tjQy2hh9SgOAqqrYamrcTUYKPsXeqUefmIcuLB1woY/WELA4A5/scJTDqmSqqnKgy8LOhoNVtvpeSlv6cbrc/z8mhPgeDGzuSttnbf5Vl0pjZQ+lRc3U7OrA5VAJDGnGqi+hAQM6xclUvw7m5mQSOPkCOn3ieerjSv5XXI+/j55bz0rju7MS0WuP3j/mcjqp2FzElrdepauxnsDIKGZcdBkxkwOpqX0Uk2kvAQGTSU+7j8DAqe5q2r63YOUdYDXB/Dth7q3uro/D2G8Z4vbyBrb0mVkY4s8TGfHE+njG+XlCgDzThRDCk3hKQCssLMTPz4+rr776UEArKytDo9Fw/fXX88QTT0hA8yTyYX5mDdfmP8wQdkQDklPd5t/R2cnAunWY1m3D3uGDLmY6Gu8AUC14JWoIujAHr7hjL80ctDnZ29x3aGnkjvoe2vqtAHjpNEyMDWTqYUsjg7RaKja3UlrUTE+rBcXHgia0knZnH6gupiilzA3uJDR7PuVh5/DQdi1F1V0khxu57/wsFmZEHDO8qi4X1du3sOWt12irqcIvJJTcC5cTMWGIugPPYLO1ExmxjJSUOzEYYsHc6Q5p+96CqIlw0fMQPWnY98mlqvy9qZOHa1rQAA+kxvDd6FCppgmPIM90IYTwHJ4S0ADq6upYtmzZoYD2mQULFkhA8zTyYe5Z7C471T3Vh/axlXSWcKD/AOBu858enH5EaEsMSDwlbf5dg4MMbNiEqWAfji5fNEGp7t+wNeGd6k3gspl4J8YNe42WvsGDFTZ3aCtp6sPmcDdSiQrwISchiCnxgaRpvbBXmqjb2YHVaUGNaKaPJlRcTKCSfLYQblAoiLyah5tzqemH/LQw7l+WTXrksR9YqqpyoGQnm996labyfRgCApl6/lJCspppavkHAAnxPyAx8cfodEYoex8++BlYuiDvNph3B+i8j3ntzxwYtPKz8gaKegfIC/Lj95nxJBqGHyPEqSbPdCGE8ByHh5tfv7+P0ub+UV/D6XSi1R57v3x2TAAPXDB+RNc5XQFNel6Lrx29Rk9WaBZZoVl8K/NbgLvN/2dLIks6SlhZu5LXKl8DIMArgInhE5kc5l4WOSFswpi0+dcYDASctYiAsxahOp0MbNyFaW0VTkcQtgZ/2p7ahTrwCoZsP/zPzsNnwvijKkjRgQaiJxo4b6K7k6LN4aKspf+wvWy9rNrbCoBOozAxxZ8ZmjBC2gJRemKx+jezz1fHHjWDTJ2FeU3v8KHtGf7tdR7P1FzCuU918O2pEdx23mRCv7DvTVEUkiZPJWnyVBrL9rLl7dfY8L9X8DYamXLeDfinllF34HmaW94gJeVnRGdegpI4Fz66Fwp/5w5sFz0Hccd+WAEkGrx5fUoKL7d086vqJhYUV3BvSjTXxoahkWqaEEIIIb6BpII2BuS7rV89LtVFbV8tJR0lh1r9V/dUo+L+/2Fc4LhDVbbJ4ZNJCUoZszb/qlNlYH05pvUHcA4YUBQNjo4yXN0l+EwKJ+CsRfjOnInGa2T7sjoHrOw62C1yZ30vuxt6MVudRDoVpru8SLU5sfk0MWhsRlUcjIsMZkFIKwGNBTzdPZP/OM/CV2Pnlow+rl4yG6+oTHe7yWNo3V/FlrdfpXrrZvTePkw6fxKGxO0MWPbi7z+etNT7CA6eAVUfu1vym1pg9g2w8F7QG4Z9HU1DNu6saGRNdz8zAo08mRlPqq/PqN9fIU6WPNOFEMJzyBJHDycBTZxKZruZvZ17D1XZSjqPbPM/IWzCEUsjx6LNv7PPiqmoDnNxC6pVi2ozY6/fhKNtK745afgvXoRx3jx0wcEjv6ZLparddGhpZEldD7qmISbbIci7FYtvE6rWjo8xnLycRMIGq3l0h5Z1g8kkKa3cE/QJZ09ORslcCvGzQHt0MO2sr2PLO69TsXE9Gp2GiRckoI/Zit3eTkT4UlJT78KgBMLHv4Ttf4eQFPe5aYlzhp27qqq80dbD/VVNDLpc3JEUxY/jI9Ad4xgCIU4VeaYLIYTnkIDm4SSgidNJVVUaBxo/D2wdJZR3l+NQ3W3+Y/1ijwhsmSGZX7rNv+pSse7vZWBzM0OlXaAqOPsPYKsuwNG6E9/JE/FbtAj/xYvwSkgY9fX7Bu2UNPayc087nbs7MJjqsRsbcWltDDn96A9JxTc4gOIDvdQPejNbU8r9un+RbTRB2jmQsRRSF4P3kQ+3ntZmit95g9LCAhStk+wL/NGH70bFRUL890lK+gm6+u3w3s3QewBmXAeLHwDvo89lO1y71c7dlY2s7Oxjsr+BpzMTyPIbvgInxFiRZ7oQQngOTwloV111FevWraOzs5PIyEh+/etfExISwk033URHRwdBQUFMmTKFjz766KixEtDOAPkw/+YYcgxR3l1+RAOSVrN7D9hne98mhZ1cm3/ngA3LjnbMxa04OgdBceLs2sPQ7vdx9TXglZqC/0J3WPOZNAlFM/oGJ3abg02f1rNjwzb6HTW4dEM4Hb6U26PZRjCKRsGlqpznv59f8gJR9gbQesG4eZBxnjuwBcQcul5/Zwfb3n+LPWs+QvEaJON80AVXoteHkpLyM2JCz0Up+C1s+QsExcMFf4CUhcPOUVVV3uvo5Z7KJvodTm5NjOSmxAi8vsTrFWI05JkuhBCew1MC2smQgHYGyIf5N1ubuY09nXsO7Wcr7Sodkzb/qqpiq+vHXNyKZU8nOFwoPlacbdswb3wDrGa0YWH4L1yA38JFGOfMRuMz+j1b3S0DrF25ibIDO3FoLGidBgZ04/jQ5k+f0wWoJGo6uTlwPQtdmwixNrkHxuQcDGvnQeR4UBTMvT1s/+Addq1eic6/m9QlFrR+7fj5ZZGWdi8h/cB7N0JXNUy9GpY8BD7DN2TptDm4v6qRt9t7yTb68FRWApP9T91RCULIM10IITyHBDQPJwFNfBXYXXaqeqqO2Mv2WZt/raIlLTjtiNCWFJB0wiqby2LHsrsDc3Er9hYzil5BG2zF0bQJ86fv4hoYQPHxwTh3Lv6LFuK3YAG60NBRzdthd7L+o2K27tyMxdmHxumNzied9dpgynoH8dJpcLlcJLoaWaLdwVKvnUxQK9GgYjXGos06H132+ZA4l8HBIXauep+dq97FJ7KF+PxetD5mwsLOJi3xVnyL/wsbnwW/KLjgaUg/54Tz+7Cjj7sqG+i0O7ghPoLbk6LwOcaB20KcLHmmCyGE55CA5uEkoImvqp6hnkNVtpKOEvZ07mHAPgAc1uY/fDKTwyYzIXwCAV4Bx7yOqqrYGwcwb23FsqsD1eZEF2FAFz6EvWY9A+s+xtHSAoqCYcoU/Bcvwm/RIryTk0c8V1VVKdmxj3UFn9Jj7kBx6ulzpFDsHULjkJ3s6ADyUkNpM1k5cKCW9P6NnK3ZTr5mDz6KnUGtH51R8/AZv4yAzIWUFG1i+6o3MCbUEjWtB41OJT7+GpK98tCtuBM6ymDSt+DcR8A3ZNi59dod/Kq6mVdau0nz9eapzARyA40j/4MQYgTkmS6EEJ5DApqHk4Amvi5O1OY/OTD5UIVtUtgkUoNS0WqOPGDRZXUyuLuDga2t2BtMoFMwjA9DH2llaF8R5rUFDJWWAuCVlORuMrJoIYacHJTjHNZ4OFVVqa2t45MPC2hub0B16qgbSmGbLhCLqnJJTix3Ls1Eq1HYVd/LnroWXNUFJHUVMp/thCn92NFS6TOZjqgF9Dkiad9XSGBaOSEZfWgVf1KTbyauphml6CkwhMD5v4fsC084t7Vd/fy8ooFmq53r4sK5KzkaX6mmiTEiz3QhhPAcEtA8nAQ08XU2YBtgb9feI7pG9lh7AHeb/4lhEw8FtonhE49o829rMWPZ2op5RzvqkANdqA++06PwigNL8XoG1hRgLi4Gux1tcDB+8+fjt3gRfnPmoDGeuALV2NjIuoJPqa6pwu7Ss28olRLFD71W4doZidxyfiY+enfoc7pUqlp7adizHl3VKlK6C0lwNQKw15nIpsFJ2NV+YnNq8YuxoCOGSdE/IPjTl6C1BLIvhvOeAL/wYedkcjh5aH8z/2zuIsngxe8z4pkbfOYevuLrQ57pQgjhOSSgeTgJaOKbRFVVGk2N7O7cfSiwVXRXHNnm/+BB2pPC3G3+dS4Nlr1dmItbsNX2g0bBJysE44wo9NF6LBs3YFpTwMCnn+Lq70fx8sI4ezZ+ixbht3AB+oiIYefU2tpK0foi9u7bi8nlww5rKrWKgSCNhuunJHDtBel4G/RHjTM1ldGx7R28939EdP9uUF1s7k+k3BhM1LQ2vAPt9PelMNGeSUrF/1C8/GDp4zDxsuMemv2ZDT0mbi9v4MCQjf+LCeX+lBj8dCeuEApxPPJMF0IIzyEBzcNJQBPfdEOOIcq6yz5fGtlRQpulDQAvjZe7zf9nSyOVLHz3OrHsaMdltqMN8saYG4lvbiRaoxbL9h0MrC3AtKYAe6O7wuUzaZK7yciiRXinpR23eUlnZydFRUWUlJTQ7PBjmz2ZTlVPrFPD99OjueDsZCIS/Y893tyJWvkRlj0r8KpbS53JwJ7wEPwm9aPoXDSXJzCju48s134awuczcNbvSE1NQz/MEkaz08njNa38tbGDGG89v8+MZ0HIsffxCXEi8kwXQgjP4SkB7dprr2XFihVEREQcOqj6jjvu4P3338fLy4uUlBT+/ve/ExQUdNRYCWhngHyYizOp1dx6RAOSfV37sDqtAIQbwpkSOpnFQ7PJPBCLd4MLAJ/0YIzTo/DJCgGNgrWqioGCtZgKChgqKQFAHxfnbjKycBG+06ai6I+ujPX29rJhwwa2bd9BpT2YnY4ELKqWbJuWi4ICmTMvnvQZkXj7Hj0WAPsQ1Bailq9g/651lEeo+KRacNkUgkt8mDjYig09j7q+R1XMReQkhpATH0ROQjBRgUcfKbCtz8xt5fVUWaxcFR3Cr1JiCNTrxuidFt8U8kwXQgjP4SkBrbCwED8/P66++upDAW316tUsWrQInU7HXXfdBcBjjz121FgJaGeAfJgLT2J32ansqTxiL1u9qR6AaHs43xo6n7mdkzEOeaMaNfjnxuA3IwpdqME9vr2dgbXrGCgowLxpE6rNhiYwEL958/BftBBjfj5aP78j7mkymdi0aRMbirezYzCMUmc0CgozhnTMdnqRNS2S7LwYolMCj3+kgMsFzTvZX/QXqtSN6CMH0bYqTK4aIFgdpFKXzvWDN1DrdO9Niw70ISchiJz4YHISgpgQG4iPXsuQ08WTda0819BOmF7H4xnxnBM2/FlrQhxOnulCCOE5PCWgAdTV1bFs2bJDAe1wb7/9Nm+88QYvv/zyUb8nAe0MkA9z4ek+a/P/2bLIfR37yOpJ5NzeucwYmIAWLZ0RA5Djz7iZEwj0DQLAZTYzsHEjA2sKGFi3DmdvL+j1GGfMwG/xIvwXLkQfHX3oPhaLhS1btvDxxh1sNEdQ5wohUKswf9CLdItCSJSRrLkxZM6OwuDnddz5qqpKdfEfqOt4AY3BQmipiwmdvWgVMEdMY1P0d/nQkkVxk4WG7kEAdBqF7JiAQxU2nzAfHm/poNQ8xCWRwTyYGkuol1TTxInJM10IITzHEeFm1d3QumfU13A4Hei0x/k3QNREWProiK4zXEC74IILuPLKK/nud7971O9JQDsD5MNcfNU4XU53m//OEqobyvEvU8htzSTaHka/doBt4eV0ZFpJSE451OZfo8Lgrl3uJiNr1mA74D582zs7C/9Fi/FftBDvrCwURWFoaIitW7fyVuFuCgci6FKNjPPTcR7++DYOodEqJE8JJzsvhriMYBTNsatqLpeNir3P0tT6Ij62QVJ3W4n6f/beMzqu67y/3tMHU9B7750ACRKsAEmAklUoWZJrHKc4juM4LnGL7b9tJXbc4yK32ImT2IkTv44tOyqWRFWCDWAn0Uj0QrRBr9Pbve+HCwKE2ClAHFFnr8WlxeHM3Dtzlg7OD89z9vG7CEgqtHoD5N7FQsbdnDVs4eSEisbBOZqH53D5ggBEWfRYS6LpidBg0aj5Wm4y70qJveK1BIKLiDldIBAIQoc3QkD7+te/zunTp3niiSeu2CkkAtptQPwwF9wJ2D12eppb8Z+ZJWHIjEbWcD6slxciGzgT3UFefP6S5r8srgzL6DyOOkUy4m5qAllGm5SEtaYGy55azJWV+IHTZ87wi7pzHLXH4kLP9uQw3hEVz0zjDF5XgPBYI0U7kinanoQ5wnDFe/P5Zug4/00mpp8g0eYlv8+JRgaPJgKzNAuoIG0LFN5PMO8+uoKJNA7O0Tg4S+PQHF0uD/7SKOQIPRFzfu6R9exIi2JDehS5cRbUVwmIgjcnYk4XCASC0CHUWxz/67/+i5/97Gfs378fk8l0xdeJgHYbED/MBXcaQYcP59lx5o8Po5oJ4NMGOB3bweNh++g0XgAg1ZK6ZIws12aS1GzDdeAQzoYGZI8HtcWCuboKa+0ejNu3cbqnjx+93MFpRyQqFTxSFMEf52QxcGKSka45VGoVGaUxlFQlk14SjfoK1kaHs5v281/GM91AfruLhAUvs6oE5Jy7iHa0KueoAcTkQsH9yp+0zcx7Jc4OzvJvw5McUvmQAzLa9jnUo27CDVrWp0cutUauT4skynz19kvBnY+Y0wUCgSB0COWA9sILL/CpT32KQ4cOERd39fNbRUC7DYgf5oI7FVmW8V1YwHlyDFfrFAQk/PFqerPGecV6nFOzZ5hwTQCK5r84ppj1EcVUDulJaRolWH+c4NQ0aLWYNm3CXLObM/Fp/ODUJO0uC2Z1gPdtjOF9W8voPjFBx7FR3HY/5kgDRduTKNqRRPiivORSpqYP0tn+FSKGO8nvcqEJynToq4i+99MkBXugcx/0HwHJD6YYyL9XCWs5NfQENHyyfZBTCy5KtTrWzQTpGpinY8xOUFLmw6xY82JgU0JbQaL1mpp/wZ2FmNMFAoEgdAiVgPae97yHgwcPMjU1RUJCAv/4j//IN7/5TbxeLzExMQBs3bqVf/3Xf73stSKg3QbED3PBmwHJ5cfVPInz5Bj+UScqnZqwsji863S0GrppmWqhZaqFtum2Jc1/giGOPc4MKnsgqXEI9YURAPT5+TRsvZt/cScy6g8jTuvhw9sSeM+eSkba52mrtzHYNgNAelE0RTuSySqPRaNdDkmS5GfE9r8MtX+XnM4xEqa8jHvNNJsepOjtHyU1Kw1Vbx10Pg/dL4JnHjQGyN5NsOB+fhFZzTdGHGhVKr6cm8LDMeG0jiysaI2ctCufw6hTU5ZyMbApoS0h/HLNv+DOQMzpAoFAEDqESkB7LYiAdhsQP8wFbyZkWcY/7MB5agxX0ySyL4g2wYS5MhHThngkI3TNdinGyClF8z9kHwIgeVbNvcPRbOyWiO2eRJZkntm8l18nb2cBAzn6BT6yI4W9u7fgdUi0Hx2l4+gojlkvYVYdhVuTKK5KJjJhucfb75+jv//HeJv+g4LuBbR+iRNTaQxG38PmR95D5vqNqKQADB6Djn3Q+RzMKccOXMi4h09lfoijRFMdaeG7hWlkhBmWPufInHsxsM3RODTL+ZEFfEHlLLnkCCMb0qOWQltJsqL5F7zxEXO6QCAQhA4ioIU4IqAJBKGF5A3ibp7EeWoM35AdNCrCSmMxVyZiyI5YsjPOeGZonWxdCm3nps6hmnewoVdmW5+W/H41vy28h2fStxFUqVmnm+CDm5Oo2bMbozGMwfPTtNXbuNA6jSzJJOdFUlyVTM6GOLR6JRQ5nX30n/8yMadfIGnCyxwmnu3PQ07awNZH3k1u5VZUajXIMky0KW2Qnc8jjZzlV0kP8JWcjyCptXwxJshflGxErb38cG1vIEibbbHKNqRU2oZnFc2/TqOiOCl8ObSlRZEWHXb1c98EIYuY0wUCgSB0EAHtdUalUj0M7AXCgZ/LsvzStZ4vAppAELr4Rp24To3hPDuB7AmgiTFirkzEvDEBjXWldCMoBemb71MO0p5qoc3WhLGll8I+C63GhzgeW4YRPxs1Q+y1zvOWBx8htqQE57yXjmOjtNXbWJjyYDBpyd+SSElVMjEpyuHZ0zP1TDZ8mszWLgw+ifNyFvs7k4hIyWLzw++kcPtO1JpLKl0Lo9D1AsM99XxGv5UDUZVsWTjPY3ITOXnbIWcPGMOv+rkn7B6aLglsLcPzS5r/GLN+qSVyQ1okZWmRWAziLLZQR8zpAoFAEDqIgHYTqFSqXwAPABOyLJde8vi9wA8BDfAfsixf92ABlUoVBXxXluW/vNbzREATCEIf2R/EdW4a58lRfP0LoFZhLIrGvDkRY97Vzzyz++ycmzpHy0Qz5462caqvmDFtGlEqJ1tVF9g0cY7oaIjfs5v8bXvx2HS01dvoa5pECsgkZIVTXJVM7sZ4tHoYHfgl6pf/kSTbPK4wC4ftmzjfHSQiIZHND72D4p170OpWVslkj53Hz5/kH+YseIHP9v+cvx59Gk3mDii4TxGNRKRc8/MHghJd4w4ah2aX9rP1TjoBUKmgIMG6VGHbkB5JjtD8hxxiThcIBILQob29ncLCwtfUkXI7A5osy3R0dLxuAW0n4AD++2JAU6lUGqALuBsYBk4B70EJa9981Vu8X5blicXXfQ/4/2RZPnuta4qAJhC8sfBPunCeGsd1ZhzJ6UcTYcC0KQFzZQLayGtLNiRJ4n9OnecHz/cx69GSrp5hk3qQ8oFOUi60M5wOji3FRFbuIXaikOnGIHNjbnQGDXmVCRRXJROVLDNx4rPENPwOoyfIRFoZB/pLGekewhIdQ+WDb2PdnnvQGVbey7jXz+c6B3lh2s4GaYbv9zxG4egR5R+TyqFgrxLYEtcpqes6zLv8NA0vykcWQ9uCJwCAVWj+Qw4xpwsEAkHo0N/fj9VqJSYm5pZD2u0KaLIsMz09jd1uJysra8W/rVmLo0qlygSevSSgbQO+LMvyPYt///zizb06nF18vQr4FvCyLMuvXOU5HwQ+CJCQkLDxN7/5zS3f71rhcDiwWCy3+zYEgtBFAvMERAypCZtWHnLFwkKahDMOuIbB3heUeWnAzzO9fvxBmSLNGGUaGzkjFyg510aYc56WLBWNuRpc6VvIsFcRPpaKSlJjjITIHBUxqQPkDH2XNNsQbqOO5sS30NxkxTE6gtYYRkL5JuJK16PRLx+ULctwDB3/SRguVPyRb4IPjj9H4tQJwhc6USHjMcQxFbuZ6ZjNzEWWIKsv37d2xa9Dlhl3yvTOB+mdk+idkxiyS1ycjRNMKnIiNeREqsmJUJNqVaMVVbbXDTGnCwQCQeigUqkwm81oNLcu4pJl+bbtCQ8GgzidTl6duWpqal63gPYO4F5Zlj+w+Pc/BbbIsvzRq7z+b4E/R6m0NcmyfPnBAZcgKmgCwRufwIwH5+kxXKfHCS74UFt1mDcmYK5MRHuFM88uMmH38L0Xu3j89BAmHaxXD5HDGBlI5J0+SVzvALIKupPVnM4LYyJuE+nuaiIdSaCViCsxsLngFImn/wmjy8NERir2si/S9FInF5rOYDCb2XDvg1Tc91bCrMt7zqZ8Ab7YPczTE3OUWsL4fmEa61QO6HpRUfj31kHADYZwyL0LCvcq/w2LvKnvxekN0Doyv1RhOzs4x5RDaP5vB2JOFwgEgjuLUJzXX88K2k0FtJtFBDSB4M5BDsp4umZwnhzD0zkDEhiyIzBvTiSsJBaV7spltfO2eb7yTBsn+mdINqvYQB9xwSmyEhNZ73Zjra/He74NgIV4M2fy0xgJ30CsZxN6yYjPYuOu9J9SOnMer17N+Oa7Uad9grPPHKDn1DF0BiPlb7mfjXsfxhIVvXTdfZNz/L+uYab9AT6WnsAnMxMwqNXgc0H/Ieh4DrpeAOckqLWQsUPZs1ZwH0Rl3Pz3c1Oa/yhKksOF5n+VEHO6QCAQ3FmE4rwesi2ON4sIaALBnUlwwYvz9DjO0+MEZzyoTVpMG+Ixb05El2C+7PmyLPPi+XG+sa+dwRkX6+O1FHnbMXjnSE9PZ/u6dcR3d+M4cBDX8ePIfj++yCh6ynYxElaKxptEfFgTe2K/S7TfyUi8kVMlNVjN78DR0E3vsWOotRpKa97C5re+nfC4eABm/QG+1DPC42Oz5JuM/KAwjYqIS+5PkmDk9JLCn8kO5fGE0mXJSNJ6UF+jp/MaXFfznxyxuJctkor0KFKjhOb/VhBzukAgENxZhOK8/noGNC2KJGQPMILSuvjHsiyfv+WLXIIIaALBnY0syXh753CeGsN9fhqCMvqMcMyVCYSVxaHWr6wQeQNBfnn0Aj/e34PbH+SuTAPpC634HHMkJydTXV1NXmoqroaj2Ov24zh0GGl+HmdEGiPrHmRMn0VlxK9Zb9iHXw9ns8L5N60FjzePsr4o9B0zqGQoqq5hy8PvIjpZMTjun17gM51DjHn9fDAtjs9mJWHSXCF0TfcqQa1zn3JQtiyBNWk5rGVWg+61tSq+WvPfPDSP269o/mMtetanLR+mXZYqNP83gpjTBQKB4M4iFOf1tbI4/i+wG4gFxoEvybL8c5VKdT/wAxRz4y9kWf76LV3gCoiAJhC8eQg6fLjOTuA8NUZg0o3KoMG0Pg7z5iT0KSsFDlMOL4+93MVvTg5iNWp5e0EYlrFGFuZmiYuLY+fOnZSUlKCSJFxnzuKoq8NeV4dnZJTJ2PV4i4uoTPgfYlQ2xuP0nExP59ceLX3TXkr7wikYsqKWVagLEim6/x62lO9Bp43gq702/ts2TVaYnscK09kWeQ2xhGtmcd/aPujZD34n6C2QU6uEtfx7wBR99dffIBc1/2cvGiOHZulb1PyrVZCfYF1qjaxIjyQ7Vmj+X42Y0wUCgeDOIhTn9ZA9qPpmEQFNIHjzIcsyvgsLOE+N4WqZgoCELsWCuTIR0/o41MblilDH2AJfe7ad+p4psmPNvLckDHfvaaamJomOjqaqqoqysjK0Wq3yvj092OsOYK/bz0y3DfMGA3lpZwhqoSvXzKh1N86Et3BuvofZhhbiOnzogmoG412MlxnJLCwjzLqVpxyZjPrhL1JieTQ7CbP2OnvB/B64cGS5FdI+Cio1pG9b3rcWk7Nq3+Gcy0fT0NxSa2TTpZp/o5b1i4r/DYu6/0jTm1vzL+Z0gUAguLMIxXldBLQ1JhQHXSC4E5HcAVxNEzhPjuEfdaLSqQkri8O8ORF9uhWVSoUsy9R1TPD159rpm3JSnRfLe4uMDLQeZ3R0lPDwcHbs2EFFRQW6Sw6qDkxOYj9wAPfhp7AYGgi3zjERbaA9OwLHxL3k5H+EuKIoDj7zKwYO1CN7/EzGBzmdNclYDHii343DfBfhag8fSvDwx+lFJJoTb+BDSTDatBzWxs8pj8cWQOH9SmBL2XTL+9aufEmZvimnci7bYnDrHFtAWvxxkB1rVs5mS49iQ1okhYlWtFdq4bxDEXO6QCAQ3FmE4rwuAtoaE4qDLhDcyciyjH/YoVTVmiaRfUG08SbMmxMxbYhHY9bhC0j8z/EBfvhKFw5vgD/enM5DOVpaTx9jcHAQs9nMtm3bqKysxGAwrHh/yWHH9/svou//FUE1dOeFMRgez2zrg8QHKii6r5AR23lOP/skrvk5TJlJOCpiOBwu0aipJaBLxOg4QKb3FSpiCyiLLaMsrozimGKM2uvsOZu9AJ0vKIFtoAGkAJjjIP9eReGftQv0plX/Tp3eAC3D8zQOLR+mPeXwARCm07AuNWKxwhZFRXok8Xew5l/M6QKBQHBnEYrzughoa0woDrpA8GZB8gZxt0ziPDmGb8gOGhVhpbGYKxMxZEcw5/bzg1e6+NWJQUx6DR/fk8euZDjWUE9fXx9Go5EtW7awZcsWTKZXBZ/pXuSnP4Jq8BgzVgttRTrmXVmMN70bo81MTkYAKdVP65mj2KeniM/KYd1b385/WsN5fEomDDeJ9sexz+4HQKvSkh+dvxTYyuPKSbOmXd206J5V9qt1PAc9r4B3AbRhi/vW7lNCmyVuTb5XWZYZnnUvyUcaB+c4b5vHH1R+ZqREhilVtrQ7T/Mv5nSBQCC4swjFeV0EtDUmFAddIHgz4h9z4jw5hvPsBLIngCbGiLkyEfPGBPpcXr6+r52DnZNkxpj4wv1FFEcEOHLkCJ2dnej1eiorK9m2bRsWyyWyD0mCU/+B/MqXkQnSmxnBYGIA11A5o61/hDxnJsneQljiNBc8EyzMzxKdkkbEw+/hR4Y4OlxeHow18VbrKP0zzbRMttA61Yor4AIgyhBFWVzZ0p/SmFIs+ivIRgI+GKhftEI+D/NDgArSNi9aIfdCbB6soVbf4w/SNrqwVGFrHJxjZO7O0/yLOV0gEAjuLEJxXhcBbY0JxUEXCN7MyP4g7nPTOE6O4eufB7UKY1E05s2JHJf8fP35DnomHGzLjuHvHygmRuPmyJEjnD9/Ho1GQ0VFBdu3bycyMnL5TWcvwB/+FvoP4U7MoinDg8sA/sHdDJy+n0DAgnW+D7P9CDMRDhYCXsxxifQ88j5+o7EQqdXyrfxUHoiPJCgF6Z3vpWWyZelP73wvACpU5ETmUB5XroS22DKyI7NRqy7ZAybLMNa6GNaeg9Fm5fHonOV9a2lbQL32Fa2JBc/SPrbGwVlahq+u+S9PjcT8BtD8izldIBAI7ixCcV4XAW2NCcVBFwgECv5JF85T47jOjCM5/WgiDOgq4nlG6+eHDf3Mu/38UWUan7q7ALXPQX19Pc3NSuApLy+nqqqKmJgY5c1kGc7+N7z0KLLkZ6xkPW3WLnS6WHSeP6P3lULmF9SoAx6sUy/jpAuHQcVCUgYv3/9e+nQmHoiL4Jv5qcTpdSvuc8G3wLnJczRPNS+FtgXfAgAWnYXS2NKltsh1seuIMkYtv3h+ZFky0n8YJD+ERSstkAX3KS2RhmscAbCKBIISneP2xcD2xtT8izldIBAI7ixCcV4XAW2NCcVBFwgEK5EDEu72aZwnx/D2zAHgywnnl9oA/1/XOEadho/U5PIXOzLxOO00NDRw9uxZJEmipKSE6upqEhISlDebH4FnPwHdLxFILqUjP4JxqROLpYgY08cZOJ1C9+kxAn4Zo7uZgL2eBWOAs2VV1FfuwaJR8/XCdN6WGH3VFkBZlhlYGKBlarnK1jXbRVBWqlPp1vQVrZH5Ufno1DrwLEDvfiWsdb0InjnQGCB71+J5a/dCeNLaf+GX8GrNf+PgLPYraP4r0iNZHwKafzGnCwQCwZ1FKM7rIqCtMaE46AKB4OoEZjw4T4/hOj1OcMHHsEnNv4QFODTtIC06jM/fV8R9pYk4HA6OHTvGqVOn8Pv9FBYWUl1dTUpKilJNa3kcnv8sst+No/IRWixteHw24mLvJj31Mwy3Gjhfb2NqyAGBIVSuQwxbZV7Y/Qi2xHSqJm18M85MzrYtqI3XtyK6/C7aptuWQlvzZDNT7ikADBoDJTEly6EttowEYzQMHleqax3PwdyA8kbJFcutkPHFa7pv7UpcV/MfZ2bDJa2RBQmvr+ZfzOkCgUBwZxGK87oIaGtMKA66QCC4PnJQxtM1g/PkGJ7OGU5JAf5Z56fX76cyI4p/eLCEdakRuFwuTpw4wYkTJ/B4POTk5FBdXU1mZibYx2Hfp6H9GeSkcmyba+heeBJJ8pGW+mdkZn6UWRu01dvoOjWO12FDDpzgWF48RyrvQhcM8KE//JY/1kpYa2qx1OxGGxV1vVtX7l+WGXOOrWiLbJtuwy/5AUgwJSy1RZbFrqNI0mDsflmpro0szqWRGUpQK7xfOShbo7vGFdeOi5r/s4vykaahlZr/stSI5cO00yOJt66d5l/M6QKBQHBnEYrzughoa0woDrpAILg5ggtenGfGmT85xtOzdv4DL/PIvK0kkc89VEJ8uBGPx8Pp06c5duwYTqeT9PR0du7cSU5ODqq2p+G5T4NnnsD2v6Er0cPoxJPodFFkZ32C5OR3E/Sr6DkzTlu9DVt3H1P6dvZtL2MoOYvCC1187j9/SubUJGEbNmCtrcVSW4MhK+umPocv6KNzppOWKaXC1jLZwohjBFA0/wXRBUqFzZJB+fwkqf1HUfUdhKAXjBGQ9xYlsOXeBcbwNfimb4yLmv+Lga1xaI62V2n+N1w8TDs9kpLkcAza1ZGiiDldIBAI7ixCcV4XAW2NCcVBFwgEt4YsyXh75xg7buPf2mw8LvvQqVT8VXESH3pbCSazHp/Px9mzZzl69CgLCwskJSWxc+dOCtJiUb/4BWh9HBJKcd79KToW/o+5uROYzXnk5X6RmJhqAKZHHLQ12DjX0M6x+EkObFoHwNvOneR99XUY2zsA0GdlYd1Ti6W2lrDyclSamw8hU+4pWidbl1ojW6dacQcUPX6UIYqymGLK1GbKZm2U9p/A4pwGtQ6yqpWwVnAfRKSu0jd863j8Qc7bFpZaI5su0fzrNWqKk8OXQ1ta5C1r/sWcLhAIBHcWoTivi4C2xoTioAsEgtdO0OGj48gQ3z7WzyGflwTUfCI3nrfdk4chLZxAIEBzczP19fXMzs4SFxdHdXU1JbohNPs+DY4J5B0fZ7K4gp4Lj+H2DBITU0Ne7ucxm3MACPiD9DVOcvBIJ/+Z4KE/JYFUWz9/3tfBPdFWjGcacZ48CYEAmuhoLLt3Y91Ti3nbNtSvPlj7Rj+XFKRnrmeFgKRvvg9Y1PybkyiXdJTNDFM2PUy23486sQwK9yphLbHsdd+3djXGFzxLtsjGwTlahufw+CUAYi2GpZbIDWlRlKVG3JDmX8zpAoFAcGcRivO6CGhrTCgOukAgWD1kWebI0UG+/koXnW4f69DwydhINlelY1ofj6xTcf78eY4cOcLk5CRRUVHs2rKesrHHUTf9CmLzkR78PkO00X/hJ0iSh5SU95Kd9bfodJFL15kdc/LD4138Z1iAoAqqTr3M3dN2qh55mCT7NPb9dTgOH0ay21EZDJi3bcOypxbr7t1o4+Je02e8puZfrWNdQE3Z/ARlXi9l+lgi8+9TwlpmNWhvr3XxUvxBic4x+5Itsmlwjr6pZc1/QeJilW3RHJkda75M8y/mdIFAILizCMV5XQS0NSYUB10gEKw+QUnm8WMDfPelTqa9Ae5Bx4e0YWSUJ2DenIguzUJnZyeHDx9mdHSU8PBw7s83UND1U1QLI7D1w/iq/4a+oZ8xYvstWq2V7KyPk5Lyx6jVy3KOEZeXj53q5qgUIGl8mHsP/h9pUjgV972djfdsxtfciL3uAI79+/HbbKBSEVZWhqW2FuueWvQ5ObfU2ncpV9b8dxKUlepUhj9ImcdDWVBFWeJG8gofQZd/L4TdmODk9WTW6aNpePkw7aahuSXNf7hRy/rFlsiLlbbGkw1iThcIBII7iFBcq4uAtsaE4qALBIK1w+EN8NMDPfzHkT7UMvwxBt4j6bDGmzFvTiRsfRz9owMcOXKEwcFBIk1a3hXdRvLwcxCVBW/9MY64eLq6v8bs7FFMphzycj9PTMzupWAlyzJPTczx+c4hHP4A284cprKxDr02ibwte9n+jj1EJpjwdnVh378fR90BPOfOAaBLT8daU4NlTy2migpU2uu39d0ILr+L89PnlcA20UjL+Fmm/HYAjJJEsc9PuSGOspRtlJW+h/ikjaty3dVG0fw7ODu4HNq6xu1Lmv9Es4odBSm3TfMvEAgEgtUlFNfqIqCtMaE46AKBYO0ZmnHxrRc6eK5llIQwHR8Os1AzE0CtURNWGou5MpExzRxH6o/Q29tLnn6CR9T7MXnGYNNfIt/1ZaYcp+ju/gZu9wWio6vJy/0CFkv+0jUmfX6+0DXCM5NzZHo91L7wW2JGu1Fp4onLqqHywT3kViSg1Wvwj4/jOHAAe10drmPHkf1+NBERWHbvwlJTi7mqCo3FvGqfX5ZlRp2jtEw00XxhPy1jp2n3zeBfLN4lSirKzCmUpVZRnn0fRXElGDSGVbv+auLwBmhZrLK90tjDoFPDtPNyzX9FeiTr11jzLxAIBILVJRTX6iKgrTGhOOgCgeD149SFGb76bBstw/OUJVj5VFwUeT0OZE8ATYwRc2Ui8ylB6k8fo6/zHHepT7BZOo1sTUb90I+QsncyPPwr+i/8iGDQRXLye8jO+jh6ffTSNZ6dmOPz3cPM+gO8w2cn+/e/xD8/hkodjTFiGyW7dlO6M42YFAsAQYcTZ0MDjrr9OA4eIjg/j0qnw7R1K9baGiy1tegSElb9u/AFfXRc2E9L51O0TDTRElhgRKdU8LSoKDSnUpaynbKEDZTFlZFqSX3N7ZirzcGDB9m1a9c1Nf+pUWFLtsgN6ZEUr6LmXyAQCASrSyiu1UVAW2NCcdAFAsHriyTJPNk4wrdf7GB8wcuD6xL524x4Is7P4uufBzUYC2Nw5Ws5OdzC3LmXeYiXiWMab/E7MTz4HXwamf7+HzFi+zUajYmszL8lNfVPUKsVCceMP8A/dI/w+/FZCkwGPu6dZuZ3v2J+YhiVOgKNsZKkvK2U7kwnd1M8eqMSjORAAHdjI/b9ddjr6vAPDgJgLClRJCO1tRgKCtYmKLlmmGp7kpbup2mZbqNFq+KcwYB7UcwRbYikLG69cjZbXBmlsaWYdatX5bsVrjanr9D8L7ZG2uY9gKL5L0kJZ0Pa8mHaKZG3pvkXCAQCweoSimt1EdDWmFAcdIFAcHtw+QL866E+fnaoF4C/qs7mA6VJ0DyN68w4ktOPJsKAt8RIs7ud6Pafs4OT+LQR+O75NuGV78bh7Ka7++vMzBwhLCyTvNzPExu7Z2mx//LUPJ/tGmbc6+dDqXG8fXaIs0/8hon+HtRaK2rdRozh68nfnEpxVTLxGdYVe9t8vb2KZKSuDndzM8gyuuRkRTJSW4OpshKVTnfVz3jLBLzQf4RAx7P09r5Ic3CBFoOBFksE/SpF2qFCRW5ULmWxZZTHlVMWV0ZWRBZq1eu3B+xm5vSxeQ9NQxcD2xwtI8ua/zirYckWuSE9krLUCEz61dkPKBAIBIIbJxTX6iKgrTGhOOgCgeD2MjLn5tsvdPB0k404q4HP3FPA28uS8XbO4jw1hrd7FgB/toFBVT2Fwz8lgUkGI7ZgfOSHxGcWMTV9kO7ub+By9RIVtZ28vC9itRQCsBAI8pUeG78anSYnzMBjhWkkDHZz4onfMtx+Dq3ejFpXgUpXRmxaDMU7kinYkoDBtDJ4BSYncRw6hH1/Hc6jR5G9XtRWK5bqaix7arFUV6MJD1/9L0iWYbQJOp+Hjn3MT57jnMFAS1QyzeExtATt2AMuACw6C+ti1y1V2cpiy4g0Rq7+PS3yWub0Jc3/Ja2R/Zdo/gsTLzlMOz2SrJjLNf8CgUAgWF1Cca0uAtoaE4qDLhAIQoOzg7N85Zk2mobmKE0J5+/3FrMlO4bAjAfn6TFcp8cJLvjwmLwETP9NnuMZPBhoTHovWXs/SVJyAiO2/6Wv74cEAgskJ7+LnOxPotfHAnB4xs6nO4cY9vj4y9RYPp+dxGx3ByeefJwLTWfQ6sMIi9yEz1uK1mAmtyKe4qpkknIjLmu/k9xunEePYq+rw3HgIMGZGdBqMW+uxFKjVNd0KSlr80XNDSphrXMfXKhHkgIMhMfTklZGiyWKFt8sXfM9SBc1/+EZlMWWLYW2vKg8dOrVqfqt9pw+6/TRtHguW+PQHE2Dc9i9SsUwIkzH+ouK//Qo1qdGEmFag+qlQCAQvIkJxbW6CGhrTCgOukAgCB1kWeYPzTb+6fkObPMe7itN5PP3FZEeY0IOyni6ZnCeGsfTMY0k9xAe9n0ipQHayeVcxvuprNlLSkok/f0/ZnjkV6jVRrIyP0xa2vtQqw04A0G+3jfKL0amSDfqeawwjaooK+N9PRx/4rf0nDqGVm8gJm0rDnsxQX8YkQkminckU7gtkTDr5QdNy8Eg7uYWHAfqsO+vw9fXB4ChsHBRMrIHY0nx2uyx8sxD98tKYOt+GbzzoDXiytrJ+bT1tJgttMz30TzZzLRnGgCjxkhxTPFSW2RZXBnxpvhbuvxaz+mSJNM76VissCmVts5xOxd/HOfEmZcqbBvSoshPsAjNv0AgELwGQnGtLgLaGhOKgy4QCEIPty/Ivx/p418O9hKUZP6iKpOP1uRiNSoVk+CCF+eZcZwnbegX/j8idb/Gh5YX2MVs2j3s3LWLxCQVvT3fYmq6jjBjOrm5nyMu7h5UKhXH5xx8smOQfrePP02O4e9zkgnXapgaGuDkU7+jo+Ewaq2GlKIdSNJ6pkbUqDUqssrjKKlKJrUwCtVV2u28/f046g5gP1CH+2wjSBLahAQstTVYa2sxbdmCWn950HvNBHwweBQ69imBbX4QUEHqJuT8+xjN2ExL0EHzVAstUy20T7fjl/wAJJmTlloiy+LKKIopuiHN/+2Y0+0eP63D8zRerLQNzi1p/k36Zc3/xT1tcdbQPK5AIBAIQpFQXKuLgLbGhOKgCwSC0GVs3sN3Xuzk/84OE2vR8+m3FPCuTWloFsORLMl4e+dwN5wgrO9LGNUd9JHDU9RgTsxn566dxMVN0tP7TZzOLiIjN5OX90XCraW4ghLf6R/lZ0OTJBp0fKcgjT0xyh6yubFRTv7h95w/uB+Qya6oIixqG4NtEl5ngPBYI0XbkynanoQ58uoBIDAzg+PQYUXhX9+A7HajNpkwV1cr1bVdu9BERq7+FyfLMH5uuRXS1qg8Hp0NBfdDwf34kjfQMd+jHKY92ULzZDM2pw0ArVpLUXTRitCWYkm5rAoYCnO6LMsMzbiXKmyNg7Octy0QkITmXyAQCG6WUJjXX40IaGtMKA66QCAIfZqH5vjqs22cHpilMNHKPzxQzPbc2BXPCdo9+J/5Afqu7yPJcIAaGlQFxEbFUr27iqjo81y48EP8/lmSkt5OTvanMRjiOTvv5BMdQ3S5PLwzMYqv5KYQtXge2cLUJKeffYLWV14kEPCTv2UHSQV7GO7UMNI5h0qtIqM0huKqZDJKolFfo71O8npxHT+OfX8djgMHCExOgkaDqaJiSeGvT09fmy9wfgS6XlDCWv9hCPogLBry74GC+yCnFgxWJl2TtEy1LIW289PncQfcAEQboymLWzRGxpZRElvCqYZTITmnK5r/+SVjpND8CwQCwY0Rimt1EdDWmFAcdIFA8MZAlmWeax3lm/s6GJlzc3dxAl+4v4is2JVngckz/ciPfxj12FFm5SKelGsZVOuJNIWzY2cF4dENjIz8D2q1jsyMvyEt7f0EVHp+cGGcHw2OE63T8k/5qdwfF7n0ns65Wc7se5rml57D53aTvXEzJbseYtpmpv3YGO4FH+ZIA0XbkyjankR4bNi1P4sk4Tl3TpGM1B3A29UFgD43B2vtHqy1NRjLylCp12A/ldcOPfsX9629CO5Z0Ogha5cS1gruh/AkAAJSgJ65nqUKW8tkCxcWLgCgVqlJ1CayPWv7kuo/MyLzddX83wxC8y8QCATXJxTX6iKgrTGhOOgCgeCNhccf5Of1/fz0QA++oMSfb8vkY3vyiAi7xOgny3Dmv5BfehQCQS5o38VznnSm1A4sOhNbKjKxJu9nevoVjIZkcnM/R3z8Xs453HyyY4hzDjdvjY/k63kpxOmX39fjcND4wjOcff4PeBx20tetp/KhdxL0J9HWMMpgmyLiSCuKpnhHMlnlsWi01w8svqEhHAcOYN9fh+v0aQgG0cTGYq3ZjaW2FvO2baiNxtX+KiEYgKHjiwr/52C2X3k8eQMU7FUCW0IJXFJdmvfO0zrVSstkCwc7DzIsDWP32QGw6qysi1u3ojUywhCx+ve9ClxL869RqyhMtC7JRzakR5IVaxZVNoFAcMcTimt1EdDWmFAcdIFA8MZkwu7hey928fiZIaJMej55dz7vqUxbafGbH4ZnPgE9LyMlVNKhez+HhiYYV80RptKzqTAMU9rLuDydRERUkJf3KCZLGT8ZHOexC+NYtGq+kZfKQ/GRKxbnPreL5lde4PQzT+CanyM5v4gtb3sXsemldBwdpf3oKI5ZL2FWHQVbkyjekURUovnyD3EFgvPzOA4fxl5Xh/PwESSnE5XRiHnHDqy1tVh270IbE7PK3yZKqJ3shM7nlMA2fBqQITJ9cd/afZCxAzTLgfXgwYPs3LWTCwsXltoiWyZb6J7rXtL8Z4ZnrghseVF5aNWhWZ2acfpoXpSPnB2co2loDsclmv9LA1t5WuTKXwoIBALBHUAortVFQFtjQnHQBQLBG5tzI/N89dk2TvTPkJ9g4dG9xezMj1t+gixD82/ghc9BwItU/f/oclXRcPYUQ/4J9LKailwHYWkHCEgzJCY+TE7233EhGMkn24dotLu4Nzacb+WnkWhYuSD3+7ycO/Ayp/7wf9inJonPzGHL295FzsatDLXP0t4wSn/LFLIkk5wXSXFVMjkb4tDqb0xSIft8OE+ewlFXh72ujsDYGKhUhG3YsKTwN2RnrebXuYx9fHHf2vPQdwACHjBEQN7dSljLu5uDxxuvOKe7/C7OT59faotsnmxmxjMDQJg2jOKYYmU/W6yi+o8zxV32HqFAcEnzv9wa2TWxrPnPjbesaI3MT7AuCWwEAoHgjUgortVFQFtjQnHQBQLBGx9Zlnnx/Djf2NfO4IyL2sJ4vnB/EbnxluUn2cfguU9Dx7OQXAEP/YSBcT2H9h+kb34YozpIWdYAxuQTqDRaMjL+mtS0D/Bzm4N/6h/FoFbzj7nJvDsx+rJWt2DAT9uRA5x6+vfMjtqITkljy8PvpHDHLtyOAB3HRmlrGGVh0o3BpCV/cyLFVcnEplq4UWRZxtvejn1/HfYDdXjb2gHQZ2YuSUbC1q9HpVkDQ6HPCX0HFYV/1wvgmgK1lpmIEqK3/gkU3KtU2q5x7zanbUWVrW2mjYCkVKduVfN/O7B7/LQMz69ojZy5RPNfnnrJYdppkULzLxAI3lCE4lpdBLQ1JhQHXSAQ3Dl4A0F+efQCP97fg9sf5E+2ZvCJu/KINC2eOybLcP5J2Pd34FmAXZ+Fqk8yNjbJoX0H6BjpJszgpDSrDUN8B3p1PLkFn8MVfg+f7hzm+LyTmmgr3ylII9V4+VlmkhSk61g9J576HVODF4hISGTzW99B8a49aDRaRrpmaau30ds0iRSQic8Mp6QqmdxN8eiNN9f257fZsB84gKPuAM6TJ8HvRxMVhWX3biy1NVh27EBtMq3G1/qqDxlU2h87n8PZ+H+YXcPK44nrlhT+JJWv2Ld2JbxBLx0zHStC281q/kMBWZYZnHEt2SIbh+Zou0TznxYddokxMoripHD0N7AvUSAQCG4HobhWFwFtjQnFQRcIBHceUw4vj73cxW9ODmI16vjEXXn8ydYMdBf3pzmn4PnPwbnfQ8I6ePgnkFTO9PQ0h185SGvHOazWcYqym9CFj2OWi8jJf5RnVDl8rW8UFfAPOcn8aXIM6iuEBlmS6D17ihNP/Iax3m4s0TFseuBtlN11DzqDEY/DT+eJMc7X25gddaIzaMjbFE9xVQrxmdabDiJBux1nfb2i8D98GGlhAZVej3nbNix7arHs3o0uPn4VvtmVHDx4kN2lqYq+v/N5RTgiSxCeAvn3QuH9kFkN2hurIt2o5r88rpySmBJMujUIoKuAxx/k3Mii5n/RHDl6UfOvVVOaHL7UFrkhPYrkCGNIhk+BQPDmIxTX6iKgrTGhOOgCgeDOpWNsga892059zxTZcWYe3VtETUH88mK44zl49lPgnISqTyoVNa2Bubk5GuobaDx7hpi4bnIym9EYnEQ6dmJI/RRfUYVxeM7B9kgLjxWmkRl25QAiyzIDrU2cePK3DLedIyw8go33P8T6e/ZiMJmRZZmxvgXa6kfoOT1BwC8Rk2KhuCqZ/M0JGM03L6GQ/X5cZ84oCv/9dfhHRgAwlpUpkpHaGgx5easSCC6b051T0P2S8r321oHfBXor5O5RKmt5d4Mp+obf/3qa/7zIPKXKtvgnMzx0Nf+j826aFlsiGwdnaRmexxtQRCrxVsNSWNuQFsk6ofkXCAS3iVBcq4uAtsaE4qALBII7G1mWqeuY4OvPtdM35aQ6L5a/f6CY/ASr8gT3LLz4KDT9CmIL4OGfQqryc8But3Ps2DHOnjlGQmIjqantqFERbdvL6aT38W2DTACZz2cn8ZepcWiuEXqGO85z4snHudB0BoPJzIZ7H2DDfW/FFK5o6L3uAN0nlara1JADjU5NbkU8xVVJJOVG3lKgkmUZb1c3jgN12PfX4WltBUCXlqZIRmpqMW3aiEp7a2HgmnO63wP9h5ara45xUGkgY/vyeWvRNy84uaj5vxjYWidbsfsXNf9661JLZFlcGeti14W05r9j1L5UYWscnOXCtAsQmn+BQHD7CMW1ughoa0woDrpAIHhz4AtI/M/xAX74ShcOb4A/3pLOJ+/KJ8ayWP3qeQX+8HGw22Drh6Hmi6BXWuhcLhcnTpygsXE/ScnHiI+/gMobjrr/T/lpei2HzbDJauL7Renkma99Xtl4Xw8nnnyc7pNH0RmMlN19H5seeARL1HJlaXLQzvl6G10nx/B7gkQmmCjekUzhtkTCrJfvfbtR/OMTynlrB+pwHTuO7POhjojAsnMn1j21mKuq0FhuXFxyw3O6JIGtcTGs7YOJNuXxuCKlDbLgfkXccgsHc0uyxIX5C0pgW2yP7JnruUzzXx6nGCNzI3NDVvM/7fDSPDy3ZIy8VPMfadKxPk1o/gUCwdoSimt1EdDWmFAcdIFA8OZi1unjB6908asTg5j0Gj6+J48/25apiBs8C/DKl+D0LyA6G976z5C5Y+m1Ho+H06dP09LyJEnJ9YSHT6FypNE2/rf8OCMLt1bFpxJi+GhRKtrr6NanhgY4+dTv6Gg4jFqroXT33VS+9e1ExCcsPcfvDdJzZpy2ehtjfQuoNSqyyuMoqUomtTAK1WtQuktOJ46GBhx1B3AcPEhwbg50OsxbtmCprcFaW4suMfGa73HLc/pMv1JV69wHA0dBDoIlQdm3VnA/ZO8CXdgtfS4Ap9/J+anztEwtt0ZeqvkviSlZqrKVx5UTGxZ7y9daS4TmXyAQvN6E4lpdBLQ1JhQHXSAQvDnpHrfz9X3tHOycJDPGxBfuL+Lu4gSljaz/MPzhYzB7ASr/Cu76EhisS6/1+XycPXuGtvb/IjHxKAaDC4ejmv/1/hUHY80Uu+E7MTFs2JCM+jpnns2NjXLyD7/n/MH9gExRVQ2bH34H0cmpK543bXPQXj9Kx4lRvM4A4bFGirYnU7gtCUvUa1O5y4EA7qYmReFftx//wCAAxuJiLLW1WPfUYigsvKzFblXmdNeMUr3seA569oPPDjoT5NQqYS3/HjC/tgAlyzIjjhFFPrJYZWufaV/S/Cebk1fsZSuKLkKvufVK5VpyLc2/Wa+h7BLN/4b0SGItQvMvEAhunFBcq4uAtsaE4qALBII3Nwc6lf1pPRMOtufE8PcPFFOUFK6c/VX3NTj+LxCRBm/9oRIaLiEQCNDUdJKu7n8mNvY0KhU0Bj7If6prWdCo+MvBAB+JjCCqMgl9qvUqd6CwMDXJ6WefoHX/SwT8PvK3VrH1kXcRl7Fyn1bAH6SvaZK2ehsjnXOoVJCxLpbiqmQySqJRa16bJEOWZXz9/dj378dRdwB3UxPIMtrkJKw1imTEXFmJSq9f/Tk94IUL9cv71hZGQKWGtC2L+9b2QmzuqlzKG/TSPt2+IrSNOkcB0Kl1y5r/xT/J5uSQ3AN2Pc1/erRpcS+bEtqKhOZfIBBcg1Bcq4uAtsaE4qALBAKBPyjx6xODfP+VLhbcft5dmcan7i5QDhkePAFPfwSmu2HDn8JbvgZhkSteHwwGaWk5TH//Y0REtjHrj+O32kc5ok4l1yHxpVY3ZZYwzJsTMa2PR32NM89c83Ocee4pml56Dp/bTfbGzWx95N0k5RVc9ty5CRftDaO0HxvFveDDHKGnaEcyRduTCI+99RbBSwlMTeE4dAj7/jqcR48iezyoLRYsO6sZSkyk8kMfQhMevirXWoEsw2jzcivkWIvyeEyeEtYK90JqJahX72DuCdcErZOtNE8pbZHnp87jCSp6/BhjzIq2yDeS5v/swBxjC8ua/3UpEStaI5OE5l8gECwSimt1EdDWmFAcdIFAILjIvMvPD/d389/HLmDUafhobS5/sSMTg+yHQ9+Chh8qe6Ue+AEU3HvZ6yVJorX1GYaGv0dY2AjHfDX82vBB5tHz5xMyf9nswKhRE7YuFvPmRPQZ4VddGHscDhpfeIazz/8Bj8NOemk5W9/2blKL1132mmBQYqBlmvP1NgbbpgFIK4yiuCqFrPJYNKtUMZHcbpzHjmOv24/jwEGC09Og1WLatGlR4V+LPjVlVa51GXND0PWC0gp5oR4kP5hiF/et3Qc5NaA3r+ol/ZKfntmeFVW2N7Lmf6nKNjhH68iy5j8h3LDiMO11KRGEXac1VyAQ3JmE4lr9jglo0RlF8t1f+MXtvo3LmJubIzIy8nbfhkAgEFwTty/I4KyLOZcfg1ZNerSJKJOOHH83H5p/jIzABY4Ya/iviL/Bob5C9UiWKDLuZ1PCE0iGIL/wfoTjxq2Ee4L8ZbeXt48GMcowpoMTVjVnLCqcmisHNXXAS7ytkcTB4+h9TuwRqdgydjAfkwNXCHcGn0TidJCE6SBGv4xPC+PRWsZiNLiNqxceVLJERHcLGyd6KOxtJG5GaQ8cj02lI2c9ndkbGE3IQF6DwBImOVnvPc0mz3HWe09hkR340NNq2MBp41bOGLYwr7nx89ZuhgAO3Op+5Y+qD7e6H0mlHKatlk2ESVmEyVmYpGzCpCw0rG5oXC1kGVy+AA5vALtH+e/FwAZg0muwGrRYjFosBi1GnQhsAsGbgVBcqz/+oe0ioK0loTjoAoFAcDXm3X4Gpl24/UGsRi0Z0SbC9TKPOH7DI47f4FBb+UX4RzgRVn3F12tUPiosT7Au7kXOq0r4N/ljzGkiyJjx8fBggOp5iUwvBIBWs4oTVhU9RhXyFYKXKugnbrSZpIFjGLwLOC0J2DKrmI0ruGJQQ5aJWpBImg4QMy+hAubNakZjNUxFapBWwfZ36ZwePTtOQV8jBb1NpNu6UcsyC+ZIurLX05GzngtpRQS0q6+F18gBCn3n2OQ5zibvMeKD4wB06wo5bdzKacNWhrUZV/6OVgEZCZ9qHLe6D9diYPOqRkClrBn0UgJhcvZiYMvGICejIjTDTiAoKYHNG8CxGNoWt7KhUatWBDaLQSuMkQLBHUgortXvmIAmWhwFAoFgdQgEJX57eojvvdTFrMvHOypS+cw9BcS7euDpDyv7pIofgvu/C5b4K76H1ztB67mvMjp3gP+V/4w6zVuIlwN8ryCd3RozzpNjOBsnkN0BNDFGzJsSMW9MQBN+uUkwGPDTfuQgJ5/+HbOjNqJT0tjy8Dsp3LELtebKC3/nvJeOY6O0NYyyMOnGYNKSvzmR4qpkYlNv/NyzV3O1OT0wO4vj0CFF4V9fj+xyoTKZsFRVYamtwbJrF9qoqFu+7lWRZeWMtY7F89ZsZ5XHo7IUI2TBfZC+DTRrew7a9TT/pbGlKw7UDmXNf8/EJZr/oVm6JxzIspJ3c+MsK4yRefFC8y8QvNEJxbX6HdPiKAKaQCAQrC4LHj8/qevhFw396DRqPrw7hw/sSMd48idw8FvKodb3fRvWvfOq1Rq7/Tznzn+JMy4vP5M/yqQ6gd1+B9/dWExKeCTu81M4T47h7ZsHNRgLYzBvTsSYf/mZZ5IUpOtYPSee+h1TgxeIiE9g80PvpHjXHrS6K1eqZElmpGuWtnobvU2TSAGZ+MxwinckkVeZgP4a8pIrcSNzuuT14jpxAvv+Ohx1dQQmJ0GtxlRRsaTw12dk3NR1b5gFm7JvrfN56DsEQS8YIxV1f8H9kLtnxfEJa8VFzf/FsNYy2ULHTAcBWdH8p1hSVgS2wujCkNX8L3j8tAzNLxkjGwdnmXX5AUXzX562qPlPi2K90PwLBG84QnGtLgLaGhOKgy4QCAQ3w4UpJ998vp0Xz4+TEhnG5+4r5MGkBVR/+BgMn1SkFQ98H8KTr/h6WZaZnHyJls5/4v/z7+YFHsDic/O+gIMPbdtETEwM/ik3zlNjuM6MIzn8aCL0mDYlYq5MQBtpXPl+kkTv2VOceOI3jPV2Y4mOYdMDb6Nszz3ojMYr3gOAx+Gn88QY5+ttzI460Rk05G2Kp7gqhfhM6w1Z/W52TpclCc/5NkUyUncAb2cnAPqcnEXJSA1h5eWo1Gsg2vA6oLdOqax1vQDuWdDoIbMaCu+H/PsgYo0EJ1fAE/DQMdOxHNqmWhhzjgGLmv+YIspiFWNkWVwZSeakkDQtyrLMwLSLxqHlw7TbR4XmXyB4oxKKa3UR0NaYUBx0gUAguBWO9U7z1WfbaBtdYGNGFH9/fwHrbb+F/V8BjQ7u+bqi5b/KolqSvAwN/ZIX+57nX+W/xKZKpWiin7/QytxTtYOEhATkgIS7fQbnqTG83bMAGPKisGxOxFgUjeqSM89kWWagtYkTT/6W4bZzhFnD2bj3YdbfsxeD6eqiClmWGetboK1+hJ7TEwT8EjEpFoqrksnfnIDRfPV9Y691TvcND+OoO4C9rg7XqVMQDKKJicFSsxtrbS3mbdtQh63OcQErCAZg6MTieWv7YKZPeTxpvVJZK7wfEkrXbN/a1Rh3jtM61UrLpNIa2TbdtqT5jw2LXVFlC2XNv9sX5Jxt+TDts4OzjC94gStr/pMj12CMBQLBLRGKa3UR0NaYUBx0gUAguFWCkszvzwzxnRe7mHJ4eWRDCp/faiD+wGfgwhHI3g0P/giirt7C5/VN0dH7Q346quIZHsIUdFPV2co9MZHs3LmTlBSlqhOY9eA8PY7r9BjBeR9qiw7zxgRMlYnoXnXm2XDHeU48+TgXms5gMJnZcO8DbLjvrZjCI675ebzuAN2nxmmrtzE5aEejU5NbEU9xVRJJuZGXVXBWc04Pzs/jOFKPo24/jsNHkBwOVEYj5u3bse6pVfatxa7BXi1ZhqkuJah17IPhU4AMEemLh2PfBxk7QPv6txz6JT/ds91LbZEtUy0MLAwAoFFpyIvKWxHaMsIz3jCa/5aReXyL1sjEcOPiXjYltJUmC82/QHC7CMW1ughoa0woDrpAIBC8VhzeAD890MN/1PejVsFfV2fxkfAj6Ou+rASAu/8RNv0lXKN1z+7o4Pn2f+e79moGVZmULvSw8VwXJWmp7Ny5k8zMTEDZR+bpmsV5cgxPxzRIYMiOwLw5kbCSWFS65WuM9/Vw4snH6T55FJ3BSNnd97HpgUewRF1fQT85aOd8vY2uk2P4PUEiE0wU70imcFsiYVYlrKzVnC77fDhPnVqqrgVGR0GlIqy8HMueWqy1teizs9em5c8xsbxvrfcABNxgiIC8uxb3rd112UHlryezntmlKlvLZAutU604/A4AwvXhrItbR3ms0hZZGltKhOHaofx24QtIdIwtLIe2oTkGpl0AaNUqipLCl0NbWhQZMaaQbPEUCO40QnGtLgLaGhOKgy4QCASrxdCMi2+90MFzLaMkhhv58i4r9/R9C1XvfkjfDg/9M8TkXPX1siwzOrGfb3ed4nf+uzCpfNw12Ex8/wQZ6elUV1eTm5u7tFANLnhxnhnHeWqc4IwHtUmLaUM85s2J6BKW2xqnhgY4+dTv6Gg4jFqroXT33VS+9e1ExCdc9zP5vUF6zkzQVm9jrG8etUZFVnkcJVXJ9Iw3U1NT89q/uGsgyzLejg7sdXU49tfhaWsDQJ+RsSQZCVu/HpV2DcyMPhf0HVzet+acBLVWqagV7lX2G16jOvp6IMkS/fP9S22RLVMt9Mz2IKOsWbIispaqbOVx5eRE5qBVr63F8laZcnhpWrRFNg7O0Tw0h9MXBCDKpFNaIhdbI8vSIgg3rv6xDQLBm51QXKuLgLbGhOKgCwQCwWpz6sIMX322jZbhecpTwvlhUTuZp78GAS/UPgpbPwzqq7dwSZKPQ72/59FhI71ks5k+trT14Z90kJSUxM6dOykoKEC9WJGTJRlv3xzOk2O4z09DUEafbsVcmUhYeRzqxXaxubFRTv7h95w/uB+QKaqqYfPD7yA6OfWGPte0zUF7/SgdJ0bxOgPozFCxJ4vCbclYol4fW59/dBT7gQM46g7gPHEC/H40kZFYdu3CsqcWy44dqM1rcDi0FISRM9DxnFJdm1IEJySULiv8kze87vvWroTD5+D89PmlKlvzZDOzXmUP4xtN8989YV/RGtk9oVQLVSrIi7ewIS1qqTUyN94iNP8CwWskFNfqIqCtMaE46AKBQLAWSJLMk40jfPvFDsYXvLy3RM+j8r8T1vcipGyCh34C8YXXfA+Xd5pvn3ueny/ko8fH+7VdWBrnmJ1ZIC4ujurqakpKStBccv5Z0OnHdXYc58kxApNuVAYNpvVxmCsT0acqSnn79BSnn3mClv0vEvD7yN9axZaH30l8ZvYNfbaAP0hf0yRHn2nDOaEsljPWxVJclUxGSTRqzeuzDyrocOCsr1cU/ocOIS0soNLrMW3birWmFktNDbqEK59N95qZ7l2UjDwPg8dAlsCatLhvbS9kVYM2NBTzsiwz7Bhe3sv2Btb8z7v9tAzPrWiNnFvU/FsMWsrTIpZC2/q0SGKE5l8guClCca0uAtoaE4qDLhAIBGuJ0xvgZ4d6+dnhPkDmu0W9PDD8GCqfA3Z9FnZ8QrE+XoOWqU4+0dZDWzCFCnU7HzX66D9tZ3JyiqioKKqqqigvL0d7SZufLMv4BhaUqlrrFLJfQpdsxlyZiGlDPGqjFtf8HGeee4qml57D53aTvXEzWx95N0l5BTf02Q4ePMj64s20N4zSfmwU94IPc4Sewu1JFO9IJjz29bPzyX4/rrONOOr2Y99fh394GADjunWKZKSmFkN+3trsY3JOQ/dL0Pkc9NSB3wl6C+TUKq2QeW8B0/X3/b2eXEvzr1frFc3/YmArjy0n0ZwYknvAZFnmwrRrxWHa7aN2goua/4wY0wpjZGGi0PwLBNciFNfqIqCtMaE46AKBQPB6MDLn5tsvdPB0k40Ci4f/iPstaaMvQuI6eOinkFR2zddLssyPu47xmE2LSg7wV6Z6Hggr5cSJYWw2G+Hh4Wzfvp2Kigr0+pXVD8kdwNU0gfPkGP5RJyqdmrB1sZg3J6LPCMfrdNL4wjOcff4PeBx20kvL2fq2d5NavO6ai/JL5/RgUGKgZZrz9TYG26YBSCuMorgqhazyWDSv46JYlmW83d1LkhFPSwsAutRULLU1WGtrMW3ciOoqB3q/JvwexeB5sRXSMQYqDaRvU6prhfdD9I1VKl9vrqX5jwuLWwpsZbFlFMcUh7Tmv3VkpeZ/wq5o/g0XNf/py6EtKUJo/gWCi4TiWl0EtDUmFAddIBAIXk/ODMzy1WfbaBqa469iz/GZwL+h981B1adg599dty2u3+nkY61nOe22UiK38oX4IVJ1b6GhoYXBwUHMZjPbtm1j06ZNGF91ULUsy/hHHMoh2E2TyN4g2vgwpapWkUBQE6D55ec58+yTOOdmSc4vYsvb3kXW+k1XDGpXm9PtMx7aG2y0Hx3FMevFaNFRuDWR4qpkohLXYH/YdfBPTOA4eBDH/jqcx44h+3yow8Ox7NyJdU8t5upqNBbL6l9YkmC0UQlqHftg4rzyeFzhcitkysZr2j1vJ37JT9ds14rWyEH7IKBo/vOj8leEtozwjJCtso3Oe1a0RbZeQ/O/LiUCo05o/gVvTkJxrS4C2hoTioMuEAgErzeSJPNMi41vPd+Ba36Kn8X9nq32lyCuSNmblrrxmq+XZZlfDg/zld4xgnKQP1L9ng9l5oFcQ339CXp7ezEajWzZsoUtW7ZgMl1e6ZC8QdwtkzhPjeEbtINGRVhJDObNiWhSTZw/9Aon//B77FOTxGfmsOWRd5K3eTuqS8LE9eZ0SZIZapuhrd7GhZYpJEkmKTeCkqpkciri0d6Gs64klwtHQwOOugM4Dh4kODsLOh3mykpF4V9Tgy45eW0uPntBCWud++BCA8hBMMdDwb2KaCR7N+hCu5pzUfN/sTWydaoVp98JQIQhgnWx65baIkvjSgnXh9/mO74yvoBE++jCUmBrHJxjcEZo/gWCUFyrh3RAU6lUZuAQ8GVZlp+91nNFQBMIBILQx+0L8u9H+viXg71UyWf5nuk/sfqnUG37KNR84bqL9RGPj0+1dXFoPkC+3M7H9E+yK//9+Hyl1NfX09HRgU6no7Kykm3btmG1Wq/4Pv4xJ85TYzjPTiC7A2hijJg3JWJcH01X01FOPv07ZkdtRKekseXhd1K4Yxdqjeam5nTnvJeOY6O0NYyyMOnGYNKSv1mpqsWmrkH16gaQg0HcTU1LCn/fhQsAGIqLsNYoCn9DUdHaLMzds9D9ihLWel4B7wJow5R9awX3KQp/S9zqX3eVCUpBRfM/tWyM7J3rXdL8Z0dkr6iy5UbmormGwfR2ci3Nf7RZv7iXbVHznxqBVWj+BXcgobhWX5OAplKpfgE8AEzIslx6yeP3Aj8ENMB/yLL8reu8z1cAB9AmAppAIBDcOYzNe/j2ix28fLabfwz7LW+TX0aOzkH10E8gY9s1XyvLMr8bn+XRrgE8wQBvl/+X90SMUZj/BdyuOOrr6zl37hxqtZqKigp27NhBZGTkld/LL+E+P4Xz5BjevnlQg7EwBtOmOAZn2znx1ONMDV4gIj6Byre+g2m1jto9d93UZ5UlmZHuOdrqbfQ2TiAFZOIzwynekUReZQJ64+07o8vb169IRuoO4G5sBFlGm5iItbYGS+0ezJsrUenXwG4Y8MFAvdIG2fk8LAwDKkjbvKjwvx/i8lf/umuEw+fg3PS5Fa2RFzX/Jq1J0fwvBrayuDJiwmJu8x1fmetp/vPjrStaI3PjLKiF5l/wBicU1+prFdB2ogSr/74Y0FQqlQboAu4GhoFTwHtQwto3X/UW7wfKgRjACEyJgCYQCAR3Hs1Dc3z12Tb0Q0d4zPgfJEiTqDZ/EPb8AxiuXWUa9/r5XOcgL0zbyaGfv5J/xOakzeRkfxqHQ0N9fT3Nzc0AlJeXU1VVRUzM1RfG/im3slftzDiSw48mQo9pYwKThjFOvPQ4Yz1d6MwWdrz9PZTtuQfdq/a73Qgeh5/OE2Ocr7cxO+pEZ9CQtyme4qoU4jOtt7WlLDA9jePgIewH6nDWNyB7PKjNZsw7q7HW1mLZuRNNRMTqX1iWYax1UeG/D0aVMSMmd3Hf2v2QtuWa5+iFGrIsM2wfpnmqeSmwdc50rtT8Lx6kXRaraP511zGb3i4u1fyfXQxt825F8281aClfqrJFsj4timhzaB5XIBBcjVBcq69Zi6NKpcoEnr0koG1DaVW8Z/HvnweQZfnV4ezi678OmIFiwA08IsuydLXriYAmEAgEb0xkWea51lF+8Fwj73X+kj/XvkTQmorukX9W9ihd57V/mJzj851DLAQCPMzveVi1j9zMD5KW9n7sdg9Hjx7l7NmzBINBSkpKqK6uJiEh4ervGZBwt8/gPDWGt1upghjyonAluHnxlV9gtw0RZg1n496HWX/PXgymm5eAyLLMeP8C5+tt9JweJ+CTiEmxUFyVTP7mBIzm27tYlzwenMeO4airw37gIMGpKdBoMG3apFTX9uxBn3pjh33fNPPDy/vW+o+A5AdTDOTdoxghs2uuG95DEU/AQ/tM+1JbZMtkC+OuceCNp/nvn3IuKf4bB+foGFvW/GfGmJZskRvSoihMsqJ7nc4JFAhuhVBcq7+eAe0dwL2yLH9g8e9/CmyRZfmj13mf93GVCppKpfog8EGAhISEjb/5zW9u+X7XCofDgWUtTFkCgUBwh+ELyrx0wY+tv5Wvqf+dbPUoAwlvYTDvfQS11w5BC7KK/yKMo+hJl8f4IN8li3lUqneiohK/38/Q0BA2m41gMEhMTAwZGRmEh19b6KB1Q/iwCuuICp1HhV8nMRPpoGOsnrHBVjR6A3HrNpCwrgJt2K0p2IM+mflBmO2V8cwqhvrwVIjKUWGK4/Yv0iUJ3YULGFpaMDS3oB0dBcCfnIy3vAxvWTmBjPQ1MTNqAi6iZxqJnTpB9MxpdAEnkkrHbFQ5U7GbmY6pxGcIrfPWbobZwCwD3gEu+C7Q7+1nyDeEX1aqU+GacDL1mWQZssg0ZJKmT8OgDs1DqL0BmQsLEr1zQXrnJXrmJOa9yhpSp4asCDXZERpyItXkRqqJMorAJggdQnGtXlNTE9oB7UYRFTSBQCC4M5iwe/jh862ktfyQv9I+h8cYh/HhH6EpvPe6r31hcp7PdQ0x5fPziO4Qe33/SlxEGfl5jxIeXobL5eLkyZMcP34cj8dDdnY2O3fuJDMz85rvK0synq5ZBvadwzKlAglUSXr6HC2cbn0WtV5L+V33senBt2GJuvXAMDlop63eRtfJMXyeIJEJJop3JFO4LZEwa2i0jvkGBrAfOIBjfx2uM2dAktDGxWGpqcFSW4N52zbUhjUIEkE/DB5bVPg/B3MDyuMpG5cV/vFFymapNyg3qvkvjyunLK6MdGv67Q/wV0CWZWzznuXDtAdnOTeygC+oNEIlRRiXKmwb0iMpFZp/wW0kFNfqIdvieLOIgCYQCAR3FudG5vn1E0/y55PfoUA9zHjWIyS88zEwXTsAzfkDfLnHxm/GZsjSe/nL4GNkBU6TmPgwOTmfwWhIxOv1curUKY4dO4bT6SQ9PZ3q6mpyc3Ove1B1dcV2nGfGcZ4aIzjjAYOaKZ2N053P45BnKd19N5VvfTsR8Vdvo7wefm+QnjMTtNXbGOubR61RkVUeS3FVMmmF0ahCRMwQmJ3Fefgw9roDOI8cQXK5UJlMWHZsx1K7B8vuXWijolb/wrIME+3L+9ZGziiPR2ZA4V4lsKVvgxDd13UzzHhmODd17qqa/4vikbK4MtbFrsOqv7K59HbjDQRpH7Uvh7ahWYZm3ICi+S9ODl+0RiqhLT1aaP4Frw+huFZ/PQOaFkUSsgcYQZGE/LEsy+dv+SKXIAKaQCAQ3HnIssxLLUPYnvkaf+L/PS5NOK63fIekre+87msPTC/wd51D2Lx+3mUd4F77P2BUBcnI+Gsy0j+ARhOG3+/n7NmzNDQ0sLCwQFJSEtXV1RQWFqK+QsvepXO6LMl4++ZwnhzDfX4agjIug5PztnqGXB3k79jB5offSXTya9urNW1z0F4/SseJUbzOANYYI8U7kijclowlKnRa3iSfD9eJE4rCv+4AgfFxUKsJ27BBkYzU1mDIylqbi9vHFvetPQ99ByHoBWMk5L1FCWu5d4ExNM8nu1kuav6bJ5uXVP8XNf8qVCs1/3Fl5ETkhKzmf9LupWlo2RjZPDyHS2j+Ba8zobhWXyuL4/8Cu4FYYBz4kizLP1epVPcDP0AxN/5CluWv39IFroAIaAKBQHDn4g0EefbFFyk6+QWKVf2ci9xD2nt/TERcyjVfZw8E+VqvjV/apskwqPmY8RmS5n6BwZBIbs5nSUh4EJVKTSAQoKWlhfr6emZmZoiLi6O6upqSkhI0muXF7dXm9KDTj+vsBM5TowQm3ATVQQbsbfTMNxK3IZctj7yT+Mzs1/QdBPxB+pomaasfZaRzFpUKMkpjKK5KJqM0BnUIiRhkWcZzvm1J4e/t6ABAn529pPAPKy9DpVmD4OB1QN8BJax1vQCuaVDrIKt6UeF/H0SskeDkNmH32Tk3taj5Xwxtc945QNH8XzxM+2KVLZQ1/13jl2j+h+boEZp/wRoTimv1kD6o+mYQAU0gEAjufKbmHZz5339k9+gvcKnCaC79Ajse/mt02msv9Otn7Xy6Y4gBj4/3xAZ5yP1Ngo5GwsPXk5/3RSIiKgAIBoO0tbVx+PBhJicniYqKoqqqivLycrRa7XXndFmW8Q0s4Dw5hqtlEgIyc/5JeucbUeUa2PS2d5CcX/iav4e5CRftDaO0HxvFveDDHKGncHsSxTuSCY+99mHftwP/yAj2ugM4DtThPHkKAgE00dFYanZjra3FvH076rA1uG8pCEMnofM55cy1mV7l8cSy5VbIxLI39L61KyHLMkP2oaW2yJapFrpmupY0/6mW1GVjZFw5BVEFIa35bx6aW2GNFJp/wWoSimt1EdDWmFAcdIFAIHij09d2Gumpj5Dr66BBuxn2Psb29aXX3LPiDAb5p74x/n14kmSDji/GDxA39lV8vgkSEh4kN+ezGI3JAEiSRGdnJ0eOHMFmsxEeHs727dtxOp3s2bPnhu5RcgdwNU9gP24jOOYmIPsZcnTgjHNS/Pa3kFZa9pr32ASDEgMt07Q12Bg4Pw0ypBVFUVyVQlZ5LBpt6FTVLhJcWMBx5AiO/XU4Dh9GcjhQGQyYt2/HUluDtaYGbWzs2lx8smtx39rzMHQCkBVlZsF9isI/owq0d+YC3x1w0z7dvhTYmieamXBPAIrmvzimeEVoSzAlhOQeMKH5F6w2obhWFwFtjQnFQRcIBII7ATkYoPsP3yGj+TG8spbfxvwNu971CfITr73X6NS8k092DNLj8vLuhHD+Qv8ss8P/CkB6+gfISP9rtItaf1mW6e3t5fDhwwwODqLT6di5cyeVlZUYb+Kgat+wnYVjI7iaxlEH1cz7ppgyjpH24EaytlauykLYPuOh/ego7Q02HLNejBYdhVsTKa5KJirx5s9qez2QfT5cZ85g31+HvW4/AdsoqFSElZVh2bMHa20N+pyctQkKjknoflGprPXWQcANhnDI3aMYIfPugrA1EJyEEGPOsWVj5FQLbdNteINeAOLD4lfsZSuOKSZMG3rVWQCXL0Dr8DyNi/vZzg7OMWlXPodBq6YsNYKKi6EtPYqE8Js/ZF5w5xKKa3UR0NaYUBx0gUAguJPwTXQz/eu/JmnuDIelMk6Wfon37915zVYnT1DiexfG+OnQBHE6HV/LMpE5+0PGx59Br48nJ+fTJCW+DZVq+TfvAwMDPPXUU8zOzmI0GtmyZQtbtmzBZLrx888kbxBH4yjTdd3oFrQE5QBTjBJRlUb2fdtRX6dV84auIckMtc3QVm/jQssUkiSTlBtBSVUyORXxaPWhKYyQZRlvZ6ciGdlfh+e84hDTpacvSUZMFRWotNrVv7jfrchFOvdB5wvgnAC1FjK2L+9bi8pc/euGGP6govm/VEAyZB8C7izNf3KEcbnKlh5JSbLQ/L+ZCcW1ughoa0woDrpAIBDccUgSzqP/hrbuy/iDMt9X/QlJtX/Dn23PRn+NNr+mBRef7Bik3enhbQlRfCZhmqn+r7Ow0ITVWkpe3qNERVYuPf/gwYPk5eVx5MgROjo60Ol0VFZWsm3bNqzWm9Obe0YWGHn6DOqBIDqVAZdsR11gIuORLeiiVqdS4Zz30nl8jLZ6G/OTbgwmLfmbEymuSiI2NTR17Bfxj43hOHAAe90BXMePI/v9aCIisOzehaV2D+YdO9BY1qAyKEmKtv+iwn9SEZwQX6K0QRbcB0kb1uRg7lBkxjND62TrUmhrnWzFFXABEGmIvExAEuqa/7MDs0uVtuFZRfOv06goTgpf0RqZFh0WkuFTsPqE4lpdBLQ1JhQHXSAQCO5YZgdw/d9HMA0f4bhUxI/Nf8ufP1DL3cVX30/jkyR+NDDBDwbGiNBq+WZeMpvlI/T0fhuvd4z4uPvIzf0cYWFpK+b08fFx6uvrOXfuHGq1moqKCnbs2EFkZORN3XLQ66f/6WO4z0wQpUpAkiUCcRLx95ZgLo5blTPPZElmpHuOtnobvY0TSAGZ+AwrxVXJ5FUmoDeuQVVqFQk6nDjr63EcqMNx8BDB+XlUOh2mrVux7qnFUlODLuHWz527JtO9ywr/waMgS2BNgvx7lepa1k7QvXla5oJSkL75vhXGyCtp/i9W2bIjskNW8z9h99A0OLcU2FqG55c0/zFm/VJL5Ia0SMrSIrEYQvv/E8GtEYpr9TsnoGVGyKe/VHW7b+My5ubmbvqHtUAgEAheA7IMjnECswMEJPhO4N106Et5NP4YRcbpq76sTZfAJ2LfToshhb3Oc3xt5mnclkEGwqeRVZC+EEXUoJaY8JUHZU/7DdQvJNHsUNTlZeZpqiJGidV5b/q2+8aiGB8vJ16/DqPGTJAFwqNasEa1oNUt3Px3cQU8fiOd00W0TZQx445Fq/aRH9NBcXwr8eaxkBcaypKMa9iDo8eFvduJf04xExoTDVhyTVjzTBji9GtT/ZD84J5V1P3uWSWsqdTKXrWwaOUQdXVo2hDXEjsS5/DRgpcWlZcWfMyplHZCs6yiFD1lGCiXDaxDTzShGdhkZFy+IA5vAIcngN0bwOMPLv27SafBYtRiMWixGLWE6TSoCPH/YQTXJRTX6qr377szAlpslll+8EtFt/s2LiMQCKBdi355gUAgEFyTyECAP5ueYIPbSaOUzd/5/xpX+DjZcXXotc4rvkZCTX/4PfREvhWN5KVo9jfkeI6yIcJNjsWHO6CieT6MXqce+VULM03ASPh8DhZHOipZjctsYz6iB7/efnM3LoN1ykjF4AZKVJtIDMsClUxPWBeno47RYT2HtLj4fU3IYHakEzexhajpcjSSHpdplKn4E0zHNhLUul/7NdYaWSZmWia3O0Bud5AUm/K9zIer6MnT0J2nZThNjaRZi0W0rGj8g36QAkpYA2XvmkarBDXVm6MN8kp4kXEg4UDCiYwLmYv/yxhkMKPGghozKkyoQzbmyMgEpZV/Lq6OVYBGrVrxRwS2Nx6huFb/r784c4cEtPxY+cEfPXi7b+MyQjGVCwQCwZsGWWbr9BB/3N+CIRjkB4G38x/yvaRmdJGW2oNafeWg41BF0aq9izl1MnHBfkoCdaSqRlkvd5KkdzEjmTkTzGFcjrzstWqfmvDRcKzjVtSSGleUi/mUeXwW303fvmncT1azhlJnEVnWdZi14Th0bhoTuzmd1MWMaXWqahq/jujhTGIv5GGej0FSB5hNHmQysxtHzARvlDWnecFHzvk5cs/NkNE1j84v4zFq6CuOpKc0ir6iSHxha7QQ8zmUypprBnyLvwDQmZSqmikGDBbeMF/kGiDJEk6/E6fficPvwOl34peU88xUqDDrzJh1Ziw6C2adGb0mdI87cPuDODwBpdLmDeDyBbi4ZDbqNFgXK2wWgxaTXhvyVek3O6G4Vv+v+/7rzghoYg+aQCAQCK6KYwL2/R20Pc2APo8P2d+PI6qQL9xXxL2liVdshwvKMj8fnuSbfaNoVSq+nJtCUmcLJcUuenr/CY9nhLjYu8nN/X+YTJmXvd7lcnHy5EmOHz+Ox+MhOzubnTt3kpGRcdPtd+N9PZx44nEc58bIidhAclgOKlTosyKwbE4krDQWlW51qjWTg3ba6m10nRzD5wkSmWCiaEcShVuTMIWH7qL51UguF85jx7Dvr8Nx8CDBmRnQajFvrsRSuwdrzW50KSlrc/HZAeh6ATqeg4EGpcJmjoP8exSFf/Zu0N+4/fNORJZlxl3jy4dpTyqaf5+k/CIj3hSv7GOLXdb8G7WhudfP6Q3QOjK/ZIw8OzjHlENpcTbq1JSlLB+mLTT/oUcortXvnD1oIqAJBAKB4Hqcfwr2/R2Sa5Zf69/BP87fz4aseP7hgWJKUyKu+JILbi+f6hji6JyDdfj5+dYyUvQyQ0O/4MLAvyBJftJS/4zMzI+i011+BpvX6+XUqVMcO3YMp9NJWloaO3fuJDc396aD2vTwICee+h0Xjp8my7KOgtjN6AMGVGFazBviMW9ORLdKZ575vUF6zkzQVm9jrG8etUZFVnksxVXJpBVGr4q85PVCDgZxNzfjqKvDvr8OX38/AIbCwkWFfy3GkuK12bfmnoOeVxQjZPfL4F0AbRjk1ChGyPx7wRK/+td9A+IP+umc7VwR2oYdwwBoVVryo/OXAlt5XDlp1rSQNC3KsszInHsxsCkHap8Xmv+QJRTX6iKgrTGhOOgCgUDwpsY1Ay/8P2j5LXOWXD7i+gBH3em8oyKVz9xTQPwVfrstyTL/Y5vmS11DqDUavpidxF+kxOL3TdLb9xijo79Hp4siO/uTJCe9C7X68jY6v9/P2bNnaWhoYGFhgaSkJKqrqyksLER9k8r2ufExTj39e84dfIU4Qyrrs+4i0hMDEujTrZgrEwkrj0O9SmeeTdsctDeM0nl8DI/TjzXGSPGOJAq3JWOJMqzKNV5PvH39OA7UYa87gLuxESQJbUICltoarLW1mLZsQa1fg2phwKdU1DqfVwLb/BCggtRKJawV7oXYfERP3DLT7mlap1qXAlvr1ErNf1lc2VJoK40tDWnNf5ttYTGwCc1/KBGKa3UR0NaYUBx0gUAgEKAcSPzsJ5Ad4xxPfC8fGLwLWWPkw7tz+EB19hV/o/37A4f4v+hUDszY2Rph5rHCdLJNBhbs5+ju/jpzcycxm/PIy3uUmOgrm4UDgQAtLS3U19czMzNDXFwc1dXVlJSUoNHcXKCyT09x+pknaNn/IuqghsqSB0jV5sFsAJVBg6k8TqmqpVhWZbEX9Ev0NU1yvt7GSOcsKhVklMZQXJVMRmkMas0bT4oRmJnBcfCQovCvb0B2u1GbTJirqxWF/86daNZif4osw/g56Fg8b220SXk8OnvxcOz7IW2LIhwRLBGUgvTO9y4FtpbJFnrnewFlL1tOZM6K0PZG0vw3D83j9l9B858eSVmq0PyvFaG4VhcBbY0JxUEXCAQCwSLuOXj57+Hsf+OPzOEx88f5l95YUiLD+Nx9hTxYlrQi2Bw8eJBdu3bx27EZvtRjwytJfC4riQ+mxaEGJidforvnm3g8Q8TG1JKb+3nM5uwrXjoYDNLW1sbhw4eZnJwkKiqKqqoqysvLb9oo5pqf48xzT9H00nP43G7Kyu6iKGE7qgE/sl9Cl2TGvDkR04Z41Kt05tnchIv2hlHaj43iXvBhjtBTuD2J4h3JhMeuzkHbrzeSx4Pz+HEcdQewH6gjODkFGg2mjRuV6tqePejT0tbm4vMj0LV43lr/YQj6FHV//j1KdS1nz6JoRPBqFnwLnJs6txzaplqY984DYNaZKY0tpSxWaYtcF7eOaGP0dd7x9hAISnSNO2gcml3az9Y7qQhn1CrIT7AuBbaK9EiyYy2o30CtxqFKKK7VRUBbY0Jx0AUCgUDwKnrr4A8fh/khRgv/nA+PPUDjmI+NGVH8/QPFrE+LBFbO6WNeP5/rGuLFqQU2WE18vyiNQnMYkuRlaOiX9F/4CZLkITXlT8jK+hg6XeQVLy1JEp2dnRw5cgSbzYbVamXHjh1UVFSgv8k2O4/DQeOLz3B23x/wOOxklVSwqfRBDMMa/DYnKp2asHWxmDcnos8IX52qWlBioHWatnobg+enkWVIK4qiaEcy2evj0GjfeFU1AFmS8Jw7p0hG6urwdncDYMjLxVJTi3VPLcZ161DdZHvqDeG1Q89+pbLW9SJ45kCjh6xdUHg/5N8H4Umrf907BFmWGbQP0jLZsrSfrWu2i6CsVKfSrGlLVbby+HLyo/LRhej5dfMuP03Dc5wdmKVxaI6mwVkWPMrZf1ajlvVpkZe0RkYSaXrjiHxChVBcq4uAtsaE4qALBAKB4Ap4HbD/H+HkvyFHZXIw/+/5zJlIphxe3rYhhc/cW0Bn44kVc7osyzw9MccXuodxBCQ+lZnAR9IT0KlVeH1T9PV9H5vtcbTacLKz/paUlD9GfZWFoCzL9Pb2cuTIEQYGBjCZTGzbto3KykqMxpuzvvk8blpefp7Tzz6Jc26WpPxCtu16JxEL0bibJ5G9QbTxYZgrEzFVJKAxr87i1D7jof3oKO0NNhyzXowWHYVbEymuSiZqleQltwvf4CCOAwew1x3Adfo0BINo4mKx7q7BUluDeds21Dc5TjdEMABDxxdbIZ+D2QvK48kVi62Q90FCidi3dh3cATdt021LVbbmyWYm3ZMAGDQGSmJKlNC2GNwSzAm3+Y6vjCTJ9E05aRycXWyNnKNzbAFpccmeHWtm/cXWyLRIChOtaN+ArcevJ6G4VhcBbY0JxUEXCAQCwTW40AB/+CjM9OHb8D5+ovlT/uX4JGoV3Juh4Zt/toewV8k3Jn1+Hu0e4emJOUotYfygMI1Sq6JRtzs66O7+OrOzRzGZcsjL+wKxMbuveQsDAwMcPnyY3t5ejEYjW7ZsYcuWLZhMN6dmD/h8nDvwMif/8HvsU5PEZ+aw5cF3kKzPxXV6HN+gHTQqwkpiMG9OxJAduSp2RkmSGWqfoa3exoXmKSRJJik3gpKqZHIq4tGukrzkdhGcm8Nx5Aj2/XU4Dx9GcrlQhYVh3rEda00tlprdaKPXoI1OlmGyQ6msdeyDkcV1T2T68r61jO2gCc1qUChxqeb/YpWtfbp9SfOfYEpYskWWxZVRFF0U0pr/luH5Fa2RUw7lc4TpNKxLjViSj1SkR15RhPRmJhTX6iKgrTGhOOgCgUAguA4+Fxz8Bhz7CViTmdz9T3y5PZnnWkdJijDy2XsLeKg85bL9H/sm5/hc1zCz/gAfS0/gE5kJGNRqZFlmamo/3T3fxO2+QHR0NXm5X8Biyb/mbYyMjHDkyBE6OjrQ6XRUVlaybds2rNabM9UFAwHajxzg5NO/Y3bURnRyKpsffic5uZV4zk7iPDuB7A6giTZirkzAvDERzSqdeeac99J5fIy2ehvzk270YVoKNidQXJ1MbGpoGvduBsnnw3Xi5JIVMjA2BioVYRs2KJKRmloM2Vlrc3H7uHLeWuc+6DsIAQ8YIyDvLUplLfcu5e+CG8IX9NE500nL1HJr5IhjBFA0/wXRBUtVtvLYclKtqSFpWpRlmeFZ95J8pHFwjvO2efxBZV2fEhmmVNkW2yNLksPf1Jr/UFyri4C2xoTioAsEAoHgBhk+DU9/RKlarH8v/+m7hyfGY2gdmac8LZJ/eKCYjRlRK14y6w/wpZ4RHh+bJd9k5AeFaVREKO19kuRjePhX9F/4EcGgi+Tk95Cd9XH0+mtXW8bHx6mvr+fcuXOo1WoqKirYsWMHkTdpF5SkIF3HGzj55ONMDl4gIj6Byre+g+Idtfi75nGeHMPbNw9qMBYqVTVjftSqVNVkSWake462ehu9jRNIAZn4DCvFVcnkVSagXyV5ye1ElmU8bW049tdhP3AAb3s7APrMTCx7arHW1hK2fj2qm7R13hA+J/QeUCQjXS+AawrUOsisWm6FjFwjwckdzJR7itbJVlqmljX/7oCix48yRC23RcaVURpTikUfmiIXjz9I2+jCUoWtcXCOkblLNP/JEYuBLZKK9ChSo948mv9QXKuLgLbGhOKgCwQCgeAmCHjh8HfgyGN4deHoHvlnnnCt59svdDBh9/JgeTKfu7eA1KiV7Yf7pxf4TOcQY14/f50Wx2ezkghb3Avi883Q3/8jRmy/RqMxkZX5t6Sm/glq9bWrVtPT0zQ0NNDU1ARAWVkZVVVVxMbG3tRHkmWZvrMnOf7Ebxnr6cISFc2mB99G2Z57wSHjOjWG88w4ksOPJlyPaVMC5spEtFGr0xrlcfjpPDFGW4ONGZsTrUFD3qZ4iquSSchcHXlJKOC32bDXHcBRV4fz5EkIBNBERWHZvRvrnlrM27ejvsm21RtCCsLwqeVWyGlFcELiOijYq4S1pHKxb+0WCEpBeuZ6lgJby2QLffN9wLLm/2JbZFlsGdmR2ahVobkHbGLBs7SPrXFwlpbhZc1/rEXP+rTlw7TLUyMx36Ga/1Bcq4uAtsaE4qALBAKB4BYYbcbxqz/H4uyH0rfj3PMNfnZqnp8dVhZnf1Wdzd/szlmxiLEHgny118Z/26bJDjPwWGEaWyOXf8PucHbT3f11ZmaOEBaWSV7u54mN3XPdgDI/P09DQwNnz54lGAxSUlJCdXU1CQk3JzaQZZnB1mZOPPlbhtpaCbOGs3Hvw6y/Zy96Qxie9hkcJ8fwds8CYMiLUg7BLopGtQp2RlmWGe9f4Hy9jZ7T4wR8EjEpZoqrksnfnIhxleQloUDQbsd55IgS2A4dQrLbURkMmLdtw1Jbg2X3bnTx8Wtz8aluJax1Pg9DJ0CWIDxFCWoF90FmNWjfeAeOhwoLvgXOTZ6jeap5KbQt+BYAsOgsiuZ/cT/buth1RBmjrvOOt4dAUKJz3L4Y2OZoHJql702g+Q/FtboIaGtMKA66QCAQCG6NQ3WvsEvTCIf+CYzhcP93GEm5j2+/2MnTTTbirQY+c08Bb69IXbFwOTJj59OdQwx6fLw/JZYvZidh1i63uU1NH6S7+xu4XL1ERW0nL++LWC2F170fh8PBsWPHOHXqFD6fj4KCAqqrq0lNTb3pzzbS0caJJ39Lf9MZDCYz6+95gIr734opPILAnAfnqXFcp8cIzvtQW3SYNipVNd0qnXnmcwfoOjVOW72NyUE7Gq2anIo4iquSSc6LvGOqagCy34/rzBlF4b9/P36bDQBjeRnWRYW/Pjd3bT6zc0pR93fuU46X8LtAb4XcPVC4V9m3ZgrNc8LeKMiyzMDCwIoq26Wa/3Rr+orWyFDW/M+5fDRdrLJdQ/NfkR7J+jeo5j8U1+oioK0xoTjoAoFAILg1lub08TZlb5rtLBQ+AHu/x5kZA199to2moTlKU8L5+73FbMmOWXqtMxDkm/2j/Hx4ilSjnu8VpLEzelmSIUl+Rmz/S1/fDwkEFkhOfhc52Z9Er79++6LL5eLkyZMcP34cj8dDdnY2O3fuJCMj46YX+eN9PZx46nG6Tx5Dq9dTftd9bHrgESzRMciSjKdrFufJMTwd0yCBPisCy+ZEwkpjUelWp5VrctBOW72NrpNj+DxBIhNMFO1IonBrEqZVkpeECrIs4+3qwlGnSEY8ra0A6NLSsNbWYqmtxbSxAtVNHl5+Q/jdyqHYHc8p+9Yc46DSKCbIi/vWotdIcPImw+V3KZr/qWXN/5R7CrjDNP9xZjZc0hpZkBD6mv9QXKuLgLbGhOKgCwQCgeDWWDGnBwNw/Kdw4OtKe9i930Ja90c80zrKt57vYHTew/3rEvn8fUWkRS/vMzox5+BTHUP0ur28NymaL+WmEH5JNc3vn6O//8cMj/wKtdpIVuaHSUt7H2r19VvQvF4vp0+f5ujRozidTtLS0ti5cye5t1CNmR4e5MRTv6Oj4RBqtZrSmrupfOs7iIhXFo7BBR/OM+M4T40RnPGgCtNi3hCPeXMiulU688zvDdJzZoL2BhujvfOoNSqyymMprkomrTB6VeQloYZ/fBzHgYPY6/bjOnYc2e9HHRGBZddOrLW1mKuq0VjW4Ew5SVJ+4XCxFXKiTXk8vnixFXIvJG+AtTiY+02ILMuMOcdWtEW2Tbfhl/zASs1/eVw5hdGFIa/5P7soH2kaWqn5L0uNWHGYdqhp/kNxrS4C2hoTioMuEAgEglvjinP6VI9ybtrgMaU97IEf4DYl8+9H+viXg70EJZn3V2XxkZocrEaljckdlPjuhTH+ZXCCBIOOb+encnfsSh2609lHT883mZquI8yYTm7u54iLu+eGgpbf7+fs2bM0NDSwsLBAUlIS1dXVFBYWor7JBfbc+Binnv495w6+gixLFFfXsPnhdxKdrLRRypKMt28e56kx3OemICijT7cqe9XK4lAbVsdYOGNz0tZgo/P4GB6nH2u0kaIdSRRtT8YSdWfunwo6nDgbGnDU1eE4eJDg/DwqnQ7Tli2LCv8adImJa3PxmT7oXFT4DxwFOQiWRCi4V6muZe0E3eq0twoUrqn5V2spjCpc0RqZagltzf/FwNY4NEfbqzT/Gy4epp0eSUlyOAbt7dP8h+JaXQS0NSYUB10gEAgEt8ZV53RJglP/Aa98GVRqeMtXoOJ9jNl9fPvFDp44O0KsRc+n31LAuzaloVms/DQuuPhExyCdTg/vSIjiK3kpROtWtrJNz9TT3f01nM5uIiM3k5/3KFZryQ3dbyAQoKWlhfr6emZmZoiLi6OqqorS0lI0N6l6t09PcfqZJ2jZ/yIBv4/8LTvY8si7iM/MXnpO0OnHdXYC56lRAhNuVAYNpvI4paqWYlmVxWTQL9HXNMn5ehsjnbOoVJBRGkNxVTIZpTGoQ7yd6laRAwHcjY3Y6w5gr9uPf2AQAGNx8ZLC31BYuDYLdtcMdL+shLWeV8DnAJ0JcmqVsJZ/L5hjrv8+gpvmWpr/aGM0ZbGXaP5jSzHr1qC6ugp4/EHO2xaWWiObLtH86zVqipPDl0NbWuTrqvkPxbW6CGhrTCgOukAgEAhujevO6bMX4A8fU/b1ZFbDW38M0Vk0D83x1WfbOD0wS2GilX94oJjtucreMq8k8cOBcX40ME6UTsu38lPZGxe54m0lKYBt9HH6+r6P3z9LUtI7yMn+FAbDjVn/gsEgbW1tHDlyhImJCaKioqiqqqK8vBztTe5tcs3PcWbf0zS9+Cw+t5vsikq2PPJukvOXpSayLOMbWMB5ahx3yySyX0KXZMa8ORHT+njUYauzn2p+0kVbwygdR0dxLfgwR+gp3J5E8Y5kwldJXhKKyLKMr69PkYzU1eFubgZZRpuctCQZMW3ahEq/Bvv1Al64cERpg+x8HhZGlF9KpG1Z3Ld2P8Tmrv51BQAEpAC9c71LFbaWqRb65/sBRfOfG5VLWWzZkuo/KyIrZDX/4wueJVtk4+AcLcNzePwSALEWw9I+tg1pUZSlRqyZ5j8U1+oioK0xoTjoAoFAILg1bmhOl2U4+0t48VGlLWzPP8DmDyKr1DzXOso393UwMufm7uIEvnB/EVmxym+8z9ldfLJjiFaHmwfjIvlGfgpx+pVmN79/gQsX/pmh4f9GrdaTmfEh0tLej0ZzY3s6JEmiq6uLw4cPY7PZsFqt7Nixg4qKCvQ3uZj3OBw0vvgMZ/f9AY/DTnppGVse+SPSStat+M235AngaprAeXIMv82JSqcmbF0s5s2J6DNW58yzYFBioHWatnobg+enkWVILYyiuCqZ7PI4NKskLwlVAlNTOA4exF53AOfRo8geD2qLBcvOaiy1e7DsrEYTHr76F5ZlGG1e3Le2D8YUwQkxeVC4GNZSK0F9+9rX3gzMe+c5N3VOkY9MNdM62bpC878udt0KAUmkMfL23vBVCAQlOsbsi/KRWZoG5+ibWtb8FySGL+1j25AeRXaseVU0/6G4VhcBbY0JxUEXCAQCwa1xU3P6/DA8+0nofkmpLjz0E4jNw+MP8vP6fn56oAdfUOLPt2XysT15RITp8EsyPx2c4HsXxrBo1XwtL5VH4i9XzLtcF+jp+RaTUy9jNKaQm/NZ4uP33nDYkWWZ3t5ejhw5wsDAACaTiW3btlFZWYnReHMb+H0eNy0vP8/pZ5/EOTdLUn4hWx95N1kbNl12P75hO85TY7iaJpG9QbTxYZgrEzFVJKBZpTPP7DMe2o+O0t5gwzHrxWjRUbg1keKqZKJWSV4SykhuN85jx7Dv34/jwEGCMzOg1WKq3IS1RrFC6lNT1ubic0OLlbV9SpVNCoApVmmBLLgPcmpAf+ePwe1GkiVF878oH2mZUjT/kqxUpzLCM1a0RuZF5YWs5n/W6aNpePkw7aahOeyLmv9wo5b1iy2RG16D5j8U1+oioK0xoTjoAoFAILg1bnpOl2Vo+S08/zlFaV7zBdj2UdBombB7+N6LXTx+Zogok55P3p3PeyrT0GrUdDo9fLJjkLMLLt4SE84/FaSSZLh84TEze4zu7q/jcLQTEbGR/LxHCQ8vu6nPNDAwwOHDh+nt7cVoNLJ582a2bt2KyWS6/osvIeDzce7Ay5z8w++xT00Sl5nNloffRd6WbahfVUGRfEHcLZM4T47hG7SDRkVYSQzmykQMOZGrYmeUJJmh9hna6m1caJ5CkmSSciMorkompyIenf7Or+rIwSDu5hYcBxSFv6+3FwBDQQGW2hqstXswlhSjWgszo2de2a/WsU/Zv+adB60Rsncv71uzhqZK/k7E5Xdxfvr8Umhrnmxm2jMNgFFjpDimeKktsiyujHjTGh2a/hpRNP8Ozg4uh7aucftr0vyH4lpdBLQ1JhQHXSAQCAS3xi3P6fZxeO5T0PGsoip/6CeQoIg+zo3M89Vn2zjRP0N+goVH9xazMz+OoCzz70OTfKt/FL1axZdzU3hPYvRlVSlZDmIb/T29vd/D758mMfFhcnI+g9Fwc3a/kZERjhw5QkdHBzqdjsrKSrZt24bVar3+iy8hGAjQXn+Qk0/9jtnREaKTU9n88Dsp3LELzRX2u/nHnEpVrXECyRVAE23EXJmAeWMimlU688w576Xz+Bht9TbmJ93ow7QUbE6guDqZ2NSb+3xvZHwXLixJRtxnG0GS0MbHL4a1Wkxbt6Jei31rQb9iguzcpwS2+UFABamblhX+cQUQgkbCOxVZlhl1ji6FtZapFtqn25c0/4nmxKUqW3lcOUUxRRg0oWlLdXgDtCxV2ZTQNu28iuY/PZJ468ougVBcq4uAtsaE4qALBAKB4NZ4TXO6LEPbU/Dc3ynVhZ2fgapPglaPLMu8eH6Mb+zrYHDGRW1hPF+4v4jceAt9Li+f6hjk+LyTXVFWvluYRprx8kV0IGDnwsC/Mjj4C1QqDRkZf01G+gfQaG5OljE+Pk59fT3nzp1DrVZTUVHBjh07iIyMvKn3kaQgXccbOPnk40wOXiA8LoHND72Dkt13odVd3k4l+yXc56dwnhzD2zcPajAWRGPenIixYHXOPJNlmZGuOdrqbfQ1ThIMSMRnWCmuSiavMgG9cW0kBKFIYHYWx8FDisK/oQHZ5UJtMmGuqsK6pxbzzp1oo6JW/8KyDOPnF1shnwNbo/J4VJZSWSu8H9K2gubNMxahgi/oo2OmY0Vr5JtB8z/d08TdtTW3+a5XIgLaGiMCmkAgENw5rMqc7pyGFz4Hrb+DhFJ46J+VqhrgDQT5r4YL/LiuB48/yJ9szeATd+URHqbjl7ZpvtprQwU8mpPMnyfHoL7C4sjtHqKn99tMTOzDYEgkN+ezJCQ8iOomTW7T09M0NDTQ1NQEQFlZGVVVVcTGxt7U+8iyTN/Zkxx/4reM9XRhiYpm04Nvo2zPveiust/NP+XGdWoM55lxJIcfTbge06YEzJWJaKNW55Bbj8NP54kx2hpszNicaA0a8jbFU1yVTELm6shL3ihIXi+u48ex1x3AUVdHYHIS1GpMFRVY9uzBWluDPiNjbS6+YFs2QvYfgqAPwqIg7x6lupa7BwxvnipnqDHlnloR2M5NnbvjNP/bk7X8+m/vuc13uBIR0NYYEdAEAoHgzmFV5/SOfYpExDkJOz4Ouz4HOiV8TDm8PPZyF785OYjVqOOTd+Xx3q0ZjPr8fKZzmEOzdrZFmnmsIJ0s05XbjmbnTtHd/VXs9vOEh68nP++LRERU3PRtzs/P09DQwNmzZwkGgxQXF1NdXU3iTR6QLMsyg63NnHjytwy1tRJmDWfj3odZf89eDKYrL+rkoISnfQbHyTG83bMAGPKilEOwi6JRaV/73ilZlhnvX6Ct3kb36XECPomYFDPFVcnkb07EuErykjcKsiThOX9ekYzUHcDb1QWAPicHa20tltoawsrL12bfmtcOvXVKWOt6AdyzoNErh2IX3KdU2MKTV/+6ghvmWpp/tUpNTmTOkua/PK6czIjMkNf8D3Wf568e2XO7b2cFIqCtMSKgCQQCwZ3Dqs/p7jl46YvQ+CuIzVf2pqVtXvrnjrEFvvpsGw090+TEmXl0bzG78mP5zfgsX+4ZwS/J/L/sJD6QGofmChUfWZYYG3uSnt7v4vNNkJDwILk5n8VovPlFrsPh4NixY5w6dQqfz0dBQQHV1dWkpqbe9HuNdLZz4snf0t94GoPJzPp7HqDi/rdiCo+46msCcx6cp8ZxnR4jOO9DbdFhqkjAXJmALu7mhCZXw+cO0HVqnLZ6G5ODdjRaNTkVcRRXJZOcd7lN882Ab3gYR50iGXGdOgXBIJrYWCy7d2Gt3YN521bUYWtw5lwwAEMnFvetPQezSgggaT0U7lUCW0Kp2LcWArxa898y2YLdZwfA+v+zd9/hcdVXwse/UyXNqNeRLMnqzd1Wsa1iXAjGNsWEwCZvdrObzZvNbioECKEk2RBCQgiEtM3mTdmS3Q2ExRQDJrihZkuy3C3J6sUa9ZFGml7uff8YQgpG1sgz9tj8Ps+T54kd3TK6ztE9Or/fOZooViSteLfF/4rEFSHX5j8U39VFghZkofjQBUEQhMUJWkzvPgCvftHXmn/9P8GWR0DrSzpkWeZA+ziPv95O36SVmoIkHtlZTFRsGA+cv8BbU7Osi9bxTFEmBfqLL//zeKwMDP4rg4O/ACAz81MszfwH1Gr/lyPZbDaam5s5evQoDoeDnJwcampqWLp0qd8JzFhvN00vPU9X8xHUWi2rtt1M6a7dRMYnvO8xsiTj6JzG2jyKo2MKJNBmxxBZbiBieSKKAM08mxico63eSGfzKC6Hl9gUHcWVqRStT0UXoOYl1xqv2Yylto65gwew1tYhWa0owsPRV1YStWUzkTfcgDrh/Z/doskyTHb6ErXzb8CFFkCGmMx3Kms3Q1YVqD5Y1c5Q9adt/v9Qaeua6Xq3zX9WdNa7Cdsf2vyrlVdvz2EovquLBC3IQvGhC4IgCIsT1JjunIP934CWX/gaJtz6I8iufvd/dnkk/vPoAM/u78Tq8vKx8ky+tC2ft602Hu68gNUrcV+2gX/MSEbzPg01HA4j3T1PMjb2KlptMrm5XybVcIff+9MAnE4nx44do7GxEavVSkZGBjU1NeTl5fmdqE1dGKTppd/R0fA2SqWS5ZtvpOzWO4lJnr8Nu3fWhfX4GNaWUbxTDhQRavRrktGXG9AEaOaZ2+Wlp3WctnojIz1mlCoF2asSKalMI6M4MM1LrkWyy4W1ucVXXTt0CM/ICCgURKxe7esKuXUr2uzs4FQdLeO+JZAdr0PvIfA4ICwG8rf5lkHmbYOI2MBfV1i0P7T5f3dp5MTpd9v8R6gjKEko8XWMTPS1+k/SJV2xewvFd3WRoAVZKD50QRAEYXGuSEzvq4NXPgfT/VD693DjP/9ZkwST1cUP9nfyX02D6LQqvrg1nx3rlvD13hFenZhhZWQEzxRnsizy/Zedmc3H6ex6nNnZk0RFLSc//xHiYssWdbtut5vjx4/T0NDA7OwsqampVFdXU1RUhNLPfUozY6O0vPwC597ejyRJlFRvpvz2jxCfNv8ySlmScfaasbaMYj87CV4ZbUYU+nIDESuTUIYFZuaZyWilrcHI+aOjOKxuouLDKa5MpXhjKpEBal5yLZJlGWd7+7st/J1t7QBoly59t8lIxJo1KFRBmD3nskHvYV9HyPP7wDYJSrWvola4w1ddi80M/HWFyyLLMkar8Y8NSCZO02ZqwyP5hlCn6lP/rMoWzDb/ofiuft0kaCsTEuRXd+y82rfxHjMzM363JhYEQRBC05WK6QqFh9j4DqJievB6IpiaWI3D/ueDY/vV0fwkZjXN4aks8czxT+aTOJP1fK9yC7Nh4fztqWb+7lQTGkm66DVkZCw5E0yVDuDRu9D3JZB4LAuNZXGJhhfoiYridGwsc1oNsS4XK6dnyLZY8Lc+Z5clznvt9ElOvEC6UkuRMpzYhSyDUoahiMhHoS9CoYlDllzI9h5kawe4Jxfxyd7Li5JR1VIGNflMqdJAlkj2DpPp6STZewEl1877UzBILhfemWm80zNIc3O+JYoqFarYWFRxcahiolEog5CsIfsq0TYT2KZ8w+EBtHrQxYMuAbSRQbiuEAgSEja3DavbisVtweqy4pScAChQoNPoidTo0WsiidTo0arCCER9NhTf1bN+858iQQumUHzogiAIwuJc6ZiuDTORmHwCjdaCZTYT09RyZOnP99kcDTPw05jVDGhiWOsY4xP2NvaUrmVfXgm5pkkeqX+Tksmx972GpPIys3yY6RXDyEqZ2HNpxJ9OR+le3J4QCeiP1HMqNo6ZMC1RbjcrpmfIm5vD31dyhyzR5XXQIznwAKkKDUWqCBIWul9Fm4xCV4QiIheFUo3smkK2dSDbukF2+Xk3F2dVRDGkzmdInYdTqSNMspHh6SLD04VetgTkGtcy2evFazbjnZnBOzMDXi8oFCijo33JWmwsyovMxQsItx3s7yRrzncSRXUYRMT7ErbwGAjRDoOCj0tyY3VbfEmby4LVY0OSvQBolBr0Gj2Rmkj0mkj0Gj2qRTzPUHxXv24SNLHEURAEQQi2qxLT3Q54+7vQ8Czok2DXM75hvn/6JV6J/24a5Jn9ncza3dxdlsG6dal868I44y43/5iZzH1ZBiJU7//y4nCO0tPzFKOje9BoEsjN/TJpqXeiUCyu0iFJEp2dndTW1mI0GomKiqKyspK1a9ei1frXZMNhsXDizVc5/vorOCxzZC5fScXuu8lYtnJBe5wkhwfbyXGszaO4jVYUGiURKxLRlxvQLg3MzDOvV2LgzBRt9UYGz00hy5BeFEdJVRo5q5JQBah5ybVMdruxtR5n7uABLAcO4h72DUEOX7GCqK1biNy8hbCC/ODsW7NOQdebvq6Q3QfBbfVV0/K2+pZC5n/Il7QJIc0jeeie6f6zBiT9s/2Ar81/Xmzeu0sjF9rmPxTf1a+bJY4iQRMEQRCC7arGdOMJePlzMHYWVnwEtn8X9H/eMc9sc/PsgS7+40g/4RoVn9qUQ3+Kht+Oz5AbEcYzRRmUx86/xMs8e4qurm9hNh8nMrKY/PyHiY/bsOjblmWZnp4e6urqGBgYQKfTsWHDBsrKygh/n0HV78flsHP6rTc4tncP1plpUguKWL/7brLXlC74pd41bMHaPILt5ASy04s6KQJ9mQHd2mRUkYHpzjhnctBxZIS2BiMWk5PwSA2F6w0sq0ojLkDNS651sizj7Op6t4W/4/RpADTp6b4mI1u2olu3FkUwqmtuB/TV+pK182+AZRQUKsjc4PvlR+HNEJ8T+OsKQWF2mjkzeebPBmq/X5v/lUkriQn783EeofiuLhK0IAvFhy4IgiAszlWP6R4X1D8Dtd/zLc/a+RSU3P6eWVA9ExaeeL2d/e3jZMRHcFt1Fv8j2zA6Pfx9eiJfzUlFP0/DBlmWGR9/je6eJ3E4hklKvJG8vAfR6bIu6/YHBgaoq6uju7ub8PBwysvLWb9+PTqdf3PMPC4XZw/vp/nl3zE3OUFSVg4Vt99FfsUGlAvc2yS5vNhPT2BtHsU1OAcqBRHLEtCXGQjLjQ1Id0ZJkhlqN9FWb6T/1CSSJJOaF0NJVRq5a5PRaIOxD+va5B4bx3L4MHMHD2A7chTZ5UIZHU1kTQ1RW7egr65GFRmE/WOSBCMnfB0hz78B4+d8f59U9E6TkR2wZB0EYzC3EBSSLNE/2/9nDUjma/NvPG1k62YxqDooRIImCIIgBFvIxPSxc/DyZ31VteJbYMf3Ieq9Lenruib41t52zo/NUZoVR+LKRF5y2sgM1/J0UQZVcVEXOfkfeb0OhoZ+Rf/AvyBJbjIyPkF21udQq+c/7lKMRiO1tbV0dHSg0WgoKytjw4YNREX5d16vx0N7/WGaX/od0yPDxKelU377Ryiq3IRKvfA9dO5RK9aWUWwnxpFsHlTx4ejLUtCvM6AK0Mwz26zLV1WrN2KesKONUFNYnkJJdRqJ6Zf3/bzeSFYrlsZGLAcOYjl82Ld3TaNBX17+TnVtC5rU1OBc3NT3Tgv/12CgEWQv6JOhcDsU7oScTaAJwmBuIaj+ss3/qYlTmBwmAMr15fzyzl9e5Tv8cyJBC7KQ+WEuCIIgXLaQiuleDxz5MRz6tu+F8ebvwsq731NN83glftsyxNNvdTJtc1Gz3ED7Eg2DssRfpyXwtdw0otTzV3KcznF6ep9mhxt/JAAAmKFJREFUZOQFNJo4cnLuIS31LpSXOVx2fHycuro6zp49i1KpZO3atVRWVvq9YV+SvHQebaB5z/NMDPYTnZRC+W0fZtmmbaj92O8muyXs5yaxNo/i7DWDEsIL49GXGwgviEehuvyqmizLGDtnOFdvpPfEBF6PRPLSKEqq0sgvS0EbfvUG9oYi2evFfuIEcwcPYTlwANfAAABhJcVEbfG18A8rLg7OvjX7NHTt97Xw79oPrjlQR0DuFt9SyPybIPLKzesSAudP2/wPnx/mU9s/dbVv6c+IBC3IQuqHuSAIgnBZQjKmT3b5qmlDTb5GB7t+ADFL3vNlZrubnxzq5tcNfahVSopXJnM0VoFBp+V7hRlsTYi+5KVm587S1fU4MzPN6PX55Oc/QkJ81WV/hKmpKRoaGjh58iQAK1eupKqqisTERL/OI8syvcebaXrxeUa6z6OPi6fsljtYuXU7Gj/3u7kn7dhaRrG2jiFZ3KiitehKU9CXGVAHaOaZw+rm/NFR2hqMmIxW1GEq8kuTKalKIyUrMM1LrieyLOPq62PuwAEsBw9hP3kSZBl1aipRmzcTuWUL+vIyFH42oVkQjwv663zLIM+/AbMXAAVkVPj2rBXthMT8wF9XCLpQjOsiQQuyUHzogiAIwuKEbEyXvND8/+DAP/uG9H7oW7D2b95TTQPon7TyxBvtvHlujMToMOTCWIbjVNyVGs8/5y0hTjN/BUeWZSYmfk9X9xM4HEMkJmwhL++r6PWX31TBbDbT2NhIa2srHo+HZcuWUV1djcFg8Os8siwzePYUTS8+x1DbGSKiolm74zbWbN9FmM6/Jh2yV8LRbsLaMoqjcxqAsPw49GUpRBQnoFBf/t4kWZYZ65ulrd5I17ExPC6JhCV6iivTKKwwEK4PUhv6a5xnauqdfWuHsDY0IDscKPV69DXVRG3ZSmRNNaqYmEufyF+yDKOnfYlax2u+/w6QkPfHfWsZ5RCUWW9CoIViXBcJWpCF4kMXBEEQFifkY7qpD175vO83/dmb4NYfQlzWRb+0sWeSx/a20z4yiyFFz4VsHfFJOr5bkM7NSbGXvJQkORka+nf6+n+CJDlIX/JxsrM/j0Zz6WMvxWKxcOTIEVpaWnC5XBQUFFBTU0N6errf5xo+307TnufoO3GMMJ2e1TftYu2OW9FF+//i7plxYG0Zw3ZsDK/ZiTJSg25tCvqyFDRJ/jU6eT8uu4fOljHa6o1MDM6hUivJXZtESVUaafmxoqr2PiS7HeuRo1gOHWTu0GG8k5OgUqErLfW18N+yBe0i/v0siPnCO5W116GvDiS3byh2wXZfdS13i29YthCSQjGuiwQtyELxoQuCIAiLc03EdEmC4/8Gv/8ayBJs+waUfeqiXei8kswLrUN8781OJi1OIjMjmcyO5LbMBB7PTydRe+n9UE7XJL29z2A0Po9aHU1O9hdYsuRjKJWXX/Wx2+00NTVx9OhRHA4HOTk5VFdXk5WV5XeiMtbbTdNLz9PVfAS1Vsuqbdsp3XUHkfEJlz74L8iSjKNz2ldVa58CCbTZMUSWG4hYnoBCE5jKycTgHG31RjqbR3E5vMSm6CiuTKVofSq6ADUvuR7JkoTj9GnmDhxk7tBBXN09AIQVFPiajGzdSviyZSiC0ZnRMQvd+30JW9eb4DCDKgxybvDtWyvYDlH+VYSF4ArFuC4StCALxYcuCIIgLM41FdNnhmDvl3wvi5kb4NYfQ2LeRb90zuHmp4d7+GV9HxIyrqwo9PnRPFGUyW3JC6vazFk66Op6nOnpRnS6XPLzHyIx4YaAfBSn08mxY8dobGzEarWSkZFBTU0NeXl5fidqUxeGaH7pedob3kapVLJ8842U3XonMcnv7YK5EN45F9bWMawto3inHCgi1OjXJKMvN6AJ0Mwzt8tLT+s4bfVGRnrMKJUKslclUlKVRkZxfEBGAlzPXAMD7zYZsR0/DpKEOimJyM2bidq6Bd369SjDwgJ/Ya8bBo+808L/NZgZ9P39knV/XAqZXHzRpcjClROKcV0kaEEWig9dEARBWJxrLqbLMpz6H9j3IHicsPlh2PDZ990bM2Sy8Z03OnjtzAjqCDW2vChuXJHCk4WZpIRduiImyzKTkwfo6n4Cu72f+Phq8vMeIjKyICAfx+12c+LECRoaGjCbzaSmplJdXU1RURFKP6shM2OjtLz8Aufe3o8kSRRX3UD57R8hYUnGou5NlmScvWasLaPYz06CV0abEYW+3EDEyiSUYYGpqpmMVtoajJw/OorD6iYqPpziylSKN6YSGaDmJdczz/Q01tpa5g4cxFJfj2yzodDpiKysJHLLFiJv2IQ6Li7wF5ZlGG/743Ds4Vbf38dlvZOs3QyZG0ElunheaaEY10WCFmSh+NAFQRCExblmY/rcKOy91/db/CXr4Laf+H5z/z6a+0x8c+85zg7PQowGzbJ4HivL5m5D/IIqVpLk4sKF39DX/0O8XhtpaR8lJ/uLaLXxAfk4Ho+H06dPU19fj8lkIjExkerqapYvX45qngHcFzNnmuTYq3s4vX8fHreLgopKKnbfRXLW4pueeK1ubCfGsTaP4hm3odCq0K1OQl9mQJMeGZB9ZF63RO+pCdrqjVzomEahgMzlCZRUppG1IgGlSgxWvhTJ6cTW1MTcwYNYDh7CMz4OSiURa9cQtXkLUVu3oM3KCs7FZ0d889bOvw69b4PXCeGxvk6sRTsgdyuEX7qzqnD5QjGuiwQtyELxoQuCIAiLc03HdFmGcy/C6/f79sls+gpUfQlUF6+MSZLMiyeGeeKNdqYsLryGCMrK0/jh2hzSwxe2/8nlMtHX90OGjf+NSqUjO+sLpKd/HKUyMPunJEni3Llz1NXVMT4+TlxcHJWVlaxevRq1H4OqAWzmGVpff5mTb76Gy24jZ20ZFbvvIq3g/RPZS5FlGdfgHNbmUeynJ5DdEppUPfpyA7rVySgjAlMtMU/YaGsYoaNxBNusC12MluINqRRXphGTJIYqL4QsSTjOtfmajBw4iPP8eQC0OTm+JiObtxCxaiUKP38BsCBOC/Qe8i2F7NwHdhMoNZBd46usFe646OgMITBCMa6LBC3IQvGhC4IgCItzXcR066QvSTv3IhhW+Kppqave/8udHn72dg//8nYPHhkU2VF8dVsBn8pKRrnASpDF2kVX1+OYTHVERGSRn/dVEhO3BqwjoSRJdHZ2Ultbi9FoJCoqisrKStauXYvWz5lYDquFk/v20vr6yzgsc2QuX0nF7rvJWLbysu5XcniwnfRV1dxGKwqNkogViejLDWiXBmbmmdcrMXBmirYGI4Nnp5BlSC+Ko6QqjZxVSag0oqq2UK4Lw1gO+pqM2FqOgceDKiGByBs2EbV1K/oNG1BGBCH5lby+mYbnX/clbCZfgxNSV/1x35phhdi3FkChGNdFghZkofjQBUEQhMW5rmJ6+6vw2pd9CVvVPbDpAVC/f6OE4Rk7X3+tjf1nRpHDlGStSubX25eRo1v4vqfJqcN0dX0bm62HuLiN5Oc/TFRkUSA+DfDOoOreXmpraxkYGECn07FhwwbKysoI93NQtcth5/Rbb3Bs7x6sM9Ok5hey/o6/IntN6WUnU65hC9bmEWwnJ5CdXtRJEejLDOjWJqOKDEx1cc7koOPICG0NRiwmJ+GRGgrXG1hWlUZcgJqXfFB4Z2ex1NZhOXgQS20tksWCIiwM/caNvuraDTeg9nOo+oLIsm8Q/fnXfPvWhpoBGWIy3qms3QxLq0AtOnpejlCM6yJBC7JQfOiCIAjC4lx3Md1mgjcfhlP/DUlFvmpa+kXfCd7V2m/ii3vOcGHMAtEa/nprLt8oz0G1wKRFktwMG/+H3t5n8XhmSUu7i9yce9BqA/uCOzAwQF1dHd3d3YSFhVFRUcH69evR6fybV+ZxuTh7eD8tr7zA7MQ4SVk5VNx+F/kVG1Be5iBiyeXFfnoCa/MorsE5UCmIWJaAvsxAWG5sQLozSpLMULuJ9nojfacmkSSZ1LwYSqrSyF2bjEYrhin7Q3a5sB079m4Lf49xBBQKIlatInLLFqK2bEabmxuceXWWiXf2rb0BPQfBY4ewaMjb5qus5d8IEbGBv+51LhTjesgmaAqFQgk8BkQDx2RZ/vf5vl4kaIIgCEKwXbcxvestePWLMDcC6//J1+1R+/6JjCTJ/PuxQZ7Y14HL5iE6PZIf376SmvSFd79zu2fo6/sRF4Z/g1IZTnbWZ8nI+ARKZWDbnRuNRmpra+no6ECj0VBaWsrGjRuJiory6zxej4f2+sM0v/Q7pkeGiUtLp+L2j1BUuQmVn/vdLsY9ZsXaPIrtxDiSzYMqPhx9aQr60hRU0YH5nthmXe9W1czjdrQRagrKUyipSiMpw7/vh+Cr2Do7OnxNRg4cxNHWBoBmaea7TUYi1qxBEYB/H+/hskHf29Dxmi9ps06AUg1LN0LhTl91LW5p4K97HQrFuB6UBE2hUPwK2AWMy7K8/E/+fjvwLKACfiHL8nfmOcdu4HZgCnhNluUD811TJGiCIAhCsF3XMd0xC299DVp/DfE5vrlpWZXzHmJzevjSG+f4fcswsiRTvtrAz29ZQZxu4UuurNZeurufYHLqIBHhmeTlPUhS0ocCXoEYHx+nrq6Os2fPolQqWbt2LZWVlcTGxvp1Hkny0tXUSNOLzzEx2E90Ugrlt32YZZu2ofZzv9vFyG4J+7lJrM2jOHvNoITwwnj05QbCC+JRqC7/+yLLMsbOGc7VG+k9MYHXI5G8NIqSqjTyy1LQhotW74vhHh3FcugQcwcOYm1qArcbVWwskZs2+Vr4V1Wi1Adheakk+dr2/2Ep5ESH7++Tl/k6QhbeDKlrLjqsXgjNuB6sBK0GsAD/8YcETaFQqIBO4EbgAtACfBRfsvbEX5zik+/8Z1qW5X9VKBQvyLJ853zXFAmaIAiCEGwfiJje+za88nmYGYCy/wvbvgFhkfMecnZijk+9eIrRPjOqMBWf25bPFypzUPmxRG9qqo6u7sexWruIja2gIP9hoqKWXeaHudh1pmhoaODkyZMArFy5kqqqKhL93EMkyzK9x5tpevF5RrrPo4+Lp3TXblZtuxmNn/vd3o9n0o712CjWY2NIFjeqaC260hT0pQbU8YG5hsPq5vzRUdoajJiMVtRhKvJLkympTCMlOzDNSz6IvBYL1vp6X3Xt7VoksxmFRoNuw3qitvi6QmpSkoNz8akeX6J2/nXfoGxZgqhUKNgORTshqxo0YmbeH4RiXA/aEkeFQpEF7P2TBG0D8A1Zlm96589fBZBl+S+Tsz8c/3HAJcvy8wqF4jlZlu+e73oiQRMEQRCC7QMT011WOPAYNP3M15Dg1h9C7uZ5D5FlmR+fucAzb5xHmnaSmBDB07evoCY/acGXlSQPxpHn6e19Brd7mtTUO8nNuZewsMC/yJrNZhobG2ltbcXj8bBs2TKqq6sxGAx+nUeWZQbPnqJpz/MMnTtNRFQ0a3fcxuqbdhKunz+xXfA1vBKOdhPWllEcndMAhOXF+oZgFyegUF9+ZUSWZcb6ZmmrN9J1bAyPSyI+TU9JVRqFFQbC9ZceVC5cnOx2Yzt+wtcV8uBB3ENDAIQvX+5rMrJlC2EFBcFJhm0m6Pq9bylk9wFwW0Gjh7yt7+xb+xDoEwJ/3WtIKMb1K5mg3Qlsl2X5U+/8+a+BClmWP/c+x+uAHwE2oEOW5Z9c5Gs+DXwaICUlZd1vf/vbRd9vsFgsFiIjAxOgBUEQhKvrgxbTo83tFHX8EJ3diDH1Rnpy/w6vev4lWmYJfjCmpPe8DYXDS2Gymk8WakjRLzyJkGUbsvwqMgcANQrFThTciEIR+G51LpeLoaEhjEYjXq+XhIQEli5dSnS0/0OCLaPDjLQeZXawD6VWS/LytaSsXIs6wr/GJPNR2yH6goKoYQUahwKPVmZuicxsuow7QKvnvG4Z8wBM98g4pkGhhOgMiMtRoEtGVNUuhyyjGhkh7NQpwk6fRtvXD4A3IQHnypU4V63ElZ8PQZi3pvS6iJ05Q8JUM4mTzYS5TMgoMccUM5lYzlRCBXZdasCvG+pCMa5v3rw5NBM0f4kKmiAIghBsH8iY7rbD4e9A4w8h0gC7noHC7Zc87NURE/e92Y6jy4xKhk9szOJLW/OJiVh4JcZm66e7+ztMTL5FePgS8nIfIDl5Z1ASBLvdTlNTE01NTdjtdnJycqiuriYrK8vv64319dC853k6mxtRa7Ws2rad0l13EBkfuEqFLMk4uqaxNo/iaDeBJKPNjkZfnopueQIKTWBe8CcG52hrMNLZNIrL4SUmOYKSyjSKNqSiixbt3S+Xe3wcy+HDWA4ewtrYiOxyoYyKIrKmhqitW9BXV6Pys6HNgkgSjJz841LIsbO+v08sfGff2g5YUvqB2LcWinE9ZJc4+kskaIIgCEKwfaBj+nArvPw5GG+DlXfD9u+ALn7eQ8xuDw+eGeDVhkHUwzaiIjQ8cFMhHy3LQK1a+IufafoIXV2PY7G0ExOzjoL8R4iOXnm5n+iinE4nx44do7GxEavVSkZGBtXV1eTn5/udqE1dGKL5pedpb3gbpVLJshu2UX7bncQk+7eM8lK8cy6srWNYW0bxTjlQhKvRr01GX25AE6CZZ26Xl57WcdrqjYz0mFEqFWSvSqSkKo304niUARgJ8EEn2WxYGxuZO3AQy+HDeKenQa1GX15G5JatRG3ZjCYtLTgXnx74Y7I20ACSB/RJvn1rhTsg54Z5O7tey0Ixrl/JBE2Nr0nIVmAYX5OQj8myfG7RF/kTIkETBEEQgu0DH9M9Lqj7PtQ9BRFxsPP7UHLbJQ87bJrli03dTJ+eQjntIi85kq/tKqGmYOH702TZi3HkBXp6vo/bPYXBcDu5ufcTHhbYZOcP3G43J06coKGhAbPZjMFgoKamhqKiIpR+VhVmxkZpeeUFzh3ejyRJFFfdQPntHyFhSUZA71mWZJy9Zqwto9jPToJXRpsR5durtjIJZVhgqmqmESttDUbOHxnFYXUTFR9OcWUqxRtTiYwTzScCQfZ6sZ88+W4Lf1d/PwBhxcVEbd5M5NYthJeUBGe5qX0Guvf7krWut8A5C+oI3z7Uwh1QcBNEBqnByVUQinE9WF0c/we4AUgExoCvy7L8S4VCsQP4Ab7Ojb+SZfnxRV3gIkSCJgiCIASbiOnvGD0DL38WRk75ErQdT13yhc3i8fJYj5H/PHGBiM5ZvDYPW4qSeWhHMXnJC9//4fHM0T/wMwYHf4VCoWLp0n9gaeanUKkiLvdTvc/1PJw+fZr6+npMJhOJiYlUV1ezfPlyVH7uE5ozTXLs1T2c3r8Pj9tFQUUlFbvvIjkrJ+D37bW6sZ0Yx9o8imfchkKrQrc6CX2ZAU16ZEBe7L1uid5TE7TVG7nQMY1CAZnLEyipTCNrRQJKP6qkwvycvX1YDh1k7sBB7CdOgCyjNhiI3HwDUVu2oqsoRxmAMQ/v4XH5KmrnX/dV2MxDgALSy/64FDKxAK7hfYmhGNdDdlC1v0SCJgiCIASbiOl/wuvx7Us7/ARoI+HmJ2HFnZd8UWuctnBP2wAXzpuI6LOAV+bj65fypW35xPoxP81uH6K750nGx18nLMxAXu4DpKTcgkIRnKRAkiTOnTtHXV0d4+PjxMXFUVlZyerVq1H7OYjYNmvm+Osvc2LfXlx2Gzlry6jYfRdpBcUBv29ZlnENzmFtHsV+egLZLaFJ1aMvN6BbnYwyIjAzz8wTNtobRmg/MoLN7EIXo6V4QyrFlWnEJAUnef6g8phMWA4dZu7QQawNjch2O0q9Hn11NVFbNhNZU4PKz/l+CyLLvl/OnH/DN3Nt5JTv7+NzfbPWinZCejmorq05eqEY10WCFmSh+NAFQRCExREx/SImzvuqaRdaoOBm2PU0RM+/T8bmlfhu3wg/7x4lus+Ca9BCdLiGe7bl83/WL0XjR+VleqaFrq7HmJs7R3T0agryHyYmZu3lfqr3JUkSnZ2d1NbWYjQaiYqKYuPGjaxbtw6tnxUMh9XCyX17aX3jFRxzs2QsW8n6O+4mY9nKoCxdkxwebCcnsLaM4h62gFqJbkUi+nID2qzAzDyTvBL9Z6ZoazAyeHYKWYb0ojhKqtLIWZWESiOqaoEkORxYjxzBcvAQc4cO4Z2cBJUK3bp177bw12YEdintu8zD0PkGdLwOfbUguSEi3rcEsnAH5G655AzFUBCKcV0kaEEWig9dEARBWBwR09+H5IWmf4UD3wSVFm56HNZ8/JLVtGNmK/d0DNI9ZiG9z8rEiJXcJD2P7CzhhsKkBScMsiwxOrqH7p6ncLnGSUm5hbzcBwgPD1JDBd4ZVN3bS21tLQMDA+h0OjZs2EBZWRnhfg6qdjnsnN6/j2Ovvoh1ZprU/EIqdt9NztqyoLW0dw1bsDaPYDs5gez0ok6KQF9mQLc2GVVkYJbKWaYdtDeO0NZgxGJyEh6poXC9gZLKNOJTAzQTQHiXLEk4zpzxNRk5dBBnVzcAYfl57zYZCV+xAkUwOjM6ZqHngK+61vkmOGZAFQY5m3zVtYKbITo0W/iHYlwXCVqQheJDFwRBEBZHxPRLmOqBV74AA/WQs9k34Do2c95DHF6JZwbG+PHAKDEmN5Hdc4xPO6gpSOKRncUUpCy8xbjHY2Vg8F8ZHPwFAJmZn2Jp5j+gvsTstss1MDBAXV0d3d3dhIWFUVFRQUVFBXq9f9f1uFycPbyflldeYHZinKSsHCpuv4v8ig0olYGfiwUgubzYT09ibRnFNTALKgURyxLQlxkIy41FEYDujJIkM9Ruor3eSN+pSSRJJjUvhpLKNHLXJaPRBuezfdC5Bgd9TUYOHsLW2gpeL6qkRKJu8DUZ0a9fj9LPXyYsiNcNg0f/uBRyut/392lr/7hvLbkkZPathWJcv24StLyMEvl7X/rN1b6N95iZmSE2GOuABUEQhCtOxPQFkCWy3a+yzPmvAJwL+zR9mlt9047nMRgB/7FUwXA4ZHVYmLkwh0uW2RCuY7s+ikg/fuuv0EwQnvZfaOIbkNxxOI0fxW3aBAR3eZ3NO8O4qwuzZwQlKhI0WSRpc9Eo/XsJliUvlqnTzIzU4nZMoQlPJDa1msiElSiClKgBhHskkhxuEh0e1DI4lAomw9VMhqtxB6jhh+SVsM26sJpdeN0SCiVERGnRx4ShCVCXSeG9ZI8Hr9mMd3oar9nsq3orVaiio1HFxaGKjUGhXviMQr+4bWCbApsJnHO+v1OH+8Z06OIhPAa4eslaKMb1O+5bJxK0YArFhy4IgiAsjojpCxchjbLG8X1SvMeYVK3kePgDWJVL5j3Go4A3U+ANg4Jwu5fcM3N0m21oFQpu0kVSFaFH7cdv3VX684Qv+TdU+m68thwcF/4WrzXwjTj+ksM7y5irixnPMAqUxGsySdbmoVX6N0dKliWspjZmjG/jso+h1sYSm1ZNZOJqlMogvUwDClkmzuklyeEm2i0hAzNaFRPhasxaVcAqH067B5vZiX3ODYAmTIUuRosuShuQyp3wPmQJ7+wc3plpvNMzyG4XoEAZGYkqLhZVbFxwKmsAXhfYTb5kzT4DsgRKNejifPvXIuJ8f76CQjGuXzcJmljiKAiCIASbiOl+kmU4+V+w7yHfi9mWR2D9P8IlqkDtFjtf6hjk1JydTZpwFB0zHO2eIitBx8M7S9hWnOzX/rSxsVfp7nkSp3OU5OQd5OU+QEREkBon/AmTyUR9fT0nT54EYOXKlVRVVZGYmOjXeWRZpvd4C00vPsdI93n0cfGU7trNqm03ownWi/Q7PJN2rMdGsR4bQ7K4UUVr0ZWmoC81oI4PzLUdVjfnm0ZpqzdiMlpRh6nIX5dMSVUaKdmBaV4iXJwsyzjOtWE5eJC5gwdxdnQAoM3OJnLLZqK2biVi1SoUfo6UWBCXFXoO+Vr4d+7zVdmUGsiq8nWELNgOscH//2koxvXrZomjSNAEQRCEYBMxfZFmR2DvPb6Ob0tK4bafQHLRvId4JJmfDY3zvf5RIpRKPqbW8XbjED0TVirzEnhkZwnFqdELvgWv18bA4C8YGPg54CUj45NkLf0MavXC97gtltlsprGxkdbWVjweD8uWLaO6uhqDwb8h27IsM3j2FE17nmfo3GkioqJZu+M2Vt+0k3B9cLvlyV4JR7sJa8sojs5pAMLyYn1DsIsTUKgvfwmkLMuM9c3SVm+k69gYHpdEfJqekqo0CisMhOuDVzUUfNzDw8wdOozl4AGszS3g8aCKjyfyhhuI2rIZ/caNKHX+VYIXRPLCUPM789ZehylfgxMMK3171op2+P57EJL1UIzrIkELslB86IIgCMLiiJh+GWQZzv4vvH4/uCyw6StQ+UVQzf/S3W1zcE/7EC2zVm6IjWTDLPz67V5m7W7uLsvkyx8qIDEybMG34XCM0NP7FKOjL6HVJpKTcy9pqXeiUAR//5PFYuHo0aM0NzfjcrkoKCigpqaG9PR0v881fL6dpj3P0XfiGNoIHWu272LtjtvQRccE4c7/nGfGgbVlDNuxMbxmJ0q9Bt26ZN8Q7KTAvLy77B66jo3RVm9kfGAOlVpJzpokllWlkVYQK6pqV4B3bg5LbS2Wg4ew1NYizc2hCAtDv2GDr7q2eTPqpKTgXHyyy5eodbwOQ02ADNFLfB0hC3dAVjWoA9NtNBTjukjQgiwUH7ogCIKwOCKmB4BlAl6/D9pe8v1G/LafQOrKeQ/xyjK/Hp7k8Z4RVAq4Pz2Z0bNT/OfRAcI1Kj63JY+/q8wiTL3wJMs8e4qurm9hNh8nMrKY/PyHiY/bcJkfbmHsdjtNTU00NTVht9vJzs6mpqaGrKwsvxOPsb4emvc8T2dzI2qtllXbtlO66w4i4xOCdPd/JEsyjq5prM2jONpNIMlos6PRl6eiW56AQhOYpHdiaI62eiOdzWO47B5ikiMoqUyjaEMquujAvKQL85NdLmytrcwdPITlwAHcRiMA4atWEvVOC39tXl5wEmfrpK91//nXoeegr+mINgryt/mStfwbfXvXFikU47pI0IIsFB+6IAiCsDgipgdQ28vw2n2+hgFV90LNfaCevxI2YHdyb8cQDTMWqmIj+WJiPP92oIcDHeNkxuv46s1FbF9u8GN/msz4+Gt09zyJwzFMUuKN5OU9iE6XFYAPeGlOp5Njx47R2NiI1WolIyOD6upq8vPz/X7RnbowRPNLz9Pe8DZKpZJlN2yj/LY7iUn2bxnlYnnnXFhbx7C2jOKdcqAIV6Nfm4y+3IDGEJgxB26Xl57j47TVGxnpNqNUKshelUhJVRrpxfEoRWORK0KWZZydncwdOIDl4CEcZ88CoMnMJGrzZiK3bEG3bi0KdRCafbjt0Pv2O0sh3wDrOChUsHTjH5dCxmX5dcpQjOsiQQuyUHzogiAIwuKImB5gNhPs+yqc/i0kFfuqaenr5j1EkmV+Y5zimz1GvDI8nJtKvk3m2691cH5sjvLseL62q4TlSxa+1M/rdTA09Cv6B/4FSXKTkfEJsrM+d0X2pwG43W5OnDhBQ0MDZrMZg8FATU0NRUVFKP0cKjwzNkrLKy9w7vB+JEmiuOoGym//CAlLgt9sAXxVNWefGWvzKPazk+CV0WREEVlmIGJVEsoAtdI3jVhpazBy/sgoDqubqPhwiitTKd6YSmRccBunCH/OPTqK5fBh5g4cxHb0KLLbjTImhshNNURt2Yq+qgpVZBBmEUoSGI9Dx2u+ZG2i3ff3ySW+ZK1wB6StgUv8fygU47pI0IIsFB+6IAiCsDgipgdJ55vw6pfAMgobPgebHwJNxLyHXHC4uP/8EIdMc5TH6HmqYAnNZyd4+q1Opm0u7lybzv03FZIcvfCXdadznJ7epxkZeQGNJo6cnHtIS70L5RVq++3xeDhz5gx1dXWYTCYSExOprq5m+fLlqPzsojdnmuTYq3s4vX8fHreLgvKNVNxxN8lZOUG6+/fyWt3YToxjbR7FM25DoVWhW53k26uWHhmQ5XBet0TvqQna6o1c6JhGoYDM5QmUVKaRtSIBZYDmtwkL47VYsTY0YDl4AMvht/GazSg0GnTr1xO1xVdd06SkBOfipt53hmO/AQONIHsh0gCF233JWvYm0Lw3HoRiXBcJWpCF4kMXBEEQFkfE9CBymOH3j8Lxf4f4XF81ben8e8JkWeb50Wm+1j2MU5K4PzuVjybE8rO3e/h1Qx8alZLPbs7j76uyCfdjP9Ts3Fm6uh5nZqYZvT6f/PxHSIivutxPuGCSJHHu3Dnq6uoYHx8nNjaWqqoqVq9ejdrPZWO2WTPHX3+ZE/v24rLbyFlbRsXuu0grCP48uD+QZRnX4JyvqnZ6AtktoUnVoy8zoFuTjDIiMAmwecJGe8MI7UdGsJld6GK0FG1IpaQyjZik+RN+IfBkjwfb8eNYDh5i7uBB3IODAIQvW/ZuC/+wwsLg7FuzmaDrLTj/GnQf8DUm0ughd7OvhX/+TaD37dMMxbguErQgC8WHLgiCICyOiOlXQM8hePULMDME5Z+GbV8H7fzLo8acbr7SOcS+yVlWR+l4piiDCIfEE2+08+a5MZbERvDgzUXsWpnq1/60iYnf09X9BA7HEIkJW8jL+yp6/ZWrQEmSRGdnJ7W1tRiNRqKioti4cSPr1q1Dq/WvOYbDauHkvr20vvEKjrlZMpatZP0dd5OxbOUV7YgoOTzYTk5gbRnFPWwBtRLdikT05Qa0WYGZeSZ5JfrPTNHWYGTw7BSyDOlFcZRUpZGzKgmVRlTVrjRZlnH19LzbZMR++jTIMpq0NCK3bCFqy2Z0paUo/Px3vSAeJ/TX+TpCnn8D5oygUEJGBRTuoMmcRMWOjwb+updBJGhBJn6YC4IgXD9ETL9CnBY48E1o/leIXQq3/ghyNs17iCzLvDw+w0NdF5jzSNyTlcLnM1No6Zvisb3ttI/Msm5pHI/uKmF1RuyCb0WSnAwN/Tt9/T9BkhykL/k42dmfR6NZ+DkulyzL9Pb2Ultby8DAADqdjg0bNlBWVka4n4OqXQ47p/fv49jePVinTaTmF1Kx+25y1pZd8db1rmEL1pZRbCfGkZ1e1EkRvqra2mRUkYF5UbdMO2hvHKGtwYjF5CRcr6FwvYGSqjTiU4OwL0pYEM/EBHOHD2M5eAhrYyOy04kyKorI6moit2whsqYaVfTC5xwumCzDyElfotbxOoydYcSwjdTP/G/gr3UZRIIWZOKHuSAIwvVDxPQrbKARXv4cmHpg3d/Cjd+E8Pmbf0y6PDzSdYGXxmdYFhnOD4oyKdFH8ELrEN97s5NJi5M71izh/u2FpMYsfNmb0zVJb+8zGI3Po1ZHk5P9BZYs+RhK5ZUdnjwwMEBdXR3d3d2EhYVRUVFBRUUFer1/yYbH5eLs4f20vPICsxPjJC3NpmL3XeRXbESpDP5MuD8lubzYT09ibRnFNTALKgURJQnoyw2E5caiCEB3RkmSudBuoq3eSN+pSSRJJjU3hpKqNHLXJaPRXtnPLPyRZLNhPXKEuYMHsRw6jNdkArUaXVkpUVu2Erl5M9r0JcG5+MwgR480sv7mvwrO+RdJJGhBJn6YC4IgXD9ETL8K3HY49G048mOISoVbnvXNPbqENyZm+ErnBabcHj6fmcI9WSm4XF5+eriHX9b3oVTAZzbl8g81uUT48XI+Z+mgq+txpqcb0elyyc9/iMSEGy7jAy6O0Wikrq6O9vZ2NBoNpaWlbNy4kago/zpPej0eOhrepuml3zFtvEBcWjoVt3+EospNqILRJv0S3GNWrM2+qppk86CKD0dfmoJ+XQqqmIUPJJ+PbdZFxxFfVc08bkcboaagPIWSyjSSMq9M507h4mSvF/up01gOHmDu4CFcvb0AhBUWErV1C5GbtxC+fFlAq72hGNdFghZkofjQBUEQhMURMf0qutAKL3/W10p71Ufhpm+DLn7eQ2bcHr7ebeS5URP5ujCeLcpkbYyeIZON77zRwWtnRkiNCeeB7YXctmrJgudoybLM5OQBurqfwG7vJz6+mvy8h4iMLAjEJ/XL+Pg4dXV1nD17FqVSyZo1a6isrCQuzr/BvZLkpaupkaYXn2NisJ/opBTKb/swyzZtQx2MfUGXILsl7Od8VTVnjxkUEF4Uj77MQHhhPArV5b+gy7KMsWuGtnojPccn8HokkjKjKKlKo6AsBW2AmpcIi+fs6/M1GTl0EPvxEyBJqFNSiNx8A1Fbt6KrqEB5mf8+QzGuiwQtyELxoQuCIAiLI2L6VeZxQu1TUP80RMTDrqeh+JZLHnZwapb7zw8x4nTz6YwkHshORadS0txn4rG9bZwZNrMqI5av7Sph3dKFJzaS5OLChd/Q1/9DvF4baWkfJSf7i2i18yeOwWAymaivr+fkyZMArFy5kqqqKhITE/06jyzL9B5voenF5xjpPo8+Lp7SXbtZte1mNH7udwsUz6Qd67FRrMfGkCxuVNFadKUp6EsNqOMDc08Oq5vzTaO01RsxGa2ow1Tkr0umpCqNlOzANC8RLo/HZMLydq2vhX99A7LdjlKnQ19VRdTWLehralD7+YsJCM24LhK0IAvFhy4IgiAsjojpIWLktK+aNnoalu2Gm78HkUnzHjLn8fJYj5H/ME6RHaHl6aJMNsRGIkkyL54Y5sl9HYzPObl1VRpfubmIJbEL35/mcpno7XsWo/F/UKl0ZGd9gfT0j6NUXvnKk9lsprGxkdbWVjweD8uWLaO6uhqDweDXeWRZZvDsKZr2PM/QudOER0Wz7uZbWb19F+H6yCDd/SXuySvhaDdhbRnF0TkNQFheLPpyAxHFCSjUl9+dUZZlxvpnaas30nVsHI/TS3yanpKqNAorDITrr+yeQ+HiJKcT65Ej71bXvBOToFKhW7vW1xVy6xa0mZkLOlcoxnWRoAVZKD50QRAEYXFETA8hXjc0/ADefhLCouDmJ2H5h+ESlY766Tm+3DHEgMPF3y1J5OGcVCLVKqxODz97u4ef1/r2vHy6JofPbMpFH7bwZW4WSydd3d/GZKojIiLrnf1pW65K9cVisXD06FGam5txuVwUFBRQU1NDenq63+cydrbTtOd5eo+3oI3QsWb7LtbuuA1d9PwNW4LJM+PEdmwUa8sYXrMTpV6Dbl2ybwh2ki4g13DZPXQdG6Ot3sj4wBwqtZKcNUksq0ojrSBWVNVChCxJOM6e9TUZOXAQZ1cXANq8XKI2+5K18JUrUSgvnsCHYlwXCVqQheJDFwRBEBZHxPQQNN7uq6YNt0LhTtj5fYhOnfcQq9fLd3pH+MWFSZaEa/h+YSab4n3NIYZn7Hz3jQ5eOWUkOSqM+28q5MNr0/3anzY1dZiu7iew2XqIi9tIfv7DREUWXfZHXQy73U5TUxNNTU3Y7Xays7OpqakhKyvL7wRjrK+H5j3P09nciFqrZdW27ZTuuoPI+IQg3f2lyZKMo2saa/MojnYTSDLa7Gj05anolieg8GNA+XwmhuZoqzfS2TyGy+4hJjmCkso0ijakoou+8pVS4f25hoawHDzI3MFD2I4dA68XVWIiUZtvIHLzFvQbN6D8k+W6oRjXRYIWZKH40AVBEITFETE9REleOPpTOPgtUIfBTU/A6o9dsprWPGPhno4heuxOPpYaz9dz04jR+CpmrQPTPLa3jZNDM6xYEsOju0ooz1743jJJcjM8/N/09j2LxzNHWtpd5Obcg1br356wQHE6nRw7dowjR45gsVjIyMigurqa/Px8vxO1qQtDNL/0PO0Nb6NUKll2wzbKb7uTmGT/llEGmnfOhbV1DFvLKJ4pB4pwNbo1SejLU9EGaOaZ2+Wl5/g4bfVGRrrNKJUKslYlUlKVRkZx/IITeeHK8M7MYKmrY+7gQay1dUhWK4rwcPSVlURt2ULkDZuoP3Mm5OK6SNCCTPwwFwRBuH6ImB7ipnp8c9MGGyF3q68lf2zGvIfYvRLf7x/lp4PjJGs1PFmYzocSfUv3JEnmlVNGvruvgxGzgx0rDHz15mIy4he+hM7tnqGv70dcGP4NSmU42VmfJSPjEyiVgWkZ7y+3282JEydoaGjAbDZjMBiorq6muLgY5fssAXs/M2OjtLzyAucO70eSJIorN1F++10kpM//PQ82WZJx9pmxNo9iPzsJXhlNRhSRZQYiViWhDAtMVc00YqWtwcj5I6M4rG4i48MoqUyjeGMqkXFXp6GK8P4klwtbc8u7Lfw9o6OgUGDdsoXSn/z4at/enxEJWpCJH+aCIAjXDxHTrwGSBMd+CW993VdBu/GbsO7v4BLJx4lZG/d0DNJhdfDhlDgey19C/DvVNLvLy89re/nZ2z14JZlPVmXz2c25RIUvvGGE1dpLd/cTTE4dJCI8k7y8B0lK+tBV28fk8Xg4c+YMdXV1mEwmEhMTqa6uZvny5ahU/iUwc6ZJWvfu4dRb+/C4XRSUb6TijrtJzsoJ0t0vnNfqxnZiHGvLKJ4xGwqtCt2qJPTlBjTpkQH5/nvdEr2nJmirN3KhYxqFAjKXJVBSlcbSFQmoVJffvEQILFmWcbS1YTl4iG6Xiw1fvvdq39KfEQlakIkf5oIgCNcPEdOvIdMD8OoXoPcwZFXDrT+E+PkTBpck8ezAGM8OjBGrVvNEQTq3JMe++7+Pmh08+WYHLx4fJjFSy30fKuQjpRmo/FjWNjVVR1f341itXcTGVlCQ/zBRUcsW+SEvnyRJtLW1UVtby/j4OLGxsVRVVbF69WrUfg6qts2aOf76y5zYtxeX3UbO2jIqdt9FWkFxkO5+4WRZxjU456uqnZ5AdktoDHr05QZ0q5NQ6gLTndE8Yae9wUj7kRFsZhe6aC1FG1MpqUwlJkDNS4TACsW4LhK0IAvFhy4IgiAsjojp1xhZhhP/CW8+7Ov6uPVrUPEPoJy/QnTOYuee9kFOW+zsTIrhOwXpJGn/+AJ/amiGb+5to3VgmuLUaB7dVczG3IXvLZMkD8aR5+ntfQa3e5rU1DvJzbmXsLDkRX/UyyVJEp2dndTV1TE8PExUVBQbN25k3bp1aP0cBOywWji5by+tb7yCY26WjGUrqdh9F5nLV4VE50PJ4cF2cgJryyjuYQuolehWJKIvM6AN0MwzySvRf2aKtgYjg2enkGVIL4qjpDKNnNVJqDSiqhYqQjGuiwQtyELxoQuCIAiLI2L6Nco8DHvvga43Ib0cbvsJJBXMe4hHkvmXoXG+1zeKXqXksfwlfDgl7t2Xd1mWee3MCE+83sHwjJ0PlaTw0I5ishIX3ozC7Z6lv//HDF34D5RKLVlLP0NGxidRqa7e/iVZlunt7aW2tpaBgQF0Oh3r16+nvLyccD8HVbscdk7v38exvXuwTptIzS+kYvfd5KwtC4lEDcA1bMHaMortxDiy04s6KQJ9mQHd2mRUkYHpzmiZdtDeOEJ7wwhzJgfheg2F6w2UVKURH6DmJcLihWJcFwlakIXiQxcEQRAWR8T0a5gsw5nfwRsPgMsGNzwIG78AqvmX8XVaHdzTMUjrrI1tCdE8WZBOWvgfX9wdbi+/rO/jp4e6cXkl/nZjFp/bkk9MxMKXzNls/XR3f4eJybcID19CXu4DJCfvvOpJzODgILW1tXR3dxMWFkZFRQUVFRXo9f4lFR6Xi3Nv76f55ReYnRgnaWk2FbvvIr9iI8pLVDOvFMnlxX56EmvLKK6BWVApiChJQF9uICw3FkUAujNKksyFdhNt9Ub6Tk0iSTKpuTGUVKWRuy4ZjTY0vhcfNKEY10WCFmSh+NAFQRCExREx/TpgGYfXvgztr0Dqal81zbB83kO8sswvL0zwRO8IaoWCb+Qt4WOp8X+WQI3POnjq9+f5XesF4nRa7rmxgI+WZaD2o0GEafoIXV2PY7G0ExOzjoL8R4iOXrnYTxowRqORuro62tvb0Wg0lJaWsnHjRqKiovw6j9fjoaPhbZpe+h3TxgvEpaVTcftHKKrchMrP/W7B5B6zYm0Zw3Z8DMnmQRUfjr40Bf26FFQxgem+aZt10XF0hLZ6I+ZxO9oINQXlKZRUppGU6d/3Vbg8oRjXRYIWZKH40AVBEITFETH9OnLuJXj9PrBPQ/V9UP1lUM+/pK3P5uTe84McmbFSExfJU4UZZEb8+Qv72WEzj+1to6nPREFKJI/sLKGmIGnBtyXLXowjL9DT833c7ikMhtvJzb2f8LCrO2MMYHx8nPr6es6cOYNSqWTNmjVUVlYSFxfn13kkyUtXUyNNe55nYqCP6KQUym79MMtv2Ibaz/1uwSR7JOznJrE2j+LsMYMCwovi0ZcZCC+MR6G6/KqaLMsYu2ZoqzfSc3wCr0ciKTOKkqo0CspS0EaETuJ6vQrFuC4StCALxYcuCIIgLI6I6dcZ6xTsexDOPA/Jy+D2n0DamnkPkWSZ/zBO8ViPERl4OCeVv1uSiPJPqmmyLPPmuVG+/XoHgyYbW4qSeWhHMXnJkQu+NY9njv6BnzE4+CsUChVLl/4DSzM/hUoVsdhPGzAmk4n6+npOnjwJwIoVK6iuriYx0b8h3LIs03u8haY9zzHSdR59XDylu3azatvNaPzc7xZsnkk71mOjWI+NIVncKKO1vqpaqQF1fGDu1WF1c75plLZ6IyajFbVWSX5pCiVVaaQEqHmJ8F6hGNdFghZkofjQBUEQhMURMf06df4NXxMRyzhUfgE2PQia+V+6hxwu7u8Y4vD0HOtj9DxdlEmO7s+raU6Pl39r6OdHB7txuL18fP1SvrQtn1jdwqtEdvsQ3T1PMj7+OmFhBvJyHyAl5RYUiqvfBdBsNtPY2Ehraysej4dly5ZRXV2NweBftU+WZYbOneboi88xdO404VHRrLv5VlZv30W4fuFJ7ZUgeyUcHSaszaM4OqcBCMuLRV9mIKIkAYX68p+LLMuM9c/SVm+k69g4HqeX+DQ9JZVpFK43EK4PzEgAwScU47pI0IIsFB+6IAiCsDgipl/H7DPw+0d8bfkT8n170zIr5j1ElmV+O2ri693DuCSZr2Sn8umMJFR/UemYtDh5+q1Ofts8SFS4hnu25fN/1i9F48f+tOmZFrq6HmNu7hzR0aspyH+EmJj5q31XisVi4ejRozQ3N+NyuSgoKKC6upqMjAy/z2XsbKdpz/P0Hm9BG6FjzfZdrN1xG7romCDc+eXxzDixHRvF2jKG1+xEqdegW5eMvsyAJkAzz1x2D13HxmirNzI+MIdKrSRnTRLLqtJIK4gVVbUACMW4ft0kaMtS8+Tn/+6pq30b7+HxePwe9CgIgiCEJhHTr396xVnS1L9GwxQm6UbGvHciM39jiMkwFT8oTuBIko7iGSf3tU2SZXW/5+v6ZPh/sopTKElH5v8qvJQqFv6uJSNhTz2GJe8NpLBZwkfXENW1E5XTvz1gweLCQ7dyki7VBC6Fl2QpkmJvCklyJAr8SyQkScLrdiF5vKAAlVqDSq0JSDfFgJNBjQatHIYaLQoUeHDjUjhx48TPj/7+l5FkvB4ZySshy6BQgkqlRKlWIvK0xQvFuL78id0iQQumUHzogiAIwuKImP7BoMROsup3JKgO4JKTGPb8PTa5eN5jZOCQQc+PCuOxq5X8de8Md/ebUf/Fq5QsQxMKfimrMKJgLRKfUnhZ6scLtqRyYl16EOvSwwDoBzajH9iM0huYDoOXy4OXHuUUnapxHAoPCZKOYm8KBjna70RNliQ8bjeSxwOASq1GpdGgUF79JZ4Xo5CVaGUtGsJRoUJGwoULl8KBpPAG5iIyeL0SkldG8vr+gSlVClRqJUqlImAJ4QdFKMb16yZBE0scBUEQhGATMf0Dpr8BXvkcmHqh9JOw7Z8hPHreQyZcbh7uGuaV8RmWR0bwg6IMlke9d7mbyyPxH0f6efZAFzaXl4+VZ3LPjQXE6xe+P83hMNLd8yRjY6+i1SaTl3sfBsPukNifBuB2uzlx4gQNDQ2YzWYMBgPV1dUUFxej9DPBMo+P0vzyC5w7vB9Jkiiu3ET57XeRkO7/MsorQZZlnL1mrM2j2M9OgldGkxGFviwF3aoklGGBSQhMI1baGoycPzKKw+omMj6M4o1pFG9MJSpAzUuud6EY16+bJY4iQRMEQRCCTcT0DyCXDQ49Dkd+AtFL4JZnIX/bJQ97bWKGBzsvMO328PnMFL6UlULYRZISk9XFD/Z38l9Ng+i0Kr64NZ+/2ZCF1o9mEzPmVrq6Hmd29hRRUcspyH+U2NiLvttdFV6vl9OnT1NXV4fJZCIxMZHq6mqWL1+OSuXfcOY50ySte/dw6q19eNwuCso3Ur77LlKyc4N095fPa3VjOzGOtWUUz5gNhVaFblUS+nIDmvTIgOwj87olek9N0FZv5ELHNAoFZC5LoKQqjaUrElD5sd/xgyYU47pI0IIsFB+6IAiCsDgipn+ADbXAy5+FyfOw+v/ATY9DxPx7v0xuD1/rGuaFsWkK9eE8U5TB2mj9Rb+2a2yOx15rp7ZzguxEPQ/tKGZbcfKCX95lWWJs7FW6e57E6RwlOXkHebkPEBEROhUmSZJoa2ujtraW8fFxYmNjqaqqYvXq1X4vMbPNmjn++suc2LcXl91G9ppSKnbfzZLC+ZeiXk2yLOManPNV1U5PILslNAY9+nIDutVJKHWB6c5onrDT3mCk/cgINrMLXbSWoo2plFSmEhOg5iXXk1CM6yJBC7JQfOiCIAjC4oiY/gHndkDtk1D/A9Anwq5noGjnJQ97a9LMA50XGHO6+UxGMvdnG4h4n4rGofPjfGtvGz0TVirzEnhkZwnFqfMvq/xTXq+NgcFfMDDwc8BLRsYnyVr6GdTqqAWfI9gkSaKzs5O6ujqGh4eJiopi48aNrFu3Dq2fg6odVgsn33yN1tdfxjE3S8aylVTsvovM5atCusOh5PBgOzWBtXkU97AF1Ep0KxLRlxnQBmjmmeSVGDg7RVu9kYGzU8gypBfFUVKZRs7qJFQaUVWD0IzrIkELslB86IIgCMLiiJguAGA86aumjZ2F5R+Gm5/0JWzzmPV4+Wa3kd+MTJETEcYzRRlUxF58xpfbK/HfTYM8s7+TWbubu8sy+fKHCkiMXHgTEIdjhJ7epxgdfQmtNpGcnHtJS70ThcK/JYXBJMsyvb291NXV0d/fj06nY/369ZSXlxPu56Bqt8PBqf1vcGzvHqzTJlLzCqm4425y1paFdKIG4Bq2YG0ZxXZiHNnpRZ0Ugb7MgG5tMqpI/xLW92OZdtDeOEJ7wwhzJgfheg2F6w2UVKURn3rxqu4HRSjGdZGgBVkoPnRBEARhcURMF97lcUHDD+DtJ32NQ3Z8D5bdwaX6ndea5vjy+SEuOFx8ckkiD+WkoldfPGmasbl49kAX/3lkgHCNis9tyePvKrMIe5+vvxjz7Cm6ur6F2XycyMhi8vMfJj5ugz+f9IoYHByktraW7u5uwsLCqKiooKKiAr3ev+TB43Jx7u39NL/8ArMT4yQtzaZi913kV2xEqQyd5PRiJJcX++lJrC2juAZmQaUgoiQBfbmBsNzYgIwYkCWZoXYTbfVG+k5NIkkyqbkxlFSlkbsuGY02tL9HwRCKcV0kaEEWig9dEARBWBwR04X3GGvzVdOMx6FoF+z8PkQZ5j3E6vHy7d4Rfjk8SUa4lqcLM6iOf/8liD0TFr79WjsHOsbJjNfx1ZuL2L7c4Mf+NJnx8dfo7nkSh2OYpMQbyct7EJ0uy59PekUYjUbq6upob29Ho9FQWlrKhg0biI5e+DJPAK/HQ0fD2zS99DumjReIS0un4vaPUFS5CVWItVS/GPeYFWvLGLbjY0g2D6q4MPSlBvSlKahiAjNOwTbrouPoCG31RszjdrThKgrKfVW1pMzQWRIbbKEY10WCFmSh+NAFQRCExRExXbgorweO/gQOPg6aCNj+HVj1V5esph2dsXBvxxC9dicfT03ga3lpRM9THavrmuBbe9s5PzZHeXY8X9tVwvIlMQu/Ta+DoaFf0T/wL0iSm4yMT5Cd9bmQ2p/2B+Pj49TX13PmzBmUSiVr1qyhsrKSuDj/hnJLkpeupiM07XmOiYE+opNSKLv1wyy/YRtqP/e7XQ2yR8J+bhJr8yjOHjMoILwoHn2ZgfDCeBSqAFTVZBlj1wxt9UZ6jk/g9UgkZUZRUpVGQVkK2ojQT2gvRyjGdZGgBVkoPnRBEARhcURMF+Y12QUvfw6GjkLejXDLDyAmfd5D7F6J7/WN8rOhcVLCNDxZkM6Nie+fdHm8Er9tGeLptzqZtrm4c206999USHL0wvdsOZ3j9PQ+zcjIC2g0ceTk3ENa6l0olaH3Im4ymWhoaODEiRPIsszKlSuprq4mMXH+PX9/SZZl+k4c4+iLv2Wk6zz6uHhKd+1m1bab0fi53+1q8UzZsbaMYW0dRZpzo4zWol+Xgr7MgDpAM88cVjedzaO01RuZGrai1irJK01hWVUaKQFqXhJqQjGuiwQtyELxoQuCIAiLI2K6cEmSBC3/D/Z/AxQq+NBjsO5vL1lNOz5r5Z6OIc5bHdyZEsdj+UuI07x/wmS2u/nJoW5+3dCHRqXks5vz+PuqbMI1C99DNDt3lq6ux5mZaUavzyc//xES4qsWfPyVZDabaWxspLW1FY/HQ0lJCTU1NRgM8y8n/UuyLDN07jRHX3yOoXOnCY+KZt3Nt7J6+y7C9Rdv2hJqZK+Eo8OEtXkUR+c0AGF5sejLDESUJKDwY4be+15Dlhnrn6Wt3kjXsXE8Ti/xaXpKKtMoXG8gXB+YkQChIBTjukjQgiwUH7ogCIKwOCKmCwtm6oNXvwB9tZBdA7f8EOKz5z3EKUn8oH+MHw2OEadR852CdHYmxc57TP+klSfeaOfNc2MsiY3gwZuL2LUy1a/9aRMTv6er+wkcjiESE7aQl/dV9PqchX7SK8pisXD06FGam5txuVwUFBRQXV1NRob/896Mne007Xme3uMtaCN0rNm+i7U7bkMXvfBlo1ebZ8aJ7dgo1pYxvGYnSr0a3doU3xDsAM08czk8dLWM0VZvZHxgDpVaSc6aJEqq0lhSEHvNV9VCMa6LBC3IQvGhC4IgCIsjYrrgF1mG4/8Obz4Cshe2fh3KPw3K+SscZ+ds3NMxxBmLnVuSYvl2wRKStPNXLBp7JnlsbzvtI7OsWxrH13aVsCojdsG3KklOhob+nb7+nyBJDtKXfJzs7M+j0Sz8HFeS3W6nubmZo0ePYrfbyc7OpqamhqysLL8ThvH+Xpr2PE9nUwNqrZaVW7dTestuouL9W0Z5NcmSjLNr2jcEu90Ekow2K9o3BHtFIgo/KqvzmbwwR1udkfPNY7jsHmKSIiipSqNoQyq66NDf03cxoRjXRYIWZKH40AVBEITFETFdWBTzBXj1S9D9FmSsh9t+Aol58x7ilmR+OjjO9/tHiVQr+VZ+OruT569WeCWZ3x0b4qnfn2fS4uKONUt4YHsRhhg/9qe5JuntfQaj8XnU6mhycr7IkrSPolSG5pI2p9NJa2srjY2NWCwW0tPTqampIT8/3+9EberCEM0v/472+sMolUqW3bCN8tvuJCbZv2WUV5t3zoW1dQxbyyieKQeKcDW6NUnoy1PRBmjmmdvlpef4OG31Rka6zSiVCrJWJVJSlUZGcTzKAIwEuFJCMa6LBC3IQvGhC4IgCIsjYrqwaLIMp5+DN74CHgdsfgjWfxZU8zfmOG91cE/HIMdnbXwoIZrvFqaTGjZ/pWLO4eanh3v4ZV0fKqWCz2zK5dM1OUT4MeNqbq6dru7HmZ4+gk6XS37+QyQm3LDg4680t9vNiRMnaGhowGw2YzAYqK6upri4GOUlKpZ/yTw+Sssr/8vZQ28hSRLFlZsov/0uEtL9X0Z5NcmyjLPXjLVlFPvZSfDIaDKi0JeloFuVhDIsME1hpkettNUb6Tg6isPiJjI+jOKNaRRvTCUqQM1LgikU47pI0IIsFB+6IAiCsDgipguXbW4MXrsXOvZC2lpfNS2lZN5DvLLM/xua4Dt9I2iVCv45bwl/ZYi/ZIVoyGTjO2908NqZEVJjwvnK9iJuXZW24OqGLMtMTh6gq/vb2O0DJMTXkJf/EJH6/AV/3CvN6/Vy+vRp6urqMJlMJCYmUlVVxYoVK1Cp/FvmN2eapHXvHk7t34fH5aKgfCPlu+8iJTs3SHcfPF6rG9uJcawto3jGbCi0KnSrknx71dIjA7KPzOuW6D01QVu9kQsd0ygUkLksgZKqNJauSECluvzmJcEQinFdJGhBFooPXRAEQVgcEdOFgJBlOLcHXr8fHGbY9ABU3QOq+ZcR9tqc3NsxyFGzlRviovheUQYZ4Zfe99PcZ+Kbe89xdniW1RmxPLqrhHVLFz5PTJJcXLjwG/r6f4jXa2NJ2sfIzv4CWm38gs9xpUmSRFtbG3V1dYyNjREbG0tVVRWrV69G7eegatusmeOvv8KJfa/istvIXlNKxe67WVJYHKS7Dx5ZlnENzvmqaqcmkN0SGoPet1dtdRJKXWCWspon7LQ3GGk/MoLN7EIXraVoYyollanEBKh5SaCEYlwXCVqQheJDFwRBEBZHxHQhoKyTviWPZ1+AlBVw248hbfW8h0iyzL8NT/Kt3hEUwKO5afxNWgLKS1RAJEnmxRPDPLmvg/E5J7euSuMrNxexJDZiwbfrcpno7XsWo/F/UKn0ZGd9nvT0j6NUhm5zCFmW6ezspLa2luHhYaKioti4cSPr1q1D6+egaofVwsk3X6P19ZdxzM2SsWwlFbvvInP5qmuyk6Hk8GA7NYG1eRT3sAXUSnQrEtGXGdAGaOaZ5JUYODtFW72RgbNTyDIsKYxjWVUaOauTUGmuflUtFOO6SNCCLBQfuiAIgrA4IqYLQdHxGuy9F6wTUPUlqHkANPPv3Rm0O7nv/BC10xY2xOp5ujCTbF3YJS9ldXr42ds9/Ly2F4BP1+TwmU256P3Yj2SxdNLV/W1MpjoiIrLe2Z+2JaSTFFmW6e3tpa6ujv7+fnQ6HevXr6e8vJxwPwdVux0OTh/YR8urL2KdNpGaV0jFHXeRs7Y8pL8H83ENW7C2jGI7MY7s9KJOikBfZkC3NhlVZGAScMu0g/bGEdobRpgzOQjXayhcb6CkMo34tMA0L1mMUIzrIkELslB86IIgCMLiiJguBI192teO/+RvILHQtzcto2zeQ2RZ5n9GTHy9exiPLPNgTiqfSk9CtYAkYXjGznff6OCVU0aSo8K4/6ZCPrw23a/9aVNTh+nqfgKbrYe4uI3k5z9MVGTRgo6/mgYHB6mtraW7u5uwsDDKy8tZv349er1/SYLH5eLc2/tpfvl/mZ0YIykzi4o77ia/YiNKZWDa2l9pksuL/cwk1uZRXAOzoFIQUZKAvsxAWF4sigB0Z5QlmaEOE231RvpOTiJJMoacGEqq0sgrTUbjRzObQAjFuC4StCALxYcuCIIgLI6I6ULQde+HV74Is8Ow4bOw+WHQzr9nx+hw8UDnBfZPzbIuWsczRZkU6BdWFWodmOaxvW2cHJphxZIYHt1VQnn2wveWSZKb4eH/prfvWTyeOdLS7iI35x602tCfIWY0Gqmrq6O9vR2NRkNpaSkbNmwgOjrar/N4PR46Gt6m6aXfMW28QFxaOuW33Ulx1Q2o/NzvFkrcY1asLWPYjo8h2Tyo4sLQlxrQl6agirl0tXYhbLMuOo76qmozYza04SoKyg2UVKWRlBkVkGtcSijG9ZBN0BQKRSbwQ8AEdMqy/J35vl4kaIIgCEKwiZguXBGOWdj/DTj2S4jL9u1Ny6qa9xBZlnlxbJpHuoaxeiXuyzbwTxnJqBdQ8ZAkmVdOGfnuvg5GzA52rDDw1ZuLyYhfeDMHt3uGvr4fcWH4NyiV4WRnfZaMjE+gVAbmRT6YxsfHqa+v58yZMyiVStasWUNlZSVxcQtvpAIgSV66mo7QtOc5Jgb6iE5KpuzWO1l+wzbUfu53CyWyR8J+zldVc/aYQQHhhfHoyw2EF8ajUAWgqibLGLtmaGsw0tM6gdcjkZQZRUlVGgVlKWgjgpfohmJcD0qCplAofgXsAsZlWV7+J3+/HXgWUAG/mC/pUigUO4E4WZZ/o1AonpNl+e75rikSNEEQBCHYREwXrqi+Wnjl8zDdD2Wfgm3fgLD5qwoTLjcPdl7gtQkzKyMjeKY4k2WRC2sEYnd5+XltLz97uwevJPPJqmw+uzmXqPCFd/azWnvp7n6CyamDRIRnkpf3IElJH7om9maZTCYaGho4ceIEsiyzcuVKqqurSUz0rxooyzJ9J45x9MXfMtJ1Hn1cPKU7b2fljTejDV94U5ZQ5JmyY20Zw9o6ijTnRhmtRb8uBX2ZAXWAZp45rG46m0dpqzcyNWxFrVWSV5rCsqo0UgLUvORPhWJcD1aCVgNYgP/4Q4KmUChUQCdwI3ABaAE+ii9Ze+IvTvFJwAu8AMjAf8qy/Ov5rikSNEEQBCHYREwXrjiXFQ5+C47+C8Skwy3PQt7WSx726vgMX+28wIzHwxeWpvClpSloFziwedTs4Mk3O3jx+DCJkVru+1AhHynNQOXH/qOpqTq6uh/Hau0iNraCgvyHiYpatuDjryaz2UxjYyOtra14PB5KSkqorq4mNTXVr/PIsszQudM07XmOwbOnCY+KZt3Nt7J6+y7C9ZFBuvsrQ/ZKODpMWJtHcXROgwxh+bHoywxElCSgUF9+d0ZZlhnrn6W93kjnsXE8Ti/xaXpKKtMorDAQHhmYkQChGNeDtsRRoVBkAXv/JEHbAHxDluWb3vnzVwFkWf7L5OwPx98HNMuyXKtQKF6QZfnO+a4nEjRBEAQh2ERMF66awSZ4+bMw1QVrPg4fehwiYuc9ZMrl4Wvdw/zv2DRF+nB+UJTJ6uiFL1s8NTTDN/e20TowTXFqNI/uKmZj7sKrSZLkwTjyPL29z+B2T5Oaeie5OfcSFpa84HNcTRaLhaNHj9Lc3IzL5aKgoIDq6moyMjL8Ppexs52mPc/Te7wFbYSO1TftZN3O29FFxwThzq8sz4wT27FRrMfG8M44UerV6Nam+IZgB2jmmcvhoatljLZ6I+MDc6jUSnLWJFFSlcaSgtjLqqqFYly/kgnancB2WZY/9c6f/xqokGX5c+9z/HLgG8AkYJFl+b6LfM2ngU8DpKSkrPvtb3+76PsNFovFQmTktf1bEkEQBMFHxHThalJ6XSwd+C2Zg3twaWPpLPhHphLLL3lcq6zmF+iYQcEtOLkTB9oFvs/KskzLqJfnzruYcsisTVZxd6GWFP3CKySybEOWX0XmAKBGodiJghtRKK6NfVlut5vh4WEuXLiAx+MhNjaWpUuXEhvrf2Jgmxxn9PhRpns6UajVJJWsImVVKdrIK9MQI6hk0E1C9AUl+nFQyArscTKz6TIWg4wcoOaMjmmZ6V6ZmX6Q3KCNhNhcBXHZoA73P1ELxbi+efPm0EzQ/CUqaIIgCEKwiZguhITh4/Dy52D8HKz4CGz/LugT5j3E7Pbwzz1G/nvERJ4ujKcLMyiPXfhLqcPt5Zf1ffzkUDdur8Tfbszic1vyiYlY+DIzm62f7u7vMDH5FuHhS8jLfYDk5J3XxP40AKfTSWtrK42NjVgsFtLT06mpqSE/P9/vzzA1PETzS7+jvf4wSqWSZZu2UXbbncSmGIJ091eWd86F7fgY1uZRPFMOFOFqdGuSfEOw0wKTDHlcXnqOj3Ou3shItxmlUkHWqkRKKtPIKIlf8MiIUIzrIbvE0V8iQRMEQRCCTcR0IWR4XFD/NNR+D8JjYedTsGz3JQ972zTHl88PMuxw86n0RB7MSUWvWnhpY3zWwVO/P8/vWi8Qp9Ny740F/FVZBmrVwitqpukjdHU9jsXSTkzMOgryHyE6euWCj7/a3G43J06coKGhAbPZjMFgoLq6muLiYpQL3Of3B+bxUVpe+V/OHnoLSZIortxE+e13kZDu/zLKUCTLMs5eM9aWUexnJ8Ejo0mPRF9uQLcqCaUfA9LnMz1qpa3eSMfRURwWN5HxYRRvTKN4YypRl2heEopx/UomaGp8TUK2AsP4moR8TJblc4u+yJ8QCZogCIIQbCKmCyFn9Kxvb9rISSi+FXY8BVEp8x5i8Xh5vHeEXw9Pkhmu5emiDKri/Ftid3bYzDf3ttHcZ6IgJZJHd5VQnZ+04ONl2Ytx5AV6er6P2z2FwbCb3Nz7CA+7dipIXq+X06dPU19fz9TUFImJiVRVVbFixQpUfiS9AHOmSVr37uHU/n14XC7yyzdQsftuUrJzg3T3V55kc2M9Po61ZRTPmA2FVoluVbJvr1p6ZEAqqV63RO+pCdrqjVzomEahgMxlCZRUpbF0RQKqi/wiIRTjerC6OP4PcAOQCIwBX5dl+ZcKhWIH8AN8nRt/Jcvy44u6wEWIBE0QBEEINhHThZDk9cCRH8GhJ3xDrbd/F1beBZd44T0yY+HejkH67C7+Ji2BR3PTiFIvPLGQZZk3z43y+OvtDJnsbC1K5qGdxeQmLXwJm8czR3//vzA49GsUChVLl/4DSzM/hUp17bSjlySJtrY26urqGBsbIzY2lqqqKlavXo3az0HVtlkzx19/hRP7XsVlt5G9ppSK3XezpLA4SHd/5cmyjGtoDmvzKPZTE8huCY1Bh77MgG5NMkpdYLozzk7aaWsw0t44gs3sQhetpWhDKiVVqcT8SfOSUIzrITuo2l8iQRMEQRCCTcR0IaRNdPqqaReaIf8m2PUMxCyZ9xCbV+LJvhF+PjSBIUzD9woz2JoQ7ddlnR4v/9bQz48OduNwe/nrDUv54tZ8YnULbwJitw/S3f0k4xNvEBZmIC/3AVJSbkGhuPx27VeKLMt0dnZSW1vL8PAwUVFRbNy4kXXr1qH1c1C1w2rh5Juv0fr6yzjmZskoWUHFHXeTuXzVNbNnbyEkhwfbqQmszaO4hy2gVqJbkejbqxagmWeSV2Lg7BRt9UYGzk4hy7CkMI5lVWnkrE6irqE25OL6dZOgZWVlyV//+tev9m28x8zMDLGxsVf7NgRBEIQAEDFdCHUKWaJ4ro51M3uRUNEcdxtdkesvWU0bDNPxvwmZjGsjWGuZYqdpGJ3k9evaFo+CQ5ORnDCHE66U2ZRopTTWjsqPd+ywsAHi4t5CGzaK07mEadONuFzpft1HKHA4HMzMzOB0OlEqlURHRxMVFeX3HjVZkrDOmJidmkRye9BGRBCdlEz49dD18S/ILi/eWReSxY0syyjUSlTRWlSRWvz6RzQPr0fCNuvCZnbh9UgolArUETJJabEBOX+gfPKTnxQJWjCJH+aCIAjXDxHThWtFlHuSyqnfkursZji8gMaEu7Go5+/06EHBwVgDb8ekoPd6uM00xDKb2e9rjzlUvDkRRZ9NS6LWw4eSLORHuvw4g4xef5qY2EOo1Ras1mXMTG/B6732ZoY5nU7MZjN2ux2FQkF0dDTR0dH+J2qyjG1mmtmpCbwuN5rwcKISk66LOWrvIYNkdfuSNacHAJVegzJKizIiME1FAJw2D1azEwk3iamxATtvIFw3CZpY4igIgiAEm4jpwjVFkuD4v8HvvwayBNu+AWWfgkskB2fmbHypY5BzFge3JcfyeH46iVr/XoxlWWZ/+zjffr2dvkkrNQVJPLKzmIKUhVd+PB4rA4P/yuDgLwDIzPy/LM38NGq13q97CQVGo5G6ujra29vRaDSsW7eOjRs3Eh3t33JSr8dDR8PbNL/0O0zGC8SlLqH89o9QXHUDKj/3u10L3GNWrC1j2I6PIdk8qGLD0JcZ0JemoIoJC8g1QjGuXzdLHEWCJgiCIASbiOnCNWlmCF79IvQcgMyNcNuPIWH+7oBuSebHg2M83T9GlFrJt/PTuS3Z/8HMLo/Efxzp59kDXdhcXj5Wnsk9NxYQr1/4niyHw0h3z5OMjb2KVptMXu59GAy7r6n9aX8wMTFBXV0dZ86cQalUsmbNGiorK4mLi/PrPJLkpavpCE17nmNioI/opGTKbr2T5TdsQ+3nfrdrgeyRsJ+bwtoyirN7BhQQXhiPvtxAeGE8istYAhmKcV0kaEEWig9dEARBWBwR04VrlizDyf+GN78KHidseQTW/xMo5+/a2G6xc0/HECfnbNycGMN3CtJJCfO/y57J6uIH+zv5r6ZBdFoVX9yaz99syEKrXniSNWNupavrcWZnTxEVtZyC/EeJjb3oO2zIM5lMNDQ0cPLkSSRJYuXKlVRVVZGUtPBRBeCrVPadOMbRF3/LSNd59HHxlO68nZU33ow2/NrphOkPz5Qda8sY1tZRpDk3ymgt+nUp6MsMqC8x8+xiQjGuiwQtyELxoQuCIAiLI2K6cM2bHYHX7oXzr8OSdXDbTyB5/hbuHknmXy9M8GTfCOFKJd/MW8JdhrhFddjrGpvjsdfaqe2cIDtRz0M7itlWnLzgc8myxNjYq3T3PInTOUpy8g7ych8gIuLaHOw8OztLY2Mjx44dw+PxUFJSQnV1NampqX6dR5Zlhs6dpmnPcwyePU14VDRrb76FNdtvIVy/8LEH1xLZK+HomMbaMorjvAlkCMuPRV9mIKIkAcUCk/9QjOsiQQuyUHzogiAIwuKImC5cF2QZzv4vvH4/uCyw6QGo/BKo5q+Mddsc3NsxRLPZyub4KL5XmEF6+OKW0x06P8639rbRM2GlMi+BR3aWUJy68P1YXq+NgcFfMDDwc8BLRsYnyVr6GdTqa7O7ocVi4ejRo7S0tOB0OsnPz6empoaMDP8TT2NnB017nqP3eAvaCB2rb9rJup23X58NRd7hmXFiOzaK9dgY3hknSr0a3VpfVU2TrJv32FCM6yJBC7JQfOiCIAjC4oiYLlxXLBPwxgNw7kUwrIDbfgqpK+c9RJJlfjU8yeM9I6gU8LXcND6eloByEdU0t1fiv5sGeWZ/J7N2N3eXZfLlDxWQGLnw5g8Oxwg9vU8xOvoSWm0iOTn3kpZ6JwrFwgduhxK73U5zczNHjx7FbreTnZ1NdXU12dnZflcsx/t7adrzPJ1NDag1WlZu207pLbuJik8M0t1ffbIk4+zyVdXsbSaQZLRZ0ejLDehWJKLQvPffRSjGdZGgBVkoPnRBEARhcURMF65L7a/C3nvBboKqe6DmflDPnyQN2J18uWOI+hkLlbGRPF2UwdKIxXXVm7G5ePZAF/95ZIBwjYrPbcnj7yqzCFMvPMkyz56iq+tbmM3HiYwsJj//YeLjNizqfkKB0+mktbWVxsZGLBYL6enp1NTUkJ+f73eiNjU8RMvLL9BWdwilUsmyTdsou+1OYlMMQbr70OCdc2E7Poa1ZQzPpB1FuArdmmTfEOy0Py77DMW4LhK0IAvFhy4IgiAsjojpwnXLZoI3H4ZT/w1JRb69aenzN+CQZZn/GjHxje5hvDI8lJPKJ9MTUS2imgbQM2Hh26+1c6BjnMx4HQ/tKOKmZQY/9qfJjI+/RnfPkzgcwyQl3khe3oPodFmLup9Q4Ha7OXnyJPX19ZjNZgwGA9XV1RQXF/s9S808PkrLK//L2UNvIUkSRZWbqLj9IySkZwbp7kODLMs4e82+qtrZSfDIaNIjfVW1VUnUHqkPubguErQgEz/MBUEQrh8ipgvXva63fC3550Zgw2dh88Ogmb8b4LDDxf3nhzhomqMsWs/TRRnk6/3vpvcHtZ0TfOu1NjrHLFRkx/PorhKWL1n4/imv18HQ0K/oH/gXJMlNRsYnyM763DW7Pw3A6/Vy+vRp6uvrmZqaIjExkaqqKlasWIFK5d9yTotpimN793Bq/xt4XC7yyzdQsftuUrLnH71wPZBsbqwnxrE2j+IZs6HQKplc6mHV32+62rf2Z0SCFmTih7kgCML1Q8R04QPBMQtvfQ1afw3xub65aUs3znuILMu8MDbNo13D2CWJ+7IM/GNGMmrl4qppHq/Eb1uGePqtTqZtLj6yLp37PlRIcvTCEz+nc5ye3qcZGXkBjSaOnJx7SEu9C6Xy2h3oLEkSbW1t1NXVMTY2RmxsLJWVlaxevRqNxr/xB7ZZM8dff4UT+17FZbeRvaaUit13s6Rw/q6e1wNZlnENzWFtHqXfPsLavxYJWlCIBE0QBEEINhHThQ+U3sPwyhdgZgDKPw1bvw5h87dsH3e6ebDzAq9PmlkZFcGzRZkURy5+HpfZ7ubHB7v4t8Z+tCol/7Q5j7+vyib8Is0e3s/s3Fm6uh5nZqYZvb6A/PyHSYivWvQ9hQJZluns7KS2tpbh4WEiIyPZuHEjpaWlaP0cVO2wWjj55mu0vv4yjrlZMkpWULH7bjJXrFrUKIVrTSjGdZGgBVkoPnRBEARhcURMFz5wnBY4+Bg0/SvEZsAtP4TczfMeIssyr0zM8FDnMLMeL19cmsIXliaj9XPP1J/qn7Ty7dfb+X3bGEtiI3jw5iJ2rUz1a3/axMSbdHV/B4djiMSELeTlfRW9PmfR9xQKZFmmr6+P2tpa+vv70el0rF+/nvLycsLD/Vtm6nY4OH1gH8defRHLtAlDXgHr77ibnLXl13WiFopxXSRoQRaKD10QBEFYHBHThQ+sgSPwyudgqhvW/g186FsQPv++sEmXh0e7LrBnfIYSfTjPFGeyKmr+mVSX0tgzyWN722kfmaV0aRyP7iphVUbsgo/3ep1cuPBv9PX/FElykJ7+12RnfR6N5tqfETY4OEhdXR1dXV2EhYVRXl7O+vXr0ev1fp3H43Zz7vB+ml9+gdmJMZIysyjffRcF6ytRKq/N8QXzCcW4LhK0IAvFhy4IgiAsjojpwgea2w6Hn4DGH0GkAW75ARTcdMnD9k2Y+UrnEJNuD5/NSObeLAPhqsVX07ySzO+ODfHU788zaXFxx5olPLC9CEOMH/vTXJP09j6D0fg8anU0OTlfZEnaR1Eq/dvHFYqMRiN1dXW0t7ej0WhYt24dGzduJDp64YPAAbweDx0Nb9P80u8wGS8Ql7qE8ts/QnHVDajU1+4+vr8UinFdJGhBFooPXRAEQVgcEdMFARhuhZc+CxPtsPKvYPsToIuf95AZt4dvdBv57aiJfF0YzxRlUhrjX2XnL8053Pz0cA+/rOtDpVTwmU25fLomhwjtwqs8c3PtdHU/zvT0EXS6XPLzHyIx4YbLuq9QMTExQV1dHWfOnEGpVLJ69WqqqqqIi4vz6zyS5KWr6QhNe55jYqCP6KRkym75MMs334jaz/1uoSgU47pI0IIsFB+6IAiCsDgipgvCOzxOqPu+7z8R8bDz+1By6yUPOzQ1y33nhzA63Xw6PYmv5KSiu4xqGsCQycZ33ujgtTMjpMaE85XtRdy6Kg3lAjtIyrLM5OQBurq/jd0+QEJ8DXn5DxGpz7+s+woVJpOJhoYGTp48iSRJrFy5kqqqKpKSkvw6jyzL9J04xtE9zzHS2YE+No7SXbtZeePNaMMX3wjmagvFuC4StCALxYcuCIIgLI6I6YLwF0bPwEv/BKOnoeR22PEURM7/4j/n8fKtHiP/bpwiK0LL9wszqIy7/BllzX0mvrn3HGeHZ1mdEcuju0pYt3Th1SJJcnHhwm/o6/8hXq+NJWkfIzv7C2i181cHrxWzs7M0NjZy7NgxPB4PJSUlVFdXk5qa6td5ZFlm6NwZmvb8lsGzpwmPjGLtjltZs/0WwvXzd/kMRaEY10WCFmSh+NAFQRCExRExXRAuwuuGxh/C4e+ANhJufhJW3AmX6PzXMD3HvR1DDDhcfCItgUdz04hUX14TCkmSefHEME/u62B8zsmtq9L4ys1FLIldeIXH5TLR2/csRuP/oFLpyc76POnpH0epvPaX8wFYLBaOHj1KS0sLTqeT/Px8ampqyMjI8Ptcxs4OmvY8R+/xFrQROlbftJN1O29HF33tNF0JxbguErQgC8WHLgiCICyOiOmCMI+J8/DyZ+FCCxTcDLuehui0eQ+xer082TvKzy9MkBam4anCDDYn+NfM4qLndXr42ds9/Ly2F4BP1+TwmU256MMW3tzCYumkq/vbmEx1RERkvbM/bct103LebrfT3NzM0aNHsdvtZGVlUVNTQ3Z2tt+fcby/l6Y9z9PZ1IBao2Xl1psoveUOohISg3T3gROKcV0kaEEWig9dEARBWBwR0wXhEiQvHP0X3+w0VRjc9Dis+fglq2nHzFbu6Riky+bko6nxfCM3jRjN5XcKHJ6x8903OnjllJHkqDDuv6mQD69N92t/2tTUYbq6n8Bm6yEubiP5+Q8TFVl02fcWKpxOJ62trTQ2NmKxWEhPT6e6upqCggK/E7Wp4SFaXn6BtrpDKBRKlt+wjbLb7iQ2xRCku798oRjXRYIWZKH40AVBEITFETFdEBZoqgde+TwMNEDOZrj1hxCbOe8hDq/E9/tH+enQOIkaNU8WZnBTYmCWyrUOTPPY3jZODs2wYkkMj+4qoTx74XvLJMnN8PB/09v3LB7PHGlpd5Gbcw9abehXiBbK7XZz8uRJ6uvrMZvNGAwGqqurKS4uRunnkHHz+Cgtr/wvZw+9hSRJFFVuouL2j5CQPv+/gashFOO6SNCCLBQfuiAIgrA4IqYLgh8kCY79Et76uq+Ctu0bUPr3cImX/ZOzNu7pGKTd6uCOlDgey1tCgvbyq2mSJPPKKSPfeaOD0VkHO1ek8uDNRWTEL3x4tts9Q1/fj7gw/BuUynCysz5LRsYnUCrDLvv+QoXX6+X06dPU19czNTVFQkIC1dXVrFixApXKvz2CFtMUx/bu4dT+N/C4XOSXb6Bi992kZOcG6e79F4pxXSRoQRaKD10QBEFYHBHTBWERpgfg1S9C7yFYWuWrpiXM/4LukiR+ODDODwZGiVGreaIgnVuSYgKy/8vm8vDz2l7+9e1evLLM31dl80835BIVvvAh1VZrL93dTzA5dZCI8Ezy8h4kKelD183+NABJkmhra6Ouro6xsTFiY2OprKxk9erVaDT+DfS2zZo5/vornNj3Ki67jezV66jYfTdLikqCdPcLF4pxXSRoQRaKD10QBEFYHBHTBWGRZBlO/AbefBi8Ltj6KFR8BpTzV2TaLHa+1DHI6Tk7O5NieCI/neQw/5KD9zNitvO9fed58cQwiZFh3PehAj5SmoFqgfvTAKam6ujqfhyrtYvY2AoK8h8mKmpZQO4vVMiyTGdnJ7W1tQwPDxMZGcnGjRspLS1F6+egaqfNysk3X6P1tZewz82SUbKCit13k7li1VVLbkMxrosELchC8aELgiAIiyNiuiBcplkj7L0HOvdBehnc9hNIKpz3EI8k8y9D4zzVP0qEUslj+Uu4MyUuYC/0J4dmeGxvG60D0xSnRvPormI25i58b5kkeTCOPE9v7zO43dOkpt5Jbs69hIUlB+T+QoUsy/T19VFbW0t/fz86nY7169dTVlZGRIR/g6rdDgenD+zj2KsvYpk2YcgrYP0dd5OztvyKJ2qhGNdFghZkofjQBUEQhMURMV0QAkCW4cwL8Mb94LLCDQ/Cxi+Aav7KWJfVwT0dgxybtbE1PprvFaaTFh6Y2WSyLLP39AjfeaOD4Rk7HypJ4aEdxWQl6hd8Drd7lv7+HzN04T9QKrVkLf1HMjI+iUp1/exP+4PBwUHq6uro6uoiLCyM8vJy1q9fj16/8O8XgMft5tzh/TS//AKzE2MkZWZRvvsuCtZXorxEdTVQQjGuiwQtyELxoQuCIAiLI2K6IASQZRxevx/aXoLUVb5qmmHFvId4ZZlfXZjk271G1AoFX89bwv9JjQ9Y1cXh9vLL+j5+cqgbt1fi7yqz+dyWPKL92J9ms/XR3f1dJibfIjx8CXm5XyE5ecd1tT/tD0ZGRqirq6OtrQ2NRsO6devYuHEj0dH+zbLzejx0NLxN80u/w2S8QFzqEspvu5Pi6s2o1JffIGY+oRjXRYIWZKH40AVBEITFETFdEIKg7WV47ctgn4bqL0P1faCevzLWb3dyb8cQjTMWquMieaowg6URgatUjc86eOr35/ld6wXidFruvbGAvyrLQK1aeLt5k6mRru7HsVg6iIlZR0H+I0RHrwzYPYaSiYkJ6urqOHPmDEqlktWrV1NVVUVcXJxf55EkL93NRzi653km+nuJTkqm7JYPs3zzjaj93O+2UKEY10WCFmSh+NAFQRCExRExXRCCxGaCfV+F07+F5BK47cewZN28h0iyzG+MU3yzx4hXhodzU/nkkkSUAaxUnR028829bTT3mShIieTRXSVU5yct+HhZ9mIceYGenu/jdk9hMOwmN/c+wsNCd3Dz5TCZTDQ0NHDy5EkkSWLlypVUVVWRlLTw7xm8s9/txDGO7nmOkc4O9LFxlO7azcobb0Yb7t9+t0sJxbh+3SRoJSUJ8n/+5qarfRvvMTMzQ2xs7NW+DUEQBCEAREwXhOCKHhtj6amzaBwOxvJyMBYWIF9i9ta4FMWP7Ddx3JPDMtUQX4zYxxLVdMDuSZahaTiDfz+1hnFrFOtSL/CJVcdZEj3nxzk8OBxGnM5RQEF4eCphYakoFFdmn9WV5vV4MM/OMjc3hyzL6PU6YmJi0Gr9rXLKOK1WZifHcVqtKFUqIuMTiIxPROnnTLb3E4pxvXTd/4gELZhC8aELgiAIiyNiuiAEn9LtJr2tnaSBIRx6Pf2rV2JNiJ/3GFmGA+5l/Ny+FTcqPh7ewO3aFlSKwL3Lur1KXusq5IW2Fbi8KrbndfKRkjNEhbkWfA5JcmC3D+F2m1AoNEREZKLVJgDX3/408A29npudZXZuFkmS0UVEEBMbQ1hYuN/nctlszE6O47DMoVAqiYxPICo+EeVl7lELxbh+3SRoYomjIAiCEGwipgvCFdRzCF79AswM+WambX0UtPN3CRxzuvlK5xD7JmdZHaXjmaIMiiMDuyRuYs7J02918lzLINERGr60NZ//s34pGj/2p01PN9PV/S3m5s4RHb2agvxHiIlZE9D7DCV2u53m5maOHj2K3W4nKyuLmpoasrOz/W6eMt7fS9NLv6PzaD1qjZaVW2+i9JY7iEpY+GiEPxWKcf26WeIoEjRBEAQh2ERMF4QrzGmBA/8MzT+H2KVw648gZ9O8h8iyzMvjMzzUdYE5j8Q9WSl8PjMFjR8DqBeifWSWb73WRkP3FLlJeh7ZVcLmwoXPPpNliZHRF+np+T4u1zgpKbeQl/sA4eFpAb3PUOJ0OmltbaWxsRGLxUJ6ejrV1dUUFBT4nahNDQ/R8vILtNUdQqFQsvyGbZTddiexKf7t7wvFuC4StCALxYcuCIIgLI6I6YJwlQw0wsufBVMvrPs7uPGbED5/K/dJl4eHuy7w8vgMyyLD+UFRJiuidAG9LVmW2d8+zrdfb6dv0kpNQRKP7CymICVqwefweKwMDP4rg4O/ACAz8/+yNPPTqNX+zRS7lrjdbk6ePEl9fT1ms5mUlBSqq6spKSlBqVx4JRLAPD5Kyyv/y9lDbyFJEkWVm6i4/SMkpGcu6PhQjOsiQQuyUHzogiAIwuKImC4IV5HLBoe/DUd+AlGpcMuzkH/jJQ97fWKGBzsvMOX28PnMFO7JSiHMzyTgkrfmkfiPI/08e6ALm8vLx8ozuefGAuL1C28N73AY6e55krGxV9Fqk8nLvQ+DYTcKRWDvNZR4vV7OnDlDXV0dU1NTJCQkUF1dzYoVK1D52QTEYpri2N49nNr/Bh6Xi/zyDVTsvpuU7Nx5jwvFuC4StCALxYcuCIIgLI6I6YIQAi4c81XTJjpg1cfgpsdBN38TkWm3h693D/P86DT5ujCeLcpkbUzgK1Qmq4sf7O/kv5oG0WlVfHFrPn+zIQuteuFJ1oy5la6ux5mdPUVU1HIK8h8lNvai7+rXDUmSaGtro66ujrGxMWJjY6msrGT16tVoNAsfEg5gmzVz4o1XOLFvL06blezV66jYfTdLikou+vWhGNdFghZkofjQBUEQhMURMV0QQoTHCbXfg7qnQZ8IO5+G4l2XPOzA1Cz3nx9i1Onm0xlJPJCdis6P5h4L1Tk2x2N726jrmiQ7Uc/DO4rZWpy84H1WsiwxNvYq3T1P4nSOkpy8g7zcB4iIyAj4vYYSWZbp7OyktraW4eFhIiMj2bhxI6WlpWj9HFTttFk5+eZrtL72Eva5WTJKVlCx+24yV6z6s+fw/9u77/Aoq7z/4+8z6QmEEAIhhJAQSAihKhCK0osgWBZx7RVFFHUtrI9t17Wtoth4BGy4ytpFRUQURLqU0KWlASmQUENNz8z9+yM8v8fHNeMEMplJ/LyuK9fF3OF7z5eZXAc+nDnneOO4roDmZt74pouIyNnRmC7iZQq2wtxJcHAbdBoLF79YFdicOFVp5+nd+czOP0rbIH9eTmpD37BGtd6aZVksSz/MM9/uZPfhIi5o34zHRyfTMcr52rlfstuLycl9h5yctwA7MTG3Ehc7EV9f19e41UeWZbF3715WrFhBdnY2QUFB9OnTh5SUFIKCarYrZ0VpKT//+D0bvvmS08cKadk+kd5/uop2PVIwxnjluK6A5mbe+KaLiMjZ0Zgu4oXsFbDqVVg+pWrjkFEvQOcr4Hdmq1YWnuLB9DxyS8u5JTqCx+OjCPGt/YOjK+wOPlybwyuLMzlVWsFVvdrw4IhEIhq5fmhzaWkBu/dM5cCBufj7RxAf/wCtosY12IOufykvL48VK1aQmZlJQEAAKSkp9OnTh5CQmn1EtbKigh3LFrN+3hxOHDpIRJs4ev/pzxSUVjJ4yBA3dX92FNDcTH+Zi4g0HBrTRbzYoV0w9y7I3wQdRsOYl6Gx8y3XiyrtPLe3gFn7jhAd6MfLHdowINw9s1PHi8t57cdM/r0mhyA/H+4e0p6bL4gjoAah8MTJrWRmPsOJE5to1KgjCQmPEd60r1v69TYFBQWsXLmSnTt34ufnR48ePejXrx+hoa7PSAI47HbSflrOuq8+ozB/H+GJydzy9Atu6vrsKKC5mf4yFxFpODSmi3g5eyWsnQFLnwXfALjoOeh+7e/Opq07fpoH0vLYXVLGdVHhPNE+mlA3zKYB7D58mn9+u4sf0w7RJjyYRy9O4qJOLWuwPs3i0KFvycqaQmlZPs2bj6B9u4cJDo51S7/e5vDhw6xcuZJt27Zhs9no3r07F154IU2bNq3RfRwOO1mpa8jIzmXM1de6qduzo4DmZvrLXESk4dCYLlJPHMmCeXdD7hpoN7RqS/4w5xtslNgdTM0+wMzcQ0QG+DElsTUjIpq4rcUVGVXr0zIOnqZ323D+NiaZztGuP5/dXkpu3ixyct7A4aggJuYm2sbd3eDXp/2PwsJCfvrpJ7Zs2YLD4aBLly7079+f5s2b1+g+3jiuK6C5mTe+6SIicnY0povUIw4HrH8HFv+jagZt+FNVh1z/zhlom08Wc19aLulFpYyLbMpTCdGE+/m6pcVKu4NP1ufx8g8ZHCsu58oerZk8ogMtQgNdvkdZ2SF273mJgoIv8PNrSnz8/bSK+jM2m3t69jYnT55k9erVbNiwgcrKSpKTk+nfvz9RUVEu1XvjuK6A5mbe+KaLiMjZ0ZguUg8dy4Z598Le5RDXHy6dBuHxTkvKHA5eyznItJyDhPn68nxia8a0CHNbiydKKnh9SSbvrc7G38fGXYPbM/7CtgT6uf4xy5OntpOZ+SzHj6cSEpJIQsJjNAu/0G09e5uioiLWrl1LamoqZWVlJCQkMGDAAGJinM+ceuO4roDmZt74pouIyNnRmC5ST1kWbJoNix4HRyUM/TukTACb8wC043QJ9+3KZdvpEsY0b8Jzia1p7l+zg5NrIvtIEf9csItFOw8SHRbEw6OSGNM1qkbr0w4fXkhm1vOUluYR0WwI7ds/QkiI80DakJSUlJCamsratWspKSkhLi6OAQMG0LZt2998Hb1xXFdAczNvfNNFROTsaEwXqedO7If590HmIojpDZe+Ds0TnZZUOCxm5h1i6t4DhPjYeCYhmrGRTV0OTWdj9e4jPD1/F7sKTtIztil/G5NMt5gwl+vt9jL27XuPvdkzcDhKad36BtrG3YOfn/vW1HmbsrIyNm7cyOrVqzl9+jTR0dEMGDCAxMREHVRdVxTQRETE3TSmizQAlgU/fwbfPQQVJTD4Eeh7D/g4X7OVUVTK/Wm5bDxZzPBmobzQoTVRAf5ua9PusPh8Qx5TF6Vz5HQ5Y8+L5qGRSbRsUoP1aeVH2LPnFfLzP8PXN5T4+L8Q3eoabDb3zQJ6m4qKCrZs2cKqVas4ceIEkZGR9O/fn+TkZGw2m1eO6wpobuaNb7qIiJwdjekiDcipg7DgQdj1DUR1h8tnQGQnpyV2y+KdfYd5fk8BvsbwZPtorokKd+ts2qnSCmYs282slXvxsRkmDmzHhAHxBPm7vj7t1KldZGY9y7FjawgObkdCwqNENBvktp69kd1uZ9u2baxcuZKjR4/SrFkz+vfvT2FhIUPq0UHVzre4ERERERGprxpHwlUfwJXvw4l98OZAWPY8VJZXW+JjDHfEtGBJryQ6Nw7igfQ8rtq6m9ySMve1GejHf41M4scHBzIkqQWvLM5gyEvLmLt5Pw6Ha5MpjRt35Lzu/6ZrlzexrEq2bh3Pli23cLoo0219exsfHx+6d+/OpEmTGDduHL6+vsydO5f09HRPt1YjmkGrBfrfVhGRhkNjukgDVXQUvn8Ytn0GkZ3hsteh1XlOSxyWxez8ozy9Ox8LeDw+ipujI7C5cTYNIHVvIU/N38H2/SfpHhPG3y9J5vw2rh/S7HCUs2/fB+zNnobdXkx0q2tp2/Ze/P3D3di197Esi4yMDNLT07n00ks93c7/oRk0EREREfljC2kGV7wNV38MRUfg7aGw+EmoKK22xGYMN0dHsCwliZTQEB7N3M/YzVnsKXbfbBpASttw5k26kBfHdSX/eAljZ6zm3o83s/94iUv1Nps/bdrcSt8+S2jV6hr253/EmrVDyc19F4ej+tnDhsYYQ4cOHQgNDfV0KzWigCYiIiIifxxJF8OkddD9Glj1MrzZH/JSnZbEBPrzcbd4Xk6KYWdRCUPWpzEz9xB2N34SzWYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKKl26h79/OEkdniSl13xCQ7uRmfUsa9eN4vCRH6lPn6L7o1FAExEREZE/lqAwuGw6XP9l1S6Ps0bA949CeXG1JcYYro1qxvKUJPo3bcyTu/O5ZFMm6UXVz8DVhpAAXx4c0YElkwdxUaeWTFuSxeCpy5izcZ/L69MaNUqke7d/0a3rOxjjw88/T2Dzlhs5dTrNrb3L2amzgGaMiTfGzDLGzPnFtRBjzPvGmLeNMdfVVS8iIiIiIrQfCnetgV7jYe10mNkP9q50WhIV4M/sLm2ZkRzL3uIyhq9P57Xsg1S4GJbOVnRYENOuOY8v7uxLVFgQkz/fymXTf2J9dqFL9cYYIiIG0zvlWxIT/s6pUztITb2EXWmPUV5+xK29S824FNCMMe8aYw4ZY7b/6vpIY0y6MSbLGPOws3tYlrXHsqzxv7o8FphjWdbtgHet3BMRERGRhi+gMYx+CW7+turx+2Ng/gNQdqraEmMMYyObsqJ3EhdFNOG5vQVcvDGD7aeqn4GrLT1iw/nqzn68elV3Dp8q48o31jDpw03kFbr23DabHzExN9Gv7xJiWt9IQcEcVq8ZSk7OWzgc7l1bJ65xdQbtPWDkLy8YY3yA6cAoIBm4xhiTbIzpYoyZ/6uvFtXctzWQd+bX9pq3LyIiIiJSC+IuhDtXQ9+7YcO7MKMvZC12WtLc34+3O8fxTqc4CsoqGLkxgyl7CihzONzaqs1muPy8aJZMHsh9wxJYknaIoS8vZ8r3aZwqrXDpHn5+YSQm/o3eKQsIC+tF1u4prF07kkOHF2p9moe5FNAsy1oB/Hr+NAXIOjMzVg58AlxmWdY2y7LG/OrrUDW33kdVSHO5FxERERERt/APhouehfGLwC8IPrgC5k6CkmNOy8a0CGNF7yQub9GUV3IOMmJDBptOFrm93WB/X+4blsiSyQMZ0yWKmct2M3jqcj5JzcXu4kcuQ0La0b3bO3Tv9h42nwC2bbuLTZuv49SpHW7uXqrj8jloxpg4YL5lWZ3PPB4HjLQs67Yzj28AeluWdXc19c2AZ4HhwDuWZT1njAkBXgdKgVWWZX34G3UTgAkAkZGRPT755JOa/QnrwOnTp2nUqJGn2xARkVqgMV1EAGz2cmJzPqVN7peU+zchI/FOjkb0/t26TZYv7xDMMQxjKONKSvF377Fp/9+e43Y+Sisn67iDmMY2rk3yp2MzH5frLcuOxQosay5QhOECjBmLMU3c1nNd8MZxffDgwdWeg1ZnAa026KBqERFxN43pIvJ/5G+BryfBwe3QeRyMeqHqTDUnTlbaeSornw8KjhIfFMArSTH0DqubgGBZFvN/LuD579LYf7yEEcmRPHpxR+IiQly+R0XFSbKzXydv32xsNn/iYu8kJuZWfHwC3Ni5+3jjuO6ug6r3AzG/eNz6zDURERERkYahVXe4fSkMehR2fg3TU2D7l+BkkiPU14epSTF81q0dFZbF5ZuzeCxjH0WV7t9ywRjDJd1a8eODA/nrRR1YlXWE4a8s558LdnHS5fVpoSQkPEqf3t8R3rQfu/dMZe264Rw8+K3Wp9WBc5lB8wUygKFUBbP1wLWWZbntA6tBMR2sdvfNdNftz1plZSW+vr6ebkNERGqBxnQRqU6CPYenS1+nsyOLxb69eTrgDo7amjqtsYBSh4MKh4UBgnxs+Jo6+swj4HBYlBdVUFlqBwMBIX74BvlSkw4sqxK7owwsOxhffGwBVO0XWD9447i+Y/LQc5tBM8Z8DKwBOhhj9hljxluWVQncDSwEdgGfuTOciYiIiIh4UqZPLNcFP89L/jfSv3IT84ru5dKKpU5n0wwQZLMR7GPDGCi2OyhxOKireSibzRDY2J+gpgHYfG2Una6guLCUynLXZ/OM8cXXJwSbLQgsB3Z7EXZ7CRbu3a3yj8rlGTRvoDVoIiLibhrTRcQlRzKr1qblrYP2w+GSV6FJa6clxXYHL+4t4M28w7QM8OOFDjEMaxZaN/1StT5t4Y4DPLtgF3mFJQxNasGjozvSrrnr6+MqK0+RnT2T3Lx/YYwPsbF3ENvmNnx8gtzY+bnxxnHdXWvQRERERET+mCIS4JbvYOQUyPkJpveBDf9yOpsW7GPjifbRzD8/gUY+Plz/8x7u2ZXDsYrKOmnZGMPIzlEsfmAgD49KYt3eQi56ZQVPfrOD48XlLt3D17cx7ds/RN8+C4loNoi9e19lzdphHDjwNZalGbXaoIAmIiIiInI2bD7QZ2LVAdetusP8+2D2pXAs22nZ+U1C+KFXIvfHRvLlwWMMSE1jweHjddBwlQBfHyYObMfSyYO4smcM76/OZtDUZby/OpsKu2shKyioDV26vM75532Mv38zdux8gA0br+TEic1u7r7hU0ATERERETkX4W3hpm9gzKuwfzPM6Avr3gRH9WEnwGbjv+Kj+L5HIpH+fty6PZsJO7I5XO7aTou1oXnjAJ4b24X59/QnOSqUJ+btYOSrK1iafsjlezRtmkKvnnPp2HEKpaX5bNg4ju077qO0NN+NnTdsCmgiIiIiIufKGOh5C0xaC7EXwHcPwXsXw5Esp2VdGgfzXY9EHm7bku8Pn2BgahpfHTxWp9vZJ7cK5cPbevP2jT2xOyxu+dd6bno3lcyDp1yqN8ZGq6hx9O2zmLi4SRw+vIg1a4exe88rVFYWubn7hkcBTURERESktjRpDdd9DpfPhEM74Y0L4KfXwF79OjM/m+G+uJYs6pVIbGAAd+7M4ebtezlQVnezacYYhidHsuj+gTw+uiObco8x8rWV/P3r7RQWubo+LYR28Q/Qt89imjcfQXb266xZO4yCgi+0Pq0GFNBERERERGqTMdD9WpiUCu2Gwg9/h1nD4eBOp2VJIUHM75HA39u1YnnhKQak7uLjgqN1Opvm72vjtv7xLP/rYK5NacOH63IZ9OJS3lm5h/JK10JWYGArOnd6lR49PiMwMIqdux5i/YY/cfy49+3G7o0U0ERERERE3KFxS7j6Qxj3LhzPgTcHwPIXwF79zJiPMdzVpgU/9upAx5Ag7k/L45qte8grdW0Wq7aEh/jz9OWd+e4v/ekWE8Yz3+7ioldXsHjnQZcDY1iTHvTsMYdOyS9TXn6EjZuuYtv2eygpyXNz9/WbApqIiIiIiLsYA52vqJpNS74Ulj4Lbw2Ggq1Oy9oFB/LVee15NiGa1JNFDEpN4739R3DU8RnGiZGNmX1rCv+6uRc2A7fN3sD1s9axq+CkS/XG2GjZ8jL69vmBtm3/wpEjS1i7bgRZu6dSWXnazd3XTwpoIiIiIiLuFhJRNZN21YdQdKgqpP34NFSWVVtiM4bxrZuztFcHzg8N5uGMfYzbspvskupr3MEYw+CkFnx/3wD+cUky2/efZPS0lTzy5TaOnHatFx+fYOLb3kvfPotp0eJicnJmsmbtUPLzP8Oy7G7+E9QvCmgiIiIiInWl4xiYtA66XQ0rp8Ib/WGf87VZsUEBfNatHS91iGHbqWIGp6bxVt4h7HU8m+bnY+PmC9qy/K+DuKlfHJ9vyGPwi8t4c/luyipdC1mBgVF0Sn6Jnj2/JCgwhl1pj5C6/nKOHVvr5u7rDwU0EREREZG6FNQULp8B130B5UVVG4gsfAzKi6stMcZwXatmLE9Jol9YY/6elc9lmzLJLCqtw8arhAX788QlnVh4/wBS2obz3HdpDH95Bd9vL3B5fVqT0G706PE5nTu9RmXFcTZtvo6ft91JcXGOm7v3fgpoIiIiIiKekDAM7loDPW6GNa9Xbcmf/ZPTklaB/nzQtS2vd2xDVnEZwzak8985B6l01O1sGkC75o2YdXMvZt+aQqCfjYkfbOLqt9ayff8Jl+qNMURGjqFPnx+Ij3+AwsJVrF13EZlZz1FZ6doZbA2RApqIiIiIiKcEhsKYV+Cmb8ByVB1u/e1kKKs+oBhjGNcynBUpSQxrFsqzewq4eFMGO0+X1GHj/2tAYnMW3NufZy7vTOah01zy+ioemrOVQyddm93z8Qmkbdwk+vb5kZYtLyM3dxar1wxh3/6PcDiqPz+uoVJAExERERHxtLYD4M7V0OcuWP8OzOgHu5c4LWkR4Meszm15u1Mc+0srGLEhnRf3FlDuqPtDoX19bFzfJ5alkwdx24Vt+WrzfgZPXcb0pVmUVri2Pi0goAXJHafQq9dcQkLak57+N1LXX8LRwlVu7t67KKCJiIiIiHgD/xAY+RzcuhB8A+Dff4Kv74aS407LLmkRxoqUJC5r0ZSXsg9y0YYMtpysfj2bOzUJ8uOx0cn8cP9ALmgfwYsL0xn60nLm/5zv8vq00MadOf+8j+jSeTp2ewlbttzE1q23U1S0x83dewcFNBERERERb9KmN0xcBRfeD1s+hBl9IP17pyXN/H2ZnhzL7C5tOVZh5+KNGTyzO59Se93PpgHERYTw1o09+ei23jQO9OXujzZz5Rtr+HnfcZfqjTG0aDGSPr0X0r7dQxw7nsq61FFkZD5DRYVra9zqKwU0ERERERFv4xcIw/4Bt/0IQeHw8VXwxe1QXOi0bEREE5andODqqHBezz3EsA3prD9RVDc9/4Z+7SP49t7+PD+2C9lHi7j09Z944LMtHDjh6vq0AGJj76Bv3x+JihpHXt77rF4zhLx9s3E4KtzcvWcooImIiIiIeKvo82HCMhj4MOz4EqanwI65Tkua+PnyclIbPukWT4ndwaWbMvlb5j6K7J45ENrHZrg6pQ1LJw9i4sB2zN9awOCpy3htcSYl5S6uT/OPoGPSs6T0mkfjxh3JyHiSdamjOXJ0mXub9wAFNBERERERb+brD4MfgQnLIbQVfH4TfHoDnD7ktGxQeCjLU5K4KTqCt/cdYUhqOquOeW77+saBfjw8KonFDwxkcFJzXlmcwZCXljF3834cLh4T0LhxR87r/m+6dnkTy6pk69bxbNlyC6eLMt3cfd1RQBMRERERqQ9adobblsDQJyBjYdVs2s+fgZPNNxr5+vB8Ymu+7N4eY2Dclt08lJ7HqUrPzKYBtGkWzIzrevDphD40a+TPfZ9uYezM1WzKPeZSvTGG5s2H0af39yS0f4wTJzeTmjqa9PR/UF7u/COg9YECmoiIiIhIfeHjC/0fgIkroVl7+PJ2+PhqOJnvtKxf00Ys6ZXEHTHN+Xf+UQalprHk6Mk6avq39Y5vxrxJF/LiuK7kHy9h7IzV3PvxZvYfd+08N5vNnzZtbqVvnyW0anUN+/M/Ys3aoeTmvovDUe7m7t1HAU1EREREpL5p3qFqO/6LnoM9y2F6b9g02+lsWrCPjSfbRzP//ASCfWxc+/Me/rIrl+MVnjsM2mYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKXOvL3z+cpA5PktJrPqGh3cjMepa160Zx+MiPLm/t700U0ERERERE6iObD/S9C+78CVp2hXn3wL8vh2M5Tst6NAnhh54d+EtsJHMOFjIgNY3vD3t26/qQAF8eHNGBJZMHcVGnlkxbksXgqcuYs3Gfy+vTGjVKpHu3f9Gt6zsYY+PnnyewZctNWNY+N3dfuxTQRERERETqs2bt4KZvYPRLsG8DzOgLqW+Do/oz0AJ9bDwSH8V3PRKJ8PPl5u17mbgjmyPlnptNA4gOC2LaNefxxZ19iQoLYvLnW7ls+k+sz3ZtbZkxhoiIwfROWUBiwt85eWo7lrXYzV3XLgU0EREREZH6zmaDXrfBXWuqDrpeMBneGw1Hdzst69o4mO97JvLXuJZ8e/gEA1J3MffgMY9/NLBHbDhf3dmPV6/qzuFTZVz5xhomfbiJvMJil+ptNj9iYm6iX98lGHOFm7utXQpoIiIiIiINRVgbuP5LuGw6HNwBM/vB6v8GR/W7NvrbbDzYtiWLeiYSE+jPxJ053Lo9m4Nlnj0I2mYzXH5eNEsmD+S+YQksSTvE0JeXM+X7NE6Vutabn18YxjR2c6e1SwFNRERERKQhMQbOux4mrYP4wbDocZg1Ag6lOS3r2CiIb89P5PH4KJYUnmRAahqfFhR6fDYt2N+X+4YlsmTyQMZ0iWLmst0MnrqcT1Jzsbu4Pq0+UUATEREREWmIQqPgmo/hillQuAfe7A8rXgR79bNPvjbD3bGR/NirA4nBgfwlLZfrft7D/lLPb1sf1SSIl6/qztxJFxDbLJiHv9zGmP9exerdRzzdWq0ynk7ENdEzrom14YkLPd3Gfzh+/DhhYWGebkNERGqBxnQRaZDs5VUhrfgI+IVARAL4N3JaYmFxoKyCnNJyDBAbFECkvy8GUzc9/05vR4vKyT1aTLndQdNgf2KbBRPo6/Mfv9cbx3Vz64KNlmX1/K3vaQZNRERERKSh8/GH5klVX/ZyKNgCx3PAqn6nR4MhKsCf7o2DCfHxYU9xGTtPl1LqZHfIumIwRIQE0D0mjJimQZwoqWBr3nFyCouo9IL+zoWvpxuokYgEuOVbT3fxH7YsW8agQYM83YaIiNQCjeki0uAVF8LCR2Hrx1WzaJdNh9Y9qv3tgUAny+KDgqM8mZWP3YLH2kVxa3QENuPZ2TQbEA34nSzlxYXpzNm0j/Bif+4fnsjVvWLw9bF557h+a/Wvm2bQRERERET+SILD4U9vwLWfQ9lJmDUMFv0NKkqqLTHGcEOrCJanJNE3LITHM/dz+eYssopL67Dx6rUIDeTFK7vxzd0X0q5FIx6fu53R01axMvOwp1urMQU0EREREZE/osQRVeemnX8jrJ4GMy+AnDVOS6ID/fmwazzTOrYhvaiUoevTeT3nIJVespti5+gmfDqhDzOvO5/iikpumJXKBzvLPN1WjSigiYiIiIj8UQU2gUtegxu/BkcF/GsULHgIyk5XW2KM4c8tw1mRksSQ8FCe2VPA6E0Z7Dpd/QxcXTLGMKpLFD/cP5CHRyXRpfl/bhzizRTQRERERET+6OIHwZ1roPcdkPoWzOwLe5Y5LYkM8OPdznG82SmWvNJyRmzI4KW9Byj3kk06Av18mDiwHd2a169tNxTQREREREQEAhrBqClwy3dVuz7Ovgzm3QulJ6otMcZwWYumrEjpyJjmTXgx+wAjN2Sw9VRxHTbesCigiYiIiIjI/4rtCxNXwQV/gc3/hhl9IWOR05IIf19mdorjvc5tOVpRycUbM/jn7nxK7d4xm1afKKCJiIiIiMj/5RcEw5+C8YshIBQ+uhK+mli1Rb8TI5s3YXlKEldGhjMt9xDDN6Sz4URRHTXdMCigiYiIiIjIb2vdA+5YDgMegm2fw/TesOsbpyVhfr682rENH3WNp9ju4JJNmTyRuZ9izaa5RAFNRERERESq5xsAQx6D25dC45bw6fXw+c1w2vkZY0OahbIsJYkbWjXjzX2HGbI+jZ+OnaqbnusxBTQREREREfl9UV3h9iUw5G+Q9i1MT4Ftc8Cq/gy0xr4+vNAhhjnd22FZcMWW3fxXeh6nK+112Hj9ooAmIiIiIiKu8fGDAZPhjpUQHg9fjIdProWTBU7LLmzamCUpHZjQujmz848yMDWNZYUn66jp+kUBTUREREREaqZFEoxfBCOehd1Lqtambf7A6WxaiI8PTyVEM+/8BIJ8bFy9dQ/3p+VyoqKyDhv3fgpoIiIiIiJSczYf6Hc33LkaWnaGryfBB2PheK7Tsl5NQljcswP3tGnBpwWFDEhNY+GR6s9a+6NRQBMRERERkbPXrB3cNB8ungq566rOTVv/Djiq37Ux0MfGY+1asaBHIuF+vty0bS937czhaLlm0xTQRERERETk3NhskHI73LUGWveEbx+E9y+Bo7udlnUPDWZhz0QejItk3qFjDEhNY96h43XTs5dSQBMRERERkdrRNBZumAuX/jcc+BlmXgBrpoOj+l0b/W02/to2ikU9OxAd4MeEHdmM376XQ2UVdde3F1FAExERERGR2mMMnH8jTFoH8QNh4aPw7kVwON1pWXKjIBb0SOSx+CgWHz3JwNQ05hwoxHKy8UhDpIAmIiIiIiK1L7QVXPMJjH0bjmbBGxfCypfAXv06M1+b4Z7YSH7o2YF2wQHcvSuXG7btJb+0vA4b9ywFNBERERERcQ9joOufYVIqdBgFPz4F7wyBA9ucliWGBPL1+Qk81b4VPx07xcDUND7MP/qHmE1TQBMREREREfdq1AL+PBuufB9O5sNbg2DpP6Gy+pkxH2OYENOCpSlJdGkczIPpefx5625ySsrqrm8PUEATEREREZG60enyqtm0zlfA8inw1kDYv8lpSVxQAHO6t2NKYms2nSxm8Pp0Zu07jKOBzqYpoImIiIiISN0JDoexb8E1n0LJMXhnKPzwBFSUVltiM4aboiNYnpJE7yYhPJa5nz9tzmJ3cfU19ZUCmoiIiIiI1L0OI+GutdD9Ovjp1apNRHLXOS1pHejPR13jeTUphrSiUoauT2dG7iHsDWg2TQFNREREREQ8IygMLnsdbvgKKsuqtuP/7mEoL6q2xBjD1VHNWJ6SxMDwxjy1O58xGzNJKyqpu77dSAFNREREREQ8q90QuGs19LoN1s2Emf1g7wqnJS0D/Hivc1tmJseSU1rG8PUZvJJ9gApH/Z5Nq9OAZoyJN8bMMsbM+cW1y40xbxtjPjXGjKjLfkRERERExEsENIbRU+HmBWBs8P4lMP9+KD1ZbYkxhj9FNmV5ShKjmjdhyt4DjNqYwbZTxXXYeO1yOaAZY941xhwyxmz/1fWRxph0Y0yWMeZhZ/ewLGuPZVnjf3VtrmVZtwMTgatq0ryIiIiIiDQwcRfAxJ+g792w8T2Y0RcyFzstae7vx1ud4pjVOY6D5RWM3JjB83sKKHM46qbnWlSTGbT3gJG/vGCM8QGmA6OAZOAaY0yyMaaLMWb+r75a/M79Hz9zLxERERER+SPzD4aLnoVbF4F/CHx4Bcy9q2rXRydGNw9jRUoSYyOb8mrOQYavzyDT8qmjpmuHqclp3MaYOGC+ZVmdzzzuC/zDsqyLzjx+BMCyrOd+5z5zLMsad+bXBnge+MGyrP+IxsaYCcAEgMjIyB6ffPKJy/3WldOnT9OoUSNPtyEiIrVAY7qIiHcxjgrisj+lTe4XlPs3ISPxTo5G9P7dus2WL28TTNeKYib6V9ZBp64bPHjwRsuyev7W93zP8d7RQN4vHu8Dqn21jDHNgGeB84wxj5wJcvcAw4Amxpj2lmW98csay7LeAt4C6NmzpzVo0KBzbLn2LVu2DG/sS0REak5juoiINxoOBfcQMHcSXbb/s+qg61EvQEhEtRWDgPGVdn5aubJejevnGtBqxLKso1StNfvltWnAtLrsQ0RERERE6pmobjBhKax6FZZPgT3L4OIXodNYMOY3S0J9fQj67W95rXPdxXE/EPOLx63PXBMREREREaldPn4w8K9wxwoIi4U5t8Kn18OpA57urNaca0BbDyQYY9oaY/yBq4F5596WiIiIiIhINSKTYfwPMPxpyFoM01Ngy0dQg/01vFVNttn/GFgDdDDG7DPGjLcsqxK4G1gI7AI+syxrh3taFREREREROcPHFy64t2pL/hbJMPdO+HAcHM/7/Vov5vIaNMuyrqnm+gJgQa11JCIiIiIi4qqI9lWHW69/Bxb/o+rctBFPwfk3g+1cPzBY9+pfxyIiIiIiIr9ks0HvCXDXaog+D+bfD7MvhcK9nu6sxhTQRERERESkYWgaBzfOg0teg/wtMLMfrfZ/5+muakQBTUREREREGg5joMfNMGktxF2IsbzrkOrfo4AmIiIiIiINT5PWcO1n7I8e7elOakQBTUREREREGiZjwNSvyFO/uhUREREREWnAFNBERERERES8hAKaiIiIiIiIl1BAExERERER8RIKaCIiIiIiIl5CAU1ERERERMRLKKCJiIiIiIh4CQU0ERERERERL6GAJiIiIiIi4iUU0ERERERERLyEApqIiIiIiIiXUEATERERERHxEgpoIiIiIiIiXkIBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJeQgFNRERERETESxjLsjzdg8uMMYeBHKAJcKKWblsb94oAjtRCL+IZtfnzVJ/V59fB23r3RD918Zzueg6N6VLbvG1M8JT6+jp4W9+e6kfjeu3dyxvH9VjLspr/1jfqVUD7H8aYtyzLmuAt9zLGbLAsq2dt9CN1rzZ/nuqz+vw6eFvvnuinLp7TXc+hMV1qm7eNCZ5SX18Hb+vbU/1oXK+9e9W3cb2+fsTxGy+9l9RP+hmoUp9fB2/r3RP91MVzuus5NKZLbdPPQZX6+jp4W9+e6kfjeu3fq16olzNo3qa+pXIREamexnQRkYalvo3r9XUGzdu85ekGRESk1mhMFxFpWOrVuK4ZNBERERERES+hGTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCWi0zxoQYY943xrxtjLnO0/2IiMi5McbEG2NmGWPmeLoXERE5d8aYy8/8W/1TY8wIT/fzawpoLjDGvGuMOWSM2f6r6yONMenGmCxjzMNnLo8F5liWdTtwaZ03KyIiv6sm47plWXssyxrvmU5FRMQVNRzX5575t/pE4CpP9OuMAppr3gNG/vKCMcYHmA6MApKBa4wxyUBrIO/Mb7PXYY8iIuK693B9XBcREe/3HjUf1x8/832vooDmAsuyVgCFv7qcAmSd+Z/VcuAT4DJgH1UhDfT6ioh4pRqO6yIi4uVqMq6bKlOA7yzL2lTXvf4eBYizF83/zpRBVTCLBr4ErjDGzAS+8URjIiJyVn5zXDfGNDPGvAGcZ4x5xDOtiYjIWaju3+v3AMOAccaYiZ5ozBlfTzfQ0FiWVQTc4uk+RESkdliWdZSqdQoiItIAWJY1DZjm6T6qoxm0s7cfiPnF49ZnromISP2kcV1EpGGpl+O6AtrZWw8kGGPaGmP8gauBeR7uSUREzp7GdRGRhqVejusKaC4wxnwMrAE6GGP2GWPGW5ZVCdwNLAR2AZ9ZlrXDk32KiIhrNK6LiDQsDWlcN5ZleboHERERERERQTNoIiIiIiIiXkMBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJe4v8BszKEA6cVlZ8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "z = 0.5\n", "ns = [4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12] # np.arange(4, 13)\n", @@ -371,9 +501,44 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 81, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 3.53233831 4.88557214 6.2238806 7.56716418 8.90547264 10.23383085\n", + " 11.5721393 12.91044776 14.23880597 15.57711443 17. ]\n", + "Intercept=1.34093, Bias=0.854093\n", + "35.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAADgCAYAAADMreetAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlUklEQVR4nO2de7QkdXXvP9/q7jkDyEMcRAR0wDdwQbgTgter4hOCKCqEBZF7ETBEYwjxcUXiSnCZZYImK2rEFZ0IIksl4lsTJXANyDIL8A44jgjB8JQZQRwQFYSZOV37/vGrM1PT9KPO6a6q/nXtz6xec7r699j12rVr//Zv/2RmOI7jOHGR1C2A4ziOs3hceTuO40SIK2/HcZwIceXtOI4TIa68HcdxIsSVt+M4ToS06xagCFLbEnXqFsOZQlLbBHi46yxiZiqr7aOOOtg2PvCboWVuvOGufzOzo8uSYVyiUN6JOuw0t7JuMZwp5OHH7sSYr1sMZ+J0S2194wO/5trr/3Jombn2GStKFWJMolDejuM4E8XArNwHRNm48nYcp3EYKd30sbrFGIvKBywl7SvpKkk3S/qxpLOrlsFxnKZjmM0P/Uw7dVje88A7zexGSTsDN0i60sxurkEWx3GaiBnWjdvyrlx5m9m9wL3Z37+RdAuwN+DK23GcirAorOth1OrzlrQSOBS4vk45HMdpFmYp1n20bjHGojblLekJwJeBPzOzX/f5/UzgTAD5uKrjOBPFII3b8q5lhqWkDkFxf87MvtKvjJmtNrNVZrZKcuXtDEA+SdhZApYp72GfEUi6SNL9km7q2X6WpP/MAjI+VNYuVK4VJQm4ELjFzP6+cD2fye/0JQFKm4jnbMfszGQVhsYfsLwYuAC4ZGu70kuB44BDzGyTpCeP28kg6jBpXwj8L+BHktZm2/7czL41qIIQUqsK2ZzIkDoQ+cBTDBgGpHWLMTlsfLeJmV2TjdvleStwvpltysrcP1YnQ6gj2uR7LMFUcsvb6UeiNqnm6hajAWyB8lKNPA4reXo8pJOwvPvxbOBFkj4APAa8y8z+XxkdxeFMlkjc8nb6ILVJ/LleOmkKpi3VdVi2h8aAdOQDYoWkNbnvq81s9Yg6bWB34Ajgd4DLJO1vJSwWHIXyFsHCcpxeWskcaeoP9rIxpZW6vI1NJfeQovmRfWw0s1WLbHg98JVMWX9fUgqsAH6xBCGHEolGFC08JazzeFqaQ256l47RpZtW6PMu20UzAZ/3AL4GvBS4StKzgWXAxjI6ikJ5C5Hg1pXzeDrJDqQWxWUcNanNY6puYDitIIJIo90mw+tLlwJHEtwr64HzgIuAi7Lwwc3AqWW4TCAS5Q2i5YsxOH1oJ3Ok5g/2stmSPkpaoeuydNVthuY3j9mEnTzgp1PGarggUShvIVpxiOpUTIflpIo7L3MMbEl+S1plSKbKVt9WZMByqolGI8rdJk4fWur4eEgFJOqgSmezlqu8NQHLu26iUN5CtN2v6fRDVcQEOy11ZmuuhdnYPu+6qWN6/HLgGmAu6/9LZnbeiFoks3ThOBOjbW1SvzZKRySVWt4q3ettaL7CuPUSqMOc3QS8zMwezhJUfU/St83suhpkcSInyf455SIls+W6LDZJZ6qpY3q8AQ9nXzvZZ2QozUy9sjlOZCS0SGbI5+0DlktEIcvUDcAzgY+b2eMWY8jn825rh2oFdBxntjFDXXebLBoz6wLPl7Qb8FVJB5nZTT1lVgOrAXZo7W6z/GqczlK2Nmcmmck33ypnjJZArSEcZvaQpKuAo4GbhpVNbAYvngU8HbUTATOlwM0HLBeNpD2ALZni3gF4JfDBoXVgpgelEkvc+nammpY6JBXOcq4i2sQt78WzF/CZzO+dAJeZ2b8MqyATHZvdiRjz6s7wo8mZBVrqVJuiouwZlmYwH/ciHnVEm6wjrBi/CERrlsKUejGYd9eJM8W06NCucNGL0i1vDxWshgQxN8NToLeEaYKOM7W0rU1Hyyvrr2z/ujDkbpPyEdCZYceC0SJ17e1MMR2WkVp1yq70wVHD3SZVIIlOpRMEqsXMmPeQE2eK6dgyUlWpvH3AchRxKG9gboZXS7EUtlRo1TjOYllWccBA6dFlBsy7z7t0BHSS2bVMt5hozXIcuxM9LZJKFbhKX6neLe9KCG6T2VXeLc3U9AdnBunQJqkw9W75K+kA3bGXQbsIOBa438wO6vntncDfAXuYWZPXsIT2DFvenVS0Ztin78wAlpJUqC6q8XmPHSRwMXABcEl+o6R9gVcBPx23g2HUpryzSTprgA1mduzQskB7dnU3iUI4pONMLUpQOevo9u+u7A6MsZW3mV0jaWWfnz4MvBv4+lgdjKBOy/ts4BZgl5ElBa0ZNkxbKt/OcJxxSBBJla7LkvsyA5sfqbxXSFqT+746S5g3EEnHEQzSH6rkfagrJew+wKuBDwDvGFkez93kOHVS9f1XSX+jLe+NZraqaHOSdgT+nOAyKZ26LO+PEF4rdh5UIJ/P+wnJzsywy9sHKx2nagyY/BydZwD7AQtW9z7AjZION7P7Jt1ZHVkFF0Znb5B05KBy+Xzee3T2nPnph5W+kjaQtEJ/rRMJE74kzOxHwJMXvku6C1g1S9EmLwReK+kYYDmwi6TPmtkpNcgyFUhufZdJij8cnR4MbMxscJIuBY4k+MbXA+eZ2YUTkK4QdWQVPBc4FyCzvN9VRHHP8q2XKMSyO+WQuNXt9CMd754zs5NH/L5yrA5GEE2c9yz7vIVou/IujbjTDzWTKkIFbUzlXTd1L4N2NXB1kbKzrLzbwpV3ybjP29keQTduZ2U0lndrhnVbO4FO3NfRVNPthlh6Jx7c8h5NFMobzbbybmm2E2/VzZYUzPOlO3lMMB/36lxRKO+wAPHs3nydRHRnd/dqZ7Mgnekh79mjigF8Kz1zYblEobxhxqfHm7tNyqSVgPzh6OQI0+Pd8i6dWfd5dxJjtoMh6yX4u117x0T5d4PGDhWsmyiUN8z2JJaWgMSVS1kE5R33jepMHnebVIAwWjP93quZDoWsGz+28VFJtIm7TRZPNuf/N0AXmB+ZuUulZ4islRbmdmGJeJhghJR+yuSW9xi8dDEJW5IZtrxTRNw2wHTjTpP4cMt7NJG4TWb75pvlB5PjTCOG+7yXigFXSDLgk6NWp5h14r6Epp9EHmvi9GByy3uJ/E8z2yDpycCVkv7TzK7JF8gvxrBr6wl1yOg4zgwTu+VdSwSemW3I/r8f+CpweJ8yq81slZmt2qm1Q9UiOo4zy5ggTYZ/ppw6VtLZCUjM7DfZ368C3j+qnod7OUtllid41cmYi6/XigGpZxVcNHsCX81yF7SBz5vZ5aMqzXJuE6dcXHmXQ6LyFHgMWQUlXQQsLOt4ULbtb4HXAJuB24HTzOyh8YTtTx0r6dwBHLKYOmK247ydcmnLfBm0Eog7mZqw7tgDlhcDFwCX5LZdCZxrZvOSPkhYNeyccTvqRxShgsCMz7B0yqSdQNcXYygBxe06GXPA0syukbSyZ9sVua/XASeM1ckQolDeISWs4yyNTmK0I48smEY2pUZa0htN2WfLTKTjW96jOB34QlmNR6G8EbQ8cZOzRDqJRW0hTispwkp6o6nCy1XA571C0prc99VF56RIei9h+dTPLVG8kUShvGc/MZVTJh1Z7Nk/pxIz6MYaBmaF3CYbR+Zd6oOkNxEGMl9uZT3diEZ5h0Enx1kKyxIj9WilidO1BEX8VCwjVFDS0cC7gZeY2W8n3kGOKJQ3+BRyZ+l0EiOtW4gZZD412iXdmKX7vBFm4ylvSZcCRxLcK+uB8wjRJXOEmeMA15nZW8aTtj9xKG9BK/Hbz1kaHSD1AcuJs1mg0t6IS35TsvEtbzM7uc/mC8dqdBHUlc97N+BTwEGEs3S6mV07sDwebeIsnZZ8zKQMWkpKmwBVyYBl5A/0uizvjwKXm9kJkpYBO46qUN4T3pl14s4dN70kijedcQgVjNskrCO3ya7Ai4E3AZjZZsJU0qHEfZidOkkjVTDTTuwG1bg+77qpw/LeD/gF8GlJhwA3AGeb2SM1yOI0gLhv0eklobyBxSocGrGPg9RxXbeBw4B/NLNDgUeA9/QWknSmpDWS1jw8/2jVMjqOM8MsuE2GfaadOizv9cB6M7s++/4l+ijvbCbTaoD9dlhhsfrWHGdWkSzqVM0+YLlIzOw+SfdIeo6Z3Qq8HLh5VL3Y/WtFif2CcppFtKmaTXTTuIey64o2OQv4XBZpcgdw2rDCojlZBbt1C+A4BWnLygsVLKfZrRjj5/Oum1qUt5mtBYrnDFBzlLdb3k4slBk/X8mAZQRLnQ0jihmWwugkzbBJPe20EwstGZ2Ssn2WPknH4o82iUR5Q6ch0+O7lkR/UTnNICjvcu5LlexLD7lN4r7PolDeiYxlrfm6xaiEzd1WtLPWnGbRSVK2lKUAK9CrXXebVICg3WqG5e0JuJxYaKUpcyXFClYRxeKWdwUkNMfybmkZqSfAdSKgk6SlXatVLIPmlncVyGi3mjFg2UpSFLlF4DQDS0Li6jKoYl6HW94VIIx2Q6JNfMk3JxqS8qJCqojzdsu7AiQaZHmbhws6kVDe+EwVoYLTYHlL6pjZlqXUrSMl7HOAL+Q27Q/8pZl9ZGAdjFZDlHcic5+3EwUJRqJy7suyQwVBY4fkSrqIsNDw/WZ2ULZtd4J+WwncBZxoZr8cUP+fgGMlzQM/A9YB68zsY0X6ryO3ya3A8wEktYANwFeHVhIkDYjCMFNI9lO3II5TBMU70cWAdPx83hcDFwCX5La9B/iOmZ0v6T3Z93MG1H8xsI+ZdSXtDRwCHFy085HKW9LLgDcCDwE3EZ4ON5nZpqKdDOHlwO1mdvcE2oqepiTfcmaHmOckjPvgMbNrJK3s2XwcYVFigM8AVzNYeV8PPIlguW8gGLLfKtp/Ecv7IuDPCOu4Hgy8DjgQeGbRToZwEnBpvx8knQmcCbDX8rmoL5LF4krcaTwlG/QFQwVXSFqT+746S1U9jD3N7N7s7/uAPYeU/STwXUkXEhT5OjP71SihFiiivO82s69lf3+xaMOjyDIKvhY4t9/v+XzeB+66S2O0WYL7vB2nCgoMWG40s+IJ9B7XvpmGW2KfJei4NvDHwMGSlpvZM4q0X0R5XyPp7cBHzCYaB/F7wI1m9vMJthk9klFSrp9G4w9EJ48R8giVwM8l7WVm90raC7h/SNn1ZvY3+Q2SCofOF1HeBwD/DThH0g3AWmCtmY1rhZ/MAJdJL8Ia40qQmrOvVSKLPxFRk4gh2mQA3wBOBc7P/v/6kLJrJZ1tZh9d2LCYscSRytvMjgeQtAPbFPnvMoYLRdJOwCuBPypepxkKrdPqRjuCP83EPiHDmSzB8h47VPBSwuDkCknrgfMISvsySWcAdwMnDmliT+AVks4BbgR+yCIM48Khgmb2KGGl9xuK1hnS1iOEUdZiCFoNSkwV9+JM04tb3vFQ+pmawCQdMzt5wE8vL1j/RNjqKjmQYBgfTkHDOI4ZlhhSM5R3U9IAVE06A4mImkX5b9rT8oabuUpuzD6FiUJ5N2WSDkCnswUrZyCl0UzLjeoUpOxQQVTWgGVlxKG8gaQhbpOQw8Wt70nT7SbuNomIStawjHwYLQrlLRlJQ3KbdDrzpJGvaj2NtNvz7jaJirKXQSstVLAyolDeEPc03MXQas2TlLQ6SZPZMt/2VYoiopqsgiX3UTJRKO9geTfjxmu1m/GGUTWtzWljIpac0bjlXSFNifNut+fdN1sCSZI2JmJpFoh4kk5l1KK8s+n2byY8AH8EnGZmjw2v04wbL/Eg71JotbqNMQBmggr0auxXQx2LMewN/ClwgJk9KukyQnbBiwdXgqYk/FDajIdU1XjaASePAfNueS+53x0kbQF2JKwiMYQG3XithuxnxUjWmEFvpxixuycr99hnScf/DvgpcC/wKzO7omo5HMdpLmYht8mwz7RTufKW9ETCahP7AU8FdpJ0Sp9yZ0paI2nNA495BIbjOJMlNQ39TDt1uE1eAdxpZr8AkPQV4H8QEpNvJb8YwyErdjA1xOftlIOSBrneKiZG90OYHh+f3HnqUN4/BY6QtCPwKCED15rhVRxnPHzAMi7KDxWE2EMD6lg9/npJXyJk0JoHfkBmYQ9CNCfO2ymHpNWl3Z6vW4yZwyyh241vsosR5xtDnlqiTczsPELi8mI0KLeJUw6tJG1MZsoqMbNycvFUoFe7kduD8cywdJ+3MwZJK/XUAyVgJS0vV7bbxGz8NMFLmWw4SeJQ3gK55e2MQdKepx3h6/20YybSMo5rJZb30jtZ0mTDCROF8m5SYiqnHFodzxlTBtZtoS3xvRUbExmwXORkw8kShfIGkPsrnTFwt0k5pLJSxhKqCFAYx/I2sw2SFiYbPgpcUfVkwziUtwy55e2MQdKZ94ilEujOt2hF6NI0Cq2ks0JSPox5dTb/pHey4UPAFyWdYmaffXwz5RCF8hbu83bGI2kLc+VdCrE+FAssxrDRzFYN+K3QZMMyiUJ5I482ccYjaaeYX0OlUMZ4VOkPhPHzl9Q+2bCufN5nA39IMKr/ycw+MryGNSYlrFMOolvB2lrNQ6mizLU/7oDlUiYbTpo68nkfRFDchwObgcsl/YuZ3Ta8XnwXiDNFtIDEQwUnTWJpOYZVBJN0Fj3ZcMLUYXk/D7jezH4LIOm7wBuADw2s4W4TZwIIHzeZNN35pCQXR/mrx8eQOXAYdZgiNwEvkvSkzF90DLBvDXI4jjMmMRtVXRv+mXbqSEx1i6QPAlcAjwBr4fEmkaQzgTMB9t3FX3cdx5kcITFV3VKMR12JqS4ELgSQ9NfA+j5ltubzPuypHfMBS8eZTmK1vmMfRasr2uTJZna/pKcR/N1HDK9gzYrzNmGpv204EVDSIhdle6MtEtfIMOqK8/6ypCcBW4C3mdlDwwqLeJ/uS8FSTwfgxIGUlpOuuYKJPwVmWE41dblNXrSoCjLUaVAi/W4Cbnk7EaB2SlLGvVmy6W245V0NMrSsQcp7UweL3iPnNAElKa0SlHcVU+7d8q4CgToNUmbpPMy36pbCcUaTpiSdybtNylbebnlXhUDL6haiOqxr8ZsFTiNQu1uOS7P03CYeKlgNCTAX92yoxaDNaSxnxmk6SUprbvPk263CbVJ6D+USh4pIBMsbZHo/ugm55e1EgCWUYnm722Q0cShvCZZ16paiMtTehLnydiJAqaESfN5VJKaK/RaLR3l3GmR5t+QpcJ1o0LISlHfJ179b3lUhQTsOUSdCW1Eu6uo0kARK8R5XYnnHfY+VphElXQQcC9xvZgdl23YHvgCsBO4CTjSzXxZoDWs3yG2SJOAzLJ1IUIR2lU+PH87FwAXAJblt7wG+Y2bnS3pP9v2ckS01zfJOVE+yXsdZCmVcq6Vb3oaVnDO8bErTiGZ2jaSVPZuPA47M/v4McDVFlXfSoEkrSeJLdjnxEKH7oeDq8UORtBvwKeCgrMnTzezacWUrStXm7J5mdm/2933AnoMK5vN5P23PBlndjhMbkRoa3fEfOh8FLjezEyQtA3YcX6ri1PZybmbGkLWOzGy1ma0ys1UrdnPl7TjO5FhYgHjYZxiSdgVeTLYugZltHpUdddJUrRV/LmkvM7tX0l7A/UUrWoMWj5X7vMvDx4GdjAKW9wpJa3LfV2eLxADsB/wC+LSkQ4AbgLPN7JHJS9qfqpX3N4BTgfOz/79euGaDlDftNrQblEWxSuYbtKhHzFSQErZAqOBGM1s14Lc2cBhwlpldL+mjhACMv5iclMMpM1TwUsLg5ApJ64HzCEr7MklnAHcDJxZsrFkDlq02tBu0v47TSwV+9O540SbrgfVmdn32/UsE5V0ZZUabnDzgp5cvqb2mWd4NSgdQGWkaPk7jMYx0DOVtZvdJukfSc8zsVoJeu3liAhYgjpFAJdBuzvR4WzaHXMlMnjR1t0kslL6I5URmWJ4FfC6LNLkDOG1suRZBJMq7WTMsWTYX+fSB6UTzW2BLCelLnRIoV3sb0B1z9NrM1gKDfOKlE4XyNsAa5PO2ZXNVpHZoHJYkaNNjdYvhFKECn/c4bpNpIArlHSzvJrlNljfLx18R2pygVhyXfOMpPdrExra86yaOK1lJo5R3umw5atCbRlUoTZsVcho1JWtvQSpX3tUQY+qyJWLtZc0KjawIS7vNSnAWMyW7TYLlHffgdRxXshKsPVe3FJVi5pN0Jk7aJfGHopPhPu8BDMjn/fvA+4DnAYeb2ZrBLWzXWqMsUWvPQdqc/a2M5FF3m8RCFQOW7jYZyMU8Pp/3TcAbgE8uqiWBJXG8JEwCQaMeVlUR3FGuvJ3gNpkn7rfbSvN5m9ktAIo0hWRVNOlBVSWWtPyhGAul64gwxzJmplZL5PN577v3TjVL4zjOLGEY84rb8p7ad8jt8nk/qVmDlY7jlI/RHfqZdqbW8t6eZg1YOiWhtk9+cgD3eVeGIfcDO2NjSQualCMnZirxeU+/dT2MqvN5Pwh8DNgD+FdJa83sqAKNNWqSjlMSSbtZCc5ipvRJOpD6gGV/huTz/uqSGnTL2xkTa89hy5bXLYZTBJXt3jK6bCm5j3KJQyMqgZbfdM54WPsx0mU71C2GUwCrwPL2UMFKECT+uuuMSWs51tmxbimcIlRheZtb3qUjJcgtb2dMLN1CunyXusVwilB6dNlkBiwltYA1wAYzO3bsBhdBFMob5MrbmQjWebhuEZwCmMpV3obRnUzyt7OBW4DKrYI4lLcSksSVtzMeKWBzT6xbDKcIJStvDMzGs7wl7QO8GvgA8I5JiLUY4lDeCHm0iTMmCcux9hPqFsMpgEr2eYfMJmMPWH4EeDew89gCLYEoNKIAeZy3MyZqtT1PeixUMGCZjh6wXCEpn7Z6tZmtBpC0kO76BklHliPjcKrO5/23wGuAzcDtwGlm9tDoxhJaiec3ccbDrAtueUeBKki7ZDbS8t5oZoNWh38h8FpJxwDLgV0kfdbMTpmkjMOoOp/3lcC5ZjYv6YPAucA5oxoSInHL2xmTFGiV7Ut1JkMVbpMxQgXN7FyC/iKzvN9VpeKG6vN5X5H7eh1wQln9O04vbgDEg8pegBgrYnlPNXVezacDX6ixf8dxmopBOqHxDzO7Grh6Io0tglqUt6T3AvPA54aU2boYw9Oe9qSKJHMcpxnEv5JO5cmNJb2JMJD5RjMbuHxzfjGGPfbwWXGO40wOIwxgD/tMO5Va3pKOJsRFvsTMfltl347jONuw6MNGS7O8s3ze1wLPkbRe0hmE6JOdgSslrZX0ibL6dxzHGUxwmwz7TDtV5/O+sKz+HMdxFkXklrfHTjmO00DiH7B05e04TjOJYFByGK68HcdpIIYxMNgtCjQkWm9qkPQb4L7s66+AXXM/935f2LYCtlukblC5hW0dYOOIMr3bOrk+ypRryyLaHyXXIFlnXa5B7S9Frn7XShPkWtiWPydLlatfufz3p5hZadn6JF1O2I9hbDSzo8uSYVxiUd5rgBsBzOxMSasXfuv9ntu2tc6IcgvbDjOzVSPK9G47rAq5gBsX0f5QuYbIOtNyDWl/0XLR51ppgly5bQPvx6JyjdjvrXVwBhKT2+SbA/7u930x5Ra2HVagTO+2wyqS65sDyi1VrqLbZk2uQW0tVq5B10oT5Oq3faly9dvWez86gzCzqf8Aa8quU0UfLtdsyNXkfZ9muZr2qXx6/BJZPbrI2HWq6GMpdVyuZvaxlDpNl6tRROHzdhzHcbYnFsvbcRzHyVO33wY4GrgVuA14T5/f5wh5v28DrgdOzZW/PPv/VuCoAeVXZn3cTlhM5WfAWuATuT5eTBg9nycsEJGX6TLgv7LPqf3K9+yH5fr4Rq6PdwA3A+uA7wBPz9X5OSGUamsfBeoM6uctwI+y7d8jpNUddrx6yx8w6njl+jo+k+OsYX30Kb+qwDl5E/CLbPta4M0FjldvnQ/n5Epz2/PH68TsGP8Y+PyoPkbUGXROPpzr+yfAwwy/vnrLP1Sgj6cBVwE/IFwvx+TqPJDty3bnpE+dv8jK3EUIBVyQ4RNZ+acTrsN1hPzV+xQ4J711/hm4H7gJ6PaeE8KStf+QHZt1hKiThbZO7T1WTf7UrbhbhBt4f2AZ8EPggJ4yf5y7eE7OLvz9gUOAR7P/98vaafWUPym7OW4HXkS42fr1sRI4mLBk24k5mfYENgEvAJ4I3JH9ny9/Qs9+PDygj5cCO2Z/vzUn16FZuzcBRyz0MaLOsH52yf39OuC3I45XvvxrCcp36PHKyu4MXENYEWn9sD76lD+8wDl5E3BBn2tl2PHaWofHX1vdPn08i6C4Fuo/pUAfg+oMPCc9ff4p8GuGXF895c8CPl3gvK8G3pr9fQBBAd8OvIqgBNcBr+w5J/k6BxEU9v7ZPj7ap48vsu0B8zLgswWOV2+dfyNEktwEPNzn+BwDfJugxI8Ars+27561u/ugY9W0T91uk8OB28zsDjPbTHgqH9dT5jjgM9nf9xBuxDsJJ/m7wDFmdifhSX14T/kvES7e27K61q8PM7vLzNYRrLNnLshEuNjWAkea2S8Ja3Ae3VN+u/3Ivvfr4yrblgb3OuC5mVzPzdr9HEFZX0mwZgbWGdHPr3NfDwYeycr3PV495XciTJIYerwy/gr4IOF83DOsj57yjwEHFuwjz+GMOF79yueurfk+ffwh8PHs3EJ44Izqo2+dYeekhzcDPxl2ffWUP5nwsBjVhwELie93JTwgbgP+O3Bp9lnF9uckX+cFBGV6B9sm7fT2cQDw79nfVwGvZ/Tx6q3zAuDBfgcm4zjgEgtcB+wmaS/gKOBKM3twyLFqFHUr770JN/AC67Ntg8o8hXDzPynbfmeu/ELdreUtJOx9jPCaBuFG+yPgTyS9aIBMu+f62xv4aZ8+hu3HcsINfrak1w3o4wyCxXlPru5C24P6yNcZ2o+kt0m6nWDlXZWTsd/xypf/EOEGXOij7/GSdBiwr5n9K8FN9fNhffSUB9hjVB8Zx0taJ+lLhAdRkeN1vKR1wN+zvZJoA2+XdF3ueD0beLak/5B0HfDqAn0MqgMjzr2kpwP7EiznheM18PrKyu9HmF08qo/3AadIWg98i2AVj9qXfJ0Ps/1SXrsB75D03dx5+SHwhuzv1wM7Eu6tYX301tk5axtguaQ1PedkkE4ooisaRd3Ku0ruJfj4/oLg2/28pDKW6Hk6cB5wBfARSc/I/yjpFIIF9PWiDQ6oM7AfM/u4mT2DcAM/f1T7ufLnsG1R6L7HS1JCUIzvLCr+kPLDzsk3gZVmdjDByvqTAn3l66wDXpL77e0Et9MfsO14tQkugiMJFu5bCG8SwxhWZ+i5J7jxroXCSTVOIrw95tPfDerjZOBiM9uH8AZ0VoH283X+GjgyO7/3Eo7XFwjjLgvn5V3ASyT9gHBsHyywL711NuT25+kWZlHmz4lTkLqV9waCJbLAPtm2QWXuI1geD2Tb98uVX6i7tbykdlb+yWa2ycweyMqtJfjqnt1Hpgdz/W0gKJfePgbuh5ltyMrdQrBkDl0oJOkVwHsJvuW7szoLdRfa3q6PAXWG9pPjsuwYLcjY73jl+WfCQ2LfIcdrZ4J/9GpJdxHcTEdLWjWgj1/2lD8C+D/AgcPOiZk9YGabsnY+lbU79Hj11LmEYOEvsBOwIXMLLByv9YSBsi2Zm+dOgmIedk4G1SlyTk4Cvkbx6+skgrujyPV1BuF8Y2bXEu7tZ4zYl611CG9oc8CK7Bjulh2vG8jOi5n9zMzeYGaHEq7JLsFvP+yc9NaB4NJZ2Bd6zskgnVBEVzSLOh3uBCvmDsKNuTBgeWBPmbexbQDyDwgDNvuxbXDs+dn3OwiDVPnyJxEGTO4g+P6WZ30cRTjxu/f0dTFhwHJBpt4BpTvzdbLyJ+T24xDgCVkfLySMih+QlT2UcBM8q2ffn5+1e1PWz9Y+htQZ1s+zcvIdl8k/7Hjly78GWFP0eGV1vktQaAP76Cl/NfC7o/oA9srVeT3B5z/qeOXrHE9wme0HPJlgiR9ISEb0X2yLqvlMVn4F4bX8rhF9DKoz8JxkZZ+blctf8wOvr1x5FTzv3wbelP39PEJEyh1sP2D5qvw56alzEGFcYD/gqVkfBxIGMDcQ3IkrgCQr/wHCOMaoc9Jb5/2EAf+bgblcmYVz8mq2H7D8flZm96zdJ/Yeq6Z+6hcgvOL9hKCk3pttez/w2uzv5QQFfBvwfeD0XPkrsv83Au8bUH7/rI+fAZsJr4Q3EiyahT5+h6CAHiFY9Xfn+vhy1taDwEcHlP9x1sdPCTfjvYTwu2/k+vi/BN/w2uzzjdy+35+1cxvBNTKqzrB+PprJs5ZgTb1lxPHqLX/gqOPVc/6uJvjWB/bRp/yqAufkb9gWiXIVQZmNOl69dc7Myq8nvLX9MDue/5CVX3Dp3Jwdx5MK9DGozsBzktV7H3B+n2v+cddXb/lcnWHn/QDgP7J9XEtQ1Av9PJB9biWMaQyq896s/H1su+7uBf4qK38CQcn+hPA2NFfgePXW+ULW5jxhYPQewsPhktzx/Xh2bH4ErModg9Oz9m8DTqtbd9X98RmWjuM4EVK3z9txHMdZAq68HcdxIsSVt+M4ToS48nYcx4kQV96O4zgR4srbcRwnQlx5O47jRIgrb2cqkfTvktZmn8cknVi3TI4zTfgkHWeqkfRWQprRk82sW7c8jjMttOsWwHEGIel/A78HHO+K23G2x5W3M5VI+n3gjcBxZralbnkcZ9pw5e1MHZKOJSxnd6yZPVa3PI4zjbjP25k6JD1AyLL3SLbpY2Z2YY0iOc7U4crbcRwnQjxU0HEcJ0JceTuO40SIK2/HcZwIceXtOI4TIa68HcdxIsSVt+M4ToS48nYcx4kQV96O4zgR8v8BcthPbE9QNgsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAEoCAYAAAAqrOTwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5H0lEQVR4nO3deXxU9b3/8dcneyAbkGQmLGHfQhDRiEoFZQkm1kpXr7W22upFe+t29dbqbW/ttb3313u73NpS6/XWte7a2trWoCCbCi4BFcImqxDMJIQlrNkm398fM8EAE0AzyUwm7+fjkUfmnDkz8/EI8+Z7zvd8jjnnEBERiTVxkS5ARESkMyjgREQkJingREQkJingREQkJingREQkJingREQkJiV09A3M7CHgUqDGOVcYXPcMMDq4SRawzzl3ZojXbgMOAH6g2TlX1NF6REREAKyj18GZ2VTgIPBYa8Ad9/wvgDrn3D0hntsGFDnnajtUhIiIyHE6PIJzzi01syGhnjMzAy4Hpnf0c9rKzs52Q4aE/EgREelBVqxYUeucywn1XIcD7hSmANXOuY3tPO+AV8zMAf/rnHvgdN50yJAhlJeXh6tGERHppszsw/ae6+yA+yrw1Emev8A5t9PMcoH5ZrbeObc01IZmNgeYA5Cfnx/+SkVEJKZ02ixKM0sAvgg80942zrmdwd81wAvApJNs+4Bzrsg5V5STE3I0KiIi0e71X8HW48YxW5cG1odZZ14mMBNY75yrDPWkmfU2s/TWx8AsoKIT6xERkUgbcBY8d83HIbd1aWB5wFlh/6gOB5yZPQUsB0abWaWZXRt86gqOOzxpZv3N7KXgogd43czeB94G/u6cm9fRekREJIoNnYr/Sw/T9PTVNM3/cSDcvvIIDJ0a9o8KxyzKr7az/poQ6z4CLgk+3gJM6Ojni4hI9GtsbuGNzbXMW+1j/rpGrm64kFve+DlMvaNTwg06f5KJiIj0UPVNfpZ8sIt5FT4WrKvmQH0zackJXJ+/k+urF9N0zr+QWP4gDJ0SnSM4ERGRVgcbmlm0voZ5FT4WbajhcKOfzNRELh7npbTQy5TEdST96Sfw1ccCoTbiwk47TKmAExGRDqk73MSCddWUVfhYunEXjc0tZKcl8fmJAygt9HLesH4kxgenfLz+1LFhNnRqYHnnSgWciIhE3u6DDbyyNhBqyzbV0tziyMtM4cpJ+ZQWeika0pf4ODvxhRfceuK6oVN1iFJERCLHV1fPy2t8lFVU8fbWPbQ4yO/bi2svGEpJoZcJA7OICxVqEaKAExGRdu3Yc5h5FYFQW7l9HwAjctP4zrQRlBR6KcjLINB2OPoo4ERE5Bibdx08GmoVO/cDUJCXwe3Foygd72VEbnqEKzw9CjgRkR7OOcd63wHKKnzMq6jig+qDAJw5KIu7SsdQWphHfr9eEa7yk1PAiYjEstd/FWiD1XYSx9aluJ0rWTX4mqOhtm33YczgnCF9uftzBVw8zkv/rNSIlR0OCjgRkVjW2vvxK4/QMngKH7z1EoNe/SfutNv464E3iI8zJg/vxz9OHcasAi856cmRrjhsFHAiIjGsOf8C1k++l6GPf52n3Ey+4H+ZG/y3kjRiMj8r9FJc4CGrV1Kky+wUCjgRkRjT0Oxn2abdlFVUMX9tNXsPx3FH0gz+Ke55Noz5Nvd94RbSUxIjXWanU8CJiMSAI42tfR+reHVdDQcaAn0fZ4zN5Wu52zjnncVwzh2MLn8Qqi7ptAbH0SQsAWdmDwGXAjXOucLguh8B/wjsCm72r865l0K8tgS4F4gHfu+c+2k4ahIRiXUH6ptYtCEQaovW7+JIk5+sXomUFHopHe/lMyOySd7xBjx3O1z+SLBjyJROvUVNNAnXCO4RYC7w2HHr/8c59/P2XmRm8cBvgWKgEnjHzF50zq0NU10iIjFl3+FG5q+tZl6Fj9c21Qb7PibzxbMGUFqYx7nD+n7c9xECPR67qPdjtAlLwDnnlprZkE/x0knApuC94TCzp4HZgAJORCRo14EGXlnrY16Fj+Wbd9Pc4uifmcLXzs2ntDCPswf3Cd33Ebq092O06exzcDea2TeAcuB259ze454fAOxos1wJnBvqjcxsDjAHID8/vxNKFRGJHlV1R5hXEQi1d7YF+j4O7teLa6cMpbQwjwkDM6O2RVa06MyA+x3wY8AFf/8C+NanfTPn3APAAwBFRUUuHAWKiEST7bsPU1ZRRVmFj/d27ANgZG4aN04bQUlhHmPz0hVqn0CnBZxzrrr1sZn9H/C3EJvtBAa1WR4YXCci0iNsqjlA2WofZRU+1lYF+j6O65/Bv8waRUlhHiNy0yJcYffVaQFnZnnOuarg4heAihCbvQOMNLOhBILtCuDKzqpJRCTSnHOsrdofbGbsY1NNoO/jxPws/vWSMZSM6559H6NRuC4TeAq4CMg2s0rgbuAiMzuTwCHKbcD1wW37E7gc4BLnXLOZ3Qi8TOAygYecc2vCUZOISMQc1//ROcemt19iR8Ub/PueYj7cfZi4YN/Hqz5XwMWFXvIyu3ffx2hkznW/01lFRUWuvLw80mWIiIS2dSnuuWtYf8GveaZ2KLtWz+eexp9zS/Mt2LCplBbmMWuch+y02On7GClmtsI5VxTqOXUyEREJkyZ/C29u2U1ZRR9219/Ef758A9mumNsTXmXl5Hv57ZTLyOwV+y2yooUCTkSkAxqa/by+sZayCh8L1lWz73ATqYnxTBszldq4am7c8Du44A4unP6lSJfa4yjgREQ+oSONfhZvqKGswsfC9TUcbGgmPdj3saQwjwtH5ZC68w147lmYegeUPxhokdUDLq6OJgo4EZHTcKC+iYXrayhb7WPxBzXUN7XQp1cinx2fR0mhl8kj+pGcEB/YeOvSY/s99qD+j9FEASci0o59hxt5Jdj38fWNtTT6W8hJT+YrZw+itNDLpKF9SWjb97FVD+7/GE0UcCIibbT2fSxb7WP5lt34WxwDslL5+vmDKS30clZ+H+La6/vYqgf3f4wmCjgR6fE+2hfs+7gm0PfRORia3Zs5U4dRWuhl/AD1feyOFHAi0iO19n18qcLH+8G+j6M96dw8fSSl472M9qjvY3engBORHiNU38fxAzL57sWjKS30MixHfR9jiQJORGLDce2xANyWJVSvX84TCV84pu/j2YP78IPPjuXicV4G9VXfx1ilgBOR2DDgLHjuGtyXH+a9hDNYu+zvfHb9Xfxz40285TZx7tB+fOP8wVw8zosnIyXS1UoXUMCJSLfnb3GUu3GsG/AjZj92FUubZ/D1+AX8zvNDZheVMLfAQz/1fexxOhxwZvYQcClQ45wrDK77GfA5oBHYDHzTObcvxGu3AQcAP9DcXsNMEZHjfdz30ccra3zUHmwkKSGHftmXccu+x6mffDt3zZoT6TIlgsIxgnsEmAs81mbdfOCu4O1w/gu4C/heO6+f5pyrDUMdIhLj2vZ9nL+2mrojTfRKimfamFxKC73MSNlA6p/LYOodpJQ/CCMv0rVnPViHA845t9TMhhy37pU2i28CX+7o54hIz3S4sZklG3Yd2/cxJYHisR5KCr1MHZVDSmJ8sD3WtWqPJUd1xTm4bwHPtPOcA14xMwf8r3PugfbexMzmAHMA8vPzw16kiESPUH0f+/ZO4tIzgn0fh2eTlHBciyy1x5LjhOWGp8ER3N9az8G1Wf99oAj4ogvxQWY2wDm308xyCRzWvMk5t/RUn6cbnorEnr2HGpm/tpqyiire2LSbRn8LuenJlBR6KSn0MmlIO30fpUeLyA1PzewaApNPZoQKNwDn3M7g7xozewGYBJwy4EQkNtQcqOeVNYFQe3PLnqN9H79x/mBKx3uZOOg0+j6KtKNTAs7MSoA7gAudc4fb2aY3EOecOxB8PAu4pzPqEZHosXPfEV6u8DGvwsc7Hwb6Pg7L7s31U4dRWphH4YAMtciSsAjHZQJPARcB2WZWCdxNYNZkMjA/+Af1TefcDWbWH/i9c+4SwAO8EHw+AXjSOTevo/WISPTZVnuIsgof8yqqeL+yDoAx3nRumTGS0sI8RnnSFGoSdmE5B9fVdA5OJAqEaI3F1qWBSR0X3MrG6gO8tNpHWUUV630HADhjYCYlhV5KC/MYmt07MnVLTInIOTgRiXHB1litMxfdliX4n72G54f9mP/7xWI27zqEGZydH+j7WFLoZWAf9X2UrqOAE5FPZ+hUWr70MP6nr+bNfrMZ/9Ef+XbjTbz9Xl/OHZrCNZOHcPE4L7nq+ygRooATkU/E3+J4e+se5lVU8fKaZr56+EJuaXiYv2R+jc9fcAW/LfDSt3dSpMsUUcCJyKk1+VtYtnk38yqqeGVNNbsPNZKcEMecQZXcwGLqi25n9nuPQPYV0FuNGCQ6KOBEJKT6Jj+vbaylrKKKBWur2V/fTO+jfR/zmJ6yntQ//z/46mOBiSYjL1JrLIkqCjgROepQQzOLN+yirKKKRetrONToJyMlgZkFHkoL85gyMjvQ9xHg9WfUGkuimgJOpIfbX9/Eq+uqKVvtY8kHu2hobqFf7yQuO7M/JYV5nD+s34l9HwEuuPXEdUOnKtwkaijgRHqgPYcamb/WR1mFjzc21dLkd3gykrninEGUFOYxaWhf4tUiS7o5BZxID1Gzv56X1wRC7a2tgb6PA/ukcs3kIZQU5jFxUJb6PkpMUcCJxLDKvYeZF+z7uGL73kDfx5ze3HBhoO/juP7q+yixSwEnEmO21h6irKKKeRU+VgX7Po7Ny+CfZ46itNDLSE96hCsU6RoKOJHuJET/R7dlCbUb3uSJxC8wr8J3tO/jhEFZ3Fk6hpJxXoao76P0QGEJODN7iMC932pab3pqZn0J3Ml7CLANuNw5tzfEa68GfhBc/Ilz7tFw1CQSk4L9H92XH6Yi6UzWvPFXStbdxc2NN/Gm28g5g/vyw0sLuLjQy4Cs1EhXKxJR4bqj91TgIPBYm4D7b2CPc+6nZnYn0Mc5973jXtcXKCdw128HrADODhWEbeluAtITtbQ43t2xl7Vv/J1LP/hXHmuewVXxC7g/598YXFTCrHEectPV91F6lk6/m4BzbqmZDTlu9WwC94kDeBRYDHzvuG0uBuY75/YEC50PlABPhaMuke6u2d/C29v2MK/Cx8trfFTvbyApPpvM7Mu4pe5xjpx/O9+/+PpIlykSlTrzHJzHOVcVfOwjcIPT4w0AdrRZrgyuE+mxGptbWLa5lnkVPl5ZW82eQ42kJMZx0ahcSsd7mZm6gd5/KYOpd5Ba/iCMukgXV4uE0CWTTJxzzsw6dCzUzOYAcwDy89XMVWJLfZOfpR/sYl6FjwXrAn0f05ITmD4ml9JCLxeOzqFXUkLghqLPXfdxi6yhU9T/UaQdnRlw1WaW55yrMrM8oCbENjv5+DAmwEAChzJP4Jx7AHgAAufgwluqSNc71NDMog01lFX4WLS+hsONfjJTE5k1zktpoZfPjGjT97HVzpXq/yhymjoz4F4ErgZ+Gvz9lxDbvAz8p5n1CS7PAu7qxJpEIqruSLDvY4WPpcG+j9lpSXx+4gBKC72cN6wfifEh+j62Uv9HkdMWrssEniIwEss2s0rgbgLB9qyZXQt8CFwe3LYIuME5d51zbo+Z/Rh4J/hW97ROOBGJFbsPNjB/bSDUlm0O9H3My0zhq5PyKS30UjREfR9FOkNYLhPoarpMQKJddWvfx9U+3tq6mxYH+X17UVropaTQy4SB6vsoEg6dfpmAiMCOPYePNjNe8WHgUs4RuWl8Z9oISgq9FOSp76NIV1LAiZxKiPZYbF0KO1eyefR1R5sZr94Z6PtYkJfB7cWjKB3vZUSu+j6KRIoCTuRUgu2x+MojuCFT2LHyZbLLrufu5H/hub8tAeDMQVncVTqGkkIvg/up76NINFDAiZyCGzKFLRfNJe+Jr/O8zeKzjWVc23Qz/pwi7p7s5eJxXvqr76NI1FHAiYTQ0uJYsX0vZasDLbJ27nPcnjidm+KfZfWI6/n1528hJz050mWKyEko4ESCmv0tvLV1D2UVVby8pppdBxpIio9jyshs/uPMvUx9fwmccwfjyx+E2kshXdeeiUQzBZz0aI3NLbyxqZayiirmr61m7+EmUhPjuWh0DiWFXqaPySW9ajk89124/BG1xxLpRhRw0uPUN/lZvGEX8yqqeHVdDQcaAn0fZ4wN9n0clUtqUpsWWWqPJdItKeCkRzjY0MzC9TXMq6hi0fpdHGnyk9UrkZJCL6XjA30fkxPiQ79Y7bFEuiUFnMSsusNNzF9XzbyKKpZurKWxuYXstGS+eNYASgvzOHdY35P3fRSRbk0BJzGl9mADr6yppqyiiuWbd9Pc4uifmcLXzs2ntDCPswf3Ud9HkR5CASfdnq+unnkVVZRV+Hhn2x5aHAzu14trpwyltDCPCQMz1SJLpAdSwEm3tGPPYcqCofbu9n0AjMxN48ZpIygpzGNsXrpCTaSH69SAM7PRwDNtVg0Dfuic+1WbbS4icK+4rcFVf3LO3dOZdUmUa6f3Y+0Hb/J04hcoq/Cx5qP9AIzrn8G/zBpFSWEeI3LTIlOviESlTg0459wG4EwAM4sncAfvF0Js+ppz7tLOrEW6kWDvR/flh1mXMpE1b/yV4rV3clPDTSxv+YCJ+Vn86yVjKBmXR36/XpGuVkSiVFceopwBbHbOfdiFnyndjHOO9xPOYE3+PXz2sauY3zyDq+IX8Ot+P+Disy/ml4Ve8jLV91FETq0rA+4K4Kl2njvfzN4HPgL+xTm35vgNzGwOMAcgPz+/04qUrudvcaz4cG+gRVaFj4/q6kmI60uv7M9xy/4nOHTebfyw5IZIlyki3UyX3NHbzJIIhNc451z1cc9lAC3OuYNmdglwr3Nu5MneT3f07v6a/S28uSXQ9/GVtcG+jwlxTB2ZTUlhHiW9PiDtr9dB0bVQ/qDaYolISNFwR+9SYOXx4QbgnNvf5vFLZnafmWU752q7qDbpIg3N/kDfx9U+5q+rZl+w7+O0MTmUFOYxbXQO6SmJgZuJPnfdx6Gm3o8i8il0VcB9lXYOT5qZF6h2zjkzmwTEAbu7qC7pZEca/Sz54Ni+j+nBvo8lhXlcOCrn2L6PoN6PIhIWnR5wZtYbKAaub7PuBgDn3P3Al4Fvm1kzcAS4wnXFcVPpNAfqm1gUbGbctu9j6XgvpYV5TB7Rr/2+j6DejyISFp0ecM65Q0C/49bd3+bxXGBuZ9chnStU38ec9GS+dHaw7+PQviSo76OIdCF1MpFPrb2+j1edO5jS8V7OylffRxGJHAWcfCKh+j4O6deL66YMo7TQyxnq+ygiUUIBJwHttMdi50p2FMw5oe/jKE8aN04fSWmhlzFe9X0UkeijgJOAYHus1tmLO999mb4vzeGelDt46m+LACgckMF3Lx5NSaGX4Tnq+ygi0U0BJwC4IVP4cPp95D7xdf4UdzGlDS/xraabaehzJt+/JI+SQi+D+qrvo4h0Hwq4Hsw5x/uVdZRVVDGvwseHu/3cljCNmxOe4f3hc/if2TfjzUyJdJkiIp+KAq6HCd330Zg8IpsfFu5m2qqlcM4dTCh/EPZ8DjJ17ZmIdE8KuB6gyd/CW8G+jy+vqab2YGvfxxxunzWamWM9ZFYvh+fugMsfUXssEYkJCrgYFarvY6+keKaNzqWk0Mu0MbmkJbf536/2WCISYxRwMSTQ97GGsgofC1v7PqYkMHOsh5JCLxeOyiElsZ0WWWqPJSIxRgHXzR2ob2Lh+hrmVfhYvCHQ97FPr0QuGZ9HyXgvnxmeTVKCWmSJSM+jgOuG9h1u5JW11cyr8PH6xloa/S3kpifz5bMHUlroZZL6PoqIdMndBLYBBwA/0Hz8jeks0ALjXuAS4DBwjXNuZWfX1d3sOtDAK2t9lK32sXzLbvwtjgFZqXz9/MGUFgb6Psap76OIyFFdNYKbdpIbmJYCI4M/5wK/C/6OfSdpj8UFt/LRviPMq/Axb02g76NzMDS7N3OmBvo+jh+gvo8iIu2JhkOUs4HHgveAe9PMsswszzlXFenCOt1x7bHYuhT/M1fz9zH/jwd/+wbv79gHwGhPOjdPH0npeC+jPer7KCJyOroi4Bzwipk54H+dcw8c9/wAYEeb5crgutgPuOBUfP8zV1Oe80XGVD7LDQ03sfzNdMYPcHz34tGUFnoZpr6PIiKfWFcE3AXOuZ1mlgvMN7P1zrmln/RNzGwOMAcgPz8/3DV2Keccaz7az7wKH2UVLVx28EJuqf89z/X+KjOmf5n/Hqe+jyIiHdUVd/TeGfxdY2YvAJOAtgG3ExjUZnlgcN3x7/MA8ABAUVGR67SCO0lLi+O9yn2Bc2oVPrbvOUycwTf77+D61MUcPOs2vrL6URh4JfQdFulyRUS6vU4NODPrDcQ55w4EH88C7jlusxeBG83saQKTS+pi5fybv8XxzrY9R0PNt7+exHhj8vBs/umi4ZSmbSTzb/8NVz4WOFw5ZpraY4mIhElnj+A8wAvBSREJwJPOuXlmdgOAc+5+4CUClwhsInCZwDc7uaZO1eRvYfnm3ZRV+Ji/1kftwUaSE+KYOiqHOwpHM2Osh8zUxMDGr/9J7bFERDqJBSYvdi9FRUWuvLw80mUcVd/k5/WNtZRV+Fiwrpq6I030Topn2phg38fRufROjoYJqyIiscXMVhx/fXUrfet+Socbm1m8YRdlFT4Wra/hYLDvY/FYD6Xj85gyMrv9vo8iItLpFHCfwP76Jhauq6GsooolH+yivqmFvr2TuPSMwB2vJ6vvo4hI1FDAncLeQ43MX1tNWUUVb2zaTaO/BU9GMv9QNIiSwjzOGdJHfR9FRKKQAi6EmgP1vLymmnkVVby5ZQ/+FsfAPqlcPXkwJYV5TByUpb6PIiJRrmcF3El6P+4svD44nb+K8g/34hwMy+nNDRcOo7Qwj3H9M9QiS0SkG+lZAXdc70ffe6+Q+fd/5D9S7+Dxvy0EYIw3nVtnjKJ0vJeRuWkKNRGRbqpnBVzwOrPGp7/Bc8yipP4lvtV0M4czJ/C9kjxKC70Mye4d6SpFRCQMelbAQWDkNvJrfK1iLu8Om8PPZ9/EgKzUSFclIiJh1vOm/21dSv6Wp2DqHUys/iMD9r4T6YpERKQT9KyA27r043Nw078f+P3cNYH1IiISU3pWwO1c2X7vRxERiSk96xzcBbeeuG7oVDU2FhGJQT1rBCciIj1Gt7ybgJntAj7s4NtkA7VhKCcWad+0T/smNO2X9mnftC8c+2awcy4n1BPdMuDCwczK27vFQk+nfdM+7ZvQtF/ap33Tvs7eNzpEKSIiMUkBJyIiMaknB9wDkS4gimnftE/7JjTtl/Zp37SvU/dNjz0HJyIisa0nj+BERCSGKeBERCQmKeBERCQmdctWXdnZ2W7IkCGRLkNERCJsxYoVte1d6N0tA27IkCGUl5dHugwREYkwM2u3q5UOUYqISExSwImIxLD7l2xm2eZj2z0u21zL/Us2R6iirqOAExGJYWcMzOTGJ989GnLLNtdy45PvcsbAzAhX1vm65Tk4EREJrdnfQu3BRnz76/HV1VNzoJ4pI7K55uF3GD8gk621h5h75UQmD8+OdKmdTgEnItINOOfYf6SZ6gOB4PLtr6dmf30wyBqoCa6vPdhAy3ENqhLijPg4Y8WHe/n6eYN7RLiBAk5EJOzuX7KZMwZmHhMkyzbXsqqyjhsuHH7C9g3Nfmr2N1B9NLDqqTnQcEKQ1Te1nPDaPr0S8WSk4MlIYaw3A09GMp7MFLzBdZ6MFD7wHeA7T66kobmFP66spHS8t0eEXLfsRVlUVOR0mYCIRKvW81y/uWIio/PSeWWNj/98aT3/cM4g0pITjgZZdTDU9hxqPOE9khPi8GQEgyozBW9G8tHA8mam4ElPITcjmZTE+NOqZe6VE/nx39bhWhw1Bxti5jClma1o755yGsGJiITZ2YP78Pkz+/P1h9465nDhg69vxQyy05LxZCQzICuFs/KzjgkyT0Yy3owUMlMTMbMO17Kqsu5omBWPzWXuok387qqzWVVZFxMBdzIKOBGRMGlo9vNceSX3LdrER3X1eDOS8e1v4JLxXv5xyjA8GSnkpCeTGN91E9jbHhItLvDy64WbOFDfHPJQaazRZQIiIh3U0Ozn8Tc/ZNrPFvODP1fgzUzhrtIxNPodN08fwZtb9nCkyU//rNQuDbfjFQ7IwJuRwoK11RGroStpBCci8ik1NPt5Njhiq6qr5+zBffivL59BvBk3PvXu0UOD5w3vd/Q8WCQPC5oZMwty+dPKndQ3+U95/q67C8s/JcysxMw2mNkmM7szxPPJZvZM8Pm3zGxIcH2xma0ws9XB39PDUY+ISGdqaPbzhzc/5KKfLebf/lxB/6xU/nDtJJ6/4XymjMxh1c66Y8Js8vBs5l45kVWVdRGuPHCY8nCj/4TuJrGowyM4M4sHfgsUA5XAO2b2onNubZvNrgX2OudGmNkVwH8B/wDUAp9zzn1kZoXAy8CAjtYkItIZQo3YfvblCXxmRL9jJoSEOr81eXh2VEzqOG9YX9KSE5i/tobpYzyRLqdTheMQ5SRgk3NuC4CZPQ3MBtoG3GzgR8HHzwNzzcycc++22WYNkGpmyc65hjDUJSISFqcbbN1BckI8F47KYcG6av6jpZC4uO5V/ycRjoAbAOxos1wJnNveNs65ZjOrA/oRGMG1+hKwsr1wM7M5wByA/Pz8MJQtInJyDc1+nn1nB/ct3tztg62t4gIPf19dxfuV+5iY3yfS5XSaqJhkYmbjCBy2nNXeNs65B4AHIHChdxeVJiI90PHBVhQjwdbqotE5xMcZC9ZVK+BOYScwqM3ywOC6UNtUmlkCkAnsBjCzgcALwDecc7F//wYRiVqxHmytsnolMWlIX+avrea7F4+JdDmdJhwB9w4w0syGEgiyK4Arj9vmReBqYDnwZWChc86ZWRbwd+BO59wbYahFROQTaw223y7ajG9/INh+/pUJTB4eW8HWVnGBh3v+tpYPdx9icL/ekS6nU3T4MgHnXDNwI4EZkOuAZ51za8zsHjO7LLjZg0A/M9sE3Aa0XkpwIzAC+KGZvRf8ye1oTSIip6O+yc9jy7dx4X8v5t/+soaBfVJ54rpzee6G8/nMiOyYDTcIBBzA/Bi+6FvNlkWkx6lv8vNs+Q7uC47YzhnSh1tnjorpEVsoJb9aSmZqIs9cf36kS/nU1GxZRITQwfaLy2P7UOTJFBd4uG/xZvYeaqRP76RIlxN2CjgRiXmhgu2Xl0/g/B4abK1mjvXwm4WbWLShhi+eNTDS5YSdAk5EYkKom4wu3lDDE29uZ9XOfVTvb1CwHWf8gEw8GcnMX1utgBMRiVZnDMw82tD4rPw+/LRsPY8u34ZzMGlIX/7n8jMVbMeJizNmjPXw53djs/myAk5EujXnHAcamslJS+b6qcO47tFyDDjU6GeMJ50ffq5AwXYSxQUennxrO8u37Gba6NiaxK6AE5Go1djcQs2Beqr311O9vwFfXevjenzBddX76znc6D/htV+YOIBfXj5BwXYKk4f3o3dSPAvWVivgREQg9DmvZZtrWVVZd8q7RTvn2Hu4KURgHRtkuw81nvDapIQ4PBnJeDNSKOifwfQxuXgzUsjNSKb2YAO/fnUT3zh/ME8ERyXR0ME/miUnxDM12Hz5x7Njq/myAk5EPpW257wmD89m2eZabnzyXX75lQlsqz3UJrDq8dU1UH2gnuq6QJDV7G+g0d9ywntmpyXhyUghLzOFCYOy8Gak4M1MJjcjJfA4I4WsXokhR2XLNtfy739dy++uOovJw7M5P0puMtodFBd4KKvwsXpnHRMGZUW6nLBRwInIafG3OHYfbMC3vz4wwjrQwNSR2Vzz8Dt4MpL5aO8RkhPiuOaRd054ba+keLwZKXgyUiga3AdPZsrRZU9GCt7MFHLSkklK+PTNlVZVtn+TUQXcyU0bnXu0+XIsBZw6mYj0cM45DjY0Hx1pHTvyCgRZdV09uw424G859vsiPs5ISYjjUKOfYTm9uWBEdiCwjgZXMp6MFNKSE3QuLMr9w/8up+5IE/NunRrpUj4RdTIRiRGf9LxXY3MLuw6GmJxR9/EEDV87kzQyUhLwZgaCamRudiC0MlPwpCfjDY7APqg+yM1Pv8u1Fwzl8be2U1Lo1Wipmyou8PCTv69jx57DDOrbK9LlhIUCTqQbOXre66sTGZOXwStrfPzk7+v46qRB3Ltg4zGjr+r99dQeDDFJIz6O3OAkjbH9M7hodO7RkVbb0Vdq0smviVq2uZabn/74HNd5OufVrbUG3Py11XzrgqGRLicsdIhSpBtp8rfws5c38PvXttAS4q9udloSuekpR0derbMNAyOvwPo+7UzS+KQ6MotSotOs/1lCv97JPDXnvEiXctp0iFKkm2vyt/DCuzuZu3AT2/ccJjc9mZoDDZQWerluyjA8Gcnkpqd0aJLGJxUqxCYPz9borRsrLvBw/5It1B1uIrNXYqTL6bCu+9sQBe5fspllm2uPWbdscy33L9GNxCU6NflbePadHUz/xWLueH4VmamJfHfWKJpbHDdPH8FbW/fQ0OxnYJ9eXRpuEptmjvXgb3Es2lAT6VLCokf9jWg9f9Eacq3X7ZwxMDPClYkc65hg++MqslKTePDqIu4qHcODb2xj7pUTuW3WaOZeOfGYP9MiHTFhYBY56ckxcxPUHnWIsvW6mG8/vpL8vqns2HOE+4IXhYpEgyZ/Cy+s3MlvFm1kx54jjB+QyY+uHsf0MbmYGfcv2axrvaTTxMUZM8fm8tf3q2ho9pOc0L2bL/eogIPAF8I5Q/qwYF0NBvzl3Y8YkJXK4H69I12a9GDHB9sZAzP598vGMW107jETQnTeSzpbcYGHp97ewZtb9nDhqJxIl9MhPS7glm2uZeX2fXxz8hCefHs7f1xZyfMrK5k9oT/fmT6C4TlpkS5RepAmfwt/WlnJ3EWbThpsIl1l8vBsUhPjmb/W1+0DLizn4MysxMw2mNkmM7szxPPJZvZM8Pm3zGxIm+fuCq7fYGYXh6Oe9rSec5t75UTuvmwcD3/zHNKSE5hV4OGliipm/nIJNz31Lht8BzqzDBGa/C088852pv18Md/742r69ErioWuK+Mt3PsP0MR6Fm0RMSmI8U0dls2BtDd3xMrK2OjyCM7N44LdAMVAJvGNmLzrn1rbZ7Fpgr3NuhJldAfwX8A9mVgBcAYwD+gMLzGyUc+7EtgphEKpX3X1XncWqyjp+/PlCfv/aVv6wfBt/ff8jSsZ5uXH6CAoHaAKKhE/riO03CzdRuTcwYrtntkZsEl2KC7y8vKaaip37Gd+NJ+GF4xDlJGCTc24LgJk9DcwG2gbcbOBHwcfPA3Mt8Ld5NvC0c64B2Gpmm4LvtzwMdZ3gVOcv7iwdw/VTh/HwG1t5eNk25q3xMWNMLjfNGMmZMdSAVLre8cE2YWAmP55dyEWjcxRsEnWmj8klzmD+uuoeH3ADgB1tliuBc9vbxjnXbGZ1QL/g+jePe+2AUB9iZnOAOQD5+flhKDu0Pr2TuG3WaK6dMoxHl23joTe28vnfvsGUkdncPGMk5wzp22mfLbFHwSbdUd/eSRQN7sv8tdXcVjwq0uV8at1mkolz7gHgAQi06ursz8tMTeTmGSP51gVD+cPyD/n9a1v4yv3LOW9YX26eMZLzh/XTF5S0q8nfwh9XBCaPKNikOyou8PAfL3Xv5svhmGSyExjUZnlgcF3IbcwsAcgEdp/mayMqLTmBb180nNe+N40ffHYsW3Yd4sr/e4uv3L+cJR/s6vYnYSW8mvwtPP12YPLInX9aTb/eSTx8zTn8+TufYdoYnWeT7mNmgQeAV9d134u+O9xsORhYHwAzCITTO8CVzrk1bbb5DjDeOXdDcJLJF51zl5vZOOBJAufd+gOvAiNPNckkks2W65v8PFu+g/sXb+ajunomDMripmkjmDFWX149WWPzx9P9K/ceYcKgLG6dOZKLRmnEJt3XzF8uwZORzBPXRW/z5U5tthw8p3Yj8DIQDzzknFtjZvcA5c65F4EHgT8EJ5HsITBzkuB2zxKYkNIMfKezZlCGS0piPN84fwhXnJPPH1dWct/iTVz3WDkFeRncNH0EF4/zEhenL7SeIlSw/fjzhQo2iQnFBR7+b+kW6o40kZna/Zov63Y5HdTkb+Ev733EbxdtYmvtIUZ50rhx+kg+Oz6PeAVdTAh1W5ilH+ziybe3s7qyjp37NGKT2LTiw7186XfLuPeKM5l9Zsj5fxF3shFcj2q23BkS4+P48tkDWXDbhdx7xZk4Bzc/9S7F/7OEP66opNnfEukST4vutNC+tk26G5tb+Mnf13LNw28zr8JHdnoyD3/zHP78T5N1LZvEnImDsshOS+q2zZe7zSzKaBcfZ8w+cwCfO6M/89b4+M3CTdz+3Pvc++pG/umi4XzxrIFRfTuTo3eKDl4I37brS092sKGZ3PQUvn3hMK57tJx4Mw40NDM8pzf/dmkBF2rEJjEsLs6YMcbDS6uraGxuiervsFB0iLKTOOdYsK6G3yzcyKrKOgZkpXLDhcP4StEgUhIj06G72d/CroMN+Orqqd5fT/X+Bnz766muq6f6QD1bdx2iqq6ehHjD3+IYlZvO8Nw0ctKTyU5LIic9OfCTlkJOejL90pJIjO9ef+BbNflb2HWgIbgf6vHV1ePb30DN/np8wZ+a/Q0cbGg+4bWXTejPvVecqWCTHmHB2mque6ycP1w7iSkjo683pe7oHQFmRnGBh5ljc1nywS5+s3AT//aXNcxdtInrpw7nq5PyeXT5thPO7SzbXMuqyrqQXVfa45xj/5Hmo1/M1cHQ8gVDrDq4vvZgA8f/eyYhzvBkpODJSGbCoCxy0o/wfmUdIz1pZPVOZL1vP69tbGB//Ylf9BC4IDQnLfnj8EtPPrqc3WZ9VmriaU++CXXO63T3i3OOuiNNH/+317XZJ/s/3ien2hejPelMHZmDNzOwXHuwgbkLN/ON8wfzxFvbWb5ltzr4S49wwchsUhLjmL+2OioD7mQ0gusizjmWb97Nva9u5K2te8hOS2JWgYeyCh+//dpZJxwWbP3ybGj2U9M60gqONAJf1B+PPqr311PfdOK5vj69EvFkpAS+pNNT8GSm4A1+gbeu79sr6WjwtH7+Vefm8/hb24+po77JT+3BBnYdCP60fRxcrj3YQM3+BhqaT6wlIc6OCbwTQrFNIK7asY8bnzrxcOkvL5/AsOw0qg+02Q919VQfODbIQn3+J90XbR3//yXU/yeRWPaPj5WzZmcdb9w5PeqOXJxsBKeAi4C3t+7hNws38trGWtKS4/G3wHnD+rF8y27OG9oXjKNf4HsPN53w+uSEuODIIvDjDX5Jt35RezMChxA/yaHQcH2JO+c42NB80iBsfbz7UCP+lhP//KUmxpOeksCeQ43kZaXw0d56UpPiONhw4hUkbffF8YHVuu6T7ovjdWREKRILni3fwR3Pr+JvN10QdQ3oFXBRauX2vcxduImF62uOrstJTw5+UQe+rL0ZgdFG65e1NyOFjNSEsP8rKhJf4i0tjr2HG08MwWAQrvhwL5V7jzA0uzeTh/frsn0hIsfafbCBov9YwM3TR/LPUdabUufgotRZ+X24bspQVn64ly+cNYA/v7uTe684MyKHvSJxp+i4OKNfWjL90pIZ4z32uWWba3ltYy03Tx/B429t57Nn5OlwoEiE9EtL5uz8PixYVx11AXcy3XMKXIxoPQx431VncffnxvHbr5119Hqrnqzt4dHbZo1m7pUTtV9EIqy4wMOaj/azc9+RSJdy2hRwERTqBqxzr5zIqsq6CFcWWdovItGnOzZf1jk4ERE5LdN/sZgBWan84drjb/kZOWrVJSIiHVZc4OHNLbvZX3/i7O5opIATEZHTUjzWQ5PfsWTDrkiXcloUcCIiclom5vehX+/u03xZASciIqclPs6YMTaXRRtqaOoGd0pRwImIyGmbOdbDgfpm3t66J9KlnJICTkRETtuUkTkkJ8R1i8OUCjgRETltqUnxTBmZzfy11UT7ZWYKOBER+USKCzzs3HeEdVUHIl3KSXUo4Mysr5nNN7ONwd992tnu6uA2G83s6uC6Xmb2dzNbb2ZrzOynHalFRES6xvQxHsyI+sOUHR3B3Qm86pwbCbwaXD6GmfUF7gbOBSYBd7cJwp8758YAE4HPmFlpB+sREZFOlpOezMRBWSyI8rZdHQ242cCjwcePAp8Psc3FwHzn3B7n3F5gPlDinDvsnFsE4JxrBFYCAztYj4iIdIHiAi+rd9ZRVRe9zZc7GnAe51xV8LEP8ITYZgCwo81yZXDdUWaWBXyOwCgwJDObY2blZla+a1f3uIpeRCRWFRfkArAgig9TnjLgzGyBmVWE+JnddjsXmE7ziafUmFkC8BTwa+fclva2c8494Jwrcs4V5eTkfNKPERGRMBqek8bQ7N7MX1dz6o0j5JQ3PHXOzWzvOTOrNrM851yVmeUBof5LdwIXtVkeCCxus/wAsNE596vTKVhERCLPzCgu8PDwG1s5UN9EekpipEs6QUcPUb4IXB18fDXwlxDbvAzMMrM+wckls4LrMLOfAJnArR2sQ0REutjMYPPlpR9E582IOxpwPwWKzWwjMDO4jJkVmdnvAZxze4AfA+8Ef+5xzu0xs4HA94ECYKWZvWdm13WwHhER6SJnD+5D395JzF/ri3QpIZ3yEOXJOOd2AzNCrC8Hrmuz/BDw0HHbVALWkc8XEZHIiY8zpo/J5ZU1Ppr8LSTGR1fvkOiqRkREupWZYz3sr2/mnW3R13xZASciIp/a1FHZJEVp82UFnIiIfGq9khK4YER0Nl9WwImISIcUF3io3HuEDdXR1XxZASciIh0yY2ygq8n8NdF1mFIBJyIiHZKbnsKZUdh8WQEnIiIdVlzg4f3KOqr310e6lKMUcCIi0mGzCgK99qNpNqUCTkREOmxEbhqD+/WKqsOUCjgREekwM6N4rIdlm3ZzsKE50uUACjgREQmTmQUeGv0tLP0gOu7ZqYATEZGwKBrch6xeiVFzE1QFnIiIhEVCfBzTx+SycEMNzf6WSJejgBMRkfApHuth3+Emyj/cG+lSFHAiIhI+U0flkBQfHc2XFXAiIhI2vZMTmDyiX1Q0X1bAiYhIWBUXeNi+5zAbaw5GtA4FnIiIhNXMsdHR1UQBJyIiYeXJSGHCwExe6c4BZ2Z9zWy+mW0M/u7TznZXB7fZaGZXh3j+RTOr6EgtIiISPYoLPLy/Yx81EWy+3NER3J3Aq865kcCrweVjmFlf4G7gXGAScHfbIDSzLwKRPVArIiJhVVzgBWDBupqI1dDRgJsNPBp8/Cjw+RDbXAzMd87tcc7tBeYDJQBmlgbcBvykg3WIiEgUGeVJY1Df1Ig2X+5owHmcc1XBxz7AE2KbAcCONsuVwXUAPwZ+ARw+1QeZ2RwzKzez8l27oqPPmYiIhBZovuzl9U21HIpQ8+VTBpyZLTCzihA/s9tu5wIXPJz2RQ9mdiYw3Dn3wuls75x7wDlX5JwrysnJOd2PERGRCJlZkEtjcwuvbYzMoCThVBs452a295yZVZtZnnOuyszygFAHW3cCF7VZHggsBs4HisxsW7COXDNb7Jy7CBER6fYmDelLZmoi89fWUFKY1+Wf39FDlC8CrbMirwb+EmKbl4FZZtYnOLlkFvCyc+53zrn+zrkhwAXABwo3EZHYcbT58vrqiDRf7mjA/RQoNrONwMzgMmZWZGa/B3DO7SFwru2d4M89wXUiIhLjZo71sPdwEysi0Hz5lIcoT8Y5txuYEWJ9OXBdm+WHgIdO8j7bgMKO1CIiItHnwtGB5ssL1lVz7rB+XfrZ6mQiIiKdJi05gfOHR6b5sgJOREQ61cwCD9t2H2bzrq7t6aGAExGRTjVzbC5Al/emVMCJiEinystMZfyAzC6/u4ACTkREOl1xgYf3duyj5kDXNV9WwImISKcrLvDgHCzswubLCjgREel0Y7zpDMhK7dLDlAo4ERHpdGZGcYGH1zfVcrixa5ovK+BERKRLFBd4aGhu4bWNtV3yeQo4ERHpEpOG9iUjJYEFXXSYUgEnIiJdIjE+jmljclm4vgZ/S+d3NVHAiYhIl5k51sPuQ42s3N75zZcVcCIi0mW27DpIfBzHHKZctrmW+5dsDvtnKeBERKTLnDO0L2bGi+99BATC7cYn3+WMgZlh/ywFnIiIdJnJw7O56tzBVO2v5wcvrObGJ99l7pUTmTw8O+yfpYATEZEuNWfqMLJ6JfL4W9u56tz8Tgk3UMCJiEgX27b7EHFm3Dx9BI+/tZ1lmzvnujgFnIiIdJnWc25zr5zIbbNGM/fKidz45LudEnIKOBER6TKrKuuOOec2eXg2c6+cyKrKurB/lnX1LcTDoaioyJWXl0e6DBERiTAzW+GcKwr1nEZwIiISk7rlCM7MdgEfdvBtsoGu6fjZ/WjftE/7JjTtl/Zp37QvHPtmsHMuJ9QT3TLgwsHMytsb1vZ02jft074JTfulfdo37evsfaNDlCIiEpMUcCIiEpN6csA9EOkCopj2Tfu0b0LTfmmf9k37OnXf9NhzcCIiEtt68ghORERiWI8LODMbZGaLzGytma0xs1siXVM0MbN4M3vXzP4W6VqiiZllmdnzZrbezNaZ2fmRrilamNk/B/8uVZjZU2aWEumaIsXMHjKzGjOraLOur5nNN7ONwd99IlljJLSzX34W/Pu0ysxeMLOscH9ujws4oBm43TlXAJwHfMfMCiJcUzS5BVgX6SKi0L3APOfcGGAC2kcAmNkA4GagyDlXCMQDV0S2qoh6BCg5bt2dwKvOuZHAq8HlnuYRTtwv84FC59wZwAfAXeH+0B4XcM65KufcyuDjAwS+qAZEtqroYGYDgc8Cv490LdHEzDKBqcCDAM65RufcvogWFV0SgFQzSwB6AR9FuJ6Icc4tBfYct3o28Gjw8aPA57uypmgQar84515xzjUHF98EBob7c3tcwLVlZkOAicBbES4lWvwKuANoiXAd0WYosAt4OHj49vdm1jvSRUUD59xO4OfAdqAKqHPOvRLZqqKOxzlXFXzsAzyRLCZKfQsoC/eb9tiAM7M04I/Arc65/ZGuJ9LM7FKgxjm3ItK1RKEE4Czgd865icAheuZhphMEzyfNJvCPgP5AbzO7KrJVRS8XmLauqettmNn3CZw6eiLc790jA87MEgmE2xPOuT9Fup4o8RngMjPbBjwNTDezxyNbUtSoBCqdc60j/ecJBJ7ATGCrc26Xc64J+BMwOcI1RZtqM8sDCP6uiXA9UcPMrgEuBb7mOuGatR4XcGZmBM6lrHPO/TLS9UQL59xdzrmBzrkhBCYJLHTO6V/igHPOB+wws9HBVTOAtREsKZpsB84zs17Bv1sz0ASc470IXB18fDXwlwjWEjXMrITAKZHLnHOHO+MzelzAERipfJ3ACOW94M8lkS5Kot5NwBNmtgo4E/jPyJYTHYKj2ueBlcBqAt8pPbZzh5k9BSwHRptZpZldC/wUKDazjQRGvD+NZI2R0M5+mQukA/OD38P3h/1z1clERERiUU8cwYmISA+ggBMRkZikgBMRkZikgBMRkZikgBMRkZikgBMRkZikgBMRkZikgBMRkZj0/wFhGivRNtCNJgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "bests = []\n", "N = 200\n", @@ -442,7 +607,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.8.3" }, "orig_nbformat": 4 }, diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py index 90843b1..9c8f3ee 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.py +++ b/buch/papers/laguerre/scripts/gamma_approx.py @@ -37,11 +37,42 @@ def find_shift(z, target): return zs, factor -def laguerre_gamma_shift(z, x=None, w=None, n=8, target=11): +def find_optimal_shift(z, n): + mhat = 1.34093 * n + 0.854093 + steps = int(np.ceil(mhat - np.real(z))) - 1 + return steps + + +def get_shifting_factor(z, steps): + if steps > 0: + factor = 1 / pochhammer(z, steps) + elif steps < 0: + factor = pochhammer(z + steps, -steps) + return factor + + +def laguerre_gamma_shifted(z, x=None, w=None, n=8, target=11): x, w = _prep_zeros_and_weights(x, w, n) + n = len(x) z += 0j z_shifted, correction_factor = find_shift(z, target) + + res = np.sum(x ** (z_shifted - 1) * w) + res *= correction_factor + res = drop_imag(res) + return res + + +def laguerre_gamma_opt_shifted(z, x=None, w=None, n=8): + x, w = _prep_zeros_and_weights(x, w, n) + n = len(x) + + z += 0j + opt_shift = find_optimal_shift(z, n) + correction_factor = get_shifting_factor(z, opt_shift) + z_shifted = z + opt_shift + res = np.sum(x ** (z_shifted - 1) * w) res *= correction_factor res = drop_imag(res) @@ -72,8 +103,10 @@ def eval_laguerre_gamma(z, x=None, w=None, n=8, func="simple", **kwargs): f = laguerre_gamma_simple elif func == "mirror": f = laguerre_gamma_mirror + elif func == "optimal_shifted": + f = laguerre_gamma_opt_shifted else: - f = laguerre_gamma_shift + f = laguerre_gamma_shifted return np.array([f(zi, x, w, n, **kwargs) for zi in z]) @@ -81,11 +114,10 @@ def calc_rel_error(x, y): return (y - x) / x -ns = np.arange(2, 12, 2) - # Simple / naive xmin = -5 xmax = 30 +ns = np.arange(2, 12, 2) ylim = np.array([-11, 6]) x = np.linspace(xmin + EPSILON, xmax - EPSILON, 400) gamma = scipy.special.gamma(x) @@ -104,7 +136,7 @@ ax.set_xlabel(r"$z$") ax.set_ylabel("Relativer Fehler") ax.legend(ncol=3, fontsize="small") ax.grid(1, "both") -fig.savefig(f"{img_path}/rel_error_simple.pgf") +# fig.savefig(f"{img_path}/rel_error_simple.pgf") # Mirrored @@ -130,7 +162,7 @@ ax2.set_xlabel(r"$z$") ax2.set_ylabel("Relativer Fehler") ax2.legend(ncol=1, loc="upper left", fontsize="small") ax2.grid(1, "both") -fig2.savefig(f"{img_path}/rel_error_mirror.pgf") +# fig2.savefig(f"{img_path}/rel_error_mirror.pgf") # Move to target @@ -163,12 +195,14 @@ v = ax3.imshow(bests, cmap="inferno", aspect="auto", interpolation="nearest") plt.colorbar(v, ax=ax3, label=r"$m$") ticks = np.arange(0, N + 1, N // 5) ax3.set_xlim(0, 1) -ax3.set_xticks(ticks, [f"{v:.2f}" for v in ticks / N]) +ax3.set_xticks(ticks) +ax3.set_xticklabels([f"{v:.2f}" for v in ticks / N]) ax3.set_xticks(np.arange(0, N + 1, N // 20), minor=True) -ax3.set_yticks(np.arange(len(ns)), ns) +ax3.set_yticks(np.arange(len(ns))) +ax3.set_yticklabels(ns) ax3.set_xlabel(r"$z$") ax3.set_ylabel(r"$n$") -fig3.savefig(f"{img_path}/targets.pdf") +# fig3.savefig(f"{img_path}/targets.pdf") targets = np.mean(bests, -1) intercept, bias = np.polyfit(ns, targets, 1) @@ -178,9 +212,7 @@ fig4, axs4 = plt.subplots( xl = np.array([ns[0] - 0.5, ns[-1] + 0.5]) axs4[0].plot(xl, intercept * xl + bias, label=r"$\hat{m}$") axs4[0].plot(ns, targets, "x", label=r"$\bar{m}$") -axs4[1].plot( - ns, ((intercept * ns + bias) - targets), "-x", label=r"$\hat{m} - \bar{m}$" -) +axs4[1].plot(ns, ((intercept * ns + bias) - targets), "-x", label=r"$\hat{m} - \bar{m}$") axs4[0].set_xlim(*xl) # axs4[0].set_title("Schätzung von Mittelwert") # axs4[1].set_title("Fehler") @@ -188,10 +220,49 @@ axs4[-1].set_xlabel(r"$z$") for ax in axs4: ax.grid(1) ax.legend() -fig4.savefig(f"{img_path}/schaetzung.pgf") +# fig4.savefig(f"{img_path}/schaetzung.pgf") print(f"Intercept={intercept:.6g}, Bias={bias:.6g}") predicts = np.ceil(intercept * ns[:, None] + bias - x) print(f"Error: {int(np.sum(np.abs(bests-predicts)))}") +# Comparison relative error between methods +N = 200 +step = 1 / (N - 1) +x = np.linspace(step, 1 - step, N + 1) +gamma = scipy.special.gamma(x)[:, None] +n = 8 +targets = np.arange(10, 14) +gamma = scipy.special.gamma(x) +fig5, ax5 = plt.subplots(num=1, clear=True, constrained_layout=True) +for target in targets: + gamma_lag = eval_laguerre_gamma(x, target=target, n=n, func="shifted") + rel_error = np.abs(calc_rel_error(gamma, gamma_lag)) + ax5.semilogy(x, rel_error, label=f"$m={target}$") +gamma_lgo = eval_laguerre_gamma(x, n=n, func="optimal_shifted") +rel_error = np.abs(calc_rel_error(gamma, gamma_lgo)) +ax5.semilogy(x, rel_error, label="$m^*$") +ax5.set_xlim(x[0], x[-1]) +ax5.set_ylim(5e-9, 5e-8) +ax5.set_xlabel(r"$z$") +ax5.grid(1, "both") +ax5.legend() +fig5.savefig(f"{img_path}/rel_error_shifted.pgf") + +N = 200 +x = np.linspace(-5+ EPSILON, 5-EPSILON, N) +gamma = scipy.special.gamma(x)[:, None] +n = 8 +gamma = scipy.special.gamma(x) +fig6, ax6 = plt.subplots(num=1, clear=True, constrained_layout=True) +gamma_lgo = eval_laguerre_gamma(x, n=n, func="optimal_shifted") +rel_error = np.abs(calc_rel_error(gamma, gamma_lgo)) +ax6.semilogy(x, rel_error, label="$m^*$") +ax6.set_xlim(x[0], x[-1]) +ax6.set_ylim(5e-9, 5e-8) +ax6.set_xlabel(r"$z$") +ax6.grid(1, "both") +ax6.legend() +fig6.savefig(f"{img_path}/rel_error_range.pgf") + # plt.show() -- cgit v1.2.1 From 85e7d741f78ca0874b42db5cfbd18f4c28a933b3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 2 Jun 2022 15:23:21 +0200 Subject: Add presentation --- buch/papers/laguerre/definition.tex | 3 + buch/papers/laguerre/gamma.tex | 2 +- buch/papers/laguerre/images/estimate.pgf | 1160 +++++++++++++++++ buch/papers/laguerre/images/gammaplot.pdf | Bin 0 -> 23297 bytes buch/papers/laguerre/images/rel_error_range.pgf | 887 +++++++++++++ buch/papers/laguerre/images/rel_error_shifted.pgf | 1329 ++++++++++++++++++++ buch/papers/laguerre/images/schaetzung.pgf | 1160 ----------------- buch/papers/laguerre/images/targets.pdf | Bin 12940 -> 12940 bytes buch/papers/laguerre/main.tex | 2 +- buch/papers/laguerre/presentation/presentation.tex | 134 ++ .../laguerre/presentation/sections/gamma.tex | 50 + .../presentation/sections/gamma_approx.tex | 176 +++ .../laguerre/presentation/sections/gaussquad.tex | 67 + .../laguerre/presentation/sections/laguerre.tex | 88 ++ buch/papers/laguerre/scripts/gamma_approx.py | 36 +- 15 files changed, 3919 insertions(+), 1175 deletions(-) create mode 100644 buch/papers/laguerre/images/estimate.pgf create mode 100644 buch/papers/laguerre/images/gammaplot.pdf create mode 100644 buch/papers/laguerre/images/rel_error_range.pgf create mode 100644 buch/papers/laguerre/images/rel_error_shifted.pgf delete mode 100644 buch/papers/laguerre/images/schaetzung.pgf create mode 100644 buch/papers/laguerre/presentation/presentation.tex create mode 100644 buch/papers/laguerre/presentation/sections/gamma.tex create mode 100644 buch/papers/laguerre/presentation/sections/gamma_approx.tex create mode 100644 buch/papers/laguerre/presentation/sections/gaussquad.tex create mode 100644 buch/papers/laguerre/presentation/sections/laguerre.tex (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index 3e5d423..e511f43 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -18,6 +18,9 @@ x \in \mathbb{R} . \label{laguerre:dgl} \end{align} +Spannenderweise wurde die verallgemeinerte Laguerre-Differentialgleichung +zuerst von Yacovlevich Sonine (1849 - 1915) beschrieben, +aber auf Grund ihrer Ähnlichkeit wurde sie nach Laguerre benannt. Die klassische Laguerre-Diffentialgleichung erhält man, wenn $\nu = 0$. Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet, weil die Lösung mit der selben Methode berechnet werden kann, diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex index da2fa93..a04ec47 100644 --- a/buch/papers/laguerre/gamma.tex +++ b/buch/papers/laguerre/gamma.tex @@ -295,7 +295,7 @@ m^* \begin{figure} \centering -\input{papers/laguerre/images/schaetzung.pgf} +\input{papers/laguerre/images/estimate.pgf} \caption{Schätzung Mittelwert von $m$ und Fehler} \label{laguerre:fig:schaetzung} \end{figure} diff --git a/buch/papers/laguerre/images/estimate.pgf b/buch/papers/laguerre/images/estimate.pgf new file mode 100644 index 0000000..3d11371 --- /dev/null +++ b/buch/papers/laguerre/images/estimate.pgf @@ -0,0 +1,1160 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{4.000000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{2.276777in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.756261in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{0.756261in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.756261in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.556655in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{1.556655in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.556655in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.357049in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{2.357049in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.357049in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.157443in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{3.157443in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.157443in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.957837in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{3.957837in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.957837in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.758231in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.758231in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.758231in}{2.276777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.574427in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.574427in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{2.574427in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.370575in, y=2.521666in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.092617in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.092617in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{3.092617in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.282209in, y=3.039855in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.610806in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.610806in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{3.610806in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.282209in, y=3.558045in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.353211in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.881896in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.756261in}{2.422322in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.156458in}{2.562568in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.556655in}{2.701268in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.956852in}{2.840483in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.357049in}{2.979182in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.757246in}{3.116851in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.157443in}{3.255550in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.557640in}{3.394249in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.957837in}{3.531918in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.358034in}{3.670617in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.758231in}{3.818082in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.958330in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.653384in}{3.439504in}}% +\pgfpathlineto{\pgfqpoint{1.219775in}{3.439504in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.439504in}}{\pgfqpoint{1.247553in}{3.467282in}}% +\pgfpathlineto{\pgfqpoint{1.247553in}{3.861108in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.888886in}}{\pgfqpoint{1.219775in}{3.888886in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{3.888886in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.888886in}}{\pgfqpoint{0.625607in}{3.861108in}}% +\pgfpathlineto{\pgfqpoint{0.625607in}{3.467282in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.439504in}}{\pgfqpoint{0.653384in}{3.439504in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{3.439504in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.681162in}{3.776418in}}% +\pgfpathlineto{\pgfqpoint{0.820051in}{3.776418in}}% +\pgfpathlineto{\pgfqpoint{0.958940in}{3.776418in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=3.727807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.820051in}{3.572561in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=3.523950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \overline{m}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.756261in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.756261in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.756261in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.756261in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.556655in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.556655in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.556655in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.556655in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.357049in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.357049in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.357049in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.357049in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.157443in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.157443in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.157443in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.157443in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.957837in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.957837in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.957837in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.957837in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.758231in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.758231in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.758231in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.758231in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.757246in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.814398in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.814398in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{0.814398in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=0.761637in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.04}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.187458in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.187458in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.187458in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=1.134696in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.02}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.560518in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.560518in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.560518in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149695in, y=1.507756in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.933577in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.933577in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.933577in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149695in, y=1.880816in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.02}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.756261in}{1.628009in}}% +\pgfpathlineto{\pgfqpoint{1.156458in}{1.398538in}}% +\pgfpathlineto{\pgfqpoint{1.556655in}{1.447469in}}% +\pgfpathlineto{\pgfqpoint{1.956852in}{1.403600in}}% +\pgfpathlineto{\pgfqpoint{2.357049in}{1.452531in}}% +\pgfpathlineto{\pgfqpoint{2.757246in}{1.687064in}}% +\pgfpathlineto{\pgfqpoint{3.157443in}{1.735996in}}% +\pgfpathlineto{\pgfqpoint{3.557640in}{1.784927in}}% +\pgfpathlineto{\pgfqpoint{3.957837in}{2.019460in}}% +\pgfpathlineto{\pgfqpoint{4.358034in}{2.068392in}}% +\pgfpathlineto{\pgfqpoint{4.758231in}{0.539708in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.756261in}{1.628009in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.156458in}{1.398538in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.556655in}{1.447469in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.956852in}{1.403600in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.357049in}{1.452531in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.757246in}{1.687064in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.157443in}{1.735996in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.557640in}{1.784927in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.957837in}{2.019460in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.358034in}{2.068392in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.758231in}{0.539708in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.144826in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.653384in}{1.829858in}}% +\pgfpathlineto{\pgfqpoint{1.511473in}{1.829858in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.829858in}}{\pgfqpoint{1.539251in}{1.857636in}}% +\pgfpathlineto{\pgfqpoint{1.539251in}{2.047604in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{2.075382in}}{\pgfqpoint{1.511473in}{2.075382in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{2.075382in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{2.075382in}}{\pgfqpoint{0.625607in}{2.047604in}}% +\pgfpathlineto{\pgfqpoint{0.625607in}{1.857636in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.829858in}}{\pgfqpoint{0.653384in}{1.829858in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{1.829858in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.681162in}{1.962914in}}% +\pgfpathlineto{\pgfqpoint{0.820051in}{1.962914in}}% +\pgfpathlineto{\pgfqpoint{0.958940in}{1.962914in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.820051in}{1.962914in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=1.914303in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m} - \overline{m}\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/gammaplot.pdf b/buch/papers/laguerre/images/gammaplot.pdf new file mode 100644 index 0000000..92e9261 Binary files /dev/null and b/buch/papers/laguerre/images/gammaplot.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_range.pgf b/buch/papers/laguerre/images/rel_error_range.pgf new file mode 100644 index 0000000..ff73501 --- /dev/null +++ b/buch/papers/laguerre/images/rel_error_range.pgf @@ -0,0 +1,887 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.020038in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.020038in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.020038in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.020038in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.206325in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.206325in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.206325in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.206325in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.392612in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.392612in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.392612in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.392612in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.578899in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.578899in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.578899in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.578899in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.765187in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.765187in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.765187in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.765187in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.392612in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.756214in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{1.756214in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{1.756214in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=1.703453in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-8}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.803361in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{0.803361in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{0.803361in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.090902in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{1.090902in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{1.090902in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.339980in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{1.339980in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{1.339980in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.559683in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{1.559683in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{1.559683in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{3.049155in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{3.049155in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{3.049155in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{3.805477in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{3.805477in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{3.805477in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{4.342096in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.342096in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{4.342096in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{4.758330in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.458685in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.486507in}{1.638360in}}% +\pgfpathlineto{\pgfqpoint{0.516313in}{2.356782in}}% +\pgfpathlineto{\pgfqpoint{0.546120in}{2.840564in}}% +\pgfpathlineto{\pgfqpoint{0.575926in}{3.188428in}}% +\pgfpathlineto{\pgfqpoint{0.605732in}{3.443795in}}% +\pgfpathlineto{\pgfqpoint{0.635538in}{3.629171in}}% +\pgfpathlineto{\pgfqpoint{0.665344in}{3.757206in}}% +\pgfpathlineto{\pgfqpoint{0.695151in}{3.835102in}}% +\pgfpathlineto{\pgfqpoint{0.724957in}{3.866571in}}% +\pgfpathlineto{\pgfqpoint{0.754763in}{3.852698in}}% +\pgfpathlineto{\pgfqpoint{0.784569in}{3.776490in}}% +\pgfpathlineto{\pgfqpoint{0.814375in}{3.639548in}}% +\pgfpathlineto{\pgfqpoint{0.844182in}{3.444211in}}% +\pgfpathlineto{\pgfqpoint{0.873988in}{3.177116in}}% +\pgfpathlineto{\pgfqpoint{0.903794in}{2.814351in}}% +\pgfpathlineto{\pgfqpoint{0.933600in}{2.309221in}}% +\pgfpathlineto{\pgfqpoint{0.963406in}{1.553036in}}% +\pgfpathlineto{\pgfqpoint{0.987233in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.052213in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.052825in}{0.544877in}}% +\pgfpathlineto{\pgfqpoint{1.082631in}{1.726239in}}% +\pgfpathlineto{\pgfqpoint{1.112437in}{2.413343in}}% +\pgfpathlineto{\pgfqpoint{1.142244in}{2.880497in}}% +\pgfpathlineto{\pgfqpoint{1.172050in}{3.217645in}}% +\pgfpathlineto{\pgfqpoint{1.201856in}{3.465216in}}% +\pgfpathlineto{\pgfqpoint{1.231662in}{3.644402in}}% +\pgfpathlineto{\pgfqpoint{1.261469in}{3.767168in}}% +\pgfpathlineto{\pgfqpoint{1.291275in}{3.840302in}}% +\pgfpathlineto{\pgfqpoint{1.321081in}{3.867227in}}% +\pgfpathlineto{\pgfqpoint{1.350887in}{3.848787in}}% +\pgfpathlineto{\pgfqpoint{1.380693in}{3.765173in}}% +\pgfpathlineto{\pgfqpoint{1.410500in}{3.622808in}}% +\pgfpathlineto{\pgfqpoint{1.440306in}{3.421020in}}% +\pgfpathlineto{\pgfqpoint{1.470112in}{3.145674in}}% +\pgfpathlineto{\pgfqpoint{1.499918in}{2.771335in}}% +\pgfpathlineto{\pgfqpoint{1.529724in}{2.247687in}}% +\pgfpathlineto{\pgfqpoint{1.559531in}{1.454638in}}% +\pgfpathlineto{\pgfqpoint{1.579481in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.646693in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.648949in}{0.705347in}}% +\pgfpathlineto{\pgfqpoint{1.678755in}{1.809737in}}% +\pgfpathlineto{\pgfqpoint{1.708562in}{2.467810in}}% +\pgfpathlineto{\pgfqpoint{1.738368in}{2.919164in}}% +\pgfpathlineto{\pgfqpoint{1.768174in}{3.245981in}}% +\pgfpathlineto{\pgfqpoint{1.797980in}{3.485961in}}% +\pgfpathlineto{\pgfqpoint{1.827786in}{3.659073in}}% +\pgfpathlineto{\pgfqpoint{1.857593in}{3.776635in}}% +\pgfpathlineto{\pgfqpoint{1.887399in}{3.845041in}}% +\pgfpathlineto{\pgfqpoint{1.917205in}{3.867431in}}% +\pgfpathlineto{\pgfqpoint{1.947011in}{3.844410in}}% +\pgfpathlineto{\pgfqpoint{1.976818in}{3.753346in}}% +\pgfpathlineto{\pgfqpoint{2.006624in}{3.605478in}}% +\pgfpathlineto{\pgfqpoint{2.036430in}{3.397101in}}% +\pgfpathlineto{\pgfqpoint{2.066236in}{3.113261in}}% +\pgfpathlineto{\pgfqpoint{2.096042in}{2.726873in}}% +\pgfpathlineto{\pgfqpoint{2.125849in}{2.183623in}}% +\pgfpathlineto{\pgfqpoint{2.155655in}{1.350328in}}% +\pgfpathlineto{\pgfqpoint{2.171959in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.240700in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.245073in}{0.852675in}}% +\pgfpathlineto{\pgfqpoint{2.274880in}{1.889231in}}% +\pgfpathlineto{\pgfqpoint{2.304686in}{2.520306in}}% +\pgfpathlineto{\pgfqpoint{2.334492in}{2.956617in}}% +\pgfpathlineto{\pgfqpoint{2.364298in}{3.273462in}}% +\pgfpathlineto{\pgfqpoint{2.394104in}{3.506044in}}% +\pgfpathlineto{\pgfqpoint{2.423911in}{3.673193in}}% +\pgfpathlineto{\pgfqpoint{2.453717in}{3.785614in}}% +\pgfpathlineto{\pgfqpoint{2.483523in}{3.849322in}}% +\pgfpathlineto{\pgfqpoint{2.513329in}{3.867183in}}% +\pgfpathlineto{\pgfqpoint{2.543135in}{3.839563in}}% +\pgfpathlineto{\pgfqpoint{2.572942in}{3.741003in}}% +\pgfpathlineto{\pgfqpoint{2.602748in}{3.587548in}}% +\pgfpathlineto{\pgfqpoint{2.632554in}{3.372437in}}% +\pgfpathlineto{\pgfqpoint{2.662360in}{3.079842in}}% +\pgfpathlineto{\pgfqpoint{2.692166in}{2.680894in}}% +\pgfpathlineto{\pgfqpoint{2.721973in}{2.116850in}}% +\pgfpathlineto{\pgfqpoint{2.751779in}{1.239409in}}% +\pgfpathlineto{\pgfqpoint{2.764683in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.834324in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.841198in}{0.988791in}}% +\pgfpathlineto{\pgfqpoint{2.871004in}{1.965050in}}% +\pgfpathlineto{\pgfqpoint{2.900810in}{2.570937in}}% +\pgfpathlineto{\pgfqpoint{2.930616in}{2.992903in}}% +\pgfpathlineto{\pgfqpoint{2.960422in}{3.300113in}}% +\pgfpathlineto{\pgfqpoint{2.990229in}{3.525479in}}% +\pgfpathlineto{\pgfqpoint{3.020035in}{3.686769in}}% +\pgfpathlineto{\pgfqpoint{3.049841in}{3.794108in}}% +\pgfpathlineto{\pgfqpoint{3.079647in}{3.853146in}}% +\pgfpathlineto{\pgfqpoint{3.109453in}{3.866482in}}% +\pgfpathlineto{\pgfqpoint{3.139260in}{3.834242in}}% +\pgfpathlineto{\pgfqpoint{3.169066in}{3.728136in}}% +\pgfpathlineto{\pgfqpoint{3.198872in}{3.569007in}}% +\pgfpathlineto{\pgfqpoint{3.228678in}{3.347009in}}% +\pgfpathlineto{\pgfqpoint{3.258484in}{3.045381in}}% +\pgfpathlineto{\pgfqpoint{3.288291in}{2.633323in}}% +\pgfpathlineto{\pgfqpoint{3.318097in}{2.047168in}}% +\pgfpathlineto{\pgfqpoint{3.347903in}{1.121044in}}% +\pgfpathlineto{\pgfqpoint{3.357674in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.427617in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.437322in}{1.115220in}}% +\pgfpathlineto{\pgfqpoint{3.467128in}{2.037481in}}% +\pgfpathlineto{\pgfqpoint{3.496934in}{2.619803in}}% +\pgfpathlineto{\pgfqpoint{3.526740in}{3.028068in}}% +\pgfpathlineto{\pgfqpoint{3.556547in}{3.325956in}}% +\pgfpathlineto{\pgfqpoint{3.586353in}{3.544278in}}% +\pgfpathlineto{\pgfqpoint{3.616159in}{3.699808in}}% +\pgfpathlineto{\pgfqpoint{3.645965in}{3.802122in}}% +\pgfpathlineto{\pgfqpoint{3.675771in}{3.856516in}}% +\pgfpathlineto{\pgfqpoint{3.705578in}{3.865327in}}% +\pgfpathlineto{\pgfqpoint{3.735384in}{3.828445in}}% +\pgfpathlineto{\pgfqpoint{3.765190in}{3.714740in}}% +\pgfpathlineto{\pgfqpoint{3.794996in}{3.549843in}}% +\pgfpathlineto{\pgfqpoint{3.824802in}{3.320794in}}% +\pgfpathlineto{\pgfqpoint{3.854609in}{3.009839in}}% +\pgfpathlineto{\pgfqpoint{3.884415in}{2.584076in}}% +\pgfpathlineto{\pgfqpoint{3.914221in}{1.974352in}}% +\pgfpathlineto{\pgfqpoint{3.944027in}{0.994227in}}% +\pgfpathlineto{\pgfqpoint{3.950959in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{4.020616in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.033446in}{1.233198in}}% +\pgfpathlineto{\pgfqpoint{4.063252in}{2.106778in}}% +\pgfpathlineto{\pgfqpoint{4.093058in}{2.666993in}}% +\pgfpathlineto{\pgfqpoint{4.122864in}{3.062152in}}% +\pgfpathlineto{\pgfqpoint{4.152671in}{3.351014in}}% +\pgfpathlineto{\pgfqpoint{4.182477in}{3.562456in}}% +\pgfpathlineto{\pgfqpoint{4.212283in}{3.712320in}}% +\pgfpathlineto{\pgfqpoint{4.242089in}{3.809658in}}% +\pgfpathlineto{\pgfqpoint{4.271895in}{3.859431in}}% +\pgfpathlineto{\pgfqpoint{4.301702in}{3.863718in}}% +\pgfpathlineto{\pgfqpoint{4.331508in}{3.816759in}}% +\pgfpathlineto{\pgfqpoint{4.361314in}{3.700807in}}% +\pgfpathlineto{\pgfqpoint{4.391120in}{3.530043in}}% +\pgfpathlineto{\pgfqpoint{4.420927in}{3.293772in}}% +\pgfpathlineto{\pgfqpoint{4.450733in}{2.973175in}}% +\pgfpathlineto{\pgfqpoint{4.480539in}{2.533063in}}% +\pgfpathlineto{\pgfqpoint{4.510345in}{1.898147in}}% +\pgfpathlineto{\pgfqpoint{4.540151in}{0.857724in}}% +\pgfpathlineto{\pgfqpoint{4.544574in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{4.613347in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.629570in}{1.343729in}}% +\pgfpathlineto{\pgfqpoint{4.659376in}{2.173166in}}% +\pgfpathlineto{\pgfqpoint{4.689182in}{2.712591in}}% +\pgfpathlineto{\pgfqpoint{4.718989in}{3.095196in}}% +\pgfpathlineto{\pgfqpoint{4.748795in}{3.375308in}}% +\pgfpathlineto{\pgfqpoint{4.778601in}{3.580023in}}% +\pgfpathlineto{\pgfqpoint{4.808407in}{3.724308in}}% +\pgfpathlineto{\pgfqpoint{4.838213in}{3.816722in}}% +\pgfpathlineto{\pgfqpoint{4.868020in}{3.861895in}}% +\pgfpathlineto{\pgfqpoint{4.897826in}{3.861652in}}% +\pgfpathlineto{\pgfqpoint{4.927632in}{3.807431in}}% +\pgfpathlineto{\pgfqpoint{4.957438in}{3.686330in}}% +\pgfpathlineto{\pgfqpoint{4.987244in}{3.509594in}}% +\pgfpathlineto{\pgfqpoint{5.017051in}{3.265918in}}% +\pgfpathlineto{\pgfqpoint{5.046857in}{2.935344in}}% +\pgfpathlineto{\pgfqpoint{5.076663in}{2.480185in}}% +\pgfpathlineto{\pgfqpoint{5.106469in}{1.818267in}}% +\pgfpathlineto{\pgfqpoint{5.136275in}{0.710010in}}% +\pgfpathlineto{\pgfqpoint{5.138571in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{5.205831in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{5.225694in}{1.447652in}}% +\pgfpathlineto{\pgfqpoint{5.255500in}{2.236847in}}% +\pgfpathlineto{\pgfqpoint{5.285307in}{2.756672in}}% +\pgfpathlineto{\pgfqpoint{5.315113in}{3.127233in}}% +\pgfpathlineto{\pgfqpoint{5.344919in}{3.398857in}}% +\pgfpathlineto{\pgfqpoint{5.374725in}{3.596991in}}% +\pgfpathlineto{\pgfqpoint{5.404531in}{3.735782in}}% +\pgfpathlineto{\pgfqpoint{5.434338in}{3.823315in}}% +\pgfpathlineto{\pgfqpoint{5.464144in}{3.863905in}}% +\pgfpathlineto{\pgfqpoint{5.493950in}{3.859128in}}% +\pgfpathlineto{\pgfqpoint{5.523756in}{3.797614in}}% +\pgfpathlineto{\pgfqpoint{5.553562in}{3.671300in}}% +\pgfpathlineto{\pgfqpoint{5.583369in}{3.488483in}}% +\pgfpathlineto{\pgfqpoint{5.613175in}{3.237209in}}% +\pgfpathlineto{\pgfqpoint{5.642981in}{2.896299in}}% +\pgfpathlineto{\pgfqpoint{5.672787in}{2.425334in}}% +\pgfpathlineto{\pgfqpoint{5.702593in}{1.734383in}}% +\pgfpathlineto{\pgfqpoint{5.732400in}{0.549151in}}% +\pgfpathlineto{\pgfqpoint{5.733040in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{5.798084in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{5.821818in}{1.545664in}}% +\pgfpathlineto{\pgfqpoint{5.851624in}{2.297997in}}% +\pgfpathlineto{\pgfqpoint{5.881431in}{2.799308in}}% +\pgfpathlineto{\pgfqpoint{5.911237in}{3.158300in}}% +\pgfpathlineto{\pgfqpoint{5.941043in}{3.421680in}}% +\pgfpathlineto{\pgfqpoint{5.970849in}{3.613370in}}% +\pgfpathlineto{\pgfqpoint{6.000656in}{3.746746in}}% +\pgfpathlineto{\pgfqpoint{6.030462in}{3.829441in}}% +\pgfpathlineto{\pgfqpoint{6.060268in}{3.865464in}}% +\pgfpathlineto{\pgfqpoint{6.090074in}{3.856144in}}% +\pgfpathlineto{\pgfqpoint{6.119880in}{3.787302in}}% +\pgfpathlineto{\pgfqpoint{6.149687in}{3.655709in}}% +\pgfpathlineto{\pgfqpoint{6.179493in}{3.466694in}}% +\pgfpathlineto{\pgfqpoint{6.209299in}{3.207618in}}% +\pgfpathlineto{\pgfqpoint{6.239105in}{2.855986in}}% +\pgfpathlineto{\pgfqpoint{6.268911in}{2.368390in}}% +\pgfpathlineto{\pgfqpoint{6.298718in}{1.646118in}}% +\pgfpathlineto{\pgfqpoint{6.326637in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{6.326637in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.630867in}{4.443362in}}% +\pgfpathlineto{\pgfqpoint{6.261108in}{4.443362in}}% +\pgfpathquadraticcurveto{\pgfqpoint{6.288886in}{4.443362in}}{\pgfqpoint{6.288886in}{4.471139in}}% +\pgfpathlineto{\pgfqpoint{6.288886in}{4.661108in}}% +\pgfpathquadraticcurveto{\pgfqpoint{6.288886in}{4.688886in}}{\pgfqpoint{6.261108in}{4.688886in}}% +\pgfpathlineto{\pgfqpoint{5.630867in}{4.688886in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.603089in}{4.688886in}}{\pgfqpoint{5.603089in}{4.661108in}}% +\pgfpathlineto{\pgfqpoint{5.603089in}{4.471139in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.603089in}{4.443362in}}{\pgfqpoint{5.630867in}{4.443362in}}% +\pgfpathlineto{\pgfqpoint{5.630867in}{4.443362in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.658644in}{4.576418in}}% +\pgfpathlineto{\pgfqpoint{5.797533in}{4.576418in}}% +\pgfpathlineto{\pgfqpoint{5.936422in}{4.576418in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=6.047533in,y=4.527807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m^*\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/rel_error_shifted.pgf b/buch/papers/laguerre/images/rel_error_shifted.pgf new file mode 100644 index 0000000..c11b676 --- /dev/null +++ b/buch/papers/laguerre/images/rel_error_shifted.pgf @@ -0,0 +1,1329 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.595116in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.595116in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.595116in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.595116in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.793447in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.793447in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.793447in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.793447in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.991778in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.991778in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.991778in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.991778in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.190108in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{5.190108in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.190108in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.190108in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.8}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.392612in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.756214in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{1.756214in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{1.756214in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=1.703453in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-8}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.803361in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{0.803361in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{0.803361in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.090902in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{1.090902in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{1.090902in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.339980in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{1.339980in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{1.339980in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.559683in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{1.559683in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{1.559683in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{3.049155in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{3.049155in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{3.049155in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{3.805477in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{3.805477in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{3.805477in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{4.342096in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.342096in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{4.342096in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{4.758330in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.579662in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.604838in}{0.691883in}}% +\pgfpathlineto{\pgfqpoint{0.634495in}{0.934532in}}% +\pgfpathlineto{\pgfqpoint{0.664152in}{1.147779in}}% +\pgfpathlineto{\pgfqpoint{0.693809in}{1.337791in}}% +\pgfpathlineto{\pgfqpoint{0.723466in}{1.508975in}}% +\pgfpathlineto{\pgfqpoint{0.753124in}{1.664580in}}% +\pgfpathlineto{\pgfqpoint{0.782781in}{1.807081in}}% +\pgfpathlineto{\pgfqpoint{0.812438in}{1.938396in}}% +\pgfpathlineto{\pgfqpoint{0.842095in}{2.060050in}}% +\pgfpathlineto{\pgfqpoint{0.871752in}{2.173272in}}% +\pgfpathlineto{\pgfqpoint{0.901410in}{2.279065in}}% +\pgfpathlineto{\pgfqpoint{0.931067in}{2.378263in}}% +\pgfpathlineto{\pgfqpoint{0.960724in}{2.471563in}}% +\pgfpathlineto{\pgfqpoint{0.990381in}{2.559556in}}% +\pgfpathlineto{\pgfqpoint{1.020038in}{2.642744in}}% +\pgfpathlineto{\pgfqpoint{1.049695in}{2.721561in}}% +\pgfpathlineto{\pgfqpoint{1.079353in}{2.796383in}}% +\pgfpathlineto{\pgfqpoint{1.109010in}{2.867537in}}% +\pgfpathlineto{\pgfqpoint{1.138667in}{2.935310in}}% +\pgfpathlineto{\pgfqpoint{1.168324in}{2.999956in}}% +\pgfpathlineto{\pgfqpoint{1.197981in}{3.061700in}}% +\pgfpathlineto{\pgfqpoint{1.227638in}{3.120741in}}% +\pgfpathlineto{\pgfqpoint{1.286953in}{3.231415in}}% +\pgfpathlineto{\pgfqpoint{1.346267in}{3.333204in}}% +\pgfpathlineto{\pgfqpoint{1.405582in}{3.427112in}}% +\pgfpathlineto{\pgfqpoint{1.464896in}{3.513967in}}% +\pgfpathlineto{\pgfqpoint{1.524210in}{3.594465in}}% +\pgfpathlineto{\pgfqpoint{1.583525in}{3.669192in}}% +\pgfpathlineto{\pgfqpoint{1.642839in}{3.738646in}}% +\pgfpathlineto{\pgfqpoint{1.702153in}{3.803258in}}% +\pgfpathlineto{\pgfqpoint{1.761468in}{3.863396in}}% +\pgfpathlineto{\pgfqpoint{1.820782in}{3.919383in}}% +\pgfpathlineto{\pgfqpoint{1.880096in}{3.971501in}}% +\pgfpathlineto{\pgfqpoint{1.939411in}{4.019997in}}% +\pgfpathlineto{\pgfqpoint{1.998725in}{4.065088in}}% +\pgfpathlineto{\pgfqpoint{2.058039in}{4.106968in}}% +\pgfpathlineto{\pgfqpoint{2.117354in}{4.145809in}}% +\pgfpathlineto{\pgfqpoint{2.176668in}{4.181762in}}% +\pgfpathlineto{\pgfqpoint{2.235982in}{4.214965in}}% +\pgfpathlineto{\pgfqpoint{2.295297in}{4.245540in}}% +\pgfpathlineto{\pgfqpoint{2.354611in}{4.273595in}}% +\pgfpathlineto{\pgfqpoint{2.413926in}{4.299228in}}% +\pgfpathlineto{\pgfqpoint{2.473240in}{4.322529in}}% +\pgfpathlineto{\pgfqpoint{2.532554in}{4.343576in}}% +\pgfpathlineto{\pgfqpoint{2.591869in}{4.362440in}}% +\pgfpathlineto{\pgfqpoint{2.651183in}{4.379185in}}% +\pgfpathlineto{\pgfqpoint{2.710497in}{4.393866in}}% +\pgfpathlineto{\pgfqpoint{2.769812in}{4.406536in}}% +\pgfpathlineto{\pgfqpoint{2.829126in}{4.417240in}}% +\pgfpathlineto{\pgfqpoint{2.888440in}{4.426016in}}% +\pgfpathlineto{\pgfqpoint{2.947755in}{4.432901in}}% +\pgfpathlineto{\pgfqpoint{3.007069in}{4.437925in}}% +\pgfpathlineto{\pgfqpoint{3.066383in}{4.441112in}}% +\pgfpathlineto{\pgfqpoint{3.125698in}{4.442487in}}% +\pgfpathlineto{\pgfqpoint{3.185012in}{4.442066in}}% +\pgfpathlineto{\pgfqpoint{3.244326in}{4.439864in}}% +\pgfpathlineto{\pgfqpoint{3.303641in}{4.435891in}}% +\pgfpathlineto{\pgfqpoint{3.362955in}{4.430156in}}% +\pgfpathlineto{\pgfqpoint{3.422270in}{4.422660in}}% +\pgfpathlineto{\pgfqpoint{3.481584in}{4.413405in}}% +\pgfpathlineto{\pgfqpoint{3.540898in}{4.402386in}}% +\pgfpathlineto{\pgfqpoint{3.600213in}{4.389597in}}% +\pgfpathlineto{\pgfqpoint{3.659527in}{4.375027in}}% +\pgfpathlineto{\pgfqpoint{3.718841in}{4.358661in}}% +\pgfpathlineto{\pgfqpoint{3.778156in}{4.340483in}}% +\pgfpathlineto{\pgfqpoint{3.837470in}{4.320469in}}% +\pgfpathlineto{\pgfqpoint{3.896784in}{4.298594in}}% +\pgfpathlineto{\pgfqpoint{3.956099in}{4.274828in}}% +\pgfpathlineto{\pgfqpoint{4.015413in}{4.249135in}}% +\pgfpathlineto{\pgfqpoint{4.074727in}{4.221476in}}% +\pgfpathlineto{\pgfqpoint{4.134042in}{4.191805in}}% +\pgfpathlineto{\pgfqpoint{4.193356in}{4.160072in}}% +\pgfpathlineto{\pgfqpoint{4.252670in}{4.126221in}}% +\pgfpathlineto{\pgfqpoint{4.311985in}{4.090186in}}% +\pgfpathlineto{\pgfqpoint{4.371299in}{4.051899in}}% +\pgfpathlineto{\pgfqpoint{4.430614in}{4.011278in}}% +\pgfpathlineto{\pgfqpoint{4.489928in}{3.968237in}}% +\pgfpathlineto{\pgfqpoint{4.549242in}{3.922678in}}% +\pgfpathlineto{\pgfqpoint{4.608557in}{3.874491in}}% +\pgfpathlineto{\pgfqpoint{4.667871in}{3.823554in}}% +\pgfpathlineto{\pgfqpoint{4.727185in}{3.769730in}}% +\pgfpathlineto{\pgfqpoint{4.786500in}{3.712868in}}% +\pgfpathlineto{\pgfqpoint{4.845814in}{3.652795in}}% +\pgfpathlineto{\pgfqpoint{4.905128in}{3.589319in}}% +\pgfpathlineto{\pgfqpoint{4.964443in}{3.522221in}}% +\pgfpathlineto{\pgfqpoint{5.023757in}{3.451255in}}% +\pgfpathlineto{\pgfqpoint{5.083071in}{3.376139in}}% +\pgfpathlineto{\pgfqpoint{5.142386in}{3.296551in}}% +\pgfpathlineto{\pgfqpoint{5.201700in}{3.212121in}}% +\pgfpathlineto{\pgfqpoint{5.261014in}{3.122420in}}% +\pgfpathlineto{\pgfqpoint{5.320329in}{3.026948in}}% +\pgfpathlineto{\pgfqpoint{5.379643in}{2.925120in}}% +\pgfpathlineto{\pgfqpoint{5.438958in}{2.816240in}}% +\pgfpathlineto{\pgfqpoint{5.498272in}{2.699481in}}% +\pgfpathlineto{\pgfqpoint{5.557586in}{2.573838in}}% +\pgfpathlineto{\pgfqpoint{5.616901in}{2.438086in}}% +\pgfpathlineto{\pgfqpoint{5.646558in}{2.365956in}}% +\pgfpathlineto{\pgfqpoint{5.676215in}{2.290700in}}% +\pgfpathlineto{\pgfqpoint{5.705872in}{2.212064in}}% +\pgfpathlineto{\pgfqpoint{5.735529in}{2.129759in}}% +\pgfpathlineto{\pgfqpoint{5.765186in}{2.043460in}}% +\pgfpathlineto{\pgfqpoint{5.794844in}{1.952790in}}% +\pgfpathlineto{\pgfqpoint{5.824501in}{1.857317in}}% +\pgfpathlineto{\pgfqpoint{5.854158in}{1.756535in}}% +\pgfpathlineto{\pgfqpoint{5.883815in}{1.649857in}}% +\pgfpathlineto{\pgfqpoint{5.913472in}{1.536583in}}% +\pgfpathlineto{\pgfqpoint{5.943130in}{1.415882in}}% +\pgfpathlineto{\pgfqpoint{5.972787in}{1.286747in}}% +\pgfpathlineto{\pgfqpoint{6.002444in}{1.147953in}}% +\pgfpathlineto{\pgfqpoint{6.032101in}{0.997974in}}% +\pgfpathlineto{\pgfqpoint{6.061758in}{0.834889in}}% +\pgfpathlineto{\pgfqpoint{6.091415in}{0.656228in}}% +\pgfpathlineto{\pgfqpoint{6.121807in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{6.121807in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.670534in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.693809in}{0.604192in}}% +\pgfpathlineto{\pgfqpoint{0.723466in}{0.777657in}}% +\pgfpathlineto{\pgfqpoint{0.753124in}{0.935547in}}% +\pgfpathlineto{\pgfqpoint{0.782781in}{1.080329in}}% +\pgfpathlineto{\pgfqpoint{0.812438in}{1.213928in}}% +\pgfpathlineto{\pgfqpoint{0.842095in}{1.337867in}}% +\pgfpathlineto{\pgfqpoint{0.871752in}{1.453373in}}% +\pgfpathlineto{\pgfqpoint{0.901410in}{1.561452in}}% +\pgfpathlineto{\pgfqpoint{0.931067in}{1.662935in}}% +\pgfpathlineto{\pgfqpoint{0.960724in}{1.758522in}}% +\pgfpathlineto{\pgfqpoint{0.990381in}{1.848800in}}% +\pgfpathlineto{\pgfqpoint{1.020038in}{1.934275in}}% +\pgfpathlineto{\pgfqpoint{1.049695in}{2.015380in}}% +\pgfpathlineto{\pgfqpoint{1.079353in}{2.092490in}}% +\pgfpathlineto{\pgfqpoint{1.109010in}{2.165932in}}% +\pgfpathlineto{\pgfqpoint{1.138667in}{2.235994in}}% +\pgfpathlineto{\pgfqpoint{1.168324in}{2.302930in}}% +\pgfpathlineto{\pgfqpoint{1.197981in}{2.366963in}}% +\pgfpathlineto{\pgfqpoint{1.257296in}{2.487104in}}% +\pgfpathlineto{\pgfqpoint{1.316610in}{2.597781in}}% +\pgfpathlineto{\pgfqpoint{1.375924in}{2.700101in}}% +\pgfpathlineto{\pgfqpoint{1.435239in}{2.794975in}}% +\pgfpathlineto{\pgfqpoint{1.494553in}{2.883162in}}% +\pgfpathlineto{\pgfqpoint{1.553867in}{2.965298in}}% +\pgfpathlineto{\pgfqpoint{1.613182in}{3.041924in}}% +\pgfpathlineto{\pgfqpoint{1.672496in}{3.113503in}}% +\pgfpathlineto{\pgfqpoint{1.731810in}{3.180431in}}% +\pgfpathlineto{\pgfqpoint{1.791125in}{3.243056in}}% +\pgfpathlineto{\pgfqpoint{1.850439in}{3.301677in}}% +\pgfpathlineto{\pgfqpoint{1.909754in}{3.356559in}}% +\pgfpathlineto{\pgfqpoint{1.969068in}{3.407933in}}% +\pgfpathlineto{\pgfqpoint{2.028382in}{3.456004in}}% +\pgfpathlineto{\pgfqpoint{2.087697in}{3.500954in}}% +\pgfpathlineto{\pgfqpoint{2.147011in}{3.542945in}}% +\pgfpathlineto{\pgfqpoint{2.206325in}{3.582122in}}% +\pgfpathlineto{\pgfqpoint{2.265640in}{3.618613in}}% +\pgfpathlineto{\pgfqpoint{2.324954in}{3.652533in}}% +\pgfpathlineto{\pgfqpoint{2.384268in}{3.683987in}}% +\pgfpathlineto{\pgfqpoint{2.443583in}{3.713068in}}% +\pgfpathlineto{\pgfqpoint{2.502897in}{3.739858in}}% +\pgfpathlineto{\pgfqpoint{2.562211in}{3.764433in}}% +\pgfpathlineto{\pgfqpoint{2.621526in}{3.786860in}}% +\pgfpathlineto{\pgfqpoint{2.680840in}{3.807199in}}% +\pgfpathlineto{\pgfqpoint{2.740154in}{3.825504in}}% +\pgfpathlineto{\pgfqpoint{2.799469in}{3.841822in}}% +\pgfpathlineto{\pgfqpoint{2.858783in}{3.856197in}}% +\pgfpathlineto{\pgfqpoint{2.918098in}{3.868666in}}% +\pgfpathlineto{\pgfqpoint{2.977412in}{3.879261in}}% +\pgfpathlineto{\pgfqpoint{3.036726in}{3.888010in}}% +\pgfpathlineto{\pgfqpoint{3.096041in}{3.894938in}}% +\pgfpathlineto{\pgfqpoint{3.155355in}{3.900064in}}% +\pgfpathlineto{\pgfqpoint{3.214669in}{3.903406in}}% +\pgfpathlineto{\pgfqpoint{3.273984in}{3.904974in}}% +\pgfpathlineto{\pgfqpoint{3.333298in}{3.904778in}}% +\pgfpathlineto{\pgfqpoint{3.392612in}{3.902824in}}% +\pgfpathlineto{\pgfqpoint{3.451927in}{3.899113in}}% +\pgfpathlineto{\pgfqpoint{3.511241in}{3.893643in}}% +\pgfpathlineto{\pgfqpoint{3.570555in}{3.886409in}}% +\pgfpathlineto{\pgfqpoint{3.629870in}{3.877403in}}% +\pgfpathlineto{\pgfqpoint{3.689184in}{3.866612in}}% +\pgfpathlineto{\pgfqpoint{3.748498in}{3.854020in}}% +\pgfpathlineto{\pgfqpoint{3.807813in}{3.839607in}}% +\pgfpathlineto{\pgfqpoint{3.867127in}{3.823348in}}% +\pgfpathlineto{\pgfqpoint{3.926442in}{3.805217in}}% +\pgfpathlineto{\pgfqpoint{3.985756in}{3.785179in}}% +\pgfpathlineto{\pgfqpoint{4.045070in}{3.763199in}}% +\pgfpathlineto{\pgfqpoint{4.104385in}{3.739233in}}% +\pgfpathlineto{\pgfqpoint{4.163699in}{3.713234in}}% +\pgfpathlineto{\pgfqpoint{4.223013in}{3.685148in}}% +\pgfpathlineto{\pgfqpoint{4.282328in}{3.654915in}}% +\pgfpathlineto{\pgfqpoint{4.341642in}{3.622467in}}% +\pgfpathlineto{\pgfqpoint{4.400956in}{3.587730in}}% +\pgfpathlineto{\pgfqpoint{4.460271in}{3.550622in}}% +\pgfpathlineto{\pgfqpoint{4.519585in}{3.511047in}}% +\pgfpathlineto{\pgfqpoint{4.578899in}{3.468904in}}% +\pgfpathlineto{\pgfqpoint{4.638214in}{3.424076in}}% +\pgfpathlineto{\pgfqpoint{4.697528in}{3.376435in}}% +\pgfpathlineto{\pgfqpoint{4.756842in}{3.325836in}}% +\pgfpathlineto{\pgfqpoint{4.816157in}{3.272118in}}% +\pgfpathlineto{\pgfqpoint{4.875471in}{3.215100in}}% +\pgfpathlineto{\pgfqpoint{4.934786in}{3.154575in}}% +\pgfpathlineto{\pgfqpoint{4.994100in}{3.090312in}}% +\pgfpathlineto{\pgfqpoint{5.053414in}{3.022047in}}% +\pgfpathlineto{\pgfqpoint{5.112729in}{2.949480in}}% +\pgfpathlineto{\pgfqpoint{5.172043in}{2.872266in}}% +\pgfpathlineto{\pgfqpoint{5.231357in}{2.790006in}}% +\pgfpathlineto{\pgfqpoint{5.290672in}{2.702238in}}% +\pgfpathlineto{\pgfqpoint{5.349986in}{2.608422in}}% +\pgfpathlineto{\pgfqpoint{5.409300in}{2.507920in}}% +\pgfpathlineto{\pgfqpoint{5.468615in}{2.399974in}}% +\pgfpathlineto{\pgfqpoint{5.527929in}{2.283675in}}% +\pgfpathlineto{\pgfqpoint{5.587243in}{2.157914in}}% +\pgfpathlineto{\pgfqpoint{5.616901in}{2.091072in}}% +\pgfpathlineto{\pgfqpoint{5.646558in}{2.021328in}}% +\pgfpathlineto{\pgfqpoint{5.676215in}{1.948457in}}% +\pgfpathlineto{\pgfqpoint{5.705872in}{1.872208in}}% +\pgfpathlineto{\pgfqpoint{5.735529in}{1.792291in}}% +\pgfpathlineto{\pgfqpoint{5.765186in}{1.708381in}}% +\pgfpathlineto{\pgfqpoint{5.794844in}{1.620100in}}% +\pgfpathlineto{\pgfqpoint{5.824501in}{1.527017in}}% +\pgfpathlineto{\pgfqpoint{5.854158in}{1.428627in}}% +\pgfpathlineto{\pgfqpoint{5.883815in}{1.324339in}}% +\pgfpathlineto{\pgfqpoint{5.913472in}{1.213459in}}% +\pgfpathlineto{\pgfqpoint{5.943130in}{1.095152in}}% +\pgfpathlineto{\pgfqpoint{5.972787in}{0.968412in}}% +\pgfpathlineto{\pgfqpoint{6.002444in}{0.832012in}}% +\pgfpathlineto{\pgfqpoint{6.032101in}{0.684429in}}% +\pgfpathlineto{\pgfqpoint{6.061758in}{0.523742in}}% +\pgfpathlineto{\pgfqpoint{6.073615in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{6.073615in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.712295in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.723466in}{0.519526in}}% +\pgfpathlineto{\pgfqpoint{0.753124in}{0.679831in}}% +\pgfpathlineto{\pgfqpoint{0.782781in}{0.827033in}}% +\pgfpathlineto{\pgfqpoint{0.812438in}{0.963051in}}% +\pgfpathlineto{\pgfqpoint{0.842095in}{1.089408in}}% +\pgfpathlineto{\pgfqpoint{0.871752in}{1.207335in}}% +\pgfpathlineto{\pgfqpoint{0.901410in}{1.317834in}}% +\pgfpathlineto{\pgfqpoint{0.931067in}{1.421740in}}% +\pgfpathlineto{\pgfqpoint{0.960724in}{1.519749in}}% +\pgfpathlineto{\pgfqpoint{0.990381in}{1.612452in}}% +\pgfpathlineto{\pgfqpoint{1.020038in}{1.700352in}}% +\pgfpathlineto{\pgfqpoint{1.049695in}{1.783883in}}% +\pgfpathlineto{\pgfqpoint{1.079353in}{1.863419in}}% +\pgfpathlineto{\pgfqpoint{1.109010in}{1.939289in}}% +\pgfpathlineto{\pgfqpoint{1.138667in}{2.011779in}}% +\pgfpathlineto{\pgfqpoint{1.168324in}{2.081145in}}% +\pgfpathlineto{\pgfqpoint{1.227638in}{2.211371in}}% +\pgfpathlineto{\pgfqpoint{1.286953in}{2.331492in}}% +\pgfpathlineto{\pgfqpoint{1.346267in}{2.442735in}}% +\pgfpathlineto{\pgfqpoint{1.405582in}{2.546101in}}% +\pgfpathlineto{\pgfqpoint{1.464896in}{2.642422in}}% +\pgfpathlineto{\pgfqpoint{1.524210in}{2.732390in}}% +\pgfpathlineto{\pgfqpoint{1.583525in}{2.816594in}}% +\pgfpathlineto{\pgfqpoint{1.642839in}{2.895530in}}% +\pgfpathlineto{\pgfqpoint{1.702153in}{2.969630in}}% +\pgfpathlineto{\pgfqpoint{1.761468in}{3.039262in}}% +\pgfpathlineto{\pgfqpoint{1.820782in}{3.104750in}}% +\pgfpathlineto{\pgfqpoint{1.880096in}{3.166374in}}% +\pgfpathlineto{\pgfqpoint{1.939411in}{3.224382in}}% +\pgfpathlineto{\pgfqpoint{1.998725in}{3.278992in}}% +\pgfpathlineto{\pgfqpoint{2.058039in}{3.330397in}}% +\pgfpathlineto{\pgfqpoint{2.117354in}{3.378769in}}% +\pgfpathlineto{\pgfqpoint{2.176668in}{3.424259in}}% +\pgfpathlineto{\pgfqpoint{2.235982in}{3.467005in}}% +\pgfpathlineto{\pgfqpoint{2.295297in}{3.507130in}}% +\pgfpathlineto{\pgfqpoint{2.354611in}{3.544741in}}% +\pgfpathlineto{\pgfqpoint{2.413926in}{3.579937in}}% +\pgfpathlineto{\pgfqpoint{2.473240in}{3.612807in}}% +\pgfpathlineto{\pgfqpoint{2.532554in}{3.643429in}}% +\pgfpathlineto{\pgfqpoint{2.591869in}{3.671875in}}% +\pgfpathlineto{\pgfqpoint{2.651183in}{3.698208in}}% +\pgfpathlineto{\pgfqpoint{2.710497in}{3.722484in}}% +\pgfpathlineto{\pgfqpoint{2.769812in}{3.744756in}}% +\pgfpathlineto{\pgfqpoint{2.829126in}{3.765068in}}% +\pgfpathlineto{\pgfqpoint{2.888440in}{3.783459in}}% +\pgfpathlineto{\pgfqpoint{2.947755in}{3.799965in}}% +\pgfpathlineto{\pgfqpoint{3.007069in}{3.814617in}}% +\pgfpathlineto{\pgfqpoint{3.066383in}{3.827441in}}% +\pgfpathlineto{\pgfqpoint{3.125698in}{3.838457in}}% +\pgfpathlineto{\pgfqpoint{3.185012in}{3.847685in}}% +\pgfpathlineto{\pgfqpoint{3.244326in}{3.855139in}}% +\pgfpathlineto{\pgfqpoint{3.303641in}{3.860830in}}% +\pgfpathlineto{\pgfqpoint{3.362955in}{3.864764in}}% +\pgfpathlineto{\pgfqpoint{3.422270in}{3.866946in}}% +\pgfpathlineto{\pgfqpoint{3.481584in}{3.867374in}}% +\pgfpathlineto{\pgfqpoint{3.540898in}{3.866047in}}% +\pgfpathlineto{\pgfqpoint{3.600213in}{3.862956in}}% +\pgfpathlineto{\pgfqpoint{3.659527in}{3.858092in}}% +\pgfpathlineto{\pgfqpoint{3.718841in}{3.851439in}}% +\pgfpathlineto{\pgfqpoint{3.778156in}{3.842981in}}% +\pgfpathlineto{\pgfqpoint{3.837470in}{3.832695in}}% +\pgfpathlineto{\pgfqpoint{3.896784in}{3.820556in}}% +\pgfpathlineto{\pgfqpoint{3.956099in}{3.806532in}}% +\pgfpathlineto{\pgfqpoint{4.015413in}{3.790589in}}% +\pgfpathlineto{\pgfqpoint{4.074727in}{3.772687in}}% +\pgfpathlineto{\pgfqpoint{4.134042in}{3.752782in}}% +\pgfpathlineto{\pgfqpoint{4.193356in}{3.730821in}}% +\pgfpathlineto{\pgfqpoint{4.252670in}{3.706750in}}% +\pgfpathlineto{\pgfqpoint{4.311985in}{3.680504in}}% +\pgfpathlineto{\pgfqpoint{4.371299in}{3.652012in}}% +\pgfpathlineto{\pgfqpoint{4.430614in}{3.621195in}}% +\pgfpathlineto{\pgfqpoint{4.489928in}{3.587965in}}% +\pgfpathlineto{\pgfqpoint{4.549242in}{3.552226in}}% +\pgfpathlineto{\pgfqpoint{4.608557in}{3.513865in}}% +\pgfpathlineto{\pgfqpoint{4.667871in}{3.472763in}}% +\pgfpathlineto{\pgfqpoint{4.727185in}{3.428783in}}% +\pgfpathlineto{\pgfqpoint{4.786500in}{3.381772in}}% +\pgfpathlineto{\pgfqpoint{4.845814in}{3.331558in}}% +\pgfpathlineto{\pgfqpoint{4.905128in}{3.277950in}}% +\pgfpathlineto{\pgfqpoint{4.964443in}{3.220728in}}% +\pgfpathlineto{\pgfqpoint{5.023757in}{3.159645in}}% +\pgfpathlineto{\pgfqpoint{5.083071in}{3.094421in}}% +\pgfpathlineto{\pgfqpoint{5.142386in}{3.024734in}}% +\pgfpathlineto{\pgfqpoint{5.201700in}{2.950212in}}% +\pgfpathlineto{\pgfqpoint{5.261014in}{2.870428in}}% +\pgfpathlineto{\pgfqpoint{5.320329in}{2.784882in}}% +\pgfpathlineto{\pgfqpoint{5.379643in}{2.692988in}}% +\pgfpathlineto{\pgfqpoint{5.438958in}{2.594052in}}% +\pgfpathlineto{\pgfqpoint{5.498272in}{2.487244in}}% +\pgfpathlineto{\pgfqpoint{5.557586in}{2.371561in}}% +\pgfpathlineto{\pgfqpoint{5.587243in}{2.310019in}}% +\pgfpathlineto{\pgfqpoint{5.616901in}{2.245777in}}% +\pgfpathlineto{\pgfqpoint{5.646558in}{2.178636in}}% +\pgfpathlineto{\pgfqpoint{5.676215in}{2.108369in}}% +\pgfpathlineto{\pgfqpoint{5.705872in}{2.034725in}}% +\pgfpathlineto{\pgfqpoint{5.735529in}{1.957415in}}% +\pgfpathlineto{\pgfqpoint{5.765186in}{1.876111in}}% +\pgfpathlineto{\pgfqpoint{5.794844in}{1.790440in}}% +\pgfpathlineto{\pgfqpoint{5.824501in}{1.699968in}}% +\pgfpathlineto{\pgfqpoint{5.854158in}{1.604189in}}% +\pgfpathlineto{\pgfqpoint{5.883815in}{1.502516in}}% +\pgfpathlineto{\pgfqpoint{5.913472in}{1.394249in}}% +\pgfpathlineto{\pgfqpoint{5.943130in}{1.278558in}}% +\pgfpathlineto{\pgfqpoint{5.972787in}{1.154436in}}% +\pgfpathlineto{\pgfqpoint{6.002444in}{1.020656in}}% +\pgfpathlineto{\pgfqpoint{6.032101in}{0.875695in}}% +\pgfpathlineto{\pgfqpoint{6.061758in}{0.717628in}}% +\pgfpathlineto{\pgfqpoint{6.091415in}{0.543988in}}% +\pgfpathlineto{\pgfqpoint{6.105394in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{6.105394in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.672810in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.693809in}{0.593018in}}% +\pgfpathlineto{\pgfqpoint{0.723466in}{0.771553in}}% +\pgfpathlineto{\pgfqpoint{0.753124in}{0.934516in}}% +\pgfpathlineto{\pgfqpoint{0.782781in}{1.084374in}}% +\pgfpathlineto{\pgfqpoint{0.812438in}{1.223051in}}% +\pgfpathlineto{\pgfqpoint{0.842095in}{1.352070in}}% +\pgfpathlineto{\pgfqpoint{0.871752in}{1.472658in}}% +\pgfpathlineto{\pgfqpoint{0.901410in}{1.585823in}}% +\pgfpathlineto{\pgfqpoint{0.931067in}{1.692394in}}% +\pgfpathlineto{\pgfqpoint{0.960724in}{1.793070in}}% +\pgfpathlineto{\pgfqpoint{0.990381in}{1.888441in}}% +\pgfpathlineto{\pgfqpoint{1.020038in}{1.979011in}}% +\pgfpathlineto{\pgfqpoint{1.049695in}{2.065214in}}% +\pgfpathlineto{\pgfqpoint{1.079353in}{2.147424in}}% +\pgfpathlineto{\pgfqpoint{1.109010in}{2.225969in}}% +\pgfpathlineto{\pgfqpoint{1.138667in}{2.301136in}}% +\pgfpathlineto{\pgfqpoint{1.197981in}{2.442322in}}% +\pgfpathlineto{\pgfqpoint{1.257296in}{2.572691in}}% +\pgfpathlineto{\pgfqpoint{1.316610in}{2.693605in}}% +\pgfpathlineto{\pgfqpoint{1.375924in}{2.806173in}}% +\pgfpathlineto{\pgfqpoint{1.435239in}{2.911306in}}% +\pgfpathlineto{\pgfqpoint{1.494553in}{3.009761in}}% +\pgfpathlineto{\pgfqpoint{1.553867in}{3.102176in}}% +\pgfpathlineto{\pgfqpoint{1.613182in}{3.189092in}}% +\pgfpathlineto{\pgfqpoint{1.672496in}{3.270971in}}% +\pgfpathlineto{\pgfqpoint{1.731810in}{3.348210in}}% +\pgfpathlineto{\pgfqpoint{1.791125in}{3.421156in}}% +\pgfpathlineto{\pgfqpoint{1.850439in}{3.490109in}}% +\pgfpathlineto{\pgfqpoint{1.909754in}{3.555333in}}% +\pgfpathlineto{\pgfqpoint{1.969068in}{3.617060in}}% +\pgfpathlineto{\pgfqpoint{2.028382in}{3.675495in}}% +\pgfpathlineto{\pgfqpoint{2.087697in}{3.730821in}}% +\pgfpathlineto{\pgfqpoint{2.147011in}{3.783198in}}% +\pgfpathlineto{\pgfqpoint{2.206325in}{3.832771in}}% +\pgfpathlineto{\pgfqpoint{2.265640in}{3.879670in}}% +\pgfpathlineto{\pgfqpoint{2.324954in}{3.924010in}}% +\pgfpathlineto{\pgfqpoint{2.384268in}{3.965895in}}% +\pgfpathlineto{\pgfqpoint{2.443583in}{4.005417in}}% +\pgfpathlineto{\pgfqpoint{2.502897in}{4.042660in}}% +\pgfpathlineto{\pgfqpoint{2.562211in}{4.077699in}}% +\pgfpathlineto{\pgfqpoint{2.621526in}{4.110602in}}% +\pgfpathlineto{\pgfqpoint{2.680840in}{4.141428in}}% +\pgfpathlineto{\pgfqpoint{2.740154in}{4.170232in}}% +\pgfpathlineto{\pgfqpoint{2.799469in}{4.197061in}}% +\pgfpathlineto{\pgfqpoint{2.858783in}{4.221958in}}% +\pgfpathlineto{\pgfqpoint{2.918098in}{4.244960in}}% +\pgfpathlineto{\pgfqpoint{2.977412in}{4.266101in}}% +\pgfpathlineto{\pgfqpoint{3.036726in}{4.285408in}}% +\pgfpathlineto{\pgfqpoint{3.096041in}{4.302905in}}% +\pgfpathlineto{\pgfqpoint{3.155355in}{4.318613in}}% +\pgfpathlineto{\pgfqpoint{3.214669in}{4.332548in}}% +\pgfpathlineto{\pgfqpoint{3.273984in}{4.344722in}}% +\pgfpathlineto{\pgfqpoint{3.333298in}{4.355144in}}% +\pgfpathlineto{\pgfqpoint{3.392612in}{4.363820in}}% +\pgfpathlineto{\pgfqpoint{3.451927in}{4.370752in}}% +\pgfpathlineto{\pgfqpoint{3.511241in}{4.375937in}}% +\pgfpathlineto{\pgfqpoint{3.570555in}{4.379370in}}% +\pgfpathlineto{\pgfqpoint{3.629870in}{4.381044in}}% +\pgfpathlineto{\pgfqpoint{3.689184in}{4.380945in}}% +\pgfpathlineto{\pgfqpoint{3.748498in}{4.379058in}}% +\pgfpathlineto{\pgfqpoint{3.807813in}{4.375362in}}% +\pgfpathlineto{\pgfqpoint{3.867127in}{4.369835in}}% +\pgfpathlineto{\pgfqpoint{3.926442in}{4.362447in}}% +\pgfpathlineto{\pgfqpoint{3.985756in}{4.353166in}}% +\pgfpathlineto{\pgfqpoint{4.045070in}{4.341955in}}% +\pgfpathlineto{\pgfqpoint{4.104385in}{4.328772in}}% +\pgfpathlineto{\pgfqpoint{4.163699in}{4.313568in}}% +\pgfpathlineto{\pgfqpoint{4.223013in}{4.296291in}}% +\pgfpathlineto{\pgfqpoint{4.282328in}{4.276880in}}% +\pgfpathlineto{\pgfqpoint{4.341642in}{4.255268in}}% +\pgfpathlineto{\pgfqpoint{4.400956in}{4.231380in}}% +\pgfpathlineto{\pgfqpoint{4.460271in}{4.205134in}}% +\pgfpathlineto{\pgfqpoint{4.519585in}{4.176435in}}% +\pgfpathlineto{\pgfqpoint{4.578899in}{4.145182in}}% +\pgfpathlineto{\pgfqpoint{4.638214in}{4.111257in}}% +\pgfpathlineto{\pgfqpoint{4.697528in}{4.074533in}}% +\pgfpathlineto{\pgfqpoint{4.756842in}{4.034866in}}% +\pgfpathlineto{\pgfqpoint{4.816157in}{3.992093in}}% +\pgfpathlineto{\pgfqpoint{4.875471in}{3.946033in}}% +\pgfpathlineto{\pgfqpoint{4.934786in}{3.896482in}}% +\pgfpathlineto{\pgfqpoint{4.994100in}{3.843206in}}% +\pgfpathlineto{\pgfqpoint{5.053414in}{3.785943in}}% +\pgfpathlineto{\pgfqpoint{5.112729in}{3.724392in}}% +\pgfpathlineto{\pgfqpoint{5.172043in}{3.658208in}}% +\pgfpathlineto{\pgfqpoint{5.231357in}{3.586993in}}% +\pgfpathlineto{\pgfqpoint{5.290672in}{3.510285in}}% +\pgfpathlineto{\pgfqpoint{5.349986in}{3.427542in}}% +\pgfpathlineto{\pgfqpoint{5.409300in}{3.338130in}}% +\pgfpathlineto{\pgfqpoint{5.468615in}{3.241288in}}% +\pgfpathlineto{\pgfqpoint{5.527929in}{3.136107in}}% +\pgfpathlineto{\pgfqpoint{5.557586in}{3.080053in}}% +\pgfpathlineto{\pgfqpoint{5.587243in}{3.021480in}}% +\pgfpathlineto{\pgfqpoint{5.616901in}{2.960210in}}% +\pgfpathlineto{\pgfqpoint{5.646558in}{2.896042in}}% +\pgfpathlineto{\pgfqpoint{5.676215in}{2.828751in}}% +\pgfpathlineto{\pgfqpoint{5.705872in}{2.758086in}}% +\pgfpathlineto{\pgfqpoint{5.735529in}{2.683757in}}% +\pgfpathlineto{\pgfqpoint{5.765186in}{2.605438in}}% +\pgfpathlineto{\pgfqpoint{5.794844in}{2.522752in}}% +\pgfpathlineto{\pgfqpoint{5.824501in}{2.435268in}}% +\pgfpathlineto{\pgfqpoint{5.854158in}{2.342481in}}% +\pgfpathlineto{\pgfqpoint{5.883815in}{2.243800in}}% +\pgfpathlineto{\pgfqpoint{5.913472in}{2.138530in}}% +\pgfpathlineto{\pgfqpoint{5.943130in}{2.025837in}}% +\pgfpathlineto{\pgfqpoint{5.972787in}{1.904716in}}% +\pgfpathlineto{\pgfqpoint{6.002444in}{1.773938in}}% +\pgfpathlineto{\pgfqpoint{6.032101in}{1.631981in}}% +\pgfpathlineto{\pgfqpoint{6.061758in}{1.476924in}}% +\pgfpathlineto{\pgfqpoint{6.091415in}{1.306294in}}% +\pgfpathlineto{\pgfqpoint{6.121073in}{1.116841in}}% +\pgfpathlineto{\pgfqpoint{6.150730in}{0.904158in}}% +\pgfpathlineto{\pgfqpoint{6.180387in}{0.662079in}}% +\pgfpathlineto{\pgfqpoint{6.202463in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{6.202463in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.750000,0.750000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{{3.000000pt}{4.950000pt}}{0.000000pt}% +\pgfpathmoveto{\pgfqpoint{0.712295in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.723466in}{0.519526in}}% +\pgfpathlineto{\pgfqpoint{0.753124in}{0.679831in}}% +\pgfpathlineto{\pgfqpoint{0.782781in}{0.827033in}}% +\pgfpathlineto{\pgfqpoint{0.812438in}{0.963051in}}% +\pgfpathlineto{\pgfqpoint{0.842095in}{1.089408in}}% +\pgfpathlineto{\pgfqpoint{0.871752in}{1.207335in}}% +\pgfpathlineto{\pgfqpoint{0.901410in}{1.317834in}}% +\pgfpathlineto{\pgfqpoint{0.931067in}{1.421740in}}% +\pgfpathlineto{\pgfqpoint{0.960724in}{1.519749in}}% +\pgfpathlineto{\pgfqpoint{0.990381in}{1.612452in}}% +\pgfpathlineto{\pgfqpoint{1.020038in}{1.700352in}}% +\pgfpathlineto{\pgfqpoint{1.049695in}{1.783883in}}% +\pgfpathlineto{\pgfqpoint{1.079353in}{1.863419in}}% +\pgfpathlineto{\pgfqpoint{1.109010in}{1.939289in}}% +\pgfpathlineto{\pgfqpoint{1.138667in}{2.011779in}}% +\pgfpathlineto{\pgfqpoint{1.168324in}{2.081145in}}% +\pgfpathlineto{\pgfqpoint{1.227638in}{2.211371in}}% +\pgfpathlineto{\pgfqpoint{1.286953in}{2.331492in}}% +\pgfpathlineto{\pgfqpoint{1.346267in}{2.442735in}}% +\pgfpathlineto{\pgfqpoint{1.405582in}{2.546101in}}% +\pgfpathlineto{\pgfqpoint{1.464896in}{2.642422in}}% +\pgfpathlineto{\pgfqpoint{1.524210in}{2.732390in}}% +\pgfpathlineto{\pgfqpoint{1.583525in}{2.816594in}}% +\pgfpathlineto{\pgfqpoint{1.642839in}{2.895530in}}% +\pgfpathlineto{\pgfqpoint{1.702153in}{2.969630in}}% +\pgfpathlineto{\pgfqpoint{1.761468in}{3.039262in}}% +\pgfpathlineto{\pgfqpoint{1.820782in}{3.104750in}}% +\pgfpathlineto{\pgfqpoint{1.880096in}{3.166374in}}% +\pgfpathlineto{\pgfqpoint{1.939411in}{3.224382in}}% +\pgfpathlineto{\pgfqpoint{1.998725in}{3.278992in}}% +\pgfpathlineto{\pgfqpoint{2.058039in}{3.330397in}}% +\pgfpathlineto{\pgfqpoint{2.117354in}{3.378769in}}% +\pgfpathlineto{\pgfqpoint{2.176668in}{3.424259in}}% +\pgfpathlineto{\pgfqpoint{2.235982in}{3.467005in}}% +\pgfpathlineto{\pgfqpoint{2.295297in}{3.507130in}}% +\pgfpathlineto{\pgfqpoint{2.354611in}{3.544741in}}% +\pgfpathlineto{\pgfqpoint{2.413926in}{3.579937in}}% +\pgfpathlineto{\pgfqpoint{2.473240in}{3.612807in}}% +\pgfpathlineto{\pgfqpoint{2.532554in}{3.643429in}}% +\pgfpathlineto{\pgfqpoint{2.591869in}{3.671875in}}% +\pgfpathlineto{\pgfqpoint{2.651183in}{3.698208in}}% +\pgfpathlineto{\pgfqpoint{2.710497in}{3.722484in}}% +\pgfpathlineto{\pgfqpoint{2.769812in}{3.744756in}}% +\pgfpathlineto{\pgfqpoint{2.829126in}{3.765068in}}% +\pgfpathlineto{\pgfqpoint{2.888440in}{3.783459in}}% +\pgfpathlineto{\pgfqpoint{2.947755in}{3.799965in}}% +\pgfpathlineto{\pgfqpoint{3.007069in}{3.814617in}}% +\pgfpathlineto{\pgfqpoint{3.066383in}{3.827441in}}% +\pgfpathlineto{\pgfqpoint{3.125698in}{3.838457in}}% +\pgfpathlineto{\pgfqpoint{3.185012in}{3.847685in}}% +\pgfpathlineto{\pgfqpoint{3.244326in}{3.855139in}}% +\pgfpathlineto{\pgfqpoint{3.303641in}{3.860830in}}% +\pgfpathlineto{\pgfqpoint{3.362955in}{3.864764in}}% +\pgfpathlineto{\pgfqpoint{3.422270in}{3.866946in}}% +\pgfpathlineto{\pgfqpoint{3.481584in}{3.867374in}}% +\pgfpathlineto{\pgfqpoint{3.540898in}{3.866047in}}% +\pgfpathlineto{\pgfqpoint{3.600213in}{3.862956in}}% +\pgfpathlineto{\pgfqpoint{3.659527in}{3.858092in}}% +\pgfpathlineto{\pgfqpoint{3.718841in}{3.851439in}}% +\pgfpathlineto{\pgfqpoint{3.778156in}{3.842981in}}% +\pgfpathlineto{\pgfqpoint{3.837470in}{3.832695in}}% +\pgfpathlineto{\pgfqpoint{3.867127in}{3.826859in}}% +\pgfpathlineto{\pgfqpoint{3.896784in}{3.814518in}}% +\pgfpathlineto{\pgfqpoint{3.956099in}{3.795438in}}% +\pgfpathlineto{\pgfqpoint{4.015413in}{3.774435in}}% +\pgfpathlineto{\pgfqpoint{4.074727in}{3.751467in}}% +\pgfpathlineto{\pgfqpoint{4.134042in}{3.726491in}}% +\pgfpathlineto{\pgfqpoint{4.193356in}{3.699455in}}% +\pgfpathlineto{\pgfqpoint{4.252670in}{3.670304in}}% +\pgfpathlineto{\pgfqpoint{4.311985in}{3.638972in}}% +\pgfpathlineto{\pgfqpoint{4.371299in}{3.605390in}}% +\pgfpathlineto{\pgfqpoint{4.430614in}{3.569478in}}% +\pgfpathlineto{\pgfqpoint{4.489928in}{3.531149in}}% +\pgfpathlineto{\pgfqpoint{4.549242in}{3.490303in}}% +\pgfpathlineto{\pgfqpoint{4.608557in}{3.446833in}}% +\pgfpathlineto{\pgfqpoint{4.667871in}{3.400616in}}% +\pgfpathlineto{\pgfqpoint{4.727185in}{3.351515in}}% +\pgfpathlineto{\pgfqpoint{4.786500in}{3.299378in}}% +\pgfpathlineto{\pgfqpoint{4.845814in}{3.244034in}}% +\pgfpathlineto{\pgfqpoint{4.905128in}{3.185289in}}% +\pgfpathlineto{\pgfqpoint{4.964443in}{3.122926in}}% +\pgfpathlineto{\pgfqpoint{5.023757in}{3.056697in}}% +\pgfpathlineto{\pgfqpoint{5.083071in}{2.986322in}}% +\pgfpathlineto{\pgfqpoint{5.142386in}{2.911478in}}% +\pgfpathlineto{\pgfqpoint{5.201700in}{2.831794in}}% +\pgfpathlineto{\pgfqpoint{5.261014in}{2.746842in}}% +\pgfpathlineto{\pgfqpoint{5.320329in}{2.656123in}}% +\pgfpathlineto{\pgfqpoint{5.379643in}{2.559051in}}% +\pgfpathlineto{\pgfqpoint{5.438958in}{2.454931in}}% +\pgfpathlineto{\pgfqpoint{5.498272in}{2.342933in}}% +\pgfpathlineto{\pgfqpoint{5.557586in}{2.222056in}}% +\pgfpathlineto{\pgfqpoint{5.587243in}{2.157914in}}% +\pgfpathlineto{\pgfqpoint{5.616901in}{2.091072in}}% +\pgfpathlineto{\pgfqpoint{5.646558in}{2.021328in}}% +\pgfpathlineto{\pgfqpoint{5.676215in}{1.948457in}}% +\pgfpathlineto{\pgfqpoint{5.705872in}{1.872208in}}% +\pgfpathlineto{\pgfqpoint{5.735529in}{1.792291in}}% +\pgfpathlineto{\pgfqpoint{5.765186in}{1.708381in}}% +\pgfpathlineto{\pgfqpoint{5.794844in}{1.620100in}}% +\pgfpathlineto{\pgfqpoint{5.824501in}{1.527017in}}% +\pgfpathlineto{\pgfqpoint{5.854158in}{1.428627in}}% +\pgfpathlineto{\pgfqpoint{5.883815in}{1.324339in}}% +\pgfpathlineto{\pgfqpoint{5.913472in}{1.213459in}}% +\pgfpathlineto{\pgfqpoint{5.943130in}{1.095152in}}% +\pgfpathlineto{\pgfqpoint{5.972787in}{0.968412in}}% +\pgfpathlineto{\pgfqpoint{6.002444in}{0.832012in}}% +\pgfpathlineto{\pgfqpoint{6.032101in}{0.684429in}}% +\pgfpathlineto{\pgfqpoint{6.061758in}{0.523742in}}% +\pgfpathlineto{\pgfqpoint{6.073615in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{6.073615in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.370644in}{3.627933in}}% +\pgfpathlineto{\pgfqpoint{6.261108in}{3.627933in}}% +\pgfpathquadraticcurveto{\pgfqpoint{6.288886in}{3.627933in}}{\pgfqpoint{6.288886in}{3.655711in}}% +\pgfpathlineto{\pgfqpoint{6.288886in}{4.661108in}}% +\pgfpathquadraticcurveto{\pgfqpoint{6.288886in}{4.688886in}}{\pgfqpoint{6.261108in}{4.688886in}}% +\pgfpathlineto{\pgfqpoint{5.370644in}{4.688886in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.342866in}{4.688886in}}{\pgfqpoint{5.342866in}{4.661108in}}% +\pgfpathlineto{\pgfqpoint{5.342866in}{3.655711in}}% +\pgfpathquadraticcurveto{\pgfqpoint{5.342866in}{3.627933in}}{\pgfqpoint{5.370644in}{3.627933in}}% +\pgfpathlineto{\pgfqpoint{5.370644in}{3.627933in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.398422in}{4.576418in}}% +\pgfpathlineto{\pgfqpoint{5.537311in}{4.576418in}}% +\pgfpathlineto{\pgfqpoint{5.676200in}{4.576418in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.787311in,y=4.527807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=10\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.398422in}{4.372561in}}% +\pgfpathlineto{\pgfqpoint{5.537311in}{4.372561in}}% +\pgfpathlineto{\pgfqpoint{5.676200in}{4.372561in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.787311in,y=4.323950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=11\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.398422in}{4.168704in}}% +\pgfpathlineto{\pgfqpoint{5.537311in}{4.168704in}}% +\pgfpathlineto{\pgfqpoint{5.676200in}{4.168704in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.787311in,y=4.120092in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=12\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.398422in}{3.964846in}}% +\pgfpathlineto{\pgfqpoint{5.537311in}{3.964846in}}% +\pgfpathlineto{\pgfqpoint{5.676200in}{3.964846in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.787311in,y=3.916235in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=13\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\pgfsetlinewidth{3.011250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.750000,0.750000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{{3.000000pt}{4.950000pt}}{0.000000pt}% +\pgfpathmoveto{\pgfqpoint{5.398422in}{3.760989in}}% +\pgfpathlineto{\pgfqpoint{5.537311in}{3.760989in}}% +\pgfpathlineto{\pgfqpoint{5.676200in}{3.760989in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.787311in,y=3.712378in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m^*\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/schaetzung.pgf b/buch/papers/laguerre/images/schaetzung.pgf deleted file mode 100644 index 873a10c..0000000 --- a/buch/papers/laguerre/images/schaetzung.pgf +++ /dev/null @@ -1,1160 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{4.000000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{4.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{2.276777in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.756261in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{0.756261in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.756261in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.556655in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{1.556655in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.556655in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.357049in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{2.357049in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.357049in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.157443in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{3.157443in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.157443in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.957837in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{3.957837in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.957837in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.758231in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.758231in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.758231in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.574427in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.574427in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{2.574427in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.370575in, y=2.521666in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.092617in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.092617in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{3.092617in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.282209in, y=3.039855in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.610806in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.610806in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{3.610806in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.282209in, y=3.558045in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.353211in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.881896in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.756261in}{2.422322in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.156458in}{2.562568in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.556655in}{2.701268in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.956852in}{2.840483in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.357049in}{2.979182in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.757246in}{3.116851in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.157443in}{3.255550in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.557640in}{3.394249in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.957837in}{3.531918in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.358034in}{3.670617in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.758231in}{3.818082in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.958330in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.653384in}{3.439504in}}% -\pgfpathlineto{\pgfqpoint{1.219775in}{3.439504in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.439504in}}{\pgfqpoint{1.247553in}{3.467282in}}% -\pgfpathlineto{\pgfqpoint{1.247553in}{3.861108in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.888886in}}{\pgfqpoint{1.219775in}{3.888886in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{3.888886in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.888886in}}{\pgfqpoint{0.625607in}{3.861108in}}% -\pgfpathlineto{\pgfqpoint{0.625607in}{3.467282in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.439504in}}{\pgfqpoint{0.653384in}{3.439504in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{3.439504in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.681162in}{3.776418in}}% -\pgfpathlineto{\pgfqpoint{0.820051in}{3.776418in}}% -\pgfpathlineto{\pgfqpoint{0.958940in}{3.776418in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=3.727807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.820051in}{3.572561in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=3.523950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \bar{m}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.756261in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.756261in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.756261in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.756261in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.556655in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.556655in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.556655in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.556655in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.357049in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.357049in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.357049in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.357049in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.157443in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.157443in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.157443in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.157443in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.957837in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.957837in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.957837in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.957837in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.758231in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.758231in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.758231in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.758231in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.757246in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.814398in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.814398in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{0.814398in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=0.761637in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.04}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.187458in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.187458in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.187458in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=1.134696in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.02}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.560518in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.560518in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.560518in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.149695in, y=1.507756in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.933577in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.933577in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.933577in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.149695in, y=1.880816in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.02}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.756261in}{1.628009in}}% -\pgfpathlineto{\pgfqpoint{1.156458in}{1.398538in}}% -\pgfpathlineto{\pgfqpoint{1.556655in}{1.447469in}}% -\pgfpathlineto{\pgfqpoint{1.956852in}{1.403600in}}% -\pgfpathlineto{\pgfqpoint{2.357049in}{1.452531in}}% -\pgfpathlineto{\pgfqpoint{2.757246in}{1.687064in}}% -\pgfpathlineto{\pgfqpoint{3.157443in}{1.735996in}}% -\pgfpathlineto{\pgfqpoint{3.557640in}{1.784927in}}% -\pgfpathlineto{\pgfqpoint{3.957837in}{2.019460in}}% -\pgfpathlineto{\pgfqpoint{4.358034in}{2.068392in}}% -\pgfpathlineto{\pgfqpoint{4.758231in}{0.539708in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.756261in}{1.628009in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.156458in}{1.398538in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.556655in}{1.447469in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.956852in}{1.403600in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.357049in}{1.452531in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.757246in}{1.687064in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.157443in}{1.735996in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.557640in}{1.784927in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.957837in}{2.019460in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.358034in}{2.068392in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.758231in}{0.539708in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.144826in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.653384in}{1.829858in}}% -\pgfpathlineto{\pgfqpoint{1.511473in}{1.829858in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.829858in}}{\pgfqpoint{1.539251in}{1.857636in}}% -\pgfpathlineto{\pgfqpoint{1.539251in}{2.047604in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{2.075382in}}{\pgfqpoint{1.511473in}{2.075382in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{2.075382in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{2.075382in}}{\pgfqpoint{0.625607in}{2.047604in}}% -\pgfpathlineto{\pgfqpoint{0.625607in}{1.857636in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.829858in}}{\pgfqpoint{0.653384in}{1.829858in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{1.829858in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.681162in}{1.962914in}}% -\pgfpathlineto{\pgfqpoint{0.820051in}{1.962914in}}% -\pgfpathlineto{\pgfqpoint{0.958940in}{1.962914in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.820051in}{1.962914in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=1.914303in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m} - \bar{m}\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/targets.pdf b/buch/papers/laguerre/images/targets.pdf index 22c2c5a..adaeeef 100644 Binary files a/buch/papers/laguerre/images/targets.pdf and b/buch/papers/laguerre/images/targets.pdf differ diff --git a/buch/papers/laguerre/main.tex b/buch/papers/laguerre/main.tex index 9f836ef..f4263de 100644 --- a/buch/papers/laguerre/main.tex +++ b/buch/papers/laguerre/main.tex @@ -12,7 +12,7 @@ benannt nach Edmond Laguerre (1834 - 1886), sind Lösungen der ebenfalls nach Laguerre benannten Differentialgleichung. Laguerre entdeckte diese Polynome als er Approximationsmethoden -für das Integral $\int_0^\infty exp(-x)\, dx$ suchte. +für das Integral $\int_0^\infty \exp(-x) / x \, dx$ suchte. Darum möchten wir in diesem Kapitel uns, ganz im Sinne des Entdeckers, den Laguerre-Polynomen für Approximationen von Integralen mit diff --git a/buch/papers/laguerre/presentation/presentation.tex b/buch/papers/laguerre/presentation/presentation.tex new file mode 100644 index 0000000..f49cf1e --- /dev/null +++ b/buch/papers/laguerre/presentation/presentation.tex @@ -0,0 +1,134 @@ +\documentclass[ngerman, aspectratio=169, xcolor={rgb}]{beamer} + +% style +\mode{ + \usetheme{Frankfurt} +} +%packages +\usepackage[utf8]{inputenc}\DeclareUnicodeCharacter{2212}{-} +\usepackage[ngerman]{babel} +\usepackage{graphicx} +\usepackage{array} + +\newcolumntype{L}[1]{>{\raggedright\let\newline\\\arraybackslash\hspace{0pt}}m{#1}} +\usepackage{ragged2e} + +\usepackage{bm} % bold math +\usepackage{amsfonts} +\usepackage{amssymb} +\usepackage{mathtools} +\usepackage{amsmath} +\usepackage{multirow} % multi row in tables +\usepackage{booktabs} %toprule midrule bottomrue in tables +\usepackage{scrextend} +\usepackage{textgreek} +\usepackage[rgb]{xcolor} + +\usepackage{ marvosym } % \Lightning + +\usepackage{multimedia} % embedded videos + +\usepackage{tikz} +\usepackage{pgf} +\usepackage{pgfplots} + +\usepackage{algorithmic} + +%citations +\usepackage[style=verbose,backend=biber]{biblatex} +\addbibresource{references.bib} + + +%math font +\usefonttheme[onlymath]{serif} + +%Beamer Template modifications +%\definecolor{mainColor}{HTML}{0065A3} % HSR blue +\definecolor{mainColor}{HTML}{D72864} % OST pink +\definecolor{invColor}{HTML}{28d79b} % OST pink +\definecolor{dgreen}{HTML}{38ad36} % Dark green + +%\definecolor{mainColor}{HTML}{000000} % HSR blue +\setbeamercolor{palette primary}{bg=white,fg=mainColor} +\setbeamercolor{palette secondary}{bg=orange,fg=mainColor} +\setbeamercolor{palette tertiary}{bg=yellow,fg=red} +\setbeamercolor{palette quaternary}{bg=mainColor,fg=white} %bg = Top bar, fg = active top bar topic +\setbeamercolor{structure}{fg=black} % itemize, enumerate, etc (bullet points) +\setbeamercolor{section in toc}{fg=black} % TOC sections +\setbeamertemplate{section in toc}[sections numbered] +\setbeamertemplate{subsection in toc}{% + \hspace{1.2em}{$\bullet$}~\inserttocsubsection\par} + +\setbeamertemplate{itemize items}[circle] +\setbeamertemplate{description item}[circle] +\setbeamertemplate{title page}[default][colsep=-4bp,rounded=true] +\beamertemplatenavigationsymbolsempty + +\setbeamercolor{footline}{fg=gray} +\setbeamertemplate{footline}{% + \hfill\usebeamertemplate***{navigation symbols} + \hspace{0.5cm} + \insertframenumber{}\hspace{0.2cm}\vspace{0.2cm} +} + +\usepackage{caption} +\captionsetup{labelformat=empty} + +%Title Page +\title{Laguerre-Polynome} +\subtitle{Anwendung: Approximation der Gamma-Funktion} +\author{Patrik Müller} +% \institute{OST Ostschweizer Fachhochschule} +% \institute{\includegraphics[scale=0.3]{../img/ost_logo.png}} +\date{\today} + +\input{../packages.tex} + +\newcommand*{\QED}{\hfill\ensuremath{\blacksquare}}% + +\newcommand*{\HL}{\textcolor{mainColor}} +\newcommand*{\RD}{\textcolor{red}} +\newcommand*{\BL}{\textcolor{blue}} +\newcommand*{\GN}{\textcolor{dgreen}} + +\definecolor{darkgreen}{rgb}{0,0.6,0} + + +\makeatletter +\newcount\my@repeat@count +\newcommand{\myrepeat}[2]{% + \begingroup + \my@repeat@count=\z@ + \@whilenum\my@repeat@count<#1\do{#2\advance\my@repeat@count\@ne}% + \endgroup +} +\makeatother + +\usetikzlibrary{automata,arrows,positioning,calc,shapes.geometric, fadings} + +\begin{document} + +\begin{frame} + \titlepage +\end{frame} + +\begin{frame}{Inhaltsverzeichnis} + \tableofcontents +\end{frame} + +\input{sections/laguerre} + +\input{sections/gaussquad} + +\input{sections/gamma} + +\input{sections/gamma_approx} + +\appendix +\begin{frame} + \centering + \Large + \textbf{Vielen Dank für die Aufmerksamkeit} +\end{frame} + +\end{document} diff --git a/buch/papers/laguerre/presentation/sections/gamma.tex b/buch/papers/laguerre/presentation/sections/gamma.tex new file mode 100644 index 0000000..37f4a0b --- /dev/null +++ b/buch/papers/laguerre/presentation/sections/gamma.tex @@ -0,0 +1,50 @@ +\section{Gamma-Funktion} + +\begin{frame}{Gamma-Funktion} +\begin{columns} + +\begin{column}{0.48\textwidth} +\begin{figure}[h] +\centering +% \scalebox{0.51}{\input{../images/gammaplot.pdf}} +\includegraphics[width=1\textwidth]{../images/gammaplot.pdf} +% \caption{Gamma-Funktion} +\end{figure} +\end{column} + +\begin{column}{0.52\textwidth} +Verallgemeinerung der Fakultät +\begin{align*} +\Gamma(n) = (n-1)! +\end{align*} + +Integralformel +\begin{align*} +\Gamma(z) += +\int_0^\infty x^{z-1} e^{-x} \, dx +,\quad +\operatorname{Re} z > 0 +\end{align*} + +Funktionalgleichung +\begin{align*} +z \Gamma(z) += +\Gamma(z + 1) +\end{align*} + +Reflektionsformel +\begin{align*} +\Gamma(z) \Gamma(1 - z) += +\frac{\pi}{\sin \pi z} +, \quad +\text{für } +z \notin \mathbb{Z} +\end{align*} + +\end{column} +\end{columns} + +\end{frame} \ No newline at end of file diff --git a/buch/papers/laguerre/presentation/sections/gamma_approx.tex b/buch/papers/laguerre/presentation/sections/gamma_approx.tex new file mode 100644 index 0000000..f5f889e --- /dev/null +++ b/buch/papers/laguerre/presentation/sections/gamma_approx.tex @@ -0,0 +1,176 @@ +\section{Approximieren der Gamma-Funktion} + +\begin{frame}{Anwenden der Gauss-Laguerre-Quadratur auf $\Gamma(z)$} + +\begin{align*} +\Gamma(z) + & = +\int_0^\infty x^{z-1} e^{-x} \, dx +\approx +\sum_{i=1}^{n} f(x_i) A_i += +\sum_{i=1}^{n} x^{z-1} A_i +\\\\ + & \text{wobei } +A_i = \frac{x_i}{(n+1)^2 \left[ L_{n+1}(x_i) \right]^2} +\text{ und $x_i$ die Nullstellen von $L_n(x)$} +\end{align*} + +\end{frame} + +\begin{frame}{Fehlerabschätzung} +\begin{align*} +R_n(\xi) + & = +\frac{(n!)^2}{(2n)!} f^{(2n)}(\xi) +\\ + & = +(z - 2n)_{2n} \frac{(n!)^2}{(2n)!} \xi^{z - 2n - 1} +,\quad +0 < \xi < \infty +\end{align*} + +% \textbf{Probleme:} +\begin{itemize} +\item Funktion ist unbeschränkt +\item Maximum von $R_n$ gibt oberes Limit des Fehlers an +\uncover<2->{\item[$\Rightarrow$] Schwierig ein Maximum von $R_n(\xi)$ zu finden} +\end{itemize} +\end{frame} + +\begin{frame}{Einfacher Ansatz} + +\begin{figure}[h] +\centering +\scalebox{0.91}{\input{../images/rel_error_simple.pgf}} +\caption{Relativer Fehler des einfachen Ansatzes für verschiedene reele Werte +von $z$ und Grade $n$ der Laguerre-Polynome} +\end{figure} + +\end{frame} + +\begin{frame}{Wieso sind die Resultate so schlecht?} + +\textbf{Beobachtungen} +\begin{itemize} +\item Wenn $z \in \mathbb{Z}$ relativer Fehler $\rightarrow 0$ +\item Gewisse Periodizität zu erkennen +\item Für grosse und kleine $z$ ergibt sich ein schlechter relativer Fehler +\item Es gibt Intervalle $[a,a+1]$ mit minimalem relativem Fehler +\item $a$ ist abhängig von $n$ +\end{itemize} + +\uncover<2->{ +\textbf{Ursache?} +\begin{itemize} +\item Vermutung: Integrand ist problematisch +} +\uncover<3->{ +\item[$\Rightarrow$] Analysieren des Integranden +} +\end{itemize} +\end{frame} + +\begin{frame}{$f(x) = x^z$} +\begin{figure}[h] +\centering +\scalebox{0.91}{\input{../images/integrands.pgf}} +% \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} +\end{figure} +\end{frame} + +\begin{frame}{Integrand $x^z e^{-x}$} +\begin{figure}[h] +\centering +\scalebox{0.91}{\input{../images/integrands_exp.pgf}} +% \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} +\end{figure} +\end{frame} + +\begin{frame}{Neuer Ansatz?} + +\textbf{Vermutung} +\begin{itemize} +\item Es gibt Intervalle $[a(n), a(n+1)]$ in denen der relative Fehler minimal +ist +\item $a(n) > 0$ +\end{itemize} + +\uncover<2->{ +\textbf{Idee} +\begin{itemize} +\item[$\Rightarrow$] Berechnen von $\Gamma(z)$ im geeigneten Intervall und dann +mit Funktionalgleichung zurückverschieben +\end{itemize} +} + +\uncover<3->{ +\textbf{Wie finden wir $\boldsymbol{a(n)}$?} +\begin{itemize} +\item Minimieren des Fehlerterms mit zusätzlichem Verschiebungsterm +} +\uncover<4->{$\Rightarrow$ Schwierig das Maximum des Fehlerterms zu bestimmen} +\uncover<5->{\item Emprisch $a(n)$ bestimmen} +\uncover<6->{$\Rightarrow$ Sinnvoll, +da Gauss-Quadratur nur für kleine $n$ praktischen Nutzen hat} +\end{itemize} +\end{frame} + +\begin{frame}{Verschiebungsterm} +\begin{align*} +\Gamma(z) +\approx +\frac{1}{(z-m)_m} \sum_{i=1}^{n} x_i^{z + m - 1} A_i +\end{align*} + +\begin{figure}[h] +\centering +\includegraphics[width=0.5\textwidth]{../images/targets.pdf} +\caption{Verschiebungsterm $m$ in Abhängigkeit von $z$ und $n$} +\end{figure} +\end{frame} + +\begin{frame}{Schätzen von $m^*$} +\begin{columns} +\begin{column}{0.6\textwidth} +\begin{figure} +\centering +\vspace{-24pt} +\scalebox{0.7}{\input{../images/estimate.pgf}} +% \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} +\end{figure} +\end{column} +\begin{column}{0.39\textwidth} +\begin{align*} +m^* += +\lceil \hat{m} - \operatorname{Re}z \rceil +\end{align*} +\end{column} +\end{columns} + +\end{frame} + +\begin{frame}{} +\begin{figure}[h] +\centering +\scalebox{0.6}{\input{../images/rel_error_shifted.pgf}} +\caption{Relativer Fehler mit $n=8$, unterschiedlichen Verschiebungstermen $m$ und $z\in(0, 1)$} +\end{figure} +\end{frame} + +\begin{frame}{} +\begin{figure}[h] +\centering +\scalebox{0.6}{\input{../images/rel_error_range.pgf}} +\caption{Relativer Fehler mit $n=8$, Verschiebungsterm $m^*$ und $z\in(-5, 5)$} +\end{figure} +\end{frame} + +\begin{frame}{Vergleich mit Lanczos-Methode} +Maximaler relativer Fehler für $n=6$ +\begin{itemize} + \item Lanczos-Methode $< 10^{-12}$ + \item Unsere Methode $\approx 10^{-6}$ +\end{itemize} +\end{frame} \ No newline at end of file diff --git a/buch/papers/laguerre/presentation/sections/gaussquad.tex b/buch/papers/laguerre/presentation/sections/gaussquad.tex new file mode 100644 index 0000000..4d973b8 --- /dev/null +++ b/buch/papers/laguerre/presentation/sections/gaussquad.tex @@ -0,0 +1,67 @@ +\section{Gauss-Quadratur} + +\begin{frame}{Gauss-Quadratur} +\textbf{Idee} +\begin{itemize}[<+->] +\item Polynome können viele Funktionen approximieren +\item Wenn Verfahren gut für Polynome funktioniert, +sollte es auch für andere Funktionen funktionieren +\item Integrieren eines Interpolationspolynom +\item Interpolationspolynom ist durch Funktionswerte $f(x_i)$ bestimmt +$\Rightarrow$ Integral kann durch Funktionswerte berechnet werden +\item Evaluation der Funktionswerte an geeigneten Stellen +\end{itemize} +\end{frame} + +\begin{frame}{Gauss-Quadratur} +\begin{align*} +\int_{-1}^{1} f(x) \, dx +\approx +\sum_{i=1}^n f(x_i) A_i +\end{align*} + +\begin{itemize}[<+->] +\item Exakt für Polynome mit Grad $2n-1$ +\item Interpolationspolynome müssen orthogonal sein +\item Stützstellen $x_i$ sind Nullstellen des Polynoms +\item Fehler: +\begin{align*} +E += +\frac{f^{(2n)}(\xi)}{(2n)!} \int_{-1}^{1} l(x)^2 \, dx +,\quad +\text{wobei } +l(x) = \prod_{i=1}^n (x-x_i) +\end{align*} +\end{itemize} +\end{frame} + +\begin{frame}{Gauss-Laguerre-Quadratur} +\begin{itemize}[<+->] +\item Erweiterung des Integrationsintervall von $[-1, 1]$ auf $(a, b)$ +\item Hinzufügen einer Gewichtsfunktion +\item Bei uneigentlichen Integralen muss Gewichtsfunktion schneller als jedes +Integrationspolynom gegen $0$ gehen +\item[$\Rightarrow$] Für Laguerre-Polynome haben wir den Definitionsbereich +$(0, \infty)$ und die Gewichtsfunktion $w(x) = e^{-x}$ +\begin{align*} +\int_0^\infty & f(x) e^{-x} \, dx +\approx +\sum_{i=1}^n f(x_i) A_i +\\ + & \text{wobei } +A_i = \frac{x_i}{(n+1)^2 \left[ L_{n+1}(x_i) \right]^2} +\text{ und $x_i$ die Nullstellen von $L_n(x)$} +\end{align*} +\end{itemize} +\end{frame} + +\begin{frame}{Fehler der Gauss-Laguerre-Quadratur} +\begin{align*} +R_n += +\frac{(n!)^2}{(2n)!} f^{(2n)}(\xi) +,\quad +0 < \xi < \infty +\end{align*} +\end{frame} \ No newline at end of file diff --git a/buch/papers/laguerre/presentation/sections/laguerre.tex b/buch/papers/laguerre/presentation/sections/laguerre.tex new file mode 100644 index 0000000..cba9ffb --- /dev/null +++ b/buch/papers/laguerre/presentation/sections/laguerre.tex @@ -0,0 +1,88 @@ +\section{Laguerre-Polynome} + +\begin{frame}{Laguerre-Differentialgleichung} + +\begin{itemize} +\item Benannt nach Edmond Nicolas Laguerre (1834-1886) +\item Aus Artikel von 1879, +in dem er $\int_0^\infty \exp(-x)/x \, dx$ analysierte +\end{itemize} + +\begin{align*} +x y''(x) + (1 - x) y'(x) + n y(x) + & = +0 +, \quad +n \in \mathbb{N}_0 +, \quad +x \in \mathbb{R} +\end{align*} + +\end{frame} + +\begin{frame}{Lösen der Differentialgleichung} + +\begin{align*} +x y''(x) + (1 - x) y'(x) + n y(x) + & = +0 +\\ +\end{align*} + +\uncover<2->{ +\centering +\begin{tikzpicture}[remember picture,overlay] +%% use here too +\path[draw=mainColor, very thick,->](0, 1.1) to +node[anchor=west]{Potenreihenansatz} (0, -0.8); +\end{tikzpicture} +} + +\begin{align*} +\uncover<3->{ +L_n(x) + & = +\sum_{k=0}^{n} \frac{(-1)^k}{k!} \binom{n}{k} x^k +} +\end{align*} +\uncover<4->{ +\begin{itemize} + \item Die Lösungen der DGL sind die Laguerre-Polynome +\end{itemize} +} +\end{frame} + +\begin{frame} +\begin{figure}[h] +\centering +\scalebox{0.66}{\input{../images/laguerre_polynomes.pgf}} +\caption{Laguerre-Polynome vom Grad $0$ bis $7$} +\end{figure} +\end{frame} + +\begin{frame}{Orthogonalität} +\begin{itemize}[<+->] +\item Beweis: Umformen in Sturm-Liouville-Problem (siehe Paper) +\begin{alignat*}{5} +((p(x) &y'(x)))' + q(x) &y(x) +&= +\lambda &w(x) &y(x) +\\ +((x e^{-x} &y'(x)))' + 0 &y(x) +&= +n &e^{-x} &y(x) +\end{alignat*} +\item Definitionsbereich $(0, \infty)$ +\item Gewichtsfunktion $w(x) = e^{-x}$ +\end{itemize} + +\only<4>{ +\begin{align*} +\int_0^\infty e^{-x} L_n(x) L_m(x) \, dx += +0 +,\quad +n, m \in \mathbb{N} +\end{align*} +} +\end{frame} \ No newline at end of file diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py index 9c8f3ee..dd50d92 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.py +++ b/buch/papers/laguerre/scripts/gamma_approx.py @@ -39,7 +39,7 @@ def find_shift(z, target): def find_optimal_shift(z, n): mhat = 1.34093 * n + 0.854093 - steps = int(np.ceil(mhat - np.real(z))) - 1 + steps = int(np.floor(mhat - np.real(z))) return steps @@ -136,7 +136,7 @@ ax.set_xlabel(r"$z$") ax.set_ylabel("Relativer Fehler") ax.legend(ncol=3, fontsize="small") ax.grid(1, "both") -# fig.savefig(f"{img_path}/rel_error_simple.pgf") +fig.savefig(f"{img_path}/rel_error_simple.pgf") # Mirrored @@ -162,7 +162,7 @@ ax2.set_xlabel(r"$z$") ax2.set_ylabel("Relativer Fehler") ax2.legend(ncol=1, loc="upper left", fontsize="small") ax2.grid(1, "both") -# fig2.savefig(f"{img_path}/rel_error_mirror.pgf") +fig2.savefig(f"{img_path}/rel_error_mirror.pgf") # Move to target @@ -202,7 +202,7 @@ ax3.set_yticks(np.arange(len(ns))) ax3.set_yticklabels(ns) ax3.set_xlabel(r"$z$") ax3.set_ylabel(r"$n$") -# fig3.savefig(f"{img_path}/targets.pdf") +fig3.savefig(f"{img_path}/targets.pdf") targets = np.mean(bests, -1) intercept, bias = np.polyfit(ns, targets, 1) @@ -211,16 +211,16 @@ fig4, axs4 = plt.subplots( ) xl = np.array([ns[0] - 0.5, ns[-1] + 0.5]) axs4[0].plot(xl, intercept * xl + bias, label=r"$\hat{m}$") -axs4[0].plot(ns, targets, "x", label=r"$\bar{m}$") -axs4[1].plot(ns, ((intercept * ns + bias) - targets), "-x", label=r"$\hat{m} - \bar{m}$") +axs4[0].plot(ns, targets, "x", label=r"$\overline{m}$") +axs4[1].plot(ns, ((intercept * ns + bias) - targets), "-x", label=r"$\hat{m} - \overline{m}$") axs4[0].set_xlim(*xl) # axs4[0].set_title("Schätzung von Mittelwert") # axs4[1].set_title("Fehler") -axs4[-1].set_xlabel(r"$z$") +axs4[-1].set_xlabel(r"$n$") for ax in axs4: ax.grid(1) ax.legend() -# fig4.savefig(f"{img_path}/schaetzung.pgf") +fig4.savefig(f"{img_path}/estimate.pgf") print(f"Intercept={intercept:.6g}, Bias={bias:.6g}") predicts = np.ceil(intercept * ns[:, None] + bias - x) @@ -234,14 +234,14 @@ gamma = scipy.special.gamma(x)[:, None] n = 8 targets = np.arange(10, 14) gamma = scipy.special.gamma(x) -fig5, ax5 = plt.subplots(num=1, clear=True, constrained_layout=True) +fig5, ax5 = plt.subplots(num=5, clear=True, constrained_layout=True) for target in targets: gamma_lag = eval_laguerre_gamma(x, target=target, n=n, func="shifted") rel_error = np.abs(calc_rel_error(gamma, gamma_lag)) - ax5.semilogy(x, rel_error, label=f"$m={target}$") + ax5.semilogy(x, rel_error, label=f"$m={target}$", linewidth=3) gamma_lgo = eval_laguerre_gamma(x, n=n, func="optimal_shifted") rel_error = np.abs(calc_rel_error(gamma, gamma_lgo)) -ax5.semilogy(x, rel_error, label="$m^*$") +ax5.semilogy(x, rel_error, "c", linestyle="dotted", label="$m^*$", linewidth=3) ax5.set_xlim(x[0], x[-1]) ax5.set_ylim(5e-9, 5e-8) ax5.set_xlabel(r"$z$") @@ -254,10 +254,10 @@ x = np.linspace(-5+ EPSILON, 5-EPSILON, N) gamma = scipy.special.gamma(x)[:, None] n = 8 gamma = scipy.special.gamma(x) -fig6, ax6 = plt.subplots(num=1, clear=True, constrained_layout=True) +fig6, ax6 = plt.subplots(num=6, clear=True, constrained_layout=True) gamma_lgo = eval_laguerre_gamma(x, n=n, func="optimal_shifted") rel_error = np.abs(calc_rel_error(gamma, gamma_lgo)) -ax6.semilogy(x, rel_error, label="$m^*$") +ax6.semilogy(x, rel_error, label="$m^*$", linewidth=3) ax6.set_xlim(x[0], x[-1]) ax6.set_ylim(5e-9, 5e-8) ax6.set_xlabel(r"$z$") @@ -265,4 +265,14 @@ ax6.grid(1, "both") ax6.legend() fig6.savefig(f"{img_path}/rel_error_range.pgf") +N = 2001 +x = np.linspace(-5, 5, N) +gamma = scipy.special.gamma(x) +fig7, ax7 = plt.subplots(num=7, clear=True, constrained_layout=True) +ax7.plot(x, gamma) +ax7.set_xlim(x[0], x[-1]) +ax7.set_ylim(-7.5, 25) +ax7.grid(1, "both") +fig7.savefig(f"{img_path}/gamma.pgf") + # plt.show() -- cgit v1.2.1 From fac45f54d4cee5018c063b4a720695cbf3040fa9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 2 Jun 2022 15:53:49 +0200 Subject: Correct typos in presentation --- .../presentation/sections/gamma_approx.tex | 23 +++++++++++++++++----- .../laguerre/presentation/sections/laguerre.tex | 4 ++-- buch/papers/laguerre/scripts/gamma_approx.py | 2 +- 3 files changed, 21 insertions(+), 8 deletions(-) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/presentation/sections/gamma_approx.tex b/buch/papers/laguerre/presentation/sections/gamma_approx.tex index f5f889e..2e4e4e2 100644 --- a/buch/papers/laguerre/presentation/sections/gamma_approx.tex +++ b/buch/papers/laguerre/presentation/sections/gamma_approx.tex @@ -6,14 +6,20 @@ \Gamma(z) & = \int_0^\infty x^{z-1} e^{-x} \, dx +\uncover<2->{ \approx \sum_{i=1}^{n} f(x_i) A_i +} +\uncover<3->{ = \sum_{i=1}^{n} x^{z-1} A_i +} \\\\ +\uncover<4->{ & \text{wobei } A_i = \frac{x_i}{(n+1)^2 \left[ L_{n+1}(x_i) \right]^2} \text{ und $x_i$ die Nullstellen von $L_n(x)$} +} \end{align*} \end{frame} @@ -66,7 +72,7 @@ von $z$ und Grade $n$ der Laguerre-Polynome} \item Vermutung: Integrand ist problematisch } \uncover<3->{ -\item[$\Rightarrow$] Analysieren des Integranden +\item[$\Rightarrow$] Analysieren von $f(x)$ und dem Integranden } \end{itemize} \end{frame} @@ -110,7 +116,7 @@ mit Funktionalgleichung zurückverschieben \item Minimieren des Fehlerterms mit zusätzlichem Verschiebungsterm } \uncover<4->{$\Rightarrow$ Schwierig das Maximum des Fehlerterms zu bestimmen} -\uncover<5->{\item Emprisch $a(n)$ bestimmen} +\uncover<5->{\item Empirisch $a(n)$ bestimmen} \uncover<6->{$\Rightarrow$ Sinnvoll, da Gauss-Quadratur nur für kleine $n$ praktischen Nutzen hat} \end{itemize} @@ -120,13 +126,13 @@ da Gauss-Quadratur nur für kleine $n$ praktischen Nutzen hat} \begin{align*} \Gamma(z) \approx -\frac{1}{(z-m)_m} \sum_{i=1}^{n} x_i^{z + m - 1} A_i +\frac{1}{(z-m)_{m}} \sum_{i=1}^{n} x_i^{z + m - 1} A_i \end{align*} \begin{figure}[h] \centering \includegraphics[width=0.5\textwidth]{../images/targets.pdf} -\caption{Verschiebungsterm $m$ in Abhängigkeit von $z$ und $n$} +\caption{Optimaler Verschiebungsterm $m^*$ in Abhängigkeit von $z$ und $n$} \end{figure} \end{frame} @@ -142,8 +148,15 @@ da Gauss-Quadratur nur für kleine $n$ praktischen Nutzen hat} \end{column} \begin{column}{0.39\textwidth} \begin{align*} +\hat{m} +&= +\alpha n + \beta +\\ +&\approx +1.34093 n + 0.854093 +\\ m^* -= +&= \lceil \hat{m} - \operatorname{Re}z \rceil \end{align*} \end{column} diff --git a/buch/papers/laguerre/presentation/sections/laguerre.tex b/buch/papers/laguerre/presentation/sections/laguerre.tex index cba9ffb..faa50e5 100644 --- a/buch/papers/laguerre/presentation/sections/laguerre.tex +++ b/buch/papers/laguerre/presentation/sections/laguerre.tex @@ -34,7 +34,7 @@ x y''(x) + (1 - x) y'(x) + n y(x) \begin{tikzpicture}[remember picture,overlay] %% use here too \path[draw=mainColor, very thick,->](0, 1.1) to -node[anchor=west]{Potenreihenansatz} (0, -0.8); +node[anchor=west]{Potenzreihenansatz} (0, -0.8); \end{tikzpicture} } @@ -76,7 +76,7 @@ n &e^{-x} &y(x) \item Gewichtsfunktion $w(x) = e^{-x}$ \end{itemize} -\only<4>{ +\uncover<4->{ \begin{align*} \int_0^\infty e^{-x} L_n(x) L_m(x) \, dx = diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py index dd50d92..857c735 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.py +++ b/buch/papers/laguerre/scripts/gamma_approx.py @@ -192,7 +192,7 @@ bests = np.stack(bests, 0) fig3, ax3 = plt.subplots(num=3, clear=True, constrained_layout=True, figsize=(5, 3)) v = ax3.imshow(bests, cmap="inferno", aspect="auto", interpolation="nearest") -plt.colorbar(v, ax=ax3, label=r"$m$") +plt.colorbar(v, ax=ax3, label=r"$m^*$") ticks = np.arange(0, N + 1, N // 5) ax3.set_xlim(0, 1) ax3.set_xticks(ticks) -- cgit v1.2.1 From fb20b12bd912595deb6ad98a6428842f893edcda Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 2 Jun 2022 16:13:14 +0200 Subject: Add n != m to presentation at orthogonality section --- buch/papers/laguerre/presentation/sections/laguerre.tex | 2 ++ 1 file changed, 2 insertions(+) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/presentation/sections/laguerre.tex b/buch/papers/laguerre/presentation/sections/laguerre.tex index faa50e5..1add511 100644 --- a/buch/papers/laguerre/presentation/sections/laguerre.tex +++ b/buch/papers/laguerre/presentation/sections/laguerre.tex @@ -81,6 +81,8 @@ n &e^{-x} &y(x) \int_0^\infty e^{-x} L_n(x) L_m(x) \, dx = 0 +,\quad +n \neq m ,\quad n, m \in \mathbb{N} \end{align*} -- cgit v1.2.1 From 8fb46098cb8e42a94b8e01ecc809f536d5c7efaf Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Fri, 3 Jun 2022 07:23:21 +0200 Subject: Minor tweaks of presentation --- buch/papers/laguerre/images/rel_error_shifted.pgf | 4 ++-- buch/papers/laguerre/images/targets.pdf | Bin 12940 -> 13199 bytes .../papers/laguerre/presentation/sections/gamma.tex | 5 +++-- .../laguerre/presentation/sections/gamma_approx.tex | 20 +++++++++++++------- .../laguerre/presentation/sections/laguerre.tex | 2 +- buch/papers/laguerre/scripts/gamma_approx.py | 2 +- 6 files changed, 20 insertions(+), 13 deletions(-) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/images/rel_error_shifted.pgf b/buch/papers/laguerre/images/rel_error_shifted.pgf index c11b676..707d492 100644 --- a/buch/papers/laguerre/images/rel_error_shifted.pgf +++ b/buch/papers/laguerre/images/rel_error_shifted.pgf @@ -1050,7 +1050,7 @@ \pgfsetbuttcap% \pgfsetroundjoin% \pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.750000,0.750000}% +\definecolor{currentstroke}{rgb}{0.750000,0.000000,0.750000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{{3.000000pt}{4.950000pt}}{0.000000pt}% \pgfpathmoveto{\pgfqpoint{0.712295in}{0.453273in}}% @@ -1310,7 +1310,7 @@ \pgfsetbuttcap% \pgfsetroundjoin% \pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.750000,0.750000}% +\definecolor{currentstroke}{rgb}{0.750000,0.000000,0.750000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{{3.000000pt}{4.950000pt}}{0.000000pt}% \pgfpathmoveto{\pgfqpoint{5.398422in}{3.760989in}}% diff --git a/buch/papers/laguerre/images/targets.pdf b/buch/papers/laguerre/images/targets.pdf index adaeeef..df11068 100644 Binary files a/buch/papers/laguerre/images/targets.pdf and b/buch/papers/laguerre/images/targets.pdf differ diff --git a/buch/papers/laguerre/presentation/sections/gamma.tex b/buch/papers/laguerre/presentation/sections/gamma.tex index 37f4a0b..7dca39b 100644 --- a/buch/papers/laguerre/presentation/sections/gamma.tex +++ b/buch/papers/laguerre/presentation/sections/gamma.tex @@ -3,8 +3,9 @@ \begin{frame}{Gamma-Funktion} \begin{columns} -\begin{column}{0.48\textwidth} +\begin{column}{0.55\textwidth} \begin{figure}[h] +\vspace{-16pt} \centering % \scalebox{0.51}{\input{../images/gammaplot.pdf}} \includegraphics[width=1\textwidth]{../images/gammaplot.pdf} @@ -12,7 +13,7 @@ \end{figure} \end{column} -\begin{column}{0.52\textwidth} +\begin{column}{0.45\textwidth} Verallgemeinerung der Fakultät \begin{align*} \Gamma(n) = (n-1)! diff --git a/buch/papers/laguerre/presentation/sections/gamma_approx.tex b/buch/papers/laguerre/presentation/sections/gamma_approx.tex index 2e4e4e2..4073b3c 100644 --- a/buch/papers/laguerre/presentation/sections/gamma_approx.tex +++ b/buch/papers/laguerre/presentation/sections/gamma_approx.tex @@ -48,7 +48,8 @@ R_n(\xi) \begin{figure}[h] \centering -\scalebox{0.91}{\input{../images/rel_error_simple.pgf}} +% \scalebox{0.91}{\input{../images/rel_error_simple.pgf}} +\resizebox{!}{0.72\textheight}{\input{../images/rel_error_simple.pgf}} \caption{Relativer Fehler des einfachen Ansatzes für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome} \end{figure} @@ -123,17 +124,22 @@ da Gauss-Quadratur nur für kleine $n$ praktischen Nutzen hat} \end{frame} \begin{frame}{Verschiebungsterm} +\begin{columns} +\begin{column}{0.625\textwidth} +\begin{figure}[h] +\centering +\includegraphics[width=1\textwidth]{../images/targets.pdf} +\caption{Optimaler Verschiebungsterm $m^*$ in Abhängigkeit von $z$ und $n$} +\end{figure} +\end{column} +\begin{column}{0.375\textwidth} \begin{align*} \Gamma(z) \approx \frac{1}{(z-m)_{m}} \sum_{i=1}^{n} x_i^{z + m - 1} A_i \end{align*} - -\begin{figure}[h] -\centering -\includegraphics[width=0.5\textwidth]{../images/targets.pdf} -\caption{Optimaler Verschiebungsterm $m^*$ in Abhängigkeit von $z$ und $n$} -\end{figure} +\end{column} +\end{columns} \end{frame} \begin{frame}{Schätzen von $m^*$} diff --git a/buch/papers/laguerre/presentation/sections/laguerre.tex b/buch/papers/laguerre/presentation/sections/laguerre.tex index 1add511..07cafb8 100644 --- a/buch/papers/laguerre/presentation/sections/laguerre.tex +++ b/buch/papers/laguerre/presentation/sections/laguerre.tex @@ -55,7 +55,7 @@ L_n(x) \begin{frame} \begin{figure}[h] \centering -\scalebox{0.66}{\input{../images/laguerre_polynomes.pgf}} +\resizebox{0.74\textwidth}{!}{\input{../images/laguerre_polynomes.pgf}} \caption{Laguerre-Polynome vom Grad $0$ bis $7$} \end{figure} \end{frame} diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py index 857c735..53ba76b 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.py +++ b/buch/papers/laguerre/scripts/gamma_approx.py @@ -241,7 +241,7 @@ for target in targets: ax5.semilogy(x, rel_error, label=f"$m={target}$", linewidth=3) gamma_lgo = eval_laguerre_gamma(x, n=n, func="optimal_shifted") rel_error = np.abs(calc_rel_error(gamma, gamma_lgo)) -ax5.semilogy(x, rel_error, "c", linestyle="dotted", label="$m^*$", linewidth=3) +ax5.semilogy(x, rel_error, "m", linestyle="dotted", label="$m^*$", linewidth=3) ax5.set_xlim(x[0], x[-1]) ax5.set_ylim(5e-9, 5e-8) ax5.set_xlabel(r"$z$") -- cgit v1.2.1 From 5dcd1898f505fb707e8a7630c807f522fd549279 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Fri, 3 Jun 2022 07:25:42 +0200 Subject: Bugfix --- buch/papers/laguerre/presentation/presentation.tex | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/presentation/presentation.tex b/buch/papers/laguerre/presentation/presentation.tex index f49cf1e..3db69f5 100644 --- a/buch/papers/laguerre/presentation/presentation.tex +++ b/buch/papers/laguerre/presentation/presentation.tex @@ -126,9 +126,9 @@ \appendix \begin{frame} - \centering - \Large - \textbf{Vielen Dank für die Aufmerksamkeit} + % \centering + % \Large + % \textbf{Vielen Dank für die Aufmerksamkeit} \end{frame} \end{document} -- cgit v1.2.1 From fde57297b3efbef28d09a532e1b3895d2b2ad917 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Thu, 14 Jul 2022 15:03:28 +0200 Subject: Correct Makefile, add text to gamma.tex, separate python-scripts for each image --- buch/papers/laguerre/Makefile | 38 +- buch/papers/laguerre/Makefile.inc | 4 +- buch/papers/laguerre/definition.tex | 2 +- buch/papers/laguerre/gamma.tex | 212 +- buch/papers/laguerre/images/estimate.pgf | 1160 ------- buch/papers/laguerre/images/estimates.pgf | 1700 ++++++++++ buch/papers/laguerre/images/gammaplot.pdf | Bin 23297 -> 23297 bytes buch/papers/laguerre/images/integrand.pgf | 2670 ++++++++++++++++ buch/papers/laguerre/images/integrand_exp.pgf | 1916 +++++++++++ buch/papers/laguerre/images/integrands.pgf | 2865 ----------------- buch/papers/laguerre/images/integrands_exp.pgf | 1968 ------------ buch/papers/laguerre/images/laguerre_poly.pgf | 1838 +++++++++++ buch/papers/laguerre/images/laguerre_polynomes.pgf | 1838 ----------- buch/papers/laguerre/images/rel_error_mirror.pgf | 3381 ++++++++++---------- buch/papers/laguerre/images/rel_error_range.pgf | 2467 ++++++++++++-- buch/papers/laguerre/images/rel_error_shifted.pgf | 1446 +++++---- buch/papers/laguerre/images/rel_error_simple.pgf | 2648 ++++++++------- buch/papers/laguerre/images/rel_error_simple.png | Bin 61966 -> 0 bytes buch/papers/laguerre/images/targets-img0.png | Bin 0 -> 836 bytes buch/papers/laguerre/images/targets-img1.png | Bin 0 -> 429 bytes buch/papers/laguerre/images/targets.pdf | Bin 13199 -> 12530 bytes buch/papers/laguerre/images/targets.pgf | 1024 ++++++ buch/papers/laguerre/packages.tex | 2 +- .../presentation/sections/gamma_approx.tex | 8 +- .../laguerre/presentation/sections/laguerre.tex | 2 +- buch/papers/laguerre/quadratur.tex | 8 +- buch/papers/laguerre/scripts/estimates.py | 39 + buch/papers/laguerre/scripts/gamma_approx.ipynb | 616 ---- buch/papers/laguerre/scripts/gamma_approx.py | 181 +- buch/papers/laguerre/scripts/integrand.py | 74 +- buch/papers/laguerre/scripts/integrand_exp.py | 36 + buch/papers/laguerre/scripts/laguerre_plot.py | 101 - buch/papers/laguerre/scripts/laguerre_poly.py | 98 + buch/papers/laguerre/scripts/rel_error_mirror.py | 28 + buch/papers/laguerre/scripts/rel_error_range.py | 32 + buch/papers/laguerre/scripts/rel_error_shifted.py | 31 + buch/papers/laguerre/scripts/rel_error_simple.py | 29 + buch/papers/laguerre/scripts/targets.py | 48 + 38 files changed, 15675 insertions(+), 12835 deletions(-) delete mode 100644 buch/papers/laguerre/images/estimate.pgf create mode 100644 buch/papers/laguerre/images/estimates.pgf create mode 100644 buch/papers/laguerre/images/integrand.pgf create mode 100644 buch/papers/laguerre/images/integrand_exp.pgf delete mode 100644 buch/papers/laguerre/images/integrands.pgf delete mode 100644 buch/papers/laguerre/images/integrands_exp.pgf create mode 100644 buch/papers/laguerre/images/laguerre_poly.pgf delete mode 100644 buch/papers/laguerre/images/laguerre_polynomes.pgf delete mode 100644 buch/papers/laguerre/images/rel_error_simple.png create mode 100644 buch/papers/laguerre/images/targets-img0.png create mode 100644 buch/papers/laguerre/images/targets-img1.png create mode 100644 buch/papers/laguerre/images/targets.pgf create mode 100644 buch/papers/laguerre/scripts/estimates.py delete mode 100644 buch/papers/laguerre/scripts/gamma_approx.ipynb create mode 100644 buch/papers/laguerre/scripts/integrand_exp.py delete mode 100644 buch/papers/laguerre/scripts/laguerre_plot.py create mode 100644 buch/papers/laguerre/scripts/laguerre_poly.py create mode 100644 buch/papers/laguerre/scripts/rel_error_mirror.py create mode 100644 buch/papers/laguerre/scripts/rel_error_range.py create mode 100644 buch/papers/laguerre/scripts/rel_error_shifted.py create mode 100644 buch/papers/laguerre/scripts/rel_error_simple.py create mode 100644 buch/papers/laguerre/scripts/targets.py (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/Makefile b/buch/papers/laguerre/Makefile index 0f0985a..1ed87cc 100644 --- a/buch/papers/laguerre/Makefile +++ b/buch/papers/laguerre/Makefile @@ -3,9 +3,41 @@ # # (c) 2020 Prof Dr Andreas Mueller # +IMGFOLDER := images +PRESFOLDER := presentation -images: images/laguerre_polynomes.pdf +FIGURES := \ + images/targets.pdf \ + images/estimates.pgf \ + images/integrand.pgf \ + images/integrand_exp.pgf \ + images/laguerre_poly.pgf \ + images/rel_error_mirror.pgf \ + images/rel_error_range.pgf \ + images/rel_error_shifted.pgf \ + images/rel_error_simple.pgf \ + images/gammaplot.pdf -images/laguerre_polynomes.pdf: scripts/laguerre_plot.py - python3 scripts/laguerre_plot.py +.PHONY: all +all: images presentation +.PHONY: images +images: $(FIGURES) + +.PHONY: presentation +presentation: $(PRESFOLDER)/presentation.pdf + +images/%.pdf images/%.pgf: scripts/%.py + python3 $< + +images/gammaplot.pdf: images/gammaplot.tex images/gammapaths.tex + cd $(IMGFOLDER) && latexmk -quiet -pdf gammaplot.tex + +$(PRESFOLDER)/%.pdf: $(PRESFOLDER)/%.tex $(FIGURES) + cd $(PRESFOLDER) && latexmk -quiet -pdf $(.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{4.000000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{4.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{2.276777in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.756261in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{0.756261in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.756261in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.556655in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{1.556655in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.556655in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.357049in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{2.357049in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.357049in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.157443in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{3.157443in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.157443in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.957837in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{3.957837in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.957837in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.758231in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.758231in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.758231in}{2.276777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.574427in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.574427in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{2.574427in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.370575in, y=2.521666in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.092617in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.092617in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{3.092617in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.282209in, y=3.039855in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.610806in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.610806in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{3.610806in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.282209in, y=3.558045in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.353211in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.881896in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.276777in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.756261in}{2.422322in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.156458in}{2.562568in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.556655in}{2.701268in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.956852in}{2.840483in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.357049in}{2.979182in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.757246in}{3.116851in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.157443in}{3.255550in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.557640in}{3.394249in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.957837in}{3.531918in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.358034in}{3.670617in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.758231in}{3.818082in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.958330in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.276777in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.276777in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.653384in}{3.439504in}}% -\pgfpathlineto{\pgfqpoint{1.219775in}{3.439504in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.439504in}}{\pgfqpoint{1.247553in}{3.467282in}}% -\pgfpathlineto{\pgfqpoint{1.247553in}{3.861108in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.888886in}}{\pgfqpoint{1.219775in}{3.888886in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{3.888886in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.888886in}}{\pgfqpoint{0.625607in}{3.861108in}}% -\pgfpathlineto{\pgfqpoint{0.625607in}{3.467282in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.439504in}}{\pgfqpoint{0.653384in}{3.439504in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{3.439504in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.681162in}{3.776418in}}% -\pgfpathlineto{\pgfqpoint{0.820051in}{3.776418in}}% -\pgfpathlineto{\pgfqpoint{0.958940in}{3.776418in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=3.727807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.820051in}{3.572561in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=3.523950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \overline{m}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.756261in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.756261in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.756261in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.756261in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.556655in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.556655in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.556655in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.556655in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.357049in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.357049in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.357049in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.357049in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.157443in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.157443in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.157443in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.157443in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.957837in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.957837in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.957837in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.957837in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.758231in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.758231in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.758231in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.758231in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.757246in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.814398in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.814398in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{0.814398in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=0.761637in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.04}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.187458in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.187458in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.187458in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=1.134696in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.02}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.560518in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.560518in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.560518in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.149695in, y=1.507756in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.933577in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.933577in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.933577in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.149695in, y=1.880816in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.02}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.756261in}{1.628009in}}% -\pgfpathlineto{\pgfqpoint{1.156458in}{1.398538in}}% -\pgfpathlineto{\pgfqpoint{1.556655in}{1.447469in}}% -\pgfpathlineto{\pgfqpoint{1.956852in}{1.403600in}}% -\pgfpathlineto{\pgfqpoint{2.357049in}{1.452531in}}% -\pgfpathlineto{\pgfqpoint{2.757246in}{1.687064in}}% -\pgfpathlineto{\pgfqpoint{3.157443in}{1.735996in}}% -\pgfpathlineto{\pgfqpoint{3.557640in}{1.784927in}}% -\pgfpathlineto{\pgfqpoint{3.957837in}{2.019460in}}% -\pgfpathlineto{\pgfqpoint{4.358034in}{2.068392in}}% -\pgfpathlineto{\pgfqpoint{4.758231in}{0.539708in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{4.402168in}{1.681553in}}% -\pgfusepath{clip}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.756261in}{1.628009in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.156458in}{1.398538in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.556655in}{1.447469in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.956852in}{1.403600in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.357049in}{1.452531in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.757246in}{1.687064in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.157443in}{1.735996in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.557640in}{1.784927in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.957837in}{2.019460in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.358034in}{2.068392in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.758231in}{0.539708in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.144826in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.144826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.653384in}{1.829858in}}% -\pgfpathlineto{\pgfqpoint{1.511473in}{1.829858in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.829858in}}{\pgfqpoint{1.539251in}{1.857636in}}% -\pgfpathlineto{\pgfqpoint{1.539251in}{2.047604in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{2.075382in}}{\pgfqpoint{1.511473in}{2.075382in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{2.075382in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{2.075382in}}{\pgfqpoint{0.625607in}{2.047604in}}% -\pgfpathlineto{\pgfqpoint{0.625607in}{1.857636in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.829858in}}{\pgfqpoint{0.653384in}{1.829858in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{1.829858in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.681162in}{1.962914in}}% -\pgfpathlineto{\pgfqpoint{0.820051in}{1.962914in}}% -\pgfpathlineto{\pgfqpoint{0.958940in}{1.962914in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.820051in}{1.962914in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=1.914303in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m} - \overline{m}\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/estimates.pgf b/buch/papers/laguerre/images/estimates.pgf new file mode 100644 index 0000000..b82fa5d --- /dev/null +++ b/buch/papers/laguerre/images/estimates.pgf @@ -0,0 +1,1700 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.500000in}{3.600000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.500000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.500000in}{3.600000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{3.600000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{3.558330in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{3.558330in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{2.076777in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733533in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{0.733533in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733533in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.088276in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{1.088276in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.088276in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.443018in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{1.443018in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.443018in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.797761in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{1.797761in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.797761in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.152504in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{2.152504in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.152504in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.507246in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{2.507246in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.507246in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.861989in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{2.861989in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.861989in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.216731in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{3.216731in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.216731in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.571474in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{3.571474in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.571474in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.926216in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{3.926216in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.926216in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.280959in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{4.280959in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.280959in}{2.076777in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.156403in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{2.156403in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{2.156403in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.370575in, y=2.103641in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 3}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.339026in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{2.339026in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{2.339026in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.370575in, y=2.286264in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.521648in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{2.521648in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{2.521648in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.370575in, y=2.468887in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.704271in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{2.704271in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{2.704271in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.370575in, y=2.651510in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 9}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.886894in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{2.886894in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{2.886894in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.282209in, y=2.834133in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 11}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.069517in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{3.069517in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{3.069517in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.282209in, y=3.016755in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 13}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.252140in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{3.252140in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{3.252140in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.282209in, y=3.199378in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.434763in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{3.434763in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{3.434763in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.282209in, y=3.382001in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 17}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.144121in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{3.490987in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733533in}{2.205011in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.088276in}{2.328577in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.443018in}{2.450780in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.797761in}{2.573437in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.152504in}{2.695640in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.507246in}{2.816934in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.861989in}{2.939137in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.216731in}{3.061340in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.571474in}{3.182634in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.926216in}{3.304837in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.280959in}{3.434763in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.458330in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{2.076777in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{2.076777in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{3.558330in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{3.558330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.653384in}{3.039504in}}% +\pgfpathlineto{\pgfqpoint{1.219775in}{3.039504in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.039504in}}{\pgfqpoint{1.247553in}{3.067282in}}% +\pgfpathlineto{\pgfqpoint{1.247553in}{3.461108in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.488886in}}{\pgfqpoint{1.219775in}{3.488886in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{3.488886in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.488886in}}{\pgfqpoint{0.625607in}{3.461108in}}% +\pgfpathlineto{\pgfqpoint{0.625607in}{3.067282in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.039504in}}{\pgfqpoint{0.653384in}{3.039504in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{3.039504in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.681162in}{3.376418in}}% +\pgfpathlineto{\pgfqpoint{0.820051in}{3.376418in}}% +\pgfpathlineto{\pgfqpoint{0.958940in}{3.376418in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=3.327807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.820051in}{3.172561in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=3.123950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \overline{m}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{1.944826in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{1.944826in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733533in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.733533in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733533in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.733533in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.088276in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.088276in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.088276in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.088276in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 3}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.443018in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.443018in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.443018in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.443018in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.797761in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.797761in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.797761in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.797761in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.152504in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.152504in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.152504in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.152504in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.507246in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.507246in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.507246in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.507246in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.861989in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.861989in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.861989in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.861989in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.216731in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.216731in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.216731in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.216731in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 9}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.571474in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.571474in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.571474in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.571474in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.926216in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.926216in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.926216in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.926216in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 11}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.280959in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.280959in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.280959in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.280959in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.507246in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.772636in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{0.772636in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{0.772636in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=0.719875in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.04}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.101325in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{1.101325in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.101325in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=1.048564in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.02}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.430014in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{1.430014in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.430014in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149695in, y=1.377252in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.758703in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{1.758703in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.556162in}{1.758703in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.149695in, y=1.705941in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.02}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.733533in}{1.489478in}}% +\pgfpathlineto{\pgfqpoint{1.088276in}{1.287300in}}% +\pgfpathlineto{\pgfqpoint{1.443018in}{1.330411in}}% +\pgfpathlineto{\pgfqpoint{1.797761in}{1.291760in}}% +\pgfpathlineto{\pgfqpoint{2.152504in}{1.334871in}}% +\pgfpathlineto{\pgfqpoint{2.507246in}{1.541510in}}% +\pgfpathlineto{\pgfqpoint{2.861989in}{1.584621in}}% +\pgfpathlineto{\pgfqpoint{3.216731in}{1.627733in}}% +\pgfpathlineto{\pgfqpoint{3.571474in}{1.834371in}}% +\pgfpathlineto{\pgfqpoint{3.926216in}{1.877483in}}% +\pgfpathlineto{\pgfqpoint{4.280959in}{0.530617in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.733533in}{1.489478in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.088276in}{1.287300in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.443018in}{1.330411in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{1.797761in}{1.291760in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.152504in}{1.334871in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.507246in}{1.541510in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{2.861989in}{1.584621in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.216731in}{1.627733in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.571474in}{1.834371in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.926216in}{1.877483in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{4.280959in}{0.530617in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.556162in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.458330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.556162in}{1.944826in}}% +\pgfpathlineto{\pgfqpoint{4.458330in}{1.944826in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.653384in}{1.629858in}}% +\pgfpathlineto{\pgfqpoint{1.511473in}{1.629858in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.629858in}}{\pgfqpoint{1.539251in}{1.657636in}}% +\pgfpathlineto{\pgfqpoint{1.539251in}{1.847604in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.875382in}}{\pgfqpoint{1.511473in}{1.875382in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{1.875382in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.875382in}}{\pgfqpoint{0.625607in}{1.847604in}}% +\pgfpathlineto{\pgfqpoint{0.625607in}{1.657636in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.629858in}}{\pgfqpoint{0.653384in}{1.629858in}}% +\pgfpathlineto{\pgfqpoint{0.653384in}{1.629858in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.681162in}{1.762914in}}% +\pgfpathlineto{\pgfqpoint{0.820051in}{1.762914in}}% +\pgfpathlineto{\pgfqpoint{0.958940in}{1.762914in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% +\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% +\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.820051in}{1.762914in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.070051in,y=1.714303in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m} - \overline{m}\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/gammaplot.pdf b/buch/papers/laguerre/images/gammaplot.pdf index 92e9261..26c772d 100644 Binary files a/buch/papers/laguerre/images/gammaplot.pdf and b/buch/papers/laguerre/images/gammaplot.pdf differ diff --git a/buch/papers/laguerre/images/integrand.pgf b/buch/papers/laguerre/images/integrand.pgf new file mode 100644 index 0000000..4514936 --- /dev/null +++ b/buch/papers/laguerre/images/integrand.pgf @@ -0,0 +1,2670 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.400000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{2.400000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.400000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% +\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfpathlineto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.315623in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.905974in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.905974in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.905974in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.905974in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.496326in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.496326in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.496326in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.496326in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.086677in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.086677in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.086677in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.086677in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.677029in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.677029in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.677029in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.677029in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.267380in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.267380in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.267380in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.267380in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.857732in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.857732in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.857732in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.493336in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.493336in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.493336in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.597292in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.597292in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.597292in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.671050in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.671050in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.671050in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.728261in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.728261in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.728261in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.775006in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.775006in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.775006in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.814528in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.814528in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.814528in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.848763in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.848763in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.848763in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.878961in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.878961in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.878961in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.083688in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.083688in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.083688in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.187644in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.187644in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.187644in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.261401in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.261401in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.261401in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.318612in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.318612in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.318612in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.365357in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.365357in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.365357in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.404879in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.404879in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.404879in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.439115in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.439115in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.439115in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.469313in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.469313in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.469313in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.674039in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.674039in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.674039in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.777995in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.777995in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.777995in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.851753in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.851753in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.851753in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.908964in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.908964in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.908964in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.955709in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.955709in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.955709in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.995231in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.995231in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.995231in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.029466in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.029466in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.029466in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.059664in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.059664in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.059664in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.264391in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.264391in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.264391in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.368347in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.368347in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.368347in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.442104in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.442104in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.442104in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.499315in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.499315in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.499315in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.546060in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.546060in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.546060in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.585582in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.585582in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.585582in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.619818in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.619818in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.619818in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.650016in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.650016in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.650016in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.854742in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.854742in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.854742in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.958698in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.958698in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.958698in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.032456in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.032456in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.032456in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.089667in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.089667in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.089667in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.136411in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.136411in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.136411in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.175934in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.175934in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.175934in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.210169in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.210169in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.210169in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.240367in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.240367in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.240367in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.445094in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.445094in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.445094in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.549049in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.549049in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.549049in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.622807in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.622807in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.622807in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.680018in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.680018in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.680018in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.726763in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.726763in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.726763in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.766285in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.766285in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.766285in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.800521in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.800521in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.800521in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.830719in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.830719in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.830719in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.086677in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.923813in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.923813in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{0.923813in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=0.871051in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{1.384398in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{1.384398in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{1.384398in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=1.331636in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{1.844983in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{1.844983in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{1.844983in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=1.792222in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{2.305568in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=2.252807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 40}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.876223in}{2.315568in}}% +\pgfpathlineto{\pgfqpoint{1.884777in}{2.056573in}}% +\pgfpathlineto{\pgfqpoint{1.895403in}{1.785467in}}% +\pgfpathlineto{\pgfqpoint{1.906030in}{1.560489in}}% +\pgfpathlineto{\pgfqpoint{1.916656in}{1.373790in}}% +\pgfpathlineto{\pgfqpoint{1.927282in}{1.218859in}}% +\pgfpathlineto{\pgfqpoint{1.937909in}{1.090289in}}% +\pgfpathlineto{\pgfqpoint{1.948535in}{0.983595in}}% +\pgfpathlineto{\pgfqpoint{1.959161in}{0.895055in}}% +\pgfpathlineto{\pgfqpoint{1.969788in}{0.821579in}}% +\pgfpathlineto{\pgfqpoint{1.980414in}{0.760606in}}% +\pgfpathlineto{\pgfqpoint{1.991040in}{0.710007in}}% +\pgfpathlineto{\pgfqpoint{2.001667in}{0.668018in}}% +\pgfpathlineto{\pgfqpoint{2.012293in}{0.633173in}}% +\pgfpathlineto{\pgfqpoint{2.022919in}{0.604257in}}% +\pgfpathlineto{\pgfqpoint{2.033546in}{0.580261in}}% +\pgfpathlineto{\pgfqpoint{2.047714in}{0.554493in}}% +\pgfpathlineto{\pgfqpoint{2.061883in}{0.534399in}}% +\pgfpathlineto{\pgfqpoint{2.076051in}{0.518729in}}% +\pgfpathlineto{\pgfqpoint{2.090219in}{0.506510in}}% +\pgfpathlineto{\pgfqpoint{2.104388in}{0.496980in}}% +\pgfpathlineto{\pgfqpoint{2.122098in}{0.487962in}}% +\pgfpathlineto{\pgfqpoint{2.139809in}{0.481354in}}% +\pgfpathlineto{\pgfqpoint{2.161062in}{0.475710in}}% +\pgfpathlineto{\pgfqpoint{2.189398in}{0.470818in}}% +\pgfpathlineto{\pgfqpoint{2.224820in}{0.467304in}}% +\pgfpathlineto{\pgfqpoint{2.274409in}{0.464935in}}% +\pgfpathlineto{\pgfqpoint{2.355878in}{0.463636in}}% +\pgfpathlineto{\pgfqpoint{2.571946in}{0.463236in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.463227in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.463227in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.613104in}{2.315568in}}% +\pgfpathlineto{\pgfqpoint{1.629745in}{2.089937in}}% +\pgfpathlineto{\pgfqpoint{1.647456in}{1.880032in}}% +\pgfpathlineto{\pgfqpoint{1.665166in}{1.697213in}}% +\pgfpathlineto{\pgfqpoint{1.682877in}{1.537984in}}% +\pgfpathlineto{\pgfqpoint{1.700587in}{1.399301in}}% +\pgfpathlineto{\pgfqpoint{1.718298in}{1.278513in}}% +\pgfpathlineto{\pgfqpoint{1.736009in}{1.173312in}}% +\pgfpathlineto{\pgfqpoint{1.753719in}{1.081685in}}% +\pgfpathlineto{\pgfqpoint{1.771430in}{1.001882in}}% +\pgfpathlineto{\pgfqpoint{1.789140in}{0.932375in}}% +\pgfpathlineto{\pgfqpoint{1.806851in}{0.871838in}}% +\pgfpathlineto{\pgfqpoint{1.824561in}{0.819113in}}% +\pgfpathlineto{\pgfqpoint{1.842272in}{0.773190in}}% +\pgfpathlineto{\pgfqpoint{1.859982in}{0.733194in}}% +\pgfpathlineto{\pgfqpoint{1.877693in}{0.698358in}}% +\pgfpathlineto{\pgfqpoint{1.895403in}{0.668018in}}% +\pgfpathlineto{\pgfqpoint{1.913114in}{0.641592in}}% +\pgfpathlineto{\pgfqpoint{1.930825in}{0.618577in}}% +\pgfpathlineto{\pgfqpoint{1.952077in}{0.594844in}}% +\pgfpathlineto{\pgfqpoint{1.973330in}{0.574736in}}% +\pgfpathlineto{\pgfqpoint{1.994582in}{0.557701in}}% +\pgfpathlineto{\pgfqpoint{2.015835in}{0.543268in}}% +\pgfpathlineto{\pgfqpoint{2.040630in}{0.529192in}}% +\pgfpathlineto{\pgfqpoint{2.065425in}{0.517591in}}% +\pgfpathlineto{\pgfqpoint{2.093762in}{0.506810in}}% +\pgfpathlineto{\pgfqpoint{2.125640in}{0.497214in}}% +\pgfpathlineto{\pgfqpoint{2.161062in}{0.489009in}}% +\pgfpathlineto{\pgfqpoint{2.200025in}{0.482252in}}% +\pgfpathlineto{\pgfqpoint{2.246072in}{0.476511in}}% +\pgfpathlineto{\pgfqpoint{2.302746in}{0.471764in}}% +\pgfpathlineto{\pgfqpoint{2.373588in}{0.468140in}}% +\pgfpathlineto{\pgfqpoint{2.472767in}{0.465494in}}% +\pgfpathlineto{\pgfqpoint{2.625078in}{0.463918in}}% +\pgfpathlineto{\pgfqpoint{2.950952in}{0.463282in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.463227in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.463227in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.139517in}{2.315568in}}% +\pgfpathlineto{\pgfqpoint{1.162187in}{2.158775in}}% +\pgfpathlineto{\pgfqpoint{1.186982in}{2.002481in}}% +\pgfpathlineto{\pgfqpoint{1.211776in}{1.860593in}}% +\pgfpathlineto{\pgfqpoint{1.236571in}{1.731785in}}% +\pgfpathlineto{\pgfqpoint{1.261366in}{1.614850in}}% +\pgfpathlineto{\pgfqpoint{1.286161in}{1.508694in}}% +\pgfpathlineto{\pgfqpoint{1.310955in}{1.412323in}}% +\pgfpathlineto{\pgfqpoint{1.335750in}{1.324836in}}% +\pgfpathlineto{\pgfqpoint{1.360545in}{1.245413in}}% +\pgfpathlineto{\pgfqpoint{1.385340in}{1.173312in}}% +\pgfpathlineto{\pgfqpoint{1.410135in}{1.107857in}}% +\pgfpathlineto{\pgfqpoint{1.434929in}{1.048435in}}% +\pgfpathlineto{\pgfqpoint{1.459724in}{0.994491in}}% +\pgfpathlineto{\pgfqpoint{1.484519in}{0.945519in}}% +\pgfpathlineto{\pgfqpoint{1.509314in}{0.901062in}}% +\pgfpathlineto{\pgfqpoint{1.534108in}{0.860703in}}% +\pgfpathlineto{\pgfqpoint{1.562445in}{0.819113in}}% +\pgfpathlineto{\pgfqpoint{1.590782in}{0.781874in}}% +\pgfpathlineto{\pgfqpoint{1.619119in}{0.748533in}}% +\pgfpathlineto{\pgfqpoint{1.647456in}{0.718680in}}% +\pgfpathlineto{\pgfqpoint{1.675793in}{0.691950in}}% +\pgfpathlineto{\pgfqpoint{1.704130in}{0.668018in}}% +\pgfpathlineto{\pgfqpoint{1.736009in}{0.644074in}}% +\pgfpathlineto{\pgfqpoint{1.767888in}{0.622929in}}% +\pgfpathlineto{\pgfqpoint{1.803309in}{0.602322in}}% +\pgfpathlineto{\pgfqpoint{1.838730in}{0.584374in}}% +\pgfpathlineto{\pgfqpoint{1.877693in}{0.567294in}}% +\pgfpathlineto{\pgfqpoint{1.916656in}{0.552622in}}% +\pgfpathlineto{\pgfqpoint{1.959161in}{0.538965in}}% +\pgfpathlineto{\pgfqpoint{2.005209in}{0.526514in}}% +\pgfpathlineto{\pgfqpoint{2.054798in}{0.515384in}}% +\pgfpathlineto{\pgfqpoint{2.111472in}{0.505040in}}% +\pgfpathlineto{\pgfqpoint{2.175230in}{0.495834in}}% +\pgfpathlineto{\pgfqpoint{2.246072in}{0.487962in}}% +\pgfpathlineto{\pgfqpoint{2.327541in}{0.481229in}}% +\pgfpathlineto{\pgfqpoint{2.423178in}{0.475624in}}% +\pgfpathlineto{\pgfqpoint{2.540067in}{0.471085in}}% +\pgfpathlineto{\pgfqpoint{2.688836in}{0.467626in}}% +\pgfpathlineto{\pgfqpoint{2.897820in}{0.465174in}}% +\pgfpathlineto{\pgfqpoint{3.230778in}{0.463759in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{1.919726in}}% +\pgfpathlineto{\pgfqpoint{0.351044in}{1.822511in}}% +\pgfpathlineto{\pgfqpoint{0.386465in}{1.731785in}}% +\pgfpathlineto{\pgfqpoint{0.421886in}{1.647114in}}% +\pgfpathlineto{\pgfqpoint{0.457307in}{1.568094in}}% +\pgfpathlineto{\pgfqpoint{0.492728in}{1.494349in}}% +\pgfpathlineto{\pgfqpoint{0.528149in}{1.425526in}}% +\pgfpathlineto{\pgfqpoint{0.563571in}{1.361297in}}% +\pgfpathlineto{\pgfqpoint{0.598992in}{1.301355in}}% +\pgfpathlineto{\pgfqpoint{0.634413in}{1.245413in}}% +\pgfpathlineto{\pgfqpoint{0.673376in}{1.188181in}}% +\pgfpathlineto{\pgfqpoint{0.712339in}{1.135136in}}% +\pgfpathlineto{\pgfqpoint{0.751302in}{1.085972in}}% +\pgfpathlineto{\pgfqpoint{0.790265in}{1.040406in}}% +\pgfpathlineto{\pgfqpoint{0.829229in}{0.998173in}}% +\pgfpathlineto{\pgfqpoint{0.868192in}{0.959031in}}% +\pgfpathlineto{\pgfqpoint{0.910697in}{0.919590in}}% +\pgfpathlineto{\pgfqpoint{0.953202in}{0.883286in}}% +\pgfpathlineto{\pgfqpoint{0.995708in}{0.849870in}}% +\pgfpathlineto{\pgfqpoint{1.038213in}{0.819113in}}% +\pgfpathlineto{\pgfqpoint{1.084261in}{0.788547in}}% +\pgfpathlineto{\pgfqpoint{1.130308in}{0.760606in}}% +\pgfpathlineto{\pgfqpoint{1.179897in}{0.733194in}}% +\pgfpathlineto{\pgfqpoint{1.229487in}{0.708309in}}% +\pgfpathlineto{\pgfqpoint{1.282619in}{0.684185in}}% +\pgfpathlineto{\pgfqpoint{1.335750in}{0.662437in}}% +\pgfpathlineto{\pgfqpoint{1.392424in}{0.641592in}}% +\pgfpathlineto{\pgfqpoint{1.452640in}{0.621830in}}% +\pgfpathlineto{\pgfqpoint{1.516398in}{0.603286in}}% +\pgfpathlineto{\pgfqpoint{1.583698in}{0.586059in}}% +\pgfpathlineto{\pgfqpoint{1.654540in}{0.570209in}}% +\pgfpathlineto{\pgfqpoint{1.732466in}{0.555126in}}% +\pgfpathlineto{\pgfqpoint{1.813935in}{0.541626in}}% +\pgfpathlineto{\pgfqpoint{1.902488in}{0.529192in}}% +\pgfpathlineto{\pgfqpoint{2.001667in}{0.517591in}}% +\pgfpathlineto{\pgfqpoint{2.107930in}{0.507416in}}% +\pgfpathlineto{\pgfqpoint{2.228362in}{0.498166in}}% +\pgfpathlineto{\pgfqpoint{2.362962in}{0.490100in}}% +\pgfpathlineto{\pgfqpoint{2.518815in}{0.483057in}}% +\pgfpathlineto{\pgfqpoint{2.699462in}{0.477169in}}% +\pgfpathlineto{\pgfqpoint{2.919073in}{0.472312in}}% +\pgfpathlineto{\pgfqpoint{3.195357in}{0.468528in}}% +\pgfpathlineto{\pgfqpoint{3.567279in}{0.465794in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.464684in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.464684in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.509286in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.509286in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.509286in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.464684in}}% +\pgfpathlineto{\pgfqpoint{0.839855in}{0.467276in}}% +\pgfpathlineto{\pgfqpoint{1.176355in}{0.471031in}}% +\pgfpathlineto{\pgfqpoint{1.427845in}{0.475971in}}% +\pgfpathlineto{\pgfqpoint{1.626203in}{0.481991in}}% +\pgfpathlineto{\pgfqpoint{1.792682in}{0.489188in}}% +\pgfpathlineto{\pgfqpoint{1.934367in}{0.497450in}}% +\pgfpathlineto{\pgfqpoint{2.058340in}{0.506810in}}% +\pgfpathlineto{\pgfqpoint{2.171688in}{0.517591in}}% +\pgfpathlineto{\pgfqpoint{2.270867in}{0.529192in}}% +\pgfpathlineto{\pgfqpoint{2.362962in}{0.542170in}}% +\pgfpathlineto{\pgfqpoint{2.447972in}{0.556405in}}% +\pgfpathlineto{\pgfqpoint{2.525899in}{0.571697in}}% +\pgfpathlineto{\pgfqpoint{2.596741in}{0.587768in}}% +\pgfpathlineto{\pgfqpoint{2.664041in}{0.605234in}}% +\pgfpathlineto{\pgfqpoint{2.727799in}{0.624036in}}% +\pgfpathlineto{\pgfqpoint{2.788015in}{0.644074in}}% +\pgfpathlineto{\pgfqpoint{2.844689in}{0.665208in}}% +\pgfpathlineto{\pgfqpoint{2.897820in}{0.687259in}}% +\pgfpathlineto{\pgfqpoint{2.950952in}{0.711718in}}% +\pgfpathlineto{\pgfqpoint{3.000541in}{0.736950in}}% +\pgfpathlineto{\pgfqpoint{3.050131in}{0.764743in}}% +\pgfpathlineto{\pgfqpoint{3.096178in}{0.793072in}}% +\pgfpathlineto{\pgfqpoint{3.142226in}{0.824063in}}% +\pgfpathlineto{\pgfqpoint{3.184731in}{0.855249in}}% +\pgfpathlineto{\pgfqpoint{3.227236in}{0.889130in}}% +\pgfpathlineto{\pgfqpoint{3.269742in}{0.925939in}}% +\pgfpathlineto{\pgfqpoint{3.308705in}{0.962468in}}% +\pgfpathlineto{\pgfqpoint{3.347668in}{1.001882in}}% +\pgfpathlineto{\pgfqpoint{3.386631in}{1.044406in}}% +\pgfpathlineto{\pgfqpoint{3.425594in}{1.090289in}}% +\pgfpathlineto{\pgfqpoint{3.464558in}{1.139793in}}% +\pgfpathlineto{\pgfqpoint{3.503521in}{1.193206in}}% +\pgfpathlineto{\pgfqpoint{3.538942in}{1.245413in}}% +\pgfpathlineto{\pgfqpoint{3.574363in}{1.301355in}}% +\pgfpathlineto{\pgfqpoint{3.609784in}{1.361297in}}% +\pgfpathlineto{\pgfqpoint{3.645205in}{1.425526in}}% +\pgfpathlineto{\pgfqpoint{3.680626in}{1.494349in}}% +\pgfpathlineto{\pgfqpoint{3.716047in}{1.568094in}}% +\pgfpathlineto{\pgfqpoint{3.751468in}{1.647114in}}% +\pgfpathlineto{\pgfqpoint{3.786889in}{1.731785in}}% +\pgfpathlineto{\pgfqpoint{3.822311in}{1.822511in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{1.919726in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{1.919726in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.172813in}{0.464531in}}% +\pgfpathlineto{\pgfqpoint{1.445556in}{0.467006in}}% +\pgfpathlineto{\pgfqpoint{1.619119in}{0.470663in}}% +\pgfpathlineto{\pgfqpoint{1.746635in}{0.475454in}}% +\pgfpathlineto{\pgfqpoint{1.849356in}{0.481479in}}% +\pgfpathlineto{\pgfqpoint{1.934367in}{0.488655in}}% +\pgfpathlineto{\pgfqpoint{2.005209in}{0.496748in}}% +\pgfpathlineto{\pgfqpoint{2.068967in}{0.506212in}}% +\pgfpathlineto{\pgfqpoint{2.125640in}{0.516845in}}% +\pgfpathlineto{\pgfqpoint{2.175230in}{0.528287in}}% +\pgfpathlineto{\pgfqpoint{2.221277in}{0.541086in}}% +\pgfpathlineto{\pgfqpoint{2.263783in}{0.555126in}}% +\pgfpathlineto{\pgfqpoint{2.302746in}{0.570209in}}% +\pgfpathlineto{\pgfqpoint{2.341709in}{0.587768in}}% +\pgfpathlineto{\pgfqpoint{2.377130in}{0.606219in}}% +\pgfpathlineto{\pgfqpoint{2.409009in}{0.625151in}}% +\pgfpathlineto{\pgfqpoint{2.440888in}{0.646590in}}% +\pgfpathlineto{\pgfqpoint{2.472767in}{0.670867in}}% +\pgfpathlineto{\pgfqpoint{2.501104in}{0.695132in}}% +\pgfpathlineto{\pgfqpoint{2.529441in}{0.722233in}}% +\pgfpathlineto{\pgfqpoint{2.557778in}{0.752502in}}% +\pgfpathlineto{\pgfqpoint{2.586115in}{0.786307in}}% +\pgfpathlineto{\pgfqpoint{2.610909in}{0.819113in}}% +\pgfpathlineto{\pgfqpoint{2.635704in}{0.855249in}}% +\pgfpathlineto{\pgfqpoint{2.660499in}{0.895055in}}% +\pgfpathlineto{\pgfqpoint{2.685294in}{0.938902in}}% +\pgfpathlineto{\pgfqpoint{2.710088in}{0.987202in}}% +\pgfpathlineto{\pgfqpoint{2.734883in}{1.040406in}}% +\pgfpathlineto{\pgfqpoint{2.759678in}{1.099012in}}% +\pgfpathlineto{\pgfqpoint{2.784473in}{1.163569in}}% +\pgfpathlineto{\pgfqpoint{2.809267in}{1.234681in}}% +\pgfpathlineto{\pgfqpoint{2.834062in}{1.313014in}}% +\pgfpathlineto{\pgfqpoint{2.858857in}{1.399301in}}% +\pgfpathlineto{\pgfqpoint{2.883652in}{1.494349in}}% +\pgfpathlineto{\pgfqpoint{2.908447in}{1.599049in}}% +\pgfpathlineto{\pgfqpoint{2.933241in}{1.714379in}}% +\pgfpathlineto{\pgfqpoint{2.958036in}{1.841420in}}% +\pgfpathlineto{\pgfqpoint{2.982831in}{1.981361in}}% +\pgfpathlineto{\pgfqpoint{3.007626in}{2.135511in}}% +\pgfpathlineto{\pgfqpoint{3.032420in}{2.305314in}}% +\pgfpathlineto{\pgfqpoint{3.033838in}{2.315568in}}% +\pgfpathlineto{\pgfqpoint{3.033838in}{2.315568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463227in}}% +\pgfpathlineto{\pgfqpoint{1.608493in}{0.464332in}}% +\pgfpathlineto{\pgfqpoint{1.753719in}{0.466657in}}% +\pgfpathlineto{\pgfqpoint{1.845814in}{0.470263in}}% +\pgfpathlineto{\pgfqpoint{1.913114in}{0.475121in}}% +\pgfpathlineto{\pgfqpoint{1.966246in}{0.481229in}}% +\pgfpathlineto{\pgfqpoint{2.008751in}{0.488306in}}% +\pgfpathlineto{\pgfqpoint{2.044172in}{0.496288in}}% +\pgfpathlineto{\pgfqpoint{2.076051in}{0.505622in}}% +\pgfpathlineto{\pgfqpoint{2.104388in}{0.516110in}}% +\pgfpathlineto{\pgfqpoint{2.129183in}{0.527394in}}% +\pgfpathlineto{\pgfqpoint{2.153977in}{0.541086in}}% +\pgfpathlineto{\pgfqpoint{2.175230in}{0.555126in}}% +\pgfpathlineto{\pgfqpoint{2.196483in}{0.571697in}}% +\pgfpathlineto{\pgfqpoint{2.217735in}{0.591257in}}% +\pgfpathlineto{\pgfqpoint{2.238988in}{0.614343in}}% +\pgfpathlineto{\pgfqpoint{2.256699in}{0.636732in}}% +\pgfpathlineto{\pgfqpoint{2.274409in}{0.662437in}}% +\pgfpathlineto{\pgfqpoint{2.292120in}{0.691950in}}% +\pgfpathlineto{\pgfqpoint{2.309830in}{0.725837in}}% +\pgfpathlineto{\pgfqpoint{2.327541in}{0.764743in}}% +\pgfpathlineto{\pgfqpoint{2.345251in}{0.809414in}}% +\pgfpathlineto{\pgfqpoint{2.362962in}{0.860703in}}% +\pgfpathlineto{\pgfqpoint{2.380672in}{0.919590in}}% +\pgfpathlineto{\pgfqpoint{2.398383in}{0.987202in}}% +\pgfpathlineto{\pgfqpoint{2.416093in}{1.064830in}}% +\pgfpathlineto{\pgfqpoint{2.433804in}{1.153960in}}% +\pgfpathlineto{\pgfqpoint{2.451514in}{1.256295in}}% +\pgfpathlineto{\pgfqpoint{2.469225in}{1.373790in}}% +\pgfpathlineto{\pgfqpoint{2.486936in}{1.508694in}}% +\pgfpathlineto{\pgfqpoint{2.504646in}{1.663583in}}% +\pgfpathlineto{\pgfqpoint{2.522357in}{1.841420in}}% +\pgfpathlineto{\pgfqpoint{2.540067in}{2.045605in}}% +\pgfpathlineto{\pgfqpoint{2.557778in}{2.280040in}}% +\pgfpathlineto{\pgfqpoint{2.560250in}{2.315568in}}% +\pgfpathlineto{\pgfqpoint{2.560250in}{2.315568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463227in}}% +\pgfpathlineto{\pgfqpoint{1.874151in}{0.464332in}}% +\pgfpathlineto{\pgfqpoint{1.937909in}{0.466610in}}% +\pgfpathlineto{\pgfqpoint{1.976872in}{0.469931in}}% +\pgfpathlineto{\pgfqpoint{2.005209in}{0.474251in}}% +\pgfpathlineto{\pgfqpoint{2.030004in}{0.480261in}}% +\pgfpathlineto{\pgfqpoint{2.051256in}{0.487962in}}% +\pgfpathlineto{\pgfqpoint{2.068967in}{0.496980in}}% +\pgfpathlineto{\pgfqpoint{2.083135in}{0.506510in}}% +\pgfpathlineto{\pgfqpoint{2.097304in}{0.518729in}}% +\pgfpathlineto{\pgfqpoint{2.111472in}{0.534399in}}% +\pgfpathlineto{\pgfqpoint{2.122098in}{0.548992in}}% +\pgfpathlineto{\pgfqpoint{2.132725in}{0.566577in}}% +\pgfpathlineto{\pgfqpoint{2.143351in}{0.587768in}}% +\pgfpathlineto{\pgfqpoint{2.153977in}{0.613303in}}% +\pgfpathlineto{\pgfqpoint{2.164604in}{0.644074in}}% +\pgfpathlineto{\pgfqpoint{2.175230in}{0.681154in}}% +\pgfpathlineto{\pgfqpoint{2.185856in}{0.725837in}}% +\pgfpathlineto{\pgfqpoint{2.196483in}{0.779681in}}% +\pgfpathlineto{\pgfqpoint{2.207109in}{0.844565in}}% +\pgfpathlineto{\pgfqpoint{2.217735in}{0.922753in}}% +\pgfpathlineto{\pgfqpoint{2.228362in}{1.016973in}}% +\pgfpathlineto{\pgfqpoint{2.238988in}{1.130510in}}% +\pgfpathlineto{\pgfqpoint{2.249614in}{1.267327in}}% +\pgfpathlineto{\pgfqpoint{2.260241in}{1.432197in}}% +\pgfpathlineto{\pgfqpoint{2.270867in}{1.630870in}}% +\pgfpathlineto{\pgfqpoint{2.281493in}{1.870279in}}% +\pgfpathlineto{\pgfqpoint{2.292120in}{2.158775in}}% +\pgfpathlineto{\pgfqpoint{2.297132in}{2.315568in}}% +\pgfpathlineto{\pgfqpoint{2.297132in}{2.315568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.857732in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.396609in}{1.363948in}}% +\pgfpathlineto{\pgfqpoint{2.149723in}{1.363948in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.172861in}{1.363948in}}{\pgfqpoint{2.172861in}{1.387087in}}% +\pgfpathlineto{\pgfqpoint{2.172861in}{2.224582in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.172861in}{2.247721in}}{\pgfqpoint{2.149723in}{2.247721in}}% +\pgfpathlineto{\pgfqpoint{0.396609in}{2.247721in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.373470in}{2.247721in}}{\pgfqpoint{0.373470in}{2.224582in}}% +\pgfpathlineto{\pgfqpoint{0.373470in}{1.387087in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.373470in}{1.363948in}}{\pgfqpoint{0.396609in}{1.363948in}}% +\pgfpathlineto{\pgfqpoint{0.396609in}{1.363948in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{2.154036in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{2.154036in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{2.154036in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=2.113543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-4.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{1.984223in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{1.984223in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{1.984223in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=1.943730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-2.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{1.814410in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{1.814410in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{1.814410in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=1.773917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-1.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{1.644597in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{1.644597in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{1.644597in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=1.604104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-0.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{1.474784in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{1.474784in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{1.474784in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=1.434291in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.434771in}{2.154036in}}% +\pgfpathlineto{\pgfqpoint{1.550466in}{2.154036in}}% +\pgfpathlineto{\pgfqpoint{1.666160in}{2.154036in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.758716in,y=2.113543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.434771in}{1.984223in}}% +\pgfpathlineto{\pgfqpoint{1.550466in}{1.984223in}}% +\pgfpathlineto{\pgfqpoint{1.666160in}{1.984223in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.758716in,y=1.943730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 1.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.434771in}{1.814410in}}% +\pgfpathlineto{\pgfqpoint{1.550466in}{1.814410in}}% +\pgfpathlineto{\pgfqpoint{1.666160in}{1.814410in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.758716in,y=1.773917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 2.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.434771in}{1.644597in}}% +\pgfpathlineto{\pgfqpoint{1.550466in}{1.644597in}}% +\pgfpathlineto{\pgfqpoint{1.666160in}{1.644597in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.758716in,y=1.604104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.5\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/integrand_exp.pgf b/buch/papers/laguerre/images/integrand_exp.pgf new file mode 100644 index 0000000..34dcd90 --- /dev/null +++ b/buch/papers/laguerre/images/integrand_exp.pgf @@ -0,0 +1,1916 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.400000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{2.400000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.400000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% +\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfpathlineto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.315623in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.419129in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.419129in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.419129in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.419129in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.522635in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.522635in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.522635in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.522635in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.626142in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.626142in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.626142in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.626142in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.647811in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.647811in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.647811in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.842129in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.842129in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.842129in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.980000in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.980000in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.980000in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.086941in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.086941in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.086941in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.174318in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.174318in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.174318in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.248194in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.248194in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.248194in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.312188in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.312188in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.312188in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.368635in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.368635in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.368635in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.751318in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.751318in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.751318in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.945635in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.945635in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.945635in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.083506in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.083506in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.083506in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.190447in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.190447in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.190447in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.277824in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.277824in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.277824in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.351700in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.351700in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.351700in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.415695in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.415695in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.415695in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.472142in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.472142in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.472142in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.854824in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.854824in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.854824in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.049142in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.049142in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.049142in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.187012in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.187012in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.187012in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.293953in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.293953in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.293953in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.381330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.381330in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.381330in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.455206in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.455206in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.455206in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.519201in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.519201in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.519201in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.575648in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.575648in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.575648in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.958330in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.136976in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.831585in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{0.831585in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{0.831585in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.130035in, y=0.778823in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{1.200081in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{1.200081in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{1.200081in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.130035in, y=1.147319in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{1.568577in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{1.568577in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{1.568577in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.130035in, y=1.515815in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{1.937073in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{1.937073in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{1.937073in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.130035in, y=1.884311in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.315623in}{2.305568in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.041670in, y=2.252807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.373018in}{2.315568in}}% +\pgfpathlineto{\pgfqpoint{1.403680in}{2.190322in}}% +\pgfpathlineto{\pgfqpoint{1.436785in}{2.063912in}}% +\pgfpathlineto{\pgfqpoint{1.469890in}{1.946019in}}% +\pgfpathlineto{\pgfqpoint{1.502996in}{1.836080in}}% +\pgfpathlineto{\pgfqpoint{1.536101in}{1.733568in}}% +\pgfpathlineto{\pgfqpoint{1.569206in}{1.637995in}}% +\pgfpathlineto{\pgfqpoint{1.602311in}{1.548901in}}% +\pgfpathlineto{\pgfqpoint{1.635416in}{1.465862in}}% +\pgfpathlineto{\pgfqpoint{1.668522in}{1.388480in}}% +\pgfpathlineto{\pgfqpoint{1.701627in}{1.316383in}}% +\pgfpathlineto{\pgfqpoint{1.734732in}{1.249226in}}% +\pgfpathlineto{\pgfqpoint{1.767837in}{1.186687in}}% +\pgfpathlineto{\pgfqpoint{1.800942in}{1.128466in}}% +\pgfpathlineto{\pgfqpoint{1.834047in}{1.074281in}}% +\pgfpathlineto{\pgfqpoint{1.867153in}{1.023873in}}% +\pgfpathlineto{\pgfqpoint{1.900258in}{0.976996in}}% +\pgfpathlineto{\pgfqpoint{1.933363in}{0.933425in}}% +\pgfpathlineto{\pgfqpoint{1.966468in}{0.892948in}}% +\pgfpathlineto{\pgfqpoint{2.006194in}{0.848182in}}% +\pgfpathlineto{\pgfqpoint{2.045921in}{0.807271in}}% +\pgfpathlineto{\pgfqpoint{2.085647in}{0.769926in}}% +\pgfpathlineto{\pgfqpoint{2.125373in}{0.735878in}}% +\pgfpathlineto{\pgfqpoint{2.165099in}{0.704881in}}% +\pgfpathlineto{\pgfqpoint{2.204826in}{0.676709in}}% +\pgfpathlineto{\pgfqpoint{2.244552in}{0.651152in}}% +\pgfpathlineto{\pgfqpoint{2.284278in}{0.628017in}}% +\pgfpathlineto{\pgfqpoint{2.330625in}{0.603848in}}% +\pgfpathlineto{\pgfqpoint{2.376973in}{0.582470in}}% +\pgfpathlineto{\pgfqpoint{2.423320in}{0.563642in}}% +\pgfpathlineto{\pgfqpoint{2.469667in}{0.547142in}}% +\pgfpathlineto{\pgfqpoint{2.522635in}{0.530870in}}% +\pgfpathlineto{\pgfqpoint{2.575604in}{0.517084in}}% +\pgfpathlineto{\pgfqpoint{2.628572in}{0.505519in}}% +\pgfpathlineto{\pgfqpoint{2.688161in}{0.494854in}}% +\pgfpathlineto{\pgfqpoint{2.747751in}{0.486355in}}% +\pgfpathlineto{\pgfqpoint{2.813961in}{0.479077in}}% +\pgfpathlineto{\pgfqpoint{2.886792in}{0.473249in}}% +\pgfpathlineto{\pgfqpoint{2.972866in}{0.468664in}}% +\pgfpathlineto{\pgfqpoint{3.078802in}{0.465462in}}% +\pgfpathlineto{\pgfqpoint{3.217844in}{0.463696in}}% +\pgfpathlineto{\pgfqpoint{3.476065in}{0.463106in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.305623in}{2.306753in}}% +\pgfpathlineto{\pgfqpoint{0.357556in}{2.207555in}}% +\pgfpathlineto{\pgfqpoint{0.410524in}{2.111664in}}% +\pgfpathlineto{\pgfqpoint{0.463493in}{2.020811in}}% +\pgfpathlineto{\pgfqpoint{0.516461in}{1.934720in}}% +\pgfpathlineto{\pgfqpoint{0.569429in}{1.853129in}}% +\pgfpathlineto{\pgfqpoint{0.622398in}{1.775789in}}% +\pgfpathlineto{\pgfqpoint{0.675366in}{1.702464in}}% +\pgfpathlineto{\pgfqpoint{0.728334in}{1.632932in}}% +\pgfpathlineto{\pgfqpoint{0.781303in}{1.566982in}}% +\pgfpathlineto{\pgfqpoint{0.834271in}{1.504413in}}% +\pgfpathlineto{\pgfqpoint{0.887239in}{1.445036in}}% +\pgfpathlineto{\pgfqpoint{0.940207in}{1.388671in}}% +\pgfpathlineto{\pgfqpoint{0.999797in}{1.328651in}}% +\pgfpathlineto{\pgfqpoint{1.059386in}{1.272001in}}% +\pgfpathlineto{\pgfqpoint{1.118975in}{1.218506in}}% +\pgfpathlineto{\pgfqpoint{1.178565in}{1.167966in}}% +\pgfpathlineto{\pgfqpoint{1.238154in}{1.120190in}}% +\pgfpathlineto{\pgfqpoint{1.304364in}{1.070135in}}% +\pgfpathlineto{\pgfqpoint{1.370575in}{1.023050in}}% +\pgfpathlineto{\pgfqpoint{1.436785in}{0.978725in}}% +\pgfpathlineto{\pgfqpoint{1.502996in}{0.936968in}}% +\pgfpathlineto{\pgfqpoint{1.575827in}{0.893791in}}% +\pgfpathlineto{\pgfqpoint{1.648658in}{0.853293in}}% +\pgfpathlineto{\pgfqpoint{1.721490in}{0.815286in}}% +\pgfpathlineto{\pgfqpoint{1.800942in}{0.776466in}}% +\pgfpathlineto{\pgfqpoint{1.880395in}{0.740227in}}% +\pgfpathlineto{\pgfqpoint{1.959847in}{0.706417in}}% +\pgfpathlineto{\pgfqpoint{2.039300in}{0.674921in}}% +\pgfpathlineto{\pgfqpoint{2.118752in}{0.645658in}}% +\pgfpathlineto{\pgfqpoint{2.198205in}{0.618582in}}% +\pgfpathlineto{\pgfqpoint{2.277657in}{0.593681in}}% +\pgfpathlineto{\pgfqpoint{2.357109in}{0.570970in}}% +\pgfpathlineto{\pgfqpoint{2.436562in}{0.550488in}}% +\pgfpathlineto{\pgfqpoint{2.516014in}{0.532283in}}% +\pgfpathlineto{\pgfqpoint{2.595467in}{0.516402in}}% +\pgfpathlineto{\pgfqpoint{2.674919in}{0.502869in}}% +\pgfpathlineto{\pgfqpoint{2.754372in}{0.491669in}}% +\pgfpathlineto{\pgfqpoint{2.833824in}{0.482725in}}% +\pgfpathlineto{\pgfqpoint{2.919898in}{0.475406in}}% +\pgfpathlineto{\pgfqpoint{3.012592in}{0.469947in}}% +\pgfpathlineto{\pgfqpoint{3.111908in}{0.466349in}}% +\pgfpathlineto{\pgfqpoint{3.237707in}{0.464113in}}% +\pgfpathlineto{\pgfqpoint{3.436338in}{0.463174in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.305623in}{0.645541in}}% +\pgfpathlineto{\pgfqpoint{0.761439in}{0.642725in}}% +\pgfpathlineto{\pgfqpoint{1.066007in}{0.638726in}}% +\pgfpathlineto{\pgfqpoint{1.297743in}{0.633576in}}% +\pgfpathlineto{\pgfqpoint{1.489754in}{0.627177in}}% +\pgfpathlineto{\pgfqpoint{1.655279in}{0.619518in}}% +\pgfpathlineto{\pgfqpoint{1.807563in}{0.610228in}}% +\pgfpathlineto{\pgfqpoint{1.946605in}{0.599500in}}% +\pgfpathlineto{\pgfqpoint{2.079026in}{0.587055in}}% +\pgfpathlineto{\pgfqpoint{2.211447in}{0.572366in}}% +\pgfpathlineto{\pgfqpoint{2.357109in}{0.553860in}}% +\pgfpathlineto{\pgfqpoint{2.575604in}{0.523394in}}% +\pgfpathlineto{\pgfqpoint{2.747751in}{0.500305in}}% +\pgfpathlineto{\pgfqpoint{2.860308in}{0.487457in}}% +\pgfpathlineto{\pgfqpoint{2.959624in}{0.478383in}}% +\pgfpathlineto{\pgfqpoint{3.052318in}{0.472081in}}% +\pgfpathlineto{\pgfqpoint{3.151634in}{0.467575in}}% +\pgfpathlineto{\pgfqpoint{3.264191in}{0.464767in}}% +\pgfpathlineto{\pgfqpoint{3.416475in}{0.463378in}}% +\pgfpathlineto{\pgfqpoint{3.787253in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.305623in}{0.481145in}}% +\pgfpathlineto{\pgfqpoint{0.635640in}{0.488320in}}% +\pgfpathlineto{\pgfqpoint{0.933586in}{0.496945in}}% +\pgfpathlineto{\pgfqpoint{1.224912in}{0.507598in}}% +\pgfpathlineto{\pgfqpoint{1.582448in}{0.523115in}}% +\pgfpathlineto{\pgfqpoint{1.900258in}{0.536352in}}% +\pgfpathlineto{\pgfqpoint{2.059163in}{0.540765in}}% +\pgfpathlineto{\pgfqpoint{2.184962in}{0.542107in}}% +\pgfpathlineto{\pgfqpoint{2.297520in}{0.541053in}}% +\pgfpathlineto{\pgfqpoint{2.396836in}{0.537970in}}% +\pgfpathlineto{\pgfqpoint{2.496151in}{0.532665in}}% +\pgfpathlineto{\pgfqpoint{2.595467in}{0.525152in}}% +\pgfpathlineto{\pgfqpoint{2.708024in}{0.514374in}}% +\pgfpathlineto{\pgfqpoint{3.078802in}{0.476620in}}% +\pgfpathlineto{\pgfqpoint{3.171497in}{0.470632in}}% +\pgfpathlineto{\pgfqpoint{3.270813in}{0.466519in}}% +\pgfpathlineto{\pgfqpoint{3.383370in}{0.464182in}}% +\pgfpathlineto{\pgfqpoint{3.555517in}{0.463186in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.305623in}{0.464876in}}% +\pgfpathlineto{\pgfqpoint{0.761439in}{0.467643in}}% +\pgfpathlineto{\pgfqpoint{1.072628in}{0.471607in}}% +\pgfpathlineto{\pgfqpoint{1.317607in}{0.476838in}}% +\pgfpathlineto{\pgfqpoint{1.529480in}{0.483541in}}% +\pgfpathlineto{\pgfqpoint{1.721490in}{0.491783in}}% +\pgfpathlineto{\pgfqpoint{1.926742in}{0.502914in}}% +\pgfpathlineto{\pgfqpoint{2.357109in}{0.527350in}}% +\pgfpathlineto{\pgfqpoint{2.463046in}{0.530369in}}% +\pgfpathlineto{\pgfqpoint{2.555741in}{0.530705in}}% +\pgfpathlineto{\pgfqpoint{2.635193in}{0.528875in}}% +\pgfpathlineto{\pgfqpoint{2.714645in}{0.524904in}}% +\pgfpathlineto{\pgfqpoint{2.800719in}{0.518239in}}% +\pgfpathlineto{\pgfqpoint{2.900034in}{0.508055in}}% +\pgfpathlineto{\pgfqpoint{3.191360in}{0.476223in}}% +\pgfpathlineto{\pgfqpoint{3.277434in}{0.470193in}}% +\pgfpathlineto{\pgfqpoint{3.363507in}{0.466376in}}% +\pgfpathlineto{\pgfqpoint{3.469444in}{0.464070in}}% +\pgfpathlineto{\pgfqpoint{3.628349in}{0.463169in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.305623in}{0.463107in}}% +\pgfpathlineto{\pgfqpoint{1.330849in}{0.464262in}}% +\pgfpathlineto{\pgfqpoint{1.615553in}{0.466686in}}% +\pgfpathlineto{\pgfqpoint{1.800942in}{0.470351in}}% +\pgfpathlineto{\pgfqpoint{1.946605in}{0.475416in}}% +\pgfpathlineto{\pgfqpoint{2.065784in}{0.481710in}}% +\pgfpathlineto{\pgfqpoint{2.171720in}{0.489427in}}% +\pgfpathlineto{\pgfqpoint{2.271036in}{0.498774in}}% +\pgfpathlineto{\pgfqpoint{2.376973in}{0.511055in}}% +\pgfpathlineto{\pgfqpoint{2.502772in}{0.528063in}}% +\pgfpathlineto{\pgfqpoint{2.668298in}{0.550356in}}% +\pgfpathlineto{\pgfqpoint{2.741130in}{0.557768in}}% +\pgfpathlineto{\pgfqpoint{2.800719in}{0.561613in}}% +\pgfpathlineto{\pgfqpoint{2.853687in}{0.562830in}}% +\pgfpathlineto{\pgfqpoint{2.906655in}{0.561627in}}% +\pgfpathlineto{\pgfqpoint{2.953003in}{0.558442in}}% +\pgfpathlineto{\pgfqpoint{2.999350in}{0.553265in}}% +\pgfpathlineto{\pgfqpoint{3.052318in}{0.545097in}}% +\pgfpathlineto{\pgfqpoint{3.111908in}{0.533592in}}% +\pgfpathlineto{\pgfqpoint{3.211223in}{0.511641in}}% +\pgfpathlineto{\pgfqpoint{3.297297in}{0.493479in}}% +\pgfpathlineto{\pgfqpoint{3.356886in}{0.483097in}}% +\pgfpathlineto{\pgfqpoint{3.416475in}{0.475149in}}% +\pgfpathlineto{\pgfqpoint{3.476065in}{0.469667in}}% +\pgfpathlineto{\pgfqpoint{3.542275in}{0.466025in}}% +\pgfpathlineto{\pgfqpoint{3.621728in}{0.463989in}}% +\pgfpathlineto{\pgfqpoint{3.754148in}{0.463156in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.305623in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{1.734732in}{0.464184in}}% +\pgfpathlineto{\pgfqpoint{1.933363in}{0.466528in}}% +\pgfpathlineto{\pgfqpoint{2.059163in}{0.470012in}}% +\pgfpathlineto{\pgfqpoint{2.158478in}{0.474900in}}% +\pgfpathlineto{\pgfqpoint{2.237931in}{0.480939in}}% +\pgfpathlineto{\pgfqpoint{2.304141in}{0.487984in}}% +\pgfpathlineto{\pgfqpoint{2.363730in}{0.496330in}}% +\pgfpathlineto{\pgfqpoint{2.423320in}{0.506982in}}% +\pgfpathlineto{\pgfqpoint{2.476288in}{0.518698in}}% +\pgfpathlineto{\pgfqpoint{2.529256in}{0.532762in}}% +\pgfpathlineto{\pgfqpoint{2.582225in}{0.549309in}}% +\pgfpathlineto{\pgfqpoint{2.635193in}{0.568318in}}% +\pgfpathlineto{\pgfqpoint{2.694782in}{0.592333in}}% +\pgfpathlineto{\pgfqpoint{2.774235in}{0.627244in}}% +\pgfpathlineto{\pgfqpoint{2.860308in}{0.664840in}}% +\pgfpathlineto{\pgfqpoint{2.906655in}{0.682676in}}% +\pgfpathlineto{\pgfqpoint{2.946382in}{0.695343in}}% +\pgfpathlineto{\pgfqpoint{2.979487in}{0.703395in}}% +\pgfpathlineto{\pgfqpoint{3.005971in}{0.707856in}}% +\pgfpathlineto{\pgfqpoint{3.032455in}{0.710320in}}% +\pgfpathlineto{\pgfqpoint{3.058939in}{0.710608in}}% +\pgfpathlineto{\pgfqpoint{3.085423in}{0.708590in}}% +\pgfpathlineto{\pgfqpoint{3.111908in}{0.704193in}}% +\pgfpathlineto{\pgfqpoint{3.138392in}{0.697415in}}% +\pgfpathlineto{\pgfqpoint{3.164876in}{0.688326in}}% +\pgfpathlineto{\pgfqpoint{3.191360in}{0.677079in}}% +\pgfpathlineto{\pgfqpoint{3.224465in}{0.660340in}}% +\pgfpathlineto{\pgfqpoint{3.264191in}{0.637141in}}% +\pgfpathlineto{\pgfqpoint{3.317160in}{0.603110in}}% +\pgfpathlineto{\pgfqpoint{3.389991in}{0.556439in}}% +\pgfpathlineto{\pgfqpoint{3.429717in}{0.533689in}}% +\pgfpathlineto{\pgfqpoint{3.462823in}{0.517120in}}% +\pgfpathlineto{\pgfqpoint{3.495928in}{0.503059in}}% +\pgfpathlineto{\pgfqpoint{3.529033in}{0.491601in}}% +\pgfpathlineto{\pgfqpoint{3.562138in}{0.482650in}}% +\pgfpathlineto{\pgfqpoint{3.595243in}{0.475960in}}% +\pgfpathlineto{\pgfqpoint{3.634970in}{0.470429in}}% +\pgfpathlineto{\pgfqpoint{3.681317in}{0.466577in}}% +\pgfpathlineto{\pgfqpoint{3.740906in}{0.464236in}}% +\pgfpathlineto{\pgfqpoint{3.833601in}{0.463225in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463091in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463091in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.305623in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{1.939984in}{0.464147in}}% +\pgfpathlineto{\pgfqpoint{2.092268in}{0.466466in}}% +\pgfpathlineto{\pgfqpoint{2.191583in}{0.470132in}}% +\pgfpathlineto{\pgfqpoint{2.264415in}{0.475002in}}% +\pgfpathlineto{\pgfqpoint{2.324004in}{0.481222in}}% +\pgfpathlineto{\pgfqpoint{2.370351in}{0.488054in}}% +\pgfpathlineto{\pgfqpoint{2.416699in}{0.497227in}}% +\pgfpathlineto{\pgfqpoint{2.456425in}{0.507465in}}% +\pgfpathlineto{\pgfqpoint{2.489530in}{0.518055in}}% +\pgfpathlineto{\pgfqpoint{2.522635in}{0.530870in}}% +\pgfpathlineto{\pgfqpoint{2.555741in}{0.546275in}}% +\pgfpathlineto{\pgfqpoint{2.582225in}{0.560725in}}% +\pgfpathlineto{\pgfqpoint{2.608709in}{0.577289in}}% +\pgfpathlineto{\pgfqpoint{2.635193in}{0.596176in}}% +\pgfpathlineto{\pgfqpoint{2.661677in}{0.617588in}}% +\pgfpathlineto{\pgfqpoint{2.688161in}{0.641715in}}% +\pgfpathlineto{\pgfqpoint{2.714645in}{0.668721in}}% +\pgfpathlineto{\pgfqpoint{2.741130in}{0.698732in}}% +\pgfpathlineto{\pgfqpoint{2.767614in}{0.731825in}}% +\pgfpathlineto{\pgfqpoint{2.794098in}{0.768009in}}% +\pgfpathlineto{\pgfqpoint{2.827203in}{0.817460in}}% +\pgfpathlineto{\pgfqpoint{2.860308in}{0.871236in}}% +\pgfpathlineto{\pgfqpoint{2.900034in}{0.940491in}}% +\pgfpathlineto{\pgfqpoint{2.959624in}{1.049910in}}% +\pgfpathlineto{\pgfqpoint{3.012592in}{1.145724in}}% +\pgfpathlineto{\pgfqpoint{3.045697in}{1.200737in}}% +\pgfpathlineto{\pgfqpoint{3.072181in}{1.239967in}}% +\pgfpathlineto{\pgfqpoint{3.092045in}{1.265696in}}% +\pgfpathlineto{\pgfqpoint{3.111908in}{1.287616in}}% +\pgfpathlineto{\pgfqpoint{3.131771in}{1.305172in}}% +\pgfpathlineto{\pgfqpoint{3.145013in}{1.314197in}}% +\pgfpathlineto{\pgfqpoint{3.158255in}{1.320914in}}% +\pgfpathlineto{\pgfqpoint{3.171497in}{1.325202in}}% +\pgfpathlineto{\pgfqpoint{3.184739in}{1.326953in}}% +\pgfpathlineto{\pgfqpoint{3.197981in}{1.326080in}}% +\pgfpathlineto{\pgfqpoint{3.211223in}{1.322518in}}% +\pgfpathlineto{\pgfqpoint{3.224465in}{1.316226in}}% +\pgfpathlineto{\pgfqpoint{3.237707in}{1.307188in}}% +\pgfpathlineto{\pgfqpoint{3.250949in}{1.295416in}}% +\pgfpathlineto{\pgfqpoint{3.264191in}{1.280948in}}% +\pgfpathlineto{\pgfqpoint{3.277434in}{1.263854in}}% +\pgfpathlineto{\pgfqpoint{3.297297in}{1.233509in}}% +\pgfpathlineto{\pgfqpoint{3.317160in}{1.197929in}}% +\pgfpathlineto{\pgfqpoint{3.337023in}{1.157701in}}% +\pgfpathlineto{\pgfqpoint{3.363507in}{1.098074in}}% +\pgfpathlineto{\pgfqpoint{3.396612in}{1.016699in}}% +\pgfpathlineto{\pgfqpoint{3.489307in}{0.783086in}}% +\pgfpathlineto{\pgfqpoint{3.515791in}{0.723512in}}% +\pgfpathlineto{\pgfqpoint{3.542275in}{0.669948in}}% +\pgfpathlineto{\pgfqpoint{3.562138in}{0.634247in}}% +\pgfpathlineto{\pgfqpoint{3.582001in}{0.602594in}}% +\pgfpathlineto{\pgfqpoint{3.601864in}{0.575027in}}% +\pgfpathlineto{\pgfqpoint{3.621728in}{0.551453in}}% +\pgfpathlineto{\pgfqpoint{3.641591in}{0.531666in}}% +\pgfpathlineto{\pgfqpoint{3.661454in}{0.515374in}}% +\pgfpathlineto{\pgfqpoint{3.681317in}{0.502222in}}% +\pgfpathlineto{\pgfqpoint{3.701180in}{0.491819in}}% +\pgfpathlineto{\pgfqpoint{3.721043in}{0.483762in}}% +\pgfpathlineto{\pgfqpoint{3.747527in}{0.475990in}}% +\pgfpathlineto{\pgfqpoint{3.774011in}{0.470829in}}% +\pgfpathlineto{\pgfqpoint{3.807117in}{0.466943in}}% +\pgfpathlineto{\pgfqpoint{3.846843in}{0.464611in}}% +\pgfpathlineto{\pgfqpoint{3.913053in}{0.463342in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463133in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463133in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.305623in}{0.463089in}}% +\pgfpathlineto{\pgfqpoint{2.012815in}{0.464177in}}% +\pgfpathlineto{\pgfqpoint{2.145236in}{0.466468in}}% +\pgfpathlineto{\pgfqpoint{2.231310in}{0.470022in}}% +\pgfpathlineto{\pgfqpoint{2.297520in}{0.474999in}}% +\pgfpathlineto{\pgfqpoint{2.350488in}{0.481293in}}% +\pgfpathlineto{\pgfqpoint{2.390215in}{0.487975in}}% +\pgfpathlineto{\pgfqpoint{2.429941in}{0.496933in}}% +\pgfpathlineto{\pgfqpoint{2.463046in}{0.506629in}}% +\pgfpathlineto{\pgfqpoint{2.496151in}{0.518866in}}% +\pgfpathlineto{\pgfqpoint{2.522635in}{0.530870in}}% +\pgfpathlineto{\pgfqpoint{2.549119in}{0.545206in}}% +\pgfpathlineto{\pgfqpoint{2.575604in}{0.562253in}}% +\pgfpathlineto{\pgfqpoint{2.602088in}{0.582432in}}% +\pgfpathlineto{\pgfqpoint{2.628572in}{0.606199in}}% +\pgfpathlineto{\pgfqpoint{2.648435in}{0.626675in}}% +\pgfpathlineto{\pgfqpoint{2.668298in}{0.649663in}}% +\pgfpathlineto{\pgfqpoint{2.688161in}{0.675387in}}% +\pgfpathlineto{\pgfqpoint{2.708024in}{0.704072in}}% +\pgfpathlineto{\pgfqpoint{2.727887in}{0.735941in}}% +\pgfpathlineto{\pgfqpoint{2.747751in}{0.771212in}}% +\pgfpathlineto{\pgfqpoint{2.767614in}{0.810087in}}% +\pgfpathlineto{\pgfqpoint{2.787477in}{0.852749in}}% +\pgfpathlineto{\pgfqpoint{2.813961in}{0.915782in}}% +\pgfpathlineto{\pgfqpoint{2.840445in}{0.986071in}}% +\pgfpathlineto{\pgfqpoint{2.866929in}{1.063701in}}% +\pgfpathlineto{\pgfqpoint{2.893413in}{1.148547in}}% +\pgfpathlineto{\pgfqpoint{2.919898in}{1.240215in}}% +\pgfpathlineto{\pgfqpoint{2.953003in}{1.363283in}}% +\pgfpathlineto{\pgfqpoint{2.992729in}{1.520395in}}% +\pgfpathlineto{\pgfqpoint{3.085423in}{1.892158in}}% +\pgfpathlineto{\pgfqpoint{3.111908in}{1.987861in}}% +\pgfpathlineto{\pgfqpoint{3.131771in}{2.052935in}}% +\pgfpathlineto{\pgfqpoint{3.151634in}{2.110666in}}% +\pgfpathlineto{\pgfqpoint{3.164876in}{2.144368in}}% +\pgfpathlineto{\pgfqpoint{3.178118in}{2.173763in}}% +\pgfpathlineto{\pgfqpoint{3.191360in}{2.198463in}}% +\pgfpathlineto{\pgfqpoint{3.204602in}{2.218101in}}% +\pgfpathlineto{\pgfqpoint{3.217844in}{2.232348in}}% +\pgfpathlineto{\pgfqpoint{3.224465in}{2.237356in}}% +\pgfpathlineto{\pgfqpoint{3.231086in}{2.240910in}}% +\pgfpathlineto{\pgfqpoint{3.237707in}{2.242981in}}% +\pgfpathlineto{\pgfqpoint{3.244328in}{2.243542in}}% +\pgfpathlineto{\pgfqpoint{3.250949in}{2.242572in}}% +\pgfpathlineto{\pgfqpoint{3.257570in}{2.240051in}}% +\pgfpathlineto{\pgfqpoint{3.264191in}{2.235965in}}% +\pgfpathlineto{\pgfqpoint{3.270813in}{2.230303in}}% +\pgfpathlineto{\pgfqpoint{3.284055in}{2.214227in}}% +\pgfpathlineto{\pgfqpoint{3.297297in}{2.191820in}}% +\pgfpathlineto{\pgfqpoint{3.310539in}{2.163151in}}% +\pgfpathlineto{\pgfqpoint{3.323781in}{2.128364in}}% +\pgfpathlineto{\pgfqpoint{3.337023in}{2.087674in}}% +\pgfpathlineto{\pgfqpoint{3.350265in}{2.041374in}}% +\pgfpathlineto{\pgfqpoint{3.370128in}{1.962211in}}% +\pgfpathlineto{\pgfqpoint{3.389991in}{1.872752in}}% +\pgfpathlineto{\pgfqpoint{3.416475in}{1.740592in}}% +\pgfpathlineto{\pgfqpoint{3.449581in}{1.561637in}}% +\pgfpathlineto{\pgfqpoint{3.522412in}{1.162429in}}% +\pgfpathlineto{\pgfqpoint{3.548896in}{1.030578in}}% +\pgfpathlineto{\pgfqpoint{3.575380in}{0.911767in}}% +\pgfpathlineto{\pgfqpoint{3.595243in}{0.832596in}}% +\pgfpathlineto{\pgfqpoint{3.615106in}{0.762533in}}% +\pgfpathlineto{\pgfqpoint{3.634970in}{0.701714in}}% +\pgfpathlineto{\pgfqpoint{3.654833in}{0.649950in}}% +\pgfpathlineto{\pgfqpoint{3.674696in}{0.606769in}}% +\pgfpathlineto{\pgfqpoint{3.687938in}{0.582419in}}% +\pgfpathlineto{\pgfqpoint{3.701180in}{0.561339in}}% +\pgfpathlineto{\pgfqpoint{3.714422in}{0.543263in}}% +\pgfpathlineto{\pgfqpoint{3.727664in}{0.527915in}}% +\pgfpathlineto{\pgfqpoint{3.740906in}{0.515013in}}% +\pgfpathlineto{\pgfqpoint{3.754148in}{0.504277in}}% +\pgfpathlineto{\pgfqpoint{3.774011in}{0.491647in}}% +\pgfpathlineto{\pgfqpoint{3.793874in}{0.482432in}}% +\pgfpathlineto{\pgfqpoint{3.813738in}{0.475875in}}% +\pgfpathlineto{\pgfqpoint{3.840222in}{0.470164in}}% +\pgfpathlineto{\pgfqpoint{3.866706in}{0.466822in}}% +\pgfpathlineto{\pgfqpoint{3.906432in}{0.464389in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463286in}}% +\pgfpathlineto{\pgfqpoint{3.968330in}{0.463286in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.315623in}{2.305568in}}% +\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.396609in}{1.363948in}}% +\pgfpathlineto{\pgfqpoint{2.149723in}{1.363948in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.172861in}{1.363948in}}{\pgfqpoint{2.172861in}{1.387087in}}% +\pgfpathlineto{\pgfqpoint{2.172861in}{2.224582in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.172861in}{2.247721in}}{\pgfqpoint{2.149723in}{2.247721in}}% +\pgfpathlineto{\pgfqpoint{0.396609in}{2.247721in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.373470in}{2.247721in}}{\pgfqpoint{0.373470in}{2.224582in}}% +\pgfpathlineto{\pgfqpoint{0.373470in}{1.387087in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.373470in}{1.363948in}}{\pgfqpoint{0.396609in}{1.363948in}}% +\pgfpathlineto{\pgfqpoint{0.396609in}{1.363948in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{2.154036in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{2.154036in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{2.154036in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=2.113543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-1.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{1.984223in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{1.984223in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{1.984223in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=1.943730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-0.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{1.814410in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{1.814410in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{1.814410in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=1.773917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{1.644597in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{1.644597in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{1.644597in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=1.604104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.419748in}{1.474784in}}% +\pgfpathlineto{\pgfqpoint{0.535442in}{1.474784in}}% +\pgfpathlineto{\pgfqpoint{0.651137in}{1.474784in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.743692in,y=1.434291in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 1.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.434771in}{2.154036in}}% +\pgfpathlineto{\pgfqpoint{1.550466in}{2.154036in}}% +\pgfpathlineto{\pgfqpoint{1.666160in}{2.154036in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.758716in,y=2.113543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 2.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.434771in}{1.984223in}}% +\pgfpathlineto{\pgfqpoint{1.550466in}{1.984223in}}% +\pgfpathlineto{\pgfqpoint{1.666160in}{1.984223in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.758716in,y=1.943730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 3.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.434771in}{1.814410in}}% +\pgfpathlineto{\pgfqpoint{1.550466in}{1.814410in}}% +\pgfpathlineto{\pgfqpoint{1.666160in}{1.814410in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.758716in,y=1.773917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.434771in}{1.644597in}}% +\pgfpathlineto{\pgfqpoint{1.550466in}{1.644597in}}% +\pgfpathlineto{\pgfqpoint{1.666160in}{1.644597in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.758716in,y=1.604104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.5\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/integrands.pgf b/buch/papers/laguerre/images/integrands.pgf deleted file mode 100644 index c48ff96..0000000 --- a/buch/papers/laguerre/images/integrands.pgf +++ /dev/null @@ -1,2865 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{3.000000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{3.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.505591in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.230948in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.230948in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.230948in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.230948in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.956305in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.956305in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.956305in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.956305in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.681661in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.681661in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.681661in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.681661in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.407018in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.407018in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.407018in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.407018in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.132375in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.132375in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.132375in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.132375in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{2}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.857732in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.857732in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.857732in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.723945in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.723945in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.723945in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.851674in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.851674in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.851674in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.942300in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.942300in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.942300in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.012594in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.012594in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.012594in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.070029in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.070029in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.070029in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.118589in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.118589in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.118589in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.160654in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.160654in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.160654in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.197757in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.197757in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.197757in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.449302in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.449302in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.449302in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.577031in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.577031in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.577031in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.667656in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.667656in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.667656in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.737951in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.737951in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.737951in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.795385in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.795385in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.795385in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.843946in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.843946in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.843946in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.886010in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.886010in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.886010in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.923114in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.923114in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.923114in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.174659in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.174659in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.174659in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.302388in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.302388in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.302388in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.393013in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.393013in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.393013in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.463307in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.463307in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.463307in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.520742in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.520742in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.520742in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.569302in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.569302in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.569302in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.611367in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.611367in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.611367in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.648471in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.648471in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.648471in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.900016in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.900016in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.900016in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.027745in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.027745in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.027745in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.118370in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.118370in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.118370in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.188664in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.188664in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.188664in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.246099in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.246099in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.246099in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.294659in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.294659in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.294659in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.336724in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.336724in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.336724in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.373828in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.373828in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.373828in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.625372in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.625372in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.625372in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.753101in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.753101in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.753101in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.843726in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.843726in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.843726in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.914021in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.914021in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.914021in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.971455in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.971455in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.971455in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.020016in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.020016in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.020016in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.062081in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.062081in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.062081in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.099184in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.099184in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.099184in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.350729in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.350729in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.350729in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.478458in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.478458in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.478458in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.569083in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.569083in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.569083in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.639378in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.639378in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.639378in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.696812in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.696812in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.696812in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.745372in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.745372in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.745372in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.787437in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.787437in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.787437in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.824541in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.824541in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.824541in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.681661in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.768507in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.768507in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{0.768507in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=0.715745in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{1.073801in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{1.073801in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.073801in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=1.021040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{1.379096in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{1.379096in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.379096in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=1.326334in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{1.684390in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{1.684390in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.684390in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=1.631629in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{1.989685in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{1.989685in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.989685in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=1.936923in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.294979in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.294979in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{2.294979in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=2.242218in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.600274in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.600274in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{2.600274in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=2.547512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 35}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{2.905568in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=2.852807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 40}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.176083in,y=1.684421in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x^z\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.423171in}{2.915568in}}% -\pgfpathlineto{\pgfqpoint{2.433589in}{2.575480in}}% -\pgfpathlineto{\pgfqpoint{2.446646in}{2.216079in}}% -\pgfpathlineto{\pgfqpoint{2.459702in}{1.917830in}}% -\pgfpathlineto{\pgfqpoint{2.472759in}{1.670328in}}% -\pgfpathlineto{\pgfqpoint{2.485815in}{1.464938in}}% -\pgfpathlineto{\pgfqpoint{2.498872in}{1.294495in}}% -\pgfpathlineto{\pgfqpoint{2.511928in}{1.153053in}}% -\pgfpathlineto{\pgfqpoint{2.524984in}{1.035677in}}% -\pgfpathlineto{\pgfqpoint{2.538041in}{0.938273in}}% -\pgfpathlineto{\pgfqpoint{2.551097in}{0.857442in}}% -\pgfpathlineto{\pgfqpoint{2.564154in}{0.790364in}}% -\pgfpathlineto{\pgfqpoint{2.577210in}{0.734699in}}% -\pgfpathlineto{\pgfqpoint{2.590267in}{0.688506in}}% -\pgfpathlineto{\pgfqpoint{2.603323in}{0.650172in}}% -\pgfpathlineto{\pgfqpoint{2.616379in}{0.618361in}}% -\pgfpathlineto{\pgfqpoint{2.629436in}{0.591963in}}% -\pgfpathlineto{\pgfqpoint{2.642492in}{0.570056in}}% -\pgfpathlineto{\pgfqpoint{2.655549in}{0.551877in}}% -\pgfpathlineto{\pgfqpoint{2.668605in}{0.536790in}}% -\pgfpathlineto{\pgfqpoint{2.686014in}{0.520591in}}% -\pgfpathlineto{\pgfqpoint{2.703422in}{0.507958in}}% -\pgfpathlineto{\pgfqpoint{2.720831in}{0.498106in}}% -\pgfpathlineto{\pgfqpoint{2.742591in}{0.488783in}}% -\pgfpathlineto{\pgfqpoint{2.764352in}{0.481951in}}% -\pgfpathlineto{\pgfqpoint{2.790465in}{0.476117in}}% -\pgfpathlineto{\pgfqpoint{2.820930in}{0.471563in}}% -\pgfpathlineto{\pgfqpoint{2.860099in}{0.467985in}}% -\pgfpathlineto{\pgfqpoint{2.916677in}{0.465339in}}% -\pgfpathlineto{\pgfqpoint{3.003720in}{0.463826in}}% -\pgfpathlineto{\pgfqpoint{3.199566in}{0.463250in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.463212in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.463212in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.099999in}{2.915568in}}% -\pgfpathlineto{\pgfqpoint{2.115883in}{2.680127in}}% -\pgfpathlineto{\pgfqpoint{2.133292in}{2.448160in}}% -\pgfpathlineto{\pgfqpoint{2.150700in}{2.240464in}}% -\pgfpathlineto{\pgfqpoint{2.168109in}{2.054501in}}% -\pgfpathlineto{\pgfqpoint{2.185517in}{1.887996in}}% -\pgfpathlineto{\pgfqpoint{2.202926in}{1.738914in}}% -\pgfpathlineto{\pgfqpoint{2.220335in}{1.605430in}}% -\pgfpathlineto{\pgfqpoint{2.237743in}{1.485914in}}% -\pgfpathlineto{\pgfqpoint{2.255152in}{1.378903in}}% -\pgfpathlineto{\pgfqpoint{2.272560in}{1.283090in}}% -\pgfpathlineto{\pgfqpoint{2.289969in}{1.197302in}}% -\pgfpathlineto{\pgfqpoint{2.307377in}{1.120490in}}% -\pgfpathlineto{\pgfqpoint{2.324786in}{1.051716in}}% -\pgfpathlineto{\pgfqpoint{2.342195in}{0.990138in}}% -\pgfpathlineto{\pgfqpoint{2.363955in}{0.922145in}}% -\pgfpathlineto{\pgfqpoint{2.385716in}{0.862926in}}% -\pgfpathlineto{\pgfqpoint{2.407477in}{0.811348in}}% -\pgfpathlineto{\pgfqpoint{2.429237in}{0.766426in}}% -\pgfpathlineto{\pgfqpoint{2.450998in}{0.727300in}}% -\pgfpathlineto{\pgfqpoint{2.472759in}{0.693223in}}% -\pgfpathlineto{\pgfqpoint{2.494519in}{0.663544in}}% -\pgfpathlineto{\pgfqpoint{2.516280in}{0.637694in}}% -\pgfpathlineto{\pgfqpoint{2.538041in}{0.615179in}}% -\pgfpathlineto{\pgfqpoint{2.559802in}{0.595570in}}% -\pgfpathlineto{\pgfqpoint{2.585914in}{0.575349in}}% -\pgfpathlineto{\pgfqpoint{2.612027in}{0.558218in}}% -\pgfpathlineto{\pgfqpoint{2.638140in}{0.543704in}}% -\pgfpathlineto{\pgfqpoint{2.668605in}{0.529548in}}% -\pgfpathlineto{\pgfqpoint{2.699070in}{0.517882in}}% -\pgfpathlineto{\pgfqpoint{2.733887in}{0.507040in}}% -\pgfpathlineto{\pgfqpoint{2.773056in}{0.497390in}}% -\pgfpathlineto{\pgfqpoint{2.816578in}{0.489139in}}% -\pgfpathlineto{\pgfqpoint{2.864451in}{0.482344in}}% -\pgfpathlineto{\pgfqpoint{2.921029in}{0.476571in}}% -\pgfpathlineto{\pgfqpoint{2.990663in}{0.471797in}}% -\pgfpathlineto{\pgfqpoint{3.077706in}{0.468153in}}% -\pgfpathlineto{\pgfqpoint{3.199566in}{0.465491in}}% -\pgfpathlineto{\pgfqpoint{3.386708in}{0.463907in}}% -\pgfpathlineto{\pgfqpoint{3.787105in}{0.463267in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.463212in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.463212in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.518316in}{2.915568in}}% -\pgfpathlineto{\pgfqpoint{1.541401in}{2.742237in}}% -\pgfpathlineto{\pgfqpoint{1.567514in}{2.560939in}}% -\pgfpathlineto{\pgfqpoint{1.593626in}{2.394064in}}% -\pgfpathlineto{\pgfqpoint{1.619739in}{2.240464in}}% -\pgfpathlineto{\pgfqpoint{1.645852in}{2.099083in}}% -\pgfpathlineto{\pgfqpoint{1.671965in}{1.968949in}}% -\pgfpathlineto{\pgfqpoint{1.698078in}{1.849167in}}% -\pgfpathlineto{\pgfqpoint{1.724191in}{1.738914in}}% -\pgfpathlineto{\pgfqpoint{1.750303in}{1.637431in}}% -\pgfpathlineto{\pgfqpoint{1.776416in}{1.544021in}}% -\pgfpathlineto{\pgfqpoint{1.802529in}{1.458043in}}% -\pgfpathlineto{\pgfqpoint{1.828642in}{1.378903in}}% -\pgfpathlineto{\pgfqpoint{1.854755in}{1.306060in}}% -\pgfpathlineto{\pgfqpoint{1.880868in}{1.239011in}}% -\pgfpathlineto{\pgfqpoint{1.906980in}{1.177296in}}% -\pgfpathlineto{\pgfqpoint{1.933093in}{1.120490in}}% -\pgfpathlineto{\pgfqpoint{1.963558in}{1.059903in}}% -\pgfpathlineto{\pgfqpoint{1.994023in}{1.004900in}}% -\pgfpathlineto{\pgfqpoint{2.024488in}{0.954968in}}% -\pgfpathlineto{\pgfqpoint{2.054953in}{0.909638in}}% -\pgfpathlineto{\pgfqpoint{2.085418in}{0.868487in}}% -\pgfpathlineto{\pgfqpoint{2.115883in}{0.831129in}}% -\pgfpathlineto{\pgfqpoint{2.146348in}{0.797214in}}% -\pgfpathlineto{\pgfqpoint{2.176813in}{0.766426in}}% -\pgfpathlineto{\pgfqpoint{2.207278in}{0.738476in}}% -\pgfpathlineto{\pgfqpoint{2.242095in}{0.709674in}}% -\pgfpathlineto{\pgfqpoint{2.276912in}{0.683885in}}% -\pgfpathlineto{\pgfqpoint{2.311730in}{0.660795in}}% -\pgfpathlineto{\pgfqpoint{2.350899in}{0.637694in}}% -\pgfpathlineto{\pgfqpoint{2.390068in}{0.617293in}}% -\pgfpathlineto{\pgfqpoint{2.429237in}{0.599278in}}% -\pgfpathlineto{\pgfqpoint{2.472759in}{0.581721in}}% -\pgfpathlineto{\pgfqpoint{2.520632in}{0.565013in}}% -\pgfpathlineto{\pgfqpoint{2.568506in}{0.550660in}}% -\pgfpathlineto{\pgfqpoint{2.620731in}{0.537300in}}% -\pgfpathlineto{\pgfqpoint{2.677309in}{0.525121in}}% -\pgfpathlineto{\pgfqpoint{2.738239in}{0.514233in}}% -\pgfpathlineto{\pgfqpoint{2.807874in}{0.504115in}}% -\pgfpathlineto{\pgfqpoint{2.886212in}{0.495109in}}% -\pgfpathlineto{\pgfqpoint{2.973255in}{0.487409in}}% -\pgfpathlineto{\pgfqpoint{3.073354in}{0.480822in}}% -\pgfpathlineto{\pgfqpoint{3.190862in}{0.475339in}}% -\pgfpathlineto{\pgfqpoint{3.338835in}{0.470794in}}% -\pgfpathlineto{\pgfqpoint{3.525977in}{0.467398in}}% -\pgfpathlineto{\pgfqpoint{3.787105in}{0.465039in}}% -\pgfpathlineto{\pgfqpoint{4.213615in}{0.463684in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.394064in}}% -\pgfpathlineto{\pgfqpoint{0.544761in}{2.277679in}}% -\pgfpathlineto{\pgfqpoint{0.583930in}{2.168309in}}% -\pgfpathlineto{\pgfqpoint{0.623099in}{2.065531in}}% -\pgfpathlineto{\pgfqpoint{0.662268in}{1.968949in}}% -\pgfpathlineto{\pgfqpoint{0.701438in}{1.878188in}}% -\pgfpathlineto{\pgfqpoint{0.740607in}{1.792898in}}% -\pgfpathlineto{\pgfqpoint{0.779776in}{1.712749in}}% -\pgfpathlineto{\pgfqpoint{0.818945in}{1.637431in}}% -\pgfpathlineto{\pgfqpoint{0.858115in}{1.566653in}}% -\pgfpathlineto{\pgfqpoint{0.897284in}{1.500141in}}% -\pgfpathlineto{\pgfqpoint{0.936453in}{1.437639in}}% -\pgfpathlineto{\pgfqpoint{0.979975in}{1.372600in}}% -\pgfpathlineto{\pgfqpoint{1.023496in}{1.311902in}}% -\pgfpathlineto{\pgfqpoint{1.067017in}{1.255256in}}% -\pgfpathlineto{\pgfqpoint{1.110539in}{1.202390in}}% -\pgfpathlineto{\pgfqpoint{1.154060in}{1.153053in}}% -\pgfpathlineto{\pgfqpoint{1.197582in}{1.107009in}}% -\pgfpathlineto{\pgfqpoint{1.241103in}{1.064039in}}% -\pgfpathlineto{\pgfqpoint{1.284624in}{1.023936in}}% -\pgfpathlineto{\pgfqpoint{1.332498in}{0.982908in}}% -\pgfpathlineto{\pgfqpoint{1.380371in}{0.944882in}}% -\pgfpathlineto{\pgfqpoint{1.428245in}{0.909638in}}% -\pgfpathlineto{\pgfqpoint{1.476119in}{0.876973in}}% -\pgfpathlineto{\pgfqpoint{1.528344in}{0.844058in}}% -\pgfpathlineto{\pgfqpoint{1.580570in}{0.813761in}}% -\pgfpathlineto{\pgfqpoint{1.637148in}{0.783654in}}% -\pgfpathlineto{\pgfqpoint{1.693726in}{0.756132in}}% -\pgfpathlineto{\pgfqpoint{1.750303in}{0.730974in}}% -\pgfpathlineto{\pgfqpoint{1.811233in}{0.706292in}}% -\pgfpathlineto{\pgfqpoint{1.876515in}{0.682366in}}% -\pgfpathlineto{\pgfqpoint{1.941798in}{0.660795in}}% -\pgfpathlineto{\pgfqpoint{2.011432in}{0.640121in}}% -\pgfpathlineto{\pgfqpoint{2.085418in}{0.620520in}}% -\pgfpathlineto{\pgfqpoint{2.163757in}{0.602127in}}% -\pgfpathlineto{\pgfqpoint{2.246447in}{0.585041in}}% -\pgfpathlineto{\pgfqpoint{2.333490in}{0.569320in}}% -\pgfpathlineto{\pgfqpoint{2.429237in}{0.554361in}}% -\pgfpathlineto{\pgfqpoint{2.529337in}{0.540971in}}% -\pgfpathlineto{\pgfqpoint{2.638140in}{0.528638in}}% -\pgfpathlineto{\pgfqpoint{2.760000in}{0.517132in}}% -\pgfpathlineto{\pgfqpoint{2.894916in}{0.506738in}}% -\pgfpathlineto{\pgfqpoint{3.042889in}{0.497627in}}% -\pgfpathlineto{\pgfqpoint{3.212623in}{0.489500in}}% -\pgfpathlineto{\pgfqpoint{3.404117in}{0.482610in}}% -\pgfpathlineto{\pgfqpoint{3.630428in}{0.476756in}}% -\pgfpathlineto{\pgfqpoint{3.904613in}{0.471977in}}% -\pgfpathlineto{\pgfqpoint{4.252784in}{0.468256in}}% -\pgfpathlineto{\pgfqpoint{4.722815in}{0.465604in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.465143in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.465143in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.524271in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.524271in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.524271in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.465143in}}% -\pgfpathlineto{\pgfqpoint{1.080074in}{0.468018in}}% -\pgfpathlineto{\pgfqpoint{1.463062in}{0.472038in}}% -\pgfpathlineto{\pgfqpoint{1.754656in}{0.477232in}}% -\pgfpathlineto{\pgfqpoint{1.989671in}{0.483571in}}% -\pgfpathlineto{\pgfqpoint{2.185517in}{0.490993in}}% -\pgfpathlineto{\pgfqpoint{2.355251in}{0.499583in}}% -\pgfpathlineto{\pgfqpoint{2.503224in}{0.509211in}}% -\pgfpathlineto{\pgfqpoint{2.638140in}{0.520196in}}% -\pgfpathlineto{\pgfqpoint{2.760000in}{0.532355in}}% -\pgfpathlineto{\pgfqpoint{2.868803in}{0.545389in}}% -\pgfpathlineto{\pgfqpoint{2.968903in}{0.559539in}}% -\pgfpathlineto{\pgfqpoint{3.064650in}{0.575349in}}% -\pgfpathlineto{\pgfqpoint{3.151693in}{0.591963in}}% -\pgfpathlineto{\pgfqpoint{3.234383in}{0.610020in}}% -\pgfpathlineto{\pgfqpoint{3.312722in}{0.629457in}}% -\pgfpathlineto{\pgfqpoint{3.386708in}{0.650172in}}% -\pgfpathlineto{\pgfqpoint{3.456342in}{0.672021in}}% -\pgfpathlineto{\pgfqpoint{3.521625in}{0.694818in}}% -\pgfpathlineto{\pgfqpoint{3.582555in}{0.718335in}}% -\pgfpathlineto{\pgfqpoint{3.643484in}{0.744240in}}% -\pgfpathlineto{\pgfqpoint{3.700062in}{0.770644in}}% -\pgfpathlineto{\pgfqpoint{3.756640in}{0.799529in}}% -\pgfpathlineto{\pgfqpoint{3.808866in}{0.828596in}}% -\pgfpathlineto{\pgfqpoint{3.861092in}{0.860174in}}% -\pgfpathlineto{\pgfqpoint{3.913317in}{0.894482in}}% -\pgfpathlineto{\pgfqpoint{3.961191in}{0.928529in}}% -\pgfpathlineto{\pgfqpoint{4.009064in}{0.965265in}}% -\pgfpathlineto{\pgfqpoint{4.056938in}{1.004900in}}% -\pgfpathlineto{\pgfqpoint{4.104811in}{1.047664in}}% -\pgfpathlineto{\pgfqpoint{4.148333in}{1.089464in}}% -\pgfpathlineto{\pgfqpoint{4.191854in}{1.134253in}}% -\pgfpathlineto{\pgfqpoint{4.235376in}{1.182246in}}% -\pgfpathlineto{\pgfqpoint{4.278897in}{1.233670in}}% -\pgfpathlineto{\pgfqpoint{4.322418in}{1.288773in}}% -\pgfpathlineto{\pgfqpoint{4.365940in}{1.347817in}}% -\pgfpathlineto{\pgfqpoint{4.405109in}{1.404558in}}% -\pgfpathlineto{\pgfqpoint{4.444278in}{1.464938in}}% -\pgfpathlineto{\pgfqpoint{4.483448in}{1.529192in}}% -\pgfpathlineto{\pgfqpoint{4.522617in}{1.597567in}}% -\pgfpathlineto{\pgfqpoint{4.561786in}{1.670328in}}% -\pgfpathlineto{\pgfqpoint{4.600955in}{1.747756in}}% -\pgfpathlineto{\pgfqpoint{4.640125in}{1.830151in}}% -\pgfpathlineto{\pgfqpoint{4.679294in}{1.917830in}}% -\pgfpathlineto{\pgfqpoint{4.718463in}{2.011134in}}% -\pgfpathlineto{\pgfqpoint{4.757632in}{2.110422in}}% -\pgfpathlineto{\pgfqpoint{4.796802in}{2.216079in}}% -\pgfpathlineto{\pgfqpoint{4.835971in}{2.328514in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.394064in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.394064in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.480471in}{0.464560in}}% -\pgfpathlineto{\pgfqpoint{1.811233in}{0.467065in}}% -\pgfpathlineto{\pgfqpoint{2.024488in}{0.470794in}}% -\pgfpathlineto{\pgfqpoint{2.181165in}{0.475679in}}% -\pgfpathlineto{\pgfqpoint{2.303025in}{0.481567in}}% -\pgfpathlineto{\pgfqpoint{2.407477in}{0.488783in}}% -\pgfpathlineto{\pgfqpoint{2.494519in}{0.496922in}}% -\pgfpathlineto{\pgfqpoint{2.572858in}{0.506439in}}% -\pgfpathlineto{\pgfqpoint{2.642492in}{0.517132in}}% -\pgfpathlineto{\pgfqpoint{2.703422in}{0.528638in}}% -\pgfpathlineto{\pgfqpoint{2.760000in}{0.541510in}}% -\pgfpathlineto{\pgfqpoint{2.812226in}{0.555629in}}% -\pgfpathlineto{\pgfqpoint{2.860099in}{0.570797in}}% -\pgfpathlineto{\pgfqpoint{2.903621in}{0.586736in}}% -\pgfpathlineto{\pgfqpoint{2.947142in}{0.605036in}}% -\pgfpathlineto{\pgfqpoint{2.986311in}{0.623814in}}% -\pgfpathlineto{\pgfqpoint{3.025481in}{0.645077in}}% -\pgfpathlineto{\pgfqpoint{3.060298in}{0.666331in}}% -\pgfpathlineto{\pgfqpoint{3.095115in}{0.690068in}}% -\pgfpathlineto{\pgfqpoint{3.129932in}{0.716579in}}% -\pgfpathlineto{\pgfqpoint{3.164749in}{0.746188in}}% -\pgfpathlineto{\pgfqpoint{3.195214in}{0.774921in}}% -\pgfpathlineto{\pgfqpoint{3.225679in}{0.806572in}}% -\pgfpathlineto{\pgfqpoint{3.256144in}{0.841436in}}% -\pgfpathlineto{\pgfqpoint{3.286609in}{0.879841in}}% -\pgfpathlineto{\pgfqpoint{3.317074in}{0.922145in}}% -\pgfpathlineto{\pgfqpoint{3.347539in}{0.968745in}}% -\pgfpathlineto{\pgfqpoint{3.378004in}{1.020076in}}% -\pgfpathlineto{\pgfqpoint{3.404117in}{1.068203in}}% -\pgfpathlineto{\pgfqpoint{3.430230in}{1.120490in}}% -\pgfpathlineto{\pgfqpoint{3.456342in}{1.177296in}}% -\pgfpathlineto{\pgfqpoint{3.482455in}{1.239011in}}% -\pgfpathlineto{\pgfqpoint{3.508568in}{1.306060in}}% -\pgfpathlineto{\pgfqpoint{3.534681in}{1.378903in}}% -\pgfpathlineto{\pgfqpoint{3.560794in}{1.458043in}}% -\pgfpathlineto{\pgfqpoint{3.586907in}{1.544021in}}% -\pgfpathlineto{\pgfqpoint{3.613020in}{1.637431in}}% -\pgfpathlineto{\pgfqpoint{3.639132in}{1.738914in}}% -\pgfpathlineto{\pgfqpoint{3.665245in}{1.849167in}}% -\pgfpathlineto{\pgfqpoint{3.691358in}{1.968949in}}% -\pgfpathlineto{\pgfqpoint{3.717471in}{2.099083in}}% -\pgfpathlineto{\pgfqpoint{3.743584in}{2.240464in}}% -\pgfpathlineto{\pgfqpoint{3.769697in}{2.394064in}}% -\pgfpathlineto{\pgfqpoint{3.795809in}{2.560939in}}% -\pgfpathlineto{\pgfqpoint{3.821922in}{2.742237in}}% -\pgfpathlineto{\pgfqpoint{3.845007in}{2.915568in}}% -\pgfpathlineto{\pgfqpoint{3.845007in}{2.915568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463212in}}% -\pgfpathlineto{\pgfqpoint{2.050601in}{0.464323in}}% -\pgfpathlineto{\pgfqpoint{2.229039in}{0.466662in}}% -\pgfpathlineto{\pgfqpoint{2.337842in}{0.470095in}}% -\pgfpathlineto{\pgfqpoint{2.420533in}{0.474847in}}% -\pgfpathlineto{\pgfqpoint{2.485815in}{0.480822in}}% -\pgfpathlineto{\pgfqpoint{2.538041in}{0.487745in}}% -\pgfpathlineto{\pgfqpoint{2.581562in}{0.495553in}}% -\pgfpathlineto{\pgfqpoint{2.620731in}{0.504684in}}% -\pgfpathlineto{\pgfqpoint{2.655549in}{0.514943in}}% -\pgfpathlineto{\pgfqpoint{2.686014in}{0.525982in}}% -\pgfpathlineto{\pgfqpoint{2.716479in}{0.539376in}}% -\pgfpathlineto{\pgfqpoint{2.742591in}{0.553110in}}% -\pgfpathlineto{\pgfqpoint{2.768704in}{0.569320in}}% -\pgfpathlineto{\pgfqpoint{2.794817in}{0.588454in}}% -\pgfpathlineto{\pgfqpoint{2.816578in}{0.607009in}}% -\pgfpathlineto{\pgfqpoint{2.838339in}{0.628313in}}% -\pgfpathlineto{\pgfqpoint{2.860099in}{0.652773in}}% -\pgfpathlineto{\pgfqpoint{2.881860in}{0.680857in}}% -\pgfpathlineto{\pgfqpoint{2.903621in}{0.713102in}}% -\pgfpathlineto{\pgfqpoint{2.925381in}{0.750124in}}% -\pgfpathlineto{\pgfqpoint{2.947142in}{0.792632in}}% -\pgfpathlineto{\pgfqpoint{2.964551in}{0.831129in}}% -\pgfpathlineto{\pgfqpoint{2.981959in}{0.874124in}}% -\pgfpathlineto{\pgfqpoint{2.999368in}{0.922145in}}% -\pgfpathlineto{\pgfqpoint{3.016776in}{0.975777in}}% -\pgfpathlineto{\pgfqpoint{3.034185in}{1.035677in}}% -\pgfpathlineto{\pgfqpoint{3.051593in}{1.102577in}}% -\pgfpathlineto{\pgfqpoint{3.069002in}{1.177296in}}% -\pgfpathlineto{\pgfqpoint{3.086411in}{1.260746in}}% -\pgfpathlineto{\pgfqpoint{3.103819in}{1.353948in}}% -\pgfpathlineto{\pgfqpoint{3.121228in}{1.458043in}}% -\pgfpathlineto{\pgfqpoint{3.138636in}{1.574302in}}% -\pgfpathlineto{\pgfqpoint{3.156045in}{1.704147in}}% -\pgfpathlineto{\pgfqpoint{3.173453in}{1.849167in}}% -\pgfpathlineto{\pgfqpoint{3.190862in}{2.011134in}}% -\pgfpathlineto{\pgfqpoint{3.208270in}{2.192029in}}% -\pgfpathlineto{\pgfqpoint{3.225679in}{2.394064in}}% -\pgfpathlineto{\pgfqpoint{3.243088in}{2.619710in}}% -\pgfpathlineto{\pgfqpoint{3.263324in}{2.915568in}}% -\pgfpathlineto{\pgfqpoint{3.263324in}{2.915568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.352140in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463212in}}% -\pgfpathlineto{\pgfqpoint{2.398772in}{0.464286in}}% -\pgfpathlineto{\pgfqpoint{2.477111in}{0.466499in}}% -\pgfpathlineto{\pgfqpoint{2.524984in}{0.469725in}}% -\pgfpathlineto{\pgfqpoint{2.559802in}{0.473921in}}% -\pgfpathlineto{\pgfqpoint{2.590267in}{0.479760in}}% -\pgfpathlineto{\pgfqpoint{2.616379in}{0.487242in}}% -\pgfpathlineto{\pgfqpoint{2.638140in}{0.496003in}}% -\pgfpathlineto{\pgfqpoint{2.655549in}{0.505261in}}% -\pgfpathlineto{\pgfqpoint{2.672957in}{0.517132in}}% -\pgfpathlineto{\pgfqpoint{2.690366in}{0.532355in}}% -\pgfpathlineto{\pgfqpoint{2.703422in}{0.546532in}}% -\pgfpathlineto{\pgfqpoint{2.716479in}{0.563616in}}% -\pgfpathlineto{\pgfqpoint{2.729535in}{0.584202in}}% -\pgfpathlineto{\pgfqpoint{2.742591in}{0.609009in}}% -\pgfpathlineto{\pgfqpoint{2.755648in}{0.638903in}}% -\pgfpathlineto{\pgfqpoint{2.768704in}{0.674926in}}% -\pgfpathlineto{\pgfqpoint{2.781761in}{0.718335in}}% -\pgfpathlineto{\pgfqpoint{2.794817in}{0.770644in}}% -\pgfpathlineto{\pgfqpoint{2.807874in}{0.833679in}}% -\pgfpathlineto{\pgfqpoint{2.820930in}{0.909638in}}% -\pgfpathlineto{\pgfqpoint{2.833986in}{1.001171in}}% -\pgfpathlineto{\pgfqpoint{2.847043in}{1.111472in}}% -\pgfpathlineto{\pgfqpoint{2.860099in}{1.244388in}}% -\pgfpathlineto{\pgfqpoint{2.873156in}{1.404558in}}% -\pgfpathlineto{\pgfqpoint{2.886212in}{1.597567in}}% -\pgfpathlineto{\pgfqpoint{2.899268in}{1.830151in}}% -\pgfpathlineto{\pgfqpoint{2.912325in}{2.110422in}}% -\pgfpathlineto{\pgfqpoint{2.925381in}{2.448160in}}% -\pgfpathlineto{\pgfqpoint{2.938438in}{2.855145in}}% -\pgfpathlineto{\pgfqpoint{2.940152in}{2.915568in}}% -\pgfpathlineto{\pgfqpoint{2.940152in}{2.915568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.857732in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfpathlineto{\pgfqpoint{4.857732in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.586577in}{1.963948in}}% -\pgfpathlineto{\pgfqpoint{2.339691in}{1.963948in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.362830in}{1.963948in}}{\pgfqpoint{2.362830in}{1.987087in}}% -\pgfpathlineto{\pgfqpoint{2.362830in}{2.824582in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.362830in}{2.847721in}}{\pgfqpoint{2.339691in}{2.847721in}}% -\pgfpathlineto{\pgfqpoint{0.586577in}{2.847721in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.563438in}{2.847721in}}{\pgfqpoint{0.563438in}{2.824582in}}% -\pgfpathlineto{\pgfqpoint{0.563438in}{1.987087in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.563438in}{1.963948in}}{\pgfqpoint{0.586577in}{1.963948in}}% -\pgfpathlineto{\pgfqpoint{0.586577in}{1.963948in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.754036in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.754036in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.754036in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.713543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-4.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.584223in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.584223in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.584223in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.543730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-2.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.414410in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.414410in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.414410in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.373917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-1.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.244597in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.244597in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.244597in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.204104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-0.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.074784in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.074784in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.074784in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.034291in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.624740in}{2.754036in}}% -\pgfpathlineto{\pgfqpoint{1.740434in}{2.754036in}}% -\pgfpathlineto{\pgfqpoint{1.856129in}{2.754036in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.948684in,y=2.713543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.624740in}{2.584223in}}% -\pgfpathlineto{\pgfqpoint{1.740434in}{2.584223in}}% -\pgfpathlineto{\pgfqpoint{1.856129in}{2.584223in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.948684in,y=2.543730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 1.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.624740in}{2.414410in}}% -\pgfpathlineto{\pgfqpoint{1.740434in}{2.414410in}}% -\pgfpathlineto{\pgfqpoint{1.856129in}{2.414410in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.948684in,y=2.373917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 2.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.624740in}{2.244597in}}% -\pgfpathlineto{\pgfqpoint{1.740434in}{2.244597in}}% -\pgfpathlineto{\pgfqpoint{1.856129in}{2.244597in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.948684in,y=2.204104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.5\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/integrands_exp.pgf b/buch/papers/laguerre/images/integrands_exp.pgf deleted file mode 100644 index de5078f..0000000 --- a/buch/papers/laguerre/images/integrands_exp.pgf +++ /dev/null @@ -1,1968 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{3.000000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{3.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.505591in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.854485in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.854485in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.854485in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.854485in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.203379in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.203379in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.203379in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.203379in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.552273in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.552273in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.552273in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.552273in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.911649in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.911649in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.911649in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.149177in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.149177in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.149177in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.317706in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.317706in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.317706in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.448428in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.448428in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.448428in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.555235in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.555235in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.555235in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.645539in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.645539in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.645539in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.723764in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.723764in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.723764in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.792763in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.792763in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.792763in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.260542in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.260542in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.260542in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.498071in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.498071in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.498071in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.666600in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.666600in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.666600in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.797321in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.797321in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.797321in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.904128in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.904128in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.904128in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.994432in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.994432in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.994432in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.072657in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.072657in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.072657in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.141657in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.141657in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.141657in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.609436in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.609436in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.609436in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.846965in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.846965in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.846965in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.015494in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.015494in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.015494in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.146215in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.146215in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.146215in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.253022in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.253022in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.253022in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.343326in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.343326in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.343326in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.421551in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.421551in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.421551in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.490551in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.490551in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.490551in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.958330in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.731961in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.951537in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.951537in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{0.951537in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=0.898775in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{1.440045in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.440045in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.440045in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=1.387283in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{1.928553in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.928553in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.928553in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=1.875791in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.417061in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.417061in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{2.417061in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=2.364299in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{2.905568in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=2.852807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.176083in,y=1.684421in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x^z e^{-x}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.798834in}{2.915568in}}% -\pgfpathlineto{\pgfqpoint{1.835600in}{2.752788in}}% -\pgfpathlineto{\pgfqpoint{1.876067in}{2.585209in}}% -\pgfpathlineto{\pgfqpoint{1.916534in}{2.428921in}}% -\pgfpathlineto{\pgfqpoint{1.957001in}{2.283177in}}% -\pgfpathlineto{\pgfqpoint{1.997468in}{2.147279in}}% -\pgfpathlineto{\pgfqpoint{2.037935in}{2.020579in}}% -\pgfpathlineto{\pgfqpoint{2.078401in}{1.902469in}}% -\pgfpathlineto{\pgfqpoint{2.118868in}{1.792386in}}% -\pgfpathlineto{\pgfqpoint{2.159335in}{1.689801in}}% -\pgfpathlineto{\pgfqpoint{2.199802in}{1.594224in}}% -\pgfpathlineto{\pgfqpoint{2.240269in}{1.505196in}}% -\pgfpathlineto{\pgfqpoint{2.280735in}{1.422289in}}% -\pgfpathlineto{\pgfqpoint{2.321202in}{1.345106in}}% -\pgfpathlineto{\pgfqpoint{2.361669in}{1.273275in}}% -\pgfpathlineto{\pgfqpoint{2.402136in}{1.206449in}}% -\pgfpathlineto{\pgfqpoint{2.442603in}{1.144306in}}% -\pgfpathlineto{\pgfqpoint{2.483069in}{1.086545in}}% -\pgfpathlineto{\pgfqpoint{2.523536in}{1.032885in}}% -\pgfpathlineto{\pgfqpoint{2.564003in}{0.983064in}}% -\pgfpathlineto{\pgfqpoint{2.604470in}{0.936839in}}% -\pgfpathlineto{\pgfqpoint{2.644937in}{0.893983in}}% -\pgfpathlineto{\pgfqpoint{2.685404in}{0.854282in}}% -\pgfpathlineto{\pgfqpoint{2.725870in}{0.817539in}}% -\pgfpathlineto{\pgfqpoint{2.766337in}{0.783568in}}% -\pgfpathlineto{\pgfqpoint{2.806804in}{0.752197in}}% -\pgfpathlineto{\pgfqpoint{2.847271in}{0.723265in}}% -\pgfpathlineto{\pgfqpoint{2.895831in}{0.691552in}}% -\pgfpathlineto{\pgfqpoint{2.944391in}{0.662889in}}% -\pgfpathlineto{\pgfqpoint{2.992951in}{0.637051in}}% -\pgfpathlineto{\pgfqpoint{3.041512in}{0.613827in}}% -\pgfpathlineto{\pgfqpoint{3.090072in}{0.593023in}}% -\pgfpathlineto{\pgfqpoint{3.138632in}{0.574456in}}% -\pgfpathlineto{\pgfqpoint{3.195285in}{0.555394in}}% -\pgfpathlineto{\pgfqpoint{3.251939in}{0.538889in}}% -\pgfpathlineto{\pgfqpoint{3.308592in}{0.524703in}}% -\pgfpathlineto{\pgfqpoint{3.365246in}{0.512612in}}% -\pgfpathlineto{\pgfqpoint{3.429993in}{0.501085in}}% -\pgfpathlineto{\pgfqpoint{3.494740in}{0.491717in}}% -\pgfpathlineto{\pgfqpoint{3.567580in}{0.483406in}}% -\pgfpathlineto{\pgfqpoint{3.648514in}{0.476498in}}% -\pgfpathlineto{\pgfqpoint{3.737541in}{0.471175in}}% -\pgfpathlineto{\pgfqpoint{3.842754in}{0.467201in}}% -\pgfpathlineto{\pgfqpoint{3.972248in}{0.464630in}}% -\pgfpathlineto{\pgfqpoint{4.166489in}{0.463296in}}% -\pgfpathlineto{\pgfqpoint{4.668277in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.495591in}{2.902420in}}% -\pgfpathlineto{\pgfqpoint{0.548756in}{2.792013in}}% -\pgfpathlineto{\pgfqpoint{0.605409in}{2.679652in}}% -\pgfpathlineto{\pgfqpoint{0.662063in}{2.572478in}}% -\pgfpathlineto{\pgfqpoint{0.718716in}{2.470240in}}% -\pgfpathlineto{\pgfqpoint{0.775370in}{2.372700in}}% -\pgfpathlineto{\pgfqpoint{0.832024in}{2.279630in}}% -\pgfpathlineto{\pgfqpoint{0.888677in}{2.190814in}}% -\pgfpathlineto{\pgfqpoint{0.945331in}{2.106045in}}% -\pgfpathlineto{\pgfqpoint{1.001984in}{2.025124in}}% -\pgfpathlineto{\pgfqpoint{1.058638in}{1.947865in}}% -\pgfpathlineto{\pgfqpoint{1.115291in}{1.874088in}}% -\pgfpathlineto{\pgfqpoint{1.171945in}{1.803620in}}% -\pgfpathlineto{\pgfqpoint{1.228598in}{1.736301in}}% -\pgfpathlineto{\pgfqpoint{1.293345in}{1.663018in}}% -\pgfpathlineto{\pgfqpoint{1.358092in}{1.593423in}}% -\pgfpathlineto{\pgfqpoint{1.422839in}{1.527307in}}% -\pgfpathlineto{\pgfqpoint{1.487586in}{1.464471in}}% -\pgfpathlineto{\pgfqpoint{1.552333in}{1.404729in}}% -\pgfpathlineto{\pgfqpoint{1.617080in}{1.347905in}}% -\pgfpathlineto{\pgfqpoint{1.681827in}{1.293833in}}% -\pgfpathlineto{\pgfqpoint{1.754667in}{1.236094in}}% -\pgfpathlineto{\pgfqpoint{1.827507in}{1.181430in}}% -\pgfpathlineto{\pgfqpoint{1.900347in}{1.129645in}}% -\pgfpathlineto{\pgfqpoint{1.973188in}{1.080558in}}% -\pgfpathlineto{\pgfqpoint{2.046028in}{1.034002in}}% -\pgfpathlineto{\pgfqpoint{2.126962in}{0.985056in}}% -\pgfpathlineto{\pgfqpoint{2.207895in}{0.938855in}}% -\pgfpathlineto{\pgfqpoint{2.288829in}{0.895230in}}% -\pgfpathlineto{\pgfqpoint{2.369762in}{0.854033in}}% -\pgfpathlineto{\pgfqpoint{2.450696in}{0.815136in}}% -\pgfpathlineto{\pgfqpoint{2.539723in}{0.774884in}}% -\pgfpathlineto{\pgfqpoint{2.628750in}{0.737182in}}% -\pgfpathlineto{\pgfqpoint{2.717777in}{0.701956in}}% -\pgfpathlineto{\pgfqpoint{2.806804in}{0.669164in}}% -\pgfpathlineto{\pgfqpoint{2.895831in}{0.638793in}}% -\pgfpathlineto{\pgfqpoint{2.984858in}{0.610859in}}% -\pgfpathlineto{\pgfqpoint{3.073885in}{0.585400in}}% -\pgfpathlineto{\pgfqpoint{3.154819in}{0.564442in}}% -\pgfpathlineto{\pgfqpoint{3.235752in}{0.545608in}}% -\pgfpathlineto{\pgfqpoint{3.316686in}{0.528927in}}% -\pgfpathlineto{\pgfqpoint{3.397619in}{0.514410in}}% -\pgfpathlineto{\pgfqpoint{3.478553in}{0.502038in}}% -\pgfpathlineto{\pgfqpoint{3.559487in}{0.491753in}}% -\pgfpathlineto{\pgfqpoint{3.648514in}{0.482723in}}% -\pgfpathlineto{\pgfqpoint{3.737541in}{0.475880in}}% -\pgfpathlineto{\pgfqpoint{3.834661in}{0.470581in}}% -\pgfpathlineto{\pgfqpoint{3.947968in}{0.466692in}}% -\pgfpathlineto{\pgfqpoint{4.085555in}{0.464297in}}% -\pgfpathlineto{\pgfqpoint{4.295983in}{0.463180in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.495591in}{0.704894in}}% -\pgfpathlineto{\pgfqpoint{0.985797in}{0.701801in}}% -\pgfpathlineto{\pgfqpoint{1.325719in}{0.697576in}}% -\pgfpathlineto{\pgfqpoint{1.592800in}{0.692147in}}% -\pgfpathlineto{\pgfqpoint{1.811320in}{0.685615in}}% -\pgfpathlineto{\pgfqpoint{2.005561in}{0.677632in}}% -\pgfpathlineto{\pgfqpoint{2.175522in}{0.668484in}}% -\pgfpathlineto{\pgfqpoint{2.329296in}{0.658088in}}% -\pgfpathlineto{\pgfqpoint{2.474976in}{0.646087in}}% -\pgfpathlineto{\pgfqpoint{2.612563in}{0.632631in}}% -\pgfpathlineto{\pgfqpoint{2.750150in}{0.617020in}}% -\pgfpathlineto{\pgfqpoint{2.895831in}{0.598214in}}% -\pgfpathlineto{\pgfqpoint{3.057698in}{0.575016in}}% -\pgfpathlineto{\pgfqpoint{3.527113in}{0.505995in}}% -\pgfpathlineto{\pgfqpoint{3.640420in}{0.492683in}}% -\pgfpathlineto{\pgfqpoint{3.745634in}{0.482613in}}% -\pgfpathlineto{\pgfqpoint{3.842754in}{0.475454in}}% -\pgfpathlineto{\pgfqpoint{3.947968in}{0.469944in}}% -\pgfpathlineto{\pgfqpoint{4.061275in}{0.466261in}}% -\pgfpathlineto{\pgfqpoint{4.198862in}{0.464058in}}% -\pgfpathlineto{\pgfqpoint{4.417383in}{0.463116in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.495591in}{0.487010in}}% -\pgfpathlineto{\pgfqpoint{0.848210in}{0.495169in}}% -\pgfpathlineto{\pgfqpoint{1.171945in}{0.504841in}}% -\pgfpathlineto{\pgfqpoint{1.479493in}{0.516233in}}% -\pgfpathlineto{\pgfqpoint{1.803227in}{0.530490in}}% -\pgfpathlineto{\pgfqpoint{2.499256in}{0.562178in}}% -\pgfpathlineto{\pgfqpoint{2.661123in}{0.566481in}}% -\pgfpathlineto{\pgfqpoint{2.790617in}{0.567782in}}% -\pgfpathlineto{\pgfqpoint{2.903924in}{0.566867in}}% -\pgfpathlineto{\pgfqpoint{3.009138in}{0.563979in}}% -\pgfpathlineto{\pgfqpoint{3.114352in}{0.558920in}}% -\pgfpathlineto{\pgfqpoint{3.219565in}{0.551618in}}% -\pgfpathlineto{\pgfqpoint{3.332873in}{0.541392in}}% -\pgfpathlineto{\pgfqpoint{3.462366in}{0.527312in}}% -\pgfpathlineto{\pgfqpoint{3.826568in}{0.485966in}}% -\pgfpathlineto{\pgfqpoint{3.931781in}{0.477219in}}% -\pgfpathlineto{\pgfqpoint{4.028902in}{0.471279in}}% -\pgfpathlineto{\pgfqpoint{4.134115in}{0.467063in}}% -\pgfpathlineto{\pgfqpoint{4.255516in}{0.464478in}}% -\pgfpathlineto{\pgfqpoint{4.433570in}{0.463227in}}% -\pgfpathlineto{\pgfqpoint{4.959638in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.495591in}{0.465407in}}% -\pgfpathlineto{\pgfqpoint{0.985797in}{0.468449in}}% -\pgfpathlineto{\pgfqpoint{1.341905in}{0.472796in}}% -\pgfpathlineto{\pgfqpoint{1.617080in}{0.478265in}}% -\pgfpathlineto{\pgfqpoint{1.851787in}{0.485039in}}% -\pgfpathlineto{\pgfqpoint{2.070308in}{0.493583in}}% -\pgfpathlineto{\pgfqpoint{2.272642in}{0.503689in}}% -\pgfpathlineto{\pgfqpoint{2.491163in}{0.516866in}}% -\pgfpathlineto{\pgfqpoint{2.968671in}{0.546765in}}% -\pgfpathlineto{\pgfqpoint{3.090072in}{0.551321in}}% -\pgfpathlineto{\pgfqpoint{3.187192in}{0.552851in}}% -\pgfpathlineto{\pgfqpoint{3.276219in}{0.552164in}}% -\pgfpathlineto{\pgfqpoint{3.365246in}{0.549194in}}% -\pgfpathlineto{\pgfqpoint{3.454273in}{0.543821in}}% -\pgfpathlineto{\pgfqpoint{3.543300in}{0.536140in}}% -\pgfpathlineto{\pgfqpoint{3.648514in}{0.524594in}}% -\pgfpathlineto{\pgfqpoint{3.818474in}{0.503098in}}% -\pgfpathlineto{\pgfqpoint{3.947968in}{0.487678in}}% -\pgfpathlineto{\pgfqpoint{4.045088in}{0.478328in}}% -\pgfpathlineto{\pgfqpoint{4.134115in}{0.471957in}}% -\pgfpathlineto{\pgfqpoint{4.231236in}{0.467386in}}% -\pgfpathlineto{\pgfqpoint{4.336450in}{0.464701in}}% -\pgfpathlineto{\pgfqpoint{4.482130in}{0.463333in}}% -\pgfpathlineto{\pgfqpoint{4.838238in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.495591in}{0.463052in}}% -\pgfpathlineto{\pgfqpoint{1.673733in}{0.464254in}}% -\pgfpathlineto{\pgfqpoint{2.013654in}{0.466718in}}% -\pgfpathlineto{\pgfqpoint{2.232175in}{0.470359in}}% -\pgfpathlineto{\pgfqpoint{2.402136in}{0.475310in}}% -\pgfpathlineto{\pgfqpoint{2.539723in}{0.481392in}}% -\pgfpathlineto{\pgfqpoint{2.661123in}{0.488836in}}% -\pgfpathlineto{\pgfqpoint{2.774431in}{0.497944in}}% -\pgfpathlineto{\pgfqpoint{2.879644in}{0.508521in}}% -\pgfpathlineto{\pgfqpoint{2.984858in}{0.521208in}}% -\pgfpathlineto{\pgfqpoint{3.106258in}{0.538173in}}% -\pgfpathlineto{\pgfqpoint{3.413806in}{0.582662in}}% -\pgfpathlineto{\pgfqpoint{3.486646in}{0.589940in}}% -\pgfpathlineto{\pgfqpoint{3.551393in}{0.594004in}}% -\pgfpathlineto{\pgfqpoint{3.608047in}{0.595253in}}% -\pgfpathlineto{\pgfqpoint{3.664700in}{0.594045in}}% -\pgfpathlineto{\pgfqpoint{3.713261in}{0.590917in}}% -\pgfpathlineto{\pgfqpoint{3.761821in}{0.585831in}}% -\pgfpathlineto{\pgfqpoint{3.818474in}{0.577529in}}% -\pgfpathlineto{\pgfqpoint{3.875128in}{0.566971in}}% -\pgfpathlineto{\pgfqpoint{3.947968in}{0.550890in}}% -\pgfpathlineto{\pgfqpoint{4.174582in}{0.498399in}}% -\pgfpathlineto{\pgfqpoint{4.239329in}{0.486922in}}% -\pgfpathlineto{\pgfqpoint{4.295983in}{0.479017in}}% -\pgfpathlineto{\pgfqpoint{4.360730in}{0.472407in}}% -\pgfpathlineto{\pgfqpoint{4.425477in}{0.468066in}}% -\pgfpathlineto{\pgfqpoint{4.506410in}{0.465042in}}% -\pgfpathlineto{\pgfqpoint{4.619717in}{0.463441in}}% -\pgfpathlineto{\pgfqpoint{4.862518in}{0.463032in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463029in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.495591in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{2.183615in}{0.464135in}}% -\pgfpathlineto{\pgfqpoint{2.426416in}{0.466533in}}% -\pgfpathlineto{\pgfqpoint{2.580190in}{0.470140in}}% -\pgfpathlineto{\pgfqpoint{2.693497in}{0.474831in}}% -\pgfpathlineto{\pgfqpoint{2.790617in}{0.481025in}}% -\pgfpathlineto{\pgfqpoint{2.871551in}{0.488343in}}% -\pgfpathlineto{\pgfqpoint{2.944391in}{0.497127in}}% -\pgfpathlineto{\pgfqpoint{3.009138in}{0.507095in}}% -\pgfpathlineto{\pgfqpoint{3.073885in}{0.519481in}}% -\pgfpathlineto{\pgfqpoint{3.130538in}{0.532584in}}% -\pgfpathlineto{\pgfqpoint{3.187192in}{0.548022in}}% -\pgfpathlineto{\pgfqpoint{3.243846in}{0.565946in}}% -\pgfpathlineto{\pgfqpoint{3.300499in}{0.586406in}}% -\pgfpathlineto{\pgfqpoint{3.357153in}{0.609309in}}% -\pgfpathlineto{\pgfqpoint{3.421900in}{0.638093in}}% -\pgfpathlineto{\pgfqpoint{3.510927in}{0.680646in}}% -\pgfpathlineto{\pgfqpoint{3.608047in}{0.726851in}}% -\pgfpathlineto{\pgfqpoint{3.656607in}{0.747750in}}% -\pgfpathlineto{\pgfqpoint{3.697074in}{0.763007in}}% -\pgfpathlineto{\pgfqpoint{3.737541in}{0.775597in}}% -\pgfpathlineto{\pgfqpoint{3.769914in}{0.783310in}}% -\pgfpathlineto{\pgfqpoint{3.802288in}{0.788586in}}% -\pgfpathlineto{\pgfqpoint{3.834661in}{0.791152in}}% -\pgfpathlineto{\pgfqpoint{3.858941in}{0.791160in}}% -\pgfpathlineto{\pgfqpoint{3.883221in}{0.789447in}}% -\pgfpathlineto{\pgfqpoint{3.907501in}{0.785967in}}% -\pgfpathlineto{\pgfqpoint{3.931781in}{0.780704in}}% -\pgfpathlineto{\pgfqpoint{3.956061in}{0.773670in}}% -\pgfpathlineto{\pgfqpoint{3.988435in}{0.761621in}}% -\pgfpathlineto{\pgfqpoint{4.020808in}{0.746711in}}% -\pgfpathlineto{\pgfqpoint{4.053182in}{0.729243in}}% -\pgfpathlineto{\pgfqpoint{4.093649in}{0.704427in}}% -\pgfpathlineto{\pgfqpoint{4.142209in}{0.671559in}}% -\pgfpathlineto{\pgfqpoint{4.271703in}{0.581509in}}% -\pgfpathlineto{\pgfqpoint{4.312169in}{0.556622in}}% -\pgfpathlineto{\pgfqpoint{4.352636in}{0.534657in}}% -\pgfpathlineto{\pgfqpoint{4.385010in}{0.519469in}}% -\pgfpathlineto{\pgfqpoint{4.417383in}{0.506492in}}% -\pgfpathlineto{\pgfqpoint{4.449757in}{0.495696in}}% -\pgfpathlineto{\pgfqpoint{4.482130in}{0.486961in}}% -\pgfpathlineto{\pgfqpoint{4.522597in}{0.478640in}}% -\pgfpathlineto{\pgfqpoint{4.563064in}{0.472760in}}% -\pgfpathlineto{\pgfqpoint{4.611624in}{0.468203in}}% -\pgfpathlineto{\pgfqpoint{4.668277in}{0.465277in}}% -\pgfpathlineto{\pgfqpoint{4.749211in}{0.463588in}}% -\pgfpathlineto{\pgfqpoint{4.911078in}{0.463044in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463032in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463032in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.495591in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{2.450696in}{0.464115in}}% -\pgfpathlineto{\pgfqpoint{2.636843in}{0.466518in}}% -\pgfpathlineto{\pgfqpoint{2.750150in}{0.470003in}}% -\pgfpathlineto{\pgfqpoint{2.839177in}{0.474903in}}% -\pgfpathlineto{\pgfqpoint{2.912018in}{0.481215in}}% -\pgfpathlineto{\pgfqpoint{2.968671in}{0.488201in}}% -\pgfpathlineto{\pgfqpoint{3.017231in}{0.496125in}}% -\pgfpathlineto{\pgfqpoint{3.065792in}{0.506326in}}% -\pgfpathlineto{\pgfqpoint{3.106258in}{0.516967in}}% -\pgfpathlineto{\pgfqpoint{3.146725in}{0.529953in}}% -\pgfpathlineto{\pgfqpoint{3.187192in}{0.545706in}}% -\pgfpathlineto{\pgfqpoint{3.219565in}{0.560613in}}% -\pgfpathlineto{\pgfqpoint{3.251939in}{0.577848in}}% -\pgfpathlineto{\pgfqpoint{3.284312in}{0.597679in}}% -\pgfpathlineto{\pgfqpoint{3.316686in}{0.620382in}}% -\pgfpathlineto{\pgfqpoint{3.349059in}{0.646232in}}% -\pgfpathlineto{\pgfqpoint{3.381433in}{0.675495in}}% -\pgfpathlineto{\pgfqpoint{3.413806in}{0.708415in}}% -\pgfpathlineto{\pgfqpoint{3.446180in}{0.745199in}}% -\pgfpathlineto{\pgfqpoint{3.478553in}{0.785999in}}% -\pgfpathlineto{\pgfqpoint{3.510927in}{0.830897in}}% -\pgfpathlineto{\pgfqpoint{3.543300in}{0.879879in}}% -\pgfpathlineto{\pgfqpoint{3.575673in}{0.932812in}}% -\pgfpathlineto{\pgfqpoint{3.616140in}{1.004102in}}% -\pgfpathlineto{\pgfqpoint{3.656607in}{1.080220in}}% -\pgfpathlineto{\pgfqpoint{3.713261in}{1.192198in}}% -\pgfpathlineto{\pgfqpoint{3.794194in}{1.352621in}}% -\pgfpathlineto{\pgfqpoint{3.826568in}{1.412630in}}% -\pgfpathlineto{\pgfqpoint{3.858941in}{1.467755in}}% -\pgfpathlineto{\pgfqpoint{3.883221in}{1.504805in}}% -\pgfpathlineto{\pgfqpoint{3.907501in}{1.537314in}}% -\pgfpathlineto{\pgfqpoint{3.923688in}{1.556088in}}% -\pgfpathlineto{\pgfqpoint{3.939875in}{1.572291in}}% -\pgfpathlineto{\pgfqpoint{3.956061in}{1.585716in}}% -\pgfpathlineto{\pgfqpoint{3.972248in}{1.596172in}}% -\pgfpathlineto{\pgfqpoint{3.988435in}{1.603485in}}% -\pgfpathlineto{\pgfqpoint{4.004622in}{1.607504in}}% -\pgfpathlineto{\pgfqpoint{4.020808in}{1.608099in}}% -\pgfpathlineto{\pgfqpoint{4.036995in}{1.605168in}}% -\pgfpathlineto{\pgfqpoint{4.053182in}{1.598642in}}% -\pgfpathlineto{\pgfqpoint{4.069369in}{1.588481in}}% -\pgfpathlineto{\pgfqpoint{4.085555in}{1.574683in}}% -\pgfpathlineto{\pgfqpoint{4.101742in}{1.557281in}}% -\pgfpathlineto{\pgfqpoint{4.117929in}{1.536346in}}% -\pgfpathlineto{\pgfqpoint{4.134115in}{1.511990in}}% -\pgfpathlineto{\pgfqpoint{4.150302in}{1.484359in}}% -\pgfpathlineto{\pgfqpoint{4.174582in}{1.437192in}}% -\pgfpathlineto{\pgfqpoint{4.198862in}{1.383863in}}% -\pgfpathlineto{\pgfqpoint{4.223142in}{1.325312in}}% -\pgfpathlineto{\pgfqpoint{4.255516in}{1.240991in}}% -\pgfpathlineto{\pgfqpoint{4.304076in}{1.106891in}}% -\pgfpathlineto{\pgfqpoint{4.360730in}{0.950683in}}% -\pgfpathlineto{\pgfqpoint{4.393103in}{0.866837in}}% -\pgfpathlineto{\pgfqpoint{4.425477in}{0.789713in}}% -\pgfpathlineto{\pgfqpoint{4.449757in}{0.737258in}}% -\pgfpathlineto{\pgfqpoint{4.474037in}{0.689930in}}% -\pgfpathlineto{\pgfqpoint{4.498317in}{0.647968in}}% -\pgfpathlineto{\pgfqpoint{4.522597in}{0.611423in}}% -\pgfpathlineto{\pgfqpoint{4.546877in}{0.580171in}}% -\pgfpathlineto{\pgfqpoint{4.571157in}{0.553940in}}% -\pgfpathlineto{\pgfqpoint{4.595437in}{0.532342in}}% -\pgfpathlineto{\pgfqpoint{4.619717in}{0.514906in}}% -\pgfpathlineto{\pgfqpoint{4.643997in}{0.501116in}}% -\pgfpathlineto{\pgfqpoint{4.668277in}{0.490435in}}% -\pgfpathlineto{\pgfqpoint{4.692557in}{0.482340in}}% -\pgfpathlineto{\pgfqpoint{4.716838in}{0.476343in}}% -\pgfpathlineto{\pgfqpoint{4.749211in}{0.470855in}}% -\pgfpathlineto{\pgfqpoint{4.789678in}{0.466820in}}% -\pgfpathlineto{\pgfqpoint{4.838238in}{0.464474in}}% -\pgfpathlineto{\pgfqpoint{4.919172in}{0.463254in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463090in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463090in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{4.452739in}{2.442295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.495591in}{0.463029in}}% -\pgfpathlineto{\pgfqpoint{2.539723in}{0.464110in}}% -\pgfpathlineto{\pgfqpoint{2.701590in}{0.466413in}}% -\pgfpathlineto{\pgfqpoint{2.806804in}{0.470014in}}% -\pgfpathlineto{\pgfqpoint{2.879644in}{0.474456in}}% -\pgfpathlineto{\pgfqpoint{2.944391in}{0.480597in}}% -\pgfpathlineto{\pgfqpoint{2.992951in}{0.487162in}}% -\pgfpathlineto{\pgfqpoint{3.041512in}{0.496020in}}% -\pgfpathlineto{\pgfqpoint{3.081978in}{0.505671in}}% -\pgfpathlineto{\pgfqpoint{3.122445in}{0.517931in}}% -\pgfpathlineto{\pgfqpoint{3.154819in}{0.530032in}}% -\pgfpathlineto{\pgfqpoint{3.187192in}{0.544571in}}% -\pgfpathlineto{\pgfqpoint{3.219565in}{0.561971in}}% -\pgfpathlineto{\pgfqpoint{3.243846in}{0.577182in}}% -\pgfpathlineto{\pgfqpoint{3.268126in}{0.594489in}}% -\pgfpathlineto{\pgfqpoint{3.292406in}{0.614130in}}% -\pgfpathlineto{\pgfqpoint{3.316686in}{0.636359in}}% -\pgfpathlineto{\pgfqpoint{3.340966in}{0.661444in}}% -\pgfpathlineto{\pgfqpoint{3.365246in}{0.689666in}}% -\pgfpathlineto{\pgfqpoint{3.389526in}{0.721316in}}% -\pgfpathlineto{\pgfqpoint{3.413806in}{0.756693in}}% -\pgfpathlineto{\pgfqpoint{3.438086in}{0.796094in}}% -\pgfpathlineto{\pgfqpoint{3.462366in}{0.839815in}}% -\pgfpathlineto{\pgfqpoint{3.486646in}{0.888136in}}% -\pgfpathlineto{\pgfqpoint{3.510927in}{0.941320in}}% -\pgfpathlineto{\pgfqpoint{3.535207in}{0.999597in}}% -\pgfpathlineto{\pgfqpoint{3.559487in}{1.063156in}}% -\pgfpathlineto{\pgfqpoint{3.583767in}{1.132129in}}% -\pgfpathlineto{\pgfqpoint{3.608047in}{1.206579in}}% -\pgfpathlineto{\pgfqpoint{3.640420in}{1.314316in}}% -\pgfpathlineto{\pgfqpoint{3.672794in}{1.431406in}}% -\pgfpathlineto{\pgfqpoint{3.705167in}{1.557128in}}% -\pgfpathlineto{\pgfqpoint{3.745634in}{1.724589in}}% -\pgfpathlineto{\pgfqpoint{3.794194in}{1.935989in}}% -\pgfpathlineto{\pgfqpoint{3.875128in}{2.290253in}}% -\pgfpathlineto{\pgfqpoint{3.907501in}{2.422413in}}% -\pgfpathlineto{\pgfqpoint{3.931781in}{2.514109in}}% -\pgfpathlineto{\pgfqpoint{3.956061in}{2.597344in}}% -\pgfpathlineto{\pgfqpoint{3.972248in}{2.647190in}}% -\pgfpathlineto{\pgfqpoint{3.988435in}{2.691868in}}% -\pgfpathlineto{\pgfqpoint{4.004622in}{2.730837in}}% -\pgfpathlineto{\pgfqpoint{4.020808in}{2.763580in}}% -\pgfpathlineto{\pgfqpoint{4.036995in}{2.789615in}}% -\pgfpathlineto{\pgfqpoint{4.045088in}{2.799977in}}% -\pgfpathlineto{\pgfqpoint{4.053182in}{2.808501in}}% -\pgfpathlineto{\pgfqpoint{4.061275in}{2.815140in}}% -\pgfpathlineto{\pgfqpoint{4.069369in}{2.819852in}}% -\pgfpathlineto{\pgfqpoint{4.077462in}{2.822597in}}% -\pgfpathlineto{\pgfqpoint{4.085555in}{2.823342in}}% -\pgfpathlineto{\pgfqpoint{4.093649in}{2.822055in}}% -\pgfpathlineto{\pgfqpoint{4.101742in}{2.818714in}}% -\pgfpathlineto{\pgfqpoint{4.109835in}{2.813297in}}% -\pgfpathlineto{\pgfqpoint{4.117929in}{2.805791in}}% -\pgfpathlineto{\pgfqpoint{4.126022in}{2.796185in}}% -\pgfpathlineto{\pgfqpoint{4.134115in}{2.784478in}}% -\pgfpathlineto{\pgfqpoint{4.150302in}{2.754774in}}% -\pgfpathlineto{\pgfqpoint{4.166489in}{2.716768in}}% -\pgfpathlineto{\pgfqpoint{4.182676in}{2.670651in}}% -\pgfpathlineto{\pgfqpoint{4.198862in}{2.616710in}}% -\pgfpathlineto{\pgfqpoint{4.215049in}{2.555330in}}% -\pgfpathlineto{\pgfqpoint{4.231236in}{2.486991in}}% -\pgfpathlineto{\pgfqpoint{4.255516in}{2.372700in}}% -\pgfpathlineto{\pgfqpoint{4.279796in}{2.246306in}}% -\pgfpathlineto{\pgfqpoint{4.312169in}{2.063479in}}% -\pgfpathlineto{\pgfqpoint{4.360730in}{1.772547in}}% -\pgfpathlineto{\pgfqpoint{4.417383in}{1.436040in}}% -\pgfpathlineto{\pgfqpoint{4.449757in}{1.257564in}}% -\pgfpathlineto{\pgfqpoint{4.474037in}{1.134203in}}% -\pgfpathlineto{\pgfqpoint{4.498317in}{1.021536in}}% -\pgfpathlineto{\pgfqpoint{4.522597in}{0.920557in}}% -\pgfpathlineto{\pgfqpoint{4.546877in}{0.831763in}}% -\pgfpathlineto{\pgfqpoint{4.563064in}{0.779370in}}% -\pgfpathlineto{\pgfqpoint{4.579250in}{0.732319in}}% -\pgfpathlineto{\pgfqpoint{4.595437in}{0.690441in}}% -\pgfpathlineto{\pgfqpoint{4.611624in}{0.653503in}}% -\pgfpathlineto{\pgfqpoint{4.627811in}{0.621223in}}% -\pgfpathlineto{\pgfqpoint{4.643997in}{0.593277in}}% -\pgfpathlineto{\pgfqpoint{4.660184in}{0.569314in}}% -\pgfpathlineto{\pgfqpoint{4.676371in}{0.548968in}}% -\pgfpathlineto{\pgfqpoint{4.692557in}{0.531864in}}% -\pgfpathlineto{\pgfqpoint{4.708744in}{0.517632in}}% -\pgfpathlineto{\pgfqpoint{4.724931in}{0.505912in}}% -\pgfpathlineto{\pgfqpoint{4.741118in}{0.496365in}}% -\pgfpathlineto{\pgfqpoint{4.765398in}{0.485428in}}% -\pgfpathlineto{\pgfqpoint{4.789678in}{0.477711in}}% -\pgfpathlineto{\pgfqpoint{4.813958in}{0.472409in}}% -\pgfpathlineto{\pgfqpoint{4.846331in}{0.467977in}}% -\pgfpathlineto{\pgfqpoint{4.886798in}{0.465101in}}% -\pgfpathlineto{\pgfqpoint{4.943452in}{0.463560in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463305in}}% -\pgfpathlineto{\pgfqpoint{4.968330in}{0.463305in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.905568in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.905568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.586577in}{1.963948in}}% -\pgfpathlineto{\pgfqpoint{2.339691in}{1.963948in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.362830in}{1.963948in}}{\pgfqpoint{2.362830in}{1.987087in}}% -\pgfpathlineto{\pgfqpoint{2.362830in}{2.824582in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.362830in}{2.847721in}}{\pgfqpoint{2.339691in}{2.847721in}}% -\pgfpathlineto{\pgfqpoint{0.586577in}{2.847721in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.563438in}{2.847721in}}{\pgfqpoint{0.563438in}{2.824582in}}% -\pgfpathlineto{\pgfqpoint{0.563438in}{1.987087in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.563438in}{1.963948in}}{\pgfqpoint{0.586577in}{1.963948in}}% -\pgfpathlineto{\pgfqpoint{0.586577in}{1.963948in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.754036in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.754036in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.754036in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.713543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-1.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.584223in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.584223in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.584223in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.543730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-0.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.414410in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.414410in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.414410in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.373917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.244597in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.244597in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.244597in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.204104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.609716in}{2.074784in}}% -\pgfpathlineto{\pgfqpoint{0.725411in}{2.074784in}}% -\pgfpathlineto{\pgfqpoint{0.841105in}{2.074784in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.933661in,y=2.034291in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 1.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.624740in}{2.754036in}}% -\pgfpathlineto{\pgfqpoint{1.740434in}{2.754036in}}% -\pgfpathlineto{\pgfqpoint{1.856129in}{2.754036in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.948684in,y=2.713543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 2.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.624740in}{2.584223in}}% -\pgfpathlineto{\pgfqpoint{1.740434in}{2.584223in}}% -\pgfpathlineto{\pgfqpoint{1.856129in}{2.584223in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.948684in,y=2.543730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 3.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.624740in}{2.414410in}}% -\pgfpathlineto{\pgfqpoint{1.740434in}{2.414410in}}% -\pgfpathlineto{\pgfqpoint{1.856129in}{2.414410in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.948684in,y=2.373917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.624740in}{2.244597in}}% -\pgfpathlineto{\pgfqpoint{1.740434in}{2.244597in}}% -\pgfpathlineto{\pgfqpoint{1.856129in}{2.244597in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.948684in,y=2.204104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.5\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/laguerre_poly.pgf b/buch/papers/laguerre/images/laguerre_poly.pgf new file mode 100644 index 0000000..e1c73bf --- /dev/null +++ b/buch/papers/laguerre/images/laguerre_poly.pgf @@ -0,0 +1,1838 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{0.041670in}}% +\pgfpathlineto{\pgfqpoint{5.953330in}{0.041670in}}% +\pgfpathlineto{\pgfqpoint{5.953330in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.041670in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.041670in}{0.041670in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.501875pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{5.952738in}{2.000000in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{1.967361in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{1.999925in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{1.999925in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{2.000075in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{2.000075in}}% +\pgfpathlineto{\pgfqpoint{5.755703in}{2.032639in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{2.000000in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.501875pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.579040in}{3.958330in}}% +\pgfpathlineto{\pgfqpoint{0.611667in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.579296in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.579296in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.578784in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.578784in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.546412in}{3.761225in}}% +\pgfpathlineto{\pgfqpoint{0.579040in}{3.958330in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.137944in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.137944in,y=1.902778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.696848in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.696848in,y=1.902778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.067259in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.090821in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.602601in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.114382in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.626163in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.649725in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.161505in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.673286in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{5.185067in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=5.953330in,y=1.907254in,,top]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle x\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.493592in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.197062in, y=0.440831in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.246796in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.285427in, y=1.194035in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.000000in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.393452in, y=1.947238in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.753204in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.393452in, y=2.700442in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.506408in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.305087in, y=3.453646in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.041670in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.192311in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.342952in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.644233in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.794874in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{0.945515in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.096155in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.397437in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.548078in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.698718in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{1.849359in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.150641in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.301282in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.451922in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.602563in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{2.903845in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.054485in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.205126in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.355767in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.657048in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.579040in}{3.807689in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.447062in,y=3.762497in,,bottom]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle y\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.150641in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{2.150641in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{2.150641in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.308814in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{0.568913in}}% +\pgfpathlineto{\pgfqpoint{5.952738in}{0.568913in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.550027in}}% +\pgfpathlineto{\pgfqpoint{0.112674in}{2.487733in}}% +\pgfpathlineto{\pgfqpoint{0.183678in}{2.428338in}}% +\pgfpathlineto{\pgfqpoint{0.254681in}{2.371843in}}% +\pgfpathlineto{\pgfqpoint{0.325685in}{2.318247in}}% +\pgfpathlineto{\pgfqpoint{0.396689in}{2.267552in}}% +\pgfpathlineto{\pgfqpoint{0.467693in}{2.219755in}}% +\pgfpathlineto{\pgfqpoint{0.532780in}{2.178489in}}% +\pgfpathlineto{\pgfqpoint{0.597867in}{2.139660in}}% +\pgfpathlineto{\pgfqpoint{0.662953in}{2.103266in}}% +\pgfpathlineto{\pgfqpoint{0.728040in}{2.069310in}}% +\pgfpathlineto{\pgfqpoint{0.793127in}{2.037790in}}% +\pgfpathlineto{\pgfqpoint{0.858214in}{2.008706in}}% +\pgfpathlineto{\pgfqpoint{0.923301in}{1.982059in}}% +\pgfpathlineto{\pgfqpoint{0.988388in}{1.957848in}}% +\pgfpathlineto{\pgfqpoint{1.053474in}{1.936073in}}% +\pgfpathlineto{\pgfqpoint{1.118561in}{1.916736in}}% +\pgfpathlineto{\pgfqpoint{1.183648in}{1.899834in}}% +\pgfpathlineto{\pgfqpoint{1.248735in}{1.885369in}}% +\pgfpathlineto{\pgfqpoint{1.313822in}{1.873341in}}% +\pgfpathlineto{\pgfqpoint{1.378909in}{1.863749in}}% +\pgfpathlineto{\pgfqpoint{1.443996in}{1.856593in}}% +\pgfpathlineto{\pgfqpoint{1.509082in}{1.851874in}}% +\pgfpathlineto{\pgfqpoint{1.574169in}{1.849592in}}% +\pgfpathlineto{\pgfqpoint{1.639256in}{1.849746in}}% +\pgfpathlineto{\pgfqpoint{1.704343in}{1.852336in}}% +\pgfpathlineto{\pgfqpoint{1.769430in}{1.857363in}}% +\pgfpathlineto{\pgfqpoint{1.834517in}{1.864826in}}% +\pgfpathlineto{\pgfqpoint{1.899603in}{1.874726in}}% +\pgfpathlineto{\pgfqpoint{1.964690in}{1.887062in}}% +\pgfpathlineto{\pgfqpoint{2.029777in}{1.901835in}}% +\pgfpathlineto{\pgfqpoint{2.094864in}{1.919044in}}% +\pgfpathlineto{\pgfqpoint{2.159951in}{1.938690in}}% +\pgfpathlineto{\pgfqpoint{2.225038in}{1.960772in}}% +\pgfpathlineto{\pgfqpoint{2.290124in}{1.985290in}}% +\pgfpathlineto{\pgfqpoint{2.355211in}{2.012245in}}% +\pgfpathlineto{\pgfqpoint{2.420298in}{2.041637in}}% +\pgfpathlineto{\pgfqpoint{2.485385in}{2.073465in}}% +\pgfpathlineto{\pgfqpoint{2.550472in}{2.107729in}}% +\pgfpathlineto{\pgfqpoint{2.615559in}{2.144430in}}% +\pgfpathlineto{\pgfqpoint{2.680645in}{2.183568in}}% +\pgfpathlineto{\pgfqpoint{2.745732in}{2.225142in}}% +\pgfpathlineto{\pgfqpoint{2.816736in}{2.273274in}}% +\pgfpathlineto{\pgfqpoint{2.887740in}{2.324305in}}% +\pgfpathlineto{\pgfqpoint{2.958744in}{2.378237in}}% +\pgfpathlineto{\pgfqpoint{3.029748in}{2.435068in}}% +\pgfpathlineto{\pgfqpoint{3.100751in}{2.494798in}}% +\pgfpathlineto{\pgfqpoint{3.171755in}{2.557428in}}% +\pgfpathlineto{\pgfqpoint{3.242759in}{2.622958in}}% +\pgfpathlineto{\pgfqpoint{3.313763in}{2.691387in}}% +\pgfpathlineto{\pgfqpoint{3.384767in}{2.762716in}}% +\pgfpathlineto{\pgfqpoint{3.461687in}{2.843261in}}% +\pgfpathlineto{\pgfqpoint{3.538608in}{2.927209in}}% +\pgfpathlineto{\pgfqpoint{3.615529in}{3.014560in}}% +\pgfpathlineto{\pgfqpoint{3.692450in}{3.105314in}}% +\pgfpathlineto{\pgfqpoint{3.769371in}{3.199471in}}% +\pgfpathlineto{\pgfqpoint{3.846292in}{3.297032in}}% +\pgfpathlineto{\pgfqpoint{3.923212in}{3.397995in}}% +\pgfpathlineto{\pgfqpoint{4.006050in}{3.510530in}}% +\pgfpathlineto{\pgfqpoint{4.088888in}{3.627012in}}% +\pgfpathlineto{\pgfqpoint{4.171726in}{3.747440in}}% +\pgfpathlineto{\pgfqpoint{4.254564in}{3.871816in}}% +\pgfpathlineto{\pgfqpoint{4.317102in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{4.317102in}{3.968330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.903346in}}% +\pgfpathlineto{\pgfqpoint{0.089006in}{2.812566in}}% +\pgfpathlineto{\pgfqpoint{0.136342in}{2.726886in}}% +\pgfpathlineto{\pgfqpoint{0.183678in}{2.646188in}}% +\pgfpathlineto{\pgfqpoint{0.231014in}{2.570351in}}% +\pgfpathlineto{\pgfqpoint{0.272432in}{2.507888in}}% +\pgfpathlineto{\pgfqpoint{0.313851in}{2.448976in}}% +\pgfpathlineto{\pgfqpoint{0.355270in}{2.393535in}}% +\pgfpathlineto{\pgfqpoint{0.396689in}{2.341486in}}% +\pgfpathlineto{\pgfqpoint{0.438108in}{2.292748in}}% +\pgfpathlineto{\pgfqpoint{0.479527in}{2.247242in}}% +\pgfpathlineto{\pgfqpoint{0.520946in}{2.204888in}}% +\pgfpathlineto{\pgfqpoint{0.562365in}{2.165606in}}% +\pgfpathlineto{\pgfqpoint{0.603784in}{2.129316in}}% +\pgfpathlineto{\pgfqpoint{0.645202in}{2.095939in}}% +\pgfpathlineto{\pgfqpoint{0.686621in}{2.065394in}}% +\pgfpathlineto{\pgfqpoint{0.728040in}{2.037601in}}% +\pgfpathlineto{\pgfqpoint{0.769459in}{2.012481in}}% +\pgfpathlineto{\pgfqpoint{0.810878in}{1.989955in}}% +\pgfpathlineto{\pgfqpoint{0.852297in}{1.969941in}}% +\pgfpathlineto{\pgfqpoint{0.893716in}{1.952360in}}% +\pgfpathlineto{\pgfqpoint{0.935135in}{1.937133in}}% +\pgfpathlineto{\pgfqpoint{0.976554in}{1.924179in}}% +\pgfpathlineto{\pgfqpoint{1.017973in}{1.913419in}}% +\pgfpathlineto{\pgfqpoint{1.059391in}{1.904772in}}% +\pgfpathlineto{\pgfqpoint{1.100810in}{1.898160in}}% +\pgfpathlineto{\pgfqpoint{1.148146in}{1.892991in}}% +\pgfpathlineto{\pgfqpoint{1.195482in}{1.890255in}}% +\pgfpathlineto{\pgfqpoint{1.242818in}{1.889833in}}% +\pgfpathlineto{\pgfqpoint{1.290154in}{1.891605in}}% +\pgfpathlineto{\pgfqpoint{1.337490in}{1.895453in}}% +\pgfpathlineto{\pgfqpoint{1.390743in}{1.902115in}}% +\pgfpathlineto{\pgfqpoint{1.443996in}{1.911083in}}% +\pgfpathlineto{\pgfqpoint{1.497248in}{1.922187in}}% +\pgfpathlineto{\pgfqpoint{1.556418in}{1.936824in}}% +\pgfpathlineto{\pgfqpoint{1.615588in}{1.953657in}}% +\pgfpathlineto{\pgfqpoint{1.680675in}{1.974431in}}% +\pgfpathlineto{\pgfqpoint{1.751679in}{1.999437in}}% +\pgfpathlineto{\pgfqpoint{1.828600in}{2.028834in}}% +\pgfpathlineto{\pgfqpoint{1.923271in}{2.067569in}}% +\pgfpathlineto{\pgfqpoint{2.041611in}{2.118583in}}% +\pgfpathlineto{\pgfqpoint{2.331543in}{2.244603in}}% +\pgfpathlineto{\pgfqpoint{2.426215in}{2.282642in}}% +\pgfpathlineto{\pgfqpoint{2.503136in}{2.311279in}}% +\pgfpathlineto{\pgfqpoint{2.574140in}{2.335430in}}% +\pgfpathlineto{\pgfqpoint{2.639227in}{2.355291in}}% +\pgfpathlineto{\pgfqpoint{2.698396in}{2.371186in}}% +\pgfpathlineto{\pgfqpoint{2.757566in}{2.384783in}}% +\pgfpathlineto{\pgfqpoint{2.810819in}{2.394863in}}% +\pgfpathlineto{\pgfqpoint{2.864072in}{2.402724in}}% +\pgfpathlineto{\pgfqpoint{2.917325in}{2.408195in}}% +\pgfpathlineto{\pgfqpoint{2.964661in}{2.410916in}}% +\pgfpathlineto{\pgfqpoint{3.011997in}{2.411496in}}% +\pgfpathlineto{\pgfqpoint{3.059332in}{2.409815in}}% +\pgfpathlineto{\pgfqpoint{3.106668in}{2.405755in}}% +\pgfpathlineto{\pgfqpoint{3.154004in}{2.399196in}}% +\pgfpathlineto{\pgfqpoint{3.195423in}{2.391314in}}% +\pgfpathlineto{\pgfqpoint{3.236842in}{2.381347in}}% +\pgfpathlineto{\pgfqpoint{3.278261in}{2.369216in}}% +\pgfpathlineto{\pgfqpoint{3.319680in}{2.354842in}}% +\pgfpathlineto{\pgfqpoint{3.361099in}{2.338144in}}% +\pgfpathlineto{\pgfqpoint{3.402518in}{2.319042in}}% +\pgfpathlineto{\pgfqpoint{3.443937in}{2.297457in}}% +\pgfpathlineto{\pgfqpoint{3.485355in}{2.273309in}}% +\pgfpathlineto{\pgfqpoint{3.526774in}{2.246517in}}% +\pgfpathlineto{\pgfqpoint{3.568193in}{2.217003in}}% +\pgfpathlineto{\pgfqpoint{3.609612in}{2.184686in}}% +\pgfpathlineto{\pgfqpoint{3.651031in}{2.149486in}}% +\pgfpathlineto{\pgfqpoint{3.692450in}{2.111323in}}% +\pgfpathlineto{\pgfqpoint{3.733869in}{2.070118in}}% +\pgfpathlineto{\pgfqpoint{3.775288in}{2.025791in}}% +\pgfpathlineto{\pgfqpoint{3.816707in}{1.978262in}}% +\pgfpathlineto{\pgfqpoint{3.858126in}{1.927451in}}% +\pgfpathlineto{\pgfqpoint{3.899544in}{1.873278in}}% +\pgfpathlineto{\pgfqpoint{3.940963in}{1.815664in}}% +\pgfpathlineto{\pgfqpoint{3.982382in}{1.754528in}}% +\pgfpathlineto{\pgfqpoint{4.023801in}{1.689790in}}% +\pgfpathlineto{\pgfqpoint{4.065220in}{1.621372in}}% +\pgfpathlineto{\pgfqpoint{4.112556in}{1.538569in}}% +\pgfpathlineto{\pgfqpoint{4.159892in}{1.450735in}}% +\pgfpathlineto{\pgfqpoint{4.207228in}{1.357750in}}% +\pgfpathlineto{\pgfqpoint{4.254564in}{1.259495in}}% +\pgfpathlineto{\pgfqpoint{4.301899in}{1.155851in}}% +\pgfpathlineto{\pgfqpoint{4.349235in}{1.046698in}}% +\pgfpathlineto{\pgfqpoint{4.396571in}{0.931918in}}% +\pgfpathlineto{\pgfqpoint{4.443907in}{0.811391in}}% +\pgfpathlineto{\pgfqpoint{4.491243in}{0.684999in}}% +\pgfpathlineto{\pgfqpoint{4.538579in}{0.552621in}}% +\pgfpathlineto{\pgfqpoint{4.585915in}{0.414138in}}% +\pgfpathlineto{\pgfqpoint{4.633251in}{0.269432in}}% +\pgfpathlineto{\pgfqpoint{4.686503in}{0.099051in}}% +\pgfpathlineto{\pgfqpoint{4.706884in}{0.031670in}}% +\pgfpathlineto{\pgfqpoint{4.706884in}{0.031670in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{3.405463in}}% +\pgfpathlineto{\pgfqpoint{0.077172in}{3.276626in}}% +\pgfpathlineto{\pgfqpoint{0.112674in}{3.155330in}}% +\pgfpathlineto{\pgfqpoint{0.148176in}{3.041328in}}% +\pgfpathlineto{\pgfqpoint{0.183678in}{2.934373in}}% +\pgfpathlineto{\pgfqpoint{0.219180in}{2.834225in}}% +\pgfpathlineto{\pgfqpoint{0.254681in}{2.740644in}}% +\pgfpathlineto{\pgfqpoint{0.290183in}{2.653396in}}% +\pgfpathlineto{\pgfqpoint{0.325685in}{2.572250in}}% +\pgfpathlineto{\pgfqpoint{0.361187in}{2.496978in}}% +\pgfpathlineto{\pgfqpoint{0.396689in}{2.427355in}}% +\pgfpathlineto{\pgfqpoint{0.432191in}{2.363161in}}% +\pgfpathlineto{\pgfqpoint{0.467693in}{2.304179in}}% +\pgfpathlineto{\pgfqpoint{0.503195in}{2.250195in}}% +\pgfpathlineto{\pgfqpoint{0.532780in}{2.208874in}}% +\pgfpathlineto{\pgfqpoint{0.562365in}{2.170757in}}% +\pgfpathlineto{\pgfqpoint{0.591950in}{2.135727in}}% +\pgfpathlineto{\pgfqpoint{0.621535in}{2.103667in}}% +\pgfpathlineto{\pgfqpoint{0.651119in}{2.074462in}}% +\pgfpathlineto{\pgfqpoint{0.680704in}{2.047998in}}% +\pgfpathlineto{\pgfqpoint{0.710289in}{2.024166in}}% +\pgfpathlineto{\pgfqpoint{0.739874in}{2.002854in}}% +\pgfpathlineto{\pgfqpoint{0.769459in}{1.983954in}}% +\pgfpathlineto{\pgfqpoint{0.799044in}{1.967361in}}% +\pgfpathlineto{\pgfqpoint{0.828629in}{1.952969in}}% +\pgfpathlineto{\pgfqpoint{0.858214in}{1.940676in}}% +\pgfpathlineto{\pgfqpoint{0.893716in}{1.928551in}}% +\pgfpathlineto{\pgfqpoint{0.929218in}{1.919131in}}% +\pgfpathlineto{\pgfqpoint{0.964720in}{1.912245in}}% +\pgfpathlineto{\pgfqpoint{1.000222in}{1.907730in}}% +\pgfpathlineto{\pgfqpoint{1.035724in}{1.905424in}}% +\pgfpathlineto{\pgfqpoint{1.071225in}{1.905169in}}% +\pgfpathlineto{\pgfqpoint{1.112644in}{1.907257in}}% +\pgfpathlineto{\pgfqpoint{1.154063in}{1.911687in}}% +\pgfpathlineto{\pgfqpoint{1.195482in}{1.918226in}}% +\pgfpathlineto{\pgfqpoint{1.242818in}{1.927991in}}% +\pgfpathlineto{\pgfqpoint{1.296071in}{1.941509in}}% +\pgfpathlineto{\pgfqpoint{1.355241in}{1.959146in}}% +\pgfpathlineto{\pgfqpoint{1.420328in}{1.981048in}}% +\pgfpathlineto{\pgfqpoint{1.503165in}{2.011566in}}% +\pgfpathlineto{\pgfqpoint{1.651090in}{2.069201in}}% +\pgfpathlineto{\pgfqpoint{1.763513in}{2.111866in}}% +\pgfpathlineto{\pgfqpoint{1.840434in}{2.138807in}}% +\pgfpathlineto{\pgfqpoint{1.905520in}{2.159456in}}% +\pgfpathlineto{\pgfqpoint{1.964690in}{2.176109in}}% +\pgfpathlineto{\pgfqpoint{2.023860in}{2.190419in}}% +\pgfpathlineto{\pgfqpoint{2.077113in}{2.201057in}}% +\pgfpathlineto{\pgfqpoint{2.130366in}{2.209372in}}% +\pgfpathlineto{\pgfqpoint{2.177702in}{2.214674in}}% +\pgfpathlineto{\pgfqpoint{2.225038in}{2.217895in}}% +\pgfpathlineto{\pgfqpoint{2.272373in}{2.218934in}}% +\pgfpathlineto{\pgfqpoint{2.319709in}{2.217705in}}% +\pgfpathlineto{\pgfqpoint{2.367045in}{2.214131in}}% +\pgfpathlineto{\pgfqpoint{2.414381in}{2.208145in}}% +\pgfpathlineto{\pgfqpoint{2.461717in}{2.199693in}}% +\pgfpathlineto{\pgfqpoint{2.509053in}{2.188731in}}% +\pgfpathlineto{\pgfqpoint{2.556389in}{2.175227in}}% +\pgfpathlineto{\pgfqpoint{2.603725in}{2.159157in}}% +\pgfpathlineto{\pgfqpoint{2.651061in}{2.140513in}}% +\pgfpathlineto{\pgfqpoint{2.698396in}{2.119294in}}% +\pgfpathlineto{\pgfqpoint{2.745732in}{2.095510in}}% +\pgfpathlineto{\pgfqpoint{2.793068in}{2.069186in}}% +\pgfpathlineto{\pgfqpoint{2.840404in}{2.040354in}}% +\pgfpathlineto{\pgfqpoint{2.887740in}{2.009058in}}% +\pgfpathlineto{\pgfqpoint{2.940993in}{1.970974in}}% +\pgfpathlineto{\pgfqpoint{2.994246in}{1.929939in}}% +\pgfpathlineto{\pgfqpoint{3.047499in}{1.886065in}}% +\pgfpathlineto{\pgfqpoint{3.100751in}{1.839483in}}% +\pgfpathlineto{\pgfqpoint{3.159921in}{1.784731in}}% +\pgfpathlineto{\pgfqpoint{3.219091in}{1.727049in}}% +\pgfpathlineto{\pgfqpoint{3.284178in}{1.660521in}}% +\pgfpathlineto{\pgfqpoint{3.355182in}{1.584703in}}% +\pgfpathlineto{\pgfqpoint{3.432103in}{1.499366in}}% +\pgfpathlineto{\pgfqpoint{3.526774in}{1.390881in}}% +\pgfpathlineto{\pgfqpoint{3.674699in}{1.217398in}}% +\pgfpathlineto{\pgfqpoint{3.816707in}{1.052009in}}% +\pgfpathlineto{\pgfqpoint{3.899544in}{0.958859in}}% +\pgfpathlineto{\pgfqpoint{3.970548in}{0.882403in}}% +\pgfpathlineto{\pgfqpoint{4.029718in}{0.821859in}}% +\pgfpathlineto{\pgfqpoint{4.082971in}{0.770385in}}% +\pgfpathlineto{\pgfqpoint{4.130307in}{0.727425in}}% +\pgfpathlineto{\pgfqpoint{4.177643in}{0.687455in}}% +\pgfpathlineto{\pgfqpoint{4.219062in}{0.655212in}}% +\pgfpathlineto{\pgfqpoint{4.260481in}{0.625776in}}% +\pgfpathlineto{\pgfqpoint{4.295982in}{0.602970in}}% +\pgfpathlineto{\pgfqpoint{4.331484in}{0.582572in}}% +\pgfpathlineto{\pgfqpoint{4.366986in}{0.564749in}}% +\pgfpathlineto{\pgfqpoint{4.402488in}{0.549670in}}% +\pgfpathlineto{\pgfqpoint{4.432073in}{0.539326in}}% +\pgfpathlineto{\pgfqpoint{4.461658in}{0.531108in}}% +\pgfpathlineto{\pgfqpoint{4.491243in}{0.525122in}}% +\pgfpathlineto{\pgfqpoint{4.520828in}{0.521471in}}% +\pgfpathlineto{\pgfqpoint{4.550413in}{0.520264in}}% +\pgfpathlineto{\pgfqpoint{4.579998in}{0.521608in}}% +\pgfpathlineto{\pgfqpoint{4.609583in}{0.525615in}}% +\pgfpathlineto{\pgfqpoint{4.639168in}{0.532395in}}% +\pgfpathlineto{\pgfqpoint{4.662836in}{0.539892in}}% +\pgfpathlineto{\pgfqpoint{4.686503in}{0.549296in}}% +\pgfpathlineto{\pgfqpoint{4.710171in}{0.560667in}}% +\pgfpathlineto{\pgfqpoint{4.733839in}{0.574065in}}% +\pgfpathlineto{\pgfqpoint{4.757507in}{0.589550in}}% +\pgfpathlineto{\pgfqpoint{4.787092in}{0.611937in}}% +\pgfpathlineto{\pgfqpoint{4.816677in}{0.637805in}}% +\pgfpathlineto{\pgfqpoint{4.846262in}{0.667277in}}% +\pgfpathlineto{\pgfqpoint{4.875847in}{0.700480in}}% +\pgfpathlineto{\pgfqpoint{4.905432in}{0.737539in}}% +\pgfpathlineto{\pgfqpoint{4.935017in}{0.778584in}}% +\pgfpathlineto{\pgfqpoint{4.964602in}{0.823745in}}% +\pgfpathlineto{\pgfqpoint{4.994187in}{0.873154in}}% +\pgfpathlineto{\pgfqpoint{5.023772in}{0.926945in}}% +\pgfpathlineto{\pgfqpoint{5.053357in}{0.985254in}}% +\pgfpathlineto{\pgfqpoint{5.082941in}{1.048218in}}% +\pgfpathlineto{\pgfqpoint{5.112526in}{1.115976in}}% +\pgfpathlineto{\pgfqpoint{5.142111in}{1.188667in}}% +\pgfpathlineto{\pgfqpoint{5.171696in}{1.266435in}}% +\pgfpathlineto{\pgfqpoint{5.207198in}{1.366660in}}% +\pgfpathlineto{\pgfqpoint{5.242700in}{1.474655in}}% +\pgfpathlineto{\pgfqpoint{5.278202in}{1.590673in}}% +\pgfpathlineto{\pgfqpoint{5.313704in}{1.714975in}}% +\pgfpathlineto{\pgfqpoint{5.349206in}{1.847823in}}% +\pgfpathlineto{\pgfqpoint{5.384708in}{1.989482in}}% +\pgfpathlineto{\pgfqpoint{5.420210in}{2.140222in}}% +\pgfpathlineto{\pgfqpoint{5.455712in}{2.300316in}}% +\pgfpathlineto{\pgfqpoint{5.491213in}{2.470039in}}% +\pgfpathlineto{\pgfqpoint{5.526715in}{2.649672in}}% +\pgfpathlineto{\pgfqpoint{5.562217in}{2.839498in}}% +\pgfpathlineto{\pgfqpoint{5.603636in}{3.074227in}}% +\pgfpathlineto{\pgfqpoint{5.645055in}{3.323682in}}% +\pgfpathlineto{\pgfqpoint{5.686474in}{3.588329in}}% +\pgfpathlineto{\pgfqpoint{5.727893in}{3.868644in}}% +\pgfpathlineto{\pgfqpoint{5.742072in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{5.742072in}{3.968330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.062802in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{0.094923in}{3.775703in}}% +\pgfpathlineto{\pgfqpoint{0.130425in}{3.577919in}}% +\pgfpathlineto{\pgfqpoint{0.160010in}{3.424649in}}% +\pgfpathlineto{\pgfqpoint{0.189595in}{3.281426in}}% +\pgfpathlineto{\pgfqpoint{0.219180in}{3.147834in}}% +\pgfpathlineto{\pgfqpoint{0.248764in}{3.023467in}}% +\pgfpathlineto{\pgfqpoint{0.278349in}{2.907931in}}% +\pgfpathlineto{\pgfqpoint{0.307934in}{2.800839in}}% +\pgfpathlineto{\pgfqpoint{0.337519in}{2.701814in}}% +\pgfpathlineto{\pgfqpoint{0.367104in}{2.610489in}}% +\pgfpathlineto{\pgfqpoint{0.396689in}{2.526504in}}% +\pgfpathlineto{\pgfqpoint{0.426274in}{2.449512in}}% +\pgfpathlineto{\pgfqpoint{0.455859in}{2.379172in}}% +\pgfpathlineto{\pgfqpoint{0.485444in}{2.315152in}}% +\pgfpathlineto{\pgfqpoint{0.515029in}{2.257130in}}% +\pgfpathlineto{\pgfqpoint{0.544614in}{2.204792in}}% +\pgfpathlineto{\pgfqpoint{0.574199in}{2.157833in}}% +\pgfpathlineto{\pgfqpoint{0.603784in}{2.115957in}}% +\pgfpathlineto{\pgfqpoint{0.627452in}{2.085922in}}% +\pgfpathlineto{\pgfqpoint{0.651119in}{2.058810in}}% +\pgfpathlineto{\pgfqpoint{0.674787in}{2.034483in}}% +\pgfpathlineto{\pgfqpoint{0.698455in}{2.012804in}}% +\pgfpathlineto{\pgfqpoint{0.722123in}{1.993637in}}% +\pgfpathlineto{\pgfqpoint{0.745791in}{1.976854in}}% +\pgfpathlineto{\pgfqpoint{0.769459in}{1.962327in}}% +\pgfpathlineto{\pgfqpoint{0.793127in}{1.949931in}}% +\pgfpathlineto{\pgfqpoint{0.822712in}{1.937252in}}% +\pgfpathlineto{\pgfqpoint{0.852297in}{1.927487in}}% +\pgfpathlineto{\pgfqpoint{0.881882in}{1.920414in}}% +\pgfpathlineto{\pgfqpoint{0.911467in}{1.915820in}}% +\pgfpathlineto{\pgfqpoint{0.941052in}{1.913500in}}% +\pgfpathlineto{\pgfqpoint{0.970637in}{1.913253in}}% +\pgfpathlineto{\pgfqpoint{1.006139in}{1.915424in}}% +\pgfpathlineto{\pgfqpoint{1.041641in}{1.919988in}}% +\pgfpathlineto{\pgfqpoint{1.077142in}{1.926642in}}% +\pgfpathlineto{\pgfqpoint{1.118561in}{1.936660in}}% +\pgfpathlineto{\pgfqpoint{1.165897in}{1.950553in}}% +\pgfpathlineto{\pgfqpoint{1.219150in}{1.968576in}}% +\pgfpathlineto{\pgfqpoint{1.290154in}{1.995219in}}% +\pgfpathlineto{\pgfqpoint{1.520916in}{2.084084in}}% +\pgfpathlineto{\pgfqpoint{1.580086in}{2.103653in}}% +\pgfpathlineto{\pgfqpoint{1.633339in}{2.119144in}}% +\pgfpathlineto{\pgfqpoint{1.686592in}{2.132279in}}% +\pgfpathlineto{\pgfqpoint{1.733928in}{2.141744in}}% +\pgfpathlineto{\pgfqpoint{1.781264in}{2.148956in}}% +\pgfpathlineto{\pgfqpoint{1.828600in}{2.153779in}}% +\pgfpathlineto{\pgfqpoint{1.875935in}{2.156106in}}% +\pgfpathlineto{\pgfqpoint{1.917354in}{2.156033in}}% +\pgfpathlineto{\pgfqpoint{1.958773in}{2.153953in}}% +\pgfpathlineto{\pgfqpoint{2.000192in}{2.149848in}}% +\pgfpathlineto{\pgfqpoint{2.041611in}{2.143710in}}% +\pgfpathlineto{\pgfqpoint{2.083030in}{2.135551in}}% +\pgfpathlineto{\pgfqpoint{2.130366in}{2.123782in}}% +\pgfpathlineto{\pgfqpoint{2.177702in}{2.109457in}}% +\pgfpathlineto{\pgfqpoint{2.225038in}{2.092656in}}% +\pgfpathlineto{\pgfqpoint{2.272373in}{2.073477in}}% +\pgfpathlineto{\pgfqpoint{2.319709in}{2.052037in}}% +\pgfpathlineto{\pgfqpoint{2.372962in}{2.025387in}}% +\pgfpathlineto{\pgfqpoint{2.426215in}{1.996269in}}% +\pgfpathlineto{\pgfqpoint{2.485385in}{1.961326in}}% +\pgfpathlineto{\pgfqpoint{2.550472in}{1.920172in}}% +\pgfpathlineto{\pgfqpoint{2.621476in}{1.872660in}}% +\pgfpathlineto{\pgfqpoint{2.716147in}{1.806369in}}% +\pgfpathlineto{\pgfqpoint{2.964661in}{1.630566in}}% +\pgfpathlineto{\pgfqpoint{3.035665in}{1.583932in}}% +\pgfpathlineto{\pgfqpoint{3.094834in}{1.547616in}}% +\pgfpathlineto{\pgfqpoint{3.148087in}{1.517423in}}% +\pgfpathlineto{\pgfqpoint{3.195423in}{1.492921in}}% +\pgfpathlineto{\pgfqpoint{3.242759in}{1.470928in}}% +\pgfpathlineto{\pgfqpoint{3.284178in}{1.453976in}}% +\pgfpathlineto{\pgfqpoint{3.325597in}{1.439369in}}% +\pgfpathlineto{\pgfqpoint{3.367016in}{1.427302in}}% +\pgfpathlineto{\pgfqpoint{3.402518in}{1.419128in}}% +\pgfpathlineto{\pgfqpoint{3.438020in}{1.413082in}}% +\pgfpathlineto{\pgfqpoint{3.473521in}{1.409282in}}% +\pgfpathlineto{\pgfqpoint{3.509023in}{1.407845in}}% +\pgfpathlineto{\pgfqpoint{3.544525in}{1.408883in}}% +\pgfpathlineto{\pgfqpoint{3.580027in}{1.412509in}}% +\pgfpathlineto{\pgfqpoint{3.609612in}{1.417585in}}% +\pgfpathlineto{\pgfqpoint{3.639197in}{1.424593in}}% +\pgfpathlineto{\pgfqpoint{3.668782in}{1.433595in}}% +\pgfpathlineto{\pgfqpoint{3.698367in}{1.444647in}}% +\pgfpathlineto{\pgfqpoint{3.727952in}{1.457806in}}% +\pgfpathlineto{\pgfqpoint{3.757537in}{1.473126in}}% +\pgfpathlineto{\pgfqpoint{3.787122in}{1.490660in}}% +\pgfpathlineto{\pgfqpoint{3.816707in}{1.510457in}}% +\pgfpathlineto{\pgfqpoint{3.846292in}{1.532567in}}% +\pgfpathlineto{\pgfqpoint{3.875876in}{1.557035in}}% +\pgfpathlineto{\pgfqpoint{3.911378in}{1.589571in}}% +\pgfpathlineto{\pgfqpoint{3.946880in}{1.625636in}}% +\pgfpathlineto{\pgfqpoint{3.982382in}{1.665297in}}% +\pgfpathlineto{\pgfqpoint{4.017884in}{1.708612in}}% +\pgfpathlineto{\pgfqpoint{4.053386in}{1.755638in}}% +\pgfpathlineto{\pgfqpoint{4.088888in}{1.806421in}}% +\pgfpathlineto{\pgfqpoint{4.124390in}{1.861004in}}% +\pgfpathlineto{\pgfqpoint{4.159892in}{1.919422in}}% +\pgfpathlineto{\pgfqpoint{4.195394in}{1.981705in}}% +\pgfpathlineto{\pgfqpoint{4.236813in}{2.059281in}}% +\pgfpathlineto{\pgfqpoint{4.278231in}{2.142169in}}% +\pgfpathlineto{\pgfqpoint{4.319650in}{2.230377in}}% +\pgfpathlineto{\pgfqpoint{4.361069in}{2.323900in}}% +\pgfpathlineto{\pgfqpoint{4.402488in}{2.422716in}}% +\pgfpathlineto{\pgfqpoint{4.443907in}{2.526790in}}% +\pgfpathlineto{\pgfqpoint{4.491243in}{2.652101in}}% +\pgfpathlineto{\pgfqpoint{4.538579in}{2.784105in}}% +\pgfpathlineto{\pgfqpoint{4.585915in}{2.922669in}}% +\pgfpathlineto{\pgfqpoint{4.633251in}{3.067630in}}% +\pgfpathlineto{\pgfqpoint{4.686503in}{3.238112in}}% +\pgfpathlineto{\pgfqpoint{4.739756in}{3.416115in}}% +\pgfpathlineto{\pgfqpoint{4.798926in}{3.622253in}}% +\pgfpathlineto{\pgfqpoint{4.858096in}{3.836605in}}% +\pgfpathlineto{\pgfqpoint{4.893453in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{4.893453in}{3.968330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.160076in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{0.189595in}{3.747453in}}% +\pgfpathlineto{\pgfqpoint{0.219180in}{3.543692in}}% +\pgfpathlineto{\pgfqpoint{0.248764in}{3.356610in}}% +\pgfpathlineto{\pgfqpoint{0.278349in}{3.185290in}}% +\pgfpathlineto{\pgfqpoint{0.307934in}{3.028848in}}% +\pgfpathlineto{\pgfqpoint{0.337519in}{2.886428in}}% +\pgfpathlineto{\pgfqpoint{0.367104in}{2.757208in}}% +\pgfpathlineto{\pgfqpoint{0.390772in}{2.662802in}}% +\pgfpathlineto{\pgfqpoint{0.414440in}{2.575943in}}% +\pgfpathlineto{\pgfqpoint{0.438108in}{2.496251in}}% +\pgfpathlineto{\pgfqpoint{0.461776in}{2.423358in}}% +\pgfpathlineto{\pgfqpoint{0.485444in}{2.356904in}}% +\pgfpathlineto{\pgfqpoint{0.509112in}{2.296546in}}% +\pgfpathlineto{\pgfqpoint{0.532780in}{2.241948in}}% +\pgfpathlineto{\pgfqpoint{0.556448in}{2.192785in}}% +\pgfpathlineto{\pgfqpoint{0.580116in}{2.148746in}}% +\pgfpathlineto{\pgfqpoint{0.603784in}{2.109526in}}% +\pgfpathlineto{\pgfqpoint{0.627452in}{2.074834in}}% +\pgfpathlineto{\pgfqpoint{0.651119in}{2.044387in}}% +\pgfpathlineto{\pgfqpoint{0.674787in}{2.017914in}}% +\pgfpathlineto{\pgfqpoint{0.698455in}{1.995150in}}% +\pgfpathlineto{\pgfqpoint{0.722123in}{1.975844in}}% +\pgfpathlineto{\pgfqpoint{0.745791in}{1.959752in}}% +\pgfpathlineto{\pgfqpoint{0.769459in}{1.946640in}}% +\pgfpathlineto{\pgfqpoint{0.793127in}{1.936281in}}% +\pgfpathlineto{\pgfqpoint{0.816795in}{1.928461in}}% +\pgfpathlineto{\pgfqpoint{0.840463in}{1.922970in}}% +\pgfpathlineto{\pgfqpoint{0.864131in}{1.919609in}}% +\pgfpathlineto{\pgfqpoint{0.887799in}{1.918188in}}% +\pgfpathlineto{\pgfqpoint{0.917384in}{1.918860in}}% +\pgfpathlineto{\pgfqpoint{0.946969in}{1.921938in}}% +\pgfpathlineto{\pgfqpoint{0.976554in}{1.927100in}}% +\pgfpathlineto{\pgfqpoint{1.012056in}{1.935622in}}% +\pgfpathlineto{\pgfqpoint{1.053474in}{1.948158in}}% +\pgfpathlineto{\pgfqpoint{1.100810in}{1.965037in}}% +\pgfpathlineto{\pgfqpoint{1.165897in}{1.991006in}}% +\pgfpathlineto{\pgfqpoint{1.331573in}{2.058466in}}% +\pgfpathlineto{\pgfqpoint{1.384826in}{2.077333in}}% +\pgfpathlineto{\pgfqpoint{1.432162in}{2.092015in}}% +\pgfpathlineto{\pgfqpoint{1.479497in}{2.104371in}}% +\pgfpathlineto{\pgfqpoint{1.520916in}{2.113060in}}% +\pgfpathlineto{\pgfqpoint{1.562335in}{2.119621in}}% +\pgfpathlineto{\pgfqpoint{1.603754in}{2.123950in}}% +\pgfpathlineto{\pgfqpoint{1.645173in}{2.125978in}}% +\pgfpathlineto{\pgfqpoint{1.686592in}{2.125667in}}% +\pgfpathlineto{\pgfqpoint{1.728011in}{2.123013in}}% +\pgfpathlineto{\pgfqpoint{1.769430in}{2.118036in}}% +\pgfpathlineto{\pgfqpoint{1.810849in}{2.110785in}}% +\pgfpathlineto{\pgfqpoint{1.852267in}{2.101330in}}% +\pgfpathlineto{\pgfqpoint{1.893686in}{2.089767in}}% +\pgfpathlineto{\pgfqpoint{1.941022in}{2.074119in}}% +\pgfpathlineto{\pgfqpoint{1.988358in}{2.056068in}}% +\pgfpathlineto{\pgfqpoint{2.041611in}{2.033177in}}% +\pgfpathlineto{\pgfqpoint{2.094864in}{2.007901in}}% +\pgfpathlineto{\pgfqpoint{2.159951in}{1.974353in}}% +\pgfpathlineto{\pgfqpoint{2.236872in}{1.931958in}}% +\pgfpathlineto{\pgfqpoint{2.384796in}{1.847001in}}% +\pgfpathlineto{\pgfqpoint{2.479468in}{1.794181in}}% +\pgfpathlineto{\pgfqpoint{2.544555in}{1.760299in}}% +\pgfpathlineto{\pgfqpoint{2.603725in}{1.732074in}}% +\pgfpathlineto{\pgfqpoint{2.656977in}{1.709318in}}% +\pgfpathlineto{\pgfqpoint{2.704313in}{1.691575in}}% +\pgfpathlineto{\pgfqpoint{2.745732in}{1.678218in}}% +\pgfpathlineto{\pgfqpoint{2.787151in}{1.667088in}}% +\pgfpathlineto{\pgfqpoint{2.828570in}{1.658371in}}% +\pgfpathlineto{\pgfqpoint{2.864072in}{1.652952in}}% +\pgfpathlineto{\pgfqpoint{2.899574in}{1.649539in}}% +\pgfpathlineto{\pgfqpoint{2.935076in}{1.648228in}}% +\pgfpathlineto{\pgfqpoint{2.970578in}{1.649110in}}% +\pgfpathlineto{\pgfqpoint{3.006080in}{1.652268in}}% +\pgfpathlineto{\pgfqpoint{3.041582in}{1.657780in}}% +\pgfpathlineto{\pgfqpoint{3.077083in}{1.665714in}}% +\pgfpathlineto{\pgfqpoint{3.112585in}{1.676130in}}% +\pgfpathlineto{\pgfqpoint{3.148087in}{1.689080in}}% +\pgfpathlineto{\pgfqpoint{3.183589in}{1.704609in}}% +\pgfpathlineto{\pgfqpoint{3.219091in}{1.722751in}}% +\pgfpathlineto{\pgfqpoint{3.254593in}{1.743532in}}% +\pgfpathlineto{\pgfqpoint{3.290095in}{1.766969in}}% +\pgfpathlineto{\pgfqpoint{3.325597in}{1.793068in}}% +\pgfpathlineto{\pgfqpoint{3.361099in}{1.821829in}}% +\pgfpathlineto{\pgfqpoint{3.396601in}{1.853238in}}% +\pgfpathlineto{\pgfqpoint{3.432103in}{1.887275in}}% +\pgfpathlineto{\pgfqpoint{3.473521in}{1.930260in}}% +\pgfpathlineto{\pgfqpoint{3.514940in}{1.976709in}}% +\pgfpathlineto{\pgfqpoint{3.556359in}{2.026533in}}% +\pgfpathlineto{\pgfqpoint{3.597778in}{2.079626in}}% +\pgfpathlineto{\pgfqpoint{3.645114in}{2.144145in}}% +\pgfpathlineto{\pgfqpoint{3.692450in}{2.212550in}}% +\pgfpathlineto{\pgfqpoint{3.745703in}{2.293837in}}% +\pgfpathlineto{\pgfqpoint{3.798956in}{2.379315in}}% +\pgfpathlineto{\pgfqpoint{3.858126in}{2.478643in}}% +\pgfpathlineto{\pgfqpoint{3.923212in}{2.592375in}}% +\pgfpathlineto{\pgfqpoint{4.000133in}{2.731415in}}% +\pgfpathlineto{\pgfqpoint{4.118473in}{2.950766in}}% +\pgfpathlineto{\pgfqpoint{4.248647in}{3.191037in}}% +\pgfpathlineto{\pgfqpoint{4.319650in}{3.317476in}}% +\pgfpathlineto{\pgfqpoint{4.378820in}{3.418354in}}% +\pgfpathlineto{\pgfqpoint{4.432073in}{3.504493in}}% +\pgfpathlineto{\pgfqpoint{4.479409in}{3.576524in}}% +\pgfpathlineto{\pgfqpoint{4.520828in}{3.635455in}}% +\pgfpathlineto{\pgfqpoint{4.556330in}{3.682531in}}% +\pgfpathlineto{\pgfqpoint{4.591832in}{3.726097in}}% +\pgfpathlineto{\pgfqpoint{4.627334in}{3.765832in}}% +\pgfpathlineto{\pgfqpoint{4.656919in}{3.795780in}}% +\pgfpathlineto{\pgfqpoint{4.686503in}{3.822646in}}% +\pgfpathlineto{\pgfqpoint{4.716088in}{3.846238in}}% +\pgfpathlineto{\pgfqpoint{4.739756in}{3.862621in}}% +\pgfpathlineto{\pgfqpoint{4.763424in}{3.876683in}}% +\pgfpathlineto{\pgfqpoint{4.787092in}{3.888322in}}% +\pgfpathlineto{\pgfqpoint{4.810760in}{3.897435in}}% +\pgfpathlineto{\pgfqpoint{4.834428in}{3.903922in}}% +\pgfpathlineto{\pgfqpoint{4.858096in}{3.907680in}}% +\pgfpathlineto{\pgfqpoint{4.881764in}{3.908605in}}% +\pgfpathlineto{\pgfqpoint{4.899515in}{3.907380in}}% +\pgfpathlineto{\pgfqpoint{4.917266in}{3.904460in}}% +\pgfpathlineto{\pgfqpoint{4.935017in}{3.899802in}}% +\pgfpathlineto{\pgfqpoint{4.952768in}{3.893364in}}% +\pgfpathlineto{\pgfqpoint{4.970519in}{3.885102in}}% +\pgfpathlineto{\pgfqpoint{4.988270in}{3.874973in}}% +\pgfpathlineto{\pgfqpoint{5.011938in}{3.858488in}}% +\pgfpathlineto{\pgfqpoint{5.035606in}{3.838504in}}% +\pgfpathlineto{\pgfqpoint{5.059274in}{3.814920in}}% +\pgfpathlineto{\pgfqpoint{5.082941in}{3.787635in}}% +\pgfpathlineto{\pgfqpoint{5.106609in}{3.756547in}}% +\pgfpathlineto{\pgfqpoint{5.130277in}{3.721557in}}% +\pgfpathlineto{\pgfqpoint{5.153945in}{3.682565in}}% +\pgfpathlineto{\pgfqpoint{5.177613in}{3.639473in}}% +\pgfpathlineto{\pgfqpoint{5.201281in}{3.592183in}}% +\pgfpathlineto{\pgfqpoint{5.224949in}{3.540598in}}% +\pgfpathlineto{\pgfqpoint{5.254534in}{3.469933in}}% +\pgfpathlineto{\pgfqpoint{5.284119in}{3.392224in}}% +\pgfpathlineto{\pgfqpoint{5.313704in}{3.307291in}}% +\pgfpathlineto{\pgfqpoint{5.343289in}{3.214956in}}% +\pgfpathlineto{\pgfqpoint{5.372874in}{3.115047in}}% +\pgfpathlineto{\pgfqpoint{5.402459in}{3.007394in}}% +\pgfpathlineto{\pgfqpoint{5.432044in}{2.891832in}}% +\pgfpathlineto{\pgfqpoint{5.461629in}{2.768202in}}% +\pgfpathlineto{\pgfqpoint{5.491213in}{2.636349in}}% +\pgfpathlineto{\pgfqpoint{5.526715in}{2.467060in}}% +\pgfpathlineto{\pgfqpoint{5.562217in}{2.285470in}}% +\pgfpathlineto{\pgfqpoint{5.597719in}{2.091342in}}% +\pgfpathlineto{\pgfqpoint{5.633221in}{1.884459in}}% +\pgfpathlineto{\pgfqpoint{5.668723in}{1.664615in}}% +\pgfpathlineto{\pgfqpoint{5.704225in}{1.431621in}}% +\pgfpathlineto{\pgfqpoint{5.739727in}{1.185303in}}% +\pgfpathlineto{\pgfqpoint{5.781146in}{0.880889in}}% +\pgfpathlineto{\pgfqpoint{5.822565in}{0.557917in}}% +\pgfpathlineto{\pgfqpoint{5.863984in}{0.216210in}}% +\pgfpathlineto{\pgfqpoint{5.885447in}{0.031670in}}% +\pgfpathlineto{\pgfqpoint{5.885447in}{0.031670in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.226531in}{3.968330in}}% +\pgfpathlineto{\pgfqpoint{0.248764in}{3.767229in}}% +\pgfpathlineto{\pgfqpoint{0.272432in}{3.569453in}}% +\pgfpathlineto{\pgfqpoint{0.296100in}{3.387479in}}% +\pgfpathlineto{\pgfqpoint{0.319768in}{3.220430in}}% +\pgfpathlineto{\pgfqpoint{0.343436in}{3.067463in}}% +\pgfpathlineto{\pgfqpoint{0.367104in}{2.927764in}}% +\pgfpathlineto{\pgfqpoint{0.390772in}{2.800552in}}% +\pgfpathlineto{\pgfqpoint{0.414440in}{2.685078in}}% +\pgfpathlineto{\pgfqpoint{0.438108in}{2.580621in}}% +\pgfpathlineto{\pgfqpoint{0.461776in}{2.486488in}}% +\pgfpathlineto{\pgfqpoint{0.485444in}{2.402017in}}% +\pgfpathlineto{\pgfqpoint{0.509112in}{2.326572in}}% +\pgfpathlineto{\pgfqpoint{0.532780in}{2.259543in}}% +\pgfpathlineto{\pgfqpoint{0.556448in}{2.200349in}}% +\pgfpathlineto{\pgfqpoint{0.580116in}{2.148431in}}% +\pgfpathlineto{\pgfqpoint{0.603784in}{2.103257in}}% +\pgfpathlineto{\pgfqpoint{0.621535in}{2.073496in}}% +\pgfpathlineto{\pgfqpoint{0.639286in}{2.047036in}}% +\pgfpathlineto{\pgfqpoint{0.657036in}{2.023678in}}% +\pgfpathlineto{\pgfqpoint{0.674787in}{2.003232in}}% +\pgfpathlineto{\pgfqpoint{0.692538in}{1.985512in}}% +\pgfpathlineto{\pgfqpoint{0.710289in}{1.970341in}}% +\pgfpathlineto{\pgfqpoint{0.728040in}{1.957548in}}% +\pgfpathlineto{\pgfqpoint{0.745791in}{1.946967in}}% +\pgfpathlineto{\pgfqpoint{0.763542in}{1.938442in}}% +\pgfpathlineto{\pgfqpoint{0.781293in}{1.931819in}}% +\pgfpathlineto{\pgfqpoint{0.804961in}{1.925698in}}% +\pgfpathlineto{\pgfqpoint{0.828629in}{1.922372in}}% +\pgfpathlineto{\pgfqpoint{0.852297in}{1.921528in}}% +\pgfpathlineto{\pgfqpoint{0.875965in}{1.922875in}}% +\pgfpathlineto{\pgfqpoint{0.905550in}{1.927217in}}% +\pgfpathlineto{\pgfqpoint{0.935135in}{1.934045in}}% +\pgfpathlineto{\pgfqpoint{0.970637in}{1.944868in}}% +\pgfpathlineto{\pgfqpoint{1.012056in}{1.960198in}}% +\pgfpathlineto{\pgfqpoint{1.065308in}{1.982607in}}% +\pgfpathlineto{\pgfqpoint{1.219150in}{2.049183in}}% +\pgfpathlineto{\pgfqpoint{1.266486in}{2.066673in}}% +\pgfpathlineto{\pgfqpoint{1.307905in}{2.079881in}}% +\pgfpathlineto{\pgfqpoint{1.349324in}{2.090815in}}% +\pgfpathlineto{\pgfqpoint{1.390743in}{2.099253in}}% +\pgfpathlineto{\pgfqpoint{1.426245in}{2.104380in}}% +\pgfpathlineto{\pgfqpoint{1.461746in}{2.107498in}}% +\pgfpathlineto{\pgfqpoint{1.497248in}{2.108581in}}% +\pgfpathlineto{\pgfqpoint{1.532750in}{2.107630in}}% +\pgfpathlineto{\pgfqpoint{1.568252in}{2.104672in}}% +\pgfpathlineto{\pgfqpoint{1.603754in}{2.099759in}}% +\pgfpathlineto{\pgfqpoint{1.645173in}{2.091658in}}% +\pgfpathlineto{\pgfqpoint{1.686592in}{2.081149in}}% +\pgfpathlineto{\pgfqpoint{1.728011in}{2.068416in}}% +\pgfpathlineto{\pgfqpoint{1.775347in}{2.051412in}}% +\pgfpathlineto{\pgfqpoint{1.822683in}{2.032130in}}% +\pgfpathlineto{\pgfqpoint{1.881852in}{2.005410in}}% +\pgfpathlineto{\pgfqpoint{1.952856in}{1.970574in}}% +\pgfpathlineto{\pgfqpoint{2.207287in}{1.842753in}}% +\pgfpathlineto{\pgfqpoint{2.260539in}{1.819638in}}% +\pgfpathlineto{\pgfqpoint{2.307875in}{1.801233in}}% +\pgfpathlineto{\pgfqpoint{2.355211in}{1.785225in}}% +\pgfpathlineto{\pgfqpoint{2.396630in}{1.773451in}}% +\pgfpathlineto{\pgfqpoint{2.438049in}{1.763982in}}% +\pgfpathlineto{\pgfqpoint{2.479468in}{1.757005in}}% +\pgfpathlineto{\pgfqpoint{2.514970in}{1.753139in}}% +\pgfpathlineto{\pgfqpoint{2.550472in}{1.751324in}}% +\pgfpathlineto{\pgfqpoint{2.585974in}{1.751644in}}% +\pgfpathlineto{\pgfqpoint{2.621476in}{1.754169in}}% +\pgfpathlineto{\pgfqpoint{2.656977in}{1.758958in}}% +\pgfpathlineto{\pgfqpoint{2.692479in}{1.766056in}}% +\pgfpathlineto{\pgfqpoint{2.727981in}{1.775495in}}% +\pgfpathlineto{\pgfqpoint{2.763483in}{1.787296in}}% +\pgfpathlineto{\pgfqpoint{2.798985in}{1.801463in}}% +\pgfpathlineto{\pgfqpoint{2.834487in}{1.817991in}}% +\pgfpathlineto{\pgfqpoint{2.869989in}{1.836858in}}% +\pgfpathlineto{\pgfqpoint{2.905491in}{1.858030in}}% +\pgfpathlineto{\pgfqpoint{2.946910in}{1.885581in}}% +\pgfpathlineto{\pgfqpoint{2.988329in}{1.916108in}}% +\pgfpathlineto{\pgfqpoint{3.029748in}{1.949487in}}% +\pgfpathlineto{\pgfqpoint{3.071166in}{1.985574in}}% +\pgfpathlineto{\pgfqpoint{3.118502in}{2.029913in}}% +\pgfpathlineto{\pgfqpoint{3.165838in}{2.077278in}}% +\pgfpathlineto{\pgfqpoint{3.219091in}{2.133774in}}% +\pgfpathlineto{\pgfqpoint{3.278261in}{2.199921in}}% +\pgfpathlineto{\pgfqpoint{3.349265in}{2.282904in}}% +\pgfpathlineto{\pgfqpoint{3.449854in}{2.404360in}}% +\pgfpathlineto{\pgfqpoint{3.580027in}{2.561142in}}% +\pgfpathlineto{\pgfqpoint{3.645114in}{2.636131in}}% +\pgfpathlineto{\pgfqpoint{3.698367in}{2.694373in}}% +\pgfpathlineto{\pgfqpoint{3.745703in}{2.743049in}}% +\pgfpathlineto{\pgfqpoint{3.787122in}{2.782752in}}% +\pgfpathlineto{\pgfqpoint{3.828541in}{2.819328in}}% +\pgfpathlineto{\pgfqpoint{3.864042in}{2.847879in}}% +\pgfpathlineto{\pgfqpoint{3.899544in}{2.873571in}}% +\pgfpathlineto{\pgfqpoint{3.929129in}{2.892611in}}% +\pgfpathlineto{\pgfqpoint{3.958714in}{2.909339in}}% +\pgfpathlineto{\pgfqpoint{3.988299in}{2.923607in}}% +\pgfpathlineto{\pgfqpoint{4.017884in}{2.935270in}}% +\pgfpathlineto{\pgfqpoint{4.047469in}{2.944185in}}% +\pgfpathlineto{\pgfqpoint{4.071137in}{2.949243in}}% +\pgfpathlineto{\pgfqpoint{4.094805in}{2.952380in}}% +\pgfpathlineto{\pgfqpoint{4.118473in}{2.953528in}}% +\pgfpathlineto{\pgfqpoint{4.142141in}{2.952616in}}% +\pgfpathlineto{\pgfqpoint{4.165809in}{2.949579in}}% +\pgfpathlineto{\pgfqpoint{4.189477in}{2.944349in}}% +\pgfpathlineto{\pgfqpoint{4.213145in}{2.936864in}}% +\pgfpathlineto{\pgfqpoint{4.236813in}{2.927061in}}% +\pgfpathlineto{\pgfqpoint{4.260481in}{2.914879in}}% +\pgfpathlineto{\pgfqpoint{4.284148in}{2.900260in}}% +\pgfpathlineto{\pgfqpoint{4.307816in}{2.883148in}}% +\pgfpathlineto{\pgfqpoint{4.331484in}{2.863488in}}% +\pgfpathlineto{\pgfqpoint{4.355152in}{2.841228in}}% +\pgfpathlineto{\pgfqpoint{4.378820in}{2.816319in}}% +\pgfpathlineto{\pgfqpoint{4.402488in}{2.788714in}}% +\pgfpathlineto{\pgfqpoint{4.432073in}{2.750348in}}% +\pgfpathlineto{\pgfqpoint{4.461658in}{2.707620in}}% +\pgfpathlineto{\pgfqpoint{4.491243in}{2.660455in}}% +\pgfpathlineto{\pgfqpoint{4.520828in}{2.608787in}}% +\pgfpathlineto{\pgfqpoint{4.550413in}{2.552558in}}% +\pgfpathlineto{\pgfqpoint{4.579998in}{2.491717in}}% +\pgfpathlineto{\pgfqpoint{4.609583in}{2.426220in}}% +\pgfpathlineto{\pgfqpoint{4.639168in}{2.356035in}}% +\pgfpathlineto{\pgfqpoint{4.674669in}{2.265589in}}% +\pgfpathlineto{\pgfqpoint{4.710171in}{2.168330in}}% +\pgfpathlineto{\pgfqpoint{4.745673in}{2.064252in}}% +\pgfpathlineto{\pgfqpoint{4.781175in}{1.953370in}}% +\pgfpathlineto{\pgfqpoint{4.816677in}{1.835719in}}% +\pgfpathlineto{\pgfqpoint{4.858096in}{1.689983in}}% +\pgfpathlineto{\pgfqpoint{4.899515in}{1.535245in}}% +\pgfpathlineto{\pgfqpoint{4.940934in}{1.371677in}}% +\pgfpathlineto{\pgfqpoint{4.982353in}{1.199498in}}% +\pgfpathlineto{\pgfqpoint{5.029689in}{0.992518in}}% +\pgfpathlineto{\pgfqpoint{5.077024in}{0.775107in}}% +\pgfpathlineto{\pgfqpoint{5.124360in}{0.547814in}}% +\pgfpathlineto{\pgfqpoint{5.177613in}{0.281092in}}% +\pgfpathlineto{\pgfqpoint{5.225582in}{0.031670in}}% +\pgfpathlineto{\pgfqpoint{5.225582in}{0.031670in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.579040in}{0.041670in}}% +\pgfpathlineto{\pgfqpoint{0.579040in}{3.958330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.041670in}{2.000000in}}% +\pgfpathlineto{\pgfqpoint{5.953330in}{2.000000in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetfillopacity{0.800000}% +\pgfsetlinewidth{1.003750pt}% +\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.800000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.813961in}{0.080837in}}% +\pgfpathlineto{\pgfqpoint{2.944352in}{0.080837in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.977686in}{0.080837in}}{\pgfqpoint{2.977686in}{0.114170in}}% +\pgfpathlineto{\pgfqpoint{2.977686in}{1.076018in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.977686in}{1.109352in}}{\pgfqpoint{2.944352in}{1.109352in}}% +\pgfpathlineto{\pgfqpoint{0.813961in}{1.109352in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.780627in}{1.109352in}}{\pgfqpoint{0.780627in}{1.076018in}}% +\pgfpathlineto{\pgfqpoint{0.780627in}{0.114170in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.780627in}{0.080837in}}{\pgfqpoint{0.813961in}{0.080837in}}% +\pgfpathlineto{\pgfqpoint{0.813961in}{0.080837in}}% +\pgfpathclose% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.847294in}{0.974391in}}% +\pgfpathlineto{\pgfqpoint{1.013961in}{0.974391in}}% +\pgfpathlineto{\pgfqpoint{1.180627in}{0.974391in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.313961in,y=0.916057in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=0\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.847294in}{0.729762in}}% +\pgfpathlineto{\pgfqpoint{1.013961in}{0.729762in}}% +\pgfpathlineto{\pgfqpoint{1.180627in}{0.729762in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.313961in,y=0.671429in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=1\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.847294in}{0.485133in}}% +\pgfpathlineto{\pgfqpoint{1.013961in}{0.485133in}}% +\pgfpathlineto{\pgfqpoint{1.180627in}{0.485133in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.313961in,y=0.426800in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.847294in}{0.240504in}}% +\pgfpathlineto{\pgfqpoint{1.013961in}{0.240504in}}% +\pgfpathlineto{\pgfqpoint{1.180627in}{0.240504in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.313961in,y=0.182171in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=3\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.045823in}{0.974391in}}% +\pgfpathlineto{\pgfqpoint{2.212490in}{0.974391in}}% +\pgfpathlineto{\pgfqpoint{2.379157in}{0.974391in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.512490in,y=0.916057in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=4\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.045823in}{0.729762in}}% +\pgfpathlineto{\pgfqpoint{2.212490in}{0.729762in}}% +\pgfpathlineto{\pgfqpoint{2.379157in}{0.729762in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.512490in,y=0.671429in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=5\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.045823in}{0.485133in}}% +\pgfpathlineto{\pgfqpoint{2.212490in}{0.485133in}}% +\pgfpathlineto{\pgfqpoint{2.379157in}{0.485133in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.512490in,y=0.426800in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=6\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.045823in}{0.240504in}}% +\pgfpathlineto{\pgfqpoint{2.212490in}{0.240504in}}% +\pgfpathlineto{\pgfqpoint{2.379157in}{0.240504in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.512490in,y=0.182171in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=7\)}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/images/laguerre_polynomes.pgf b/buch/papers/laguerre/images/laguerre_polynomes.pgf deleted file mode 100644 index 8df1baf..0000000 --- a/buch/papers/laguerre/images/laguerre_polynomes.pgf +++ /dev/null @@ -1,1838 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{0.041670in}}% -\pgfpathlineto{\pgfqpoint{5.953330in}{0.041670in}}% -\pgfpathlineto{\pgfqpoint{5.953330in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.041670in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.041670in}{0.041670in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.501875pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.952738in}{2.000000in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{1.967361in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{1.999925in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{1.999925in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{2.000075in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{2.000075in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{2.032639in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{2.000000in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.501875pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.579040in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.611667in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.579296in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.579296in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.578784in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.578784in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.546412in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.579040in}{3.958330in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.137944in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.137944in,y=1.902778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{5.696848in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=5.696848in,y=1.902778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.067259in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.090821in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.602601in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.114382in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.626163in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.649725in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.161505in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.673286in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{5.185067in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=5.953330in,y=1.907254in,,top]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle x\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.493592in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.197062in, y=0.440831in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.246796in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.285427in, y=1.194035in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.393452in, y=1.947238in, left, top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.753204in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.393452in, y=2.700442in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.506408in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.305087in, y=3.453646in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.041670in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.192311in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.342952in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.644233in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.794874in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.945515in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.096155in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.397437in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.548078in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.698718in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.849359in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.150641in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.301282in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.451922in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.602563in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.903845in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.054485in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.205126in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.355767in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.657048in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.807689in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.447062in,y=3.762497in,,bottom]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle y\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.150641in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{2.150641in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{2.150641in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.308814in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{0.568913in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{0.568913in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.550027in}}% -\pgfpathlineto{\pgfqpoint{0.112674in}{2.487733in}}% -\pgfpathlineto{\pgfqpoint{0.183678in}{2.428338in}}% -\pgfpathlineto{\pgfqpoint{0.254681in}{2.371843in}}% -\pgfpathlineto{\pgfqpoint{0.325685in}{2.318247in}}% -\pgfpathlineto{\pgfqpoint{0.396689in}{2.267552in}}% -\pgfpathlineto{\pgfqpoint{0.467693in}{2.219755in}}% -\pgfpathlineto{\pgfqpoint{0.532780in}{2.178489in}}% -\pgfpathlineto{\pgfqpoint{0.597867in}{2.139660in}}% -\pgfpathlineto{\pgfqpoint{0.662953in}{2.103266in}}% -\pgfpathlineto{\pgfqpoint{0.728040in}{2.069310in}}% -\pgfpathlineto{\pgfqpoint{0.793127in}{2.037790in}}% -\pgfpathlineto{\pgfqpoint{0.858214in}{2.008706in}}% -\pgfpathlineto{\pgfqpoint{0.923301in}{1.982059in}}% -\pgfpathlineto{\pgfqpoint{0.988388in}{1.957848in}}% -\pgfpathlineto{\pgfqpoint{1.053474in}{1.936073in}}% -\pgfpathlineto{\pgfqpoint{1.118561in}{1.916736in}}% -\pgfpathlineto{\pgfqpoint{1.183648in}{1.899834in}}% -\pgfpathlineto{\pgfqpoint{1.248735in}{1.885369in}}% -\pgfpathlineto{\pgfqpoint{1.313822in}{1.873341in}}% -\pgfpathlineto{\pgfqpoint{1.378909in}{1.863749in}}% -\pgfpathlineto{\pgfqpoint{1.443996in}{1.856593in}}% -\pgfpathlineto{\pgfqpoint{1.509082in}{1.851874in}}% -\pgfpathlineto{\pgfqpoint{1.574169in}{1.849592in}}% -\pgfpathlineto{\pgfqpoint{1.639256in}{1.849746in}}% -\pgfpathlineto{\pgfqpoint{1.704343in}{1.852336in}}% -\pgfpathlineto{\pgfqpoint{1.769430in}{1.857363in}}% -\pgfpathlineto{\pgfqpoint{1.834517in}{1.864826in}}% -\pgfpathlineto{\pgfqpoint{1.899603in}{1.874726in}}% -\pgfpathlineto{\pgfqpoint{1.964690in}{1.887062in}}% -\pgfpathlineto{\pgfqpoint{2.029777in}{1.901835in}}% -\pgfpathlineto{\pgfqpoint{2.094864in}{1.919044in}}% -\pgfpathlineto{\pgfqpoint{2.159951in}{1.938690in}}% -\pgfpathlineto{\pgfqpoint{2.225038in}{1.960772in}}% -\pgfpathlineto{\pgfqpoint{2.290124in}{1.985290in}}% -\pgfpathlineto{\pgfqpoint{2.355211in}{2.012245in}}% -\pgfpathlineto{\pgfqpoint{2.420298in}{2.041637in}}% -\pgfpathlineto{\pgfqpoint{2.485385in}{2.073465in}}% -\pgfpathlineto{\pgfqpoint{2.550472in}{2.107729in}}% -\pgfpathlineto{\pgfqpoint{2.615559in}{2.144430in}}% -\pgfpathlineto{\pgfqpoint{2.680645in}{2.183568in}}% -\pgfpathlineto{\pgfqpoint{2.745732in}{2.225142in}}% -\pgfpathlineto{\pgfqpoint{2.816736in}{2.273274in}}% -\pgfpathlineto{\pgfqpoint{2.887740in}{2.324305in}}% -\pgfpathlineto{\pgfqpoint{2.958744in}{2.378237in}}% -\pgfpathlineto{\pgfqpoint{3.029748in}{2.435068in}}% -\pgfpathlineto{\pgfqpoint{3.100751in}{2.494798in}}% -\pgfpathlineto{\pgfqpoint{3.171755in}{2.557428in}}% -\pgfpathlineto{\pgfqpoint{3.242759in}{2.622958in}}% -\pgfpathlineto{\pgfqpoint{3.313763in}{2.691387in}}% -\pgfpathlineto{\pgfqpoint{3.384767in}{2.762716in}}% -\pgfpathlineto{\pgfqpoint{3.461687in}{2.843261in}}% -\pgfpathlineto{\pgfqpoint{3.538608in}{2.927209in}}% -\pgfpathlineto{\pgfqpoint{3.615529in}{3.014560in}}% -\pgfpathlineto{\pgfqpoint{3.692450in}{3.105314in}}% -\pgfpathlineto{\pgfqpoint{3.769371in}{3.199471in}}% -\pgfpathlineto{\pgfqpoint{3.846292in}{3.297032in}}% -\pgfpathlineto{\pgfqpoint{3.923212in}{3.397995in}}% -\pgfpathlineto{\pgfqpoint{4.006050in}{3.510530in}}% -\pgfpathlineto{\pgfqpoint{4.088888in}{3.627012in}}% -\pgfpathlineto{\pgfqpoint{4.171726in}{3.747440in}}% -\pgfpathlineto{\pgfqpoint{4.254564in}{3.871816in}}% -\pgfpathlineto{\pgfqpoint{4.317102in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{4.317102in}{3.968330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.903346in}}% -\pgfpathlineto{\pgfqpoint{0.089006in}{2.812566in}}% -\pgfpathlineto{\pgfqpoint{0.136342in}{2.726886in}}% -\pgfpathlineto{\pgfqpoint{0.183678in}{2.646188in}}% -\pgfpathlineto{\pgfqpoint{0.231014in}{2.570351in}}% -\pgfpathlineto{\pgfqpoint{0.272432in}{2.507888in}}% -\pgfpathlineto{\pgfqpoint{0.313851in}{2.448976in}}% -\pgfpathlineto{\pgfqpoint{0.355270in}{2.393535in}}% -\pgfpathlineto{\pgfqpoint{0.396689in}{2.341486in}}% -\pgfpathlineto{\pgfqpoint{0.438108in}{2.292748in}}% -\pgfpathlineto{\pgfqpoint{0.479527in}{2.247242in}}% -\pgfpathlineto{\pgfqpoint{0.520946in}{2.204888in}}% -\pgfpathlineto{\pgfqpoint{0.562365in}{2.165606in}}% -\pgfpathlineto{\pgfqpoint{0.603784in}{2.129316in}}% -\pgfpathlineto{\pgfqpoint{0.645202in}{2.095939in}}% -\pgfpathlineto{\pgfqpoint{0.686621in}{2.065394in}}% -\pgfpathlineto{\pgfqpoint{0.728040in}{2.037601in}}% -\pgfpathlineto{\pgfqpoint{0.769459in}{2.012481in}}% -\pgfpathlineto{\pgfqpoint{0.810878in}{1.989955in}}% -\pgfpathlineto{\pgfqpoint{0.852297in}{1.969941in}}% -\pgfpathlineto{\pgfqpoint{0.893716in}{1.952360in}}% -\pgfpathlineto{\pgfqpoint{0.935135in}{1.937133in}}% -\pgfpathlineto{\pgfqpoint{0.976554in}{1.924179in}}% -\pgfpathlineto{\pgfqpoint{1.017973in}{1.913419in}}% -\pgfpathlineto{\pgfqpoint{1.059391in}{1.904772in}}% -\pgfpathlineto{\pgfqpoint{1.100810in}{1.898160in}}% -\pgfpathlineto{\pgfqpoint{1.148146in}{1.892991in}}% -\pgfpathlineto{\pgfqpoint{1.195482in}{1.890255in}}% -\pgfpathlineto{\pgfqpoint{1.242818in}{1.889833in}}% -\pgfpathlineto{\pgfqpoint{1.290154in}{1.891605in}}% -\pgfpathlineto{\pgfqpoint{1.337490in}{1.895453in}}% -\pgfpathlineto{\pgfqpoint{1.390743in}{1.902115in}}% -\pgfpathlineto{\pgfqpoint{1.443996in}{1.911083in}}% -\pgfpathlineto{\pgfqpoint{1.497248in}{1.922187in}}% -\pgfpathlineto{\pgfqpoint{1.556418in}{1.936824in}}% -\pgfpathlineto{\pgfqpoint{1.615588in}{1.953657in}}% -\pgfpathlineto{\pgfqpoint{1.680675in}{1.974431in}}% -\pgfpathlineto{\pgfqpoint{1.751679in}{1.999437in}}% -\pgfpathlineto{\pgfqpoint{1.828600in}{2.028834in}}% -\pgfpathlineto{\pgfqpoint{1.923271in}{2.067569in}}% -\pgfpathlineto{\pgfqpoint{2.041611in}{2.118583in}}% -\pgfpathlineto{\pgfqpoint{2.331543in}{2.244603in}}% -\pgfpathlineto{\pgfqpoint{2.426215in}{2.282642in}}% -\pgfpathlineto{\pgfqpoint{2.503136in}{2.311279in}}% -\pgfpathlineto{\pgfqpoint{2.574140in}{2.335430in}}% -\pgfpathlineto{\pgfqpoint{2.639227in}{2.355291in}}% -\pgfpathlineto{\pgfqpoint{2.698396in}{2.371186in}}% -\pgfpathlineto{\pgfqpoint{2.757566in}{2.384783in}}% -\pgfpathlineto{\pgfqpoint{2.810819in}{2.394863in}}% -\pgfpathlineto{\pgfqpoint{2.864072in}{2.402724in}}% -\pgfpathlineto{\pgfqpoint{2.917325in}{2.408195in}}% -\pgfpathlineto{\pgfqpoint{2.964661in}{2.410916in}}% -\pgfpathlineto{\pgfqpoint{3.011997in}{2.411496in}}% -\pgfpathlineto{\pgfqpoint{3.059332in}{2.409815in}}% -\pgfpathlineto{\pgfqpoint{3.106668in}{2.405755in}}% -\pgfpathlineto{\pgfqpoint{3.154004in}{2.399196in}}% -\pgfpathlineto{\pgfqpoint{3.195423in}{2.391314in}}% -\pgfpathlineto{\pgfqpoint{3.236842in}{2.381347in}}% -\pgfpathlineto{\pgfqpoint{3.278261in}{2.369216in}}% -\pgfpathlineto{\pgfqpoint{3.319680in}{2.354842in}}% -\pgfpathlineto{\pgfqpoint{3.361099in}{2.338144in}}% -\pgfpathlineto{\pgfqpoint{3.402518in}{2.319042in}}% -\pgfpathlineto{\pgfqpoint{3.443937in}{2.297457in}}% -\pgfpathlineto{\pgfqpoint{3.485355in}{2.273309in}}% -\pgfpathlineto{\pgfqpoint{3.526774in}{2.246517in}}% -\pgfpathlineto{\pgfqpoint{3.568193in}{2.217003in}}% -\pgfpathlineto{\pgfqpoint{3.609612in}{2.184686in}}% -\pgfpathlineto{\pgfqpoint{3.651031in}{2.149486in}}% -\pgfpathlineto{\pgfqpoint{3.692450in}{2.111323in}}% -\pgfpathlineto{\pgfqpoint{3.733869in}{2.070118in}}% -\pgfpathlineto{\pgfqpoint{3.775288in}{2.025791in}}% -\pgfpathlineto{\pgfqpoint{3.816707in}{1.978262in}}% -\pgfpathlineto{\pgfqpoint{3.858126in}{1.927451in}}% -\pgfpathlineto{\pgfqpoint{3.899544in}{1.873278in}}% -\pgfpathlineto{\pgfqpoint{3.940963in}{1.815664in}}% -\pgfpathlineto{\pgfqpoint{3.982382in}{1.754528in}}% -\pgfpathlineto{\pgfqpoint{4.023801in}{1.689790in}}% -\pgfpathlineto{\pgfqpoint{4.065220in}{1.621372in}}% -\pgfpathlineto{\pgfqpoint{4.112556in}{1.538569in}}% -\pgfpathlineto{\pgfqpoint{4.159892in}{1.450735in}}% -\pgfpathlineto{\pgfqpoint{4.207228in}{1.357750in}}% -\pgfpathlineto{\pgfqpoint{4.254564in}{1.259495in}}% -\pgfpathlineto{\pgfqpoint{4.301899in}{1.155851in}}% -\pgfpathlineto{\pgfqpoint{4.349235in}{1.046698in}}% -\pgfpathlineto{\pgfqpoint{4.396571in}{0.931918in}}% -\pgfpathlineto{\pgfqpoint{4.443907in}{0.811391in}}% -\pgfpathlineto{\pgfqpoint{4.491243in}{0.684999in}}% -\pgfpathlineto{\pgfqpoint{4.538579in}{0.552621in}}% -\pgfpathlineto{\pgfqpoint{4.585915in}{0.414138in}}% -\pgfpathlineto{\pgfqpoint{4.633251in}{0.269432in}}% -\pgfpathlineto{\pgfqpoint{4.686503in}{0.099051in}}% -\pgfpathlineto{\pgfqpoint{4.706884in}{0.031670in}}% -\pgfpathlineto{\pgfqpoint{4.706884in}{0.031670in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{3.405463in}}% -\pgfpathlineto{\pgfqpoint{0.077172in}{3.276626in}}% -\pgfpathlineto{\pgfqpoint{0.112674in}{3.155330in}}% -\pgfpathlineto{\pgfqpoint{0.148176in}{3.041328in}}% -\pgfpathlineto{\pgfqpoint{0.183678in}{2.934373in}}% -\pgfpathlineto{\pgfqpoint{0.219180in}{2.834225in}}% -\pgfpathlineto{\pgfqpoint{0.254681in}{2.740644in}}% -\pgfpathlineto{\pgfqpoint{0.290183in}{2.653396in}}% -\pgfpathlineto{\pgfqpoint{0.325685in}{2.572250in}}% -\pgfpathlineto{\pgfqpoint{0.361187in}{2.496978in}}% -\pgfpathlineto{\pgfqpoint{0.396689in}{2.427355in}}% -\pgfpathlineto{\pgfqpoint{0.432191in}{2.363161in}}% -\pgfpathlineto{\pgfqpoint{0.467693in}{2.304179in}}% -\pgfpathlineto{\pgfqpoint{0.503195in}{2.250195in}}% -\pgfpathlineto{\pgfqpoint{0.532780in}{2.208874in}}% -\pgfpathlineto{\pgfqpoint{0.562365in}{2.170757in}}% -\pgfpathlineto{\pgfqpoint{0.591950in}{2.135727in}}% -\pgfpathlineto{\pgfqpoint{0.621535in}{2.103667in}}% -\pgfpathlineto{\pgfqpoint{0.651119in}{2.074462in}}% -\pgfpathlineto{\pgfqpoint{0.680704in}{2.047998in}}% -\pgfpathlineto{\pgfqpoint{0.710289in}{2.024166in}}% -\pgfpathlineto{\pgfqpoint{0.739874in}{2.002854in}}% -\pgfpathlineto{\pgfqpoint{0.769459in}{1.983954in}}% -\pgfpathlineto{\pgfqpoint{0.799044in}{1.967361in}}% -\pgfpathlineto{\pgfqpoint{0.828629in}{1.952969in}}% -\pgfpathlineto{\pgfqpoint{0.858214in}{1.940676in}}% -\pgfpathlineto{\pgfqpoint{0.893716in}{1.928551in}}% -\pgfpathlineto{\pgfqpoint{0.929218in}{1.919131in}}% -\pgfpathlineto{\pgfqpoint{0.964720in}{1.912245in}}% -\pgfpathlineto{\pgfqpoint{1.000222in}{1.907730in}}% -\pgfpathlineto{\pgfqpoint{1.035724in}{1.905424in}}% -\pgfpathlineto{\pgfqpoint{1.071225in}{1.905169in}}% -\pgfpathlineto{\pgfqpoint{1.112644in}{1.907257in}}% -\pgfpathlineto{\pgfqpoint{1.154063in}{1.911687in}}% -\pgfpathlineto{\pgfqpoint{1.195482in}{1.918226in}}% -\pgfpathlineto{\pgfqpoint{1.242818in}{1.927991in}}% -\pgfpathlineto{\pgfqpoint{1.296071in}{1.941509in}}% -\pgfpathlineto{\pgfqpoint{1.355241in}{1.959146in}}% -\pgfpathlineto{\pgfqpoint{1.420328in}{1.981048in}}% -\pgfpathlineto{\pgfqpoint{1.503165in}{2.011566in}}% -\pgfpathlineto{\pgfqpoint{1.651090in}{2.069201in}}% -\pgfpathlineto{\pgfqpoint{1.763513in}{2.111866in}}% -\pgfpathlineto{\pgfqpoint{1.840434in}{2.138807in}}% -\pgfpathlineto{\pgfqpoint{1.905520in}{2.159456in}}% -\pgfpathlineto{\pgfqpoint{1.964690in}{2.176109in}}% -\pgfpathlineto{\pgfqpoint{2.023860in}{2.190419in}}% -\pgfpathlineto{\pgfqpoint{2.077113in}{2.201057in}}% -\pgfpathlineto{\pgfqpoint{2.130366in}{2.209372in}}% -\pgfpathlineto{\pgfqpoint{2.177702in}{2.214674in}}% -\pgfpathlineto{\pgfqpoint{2.225038in}{2.217895in}}% -\pgfpathlineto{\pgfqpoint{2.272373in}{2.218934in}}% -\pgfpathlineto{\pgfqpoint{2.319709in}{2.217705in}}% -\pgfpathlineto{\pgfqpoint{2.367045in}{2.214131in}}% -\pgfpathlineto{\pgfqpoint{2.414381in}{2.208145in}}% -\pgfpathlineto{\pgfqpoint{2.461717in}{2.199693in}}% -\pgfpathlineto{\pgfqpoint{2.509053in}{2.188731in}}% -\pgfpathlineto{\pgfqpoint{2.556389in}{2.175227in}}% -\pgfpathlineto{\pgfqpoint{2.603725in}{2.159157in}}% -\pgfpathlineto{\pgfqpoint{2.651061in}{2.140513in}}% -\pgfpathlineto{\pgfqpoint{2.698396in}{2.119294in}}% -\pgfpathlineto{\pgfqpoint{2.745732in}{2.095510in}}% -\pgfpathlineto{\pgfqpoint{2.793068in}{2.069186in}}% -\pgfpathlineto{\pgfqpoint{2.840404in}{2.040354in}}% -\pgfpathlineto{\pgfqpoint{2.887740in}{2.009058in}}% -\pgfpathlineto{\pgfqpoint{2.940993in}{1.970974in}}% -\pgfpathlineto{\pgfqpoint{2.994246in}{1.929939in}}% -\pgfpathlineto{\pgfqpoint{3.047499in}{1.886065in}}% -\pgfpathlineto{\pgfqpoint{3.100751in}{1.839483in}}% -\pgfpathlineto{\pgfqpoint{3.159921in}{1.784731in}}% -\pgfpathlineto{\pgfqpoint{3.219091in}{1.727049in}}% -\pgfpathlineto{\pgfqpoint{3.284178in}{1.660521in}}% -\pgfpathlineto{\pgfqpoint{3.355182in}{1.584703in}}% -\pgfpathlineto{\pgfqpoint{3.432103in}{1.499366in}}% -\pgfpathlineto{\pgfqpoint{3.526774in}{1.390881in}}% -\pgfpathlineto{\pgfqpoint{3.674699in}{1.217398in}}% -\pgfpathlineto{\pgfqpoint{3.816707in}{1.052009in}}% -\pgfpathlineto{\pgfqpoint{3.899544in}{0.958859in}}% -\pgfpathlineto{\pgfqpoint{3.970548in}{0.882403in}}% -\pgfpathlineto{\pgfqpoint{4.029718in}{0.821859in}}% -\pgfpathlineto{\pgfqpoint{4.082971in}{0.770385in}}% -\pgfpathlineto{\pgfqpoint{4.130307in}{0.727425in}}% -\pgfpathlineto{\pgfqpoint{4.177643in}{0.687455in}}% -\pgfpathlineto{\pgfqpoint{4.219062in}{0.655212in}}% -\pgfpathlineto{\pgfqpoint{4.260481in}{0.625776in}}% -\pgfpathlineto{\pgfqpoint{4.295982in}{0.602970in}}% -\pgfpathlineto{\pgfqpoint{4.331484in}{0.582572in}}% -\pgfpathlineto{\pgfqpoint{4.366986in}{0.564749in}}% -\pgfpathlineto{\pgfqpoint{4.402488in}{0.549670in}}% -\pgfpathlineto{\pgfqpoint{4.432073in}{0.539326in}}% -\pgfpathlineto{\pgfqpoint{4.461658in}{0.531108in}}% -\pgfpathlineto{\pgfqpoint{4.491243in}{0.525122in}}% -\pgfpathlineto{\pgfqpoint{4.520828in}{0.521471in}}% -\pgfpathlineto{\pgfqpoint{4.550413in}{0.520264in}}% -\pgfpathlineto{\pgfqpoint{4.579998in}{0.521608in}}% -\pgfpathlineto{\pgfqpoint{4.609583in}{0.525615in}}% -\pgfpathlineto{\pgfqpoint{4.639168in}{0.532395in}}% -\pgfpathlineto{\pgfqpoint{4.662836in}{0.539892in}}% -\pgfpathlineto{\pgfqpoint{4.686503in}{0.549296in}}% -\pgfpathlineto{\pgfqpoint{4.710171in}{0.560667in}}% -\pgfpathlineto{\pgfqpoint{4.733839in}{0.574065in}}% -\pgfpathlineto{\pgfqpoint{4.757507in}{0.589550in}}% -\pgfpathlineto{\pgfqpoint{4.787092in}{0.611937in}}% -\pgfpathlineto{\pgfqpoint{4.816677in}{0.637805in}}% -\pgfpathlineto{\pgfqpoint{4.846262in}{0.667277in}}% -\pgfpathlineto{\pgfqpoint{4.875847in}{0.700480in}}% -\pgfpathlineto{\pgfqpoint{4.905432in}{0.737539in}}% -\pgfpathlineto{\pgfqpoint{4.935017in}{0.778584in}}% -\pgfpathlineto{\pgfqpoint{4.964602in}{0.823745in}}% -\pgfpathlineto{\pgfqpoint{4.994187in}{0.873154in}}% -\pgfpathlineto{\pgfqpoint{5.023772in}{0.926945in}}% -\pgfpathlineto{\pgfqpoint{5.053357in}{0.985254in}}% -\pgfpathlineto{\pgfqpoint{5.082941in}{1.048218in}}% -\pgfpathlineto{\pgfqpoint{5.112526in}{1.115976in}}% -\pgfpathlineto{\pgfqpoint{5.142111in}{1.188667in}}% -\pgfpathlineto{\pgfqpoint{5.171696in}{1.266435in}}% -\pgfpathlineto{\pgfqpoint{5.207198in}{1.366660in}}% -\pgfpathlineto{\pgfqpoint{5.242700in}{1.474655in}}% -\pgfpathlineto{\pgfqpoint{5.278202in}{1.590673in}}% -\pgfpathlineto{\pgfqpoint{5.313704in}{1.714975in}}% -\pgfpathlineto{\pgfqpoint{5.349206in}{1.847823in}}% -\pgfpathlineto{\pgfqpoint{5.384708in}{1.989482in}}% -\pgfpathlineto{\pgfqpoint{5.420210in}{2.140222in}}% -\pgfpathlineto{\pgfqpoint{5.455712in}{2.300316in}}% -\pgfpathlineto{\pgfqpoint{5.491213in}{2.470039in}}% -\pgfpathlineto{\pgfqpoint{5.526715in}{2.649672in}}% -\pgfpathlineto{\pgfqpoint{5.562217in}{2.839498in}}% -\pgfpathlineto{\pgfqpoint{5.603636in}{3.074227in}}% -\pgfpathlineto{\pgfqpoint{5.645055in}{3.323682in}}% -\pgfpathlineto{\pgfqpoint{5.686474in}{3.588329in}}% -\pgfpathlineto{\pgfqpoint{5.727893in}{3.868644in}}% -\pgfpathlineto{\pgfqpoint{5.742072in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{5.742072in}{3.968330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.062802in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{0.094923in}{3.775703in}}% -\pgfpathlineto{\pgfqpoint{0.130425in}{3.577919in}}% -\pgfpathlineto{\pgfqpoint{0.160010in}{3.424649in}}% -\pgfpathlineto{\pgfqpoint{0.189595in}{3.281426in}}% -\pgfpathlineto{\pgfqpoint{0.219180in}{3.147834in}}% -\pgfpathlineto{\pgfqpoint{0.248764in}{3.023467in}}% -\pgfpathlineto{\pgfqpoint{0.278349in}{2.907931in}}% -\pgfpathlineto{\pgfqpoint{0.307934in}{2.800839in}}% -\pgfpathlineto{\pgfqpoint{0.337519in}{2.701814in}}% -\pgfpathlineto{\pgfqpoint{0.367104in}{2.610489in}}% -\pgfpathlineto{\pgfqpoint{0.396689in}{2.526504in}}% -\pgfpathlineto{\pgfqpoint{0.426274in}{2.449512in}}% -\pgfpathlineto{\pgfqpoint{0.455859in}{2.379172in}}% -\pgfpathlineto{\pgfqpoint{0.485444in}{2.315152in}}% -\pgfpathlineto{\pgfqpoint{0.515029in}{2.257130in}}% -\pgfpathlineto{\pgfqpoint{0.544614in}{2.204792in}}% -\pgfpathlineto{\pgfqpoint{0.574199in}{2.157833in}}% -\pgfpathlineto{\pgfqpoint{0.603784in}{2.115957in}}% -\pgfpathlineto{\pgfqpoint{0.627452in}{2.085922in}}% -\pgfpathlineto{\pgfqpoint{0.651119in}{2.058810in}}% -\pgfpathlineto{\pgfqpoint{0.674787in}{2.034483in}}% -\pgfpathlineto{\pgfqpoint{0.698455in}{2.012804in}}% -\pgfpathlineto{\pgfqpoint{0.722123in}{1.993637in}}% -\pgfpathlineto{\pgfqpoint{0.745791in}{1.976854in}}% -\pgfpathlineto{\pgfqpoint{0.769459in}{1.962327in}}% -\pgfpathlineto{\pgfqpoint{0.793127in}{1.949931in}}% -\pgfpathlineto{\pgfqpoint{0.822712in}{1.937252in}}% -\pgfpathlineto{\pgfqpoint{0.852297in}{1.927487in}}% -\pgfpathlineto{\pgfqpoint{0.881882in}{1.920414in}}% -\pgfpathlineto{\pgfqpoint{0.911467in}{1.915820in}}% -\pgfpathlineto{\pgfqpoint{0.941052in}{1.913500in}}% -\pgfpathlineto{\pgfqpoint{0.970637in}{1.913253in}}% -\pgfpathlineto{\pgfqpoint{1.006139in}{1.915424in}}% -\pgfpathlineto{\pgfqpoint{1.041641in}{1.919988in}}% -\pgfpathlineto{\pgfqpoint{1.077142in}{1.926642in}}% -\pgfpathlineto{\pgfqpoint{1.118561in}{1.936660in}}% -\pgfpathlineto{\pgfqpoint{1.165897in}{1.950553in}}% -\pgfpathlineto{\pgfqpoint{1.219150in}{1.968576in}}% -\pgfpathlineto{\pgfqpoint{1.290154in}{1.995219in}}% -\pgfpathlineto{\pgfqpoint{1.520916in}{2.084084in}}% -\pgfpathlineto{\pgfqpoint{1.580086in}{2.103653in}}% -\pgfpathlineto{\pgfqpoint{1.633339in}{2.119144in}}% -\pgfpathlineto{\pgfqpoint{1.686592in}{2.132279in}}% -\pgfpathlineto{\pgfqpoint{1.733928in}{2.141744in}}% -\pgfpathlineto{\pgfqpoint{1.781264in}{2.148956in}}% -\pgfpathlineto{\pgfqpoint{1.828600in}{2.153779in}}% -\pgfpathlineto{\pgfqpoint{1.875935in}{2.156106in}}% -\pgfpathlineto{\pgfqpoint{1.917354in}{2.156033in}}% -\pgfpathlineto{\pgfqpoint{1.958773in}{2.153953in}}% -\pgfpathlineto{\pgfqpoint{2.000192in}{2.149848in}}% -\pgfpathlineto{\pgfqpoint{2.041611in}{2.143710in}}% -\pgfpathlineto{\pgfqpoint{2.083030in}{2.135551in}}% -\pgfpathlineto{\pgfqpoint{2.130366in}{2.123782in}}% -\pgfpathlineto{\pgfqpoint{2.177702in}{2.109457in}}% -\pgfpathlineto{\pgfqpoint{2.225038in}{2.092656in}}% -\pgfpathlineto{\pgfqpoint{2.272373in}{2.073477in}}% -\pgfpathlineto{\pgfqpoint{2.319709in}{2.052037in}}% -\pgfpathlineto{\pgfqpoint{2.372962in}{2.025387in}}% -\pgfpathlineto{\pgfqpoint{2.426215in}{1.996269in}}% -\pgfpathlineto{\pgfqpoint{2.485385in}{1.961326in}}% -\pgfpathlineto{\pgfqpoint{2.550472in}{1.920172in}}% -\pgfpathlineto{\pgfqpoint{2.621476in}{1.872660in}}% -\pgfpathlineto{\pgfqpoint{2.716147in}{1.806369in}}% -\pgfpathlineto{\pgfqpoint{2.964661in}{1.630566in}}% -\pgfpathlineto{\pgfqpoint{3.035665in}{1.583932in}}% -\pgfpathlineto{\pgfqpoint{3.094834in}{1.547616in}}% -\pgfpathlineto{\pgfqpoint{3.148087in}{1.517423in}}% -\pgfpathlineto{\pgfqpoint{3.195423in}{1.492921in}}% -\pgfpathlineto{\pgfqpoint{3.242759in}{1.470928in}}% -\pgfpathlineto{\pgfqpoint{3.284178in}{1.453976in}}% -\pgfpathlineto{\pgfqpoint{3.325597in}{1.439369in}}% -\pgfpathlineto{\pgfqpoint{3.367016in}{1.427302in}}% -\pgfpathlineto{\pgfqpoint{3.402518in}{1.419128in}}% -\pgfpathlineto{\pgfqpoint{3.438020in}{1.413082in}}% -\pgfpathlineto{\pgfqpoint{3.473521in}{1.409282in}}% -\pgfpathlineto{\pgfqpoint{3.509023in}{1.407845in}}% -\pgfpathlineto{\pgfqpoint{3.544525in}{1.408883in}}% -\pgfpathlineto{\pgfqpoint{3.580027in}{1.412509in}}% -\pgfpathlineto{\pgfqpoint{3.609612in}{1.417585in}}% -\pgfpathlineto{\pgfqpoint{3.639197in}{1.424593in}}% -\pgfpathlineto{\pgfqpoint{3.668782in}{1.433595in}}% -\pgfpathlineto{\pgfqpoint{3.698367in}{1.444647in}}% -\pgfpathlineto{\pgfqpoint{3.727952in}{1.457806in}}% -\pgfpathlineto{\pgfqpoint{3.757537in}{1.473126in}}% -\pgfpathlineto{\pgfqpoint{3.787122in}{1.490660in}}% -\pgfpathlineto{\pgfqpoint{3.816707in}{1.510457in}}% -\pgfpathlineto{\pgfqpoint{3.846292in}{1.532567in}}% -\pgfpathlineto{\pgfqpoint{3.875876in}{1.557035in}}% -\pgfpathlineto{\pgfqpoint{3.911378in}{1.589571in}}% -\pgfpathlineto{\pgfqpoint{3.946880in}{1.625636in}}% -\pgfpathlineto{\pgfqpoint{3.982382in}{1.665297in}}% -\pgfpathlineto{\pgfqpoint{4.017884in}{1.708612in}}% -\pgfpathlineto{\pgfqpoint{4.053386in}{1.755638in}}% -\pgfpathlineto{\pgfqpoint{4.088888in}{1.806421in}}% -\pgfpathlineto{\pgfqpoint{4.124390in}{1.861004in}}% -\pgfpathlineto{\pgfqpoint{4.159892in}{1.919422in}}% -\pgfpathlineto{\pgfqpoint{4.195394in}{1.981705in}}% -\pgfpathlineto{\pgfqpoint{4.236813in}{2.059281in}}% -\pgfpathlineto{\pgfqpoint{4.278231in}{2.142169in}}% -\pgfpathlineto{\pgfqpoint{4.319650in}{2.230377in}}% -\pgfpathlineto{\pgfqpoint{4.361069in}{2.323900in}}% -\pgfpathlineto{\pgfqpoint{4.402488in}{2.422716in}}% -\pgfpathlineto{\pgfqpoint{4.443907in}{2.526790in}}% -\pgfpathlineto{\pgfqpoint{4.491243in}{2.652101in}}% -\pgfpathlineto{\pgfqpoint{4.538579in}{2.784105in}}% -\pgfpathlineto{\pgfqpoint{4.585915in}{2.922669in}}% -\pgfpathlineto{\pgfqpoint{4.633251in}{3.067630in}}% -\pgfpathlineto{\pgfqpoint{4.686503in}{3.238112in}}% -\pgfpathlineto{\pgfqpoint{4.739756in}{3.416115in}}% -\pgfpathlineto{\pgfqpoint{4.798926in}{3.622253in}}% -\pgfpathlineto{\pgfqpoint{4.858096in}{3.836605in}}% -\pgfpathlineto{\pgfqpoint{4.893453in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{4.893453in}{3.968330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.160076in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{0.189595in}{3.747453in}}% -\pgfpathlineto{\pgfqpoint{0.219180in}{3.543692in}}% -\pgfpathlineto{\pgfqpoint{0.248764in}{3.356610in}}% -\pgfpathlineto{\pgfqpoint{0.278349in}{3.185290in}}% -\pgfpathlineto{\pgfqpoint{0.307934in}{3.028848in}}% -\pgfpathlineto{\pgfqpoint{0.337519in}{2.886428in}}% -\pgfpathlineto{\pgfqpoint{0.367104in}{2.757208in}}% -\pgfpathlineto{\pgfqpoint{0.390772in}{2.662802in}}% -\pgfpathlineto{\pgfqpoint{0.414440in}{2.575943in}}% -\pgfpathlineto{\pgfqpoint{0.438108in}{2.496251in}}% -\pgfpathlineto{\pgfqpoint{0.461776in}{2.423358in}}% -\pgfpathlineto{\pgfqpoint{0.485444in}{2.356904in}}% -\pgfpathlineto{\pgfqpoint{0.509112in}{2.296546in}}% -\pgfpathlineto{\pgfqpoint{0.532780in}{2.241948in}}% -\pgfpathlineto{\pgfqpoint{0.556448in}{2.192785in}}% -\pgfpathlineto{\pgfqpoint{0.580116in}{2.148746in}}% -\pgfpathlineto{\pgfqpoint{0.603784in}{2.109526in}}% -\pgfpathlineto{\pgfqpoint{0.627452in}{2.074834in}}% -\pgfpathlineto{\pgfqpoint{0.651119in}{2.044387in}}% -\pgfpathlineto{\pgfqpoint{0.674787in}{2.017914in}}% -\pgfpathlineto{\pgfqpoint{0.698455in}{1.995150in}}% -\pgfpathlineto{\pgfqpoint{0.722123in}{1.975844in}}% -\pgfpathlineto{\pgfqpoint{0.745791in}{1.959752in}}% -\pgfpathlineto{\pgfqpoint{0.769459in}{1.946640in}}% -\pgfpathlineto{\pgfqpoint{0.793127in}{1.936281in}}% -\pgfpathlineto{\pgfqpoint{0.816795in}{1.928461in}}% -\pgfpathlineto{\pgfqpoint{0.840463in}{1.922970in}}% -\pgfpathlineto{\pgfqpoint{0.864131in}{1.919609in}}% -\pgfpathlineto{\pgfqpoint{0.887799in}{1.918188in}}% -\pgfpathlineto{\pgfqpoint{0.917384in}{1.918860in}}% -\pgfpathlineto{\pgfqpoint{0.946969in}{1.921938in}}% -\pgfpathlineto{\pgfqpoint{0.976554in}{1.927100in}}% -\pgfpathlineto{\pgfqpoint{1.012056in}{1.935622in}}% -\pgfpathlineto{\pgfqpoint{1.053474in}{1.948158in}}% -\pgfpathlineto{\pgfqpoint{1.100810in}{1.965037in}}% -\pgfpathlineto{\pgfqpoint{1.165897in}{1.991006in}}% -\pgfpathlineto{\pgfqpoint{1.331573in}{2.058466in}}% -\pgfpathlineto{\pgfqpoint{1.384826in}{2.077333in}}% -\pgfpathlineto{\pgfqpoint{1.432162in}{2.092015in}}% -\pgfpathlineto{\pgfqpoint{1.479497in}{2.104371in}}% -\pgfpathlineto{\pgfqpoint{1.520916in}{2.113060in}}% -\pgfpathlineto{\pgfqpoint{1.562335in}{2.119621in}}% -\pgfpathlineto{\pgfqpoint{1.603754in}{2.123950in}}% -\pgfpathlineto{\pgfqpoint{1.645173in}{2.125978in}}% -\pgfpathlineto{\pgfqpoint{1.686592in}{2.125667in}}% -\pgfpathlineto{\pgfqpoint{1.728011in}{2.123013in}}% -\pgfpathlineto{\pgfqpoint{1.769430in}{2.118036in}}% -\pgfpathlineto{\pgfqpoint{1.810849in}{2.110785in}}% -\pgfpathlineto{\pgfqpoint{1.852267in}{2.101330in}}% -\pgfpathlineto{\pgfqpoint{1.893686in}{2.089767in}}% -\pgfpathlineto{\pgfqpoint{1.941022in}{2.074119in}}% -\pgfpathlineto{\pgfqpoint{1.988358in}{2.056068in}}% -\pgfpathlineto{\pgfqpoint{2.041611in}{2.033177in}}% -\pgfpathlineto{\pgfqpoint{2.094864in}{2.007901in}}% -\pgfpathlineto{\pgfqpoint{2.159951in}{1.974353in}}% -\pgfpathlineto{\pgfqpoint{2.236872in}{1.931958in}}% -\pgfpathlineto{\pgfqpoint{2.384796in}{1.847001in}}% -\pgfpathlineto{\pgfqpoint{2.479468in}{1.794181in}}% -\pgfpathlineto{\pgfqpoint{2.544555in}{1.760299in}}% -\pgfpathlineto{\pgfqpoint{2.603725in}{1.732074in}}% -\pgfpathlineto{\pgfqpoint{2.656977in}{1.709318in}}% -\pgfpathlineto{\pgfqpoint{2.704313in}{1.691575in}}% -\pgfpathlineto{\pgfqpoint{2.745732in}{1.678218in}}% -\pgfpathlineto{\pgfqpoint{2.787151in}{1.667088in}}% -\pgfpathlineto{\pgfqpoint{2.828570in}{1.658371in}}% -\pgfpathlineto{\pgfqpoint{2.864072in}{1.652952in}}% -\pgfpathlineto{\pgfqpoint{2.899574in}{1.649539in}}% -\pgfpathlineto{\pgfqpoint{2.935076in}{1.648228in}}% -\pgfpathlineto{\pgfqpoint{2.970578in}{1.649110in}}% -\pgfpathlineto{\pgfqpoint{3.006080in}{1.652268in}}% -\pgfpathlineto{\pgfqpoint{3.041582in}{1.657780in}}% -\pgfpathlineto{\pgfqpoint{3.077083in}{1.665714in}}% -\pgfpathlineto{\pgfqpoint{3.112585in}{1.676130in}}% -\pgfpathlineto{\pgfqpoint{3.148087in}{1.689080in}}% -\pgfpathlineto{\pgfqpoint{3.183589in}{1.704609in}}% -\pgfpathlineto{\pgfqpoint{3.219091in}{1.722751in}}% -\pgfpathlineto{\pgfqpoint{3.254593in}{1.743532in}}% -\pgfpathlineto{\pgfqpoint{3.290095in}{1.766969in}}% -\pgfpathlineto{\pgfqpoint{3.325597in}{1.793068in}}% -\pgfpathlineto{\pgfqpoint{3.361099in}{1.821829in}}% -\pgfpathlineto{\pgfqpoint{3.396601in}{1.853238in}}% -\pgfpathlineto{\pgfqpoint{3.432103in}{1.887275in}}% -\pgfpathlineto{\pgfqpoint{3.473521in}{1.930260in}}% -\pgfpathlineto{\pgfqpoint{3.514940in}{1.976709in}}% -\pgfpathlineto{\pgfqpoint{3.556359in}{2.026533in}}% -\pgfpathlineto{\pgfqpoint{3.597778in}{2.079626in}}% -\pgfpathlineto{\pgfqpoint{3.645114in}{2.144145in}}% -\pgfpathlineto{\pgfqpoint{3.692450in}{2.212550in}}% -\pgfpathlineto{\pgfqpoint{3.745703in}{2.293837in}}% -\pgfpathlineto{\pgfqpoint{3.798956in}{2.379315in}}% -\pgfpathlineto{\pgfqpoint{3.858126in}{2.478643in}}% -\pgfpathlineto{\pgfqpoint{3.923212in}{2.592375in}}% -\pgfpathlineto{\pgfqpoint{4.000133in}{2.731415in}}% -\pgfpathlineto{\pgfqpoint{4.118473in}{2.950766in}}% -\pgfpathlineto{\pgfqpoint{4.248647in}{3.191037in}}% -\pgfpathlineto{\pgfqpoint{4.319650in}{3.317476in}}% -\pgfpathlineto{\pgfqpoint{4.378820in}{3.418354in}}% -\pgfpathlineto{\pgfqpoint{4.432073in}{3.504493in}}% -\pgfpathlineto{\pgfqpoint{4.479409in}{3.576524in}}% -\pgfpathlineto{\pgfqpoint{4.520828in}{3.635455in}}% -\pgfpathlineto{\pgfqpoint{4.556330in}{3.682531in}}% -\pgfpathlineto{\pgfqpoint{4.591832in}{3.726097in}}% -\pgfpathlineto{\pgfqpoint{4.627334in}{3.765832in}}% -\pgfpathlineto{\pgfqpoint{4.656919in}{3.795780in}}% -\pgfpathlineto{\pgfqpoint{4.686503in}{3.822646in}}% -\pgfpathlineto{\pgfqpoint{4.716088in}{3.846238in}}% -\pgfpathlineto{\pgfqpoint{4.739756in}{3.862621in}}% -\pgfpathlineto{\pgfqpoint{4.763424in}{3.876683in}}% -\pgfpathlineto{\pgfqpoint{4.787092in}{3.888322in}}% -\pgfpathlineto{\pgfqpoint{4.810760in}{3.897435in}}% -\pgfpathlineto{\pgfqpoint{4.834428in}{3.903922in}}% -\pgfpathlineto{\pgfqpoint{4.858096in}{3.907680in}}% -\pgfpathlineto{\pgfqpoint{4.881764in}{3.908605in}}% -\pgfpathlineto{\pgfqpoint{4.899515in}{3.907380in}}% -\pgfpathlineto{\pgfqpoint{4.917266in}{3.904460in}}% -\pgfpathlineto{\pgfqpoint{4.935017in}{3.899802in}}% -\pgfpathlineto{\pgfqpoint{4.952768in}{3.893364in}}% -\pgfpathlineto{\pgfqpoint{4.970519in}{3.885102in}}% -\pgfpathlineto{\pgfqpoint{4.988270in}{3.874973in}}% -\pgfpathlineto{\pgfqpoint{5.011938in}{3.858488in}}% -\pgfpathlineto{\pgfqpoint{5.035606in}{3.838504in}}% -\pgfpathlineto{\pgfqpoint{5.059274in}{3.814920in}}% -\pgfpathlineto{\pgfqpoint{5.082941in}{3.787635in}}% -\pgfpathlineto{\pgfqpoint{5.106609in}{3.756547in}}% -\pgfpathlineto{\pgfqpoint{5.130277in}{3.721557in}}% -\pgfpathlineto{\pgfqpoint{5.153945in}{3.682565in}}% -\pgfpathlineto{\pgfqpoint{5.177613in}{3.639473in}}% -\pgfpathlineto{\pgfqpoint{5.201281in}{3.592183in}}% -\pgfpathlineto{\pgfqpoint{5.224949in}{3.540598in}}% -\pgfpathlineto{\pgfqpoint{5.254534in}{3.469933in}}% -\pgfpathlineto{\pgfqpoint{5.284119in}{3.392224in}}% -\pgfpathlineto{\pgfqpoint{5.313704in}{3.307291in}}% -\pgfpathlineto{\pgfqpoint{5.343289in}{3.214956in}}% -\pgfpathlineto{\pgfqpoint{5.372874in}{3.115047in}}% -\pgfpathlineto{\pgfqpoint{5.402459in}{3.007394in}}% -\pgfpathlineto{\pgfqpoint{5.432044in}{2.891832in}}% -\pgfpathlineto{\pgfqpoint{5.461629in}{2.768202in}}% -\pgfpathlineto{\pgfqpoint{5.491213in}{2.636349in}}% -\pgfpathlineto{\pgfqpoint{5.526715in}{2.467060in}}% -\pgfpathlineto{\pgfqpoint{5.562217in}{2.285470in}}% -\pgfpathlineto{\pgfqpoint{5.597719in}{2.091342in}}% -\pgfpathlineto{\pgfqpoint{5.633221in}{1.884459in}}% -\pgfpathlineto{\pgfqpoint{5.668723in}{1.664615in}}% -\pgfpathlineto{\pgfqpoint{5.704225in}{1.431621in}}% -\pgfpathlineto{\pgfqpoint{5.739727in}{1.185303in}}% -\pgfpathlineto{\pgfqpoint{5.781146in}{0.880889in}}% -\pgfpathlineto{\pgfqpoint{5.822565in}{0.557917in}}% -\pgfpathlineto{\pgfqpoint{5.863984in}{0.216210in}}% -\pgfpathlineto{\pgfqpoint{5.885447in}{0.031670in}}% -\pgfpathlineto{\pgfqpoint{5.885447in}{0.031670in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.226531in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{0.248764in}{3.767229in}}% -\pgfpathlineto{\pgfqpoint{0.272432in}{3.569453in}}% -\pgfpathlineto{\pgfqpoint{0.296100in}{3.387479in}}% -\pgfpathlineto{\pgfqpoint{0.319768in}{3.220430in}}% -\pgfpathlineto{\pgfqpoint{0.343436in}{3.067463in}}% -\pgfpathlineto{\pgfqpoint{0.367104in}{2.927764in}}% -\pgfpathlineto{\pgfqpoint{0.390772in}{2.800552in}}% -\pgfpathlineto{\pgfqpoint{0.414440in}{2.685078in}}% -\pgfpathlineto{\pgfqpoint{0.438108in}{2.580621in}}% -\pgfpathlineto{\pgfqpoint{0.461776in}{2.486488in}}% -\pgfpathlineto{\pgfqpoint{0.485444in}{2.402017in}}% -\pgfpathlineto{\pgfqpoint{0.509112in}{2.326572in}}% -\pgfpathlineto{\pgfqpoint{0.532780in}{2.259543in}}% -\pgfpathlineto{\pgfqpoint{0.556448in}{2.200349in}}% -\pgfpathlineto{\pgfqpoint{0.580116in}{2.148431in}}% -\pgfpathlineto{\pgfqpoint{0.603784in}{2.103257in}}% -\pgfpathlineto{\pgfqpoint{0.621535in}{2.073496in}}% -\pgfpathlineto{\pgfqpoint{0.639286in}{2.047036in}}% -\pgfpathlineto{\pgfqpoint{0.657036in}{2.023678in}}% -\pgfpathlineto{\pgfqpoint{0.674787in}{2.003232in}}% -\pgfpathlineto{\pgfqpoint{0.692538in}{1.985512in}}% -\pgfpathlineto{\pgfqpoint{0.710289in}{1.970341in}}% -\pgfpathlineto{\pgfqpoint{0.728040in}{1.957548in}}% -\pgfpathlineto{\pgfqpoint{0.745791in}{1.946967in}}% -\pgfpathlineto{\pgfqpoint{0.763542in}{1.938442in}}% -\pgfpathlineto{\pgfqpoint{0.781293in}{1.931819in}}% -\pgfpathlineto{\pgfqpoint{0.804961in}{1.925698in}}% -\pgfpathlineto{\pgfqpoint{0.828629in}{1.922372in}}% -\pgfpathlineto{\pgfqpoint{0.852297in}{1.921528in}}% -\pgfpathlineto{\pgfqpoint{0.875965in}{1.922875in}}% -\pgfpathlineto{\pgfqpoint{0.905550in}{1.927217in}}% -\pgfpathlineto{\pgfqpoint{0.935135in}{1.934045in}}% -\pgfpathlineto{\pgfqpoint{0.970637in}{1.944868in}}% -\pgfpathlineto{\pgfqpoint{1.012056in}{1.960198in}}% -\pgfpathlineto{\pgfqpoint{1.065308in}{1.982607in}}% -\pgfpathlineto{\pgfqpoint{1.219150in}{2.049183in}}% -\pgfpathlineto{\pgfqpoint{1.266486in}{2.066673in}}% -\pgfpathlineto{\pgfqpoint{1.307905in}{2.079881in}}% -\pgfpathlineto{\pgfqpoint{1.349324in}{2.090815in}}% -\pgfpathlineto{\pgfqpoint{1.390743in}{2.099253in}}% -\pgfpathlineto{\pgfqpoint{1.426245in}{2.104380in}}% -\pgfpathlineto{\pgfqpoint{1.461746in}{2.107498in}}% -\pgfpathlineto{\pgfqpoint{1.497248in}{2.108581in}}% -\pgfpathlineto{\pgfqpoint{1.532750in}{2.107630in}}% -\pgfpathlineto{\pgfqpoint{1.568252in}{2.104672in}}% -\pgfpathlineto{\pgfqpoint{1.603754in}{2.099759in}}% -\pgfpathlineto{\pgfqpoint{1.645173in}{2.091658in}}% -\pgfpathlineto{\pgfqpoint{1.686592in}{2.081149in}}% -\pgfpathlineto{\pgfqpoint{1.728011in}{2.068416in}}% -\pgfpathlineto{\pgfqpoint{1.775347in}{2.051412in}}% -\pgfpathlineto{\pgfqpoint{1.822683in}{2.032130in}}% -\pgfpathlineto{\pgfqpoint{1.881852in}{2.005410in}}% -\pgfpathlineto{\pgfqpoint{1.952856in}{1.970574in}}% -\pgfpathlineto{\pgfqpoint{2.207287in}{1.842753in}}% -\pgfpathlineto{\pgfqpoint{2.260539in}{1.819638in}}% -\pgfpathlineto{\pgfqpoint{2.307875in}{1.801233in}}% -\pgfpathlineto{\pgfqpoint{2.355211in}{1.785225in}}% -\pgfpathlineto{\pgfqpoint{2.396630in}{1.773451in}}% -\pgfpathlineto{\pgfqpoint{2.438049in}{1.763982in}}% -\pgfpathlineto{\pgfqpoint{2.479468in}{1.757005in}}% -\pgfpathlineto{\pgfqpoint{2.514970in}{1.753139in}}% -\pgfpathlineto{\pgfqpoint{2.550472in}{1.751324in}}% -\pgfpathlineto{\pgfqpoint{2.585974in}{1.751644in}}% -\pgfpathlineto{\pgfqpoint{2.621476in}{1.754169in}}% -\pgfpathlineto{\pgfqpoint{2.656977in}{1.758958in}}% -\pgfpathlineto{\pgfqpoint{2.692479in}{1.766056in}}% -\pgfpathlineto{\pgfqpoint{2.727981in}{1.775495in}}% -\pgfpathlineto{\pgfqpoint{2.763483in}{1.787296in}}% -\pgfpathlineto{\pgfqpoint{2.798985in}{1.801463in}}% -\pgfpathlineto{\pgfqpoint{2.834487in}{1.817991in}}% -\pgfpathlineto{\pgfqpoint{2.869989in}{1.836858in}}% -\pgfpathlineto{\pgfqpoint{2.905491in}{1.858030in}}% -\pgfpathlineto{\pgfqpoint{2.946910in}{1.885581in}}% -\pgfpathlineto{\pgfqpoint{2.988329in}{1.916108in}}% -\pgfpathlineto{\pgfqpoint{3.029748in}{1.949487in}}% -\pgfpathlineto{\pgfqpoint{3.071166in}{1.985574in}}% -\pgfpathlineto{\pgfqpoint{3.118502in}{2.029913in}}% -\pgfpathlineto{\pgfqpoint{3.165838in}{2.077278in}}% -\pgfpathlineto{\pgfqpoint{3.219091in}{2.133774in}}% -\pgfpathlineto{\pgfqpoint{3.278261in}{2.199921in}}% -\pgfpathlineto{\pgfqpoint{3.349265in}{2.282904in}}% -\pgfpathlineto{\pgfqpoint{3.449854in}{2.404360in}}% -\pgfpathlineto{\pgfqpoint{3.580027in}{2.561142in}}% -\pgfpathlineto{\pgfqpoint{3.645114in}{2.636131in}}% -\pgfpathlineto{\pgfqpoint{3.698367in}{2.694373in}}% -\pgfpathlineto{\pgfqpoint{3.745703in}{2.743049in}}% -\pgfpathlineto{\pgfqpoint{3.787122in}{2.782752in}}% -\pgfpathlineto{\pgfqpoint{3.828541in}{2.819328in}}% -\pgfpathlineto{\pgfqpoint{3.864042in}{2.847879in}}% -\pgfpathlineto{\pgfqpoint{3.899544in}{2.873571in}}% -\pgfpathlineto{\pgfqpoint{3.929129in}{2.892611in}}% -\pgfpathlineto{\pgfqpoint{3.958714in}{2.909339in}}% -\pgfpathlineto{\pgfqpoint{3.988299in}{2.923607in}}% -\pgfpathlineto{\pgfqpoint{4.017884in}{2.935270in}}% -\pgfpathlineto{\pgfqpoint{4.047469in}{2.944185in}}% -\pgfpathlineto{\pgfqpoint{4.071137in}{2.949243in}}% -\pgfpathlineto{\pgfqpoint{4.094805in}{2.952380in}}% -\pgfpathlineto{\pgfqpoint{4.118473in}{2.953528in}}% -\pgfpathlineto{\pgfqpoint{4.142141in}{2.952616in}}% -\pgfpathlineto{\pgfqpoint{4.165809in}{2.949579in}}% -\pgfpathlineto{\pgfqpoint{4.189477in}{2.944349in}}% -\pgfpathlineto{\pgfqpoint{4.213145in}{2.936864in}}% -\pgfpathlineto{\pgfqpoint{4.236813in}{2.927061in}}% -\pgfpathlineto{\pgfqpoint{4.260481in}{2.914879in}}% -\pgfpathlineto{\pgfqpoint{4.284148in}{2.900260in}}% -\pgfpathlineto{\pgfqpoint{4.307816in}{2.883148in}}% -\pgfpathlineto{\pgfqpoint{4.331484in}{2.863488in}}% -\pgfpathlineto{\pgfqpoint{4.355152in}{2.841228in}}% -\pgfpathlineto{\pgfqpoint{4.378820in}{2.816319in}}% -\pgfpathlineto{\pgfqpoint{4.402488in}{2.788714in}}% -\pgfpathlineto{\pgfqpoint{4.432073in}{2.750348in}}% -\pgfpathlineto{\pgfqpoint{4.461658in}{2.707620in}}% -\pgfpathlineto{\pgfqpoint{4.491243in}{2.660455in}}% -\pgfpathlineto{\pgfqpoint{4.520828in}{2.608787in}}% -\pgfpathlineto{\pgfqpoint{4.550413in}{2.552558in}}% -\pgfpathlineto{\pgfqpoint{4.579998in}{2.491717in}}% -\pgfpathlineto{\pgfqpoint{4.609583in}{2.426220in}}% -\pgfpathlineto{\pgfqpoint{4.639168in}{2.356035in}}% -\pgfpathlineto{\pgfqpoint{4.674669in}{2.265589in}}% -\pgfpathlineto{\pgfqpoint{4.710171in}{2.168330in}}% -\pgfpathlineto{\pgfqpoint{4.745673in}{2.064252in}}% -\pgfpathlineto{\pgfqpoint{4.781175in}{1.953370in}}% -\pgfpathlineto{\pgfqpoint{4.816677in}{1.835719in}}% -\pgfpathlineto{\pgfqpoint{4.858096in}{1.689983in}}% -\pgfpathlineto{\pgfqpoint{4.899515in}{1.535245in}}% -\pgfpathlineto{\pgfqpoint{4.940934in}{1.371677in}}% -\pgfpathlineto{\pgfqpoint{4.982353in}{1.199498in}}% -\pgfpathlineto{\pgfqpoint{5.029689in}{0.992518in}}% -\pgfpathlineto{\pgfqpoint{5.077024in}{0.775107in}}% -\pgfpathlineto{\pgfqpoint{5.124360in}{0.547814in}}% -\pgfpathlineto{\pgfqpoint{5.177613in}{0.281092in}}% -\pgfpathlineto{\pgfqpoint{5.225582in}{0.031670in}}% -\pgfpathlineto{\pgfqpoint{5.225582in}{0.031670in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.579040in}{0.041670in}}% -\pgfpathlineto{\pgfqpoint{0.579040in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.000000in}}% -\pgfpathlineto{\pgfqpoint{5.953330in}{2.000000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813961in}{0.080837in}}% -\pgfpathlineto{\pgfqpoint{2.944352in}{0.080837in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.977686in}{0.080837in}}{\pgfqpoint{2.977686in}{0.114170in}}% -\pgfpathlineto{\pgfqpoint{2.977686in}{1.076018in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.977686in}{1.109352in}}{\pgfqpoint{2.944352in}{1.109352in}}% -\pgfpathlineto{\pgfqpoint{0.813961in}{1.109352in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.780627in}{1.109352in}}{\pgfqpoint{0.780627in}{1.076018in}}% -\pgfpathlineto{\pgfqpoint{0.780627in}{0.114170in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.780627in}{0.080837in}}{\pgfqpoint{0.813961in}{0.080837in}}% -\pgfpathlineto{\pgfqpoint{0.813961in}{0.080837in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.847294in}{0.974391in}}% -\pgfpathlineto{\pgfqpoint{1.013961in}{0.974391in}}% -\pgfpathlineto{\pgfqpoint{1.180627in}{0.974391in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.313961in,y=0.916057in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.847294in}{0.729762in}}% -\pgfpathlineto{\pgfqpoint{1.013961in}{0.729762in}}% -\pgfpathlineto{\pgfqpoint{1.180627in}{0.729762in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.313961in,y=0.671429in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=1\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.847294in}{0.485133in}}% -\pgfpathlineto{\pgfqpoint{1.013961in}{0.485133in}}% -\pgfpathlineto{\pgfqpoint{1.180627in}{0.485133in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.313961in,y=0.426800in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=2\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.847294in}{0.240504in}}% -\pgfpathlineto{\pgfqpoint{1.013961in}{0.240504in}}% -\pgfpathlineto{\pgfqpoint{1.180627in}{0.240504in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.313961in,y=0.182171in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=3\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.045823in}{0.974391in}}% -\pgfpathlineto{\pgfqpoint{2.212490in}{0.974391in}}% -\pgfpathlineto{\pgfqpoint{2.379157in}{0.974391in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.512490in,y=0.916057in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=4\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.045823in}{0.729762in}}% -\pgfpathlineto{\pgfqpoint{2.212490in}{0.729762in}}% -\pgfpathlineto{\pgfqpoint{2.379157in}{0.729762in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.512490in,y=0.671429in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.045823in}{0.485133in}}% -\pgfpathlineto{\pgfqpoint{2.212490in}{0.485133in}}% -\pgfpathlineto{\pgfqpoint{2.379157in}{0.485133in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.512490in,y=0.426800in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=6\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.045823in}{0.240504in}}% -\pgfpathlineto{\pgfqpoint{2.212490in}{0.240504in}}% -\pgfpathlineto{\pgfqpoint{2.379157in}{0.240504in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.512490in,y=0.182171in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=7\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/rel_error_mirror.pgf b/buch/papers/laguerre/images/rel_error_mirror.pgf index de1cd53..45d502e 100644 --- a/buch/papers/laguerre/images/rel_error_mirror.pgf +++ b/buch/papers/laguerre/images/rel_error_mirror.pgf @@ -56,16 +56,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{0.463273in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -73,8 +73,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.482258in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -92,7 +92,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{0.463273in}% +\pgfsys@transformshift{0.482258in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -100,10 +100,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.672226in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}15}% +\pgftext[x=0.482258in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}15}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -111,8 +111,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.371849in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.371849in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.213542in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.213542in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -130,7 +130,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.371849in}{0.463273in}% +\pgfsys@transformshift{1.213542in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -138,10 +138,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.371849in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}% +\pgftext[x=1.213542in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -149,8 +149,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.071472in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.944827in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -168,7 +168,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.071472in}{0.463273in}% +\pgfsys@transformshift{1.944827in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -176,10 +176,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.071472in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% +\pgftext[x=1.944827in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -187,8 +187,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.771095in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.771095in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.676111in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.676111in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -206,7 +206,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.771095in}{0.463273in}% +\pgfsys@transformshift{2.676111in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -214,10 +214,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.771095in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\pgftext[x=2.676111in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -225,8 +225,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.470718in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.470718in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.407396in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.407396in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -244,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.470718in}{0.463273in}% +\pgfsys@transformshift{3.407396in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -252,10 +252,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.470718in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\pgftext[x=3.407396in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -263,8 +263,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.170342in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.170342in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.138680in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.138680in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -282,7 +282,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.170342in}{0.463273in}% +\pgfsys@transformshift{4.138680in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -290,10 +290,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.170342in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\pgftext[x=4.138680in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -331,7 +331,7 @@ \pgftext[x=4.869965in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -339,8 +339,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.812150in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.812150in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.628514in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.628514in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -358,12 +358,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.812150in}{0.463273in}% +\pgfsys@transformshift{0.628514in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -371,8 +371,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.952075in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.952075in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.774771in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.774771in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -390,12 +390,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.952075in}{0.463273in}% +\pgfsys@transformshift{0.774771in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -403,8 +403,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.092000in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.092000in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.921028in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.921028in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -422,12 +422,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.092000in}{0.463273in}% +\pgfsys@transformshift{0.921028in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -435,8 +435,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.231924in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.231924in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.067285in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.067285in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -454,12 +454,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.231924in}{0.463273in}% +\pgfsys@transformshift{1.067285in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -467,8 +467,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.511774in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.511774in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.359799in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.359799in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -486,12 +486,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.511774in}{0.463273in}% +\pgfsys@transformshift{1.359799in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -499,8 +499,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.651698in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.651698in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.506056in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.506056in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -518,12 +518,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.651698in}{0.463273in}% +\pgfsys@transformshift{1.506056in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -531,8 +531,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.791623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.791623in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.652313in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.652313in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -550,12 +550,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.791623in}{0.463273in}% +\pgfsys@transformshift{1.652313in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -563,8 +563,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.931547in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.931547in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.798570in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.798570in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -582,12 +582,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.931547in}{0.463273in}% +\pgfsys@transformshift{1.798570in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -595,8 +595,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.211397in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.211397in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.091083in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.091083in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -614,12 +614,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.211397in}{0.463273in}% +\pgfsys@transformshift{2.091083in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -627,8 +627,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.351321in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.351321in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.237340in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.237340in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -646,12 +646,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.351321in}{0.463273in}% +\pgfsys@transformshift{2.237340in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -659,8 +659,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.491246in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.491246in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.383597in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.383597in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -678,12 +678,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.491246in}{0.463273in}% +\pgfsys@transformshift{2.383597in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -691,8 +691,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.631171in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.631171in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.529854in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.529854in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -710,12 +710,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.631171in}{0.463273in}% +\pgfsys@transformshift{2.529854in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -723,8 +723,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.911020in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.911020in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.822368in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.822368in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -742,12 +742,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.911020in}{0.463273in}% +\pgfsys@transformshift{2.822368in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -755,8 +755,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.050944in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.050944in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.968625in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.968625in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -774,12 +774,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.050944in}{0.463273in}% +\pgfsys@transformshift{2.968625in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -787,8 +787,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.190869in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.190869in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.114882in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.114882in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -806,12 +806,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.190869in}{0.463273in}% +\pgfsys@transformshift{3.114882in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -819,8 +819,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.330794in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.330794in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.261139in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.261139in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -838,12 +838,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.330794in}{0.463273in}% +\pgfsys@transformshift{3.261139in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -851,8 +851,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.610643in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.610643in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.553653in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.553653in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -870,12 +870,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.610643in}{0.463273in}% +\pgfsys@transformshift{3.553653in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -883,8 +883,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.750568in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.750568in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.699909in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.699909in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -902,12 +902,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.750568in}{0.463273in}% +\pgfsys@transformshift{3.699909in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -915,8 +915,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.890492in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.890492in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.846166in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.846166in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -934,12 +934,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.890492in}{0.463273in}% +\pgfsys@transformshift{3.846166in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -947,8 +947,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.030417in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.030417in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.992423in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.992423in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -966,12 +966,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.030417in}{0.463273in}% +\pgfsys@transformshift{3.992423in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -979,8 +979,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.310266in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.310266in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.284937in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.284937in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -998,12 +998,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.310266in}{0.463273in}% +\pgfsys@transformshift{4.284937in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1011,8 +1011,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.450191in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.450191in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.431194in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.431194in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1030,12 +1030,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.450191in}{0.463273in}% +\pgfsys@transformshift{4.431194in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1043,8 +1043,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.590115in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.590115in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.577451in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.577451in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1062,12 +1062,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.590115in}{0.463273in}% +\pgfsys@transformshift{4.577451in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1075,8 +1075,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.730040in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.730040in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.723708in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.723708in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1094,7 +1094,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.730040in}{0.463273in}% +\pgfsys@transformshift{4.723708in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1102,10 +1102,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.771095in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\pgftext[x=2.676111in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1113,7 +1113,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1132,7 +1132,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{0.463273in}% +\pgfsys@transformshift{0.482257in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1140,10 +1140,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% +\pgftext[x=0.041670in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1151,7 +1151,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.795783in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.795783in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.795783in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1170,7 +1170,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{0.795783in}% +\pgfsys@transformshift{0.482257in}{0.795783in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1178,10 +1178,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=0.743021in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% +\pgftext[x=0.097033in, y=0.743021in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1189,7 +1189,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.128292in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.128292in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.128292in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1208,7 +1208,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{1.128292in}% +\pgfsys@transformshift{0.482257in}{1.128292in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1216,10 +1216,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=1.075531in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% +\pgftext[x=0.097033in, y=1.075531in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1227,7 +1227,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.460802in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.460802in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.460802in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1246,7 +1246,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{1.460802in}% +\pgfsys@transformshift{0.482257in}{1.460802in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1254,10 +1254,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=1.408040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% +\pgftext[x=0.097033in, y=1.408040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1265,7 +1265,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.793311in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.793311in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.793311in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1284,7 +1284,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{1.793311in}% +\pgfsys@transformshift{0.482257in}{1.793311in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1292,10 +1292,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=1.740550in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% +\pgftext[x=0.097033in, y=1.740550in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1303,7 +1303,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{2.125821in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{2.125821in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.125821in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1322,7 +1322,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{2.125821in}% +\pgfsys@transformshift{0.482257in}{2.125821in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1330,16 +1330,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=2.073059in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% +\pgftext[x=0.097033in, y=2.073059in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% \end{pgfscope}% \begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.176083in,y=1.460802in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont Relativer Fehler}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1347,143 +1341,144 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.679275in}{2.468330in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{2.410308in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{2.317895in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{2.284509in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{2.254104in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{2.227040in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{2.204343in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{2.178651in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{2.159180in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{2.137059in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{2.111145in}}% -\pgfpathlineto{\pgfqpoint{2.292406in}{2.079305in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{2.059868in}}% -\pgfpathlineto{\pgfqpoint{2.313447in}{2.036671in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{2.007374in}}% -\pgfpathlineto{\pgfqpoint{2.334488in}{1.966175in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{1.888819in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{1.852553in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{1.935490in}}% -\pgfpathlineto{\pgfqpoint{2.376571in}{1.966273in}}% -\pgfpathlineto{\pgfqpoint{2.387092in}{1.982554in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{1.991421in}}% -\pgfpathlineto{\pgfqpoint{2.408133in}{1.995381in}}% -\pgfpathlineto{\pgfqpoint{2.418654in}{1.995469in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{1.992029in}}% -\pgfpathlineto{\pgfqpoint{2.439695in}{1.984911in}}% -\pgfpathlineto{\pgfqpoint{2.450215in}{1.973415in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{1.955869in}}% -\pgfpathlineto{\pgfqpoint{2.471257in}{1.928150in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{1.876035in}}% -\pgfpathlineto{\pgfqpoint{2.492298in}{1.718273in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{1.891334in}}% -\pgfpathlineto{\pgfqpoint{2.513339in}{1.936950in}}% -\pgfpathlineto{\pgfqpoint{2.523860in}{1.962930in}}% -\pgfpathlineto{\pgfqpoint{2.534381in}{1.979802in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{1.990917in}}% -\pgfpathlineto{\pgfqpoint{2.555422in}{1.997647in}}% -\pgfpathlineto{\pgfqpoint{2.565943in}{2.000526in}}% -\pgfpathlineto{\pgfqpoint{2.576463in}{1.999568in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{1.994278in}}% -\pgfpathlineto{\pgfqpoint{2.597505in}{1.983378in}}% -\pgfpathlineto{\pgfqpoint{2.608025in}{1.963807in}}% -\pgfpathlineto{\pgfqpoint{2.618546in}{1.926370in}}% -\pgfpathlineto{\pgfqpoint{2.629066in}{1.802233in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{1.906504in}}% -\pgfpathlineto{\pgfqpoint{2.650108in}{1.968180in}}% -\pgfpathlineto{\pgfqpoint{2.660628in}{2.002136in}}% -\pgfpathlineto{\pgfqpoint{2.671149in}{2.025121in}}% -\pgfpathlineto{\pgfqpoint{2.681670in}{2.041717in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{2.053754in}}% -\pgfpathlineto{\pgfqpoint{2.702711in}{2.062026in}}% -\pgfpathlineto{\pgfqpoint{2.713232in}{2.066751in}}% -\pgfpathlineto{\pgfqpoint{2.723752in}{2.067672in}}% -\pgfpathlineto{\pgfqpoint{2.734273in}{2.063874in}}% -\pgfpathlineto{\pgfqpoint{2.744794in}{2.053110in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{2.029136in}}% -\pgfpathlineto{\pgfqpoint{2.765835in}{1.962275in}}% -\pgfpathlineto{\pgfqpoint{2.776356in}{2.287874in}}% -\pgfpathlineto{\pgfqpoint{2.797397in}{2.268373in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{2.244071in}}% -\pgfpathlineto{\pgfqpoint{2.839479in}{2.213742in}}% -\pgfpathlineto{\pgfqpoint{2.850000in}{2.195581in}}% -\pgfpathlineto{\pgfqpoint{2.860521in}{2.174687in}}% -\pgfpathlineto{\pgfqpoint{2.871041in}{2.150023in}}% -\pgfpathlineto{\pgfqpoint{2.881562in}{2.119594in}}% -\pgfpathlineto{\pgfqpoint{2.892083in}{2.078703in}}% -\pgfpathlineto{\pgfqpoint{2.902603in}{2.010520in}}% -\pgfpathlineto{\pgfqpoint{2.913124in}{1.900106in}}% -\pgfpathlineto{\pgfqpoint{2.923645in}{2.018416in}}% -\pgfpathlineto{\pgfqpoint{2.934165in}{2.050303in}}% -\pgfpathlineto{\pgfqpoint{2.944686in}{2.064566in}}% -\pgfpathlineto{\pgfqpoint{2.955207in}{2.070369in}}% -\pgfpathlineto{\pgfqpoint{2.965727in}{2.070744in}}% -\pgfpathlineto{\pgfqpoint{2.976248in}{2.066944in}}% -\pgfpathlineto{\pgfqpoint{2.986769in}{2.059435in}}% -\pgfpathlineto{\pgfqpoint{2.997289in}{2.048179in}}% -\pgfpathlineto{\pgfqpoint{3.007810in}{2.032617in}}% -\pgfpathlineto{\pgfqpoint{3.018330in}{2.011350in}}% -\pgfpathlineto{\pgfqpoint{3.028851in}{1.981005in}}% -\pgfpathlineto{\pgfqpoint{3.039372in}{1.931030in}}% -\pgfpathlineto{\pgfqpoint{3.049892in}{1.753590in}}% -\pgfpathlineto{\pgfqpoint{3.060413in}{1.906932in}}% -\pgfpathlineto{\pgfqpoint{3.070934in}{1.954561in}}% -\pgfpathlineto{\pgfqpoint{3.081454in}{1.977707in}}% -\pgfpathlineto{\pgfqpoint{3.091975in}{1.990569in}}% -\pgfpathlineto{\pgfqpoint{3.102496in}{1.997247in}}% -\pgfpathlineto{\pgfqpoint{3.113016in}{1.999389in}}% -\pgfpathlineto{\pgfqpoint{3.123537in}{1.997671in}}% -\pgfpathlineto{\pgfqpoint{3.134058in}{1.992216in}}% -\pgfpathlineto{\pgfqpoint{3.144578in}{1.982655in}}% -\pgfpathlineto{\pgfqpoint{3.155099in}{1.967919in}}% -\pgfpathlineto{\pgfqpoint{3.165620in}{1.945469in}}% -\pgfpathlineto{\pgfqpoint{3.176140in}{1.908177in}}% -\pgfpathlineto{\pgfqpoint{3.186661in}{1.818345in}}% -\pgfpathlineto{\pgfqpoint{3.197182in}{1.847277in}}% -\pgfpathlineto{\pgfqpoint{3.207702in}{1.916791in}}% -\pgfpathlineto{\pgfqpoint{3.218223in}{1.949559in}}% -\pgfpathlineto{\pgfqpoint{3.228743in}{1.969729in}}% -\pgfpathlineto{\pgfqpoint{3.239264in}{1.982965in}}% -\pgfpathlineto{\pgfqpoint{3.249785in}{1.991413in}}% -\pgfpathlineto{\pgfqpoint{3.260305in}{1.995991in}}% -\pgfpathlineto{\pgfqpoint{3.270826in}{1.996990in}}% -\pgfpathlineto{\pgfqpoint{3.281347in}{1.994217in}}% -\pgfpathlineto{\pgfqpoint{3.291867in}{1.986881in}}% -\pgfpathlineto{\pgfqpoint{3.302388in}{1.973065in}}% -\pgfpathlineto{\pgfqpoint{3.312909in}{1.947748in}}% -\pgfpathlineto{\pgfqpoint{3.333950in}{1.836594in}}% -\pgfpathlineto{\pgfqpoint{3.344471in}{1.948642in}}% -\pgfpathlineto{\pgfqpoint{3.354991in}{1.995519in}}% -\pgfpathlineto{\pgfqpoint{3.365512in}{2.026825in}}% -\pgfpathlineto{\pgfqpoint{3.376033in}{2.050779in}}% -\pgfpathlineto{\pgfqpoint{3.386553in}{2.070356in}}% -\pgfpathlineto{\pgfqpoint{3.397074in}{2.086987in}}% -\pgfpathlineto{\pgfqpoint{3.418115in}{2.114313in}}% -\pgfpathlineto{\pgfqpoint{3.439156in}{2.136291in}}% -\pgfpathlineto{\pgfqpoint{3.460198in}{2.154606in}}% -\pgfpathlineto{\pgfqpoint{3.481239in}{2.170212in}}% -\pgfpathlineto{\pgfqpoint{3.502280in}{2.183713in}}% -\pgfpathlineto{\pgfqpoint{3.533842in}{2.200878in}}% -\pgfpathlineto{\pgfqpoint{3.565404in}{2.215135in}}% -\pgfpathlineto{\pgfqpoint{3.596966in}{2.227105in}}% -\pgfpathlineto{\pgfqpoint{3.639049in}{2.240242in}}% -\pgfpathlineto{\pgfqpoint{3.681131in}{2.250814in}}% -\pgfpathlineto{\pgfqpoint{3.723214in}{2.259348in}}% -\pgfpathlineto{\pgfqpoint{3.775817in}{2.267741in}}% -\pgfpathlineto{\pgfqpoint{3.838941in}{2.275225in}}% -\pgfpathlineto{\pgfqpoint{3.912586in}{2.281308in}}% -\pgfpathlineto{\pgfqpoint{3.996751in}{2.285800in}}% -\pgfpathlineto{\pgfqpoint{4.101957in}{2.289020in}}% -\pgfpathlineto{\pgfqpoint{4.249246in}{2.291054in}}% -\pgfpathlineto{\pgfqpoint{4.512263in}{2.291963in}}% +\pgfpathmoveto{\pgfqpoint{1.534881in}{2.468330in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{2.410308in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{2.323241in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{2.290263in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{2.260440in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{2.234100in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{2.212190in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{2.187621in}}% +\pgfpathlineto{\pgfqpoint{2.098781in}{2.169196in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{2.148508in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{2.124676in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{2.096167in}}% +\pgfpathlineto{\pgfqpoint{2.175759in}{2.079305in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{2.059868in}}% +\pgfpathlineto{\pgfqpoint{2.197752in}{2.036671in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{2.007374in}}% +\pgfpathlineto{\pgfqpoint{2.219746in}{1.966175in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{1.888819in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{1.852553in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{1.935490in}}% +\pgfpathlineto{\pgfqpoint{2.263733in}{1.966273in}}% +\pgfpathlineto{\pgfqpoint{2.274729in}{1.982554in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{1.991421in}}% +\pgfpathlineto{\pgfqpoint{2.296723in}{1.995381in}}% +\pgfpathlineto{\pgfqpoint{2.307720in}{1.995469in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{1.992029in}}% +\pgfpathlineto{\pgfqpoint{2.329713in}{1.984911in}}% +\pgfpathlineto{\pgfqpoint{2.340710in}{1.973415in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{1.955869in}}% +\pgfpathlineto{\pgfqpoint{2.362703in}{1.928150in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{1.876035in}}% +\pgfpathlineto{\pgfqpoint{2.384697in}{1.718273in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{1.891334in}}% +\pgfpathlineto{\pgfqpoint{2.406690in}{1.936950in}}% +\pgfpathlineto{\pgfqpoint{2.417687in}{1.962930in}}% +\pgfpathlineto{\pgfqpoint{2.428684in}{1.979802in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{1.990917in}}% +\pgfpathlineto{\pgfqpoint{2.450678in}{1.997647in}}% +\pgfpathlineto{\pgfqpoint{2.461674in}{2.000526in}}% +\pgfpathlineto{\pgfqpoint{2.472671in}{1.999568in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{1.994278in}}% +\pgfpathlineto{\pgfqpoint{2.494665in}{1.983378in}}% +\pgfpathlineto{\pgfqpoint{2.505661in}{1.963807in}}% +\pgfpathlineto{\pgfqpoint{2.516658in}{1.926370in}}% +\pgfpathlineto{\pgfqpoint{2.527655in}{1.802233in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{1.906504in}}% +\pgfpathlineto{\pgfqpoint{2.549648in}{1.968180in}}% +\pgfpathlineto{\pgfqpoint{2.560645in}{2.002136in}}% +\pgfpathlineto{\pgfqpoint{2.571642in}{2.025121in}}% +\pgfpathlineto{\pgfqpoint{2.582639in}{2.041717in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{2.053754in}}% +\pgfpathlineto{\pgfqpoint{2.604632in}{2.062026in}}% +\pgfpathlineto{\pgfqpoint{2.615629in}{2.066751in}}% +\pgfpathlineto{\pgfqpoint{2.626626in}{2.067672in}}% +\pgfpathlineto{\pgfqpoint{2.637622in}{2.063874in}}% +\pgfpathlineto{\pgfqpoint{2.648619in}{2.053110in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{2.029136in}}% +\pgfpathlineto{\pgfqpoint{2.670613in}{1.962275in}}% +\pgfpathlineto{\pgfqpoint{2.681609in}{2.287874in}}% +\pgfpathlineto{\pgfqpoint{2.703603in}{2.268373in}}% +\pgfpathlineto{\pgfqpoint{2.725596in}{2.244071in}}% +\pgfpathlineto{\pgfqpoint{2.747590in}{2.213742in}}% +\pgfpathlineto{\pgfqpoint{2.758587in}{2.195581in}}% +\pgfpathlineto{\pgfqpoint{2.769584in}{2.174687in}}% +\pgfpathlineto{\pgfqpoint{2.780580in}{2.150023in}}% +\pgfpathlineto{\pgfqpoint{2.791577in}{2.119594in}}% +\pgfpathlineto{\pgfqpoint{2.802574in}{2.078703in}}% +\pgfpathlineto{\pgfqpoint{2.813571in}{2.010520in}}% +\pgfpathlineto{\pgfqpoint{2.824567in}{1.900106in}}% +\pgfpathlineto{\pgfqpoint{2.835564in}{2.018416in}}% +\pgfpathlineto{\pgfqpoint{2.846561in}{2.050303in}}% +\pgfpathlineto{\pgfqpoint{2.857558in}{2.064566in}}% +\pgfpathlineto{\pgfqpoint{2.868554in}{2.070369in}}% +\pgfpathlineto{\pgfqpoint{2.879551in}{2.070744in}}% +\pgfpathlineto{\pgfqpoint{2.890548in}{2.066944in}}% +\pgfpathlineto{\pgfqpoint{2.901545in}{2.059435in}}% +\pgfpathlineto{\pgfqpoint{2.912541in}{2.048179in}}% +\pgfpathlineto{\pgfqpoint{2.923538in}{2.032617in}}% +\pgfpathlineto{\pgfqpoint{2.934535in}{2.011350in}}% +\pgfpathlineto{\pgfqpoint{2.945532in}{1.981005in}}% +\pgfpathlineto{\pgfqpoint{2.956528in}{1.931030in}}% +\pgfpathlineto{\pgfqpoint{2.967525in}{1.753590in}}% +\pgfpathlineto{\pgfqpoint{2.978522in}{1.906932in}}% +\pgfpathlineto{\pgfqpoint{2.989519in}{1.954561in}}% +\pgfpathlineto{\pgfqpoint{3.000515in}{1.977707in}}% +\pgfpathlineto{\pgfqpoint{3.011512in}{1.990569in}}% +\pgfpathlineto{\pgfqpoint{3.022509in}{1.997247in}}% +\pgfpathlineto{\pgfqpoint{3.033506in}{1.999389in}}% +\pgfpathlineto{\pgfqpoint{3.044503in}{1.997671in}}% +\pgfpathlineto{\pgfqpoint{3.055499in}{1.992216in}}% +\pgfpathlineto{\pgfqpoint{3.066496in}{1.982655in}}% +\pgfpathlineto{\pgfqpoint{3.077493in}{1.967919in}}% +\pgfpathlineto{\pgfqpoint{3.088490in}{1.945469in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{1.908177in}}% +\pgfpathlineto{\pgfqpoint{3.110483in}{1.818345in}}% +\pgfpathlineto{\pgfqpoint{3.121480in}{1.847277in}}% +\pgfpathlineto{\pgfqpoint{3.132477in}{1.916791in}}% +\pgfpathlineto{\pgfqpoint{3.143473in}{1.949559in}}% +\pgfpathlineto{\pgfqpoint{3.154470in}{1.969729in}}% +\pgfpathlineto{\pgfqpoint{3.165467in}{1.982965in}}% +\pgfpathlineto{\pgfqpoint{3.176464in}{1.991413in}}% +\pgfpathlineto{\pgfqpoint{3.187460in}{1.995991in}}% +\pgfpathlineto{\pgfqpoint{3.198457in}{1.996990in}}% +\pgfpathlineto{\pgfqpoint{3.209454in}{1.994217in}}% +\pgfpathlineto{\pgfqpoint{3.220451in}{1.986881in}}% +\pgfpathlineto{\pgfqpoint{3.231447in}{1.973065in}}% +\pgfpathlineto{\pgfqpoint{3.242444in}{1.947748in}}% +\pgfpathlineto{\pgfqpoint{3.264438in}{1.836594in}}% +\pgfpathlineto{\pgfqpoint{3.275434in}{1.948642in}}% +\pgfpathlineto{\pgfqpoint{3.286431in}{1.995519in}}% +\pgfpathlineto{\pgfqpoint{3.297428in}{2.026825in}}% +\pgfpathlineto{\pgfqpoint{3.308425in}{2.050779in}}% +\pgfpathlineto{\pgfqpoint{3.319422in}{2.070356in}}% +\pgfpathlineto{\pgfqpoint{3.330418in}{2.086987in}}% +\pgfpathlineto{\pgfqpoint{3.352412in}{2.114313in}}% +\pgfpathlineto{\pgfqpoint{3.374405in}{2.136291in}}% +\pgfpathlineto{\pgfqpoint{3.396399in}{2.154606in}}% +\pgfpathlineto{\pgfqpoint{3.418392in}{2.170212in}}% +\pgfpathlineto{\pgfqpoint{3.440386in}{2.183713in}}% +\pgfpathlineto{\pgfqpoint{3.473376in}{2.200878in}}% +\pgfpathlineto{\pgfqpoint{3.506366in}{2.215135in}}% +\pgfpathlineto{\pgfqpoint{3.539357in}{2.227105in}}% +\pgfpathlineto{\pgfqpoint{3.583344in}{2.240242in}}% +\pgfpathlineto{\pgfqpoint{3.627331in}{2.250814in}}% +\pgfpathlineto{\pgfqpoint{3.671318in}{2.259348in}}% +\pgfpathlineto{\pgfqpoint{3.726302in}{2.267741in}}% +\pgfpathlineto{\pgfqpoint{3.792282in}{2.275225in}}% +\pgfpathlineto{\pgfqpoint{3.869260in}{2.281308in}}% +\pgfpathlineto{\pgfqpoint{3.957234in}{2.285800in}}% +\pgfpathlineto{\pgfqpoint{4.067201in}{2.289020in}}% +\pgfpathlineto{\pgfqpoint{4.221156in}{2.291054in}}% +\pgfpathlineto{\pgfqpoint{4.496075in}{2.291963in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.292072in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.292072in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1491,252 +1486,252 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{2.410760in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{2.270043in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{2.240649in}}% -\pgfpathlineto{\pgfqpoint{1.282423in}{2.212677in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{2.186340in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{2.162155in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{2.135297in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{2.111331in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{2.084526in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{2.062062in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{2.037030in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{2.008709in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{1.987478in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{1.963816in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{1.936980in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{1.905744in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{1.867808in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{1.844903in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{1.817778in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{1.783691in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{1.735362in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{1.634970in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{1.653720in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{1.713348in}}% -\pgfpathlineto{\pgfqpoint{1.818977in}{1.736454in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{1.747122in}}% -\pgfpathlineto{\pgfqpoint{1.840018in}{1.750959in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.750060in}}% -\pgfpathlineto{\pgfqpoint{1.861059in}{1.745290in}}% -\pgfpathlineto{\pgfqpoint{1.871580in}{1.736891in}}% -\pgfpathlineto{\pgfqpoint{1.882100in}{1.724621in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{1.707639in}}% -\pgfpathlineto{\pgfqpoint{1.903142in}{1.683974in}}% -\pgfpathlineto{\pgfqpoint{1.913662in}{1.648549in}}% -\pgfpathlineto{\pgfqpoint{1.934704in}{1.516139in}}% -\pgfpathlineto{\pgfqpoint{1.945224in}{1.616888in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{1.651892in}}% -\pgfpathlineto{\pgfqpoint{1.966266in}{1.670631in}}% -\pgfpathlineto{\pgfqpoint{1.976786in}{1.681175in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{1.686301in}}% -\pgfpathlineto{\pgfqpoint{1.997828in}{1.687174in}}% -\pgfpathlineto{\pgfqpoint{2.008348in}{1.684214in}}% -\pgfpathlineto{\pgfqpoint{2.018869in}{1.677342in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{1.665946in}}% -\pgfpathlineto{\pgfqpoint{2.039910in}{1.648507in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{1.621311in}}% -\pgfpathlineto{\pgfqpoint{2.060951in}{1.572170in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{0.922914in}}% -\pgfpathlineto{\pgfqpoint{2.081993in}{1.570606in}}% -\pgfpathlineto{\pgfqpoint{2.092513in}{1.618175in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{1.643784in}}% -\pgfpathlineto{\pgfqpoint{2.113555in}{1.659613in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{1.669369in}}% -\pgfpathlineto{\pgfqpoint{2.134596in}{1.674560in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{1.675792in}}% -\pgfpathlineto{\pgfqpoint{2.155637in}{1.673136in}}% -\pgfpathlineto{\pgfqpoint{2.166158in}{1.666159in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{1.653690in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{1.632939in}}% -\pgfpathlineto{\pgfqpoint{2.197720in}{1.595827in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{1.492861in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{1.620458in}}% -\pgfpathlineto{\pgfqpoint{2.239802in}{1.653259in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{1.674134in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{1.688140in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{1.697231in}}% -\pgfpathlineto{\pgfqpoint{2.281885in}{1.702223in}}% -\pgfpathlineto{\pgfqpoint{2.292406in}{1.703335in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{1.700296in}}% -\pgfpathlineto{\pgfqpoint{2.313447in}{1.692210in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{1.676943in}}% -\pgfpathlineto{\pgfqpoint{2.334488in}{1.648848in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{1.583789in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{1.559107in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{1.652992in}}% -\pgfpathlineto{\pgfqpoint{2.376571in}{1.694151in}}% -\pgfpathlineto{\pgfqpoint{2.387092in}{1.720290in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{1.738543in}}% -\pgfpathlineto{\pgfqpoint{2.408133in}{1.751458in}}% -\pgfpathlineto{\pgfqpoint{2.418654in}{1.760107in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{1.764865in}}% -\pgfpathlineto{\pgfqpoint{2.439695in}{1.765614in}}% -\pgfpathlineto{\pgfqpoint{2.450215in}{1.761681in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{1.751422in}}% -\pgfpathlineto{\pgfqpoint{2.471257in}{1.730736in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{1.685427in}}% -\pgfpathlineto{\pgfqpoint{2.492298in}{1.534265in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{1.713742in}}% -\pgfpathlineto{\pgfqpoint{2.513339in}{1.765610in}}% -\pgfpathlineto{\pgfqpoint{2.523860in}{1.797700in}}% -\pgfpathlineto{\pgfqpoint{2.534381in}{1.820556in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{1.837547in}}% -\pgfpathlineto{\pgfqpoint{2.555422in}{1.850061in}}% -\pgfpathlineto{\pgfqpoint{2.565943in}{1.858644in}}% -\pgfpathlineto{\pgfqpoint{2.576463in}{1.863322in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{1.863608in}}% -\pgfpathlineto{\pgfqpoint{2.597505in}{1.858230in}}% -\pgfpathlineto{\pgfqpoint{2.608025in}{1.844128in}}% -\pgfpathlineto{\pgfqpoint{2.618546in}{1.812109in}}% -\pgfpathlineto{\pgfqpoint{2.629066in}{1.693333in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{1.802901in}}% -\pgfpathlineto{\pgfqpoint{2.650108in}{1.869801in}}% -\pgfpathlineto{\pgfqpoint{2.660628in}{1.908895in}}% -\pgfpathlineto{\pgfqpoint{2.671149in}{1.936918in}}% -\pgfpathlineto{\pgfqpoint{2.681670in}{1.958434in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{1.975261in}}% -\pgfpathlineto{\pgfqpoint{2.702711in}{1.988170in}}% -\pgfpathlineto{\pgfqpoint{2.713232in}{1.997368in}}% -\pgfpathlineto{\pgfqpoint{2.723752in}{2.002580in}}% -\pgfpathlineto{\pgfqpoint{2.734273in}{2.002879in}}% -\pgfpathlineto{\pgfqpoint{2.744794in}{1.996005in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{1.975709in}}% -\pgfpathlineto{\pgfqpoint{2.765835in}{1.912304in}}% -\pgfpathlineto{\pgfqpoint{2.776356in}{2.286279in}}% -\pgfpathlineto{\pgfqpoint{2.797397in}{2.260179in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{2.228979in}}% -\pgfpathlineto{\pgfqpoint{2.839479in}{2.191492in}}% -\pgfpathlineto{\pgfqpoint{2.850000in}{2.169661in}}% -\pgfpathlineto{\pgfqpoint{2.860521in}{2.145041in}}% -\pgfpathlineto{\pgfqpoint{2.871041in}{2.116593in}}% -\pgfpathlineto{\pgfqpoint{2.881562in}{2.082324in}}% -\pgfpathlineto{\pgfqpoint{2.892083in}{2.037536in}}% -\pgfpathlineto{\pgfqpoint{2.902603in}{1.965398in}}% -\pgfpathlineto{\pgfqpoint{2.913124in}{1.850973in}}% -\pgfpathlineto{\pgfqpoint{2.923645in}{1.965212in}}% -\pgfpathlineto{\pgfqpoint{2.934165in}{1.992969in}}% -\pgfpathlineto{\pgfqpoint{2.944686in}{2.003040in}}% -\pgfpathlineto{\pgfqpoint{2.955207in}{2.004587in}}% -\pgfpathlineto{\pgfqpoint{2.965727in}{2.000641in}}% -\pgfpathlineto{\pgfqpoint{2.976248in}{1.992452in}}% -\pgfpathlineto{\pgfqpoint{2.986769in}{1.980484in}}% -\pgfpathlineto{\pgfqpoint{2.997289in}{1.964697in}}% -\pgfpathlineto{\pgfqpoint{3.007810in}{1.944528in}}% -\pgfpathlineto{\pgfqpoint{3.018330in}{1.918576in}}% -\pgfpathlineto{\pgfqpoint{3.028851in}{1.883463in}}% -\pgfpathlineto{\pgfqpoint{3.039372in}{1.828635in}}% -\pgfpathlineto{\pgfqpoint{3.049892in}{1.646254in}}% -\pgfpathlineto{\pgfqpoint{3.060413in}{1.794561in}}% -\pgfpathlineto{\pgfqpoint{3.070934in}{1.837058in}}% -\pgfpathlineto{\pgfqpoint{3.081454in}{1.854970in}}% -\pgfpathlineto{\pgfqpoint{3.091975in}{1.862490in}}% -\pgfpathlineto{\pgfqpoint{3.102496in}{1.863715in}}% -\pgfpathlineto{\pgfqpoint{3.113016in}{1.860286in}}% -\pgfpathlineto{\pgfqpoint{3.123537in}{1.852874in}}% -\pgfpathlineto{\pgfqpoint{3.134058in}{1.841594in}}% -\pgfpathlineto{\pgfqpoint{3.144578in}{1.826070in}}% -\pgfpathlineto{\pgfqpoint{3.155099in}{1.805227in}}% -\pgfpathlineto{\pgfqpoint{3.165620in}{1.776515in}}% -\pgfpathlineto{\pgfqpoint{3.176140in}{1.732801in}}% -\pgfpathlineto{\pgfqpoint{3.186661in}{1.636375in}}% -\pgfpathlineto{\pgfqpoint{3.197182in}{1.658528in}}% -\pgfpathlineto{\pgfqpoint{3.207702in}{1.721071in}}% -\pgfpathlineto{\pgfqpoint{3.218223in}{1.746660in}}% -\pgfpathlineto{\pgfqpoint{3.228743in}{1.759428in}}% -\pgfpathlineto{\pgfqpoint{3.239264in}{1.765025in}}% -\pgfpathlineto{\pgfqpoint{3.249785in}{1.765578in}}% -\pgfpathlineto{\pgfqpoint{3.260305in}{1.761986in}}% -\pgfpathlineto{\pgfqpoint{3.270826in}{1.754515in}}% -\pgfpathlineto{\pgfqpoint{3.281347in}{1.742947in}}% -\pgfpathlineto{\pgfqpoint{3.291867in}{1.726463in}}% -\pgfpathlineto{\pgfqpoint{3.302388in}{1.703108in}}% -\pgfpathlineto{\pgfqpoint{3.312909in}{1.667823in}}% -\pgfpathlineto{\pgfqpoint{3.333950in}{1.535239in}}% -\pgfpathlineto{\pgfqpoint{3.344471in}{1.635700in}}% -\pgfpathlineto{\pgfqpoint{3.354991in}{1.670295in}}% -\pgfpathlineto{\pgfqpoint{3.365512in}{1.688518in}}% -\pgfpathlineto{\pgfqpoint{3.376033in}{1.698445in}}% -\pgfpathlineto{\pgfqpoint{3.386553in}{1.702864in}}% -\pgfpathlineto{\pgfqpoint{3.397074in}{1.702946in}}% -\pgfpathlineto{\pgfqpoint{3.407594in}{1.699120in}}% -\pgfpathlineto{\pgfqpoint{3.418115in}{1.691314in}}% -\pgfpathlineto{\pgfqpoint{3.428636in}{1.678921in}}% -\pgfpathlineto{\pgfqpoint{3.439156in}{1.660431in}}% -\pgfpathlineto{\pgfqpoint{3.449677in}{1.632133in}}% -\pgfpathlineto{\pgfqpoint{3.460198in}{1.581847in}}% -\pgfpathlineto{\pgfqpoint{3.470718in}{0.524177in}}% -\pgfpathlineto{\pgfqpoint{3.481239in}{1.577882in}}% -\pgfpathlineto{\pgfqpoint{3.491760in}{1.624206in}}% -\pgfpathlineto{\pgfqpoint{3.502280in}{1.648547in}}% -\pgfpathlineto{\pgfqpoint{3.512801in}{1.663089in}}% -\pgfpathlineto{\pgfqpoint{3.523322in}{1.671545in}}% -\pgfpathlineto{\pgfqpoint{3.533842in}{1.675427in}}% -\pgfpathlineto{\pgfqpoint{3.544363in}{1.675347in}}% -\pgfpathlineto{\pgfqpoint{3.554884in}{1.671379in}}% -\pgfpathlineto{\pgfqpoint{3.565404in}{1.663096in}}% -\pgfpathlineto{\pgfqpoint{3.575925in}{1.649332in}}% -\pgfpathlineto{\pgfqpoint{3.586446in}{1.627302in}}% -\pgfpathlineto{\pgfqpoint{3.596966in}{1.588931in}}% -\pgfpathlineto{\pgfqpoint{3.607487in}{1.484732in}}% -\pgfpathlineto{\pgfqpoint{3.628528in}{1.609963in}}% -\pgfpathlineto{\pgfqpoint{3.639049in}{1.641642in}}% -\pgfpathlineto{\pgfqpoint{3.649569in}{1.661443in}}% -\pgfpathlineto{\pgfqpoint{3.660090in}{1.674431in}}% -\pgfpathlineto{\pgfqpoint{3.670611in}{1.682563in}}% -\pgfpathlineto{\pgfqpoint{3.681131in}{1.686666in}}% -\pgfpathlineto{\pgfqpoint{3.691652in}{1.686963in}}% -\pgfpathlineto{\pgfqpoint{3.702173in}{1.683193in}}% -\pgfpathlineto{\pgfqpoint{3.712693in}{1.674466in}}% -\pgfpathlineto{\pgfqpoint{3.723214in}{1.658658in}}% -\pgfpathlineto{\pgfqpoint{3.733735in}{1.630130in}}% -\pgfpathlineto{\pgfqpoint{3.744255in}{1.564756in}}% -\pgfpathlineto{\pgfqpoint{3.754776in}{1.539887in}}% -\pgfpathlineto{\pgfqpoint{3.765297in}{1.633725in}}% -\pgfpathlineto{\pgfqpoint{3.775817in}{1.674989in}}% -\pgfpathlineto{\pgfqpoint{3.786338in}{1.701400in}}% -\pgfpathlineto{\pgfqpoint{3.796858in}{1.720107in}}% -\pgfpathlineto{\pgfqpoint{3.807379in}{1.733672in}}% -\pgfpathlineto{\pgfqpoint{3.817900in}{1.743189in}}% -\pgfpathlineto{\pgfqpoint{3.828420in}{1.749054in}}% -\pgfpathlineto{\pgfqpoint{3.838941in}{1.751172in}}% -\pgfpathlineto{\pgfqpoint{3.849462in}{1.748899in}}% -\pgfpathlineto{\pgfqpoint{3.859982in}{1.740623in}}% -\pgfpathlineto{\pgfqpoint{3.870503in}{1.722283in}}% -\pgfpathlineto{\pgfqpoint{3.881024in}{1.679727in}}% -\pgfpathlineto{\pgfqpoint{3.891544in}{1.531779in}}% -\pgfpathlineto{\pgfqpoint{3.902065in}{1.715001in}}% -\pgfpathlineto{\pgfqpoint{3.912586in}{1.771225in}}% -\pgfpathlineto{\pgfqpoint{3.923106in}{1.808385in}}% -\pgfpathlineto{\pgfqpoint{3.933627in}{1.837162in}}% -\pgfpathlineto{\pgfqpoint{3.944148in}{1.861100in}}% -\pgfpathlineto{\pgfqpoint{3.965189in}{1.900242in}}% -\pgfpathlineto{\pgfqpoint{3.986230in}{1.932119in}}% -\pgfpathlineto{\pgfqpoint{4.007271in}{1.959293in}}% -\pgfpathlineto{\pgfqpoint{4.028313in}{1.983092in}}% -\pgfpathlineto{\pgfqpoint{4.049354in}{2.004303in}}% -\pgfpathlineto{\pgfqpoint{4.080916in}{2.032354in}}% -\pgfpathlineto{\pgfqpoint{4.112478in}{2.056851in}}% -\pgfpathlineto{\pgfqpoint{4.144040in}{2.078528in}}% -\pgfpathlineto{\pgfqpoint{4.175602in}{2.097887in}}% -\pgfpathlineto{\pgfqpoint{4.217684in}{2.120717in}}% -\pgfpathlineto{\pgfqpoint{4.259767in}{2.140708in}}% -\pgfpathlineto{\pgfqpoint{4.301850in}{2.158325in}}% -\pgfpathlineto{\pgfqpoint{4.354453in}{2.177533in}}% -\pgfpathlineto{\pgfqpoint{4.407056in}{2.194101in}}% -\pgfpathlineto{\pgfqpoint{4.459659in}{2.208430in}}% -\pgfpathlineto{\pgfqpoint{4.522783in}{2.223114in}}% -\pgfpathlineto{\pgfqpoint{4.585907in}{2.235471in}}% -\pgfpathlineto{\pgfqpoint{4.659552in}{2.247413in}}% -\pgfpathlineto{\pgfqpoint{4.733196in}{2.257119in}}% -\pgfpathlineto{\pgfqpoint{4.817361in}{2.265949in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{2.410760in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{2.270043in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{2.240649in}}% +\pgfpathlineto{\pgfqpoint{1.120070in}{2.212677in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{2.186340in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{2.162155in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{2.135297in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{2.111331in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{2.084526in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{2.062062in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{2.037030in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{2.008709in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{1.987478in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{1.963816in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{1.936980in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{1.905744in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{1.867808in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{1.844903in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{1.817778in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{1.783691in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{1.735362in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{1.634970in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{1.653720in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{1.713348in}}% +\pgfpathlineto{\pgfqpoint{1.680904in}{1.736454in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{1.747122in}}% +\pgfpathlineto{\pgfqpoint{1.702898in}{1.750959in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.750060in}}% +\pgfpathlineto{\pgfqpoint{1.724891in}{1.745290in}}% +\pgfpathlineto{\pgfqpoint{1.735888in}{1.736891in}}% +\pgfpathlineto{\pgfqpoint{1.746885in}{1.724621in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{1.707639in}}% +\pgfpathlineto{\pgfqpoint{1.768878in}{1.683974in}}% +\pgfpathlineto{\pgfqpoint{1.779875in}{1.648549in}}% +\pgfpathlineto{\pgfqpoint{1.801869in}{1.516139in}}% +\pgfpathlineto{\pgfqpoint{1.812865in}{1.616888in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{1.651892in}}% +\pgfpathlineto{\pgfqpoint{1.834859in}{1.670631in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{1.681175in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{1.686301in}}% +\pgfpathlineto{\pgfqpoint{1.867849in}{1.687174in}}% +\pgfpathlineto{\pgfqpoint{1.878846in}{1.684214in}}% +\pgfpathlineto{\pgfqpoint{1.889843in}{1.677342in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{1.665946in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{1.648507in}}% +\pgfpathlineto{\pgfqpoint{1.922833in}{1.621311in}}% +\pgfpathlineto{\pgfqpoint{1.933830in}{1.572170in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{0.922914in}}% +\pgfpathlineto{\pgfqpoint{1.955823in}{1.570606in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{1.618175in}}% +\pgfpathlineto{\pgfqpoint{1.977817in}{1.643784in}}% +\pgfpathlineto{\pgfqpoint{1.988814in}{1.659613in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{1.669369in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{1.674560in}}% +\pgfpathlineto{\pgfqpoint{2.021804in}{1.675792in}}% +\pgfpathlineto{\pgfqpoint{2.032801in}{1.673136in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{1.666159in}}% +\pgfpathlineto{\pgfqpoint{2.054794in}{1.653690in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{1.632939in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{1.595827in}}% +\pgfpathlineto{\pgfqpoint{2.087784in}{1.492861in}}% +\pgfpathlineto{\pgfqpoint{2.109778in}{1.620458in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{1.653259in}}% +\pgfpathlineto{\pgfqpoint{2.131771in}{1.674134in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{1.688140in}}% +\pgfpathlineto{\pgfqpoint{2.153765in}{1.697231in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{1.702223in}}% +\pgfpathlineto{\pgfqpoint{2.175759in}{1.703335in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{1.700296in}}% +\pgfpathlineto{\pgfqpoint{2.197752in}{1.692210in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{1.676943in}}% +\pgfpathlineto{\pgfqpoint{2.219746in}{1.648848in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{1.583789in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{1.559107in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{1.652992in}}% +\pgfpathlineto{\pgfqpoint{2.263733in}{1.694151in}}% +\pgfpathlineto{\pgfqpoint{2.274729in}{1.720290in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{1.738543in}}% +\pgfpathlineto{\pgfqpoint{2.296723in}{1.751458in}}% +\pgfpathlineto{\pgfqpoint{2.307720in}{1.760107in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{1.764865in}}% +\pgfpathlineto{\pgfqpoint{2.329713in}{1.765614in}}% +\pgfpathlineto{\pgfqpoint{2.340710in}{1.761681in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{1.751422in}}% +\pgfpathlineto{\pgfqpoint{2.362703in}{1.730736in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{1.685427in}}% +\pgfpathlineto{\pgfqpoint{2.384697in}{1.534265in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{1.713742in}}% +\pgfpathlineto{\pgfqpoint{2.406690in}{1.765610in}}% +\pgfpathlineto{\pgfqpoint{2.417687in}{1.797700in}}% +\pgfpathlineto{\pgfqpoint{2.428684in}{1.820556in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{1.837547in}}% +\pgfpathlineto{\pgfqpoint{2.450678in}{1.850061in}}% +\pgfpathlineto{\pgfqpoint{2.461674in}{1.858644in}}% +\pgfpathlineto{\pgfqpoint{2.472671in}{1.863322in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{1.863608in}}% +\pgfpathlineto{\pgfqpoint{2.494665in}{1.858230in}}% +\pgfpathlineto{\pgfqpoint{2.505661in}{1.844128in}}% +\pgfpathlineto{\pgfqpoint{2.516658in}{1.812109in}}% +\pgfpathlineto{\pgfqpoint{2.527655in}{1.693333in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{1.802901in}}% +\pgfpathlineto{\pgfqpoint{2.549648in}{1.869801in}}% +\pgfpathlineto{\pgfqpoint{2.560645in}{1.908895in}}% +\pgfpathlineto{\pgfqpoint{2.571642in}{1.936918in}}% +\pgfpathlineto{\pgfqpoint{2.582639in}{1.958434in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{1.975261in}}% +\pgfpathlineto{\pgfqpoint{2.604632in}{1.988170in}}% +\pgfpathlineto{\pgfqpoint{2.615629in}{1.997368in}}% +\pgfpathlineto{\pgfqpoint{2.626626in}{2.002580in}}% +\pgfpathlineto{\pgfqpoint{2.637622in}{2.002879in}}% +\pgfpathlineto{\pgfqpoint{2.648619in}{1.996005in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{1.975709in}}% +\pgfpathlineto{\pgfqpoint{2.670613in}{1.912304in}}% +\pgfpathlineto{\pgfqpoint{2.681609in}{2.286279in}}% +\pgfpathlineto{\pgfqpoint{2.703603in}{2.260179in}}% +\pgfpathlineto{\pgfqpoint{2.725596in}{2.228979in}}% +\pgfpathlineto{\pgfqpoint{2.747590in}{2.191492in}}% +\pgfpathlineto{\pgfqpoint{2.758587in}{2.169661in}}% +\pgfpathlineto{\pgfqpoint{2.769584in}{2.145041in}}% +\pgfpathlineto{\pgfqpoint{2.780580in}{2.116593in}}% +\pgfpathlineto{\pgfqpoint{2.791577in}{2.082324in}}% +\pgfpathlineto{\pgfqpoint{2.802574in}{2.037536in}}% +\pgfpathlineto{\pgfqpoint{2.813571in}{1.965398in}}% +\pgfpathlineto{\pgfqpoint{2.824567in}{1.850973in}}% +\pgfpathlineto{\pgfqpoint{2.835564in}{1.965212in}}% +\pgfpathlineto{\pgfqpoint{2.846561in}{1.992969in}}% +\pgfpathlineto{\pgfqpoint{2.857558in}{2.003040in}}% +\pgfpathlineto{\pgfqpoint{2.868554in}{2.004587in}}% +\pgfpathlineto{\pgfqpoint{2.879551in}{2.000641in}}% +\pgfpathlineto{\pgfqpoint{2.890548in}{1.992452in}}% +\pgfpathlineto{\pgfqpoint{2.901545in}{1.980484in}}% +\pgfpathlineto{\pgfqpoint{2.912541in}{1.964697in}}% +\pgfpathlineto{\pgfqpoint{2.923538in}{1.944528in}}% +\pgfpathlineto{\pgfqpoint{2.934535in}{1.918576in}}% +\pgfpathlineto{\pgfqpoint{2.945532in}{1.883463in}}% +\pgfpathlineto{\pgfqpoint{2.956528in}{1.828635in}}% +\pgfpathlineto{\pgfqpoint{2.967525in}{1.646254in}}% +\pgfpathlineto{\pgfqpoint{2.978522in}{1.794561in}}% +\pgfpathlineto{\pgfqpoint{2.989519in}{1.837058in}}% +\pgfpathlineto{\pgfqpoint{3.000515in}{1.854970in}}% +\pgfpathlineto{\pgfqpoint{3.011512in}{1.862490in}}% +\pgfpathlineto{\pgfqpoint{3.022509in}{1.863715in}}% +\pgfpathlineto{\pgfqpoint{3.033506in}{1.860286in}}% +\pgfpathlineto{\pgfqpoint{3.044503in}{1.852874in}}% +\pgfpathlineto{\pgfqpoint{3.055499in}{1.841594in}}% +\pgfpathlineto{\pgfqpoint{3.066496in}{1.826070in}}% +\pgfpathlineto{\pgfqpoint{3.077493in}{1.805227in}}% +\pgfpathlineto{\pgfqpoint{3.088490in}{1.776515in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{1.732801in}}% +\pgfpathlineto{\pgfqpoint{3.110483in}{1.636375in}}% +\pgfpathlineto{\pgfqpoint{3.121480in}{1.658528in}}% +\pgfpathlineto{\pgfqpoint{3.132477in}{1.721071in}}% +\pgfpathlineto{\pgfqpoint{3.143473in}{1.746660in}}% +\pgfpathlineto{\pgfqpoint{3.154470in}{1.759428in}}% +\pgfpathlineto{\pgfqpoint{3.165467in}{1.765025in}}% +\pgfpathlineto{\pgfqpoint{3.176464in}{1.765578in}}% +\pgfpathlineto{\pgfqpoint{3.187460in}{1.761986in}}% +\pgfpathlineto{\pgfqpoint{3.198457in}{1.754515in}}% +\pgfpathlineto{\pgfqpoint{3.209454in}{1.742947in}}% +\pgfpathlineto{\pgfqpoint{3.220451in}{1.726463in}}% +\pgfpathlineto{\pgfqpoint{3.231447in}{1.703108in}}% +\pgfpathlineto{\pgfqpoint{3.242444in}{1.667823in}}% +\pgfpathlineto{\pgfqpoint{3.264438in}{1.535239in}}% +\pgfpathlineto{\pgfqpoint{3.275434in}{1.635700in}}% +\pgfpathlineto{\pgfqpoint{3.286431in}{1.670295in}}% +\pgfpathlineto{\pgfqpoint{3.297428in}{1.688518in}}% +\pgfpathlineto{\pgfqpoint{3.308425in}{1.698445in}}% +\pgfpathlineto{\pgfqpoint{3.319422in}{1.702864in}}% +\pgfpathlineto{\pgfqpoint{3.330418in}{1.702946in}}% +\pgfpathlineto{\pgfqpoint{3.341415in}{1.699120in}}% +\pgfpathlineto{\pgfqpoint{3.352412in}{1.691314in}}% +\pgfpathlineto{\pgfqpoint{3.363409in}{1.678921in}}% +\pgfpathlineto{\pgfqpoint{3.374405in}{1.660431in}}% +\pgfpathlineto{\pgfqpoint{3.385402in}{1.632133in}}% +\pgfpathlineto{\pgfqpoint{3.396399in}{1.581847in}}% +\pgfpathlineto{\pgfqpoint{3.407396in}{0.524177in}}% +\pgfpathlineto{\pgfqpoint{3.418392in}{1.577882in}}% +\pgfpathlineto{\pgfqpoint{3.429389in}{1.624206in}}% +\pgfpathlineto{\pgfqpoint{3.440386in}{1.648547in}}% +\pgfpathlineto{\pgfqpoint{3.451383in}{1.663089in}}% +\pgfpathlineto{\pgfqpoint{3.462379in}{1.671545in}}% +\pgfpathlineto{\pgfqpoint{3.473376in}{1.675427in}}% +\pgfpathlineto{\pgfqpoint{3.484373in}{1.675347in}}% +\pgfpathlineto{\pgfqpoint{3.495370in}{1.671379in}}% +\pgfpathlineto{\pgfqpoint{3.506366in}{1.663096in}}% +\pgfpathlineto{\pgfqpoint{3.517363in}{1.649332in}}% +\pgfpathlineto{\pgfqpoint{3.528360in}{1.627302in}}% +\pgfpathlineto{\pgfqpoint{3.539357in}{1.588931in}}% +\pgfpathlineto{\pgfqpoint{3.550353in}{1.484732in}}% +\pgfpathlineto{\pgfqpoint{3.572347in}{1.609963in}}% +\pgfpathlineto{\pgfqpoint{3.583344in}{1.641642in}}% +\pgfpathlineto{\pgfqpoint{3.594341in}{1.661443in}}% +\pgfpathlineto{\pgfqpoint{3.605337in}{1.674431in}}% +\pgfpathlineto{\pgfqpoint{3.616334in}{1.682563in}}% +\pgfpathlineto{\pgfqpoint{3.627331in}{1.686666in}}% +\pgfpathlineto{\pgfqpoint{3.638328in}{1.686963in}}% +\pgfpathlineto{\pgfqpoint{3.649324in}{1.683193in}}% +\pgfpathlineto{\pgfqpoint{3.660321in}{1.674466in}}% +\pgfpathlineto{\pgfqpoint{3.671318in}{1.658658in}}% +\pgfpathlineto{\pgfqpoint{3.682315in}{1.630130in}}% +\pgfpathlineto{\pgfqpoint{3.693311in}{1.564756in}}% +\pgfpathlineto{\pgfqpoint{3.704308in}{1.539887in}}% +\pgfpathlineto{\pgfqpoint{3.715305in}{1.633725in}}% +\pgfpathlineto{\pgfqpoint{3.726302in}{1.674989in}}% +\pgfpathlineto{\pgfqpoint{3.737298in}{1.701400in}}% +\pgfpathlineto{\pgfqpoint{3.748295in}{1.720107in}}% +\pgfpathlineto{\pgfqpoint{3.759292in}{1.733672in}}% +\pgfpathlineto{\pgfqpoint{3.770289in}{1.743189in}}% +\pgfpathlineto{\pgfqpoint{3.781285in}{1.749054in}}% +\pgfpathlineto{\pgfqpoint{3.792282in}{1.751172in}}% +\pgfpathlineto{\pgfqpoint{3.803279in}{1.748899in}}% +\pgfpathlineto{\pgfqpoint{3.814276in}{1.740623in}}% +\pgfpathlineto{\pgfqpoint{3.825272in}{1.722283in}}% +\pgfpathlineto{\pgfqpoint{3.836269in}{1.679727in}}% +\pgfpathlineto{\pgfqpoint{3.847266in}{1.531779in}}% +\pgfpathlineto{\pgfqpoint{3.858263in}{1.715001in}}% +\pgfpathlineto{\pgfqpoint{3.869260in}{1.771225in}}% +\pgfpathlineto{\pgfqpoint{3.880256in}{1.808385in}}% +\pgfpathlineto{\pgfqpoint{3.891253in}{1.837162in}}% +\pgfpathlineto{\pgfqpoint{3.902250in}{1.861100in}}% +\pgfpathlineto{\pgfqpoint{3.924243in}{1.900242in}}% +\pgfpathlineto{\pgfqpoint{3.946237in}{1.932119in}}% +\pgfpathlineto{\pgfqpoint{3.968230in}{1.959293in}}% +\pgfpathlineto{\pgfqpoint{3.990224in}{1.983092in}}% +\pgfpathlineto{\pgfqpoint{4.012217in}{2.004303in}}% +\pgfpathlineto{\pgfqpoint{4.045208in}{2.032354in}}% +\pgfpathlineto{\pgfqpoint{4.078198in}{2.056851in}}% +\pgfpathlineto{\pgfqpoint{4.111188in}{2.078528in}}% +\pgfpathlineto{\pgfqpoint{4.144178in}{2.097887in}}% +\pgfpathlineto{\pgfqpoint{4.188166in}{2.120717in}}% +\pgfpathlineto{\pgfqpoint{4.232153in}{2.140708in}}% +\pgfpathlineto{\pgfqpoint{4.276140in}{2.158325in}}% +\pgfpathlineto{\pgfqpoint{4.331123in}{2.177533in}}% +\pgfpathlineto{\pgfqpoint{4.386107in}{2.194101in}}% +\pgfpathlineto{\pgfqpoint{4.441091in}{2.208430in}}% +\pgfpathlineto{\pgfqpoint{4.507072in}{2.223114in}}% +\pgfpathlineto{\pgfqpoint{4.573052in}{2.235471in}}% +\pgfpathlineto{\pgfqpoint{4.650029in}{2.247413in}}% +\pgfpathlineto{\pgfqpoint{4.727007in}{2.257119in}}% +\pgfpathlineto{\pgfqpoint{4.814981in}{2.265949in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.270438in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.270438in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1744,349 +1739,350 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{2.096171in}}% -\pgfpathlineto{\pgfqpoint{0.724829in}{2.072200in}}% -\pgfpathlineto{\pgfqpoint{0.777432in}{2.045920in}}% -\pgfpathlineto{\pgfqpoint{0.830036in}{2.016869in}}% -\pgfpathlineto{\pgfqpoint{0.872118in}{1.991240in}}% -\pgfpathlineto{\pgfqpoint{0.914201in}{1.963066in}}% -\pgfpathlineto{\pgfqpoint{0.956283in}{1.931828in}}% -\pgfpathlineto{\pgfqpoint{0.987845in}{1.905970in}}% -\pgfpathlineto{\pgfqpoint{1.019407in}{1.877583in}}% -\pgfpathlineto{\pgfqpoint{1.050969in}{1.846096in}}% -\pgfpathlineto{\pgfqpoint{1.082531in}{1.810672in}}% -\pgfpathlineto{\pgfqpoint{1.103572in}{1.784240in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{1.754860in}}% -\pgfpathlineto{\pgfqpoint{1.145655in}{1.721547in}}% -\pgfpathlineto{\pgfqpoint{1.166696in}{1.682552in}}% -\pgfpathlineto{\pgfqpoint{1.177217in}{1.659920in}}% -\pgfpathlineto{\pgfqpoint{1.187738in}{1.634178in}}% -\pgfpathlineto{\pgfqpoint{1.198258in}{1.603800in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{1.565541in}}% -\pgfpathlineto{\pgfqpoint{1.219300in}{1.510065in}}% -\pgfpathlineto{\pgfqpoint{1.229820in}{1.368423in}}% -\pgfpathlineto{\pgfqpoint{1.240341in}{1.455624in}}% -\pgfpathlineto{\pgfqpoint{1.250862in}{1.500578in}}% -\pgfpathlineto{\pgfqpoint{1.261382in}{1.518081in}}% -\pgfpathlineto{\pgfqpoint{1.271903in}{1.524804in}}% -\pgfpathlineto{\pgfqpoint{1.282423in}{1.525255in}}% -\pgfpathlineto{\pgfqpoint{1.292944in}{1.521191in}}% -\pgfpathlineto{\pgfqpoint{1.303465in}{1.513326in}}% -\pgfpathlineto{\pgfqpoint{1.313985in}{1.501802in}}% -\pgfpathlineto{\pgfqpoint{1.324506in}{1.486277in}}% -\pgfpathlineto{\pgfqpoint{1.335027in}{1.465746in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{1.437864in}}% -\pgfpathlineto{\pgfqpoint{1.356068in}{1.396283in}}% -\pgfpathlineto{\pgfqpoint{1.366589in}{1.311200in}}% -\pgfpathlineto{\pgfqpoint{1.377109in}{1.304398in}}% -\pgfpathlineto{\pgfqpoint{1.387630in}{1.375864in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{1.403793in}}% -\pgfpathlineto{\pgfqpoint{1.408671in}{1.417960in}}% -\pgfpathlineto{\pgfqpoint{1.419192in}{1.424689in}}% -\pgfpathlineto{\pgfqpoint{1.429713in}{1.426298in}}% -\pgfpathlineto{\pgfqpoint{1.440233in}{1.423762in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{1.417393in}}% -\pgfpathlineto{\pgfqpoint{1.461274in}{1.407017in}}% -\pgfpathlineto{\pgfqpoint{1.471795in}{1.391882in}}% -\pgfpathlineto{\pgfqpoint{1.482316in}{1.370190in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{1.337389in}}% -\pgfpathlineto{\pgfqpoint{1.503357in}{1.276750in}}% -\pgfpathlineto{\pgfqpoint{1.513878in}{1.173419in}}% -\pgfpathlineto{\pgfqpoint{1.524398in}{1.298409in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{1.336621in}}% -\pgfpathlineto{\pgfqpoint{1.545440in}{1.356892in}}% -\pgfpathlineto{\pgfqpoint{1.555960in}{1.368417in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{1.374252in}}% -\pgfpathlineto{\pgfqpoint{1.577002in}{1.375668in}}% -\pgfpathlineto{\pgfqpoint{1.587522in}{1.373149in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{1.366666in}}% -\pgfpathlineto{\pgfqpoint{1.608564in}{1.355672in}}% -\pgfpathlineto{\pgfqpoint{1.619084in}{1.338776in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{1.312610in}}% -\pgfpathlineto{\pgfqpoint{1.640126in}{1.266625in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{1.092992in}}% -\pgfpathlineto{\pgfqpoint{1.661167in}{1.249958in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{1.301028in}}% -\pgfpathlineto{\pgfqpoint{1.682208in}{1.327434in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{1.343371in}}% -\pgfpathlineto{\pgfqpoint{1.703249in}{1.352940in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{1.357785in}}% -\pgfpathlineto{\pgfqpoint{1.724291in}{1.358578in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{1.355438in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{1.347990in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{1.335161in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{1.314403in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{1.278582in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{1.189991in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{1.219923in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{1.290187in}}% -\pgfpathlineto{\pgfqpoint{1.818977in}{1.323441in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{1.343820in}}% -\pgfpathlineto{\pgfqpoint{1.840018in}{1.356971in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.365025in}}% -\pgfpathlineto{\pgfqpoint{1.861059in}{1.368879in}}% -\pgfpathlineto{\pgfqpoint{1.871580in}{1.368801in}}% -\pgfpathlineto{\pgfqpoint{1.882100in}{1.364571in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{1.355371in}}% -\pgfpathlineto{\pgfqpoint{1.903142in}{1.339246in}}% -\pgfpathlineto{\pgfqpoint{1.913662in}{1.311137in}}% -\pgfpathlineto{\pgfqpoint{1.934704in}{1.192742in}}% -\pgfpathlineto{\pgfqpoint{1.945224in}{1.300215in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{1.341768in}}% -\pgfpathlineto{\pgfqpoint{1.966266in}{1.366892in}}% -\pgfpathlineto{\pgfqpoint{1.976786in}{1.383664in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{1.394872in}}% -\pgfpathlineto{\pgfqpoint{1.997828in}{1.401685in}}% -\pgfpathlineto{\pgfqpoint{2.008348in}{1.404532in}}% -\pgfpathlineto{\pgfqpoint{2.018869in}{1.403341in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{1.397503in}}% -\pgfpathlineto{\pgfqpoint{2.039910in}{1.385507in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{1.363642in}}% -\pgfpathlineto{\pgfqpoint{2.060951in}{1.319726in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{0.922665in}}% -\pgfpathlineto{\pgfqpoint{2.081993in}{1.328308in}}% -\pgfpathlineto{\pgfqpoint{2.092513in}{1.380807in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{1.411254in}}% -\pgfpathlineto{\pgfqpoint{2.113555in}{1.431834in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{1.446256in}}% -\pgfpathlineto{\pgfqpoint{2.134596in}{1.456031in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{1.461769in}}% -\pgfpathlineto{\pgfqpoint{2.155637in}{1.463542in}}% -\pgfpathlineto{\pgfqpoint{2.166158in}{1.460922in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{1.452738in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{1.436203in}}% -\pgfpathlineto{\pgfqpoint{2.197720in}{1.403242in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{1.304362in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{1.439949in}}% -\pgfpathlineto{\pgfqpoint{2.239802in}{1.476656in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{1.501382in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{1.519185in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{1.532019in}}% -\pgfpathlineto{\pgfqpoint{2.281885in}{1.540705in}}% -\pgfpathlineto{\pgfqpoint{2.292406in}{1.545461in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{1.546020in}}% -\pgfpathlineto{\pgfqpoint{2.313447in}{1.541484in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{1.529723in}}% -\pgfpathlineto{\pgfqpoint{2.334488in}{1.505090in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{1.443450in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{1.422146in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{1.519367in}}% -\pgfpathlineto{\pgfqpoint{2.376571in}{1.563822in}}% -\pgfpathlineto{\pgfqpoint{2.387092in}{1.593219in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{1.614690in}}% -\pgfpathlineto{\pgfqpoint{2.408133in}{1.630784in}}% -\pgfpathlineto{\pgfqpoint{2.418654in}{1.642575in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{1.650438in}}% -\pgfpathlineto{\pgfqpoint{2.439695in}{1.654255in}}% -\pgfpathlineto{\pgfqpoint{2.450215in}{1.653354in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{1.646090in}}% -\pgfpathlineto{\pgfqpoint{2.471257in}{1.628365in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{1.585982in}}% -\pgfpathlineto{\pgfqpoint{2.492298in}{1.437712in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{1.620049in}}% -\pgfpathlineto{\pgfqpoint{2.513339in}{1.674746in}}% -\pgfpathlineto{\pgfqpoint{2.523860in}{1.709635in}}% -\pgfpathlineto{\pgfqpoint{2.534381in}{1.735262in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{1.754998in}}% -\pgfpathlineto{\pgfqpoint{2.555422in}{1.770232in}}% -\pgfpathlineto{\pgfqpoint{2.565943in}{1.781513in}}% -\pgfpathlineto{\pgfqpoint{2.576463in}{1.788869in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{1.791816in}}% -\pgfpathlineto{\pgfqpoint{2.597505in}{1.789084in}}% -\pgfpathlineto{\pgfqpoint{2.608025in}{1.777614in}}% -\pgfpathlineto{\pgfqpoint{2.618546in}{1.748214in}}% -\pgfpathlineto{\pgfqpoint{2.629066in}{1.632047in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{1.744213in}}% -\pgfpathlineto{\pgfqpoint{2.650108in}{1.813700in}}% -\pgfpathlineto{\pgfqpoint{2.660628in}{1.855368in}}% -\pgfpathlineto{\pgfqpoint{2.671149in}{1.885948in}}% -\pgfpathlineto{\pgfqpoint{2.681670in}{1.910004in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{1.929343in}}% -\pgfpathlineto{\pgfqpoint{2.702711in}{1.944734in}}% -\pgfpathlineto{\pgfqpoint{2.713232in}{1.956374in}}% -\pgfpathlineto{\pgfqpoint{2.723752in}{1.963980in}}% -\pgfpathlineto{\pgfqpoint{2.734273in}{1.966616in}}% -\pgfpathlineto{\pgfqpoint{2.744794in}{1.962011in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{1.943908in}}% -\pgfpathlineto{\pgfqpoint{2.765835in}{1.882610in}}% -\pgfpathlineto{\pgfqpoint{2.776356in}{2.285279in}}% -\pgfpathlineto{\pgfqpoint{2.797397in}{2.255100in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{2.219712in}}% -\pgfpathlineto{\pgfqpoint{2.839479in}{2.177946in}}% -\pgfpathlineto{\pgfqpoint{2.850000in}{2.153945in}}% -\pgfpathlineto{\pgfqpoint{2.860521in}{2.127134in}}% -\pgfpathlineto{\pgfqpoint{2.871041in}{2.096478in}}% -\pgfpathlineto{\pgfqpoint{2.881562in}{2.059981in}}% -\pgfpathlineto{\pgfqpoint{2.892083in}{2.012948in}}% -\pgfpathlineto{\pgfqpoint{2.902603in}{1.938547in}}% -\pgfpathlineto{\pgfqpoint{2.913124in}{1.821840in}}% -\pgfpathlineto{\pgfqpoint{2.923645in}{1.933780in}}% -\pgfpathlineto{\pgfqpoint{2.934165in}{1.959219in}}% -\pgfpathlineto{\pgfqpoint{2.944686in}{1.966953in}}% -\pgfpathlineto{\pgfqpoint{2.955207in}{1.966146in}}% -\pgfpathlineto{\pgfqpoint{2.965727in}{1.959827in}}% -\pgfpathlineto{\pgfqpoint{2.976248in}{1.949246in}}% -\pgfpathlineto{\pgfqpoint{2.986769in}{1.934868in}}% -\pgfpathlineto{\pgfqpoint{2.997289in}{1.916649in}}% -\pgfpathlineto{\pgfqpoint{3.007810in}{1.894029in}}% -\pgfpathlineto{\pgfqpoint{3.018330in}{1.865606in}}% -\pgfpathlineto{\pgfqpoint{3.028851in}{1.828001in}}% -\pgfpathlineto{\pgfqpoint{3.039372in}{1.770660in}}% -\pgfpathlineto{\pgfqpoint{3.049892in}{1.585743in}}% -\pgfpathlineto{\pgfqpoint{3.060413in}{1.731493in}}% -\pgfpathlineto{\pgfqpoint{3.070934in}{1.771409in}}% -\pgfpathlineto{\pgfqpoint{3.081454in}{1.786718in}}% -\pgfpathlineto{\pgfqpoint{3.091975in}{1.791611in}}% -\pgfpathlineto{\pgfqpoint{3.102496in}{1.790185in}}% -\pgfpathlineto{\pgfqpoint{3.113016in}{1.784080in}}% -\pgfpathlineto{\pgfqpoint{3.123537in}{1.773966in}}% -\pgfpathlineto{\pgfqpoint{3.134058in}{1.759959in}}% -\pgfpathlineto{\pgfqpoint{3.144578in}{1.741680in}}% -\pgfpathlineto{\pgfqpoint{3.155099in}{1.718056in}}% -\pgfpathlineto{\pgfqpoint{3.165620in}{1.686535in}}% -\pgfpathlineto{\pgfqpoint{3.176140in}{1.639983in}}% -\pgfpathlineto{\pgfqpoint{3.186661in}{1.540689in}}% -\pgfpathlineto{\pgfqpoint{3.197182in}{1.559946in}}% -\pgfpathlineto{\pgfqpoint{3.207702in}{1.619561in}}% -\pgfpathlineto{\pgfqpoint{3.218223in}{1.642191in}}% -\pgfpathlineto{\pgfqpoint{3.228743in}{1.651968in}}% -\pgfpathlineto{\pgfqpoint{3.239264in}{1.654541in}}% -\pgfpathlineto{\pgfqpoint{3.249785in}{1.652036in}}% -\pgfpathlineto{\pgfqpoint{3.260305in}{1.645352in}}% -\pgfpathlineto{\pgfqpoint{3.270826in}{1.634754in}}% -\pgfpathlineto{\pgfqpoint{3.281347in}{1.620023in}}% -\pgfpathlineto{\pgfqpoint{3.291867in}{1.600338in}}% -\pgfpathlineto{\pgfqpoint{3.302388in}{1.573744in}}% -\pgfpathlineto{\pgfqpoint{3.312909in}{1.535181in}}% -\pgfpathlineto{\pgfqpoint{3.333950in}{1.395920in}}% -\pgfpathlineto{\pgfqpoint{3.344471in}{1.492979in}}% -\pgfpathlineto{\pgfqpoint{3.354991in}{1.524130in}}% -\pgfpathlineto{\pgfqpoint{3.365512in}{1.538864in}}% -\pgfpathlineto{\pgfqpoint{3.376033in}{1.545256in}}% -\pgfpathlineto{\pgfqpoint{3.386553in}{1.546093in}}% -\pgfpathlineto{\pgfqpoint{3.397074in}{1.542545in}}% -\pgfpathlineto{\pgfqpoint{3.407594in}{1.535039in}}% -\pgfpathlineto{\pgfqpoint{3.418115in}{1.523503in}}% -\pgfpathlineto{\pgfqpoint{3.428636in}{1.507327in}}% -\pgfpathlineto{\pgfqpoint{3.439156in}{1.484999in}}% -\pgfpathlineto{\pgfqpoint{3.449677in}{1.452808in}}% -\pgfpathlineto{\pgfqpoint{3.460198in}{1.398571in}}% -\pgfpathlineto{\pgfqpoint{3.469565in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.471885in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.481239in}{1.386526in}}% -\pgfpathlineto{\pgfqpoint{3.491760in}{1.428716in}}% -\pgfpathlineto{\pgfqpoint{3.502280in}{1.448858in}}% -\pgfpathlineto{\pgfqpoint{3.512801in}{1.459133in}}% -\pgfpathlineto{\pgfqpoint{3.523322in}{1.463253in}}% -\pgfpathlineto{\pgfqpoint{3.533842in}{1.462727in}}% -\pgfpathlineto{\pgfqpoint{3.544363in}{1.458165in}}% -\pgfpathlineto{\pgfqpoint{3.554884in}{1.449637in}}% -\pgfpathlineto{\pgfqpoint{3.565404in}{1.436714in}}% -\pgfpathlineto{\pgfqpoint{3.575925in}{1.418227in}}% -\pgfpathlineto{\pgfqpoint{3.586446in}{1.391387in}}% -\pgfpathlineto{\pgfqpoint{3.596966in}{1.348118in}}% -\pgfpathlineto{\pgfqpoint{3.607487in}{1.238927in}}% -\pgfpathlineto{\pgfqpoint{3.628528in}{1.353878in}}% -\pgfpathlineto{\pgfqpoint{3.639049in}{1.380261in}}% -\pgfpathlineto{\pgfqpoint{3.649569in}{1.394657in}}% -\pgfpathlineto{\pgfqpoint{3.660090in}{1.402123in}}% -\pgfpathlineto{\pgfqpoint{3.670611in}{1.404614in}}% -\pgfpathlineto{\pgfqpoint{3.681131in}{1.402950in}}% -\pgfpathlineto{\pgfqpoint{3.691652in}{1.397347in}}% -\pgfpathlineto{\pgfqpoint{3.702173in}{1.387538in}}% -\pgfpathlineto{\pgfqpoint{3.712693in}{1.372625in}}% -\pgfpathlineto{\pgfqpoint{3.723214in}{1.350477in}}% -\pgfpathlineto{\pgfqpoint{3.733735in}{1.315447in}}% -\pgfpathlineto{\pgfqpoint{3.744255in}{1.243398in}}% -\pgfpathlineto{\pgfqpoint{3.754776in}{1.211672in}}% -\pgfpathlineto{\pgfqpoint{3.765297in}{1.298459in}}% -\pgfpathlineto{\pgfqpoint{3.775817in}{1.332466in}}% -\pgfpathlineto{\pgfqpoint{3.786338in}{1.351399in}}% -\pgfpathlineto{\pgfqpoint{3.796858in}{1.362392in}}% -\pgfpathlineto{\pgfqpoint{3.807379in}{1.367991in}}% -\pgfpathlineto{\pgfqpoint{3.817900in}{1.369269in}}% -\pgfpathlineto{\pgfqpoint{3.828420in}{1.366601in}}% -\pgfpathlineto{\pgfqpoint{3.838941in}{1.359866in}}% -\pgfpathlineto{\pgfqpoint{3.849462in}{1.348392in}}% -\pgfpathlineto{\pgfqpoint{3.859982in}{1.330533in}}% -\pgfpathlineto{\pgfqpoint{3.870503in}{1.302188in}}% -\pgfpathlineto{\pgfqpoint{3.881024in}{1.249161in}}% -\pgfpathlineto{\pgfqpoint{3.891544in}{1.090218in}}% -\pgfpathlineto{\pgfqpoint{3.902065in}{1.261856in}}% -\pgfpathlineto{\pgfqpoint{3.912586in}{1.305823in}}% -\pgfpathlineto{\pgfqpoint{3.923106in}{1.329949in}}% -\pgfpathlineto{\pgfqpoint{3.933627in}{1.344782in}}% -\pgfpathlineto{\pgfqpoint{3.944148in}{1.353688in}}% -\pgfpathlineto{\pgfqpoint{3.954668in}{1.358056in}}% -\pgfpathlineto{\pgfqpoint{3.965189in}{1.358433in}}% -\pgfpathlineto{\pgfqpoint{3.975710in}{1.354846in}}% -\pgfpathlineto{\pgfqpoint{3.986230in}{1.346809in}}% -\pgfpathlineto{\pgfqpoint{3.996751in}{1.333050in}}% -\pgfpathlineto{\pgfqpoint{4.007271in}{1.310510in}}% -\pgfpathlineto{\pgfqpoint{4.017792in}{1.269993in}}% -\pgfpathlineto{\pgfqpoint{4.028313in}{1.142660in}}% -\pgfpathlineto{\pgfqpoint{4.038833in}{1.243608in}}% -\pgfpathlineto{\pgfqpoint{4.049354in}{1.301819in}}% -\pgfpathlineto{\pgfqpoint{4.059875in}{1.332149in}}% -\pgfpathlineto{\pgfqpoint{4.070395in}{1.351321in}}% -\pgfpathlineto{\pgfqpoint{4.080916in}{1.363884in}}% -\pgfpathlineto{\pgfqpoint{4.091437in}{1.371634in}}% -\pgfpathlineto{\pgfqpoint{4.101957in}{1.375318in}}% -\pgfpathlineto{\pgfqpoint{4.112478in}{1.375108in}}% -\pgfpathlineto{\pgfqpoint{4.122999in}{1.370687in}}% -\pgfpathlineto{\pgfqpoint{4.133519in}{1.361075in}}% -\pgfpathlineto{\pgfqpoint{4.144040in}{1.343949in}}% -\pgfpathlineto{\pgfqpoint{4.154561in}{1.312980in}}% -\pgfpathlineto{\pgfqpoint{4.165081in}{1.238385in}}% -\pgfpathlineto{\pgfqpoint{4.175602in}{1.241964in}}% -\pgfpathlineto{\pgfqpoint{4.186122in}{1.323721in}}% -\pgfpathlineto{\pgfqpoint{4.196643in}{1.361866in}}% -\pgfpathlineto{\pgfqpoint{4.207164in}{1.386190in}}% -\pgfpathlineto{\pgfqpoint{4.217684in}{1.403030in}}% -\pgfpathlineto{\pgfqpoint{4.228205in}{1.414722in}}% -\pgfpathlineto{\pgfqpoint{4.238726in}{1.422252in}}% -\pgfpathlineto{\pgfqpoint{4.249246in}{1.425947in}}% -\pgfpathlineto{\pgfqpoint{4.259767in}{1.425647in}}% -\pgfpathlineto{\pgfqpoint{4.270288in}{1.420614in}}% -\pgfpathlineto{\pgfqpoint{4.280808in}{1.409065in}}% -\pgfpathlineto{\pgfqpoint{4.291329in}{1.386460in}}% -\pgfpathlineto{\pgfqpoint{4.301850in}{1.336089in}}% -\pgfpathlineto{\pgfqpoint{4.312370in}{1.243109in}}% -\pgfpathlineto{\pgfqpoint{4.322891in}{1.378553in}}% -\pgfpathlineto{\pgfqpoint{4.333412in}{1.427339in}}% -\pgfpathlineto{\pgfqpoint{4.343932in}{1.458322in}}% -\pgfpathlineto{\pgfqpoint{4.354453in}{1.480714in}}% -\pgfpathlineto{\pgfqpoint{4.364974in}{1.497596in}}% -\pgfpathlineto{\pgfqpoint{4.375494in}{1.510260in}}% -\pgfpathlineto{\pgfqpoint{4.386015in}{1.519216in}}% -\pgfpathlineto{\pgfqpoint{4.396535in}{1.524465in}}% -\pgfpathlineto{\pgfqpoint{4.407056in}{1.525490in}}% -\pgfpathlineto{\pgfqpoint{4.417577in}{1.520937in}}% -\pgfpathlineto{\pgfqpoint{4.428097in}{1.507479in}}% -\pgfpathlineto{\pgfqpoint{4.438618in}{1.474617in}}% -\pgfpathlineto{\pgfqpoint{4.449139in}{1.314577in}}% -\pgfpathlineto{\pgfqpoint{4.459659in}{1.485673in}}% -\pgfpathlineto{\pgfqpoint{4.470180in}{1.551495in}}% -\pgfpathlineto{\pgfqpoint{4.480701in}{1.593377in}}% -\pgfpathlineto{\pgfqpoint{4.491221in}{1.625643in}}% -\pgfpathlineto{\pgfqpoint{4.501742in}{1.652565in}}% -\pgfpathlineto{\pgfqpoint{4.522783in}{1.696993in}}% -\pgfpathlineto{\pgfqpoint{4.543825in}{1.733708in}}% -\pgfpathlineto{\pgfqpoint{4.564866in}{1.765480in}}% -\pgfpathlineto{\pgfqpoint{4.585907in}{1.793716in}}% -\pgfpathlineto{\pgfqpoint{4.617469in}{1.831170in}}% -\pgfpathlineto{\pgfqpoint{4.649031in}{1.864168in}}% -\pgfpathlineto{\pgfqpoint{4.680593in}{1.893718in}}% -\pgfpathlineto{\pgfqpoint{4.712155in}{1.920483in}}% -\pgfpathlineto{\pgfqpoint{4.754238in}{1.952620in}}% -\pgfpathlineto{\pgfqpoint{4.796320in}{1.981401in}}% -\pgfpathlineto{\pgfqpoint{4.838403in}{2.007379in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{2.096171in}}% +\pgfpathlineto{\pgfqpoint{0.537241in}{2.072200in}}% +\pgfpathlineto{\pgfqpoint{0.592225in}{2.045920in}}% +\pgfpathlineto{\pgfqpoint{0.647209in}{2.016869in}}% +\pgfpathlineto{\pgfqpoint{0.691196in}{1.991240in}}% +\pgfpathlineto{\pgfqpoint{0.735183in}{1.963066in}}% +\pgfpathlineto{\pgfqpoint{0.779170in}{1.931828in}}% +\pgfpathlineto{\pgfqpoint{0.812160in}{1.905970in}}% +\pgfpathlineto{\pgfqpoint{0.845151in}{1.877583in}}% +\pgfpathlineto{\pgfqpoint{0.878141in}{1.846096in}}% +\pgfpathlineto{\pgfqpoint{0.911131in}{1.810672in}}% +\pgfpathlineto{\pgfqpoint{0.933125in}{1.784240in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{1.754860in}}% +\pgfpathlineto{\pgfqpoint{0.977112in}{1.721547in}}% +\pgfpathlineto{\pgfqpoint{0.999105in}{1.682552in}}% +\pgfpathlineto{\pgfqpoint{1.010102in}{1.659920in}}% +\pgfpathlineto{\pgfqpoint{1.021099in}{1.634178in}}% +\pgfpathlineto{\pgfqpoint{1.032096in}{1.603800in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{1.565541in}}% +\pgfpathlineto{\pgfqpoint{1.054089in}{1.510065in}}% +\pgfpathlineto{\pgfqpoint{1.065086in}{1.368423in}}% +\pgfpathlineto{\pgfqpoint{1.076083in}{1.455624in}}% +\pgfpathlineto{\pgfqpoint{1.087079in}{1.500578in}}% +\pgfpathlineto{\pgfqpoint{1.098076in}{1.518081in}}% +\pgfpathlineto{\pgfqpoint{1.109073in}{1.524804in}}% +\pgfpathlineto{\pgfqpoint{1.120070in}{1.525255in}}% +\pgfpathlineto{\pgfqpoint{1.131066in}{1.521191in}}% +\pgfpathlineto{\pgfqpoint{1.142063in}{1.513326in}}% +\pgfpathlineto{\pgfqpoint{1.153060in}{1.501802in}}% +\pgfpathlineto{\pgfqpoint{1.164057in}{1.486277in}}% +\pgfpathlineto{\pgfqpoint{1.175053in}{1.465746in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{1.437864in}}% +\pgfpathlineto{\pgfqpoint{1.197047in}{1.396283in}}% +\pgfpathlineto{\pgfqpoint{1.208044in}{1.311200in}}% +\pgfpathlineto{\pgfqpoint{1.219040in}{1.304398in}}% +\pgfpathlineto{\pgfqpoint{1.230037in}{1.375864in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{1.403793in}}% +\pgfpathlineto{\pgfqpoint{1.252031in}{1.417960in}}% +\pgfpathlineto{\pgfqpoint{1.263027in}{1.424689in}}% +\pgfpathlineto{\pgfqpoint{1.274024in}{1.426298in}}% +\pgfpathlineto{\pgfqpoint{1.285021in}{1.423762in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{1.417393in}}% +\pgfpathlineto{\pgfqpoint{1.307014in}{1.407017in}}% +\pgfpathlineto{\pgfqpoint{1.318011in}{1.391882in}}% +\pgfpathlineto{\pgfqpoint{1.329008in}{1.370190in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{1.337389in}}% +\pgfpathlineto{\pgfqpoint{1.351002in}{1.276750in}}% +\pgfpathlineto{\pgfqpoint{1.361998in}{1.173419in}}% +\pgfpathlineto{\pgfqpoint{1.372995in}{1.298409in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{1.336621in}}% +\pgfpathlineto{\pgfqpoint{1.394989in}{1.356892in}}% +\pgfpathlineto{\pgfqpoint{1.405985in}{1.368417in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{1.374252in}}% +\pgfpathlineto{\pgfqpoint{1.427979in}{1.375668in}}% +\pgfpathlineto{\pgfqpoint{1.438976in}{1.373149in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{1.366666in}}% +\pgfpathlineto{\pgfqpoint{1.460969in}{1.355672in}}% +\pgfpathlineto{\pgfqpoint{1.471966in}{1.338776in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{1.312610in}}% +\pgfpathlineto{\pgfqpoint{1.493959in}{1.266625in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{1.092992in}}% +\pgfpathlineto{\pgfqpoint{1.515953in}{1.249958in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{1.301028in}}% +\pgfpathlineto{\pgfqpoint{1.537946in}{1.327434in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{1.343371in}}% +\pgfpathlineto{\pgfqpoint{1.559940in}{1.352940in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{1.357785in}}% +\pgfpathlineto{\pgfqpoint{1.581933in}{1.358578in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{1.355438in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{1.347990in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{1.335161in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{1.314403in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{1.278582in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{1.189991in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{1.219923in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{1.290187in}}% +\pgfpathlineto{\pgfqpoint{1.680904in}{1.323441in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{1.343820in}}% +\pgfpathlineto{\pgfqpoint{1.702898in}{1.356971in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.365025in}}% +\pgfpathlineto{\pgfqpoint{1.724891in}{1.368879in}}% +\pgfpathlineto{\pgfqpoint{1.735888in}{1.368801in}}% +\pgfpathlineto{\pgfqpoint{1.746885in}{1.364571in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{1.355371in}}% +\pgfpathlineto{\pgfqpoint{1.768878in}{1.339246in}}% +\pgfpathlineto{\pgfqpoint{1.779875in}{1.311137in}}% +\pgfpathlineto{\pgfqpoint{1.801869in}{1.192742in}}% +\pgfpathlineto{\pgfqpoint{1.812865in}{1.300215in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{1.341768in}}% +\pgfpathlineto{\pgfqpoint{1.834859in}{1.366892in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{1.383664in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{1.394872in}}% +\pgfpathlineto{\pgfqpoint{1.867849in}{1.401685in}}% +\pgfpathlineto{\pgfqpoint{1.878846in}{1.404532in}}% +\pgfpathlineto{\pgfqpoint{1.889843in}{1.403341in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{1.397503in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{1.385507in}}% +\pgfpathlineto{\pgfqpoint{1.922833in}{1.363642in}}% +\pgfpathlineto{\pgfqpoint{1.933830in}{1.319726in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{0.922665in}}% +\pgfpathlineto{\pgfqpoint{1.955823in}{1.328308in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{1.380807in}}% +\pgfpathlineto{\pgfqpoint{1.977817in}{1.411254in}}% +\pgfpathlineto{\pgfqpoint{1.988814in}{1.431834in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{1.446256in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{1.456031in}}% +\pgfpathlineto{\pgfqpoint{2.021804in}{1.461769in}}% +\pgfpathlineto{\pgfqpoint{2.032801in}{1.463542in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{1.460922in}}% +\pgfpathlineto{\pgfqpoint{2.054794in}{1.452738in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{1.436203in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{1.403242in}}% +\pgfpathlineto{\pgfqpoint{2.087784in}{1.304362in}}% +\pgfpathlineto{\pgfqpoint{2.109778in}{1.439949in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{1.476656in}}% +\pgfpathlineto{\pgfqpoint{2.131771in}{1.501382in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{1.519185in}}% +\pgfpathlineto{\pgfqpoint{2.153765in}{1.532019in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{1.540705in}}% +\pgfpathlineto{\pgfqpoint{2.175759in}{1.545461in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{1.546020in}}% +\pgfpathlineto{\pgfqpoint{2.197752in}{1.541484in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{1.529723in}}% +\pgfpathlineto{\pgfqpoint{2.219746in}{1.505090in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{1.443450in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{1.422146in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{1.519367in}}% +\pgfpathlineto{\pgfqpoint{2.263733in}{1.563822in}}% +\pgfpathlineto{\pgfqpoint{2.274729in}{1.593219in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{1.614690in}}% +\pgfpathlineto{\pgfqpoint{2.296723in}{1.630784in}}% +\pgfpathlineto{\pgfqpoint{2.307720in}{1.642575in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{1.650438in}}% +\pgfpathlineto{\pgfqpoint{2.329713in}{1.654255in}}% +\pgfpathlineto{\pgfqpoint{2.340710in}{1.653354in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{1.646090in}}% +\pgfpathlineto{\pgfqpoint{2.362703in}{1.628365in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{1.585982in}}% +\pgfpathlineto{\pgfqpoint{2.384697in}{1.437712in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{1.620049in}}% +\pgfpathlineto{\pgfqpoint{2.406690in}{1.674746in}}% +\pgfpathlineto{\pgfqpoint{2.417687in}{1.709635in}}% +\pgfpathlineto{\pgfqpoint{2.428684in}{1.735262in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{1.754998in}}% +\pgfpathlineto{\pgfqpoint{2.450678in}{1.770232in}}% +\pgfpathlineto{\pgfqpoint{2.461674in}{1.781513in}}% +\pgfpathlineto{\pgfqpoint{2.472671in}{1.788869in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{1.791816in}}% +\pgfpathlineto{\pgfqpoint{2.494665in}{1.789084in}}% +\pgfpathlineto{\pgfqpoint{2.505661in}{1.777614in}}% +\pgfpathlineto{\pgfqpoint{2.516658in}{1.748214in}}% +\pgfpathlineto{\pgfqpoint{2.527655in}{1.632047in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{1.744213in}}% +\pgfpathlineto{\pgfqpoint{2.549648in}{1.813700in}}% +\pgfpathlineto{\pgfqpoint{2.560645in}{1.855368in}}% +\pgfpathlineto{\pgfqpoint{2.571642in}{1.885948in}}% +\pgfpathlineto{\pgfqpoint{2.582639in}{1.910004in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{1.929343in}}% +\pgfpathlineto{\pgfqpoint{2.604632in}{1.944734in}}% +\pgfpathlineto{\pgfqpoint{2.615629in}{1.956374in}}% +\pgfpathlineto{\pgfqpoint{2.626626in}{1.963980in}}% +\pgfpathlineto{\pgfqpoint{2.637622in}{1.966616in}}% +\pgfpathlineto{\pgfqpoint{2.648619in}{1.962011in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{1.943908in}}% +\pgfpathlineto{\pgfqpoint{2.670613in}{1.882610in}}% +\pgfpathlineto{\pgfqpoint{2.681609in}{2.285279in}}% +\pgfpathlineto{\pgfqpoint{2.703603in}{2.255100in}}% +\pgfpathlineto{\pgfqpoint{2.725596in}{2.219712in}}% +\pgfpathlineto{\pgfqpoint{2.747590in}{2.177946in}}% +\pgfpathlineto{\pgfqpoint{2.758587in}{2.153945in}}% +\pgfpathlineto{\pgfqpoint{2.769584in}{2.127134in}}% +\pgfpathlineto{\pgfqpoint{2.780580in}{2.096478in}}% +\pgfpathlineto{\pgfqpoint{2.791577in}{2.059981in}}% +\pgfpathlineto{\pgfqpoint{2.802574in}{2.012948in}}% +\pgfpathlineto{\pgfqpoint{2.813571in}{1.938547in}}% +\pgfpathlineto{\pgfqpoint{2.824567in}{1.821840in}}% +\pgfpathlineto{\pgfqpoint{2.835564in}{1.933780in}}% +\pgfpathlineto{\pgfqpoint{2.846561in}{1.959219in}}% +\pgfpathlineto{\pgfqpoint{2.857558in}{1.966953in}}% +\pgfpathlineto{\pgfqpoint{2.868554in}{1.966146in}}% +\pgfpathlineto{\pgfqpoint{2.879551in}{1.959827in}}% +\pgfpathlineto{\pgfqpoint{2.890548in}{1.949246in}}% +\pgfpathlineto{\pgfqpoint{2.901545in}{1.934868in}}% +\pgfpathlineto{\pgfqpoint{2.912541in}{1.916649in}}% +\pgfpathlineto{\pgfqpoint{2.923538in}{1.894029in}}% +\pgfpathlineto{\pgfqpoint{2.934535in}{1.865606in}}% +\pgfpathlineto{\pgfqpoint{2.945532in}{1.828001in}}% +\pgfpathlineto{\pgfqpoint{2.956528in}{1.770660in}}% +\pgfpathlineto{\pgfqpoint{2.967525in}{1.585743in}}% +\pgfpathlineto{\pgfqpoint{2.978522in}{1.731493in}}% +\pgfpathlineto{\pgfqpoint{2.989519in}{1.771409in}}% +\pgfpathlineto{\pgfqpoint{3.000515in}{1.786718in}}% +\pgfpathlineto{\pgfqpoint{3.011512in}{1.791611in}}% +\pgfpathlineto{\pgfqpoint{3.022509in}{1.790185in}}% +\pgfpathlineto{\pgfqpoint{3.033506in}{1.784080in}}% +\pgfpathlineto{\pgfqpoint{3.044503in}{1.773966in}}% +\pgfpathlineto{\pgfqpoint{3.055499in}{1.759959in}}% +\pgfpathlineto{\pgfqpoint{3.066496in}{1.741680in}}% +\pgfpathlineto{\pgfqpoint{3.077493in}{1.718056in}}% +\pgfpathlineto{\pgfqpoint{3.088490in}{1.686535in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{1.639983in}}% +\pgfpathlineto{\pgfqpoint{3.110483in}{1.540689in}}% +\pgfpathlineto{\pgfqpoint{3.121480in}{1.559946in}}% +\pgfpathlineto{\pgfqpoint{3.132477in}{1.619561in}}% +\pgfpathlineto{\pgfqpoint{3.143473in}{1.642191in}}% +\pgfpathlineto{\pgfqpoint{3.154470in}{1.651968in}}% +\pgfpathlineto{\pgfqpoint{3.165467in}{1.654541in}}% +\pgfpathlineto{\pgfqpoint{3.176464in}{1.652036in}}% +\pgfpathlineto{\pgfqpoint{3.187460in}{1.645352in}}% +\pgfpathlineto{\pgfqpoint{3.198457in}{1.634754in}}% +\pgfpathlineto{\pgfqpoint{3.209454in}{1.620023in}}% +\pgfpathlineto{\pgfqpoint{3.220451in}{1.600338in}}% +\pgfpathlineto{\pgfqpoint{3.231447in}{1.573744in}}% +\pgfpathlineto{\pgfqpoint{3.242444in}{1.535181in}}% +\pgfpathlineto{\pgfqpoint{3.264438in}{1.395920in}}% +\pgfpathlineto{\pgfqpoint{3.275434in}{1.492979in}}% +\pgfpathlineto{\pgfqpoint{3.286431in}{1.524130in}}% +\pgfpathlineto{\pgfqpoint{3.297428in}{1.538864in}}% +\pgfpathlineto{\pgfqpoint{3.308425in}{1.545256in}}% +\pgfpathlineto{\pgfqpoint{3.319422in}{1.546093in}}% +\pgfpathlineto{\pgfqpoint{3.330418in}{1.542545in}}% +\pgfpathlineto{\pgfqpoint{3.341415in}{1.535039in}}% +\pgfpathlineto{\pgfqpoint{3.352412in}{1.523503in}}% +\pgfpathlineto{\pgfqpoint{3.363409in}{1.507327in}}% +\pgfpathlineto{\pgfqpoint{3.374405in}{1.484999in}}% +\pgfpathlineto{\pgfqpoint{3.385402in}{1.452808in}}% +\pgfpathlineto{\pgfqpoint{3.396399in}{1.398571in}}% +\pgfpathlineto{\pgfqpoint{3.406190in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.408615in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.418392in}{1.386526in}}% +\pgfpathlineto{\pgfqpoint{3.429389in}{1.428716in}}% +\pgfpathlineto{\pgfqpoint{3.440386in}{1.448858in}}% +\pgfpathlineto{\pgfqpoint{3.451383in}{1.459133in}}% +\pgfpathlineto{\pgfqpoint{3.462379in}{1.463253in}}% +\pgfpathlineto{\pgfqpoint{3.473376in}{1.462727in}}% +\pgfpathlineto{\pgfqpoint{3.484373in}{1.458165in}}% +\pgfpathlineto{\pgfqpoint{3.495370in}{1.449637in}}% +\pgfpathlineto{\pgfqpoint{3.506366in}{1.436714in}}% +\pgfpathlineto{\pgfqpoint{3.517363in}{1.418227in}}% +\pgfpathlineto{\pgfqpoint{3.528360in}{1.391387in}}% +\pgfpathlineto{\pgfqpoint{3.539357in}{1.348118in}}% +\pgfpathlineto{\pgfqpoint{3.550353in}{1.238927in}}% +\pgfpathlineto{\pgfqpoint{3.572347in}{1.353878in}}% +\pgfpathlineto{\pgfqpoint{3.583344in}{1.380261in}}% +\pgfpathlineto{\pgfqpoint{3.594341in}{1.394657in}}% +\pgfpathlineto{\pgfqpoint{3.605337in}{1.402123in}}% +\pgfpathlineto{\pgfqpoint{3.616334in}{1.404614in}}% +\pgfpathlineto{\pgfqpoint{3.627331in}{1.402950in}}% +\pgfpathlineto{\pgfqpoint{3.638328in}{1.397347in}}% +\pgfpathlineto{\pgfqpoint{3.649324in}{1.387538in}}% +\pgfpathlineto{\pgfqpoint{3.660321in}{1.372625in}}% +\pgfpathlineto{\pgfqpoint{3.671318in}{1.350477in}}% +\pgfpathlineto{\pgfqpoint{3.682315in}{1.315447in}}% +\pgfpathlineto{\pgfqpoint{3.693311in}{1.243398in}}% +\pgfpathlineto{\pgfqpoint{3.704308in}{1.211672in}}% +\pgfpathlineto{\pgfqpoint{3.715305in}{1.298459in}}% +\pgfpathlineto{\pgfqpoint{3.726302in}{1.332466in}}% +\pgfpathlineto{\pgfqpoint{3.737298in}{1.351399in}}% +\pgfpathlineto{\pgfqpoint{3.748295in}{1.362392in}}% +\pgfpathlineto{\pgfqpoint{3.759292in}{1.367991in}}% +\pgfpathlineto{\pgfqpoint{3.770289in}{1.369269in}}% +\pgfpathlineto{\pgfqpoint{3.781285in}{1.366601in}}% +\pgfpathlineto{\pgfqpoint{3.792282in}{1.359866in}}% +\pgfpathlineto{\pgfqpoint{3.803279in}{1.348392in}}% +\pgfpathlineto{\pgfqpoint{3.814276in}{1.330533in}}% +\pgfpathlineto{\pgfqpoint{3.825272in}{1.302188in}}% +\pgfpathlineto{\pgfqpoint{3.836269in}{1.249161in}}% +\pgfpathlineto{\pgfqpoint{3.847266in}{1.090218in}}% +\pgfpathlineto{\pgfqpoint{3.858263in}{1.261856in}}% +\pgfpathlineto{\pgfqpoint{3.869260in}{1.305823in}}% +\pgfpathlineto{\pgfqpoint{3.880256in}{1.329949in}}% +\pgfpathlineto{\pgfqpoint{3.891253in}{1.344782in}}% +\pgfpathlineto{\pgfqpoint{3.902250in}{1.353688in}}% +\pgfpathlineto{\pgfqpoint{3.913247in}{1.358056in}}% +\pgfpathlineto{\pgfqpoint{3.924243in}{1.358433in}}% +\pgfpathlineto{\pgfqpoint{3.935240in}{1.354846in}}% +\pgfpathlineto{\pgfqpoint{3.946237in}{1.346809in}}% +\pgfpathlineto{\pgfqpoint{3.957234in}{1.333050in}}% +\pgfpathlineto{\pgfqpoint{3.968230in}{1.310510in}}% +\pgfpathlineto{\pgfqpoint{3.979227in}{1.269993in}}% +\pgfpathlineto{\pgfqpoint{3.990224in}{1.142660in}}% +\pgfpathlineto{\pgfqpoint{4.001221in}{1.243608in}}% +\pgfpathlineto{\pgfqpoint{4.012217in}{1.301819in}}% +\pgfpathlineto{\pgfqpoint{4.023214in}{1.332149in}}% +\pgfpathlineto{\pgfqpoint{4.034211in}{1.351321in}}% +\pgfpathlineto{\pgfqpoint{4.045208in}{1.363884in}}% +\pgfpathlineto{\pgfqpoint{4.056204in}{1.371634in}}% +\pgfpathlineto{\pgfqpoint{4.067201in}{1.375318in}}% +\pgfpathlineto{\pgfqpoint{4.078198in}{1.375108in}}% +\pgfpathlineto{\pgfqpoint{4.089195in}{1.370687in}}% +\pgfpathlineto{\pgfqpoint{4.100191in}{1.361075in}}% +\pgfpathlineto{\pgfqpoint{4.111188in}{1.343949in}}% +\pgfpathlineto{\pgfqpoint{4.122185in}{1.312980in}}% +\pgfpathlineto{\pgfqpoint{4.133182in}{1.238385in}}% +\pgfpathlineto{\pgfqpoint{4.144178in}{1.241964in}}% +\pgfpathlineto{\pgfqpoint{4.155175in}{1.323721in}}% +\pgfpathlineto{\pgfqpoint{4.166172in}{1.361866in}}% +\pgfpathlineto{\pgfqpoint{4.177169in}{1.386190in}}% +\pgfpathlineto{\pgfqpoint{4.188166in}{1.403030in}}% +\pgfpathlineto{\pgfqpoint{4.199162in}{1.414722in}}% +\pgfpathlineto{\pgfqpoint{4.210159in}{1.422252in}}% +\pgfpathlineto{\pgfqpoint{4.221156in}{1.425947in}}% +\pgfpathlineto{\pgfqpoint{4.232153in}{1.425647in}}% +\pgfpathlineto{\pgfqpoint{4.243149in}{1.420614in}}% +\pgfpathlineto{\pgfqpoint{4.254146in}{1.409065in}}% +\pgfpathlineto{\pgfqpoint{4.265143in}{1.386460in}}% +\pgfpathlineto{\pgfqpoint{4.276140in}{1.336089in}}% +\pgfpathlineto{\pgfqpoint{4.287136in}{1.243109in}}% +\pgfpathlineto{\pgfqpoint{4.298133in}{1.378553in}}% +\pgfpathlineto{\pgfqpoint{4.309130in}{1.427339in}}% +\pgfpathlineto{\pgfqpoint{4.320127in}{1.458322in}}% +\pgfpathlineto{\pgfqpoint{4.331123in}{1.480714in}}% +\pgfpathlineto{\pgfqpoint{4.342120in}{1.497596in}}% +\pgfpathlineto{\pgfqpoint{4.353117in}{1.510260in}}% +\pgfpathlineto{\pgfqpoint{4.364114in}{1.519216in}}% +\pgfpathlineto{\pgfqpoint{4.375110in}{1.524465in}}% +\pgfpathlineto{\pgfqpoint{4.386107in}{1.525490in}}% +\pgfpathlineto{\pgfqpoint{4.397104in}{1.520937in}}% +\pgfpathlineto{\pgfqpoint{4.408101in}{1.507479in}}% +\pgfpathlineto{\pgfqpoint{4.419097in}{1.474617in}}% +\pgfpathlineto{\pgfqpoint{4.430094in}{1.314577in}}% +\pgfpathlineto{\pgfqpoint{4.441091in}{1.485673in}}% +\pgfpathlineto{\pgfqpoint{4.452088in}{1.551495in}}% +\pgfpathlineto{\pgfqpoint{4.463085in}{1.593377in}}% +\pgfpathlineto{\pgfqpoint{4.474081in}{1.625643in}}% +\pgfpathlineto{\pgfqpoint{4.485078in}{1.652565in}}% +\pgfpathlineto{\pgfqpoint{4.507072in}{1.696993in}}% +\pgfpathlineto{\pgfqpoint{4.529065in}{1.733708in}}% +\pgfpathlineto{\pgfqpoint{4.551059in}{1.765480in}}% +\pgfpathlineto{\pgfqpoint{4.573052in}{1.793716in}}% +\pgfpathlineto{\pgfqpoint{4.595046in}{1.819246in}}% +\pgfpathlineto{\pgfqpoint{4.628036in}{1.853592in}}% +\pgfpathlineto{\pgfqpoint{4.661026in}{1.884205in}}% +\pgfpathlineto{\pgfqpoint{4.694016in}{1.911839in}}% +\pgfpathlineto{\pgfqpoint{4.727007in}{1.937013in}}% +\pgfpathlineto{\pgfqpoint{4.770994in}{1.967392in}}% +\pgfpathlineto{\pgfqpoint{4.814981in}{1.994712in}}% +\pgfpathlineto{\pgfqpoint{4.858968in}{2.019449in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.025274in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.025274in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -2094,402 +2090,403 @@ \definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.835937in}}% -\pgfpathlineto{\pgfqpoint{0.682746in}{1.256802in}}% -\pgfpathlineto{\pgfqpoint{0.693267in}{1.291493in}}% -\pgfpathlineto{\pgfqpoint{0.703788in}{1.304580in}}% -\pgfpathlineto{\pgfqpoint{0.714308in}{1.308198in}}% -\pgfpathlineto{\pgfqpoint{0.724829in}{1.306018in}}% -\pgfpathlineto{\pgfqpoint{0.735350in}{1.299517in}}% -\pgfpathlineto{\pgfqpoint{0.745870in}{1.289274in}}% -\pgfpathlineto{\pgfqpoint{0.756391in}{1.275334in}}% -\pgfpathlineto{\pgfqpoint{0.766912in}{1.257247in}}% -\pgfpathlineto{\pgfqpoint{0.777432in}{1.233822in}}% -\pgfpathlineto{\pgfqpoint{0.787953in}{1.202253in}}% -\pgfpathlineto{\pgfqpoint{0.798474in}{1.154448in}}% -\pgfpathlineto{\pgfqpoint{0.808994in}{1.040899in}}% -\pgfpathlineto{\pgfqpoint{0.830036in}{1.147619in}}% -\pgfpathlineto{\pgfqpoint{0.840556in}{1.170105in}}% -\pgfpathlineto{\pgfqpoint{0.851077in}{1.180735in}}% -\pgfpathlineto{\pgfqpoint{0.861598in}{1.184559in}}% -\pgfpathlineto{\pgfqpoint{0.872118in}{1.183522in}}% -\pgfpathlineto{\pgfqpoint{0.882639in}{1.178435in}}% -\pgfpathlineto{\pgfqpoint{0.893159in}{1.169509in}}% -\pgfpathlineto{\pgfqpoint{0.903680in}{1.156468in}}% -\pgfpathlineto{\pgfqpoint{0.914201in}{1.138408in}}% -\pgfpathlineto{\pgfqpoint{0.924721in}{1.113191in}}% -\pgfpathlineto{\pgfqpoint{0.935242in}{1.075165in}}% -\pgfpathlineto{\pgfqpoint{0.945763in}{1.000188in}}% -\pgfpathlineto{\pgfqpoint{0.956283in}{0.965596in}}% -\pgfpathlineto{\pgfqpoint{0.966804in}{1.049574in}}% -\pgfpathlineto{\pgfqpoint{0.977325in}{1.080824in}}% -\pgfpathlineto{\pgfqpoint{0.987845in}{1.097048in}}% -\pgfpathlineto{\pgfqpoint{0.998366in}{1.105375in}}% -\pgfpathlineto{\pgfqpoint{1.008887in}{1.108347in}}% -\pgfpathlineto{\pgfqpoint{1.019407in}{1.107033in}}% -\pgfpathlineto{\pgfqpoint{1.029928in}{1.101804in}}% -\pgfpathlineto{\pgfqpoint{1.040449in}{1.092536in}}% -\pgfpathlineto{\pgfqpoint{1.050969in}{1.078551in}}% -\pgfpathlineto{\pgfqpoint{1.061490in}{1.058202in}}% -\pgfpathlineto{\pgfqpoint{1.072010in}{1.027383in}}% -\pgfpathlineto{\pgfqpoint{1.082531in}{0.971895in}}% -\pgfpathlineto{\pgfqpoint{1.093052in}{0.810490in}}% -\pgfpathlineto{\pgfqpoint{1.103572in}{0.979693in}}% -\pgfpathlineto{\pgfqpoint{1.114093in}{1.021217in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{1.042901in}}% -\pgfpathlineto{\pgfqpoint{1.135134in}{1.055287in}}% -\pgfpathlineto{\pgfqpoint{1.145655in}{1.061740in}}% -\pgfpathlineto{\pgfqpoint{1.156176in}{1.063645in}}% -\pgfpathlineto{\pgfqpoint{1.166696in}{1.061546in}}% -\pgfpathlineto{\pgfqpoint{1.177217in}{1.055466in}}% -\pgfpathlineto{\pgfqpoint{1.187738in}{1.044917in}}% -\pgfpathlineto{\pgfqpoint{1.198258in}{1.028623in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{1.003523in}}% -\pgfpathlineto{\pgfqpoint{1.219300in}{0.960416in}}% -\pgfpathlineto{\pgfqpoint{1.229820in}{0.830465in}}% -\pgfpathlineto{\pgfqpoint{1.240341in}{0.928751in}}% -\pgfpathlineto{\pgfqpoint{1.250862in}{0.984265in}}% -\pgfpathlineto{\pgfqpoint{1.261382in}{1.011855in}}% -\pgfpathlineto{\pgfqpoint{1.271903in}{1.028241in}}% -\pgfpathlineto{\pgfqpoint{1.282423in}{1.037968in}}% -\pgfpathlineto{\pgfqpoint{1.292944in}{1.042829in}}% -\pgfpathlineto{\pgfqpoint{1.303465in}{1.043567in}}% -\pgfpathlineto{\pgfqpoint{1.313985in}{1.040349in}}% -\pgfpathlineto{\pgfqpoint{1.324506in}{1.032854in}}% -\pgfpathlineto{\pgfqpoint{1.335027in}{1.020100in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{0.999757in}}% -\pgfpathlineto{\pgfqpoint{1.356068in}{0.965493in}}% -\pgfpathlineto{\pgfqpoint{1.366589in}{0.887519in}}% -\pgfpathlineto{\pgfqpoint{1.377109in}{0.887632in}}% -\pgfpathlineto{\pgfqpoint{1.387630in}{0.965829in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{1.000316in}}% -\pgfpathlineto{\pgfqpoint{1.408671in}{1.020877in}}% -\pgfpathlineto{\pgfqpoint{1.419192in}{1.033844in}}% -\pgfpathlineto{\pgfqpoint{1.429713in}{1.041545in}}% -\pgfpathlineto{\pgfqpoint{1.440233in}{1.044960in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{1.044410in}}% -\pgfpathlineto{\pgfqpoint{1.461274in}{1.039726in}}% -\pgfpathlineto{\pgfqpoint{1.471795in}{1.030162in}}% -\pgfpathlineto{\pgfqpoint{1.482316in}{1.013925in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{0.986467in}}% -\pgfpathlineto{\pgfqpoint{1.503357in}{0.931067in}}% -\pgfpathlineto{\pgfqpoint{1.513878in}{0.832872in}}% -\pgfpathlineto{\pgfqpoint{1.524398in}{0.962900in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{1.006057in}}% -\pgfpathlineto{\pgfqpoint{1.545440in}{1.031183in}}% -\pgfpathlineto{\pgfqpoint{1.555960in}{1.047476in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{1.057995in}}% -\pgfpathlineto{\pgfqpoint{1.577002in}{1.064015in}}% -\pgfpathlineto{\pgfqpoint{1.587522in}{1.066021in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{1.063990in}}% -\pgfpathlineto{\pgfqpoint{1.608564in}{1.057374in}}% -\pgfpathlineto{\pgfqpoint{1.619084in}{1.044787in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{1.022861in}}% -\pgfpathlineto{\pgfqpoint{1.640126in}{0.981052in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{0.811526in}}% -\pgfpathlineto{\pgfqpoint{1.661167in}{0.972546in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{1.027607in}}% -\pgfpathlineto{\pgfqpoint{1.682208in}{1.057946in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{1.077759in}}% -\pgfpathlineto{\pgfqpoint{1.703249in}{1.091151in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{1.099764in}}% -\pgfpathlineto{\pgfqpoint{1.724291in}{1.104275in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{1.104802in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{1.100974in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{1.091716in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{1.074483in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{1.042143in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{0.956989in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{0.990316in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{1.063932in}}% -\pgfpathlineto{\pgfqpoint{1.818977in}{1.100499in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{1.124150in}}% -\pgfpathlineto{\pgfqpoint{1.840018in}{1.140536in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.151786in}}% -\pgfpathlineto{\pgfqpoint{1.861059in}{1.158800in}}% -\pgfpathlineto{\pgfqpoint{1.871580in}{1.161845in}}% -\pgfpathlineto{\pgfqpoint{1.882100in}{1.160704in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{1.154558in}}% -\pgfpathlineto{\pgfqpoint{1.903142in}{1.141454in}}% -\pgfpathlineto{\pgfqpoint{1.913662in}{1.116333in}}% -\pgfpathlineto{\pgfqpoint{1.934704in}{1.003819in}}% -\pgfpathlineto{\pgfqpoint{1.945224in}{1.114186in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{1.158603in}}% -\pgfpathlineto{\pgfqpoint{1.966266in}{1.186562in}}% -\pgfpathlineto{\pgfqpoint{1.976786in}{1.206139in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{1.220125in}}% -\pgfpathlineto{\pgfqpoint{1.997828in}{1.229688in}}% -\pgfpathlineto{\pgfqpoint{2.008348in}{1.235258in}}% -\pgfpathlineto{\pgfqpoint{2.018869in}{1.236763in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{1.233595in}}% -\pgfpathlineto{\pgfqpoint{2.039910in}{1.224244in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{1.204998in}}% -\pgfpathlineto{\pgfqpoint{2.060951in}{1.163677in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{0.922658in}}% -\pgfpathlineto{\pgfqpoint{2.081993in}{1.177378in}}% -\pgfpathlineto{\pgfqpoint{2.092513in}{1.232401in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{1.265350in}}% -\pgfpathlineto{\pgfqpoint{2.113555in}{1.288409in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{1.305288in}}% -\pgfpathlineto{\pgfqpoint{2.134596in}{1.317498in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{1.325651in}}% -\pgfpathlineto{\pgfqpoint{2.155637in}{1.329817in}}% -\pgfpathlineto{\pgfqpoint{2.166158in}{1.329570in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{1.323739in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{1.309537in}}% -\pgfpathlineto{\pgfqpoint{2.197720in}{1.278890in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{1.182304in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{1.322423in}}% -\pgfpathlineto{\pgfqpoint{2.239802in}{1.361369in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{1.388316in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{1.408322in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{1.423343in}}% -\pgfpathlineto{\pgfqpoint{2.281885in}{1.434198in}}% -\pgfpathlineto{\pgfqpoint{2.292406in}{1.441106in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{1.443801in}}% -\pgfpathlineto{\pgfqpoint{2.313447in}{1.441385in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{1.431728in}}% -\pgfpathlineto{\pgfqpoint{2.334488in}{1.409184in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{1.349617in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{1.330370in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{1.429635in}}% -\pgfpathlineto{\pgfqpoint{2.376571in}{1.476118in}}% -\pgfpathlineto{\pgfqpoint{2.387092in}{1.507528in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{1.531000in}}% -\pgfpathlineto{\pgfqpoint{2.408133in}{1.549079in}}% -\pgfpathlineto{\pgfqpoint{2.418654in}{1.562841in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{1.572662in}}% -\pgfpathlineto{\pgfqpoint{2.439695in}{1.578423in}}% -\pgfpathlineto{\pgfqpoint{2.450215in}{1.579451in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{1.574104in}}% -\pgfpathlineto{\pgfqpoint{2.471257in}{1.558281in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{1.517788in}}% -\pgfpathlineto{\pgfqpoint{2.492298in}{1.371394in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{1.555594in}}% -\pgfpathlineto{\pgfqpoint{2.513339in}{1.612142in}}% -\pgfpathlineto{\pgfqpoint{2.523860in}{1.648868in}}% -\pgfpathlineto{\pgfqpoint{2.534381in}{1.676321in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{1.697871in}}% -\pgfpathlineto{\pgfqpoint{2.555422in}{1.714908in}}% -\pgfpathlineto{\pgfqpoint{2.565943in}{1.727983in}}% -\pgfpathlineto{\pgfqpoint{2.576463in}{1.737122in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{1.741843in}}% -\pgfpathlineto{\pgfqpoint{2.597505in}{1.740877in}}% -\pgfpathlineto{\pgfqpoint{2.608025in}{1.731167in}}% -\pgfpathlineto{\pgfqpoint{2.618546in}{1.703520in}}% -\pgfpathlineto{\pgfqpoint{2.629066in}{1.589101in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{1.703010in}}% -\pgfpathlineto{\pgfqpoint{2.650108in}{1.774234in}}% -\pgfpathlineto{\pgfqpoint{2.660628in}{1.817635in}}% -\pgfpathlineto{\pgfqpoint{2.671149in}{1.849943in}}% -\pgfpathlineto{\pgfqpoint{2.681670in}{1.875718in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{1.896769in}}% -\pgfpathlineto{\pgfqpoint{2.702711in}{1.913859in}}% -\pgfpathlineto{\pgfqpoint{2.713232in}{1.927182in}}% -\pgfpathlineto{\pgfqpoint{2.723752in}{1.936450in}}% -\pgfpathlineto{\pgfqpoint{2.734273in}{1.940721in}}% -\pgfpathlineto{\pgfqpoint{2.744794in}{1.937721in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{1.921182in}}% -\pgfpathlineto{\pgfqpoint{2.765835in}{1.861402in}}% -\pgfpathlineto{\pgfqpoint{2.776356in}{2.284549in}}% -\pgfpathlineto{\pgfqpoint{2.797397in}{2.251411in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{2.213008in}}% -\pgfpathlineto{\pgfqpoint{2.839479in}{2.168179in}}% -\pgfpathlineto{\pgfqpoint{2.860521in}{2.114265in}}% -\pgfpathlineto{\pgfqpoint{2.871041in}{2.082043in}}% -\pgfpathlineto{\pgfqpoint{2.881562in}{2.043971in}}% -\pgfpathlineto{\pgfqpoint{2.892083in}{1.995353in}}% -\pgfpathlineto{\pgfqpoint{2.902603in}{1.919359in}}% -\pgfpathlineto{\pgfqpoint{2.913124in}{1.801051in}}% -\pgfpathlineto{\pgfqpoint{2.923645in}{1.911381in}}% -\pgfpathlineto{\pgfqpoint{2.934165in}{1.935200in}}% -\pgfpathlineto{\pgfqpoint{2.944686in}{1.941307in}}% -\pgfpathlineto{\pgfqpoint{2.955207in}{1.938863in}}% -\pgfpathlineto{\pgfqpoint{2.965727in}{1.930899in}}% -\pgfpathlineto{\pgfqpoint{2.976248in}{1.918663in}}% -\pgfpathlineto{\pgfqpoint{2.986769in}{1.902621in}}% -\pgfpathlineto{\pgfqpoint{2.997289in}{1.882730in}}% -\pgfpathlineto{\pgfqpoint{3.007810in}{1.858428in}}% -\pgfpathlineto{\pgfqpoint{3.018330in}{1.828313in}}% -\pgfpathlineto{\pgfqpoint{3.028851in}{1.789008in}}% -\pgfpathlineto{\pgfqpoint{3.039372in}{1.729956in}}% -\pgfpathlineto{\pgfqpoint{3.049892in}{1.543319in}}% -\pgfpathlineto{\pgfqpoint{3.060413in}{1.687338in}}% -\pgfpathlineto{\pgfqpoint{3.070934in}{1.725514in}}% -\pgfpathlineto{\pgfqpoint{3.081454in}{1.739072in}}% -\pgfpathlineto{\pgfqpoint{3.091975in}{1.742204in}}% -\pgfpathlineto{\pgfqpoint{3.102496in}{1.739006in}}% -\pgfpathlineto{\pgfqpoint{3.113016in}{1.731118in}}% -\pgfpathlineto{\pgfqpoint{3.123537in}{1.719211in}}% -\pgfpathlineto{\pgfqpoint{3.134058in}{1.703398in}}% -\pgfpathlineto{\pgfqpoint{3.144578in}{1.683304in}}% -\pgfpathlineto{\pgfqpoint{3.155099in}{1.657852in}}% -\pgfpathlineto{\pgfqpoint{3.165620in}{1.624492in}}% -\pgfpathlineto{\pgfqpoint{3.176140in}{1.576089in}}% -\pgfpathlineto{\pgfqpoint{3.186661in}{1.474932in}}% -\pgfpathlineto{\pgfqpoint{3.197182in}{1.492314in}}% -\pgfpathlineto{\pgfqpoint{3.207702in}{1.550041in}}% -\pgfpathlineto{\pgfqpoint{3.218223in}{1.570771in}}% -\pgfpathlineto{\pgfqpoint{3.228743in}{1.578635in}}% -\pgfpathlineto{\pgfqpoint{3.239264in}{1.579281in}}% -\pgfpathlineto{\pgfqpoint{3.249785in}{1.574838in}}% -\pgfpathlineto{\pgfqpoint{3.260305in}{1.566201in}}% -\pgfpathlineto{\pgfqpoint{3.270826in}{1.553636in}}% -\pgfpathlineto{\pgfqpoint{3.281347in}{1.536925in}}% -\pgfpathlineto{\pgfqpoint{3.291867in}{1.515245in}}% -\pgfpathlineto{\pgfqpoint{3.302388in}{1.486643in}}% -\pgfpathlineto{\pgfqpoint{3.312909in}{1.446057in}}% -\pgfpathlineto{\pgfqpoint{3.333950in}{1.302705in}}% -\pgfpathlineto{\pgfqpoint{3.344471in}{1.397697in}}% -\pgfpathlineto{\pgfqpoint{3.354991in}{1.426764in}}% -\pgfpathlineto{\pgfqpoint{3.365512in}{1.439399in}}% -\pgfpathlineto{\pgfqpoint{3.376033in}{1.443676in}}% -\pgfpathlineto{\pgfqpoint{3.386553in}{1.442382in}}% -\pgfpathlineto{\pgfqpoint{3.397074in}{1.436687in}}% -\pgfpathlineto{\pgfqpoint{3.407594in}{1.427017in}}% -\pgfpathlineto{\pgfqpoint{3.418115in}{1.413299in}}% -\pgfpathlineto{\pgfqpoint{3.428636in}{1.394925in}}% -\pgfpathlineto{\pgfqpoint{3.439156in}{1.370381in}}% -\pgfpathlineto{\pgfqpoint{3.449677in}{1.335956in}}% -\pgfpathlineto{\pgfqpoint{3.460198in}{1.279468in}}% -\pgfpathlineto{\pgfqpoint{3.468361in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.473113in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.481239in}{1.262863in}}% -\pgfpathlineto{\pgfqpoint{3.491760in}{1.302745in}}% -\pgfpathlineto{\pgfqpoint{3.502280in}{1.320560in}}% -\pgfpathlineto{\pgfqpoint{3.512801in}{1.328489in}}% -\pgfpathlineto{\pgfqpoint{3.523322in}{1.330242in}}% -\pgfpathlineto{\pgfqpoint{3.533842in}{1.327329in}}% -\pgfpathlineto{\pgfqpoint{3.544363in}{1.320358in}}% -\pgfpathlineto{\pgfqpoint{3.554884in}{1.309401in}}% -\pgfpathlineto{\pgfqpoint{3.565404in}{1.294028in}}% -\pgfpathlineto{\pgfqpoint{3.575925in}{1.273069in}}% -\pgfpathlineto{\pgfqpoint{3.586446in}{1.243734in}}% -\pgfpathlineto{\pgfqpoint{3.596966in}{1.197947in}}% -\pgfpathlineto{\pgfqpoint{3.607487in}{1.086216in}}% -\pgfpathlineto{\pgfqpoint{3.628528in}{1.196016in}}% -\pgfpathlineto{\pgfqpoint{3.639049in}{1.219786in}}% -\pgfpathlineto{\pgfqpoint{3.649569in}{1.231545in}}% -\pgfpathlineto{\pgfqpoint{3.660090in}{1.236349in}}% -\pgfpathlineto{\pgfqpoint{3.670611in}{1.236152in}}% -\pgfpathlineto{\pgfqpoint{3.681131in}{1.231772in}}% -\pgfpathlineto{\pgfqpoint{3.691652in}{1.223428in}}% -\pgfpathlineto{\pgfqpoint{3.702173in}{1.210850in}}% -\pgfpathlineto{\pgfqpoint{3.712693in}{1.193139in}}% -\pgfpathlineto{\pgfqpoint{3.723214in}{1.168166in}}% -\pgfpathlineto{\pgfqpoint{3.733735in}{1.130280in}}% -\pgfpathlineto{\pgfqpoint{3.744255in}{1.055346in}}% -\pgfpathlineto{\pgfqpoint{3.754776in}{1.020705in}}% -\pgfpathlineto{\pgfqpoint{3.765297in}{1.104545in}}% -\pgfpathlineto{\pgfqpoint{3.775817in}{1.135574in}}% -\pgfpathlineto{\pgfqpoint{3.786338in}{1.151496in}}% -\pgfpathlineto{\pgfqpoint{3.796858in}{1.159445in}}% -\pgfpathlineto{\pgfqpoint{3.807379in}{1.161966in}}% -\pgfpathlineto{\pgfqpoint{3.817900in}{1.160131in}}% -\pgfpathlineto{\pgfqpoint{3.828420in}{1.154313in}}% -\pgfpathlineto{\pgfqpoint{3.838941in}{1.144393in}}% -\pgfpathlineto{\pgfqpoint{3.849462in}{1.129696in}}% -\pgfpathlineto{\pgfqpoint{3.859982in}{1.108576in}}% -\pgfpathlineto{\pgfqpoint{3.870503in}{1.076931in}}% -\pgfpathlineto{\pgfqpoint{3.881024in}{1.020563in}}% -\pgfpathlineto{\pgfqpoint{3.891544in}{0.858239in}}% -\pgfpathlineto{\pgfqpoint{3.902065in}{1.026453in}}% -\pgfpathlineto{\pgfqpoint{3.912586in}{1.066952in}}% -\pgfpathlineto{\pgfqpoint{3.923106in}{1.087567in}}% -\pgfpathlineto{\pgfqpoint{3.933627in}{1.098842in}}% -\pgfpathlineto{\pgfqpoint{3.944148in}{1.104143in}}% -\pgfpathlineto{\pgfqpoint{3.954668in}{1.104858in}}% -\pgfpathlineto{\pgfqpoint{3.965189in}{1.101533in}}% -\pgfpathlineto{\pgfqpoint{3.975710in}{1.094192in}}% -\pgfpathlineto{\pgfqpoint{3.986230in}{1.082349in}}% -\pgfpathlineto{\pgfqpoint{3.996751in}{1.064730in}}% -\pgfpathlineto{\pgfqpoint{4.007271in}{1.038274in}}% -\pgfpathlineto{\pgfqpoint{4.017792in}{0.993784in}}% -\pgfpathlineto{\pgfqpoint{4.028313in}{0.862420in}}% -\pgfpathlineto{\pgfqpoint{4.038833in}{0.959274in}}% -\pgfpathlineto{\pgfqpoint{4.049354in}{1.013330in}}% -\pgfpathlineto{\pgfqpoint{4.059875in}{1.039439in}}% -\pgfpathlineto{\pgfqpoint{4.070395in}{1.054322in}}% -\pgfpathlineto{\pgfqpoint{4.080916in}{1.062528in}}% -\pgfpathlineto{\pgfqpoint{4.091437in}{1.065849in}}% -\pgfpathlineto{\pgfqpoint{4.101957in}{1.065030in}}% -\pgfpathlineto{\pgfqpoint{4.112478in}{1.060240in}}% -\pgfpathlineto{\pgfqpoint{4.122999in}{1.051159in}}% -\pgfpathlineto{\pgfqpoint{4.133519in}{1.036805in}}% -\pgfpathlineto{\pgfqpoint{4.144040in}{1.014850in}}% -\pgfpathlineto{\pgfqpoint{4.154561in}{0.978963in}}% -\pgfpathlineto{\pgfqpoint{4.165081in}{0.899359in}}% -\pgfpathlineto{\pgfqpoint{4.175602in}{0.897831in}}% -\pgfpathlineto{\pgfqpoint{4.186122in}{0.974381in}}% -\pgfpathlineto{\pgfqpoint{4.196643in}{1.007214in}}% -\pgfpathlineto{\pgfqpoint{4.207164in}{1.026117in}}% -\pgfpathlineto{\pgfqpoint{4.217684in}{1.037423in}}% -\pgfpathlineto{\pgfqpoint{4.228205in}{1.043460in}}% -\pgfpathlineto{\pgfqpoint{4.238726in}{1.045210in}}% -\pgfpathlineto{\pgfqpoint{4.249246in}{1.042995in}}% -\pgfpathlineto{\pgfqpoint{4.259767in}{1.036646in}}% -\pgfpathlineto{\pgfqpoint{4.270288in}{1.025419in}}% -\pgfpathlineto{\pgfqpoint{4.280808in}{1.007523in}}% -\pgfpathlineto{\pgfqpoint{4.291329in}{0.978410in}}% -\pgfpathlineto{\pgfqpoint{4.301850in}{0.921361in}}% -\pgfpathlineto{\pgfqpoint{4.312370in}{0.821523in}}% -\pgfpathlineto{\pgfqpoint{4.322891in}{0.949917in}}% -\pgfpathlineto{\pgfqpoint{4.333412in}{0.991449in}}% -\pgfpathlineto{\pgfqpoint{4.343932in}{1.014960in}}% -\pgfpathlineto{\pgfqpoint{4.354453in}{1.029650in}}% -\pgfpathlineto{\pgfqpoint{4.364974in}{1.038578in}}% -\pgfpathlineto{\pgfqpoint{4.375494in}{1.043021in}}% -\pgfpathlineto{\pgfqpoint{4.386015in}{1.043466in}}% -\pgfpathlineto{\pgfqpoint{4.396535in}{1.039890in}}% -\pgfpathlineto{\pgfqpoint{4.407056in}{1.031747in}}% -\pgfpathlineto{\pgfqpoint{4.417577in}{1.017652in}}% -\pgfpathlineto{\pgfqpoint{4.428097in}{0.994238in}}% -\pgfpathlineto{\pgfqpoint{4.438618in}{0.950964in}}% -\pgfpathlineto{\pgfqpoint{4.449139in}{0.780000in}}% -\pgfpathlineto{\pgfqpoint{4.459659in}{0.939598in}}% -\pgfpathlineto{\pgfqpoint{4.470180in}{0.993268in}}% -\pgfpathlineto{\pgfqpoint{4.480701in}{1.022242in}}% -\pgfpathlineto{\pgfqpoint{4.491221in}{1.040722in}}% -\pgfpathlineto{\pgfqpoint{4.501742in}{1.052809in}}% -\pgfpathlineto{\pgfqpoint{4.512263in}{1.060152in}}% -\pgfpathlineto{\pgfqpoint{4.522783in}{1.063425in}}% -\pgfpathlineto{\pgfqpoint{4.533304in}{1.062752in}}% -\pgfpathlineto{\pgfqpoint{4.543825in}{1.057760in}}% -\pgfpathlineto{\pgfqpoint{4.554345in}{1.047379in}}% -\pgfpathlineto{\pgfqpoint{4.564866in}{1.029065in}}% -\pgfpathlineto{\pgfqpoint{4.575386in}{0.995686in}}% -\pgfpathlineto{\pgfqpoint{4.585907in}{0.909540in}}% -\pgfpathlineto{\pgfqpoint{4.596428in}{0.941921in}}% -\pgfpathlineto{\pgfqpoint{4.606948in}{1.014643in}}% -\pgfpathlineto{\pgfqpoint{4.617469in}{1.050366in}}% -\pgfpathlineto{\pgfqpoint{4.627990in}{1.073230in}}% -\pgfpathlineto{\pgfqpoint{4.638510in}{1.088886in}}% -\pgfpathlineto{\pgfqpoint{4.649031in}{1.099466in}}% -\pgfpathlineto{\pgfqpoint{4.659552in}{1.105872in}}% -\pgfpathlineto{\pgfqpoint{4.670072in}{1.108376in}}% -\pgfpathlineto{\pgfqpoint{4.680593in}{1.106762in}}% -\pgfpathlineto{\pgfqpoint{4.691114in}{1.100216in}}% -\pgfpathlineto{\pgfqpoint{4.701634in}{1.086787in}}% -\pgfpathlineto{\pgfqpoint{4.712155in}{1.061420in}}% -\pgfpathlineto{\pgfqpoint{4.733196in}{0.948666in}}% -\pgfpathlineto{\pgfqpoint{4.743717in}{1.059048in}}% -\pgfpathlineto{\pgfqpoint{4.754238in}{1.103576in}}% -\pgfpathlineto{\pgfqpoint{4.764758in}{1.131746in}}% -\pgfpathlineto{\pgfqpoint{4.775279in}{1.151641in}}% -\pgfpathlineto{\pgfqpoint{4.785799in}{1.166055in}}% -\pgfpathlineto{\pgfqpoint{4.796320in}{1.176164in}}% -\pgfpathlineto{\pgfqpoint{4.806841in}{1.182402in}}% -\pgfpathlineto{\pgfqpoint{4.817361in}{1.184707in}}% -\pgfpathlineto{\pgfqpoint{4.827882in}{1.182476in}}% -\pgfpathlineto{\pgfqpoint{4.838403in}{1.174207in}}% -\pgfpathlineto{\pgfqpoint{4.848923in}{1.156199in}}% -\pgfpathlineto{\pgfqpoint{4.859444in}{1.116278in}}% -\pgfpathlineto{\pgfqpoint{4.866636in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.866636in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{0.835937in}}% +\pgfpathlineto{\pgfqpoint{0.493254in}{1.256802in}}% +\pgfpathlineto{\pgfqpoint{0.504251in}{1.291493in}}% +\pgfpathlineto{\pgfqpoint{0.515248in}{1.304580in}}% +\pgfpathlineto{\pgfqpoint{0.526245in}{1.308198in}}% +\pgfpathlineto{\pgfqpoint{0.537241in}{1.306018in}}% +\pgfpathlineto{\pgfqpoint{0.548238in}{1.299517in}}% +\pgfpathlineto{\pgfqpoint{0.559235in}{1.289274in}}% +\pgfpathlineto{\pgfqpoint{0.570232in}{1.275334in}}% +\pgfpathlineto{\pgfqpoint{0.581228in}{1.257247in}}% +\pgfpathlineto{\pgfqpoint{0.592225in}{1.233822in}}% +\pgfpathlineto{\pgfqpoint{0.603222in}{1.202253in}}% +\pgfpathlineto{\pgfqpoint{0.614219in}{1.154448in}}% +\pgfpathlineto{\pgfqpoint{0.625215in}{1.040899in}}% +\pgfpathlineto{\pgfqpoint{0.647209in}{1.147619in}}% +\pgfpathlineto{\pgfqpoint{0.658206in}{1.170105in}}% +\pgfpathlineto{\pgfqpoint{0.669202in}{1.180735in}}% +\pgfpathlineto{\pgfqpoint{0.680199in}{1.184559in}}% +\pgfpathlineto{\pgfqpoint{0.691196in}{1.183522in}}% +\pgfpathlineto{\pgfqpoint{0.702193in}{1.178435in}}% +\pgfpathlineto{\pgfqpoint{0.713189in}{1.169509in}}% +\pgfpathlineto{\pgfqpoint{0.724186in}{1.156468in}}% +\pgfpathlineto{\pgfqpoint{0.735183in}{1.138408in}}% +\pgfpathlineto{\pgfqpoint{0.746180in}{1.113191in}}% +\pgfpathlineto{\pgfqpoint{0.757177in}{1.075165in}}% +\pgfpathlineto{\pgfqpoint{0.768173in}{1.000188in}}% +\pgfpathlineto{\pgfqpoint{0.779170in}{0.965596in}}% +\pgfpathlineto{\pgfqpoint{0.790167in}{1.049574in}}% +\pgfpathlineto{\pgfqpoint{0.801164in}{1.080824in}}% +\pgfpathlineto{\pgfqpoint{0.812160in}{1.097048in}}% +\pgfpathlineto{\pgfqpoint{0.823157in}{1.105375in}}% +\pgfpathlineto{\pgfqpoint{0.834154in}{1.108347in}}% +\pgfpathlineto{\pgfqpoint{0.845151in}{1.107033in}}% +\pgfpathlineto{\pgfqpoint{0.856147in}{1.101804in}}% +\pgfpathlineto{\pgfqpoint{0.867144in}{1.092536in}}% +\pgfpathlineto{\pgfqpoint{0.878141in}{1.078551in}}% +\pgfpathlineto{\pgfqpoint{0.889138in}{1.058202in}}% +\pgfpathlineto{\pgfqpoint{0.900134in}{1.027383in}}% +\pgfpathlineto{\pgfqpoint{0.911131in}{0.971895in}}% +\pgfpathlineto{\pgfqpoint{0.922128in}{0.810490in}}% +\pgfpathlineto{\pgfqpoint{0.933125in}{0.979693in}}% +\pgfpathlineto{\pgfqpoint{0.944121in}{1.021217in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{1.042901in}}% +\pgfpathlineto{\pgfqpoint{0.966115in}{1.055287in}}% +\pgfpathlineto{\pgfqpoint{0.977112in}{1.061740in}}% +\pgfpathlineto{\pgfqpoint{0.988108in}{1.063645in}}% +\pgfpathlineto{\pgfqpoint{0.999105in}{1.061546in}}% +\pgfpathlineto{\pgfqpoint{1.010102in}{1.055466in}}% +\pgfpathlineto{\pgfqpoint{1.021099in}{1.044917in}}% +\pgfpathlineto{\pgfqpoint{1.032096in}{1.028623in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{1.003523in}}% +\pgfpathlineto{\pgfqpoint{1.054089in}{0.960416in}}% +\pgfpathlineto{\pgfqpoint{1.065086in}{0.830465in}}% +\pgfpathlineto{\pgfqpoint{1.076083in}{0.928751in}}% +\pgfpathlineto{\pgfqpoint{1.087079in}{0.984265in}}% +\pgfpathlineto{\pgfqpoint{1.098076in}{1.011855in}}% +\pgfpathlineto{\pgfqpoint{1.109073in}{1.028241in}}% +\pgfpathlineto{\pgfqpoint{1.120070in}{1.037968in}}% +\pgfpathlineto{\pgfqpoint{1.131066in}{1.042829in}}% +\pgfpathlineto{\pgfqpoint{1.142063in}{1.043567in}}% +\pgfpathlineto{\pgfqpoint{1.153060in}{1.040349in}}% +\pgfpathlineto{\pgfqpoint{1.164057in}{1.032854in}}% +\pgfpathlineto{\pgfqpoint{1.175053in}{1.020100in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{0.999757in}}% +\pgfpathlineto{\pgfqpoint{1.197047in}{0.965493in}}% +\pgfpathlineto{\pgfqpoint{1.208044in}{0.887519in}}% +\pgfpathlineto{\pgfqpoint{1.219040in}{0.887632in}}% +\pgfpathlineto{\pgfqpoint{1.230037in}{0.965829in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{1.000316in}}% +\pgfpathlineto{\pgfqpoint{1.252031in}{1.020877in}}% +\pgfpathlineto{\pgfqpoint{1.263027in}{1.033844in}}% +\pgfpathlineto{\pgfqpoint{1.274024in}{1.041545in}}% +\pgfpathlineto{\pgfqpoint{1.285021in}{1.044960in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{1.044410in}}% +\pgfpathlineto{\pgfqpoint{1.307014in}{1.039726in}}% +\pgfpathlineto{\pgfqpoint{1.318011in}{1.030162in}}% +\pgfpathlineto{\pgfqpoint{1.329008in}{1.013925in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{0.986467in}}% +\pgfpathlineto{\pgfqpoint{1.351002in}{0.931067in}}% +\pgfpathlineto{\pgfqpoint{1.361998in}{0.832872in}}% +\pgfpathlineto{\pgfqpoint{1.372995in}{0.962900in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{1.006057in}}% +\pgfpathlineto{\pgfqpoint{1.394989in}{1.031183in}}% +\pgfpathlineto{\pgfqpoint{1.405985in}{1.047476in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{1.057995in}}% +\pgfpathlineto{\pgfqpoint{1.427979in}{1.064015in}}% +\pgfpathlineto{\pgfqpoint{1.438976in}{1.066021in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{1.063990in}}% +\pgfpathlineto{\pgfqpoint{1.460969in}{1.057374in}}% +\pgfpathlineto{\pgfqpoint{1.471966in}{1.044787in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{1.022861in}}% +\pgfpathlineto{\pgfqpoint{1.493959in}{0.981052in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{0.811526in}}% +\pgfpathlineto{\pgfqpoint{1.515953in}{0.972546in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{1.027607in}}% +\pgfpathlineto{\pgfqpoint{1.537946in}{1.057946in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{1.077759in}}% +\pgfpathlineto{\pgfqpoint{1.559940in}{1.091151in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{1.099764in}}% +\pgfpathlineto{\pgfqpoint{1.581933in}{1.104275in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{1.104802in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{1.100974in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{1.091716in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{1.074483in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{1.042143in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{0.956989in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{0.990316in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{1.063932in}}% +\pgfpathlineto{\pgfqpoint{1.680904in}{1.100499in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{1.124150in}}% +\pgfpathlineto{\pgfqpoint{1.702898in}{1.140536in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.151786in}}% +\pgfpathlineto{\pgfqpoint{1.724891in}{1.158800in}}% +\pgfpathlineto{\pgfqpoint{1.735888in}{1.161845in}}% +\pgfpathlineto{\pgfqpoint{1.746885in}{1.160704in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{1.154558in}}% +\pgfpathlineto{\pgfqpoint{1.768878in}{1.141454in}}% +\pgfpathlineto{\pgfqpoint{1.779875in}{1.116333in}}% +\pgfpathlineto{\pgfqpoint{1.801869in}{1.003819in}}% +\pgfpathlineto{\pgfqpoint{1.812865in}{1.114186in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{1.158603in}}% +\pgfpathlineto{\pgfqpoint{1.834859in}{1.186562in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{1.206139in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{1.220125in}}% +\pgfpathlineto{\pgfqpoint{1.867849in}{1.229688in}}% +\pgfpathlineto{\pgfqpoint{1.878846in}{1.235258in}}% +\pgfpathlineto{\pgfqpoint{1.889843in}{1.236763in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{1.233595in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{1.224244in}}% +\pgfpathlineto{\pgfqpoint{1.922833in}{1.204998in}}% +\pgfpathlineto{\pgfqpoint{1.933830in}{1.163677in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{0.922658in}}% +\pgfpathlineto{\pgfqpoint{1.955823in}{1.177378in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{1.232401in}}% +\pgfpathlineto{\pgfqpoint{1.977817in}{1.265350in}}% +\pgfpathlineto{\pgfqpoint{1.988814in}{1.288409in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{1.305288in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{1.317498in}}% +\pgfpathlineto{\pgfqpoint{2.021804in}{1.325651in}}% +\pgfpathlineto{\pgfqpoint{2.032801in}{1.329817in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{1.329570in}}% +\pgfpathlineto{\pgfqpoint{2.054794in}{1.323739in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{1.309537in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{1.278890in}}% +\pgfpathlineto{\pgfqpoint{2.087784in}{1.182304in}}% +\pgfpathlineto{\pgfqpoint{2.109778in}{1.322423in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{1.361369in}}% +\pgfpathlineto{\pgfqpoint{2.131771in}{1.388316in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{1.408322in}}% +\pgfpathlineto{\pgfqpoint{2.153765in}{1.423343in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{1.434198in}}% +\pgfpathlineto{\pgfqpoint{2.175759in}{1.441106in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{1.443801in}}% +\pgfpathlineto{\pgfqpoint{2.197752in}{1.441385in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{1.431728in}}% +\pgfpathlineto{\pgfqpoint{2.219746in}{1.409184in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{1.349617in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{1.330370in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{1.429635in}}% +\pgfpathlineto{\pgfqpoint{2.263733in}{1.476118in}}% +\pgfpathlineto{\pgfqpoint{2.274729in}{1.507528in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{1.531000in}}% +\pgfpathlineto{\pgfqpoint{2.296723in}{1.549079in}}% +\pgfpathlineto{\pgfqpoint{2.307720in}{1.562841in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{1.572662in}}% +\pgfpathlineto{\pgfqpoint{2.329713in}{1.578423in}}% +\pgfpathlineto{\pgfqpoint{2.340710in}{1.579451in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{1.574104in}}% +\pgfpathlineto{\pgfqpoint{2.362703in}{1.558281in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{1.517788in}}% +\pgfpathlineto{\pgfqpoint{2.384697in}{1.371394in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{1.555594in}}% +\pgfpathlineto{\pgfqpoint{2.406690in}{1.612142in}}% +\pgfpathlineto{\pgfqpoint{2.417687in}{1.648868in}}% +\pgfpathlineto{\pgfqpoint{2.428684in}{1.676321in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{1.697871in}}% +\pgfpathlineto{\pgfqpoint{2.450678in}{1.714908in}}% +\pgfpathlineto{\pgfqpoint{2.461674in}{1.727983in}}% +\pgfpathlineto{\pgfqpoint{2.472671in}{1.737122in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{1.741843in}}% +\pgfpathlineto{\pgfqpoint{2.494665in}{1.740877in}}% +\pgfpathlineto{\pgfqpoint{2.505661in}{1.731167in}}% +\pgfpathlineto{\pgfqpoint{2.516658in}{1.703520in}}% +\pgfpathlineto{\pgfqpoint{2.527655in}{1.589101in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{1.703010in}}% +\pgfpathlineto{\pgfqpoint{2.549648in}{1.774234in}}% +\pgfpathlineto{\pgfqpoint{2.560645in}{1.817635in}}% +\pgfpathlineto{\pgfqpoint{2.571642in}{1.849943in}}% +\pgfpathlineto{\pgfqpoint{2.582639in}{1.875718in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{1.896769in}}% +\pgfpathlineto{\pgfqpoint{2.604632in}{1.913859in}}% +\pgfpathlineto{\pgfqpoint{2.615629in}{1.927182in}}% +\pgfpathlineto{\pgfqpoint{2.626626in}{1.936450in}}% +\pgfpathlineto{\pgfqpoint{2.637622in}{1.940721in}}% +\pgfpathlineto{\pgfqpoint{2.648619in}{1.937721in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{1.921182in}}% +\pgfpathlineto{\pgfqpoint{2.670613in}{1.861402in}}% +\pgfpathlineto{\pgfqpoint{2.681609in}{2.284549in}}% +\pgfpathlineto{\pgfqpoint{2.703603in}{2.251411in}}% +\pgfpathlineto{\pgfqpoint{2.725596in}{2.213008in}}% +\pgfpathlineto{\pgfqpoint{2.747590in}{2.168179in}}% +\pgfpathlineto{\pgfqpoint{2.758587in}{2.142632in}}% +\pgfpathlineto{\pgfqpoint{2.769584in}{2.114265in}}% +\pgfpathlineto{\pgfqpoint{2.780580in}{2.082043in}}% +\pgfpathlineto{\pgfqpoint{2.791577in}{2.043971in}}% +\pgfpathlineto{\pgfqpoint{2.802574in}{1.995353in}}% +\pgfpathlineto{\pgfqpoint{2.813571in}{1.919359in}}% +\pgfpathlineto{\pgfqpoint{2.824567in}{1.801051in}}% +\pgfpathlineto{\pgfqpoint{2.835564in}{1.911381in}}% +\pgfpathlineto{\pgfqpoint{2.846561in}{1.935200in}}% +\pgfpathlineto{\pgfqpoint{2.857558in}{1.941307in}}% +\pgfpathlineto{\pgfqpoint{2.868554in}{1.938863in}}% +\pgfpathlineto{\pgfqpoint{2.879551in}{1.930899in}}% +\pgfpathlineto{\pgfqpoint{2.890548in}{1.918663in}}% +\pgfpathlineto{\pgfqpoint{2.901545in}{1.902621in}}% +\pgfpathlineto{\pgfqpoint{2.912541in}{1.882730in}}% +\pgfpathlineto{\pgfqpoint{2.923538in}{1.858428in}}% +\pgfpathlineto{\pgfqpoint{2.934535in}{1.828313in}}% +\pgfpathlineto{\pgfqpoint{2.945532in}{1.789008in}}% +\pgfpathlineto{\pgfqpoint{2.956528in}{1.729956in}}% +\pgfpathlineto{\pgfqpoint{2.967525in}{1.543319in}}% +\pgfpathlineto{\pgfqpoint{2.978522in}{1.687338in}}% +\pgfpathlineto{\pgfqpoint{2.989519in}{1.725514in}}% +\pgfpathlineto{\pgfqpoint{3.000515in}{1.739072in}}% +\pgfpathlineto{\pgfqpoint{3.011512in}{1.742204in}}% +\pgfpathlineto{\pgfqpoint{3.022509in}{1.739006in}}% +\pgfpathlineto{\pgfqpoint{3.033506in}{1.731118in}}% +\pgfpathlineto{\pgfqpoint{3.044503in}{1.719211in}}% +\pgfpathlineto{\pgfqpoint{3.055499in}{1.703398in}}% +\pgfpathlineto{\pgfqpoint{3.066496in}{1.683304in}}% +\pgfpathlineto{\pgfqpoint{3.077493in}{1.657852in}}% +\pgfpathlineto{\pgfqpoint{3.088490in}{1.624492in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{1.576089in}}% +\pgfpathlineto{\pgfqpoint{3.110483in}{1.474932in}}% +\pgfpathlineto{\pgfqpoint{3.121480in}{1.492314in}}% +\pgfpathlineto{\pgfqpoint{3.132477in}{1.550041in}}% +\pgfpathlineto{\pgfqpoint{3.143473in}{1.570771in}}% +\pgfpathlineto{\pgfqpoint{3.154470in}{1.578635in}}% +\pgfpathlineto{\pgfqpoint{3.165467in}{1.579281in}}% +\pgfpathlineto{\pgfqpoint{3.176464in}{1.574838in}}% +\pgfpathlineto{\pgfqpoint{3.187460in}{1.566201in}}% +\pgfpathlineto{\pgfqpoint{3.198457in}{1.553636in}}% +\pgfpathlineto{\pgfqpoint{3.209454in}{1.536925in}}% +\pgfpathlineto{\pgfqpoint{3.220451in}{1.515245in}}% +\pgfpathlineto{\pgfqpoint{3.231447in}{1.486643in}}% +\pgfpathlineto{\pgfqpoint{3.242444in}{1.446057in}}% +\pgfpathlineto{\pgfqpoint{3.264438in}{1.302705in}}% +\pgfpathlineto{\pgfqpoint{3.275434in}{1.397697in}}% +\pgfpathlineto{\pgfqpoint{3.286431in}{1.426764in}}% +\pgfpathlineto{\pgfqpoint{3.297428in}{1.439399in}}% +\pgfpathlineto{\pgfqpoint{3.308425in}{1.443676in}}% +\pgfpathlineto{\pgfqpoint{3.319422in}{1.442382in}}% +\pgfpathlineto{\pgfqpoint{3.330418in}{1.436687in}}% +\pgfpathlineto{\pgfqpoint{3.341415in}{1.427017in}}% +\pgfpathlineto{\pgfqpoint{3.352412in}{1.413299in}}% +\pgfpathlineto{\pgfqpoint{3.363409in}{1.394925in}}% +\pgfpathlineto{\pgfqpoint{3.374405in}{1.370381in}}% +\pgfpathlineto{\pgfqpoint{3.385402in}{1.335956in}}% +\pgfpathlineto{\pgfqpoint{3.396399in}{1.279468in}}% +\pgfpathlineto{\pgfqpoint{3.404932in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.409899in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.418392in}{1.262863in}}% +\pgfpathlineto{\pgfqpoint{3.429389in}{1.302745in}}% +\pgfpathlineto{\pgfqpoint{3.440386in}{1.320560in}}% +\pgfpathlineto{\pgfqpoint{3.451383in}{1.328489in}}% +\pgfpathlineto{\pgfqpoint{3.462379in}{1.330242in}}% +\pgfpathlineto{\pgfqpoint{3.473376in}{1.327329in}}% +\pgfpathlineto{\pgfqpoint{3.484373in}{1.320358in}}% +\pgfpathlineto{\pgfqpoint{3.495370in}{1.309401in}}% +\pgfpathlineto{\pgfqpoint{3.506366in}{1.294028in}}% +\pgfpathlineto{\pgfqpoint{3.517363in}{1.273069in}}% +\pgfpathlineto{\pgfqpoint{3.528360in}{1.243734in}}% +\pgfpathlineto{\pgfqpoint{3.539357in}{1.197947in}}% +\pgfpathlineto{\pgfqpoint{3.550353in}{1.086216in}}% +\pgfpathlineto{\pgfqpoint{3.572347in}{1.196016in}}% +\pgfpathlineto{\pgfqpoint{3.583344in}{1.219786in}}% +\pgfpathlineto{\pgfqpoint{3.594341in}{1.231545in}}% +\pgfpathlineto{\pgfqpoint{3.605337in}{1.236349in}}% +\pgfpathlineto{\pgfqpoint{3.616334in}{1.236152in}}% +\pgfpathlineto{\pgfqpoint{3.627331in}{1.231772in}}% +\pgfpathlineto{\pgfqpoint{3.638328in}{1.223428in}}% +\pgfpathlineto{\pgfqpoint{3.649324in}{1.210850in}}% +\pgfpathlineto{\pgfqpoint{3.660321in}{1.193139in}}% +\pgfpathlineto{\pgfqpoint{3.671318in}{1.168166in}}% +\pgfpathlineto{\pgfqpoint{3.682315in}{1.130280in}}% +\pgfpathlineto{\pgfqpoint{3.693311in}{1.055346in}}% +\pgfpathlineto{\pgfqpoint{3.704308in}{1.020705in}}% +\pgfpathlineto{\pgfqpoint{3.715305in}{1.104545in}}% +\pgfpathlineto{\pgfqpoint{3.726302in}{1.135574in}}% +\pgfpathlineto{\pgfqpoint{3.737298in}{1.151496in}}% +\pgfpathlineto{\pgfqpoint{3.748295in}{1.159445in}}% +\pgfpathlineto{\pgfqpoint{3.759292in}{1.161966in}}% +\pgfpathlineto{\pgfqpoint{3.770289in}{1.160131in}}% +\pgfpathlineto{\pgfqpoint{3.781285in}{1.154313in}}% +\pgfpathlineto{\pgfqpoint{3.792282in}{1.144393in}}% +\pgfpathlineto{\pgfqpoint{3.803279in}{1.129696in}}% +\pgfpathlineto{\pgfqpoint{3.814276in}{1.108576in}}% +\pgfpathlineto{\pgfqpoint{3.825272in}{1.076931in}}% +\pgfpathlineto{\pgfqpoint{3.836269in}{1.020563in}}% +\pgfpathlineto{\pgfqpoint{3.847266in}{0.858239in}}% +\pgfpathlineto{\pgfqpoint{3.858263in}{1.026453in}}% +\pgfpathlineto{\pgfqpoint{3.869260in}{1.066952in}}% +\pgfpathlineto{\pgfqpoint{3.880256in}{1.087567in}}% +\pgfpathlineto{\pgfqpoint{3.891253in}{1.098842in}}% +\pgfpathlineto{\pgfqpoint{3.902250in}{1.104143in}}% +\pgfpathlineto{\pgfqpoint{3.913247in}{1.104858in}}% +\pgfpathlineto{\pgfqpoint{3.924243in}{1.101533in}}% +\pgfpathlineto{\pgfqpoint{3.935240in}{1.094192in}}% +\pgfpathlineto{\pgfqpoint{3.946237in}{1.082349in}}% +\pgfpathlineto{\pgfqpoint{3.957234in}{1.064730in}}% +\pgfpathlineto{\pgfqpoint{3.968230in}{1.038274in}}% +\pgfpathlineto{\pgfqpoint{3.979227in}{0.993784in}}% +\pgfpathlineto{\pgfqpoint{3.990224in}{0.862420in}}% +\pgfpathlineto{\pgfqpoint{4.001221in}{0.959274in}}% +\pgfpathlineto{\pgfqpoint{4.012217in}{1.013330in}}% +\pgfpathlineto{\pgfqpoint{4.023214in}{1.039439in}}% +\pgfpathlineto{\pgfqpoint{4.034211in}{1.054322in}}% +\pgfpathlineto{\pgfqpoint{4.045208in}{1.062528in}}% +\pgfpathlineto{\pgfqpoint{4.056204in}{1.065849in}}% +\pgfpathlineto{\pgfqpoint{4.067201in}{1.065030in}}% +\pgfpathlineto{\pgfqpoint{4.078198in}{1.060240in}}% +\pgfpathlineto{\pgfqpoint{4.089195in}{1.051159in}}% +\pgfpathlineto{\pgfqpoint{4.100191in}{1.036805in}}% +\pgfpathlineto{\pgfqpoint{4.111188in}{1.014850in}}% +\pgfpathlineto{\pgfqpoint{4.122185in}{0.978963in}}% +\pgfpathlineto{\pgfqpoint{4.133182in}{0.899359in}}% +\pgfpathlineto{\pgfqpoint{4.144178in}{0.897831in}}% +\pgfpathlineto{\pgfqpoint{4.155175in}{0.974381in}}% +\pgfpathlineto{\pgfqpoint{4.166172in}{1.007214in}}% +\pgfpathlineto{\pgfqpoint{4.177169in}{1.026117in}}% +\pgfpathlineto{\pgfqpoint{4.188166in}{1.037423in}}% +\pgfpathlineto{\pgfqpoint{4.199162in}{1.043460in}}% +\pgfpathlineto{\pgfqpoint{4.210159in}{1.045210in}}% +\pgfpathlineto{\pgfqpoint{4.221156in}{1.042995in}}% +\pgfpathlineto{\pgfqpoint{4.232153in}{1.036646in}}% +\pgfpathlineto{\pgfqpoint{4.243149in}{1.025419in}}% +\pgfpathlineto{\pgfqpoint{4.254146in}{1.007523in}}% +\pgfpathlineto{\pgfqpoint{4.265143in}{0.978410in}}% +\pgfpathlineto{\pgfqpoint{4.276140in}{0.921361in}}% +\pgfpathlineto{\pgfqpoint{4.287136in}{0.821523in}}% +\pgfpathlineto{\pgfqpoint{4.298133in}{0.949917in}}% +\pgfpathlineto{\pgfqpoint{4.309130in}{0.991449in}}% +\pgfpathlineto{\pgfqpoint{4.320127in}{1.014960in}}% +\pgfpathlineto{\pgfqpoint{4.331123in}{1.029650in}}% +\pgfpathlineto{\pgfqpoint{4.342120in}{1.038578in}}% +\pgfpathlineto{\pgfqpoint{4.353117in}{1.043021in}}% +\pgfpathlineto{\pgfqpoint{4.364114in}{1.043466in}}% +\pgfpathlineto{\pgfqpoint{4.375110in}{1.039890in}}% +\pgfpathlineto{\pgfqpoint{4.386107in}{1.031747in}}% +\pgfpathlineto{\pgfqpoint{4.397104in}{1.017652in}}% +\pgfpathlineto{\pgfqpoint{4.408101in}{0.994238in}}% +\pgfpathlineto{\pgfqpoint{4.419097in}{0.950964in}}% +\pgfpathlineto{\pgfqpoint{4.430094in}{0.780000in}}% +\pgfpathlineto{\pgfqpoint{4.441091in}{0.939598in}}% +\pgfpathlineto{\pgfqpoint{4.452088in}{0.993268in}}% +\pgfpathlineto{\pgfqpoint{4.463085in}{1.022242in}}% +\pgfpathlineto{\pgfqpoint{4.474081in}{1.040722in}}% +\pgfpathlineto{\pgfqpoint{4.485078in}{1.052809in}}% +\pgfpathlineto{\pgfqpoint{4.496075in}{1.060152in}}% +\pgfpathlineto{\pgfqpoint{4.507072in}{1.063425in}}% +\pgfpathlineto{\pgfqpoint{4.518068in}{1.062752in}}% +\pgfpathlineto{\pgfqpoint{4.529065in}{1.057760in}}% +\pgfpathlineto{\pgfqpoint{4.540062in}{1.047379in}}% +\pgfpathlineto{\pgfqpoint{4.551059in}{1.029065in}}% +\pgfpathlineto{\pgfqpoint{4.562055in}{0.995686in}}% +\pgfpathlineto{\pgfqpoint{4.573052in}{0.909540in}}% +\pgfpathlineto{\pgfqpoint{4.584049in}{0.941921in}}% +\pgfpathlineto{\pgfqpoint{4.595046in}{1.014643in}}% +\pgfpathlineto{\pgfqpoint{4.606042in}{1.050366in}}% +\pgfpathlineto{\pgfqpoint{4.617039in}{1.073230in}}% +\pgfpathlineto{\pgfqpoint{4.628036in}{1.088886in}}% +\pgfpathlineto{\pgfqpoint{4.639033in}{1.099466in}}% +\pgfpathlineto{\pgfqpoint{4.650029in}{1.105872in}}% +\pgfpathlineto{\pgfqpoint{4.661026in}{1.108376in}}% +\pgfpathlineto{\pgfqpoint{4.672023in}{1.106762in}}% +\pgfpathlineto{\pgfqpoint{4.683020in}{1.100216in}}% +\pgfpathlineto{\pgfqpoint{4.694016in}{1.086787in}}% +\pgfpathlineto{\pgfqpoint{4.705013in}{1.061420in}}% +\pgfpathlineto{\pgfqpoint{4.727007in}{0.948666in}}% +\pgfpathlineto{\pgfqpoint{4.738004in}{1.059048in}}% +\pgfpathlineto{\pgfqpoint{4.749000in}{1.103576in}}% +\pgfpathlineto{\pgfqpoint{4.759997in}{1.131746in}}% +\pgfpathlineto{\pgfqpoint{4.770994in}{1.151641in}}% +\pgfpathlineto{\pgfqpoint{4.781991in}{1.166055in}}% +\pgfpathlineto{\pgfqpoint{4.792987in}{1.176164in}}% +\pgfpathlineto{\pgfqpoint{4.803984in}{1.182402in}}% +\pgfpathlineto{\pgfqpoint{4.814981in}{1.184707in}}% +\pgfpathlineto{\pgfqpoint{4.825978in}{1.182476in}}% +\pgfpathlineto{\pgfqpoint{4.836974in}{1.174207in}}% +\pgfpathlineto{\pgfqpoint{4.847971in}{1.156199in}}% +\pgfpathlineto{\pgfqpoint{4.858968in}{1.116278in}}% +\pgfpathlineto{\pgfqpoint{4.866486in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.866486in}{0.453273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -2497,398 +2494,398 @@ \definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.835897in}}% -\pgfpathlineto{\pgfqpoint{0.682746in}{0.660479in}}% -\pgfpathlineto{\pgfqpoint{0.693267in}{0.705644in}}% -\pgfpathlineto{\pgfqpoint{0.703788in}{0.728746in}}% -\pgfpathlineto{\pgfqpoint{0.714308in}{0.741963in}}% -\pgfpathlineto{\pgfqpoint{0.724829in}{0.749005in}}% -\pgfpathlineto{\pgfqpoint{0.735350in}{0.751379in}}% -\pgfpathlineto{\pgfqpoint{0.745870in}{0.749695in}}% -\pgfpathlineto{\pgfqpoint{0.756391in}{0.744023in}}% -\pgfpathlineto{\pgfqpoint{0.766912in}{0.733932in}}% -\pgfpathlineto{\pgfqpoint{0.777432in}{0.718253in}}% -\pgfpathlineto{\pgfqpoint{0.787953in}{0.694197in}}% -\pgfpathlineto{\pgfqpoint{0.798474in}{0.653684in}}% -\pgfpathlineto{\pgfqpoint{0.808994in}{0.547172in}}% -\pgfpathlineto{\pgfqpoint{0.830036in}{0.667544in}}% -\pgfpathlineto{\pgfqpoint{0.840556in}{0.696577in}}% -\pgfpathlineto{\pgfqpoint{0.851077in}{0.713587in}}% -\pgfpathlineto{\pgfqpoint{0.861598in}{0.723637in}}% -\pgfpathlineto{\pgfqpoint{0.872118in}{0.728681in}}% -\pgfpathlineto{\pgfqpoint{0.882639in}{0.729536in}}% -\pgfpathlineto{\pgfqpoint{0.893159in}{0.726420in}}% -\pgfpathlineto{\pgfqpoint{0.903680in}{0.719063in}}% -\pgfpathlineto{\pgfqpoint{0.914201in}{0.706568in}}% -\pgfpathlineto{\pgfqpoint{0.924721in}{0.686802in}}% -\pgfpathlineto{\pgfqpoint{0.935242in}{0.654114in}}% -\pgfpathlineto{\pgfqpoint{0.945763in}{0.584381in}}% -\pgfpathlineto{\pgfqpoint{0.956283in}{0.554998in}}% -\pgfpathlineto{\pgfqpoint{0.966804in}{0.643925in}}% -\pgfpathlineto{\pgfqpoint{0.977325in}{0.680121in}}% -\pgfpathlineto{\pgfqpoint{0.987845in}{0.701198in}}% -\pgfpathlineto{\pgfqpoint{0.998366in}{0.714293in}}% -\pgfpathlineto{\pgfqpoint{1.008887in}{0.721949in}}% -\pgfpathlineto{\pgfqpoint{1.019407in}{0.725241in}}% -\pgfpathlineto{\pgfqpoint{1.029928in}{0.724539in}}% -\pgfpathlineto{\pgfqpoint{1.040449in}{0.719723in}}% -\pgfpathlineto{\pgfqpoint{1.050969in}{0.710119in}}% -\pgfpathlineto{\pgfqpoint{1.061490in}{0.694082in}}% -\pgfpathlineto{\pgfqpoint{1.072010in}{0.667507in}}% -\pgfpathlineto{\pgfqpoint{1.082531in}{0.616188in}}% -\pgfpathlineto{\pgfqpoint{1.093052in}{0.457318in}}% -\pgfpathlineto{\pgfqpoint{1.103572in}{0.632167in}}% -\pgfpathlineto{\pgfqpoint{1.114093in}{0.677682in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{0.703303in}}% -\pgfpathlineto{\pgfqpoint{1.135134in}{0.719571in}}% -\pgfpathlineto{\pgfqpoint{1.145655in}{0.729851in}}% -\pgfpathlineto{\pgfqpoint{1.156176in}{0.735530in}}% -\pgfpathlineto{\pgfqpoint{1.166696in}{0.737155in}}% -\pgfpathlineto{\pgfqpoint{1.177217in}{0.734748in}}% -\pgfpathlineto{\pgfqpoint{1.187738in}{0.727824in}}% -\pgfpathlineto{\pgfqpoint{1.198258in}{0.715107in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{0.693538in}}% -\pgfpathlineto{\pgfqpoint{1.219300in}{0.653924in}}% -\pgfpathlineto{\pgfqpoint{1.229820in}{0.527682in}}% -\pgfpathlineto{\pgfqpoint{1.240341in}{0.629097in}}% -\pgfpathlineto{\pgfqpoint{1.250862in}{0.687971in}}% -\pgfpathlineto{\pgfqpoint{1.261382in}{0.718881in}}% -\pgfpathlineto{\pgfqpoint{1.271903in}{0.738545in}}% -\pgfpathlineto{\pgfqpoint{1.282423in}{0.751514in}}% -\pgfpathlineto{\pgfqpoint{1.292944in}{0.759578in}}% -\pgfpathlineto{\pgfqpoint{1.303465in}{0.763483in}}% -\pgfpathlineto{\pgfqpoint{1.313985in}{0.763396in}}% -\pgfpathlineto{\pgfqpoint{1.324506in}{0.758997in}}% -\pgfpathlineto{\pgfqpoint{1.335027in}{0.749304in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{0.731990in}}% -\pgfpathlineto{\pgfqpoint{1.356068in}{0.700721in}}% -\pgfpathlineto{\pgfqpoint{1.366589in}{0.625700in}}% -\pgfpathlineto{\pgfqpoint{1.377109in}{0.628738in}}% -\pgfpathlineto{\pgfqpoint{1.387630in}{0.709854in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{0.747213in}}% -\pgfpathlineto{\pgfqpoint{1.408671in}{0.770617in}}% -\pgfpathlineto{\pgfqpoint{1.419192in}{0.786397in}}% -\pgfpathlineto{\pgfqpoint{1.429713in}{0.796883in}}% -\pgfpathlineto{\pgfqpoint{1.440233in}{0.803057in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{0.805238in}}% -\pgfpathlineto{\pgfqpoint{1.461274in}{0.803257in}}% -\pgfpathlineto{\pgfqpoint{1.471795in}{0.796371in}}% -\pgfpathlineto{\pgfqpoint{1.482316in}{0.782786in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{0.757956in}}% -\pgfpathlineto{\pgfqpoint{1.503357in}{0.705161in}}% -\pgfpathlineto{\pgfqpoint{1.513878in}{0.609553in}}% -\pgfpathlineto{\pgfqpoint{1.524398in}{0.742126in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{0.787816in}}% -\pgfpathlineto{\pgfqpoint{1.545440in}{0.815452in}}% -\pgfpathlineto{\pgfqpoint{1.555960in}{0.834231in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{0.847216in}}% -\pgfpathlineto{\pgfqpoint{1.577002in}{0.855679in}}% -\pgfpathlineto{\pgfqpoint{1.587522in}{0.860108in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{0.860478in}}% -\pgfpathlineto{\pgfqpoint{1.608564in}{0.856243in}}% -\pgfpathlineto{\pgfqpoint{1.619084in}{0.846017in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{0.826432in}}% -\pgfpathlineto{\pgfqpoint{1.640126in}{0.786944in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{0.619669in}}% -\pgfpathlineto{\pgfqpoint{1.661167in}{0.783026in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{0.840352in}}% -\pgfpathlineto{\pgfqpoint{1.682208in}{0.872937in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{0.894981in}}% -\pgfpathlineto{\pgfqpoint{1.703249in}{0.910583in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{0.921391in}}% -\pgfpathlineto{\pgfqpoint{1.724291in}{0.928079in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{0.930767in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{0.929082in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{0.921952in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{0.906831in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{0.876587in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{0.793515in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{0.828905in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{0.904571in}}% -\pgfpathlineto{\pgfqpoint{1.818977in}{0.943172in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{0.968844in}}% -\pgfpathlineto{\pgfqpoint{1.840018in}{0.987236in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.000478in}}% -\pgfpathlineto{\pgfqpoint{1.861059in}{1.009469in}}% -\pgfpathlineto{\pgfqpoint{1.871580in}{1.014478in}}% -\pgfpathlineto{\pgfqpoint{1.882100in}{1.015288in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{1.011079in}}% -\pgfpathlineto{\pgfqpoint{1.903142in}{0.999898in}}% -\pgfpathlineto{\pgfqpoint{1.913662in}{0.976687in}}% -\pgfpathlineto{\pgfqpoint{1.934704in}{0.867955in}}% -\pgfpathlineto{\pgfqpoint{1.945224in}{0.980194in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{1.026471in}}% -\pgfpathlineto{\pgfqpoint{1.966266in}{1.056277in}}% -\pgfpathlineto{\pgfqpoint{1.976786in}{1.077690in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{1.093499in}}% -\pgfpathlineto{\pgfqpoint{1.997828in}{1.104874in}}% -\pgfpathlineto{\pgfqpoint{2.008348in}{1.112244in}}% -\pgfpathlineto{\pgfqpoint{2.018869in}{1.115538in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{1.114148in}}% -\pgfpathlineto{\pgfqpoint{2.039910in}{1.106563in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{1.089072in}}% -\pgfpathlineto{\pgfqpoint{2.060951in}{1.049496in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{0.922657in}}% -\pgfpathlineto{\pgfqpoint{2.081993in}{1.066653in}}% -\pgfpathlineto{\pgfqpoint{2.092513in}{1.123389in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{1.158040in}}% -\pgfpathlineto{\pgfqpoint{2.113555in}{1.182790in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{1.201351in}}% -\pgfpathlineto{\pgfqpoint{2.134596in}{1.215234in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{1.225048in}}% -\pgfpathlineto{\pgfqpoint{2.155637in}{1.230867in}}% -\pgfpathlineto{\pgfqpoint{2.166158in}{1.232261in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{1.228064in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{1.215486in}}% -\pgfpathlineto{\pgfqpoint{2.197720in}{1.186452in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{1.091471in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{1.234773in}}% -\pgfpathlineto{\pgfqpoint{2.239802in}{1.275297in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{1.303813in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{1.325380in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{1.341952in}}% -\pgfpathlineto{\pgfqpoint{2.281885in}{1.354351in}}% -\pgfpathlineto{\pgfqpoint{2.292406in}{1.362794in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{1.367016in}}% -\pgfpathlineto{\pgfqpoint{2.313447in}{1.366118in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{1.357972in}}% -\pgfpathlineto{\pgfqpoint{2.334488in}{1.336930in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{1.278858in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{1.261098in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{1.361842in}}% -\pgfpathlineto{\pgfqpoint{2.376571in}{1.409796in}}% -\pgfpathlineto{\pgfqpoint{2.387092in}{1.442670in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{1.467598in}}% -\pgfpathlineto{\pgfqpoint{2.408133in}{1.487126in}}% -\pgfpathlineto{\pgfqpoint{2.418654in}{1.502330in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{1.513585in}}% -\pgfpathlineto{\pgfqpoint{2.439695in}{1.520773in}}% -\pgfpathlineto{\pgfqpoint{2.450215in}{1.523221in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{1.519286in}}% -\pgfpathlineto{\pgfqpoint{2.471257in}{1.504869in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{1.465774in}}% -\pgfpathlineto{\pgfqpoint{2.492298in}{1.320772in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{1.506356in}}% -\pgfpathlineto{\pgfqpoint{2.513339in}{1.564281in}}% -\pgfpathlineto{\pgfqpoint{2.523860in}{1.602378in}}% -\pgfpathlineto{\pgfqpoint{2.534381in}{1.631195in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{1.654103in}}% -\pgfpathlineto{\pgfqpoint{2.555422in}{1.672491in}}% -\pgfpathlineto{\pgfqpoint{2.565943in}{1.686911in}}% -\pgfpathlineto{\pgfqpoint{2.576463in}{1.697389in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{1.703445in}}% -\pgfpathlineto{\pgfqpoint{2.597505in}{1.703809in}}% -\pgfpathlineto{\pgfqpoint{2.608025in}{1.695424in}}% -\pgfpathlineto{\pgfqpoint{2.618546in}{1.669098in}}% -\pgfpathlineto{\pgfqpoint{2.629066in}{1.555997in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{1.671220in}}% -\pgfpathlineto{\pgfqpoint{2.650108in}{1.743757in}}% -\pgfpathlineto{\pgfqpoint{2.660628in}{1.788467in}}% -\pgfpathlineto{\pgfqpoint{2.671149in}{1.822081in}}% -\pgfpathlineto{\pgfqpoint{2.681670in}{1.849160in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{1.871508in}}% -\pgfpathlineto{\pgfqpoint{2.702711in}{1.889890in}}% -\pgfpathlineto{\pgfqpoint{2.713232in}{1.904497in}}% -\pgfpathlineto{\pgfqpoint{2.723752in}{1.915038in}}% -\pgfpathlineto{\pgfqpoint{2.734273in}{1.920568in}}% -\pgfpathlineto{\pgfqpoint{2.744794in}{1.918808in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{1.903485in}}% -\pgfpathlineto{\pgfqpoint{2.765835in}{1.844893in}}% -\pgfpathlineto{\pgfqpoint{2.776356in}{2.283975in}}% -\pgfpathlineto{\pgfqpoint{2.797397in}{2.248513in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{2.207752in}}% -\pgfpathlineto{\pgfqpoint{2.839479in}{2.160537in}}% -\pgfpathlineto{\pgfqpoint{2.860521in}{2.104212in}}% -\pgfpathlineto{\pgfqpoint{2.871041in}{2.070776in}}% -\pgfpathlineto{\pgfqpoint{2.881562in}{2.031485in}}% -\pgfpathlineto{\pgfqpoint{2.892083in}{1.981643in}}% -\pgfpathlineto{\pgfqpoint{2.902603in}{1.904418in}}% -\pgfpathlineto{\pgfqpoint{2.913124in}{1.784875in}}% -\pgfpathlineto{\pgfqpoint{2.923645in}{1.893964in}}% -\pgfpathlineto{\pgfqpoint{2.934165in}{1.916538in}}% -\pgfpathlineto{\pgfqpoint{2.944686in}{1.921394in}}% -\pgfpathlineto{\pgfqpoint{2.955207in}{1.917694in}}% -\pgfpathlineto{\pgfqpoint{2.965727in}{1.908469in}}% -\pgfpathlineto{\pgfqpoint{2.976248in}{1.894967in}}% -\pgfpathlineto{\pgfqpoint{2.986769in}{1.877653in}}% -\pgfpathlineto{\pgfqpoint{2.997289in}{1.856485in}}% -\pgfpathlineto{\pgfqpoint{3.007810in}{1.830901in}}% -\pgfpathlineto{\pgfqpoint{3.018330in}{1.799499in}}% -\pgfpathlineto{\pgfqpoint{3.028851in}{1.758900in}}% -\pgfpathlineto{\pgfqpoint{3.039372in}{1.698550in}}% -\pgfpathlineto{\pgfqpoint{3.049892in}{1.510609in}}% -\pgfpathlineto{\pgfqpoint{3.060413in}{1.653318in}}% -\pgfpathlineto{\pgfqpoint{3.070934in}{1.690179in}}% -\pgfpathlineto{\pgfqpoint{3.081454in}{1.702415in}}% -\pgfpathlineto{\pgfqpoint{3.091975in}{1.704220in}}% -\pgfpathlineto{\pgfqpoint{3.102496in}{1.699689in}}% -\pgfpathlineto{\pgfqpoint{3.113016in}{1.690462in}}% -\pgfpathlineto{\pgfqpoint{3.123537in}{1.677209in}}% -\pgfpathlineto{\pgfqpoint{3.134058in}{1.660045in}}% -\pgfpathlineto{\pgfqpoint{3.144578in}{1.638594in}}% -\pgfpathlineto{\pgfqpoint{3.155099in}{1.611777in}}% -\pgfpathlineto{\pgfqpoint{3.165620in}{1.577047in}}% -\pgfpathlineto{\pgfqpoint{3.176140in}{1.527267in}}% -\pgfpathlineto{\pgfqpoint{3.186661in}{1.424726in}}% -\pgfpathlineto{\pgfqpoint{3.197182in}{1.440718in}}% -\pgfpathlineto{\pgfqpoint{3.207702in}{1.497048in}}% -\pgfpathlineto{\pgfqpoint{3.218223in}{1.516374in}}% -\pgfpathlineto{\pgfqpoint{3.228743in}{1.522828in}}% -\pgfpathlineto{\pgfqpoint{3.239264in}{1.522056in}}% -\pgfpathlineto{\pgfqpoint{3.249785in}{1.516188in}}% -\pgfpathlineto{\pgfqpoint{3.260305in}{1.506119in}}% -\pgfpathlineto{\pgfqpoint{3.270826in}{1.492115in}}% -\pgfpathlineto{\pgfqpoint{3.281347in}{1.473957in}}% -\pgfpathlineto{\pgfqpoint{3.291867in}{1.450824in}}% -\pgfpathlineto{\pgfqpoint{3.302388in}{1.420760in}}% -\pgfpathlineto{\pgfqpoint{3.312909in}{1.378705in}}% -\pgfpathlineto{\pgfqpoint{3.333950in}{1.232393in}}% -\pgfpathlineto{\pgfqpoint{3.344471in}{1.325892in}}% -\pgfpathlineto{\pgfqpoint{3.354991in}{1.353460in}}% -\pgfpathlineto{\pgfqpoint{3.365512in}{1.364587in}}% -\pgfpathlineto{\pgfqpoint{3.376033in}{1.367348in}}% -\pgfpathlineto{\pgfqpoint{3.386553in}{1.364530in}}% -\pgfpathlineto{\pgfqpoint{3.397074in}{1.357302in}}% -\pgfpathlineto{\pgfqpoint{3.407594in}{1.346091in}}% -\pgfpathlineto{\pgfqpoint{3.418115in}{1.330824in}}% -\pgfpathlineto{\pgfqpoint{3.428636in}{1.310891in}}% -\pgfpathlineto{\pgfqpoint{3.439156in}{1.284781in}}% -\pgfpathlineto{\pgfqpoint{3.449677in}{1.248781in}}% -\pgfpathlineto{\pgfqpoint{3.460198in}{1.190708in}}% -\pgfpathlineto{\pgfqpoint{3.467474in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.474024in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.481239in}{1.170908in}}% -\pgfpathlineto{\pgfqpoint{3.491760in}{1.209179in}}% -\pgfpathlineto{\pgfqpoint{3.502280in}{1.225373in}}% -\pgfpathlineto{\pgfqpoint{3.512801in}{1.231671in}}% -\pgfpathlineto{\pgfqpoint{3.523322in}{1.231785in}}% -\pgfpathlineto{\pgfqpoint{3.533842in}{1.227222in}}% -\pgfpathlineto{\pgfqpoint{3.544363in}{1.218593in}}% -\pgfpathlineto{\pgfqpoint{3.554884in}{1.205967in}}% -\pgfpathlineto{\pgfqpoint{3.565404in}{1.188915in}}% -\pgfpathlineto{\pgfqpoint{3.575925in}{1.166267in}}% -\pgfpathlineto{\pgfqpoint{3.586446in}{1.135233in}}% -\pgfpathlineto{\pgfqpoint{3.596966in}{1.087737in}}% -\pgfpathlineto{\pgfqpoint{3.607487in}{0.974286in}}% -\pgfpathlineto{\pgfqpoint{3.628528in}{1.080614in}}% -\pgfpathlineto{\pgfqpoint{3.639049in}{1.102633in}}% -\pgfpathlineto{\pgfqpoint{3.649569in}{1.112629in}}% -\pgfpathlineto{\pgfqpoint{3.660090in}{1.115659in}}% -\pgfpathlineto{\pgfqpoint{3.670611in}{1.113676in}}% -\pgfpathlineto{\pgfqpoint{3.681131in}{1.107500in}}% -\pgfpathlineto{\pgfqpoint{3.691652in}{1.097347in}}% -\pgfpathlineto{\pgfqpoint{3.702173in}{1.082949in}}% -\pgfpathlineto{\pgfqpoint{3.712693in}{1.063407in}}% -\pgfpathlineto{\pgfqpoint{3.723214in}{1.036589in}}% -\pgfpathlineto{\pgfqpoint{3.733735in}{0.996848in}}% -\pgfpathlineto{\pgfqpoint{3.744255in}{0.920045in}}% -\pgfpathlineto{\pgfqpoint{3.754776in}{0.883523in}}% -\pgfpathlineto{\pgfqpoint{3.765297in}{0.965470in}}% -\pgfpathlineto{\pgfqpoint{3.775817in}{0.994592in}}% -\pgfpathlineto{\pgfqpoint{3.786338in}{1.008595in}}% -\pgfpathlineto{\pgfqpoint{3.796858in}{1.014611in}}% -\pgfpathlineto{\pgfqpoint{3.807379in}{1.015185in}}% -\pgfpathlineto{\pgfqpoint{3.817900in}{1.011391in}}% -\pgfpathlineto{\pgfqpoint{3.828420in}{1.003600in}}% -\pgfpathlineto{\pgfqpoint{3.838941in}{0.991693in}}% -\pgfpathlineto{\pgfqpoint{3.849462in}{0.974994in}}% -\pgfpathlineto{\pgfqpoint{3.859982in}{0.951858in}}% -\pgfpathlineto{\pgfqpoint{3.870503in}{0.918182in}}% -\pgfpathlineto{\pgfqpoint{3.881024in}{0.859769in}}% -\pgfpathlineto{\pgfqpoint{3.891544in}{0.695384in}}% -\pgfpathlineto{\pgfqpoint{3.902065in}{0.861522in}}% -\pgfpathlineto{\pgfqpoint{3.912586in}{0.899930in}}% -\pgfpathlineto{\pgfqpoint{3.923106in}{0.918438in}}% -\pgfpathlineto{\pgfqpoint{3.933627in}{0.927591in}}% -\pgfpathlineto{\pgfqpoint{3.944148in}{0.930753in}}% -\pgfpathlineto{\pgfqpoint{3.954668in}{0.929312in}}% -\pgfpathlineto{\pgfqpoint{3.965189in}{0.923815in}}% -\pgfpathlineto{\pgfqpoint{3.975710in}{0.914285in}}% -\pgfpathlineto{\pgfqpoint{3.986230in}{0.900236in}}% -\pgfpathlineto{\pgfqpoint{3.996751in}{0.880393in}}% -\pgfpathlineto{\pgfqpoint{4.007271in}{0.851695in}}% -\pgfpathlineto{\pgfqpoint{4.017792in}{0.804945in}}% -\pgfpathlineto{\pgfqpoint{4.028313in}{0.671302in}}% -\pgfpathlineto{\pgfqpoint{4.038833in}{0.765860in}}% -\pgfpathlineto{\pgfqpoint{4.049354in}{0.817600in}}% -\pgfpathlineto{\pgfqpoint{4.059875in}{0.841373in}}% -\pgfpathlineto{\pgfqpoint{4.070395in}{0.853902in}}% -\pgfpathlineto{\pgfqpoint{4.080916in}{0.859733in}}% -\pgfpathlineto{\pgfqpoint{4.091437in}{0.860658in}}% -\pgfpathlineto{\pgfqpoint{4.101957in}{0.857423in}}% -\pgfpathlineto{\pgfqpoint{4.112478in}{0.850196in}}% -\pgfpathlineto{\pgfqpoint{4.122999in}{0.838656in}}% -\pgfpathlineto{\pgfqpoint{4.133519in}{0.821822in}}% -\pgfpathlineto{\pgfqpoint{4.144040in}{0.797365in}}% -\pgfpathlineto{\pgfqpoint{4.154561in}{0.758953in}}% -\pgfpathlineto{\pgfqpoint{4.165081in}{0.676800in}}% -\pgfpathlineto{\pgfqpoint{4.175602in}{0.672700in}}% -\pgfpathlineto{\pgfqpoint{4.186122in}{0.746654in}}% -\pgfpathlineto{\pgfqpoint{4.196643in}{0.776867in}}% -\pgfpathlineto{\pgfqpoint{4.207164in}{0.793125in}}% -\pgfpathlineto{\pgfqpoint{4.217684in}{0.801761in}}% -\pgfpathlineto{\pgfqpoint{4.228205in}{0.805101in}}% -\pgfpathlineto{\pgfqpoint{4.238726in}{0.804129in}}% -\pgfpathlineto{\pgfqpoint{4.249246in}{0.799164in}}% -\pgfpathlineto{\pgfqpoint{4.259767in}{0.790038in}}% -\pgfpathlineto{\pgfqpoint{4.270288in}{0.776006in}}% -\pgfpathlineto{\pgfqpoint{4.280808in}{0.755276in}}% -\pgfpathlineto{\pgfqpoint{4.291329in}{0.723301in}}% -\pgfpathlineto{\pgfqpoint{4.301850in}{0.663359in}}% -\pgfpathlineto{\pgfqpoint{4.312370in}{0.560600in}}% -\pgfpathlineto{\pgfqpoint{4.322891in}{0.686038in}}% -\pgfpathlineto{\pgfqpoint{4.333412in}{0.724584in}}% -\pgfpathlineto{\pgfqpoint{4.343932in}{0.745077in}}% -\pgfpathlineto{\pgfqpoint{4.354453in}{0.756714in}}% -\pgfpathlineto{\pgfqpoint{4.364974in}{0.762557in}}% -\pgfpathlineto{\pgfqpoint{4.375494in}{0.763880in}}% -\pgfpathlineto{\pgfqpoint{4.386015in}{0.761169in}}% -\pgfpathlineto{\pgfqpoint{4.396535in}{0.754400in}}% -\pgfpathlineto{\pgfqpoint{4.407056in}{0.743028in}}% -\pgfpathlineto{\pgfqpoint{4.417577in}{0.725665in}}% -\pgfpathlineto{\pgfqpoint{4.428097in}{0.698944in}}% -\pgfpathlineto{\pgfqpoint{4.438618in}{0.652322in}}% -\pgfpathlineto{\pgfqpoint{4.449139in}{0.477972in}}% -\pgfpathlineto{\pgfqpoint{4.459659in}{0.634137in}}% -\pgfpathlineto{\pgfqpoint{4.470180in}{0.684334in}}% -\pgfpathlineto{\pgfqpoint{4.480701in}{0.709791in}}% -\pgfpathlineto{\pgfqpoint{4.491221in}{0.724706in}}% -\pgfpathlineto{\pgfqpoint{4.501742in}{0.733183in}}% -\pgfpathlineto{\pgfqpoint{4.512263in}{0.736867in}}% -\pgfpathlineto{\pgfqpoint{4.522783in}{0.736433in}}% -\pgfpathlineto{\pgfqpoint{4.533304in}{0.732001in}}% -\pgfpathlineto{\pgfqpoint{4.543825in}{0.723198in}}% -\pgfpathlineto{\pgfqpoint{4.554345in}{0.708952in}}% -\pgfpathlineto{\pgfqpoint{4.564866in}{0.686718in}}% -\pgfpathlineto{\pgfqpoint{4.575386in}{0.649362in}}% -\pgfpathlineto{\pgfqpoint{4.585907in}{0.559179in}}% -\pgfpathlineto{\pgfqpoint{4.596428in}{0.587464in}}% -\pgfpathlineto{\pgfqpoint{4.606948in}{0.656026in}}% -\pgfpathlineto{\pgfqpoint{4.617469in}{0.687526in}}% -\pgfpathlineto{\pgfqpoint{4.627990in}{0.706099in}}% -\pgfpathlineto{\pgfqpoint{4.638510in}{0.717395in}}% -\pgfpathlineto{\pgfqpoint{4.649031in}{0.723544in}}% -\pgfpathlineto{\pgfqpoint{4.659552in}{0.725446in}}% -\pgfpathlineto{\pgfqpoint{4.670072in}{0.723368in}}% -\pgfpathlineto{\pgfqpoint{4.680593in}{0.717094in}}% -\pgfpathlineto{\pgfqpoint{4.691114in}{0.705805in}}% -\pgfpathlineto{\pgfqpoint{4.701634in}{0.687548in}}% -\pgfpathlineto{\pgfqpoint{4.712155in}{0.657266in}}% -\pgfpathlineto{\pgfqpoint{4.733196in}{0.534402in}}% -\pgfpathlineto{\pgfqpoint{4.743717in}{0.639578in}}% -\pgfpathlineto{\pgfqpoint{4.754238in}{0.678796in}}% -\pgfpathlineto{\pgfqpoint{4.764758in}{0.701552in}}% -\pgfpathlineto{\pgfqpoint{4.775279in}{0.715918in}}% -\pgfpathlineto{\pgfqpoint{4.785799in}{0.724684in}}% -\pgfpathlineto{\pgfqpoint{4.796320in}{0.729021in}}% -\pgfpathlineto{\pgfqpoint{4.806841in}{0.729358in}}% -\pgfpathlineto{\pgfqpoint{4.817361in}{0.725625in}}% -\pgfpathlineto{\pgfqpoint{4.827882in}{0.717212in}}% -\pgfpathlineto{\pgfqpoint{4.838403in}{0.702610in}}% -\pgfpathlineto{\pgfqpoint{4.848923in}{0.678109in}}% -\pgfpathlineto{\pgfqpoint{4.859444in}{0.631528in}}% -\pgfpathlineto{\pgfqpoint{4.861399in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.861399in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{0.835897in}}% +\pgfpathlineto{\pgfqpoint{0.493254in}{0.660479in}}% +\pgfpathlineto{\pgfqpoint{0.504251in}{0.705644in}}% +\pgfpathlineto{\pgfqpoint{0.515248in}{0.728746in}}% +\pgfpathlineto{\pgfqpoint{0.526245in}{0.741963in}}% +\pgfpathlineto{\pgfqpoint{0.537241in}{0.749005in}}% +\pgfpathlineto{\pgfqpoint{0.548238in}{0.751379in}}% +\pgfpathlineto{\pgfqpoint{0.559235in}{0.749695in}}% +\pgfpathlineto{\pgfqpoint{0.570232in}{0.744023in}}% +\pgfpathlineto{\pgfqpoint{0.581228in}{0.733932in}}% +\pgfpathlineto{\pgfqpoint{0.592225in}{0.718253in}}% +\pgfpathlineto{\pgfqpoint{0.603222in}{0.694197in}}% +\pgfpathlineto{\pgfqpoint{0.614219in}{0.653684in}}% +\pgfpathlineto{\pgfqpoint{0.625215in}{0.547172in}}% +\pgfpathlineto{\pgfqpoint{0.647209in}{0.667544in}}% +\pgfpathlineto{\pgfqpoint{0.658206in}{0.696577in}}% +\pgfpathlineto{\pgfqpoint{0.669202in}{0.713587in}}% +\pgfpathlineto{\pgfqpoint{0.680199in}{0.723637in}}% +\pgfpathlineto{\pgfqpoint{0.691196in}{0.728681in}}% +\pgfpathlineto{\pgfqpoint{0.702193in}{0.729536in}}% +\pgfpathlineto{\pgfqpoint{0.713189in}{0.726420in}}% +\pgfpathlineto{\pgfqpoint{0.724186in}{0.719063in}}% +\pgfpathlineto{\pgfqpoint{0.735183in}{0.706568in}}% +\pgfpathlineto{\pgfqpoint{0.746180in}{0.686802in}}% +\pgfpathlineto{\pgfqpoint{0.757177in}{0.654114in}}% +\pgfpathlineto{\pgfqpoint{0.768173in}{0.584381in}}% +\pgfpathlineto{\pgfqpoint{0.779170in}{0.554998in}}% +\pgfpathlineto{\pgfqpoint{0.790167in}{0.643925in}}% +\pgfpathlineto{\pgfqpoint{0.801164in}{0.680121in}}% +\pgfpathlineto{\pgfqpoint{0.812160in}{0.701198in}}% +\pgfpathlineto{\pgfqpoint{0.823157in}{0.714293in}}% +\pgfpathlineto{\pgfqpoint{0.834154in}{0.721949in}}% +\pgfpathlineto{\pgfqpoint{0.845151in}{0.725241in}}% +\pgfpathlineto{\pgfqpoint{0.856147in}{0.724539in}}% +\pgfpathlineto{\pgfqpoint{0.867144in}{0.719723in}}% +\pgfpathlineto{\pgfqpoint{0.878141in}{0.710119in}}% +\pgfpathlineto{\pgfqpoint{0.889138in}{0.694082in}}% +\pgfpathlineto{\pgfqpoint{0.900134in}{0.667507in}}% +\pgfpathlineto{\pgfqpoint{0.911131in}{0.616188in}}% +\pgfpathlineto{\pgfqpoint{0.922128in}{0.457318in}}% +\pgfpathlineto{\pgfqpoint{0.933125in}{0.632167in}}% +\pgfpathlineto{\pgfqpoint{0.944121in}{0.677682in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{0.703303in}}% +\pgfpathlineto{\pgfqpoint{0.966115in}{0.719571in}}% +\pgfpathlineto{\pgfqpoint{0.977112in}{0.729851in}}% +\pgfpathlineto{\pgfqpoint{0.988108in}{0.735530in}}% +\pgfpathlineto{\pgfqpoint{0.999105in}{0.737155in}}% +\pgfpathlineto{\pgfqpoint{1.010102in}{0.734748in}}% +\pgfpathlineto{\pgfqpoint{1.021099in}{0.727824in}}% +\pgfpathlineto{\pgfqpoint{1.032096in}{0.715107in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{0.693538in}}% +\pgfpathlineto{\pgfqpoint{1.054089in}{0.653924in}}% +\pgfpathlineto{\pgfqpoint{1.065086in}{0.527682in}}% +\pgfpathlineto{\pgfqpoint{1.076083in}{0.629097in}}% +\pgfpathlineto{\pgfqpoint{1.087079in}{0.687971in}}% +\pgfpathlineto{\pgfqpoint{1.098076in}{0.718881in}}% +\pgfpathlineto{\pgfqpoint{1.109073in}{0.738545in}}% +\pgfpathlineto{\pgfqpoint{1.120070in}{0.751514in}}% +\pgfpathlineto{\pgfqpoint{1.131066in}{0.759578in}}% +\pgfpathlineto{\pgfqpoint{1.142063in}{0.763483in}}% +\pgfpathlineto{\pgfqpoint{1.153060in}{0.763396in}}% +\pgfpathlineto{\pgfqpoint{1.164057in}{0.758997in}}% +\pgfpathlineto{\pgfqpoint{1.175053in}{0.749304in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{0.731990in}}% +\pgfpathlineto{\pgfqpoint{1.197047in}{0.700721in}}% +\pgfpathlineto{\pgfqpoint{1.208044in}{0.625700in}}% +\pgfpathlineto{\pgfqpoint{1.219040in}{0.628738in}}% +\pgfpathlineto{\pgfqpoint{1.230037in}{0.709854in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{0.747213in}}% +\pgfpathlineto{\pgfqpoint{1.252031in}{0.770617in}}% +\pgfpathlineto{\pgfqpoint{1.263027in}{0.786397in}}% +\pgfpathlineto{\pgfqpoint{1.274024in}{0.796883in}}% +\pgfpathlineto{\pgfqpoint{1.285021in}{0.803057in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{0.805238in}}% +\pgfpathlineto{\pgfqpoint{1.307014in}{0.803257in}}% +\pgfpathlineto{\pgfqpoint{1.318011in}{0.796371in}}% +\pgfpathlineto{\pgfqpoint{1.329008in}{0.782786in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{0.757956in}}% +\pgfpathlineto{\pgfqpoint{1.351002in}{0.705161in}}% +\pgfpathlineto{\pgfqpoint{1.361998in}{0.609553in}}% +\pgfpathlineto{\pgfqpoint{1.372995in}{0.742126in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{0.787816in}}% +\pgfpathlineto{\pgfqpoint{1.394989in}{0.815452in}}% +\pgfpathlineto{\pgfqpoint{1.405985in}{0.834231in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{0.847216in}}% +\pgfpathlineto{\pgfqpoint{1.427979in}{0.855679in}}% +\pgfpathlineto{\pgfqpoint{1.438976in}{0.860108in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{0.860478in}}% +\pgfpathlineto{\pgfqpoint{1.460969in}{0.856243in}}% +\pgfpathlineto{\pgfqpoint{1.471966in}{0.846017in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{0.826432in}}% +\pgfpathlineto{\pgfqpoint{1.493959in}{0.786944in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{0.619669in}}% +\pgfpathlineto{\pgfqpoint{1.515953in}{0.783026in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{0.840352in}}% +\pgfpathlineto{\pgfqpoint{1.537946in}{0.872937in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{0.894981in}}% +\pgfpathlineto{\pgfqpoint{1.559940in}{0.910583in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{0.921391in}}% +\pgfpathlineto{\pgfqpoint{1.581933in}{0.928079in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{0.930767in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{0.929082in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{0.921952in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{0.906831in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{0.876587in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{0.793515in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{0.828905in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{0.904571in}}% +\pgfpathlineto{\pgfqpoint{1.680904in}{0.943172in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{0.968844in}}% +\pgfpathlineto{\pgfqpoint{1.702898in}{0.987236in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.000478in}}% +\pgfpathlineto{\pgfqpoint{1.724891in}{1.009469in}}% +\pgfpathlineto{\pgfqpoint{1.735888in}{1.014478in}}% +\pgfpathlineto{\pgfqpoint{1.746885in}{1.015288in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{1.011079in}}% +\pgfpathlineto{\pgfqpoint{1.768878in}{0.999898in}}% +\pgfpathlineto{\pgfqpoint{1.779875in}{0.976687in}}% +\pgfpathlineto{\pgfqpoint{1.801869in}{0.867955in}}% +\pgfpathlineto{\pgfqpoint{1.812865in}{0.980194in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{1.026471in}}% +\pgfpathlineto{\pgfqpoint{1.834859in}{1.056277in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{1.077690in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{1.093499in}}% +\pgfpathlineto{\pgfqpoint{1.867849in}{1.104874in}}% +\pgfpathlineto{\pgfqpoint{1.878846in}{1.112244in}}% +\pgfpathlineto{\pgfqpoint{1.889843in}{1.115538in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{1.114148in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{1.106563in}}% +\pgfpathlineto{\pgfqpoint{1.922833in}{1.089072in}}% +\pgfpathlineto{\pgfqpoint{1.933830in}{1.049496in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{0.922657in}}% +\pgfpathlineto{\pgfqpoint{1.955823in}{1.066653in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{1.123389in}}% +\pgfpathlineto{\pgfqpoint{1.977817in}{1.158040in}}% +\pgfpathlineto{\pgfqpoint{1.988814in}{1.182790in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{1.201351in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{1.215234in}}% +\pgfpathlineto{\pgfqpoint{2.021804in}{1.225048in}}% +\pgfpathlineto{\pgfqpoint{2.032801in}{1.230867in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{1.232261in}}% +\pgfpathlineto{\pgfqpoint{2.054794in}{1.228064in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{1.215486in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{1.186452in}}% +\pgfpathlineto{\pgfqpoint{2.087784in}{1.091471in}}% +\pgfpathlineto{\pgfqpoint{2.109778in}{1.234773in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{1.275297in}}% +\pgfpathlineto{\pgfqpoint{2.131771in}{1.303813in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{1.325380in}}% +\pgfpathlineto{\pgfqpoint{2.153765in}{1.341952in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{1.354351in}}% +\pgfpathlineto{\pgfqpoint{2.175759in}{1.362794in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{1.367016in}}% +\pgfpathlineto{\pgfqpoint{2.197752in}{1.366118in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{1.357972in}}% +\pgfpathlineto{\pgfqpoint{2.219746in}{1.336930in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{1.278858in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{1.261098in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{1.361842in}}% +\pgfpathlineto{\pgfqpoint{2.263733in}{1.409796in}}% +\pgfpathlineto{\pgfqpoint{2.274729in}{1.442670in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{1.467598in}}% +\pgfpathlineto{\pgfqpoint{2.296723in}{1.487126in}}% +\pgfpathlineto{\pgfqpoint{2.307720in}{1.502330in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{1.513585in}}% +\pgfpathlineto{\pgfqpoint{2.329713in}{1.520773in}}% +\pgfpathlineto{\pgfqpoint{2.340710in}{1.523221in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{1.519286in}}% +\pgfpathlineto{\pgfqpoint{2.362703in}{1.504869in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{1.465774in}}% +\pgfpathlineto{\pgfqpoint{2.384697in}{1.320772in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{1.506356in}}% +\pgfpathlineto{\pgfqpoint{2.406690in}{1.564281in}}% +\pgfpathlineto{\pgfqpoint{2.417687in}{1.602378in}}% +\pgfpathlineto{\pgfqpoint{2.428684in}{1.631195in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{1.654103in}}% +\pgfpathlineto{\pgfqpoint{2.450678in}{1.672491in}}% +\pgfpathlineto{\pgfqpoint{2.461674in}{1.686911in}}% +\pgfpathlineto{\pgfqpoint{2.472671in}{1.697389in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{1.703445in}}% +\pgfpathlineto{\pgfqpoint{2.494665in}{1.703809in}}% +\pgfpathlineto{\pgfqpoint{2.505661in}{1.695424in}}% +\pgfpathlineto{\pgfqpoint{2.516658in}{1.669098in}}% +\pgfpathlineto{\pgfqpoint{2.527655in}{1.555997in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{1.671220in}}% +\pgfpathlineto{\pgfqpoint{2.549648in}{1.743757in}}% +\pgfpathlineto{\pgfqpoint{2.560645in}{1.788467in}}% +\pgfpathlineto{\pgfqpoint{2.571642in}{1.822081in}}% +\pgfpathlineto{\pgfqpoint{2.582639in}{1.849160in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{1.871508in}}% +\pgfpathlineto{\pgfqpoint{2.604632in}{1.889890in}}% +\pgfpathlineto{\pgfqpoint{2.615629in}{1.904497in}}% +\pgfpathlineto{\pgfqpoint{2.626626in}{1.915038in}}% +\pgfpathlineto{\pgfqpoint{2.637622in}{1.920568in}}% +\pgfpathlineto{\pgfqpoint{2.648619in}{1.918808in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{1.903485in}}% +\pgfpathlineto{\pgfqpoint{2.670613in}{1.844893in}}% +\pgfpathlineto{\pgfqpoint{2.681609in}{2.283975in}}% +\pgfpathlineto{\pgfqpoint{2.703603in}{2.248513in}}% +\pgfpathlineto{\pgfqpoint{2.725596in}{2.207752in}}% +\pgfpathlineto{\pgfqpoint{2.747590in}{2.160537in}}% +\pgfpathlineto{\pgfqpoint{2.769584in}{2.104212in}}% +\pgfpathlineto{\pgfqpoint{2.780580in}{2.070776in}}% +\pgfpathlineto{\pgfqpoint{2.791577in}{2.031485in}}% +\pgfpathlineto{\pgfqpoint{2.802574in}{1.981643in}}% +\pgfpathlineto{\pgfqpoint{2.813571in}{1.904418in}}% +\pgfpathlineto{\pgfqpoint{2.824567in}{1.784875in}}% +\pgfpathlineto{\pgfqpoint{2.835564in}{1.893964in}}% +\pgfpathlineto{\pgfqpoint{2.846561in}{1.916538in}}% +\pgfpathlineto{\pgfqpoint{2.857558in}{1.921394in}}% +\pgfpathlineto{\pgfqpoint{2.868554in}{1.917694in}}% +\pgfpathlineto{\pgfqpoint{2.879551in}{1.908469in}}% +\pgfpathlineto{\pgfqpoint{2.890548in}{1.894967in}}% +\pgfpathlineto{\pgfqpoint{2.901545in}{1.877653in}}% +\pgfpathlineto{\pgfqpoint{2.912541in}{1.856485in}}% +\pgfpathlineto{\pgfqpoint{2.923538in}{1.830901in}}% +\pgfpathlineto{\pgfqpoint{2.934535in}{1.799499in}}% +\pgfpathlineto{\pgfqpoint{2.945532in}{1.758900in}}% +\pgfpathlineto{\pgfqpoint{2.956528in}{1.698550in}}% +\pgfpathlineto{\pgfqpoint{2.967525in}{1.510609in}}% +\pgfpathlineto{\pgfqpoint{2.978522in}{1.653318in}}% +\pgfpathlineto{\pgfqpoint{2.989519in}{1.690179in}}% +\pgfpathlineto{\pgfqpoint{3.000515in}{1.702415in}}% +\pgfpathlineto{\pgfqpoint{3.011512in}{1.704220in}}% +\pgfpathlineto{\pgfqpoint{3.022509in}{1.699689in}}% +\pgfpathlineto{\pgfqpoint{3.033506in}{1.690462in}}% +\pgfpathlineto{\pgfqpoint{3.044503in}{1.677209in}}% +\pgfpathlineto{\pgfqpoint{3.055499in}{1.660045in}}% +\pgfpathlineto{\pgfqpoint{3.066496in}{1.638594in}}% +\pgfpathlineto{\pgfqpoint{3.077493in}{1.611777in}}% +\pgfpathlineto{\pgfqpoint{3.088490in}{1.577047in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{1.527267in}}% +\pgfpathlineto{\pgfqpoint{3.110483in}{1.424726in}}% +\pgfpathlineto{\pgfqpoint{3.121480in}{1.440718in}}% +\pgfpathlineto{\pgfqpoint{3.132477in}{1.497048in}}% +\pgfpathlineto{\pgfqpoint{3.143473in}{1.516374in}}% +\pgfpathlineto{\pgfqpoint{3.154470in}{1.522828in}}% +\pgfpathlineto{\pgfqpoint{3.165467in}{1.522056in}}% +\pgfpathlineto{\pgfqpoint{3.176464in}{1.516188in}}% +\pgfpathlineto{\pgfqpoint{3.187460in}{1.506119in}}% +\pgfpathlineto{\pgfqpoint{3.198457in}{1.492115in}}% +\pgfpathlineto{\pgfqpoint{3.209454in}{1.473957in}}% +\pgfpathlineto{\pgfqpoint{3.220451in}{1.450824in}}% +\pgfpathlineto{\pgfqpoint{3.231447in}{1.420760in}}% +\pgfpathlineto{\pgfqpoint{3.242444in}{1.378705in}}% +\pgfpathlineto{\pgfqpoint{3.264438in}{1.232393in}}% +\pgfpathlineto{\pgfqpoint{3.275434in}{1.325892in}}% +\pgfpathlineto{\pgfqpoint{3.286431in}{1.353460in}}% +\pgfpathlineto{\pgfqpoint{3.297428in}{1.364587in}}% +\pgfpathlineto{\pgfqpoint{3.308425in}{1.367348in}}% +\pgfpathlineto{\pgfqpoint{3.319422in}{1.364530in}}% +\pgfpathlineto{\pgfqpoint{3.330418in}{1.357302in}}% +\pgfpathlineto{\pgfqpoint{3.341415in}{1.346091in}}% +\pgfpathlineto{\pgfqpoint{3.352412in}{1.330824in}}% +\pgfpathlineto{\pgfqpoint{3.363409in}{1.310891in}}% +\pgfpathlineto{\pgfqpoint{3.374405in}{1.284781in}}% +\pgfpathlineto{\pgfqpoint{3.385402in}{1.248781in}}% +\pgfpathlineto{\pgfqpoint{3.396399in}{1.190708in}}% +\pgfpathlineto{\pgfqpoint{3.404004in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.410851in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.418392in}{1.170908in}}% +\pgfpathlineto{\pgfqpoint{3.429389in}{1.209179in}}% +\pgfpathlineto{\pgfqpoint{3.440386in}{1.225373in}}% +\pgfpathlineto{\pgfqpoint{3.451383in}{1.231671in}}% +\pgfpathlineto{\pgfqpoint{3.462379in}{1.231785in}}% +\pgfpathlineto{\pgfqpoint{3.473376in}{1.227222in}}% +\pgfpathlineto{\pgfqpoint{3.484373in}{1.218593in}}% +\pgfpathlineto{\pgfqpoint{3.495370in}{1.205967in}}% +\pgfpathlineto{\pgfqpoint{3.506366in}{1.188915in}}% +\pgfpathlineto{\pgfqpoint{3.517363in}{1.166267in}}% +\pgfpathlineto{\pgfqpoint{3.528360in}{1.135233in}}% +\pgfpathlineto{\pgfqpoint{3.539357in}{1.087737in}}% +\pgfpathlineto{\pgfqpoint{3.550353in}{0.974286in}}% +\pgfpathlineto{\pgfqpoint{3.572347in}{1.080614in}}% +\pgfpathlineto{\pgfqpoint{3.583344in}{1.102633in}}% +\pgfpathlineto{\pgfqpoint{3.594341in}{1.112629in}}% +\pgfpathlineto{\pgfqpoint{3.605337in}{1.115659in}}% +\pgfpathlineto{\pgfqpoint{3.616334in}{1.113676in}}% +\pgfpathlineto{\pgfqpoint{3.627331in}{1.107500in}}% +\pgfpathlineto{\pgfqpoint{3.638328in}{1.097347in}}% +\pgfpathlineto{\pgfqpoint{3.649324in}{1.082949in}}% +\pgfpathlineto{\pgfqpoint{3.660321in}{1.063407in}}% +\pgfpathlineto{\pgfqpoint{3.671318in}{1.036589in}}% +\pgfpathlineto{\pgfqpoint{3.682315in}{0.996848in}}% +\pgfpathlineto{\pgfqpoint{3.693311in}{0.920045in}}% +\pgfpathlineto{\pgfqpoint{3.704308in}{0.883523in}}% +\pgfpathlineto{\pgfqpoint{3.715305in}{0.965470in}}% +\pgfpathlineto{\pgfqpoint{3.726302in}{0.994592in}}% +\pgfpathlineto{\pgfqpoint{3.737298in}{1.008595in}}% +\pgfpathlineto{\pgfqpoint{3.748295in}{1.014611in}}% +\pgfpathlineto{\pgfqpoint{3.759292in}{1.015185in}}% +\pgfpathlineto{\pgfqpoint{3.770289in}{1.011391in}}% +\pgfpathlineto{\pgfqpoint{3.781285in}{1.003600in}}% +\pgfpathlineto{\pgfqpoint{3.792282in}{0.991693in}}% +\pgfpathlineto{\pgfqpoint{3.803279in}{0.974994in}}% +\pgfpathlineto{\pgfqpoint{3.814276in}{0.951858in}}% +\pgfpathlineto{\pgfqpoint{3.825272in}{0.918182in}}% +\pgfpathlineto{\pgfqpoint{3.836269in}{0.859769in}}% +\pgfpathlineto{\pgfqpoint{3.847266in}{0.695384in}}% +\pgfpathlineto{\pgfqpoint{3.858263in}{0.861522in}}% +\pgfpathlineto{\pgfqpoint{3.869260in}{0.899930in}}% +\pgfpathlineto{\pgfqpoint{3.880256in}{0.918438in}}% +\pgfpathlineto{\pgfqpoint{3.891253in}{0.927591in}}% +\pgfpathlineto{\pgfqpoint{3.902250in}{0.930753in}}% +\pgfpathlineto{\pgfqpoint{3.913247in}{0.929312in}}% +\pgfpathlineto{\pgfqpoint{3.924243in}{0.923815in}}% +\pgfpathlineto{\pgfqpoint{3.935240in}{0.914285in}}% +\pgfpathlineto{\pgfqpoint{3.946237in}{0.900236in}}% +\pgfpathlineto{\pgfqpoint{3.957234in}{0.880393in}}% +\pgfpathlineto{\pgfqpoint{3.968230in}{0.851695in}}% +\pgfpathlineto{\pgfqpoint{3.979227in}{0.804945in}}% +\pgfpathlineto{\pgfqpoint{3.990224in}{0.671302in}}% +\pgfpathlineto{\pgfqpoint{4.001221in}{0.765860in}}% +\pgfpathlineto{\pgfqpoint{4.012217in}{0.817600in}}% +\pgfpathlineto{\pgfqpoint{4.023214in}{0.841373in}}% +\pgfpathlineto{\pgfqpoint{4.034211in}{0.853902in}}% +\pgfpathlineto{\pgfqpoint{4.045208in}{0.859733in}}% +\pgfpathlineto{\pgfqpoint{4.056204in}{0.860658in}}% +\pgfpathlineto{\pgfqpoint{4.067201in}{0.857423in}}% +\pgfpathlineto{\pgfqpoint{4.078198in}{0.850196in}}% +\pgfpathlineto{\pgfqpoint{4.089195in}{0.838656in}}% +\pgfpathlineto{\pgfqpoint{4.100191in}{0.821822in}}% +\pgfpathlineto{\pgfqpoint{4.111188in}{0.797365in}}% +\pgfpathlineto{\pgfqpoint{4.122185in}{0.758953in}}% +\pgfpathlineto{\pgfqpoint{4.133182in}{0.676800in}}% +\pgfpathlineto{\pgfqpoint{4.144178in}{0.672700in}}% +\pgfpathlineto{\pgfqpoint{4.155175in}{0.746654in}}% +\pgfpathlineto{\pgfqpoint{4.166172in}{0.776867in}}% +\pgfpathlineto{\pgfqpoint{4.177169in}{0.793125in}}% +\pgfpathlineto{\pgfqpoint{4.188166in}{0.801761in}}% +\pgfpathlineto{\pgfqpoint{4.199162in}{0.805101in}}% +\pgfpathlineto{\pgfqpoint{4.210159in}{0.804129in}}% +\pgfpathlineto{\pgfqpoint{4.221156in}{0.799164in}}% +\pgfpathlineto{\pgfqpoint{4.232153in}{0.790038in}}% +\pgfpathlineto{\pgfqpoint{4.243149in}{0.776006in}}% +\pgfpathlineto{\pgfqpoint{4.254146in}{0.755276in}}% +\pgfpathlineto{\pgfqpoint{4.265143in}{0.723301in}}% +\pgfpathlineto{\pgfqpoint{4.276140in}{0.663359in}}% +\pgfpathlineto{\pgfqpoint{4.287136in}{0.560600in}}% +\pgfpathlineto{\pgfqpoint{4.298133in}{0.686038in}}% +\pgfpathlineto{\pgfqpoint{4.309130in}{0.724584in}}% +\pgfpathlineto{\pgfqpoint{4.320127in}{0.745077in}}% +\pgfpathlineto{\pgfqpoint{4.331123in}{0.756714in}}% +\pgfpathlineto{\pgfqpoint{4.342120in}{0.762557in}}% +\pgfpathlineto{\pgfqpoint{4.353117in}{0.763880in}}% +\pgfpathlineto{\pgfqpoint{4.364114in}{0.761169in}}% +\pgfpathlineto{\pgfqpoint{4.375110in}{0.754400in}}% +\pgfpathlineto{\pgfqpoint{4.386107in}{0.743028in}}% +\pgfpathlineto{\pgfqpoint{4.397104in}{0.725665in}}% +\pgfpathlineto{\pgfqpoint{4.408101in}{0.698944in}}% +\pgfpathlineto{\pgfqpoint{4.419097in}{0.652322in}}% +\pgfpathlineto{\pgfqpoint{4.430094in}{0.477972in}}% +\pgfpathlineto{\pgfqpoint{4.441091in}{0.634137in}}% +\pgfpathlineto{\pgfqpoint{4.452088in}{0.684334in}}% +\pgfpathlineto{\pgfqpoint{4.463085in}{0.709791in}}% +\pgfpathlineto{\pgfqpoint{4.474081in}{0.724706in}}% +\pgfpathlineto{\pgfqpoint{4.485078in}{0.733183in}}% +\pgfpathlineto{\pgfqpoint{4.496075in}{0.736867in}}% +\pgfpathlineto{\pgfqpoint{4.507072in}{0.736433in}}% +\pgfpathlineto{\pgfqpoint{4.518068in}{0.732001in}}% +\pgfpathlineto{\pgfqpoint{4.529065in}{0.723198in}}% +\pgfpathlineto{\pgfqpoint{4.540062in}{0.708952in}}% +\pgfpathlineto{\pgfqpoint{4.551059in}{0.686718in}}% +\pgfpathlineto{\pgfqpoint{4.562055in}{0.649362in}}% +\pgfpathlineto{\pgfqpoint{4.573052in}{0.559179in}}% +\pgfpathlineto{\pgfqpoint{4.584049in}{0.587464in}}% +\pgfpathlineto{\pgfqpoint{4.595046in}{0.656026in}}% +\pgfpathlineto{\pgfqpoint{4.606042in}{0.687526in}}% +\pgfpathlineto{\pgfqpoint{4.617039in}{0.706099in}}% +\pgfpathlineto{\pgfqpoint{4.628036in}{0.717395in}}% +\pgfpathlineto{\pgfqpoint{4.639033in}{0.723544in}}% +\pgfpathlineto{\pgfqpoint{4.650029in}{0.725446in}}% +\pgfpathlineto{\pgfqpoint{4.661026in}{0.723368in}}% +\pgfpathlineto{\pgfqpoint{4.672023in}{0.717094in}}% +\pgfpathlineto{\pgfqpoint{4.683020in}{0.705805in}}% +\pgfpathlineto{\pgfqpoint{4.694016in}{0.687548in}}% +\pgfpathlineto{\pgfqpoint{4.705013in}{0.657266in}}% +\pgfpathlineto{\pgfqpoint{4.727007in}{0.534402in}}% +\pgfpathlineto{\pgfqpoint{4.738004in}{0.639578in}}% +\pgfpathlineto{\pgfqpoint{4.749000in}{0.678796in}}% +\pgfpathlineto{\pgfqpoint{4.759997in}{0.701552in}}% +\pgfpathlineto{\pgfqpoint{4.770994in}{0.715918in}}% +\pgfpathlineto{\pgfqpoint{4.781991in}{0.724684in}}% +\pgfpathlineto{\pgfqpoint{4.792987in}{0.729021in}}% +\pgfpathlineto{\pgfqpoint{4.803984in}{0.729358in}}% +\pgfpathlineto{\pgfqpoint{4.814981in}{0.725625in}}% +\pgfpathlineto{\pgfqpoint{4.825978in}{0.717212in}}% +\pgfpathlineto{\pgfqpoint{4.836974in}{0.702610in}}% +\pgfpathlineto{\pgfqpoint{4.847971in}{0.678109in}}% +\pgfpathlineto{\pgfqpoint{4.858968in}{0.631528in}}% +\pgfpathlineto{\pgfqpoint{4.861012in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.861012in}{0.453273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -2898,8 +2895,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -2920,7 +2917,7 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{0.463273in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -2931,7 +2928,7 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{2.458330in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -2946,16 +2943,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.753212in}{1.516709in}}% -\pgfpathlineto{\pgfqpoint{1.470533in}{1.516709in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.493672in}{1.516709in}}{\pgfqpoint{1.493672in}{1.539848in}}% -\pgfpathlineto{\pgfqpoint{1.493672in}{2.377344in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.493672in}{2.400483in}}{\pgfqpoint{1.470533in}{2.400483in}}% -\pgfpathlineto{\pgfqpoint{0.753212in}{2.400483in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.730073in}{2.400483in}}{\pgfqpoint{0.730073in}{2.377344in}}% -\pgfpathlineto{\pgfqpoint{0.730073in}{1.539848in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.730073in}{1.516709in}}{\pgfqpoint{0.753212in}{1.516709in}}% -\pgfpathlineto{\pgfqpoint{0.753212in}{1.516709in}}% +\pgfpathmoveto{\pgfqpoint{0.579480in}{1.327933in}}% +\pgfpathlineto{\pgfqpoint{1.431363in}{1.327933in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.459141in}{1.327933in}}{\pgfqpoint{1.459141in}{1.355711in}}% +\pgfpathlineto{\pgfqpoint{1.459141in}{2.361108in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.459141in}{2.388886in}}{\pgfqpoint{1.431363in}{2.388886in}}% +\pgfpathlineto{\pgfqpoint{0.579480in}{2.388886in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.551702in}{2.388886in}}{\pgfqpoint{0.551702in}{2.361108in}}% +\pgfpathlineto{\pgfqpoint{0.551702in}{1.355711in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.551702in}{1.327933in}}{\pgfqpoint{0.579480in}{1.327933in}}% +\pgfpathlineto{\pgfqpoint{0.579480in}{1.327933in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -2966,16 +2963,16 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.776351in}{2.306797in}}% -\pgfpathlineto{\pgfqpoint{0.892045in}{2.306797in}}% -\pgfpathlineto{\pgfqpoint{1.007740in}{2.306797in}}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{2.276418in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.100295in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=2\)}% +\pgftext[x=0.996146in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=2\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -2984,16 +2981,16 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.776351in}{2.136984in}}% -\pgfpathlineto{\pgfqpoint{0.892045in}{2.136984in}}% -\pgfpathlineto{\pgfqpoint{1.007740in}{2.136984in}}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{2.072561in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{2.072561in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{2.072561in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.100295in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=4\)}% +\pgftext[x=0.996146in,y=2.023950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=4\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -3002,16 +2999,16 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.776351in}{1.967171in}}% -\pgfpathlineto{\pgfqpoint{0.892045in}{1.967171in}}% -\pgfpathlineto{\pgfqpoint{1.007740in}{1.967171in}}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{1.868704in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{1.868704in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{1.868704in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.100295in,y=1.926678in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=6\)}% +\pgftext[x=0.996146in,y=1.820092in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=6\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -3020,16 +3017,16 @@ \definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.776351in}{1.797358in}}% -\pgfpathlineto{\pgfqpoint{0.892045in}{1.797358in}}% -\pgfpathlineto{\pgfqpoint{1.007740in}{1.797358in}}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{1.664846in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{1.664846in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{1.664846in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.100295in,y=1.756865in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=8\)}% +\pgftext[x=0.996146in,y=1.616235in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=8\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -3038,16 +3035,16 @@ \definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.776351in}{1.627545in}}% -\pgfpathlineto{\pgfqpoint{0.892045in}{1.627545in}}% -\pgfpathlineto{\pgfqpoint{1.007740in}{1.627545in}}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{1.460989in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{1.460989in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{1.460989in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.100295in,y=1.587052in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=10\)}% +\pgftext[x=0.996146in,y=1.412378in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=10\)}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/buch/papers/laguerre/images/rel_error_range.pgf b/buch/papers/laguerre/images/rel_error_range.pgf index ff73501..7448afc 100644 --- a/buch/papers/laguerre/images/rel_error_range.pgf +++ b/buch/papers/laguerre/images/rel_error_range.pgf @@ -27,7 +27,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,9 +39,9 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -56,16 +56,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{4.758330in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{0.463273in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -73,8 +73,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.020038in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.020038in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{0.929865in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.929865in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -92,7 +92,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.020038in}{0.463273in}% +\pgfsys@transformshift{0.929865in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -100,10 +100,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.020038in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}4}% +\pgftext[x=0.929865in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}4}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -111,8 +111,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.206325in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.206325in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{1.825079in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.825079in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -130,7 +130,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.206325in}{0.463273in}% +\pgfsys@transformshift{1.825079in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -138,10 +138,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.206325in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}2}% +\pgftext[x=1.825079in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}2}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -149,8 +149,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.392612in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.392612in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{2.720294in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.720294in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -168,7 +168,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.392612in}{0.463273in}% +\pgfsys@transformshift{2.720294in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -176,10 +176,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.392612in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\pgftext[x=2.720294in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -187,8 +187,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.578899in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.578899in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{3.615508in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.615508in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -206,7 +206,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.578899in}{0.463273in}% +\pgfsys@transformshift{3.615508in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -214,10 +214,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.578899in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\pgftext[x=3.615508in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -225,8 +225,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.765187in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{5.765187in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{4.510723in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.510723in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -244,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{5.765187in}{0.463273in}% +\pgfsys@transformshift{4.510723in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -252,16 +252,176 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.765187in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\pgftext[x=4.510723in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.482257in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.377472in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.377472in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.377472in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.272687in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.272687in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.272687in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.167901in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.167901in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.167901in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.063116in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.063116in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.063116in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.392612in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\pgftext[x=2.720294in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -269,8 +429,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.756214in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{1.756214in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -288,7 +448,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.756214in}% +\pgfsys@transformshift{0.482257in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -296,10 +456,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=1.703453in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-8}}\)}% +\pgftext[x=0.041670in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -307,8 +467,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.870428in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.870428in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -316,22 +476,28 @@ \pgfsetroundjoin% \definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% \pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% +\pgfsetlinewidth{0.803000pt}% \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% \pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.463273in}% +\pgfsys@transformshift{0.482257in}{0.870428in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.097033in, y=0.817666in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -339,8 +505,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.803361in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{0.803361in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.277582in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.277582in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -348,22 +514,28 @@ \pgfsetroundjoin% \definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% \pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% +\pgfsetlinewidth{0.803000pt}% \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% \pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.803361in}% +\pgfsys@transformshift{0.482257in}{1.277582in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.097033in, y=1.224821in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -371,8 +543,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.090902in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{1.090902in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.684737in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.684737in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -380,22 +552,28 @@ \pgfsetroundjoin% \definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% \pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% +\pgfsetlinewidth{0.803000pt}% \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% \pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.090902in}% +\pgfsys@transformshift{0.482257in}{1.684737in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.097033in, y=1.631975in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -403,8 +581,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.339980in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{1.339980in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{2.091891in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.091891in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -412,22 +590,28 @@ \pgfsetroundjoin% \definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% \pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% +\pgfsetlinewidth{0.803000pt}% \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% \pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.339980in}% +\pgfsys@transformshift{0.482257in}{2.091891in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.097033in, y=2.039129in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -435,8 +619,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.559683in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{1.559683in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.666851in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.666851in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -454,12 +638,18 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.559683in}% +\pgfsys@transformshift{0.482257in}{0.666851in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.063892in, y=0.614089in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-10}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -467,8 +657,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{3.049155in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{3.049155in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.074005in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.074005in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -486,12 +676,18 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{3.049155in}% +\pgfsys@transformshift{0.482257in}{1.074005in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.119255in, y=1.021243in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-8}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -499,8 +695,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{3.805477in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{3.805477in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.481159in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.481159in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -518,12 +714,18 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{3.805477in}% +\pgfsys@transformshift{0.482257in}{1.481159in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.119255in, y=1.428398in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-6}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -531,8 +733,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{4.342096in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.342096in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.888314in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.888314in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -550,12 +752,18 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{4.342096in}% +\pgfsys@transformshift{0.482257in}{1.888314in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.119255in, y=1.835552in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-4}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -563,8 +771,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{4.758330in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{2.295468in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.295468in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -582,218 +790,1781 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{4.758330in}% +\pgfsys@transformshift{0.482257in}{2.295468in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.119255in, y=2.242707in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% +\pgfsetlinewidth{1.505625pt}% \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.458685in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.486507in}{1.638360in}}% -\pgfpathlineto{\pgfqpoint{0.516313in}{2.356782in}}% -\pgfpathlineto{\pgfqpoint{0.546120in}{2.840564in}}% -\pgfpathlineto{\pgfqpoint{0.575926in}{3.188428in}}% -\pgfpathlineto{\pgfqpoint{0.605732in}{3.443795in}}% -\pgfpathlineto{\pgfqpoint{0.635538in}{3.629171in}}% -\pgfpathlineto{\pgfqpoint{0.665344in}{3.757206in}}% -\pgfpathlineto{\pgfqpoint{0.695151in}{3.835102in}}% -\pgfpathlineto{\pgfqpoint{0.724957in}{3.866571in}}% -\pgfpathlineto{\pgfqpoint{0.754763in}{3.852698in}}% -\pgfpathlineto{\pgfqpoint{0.784569in}{3.776490in}}% -\pgfpathlineto{\pgfqpoint{0.814375in}{3.639548in}}% -\pgfpathlineto{\pgfqpoint{0.844182in}{3.444211in}}% -\pgfpathlineto{\pgfqpoint{0.873988in}{3.177116in}}% -\pgfpathlineto{\pgfqpoint{0.903794in}{2.814351in}}% -\pgfpathlineto{\pgfqpoint{0.933600in}{2.309221in}}% -\pgfpathlineto{\pgfqpoint{0.963406in}{1.553036in}}% -\pgfpathlineto{\pgfqpoint{0.987233in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.052213in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.052825in}{0.544877in}}% -\pgfpathlineto{\pgfqpoint{1.082631in}{1.726239in}}% -\pgfpathlineto{\pgfqpoint{1.112437in}{2.413343in}}% -\pgfpathlineto{\pgfqpoint{1.142244in}{2.880497in}}% -\pgfpathlineto{\pgfqpoint{1.172050in}{3.217645in}}% -\pgfpathlineto{\pgfqpoint{1.201856in}{3.465216in}}% -\pgfpathlineto{\pgfqpoint{1.231662in}{3.644402in}}% -\pgfpathlineto{\pgfqpoint{1.261469in}{3.767168in}}% -\pgfpathlineto{\pgfqpoint{1.291275in}{3.840302in}}% -\pgfpathlineto{\pgfqpoint{1.321081in}{3.867227in}}% -\pgfpathlineto{\pgfqpoint{1.350887in}{3.848787in}}% -\pgfpathlineto{\pgfqpoint{1.380693in}{3.765173in}}% -\pgfpathlineto{\pgfqpoint{1.410500in}{3.622808in}}% -\pgfpathlineto{\pgfqpoint{1.440306in}{3.421020in}}% -\pgfpathlineto{\pgfqpoint{1.470112in}{3.145674in}}% -\pgfpathlineto{\pgfqpoint{1.499918in}{2.771335in}}% -\pgfpathlineto{\pgfqpoint{1.529724in}{2.247687in}}% -\pgfpathlineto{\pgfqpoint{1.559531in}{1.454638in}}% -\pgfpathlineto{\pgfqpoint{1.579481in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.646693in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.648949in}{0.705347in}}% -\pgfpathlineto{\pgfqpoint{1.678755in}{1.809737in}}% -\pgfpathlineto{\pgfqpoint{1.708562in}{2.467810in}}% -\pgfpathlineto{\pgfqpoint{1.738368in}{2.919164in}}% -\pgfpathlineto{\pgfqpoint{1.768174in}{3.245981in}}% -\pgfpathlineto{\pgfqpoint{1.797980in}{3.485961in}}% -\pgfpathlineto{\pgfqpoint{1.827786in}{3.659073in}}% -\pgfpathlineto{\pgfqpoint{1.857593in}{3.776635in}}% -\pgfpathlineto{\pgfqpoint{1.887399in}{3.845041in}}% -\pgfpathlineto{\pgfqpoint{1.917205in}{3.867431in}}% -\pgfpathlineto{\pgfqpoint{1.947011in}{3.844410in}}% -\pgfpathlineto{\pgfqpoint{1.976818in}{3.753346in}}% -\pgfpathlineto{\pgfqpoint{2.006624in}{3.605478in}}% -\pgfpathlineto{\pgfqpoint{2.036430in}{3.397101in}}% -\pgfpathlineto{\pgfqpoint{2.066236in}{3.113261in}}% -\pgfpathlineto{\pgfqpoint{2.096042in}{2.726873in}}% -\pgfpathlineto{\pgfqpoint{2.125849in}{2.183623in}}% -\pgfpathlineto{\pgfqpoint{2.155655in}{1.350328in}}% -\pgfpathlineto{\pgfqpoint{2.171959in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.240700in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.245073in}{0.852675in}}% -\pgfpathlineto{\pgfqpoint{2.274880in}{1.889231in}}% -\pgfpathlineto{\pgfqpoint{2.304686in}{2.520306in}}% -\pgfpathlineto{\pgfqpoint{2.334492in}{2.956617in}}% -\pgfpathlineto{\pgfqpoint{2.364298in}{3.273462in}}% -\pgfpathlineto{\pgfqpoint{2.394104in}{3.506044in}}% -\pgfpathlineto{\pgfqpoint{2.423911in}{3.673193in}}% -\pgfpathlineto{\pgfqpoint{2.453717in}{3.785614in}}% -\pgfpathlineto{\pgfqpoint{2.483523in}{3.849322in}}% -\pgfpathlineto{\pgfqpoint{2.513329in}{3.867183in}}% -\pgfpathlineto{\pgfqpoint{2.543135in}{3.839563in}}% -\pgfpathlineto{\pgfqpoint{2.572942in}{3.741003in}}% -\pgfpathlineto{\pgfqpoint{2.602748in}{3.587548in}}% -\pgfpathlineto{\pgfqpoint{2.632554in}{3.372437in}}% -\pgfpathlineto{\pgfqpoint{2.662360in}{3.079842in}}% -\pgfpathlineto{\pgfqpoint{2.692166in}{2.680894in}}% -\pgfpathlineto{\pgfqpoint{2.721973in}{2.116850in}}% -\pgfpathlineto{\pgfqpoint{2.751779in}{1.239409in}}% -\pgfpathlineto{\pgfqpoint{2.764683in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.834324in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.841198in}{0.988791in}}% -\pgfpathlineto{\pgfqpoint{2.871004in}{1.965050in}}% -\pgfpathlineto{\pgfqpoint{2.900810in}{2.570937in}}% -\pgfpathlineto{\pgfqpoint{2.930616in}{2.992903in}}% -\pgfpathlineto{\pgfqpoint{2.960422in}{3.300113in}}% -\pgfpathlineto{\pgfqpoint{2.990229in}{3.525479in}}% -\pgfpathlineto{\pgfqpoint{3.020035in}{3.686769in}}% -\pgfpathlineto{\pgfqpoint{3.049841in}{3.794108in}}% -\pgfpathlineto{\pgfqpoint{3.079647in}{3.853146in}}% -\pgfpathlineto{\pgfqpoint{3.109453in}{3.866482in}}% -\pgfpathlineto{\pgfqpoint{3.139260in}{3.834242in}}% -\pgfpathlineto{\pgfqpoint{3.169066in}{3.728136in}}% -\pgfpathlineto{\pgfqpoint{3.198872in}{3.569007in}}% -\pgfpathlineto{\pgfqpoint{3.228678in}{3.347009in}}% -\pgfpathlineto{\pgfqpoint{3.258484in}{3.045381in}}% -\pgfpathlineto{\pgfqpoint{3.288291in}{2.633323in}}% -\pgfpathlineto{\pgfqpoint{3.318097in}{2.047168in}}% -\pgfpathlineto{\pgfqpoint{3.347903in}{1.121044in}}% -\pgfpathlineto{\pgfqpoint{3.357674in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.427617in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.437322in}{1.115220in}}% -\pgfpathlineto{\pgfqpoint{3.467128in}{2.037481in}}% -\pgfpathlineto{\pgfqpoint{3.496934in}{2.619803in}}% -\pgfpathlineto{\pgfqpoint{3.526740in}{3.028068in}}% -\pgfpathlineto{\pgfqpoint{3.556547in}{3.325956in}}% -\pgfpathlineto{\pgfqpoint{3.586353in}{3.544278in}}% -\pgfpathlineto{\pgfqpoint{3.616159in}{3.699808in}}% -\pgfpathlineto{\pgfqpoint{3.645965in}{3.802122in}}% -\pgfpathlineto{\pgfqpoint{3.675771in}{3.856516in}}% -\pgfpathlineto{\pgfqpoint{3.705578in}{3.865327in}}% -\pgfpathlineto{\pgfqpoint{3.735384in}{3.828445in}}% -\pgfpathlineto{\pgfqpoint{3.765190in}{3.714740in}}% -\pgfpathlineto{\pgfqpoint{3.794996in}{3.549843in}}% -\pgfpathlineto{\pgfqpoint{3.824802in}{3.320794in}}% -\pgfpathlineto{\pgfqpoint{3.854609in}{3.009839in}}% -\pgfpathlineto{\pgfqpoint{3.884415in}{2.584076in}}% -\pgfpathlineto{\pgfqpoint{3.914221in}{1.974352in}}% -\pgfpathlineto{\pgfqpoint{3.944027in}{0.994227in}}% -\pgfpathlineto{\pgfqpoint{3.950959in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{4.020616in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.033446in}{1.233198in}}% -\pgfpathlineto{\pgfqpoint{4.063252in}{2.106778in}}% -\pgfpathlineto{\pgfqpoint{4.093058in}{2.666993in}}% -\pgfpathlineto{\pgfqpoint{4.122864in}{3.062152in}}% -\pgfpathlineto{\pgfqpoint{4.152671in}{3.351014in}}% -\pgfpathlineto{\pgfqpoint{4.182477in}{3.562456in}}% -\pgfpathlineto{\pgfqpoint{4.212283in}{3.712320in}}% -\pgfpathlineto{\pgfqpoint{4.242089in}{3.809658in}}% -\pgfpathlineto{\pgfqpoint{4.271895in}{3.859431in}}% -\pgfpathlineto{\pgfqpoint{4.301702in}{3.863718in}}% -\pgfpathlineto{\pgfqpoint{4.331508in}{3.816759in}}% -\pgfpathlineto{\pgfqpoint{4.361314in}{3.700807in}}% -\pgfpathlineto{\pgfqpoint{4.391120in}{3.530043in}}% -\pgfpathlineto{\pgfqpoint{4.420927in}{3.293772in}}% -\pgfpathlineto{\pgfqpoint{4.450733in}{2.973175in}}% -\pgfpathlineto{\pgfqpoint{4.480539in}{2.533063in}}% -\pgfpathlineto{\pgfqpoint{4.510345in}{1.898147in}}% -\pgfpathlineto{\pgfqpoint{4.540151in}{0.857724in}}% -\pgfpathlineto{\pgfqpoint{4.544574in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{4.613347in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.629570in}{1.343729in}}% -\pgfpathlineto{\pgfqpoint{4.659376in}{2.173166in}}% -\pgfpathlineto{\pgfqpoint{4.689182in}{2.712591in}}% -\pgfpathlineto{\pgfqpoint{4.718989in}{3.095196in}}% -\pgfpathlineto{\pgfqpoint{4.748795in}{3.375308in}}% -\pgfpathlineto{\pgfqpoint{4.778601in}{3.580023in}}% -\pgfpathlineto{\pgfqpoint{4.808407in}{3.724308in}}% -\pgfpathlineto{\pgfqpoint{4.838213in}{3.816722in}}% -\pgfpathlineto{\pgfqpoint{4.868020in}{3.861895in}}% -\pgfpathlineto{\pgfqpoint{4.897826in}{3.861652in}}% -\pgfpathlineto{\pgfqpoint{4.927632in}{3.807431in}}% -\pgfpathlineto{\pgfqpoint{4.957438in}{3.686330in}}% -\pgfpathlineto{\pgfqpoint{4.987244in}{3.509594in}}% -\pgfpathlineto{\pgfqpoint{5.017051in}{3.265918in}}% -\pgfpathlineto{\pgfqpoint{5.046857in}{2.935344in}}% -\pgfpathlineto{\pgfqpoint{5.076663in}{2.480185in}}% -\pgfpathlineto{\pgfqpoint{5.106469in}{1.818267in}}% -\pgfpathlineto{\pgfqpoint{5.136275in}{0.710010in}}% -\pgfpathlineto{\pgfqpoint{5.138571in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{5.205831in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{5.225694in}{1.447652in}}% -\pgfpathlineto{\pgfqpoint{5.255500in}{2.236847in}}% -\pgfpathlineto{\pgfqpoint{5.285307in}{2.756672in}}% -\pgfpathlineto{\pgfqpoint{5.315113in}{3.127233in}}% -\pgfpathlineto{\pgfqpoint{5.344919in}{3.398857in}}% -\pgfpathlineto{\pgfqpoint{5.374725in}{3.596991in}}% -\pgfpathlineto{\pgfqpoint{5.404531in}{3.735782in}}% -\pgfpathlineto{\pgfqpoint{5.434338in}{3.823315in}}% -\pgfpathlineto{\pgfqpoint{5.464144in}{3.863905in}}% -\pgfpathlineto{\pgfqpoint{5.493950in}{3.859128in}}% -\pgfpathlineto{\pgfqpoint{5.523756in}{3.797614in}}% -\pgfpathlineto{\pgfqpoint{5.553562in}{3.671300in}}% -\pgfpathlineto{\pgfqpoint{5.583369in}{3.488483in}}% -\pgfpathlineto{\pgfqpoint{5.613175in}{3.237209in}}% -\pgfpathlineto{\pgfqpoint{5.642981in}{2.896299in}}% -\pgfpathlineto{\pgfqpoint{5.672787in}{2.425334in}}% -\pgfpathlineto{\pgfqpoint{5.702593in}{1.734383in}}% -\pgfpathlineto{\pgfqpoint{5.732400in}{0.549151in}}% -\pgfpathlineto{\pgfqpoint{5.733040in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{5.798084in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{5.821818in}{1.545664in}}% -\pgfpathlineto{\pgfqpoint{5.851624in}{2.297997in}}% -\pgfpathlineto{\pgfqpoint{5.881431in}{2.799308in}}% -\pgfpathlineto{\pgfqpoint{5.911237in}{3.158300in}}% -\pgfpathlineto{\pgfqpoint{5.941043in}{3.421680in}}% -\pgfpathlineto{\pgfqpoint{5.970849in}{3.613370in}}% -\pgfpathlineto{\pgfqpoint{6.000656in}{3.746746in}}% -\pgfpathlineto{\pgfqpoint{6.030462in}{3.829441in}}% -\pgfpathlineto{\pgfqpoint{6.060268in}{3.865464in}}% -\pgfpathlineto{\pgfqpoint{6.090074in}{3.856144in}}% -\pgfpathlineto{\pgfqpoint{6.119880in}{3.787302in}}% -\pgfpathlineto{\pgfqpoint{6.149687in}{3.655709in}}% -\pgfpathlineto{\pgfqpoint{6.179493in}{3.466694in}}% -\pgfpathlineto{\pgfqpoint{6.209299in}{3.207618in}}% -\pgfpathlineto{\pgfqpoint{6.239105in}{2.855986in}}% -\pgfpathlineto{\pgfqpoint{6.268911in}{2.368390in}}% -\pgfpathlineto{\pgfqpoint{6.298718in}{1.646118in}}% -\pgfpathlineto{\pgfqpoint{6.326637in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{6.326637in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{1.007279in}}% +\pgfpathlineto{\pgfqpoint{0.486738in}{2.025203in}}% +\pgfpathlineto{\pgfqpoint{0.491219in}{2.086414in}}% +\pgfpathlineto{\pgfqpoint{0.495699in}{2.122169in}}% +\pgfpathlineto{\pgfqpoint{0.504660in}{2.167085in}}% +\pgfpathlineto{\pgfqpoint{0.513621in}{2.196503in}}% +\pgfpathlineto{\pgfqpoint{0.522583in}{2.218308in}}% +\pgfpathlineto{\pgfqpoint{0.531544in}{2.235552in}}% +\pgfpathlineto{\pgfqpoint{0.544985in}{2.255967in}}% +\pgfpathlineto{\pgfqpoint{0.558427in}{2.272033in}}% +\pgfpathlineto{\pgfqpoint{0.571869in}{2.285104in}}% +\pgfpathlineto{\pgfqpoint{0.589791in}{2.299176in}}% +\pgfpathlineto{\pgfqpoint{0.607713in}{2.310379in}}% +\pgfpathlineto{\pgfqpoint{0.630116in}{2.321308in}}% +\pgfpathlineto{\pgfqpoint{0.652519in}{2.329506in}}% +\pgfpathlineto{\pgfqpoint{0.674921in}{2.335409in}}% +\pgfpathlineto{\pgfqpoint{0.697324in}{2.339262in}}% +\pgfpathlineto{\pgfqpoint{0.719727in}{2.341173in}}% +\pgfpathlineto{\pgfqpoint{0.733169in}{2.338997in}}% +\pgfpathlineto{\pgfqpoint{0.755571in}{2.333322in}}% +\pgfpathlineto{\pgfqpoint{0.777974in}{2.325350in}}% +\pgfpathlineto{\pgfqpoint{0.800377in}{2.314693in}}% +\pgfpathlineto{\pgfqpoint{0.818299in}{2.303794in}}% +\pgfpathlineto{\pgfqpoint{0.836221in}{2.290178in}}% +\pgfpathlineto{\pgfqpoint{0.849663in}{2.277625in}}% +\pgfpathlineto{\pgfqpoint{0.863105in}{2.262345in}}% +\pgfpathlineto{\pgfqpoint{0.876546in}{2.243203in}}% +\pgfpathlineto{\pgfqpoint{0.885507in}{2.227316in}}% +\pgfpathlineto{\pgfqpoint{0.894468in}{2.207657in}}% +\pgfpathlineto{\pgfqpoint{0.903430in}{2.182057in}}% +\pgfpathlineto{\pgfqpoint{0.912391in}{2.145580in}}% +\pgfpathlineto{\pgfqpoint{0.916871in}{2.119417in}}% +\pgfpathlineto{\pgfqpoint{0.921352in}{2.082040in}}% +\pgfpathlineto{\pgfqpoint{0.925832in}{2.015965in}}% +\pgfpathlineto{\pgfqpoint{0.930313in}{1.821679in}}% +\pgfpathlineto{\pgfqpoint{0.934793in}{2.033623in}}% +\pgfpathlineto{\pgfqpoint{0.939274in}{2.090719in}}% +\pgfpathlineto{\pgfqpoint{0.943755in}{2.125058in}}% +\pgfpathlineto{\pgfqpoint{0.952716in}{2.168821in}}% +\pgfpathlineto{\pgfqpoint{0.961677in}{2.197738in}}% +\pgfpathlineto{\pgfqpoint{0.970638in}{2.219262in}}% +\pgfpathlineto{\pgfqpoint{0.979599in}{2.236325in}}% +\pgfpathlineto{\pgfqpoint{0.993041in}{2.256563in}}% +\pgfpathlineto{\pgfqpoint{1.006482in}{2.272512in}}% +\pgfpathlineto{\pgfqpoint{1.019924in}{2.285498in}}% +\pgfpathlineto{\pgfqpoint{1.037846in}{2.299487in}}% +\pgfpathlineto{\pgfqpoint{1.055768in}{2.310628in}}% +\pgfpathlineto{\pgfqpoint{1.078171in}{2.321497in}}% +\pgfpathlineto{\pgfqpoint{1.100574in}{2.329646in}}% +\pgfpathlineto{\pgfqpoint{1.122977in}{2.335506in}}% +\pgfpathlineto{\pgfqpoint{1.145379in}{2.339319in}}% +\pgfpathlineto{\pgfqpoint{1.167782in}{2.341191in}}% +\pgfpathlineto{\pgfqpoint{1.185704in}{2.337932in}}% +\pgfpathlineto{\pgfqpoint{1.208107in}{2.331775in}}% +\pgfpathlineto{\pgfqpoint{1.230510in}{2.323254in}}% +\pgfpathlineto{\pgfqpoint{1.252913in}{2.311928in}}% +\pgfpathlineto{\pgfqpoint{1.270835in}{2.300352in}}% +\pgfpathlineto{\pgfqpoint{1.288757in}{2.285843in}}% +\pgfpathlineto{\pgfqpoint{1.302199in}{2.272386in}}% +\pgfpathlineto{\pgfqpoint{1.315640in}{2.255857in}}% +\pgfpathlineto{\pgfqpoint{1.329082in}{2.234848in}}% +\pgfpathlineto{\pgfqpoint{1.338043in}{2.217074in}}% +\pgfpathlineto{\pgfqpoint{1.347004in}{2.194526in}}% +\pgfpathlineto{\pgfqpoint{1.355965in}{2.163893in}}% +\pgfpathlineto{\pgfqpoint{1.360446in}{2.143288in}}% +\pgfpathlineto{\pgfqpoint{1.364926in}{2.116316in}}% +\pgfpathlineto{\pgfqpoint{1.369407in}{2.077260in}}% +\pgfpathlineto{\pgfqpoint{1.373888in}{2.005550in}}% +\pgfpathlineto{\pgfqpoint{1.378368in}{1.882953in}}% +\pgfpathlineto{\pgfqpoint{1.382849in}{2.041310in}}% +\pgfpathlineto{\pgfqpoint{1.387329in}{2.094823in}}% +\pgfpathlineto{\pgfqpoint{1.391810in}{2.127854in}}% +\pgfpathlineto{\pgfqpoint{1.400771in}{2.170523in}}% +\pgfpathlineto{\pgfqpoint{1.409732in}{2.198956in}}% +\pgfpathlineto{\pgfqpoint{1.418693in}{2.220205in}}% +\pgfpathlineto{\pgfqpoint{1.427654in}{2.237090in}}% +\pgfpathlineto{\pgfqpoint{1.441096in}{2.257154in}}% +\pgfpathlineto{\pgfqpoint{1.454538in}{2.272987in}}% +\pgfpathlineto{\pgfqpoint{1.467979in}{2.285890in}}% +\pgfpathlineto{\pgfqpoint{1.485901in}{2.299797in}}% +\pgfpathlineto{\pgfqpoint{1.503824in}{2.310876in}}% +\pgfpathlineto{\pgfqpoint{1.526226in}{2.321685in}}% +\pgfpathlineto{\pgfqpoint{1.548629in}{2.329784in}}% +\pgfpathlineto{\pgfqpoint{1.571032in}{2.335602in}}% +\pgfpathlineto{\pgfqpoint{1.593435in}{2.339375in}}% +\pgfpathlineto{\pgfqpoint{1.615837in}{2.341209in}}% +\pgfpathlineto{\pgfqpoint{1.638240in}{2.336766in}}% +\pgfpathlineto{\pgfqpoint{1.660643in}{2.330115in}}% +\pgfpathlineto{\pgfqpoint{1.683046in}{2.321023in}}% +\pgfpathlineto{\pgfqpoint{1.700968in}{2.311669in}}% +\pgfpathlineto{\pgfqpoint{1.718890in}{2.300028in}}% +\pgfpathlineto{\pgfqpoint{1.736812in}{2.285434in}}% +\pgfpathlineto{\pgfqpoint{1.750254in}{2.271890in}}% +\pgfpathlineto{\pgfqpoint{1.763696in}{2.255240in}}% +\pgfpathlineto{\pgfqpoint{1.777137in}{2.234044in}}% +\pgfpathlineto{\pgfqpoint{1.786098in}{2.216078in}}% +\pgfpathlineto{\pgfqpoint{1.795060in}{2.193226in}}% +\pgfpathlineto{\pgfqpoint{1.804021in}{2.162037in}}% +\pgfpathlineto{\pgfqpoint{1.808501in}{2.140934in}}% +\pgfpathlineto{\pgfqpoint{1.812982in}{2.113103in}}% +\pgfpathlineto{\pgfqpoint{1.817462in}{2.072206in}}% +\pgfpathlineto{\pgfqpoint{1.826423in}{1.918795in}}% +\pgfpathlineto{\pgfqpoint{1.830904in}{2.048380in}}% +\pgfpathlineto{\pgfqpoint{1.835385in}{2.098745in}}% +\pgfpathlineto{\pgfqpoint{1.839865in}{2.130564in}}% +\pgfpathlineto{\pgfqpoint{1.848826in}{2.172192in}}% +\pgfpathlineto{\pgfqpoint{1.857787in}{2.200156in}}% +\pgfpathlineto{\pgfqpoint{1.866748in}{2.221138in}}% +\pgfpathlineto{\pgfqpoint{1.880190in}{2.245059in}}% +\pgfpathlineto{\pgfqpoint{1.893632in}{2.263365in}}% +\pgfpathlineto{\pgfqpoint{1.907073in}{2.278010in}}% +\pgfpathlineto{\pgfqpoint{1.924996in}{2.293596in}}% +\pgfpathlineto{\pgfqpoint{1.942918in}{2.305919in}}% +\pgfpathlineto{\pgfqpoint{1.960840in}{2.315784in}}% +\pgfpathlineto{\pgfqpoint{1.983243in}{2.325387in}}% +\pgfpathlineto{\pgfqpoint{2.005646in}{2.332488in}}% +\pgfpathlineto{\pgfqpoint{2.028048in}{2.337427in}}% +\pgfpathlineto{\pgfqpoint{2.050451in}{2.340380in}}% +\pgfpathlineto{\pgfqpoint{2.063893in}{2.341226in}}% +\pgfpathlineto{\pgfqpoint{2.090776in}{2.335496in}}% +\pgfpathlineto{\pgfqpoint{2.113179in}{2.328338in}}% +\pgfpathlineto{\pgfqpoint{2.135582in}{2.318651in}}% +\pgfpathlineto{\pgfqpoint{2.153504in}{2.308718in}}% +\pgfpathlineto{\pgfqpoint{2.171426in}{2.296346in}}% +\pgfpathlineto{\pgfqpoint{2.189348in}{2.280768in}}% +\pgfpathlineto{\pgfqpoint{2.202790in}{2.266203in}}% +\pgfpathlineto{\pgfqpoint{2.216232in}{2.248103in}}% +\pgfpathlineto{\pgfqpoint{2.225193in}{2.233233in}}% +\pgfpathlineto{\pgfqpoint{2.234154in}{2.215070in}}% +\pgfpathlineto{\pgfqpoint{2.243115in}{2.191907in}}% +\pgfpathlineto{\pgfqpoint{2.252076in}{2.160142in}}% +\pgfpathlineto{\pgfqpoint{2.256557in}{2.138515in}}% +\pgfpathlineto{\pgfqpoint{2.261037in}{2.109768in}}% +\pgfpathlineto{\pgfqpoint{2.265518in}{2.066846in}}% +\pgfpathlineto{\pgfqpoint{2.269998in}{1.980110in}}% +\pgfpathlineto{\pgfqpoint{2.274479in}{1.944224in}}% +\pgfpathlineto{\pgfqpoint{2.278959in}{2.054925in}}% +\pgfpathlineto{\pgfqpoint{2.283440in}{2.102498in}}% +\pgfpathlineto{\pgfqpoint{2.287920in}{2.133192in}}% +\pgfpathlineto{\pgfqpoint{2.296882in}{2.173830in}}% +\pgfpathlineto{\pgfqpoint{2.305843in}{2.201340in}}% +\pgfpathlineto{\pgfqpoint{2.314804in}{2.222060in}}% +\pgfpathlineto{\pgfqpoint{2.328245in}{2.245745in}}% +\pgfpathlineto{\pgfqpoint{2.341687in}{2.263905in}}% +\pgfpathlineto{\pgfqpoint{2.355129in}{2.278449in}}% +\pgfpathlineto{\pgfqpoint{2.373051in}{2.293939in}}% +\pgfpathlineto{\pgfqpoint{2.390973in}{2.306193in}}% +\pgfpathlineto{\pgfqpoint{2.408895in}{2.316004in}}% +\pgfpathlineto{\pgfqpoint{2.431298in}{2.325552in}}% +\pgfpathlineto{\pgfqpoint{2.453701in}{2.332608in}}% +\pgfpathlineto{\pgfqpoint{2.476104in}{2.337505in}}% +\pgfpathlineto{\pgfqpoint{2.498506in}{2.340419in}}% +\pgfpathlineto{\pgfqpoint{2.511948in}{2.341242in}}% +\pgfpathlineto{\pgfqpoint{2.543312in}{2.334119in}}% +\pgfpathlineto{\pgfqpoint{2.565715in}{2.326438in}}% +\pgfpathlineto{\pgfqpoint{2.588117in}{2.316132in}}% +\pgfpathlineto{\pgfqpoint{2.606040in}{2.305584in}}% +\pgfpathlineto{\pgfqpoint{2.623962in}{2.292425in}}% +\pgfpathlineto{\pgfqpoint{2.637404in}{2.280328in}}% +\pgfpathlineto{\pgfqpoint{2.650845in}{2.265664in}}% +\pgfpathlineto{\pgfqpoint{2.664287in}{2.247421in}}% +\pgfpathlineto{\pgfqpoint{2.673248in}{2.232413in}}% +\pgfpathlineto{\pgfqpoint{2.682209in}{2.214050in}}% +\pgfpathlineto{\pgfqpoint{2.691170in}{2.190566in}}% +\pgfpathlineto{\pgfqpoint{2.700131in}{2.158204in}}% +\pgfpathlineto{\pgfqpoint{2.704612in}{2.136028in}}% +\pgfpathlineto{\pgfqpoint{2.709092in}{2.106301in}}% +\pgfpathlineto{\pgfqpoint{2.713573in}{2.061139in}}% +\pgfpathlineto{\pgfqpoint{2.718053in}{1.963988in}}% +\pgfpathlineto{\pgfqpoint{2.722534in}{1.963948in}}% +\pgfpathlineto{\pgfqpoint{2.727015in}{2.061017in}}% +\pgfpathlineto{\pgfqpoint{2.731495in}{2.106098in}}% +\pgfpathlineto{\pgfqpoint{2.735976in}{2.135744in}}% +\pgfpathlineto{\pgfqpoint{2.744937in}{2.175437in}}% +\pgfpathlineto{\pgfqpoint{2.753898in}{2.202507in}}% +\pgfpathlineto{\pgfqpoint{2.762859in}{2.222972in}}% +\pgfpathlineto{\pgfqpoint{2.776301in}{2.246425in}}% +\pgfpathlineto{\pgfqpoint{2.789742in}{2.264441in}}% +\pgfpathlineto{\pgfqpoint{2.803184in}{2.278885in}}% +\pgfpathlineto{\pgfqpoint{2.821106in}{2.294281in}}% +\pgfpathlineto{\pgfqpoint{2.839028in}{2.306466in}}% +\pgfpathlineto{\pgfqpoint{2.856951in}{2.316223in}}% +\pgfpathlineto{\pgfqpoint{2.879353in}{2.325716in}}% +\pgfpathlineto{\pgfqpoint{2.901756in}{2.332726in}}% +\pgfpathlineto{\pgfqpoint{2.924159in}{2.337582in}}% +\pgfpathlineto{\pgfqpoint{2.946562in}{2.340458in}}% +\pgfpathlineto{\pgfqpoint{2.960003in}{2.341258in}}% +\pgfpathlineto{\pgfqpoint{2.995848in}{2.332633in}}% +\pgfpathlineto{\pgfqpoint{3.018251in}{2.324413in}}% +\pgfpathlineto{\pgfqpoint{3.040653in}{2.313457in}}% +\pgfpathlineto{\pgfqpoint{3.058576in}{2.302255in}}% +\pgfpathlineto{\pgfqpoint{3.076498in}{2.288243in}}% +\pgfpathlineto{\pgfqpoint{3.089939in}{2.275291in}}% +\pgfpathlineto{\pgfqpoint{3.103381in}{2.259464in}}% +\pgfpathlineto{\pgfqpoint{3.116823in}{2.239512in}}% +\pgfpathlineto{\pgfqpoint{3.125784in}{2.222815in}}% +\pgfpathlineto{\pgfqpoint{3.134745in}{2.201937in}}% +\pgfpathlineto{\pgfqpoint{3.143706in}{2.174267in}}% +\pgfpathlineto{\pgfqpoint{3.148187in}{2.156222in}}% +\pgfpathlineto{\pgfqpoint{3.152667in}{2.133468in}}% +\pgfpathlineto{\pgfqpoint{3.157148in}{2.102693in}}% +\pgfpathlineto{\pgfqpoint{3.161628in}{2.055038in}}% +\pgfpathlineto{\pgfqpoint{3.166109in}{1.944257in}}% +\pgfpathlineto{\pgfqpoint{3.170589in}{1.980062in}}% +\pgfpathlineto{\pgfqpoint{3.175070in}{2.066716in}}% +\pgfpathlineto{\pgfqpoint{3.179550in}{2.109557in}}% +\pgfpathlineto{\pgfqpoint{3.188512in}{2.159769in}}% +\pgfpathlineto{\pgfqpoint{3.197473in}{2.191373in}}% +\pgfpathlineto{\pgfqpoint{3.206434in}{2.214378in}}% +\pgfpathlineto{\pgfqpoint{3.215395in}{2.232383in}}% +\pgfpathlineto{\pgfqpoint{3.228837in}{2.253536in}}% +\pgfpathlineto{\pgfqpoint{3.242278in}{2.270086in}}% +\pgfpathlineto{\pgfqpoint{3.255720in}{2.283503in}}% +\pgfpathlineto{\pgfqpoint{3.273642in}{2.297911in}}% +\pgfpathlineto{\pgfqpoint{3.291564in}{2.309367in}}% +\pgfpathlineto{\pgfqpoint{3.313967in}{2.320542in}}% +\pgfpathlineto{\pgfqpoint{3.336370in}{2.328939in}}% +\pgfpathlineto{\pgfqpoint{3.358773in}{2.335015in}}% +\pgfpathlineto{\pgfqpoint{3.381175in}{2.339026in}}% +\pgfpathlineto{\pgfqpoint{3.403578in}{2.341091in}}% +\pgfpathlineto{\pgfqpoint{3.412539in}{2.340206in}}% +\pgfpathlineto{\pgfqpoint{3.434942in}{2.335131in}}% +\pgfpathlineto{\pgfqpoint{3.457345in}{2.327832in}}% +\pgfpathlineto{\pgfqpoint{3.479748in}{2.317979in}}% +\pgfpathlineto{\pgfqpoint{3.497670in}{2.307882in}}% +\pgfpathlineto{\pgfqpoint{3.515592in}{2.295301in}}% +\pgfpathlineto{\pgfqpoint{3.533514in}{2.279438in}}% +\pgfpathlineto{\pgfqpoint{3.546956in}{2.264574in}}% +\pgfpathlineto{\pgfqpoint{3.560397in}{2.246040in}}% +\pgfpathlineto{\pgfqpoint{3.569359in}{2.230749in}}% +\pgfpathlineto{\pgfqpoint{3.578320in}{2.211972in}}% +\pgfpathlineto{\pgfqpoint{3.587281in}{2.187822in}}% +\pgfpathlineto{\pgfqpoint{3.596242in}{2.154195in}}% +\pgfpathlineto{\pgfqpoint{3.600722in}{2.130832in}}% +\pgfpathlineto{\pgfqpoint{3.605203in}{2.098931in}}% +\pgfpathlineto{\pgfqpoint{3.609684in}{2.048485in}}% +\pgfpathlineto{\pgfqpoint{3.614164in}{1.918820in}}% +\pgfpathlineto{\pgfqpoint{3.623125in}{2.072068in}}% +\pgfpathlineto{\pgfqpoint{3.627606in}{2.112884in}}% +\pgfpathlineto{\pgfqpoint{3.636567in}{2.161657in}}% +\pgfpathlineto{\pgfqpoint{3.645528in}{2.192685in}}% +\pgfpathlineto{\pgfqpoint{3.654489in}{2.215378in}}% +\pgfpathlineto{\pgfqpoint{3.663450in}{2.233187in}}% +\pgfpathlineto{\pgfqpoint{3.676892in}{2.254151in}}% +\pgfpathlineto{\pgfqpoint{3.690333in}{2.270578in}}% +\pgfpathlineto{\pgfqpoint{3.703775in}{2.283907in}}% +\pgfpathlineto{\pgfqpoint{3.721697in}{2.298230in}}% +\pgfpathlineto{\pgfqpoint{3.739620in}{2.309622in}}% +\pgfpathlineto{\pgfqpoint{3.762022in}{2.320735in}}% +\pgfpathlineto{\pgfqpoint{3.784425in}{2.329082in}}% +\pgfpathlineto{\pgfqpoint{3.806828in}{2.335115in}}% +\pgfpathlineto{\pgfqpoint{3.829231in}{2.339086in}}% +\pgfpathlineto{\pgfqpoint{3.851633in}{2.341112in}}% +\pgfpathlineto{\pgfqpoint{3.860595in}{2.340125in}}% +\pgfpathlineto{\pgfqpoint{3.882997in}{2.335007in}}% +\pgfpathlineto{\pgfqpoint{3.905400in}{2.327661in}}% +\pgfpathlineto{\pgfqpoint{3.927803in}{2.317753in}}% +\pgfpathlineto{\pgfqpoint{3.945725in}{2.307600in}}% +\pgfpathlineto{\pgfqpoint{3.963647in}{2.294949in}}% +\pgfpathlineto{\pgfqpoint{3.981569in}{2.278989in}}% +\pgfpathlineto{\pgfqpoint{3.995011in}{2.264023in}}% +\pgfpathlineto{\pgfqpoint{4.008453in}{2.245340in}}% +\pgfpathlineto{\pgfqpoint{4.017414in}{2.229904in}}% +\pgfpathlineto{\pgfqpoint{4.026375in}{2.210914in}}% +\pgfpathlineto{\pgfqpoint{4.035336in}{2.186417in}}% +\pgfpathlineto{\pgfqpoint{4.044297in}{2.152119in}}% +\pgfpathlineto{\pgfqpoint{4.048778in}{2.128114in}}% +\pgfpathlineto{\pgfqpoint{4.053258in}{2.095002in}}% +\pgfpathlineto{\pgfqpoint{4.057739in}{2.041407in}}% +\pgfpathlineto{\pgfqpoint{4.062219in}{1.882969in}}% +\pgfpathlineto{\pgfqpoint{4.066700in}{2.005485in}}% +\pgfpathlineto{\pgfqpoint{4.071181in}{2.077114in}}% +\pgfpathlineto{\pgfqpoint{4.075661in}{2.116089in}}% +\pgfpathlineto{\pgfqpoint{4.084622in}{2.163504in}}% +\pgfpathlineto{\pgfqpoint{4.093583in}{2.193977in}}% +\pgfpathlineto{\pgfqpoint{4.102544in}{2.216366in}}% +\pgfpathlineto{\pgfqpoint{4.111505in}{2.233983in}}% +\pgfpathlineto{\pgfqpoint{4.124947in}{2.254761in}}% +\pgfpathlineto{\pgfqpoint{4.138389in}{2.271066in}}% +\pgfpathlineto{\pgfqpoint{4.151830in}{2.284308in}}% +\pgfpathlineto{\pgfqpoint{4.169753in}{2.298547in}}% +\pgfpathlineto{\pgfqpoint{4.187675in}{2.309875in}}% +\pgfpathlineto{\pgfqpoint{4.210078in}{2.320927in}}% +\pgfpathlineto{\pgfqpoint{4.232480in}{2.329225in}}% +\pgfpathlineto{\pgfqpoint{4.254883in}{2.335214in}}% +\pgfpathlineto{\pgfqpoint{4.277286in}{2.339145in}}% +\pgfpathlineto{\pgfqpoint{4.299689in}{2.341133in}}% +\pgfpathlineto{\pgfqpoint{4.313130in}{2.339179in}}% +\pgfpathlineto{\pgfqpoint{4.335533in}{2.333591in}}% +\pgfpathlineto{\pgfqpoint{4.357936in}{2.325717in}}% +\pgfpathlineto{\pgfqpoint{4.380339in}{2.315178in}}% +\pgfpathlineto{\pgfqpoint{4.398261in}{2.304397in}}% +\pgfpathlineto{\pgfqpoint{4.416183in}{2.290936in}}% +\pgfpathlineto{\pgfqpoint{4.429625in}{2.278538in}}% +\pgfpathlineto{\pgfqpoint{4.443066in}{2.263468in}}% +\pgfpathlineto{\pgfqpoint{4.456508in}{2.244634in}}% +\pgfpathlineto{\pgfqpoint{4.465469in}{2.229050in}}% +\pgfpathlineto{\pgfqpoint{4.474430in}{2.209842in}}% +\pgfpathlineto{\pgfqpoint{4.483391in}{2.184988in}}% +\pgfpathlineto{\pgfqpoint{4.492352in}{2.149994in}}% +\pgfpathlineto{\pgfqpoint{4.496833in}{2.125309in}}% +\pgfpathlineto{\pgfqpoint{4.501314in}{2.090890in}}% +\pgfpathlineto{\pgfqpoint{4.505794in}{2.033713in}}% +\pgfpathlineto{\pgfqpoint{4.510275in}{1.821687in}}% +\pgfpathlineto{\pgfqpoint{4.514755in}{2.015892in}}% +\pgfpathlineto{\pgfqpoint{4.519236in}{2.081886in}}% +\pgfpathlineto{\pgfqpoint{4.523716in}{2.119182in}}% +\pgfpathlineto{\pgfqpoint{4.532677in}{2.165313in}}% +\pgfpathlineto{\pgfqpoint{4.541639in}{2.195249in}}% +\pgfpathlineto{\pgfqpoint{4.550600in}{2.217343in}}% +\pgfpathlineto{\pgfqpoint{4.559561in}{2.234771in}}% +\pgfpathlineto{\pgfqpoint{4.573002in}{2.255367in}}% +\pgfpathlineto{\pgfqpoint{4.586444in}{2.271551in}}% +\pgfpathlineto{\pgfqpoint{4.599886in}{2.284707in}}% +\pgfpathlineto{\pgfqpoint{4.617808in}{2.298862in}}% +\pgfpathlineto{\pgfqpoint{4.635730in}{2.310128in}}% +\pgfpathlineto{\pgfqpoint{4.658133in}{2.321118in}}% +\pgfpathlineto{\pgfqpoint{4.680536in}{2.329366in}}% +\pgfpathlineto{\pgfqpoint{4.702938in}{2.335312in}}% +\pgfpathlineto{\pgfqpoint{4.725341in}{2.339204in}}% +\pgfpathlineto{\pgfqpoint{4.747744in}{2.341153in}}% +\pgfpathlineto{\pgfqpoint{4.761186in}{2.339088in}}% +\pgfpathlineto{\pgfqpoint{4.783588in}{2.333457in}}% +\pgfpathlineto{\pgfqpoint{4.805991in}{2.325534in}}% +\pgfpathlineto{\pgfqpoint{4.828394in}{2.314936in}}% +\pgfpathlineto{\pgfqpoint{4.846316in}{2.304096in}}% +\pgfpathlineto{\pgfqpoint{4.864238in}{2.290558in}}% +\pgfpathlineto{\pgfqpoint{4.877680in}{2.278083in}}% +\pgfpathlineto{\pgfqpoint{4.891122in}{2.262908in}}% +\pgfpathlineto{\pgfqpoint{4.904563in}{2.243922in}}% +\pgfpathlineto{\pgfqpoint{4.913524in}{2.228187in}}% +\pgfpathlineto{\pgfqpoint{4.922486in}{2.208757in}}% +\pgfpathlineto{\pgfqpoint{4.931447in}{2.183535in}}% +\pgfpathlineto{\pgfqpoint{4.940408in}{2.147815in}}% +\pgfpathlineto{\pgfqpoint{4.944888in}{2.122413in}}% +\pgfpathlineto{\pgfqpoint{4.949369in}{2.086576in}}% +\pgfpathlineto{\pgfqpoint{4.953849in}{2.025284in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.007279in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{1.007279in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{0.624581in}}% +\pgfpathlineto{\pgfqpoint{0.486738in}{1.642673in}}% +\pgfpathlineto{\pgfqpoint{0.491219in}{1.704046in}}% +\pgfpathlineto{\pgfqpoint{0.495699in}{1.739960in}}% +\pgfpathlineto{\pgfqpoint{0.504660in}{1.785183in}}% +\pgfpathlineto{\pgfqpoint{0.513621in}{1.814894in}}% +\pgfpathlineto{\pgfqpoint{0.522583in}{1.836978in}}% +\pgfpathlineto{\pgfqpoint{0.531544in}{1.854487in}}% +\pgfpathlineto{\pgfqpoint{0.544985in}{1.875272in}}% +\pgfpathlineto{\pgfqpoint{0.558427in}{1.891674in}}% +\pgfpathlineto{\pgfqpoint{0.571869in}{1.905048in}}% +\pgfpathlineto{\pgfqpoint{0.585310in}{1.916013in}}% +\pgfpathlineto{\pgfqpoint{0.603232in}{1.926280in}}% +\pgfpathlineto{\pgfqpoint{0.621155in}{1.934111in}}% +\pgfpathlineto{\pgfqpoint{0.643557in}{1.941144in}}% +\pgfpathlineto{\pgfqpoint{0.665960in}{1.945601in}}% +\pgfpathlineto{\pgfqpoint{0.688363in}{1.947787in}}% +\pgfpathlineto{\pgfqpoint{0.710766in}{1.947855in}}% +\pgfpathlineto{\pgfqpoint{0.733169in}{1.945838in}}% +\pgfpathlineto{\pgfqpoint{0.755571in}{1.941657in}}% +\pgfpathlineto{\pgfqpoint{0.777974in}{1.935102in}}% +\pgfpathlineto{\pgfqpoint{0.795896in}{1.927898in}}% +\pgfpathlineto{\pgfqpoint{0.813818in}{1.918608in}}% +\pgfpathlineto{\pgfqpoint{0.831741in}{1.906723in}}% +\pgfpathlineto{\pgfqpoint{0.845182in}{1.895618in}}% +\pgfpathlineto{\pgfqpoint{0.858624in}{1.882018in}}% +\pgfpathlineto{\pgfqpoint{0.872066in}{1.864979in}}% +\pgfpathlineto{\pgfqpoint{0.881027in}{1.850923in}}% +\pgfpathlineto{\pgfqpoint{0.889988in}{1.833739in}}% +\pgfpathlineto{\pgfqpoint{0.898949in}{1.811875in}}% +\pgfpathlineto{\pgfqpoint{0.907910in}{1.782153in}}% +\pgfpathlineto{\pgfqpoint{0.912391in}{1.762206in}}% +\pgfpathlineto{\pgfqpoint{0.916871in}{1.736221in}}% +\pgfpathlineto{\pgfqpoint{0.921352in}{1.699020in}}% +\pgfpathlineto{\pgfqpoint{0.925832in}{1.633118in}}% +\pgfpathlineto{\pgfqpoint{0.930313in}{1.439000in}}% +\pgfpathlineto{\pgfqpoint{0.934793in}{1.651110in}}% +\pgfpathlineto{\pgfqpoint{0.939274in}{1.708367in}}% +\pgfpathlineto{\pgfqpoint{0.943755in}{1.742865in}}% +\pgfpathlineto{\pgfqpoint{0.952716in}{1.786935in}}% +\pgfpathlineto{\pgfqpoint{0.961677in}{1.816144in}}% +\pgfpathlineto{\pgfqpoint{0.970638in}{1.837946in}}% +\pgfpathlineto{\pgfqpoint{0.979599in}{1.855273in}}% +\pgfpathlineto{\pgfqpoint{0.993041in}{1.875879in}}% +\pgfpathlineto{\pgfqpoint{1.006482in}{1.892163in}}% +\pgfpathlineto{\pgfqpoint{1.019924in}{1.905451in}}% +\pgfpathlineto{\pgfqpoint{1.033366in}{1.916305in}}% +\pgfpathlineto{\pgfqpoint{1.051288in}{1.926503in}}% +\pgfpathlineto{\pgfqpoint{1.069210in}{1.934280in}}% +\pgfpathlineto{\pgfqpoint{1.091613in}{1.941257in}}% +\pgfpathlineto{\pgfqpoint{1.114016in}{1.945666in}}% +\pgfpathlineto{\pgfqpoint{1.136418in}{1.947809in}}% +\pgfpathlineto{\pgfqpoint{1.158821in}{1.947836in}}% +\pgfpathlineto{\pgfqpoint{1.181224in}{1.945776in}}% +\pgfpathlineto{\pgfqpoint{1.203627in}{1.941550in}}% +\pgfpathlineto{\pgfqpoint{1.226029in}{1.934945in}}% +\pgfpathlineto{\pgfqpoint{1.243952in}{1.927692in}}% +\pgfpathlineto{\pgfqpoint{1.261874in}{1.918345in}}% +\pgfpathlineto{\pgfqpoint{1.279796in}{1.906386in}}% +\pgfpathlineto{\pgfqpoint{1.293238in}{1.895209in}}% +\pgfpathlineto{\pgfqpoint{1.306679in}{1.881512in}}% +\pgfpathlineto{\pgfqpoint{1.320121in}{1.864336in}}% +\pgfpathlineto{\pgfqpoint{1.329082in}{1.850148in}}% +\pgfpathlineto{\pgfqpoint{1.338043in}{1.832774in}}% +\pgfpathlineto{\pgfqpoint{1.347004in}{1.810613in}}% +\pgfpathlineto{\pgfqpoint{1.355965in}{1.780354in}}% +\pgfpathlineto{\pgfqpoint{1.360446in}{1.759931in}}% +\pgfpathlineto{\pgfqpoint{1.364926in}{1.733138in}}% +\pgfpathlineto{\pgfqpoint{1.369407in}{1.694257in}}% +\pgfpathlineto{\pgfqpoint{1.373888in}{1.622719in}}% +\pgfpathlineto{\pgfqpoint{1.378368in}{1.500291in}}% +\pgfpathlineto{\pgfqpoint{1.382849in}{1.658812in}}% +\pgfpathlineto{\pgfqpoint{1.387329in}{1.712488in}}% +\pgfpathlineto{\pgfqpoint{1.391810in}{1.745677in}}% +\pgfpathlineto{\pgfqpoint{1.400771in}{1.788652in}}% +\pgfpathlineto{\pgfqpoint{1.409732in}{1.817376in}}% +\pgfpathlineto{\pgfqpoint{1.418693in}{1.838903in}}% +\pgfpathlineto{\pgfqpoint{1.432135in}{1.863453in}}% +\pgfpathlineto{\pgfqpoint{1.445576in}{1.882265in}}% +\pgfpathlineto{\pgfqpoint{1.459018in}{1.897335in}}% +\pgfpathlineto{\pgfqpoint{1.476940in}{1.913610in}}% +\pgfpathlineto{\pgfqpoint{1.494863in}{1.924439in}}% +\pgfpathlineto{\pgfqpoint{1.512785in}{1.932715in}}% +\pgfpathlineto{\pgfqpoint{1.535188in}{1.940202in}}% +\pgfpathlineto{\pgfqpoint{1.557590in}{1.945046in}}% +\pgfpathlineto{\pgfqpoint{1.579993in}{1.947582in}}% +\pgfpathlineto{\pgfqpoint{1.602396in}{1.947984in}}% +\pgfpathlineto{\pgfqpoint{1.624799in}{1.946303in}}% +\pgfpathlineto{\pgfqpoint{1.647201in}{1.942478in}}% +\pgfpathlineto{\pgfqpoint{1.669604in}{1.936324in}}% +\pgfpathlineto{\pgfqpoint{1.692007in}{1.927486in}}% +\pgfpathlineto{\pgfqpoint{1.709929in}{1.918081in}}% +\pgfpathlineto{\pgfqpoint{1.727851in}{1.906047in}}% +\pgfpathlineto{\pgfqpoint{1.741293in}{1.894797in}}% +\pgfpathlineto{\pgfqpoint{1.754735in}{1.881002in}}% +\pgfpathlineto{\pgfqpoint{1.768176in}{1.863686in}}% +\pgfpathlineto{\pgfqpoint{1.777137in}{1.849364in}}% +\pgfpathlineto{\pgfqpoint{1.786098in}{1.831798in}}% +\pgfpathlineto{\pgfqpoint{1.795060in}{1.809333in}}% +\pgfpathlineto{\pgfqpoint{1.804021in}{1.778517in}}% +\pgfpathlineto{\pgfqpoint{1.808501in}{1.757595in}}% +\pgfpathlineto{\pgfqpoint{1.812982in}{1.729942in}}% +\pgfpathlineto{\pgfqpoint{1.817462in}{1.689221in}}% +\pgfpathlineto{\pgfqpoint{1.826423in}{1.536149in}}% +\pgfpathlineto{\pgfqpoint{1.830904in}{1.665898in}}% +\pgfpathlineto{\pgfqpoint{1.835385in}{1.716425in}}% +\pgfpathlineto{\pgfqpoint{1.839865in}{1.748402in}}% +\pgfpathlineto{\pgfqpoint{1.848826in}{1.790336in}}% +\pgfpathlineto{\pgfqpoint{1.857787in}{1.818590in}}% +\pgfpathlineto{\pgfqpoint{1.866748in}{1.839849in}}% +\pgfpathlineto{\pgfqpoint{1.880190in}{1.864158in}}% +\pgfpathlineto{\pgfqpoint{1.893632in}{1.882820in}}% +\pgfpathlineto{\pgfqpoint{1.907073in}{1.897787in}}% +\pgfpathlineto{\pgfqpoint{1.924996in}{1.913918in}}% +\pgfpathlineto{\pgfqpoint{1.942918in}{1.924675in}}% +\pgfpathlineto{\pgfqpoint{1.960840in}{1.932894in}}% +\pgfpathlineto{\pgfqpoint{1.983243in}{1.940324in}}% +\pgfpathlineto{\pgfqpoint{2.005646in}{1.945119in}}% +\pgfpathlineto{\pgfqpoint{2.028048in}{1.947611in}}% +\pgfpathlineto{\pgfqpoint{2.050451in}{1.947971in}}% +\pgfpathlineto{\pgfqpoint{2.072854in}{1.946248in}}% +\pgfpathlineto{\pgfqpoint{2.095257in}{1.942379in}}% +\pgfpathlineto{\pgfqpoint{2.117659in}{1.936175in}}% +\pgfpathlineto{\pgfqpoint{2.140062in}{1.927278in}}% +\pgfpathlineto{\pgfqpoint{2.157984in}{1.917815in}}% +\pgfpathlineto{\pgfqpoint{2.175907in}{1.905706in}}% +\pgfpathlineto{\pgfqpoint{2.189348in}{1.894382in}}% +\pgfpathlineto{\pgfqpoint{2.202790in}{1.880489in}}% +\pgfpathlineto{\pgfqpoint{2.216232in}{1.863031in}}% +\pgfpathlineto{\pgfqpoint{2.225193in}{1.848573in}}% +\pgfpathlineto{\pgfqpoint{2.234154in}{1.830810in}}% +\pgfpathlineto{\pgfqpoint{2.243115in}{1.808032in}}% +\pgfpathlineto{\pgfqpoint{2.252076in}{1.776640in}}% +\pgfpathlineto{\pgfqpoint{2.256557in}{1.755194in}}% +\pgfpathlineto{\pgfqpoint{2.261037in}{1.726625in}}% +\pgfpathlineto{\pgfqpoint{2.265518in}{1.683878in}}% +\pgfpathlineto{\pgfqpoint{2.269998in}{1.597313in}}% +\pgfpathlineto{\pgfqpoint{2.274479in}{1.561595in}}% +\pgfpathlineto{\pgfqpoint{2.278959in}{1.672460in}}% +\pgfpathlineto{\pgfqpoint{2.283440in}{1.720195in}}% +\pgfpathlineto{\pgfqpoint{2.287920in}{1.751046in}}% +\pgfpathlineto{\pgfqpoint{2.296882in}{1.791988in}}% +\pgfpathlineto{\pgfqpoint{2.305843in}{1.819788in}}% +\pgfpathlineto{\pgfqpoint{2.314804in}{1.840784in}}% +\pgfpathlineto{\pgfqpoint{2.328245in}{1.864856in}}% +\pgfpathlineto{\pgfqpoint{2.341687in}{1.883371in}}% +\pgfpathlineto{\pgfqpoint{2.355129in}{1.898236in}}% +\pgfpathlineto{\pgfqpoint{2.373051in}{1.914223in}}% +\pgfpathlineto{\pgfqpoint{2.390973in}{1.924909in}}% +\pgfpathlineto{\pgfqpoint{2.408895in}{1.933071in}}% +\pgfpathlineto{\pgfqpoint{2.431298in}{1.940444in}}% +\pgfpathlineto{\pgfqpoint{2.453701in}{1.945190in}}% +\pgfpathlineto{\pgfqpoint{2.476104in}{1.947639in}}% +\pgfpathlineto{\pgfqpoint{2.498506in}{1.947957in}}% +\pgfpathlineto{\pgfqpoint{2.520909in}{1.946192in}}% +\pgfpathlineto{\pgfqpoint{2.543312in}{1.942278in}}% +\pgfpathlineto{\pgfqpoint{2.565715in}{1.936025in}}% +\pgfpathlineto{\pgfqpoint{2.588117in}{1.927069in}}% +\pgfpathlineto{\pgfqpoint{2.606040in}{1.917547in}}% +\pgfpathlineto{\pgfqpoint{2.623962in}{1.905363in}}% +\pgfpathlineto{\pgfqpoint{2.637404in}{1.893965in}}% +\pgfpathlineto{\pgfqpoint{2.650845in}{1.879972in}}% +\pgfpathlineto{\pgfqpoint{2.664287in}{1.862370in}}% +\pgfpathlineto{\pgfqpoint{2.673248in}{1.847773in}}% +\pgfpathlineto{\pgfqpoint{2.682209in}{1.829809in}}% +\pgfpathlineto{\pgfqpoint{2.691170in}{1.806711in}}% +\pgfpathlineto{\pgfqpoint{2.700131in}{1.774720in}}% +\pgfpathlineto{\pgfqpoint{2.704612in}{1.752725in}}% +\pgfpathlineto{\pgfqpoint{2.709092in}{1.723176in}}% +\pgfpathlineto{\pgfqpoint{2.713573in}{1.678188in}}% +\pgfpathlineto{\pgfqpoint{2.718053in}{1.581208in}}% +\pgfpathlineto{\pgfqpoint{2.722534in}{1.581335in}}% +\pgfpathlineto{\pgfqpoint{2.727015in}{1.678569in}}% +\pgfpathlineto{\pgfqpoint{2.731495in}{1.723810in}}% +\pgfpathlineto{\pgfqpoint{2.735976in}{1.753613in}}% +\pgfpathlineto{\pgfqpoint{2.744937in}{1.793610in}}% +\pgfpathlineto{\pgfqpoint{2.753898in}{1.820969in}}% +\pgfpathlineto{\pgfqpoint{2.762859in}{1.841709in}}% +\pgfpathlineto{\pgfqpoint{2.776301in}{1.865549in}}% +\pgfpathlineto{\pgfqpoint{2.789742in}{1.883918in}}% +\pgfpathlineto{\pgfqpoint{2.803184in}{1.898682in}}% +\pgfpathlineto{\pgfqpoint{2.821106in}{1.914527in}}% +\pgfpathlineto{\pgfqpoint{2.839028in}{1.925141in}}% +\pgfpathlineto{\pgfqpoint{2.856951in}{1.933248in}}% +\pgfpathlineto{\pgfqpoint{2.879353in}{1.940563in}}% +\pgfpathlineto{\pgfqpoint{2.901756in}{1.945261in}}% +\pgfpathlineto{\pgfqpoint{2.924159in}{1.947665in}}% +\pgfpathlineto{\pgfqpoint{2.946562in}{1.947942in}}% +\pgfpathlineto{\pgfqpoint{2.968964in}{1.946135in}}% +\pgfpathlineto{\pgfqpoint{2.991367in}{1.942177in}}% +\pgfpathlineto{\pgfqpoint{3.013770in}{1.935874in}}% +\pgfpathlineto{\pgfqpoint{3.036173in}{1.926859in}}% +\pgfpathlineto{\pgfqpoint{3.054095in}{1.917278in}}% +\pgfpathlineto{\pgfqpoint{3.072017in}{1.905018in}}% +\pgfpathlineto{\pgfqpoint{3.085459in}{1.893544in}}% +\pgfpathlineto{\pgfqpoint{3.098901in}{1.879450in}}% +\pgfpathlineto{\pgfqpoint{3.112342in}{1.861704in}}% +\pgfpathlineto{\pgfqpoint{3.121303in}{1.846966in}}% +\pgfpathlineto{\pgfqpoint{3.130264in}{1.828796in}}% +\pgfpathlineto{\pgfqpoint{3.139225in}{1.805368in}}% +\pgfpathlineto{\pgfqpoint{3.148187in}{1.772757in}}% +\pgfpathlineto{\pgfqpoint{3.152667in}{1.750183in}}% +\pgfpathlineto{\pgfqpoint{3.157148in}{1.719586in}}% +\pgfpathlineto{\pgfqpoint{3.161628in}{1.672105in}}% +\pgfpathlineto{\pgfqpoint{3.166109in}{1.561494in}}% +\pgfpathlineto{\pgfqpoint{3.170589in}{1.597466in}}% +\pgfpathlineto{\pgfqpoint{3.175070in}{1.684283in}}% +\pgfpathlineto{\pgfqpoint{3.179550in}{1.727284in}}% +\pgfpathlineto{\pgfqpoint{3.188512in}{1.777807in}}% +\pgfpathlineto{\pgfqpoint{3.197473in}{1.809707in}}% +\pgfpathlineto{\pgfqpoint{3.206434in}{1.832994in}}% +\pgfpathlineto{\pgfqpoint{3.215395in}{1.851266in}}% +\pgfpathlineto{\pgfqpoint{3.228837in}{1.872794in}}% +\pgfpathlineto{\pgfqpoint{3.242278in}{1.889684in}}% +\pgfpathlineto{\pgfqpoint{3.255720in}{1.903408in}}% +\pgfpathlineto{\pgfqpoint{3.269162in}{1.914828in}}% +\pgfpathlineto{\pgfqpoint{3.287084in}{1.925372in}}% +\pgfpathlineto{\pgfqpoint{3.305006in}{1.933423in}}% +\pgfpathlineto{\pgfqpoint{3.327409in}{1.940681in}}% +\pgfpathlineto{\pgfqpoint{3.349811in}{1.945331in}}% +\pgfpathlineto{\pgfqpoint{3.372214in}{1.947692in}}% +\pgfpathlineto{\pgfqpoint{3.394617in}{1.947926in}}% +\pgfpathlineto{\pgfqpoint{3.417020in}{1.946078in}}% +\pgfpathlineto{\pgfqpoint{3.439423in}{1.942075in}}% +\pgfpathlineto{\pgfqpoint{3.461825in}{1.935722in}}% +\pgfpathlineto{\pgfqpoint{3.484228in}{1.926647in}}% +\pgfpathlineto{\pgfqpoint{3.502150in}{1.917007in}}% +\pgfpathlineto{\pgfqpoint{3.520072in}{1.904670in}}% +\pgfpathlineto{\pgfqpoint{3.533514in}{1.893121in}}% +\pgfpathlineto{\pgfqpoint{3.546956in}{1.878925in}}% +\pgfpathlineto{\pgfqpoint{3.560397in}{1.861031in}}% +\pgfpathlineto{\pgfqpoint{3.569359in}{1.846150in}}% +\pgfpathlineto{\pgfqpoint{3.578320in}{1.827771in}}% +\pgfpathlineto{\pgfqpoint{3.587281in}{1.804004in}}% +\pgfpathlineto{\pgfqpoint{3.596242in}{1.770748in}}% +\pgfpathlineto{\pgfqpoint{3.600722in}{1.747565in}}% +\pgfpathlineto{\pgfqpoint{3.605203in}{1.715841in}}% +\pgfpathlineto{\pgfqpoint{3.609684in}{1.665569in}}% +\pgfpathlineto{\pgfqpoint{3.614164in}{1.536073in}}% +\pgfpathlineto{\pgfqpoint{3.623125in}{1.689652in}}% +\pgfpathlineto{\pgfqpoint{3.627606in}{1.730627in}}% +\pgfpathlineto{\pgfqpoint{3.636567in}{1.779710in}}% +\pgfpathlineto{\pgfqpoint{3.645528in}{1.811033in}}% +\pgfpathlineto{\pgfqpoint{3.654489in}{1.834008in}}% +\pgfpathlineto{\pgfqpoint{3.663450in}{1.852083in}}% +\pgfpathlineto{\pgfqpoint{3.676892in}{1.873421in}}% +\pgfpathlineto{\pgfqpoint{3.690333in}{1.890187in}}% +\pgfpathlineto{\pgfqpoint{3.703775in}{1.903821in}}% +\pgfpathlineto{\pgfqpoint{3.717217in}{1.915127in}}% +\pgfpathlineto{\pgfqpoint{3.735139in}{1.925601in}}% +\pgfpathlineto{\pgfqpoint{3.753061in}{1.933597in}}% +\pgfpathlineto{\pgfqpoint{3.775464in}{1.940798in}}% +\pgfpathlineto{\pgfqpoint{3.797867in}{1.945400in}}% +\pgfpathlineto{\pgfqpoint{3.820270in}{1.947717in}}% +\pgfpathlineto{\pgfqpoint{3.842672in}{1.947910in}}% +\pgfpathlineto{\pgfqpoint{3.865075in}{1.946019in}}% +\pgfpathlineto{\pgfqpoint{3.887478in}{1.941972in}}% +\pgfpathlineto{\pgfqpoint{3.909881in}{1.935568in}}% +\pgfpathlineto{\pgfqpoint{3.932283in}{1.926434in}}% +\pgfpathlineto{\pgfqpoint{3.950206in}{1.916734in}}% +\pgfpathlineto{\pgfqpoint{3.968128in}{1.904321in}}% +\pgfpathlineto{\pgfqpoint{3.981569in}{1.892695in}}% +\pgfpathlineto{\pgfqpoint{3.995011in}{1.878396in}}% +\pgfpathlineto{\pgfqpoint{4.008453in}{1.860352in}}% +\pgfpathlineto{\pgfqpoint{4.017414in}{1.845325in}}% +\pgfpathlineto{\pgfqpoint{4.026375in}{1.826732in}}% +\pgfpathlineto{\pgfqpoint{4.035336in}{1.802617in}}% +\pgfpathlineto{\pgfqpoint{4.044297in}{1.768690in}}% +\pgfpathlineto{\pgfqpoint{4.048778in}{1.744865in}}% +\pgfpathlineto{\pgfqpoint{4.053258in}{1.711929in}}% +\pgfpathlineto{\pgfqpoint{4.057739in}{1.658508in}}% +\pgfpathlineto{\pgfqpoint{4.062219in}{1.500240in}}% +\pgfpathlineto{\pgfqpoint{4.066700in}{1.622922in}}% +\pgfpathlineto{\pgfqpoint{4.071181in}{1.694714in}}% +\pgfpathlineto{\pgfqpoint{4.075661in}{1.733849in}}% +\pgfpathlineto{\pgfqpoint{4.084622in}{1.781572in}}% +\pgfpathlineto{\pgfqpoint{4.093583in}{1.812339in}}% +\pgfpathlineto{\pgfqpoint{4.102544in}{1.835009in}}% +\pgfpathlineto{\pgfqpoint{4.111505in}{1.852892in}}% +\pgfpathlineto{\pgfqpoint{4.124947in}{1.874043in}}% +\pgfpathlineto{\pgfqpoint{4.138389in}{1.890686in}}% +\pgfpathlineto{\pgfqpoint{4.151830in}{1.904233in}}% +\pgfpathlineto{\pgfqpoint{4.165272in}{1.915424in}}% +\pgfpathlineto{\pgfqpoint{4.183194in}{1.925829in}}% +\pgfpathlineto{\pgfqpoint{4.201117in}{1.933769in}}% +\pgfpathlineto{\pgfqpoint{4.223519in}{1.940915in}}% +\pgfpathlineto{\pgfqpoint{4.245922in}{1.945468in}}% +\pgfpathlineto{\pgfqpoint{4.268325in}{1.947741in}}% +\pgfpathlineto{\pgfqpoint{4.290728in}{1.947893in}}% +\pgfpathlineto{\pgfqpoint{4.313130in}{1.945960in}}% +\pgfpathlineto{\pgfqpoint{4.335533in}{1.941868in}}% +\pgfpathlineto{\pgfqpoint{4.357936in}{1.935414in}}% +\pgfpathlineto{\pgfqpoint{4.380339in}{1.926220in}}% +\pgfpathlineto{\pgfqpoint{4.398261in}{1.916460in}}% +\pgfpathlineto{\pgfqpoint{4.416183in}{1.903969in}}% +\pgfpathlineto{\pgfqpoint{4.429625in}{1.892266in}}% +\pgfpathlineto{\pgfqpoint{4.443066in}{1.877862in}}% +\pgfpathlineto{\pgfqpoint{4.456508in}{1.859667in}}% +\pgfpathlineto{\pgfqpoint{4.465469in}{1.844491in}}% +\pgfpathlineto{\pgfqpoint{4.474430in}{1.825679in}}% +\pgfpathlineto{\pgfqpoint{4.483391in}{1.801207in}}% +\pgfpathlineto{\pgfqpoint{4.492352in}{1.766583in}}% +\pgfpathlineto{\pgfqpoint{4.496833in}{1.742078in}}% +\pgfpathlineto{\pgfqpoint{4.501314in}{1.707835in}}% +\pgfpathlineto{\pgfqpoint{4.505794in}{1.650831in}}% +\pgfpathlineto{\pgfqpoint{4.510275in}{1.438975in}}% +\pgfpathlineto{\pgfqpoint{4.514755in}{1.633346in}}% +\pgfpathlineto{\pgfqpoint{4.519236in}{1.699502in}}% +\pgfpathlineto{\pgfqpoint{4.523716in}{1.736957in}}% +\pgfpathlineto{\pgfqpoint{4.532677in}{1.783396in}}% +\pgfpathlineto{\pgfqpoint{4.541639in}{1.813626in}}% +\pgfpathlineto{\pgfqpoint{4.550600in}{1.836000in}}% +\pgfpathlineto{\pgfqpoint{4.559561in}{1.853693in}}% +\pgfpathlineto{\pgfqpoint{4.573002in}{1.874660in}}% +\pgfpathlineto{\pgfqpoint{4.586444in}{1.891182in}}% +\pgfpathlineto{\pgfqpoint{4.599886in}{1.904641in}}% +\pgfpathlineto{\pgfqpoint{4.613327in}{1.915720in}}% +\pgfpathlineto{\pgfqpoint{4.631250in}{1.926055in}}% +\pgfpathlineto{\pgfqpoint{4.649172in}{1.933941in}}% +\pgfpathlineto{\pgfqpoint{4.671575in}{1.941030in}}% +\pgfpathlineto{\pgfqpoint{4.693977in}{1.945535in}}% +\pgfpathlineto{\pgfqpoint{4.716380in}{1.947765in}}% +\pgfpathlineto{\pgfqpoint{4.738783in}{1.947874in}}% +\pgfpathlineto{\pgfqpoint{4.761186in}{1.945899in}}% +\pgfpathlineto{\pgfqpoint{4.783588in}{1.941763in}}% +\pgfpathlineto{\pgfqpoint{4.805991in}{1.935259in}}% +\pgfpathlineto{\pgfqpoint{4.823913in}{1.928102in}}% +\pgfpathlineto{\pgfqpoint{4.841836in}{1.918869in}}% +\pgfpathlineto{\pgfqpoint{4.859758in}{1.907057in}}% +\pgfpathlineto{\pgfqpoint{4.873199in}{1.896025in}}% +\pgfpathlineto{\pgfqpoint{4.886641in}{1.882520in}}% +\pgfpathlineto{\pgfqpoint{4.900083in}{1.865618in}}% +\pgfpathlineto{\pgfqpoint{4.909044in}{1.851691in}}% +\pgfpathlineto{\pgfqpoint{4.918005in}{1.834693in}}% +\pgfpathlineto{\pgfqpoint{4.926966in}{1.813117in}}% +\pgfpathlineto{\pgfqpoint{4.935927in}{1.783915in}}% +\pgfpathlineto{\pgfqpoint{4.940408in}{1.764422in}}% +\pgfpathlineto{\pgfqpoint{4.944888in}{1.739199in}}% +\pgfpathlineto{\pgfqpoint{4.949369in}{1.703539in}}% +\pgfpathlineto{\pgfqpoint{4.953849in}{1.642419in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.624585in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.624585in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.483205in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.486738in}{1.256227in}}% +\pgfpathlineto{\pgfqpoint{0.491219in}{1.317344in}}% +\pgfpathlineto{\pgfqpoint{0.495699in}{1.353000in}}% +\pgfpathlineto{\pgfqpoint{0.504660in}{1.397701in}}% +\pgfpathlineto{\pgfqpoint{0.513621in}{1.426883in}}% +\pgfpathlineto{\pgfqpoint{0.522583in}{1.448429in}}% +\pgfpathlineto{\pgfqpoint{0.531544in}{1.465392in}}% +\pgfpathlineto{\pgfqpoint{0.544985in}{1.485345in}}% +\pgfpathlineto{\pgfqpoint{0.558427in}{1.500896in}}% +\pgfpathlineto{\pgfqpoint{0.571869in}{1.513400in}}% +\pgfpathlineto{\pgfqpoint{0.589791in}{1.526633in}}% +\pgfpathlineto{\pgfqpoint{0.607713in}{1.536901in}}% +\pgfpathlineto{\pgfqpoint{0.625635in}{1.544846in}}% +\pgfpathlineto{\pgfqpoint{0.648038in}{1.552109in}}% +\pgfpathlineto{\pgfqpoint{0.670441in}{1.556842in}}% +\pgfpathlineto{\pgfqpoint{0.692844in}{1.559314in}}% +\pgfpathlineto{\pgfqpoint{0.715246in}{1.559653in}}% +\pgfpathlineto{\pgfqpoint{0.737649in}{1.557868in}}% +\pgfpathlineto{\pgfqpoint{0.760052in}{1.553857in}}% +\pgfpathlineto{\pgfqpoint{0.782455in}{1.547380in}}% +\pgfpathlineto{\pgfqpoint{0.800377in}{1.540140in}}% +\pgfpathlineto{\pgfqpoint{0.818299in}{1.530688in}}% +\pgfpathlineto{\pgfqpoint{0.836221in}{1.518448in}}% +\pgfpathlineto{\pgfqpoint{0.849663in}{1.506880in}}% +\pgfpathlineto{\pgfqpoint{0.863105in}{1.492543in}}% +\pgfpathlineto{\pgfqpoint{0.876546in}{1.474304in}}% +\pgfpathlineto{\pgfqpoint{0.885507in}{1.459024in}}% +\pgfpathlineto{\pgfqpoint{0.894468in}{1.439286in}}% +\pgfpathlineto{\pgfqpoint{0.903430in}{1.413586in}}% +\pgfpathlineto{\pgfqpoint{0.912391in}{1.376988in}}% +\pgfpathlineto{\pgfqpoint{0.916871in}{1.350757in}}% +\pgfpathlineto{\pgfqpoint{0.921352in}{1.313307in}}% +\pgfpathlineto{\pgfqpoint{0.925832in}{1.247154in}}% +\pgfpathlineto{\pgfqpoint{0.930313in}{1.052783in}}% +\pgfpathlineto{\pgfqpoint{0.934793in}{1.264638in}}% +\pgfpathlineto{\pgfqpoint{0.939274in}{1.321640in}}% +\pgfpathlineto{\pgfqpoint{0.943755in}{1.355879in}}% +\pgfpathlineto{\pgfqpoint{0.952716in}{1.399426in}}% +\pgfpathlineto{\pgfqpoint{0.961677in}{1.428106in}}% +\pgfpathlineto{\pgfqpoint{0.970638in}{1.449370in}}% +\pgfpathlineto{\pgfqpoint{0.979599in}{1.466151in}}% +\pgfpathlineto{\pgfqpoint{0.993041in}{1.485924in}}% +\pgfpathlineto{\pgfqpoint{1.006482in}{1.501357in}}% +\pgfpathlineto{\pgfqpoint{1.019924in}{1.513775in}}% +\pgfpathlineto{\pgfqpoint{1.037846in}{1.526923in}}% +\pgfpathlineto{\pgfqpoint{1.055768in}{1.537125in}}% +\pgfpathlineto{\pgfqpoint{1.073691in}{1.545019in}}% +\pgfpathlineto{\pgfqpoint{1.096093in}{1.552227in}}% +\pgfpathlineto{\pgfqpoint{1.118496in}{1.556912in}}% +\pgfpathlineto{\pgfqpoint{1.140899in}{1.559342in}}% +\pgfpathlineto{\pgfqpoint{1.163302in}{1.559638in}}% +\pgfpathlineto{\pgfqpoint{1.185704in}{1.557810in}}% +\pgfpathlineto{\pgfqpoint{1.208107in}{1.553753in}}% +\pgfpathlineto{\pgfqpoint{1.230510in}{1.547223in}}% +\pgfpathlineto{\pgfqpoint{1.248432in}{1.539933in}}% +\pgfpathlineto{\pgfqpoint{1.266354in}{1.530419in}}% +\pgfpathlineto{\pgfqpoint{1.284277in}{1.518099in}}% +\pgfpathlineto{\pgfqpoint{1.297718in}{1.506451in}}% +\pgfpathlineto{\pgfqpoint{1.311160in}{1.492006in}}% +\pgfpathlineto{\pgfqpoint{1.324602in}{1.473609in}}% +\pgfpathlineto{\pgfqpoint{1.333563in}{1.458139in}}% +\pgfpathlineto{\pgfqpoint{1.342524in}{1.438168in}}% +\pgfpathlineto{\pgfqpoint{1.351485in}{1.412077in}}% +\pgfpathlineto{\pgfqpoint{1.360446in}{1.374689in}}% +\pgfpathlineto{\pgfqpoint{1.364926in}{1.347649in}}% +\pgfpathlineto{\pgfqpoint{1.369407in}{1.308519in}}% +\pgfpathlineto{\pgfqpoint{1.373888in}{1.236730in}}% +\pgfpathlineto{\pgfqpoint{1.378368in}{1.114049in}}% +\pgfpathlineto{\pgfqpoint{1.382849in}{1.272315in}}% +\pgfpathlineto{\pgfqpoint{1.387329in}{1.325734in}}% +\pgfpathlineto{\pgfqpoint{1.391810in}{1.358665in}}% +\pgfpathlineto{\pgfqpoint{1.400771in}{1.401117in}}% +\pgfpathlineto{\pgfqpoint{1.409732in}{1.429311in}}% +\pgfpathlineto{\pgfqpoint{1.418693in}{1.450299in}}% +\pgfpathlineto{\pgfqpoint{1.427654in}{1.466902in}}% +\pgfpathlineto{\pgfqpoint{1.441096in}{1.486499in}}% +\pgfpathlineto{\pgfqpoint{1.454538in}{1.501814in}}% +\pgfpathlineto{\pgfqpoint{1.467979in}{1.514147in}}% +\pgfpathlineto{\pgfqpoint{1.485901in}{1.527210in}}% +\pgfpathlineto{\pgfqpoint{1.503824in}{1.537349in}}% +\pgfpathlineto{\pgfqpoint{1.521746in}{1.545190in}}% +\pgfpathlineto{\pgfqpoint{1.544149in}{1.552344in}}% +\pgfpathlineto{\pgfqpoint{1.566551in}{1.556983in}}% +\pgfpathlineto{\pgfqpoint{1.588954in}{1.559368in}}% +\pgfpathlineto{\pgfqpoint{1.611357in}{1.559623in}}% +\pgfpathlineto{\pgfqpoint{1.633760in}{1.557752in}}% +\pgfpathlineto{\pgfqpoint{1.656162in}{1.553648in}}% +\pgfpathlineto{\pgfqpoint{1.678565in}{1.547064in}}% +\pgfpathlineto{\pgfqpoint{1.696487in}{1.539724in}}% +\pgfpathlineto{\pgfqpoint{1.714410in}{1.530148in}}% +\pgfpathlineto{\pgfqpoint{1.732332in}{1.517747in}}% +\pgfpathlineto{\pgfqpoint{1.745773in}{1.506019in}}% +\pgfpathlineto{\pgfqpoint{1.759215in}{1.491465in}}% +\pgfpathlineto{\pgfqpoint{1.772657in}{1.472906in}}% +\pgfpathlineto{\pgfqpoint{1.781618in}{1.457246in}}% +\pgfpathlineto{\pgfqpoint{1.790579in}{1.437034in}}% +\pgfpathlineto{\pgfqpoint{1.799540in}{1.410542in}}% +\pgfpathlineto{\pgfqpoint{1.808501in}{1.372329in}}% +\pgfpathlineto{\pgfqpoint{1.812982in}{1.344428in}}% +\pgfpathlineto{\pgfqpoint{1.817462in}{1.303458in}}% +\pgfpathlineto{\pgfqpoint{1.826423in}{1.149882in}}% +\pgfpathlineto{\pgfqpoint{1.830904in}{1.279376in}}% +\pgfpathlineto{\pgfqpoint{1.835385in}{1.329646in}}% +\pgfpathlineto{\pgfqpoint{1.839865in}{1.361364in}}% +\pgfpathlineto{\pgfqpoint{1.848826in}{1.402775in}}% +\pgfpathlineto{\pgfqpoint{1.857787in}{1.430499in}}% +\pgfpathlineto{\pgfqpoint{1.866748in}{1.451218in}}% +\pgfpathlineto{\pgfqpoint{1.875710in}{1.467645in}}% +\pgfpathlineto{\pgfqpoint{1.889151in}{1.487069in}}% +\pgfpathlineto{\pgfqpoint{1.902593in}{1.502268in}}% +\pgfpathlineto{\pgfqpoint{1.916035in}{1.514516in}}% +\pgfpathlineto{\pgfqpoint{1.933957in}{1.527496in}}% +\pgfpathlineto{\pgfqpoint{1.951879in}{1.537571in}}% +\pgfpathlineto{\pgfqpoint{1.969801in}{1.545360in}}% +\pgfpathlineto{\pgfqpoint{1.992204in}{1.552461in}}% +\pgfpathlineto{\pgfqpoint{2.014607in}{1.557052in}}% +\pgfpathlineto{\pgfqpoint{2.037009in}{1.559394in}}% +\pgfpathlineto{\pgfqpoint{2.059412in}{1.559606in}}% +\pgfpathlineto{\pgfqpoint{2.081815in}{1.557692in}}% +\pgfpathlineto{\pgfqpoint{2.104218in}{1.553541in}}% +\pgfpathlineto{\pgfqpoint{2.126620in}{1.546905in}}% +\pgfpathlineto{\pgfqpoint{2.144543in}{1.539514in}}% +\pgfpathlineto{\pgfqpoint{2.162465in}{1.529876in}}% +\pgfpathlineto{\pgfqpoint{2.180387in}{1.517394in}}% +\pgfpathlineto{\pgfqpoint{2.193829in}{1.505585in}}% +\pgfpathlineto{\pgfqpoint{2.207270in}{1.490920in}}% +\pgfpathlineto{\pgfqpoint{2.220712in}{1.472198in}}% +\pgfpathlineto{\pgfqpoint{2.229673in}{1.456342in}}% +\pgfpathlineto{\pgfqpoint{2.238634in}{1.435886in}}% +\pgfpathlineto{\pgfqpoint{2.247595in}{1.408979in}}% +\pgfpathlineto{\pgfqpoint{2.256557in}{1.369903in}}% +\pgfpathlineto{\pgfqpoint{2.261037in}{1.341086in}}% +\pgfpathlineto{\pgfqpoint{2.265518in}{1.298089in}}% +\pgfpathlineto{\pgfqpoint{2.269998in}{1.211274in}}% +\pgfpathlineto{\pgfqpoint{2.274479in}{1.175302in}}% +\pgfpathlineto{\pgfqpoint{2.278959in}{1.285912in}}% +\pgfpathlineto{\pgfqpoint{2.283440in}{1.333390in}}% +\pgfpathlineto{\pgfqpoint{2.287920in}{1.363982in}}% +\pgfpathlineto{\pgfqpoint{2.296882in}{1.404401in}}% +\pgfpathlineto{\pgfqpoint{2.305843in}{1.431670in}}% +\pgfpathlineto{\pgfqpoint{2.314804in}{1.452127in}}% +\pgfpathlineto{\pgfqpoint{2.323765in}{1.468382in}}% +\pgfpathlineto{\pgfqpoint{2.337206in}{1.487634in}}% +\pgfpathlineto{\pgfqpoint{2.350648in}{1.502718in}}% +\pgfpathlineto{\pgfqpoint{2.364090in}{1.514883in}}% +\pgfpathlineto{\pgfqpoint{2.382012in}{1.527780in}}% +\pgfpathlineto{\pgfqpoint{2.399934in}{1.537791in}}% +\pgfpathlineto{\pgfqpoint{2.417856in}{1.545530in}}% +\pgfpathlineto{\pgfqpoint{2.440259in}{1.552576in}}% +\pgfpathlineto{\pgfqpoint{2.462662in}{1.557120in}}% +\pgfpathlineto{\pgfqpoint{2.485065in}{1.559419in}}% +\pgfpathlineto{\pgfqpoint{2.507468in}{1.559589in}}% +\pgfpathlineto{\pgfqpoint{2.529870in}{1.557632in}}% +\pgfpathlineto{\pgfqpoint{2.552273in}{1.553434in}}% +\pgfpathlineto{\pgfqpoint{2.574676in}{1.546744in}}% +\pgfpathlineto{\pgfqpoint{2.592598in}{1.539302in}}% +\pgfpathlineto{\pgfqpoint{2.610520in}{1.529601in}}% +\pgfpathlineto{\pgfqpoint{2.628442in}{1.517038in}}% +\pgfpathlineto{\pgfqpoint{2.641884in}{1.505147in}}% +\pgfpathlineto{\pgfqpoint{2.655326in}{1.490370in}}% +\pgfpathlineto{\pgfqpoint{2.668767in}{1.471482in}}% +\pgfpathlineto{\pgfqpoint{2.677729in}{1.455429in}}% +\pgfpathlineto{\pgfqpoint{2.686690in}{1.434722in}}% +\pgfpathlineto{\pgfqpoint{2.695651in}{1.407388in}}% +\pgfpathlineto{\pgfqpoint{2.704612in}{1.367409in}}% +\pgfpathlineto{\pgfqpoint{2.709092in}{1.337613in}}% +\pgfpathlineto{\pgfqpoint{2.713573in}{1.292375in}}% +\pgfpathlineto{\pgfqpoint{2.718053in}{1.195143in}}% +\pgfpathlineto{\pgfqpoint{2.722534in}{1.195017in}}% +\pgfpathlineto{\pgfqpoint{2.727015in}{1.291995in}}% +\pgfpathlineto{\pgfqpoint{2.731495in}{1.336980in}}% +\pgfpathlineto{\pgfqpoint{2.735976in}{1.366523in}}% +\pgfpathlineto{\pgfqpoint{2.744937in}{1.405996in}}% +\pgfpathlineto{\pgfqpoint{2.753898in}{1.432824in}}% +\pgfpathlineto{\pgfqpoint{2.762859in}{1.453025in}}% +\pgfpathlineto{\pgfqpoint{2.776301in}{1.476040in}}% +\pgfpathlineto{\pgfqpoint{2.789742in}{1.493567in}}% +\pgfpathlineto{\pgfqpoint{2.803184in}{1.507471in}}% +\pgfpathlineto{\pgfqpoint{2.821106in}{1.522064in}}% +\pgfpathlineto{\pgfqpoint{2.839028in}{1.533350in}}% +\pgfpathlineto{\pgfqpoint{2.856951in}{1.542109in}}% +\pgfpathlineto{\pgfqpoint{2.879353in}{1.550212in}}% +\pgfpathlineto{\pgfqpoint{2.901756in}{1.555668in}}% +\pgfpathlineto{\pgfqpoint{2.924159in}{1.558800in}}% +\pgfpathlineto{\pgfqpoint{2.946562in}{1.559773in}}% +\pgfpathlineto{\pgfqpoint{2.968964in}{1.558630in}}% +\pgfpathlineto{\pgfqpoint{2.991367in}{1.555306in}}% +\pgfpathlineto{\pgfqpoint{3.013770in}{1.549603in}}% +\pgfpathlineto{\pgfqpoint{3.031692in}{1.543091in}}% +\pgfpathlineto{\pgfqpoint{3.049614in}{1.534522in}}% +\pgfpathlineto{\pgfqpoint{3.067537in}{1.523414in}}% +\pgfpathlineto{\pgfqpoint{3.080978in}{1.512960in}}% +\pgfpathlineto{\pgfqpoint{3.094420in}{1.500114in}}% +\pgfpathlineto{\pgfqpoint{3.107862in}{1.484011in}}% +\pgfpathlineto{\pgfqpoint{3.121303in}{1.463122in}}% +\pgfpathlineto{\pgfqpoint{3.130264in}{1.444668in}}% +\pgfpathlineto{\pgfqpoint{3.139225in}{1.420761in}}% +\pgfpathlineto{\pgfqpoint{3.148187in}{1.387663in}}% +\pgfpathlineto{\pgfqpoint{3.152667in}{1.364843in}}% +\pgfpathlineto{\pgfqpoint{3.157148in}{1.333997in}}% +\pgfpathlineto{\pgfqpoint{3.161628in}{1.286266in}}% +\pgfpathlineto{\pgfqpoint{3.166109in}{1.175404in}}% +\pgfpathlineto{\pgfqpoint{3.170589in}{1.211122in}}% +\pgfpathlineto{\pgfqpoint{3.175070in}{1.297684in}}% +\pgfpathlineto{\pgfqpoint{3.179550in}{1.340428in}}% +\pgfpathlineto{\pgfqpoint{3.188512in}{1.390430in}}% +\pgfpathlineto{\pgfqpoint{3.197473in}{1.421802in}}% +\pgfpathlineto{\pgfqpoint{3.206434in}{1.444553in}}% +\pgfpathlineto{\pgfqpoint{3.215395in}{1.462282in}}% +\pgfpathlineto{\pgfqpoint{3.228837in}{1.482978in}}% +\pgfpathlineto{\pgfqpoint{3.242278in}{1.499021in}}% +\pgfpathlineto{\pgfqpoint{3.255720in}{1.511877in}}% +\pgfpathlineto{\pgfqpoint{3.273642in}{1.525457in}}% +\pgfpathlineto{\pgfqpoint{3.291564in}{1.535987in}}% +\pgfpathlineto{\pgfqpoint{3.309486in}{1.544143in}}% +\pgfpathlineto{\pgfqpoint{3.331889in}{1.551626in}}% +\pgfpathlineto{\pgfqpoint{3.354292in}{1.556549in}}% +\pgfpathlineto{\pgfqpoint{3.376695in}{1.559196in}}% +\pgfpathlineto{\pgfqpoint{3.399098in}{1.559703in}}% +\pgfpathlineto{\pgfqpoint{3.421500in}{1.558091in}}% +\pgfpathlineto{\pgfqpoint{3.443903in}{1.554265in}}% +\pgfpathlineto{\pgfqpoint{3.466306in}{1.547998in}}% +\pgfpathlineto{\pgfqpoint{3.484228in}{1.540956in}}% +\pgfpathlineto{\pgfqpoint{3.502150in}{1.531747in}}% +\pgfpathlineto{\pgfqpoint{3.520072in}{1.519820in}}% +\pgfpathlineto{\pgfqpoint{3.533514in}{1.508564in}}% +\pgfpathlineto{\pgfqpoint{3.546956in}{1.494649in}}% +\pgfpathlineto{\pgfqpoint{3.560397in}{1.477023in}}% +\pgfpathlineto{\pgfqpoint{3.569359in}{1.462314in}}% +\pgfpathlineto{\pgfqpoint{3.578320in}{1.443619in}}% +\pgfpathlineto{\pgfqpoint{3.587281in}{1.419372in}}% +\pgfpathlineto{\pgfqpoint{3.596242in}{1.385629in}}% +\pgfpathlineto{\pgfqpoint{3.600722in}{1.362199in}}% +\pgfpathlineto{\pgfqpoint{3.605203in}{1.330228in}}% +\pgfpathlineto{\pgfqpoint{3.609684in}{1.279705in}}% +\pgfpathlineto{\pgfqpoint{3.614164in}{1.149958in}}% +\pgfpathlineto{\pgfqpoint{3.623125in}{1.303027in}}% +\pgfpathlineto{\pgfqpoint{3.627606in}{1.343745in}}% +\pgfpathlineto{\pgfqpoint{3.636567in}{1.392307in}}% +\pgfpathlineto{\pgfqpoint{3.645528in}{1.423101in}}% +\pgfpathlineto{\pgfqpoint{3.654489in}{1.445540in}}% +\pgfpathlineto{\pgfqpoint{3.663450in}{1.463071in}}% +\pgfpathlineto{\pgfqpoint{3.676892in}{1.483577in}}% +\pgfpathlineto{\pgfqpoint{3.690333in}{1.499495in}}% +\pgfpathlineto{\pgfqpoint{3.703775in}{1.512262in}}% +\pgfpathlineto{\pgfqpoint{3.721697in}{1.525754in}}% +\pgfpathlineto{\pgfqpoint{3.739620in}{1.536217in}}% +\pgfpathlineto{\pgfqpoint{3.757542in}{1.544321in}}% +\pgfpathlineto{\pgfqpoint{3.779945in}{1.551748in}}% +\pgfpathlineto{\pgfqpoint{3.802347in}{1.556623in}}% +\pgfpathlineto{\pgfqpoint{3.824750in}{1.559227in}}% +\pgfpathlineto{\pgfqpoint{3.847153in}{1.559692in}}% +\pgfpathlineto{\pgfqpoint{3.869556in}{1.558037in}}% +\pgfpathlineto{\pgfqpoint{3.891958in}{1.554164in}}% +\pgfpathlineto{\pgfqpoint{3.914361in}{1.547845in}}% +\pgfpathlineto{\pgfqpoint{3.932283in}{1.540754in}}% +\pgfpathlineto{\pgfqpoint{3.950206in}{1.531485in}}% +\pgfpathlineto{\pgfqpoint{3.968128in}{1.519481in}}% +\pgfpathlineto{\pgfqpoint{3.981569in}{1.508147in}}% +\pgfpathlineto{\pgfqpoint{3.995011in}{1.494129in}}% +\pgfpathlineto{\pgfqpoint{4.008453in}{1.476353in}}% +\pgfpathlineto{\pgfqpoint{4.017414in}{1.461497in}}% +\pgfpathlineto{\pgfqpoint{4.026375in}{1.442556in}}% +\pgfpathlineto{\pgfqpoint{4.035336in}{1.417961in}}% +\pgfpathlineto{\pgfqpoint{4.044297in}{1.383547in}}% +\pgfpathlineto{\pgfqpoint{4.048778in}{1.359475in}}% +\pgfpathlineto{\pgfqpoint{4.053258in}{1.326291in}}% +\pgfpathlineto{\pgfqpoint{4.057739in}{1.272619in}}% +\pgfpathlineto{\pgfqpoint{4.062219in}{1.114099in}}% +\pgfpathlineto{\pgfqpoint{4.066700in}{1.236527in}}% +\pgfpathlineto{\pgfqpoint{4.071181in}{1.308063in}}% +\pgfpathlineto{\pgfqpoint{4.075661in}{1.346940in}}% +\pgfpathlineto{\pgfqpoint{4.084622in}{1.394143in}}% +\pgfpathlineto{\pgfqpoint{4.093583in}{1.424381in}}% +\pgfpathlineto{\pgfqpoint{4.102544in}{1.446514in}}% +\pgfpathlineto{\pgfqpoint{4.111505in}{1.463853in}}% +\pgfpathlineto{\pgfqpoint{4.124947in}{1.484171in}}% +\pgfpathlineto{\pgfqpoint{4.138389in}{1.499965in}}% +\pgfpathlineto{\pgfqpoint{4.151830in}{1.512644in}}% +\pgfpathlineto{\pgfqpoint{4.169753in}{1.526049in}}% +\pgfpathlineto{\pgfqpoint{4.187675in}{1.536446in}}% +\pgfpathlineto{\pgfqpoint{4.205597in}{1.544497in}}% +\pgfpathlineto{\pgfqpoint{4.228000in}{1.551869in}}% +\pgfpathlineto{\pgfqpoint{4.250403in}{1.556697in}}% +\pgfpathlineto{\pgfqpoint{4.272805in}{1.559257in}}% +\pgfpathlineto{\pgfqpoint{4.295208in}{1.559680in}}% +\pgfpathlineto{\pgfqpoint{4.317611in}{1.557981in}}% +\pgfpathlineto{\pgfqpoint{4.340014in}{1.554063in}}% +\pgfpathlineto{\pgfqpoint{4.362416in}{1.547691in}}% +\pgfpathlineto{\pgfqpoint{4.380339in}{1.540551in}}% +\pgfpathlineto{\pgfqpoint{4.398261in}{1.531221in}}% +\pgfpathlineto{\pgfqpoint{4.416183in}{1.519138in}}% +\pgfpathlineto{\pgfqpoint{4.429625in}{1.507728in}}% +\pgfpathlineto{\pgfqpoint{4.443066in}{1.493604in}}% +\pgfpathlineto{\pgfqpoint{4.456508in}{1.475676in}}% +\pgfpathlineto{\pgfqpoint{4.465469in}{1.460672in}}% +\pgfpathlineto{\pgfqpoint{4.474430in}{1.441480in}}% +\pgfpathlineto{\pgfqpoint{4.483391in}{1.416527in}}% +\pgfpathlineto{\pgfqpoint{4.492352in}{1.381415in}}% +\pgfpathlineto{\pgfqpoint{4.496833in}{1.356663in}}% +\pgfpathlineto{\pgfqpoint{4.501314in}{1.322171in}}% +\pgfpathlineto{\pgfqpoint{4.505794in}{1.264917in}}% +\pgfpathlineto{\pgfqpoint{4.510275in}{1.052809in}}% +\pgfpathlineto{\pgfqpoint{4.514755in}{1.246926in}}% +\pgfpathlineto{\pgfqpoint{4.519236in}{1.312826in}}% +\pgfpathlineto{\pgfqpoint{4.523716in}{1.350023in}}% +\pgfpathlineto{\pgfqpoint{4.532677in}{1.395940in}}% +\pgfpathlineto{\pgfqpoint{4.541639in}{1.425641in}}% +\pgfpathlineto{\pgfqpoint{4.550600in}{1.447477in}}% +\pgfpathlineto{\pgfqpoint{4.559561in}{1.464626in}}% +\pgfpathlineto{\pgfqpoint{4.573002in}{1.484760in}}% +\pgfpathlineto{\pgfqpoint{4.586444in}{1.500432in}}% +\pgfpathlineto{\pgfqpoint{4.599886in}{1.513023in}}% +\pgfpathlineto{\pgfqpoint{4.617808in}{1.526342in}}% +\pgfpathlineto{\pgfqpoint{4.635730in}{1.536674in}}% +\pgfpathlineto{\pgfqpoint{4.653652in}{1.544672in}}% +\pgfpathlineto{\pgfqpoint{4.676055in}{1.551989in}}% +\pgfpathlineto{\pgfqpoint{4.698458in}{1.556770in}}% +\pgfpathlineto{\pgfqpoint{4.720861in}{1.559286in}}% +\pgfpathlineto{\pgfqpoint{4.743263in}{1.559667in}}% +\pgfpathlineto{\pgfqpoint{4.765666in}{1.557925in}}% +\pgfpathlineto{\pgfqpoint{4.788069in}{1.553961in}}% +\pgfpathlineto{\pgfqpoint{4.810472in}{1.547536in}}% +\pgfpathlineto{\pgfqpoint{4.828394in}{1.540346in}}% +\pgfpathlineto{\pgfqpoint{4.846316in}{1.530955in}}% +\pgfpathlineto{\pgfqpoint{4.864238in}{1.518794in}}% +\pgfpathlineto{\pgfqpoint{4.877680in}{1.507305in}}% +\pgfpathlineto{\pgfqpoint{4.891122in}{1.493076in}}% +\pgfpathlineto{\pgfqpoint{4.904563in}{1.474994in}}% +\pgfpathlineto{\pgfqpoint{4.913524in}{1.459899in}}% +\pgfpathlineto{\pgfqpoint{4.922486in}{1.440390in}}% +\pgfpathlineto{\pgfqpoint{4.931447in}{1.415069in}}% +\pgfpathlineto{\pgfqpoint{4.940408in}{1.379229in}}% +\pgfpathlineto{\pgfqpoint{4.944888in}{1.353760in}}% +\pgfpathlineto{\pgfqpoint{4.949369in}{1.317850in}}% +\pgfpathlineto{\pgfqpoint{4.953849in}{1.256481in}}% +\pgfpathlineto{\pgfqpoint{4.957385in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.957385in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.484920in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.486738in}{0.865993in}}% +\pgfpathlineto{\pgfqpoint{0.491219in}{0.927217in}}% +\pgfpathlineto{\pgfqpoint{0.495699in}{0.962980in}}% +\pgfpathlineto{\pgfqpoint{0.504660in}{1.007892in}}% +\pgfpathlineto{\pgfqpoint{0.513621in}{1.037282in}}% +\pgfpathlineto{\pgfqpoint{0.522583in}{1.059035in}}% +\pgfpathlineto{\pgfqpoint{0.531544in}{1.076201in}}% +\pgfpathlineto{\pgfqpoint{0.544985in}{1.096454in}}% +\pgfpathlineto{\pgfqpoint{0.558427in}{1.112300in}}% +\pgfpathlineto{\pgfqpoint{0.571869in}{1.125092in}}% +\pgfpathlineto{\pgfqpoint{0.589791in}{1.138700in}}% +\pgfpathlineto{\pgfqpoint{0.607713in}{1.149332in}}% +\pgfpathlineto{\pgfqpoint{0.625635in}{1.157631in}}% +\pgfpathlineto{\pgfqpoint{0.648038in}{1.165321in}}% +\pgfpathlineto{\pgfqpoint{0.670441in}{1.170464in}}% +\pgfpathlineto{\pgfqpoint{0.692844in}{1.173330in}}% +\pgfpathlineto{\pgfqpoint{0.715246in}{1.174044in}}% +\pgfpathlineto{\pgfqpoint{0.737649in}{1.172617in}}% +\pgfpathlineto{\pgfqpoint{0.751091in}{1.170011in}}% +\pgfpathlineto{\pgfqpoint{0.773493in}{1.163673in}}% +\pgfpathlineto{\pgfqpoint{0.795896in}{1.154614in}}% +\pgfpathlineto{\pgfqpoint{0.813818in}{1.145013in}}% +\pgfpathlineto{\pgfqpoint{0.831741in}{1.132778in}}% +\pgfpathlineto{\pgfqpoint{0.845182in}{1.121387in}}% +\pgfpathlineto{\pgfqpoint{0.858624in}{1.107479in}}% +\pgfpathlineto{\pgfqpoint{0.872066in}{1.090112in}}% +\pgfpathlineto{\pgfqpoint{0.881027in}{1.075824in}}% +\pgfpathlineto{\pgfqpoint{0.889988in}{1.058399in}}% +\pgfpathlineto{\pgfqpoint{0.898949in}{1.036283in}}% +\pgfpathlineto{\pgfqpoint{0.907910in}{1.006300in}}% +\pgfpathlineto{\pgfqpoint{0.912391in}{0.986219in}}% +\pgfpathlineto{\pgfqpoint{0.916871in}{0.960098in}}% +\pgfpathlineto{\pgfqpoint{0.921352in}{0.922758in}}% +\pgfpathlineto{\pgfqpoint{0.925832in}{0.856714in}}% +\pgfpathlineto{\pgfqpoint{0.930313in}{0.662449in}}% +\pgfpathlineto{\pgfqpoint{0.934793in}{0.874414in}}% +\pgfpathlineto{\pgfqpoint{0.939274in}{0.931523in}}% +\pgfpathlineto{\pgfqpoint{0.943755in}{0.965868in}}% +\pgfpathlineto{\pgfqpoint{0.952716in}{1.009627in}}% +\pgfpathlineto{\pgfqpoint{0.961677in}{1.038515in}}% +\pgfpathlineto{\pgfqpoint{0.970638in}{1.059985in}}% +\pgfpathlineto{\pgfqpoint{0.979599in}{1.076970in}}% +\pgfpathlineto{\pgfqpoint{0.993041in}{1.097043in}}% +\pgfpathlineto{\pgfqpoint{1.006482in}{1.112770in}}% +\pgfpathlineto{\pgfqpoint{1.019924in}{1.125476in}}% +\pgfpathlineto{\pgfqpoint{1.037846in}{1.138999in}}% +\pgfpathlineto{\pgfqpoint{1.055768in}{1.149566in}}% +\pgfpathlineto{\pgfqpoint{1.073691in}{1.157813in}}% +\pgfpathlineto{\pgfqpoint{1.096093in}{1.165448in}}% +\pgfpathlineto{\pgfqpoint{1.118496in}{1.170543in}}% +\pgfpathlineto{\pgfqpoint{1.140899in}{1.173365in}}% +\pgfpathlineto{\pgfqpoint{1.163302in}{1.174037in}}% +\pgfpathlineto{\pgfqpoint{1.185704in}{1.172566in}}% +\pgfpathlineto{\pgfqpoint{1.208107in}{1.167654in}}% +\pgfpathlineto{\pgfqpoint{1.230510in}{1.160227in}}% +\pgfpathlineto{\pgfqpoint{1.248432in}{1.152203in}}% +\pgfpathlineto{\pgfqpoint{1.266354in}{1.141938in}}% +\pgfpathlineto{\pgfqpoint{1.284277in}{1.128852in}}% +\pgfpathlineto{\pgfqpoint{1.297718in}{1.116619in}}% +\pgfpathlineto{\pgfqpoint{1.311160in}{1.101580in}}% +\pgfpathlineto{\pgfqpoint{1.324602in}{1.082579in}}% +\pgfpathlineto{\pgfqpoint{1.333563in}{1.066705in}}% +\pgfpathlineto{\pgfqpoint{1.342524in}{1.046961in}}% +\pgfpathlineto{\pgfqpoint{1.351485in}{1.021096in}}% +\pgfpathlineto{\pgfqpoint{1.360446in}{0.983931in}}% +\pgfpathlineto{\pgfqpoint{1.364926in}{0.957001in}}% +\pgfpathlineto{\pgfqpoint{1.369407in}{0.917981in}}% +\pgfpathlineto{\pgfqpoint{1.373888in}{0.846301in}}% +\pgfpathlineto{\pgfqpoint{1.378368in}{0.723727in}}% +\pgfpathlineto{\pgfqpoint{1.382849in}{0.882102in}}% +\pgfpathlineto{\pgfqpoint{1.387329in}{0.935628in}}% +\pgfpathlineto{\pgfqpoint{1.391810in}{0.968665in}}% +\pgfpathlineto{\pgfqpoint{1.400771in}{1.011328in}}% +\pgfpathlineto{\pgfqpoint{1.409732in}{1.039731in}}% +\pgfpathlineto{\pgfqpoint{1.418693in}{1.060925in}}% +\pgfpathlineto{\pgfqpoint{1.427654in}{1.077731in}}% +\pgfpathlineto{\pgfqpoint{1.441096in}{1.097628in}}% +\pgfpathlineto{\pgfqpoint{1.454538in}{1.113237in}}% +\pgfpathlineto{\pgfqpoint{1.467979in}{1.125857in}}% +\pgfpathlineto{\pgfqpoint{1.485901in}{1.139296in}}% +\pgfpathlineto{\pgfqpoint{1.503824in}{1.149798in}}% +\pgfpathlineto{\pgfqpoint{1.521746in}{1.157993in}}% +\pgfpathlineto{\pgfqpoint{1.544149in}{1.165574in}}% +\pgfpathlineto{\pgfqpoint{1.566551in}{1.170621in}}% +\pgfpathlineto{\pgfqpoint{1.588954in}{1.173399in}}% +\pgfpathlineto{\pgfqpoint{1.611357in}{1.174028in}}% +\pgfpathlineto{\pgfqpoint{1.633760in}{1.172515in}}% +\pgfpathlineto{\pgfqpoint{1.656162in}{1.167531in}}% +\pgfpathlineto{\pgfqpoint{1.678565in}{1.160051in}}% +\pgfpathlineto{\pgfqpoint{1.696487in}{1.151975in}}% +\pgfpathlineto{\pgfqpoint{1.714410in}{1.141649in}}% +\pgfpathlineto{\pgfqpoint{1.732332in}{1.128481in}}% +\pgfpathlineto{\pgfqpoint{1.745773in}{1.116168in}}% +\pgfpathlineto{\pgfqpoint{1.759215in}{1.101019in}}% +\pgfpathlineto{\pgfqpoint{1.772657in}{1.081856in}}% +\pgfpathlineto{\pgfqpoint{1.781618in}{1.065823in}}% +\pgfpathlineto{\pgfqpoint{1.790579in}{1.045840in}}% +\pgfpathlineto{\pgfqpoint{1.799540in}{1.019572in}}% +\pgfpathlineto{\pgfqpoint{1.808501in}{0.981581in}}% +\pgfpathlineto{\pgfqpoint{1.812982in}{0.953791in}}% +\pgfpathlineto{\pgfqpoint{1.817462in}{0.912930in}}% +\pgfpathlineto{\pgfqpoint{1.826423in}{0.759572in}}% +\pgfpathlineto{\pgfqpoint{1.830904in}{0.889174in}}% +\pgfpathlineto{\pgfqpoint{1.835385in}{0.939550in}}% +\pgfpathlineto{\pgfqpoint{1.839865in}{0.971375in}}% +\pgfpathlineto{\pgfqpoint{1.848826in}{1.012997in}}% +\pgfpathlineto{\pgfqpoint{1.857787in}{1.040929in}}% +\pgfpathlineto{\pgfqpoint{1.866748in}{1.061854in}}% +\pgfpathlineto{\pgfqpoint{1.875710in}{1.078484in}}% +\pgfpathlineto{\pgfqpoint{1.889151in}{1.098208in}}% +\pgfpathlineto{\pgfqpoint{1.902593in}{1.113700in}}% +\pgfpathlineto{\pgfqpoint{1.916035in}{1.126236in}}% +\pgfpathlineto{\pgfqpoint{1.933957in}{1.139591in}}% +\pgfpathlineto{\pgfqpoint{1.951879in}{1.150029in}}% +\pgfpathlineto{\pgfqpoint{1.969801in}{1.158172in}}% +\pgfpathlineto{\pgfqpoint{1.992204in}{1.165698in}}% +\pgfpathlineto{\pgfqpoint{2.014607in}{1.170699in}}% +\pgfpathlineto{\pgfqpoint{2.037009in}{1.173433in}}% +\pgfpathlineto{\pgfqpoint{2.059412in}{1.174019in}}% +\pgfpathlineto{\pgfqpoint{2.081815in}{1.172462in}}% +\pgfpathlineto{\pgfqpoint{2.104218in}{1.167407in}}% +\pgfpathlineto{\pgfqpoint{2.126620in}{1.159873in}}% +\pgfpathlineto{\pgfqpoint{2.144543in}{1.151746in}}% +\pgfpathlineto{\pgfqpoint{2.162465in}{1.141357in}}% +\pgfpathlineto{\pgfqpoint{2.180387in}{1.128108in}}% +\pgfpathlineto{\pgfqpoint{2.193829in}{1.115713in}}% +\pgfpathlineto{\pgfqpoint{2.207270in}{1.100454in}}% +\pgfpathlineto{\pgfqpoint{2.220712in}{1.081127in}}% +\pgfpathlineto{\pgfqpoint{2.229673in}{1.064931in}}% +\pgfpathlineto{\pgfqpoint{2.238634in}{1.044703in}}% +\pgfpathlineto{\pgfqpoint{2.247595in}{1.018021in}}% +\pgfpathlineto{\pgfqpoint{2.256557in}{0.979167in}}% +\pgfpathlineto{\pgfqpoint{2.261037in}{0.950460in}}% +\pgfpathlineto{\pgfqpoint{2.265518in}{0.907573in}}% +\pgfpathlineto{\pgfqpoint{2.269998in}{0.820866in}}% +\pgfpathlineto{\pgfqpoint{2.274479in}{0.785003in}}% +\pgfpathlineto{\pgfqpoint{2.278959in}{0.895720in}}% +\pgfpathlineto{\pgfqpoint{2.283440in}{0.943305in}}% +\pgfpathlineto{\pgfqpoint{2.287920in}{0.974004in}}% +\pgfpathlineto{\pgfqpoint{2.296882in}{1.014633in}}% +\pgfpathlineto{\pgfqpoint{2.305843in}{1.042110in}}% +\pgfpathlineto{\pgfqpoint{2.314804in}{1.062773in}}% +\pgfpathlineto{\pgfqpoint{2.328245in}{1.086325in}}% +\pgfpathlineto{\pgfqpoint{2.341687in}{1.104296in}}% +\pgfpathlineto{\pgfqpoint{2.355129in}{1.118593in}}% +\pgfpathlineto{\pgfqpoint{2.373051in}{1.133662in}}% +\pgfpathlineto{\pgfqpoint{2.390973in}{1.145388in}}% +\pgfpathlineto{\pgfqpoint{2.408895in}{1.154562in}}% +\pgfpathlineto{\pgfqpoint{2.431298in}{1.163156in}}% +\pgfpathlineto{\pgfqpoint{2.453701in}{1.169076in}}% +\pgfpathlineto{\pgfqpoint{2.476104in}{1.172650in}}% +\pgfpathlineto{\pgfqpoint{2.498506in}{1.174047in}}% +\pgfpathlineto{\pgfqpoint{2.520909in}{1.173311in}}% +\pgfpathlineto{\pgfqpoint{2.538831in}{1.170607in}}% +\pgfpathlineto{\pgfqpoint{2.561234in}{1.164569in}}% +\pgfpathlineto{\pgfqpoint{2.583637in}{1.155862in}}% +\pgfpathlineto{\pgfqpoint{2.601559in}{1.146605in}}% +\pgfpathlineto{\pgfqpoint{2.619481in}{1.134809in}}% +\pgfpathlineto{\pgfqpoint{2.632923in}{1.123845in}}% +\pgfpathlineto{\pgfqpoint{2.646365in}{1.110500in}}% +\pgfpathlineto{\pgfqpoint{2.659806in}{1.093927in}}% +\pgfpathlineto{\pgfqpoint{2.673248in}{1.072627in}}% +\pgfpathlineto{\pgfqpoint{2.682209in}{1.054419in}}% +\pgfpathlineto{\pgfqpoint{2.691170in}{1.031068in}}% +\pgfpathlineto{\pgfqpoint{2.700131in}{0.998814in}}% +\pgfpathlineto{\pgfqpoint{2.704612in}{0.976684in}}% +\pgfpathlineto{\pgfqpoint{2.709092in}{0.946997in}}% +\pgfpathlineto{\pgfqpoint{2.713573in}{0.901869in}}% +\pgfpathlineto{\pgfqpoint{2.718053in}{0.804747in}}% +\pgfpathlineto{\pgfqpoint{2.722534in}{0.804728in}}% +\pgfpathlineto{\pgfqpoint{2.727015in}{0.901814in}}% +\pgfpathlineto{\pgfqpoint{2.731495in}{0.946906in}}% +\pgfpathlineto{\pgfqpoint{2.735976in}{0.976555in}}% +\pgfpathlineto{\pgfqpoint{2.744937in}{1.016239in}}% +\pgfpathlineto{\pgfqpoint{2.753898in}{1.043275in}}% +\pgfpathlineto{\pgfqpoint{2.762859in}{1.063681in}}% +\pgfpathlineto{\pgfqpoint{2.776301in}{1.087000in}}% +\pgfpathlineto{\pgfqpoint{2.789742in}{1.104824in}}% +\pgfpathlineto{\pgfqpoint{2.803184in}{1.119020in}}% +\pgfpathlineto{\pgfqpoint{2.821106in}{1.133992in}}% +\pgfpathlineto{\pgfqpoint{2.839028in}{1.145646in}}% +\pgfpathlineto{\pgfqpoint{2.856951in}{1.154763in}}% +\pgfpathlineto{\pgfqpoint{2.879353in}{1.163299in}}% +\pgfpathlineto{\pgfqpoint{2.901756in}{1.169170in}}% +\pgfpathlineto{\pgfqpoint{2.924159in}{1.172699in}}% +\pgfpathlineto{\pgfqpoint{2.946562in}{1.174053in}}% +\pgfpathlineto{\pgfqpoint{2.968964in}{1.173274in}}% +\pgfpathlineto{\pgfqpoint{2.986887in}{1.170510in}}% +\pgfpathlineto{\pgfqpoint{3.009289in}{1.164422in}}% +\pgfpathlineto{\pgfqpoint{3.031692in}{1.155657in}}% +\pgfpathlineto{\pgfqpoint{3.049614in}{1.146344in}}% +\pgfpathlineto{\pgfqpoint{3.067537in}{1.134476in}}% +\pgfpathlineto{\pgfqpoint{3.080978in}{1.123442in}}% +\pgfpathlineto{\pgfqpoint{3.094420in}{1.110006in}}% +\pgfpathlineto{\pgfqpoint{3.107862in}{1.093305in}}% +\pgfpathlineto{\pgfqpoint{3.121303in}{1.071807in}}% +\pgfpathlineto{\pgfqpoint{3.130264in}{1.053394in}}% +\pgfpathlineto{\pgfqpoint{3.139225in}{1.029712in}}% +\pgfpathlineto{\pgfqpoint{3.148187in}{0.996838in}}% +\pgfpathlineto{\pgfqpoint{3.152667in}{0.974128in}}% +\pgfpathlineto{\pgfqpoint{3.157148in}{0.943393in}}% +\pgfpathlineto{\pgfqpoint{3.161628in}{0.895772in}}% +\pgfpathlineto{\pgfqpoint{3.166109in}{0.785018in}}% +\pgfpathlineto{\pgfqpoint{3.170589in}{0.820844in}}% +\pgfpathlineto{\pgfqpoint{3.175070in}{0.907514in}}% +\pgfpathlineto{\pgfqpoint{3.179550in}{0.950365in}}% +\pgfpathlineto{\pgfqpoint{3.188512in}{1.000578in}}% +\pgfpathlineto{\pgfqpoint{3.197473in}{1.032160in}}% +\pgfpathlineto{\pgfqpoint{3.206434in}{1.055117in}}% +\pgfpathlineto{\pgfqpoint{3.215395in}{1.073050in}}% +\pgfpathlineto{\pgfqpoint{3.228837in}{1.094048in}}% +\pgfpathlineto{\pgfqpoint{3.242278in}{1.110385in}}% +\pgfpathlineto{\pgfqpoint{3.255720in}{1.123531in}}% +\pgfpathlineto{\pgfqpoint{3.273642in}{1.137487in}}% +\pgfpathlineto{\pgfqpoint{3.291564in}{1.148382in}}% +\pgfpathlineto{\pgfqpoint{3.309486in}{1.156894in}}% +\pgfpathlineto{\pgfqpoint{3.331889in}{1.164805in}}% +\pgfpathlineto{\pgfqpoint{3.354292in}{1.170139in}}% +\pgfpathlineto{\pgfqpoint{3.376695in}{1.173181in}}% +\pgfpathlineto{\pgfqpoint{3.399098in}{1.174065in}}% +\pgfpathlineto{\pgfqpoint{3.421500in}{1.172812in}}% +\pgfpathlineto{\pgfqpoint{3.434942in}{1.170412in}}% +\pgfpathlineto{\pgfqpoint{3.457345in}{1.164275in}}% +\pgfpathlineto{\pgfqpoint{3.479748in}{1.155451in}}% +\pgfpathlineto{\pgfqpoint{3.497670in}{1.146081in}}% +\pgfpathlineto{\pgfqpoint{3.515592in}{1.134141in}}% +\pgfpathlineto{\pgfqpoint{3.529034in}{1.123036in}}% +\pgfpathlineto{\pgfqpoint{3.542475in}{1.109508in}}% +\pgfpathlineto{\pgfqpoint{3.555917in}{1.092677in}}% +\pgfpathlineto{\pgfqpoint{3.569359in}{1.070979in}}% +\pgfpathlineto{\pgfqpoint{3.578320in}{1.052356in}}% +\pgfpathlineto{\pgfqpoint{3.587281in}{1.028335in}}% +\pgfpathlineto{\pgfqpoint{3.596242in}{0.994815in}}% +\pgfpathlineto{\pgfqpoint{3.600722in}{0.971496in}}% +\pgfpathlineto{\pgfqpoint{3.605203in}{0.939635in}}% +\pgfpathlineto{\pgfqpoint{3.609684in}{0.889222in}}% +\pgfpathlineto{\pgfqpoint{3.614164in}{0.759583in}}% +\pgfpathlineto{\pgfqpoint{3.623125in}{0.912868in}}% +\pgfpathlineto{\pgfqpoint{3.627606in}{0.953692in}}% +\pgfpathlineto{\pgfqpoint{3.636567in}{1.002466in}}% +\pgfpathlineto{\pgfqpoint{3.645528in}{1.033470in}}% +\pgfpathlineto{\pgfqpoint{3.654489in}{1.056114in}}% +\pgfpathlineto{\pgfqpoint{3.663450in}{1.073849in}}% +\pgfpathlineto{\pgfqpoint{3.676892in}{1.094657in}}% +\pgfpathlineto{\pgfqpoint{3.690333in}{1.110869in}}% +\pgfpathlineto{\pgfqpoint{3.703775in}{1.123925in}}% +\pgfpathlineto{\pgfqpoint{3.721697in}{1.137793in}}% +\pgfpathlineto{\pgfqpoint{3.739620in}{1.148622in}}% +\pgfpathlineto{\pgfqpoint{3.757542in}{1.157080in}}% +\pgfpathlineto{\pgfqpoint{3.779945in}{1.164935in}}% +\pgfpathlineto{\pgfqpoint{3.802347in}{1.170222in}}% +\pgfpathlineto{\pgfqpoint{3.824750in}{1.173219in}}% +\pgfpathlineto{\pgfqpoint{3.847153in}{1.174061in}}% +\pgfpathlineto{\pgfqpoint{3.869556in}{1.172765in}}% +\pgfpathlineto{\pgfqpoint{3.882997in}{1.170314in}}% +\pgfpathlineto{\pgfqpoint{3.905400in}{1.164126in}}% +\pgfpathlineto{\pgfqpoint{3.927803in}{1.155244in}}% +\pgfpathlineto{\pgfqpoint{3.945725in}{1.145816in}}% +\pgfpathlineto{\pgfqpoint{3.963647in}{1.133803in}}% +\pgfpathlineto{\pgfqpoint{3.977089in}{1.122628in}}% +\pgfpathlineto{\pgfqpoint{3.990531in}{1.109006in}}% +\pgfpathlineto{\pgfqpoint{4.003972in}{1.092044in}}% +\pgfpathlineto{\pgfqpoint{4.017414in}{1.070142in}}% +\pgfpathlineto{\pgfqpoint{4.026375in}{1.051304in}}% +\pgfpathlineto{\pgfqpoint{4.035336in}{1.026936in}}% +\pgfpathlineto{\pgfqpoint{4.044297in}{0.992744in}}% +\pgfpathlineto{\pgfqpoint{4.048778in}{0.968783in}}% +\pgfpathlineto{\pgfqpoint{4.053258in}{0.935709in}}% +\pgfpathlineto{\pgfqpoint{4.057739in}{0.882147in}}% +\pgfpathlineto{\pgfqpoint{4.062219in}{0.723736in}}% +\pgfpathlineto{\pgfqpoint{4.066700in}{0.846271in}}% +\pgfpathlineto{\pgfqpoint{4.071181in}{0.917915in}}% +\pgfpathlineto{\pgfqpoint{4.075661in}{0.956898in}}% +\pgfpathlineto{\pgfqpoint{4.084622in}{1.004312in}}% +\pgfpathlineto{\pgfqpoint{4.093583in}{1.034759in}}% +\pgfpathlineto{\pgfqpoint{4.102544in}{1.057099in}}% +\pgfpathlineto{\pgfqpoint{4.111505in}{1.074641in}}% +\pgfpathlineto{\pgfqpoint{4.124947in}{1.095261in}}% +\pgfpathlineto{\pgfqpoint{4.138389in}{1.111349in}}% +\pgfpathlineto{\pgfqpoint{4.151830in}{1.124317in}}% +\pgfpathlineto{\pgfqpoint{4.169753in}{1.138097in}}% +\pgfpathlineto{\pgfqpoint{4.187675in}{1.148860in}}% +\pgfpathlineto{\pgfqpoint{4.205597in}{1.157265in}}% +\pgfpathlineto{\pgfqpoint{4.228000in}{1.165065in}}% +\pgfpathlineto{\pgfqpoint{4.250403in}{1.170304in}}% +\pgfpathlineto{\pgfqpoint{4.272805in}{1.173257in}}% +\pgfpathlineto{\pgfqpoint{4.295208in}{1.174056in}}% +\pgfpathlineto{\pgfqpoint{4.317611in}{1.172716in}}% +\pgfpathlineto{\pgfqpoint{4.331053in}{1.170214in}}% +\pgfpathlineto{\pgfqpoint{4.353455in}{1.163976in}}% +\pgfpathlineto{\pgfqpoint{4.375858in}{1.155035in}}% +\pgfpathlineto{\pgfqpoint{4.393780in}{1.145550in}}% +\pgfpathlineto{\pgfqpoint{4.411703in}{1.133464in}}% +\pgfpathlineto{\pgfqpoint{4.425144in}{1.122217in}}% +\pgfpathlineto{\pgfqpoint{4.438586in}{1.108501in}}% +\pgfpathlineto{\pgfqpoint{4.452028in}{1.091405in}}% +\pgfpathlineto{\pgfqpoint{4.460989in}{1.077376in}}% +\pgfpathlineto{\pgfqpoint{4.469950in}{1.060319in}}% +\pgfpathlineto{\pgfqpoint{4.478911in}{1.038775in}}% +\pgfpathlineto{\pgfqpoint{4.487872in}{1.009814in}}% +\pgfpathlineto{\pgfqpoint{4.492352in}{0.990623in}}% +\pgfpathlineto{\pgfqpoint{4.496833in}{0.965982in}}% +\pgfpathlineto{\pgfqpoint{4.501314in}{0.931600in}}% +\pgfpathlineto{\pgfqpoint{4.505794in}{0.874455in}}% +\pgfpathlineto{\pgfqpoint{4.510275in}{0.662454in}}% +\pgfpathlineto{\pgfqpoint{4.514755in}{0.856680in}}% +\pgfpathlineto{\pgfqpoint{4.519236in}{0.922688in}}% +\pgfpathlineto{\pgfqpoint{4.523716in}{0.959991in}}% +\pgfpathlineto{\pgfqpoint{4.532677in}{1.006120in}}% +\pgfpathlineto{\pgfqpoint{4.541639in}{1.036030in}}% +\pgfpathlineto{\pgfqpoint{4.550600in}{1.058072in}}% +\pgfpathlineto{\pgfqpoint{4.559561in}{1.075425in}}% +\pgfpathlineto{\pgfqpoint{4.573002in}{1.095860in}}% +\pgfpathlineto{\pgfqpoint{4.586444in}{1.111826in}}% +\pgfpathlineto{\pgfqpoint{4.599886in}{1.124706in}}% +\pgfpathlineto{\pgfqpoint{4.617808in}{1.138400in}}% +\pgfpathlineto{\pgfqpoint{4.635730in}{1.149097in}}% +\pgfpathlineto{\pgfqpoint{4.653652in}{1.157449in}}% +\pgfpathlineto{\pgfqpoint{4.676055in}{1.165194in}}% +\pgfpathlineto{\pgfqpoint{4.698458in}{1.170384in}}% +\pgfpathlineto{\pgfqpoint{4.720861in}{1.173294in}}% +\pgfpathlineto{\pgfqpoint{4.743263in}{1.174051in}}% +\pgfpathlineto{\pgfqpoint{4.765666in}{1.172667in}}% +\pgfpathlineto{\pgfqpoint{4.779108in}{1.170113in}}% +\pgfpathlineto{\pgfqpoint{4.801511in}{1.163825in}}% +\pgfpathlineto{\pgfqpoint{4.823913in}{1.154825in}}% +\pgfpathlineto{\pgfqpoint{4.841836in}{1.145282in}}% +\pgfpathlineto{\pgfqpoint{4.859758in}{1.133122in}}% +\pgfpathlineto{\pgfqpoint{4.873199in}{1.121804in}}% +\pgfpathlineto{\pgfqpoint{4.886641in}{1.107992in}}% +\pgfpathlineto{\pgfqpoint{4.900083in}{1.090761in}}% +\pgfpathlineto{\pgfqpoint{4.909044in}{1.076604in}}% +\pgfpathlineto{\pgfqpoint{4.918005in}{1.059364in}}% +\pgfpathlineto{\pgfqpoint{4.926966in}{1.037538in}}% +\pgfpathlineto{\pgfqpoint{4.935927in}{1.008075in}}% +\pgfpathlineto{\pgfqpoint{4.940408in}{0.988449in}}% +\pgfpathlineto{\pgfqpoint{4.944888in}{0.963090in}}% +\pgfpathlineto{\pgfqpoint{4.949369in}{0.927290in}}% +\pgfpathlineto{\pgfqpoint{4.953849in}{0.866030in}}% +\pgfpathlineto{\pgfqpoint{4.955708in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.955708in}{0.453273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.486604in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.486738in}{0.478523in}}% +\pgfpathlineto{\pgfqpoint{0.491219in}{0.539826in}}% +\pgfpathlineto{\pgfqpoint{0.495699in}{0.575649in}}% +\pgfpathlineto{\pgfqpoint{0.504660in}{0.620701in}}% +\pgfpathlineto{\pgfqpoint{0.513621in}{0.650222in}}% +\pgfpathlineto{\pgfqpoint{0.522583in}{0.672103in}}% +\pgfpathlineto{\pgfqpoint{0.531544in}{0.689399in}}% +\pgfpathlineto{\pgfqpoint{0.544985in}{0.709842in}}% +\pgfpathlineto{\pgfqpoint{0.558427in}{0.725874in}}% +\pgfpathlineto{\pgfqpoint{0.571869in}{0.738848in}}% +\pgfpathlineto{\pgfqpoint{0.589791in}{0.752695in}}% +\pgfpathlineto{\pgfqpoint{0.603232in}{0.760516in}}% +\pgfpathlineto{\pgfqpoint{0.621155in}{0.768797in}}% +\pgfpathlineto{\pgfqpoint{0.643557in}{0.776336in}}% +\pgfpathlineto{\pgfqpoint{0.665960in}{0.781238in}}% +\pgfpathlineto{\pgfqpoint{0.688363in}{0.783807in}}% +\pgfpathlineto{\pgfqpoint{0.710766in}{0.784193in}}% +\pgfpathlineto{\pgfqpoint{0.733169in}{0.782429in}}% +\pgfpathlineto{\pgfqpoint{0.755571in}{0.778437in}}% +\pgfpathlineto{\pgfqpoint{0.777974in}{0.772005in}}% +\pgfpathlineto{\pgfqpoint{0.795896in}{0.764852in}}% +\pgfpathlineto{\pgfqpoint{0.813818in}{0.755570in}}% +\pgfpathlineto{\pgfqpoint{0.831741in}{0.743650in}}% +\pgfpathlineto{\pgfqpoint{0.845182in}{0.732489in}}% +\pgfpathlineto{\pgfqpoint{0.858624in}{0.718808in}}% +\pgfpathlineto{\pgfqpoint{0.872066in}{0.701665in}}% +\pgfpathlineto{\pgfqpoint{0.881027in}{0.687522in}}% +\pgfpathlineto{\pgfqpoint{0.889988in}{0.670241in}}% +\pgfpathlineto{\pgfqpoint{0.898949in}{0.648270in}}% +\pgfpathlineto{\pgfqpoint{0.907910in}{0.618428in}}% +\pgfpathlineto{\pgfqpoint{0.912391in}{0.598420in}}% +\pgfpathlineto{\pgfqpoint{0.916871in}{0.572361in}}% +\pgfpathlineto{\pgfqpoint{0.921352in}{0.535094in}}% +\pgfpathlineto{\pgfqpoint{0.926198in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.934082in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.934793in}{0.486953in}}% +\pgfpathlineto{\pgfqpoint{0.939274in}{0.544124in}}% +\pgfpathlineto{\pgfqpoint{0.943755in}{0.578546in}}% +\pgfpathlineto{\pgfqpoint{0.952716in}{0.622436in}}% +\pgfpathlineto{\pgfqpoint{0.961677in}{0.651457in}}% +\pgfpathlineto{\pgfqpoint{0.970638in}{0.673060in}}% +\pgfpathlineto{\pgfqpoint{0.979599in}{0.690174in}}% +\pgfpathlineto{\pgfqpoint{0.993041in}{0.710438in}}% +\pgfpathlineto{\pgfqpoint{1.006482in}{0.726351in}}% +\pgfpathlineto{\pgfqpoint{1.019924in}{0.739240in}}% +\pgfpathlineto{\pgfqpoint{1.037846in}{0.752999in}}% +\pgfpathlineto{\pgfqpoint{1.051288in}{0.760751in}}% +\pgfpathlineto{\pgfqpoint{1.069210in}{0.768976in}}% +\pgfpathlineto{\pgfqpoint{1.091613in}{0.776459in}}% +\pgfpathlineto{\pgfqpoint{1.114016in}{0.781312in}}% +\pgfpathlineto{\pgfqpoint{1.136418in}{0.783835in}}% +\pgfpathlineto{\pgfqpoint{1.158821in}{0.784178in}}% +\pgfpathlineto{\pgfqpoint{1.181224in}{0.782372in}}% +\pgfpathlineto{\pgfqpoint{1.203627in}{0.778332in}}% +\pgfpathlineto{\pgfqpoint{1.226029in}{0.771849in}}% +\pgfpathlineto{\pgfqpoint{1.243952in}{0.764647in}}% +\pgfpathlineto{\pgfqpoint{1.261874in}{0.755306in}}% +\pgfpathlineto{\pgfqpoint{1.279796in}{0.743310in}}% +\pgfpathlineto{\pgfqpoint{1.293238in}{0.732076in}}% +\pgfpathlineto{\pgfqpoint{1.306679in}{0.718298in}}% +\pgfpathlineto{\pgfqpoint{1.320121in}{0.701015in}}% +\pgfpathlineto{\pgfqpoint{1.329082in}{0.686742in}}% +\pgfpathlineto{\pgfqpoint{1.338043in}{0.669275in}}% +\pgfpathlineto{\pgfqpoint{1.347004in}{0.647002in}}% +\pgfpathlineto{\pgfqpoint{1.355965in}{0.616624in}}% +\pgfpathlineto{\pgfqpoint{1.360446in}{0.596136in}}% +\pgfpathlineto{\pgfqpoint{1.364926in}{0.569285in}}% +\pgfpathlineto{\pgfqpoint{1.369407in}{0.530324in}}% +\pgfpathlineto{\pgfqpoint{1.374087in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.381679in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.382849in}{0.494655in}}% +\pgfpathlineto{\pgfqpoint{1.387329in}{0.548240in}}% +\pgfpathlineto{\pgfqpoint{1.391810in}{0.581353in}}% +\pgfpathlineto{\pgfqpoint{1.400771in}{0.624146in}}% +\pgfpathlineto{\pgfqpoint{1.409732in}{0.652684in}}% +\pgfpathlineto{\pgfqpoint{1.418693in}{0.674008in}}% +\pgfpathlineto{\pgfqpoint{1.427654in}{0.690939in}}% +\pgfpathlineto{\pgfqpoint{1.441096in}{0.711027in}}% +\pgfpathlineto{\pgfqpoint{1.454538in}{0.726823in}}% +\pgfpathlineto{\pgfqpoint{1.467979in}{0.739625in}}% +\pgfpathlineto{\pgfqpoint{1.485901in}{0.753303in}}% +\pgfpathlineto{\pgfqpoint{1.499343in}{0.760984in}}% +\pgfpathlineto{\pgfqpoint{1.517265in}{0.769154in}}% +\pgfpathlineto{\pgfqpoint{1.539668in}{0.776581in}}% +\pgfpathlineto{\pgfqpoint{1.562071in}{0.781384in}}% +\pgfpathlineto{\pgfqpoint{1.584474in}{0.783863in}}% +\pgfpathlineto{\pgfqpoint{1.606876in}{0.784163in}}% +\pgfpathlineto{\pgfqpoint{1.629279in}{0.782312in}}% +\pgfpathlineto{\pgfqpoint{1.651682in}{0.778228in}}% +\pgfpathlineto{\pgfqpoint{1.674085in}{0.771693in}}% +\pgfpathlineto{\pgfqpoint{1.692007in}{0.764441in}}% +\pgfpathlineto{\pgfqpoint{1.709929in}{0.755041in}}% +\pgfpathlineto{\pgfqpoint{1.727851in}{0.742970in}}% +\pgfpathlineto{\pgfqpoint{1.741293in}{0.731662in}}% +\pgfpathlineto{\pgfqpoint{1.754735in}{0.717785in}}% +\pgfpathlineto{\pgfqpoint{1.768176in}{0.700362in}}% +\pgfpathlineto{\pgfqpoint{1.777137in}{0.685955in}}% +\pgfpathlineto{\pgfqpoint{1.786098in}{0.668292in}}% +\pgfpathlineto{\pgfqpoint{1.795060in}{0.645719in}}% +\pgfpathlineto{\pgfqpoint{1.804021in}{0.614783in}}% +\pgfpathlineto{\pgfqpoint{1.808501in}{0.593802in}}% +\pgfpathlineto{\pgfqpoint{1.812982in}{0.566079in}}% +\pgfpathlineto{\pgfqpoint{1.817462in}{0.525300in}}% +\pgfpathlineto{\pgfqpoint{1.821582in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.829231in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.830904in}{0.501711in}}% +\pgfpathlineto{\pgfqpoint{1.835385in}{0.552175in}}% +\pgfpathlineto{\pgfqpoint{1.839865in}{0.584065in}}% +\pgfpathlineto{\pgfqpoint{1.848826in}{0.625825in}}% +\pgfpathlineto{\pgfqpoint{1.857787in}{0.653889in}}% +\pgfpathlineto{\pgfqpoint{1.866748in}{0.674941in}}% +\pgfpathlineto{\pgfqpoint{1.875710in}{0.691703in}}% +\pgfpathlineto{\pgfqpoint{1.889151in}{0.711616in}}% +\pgfpathlineto{\pgfqpoint{1.902593in}{0.727293in}}% +\pgfpathlineto{\pgfqpoint{1.916035in}{0.740011in}}% +\pgfpathlineto{\pgfqpoint{1.933957in}{0.753603in}}% +\pgfpathlineto{\pgfqpoint{1.947398in}{0.761216in}}% +\pgfpathlineto{\pgfqpoint{1.965321in}{0.769332in}}% +\pgfpathlineto{\pgfqpoint{1.987723in}{0.776701in}}% +\pgfpathlineto{\pgfqpoint{2.010126in}{0.781456in}}% +\pgfpathlineto{\pgfqpoint{2.032529in}{0.783890in}}% +\pgfpathlineto{\pgfqpoint{2.054932in}{0.784147in}}% +\pgfpathlineto{\pgfqpoint{2.077334in}{0.782254in}}% +\pgfpathlineto{\pgfqpoint{2.099737in}{0.778123in}}% +\pgfpathlineto{\pgfqpoint{2.122140in}{0.771534in}}% +\pgfpathlineto{\pgfqpoint{2.140062in}{0.764234in}}% +\pgfpathlineto{\pgfqpoint{2.157984in}{0.754775in}}% +\pgfpathlineto{\pgfqpoint{2.175907in}{0.742627in}}% +\pgfpathlineto{\pgfqpoint{2.189348in}{0.731245in}}% +\pgfpathlineto{\pgfqpoint{2.202790in}{0.717268in}}% +\pgfpathlineto{\pgfqpoint{2.216232in}{0.699702in}}% +\pgfpathlineto{\pgfqpoint{2.225193in}{0.685158in}}% +\pgfpathlineto{\pgfqpoint{2.234154in}{0.667298in}}% +\pgfpathlineto{\pgfqpoint{2.243115in}{0.644413in}}% +\pgfpathlineto{\pgfqpoint{2.252076in}{0.612896in}}% +\pgfpathlineto{\pgfqpoint{2.256557in}{0.591393in}}% +\pgfpathlineto{\pgfqpoint{2.261037in}{0.562751in}}% +\pgfpathlineto{\pgfqpoint{2.265518in}{0.519937in}}% +\pgfpathlineto{\pgfqpoint{2.268966in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.276735in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.278959in}{0.508278in}}% +\pgfpathlineto{\pgfqpoint{2.283440in}{0.555927in}}% +\pgfpathlineto{\pgfqpoint{2.287920in}{0.586704in}}% +\pgfpathlineto{\pgfqpoint{2.296882in}{0.627462in}}% +\pgfpathlineto{\pgfqpoint{2.305843in}{0.655075in}}% +\pgfpathlineto{\pgfqpoint{2.314804in}{0.675869in}}% +\pgfpathlineto{\pgfqpoint{2.328245in}{0.699612in}}% +\pgfpathlineto{\pgfqpoint{2.341687in}{0.717772in}}% +\pgfpathlineto{\pgfqpoint{2.355129in}{0.732254in}}% +\pgfpathlineto{\pgfqpoint{2.373051in}{0.747562in}}% +\pgfpathlineto{\pgfqpoint{2.386493in}{0.756795in}}% +\pgfpathlineto{\pgfqpoint{2.413376in}{0.769509in}}% +\pgfpathlineto{\pgfqpoint{2.435779in}{0.776821in}}% +\pgfpathlineto{\pgfqpoint{2.458181in}{0.781526in}}% +\pgfpathlineto{\pgfqpoint{2.480584in}{0.783916in}}% +\pgfpathlineto{\pgfqpoint{2.502987in}{0.784131in}}% +\pgfpathlineto{\pgfqpoint{2.525390in}{0.782194in}}% +\pgfpathlineto{\pgfqpoint{2.547792in}{0.778015in}}% +\pgfpathlineto{\pgfqpoint{2.570195in}{0.771376in}}% +\pgfpathlineto{\pgfqpoint{2.588117in}{0.764025in}}% +\pgfpathlineto{\pgfqpoint{2.606040in}{0.754507in}}% +\pgfpathlineto{\pgfqpoint{2.623962in}{0.742283in}}% +\pgfpathlineto{\pgfqpoint{2.637404in}{0.730825in}}% +\pgfpathlineto{\pgfqpoint{2.650845in}{0.716749in}}% +\pgfpathlineto{\pgfqpoint{2.664287in}{0.699038in}}% +\pgfpathlineto{\pgfqpoint{2.673248in}{0.684357in}}% +\pgfpathlineto{\pgfqpoint{2.682209in}{0.666293in}}% +\pgfpathlineto{\pgfqpoint{2.691170in}{0.643082in}}% +\pgfpathlineto{\pgfqpoint{2.700131in}{0.610978in}}% +\pgfpathlineto{\pgfqpoint{2.704612in}{0.588910in}}% +\pgfpathlineto{\pgfqpoint{2.709092in}{0.559301in}}% +\pgfpathlineto{\pgfqpoint{2.713573in}{0.514236in}}% +\pgfpathlineto{\pgfqpoint{2.716387in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.724197in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.727015in}{0.514387in}}% +\pgfpathlineto{\pgfqpoint{2.731495in}{0.559548in}}% +\pgfpathlineto{\pgfqpoint{2.735976in}{0.589256in}}% +\pgfpathlineto{\pgfqpoint{2.744937in}{0.629081in}}% +\pgfpathlineto{\pgfqpoint{2.753898in}{0.656248in}}% +\pgfpathlineto{\pgfqpoint{2.762859in}{0.676781in}}% +\pgfpathlineto{\pgfqpoint{2.776301in}{0.700292in}}% +\pgfpathlineto{\pgfqpoint{2.789742in}{0.718306in}}% +\pgfpathlineto{\pgfqpoint{2.803184in}{0.732686in}}% +\pgfpathlineto{\pgfqpoint{2.821106in}{0.747899in}}% +\pgfpathlineto{\pgfqpoint{2.834548in}{0.757077in}}% +\pgfpathlineto{\pgfqpoint{2.861431in}{0.769682in}}% +\pgfpathlineto{\pgfqpoint{2.883834in}{0.776939in}}% +\pgfpathlineto{\pgfqpoint{2.906237in}{0.781597in}}% +\pgfpathlineto{\pgfqpoint{2.928639in}{0.783941in}}% +\pgfpathlineto{\pgfqpoint{2.951042in}{0.784113in}}% +\pgfpathlineto{\pgfqpoint{2.973445in}{0.782132in}}% +\pgfpathlineto{\pgfqpoint{2.995848in}{0.777908in}}% +\pgfpathlineto{\pgfqpoint{3.018251in}{0.771215in}}% +\pgfpathlineto{\pgfqpoint{3.036173in}{0.763816in}}% +\pgfpathlineto{\pgfqpoint{3.054095in}{0.754237in}}% +\pgfpathlineto{\pgfqpoint{3.072017in}{0.741936in}}% +\pgfpathlineto{\pgfqpoint{3.085459in}{0.730403in}}% +\pgfpathlineto{\pgfqpoint{3.098901in}{0.716225in}}% +\pgfpathlineto{\pgfqpoint{3.112342in}{0.698369in}}% +\pgfpathlineto{\pgfqpoint{3.121303in}{0.683541in}}% +\pgfpathlineto{\pgfqpoint{3.130264in}{0.665275in}}% +\pgfpathlineto{\pgfqpoint{3.139225in}{0.641739in}}% +\pgfpathlineto{\pgfqpoint{3.148187in}{0.609003in}}% +\pgfpathlineto{\pgfqpoint{3.152667in}{0.586372in}}% +\pgfpathlineto{\pgfqpoint{3.157148in}{0.555694in}}% +\pgfpathlineto{\pgfqpoint{3.161628in}{0.508152in}}% +\pgfpathlineto{\pgfqpoint{3.163851in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.171618in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.175070in}{0.520087in}}% +\pgfpathlineto{\pgfqpoint{3.179550in}{0.563003in}}% +\pgfpathlineto{\pgfqpoint{3.188512in}{0.613358in}}% +\pgfpathlineto{\pgfqpoint{3.197473in}{0.645074in}}% +\pgfpathlineto{\pgfqpoint{3.206434in}{0.668159in}}% +\pgfpathlineto{\pgfqpoint{3.215395in}{0.686221in}}% +\pgfpathlineto{\pgfqpoint{3.228837in}{0.707410in}}% +\pgfpathlineto{\pgfqpoint{3.242278in}{0.723934in}}% +\pgfpathlineto{\pgfqpoint{3.255720in}{0.737263in}}% +\pgfpathlineto{\pgfqpoint{3.273642in}{0.751457in}}% +\pgfpathlineto{\pgfqpoint{3.287084in}{0.759560in}}% +\pgfpathlineto{\pgfqpoint{3.305006in}{0.768065in}}% +\pgfpathlineto{\pgfqpoint{3.327409in}{0.775835in}}% +\pgfpathlineto{\pgfqpoint{3.349811in}{0.780934in}}% +\pgfpathlineto{\pgfqpoint{3.372214in}{0.783682in}}% +\pgfpathlineto{\pgfqpoint{3.394617in}{0.784240in}}% +\pgfpathlineto{\pgfqpoint{3.417020in}{0.782650in}}% +\pgfpathlineto{\pgfqpoint{3.439423in}{0.778842in}}% +\pgfpathlineto{\pgfqpoint{3.461825in}{0.772618in}}% +\pgfpathlineto{\pgfqpoint{3.479748in}{0.765656in}}% +\pgfpathlineto{\pgfqpoint{3.497670in}{0.756606in}}% +\pgfpathlineto{\pgfqpoint{3.515592in}{0.744980in}}% +\pgfpathlineto{\pgfqpoint{3.529034in}{0.734108in}}% +\pgfpathlineto{\pgfqpoint{3.542475in}{0.720807in}}% +\pgfpathlineto{\pgfqpoint{3.555917in}{0.704199in}}% +\pgfpathlineto{\pgfqpoint{3.569359in}{0.682722in}}% +\pgfpathlineto{\pgfqpoint{3.578320in}{0.664246in}}% +\pgfpathlineto{\pgfqpoint{3.587281in}{0.640362in}}% +\pgfpathlineto{\pgfqpoint{3.596242in}{0.606985in}}% +\pgfpathlineto{\pgfqpoint{3.600722in}{0.583735in}}% +\pgfpathlineto{\pgfqpoint{3.605203in}{0.551957in}}% +\pgfpathlineto{\pgfqpoint{3.609684in}{0.501599in}}% +\pgfpathlineto{\pgfqpoint{3.611355in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.619005in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.623125in}{0.525455in}}% +\pgfpathlineto{\pgfqpoint{3.627606in}{0.566343in}}% +\pgfpathlineto{\pgfqpoint{3.636567in}{0.615255in}}% +\pgfpathlineto{\pgfqpoint{3.645528in}{0.646389in}}% +\pgfpathlineto{\pgfqpoint{3.654489in}{0.669163in}}% +\pgfpathlineto{\pgfqpoint{3.663450in}{0.687030in}}% +\pgfpathlineto{\pgfqpoint{3.676892in}{0.708028in}}% +\pgfpathlineto{\pgfqpoint{3.690333in}{0.724426in}}% +\pgfpathlineto{\pgfqpoint{3.703775in}{0.737665in}}% +\pgfpathlineto{\pgfqpoint{3.721697in}{0.751769in}}% +\pgfpathlineto{\pgfqpoint{3.735139in}{0.759802in}}% +\pgfpathlineto{\pgfqpoint{3.753061in}{0.768250in}}% +\pgfpathlineto{\pgfqpoint{3.775464in}{0.775963in}}% +\pgfpathlineto{\pgfqpoint{3.797867in}{0.781012in}}% +\pgfpathlineto{\pgfqpoint{3.820270in}{0.783714in}}% +\pgfpathlineto{\pgfqpoint{3.842672in}{0.784230in}}% +\pgfpathlineto{\pgfqpoint{3.865075in}{0.782597in}}% +\pgfpathlineto{\pgfqpoint{3.887478in}{0.778742in}}% +\pgfpathlineto{\pgfqpoint{3.909881in}{0.772465in}}% +\pgfpathlineto{\pgfqpoint{3.927803in}{0.765456in}}% +\pgfpathlineto{\pgfqpoint{3.945725in}{0.756350in}}% +\pgfpathlineto{\pgfqpoint{3.963647in}{0.744650in}}% +\pgfpathlineto{\pgfqpoint{3.977089in}{0.733707in}}% +\pgfpathlineto{\pgfqpoint{3.990531in}{0.720312in}}% +\pgfpathlineto{\pgfqpoint{4.003972in}{0.703573in}}% +\pgfpathlineto{\pgfqpoint{4.012933in}{0.689815in}}% +\pgfpathlineto{\pgfqpoint{4.021894in}{0.673086in}}% +\pgfpathlineto{\pgfqpoint{4.030856in}{0.651960in}}% +\pgfpathlineto{\pgfqpoint{4.039817in}{0.623630in}}% +\pgfpathlineto{\pgfqpoint{4.044297in}{0.604925in}}% +\pgfpathlineto{\pgfqpoint{4.048778in}{0.581030in}}% +\pgfpathlineto{\pgfqpoint{4.053258in}{0.548023in}}% +\pgfpathlineto{\pgfqpoint{4.057739in}{0.494522in}}% +\pgfpathlineto{\pgfqpoint{4.058907in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{4.066498in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.066700in}{0.458798in}}% +\pgfpathlineto{\pgfqpoint{4.071181in}{0.530496in}}% +\pgfpathlineto{\pgfqpoint{4.075661in}{0.569563in}}% +\pgfpathlineto{\pgfqpoint{4.084622in}{0.617102in}}% +\pgfpathlineto{\pgfqpoint{4.093583in}{0.647686in}}% +\pgfpathlineto{\pgfqpoint{4.102544in}{0.670157in}}% +\pgfpathlineto{\pgfqpoint{4.111505in}{0.687825in}}% +\pgfpathlineto{\pgfqpoint{4.124947in}{0.708635in}}% +\pgfpathlineto{\pgfqpoint{4.138389in}{0.724911in}}% +\pgfpathlineto{\pgfqpoint{4.151830in}{0.738061in}}% +\pgfpathlineto{\pgfqpoint{4.169753in}{0.752081in}}% +\pgfpathlineto{\pgfqpoint{4.183194in}{0.760041in}}% +\pgfpathlineto{\pgfqpoint{4.201117in}{0.768434in}}% +\pgfpathlineto{\pgfqpoint{4.223519in}{0.776088in}}% +\pgfpathlineto{\pgfqpoint{4.245922in}{0.781088in}}% +\pgfpathlineto{\pgfqpoint{4.268325in}{0.783746in}}% +\pgfpathlineto{\pgfqpoint{4.290728in}{0.784218in}}% +\pgfpathlineto{\pgfqpoint{4.313130in}{0.782541in}}% +\pgfpathlineto{\pgfqpoint{4.335533in}{0.778641in}}% +\pgfpathlineto{\pgfqpoint{4.357936in}{0.772313in}}% +\pgfpathlineto{\pgfqpoint{4.375858in}{0.765256in}}% +\pgfpathlineto{\pgfqpoint{4.393780in}{0.756092in}}% +\pgfpathlineto{\pgfqpoint{4.411703in}{0.744320in}}% +\pgfpathlineto{\pgfqpoint{4.425144in}{0.733304in}}% +\pgfpathlineto{\pgfqpoint{4.438586in}{0.719812in}}% +\pgfpathlineto{\pgfqpoint{4.452028in}{0.702942in}}% +\pgfpathlineto{\pgfqpoint{4.460989in}{0.689060in}}% +\pgfpathlineto{\pgfqpoint{4.469950in}{0.672146in}}% +\pgfpathlineto{\pgfqpoint{4.478911in}{0.650747in}}% +\pgfpathlineto{\pgfqpoint{4.487872in}{0.621933in}}% +\pgfpathlineto{\pgfqpoint{4.492352in}{0.602805in}}% +\pgfpathlineto{\pgfqpoint{4.496833in}{0.578244in}}% +\pgfpathlineto{\pgfqpoint{4.501314in}{0.543927in}}% +\pgfpathlineto{\pgfqpoint{4.505794in}{0.486842in}}% +\pgfpathlineto{\pgfqpoint{4.506504in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{4.514387in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.514755in}{0.469210in}}% +\pgfpathlineto{\pgfqpoint{4.519236in}{0.535291in}}% +\pgfpathlineto{\pgfqpoint{4.523716in}{0.572652in}}% +\pgfpathlineto{\pgfqpoint{4.532677in}{0.618923in}}% +\pgfpathlineto{\pgfqpoint{4.541639in}{0.648959in}}% +\pgfpathlineto{\pgfqpoint{4.550600in}{0.671134in}}% +\pgfpathlineto{\pgfqpoint{4.559561in}{0.688618in}}% +\pgfpathlineto{\pgfqpoint{4.573002in}{0.709243in}}% +\pgfpathlineto{\pgfqpoint{4.586444in}{0.725396in}}% +\pgfpathlineto{\pgfqpoint{4.599886in}{0.738457in}}% +\pgfpathlineto{\pgfqpoint{4.617808in}{0.752388in}}% +\pgfpathlineto{\pgfqpoint{4.631250in}{0.760280in}}% +\pgfpathlineto{\pgfqpoint{4.649172in}{0.768616in}}% +\pgfpathlineto{\pgfqpoint{4.671575in}{0.776213in}}% +\pgfpathlineto{\pgfqpoint{4.693977in}{0.781164in}}% +\pgfpathlineto{\pgfqpoint{4.716380in}{0.783776in}}% +\pgfpathlineto{\pgfqpoint{4.738783in}{0.784205in}}% +\pgfpathlineto{\pgfqpoint{4.761186in}{0.782486in}}% +\pgfpathlineto{\pgfqpoint{4.783588in}{0.778539in}}% +\pgfpathlineto{\pgfqpoint{4.805991in}{0.772159in}}% +\pgfpathlineto{\pgfqpoint{4.823913in}{0.765055in}}% +\pgfpathlineto{\pgfqpoint{4.841836in}{0.755830in}}% +\pgfpathlineto{\pgfqpoint{4.859758in}{0.743985in}}% +\pgfpathlineto{\pgfqpoint{4.873199in}{0.732897in}}% +\pgfpathlineto{\pgfqpoint{4.886641in}{0.719313in}}% +\pgfpathlineto{\pgfqpoint{4.900083in}{0.702306in}}% +\pgfpathlineto{\pgfqpoint{4.909044in}{0.688295in}}% +\pgfpathlineto{\pgfqpoint{4.918005in}{0.671202in}}% +\pgfpathlineto{\pgfqpoint{4.926966in}{0.649523in}}% +\pgfpathlineto{\pgfqpoint{4.935927in}{0.620195in}}% +\pgfpathlineto{\pgfqpoint{4.940408in}{0.600646in}}% +\pgfpathlineto{\pgfqpoint{4.944888in}{0.575349in}}% +\pgfpathlineto{\pgfqpoint{4.949369in}{0.539620in}}% +\pgfpathlineto{\pgfqpoint{4.953849in}{0.478448in}}% +\pgfpathlineto{\pgfqpoint{4.953990in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.953990in}{0.453273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -803,8 +2574,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -814,8 +2585,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{6.358330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -825,8 +2596,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -836,8 +2607,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{4.758330in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{4.958330in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -851,36 +2622,108 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.630867in}{4.443362in}}% -\pgfpathlineto{\pgfqpoint{6.261108in}{4.443362in}}% -\pgfpathquadraticcurveto{\pgfqpoint{6.288886in}{4.443362in}}{\pgfqpoint{6.288886in}{4.471139in}}% -\pgfpathlineto{\pgfqpoint{6.288886in}{4.661108in}}% -\pgfpathquadraticcurveto{\pgfqpoint{6.288886in}{4.688886in}}{\pgfqpoint{6.261108in}{4.688886in}}% -\pgfpathlineto{\pgfqpoint{5.630867in}{4.688886in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.603089in}{4.688886in}}{\pgfqpoint{5.603089in}{4.661108in}}% -\pgfpathlineto{\pgfqpoint{5.603089in}{4.471139in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.603089in}{4.443362in}}{\pgfqpoint{5.630867in}{4.443362in}}% -\pgfpathlineto{\pgfqpoint{5.630867in}{4.443362in}}% +\pgfpathmoveto{\pgfqpoint{0.579480in}{1.327933in}}% +\pgfpathlineto{\pgfqpoint{1.431363in}{1.327933in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.459141in}{1.327933in}}{\pgfqpoint{1.459141in}{1.355711in}}% +\pgfpathlineto{\pgfqpoint{1.459141in}{2.361108in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.459141in}{2.388886in}}{\pgfqpoint{1.431363in}{2.388886in}}% +\pgfpathlineto{\pgfqpoint{0.579480in}{2.388886in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.551702in}{2.388886in}}{\pgfqpoint{0.551702in}{2.361108in}}% +\pgfpathlineto{\pgfqpoint{0.551702in}{1.355711in}}% +\pgfpathquadraticcurveto{\pgfqpoint{0.551702in}{1.327933in}}{\pgfqpoint{0.579480in}{1.327933in}}% +\pgfpathlineto{\pgfqpoint{0.579480in}{1.327933in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% \pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% +\pgfsetlinewidth{1.505625pt}% \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.658644in}{4.576418in}}% -\pgfpathlineto{\pgfqpoint{5.797533in}{4.576418in}}% -\pgfpathlineto{\pgfqpoint{5.936422in}{4.576418in}}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{2.276418in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.996146in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=2\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{2.072561in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{2.072561in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{2.072561in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.996146in,y=2.023950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=4\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{1.868704in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{1.868704in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{1.868704in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.996146in,y=1.820092in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=6\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{1.664846in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{1.664846in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{1.664846in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.996146in,y=1.616235in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=8\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{1.505625pt}% +\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.607257in}{1.460989in}}% +\pgfpathlineto{\pgfqpoint{0.746146in}{1.460989in}}% +\pgfpathlineto{\pgfqpoint{0.885035in}{1.460989in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=6.047533in,y=4.527807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m^*\)}% +\pgftext[x=0.996146in,y=1.412378in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=10\)}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/buch/papers/laguerre/images/rel_error_shifted.pgf b/buch/papers/laguerre/images/rel_error_shifted.pgf index 707d492..32f95e0 100644 --- a/buch/papers/laguerre/images/rel_error_shifted.pgf +++ b/buch/papers/laguerre/images/rel_error_shifted.pgf @@ -27,7 +27,7 @@ \begingroup% \makeatletter% \begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.400000in}{4.800000in}}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% \pgfusepath{use as bounding box, clip}% \begin{pgfscope}% \pgfsetbuttcap% @@ -39,9 +39,9 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.400000in}{4.800000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.800000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% \pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% \pgfpathclose% \pgfusepath{fill}% @@ -57,15 +57,15 @@ \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{2.458330in}}% \pgfpathlineto{\pgfqpoint{0.426895in}{0.463273in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -73,8 +73,46 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.595116in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.595116in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.426895in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.426895in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.311094in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.311094in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -92,7 +130,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.595116in}{0.463273in}% +\pgfsys@transformshift{1.311094in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -100,10 +138,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.595116in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.2}% +\pgftext[x=1.311094in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.2}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -111,8 +149,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.793447in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.793447in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{2.195293in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.195293in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -130,7 +168,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.793447in}{0.463273in}% +\pgfsys@transformshift{2.195293in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -138,10 +176,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.793447in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.4}% +\pgftext[x=2.195293in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.4}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -149,8 +187,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.991778in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.991778in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{3.079492in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.079492in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -168,7 +206,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.991778in}{0.463273in}% +\pgfsys@transformshift{3.079492in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -176,10 +214,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.991778in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.6}% +\pgftext[x=3.079492in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.6}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -187,8 +225,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.190108in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{5.190108in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{3.963691in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.963691in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -206,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{5.190108in}{0.463273in}% +\pgfsys@transformshift{3.963691in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -214,16 +252,214 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.190108in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.8}% +\pgftext[x=3.963691in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.847890in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.847890in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=4.847890in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.868994in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.868994in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.868994in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{1.753193in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.753193in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.753193in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.637393in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.637393in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.637393in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.521592in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.521592in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.521592in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% +\pgfusepath{clip}% +\pgfsetrectcap% +\pgfsetroundjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{4.405791in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.405791in}{2.458330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{4.405791in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.392612in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\pgftext[x=2.637393in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -231,8 +467,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.756214in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{1.756214in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.063845in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{1.063845in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -250,7 +486,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.756214in}% +\pgfsys@transformshift{0.426895in}{1.063845in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -258,10 +494,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=1.703453in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-8}}\)}% +\pgftext[x=0.041670in, y=1.011084in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-8}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -270,7 +506,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{0.463273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -293,7 +529,7 @@ \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -301,8 +537,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.803361in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{0.803361in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.621244in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{0.621244in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -320,12 +556,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.803361in}% +\pgfsys@transformshift{0.426895in}{0.621244in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -333,8 +569,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.090902in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{1.090902in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.754807in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{0.754807in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -352,12 +588,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.090902in}% +\pgfsys@transformshift{0.426895in}{0.754807in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -365,8 +601,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.339980in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{1.339980in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.870504in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{0.870504in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -384,12 +620,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.339980in}% +\pgfsys@transformshift{0.426895in}{0.870504in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -397,8 +633,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.559683in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{1.559683in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{0.972556in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{0.972556in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -416,12 +652,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.559683in}% +\pgfsys@transformshift{0.426895in}{0.972556in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -429,8 +665,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{3.049155in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{3.049155in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{1.664417in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{1.664417in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -448,12 +684,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{3.049155in}% +\pgfsys@transformshift{0.426895in}{1.664417in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -461,8 +697,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{3.805477in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{3.805477in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{2.015729in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{2.015729in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -480,12 +716,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{3.805477in}% +\pgfsys@transformshift{0.426895in}{2.015729in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -493,8 +729,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{4.342096in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.342096in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{2.264989in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{2.264989in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -512,12 +748,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{4.342096in}% +\pgfsys@transformshift{0.426895in}{2.264989in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -525,8 +761,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{4.758330in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -544,12 +780,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{4.758330in}% +\pgfsys@transformshift{0.426895in}{2.458330in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -557,125 +793,99 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.579662in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.604838in}{0.691883in}}% -\pgfpathlineto{\pgfqpoint{0.634495in}{0.934532in}}% -\pgfpathlineto{\pgfqpoint{0.664152in}{1.147779in}}% -\pgfpathlineto{\pgfqpoint{0.693809in}{1.337791in}}% -\pgfpathlineto{\pgfqpoint{0.723466in}{1.508975in}}% -\pgfpathlineto{\pgfqpoint{0.753124in}{1.664580in}}% -\pgfpathlineto{\pgfqpoint{0.782781in}{1.807081in}}% -\pgfpathlineto{\pgfqpoint{0.812438in}{1.938396in}}% -\pgfpathlineto{\pgfqpoint{0.842095in}{2.060050in}}% -\pgfpathlineto{\pgfqpoint{0.871752in}{2.173272in}}% -\pgfpathlineto{\pgfqpoint{0.901410in}{2.279065in}}% -\pgfpathlineto{\pgfqpoint{0.931067in}{2.378263in}}% -\pgfpathlineto{\pgfqpoint{0.960724in}{2.471563in}}% -\pgfpathlineto{\pgfqpoint{0.990381in}{2.559556in}}% -\pgfpathlineto{\pgfqpoint{1.020038in}{2.642744in}}% -\pgfpathlineto{\pgfqpoint{1.049695in}{2.721561in}}% -\pgfpathlineto{\pgfqpoint{1.079353in}{2.796383in}}% -\pgfpathlineto{\pgfqpoint{1.109010in}{2.867537in}}% -\pgfpathlineto{\pgfqpoint{1.138667in}{2.935310in}}% -\pgfpathlineto{\pgfqpoint{1.168324in}{2.999956in}}% -\pgfpathlineto{\pgfqpoint{1.197981in}{3.061700in}}% -\pgfpathlineto{\pgfqpoint{1.227638in}{3.120741in}}% -\pgfpathlineto{\pgfqpoint{1.286953in}{3.231415in}}% -\pgfpathlineto{\pgfqpoint{1.346267in}{3.333204in}}% -\pgfpathlineto{\pgfqpoint{1.405582in}{3.427112in}}% -\pgfpathlineto{\pgfqpoint{1.464896in}{3.513967in}}% -\pgfpathlineto{\pgfqpoint{1.524210in}{3.594465in}}% -\pgfpathlineto{\pgfqpoint{1.583525in}{3.669192in}}% -\pgfpathlineto{\pgfqpoint{1.642839in}{3.738646in}}% -\pgfpathlineto{\pgfqpoint{1.702153in}{3.803258in}}% -\pgfpathlineto{\pgfqpoint{1.761468in}{3.863396in}}% -\pgfpathlineto{\pgfqpoint{1.820782in}{3.919383in}}% -\pgfpathlineto{\pgfqpoint{1.880096in}{3.971501in}}% -\pgfpathlineto{\pgfqpoint{1.939411in}{4.019997in}}% -\pgfpathlineto{\pgfqpoint{1.998725in}{4.065088in}}% -\pgfpathlineto{\pgfqpoint{2.058039in}{4.106968in}}% -\pgfpathlineto{\pgfqpoint{2.117354in}{4.145809in}}% -\pgfpathlineto{\pgfqpoint{2.176668in}{4.181762in}}% -\pgfpathlineto{\pgfqpoint{2.235982in}{4.214965in}}% -\pgfpathlineto{\pgfqpoint{2.295297in}{4.245540in}}% -\pgfpathlineto{\pgfqpoint{2.354611in}{4.273595in}}% -\pgfpathlineto{\pgfqpoint{2.413926in}{4.299228in}}% -\pgfpathlineto{\pgfqpoint{2.473240in}{4.322529in}}% -\pgfpathlineto{\pgfqpoint{2.532554in}{4.343576in}}% -\pgfpathlineto{\pgfqpoint{2.591869in}{4.362440in}}% -\pgfpathlineto{\pgfqpoint{2.651183in}{4.379185in}}% -\pgfpathlineto{\pgfqpoint{2.710497in}{4.393866in}}% -\pgfpathlineto{\pgfqpoint{2.769812in}{4.406536in}}% -\pgfpathlineto{\pgfqpoint{2.829126in}{4.417240in}}% -\pgfpathlineto{\pgfqpoint{2.888440in}{4.426016in}}% -\pgfpathlineto{\pgfqpoint{2.947755in}{4.432901in}}% -\pgfpathlineto{\pgfqpoint{3.007069in}{4.437925in}}% -\pgfpathlineto{\pgfqpoint{3.066383in}{4.441112in}}% -\pgfpathlineto{\pgfqpoint{3.125698in}{4.442487in}}% -\pgfpathlineto{\pgfqpoint{3.185012in}{4.442066in}}% -\pgfpathlineto{\pgfqpoint{3.244326in}{4.439864in}}% -\pgfpathlineto{\pgfqpoint{3.303641in}{4.435891in}}% -\pgfpathlineto{\pgfqpoint{3.362955in}{4.430156in}}% -\pgfpathlineto{\pgfqpoint{3.422270in}{4.422660in}}% -\pgfpathlineto{\pgfqpoint{3.481584in}{4.413405in}}% -\pgfpathlineto{\pgfqpoint{3.540898in}{4.402386in}}% -\pgfpathlineto{\pgfqpoint{3.600213in}{4.389597in}}% -\pgfpathlineto{\pgfqpoint{3.659527in}{4.375027in}}% -\pgfpathlineto{\pgfqpoint{3.718841in}{4.358661in}}% -\pgfpathlineto{\pgfqpoint{3.778156in}{4.340483in}}% -\pgfpathlineto{\pgfqpoint{3.837470in}{4.320469in}}% -\pgfpathlineto{\pgfqpoint{3.896784in}{4.298594in}}% -\pgfpathlineto{\pgfqpoint{3.956099in}{4.274828in}}% -\pgfpathlineto{\pgfqpoint{4.015413in}{4.249135in}}% -\pgfpathlineto{\pgfqpoint{4.074727in}{4.221476in}}% -\pgfpathlineto{\pgfqpoint{4.134042in}{4.191805in}}% -\pgfpathlineto{\pgfqpoint{4.193356in}{4.160072in}}% -\pgfpathlineto{\pgfqpoint{4.252670in}{4.126221in}}% -\pgfpathlineto{\pgfqpoint{4.311985in}{4.090186in}}% -\pgfpathlineto{\pgfqpoint{4.371299in}{4.051899in}}% -\pgfpathlineto{\pgfqpoint{4.430614in}{4.011278in}}% -\pgfpathlineto{\pgfqpoint{4.489928in}{3.968237in}}% -\pgfpathlineto{\pgfqpoint{4.549242in}{3.922678in}}% -\pgfpathlineto{\pgfqpoint{4.608557in}{3.874491in}}% -\pgfpathlineto{\pgfqpoint{4.667871in}{3.823554in}}% -\pgfpathlineto{\pgfqpoint{4.727185in}{3.769730in}}% -\pgfpathlineto{\pgfqpoint{4.786500in}{3.712868in}}% -\pgfpathlineto{\pgfqpoint{4.845814in}{3.652795in}}% -\pgfpathlineto{\pgfqpoint{4.905128in}{3.589319in}}% -\pgfpathlineto{\pgfqpoint{4.964443in}{3.522221in}}% -\pgfpathlineto{\pgfqpoint{5.023757in}{3.451255in}}% -\pgfpathlineto{\pgfqpoint{5.083071in}{3.376139in}}% -\pgfpathlineto{\pgfqpoint{5.142386in}{3.296551in}}% -\pgfpathlineto{\pgfqpoint{5.201700in}{3.212121in}}% -\pgfpathlineto{\pgfqpoint{5.261014in}{3.122420in}}% -\pgfpathlineto{\pgfqpoint{5.320329in}{3.026948in}}% -\pgfpathlineto{\pgfqpoint{5.379643in}{2.925120in}}% -\pgfpathlineto{\pgfqpoint{5.438958in}{2.816240in}}% -\pgfpathlineto{\pgfqpoint{5.498272in}{2.699481in}}% -\pgfpathlineto{\pgfqpoint{5.557586in}{2.573838in}}% -\pgfpathlineto{\pgfqpoint{5.616901in}{2.438086in}}% -\pgfpathlineto{\pgfqpoint{5.646558in}{2.365956in}}% -\pgfpathlineto{\pgfqpoint{5.676215in}{2.290700in}}% -\pgfpathlineto{\pgfqpoint{5.705872in}{2.212064in}}% -\pgfpathlineto{\pgfqpoint{5.735529in}{2.129759in}}% -\pgfpathlineto{\pgfqpoint{5.765186in}{2.043460in}}% -\pgfpathlineto{\pgfqpoint{5.794844in}{1.952790in}}% -\pgfpathlineto{\pgfqpoint{5.824501in}{1.857317in}}% -\pgfpathlineto{\pgfqpoint{5.854158in}{1.756535in}}% -\pgfpathlineto{\pgfqpoint{5.883815in}{1.649857in}}% -\pgfpathlineto{\pgfqpoint{5.913472in}{1.536583in}}% -\pgfpathlineto{\pgfqpoint{5.943130in}{1.415882in}}% -\pgfpathlineto{\pgfqpoint{5.972787in}{1.286747in}}% -\pgfpathlineto{\pgfqpoint{6.002444in}{1.147953in}}% -\pgfpathlineto{\pgfqpoint{6.032101in}{0.997974in}}% -\pgfpathlineto{\pgfqpoint{6.061758in}{0.834889in}}% -\pgfpathlineto{\pgfqpoint{6.091415in}{0.656228in}}% -\pgfpathlineto{\pgfqpoint{6.121807in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{6.121807in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.560934in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.580408in}{0.569463in}}% +\pgfpathlineto{\pgfqpoint{0.602291in}{0.682173in}}% +\pgfpathlineto{\pgfqpoint{0.624173in}{0.781226in}}% +\pgfpathlineto{\pgfqpoint{0.646056in}{0.869487in}}% +\pgfpathlineto{\pgfqpoint{0.667939in}{0.949002in}}% +\pgfpathlineto{\pgfqpoint{0.689822in}{1.021281in}}% +\pgfpathlineto{\pgfqpoint{0.711705in}{1.087473in}}% +\pgfpathlineto{\pgfqpoint{0.733587in}{1.148469in}}% +\pgfpathlineto{\pgfqpoint{0.755470in}{1.204977in}}% +\pgfpathlineto{\pgfqpoint{0.777353in}{1.257569in}}% +\pgfpathlineto{\pgfqpoint{0.799236in}{1.306710in}}% +\pgfpathlineto{\pgfqpoint{0.821119in}{1.352787in}}% +\pgfpathlineto{\pgfqpoint{0.843001in}{1.396125in}}% +\pgfpathlineto{\pgfqpoint{0.886767in}{1.475639in}}% +\pgfpathlineto{\pgfqpoint{0.930533in}{1.547004in}}% +\pgfpathlineto{\pgfqpoint{0.974298in}{1.611536in}}% +\pgfpathlineto{\pgfqpoint{1.018064in}{1.670244in}}% +\pgfpathlineto{\pgfqpoint{1.061830in}{1.723922in}}% +\pgfpathlineto{\pgfqpoint{1.105595in}{1.773202in}}% +\pgfpathlineto{\pgfqpoint{1.149361in}{1.818600in}}% +\pgfpathlineto{\pgfqpoint{1.193127in}{1.860538in}}% +\pgfpathlineto{\pgfqpoint{1.236892in}{1.899369in}}% +\pgfpathlineto{\pgfqpoint{1.280658in}{1.935389in}}% +\pgfpathlineto{\pgfqpoint{1.324423in}{1.968848in}}% +\pgfpathlineto{\pgfqpoint{1.368189in}{1.999962in}}% +\pgfpathlineto{\pgfqpoint{1.411955in}{2.028915in}}% +\pgfpathlineto{\pgfqpoint{1.455720in}{2.055868in}}% +\pgfpathlineto{\pgfqpoint{1.499486in}{2.080960in}}% +\pgfpathlineto{\pgfqpoint{1.565134in}{2.115374in}}% +\pgfpathlineto{\pgfqpoint{1.630783in}{2.146227in}}% +\pgfpathlineto{\pgfqpoint{1.696431in}{2.173814in}}% +\pgfpathlineto{\pgfqpoint{1.762080in}{2.198381in}}% +\pgfpathlineto{\pgfqpoint{1.827728in}{2.220139in}}% +\pgfpathlineto{\pgfqpoint{1.893377in}{2.239261in}}% +\pgfpathlineto{\pgfqpoint{1.959025in}{2.255900in}}% +\pgfpathlineto{\pgfqpoint{2.024674in}{2.270183in}}% +\pgfpathlineto{\pgfqpoint{2.090322in}{2.282217in}}% +\pgfpathlineto{\pgfqpoint{2.155971in}{2.292094in}}% +\pgfpathlineto{\pgfqpoint{2.221619in}{2.299893in}}% +\pgfpathlineto{\pgfqpoint{2.287267in}{2.305678in}}% +\pgfpathlineto{\pgfqpoint{2.352916in}{2.309501in}}% +\pgfpathlineto{\pgfqpoint{2.418564in}{2.311406in}}% +\pgfpathlineto{\pgfqpoint{2.484213in}{2.311425in}}% +\pgfpathlineto{\pgfqpoint{2.549861in}{2.309582in}}% +\pgfpathlineto{\pgfqpoint{2.615510in}{2.305893in}}% +\pgfpathlineto{\pgfqpoint{2.681158in}{2.300364in}}% +\pgfpathlineto{\pgfqpoint{2.746807in}{2.292994in}}% +\pgfpathlineto{\pgfqpoint{2.812455in}{2.283773in}}% +\pgfpathlineto{\pgfqpoint{2.878103in}{2.272684in}}% +\pgfpathlineto{\pgfqpoint{2.943752in}{2.259699in}}% +\pgfpathlineto{\pgfqpoint{3.009400in}{2.244782in}}% +\pgfpathlineto{\pgfqpoint{3.075049in}{2.227889in}}% +\pgfpathlineto{\pgfqpoint{3.140697in}{2.208961in}}% +\pgfpathlineto{\pgfqpoint{3.206346in}{2.187930in}}% +\pgfpathlineto{\pgfqpoint{3.271994in}{2.164715in}}% +\pgfpathlineto{\pgfqpoint{3.337643in}{2.139218in}}% +\pgfpathlineto{\pgfqpoint{3.403291in}{2.111324in}}% +\pgfpathlineto{\pgfqpoint{3.468940in}{2.080900in}}% +\pgfpathlineto{\pgfqpoint{3.534588in}{2.047786in}}% +\pgfpathlineto{\pgfqpoint{3.600236in}{2.011797in}}% +\pgfpathlineto{\pgfqpoint{3.665885in}{1.972712in}}% +\pgfpathlineto{\pgfqpoint{3.731533in}{1.930270in}}% +\pgfpathlineto{\pgfqpoint{3.797182in}{1.884157in}}% +\pgfpathlineto{\pgfqpoint{3.840947in}{1.851193in}}% +\pgfpathlineto{\pgfqpoint{3.884713in}{1.816301in}}% +\pgfpathlineto{\pgfqpoint{3.928479in}{1.779333in}}% +\pgfpathlineto{\pgfqpoint{3.972244in}{1.740115in}}% +\pgfpathlineto{\pgfqpoint{4.016010in}{1.698449in}}% +\pgfpathlineto{\pgfqpoint{4.059776in}{1.654102in}}% +\pgfpathlineto{\pgfqpoint{4.103541in}{1.606803in}}% +\pgfpathlineto{\pgfqpoint{4.147307in}{1.556228in}}% +\pgfpathlineto{\pgfqpoint{4.191073in}{1.501993in}}% +\pgfpathlineto{\pgfqpoint{4.234838in}{1.443632in}}% +\pgfpathlineto{\pgfqpoint{4.278604in}{1.380575in}}% +\pgfpathlineto{\pgfqpoint{4.322369in}{1.312114in}}% +\pgfpathlineto{\pgfqpoint{4.366135in}{1.237357in}}% +\pgfpathlineto{\pgfqpoint{4.409901in}{1.155155in}}% +\pgfpathlineto{\pgfqpoint{4.453666in}{1.063994in}}% +\pgfpathlineto{\pgfqpoint{4.475549in}{1.014442in}}% +\pgfpathlineto{\pgfqpoint{4.497432in}{0.961826in}}% +\pgfpathlineto{\pgfqpoint{4.519315in}{0.905760in}}% +\pgfpathlineto{\pgfqpoint{4.541198in}{0.845777in}}% +\pgfpathlineto{\pgfqpoint{4.563080in}{0.781307in}}% +\pgfpathlineto{\pgfqpoint{4.584963in}{0.711642in}}% +\pgfpathlineto{\pgfqpoint{4.606846in}{0.635889in}}% +\pgfpathlineto{\pgfqpoint{4.628729in}{0.552901in}}% +\pgfpathlineto{\pgfqpoint{4.652296in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.652296in}{0.453273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -683,121 +893,94 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.670534in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.693809in}{0.604192in}}% -\pgfpathlineto{\pgfqpoint{0.723466in}{0.777657in}}% -\pgfpathlineto{\pgfqpoint{0.753124in}{0.935547in}}% -\pgfpathlineto{\pgfqpoint{0.782781in}{1.080329in}}% -\pgfpathlineto{\pgfqpoint{0.812438in}{1.213928in}}% -\pgfpathlineto{\pgfqpoint{0.842095in}{1.337867in}}% -\pgfpathlineto{\pgfqpoint{0.871752in}{1.453373in}}% -\pgfpathlineto{\pgfqpoint{0.901410in}{1.561452in}}% -\pgfpathlineto{\pgfqpoint{0.931067in}{1.662935in}}% -\pgfpathlineto{\pgfqpoint{0.960724in}{1.758522in}}% -\pgfpathlineto{\pgfqpoint{0.990381in}{1.848800in}}% -\pgfpathlineto{\pgfqpoint{1.020038in}{1.934275in}}% -\pgfpathlineto{\pgfqpoint{1.049695in}{2.015380in}}% -\pgfpathlineto{\pgfqpoint{1.079353in}{2.092490in}}% -\pgfpathlineto{\pgfqpoint{1.109010in}{2.165932in}}% -\pgfpathlineto{\pgfqpoint{1.138667in}{2.235994in}}% -\pgfpathlineto{\pgfqpoint{1.168324in}{2.302930in}}% -\pgfpathlineto{\pgfqpoint{1.197981in}{2.366963in}}% -\pgfpathlineto{\pgfqpoint{1.257296in}{2.487104in}}% -\pgfpathlineto{\pgfqpoint{1.316610in}{2.597781in}}% -\pgfpathlineto{\pgfqpoint{1.375924in}{2.700101in}}% -\pgfpathlineto{\pgfqpoint{1.435239in}{2.794975in}}% -\pgfpathlineto{\pgfqpoint{1.494553in}{2.883162in}}% -\pgfpathlineto{\pgfqpoint{1.553867in}{2.965298in}}% -\pgfpathlineto{\pgfqpoint{1.613182in}{3.041924in}}% -\pgfpathlineto{\pgfqpoint{1.672496in}{3.113503in}}% -\pgfpathlineto{\pgfqpoint{1.731810in}{3.180431in}}% -\pgfpathlineto{\pgfqpoint{1.791125in}{3.243056in}}% -\pgfpathlineto{\pgfqpoint{1.850439in}{3.301677in}}% -\pgfpathlineto{\pgfqpoint{1.909754in}{3.356559in}}% -\pgfpathlineto{\pgfqpoint{1.969068in}{3.407933in}}% -\pgfpathlineto{\pgfqpoint{2.028382in}{3.456004in}}% -\pgfpathlineto{\pgfqpoint{2.087697in}{3.500954in}}% -\pgfpathlineto{\pgfqpoint{2.147011in}{3.542945in}}% -\pgfpathlineto{\pgfqpoint{2.206325in}{3.582122in}}% -\pgfpathlineto{\pgfqpoint{2.265640in}{3.618613in}}% -\pgfpathlineto{\pgfqpoint{2.324954in}{3.652533in}}% -\pgfpathlineto{\pgfqpoint{2.384268in}{3.683987in}}% -\pgfpathlineto{\pgfqpoint{2.443583in}{3.713068in}}% -\pgfpathlineto{\pgfqpoint{2.502897in}{3.739858in}}% -\pgfpathlineto{\pgfqpoint{2.562211in}{3.764433in}}% -\pgfpathlineto{\pgfqpoint{2.621526in}{3.786860in}}% -\pgfpathlineto{\pgfqpoint{2.680840in}{3.807199in}}% -\pgfpathlineto{\pgfqpoint{2.740154in}{3.825504in}}% -\pgfpathlineto{\pgfqpoint{2.799469in}{3.841822in}}% -\pgfpathlineto{\pgfqpoint{2.858783in}{3.856197in}}% -\pgfpathlineto{\pgfqpoint{2.918098in}{3.868666in}}% -\pgfpathlineto{\pgfqpoint{2.977412in}{3.879261in}}% -\pgfpathlineto{\pgfqpoint{3.036726in}{3.888010in}}% -\pgfpathlineto{\pgfqpoint{3.096041in}{3.894938in}}% -\pgfpathlineto{\pgfqpoint{3.155355in}{3.900064in}}% -\pgfpathlineto{\pgfqpoint{3.214669in}{3.903406in}}% -\pgfpathlineto{\pgfqpoint{3.273984in}{3.904974in}}% -\pgfpathlineto{\pgfqpoint{3.333298in}{3.904778in}}% -\pgfpathlineto{\pgfqpoint{3.392612in}{3.902824in}}% -\pgfpathlineto{\pgfqpoint{3.451927in}{3.899113in}}% -\pgfpathlineto{\pgfqpoint{3.511241in}{3.893643in}}% -\pgfpathlineto{\pgfqpoint{3.570555in}{3.886409in}}% -\pgfpathlineto{\pgfqpoint{3.629870in}{3.877403in}}% -\pgfpathlineto{\pgfqpoint{3.689184in}{3.866612in}}% -\pgfpathlineto{\pgfqpoint{3.748498in}{3.854020in}}% -\pgfpathlineto{\pgfqpoint{3.807813in}{3.839607in}}% -\pgfpathlineto{\pgfqpoint{3.867127in}{3.823348in}}% -\pgfpathlineto{\pgfqpoint{3.926442in}{3.805217in}}% -\pgfpathlineto{\pgfqpoint{3.985756in}{3.785179in}}% -\pgfpathlineto{\pgfqpoint{4.045070in}{3.763199in}}% -\pgfpathlineto{\pgfqpoint{4.104385in}{3.739233in}}% -\pgfpathlineto{\pgfqpoint{4.163699in}{3.713234in}}% -\pgfpathlineto{\pgfqpoint{4.223013in}{3.685148in}}% -\pgfpathlineto{\pgfqpoint{4.282328in}{3.654915in}}% -\pgfpathlineto{\pgfqpoint{4.341642in}{3.622467in}}% -\pgfpathlineto{\pgfqpoint{4.400956in}{3.587730in}}% -\pgfpathlineto{\pgfqpoint{4.460271in}{3.550622in}}% -\pgfpathlineto{\pgfqpoint{4.519585in}{3.511047in}}% -\pgfpathlineto{\pgfqpoint{4.578899in}{3.468904in}}% -\pgfpathlineto{\pgfqpoint{4.638214in}{3.424076in}}% -\pgfpathlineto{\pgfqpoint{4.697528in}{3.376435in}}% -\pgfpathlineto{\pgfqpoint{4.756842in}{3.325836in}}% -\pgfpathlineto{\pgfqpoint{4.816157in}{3.272118in}}% -\pgfpathlineto{\pgfqpoint{4.875471in}{3.215100in}}% -\pgfpathlineto{\pgfqpoint{4.934786in}{3.154575in}}% -\pgfpathlineto{\pgfqpoint{4.994100in}{3.090312in}}% -\pgfpathlineto{\pgfqpoint{5.053414in}{3.022047in}}% -\pgfpathlineto{\pgfqpoint{5.112729in}{2.949480in}}% -\pgfpathlineto{\pgfqpoint{5.172043in}{2.872266in}}% -\pgfpathlineto{\pgfqpoint{5.231357in}{2.790006in}}% -\pgfpathlineto{\pgfqpoint{5.290672in}{2.702238in}}% -\pgfpathlineto{\pgfqpoint{5.349986in}{2.608422in}}% -\pgfpathlineto{\pgfqpoint{5.409300in}{2.507920in}}% -\pgfpathlineto{\pgfqpoint{5.468615in}{2.399974in}}% -\pgfpathlineto{\pgfqpoint{5.527929in}{2.283675in}}% -\pgfpathlineto{\pgfqpoint{5.587243in}{2.157914in}}% -\pgfpathlineto{\pgfqpoint{5.616901in}{2.091072in}}% -\pgfpathlineto{\pgfqpoint{5.646558in}{2.021328in}}% -\pgfpathlineto{\pgfqpoint{5.676215in}{1.948457in}}% -\pgfpathlineto{\pgfqpoint{5.705872in}{1.872208in}}% -\pgfpathlineto{\pgfqpoint{5.735529in}{1.792291in}}% -\pgfpathlineto{\pgfqpoint{5.765186in}{1.708381in}}% -\pgfpathlineto{\pgfqpoint{5.794844in}{1.620100in}}% -\pgfpathlineto{\pgfqpoint{5.824501in}{1.527017in}}% -\pgfpathlineto{\pgfqpoint{5.854158in}{1.428627in}}% -\pgfpathlineto{\pgfqpoint{5.883815in}{1.324339in}}% -\pgfpathlineto{\pgfqpoint{5.913472in}{1.213459in}}% -\pgfpathlineto{\pgfqpoint{5.943130in}{1.095152in}}% -\pgfpathlineto{\pgfqpoint{5.972787in}{0.968412in}}% -\pgfpathlineto{\pgfqpoint{6.002444in}{0.832012in}}% -\pgfpathlineto{\pgfqpoint{6.032101in}{0.684429in}}% -\pgfpathlineto{\pgfqpoint{6.061758in}{0.523742in}}% -\pgfpathlineto{\pgfqpoint{6.073615in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{6.073615in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.627570in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.646056in}{0.528730in}}% +\pgfpathlineto{\pgfqpoint{0.667939in}{0.609305in}}% +\pgfpathlineto{\pgfqpoint{0.689822in}{0.682645in}}% +\pgfpathlineto{\pgfqpoint{0.711705in}{0.749896in}}% +\pgfpathlineto{\pgfqpoint{0.733587in}{0.811953in}}% +\pgfpathlineto{\pgfqpoint{0.755470in}{0.869523in}}% +\pgfpathlineto{\pgfqpoint{0.777353in}{0.923175in}}% +\pgfpathlineto{\pgfqpoint{0.799236in}{0.973378in}}% +\pgfpathlineto{\pgfqpoint{0.821119in}{1.020517in}}% +\pgfpathlineto{\pgfqpoint{0.864884in}{1.106852in}}% +\pgfpathlineto{\pgfqpoint{0.908650in}{1.184228in}}% +\pgfpathlineto{\pgfqpoint{0.952416in}{1.254160in}}% +\pgfpathlineto{\pgfqpoint{0.996181in}{1.317795in}}% +\pgfpathlineto{\pgfqpoint{1.039947in}{1.376027in}}% +\pgfpathlineto{\pgfqpoint{1.083712in}{1.429564in}}% +\pgfpathlineto{\pgfqpoint{1.127478in}{1.478974in}}% +\pgfpathlineto{\pgfqpoint{1.171244in}{1.524725in}}% +\pgfpathlineto{\pgfqpoint{1.215009in}{1.567200in}}% +\pgfpathlineto{\pgfqpoint{1.258775in}{1.606724in}}% +\pgfpathlineto{\pgfqpoint{1.302541in}{1.643567in}}% +\pgfpathlineto{\pgfqpoint{1.346306in}{1.677963in}}% +\pgfpathlineto{\pgfqpoint{1.390072in}{1.710110in}}% +\pgfpathlineto{\pgfqpoint{1.433838in}{1.740180in}}% +\pgfpathlineto{\pgfqpoint{1.477603in}{1.768324in}}% +\pgfpathlineto{\pgfqpoint{1.543252in}{1.807206in}}% +\pgfpathlineto{\pgfqpoint{1.608900in}{1.842420in}}% +\pgfpathlineto{\pgfqpoint{1.674549in}{1.874278in}}% +\pgfpathlineto{\pgfqpoint{1.740197in}{1.903041in}}% +\pgfpathlineto{\pgfqpoint{1.805845in}{1.928931in}}% +\pgfpathlineto{\pgfqpoint{1.871494in}{1.952132in}}% +\pgfpathlineto{\pgfqpoint{1.937142in}{1.972805in}}% +\pgfpathlineto{\pgfqpoint{2.002791in}{1.991083in}}% +\pgfpathlineto{\pgfqpoint{2.068439in}{2.007081in}}% +\pgfpathlineto{\pgfqpoint{2.134088in}{2.020897in}}% +\pgfpathlineto{\pgfqpoint{2.199736in}{2.032612in}}% +\pgfpathlineto{\pgfqpoint{2.265385in}{2.042294in}}% +\pgfpathlineto{\pgfqpoint{2.331033in}{2.050002in}}% +\pgfpathlineto{\pgfqpoint{2.396682in}{2.055780in}}% +\pgfpathlineto{\pgfqpoint{2.462330in}{2.059665in}}% +\pgfpathlineto{\pgfqpoint{2.527978in}{2.061684in}}% +\pgfpathlineto{\pgfqpoint{2.593627in}{2.061855in}}% +\pgfpathlineto{\pgfqpoint{2.659275in}{2.060187in}}% +\pgfpathlineto{\pgfqpoint{2.724924in}{2.056682in}}% +\pgfpathlineto{\pgfqpoint{2.790572in}{2.051334in}}% +\pgfpathlineto{\pgfqpoint{2.856221in}{2.044126in}}% +\pgfpathlineto{\pgfqpoint{2.921869in}{2.035036in}}% +\pgfpathlineto{\pgfqpoint{2.987518in}{2.024030in}}% +\pgfpathlineto{\pgfqpoint{3.053166in}{2.011066in}}% +\pgfpathlineto{\pgfqpoint{3.118814in}{1.996091in}}% +\pgfpathlineto{\pgfqpoint{3.184463in}{1.979040in}}% +\pgfpathlineto{\pgfqpoint{3.250111in}{1.959836in}}% +\pgfpathlineto{\pgfqpoint{3.315760in}{1.938388in}}% +\pgfpathlineto{\pgfqpoint{3.381408in}{1.914586in}}% +\pgfpathlineto{\pgfqpoint{3.447057in}{1.888303in}}% +\pgfpathlineto{\pgfqpoint{3.512705in}{1.859391in}}% +\pgfpathlineto{\pgfqpoint{3.578354in}{1.827671in}}% +\pgfpathlineto{\pgfqpoint{3.644002in}{1.792936in}}% +\pgfpathlineto{\pgfqpoint{3.709651in}{1.754939in}}% +\pgfpathlineto{\pgfqpoint{3.775299in}{1.713385in}}% +\pgfpathlineto{\pgfqpoint{3.819065in}{1.683534in}}% +\pgfpathlineto{\pgfqpoint{3.862830in}{1.651826in}}% +\pgfpathlineto{\pgfqpoint{3.906596in}{1.618118in}}% +\pgfpathlineto{\pgfqpoint{3.950362in}{1.582252in}}% +\pgfpathlineto{\pgfqpoint{3.994127in}{1.544042in}}% +\pgfpathlineto{\pgfqpoint{4.037893in}{1.503274in}}% +\pgfpathlineto{\pgfqpoint{4.081658in}{1.459696in}}% +\pgfpathlineto{\pgfqpoint{4.125424in}{1.413013in}}% +\pgfpathlineto{\pgfqpoint{4.169190in}{1.362872in}}% +\pgfpathlineto{\pgfqpoint{4.212955in}{1.308851in}}% +\pgfpathlineto{\pgfqpoint{4.256721in}{1.250435in}}% +\pgfpathlineto{\pgfqpoint{4.300487in}{1.186991in}}% +\pgfpathlineto{\pgfqpoint{4.344252in}{1.117724in}}% +\pgfpathlineto{\pgfqpoint{4.388018in}{1.041627in}}% +\pgfpathlineto{\pgfqpoint{4.431784in}{0.957383in}}% +\pgfpathlineto{\pgfqpoint{4.453666in}{0.911681in}}% +\pgfpathlineto{\pgfqpoint{4.475549in}{0.863239in}}% +\pgfpathlineto{\pgfqpoint{4.497432in}{0.811735in}}% +\pgfpathlineto{\pgfqpoint{4.519315in}{0.756781in}}% +\pgfpathlineto{\pgfqpoint{4.541198in}{0.697911in}}% +\pgfpathlineto{\pgfqpoint{4.563080in}{0.634553in}}% +\pgfpathlineto{\pgfqpoint{4.584963in}{0.566000in}}% +\pgfpathlineto{\pgfqpoint{4.617026in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.617026in}{0.453273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -805,121 +988,95 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.712295in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.723466in}{0.519526in}}% -\pgfpathlineto{\pgfqpoint{0.753124in}{0.679831in}}% -\pgfpathlineto{\pgfqpoint{0.782781in}{0.827033in}}% -\pgfpathlineto{\pgfqpoint{0.812438in}{0.963051in}}% -\pgfpathlineto{\pgfqpoint{0.842095in}{1.089408in}}% -\pgfpathlineto{\pgfqpoint{0.871752in}{1.207335in}}% -\pgfpathlineto{\pgfqpoint{0.901410in}{1.317834in}}% -\pgfpathlineto{\pgfqpoint{0.931067in}{1.421740in}}% -\pgfpathlineto{\pgfqpoint{0.960724in}{1.519749in}}% -\pgfpathlineto{\pgfqpoint{0.990381in}{1.612452in}}% -\pgfpathlineto{\pgfqpoint{1.020038in}{1.700352in}}% -\pgfpathlineto{\pgfqpoint{1.049695in}{1.783883in}}% -\pgfpathlineto{\pgfqpoint{1.079353in}{1.863419in}}% -\pgfpathlineto{\pgfqpoint{1.109010in}{1.939289in}}% -\pgfpathlineto{\pgfqpoint{1.138667in}{2.011779in}}% -\pgfpathlineto{\pgfqpoint{1.168324in}{2.081145in}}% -\pgfpathlineto{\pgfqpoint{1.227638in}{2.211371in}}% -\pgfpathlineto{\pgfqpoint{1.286953in}{2.331492in}}% -\pgfpathlineto{\pgfqpoint{1.346267in}{2.442735in}}% -\pgfpathlineto{\pgfqpoint{1.405582in}{2.546101in}}% -\pgfpathlineto{\pgfqpoint{1.464896in}{2.642422in}}% -\pgfpathlineto{\pgfqpoint{1.524210in}{2.732390in}}% -\pgfpathlineto{\pgfqpoint{1.583525in}{2.816594in}}% -\pgfpathlineto{\pgfqpoint{1.642839in}{2.895530in}}% -\pgfpathlineto{\pgfqpoint{1.702153in}{2.969630in}}% -\pgfpathlineto{\pgfqpoint{1.761468in}{3.039262in}}% -\pgfpathlineto{\pgfqpoint{1.820782in}{3.104750in}}% -\pgfpathlineto{\pgfqpoint{1.880096in}{3.166374in}}% -\pgfpathlineto{\pgfqpoint{1.939411in}{3.224382in}}% -\pgfpathlineto{\pgfqpoint{1.998725in}{3.278992in}}% -\pgfpathlineto{\pgfqpoint{2.058039in}{3.330397in}}% -\pgfpathlineto{\pgfqpoint{2.117354in}{3.378769in}}% -\pgfpathlineto{\pgfqpoint{2.176668in}{3.424259in}}% -\pgfpathlineto{\pgfqpoint{2.235982in}{3.467005in}}% -\pgfpathlineto{\pgfqpoint{2.295297in}{3.507130in}}% -\pgfpathlineto{\pgfqpoint{2.354611in}{3.544741in}}% -\pgfpathlineto{\pgfqpoint{2.413926in}{3.579937in}}% -\pgfpathlineto{\pgfqpoint{2.473240in}{3.612807in}}% -\pgfpathlineto{\pgfqpoint{2.532554in}{3.643429in}}% -\pgfpathlineto{\pgfqpoint{2.591869in}{3.671875in}}% -\pgfpathlineto{\pgfqpoint{2.651183in}{3.698208in}}% -\pgfpathlineto{\pgfqpoint{2.710497in}{3.722484in}}% -\pgfpathlineto{\pgfqpoint{2.769812in}{3.744756in}}% -\pgfpathlineto{\pgfqpoint{2.829126in}{3.765068in}}% -\pgfpathlineto{\pgfqpoint{2.888440in}{3.783459in}}% -\pgfpathlineto{\pgfqpoint{2.947755in}{3.799965in}}% -\pgfpathlineto{\pgfqpoint{3.007069in}{3.814617in}}% -\pgfpathlineto{\pgfqpoint{3.066383in}{3.827441in}}% -\pgfpathlineto{\pgfqpoint{3.125698in}{3.838457in}}% -\pgfpathlineto{\pgfqpoint{3.185012in}{3.847685in}}% -\pgfpathlineto{\pgfqpoint{3.244326in}{3.855139in}}% -\pgfpathlineto{\pgfqpoint{3.303641in}{3.860830in}}% -\pgfpathlineto{\pgfqpoint{3.362955in}{3.864764in}}% -\pgfpathlineto{\pgfqpoint{3.422270in}{3.866946in}}% -\pgfpathlineto{\pgfqpoint{3.481584in}{3.867374in}}% -\pgfpathlineto{\pgfqpoint{3.540898in}{3.866047in}}% -\pgfpathlineto{\pgfqpoint{3.600213in}{3.862956in}}% -\pgfpathlineto{\pgfqpoint{3.659527in}{3.858092in}}% -\pgfpathlineto{\pgfqpoint{3.718841in}{3.851439in}}% -\pgfpathlineto{\pgfqpoint{3.778156in}{3.842981in}}% -\pgfpathlineto{\pgfqpoint{3.837470in}{3.832695in}}% -\pgfpathlineto{\pgfqpoint{3.896784in}{3.820556in}}% -\pgfpathlineto{\pgfqpoint{3.956099in}{3.806532in}}% -\pgfpathlineto{\pgfqpoint{4.015413in}{3.790589in}}% -\pgfpathlineto{\pgfqpoint{4.074727in}{3.772687in}}% -\pgfpathlineto{\pgfqpoint{4.134042in}{3.752782in}}% -\pgfpathlineto{\pgfqpoint{4.193356in}{3.730821in}}% -\pgfpathlineto{\pgfqpoint{4.252670in}{3.706750in}}% -\pgfpathlineto{\pgfqpoint{4.311985in}{3.680504in}}% -\pgfpathlineto{\pgfqpoint{4.371299in}{3.652012in}}% -\pgfpathlineto{\pgfqpoint{4.430614in}{3.621195in}}% -\pgfpathlineto{\pgfqpoint{4.489928in}{3.587965in}}% -\pgfpathlineto{\pgfqpoint{4.549242in}{3.552226in}}% -\pgfpathlineto{\pgfqpoint{4.608557in}{3.513865in}}% -\pgfpathlineto{\pgfqpoint{4.667871in}{3.472763in}}% -\pgfpathlineto{\pgfqpoint{4.727185in}{3.428783in}}% -\pgfpathlineto{\pgfqpoint{4.786500in}{3.381772in}}% -\pgfpathlineto{\pgfqpoint{4.845814in}{3.331558in}}% -\pgfpathlineto{\pgfqpoint{4.905128in}{3.277950in}}% -\pgfpathlineto{\pgfqpoint{4.964443in}{3.220728in}}% -\pgfpathlineto{\pgfqpoint{5.023757in}{3.159645in}}% -\pgfpathlineto{\pgfqpoint{5.083071in}{3.094421in}}% -\pgfpathlineto{\pgfqpoint{5.142386in}{3.024734in}}% -\pgfpathlineto{\pgfqpoint{5.201700in}{2.950212in}}% -\pgfpathlineto{\pgfqpoint{5.261014in}{2.870428in}}% -\pgfpathlineto{\pgfqpoint{5.320329in}{2.784882in}}% -\pgfpathlineto{\pgfqpoint{5.379643in}{2.692988in}}% -\pgfpathlineto{\pgfqpoint{5.438958in}{2.594052in}}% -\pgfpathlineto{\pgfqpoint{5.498272in}{2.487244in}}% -\pgfpathlineto{\pgfqpoint{5.557586in}{2.371561in}}% -\pgfpathlineto{\pgfqpoint{5.587243in}{2.310019in}}% -\pgfpathlineto{\pgfqpoint{5.616901in}{2.245777in}}% -\pgfpathlineto{\pgfqpoint{5.646558in}{2.178636in}}% -\pgfpathlineto{\pgfqpoint{5.676215in}{2.108369in}}% -\pgfpathlineto{\pgfqpoint{5.705872in}{2.034725in}}% -\pgfpathlineto{\pgfqpoint{5.735529in}{1.957415in}}% -\pgfpathlineto{\pgfqpoint{5.765186in}{1.876111in}}% -\pgfpathlineto{\pgfqpoint{5.794844in}{1.790440in}}% -\pgfpathlineto{\pgfqpoint{5.824501in}{1.699968in}}% -\pgfpathlineto{\pgfqpoint{5.854158in}{1.604189in}}% -\pgfpathlineto{\pgfqpoint{5.883815in}{1.502516in}}% -\pgfpathlineto{\pgfqpoint{5.913472in}{1.394249in}}% -\pgfpathlineto{\pgfqpoint{5.943130in}{1.278558in}}% -\pgfpathlineto{\pgfqpoint{5.972787in}{1.154436in}}% -\pgfpathlineto{\pgfqpoint{6.002444in}{1.020656in}}% -\pgfpathlineto{\pgfqpoint{6.032101in}{0.875695in}}% -\pgfpathlineto{\pgfqpoint{6.061758in}{0.717628in}}% -\pgfpathlineto{\pgfqpoint{6.091415in}{0.543988in}}% -\pgfpathlineto{\pgfqpoint{6.105394in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{6.105394in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.658262in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.667939in}{0.489403in}}% +\pgfpathlineto{\pgfqpoint{0.689822in}{0.563865in}}% +\pgfpathlineto{\pgfqpoint{0.711705in}{0.632240in}}% +\pgfpathlineto{\pgfqpoint{0.733587in}{0.695420in}}% +\pgfpathlineto{\pgfqpoint{0.755470in}{0.754113in}}% +\pgfpathlineto{\pgfqpoint{0.777353in}{0.808890in}}% +\pgfpathlineto{\pgfqpoint{0.799236in}{0.860217in}}% +\pgfpathlineto{\pgfqpoint{0.821119in}{0.908482in}}% +\pgfpathlineto{\pgfqpoint{0.864884in}{0.997068in}}% +\pgfpathlineto{\pgfqpoint{0.908650in}{1.076697in}}% +\pgfpathlineto{\pgfqpoint{0.952416in}{1.148883in}}% +\pgfpathlineto{\pgfqpoint{0.996181in}{1.214776in}}% +\pgfpathlineto{\pgfqpoint{1.039947in}{1.275266in}}% +\pgfpathlineto{\pgfqpoint{1.083712in}{1.331062in}}% +\pgfpathlineto{\pgfqpoint{1.127478in}{1.382734in}}% +\pgfpathlineto{\pgfqpoint{1.171244in}{1.430748in}}% +\pgfpathlineto{\pgfqpoint{1.215009in}{1.475489in}}% +\pgfpathlineto{\pgfqpoint{1.258775in}{1.517280in}}% +\pgfpathlineto{\pgfqpoint{1.302541in}{1.556392in}}% +\pgfpathlineto{\pgfqpoint{1.346306in}{1.593058in}}% +\pgfpathlineto{\pgfqpoint{1.390072in}{1.627478in}}% +\pgfpathlineto{\pgfqpoint{1.433838in}{1.659822in}}% +\pgfpathlineto{\pgfqpoint{1.477603in}{1.690241in}}% +\pgfpathlineto{\pgfqpoint{1.543252in}{1.732541in}}% +\pgfpathlineto{\pgfqpoint{1.608900in}{1.771177in}}% +\pgfpathlineto{\pgfqpoint{1.674549in}{1.806460in}}% +\pgfpathlineto{\pgfqpoint{1.740197in}{1.838653in}}% +\pgfpathlineto{\pgfqpoint{1.805845in}{1.867977in}}% +\pgfpathlineto{\pgfqpoint{1.871494in}{1.894617in}}% +\pgfpathlineto{\pgfqpoint{1.937142in}{1.918732in}}% +\pgfpathlineto{\pgfqpoint{2.002791in}{1.940458in}}% +\pgfpathlineto{\pgfqpoint{2.068439in}{1.959908in}}% +\pgfpathlineto{\pgfqpoint{2.134088in}{1.977179in}}% +\pgfpathlineto{\pgfqpoint{2.199736in}{1.992354in}}% +\pgfpathlineto{\pgfqpoint{2.265385in}{2.005502in}}% +\pgfpathlineto{\pgfqpoint{2.331033in}{2.016679in}}% +\pgfpathlineto{\pgfqpoint{2.396682in}{2.025931in}}% +\pgfpathlineto{\pgfqpoint{2.462330in}{2.033295in}}% +\pgfpathlineto{\pgfqpoint{2.527978in}{2.038797in}}% +\pgfpathlineto{\pgfqpoint{2.593627in}{2.042456in}}% +\pgfpathlineto{\pgfqpoint{2.659275in}{2.044281in}}% +\pgfpathlineto{\pgfqpoint{2.724924in}{2.044274in}}% +\pgfpathlineto{\pgfqpoint{2.790572in}{2.042428in}}% +\pgfpathlineto{\pgfqpoint{2.856221in}{2.038728in}}% +\pgfpathlineto{\pgfqpoint{2.921869in}{2.033150in}}% +\pgfpathlineto{\pgfqpoint{2.987518in}{2.025661in}}% +\pgfpathlineto{\pgfqpoint{3.053166in}{2.016219in}}% +\pgfpathlineto{\pgfqpoint{3.118814in}{2.004771in}}% +\pgfpathlineto{\pgfqpoint{3.184463in}{1.991252in}}% +\pgfpathlineto{\pgfqpoint{3.250111in}{1.975585in}}% +\pgfpathlineto{\pgfqpoint{3.315760in}{1.957679in}}% +\pgfpathlineto{\pgfqpoint{3.381408in}{1.937425in}}% +\pgfpathlineto{\pgfqpoint{3.447057in}{1.914695in}}% +\pgfpathlineto{\pgfqpoint{3.512705in}{1.889340in}}% +\pgfpathlineto{\pgfqpoint{3.578354in}{1.861183in}}% +\pgfpathlineto{\pgfqpoint{3.644002in}{1.830017in}}% +\pgfpathlineto{\pgfqpoint{3.709651in}{1.795594in}}% +\pgfpathlineto{\pgfqpoint{3.775299in}{1.757619in}}% +\pgfpathlineto{\pgfqpoint{3.819065in}{1.730158in}}% +\pgfpathlineto{\pgfqpoint{3.862830in}{1.700841in}}% +\pgfpathlineto{\pgfqpoint{3.906596in}{1.669528in}}% +\pgfpathlineto{\pgfqpoint{3.950362in}{1.636058in}}% +\pgfpathlineto{\pgfqpoint{3.994127in}{1.600247in}}% +\pgfpathlineto{\pgfqpoint{4.037893in}{1.561881in}}% +\pgfpathlineto{\pgfqpoint{4.081658in}{1.520707in}}% +\pgfpathlineto{\pgfqpoint{4.125424in}{1.476431in}}% +\pgfpathlineto{\pgfqpoint{4.169190in}{1.428699in}}% +\pgfpathlineto{\pgfqpoint{4.212955in}{1.377090in}}% +\pgfpathlineto{\pgfqpoint{4.256721in}{1.321088in}}% +\pgfpathlineto{\pgfqpoint{4.300487in}{1.260060in}}% +\pgfpathlineto{\pgfqpoint{4.344252in}{1.193213in}}% +\pgfpathlineto{\pgfqpoint{4.388018in}{1.119537in}}% +\pgfpathlineto{\pgfqpoint{4.431784in}{1.037719in}}% +\pgfpathlineto{\pgfqpoint{4.453666in}{0.993230in}}% +\pgfpathlineto{\pgfqpoint{4.475549in}{0.946002in}}% +\pgfpathlineto{\pgfqpoint{4.497432in}{0.895712in}}% +\pgfpathlineto{\pgfqpoint{4.519315in}{0.841974in}}% +\pgfpathlineto{\pgfqpoint{4.541198in}{0.784319in}}% +\pgfpathlineto{\pgfqpoint{4.563080in}{0.722178in}}% +\pgfpathlineto{\pgfqpoint{4.584963in}{0.654843in}}% +\pgfpathlineto{\pgfqpoint{4.606846in}{0.581421in}}% +\pgfpathlineto{\pgfqpoint{4.628729in}{0.500765in}}% +\pgfpathlineto{\pgfqpoint{4.640354in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.640354in}{0.453273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -927,125 +1084,99 @@ \definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672810in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.693809in}{0.593018in}}% -\pgfpathlineto{\pgfqpoint{0.723466in}{0.771553in}}% -\pgfpathlineto{\pgfqpoint{0.753124in}{0.934516in}}% -\pgfpathlineto{\pgfqpoint{0.782781in}{1.084374in}}% -\pgfpathlineto{\pgfqpoint{0.812438in}{1.223051in}}% -\pgfpathlineto{\pgfqpoint{0.842095in}{1.352070in}}% -\pgfpathlineto{\pgfqpoint{0.871752in}{1.472658in}}% -\pgfpathlineto{\pgfqpoint{0.901410in}{1.585823in}}% -\pgfpathlineto{\pgfqpoint{0.931067in}{1.692394in}}% -\pgfpathlineto{\pgfqpoint{0.960724in}{1.793070in}}% -\pgfpathlineto{\pgfqpoint{0.990381in}{1.888441in}}% -\pgfpathlineto{\pgfqpoint{1.020038in}{1.979011in}}% -\pgfpathlineto{\pgfqpoint{1.049695in}{2.065214in}}% -\pgfpathlineto{\pgfqpoint{1.079353in}{2.147424in}}% -\pgfpathlineto{\pgfqpoint{1.109010in}{2.225969in}}% -\pgfpathlineto{\pgfqpoint{1.138667in}{2.301136in}}% -\pgfpathlineto{\pgfqpoint{1.197981in}{2.442322in}}% -\pgfpathlineto{\pgfqpoint{1.257296in}{2.572691in}}% -\pgfpathlineto{\pgfqpoint{1.316610in}{2.693605in}}% -\pgfpathlineto{\pgfqpoint{1.375924in}{2.806173in}}% -\pgfpathlineto{\pgfqpoint{1.435239in}{2.911306in}}% -\pgfpathlineto{\pgfqpoint{1.494553in}{3.009761in}}% -\pgfpathlineto{\pgfqpoint{1.553867in}{3.102176in}}% -\pgfpathlineto{\pgfqpoint{1.613182in}{3.189092in}}% -\pgfpathlineto{\pgfqpoint{1.672496in}{3.270971in}}% -\pgfpathlineto{\pgfqpoint{1.731810in}{3.348210in}}% -\pgfpathlineto{\pgfqpoint{1.791125in}{3.421156in}}% -\pgfpathlineto{\pgfqpoint{1.850439in}{3.490109in}}% -\pgfpathlineto{\pgfqpoint{1.909754in}{3.555333in}}% -\pgfpathlineto{\pgfqpoint{1.969068in}{3.617060in}}% -\pgfpathlineto{\pgfqpoint{2.028382in}{3.675495in}}% -\pgfpathlineto{\pgfqpoint{2.087697in}{3.730821in}}% -\pgfpathlineto{\pgfqpoint{2.147011in}{3.783198in}}% -\pgfpathlineto{\pgfqpoint{2.206325in}{3.832771in}}% -\pgfpathlineto{\pgfqpoint{2.265640in}{3.879670in}}% -\pgfpathlineto{\pgfqpoint{2.324954in}{3.924010in}}% -\pgfpathlineto{\pgfqpoint{2.384268in}{3.965895in}}% -\pgfpathlineto{\pgfqpoint{2.443583in}{4.005417in}}% -\pgfpathlineto{\pgfqpoint{2.502897in}{4.042660in}}% -\pgfpathlineto{\pgfqpoint{2.562211in}{4.077699in}}% -\pgfpathlineto{\pgfqpoint{2.621526in}{4.110602in}}% -\pgfpathlineto{\pgfqpoint{2.680840in}{4.141428in}}% -\pgfpathlineto{\pgfqpoint{2.740154in}{4.170232in}}% -\pgfpathlineto{\pgfqpoint{2.799469in}{4.197061in}}% -\pgfpathlineto{\pgfqpoint{2.858783in}{4.221958in}}% -\pgfpathlineto{\pgfqpoint{2.918098in}{4.244960in}}% -\pgfpathlineto{\pgfqpoint{2.977412in}{4.266101in}}% -\pgfpathlineto{\pgfqpoint{3.036726in}{4.285408in}}% -\pgfpathlineto{\pgfqpoint{3.096041in}{4.302905in}}% -\pgfpathlineto{\pgfqpoint{3.155355in}{4.318613in}}% -\pgfpathlineto{\pgfqpoint{3.214669in}{4.332548in}}% -\pgfpathlineto{\pgfqpoint{3.273984in}{4.344722in}}% -\pgfpathlineto{\pgfqpoint{3.333298in}{4.355144in}}% -\pgfpathlineto{\pgfqpoint{3.392612in}{4.363820in}}% -\pgfpathlineto{\pgfqpoint{3.451927in}{4.370752in}}% -\pgfpathlineto{\pgfqpoint{3.511241in}{4.375937in}}% -\pgfpathlineto{\pgfqpoint{3.570555in}{4.379370in}}% -\pgfpathlineto{\pgfqpoint{3.629870in}{4.381044in}}% -\pgfpathlineto{\pgfqpoint{3.689184in}{4.380945in}}% -\pgfpathlineto{\pgfqpoint{3.748498in}{4.379058in}}% -\pgfpathlineto{\pgfqpoint{3.807813in}{4.375362in}}% -\pgfpathlineto{\pgfqpoint{3.867127in}{4.369835in}}% -\pgfpathlineto{\pgfqpoint{3.926442in}{4.362447in}}% -\pgfpathlineto{\pgfqpoint{3.985756in}{4.353166in}}% -\pgfpathlineto{\pgfqpoint{4.045070in}{4.341955in}}% -\pgfpathlineto{\pgfqpoint{4.104385in}{4.328772in}}% -\pgfpathlineto{\pgfqpoint{4.163699in}{4.313568in}}% -\pgfpathlineto{\pgfqpoint{4.223013in}{4.296291in}}% -\pgfpathlineto{\pgfqpoint{4.282328in}{4.276880in}}% -\pgfpathlineto{\pgfqpoint{4.341642in}{4.255268in}}% -\pgfpathlineto{\pgfqpoint{4.400956in}{4.231380in}}% -\pgfpathlineto{\pgfqpoint{4.460271in}{4.205134in}}% -\pgfpathlineto{\pgfqpoint{4.519585in}{4.176435in}}% -\pgfpathlineto{\pgfqpoint{4.578899in}{4.145182in}}% -\pgfpathlineto{\pgfqpoint{4.638214in}{4.111257in}}% -\pgfpathlineto{\pgfqpoint{4.697528in}{4.074533in}}% -\pgfpathlineto{\pgfqpoint{4.756842in}{4.034866in}}% -\pgfpathlineto{\pgfqpoint{4.816157in}{3.992093in}}% -\pgfpathlineto{\pgfqpoint{4.875471in}{3.946033in}}% -\pgfpathlineto{\pgfqpoint{4.934786in}{3.896482in}}% -\pgfpathlineto{\pgfqpoint{4.994100in}{3.843206in}}% -\pgfpathlineto{\pgfqpoint{5.053414in}{3.785943in}}% -\pgfpathlineto{\pgfqpoint{5.112729in}{3.724392in}}% -\pgfpathlineto{\pgfqpoint{5.172043in}{3.658208in}}% -\pgfpathlineto{\pgfqpoint{5.231357in}{3.586993in}}% -\pgfpathlineto{\pgfqpoint{5.290672in}{3.510285in}}% -\pgfpathlineto{\pgfqpoint{5.349986in}{3.427542in}}% -\pgfpathlineto{\pgfqpoint{5.409300in}{3.338130in}}% -\pgfpathlineto{\pgfqpoint{5.468615in}{3.241288in}}% -\pgfpathlineto{\pgfqpoint{5.527929in}{3.136107in}}% -\pgfpathlineto{\pgfqpoint{5.557586in}{3.080053in}}% -\pgfpathlineto{\pgfqpoint{5.587243in}{3.021480in}}% -\pgfpathlineto{\pgfqpoint{5.616901in}{2.960210in}}% -\pgfpathlineto{\pgfqpoint{5.646558in}{2.896042in}}% -\pgfpathlineto{\pgfqpoint{5.676215in}{2.828751in}}% -\pgfpathlineto{\pgfqpoint{5.705872in}{2.758086in}}% -\pgfpathlineto{\pgfqpoint{5.735529in}{2.683757in}}% -\pgfpathlineto{\pgfqpoint{5.765186in}{2.605438in}}% -\pgfpathlineto{\pgfqpoint{5.794844in}{2.522752in}}% -\pgfpathlineto{\pgfqpoint{5.824501in}{2.435268in}}% -\pgfpathlineto{\pgfqpoint{5.854158in}{2.342481in}}% -\pgfpathlineto{\pgfqpoint{5.883815in}{2.243800in}}% -\pgfpathlineto{\pgfqpoint{5.913472in}{2.138530in}}% -\pgfpathlineto{\pgfqpoint{5.943130in}{2.025837in}}% -\pgfpathlineto{\pgfqpoint{5.972787in}{1.904716in}}% -\pgfpathlineto{\pgfqpoint{6.002444in}{1.773938in}}% -\pgfpathlineto{\pgfqpoint{6.032101in}{1.631981in}}% -\pgfpathlineto{\pgfqpoint{6.061758in}{1.476924in}}% -\pgfpathlineto{\pgfqpoint{6.091415in}{1.306294in}}% -\pgfpathlineto{\pgfqpoint{6.121073in}{1.116841in}}% -\pgfpathlineto{\pgfqpoint{6.150730in}{0.904158in}}% -\pgfpathlineto{\pgfqpoint{6.180387in}{0.662079in}}% -\pgfpathlineto{\pgfqpoint{6.202463in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{6.202463in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.629284in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.646056in}{0.523540in}}% +\pgfpathlineto{\pgfqpoint{0.667939in}{0.606470in}}% +\pgfpathlineto{\pgfqpoint{0.689822in}{0.682166in}}% +\pgfpathlineto{\pgfqpoint{0.711705in}{0.751775in}}% +\pgfpathlineto{\pgfqpoint{0.733587in}{0.816190in}}% +\pgfpathlineto{\pgfqpoint{0.755470in}{0.876120in}}% +\pgfpathlineto{\pgfqpoint{0.777353in}{0.932133in}}% +\pgfpathlineto{\pgfqpoint{0.799236in}{0.984698in}}% +\pgfpathlineto{\pgfqpoint{0.843001in}{1.080965in}}% +\pgfpathlineto{\pgfqpoint{0.886767in}{1.167335in}}% +\pgfpathlineto{\pgfqpoint{0.930533in}{1.245562in}}% +\pgfpathlineto{\pgfqpoint{0.974298in}{1.316962in}}% +\pgfpathlineto{\pgfqpoint{1.018064in}{1.382543in}}% +\pgfpathlineto{\pgfqpoint{1.061830in}{1.443099in}}% +\pgfpathlineto{\pgfqpoint{1.105595in}{1.499264in}}% +\pgfpathlineto{\pgfqpoint{1.149361in}{1.551552in}}% +\pgfpathlineto{\pgfqpoint{1.193127in}{1.600386in}}% +\pgfpathlineto{\pgfqpoint{1.236892in}{1.646119in}}% +\pgfpathlineto{\pgfqpoint{1.280658in}{1.689046in}}% +\pgfpathlineto{\pgfqpoint{1.324423in}{1.729418in}}% +\pgfpathlineto{\pgfqpoint{1.368189in}{1.767451in}}% +\pgfpathlineto{\pgfqpoint{1.411955in}{1.803328in}}% +\pgfpathlineto{\pgfqpoint{1.455720in}{1.837212in}}% +\pgfpathlineto{\pgfqpoint{1.521369in}{1.884598in}}% +\pgfpathlineto{\pgfqpoint{1.587017in}{1.928209in}}% +\pgfpathlineto{\pgfqpoint{1.652666in}{1.968378in}}% +\pgfpathlineto{\pgfqpoint{1.718314in}{2.005381in}}% +\pgfpathlineto{\pgfqpoint{1.783963in}{2.039452in}}% +\pgfpathlineto{\pgfqpoint{1.849611in}{2.070788in}}% +\pgfpathlineto{\pgfqpoint{1.915260in}{2.099557in}}% +\pgfpathlineto{\pgfqpoint{1.980908in}{2.125901in}}% +\pgfpathlineto{\pgfqpoint{2.046556in}{2.149940in}}% +\pgfpathlineto{\pgfqpoint{2.112205in}{2.171779in}}% +\pgfpathlineto{\pgfqpoint{2.177853in}{2.191502in}}% +\pgfpathlineto{\pgfqpoint{2.243502in}{2.209185in}}% +\pgfpathlineto{\pgfqpoint{2.309150in}{2.224887in}}% +\pgfpathlineto{\pgfqpoint{2.374799in}{2.238657in}}% +\pgfpathlineto{\pgfqpoint{2.440447in}{2.250536in}}% +\pgfpathlineto{\pgfqpoint{2.506096in}{2.260554in}}% +\pgfpathlineto{\pgfqpoint{2.571744in}{2.268731in}}% +\pgfpathlineto{\pgfqpoint{2.637393in}{2.275080in}}% +\pgfpathlineto{\pgfqpoint{2.703041in}{2.279605in}}% +\pgfpathlineto{\pgfqpoint{2.768689in}{2.282303in}}% +\pgfpathlineto{\pgfqpoint{2.834338in}{2.283161in}}% +\pgfpathlineto{\pgfqpoint{2.899986in}{2.282158in}}% +\pgfpathlineto{\pgfqpoint{2.965635in}{2.279265in}}% +\pgfpathlineto{\pgfqpoint{3.031283in}{2.274442in}}% +\pgfpathlineto{\pgfqpoint{3.096932in}{2.267640in}}% +\pgfpathlineto{\pgfqpoint{3.162580in}{2.258800in}}% +\pgfpathlineto{\pgfqpoint{3.228229in}{2.247847in}}% +\pgfpathlineto{\pgfqpoint{3.293877in}{2.234696in}}% +\pgfpathlineto{\pgfqpoint{3.359525in}{2.219244in}}% +\pgfpathlineto{\pgfqpoint{3.425174in}{2.201370in}}% +\pgfpathlineto{\pgfqpoint{3.490822in}{2.180932in}}% +\pgfpathlineto{\pgfqpoint{3.556471in}{2.157764in}}% +\pgfpathlineto{\pgfqpoint{3.622119in}{2.131669in}}% +\pgfpathlineto{\pgfqpoint{3.687768in}{2.102412in}}% +\pgfpathlineto{\pgfqpoint{3.753416in}{2.069718in}}% +\pgfpathlineto{\pgfqpoint{3.797182in}{2.045851in}}% +\pgfpathlineto{\pgfqpoint{3.840947in}{2.020195in}}% +\pgfpathlineto{\pgfqpoint{3.884713in}{1.992619in}}% +\pgfpathlineto{\pgfqpoint{3.928479in}{1.962974in}}% +\pgfpathlineto{\pgfqpoint{3.972244in}{1.931088in}}% +\pgfpathlineto{\pgfqpoint{4.016010in}{1.896761in}}% +\pgfpathlineto{\pgfqpoint{4.059776in}{1.859763in}}% +\pgfpathlineto{\pgfqpoint{4.103541in}{1.819820in}}% +\pgfpathlineto{\pgfqpoint{4.147307in}{1.776610in}}% +\pgfpathlineto{\pgfqpoint{4.191073in}{1.729749in}}% +\pgfpathlineto{\pgfqpoint{4.234838in}{1.678769in}}% +\pgfpathlineto{\pgfqpoint{4.278604in}{1.623102in}}% +\pgfpathlineto{\pgfqpoint{4.322369in}{1.562039in}}% +\pgfpathlineto{\pgfqpoint{4.366135in}{1.494689in}}% +\pgfpathlineto{\pgfqpoint{4.409901in}{1.419903in}}% +\pgfpathlineto{\pgfqpoint{4.431784in}{1.379266in}}% +\pgfpathlineto{\pgfqpoint{4.453666in}{1.336166in}}% +\pgfpathlineto{\pgfqpoint{4.475549in}{1.290329in}}% +\pgfpathlineto{\pgfqpoint{4.497432in}{1.241431in}}% +\pgfpathlineto{\pgfqpoint{4.519315in}{1.189085in}}% +\pgfpathlineto{\pgfqpoint{4.541198in}{1.132824in}}% +\pgfpathlineto{\pgfqpoint{4.563080in}{1.072078in}}% +\pgfpathlineto{\pgfqpoint{4.584963in}{1.006139in}}% +\pgfpathlineto{\pgfqpoint{4.606846in}{0.934115in}}% +\pgfpathlineto{\pgfqpoint{4.628729in}{0.854857in}}% +\pgfpathlineto{\pgfqpoint{4.650612in}{0.766856in}}% +\pgfpathlineto{\pgfqpoint{4.672494in}{0.668065in}}% +\pgfpathlineto{\pgfqpoint{4.694377in}{0.555619in}}% +\pgfpathlineto{\pgfqpoint{4.711566in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.711566in}{0.453273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{5.931435in}{4.295057in}}% +\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% \pgfusepath{clip}% \pgfsetbuttcap% \pgfsetroundjoin% @@ -1053,117 +1184,90 @@ \definecolor{currentstroke}{rgb}{0.750000,0.000000,0.750000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{{3.000000pt}{4.950000pt}}{0.000000pt}% -\pgfpathmoveto{\pgfqpoint{0.712295in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.723466in}{0.519526in}}% -\pgfpathlineto{\pgfqpoint{0.753124in}{0.679831in}}% -\pgfpathlineto{\pgfqpoint{0.782781in}{0.827033in}}% -\pgfpathlineto{\pgfqpoint{0.812438in}{0.963051in}}% -\pgfpathlineto{\pgfqpoint{0.842095in}{1.089408in}}% -\pgfpathlineto{\pgfqpoint{0.871752in}{1.207335in}}% -\pgfpathlineto{\pgfqpoint{0.901410in}{1.317834in}}% -\pgfpathlineto{\pgfqpoint{0.931067in}{1.421740in}}% -\pgfpathlineto{\pgfqpoint{0.960724in}{1.519749in}}% -\pgfpathlineto{\pgfqpoint{0.990381in}{1.612452in}}% -\pgfpathlineto{\pgfqpoint{1.020038in}{1.700352in}}% -\pgfpathlineto{\pgfqpoint{1.049695in}{1.783883in}}% -\pgfpathlineto{\pgfqpoint{1.079353in}{1.863419in}}% -\pgfpathlineto{\pgfqpoint{1.109010in}{1.939289in}}% -\pgfpathlineto{\pgfqpoint{1.138667in}{2.011779in}}% -\pgfpathlineto{\pgfqpoint{1.168324in}{2.081145in}}% -\pgfpathlineto{\pgfqpoint{1.227638in}{2.211371in}}% -\pgfpathlineto{\pgfqpoint{1.286953in}{2.331492in}}% -\pgfpathlineto{\pgfqpoint{1.346267in}{2.442735in}}% -\pgfpathlineto{\pgfqpoint{1.405582in}{2.546101in}}% -\pgfpathlineto{\pgfqpoint{1.464896in}{2.642422in}}% -\pgfpathlineto{\pgfqpoint{1.524210in}{2.732390in}}% -\pgfpathlineto{\pgfqpoint{1.583525in}{2.816594in}}% -\pgfpathlineto{\pgfqpoint{1.642839in}{2.895530in}}% -\pgfpathlineto{\pgfqpoint{1.702153in}{2.969630in}}% -\pgfpathlineto{\pgfqpoint{1.761468in}{3.039262in}}% -\pgfpathlineto{\pgfqpoint{1.820782in}{3.104750in}}% -\pgfpathlineto{\pgfqpoint{1.880096in}{3.166374in}}% -\pgfpathlineto{\pgfqpoint{1.939411in}{3.224382in}}% -\pgfpathlineto{\pgfqpoint{1.998725in}{3.278992in}}% -\pgfpathlineto{\pgfqpoint{2.058039in}{3.330397in}}% -\pgfpathlineto{\pgfqpoint{2.117354in}{3.378769in}}% -\pgfpathlineto{\pgfqpoint{2.176668in}{3.424259in}}% -\pgfpathlineto{\pgfqpoint{2.235982in}{3.467005in}}% -\pgfpathlineto{\pgfqpoint{2.295297in}{3.507130in}}% -\pgfpathlineto{\pgfqpoint{2.354611in}{3.544741in}}% -\pgfpathlineto{\pgfqpoint{2.413926in}{3.579937in}}% -\pgfpathlineto{\pgfqpoint{2.473240in}{3.612807in}}% -\pgfpathlineto{\pgfqpoint{2.532554in}{3.643429in}}% -\pgfpathlineto{\pgfqpoint{2.591869in}{3.671875in}}% -\pgfpathlineto{\pgfqpoint{2.651183in}{3.698208in}}% -\pgfpathlineto{\pgfqpoint{2.710497in}{3.722484in}}% -\pgfpathlineto{\pgfqpoint{2.769812in}{3.744756in}}% -\pgfpathlineto{\pgfqpoint{2.829126in}{3.765068in}}% -\pgfpathlineto{\pgfqpoint{2.888440in}{3.783459in}}% -\pgfpathlineto{\pgfqpoint{2.947755in}{3.799965in}}% -\pgfpathlineto{\pgfqpoint{3.007069in}{3.814617in}}% -\pgfpathlineto{\pgfqpoint{3.066383in}{3.827441in}}% -\pgfpathlineto{\pgfqpoint{3.125698in}{3.838457in}}% -\pgfpathlineto{\pgfqpoint{3.185012in}{3.847685in}}% -\pgfpathlineto{\pgfqpoint{3.244326in}{3.855139in}}% -\pgfpathlineto{\pgfqpoint{3.303641in}{3.860830in}}% -\pgfpathlineto{\pgfqpoint{3.362955in}{3.864764in}}% -\pgfpathlineto{\pgfqpoint{3.422270in}{3.866946in}}% -\pgfpathlineto{\pgfqpoint{3.481584in}{3.867374in}}% -\pgfpathlineto{\pgfqpoint{3.540898in}{3.866047in}}% -\pgfpathlineto{\pgfqpoint{3.600213in}{3.862956in}}% -\pgfpathlineto{\pgfqpoint{3.659527in}{3.858092in}}% -\pgfpathlineto{\pgfqpoint{3.718841in}{3.851439in}}% -\pgfpathlineto{\pgfqpoint{3.778156in}{3.842981in}}% -\pgfpathlineto{\pgfqpoint{3.837470in}{3.832695in}}% -\pgfpathlineto{\pgfqpoint{3.867127in}{3.826859in}}% -\pgfpathlineto{\pgfqpoint{3.896784in}{3.814518in}}% -\pgfpathlineto{\pgfqpoint{3.956099in}{3.795438in}}% -\pgfpathlineto{\pgfqpoint{4.015413in}{3.774435in}}% -\pgfpathlineto{\pgfqpoint{4.074727in}{3.751467in}}% -\pgfpathlineto{\pgfqpoint{4.134042in}{3.726491in}}% -\pgfpathlineto{\pgfqpoint{4.193356in}{3.699455in}}% -\pgfpathlineto{\pgfqpoint{4.252670in}{3.670304in}}% -\pgfpathlineto{\pgfqpoint{4.311985in}{3.638972in}}% -\pgfpathlineto{\pgfqpoint{4.371299in}{3.605390in}}% -\pgfpathlineto{\pgfqpoint{4.430614in}{3.569478in}}% -\pgfpathlineto{\pgfqpoint{4.489928in}{3.531149in}}% -\pgfpathlineto{\pgfqpoint{4.549242in}{3.490303in}}% -\pgfpathlineto{\pgfqpoint{4.608557in}{3.446833in}}% -\pgfpathlineto{\pgfqpoint{4.667871in}{3.400616in}}% -\pgfpathlineto{\pgfqpoint{4.727185in}{3.351515in}}% -\pgfpathlineto{\pgfqpoint{4.786500in}{3.299378in}}% -\pgfpathlineto{\pgfqpoint{4.845814in}{3.244034in}}% -\pgfpathlineto{\pgfqpoint{4.905128in}{3.185289in}}% -\pgfpathlineto{\pgfqpoint{4.964443in}{3.122926in}}% -\pgfpathlineto{\pgfqpoint{5.023757in}{3.056697in}}% -\pgfpathlineto{\pgfqpoint{5.083071in}{2.986322in}}% -\pgfpathlineto{\pgfqpoint{5.142386in}{2.911478in}}% -\pgfpathlineto{\pgfqpoint{5.201700in}{2.831794in}}% -\pgfpathlineto{\pgfqpoint{5.261014in}{2.746842in}}% -\pgfpathlineto{\pgfqpoint{5.320329in}{2.656123in}}% -\pgfpathlineto{\pgfqpoint{5.379643in}{2.559051in}}% -\pgfpathlineto{\pgfqpoint{5.438958in}{2.454931in}}% -\pgfpathlineto{\pgfqpoint{5.498272in}{2.342933in}}% -\pgfpathlineto{\pgfqpoint{5.557586in}{2.222056in}}% -\pgfpathlineto{\pgfqpoint{5.587243in}{2.157914in}}% -\pgfpathlineto{\pgfqpoint{5.616901in}{2.091072in}}% -\pgfpathlineto{\pgfqpoint{5.646558in}{2.021328in}}% -\pgfpathlineto{\pgfqpoint{5.676215in}{1.948457in}}% -\pgfpathlineto{\pgfqpoint{5.705872in}{1.872208in}}% -\pgfpathlineto{\pgfqpoint{5.735529in}{1.792291in}}% -\pgfpathlineto{\pgfqpoint{5.765186in}{1.708381in}}% -\pgfpathlineto{\pgfqpoint{5.794844in}{1.620100in}}% -\pgfpathlineto{\pgfqpoint{5.824501in}{1.527017in}}% -\pgfpathlineto{\pgfqpoint{5.854158in}{1.428627in}}% -\pgfpathlineto{\pgfqpoint{5.883815in}{1.324339in}}% -\pgfpathlineto{\pgfqpoint{5.913472in}{1.213459in}}% -\pgfpathlineto{\pgfqpoint{5.943130in}{1.095152in}}% -\pgfpathlineto{\pgfqpoint{5.972787in}{0.968412in}}% -\pgfpathlineto{\pgfqpoint{6.002444in}{0.832012in}}% -\pgfpathlineto{\pgfqpoint{6.032101in}{0.684429in}}% -\pgfpathlineto{\pgfqpoint{6.061758in}{0.523742in}}% -\pgfpathlineto{\pgfqpoint{6.073615in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{6.073615in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{0.658262in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{0.667939in}{0.489403in}}% +\pgfpathlineto{\pgfqpoint{0.689822in}{0.563865in}}% +\pgfpathlineto{\pgfqpoint{0.711705in}{0.632240in}}% +\pgfpathlineto{\pgfqpoint{0.733587in}{0.695420in}}% +\pgfpathlineto{\pgfqpoint{0.755470in}{0.754113in}}% +\pgfpathlineto{\pgfqpoint{0.777353in}{0.808890in}}% +\pgfpathlineto{\pgfqpoint{0.799236in}{0.860217in}}% +\pgfpathlineto{\pgfqpoint{0.821119in}{0.908482in}}% +\pgfpathlineto{\pgfqpoint{0.864884in}{0.997068in}}% +\pgfpathlineto{\pgfqpoint{0.908650in}{1.076697in}}% +\pgfpathlineto{\pgfqpoint{0.952416in}{1.148883in}}% +\pgfpathlineto{\pgfqpoint{0.996181in}{1.214776in}}% +\pgfpathlineto{\pgfqpoint{1.039947in}{1.275266in}}% +\pgfpathlineto{\pgfqpoint{1.083712in}{1.331062in}}% +\pgfpathlineto{\pgfqpoint{1.127478in}{1.382734in}}% +\pgfpathlineto{\pgfqpoint{1.171244in}{1.430748in}}% +\pgfpathlineto{\pgfqpoint{1.215009in}{1.475489in}}% +\pgfpathlineto{\pgfqpoint{1.258775in}{1.517280in}}% +\pgfpathlineto{\pgfqpoint{1.302541in}{1.556392in}}% +\pgfpathlineto{\pgfqpoint{1.346306in}{1.593058in}}% +\pgfpathlineto{\pgfqpoint{1.390072in}{1.627478in}}% +\pgfpathlineto{\pgfqpoint{1.433838in}{1.659822in}}% +\pgfpathlineto{\pgfqpoint{1.477603in}{1.690241in}}% +\pgfpathlineto{\pgfqpoint{1.543252in}{1.732541in}}% +\pgfpathlineto{\pgfqpoint{1.608900in}{1.771177in}}% +\pgfpathlineto{\pgfqpoint{1.674549in}{1.806460in}}% +\pgfpathlineto{\pgfqpoint{1.740197in}{1.838653in}}% +\pgfpathlineto{\pgfqpoint{1.805845in}{1.867977in}}% +\pgfpathlineto{\pgfqpoint{1.871494in}{1.894617in}}% +\pgfpathlineto{\pgfqpoint{1.937142in}{1.918732in}}% +\pgfpathlineto{\pgfqpoint{2.002791in}{1.940458in}}% +\pgfpathlineto{\pgfqpoint{2.068439in}{1.959908in}}% +\pgfpathlineto{\pgfqpoint{2.134088in}{1.977179in}}% +\pgfpathlineto{\pgfqpoint{2.199736in}{1.992354in}}% +\pgfpathlineto{\pgfqpoint{2.265385in}{2.005502in}}% +\pgfpathlineto{\pgfqpoint{2.331033in}{2.016679in}}% +\pgfpathlineto{\pgfqpoint{2.396682in}{2.025931in}}% +\pgfpathlineto{\pgfqpoint{2.462330in}{2.033295in}}% +\pgfpathlineto{\pgfqpoint{2.527978in}{2.038797in}}% +\pgfpathlineto{\pgfqpoint{2.593627in}{2.042456in}}% +\pgfpathlineto{\pgfqpoint{2.659275in}{2.044281in}}% +\pgfpathlineto{\pgfqpoint{2.724924in}{2.044274in}}% +\pgfpathlineto{\pgfqpoint{2.790572in}{2.042428in}}% +\pgfpathlineto{\pgfqpoint{2.856221in}{2.038728in}}% +\pgfpathlineto{\pgfqpoint{2.921869in}{2.033150in}}% +\pgfpathlineto{\pgfqpoint{2.987518in}{2.025661in}}% +\pgfpathlineto{\pgfqpoint{3.009400in}{2.019929in}}% +\pgfpathlineto{\pgfqpoint{3.075049in}{2.006301in}}% +\pgfpathlineto{\pgfqpoint{3.140697in}{1.990642in}}% +\pgfpathlineto{\pgfqpoint{3.206346in}{1.972882in}}% +\pgfpathlineto{\pgfqpoint{3.271994in}{1.952941in}}% +\pgfpathlineto{\pgfqpoint{3.337643in}{1.930721in}}% +\pgfpathlineto{\pgfqpoint{3.403291in}{1.906108in}}% +\pgfpathlineto{\pgfqpoint{3.468940in}{1.878966in}}% +\pgfpathlineto{\pgfqpoint{3.534588in}{1.849139in}}% +\pgfpathlineto{\pgfqpoint{3.600236in}{1.816439in}}% +\pgfpathlineto{\pgfqpoint{3.665885in}{1.780646in}}% +\pgfpathlineto{\pgfqpoint{3.731533in}{1.741498in}}% +\pgfpathlineto{\pgfqpoint{3.797182in}{1.698684in}}% +\pgfpathlineto{\pgfqpoint{3.840947in}{1.667921in}}% +\pgfpathlineto{\pgfqpoint{3.884713in}{1.635231in}}% +\pgfpathlineto{\pgfqpoint{3.928479in}{1.600466in}}% +\pgfpathlineto{\pgfqpoint{3.972244in}{1.563453in}}% +\pgfpathlineto{\pgfqpoint{4.016010in}{1.523992in}}% +\pgfpathlineto{\pgfqpoint{4.059776in}{1.481853in}}% +\pgfpathlineto{\pgfqpoint{4.103541in}{1.436763in}}% +\pgfpathlineto{\pgfqpoint{4.147307in}{1.388399in}}% +\pgfpathlineto{\pgfqpoint{4.191073in}{1.336377in}}% +\pgfpathlineto{\pgfqpoint{4.234838in}{1.280229in}}% +\pgfpathlineto{\pgfqpoint{4.278604in}{1.219387in}}% +\pgfpathlineto{\pgfqpoint{4.322369in}{1.153142in}}% +\pgfpathlineto{\pgfqpoint{4.366135in}{1.080603in}}% +\pgfpathlineto{\pgfqpoint{4.409901in}{1.000620in}}% +\pgfpathlineto{\pgfqpoint{4.431784in}{0.957383in}}% +\pgfpathlineto{\pgfqpoint{4.453666in}{0.911681in}}% +\pgfpathlineto{\pgfqpoint{4.475549in}{0.863239in}}% +\pgfpathlineto{\pgfqpoint{4.497432in}{0.811735in}}% +\pgfpathlineto{\pgfqpoint{4.519315in}{0.756781in}}% +\pgfpathlineto{\pgfqpoint{4.541198in}{0.697911in}}% +\pgfpathlineto{\pgfqpoint{4.563080in}{0.634553in}}% +\pgfpathlineto{\pgfqpoint{4.584963in}{0.566000in}}% +\pgfpathlineto{\pgfqpoint{4.617026in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{4.617026in}{0.453273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1174,7 +1278,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{4.758330in}}% +\pgfpathlineto{\pgfqpoint{0.426895in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1184,8 +1288,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{6.358330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{4.847890in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1196,7 +1300,7 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% \pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{0.463273in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1206,8 +1310,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{4.758330in}}% -\pgfpathlineto{\pgfqpoint{6.358330in}{4.758330in}}% +\pgfpathmoveto{\pgfqpoint{0.426895in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1221,16 +1325,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.370644in}{3.627933in}}% -\pgfpathlineto{\pgfqpoint{6.261108in}{3.627933in}}% -\pgfpathquadraticcurveto{\pgfqpoint{6.288886in}{3.627933in}}{\pgfqpoint{6.288886in}{3.655711in}}% -\pgfpathlineto{\pgfqpoint{6.288886in}{4.661108in}}% -\pgfpathquadraticcurveto{\pgfqpoint{6.288886in}{4.688886in}}{\pgfqpoint{6.261108in}{4.688886in}}% -\pgfpathlineto{\pgfqpoint{5.370644in}{4.688886in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.342866in}{4.688886in}}{\pgfqpoint{5.342866in}{4.661108in}}% -\pgfpathlineto{\pgfqpoint{5.342866in}{3.655711in}}% -\pgfpathquadraticcurveto{\pgfqpoint{5.342866in}{3.627933in}}{\pgfqpoint{5.370644in}{3.627933in}}% -\pgfpathlineto{\pgfqpoint{5.370644in}{3.627933in}}% +\pgfpathmoveto{\pgfqpoint{2.192161in}{0.532718in}}% +\pgfpathlineto{\pgfqpoint{3.082624in}{0.532718in}}% +\pgfpathquadraticcurveto{\pgfqpoint{3.110402in}{0.532718in}}{\pgfqpoint{3.110402in}{0.560496in}}% +\pgfpathlineto{\pgfqpoint{3.110402in}{1.565893in}}% +\pgfpathquadraticcurveto{\pgfqpoint{3.110402in}{1.593671in}}{\pgfqpoint{3.082624in}{1.593671in}}% +\pgfpathlineto{\pgfqpoint{2.192161in}{1.593671in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.164383in}{1.593671in}}{\pgfqpoint{2.164383in}{1.565893in}}% +\pgfpathlineto{\pgfqpoint{2.164383in}{0.560496in}}% +\pgfpathquadraticcurveto{\pgfqpoint{2.164383in}{0.532718in}}{\pgfqpoint{2.192161in}{0.532718in}}% +\pgfpathlineto{\pgfqpoint{2.192161in}{0.532718in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -1241,16 +1345,16 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.398422in}{4.576418in}}% -\pgfpathlineto{\pgfqpoint{5.537311in}{4.576418in}}% -\pgfpathlineto{\pgfqpoint{5.676200in}{4.576418in}}% +\pgfpathmoveto{\pgfqpoint{2.219938in}{1.481203in}}% +\pgfpathlineto{\pgfqpoint{2.358827in}{1.481203in}}% +\pgfpathlineto{\pgfqpoint{2.497716in}{1.481203in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.787311in,y=4.527807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=10\)}% +\pgftext[x=2.608827in,y=1.432592in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=10\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1259,16 +1363,16 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.398422in}{4.372561in}}% -\pgfpathlineto{\pgfqpoint{5.537311in}{4.372561in}}% -\pgfpathlineto{\pgfqpoint{5.676200in}{4.372561in}}% +\pgfpathmoveto{\pgfqpoint{2.219938in}{1.277346in}}% +\pgfpathlineto{\pgfqpoint{2.358827in}{1.277346in}}% +\pgfpathlineto{\pgfqpoint{2.497716in}{1.277346in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.787311in,y=4.323950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=11\)}% +\pgftext[x=2.608827in,y=1.228735in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=11\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1277,16 +1381,16 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.398422in}{4.168704in}}% -\pgfpathlineto{\pgfqpoint{5.537311in}{4.168704in}}% -\pgfpathlineto{\pgfqpoint{5.676200in}{4.168704in}}% +\pgfpathmoveto{\pgfqpoint{2.219938in}{1.073489in}}% +\pgfpathlineto{\pgfqpoint{2.358827in}{1.073489in}}% +\pgfpathlineto{\pgfqpoint{2.497716in}{1.073489in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.787311in,y=4.120092in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=12\)}% +\pgftext[x=2.608827in,y=1.024878in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=12\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -1295,16 +1399,16 @@ \definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.398422in}{3.964846in}}% -\pgfpathlineto{\pgfqpoint{5.537311in}{3.964846in}}% -\pgfpathlineto{\pgfqpoint{5.676200in}{3.964846in}}% +\pgfpathmoveto{\pgfqpoint{2.219938in}{0.869631in}}% +\pgfpathlineto{\pgfqpoint{2.358827in}{0.869631in}}% +\pgfpathlineto{\pgfqpoint{2.497716in}{0.869631in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.787311in,y=3.916235in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=13\)}% +\pgftext[x=2.608827in,y=0.821020in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=13\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetbuttcap% @@ -1313,16 +1417,16 @@ \definecolor{currentstroke}{rgb}{0.750000,0.000000,0.750000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{{3.000000pt}{4.950000pt}}{0.000000pt}% -\pgfpathmoveto{\pgfqpoint{5.398422in}{3.760989in}}% -\pgfpathlineto{\pgfqpoint{5.537311in}{3.760989in}}% -\pgfpathlineto{\pgfqpoint{5.676200in}{3.760989in}}% +\pgfpathmoveto{\pgfqpoint{2.219938in}{0.665774in}}% +\pgfpathlineto{\pgfqpoint{2.358827in}{0.665774in}}% +\pgfpathlineto{\pgfqpoint{2.497716in}{0.665774in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=5.787311in,y=3.712378in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m^*\)}% +\pgftext[x=2.608827in,y=0.617163in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m^*\)}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/buch/papers/laguerre/images/rel_error_simple.pgf b/buch/papers/laguerre/images/rel_error_simple.pgf index 9368616..2439d65 100644 --- a/buch/papers/laguerre/images/rel_error_simple.pgf +++ b/buch/papers/laguerre/images/rel_error_simple.pgf @@ -56,16 +56,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.000000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{0.463273in}}% \pgfpathclose% \pgfusepath{fill}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -73,8 +73,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.482258in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -92,7 +92,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{0.463273in}% +\pgfsys@transformshift{0.482258in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -100,10 +100,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.672226in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% +\pgftext[x=0.482258in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -111,8 +111,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.271903in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.271903in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.109073in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.109073in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -130,7 +130,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.271903in}{0.463273in}% +\pgfsys@transformshift{1.109073in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -138,10 +138,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.271903in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% +\pgftext[x=1.109073in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -149,8 +149,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.871580in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.871580in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.735888in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.735888in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -168,7 +168,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.871580in}{0.463273in}% +\pgfsys@transformshift{1.735888in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -176,10 +176,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=1.871580in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\pgftext[x=1.735888in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -187,8 +187,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.471257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.471257in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.362703in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.362703in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -206,7 +206,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.471257in}{0.463273in}% +\pgfsys@transformshift{2.362703in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -214,10 +214,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.471257in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\pgftext[x=2.362703in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -225,8 +225,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.070934in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.070934in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.989519in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.989519in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -244,7 +244,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.070934in}{0.463273in}% +\pgfsys@transformshift{2.989519in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -252,10 +252,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.070934in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% +\pgftext[x=2.989519in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -263,8 +263,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.670611in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.670611in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.616334in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.616334in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -282,7 +282,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.670611in}{0.463273in}% +\pgfsys@transformshift{3.616334in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -290,10 +290,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.670611in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% +\pgftext[x=3.616334in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -301,8 +301,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.270288in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.270288in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.243149in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.243149in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -320,7 +320,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.270288in}{0.463273in}% +\pgfsys@transformshift{4.243149in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -328,10 +328,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.270288in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% +\pgftext[x=4.243149in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -369,7 +369,7 @@ \pgftext[x=4.869965in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -377,8 +377,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.792161in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.792161in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.607621in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.607621in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -396,12 +396,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.792161in}{0.463273in}% +\pgfsys@transformshift{0.607621in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -409,8 +409,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.912097in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.912097in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.732984in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.732984in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -428,12 +428,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.912097in}{0.463273in}% +\pgfsys@transformshift{0.732984in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -441,8 +441,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.032032in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.032032in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.858347in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.858347in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -460,12 +460,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.032032in}{0.463273in}% +\pgfsys@transformshift{0.858347in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -473,8 +473,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.151967in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.151967in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.983710in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.983710in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -492,12 +492,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.151967in}{0.463273in}% +\pgfsys@transformshift{0.983710in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -505,8 +505,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.391838in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.391838in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.234436in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.234436in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -524,12 +524,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.391838in}{0.463273in}% +\pgfsys@transformshift{1.234436in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -537,8 +537,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.511774in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.511774in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.359799in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.359799in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -556,12 +556,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.511774in}{0.463273in}% +\pgfsys@transformshift{1.359799in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -569,8 +569,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.631709in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.631709in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.485162in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.485162in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -588,12 +588,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.631709in}{0.463273in}% +\pgfsys@transformshift{1.485162in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -601,8 +601,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.751644in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.751644in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.610525in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.610525in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -620,12 +620,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.751644in}{0.463273in}% +\pgfsys@transformshift{1.610525in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -633,8 +633,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.991515in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.991515in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.861251in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.861251in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -652,12 +652,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{1.991515in}{0.463273in}% +\pgfsys@transformshift{1.861251in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -665,8 +665,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.111451in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.111451in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{1.986614in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{1.986614in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -684,12 +684,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.111451in}{0.463273in}% +\pgfsys@transformshift{1.986614in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -697,8 +697,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.231386in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.231386in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.111977in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.111977in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -716,12 +716,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.231386in}{0.463273in}% +\pgfsys@transformshift{2.111977in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -729,8 +729,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.351321in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.351321in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.237340in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.237340in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -748,12 +748,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.351321in}{0.463273in}% +\pgfsys@transformshift{2.237340in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -761,8 +761,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.591192in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.591192in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.488066in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.488066in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -780,12 +780,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.591192in}{0.463273in}% +\pgfsys@transformshift{2.488066in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -793,8 +793,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.711128in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.711128in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.613430in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.613430in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -812,12 +812,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.711128in}{0.463273in}% +\pgfsys@transformshift{2.613430in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -825,8 +825,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.831063in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.831063in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.738793in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.738793in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -844,12 +844,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.831063in}{0.463273in}% +\pgfsys@transformshift{2.738793in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -857,8 +857,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.950998in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.950998in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{2.864156in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.864156in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -876,12 +876,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{2.950998in}{0.463273in}% +\pgfsys@transformshift{2.864156in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -889,8 +889,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.190869in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.190869in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.114882in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.114882in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -908,12 +908,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.190869in}{0.463273in}% +\pgfsys@transformshift{3.114882in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -921,8 +921,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.310805in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.310805in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.240245in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.240245in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -940,12 +940,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.310805in}{0.463273in}% +\pgfsys@transformshift{3.240245in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -953,8 +953,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.430740in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.430740in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.365608in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.365608in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -972,12 +972,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.430740in}{0.463273in}% +\pgfsys@transformshift{3.365608in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -985,8 +985,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.550675in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.550675in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.490971in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.490971in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1004,12 +1004,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.550675in}{0.463273in}% +\pgfsys@transformshift{3.490971in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1017,8 +1017,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.790546in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.790546in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.741697in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.741697in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1036,12 +1036,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.790546in}{0.463273in}% +\pgfsys@transformshift{3.741697in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1049,8 +1049,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.910481in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.910481in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.867060in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.867060in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1068,12 +1068,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{3.910481in}{0.463273in}% +\pgfsys@transformshift{3.867060in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1081,8 +1081,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.030417in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.030417in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{3.992423in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.992423in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1100,12 +1100,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.030417in}{0.463273in}% +\pgfsys@transformshift{3.992423in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1113,8 +1113,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.150352in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.150352in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.117786in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.117786in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1132,12 +1132,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.150352in}{0.463273in}% +\pgfsys@transformshift{4.117786in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1145,8 +1145,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.390223in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.390223in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.368512in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.368512in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1164,12 +1164,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.390223in}{0.463273in}% +\pgfsys@transformshift{4.368512in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1177,8 +1177,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.510158in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.510158in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.493875in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.493875in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1196,12 +1196,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.510158in}{0.463273in}% +\pgfsys@transformshift{4.493875in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1209,8 +1209,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.630094in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.630094in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.619239in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.619239in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1228,12 +1228,12 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.630094in}{0.463273in}% +\pgfsys@transformshift{4.619239in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1241,8 +1241,8 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.750029in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.750029in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{4.744602in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{4.744602in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -1260,7 +1260,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{4.750029in}{0.463273in}% +\pgfsys@transformshift{4.744602in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1268,10 +1268,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.771095in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\pgftext[x=2.676111in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1279,7 +1279,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1298,7 +1298,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{0.463273in}% +\pgfsys@transformshift{0.482257in}{0.463273in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1306,10 +1306,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% +\pgftext[x=0.041670in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1317,7 +1317,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.697986in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.697986in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.697986in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1336,7 +1336,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{0.697986in}% +\pgfsys@transformshift{0.482257in}{0.697986in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1344,10 +1344,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=0.645224in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% +\pgftext[x=0.097033in, y=0.645224in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1355,7 +1355,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.932698in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.932698in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.932698in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1374,7 +1374,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{0.932698in}% +\pgfsys@transformshift{0.482257in}{0.932698in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1382,10 +1382,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=0.879937in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% +\pgftext[x=0.097033in, y=0.879937in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1393,7 +1393,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.167411in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.167411in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.167411in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1412,7 +1412,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{1.167411in}% +\pgfsys@transformshift{0.482257in}{1.167411in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1420,10 +1420,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=1.114649in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% +\pgftext[x=0.097033in, y=1.114649in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1431,7 +1431,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.402124in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.402124in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.402124in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1450,7 +1450,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{1.402124in}% +\pgfsys@transformshift{0.482257in}{1.402124in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1458,10 +1458,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=1.349362in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% +\pgftext[x=0.097033in, y=1.349362in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1469,7 +1469,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.636836in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.636836in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.636836in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1488,7 +1488,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{1.636836in}% +\pgfsys@transformshift{0.482257in}{1.636836in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1496,10 +1496,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.287001in, y=1.584075in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% +\pgftext[x=0.097033in, y=1.584075in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1507,7 +1507,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.871549in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{1.871549in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.871549in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1526,7 +1526,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{1.871549in}% +\pgfsys@transformshift{0.482257in}{1.871549in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1534,10 +1534,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.373807in, y=1.818787in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% +\pgftext[x=0.183839in, y=1.818787in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1545,7 +1545,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{2.106261in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{2.106261in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.106261in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1564,7 +1564,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{2.106261in}% +\pgfsys@transformshift{0.482257in}{2.106261in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1572,10 +1572,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.373807in, y=2.053500in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}% +\pgftext[x=0.183839in, y=2.053500in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1583,7 +1583,7 @@ \definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{2.340974in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{2.340974in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.340974in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -1602,7 +1602,7 @@ \pgfusepath{stroke,fill}% }% \begin{pgfscope}% -\pgfsys@transformshift{0.672226in}{2.340974in}% +\pgfsys@transformshift{0.482257in}{2.340974in}% \pgfsys@useobject{currentmarker}{}% \end{pgfscope}% \end{pgfscope}% @@ -1610,16 +1610,10 @@ \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=0.373807in, y=2.288212in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{5}}\)}% +\pgftext[x=0.183839in, y=2.288212in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{5}}\)}% \end{pgfscope}% \begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.176083in,y=1.460802in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont Relativer Fehler}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1627,132 +1621,132 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.754205in}}% -\pgfpathlineto{\pgfqpoint{0.682746in}{2.019288in}}% -\pgfpathlineto{\pgfqpoint{0.693267in}{2.042641in}}% -\pgfpathlineto{\pgfqpoint{0.703788in}{2.050108in}}% -\pgfpathlineto{\pgfqpoint{0.714308in}{2.050176in}}% -\pgfpathlineto{\pgfqpoint{0.724829in}{2.045361in}}% -\pgfpathlineto{\pgfqpoint{0.735350in}{2.036564in}}% -\pgfpathlineto{\pgfqpoint{0.745870in}{2.023921in}}% -\pgfpathlineto{\pgfqpoint{0.756391in}{2.006908in}}% -\pgfpathlineto{\pgfqpoint{0.766912in}{1.983910in}}% -\pgfpathlineto{\pgfqpoint{0.777432in}{1.950189in}}% -\pgfpathlineto{\pgfqpoint{0.787953in}{1.881573in}}% -\pgfpathlineto{\pgfqpoint{0.798474in}{1.884842in}}% -\pgfpathlineto{\pgfqpoint{0.808994in}{1.926450in}}% -\pgfpathlineto{\pgfqpoint{0.819515in}{1.939872in}}% -\pgfpathlineto{\pgfqpoint{0.830036in}{1.943485in}}% -\pgfpathlineto{\pgfqpoint{0.840556in}{1.941360in}}% -\pgfpathlineto{\pgfqpoint{0.851077in}{1.934890in}}% -\pgfpathlineto{\pgfqpoint{0.861598in}{1.924441in}}% -\pgfpathlineto{\pgfqpoint{0.872118in}{1.909649in}}% -\pgfpathlineto{\pgfqpoint{0.882639in}{1.889114in}}% -\pgfpathlineto{\pgfqpoint{0.893159in}{1.858716in}}% -\pgfpathlineto{\pgfqpoint{0.903680in}{1.799567in}}% -\pgfpathlineto{\pgfqpoint{0.914201in}{1.782399in}}% -\pgfpathlineto{\pgfqpoint{0.924721in}{1.833386in}}% -\pgfpathlineto{\pgfqpoint{0.935242in}{1.850485in}}% -\pgfpathlineto{\pgfqpoint{0.945763in}{1.857161in}}% -\pgfpathlineto{\pgfqpoint{0.956283in}{1.858149in}}% -\pgfpathlineto{\pgfqpoint{0.966804in}{1.855162in}}% -\pgfpathlineto{\pgfqpoint{0.977325in}{1.848916in}}% -\pgfpathlineto{\pgfqpoint{0.987845in}{1.839643in}}% -\pgfpathlineto{\pgfqpoint{0.998366in}{1.827223in}}% -\pgfpathlineto{\pgfqpoint{1.008887in}{1.811140in}}% -\pgfpathlineto{\pgfqpoint{1.019407in}{1.790185in}}% -\pgfpathlineto{\pgfqpoint{1.029928in}{1.761445in}}% -\pgfpathlineto{\pgfqpoint{1.040449in}{1.715196in}}% -\pgfpathlineto{\pgfqpoint{1.050969in}{1.572762in}}% -\pgfpathlineto{\pgfqpoint{1.061490in}{1.698583in}}% -\pgfpathlineto{\pgfqpoint{1.072010in}{1.716349in}}% -\pgfpathlineto{\pgfqpoint{1.082531in}{1.716239in}}% -\pgfpathlineto{\pgfqpoint{1.093052in}{1.702510in}}% -\pgfpathlineto{\pgfqpoint{1.103572in}{1.663978in}}% -\pgfpathlineto{\pgfqpoint{1.114093in}{1.620733in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{1.699269in}}% -\pgfpathlineto{\pgfqpoint{1.135134in}{1.728962in}}% -\pgfpathlineto{\pgfqpoint{1.145655in}{1.746635in}}% -\pgfpathlineto{\pgfqpoint{1.156176in}{1.758337in}}% -\pgfpathlineto{\pgfqpoint{1.166696in}{1.766290in}}% -\pgfpathlineto{\pgfqpoint{1.177217in}{1.771577in}}% -\pgfpathlineto{\pgfqpoint{1.187738in}{1.774811in}}% -\pgfpathlineto{\pgfqpoint{1.198258in}{1.776376in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{1.776523in}}% -\pgfpathlineto{\pgfqpoint{1.219300in}{1.775424in}}% -\pgfpathlineto{\pgfqpoint{1.240341in}{1.769923in}}% -\pgfpathlineto{\pgfqpoint{1.261382in}{1.760408in}}% -\pgfpathlineto{\pgfqpoint{1.282423in}{1.746983in}}% -\pgfpathlineto{\pgfqpoint{1.303465in}{1.729347in}}% -\pgfpathlineto{\pgfqpoint{1.324506in}{1.706592in}}% -\pgfpathlineto{\pgfqpoint{1.335027in}{1.692698in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{1.676497in}}% -\pgfpathlineto{\pgfqpoint{1.356068in}{1.657053in}}% -\pgfpathlineto{\pgfqpoint{1.366589in}{1.632441in}}% -\pgfpathlineto{\pgfqpoint{1.377109in}{1.597524in}}% -\pgfpathlineto{\pgfqpoint{1.387630in}{1.525604in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{1.537523in}}% -\pgfpathlineto{\pgfqpoint{1.408671in}{1.578018in}}% -\pgfpathlineto{\pgfqpoint{1.419192in}{1.592425in}}% -\pgfpathlineto{\pgfqpoint{1.429713in}{1.597694in}}% -\pgfpathlineto{\pgfqpoint{1.440233in}{1.597702in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{1.593795in}}% -\pgfpathlineto{\pgfqpoint{1.461274in}{1.586349in}}% -\pgfpathlineto{\pgfqpoint{1.471795in}{1.575089in}}% -\pgfpathlineto{\pgfqpoint{1.482316in}{1.558888in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{1.534614in}}% -\pgfpathlineto{\pgfqpoint{1.503357in}{1.490506in}}% -\pgfpathlineto{\pgfqpoint{1.513878in}{1.416100in}}% -\pgfpathlineto{\pgfqpoint{1.524398in}{1.502705in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{1.527886in}}% -\pgfpathlineto{\pgfqpoint{1.545440in}{1.540201in}}% -\pgfpathlineto{\pgfqpoint{1.555960in}{1.546078in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{1.547571in}}% -\pgfpathlineto{\pgfqpoint{1.577002in}{1.545393in}}% -\pgfpathlineto{\pgfqpoint{1.587522in}{1.539547in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{1.529328in}}% -\pgfpathlineto{\pgfqpoint{1.608564in}{1.512687in}}% -\pgfpathlineto{\pgfqpoint{1.619084in}{1.483205in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{1.392330in}}% -\pgfpathlineto{\pgfqpoint{1.640126in}{1.462505in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{1.502427in}}% -\pgfpathlineto{\pgfqpoint{1.661167in}{1.522570in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{1.534701in}}% -\pgfpathlineto{\pgfqpoint{1.682208in}{1.541960in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{1.545484in}}% -\pgfpathlineto{\pgfqpoint{1.703249in}{1.545557in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{1.541811in}}% -\pgfpathlineto{\pgfqpoint{1.724291in}{1.532911in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{1.514991in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{1.471110in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{1.455947in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{1.524776in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{1.556770in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{1.578643in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{1.595546in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{1.609424in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{1.631519in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.648783in}}% -\pgfpathlineto{\pgfqpoint{1.871580in}{1.662871in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{1.674670in}}% -\pgfpathlineto{\pgfqpoint{1.924183in}{1.689203in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{1.700894in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{1.710435in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{1.720592in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{1.728489in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{1.735954in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{1.742298in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{1.747154in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{1.750770in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{1.752994in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{1.754026in}}% -\pgfpathlineto{\pgfqpoint{3.491760in}{1.754192in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{1.754205in}}% +\pgfpathlineto{\pgfqpoint{0.493254in}{2.019288in}}% +\pgfpathlineto{\pgfqpoint{0.504251in}{2.042641in}}% +\pgfpathlineto{\pgfqpoint{0.515248in}{2.050108in}}% +\pgfpathlineto{\pgfqpoint{0.526245in}{2.050176in}}% +\pgfpathlineto{\pgfqpoint{0.537241in}{2.045361in}}% +\pgfpathlineto{\pgfqpoint{0.548238in}{2.036564in}}% +\pgfpathlineto{\pgfqpoint{0.559235in}{2.023921in}}% +\pgfpathlineto{\pgfqpoint{0.570232in}{2.006908in}}% +\pgfpathlineto{\pgfqpoint{0.581228in}{1.983910in}}% +\pgfpathlineto{\pgfqpoint{0.592225in}{1.950189in}}% +\pgfpathlineto{\pgfqpoint{0.603222in}{1.881573in}}% +\pgfpathlineto{\pgfqpoint{0.614219in}{1.884842in}}% +\pgfpathlineto{\pgfqpoint{0.625215in}{1.926450in}}% +\pgfpathlineto{\pgfqpoint{0.636212in}{1.939872in}}% +\pgfpathlineto{\pgfqpoint{0.647209in}{1.943485in}}% +\pgfpathlineto{\pgfqpoint{0.658206in}{1.941360in}}% +\pgfpathlineto{\pgfqpoint{0.669202in}{1.934890in}}% +\pgfpathlineto{\pgfqpoint{0.680199in}{1.924441in}}% +\pgfpathlineto{\pgfqpoint{0.691196in}{1.909649in}}% +\pgfpathlineto{\pgfqpoint{0.702193in}{1.889114in}}% +\pgfpathlineto{\pgfqpoint{0.713189in}{1.858716in}}% +\pgfpathlineto{\pgfqpoint{0.724186in}{1.799567in}}% +\pgfpathlineto{\pgfqpoint{0.735183in}{1.782399in}}% +\pgfpathlineto{\pgfqpoint{0.746180in}{1.833386in}}% +\pgfpathlineto{\pgfqpoint{0.757177in}{1.850485in}}% +\pgfpathlineto{\pgfqpoint{0.768173in}{1.857161in}}% +\pgfpathlineto{\pgfqpoint{0.779170in}{1.858149in}}% +\pgfpathlineto{\pgfqpoint{0.790167in}{1.855162in}}% +\pgfpathlineto{\pgfqpoint{0.801164in}{1.848916in}}% +\pgfpathlineto{\pgfqpoint{0.812160in}{1.839643in}}% +\pgfpathlineto{\pgfqpoint{0.823157in}{1.827223in}}% +\pgfpathlineto{\pgfqpoint{0.834154in}{1.811140in}}% +\pgfpathlineto{\pgfqpoint{0.845151in}{1.790185in}}% +\pgfpathlineto{\pgfqpoint{0.856147in}{1.761445in}}% +\pgfpathlineto{\pgfqpoint{0.867144in}{1.715196in}}% +\pgfpathlineto{\pgfqpoint{0.878141in}{1.572762in}}% +\pgfpathlineto{\pgfqpoint{0.889138in}{1.698583in}}% +\pgfpathlineto{\pgfqpoint{0.900134in}{1.716349in}}% +\pgfpathlineto{\pgfqpoint{0.911131in}{1.716239in}}% +\pgfpathlineto{\pgfqpoint{0.922128in}{1.702510in}}% +\pgfpathlineto{\pgfqpoint{0.933125in}{1.663978in}}% +\pgfpathlineto{\pgfqpoint{0.944121in}{1.620733in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{1.699269in}}% +\pgfpathlineto{\pgfqpoint{0.966115in}{1.728962in}}% +\pgfpathlineto{\pgfqpoint{0.977112in}{1.746635in}}% +\pgfpathlineto{\pgfqpoint{0.988108in}{1.758337in}}% +\pgfpathlineto{\pgfqpoint{0.999105in}{1.766290in}}% +\pgfpathlineto{\pgfqpoint{1.010102in}{1.771577in}}% +\pgfpathlineto{\pgfqpoint{1.021099in}{1.774811in}}% +\pgfpathlineto{\pgfqpoint{1.032095in}{1.776376in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{1.776523in}}% +\pgfpathlineto{\pgfqpoint{1.054089in}{1.775424in}}% +\pgfpathlineto{\pgfqpoint{1.076083in}{1.769923in}}% +\pgfpathlineto{\pgfqpoint{1.098076in}{1.760408in}}% +\pgfpathlineto{\pgfqpoint{1.120070in}{1.746983in}}% +\pgfpathlineto{\pgfqpoint{1.142063in}{1.729347in}}% +\pgfpathlineto{\pgfqpoint{1.164057in}{1.706592in}}% +\pgfpathlineto{\pgfqpoint{1.175053in}{1.692698in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{1.676497in}}% +\pgfpathlineto{\pgfqpoint{1.197047in}{1.657053in}}% +\pgfpathlineto{\pgfqpoint{1.208044in}{1.632441in}}% +\pgfpathlineto{\pgfqpoint{1.219040in}{1.597524in}}% +\pgfpathlineto{\pgfqpoint{1.230037in}{1.525604in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{1.537523in}}% +\pgfpathlineto{\pgfqpoint{1.252031in}{1.578018in}}% +\pgfpathlineto{\pgfqpoint{1.263027in}{1.592425in}}% +\pgfpathlineto{\pgfqpoint{1.274024in}{1.597694in}}% +\pgfpathlineto{\pgfqpoint{1.285021in}{1.597702in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{1.593795in}}% +\pgfpathlineto{\pgfqpoint{1.307014in}{1.586349in}}% +\pgfpathlineto{\pgfqpoint{1.318011in}{1.575089in}}% +\pgfpathlineto{\pgfqpoint{1.329008in}{1.558888in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{1.534614in}}% +\pgfpathlineto{\pgfqpoint{1.351002in}{1.490506in}}% +\pgfpathlineto{\pgfqpoint{1.361998in}{1.416100in}}% +\pgfpathlineto{\pgfqpoint{1.372995in}{1.502705in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{1.527886in}}% +\pgfpathlineto{\pgfqpoint{1.394989in}{1.540201in}}% +\pgfpathlineto{\pgfqpoint{1.405985in}{1.546078in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{1.547571in}}% +\pgfpathlineto{\pgfqpoint{1.427979in}{1.545393in}}% +\pgfpathlineto{\pgfqpoint{1.438976in}{1.539547in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{1.529328in}}% +\pgfpathlineto{\pgfqpoint{1.460969in}{1.512687in}}% +\pgfpathlineto{\pgfqpoint{1.471966in}{1.483205in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{1.392330in}}% +\pgfpathlineto{\pgfqpoint{1.493959in}{1.462505in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{1.502427in}}% +\pgfpathlineto{\pgfqpoint{1.515953in}{1.522570in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{1.534701in}}% +\pgfpathlineto{\pgfqpoint{1.537946in}{1.541960in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{1.545484in}}% +\pgfpathlineto{\pgfqpoint{1.559940in}{1.545557in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{1.541811in}}% +\pgfpathlineto{\pgfqpoint{1.581933in}{1.532911in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{1.514991in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{1.471110in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{1.455947in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{1.524776in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{1.556770in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{1.578643in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{1.595546in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{1.609424in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{1.631519in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.648783in}}% +\pgfpathlineto{\pgfqpoint{1.735888in}{1.662871in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{1.674670in}}% +\pgfpathlineto{\pgfqpoint{1.790872in}{1.689203in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{1.700894in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{1.710435in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{1.720592in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{1.728489in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{1.735954in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{1.742298in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{1.747154in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{1.750770in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{1.752994in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{1.754026in}}% +\pgfpathlineto{\pgfqpoint{3.429389in}{1.754192in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1760,183 +1754,183 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.754519in}}% -\pgfpathlineto{\pgfqpoint{0.682746in}{2.181128in}}% -\pgfpathlineto{\pgfqpoint{0.693267in}{2.201913in}}% -\pgfpathlineto{\pgfqpoint{0.703788in}{2.206736in}}% -\pgfpathlineto{\pgfqpoint{0.714308in}{2.204138in}}% -\pgfpathlineto{\pgfqpoint{0.724829in}{2.196641in}}% -\pgfpathlineto{\pgfqpoint{0.735350in}{2.185146in}}% -\pgfpathlineto{\pgfqpoint{0.745870in}{2.169783in}}% -\pgfpathlineto{\pgfqpoint{0.756391in}{2.150008in}}% -\pgfpathlineto{\pgfqpoint{0.766912in}{2.124151in}}% -\pgfpathlineto{\pgfqpoint{0.777432in}{2.087265in}}% -\pgfpathlineto{\pgfqpoint{0.787953in}{2.012959in}}% -\pgfpathlineto{\pgfqpoint{0.798474in}{2.021124in}}% -\pgfpathlineto{\pgfqpoint{0.808994in}{2.058129in}}% -\pgfpathlineto{\pgfqpoint{0.819515in}{2.068517in}}% -\pgfpathlineto{\pgfqpoint{0.830036in}{2.069376in}}% -\pgfpathlineto{\pgfqpoint{0.840556in}{2.064626in}}% -\pgfpathlineto{\pgfqpoint{0.851077in}{2.055639in}}% -\pgfpathlineto{\pgfqpoint{0.861598in}{2.042809in}}% -\pgfpathlineto{\pgfqpoint{0.872118in}{2.025866in}}% -\pgfpathlineto{\pgfqpoint{0.882639in}{2.003663in}}% -\pgfpathlineto{\pgfqpoint{0.893159in}{1.972966in}}% -\pgfpathlineto{\pgfqpoint{0.903680in}{1.921325in}}% -\pgfpathlineto{\pgfqpoint{0.914201in}{1.850576in}}% -\pgfpathlineto{\pgfqpoint{0.924721in}{1.923920in}}% -\pgfpathlineto{\pgfqpoint{0.935242in}{1.941559in}}% -\pgfpathlineto{\pgfqpoint{0.945763in}{1.946553in}}% -\pgfpathlineto{\pgfqpoint{0.956283in}{1.945065in}}% -\pgfpathlineto{\pgfqpoint{0.966804in}{1.939109in}}% -\pgfpathlineto{\pgfqpoint{0.977325in}{1.929423in}}% -\pgfpathlineto{\pgfqpoint{0.987845in}{1.916087in}}% -\pgfpathlineto{\pgfqpoint{0.998366in}{1.898587in}}% -\pgfpathlineto{\pgfqpoint{1.008887in}{1.875417in}}% -\pgfpathlineto{\pgfqpoint{1.019407in}{1.842331in}}% -\pgfpathlineto{\pgfqpoint{1.029928in}{1.779898in}}% -\pgfpathlineto{\pgfqpoint{1.040449in}{1.762527in}}% -\pgfpathlineto{\pgfqpoint{1.050969in}{1.809789in}}% -\pgfpathlineto{\pgfqpoint{1.061490in}{1.823622in}}% -\pgfpathlineto{\pgfqpoint{1.072010in}{1.826680in}}% -\pgfpathlineto{\pgfqpoint{1.082531in}{1.823354in}}% -\pgfpathlineto{\pgfqpoint{1.093052in}{1.814840in}}% -\pgfpathlineto{\pgfqpoint{1.103572in}{1.800842in}}% -\pgfpathlineto{\pgfqpoint{1.114093in}{1.779173in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{1.741528in}}% -\pgfpathlineto{\pgfqpoint{1.135134in}{1.425341in}}% -\pgfpathlineto{\pgfqpoint{1.145655in}{1.733313in}}% -\pgfpathlineto{\pgfqpoint{1.156176in}{1.763336in}}% -\pgfpathlineto{\pgfqpoint{1.166696in}{1.777868in}}% -\pgfpathlineto{\pgfqpoint{1.177217in}{1.785653in}}% -\pgfpathlineto{\pgfqpoint{1.187738in}{1.789455in}}% -\pgfpathlineto{\pgfqpoint{1.198258in}{1.790513in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{1.789493in}}% -\pgfpathlineto{\pgfqpoint{1.219300in}{1.786789in}}% -\pgfpathlineto{\pgfqpoint{1.229820in}{1.782650in}}% -\pgfpathlineto{\pgfqpoint{1.250862in}{1.770657in}}% -\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{1.292944in}{1.733343in}}% -\pgfpathlineto{\pgfqpoint{1.313985in}{1.707635in}}% -\pgfpathlineto{\pgfqpoint{1.335027in}{1.675702in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{1.656452in}}% -\pgfpathlineto{\pgfqpoint{1.356068in}{1.633904in}}% -\pgfpathlineto{\pgfqpoint{1.366589in}{1.606132in}}% -\pgfpathlineto{\pgfqpoint{1.377109in}{1.568002in}}% -\pgfpathlineto{\pgfqpoint{1.387630in}{1.492814in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{1.501409in}}% -\pgfpathlineto{\pgfqpoint{1.408671in}{1.538524in}}% -\pgfpathlineto{\pgfqpoint{1.419192in}{1.549490in}}% -\pgfpathlineto{\pgfqpoint{1.429713in}{1.551259in}}% -\pgfpathlineto{\pgfqpoint{1.440233in}{1.547705in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{1.540169in}}% -\pgfpathlineto{\pgfqpoint{1.461274in}{1.529026in}}% -\pgfpathlineto{\pgfqpoint{1.471795in}{1.513998in}}% -\pgfpathlineto{\pgfqpoint{1.482316in}{1.493955in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{1.465760in}}% -\pgfpathlineto{\pgfqpoint{1.503357in}{1.417650in}}% -\pgfpathlineto{\pgfqpoint{1.513878in}{1.339156in}}% -\pgfpathlineto{\pgfqpoint{1.524398in}{1.421582in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{1.442488in}}% -\pgfpathlineto{\pgfqpoint{1.545440in}{1.450426in}}% -\pgfpathlineto{\pgfqpoint{1.555960in}{1.451821in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{1.448717in}}% -\pgfpathlineto{\pgfqpoint{1.577002in}{1.441822in}}% -\pgfpathlineto{\pgfqpoint{1.587522in}{1.431133in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{1.415935in}}% -\pgfpathlineto{\pgfqpoint{1.608564in}{1.394171in}}% -\pgfpathlineto{\pgfqpoint{1.619084in}{1.359410in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{1.263092in}}% -\pgfpathlineto{\pgfqpoint{1.640126in}{1.327646in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{1.361757in}}% -\pgfpathlineto{\pgfqpoint{1.661167in}{1.375881in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{1.381771in}}% -\pgfpathlineto{\pgfqpoint{1.682208in}{1.382547in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{1.379323in}}% -\pgfpathlineto{\pgfqpoint{1.703249in}{1.372356in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{1.361248in}}% -\pgfpathlineto{\pgfqpoint{1.724291in}{1.344630in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{1.318592in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{1.266142in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{1.241894in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{1.301044in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{1.322660in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{1.333319in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{1.337986in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{1.338336in}}% -\pgfpathlineto{\pgfqpoint{1.818977in}{1.334919in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{1.327605in}}% -\pgfpathlineto{\pgfqpoint{1.840018in}{1.315497in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.296075in}}% -\pgfpathlineto{\pgfqpoint{1.861059in}{1.260797in}}% -\pgfpathlineto{\pgfqpoint{1.871580in}{0.519076in}}% -\pgfpathlineto{\pgfqpoint{1.882100in}{1.257532in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{1.289548in}}% -\pgfpathlineto{\pgfqpoint{1.903142in}{1.305714in}}% -\pgfpathlineto{\pgfqpoint{1.913662in}{1.314575in}}% -\pgfpathlineto{\pgfqpoint{1.924183in}{1.318655in}}% -\pgfpathlineto{\pgfqpoint{1.934704in}{1.318855in}}% -\pgfpathlineto{\pgfqpoint{1.945224in}{1.315305in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{1.307462in}}% -\pgfpathlineto{\pgfqpoint{1.966266in}{1.293652in}}% -\pgfpathlineto{\pgfqpoint{1.976786in}{1.268916in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{1.206680in}}% -\pgfpathlineto{\pgfqpoint{1.997828in}{1.227879in}}% -\pgfpathlineto{\pgfqpoint{2.008348in}{1.277323in}}% -\pgfpathlineto{\pgfqpoint{2.018869in}{1.300401in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{1.314112in}}% -\pgfpathlineto{\pgfqpoint{2.039910in}{1.322369in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{1.326549in}}% -\pgfpathlineto{\pgfqpoint{2.060951in}{1.327055in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{1.323636in}}% -\pgfpathlineto{\pgfqpoint{2.081993in}{1.315185in}}% -\pgfpathlineto{\pgfqpoint{2.092513in}{1.298591in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{1.262110in}}% -\pgfpathlineto{\pgfqpoint{2.113555in}{1.195296in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{1.289475in}}% -\pgfpathlineto{\pgfqpoint{2.134596in}{1.322227in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{1.342129in}}% -\pgfpathlineto{\pgfqpoint{2.155637in}{1.355628in}}% -\pgfpathlineto{\pgfqpoint{2.166158in}{1.364797in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{1.370371in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{1.372378in}}% -\pgfpathlineto{\pgfqpoint{2.197720in}{1.370141in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{1.361645in}}% -\pgfpathlineto{\pgfqpoint{2.218761in}{1.340509in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{1.258231in}}% -\pgfpathlineto{\pgfqpoint{2.239802in}{1.337313in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{1.386533in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{1.416465in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{1.439016in}}% -\pgfpathlineto{\pgfqpoint{2.281885in}{1.457526in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{1.487469in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{1.511626in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{1.532075in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{1.549871in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{1.572894in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{1.592585in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{1.609711in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{1.629408in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{1.646237in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{1.660749in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{1.676223in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{1.689255in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{1.702255in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{1.712886in}}% -\pgfpathlineto{\pgfqpoint{2.892083in}{1.722846in}}% -\pgfpathlineto{\pgfqpoint{2.976248in}{1.731634in}}% -\pgfpathlineto{\pgfqpoint{3.070934in}{1.738919in}}% -\pgfpathlineto{\pgfqpoint{3.176140in}{1.744563in}}% -\pgfpathlineto{\pgfqpoint{3.302388in}{1.748887in}}% -\pgfpathlineto{\pgfqpoint{3.460198in}{1.751846in}}% -\pgfpathlineto{\pgfqpoint{3.681131in}{1.753541in}}% -\pgfpathlineto{\pgfqpoint{4.122999in}{1.754161in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{1.754519in}}% +\pgfpathlineto{\pgfqpoint{0.493254in}{2.181128in}}% +\pgfpathlineto{\pgfqpoint{0.504251in}{2.201913in}}% +\pgfpathlineto{\pgfqpoint{0.515248in}{2.206736in}}% +\pgfpathlineto{\pgfqpoint{0.526245in}{2.204138in}}% +\pgfpathlineto{\pgfqpoint{0.537241in}{2.196641in}}% +\pgfpathlineto{\pgfqpoint{0.548238in}{2.185146in}}% +\pgfpathlineto{\pgfqpoint{0.559235in}{2.169783in}}% +\pgfpathlineto{\pgfqpoint{0.570232in}{2.150008in}}% +\pgfpathlineto{\pgfqpoint{0.581228in}{2.124151in}}% +\pgfpathlineto{\pgfqpoint{0.592225in}{2.087265in}}% +\pgfpathlineto{\pgfqpoint{0.603222in}{2.012959in}}% +\pgfpathlineto{\pgfqpoint{0.614219in}{2.021124in}}% +\pgfpathlineto{\pgfqpoint{0.625215in}{2.058129in}}% +\pgfpathlineto{\pgfqpoint{0.636212in}{2.068517in}}% +\pgfpathlineto{\pgfqpoint{0.647209in}{2.069376in}}% +\pgfpathlineto{\pgfqpoint{0.658206in}{2.064626in}}% +\pgfpathlineto{\pgfqpoint{0.669202in}{2.055639in}}% +\pgfpathlineto{\pgfqpoint{0.680199in}{2.042809in}}% +\pgfpathlineto{\pgfqpoint{0.691196in}{2.025866in}}% +\pgfpathlineto{\pgfqpoint{0.702193in}{2.003663in}}% +\pgfpathlineto{\pgfqpoint{0.713189in}{1.972966in}}% +\pgfpathlineto{\pgfqpoint{0.724186in}{1.921325in}}% +\pgfpathlineto{\pgfqpoint{0.735183in}{1.850576in}}% +\pgfpathlineto{\pgfqpoint{0.746180in}{1.923920in}}% +\pgfpathlineto{\pgfqpoint{0.757177in}{1.941559in}}% +\pgfpathlineto{\pgfqpoint{0.768173in}{1.946553in}}% +\pgfpathlineto{\pgfqpoint{0.779170in}{1.945065in}}% +\pgfpathlineto{\pgfqpoint{0.790167in}{1.939109in}}% +\pgfpathlineto{\pgfqpoint{0.801164in}{1.929423in}}% +\pgfpathlineto{\pgfqpoint{0.812160in}{1.916087in}}% +\pgfpathlineto{\pgfqpoint{0.823157in}{1.898587in}}% +\pgfpathlineto{\pgfqpoint{0.834154in}{1.875417in}}% +\pgfpathlineto{\pgfqpoint{0.845151in}{1.842331in}}% +\pgfpathlineto{\pgfqpoint{0.856147in}{1.779898in}}% +\pgfpathlineto{\pgfqpoint{0.867144in}{1.762527in}}% +\pgfpathlineto{\pgfqpoint{0.878141in}{1.809789in}}% +\pgfpathlineto{\pgfqpoint{0.889138in}{1.823622in}}% +\pgfpathlineto{\pgfqpoint{0.900134in}{1.826680in}}% +\pgfpathlineto{\pgfqpoint{0.911131in}{1.823354in}}% +\pgfpathlineto{\pgfqpoint{0.922128in}{1.814840in}}% +\pgfpathlineto{\pgfqpoint{0.933125in}{1.800842in}}% +\pgfpathlineto{\pgfqpoint{0.944121in}{1.779173in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{1.741528in}}% +\pgfpathlineto{\pgfqpoint{0.966115in}{1.425341in}}% +\pgfpathlineto{\pgfqpoint{0.977112in}{1.733313in}}% +\pgfpathlineto{\pgfqpoint{0.988108in}{1.763336in}}% +\pgfpathlineto{\pgfqpoint{0.999105in}{1.777868in}}% +\pgfpathlineto{\pgfqpoint{1.010102in}{1.785653in}}% +\pgfpathlineto{\pgfqpoint{1.021099in}{1.789455in}}% +\pgfpathlineto{\pgfqpoint{1.032095in}{1.790513in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{1.789493in}}% +\pgfpathlineto{\pgfqpoint{1.054089in}{1.786789in}}% +\pgfpathlineto{\pgfqpoint{1.065086in}{1.782650in}}% +\pgfpathlineto{\pgfqpoint{1.087079in}{1.770657in}}% +\pgfpathlineto{\pgfqpoint{1.109073in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{1.131066in}{1.733343in}}% +\pgfpathlineto{\pgfqpoint{1.153060in}{1.707635in}}% +\pgfpathlineto{\pgfqpoint{1.175053in}{1.675702in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{1.656452in}}% +\pgfpathlineto{\pgfqpoint{1.197047in}{1.633904in}}% +\pgfpathlineto{\pgfqpoint{1.208044in}{1.606132in}}% +\pgfpathlineto{\pgfqpoint{1.219040in}{1.568002in}}% +\pgfpathlineto{\pgfqpoint{1.230037in}{1.492814in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{1.501409in}}% +\pgfpathlineto{\pgfqpoint{1.252031in}{1.538524in}}% +\pgfpathlineto{\pgfqpoint{1.263027in}{1.549490in}}% +\pgfpathlineto{\pgfqpoint{1.274024in}{1.551259in}}% +\pgfpathlineto{\pgfqpoint{1.285021in}{1.547705in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{1.540169in}}% +\pgfpathlineto{\pgfqpoint{1.307014in}{1.529026in}}% +\pgfpathlineto{\pgfqpoint{1.318011in}{1.513998in}}% +\pgfpathlineto{\pgfqpoint{1.329008in}{1.493955in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{1.465760in}}% +\pgfpathlineto{\pgfqpoint{1.351002in}{1.417650in}}% +\pgfpathlineto{\pgfqpoint{1.361998in}{1.339156in}}% +\pgfpathlineto{\pgfqpoint{1.372995in}{1.421582in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{1.442488in}}% +\pgfpathlineto{\pgfqpoint{1.394989in}{1.450426in}}% +\pgfpathlineto{\pgfqpoint{1.405985in}{1.451821in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{1.448717in}}% +\pgfpathlineto{\pgfqpoint{1.427979in}{1.441822in}}% +\pgfpathlineto{\pgfqpoint{1.438976in}{1.431133in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{1.415935in}}% +\pgfpathlineto{\pgfqpoint{1.460969in}{1.394171in}}% +\pgfpathlineto{\pgfqpoint{1.471966in}{1.359410in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{1.263092in}}% +\pgfpathlineto{\pgfqpoint{1.493959in}{1.327646in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{1.361757in}}% +\pgfpathlineto{\pgfqpoint{1.515953in}{1.375881in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{1.381771in}}% +\pgfpathlineto{\pgfqpoint{1.537946in}{1.382547in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{1.379323in}}% +\pgfpathlineto{\pgfqpoint{1.559940in}{1.372356in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{1.361248in}}% +\pgfpathlineto{\pgfqpoint{1.581933in}{1.344630in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{1.318592in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{1.266142in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{1.241894in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{1.301044in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{1.322660in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{1.333319in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{1.337986in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{1.338336in}}% +\pgfpathlineto{\pgfqpoint{1.680904in}{1.334919in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{1.327605in}}% +\pgfpathlineto{\pgfqpoint{1.702898in}{1.315497in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.296075in}}% +\pgfpathlineto{\pgfqpoint{1.724891in}{1.260797in}}% +\pgfpathlineto{\pgfqpoint{1.735888in}{0.519076in}}% +\pgfpathlineto{\pgfqpoint{1.746885in}{1.257532in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{1.289548in}}% +\pgfpathlineto{\pgfqpoint{1.768878in}{1.305714in}}% +\pgfpathlineto{\pgfqpoint{1.779875in}{1.314575in}}% +\pgfpathlineto{\pgfqpoint{1.790872in}{1.318655in}}% +\pgfpathlineto{\pgfqpoint{1.801869in}{1.318855in}}% +\pgfpathlineto{\pgfqpoint{1.812865in}{1.315305in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{1.307462in}}% +\pgfpathlineto{\pgfqpoint{1.834859in}{1.293652in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{1.268916in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{1.206680in}}% +\pgfpathlineto{\pgfqpoint{1.867849in}{1.227879in}}% +\pgfpathlineto{\pgfqpoint{1.878846in}{1.277323in}}% +\pgfpathlineto{\pgfqpoint{1.889843in}{1.300401in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{1.314112in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{1.322369in}}% +\pgfpathlineto{\pgfqpoint{1.922833in}{1.326549in}}% +\pgfpathlineto{\pgfqpoint{1.933830in}{1.327055in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{1.323636in}}% +\pgfpathlineto{\pgfqpoint{1.955823in}{1.315185in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{1.298591in}}% +\pgfpathlineto{\pgfqpoint{1.977817in}{1.262110in}}% +\pgfpathlineto{\pgfqpoint{1.988814in}{1.195296in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{1.289475in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{1.322227in}}% +\pgfpathlineto{\pgfqpoint{2.021804in}{1.342129in}}% +\pgfpathlineto{\pgfqpoint{2.032801in}{1.355628in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{1.364797in}}% +\pgfpathlineto{\pgfqpoint{2.054794in}{1.370371in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{1.372378in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{1.370141in}}% +\pgfpathlineto{\pgfqpoint{2.087784in}{1.361645in}}% +\pgfpathlineto{\pgfqpoint{2.098781in}{1.340509in}}% +\pgfpathlineto{\pgfqpoint{2.109778in}{1.258231in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{1.337313in}}% +\pgfpathlineto{\pgfqpoint{2.131771in}{1.386533in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{1.416465in}}% +\pgfpathlineto{\pgfqpoint{2.153765in}{1.439016in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{1.457526in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{1.487469in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{1.511626in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{1.532075in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{1.549871in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{1.572894in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{1.592585in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{1.609711in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{1.629408in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{1.646237in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{1.660749in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{1.676223in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{1.689255in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{1.702255in}}% +\pgfpathlineto{\pgfqpoint{2.725596in}{1.712886in}}% +\pgfpathlineto{\pgfqpoint{2.802574in}{1.722846in}}% +\pgfpathlineto{\pgfqpoint{2.890548in}{1.731634in}}% +\pgfpathlineto{\pgfqpoint{2.989519in}{1.738919in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{1.744563in}}% +\pgfpathlineto{\pgfqpoint{3.231447in}{1.748887in}}% +\pgfpathlineto{\pgfqpoint{3.396399in}{1.751846in}}% +\pgfpathlineto{\pgfqpoint{3.627331in}{1.753541in}}% +\pgfpathlineto{\pgfqpoint{4.089195in}{1.754161in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -1944,235 +1938,235 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.756434in}}% -\pgfpathlineto{\pgfqpoint{0.682746in}{2.278618in}}% -\pgfpathlineto{\pgfqpoint{0.693267in}{2.297753in}}% -\pgfpathlineto{\pgfqpoint{0.703788in}{2.300924in}}% -\pgfpathlineto{\pgfqpoint{0.714308in}{2.296672in}}% -\pgfpathlineto{\pgfqpoint{0.724829in}{2.287522in}}% -\pgfpathlineto{\pgfqpoint{0.735350in}{2.274372in}}% -\pgfpathlineto{\pgfqpoint{0.745870in}{2.257353in}}% -\pgfpathlineto{\pgfqpoint{0.756391in}{2.235920in}}% -\pgfpathlineto{\pgfqpoint{0.766912in}{2.208398in}}% -\pgfpathlineto{\pgfqpoint{0.777432in}{2.169830in}}% -\pgfpathlineto{\pgfqpoint{0.787953in}{2.093676in}}% -\pgfpathlineto{\pgfqpoint{0.798474in}{2.100656in}}% -\pgfpathlineto{\pgfqpoint{0.808994in}{2.135897in}}% -\pgfpathlineto{\pgfqpoint{0.819515in}{2.144614in}}% -\pgfpathlineto{\pgfqpoint{0.830036in}{2.143818in}}% -\pgfpathlineto{\pgfqpoint{0.840556in}{2.137423in}}% -\pgfpathlineto{\pgfqpoint{0.851077in}{2.126800in}}% -\pgfpathlineto{\pgfqpoint{0.861598in}{2.112346in}}% -\pgfpathlineto{\pgfqpoint{0.872118in}{2.093801in}}% -\pgfpathlineto{\pgfqpoint{0.882639in}{2.070042in}}% -\pgfpathlineto{\pgfqpoint{0.893159in}{2.037916in}}% -\pgfpathlineto{\pgfqpoint{0.903680in}{1.985469in}}% -\pgfpathlineto{\pgfqpoint{0.914201in}{1.906049in}}% -\pgfpathlineto{\pgfqpoint{0.924721in}{1.982150in}}% -\pgfpathlineto{\pgfqpoint{0.935242in}{1.998529in}}% -\pgfpathlineto{\pgfqpoint{0.945763in}{2.001970in}}% -\pgfpathlineto{\pgfqpoint{0.956283in}{1.998824in}}% -\pgfpathlineto{\pgfqpoint{0.966804in}{1.991138in}}% -\pgfpathlineto{\pgfqpoint{0.977325in}{1.979639in}}% -\pgfpathlineto{\pgfqpoint{0.987845in}{1.964367in}}% -\pgfpathlineto{\pgfqpoint{0.998366in}{1.944703in}}% -\pgfpathlineto{\pgfqpoint{1.008887in}{1.918851in}}% -\pgfpathlineto{\pgfqpoint{1.019407in}{1.881454in}}% -\pgfpathlineto{\pgfqpoint{1.029928in}{1.801434in}}% -\pgfpathlineto{\pgfqpoint{1.040449in}{1.823671in}}% -\pgfpathlineto{\pgfqpoint{1.050969in}{1.858105in}}% -\pgfpathlineto{\pgfqpoint{1.061490in}{1.868238in}}% -\pgfpathlineto{\pgfqpoint{1.072010in}{1.869149in}}% -\pgfpathlineto{\pgfqpoint{1.082531in}{1.864396in}}% -\pgfpathlineto{\pgfqpoint{1.093052in}{1.855086in}}% -\pgfpathlineto{\pgfqpoint{1.103572in}{1.841204in}}% -\pgfpathlineto{\pgfqpoint{1.114093in}{1.821572in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{1.792333in}}% -\pgfpathlineto{\pgfqpoint{1.135134in}{1.735889in}}% -\pgfpathlineto{\pgfqpoint{1.145655in}{1.713198in}}% -\pgfpathlineto{\pgfqpoint{1.156176in}{1.768084in}}% -\pgfpathlineto{\pgfqpoint{1.166696in}{1.787295in}}% -\pgfpathlineto{\pgfqpoint{1.177217in}{1.796238in}}% -\pgfpathlineto{\pgfqpoint{1.187738in}{1.799938in}}% -\pgfpathlineto{\pgfqpoint{1.198258in}{1.800301in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{1.798256in}}% -\pgfpathlineto{\pgfqpoint{1.219300in}{1.794325in}}% -\pgfpathlineto{\pgfqpoint{1.229820in}{1.788826in}}% -\pgfpathlineto{\pgfqpoint{1.250862in}{1.773855in}}% -\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{1.292944in}{1.730001in}}% -\pgfpathlineto{\pgfqpoint{1.313985in}{1.700844in}}% -\pgfpathlineto{\pgfqpoint{1.335027in}{1.665376in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{1.644328in}}% -\pgfpathlineto{\pgfqpoint{1.356068in}{1.619966in}}% -\pgfpathlineto{\pgfqpoint{1.366589in}{1.590361in}}% -\pgfpathlineto{\pgfqpoint{1.377109in}{1.550380in}}% -\pgfpathlineto{\pgfqpoint{1.387630in}{1.473325in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{1.480034in}}% -\pgfpathlineto{\pgfqpoint{1.408671in}{1.515247in}}% -\pgfpathlineto{\pgfqpoint{1.419192in}{1.524294in}}% -\pgfpathlineto{\pgfqpoint{1.429713in}{1.524125in}}% -\pgfpathlineto{\pgfqpoint{1.440233in}{1.518615in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{1.509105in}}% -\pgfpathlineto{\pgfqpoint{1.461274in}{1.495970in}}% -\pgfpathlineto{\pgfqpoint{1.471795in}{1.478930in}}% -\pgfpathlineto{\pgfqpoint{1.482316in}{1.456856in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{1.426611in}}% -\pgfpathlineto{\pgfqpoint{1.503357in}{1.376429in}}% -\pgfpathlineto{\pgfqpoint{1.513878in}{1.295843in}}% -\pgfpathlineto{\pgfqpoint{1.524398in}{1.376155in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{1.394925in}}% -\pgfpathlineto{\pgfqpoint{1.545440in}{1.400705in}}% -\pgfpathlineto{\pgfqpoint{1.555960in}{1.399917in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{1.394608in}}% -\pgfpathlineto{\pgfqpoint{1.577002in}{1.385483in}}% -\pgfpathlineto{\pgfqpoint{1.587522in}{1.372539in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{1.355059in}}% -\pgfpathlineto{\pgfqpoint{1.608564in}{1.330987in}}% -\pgfpathlineto{\pgfqpoint{1.619084in}{1.293892in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{1.195210in}}% -\pgfpathlineto{\pgfqpoint{1.640126in}{1.257372in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{1.289061in}}% -\pgfpathlineto{\pgfqpoint{1.661167in}{1.300734in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{1.304140in}}% -\pgfpathlineto{\pgfqpoint{1.682208in}{1.302400in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{1.296627in}}% -\pgfpathlineto{\pgfqpoint{1.703249in}{1.287077in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{1.273351in}}% -\pgfpathlineto{\pgfqpoint{1.724291in}{1.254079in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{1.225350in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{1.170170in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{1.143153in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{1.199493in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{1.218257in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{1.226021in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{1.227747in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{1.225112in}}% -\pgfpathlineto{\pgfqpoint{1.818977in}{1.218661in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{1.208264in}}% -\pgfpathlineto{\pgfqpoint{1.840018in}{1.193022in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.170413in}}% -\pgfpathlineto{\pgfqpoint{1.861059in}{1.131894in}}% -\pgfpathlineto{\pgfqpoint{1.870642in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.872530in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.882100in}{1.121974in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{1.150572in}}% -\pgfpathlineto{\pgfqpoint{1.903142in}{1.163257in}}% -\pgfpathlineto{\pgfqpoint{1.913662in}{1.168572in}}% -\pgfpathlineto{\pgfqpoint{1.924183in}{1.169036in}}% -\pgfpathlineto{\pgfqpoint{1.934704in}{1.165550in}}% -\pgfpathlineto{\pgfqpoint{1.945224in}{1.158239in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{1.146558in}}% -\pgfpathlineto{\pgfqpoint{1.966266in}{1.128830in}}% -\pgfpathlineto{\pgfqpoint{1.976786in}{1.100090in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{1.033762in}}% -\pgfpathlineto{\pgfqpoint{1.997828in}{1.050777in}}% -\pgfpathlineto{\pgfqpoint{2.008348in}{1.095939in}}% -\pgfpathlineto{\pgfqpoint{2.018869in}{1.114634in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{1.123854in}}% -\pgfpathlineto{\pgfqpoint{2.039910in}{1.127507in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{1.126963in}}% -\pgfpathlineto{\pgfqpoint{2.060951in}{1.122619in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{1.114217in}}% -\pgfpathlineto{\pgfqpoint{2.081993in}{1.100642in}}% -\pgfpathlineto{\pgfqpoint{2.092513in}{1.078772in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{1.036854in}}% -\pgfpathlineto{\pgfqpoint{2.113555in}{0.964431in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{1.052816in}}% -\pgfpathlineto{\pgfqpoint{2.134596in}{1.079577in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{1.093274in}}% -\pgfpathlineto{\pgfqpoint{2.155637in}{1.100335in}}% -\pgfpathlineto{\pgfqpoint{2.166158in}{1.102814in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{1.101423in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{1.096163in}}% -\pgfpathlineto{\pgfqpoint{2.197720in}{1.086322in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{1.069850in}}% -\pgfpathlineto{\pgfqpoint{2.218761in}{1.040319in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{0.949171in}}% -\pgfpathlineto{\pgfqpoint{2.239802in}{1.018840in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{1.058014in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{1.077153in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{1.088010in}}% -\pgfpathlineto{\pgfqpoint{2.281885in}{1.093709in}}% -\pgfpathlineto{\pgfqpoint{2.292406in}{1.095367in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{1.093244in}}% -\pgfpathlineto{\pgfqpoint{2.313447in}{1.086946in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{1.075103in}}% -\pgfpathlineto{\pgfqpoint{2.334488in}{1.053809in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{1.006076in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{0.986519in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{1.050335in}}% -\pgfpathlineto{\pgfqpoint{2.376571in}{1.076597in}}% -\pgfpathlineto{\pgfqpoint{2.387092in}{1.091884in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{1.101163in}}% -\pgfpathlineto{\pgfqpoint{2.408133in}{1.106113in}}% -\pgfpathlineto{\pgfqpoint{2.418654in}{1.107282in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{1.104549in}}% -\pgfpathlineto{\pgfqpoint{2.439695in}{1.097016in}}% -\pgfpathlineto{\pgfqpoint{2.450215in}{1.082166in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{1.051461in}}% -\pgfpathlineto{\pgfqpoint{2.468667in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.473828in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{1.057357in}}% -\pgfpathlineto{\pgfqpoint{2.492298in}{1.093968in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{1.114744in}}% -\pgfpathlineto{\pgfqpoint{2.513339in}{1.128233in}}% -\pgfpathlineto{\pgfqpoint{2.523860in}{1.136963in}}% -\pgfpathlineto{\pgfqpoint{2.534381in}{1.141841in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{1.143002in}}% -\pgfpathlineto{\pgfqpoint{2.555422in}{1.139907in}}% -\pgfpathlineto{\pgfqpoint{2.565943in}{1.130891in}}% -\pgfpathlineto{\pgfqpoint{2.576463in}{1.110998in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{1.053664in}}% -\pgfpathlineto{\pgfqpoint{2.597505in}{1.079831in}}% -\pgfpathlineto{\pgfqpoint{2.608025in}{1.134319in}}% -\pgfpathlineto{\pgfqpoint{2.618546in}{1.162527in}}% -\pgfpathlineto{\pgfqpoint{2.629066in}{1.181467in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{1.195065in}}% -\pgfpathlineto{\pgfqpoint{2.650108in}{1.204714in}}% -\pgfpathlineto{\pgfqpoint{2.660628in}{1.210838in}}% -\pgfpathlineto{\pgfqpoint{2.671149in}{1.213206in}}% -\pgfpathlineto{\pgfqpoint{2.681670in}{1.210740in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{1.200360in}}% -\pgfpathlineto{\pgfqpoint{2.702711in}{1.170364in}}% -\pgfpathlineto{\pgfqpoint{2.713232in}{1.110355in}}% -\pgfpathlineto{\pgfqpoint{2.723752in}{1.211724in}}% -\pgfpathlineto{\pgfqpoint{2.734273in}{1.252138in}}% -\pgfpathlineto{\pgfqpoint{2.744794in}{1.280286in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{1.302773in}}% -\pgfpathlineto{\pgfqpoint{2.776356in}{1.338760in}}% -\pgfpathlineto{\pgfqpoint{2.797397in}{1.367853in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{1.392713in}}% -\pgfpathlineto{\pgfqpoint{2.839479in}{1.414609in}}% -\pgfpathlineto{\pgfqpoint{2.871041in}{1.443403in}}% -\pgfpathlineto{\pgfqpoint{2.902603in}{1.468547in}}% -\pgfpathlineto{\pgfqpoint{2.934165in}{1.490888in}}% -\pgfpathlineto{\pgfqpoint{2.965727in}{1.510973in}}% -\pgfpathlineto{\pgfqpoint{3.007810in}{1.534893in}}% -\pgfpathlineto{\pgfqpoint{3.049892in}{1.556115in}}% -\pgfpathlineto{\pgfqpoint{3.091975in}{1.575094in}}% -\pgfpathlineto{\pgfqpoint{3.144578in}{1.596166in}}% -\pgfpathlineto{\pgfqpoint{3.197182in}{1.614745in}}% -\pgfpathlineto{\pgfqpoint{3.249785in}{1.631200in}}% -\pgfpathlineto{\pgfqpoint{3.312909in}{1.648547in}}% -\pgfpathlineto{\pgfqpoint{3.376033in}{1.663642in}}% -\pgfpathlineto{\pgfqpoint{3.449677in}{1.678816in}}% -\pgfpathlineto{\pgfqpoint{3.523322in}{1.691739in}}% -\pgfpathlineto{\pgfqpoint{3.607487in}{1.704155in}}% -\pgfpathlineto{\pgfqpoint{3.691652in}{1.714432in}}% -\pgfpathlineto{\pgfqpoint{3.786338in}{1.723834in}}% -\pgfpathlineto{\pgfqpoint{3.891544in}{1.732043in}}% -\pgfpathlineto{\pgfqpoint{4.007271in}{1.738858in}}% -\pgfpathlineto{\pgfqpoint{4.144040in}{1.744568in}}% -\pgfpathlineto{\pgfqpoint{4.301850in}{1.748821in}}% -\pgfpathlineto{\pgfqpoint{4.501742in}{1.751815in}}% -\pgfpathlineto{\pgfqpoint{4.785799in}{1.753552in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{1.756434in}}% +\pgfpathlineto{\pgfqpoint{0.493254in}{2.278618in}}% +\pgfpathlineto{\pgfqpoint{0.504251in}{2.297753in}}% +\pgfpathlineto{\pgfqpoint{0.515248in}{2.300924in}}% +\pgfpathlineto{\pgfqpoint{0.526245in}{2.296672in}}% +\pgfpathlineto{\pgfqpoint{0.537241in}{2.287522in}}% +\pgfpathlineto{\pgfqpoint{0.548238in}{2.274372in}}% +\pgfpathlineto{\pgfqpoint{0.559235in}{2.257353in}}% +\pgfpathlineto{\pgfqpoint{0.570232in}{2.235920in}}% +\pgfpathlineto{\pgfqpoint{0.581228in}{2.208398in}}% +\pgfpathlineto{\pgfqpoint{0.592225in}{2.169830in}}% +\pgfpathlineto{\pgfqpoint{0.603222in}{2.093676in}}% +\pgfpathlineto{\pgfqpoint{0.614219in}{2.100656in}}% +\pgfpathlineto{\pgfqpoint{0.625215in}{2.135897in}}% +\pgfpathlineto{\pgfqpoint{0.636212in}{2.144614in}}% +\pgfpathlineto{\pgfqpoint{0.647209in}{2.143818in}}% +\pgfpathlineto{\pgfqpoint{0.658206in}{2.137423in}}% +\pgfpathlineto{\pgfqpoint{0.669202in}{2.126800in}}% +\pgfpathlineto{\pgfqpoint{0.680199in}{2.112346in}}% +\pgfpathlineto{\pgfqpoint{0.691196in}{2.093801in}}% +\pgfpathlineto{\pgfqpoint{0.702193in}{2.070042in}}% +\pgfpathlineto{\pgfqpoint{0.713189in}{2.037916in}}% +\pgfpathlineto{\pgfqpoint{0.724186in}{1.985469in}}% +\pgfpathlineto{\pgfqpoint{0.735183in}{1.906049in}}% +\pgfpathlineto{\pgfqpoint{0.746180in}{1.982150in}}% +\pgfpathlineto{\pgfqpoint{0.757177in}{1.998529in}}% +\pgfpathlineto{\pgfqpoint{0.768173in}{2.001970in}}% +\pgfpathlineto{\pgfqpoint{0.779170in}{1.998824in}}% +\pgfpathlineto{\pgfqpoint{0.790167in}{1.991138in}}% +\pgfpathlineto{\pgfqpoint{0.801164in}{1.979639in}}% +\pgfpathlineto{\pgfqpoint{0.812160in}{1.964367in}}% +\pgfpathlineto{\pgfqpoint{0.823157in}{1.944703in}}% +\pgfpathlineto{\pgfqpoint{0.834154in}{1.918851in}}% +\pgfpathlineto{\pgfqpoint{0.845151in}{1.881454in}}% +\pgfpathlineto{\pgfqpoint{0.856147in}{1.801434in}}% +\pgfpathlineto{\pgfqpoint{0.867144in}{1.823671in}}% +\pgfpathlineto{\pgfqpoint{0.878141in}{1.858105in}}% +\pgfpathlineto{\pgfqpoint{0.889138in}{1.868238in}}% +\pgfpathlineto{\pgfqpoint{0.900134in}{1.869149in}}% +\pgfpathlineto{\pgfqpoint{0.911131in}{1.864396in}}% +\pgfpathlineto{\pgfqpoint{0.922128in}{1.855086in}}% +\pgfpathlineto{\pgfqpoint{0.933125in}{1.841204in}}% +\pgfpathlineto{\pgfqpoint{0.944121in}{1.821572in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{1.792333in}}% +\pgfpathlineto{\pgfqpoint{0.966115in}{1.735889in}}% +\pgfpathlineto{\pgfqpoint{0.977112in}{1.713198in}}% +\pgfpathlineto{\pgfqpoint{0.988108in}{1.768084in}}% +\pgfpathlineto{\pgfqpoint{0.999105in}{1.787295in}}% +\pgfpathlineto{\pgfqpoint{1.010102in}{1.796238in}}% +\pgfpathlineto{\pgfqpoint{1.021099in}{1.799938in}}% +\pgfpathlineto{\pgfqpoint{1.032095in}{1.800301in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{1.798256in}}% +\pgfpathlineto{\pgfqpoint{1.054089in}{1.794325in}}% +\pgfpathlineto{\pgfqpoint{1.065086in}{1.788826in}}% +\pgfpathlineto{\pgfqpoint{1.087079in}{1.773855in}}% +\pgfpathlineto{\pgfqpoint{1.109073in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{1.131066in}{1.730001in}}% +\pgfpathlineto{\pgfqpoint{1.153060in}{1.700844in}}% +\pgfpathlineto{\pgfqpoint{1.175053in}{1.665376in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{1.644328in}}% +\pgfpathlineto{\pgfqpoint{1.197047in}{1.619966in}}% +\pgfpathlineto{\pgfqpoint{1.208044in}{1.590361in}}% +\pgfpathlineto{\pgfqpoint{1.219040in}{1.550380in}}% +\pgfpathlineto{\pgfqpoint{1.230037in}{1.473325in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{1.480034in}}% +\pgfpathlineto{\pgfqpoint{1.252031in}{1.515247in}}% +\pgfpathlineto{\pgfqpoint{1.263027in}{1.524294in}}% +\pgfpathlineto{\pgfqpoint{1.274024in}{1.524125in}}% +\pgfpathlineto{\pgfqpoint{1.285021in}{1.518615in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{1.509105in}}% +\pgfpathlineto{\pgfqpoint{1.307014in}{1.495970in}}% +\pgfpathlineto{\pgfqpoint{1.318011in}{1.478930in}}% +\pgfpathlineto{\pgfqpoint{1.329008in}{1.456856in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{1.426611in}}% +\pgfpathlineto{\pgfqpoint{1.351002in}{1.376429in}}% +\pgfpathlineto{\pgfqpoint{1.361998in}{1.295843in}}% +\pgfpathlineto{\pgfqpoint{1.372995in}{1.376155in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{1.394925in}}% +\pgfpathlineto{\pgfqpoint{1.394989in}{1.400705in}}% +\pgfpathlineto{\pgfqpoint{1.405985in}{1.399917in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{1.394608in}}% +\pgfpathlineto{\pgfqpoint{1.427979in}{1.385483in}}% +\pgfpathlineto{\pgfqpoint{1.438976in}{1.372539in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{1.355059in}}% +\pgfpathlineto{\pgfqpoint{1.460969in}{1.330987in}}% +\pgfpathlineto{\pgfqpoint{1.471966in}{1.293892in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{1.195210in}}% +\pgfpathlineto{\pgfqpoint{1.493959in}{1.257372in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{1.289061in}}% +\pgfpathlineto{\pgfqpoint{1.515953in}{1.300734in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{1.304140in}}% +\pgfpathlineto{\pgfqpoint{1.537946in}{1.302400in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{1.296627in}}% +\pgfpathlineto{\pgfqpoint{1.559940in}{1.287077in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{1.273351in}}% +\pgfpathlineto{\pgfqpoint{1.581933in}{1.254079in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{1.225350in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{1.170170in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{1.143153in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{1.199493in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{1.218257in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{1.226021in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{1.227747in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{1.225112in}}% +\pgfpathlineto{\pgfqpoint{1.680904in}{1.218661in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{1.208264in}}% +\pgfpathlineto{\pgfqpoint{1.702898in}{1.193022in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.170413in}}% +\pgfpathlineto{\pgfqpoint{1.724891in}{1.131894in}}% +\pgfpathlineto{\pgfqpoint{1.734908in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.736881in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.746885in}{1.121974in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{1.150572in}}% +\pgfpathlineto{\pgfqpoint{1.768878in}{1.163257in}}% +\pgfpathlineto{\pgfqpoint{1.779875in}{1.168572in}}% +\pgfpathlineto{\pgfqpoint{1.790872in}{1.169036in}}% +\pgfpathlineto{\pgfqpoint{1.801869in}{1.165550in}}% +\pgfpathlineto{\pgfqpoint{1.812865in}{1.158239in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{1.146558in}}% +\pgfpathlineto{\pgfqpoint{1.834859in}{1.128830in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{1.100090in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{1.033762in}}% +\pgfpathlineto{\pgfqpoint{1.867849in}{1.050777in}}% +\pgfpathlineto{\pgfqpoint{1.878846in}{1.095939in}}% +\pgfpathlineto{\pgfqpoint{1.889843in}{1.114634in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{1.123854in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{1.127507in}}% +\pgfpathlineto{\pgfqpoint{1.922833in}{1.126963in}}% +\pgfpathlineto{\pgfqpoint{1.933830in}{1.122619in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{1.114217in}}% +\pgfpathlineto{\pgfqpoint{1.955823in}{1.100642in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{1.078772in}}% +\pgfpathlineto{\pgfqpoint{1.977817in}{1.036854in}}% +\pgfpathlineto{\pgfqpoint{1.988814in}{0.964431in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{1.052816in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{1.079577in}}% +\pgfpathlineto{\pgfqpoint{2.021804in}{1.093274in}}% +\pgfpathlineto{\pgfqpoint{2.032801in}{1.100335in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{1.102814in}}% +\pgfpathlineto{\pgfqpoint{2.054794in}{1.101423in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{1.096163in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{1.086322in}}% +\pgfpathlineto{\pgfqpoint{2.087784in}{1.069850in}}% +\pgfpathlineto{\pgfqpoint{2.098781in}{1.040319in}}% +\pgfpathlineto{\pgfqpoint{2.109778in}{0.949171in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{1.018840in}}% +\pgfpathlineto{\pgfqpoint{2.131771in}{1.058014in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{1.077153in}}% +\pgfpathlineto{\pgfqpoint{2.153765in}{1.088010in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{1.093709in}}% +\pgfpathlineto{\pgfqpoint{2.175759in}{1.095367in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{1.093244in}}% +\pgfpathlineto{\pgfqpoint{2.197752in}{1.086946in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{1.075103in}}% +\pgfpathlineto{\pgfqpoint{2.219746in}{1.053809in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{1.006076in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{0.986519in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{1.050335in}}% +\pgfpathlineto{\pgfqpoint{2.263733in}{1.076597in}}% +\pgfpathlineto{\pgfqpoint{2.274729in}{1.091884in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{1.101163in}}% +\pgfpathlineto{\pgfqpoint{2.296723in}{1.106113in}}% +\pgfpathlineto{\pgfqpoint{2.307720in}{1.107282in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{1.104549in}}% +\pgfpathlineto{\pgfqpoint{2.329713in}{1.097016in}}% +\pgfpathlineto{\pgfqpoint{2.340710in}{1.082166in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{1.051461in}}% +\pgfpathlineto{\pgfqpoint{2.359996in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.365391in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{1.057357in}}% +\pgfpathlineto{\pgfqpoint{2.384697in}{1.093968in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{1.114744in}}% +\pgfpathlineto{\pgfqpoint{2.406690in}{1.128233in}}% +\pgfpathlineto{\pgfqpoint{2.417687in}{1.136963in}}% +\pgfpathlineto{\pgfqpoint{2.428684in}{1.141841in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{1.143002in}}% +\pgfpathlineto{\pgfqpoint{2.450678in}{1.139907in}}% +\pgfpathlineto{\pgfqpoint{2.461674in}{1.130891in}}% +\pgfpathlineto{\pgfqpoint{2.472671in}{1.110998in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{1.053664in}}% +\pgfpathlineto{\pgfqpoint{2.494665in}{1.079831in}}% +\pgfpathlineto{\pgfqpoint{2.505661in}{1.134319in}}% +\pgfpathlineto{\pgfqpoint{2.516658in}{1.162527in}}% +\pgfpathlineto{\pgfqpoint{2.527655in}{1.181467in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{1.195065in}}% +\pgfpathlineto{\pgfqpoint{2.549648in}{1.204714in}}% +\pgfpathlineto{\pgfqpoint{2.560645in}{1.210838in}}% +\pgfpathlineto{\pgfqpoint{2.571642in}{1.213206in}}% +\pgfpathlineto{\pgfqpoint{2.582639in}{1.210740in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{1.200360in}}% +\pgfpathlineto{\pgfqpoint{2.604632in}{1.170364in}}% +\pgfpathlineto{\pgfqpoint{2.615629in}{1.110355in}}% +\pgfpathlineto{\pgfqpoint{2.626626in}{1.211724in}}% +\pgfpathlineto{\pgfqpoint{2.637622in}{1.252138in}}% +\pgfpathlineto{\pgfqpoint{2.648619in}{1.280286in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{1.302773in}}% +\pgfpathlineto{\pgfqpoint{2.670613in}{1.321902in}}% +\pgfpathlineto{\pgfqpoint{2.692606in}{1.353952in}}% +\pgfpathlineto{\pgfqpoint{2.714600in}{1.380715in}}% +\pgfpathlineto{\pgfqpoint{2.736593in}{1.403978in}}% +\pgfpathlineto{\pgfqpoint{2.758587in}{1.424684in}}% +\pgfpathlineto{\pgfqpoint{2.791577in}{1.452140in}}% +\pgfpathlineto{\pgfqpoint{2.824567in}{1.476274in}}% +\pgfpathlineto{\pgfqpoint{2.857558in}{1.497812in}}% +\pgfpathlineto{\pgfqpoint{2.901545in}{1.523305in}}% +\pgfpathlineto{\pgfqpoint{2.945532in}{1.545810in}}% +\pgfpathlineto{\pgfqpoint{2.989519in}{1.565862in}}% +\pgfpathlineto{\pgfqpoint{3.044503in}{1.588061in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{1.607587in}}% +\pgfpathlineto{\pgfqpoint{3.154470in}{1.624853in}}% +\pgfpathlineto{\pgfqpoint{3.220451in}{1.643032in}}% +\pgfpathlineto{\pgfqpoint{3.286431in}{1.658840in}}% +\pgfpathlineto{\pgfqpoint{3.363409in}{1.674726in}}% +\pgfpathlineto{\pgfqpoint{3.440386in}{1.688257in}}% +\pgfpathlineto{\pgfqpoint{3.528360in}{1.701266in}}% +\pgfpathlineto{\pgfqpoint{3.616334in}{1.712045in}}% +\pgfpathlineto{\pgfqpoint{3.715305in}{1.721923in}}% +\pgfpathlineto{\pgfqpoint{3.825272in}{1.730569in}}% +\pgfpathlineto{\pgfqpoint{3.946237in}{1.737769in}}% +\pgfpathlineto{\pgfqpoint{4.078198in}{1.743442in}}% +\pgfpathlineto{\pgfqpoint{4.232153in}{1.747886in}}% +\pgfpathlineto{\pgfqpoint{4.430094in}{1.751221in}}% +\pgfpathlineto{\pgfqpoint{4.694016in}{1.753230in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.753773in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.753773in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -2180,281 +2174,281 @@ \definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.762704in}}% -\pgfpathlineto{\pgfqpoint{0.682746in}{2.348594in}}% -\pgfpathlineto{\pgfqpoint{0.693267in}{2.366527in}}% -\pgfpathlineto{\pgfqpoint{0.703788in}{2.368495in}}% -\pgfpathlineto{\pgfqpoint{0.714308in}{2.363041in}}% -\pgfpathlineto{\pgfqpoint{0.724829in}{2.352687in}}% -\pgfpathlineto{\pgfqpoint{0.735350in}{2.338335in}}% -\pgfpathlineto{\pgfqpoint{0.745870in}{2.320113in}}% -\pgfpathlineto{\pgfqpoint{0.756391in}{2.297476in}}% -\pgfpathlineto{\pgfqpoint{0.766912in}{2.268750in}}% -\pgfpathlineto{\pgfqpoint{0.777432in}{2.228974in}}% -\pgfpathlineto{\pgfqpoint{0.787953in}{2.151584in}}% -\pgfpathlineto{\pgfqpoint{0.798474in}{2.157443in}}% -\pgfpathlineto{\pgfqpoint{0.808994in}{2.191463in}}% -\pgfpathlineto{\pgfqpoint{0.819515in}{2.198974in}}% -\pgfpathlineto{\pgfqpoint{0.830036in}{2.196977in}}% -\pgfpathlineto{\pgfqpoint{0.840556in}{2.189382in}}% -\pgfpathlineto{\pgfqpoint{0.851077in}{2.177560in}}% -\pgfpathlineto{\pgfqpoint{0.861598in}{2.161911in}}% -\pgfpathlineto{\pgfqpoint{0.872118in}{2.142177in}}% -\pgfpathlineto{\pgfqpoint{0.882639in}{2.117239in}}% -\pgfpathlineto{\pgfqpoint{0.893159in}{2.083965in}}% -\pgfpathlineto{\pgfqpoint{0.903680in}{2.030518in}}% -\pgfpathlineto{\pgfqpoint{0.914201in}{1.948071in}}% -\pgfpathlineto{\pgfqpoint{0.924721in}{2.024152in}}% -\pgfpathlineto{\pgfqpoint{0.935242in}{2.039427in}}% -\pgfpathlineto{\pgfqpoint{0.945763in}{2.041688in}}% -\pgfpathlineto{\pgfqpoint{0.956283in}{2.037334in}}% -\pgfpathlineto{\pgfqpoint{0.966804in}{2.028418in}}% -\pgfpathlineto{\pgfqpoint{0.977325in}{2.015664in}}% -\pgfpathlineto{\pgfqpoint{0.987845in}{1.999096in}}% -\pgfpathlineto{\pgfqpoint{0.998366in}{1.978055in}}% -\pgfpathlineto{\pgfqpoint{1.008887in}{1.950639in}}% -\pgfpathlineto{\pgfqpoint{1.019407in}{1.911038in}}% -\pgfpathlineto{\pgfqpoint{1.029928in}{1.821833in}}% -\pgfpathlineto{\pgfqpoint{1.040449in}{1.858238in}}% -\pgfpathlineto{\pgfqpoint{1.050969in}{1.888826in}}% -\pgfpathlineto{\pgfqpoint{1.061490in}{1.897222in}}% -\pgfpathlineto{\pgfqpoint{1.072010in}{1.896843in}}% -\pgfpathlineto{\pgfqpoint{1.082531in}{1.891030in}}% -\pgfpathlineto{\pgfqpoint{1.093052in}{1.880877in}}% -\pgfpathlineto{\pgfqpoint{1.103572in}{1.866462in}}% -\pgfpathlineto{\pgfqpoint{1.114093in}{1.846897in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{1.819337in}}% -\pgfpathlineto{\pgfqpoint{1.135134in}{1.773055in}}% -\pgfpathlineto{\pgfqpoint{1.145655in}{1.677277in}}% -\pgfpathlineto{\pgfqpoint{1.156176in}{1.772491in}}% -\pgfpathlineto{\pgfqpoint{1.166696in}{1.795146in}}% -\pgfpathlineto{\pgfqpoint{1.177217in}{1.804656in}}% -\pgfpathlineto{\pgfqpoint{1.187738in}{1.808065in}}% -\pgfpathlineto{\pgfqpoint{1.198258in}{1.807765in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{1.804863in}}% -\pgfpathlineto{\pgfqpoint{1.219300in}{1.799960in}}% -\pgfpathlineto{\pgfqpoint{1.229820in}{1.793414in}}% -\pgfpathlineto{\pgfqpoint{1.250862in}{1.776207in}}% -\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{1.292944in}{1.727572in}}% -\pgfpathlineto{\pgfqpoint{1.313985in}{1.695933in}}% -\pgfpathlineto{\pgfqpoint{1.335027in}{1.657937in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{1.635611in}}% -\pgfpathlineto{\pgfqpoint{1.356068in}{1.609961in}}% -\pgfpathlineto{\pgfqpoint{1.366589in}{1.579060in}}% -\pgfpathlineto{\pgfqpoint{1.377109in}{1.537774in}}% -\pgfpathlineto{\pgfqpoint{1.387630in}{1.459404in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{1.464792in}}% -\pgfpathlineto{\pgfqpoint{1.408671in}{1.498674in}}% -\pgfpathlineto{\pgfqpoint{1.419192in}{1.506382in}}% -\pgfpathlineto{\pgfqpoint{1.429713in}{1.504866in}}% -\pgfpathlineto{\pgfqpoint{1.440233in}{1.498000in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{1.487126in}}% -\pgfpathlineto{\pgfqpoint{1.461274in}{1.472618in}}% -\pgfpathlineto{\pgfqpoint{1.471795in}{1.454196in}}% -\pgfpathlineto{\pgfqpoint{1.482316in}{1.430731in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{1.399086in}}% -\pgfpathlineto{\pgfqpoint{1.503357in}{1.347495in}}% -\pgfpathlineto{\pgfqpoint{1.513878in}{1.265490in}}% -\pgfpathlineto{\pgfqpoint{1.524398in}{1.344373in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{1.361705in}}% -\pgfpathlineto{\pgfqpoint{1.545440in}{1.366037in}}% -\pgfpathlineto{\pgfqpoint{1.555960in}{1.363791in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{1.357012in}}% -\pgfpathlineto{\pgfqpoint{1.577002in}{1.346409in}}% -\pgfpathlineto{\pgfqpoint{1.587522in}{1.331974in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{1.312993in}}% -\pgfpathlineto{\pgfqpoint{1.608564in}{1.287409in}}% -\pgfpathlineto{\pgfqpoint{1.619084in}{1.248790in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{1.148573in}}% -\pgfpathlineto{\pgfqpoint{1.640126in}{1.209188in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{1.239319in}}% -\pgfpathlineto{\pgfqpoint{1.661167in}{1.249420in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{1.251243in}}% -\pgfpathlineto{\pgfqpoint{1.682208in}{1.247907in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{1.240525in}}% -\pgfpathlineto{\pgfqpoint{1.703249in}{1.229352in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{1.213991in}}% -\pgfpathlineto{\pgfqpoint{1.724291in}{1.193070in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{1.162677in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{1.105820in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{1.077112in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{1.131745in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{1.148788in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{1.154816in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{1.154791in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{1.150389in}}% -\pgfpathlineto{\pgfqpoint{1.818977in}{1.142154in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{1.129957in}}% -\pgfpathlineto{\pgfqpoint{1.840018in}{1.112899in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.088457in}}% -\pgfpathlineto{\pgfqpoint{1.861059in}{1.048087in}}% -\pgfpathlineto{\pgfqpoint{1.869442in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.873757in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.882100in}{1.034412in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{1.061106in}}% -\pgfpathlineto{\pgfqpoint{1.903142in}{1.071868in}}% -\pgfpathlineto{\pgfqpoint{1.913662in}{1.075240in}}% -\pgfpathlineto{\pgfqpoint{1.924183in}{1.073743in}}% -\pgfpathlineto{\pgfqpoint{1.934704in}{1.068274in}}% -\pgfpathlineto{\pgfqpoint{1.945224in}{1.058962in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{1.045258in}}% -\pgfpathlineto{\pgfqpoint{1.966266in}{1.025486in}}% -\pgfpathlineto{\pgfqpoint{1.976786in}{0.994682in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{0.926267in}}% -\pgfpathlineto{\pgfqpoint{1.997828in}{0.941171in}}% -\pgfpathlineto{\pgfqpoint{2.008348in}{0.984201in}}% -\pgfpathlineto{\pgfqpoint{2.018869in}{1.000739in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{1.007779in}}% -\pgfpathlineto{\pgfqpoint{2.039910in}{1.009227in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{1.006453in}}% -\pgfpathlineto{\pgfqpoint{2.060951in}{0.999853in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{0.989168in}}% -\pgfpathlineto{\pgfqpoint{2.081993in}{0.973284in}}% -\pgfpathlineto{\pgfqpoint{2.092513in}{0.949076in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{0.904793in}}% -\pgfpathlineto{\pgfqpoint{2.113555in}{0.829975in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{0.915936in}}% -\pgfpathlineto{\pgfqpoint{2.134596in}{0.940242in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{0.951452in}}% -\pgfpathlineto{\pgfqpoint{2.155637in}{0.955995in}}% -\pgfpathlineto{\pgfqpoint{2.166158in}{0.955922in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{0.951945in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{0.944064in}}% -\pgfpathlineto{\pgfqpoint{2.197720in}{0.931567in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{0.912401in}}% -\pgfpathlineto{\pgfqpoint{2.218761in}{0.880139in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{0.786220in}}% -\pgfpathlineto{\pgfqpoint{2.239802in}{0.853078in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{0.889400in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{0.905643in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{0.913561in}}% -\pgfpathlineto{\pgfqpoint{2.281885in}{0.916275in}}% -\pgfpathlineto{\pgfqpoint{2.292406in}{0.914901in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{0.909698in}}% -\pgfpathlineto{\pgfqpoint{2.313447in}{0.900268in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{0.885243in}}% -\pgfpathlineto{\pgfqpoint{2.334488in}{0.860713in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{0.809687in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{0.786781in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{0.847188in}}% -\pgfpathlineto{\pgfqpoint{2.376571in}{0.869978in}}% -\pgfpathlineto{\pgfqpoint{2.387092in}{0.881729in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{0.887405in}}% -\pgfpathlineto{\pgfqpoint{2.408133in}{0.888682in}}% -\pgfpathlineto{\pgfqpoint{2.418654in}{0.886106in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{0.879552in}}% -\pgfpathlineto{\pgfqpoint{2.439695in}{0.868119in}}% -\pgfpathlineto{\pgfqpoint{2.450215in}{0.849287in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{0.814514in}}% -\pgfpathlineto{\pgfqpoint{2.465711in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.476820in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{0.811998in}}% -\pgfpathlineto{\pgfqpoint{2.492298in}{0.844256in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{0.860575in}}% -\pgfpathlineto{\pgfqpoint{2.513339in}{0.869498in}}% -\pgfpathlineto{\pgfqpoint{2.523860in}{0.873546in}}% -\pgfpathlineto{\pgfqpoint{2.534381in}{0.873620in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{0.869847in}}% -\pgfpathlineto{\pgfqpoint{2.555422in}{0.861682in}}% -\pgfpathlineto{\pgfqpoint{2.565943in}{0.847449in}}% -\pgfpathlineto{\pgfqpoint{2.576463in}{0.822186in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{0.759316in}}% -\pgfpathlineto{\pgfqpoint{2.597505in}{0.779770in}}% -\pgfpathlineto{\pgfqpoint{2.608025in}{0.828355in}}% -\pgfpathlineto{\pgfqpoint{2.618546in}{0.850457in}}% -\pgfpathlineto{\pgfqpoint{2.629066in}{0.863068in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{0.870099in}}% -\pgfpathlineto{\pgfqpoint{2.650108in}{0.872919in}}% -\pgfpathlineto{\pgfqpoint{2.660628in}{0.871928in}}% -\pgfpathlineto{\pgfqpoint{2.671149in}{0.866866in}}% -\pgfpathlineto{\pgfqpoint{2.681670in}{0.856622in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{0.838072in}}% -\pgfpathlineto{\pgfqpoint{2.702711in}{0.799467in}}% -\pgfpathlineto{\pgfqpoint{2.713232in}{0.730349in}}% -\pgfpathlineto{\pgfqpoint{2.723752in}{0.822032in}}% -\pgfpathlineto{\pgfqpoint{2.734273in}{0.852086in}}% -\pgfpathlineto{\pgfqpoint{2.744794in}{0.869070in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{0.879416in}}% -\pgfpathlineto{\pgfqpoint{2.765835in}{0.885177in}}% -\pgfpathlineto{\pgfqpoint{2.776356in}{0.887067in}}% -\pgfpathlineto{\pgfqpoint{2.786876in}{0.885087in}}% -\pgfpathlineto{\pgfqpoint{2.797397in}{0.878527in}}% -\pgfpathlineto{\pgfqpoint{2.807918in}{0.865338in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{0.839094in}}% -\pgfpathlineto{\pgfqpoint{2.828959in}{0.751238in}}% -\pgfpathlineto{\pgfqpoint{2.839479in}{0.824204in}}% -\pgfpathlineto{\pgfqpoint{2.850000in}{0.866682in}}% -\pgfpathlineto{\pgfqpoint{2.860521in}{0.889134in}}% -\pgfpathlineto{\pgfqpoint{2.871041in}{0.903315in}}% -\pgfpathlineto{\pgfqpoint{2.881562in}{0.912350in}}% -\pgfpathlineto{\pgfqpoint{2.892083in}{0.917358in}}% -\pgfpathlineto{\pgfqpoint{2.902603in}{0.918601in}}% -\pgfpathlineto{\pgfqpoint{2.913124in}{0.915685in}}% -\pgfpathlineto{\pgfqpoint{2.923645in}{0.907245in}}% -\pgfpathlineto{\pgfqpoint{2.934165in}{0.889376in}}% -\pgfpathlineto{\pgfqpoint{2.944686in}{0.845091in}}% -\pgfpathlineto{\pgfqpoint{2.955207in}{0.829010in}}% -\pgfpathlineto{\pgfqpoint{2.965727in}{0.896332in}}% -\pgfpathlineto{\pgfqpoint{2.976248in}{0.926132in}}% -\pgfpathlineto{\pgfqpoint{2.986769in}{0.944992in}}% -\pgfpathlineto{\pgfqpoint{2.997289in}{0.957884in}}% -\pgfpathlineto{\pgfqpoint{3.007810in}{0.966490in}}% -\pgfpathlineto{\pgfqpoint{3.018330in}{0.971364in}}% -\pgfpathlineto{\pgfqpoint{3.028851in}{0.972386in}}% -\pgfpathlineto{\pgfqpoint{3.039372in}{0.968667in}}% -\pgfpathlineto{\pgfqpoint{3.049892in}{0.957695in}}% -\pgfpathlineto{\pgfqpoint{3.060413in}{0.930937in}}% -\pgfpathlineto{\pgfqpoint{3.066756in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.075038in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.081454in}{0.944967in}}% -\pgfpathlineto{\pgfqpoint{3.091975in}{0.985782in}}% -\pgfpathlineto{\pgfqpoint{3.102496in}{1.010868in}}% -\pgfpathlineto{\pgfqpoint{3.113016in}{1.028785in}}% -\pgfpathlineto{\pgfqpoint{3.123537in}{1.042076in}}% -\pgfpathlineto{\pgfqpoint{3.134058in}{1.051663in}}% -\pgfpathlineto{\pgfqpoint{3.144578in}{1.057703in}}% -\pgfpathlineto{\pgfqpoint{3.155099in}{1.059680in}}% -\pgfpathlineto{\pgfqpoint{3.165620in}{1.055958in}}% -\pgfpathlineto{\pgfqpoint{3.176140in}{1.041616in}}% -\pgfpathlineto{\pgfqpoint{3.186661in}{0.990133in}}% -\pgfpathlineto{\pgfqpoint{3.197182in}{1.022509in}}% -\pgfpathlineto{\pgfqpoint{3.207702in}{1.083633in}}% -\pgfpathlineto{\pgfqpoint{3.218223in}{1.119001in}}% -\pgfpathlineto{\pgfqpoint{3.228743in}{1.145751in}}% -\pgfpathlineto{\pgfqpoint{3.239264in}{1.167995in}}% -\pgfpathlineto{\pgfqpoint{3.260305in}{1.204794in}}% -\pgfpathlineto{\pgfqpoint{3.281347in}{1.235403in}}% -\pgfpathlineto{\pgfqpoint{3.302388in}{1.262072in}}% -\pgfpathlineto{\pgfqpoint{3.323429in}{1.285925in}}% -\pgfpathlineto{\pgfqpoint{3.354991in}{1.317792in}}% -\pgfpathlineto{\pgfqpoint{3.386553in}{1.346086in}}% -\pgfpathlineto{\pgfqpoint{3.418115in}{1.371604in}}% -\pgfpathlineto{\pgfqpoint{3.460198in}{1.402189in}}% -\pgfpathlineto{\pgfqpoint{3.502280in}{1.429588in}}% -\pgfpathlineto{\pgfqpoint{3.544363in}{1.454371in}}% -\pgfpathlineto{\pgfqpoint{3.586446in}{1.476944in}}% -\pgfpathlineto{\pgfqpoint{3.639049in}{1.502518in}}% -\pgfpathlineto{\pgfqpoint{3.691652in}{1.525575in}}% -\pgfpathlineto{\pgfqpoint{3.744255in}{1.546462in}}% -\pgfpathlineto{\pgfqpoint{3.807379in}{1.569042in}}% -\pgfpathlineto{\pgfqpoint{3.870503in}{1.589262in}}% -\pgfpathlineto{\pgfqpoint{3.944148in}{1.610259in}}% -\pgfpathlineto{\pgfqpoint{4.017792in}{1.628821in}}% -\pgfpathlineto{\pgfqpoint{4.091437in}{1.645249in}}% -\pgfpathlineto{\pgfqpoint{4.175602in}{1.661731in}}% -\pgfpathlineto{\pgfqpoint{4.259767in}{1.676062in}}% -\pgfpathlineto{\pgfqpoint{4.354453in}{1.689932in}}% -\pgfpathlineto{\pgfqpoint{4.459659in}{1.702910in}}% -\pgfpathlineto{\pgfqpoint{4.564866in}{1.713673in}}% -\pgfpathlineto{\pgfqpoint{4.680593in}{1.723322in}}% -\pgfpathlineto{\pgfqpoint{4.806841in}{1.731635in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{1.762704in}}% +\pgfpathlineto{\pgfqpoint{0.493254in}{2.348594in}}% +\pgfpathlineto{\pgfqpoint{0.504251in}{2.366527in}}% +\pgfpathlineto{\pgfqpoint{0.515248in}{2.368495in}}% +\pgfpathlineto{\pgfqpoint{0.526245in}{2.363041in}}% +\pgfpathlineto{\pgfqpoint{0.537241in}{2.352687in}}% +\pgfpathlineto{\pgfqpoint{0.548238in}{2.338335in}}% +\pgfpathlineto{\pgfqpoint{0.559235in}{2.320113in}}% +\pgfpathlineto{\pgfqpoint{0.570232in}{2.297476in}}% +\pgfpathlineto{\pgfqpoint{0.581228in}{2.268750in}}% +\pgfpathlineto{\pgfqpoint{0.592225in}{2.228974in}}% +\pgfpathlineto{\pgfqpoint{0.603222in}{2.151584in}}% +\pgfpathlineto{\pgfqpoint{0.614219in}{2.157443in}}% +\pgfpathlineto{\pgfqpoint{0.625215in}{2.191463in}}% +\pgfpathlineto{\pgfqpoint{0.636212in}{2.198974in}}% +\pgfpathlineto{\pgfqpoint{0.647209in}{2.196977in}}% +\pgfpathlineto{\pgfqpoint{0.658206in}{2.189382in}}% +\pgfpathlineto{\pgfqpoint{0.669202in}{2.177560in}}% +\pgfpathlineto{\pgfqpoint{0.680199in}{2.161911in}}% +\pgfpathlineto{\pgfqpoint{0.691196in}{2.142177in}}% +\pgfpathlineto{\pgfqpoint{0.702193in}{2.117239in}}% +\pgfpathlineto{\pgfqpoint{0.713189in}{2.083965in}}% +\pgfpathlineto{\pgfqpoint{0.724186in}{2.030518in}}% +\pgfpathlineto{\pgfqpoint{0.735183in}{1.948071in}}% +\pgfpathlineto{\pgfqpoint{0.746180in}{2.024152in}}% +\pgfpathlineto{\pgfqpoint{0.757177in}{2.039427in}}% +\pgfpathlineto{\pgfqpoint{0.768173in}{2.041688in}}% +\pgfpathlineto{\pgfqpoint{0.779170in}{2.037334in}}% +\pgfpathlineto{\pgfqpoint{0.790167in}{2.028418in}}% +\pgfpathlineto{\pgfqpoint{0.801164in}{2.015664in}}% +\pgfpathlineto{\pgfqpoint{0.812160in}{1.999096in}}% +\pgfpathlineto{\pgfqpoint{0.823157in}{1.978055in}}% +\pgfpathlineto{\pgfqpoint{0.834154in}{1.950639in}}% +\pgfpathlineto{\pgfqpoint{0.845151in}{1.911038in}}% +\pgfpathlineto{\pgfqpoint{0.856147in}{1.821833in}}% +\pgfpathlineto{\pgfqpoint{0.867144in}{1.858238in}}% +\pgfpathlineto{\pgfqpoint{0.878141in}{1.888826in}}% +\pgfpathlineto{\pgfqpoint{0.889138in}{1.897222in}}% +\pgfpathlineto{\pgfqpoint{0.900134in}{1.896843in}}% +\pgfpathlineto{\pgfqpoint{0.911131in}{1.891030in}}% +\pgfpathlineto{\pgfqpoint{0.922128in}{1.880877in}}% +\pgfpathlineto{\pgfqpoint{0.933125in}{1.866462in}}% +\pgfpathlineto{\pgfqpoint{0.944121in}{1.846897in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{1.819337in}}% +\pgfpathlineto{\pgfqpoint{0.966115in}{1.773055in}}% +\pgfpathlineto{\pgfqpoint{0.977112in}{1.677277in}}% +\pgfpathlineto{\pgfqpoint{0.988108in}{1.772491in}}% +\pgfpathlineto{\pgfqpoint{0.999105in}{1.795146in}}% +\pgfpathlineto{\pgfqpoint{1.010102in}{1.804656in}}% +\pgfpathlineto{\pgfqpoint{1.021099in}{1.808065in}}% +\pgfpathlineto{\pgfqpoint{1.032095in}{1.807765in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{1.804863in}}% +\pgfpathlineto{\pgfqpoint{1.054089in}{1.799960in}}% +\pgfpathlineto{\pgfqpoint{1.065086in}{1.793414in}}% +\pgfpathlineto{\pgfqpoint{1.087079in}{1.776207in}}% +\pgfpathlineto{\pgfqpoint{1.109073in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{1.131066in}{1.727572in}}% +\pgfpathlineto{\pgfqpoint{1.153060in}{1.695933in}}% +\pgfpathlineto{\pgfqpoint{1.175053in}{1.657937in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{1.635611in}}% +\pgfpathlineto{\pgfqpoint{1.197047in}{1.609961in}}% +\pgfpathlineto{\pgfqpoint{1.208044in}{1.579060in}}% +\pgfpathlineto{\pgfqpoint{1.219040in}{1.537774in}}% +\pgfpathlineto{\pgfqpoint{1.230037in}{1.459404in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{1.464792in}}% +\pgfpathlineto{\pgfqpoint{1.252031in}{1.498674in}}% +\pgfpathlineto{\pgfqpoint{1.263027in}{1.506382in}}% +\pgfpathlineto{\pgfqpoint{1.274024in}{1.504866in}}% +\pgfpathlineto{\pgfqpoint{1.285021in}{1.498000in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{1.487126in}}% +\pgfpathlineto{\pgfqpoint{1.307014in}{1.472618in}}% +\pgfpathlineto{\pgfqpoint{1.318011in}{1.454196in}}% +\pgfpathlineto{\pgfqpoint{1.329008in}{1.430731in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{1.399086in}}% +\pgfpathlineto{\pgfqpoint{1.351002in}{1.347495in}}% +\pgfpathlineto{\pgfqpoint{1.361998in}{1.265490in}}% +\pgfpathlineto{\pgfqpoint{1.372995in}{1.344373in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{1.361705in}}% +\pgfpathlineto{\pgfqpoint{1.394989in}{1.366037in}}% +\pgfpathlineto{\pgfqpoint{1.405985in}{1.363791in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{1.357012in}}% +\pgfpathlineto{\pgfqpoint{1.427979in}{1.346409in}}% +\pgfpathlineto{\pgfqpoint{1.438976in}{1.331974in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{1.312993in}}% +\pgfpathlineto{\pgfqpoint{1.460969in}{1.287409in}}% +\pgfpathlineto{\pgfqpoint{1.471966in}{1.248790in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{1.148573in}}% +\pgfpathlineto{\pgfqpoint{1.493959in}{1.209188in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{1.239319in}}% +\pgfpathlineto{\pgfqpoint{1.515953in}{1.249420in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{1.251243in}}% +\pgfpathlineto{\pgfqpoint{1.537946in}{1.247907in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{1.240525in}}% +\pgfpathlineto{\pgfqpoint{1.559940in}{1.229352in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{1.213991in}}% +\pgfpathlineto{\pgfqpoint{1.581933in}{1.193070in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{1.162677in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{1.105820in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{1.077112in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{1.131745in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{1.148788in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{1.154816in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{1.154791in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{1.150389in}}% +\pgfpathlineto{\pgfqpoint{1.680904in}{1.142154in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{1.129957in}}% +\pgfpathlineto{\pgfqpoint{1.702898in}{1.112899in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.088457in}}% +\pgfpathlineto{\pgfqpoint{1.724891in}{1.048087in}}% +\pgfpathlineto{\pgfqpoint{1.733654in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.738164in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.746885in}{1.034412in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{1.061106in}}% +\pgfpathlineto{\pgfqpoint{1.768878in}{1.071868in}}% +\pgfpathlineto{\pgfqpoint{1.779875in}{1.075240in}}% +\pgfpathlineto{\pgfqpoint{1.790872in}{1.073743in}}% +\pgfpathlineto{\pgfqpoint{1.801869in}{1.068274in}}% +\pgfpathlineto{\pgfqpoint{1.812865in}{1.058962in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{1.045258in}}% +\pgfpathlineto{\pgfqpoint{1.834859in}{1.025486in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{0.994682in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{0.926267in}}% +\pgfpathlineto{\pgfqpoint{1.867849in}{0.941171in}}% +\pgfpathlineto{\pgfqpoint{1.878846in}{0.984201in}}% +\pgfpathlineto{\pgfqpoint{1.889843in}{1.000739in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{1.007779in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{1.009227in}}% +\pgfpathlineto{\pgfqpoint{1.922833in}{1.006453in}}% +\pgfpathlineto{\pgfqpoint{1.933830in}{0.999853in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{0.989168in}}% +\pgfpathlineto{\pgfqpoint{1.955823in}{0.973284in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{0.949076in}}% +\pgfpathlineto{\pgfqpoint{1.977817in}{0.904793in}}% +\pgfpathlineto{\pgfqpoint{1.988814in}{0.829975in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{0.915936in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{0.940242in}}% +\pgfpathlineto{\pgfqpoint{2.021804in}{0.951452in}}% +\pgfpathlineto{\pgfqpoint{2.032801in}{0.955995in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{0.955922in}}% +\pgfpathlineto{\pgfqpoint{2.054794in}{0.951945in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{0.944064in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{0.931567in}}% +\pgfpathlineto{\pgfqpoint{2.087784in}{0.912401in}}% +\pgfpathlineto{\pgfqpoint{2.098781in}{0.880139in}}% +\pgfpathlineto{\pgfqpoint{2.109778in}{0.786220in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{0.853078in}}% +\pgfpathlineto{\pgfqpoint{2.131771in}{0.889400in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{0.905643in}}% +\pgfpathlineto{\pgfqpoint{2.153765in}{0.913561in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{0.916275in}}% +\pgfpathlineto{\pgfqpoint{2.175759in}{0.914901in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{0.909698in}}% +\pgfpathlineto{\pgfqpoint{2.197752in}{0.900268in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{0.885243in}}% +\pgfpathlineto{\pgfqpoint{2.219746in}{0.860713in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{0.809687in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{0.786781in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{0.847188in}}% +\pgfpathlineto{\pgfqpoint{2.263733in}{0.869978in}}% +\pgfpathlineto{\pgfqpoint{2.274729in}{0.881729in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{0.887405in}}% +\pgfpathlineto{\pgfqpoint{2.296723in}{0.888682in}}% +\pgfpathlineto{\pgfqpoint{2.307720in}{0.886106in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{0.879552in}}% +\pgfpathlineto{\pgfqpoint{2.329713in}{0.868119in}}% +\pgfpathlineto{\pgfqpoint{2.340710in}{0.849287in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{0.814514in}}% +\pgfpathlineto{\pgfqpoint{2.356907in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.368519in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{0.811998in}}% +\pgfpathlineto{\pgfqpoint{2.384697in}{0.844256in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{0.860575in}}% +\pgfpathlineto{\pgfqpoint{2.406690in}{0.869498in}}% +\pgfpathlineto{\pgfqpoint{2.417687in}{0.873546in}}% +\pgfpathlineto{\pgfqpoint{2.428684in}{0.873620in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{0.869847in}}% +\pgfpathlineto{\pgfqpoint{2.450678in}{0.861682in}}% +\pgfpathlineto{\pgfqpoint{2.461674in}{0.847449in}}% +\pgfpathlineto{\pgfqpoint{2.472671in}{0.822186in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{0.759316in}}% +\pgfpathlineto{\pgfqpoint{2.494665in}{0.779770in}}% +\pgfpathlineto{\pgfqpoint{2.505661in}{0.828355in}}% +\pgfpathlineto{\pgfqpoint{2.516658in}{0.850457in}}% +\pgfpathlineto{\pgfqpoint{2.527655in}{0.863068in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{0.870099in}}% +\pgfpathlineto{\pgfqpoint{2.549648in}{0.872919in}}% +\pgfpathlineto{\pgfqpoint{2.560645in}{0.871928in}}% +\pgfpathlineto{\pgfqpoint{2.571642in}{0.866866in}}% +\pgfpathlineto{\pgfqpoint{2.582639in}{0.856622in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{0.838072in}}% +\pgfpathlineto{\pgfqpoint{2.604632in}{0.799467in}}% +\pgfpathlineto{\pgfqpoint{2.615629in}{0.730349in}}% +\pgfpathlineto{\pgfqpoint{2.626626in}{0.822032in}}% +\pgfpathlineto{\pgfqpoint{2.637622in}{0.852086in}}% +\pgfpathlineto{\pgfqpoint{2.648619in}{0.869070in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{0.879416in}}% +\pgfpathlineto{\pgfqpoint{2.670613in}{0.885177in}}% +\pgfpathlineto{\pgfqpoint{2.681609in}{0.887067in}}% +\pgfpathlineto{\pgfqpoint{2.692606in}{0.885087in}}% +\pgfpathlineto{\pgfqpoint{2.703603in}{0.878527in}}% +\pgfpathlineto{\pgfqpoint{2.714600in}{0.865338in}}% +\pgfpathlineto{\pgfqpoint{2.725596in}{0.839094in}}% +\pgfpathlineto{\pgfqpoint{2.736593in}{0.751238in}}% +\pgfpathlineto{\pgfqpoint{2.747590in}{0.824204in}}% +\pgfpathlineto{\pgfqpoint{2.758587in}{0.866682in}}% +\pgfpathlineto{\pgfqpoint{2.769584in}{0.889134in}}% +\pgfpathlineto{\pgfqpoint{2.780580in}{0.903315in}}% +\pgfpathlineto{\pgfqpoint{2.791577in}{0.912350in}}% +\pgfpathlineto{\pgfqpoint{2.802574in}{0.917358in}}% +\pgfpathlineto{\pgfqpoint{2.813571in}{0.918601in}}% +\pgfpathlineto{\pgfqpoint{2.824567in}{0.915685in}}% +\pgfpathlineto{\pgfqpoint{2.835564in}{0.907245in}}% +\pgfpathlineto{\pgfqpoint{2.846561in}{0.889376in}}% +\pgfpathlineto{\pgfqpoint{2.857558in}{0.845091in}}% +\pgfpathlineto{\pgfqpoint{2.868554in}{0.829010in}}% +\pgfpathlineto{\pgfqpoint{2.879551in}{0.896332in}}% +\pgfpathlineto{\pgfqpoint{2.890548in}{0.926132in}}% +\pgfpathlineto{\pgfqpoint{2.901545in}{0.944992in}}% +\pgfpathlineto{\pgfqpoint{2.912541in}{0.957884in}}% +\pgfpathlineto{\pgfqpoint{2.923538in}{0.966490in}}% +\pgfpathlineto{\pgfqpoint{2.934535in}{0.971364in}}% +\pgfpathlineto{\pgfqpoint{2.945532in}{0.972386in}}% +\pgfpathlineto{\pgfqpoint{2.956528in}{0.968667in}}% +\pgfpathlineto{\pgfqpoint{2.967525in}{0.957695in}}% +\pgfpathlineto{\pgfqpoint{2.978522in}{0.930937in}}% +\pgfpathlineto{\pgfqpoint{2.985152in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.993809in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.000515in}{0.944967in}}% +\pgfpathlineto{\pgfqpoint{3.011512in}{0.985782in}}% +\pgfpathlineto{\pgfqpoint{3.022509in}{1.010868in}}% +\pgfpathlineto{\pgfqpoint{3.033506in}{1.028785in}}% +\pgfpathlineto{\pgfqpoint{3.044503in}{1.042076in}}% +\pgfpathlineto{\pgfqpoint{3.055499in}{1.051663in}}% +\pgfpathlineto{\pgfqpoint{3.066496in}{1.057703in}}% +\pgfpathlineto{\pgfqpoint{3.077493in}{1.059680in}}% +\pgfpathlineto{\pgfqpoint{3.088490in}{1.055958in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{1.041616in}}% +\pgfpathlineto{\pgfqpoint{3.110483in}{0.990133in}}% +\pgfpathlineto{\pgfqpoint{3.121480in}{1.022509in}}% +\pgfpathlineto{\pgfqpoint{3.132477in}{1.083633in}}% +\pgfpathlineto{\pgfqpoint{3.143473in}{1.119001in}}% +\pgfpathlineto{\pgfqpoint{3.154470in}{1.145751in}}% +\pgfpathlineto{\pgfqpoint{3.165467in}{1.167995in}}% +\pgfpathlineto{\pgfqpoint{3.187460in}{1.204794in}}% +\pgfpathlineto{\pgfqpoint{3.209454in}{1.235403in}}% +\pgfpathlineto{\pgfqpoint{3.231447in}{1.262072in}}% +\pgfpathlineto{\pgfqpoint{3.253441in}{1.285925in}}% +\pgfpathlineto{\pgfqpoint{3.286431in}{1.317792in}}% +\pgfpathlineto{\pgfqpoint{3.319422in}{1.346086in}}% +\pgfpathlineto{\pgfqpoint{3.352412in}{1.371604in}}% +\pgfpathlineto{\pgfqpoint{3.396399in}{1.402189in}}% +\pgfpathlineto{\pgfqpoint{3.440386in}{1.429588in}}% +\pgfpathlineto{\pgfqpoint{3.484373in}{1.454371in}}% +\pgfpathlineto{\pgfqpoint{3.528360in}{1.476944in}}% +\pgfpathlineto{\pgfqpoint{3.583344in}{1.502518in}}% +\pgfpathlineto{\pgfqpoint{3.638328in}{1.525575in}}% +\pgfpathlineto{\pgfqpoint{3.693311in}{1.546462in}}% +\pgfpathlineto{\pgfqpoint{3.759292in}{1.569042in}}% +\pgfpathlineto{\pgfqpoint{3.825272in}{1.589262in}}% +\pgfpathlineto{\pgfqpoint{3.902250in}{1.610259in}}% +\pgfpathlineto{\pgfqpoint{3.979227in}{1.628821in}}% +\pgfpathlineto{\pgfqpoint{4.056204in}{1.645249in}}% +\pgfpathlineto{\pgfqpoint{4.144178in}{1.661731in}}% +\pgfpathlineto{\pgfqpoint{4.232153in}{1.676062in}}% +\pgfpathlineto{\pgfqpoint{4.331123in}{1.689932in}}% +\pgfpathlineto{\pgfqpoint{4.441091in}{1.702910in}}% +\pgfpathlineto{\pgfqpoint{4.551059in}{1.713673in}}% +\pgfpathlineto{\pgfqpoint{4.672023in}{1.723322in}}% +\pgfpathlineto{\pgfqpoint{4.803984in}{1.731635in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.735049in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.735049in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.672226in}{0.463273in}}{\pgfqpoint{4.197739in}{1.995057in}}% +\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% \pgfusepath{clip}% \pgfsetrectcap% \pgfsetroundjoin% @@ -2462,317 +2456,317 @@ \definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{1.776224in}}% -\pgfpathlineto{\pgfqpoint{0.682746in}{2.403219in}}% -\pgfpathlineto{\pgfqpoint{0.693267in}{2.420206in}}% -\pgfpathlineto{\pgfqpoint{0.703788in}{2.421228in}}% -\pgfpathlineto{\pgfqpoint{0.714308in}{2.414827in}}% -\pgfpathlineto{\pgfqpoint{0.724829in}{2.403528in}}% -\pgfpathlineto{\pgfqpoint{0.735350in}{2.388229in}}% -\pgfpathlineto{\pgfqpoint{0.745870in}{2.369060in}}% -\pgfpathlineto{\pgfqpoint{0.756391in}{2.345477in}}% -\pgfpathlineto{\pgfqpoint{0.766912in}{2.315804in}}% -\pgfpathlineto{\pgfqpoint{0.777432in}{2.275080in}}% -\pgfpathlineto{\pgfqpoint{0.787953in}{2.196735in}}% -\pgfpathlineto{\pgfqpoint{0.798474in}{2.201671in}}% -\pgfpathlineto{\pgfqpoint{0.808994in}{2.234740in}}% -\pgfpathlineto{\pgfqpoint{0.819515in}{2.241304in}}% -\pgfpathlineto{\pgfqpoint{0.830036in}{2.238361in}}% -\pgfpathlineto{\pgfqpoint{0.840556in}{2.229821in}}% -\pgfpathlineto{\pgfqpoint{0.851077in}{2.217055in}}% -\pgfpathlineto{\pgfqpoint{0.861598in}{2.200463in}}% -\pgfpathlineto{\pgfqpoint{0.872118in}{2.179786in}}% -\pgfpathlineto{\pgfqpoint{0.882639in}{2.153911in}}% -\pgfpathlineto{\pgfqpoint{0.893159in}{2.119711in}}% -\pgfpathlineto{\pgfqpoint{0.903680in}{2.065391in}}% -\pgfpathlineto{\pgfqpoint{0.914201in}{1.981333in}}% -\pgfpathlineto{\pgfqpoint{0.924721in}{2.056903in}}% -\pgfpathlineto{\pgfqpoint{0.935242in}{2.071266in}}% -\pgfpathlineto{\pgfqpoint{0.945763in}{2.072589in}}% -\pgfpathlineto{\pgfqpoint{0.956283in}{2.067287in}}% -\pgfpathlineto{\pgfqpoint{0.966804in}{2.057414in}}% -\pgfpathlineto{\pgfqpoint{0.977325in}{2.043691in}}% -\pgfpathlineto{\pgfqpoint{0.987845in}{2.026137in}}% -\pgfpathlineto{\pgfqpoint{0.998366in}{2.004074in}}% -\pgfpathlineto{\pgfqpoint{1.008887in}{1.975548in}}% -\pgfpathlineto{\pgfqpoint{1.019407in}{1.934531in}}% -\pgfpathlineto{\pgfqpoint{1.029928in}{1.840042in}}% -\pgfpathlineto{\pgfqpoint{1.040449in}{1.883070in}}% -\pgfpathlineto{\pgfqpoint{1.050969in}{1.911652in}}% -\pgfpathlineto{\pgfqpoint{1.061490in}{1.918892in}}% -\pgfpathlineto{\pgfqpoint{1.072010in}{1.917554in}}% -\pgfpathlineto{\pgfqpoint{1.082531in}{1.910889in}}% -\pgfpathlineto{\pgfqpoint{1.093052in}{1.899990in}}% -\pgfpathlineto{\pgfqpoint{1.103572in}{1.884984in}}% -\pgfpathlineto{\pgfqpoint{1.114093in}{1.865118in}}% -\pgfpathlineto{\pgfqpoint{1.124614in}{1.837985in}}% -\pgfpathlineto{\pgfqpoint{1.135134in}{1.795200in}}% -\pgfpathlineto{\pgfqpoint{1.145655in}{1.527200in}}% -\pgfpathlineto{\pgfqpoint{1.156176in}{1.776572in}}% -\pgfpathlineto{\pgfqpoint{1.166696in}{1.801850in}}% -\pgfpathlineto{\pgfqpoint{1.177217in}{1.811631in}}% -\pgfpathlineto{\pgfqpoint{1.187738in}{1.814694in}}% -\pgfpathlineto{\pgfqpoint{1.198258in}{1.813795in}}% -\pgfpathlineto{\pgfqpoint{1.208779in}{1.810166in}}% -\pgfpathlineto{\pgfqpoint{1.219300in}{1.804460in}}% -\pgfpathlineto{\pgfqpoint{1.229820in}{1.797064in}}% -\pgfpathlineto{\pgfqpoint{1.250862in}{1.778069in}}% -\pgfpathlineto{\pgfqpoint{1.271903in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{1.292944in}{1.725664in}}% -\pgfpathlineto{\pgfqpoint{1.313985in}{1.692083in}}% -\pgfpathlineto{\pgfqpoint{1.335027in}{1.652119in}}% -\pgfpathlineto{\pgfqpoint{1.345547in}{1.628800in}}% -\pgfpathlineto{\pgfqpoint{1.356068in}{1.602151in}}% -\pgfpathlineto{\pgfqpoint{1.366589in}{1.570246in}}% -\pgfpathlineto{\pgfqpoint{1.377109in}{1.527951in}}% -\pgfpathlineto{\pgfqpoint{1.387630in}{1.448568in}}% -\pgfpathlineto{\pgfqpoint{1.398151in}{1.452936in}}% -\pgfpathlineto{\pgfqpoint{1.408671in}{1.485794in}}% -\pgfpathlineto{\pgfqpoint{1.419192in}{1.492473in}}% -\pgfpathlineto{\pgfqpoint{1.429713in}{1.489923in}}% -\pgfpathlineto{\pgfqpoint{1.440233in}{1.482019in}}% -\pgfpathlineto{\pgfqpoint{1.450754in}{1.470100in}}% -\pgfpathlineto{\pgfqpoint{1.461274in}{1.454543in}}% -\pgfpathlineto{\pgfqpoint{1.471795in}{1.435068in}}% -\pgfpathlineto{\pgfqpoint{1.482316in}{1.410544in}}% -\pgfpathlineto{\pgfqpoint{1.492836in}{1.377833in}}% -\pgfpathlineto{\pgfqpoint{1.503357in}{1.325173in}}% -\pgfpathlineto{\pgfqpoint{1.513878in}{1.242092in}}% -\pgfpathlineto{\pgfqpoint{1.524398in}{1.319895in}}% -\pgfpathlineto{\pgfqpoint{1.534919in}{1.336141in}}% -\pgfpathlineto{\pgfqpoint{1.545440in}{1.339381in}}% -\pgfpathlineto{\pgfqpoint{1.555960in}{1.336037in}}% -\pgfpathlineto{\pgfqpoint{1.566481in}{1.328156in}}% -\pgfpathlineto{\pgfqpoint{1.577002in}{1.316443in}}% -\pgfpathlineto{\pgfqpoint{1.587522in}{1.300893in}}% -\pgfpathlineto{\pgfqpoint{1.598043in}{1.280791in}}% -\pgfpathlineto{\pgfqpoint{1.608564in}{1.254080in}}% -\pgfpathlineto{\pgfqpoint{1.619084in}{1.214327in}}% -\pgfpathlineto{\pgfqpoint{1.629605in}{1.112971in}}% -\pgfpathlineto{\pgfqpoint{1.640126in}{1.172439in}}% -\pgfpathlineto{\pgfqpoint{1.650646in}{1.201417in}}% -\pgfpathlineto{\pgfqpoint{1.661167in}{1.210359in}}% -\pgfpathlineto{\pgfqpoint{1.671687in}{1.211016in}}% -\pgfpathlineto{\pgfqpoint{1.682208in}{1.206507in}}% -\pgfpathlineto{\pgfqpoint{1.692729in}{1.197945in}}% -\pgfpathlineto{\pgfqpoint{1.703249in}{1.185586in}}% -\pgfpathlineto{\pgfqpoint{1.713770in}{1.169031in}}% -\pgfpathlineto{\pgfqpoint{1.724291in}{1.146909in}}% -\pgfpathlineto{\pgfqpoint{1.734811in}{1.115308in}}% -\pgfpathlineto{\pgfqpoint{1.745332in}{1.057236in}}% -\pgfpathlineto{\pgfqpoint{1.755853in}{1.027305in}}% -\pgfpathlineto{\pgfqpoint{1.766373in}{1.080708in}}% -\pgfpathlineto{\pgfqpoint{1.776894in}{1.096513in}}% -\pgfpathlineto{\pgfqpoint{1.787415in}{1.101295in}}% -\pgfpathlineto{\pgfqpoint{1.797935in}{1.100016in}}% -\pgfpathlineto{\pgfqpoint{1.808456in}{1.094352in}}% -\pgfpathlineto{\pgfqpoint{1.818977in}{1.084847in}}% -\pgfpathlineto{\pgfqpoint{1.829497in}{1.071373in}}% -\pgfpathlineto{\pgfqpoint{1.840018in}{1.053029in}}% -\pgfpathlineto{\pgfqpoint{1.850538in}{1.027292in}}% -\pgfpathlineto{\pgfqpoint{1.861059in}{0.985620in}}% -\pgfpathlineto{\pgfqpoint{1.868547in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.874680in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.882100in}{0.969314in}}% -\pgfpathlineto{\pgfqpoint{1.892621in}{0.994678in}}% -\pgfpathlineto{\pgfqpoint{1.903142in}{1.004102in}}% -\pgfpathlineto{\pgfqpoint{1.913662in}{1.006127in}}% -\pgfpathlineto{\pgfqpoint{1.924183in}{1.003274in}}% -\pgfpathlineto{\pgfqpoint{1.934704in}{0.996440in}}% -\pgfpathlineto{\pgfqpoint{1.945224in}{0.985753in}}% -\pgfpathlineto{\pgfqpoint{1.955745in}{0.970664in}}% -\pgfpathlineto{\pgfqpoint{1.966266in}{0.949498in}}% -\pgfpathlineto{\pgfqpoint{1.976786in}{0.917289in}}% -\pgfpathlineto{\pgfqpoint{1.987307in}{0.847460in}}% -\pgfpathlineto{\pgfqpoint{1.997828in}{0.860941in}}% -\pgfpathlineto{\pgfqpoint{2.008348in}{0.902536in}}% -\pgfpathlineto{\pgfqpoint{2.018869in}{0.917629in}}% -\pgfpathlineto{\pgfqpoint{2.029390in}{0.923213in}}% -\pgfpathlineto{\pgfqpoint{2.039910in}{0.923195in}}% -\pgfpathlineto{\pgfqpoint{2.050431in}{0.918943in}}% -\pgfpathlineto{\pgfqpoint{2.060951in}{0.910855in}}% -\pgfpathlineto{\pgfqpoint{2.071472in}{0.898671in}}% -\pgfpathlineto{\pgfqpoint{2.081993in}{0.881275in}}% -\pgfpathlineto{\pgfqpoint{2.092513in}{0.855545in}}% -\pgfpathlineto{\pgfqpoint{2.103034in}{0.809727in}}% -\pgfpathlineto{\pgfqpoint{2.113555in}{0.733363in}}% -\pgfpathlineto{\pgfqpoint{2.124075in}{0.817765in}}% -\pgfpathlineto{\pgfqpoint{2.134596in}{0.840500in}}% -\pgfpathlineto{\pgfqpoint{2.145117in}{0.850127in}}% -\pgfpathlineto{\pgfqpoint{2.155637in}{0.853073in}}% -\pgfpathlineto{\pgfqpoint{2.166158in}{0.851391in}}% -\pgfpathlineto{\pgfqpoint{2.176679in}{0.845792in}}% -\pgfpathlineto{\pgfqpoint{2.187199in}{0.836275in}}% -\pgfpathlineto{\pgfqpoint{2.197720in}{0.822128in}}% -\pgfpathlineto{\pgfqpoint{2.208241in}{0.801300in}}% -\pgfpathlineto{\pgfqpoint{2.218761in}{0.767360in}}% -\pgfpathlineto{\pgfqpoint{2.229282in}{0.671750in}}% -\pgfpathlineto{\pgfqpoint{2.239802in}{0.736902in}}% -\pgfpathlineto{\pgfqpoint{2.250323in}{0.771502in}}% -\pgfpathlineto{\pgfqpoint{2.260844in}{0.786009in}}% -\pgfpathlineto{\pgfqpoint{2.271364in}{0.792175in}}% -\pgfpathlineto{\pgfqpoint{2.281885in}{0.793122in}}% -\pgfpathlineto{\pgfqpoint{2.292406in}{0.789965in}}% -\pgfpathlineto{\pgfqpoint{2.302926in}{0.782963in}}% -\pgfpathlineto{\pgfqpoint{2.313447in}{0.771717in}}% -\pgfpathlineto{\pgfqpoint{2.323968in}{0.754859in}}% -\pgfpathlineto{\pgfqpoint{2.334488in}{0.728480in}}% -\pgfpathlineto{\pgfqpoint{2.345009in}{0.675587in}}% -\pgfpathlineto{\pgfqpoint{2.355530in}{0.650795in}}% -\pgfpathlineto{\pgfqpoint{2.366050in}{0.709299in}}% -\pgfpathlineto{\pgfqpoint{2.376571in}{0.730167in}}% -\pgfpathlineto{\pgfqpoint{2.387092in}{0.739978in}}% -\pgfpathlineto{\pgfqpoint{2.397612in}{0.743693in}}% -\pgfpathlineto{\pgfqpoint{2.408133in}{0.742990in}}% -\pgfpathlineto{\pgfqpoint{2.418654in}{0.738415in}}% -\pgfpathlineto{\pgfqpoint{2.429174in}{0.729840in}}% -\pgfpathlineto{\pgfqpoint{2.439695in}{0.716366in}}% -\pgfpathlineto{\pgfqpoint{2.450215in}{0.695472in}}% -\pgfpathlineto{\pgfqpoint{2.460736in}{0.658614in}}% -\pgfpathlineto{\pgfqpoint{2.463586in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.478996in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.481777in}{0.651862in}}% -\pgfpathlineto{\pgfqpoint{2.492298in}{0.681968in}}% -\pgfpathlineto{\pgfqpoint{2.502819in}{0.696110in}}% -\pgfpathlineto{\pgfqpoint{2.513339in}{0.702832in}}% -\pgfpathlineto{\pgfqpoint{2.523860in}{0.704654in}}% -\pgfpathlineto{\pgfqpoint{2.534381in}{0.702477in}}% -\pgfpathlineto{\pgfqpoint{2.544901in}{0.696426in}}% -\pgfpathlineto{\pgfqpoint{2.555422in}{0.685957in}}% -\pgfpathlineto{\pgfqpoint{2.565943in}{0.669393in}}% -\pgfpathlineto{\pgfqpoint{2.576463in}{0.641770in}}% -\pgfpathlineto{\pgfqpoint{2.586984in}{0.576511in}}% -\pgfpathlineto{\pgfqpoint{2.597505in}{0.594548in}}% -\pgfpathlineto{\pgfqpoint{2.608025in}{0.640685in}}% -\pgfpathlineto{\pgfqpoint{2.618546in}{0.660307in}}% -\pgfpathlineto{\pgfqpoint{2.629066in}{0.670408in}}% -\pgfpathlineto{\pgfqpoint{2.639587in}{0.674895in}}% -\pgfpathlineto{\pgfqpoint{2.650108in}{0.675139in}}% -\pgfpathlineto{\pgfqpoint{2.660628in}{0.671536in}}% -\pgfpathlineto{\pgfqpoint{2.671149in}{0.663828in}}% -\pgfpathlineto{\pgfqpoint{2.681670in}{0.650899in}}% -\pgfpathlineto{\pgfqpoint{2.692190in}{0.629629in}}% -\pgfpathlineto{\pgfqpoint{2.702711in}{0.588265in}}% -\pgfpathlineto{\pgfqpoint{2.713232in}{0.516347in}}% -\pgfpathlineto{\pgfqpoint{2.723752in}{0.605191in}}% -\pgfpathlineto{\pgfqpoint{2.734273in}{0.632363in}}% -\pgfpathlineto{\pgfqpoint{2.744794in}{0.646422in}}% -\pgfpathlineto{\pgfqpoint{2.755314in}{0.653798in}}% -\pgfpathlineto{\pgfqpoint{2.765835in}{0.656543in}}% -\pgfpathlineto{\pgfqpoint{2.776356in}{0.655368in}}% -\pgfpathlineto{\pgfqpoint{2.786876in}{0.650275in}}% -\pgfpathlineto{\pgfqpoint{2.797397in}{0.640551in}}% -\pgfpathlineto{\pgfqpoint{2.807918in}{0.624146in}}% -\pgfpathlineto{\pgfqpoint{2.818438in}{0.594630in}}% -\pgfpathlineto{\pgfqpoint{2.828959in}{0.503446in}}% -\pgfpathlineto{\pgfqpoint{2.839479in}{0.573026in}}% -\pgfpathlineto{\pgfqpoint{2.850000in}{0.612056in}}% -\pgfpathlineto{\pgfqpoint{2.860521in}{0.630997in}}% -\pgfpathlineto{\pgfqpoint{2.871041in}{0.641602in}}% -\pgfpathlineto{\pgfqpoint{2.881562in}{0.646994in}}% -\pgfpathlineto{\pgfqpoint{2.892083in}{0.648287in}}% -\pgfpathlineto{\pgfqpoint{2.902603in}{0.645741in}}% -\pgfpathlineto{\pgfqpoint{2.913124in}{0.638959in}}% -\pgfpathlineto{\pgfqpoint{2.923645in}{0.626572in}}% -\pgfpathlineto{\pgfqpoint{2.934165in}{0.604673in}}% -\pgfpathlineto{\pgfqpoint{2.944686in}{0.556271in}}% -\pgfpathlineto{\pgfqpoint{2.955207in}{0.535980in}}% -\pgfpathlineto{\pgfqpoint{2.965727in}{0.598993in}}% -\pgfpathlineto{\pgfqpoint{2.976248in}{0.624386in}}% -\pgfpathlineto{\pgfqpoint{2.986769in}{0.638733in}}% -\pgfpathlineto{\pgfqpoint{2.997289in}{0.646999in}}% -\pgfpathlineto{\pgfqpoint{3.007810in}{0.650860in}}% -\pgfpathlineto{\pgfqpoint{3.018330in}{0.650865in}}% -\pgfpathlineto{\pgfqpoint{3.028851in}{0.646885in}}% -\pgfpathlineto{\pgfqpoint{3.039372in}{0.638024in}}% -\pgfpathlineto{\pgfqpoint{3.049892in}{0.621760in}}% -\pgfpathlineto{\pgfqpoint{3.060413in}{0.589552in}}% -\pgfpathlineto{\pgfqpoint{3.060425in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.081442in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.081454in}{0.592162in}}% -\pgfpathlineto{\pgfqpoint{3.091975in}{0.626979in}}% -\pgfpathlineto{\pgfqpoint{3.102496in}{0.645857in}}% -\pgfpathlineto{\pgfqpoint{3.113016in}{0.657338in}}% -\pgfpathlineto{\pgfqpoint{3.123537in}{0.663945in}}% -\pgfpathlineto{\pgfqpoint{3.134058in}{0.666578in}}% -\pgfpathlineto{\pgfqpoint{3.144578in}{0.665366in}}% -\pgfpathlineto{\pgfqpoint{3.155099in}{0.659763in}}% -\pgfpathlineto{\pgfqpoint{3.165620in}{0.648096in}}% -\pgfpathlineto{\pgfqpoint{3.176140in}{0.625402in}}% -\pgfpathlineto{\pgfqpoint{3.186661in}{0.565104in}}% -\pgfpathlineto{\pgfqpoint{3.197182in}{0.588134in}}% -\pgfpathlineto{\pgfqpoint{3.207702in}{0.639300in}}% -\pgfpathlineto{\pgfqpoint{3.218223in}{0.663990in}}% -\pgfpathlineto{\pgfqpoint{3.228743in}{0.679196in}}% -\pgfpathlineto{\pgfqpoint{3.239264in}{0.688829in}}% -\pgfpathlineto{\pgfqpoint{3.249785in}{0.694259in}}% -\pgfpathlineto{\pgfqpoint{3.260305in}{0.695887in}}% -\pgfpathlineto{\pgfqpoint{3.270826in}{0.693455in}}% -\pgfpathlineto{\pgfqpoint{3.281347in}{0.685850in}}% -\pgfpathlineto{\pgfqpoint{3.291867in}{0.669953in}}% -\pgfpathlineto{\pgfqpoint{3.302388in}{0.634013in}}% -\pgfpathlineto{\pgfqpoint{3.312909in}{0.567577in}}% -\pgfpathlineto{\pgfqpoint{3.323429in}{0.661953in}}% -\pgfpathlineto{\pgfqpoint{3.333950in}{0.694719in}}% -\pgfpathlineto{\pgfqpoint{3.344471in}{0.714432in}}% -\pgfpathlineto{\pgfqpoint{3.354991in}{0.727527in}}% -\pgfpathlineto{\pgfqpoint{3.365512in}{0.736057in}}% -\pgfpathlineto{\pgfqpoint{3.376033in}{0.740739in}}% -\pgfpathlineto{\pgfqpoint{3.386553in}{0.741575in}}% -\pgfpathlineto{\pgfqpoint{3.397074in}{0.737857in}}% -\pgfpathlineto{\pgfqpoint{3.407594in}{0.727538in}}% -\pgfpathlineto{\pgfqpoint{3.418115in}{0.704194in}}% -\pgfpathlineto{\pgfqpoint{3.428636in}{0.619270in}}% -\pgfpathlineto{\pgfqpoint{3.439156in}{0.695202in}}% -\pgfpathlineto{\pgfqpoint{3.449677in}{0.740685in}}% -\pgfpathlineto{\pgfqpoint{3.460198in}{0.766182in}}% -\pgfpathlineto{\pgfqpoint{3.470718in}{0.783452in}}% -\pgfpathlineto{\pgfqpoint{3.481239in}{0.795624in}}% -\pgfpathlineto{\pgfqpoint{3.491760in}{0.803819in}}% -\pgfpathlineto{\pgfqpoint{3.502280in}{0.808305in}}% -\pgfpathlineto{\pgfqpoint{3.512801in}{0.808692in}}% -\pgfpathlineto{\pgfqpoint{3.523322in}{0.803621in}}% -\pgfpathlineto{\pgfqpoint{3.533842in}{0.789193in}}% -\pgfpathlineto{\pgfqpoint{3.544363in}{0.748427in}}% -\pgfpathlineto{\pgfqpoint{3.554884in}{0.735950in}}% -\pgfpathlineto{\pgfqpoint{3.565404in}{0.806971in}}% -\pgfpathlineto{\pgfqpoint{3.575925in}{0.840575in}}% -\pgfpathlineto{\pgfqpoint{3.586446in}{0.863355in}}% -\pgfpathlineto{\pgfqpoint{3.596966in}{0.880294in}}% -\pgfpathlineto{\pgfqpoint{3.607487in}{0.893092in}}% -\pgfpathlineto{\pgfqpoint{3.618007in}{0.902319in}}% -\pgfpathlineto{\pgfqpoint{3.628528in}{0.907878in}}% -\pgfpathlineto{\pgfqpoint{3.639049in}{0.908904in}}% -\pgfpathlineto{\pgfqpoint{3.649569in}{0.902917in}}% -\pgfpathlineto{\pgfqpoint{3.660090in}{0.881422in}}% -\pgfpathlineto{\pgfqpoint{3.666381in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.674695in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.681131in}{0.907017in}}% -\pgfpathlineto{\pgfqpoint{3.691652in}{0.954276in}}% -\pgfpathlineto{\pgfqpoint{3.702173in}{0.986379in}}% -\pgfpathlineto{\pgfqpoint{3.712693in}{1.012034in}}% -\pgfpathlineto{\pgfqpoint{3.733735in}{1.053510in}}% -\pgfpathlineto{\pgfqpoint{3.754776in}{1.087620in}}% -\pgfpathlineto{\pgfqpoint{3.775817in}{1.117269in}}% -\pgfpathlineto{\pgfqpoint{3.796858in}{1.143814in}}% -\pgfpathlineto{\pgfqpoint{3.828420in}{1.179394in}}% -\pgfpathlineto{\pgfqpoint{3.859982in}{1.211152in}}% -\pgfpathlineto{\pgfqpoint{3.891544in}{1.239965in}}% -\pgfpathlineto{\pgfqpoint{3.933627in}{1.274752in}}% -\pgfpathlineto{\pgfqpoint{3.975710in}{1.306188in}}% -\pgfpathlineto{\pgfqpoint{4.017792in}{1.334872in}}% -\pgfpathlineto{\pgfqpoint{4.059875in}{1.361236in}}% -\pgfpathlineto{\pgfqpoint{4.112478in}{1.391409in}}% -\pgfpathlineto{\pgfqpoint{4.165081in}{1.418930in}}% -\pgfpathlineto{\pgfqpoint{4.217684in}{1.444160in}}% -\pgfpathlineto{\pgfqpoint{4.280808in}{1.471806in}}% -\pgfpathlineto{\pgfqpoint{4.343932in}{1.496941in}}% -\pgfpathlineto{\pgfqpoint{4.407056in}{1.519873in}}% -\pgfpathlineto{\pgfqpoint{4.480701in}{1.544168in}}% -\pgfpathlineto{\pgfqpoint{4.554345in}{1.566117in}}% -\pgfpathlineto{\pgfqpoint{4.638510in}{1.588663in}}% -\pgfpathlineto{\pgfqpoint{4.722676in}{1.608807in}}% -\pgfpathlineto{\pgfqpoint{4.806841in}{1.626816in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{1.776224in}}% +\pgfpathlineto{\pgfqpoint{0.493254in}{2.403219in}}% +\pgfpathlineto{\pgfqpoint{0.504251in}{2.420206in}}% +\pgfpathlineto{\pgfqpoint{0.515248in}{2.421228in}}% +\pgfpathlineto{\pgfqpoint{0.526245in}{2.414827in}}% +\pgfpathlineto{\pgfqpoint{0.537241in}{2.403528in}}% +\pgfpathlineto{\pgfqpoint{0.548238in}{2.388229in}}% +\pgfpathlineto{\pgfqpoint{0.559235in}{2.369060in}}% +\pgfpathlineto{\pgfqpoint{0.570232in}{2.345477in}}% +\pgfpathlineto{\pgfqpoint{0.581228in}{2.315804in}}% +\pgfpathlineto{\pgfqpoint{0.592225in}{2.275080in}}% +\pgfpathlineto{\pgfqpoint{0.603222in}{2.196735in}}% +\pgfpathlineto{\pgfqpoint{0.614219in}{2.201671in}}% +\pgfpathlineto{\pgfqpoint{0.625215in}{2.234740in}}% +\pgfpathlineto{\pgfqpoint{0.636212in}{2.241304in}}% +\pgfpathlineto{\pgfqpoint{0.647209in}{2.238361in}}% +\pgfpathlineto{\pgfqpoint{0.658206in}{2.229821in}}% +\pgfpathlineto{\pgfqpoint{0.669202in}{2.217055in}}% +\pgfpathlineto{\pgfqpoint{0.680199in}{2.200463in}}% +\pgfpathlineto{\pgfqpoint{0.691196in}{2.179786in}}% +\pgfpathlineto{\pgfqpoint{0.702193in}{2.153911in}}% +\pgfpathlineto{\pgfqpoint{0.713189in}{2.119711in}}% +\pgfpathlineto{\pgfqpoint{0.724186in}{2.065391in}}% +\pgfpathlineto{\pgfqpoint{0.735183in}{1.981333in}}% +\pgfpathlineto{\pgfqpoint{0.746180in}{2.056903in}}% +\pgfpathlineto{\pgfqpoint{0.757177in}{2.071266in}}% +\pgfpathlineto{\pgfqpoint{0.768173in}{2.072589in}}% +\pgfpathlineto{\pgfqpoint{0.779170in}{2.067287in}}% +\pgfpathlineto{\pgfqpoint{0.790167in}{2.057414in}}% +\pgfpathlineto{\pgfqpoint{0.801164in}{2.043691in}}% +\pgfpathlineto{\pgfqpoint{0.812160in}{2.026137in}}% +\pgfpathlineto{\pgfqpoint{0.823157in}{2.004074in}}% +\pgfpathlineto{\pgfqpoint{0.834154in}{1.975548in}}% +\pgfpathlineto{\pgfqpoint{0.845151in}{1.934531in}}% +\pgfpathlineto{\pgfqpoint{0.856147in}{1.840042in}}% +\pgfpathlineto{\pgfqpoint{0.867144in}{1.883070in}}% +\pgfpathlineto{\pgfqpoint{0.878141in}{1.911652in}}% +\pgfpathlineto{\pgfqpoint{0.889138in}{1.918892in}}% +\pgfpathlineto{\pgfqpoint{0.900134in}{1.917554in}}% +\pgfpathlineto{\pgfqpoint{0.911131in}{1.910889in}}% +\pgfpathlineto{\pgfqpoint{0.922128in}{1.899990in}}% +\pgfpathlineto{\pgfqpoint{0.933125in}{1.884984in}}% +\pgfpathlineto{\pgfqpoint{0.944121in}{1.865118in}}% +\pgfpathlineto{\pgfqpoint{0.955118in}{1.837985in}}% +\pgfpathlineto{\pgfqpoint{0.966115in}{1.795200in}}% +\pgfpathlineto{\pgfqpoint{0.977112in}{1.527200in}}% +\pgfpathlineto{\pgfqpoint{0.988108in}{1.776572in}}% +\pgfpathlineto{\pgfqpoint{0.999105in}{1.801850in}}% +\pgfpathlineto{\pgfqpoint{1.010102in}{1.811631in}}% +\pgfpathlineto{\pgfqpoint{1.021099in}{1.814694in}}% +\pgfpathlineto{\pgfqpoint{1.032095in}{1.813795in}}% +\pgfpathlineto{\pgfqpoint{1.043092in}{1.810166in}}% +\pgfpathlineto{\pgfqpoint{1.054089in}{1.804460in}}% +\pgfpathlineto{\pgfqpoint{1.065086in}{1.797064in}}% +\pgfpathlineto{\pgfqpoint{1.087079in}{1.778069in}}% +\pgfpathlineto{\pgfqpoint{1.109073in}{1.754192in}}% +\pgfpathlineto{\pgfqpoint{1.131066in}{1.725664in}}% +\pgfpathlineto{\pgfqpoint{1.153060in}{1.692083in}}% +\pgfpathlineto{\pgfqpoint{1.175053in}{1.652119in}}% +\pgfpathlineto{\pgfqpoint{1.186050in}{1.628800in}}% +\pgfpathlineto{\pgfqpoint{1.197047in}{1.602151in}}% +\pgfpathlineto{\pgfqpoint{1.208044in}{1.570246in}}% +\pgfpathlineto{\pgfqpoint{1.219040in}{1.527951in}}% +\pgfpathlineto{\pgfqpoint{1.230037in}{1.448568in}}% +\pgfpathlineto{\pgfqpoint{1.241034in}{1.452936in}}% +\pgfpathlineto{\pgfqpoint{1.252031in}{1.485794in}}% +\pgfpathlineto{\pgfqpoint{1.263027in}{1.492473in}}% +\pgfpathlineto{\pgfqpoint{1.274024in}{1.489923in}}% +\pgfpathlineto{\pgfqpoint{1.285021in}{1.482019in}}% +\pgfpathlineto{\pgfqpoint{1.296018in}{1.470100in}}% +\pgfpathlineto{\pgfqpoint{1.307014in}{1.454543in}}% +\pgfpathlineto{\pgfqpoint{1.318011in}{1.435068in}}% +\pgfpathlineto{\pgfqpoint{1.329008in}{1.410544in}}% +\pgfpathlineto{\pgfqpoint{1.340005in}{1.377833in}}% +\pgfpathlineto{\pgfqpoint{1.351002in}{1.325173in}}% +\pgfpathlineto{\pgfqpoint{1.361998in}{1.242092in}}% +\pgfpathlineto{\pgfqpoint{1.372995in}{1.319895in}}% +\pgfpathlineto{\pgfqpoint{1.383992in}{1.336141in}}% +\pgfpathlineto{\pgfqpoint{1.394989in}{1.339381in}}% +\pgfpathlineto{\pgfqpoint{1.405985in}{1.336037in}}% +\pgfpathlineto{\pgfqpoint{1.416982in}{1.328156in}}% +\pgfpathlineto{\pgfqpoint{1.427979in}{1.316443in}}% +\pgfpathlineto{\pgfqpoint{1.438976in}{1.300893in}}% +\pgfpathlineto{\pgfqpoint{1.449972in}{1.280791in}}% +\pgfpathlineto{\pgfqpoint{1.460969in}{1.254080in}}% +\pgfpathlineto{\pgfqpoint{1.471966in}{1.214327in}}% +\pgfpathlineto{\pgfqpoint{1.482963in}{1.112971in}}% +\pgfpathlineto{\pgfqpoint{1.493959in}{1.172439in}}% +\pgfpathlineto{\pgfqpoint{1.504956in}{1.201417in}}% +\pgfpathlineto{\pgfqpoint{1.515953in}{1.210359in}}% +\pgfpathlineto{\pgfqpoint{1.526950in}{1.211016in}}% +\pgfpathlineto{\pgfqpoint{1.537946in}{1.206507in}}% +\pgfpathlineto{\pgfqpoint{1.548943in}{1.197945in}}% +\pgfpathlineto{\pgfqpoint{1.559940in}{1.185586in}}% +\pgfpathlineto{\pgfqpoint{1.570937in}{1.169031in}}% +\pgfpathlineto{\pgfqpoint{1.581933in}{1.146909in}}% +\pgfpathlineto{\pgfqpoint{1.592930in}{1.115308in}}% +\pgfpathlineto{\pgfqpoint{1.603927in}{1.057236in}}% +\pgfpathlineto{\pgfqpoint{1.614924in}{1.027305in}}% +\pgfpathlineto{\pgfqpoint{1.625921in}{1.080708in}}% +\pgfpathlineto{\pgfqpoint{1.636917in}{1.096513in}}% +\pgfpathlineto{\pgfqpoint{1.647914in}{1.101295in}}% +\pgfpathlineto{\pgfqpoint{1.658911in}{1.100016in}}% +\pgfpathlineto{\pgfqpoint{1.669908in}{1.094352in}}% +\pgfpathlineto{\pgfqpoint{1.680904in}{1.084847in}}% +\pgfpathlineto{\pgfqpoint{1.691901in}{1.071373in}}% +\pgfpathlineto{\pgfqpoint{1.702898in}{1.053029in}}% +\pgfpathlineto{\pgfqpoint{1.713895in}{1.027292in}}% +\pgfpathlineto{\pgfqpoint{1.724891in}{0.985620in}}% +\pgfpathlineto{\pgfqpoint{1.732718in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{1.739129in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{1.746885in}{0.969314in}}% +\pgfpathlineto{\pgfqpoint{1.757882in}{0.994678in}}% +\pgfpathlineto{\pgfqpoint{1.768878in}{1.004102in}}% +\pgfpathlineto{\pgfqpoint{1.779875in}{1.006127in}}% +\pgfpathlineto{\pgfqpoint{1.790872in}{1.003274in}}% +\pgfpathlineto{\pgfqpoint{1.801869in}{0.996440in}}% +\pgfpathlineto{\pgfqpoint{1.812865in}{0.985753in}}% +\pgfpathlineto{\pgfqpoint{1.823862in}{0.970664in}}% +\pgfpathlineto{\pgfqpoint{1.834859in}{0.949498in}}% +\pgfpathlineto{\pgfqpoint{1.845856in}{0.917289in}}% +\pgfpathlineto{\pgfqpoint{1.856852in}{0.847460in}}% +\pgfpathlineto{\pgfqpoint{1.867849in}{0.860941in}}% +\pgfpathlineto{\pgfqpoint{1.878846in}{0.902536in}}% +\pgfpathlineto{\pgfqpoint{1.889843in}{0.917629in}}% +\pgfpathlineto{\pgfqpoint{1.900840in}{0.923213in}}% +\pgfpathlineto{\pgfqpoint{1.911836in}{0.923195in}}% +\pgfpathlineto{\pgfqpoint{1.922833in}{0.918943in}}% +\pgfpathlineto{\pgfqpoint{1.933830in}{0.910855in}}% +\pgfpathlineto{\pgfqpoint{1.944827in}{0.898671in}}% +\pgfpathlineto{\pgfqpoint{1.955823in}{0.881275in}}% +\pgfpathlineto{\pgfqpoint{1.966820in}{0.855545in}}% +\pgfpathlineto{\pgfqpoint{1.977817in}{0.809727in}}% +\pgfpathlineto{\pgfqpoint{1.988814in}{0.733363in}}% +\pgfpathlineto{\pgfqpoint{1.999810in}{0.817765in}}% +\pgfpathlineto{\pgfqpoint{2.010807in}{0.840500in}}% +\pgfpathlineto{\pgfqpoint{2.021804in}{0.850127in}}% +\pgfpathlineto{\pgfqpoint{2.032801in}{0.853073in}}% +\pgfpathlineto{\pgfqpoint{2.043797in}{0.851391in}}% +\pgfpathlineto{\pgfqpoint{2.054794in}{0.845792in}}% +\pgfpathlineto{\pgfqpoint{2.065791in}{0.836275in}}% +\pgfpathlineto{\pgfqpoint{2.076788in}{0.822128in}}% +\pgfpathlineto{\pgfqpoint{2.087784in}{0.801300in}}% +\pgfpathlineto{\pgfqpoint{2.098781in}{0.767360in}}% +\pgfpathlineto{\pgfqpoint{2.109778in}{0.671750in}}% +\pgfpathlineto{\pgfqpoint{2.120775in}{0.736902in}}% +\pgfpathlineto{\pgfqpoint{2.131771in}{0.771502in}}% +\pgfpathlineto{\pgfqpoint{2.142768in}{0.786009in}}% +\pgfpathlineto{\pgfqpoint{2.153765in}{0.792175in}}% +\pgfpathlineto{\pgfqpoint{2.164762in}{0.793122in}}% +\pgfpathlineto{\pgfqpoint{2.175759in}{0.789965in}}% +\pgfpathlineto{\pgfqpoint{2.186755in}{0.782963in}}% +\pgfpathlineto{\pgfqpoint{2.197752in}{0.771717in}}% +\pgfpathlineto{\pgfqpoint{2.208749in}{0.754859in}}% +\pgfpathlineto{\pgfqpoint{2.219746in}{0.728480in}}% +\pgfpathlineto{\pgfqpoint{2.230742in}{0.675587in}}% +\pgfpathlineto{\pgfqpoint{2.241739in}{0.650795in}}% +\pgfpathlineto{\pgfqpoint{2.252736in}{0.709299in}}% +\pgfpathlineto{\pgfqpoint{2.263733in}{0.730167in}}% +\pgfpathlineto{\pgfqpoint{2.274729in}{0.739978in}}% +\pgfpathlineto{\pgfqpoint{2.285726in}{0.743693in}}% +\pgfpathlineto{\pgfqpoint{2.296723in}{0.742990in}}% +\pgfpathlineto{\pgfqpoint{2.307720in}{0.738415in}}% +\pgfpathlineto{\pgfqpoint{2.318716in}{0.729840in}}% +\pgfpathlineto{\pgfqpoint{2.329713in}{0.716366in}}% +\pgfpathlineto{\pgfqpoint{2.340710in}{0.695472in}}% +\pgfpathlineto{\pgfqpoint{2.351707in}{0.658614in}}% +\pgfpathlineto{\pgfqpoint{2.354686in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{2.370793in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{2.373700in}{0.651862in}}% +\pgfpathlineto{\pgfqpoint{2.384697in}{0.681968in}}% +\pgfpathlineto{\pgfqpoint{2.395694in}{0.696110in}}% +\pgfpathlineto{\pgfqpoint{2.406690in}{0.702832in}}% +\pgfpathlineto{\pgfqpoint{2.417687in}{0.704654in}}% +\pgfpathlineto{\pgfqpoint{2.428684in}{0.702477in}}% +\pgfpathlineto{\pgfqpoint{2.439681in}{0.696426in}}% +\pgfpathlineto{\pgfqpoint{2.450678in}{0.685957in}}% +\pgfpathlineto{\pgfqpoint{2.461674in}{0.669393in}}% +\pgfpathlineto{\pgfqpoint{2.472671in}{0.641770in}}% +\pgfpathlineto{\pgfqpoint{2.483668in}{0.576511in}}% +\pgfpathlineto{\pgfqpoint{2.494665in}{0.594548in}}% +\pgfpathlineto{\pgfqpoint{2.505661in}{0.640685in}}% +\pgfpathlineto{\pgfqpoint{2.516658in}{0.660307in}}% +\pgfpathlineto{\pgfqpoint{2.527655in}{0.670408in}}% +\pgfpathlineto{\pgfqpoint{2.538652in}{0.674895in}}% +\pgfpathlineto{\pgfqpoint{2.549648in}{0.675139in}}% +\pgfpathlineto{\pgfqpoint{2.560645in}{0.671536in}}% +\pgfpathlineto{\pgfqpoint{2.571642in}{0.663828in}}% +\pgfpathlineto{\pgfqpoint{2.582639in}{0.650899in}}% +\pgfpathlineto{\pgfqpoint{2.593635in}{0.629629in}}% +\pgfpathlineto{\pgfqpoint{2.604632in}{0.588265in}}% +\pgfpathlineto{\pgfqpoint{2.615629in}{0.516347in}}% +\pgfpathlineto{\pgfqpoint{2.626626in}{0.605191in}}% +\pgfpathlineto{\pgfqpoint{2.637622in}{0.632363in}}% +\pgfpathlineto{\pgfqpoint{2.648619in}{0.646422in}}% +\pgfpathlineto{\pgfqpoint{2.659616in}{0.653798in}}% +\pgfpathlineto{\pgfqpoint{2.670613in}{0.656543in}}% +\pgfpathlineto{\pgfqpoint{2.681609in}{0.655368in}}% +\pgfpathlineto{\pgfqpoint{2.692606in}{0.650275in}}% +\pgfpathlineto{\pgfqpoint{2.703603in}{0.640551in}}% +\pgfpathlineto{\pgfqpoint{2.714600in}{0.624146in}}% +\pgfpathlineto{\pgfqpoint{2.725596in}{0.594630in}}% +\pgfpathlineto{\pgfqpoint{2.736593in}{0.503446in}}% +\pgfpathlineto{\pgfqpoint{2.747590in}{0.573026in}}% +\pgfpathlineto{\pgfqpoint{2.758587in}{0.612056in}}% +\pgfpathlineto{\pgfqpoint{2.769584in}{0.630997in}}% +\pgfpathlineto{\pgfqpoint{2.780580in}{0.641602in}}% +\pgfpathlineto{\pgfqpoint{2.791577in}{0.646994in}}% +\pgfpathlineto{\pgfqpoint{2.802574in}{0.648287in}}% +\pgfpathlineto{\pgfqpoint{2.813571in}{0.645741in}}% +\pgfpathlineto{\pgfqpoint{2.824567in}{0.638959in}}% +\pgfpathlineto{\pgfqpoint{2.835564in}{0.626572in}}% +\pgfpathlineto{\pgfqpoint{2.846561in}{0.604673in}}% +\pgfpathlineto{\pgfqpoint{2.857558in}{0.556271in}}% +\pgfpathlineto{\pgfqpoint{2.868554in}{0.535980in}}% +\pgfpathlineto{\pgfqpoint{2.879551in}{0.598993in}}% +\pgfpathlineto{\pgfqpoint{2.890548in}{0.624386in}}% +\pgfpathlineto{\pgfqpoint{2.901545in}{0.638733in}}% +\pgfpathlineto{\pgfqpoint{2.912541in}{0.646999in}}% +\pgfpathlineto{\pgfqpoint{2.923538in}{0.650860in}}% +\pgfpathlineto{\pgfqpoint{2.934535in}{0.650865in}}% +\pgfpathlineto{\pgfqpoint{2.945532in}{0.646885in}}% +\pgfpathlineto{\pgfqpoint{2.956528in}{0.638024in}}% +\pgfpathlineto{\pgfqpoint{2.967525in}{0.621760in}}% +\pgfpathlineto{\pgfqpoint{2.978522in}{0.589552in}}% +\pgfpathlineto{\pgfqpoint{2.978535in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.000502in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.000515in}{0.592162in}}% +\pgfpathlineto{\pgfqpoint{3.011512in}{0.626979in}}% +\pgfpathlineto{\pgfqpoint{3.022509in}{0.645857in}}% +\pgfpathlineto{\pgfqpoint{3.033506in}{0.657338in}}% +\pgfpathlineto{\pgfqpoint{3.044503in}{0.663945in}}% +\pgfpathlineto{\pgfqpoint{3.055499in}{0.666578in}}% +\pgfpathlineto{\pgfqpoint{3.066496in}{0.665366in}}% +\pgfpathlineto{\pgfqpoint{3.077493in}{0.659763in}}% +\pgfpathlineto{\pgfqpoint{3.088490in}{0.648096in}}% +\pgfpathlineto{\pgfqpoint{3.099486in}{0.625402in}}% +\pgfpathlineto{\pgfqpoint{3.110483in}{0.565104in}}% +\pgfpathlineto{\pgfqpoint{3.121480in}{0.588134in}}% +\pgfpathlineto{\pgfqpoint{3.132477in}{0.639300in}}% +\pgfpathlineto{\pgfqpoint{3.143473in}{0.663990in}}% +\pgfpathlineto{\pgfqpoint{3.154470in}{0.679196in}}% +\pgfpathlineto{\pgfqpoint{3.165467in}{0.688829in}}% +\pgfpathlineto{\pgfqpoint{3.176464in}{0.694259in}}% +\pgfpathlineto{\pgfqpoint{3.187460in}{0.695887in}}% +\pgfpathlineto{\pgfqpoint{3.198457in}{0.693455in}}% +\pgfpathlineto{\pgfqpoint{3.209454in}{0.685850in}}% +\pgfpathlineto{\pgfqpoint{3.220451in}{0.669953in}}% +\pgfpathlineto{\pgfqpoint{3.231447in}{0.634013in}}% +\pgfpathlineto{\pgfqpoint{3.242444in}{0.567577in}}% +\pgfpathlineto{\pgfqpoint{3.253441in}{0.661953in}}% +\pgfpathlineto{\pgfqpoint{3.264438in}{0.694719in}}% +\pgfpathlineto{\pgfqpoint{3.275434in}{0.714432in}}% +\pgfpathlineto{\pgfqpoint{3.286431in}{0.727527in}}% +\pgfpathlineto{\pgfqpoint{3.297428in}{0.736057in}}% +\pgfpathlineto{\pgfqpoint{3.308425in}{0.740739in}}% +\pgfpathlineto{\pgfqpoint{3.319422in}{0.741575in}}% +\pgfpathlineto{\pgfqpoint{3.330418in}{0.737857in}}% +\pgfpathlineto{\pgfqpoint{3.341415in}{0.727538in}}% +\pgfpathlineto{\pgfqpoint{3.352412in}{0.704194in}}% +\pgfpathlineto{\pgfqpoint{3.363409in}{0.619270in}}% +\pgfpathlineto{\pgfqpoint{3.374405in}{0.695202in}}% +\pgfpathlineto{\pgfqpoint{3.385402in}{0.740685in}}% +\pgfpathlineto{\pgfqpoint{3.396399in}{0.766182in}}% +\pgfpathlineto{\pgfqpoint{3.407396in}{0.783452in}}% +\pgfpathlineto{\pgfqpoint{3.418392in}{0.795624in}}% +\pgfpathlineto{\pgfqpoint{3.429389in}{0.803819in}}% +\pgfpathlineto{\pgfqpoint{3.440386in}{0.808305in}}% +\pgfpathlineto{\pgfqpoint{3.451383in}{0.808692in}}% +\pgfpathlineto{\pgfqpoint{3.462379in}{0.803621in}}% +\pgfpathlineto{\pgfqpoint{3.473376in}{0.789193in}}% +\pgfpathlineto{\pgfqpoint{3.484373in}{0.748427in}}% +\pgfpathlineto{\pgfqpoint{3.495370in}{0.735950in}}% +\pgfpathlineto{\pgfqpoint{3.506366in}{0.806971in}}% +\pgfpathlineto{\pgfqpoint{3.517363in}{0.840575in}}% +\pgfpathlineto{\pgfqpoint{3.528360in}{0.863355in}}% +\pgfpathlineto{\pgfqpoint{3.539357in}{0.880294in}}% +\pgfpathlineto{\pgfqpoint{3.550353in}{0.893092in}}% +\pgfpathlineto{\pgfqpoint{3.561350in}{0.902319in}}% +\pgfpathlineto{\pgfqpoint{3.572347in}{0.907878in}}% +\pgfpathlineto{\pgfqpoint{3.583344in}{0.908904in}}% +\pgfpathlineto{\pgfqpoint{3.594341in}{0.902917in}}% +\pgfpathlineto{\pgfqpoint{3.605337in}{0.881422in}}% +\pgfpathlineto{\pgfqpoint{3.611912in}{0.453273in}}% +\pgfpathmoveto{\pgfqpoint{3.620603in}{0.453273in}}% +\pgfpathlineto{\pgfqpoint{3.627331in}{0.907017in}}% +\pgfpathlineto{\pgfqpoint{3.638328in}{0.954276in}}% +\pgfpathlineto{\pgfqpoint{3.649324in}{0.986379in}}% +\pgfpathlineto{\pgfqpoint{3.660321in}{1.012034in}}% +\pgfpathlineto{\pgfqpoint{3.682315in}{1.053510in}}% +\pgfpathlineto{\pgfqpoint{3.704308in}{1.087620in}}% +\pgfpathlineto{\pgfqpoint{3.726302in}{1.117269in}}% +\pgfpathlineto{\pgfqpoint{3.748295in}{1.143814in}}% +\pgfpathlineto{\pgfqpoint{3.781285in}{1.179394in}}% +\pgfpathlineto{\pgfqpoint{3.814276in}{1.211152in}}% +\pgfpathlineto{\pgfqpoint{3.847266in}{1.239965in}}% +\pgfpathlineto{\pgfqpoint{3.891253in}{1.274752in}}% +\pgfpathlineto{\pgfqpoint{3.935240in}{1.306188in}}% +\pgfpathlineto{\pgfqpoint{3.979227in}{1.334872in}}% +\pgfpathlineto{\pgfqpoint{4.023214in}{1.361236in}}% +\pgfpathlineto{\pgfqpoint{4.078198in}{1.391409in}}% +\pgfpathlineto{\pgfqpoint{4.133182in}{1.418930in}}% +\pgfpathlineto{\pgfqpoint{4.188166in}{1.444160in}}% +\pgfpathlineto{\pgfqpoint{4.254146in}{1.471806in}}% +\pgfpathlineto{\pgfqpoint{4.320127in}{1.496941in}}% +\pgfpathlineto{\pgfqpoint{4.386107in}{1.519873in}}% +\pgfpathlineto{\pgfqpoint{4.463085in}{1.544168in}}% +\pgfpathlineto{\pgfqpoint{4.540062in}{1.566117in}}% +\pgfpathlineto{\pgfqpoint{4.628036in}{1.588663in}}% +\pgfpathlineto{\pgfqpoint{4.716010in}{1.608807in}}% +\pgfpathlineto{\pgfqpoint{4.803984in}{1.626816in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.639057in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{1.639057in}}% \pgfusepath{stroke}% @@ -2784,8 +2778,8 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% @@ -2806,7 +2800,7 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{0.463273in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{0.463273in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -2817,7 +2811,7 @@ \definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.672226in}{2.458330in}}% +\pgfpathmoveto{\pgfqpoint{0.482258in}{2.458330in}}% \pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% \pgfusepath{stroke}% \end{pgfscope}% @@ -2832,16 +2826,16 @@ \pgfsetstrokecolor{currentstroke}% \pgfsetstrokeopacity{0.800000}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.384851in}{2.026148in}}% -\pgfpathlineto{\pgfqpoint{4.788979in}{2.026148in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.812117in}{2.026148in}}{\pgfqpoint{4.812117in}{2.049287in}}% -\pgfpathlineto{\pgfqpoint{4.812117in}{2.377344in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.812117in}{2.400483in}}{\pgfqpoint{4.788979in}{2.400483in}}% -\pgfpathlineto{\pgfqpoint{2.384851in}{2.400483in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.361713in}{2.400483in}}{\pgfqpoint{2.361713in}{2.377344in}}% -\pgfpathlineto{\pgfqpoint{2.361713in}{2.049287in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.361713in}{2.026148in}}{\pgfqpoint{2.384851in}{2.026148in}}% -\pgfpathlineto{\pgfqpoint{2.384851in}{2.026148in}}% +\pgfpathmoveto{\pgfqpoint{1.911537in}{1.939504in}}% +\pgfpathlineto{\pgfqpoint{4.772742in}{1.939504in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.800520in}{1.939504in}}{\pgfqpoint{4.800520in}{1.967282in}}% +\pgfpathlineto{\pgfqpoint{4.800520in}{2.361108in}}% +\pgfpathquadraticcurveto{\pgfqpoint{4.800520in}{2.388886in}}{\pgfqpoint{4.772742in}{2.388886in}}% +\pgfpathlineto{\pgfqpoint{1.911537in}{2.388886in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.883759in}{2.388886in}}{\pgfqpoint{1.883759in}{2.361108in}}% +\pgfpathlineto{\pgfqpoint{1.883759in}{1.967282in}}% +\pgfpathquadraticcurveto{\pgfqpoint{1.883759in}{1.939504in}}{\pgfqpoint{1.911537in}{1.939504in}}% +\pgfpathlineto{\pgfqpoint{1.911537in}{1.939504in}}% \pgfpathclose% \pgfusepath{stroke,fill}% \end{pgfscope}% @@ -2852,16 +2846,16 @@ \definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.407990in}{2.306797in}}% -\pgfpathlineto{\pgfqpoint{2.523685in}{2.306797in}}% -\pgfpathlineto{\pgfqpoint{2.639379in}{2.306797in}}% +\pgfpathmoveto{\pgfqpoint{1.939315in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{2.078204in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{2.217093in}{2.276418in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.731935in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=2\)}% +\pgftext[x=2.328204in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=2\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -2870,16 +2864,16 @@ \definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.407990in}{2.136984in}}% -\pgfpathlineto{\pgfqpoint{2.523685in}{2.136984in}}% -\pgfpathlineto{\pgfqpoint{2.639379in}{2.136984in}}% +\pgfpathmoveto{\pgfqpoint{1.939315in}{2.072561in}}% +\pgfpathlineto{\pgfqpoint{2.078204in}{2.072561in}}% +\pgfpathlineto{\pgfqpoint{2.217093in}{2.072561in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=2.731935in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=4\)}% +\pgftext[x=2.328204in,y=2.023950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=4\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -2888,16 +2882,16 @@ \definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.251394in}{2.306797in}}% -\pgfpathlineto{\pgfqpoint{3.367088in}{2.306797in}}% -\pgfpathlineto{\pgfqpoint{3.482782in}{2.306797in}}% +\pgfpathmoveto{\pgfqpoint{2.943976in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{3.082865in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{3.221754in}{2.276418in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.575338in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=6\)}% +\pgftext[x=3.332865in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=6\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -2906,16 +2900,16 @@ \definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.251394in}{2.136984in}}% -\pgfpathlineto{\pgfqpoint{3.367088in}{2.136984in}}% -\pgfpathlineto{\pgfqpoint{3.482782in}{2.136984in}}% +\pgfpathmoveto{\pgfqpoint{2.943976in}{2.072561in}}% +\pgfpathlineto{\pgfqpoint{3.082865in}{2.072561in}}% +\pgfpathlineto{\pgfqpoint{3.221754in}{2.072561in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=3.575338in,y=2.096491in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=8\)}% +\pgftext[x=3.332865in,y=2.023950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=8\)}% \end{pgfscope}% \begin{pgfscope}% \pgfsetrectcap% @@ -2924,16 +2918,16 @@ \definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% \pgfsetstrokecolor{currentstroke}% \pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.094797in}{2.306797in}}% -\pgfpathlineto{\pgfqpoint{4.210491in}{2.306797in}}% -\pgfpathlineto{\pgfqpoint{4.326186in}{2.306797in}}% +\pgfpathmoveto{\pgfqpoint{3.948637in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{4.087526in}{2.276418in}}% +\pgfpathlineto{\pgfqpoint{4.226415in}{2.276418in}}% \pgfusepath{stroke}% \end{pgfscope}% \begin{pgfscope}% \definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% \pgfsetstrokecolor{textcolor}% \pgfsetfillcolor{textcolor}% -\pgftext[x=4.418741in,y=2.266304in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle n=10\)}% +\pgftext[x=4.337526in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=10\)}% \end{pgfscope}% \end{pgfpicture}% \makeatother% diff --git a/buch/papers/laguerre/images/rel_error_simple.png b/buch/papers/laguerre/images/rel_error_simple.png deleted file mode 100644 index 8bcd8e0..0000000 Binary files a/buch/papers/laguerre/images/rel_error_simple.png and /dev/null differ diff --git a/buch/papers/laguerre/images/targets-img0.png b/buch/papers/laguerre/images/targets-img0.png new file mode 100644 index 0000000..6e110dd Binary files /dev/null and b/buch/papers/laguerre/images/targets-img0.png differ diff --git a/buch/papers/laguerre/images/targets-img1.png b/buch/papers/laguerre/images/targets-img1.png new file mode 100644 index 0000000..999a4d2 Binary files /dev/null and b/buch/papers/laguerre/images/targets-img1.png differ diff --git a/buch/papers/laguerre/images/targets.pdf b/buch/papers/laguerre/images/targets.pdf index df11068..c050efa 100644 Binary files a/buch/papers/laguerre/images/targets.pdf and b/buch/papers/laguerre/images/targets.pdf differ diff --git a/buch/papers/laguerre/images/targets.pgf b/buch/papers/laguerre/images/targets.pgf new file mode 100644 index 0000000..f5602fd --- /dev/null +++ b/buch/papers/laguerre/images/targets.pgf @@ -0,0 +1,1024 @@ +%% Creator: Matplotlib, PGF backend +%% +%% To include the figure in your LaTeX document, write +%% \input{.pgf} +%% +%% Make sure the required packages are loaded in your preamble +%% \usepackage{pgf} +%% +%% Also ensure that all the required font packages are loaded; for instance, +%% the lmodern package is sometimes necessary when using math font. +%% \usepackage{lmodern} +%% +%% Figures using additional raster images can only be included by \input if +%% they are in the same directory as the main LaTeX file. For loading figures +%% from other directories you can use the `import` package +%% \usepackage{import} +%% +%% and then include the figures with +%% \import{}{.pgf} +%% +%% Matplotlib used the following preamble +%% \usepackage{fontspec} +%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] +%% +\begingroup% +\makeatletter% +\begin{pgfpicture}% +\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.400000in}}% +\pgfusepath{use as bounding box, clip}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{4.000000in}{2.400000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{2.400000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.982055in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.982055in}{2.358330in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{2.358330in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{2.476464in}{1.895057in}}% +\pgfusepath{clip}% +\pgfsys@transformshift{0.505591in}{0.463273in}% +\pgftext[left,bottom]{\includegraphics[interpolate=true,width=2.480000in,height=1.900000in]{papers/laguerre/images/targets-img0.png}}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.505591in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.000884in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.000884in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.20}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.496177in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.496177in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.40}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.991470in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.991470in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.60}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.486762in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.486762in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.80}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.982055in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=2.982055in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.00}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.629414in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.753238in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.877061in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.124707in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.248530in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.372354in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.620000in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.743823in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{1.867646in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.115293in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.239116in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.362939in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.610586in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.734409in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.602250pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{2.858232in}{0.463273in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=1.743823in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{2.272191in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=2.219430in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{2.099913in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=2.047152in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 3}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.927635in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=1.874874in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.755357in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=1.702596in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.583080in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=1.530318in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.410802in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=1.358040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.238524in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=1.185762in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{1.066246in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.320004in, y=1.013484in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 9}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{0.893968in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=0.841207in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{0.721690in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=0.668929in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 11}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{0.505591in}{0.549412in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.231638in, y=0.496651in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=0.176083in,y=1.410802in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{0.505591in}{2.358330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{2.982055in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.982055in}{2.358330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{2.982055in}{0.463273in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{0.505591in}{2.358330in}}% +\pgfpathlineto{\pgfqpoint{2.982055in}{2.358330in}}% +\pgfusepath{stroke}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.000000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetstrokeopacity{0.000000}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.260501in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.355254in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.355254in}{2.358330in}}% +\pgfpathlineto{\pgfqpoint{3.260501in}{2.358330in}}% +\pgfpathlineto{\pgfqpoint{3.260501in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfpathrectangle{\pgfqpoint{3.260501in}{0.463273in}}{\pgfqpoint{0.094753in}{1.895057in}}% +\pgfusepath{clip}% +\pgfsetbuttcap% +\pgfsetmiterjoin% +\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.010037pt}% +\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfusepath{stroke,fill}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsys@transformshift{3.260000in}{0.460000in}% +\pgftext[left,bottom]{\includegraphics[interpolate=true,width=0.100000in,height=1.900000in]{papers/laguerre/images/targets-img1.png}}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.355254in}{0.733996in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.452476in, y=0.681234in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.355254in}{1.072399in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.452476in, y=1.019637in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.355254in}{1.410802in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.452476in, y=1.358040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10.0}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.355254in}{1.749205in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.452476in, y=1.696443in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12.5}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetbuttcap% +\pgfsetroundjoin% +\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetfillcolor{currentfill}% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% +\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% +\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% +\pgfusepath{stroke,fill}% +}% +\begin{pgfscope}% +\pgfsys@transformshift{3.355254in}{2.087608in}% +\pgfsys@useobject{currentmarker}{}% +\end{pgfscope}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.452476in, y=2.034846in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15.0}% +\end{pgfscope}% +\begin{pgfscope}% +\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{textcolor}% +\pgfsetfillcolor{textcolor}% +\pgftext[x=3.817276in,y=1.410802in,,top,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m^*\)}% +\end{pgfscope}% +\begin{pgfscope}% +\pgfsetrectcap% +\pgfsetmiterjoin% +\pgfsetlinewidth{0.803000pt}% +\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% +\pgfsetstrokecolor{currentstroke}% +\pgfsetdash{}{0pt}% +\pgfpathmoveto{\pgfqpoint{3.260501in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.307877in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.355254in}{0.463273in}}% +\pgfpathlineto{\pgfqpoint{3.355254in}{2.358330in}}% +\pgfpathlineto{\pgfqpoint{3.307877in}{2.358330in}}% +\pgfpathlineto{\pgfqpoint{3.260501in}{2.358330in}}% +\pgfpathlineto{\pgfqpoint{3.260501in}{0.463273in}}% +\pgfpathclose% +\pgfusepath{stroke}% +\end{pgfscope}% +\end{pgfpicture}% +\makeatother% +\endgroup% diff --git a/buch/papers/laguerre/packages.tex b/buch/papers/laguerre/packages.tex index 4ebc172..a80d091 100644 --- a/buch/papers/laguerre/packages.tex +++ b/buch/papers/laguerre/packages.tex @@ -6,4 +6,4 @@ % if your paper needs special packages, add package commands as in the % following example -\usepackage{derivative} +\DeclareMathOperator{\real}{Re} \ No newline at end of file diff --git a/buch/papers/laguerre/presentation/sections/gamma_approx.tex b/buch/papers/laguerre/presentation/sections/gamma_approx.tex index 4073b3c..3d32aae 100644 --- a/buch/papers/laguerre/presentation/sections/gamma_approx.tex +++ b/buch/papers/laguerre/presentation/sections/gamma_approx.tex @@ -81,7 +81,7 @@ von $z$ und Grade $n$ der Laguerre-Polynome} \begin{frame}{$f(x) = x^z$} \begin{figure}[h] \centering -\scalebox{0.91}{\input{../images/integrands.pgf}} +\scalebox{0.91}{\input{../images/integrand.pgf}} % \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} \end{figure} \end{frame} @@ -89,7 +89,7 @@ von $z$ und Grade $n$ der Laguerre-Polynome} \begin{frame}{Integrand $x^z e^{-x}$} \begin{figure}[h] \centering -\scalebox{0.91}{\input{../images/integrands_exp.pgf}} +\scalebox{0.91}{\input{../images/integrand_exp.pgf}} % \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} \end{figure} \end{frame} @@ -98,7 +98,7 @@ von $z$ und Grade $n$ der Laguerre-Polynome} \textbf{Vermutung} \begin{itemize} -\item Es gibt Intervalle $[a(n), a(n+1)]$ in denen der relative Fehler minimal +\item Es gibt Intervalle $[a(n), a(n)+1]$ in denen der relative Fehler minimal ist \item $a(n) > 0$ \end{itemize} @@ -148,7 +148,7 @@ da Gauss-Quadratur nur für kleine $n$ praktischen Nutzen hat} \begin{figure} \centering \vspace{-24pt} -\scalebox{0.7}{\input{../images/estimate.pgf}} +\scalebox{0.7}{\input{../images/estimates.pgf}} % \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} \end{figure} \end{column} diff --git a/buch/papers/laguerre/presentation/sections/laguerre.tex b/buch/papers/laguerre/presentation/sections/laguerre.tex index 07cafb8..ed29387 100644 --- a/buch/papers/laguerre/presentation/sections/laguerre.tex +++ b/buch/papers/laguerre/presentation/sections/laguerre.tex @@ -55,7 +55,7 @@ L_n(x) \begin{frame} \begin{figure}[h] \centering -\resizebox{0.74\textwidth}{!}{\input{../images/laguerre_polynomes.pgf}} +\resizebox{0.74\textwidth}{!}{\input{../images/laguerre_poly.pgf}} \caption{Laguerre-Polynome vom Grad $0$ bis $7$} \end{figure} \end{frame} diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index b5ad316..851fe8a 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -6,10 +6,12 @@ \section{Gauss-Quadratur \label{laguerre:section:quadratur}} {\large \color{red} TODO: Einleitung und kurze Beschreibung Gauss-Quadratur} + +Siehe Abschnitt~\ref{buch:orthogonalitaet:section:gauss-quadratur} \begin{align} \int_a^b f(x) w(x) \, dx \approx -\sum_{i=1}^N f(x_i) A_i +\sum_{i=1}^n f(x_i) A_i \label{laguerre:gaussquadratur} \end{align} @@ -25,7 +27,7 @@ Gleichung~\eqref{laguerre:laguerrequadratur} lässt sich wie folgt umformulieren \begin{align} \int_{0}^{\infty} f(x) e^{-x} dx \approx -\sum_{i=1}^{N} f(x_i) A_i +\sum_{i=1}^{n} f(x_i) A_i \label{laguerre:laguerrequadratur} \end{align} @@ -45,7 +47,7 @@ l_i(x_j) 0 & \text{sonst.} \end{cases} \end{align*} -Laut \cite{abramowitz+stegun} sind die Gewichte also +Laut \cite{abramowitz+stegun} sind die Gewichte \begin{align} A_i = diff --git a/buch/papers/laguerre/scripts/estimates.py b/buch/papers/laguerre/scripts/estimates.py new file mode 100644 index 0000000..207bbd2 --- /dev/null +++ b/buch/papers/laguerre/scripts/estimates.py @@ -0,0 +1,39 @@ +if __name__ == "__main__": + import matplotlib.pyplot as plt + import numpy as np + + import gamma_approx as ga + import targets + + N = 200 + ns = np.arange(2, 13) + step = 1 / (N - 1) + x = np.linspace(step, 1 - step, N + 1) + + bests = targets.find_best_loc(N, ns=ns) + mean_m = np.mean(bests, -1) + + intercept, bias = np.polyfit(ns, mean_m, 1) + fig, axs = plt.subplots( + 2, num=1, sharex=True, clear=True, constrained_layout=True, figsize=(4.5, 3.6) + ) + xl = np.array([ns[0] - 0.5, ns[-1] + 0.5]) + axs[0].plot(xl, intercept * xl + bias, label=r"$\hat{m}$") + axs[0].plot(ns, mean_m, "x", label=r"$\overline{m}$") + axs[1].plot( + ns, ((intercept * ns + bias) - mean_m), "-x", label=r"$\hat{m} - \overline{m}$" + ) + axs[0].set_xlim(*xl) + axs[0].set_xticks(ns) + axs[0].set_yticks(np.arange(np.floor(mean_m[0]), np.ceil(mean_m[-1]) + 0.1, 2)) + # axs[0].set_title("Schätzung von Mittelwert") + # axs[1].set_title("Fehler") + axs[-1].set_xlabel(r"$n$") + for ax in axs: + ax.grid(1) + ax.legend() + fig.savefig(f"{ga.img_path}/estimates.pgf") + + print(f"Intercept={intercept:.6g}, Bias={bias:.6g}") + predicts = np.ceil(intercept * ns[:, None] + bias - np.real(x)) + print(f"Error: {np.mean(np.abs(bests - predicts))}") diff --git a/buch/papers/laguerre/scripts/gamma_approx.ipynb b/buch/papers/laguerre/scripts/gamma_approx.ipynb deleted file mode 100644 index 82adca6..0000000 --- a/buch/papers/laguerre/scripts/gamma_approx.ipynb +++ /dev/null @@ -1,616 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Gauss-Laguerre Quadratur für die Gamma-Funktion\n", - "\n", - "$$\n", - " \\Gamma(z)\n", - " = \n", - " \\int_0^\\infty t^{z-1}e^{-t}dt\n", - "$$\n", - "\n", - "$$\n", - " \\int_0^\\infty f(x) e^{-x} dx \n", - " \\approx \n", - " \\sum_{i=1}^{N} f(x_i) w_i\n", - " \\qquad\\text{ wobei }\n", - " w_i = \\frac{x_i}{(n+1)^2 [L_{n+1}(x_i)]^2}\n", - "$$\n", - "und $x_i$ sind Nullstellen des Laguerre Polynoms $L_n(x)$\n", - "\n", - "Der Fehler ist gegeben als\n", - "\n", - "$$\n", - " E \n", - " =\n", - " \\frac{(n!)^2}{(2n)!} f^{(2n)}(\\xi) \n", - " = \n", - " \\frac{(-2n + z)_{2n}}{(z-m)_m} \\frac{(n!)^2}{(2n)!} \\xi^{z + m - 2n - 1}\n", - "$$" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "from cmath import exp, pi, sin, sqrt\n", - "import scipy.special\n", - "\n", - "EPSILON = 1e-07\n" - ] - }, - { - "cell_type": "code", - "execution_count": 74, - "metadata": {}, - "outputs": [], - "source": [ - "lanczos_p = [\n", - " 676.5203681218851,\n", - " -1259.1392167224028,\n", - " 771.32342877765313,\n", - " -176.61502916214059,\n", - " 12.507343278686905,\n", - " -0.13857109526572012,\n", - " 9.9843695780195716e-6,\n", - " 1.5056327351493116e-7,\n", - "]\n", - "\n", - "\n", - "def drop_imag(z):\n", - " if abs(z.imag) <= EPSILON:\n", - " z = z.real\n", - " return z\n", - "\n", - "\n", - "def lanczos_gamma(z):\n", - " z = complex(z)\n", - " if z.real < 0.5:\n", - " y = pi / (sin(pi * z) * lanczos_gamma(1 - z)) # Reflection formula\n", - " else:\n", - " z -= 1\n", - " x = 0.99999999999980993\n", - " for (i, pval) in enumerate(lanczos_p):\n", - " x += pval / (z + i + 1)\n", - " t = z + len(lanczos_p) - 0.5\n", - " y = sqrt(2 * pi) * t ** (z + 0.5) * exp(-t) * x\n", - " return drop_imag(y)\n" - ] - }, - { - "cell_type": "code", - "execution_count": 75, - "metadata": {}, - "outputs": [], - "source": [ - "zeros, weights = np.polynomial.laguerre.laggauss(8)\n", - "# zeros = np.array(\n", - "# [\n", - "# 1.70279632305101000e-1,\n", - "# 9.03701776799379912e-1,\n", - "# 2.25108662986613069e0,\n", - "# 4.26670017028765879e0,\n", - "# 7.04590540239346570e0,\n", - "# 1.07585160101809952e1,\n", - "# 1.57406786412780046e1,\n", - "# 2.28631317368892641e1,\n", - "# ]\n", - "# )\n", - "\n", - "# weights = np.array(\n", - "# [\n", - "# 3.69188589341637530e-1,\n", - "# 4.18786780814342956e-1,\n", - "# 1.75794986637171806e-1,\n", - "# 3.33434922612156515e-2,\n", - "# 2.79453623522567252e-3,\n", - "# 9.07650877335821310e-5,\n", - "# 8.48574671627253154e-7,\n", - "# 1.04800117487151038e-9,\n", - "# ]\n", - "# )\n", - "\n", - "\n", - "def pochhammer(z, n):\n", - " return np.prod(z + np.arange(n))\n", - "\n", - "\n", - "def find_shift(z, target):\n", - " factor = 1.0\n", - " steps = int(np.floor(target - np.real(z)))\n", - " zs = z + steps\n", - " if steps > 0:\n", - " factor = 1 / pochhammer(z, steps)\n", - " elif steps < 0:\n", - " factor = pochhammer(zs, -steps)\n", - " return zs, factor\n", - "\n", - "def find_optimal_shift(z, n):\n", - " mhat = 1.34093 * n + 0.854093\n", - " steps = int(np.ceil(mhat - np.real(z)))-1\n", - " return steps\n", - "\n", - "\n", - "def get_shifting_factor(z, steps):\n", - " zs = z + steps\n", - " factor = 1.0\n", - " if steps > 0:\n", - " factor = 1 / pochhammer(z, steps)\n", - " elif steps < 0:\n", - " factor = pochhammer(zs, -steps)\n", - " return factor\n", - "\n", - "\n", - "def laguerre_gamma_shift(z, x, w):\n", - " z = complex(z)\n", - " n = len(x)\n", - "\n", - " z += 0j\n", - " # z_shifted, correction_factor = find_shift(z, target)\n", - " opt_shift = find_optimal_shift(z, n)\n", - " correction_factor = get_shifting_factor(z, opt_shift)\n", - " z_shifted = z + opt_shift\n", - "\n", - " res = np.sum(x ** (z_shifted - 1) * w)\n", - " res *= correction_factor\n", - " res = drop_imag(res)\n", - " return res\n", - "\n", - "\n", - "def laguerre_gamma(z, x, w, target=11):\n", - " # res = 0.0\n", - " z = complex(z)\n", - " n = len(x)\n", - " # if z.real < 1e-3:\n", - " # res = pi / (\n", - " # sin(pi * z) * laguerre_gamma(1 - z, x, w, target)\n", - " # ) # Reflection formula\n", - " # else:\n", - " # z_shifted, correction_factor = find_shift(z, target)\n", - " # res = np.sum(x ** (z_shifted - 1) * w)\n", - " # res *= correction_factor\n", - " \n", - " z_shifted, correction_factor = find_shift(z, target)\n", - " \n", - " # opt_shift = find_optimal_shift(z, n)\n", - " # correction_factor = get_shifting_factor(z, opt_shift)\n", - " # z_shifted = z + opt_shift\n", - " \n", - " res = np.sum(x ** (z_shifted - 1) * w)\n", - " res *= correction_factor\n", - " res = drop_imag(res)\n", - " return res\n" - ] - }, - { - "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [], - "source": [ - "def eval_laguerre(x, target=12):\n", - " return np.array([laguerre_gamma(xi, zeros, weights, target) for xi in x])\n", - "\n", - "\n", - "def eval_laguerre2(x):\n", - " return np.array([laguerre_gamma_shift(xi, zeros, weights) for xi in x])\n", - "\n", - "\n", - "def eval_lanczos(x):\n", - " return np.array([lanczos_gamma(xi) for xi in x])\n", - "\n", - "\n", - "def eval_mean_laguerre(x, targets):\n", - " return np.mean([eval_laguerre(x, target) for target in targets], 0)\n", - "\n", - "\n", - "def calc_rel_error(x, y):\n", - " return (y - x) / x\n", - "\n", - "\n", - "def evaluate(x, target=12):\n", - " lanczos_gammas = eval_lanczos(x)\n", - " laguerre_gammas = eval_laguerre(x, target)\n", - " rel_error = calc_rel_error(lanczos_gammas, laguerre_gammas)\n", - " return rel_error\n", - "\n", - "def evaluate2(x):\n", - " lanczos_gammas = eval_lanczos(x)\n", - " laguerre_gammas = eval_laguerre2(x)\n", - " rel_error = calc_rel_error(lanczos_gammas, laguerre_gammas)\n", - " return rel_error\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Test with real values" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Empirische Tests zeigen:\n", - "- $n=4 \\Rightarrow m=6$\n", - "- $n=5 \\Rightarrow m=7$ oder $m=8$\n", - "- $n=6 \\Rightarrow m=9$\n", - "- $n=7 \\Rightarrow m=10$\n", - "- $n=8 \\Rightarrow m=11$ oder $m=12$\n", - "- $n=9 \\Rightarrow m=13$\n", - "- $n=10 \\Rightarrow m=14$\n", - "- $n=11 \\Rightarrow m=15$ oder $m=16$\n", - "- $n=12 \\Rightarrow m=17$\n", - "- $n=13 \\Rightarrow m=18 \\Rightarrow $ Beginnt numerisch instabil zu werden \n" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3xV9f3H8de5O7lJbvaeJAEy2DvsvUFQUdQqarWto9VWW1dbbbWutr/WqnXUhQMERfYUCHvvQIBACJBBBtk7uff8/jiR4WQkuRmf5+NxHvdy5+eGS7jv+/1+P19FVVWEEEIIIYQQQjifztkFCCGEEEIIIYTQSEATQgghhBBCiBZCApoQQgghhBBCtBAS0IQQQgghhBCihZCAJoQQQgghhBAthAQ0IYQQQgghhGghWnxAUxTlfUVR8hRFSWmkx3tFUZTDiqKkKorymqIoSmM8rhBCCCGEEEJcrxYf0IAPgXGN8UCKoiQBA4GuQCLQBxjaGI8thBBCCCGEENerxQc0VVU3AoWXXqYoSrSiKCsVRdmjKMomRVE6X+nDARbABJgBI5DbqAULIYQQQgghxDVq8QHtB7wDPKyqai/gMeDNK7mTqqrbgPVATsOxSlXV1CarUgghhBBCCCGugsHZBVwtRVHcgCRg/iXLx8wN100H/vI9d8tSVXWsoigxQBwQ2nD5GkVRBququqmJyxZCCCGEEEKIn9TqAhraqF+xqqrdv32FqqoLgAU/ct9pwHZVVcsBFEVZAQwAJKAJIYQQQgghnK7VTXFUVbUUOKUoys0AiqbbFd79DDBUURSDoihGtAYhMsVRCCGEEEII0SK0+ICmKMocYBvQSVGUTEVR7gVuB+5VFOUAcBiYeoUP9wVwEjgEHAAOqKq6pAnKFkIIIYQQQoirpqiq6uwahBBCCCGEEELQCkbQhBBCCCGEEKK9kIAmhBBCCCGEEC1Ei+7i6Ovrq0ZGRjq7DCEuqKiowGq1OrsMIS6Q96RoieR9KVoaeU+KlmbPnj0Fqqr6fd91LTqgRUZGsnv3bmeXIcQFycnJDBs2zNllCHGBvCdFSyTvS9HSyHtStDSKopz+oetkiqMQQgghhBBCtBAS0IQQQgghhBCihZCAJoQQQgghhBAtRItegyaEEEIIIYS4OnV1dWRmZlJdXe3sUto9i8VCaGgoRqPxiu8jAU0IIYQQQog2JDMzE3d3dyIjI1EUxdnltFuqqnL+/HkyMzOJioq64vvJFEchhBBCCCHakOrqanx8fCScOZmiKPj4+Fz1SKYENCGEEEIIIdoYCWctw7X8PUhAE0IIIYQQQjSqf//73yQmJpKQkMC//vUvZ5fTqkhAE0IIIYQQQjSalJQU3n33XXbu3MmBAwdYunQpJ06ccHZZrYYENCGEEEIIIUSjSU1NpV+/fri6umIwGBg6dCgLFixwdlmthnRxFEIIIYQQoo16bslhjmSXNupjxgd78OfJCT94fWJiIk8//TTnz5/HxcWF5cuX07t370atoS2TgCaEEEIIIYRoNHFxcfzhD39gzJgxWK1Wunfvjl6vd3ZZrYYENCGEEEIIIdqoHxvpakr33nsv9957LwBPPfUUoaGhTqmjNZKAJoQQQgghhGhUeXl5+Pv7c+bMGRYsWMD27dudXVKrIQFNCCGEEEII0ahuvPFGzp8/j9Fo5I033sDT09PZJbUaEtCEEEJcHVWF+mqoq4K6SqirBnstOOrAXn/J+dqLf1YdgKqdqmrD43xzXgUUUHSg04GiB53+u6cGM+jNYDB969QMehMYXbX7CyGEcLpNmzY5u4RWSwKaEEK0Fw47VJdAVdHlR3UJ1JRCTdklR/nFy2rLG8JYw1Ff5exX8sMMFi2omawNp65gtGp/NruB2QMsHmCxNZy3XXKZJ7h6g4u3Fv6EEEIIJ5CAJoQQrZXDgbG2GHIPQ0U+VBRAeV7D+UuOysKLQQz1hx9PZ9DCitm94dQN3PzBFKWFHKMFjC5a8PkmCBldtPMGE+iM2kiW3qCd6ozaeZ2xYSRMhzZSplx+/huqQwuRqv2SU0fDaT3U12ijcZed1kB97SUjehVQW6mN7NVWNJxWQlkOnC+H6lIteNprf/xna3LTgpqrl3bq4gWuPtrPw+rXcOoPbn7aqcn1+v8+hRBCCCSgCSFEy1RfC6WZUJKlhYvS7MtPy85B2TkGOupg67fuqzNoIcLqq516d9ACxjdB49uHxaaFMoP58sDUltVVa0GturRhBLEEqoqhqhAqixpOCy+eFp+GyvMNIfd7mNy0n7V7EHgENZwGg3sguAdfvMxgbtaXKYQQovWRgCaEEM5QV6196C86DSVnoPgslJy9eFp2ju+MdpncL37QjxgIHkGknSsjtvvAiyM7Vj9tqp6sxfpxRot2uPlf3f3qay6OTJbnQ0XexVHL8lzt7y1rrxai66u/e3+rH9jCwBYKnuGXnA/Tzrt4tZ+QLIQQ4ns1e0BTFEUP7AayVFWd1NzPL4QQzaa6FArToegUFJ5qOJ+hnZZmc1kA0xnBFqJ9aI8eefEDuy304kiM2f07T5GVnExs4rDmekXCYNb+Tmw/sZ+PqmrTSsvOQVk2lOZooa3kLJRkQl4qpK3+bogzuYNXJHhFgHdUw/lI8IrS3g+yNk4IIdo8Z4yg/QZIBTyc8NxCCNG4HA7tQ3dBGhQch/NpDefToPzc5be1+msfuiMHa9MOvaPAM0ILY26BMurVliiK1nDE1RsC4r//NqqqTZssPnMxuBWd1kJ8wXFIW6OtsbvwmDotGPrEXHJEg0+sdrlO3ywvTQghRNNq1oCmKEooMBF4Afhtcz63EEJcF4dDm4qYewTyjmgjIPlH4fyJy0dBLJ7g2xFiRoFvDHhHXxwJ+Z4RMNGOKUrDOkFfCOn53esdDi3kF57SQltRwyjs+ZNwdg7Ull28rd6shX6faPDrBH6dtfehb0dpYCKEcIp77rmHpUuX4u/vT0pKCgCFhYXccsstZGRkEBkZybx58/Dy8nJypS1Pc4+g/Qv4PSCfUoQQLVdlIZw7qHVH/CaM5R3VOgR+wxYO/p2hwzDwjb34YdjVR9YQicah02nTWz2CIXLg5depqrb27fyJS46T2sjb8ZVa10sAFG3arF9n8OvYcBqnvXdN1mZ/SUKI9mPWrFk89NBD3HnnnRcue+mllxg5ciRPPPEEL730Ei+99BIvv/yyE6tsmRRV/ZGWy435RIoyCZigquoDiqIMAx77vjVoiqLcD9wPEBAQ0Gvu3LnNUp8QV6K8vBw3NzdnlyEai6piqc7DrTy94TiFW/kpLDUFF25Sa/SkwhpOhTXiktMw7IaWMSoh70nxbYqjDpeqHFwrM7FWnMW18izWikxcKzPRqXUAqChUuQQ2vJ+1o9wtgiqXIG1j8Osk70vR0rS396TNZiMmJsbZZXD69GlmzJjBjh07AOjZsyfLly8nMDCQc+fOMWHCBPbu3evkKpveiRMnKCm5vAvw8OHD96iq2vv7bt+cI2gDgSmKokwALICHoiifqKp6x6U3UlX1HeAdgN69e6vDhg1rxhKF+HHJycnIe7KVUlVtmlj2PsjeC9n7Ieeg1l4dtPU9vh2h4wgI7AJBXSEgEZPVFxPQUidgyHtSXDGHXfs3kJeKknsY17zDuOYewe/MTm0POgCDiza6FtgFArtCUDcISLjq0TZ5X4qWpr29J1NTU3F3b5iwtuIJOHeocZ8gsAuMf+knb+bm5oZOp7tQS35+PrGxsReuy8/Pv1hnG2axWOjRo8cV377ZApqqqk8CTwJcMoJ2x4/dRwghrllpjhbEsvY2hLJ92p5WoG2iHJAIXW7UPoQGdtUaORhdnFuzEE1Jp29oKhINcZdMYKmr0tZT5h7RpvXmHoLUJbB3tna9otMakgR2bfjyohsEd9e2BBBCiGukKAqKLAn4XrIPmhCi9auv1daMnd0JmTvh7C5tk2fQpmv5x0PniVojhuCe2p+lXbkQGqMLBPfQjm+oqtZV8txB7Zv3nINwdgekfHHxNl5RF+8X3EMLbhZp0CxEi3MFI13NJSAggJycHIKCgsjJycHf/yr3omwnnBLQVFVNBpKd8dxCiDagLBfObm8IZLu06YrftCO3hUFYXwh9EEJ6ad/4Sxc7Ia6OomjbP3iGaV9ufOObBjrfjEpn7YbDCy5e7xMLwT0IqfKATHft3598GSKEaDBlyhQ++ugjnnjiCT766COmTp3q7JJaJBlBE0K0bN+sHTuzDU5vgdPboPCkdp3eBEHdoe99ENpHC2Yewc6sVoi2zdVb61zaYdjFyyoKtC9JvgltpzYSW34OTvxPa/8f1FX79xnaG0J6a10lZVqTEG3ezJkzSU5OpqCggNDQUJ577jmeeOIJZsyYwXvvvUdERATz5s1zdpktkgQ0IUTLoqraepiMzQ2hbBuUZWvXWTwhfAD0uks7DeoGBrNTyxWi3bP6Quwo7WiwbeUXDAgzaCNsmXtg9wew/c2G2/trgS28H4T119azyb9jIdqcOXPmfO/la9eubeZKWh8JaEII51JVbfPdUxu1I2MzVORp17kHQ8QALYxFDNT2cNLpnFuvEOIn1Vh8IWEYJNygXWCv0/YUzNwFmbu19WzHlmnX6U3aGrawfhDeXzu1+jqrdCGEcDoJaEKI5ld89pJAtglKs7TL3YMgejhEDobIQeAVKVOhhGgL9EZtxDuoG/T5uXZZeZ62jvTsdjizA7b/F7a+pl3nEwMRSdoXMxFJ2rRIIYRoJySgCSGaXk0ZZGyBk+u043yadrmrjxbGon4HUUO19t8SyIRoH9z8tXb/37T8r6vW1rCd3a5NbT6y6GKrf1tYQ2BrCG0+MfK7QgjRZklAE0I0PocdcvY3BLL12nQmR722CW7kQOg1Sxsp84uTKYtCCI3Rok1pjhgAgx4Fh0ObFnl6q9Yg6OR6OPi5dlurv/a7JGoIRA6RL3eEEG2KBDQhROOoKIATayFtNZxcC1VF2uWBXWHAQxA9QltbYrQ4t04hROug00Fgonb0u19br3r+ZEM31y1wahMc/kq7rXtQw2j8YO1UpkcLIVoxCWhCiGvjcMC5A5C2Bo6vgqw9gApWP+g4DqJHaq243fycXakQoi1QFPCN0Y5ed323wVD6ejjU0LLbFqZNm+4wDDoM1aZTCiFEKyEBTQhx5WrKtGmLx1dpwawiD1C0DaGHPQmxo7V9yWTaohCiqSmKNrXRJxp6392wRccxrfHQqQ1wdCns/0S7rX/Cxf3bIpLA7ObMyoVoF+655x6WLl2Kv78/KSkpAMyfP59nn32W1NRUdu7cSe/evZ1cZcskAU0I8eNKs+HYCu04tQHstdp+ZDGjIHYMxIyUlthCCOdTFPDvrB1972tYC3sA0pO1Y9f/YPsboDNAaF9tHWz0SG0fNp3eycUL0fbMmjWLhx56iDvvvPPCZYmJiSxYsIBf/OIXTqys5ZOAJoS4nKpCbkpDKFuudVUD8IqCvvdDp/Ha5rJ6+fUhhGjBdHoI6akdg38LdVVwZntDYFsP61/QDhdvbWQtZpS2VtYjyNmVC9EmDBkyhIyMjMsui4uLc04xrYx8whJCaOvJMndB6mLtKD4DKBDaB0b+GTpNAL9OsuheCNF6GV0aRs2GA89pjY1OrteaGp1cB4cXaLfzT4CYEdroWkQSGMxOLVuI6/Xyzpc5Wni0UR+zs3dn/tD3D436mOIiCWhCtFf2eji9GVKXQOpSKD8HehN0GA6DH9NGymRhvRCirbL6QtebteObmQMn1mqBbcfbsPU/YLRqo2uxo7XDFursqoUQ7YAENCHak/pabWrPkcVwbJnWCt/oqn3wiJuirSmzeDi7SiGEaF6KAoFdtGPQI1BboXWGTFujHceWabfzT2gIa2MgrC/ojU4tW4grISNdrY8ENCHaOnsdpG/Qpu8cXQrVJWC2aSNkcZO1NRcmV2dXKYQQLYfJqv2O7DReG10rOK7t8Zi2Gra9Dlv+pf0ejRkBHcdroc3V29lVCyHaCAloQrRF9nrI2Kht4pq6RBspM9ug80RImKZN2TGYnF2lEEK0fIqircH16wRJD0N1qdbR9vgq7Tj8FSg6COsHHcdqgU3W7ArBzJkzSU5OpqCggNDQUJ577jm8vb15+OGHyc/PZ+LEiXTv3p1Vq1Y5u9QWRwKaEG2FwwFntsGh+Vqjj8rzYHLTGnwkTtdGymSxuxBCXB+Lhzb7IG6y9ns3Zx8cWwnHV8LXz2qHVyR0HKeNwEUMlKmQol2aM2fO914+bdq0Zq6k9ZGAJkRrdy4FDs2DQ19Caaa2pqzjOC2UxYzSOpcJIYRofDodhPTSjhFPQ0mWFtSOr4TdH8COt8Big9ix0HmC9jvZ7O7sqoUQLZwENCFao+Iz2kjZoS8g74i28Wr0SBj1rPYhwGR1doVCCNH+2EKgz73aUVuhtfE/tlzbV/LQPK1TbtRQ7fd0pwngHujsioUQLZAENCFai6pirdHHgc/h7HbtsrD+MOHv2royq69TyxNCCHEJkxXiJmmHvR7O7tDC2tFlsPRR7QjpfXG6pE+0sysWQrQQEtCEaMns9dqePPs/076BtdeAX2cY8UfocpO2zkEIIUTLpjdA5EDtGPM85KVqrfuPLoOv/6wd/gkXw1pAgjQZEaIdk4AmREt0LgUOzIGD86AiD1y8odcs6D4TgrrLf9xCCNFaKQoExGvHkMe1KetHl2kddze8DBteAq+ohtG3Kdoom07n7KqFEM1IApoQLUXFeTj4uTZalnsIdEatZXP32yBmtLTFF6KJORwOVHs9ar0dh8MB9npUux17vXaKQ9VuqNO+IFEUHegUFLQPz4pOQWcyoTeZUIxGdPKhWlwJz3Do/yvtKM/TpkGmLoHtb8HW/4BHiBbU4qdqrfzlfSVEmycBTQhncti1ReT7ZsPR5eCog+AeMP5VSLwRrD7OrlAIp7DX1VJ9/jw15wuoKiykpqiY2ooy6irKqa2spLaykrqqSuqqq6mrqaG+tob6+jrs9fXY7faLh2rH7lCxqw4cqooDcKCignZeARUFh0Kjj0wrqoqigsI3p6C7cCjoFQVdw6FXdOh0evR6HQa9EYPRgMFgxGgyYTCZMZrNGCwWjBYXTFY3TO7umD08MNs8MXt6Yfb0xOLtg8FqlWDYmrn5a7Mles2C6hKtff+RRbD7fdjxX3ALhPgpEH8DhPcHnd7JBQvxw+655x6WLl2Kv78/KSkpADz++OMsWbIEk8lEdHQ0H3zwAZ6ens4ttAWSgCaEMxSegv2faqNlpVnaFMa+90GPn2nTXoRo5RwOB3UlxZRnZlJ+LoeqgnyqigqpLimhuqyUmopyqqsqqa2poaa2hjq7nTqHnTpU6hWwX0XIUFQVvUNFD9qh6BpCj4Jep8ds1KHX69Hr9Oh0WhDS6RvO6/Xo9XoUvb7hch2KorswOqZTFNDptNCjKKBqo2iqqoJKQ9RDu1xVcTgcOOx27XDYUR0OHHYHqmrHYXdgt9fj+CY8OrRTh8OBQ3VQW1+Hvc6BXa3EjoodsCsKDt2VB0dFVTE4VEwoGHU6THoDJqMRk8mC2eKC2eqK2c0DV08vXLy8cfXzxzUwEGtwMBYfXwl3LYnFBt1u0Y6aMm1T7CMLYe9s2PkOWP219WoJ0yAiScKaaHFmzZrFQw89xJ133nnhstGjR/Piiy9iMBj4wx/+wIsvvsjLL7/sxCpbJgloQjSXumptA+m9syFjE6BAzEgY+zet3bJMYRQtmMPhoOZ8IeVnT1OWmUlZbjaVBflUFBVSVVZGdVUl1TXV1NTXUaM6qP2JYKGoKsaGIGHS6zEZjLgZXTGZzJjMFkwuLphcXTG7uWF288Dk7o7JzQ2Tmzsmdw9MNg/MHp6YPW0YXNv2thL2ulrqSsuoLS+jpriY2pJiakpLqCktpbasjJryMm1EsbKS2upKaqqqqK2p1oJvfT0lVZXUVZZT9xPBV1FVTA6VAFVHX6sPeh9vDN6XnHp7YfDxQe/tjcHPD53ViiLrYZuH2V1rDNXlJqgph7TV2sjagTmw+z1wC9BG1RKmyTRI0WIMGTKEjIyMyy4bM2bMhfP9+/fniy++aOaqWgcJaEI0tfzjsOdDOPAZVBWBZwQMf0Zr+GELdXZ1op1zOBxUZGVSeiqd0jNnKMvNoTw/n4qSIioryqisqabaXk+1Ao4f+NBntDswo2DWG7CaXfC2WHBxteLiYcPV5omLtw8uPj64+Pji6h+Aa0AgRg8PGa25QnqjCb2PDxYfH4i4vseqr6ykMi+XipxsKvNyqSwooKqokKqSYqrLysg8n8e5uhpUu52a1KNUFBbiKC393sdSXFww+Plh8PXVTi85b8o9R01oKIaAAHRubhLkGpPZDRKna0dthTaydngB7P0Idr6trVmLv0G7PqSXNJUSnPvb36hJPdqoj2mO60zgU09d12O8//773HLLLY1UUdsiAU2IplBXrS3y3vMBnN6ibSTdeZK2riBqqHy7KZqFw+Gg/Mxpik+kUXI6g9KcLMoK8ikvKaGiqoLK+rqG4PXdD3BGuwOLosPFYMTP6o6r1R2rzYartw9W/wDcg4JxCw3DPSyszY9gtSUGV1c8IqPwiIz63us3fvoBe5cvIvLTTy5cptbWUl9UjL3wPPWFhdjPn6c+v4D6/HztKCigJi2Niq1bcZSVAeAFpL/2HwB0rq4YAgMxBPhjDAjEEBiAMTAIY3AQxuBgjEFB6KzyHromJuvFsFZTpq1ZO7wAdr0L298AWzgkToPEmyCwi4Q10WK88MILGAwGbr/9dmeX0iJJQBOiMRWkaaNl+z+DqkJtn7JRz0L327XF30I0Ikd9PfVZmZxctIDi0xmUZGdTVlhAWXkpFbU1VCrqd0a9FFXFxQGuBgO+bjbcbTas3j64+wfiHhKCR3gEtg7RmDxsTnpVwpmMZgv2em2dnE6vrWlSTCaMAf4YA376d5ijupr6/Hx2rVxJYnAw9edyqcs9R/25XOpzc6nYvp36vDxwOC67n95mwxASjDEoWAttwcGYwkIxhmqH3s2tSV5vm2J2h643a0dVsbZ3ZsqXsO0N2PJv8O2oBbUuN8mm2O3M9Y50NbYPP/yQpUuXsnbtWhld/wES0IS4XvZ6bcPRXf+DUxsbRssmNoyWDZPRMnFdKvPzOH/oIIUnjlOceZaSvFzKSksor62msmH068AltzfZHbjq9Hi6uhFm88LDzx9bcDAeYZF4xsbiHh6BziC/+sX3M5rNANTV1GB2db3q++ssFkxhYdTFxmIbNux7b6PW11NfUEBddjZ1WdnU5eRQl52lnZ45TeW2bTgqKy+7j97LC2NoqBbaQkIxhoViCo/AFBmBwd8fRX7PXs7FU5tG332mtoVL6iI49CUkvwjJf9P20+xyEyRMB1uIs6sV7cjKlSt55ZVX2LBhA67X8DumvZD/pYW4VmXnYM9H2ohZWTbYwmDEH7VOjO4Bzq5OtCKVubnkH9zP+WOpFJ09TXF+PqUVpZTb66nVX/7B02h3YNXp8bK6E+HlTTU6OvXui1dMLF6d4zBLu2JxHQxmCwB1NdXXFNCuhGIwYAwMxBgYCD17fud6VVVxlJRQm5lFXeZZas+epS4zi7qzZ6k6fJjS1Wugvv7i45nNmMLDMEZEaKEtIgJTRDimyEgMAQHyDb3VB3rfox2l2ZCyAFK+gNXPwOo/ah0gu9wMCTeAi5ezqxVtyMyZM0lOTqagoIDQ0FCee+45XnzxRWpqahg9ejSgNQp56623nFxpyyMBTYiroaqQsUWb35+6BBz1ED0CJv5D21Ra2hyLH1BfVUXBgf3kHz7E+VMnKTyXTWlZKWX2uu+EMIvdgbvRTJjNC0//QLzCIvCOicU7IRFrYNBlt01OTibuB0YqhLhaF0fQqp1Wg6Io6D09cfH0xCUx4TvXq3Y79efOUXvmDLWnT1N7uuE0I4OKjZtQa2sv3Fbn6oopMhJThw6YoiIxR0Vp5yMi0Lm4NOfLahk8giHpIe04f1KbAnlwHix9BFb8HmLHaGGt4zgwWpxdrWjl5syZ853L7r33XidU0vpIQBPiStRWwIG59N79b9hwWtufpu8voM+9MpdfXKYyP4+83bvIO5LC+dOnKC48T2l1JRU6UC/5Jt9sd+BuMBHm7YeXfyDekVF4d4rDr1t3Wf8lnMZoaRhBq3ZeQPspil6PMSQEY0gI1gEDLrtOdTi08NYQ2GrST1F76hRVe/dSumzZhX3sAIwhIZhiojFHx2COjsYcE40pOrr9rHfziYahv4chj0POfjg4XxtZO7oUzB7ahthdZkDkIPnyUYhmJgFNiB9TdFobLds7G6pLUN06wJT/aAutTTJ3uj2ryM7m3O4d5Kce5vzZ0xQVnqektprqS0bDdA4VNxQ8Xd2I9PXDJzwS305x+PfsjWuATIMVLY/xwhTHGidXcm0Une5Ck5FvhzdHdbUW3NLTqTl1itqT6dScPEnltu2XjboZAgMbAlsM5o6xmDt2xBwT03ZH3BQFgntox5i/amupD82Hw4tg3yfgHqytV+t2KwR8d0RTCNH4JKAJ8W2qChmbYcdbcGw5oGjfJPb7JXtOVjGs53BnVyiaUW1pCbm7dnLu4H4KTp2ksCCf4tqqy4KY3uHAXdET6OGFd0AwvjGxBHTrjk+XbugbpowJ0Rp8M8WxvpUGtB+js1iwdOqEpVOnyy5X7XbqMjOpOXGCmhMnqTl5gtoTJymaOxf1m5+DomAMD8PSsSPm2I5aaOvYEVNEOIq+DY0u6fQQPVw7Jv5D6wR5cB5sfxO2vgYBXbSg1uVmWWstRBOSgCbEN+qqtG8Nd7wNuSng4g0DH9GmMX6zoXR6sjMrFE3I4XBQfDSV7O3byD12hIKcLIoryynXcWHvIJ1DxR0dAR5e+ASF4N+xEwE9euMdnyCdEUWbYLykSUh7oej1DY1FInAfOfLC5ardTu2ZM9QcT6Pm+HFq0rTTsrXrLmwToLi4aKEtrjOWznFY4jpj7tixbYy2GV0u7rFWUaA1FzkwB1Y/DWv+CB2GQ7eZWtdimVEiRKOSTxRClOVqLfJ3/U/bu8w/QZvG2OVm7T8o0ebUV1aQs20rOfv2kHfqJIXn8ymur6XuklExV7uKl6uVDv5B+EXHEtijF349esqImGjTDC2gSUhLoej1mKOiMEdFwdgxFy53VFdrI23HjlF97Cg1qUcpXbac4rmfazfQ6TBFRGhhLS4Ol4QELPHx6Ftzh1WrL/S7Xzvyj8PBudrI2oKfg8kN4qdC99sgPEm2lhGiEUhAE+1X7mHY9iYcmgf2Oug0Hvr/CiIHXxgxEa1fTVEhWVs2kbN/L3mnT3G+pIhSHBcadugdDjx0BiK8/fGNiCSwSzeCBgzE1U82FhftT3scQbtaOosFl8SEyzpMqqpKXVY2NceOUp16lOqjqVTtP0Dp8hUXbmMMCcHSENYsCQlYEuIxeHs74yVcH7+OMPJPMPwZOLNVG1U7vAj2fwqe4dqoWrdbwbuDsysVotWSgCbaF1WFk2th6+uQvh4MLtDzTuj3K/CNcXZ14jpVnz9P1uYNZO/bQ+7pDArLSyhT1AuB22R34GWyEOofSEBsJ4L69MevRw/0RpOTKxeiZbjYxbHtrUFrSoqiYAoNwRQactk0SXtxMdVHjlB95AhVhw9TfeQIZatXX7jeEBSES5cuWLokaqcJCejd3Z3xEq6eTqd1eIwcBONf1bo/7v8UNrwCG17WRtO6z4T4G8Di4exqhRPcc889LF26FH9/f1JSUgD44x//yKJFi9DpdPj7+/Phhx8SHBzs5EpbHgloon2oq9ZGyra9AflHwS1Q+waw193g2gq/wRTUlpaQtWkjWXt3k5dxkoLS4svCmMXuwNtiJSowmMD4REKSBuLZsTM6mX4jxA+SEbTGpff0xJqUhDUp6cJl9tJSbZTt8GGqU1KoSkm5LLSZoqJw6doFS2IXXLp2wRwXh87Uwr9EMrlC1xnaUZIJBz+H/XNg8cOw/PcQNxl63A6RQ2QKZDsya9YsHnroIe68884Llz3++OP89a9/BeC1117jL3/5i2xU/T0koIm2raoYdr+vdWQsz4XALjDtbUiYDoYW/h+euMBeV8u57dvI2r6VnBPHyS8soFS5OE3RbHfgbXGlQ1AoQYldCB00FFu0jIgKcbX0BgOKTkd9rYygNRW9hwfWfn2x9ut74bL6oiKqUw5TnXKIqoOHKN+6lZJFiwFQjEYs8fG4dO+GpWtXXLp1xxgSjNJSp+LbQmHw72DQbyFrjzaqduhL7UtSW7i2Vq37TPCKdHalookNGTKEjIyMyy7z8Lg4mlpRUdFy38dOJgFNtE0lmbD9v7DnQ6gth+gRWjDrMEzWl7UCRcePcSZ5LTlHUsg7l02hvRZ7w7euBrsDH6OFsMBgghMSCR08DFtsRxkZE6IRKIqC0Wxu0RtVt0UGLy/cBg/CbfAgQFvTVp+bS9WBg1QdPEDVgQMUfT4P9aPZAOh9fXHp1g2Xbt1w7dEdS5cu6Bqmp7YYigKhvbVj7N/g6DJtX7UNL8OGl7T13j3ugLgp0gWyiW2ad5yCs+WN+pi+YW4MntHxmu779NNPM3v2bGw2G+vXr2/UutoKCWiibck9DFv/o7XLV1VIvBGSHoagrs6uTPyA2ooKspLXkblrOzmnTlJQUUpVQzdFRVWxoSPaN4jAjp0JSxqMf6/e0tJeiCZkNFtkiqOTKYqCMTAQY2AgHg0dJNW6OqqPH6fqwAGqDxygav8Byteu1e5gMGCJj8e1Rw9cevTApWcPjP4tqNGR0UXb7LrLTVB8Fg7Mhf2fwFe/gGWPaa38e/xMC3PyJWqb98ILL/DCCy/w4osv8vrrr/Pcc885u6QWRz7liNZPVeH0Vtj8f3BiDRhdoc99MOABraOUaFGK045zet3XZB06QG5+DsUOOw6d9h+yi92Br9WDoKhoQvv0J2TIMEytZcG8EG2EFtBkimNLoxiNuCQk4JKQALfdBmhTI6v27adq3z4q9+2laO5cCj/6CNC6Rrr07Ilrr5649uqFKToapSXMNPAMg6GPa9Mgz2yFfZ9qX6ru/Qj8OmtBrdutWmt/0SiudaSrqd1+++1MmDBBAtr3kIAmWi9VheOrYPM/4ewOcPWFEc9A73ul8UcL4aivJ2fbFs5s3kh22lHySoup1F/c9NlLZ6BTYBghiV0JHzYCr06dnVyxEMJoNssIWith8PLCfcRw3EcMB0CtraU6NZXKffuo2ruPiu3bKF2yBAC9zYZLr1649uqFa5/eWOLiUIxG5xV/WRfIl+HwAtj7sbYR9tfPalvf9LxTW6Kg0zuvTtGo0tLSiI2NBWDRokV07iz/738fCWii9bHXw5GF2ohZbgrYwmDC37W57LKxtFPVlpVxZs0qzuzcTs7ZU5yvqbqw+bPJ7sDP1Y34yGjC+yURNnwEBlerkysWQnybwSIjaK2VYjJdWJvGrFna/mxnz1K5ew+Vu3dTuWc35evWabd1ccGlezdce/fG2rcvlq5d0TVsVN7sLB7Qa5Z25KVqQe3gXEhdDB4hWmORHndIY5FWZubMmSQnJ1NQUEBoaCjPPfccy5cv59ixY+h0OiIiIqSD4w+QgCZaj/oa2P8ZbPkXFGWAbye44S1tTrveid8CtmOV+XlkrFrB2T07ycnOpMhRf2G6orsDwr39COmcQMTQ4fj26CWNPIRoBWQNWtuhKAqm8HBM4eF4Tp8GQF1eHlV7914IbQWvv0GB+roW7rp3x7VvX1z79sGlWzfnBDb/OBj3Nxj1LBxbDvs+ho1/144Ow6DXXdBponRibgXmzJnzncvuvfdeJ1TS+khAEy1fbQXs/kBr/lF+DoJ7wpjntV/Q8oG/WZWdPUP6iqWcPbCPc/nnKMEBioKiqniip1NQGGHdexE5eizuYbL+T4jWyGg2U1VS7OwyRBMx+vtjHDcOj3HjALCXlFC5Zw+VO3dRuXMnBW+8Aa+rF0bjXPv2xdq/H5Zu3Zp3PzaDCRJu0I6STK0D5N6PYf4scPWBbjOh513g1zLXVwlxPSSgiZaruhR2vattLl15XmvJO+0taZXfjEozTpG+cjlnD+zlXEEupQ15WOdw4GMw0zUknPA+/YgcMw6zl6z7E6ItkCYh7YveZsN9xAjcR4wAtI20K3fvoXLnTip37aLgzTcpeOMNFIsF1549cR3QH2v//lji41H0zbQ2zBYKw56AIY/DyfWw90Ntf9Ntr0P4AC2oxU+Vdv2izZCAJlqeqiLY8ba2j1l1McSMgiG/h/B+zq6szSs9nUH68qWcObCXc+fzKGsIZHqHA1+jhejwDkQmDSZ81ChZPyZEGyVNQto3vYfHZY1H7CUlVO7aRcX2HVTu2E7+P/5JPqBzd8e1Tx+s/fthHTAAU0xM0286rNND7CjtKM/Tlj3snQ0Lfwkr/wBdb9XWsQXEN20dQjQxCWii5ag4D9vfgJ3vQk2pNoVxyO8gpJezK2uzKs7lkL58Kaf37CQnL+fCCJkWyFyIjexARNIgwkeOweAiDViEaA9kDZq4lN5mw33UKNxHjQKgPj+fip07qdy+nYrtOy40HTH4+2MdMABr0gBcBwxo+n3Y3Pxh0CMw8DeQsVlr07/nA9j5NoT21YJawjQZVROtkgQ04Xzl+bD1Ndj1HtRVatMUhjwGgV2cXVmbU1NUSPqypZzetY2snEyKG9aQ6RwqvgYT0RHRRA0eStiIURLIhGinjA1dHFVVbfoREdHqGPz8sE2ciG3iRABqM7Oo2LaViq1bKd+wgZJFiwAwx8ZiTRqANSkJ1z590Lk2UVBSFIgarB3jXoYDc2DPh7DoAVj5JHS7RQtrQrQiEtCE81wIZv+D+mpIvEnbuNJf9sRoLPaaGk6vWcmpTRvIPJ3OeUcdakNTDx+dga6hHYgcMJCIcRMxWWXKohBCG0FTHQ7s9fUYnLlPlmgVTKEhmG6+Ga+bb0Z1OKhOTaViqxbYiubMpfCj2dom27164TZoINZBgzB36tQ04d/qA0kPwYAH4fRWLajt+Qh2vkMPj07g+Yg2qiZb8ogWTgKaaH4VBVow2/muFsy63Kwt/PWNdXZlrZ7D4SB3+1ZOfr2as8dTyauuoF6vA1XFEx1xgWFE9k2iw8RJ0tRDCPG9DCattXpdTbUENHFVFJ0Ol4QEXBIS8L3vPhzV1VTu2UPF5i1UbN5M3t//AX//B3o/X9yStLBmHZiEwbuR/z9SFIgcqB3jtVE148Y3YOGvtFG17rdBr7ulA2QTy8zM5MEHH+TIkSM4HA4mTZrEq6++iulHuoEWFxfz2Wef8cADDwCQnZ3Nr3/9a7744ovrrufZZ5/Fzc2Nxx577Cdv++GHH7J7925ef/3171w3YcIEPvvsMzw9PXnttdf473//S8+ePbn55pvp2LEj8fHXvwZSAppoPhUFWqv8ne9CfZU2YjbkcfkFeZ1KT2dwYvFCMvbvIafkPNUNG0Nb7SqR3v5E9OhN9KQp0vZeCHFFjJaGgFZdjYubu5OrEa2ZzmLBbeBA3AYOhD/8nrrcXC2sbdlMeXKyNh1SUbAkJOA2ZAhuQwZj6dKlcbtDunrDgAfZWR3PsEhDwzq1d2H7mxAxCHrfDXGTweCkTbrbKFVVmT59Or/61a9YtGgRdrud+++/n6effppXX331B+9XXFzMm2++eSGgBQcHN0o4a0zLly+/cP7NN9/k66+/JjQ0lFmzZjFp0iQJaKKVqCyELf/WfiHWVWobSw/5vQSza1RbUUHGssWkb91EVvZZihUVAKPdQaDVg/D4RKLHTcKvW3fnFiqEaJWMZguANAoRjc4YEIDnjdPxvHE6qt1O9eHDlG/eTMXGTRS89RYFb76J3tMT66BBuA0dgnXQIAxeXo3z5JeuVSvPh/2faFMgv7xX21etxx3aqJp3VOM8Xzu3bt06LBYLd999NwB6vZ7/+7//Iyoqiueee4558+bx1VdfUVJSQlZWFnfccQd//vOfeeKJJzh58iTdu3dn9OjRPPjgg0yaNImUlBQ+/PBDFi5cSEVFBWlpaTz22GPU1tby8ccfYzabWb58Od7e3rz77ru888471NbWEhMTw8cff4zrj6yBnD9/Ps899xx6vR6bzcbGjRsBbfRu3LhxnDx5kmnTpvHKK68AEBkZye7du3nmmWdIT09n/Pjx3HrrrSxevJgNGzbw/PPP8+WXXxIdHX3NP79mC2iKooQBs4EAQAXeUVX13831/MIJqoq1b6i2vQm15ZB4Iwz9Pfh1cnZlrYrD4SBv9y5OrFjK6eNHyK+twq7TNawjM9IjMpoOw0cSNmIUemMzbiIqhGiTvglo9bIXmmhCil6PS9euuHTtit8DD1BfVKStXdu4kfJNmyldulQbXevaRRtdGzoMS3wcik53/U/u5geDHoWk30D6etj9Pmx9Hba8BjEjofe90HGs1ta/DVj/4TvknU5v1Mf0j+jA8Fn3/+D1hw8fplevy7twe3h4EB4ezokTJwDYuXMnKSkpuLq60qdPHyZOnMhLL71ESkoK+/fvByAjI+Oyx0hJSWHfvn1UV1cTExPDyy+/zL59+3j00UeZPXs2jzzyCNOnT+e+++4D4JlnnuG9997j4Ycf/sFa//KXv7Bq1SpCQkIoLi6+cPn+/fvZt28fZrOZTp068fDDDxMWFnbh+rfeeouVK1eyfv16fH19SUtLY9KkSdx0001X8iP8Uc05glYP/E5V1b2KorgDexRFWaOq6pFmrEE0h5pybQPJrf/R9jGLnwrDngT/OGdX1mpU5RdwYvEC0nduI/t8LpWXTFuM9gsiqt8AoifegIufr5MrFUK0NTKCJpzB4OV1oTuk6nBoo2sbN2qja6+/QcF/Xsfg54d16BDchw3DOmAAuuttbqXTaYEsZiSUZmt7qu35EObOBI9QrftjzzvBPaAxXqL4ltGjR+Pj4wPA9OnT2bx5MzfccMOP3mf48OG4u7vj7u6OzWZj8uTJAHTp0oWDBw8CWoh75plnKC4upry8nLFjx/7oYw4cOJBZs2YxY8YMpk+ffuHykSNHYrPZAIiPj+f06dOXBbSm1GwBTVXVHCCn4XyZoiipQAggAa2tqKvSWuVv/j+oLICO42D4UxDUzdmVtXgOh4PsjcmkrV7BmfS0C90W9Q4HAS5WusUlEjthMn7dezq7VCFEG2cwf9MkREbQhHMoOh0uXbrg0qULfg8+SH1hIRWbNlGWnEzZylWUfPElitGIa9++uA0bhtuwoZiu94OzRzAMe0LrJn1sBex+D9Y/Dxtegs6ToM+9EDlYmyrZyvzYSFdTiY+P/87asdLSUs6cOUNMTAx79+79TifPK+nsaTZfXCuo0+ku/Fmn01FfXw/ArFmzWLhwId26dePDDz8kOTn5Rx/zrbfeYseOHSxbtoxevXqxZ8+e7zyXXq+/8PjNwSlr0BRFiQR6ADu+57r7gfsBAgICfvKHKpxPcdQRlLOaiNPzMdcWUejVnYxOv6fU1gmOFcGxZGeX2GjKy8sb7T3pKCmhcvd2StPTKKyuoMagTaVwr3cQavPGvVM85u690JnN1AKHi0tB/j2Ib2nM96QQAJUFeQDs37OH08Vl1/QY8r4Ujc5mg6lTYdIkjCdOYj50iLpDh6jYsoXcF16gPjiImq5dqenalbrISG107BJX9570gPBHcfG9heDslQQe/xrjkYVUuIaSHTyBc4HDsBta9tY0NpuNsrJr+/fbGPr27Ut5eTlvv/02t912G3a7nUceeeTC+erqalavXs3p06dxcXFhwYIFvPHGG4AW5L6pvby8HIfDQVlZGdXV1dTW1l64TlVVysvLMZvNl11XWlqKu7s7hYWFzJ49m6CgIMrKyqipqcFoNH7n55Kenk58fDzx8fEsXbqUo0ePfue56uvrqayspKys7LLnvfS82WwmPz//e3/u1dXVV/U7sdkDmqIobsCXwCOqqpZ++3pVVd8B3gHo3bu3OmzYsOYtUFw5hx0Ofg7rX4SSMxCeBCOexjtyEG21gXtycjLX+p50OBzkbNnEiVXLOX3iGAUNo2SGhuYeUV170HHqdDxjpXmKuHLX854U4vsUncsmdf5sOsZEkzB02DU9hrwvRZMaOfLC2dqMDMqSkylfn0zlmq+xrlyF3tcXt2FDcR8xQpsK6eJyHe/J27QZQoe/wrrrf8SeeIfY059C1xnQ5+cQmNhoL6sxpaam4u7u3C6sixYt4oEHHuDvf/87DoeDCRMm8Pe//x2z2YzFYqFfv37MmjWLzMxM7rjjDoYOHQrAoEGDGDBgAOPHj+fBBx9Ep9Ph7u6OxWLBZDJdeF2KouDm5vad655//nlGjhyJn58f/fr1o6ysDHd39wsh6ts/l+eee460tDRUVWXkyJEkJSWRlpZ22XMZDAZcXV1xd3e/7HkvPX/nnXdy33338c477/DFF19c1iTEYrHQo0ePK/7ZKaqqXu/P/8qfTFGMwFJglaqq//yp2/fu3VvdvXt30xcmro6qwtGlsO55yD+qTWEc+SeIHtkqh/6vxtX+gq8tLeHEwgWc2LqJzIJzVDWsJfNwQFhIBDFDhhM5fiIGF9k0U1wb+SAsGlt5USFv//JORt77AN3HTLimx5D3pXAGe0kJ5Zs2U75uHeUbN+IoL0cxm7EmJZEVGkLvX/4SQ8Oap2uWtVdbzpHyhbaXa1h/6Htfi2vVn5qaSlxcy137/2P7jLVF3/f3oSjKHlVVe3/f7Zuzi6MCvAekXkk4Ey1U+gZY+xxk7QGfWLj5I60JSBsPZlej8Mhhji36klOHD5JbU4lDp9PWklms9EjsRqcbpuPd+fr3yBBCiKZwsYujNAkRrYveZsM2aSK2SRNRa2up3LOHsnXrKV+3Dtv69aR98ikuPXviPnIk7qNGYgq/hv1BQ3pqx5i/wv5PtbD25b1g9dMaivS+B2yhjf/iRLvSnFMcBwI/Aw4pirK/4bKnVFVd/sN3ES1G1h5Y+xdIT9Y6G015HbrNBL1speeor+f0qhUc/3oVZzIzKG2Y9u5qV4n1DyY6aQjRU6dhcvJUAyGEuBJGaRIi2gDFZMI6YADWAQNQn3qSLZ9+SqfiEsrWriXvlVfIe+UVzLGxuI0aifvIUVgS4q+oScUFrt6Q9DD0fxDS18HO/8Gmf2qN0jpNgL73Q9QQ+QL7B8yaNYtZs2Y5u4wWqzm7OG4G5F3a2hSkacEsdbG2kePYF7Vvh4wWZ1fmVNXnz3NswTxO7thKVvF5avUN+5LpjfSO7UzHCZMJ6DcAXWPs1yKEEM1Ip9ejNxikzb5oMxRFoT40FL877sDvoQepzcyifN1ayr5ey/m33+H8f9/CEBSE+6hReIwZjUvPnij6K9wDTaeDmFHaUXRa21Nt72xtKYhvJ236Y9dbwOLRtC9StCky/CG+X9k5SH5J+yVjdNH2MRvwIJjb7yhQ4dEjFH81n0/f/Q95tdU4dFqDj2A3Gx169qXzjTdjDZFpDUKI1s9otkhAE22WKTQE7zvvxPvOO6kvKqJ8fTJlX39N8eefU/Txx+i9vbVpkGPGYO3XF8VkurIH9oqA0c9pn5kOL4Cd78Dyx+DrZ6HbrdDnPvDv3KSv7VKqql7dqKBoEtfS70MCmrhcdQlseQ22vwn2Oq1D0ZDHwc3P2ZU1u2/2Jju6fDGnM05SrGj/wKx2lY6BIcQOHUmHSVOkwYcQos0xWCzUVcsUR9H2Gby88Jw+Dc/p03BUVFC+aRNlq1dTumwZxfPno3N3x234MNxHj8Zt8GB0liuYQWS0QPfbtCNzD+x6V/vCe9f/IGqoNv2x03jQXeEo3TWwWCycP38eHx8fCWlOpKoq58+fx3Il75tLSEATmvoabaHrxlehqhASb4IRT4N3B2dX1qzqq6o4ufgr0jas40xettZ1UVXxUQz0jOlEXUQHRv38fpm6KIRo02QETbRHOqsVj3Hj8Bg3DkdNDRVbt1K25mvK166ldPESFFdX3IcNxX3MWNyGDEbn6vrTDxraSzvGPA97P4Jd78Pnt4MtHPrcAz3v0tazNbLQ0FAyMzPJz89v9McWV8disRAaenUzrCSgtXcOh9Yqdt1fofgMdBgGo56D4O7OrqzZVOUXcOyLuZzYuZXssmLq9Dp0DgeBFiu9u/Wk040zsHXQ9rJITk6WcCaEaPOMZjP1tTKCJtovndmM+/DhuA8fjlr/HJU7d1K6ajVla9ZQunwFiosLbkOG4DF2DG5Dh6Kz/sTG1VZfGPw7SPoNHFuuTX/8+lltOUniTdDvfm3bokZiNBqJiopqtMcTzUsCWnuWvgHW/BFyDkBgV/jZvyF6hLOrahalGac4Mu8z0g/sI7e2CodOwWR3EOrpQ+yAwXS8cQZmT09nlymEEE5hNFuoq5YRNCEAFIMBa1IS1qQkAv/0Ryp376Fs1SpK16ymbNUqba+1wYPwGDcet2HD0Lv9SFjTGyB+inbkHtGmPx6YC/s/gbB+2vTH+KmgNzbfCxQtjgS09ijvKKz5E6StAlsYTH9X+/amjY8M5e/dw5GFX3Dq2BHOq/WgKLjaHXQMDKXTqLFETZyM3niFC4GFEKINM5rNVJeXObsMIVocRa/H2q8v1n59CXj6Kar27dNG1latovzrtShmszayNn4cbsOG/fg0yIB4mPR/MPLPsP8zbVTty3th9TNax+xes8DNv9lem2g5JKC1J2XnYP3fYN/HYHLXpjL2+2WbbZnvcDjI2byR1CULOZVx4sL+ZDaHQrfIWDpPnELwkGEyZVEIIb7FaLZQdr7A2WUI0aIpej2uvXvj2rs3AU8+oYW1FSspXbWSsjVrUCwW3IYNw2PcONyGDkH3Q03FXDxhwAPaZ7ITa2DH27D+Ba0vQMJ0bfpjSK9mfW3CuSSgtQc15bDtda07o70G+v5C68xo9XF2ZY3um02jj65axunss1ToFa3Jh85An04JxN04A79u3Z1dphBCtGhGs1mahAhxFRSdDtdevXDt1YuAJ5+gcs8eylau1EbXVq5EcXHBffhwPCZOwDp4MLrva92v00HHsdpRkKaNqO3/DA7OhdA+2ue3+KlgkNk+bZ0EtLbMYdf+Ya/7K5Tnav+oR/4ZfKKdXVmjstfUcHLRAo6t/5oz+TlUN2wa7W+y0K1rD+JnzLzQ5EMIIcRPM1os1NVIkxAhroWi12Pt2xdr374EPP00lbt2Ubp8hda+f/lydO7uuI8ejceECVj790MxfM/Hcd9YmPAqjPjjxemPC36uTX/sc69Mf2zjJKC1VekbYNXTkHtI+9ZlxscQ3s/ZVTWa+soKji/4guMb1nG2KJ/ahs6LQa5uxPTqR9wtt2ENDHJ2mUII0SoZpM2+EI1C0eux9u+PtX9/Av/4DBXbt1O6bDllq1dTsmCBtin22DHYJkzApVcvlG8vu7B4QP9fas1DTq6FHW9dnP6YeKM2LbIddd5uLySgtTUFabD6j3B8hbbHxk3va/OX28AmhbVlZRybP5fjmzeQVVpInV6H3uEgxM2TjgMG0XnGrZi9Gn8vESGEaG+MZgv1NTWoDsd3PzAKIa6JYjTiNngwboMH46h5lvKNGyldvpySrxZSPGcuhoAAPCZOxDZpIua4uMs3mNbpIHa0dlw6/fHAHAjrD/1+AXGTpftjGyEBra2oLNT20tj9HhhcYNSz0O9Xrb4BSG1pCalzP+X41s1kVRRj1+kw2h2E2rzpOHAYHW++BZO7u7PLFEKINsVoNgNQX1uL0dK6/x8RoiXSmc14jB6Nx+jROCoqKFufTOnSpRTOnk3h++9j6tABj4kTsE2ciCky8vI7X5j++Azs+xR2vg1f3A0eIQ3TH+9uks2vRfORgNba1ddqe2hseBlqyrQd6Yc/1arnJdcUFZL6+RyOb9tEdmUpdp0Ok91BpJcfnYaOJHb6jRhcf2JDSCGEENfsm4BWV1MtAU2IJqazWrFN0kbO6ouKKFu9htKlSyn4z+sU/Od1LF26YJs0Effx4zH6X/L5zmJr6P74C0hbAzv+C2v/Ahtega4ztOmPAQnOe2HimklAa61UFY6v1NaZFZ7UNpge84K2p0YrVH3+PKlzP+H4jq3kVJVdCGVRPgF0HjGamBtuRN/wgUEIIUTTMpq1UCbr0IRoXgYvL7xumYHXLTOoy8mhdPkKSpYtJffFl8h9+RWs/fvjMXky7qNHX9wQW6eHTuO0Iy9VW6d24HPYOxuihmgzqjqO1W4nWgUJaK1RXiqsfBLS14NPLNw2HzqOcXZVV62mqJAjcz7h+PYtZFeV49ApmO0OOvgG0HnkOKJvmCYbRwshhBN8M2omnRyFcB5jUBA+996Dz733UHPyJCVLl1K6ZCk5Tz7Jueeew33ECDymTMZt4EAUY8PaM/84mPxvrWv33o9g5/9g7kzwitTa9Pe4XRt5Ey2aBLTWpLJQ22h69/tgdoNxL0Gfn7eqBaE1xcXamrJtm8iqLMWh02G2O4jxC6LzqLF0mHKDhDIhhHAyGUETomUxR0fj/5vf4PfrX1O1bz8lSxZTtnwFpcuXo/fywmP8eGxTJmPp1k1rLuLqDYMehQEPw9ElsP0tWPWk1gGyxx1aV8g2tu1SWyIBrTWw12mhbP3foKZUW/w5/OlWs9H0xUYfm8iqKLkwfTHaN5DOo8YRPVVCmRBCtCQGU8MatGoZQROiJVEUBdeePXDt2YPAJ5+kfPMWSpYspvjLLyn67DOMEeHYpkzBNmUKprAw0BsgYZp2ZO2FHW/Drve0047jtBb+UUPbRLfvtkQCWkt3Yq02nbHgmPYPaNyLrWLBZ21FBcc/n8PRTevJLC+6bE1Z3CiZviiEEC2Z0XKxSYgQomVSTCbcRwzHfcRw7GVllK1eQ8nixReai7j06oVtyhQ8xo9D7+EBIT1h+tsw+jktpO1+H2avAP94raFI1xlgdHH2yxJIQGu5CtO1BiDHloNXFNz6GXSa0KK/4aivquL4l/M4uv5rzpacp16vtcSP9PIjbuQYYqbdJI0+hBCiFZApjkK0Lnp3dzxvnI7njdOpy86mZMlSShYt4tyf/0zuCy/gNnw4tqlTcBs8GMU9EEY8DYN/BylfwPb/wpJfw9fPQu97tOUzHkHOfkntmgS0lqamHDb/E7b+B3RGbZHngAfB0DKDjb2ulpMLvyJ1zQpOF+ZRp9dhsDsIs3nTedgoOt50CwYX+TZGCCFaEwloQrRexuBgfH9xPz7330d1ymFKFi+mdOlSylat0tarTZqE7YapWOLjUXrcAd1vh4zNWlDb9A/Y8i9ImA79f6WNuolmJwGtpVBVSPkSVv8RyrKh6y0w6rkW+Q2Gw+EgY/kSjixfSkZeFjV6HXqHgxA3TzoPHkanGTNl82ghhGjFvuniWC9dHIVotRRFwaVLIi5dEgn4/eOUb9pMyaJFFM+dS9HHH2OOjcV2ww14TJ6EMWowRA3WZnDtfBf2fgyH5kFYfy2odZ6krWcTzUJ+0i1BzgFY8Qc4sw2CusHNH0B4f2dXdRmHw0FW8joOL15AemYGVXodOodKsKsbnQYMIW7mHZg9PZ1dphBCiEZwcaNqCWhCtAWK0XhxvVpxMaUrVlC8cCF5r75K3j/+gXXQQDynTcNtxAh0416EYU/Cvk+0PdXm3wW2MK3zY887wcXT2S+nzZOA5kyVhbDur7D7A60d6uTXtNanLWgjwXM7d5Ayfw4nT6VRrldQVJUAswt9evcn4Y67cPXz/+kHEUII0aoYGpo4yRRHIdoevacnXjNn4jVzJjXp6ZQsXETJokVkPfpbdB4eeEwYj+f06Vj6/wql3y/g2Apt+uOaP0LyS9D9Nm1UTdr0NxkJaM7gsGubB679C1SXQr9fwLAnwMXL2ZUBUHj0CIc++5gTR1MoVlRQVfwMRrp2703i7XfiHhbu7BKFEEI0IUWnw2A2U1ctAU2ItszcoQP+v30Uv9/8msodOyj+aiElXy2keO7nmGKi8Zw2DduUKRjungQ5B7Wgtvcj2PU/6DgW+j8AUUNadBO71kgCWnM7uwuWPwY5+yFiEEx4pUW0zS87e4aUTz7i+IE9FDjqQFHwQkefzl3octudeHXq7OwShRBCNCOj2SIjaEK0E4pejzUpCWtSEvY//ZHSFSsoWfAVea/+nbx//h9ugwdjmzYN94n/Rhn1LOx+T2vVP3sKBCRqI2qJN4HR4uyX0iZIQGsu5fla+9L9n4B7ENz4HiTe6NRvHKrPn+fwp7M5tmML5+qqUBUFN7tK9+iOdLl5Jv69+zqtNiGEEM5lNFukSYgQ7ZDe3R2vGTPwmjGDmvRTlHz1FSWLFlGenIze0xOPKZPxvPFGLI/+Fg7Nh+1vwqIHG9r03wt97gU3WQJzPSSgNTV7vbYR4PrnobYCkn4NQ38PZud0OayvquLYvM84sn4tWRXF2HU6XOwO4oLDSbzhJkKGjUCn0zmlNiGEEC2H0WyWJiFCtHPmDlH4/+63+D3yGyq2bqV4wQKK58ylaPbHWBISsN04HdttK9AX7odtb8KGl7TtorrcrE1/DEx09ktolSSgNaUz22HZY5B7CDoMg/Gvgl/HZi/DUV9P+tJFHF6xlNPnc6lr2EA6yieAhPGT6DBpKjqDvBWEEEJcZLTIFEchhEbR63EbPBi3wYOxFxdTsnQZxV9+Se5f/kreSy/jPno0njc+guvov6Lsegf2fwb7P9XWp/V/EGLHgAwAXDH5VN4UyvPh6z9rb0yPELj5I4if2uzTGbM2beDQl/NIzzzV0BbfQaibJ3HDRtB5xkwMrtZmrUcIIUTrYTSZJaAJIb5D7+mJ9x23433H7VQfOULxgq8oWbKE0mXLMAQH4TltOp63rMV4bhXseAfm3ALe0do6te63gUk+f/4UCWiNyWGHPR9o3RlrK2DgI9p0xmZ8IxYeOczBz2aTduwwpToutMXv128gCbffhcXHp9lqEUII0XoZLRbKCwudXYYQogWzxMcTGB+P/+OPUb5uHcVffEnBm29S8OabWJOS8Lzx77gFlqHb847WJG/dX6HXLG1PNVuos8tvsSSgNZasPbDsd5C9DyIHw8R/gF+nZnnqinM5HJr9Psf37iK/oQOjt05Hv8QedP3ZLDwio5qlDiGEEG2HQbo4CiGukM5sxmP8eDzGj6cuK4viBV9R/NUCsn77GHpPT2xTpmAb/iCW3EWw9T+w9XVIuEGb/hjay9nltzgS0K5XZaE2YrbnQ61jzfT/QZebmnw6Y21FBamfzebopvVkV1Xg0GkdGLt1iKXrLbfj36tPkz6/EEKIts1oNlNXK01ChBBXxxgSgt/DD+H7wK+o2Lad4i++oHDOHApn12Hp1hXPCS/i4ZmO/sgcSPkSwvppDUU6TwK9RBOQgHbtVFVbY7bmT1BVrM2rHfYkWDya7CkvNPtYvoTThXnU6XWY7Q5iA0LoMuVGwkaPkQ6MQgghGoXRbKFeNqoWQlwjRa/HbdBA3AYNpL6wkJLFiyn58kvOvfhv8lxd8Rh3O56JZiy5C1Dm3wW2cOj3C+j5M7DYnF2+U0lAuxZ5qbD0t3Bmq5b6J/4DArs02dPlbNvCwXlzOHk2nSq9Dr3DQaiHFwkjxtLx5lvQm81N9txCCCHaJ63NvgQ0IcT1M3h74zNrFt533UX1gQMUzZ9PyfIVFC+owtwxFs8hE7GZ96Jf/TQkvwQ97tDCmnf7XKYjAe1q1FbAhldg2+vaPmZT/gPd72iStqElJ09w8OMPOH7kIMWKCqpKoMmFfv2l2YcQQoimZzRbsNfX47Db0en1zi5HCNEGKIqCS/fuuHTvTsCTT1K6bDnF8+eT+79F5JlMuA+5Gc/IUlx3vouy823oNAEGPAjhA5q9G7ozSUC7UkeXw4o/QMkZLZSN/gtYGzck1RQVkvLxhxzdvoVz9dWgKHii0DeuG13vvAdbh+hGfT4hhBDihxgbZmfU1VRjlm1ZhBCNTO/mhtctM/C6ZQbVqakUz59PyZKllH5dhim8J569fLEd24Lh6FII6q4FtfgbwGBydulNTgLaTyk+qwWzY8vALw7uXgERSY328Pa6WtK+mMfhNSs5W1aIXafDxe4gMawDXWfMJGjAwEZ7LiGEEOJKGS0WAOqqJaAJIZqWJS6OwD/9Cf/HH6d05SqK588n76u95Bs9cO/VA8+qDFyz70NZ8yfoex/0uhtcvZ1ddpORgPZD7HWw/b+Q/KLWEGTUs1or0EZK7Vkbkzn4xVzSs89QrddhsDuI9PIjcfxkOky5AZ1B/mqEEEI4j9HcENCkk6MQopnoXFzwnHYDntNuoCYtTVurtmgxpdurMQZ1xauzii3/eQwbXtU2ve7/K/CNdXbZjU5SwPc5uwuWPgK5KdBxHIx/BbwirvthS06e4MBH73M89SAlDZtIB1msxA0cSvwdd2Fyd7/+2oUQQohGcCGgSSdHIYQTmGNjCXzqKfx/+1vKVq+maN488tbvIc8QgnucD145c3Hd9R5Kx7Ew4AGIGtpm1qlJQLtUdYm2p9mu98A9CG75RNuT4Tr+smuKi0mZ/QGp2zeT27CuzEtp2ET6zrvxiIhsvPqFEEKIRmK4sAZNRtCEEM6js1i0ja6nTKHm5EmK582nZOFCyg7ZMPqF4pW+D9uhaRgi4rURtS43g6F1dziXgAbaFMYjC7W1ZhX50O+XMOJprVPjNXDU13Piqy9JWbmUM6XnL64rC+9Atxm3E9h/QOPWL4QQQjSyS5uECCFES2COjibgySfw++2jlK1aRdHn88jbtYf8fSG4dyjD8+CjuEY9i9L3Puh9D7j5ObvkayIBrSgDlj0GJ9ZAUDeYORdCel7TQ53bsZ0Dcz+5sF+ZweEgwuZL4vhJRE+dLuvKhBBCtBoXpjhKQBNCtDA6s/niqFpaGkXz5lOyaBGlx30xHTThufffeMb8E32fm6H/AxAQ7+ySr0r7TQz2Otj2hrYZnk4P416CPveB/up+JGVnz3Dwo/c4dnAfRYpD26/M7EL/AYNJuGMWZk/PpqlfCCGEaELfdHGslymOQogWzBwbS+DTT+H/20e1DpCff07e/v3kp+jw2LsczzVzcemThDLgIYgZ1ST7Fze29hnQMvfAkl9rTUA6TYQJr4At9IrvXl9ZweFPZ5O6cT3ZNRWoioJNhT6du9LtrnuwRcc0YfFCCCFE05MRNCFEa3JpB8jqY8co/vxzShYtoiTdjHnvcbxW34VHrxD0g38F3WaCydXZJf+g9hXQaspg3fOw4+2GJiCfQtykK7qrw+HgzKoVHFq8gFP5OdTpdZjtDjoHhtH15lsJHTq8iYsXQgghms/FLo4ygiaEaF0snTpp+6r97neULF1G0dw5nNtzlNyDldjWPodXwvNYxszS9lTzCHZ2ud/RfgLasRWw7HdQmg19fg4j/wQWj5+8W+GRwxz4+EOOpx2hXK+gc6iEutlIGDWOTjffit7curvECCGEEN/HIE1ChBCtnM5qxeuWGXjOuJnqQ4comjuXkmXLKD5Zi2XLbLxi38Fj3Fh0gx+65h4UTaHtB7Syc7Di93BkEfjHw80fQVifH71LTVEhhz56n9QdW8iz14Ki4Gsw0K1nX7re9XNcAwKaqXghhBDCOfQGA4pOJwFNCNHqKYqCS9euuHTtSsAf/kDJokUUffoJOdvPkrt3K55Ra/Aa3BHThN9A54lafwonarsBzeGAvR/CmmehvlobMUv6NeiN33/zC63xl3CmtBC7ToerXaVrZAzd77gLv+4tJ1ULIYQQTU1RFIxmiwQ0IUSborfZ8L7zTrx+9jMqd+yk6NOPKVy3nsJj2ViXPIJntydxn/FLlN53XdFsu6bQNgNa/nFY/DCc3Q5RQ2DSv8An+ntvem7nDg7M/ZiTZxpa49sdRHr5kThxCh2mTEPXCjq9CCGEEE3BaLFIF0chRJukKArW/v2w9u9HXV4eJV98QdFns8laXYJh03/w7Ph/eE6bjHHMI+Ad1ay1ta2AVl8LW/4FG18FoytMfRO63waKctnNKs7lcPCD/3F0/y4K0VrjB5i01viJd92NycPmnPqFEEKIFsRoNlMnAU0I0cYZ/f3xfeABfH7xC8o3bKTow7cp2HWAgoOrcP/fIrxGdMV15uMokYO+kyuaQtsJaGd3aaNm+amQeKO2r5mb/4Wr7TU1HPv8M1LWriKrsgyHTsHdAb07JdD1znvw6tjJicULIYQQLY9McRRCtCeKXo/7iOG4jxhO7ZkzFM1+n5KvvqJsdhqmr+7Gq6cntjsfRN/vNjA0XaPA1h/Qasph3V+11vkewTDzc+g07sLVmRvWc/CLz0nPOUONXofR7iDWP5gu024mbORomcIohBBC/ACD2UxdtQQ0IUT7YwoPJ+CZZ/F77AlKly6m+MO3yd2QTd7ml7DFvITXTTdgmfYYuPk1+nO37oCWtgaWPgolmdo+BiP/BGZ3Sk9ncODD/3Hs8AFKFBVFVQl2cSNh6AjibvsZBlersysXQgghWjyj2UJddZWzyxBCCKfRWSx43jQDz5tmUJVymOJ3/knJum0Uv7AYl7e/xGtkN9zvfQZdeI9Ge87WGdAqzsPKJ+DQPPDrDPeupt4ngcMffcSRjevJqa1EVRQ8UeiX0JNud/8c97BwZ1cthBBCtCpGs4XKkmJnlyGEEC2CS2ICLq+9h39pKSWfvEvRnDlkf34E/cJb8Ozhg9c9D2IcNPO62/S3roCmqpDypbavWXUpjsG/52xtVw7+7W1O5edQp9dhtjvoHBxOt5tnEjJ4qLMrFkIIIVoto9ksXRyFEOJb9B4eeD/wO7x++SiVG9ZQ+M6/OL8jg/M7nsct/EW8bpqC9Y4nUFyurfFg6wloJVmw7LdwfCXFLj05UB7Psbe2Uabbhs6hEupmI2HkWDrNmIne3HSL9oQQQoj2wmiRJiFCCPFDFJ0O6/CxWIePpe7sGYreepHiFRsp/8dCjO8swGtkVzx/+Uf0kV2v6nGbNaApijIO+DegB/6nqupLP3knhwP2fEDt8mc5fMqTI5UDOYcCymm8dTqSuveh690/xxoY1NTlCyGEEO2K0WSWgCaEEFfAGBaO/wv/xffPtZTNeZuizz4mb2EK+UtmYOvmi9e9D2AZMfOK2vQ3W0BTFEUPvAGMBjKBXYqiLFZV9cgP3qm+hvSnx3DoWAUZukTq9XpcHA4Sw6PoduvPCOzbr5mqF0IIIdofo8VCXXUNqqqiNMPeP0II0drpTCZsdz2M7a6Hqd69kaI3X6FkxwmKH/wrLkEv4nXTJDzufupHH6M5R9D6AidUVU0HUBRlLjAV+MGAlnf6LF+lR6DTmwhz86LLuInE3jgDnaH1zMwUQgghWiuj2YKqOrDX1WEwmZxdjhBCtCqW3kMIen8I/gW5FL/1V4qWrOfMG4tIW3z4R+/XnEknBDh7yZ8zge8MgSmKcj9wP0Coty9616FUR1lRuoWSY/MgZ/Pm5qlWiO9RXl5OcnKys8sQ4gJ5T4qmlHtW+287ed1aDBaXK76fvC9FSyPvSeFMdoed46EhZA9OxJZZjaLaf/T2LW4oSlXVd4B3AGwhkWpmgBcR2RHkZCukh5yj76hYhvTriaKTqRai+SUnJzNs2DBnlyHEBfKeFE3poL2GzC3r6du7Nx6+V74Zq7wvRUsj70nhDKnpe1m9bDal+9JwrVCwKUZ0xs5URcUAy37wfs0Z0LKAsEv+HNpw2Q8K8fFkkT6Yft1q6EkxyhEPUj4qYdcXCwntb2XyhMFYrVf+jZ4QQgghrpzRYgGQRiFCCHGFikoLWLL8PTK2bcd6rg4VFaMlAKNrT0rcYxh5VzeSegXxzF/v/8HHaM6AtguIVRQlCi2Y3Qrc9mN3cDUZeGxqIk8sOETc4J48fFcYX65aTdGOKs6vtfG/5A2YOlcxblJfoqJCmuM1CCGEEO2G0aRtWyN7oQkhxA+z2+tZs3k+e9Yuw3CiCINdQXGD2shELEX90Os8oJsnj9/bHYvppzexbraApqpqvaIoDwGr0Nrsv6+q6o+vkANu7RvOkZxS3t10ioRgG3dPuxHHDQ7W7N7Ezq+z8DgSyvLDx6gJ2E6vkVEMHtgdnV7X5K9HCCGEaOuM5oYRtGoZQRNCiG87dHwHXy//hIr96bhUKegMDtS4ACK7TCB9ky+uJSp5HgpT702kZ9yVTxNv1jVoqqouB5Zf7f3+OCmeY+fK+MOXB4n2c6NLqI2xfYYyts9QjmansXTZZuwpHqR8Vsyer5YS1NeFiROS8LBZm+BVCCGEEO2D0aKNoMkURyGE0OQX5bB0+fuc2bYTt3w7DlQcoRZCBw9jzNDbWfT5abJXFoLiQBngxzO3J2A0/PSo2aVaXJOQ72PU63jz9p5MeX0L93+8m8UPDcLPXftPo3NwLJ3vi6W4uoQvV68if3sF5g0RfLhxC8aOVYye2JuYjjL9UQghhLhaF0bQamWKoxCi/aqtq2FV8hwOJK/GlF6C3qGgeIDLyEQmTLybyJBOHNh1jg+ePYC5RuWcl4E7ftmVuAiva3q+VhHQAHzczLz9s17c9NZWHvh0D5/+vD8mw8WpjJ4WG/dOmYF9kp01+zey/et0PNMiWPXPYyzx3Un34REMGdodvUGmPwohhBBXQqY4CiHas72HN7F+xRyqD2VgqdahNzqgazADxtxM/x6j0el0VJbW8L+/76LmRBmVegduo4L5y/Q49NfRcb7VBDSAxBAbL9/Yld/M3c9zSw7zwrQu37mNXqdnXM/hjOs5nKPn0liyfAN1h9w5Mr+Y/YtXENDLxIRJA/D0dnPCKxBCCCFaj4tdHGUETQjRPpwrOMuSpf8jZ8c+rIUOHIqKI9yNiCEjmDjqZ7hYtCVUqqqy7evT7PjqJDq7SmaAkV/8sgfRQe7XXUOrCmgAU7uHcCSnlLc3pJMQbOO2fuE/eNvOgbF0vieWkuoSvly3ktytJRi3duDjbdvQR1cyYnx3OsWHoyiyp5oQQgjxbQaTrEETQrR91TWVLFv7MUc2rMN8uhy9qoCXgtvY7kyceC+hAVGX3b7oXAXz3j5IfU4V+QYHMVPCeWlcLLpG2qe51QU0gN+P7czRnDL+vDiFGH83+kZ5/+jtbRYb90y4Bfs4O2tTNrF1TSoe6WGs/c9JVnjtJ3FoEMNH9MJwBW0vhRBCiPbiQpMQmeIohGhjHA4HOw58zaZV86k/nIW5VofO7EDXM5wh426hT9fh37mPvc5B8qITHFmbSa2qcjbczKP39SDCr3EbE7bKgKbXKbw2swfT3tjCrz7Zw6KHBhLq5XoF99MzpuswxnQdxvH8Eyxavp6aA1aOLyzn8LJV+PTQMWFSEj7+Hs3wKoQQQoiWTafTozcaZQRNCNFmnM5OY/my98nfdQhrCaBTcUTZiB02hnHDb8NkNH/v/TKPFbLk/cM4Suo4abbTY2oHHh3WodFGzS7VKgMagM3FyLt39eaGN7bw84928+WvkrCar/zldPSL4fG7YiirKWPBxlWc2HQe/c5oPtu5EyWyjCHjutKlWweZ/iiEEKJdM5ot1EsXRyFEK1ZeWcLS1R9xfPNGXM5WoUNB9dPjNbk3kybci7938A/et6q8ljWfHeXs3gKKdQ6yYlx48p4ehHn/9ODQtWq1AQ0g2s+N12/ryd0f7OR38w7w5u09rzrFupvduWv0TThGOdh4dBsbVx3E9UQIm946zVrbIToO8mP06H6YLK36RyWEEEJcE6PZQl21BDQhROvicDjYsHMx29cshKN5mOp16FxUDAM6MHL87XTt1P9H76+qKqlbc0ied5z6Gjv7XR0Mnx7DUwMjm3wAp9WnjqEd/XhqQhzPL0vlX2vT+O3ojtf0ODpFx7C4gQyLG8jpwjN8tXId5XuNZCzz4M1Vq3Hv6mDS5CQCgn58vZsQQgjRlhjMZpniKIRoNY5lHGDV0o8o2XcM13IFRe/AEetD4oiJjBp0E3r9T8efwpwKVs8+wvlTZWTq7eTFW3nuju5NOmp2qVYf0ADuHRTF0XNlvLY2jU4B7kzsGnRdjxfhHc4jt82i6uYqFm1eQ+rGc+j3RjF/717qw0oYMKYzfXvHy/RHIYQQbZ5RApoQooUrLMljyfL3ydi2HbfcelRU1CAzAeOSmDzuHmzuVzbAUldrZ/fyDPauPk21qrLN3c7U6R35W/+IZv3c3yYCmqIovDAtkfT8cn43fz8RPq4khtiu+3FdjC7cOnwK6jCVXen7+HrFHkzH/Nn9Xi6b5x0nYoAHE8YNxNXV0givQgghhGh5jGaLBDQhRItTW1fD6g2fsz95JcaTJRgcCjp3MA+LY+z4O4mN/O5+yT8m42AB6+cco7KohhRjPRVx7vzfrd2abdTsUm0ioAGYDXre+lkvpr6+hftn72bRQ4Pwc//+LixXS1EU+kb3pO9DPckty+OrlWup3GUnd7WNd9auxxxfxbjJ/YgKD2mU5xNCCCFaCqPFQnVZqbPLEEIIAHanJLNh5edUHzqNpVqH3uiALkH0HT2dgb3Go9Pprurxygqr2fT5cU4dKKBQr5LsWc+sGzpzRz/n7ZXcZgIagL+7hXfv7M1Nb23ll5/s4bP7+mE2NO7eZgHu/vzy5pnU31jPiu3J7F+fjS4ljOWHjlEVtJmeI6MYNqA3Ov3VvTmEEEKIlshoNlNWIE1ChBDOc/bcSZYte5+8XQexFqk4FBVHhBsRg0cwcdTPcLFc/T5kdruDA2vPsnPJKWrtDjZb6tB3dufDGc231uyHtKmABpAYYuPvN3fjoc/28cxXKbxyU9cmSb8GnYHJSaOYnASpmcdZsWw7HLaR+kk5exYsxK+PgRsmDsPTQ/ZUE0II0XrJFEchhDOUV5awbPVsjm3egEtmFTpVAR8d7uN6MGniPQT7R17zY2enFbPhs2MU5lRwyuxgo3s9D07qzM/6RzTJvmZXq80FNIBJXYM5fq6M19adoFOgOz8f3KFJny8utCNxv+hIWVU5C9eso2RrNRUbAvlw8xbU2GJGTuhB146dm7QGIYQQoikYzWbqqiWgCSGant1eT/KOxez8ejHKsTyMDa3x9f2iGDHuNrrHJV3X41eW1rLtqxMc3XaOGpPCMmsN3rE25t3UjUjfqx+FayptMqABPDKqI2l55bywPJUOflZGdA5o8ud0d3HjZ1OmoE5W2bx/D9tWH8VyzJ9NR7NZ6rebTkP8mDRsOGajqclrEUIIIRqDwWyhrkamOAohms6h4zv4esWnVBw4iUvFtbXG/zEOh8rhjVnsWJROTU09+6x2tlnq+e34ztydFNkiRs0u1WYDmk6n8I8Z3Tj7diUPf7aPBQ8MpFOge7M8t6IoDO7Rm8E9epOdn8uSpZsw7Xfn3JdG/rVsMa7da5g8cQiRfmHNUo8QQghxrYxmC/W1NagOB8pVLr4XQogfkpN/hmXL3yd75z6sBXYcqDhCLAROSGLS2LuvuDX+Tzl3qoSNc46Tf6aMMpueeYZqIqNsLLm5Gx383BrlORpbmw1oAK4mA+/e2Zupr2/h3o92sfDBgfi6NU5nxysV7BfAL+6+ibr6elau28LRjQ5024NYuDOF8shV9B0dy6jug9Ep8p+eEEKIlsdo1v7frK+txWiRbWWEENeuqrqCZV9/ROrGZCxnKrR1ZZ4KrqO7Mn78XUSGdGq85yqvZftXJzmyJQe91cA6LweHlBp+N6ETPx/cAX0LGzW7VJsOaABBNhfevbM3M97exi8/3sOnTdDZ8UoYDQYmjxnK5DGQeuwUXy/fi0daGGlv29nm9RGB/c1MGzUaf6tfs9cmhBBC/JBvQlldTbUENCHEVbuwrmztYjiWh6lOh87iQNc7giFjZtCn6/BGfT7VoXJkSzbbFp6ktsrO+VAzH5cV0znYxtIZ/egY0Dwz6q5Hmw9oAN3CPPnHDK2z45MLDvGPm7s5bV8DgLhOUcR1iqKspJKlyzdTu9OX+hVW3l+7gbq4PEaO6cWADn2dWqMQQggB2hRHQDo5CiGuysFj21m74lMqDqbjUqGg06vUx3gTN2wco4fMwGho/J4MuRmlbJx7nLyMUlxCXPnKvZxTlSX8ekxHfjUsGmMr2QarXQQ00Do7nsgr519fp9ExwJ1fDo12dkm421yZOXMMjhkOdmw/wq6vy9Af6Myug0UsDn6NjoP9mN5/Ap4WT2eXKoQQop36ZoqjdHIUQvyUzNxTLF/xIed27sN63tFk68q+raqslu0LT3Jkaw4u7kbyEtz4KDOfzkHuLJrRh4RgW5M8b1NpNwEN4DcjYzmRV87LK4/SwdfKmIRAZ5cEgE6vY8DARAYMTCT79HnWLNuNcjiOqrkG/rH8C4xdyxg/YjC9g3rJqJoQQohmdXEETTo5CiG+q7SimGWrPiJt66aL+5V5KVhHd2P8hFlEBMc22XM77A4Ob8pmx+J06qrt+PXy5fXcfDKzS3lwRDS/HhnrlKVN16tdBTRFUfj7zd04W1jJI5/vZ/4vB7S4RB0c4cNdD4yluqKOjWsPYt8YjH6zhXU7z/BpxEp6DI3ihi6TsJlbVt1CCCHapgsjaDLFUQjRoK6+ljWb5rM/eSW6tPMY7Q37lfWNYuiYGfRKHNLkNWSnFbNx7nHOZ5UT3MmTA346Xk45Swc/K1/+LIke4V5NXkNTaVcBDcBi1PNOQ2fH+z7azcKHBuLv3vIWPVusRsZM6cWoSSrH92ezeVUKbmlJlJyo51nfd3DvVc8NA8bSw7+HjKoJIYRoMjKCJoQAcDgc7DjwNVvWLKDm8Bks1ToUgwO1sz9dR0xkxIBp171f2ZWoKK5h64ITHN+Zi5uXmdgbInnhYAZnDldx76AoHh/bCYux9Y2aXardBTSAAA8L/7urNze/tY37Zu/h8/v7t9i/SJ1OoXPPEDr3DKHoXAUbV6ag290dZaWehZv383aHuQwc3IUpsZNlrZoQQohGd2kXRyFE+5OavpevV3xK0f5jWEvBoag4ItyJGDyU8SN/htWleboi2uscHFh3lt3LM3DYVbqPDWejvpZnN6QS6uXCnPv607+DT7PU0tTaZUADSAyx8a9bu/PLT/bw23n7eX1mzxa3i/i3eQVamTqrH7W31HNw82l2r7MTcDCS3NRSHgt8Gb9eBqZ1m0yfwD4yqiaEEKJRSBdHIdqf7LwMlq/4kKxd+3DLtwOgBhjwGtqbiePvJsAnpNlqUVWV04fOs3l+GiX5VUR29cVvUCBPf51KWl45t/UL56kJcbiZ206saTuv5BqMTQjkyfGd+dvyo/zd5xi/H9fZ2SVdEZOLgd6jo+k1sgNnUwvZtvooLsdGoWY6mLNpI691eJdhffpzQ+xUfF18nV2uEEKIVsxwoYujTHEUoi0rKStk2ZqPOLF1y4VmH4oNzMPjGTvuZ8RGdmn2morOVbB5fhpnDhfiFejK+Ae7sji3kN/M3Y2Pm4kP7+7DsE7+zV5XU2vXAQ3gvsEdOFVQyZvJJ4n0tTKjd5izS7piik4hPMGH8ISBlORXsn/9afRbdMTs6knW4UweDHqakO5uTI+fxoCgAeh1LXMapxBCiJZLmoQI0XZV11axesNcDm34GkN6MQa7gs5FRdcngiGjb270TaSvVE1VPbuWneLQukwMJh0Db4rBJd7Gb748xKGsEm7oHsxzUxKxuRqdUl9Ta/cBTVEU/jI1gbOFlTy14BChXi4kRbe+USebnytDZ8SRNLUjx3eeY/daI74nQ6k5XcmH25bzatS/GNtlBDfE3ECwW7CzyxVCCNFKGExmUBTqa2UETYi2wG6vZ+OupexctwR7ag7mWh06owM1LoCuwyc0W7OP76M6VFK35bB94UmqyuuISwqi75QOzDmQxatvbsXNbOCtO3oyLjHIKfU1l3Yf0ACMeh1v3N6TG/+7lV99spcFDyQR7efm7LKuidGsJ2FwCPGDgslOK+bAujOYD4xEzR5B+pHD3Bv4a8I6ezO903RGhI3ApG/8XdyFEEK0HYqiYDSZZaNqIVq5PSkb2bBmHpUHT+FSqYBORe3gSfTgkYwbPhOL2dWp9WWfKGbzvDTyz5QR2MGDSQ91o9rNwD1z97LzVCGj4wP427Qu+LmbnVpnc5CA1sDmYuSDWX244Y0t3PPhLr56YCDe1tYbXhRFIaSjFyEdvSgrrObwxizMm4xEpXah7HQBH+5fxMshrzKu4ximxU6jo1dHZ5cshBCihTJaLDLFUYhWKDV9L2tXzaFwXyrWkoYOjKEuBE4cwIQxd+Hl4fxZY6UFVWz76iQn9uRh9TQz6u54Yvv4M3dXJs8vO4K+YR/jG3uGtJsmeBLQLhHm7co7d/Zm5rvb+eXHe/j4531b5e7j3+bubaH/DdH0nhjJyT15HFififspXxxn60g9uYN79/6KsLAAboi5gXFR4/AweTi7ZCGEEC2IwWSWfdCEaCVOZ6exauVszu05iLVA68CIvwHbxB6MG3snoQFRzi2wQW11PXtXnWb/mrMoCvSZGEmPMREU1tRxz0e7ST6Wz8AYH165qRshni7OLrdZSUD7ll4RXvzj5m48PGcfT355iH/M6NZm0rrBqKdT/yA69Q8i91Qph5IzMew2kZAziPNnz/Dx8a941fdVRkaOZFrMNPoE9kGn6JxdthBCCCczmmWKoxAtWe75LFasms2ZnbtwyalBhwJeCi4jExkz9g5iIhKdXeIFqkPl2I5zbFt4ksqSWmL7BDBgWjTu3haWHMjmmYUp1NTbeXZyPHcOiGzx22A1BQlo32Nyt2AyCir4x5rjRPpa+fXIWGeX1OgCojwIiIon6cYYjmzOJmWTGZ9j4dgzaziYvYGHjv0GHy9PpkZPZWrMVGksIoQQ7ZhMcRSi5SkqLWDFmtmc3L4N89lK9KqC4g7GgbEMH3ML3ToPcHaJ35FzopjN89PIO12Gf6QH43/RhcAONoora3nos70sPZhD9zBP/jmjGx1aaT+IxiAB7Qc8NCKGU+cr+Oea44R5uzCtR6izS2oSrh4mek+IpOfYcE4dLOBQchb6Y2PoeWY050My+CLnK/574L/0DerL1OipjIoYhYuhfQ0zCyFEe2c0W6SLoxAtQHllCSvXfcrRLRsxZpRhcCgoLir63uEMGHkD/buNRqdrebOfSvKr2PbVCU7uzb+wzqxjnwAUnULysTx+/8VBCitqeWxMR345NBqDvuW9huYkAe0HKIrCS9O7klNcze+/OEighwsDon2cXVaT0el1RPfwJ7qHP4XZFaRsyOTodgPTz/wW/KvYV7qOP2b9iRfMLzAuchxTY6bS3a97m5n+KYQQ4ocZzWbKCyucXYYQ7VJ1TSWrkueSsmUd+hOFGO06dGYHStdgeg6fxJA+k5zWFv+n1FTWsXt5BgeTM9HpFPpOjqL7qHCMZj0VNfW8sDyVz3acoWOAG+/P6kNiiM3ZJbcILfNvs4UwGXS8dUcvbnxrK7/4eDcLHkgixt/d2WU1Oe9gK0NmdqL/DdEc23GOQ8mZ9Dg8kT4ukyjukMHKqrl8mfYl4e7hTI2ZypToKQRaA51dthBCiCZiNMsURyGaU3VtFWs3fcGBzWtQ0gow1TXsVdbZj/jBYxk56EZMxpbbbt5ud3B4Yza7lp6iurKOuAFB9JvSAaunVvPujEJ+O+8AZ4sq+cWQDjw6uiMWY+tvzNdYJKD9BJur1n5/2ptbmfWB1n6/Pey/AGByMdBlWCiJQ0PIOlbEoQ1Z2A/ATeofsHSo55Cykf/sfZ3X971Ov6B+TImewsjwkbganbuPhhBCiMZlMJsloAnRxOrqa1m/9Sv2blyJ41iutoG0wYEj2pvYQSMZM/QWp+9V9lNUVSXj0Hm2fnmC4txKQjt7kXRjDH5h2gBHTb2df32dxtsbThLi5cLn9w+gb5S3k6tueSSgXYEwb1fen9WbW97ezr0f7WLu/f1xNbWfH52iKIR29ia0szflRdUc3pTN4U1ZxJ4cQXffsVR2zGJF4RyeynkKF4MLoyNGMyV6inSBFEKINkJG0IRoGnX1tWzYvpi9m1ZSdzQbS7UORa+iRnkSOXAo44bfhtWldczeyjtdytYFJ8g6VoxXoCsTH+xKRKLPheUwqTmlPPr5fo6eK2Nm3zCenhiPm7n9fJ6+GvJTuUJdQz35z8we3P/xbn49Zz9v/6wX+nbY9tPNy0K/KR3oPSGSk/vyOLQ+i4qt/kwyPop3FwPHvLex7MwCFp9cTKA1kMkdJjMpehIdbB2cXboQQohrZLRYqKuWJiFCNAa7vZ4NO5awe8Ny6o5mYanWoepU1EgPwgYMYtzIO/Cwejq7zCtWWlDF9kXppO3KxeJmZMitHYkfHIy+odGH3aHyzsZ0/rnmGDYXE+/P6s2IzgFOrrplk4B2FUbFB/DnyQn8efFh/rr0CM9OSXB2SU6jN+jo2CeQjn0CyT9bRkpyJsd35eK1txePRg5FSSxmvXER76W8x7uH3qWLbxcmdZjEuKhxeFtkKFsIIVoTo9mMw16Pvb4evUE+Oghxtez2ejbuWsqu5GXUpWZjqVZQdSqOCHdC+w9i3Mjbsbm3rs9H1RV17Fl5moPrz6IoCr3GRdBzbAQml4u/I06fr+B38w6w+3QRE7oE8vwNXfC2mpxYdesgv2Wv0l1JkZwprOS9zacI93blnkEtYzd2Z/ILc2f4z+JIujGGo9vOkbIxi+KlBnq53cpN/X7J6dADLM3/ihd3vsiru15lYMhAJnWYxLCwYVgMFmeXL4QQ4icYzdrv6vraGgloQlwhu72e5B2L2bNxBbVHs3GpUkCn4gh3I7hfEuNG3Y6Xh6+zy7xq9joHhzZksnt5BjVV9XQeEES/yVG4eV38TKeqKnN2nuX5ZUfQ6xT+dUt3pnYPlu7fV0h+y16DpyfEkVVUxV+XHSHY04VxidLBEMDsaqTbyDC6jggl82gRKRuyOLouH5Vg7kn8E169YLthLctOLWND5gasRiujI0YzqcMkWa8mhBAt2DcBra66GrOr1cnVCNFy1dXXkrx9EXs3rqT+WA6Wah3oVNRwN4L69mPcqDvwtvk7u8xrojpU0vbksn1hOmXnqwlP8GbAtBh8Qy/fUDqvtJrff3mQ5GP5DIzx4dWbuhHsKXvoXg0JaNdAp1P4v1u6M/Pd7fxm7j4+u68/vSK8nF1Wi6EoCmFx3oTFeVNWWM2Rzdkc3pxNxqFa/Hz78/KgaVT3zGXVuWWsOb2GhScWEuAawISoCUzsMJGOXh3lGxYhhGhBjGate7E0ChHiu2rrali/9Sv2bVqN4/g5zDUNoSzSg5B+SYwdcVurHCm71NnUQrZ9dZL8M2X4hrkx/I7uhMV9d0rmsoM5PL3wEFW1dp6dHM+dAyLRtcOeDddLAto1cjHpee+u3tz43638/KNdfPmrJDr4uf30HdsZd++LTUXS9+eTsiGLHQtPoTMoDOl1K/cOfJhUw16WnlrCx0c+5oPDHxBti2Zih4mMjxpPqHuos1+CEEK0exdG0GqkUYgQoG0evWbjPFK2rUdNy8dcq3VfdETaCOs/kLHDb2t1a8q+T97pUrZ9dZLMo0W4e1sYNSuOjn0DUb4Vukoq6/jT4hQW7c+mW6iNf8zoToy/fC6+VhLQroOPm5kP7+7Ljf/dyl0f7OTLXyXh7y5rqr6P3qAjtncAsb0DOJ9dzuGN2RzdnsPxHbn4hHrzqyFP8eepZtbnrGX5qeW8tu81Xtv3Gt39ujOxw0TGRI6R5iJCCOEkF0fQJKCJ9qu8soRVyXM5un0TupOFmOp1KAYHjigvIvoPZszwW1tV98UfU5xXyY7F6ZzYnYfFamTQzbEkDglBb/zucpTNaQU8Nv8A+eU1PDIqlgeHx2DUy7KV6yEB7TpF+lp5b1YfZr6znXs/3M3c+/tjlT0dfpRPsBtDbu1I/xs6kLYrl0Mbstjw2TGMC/R06tedfw6ZSLWthBWnVrAsfRkv7HiBl3e+TP/g/kyImsDwsOG4meRbGSGEaC4GyzcjaDLFUbQvhSV5rF4/lxM7t2HIKMFo16EzOlBjfYkZMIwxQ2/BxdJ21mVWlNSwe3kGRzZlozMo9J4QSY/R4Zd1ZvxGVa2dl1ce5cOtGUT7WXnnziS6hno2f9FtkCSJRtA9zJPXb+vBfbN388Cne/nfXb3lm4MrYLIYSBgcQvygYHJPlZKyIYvULTmkbMgiKNrG4CGTuHvCPZwsP8Gy9GWsPLWSpzY/hVlvZkjoEMZFjmNI6BDpBCmEEE3s4hRHCWii7cvOy2DN2rmc3rMbS1YVeoeCzuyA+ADiBo5ixMDpWExtq+lFTVU9+9ecYf/aszjqHMQPCqb3xEisNvP33v7A2WIenbef9PwKZiVF8sT4zliM+mauuu2SgNZIRsYF8MK0Ljy54BBPLTjEKzd1lUYXV0hRFAI72AjsYGPQzbGkbsvh8MYsvv7gCJvnpxE3IIh7hvyCR3o+woH8A6w4tYJVGatYc3oNrgZXRoSPYHzUeAYEDcCoNzr75QghRJtzoc1+tQQ00TadPHuEtV/P5dz+Q7icq0WHgs6qovQIpcegcQzuOxGjoe3t31VXa+fQ+kz2rjpNTWU9Mb386TelA54Brt9/e7uD19ed4PX1J/B3N/Ppz/sxMKZ1N0BpiSSgNaKZfcPJKanmtbVpBHm68NvRHZ1dUqtjcTPSY3Q43UeGaa36N2Wxf+1Z9q05Q1i8N4mDQ/h97z/weJ/H2Z27mxWnVrDm9BqWpi/FZrYxMnwkYyPH0jewLwadvL2FEKIxyBo00dY4HA72p25hy4ZFFKUcx3reoV1hA0NSNAOGTqFv1xHodG1zRpS93kHqlmx2Lc+gsqSW8AQf+k/tgF+4+w/e50ReOb+bt58DmSVM6xHCs1MSsLnIF+NNQT7BNrJHR8VyrqRKC2k2CzP7hju7pFZJ0SmExXsTFu9NeVENR7Zkk7olmxVvH8LVZiJ+YDAJg7rTP6k/z/R7hq3ZW1l+ajkrT61kQdoCvMxejIoYxdjIsfQO6I1eJ8PuQghxrWSKo2gL6upr2bx7OXs3r6Iy9Qyu5Q0znXz1mIfHM2T4dLp26u/cIpuYw6GStiuXnUvSKS2oJijGxtifJxIc6/mj95m9LYMXVxzFxaTnzdt7MqFLUPMV3Q5JQGtkiqLwwrQu5JbW8MzCFAI8zIzoHODsslo1Ny8zfSdF0Xt8BKdTznN4Uza7V2SwZ0UGEYk+JAwJYXDCEIaGDaW6vpotWVtYlbGKpelLmX98Pt4Wb0ZHjGZs5Fh6+veUsCaEEFfJaJERNNE6VVSVsXbTF+xat4Kt77+CuUaHXVFRQyx4De/OiOEziAzp5Owym5yqqpw6UMCOxekUZlfgG+bGpIe6EZ7g/aNLcnJKqnh8/kE2nyhgeCc/Xr6xK/4esva/qUlAawJGvY43b+/Jre9s58FP9zHn/v50D/N0dlmtnk6vI6qbH1Hd/CgtqOLI5myObM0h442DuHmbSRgUTFxSMCMjRjIyYiRV9VVsytzEqoxVLDqxiM+PfY6PxYdREaMYHTGaXgG9ZBqkEEJcAb3BiE6vlxE00Srk5J9hzfq5nN67B9OZcgx2BavBQX2kJyF9+jN62C34eLaPL89VVeV0ynl2LjlF/pkyPANcGfPzBGJ6+n9nL7Nv32/xgWz+uDCFeofK36Z1YWbfMOmv0Ezk02kTsZoNvD+rDzf+dyt3f7CTL36VRLRsZN1oPHxd6H9DNH0mR3FqfwGHN2WxY/Epdi7NILKLNqoWFufNmMgxjIkcQ2VdJRszN7L69OoLYc3b4s2I8BGMjhhNn8A+GHUyj1oIIX6I0WyRgCZarEPHd7B5w0LyD6bikleHDgXFRYWEQDr3H4ZB9WXsqPHOLrPZqKpK5tEidi5J51x6KR6+FkbcGUenfgHofqLTeHFlLU8vTGHZwRx6hnvyzxndifRtO1sJtAYS0JqQn7uZ2ff05aa3tnLne9pG1oE2GRZuTHq9jphe/sT08qc4t5IjW7I5ui2HUwcKcPe2ED8omLiBQVhtroyLGse4qHFU1lWyJXsLazLWsCx9GV8c/wJPsycjwkcwKnwU/YL6YdK3vU5NQghxPQxmM3XVMsVRtAy1dTVs3LGEA9vXUXHsDNbShiu8FIwDY+k7eDz9u42+0OQjOTnZabU2t+y0YnYsTic7rRg3LzPDbu9E5wFB6A0/3fAk+Vgev//iIIUVtTw+thO/GNIBg2wd1eyaJaApivIqMBmoBU4Cd6uqWtwcz+1skb5WPry7L7e8vY273t/JvF8OkI43TcQzwJWk6TH0m9yB9AP5HN6UzY7F6exceoqorr4kDA4mLM4bV6MroyNGMzpitLZmLXsLa06vYVXGKhakLcDN6MaQ0CGMihjFwOCBuBq/v9WsEEK0J0azWUbQhFPlF+WwdsN8Tu7Zge5UEaY6bT0ZQRY8BiYybNhNxEZ2cXaZTnPuVAk7F6dzNrUIVw8Tg2+JJX5QMIYr2J+ssraevy1P5ZPtZ4j1d+P9WX1IDLE1Q9Xi+zTXCNoa4ElVVesVRXkZeBL4QzM9t9Mlhth4587ezPpgJ/d9tJvZ9/aVzfyakN6oI7Z3ALG9A7RRtc3ZpG7LIX1/Pu7eFuIGBhGXFIyblxmLwcLI8JGMDB9Jrb2W7TnbWXtmLevOrGP5qeWY9WYGBg9kVMQohoQOcfZLE0IIp5EpjsIZDh3fwZZNi8k7dETbn0xVUEwO1Ggfwnv1Z+TQm/G2+Tu7TKc6d6qEXUszOHP4PBY3I0k3xpA4NASj6co+a+47U8Rv5x0g43wFPx8UxWNjO8nnVCdrloCmqurqS/64HbipOZ63JRkY48v/3dKdh+fs49dz9vHm7T1lyLgZeAa4knRjDP2maKNqRzZns3PJKXYtPUVEF1/iBwUTkeCNTq/DpDcxJHQIQ0KH8Mf+f2Rv7l6+PvO1FtjOrsOgGIgxx5B7NJdhYcMIsLaPBcZCCAFaQKuXLo6iiVVVV7B+20IO79xA9fGsi63wbaDvG0XPpDEM7D2uTW4afbXOpZewa9kpzhwuxGI1MmBaNIlDQzBZruzjfZ3dwX/WpvFG8kkCPSx89vP+DIj2aeKqxZVwxhq0e4DPnfC8TjepazAFZTU8u+QIf1yUwt+mdZFuOM3k0lG1kvxKjmzOIXVbDhkHC7B6molLCiIuKQgPXxcADDoDfYP60jeoL0/0fYKUghS+PvM1S48u5fkdz/P8judJ9ElkRPgIRoSPoIOtw/+zd9/hbZVnH8e/R9uyhqe893bsTGcPEnaAMNKy9yy0dC9eaEvpAlraAi2Ussree4adkL2Xndjx3ntva5z3DzmGQIAAjiXb9+e6dB3pWLZvJ8fy+el5zv3I/6UQYkLTm0wM9ff5ugwxAVXUFrF6zUtU796FvrobvVuDqlFRYwKwL8lh0eIzyUye7usy/ca3DWYAJU3d/PTZ3eyt7eQ7M2O5+fRsbCa5BMdfKKqqjs4XUpT3gcjDfOgmVVVfHX7OTUAesFL9gm+sKMo1wDUAERERs5555plRqc+fvHhgiNfLnJyeomdlmrwD5CuqR6W7DtpLVXrqvfsskRCUomCNBo3284Gru7ubXlMve/r2sKdvD5VDlQCE68KZap7K1ICpJBoT0SgyOirGRk9PDxaLdIgVR1/pqlcY7Owg+9zLvvK5clyKL+NyOymt2UF9RQHUtmLt9P697TN5cMZYCU3IICNxLibj6HUOnAjHZF+LSnOB95xFa4DQLIWQVNDqj/wNYo+q8n6li+cPDGHUwmVTjORFSs9AX1i2bNl2VVXzDvexUQtoX0VRlMuA7wHHqap6RG/B5eXlqdu2bTuqdfmCqqrc8OJent1WzR/OmMIl8xN9XdKk19Xaz/4N9RRuqKenfRCTRU/mvEiyFkYTEvXJH4jVq1ezdOnSkcdNfU2srl7Nh1UfsrlhMy6Pi2BjMItjF7M0bikLohcQqJfWtOLo+ewxKcTR8ubdf6O+pIir7n7wK58rx6X4rOr6Ej5a+xJVu3airerE4NTgUVT6HHpCs9OZt+gUZmYvGem6ONrG8zFZV9zBtrfKqd7fjilQz4wT47/2iBlAXUc/v3xhN+tLWjk208Ft38nFYZXu4r6iKMoXBrSx6uJ4MvAr4JgjDWcTmaIo/PmsHFp7h7j5tQJCAg2cNjXa12VNarbQAOauSGb2qUlU72tj3/o69nxYw673q4lKsZO1MJrUWZ+/CNlhdnBOxjmck3EO3UPdrK9dz+qa1ayuXs1rpa+h1+iZEzmHY+KOYWnsUqIsUWP/wwkhxCjQm0w4B6RJiDgyA0P9rNvyJnu3raG7sILAdu+AgGLyQFo48TPmsHTxSsKD5e/i4Rxcx2zbWxXUFXcQYP1mUxkPfq1XdtXyu1cLcHtUbl2Zy3mzZdFpfzZWY5r/BozAe8MHwyZVVa8do+/tl3RaDf++YAYXP7SZnz67C6tJzzHp4b4ua9LTaBQSckJJyAmlr2uIwk317F9fz4eP7WftcwewxHhoTOjCkWj93Aub1WAdWWvN5XGxs2knq6u9Ye0vm//CXzb/hYzgjJFGJLlhuWg10iVJCDE+6I0mXEPSJER8scKyXWzY8Dq1e/PR13Sjd3lHyVSHHuOydOYuWM6snGOO2ijZRKCqKpX5rWx7q4LG8i4Cg4wsOsfbLv9IuzJ+WnvvEL95JZ8399YzKyGYf5wzjYRQmdnj78aqi2PqWHyf8cak1/LgpbM57/5NXPv4dp64ai6zEoJ9XZYYZrYZmHliAjNOiKe+tJN96+o4sLWBF27fRkh0IFkLosiYG0mA9fPXEeo0OmZHzmZ25Gx+kfcLyrvKWVO9htXVq3k4/2Ee2PsAwcZgFsYsZEnsEhZEL8BulPVGhBD+S2804RwYRFVVeeddANDZ3caaja9SuH0Dg6X1mLu9+xWzClkRJM6Yx9KFZxIaJF2Pv4rqUSnb3cy2typoqe7BGmLimAsyyJofhVb/zQLtR8OLTnf0DfGrkzP43pIUtBr53R0P5KpAH7MH6Hnsijmcfd8GrnhkK89+bx6ZkTZflyU+RVEUolODiE4NQoluJDIgnX3r61n/QgkbXy4laWoYWQujicsOQXOYFz5FUUi2J5NsT+bynMvpHOxkQ90GPq75mHW163ij7A20ipZp4dNYEruExbGLSQtKkxMgIYRf0RuNqKoHt9OJziANriYjp2uIzTvfZ+fWD2kvKsXUOIRWVUY6LloXZDFv4ankpM2RUbIj5HZ7KN7ayI53qmiv78XuCODYS7JInxuB9hsux9Q76OLPb+3nqc1VZERYeeTy2UyJljeBxxMJaH4g3Grk8Svn8t37NnDxQ1t48doFxIeafV2WOAytQWHK4himLI6htbaH/RvqKdrcQOnOZgKDjGTOjyRzfhRBji/+/7Mb7SxPWs7ypOW4PW72tuzl45qPWVu7ljt33MmdO+4kwhzBophFLIxZyLyoeVgN1jH8KYUQ4vP0Jm8zAefggAS0SaSoYjcbNrxJ7d49aKu7MDiHQ0OwgnZ2AtkzF7Fk3goCA+Tv1NfhHHKzf309u96rorttgNAYCydcmU3qrIjDvtl7pLZXtvOz53ZR1dbHNUuS+dkJ6bLo9DgkAc1PxIWYeeLKuZz9341c9NBmXrh2Pg6bdNbxZ6ExFhadncb8s1Ko2NPC/g317FhVyfa3K4lKtZO1IIqUmY4vvZhXq9Ey3TGd6Y7p/Gjmj2jsbWR93XrW1a7j3Yp3ebH4xZHRtUUxi1gUs4iMkAxp4y+EGHM6gxHwBrQAq8z0mKjqm6v4eMOrlO/ZgbOi6ZOFogNU1NQwoqfOYvHC04mNSPJtoePUYJ+TvWtq2fNhNf3dTqJS7Cw5P52EnNBvNXNmyOXhrg8O8J/VpUTZA3j66nnMS5ZFp8crCWh+JC3CyiOXz+GCBzZxycNbePaa+djNsmigv9PqNKTMdJAy00FP+yBFm+vZv6GeDx8r5ONni0mdGU7WgiiiUoO+8sU3IjCClWkrWZm2EqfHyd7mvayrXce62nXcvfNu7t55N6GmUOZHz2dB9ALmR88nLCBsjH5SIcRkNjKCNiCNQiaSzu42Pt70GkW7NtFXWjvSbRGdB6ItWBdmMGf+cqZmzJNpi99Cb+cgez6sJn9NLUMDbuKnhDLr5ASi04K+9dc+0NjNT5/dRUFdF2fPiuV3K7KxyqLT45oEND8zPS6I+y/O44pHtnL5I1t44qq5mA3y3zReWIKNzDo5kZknJdBQ2sn+jfWUbGuicGMDtvAAsuZHkjEvCmvIV4+O6jV6ZkbMZGbETH4080e09LewoW4D62rXsaFuA2+UvQFAenD6SFib6ZiJSScjr0KI0ac3el9bpJPj+Nbb3836rW+xb+cGukoqMTU70aoKHo0KDgOGY1KYlncM82aciEFv9HW54157Qy+73q+maFMDHreHlFkOZp6UQHjct58S6vGoPLSunL+9W4TVqOP+i2dx4pTIUaha+Jqc+fuhRWlh3H3+dL7/5A6ufWIHD16Sh0En71qNJ4qiEJUaRFRqEIvPSad0ZxOFG+rZ/Fo5m18vJzYjmMx5kSTPcKA3Htnc8LCAME5POZ3TU07Ho3ooaitiQ90GNtZt5Mn9T/JIwSMYtUZmRcxiXtQ85kbNJTMkU6ZDCiFGhd44PMVR1kIbVwYG+9iw/R3yd6ylo7gcU9MQWo+CBxVCtWhnJ5A1cyGL5pyKLTDI1+VOGPWlnex8t5LyPS1otRoy50cy/fh4giJGp8dATXsfP39uN5vL2zghO4JbV+YSZpFAPVFIQPNTJ+dEcevKXH794l5++twu7j5vhrRGHaf0Ri2Z86LInBdFV0s/hZsaKNpUz/uP7Ef/9AFSZjnInBfp7RJ5hP/HGkVDVmgWWaFZXJl7JX3OPrY3bh8JbP/Y/g8AgoxBzI6czbyoecyLmkecVRamFEJ8MwdH0JyDEtD8Wf9ALxt3vEvBrvW0F5djbBxA51ZQUSFYgzIjltRpc1k091Rpfz/KVI9K+Z4Wdr1XRX1pJ0azjrzlieQujcVsG53GOqqq8sL2Gm55fR8Af/3uVM6eFSt/2ycYCWh+7NzZ8XT1e1ulBhq03LZy6rfq7CN8zxYWwJzTkph9SiL1pR3s39hA6Xbv6JotzETGXO8USHt4wNf6uma9mcWxi1kcuxiApr4mNtdvZnP9ZjbVb+K9yvcAiAqMYl7UPOZEzWF2xGwiAuWPsxDiyIyMoElA8yu9/d1s2LaK/bs20FFagbFxCJ1n+FwhSEHJjSJx6mwWzTuNiNAY3xY7Qbmcbg5sbmTne1V0NPZhDTGx+Nw0shZEH/EsmSPR0jPIjS/t5d19jcxJCuHvZ08jLkS6fk9EEtD83NVLkukedHH3B8WYDTpuXpEt75JMAIpGITotmOi0YJacm07ZziYKNzWw9a0Ktr5ZQVSqnYy5kaTOcmD8Bo1iHGYHK1JWsCJlBaqqUtlVyab6TWyu38z7Ve/zcsnLACTYEpgdOZs5kXOYHTlbGo4IIb7QJyNocg2aL7V1NrFh6yqK87fSVVZNQLMTreeTETLN9BgSc2excM4pRIbF+brcCa2va4j8j2vJX1NDf7eTsDgLJ145hZSZ4Wi+4RpmX+S9fY3830t76Op3cdMpWVy5KEnetJ/AJKCNAz89Po3eQRcPrSvHYtTxi5MyfF2SGEV6o5aMeVFkzIuiu22AA1saKNrUwOoni1j7bDGJU8PInBdJ3JSQb7RopaIoJNoTSbQncl7mebg9borai9jasJWtDVtZVb6KFw68AECyPZnZkbPJi8wjLyJPApsQYsQnXRxlBG0sVdeXsHHrKioKdjNQ2UBAuwcNCh5FRQnRop0VT2rubBbMWU54cJSvy50UWut62PNBNUWbG3G7PCTmhjLt+Hhi0r+6W/PX1T3g5I9v7OO5bTVkR9l48qrpZETKmnMTnQS0cUBRFH5zahZ9Qy7+/VEJgUYd1y1N8XVZ4iiwhphGukA2V3VTuKmB4q2NlO5oIsCqJy0vgox5kYTHW7/xHwGtRkt2aDbZodlcOuVSXB4XhW2FbGnYwpaGLbxW+hrPFj0LQKItkVkRs0Zu0Zbo0fxxhRDjyMgUR+nieNS43S52F25k9+611Bftx13TNrIOmapVwWHEsCiejKlzmT/zJOzWEB9XPHmoqkr1/jZ2v19N1b42dHoNmQuimHZsLMGRgUfle24qa+Xnz+2mvrOf65el8qPj0qRp3CQhAW2cUBSFP52ZS9+Qm9tXFRJo1HLJ/ERflyWOEkVRcCTYcCTYWPjdVKoK2ijaVE/+2lr2fFRDcKSZ9DmRpM+JwBb29a5X+yydRkdOWA45YTlckXMFTo+TwtZCtjduZ1vjtpEFs8F7DVteRJ63/b9jJkn2JJlyK8QkoZMujqOus7uNzTvfoyh/K+1lFegb+jA4h0/AjR6IsmCen0rutEXkTVuGyfDtXu/F1+ccclO8pZHdH1bTVteL2WZg7unJTFkSTYBldBp/fNaA080d7xTx0PpyEkLMPH/tAmYlBB+V7yX8kwS0cUSrUbjj7Gn0Dbn53asFmA06vjsr1tdliaNMq9WQNDWMpKlhDPQ6Kd3RxIEtjWx+rYzNr5URlWInfW4kqTMdmCzffmFKvUZPbnguueG5XJZzGW6Pm5KOErY1bmN743bW163n9bLXAbAb7cwIn8F0x3RmRswkOzQbo1ba/AoxEWk0WnR6gzQJ+YY8Hg+FZTvYuWsNNQf2MVjdTEC7G406/CaXHZSMCBwZ2cyauYzM5JmyMLQPdbcNkL+mhoJ1dQz2ugiNtXDcpVmk5UWg1R+9/5f82k5++uwuipt6uGhePDeekiXr4U5C8j8+zui1Gv51/gyuenQbv3phN2aDllNyZc75ZGEK1DNlcQxTFsfQ1dpP8dZGijY1sOapItY+e4CEnFDS50SSmBuKzjA6naO0Gi0ZIRlkhGRwYdaFqKpKRVcFu5p2sbNpJzubdrK6ZjXgDXc5YTlMd0xnWvg0poVPk+vYhJhAdEajNAk5Qm2dTWze8T4l+7bTXlGFrqEX45D3xF7VeiDChG5eAqlTZjF31ok4QmQKua+pqkp9SSd7PqymbFczAMnTw5l6bCxRqaN/fdmnudwe/rO6lLs+KCbUYuDRK+ZwTHr4Uft+wr9JQBuHTHot918yi0se2sKPn9lJgF7LskyHr8sSY8wWGjByvVpLdQ9FWxoo3tJI+e4WDCYtyTPCSZ8dSUxG0Kh2k1IUhSR7Ekn2JM5KOwuAtoG2QwLb4/se53+e/wEQY4lhavjUkcCWEZyBXvvtR/qEEGNPbzThkhG0z+kf6GVHwcfsz99MU1kprrp2zF0qCsMn9DZQUsMJScsgd+oCpmUuQK87OtPjxNfncrop3trIno9qaKnuwWjWMf2EeHKOicEWevSnlZY29/Cz53azu7qDFdOi+eMZUwgyy/ExmUlAG6fMBh0PXz6bCx7YxLVPbOfhy2azMFVGKiYjRVEIj7cSHm9lwcpUagvbObCtkbIdTRRubCDAZiBtloO0ORFEJNqOyjuAIaYQjo0/lmPjjwVg0D3I/tb97G7eze7m3Wxv3M7b5W8DYNQayQ7NJjcsl9ywXHLCcoixxMi1bEKMA3oZQcPpGiL/wFYKCjZSW7yfwdpmTG1utAfXHjN6UCICMUyLIzV7JrNnHCfdFf1UV0s/+Wtq2b+hnoFeJyHRgSy9MIP0uZHoR2kWypfxeFQe21jBbasKMeq03H3+DE6fJiOpQgLauGYz6Xnsirmcf/8mrnp0G49eMYc5SdLRaTLTaBTiskOIyw7hmPPTqcxvpXhLIwVr69jzUQ22MBPpcyJJy4sgJProdJ0Cbwib7pjOdMf0kX0NvQ0jgW13826eKXyGxzyPARBsDCYnLGcksOWE5RBskguihfA3epNpUl2DdjCM7du3ibrSIvprmjC0DqF3f2qqYrgR7axY4tOnMGPaMSTHZcu1Y37M41GpKmglf00tlQWtKIpC8rQwco6JISYjeMzeLKzr6OeXL+xmfUkrSzPCuf07U4mwmcbkewv/JwFtnAsJNPDEVXM57/6NXP6/LTx25Vzp9CMA0Om1pMxwkDLDwWC/i7KdzRRvbWD72xVse6uC0JhAUvMiSMtzYA83H/V6IgMjiQyM5KTEkwBwup0UdxST35LP3pa95Lfks652nXexVbxTIw8uB5Adms2U0CnYjfajXqcQ4ovpjRM3oA0M9rG7cCNFRdtpKCtmoLb5kDDm0aoQqkczNYaIlAyys+eSmzFXpiqOE65BlR3vVlLwcS1dLQOYbQbyTklkyqJoLMFjF4xUVeXlnbXc/FoBbo/KX87K5fw5cTKLRBxCAtoEEG418tTV8zj3vxu57OEtPHn1XKbGBvm6LOFHjAE6shZEkbUgit7OQUp3NFOyrZHNr5ax+dUyHAlW0mZHkDrLMWZ/qPRa/Uj4OifjHAB6nb3sa93H3pa9FLQUsK91H+9VvjfyOYeEtpBsMkMzCTHJqLEQY0VvNNLX1eXrMr61ts4mdhWsp+TALloqy3HVt2Pq8KAd7qjo0XpQQySMjXeqqtJQ1kXB2loObFFRPaVEpwUx78wUkmeEox3F67OPRGvPIDe+vJd3ChqZnRjMHWdPIyH06M1mEeOXBLQJIsJm8oa0+zdy0YObefqaeUyJltEG8XmBdiNTl8UydVks3W0DlGxronhbI+tfKGH9CyVEpdpJy4sgeUY4gfaxbZkfqA9kduRsZkfOHtnXOdjJ/rb97Gvdd9jQ5ghwkBGSQWZI5sg2zhqHRpEpRkKMNm8Xx/EzguZ2u9hftpPCoq3UlB2gu7YOmnsx935qtMLogbAAtOmRxCZnkpU1m6yUmRLGxrHBPidFmxsoWFtHW10vepOWoGQ46fw5hMZYfFLTuwUN3PjyXrr6Xfzf8kyuWpyMViOjZuLwJKBNINFBATx1lXck7aIHN/PMNfPJiLT6uizhx6whJmacGM+ME+PpaOyjZHsjB7Y28fEzB/j42QPEpAWROstB8gwHZptvTlbsRjvzouYxL2reyL7OwU4K2wopbCukqK2IwvZCNtRtwK26ATDrzKQHp5MenE5acBrpwemkBqdiM9h88jMIMVH46xRHj8dDbWMZBQe2UlW6j9baapwN7RjbXejcw6NiqKg2BU2kDUNsDPEp2UydsoCE6HS5ZmwCUFWVxvIuCj6upWR7Ey6nB0eClWUXZZKa52DDpnU+CWddA05ueW0fL+6oITvKxhNXTSMzUv4WiS8nAW2CiQsxj4ykXfjgJp65Zj6pDt+8WyTGl6AIM3mnJJF3ShKtdT2Ubm+iZHsTa54+wMfPHCA6PZjUWQ5SZoQTYPXtO8t2o525UXOZGzV3ZN+ge5DSjlJvYBsOb2+Xv81zB54beU5kYKQ3tAWlkRacRmpQKon2RFlcW4gj5G2z79sujvXNVRQUbaGybB8tNZUMNrahaxscWWMMQDV4INSIZloMYQkppGVMZ2rGPCxmmVky0Qz0OjmwpZF962ppre1Fb9SSMS+SKYtjCI/37ZvU60ta+OXzu2noGuCHx6byw2PTMOjkzQDx1SSgTUCJYYE8edU8zrt/Exc8sInnvjefxDCZ4yyOXGi0hdBoC7NPS6KtrpeSg2HtqSI+fuYAMelBpMx0kDw93Gcja591sH1/dmj2yD5VVWnsa+RA+wGK24u9245iNtRtwOVxAaBRNMRb40m2J5MSlDJyS7InSXAT4jO8XRyPfkDzeDyUVe+jqGQnNZVFtNfWMtjcjr596NAgpvOgButR0h1YY+OJT85iSsYcYhxJMio2gakelZoD7exfX0/ZzmbcLg/h8VaWXphB2uwIDCbfnt72D7m57e39PLqxkuTwQF68bgEz4qWBmzhyEtAmqFSHhSevmsv5D3hD2rPfm09cyNHv1CcmFkVRCI2xEBpjYc6KJFpreynZ3kjpjmbWPFXEmqeLiE4NImVmOMnTHViC/SvQKIoy0j1ySeySkf1Ot5PyrnLKOsoo6SihrNO7XVOzZmSapEbREGOJIcmeRKItkUR7Ikm2JBLtiYSaQqXjlpiU9EYjrqFBVI8HZRQCUFtnE4UlO6mo3EdTTSW9jU2427oxdLpHuicCqHoPSrABJc1BYHQMMQlpZGfOISkmU4LYJNLdNkDhxnr2b6inu3UAo1lH9sIoshZG+3y07KDtle384vndlLf0cvnCRH51UiYBY7CmmphYJKBNYBmRVp640hvSzrt/E89cM09CmvjGFEUhLNZCWKyFuacn01bXS+mOJkp3NrP22WLWPltMZLLdG9ZmhGMLDfB1yV9Ir9WPXKP2aU63k8quSko6SyjtKKW8s5yKzgo2129m0P3JqIHVYB0Ja/HWeOJt8SNbq8E/ThKEOBr0Rm+XV+fQIAbTkf2Ot3U2UVS2i+rqAzTVVdHd1MhQSye6jiFMg5+EKw8qnkAg2IQmIYTg2HjiEjPJSssjOjxBgtgk5XZ6KN/Twv71dVTtbwMVYjODmXdGMsnTw9H5SfgZdLm56/1i7ltTSpQ9gKeunsuClDBflyXGKQloE1x2tI0nr5rLhQ9ulpAmRs2hI2vJtNX3UrbTG9YOdoMMj7eSPCOc5OnhhESNjym2eq2e1OBUUoNTD9nvUT009DZQ0VlBeVe5N7h1eYPba6WvHfLcYGMwcbY4EqwJxNniiLXEEmuNJdYSS1hAmIy8iXFNZ/SOkjsHBkYCmtM1RGXtAcqr91NfV057Yx0tVdWseeGf6Dudh0xJBPAYPSh2A5qUcEyRkUTGJZOcmENm8nQCTOPjtUIcXaqq0ljRRdHGBoq3NTLY58ISbCRveSJZC6KwhfnXG4D76rr42XO7KGzo5ty8OH5zWhZWk97XZYlxTALaJJATY5eQJo6qkKhAQqK8DUY6mvoo29lM2a7mkXXWgiPNJE0PJ2VGOOHx1nEXUjSKhmhLNNGWaBbELDjkYwOuAaq7q6nqrqKqq2pku7VxK6+XvX7Ic41aIzGWGGIsMcRaY0fuRwVGEWWJItgYPO7+bcTE5/Q4ae5rpr63nsKuQgD+dcePGOrtRekcxNQHGvWT41ZFxRCgogaZUNKDCYiIxBEdT0J8FqmJuQTbZFRBHF5P+wBFmxso2tRAe0MfWr2G5OnhZM6LJDYrBI2ftaV3uT3ct6aUuz4oJshs4KFL8zguK8LXZYkJQALaJCEhTYyVIIeZmSclMPOkBHraBynf7Q1rO9+tYseqSizBRpKnh5M0PZzoVDuaMV4odLSZdCbSgr1dIT9rwDVAXW8dNd011PbUUttdS02P9/7Opp30OHsO/VpaE5GBkSOBLSowisjASCLMEUSYI3CYHVgM0pVVjB6Xx0VLfwtNfU009TXR2NdIY18jDT0N1PfWU99bT3N/Mx7VA0B4u4GTlUg8Va1g1aNE2dGGhhAcEUVEdCLxsemkxGWzedNWli5d6tsfTowLzkE3ZbuaKdpUT3VhO6gQlWpn2UWZpMxyYAzwz1PVkqYefv7cLnbXdLJiWjR/OH0KwYH+0TRLjH/+edSLo0JCmhhrlmAjuUtjyV0ay0CPk4q9LZTubKZgXR17PqrBaNaRkBtK0tRw4qeE+Lzz1mgz6Uwk25NJtid/7mOqqtI11EVdT93IiXB9T/3I/Y9rPqalv+Vzn2fWmYkI9Ia1CHME/e391O6vJSwgjPCAcMICwggLCMOsl9/tyczpdtI60Eprfyst/S009zfT0t9ySBhr6muidaB1JHwdpNfoR94omBs11/uGwfAt0hKJ4zoHFqO8USC+OY/bQ3VhOwe2NFC2qwXXoBtrqIm8UxLJnBeJPdx/X788HpWH15fzt3eKMBu0/PuCGZw2NdrXZYkJZmKdDYmvJCFN+IrJoidzfhSZ86NwDrqp3tdG+e5mKva2cmBzIxqdQmxGCEnTwkiaFkag3b86Qo42RVGwG+3YjXayQrMO+5wh9xCNvd4RjYOjG58e5djSsIWm3ibe2/Le5z7XrDOPhLUQUwjBpmCCTcGEmEI+eWwMJjQgFLvRjl4j10v4M6fHSddgF52DnbQNtNE20Eb7QDttg2209bfRPtjufTzQRmt/K+2D7Yf9OjaDbSTcpwen4zA7Rh4fvB9sCkajjO+RbeF/Dl5XdmBLIyXbGunvdmI060ifHUH6nAiiU4NQ/GwK42dVtfbxixd2s6W8jeOzHPxlZS4Oq8nXZYkJSALaJCQhTfia3qj1NhCZEY7H7aGhrJOyXS2U725mzVOtrHmqCEeijaSpoSTkhhEWa5mU12YZtAbibHHE2eK+8DkffvQh0+dPHxkdOeTW10LLQAvlneXsaNpBx2DH50ZLDgrUB2I3eAOjzWjDbrATZAzyPjbYsBgsWAwWrHrrIVuL3kKALmBS/v98Haqq0u/qp8fZQ89QD93ObrqHuukZ6qFrqGtkf9eQN4R1DnbSMdgx8viz02E/zWawjQTvBFsCsyJmERoQ6g3opjDCzeEjQd2glSlYYmy1N/RyYGsjB7Y00tXcj1anIXFqKOlzIkmYEopW7/9vBqiqylNbqvjzm/vRKgp3nD2N78yMkdc9cdRIQJukJKQJf6HRaohOCyY6LZiF302lra6X8t0tVOxtYfPr5Wx+rRxLsJGE3DASc0OJzQxGp/ePtsr+QKNoRk7OP7tswGe5PW46hzpHRloObjsGO+gc7DwkHBT3FY/cP7g23BfRKlrMOjNm/fBN96nt8H2TzoRBa8CkNWHUGjHpvNuD9w0aA3qNHr1Wj16jR6fReR9rPnmsUTQjN62iRaPRoGH4sebQY0JV1UMfo6KqKi7Vhcfjwa26catuPKoHl8c1snV6nDg9TobcQyP3nW4nQ54hhtxDDLoHGXANMOAeYMA18LnHfa4++px99Dp76Xf10+vsHdmncmhNh/t3tBqsI8E43BxOalDqyEir3egNzTL6KfxdZ3M/JdsbKd7WRGtNDygQmxFM3vIEkmf473Vlh1PX0c+vX9zD2uIWFqWG8dfvTiU6yL+6SIqJZ/z8hohR9+mQdu5/N/LU1fNIDJMWx8J3Pt2+P++URPq6hqjMb6FiTytFmxso+LgWnUFDbGYIibmhJOSE+d3i2P5Mq9GOhLkUUo7oc1RVpc/VNzLa0+McHvEZvt891E2Ps4d+Vz99zr6RMNLn6qOpr2kkpAy4Bxh0DTLkGTrKP+XYMmlNI2HTpDONBNKwgDAC9YGfC6xWgxWL3oLVYB25HXwsI5FiPOtuG6BkWxMl2xtpquwGICLJxqKz00iZ6Rh3r9WqqvL89hr++Po+3KrKH8+YwoVzE/yuk6SYmCSgTXI5MXaeunouFz+0hXOGQ1qqQy7+Fv7BbDOQtSCarAXRuJxuag90ULmnhfK9LVTsaQGKCI21kJATSkJOKJFJtnHfFdLfKIpCoD6QQH0gjML7Nx7Vw6B7kEHXoDe0DY9AOT3OT0aw3M6R0atPj2p5VA8e1TMy8uX2uFFRRx5/rnYOPZHSKtqR0baD9w+OzGkVLTqNzjuSp9Ufcv/g6J5BaxgJYgdH/SRQicmsp32A0h3NlGxvpKGsC4DweCvzV6aQOsuBLXR8jjQ1dg1w40t7+aCwiTlJIdzx3WnEh8osIzF2JKAJpkTbefrqecPTHTfy5FXzyIi0+rosIQ6h02tJmBJKwpRQFp+XTltdL5X5rVTmt4608DeadcRnh5CQE0pcdihmm1xv4280ioYAXQABuvF54ibEZNfZ3EfpjmZKdzbTVOENZaExFuaekUzqLAdBjvEbZFRV5dVdddz8WgEDTje/PS2byxckyqiZGHMS0AQAGZFWnrlmHhc8sInz7t/IE1fNZUq03ddlCXFYn54KOfOkBAb7nFTvb6eywBvYirc1gQKOeCtx2SHET5HRNSGE+Kba6nop3dlE6c5m7zVleEfK5p6RTMqMcIIjx//lES09g9z08l7eKWhkRnwQfz97GsnhMqNI+IYENDEi1WHhue/N54IHNnHBA5t5/Mo5TI0N8nVZQnwlo1lP6iwHqbMcqB6VlpoeKvNbqNrXxo53qtj+diUGk5bYrBDis0OIyw4Zt1NvhBDiaFM9Ko2VXZTvbqF8VzPtDX0ARCbbWfjdVJKnh2MLmzivoW/uqee3r+bTM+DihuWZXL04Ga2MmgkfkoAmDpEYFsiz35vP+Q9s4sIHNvPIFXOYlRDs67KEOGKKRiE83kp4vJW8U5IY7HNSU9ROVUEbVftaKdvZDEBwpJm4rBDiskKITg+acItkCyHE1+FyuqkpbKd8j/ca377OIRSNQnSandylsSRPDycwaHw1+vgqrT2D/O7VAt7cW09ujJ2/nzON9Ai5xEP4npyRiM+JCzGPjKRd8tBmHr5sNnOTQ31dlhDfiNGsJ2WGg5QZDlRVpb2hj+p9bVQVtLJvXR17PqpBo1GISLaNBDZHglWmQwohJryBHieV+S2U726hcl8brkE3eqOW+CkhJE0LJyEnFFPgxFzG4e299fzmlXy6Bpz88qQMvrckGZ287gs/IQFNHFZ0UADPDoe0y/63lQcvzWNhapivyxLiW1EUhZCoQEKiApl2XBwup5uG0k6q97dTvb+NLW+Us+X1cgwmLTEZwcRmhhCbEUxwlFm69Qkhxj1VVWmt7aFibyuVe1tpLO9EVcFsN5AxJ4KkaeHEZgSPi8Wjv6n23iF+91oBr++uIyfGxpNnzyUz0ubrsoQ4hAQ08YUibCaeuWY+Fz24mcsf2cp9F83k2MwIX5clxKjR6bXeEJYZwvyzUhjo8U6HrN7fRvX+Nsp3twAQYDMQmxFMbEYwMRnB2MMnzrUXQoiJzTnopqawjYr8VqryW+lpHwS8TT5mLU8kMTcMR4IVZRJcc/VOQQM3vZxPR98QPzshneuWpqCXUTPhhySgiS8VbjXyzDXzuPR/W7jmse3889zprJgW7euyhDgqTJZPNRtRVbpaBqg90E5NYTu1Re0Ub20EwBpiIibTG9ii04Kwhph8XLkQQnipqkpbfa93Kve+NuoOdOB2edCbtMRlhTD7NO+6kYH2iXU92Zdp7x3ivt0DbKrfTnaUjceumEN2tIyaCf8lAU18peBAA09eNZcrH9nGj57ZSd+Qi3Nnx/u6LCGOKkVRsIcHYA8PIHth9Mj1a7VF7dQUtVO+q5nCDfUA2MJMRKcFEZ0WTEx6ENZQk0yJFEKMmYEeJ9WF3kBWva+N3g7vKFlwpJmcY2JIyA0lOjUIrW7yjRa9W9DATa/k09bj5ifHp/GDZakyaib8ngQ0cUSsJj2PXjGHa5/Yzq9f3EvPoJsrFyX5uiwhxsynr1/LXRrrbedf20PdgQ7qijuo2NNK4cYGACzBRqLTg4hJCyYq1U5QhFzDJoQYPW6nh4ayzuEOta00VXWDCkazjtjMT5YTmcyj++29Q/z+9QJe3VVHVpSN63MVLj0+3ddlCXFEJKCJIxZg0PLAJXn8+Jmd/PGNffQMuPjRcaly4ikmJUWjEB5nJTzOyrTj4lA93mlFdcUd1B7ooHpfGwc2e6dEBlj1RKUEEZVqJyoliLB4C1p5B1cIcYQ8HpXmqm5qCtuoLWqnvqQTl9ODokBEko3ZpyYRnx2CI9GGZhJcS/ZVVuU38JtX9tLR5+Qnx6fx/aWpbFj3sa/LEuKISUATX4tBp+Ff58/ghpf28s/3D9A75OL/lmdKSBOTnqJRCI2xEBpj8Y6wqSodjX3Ul3RSX9JBXWknZbu8a7Dp9Boikm1EpQQRmWInMsmG0TwxW1kLIb6+g2/4jFwDe6CDoX4XACHRgWQvjvZeA5sejDFATuUOausd4ubhDo3ea83myrVmYlyS32rxtem0Gv76nalYjDru/7iM7gEXfzozB628ayfECEVRCI4MJDgykOxF3sY6vZ2D3sBW2kF9SSfb365AVb3PD440e8Nasp3IJDvBkeZJ0VVNCAEet4eWmh7qir1TputKOhjs9QYyW5iJ1JnhxGaGEJMRjNlm8HG1/umtvfX8dnhdM+nQKMY7CWjiG9FoFG5ekU2gUcs9H5XSO+ji7+dMkxdDIb5EoN040iUSYGjARVNFFw1lXTSUe0fY9q/3Nh4xmnVEJNqISLIRkWTHkWglwCInZkJMBC6nm+bKbupKOqgr9r5p4xxwA2ALDyB5Wvhw46EgbGGyrMeXaekZ5ObXCnhzTz05MTae+O5csqJk1EyMbxLQxDemKAq/PCkTi1HP7asK6Rpwcu+FMzEb5LAS4kgYTLqRddiAkWmRBwNbY1knW9+qgOFRNluYCUeijYhEG45EG+HxVt8VL4Q4Yn1dQzSUeoNYQ1knTVXdeFzeX+zgSDPpcyKJTrMTnRqMJXjytL//NlRV5fU99fz+tQK6B5z84sR0vneMjJqJiUHOpMW3dt3SFILMem56eS8XPbiZhy+bTZBZ3ukX4uv69LTIrAVRgHeUrbmqm8aKruHRtk5KtjV5n69RMNhUPFX7CY+3Eh5vJSzWgs6g9eWPIcSk5nZ7aKvtpbG8k4ayLupLO+hqGQBAq9PgSLAybVncyJRmmbL49TV1DXDTK/m8t6+RabF2/nb2PNIj5A0rMXFIQBOj4vw58QSb9fzo6V2c89+NPHbFXCLtk7e9rxCjxWDSEZMeTEx68Mi+vq4hmiq6aKzoonBHBeV7Wtg/vCabolEIiTJ7O0wmWAmPtxEaE4jBJC/3Qow2VVXpbO4f+X1squiiuboHt9MDQIDNQFSynZxjYolKsRMeZ0WrlxGeb0pVVV7YXsMf39jHoMvDjadkcsXCJHQyaiYmGPmLLUbNyTlRPHK5nqsf28Z3/rOBx6+cQ3K4xddlCTHhmG0GEqeGkTg1jH5bFcccs4ie9kGaq7ppruqmqbKbyoJWCjd512VDAXt4AGGx3hG2sDgLYbEWAoOM0oFViCOkqirdrQMjv2fNVd00VnaNNPPQ6TWEJ1jJOSbGe/1ook0WrR9FtR393PjSXtYcaGZ2YjC3f2eqnGOICUsCmhhVC1LDeOaa+Vz2vy2cfd9GHrl8Drmxdl+XJcSEpigK1hAT1hATydPDAe/JZG/HEM1VXbTU9NBS00NzdTelO5pGPs8UqCc01kJYjIWQmEBCor0Lcctom5jsPB6VzqY+mqu7aa7qobmqm5bqbgb7vGHs4Eh18vTwkWY+IVGBaGQkZ9SpqspTW6q49a1C3B6V36/I5pL5ibLem5jQ5K+wGHW5sXaev3Y+Fz+0hfMf2MT9l8xiQUqYr8sSYlJRFAVLsBFLcDhJ08JH9g/1u2it7RkJbS3V3RSsrcU1PCULvM1IQqIthEQHEhrtDW5BDrNc2yYmpIEeJy21PbQevNX00FbXO/I7odVpCI0JJGWWwzt1ON5KaEwgOr38Phxtla293PDiXjaWtbIgJZTbVk4lPtTs67KEOOokoImjIjncwovXLeCShzdz2cNbufv86ZycE+XrsoSY9AwBOqJSg4hKDRrZp3pUulr7aa3tpa2ul7a6HlrreqnKb8XjGW4hqYAt1DTcxMRMcFQgwRHerSlQFtkW/m+w30V7fS9t9b20N/TRNhzIejuHRp5jsugJi7UwZXEMobGBhMfbCI4yo5WRsTHl9qj8b305d7xbhF6j4S9n5XL+nDiZLiomDQlo4qiJtJt47nvzueKRrXz/yR388cwcLpyb4OuyhBCfoWgU7OFm7OHmkSmSAG6Xh47GPu8JbX0v7Y19tNf3UVPYjtv1yYhbgFVPkMOMPcJMkCMAe7iZoAgzdkcAehl1E2NIVVX6uobobOqjrb7vk0BW33tIENPqNARFmonNCiE0xkJoTCChMRbMNoOEAB8raujmVy/uYXd1B8dnOfjTmbnSdExMOmMa0BRF+TlwBxCuqmrLWH5v4RtBZgNPXDWXHzy5g5tezqe+Y4Cfn5gufwCFGAe8U7sshMYceiG+x6PS3dpPe4M3sLU39tLZ1E9VfiuFXUOHPDcwyEhQRAD2sABs4QHYQgOwhQVgCzdhCtTLa4H42lRVZaDXSWdTPx2NfXQ09XnvD2+dg+6R5+qNWoKHg1hIVKB35DfSjC0sQK5h8jNDLg/3ri7hno9KsJr03H3+DFZMjZLXCDEpjVlAUxQlDjgRqBqr7yn8g9mg44FL8vjNK/n8+6MS6jsHuO07ubKYpBDjlOZTI26JuYd+bGjA9amT5T46mvrpbOqjfG8r/Z8Jb3qT1hvWQk3YwgKwhpiwhBhHGp6YLBLgJivnoJuu1n66Wwboau2nq3l4O/zYOfBJCFM0CrZQE3aHmejUoJHR2+DIQCzB0ql0PNhd3cGvXthDUWM3Z0yP5uYVUwgJlPXhxOQ1liNo/wR+Bbw6ht9T+AmdVsOtK73TFO58v5jmnkHuvXAmFqPMshViIjGYdCOLZn+Wc9BNV0v/8G1g5H5HYx/V+9twDXkOeb5Wr/GGtmAjlhATliAjgXYDgUHGkVuA1SAjIeOM2+2ht2OQnrZBetoH6GkfpKdtgO72Tx4P9DgP+RydXoM1LABbmIno9CBsoSaCHN6ptNZQE1qdvOE3HvUNufjnewd4aF05DquJhy7N47isCF+XJYTPjcnZsaIoZwC1qqrulneyJi9FUfjJ8elE2U3c+HI+592/kYcvm43DKnPLhZgM9EbtYadMgnfa2mCvi+62AbrbBuhpH6C7bfjEvW2A6oJW+rqGUNVDP09RvOvCBQYZMdsMBNgMmK2f35ptBoxmHYqEuaNC9agM9Dnp73Yy0DNEZ5XK7g+q6esapLdziL6uIfo6vfc/G77A27zG23XUhCPRhjXYhC3MO7JqCwsgwCqjqRPNuuIW/u/lPVS39XPB3HhuWJ6JzSQNh4QAUNTP/rX7pl9IUd4HIg/zoZuAG4ETVVXtVBSlAsj7omvQFEW5BrgGICIiYtYzzzwzKvUJ/7KrycW9uwexGRR+PstElGV8vPvZ09ODxSILYwr/MZmOSdWj4hoEVz84+4a3/erwFtwD4BoA1yBwuD9tCmgNwzcj6Ia33seKd6sHjd67T6P/5LFGx6QICKpHxeMC99Cnbk7wjDxWcTuH/60HwT04vB3isP/migZ0puFbwMGtgj4A9GbQmb1brX7i/9sKr54hlWeKhlhX6yLSrHB5jpGMkKPfTGgyvVaK8WHZsmXbVVXNO9zHRi2gfRFFUXKBD4C+4V2xQB0wR1XVhi/73Ly8PHXbtm1HtT7hO7urO7jika14VJUHL53NrIRgX5f0lVavXs3SpUt9XYYQI+SY/LyDozl9XUP0dzvp7/KO4Az0OhnocXq3B2/Djz87vfKzFI2CwaRFb/TedIbP3Ddp0Ru0aPUadHoNWp2CVqdFq1fQ6jRo9RrvVqtB0Xi/nkareLeaT22HQ6B6MO185k+0qoLH7cHjUVHdKh63isdzcOvB41ZxOz24nJ7PbN0jj12DbpyDboYGvFvnoGvksdv51f8ORrOOAIsek0VPgNVAwPDWFKgnwKonwGKg4MBujjl+ISazXkYtBeAdJX9jTz23vF5AR5+Ta49J4fpjUzGN0Xpy8lop/I2iKF8Y0I76FEdVVfcCjk8VU8GXjKCJyWNaXBAvXreAS/+3hQse2MTd58/gpCmHG4QVQogjp2gUAiwGAixH3mTANeRmsM/FYL+LoeHb4Ge2Q/1unEPukYDjHHTT1zWEa+iTx26nB5fLc/gRPB/RaBVvaBy+6Y069EYtBpOWAKveGy6NOgxGb9A0mHQYzToMATpMgTqMZj2GAO8+vVF7RCOJpU3K1/r3FxNbfWc/v30ln/f3NzE11s5jV8wlO9rm67KE8FvSoUH4VGJYIC9et4ArH93GtU9s56ZTsrhyUdKkmEokhPAfOoN3JCwwyPitv5aqeke13E4PbpcHt1PF7XLjcnq8UwjdKqrHu1yB6vHg8eAdDfOofHpWy8jr4KEbNFoFjVbzyQic1jv65t3vHbn7dCCTJirCVzwelSc3V3L7qiJcHg+/OTWLyxYkopMuzkJ8qTEPaKqqJo719xT+Lcxi5Jmr5/GTZ3fypzf3U9nax80rsuUFXAgxLimKglaroJXXMDGJHWjs5v9e2sv2ynYWpYbxl7NyiQ81+7osIcYFGUETfiHAoOU/F87itlWF3P9xGTXtffzrAmnDL4QQQownA04393xUwn1rSrEYdfzjnGmcNSNGZsYI8TXI2a/wGxqNwo2nZBEfYubm1wo4+76NPHxZHlH2AF+XJoQQQoivsLG0lRtf3kt5Sy8rZ8Rw06lZhFq+/bRhISYbmX8h/M5F8xJ4+LLZVLf1ceY968mv7fR1SUIIIYT4Ah19Q/z6hT2c/8Am3B6Vx6+cwz/OnS7hTIhvSAKa8EvHpIfzwnXz0SoK5/x3Ix/sb/R1SUIIIYT4FFVVeW13Hcf/Yw0v7Kjh2mNSeOcnS1icFu7r0oQY1ySgCb+VGWnjlR8sJCXcwtWPbeOR9eUc7XX7hBBCCPHVqlr7uPR/W/nR0zuJDgrgtesXcsPyTAIMY7OumRATmVyDJvyaw2bi2e/N48fP7OL3r++juKmH358+Bb10RxNCCCHGnNPt4YG1Zdz1fjE6jcLNK7K5ZH4iWlnOQYhRIwFN+D2zQcd9F83ijneL+M/qUsqae7n3wpkEB8oiqEIIIcRY2V7Zxo0v5VPU2M3JUyK5+fRsaeQlxFEgAU2MC1qNwq9PziTNYeGGF/dy5r3reejSPFIdVl+XJoQQQkxonX1ObltVyNNbqogJCuDBS/I4PjvC12UJMWHJPDExrqycGcvT18yjd9DNWfdsYHVRk69LEkIIISYkVVV5dVctx/1jNc9tq+bqxUm8+9MlEs6EOMokoIlxZ1ZCMK9ev5C4EDNXPLKVh9ZJ8xAhhBBiNJU193DxQ1v48TO7iAk289r1C7np1GwCjTL5SoijTX7LxLgUExTAC9fN52fP7uaPb+zjQEM3fzwzB4NO3nMQQgghvqkBp5t7V5dy3+pSjDoNfzhjChfOTZAmIEKMIQloYtwyG3Tce+FM7nz/AHd/WEJ5Sy/3XjSTMFkYUwghhPja1hxo5nev5lPZ2scZ06O56dQsHFaTr8sSYtKR4QYxrmk0Cj87MYO7z5/BntoOVvxrHXtqOnxdlhBCCDFuNHQO8IMnd3Dpw1vQKgpPXjWXu86bIeFMCB+RgCYmhNOnRfPCtQvQKArfvW8jL2yv8XVJQgghhF9zuT08tK6c4/+xhvf2N/KzE9J5+yeLWZga5uvShJjUZIqjmDByYuy8/sNFXP/UDn7x/G7yazu56dQsWdRaCCGE+IztlW385pUC9td3cUx6OH84YwoJoYG+LksIgQQ0McGEBBp47Io53PZ2IQ+uK2dffRf3XijXpQkhhBAALT2D3P52Ic9vryHKbuLeC2eyPCcSRZEmIEL4CwloYsLRaTX85rRscmPt/PrFPaz41zruu2gW0+KCfF2aEEII4RNuj8pTW6r426pC+obcXHtMCj88NlXa5gvhh+S3UkxYZ0yPISXcwvce387Z/93In8/M4ey8OF+XJYQQQoypnVXt/PbVfPJru5ifHMofz5xCqsPq67KEEF9AApqY0D59XdovX9jD7poOfntaNkad1telCSGEEEdVW+8Qf3unkGe2VhNuMXL3+TNYMTVKpjMK4eckoIkJ7+B1aX99p4j7Py5jb00n91w4k9hgs69LE0IIIUad26Py9JYq7ni3iO4BF1ctSuLHx6djkemMQowL8psqJgWdVsONp2QxMz6YXz6/m9P+tY5/njudZRkOX5cmhBBCjJptFW3c/FoBBXVdzE0K4Q9n5JARKdMZhRhPJKCJSeXknEgyIq1c98R2rnhkKz9clsqPj09Hq5HpHkIIIcavpq4Bbnu7kJd21hJlN/Gv82dwmkxnFGJckoAmJp2ksEBe/v5CfvtqPnd/WMLO6g7uPHc6odKKXwghxDgz5PLwyIZy7v6ghCGXhx8sS+EHy1IxG+QUT4jxSn57xaQUYNDyt+9OJS8hmN+9VsBp/1rHvy+YyayEYF+XJoQQQhyRtcXN/P61Akqbezk208HvTssmMUwWmxZivNP4ugAhfEVRFM6bE89L1y1Ap1U4978beXhdOaqq+ro0IYQQ4gtVtvZy9WPbuPihLbg8Kg9dmsfDl82WcCbEBCEjaGLSy4mx88b1i/n587v5wxv72FDayh1nTyXIbPB1aUIIIcSInkEX93xUwkNry9FpFX55UgZXLkrCpJelY4SYSCSgCQHYzXoeuGQWD6+v4La393PKXWu5+/wZ5CWG+Lo0IYQQk5zHo/LyzlpuX1VIU/cgK2fG8OuTM4mwmXxdmhDiKJApjkIMUxSFKxcl8eJ1C9BpNZx7/ybu+agEj0emPAohhPCNnVXtrPzPBn7+/G6iggJ46fsL+Mc50yWcCTGByQiaEJ8xNTaIN360iBtf2svf3iliU1kr/zhnOuFW6fIohBBibDR2DXD7qkJe2lFLuNXI38+exlkzYtDIsjBCTHgS0IQ4DJtJz7/On8Gi1DBufq2A5Xet5c5zp/u6LCGEEBNc/5Cb+z8u4741pbg9Ktct9bbNtxjllE2IyUJ+24X4Age7PM6ID+b6p3Zw8cObOTVJz8LFHvRamR0shBBi9Hg8Kq/uruWvq4qo7xxgeU4k/7c8i/hQs69LE0KMMTnLFOIrZERaefX6hZwzK443ypx89z8bKG/p9XVZQgghJohtFW2c9Z8N/PTZ3YRZjDx7zTz+c9EsCWdCTFIygibEETAbdNz+3amEuZp4oqiPU+9ey+9Oy+bc2XEoilwPIIQQ4uurbuvjtlWFvLmnngibkTvOnsZKuc5MiElPApoQX8PsSB0XLZ/Lz5/bzQ0v7eWjoiZuWzmV4EBZM00IIcSR6Rpw8p/VpTy0rhyNAj86Lo1rj0nGbJDTMiGEBDQhvrYoewBPXDmXh9aV87d3ijjpzo/5+znTWJwW7uvShBBC+DGn28OTmyq5+8MS2nqHOGtGDL86OYMoe4CvSxNC+BEJaEJ8AxqNwtVLklmQGsqPn9nFxQ9t4YqFSfzq5AxMeq2vyxNCCOFHVFXlnYIGbl9VRHlLL/OTQ7nxlCxyY+2+Lk0I4YckoAnxLUyJtvPGDxdx61v7eXh9ORtKW/jHOdPJjrb5ujQhhBB+YEdVO395cz/bKttJc1h4+LI8lmU45PplIcQXkoAmxLdk0mu55YwclmY6+NULezjjnnX86Ng0rluagk7a8QshxKRU1drH7e94G4CEWYzcujKXs2fFyt8FIcRXkoAmxChZluHg3Z8s4ebXCvj7ewd4b38jfz97GmkRVl+XJoQQYoy09Azy7w9LeHJzJTqNhh8fl8Y1S5IJlIWmhRBHSF4thBhFwYEG7j5/BifnRPKbV/I59V/r+MWJ6Vy5KBmttE0WQogJq3fQxYNry7n/41IGXB7OyYvjJ8enEWEz+bo0IcQ4IwFNiKPglNwoZieGcNPLe/nLW4W8W9DIHWdPIzEs0NelCSGEGEVOt4dntlRx1wfFtPQMsTwnkl+clEFKuMXXpQkhxikJaEIcJeFWI/+9eBav7Krl5lcLWH7XWm5YnsnF8xJkEVIhhBjnPB6VN/fW8/d3i6ho7WNOUgj3X5LJzPhgX5cmhBjnJKAJcRQpisJZM2KZnxzGr1/cw82vFfDW3npu+85UkmQ0TQghxh1VVVlb3MLf3ilib20nmZFW/nfZbJZmhEtnRiHEqJCAJsQYiLSbeOTy2Ty/rYY/vbmPk+/8mJ+ekM5Vi5Kko5cQQowT2yvb+OuqIjaXtxETFMDfz57GmTNi5BpjIcSokoAmxBhRFIVzZsexNCOc371awG1vF/LGnjpu/85UpkTLYqVCCOGvCuo6+fu7B/iwsIkwi5FbTp/CeXPiMOq0vi5NCDEBSUATYow5bCbuu3gWb++t57evFnD6v9dzzZJkfnxcGia9/LEXQgh/Udbcwz/eO8Abe+qxmXT86uQMLluQiNkgp09CiKNHXmGE8JHluVEsSAnjz2/t4z+rS3knv4FbV+YyNznU16UJIcSkVtvRz93vF/PCjhqMOg0/PDaVqxYnYw/Q+7o0IcQkIAFNCB+ym/X89bvTOH1aDP/38h7OvX8TF8yN59cnZWI3y4mAEEKMpfrOfu75qIRnt1ajoHDp/ES+vyyFMIvR16UJISYRCWhC+IFFaWG885Ml/OPdA/xvQwXv5Ddw06lZnDUjRrqCCSHEUdbYNcC9H5Xw9JZqVFTOyYvjB8tSiQ4K8HVpQohJSAKaEH7CbNDxm9OyWTkzlpte2cvPntvNc9uq+dOZOaQ6rL4uTwghJpym7gHuW13Gk5srcXlUzp4Vyw+WpRIXYvZ1aUKISUwCmhB+JjvaxovXLuCZrdXcvqqQ5Xet5erFyfzw2DQCDNJERAghvq2WnkHu/7iMxzZW4HSrrJwRww+PTSM+VIKZEML3JKAJ4Yc0GoUL5sZz4pQIbn2rkHtXl/La7jr+cMYUjs2M8HV5QggxLjV1D3D/mjKe3FzFoMvNmdNj+OFxaSSFBfq6NCGEGCEBTQg/FmYx8vdzpnF2Xiy/eSWfKx7ZxklTIvjNqdkyBUcIIY5QQ+cA960p5ektVTjdHs6YHsMPlqWS6rD4ujQhhPgcCWhCjAPzkkN560eLeXBdGf/6oITji9bwvSXJXLc0VaY9CiHEF6jt6Oe+1aU8u7Uaj6py1gxvMEuUETMhhB+TgCbEOGHQafj+0lTOmhHDbW8XcveHJbywvYb/OyWL06ZGSbdHIYQYVt3Wx72rva+RAN+dFcf3l6bIzAMhxLggAU2IcSbKHsBd583gonkJ/P61An749E4e31TJzSuymRJt93V5QgjhMwcau7lvdSmv7q5Dq1E4f0481x6TIu3yhRDjypgFNEVRfgj8AHADb6qq+qux+t5CTESzE0N47fpFPLetmr+9U8SKf63j/Dnx/PzEDEICDb4uTwghxszOqnbuXV3Ke/saMRu0XL4gkauXJBNhM/m6NCGE+NrGJKApirIMOAOYpqrqoKIojrH4vkJMdAffIT4lJ4o7PzjAYxsreX13HT88No1LFiRg1Mn1aUKIiUlVVdaXtHLv6hI2lLZiD9Dz4+PSuGxBIsHyJpUQYhwbqxG064DbVFUdBFBVtWmMvq8Qk4LdrOfmFVO4YE48f3pzP39+az+PbqzglydlsGJqNBqNXJ8mhJgYPB6Vd/c1cu/qEvbUdBJhM/KbU7M4f048gUa5ckMIMf6N1StZOrBYUZQ/AwPAL1RV3TpG31uISSMtwsqjV8xhbXEzf3mrkB8/s4uH15Vz4ylZzE0O9XV5QgjxjQ043by0o5YH15ZR1tJLQqiZW1fmsnJmjMwWEEJMKIqqqqPzhRTlfSDyMB+6Cfgz8BHwI2A28CyQrB7mmyuKcg1wDUBERMSsZ555ZlTqE2I09PT0YLGMj3VzPKrKhjoXLxU7aRtQmeHQcna6gWiLxteliVE0no5JMXmM5nHZM6TyQZWT96ucdA9Bok3D8iQ9eRFatDI7QBwhea0U/mbZsmXbVVXNO9zHRi2gfRlFUVYBt6uq+tHw41JgnqqqzV/2eXl5eeq2bduOen1CHKnVq1ezdOlSX5fxtQw43Ty0rpz/rC6l3+nmvNlx/Pj4NBxWuXh+IhiPx6SY+EbjuKxq7eOhdWU8t62GfqebZRnhXLMkhXnJIbKsiPja5LVS+BtFUb4woI3VFMdXgGXAR4qipAMGoGWMvrcQk5pJr+UHy1I5b3Ycd39QzJObq3hpRy2XLkjk2mOSCTLLxfRCCP+xs6qdB9eW83Z+PVqNwpnTY7h6STLpEVZflyaEEGNirALaw8DDiqLkA0PApYeb3iiEOHpCLUZuOSOHyxcmcef7B/jvx6U8uamSqxYnc8WiRKwmva9LFEJMUk63h1X5DTy8vpydVR1YTTquWZLC5QsTpVW+EGLSGZOApqrqEHDRWHwvIcSXSwwL5M7zZnDd0lT+8V4R/3z/AI9sKOe6pSlcMj8Rk14uthdCjI2OviGe3lLNYxsrqO8cIDHUzC2nT+E7s2KxSEdGIcQkJa9+QkxSGZFW/ntxHrurO7jj3SL+8lYhD64t54fHpnLu7HgMOmkmIoQ4Okqauvnf+gpe3FHDgNPDwtRQ/nRmDssyHLIsiBBi0pOAJsQkNy0uiMevnMvmslbueLeI375awH1ryrh2aQpnz4qVETUhxKhwe1Q+Kmzi0Y0VrC1uwaDTcNb0GC5flEhmpM3X5QkhhN+QgCaEAGBucijPfW8+aw40c/cHxfz2lXz+/WEx1yxJ4YI58QQYJKgJIb6+tt4hnt1azRObKqnt6CfCZuRnJ6Rz4dx4Qi1GX5cnhBB+RwKaEGKEoigszXBwTHo4G0pbufuDYv74xj7+s7qEqxYnc/G8BALluhAhxBHYVd3BYxsreGNPPUMuD/OSQ7jp1CxOyI5Ar5Up1EII8UXkTEsI8TmKorAwNYyFqWFsKW/jXx8Wc9vbhdy3ppQrFyZx6cJEbNL1UQjxGf1Dbt7cW889G/spX7WeQIOWc/PiuHh+grTJF0KIIyQBTQjxpeYkhfD4lXPZWdXOvz8s4e/vHeD+j8u4YG48ly9MItIuLbCFmOwKG7p4Zks1L+2ooWvARVSgwi2nT2HlzBhZwkMIIb4mCWhCiCMyIz6Yhy6bTX5tJ/etKeWBtWU8vL6c06fFcM2SZDIi5d1xISaT/iE3b+yp4+ktVeyo6sCg1bA8N5LzZsczULWHZQsSfV2iEEKMSxLQhBBfS06MnX9fMJPqtj4eWlfOs1ureXFHDcekh/O9JcnMTwlFUaRNthAT1f76Lp7eUsXLO2vpHnCREh7Ib07NYuXMWEICDQCsrpbXACGE+KYkoAkhvpG4EDO/P30KPz4ujSc2VfLoxgoueHAzOTE2rl6czCm5UdIIQIgJoqNviNd21/H8thr21nZi0Gk4NTeK8+fEMzsxWN6UEUKIUSQBTQjxrQQHGvjhcWlcvSSZl3fW8sDaMn78zC5ufauQC+fGc96ceMKt0kpbiPHG7VFZW9zM89treK+gkSG3h6woG787LZuzZsQQPDxaJoQQYnRJQBNCjAqTXsv5c+I5Ny+Oj4qaeGRDBX9/7wD/+rCEU6dGccn8BGbEB/u6TCHEVyhr7uH57TW8tKOGxq5Bgs16Lpgbz9l5sUyJtvu6PCGEmPAkoAkhRpVGo3BcVgTHZUVQ2tzD4xsreWF7DS/vrGVarJ1LFyRy6tQojDpZ+FoIf9HaM8ibe+t5eWctO6s60GoUjkkP5/crYjk2yyG/r0IIMYYkoAkhjpqUcAu/P30Kvzgpg5d21PDohgp+9txu/vzmfs7Oi+O82XEkhgX6ukwhJqW+IRfv7WvklZ21fFzcgtujkhlp5f+WZ3LWjBgcNllCQwghfEECmhDiqLMYdVwyP5GL5yWwvqSVRzdW8MDaMu5bU8r85FDOmxPHSVMiMenlXXohjiaX28P60lZe2VnLOwUN9A25ibabuHpxMmfOiCYz0ubrEoUQYtKTgCaEGDOKorAoLYxFaWE0dg3wwvYant1azY+f2YU9QM9ZM2I4b06cnCQKMYrcHpUt5W28ubeOVfkNtPQMYTPpOGN6NGdMj2FOYggajXRhFEIIfyEBTQjhExE2Ez9Ylsp1x6SwsayVZ7ZW89TmKh7ZUMH0uCDOyYvj1Nwo7Ga9r0sVYtxxe1S2VrTx5p563s5voKVnkAC9lmOzHKyYGsWyTLmuTAgh/JUENCGET2k0CgtTw1iYGkZ77xAv7azlmS1V3PjyXn7/WgHHZTk4c0YMSzPC5YRSiC/h9qhsr2znzT11vJXfQHP3ICa9huMyIzh1ahRLM8IxG+TPvhBC+Dt5pRZC+I3gQANXLkriioWJ5Nd28fLOWl7bXcvb+Q3YA/ScNjWKs2bEMCtBFsYVAmDA6WZ9SQvvFjTy/v5GWnuHMOo0HJvp4NSpURyb6ZBQJoQQ44y8agsh/I6iKOTG2smNtXPjKZmsK2nh5Z21vLijhic3VxEXEsCZ02M4dWoUGRFWCWtiUunsc/JRURPv7mtgdVEzfUNurEYdyzIdnJAdwbGZDgKN8uddCCHGK3kFF0L4NZ1Ww9IMB0szHPQMungnv4FXdtVyz0cl/OvDEpLDAlmeG8nynCimRNskrIkJqbyll48Km/iwsIlNZa24PCoOq5GzZsRw4pRI5ieHYtBpfF2mEEKIUSABTQgxbliMOr4zK5bvzIqluXuQdwoaeDu/nv+sLuWej0pJCDWzPCeKU3IjyY2xS1gT49agy83msjY+KmpidVEz5S29AKSEB3LV4mROmhLBtNgg6b4ohBATkAQ0IcS4FG41ctG8BC6al0BrzyDv7Wvkzb31I+urxQYHcHxWBMdlOZiTFCINRoTfq2nv4+MDLXxY2MSG0hb6htwYdRrmp4Ry2YJElmU4iA81+7pMIYQQR5kENCHEuBdqMXLenHjOmxNPe+8Q7+1vZFV+A09v8bbtDzRoWZIezrGZDpZlOgizGH1dshB09jvZWNrKupJm1pe0joySxQQF8J2ZsSzLDGd+chgBBnlzQQghJhMJaEKICSU40MA5eXGckxdH/5CbDaUtvL+/iQ8LG3k7vwFFgelxQRyX6b2uLTvKJtPExJgYdLnZUdnB+pIW1pa0sLemA48KZoOWecmhXDwvgcVpYaQ6LDI9VwghJjEJaEKICSvAoOW4rAiOy4pAVXMoqOviw8ImPihs4o53D3DHuwcINutZkOJdh21RaphMIROjpn/Izc6qdjaXt7GlvI0dVe0MujxoNQrT44K4/tg0FqeFMS02SBp8CCGEGCEBTQgxKSiKQk6MnZwYOz86Lo3m7kHWl7SwrqSFdcUtvLm3HoD4EPNIWJufEkpIoMHHlYvxonvAybbKdrYMB7I9NR043SoaBbKjbVw4N4F5ySHMSwnFZtL7ulwhhBB+SgKaEGJSCrcaOXNGDGfOiEFVVUqbe71Tz4pbeH13HU9vqQIg1WFhdmIweQkhzEkKITY4QKafCTweldLmHnZWdbCzup2dVR0UNXajqqDTKEyNtXPlomTmJoUwKzFYApkQQogjJgFNCDHpKYpCqsNCqsPCpQsScbk97K7pYFNZG9sq2nhjTz1Pb6kGIMJmJC8xhNkJweQlhpARaUWvlelpE11z9yB7azvYVdXBzmrvtnvQBYA9QM/0uCBOmhLJ3KQQpscHYTbIn1chhBDfjPwFEUKIz9BpNcxKCGFWQgjgHS0pauxmW0UbWyva2VrRxpt7vFMijToN2dE2psbYyY0NYlqsneRwC1ppPDIuqapKTXs/BXVdFNR1UlDXRX5tJ03dgwBoNQqZkVbOmBHN9LhgZsQHkRQaKI1mhBBCjBoJaEII8RU0GoWsKBtZUTYunp8IQG1HP9sq2thb08me2k6e317DoxsrAW9XvpxoO7mxdrKibGREWEmLsGDSS7t0f9I14KS4sYeSpm4ONPawv76LgrouOvudgDeMpYZbWJQaxpQYOznRNnJj7TI6JoQQ4qiSvzJCCPENxAQFEDM9hjOmxwDg9qiUNfewp6aTPTUd7Knt5IlNlQy6PABoFEgMDSQ9wkpG5Ce3hBAzOpkiedSoqkp7n5Pyll5KmropbuzhQFMPxY3d1HcOjDzPpNeQEWHllNwocmJsTIm2kxlplVAthBBizElAE0KIUaDVKKRFWEmLsPKdWbEAuNweKlr7ONDYTWFDN0UNXRQ1dvPOvgZU1ft5Oo1CXIiZxFAziWGBJIYGkhgWSFJoINFBJglvR0BVVVp6hqhs7aWitW9kW9HSS0VrL90DrpHnGnUaUh0W5iWHkhZhId1hJT3CSmxwgExTFEII4RckoAkhxFGi02pGmo+ckhs1sr9/yE1JUw+FDV2UtfRS2dpLeUsfm8vb6BtyjzxPr1WICQogyh5AVJCJ6M9so+wBqAeT3gSlqipd/S6augeo7einvnOAuo5+6jq82/rOfuo6BxgaHqkE72hlbLCZhFAzZ8XHkBAaSEKImVSHhbgQs1wfKIQQwq9JQBNCiDEWYNCSG+u9Ru3TVFWluXuQ8uGRn4rWPqra+qjv6GdjaSuNXQN4PpPHTFpwbP2IkEADoYEGQi0GQgKNhFkMhAR6b7YAPVajDotJh8WoI9Cg88lokdPtoXvARfeAk67+4e2Ak64BFx19Q7T0DNHSM0hLzxCtPYO09gzR2juI033oD61RIMJmIspuIifGzolTIom2m0gYHn2MCQqQhZ+FEEKMWxLQhBDCTyiKgsNmwmEzMTc59HMfd7k9NHUPekeNOgao7+xnW0EJAcFBtPUOUd85QH5dJ229Q58LNZ8VaNCOBLYAgxa9VoNeq8Go0wzfVzDotOi1CjqNgqqCCsNb7wPvYxWPCkMuD4MuNwNO73bQ5WHQ5WHA6d3XO+ii3+n+0poMOg3hFm+4jLCZmBJtI9RiJGx4X0xQAFFBAURYjTL1UwghxIQlAU0IIcYJnVZDdFAA0UEBzErw7kv3VLN06YxDnqeqKt2DLlp7hmjrHaRrwEXPgIveQRc9gy66B7zbngEX3YNOBp0ehtwehlzeIOV0qwy5PDjd3v0ut4qigAIji3QryvANBY0CRp0Wo94b8MwGHSGBGu8+nQajXoPFqMNq0mM16bAd3AZ88jjIrMdi1Mki4EIIISY9CWhCCDHBKIqCzaTHZtKTFBbo63KEEEII8TXIHBEhhBBCCCGE8BMS0IQQQgghhBDCT0hAE0IIIYQQQgg/IQFNCCGEEEIIIfyEBDQhhBBCCCGE8BMS0IQQQgghhBDCT0hAE0IIIYQQQgg/IQFNCCGEEEIIIfyEBDQhhBBCCCGE8BMS0IQQQgghhBDCT0hAE0IIIYQQQgg/IQFNCCGEEEIIIfyEBDQhhBBCCCGE8BMS0IQQQgghhBDCT0hAE0IIIYQQQgg/IQFNCCGEEEIIIfyEBDQhhBBCCCGE8BOKqqq+ruELKYrSDFT6ug4hPiUMaPF1EUJ8ihyTwh/JcSn8jRyTwt8kqKoafrgP+HVAE8LfKIqyTVXVPF/XIcRBckwKfyTHpfA3ckyK8USmOAohhBBCCCGEn5CAJoQQQgghhBB+QgKaEF/P/b4uQIjPkGNS+CM5LoW/kWNSjBtyDZoQQgghhBBC+AkZQRNCCCGEEEIIPyEBTQghhBBCCCH8hAQ0IYQQQgghhPATEtCEEEIIIYQQwk9IQBNCCCGEEEIIPyEBTQghhBBCCCH8hM7XBXyZsLAwNTEx0ddlCDGit7eXwMBAX5chxAg5JoU/kuNS+Bs5JoW/2b59e4uqquGH+5hfB7TExES2bdvm6zKEGLF69WqWLl3q6zKEGCHHpPBHclwKfyPHpPA3iqJUftHHZIqjEEIIIYQQQvgJCWhCCCGEEEII4Sf8eoqjEEKIsaOqKm6Pistz6NajqgAow89TFGXksaKAgoJWq6DXKug1GjQa5fDfQAghhBBfSQKaEEKMI6qqMuD00NE/RHuvk/2tbpz7GukddNE96KJ30EXPgIueg/cHXQw43Qw4PQy43Ax+ajvo8u4fcntwD4ex0aBRQKfVoNco6HUadBoNJr0Gk15LwPDNqNd47xu0mHRazEYtVqMOq0mPxaTDYtRhMemwmXRYjHqsJh1BZj0Beu1IQBRCCHF4TqeTmpoaBgYGfF3KpGcymYiNjUWv1x/x50hAE0IIH+sddNHcPUhLz+An254hmrsHaesdpL3PSWef0xvK+pwMuTyHfoGthzZT0igQaNRhNeoINOpGQpDFqCM00BuOTDotJr0Go06LQadBp1HQahTvVju81Xj3axQ4GN2GB9NQVXVkn0cFt8eD063idHtwuVWcnuGt27vfGwbd9A95Q2H3gPdnHnC66Rvy7u8Zco18/S9i0GkINusJCjAQZNYTZNYTbDYQZDYQZjEQZjF6b1YD4RYjwWaDjOgJISadmpoarFYriYmJ8qaWD6mqSmtrKzU1NSQlJR3x50lAE0KIo0RVVdr7nNR19NPQOUB9Zz/1nQPDN+/9pq5B+p3uz32uokCI2UCoxRs+EkLNTDPbCTYbsA8HlGCznvID+1g0d9bIiJPFqBu3o0wej0rvkHfUr2fAOyLYM+Cie8BF14CTjj4nHX1DdPQ5aR/elrf0sqOvg46+IZzuz6c7rUYhJNAb3CJsRiJtJiLtpk+2w/ftAfpx+W8mhBCHMzAwIOHMDyiKQmhoKM3NzV/r8ySgCSHEt9A76KK6vY+q1j6q2vqoae+nqu3g/T4GnIeOduk0ChE2E9FBJnJj7ERmmQizGgm3GAmzGgmzGAi3GgkxG9Bpv7qP0+rWIqbGBh2ln25saTQKVpMeq0kP9q/3uaqq0tXvornHOwLZ0jNIS/cgLT1DI48buwbJr+2ipWfwc59v0muItgcQExxAbLCZ2OCA4ZuZuOAAwixGGYkTQowrEs78wzf5f5CAJoQQX8Hp9lDZ2kdZcw9lLb3ebXMv5S29tPYOHfJci1FHfIiZlPBAlqaHExMcQJTdRJTdu5UT/aNDURTsZj12s55Uh+VLnzvk8tDUPUBD5wANXQPDo5veUc2a9n4K6hpo+8z/q0GrITY4gIRQMwmhgSSFBZIQaiYxNJDY4IAjCtNCCDGZ3HXXXTzwwAOoqsrVV1/NT37yE1+XNG5IQBNCiGGDLjelTb0UNXZR1NBDSVM3Zc29VLb1HdJAI8xiJDk8kBOyI4gPNRMf4r3FBZsJMstUOX9n0GmGR8nMX/icviEXte3ewFbT/snIaEVrH5vL2+gb+mRaqk6jEBscQGJYIMlhFlIdn9xCAg1j8SMJIYRfyc/P54EHHmDLli0YDAZOPvlkTjvtNFJTU31d2rigqF91RbYPKIqyAlgRExNz9RNPPOHrcoQY0dPTg8Xy5e/OC/+nqiot/SpV3R5qezzUdHtvDX0qB3OYVoGoQIXIQA2RgRqiAhWiAjVEBGoI1PtPAJNjcuypqkrnkEpjr0pTn4fGPpXGPg+NvSoNvR6GPjWr1aKHaIuGqEDvLdaqEGvRYDcqEzrIy3Ep/M1kOybtdrtPw9DLL7/M+++/zz333APA7bffjtFonLSjaCUlJXR2dh6yb9myZdtVVc073PP9cgRNVdXXgdfz8vKuXrp0qa/LEWLE6tWrkWNyfPF4VCrb+thb20lBbSd7azvJr+2ka8A18py4kACy422sjLSSHmklM9JKUlgg+nEwbU2OSf/i8ajUdvRT2txDSVMPpc29lDb1sLe5hzU1n0ybDDbryYi0khlpIzPSSkaklfQIK4FGv/yz/LXJcSn8zWQ7Jvfv34/VagXgltcL2FfXNapfPzvaxs0rpnzhx2fPns2f/vQnhoaGCAgI4IMPPiAvL2+kpsnGZDIxY8aMI37+xPhLIIQQeEc26jsH2FHVzq6qDvbWdrKvrovuQW8YM2g1ZERaOXVqNDkxNrKjbKRFWLFMkJNi4XsajUJciJm4EDNLMxyHfKytd4iihm6KGrooauymsKGb57ZVHzJdMiHUTE60nexoGzkxdqZE2wizGMf6xxBCiG8lKyuLX//615x44okEBgYyffp0tFqtr8saN+SsRAgxbg043eTXdrKjqp2dVR3sqGqnscvboc+o05AVZePMGTHkxHhPdtMcVgw6/x8VExNTSKCB+SmhzE8JHdnn8ajUtPdT2NBFUUM3+xu62FvbyZt760eeE2kzed9QiLaTE21jelwQDpvJFz+CEGIc+rKRrqPpyiuv5MorrwTgxhtvJDY21id1jEcS0IQQ40ZH3xBbytvYXN7Gtoo29tV3jax9FRcSwLzkUGbEBTEzIZjMSJuEMeH3NBrF22gm1MyJUyJH9nf2O9lX10VBnXdKbn5dFx8WNo1cIxllNzE9LohpcUFMiw0iN9YuI8FCCL/S1NSEw+GgqqqKl156iU2bNvm6pHFDXs2FEH6ruXuQrRVtbC5rZXN5G4UN3YC3C9/0uCCuWpzMjLggZsQHE26VaWBi4rAH6D832tY35GJfXRe7azrZXd3BruoO3s5vAECjQJrDyrQ4OzPjg8lLDCY5zCJLOgghfOY73/kOra2t6PV67rnnHoKCgnxd0rghAU0I4Tc6+51sLG1lXUkzG0tbKW3uBSBAryUvMZhTc6OYmxzKtDg7Rp3MZReTi9mgIy8xhLzEkJF9bb1D7K7pYHe19/bevkae21YDQJBZz8z4YGYlBJOXEMy0uCBMevm9EUKMjbVr1/q6hHFLApoQwmecbg+7qjtYW9zCuuJmdtd04vaomA1a5iSF8N1ZccxNDiE3xj4uOioKMdZCAg0sy3CwbLghiaqqlLX0sr2yne0V7WyrbOPDwibAu17blBg7cxKDmZsUyuykEOwBel+WL4QQ4jAkoAkhxlR1Wx8fFTXx8YEWNpW10jPoQqNAbmwQ31+awqLUMGbEB8v1Y0J8A4qikBJuISXcwjl5cQC09w6xo6qdbcOh7dGNlTywthxFgewoG3OTQpmXHMKcpBCCzLKwthBC+JoENCHEUeVye9hZ3cEH+5v4qLCJokbvdWRxIQGcPj2axalhLEgJw26Wd/KFOBqCAw0clxXBcVkRgLf76a7qDjaVtbK5rI0nN1fy8HpvYMuIsDI/JZRFqWHMTQ6VxiNCCOED8sorhBh1nX1O1hQ38+H+RlYfaKajz4lOozA7MYTfnJrFskwHKeEWX5cpxKRk0muZlxzKvGRvA5JBl5vd1Z1sLmtlU3krT22u4n/rK9BpFKbHBbEwNYxFaWFMjwuSqcZCCDEGJKAJIUZFc/cg7+5rYFV+AxtLW3F5VEICDRyb6eDYTAeL08Llehch/JBR573mc05SCD8kjQGnmx1V7awvaWFdcQt3f1jMXR8UE2jwBruFqWEckxFOclggiiJdIoUQYrRJQBNCfGP1nf2sym/g7fwGtla0oaqQFBbIVYuTOSE7gulxQWilzbcQ44pJr2VBinfq8S9P8o6IbyxrYV1JC+tLWvmgsAne8E5TXpru4Jj0cBakhmI2yCmFEEKMBnk1FUJ8LbUd/by5p4638xvYWdUBQHqEhR8dm8by3EgyIqzyrroQE4jdrOfknChOzokCvI1+Vh9oZk1REy/uqOHxTZUYtBrmJIWwNCOcpRnhqKrq46qFEL52xRVX8MYbb+BwOMjPzwegra2Nc889l4qKChITE3nuuecIDg72caX+RwKaEOIrtfcO8ebeel7bVceWijYAcmJs/PKkDE7OiZTryYSYROJCzFw8L4GL5yUw6HKzraKd1UVNrC5q5k9v7udPb+4nPEBhRc8+js9yMDspRK5dE2ISuuyyy7j++uu55JJLRvbddtttHHfccdxwww3cdttt3Hbbbdx+++0+rNI/SUATQhxW/5Cb9/Y38urOWtYcaMblUUl1WPjFiemcPi2G+FCzr0sUQviYUadlYWoYC1PDuOlUqGnvY3VRM8+v388Tw90hrSYdyzIcHJflYGmGQ65FFWKSWLJkCRUVFYfse/XVV1m9ejUAl156KUuXLpWAdhgS0IQQI9welfUlLby8s5Z3ChroG3ITaTNxxaIkzpgeTXaUTaYvCiG+UGywmYvmJRA7UM6cBYtYW9zCB/sb+WB/E6/trkOnUZiTFMIJ2RGcnBNJlD3A1yULMfG9fQM07B3drxmZC8tv+9qf1tjYSFSUd7p0ZGQkjY2No1vXBCEBTQhBdVsfz2+v4YVt1dR1DmAz6Th9WjRnTI9hblIIGmn0IYT4mswGHSdNieSkKZG4PSq7qjv4YH8j7+1r5JbX93HL6/uYHhfEyTmRLM+JJCE00NclCyHGkKIo8qbvF5CAJsQkNeB0805BA89urWZDaSuKAotSw7jx1CyOz4rApNf6ukQhxASh1SjMSghmVkIwvzo5k7LmHt7O9y7Lcdvbhdz2diFZUTaW50Ryck4kaQ6LnLgJMVq+wUjX0RIREUF9fT1RUVHU19fjcDh8XZJfkoAmxCSTX9vJs1ureXVXLV0DLmKDA/jp8el8Ny+WmCCZbiSEOPqSwy38YFkqP1iWSk17H6uGw9o/3z/AP947QEp4ICumRXPa1GhSHdKESIiJ4vTTT+fRRx/lhhtu4NFHH+WMM87wdUl+SQKaEJPAgNPNW3vreWxjJbuqOzDoNCzPieScvDjmJ4fKFEYhhM/EBpu5anEyVy1OpqlrgHcKGnhzbz13fVDMne8XkxVlY8W0KFZMjSYuRJoTCTFenH/++axevZqWlhZiY2O55ZZbuOGGGzjnnHN46KGHSEhI4LnnnvN1mX5JApoQE1hNex9Pbq7i2a3VtPUOkRweyM0rslk5Ixa7WTqpCSH8i8Nm4uL5iVw8P5HGrgHe2lvP67vr+OuqIv66qojpcUGsmBbNqblRRNpNvi5XCPElnn766cPu/+CDD8a4kvFHApoQE4zHo7KupIXHNlbyYaG3O9LxWRFcMj+Rhamhcl2HEGJciLCZuHxhEpcvTKK6rY83h8PaH9/Yx5/e3Mf85FDOmhHD8twoLEY5nRFCTByKqqq+ruFzFEVZAayIiYm5+oknnvB1OUKM6OnpwWLxz+shBt0q62pdvFvhpLFPxWqAY2L1LIvTERogi8ROVP58TIrJ62gelw29HjbVu9hQ56KpT8WggZkRWhZE65gSqkUrU7bFYUy210q73U5qaqqvyxDDSkpK6OzsPGTfsmXLtquqmne45/tlQDsoLy9P3bZtm6/LEGLE6tWrWbp0qa/LOERz9yCPb6zg8U2VtPc5mRYXxOULElmeG4lRJ50YJzp/PCaFGIvjUlVVdlR18NKOGt7YU09nv5Mwi5HTp0WzcmYMU6Jl3Ubxicn2Wrl//36ysrJ8XYYYdrj/D0VRvjCgyZwAIcapkqYeHlpXxos7anG6PZyQFcE1S5KZlRAsJyVCiAlPUT5p3f+7Fdl8VNjMyztreHxTBQ+vLycz0so5eXGcOSOGkECDr8sVQogjJgFNiHFEVVU2l7fxwMdlfFDYhFGn4exZsVy5KInk8MkzdUMIIT7NqNNy8vAaah19Q7y+p57nt1Xzhzf2cdvbhZyQHcHZebEsTguXKZBCCL8nAU2IcUBVVVYXNXP3h8XsrOogNNDAT45P4+J5CYRajL4uTwgh/EaQ2cDF8xK4eF4C++u7eG5bNa/srOXNvfVE2U18d1YsZ8+KIz5UWvYLIfyTdA4Qwo+pqsq7BQ2c/u/1XP7IVpq6BvnjmTmsv+FYfnJ8uoQzIYT4EllRNm5eMYVNNx7HPRfMJD3Cyr8/KmHJ3z7iwgc38dbeepxuj6/LFGJCuuKKK3A4HOTk5Izse/7555kyZQoajQbpM/HFZARNCD/k8aisKmjg7g+KKWzoJiHUzF+/M5WzZsag18r7KkII8XUYdVpOnRrFqVOjqOvo54XtNTy7tZrvP7mDcKuRc/PiOG9OHLHBMqomxGi57LLLuP7667nkkktG9uXk5PDSSy/xve99z4eV+T8JaEL4EbdH5Y09dfz7wxKKm3pIDg/kH+dM4/Rp0egkmAkhxLcWHRTAj45L4wfLUllzoIknN1Vxz+oS7lldwrIMBxfNi+eYdIdcqybEt7RkyRIqKioO2SedJY+MBDQh/ICqqqzKb+COd4sobe4lPcLC3efP4NTcKDlJEEKIo0CrUTg2M4JjMyOoae/j2a3VPLO1mise2UZMUADnz4njvDnxhMlUcjHO3b7ldgrbCkf1a2aGZPLrOb8e1a8pPiEBTQgfW1fcwl/fKWRPTSepDgv3XjiTk6dEopFgJoQQYyI22MzPT8zgR8el8f6+Rp7YXMkd7x7g7g9LWDE1mssXJpITY/d1mUKISUICmhA+squ6g7+uKmRDaSsxQQH87btTWTkzVkbMhBDCR/RaDctzo1ieG0VJUzePbqjkxR01vLijhryEYC5bmMhJUyLlWmAxrshI1/gjAU2IMVbS1M0d7xxgVUEDoYEGbl6RzQVz4zHqtL4uTQghxLBUh5U/npnDL07K4IXtNTy6oYLrn9pJpM3ExfMTOG92nHTSFUIcFRLQhBgjjV0D3PFOES/uqMFs0PHT49O5cnESFqP8GgohhL+yB+i5clESly1IZHVRE49sqOBv7xRx1wfFrJwRw1WLk0h1WH1dphB+5/zzz2f16tW0tLQQGxvLLbfcQkhICD/84Q9pbm7m1FNPZfr06bzzzju+LtXvyJmhEEfZgNPNg2vLuHd1KS63yhULk/j+slRCAg2+Lk0IIcQR0moUjsuK4LisCIobu3l4fQUv7ajhma3VHJfp4OolycxNCkFRZJq6EABPP/30YfefddZZY1zJ+CMBTYijRFVV3txbz61vFVLb0c/JUyK58ZQs4kNlnR0hhBjP0iKs3Loyl1+cmM7jmyp5bGMl592/iamxdq5enMzynEhZGkUI8Y1JQBPiKMiv7eQPr+9jS0UbWVE27jh7GvNTQn1dlhBCiFEUajHyk+PTufaYFF7cUcODa8v54dM7iQkK4IpFSZw3O45AmcYuhPia5FVDiFHU1D3A31YV8cKOGkLMBm5dmcs5eXHSmVEIISYwk17LhXMTOH92PB8UNvHAx2X88Y193P1BMZcvTOSyBYkEmWVauxDiyEhAE2IUuNweHtlQwT/fO8CQ28PVi5O5/thUbCa9r0sTQggxRjQahROyIzghO4KdVe3cu7qUO98v5v6Py7hoXgJXLUrCYTP5ukwhhJ+TgCbEt7Szqp0bX85nf30XyzLC+d2KKSSFBfq6LCGEED40Iz6YBy7Jo6ihm/+sLuHBtWU8sr6Cs/Ni+d6SFLkeWQjxhSSgCfENdfY7+ds7hTy5uYoIq4n7LprJSVMipYOXEEKIERmRVu48bwY/PSGd+9aU8fw2b+fH06dF8/2lKaRFSIt+IcShpMWQEF+Tqqq8uquW4/6+hqc2V3H5giTe//kxnJwTJeFMCCHEYSWEBnLrylw+/tUyLl+QyKr8Bk6882Ouf2oHxY3dvi5PiFF3xRVX4HA4yMnJGdn3y1/+kszMTKZOncpZZ51FR0eH7wr0YxLQhPgaGns9XPLwFn78zC5igky8dv0ifrciWxabFkIIcUQi7SZ+c1o26284luuOSeHDwiZOvPNjfvj0TkqaJKiJieOyyy5j1apVh+w74YQTyM/PZ8+ePaSnp3Prrbf6qDr/JmeVQhwBl9vDfz8u45/r+wnQO/njGVO4YG6CdGcUQgjxjYQEGvjVyZlctTiZB9aW8eiGCt7YU8eKqdH86Lg0Uh0WX5coxLeyZMkSKioqDtl34oknjtyfN28eL7zwwhhXNT5IQBPiKxQ3dvPz53ezp6aT2ZFa7rniGOnCJYQQYlSEBBr49cmZXLUoiQfWlvPYxgpe31PH6dO8QS0lXIKa+HYa/vIXBvcXjurXNGZlEnnjjd/qazz88MOce+65o1TRxCIBTYgv4HJ7uH9tGXe+V4zFpOPeC2dibi2ScCaEEGLUhVqM3LA8k6sXJ3H/x2U8trGS13fX8Z2ZsfzkhHRiggJ8XaIQo+bPf/4zOp2OCy+80Nel+CUJaEIcRklTNz9/fg+7qzs4JTeSP5yRQ5jFyOrVRb4uTQghxAQWajHyf6dkcfWSZP6zupTHN1by6q46LpqXwA+WpRBqMfq6RDHOfNuRrtH2yCOP8MYbb/DBBx9Ic7UvIAFNiE9xe1QeXFvG3987QKBBy78vmMFpU6N9XZYQQohJJsxi5LenZXPFoiTuev8Aj2wo59mtVVy1OJmrFidhNel9XaIQX9uqVav461//ypo1azCbZS3AL6KoqurrGj5HUZQVwIqYmJirn3jiCV+XIyaJ+h4PD+4dpLTTw6wILZdkG7EbD31np6enB4tFrgcQ/kOOSeGP5LgcfXU9Hl4qHmJboxurHk5LMbAsTodBKyMQR2KyHZN2u53U1FSf1nD55Zezbt06WltbcTgc3Hjjjfz9739naGiIkJAQAGbPns2dd97p0zrHQklJCZ2dnYfsW7Zs2XZVVfMO93y/DGgH5eXlqdu2bfN1GWKCU1WVZ7ZWc8vrBZj0Wm45fQqnT4s+7LD76tWrWbp06dgXKcQXkGNS+CM5Lo+ePTUd/O2dItYWtxBtN/HzEzM4a0YMGukq/KUm2zG5f/9+srKyfF2GGHa4/w9FUb4woMk6aGJS6+xz8oOndvB/L+0lLyGEd3+yhDOmx8icaCGEEH5pamwQj185l6eunku41cjPn9/Nin+vY0Npi69LE0KMEgloYtLaVtHGKXev5d2CRv5veSaPXTFHOjQKIYQYFxakhPHy9xdy13nT6ehzcsEDm7nyka2y2LUQE4A0CRGTjtuj8u8PS7jrgwPEhZh58boFTIsL8nVZQgghxNei0SicMT2Gk6ZE8r/1Fdz7UQkn3bmW8+fE8ZPj0wmTjo9CjEsS0MSkUtfRz0+e3cWW8jbOmhHDH8/MwWKUXwMhhBDjl0mv5bqlKZyTF8tdHxTz5OYqXtlZx3VLU7hyURImvdbXJQohvgaZ4igmjVX5DSy/ay0FtZ3845xp/PPc6RLOhBBCTBihFiN/OCOHd3+6hHnJofztnSKO+/saVuXX489N4YQQh5KAJiY8l9vDn97Yx7VPbCch1MybP1rMypmxvi5LCCGEOCpSwi08eGkeT109F6tJx7VP7OCihzZzoFGuTxNiPJCAJia05u5BLnxwMw+uK+fS+Qm8cO0CEsMCfV2WEEIIcdQtSAnjjR8u4g9nTCG/tovld63lltcL6Ox3+ro0MQlcccUVOBwOcnJyRvb99re/ZerUqUyfPp0TTzyRuro6H1bovySgiQlrR1U7K/61jt01Hfzz3GncckYOBp0c8kIIISYPnVbDJfMT+egXSzlvdhyPbKhg2R2reWZLFW6PTHsUR89ll13GqlWrDtn3y1/+kj179rBr1y5OO+00/vCHP/ioOv8mZ6tiwlFVlSc2VXLufzei1ym8eN0CzpohUxqFEEJMXiGBBv58Vi6vX7+IlPBAbnhpL2fes57tle2+Lk1MUEuWLCEkJOSQfTabbeR+b2+vrDv7BaRDgphQBpxufvNKPi9sr+GY9HDuOm86QWaDr8sSQggh/EJOjJ3nvjef13bXcetbhXznPxs4f04cvz45U/5eTlBrnztAS3XPqH7NsDgLi89J/0afe9NNN/HYY49ht9v56KOPRrWuiUJG0MSEUd3Wx3fv28AL22v40bGpPHzZbPljI4QQQnyGonjXT/vg58dwzZJknttWw7F/X8OL22uk26M46v785z9TXV3NhRdeyL///W9fl+OXZARNTAgbSlv4/pM7cHtUHrwkj+OzI3xdkhBCCOHXAo06bjwli7NmxHDTy3v5+fO7eW5bNX8+K4dUh9XX5YlR8k1Huo62Cy+8kFNOOYVbbrnF16X4HRlBE+Pec9uqueShLYRZjLx2/SIJZ0IIIcTXkBVl44VrF3DrylwKG7pZftda/vZOIf1Dbl+XJiaY4uLikfuvvvoqmZmZPqzGf8kImhi3PB6VO94t4t7VpSxOC+PfF8zEHqD3dVlCCCHEuKPRKJw/J54TsiP4y1v7ueejUl7bXccfzshhWYbD1+WJcej8889n9erVtLS0EBsbyy233MJbb71FUVERGo2GhIQE7rvvPl+X6ZckoIlxacDp5ufP7ebNvfWcPyeeP5wxBb1WBoSFEEKIbyPMYuQf50zn7Flx/OaVvVz+v62cOT2a362YQkigXNctjtzTTz/9uX1XXnmlDyoZf+SMVow7zd2DnHf/Jt7Kr+emU7L4y1k5Es6EEEKIUTQ/JZS3f7yEnxyfxpt76zn+H2t4bXedNBERYgzIWa0YV4obuznr3vUUNnTxnwtncfWSZFlDQwghhDgKDDoNPzk+nTd+uJi4EDM/enonVz+2jYbOAV+XJsSEJgFNjBtri5tZee8GBl0envvefE7OifR1SUIIIcSElxFp5aXrFvCbU7NYV9LCCf9Yw9NbqmQ0TYijRAKaGBee21rNZf/bSkxwAK/+YCFTY4N8XZIQQggxaWg1ClctTuadnywhJ8bO/720lwse2Exla6+vSxNiwpGAJvzef9eU8qsX97AwNYwXrltAdFCAr0sSQgghJqWE0ECeunout67MJb+2k5Pu/Jj/rS/H45HRNCFGiwQ04bdUVeX2VYXc+nYhK6ZF8+AleViM0nhUCCGE8CVF8bbkf+9nxzA/OZRbXt/HhQ9upqa9z9elCTEhSEATfsntUbnplXz+s7qUC+fGc+e50zHo5HAVwm+pKrhdMNQH/R3Q2wJdddBeAS3F0FQITfuhsQAa8qFhL9TvhrpdULfTu23YC437oLkIWkqgrQzaK6GzBroboL/d+/U9sniuEP4g0m7i4ctmc9vKXPbUdHDynWt5blu1XJsmAKipqeGMM84gLS2NlJQUfvzjHzM0NPSln9PR0cG999478riuro7vfve7o1LP73//e+64444jeu4jjzzC9ddff9iPnXLKKXR0dABw9913k5WVxYUXXsgrr7zCvn37RqVWGY4QfmfI5eGnz+3izT31/GBZCr84MUM6NQpxNDj7oa/VG6gGu2Cga3jb6b0d3DfU4w1Gzj7v5zh7h7f9MDR83z0EjOFJmUYHOhPojKA1ercGCxgCP3WzHHrfaIWAIDDZh2+fum8IBHmdEeJrUxSF8+bEszA1jJ8/v5tfvbCHdwsauXVlLuFWo6/LEz6iqiorV67kuuuu49VXX8XtdnPNNddw00038be//e0LP+9gQPv+978PQHR0NC+88MJYlX1E3nrrrZH79957L++//z6xsbFcdtllnHbaaWRnZ3/r7yEBTfiV/iE31z6xnTUHmrnxlEyuWZLi65KEGD/cTuht9o429TQO35q8o1l9rZ/c+tu9W+dXTEfSGsBoA6MF9IFgMIM+AAKCvVuDGfTmTwUlA2j1w9tP3dfoQaMBRQMo3iD06fsogOodGVPdw1vPoY89Lm8IdA2Aa3g78njQux3q84bJgU7v6N1Q73C47AX34Jf/rBqdN7AFhoE5DAJDvVtz6PC+UAgMB0sEWCO8z5VAJ8SIuBAzz1w9j4fXl/PXd4o46c6P+fOZOSzPjfJ1acIHPvzwQ0wmE5dffjkAWq2Wf/7znyQlJXHLLbfw3HPP8fLLL9PZ2UltbS0XXXQRN998MzfccAOlpaVMnz6dE044gR/84Aecdtpp5Ofn88gjj/DKK6/Q29tLcXExv/jFLxgaGuLxxx/HaDTy1ltvERISwgMPPMD999/P0NAQqampPP7445jN5i+s9fnnn+eWW25Bq9Vit9v5+OOPAe/o3cknn0xpaSlnnXUWf/3rXwFITExk27Zt/OY3v6GsrIzly5dz3nnn8dprr7FmzRr+9Kc/8eKLL5KS8s3PYSWgCb/R2efkike3srOqndu/k8u5s+N9XZIQ/mOoD7pqvdP9Dm47a5hasRf2u7yhrK+Vw45iGe1gDvGGDGsUROR88tgc4g1cRhuYbN7nmmzex3rTmP+YR43bCYPdMNDhHTEc6PTePzha2N8xHFxboLfVOx2zrxX62jjsv6nONBzWIj/ZWiPBFgP2WO/NGg06w5j+mEL4kma40+Mx6eH87LndXPfkDs6cHs0tp+dgN+t9Xd6k9dEj99NUWTaqX9ORkMyyy675wo8XFBQwa9asQ/bZbDbi4+MpKSkBYMuWLeTn52M2m5k9ezannnoqt912G/n5+ezatQuAioqKQ75Gfn4+O3fuZGBggNTUVG6//XZ2/j979x0eVbU1cPg3NZNMeu8JISEEAoQaeu9SpAgIUizYxe71qveq12vvXUGUKtJEEARFpPdeEkghpPfeJ1PO98dBvH4CQtqk7Pd55pmUmXPWwMnMWWfvvdbJkzz++OMsW7aMxx57jMmTJzN//nwAXnjhBRYvXswjjzxyzVj/85//8PPPP+Pn53dl6iLAqVOnOHnyJDY2NoSHh/PII48QEBBw5fdffPEF27ZtY+fOnbi7u5OQkMC4cePqZUqmSNCEJiG3rJo5i4+QlFfBpzO7iStuQutjNkJxKhRdktdtFV6+L06BkgyoKvx/T1CAvRdqhQN4tgP/npeTBU+w9/5jpEfvKZIEkEfz7Fzl282wmP8YcSzPlUcly7KhPBvKcuT7vAuQtBsMJf/vyfL/EU6/J20B4BwILsHyzTlQHokUhBYmzMuB7x/sy6c7E/n4t0SOXCrkgxld6dXmJv/+hBZtxIgRuLm5ATB58mT27dvHrbfeet3nDBkyBAcHBxwcHHBycmL8+PEAdOrUiTNnzgByEvfCCy9QXFxMeXk5o0aNuu42+/Xrx7x585g2bRqTJ0++8vNhw4bh5OQEQIcOHUhJSflTgtaQRIImWF1OaTUzFh4ip7SaxfN6MCDMw9ohCULDsJjlJCw/AQoSID/+ciJ2SR4Rkyx/PFZl88dJvF+PP07wfz/Zvzw6c2LXLgYPHmytV9TyKVXyFEe9O3iEX/+xl0c5peI0zIUZmIqyMRdnYyrJw5RSgLksAYvJhAUVkqTEggqLrQeS3geL3guL3htJ73k5ufZBof3rlByFApQqBUqVUr5XKv78vVqBWqNErVVduVeqFGIdr9DoNColjw1vx5BwTx797iQzFh7k4aFhLBgailolin41puuNdDWUDh06/GXtWGlpKampqYSGhnLixIm/vC/dyPuUjc0f6xqVSuWV75VKJSaTCYB58+bxww8/0KVLF5YsWcKuXbuuu80vvviCw4cPs2XLFrp3787x48f/si+VSnVl+41BJGiCVeWWVnP7wkPkllaz/O5edA8SV9eEFsBkkCsR5p6Xk7D8eChIhIKLf14LZesCbqEQEA2dZ/wxsuLaRh4FU4qTmMZksUjUVJqorjRiqDRh+P2+wkh1pYmaShM1BjPGahNGg5ma6v/3tcGMyWjGYgLwu3z7G0VX+2EVUH/TkRQKUGlVaLRKVBolWp0arU6FVqdGo1OjtVX98TNbNVpbNTq95o+bvQYbvRqVOKkWaqFLgDObFwzgxY0xfLQjgf2J+XwwPYoA12uvCRKav2HDhvHss8+ybNky5syZg9ls5sknn2TevHlX1oNt376dwsJCbG1t+eGHH/j6669xcHCgrKysTvsuKyvDx8cHo9HIypUr8fO7/nvxxYsXiY6OJjo6mq1bt5KWllar/dZH7L8TCZpgNXllBm5fdIjs0mqW3SWSM6EZsligOFkuDZ8bK5eQzz0vJ2PS5VLwCpWccLmFQehwcA8D93by93o3q4bfGtRUm6goNlBRUkNVaQ1V5TVUlRmpKrt8/z/fGyqvf3VUpVaitVWhsVGhsZETGp29Bgc3HRqdWv65VolKLY9cqdRyQqT+/WcaJUq1Uh71UipQ/M8ImEKpQGmpQVGeBUUpSMWp8vTW4jR51LWqGAAJBRalDotTm8u3YCyOgVgcArDYemK2gNlkwVRjwVRjlu+Nv9/LPzMazNRUmaiuNFFWWE1NlelKgnk9Gp3qStJm56jFzlGL7eV7O0ctdg5a7Jzkr0WZdeF/2duoeXdaFwa2c+eFDecY+9FeXpvUifFdfK0dmtBAFAoFGzZs4MEHH+SVV17BYrEwduxYXnvttSuP6dWrF1OmTCE9PZ077riDHj16APKUw8jISMaMGcNDDz100/t+5ZVXiI6OxsPDg+jo6L9Nmp5++mkSEhKQJIlhw4bRpUuXK2vgbsaMGTOYP38+H330EevWratTkRBFU34T7dGjh3Ts2DFrhyE0gPxyA7cvPER6URVL7uxJdEjzOFHdJaaTtV5mozwqlnVK7t+VdVru52Ws+OMxLsHg2UG+eV2+d23boGvAWusxKVkkKstqKC80UFZYTXlR9ZVETL6XvzZdJelQKEBnr8HWQYvt/9zr7DXY2MmjRTo7DTZ26ivf29ipUWtUVnill1UVySOw+fHyRYC8C3JvuZLUPx6j1skXALw6gXckeHf6oyDMKE7SbwAA3X5JREFUDbBYJIwGM4YKeeSwutxIdaVRvq8wYqgwUV1hpKpcTmgrS+Wk12L563mEQgVO7nbonW2wd/n9psPe2Qa9iw0Orjp0elE0ojVKK6xkwXcnOZlazNTu/rw8oSN6m4YfL2ht75Xnz58nIiLC2mFc05IlSzh27BiffPKJtUNpFFf7/1AoFMclSepxtcc3yQRNoVCMB8b7+fnNX7FihbXDEepZWY3Em0eqyK2UeLy7jgg3K5703KTy8nLs7e2tHYbQwBQWM/qKFBzKEnEoS8S+PAn78mSUkhEAs1JHmUMI5fZtqNAHU24fRKVdIGZ14xd8aKnHpCRJcuX8cjCWQ025JLdhq7jcjq3yz0v2QE4KNLagvnzT2IJap7jyvVon31QaUChbxposlakSu8p09BWp6CvS0FekoK9Ixqbmj7mT1TbulNu3+Z9bW6p1nvXSJkCSpD+6HVSDqUq+ryytQWHUYKwC0+X2ef+/GKZSI7ef09j/fq+40rZOYy+vtRNaJpNFYuNFI5svGvG0U3B/FxvaODXsuUBLfa+8FicnJ0JDQ60dxjWtXLmSEydO8O6771o7lEaRmJhIScmfC0kNGTKkeSVovxMjaC1PcWUNty86TFJeOV/P60m/UHdrh3RTWtsVuFajNAsyjkH6UUg/Bpkn/+gRZuMEPp3Bpwv4dpXvXUPk4hFNQHM+Ji0WifLCaopyKinJraI0r4qS/CpK8+WvTcb/ycAUoHfU4uCmw95Vh4PL5Xs3HQ6u8uiMjZ1aFMP4XXkuZJ+FnHPyffZZuTjN71NvbV3k49m32+X7ruDoW2+93f7/cWmxSFSV1lBeZKC8qJqywmpK86ooLaiW/78LqjH/v/9vBxcdzl62OHvp5XtPO5y97LB31aFsIQl2a3coqYDHV58iv9zAC7d0YE6foAb7G27O75W10dRH0Fqbmx1BE2vQhEZTUmnkjsWHuZhXzldzejS75ExoIcwmyD4DqQch7YickJWmy79TauQErNtc8O8Bft3ApY1oSFxHNVUmirIrKc6poCinkuIrtyrMpj9OytVaJY7utjh52BLQwRUnd1scPWxxcrfFwU2HSi2KVNwwe08IHSbffmesktdKZp2WL0JknIR97/+RtOk95UTNr5vctsG/B+ic6iUcpVKB3tkGvbMNXm0c//J7SZKoLK2hNF9O2EryqijJlY+TuENZ1FT/MVVVpVbi5GmLq48eV1/55uZrj6OHrUjcmpneIW78tGAAT6w5xYubYjiaXMgbUzpj3whTHgWhKRN/AUKjKKkyMvvrw8Rnl/Pl7O4MbCdK6QuNxFgNmScgZT+kHJCTsppy+XdOgRAYDf4Py6XsvTu1rObMjcxoMFOUXUFBRgWFWRUUZpZTmFlBedEflSsVSgWO7jpcvOwIiHDF2csOF289Tp622DlqxQhYQ9LYgl93+fY7Y5W8ljLz5OXbCUj4BXk+ogI82kNAT/DvBQG95OI2DVBdVKFQoHeyQe9kg0/bPyeFkiRRVWakOKeC4pwqinMqKcqpJDellMQTuVemTqrUSpy97XD7PWnzs8cj0AG9k81V9ig0FS56LYvn9uTz3Rd595c4YjNL+eyObrT3/msiL9wcSZLEe2oTUJvZiiJBExpcucHE3K+PcD6rlM9ndWdIe09rhyS0ZMZqSDsMl/bICVnGMTDXyL/z7ABdZkBQXwjsC46iIXptSJJEaX41+ell5KeVk59eTmFmOaUF1X86WXbxscM3zBlXXz0u3npcvO1wdLcVI2FNicZWTsACev7xs+oSyDgOaUch/QjEboQTy+Tf6Zzl0bWgPhDUTx5xUzdsAqRQKK5UivQNc/nT736/KFCYWUFBpnyfmVBM/JGcK4+xddTiEWCPe4ADHgEOuAfY4+Ru22LWIbYESqWCh4aE0j3IhUdWneTWT/fz31s7MbW7v7VDa7Z0Oh0FBQW4ubmJJM2KJEmioKAAne7mLv6KBE1oUDUmCw+sOM7ZjBI+m9WN4R28rB2S0NJYzPKUrUu7IWkXpB6SqxQoVOAbBdH3yclYYO8brmYn/MFsslCYWfGnZCw/rezKlDOFApy99XgGOdK+j88f083cdShF36zmSecEbYfKN5DbSRQkXJ4SfFS+ALJju/w7tU4efQ7qI1/48O8FNo1XiEFjo8IzyBHPoD+PthiqTBSkl5GXKh+veWnlpJ9PvVJxUqNT4RHggFewI15tHPEMdsTexUacyFpZ7xA3tizoz4JVJ3lq7WmOXirk5Ykd0Vmzgmoz5e/vT3p6Onl5edYOpdXT6XT4+9/cxQaRoAkNxmKReGbdafYm5PPW1M6M6uht7ZCElqLwElzcAUm75ZGy6mL5554doMddEDJYPlm0cbBmlM2OxSJRlFVBbkoZuSml5CaXkp9RjsUkn9SqtUrc/e1pF+2Nu788IuHmq0etFSdPLZpSCR7h8q3bbPlnFQXyOs6UA5B6APa+C3veli+M+HQhRBUM/mb5wohW3+gh29iq8Q1z+dOIm8loli82pJWTl1ZGbkoZp3emYdkuH992Tto/JWxeQY5obcVpUmPzdNCx4u5o3v81nk93XuTM5Qu8bdwb/zhqzjQaDW3atLF2GEItiXceocG8ue0CP5zK5OlR4UzrEWDtcITmzGSQTwQTtsvrYwoS5J87BUDEOGgzGNoMBAcxQnujJEmivMhAdlIJOZdKyU0pJS+t/ErfMI1OhWegA52HBOAZJE8NE0UYhCv0bvLfXsQ4+XtDmTyylnIQUvbjn7YJVnwvF94J6AVtBsl/o/495D4HVqDW/HW0zWy0kJ9eTk5yKTnJJeQml3HpdD4gjw67+dvj09YZn1AnfNo6Y+8i1rM1BrVKydOj2tMjyJXH15xiwsf7eG96FCPELByhlRAJmtAgvtqbxJd7kpjTJ4gHB9e+k7rQihWnQeJ2OSlL2i03wFLZQHB/6HkPhA4Ht7aiwuINMhst5KWVkZ1UIt8ullBRIq/NU6mVuAfYE9HXB88gBzyDHHHxshNrdIQbZ+Mg/02GDgdg345tDAxS/zHKvet12PUaaPTy6HbIYPmxHuFW/RtWaZR4tXG8XFlSnoJUXWEkL6WMrKQSsi8Wc+FgFmd3yZVeHdx0V5I1n1AnXH30YlpkAxrS3pMtCwZw//LjzF92jCdGtOPhIaHiQpHQ4okETah3G09l8N8t5xnbyZsXx3cUH17CjZEkufz9hS3yLeec/HPnQIi6HcJGysmZFaZLNUfVFUayEovJTCgmO6mE3NSyK1MVHdx0+LZzwTvEEe8QJ9z87VGJ9WJCPbKodBA6+ErCRmWhXEk1abe8XvSX5+Wbo9/ldgDD5VE2W2drhg2ATq8hoIMrAR3kNasWszzKlpVYQtbFYtLOFxF/WC5CYuugwT/cBb9wF/zbu+Dobis+8+qZn7Mta+/vw3Pfn+W97fHEZJbw7rQoUYpfaNHE0S3Uq30J+Ty19jTRbVx5b1oUKnGVS7ges0lex/J7UlaSCgolBPaBkf+VkzL3dmKU7AZUlBjISiwhM76IzMRiCjIqAFCqFXgGOtJ5SMCVhEyUHRcanZ0rRIyXbwAl6ZC4AxJ/hZjLVSIVKnkKZOhwOWnz6dogJf1vllKlvDI1ssuwgMtVTKvITCgmI66Y9AuFJBzLBcDe1Qb/cJfLSZurmBJZT3QaFe9O60KknxOv/nSeSZ/uZ+GcHmJdmtBiiQRNqDfnMkq4b/kx2nrYs3BOD1F1Sbg6YzVc/A0ubIa4rVBVKE9dbDsUBj0D4WNAL5qY/52KEgMZcUVkHLGwcuchinMqAVDbqPAJcSS0uye+Yc54BjuiFn+LQlPj5A/d58o3s0luh5H4q3zb+RrsfBXsveSLNOFj5CmRTWT0XKFQ4ORhh5OHHRF9fZEkieKcSjLiikiPKyL5TAEXDmYD4OJtR2BHN4I6uuET5iT+FutAoVBwV/82tPd24KFvTzDhk318dHtXhoSL1j1CyyMSNKFepBZUMu+bozjbaVlyZy+cbK2zCFxookw1cgn8mO/lkTJDqVzKu91oaD9OTs4asTR3c2SoMpEZX0T6BfkksDDz8giZBgLb29Khny++Yc64B4rpikIzo1LL1R4De8PQF6AiX07U4rfJPdhOLpcv4oQMgnaj5PcNp6bTH0uhUFzu86cncpA/kkUiP6Oc9AtFpMUWcHZ3Oqd3pKHWKPELdyGwoyuBHd1w9rSzdujNUt9QdzY93J97lx/nriVHeXpUOA8MaiumlgotikjQhDorKDcw5+vDmCwWvrsrGm+nm2vGJ7RQZhMk74Fz38P5H+VS+DoniJgAkZPk9SZWqubWHJjNFrIvlpB2vpD0C0XkppQhWSRUGiU+bZ1o18sL//auxCYdZ8jQLtYOVxDqj95dbijfZYZ8cSf1AMRtg/itchXXLU+Cdydof3nKpGdEk5oGrVAq8LjcFLvriECMBjMZ8UWkxhSSGlNAyrkCIAFHD1uCIt1o09kd33bO4sLKTQhwteP7B/ryzPozvLUtjpjMUt6e2hk7rTitFVoGcSQLdVJjsnD/iuNklVTz7fzehHqKvlOtmiTJzWzPrJavfFfmg9YB2o+FjpPlkTK11tpRNlml+VWkxsoncelxRRirzSiUCjyDHOg2KhD/9q54h/x5yuL55KZzYioI9U6tlac3hgyG0a9Dfrw8NTpu6x+VIV3bXl7fNgF8m8a6tf+lsVER3Mmd4E7y1O3i3ErSYgtJiSkgdl8mZ3emo7VVX0nWAiPdsBH91/6WrVbFRzOiiPR15M1tF0gpqGDx3J54OYqLxELzJ94BhFqTJIkXN8VwNLmIj2/vSvcgl79/ktAyFSXD6dVwehUUXQK1LYSPlpOysBGgsbV2hE2SqcZMRkIxqTEFpMUWUpQtryOzd7UhrKcXQR3c8GvvIk7WBAHkUbLfG2b3fwzKciBuizxCf/AT2P+BXBWy/S1ywhbYV54+2cQ4e9rh7GlHp8H+GA1m0s4XculMPsln8kk4moNSpcCvnTPBnT1o08UdB1eRcFyLQqHgvkFtCfOy55FvTzLxk/0snteDjr5O1g5NEOqk6b1zCc3GikMprDqSyoOD2zK+i6+1wxEaW3WJPEp2+ju5fDZA8AC50EfEeLkvkvAXFSUGks/kk3y2gPTzhZiMFlRqJX7tnOk4wI/Ajq44e9mJ9RSC8HccvKDHXfKtqgjif5aTtRPL4MhC0HtAh4kQOQUCeje5kTWQR9dCojwIifLAYpHISSrh0ul8Lp3JZ+/qePaujserjVz0p203T5GsXcPQ9l6svb8vdy89ym1fHOSjGV0ZLppaC82YSNCEWjlwMZ+XfoxlWHtPnhoZbu1whMZiscClXXBypVyF0VQNbqEw9F/QeZrcs0z4E0mSyE8rJ/msfIU8N6UMAAdXHRH9fAmKdMO3nTMarajuJgi1Zuvyx7q1mgq5wX3M9/J71dGvwMEXOk6CyMng171JrVn7nVKpwCfUGZ9QZ/pOCaUou4KkU3kkHs9l/7pE9q9LFMnadXTwdWTjQ/24Z9kx5i8/xgu3dOCufsHiYpfQLIkETbhpaYWVPLTyBG3c9XwwIwql6HXW8pVlw6mVcHwpFKeAzhm63gFdbm+yJzvWZDZbyIwvJulUHsln8ikvMoACvIIdiZ4YQpvO7rj66sWJgyA0BK0eOt4q3wzlcjXIc+vh6CI49Kl8IanjJIicKhcbaaJ/hy7eerqP1tN9dDDFuZVcPJH7p2TNO8SRtt08CevpJXobXubpqGP1vX14fPUpXtkcy6X8cl4a3xG1KMAiNDMiQRNuSoXBxPxlxzBbJBbN6YGDTlTha7EsZrlf2fEl8oJ8ySxPYRz2b7k0vkZcvf1fphp5LUnSyTwuncnHUGlCrVUS2MGNXuPdCIp0x85RFEgRhEZlYw+dpsq3qmKI+0lO1g5+Cvs/BM8O0Hk6dLoNnPysHe01OXva0X108FWTtQPrE/Fv70J4tDdtojzQ6lr3qZ2tVsVns7rx1s9xfLH7IikFlXw6q5u1wxKEm9K6/4qFm2KxSDyx5hTxOWUsubMXbdybRtNQoZ6VZsl9h04sg5I0sHOHPg9Bt7ngHmrt6JqUmmoTKecKuHgij5SYAkwGMzZ2aoI7uxMS5UFgB1fUYuqiIDQNts4QNVO+VRRA7AZ5De2vL8KvL0GbgfIUySa+hvZPyVpOJXGHs4k/ks2vS86j1sYREuVBu2hvAtq7oGylI0dKpYJnx7Snjbsdz284x5TPDnBve4u1wxKEGyYSNOGGfbAjgZ9jcvjXuA4MbOdh7XCE+vR7efzDX8D5TWAxyWWtR74C4beI0vj/w2gwy9XWjuWQGlOI2WTB1kFDeC8vQrp64BfuIvoZCUJTp3eDnvfIt4KLcmuQM6vhhwdg8xNyJcgut0PbIaBsuhdZnL3siJ4QQq/xbci+WELc4WwSj+cSfyQHW0ct7Xp40b6vN+7+TTfhbEjTewYS4GLH/SuO89/DZjpElYgKj0KzIBI04YZsPZvFRzsSmNrdn7v6BVs7HKG+GKvlhfSHv4Cs02DjBNH3Q8+7wTXE2tE1GSajmdRzhSQcyyH5bD6mGgt2Tlo6DvClbTdPvNs6ibWYgtBcubWFIc/B4H9e7uP4HZz7Hs6tk8v2R82EqFng2sbakV6TQvFHgZEB09qRcq6AuMPZnN2dzunf0vAMciCiny/tenqhbWVtO/qGurP+gb5M/3wv0788xMI53enb1t3aYQnCdbWuv1KhVmIzS3lizWm6Bjrz6qRIUdigJSjNhKOL4fg3UFkAHu1h3PvyWgytmLoKcqGPtNhCEo/nknQqD2O1GZ29hva9fQjt4YlPqLNIygShJVEoIDBavo1+Q157e3I57HkH9rwtr8HtNkeeAtmEezuqNEpCunoQ0tWD6goj8Ueyid2Xye5v49i/LoHQ7p506OeLd1unVvN5HublwAu9dXxxXsW8r4/y/vQobunsY+2wBOGaRIImXFdZtZEHVh7H0VbNl3d0x0bddKd6CDcg4wQc+PjyNEYzhI+B6PugzaAmW8msMUmSRG5yGXGHs0k4lkN1uREbOzWh3TwJ7eGJf3jrXdMhCK2K2uaPSpAl6XBqlZysfT9fnmnQaSp0mw2+Xa0d6XXp9Bo6Dwmg02B/clPKiN2fScKRHC4czMbF246Ifr607+2NrUPLn8buqlOy9r6+3LPsKA+vOkF+eUfm9g22dliCcFUiQROuSZIknttwjvSiKr67tzeejqJqX7MkSXBxh1yx7NIesHG8PI3xniY9ZacxleZXEX8km7jDORTnVKJSK2nTxZ120d4EdnBFpRZJmSC0Wk7+MOhpGPAkpOyDE8vltiPHFoNPlDwlPHJKk559oFAo8Ap2xCvYkX5TQrl4IpfYfVkcWJ/IoY0XCevuRafB/ni1cbR2qA3KyU7D8rujeWTVSV7cFENuWTVPjQxvNSOJQvMhEjThmlYfTePH05k8NbIdPYNdrR2OcLPMRojZICdmOefkRq0jXoHu80DXsj+Eb4ShysTF47nEHc4mM6EYAN8wZ7qODKRtN09sWtk6DUEQ/oZSKVd6bDMQqt6GM2vg2New6RH4+QW5AmSPu8CzvbUjvS6tTk1EX18i+vpSmFnBuT0ZXDiYRdzhbDyDHOg02J/QHp6oNS1zxoxOo+LzWd3418YYPt15kbwyA69N6iR6pQlNijgDEa4qPqeMl36MoV+oGw8MFqXVmxVDuTwV5+Cncpl8j/Zw6+dyU9ZWXo1RskhkJBRzfn8mF0/mYTZarlRBa9fLC0f3pruuRBCEJsTWGaLvhV7zIfWQPJp2/Bs48iUE9Yced0LEhCb/nuvqq2fgjHb0nhgiFxXZlc6OpefZvz6RDv186TjQF0e3lve+qFYpeW1SJJ4ONny4I4GC8ho+mdkNW9EWRWgiRIIm/EVVjZmHVp7A3kbN+9OjUIlCCM1DVTEc/hIOfQbVxRDUD255F0JHyFd+W7HyIgMXDmZx/kAmpfnVaG3VRPT1oX0fHzyDHMT0FkEQakehgKA+8m30G/LFsWPfwPq7Qe8h94/seQ84Nu2CFFpbNZ0G+xM5yI/0uCLO7kzn5C8pnPwlheDO7kSNCMSnhRUVUSgUPD6iHR4ONvxr4zlmfXWIb+7shZOtxtqhCYJI0IS/evnHGBLzyll2Vy88HcS6syavqggOfQGHPgdDCYSPhf5PQEBPa0dmVWaTheQz+cTuzyIttgBJAr9wZ3qND6FtVw/RQFoQhPqld4f+j0PfR+Hib3D0K9j7Luz/ADrcCr0fAP8e1o7yuhQKBQHtXQlo70pZYTXn9mQQszeDS6fz8WrjSNcRgbSJ8mhRFWzv6B2Eu72WR1adZOaiQyy/OxpXfdMe+RRaPpGgCX+y6XQm3x1N48HBbRkQJppRN2mVhXJSdvgLMJRC+3Ew6B/g09nakVlVSV4VsfsyOH8gi6oyI3pnG7qNDiKirw9OHnbWDk8QhJZOqYSw4fKtMAmOLIKTK+S+an495EStw0RQNe2RGgdXHX1ubUuPMcFcOJjFqR1pbFt4Dkd3HVHDA2nfxweNTcu40DU60odFc1Tct/w40788yMp7okVhNMGqRIImXJGcX8Fz35+le5ALT4xoZ+1whGupLISDn8DhhVBTJq9zGPQMeHeydmRWY7FIpJzN59yeDFJjC1EAwZ3d6dDfl8CObi3qaq8gCM2IawiMfl1uhH3qW/mC2vq74ZcX5OqP3e+UR96aMI2Nik6D/ek40I9Lp/I4uT2VPd/Fc/jHJDoN8qfTYH/sHJv/iNPgcE+W3NmLu5ceZdqXB1k5vzd+zi1v/Z3QPIgETQDAYDLzyKqTqJQKPrq9q6hm1BRVl8g9zA59DjUV8hXYQc+AV0drR2Y1FSUGzu/PJGZvJuVFBuyctPQYG0zH/r7Yu4irn4IgNBE2DnLPyZ7zIXG7/D7+23/lJthRs6DPQ+DW1tpRXpdSqaBtN09CunqQfbGEk9tTObY1mZO/pBLR14euowKbfUGRPm3dWHFPNHO/PsK0L+SRtGD3pts+QWi5RIImAPDm1jjOZpTw5ezu4opRU2Os/mMtQ1WhvJZh8LPgGWHtyKxCkiSyEos5szODS6fysFgk/Nu70H9aGMGd3VGJiwuCIDRVSiW0GyXfci/IsyFOLpcrQEaMl9ev+Xe3dpTXpVAo8Al1xifUmeKcSk5uTyV2fyax+zIJ7+NN99FBzXo6ebdAF1bN782cr4/II2n3RBPm5WDtsIRWRiRoAr/G5vD1/kvM6xvMqI7e1g5H+J3ZBGe+g52vQ2k6tB0Kw/4Nvl2tHZlVmIxmEo7mcmZnGvlp5djYqek01J/IAX44ezXfk4HWyGgxUmmspMJYceVWba6mxlxDtakag9kgf/37z8zVGM1GTJIJs8WMWTJjspgwS+Y/ff+73yvNKfjzvUqpQqVQoVaq0Sg1qJXqKzeVQoVWpcVGZYNOpUOn1qFT6bBR2/zpZ/Yae/RaPXq1HpWyZay/EazEsz1M/ASGviBPfTz6NcRulMv091vQLCrwOnvZMeSO9vQYG8zJn1OI3Z/FhYPZtOvpRfcxQbh4N8/Rp0g/J1bf25uZXx1m+sJDLLurF5F+TtYOS2hFRILWyuWVGXh63Wk6+jryz7FNu7lmqyFJcGEz7HgF8uPArzvc+hmEDLJ2ZFZRUWLg3G65klhVmRFXXz2DZ4XTLtobjajEaDVGi5Gi6iKKqosoqC6g1FBKaU0pJYYSSmv+39eGUsqN5VeSshpLzU3v7/fESqVQoVKqUCvUf0q4lAolChRISIA80gpc+R64ksj95SaZrrrPv2OrtkWv0V+52WvscdQ64mTjhKONI05aJ5xsLt8uf+2ic8FF54JG2bQLRAiNyMEbhr8EA56E40vlVinfTgOPCDlR63RbsygoMvD2cLqPCebk9lRi9mQQdySb0O6e9BgTjJufvbVDvGlhXg6sva8Ps746zO2LDrH0rl50C3SxdlhCKyEStFZMkiRe+OEsFTVmPpwRhY1anOxaXfJ+2P5vyDgGbmEwbbk87aUF9Z65UTnJpZz5LY3E47lYLBLBkW50HhqAf3uXFtWLpymRJIkSQwm5VbnkVuaSV5lHTmUO+VX5FFYXUlBVQGF1IYXVhZTWlF5zOzqVDketI442jjhqHfGx95FHnjR67DR26NV/JDW2Glv0aj22alt0ah1alRad6s/3NiqbBh2tkiQJs2SmxlyDwWyg2lRNtbn6z1+bDFSZq6g0VlJeU06FqYKKmooriWe5sZwKYwXJpcmUGEooNhRjtBivuU8nGydcda646dzke1v53t3WHU87T7zsvPC088TZxlkc762FjQP0fVheq3bue9j/IfzwgDyLov9j0PUOUNtYO8rr0jvb0P+2MLqNCuL0jlTO7sog8Vgubbt5ED0hpNmNqAW761l9X29mfXWY2V8dZsldvegZ7GrtsIRWQCRordjmM1n8HJPDs2PaE+op5ldbVeEl2P4vOP8jOPjChI+hy0xQta4/UckicelMPqe2p5J1sQSNTkXkQD86DfHH2VNMY6yrSmMlWRVZZJZnXrnPLM8kpzJHTsiq8jCYDX95npON05VEop1LO1x1rrja/pFcuOhcrowQOdo4YqOyzkmkxWLBVFWFobCAmuJiDCXF1JSWYigrpaa8HGNVJSaDAXNNDaYaA2aj8fK9CbPRiMVixmIxI1kkLJLlT/eSZEGSJBQKBTrAVqFArr2nkBMohTyVUql0QKlyRqUKAaUSSQkWpYRFAWaFBZPKgkFtoVplolJppExZQIkynURFBYXKSip1EmW2FipsJSSlAq1Si4edB152Xlfufe198dX7yvf2vjhoxft3i6LSQJfp0HkaJGyHPW/Blidgz9vQdwF0nwfapv1+aOeopc+kULqOCOL0b2mc2pFG0sk82vfxoee4Nji4Np8iTv4udqy9rw8zFh1i3tdHWH5PtBhJExpc6zr7E67ILzfw743n6BLgzD3921g7nNbLUCYX/zj4KSjVMOQF+QqqpnUVajEZzcQfzuHk9lSKcypxcNXR/7YwIvr6oLUVb1M3yiJZyKvMI7UslbSyNFJLU0ktSyWjPIOs8iyKDEV/erxaocZb742X3otOHp2ujNr8ngh42nniYeuBVtW4JbRNlRWUpaVRkZVJRXYWFXl5VBYXYSgvxVBRiaG6CkNNNTVGIzVmE0aLGSNgUiqQajHapJAklJKEUgIF//+m+OPry9v+Y/rkHyTk6ZQSYLn8vUUBFsX1Y9IDemzwxQb4nyvzkoTaIqGSJJRIKMhCUmRgUpjJUZlIU1uo0lqo0pkx2mlQuTlh6+GBk18gXgFhBDkHE+gQiJ+9H5omPj1OuAaFAtqNhLARcGm3XPHx53/Knxl9H4ae98ijbk2Yzl5D9IQQOg3258S2FM7uSSfuSDaRA/3oPjq42ZTn93TUsWp+b6Z/eZC5i4+w4p5ougQ4WzssoQVT/P5B0xT16NFDOnbsmLXDaJEeWnmC7bE5bFnQX1Qnugm7du1i8ODBdd+QxQKnVsKO/0BFLnS5XS4A4uhb9203I9UVRmL2ZnD6t3SqSmtwD7Cn28gg2nbzQCmqMV5TiaGESyWXSCpJYs+5PUhOEqllqaSXpVNtrr7yOLVSjZ+9H/72/vjY+/xp1MVH74OHrUejFbowG2soS06mNCWZsow0ynKyKc/Po6KkhMrKcqprDBjMZgxImK7zf6+yWNBIoFUo0ShV2Gi0aLVatDY6tDpbtDpbNLa2aO3s0Ort0drbo3VwQGvvgEavR22nR21ri1avR623R623Q6Vp2JNEi8WCxWDAVFmJsbICY1kZNWVlGMvLqKkox1hRgbGyEmNlJYaKcmoqyqmprMRQVUWNoZoaowHjlWTUQg0SRqXimlOfFRYJjcWEQjIjKcygUaCys0HraI+tuwdu/sEEduhG2469sdE3zNqgenuvFP4s5SDsfQcSfwWds9z0Ovp+sHW2dmQ3pKywmqNbLnHhQBYqrYqoYQFEjQjEphEuxNXHMZlZXMX0hQcpqTTy7fzeonCIUCcKheK4JEk9rvo7kaC1PlvOZPHQtyd4elQ4Dw0JtXY4zUq9nHSkHIBtz0LWafDvBaPfaPJlletbWWE1p3ekEbMvE5PBTEAHV7qODMQ/XKwv+50kSRRUF5BQlEBSSdKVhCypOImC6oIrj1OjJsgpiADHAAIdAgl0CLzytbfeG7Wy4U98LBYL5WmpFMXHUZycRFlmJqX5eZSXFlNRXUml2UT1NRIKrdmCTqFEp9ags7HF1k6PrYMDds4u2Lm6offwRO/jg97XDztPL9S2rWt0+VrMxhoqs7OpyMqiMjebyvw8qgoLqSwuorQon/KyEqqqKqkxyaOLNSrlX//9JQmt2YwaCa1Gja29Hic3T7wD2hLQuSsuER1Ru7vX6m9SJGgNLOOEPKIWtwV0TtD3ETlRa+Ijar8ryq7gyI+XSDyei42dmm6jg+gyJACVpuEuzNXXMZleVMn0Lw9RbjCxan5vOvg61j04oVUSCZpwRUG5gZHv78HX2ZYND/YVDalvUp3e4Esy4JfnIWYDOPrB8Jeh09RWVQCkOLeSE9tSiDuUjQSE9fCk68hA3P2bx0lFQ6k2VXOx5CLxhfHEF8WTUJRAfFH8n6YkOmgcaOPchhCnkD/dEo4nMHTI0AaPsaa0hIJzZymIv0BRSjIlOTmUlhZRbqimAgmL8s/HsdIiYSeBnUaL3s4ee2dn9K5u2Ht64eQXgGNQEI5tQlDbNa+iAc2V2VhDRUYG2QkxpCWdoyDtEhV5+dSUV2A2mLBYlJiUKsyqP0ZUbYwmnKprcFSr8XBxxz84DH1QMBp/P7RBwWiDAlHqrr6WSCRojSTrDOx6HeJ+AltXuZhIz/lNfo3a7/JSyzi0MYnUmAIc3XX0mRRK224eDXKhrj6PybTCSqZ/eZBqk4VV83sT7t26P8OE2hEJmnDFI6tOsu1cFpsfGSDeUGqhVm/wZhMc+RJ2vgYWE/R/XF7o3Uw+QOtDYWYFx7clk3A0B6VKSYf+vkSNCMDRrfWNhpTWlHK+4DyxBbHEFsQSVxRHSmkKFskCyBUQQ51DaefajnYu7Qh1DiXEKQR326uPZNTnSYfZYKDg3Blyz56mIOkiRdmZlJSWUG6qofr/XcxRWSzoUeJga4ejowuOHp44+fnhFByCc1g77AMCUTbxHk7CHwxmAymlKVy8dJr000cpjUvCnFOKslKBgstr2CQJ++oanCsNOFUZcKwy4OLkgl1wMNrgYLRBQVfuDyYlMXjYMOu+qNYk/TjsfBUu7gC9p1yyv/s80DSPYhxpsYXsX59AQUYFPqFO9L8tDM+g+h2Zqu+LBsn5FUxfeBCTWeK7e3uL5SLCTWt2CZpCoRgPjPfz85u/YsUKa4fTYhzLNvHJKQOTwzRMaNs8FuY2NeXl5djb3/iaDYfSOMLjPse+4hIFrt1JCLuXatvW0wy8qkgiP0aiNF2ugeISCm7hCjS2rWPUsNJSSZohjbSaNFJrUkmrSSPflH/l964qV/y0fvJN44ev1hd3tTtKxY0nNjd7TAJYqqowJiViSE2mOi+HqooyqkxGKpUKpP8ZCdOYLdihwFarw8beERtXNzSe3qj9A1C5e6AQCViLZ7AYyChLJjfrIhW5mShyirErsqAxX/6/lyRszEZcKmpwKa++kripFEpM3t6Yfbwx+fhi8vHG5OOD2dMTVKKlS0NxLDlPm0srcSk+S7WNG6mBt5HlMxypGfTdkywSRUmQe1bCbACnYPDqrEBjVz+fF7V5r/w72RUWXj9SjSTBP3vp8LEX74nCjRsyZEjzStB+J0bQ6k9RRQ0j3t+Nl6OOHx7qh0ZMbayVG74CV1UkFwA59o3chHTMmxAxodVMZ8y+VMLxn5JJPluAVqei89AAOg/1x9a+5V4YMFvMJBYncib/DKdzT3Mm/wyXSi5d+b2fvR8d3DrIN9cORLhF4KKre6nm6x2TZmMNuceOknPqJHkXEyjMzaK4soJyJVeORYUkYS8pcNTZ4ezmjqt/IO7tIvDo2hWHgMA6xye0PBaLhaS0WE6f209aYiylaRmocivRGeTPFQkJhcKMi0XCq7QGt5xCHKpqUAJoNNgEB2ET1g6b9u3RRbTHJjwctUfDTGtrtZJ2yyNqaYfBpQ0M+xd0mATN4KJKTZWJ49tSOL0jDYUCokYG0m1kEBqbuiX2DTXtNjG3nBkLD6JUKFhzXx+C3cW0beHGNLsRtN+JBK3+PPbdSTafyeLHR/oT4SMWtNbW377BSxKcWSOvNasskBdtD3mu2SzcrqvclFIOb7pEakwBNno1UcMC6DTYHxu7pn/19mYVVxdzKu8UZ/LOcDrvNOfyz1FpqgTAVedKZ/fOdPboTEf3jnRw7YCzzrlB4vj9mDQUF5O5fy/ZZ06Sm3yJgqICSiQTFuUfIx32FnCy0+Pm4Y1721C8Okfh2a27WAcm1IuUzAROn9tHcvxZ8hIuYltoxKZGPv7MSgtKnQJXlQbfagXeWcXYZGRfea7KzQ1deDg2Ee3RtW+PLiICbZs2KMRoW+1Jklzt8deXIOcc+HaFEf+BNgOtHdkNKc2v4uCGiyQez0XvpKXfbWGEdvesdSLfkOsi43PKmLHwEHZaFesf6IuXY/OYWipYl0jQWrlfYrK5d/lxHhsexmPD21k7nGbtum/wBRdh82NwaQ/4dYdx74NPl8YMz2ry08s58mMSl07nY6NX021kEJGD/NDqWk4Ps5yKHE7knuB4znGO5xwnsTgRkHuJtXNtRxePLnT26EwXjy742/s36GhAdUEB6bt3knHqOKnxF6g01fxpVExjtuCs1uLm7oln2zC8O0fh1bMXWkdRElpoHLt27WLgwIHEJZ/i1Km9pCfEUJmWg22BCZVFPk6rbSV0Trb42zgQUq3FNS0XY+JFJKMRAIWdHboOEdhGdkIXGYltZEc0QUFipO1mWczyhcPf/gul6RA6XC5S5R1p7chuSFZiMXtWx5OfVo5/excG3R6Os9fNr+Fu6MI1Z9NLmLHwIP4udqy+rzfOdi13xohQP0SC1oqVVBoZ/v5u3O1t2PhQP7Tqpj+9oSm76hu8xQyHv4Adr4BKC8NflBdnN1J/KWsqzKrg6Ga5VLJWpyJqRCBdhga0iObSaWVpHMs+diUhSy9PB8BObUdXz6509+pOV8+udHTviK264YqdmCoryNi/j4yjh8hOSqSgpIhShXQlGdOZzLja2ePu5Yt3+wh8o/vi0jFSFOgQrOpaJ8PVhkqOn9tNzOkD5CYkoMgsRVctH6s1Ggsmbzu8PLwJt/EgpATMseepvnAByWAAQOnoiK5jB2wjO2HbNQrbqCjUrq5/2Y9wFcZqOLJQbnRdXQJdZsCQ58E5wNqR/S2LReLc7gwOb0rCZDTTbWQQ3UYHodHe+OdsY1QWPZCYz7xvjhLp58iKe6Kx0zb/z0Kh4YgErRV7ceM5lh9KYdPD/UVDxXrwlzf4/AT44UFIPwLtRsujZq2g2XRJXiVHNycTfyQblVZFl6H+RA0PRKdvvlMZC6oKOJJ9hMNZhzmUdYiM8gwAnG2c6ebZje5e3enu3Z1wl/AG7S1WcjGR5B2/kHH2DDm5mRRbzFdK2GvNFlxtbPH08ccnshMBA4dwMjVNlDMXmpwbPRm2WCzEJZ3i2IkdpF+IwZiWj75U/p1JJWHw1uEW2obO3u1pX6PHFHuB6nPnqI6PB5MJAE1QIHZRXbHtKt9sQtuKqZHXU1UEe9+Dw1/K30ffBwOfkvupNXEVJQYOfJ9I/OEcHNx0DJzejuDO7jf03MZq/bDtXBYPrjzBgDAPFs3pIS6MC9ckErRW6nxWKbd8tJc7egfxn4nNYypDU3flDd5ihoOfyouw1ToY8xZ0ntbii4BUlBg4uvkSsfuzUKoUdBrsT7eRgdg6NL+pHBXGCo7nHOdQ1iEOZx0mvigekPuN9fDuQbRPNNHe0YQ4h9xUVcWbYTbWkHVgP6n795CZGE9eaTGVKvkYUlokXJRqPD198InoQED/QbhGdvrLyJjoNyU0RXU5LjNzkzlwZBtJZ49RfSkbfYn8c6PaQo2PHR7hYXTp3I9OCk9qzpyh8uQpqk6exFxYCIBSr8e2Sxdse3RH37Mnui5dUGqb33tUgytJh99ehdOrwM4Nhr4A3eY0i9kfGXFF7P4unqKsCtp0caf/tLC/bdvSmO+Vq4+m8o/1Z5nQxZcPpkehVLbscwOhdkSC1gpJksT0hYdIyClj51ODxVzoerJr1y4Gd/SRR80yjkH4LTDuPblSYwtWU2Xi5PZUTv2aisUk0XGAL93HBqN3srF2aDdMkiQSixPZl7GPfRn7OJF7ApPFhFappatXV3r79CbaO5oIt4gGGyEzGwyk7dpByt7dZFy6SJ6hEtPliqo2ZgsedvZ4B7cloFdv/IcMR6v/++IdIkETmqL6PC7Tcy6x/9BmLp09iTE5F7sy+ecGrQUp0JmATl3o328C/pKeqpMnqTx5kqqTpzDEx4MkodBqsY2Kwq5nT+x69sQ2qss1G2y3SpknYds/IfUgeHWC0a9DmwHWjupvmU0WTu9I4+iWSyBBrwkhdBkWcM1kqLHfKz/fdZE3t11gbp8gXprQUaydFP7iegmamBzbQm06ncmRS4W8NqmTSM7qi9lEQOp62LtabjI9ZTFETmnRo2Zmk4WYvRkc+ymZqjIjod09iZ4YgrNn82iyXV5TzuGsw+zN2Mv+zP1kV8hV48JcwpjdYTZ9ffsS5RGFTt0wJ2umqirSfvuV5AN7ybx0kXxjFabLI2D2ZolgV0/8OkQSNHgobp2jxLoxQbgKf682TJ/4CEyUv0/OiGP/wc2knDkJyYXkJe5lw4a9VDiBbagfHQb0Z8DTj6E3QuXx41QeOUrl0aPkf/45fPopCo0GXefO6KN7oe/bF9vOnVG05hE2365w51aI/QF++TcsHQftx8HI/4JrG2tHd00qtZJuo4II6+nFnu/iObA+kcTjuQyd0x433/rtd1Yb9w8KoaiyhoV7knDRa0WRNuGmiBG0FqjCYGLou7vwcLBh40P9UYmh9borvATfz4f0oxAxHm55D+w9rR1Vg5EsEokncjm0MYnSvCr8wp3pMykUr+Cm36IhrSyNnak72Z2+mxM5JzBJJvQaPX18+tDfrz/9/PrhrW+YEU+LxUL2gX1c/PVn0hLiyK2pxHw56XKwgLebBwGdomgzcgzOYfXzYS1G0ISmqLGOS4vFwvFzuzl66Gfyz8ejyzagsigwKyWqfXX4dIpk4ODJhAd3wVxWJidsR49SefQY1efOgcWC0s4Ou5490ffri75PH7Shoa13tMNYBQc/gb3vg8UIvR+AAU+Brmm/90uSROLxXPZ8F09NlYmetwTTdVQQqv/p+WqN90pJknhm3RnWHk/n5Qkdmds3uFH3LzRtYgStlflkZyI5pQY+m9VdJGd1JUlw+jv46SlQqIiNeJIO0/7VokfNMuKKOPB9IrkpZbj56Rn3cBcCO7o22RMWi2QhtiCW31J/Y2fazivl70OdQ5ndcTYD/AYQ5RGFRtUwBUyK4uO4+NOPpJw5SVZpEYbLJwR6s0SIuxeBUT0IGT0Wx+CmeyVaEJorpVJJz85D6Nl5CAClFcXsObiJ88f3oUjIpHTrcTZvPc5qJ9C3DyKq9zAGPLYAL40N5tJSKo8coeLAASr2H6B8924A1J6e6Pv0kRO2/v1bV5VIjS0MfBqi7oAd/4H9H8KpVTDyFeg8vcl+9ikUCsJ6eOEf7sLe1fEc3nSJxBN5DJsTgUeg9fqQKhQKXp/cieIqIy/9GIOznYaJUX5Wi0doPsQIWgtzKb+Cke/vZkIXP96d1jp6cDWYqmLY8gScWw+BfWHyl+w6ldRiRytK8qo4sD6RpFN52LvYED0hhHbR3k1ycbPRbORw9mF2pu5kV9oucqtyUSqUdPPsxpCAIQwJGEKAY8OUjjZVVpC0eROJ+3aTnpVO2eULtFqzBW97JwI7diJ09DjcOnVukP3/f2IETWiKmspxeTb+MPv3biL37Hlssw0oJQU1GguWYBfa9ohm5JAZuDrJsyGMGRlUHDwoJ2wHDmIuLgaFAtvOndEPGoj9wEHoOkSgaE1TkTOOw09Py/dB/WDsO+DVwdpR/a2kU3ns/jaOqnIjXUcG0vOWYPbt32u1Y7LaaGbO10c4lVrM8rt7ER3iZpU4hKZFFAlpJSRJ4s4lRzmWXMRvTw3C00Esgq61lAPw/b1QmglD/gn9nwClqsmcdNSnmioTx7Ymc/q3NJQqJd1HBRE1PAD1TfSXaQxGs5GDWQf5OflndqbtpKymDFu1Lf18+zEkcAgD/QbirHNukH0XxV0gbuN6ks+dJruqHLNSidIi4a7WEtC2HW2HDMdv0BCU6saflNASj0mh+WuKx2VBcQ6/7VlHwonDkJSPjUEpT4X0syWwW3eGD5uBv5c80i1ZLFTHxFK+Zzflu/dQffYsSBIqD3fsBwzEfuBA9P36onKw3uhMo7FY4OQy+PUlqC6Vpz0OfhZsmvZrr64wsn99IhcOZOHibYdzZBVjpw6xWjwllUYmfb6fwooavn+gLyEe1l8nJ1iXSNBaiV9jc7hn2TFeuCWCewaEWDuc5slshN1vyo08nYNgylfg/8ffTlM86agti0XiwsEsDm1Moqq0hva9vel9a1v0zk2nMuPVkjIHjQNDAocwImgEfXz7YKOq/3jNxhpStm4lYecvpKWnUHL5grmt2YKfmxch0X0JmzgZnZv1r4K2pGNSaDma+nFpNNWw79hPHN+7jarzadhVKLAgUemlwTsqkqFDpxMW3OnK400FBZTv3UvFnj2U79uPpbQU1Gr0vXphP3wYDsOGofHysuIragQVBbDjJTixDBx8YdSr0HFSk532+LvUmAJ2rrxAeZGBnmOD6TE2GKXKOqOgqQWVTPpsP/Y6NRse7IervhUXpxFEgtYaVBvNjHx/D1q1kq2PDkBjpTefZq0wCdbPl8vnR82CMW/+5QphUz/puFGZCUXsXZNAflo53iFO9J8W1mQKgJgsJg5mHmRb8ra/JGWjgkfR26c3WlX9f6jVlJURv341ifv3klaUR41KiUKScFNqCAoNJ2zUWHz6DWhylRZbyjEptCzN6bj8vdDIgd0bKTl3EX2xfF5U4arALaoDw0bcTvuQqCuPl0wmqk6domznTsp/3UFNSgoAus6dcRg2DIcRw7EJacEXSdOOytP/s89AyBB52qN7qLWjui5DlYm1H+6hJBm82jgy/M4OVqtGfDyliNsXHaKznxMr7olGp2las1WExiMStFbgk98SeOeXeFbcHU3/MHdrh9P8xG6EHx4CpRLGfQCRk6/6sOZ00nE1ZYXV7F+XyMUTudi72NB3ciihPTytXgBEkiTO5Z9jc9JmtiVvo7C6sFGSsoqMdM6v/Y6LJ46QdXnqotpiwVfvRNvu0YTfNh29t0+977c+NfdjUmiZmvNxeT7xBLt2riXvVCz6fDMAFe5KPLt2YsSoWbQN+GMNliRJ1CQlUbb9V8p27JCnQgLaNm1wGD4Mh5Ej0UVGWv09tt5ZzHB0Mfz2Cpiq5WUAA54AddOZgfH/7dq1Cz/7CHZ/G4fZLDFgWhgRfX2s8n+z5UwWD317gvFdfPlQNLJutUQVxxYus7iKT3deZEykt0jObpbZCNtfhEOfgl93uG0JOAdaO6p6d6Wh50/JYJHoNb4NXUcEWn2dWWppKluStrDl0hZSSlPQKrUMChjEuJBx9Pfr3yBJWWnyJWJWLSfhzEnyzTVICgU6s4U2bl60GzCEtpOm3FCDaEEQWqaI0G5EhHYDIC75NDt+WUXFyRgqtp/mh+2nqfBU4929C6NG3kGQbxg2bdti07Yt7vffhzEri7LffqN8xw4KvllCwaKv0AQE4Dh6NI5jRmMTEdEykjWlCqLvhQ4T4efnYPcbch+18R9BYLS1o7umsB5eeIc4sWNpLDuXXyDlbAGD7wjH1r5xpxre0tmH1ML2vLntAkGudjw1KrxR9y80fSJBawFe/ek8EhLP3xJh7VCal9JMWHsnpB2CnvPl+fRN+OpfbaXHFbFnVRxF2ZW06eJO/9vCcHS3tVo8JYYSfrr0E5uTNnMm7wwKFPT07sndkXczPGg4Dtr6X3j+v0lZnrkGFArszRIdA4IJHzmWwBGjrFLgQxCEpi08uAvh98oVkc8lHGXn9tVUnI6jbOtx1m49RqWvDSF9+zJ+9F04Obii8fHBddYsXGfNwlxcTNmOHZT+tJWCr7+mYNEitEFBOIwZjeOYsdi0C2v+yZqDF0xdLJfg3/w4fD0Ket4Dw19sskVEHFx1THy0K6d+TePQxot890oJw+ZGENihcdcU3z8ohJSCCj7ZmUigmx3TejRM5WGheRJnJM3cgYv5bDmTxePD2+HvYp351M1S0m5YfzfUVMKUxdBpqrUjqncVJQb2r0sk4WgOju46bnmoM8GdrDPCapEsHM46zIaEDexI3UGNpYYwlzCe6P4EY9qMaZDG0ddKyjoFhdBx4hR8+g9scuvJBEFouiLDehIZ1hOAU+cPsOuX1ShOJ5KzbhdfbNiJqa0zUYNHM3LQdDRqLSpnZ5ynTMF5yhRMRUWU/bKd0m1bKVi4iIIvvkTbti2OY8fgNGEC2oBmfnLebiQ8dAh++y8c/hLifoJb3oPw0daO7KoUSgVdRwbiH+HC9q9j+fGj03Qe6k/fSaGoNI3zuaBQKHjl1kgyiqt47vuz+Dnb0i9UzIISZGINWjMmSRK3frqf/PIadjw5SCw0vREWC+x7D3a+Cm5hMH05eNz41ILmsK7CYrZwdlcGR35MwmSy0G1UEN1HBVllOmNWeRY/JP7AD4k/kFmRiaPWkVtCbmFS6CQi3Op/xLcqL59zK74h7uhBckyGK0lZSFBbOkyc3CKTsuZwTAqtT2s5Li0WC7sObeTIjk1IcTlojUqqdRZsOgYyaPT0Kw20/5cpP5/SX36h7KetVF4+x7Ht1g2nCRNwHDMalZNTY7+M+pV2FDY9AnnnoeNkueCWvae1o7rmMWmqMXNgw0XO7kzHM8iBUfdG4ujWeLNMSquNTP38AFkl1Xz/QF/CvJrmyKNQ/0SRkBbq55hs7lt+nLemdGZaz2Z+9a0xVBbChvsh4WeInArjPwSbm+tD0tRPOrIvlbBrZRwF6eUEdnRlwPR2jV6pymg2siN1B98nfM+hrEMA9PbpzaSwSQwNHFrvZfFNVVVcWL2S87t2kF5RgkWpxM5sISQwhMhbp7bIpOx/NfVjUmidWuNxWVFVxtYdyzm/dxc2KRWoJAUVLgq8e3dj4vh78XLz+8tzjJmZlPy4mZJNm6i5eBGFRoP94ME4TZyA/cCBKLTNtAy7qQb2fwB73gaNHYx+A7rMsGpJ/r87Ji+ezOW3pedRKBUMn9eB4M6NN5qVXlTJpM8OYKNWsunh/qL8fishErQWyGyRGPvhXoxmC788PhC1KKt/fdnn4LvboTQLRr8uz5GvxQdFUz3pqKk2cXhTEmd2pqN3smHA9DBCojwadX1DZnkm6+LXsT5hPYXVhfjqfbk19FYmhk7E1963XvdlsVhI3vwj5376geT8HIwqJRqzhWB3byLHTiR43PgWnZT9r6Z6TAqtW2s/LrPz09i8ZTGZh46jL5QwKyVq2jrRY8R4RvS/DZXqzytMJEmiOiaWkk0bKd3yE+aCAlROTjjeMhanKVOw7djRSq+kjvLi5NG0tMMQfguM/8Bqo2k3ckyW5FWybeE58tPK6TYqkOgJIY3WM+10WjG3fXmQHkEuLLurlzivawVEgtYCbTyVwaPfneKj27syoUv9nvy2OBe2yP3NdI4wfcWfGk/frKZ40pESU8CulRcoLzTQaZAfvW9ti9a2cZaXWiQL+zP2syZuDXsy9gAwyH8Q08On08e3D0pF/X7AFF6I5dSSxcQnXqBCpUBpseCvdyJi8DDaT5+F2tZ6xU+spSkek4Igjss/HDr1K7t/WoUlNgutUUmlXsKpezjjJtxDyP+U7P+dZDJRsX8/JRs3UbZjB5LBgE2HCJynTMFp3LjmNwXSYoaDn8rr07R6GPee3OC6kd3oMWkymtm3JoGYvZn4hDox6p5I9M6NU0Bs7bE0nl53hrv7t+Ff4/56bAgti0jQWhij2cKI93aj06j4acEA0T/jWiRJXm+24xXw7QozvgXHuvW0akonHVVlNexbm0D8kRxcvO0Yckd7fEKdG2XfRdVFbEjcwNq4taSXp+Omc2NKuylMDZuKj3399g2rqaggZuliYvbtJsdUDQoFHgo1Eb36Ejn7Lmw9Wvei6qZ0TArC78Rx+VfllSVs2vY1iXv2os+qwYJEVYAtUSNvYczQWWjUf53WZi4tpWTzZorXrsNw/jwKGxscRo3EeepU7Hr2bF5VIHMvwA/3Q+ZJiJwiN7i2c2203d/sMRl3OJtdKy+gsVEx4u6OBLRvnFhf2hTDkgPJvD+9C5O6+jfKPgXrEH3QWph1x9NJLqjkqzk9RHJ2LcZqeVrF2TXyerOJn4CmZYyuSJJE/JEc9q1JoKbaRM9bguk+OrhRKk/FFcaxPHY5Wy9tpcZSQw+vHjza/VGGBQxDo9LU234sFgvpv/3K6fWruZSXhVGlxNZsoXNQKFGz5+ER1a3e9iUIgtAY7O2cmDn5cZj8OOeTTrBt0zeoTl4kYfF6zny3DpfoSCZNegBfz+Arz1E5OuI6cyauM2dSFRND8bp1lG7eQummH9EGBeE0ZQrOUyajdmvcEvG14tke7v4V9r0v901L3ievBQ8fY+3Irio82huPAAe2LTzLpg9P0WtcG3qMCUbRwOddz98SwfmsUp5df5YwTwci/ZrZiKlQL8QIWjNTbTQz5J1deDnq2PBg3+Z19ayxlGXDdzMh4zgMfQEGPFVvC5OtfVW4tKCK3SvjSI0txKuNI0Nmt8fN9+YKndwsi2Rhb/pelscu53D2YWzVtkxoO4EZ4TMIdQmt131V5eVzavEXxJw4TIlCQmmR8Nc70WnUWMKmTkOlEQun/z9rH5OCcDXiuLwx1TVVbNq2mAs7dqDPNmJWShhDnel3y3QG9hp31bW0lqoqyn75heK16+QqkBoNjqNG4TJzJrZdo5rHeUHWGfjhAcg5B1Gz5LXhuoZNRGp7TNZUm9j9bRzxR3Jo08Wd4Xd2QKtr2PGN/HIDEz7eh0KhYNPD/XCzb3k9WgUxxbFF+XrfJf6zOZaV90SLfhlXk3lKTs6qimDyQogYX6+bt9ZJhyRJnN+fxb61CQD0vrUtkYP8GnQEtdJYyaaLm1h5fiXJpcl42XkxM2ImU8Km4GRTvx+k6bt+4/iq5VwqzMGsVOJogQ5RPYi68170vmKN5fWIE2GhKRLH5c07Gbuf7RuXYDmXgcakpMJFQcCA3ky59SEc9c5XfY4hKYmib1dR8sMPWMrLsYmIwGXm7TiNG4eyqa/JNRlg95vyiJqDL0xZBEF9G2x3dTkmJUni7K509q1NxMXbjlse7Iyje8P++55NL2HqFwfoGujM8ruj0YiiIS2OSNBaiAqDiYFv7STc24Fv5/e2djhNT8wPchl9Oze4fRX4dK73XVjjpKO8yMDOFRdIjSnAL9yZobMjGvSDIacih1UXVrE2fi2lNaVEukUyp+MchgcNR6Osv2mMNaUlnP7qS84d3kchFpQWiSBHF7pOnk7QmFtaTRXGuhInwkJTJI7L2ispK+T7TZ+TtvcQ+iKJGo0Fm+4hTLrtYdr4t7/qcywVFZT8+CNFK7/FkJCA0tER50mTcLl9Btrg4MZ9ATcr/RisvweKU+QZL4P+Aar6H6Gqj2My7XwhPy86h0KhYPS9kfiFu9RPcNfw/Yl0nlhzmjv7BfPi+GZayVO4JrEGrYVYciCZgooanhp1442VWwVJkq/A7XgZ/HvBjJVNoilmXf2+1mzv6njMRgsDprej0yC/Bpv/nlySzDcx37Dp4iYskoVhgcOY3WE2UR71O2Um78Rxjnz9JRez0zGqlNibJXpFRtFt/gPo/cSCaEEQWjcnB1funPU8ltst7Dz0Awc2rUZ96BLrDj9JTagzgyfdQb/uf163pdTrcZkxA+fp06k6fpzClSvl29Kl6AcOwO3OO7Hr3btpTn/07wH374WfnoE9b0HSLnk0zSXY2pH9RUCEK1P/0YOfPj/Dpg9PMWB6GJGDGu5za3I3f85mlPDN/mQifZ2Y0l18RrYWIkFrJkqqjHy5+yLD2nvSLbBhr9g0KxYzbPsnHPlSrgo18TPQ6KwdVZ1Vltawa+UFLp3OxzvEiWFzI3D2apiG0+cLzvPV2a/YnrIdrUrLlLApzOs4D3+H+vsgsFgsJKz9jhM/biCzphIFEGDvRNT4SbSdNFWMlgmCIPw/SqWSYX0nM6zvZC4kneLHdZ+jOp3Gobc+ZYfnl0SMGMHEMfeg1fyxPkmhUGDXowd2PXpgzM2leM1ailatIvXOu7Bp3x7XeXNxGju26TXAtnGASZ9D6DDY/Dh83h/GvQ+db7N2ZH/h7GXHlH/0YPviGHaviqcgo4L+08NQNdAUxOfGykVD/rnhLGFe9nT2d26Q/QhNi5ji2Ey883Mcn+xMZMuC/nT0FRV9ALlS44b7IPYH6PMwjHgFGvhEvzGm7SQez2X3qjiM1WaiJ4TQZXhAva81kySJ4znH+ersV+zP3I+9xp7p4dO5o8MduNvW39pGQ3ExJ774hLPHD1GmBK3ZQvugUHrc9xAu7cRIcH0QU8mEpkgclw2jsCSXdes/JmffCewqFFTZSXgO7M70qY/h5HD1MvAWg4HSzZspXLIEQ0Iiag8PXO64A5fp01A5OzfuC7gRRSnw/b2Qdgg6T5fL8esc67zZ+j4mLRaJQz9c5OQvqfi1c2bUvZHY2jdM4ltQbmDCJ/uxSBKbH+kvioa0EGINWjOXX25g4Fs7Gdrek09mivLiAFSXwHezIHkvjPwv9H2kUXbbkCcdhiq5UlTC0Rw8Ah0YPq8Drr76et2HJEnszdjLojOLOJV3CledK7M7zGZ6+HQctA71tp/CmLMcWfgZ8RkpGFVKnCQFXXoPoMv8B9A61N9+BHEiLDRN4rhsWEZTDZt++YaYrVvR55owaC3Y9wpn2u1P4O0ecNXnSJJExb79FH7zDRUHDqCwtcV50iRc581FGxjYyK/gb5hNsPcduYiIUwBMWQwBPeu0yYY6JuMOZ7Nz+QXsnLTc8lDnBqusfC6jhMmfH6B3iBtL5vUUbZZaALEGrZn7bOdFqo1mHh/RztqhNA2lmbBiKuTHw+RF0HmatSOqs6yLJWxfHEN5sYFe49vQbXRQvU6X+D0x++zUZ8QUxOCr9+W56OeYFDoJnbr+poSm7djOoeXfkFZZggT42znQffI0QiZMEtMYBUEQ6olGrWXK2PuYMvY+dh76gX3rv8W4L4GlB+9H2cWPSTMWEBoU+afnKBQK7Af0x35Af6rj4ilcupTitWsp+u47HMeMwe3ee9GFN5HzDJUaBj8LIYNh/Xz4ehQMfxH6Lqi3tjn1JTzaG2dPO3764gwb3jnBmPs74deu/peiRPo58e9xHXjhh3N8uSeJBwa3rfd9CE2HSNCauMziKlYcTmFKN3/aejRsv6tmIS8OVkyRy+jPWgtth1g7ojqxmC0c25rCsS2XcHDTMfmpbniH1N8UVkmS2J+5n89OfcbZ/LP42fvxn77/YVzbcfVWkdFisRC/+luOblpPrsWI2mKhvXcgve9/CNeOneplH4IgCMLVDel9K0N638qJmL1sW7MQ5ckMNpz8B8ZwV0ZPu5duHQf85Tm68Hb4vvYqHo89StGyZRR9u4rSLVuwHzIE9/vuxTYqqvFfyNUE9pYLiGx6BLb/G1IPwa2fgW3TWovv1caRKc90Z/PHp9n00SmGz+tAWA+vet/PrOhADl4s4J1f4ugZ7EKP4KtPaxWaPzHFsYn75/dnWXc8jd+eHEyAa8MUiWg20o7At9NAqZGTM9+oRg+hPqdIlOZX8es3sWRdLCE82puBM9qhta2fayaSJHEw6yCfnvqUM3ln8NH7cF/n+5gQOqHeEjOzwcDphZ9zYs8OSpQSNmYLHcMj6fXI4+i9feplH8LfE1PJhKZIHJfWk5hyjg3ffYTldAZqs4LKYDtG3H4vvaOGX/M55pISClesoGjZcswlJdj17o37ffc2ncqPkgSHv4BfXgBHP5i2FHy73tQmGuOYrK4w8tNnZ8hKKqH/1DC6DLv6dNO6KK02Mu6jfZjMFrYsGICLvokVfBFumFiD1kzlllXT/42dTO3hz2uTWvlIRNw2WDsPHH3gju/BtY1VwqivN/iEoznsWnkBCRh0ezjh0d513ubvDmcd5tNTn3Iy9yTeem/md5rPpNBJaFT1k5gZios5+tF7nD1zjMrLZfKjovvR9cFH0errd82c8PfEibDQFInj0vqy89NYvepdKg/FozUpqQyyY9jtd9O366hrPsdSUUHRmrUUfv01prw8dJ07437fvdgPHdo0ErW0o/K5QEUujH4detx9w1MeG+uYNNWY2f5NLEkn84gaHkDfyaH13h7nTHoxUz4/wKB2Hiya06Np/N8IN02sQWumlh1IwWixMH9AiLVDsa7YjbDuLvDuBDPXgr2HtSOqtZpqE3u+iyfuUDZebRwZeXfHems6HVMQwwfHP+BQ1iE8bT15Pvp5JodNRquqn6trVXn5HPrgLc7FnaNGpcRNpaH/qHF0nHMnSrV4KxEEQWhKvN0DePSRD8i7I4tVK99GfegCB9/4mB2BXzFsxj307f7XRE2p1+N25zxcZt5OyYYfKPjqK9Ifehhdhw64L3gE+0GDrJsMBPSUpzx+fy9seRJSDsL4D8Gm6SwBUWtVjJofyb41CZz6NY2KYgPD5nZApam/ddid/Z15bmwEL/8Yy+J9l7intZ8ntkDirKqJqqwxsfxQCiM7eNHGvRWPSpxdJ78R+/eQpzXqmm+LgbzUMrYtOkdZfhU9xgbT85ZglPVQCCStLI2PT3zM1uStONs483SPp5nefjo2qvopw1uRncWh998i5mIcRpUSL60tfabPou3EyfWyfUEQBKHheLj4sODh9yi4I4dvV75FzcHzHHzrY34NWMTQ6XfRv+fYvzxHaWODy4zpOE+dQsmmH8n/7DPS738AXZfOeDyyAH2/vtZL1OxcYeYa2Pce7HwVss/AbUvBq4N14rkKpVLBgOlh2LvYcHDDRSpLaxhzfyds7OpnJgvAvL7BHLhYwJvbLtAj2JWoAOd627ZgfWKKYxO19EAyL26KYd39fVrvItBT38LGhyCwL8xc3SSukNVmioQkScTszWTfmgR09hpG3t0R3zDnOsdSUFXAwjMLWRO/BrVCzewOs7kz8s56K5dfkZHOgffeIjYlEZNKiY9GR99ZdxI85pZ62b5QP8RUMqEpEsdl01VYksu3375N2f4YtEYlFQE6Rt5x/3XXqElGI8UbNpD/+ReYsrKw7d4dj0ceQd87uhEjv4pLe2Dd3WAogwkfX7extbWOybjD2fy27DzOXnaMf6QL9i71Vzm5uLKGWz7ah0IBWxYMwMm2/hJAoeGJNWjNjNkiMfidnbjb2/D9A1a8SmVNx5fCj49CyCCYsQq0TaNAys2+wddUy73N4o/kENjBleF3dsDWoW5TDiuNlSyLXcY3577BYDYwOWwy93e5H087zzpt93elKckceP9tLmRcwqxU4m9jR9+58wkYNqJeti/UL3EiLDRF4rhs+opK81n57VuU7TuH1qikKtSRW+c9TmTYtfuNWWpqKF63joIvvsSUm4tddDQejy7ArpsVe7SWZcPaOyH1gNwTdfjLoFT95WHWPCbTzhey9cuz2NipufXxrjh51N85zYnUIqZ9cZARHbz4bFa31nnO2ExdL0ETjYmaoJ9jskkrrOLeASGt8w/tyCL4cQGEDofbVzeZ5OxmFWZWsO6NY8QfzaHX+DaMe7hLnZIzs8XMuvh1jP1+LJ+e+pS+vn35fuL3/LvPv+slOavIzuKXJx/h66ceJCYzGT+9EzMeeorpy9aI5EwQBKGFcXF05+H73+Kejxej7NMG9aVitv7rJV5/ZR5JabFXfY5Sq8V15kza/vIzXs/9E8PFi6TMnEXaffdjSEho5FdwmYM3zN0EPefDgY9h5VSoLLROLNcQEOHKpCe6YTJY2PDOCYqyK+pt290CXXh6VDhbz2Wz/FBKvW1XsC6xBq2JkSSJhXuSCHS1Y2TH+qvs12wc/BR+fg7Cb4HbvgF1/ayjamxxh7PZtfICGhsVEx6NIqB93aapHss+xptH3+RC4QW6enblgyEfEOUZVS+xGooKOfDW65xNiMGoUhJg58iA+x/Bp0+/etm+IAiC0HR5uPjw+GMfk5Z9kVXfvIHqdCbrnnkaZbcAZs17Dh+PwL88R6nT4TpnDs5Tp1K4ciUFCxeRNPFWnCbdiseCBWi86r8H2HWpNHDLO3IxsS1PwqKhMOPbJrUuzSPQgVuf6MrGD06y4d0TTHysK25+9bN0Y/6AEA4lFfDfzefpFuhCpF/zXa8vyMQIWhNzPKWIU2nF3DOgDap6Lsva5O19T07OOkyUe5w0w+TMZDSzc+UFfv0mFs8gR6Y/36tOyVlmeSZP7nqSO3++kxJDCW8Pepulo5fWS3JWU1bG3pdfYOH8OziRdB53nR3T7nuMaUu/E8mZIAhCKxPg3ZZn/rmIiW+8hqmdK9KxNJY+dj8fffIEJWVXH5FS2tnhPn8+bX/5GdfZsynd9CMXR40m9/0PMJeVNfIrALrPhTt/AmMlfDUczv/Y+DFch5ufPZOe7IZSpWTDeyfITSmtl+0qlQrenRaFi17DY6tPUW0018t2BesRCVoTs3BPEs52GqZ297d2KI1r15uw42XodBtM+Vq+GtbMlORVsf6t48TuzaTbqCAmPhaF3rl2SWalsZJPTn7ChB8msCd9Dw9GPcjGWzcyOnh0nae9mqqqOPTWq3x153SOxJ7CSWPDpNnzmbliHQFDr71IXBAEQWj5woO78NzLyxn+4nMYAxww7o3nk4fvYNl3b2I01Vz1OWoXF7z++SwhW3/CYfhwCr78kosjRlK4bDlSzdWf02ACesG9u8CzPay+A3a+BhZL48ZwHS7eeiY92Q2tjZqNH5wiO6mkXrbrqtfy9tQuJOaW887PcfWyTcF6RILWhCTllbP9fA6zewdhp21Fs0/3fwi7XoMuM2HSl6Bqfq897Xwha984SllBNbc82Jk+k9rWqoS+JElsTtrM+B/G8+WZLxkWOIwfJ/3IA10ewFZdt35pFouF019+xlezp7L/+EF0KjXjJs9kzqoNhIybWKdtC4IgCC1L1w79+Ncbq+n++L2YHDTkbdjL6w9PYdvuVdd8jtbfH7933iZ43Tps2rcn57XXuHjLOEq3baNRi9I5+sK8nyBqFux+E76bicpU2Xj7/xtOHrZMeqobtvYaNn14ioz4onrZ7sB2HszuHcTi/Zc4lFRQL9sUrEMkaE3I4n2X0CiVzOkTbO1QGs+xr2H7v6HjZJj4yVUrLzVlkiRx6tdUfvzoFHonG277Zw+CO7vXalvxRfHM2TqHf+79J+627iwbs4w3B76Jt77uaxEvbfmRZbdP4tfffkKpUDBy1ETmrfqB8Okz67xtQRAEoeUa3HsC//poA/63j0JpsBDz2Upeefo2Tl84eM3n2EZ2JPCbrwlYtBClrS0Zjz1O6tx5VMc14siORgcTP4XRb0LCL3Q78QwUNZ0iGg6uOiY91Q17Fxs2f3ya1Nj6Saj+ObY9Qa52PLX2NGXVxnrZptD4RILWRBSUG1h3PJ3J3fzwcGh+a69q5cwa2PwEtBsNkxc2u+TMVGPm1yWx7F+XSJsoD6Y8071WpXMrjZW8e+xdpv04jZTSFP7T9z+sumUVXT271jnGvBPHWTN3Bt8v+5Jys5F+3ftw94r1dLprPkql+PMXBEEQ/p5SqWT6rY/w+GffYTssEk1mBb+89F/efO1uMnOTr/ochUKB/YABtNnwPd4vvYghLo5LkyaT9fLLmIrqZ8TobykU0Pt+mP09NoZCeV1a+vHG2fcN0DvZcOsT3XDysmPLZ2e4dCa/ztu006p5d1oXMour+O/m8/UQpWAN4gytiVh+KAWDycI9A9pYO5TGcWELbLgfgvvDbUua3ZqzssJqvn/nBPGHc4ie0IbR8yPR6m5+aubO1J3cuvFWlsQs4dbQW9l06yYmhU1Cqajbn2ZZWipbHp7P8jf+TWZlKV0CQ7nny+X0fuZ5VDat5AKAIAiCUK/0tg48eO8bzHn/MyydvVGeyWbZ4w/yxeLnqa6puupzFCoVLjNm0PbnbbjcfjvFa9ZycfQYCleuRDKZGifwkMGc6PaGPKq25BaI3dg4+70Bdo5abn28K+5+9mz78izJZ+uepHUPcuX+QW1ZfSyNX2Nz6iFKobGJBK0JqDaaWXYwhWHtPQn1dLB2OA3v4k5YOw98u8Ltq0BTt7VVjS0zoZi1rx+lOLeSsQ92psfYNihusuJmVnkWC35bwIKdC9Br9Cwbs4yX+r6Es865TrHVVFSw+1/P8s3j93MhN5MQJ3fmvfYBw9/+AJ2bW522LQiCIAgAvp7B/OO5xYx48XlqvG2p+OU0bz18G7/sWX3N56icnfH+1wu02fA9uogIcl75L5cmTabi0OFGiblSHwj3/AbekbBmrrz+vTHXxV2HTq9hwuWy+9sWniMjru4jjI8Nb0eEjyPPfn+GgnJDPUQpNCaRoDUB60+kU1hRw/yBIdYOpeGlHobvZoJbGMxaCzbNJyGVJInCBImN75/Exk7Dbc/2oM1NrjczWowsObeEiRsncijrEE90f4I149fUy3TGmKWL+XruNI7Fn8PNxpYZjzzDrYuW4hzWrs7bFgRBEIT/LyqiLy+8vZaQeRNRmiTOfrqc/z4/85qNrgF07doR+M3X+H30IZbKSlLnzSP90ccw5jTCSI+9B8z9UW7ns/3fsPkxMDeNdVo2tmrGL+iCo7stmz87U+fqjlq1kvemdaG0ysQLP5xr3CItQp2JBM3KLBaJr/ZeorO/E9Ft6tbMuMnLOgMrbwMHH5i9Aeyaz+s1my3sXhVP1nGJgA6uTP1Hd1y89Te1jZj8GGZsnsG7x98l2juaHyb+wJ2Rd6JR1m16Z+6xI3w7ayrbftqAAhg7fhqzVq7Hb8CgOm1XEARBEP6OUqlk0pj5PPbJt2j6h6FJKmHNP57i0y//QVV1xVWfo1AocBw5kpAtm3Ff8Ajlu3aRNPYWuSy/uYF7eGlsYeo30P8JOL4Evp0G1fVT6r6ubO21THwsCjtHLZs/OU1eWt16yUX4OPLEyHZsPZfNxlOZ9RSl0BhEgmZlv57P4VJ+BfMHhNS5v1WTlhcPyyfJI2ZzNoKDl7UjumGGKhNbPj1DzJ4M3CNg7IOdsbG78aTKYDbw4YkPmfXTLIqri/lg8Ad8NPQjfO196xRXdUEB2x57iJVvvkxeTSU9wjtx97I1RNwxp07bFQRBEISbZW/nxIJH3mfiq69iDHCg+rcY3nl4Olt2LL/mc5Q6HR4PPkjIj5uw7dqVnNdeI3n6DKpiYho2WKUShr8IEz6GS3tg8SgoTm3Yfd4gvZMNEx+LQmOj4sePTlGYdfUk90bNHxBCjyAX/rXxHFklV18nKDQ9IkGzskV7k/BztmVMZN1LqTdZJemwbCIolDB3EzgHWDuiG1ZaUMX3bx8n40IRQ2a3x6uLEuVNrDc7k3eGaT9O46uzXzG+7Xg23LqBYUHD6pSMWywWjn/0Povvm01MVgpBji7Mfe0DBv3nddR2NzeqJwiCIAj1qX1IFP96czXh86cBcGHhal55djrJGdcusa8NDCRg0UL83nsXY042ybdNI/u11zCX1y05+Vvd5sCsdVCaKVd4zD7bsPu7QY5utkx8rCsoFGz64CQlebVPrFRKBe9O64LZIvH02jNYLGKqY3MgEjQrOp9VytHkIu7sF4y6Fk2Nm4XqEnlaY025PK3Rra21I7phOcmlrHvzOOVFBsYt6EKHfjc+4lVtqubdY+8ye+tsKowVfD78c17p9wqOWsc6xZS+eyfLbp/Erv070ClVTJo9n8mLV4h1ZoIgCEKTMm74HJ76ZDU2gyPQppTz3TOPs3jZfzCbr165UaFQ4Dh2LG23bMF5+jSKlq8g6ZZbKN2+vWHXT7UdAnf/DEo1fDMWkvc33L5ugrOXHRMfjcJksrDxg5OUF1XXeltBbnpeuKUD+xLzWXG46fSCE66thWYFzcPqo2loVUqmdPO3digNw2yUKyXlx8O0ZXLlpGbi4slcfnj3BGqNkilPdyeg/Y2vlzuZe5LbfryNJTFLmBw2mR8m/kB/v/51isdQVMjWBfez5tN3KLvcz+zObzcQMm5inbYrCIIgCA3FVqfn4QfeZvwrL1PjqaN4yxH+++gUTsTsveZzVI6O+Lz4IsHfrULl7EzGIwtIf/Chhi0i4hkBd/0M9l7ycowLWxpuXzfBzc+eCQuiqK4wsvGDU1SW1tR6W7f3CmBQOw/e2HqBjGIx1bGpEwmalRhMZn44lcGIjl646LXWDqf+SRJseQKSdsL4D+UrVM2AJEmc/CWVbQvP4eZvz9R/9MDV98amDVaZqnjzyJvM3TqXGnMNC0cs5MU+L2Kvta9TTLHLvuHr+XcQm5NOiJM7d324kN7PPI9SffN91wRBEAShsXUI7cEL767Da+pgNCVGfn3lDd7/cAEVVdcugmHbpQtt1q/D85lnqDh0iKRx4yle/33DjaY5B8hJmnckrL4DTlx77Vxj8gxyZNzDXSgvrGbTh6eorqhd1UmFQsGrkyKRJPi3qOrY5IkEzUp+icmhuNLI9B7NZz3WTdn3HpxYBgOfhq53WDuaG2I2W9j1bRwHvk+kbVdPbn28K3aON5Y8ny84z/TN01lxfgXTwqfx/cTv6ePbp07xFCfEs2buDLZuWY9KoWTi7Xdy66Kl6P1a6IirIAiC0GIplUruuO0p5r37GaZ2LlgOJPHeI7dft3eaQq3G7a47Cdn4A7rwcLKef560e+/DmJ3dMEHq3WDOJggZDJsehn3vN4leab6hzox9oDNF2RVs/eIsZqOlVtvxd7HjyZHt2HEhl63nGujfUKgXIkGzkjXH0vBztqV/6M310WoWzq6DHf+BTrfBkOetHc0Nqak28dOnZ4jdm0m3UUGMuqcjaq3qb59ntphZfHYxM3+aSUVNBQtHLOSF3i+g19S+WIfFZOLAay+z9J+PkVFZRtc24dy1dDWht06p9TYFQRAEoSnw9Qzmuf+sIOL+28Ei9057/eW55BVlXfM52sBAApctxev556k8duzyaNr6hhkFsrGH21dD5BT49SX45QWw1C4hqk8BHVwZOieCzIRiflt+vtavfV7fYCL9HHlxUwwlVU2jB5zwVyJBs4K0wkr2JeYztbv/TVUEbBZSDsIPD0BgX5j4KTSD1gFV5TVs/OAUaecLGTwrnD6T2qK4gf+XrPIs7vnlHj448QFDAoawfsL6Oo+ape/eyZJZkzl4+iiuGhtmPfsSQ994V1RnFARBEFqUsUNm8ejHKyE6CHVsPl8+fs91S/IrlEpcZ98hj6ZFRJD1/Aukzb8XY9a1E7taU2th8lfQ6z44+Il8XtMEGlqHR3sTPTGE+CM5HN6UVKttqFVK3pjcmYJyA29tu1DPEQr1RSRoVrD2eDoAt/VoYVPVCi7Cd7eDcyDMWAlqG2tH9LfkMvonKMgoZ/R9neg4wO+Gnrf10lambJpCbEEs/+n7H94d9C7OOudax2GqrODXpx9jzafvUGE2MbjfUGatXI9n95613qYgCIIgNGWOemeefOJT+jz1EBaNggsLV/P6K/MoLMm95nO0gYEELl2C179eoPL4cZLGjado7dr6H01TKmHMmzD0BTjzHXw3E2oq63cftdB9dBAd+vlwfGsKsftq13w60s+Ju/q1YeXhVI4lF9ZzhEJ9UDTFRYIKhWI8MN7Pz2/+ihUrrB1OvbJIEk/trsJXr+Spnjprh1NvNDWldD35DGpTBSe6vUW1rY+1Q/pb1SUSKbskLCYIHKBA7/n3o2b5pfn8VPMTRyuOEqwNZo77HDw0HnWKw3DuDMk7t1GuVuKl1OIzdSYqtxY49VVoEOXl5djb160QjSDUN3FcCjfLYKzi4L5v0V8opNpWwnVAXzq2vX4FZFVeHo7LlqNNSMAQGUnJnNlIjldvZ1OXY9In82faxX9OsXMkZzu9gEVl3fM3ySKRukeiPAcCBypw8Ln52UrVJonn91Vho4b/9LVF3dJmdDUDQ4YMOS5JUo+r/a5JJmi/69Gjh3Ts2DFrh1GvdsfnMffrI3wysyvjOt94X60mzVgNyyZA5imYtxkCelk7or+VdbGELZ+eRqVWMn5BFO7+f/+mfSr3FI/+8igllhLu63wf8zvPR62sfSVFU2UFO//9HGdTE9FaJAaNnUSnu+bXentC67Rr1y4GDx5s7TAE4U/EcSnU1u7Dm9izaCF2ZWDq7MX9C97GyeHarW4ki4WiFSvJfecdlA4O+L7+GvYDB/7lcXU+Js+sgQ33QUA0zFwDurr1Na2rmmoT379zgtK8KiY91Q2PAIeb3sZvF3K4a8kxnhzRjkeGhTVAlML1KBSKayZoYopjI1tzNA0XOw0jOnhZO5T6IUmw+TFIOwyTv2wWyVny2Xw2fXASnV7DlGe6/21yJkkSS84tYd62eSgUCpaMXsIDUQ/UKTlL27Gdb+ZO50zaRYLsnbnzw4UiORMEQRBavUHRE3j8o5VI3f1Rncnmo0dns33v2ms+XqFU4jpnNsFr16J2dSXt3vvI/u+rWKpr39j5qjpPgymLIe0IrJgMVcX1u/2bpNWpGfdQF2zs1Gz55DRlhTf/eoe29+KWzj58vDORpLzyBohSqC2RoDWiwooafonN5tauftio/75CYLNw9Cs4vQoG/xM6TrJ2NH8r7lAWP31+FhcfPZOf7o6ju+11H19iKGHBbwt49/i7DA0cyj98/kGUZ1St92+qrGD7kwtY++UHGCQLo0bdypSvV4rS+YIgCIJwmb2dE0898wXdHr0HFHDmk6W8+84DVBuuvQZMF96O4HVrcZkzm6IVK0i+bRrVcfH1G1jkZJi2TJ4xtGwiVFp3/Za9iw3jHu6C0WBmy6enMVSZbnobL47vgI1ayfMbRG+0pkQkaI1ow8kMjGaJ6T1bSO+z1EOw7VloNxoGPmPtaP7WqV9T+XXJeXzDnG+ox9m5/HNM3zydfZn7eLbXs7w76F1slddP6K4nY88uedQsPYkgexfu/OgrIu+6p9bbEwRBEISWbGjfSSz4YDnGTp5wNI23Hp3O6QsHr/l4pY0N3s89R8CihZiKiki+7TYKly1Dqs8y+RHj5EJoubGwdAJU5NfftmvBzc+e0fd1oiirkm1fnsVsvrnX6umg459jIjiYVMC6y0XsBOsTCVojkSSJNUfT6BLgTHtv685brhdl2bBmDjgFwKQv5WpHTZQkSRzZfIn96xJp282D8Q93QWt77emJkiTx7flvmb11NhbJwtLRS5kVMQtFLVsGWEwm9rz4HGs+fvt/Rs1WoPdtIWsQBUEQBKGBODm48uwLXxM8dzzqCjPbXv4v36x8Fct1ki77AQMI2bQRfb9+5Lz2Omn33oeypKT+gmo3Cm7/DgoSYMk4KMupv23XQkCEK4PvaE/6hSL2fHfzo4YzegbQI8iFV386T0G5oQEiFG5W0z2rbmFOp5cQl1PG9B4tYPTMVANr5oKhTL6KZOts7YiuSZIkDm1M4ujmS7Tv7c3IeyJRaa592JfXlPPU7qd4/cjr9PPtx9rxa+ns0bnW+y+Kj+Pb2dM4euEM3jZ2zHn3MzFqJgiCIAg3acrY+5j5xvsYvG0o3HSQV5+7nez8tGs+Xu3qiv9nn+L90otUHjuG639fpeLQofoLKHSYXCykOAWW3AKlDdCP7SZE9PWh26ggYvdmErM346aeq1QqeH1yJyoMJv675XwDRSjcDJGgNZLVR1Ox1agY36Xpl5//W788D2mHYMLH4NXR2tFckyRJ7F+fyIltKXTo78vQORHXbQweVxjH9M3T2ZG6g8e7P85HQz/Cycap1vs/vehzlj/3OHmmavpGRTN92Wocg4JrvT1BEARBaM2C/cJ5/p012A3vhE1yOYufvJ9tu1dd8/EKhQKXGTNos3YNkl5P6l13k//55/U35TFkENyxHsqy4JsxUGLdKYLRE0MI6ODKntXxZF+6uRHDMC8H7h/Ulg0nMzicVNBAEQo3SiRojaCyxsSPp7MY28kHB53G2uHUzalVcGQh9HkYOk21djTXJEkSe1cncPrXNDoN8mPwzHAU10nOtl7ayh0/3UG1qZqvR33NXZF3oVTU7s+juqCADfPn8OuvW9ArVdz+1L/p889/oWzC00AFQRAEoTlQqdQ8MP91BvzjUSwaBec+W8G77zx43QIiNmFhFD77DxzHjiXvw49Iu+9+TEVF9RNQUF+YvQEqC2DpeHkJiJUolQpG3t0Re2cbtn15joqSm5uu+ODgUHyddPxncyxmiygYYk3ijLERbDmTRbnB1PyLg2SdlkvqBw+A4S9bO5prkiwSu76N4+yudLoMD2DAjHbXTM7MFjMfHP+AZ/Y8Qwe3Dqwev5puXt1qve/krVtYct8ckkoKiPQNYu6S7/CO7l3r7QmCIAiC8Fd9uo5kwfvLMHXyhKOpvPXE7SSmnLvm4yWdDt+335KnPB46xKXJU6g6dap+ggnoBbPWyWvRlk2ECuuNQOn0Gsbc3wlDhZGfF527qaIhtloVz46NICazlHXHrz19VGh4IkFrBGuOpRHirqdnsIu1Q6m9ykJYfQfYusLUb0BV+x5gDclikfht+Xli92bSbXQQ/aaEXrO4R1lNGY/89giLzy3mtna38dXIr3C3da/dfk0mdr3wD77/5jMsSEyYPpdR73+K2k5fl5cjCIIgCMI1yAVEviFw1hi0xUbWPv8MP25fcs3H/z7lMWjVKhQqFcl3zJarPNZHefnAaJj5HRQlw/Jbrdonzd3fgSFz2pOVWML+dYk39dzxnX3oEeTC2z/HUVZtbKAIhb8jErQGdjGvnKPJRUzrGVDrKoBWZzHD+rvlYfvpy8Hew9oRXZXFbOHXb2K5cDCbnuPa0HtiyDX/zS+VXGLmlpkczDzIv3r/i3/3+TcaVe2mn5alpfLd3BkcT4jBT2fP3E8WEzZlWl1eiiAIgiAIN+i2CQ8x7qWXMdqriP9qHe9/8Ag1xmtP77ON7Eib9euwHzSInNdeJ+PRxzCXldU9kDYDYfoKyD0PK6fKxdSspF1Pb7oMD+DsznQuHLrxAiYKhYJ/j+9AfnkNn+y8ueROqD8iQWtga46loVIqmNzNz9qh1N6u1+HibzD2bfDvYe1orspstvDL4lgSjubQ+9YQeo1rc83kbG/6XmZtmUVpTSmLRi5iWnjtk6lLW35k+eP3k22sIjqyO7ctWYXeuwUUghEEQRCEZiQyrCdPvLeCmo7uWA5e4o2nZpCWde0EQ+XkhP8nH+P59NOU7dhB8tTbMFy8WPdAwkbAbd9Axgn4dgbUXHttXEPrO6ktfuHO7FoZR25K6Q0/r7O/M1O7+/P1vksk51c0YITCtYgErQEZzRbWH89gaHtPPB101g6ndi7thT3vQNQd0H2etaO5KovZwvbFsVw8kUu/qaF0Hx181cdJksTX577moR0P4efgx6pbVtHDu3YJp8ViYc+/n2PD0i9QoGDK3Y/Q/18vi0IggiAIgmAl9nZO/PPfS/CcMgib3BqWPbuA7XvXXvPxCoUCt7vvImjZUswVFSRPm07Zrl11DyRivNwjNmW/vDzEZJ3eYkqVklH3RGJrr2Hrl2epKqu54ec+MyocrUrJqz+JsvvWIM4mG9DehDzyyw3Nt/dZZSFsuA9cQ2DMm9aO5qoki8Rvyy9w8UQufaeEEjU88KqPM5gNPLv3Wd4//j4jg0eydPRSfO1r1yi6IjOT1XOnczTuDL42euZ88hVBo0bX5WUIgiAIglBPZk97muHP/wOLRsmpT5bwyRfPYLaYr/l4u+7dabN2DdqgINIfeJD8RYvqvi6t821yO6KLO2DtnWC2znouWwctY+7vRFWpkZ+/isFyg0VDPB11PDgklO2xOexPzG/gKIX/TyRoDeins9k46NQMbNc012xdlyTJFRvLc2DKV2Bjb+2I/kKSJHaviiPuUDbRE9rQdcTVk7Pi6mLm/zKfny79xIKuC3h74NvYaexqtc/qUydYtuAesgyV9IrowrSl34kpjYIgCILQxHSPHMjD7y2hJtQJw85Ydm38iILinGs+XuPjQ9DKFTiOGUPeu++R+fQzWKqr6xZEt9kw5m2I2yJf8L5OktiQPIMcGTQznIy4Ig7+kHTDz7u7fxsCXG35z4+xmG6iGqRQdyJBayBGs4XtsTmMiPBCq26G/8wnl0PsRhj6AvjVvux8Q5Ekif1rE4m5XK2x+5jgqz4urTSN2VtnE5MfwzuD3mF+5/m1KtZisVjY/+pLxO7fgQRMnvcAA156VUxpFARBEIQmysXRnX++sgLHMd1xzDHx6dN3czb+8DUfr7S1xffdd/B4/HFKt2whZdYdGLPr2Ncs+l65NdG59fDjo/IFcCuI6OtD5EA/Tm1PJSXmxtoA6DQqnhsTQVxOGauOirL7jUmcXTaQQ0kFlFQZGR3pbe1Qbl5+Imz9h9zvrO+j1o7mqg5vSuL0b2l0Hup/zWqNZ/LOcMfWOygyFPHVqK8YFTyqVvuqqahg473zOHTmGK4KFXM/XEjw2HF1fQmCIAiCIDQwpVLJ/HkvYz+qP+pqC5tffpnNvy675uMVCgXu992L/6efUpOczKWpt1F58mTdguj/GAx8Wr74vfPVum2rDvpNDcXVV8+OJbFUlt7YerTRkd5Et3HlvV/iKKkUZfcbi0jQGsjWc9nYaVXNb3qjqUYuqa+2kRe4NsERomM/JXN8awodBvjS/7awqyZnv6X+xt0/342d2o4VY1bQ1bNrrfZVFB/HirtuJ6mskM7+IQTd9yh6P/+6vgRBEARBEBpRRJs+THnldYwOKs4vWs1nC5/FYrn2tD2HoUMIXv0dSjs7UufMpXj993ULYMjz0HU27Hkbji6u27ZqSa1VMfLujtRUm9mxNBbJ8vejeb+X3S+uMvLhjoRGiFIAkaA1CLNF4peYbIaEe6LTqKwdzs3Z+SpknZIXtjo1vdYAp35N5fCmJMKjvRl8e/hVk7OV51fy2M7HCHMJY8XYFQQ7BddqX0mbN7LyuccptZgYPmwsI979CIWqmf1/CoIgCIIAQHhwFx59eymGto5U7TjH6/+eTXllyTUfbxMaSps1q7Hr2YOs558n9933kK6T1F2XQgHjPoCwUfDTU3B+c+22U0dufvb0mxJKakwhZ3am39BzOvo6MaNnIMsOJpOYW97AEQogErQGcSy5kPzymuY3vfHSHtj/IXSbK5eIbWLO7clg/7pE2nbzYOic9iiUf07OLJKFt4++zRtH3mBwwGAWj1qMm61brfZ16K1X+WHZQtQouG3BP+hy74P18RIEQRAEQbAiJwdXnvvvSmyGdMAmoZj3nryDi2mx13y8ytmZgIULcZ4+nYJFi8h85h9Yam68XP2fN6aWe6T5dpVnK6UequWrqJvIQX4Ed3bnwIZE8tJurJn2kyPbYatR8eqWa/9bCfVHJGgNYFtMNlq1kiHtPa0dyo2rLITv7wO3UBj9urWj+Yu4w9nsXhVHcCc3RtzVEaXqz4dutamap3Y/xbLYZcxsP5P3B7+Prdr2pvdjqqxg4313sv/4QTzVOmZ/tAi/AYPq62UIgiAIgmBlSqWSh+9/i7C7pqAtNbP6+af47cCGaz5eoVbj/dKLcvGQzZtJu2c+5tIbb/z8J1o9zFwDjn7w7XTIi6vlq6g9hULB0Dnt0ek1bF8cg9Hw99Ul3e1tWDAsjJ1xeeyJz2uEKFs3kaDVM0mS+PlcNgPDPLC3UVs7nBsjSbDpEajIk0vqa/XWjuhPUmIK2LH0PH7tXBh1bySq/1cVs8JYwYM7HuTXlF95qsdTPNvrWVTKm5+KWHIxkRV3ziSxOI+OPoHcvnQVet/a9UoTBEEQBKFpmzjqLka/8AJmrZJjH33Ft+vfu+Zjfy8e4vv2W1SePEnyzJkYMzNrt2O9O8z+HlRaWDEFSrNq+Qpqz9Zey/A7O1CUU8m+dTe2tmxu32D8nG1555e4uveJE65LJGj17HR6CZkl1YxpTtMbTyyFC5th2L/AN8ra0fxJTnIp2xaew81Pz9j7O6H+f2v6iquLuefneziRc4LXB7zO3I5za1VGP333Tlb+YwFFFiNDB45g9AefodJo6+tlCIIgCILQBEVF9OW+txZS7aUla81vfPzpk9ctHuI0fjyBixZhysklefoMqs+fr92OXYLhjnVQVQQrp0L1tdfCNZSA9q50GxlI7N5MLp7M/dvHa9VKHh0expn0En6OuXZPOaHuRIJWz7aey0KtVDA8wsvaodyYomTY9k9oMwj6PGLtaP6kOLeSLZ+extZew7iHu6C1/fOIZF5lHnf+fCfxRfG8P/h9bgm5pVb7iV2xlPWfvI0ETL3/cbo+1DRbCwiCIAiCUP88XX15+s0VVIc7U7MnjjdfuZPqmqprPl7fO5qglStArSZl1h2U791Xux37dIHpyyHvAnw3C0yGWr6C2us1PgTPIAd2Lr9AWeHfN+ae3NWPEA89722Pw3wDVSCF2hEJWj2SJIlt57Lp09YNJzuNtcP5e5IEPz4GCiVM/LRJldSvLK3hx49OIUkwYUEUeiebP/0+ozyDudvmklGewafDP2VI4JBa7efg66+wbdMa9KiY+ep7BAwbUR/hC4IgCILQjNjq9PzzpWWo+oWijS3grX/MoqD42qNEunbtCP5uFZrAQNLuv5/i9etrt+O2Q+HWzyF5L2y4H2pbJbKWVGolI+7uiNks8es3sVj+JulSq5Q8Prwd8Tnl/Hi6llM8hb/VdM7IW4DzWWWkFFQyJtLH2qHcmNOrIGknDH8JnAOsHc0VNdUmNn9ymsrSGm55qDPOXnZ/+n1SSRJzt86l2FDMopGL6O3T+6b3YTGZ+GnB/Rw4dRhvjS2zPvsGl/D29fUSBEEQBEFoZpRKJY8t+ACPKQOxzTLw6TN3k5hy7pqP13h5EbRiOfroaLKef4H8zz+v3dqsztNgxH8g5nvY/UYdXkHtOHvaMWhGOzITijmxLeVvH39LJx8ifBx5/9d4jObGTShbC5Gg1aNtMdkoFTCyYzOY3lieK09tDOgNPe62djRXmM0Wfl54jvz0ckbNj8S7jdOffn++4Dx3brsTk8XEN6O+oYtHl5veh6G4mLV3zeR8TjrtXL2Y/vVKbD3c6+slCIIgCILQjM2Z9gydHrgDTYWF1f9+hoMnf7nmY1X29gR8+QVOEyeQ9+FH5L37bu2StL4LoOsdsPtNOFfL0bg6CO/tTVhPL45svkRe6vVL7yuVCp4c0Y6UgkrWHb+xXmrCzREJWj3adi6LnsGuuNvb/P2DrW3rM2CslBtSN5GpjZIksXPZBVJjCxk8K5zgTn9Omk7mnuTun+/GRmXD0jFL/6+9+w6Pq7gePv69u6u66r1YxXLvFVeM5YJtDMZ0MISO6QQCgRAgoYTQEyD86C10QgfT3LDce5VtualYva36rqRt9/fHGhkhyd6VdiVZOp/neR+/zJ07c2TuS3TemTnDoLBBLs9RnZXJRzdeRX6DkQlDR3P2y2+i9TkF/n0JIYQQotPMm76IuQ/8FVWjsPrZF/hu2btt9lW8vIh98klCFl2G4a23KX70UdcvtFYUOPvfkDgZvrkVCrZ38CdwdXqFMy4biF+AF798kIHtJCtjs4ZEMTohhP+sPEyD5eRl+oVrusdv5j1AZlkdh0rqTo3qjQd+hH1fwxn3QeTAro6myaZvMjm4uZgJC/oydGrz8vYbCzdy0/KbCPML471575EUlOTy+EUb1vHRfXdQo1qZM3ch0x5+HE03SU6FEEII0b2MHTaNK//5AuZgLQff/oL3Pn26zb6KRkPM3/9O+OIbqPr0fxTefz+q1erahDofuPRDCIiCTy6Hms494+Wr9+KMRQMpz6tj1/LcE/ZVFIV75w6iqLqBjzefuK9wnfx26iY/7y0GYG53T9AaquGHuyFqGEztPtUK96zKY8fSXIadEc/4+cnNnm0q2sQdv9xBQmAC/533X2IDXD/jd+SbL/ns309gB86/4Y+MuP5G9wQuhBBCiB4rKW4Adz7zHvV9fCn/ei2vvvVAm30VRSHqnnuIvOsuar5bQsGf/oTdbHZtQn0ELPoUzHXw6eVgNnXwJ3BNvzFR9BsTydbvc6gsNp6w79T+EUxOCeeVtCOYzC4mo+KEJEFzk5/2FjE6IYTYYL+uDuXElj8MdSWw8CXQdY97vnLSy1n72WH6jorgjMsGNrvHbGvxVu5YeQeJQYm8NectIvxcPyu29523WPLRO/iisOjhp0iaO8+d4QshhBCiBwsODOO+Jz6gvl8gpuV7eP6FO054V1rEzTcR/cAD1C5fQf7Nt2A3uZhkRQ+DC9+Cwl3w7W2OqtudaNplA9F5a1j14QHUk1R1/PPcQZTXmXl3fU7nBNdLSILmBnkVJvYW1HT/7Y0562D7uzDpVogf19XRAGAorGPZ2/uI6BPAmdcNQ6M5npxtL9nObStvIz4gnjfPfJNQ31CXx9/6/LMs+/lrghUtlz//KuEjRrozfCGEEEL0Ar4+/vzlsfewDI/EvjGbZ564Hou17dWxsKuuJPaf/8S4aRO5NyzGVnviwhstDDrLUWV731ew+pmOBe8ifbAPp188gKIj1exdU3DCvuOSQpk5OIrXV2dSXW/ppAh7PknQ3GDpPsf2xm5dXt9SD9/d4bi5fkbby/Odqb7OzI+v7MHLW8vZt47Ey0fb9GxX6S5uXXEr0f7RvDX3LcL9wl0ef+0jD7Jm02oitd4sevkdAhMS3Rm+EEIIIXoRL5039z34NsrEZLzSy3j64WtoaGx7dSzkwguI//e/qN+zh9yrr8FaWenahFPvhFGLIO0J2PdNx4J30aBJMSQMDWPj15knvcD6njkDqWmw8vbarE6KrueTBM0NftpbzNDYIBLD/U/euaukPQUVWbDgRfDWd3U02Kx2fn59L8YqM2fdMoKAUN+mZ3vK9nDzipuJ9I/k7blvu7yt0W63s/Tu29mSsZs+PnoufetDKaMvhBBCiA7TaDTcfff/4TdrOH5HanjmgSupMVa12T9o3jwSXv4/GjMzyb3qaqwVFc5PpihwzgvQZ4LjEuvCXR0N34WpFVIvH4QKpH108IRXBwyLC+bsEbG8vS4bQ11jp8XYk0mC1kElNQ1sP1rJvO68vbFwF2x4yXG/RkpqV0eDqqqs/uQghYermHnV4GZ3ne0r38fNy28m1CeUt+a8RZR/lEtj2yxmltxyPXsLcugXHM5Fb3+At77rE1IhhBBC9By33vgU4Qun4pffwAv3X0NZZVGbfQOmTyfh9dcw5+aSe9312KqqnJ/Iyxcu+8hRPOSTRVBb0vHgnRQU4cfk81LI3Wfg0JYTz/unMwdSb7Hx2urMToquZ5MErYOOb2/spgmazerY2qiPgDmPd3U0AOxemUfG+iLGnZXEwAnH/94yDBksXr6YIJ8g3pn7DjF61/5OzUYjX1x/JUeqyhgel8S5r72L1qt7FEIRQgghRM9yzeV/JfmK+fiWWXj1/hvJKzrSZl/9pEn0efllzFlZ5F5/A7aaGucnCoiCRZ9AfSV8cZ3jd7tOMnx6H2JSgln72SFMNW2fuesfFcD5Y/rw/sajlNSceEukODlJ0Drop/Ri+kXqGRAd2NWhtG7b21C8B856BvxcL7Lhbkf3Gtjw5RFSRkcycUFKU/vBioMsXr6YAK8A3p77tsul9BsMBv53wx/IbzQyftAI5j7/stxxJoQQQgiPuvjc2xh+0+X41Np59+93cbTwcJt9A06fSp+X/kPDoUOOwiF1dc5PFDMCFrwAR9fBL//oeOBO0mgUZlw5GEujjbWfHTph37tmD8Cuqryyqu1EVThHfoPtAENdI5uzDd23OIipAlY94djWOHRhV0dDRaGRZW/tJbxPALOvHYpyrGLj0Zqj3Lj8Rny1vrw9923iA+JdGre+rJxPb72OMpuZaROmMf2xJz0RvhBCCCFEC/NnXMH426/H22jn/b//6cRJ2vTp9HnxBRr27ydv8Y3Y6k5811gzoy6DcdfA+hfgwI8djttZYbF6TpvflyPbSsnaVdZmv4Qwfy4Y04f/bcuTs2gdJAlaB6zIKMGu0n3Pn616AhprYO6TjoOmXai+zswPr+xG661l/i3HKzaWmcq4aflNqKrKW3PeIiEwwaVxTWWlfHr7dVSoVmbOOIsJ9/zFE+ELIYQQQrRp1pQLOO32G/AynTxJC5w5k/h/Oao75t98s2v3pM17GmJHOYqGVHRe1cQxcxMJjw9g9ScHaTS1XU5/8RkpNFrtvLchp9Ni64kkQeuAVQfKiAv2ZVhcUFeH0lLJftj2Doy/DqKHdmkoNtvxio3zbx5BYJijYmOtuZZbVtxCRUMFr8x+heTgZJfGNZWU8L/bb6BStTFr1tmMvuV2D0QvhBBCCHFys6ZcwITbFzclaTkFB9vsGzR3DvHPPoNpxw7ybr0Ne329c5N4+cIl7zv+P94/u8pxjVIn0Go1zLxqMPU1ZrZ8n91mv/5RAZw5JJr3Nh7F2Nh5Z+V6GknQ2slmV9mYZWBK/wiULl6dakFVYelfwScQZjzY1dGw8atMCg9XMePKwcSkOCo2Ntoa+eMvfySzKpMXUl9geMRwl8Y0Fhfx6R2LHcnZmecw6qZbPRG6EEIIIYTTZk45vylJ++Dhe06cpM2fT9xTT2LavJn8227H3ujktsDQZLjgDShOh5/uc0/gTohKCmLo6XGkpxVQUdj21sybU/tRXW/h0615nRZbTyMJWjvtL6yhut7C1P6uX6DscQd/gqw0SP0r+Id1aShHtpeye2UeI2b0YdBEx1ZQm93G/WvuZ1vJNh4//XGmxE9xaUxjYSGf/vFGqrBx5rzzGLX4Fk+ELoQQQgjhsplTzmfiH290KkkLPvdcYh9/HOOGDeT/8Y+o5rYrJTYzcC5Muwd2vA87P3JT5Cc38dwUvHy0rPvicJt3o41NDGVC3zDeXpuFxWbvtNh6EknQ2mlDZjkAU/p1swuQrY2w9AGIGASnXd+loVSVmPjlgwyi+wYx9cL+gOMOtH9u/icrcldw32n3cXbK2S6NaSzI59O7bqJGtTNn/vmMuG6xJ0IXQgghhGi3GZPOa5akZecfaLNvyIUXEPPooxhXr6HwoYdQ7U4mNTMehL5nwA93O1bTOoFfoDcTzulL3v4KctINbfa7ZXo/CqsbWLK7sFPi6mkkQWun9ZkG+kcFEB3k29WhNLf5NajMhnlPgNary8KwNNr46fV0tDoNcxcPR6tzfGqv7X6Nzw99zvXDr+fKoVe6NGZtXi6f3HULNaqduQsuYvg1N3gidCGEEEKIDpsx6Twm/fFmvOrtfPjIn0+YpIVeegmRd91JzXdLKH3uX85NoNHChe84rlH67CpoqHZT5Cc2PDWe0Bh/1n9+GJul9WQydVAkg2MCeX11VpsrbaJtkqC1g9lqZ2t2BVP7dbPtjXWlsPpZGDAX+s/usjBUVSXt4wNUFBmZc92wpqIgnx38jFd2v8J5/c/jzrF3ujRmbV4u/7v7VmqxM3fhJQy96lpPhC6EEEII4Tapk85l8m+StPyStgtshN90E6GXX07FO+9geOdd5yYIiISL/wuVR+GbWx11CDxMq9Vw+sUDqC6rZ/eq1s+ZKYrCTdNTOFhSy6qDpR6PqaeRBK0dduZWUm+xMaV/N9veuPIxsNbD3Ce6NIx9aws5tLmECef0JWGo4wzc8qPLeXzT40zvM52HJz/sUmEVY3ER/7v7NmpRmXf+ZQz9w9WeCl0IIYQQwq2mTzyXiXfciLdR5Z2H/4ihqqTVfoqiEP3gAwTOnUvpM89Q/d13zk2QOAnOfAwOfA+bXnFj5CeYclg4ySPC2fZjDsbq1oubnDMyjvgQP15L67zrAHoKSdDaYX2mAY0Ck1K60Qpa4S7Y+SFMvBki+ndZGKVHa1j72SESh4Ux/qxkAHaW7uT+NfczMnIkz05/Fp1G5/R4jZUVfH7nzdQojpWzIZe7ti1SCCGEEKKrzZh0HsOuvxTfKjsv/+0maoxVrfZTtFrinnka/wkTKHzgQerWrnNugsm3waCzYcUjnXYebepFA7BZ7Gz6tvUEzEur4frT+7Ilp4LtRys7JaaeQhK0dthwpJwR8cEE+3XdGa9mVBV+vh/8w+GMe7ssjIY6Cz+/vhf/IG/OvHYYikahoK6Au1bdRYw+hv+b+X/46fycHs9sNPL5bTdgUK3MnDlfVs6EEEIIcco6Z/ZVJC2ah3+phRcevoGGxtYvqNb4+NDn5f/Dp39/8u+8k/p0JxIuRYFzX3KcR/vyhk65Hy0k2p9RMxM4sKGIkpyaVvtcNiGBEH8vXlud6fF4ehJJ0FxkbLSyK6+qe21v3Pc15G6EmQ+BX0iXhKDaVZa/ux9jdSPzFo/AN8ALo8XIHb/cgcVm4aVZLxHi63xstsZGvr7lOkpsZqaddjqjb77Nc8ELIYQQQnSCSxfeQfjCqejzGnjusRuwWFsvq68NDCThjdfRhYaSd+NNNGa3fXatiT4cznsVyg7A8ofdHHnrxs9Pxi/Qi3WfHWq1GIi/t46rJiezfH8JR0prOyWmnkASNBdtya7AaleZ0l0KhFjqYfnfIXoEjL2qy8LY/nMOufsMnH7xAKL7BjnuOlt7P1lVWTw3/TlSglOcHstutfLtrTeQ32hkwpBRTLj3rx6MXAghhBCi81x7+QP4zRqO35Ea/vXUTdjbKKvvFRVFwltvApB3w2IspU4U2+g/CybeAlteh8PL3Rl2q7z9dEw6rx/FWTUc2tL62bprpiTj66Xh9dVyFs1ZkqC5aP2Rcry1GsYnde0F0E02vgzVeTDvSUe51S6Qf6CCzUuyGTghmuHT4wF4ceeLpOWlcd9p97l0EbXdbufHO28hu66SkQn9mPbIPz0UtRBCCCFE17j1xqdQJibjlV7GCy/8sc1+Pn37kvDG61grK8m78SZsdXUnH3z2IxA11FHVsa7MfUG3YcjkWCITA9n41RHMDdYWz8P03lw6PoFvdhVQVO35rZc9gSRoLlqfaWBsUgh+3l2TDDXTUA0b/uMoq993WteEUGdhxbv7CY32J/WKwSiKwrdHvuXdve9yycBLWDR4kUvjrbzvTxwsL2JwZCyznnneQ1ELIYQQQnStu+76D5YRUaibc3jljfvb7Oc3YgR9XnyRxsOHKbjnHlSb7cQDe/nChW85fk/87g6Pl95XNArTLh2IsdrMzmW5rfa5YVoKdhXeWefEVk0hCZorDHWNZBTVMLVfNzl/tulVx//jm/FAl0yvqiqrPjpAfZ2FM68bhpePlp2lO3l046NMjJnI/RPvd6mc/pqHH2BPXiZ9A0M564VX0Wjk8xRCCCFEz6TRaLjn/tdo6B9E/cq9vPtR27uGAqadTsxDD2Jcvca5i6yjhzlW0g79BNudvFOtA2L7BTPgtGh2LsulprzlKllCmD/njIzl4825VJssHo/nVCe/AbtgU1YFQPcoEGKqcGxvHHwOxI3ukhAyNhSRtbOMiQtTiEwMbKrYGKuP5V+p/8JL43yVy83PPsHWA3vo46Nn4atvo9E5X4pfCCGEEOJU5KXz5p6H38aY4Ev5dxv45ue32+wbumiR4yLrd9+l6suvTj74xJshZQb8/ACUHXJj1K2bckE/FA1s+qb1io03ndEPo9nGh5uPejyWU50kaC5Yn1lOgI+OUX2CuzoUR3LWWAOpXVNAo6rExNrPDhM/KIQxsxNbVGwM9nH+72jfe2+zbut6orU+nP/qO2i9vD0YuRBCCCFE9+Hr7cedD79BfbiWg+9/xYadS9vsG/3AX9FPmUzRI49g2r79xANrNI6qjl5+8NUN0EbFSHcJCPVl5IwEDm8vxVDQ8qzc0LggzhgYyX835GCxtV4YRThIguaCDUfKmdg3DJ22i//ajAbY/BoMPQ9ihnf69DabneXv7kerVZh19VDs2NtdsTF3xTKWf/8lIWi46KU38NbrPRi5EEIIIUT3ExwYxrV/+zcWH1j1woscObq31X6KTkf888/jHRdH/u13YM4vOPHAQbGO+9GKdkPaEx6IvLkxZybi5aNly/etnzW7ZkoSZbWNLNvXesVH4SAJmpMKqurJMZi6x/bGDS+C2dhlq2fbfsihNKeG1CsGExjmyyu7X2lXxcaKfel899oLeKtw4T//hW94N7m6QAghhBCikyXE9mf+n+9HY4WP/3k/hqrWkxhtcDB9Xn0V1WYj/9ZbsdUZTzzwkHMcVzGtewGy17o/8N/wDfBi1KwEsnaWUZbb8t6z6QOjiA/x48NNss3xRCRBc9L6I+UATO3fxUlEXSlseRNGXARRgzt9+sIjVWz/KYfBk2PoPy6KdQXreGPPG5zX/zyXKjYai4v44pG/YgMW3vkXQgYM9FzQQgghhBCngLHDpjHmxivxq1F5+dFbaDC3XpbeJ6Uv8c//m8bMTArvuw+1jbvUmsx9EsJS4JtboNGzF0aPnpWAj7+OLUta3num1ShcPjGRjVkGjpQ6cWVALyUJmpM2HCknXO/NoOjArg1k/YtgbYDpf+n0qRvrrax4Zz+B4b5Mu3QgRXVF/HXtXxkYOpAHJj7gdMVGq8nIl3+6lTpFZd7FfyB+2nQPRy6EEEIIcWqYN30R0RdMR19o5vmnbm7zIuuAqVOJvv9+6n75hbLnT3I1kU8AnPcKVOfDyn94IOrfTOXvxejZieSkGyjOrm7x/NLTEvDSKny8ufWS/EISNKeoqsr6TAOT+4W7VDbe7WqKYOtbMPIyiBjQ6dOv+fQgdVWNnHndMBQvlT+v/jMWu4V/p/4bP52fU2PY7Xa+u+MmyuwWpk2azqBLL/dw1EIIIYQQp5arLrkP7ZR+eO8znPCOtNA/XEHIpZdiePMtqr/99sSDJk6CCTfCljcgd5ObI25u5Mw++Oq92LKk5Vm0iAAf5g2P5YvtedSbT3KnWy8lCZoTjpTWUVbbyNSuPn+27nmwWWD6vZ0+9aGtxRzaXMJpZycTkxLMv7f/mz3le3hsymMkBSU5Pc4vf7mb7LoqRib047S77/NgxEIIIYQQp64/3vE8DQODaVy1n0+/+U+rfRRFIeahB/GfMIGih/6GaefOEw866+8Q3MdxgbWlwQNRO3j76hgzN5G8/RUUHqlq8fwPExOpabCyZE+hx2I4lUmC5oSm82ddeUF1dYHjosExVzj2EHeiGkM9qz8+RExKMOPmJbEsZxkfZnzIFUOuYE7yHKfH2frvZ9ide4S+ASHMeuYkS/FCCCGEEL2YRqPh7gffoC5aR+7/lvLLhq9b7ad4eRH/4gvoYmIouOtPWCsq2h7UJwAWvADlh2DNs54J/JgRqX3wC/Jmy3ctz6JN6BvGgKgAPpJiIa2SBM0J6zMN9An1IzHcv+uCWPscqCpM+3OnTquqKr+8n4Gqqsy+dih5xjz+vuHvjIwYyT3j7nF6nIP/+5i1m1YTqfHi3JdeR6ORT08IIYQQ4kT8fPXc/PDLNOoVNr/yJhlHdrTaTxcaSvwLz2OrrKTwvr+cuGhI/9kwahGsfwGK0z0TOODlrWXc3CQKDlWRf6B50qgoCldMTGR3fjXp+S3PqfV28lvySdjsKpuyDF27elZ5FHZ8AGOvhFDntxO6w/51hRQcrGLqhf3xCVW4O+1udBodz01/Di+tl1NjFG/ayM+ff0iAqnDh86+g85e7zoQQQgghnBEdHs9F9z8GwOfP/J3q2tZXyPyGDSP6gQcwrluH4fXXTzzo3CfALxS+vR1sVneH3GTYGXHoQ3zY/F02qqo2e3bBuD74eWml5H4rJEE7ib0F1dQ2WJnSleX11z4HitLpq2d1lQ1s+PII8YNCGHp6HE9ueZJDlYd48vQniQ2IdWoMU0kJ3z73OBrgwr8/gT7GufeEEEIIIYTDkP5jGXX9FfhVq7z05G1tVnYMufQSghYsoOyl/8O46QSFQPzDYP6zULQLNr3smaABnZeW8WclUZxVTe7+5ollkK8XC0fH8e3uAqrrLR6L4VQkCdpJrM90nD+b0lUraBVZsPMjGHctBMd32rSqqrL644PYbSoz/jCYbzO/5avDX7F4xGKm9Znm1Bh2q5Vv77kdowbmLbqG8BEjPRy1EEIIIUTPNH/GFehnjcAvs5bX3nqg1T6KohD7yMN49+1LwT1/xlJa2vaAQ8+DwefAqifAkOmZoIEhU+MIDPNly3dZLVbR/jApiQaLna925Hts/lORJGgnseGIgUHRgUQG+nRNAGueA60XTLu7U6c9sq2UnHQDExemUKLL55+b/smEmAncNvo2p8dYef89FFrqmTB8HAMuvMSD0QohhBBC9Hw33/AE9f0CMa5M58dVH7XaR6PX0+fFF7CbTBTefQ+qtY0tjIoC858DrQ9890c42WXX7aTVaRh/djKlR2vJ2VPe7Nnw+GBGJYTw0ebcFslbbyYJ2gk0WGxszanouu2NNUWw5zMYezUExnTatPV1Ztb87xBRyUEMPCOS+1bfR4B3AE+f8TRajdapMdLfeo09eZn0DQhhykOPeDZgIYQQQoheQKPRcMdfX6Y+RMPutz/iQNauVvv59O9P7KOPYNq2jbL/vNT2gEGxMPdxOLoOdvzXIzEDDJoUQ1CkH5uXZKPaf7eKNjGRI6V1bMo6QfXJXkYStBPYkVtJo9Xeddsbt74JditMuqVTp1332WHM9VZmXjmYl3b9h8zqTP55+j+J8HPu76FowzpWLv2OUFXDOS+8KhUbhRBCCCHcJDgwjIvvfRSAz575GzXGqtb7nXsuIZdcguGNN6hNS2t7wDFXQt8zYNnfHdc6eYBWq2HC2ckY8uvI3FnW7NmCUXEE+3nx4WYpFvIr+c35BDYcMaBRYGJKWOdPbjbCtndg8NkQ1rfTps1JL+fQlhLGnZXMYc1ePsz4kMsHX86UuClOvW8sLuLbfz+JVoXzHnsK78BAD0cshBBCCNG7DOk/lhHXXIZ/pf2ERUOiH3wAnyFDKPzL/VgK2ki+FAUW/MexKPD9nxzXOnnAgAkxhMb4s/WH5hUdfb20XDSuD0v3FlNa67nLs08lkqCdwMYsAyP7hBDk61w5ebfa/QnUV8Lk2zttSnO9ldUfHyQsTs+AmaE8tO4hkoOSuWvcXU697ygKcgcmDZz1h+sJGzzUswELIYQQQvRS58y+Ct8Zw/A9XM0b7/6t1T4aHx/6vPgC2Gzk3303qtnc+mBhfWHmQ3B4KRz4wSPxajQKY+clUVFoJO93FR2vmJiI1a7y2dY8j8x9qpEErQ1Wm529BdWMSwrt/Mntdtj0KsSNhcRJnTbthq8zMVY1MvPKITy9/SkM9QaemvYUfjo/p95f8Zc/UWRtYOKo0+h/3oUejlYIIYQQone79canqE8JoHb5Lpau/rTVPt6JicQ+8U8adu+h5Lnn2h5s4k0QOQSW/hUs9R6Jd8D4aPyDvdm1snkilhIZwNT+4XyyJQ+bXYqFSILWhsOldTRa7YyID+6CyZeB4QhMvs2x7NwJCg5Vsm9NASNnJbBT2cAPWT9w46gbGRYxzKn3d7/xCun52aQEhjH5r3/3cLRCCCGEEEKj0XDbX/+P+kCF7W+9z+Gc9Fb7Bc2ZQ+iVV1L5/gfUrV/f+mBaL5j/DFTlwvr/eCRerU7DiNQ+5O2vwFBQ1+zZHyYmUVBVz6oDJ7gaoJeQBK0N6QXVgKP8Z6fb+H8QFA9DF3bKdFazjVUfHCAowpe+swL4x8Z/MCJiBItHLHbq/aIN61i1/HtCVQ1nP/+yFAURQgghhOgkoUERXHDfw2js8MmzD9Fgbn31K+qeu/Hu14+iBx7EVl3d+mB9z3Dcj7bu345EzQOGT4tH56Vh9+9W0WYPjSYq0EeKhSAJWpvS86vRe2tJidB37sRFeyBnrWOZWds5Z9+2fJ9NdVk9M/4wmH9sexSzzcwTpz+BTqM76buNVVUsef4ptCqc/49npCiIEEIIIUQnGz7gNFIunY++3MbL//fnVvtofH2Je+ZprAYDxY/9o+3B5jwOKLD0QY/E6hvgxeApsRzcUoyp5viZOC+thstOS2D1oTIKqjyzxfJUIQlaG9ILqhkWH4xG0zlbDJtsegW89I67zzqBoaCOXSvyGDo1lnUsY33hev48/s8kByc79f5P991JrQZmX7CI0EGDPRusEEIIIYRo1SXn3o5leCRsPtrmJdZ+w4YRedut1PzwAzU//tj6QCEJMO0eyPgOstI8EuuomQnYbSrpafnN2i8al4Cqwre7PFPu/1QhCVorLDY7GUU1jOzs7Y21xZD+BYz5A/iFeHw6VVVZ+79DePtpiZvlxb+2/Yup8VO5ZNAlTr2/8+UXyaw2MCw2iSGXX+nhaIUQQgghxIncevfzGINh57sfkVec2Wqf8MWL8Rs1iqJHH8NSUtL6QFPugNBk+PE+sFncHmdItD/JIyLYu7oAq9nW1J4Y7s/YxBC+3Vno9jlPJZKgteJwybECIX06OUHb8uvF1Dd3ynRHtpdScKiK0xYk88iOv+Gj8+GxKY+hOFGYpGzXDtasWkoYGmY/eYKKQEIIIYQQolME6UM4+4/3obMovPvMfdhs1hZ9FJ2OuKefQjWbKXrgwWZ3kjXx8oW5T0L5QdjyhkdiHT07gQajhYObi5u1nzcmnoMltWQU1Xhk3lOBJGit2NsVBULMJtj29rGLqVM8Pp2l0caGL48QkRDA+qAf2GvYy98m/Y0o/6iTvms1GVnyxCMowIIH/4HOz7ky/EIIIYQQwrPGDT+DyLMnoy9o5PW3H2q1j3dyMtH33Ytx/XoqP/649YEGnQX9Z0PaU1Dn/sqKcQNCiEwMZPfKPNTflNY/e0QsWo3CN714m6MkaK1IL6gmwEdH3/BOLBDSdDH1bZ0y3fafc6irbKTvfD/e3PsGZ6eczdzkuU69u+z+e6hU7Ew/8xwiRo7ycKRCCCGEEMIV11z+APUpARh/SWft1tYvng657DL006ZR+uxzNGZlt+ygKDDvKcedaCsedXuMiqIwenYClcUmju4zNLWHB/hwxoAIluwqxN5L70STBK0VewqqGRYX1HkFQux2R3GQuDGQONnj01WVmti5PJeBE6J5segpAr0Duf+0+516d/8H/yWjJJ8BoZGMuulWD0cqhBBCCCFcpdFouOm+52n0g7RXX8FQ1fKsmaIoxD7+OBofHwrvvx/V2nI7JBEDYNItsOtDyN/m9jj7jYtCH+LDrhXNS+6fNyaewuoGtuRUuH3OU4EkaL/za4GQTr2g+sjyYxdT394pF1Ov//wwWq2G8lH72VO2h3tPu5cQ35CTvld56CArv/2MIDvMe9YzFxgKIYQQQoiOiwyNZdrNN+Frglef/RN2u71FH6/oKGIeeZiGPXsof/311geafh8ExMCP9zoWFdxIq9UwckYfCg5WUpZX29R+5tBo/L21vbaaoyRov3OopBZzZxcI6cSLqXPSy8lJNzDkzEj+c/DfTIydyDkp55z0PZvFzJKH78emwIJ7HpT7zoQQQgghurnpE8/FL3UYfkdq+OB/z7TaJ+isswhasIDyV16lPn1vyw4+gXDmY1C4w7GS5mZDT49D56NtdnG1v7eOOUOj+WFPEY1W2wne7pkkQfudXwuEdNoKWtEeyF4DE270+MXUNouddZ8dJiTan2/83sFsM/O3SX9zqmpj2kN/ocxuYcqk6cRM8vw2TCGEEEII0XG3LH4CY5w3xd+tZVfGhlb7xPztIXSRkRT+5S/YGxtbdhh5CSRMcpxFq69ya3y+ei+GTonl8NYSjFXH5144Jp6aBitpB8vcOt+pQBK030kvqCbQR0dyZxUI2fSq42LqcZ6/mHrXylyqy+oJmdnAsvyl3DjyRpKCkk763pFvvmRX9iGS/IMZ/6d7PR6nEEIIIYRwD61Wx9X3Po3NS+W7F5+kodHUsk9QELH/fBxzVhaG11spq68oMP8ZMBlg3fNuj3HkzATsdpU9v7m4elr/CML13r1ym6MkaL+Tnl/NsPhOKhBiLIf0z2HMFeAX6tGp6iob2fbTURJHhvKfsidJCU7huuHXnfQ9U1kpyz58G70dzn7mRTQa+WSEEEIIIU4lSXEDGHr5hegrVV57/YFW+wRMnUrQuQsof/NNGrOyWnaIHeVYSdv8GtS49yLp4Eg/UkZHsm9NAZZGx5ZGnVbDOSNjWZFRSk2D+y/L7s7kt+3fsNjsZBTXdt72xj2fgd0C4671+FQbvjqCalc5PGQdhcZCHp78MF5ObKlc/uB91GsU5lxzI36RER6PUwghhBBCuN95866ncVAIlg2H2bRrRat9ov/yFzT+/hT//WHU1gqCpP4V7DZY3fp5to4YPSuBRpOVAxuLmtoWjonHbLXz897iE7zZ80iC9hvHC4SEeH4yVYWdH0LcWIge6tGpCg9XcnhrCYnT/Hk/720uHHAhY6PHnvS9jI8/4Eh1OUNjEkg5x/MFTIQQQgghhOfccNczmH1Ulr36YqtbHXXh4UTf+2dM27ZR/fXXLQcI6wvjr4Ud74Mh062xxfQLJrpvELtX5jXdfzYmIYSkcP9et81RErTfSM/vxAIhRbugdJ9je6MH2W121nx6iIAwHz7y+Q/BPsH8adyfTvqeqaSEVV99QoBNZdY/n/VojEIIIYQQwvOiwuIYfvlF6KtUXnvtr632Cb7gAvzGj6PkmWexGgwtO5xxL+h84ZfH3RqboiiMmplAdVk9BQcqm9oWjopjQ6aBkpoGt87XnUmC9hu/FghJCvP3/GQ7P3J83MMv8ug0BzYWYygwYp9UzJ6q3fzltL8Q7HPyBHTpQ/dSr1GYe/2tUlJfCCGEEKKHWDj3OhoHh2LZeISNO5e1eK5oNMQ+8gh2k4nSZ1rZyhgQBZNvhX1fQeEut8aWMjoSH72OjA3Hz7gtHBOPqsKS3e4999adSYL2G3sLqhkeH+z5AiGWBkj/DAafA34hHpvGarax5ftswpL8eL32WabETeGsvmed9L39H/yXrJoKhscnk3zW2R6LTwghhBBCdL4b7nwasw8sf+2lVrc6+vTvT/gN11P97XcYN25sOcCUOxwF7lY+6ta4tF4aBk6IIWtXOQ1GR2GQfpEBjIgP5ptetM1RErRjzFY7GUW1nXNB9cEfoKEaxvzBo9OkpxVgrGpkT8oKrKqVhyY+dNI7z4yFhaz69jMC7TDjcfcfABVCCCGEEF0rKiyOEVc4tjq++tr9rfaJuOkmvJISKXrkkZZ3o/kGw7R7IPMXyFrt1tiGTInFZrVzeGtJU9vC0XHsLajhSGmdW+fqriRBO+ZQSS1mm71zzp/t/BCCE6DvdI9N0WiysP3nHAL7KXzf8Bk3j7qZhKCEk7639G/30ahRmHvjHXjrO+kuOCGEEEII0anOnXMtjYNDsW7MZMP2pS2ea3x9iX34YSxHczG8/nrLAU67AYLiHatoquq2uCITAolICCBjw/FqjueOikOj0GuKhUiCdszegk4qEFKdD5mrYPTl4ME7xXYuy6XRZGVZ9IckBiZy9dCTX4S99523yK6rYnhCCklnzvVYbEIIIYQQoustvusZzD6w4vWXqG8wtniunzLl2N1ob9GY+buqjV5+kHo/FGyHA9+7Na4hU2Ipy62lLK8WgKggX6b0i+DbXYWobkwGuytJ0I7ZU1BNoK+OpHAPFwjZ9QmgOhI0DzFWN7L7lzx8BjWwW93C3ePuPumdZ8aCfNJ+/IogO8z8x1Mei00IIYQQQnQPkaGxjPjDReir4bU2tjr+ejda0cOt3I026nIIHwAr/wE2q9viGnhaDBqdwoHfrKItHB1HboWJHblVbpunu5IE7Zi9BdWMiA8+6RmtDrHbYdeHkDwNQpM9Ns22H3OwWVW+DnmDcdHjmJk486Tv/PTQXzBrFObdfCc6f9naKIQQQgjRG5x75rU0DgnDuimr1a2Ov96NVr9te8u70bQ6mPU3KD8Iez51W0y+AV6kjIrk0JYSbBZHUjhveAw+Ok2v2OYoCRqOAiEHimo9v70xdwNU5sCYKz02RXWZif1rC7EOKiNXk8m9p9170qRz95uvctRUzcikASTMOtNjsQkhhBBCiO5n8Z1P0+gLK9qo6tjsbrSKiuYPh5wLcWNg1ZOOSuVuMmRKLA1GC9l7ygEI9PVi9pBovt9ThMVmP8nbpzZJ0DheIGS4pxO0nR+BTxAMWeCxKTZ/l42ihf8FvMy5/c5lWPiwE/Y3FhaydukSgu0KqY896bG4hBBCCCFE9xQZGsvIyy9CXwNvvftIi+dNd6MZjZT95z+/e6jA7EegJh+2ve22mPoMCSMg1KdZsZCFo+OoMJpZd6TcbfN0R52WoCmKkqgoyjeKoryjKErrm1y7SPqxAiEjPVliv7EW9n8Dwy8Ab8+ccyvLq+Xw1hIMAw5j9jFxx5g7TvrOysceclRtvPmP6Pz8PBKXEEIIIYTo3s6dcy2mZD3GNfs4nJPe4rlP//6EXnopVZ99TuPhw80fpqRCygxY85zjKik30GgUBk+OJW+/gbpKx8rc9EGR6L21LN9fcpK3T21OJWjHkqpSRVH2/q59nqIoBxVFOeJE0jUC+EJV1euAMe2M1yPSC6oJ8tWRGObBAiH7vgaLCUZ77u6zTd9kofNT+Er/FlcPu5oYfcwJ+x9d+jOHK0oYFBErWxuFEEIIIXq5y255CFT49NXHW30ecfttaPR6Sp59tuXDWX+H+grY+Irb4hk8OQZVhQObigHw0WmZNiCSlRklPbqao7MraP8F5v22QVEULfAycBYwFFikKMpQRVFGKIry/e/+TxSwCbheUZRfgJ/d9yN0XHp+NSP6eLhAyM4PIWIQ9BnvkeELDlWSu8/Akb6bCQrUc93w607Y32Yxs/LtV/Cxq8x8+J8eiUkIIYQQQpw6BiSPQD99GP45Rr5b/m6L57rQUCJuvhnjmrXUrVvf/GH8WBh8Dmx+1bFzzA2CI/2JHxhCxoaipoRs1pAoSmoa2VtQ45Y5uiPF2exTUZRk4HtVVYcf++fJwCOqqs499s9/BVBVtdWDTIqi/BnYoqrqGkVRvlBV9aI2+t0I3AgQHR097tNP3VcRpjVWu8rNy03MSfbikkHeHpnDz5TPxC23kZlyNXmJF7h9fFVVyV6hYjKaeWvkA1wadTGTAyaf8J2qb74gsyiHgX0HEzjvHLfH1FPV1dUREBDQ1WEI0US+SdEdyXcpuhv5Jp1ntjay8ZMXUewwYdHt+P7+aI7FQvijj6L6+FLx4APN7vUNrDnEuB33uvV33qpslYLNKskzFfRRCjWNKneuMnFuPy/OH+CZ3907w4wZM7arqtrqyo2uA+PGA3m/+ed8YOIJ+v8MPKIoyuVATludVFV9A3gDYPz48WpqamoHQjy5vQXVWJetY/7k4aSOjPPMJMsfBkVLv/MfpF9gtNuHz95dxn5DOruH/EL/iBTum38fWo22zf41Odn8Nz+LSC8fzn7iGTQevDC7p0lLS8PT36QQrpBvUnRH8l2K7ka+SdeoXpXsfeVDDh5cxp13vNDieY3NRsFdf2KUwUDoxRf/5kkqVC6hX+nP9Fv0DHj5djgWyxQb7+5eh68pktTUoQC8l7WBzAYbqanTOjx+d9Rpv5mrqrpXVdWLVFW9WVXVP3fWvCezJ/9YgZD4EM9MYLPC7k9hwBzwQHJmt6ts+jYLJcTM5uCl/Pm0P58wOQNY8Y+/YdUonPnHP0tyJoQQQgghmpk7/TIa+gfRuOEwGUd2tHgeOHcufmPGUPbif7DVGZs/nHYP1JXA7o/dEouXt5YBp0VzZEcp5nrHZdizhkSxt6CG4mr3lfXvTjry23kBkPCbf+5zrO2Ukl5QTbCfFwlhHqpgmLkS6ophjGeKgxzeUkxFoZHVsV9wRsI0JsVOOmH/I199QXZdFcPik4mdPNUjMQkhhBBCiFPbFbc+jF2j8vmr/8Rub37vmKIoRN//F2zl5Rjefqv5i32nQ9xYWPeCY6HCDYZMicVqtnNkeykAs4c4Fj1WHuiZ1Rw7kqBtBQYoitJXURRv4DLgO/eE1Xn2FlQzPD7IcwVCdn4I/hEwcK7bh7bbVbb9dBRrqJGDIdu4e/zdJ+xvra/nl0/+i5/NTqoUBhFCCCGEEG1Ijh9E6Kyx6PMb+erHN1o89xs1iqD586l4510sRcfvKkNRHKtoVUcdVczdIDo5iNBYfdOdaAOiAkgI82NlRqlbxu9unC2z/wmwERikKEq+oijXq6pqBW4HlgIZwGeqqu7zXKju12i1caC4hhGe2t5oNMDBn2DUZaD1cvvw2bvKqCoxkRb5BZcMvoSU4JQT9l//xKPUamDa/PPxCQlxezxCCCGEEKLnuPbKv2EMUTjwxRKqaytaPI+8+25QVcpeeKH5g0HzIXIwrPs3/G71rT0URWHIlFiKs6qpLDaiKAqzBkez/kg59WZbh8fvbpxK0FRVXaSqaqyqql6qqvZRVfXtY+0/qqo6UFXVfqqqnnJLMoeK67DYVEbEe+iC6oxvwW6BUYvcPrSqqmz/+SjmgDpKog9zy6hbTti/4sB+dh7YQ6yXLyOuW+z2eIQQQgghRM/i7eXDtGuvx69e4a03/9byeZ94wq6+iupvv6M+/TfXJWs0MPUuKN0Ph5e6JZZBE2PQaJSmVbTZQ6JptNpZd6TcLeN3J726QkR6wbECIX08laAtgbB+ED3M7UPnZVRQllvLhqglXD70ckJ9Q0/Yf/kTj6KicOa9D7k9FiGEEEII0TPNmHQejUPCsG/JYVfGhhbPw2+8EW1YGKVPP9388ugRF0FwIqz9F7jhUmn/IG+SRoRzYFMxNpudCX3DCPTRsTKj551D6+UJWhXBfl70CfVAgZD6KsheA0MWOPbiutn2n45i9aunMC6DK4deecK++z98j/xGI6P6DSZy1Gi3xyKEEEIIIXquq255FKtO5bvXn21RMEQbGEjkHbdj2raN2hUrfvPAC6b+EfK3Qs46t8QxZEos9TVm8vZV4K3TcMbASFYeKMVu73gC2J308gStmhHxwZ4pEHJoKditjgTNzYoyqyk8XMXm6J+4bNilBPu0vQJorq1lzTefEWBTOf1vj7k9FiGEEEII0bP1ie5L9LzJ6IssfPH9Ky2eh1x8Md79+lH63HOoZvPxB2P+APpIx1k0N0gcHo6Pv47MHY7iILOGRFFW29i0K66n6LUJmtlq52BxLSM8tr3xOwiMc5QZdbMdP+dg8zaTG7+bq4ZedcK+G59+HKNWYfqFi/DW690eixBCCCGE6PmuvOwvGEMUDn77Ew2NpmbPFJ2O6PvuxXI0l8pPPz3+wMsPJt0Kmb9A4c4Ox6DVakgeGUH2nnJsNjszBkWhUehx2xx7bYKWW2HCYlMZGB3g/sHNJjiyEoac4zgk6Ubl+XXkpBvYHr2cS4ZdfMLVs9q8XHYdSCdG58PgRZ65h00IIYQQQvR8Xjpvxlx0If51Cu9/8nSL5/ozzsB/4kTK33gTe3398QenXQ8+wbDWPatoKaMjaTRZKTxURajem3FJoazoYeX2e22CllPuuPU8OdwDq0qZK8FaD4PPcfvQO5Yexa6zkt1n+0lXz9Y8/ThWjULqzX90exxCCCGEEKJ3OXvWVRhjvSlfuZWK6uZJkaIoRNx2K7bycqo+++z4A99gmHCDo3he2aEOx5A4NAydt4asnWUAzBoSzf6iGgqr6k/y5qmj9yZoBg8maBlLwC8Ukqa6ddjqMhOHt5WwJ2o1F424gBDfkDb7lu3excHSAlKCwomfNt2tcQghhBBCiN5Ho9Ew++qb8DFreO/df7R4rp8wAf8JEyh/6y3sDQ3HH0y8BXQ+sP6FDseg89aSNDycrF1lqHaV2UOiAFh5oOesovXaBO2owUSQr44QfzdfIG01w8GfYdDZoNW5degdy3JRFRuHEzafdPUs7flnUFSV1HsfcGsMQgghhBCi95oyZi71A4Iwb84ip+Bgi+cRt92Graycqs8+P94YEAljr4Y9/4OqvA7HkDImElONmeLsGvpFBpAU7t+jzqH12gQtx2AkOULv/gqOOWuhsdpx/syNjFWNZGwoZH/kJs4fteCEq2dHl/5Mbn0NQxNSCB002K1xCCGEEEKI3u2i6+5DUeGTt59s8Uw/cQL+48djePNN7I2Nxx9MucPx54aXOjx/8vAINDqFrJ2lKIrCrMHRbMg0YDJbOzx2d+DeJR43URRlAbAgPj6etLQ0j8xxIN9EvxCN28cfePB1ojW+rM/XYi9y39jFO+3YbXb2x69hfuWdbcat2u1kv/l/eGHHa/qZHvv7663q6urk71R0K/JNiu5IvkvR3cg36X51A4IJ3FfG+/97jcTo5gsCXtNOJ2zbNrY+8QT1M2Y0tQ+OnEbktvfY4D0dm65jx4z8I1X2bczDHJ5PhNmO2Wrn1a/TGBfdLdMbl3TLn0BV1SXAkvHjxy9OTU11+/hmqx3D0p9YNKQvqamD3Dew3QZbF8OQszhj1hy3DdtQZ+G/X63jSMQOzht3NueMa3t1bv/777JDCxOHn8bpCxe6LQbhkJaWhie+SSHaS75J0R3Jdym6G/km3W/QsBTeu+tmjm77hauevbnZM3X6dI6uXYtuVRr9HngAjY+P48GAIHhzBtMC8mDSza2M6rz9XoWs+uAAw/uP5/Q4Pa+mL6dEG0lq6qgOjdsd9MotjgVV9dhVSHJ3gZD8rWAsdXv1xj1p+djMKvsT13L1sKvb7GezmFm35Ev0NpVJ99zn1hiEEEIIIYT4VWxkIgHThuOfa2LFui+aPVMUhcjbbsNaWkrVF795Fj8W4sfB1rdAVTs0f9+RESgKZO0sw0urYfrASH45UIbd3rFxu4NemaA1VXCM8HfvwBlLQOsNA9y3emZusLJr5VFyQtM5a9xMQn1D2+y7/YV/UauBSbPno/OXS6mFEEIIIYTnXHPVg9T7qWz45APsdnuzZ/6TJuE3diyGN9/CbjYff3DaYjAchuzVHZrbL9CbuAEhZO1ylNufPSSa8rpGdudXdWjc7qBXJmhHj92B5tYVNFWFjO8gZQb4Brlt2P3rCrHU29mXuOaEq2eNVVVs3byWUDSMvPEWt80vhBBCCCFEawL8g0mcdwb6chtffv9qs2eKohB5+21Yi4up/vLL4w+GnQ/+4bDlzQ7PnzImkopCI5XFRlIHRaLVKKzsAZdW98oELcdgIsBHR7je232DFu+BqlwYssBtQ9ptdrYvz6Yw6DCzJ0wlzDeszb7rn3qcBq2GMxZdjUbTK/+1CiGEEEKITrbooj9hDIYD3/5Ig7n5ZdH+kyfjN2YM5a+/cXwVzcsXxlwJB3+E6vwOzd13VCQAWbvKCPH3ZlxSKCt6QLn9Xvmb/FGDkaRwf/eW2M/4HhQNDDrLbUPmpBtoqLZxMH4T1wy7ps1+NUdzSM/cT5y3H/3Pu9Bt8wshhBBCCHEiXjpvRl98If51Ch9+8nSzZ4qiEHHbsVW0r746/mD8dY7dZ9ve7dDcgWG+RCUHkbXz122OURworiW/0tShcbtaL03QTCS7u0BIxhJImgr6CLcNuX1lFnXelZw2cfAJV89WP/UPbIrCjNvudtvcQgghhBBCOOOcWVdjjPGidOUWKqqbbzHUT52C36hRlL/xBuqvq2ihSTBwLux4D6yNrYzovH5jIik9WkttRQOzhkQDnPLbHHtdgma12cmtMJEU7sYCIeVHoCzDrdsbK4uNlB42sj96A5cPu7zNfqXbtnDYUEy/0ChiJk122/xCCCGEEEI4Q6PRMOuqG/Fp1PD+e080e6YoChG33461sIiqr785/uC0xWAsg/3fdWjulNHHtzn2iwwgOdyfNYfKOjRmV+t1CVphVQNWu+reFbQDSxx/Dj7bbUPuSsvFplgJG6MhITChzX5rXn4Rjaoy/c9/ddvcQgghhBBCuGLquLMw9dVTv/kQhqrm58D0p0/Fd9RIDK+/fnwVrd9MCEtxlNzvgJBof8Li9E3bHCf3C2dLTgW2U7jcfq9L0H4tse/WFbSMJRA3FoL7uGU4c4OVjA2FZIXt5vKxl7TZr3T7Vo4aqxgYk0jIgIFumVsIIYQQQoj2mH3p9XhbNXzyyXPN2n+9F81SWEjVN984GjUaGH895G2C4vQOzZsyJpKiI1WYasxM7BtObYOVjKKaDo3ZlXpdgna06Q40N62gVRdAwXa3bm88tKUY1axQO+Ao46PHt9lv/asvoVFh6l1/dtvcQgghhBBCtMfkMXMwJvhSs2Ef1bUVzZ7pp03Dd+RIDG++hWqzORrHXAE6vw6X3O83JhJVhZw95UxMcdRt2JRl6NCYXanXJWg5BhO+XhqiAn3cM+CBHxx/uilBU1WVLSsOU+6fz9lTZrVZadKQvofsGgP9I2II7tffLXMLIYQQQgjREdMvvgofs4ZP/vevZu2KohB+3XVY8vKoS0tzNPqFwoiLIP1zqK9q95zh8QEERfiSubOM2GA/EsP82ZxdcfIXu6lel6AdNRhJDte7r8R+xncQORgiBrhluKIj1dSXquQk7OTsfvPb7Lf+5ecBmHqHVG4UQgghhBDdw/SJ52KM88awdid1pupmzwJnz0IXF0vFe+8fb5ywGCwm2PVxu+dUFIWU0ZHkH6igsd7KxL5hbM2pwH6KnkPrdQlajsGNFRyNBji63q3bGzevOESjtp5xU/vjo219la/y0EEyDaWkhEQQNnSY2+YWQgghhBCioyZfsAjfBg2ffv58s3ZFpyPsiiswbdlCw8GDjsbYUdBngqNYiN3e7jlTxkRht6kcTS9nYko4VSYLB0tqO/JjdJlelaDZ7Cq5BpP7zp8d/BFUOww+xy3DGasbKdhTw6GoLVw6vO3iIBv+8xyqAlNvvdMt8wohhBBCCOEus6ZeiDFKR/GqrTQ0Nr80OuSii1D8/Kh4/zeraKfdABWZkJ3W7jlj+gbhH+RN1s4yJvZ1nEPbfIqeQ+tVCVpxTQNmm919JfaPrICgeEfm7wY707JRVA2R43VE+ke22qcmJ5tDJQUkBYQSOXqsW+YVQgghhBDCXTQaDWMXXoBfvcL/vvpPs2fa4GCCz1tIzZLvsVYcOyc27Dzwj4At7S+5r2gc2xyP7jMQE+BDfIjfKXsOTdfVAbRGUZQFwIL4+HjSfj1E6Ab7DY6KMVV5h0kzZXVsMNXOlMO/UBE2ngOrV3c4NtWukv5LA4XBWQzVJbX5c5e+/xZ2RSFw8jS3/t0I59TV1cnfu+hW5JsU3ZF8l6K7kW+y8/lr+lATomJctoYVUePQab2anmkHDSLCbGbnU09hnO+oudA3IpXEg1+x6efPafRtfaHiZOo0Klazyk+frSHJ38K6Q8WsWrXKfbUnOkm3TNBUVV0CLBk/fvzi1NRUt41buDkXtqazcNYU4kL8OjZY8V5YXUPM5EuIGZ3a4dgObStmf+N+6kcVcdXc21rtYyzI583aChL1wcxZfFOH5xSuS0tLw53fpBAdJd+k6I7kuxTdjXyTXaOy4TA57y2htCqdyy9sXtgud+UvaDduZPzjj6N4e8PofvDiV0zW7YfUh9s1n81m590t69BbI1g4OYANX6bTZ+h4BkQHuuPH6TS9aovjUYMRb52GmCDfjg+WfWzVrO+0jo8FrF+2n1ofA/NTz2izz4bnn8Wm0TDlOknOhBBCCCFE93be3Osxhigc+fkXbDZrs2dhV12JraycmqVLHQ0hCTDwLNjxPlgb2zWfVquhz+Aw8g9WMiH52H1op+A2x16VoGWXG0kK80ejccMyZ/YaCOsHwX06PFRFoRFTLuQlpDMreWarfUwlJWTkHCbe25/4M1I7PKcQQgghhBCepNXqGHTWHPQ18PVPbzR7pp86Fe++fal4731U9Vg5/PHXgakcDi9r95x9BodSV9lIiF0hJsj3lCwU0qsStKMGE0nuKBBis0LOeujb9mqXK9Yu24tNsTJuej90mtZ3nW56/lksWg2Tr7reLXMKIYQQQgjhaReccxOmQNj//U/Yf1NGX9FoCLvqShr27qV+5y5HY0oq6KNg96ftnq/PoFAACg5WMTEljM3ZFccTwFNEr0nQ7HaVoxVGkt1xB1rRLjDXuiVBMzdYyd1eTU7kHi4ceV6rfRoMBvYe2U+MzoekM+d2eE4hhBBCCCE6g5fOm+Q509FXqny/4r1mz4IXLkQTFETFB8dK7mt1MOIixwqaqX1bE4Oj/AgI9SH/QCUT+4ZTVttIdrmxoz9Gp+o1CVppbSMNFjtJ7rgDren8WccTtB1rM9FYdESepiPYJ7jVPptffM6xerboqg7PJ4QQQgghRGe6+Lzbqder7Pr2m2araBp/f0IuuojaZcuxFBU5GkdeCjYz7P+2XXMpikL8oFAKDlUyIdmxmnaqldvvNQlajsGRObtlBS17DUQPB31Eh4ZRVZXtv2RRqs/lkmkLWu1jrqkmff9uIjVepJyzsEPzCSGEEEII0dl8vf2ImzkZfbmNpaubb18Mu+JyUFUqP/7Y0RA7CiIGwZ7/tXu+PoNCaaizEGyGiACfU+4cWq9J0I42JWgdXEGzNEDuJresnhVmV0KlD5bBpfQL6ddqny0v/ptGrYZJFy7q8HxCCCGEEEJ0hUUX/Yl6P5Wt33zerN0rPp7A2bOp/Oxz7PX1oCgw6lLI3QiVOe2aK77pHFolE1PC2JR1ap1D6zUJWo7BhJdWITa4gyX287eCtcEtCdrqlbuwKhZmpZ7W6nObxUz67q2Eo6X/BRd1eD4hhBBCCCG6gp+vnvCpI9EXW9i6Z1WzZ2FXX4W9uprqb79zNIy42PHnns9pj8AwX4Kj/Cg4WMmkvmEU1zSQW2HqSPidqtckaEcNRhJC/dFpO/gjZ68BRQNJUzo0jM1mp2xvI0URhzij3+mt9tn//n8xaTWMnjEHjabX/KsSQgghhBA90AUX3I5Vo7Lim+bFQvzGjsV36FAqPvjAsdIVkghJUx3bHNu58tVnUCgFh6s4LclxH9rmrFPnHFqv+a0/p9xEkrvOn8WNAd/WC3o4K2NXLrpGH6JG++Kl8Wq1z64VP+FrszPi2hs6NJcQQgghhBBdLTo8HvvQSDQZZZQYCpraFUUh9KorMWdmYly/wdE48lIwHIbCne2aq8/gMCwNNoLr7YTpvdmUfeqcQ+sVCZqqqhw1GDt+B1pjHRRsc8v2xg2r91Gvq2P+Ga2PVbhuDaV2C0MHDEPr49Ph+YQQQgghhOhqZ55/DTq7wpdfvtSsPWj+fLQREcdL7g9dCFqfdhcLiR8YAkDBoSomJIfJClp3U15nxmi20bejJfZzN4HdCn2nd2iYxnorDUe8qIjPYXDkoFb7bP3gXTR2lfG33tGhuYQQQgghhOguxg9PxRjjRcWmdCxWc1O7xtub0Msuw7h6DebcXPALgUHzIP0LsFlcnscv0Jvw+ADHfWgpYRRU1ZNfeWqcQ+sVCdqvFRw7vMUxOw203pAwsUPDbFi3B61dx6CJMa0+NxYXkV1RQlJQGIEJiR2aSwghhBBCiO5k6Jln4mdUWLLsv83aQy66EBSF6m+O3YE28lIwlUPmqpaDOKHP4FCKM6sZn3DsPrRTZBWtVyRov94e3uES+9lroM8E8O5Yope+IZdq3zIWTJ7d6vPtr7yETaNh/KIrOzSPEEIIIYQQ3c25c6+n3k9l7/Kfm7V7xcSgnzyZ6m++QbXbof+Z4Bfa7m2OfQaFYrPaCTHaCfbzYvMpcg6tVyRoRw0mtBqF+FC/9g9iqoCiPR0+f1ZpqENTFIi1XwVhfmEtntssZvbt3004WhJnz+nQXEIIIYQQQnQ33l4+hEwahr7QzM7965s9Cz7/fCyFhZi2bgOdNwy7AA78AI21Ls8TNyAERaNQcKiSCX3D2JwtK2jdRo7BSJ9QP7w6UmL/6HpA7XCCtnLlVhQUJk0f3OrzjI/ex6RVGDV9VofmEUIIIYQQoru68MLbsWlUln39TrP2wNmz0AQEUP31146GkZeCtR4ylrg8h7efjqikQMeF1X3DOGowUVzd4I7wPapXJGhHDaaOV3DMXgNe/hA/rt1DqKpK7vZqyoPymDG89bvPdi398Vhp/cXtnkcIIYQQQojuLDYyEeugcNR9RRiqSpraNX5+BJ11FjXLlmE3GiFhAoQmd2ibY0lOLePjQwBOiW2OPT5BU1WVHIOR5A4XCFkDiZMdS63tlJNVhE91EIHD7a3efVa8aSMldjOD+w1G59eB7ZhCCCGEEEJ0czMW/gEvm4Yvv/q/Zu3B55+HajJRs3QZKIpjFS1rNdQUujxH/OBQVLtKUK2NQF8dm06BQiG6rg6gNYqiLAAWxMfHk5aW1qGxas0qtQ1WLJVFpKWVt2sM78YKppQdIDNwInkdiGfr5lx8lBgiQ31a/bmK3n4Vxa6ijpvY4Z9beEZdXZ38uxHdinyTojuS71J0N/JNdlfeVIeBcd12ViavRKvROppVlfDISI7+97/sCgvFrz6ZiahkfvM0eYnnuzSD3aqiaGDLL+mkBKqs2pdHWlj3XkXrlgmaqqpLgCXjx49fnJqa2qGxduRWwi8bmD1xJKlDots3yJ7PAeg3+1r6xY1p1xB2u8qOr7+nMiqPPy64vsVzU0kJbzTUkhQYxuxLLm1fnMLj0tLS6Og3KYQ7yTcpuiP5LkV3I99k91VctYeCT5ZhsuWxYOY1Te3lVxyk7IUXmdK/P959UqHgbfoZt9Mv9UWX56hJ30Gjycr808N58qcDDB03iahAX/f9EG7W47c4Hr8DrQNn0LJXg28wxIxs9xCbt6Xj06gncVxIq8+3v3astP6lf2j3HEIIIYQQQpxKzjvrBhp87exc+n2z9uBzz21+J9qoy6AkHUr2uTxHn0GhlOfVMTYmGOj+96H1+AQtp9yEokBCWAfOdGWvgeRp8OuyaztsWXOQRm09C2aktnhmt1rZl76TMDQkzZ3X/jiFEEIIIYQ4hfj6+BM4fhD6vAb2Ht7a1O4VF4f/pInH70Qbdj5odO0qFtJnsONqq+AaK3pvbbcvFNLjE7SjBiNxwX746NqZXFXmQNXRDpXXN9U3QHYgDUmlRASGt3h+4JMPMWoVRp0+s91zCCGEEEIIcSo6/6LbsCkqP331ZrP2kPPPx5Kfj2nbNtBHQP/ZjqNHdptL40cmBeLlo6XocDXjksPY0s3vQ+vxCVqOwURyRAcqOGavdfzZgQRtedpGdDZvRk5JavX5zp+W4GOzM/J6Ka0vhBBCCCF6l4TY/lj6h2Dbk0917fHkKXD2bDR6/fFtjiMvhdpCyFnn0vharYa4ASHkH6xkbGIIh0vrMJmt7vwR3KrHJ2hHDcYOnj9bA/ooiGz9YmlnHNpSgtGnijmTWt59VrxlM8W2RganDETn38G72oQQQgghhDgFTTv3MrysGj7/+qWmNo2/P4FnzaPm558dd6INOgt0fnDg+xOM1Lo+g0OpKjExMNAfVYWMohp3hu9WPTpBqzZZqDRZ2n8Hmqo6CoT0PcNxB0M7FJWV4VsUgdcgE96t3KG27b9voagqp910e/tiFEIIIYQQ4hR3+vizMYZrKFy7Fbvd3tQect6xO9GWLwcvP+g3Ew7+5Pg93QXxg0IBCDM6xt5XKAlal8g5VsExub0raOWHoK6kQ9sbf16xHg0aps8c3eJZY2UFmWUFJOpDCO7Xv91zCCGEEEIIcSrTaDT0TZ2GvgZWbfqmqd1v3Di8EhKo/vpY26CzoDoPSva6NH5EfAC+ei/qcusI9fdiX4EkaF2iKUGLaGeClr3G8WcHErSSXY3UBpcydvDwFs/S338Xq0bD6AWuXbgnhBBCCCFET3PuWddj0drZsvK7pjZFUQg+/zxMmzdjKSiAgXMBxbGK5gJFoxA/KISCg5UMiw1iX1G1m6N3nx6doB01mABIDGvnFsfs1RCcCKHJ7Xp918EMAqsjiRzp0+rzA5vW42+zk3Luee2LTwghhBBCiB4iODAM+4BwOFBKnel4AhWycCEAVd9+CwFR0Oc0OPijy+P3GRRKXWUjI4L1HCquw2Kzn/ylLtCjE7Qcg5HYYF98vdpZYj9vCyRNbvf5sw3r9wAwZ9akFs8qDx6gxNZI/6T+aHS69sUnhBBCCCFEDzJ25ny8rRp+WP5+U5tXfDz+EydS/fU3qKrq2OZYuBNqCl0a+9dzaH2sGsw2O4dL6twau7v06ATtqMFEUnsLhNQUOc6fxY1p9/zVh+zUhZSREBPb4tnuD94FRWHU5Ve2e3whhBBCCCF6kllTL6TeT+XgujXN2oPPPw9LXh7127fDoPmOxkM/uzR2SLQ/+hAffCssAOwr7J7bHHt4gmZsf4GQol2OP2NHt+v1IwU5BFVFEzbYq8Uzu93OoYP7CEdL1LjT2hefEEIIIYQQPYyXzhv/kX3xyzORV5zZ1B40Zw4af3+qvv4aIgdBaF/Xz6EpjnNo1Udr8dNpu20lxx6boNU2WCivM7f/DrTCXYACMSPa9frq9dsBmDJ5ZItneSuXU6uBQaPHty82IYQQQggheqgZ8xahURV+/PHdpjaNvz+B8+ZR+/NS7PX1jlW0rNXQ6No2xejkIOprLYyOCGC/JGid69cCIe2+A61oF0QMBJ+A9r2+v456vxqGDuzX4ln611+gsauMvPr69sUmhBBCCCFEDzVm6FSM4RpKtuxu1h583kLsRiO1K39xnEOzNULWKpfGjkwMAmCYnx/7i2qw2127T60z9NgELa/CkaAltLeCY+EuiBvdrldLa8oJLI3Gt58F5XcFRqz19WSXFhDvH4g+Lq59sQkhhBBCCNGDxUwYg75SZdvetKY2//Hj0UVGUrtiBSROAt8Ql7c5RiQEoCgQp2qoa7SSeyxn6E56bIJWXtcIQFRg6yXuT6i2GOqK233+bOX6jejs3oyZMKDFs4xPPsSs1TB0xux2jS2EEEIIIURPd878a7ErKqt//qypTdFoCJg1k7q1a7FbbDBgjqNQiN3m9Lhe3lpCY/X41Tne6Y7n0HpsgmYwmgEI1Xu7/nLRseXUdq6gZe0uw6JrYOLYlufX9qetwNtmZ/ClV7RrbCGEEEIIIXq6uKhkGhL1NKTnYLGam9oDZ81GNZkwbtzo2OZoMjiuxnJBZGIg9SX16BSFvd2wkmOPTdAqjGaCfHV4advxIzYVCGlZ4ONk6hqN+BREQKIRna75/WvGgnwK6+tIiYlH5+fnelxCCCGEEEL0EkPOSMW3QcPyNcdX0fQTJ6AJCHBsc+w/GzReLl9aHZUUSH2thRHhAbKC1pkMRjPhAe3Y3gjHCoQMaFeBkJXb1uNnCWDwmPgWz/a8/w52jcLI8y9pX1xCCCGEEEL0EmfPvhqzl52dq46fM1O8vQmYPp26X1aheumh7zSXz6H9WihkhL8f+wurHZdfdyM9NkGrqDMT1p7tjeBYQYsd1a5X92/Pxa7YmDZ5bItnB3ZtI8gO8TNmtS8uIYQQQgghegk/Xz3K4Bh0R6qorClvag+cPQtbZSX1O3Y4yu0bDkP5YafH/bVQSDxayuvMlNY2eiL8duuxCVqlqZ0JWl0p1Ba2q0CIxWbBnqPHEl2NPsC32bPiLZupwM7AQcPQaHrsX7sQQgghhBBuM/nM89DZFZb8/E5Tm37aGSheXtSuWAkD5zkaXVhF+7VQiL7ODsC+bnYOTdfVAbRGUZQFwIL4+HjS0tLaNUZRpYkoXb3L74cZtjES2FkK1S6+m1GWSYipL/aUohbzln34DqgqlqEj2/0zia5XV1cn//5EtyLfpOiO5LsU3Y18k6cuuz0Ao95O1eq1pEVNaGoPGTSIsu+/J2PSRMYF9MW25RN2WZyvH2HztlNXAPjC9+t3oylu5847D+iWCZqqqkuAJePHj1+cmpranvcxLvuJ4f2TSE0d7NrLqx1VYMbMuwp8g1x6devbmfgDl110NpExIU3tdquV1/7vGaK9/Zh9uVRvPJWlpaXRnm9SCE+Rb1J0R/Jdiu5GvslT296M77GsOUR8cjgDkh1V0ivLyij+29+ZFBuL77hLYM2zpJ42AvThTo25257Hus8OMzjGD5N3MKmp4zz5I7ikR+61q6m3YrWr7dviWLgLwvu7nJzZVTt1hxUag2uaJWcAR775inqthiGTTnc9HiGEEEIIIXqxOWddBcDSn95vagucMQMUxbHNcdBZoNrh8DKnx4xKDARglF7PvqLutcWxRyZoBqPjoF94QHvuQNvVrvNnO3P3EFGVQOQQ3xbP9v68BJ3dzvCrrnU9HiGEEEIIIXqxwSmjqYvWUbk9A7vdcW5MFxGB39ixjnL7saMhMNalcvsRCYEoCiQqWvIq6qmut3goetf1yASt4tgl1WF6F8vs15VBTUG7Lqhet3EnGrRMmdJ872tjVRW51QYSgyPwCQlxeVwhhBBCCCF6u+TJk/CvhQ3bf25qC5w1i8YDBzAXFDhW0Y6sBEuDU+N5+WgJidETaHKU2N/fje5D65EJmuFYghbu6hbHot2OP9uxglaW0YjF10RK/9hm7XvffxebRsPws85xeUwhhBBCCCEEnHPWtVg1KuuXf9nUFjjbcXVV7YoVjnL7FiPkrHN6zKjEQCzljoSuO1Vy7JEJ2vEVNFcTtJ2OP2OdrwADcLg8k/DyRAL6g6JRmj3L2LQWP5udfgsvcC0WIYQQQgghBADhIdFYU4Kx7y+iodEEgHdiIj4DB1K3YiUkTwMvvUvbHCMTA2motZDs78M+WUHzrHYnaIW7IKwf+Aa79NqqzZvwtvkybuKgZu2Vhw5SYm2kf1I/NLpuWTBTCCGEEEKIU8LI1Dl4WzT8sPKDprbA2bMx7diBtdYE/Wc67kNTVafGi0xyFAoZE6iXFTRPM9SZ8ffW4uulde3Fot3tOn92dE8FNq2FEaNSmrXv+/QjUBRGXny5y2MKIYQQQgghjpubugizl52Dm49vYwycPQvsdupWrXJsc6wtdBT9c0JEnwBQIFnRkVlmpMFi81DkrumRCVqFsdH11TOjAarzXD5/VlRXRGBRHF6JZnTezRPC7Ix0AmwqMZMmuxaLEEIIIYQQohlvLx/sKWEomQbMFkfVdp8hQ/CKi6N2+QoYMAcUjWMVzZnxfHWERvsT1KBis6scKK71ZPhO65EJmsFobkeBkGPnz1xcQVuxYx2B5lCGjUts1m4sLKTMZiapT7JrcQghhBBCCCFaNXD8ZLwtGlZv/g4ARVEImD0L44YN2PGD+HGQleb0eJFJgdgMjmSvu2xz7JEJWqXJ3L7zZwAxrhUIObizABWV8ROGNGs/8MWnqIrCoDPnuRaHEEIIIYQQolWzUy/FplHZtWFFU1vg7NmoZjN169ZD8ulQsB3MRqfGi0oMorHWQoyXrtsUCumRCVpFndn1O9CKdkFoX/ALcfqV6sZqdLmhqNEm/IOaJ4SZ27fgY7OTNPcs1+IQQgghhBBCtCo0KIKGeD8aDuQ3XVrtP3Ys2pAQR7n95NPBboW8zU6NF5noKBQyNkgvCZqnqKrq2OIY4OoKmusFQn7JWEukMYGUUZHN2s1GI4WmGhLCoqR6oxBCCCGEEG6UMGYM/kaFHfvXAKDodATMnEldWhpqzHhQtE7fhxaR4CgU0lfrzYGiGqw2uydDd0qPS9BMZhuNVrtrWxxNFVCd63KBkPTt2QBMmjysWfuRrz7HptEw4PTpLo0nhBBCCCGEOLGZMy4BYOPqJU1tgbNnYa+txbh7H8SPhZz1To31a6GQ0AaVRqudrHLntkZ6Uo9L0Np1B9qvpThdWEFTVZWGHC1WvYmwmIBmzw6vW43Wbqf/+Rc5H4MQQgghhBDipJLiBmCM0FK573BTm37KFBQ/P+pWroSkqS6dQ4tMDIRKRw7RHQqF9LgEzXAsQXOpiuOvBUJiRzn9SlZVFuGVCQQka1EUpandbrWSZygh1i8Q78BA52MQQgghhBBCOCVsxCD0BjvZ+QcA0Pj6EnD66dSuWImaOBXsFsjb4tRYkYmBNNZaCNVo2FfQ9efQelyCVmF0lMl0eQUtNBn8Qp1+ZeO+Hfha9QwentCsPXfZzzRqNfQbN8H5+YUQQgghhBBOm3rGQgB++eWzprbAM2djLS2loTbIpXNoUUnHCoUEdo9CIT0uQTPU/bqC5kIVx8JdLp8/O7K/CIARI/o1az+4/CcUVWXIxYtcGk8IIYQQQgjhnFGDJ2MKhILdu5vaAqZPB52O2tUbIG6MC4VCAkGB/jpv9hVWo6qqp8J2So9L0JrOoDlbxdFUAVVHXTp/ZlftNORqsOrrCYrwa/bsaP5RIrTe6OPinB5PCCGEEEII4TyNRoP/4AR8CxowVJUAoA0Oxn/0aIwbNvzmPjTTScf6tVBImBlqGqzkV9Z7OvwT6pEJmrdOg95b69wLRceybhdW0A4ZDhFRlUhQcvMS+qXbtlCrgZTBw50eSwghhBBCCOG6MVPmoFUVVqQd3+boP2kSDRkZ2CLGOs6h5Tt/Dk1TZQG6vlBIj0vQDEYz4XrvZoU7TujXCo4uFAjZtH8nftYAhgxPbNae8e1XAAy54GKnxxJCCCGEEEK4btqEs2n0sXN428amNv3ECWC3YyrWuHQOLTIxEHOthUCULj+H1uMStAqjmVB/Fys4hiSBf5jTr2RlFAMwdERys/bsQxkE2xXCR4x0fn4hhBBCCCGEy7x03tAvAm12FQ1mx7ZE31GjUHx8MO5MdxxhcrFQyCi9vyRo7lZhNBPu7PkzcKyguXD+zGa30ZinxRbQ0Oz8WU1ONgbVSlJSivNzCyGEEEIIIdptyIRpeFs1rFr/NQAab2/8x43FtHmL4xxa/janzqH9WihkoLePbHF0twqj2fkS+/WVUJnj0vmzjPIMIquSW5w/O/D5p6AoDJ6/wPlghRBCCCGEEO0264yLsWpU9mxc2dTmP2EijQcPYg0d7fQ5NG9fHSFR/kRaoKSmkfK6Rg9GfWK9O0H7tUCICytomzN24WcNYOjw5Gbtmbt34GezE5860+mxhBBCCCGEEO0XpA/BnKjHcqgYu90OgP9Ex33EpiIFFA3krHdqLEehECsAmaV1ngnYCT0qQWu02qhrtBLuaoLmwgrar+fPfntBdWNlBcWNJhKj4tFoetRfqRBCCCGEEN1a0phx+NUrbN69AgC/4cPR+Ptj2pnu+D3fhXNo1joL/nY4WnHybZGeojt5l86nKMoCYEF8fDxpaWlOv1fR4MiaywtySEsrOGn/ofuWEeQTxaYte5wa36baaMzVYfY1smPv5qb2upXLsGsUNAlJLsUrTj11dXXy71h0K/JNiu5IvkvR3cg32bMFBvSlhDUs+/5jGqsdCzUhffti/mUV5iuT6JO3hHUrl2LX+pxwHGOF44LqGLuGtTsyiKrL9HjsremWCZqqqkuAJePHj1+cmprq9Ht7C6ohbR2TxowgdXjMyV/Y8ydImYizc+ws2UnMlymED/Zr9s5XH7yFl83OnLvuQefn1/YA4pSXlpbm9PciRGeQb1J0R/Jdiu5Gvsme79FlH6MUGJr+PRsyMyl99jlih92KJu9rzujrCynTTziGud7Km7+sYYCXDwSGkpo6phMib6lH7cerMJoBnKvi2FADFVkubW/ckrHbcf7sN+X1bY2N5FdXEBcUKsmZEEIIIYQQXSBq5FD0lSoHcxxHmPwnTgLAVMSxc2gn3+bo7acjJNqfPqqWXIPRk+GeUI9M0JwqElKR5fgzYqDT42dnlAAwcFh8U1vW999i0WroP2GK84EKIYQQQggh3GZ66gUArP7lCwB8hwxGExSEacceiB0FR50vFBLUoHbpGbQelaAZfl1BcyVBC3Pu3jKzzYw13we7vpHAcN+m9kOrVqCxqwy68FKX4xVCCCGEEEJ03ND+4zEGQfGevQAoWi3+48djbLoPbStY6k86TmRiILoGO411FqrrLZ4Ou1U9KkGrMDai1SgE+Xo50fnXBK2vU2PvKt1FTHUKoSk+KIoCgN1uJ7e4gChvX/wiI9obthBCCCGEEKKDAoYm41dspsTgKBaonzQRS24uFv1wsJkdSdpJhMfrHX/aNeQaumYVrYclaGZC/b3RaBQnOmdDQAx4650ae2sr58+K1q3BpFVIGdE1BwiFEEIIIYQQDqedfhYaVWHFqk8B8J84EQBjgd3pc2jBkf4AhNgUjlZ0zTm0HpegOX0HWkWW06tnADkZZQD0GxLb1HbwxyUADLnwEueDFEIIIYQQQrjdlLFzafC1k71zOwA+AwagDQ3FtCPdcQ7NiQQtMMwHRaMQalc42kUraIqqql0ysTMURSkDjnZ1HEL8RgRQ3tVBCPEb8k2K7ki+S9HdyDcpupskVVUjW3vQrRM0IbobRVG2qao6vqvjEOJX8k2K7ki+S9HdyDcpTiU9aoujEEIIIYQQQpzKJEETQgghhBBCiG5CEjQhXPNGVwcgxO/INym6I/kuRXcj36Q4ZcgZNCGEEEIIIYToJmQFTQghhBBCCCG6CUnQhGiFoijzFEU5qCjKEUVR7m/l+d2KouxXFGWPoigrFUVJ6oo4Re9xsm/yN/0uVBRFVRRFqpUJj3Lmm1QU5ZJj/63cpyjKx50do+h9nPjf70RFUVYpirLz2P+Gz++KOIU4EdniKMTvKIqiBQ4BZwL5wFZgkaqq+3/TZwawWVVVk6IotwCpqqpe2iUBix7PmW/yWL9A4AfAG7hdVdVtnR2r6B2c/O/kAOAzYKaqqpWKokSpqlraJQGLXsHJ7/INYKeqqq8qijIU+FFV1eSuiFeItsgKmhAtTQCOqKqapaqqGfgUWPjbDqqqrlJV9dfr5TcBfTo5RtG7nPSbPOYfwNNAQ2cGJ3olZ77JxcDLqqpWAkhyJjqBM9+lCgQd+78HA4WdGJ8QTpEETYiW4oG83/xz/rG2tlwP/OTRiERvd9JvUlGUsUCCqqo/dGZgotdy5r+TA4GBiqKsVxRlk6Io8zotOtFbOfNdPgL8QVGUfOBH4I7OCU0I5+m6OgAhTmWKovwBGA9M7+pYRO+lKIoG+DdwTReHIsRv6YABQCqOXQZrFEUZoapqVVcGJXq9RcB/VVX9l6Iok4EPFEUZrqqqvasDE+JXsoImREsFQMJv/rnPsbZmFEWZDTwInKuqamMnxSZ6p5N9k4HAcCBNUZQcYBLwnRQKER7kzH8n84HvVFW1qKqajeNs0IBOik/0Ts58l9fjOBuJqqobAV8golOiE8JJkqAJ0dJWYICiKH0VRfEGLgO++20HRVHGAK/jSM7kXIXwtBN+k6qqVquqGqGqavKxw+6bcHybUiREeMpJ/zsJfINj9QxFUSJwbHnM6sQYRe/jzHeZC8wCUBRlCI4EraxToxTiJCRBE+J3VFW1ArcDS4EM4DNVVfcpivKYoijnHuv2LBAAfK4oyi5FUX7/PwBCuI2T36QQncbJb3IpYFAUZT+wCrhXVVVD10QsegMnv8t7gMWKouwGPgGuUaWkuehmpMy+EEIIIYQQQnQTsoImhBBCCCGEEN2EJGhCCCGEEEII0U1IgiaEEEIIIYQQ3YQkaEIIIYQQQgjRTUiCJoQQQgghhBDdhCRoQgghhBBCCNFNSIImhBBCCCGEEN2EJGhCCCGEEEII0U38P6cU2w+0/a30AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "zeros, weights = np.polynomial.laguerre.laggauss(8)\n", - "targets = np.arange(9, 14)\n", - "mean_targets = ((9, 10),)\n", - "x = np.linspace(EPSILON, 1 - EPSILON, 101)\n", - "_, axs = plt.subplots(\n", - " 2, sharex=True, clear=True, constrained_layout=True, figsize=(12, 12)\n", - ")\n", - "\n", - "lanczos = eval_lanczos(x)\n", - "# for mean_target in mean_targets:\n", - "# vals = eval_mean_laguerre(x, mean_target)\n", - "# rel_error_mean = calc_rel_error(lanczos, vals)\n", - "# axs[0].plot(x, rel_error_mean, label=mean_target)\n", - "# axs[1].semilogy(x, np.abs(rel_error_mean), label=mean_target)\n", - "\n", - "mins = []\n", - "maxs = []\n", - "for target in targets:\n", - " rel_error = evaluate(x, target)\n", - " mins.append(np.min(np.abs(rel_error[(0.05 <= x) & (x <= 0.95)])))\n", - " maxs.append(np.max(np.abs(rel_error)))\n", - " axs[0].plot(x, rel_error, label=target)\n", - " axs[1].semilogy(x, np.abs(rel_error), label=target)\n", - " \n", - "rel_error = evaluate2(x)\n", - "axs[0].plot(x, rel_error, label=\"Optimal shift\")\n", - "axs[1].semilogy(x, np.abs(rel_error), label=\"Optimal shift\")\n", - "\n", - "# axs[0].set_ylim(*(np.array([-1, 1]) * 3.5e-8))\n", - "\n", - "axs[0].set_xlim(x[0], x[-1])\n", - "axs[1].set_ylim(np.min(mins), 1.04*np.max(maxs))\n", - "for ax in axs:\n", - " ax.legend()\n", - " ax.grid(which=\"both\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(-7.5, 25.0)" - ] - }, - "execution_count": 82, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAANoCAYAAAC1Fsk9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd5ycVaH/8e+Z2U12N2XTSdkkm152U0gPIaGEKgFCAAWvehEV9aI/5AqK4hW8XhUERWwomiJIb6EbShJIKOm9l91sNr237fOc3x8zs9ndzOxOk3km83n7wiS7z8x5Zvbsmed72mOstQIAAAAAJJ8n2ScAAAAAAPAjoAEAAACASxDQAAAAAMAlCGgAAAAA4BIENAAAAABwCQIaAAAAALhEygU0Y8wMY8x+Y8zaBD3fg8aYtYH/vpCI5wQAAACAWKRcQJM0S9IViXgiY8xVkkZIGi5prKS7jDGtE/HcAAAAABCtlAto1toPJR2u+zVjTB9jzL+MMcuMMQuMMQMjfLrBkj601tZYa09JWq0EhT8AAAAAiFbKBbQwHpf0XWvtSEl3SfpzhI9bJekKY0yOMaaDpIskdf83nSMAAAAANCoj2ScQL2NMS0nnSXrBGBP8cvPA96ZJ+t8QD9tlrb3cWvuOMWa0pI8lHZD0iSTfv/+sAQAAAOBMxlqb7HOImjEmX9Ib1trCwJqxTdbaLgl43qcl/dNa+1a8zwUAAAAA0Ur5KY7W2uOSiowxN0qS8RsWyWONMV5jTPvA34dKGirpnX/byQIAAABAI1JuBM0Y84ykCyV1kLRP0n2S5kp6TFIXSZmSnrXWhpra2PC5siQtD/zzuKRvWWtXJv6sAQAAAKBpKRfQAAAAAOBslfJTHAEAAADgbEFAAwAAAACXSKlt9jt06GDz8/OTfRoAAAAAELNly5YdtNZ2DPW9lApo+fn5Wrp0abJPAwAAAABiZozZEe57THEEAAAAAJcgoAEAAACASxDQAAAAAMAlUmoNGgAAAIDkq66uVmlpqSoqKpJ9Kq6WlZWlvLw8ZWZmRvwYAhoAAACAqJSWlqpVq1bKz8+XMSbZp+NK1lodOnRIpaWl6tWrV8SPY4ojAAAAgKhUVFSoffv2hLNGGGPUvn37qEcZCWgAAAAAokY4a1os7xEBDQAAAABcgoAGAAAAIOWUl5frggsukM/nkyRdccUVatOmjaZMmVLvOGut7r33XvXv31+DBg3S73//+yafO9xzTZw4UcOHD9fw4cPVtWtXTZ06VZL0xhtv6Kc//WlCXhcBDQAAAEDKmTFjhqZNmyav1ytJuvvuu/Xkk0+ecdysWbO0c+dObdy4URs2bNBNN93U5HOHe64FCxZo5cqVWrlypcaPH69p06ZJkq666iq9/vrrKisri/NVsYsjAAAAgDj87PV1Wr/7eEKfc3DX1rrv6oJGj3nqqaf09NNP1/578uTJmj9//hnHPfbYY3r66afl8fjHpjp16tRk+eGeK+j48eOaO3euZs6cKcm/1uzCCy/UG2+8oc9//vNNPn9jGEEDAAAAkFKqqqq0fft25efnN3nstm3b9Nxzz2nUqFG68sortWXLlrjLnz17tiZPnqzWrVvXfm3UqFFasGBB3M/NCBoAAACAmDU10vXvcPDgQbVp0yaiYysrK5WVlaWlS5fq5Zdf1q233hp3kHrmmWf09a9/vd7XOnXqpN27d8f1vBIjaAAAAABSTHZ2dsT3F8vLy6tdK3bddddp9erVcZV98OBBLV68WFdddVW9r1dUVCg7Ozuu55YIaAAAAABSTNu2beXz+SIKaVOnTtW8efMkSR988IH69+8vSVq8eLG+8pWvRF32iy++qClTpigrK6ve1zdv3qzCwsKon68hAhqAtLH34E69t+iFZJ8GAABIgMsuu0wLFy6s/ffEiRN144036v3331deXp7mzJkjSbrnnnv00ksvaciQIfrRj36kv//975KkkpKSsCNe4Z5Lkp599lndfPPNZzxm3rx5Z4yqxYI1aADSxmNv3qW3nbW6ZOyNyT4VAAAQp9tvv12PPPKILrnkEkkKu66sTZs2evPNN8/4+qJFi3T77beHfExja9RC7e64b98+lZeXa8iQIRGceeMIaADSRpWvXOVeJg4AAHA2GDFihC666CL5fL7ae6FF46GHHkrYuZSUlOg3v/lNQp6LgAYgbdhknwAAAEioW2+9NdmnIEkaPXp0wp6LrmQAacMGIprj8yX5TAAAAEIjoAEAAACASxDQAKSN2hE06yT5TAAAAEJLekAzxtxpjFlnjFlrjHnGGJPV9KMAAAAApLNbb71VnTp1qnfvsS984QsaPny4hg8frvz8fA0fPjx5JxijpAY0Y0w3Sf9P0ihrbaEkr6SbknlOAM5iNjCC5jCCBgBAqrvlllv0r3/9q97XnnvuOa1cuVIrV67U9ddfr2nTpiXp7GLnhl0cMyRlG2OqJeVI2p3k8wEAAADgcpMmTVJxcXHI71lr9fzzz2vu3Lmf7UklQFIDmrV2lzHmYUklksolvWOtfafuMcaY2yTdJkk9evT47E8SwFkjuM2+Y9nFEQCAhHn7HmnvmsQ+Z+ch0pUPxPzwBQsW6JxzzlG/fv0SeFKfjWRPcWwr6VpJvSR1ldTCGPOlusdYax+31o6y1o7q2LFjMk4TwFkjuEkId0QDAOBs9swzz+jmm29O9mnEJNlTHC+RVGStPSBJxpiXJZ0n6Z9JPSsAAAAAkYljpOvfoaamRi+//LKWLVuW7FOJSbJ3cSyRNM4Yk2OMMZImS9qQ5HMCcJYKbrNv2SQEAICz1nvvvaeBAwcqLy8v2acSk6QGNGvtIkkvSlouaU3gfB5P5jkBAAAAcL+bb75Z48eP16ZNm5SXl6fp06dLkp599tmUnd4oJX+Ko6y190m6L9nnASANBJaesUkIAACp75lnngn59VmzZn22J5JgyZ7iCAAAAAAIIKABSBu2dhdH1qABAAB3IqABAAAAgEsQ0ACkkcAujoygAQAAlyKgAUgbwdtTW4cbVQMAAHcioAEAAACASxDQAKSN05uEsM0+AACprrS0VNdee6369eunPn366I477lBVVVXY448ePao///nPtf/evXu3brjhhoScy/3336+HH344Ic9FQAMAAACQUqy1mjZtmqZOnaotW7Zo8+bNOnnypO69996wj2kY0Lp27aoXX3zxszjdqCT9RtUA8Fljm30AAFLb3LlzlZWVpa9+9auSJK/Xq0ceeUS9evVSr169NGfOHB07dky7du3Sl770Jd1333265557tG3bNg0fPlyXXnqpbr/9dk2ZMkVr167VrFmzNHv2bJ06dUpbtmzRXXfdpaqqKj355JNq3ry53nrrLbVr105/+9vf9Pjjj6uqqkp9+/bVk08+qZycnIS+NgIaAAAAgJg9uPhBbTy8MaHPObDdQP1wzA/Dfn/dunUaOXJkva+1bt1aPXr0UE1NjRYvXqy1a9cqJydHo0eP1lVXXaUHHnhAa9eu1cqVKyVJxcXF9R6/du1arVixQhUVFerbt68efPBBrVixQnfeeaeeeOIJfe9739O0adP0jW98Q5L0k5/8RNOnT9d3v/vdhL52pjgCSBu1a9DYxREAgLPapZdeqvbt2ys7O1vTpk3TwoULm3zMRRddpFatWqljx47Kzc3V1VdfLUkaMmRIbZhbu3atJk6cqCFDhuipp57SunXrEn7ujKABSB+W+6ABAJBojY10/bsMHjz4jPVjx48fV0lJiTIyMmSMqfe9hv8OpXnz5rV/93g8tf/2eDyqqamRJN1yyy2aPXu2hg0bplmzZmn+/PlxvpIzMYIGAAAAIKVMnjxZZWVleuKJJyRJPp9P3//+93XLLbcoJydH7777rg4fPqzy8nLNnj1bEyZMUKtWrXTixIm4yj1x4oS6dOmi6upqPfXUU4l4KWcgoAFIG8GJjWwSAgBAajPG6JVXXtELL7ygfv36qX///srKytIvf/lLSdKYMWN0/fXXa+jQobr++us1atQotW/fXhMmTFBhYaHuvvvumMr9+c9/rrFjx2rChAkaOHBgIl9SLWNt6qzFGDVqlF26dGmyTwNAirrjb5dobrN9mvO5N9S1Y89knw4AAClrw4YNGjRoULJPI6RZs2Zp6dKl+uMf/5jsU5EU+r0yxiyz1o4KdTwjaADSSPBG1anTMQUAANILm4QAAAAAOGvccsstuuWWW5J9GjFjBA1A2ghus28d1qABAAB3IqABSD/Wl+wzAAAg5aXSXhbJEst7READAAAAEJWsrCwdOnSIkNYIa60OHTqkrKysqB7HGjQAacOySQgAAAmRl5en0tJSHThwINmn4mpZWVnKy8uL6jEENAAAAABRyczMVK9evZJ9GmclpjgCSBvcqBoAALgdAQ0AAAAAXIKABiCNBLfZZxdHAADgTgQ0AGkjuDcIW4QAAAC3IqABSDtsCQwAANyKgAYgfZjgNvtsEgIAANyJgAYAAAAALkFAA5A2Ts9sZAQNAAC4EwENAAAAAFyCgAYgjQS32WeTEAAA4E4ENAAAAABwCQIagLRhxS6OAADA3QhoANJGcGKjw33QAACASxHQAAAAAMAlCGgA0o61vmSfAgAAQEgENAAAAABwCQIagDQS3CSENWgAAMCdCGgAAAAA4BIENABpo3bcjG32AQCASxHQAKQN7oMGAADcjoAGAAAAAC5BQAOQdtgkBAAAuBUBDQAAAABcgoAGIG0E16DJYQ0aAABwJwIaAAAAALgEAQ1A2mENGgAAcCsCGoC0YQPBzMqX5DMBAAAIjYAGAAAAAC5BQAOQPoz/D+swxREAALgTAQ0AAAAAXIKABiBtBMfNHLHNPgAAcCcCGgAAAAC4BAENQPoI7uJoGUEDAADuREADAAAAAJcgoAFIG8E1aJYbVQMAAJcioAFIH8YfzBwCGgAAcCkCGgAAAAC4BAENQNqoHThjkxAAAOBSBDQAAAAAcAkCGoC0wzb7AADArQhoAAAAAOASBDQAacOKXRwBAIC7EdAApB2mOAIAALcioAEAAACASxDQAKSN4BRHRtAAAIBbEdAAAAAAwCUIaADSRu19qtkkBAAAuBQBDQAAAABcgoAGIH0Y/x9ssw8AANyKgAYgbQSnNrJJCAAAcCsCGgAAAAC4BAENQNphBA0AALgVAQ0AAAAAXIKABiBt1G6zLzYJAQAA7kRAAwAAAACXIKABSCPBXRwZQQMAAO5EQAOQNmqnOLJJCAAAcCkCGgAAAAC4BAENQNphiiMAAHCrpAc0Y0wbY8yLxpiNxpgNxpjxyT4nAAAAAEiGjGSfgKRHJf3LWnuDMaaZpJxknxCAs5M1gU1CxBo0AADgTkkNaMaYXEmTJN0iSdbaKklVyTwnAAAAAEiWZE9x7CXpgKSZxpgVxpi/G2NaJPmcAJytAkvPHIcRNAAA4E7JDmgZkkZIesxae66kU5LuqXuAMeY2Y8xSY8zSAwcOJOMcAQAAAOAzkeyAViqp1Fq7KPDvF+UPbLWstY9ba0dZa0d17NjxMz9BAGcPawJ/il0cAQCAOyU1oFlr90raaYwZEPjSZEnrk3hKAM5qgU1C2GYfAAC4lBt2cfyupKcCOzhul/TVJJ8PAAAAACRF0gOatXalpFHJPg8AZ7/acTPLJiEAAMCdkr0GDQAAAAAQQEADkHZYgwYAANyKgAYAAAAALkFAA5A2bO2fjKABAAB3IqABSBvBYOawSQgAAHApAhoAAAAAuAQBDUDaYZMQAADgVgQ0AAAAAHAJAhqAtFG7SQgjaAAAwKUIaAAAAADgEgQ0AGnHsosjAABwKQIagLQR3GbfioAGAADciYAGAAAAAC5BQAOQdtgkBAAAuBUBDQAAAABcgoAGIG3YEH8DAABwEwIaAAAAALgEAQ1A2nFYgwYAAFyKgAYgbdjaqY1ssw8AANyJgAYAAAAALkFAA5B22GYfAAC4FQENAAAAAFyCgAYgbQTHzRhBAwAAbkVAAwAAAACXIKABSBvWBP5kBA0AALgUAQ0AAAAAXIKABiB92OAf3AcNAAC4EwENQNqwxp/QmOIIAADcioAGAAAAAC5BQAOQdpjiCAAA3IqABgAAAAAuQUADkDZO36g6qacBAAAQFgENAAAAAFyCgAYgbZweQWMIDQAAuBMBDUAaIqABAAB3IqABAAAAgEsQ0ACkjeC4mWPZZh8AALgTAQ0AAAAAXIKABiANsQYNAAC4EwENAAAAAFyCgAYgbZxeg8YIGgAAcCcCGoC0YU9HtKSeBwAAQDgENAAAAABwCQIagLRjmeIIAABcioAGAAAAAC5BQAOQNqwJ/oURNAAA4E4ENAAAAABwCQIagLTDHo4AAMCtCGgAAAAA4BIENABpo3blmWUMDQAAuBMBDUDasLV/skkIAABwJwIaAAAAALgEAQ1A2mEEDQAAuBUBDQAAAABcgoAGIG3UrkHjRtUAAMClCGgAAAAA4BIENABpx7LNPgAAcCkCGoC0cfo+aExxBAAA7kRAAwAAAACXIKABSBvB7fXZZh8AALgVAQ0AAAAAXIKABiDtMIIGAADcioAGAAAAAC5BQAOQNqwJ/MkujgAAwKUIaADShg3xNwAAADchoAEAAACASxDQAKQdhymOAADApQhoAAAAAOASBDQAaYM1aAAAwO0IaAAAAADgEgQ0AGmDETQAAOB2BDQAaYf7oAEAALcioAEAAACASxDQAKQNW/snI2gAAMCdCGgAAAAA4BIENABpo3YEjTVoAADApQhoAAAAAOASBDQA6cP4/2ANGgAAcCsCGgAAAAC4BAENQNqoHTdjDRoAAHApAhqAtME2+wAAwO0IaAAAAADgEkkPaMYYrzFmhTHmjWSfC4D0wAgaAABwq6QHNEl3SNqQ7JMAAAAAgGRLakAzxuRJukrS35N5HgDSA5uEAAAAt0v2CNrvJP1AkpPk8wAAAACApEtaQDPGTJG031q7rInjbjPGLDXGLD1w4MBndHYAzkbs4ggAANwumSNoEyRdY4wplvSspIuNMf9seJC19nFr7Shr7aiOHTt+1ucI4KxEQAMAAO6UtIBmrf2RtTbPWpsv6SZJc621X0rW+QAAAABAsiV7DRoAfGaC42YOA2gAAMClMpJ9ApJkrZ0vaX6STwMAAAAAkooRNABpw5ravyXzNAAAAMIioAEAAACASxDQAKSN2m32uVE1AABwKQIagDREQAMAAO5EQAMAAAAAlyCgAUgbtVMcGUEDAAAuRUADAAAAAJcgoAFIG1Ym8CcjaAAAwJ0IaAAAAADgEgQ0AGmjdtyMbfYBAIBLEdAApB2mOAIAALcioAEAAACASxDQAKQNG+JvAAAAbkJAAwAAAACXIKABSBvWBP5kAA0AALgUAQ0AAAAAXIKABiBt2No/GUIDAADuREADAAAAAJcgoAFIO4ygAQAAtyKgAUgbbLMPAADcjoAGAAAAAC5BQAOQNmo3CWEADQAAuBQBDQAAAABcgoAGIG2c3mbfSep5AAAAhENAAwAAAACXIKABSBvWmMBfknseAAAA4RDQAKQd7oMGAADcioAGAAAAAC5BQAOQFhyfr86/GEEDAADuREADAAAAAJcgoAFIC449vbU+42cAAMCtCGgAAAAA4BIENABpwXHqjqAxhgYAANyJgAYgLTiWTUIAAID7EdAAAAAAwCUIaADSgmPrjJpZRtAAAIA7EdAAAAAAwCUIaADSgnXYZh8AALgfAQ0AAAAAXIKABiAt1N3FkW32AQCAWxHQAKQFh41BAABACiCgAUgTts7fCGsAAMCdCGgA0oK1Tt1/JO9EAAAAGkFAAwAAAACXIKABSAvWqTvFEQAAwJ0IaAAAAADgEgQ0AGmh7jb7jKEBAAC3IqABAAAAgEsQ0ACkBafOLo5ssw8AANyKgAYgLTh1NgkhnwEAALcioAEAAACASxDQAKQFyxRHAACQAghoAAAAAOASBDQAaaHuJiEsQgMAAG5FQAMAAAAAlyCgAUgLjj09asb4GQAAcCsCGoC0YB02CQEAAO5HQAMAAAAAlyCgAUgP1pfsMwAAAGgSAQ0AAAAAXIKABiAt1N8khDVoAADAnQhoAAAAAOASBDQAaaHejaotI2gAAMCdCGgA0oJ1Tm8SQjwDAABuRUADAAAAAJcgoAFIC069aY2MoQEAAHcioAEAAACASxDQAKSFupuEsM0+AABwKwIaAAAAALgEAQ1AmnCaPgQAACDJCGgAAAAA4BIENABpwTqn152xBg0AALgVAQ1AWqi/SQgAAIA7EdAAAAAAwCUIaADSAjeqBgAAqYCABgAAAAAuQUADkBas9dX5exJPBAAAoBEENAAAAABwCQIagLRQbw2aYQgNAAC4EwENQHqou80++QwAALgUAQ0AAAAAXIKABiAt1L1RNdvsAwAAt0pqQDPGdDfGzDPGrDfGrDPG3JHM8wEAAACAZMpIcvk1kr5vrV1ujGklaZkx5l1r7foknxeAs0zdTUIsI2gAAMClkjqCZq3dY61dHvj7CUkbJHVL5jkBAAAAQLK4Zg2aMSZf0rmSFjX4+m3GmKXGmKUHDhxIyrkBOAs4dXZxTOJpAAAANMYVAc0Y01LSS5K+Z609Xvd71trHrbWjrLWjOnbsmJwTBJDyHPbWBwAAKSDpAc0Ykyl/OHvKWvtyss8HAAAAAJIl2bs4GknTJW2w1v42mecC4Oxm5av3LwAAADdK9gjaBElflnSxMWZl4L/PJfmcAAAAACApkrrNvrV2oSSTzHMAkB6sU3ebfQAAAHdK9ggaAAAAACCAgAYgLTiqu80+Y2gAAMCdCGgA0oK1TtMHAQAAJBkBDQAAAABcgoAGIC1YW3eTEKY4AgAAd0qpgLb14DpVVJYl+zQAAAAA4N8ipQJapZF8Pl/TBwJAA45l1AwAALhfSgU0Sar2VSb7FAAAAADg3yL1AlpNVbJPAUAqqrOLo2U0DQAAuFTKBTSmOAIAAAA4W6VcQKuuqU72KQBIQfXug2aSdx4AAACNSbmAVuNjiiOA6Dn1ttkHAABwp5QLaD5fTbJPAQAAAAD+LVIwoDHFEUD06k1xZJMQAADgUikX0KqZ4ggAAADgLJVyAc1x2MURQPTqjqAxfgYAANwq5QJaDbs4AgAAADhLpV5AYw0agBjUuzm1YQwNAAC4U8oFNJ9lF0cA0au3zT75DAAAuFTqBTS22QcAAABwlkq5gMYURwCxqLfNPgAAgEulXEBjF0cAAAAAZ6uUC2iMoAGIRf1t9lmEBgAA3CnlAprPYQ0aAAAAgLNTygU0xzLFEUD0GDUDAACpIOUCWg27OAKIQd37oBHWAACAW6VcQHOY4ggAAADgLJVyAc3HLo4AYlB/kxAAAAB3SsGAxi6OAAAAAM5OKRjQGEEDEL26a9BkknceAAAAjUm5gGbZxREAAADAWSrlAhr3QQMQC6s6a9Asq9AAAIA7pWBAYwQNQPQcQhkAAEgBKRfQ6u7EBgARI6ABAIAUkHIBrYYpjgBiUPfm1EQ1AADgVikX0CwBDQAAAMBZKuUCmsMURwAxqL8xCGNoAADAnVIuoPnYZh8AAADAWSrlAprDFEcAsagz+s74GQAAcKvUC2hMcQQAAABwlkrBgMYURwDR4+bUAAAgFRDQAKSFetvsG8IaAABwpxQMaExxBAAAAHB2SsGAxggagOjV69xhAA0AALhUygU0S0ADAAAAcJZKuYDmOHR9A4he3U1CrEniiQAAADQi9QKaGEEDAAAAcHZKvYDGFEcAMai/zT4j8QAAwJ1SMKBxYQUgerbOJiG0IgAAwK1SLqBZpjgCAAAAOEulXEBzHO6DBiB6VrQdAADA/VIvoHGRBQAAAOAslXIBjV5wALGot81+Es8DAACgMSkV0IwkxxLQAMTOsNEQAABwsZQKaBIBDUCs/MHMSLKMoQEAAJdKqYBmLFMcAcQmeIsOk+TzAAAAaExKBTSp/r2MACBaBDQAAOBmKRfQHKYmAYgJN6oGAADul1IBzYgRNADxYQQNAAC4WUoFNIn7oAGITXCbfcPwGQAAcLGUCmhGTHEEEB9G0AAAgJulVECT6t9sFgAiVf9G1bQjAADAnVIvoDHFEUAMHLHNPgAAcL+UCmhMcQQQq+DaM0MbAgAAXCylAprE1CQAsQmOvhuxzT4AAHCvlAto7OIIIB5McQQAAG6WUgHN3/NN3zeA6LHNPgAASAUpFdAkdnEEEB9G0AAAgJulXEBjkxAAsai7Aywj8QAAwK1SKqAxxRFAvBhBAwAAbpZSAU1iBA1AbGztNvsAAADulXIBjRE0ALGou36VVgQAALhVSgU0Yw0jaADiklKNHgAASDspd61i2SMbQExs7R+WeY4AAMClUi+gMYIGIA5kMwAA4GYpFdCMVGejbACInGP9rYeRWIQGAABcK6UCmsQIGgAAAICzV8oFNDYJARAbf9thxFpWAADgXikV0Pw3qgaA6Dn2dEADAABwq5QKaJJhiiOAuBDQAACAm6VYQGOTEACxCmwSYhmJBwAA7pX0gGaMucIYs8kYs9UYc09TxzusHQEAAABwlkpqQDPGeCX9SdKVkgZLutkYMzjs8aLnG0BsbO0aNEM7AgAAXCvZI2hjJG211m631lZJelbStY09gCmOAOLBGjQAAOBmGUkuv5uknXX+XSppbPjDjfZmWE17fKg81sjIyCMjj/X/aayRx/83GRv4Ux5ZOf7NRYzVGf8z/m1H6v/99P3Wgn/WPludck3g7/XLMw2e2/9sjpza53dqzyVQbm35/lfpL0OB1+aRkWRs7SurU67n9KObem3SGWX6X+npskzY11b71TrP7ZxRltPgPax71zorG3g21flZ1S3TU68s1Z5nqJ9bcJv02p9sndd/+r08/bNSvfLqvJO1PzfVeR0Nf371n9cGOgnql2Vs/TpS92fV2Gvzl+HU+fnX/qt2K/j69fH0e1n3faz/M/PU+/nZwM0p6tbHuj8zqWH9r1/7TaCW1Pt51S0r8G/VKy9EnQzWf+PU1hFbr3z/+9jwtZ1RXuDriuB325GVz1hVG0cnPD4p0//T3lOnHfE0LK9BO+Jp0I6cfp/8NcExdd7TMO9l8HWGbEfq1A1Pvd/t+u+jc0b5ocsJVR+DZanuexn2tQXKq/O6nEbKCjQtjb+PZ/yu6cyfW5jft4btiZVt4n2s3x5H87sd6vUlsh0J10YGp+7H2o4k9H2s2ybb4HsY5rXVlq/a16dAW9OwnTxds+u/j2e2//7y6r8ep96/w72PTdX/UL9rTb22uvUi+NoallvbRkb9ex19O3L6rKMrzwnxPsbfjpxuj5PTjjT9MwtXTyJpj+t+jrq9HXHqvI8hy6qtF2HqY+AHUP99rNfKhH19qdCOqJE6Gfz9i7T+h2tH6v+sQl/XObXXJY58TSzZSnZAa5Ix5jZJt0lSl+7tNLg6q8GLtKoJXLr4/+0PQD6p9u+ewA/T4//51/7bqH4YOt3oKdAInZ4O5S/TUY0UKEuBc5B8snKMf3SvYXmewHN4Q5Tlr1iq++tZ+wN1Aq/LJ5+sJF+gLCdQlq9OWf7nUu15h3ttOuP1+b8aLMsGXottUEb41xb4e6Asj+q+ltOVO1iyAu+jzzinX0vtz0y1f/epbpir/z4Gv2ZsndcZ/HrdCxoZ/8/HWNUEyqn7Mwv+u255dcuqX2dOv4+151H7egMXSoH6WL+OnPk+1oR8baffR1PvfTz9wa/a4OJ/L0//Djgx1ce6r63ue1u3fgRrTbD+15j6daTuzy34Om0TdeT0+1j/9yz4Pir4+xto4HxRvLZQv9seSZnWoxbyKNeXoUG+HA3uOE4fHZyrYFgMNpbOGa8tdDtiGryP9X/X6teXur/f8bUj4X7XFPigaNCO1KnnPo8TeF0N2pEQr62xOnL6g1Dy6vSHVTBg2Ebex1C/a6aR8kyI13dm/Q/9PjZ8bZH+bjf8mQXrZFPtiE8K1P+my2r4Pga/llmnrDNfW6TtSIzvo6xqPPXbkaba/vrvmQIdNKdfc213jT3dvtjA89QELvDiaUfCvY/12+P69T+edqT+NYKkBuWGex/rfq41LCueduTMz5rY2pEmr0ciaEdCvbYz62OduhJHOxLJ71rIn5k1MnUuuGuvfZpoRxq+NhOiPLe0IxkKhufg8/p/10L9Xoerj3XrXvC9NLbuv898fZG2I6F+r0P9rkXUjjR4H2NpR8641jrjGrZ+/Q/1ux3J71rda5Hg17zWo2bKlDeYqMMwwXUZyWCMGS/pfmvt5YF//0iSrLW/CnX8qFGj7NKlSz/DMwQAAACAxDLGLLPWjgr1vWSvQVsiqZ8xppcxppmkmyS9luRzAgAAAICkSOoUR2ttjTHmO5LmSPJKmmGtXZfMcwIAAACAZEn6GjRr7VuS3kr2eQAAAABAsiV7iiMAAAAAIICABgAAAAAuQUADAAAAAJcgoAEAAACASxDQAAAAAMAlCGgAAAAA4BIENAAAAABwCQIaAAAAALgEAQ0AAAAAXIKABgAAAAAuQUADAAAAAJcgoAEAAACASxDQAAAAAMAlCGgAAAAA4BLGWpvsc4iYMeaApB3JPg+4WgdJB5N9EnA16giaQh1BU6gjaAp1BE3paa3tGOobKRXQgKYYY5Zaa0cl+zzgXtQRNIU6gqZQR9AU6gjiwRRHAAAAAHAJAhoAAAAAuAQBDWebx5N9AnA96giaQh1BU6gjaAp1BDFjDRoAAAAAuAQjaAAAAADgEgQ0AAAAAHAJAhoAAAAAuAQBDQAAAABcgoAGAAAAAC5BQAMAAAAAl8hI9glEo0OHDjY/Pz/ZpwEAAAAAMVu2bNlBa23HUN9LqYCWn5+vpUuXJvs0AAAAACBmxpgd4b7HFEcAAAAAcAkCGgAAAAC4BAENAAAAAFwipdagAQAAAEi+6upqlZaWqqKiItmn4mpZWVnKy8tTZmZmxI8hoAEAAACISmlpqVq1aqX8/HwZY5J9Oq5krdWhQ4dUWlqqXr16Rfw4pjgCAAAAiEpFRYXat29POGuEMUbt27ePepSRgAYAAAAgaoSzpsXyHhHQAAAAAMAlCGgAAAAAUk55ebkuuOAC+Xw+SdIVV1yhNm3aaMqUKfWOs9bq3nvvVf/+/TVo0CD9/ve/b/K5wz3XxIkTNXz4cA0fPlxdu3bV1KlTJUlvvPGGfvrTnybkdRHQAAAAAKScGTNmaNq0afJ6vZKku+++W08++eQZx82aNUs7d+7Uxo0btWHDBt10001NPne451qwYIFWrlyplStXavz48Zo2bZok6aqrrtLrr7+usrKyOF8VuzgCAAAAiMPPXl+n9buPJ/Q5B3dtrfuuLmj0mKeeekpPP/107b8nT56s+fPnn3HcY489pqeffloej39sqlOnTk2WH+65go4fP665c+dq5syZkvxrzS688EK98cYb+vznP9/k8zeGETQAAAAAKaWqqkrbt29Xfn5+k8du27ZNzz33nEaNGqUrr7xSW7Zsibv82bNna/LkyWrdunXt10aNGqUFCxbE/dyMoAEAAACIWVMjXf8OBw8eVJs2bSI6trKyUllZWVq6dKlefvll3XrrrXEHqWeeeUZf//rX632tU6dO2r17d1zPKzGCBgAAACDFZGdnR3x/sby8vNq1Ytddd51Wr14dV9kHDx7U4sWLddVVV9X7ekVFhbKzs+N6bomABgAAACDFtG3bVj6fL6KQNnXqVM2bN0+S9MEHH6h///6SpMWLF+srX/lK1GW/+OKLmjJlirKysup9ffPmzSosLIz6+RoioAFIG0eOHdDSdfOTfRoAACABLrvsMi1cuLD23xMnTtSNN96o999/X3l5eZozZ44k6Z577tFLL72kIUOG6Ec/+pH+/ve/S5JKSkrCjniFey5JevbZZ3XzzTef8Zh58+adMaoWC9agAUgbf3j1Dr1ds0qfFKxL9qkAAIA43X777XrkkUd0ySWXSFLYdWVt2rTRm2++ecbXFy1apNtvvz3kYxpboxZqd8d9+/apvLxcQ4YMieDMG0dAA5A2ympO6qSXiQMAAJwNRowYoYsuukg+n6/2XmjReOihhxJ2LiUlJfrNb36TkOcioAFIG1ZWkuT4fPLE0JADAAB3ufXWW5N9CpKk0aNHJ+y56EoGkEZs4P+dJJ8HAABAaAQ0AGnj9AgaAQ0AALgTAQ1A+vDnMzmMoAEAAJcioAFIG7UjaA4BDQCAVHfrrbeqU6dO9e499oUvfEHDhw/X8OHDlZ+fr+HDhyfvBGPEJiEA0oYN/mkJaAAApLpbbrlF3/nOd+rdbPq5556r/fv3v/995ebmJuPU4kJAA5BGGEEDAOBsMWnSJBUXF4f8nrVWzz//vObOnfvZnlQCENAApI3aKY7yJflMAAA4i7x9j7R3TWKfs/MQ6coHYn74ggULdM4556hfv34JPKnPBmvQAKSPwBxHywgaAABntWeeeUY333xzsk8jJoygAUgbwRE0a20TRwIAgIjFMdL171BTU6OXX35Zy5YtS/apxIQRNABpJDDF0dYk+TwAAMC/y3vvvaeBAwcqLy8v2acSEwIagLQRHDdzfIygAQCQ6m6++WaNHz9emzZtUl5enqZPny5JevbZZ1N2eqPEFEcAaYRNQgAAOHs888wzIb8+a9asz/ZEEowRNABpJLAGzWEEDQAAuBMBDUDaOL1JCLs4AgAAdyKgAUgfgYEzh10cAQCASxHQAKSN0yNorEEDAADuREADkD6M/w8rpjgCAAB3IqABSBvBG1Q7bBICAABcioAGIO1YhxE0AABSXWlpqa699lr169dPffr00R133KGqqqqwxx89elR//vOfa/+9e/du3XDDDQk5l/vvv18PP/xwQp6LgAYgbbCLIwAAZwdrraZNm6apU6dqy5Yt2rx5s06ePKl777037GMaBrSuXbvqxRdf/CxONyrcqBpA2mENGgAAqW3u3LnKysrSV7/6VUmS1+vVI488ol69eqlXr16aM2eOjh07pl27dulLX/qS7rvvPt1zzz3atm2bhg8frksvvVS33367pkyZorVr12rWrFmaPXu2Tp06pS1btuiuu+5SVVWVnnzySTVv3lxvvfWW2rVrp7/97W96/PHHVVVVpb59++rJJ59UTk5OQl8bAQ1A2giOoDlMcQQAIGEeXPygNh7emNDnHNhuoH445odhv79u3TqNHDmy3tdat26tHj16qKamRosXL9batWuVk5Oj0aNH66qrrtIDDzygtWvXauXKlZKk4uLieo9fu3atVqxYoYqKCvXt21cPPvigVqxYoTvvvFNPPPGEvve972natGn6xje+IUn6yU9+ounTp+u73/1uQl87UxwBpJFAQOM+aAAAnNUuvfRStW/fXtnZ2Zo2bZoWLlzY5GMuuugitWrVSh07dlRubq6uvvpqSdKQIUNqw9zatWs1ceJEDRkyRE899ZTWrVuX8HNnBA1A2gjGMtagAQCQOI2NdP27DB48+Iz1Y8ePH1dJSYkyMjJkjKn3vYb/DqV58+a1f/d4PLX/9ng8qqmpkSTdcsstmj17toYNG6ZZs2Zp/vz5cb6SMzGCBiCNBDcJYQQNAIBUNnnyZJWVlemJJ56QJPl8Pn3/+9/XLbfcopycHL377rs6fPiwysvLNXv2bE2YMEGtWrXSiRMn4ir3xIkT6tKli6qrq/XUU08l4qWcgYAGIG0Ec5nDCBoAACnNGKNXXnlFL7zwgvr166f+/fsrKytLv/zlLyVJY8aM0fXXX6+hQ4fq+uuv16hRo9S+fXtNmDBBhYWFuvvuu2Mq9+c//7nGjh2rCRMmaODAgYl8SbVMKvUkjxo1yi5dujTZpwEgRX37bxO1sNlRPX/+3zWoz9hknw4AAClrw4YNGjRoULJPI6RZs2Zp6dKl+uMf/5jsU5EU+r0yxiyz1o4KdTwjaADSRu0ujmyzDwAAXCqlNgnZf2SnamqqlZGRmexTAZCCghMGLNvsAwBw1rrlllt0yy23JPs0YpZSI2gHnOOqqqlK9mkASFlsEgIAANwtpQKaRM83gHgEAxrtCAAA8aLDs2mxvEcpF9Ac60v2KQBIUcEmkhtVAwAQn6ysLB06dIiQ1ghrrQ4dOqSsrKyoHpdSa9AkyefUJPsUAKSo0x8hjKABABCPvLw8lZaW6sCBA8k+FVfLyspSXl5eVI9JuYAmUjqAmAV2caQdAQAgLpmZmerVq1eyT+OslHpTHFmDBiBGwVhmHaZKAwAAd0q9gCYurADEKjiCRjsCAADcKfUCmo8LKwCxqd0kxGGKIwAAcKekBjRjzGBjzPPGmMeMMTdE8hjWjgCIFZuEAAAAt4s5oBljZhhj9htj1jb4+hXGmE3GmK3GmHuaeJorJf3BWvttSV+JpFyH+xcBiBmbhAAAAHeLZxfHWZL+KOmJ4BeMMV5Jf5J0qaRSSUuMMa9J8kr6VYPH3yrpSUn3GWOukdQ+kkIJaABiVRvLCGgAAMClYg5o1toPjTH5Db48RtJWa+12STLGPCvpWmvtryRNCfNUtweC3csRFcwujgBiZgP/TzsCAADcKdFr0LpJ2lnn36WBr4VkjMk3xjwu/yjcQ2GOuc0Ys9QYs1SSHLbHBhCj05uEENAAAIA7JfVG1dbaYkm3NXHM45Iel6TsXtmW7bEBxC44gsYURwAA4E6JHkHbJal7nX/nBb6WMJbtsQHEqPZG1axlBQAALpXogLZEUj9jTC9jTDNJN0l6LZEFOKwdARAnNhsCAABuFc82+89I+kTSAGNMqTHma9baGknfkTRH0gZJz1tr1yXmVP1YgwYgVrVTGxmIBwAALhXPLo43h/n6W5LeivmMmiyXnm8A8aEdAQAAbpXoKY7/dg5r0ADEiDVoAADA7VIuoFkxxRFArAK7OHKjagAA4FKpF9Do+QYQo9r7oLHZEAAAcKmUC2g+NgkBEKPaKY5MlQYAAC6VcgFNXFgBiBk3qgYAAO6WcgHNYQ0agBjVjqAxxREAALhU6gU0Or4BxIuGBAAAuFQKBjRG0ADEJji10WEXRwAA4FIpF9Asm4QAiNHpKY60IwAAwJ1SL6DR8w0gTrQjAADArVIwoLG4H0BsakfQCGgAAMClUi6gOUxxBBAz2+BPAAAAd0m5gMb9iwDEKth6OA4j8QAAwJ1SLqBxYQUgZsb/B/dBAwAAbpVyAY0RNACxCi49Yy0rAABwq5QLaA4XVgBiZI0/odHRAwAA3CrlAprlRtUAYlS7RYhDQAMAAO6UcgGNETQA8XIYQQMAAC6VcgFN3L8IQIxOtx509AAAAHdKuYDGDWYBxIt2BAAAuFXKBTRuVA0gVsHNQQhoAADArVIuoLE9NoBY1W4SQkADAAAuRUADkHa4UTUAAHCrlAto7I4NIFa1I2js4ggAAFwq5QIaI2gAYhcIZkxxBAAALpVyAc3hRtUAYsQaNAAA4HYpF9DECBqAODHFEQAAuFXKBTQurADE6vQIGh09AADAnVIuoDlMTQIQI6Y4AgAAt0u5gGZZgwYgVsb/ByNoAADArVIwoNHzDSA2tB4AAMDtCGgA0gb3QQMAAG6XggGNqUkAYuUPZnT0AAAAt0q5gOYQ0ADE6PQIGu0IAABwp5QLaPR8A4gX7QgAAHCr1Ato9HwDiBFr0AAAgNulXkBjiiOAGHEfNAAA4HapF9CSfQIAUh73UwQAAG6VegGNCysAMWKKIwAAcLsUDGhMcQQQG2uCf0nqaQAAAISVegGNKysAcaKjBwAAuFXqBTSuqwDEKNh80NEDAADcKuUCmiPWoAGIlQ38PwENAAC4U8oFNLE9NoAYnd5mP6mnAQAAEFbKBTTWjgCIlQ3xNwAAADdJvYCW7BMAkPIcOnoAAIBLpV5A4z5oAGLECBoAAHC7lAtoDhdWAGLEGjQAAOB2KRfQuLICELPAjaqtmOIIAADcKeUCmkNAAxCj2taDdgQAALhUygU01o4AiFXtFEfaEQAA4FIpF9Ach01CAMSHeAYAANwq5QIal1YAYnV6kxDaEQAA4E4pF9CYmgQgVqdbDzYJAQAA7pR6AY2ebwAxYg0aAABwu5QLaA493wDiRD8PAABwq5QLaFxZAYiVNbV/S+ZpAAAAhJVyAY37oAGI1elNQhiJBwAA7pRyAY2ebwCxsg3+BAAAcJuUC2gs7gcQP9oRAADgTqkX0JiaBCBG7OIIAADcLgUDGhdWAGJj5d8lhHYEAAC4VcoFNHZxBBArNgkBAABul3IBzWFqEoA40YoAAAC3SrmAZrlRNYAYsQYNAAC4XQoGNC6sAMSm9kbVTJUGAAAulXIBjQsrALFiBA0AALhdygU0dl8DECsCGgAAcLvUC2hcWAGIkQ3xNwAAADdJwYDGJiEAYnN6m30CGgAAcKeUC2h0fAOIlTWBG1Un+TwAAADCSbmARs83gPjRjgAAAHdKvYDGhRWAGNTt3KGjBwAAuFXKBTSHNWgAYmDt6baDjh4AAOBWKRfQuK4CEAvr1OncYQQNAAC4VOoFNBIagBjU3QGWVgQAALhVygU0pjgCiEXdKY5ENAAA4FYpF9CYmgQgJnU3CSGgAQAAl0q5gMaFFYBY1N8kBAAAwJ1SMKABQPSs9dX9V9LOAwAAoDEpGNC4sAIQvXojaEyVBgAALpVyAY01aABiUe9G1Uk8DwAAgMakXEBzLLs4AoieFbs4AgAA90u5gAYAMXHqbhJCQAMAAO6UcgGNCysAsah/o2raEQAA4E6fWUAzxvQ2xkw3xrzY2NcafQ5xYQUgNvU2BqEZAQAALhVRQDPGzDDG7DfGrG3w9SuMMZuMMVuNMfc09hzW2u3W2q819bWmENAAxKL+fdBoRwAAgDtlRHjcLEl/lPRE8AvGGK+kP0m6VFKppCXGmNckeSX9qsHjb7XW7o/7bMX22ABiQ0ADAACpIKKAZq390BiT3+DLYyRttdZulyRjzLOSrrXW/krSlISeJQDEqX4oI6ABAAB3imcNWjdJO+v8uzTwtZCMMe2NMX+RdK4x5kfhvhbicbcZY5YaY5YaS883gBhxo2oAAJACIp3iGDdr7SFJ32rqayEe97ikxyWpRX62tdwHDUAMuFE1AABIBfGMoO2S1L3Ov/MCXwMA16nfuUNEAwAA7hRPQFsiqZ8xppcxppmkmyS9lpjTCo8pjgBiUbftoBUBAABuFek2+89I+kTSAGNMqTHma9baGknfkTRH0gZJz1tr1/37TtWPgAYgFo7jq/077QgAAHCrSHdxvDnM19+S9FZCz6jJk/lMSwNw1mAXRwAA4H7xTHH8zBlJVmwSAiB61ql7HzQAAAB3SqmAJnFhBSA29Tp32GYfAAC4VAoGNC6sAESPbfYBAEAqSLmABgCxqD89mogGAADcKeUCGmvQAMTEYQQNAAC4X+oFNK6sAMSgbucOU6UBAIBbpVRA8+/iyIUVgOhZy+g7AABwv5QKaAAQq7qdO3T0AAAAt0q5gObmCyvrOKqsOPaZleerqZLjq/nMyvssy/LVVH2mZdW9RxZiYx3nM30fo/251bsPWpRzpZPx2j4r1ZWnPrPXZh3nM21H3Fwf4+H4alRRfuQz/bmdrWVVlB/5zOqkr6ZK1ZWnPpOypM/2M7uy4thn9nOrri5TRfmRz6Qs6bN9Hx1fzWf2PvpqqlRdXfaZlCVJ5WWHP7PPts/6M/vfISPZJxCtSAPaB5/+VjM2PqU1qpTXSoUmS1/qf6MuHne3jCexufTA/nX689z/1pzyXTrhMermk65uW6ivTH5YrVp3S2hZjq9Gb3zwU/1zx1vaZGqUIel8b65uG/19FQycltCyJGnT5jf010UPaFHNUZ0wUl/r1bTO43XTJb9TRmZWQss6dXKv/j7nO3r72Cbt8kqdfFYX5uTptot+rXPOGZrQsiTpoyV/1Ix1s7RCFbKSzlWWvl7wVZ03+vaEl7V/31o9ueB/9O7xrdrtsersSFe3LdDXLv2Dclp2SmhZNdUVevH9u/X8ng9VZHzKsdLYjLb6+ujva/DAqQktS5I2b31bf/z4//Sp75iqjFRom+kL+Z/T5yb+VN6MZgktq6zsoP7xzh169fBq7fJKuY7Vpdnd9K2LHmqyjsTSuTP/099o1sZntNZWyBppiLJ0y8CbdeG478f6EsLas3uZ/jT/h/qgcq+Oeox6+KSr2hbqlksfTXgd8dVU6aX379Yzu+drq8dRtmN1fkYbfWv8verf98qEliVJ6za+rOlLfquFNUdVYaTejkdfzLtYN0x+WB5vYj+Gjh0r0az3/ltvHdukPR6rtla6OLubvnnBA+rc5dyElmUdR3M/fUgzNj2rdaZaRtJIk63/HPRlTRzz/xJaliTt27daf533A80pL9Vxj1Enn9UN7Ybqq5f/SVnZbRNaVnXlKT0/9y69svdjbTU+NbPSGG8rfXv0XSoYdH1Cy5KkFav/qb+s+L2W2jI5kgbYDF3f7SJdd9GvEv5ZU3Zyv/7+zu16+egGHfIatXGsrszpqdsuflgdOg5KaFnWcTR/0W/1xKZntVIVciQV2kzdNujLumDcfye0LEkqLv5Aj310nz6uOqhjRurmGF2RO0C3Xvpowq9Haqor9M8539Fz+xep1Cu1cKzOz2ynb477sfr1vSKhZUnS2vUv6B/L/6C5NYdVZYwGOV59scfluubCXyS8HTlyeJtmzr1L7wQ+s1tY6ZLmnfX/LnlUHTsVJLQs6zh644P/0TPFb2mDqZZH0kDbTF8bcJMuPu8HCS1LknbvXqo/zLtb71cdULnHKN8nXdthhP7jkkeUndMuoWVVV5fptfn/o6dL39Nmj6Nm1mqiN1ffPe9+9elzaULLkqTlq57QrFV/1RLfMZ30GPX2Gd3c9QLdeMlvEn49cuTwNv353e/qnbISHTFSJ0e6ICdP37jgVwn5rDHR9iQnU6v8bHvLT8bqD1+fH/YYx1ejB1+aqqfLd6iHT7qwVW851tGHJ4tV4pWuzTxH9934mjIzcxJyThs3vaZvffRjHfdIVzY7R91bdNGqo1u1UKfU3Sf9+eI/Kj//goSUdexYie6afYM+VbkGOB5Nyu2vUzXleutUsU4a6Z4uF+sLl/8+IWVJ0rP/+q4e3DtPOVa6NKur2jXP1dLj27XCVGmUba5Hr3tFrXO7J6SsnTs/0n+9+y0Ve6ULTSsNaNVDxad2a17NYTW30q8Lvqnzx3w3IWX5aqr00MvX66nyYnXzSZe06iNJeu/ENu3ySjdlddc9189O2C/zouWP679X/V5lRhrvaamBLXto88md+sCeVA+fNP3KJxJ24XjyxB597+VrtEgVGupkaFTr3jpWdULvVezWCSPd0/lC3XzFHxNSliS98t7d+t/St9XSSpfn9FCLjGzNPbZZxV5pvLL122mvqmWrLgkpq6h4vr4z97sq8UoTlKOhrXtrZ9levVN9QNlW+t25d2nU8FvCPn7nzo/1ubnflCRNqm6jP319QdhjfTVVuv/5z2l29T718EmTWvWSVx7NO7FNJV7pC1nd9aME1pGPl/xJd619TNWSLmt+jjpnd9C648X6SGXq6ZP+cPEf1Cv/woSUdexYib4/+/raOnJem4E6UnlUb5XvVLmRftT1En3+st8lpCxJ+ufb39LD+xb660h2nnKbtdaiY1u12lOt85St317/mlq07JyQsrYXzdV/zbtDuz1WF3haq1/LPO0q36/3qg+quZV+N/x7GnPu1xNSVk11hX7x0rV6sXK38n1Gk3P7q9qp1nsntmu3V/p882768Q2vJayOLFj8e/1w3eOqNNJlmR3Vu1V3rTq6RR/Yk+rjM/rzFTPUteuohJR15PA2fefVG7TaU6OhTqZGte6l8poKzSnboaNG+knXS3XjZY8kpCxJevKtb+qh/R+pgyNd3rKXmnmb6ZPj27TB49MY21y/m/ZqwsJFUfF83T73uyr1WF3szVVBbh9tOb5D79YcUisr/baJdiQa1ZWn9JMXr9JbNYfU3SdNbt1XzbzN9M6R9Sr2Sl/J6a3vT3spYeHi/Y8f1D2bnpRX0qXNO6tjVjttPrlTHzon1NMx+svl09Wt25iElHXsaLH+3+zrtdxUaayyNKrNAO0rP6A55btUbqQfdr5IN13xh4SUZR1Hz71zR+31yJU5PdS+eRvNO7JeGzw+TVCOHrru5YTVkQ2bXtV3PrpXBz3SJE9rDWjVQ/srDurNyr1qYaVHR96jc4d+KSFlOb4a/ez5K/Vy1V71dzya0LqPfI5PH54oUrHX6gtZ3fXjG15LWB1ZuPgPumvdX+VImpKdpw7N22r58a1apAr19EmPXfoXde8+ISFlHT68VXe89nmtNNUa4Hh0abuhOlJ5VK+dKlKFkR7q9yVNnnBPQsqSpMdmf1F/PrZG7RyrS7Lz1KZ5rhYd3aJVnmpNMi318A1vJiyA7tixQLe+/20d9kiXZrRXXs452lG2Rx9UH1EzSY8M+38aO+K2Jp/HGLPMWhu64bbWpsx/LXtm2e/8bZJtzAPPX20LZxXaB5+/xlZVnar9enVVuf3jyzfZwlmF9t6nJlvH52v0eSKxau2zdtyMAnvJ9AK7Zeucet9btvIfdtKMAnvR9AK7a9eSuMuqKD9qvzxzhB0+s8A+P+d79c7/2NES+1//GGcLZxXa5+bcEXdZ1lr72tx7beGsQvudf4y3R48U1fveq+//yA6fWWC/MnOEraw4HndZ+/ettZdML7Dnzyiwi5f/vd73SkoW2htmDLUjZhbY5auejLssa639+TNX2MJZhfaB56+ud/6VFcftr5+/xhbOKrT/+8zlCSlrxZqn7IiZBXbq9CG2qGh+ve8tXjHdjptRYKdMH2IPHtgUd1lVFSftVwJ15OX37q5XR44fK7Xf+cd4Wzir0L787l1xl2WttS+8c6ctnFVob5s12h45vL32676aavvCO3fa4TML7JcTVEd271pqL5peYCeFqCNFRfPt1dOH2JEzCuzqtc+HfY4dJQtt4axCWzir0P7X385vtLyfPXO5LZxVaB996UZbXVVe+/WqqlP2oeev9def56bE96ICNmx81Y6eUWCnzRhqS0o+rve9xSum20kzCuzk6QV23941cZdVXnbY/seMc+25Mwvsy+/eVa+OHDm83X77H2Nt4axC+9K734+7LGut/edb37aFswrt/3viPHv8WGnt1x2fzz4/53t22MwCe+vMkbaq4mTcZe3Zs6K2jqxc80y975WUfGynTh9iR88osGvXvxh3WY7PZ//n6cm2cFahfeTF68+oI7958bqEtiMfL33MDp9ZYG+YMdTu2LGg3vc+WvxHO35Ggb18eqE9sH993GVVlB+1N84YZkfOKLBzPvx5ve8dP1ZaW0den/eTuMuy1tpn//VdWzir0H7viQn21KkDtV93fD47+/0f1n7WJKKOlJR8bC8M1JGlK2fV+9627e/Zq6cPsSNmnll/YuH4fPb7T060hbMK7WOz/6N+Hak4aX/x7Ods4axC++vnr4m7LGutXbPueTtiZoH94ozhdv++tfW+t2TFzNo6kqjPmi/PHGHPnVlgX5t7b73vHT601d4euB5J1GfN31+7xd9u/2OcPXa0pPbrjs9nn/3Xd+3wmQX2P2eOTMhnTUnJQjthRoG9dHqBXb9xdr3vbS+aZ6dML7TjZxTYbdvfj7ssx+ez9z19aeCz5gbrq6mu/V51VXntZ83DL0yNuyxr/W1FsB0pLV1U73ufLvurPT/wWdOw/sTixPHdduqMoXbkjAL7xrz/qfdZc/DAJvvFGefaYTP930uE5+d8zxbOKrQ/fupiW3bqUO3Xg3VkyMwC+81ZY2xNdWXcZe3ZvdxeOr3ATpxRYDdsfLXe90pKFtqpgeuRTVveavK5JC21YTJP0kNXNP+16pllb//bxLAv9M35P7WFswrtr56bEjaABUPaW/Pva/KNa8yhQ1vsxdML7BXTC+2e3ctDHrNl6xw7dkaB/dLMc+OuFA8GgsPbH/ws5Perqk7Zb/9jrB0+s8CuWRf+IjUSRUXz7egZ/gavbsit6+0P7k/IRWpNdaX9z5kj7egZZzaGQUcOb7dXTS+0F08vsIcPbY2rvNfm/tgWziq0v2mkwQteXL383t1xlXX06A578fQCe+X0wnoBpq5lK/9hR83wX4DEW0ceeG5Ko3W7quqU/cas0XbEzMgajsasWvusHT6zwH5r1tiwF05vf/CzhNWRL844146bUWA3b3k75DGHDm2xlwfqyNGjO0IeU1z8YW1A+/bfJoQt79X3f2QLZxXa3744LewxTb3XkTp4YJOdPL3xD8VggLtl5sh6H+Cx+Nkzl9shMwvsuwt+GfL7VVWn7G2zRtvhMwvsug2vxFXWqrXP2mEzC+x3/jE+bN0O/j4+8PzVcZXlq6m2X5812o5upI4c2L/eXja90F4+vbDeRV4sghcDv3/582GP+e2L02zhrMK4L0D271trJ8wosFNnDLUnju8Oecza9S/a0YF2JN468psXptrCWYV23icPh/x+ZcVxe8vMkXbkjAK7des7cZW1actbdvjMAvvtf4ytF2DqCn6uN/b7GImqipP2xhnD7HkzCuy27e+FPObwoa32ikA7UrdDIRZPvf1ftnBWoZ3+2ldDft/x+WpDWrztyIH96+3F0/0BLNxn5Oq1/gB326zRcdeR/w10YL39wf0hv19Vdcp+PfBZE28dWbxiuh0ys8De/eSksOf91vz7EhJ2fTXV9iszR9jxMwrO6CwL2rVriZ00o8B+bnph2M+aSL3y3g9qO3lCXbM6Pp/9+bNX2sJZhfa9hb+Kq6w9u5fbcYGOwHB1O/hZ87VZo+IexLj7yUl22MwC+9GSP4X8/qkT++wtM0cm5Hpk5Zpn7PAmAlgkbXYk/Ncjw+24GeE/Iw8e2GQvmO5vsyvKjzb6fI0FtLNmk5Ajh7fpV9tf0jAnU3dd90LYdWbfuvofKnC8enDbizp+bGfM5/Hnd76rQx7pkQm/CDs9rW+fy/STXtdppanW8+/FPtd8w6ZX9WTZdn0hq7uumPTTkMdkZubogWtfUDtH+p9F/xfzwk9fTZV+OO8ONZP0wBV/DzsV9IpJ9+nmrB76Z3mxVqz+Z0xlSdIL731fy0ylftzjKg0acG3IY9q07aWHJ/xChz3S7+Z8K+ayDh/eql8Vv6oRtpnumPpc2OPuuPZZjbTN9VDJWzp0cHPM5T385q067JEePu/natO2V8hjRgz7iv6n5zVabqr07Lvfi7mslWue0lNlRbopq7uuvOD+kMdkZubogaufVitH+umCH8W8WLemukL3Lf6lOjrSA1OfV2bzFiGPu2LST3VzVg89VVakVWufjaksSXr23Tu02lOt/+l9fdh1De3a9dVvzvuZDnmkX7/51ZDH1N1mP9zE7oMHNuiBHa9phG2m/3ftM2HP6fvXvaBhTqZ+vv1FHTm8LeLX0tCv59ymwx7pDxN+EXZdw8AB1+hH3a/UUlOpV+b+MOayFi1/XC9U7tItrfrrkvN/FPKYzMwc/fra59XGke7/5P746siiX6iDI/1y6gthp/ldfdEvdFNWd/2zrEgr1z4dU1mS9Ny739OnKtddXSeHrSMdOg7Sr8fcq70eq0ff/kbMZe3bt1oP7XpX45Wt2695Kuxx373mKQ11MvVg0cs6eqQo5vIeeOdbqpD024seDTtduGDQ9bq35xQtN1V6Lo52ZPmqJzTr5Bbd2Lxb2HWWzZq30kNXPakWkn764Q9i3kChurpMP1nwI7W20v9N+WfYdWafu+Bnur5ZF806sUkbNr0aU1mSNHPOt7TB49PPB3xFvXtNDnlM23Z99PD4+3XQI/0+jjpy5PA2/XHPBxqvbH31qr+HPMZ4PPrBtJc03PrbkXjqyK/nfEtHPdKjEx9Q23Z9Qh4zpOBG/aDLxfpY5Xp1Xujf/0h88Olv9XzlLt3asr+umHRfyGMyM3P0wFX/VI6V7l/ww5jrSGXFMf10+SPKc4zub2Qq6JUX3K/PN++mJ09t07oNL8VUliQ9/c53tNxU6Yc9p6h79/Ehj+nadZR+N/Ie7fJYPfp201PYwtm/b61+XfKm/7Nm6rMhr1mNx6MfTn1Bgxyvfr7pnzp2rCTm8v733W/LJ+l3l/wl7FTQgQOu0V3dLtEiVej1+T+Juaxlq/6ht32H9c02Q3XeqP8KeUxOy056eMrTamml+xf8OOY6Erwe6eQYPXjtc2E/a2687BFdk9lJ04+t0/qNs2MqSwpej9ToJ72mhV3T375Df/1f4Te11ePo969/JeayUi6ghfPX976n40a6f9IDjS4o9mY000/H368jHukP//pmTGUVFc/XixU7dUN2Dw0ccE2jx1416Wcap2z9Yc98nTi+K6by/rDoV2rtWN1x5d8aPa51bnf9eMCXtNXj6PUPQge5prw2/16t9/h0b+8b1Lnz8EaP/d7V/1Ann9Wvl/0mpt1yTp7Yoz/umaexytK1F/2q0WMHDrhG/9Gir16p3KNNW96MuizJH6rLjXTfBb9udF2IN6OZfnrBgyoz0l/fvzOmstZvnK1Xq/bqyy37Nbkxx9UX/p/GKVt/3vuhjh0tjros6zh6aOnD6uRId141q9Fj27Xrq7t7T9M6j0+vzb836rIk6eV592irx9EPB35Zubk9Gj32jqumq6MjPbTk1zHVkePHduqxvQs0Ttm6cmLoi4GggoHT9JVW/fV61b6QdSSSTUIee/9OlRvp/gsbX1CckZmln03y15E/vxvb2siVa57SWzWH9LXcIWE7J4KmXvygRthmerR0jspO7o+6LMdXo4dX/UldfdLtV81s9NjcNvn6QZ8btMHj09sLfx51WZL09sL/01av1Q/7f7HJdSF3Xv2EOvqsHlryUEx15OiRIv1+z3ydp2zdeGnj66KGFd6km3N66YWK0pjbkUff+558Rvrp5N83ui4kIzNLPz3/5zpmpOnvx9ZBt2nLm3rHd1S3tClscg3iNRf+UmNsc/05xs8a6zh6ePkj6uxId015otFjO3QcpLvyr9VqT03M7ciz796pDR6fftLvi2rXrm+jx975ub+rjZUe/iS2+njwwAb9/dAKTfa0bnLThYJB1+vG7B56obxERcXzYyrvT+98R2VG+uH5v2h0U7KMzCzdN/EBlRnpL+/GtqnM8lVP6G3fYX29zVAN6HdVo8feeMlvNcI20yM7346pHamprtDD62cp32f0nWuebPTY9h366797fE4rTbXe/bjxz/dwnpt7t0q90v8Mu105OR0aPfbOq2aqrZV+s+hXMbUjx46V6I97F2qiaaFrLvxlo8eeO/RLujmnl16sKNWWrf+KuixJevDdb6ta0v9e9LtG25HM5i10//j7ddgjTX/3jpjK+mTZX7TAntJ/dRwXNngG3TD5YRU6GXq0+LWYdsp0fDV6ePnv1Mlndctlja93b9+hv+7Kv1ZrPDV6a8HPoi5LkmbP/7G2ea3u7v9F5bbJb/TYH141S20c6eFP/y+msvbuWaFH9y7QBOXoc5Pub/TY88d8V9c366KnT23Tzp0fxVReygW0UBdZ+/at1nNlRbqueVf17XNZk88xeOBUXZ+VpxfLS7R378qoz+HRBfcqy0rfnvy7Jo81Ho/uHPtjnfAYPT0v+sWQK9c8pQX2lG7tMDqiBbAXj/+BhjgZerxkjmqqK6Iqq7q6TI+VvK0hToaumNh0wMvJ6aDv9Pyc1npqtGDJo1GVJUlPz/uBjnmM7hxzT0Q7a37jst+rhZX++mn0jf3evSv1csVOXZeVF7b3tK7evSZravOueqF8R0x15C+LH1JrK32jiQZK8teRu8b/VMc9Rs9+8D9Rl7VgyR+02lOjb3e/PKLd/j436X4VOF49XvKvmOrI30vf01AnQxePu7vJ41u07Kzbul2sVZ5qfbL8L1GVJUnPfvBjHfMY/fe4eyOqI1+75HdqGaaO1B9BO7Md2bVrsV6qKNX12T0i2pCjT59LdV1WN71UXqL9+9Y2eXxDf17+qNo5Vl+9vOmF9Mbj0X+PultHPEZPz4t+V68PlzyqjR5Ht+dfreZZuU0ef/n5P9EAx6O/bJ8ddc+mr6ZKjxe9pv6OR5PHN32uOTkd9F/dL9NqT40+XfF4VGVJ0j/m3q1TRrprwv9GVEe+dfmfYm5Hdu78SG9W79fNLfoqL29ck8cP6HeVpjTrpGdObNHBgxujLu9vix5UC8fqyxc90OSxxuPRf4/7sY56jF6IoR1ZtOJvWuOp0de7TY6oHZlywc812PHqbzveirodqSg/oul7P9JYZenS83/c5PG5uT309XMmaLGp1JKVM6IqS5KeW/i/qjDS9yY2fuEd9O3Jv1MzK/31o+gvGnfu/EQvVOzU57N7RrRLXd8+l+na5l304qkiHT68Nery/rDi9+oQwcWwJHm8Gfr+6B/E3I688/GvVOy1+t6AL0a00do1F/yffwObLS9E3Y5UVhzT9H0fa5yyNX5k0zNnWrbqots6T9QSU6kVa6Kf1fPs/Ht1ymN0x7ifRNSOfPPS3yvbSn/9NLI6VdeWrf/SO76j+s82herZc2KTxw8eOFVTMjvpqZNbdPDAhqjL+8uav6mLz+qLTXRgSf468t/Dv6P9XqNXYmhH3vv4Aa311Oj/5U+JaEOOKRf8XH18Rk8WvR51sC47uV9/3PmORthmmnxe07NLWud21ze6TNISU6klK6ZHVZYkTf/wXlUb6SeTH42ojtw++RFlWukvC2IbMEnBgHam5z76uRxJX5/4vxE/z9cm/q+spH8uuD+q8ktKFup957i+3GaI2nfoH9FjBg+cqommhZ4+vEJVlSeiKu/Pyx9Ve5/VzZMfiuh44/HoawNu0i6vNPfTh6Mq652PHtAer9Ftg74U8a0Ipky6X118VtM3RNcgVlee0jMHV2iCciLesjk3t4duzh2sd51j2rnzk6jKe3rhz+TI/3OP1NfO/5l8kl74JLoLueLiDzTfOaab2hRGvKvUgP5TdL5a6JlD0deRJzb+U+f4rK65MLLeZePx6BsDblapV3rvk19HVdZ7H/9ae7xG34iijlx34S/UwWf1z/WN98o3VFlxTE8dWqHz1aLJEaag3Nwe+nzrgXrfd1SlpZ82+G7jI2j//Pj/ZCR9/YLIP3BvnXC/HEn/XBhdA7x12zv6ROX6codRTfYMBw0rvEkTlKOnDyyNegrzrI3PqIvP6sqJkU1b8Xgz9LXe12mHV1qwJLqdYd/56Jcq9lrd1veGiHceu2bSz9TBZ/WPtY2P7jVUXnZYzx/fqEu8bSLe1jueduSJj38hr6T/vOAXET/mG+fdp0qP0QsLI297JGl70ft6p+awvpg7qMme4aCCgdM0Vll6+sDiqOvI39b8TZ18VtdeENl5Go9H3+j3BZV4pfmLotvR8c2F/6dDXqNvDo18yvqNFz2gdo7VE6tDTxkMp7q6TC8eWaPzPS0j3lG5fYf+ur5FL82pPqB9+1ZHVd6Lix+WkfS1CyP/3PjPcT9SpcfouQ+ja0fWbXxZS02lvtr5vIh3pxta8AWdp2w9E2U7Yh1HM7fPVm+f0UXj7oroMd6MZvp672u13WujbkfeWvh/Ouwx+vqQyHddnXbBL9TGsZq5KrrOwPKyw3rq8ApNMi01oP+UiB7Tpm0v3dR6gN6pOay9e1ZEVd4/Fj+sbMfqS1HUkW+e/zNVGaMXPopuFHndxpe13FTpP845T82at4roMaOGfVVDnUw9sfuDqKe5P7tttvJ80tUXRDZKZTwe3dztQq33+LRqfXRLIWYv/JkOeY3uHPX9iK9HbrjoV2rnWD25JrqOnqNHivRKWYmubt45os45SerYqUDXtcjXW1X7YuroT8GAVv8iq7rylF48tkEXenMjftMkqVu3MZqc0Vavntwa1c2lX1zyW3mt1Y3nRTet4z8GfUmHPUZzPn4w4sfs3PmRPlG5bm5/bsQXcZJ04Zg7lefz/6JE4/niN5XvkyaNjnwYPTMzRzd3Gqvlpkrbi+ZG/Lh3P/21DnqNvjQouq1qvzDhJ/Jaq5cW/ybix1RVntDsE1t0kbdNVFsMd+8+XhM9rfTSkXVRfZC9tPR38kq6aeL9ET9Gkr40+Es65DWavzjy0cjtRe9rkSp0U8dRUd064sIxd6qrT3qx6PWozvHFojfULco60qx5K93YdogWOiejGup/f9Fvddhj9OWC6OZw33z+T2UkvdygjtTtnXMa3F6kvOywXjm5XZdldmhyam9d3buP1wXeXL16fHNUdeSFZb9XprWaNiG6ef5fHHiTDniN3v8k8s6XouL5WmYq9YWOo6OqI5ec9wN18lk9syn8es1Qntr+mvJ9RpeeF/k6l2Ad+die0p7dyyJ+3Fsf/ULHPUZfGhrdWpDPn/djeaJsR8rLDuvNshJdltkxqvsg5edfoImmhZ47vDqqOvL8kt8pQ9KXL2x69Kyum/vdoH1eo4+WPRbxY9ZtfFmLTaX+s/N5EY2wBl049k518lm9sv21iB9jHUfPlb6vvo5Ho4aFXi8aSlZ2W93QpkAfOMejakfmfvobHfQa3TTgCxE/RpK+OP7H8kl6KYrpedWVpzT7+CZN8uRGde/O3r0u1nnK1iuHV0d1Qfzcij8r27G67vzGp383dFP/z2u/1+iDRZF/1mzY/Jo2ehzd3PWCqLZ8v3zCj9Q5hnbk+Z3vqZ/j0ZjhkQe07Jx2uqH1QH3oHI9qVsPsD3+qIx6jrw+P7h6oN469W9YYzY6iHTl+bKfmVO7VVdndwq5ND6Vnz4maaFro+cOroxqxfmnl48pyrKY1sUSgLuPx6Mt9pqrUK32y/K8RP664+AMtMZW6vuPIqOrI1RN+opaO1dMrIy/LOo5e2L1AhU6Ghhd+MeLHNc/K1fW5g/WBcyyqz5q3F/1GlR6jL46Ibiryl8/7iXySXvk0us5wKSUDWn0Llz+mIx6j6/vfEPVzXT/wZh31GM1b/LuIjnd8NXrz2GZN9LRWp3MKoypr/IhvKc8nvV7yTsSPeWXJo/JYq6kRTCWry5vRTNe0G6olpjLinp2dOz/RclOla6P8xZKkq8feJa+1enX5nyJ+zOvFc9TFZ3XeyG9HVdY55wzVJE+uXj22MeIPsg+W/EFHPEY3DLwpqrIk6fq+1+mQ1+iT5Y2v/wuqqa7QG8e36HxPa3XoMDCqssade5s6+axeLYp8bczryx+T11pNHR/d9FlvRjNd32G4FqkixEhTaLt2LdZiU6lpHYZHXUemjfdPP3hjWeR15OXit9TN539fonHOOUM1zrTQG0c31JtWU79zp35LMm/JozrlMbp+cPT3trmu3zQd9hgtXPrniI6vri7TW6eKNTmjXZNrbxqaMPJ2dfZZvV78dsSPeWXZ75Vhra4dF92UpszMHF3bZpA+sad0YP+6iB5TVDxfqzzVur7TmKjryDWj75A1Rq8t+V3Ej3l91wfq7TM6d0h0P7fOnYdrkqe1Xj+2MeKpV+8vfkQnPEbXF3w5qrIk6Ya+03TIa/TpishGf6orT+nNU0W6OKNd2E0fwpk0+rtq51i9tuWViB/z+uqZamatpk6IbkpTRmaWrm0zSAudExFPvdq6/R1t8Ph0Q+cJEfd6B9047h5ZY/Tm8sjD53PbXlU3n/93Jxrdu4/XWJOjV4+sjbyOLPqNDnuMbhwYXRiUpOt6TdEer9GiFZF91lSUH9Gcir26Iqtz1Pf/mjT6/6mjz+rNKD5rXl39dzWzVleOj+56JDMzR9e0LYiqHdm67R2t9dTounPGRV1Hrh35XTnG6PUoQtNrez7SIMcb9b3N8vLGaayy9NqhVRFPz/vXot+owmN0w/Do90CY1vtaHfQaLVoZWTtSWXFM/yov1SXNOkZdRy4ee6faOFYvb3o+4se8tPR3yrBWU8dFt5lVTstOmtqil96tORTxplvrN72irV6rG/IujqosSZo25r/lGKN/LY/sM1uSXt/zkfo7nib3nWgoL2+cxphsvXZ4TdRTOFMqoBlJDS+s3tj2qto5VuNHRF/Zx517mzr4rN7Z8V5Ex69Y+5T2e42u7Bn93c893gxdkTtAi21ZRBXQOo7+dXSDxpqcqHrigq4a4Q8+by+L7KbEc1b4pwRMGRX9ItQOHQdpnGmhd45tjqgCHj1SpE/tSV2R2z+mmy9e1esKHfQaLVsT2ZS5d4r/pXaOjfpCX5ImjrxduY7VG1tejuj4pav/oYNeo2t6RzZNoi5vRjNNyR2gj5wTEW0WYh1Hbx3bpHGmRdRhUJKuPNc/vej9VZEN9b+z4q+Bx4XelakxnTsP10hl6e3DayOqIwcPbtRiW65r2hbGVEeu7nm59nhNvZ0BG9vF8a0d76izz2rU0FuiLuv8kbertWP1XtFbER2/ZOVMHfUYXdG78QX9oXgzmumK1v30sXMioh29rOPonWNbNN7TUh06Doq6vCnnfluOMXorwjWmb674izzW6qox0W+uk5c3TiNsM71zOLIpZXv3rtRyVejK9kOjvoiTpCt6XKL9XqPV6yPr2X+nZK46+axGDol+V65o25FPVj6uox6ja/pdF3VZmZk5urJFL833HdWpk3ubPL6mukJvnyrSBd42ap3bPeryrhz6NTnGaG6Ea0zfW/uEjLW6fFT0m+t07nKuRthmevvQ6ojakf371mqJqdTU9sNiumH41J5XaLfX/9kfiVeK3lBXn3TeiOh3G7547J1q4Vi9szWynSoXLHtMZR6jz/W/MeqyvBnNdEmLnlpQczSizUIcX43ePVmsSd42TW4MFcrV5/5XdO3IysfltVafGxN6J9HG5OdfoKFOpuYcjLRz+iOt9dToyo4joy5Lkq7sOkk7vdLGLZHNRnl/z8fq6ZMG958adVkTR/2XWjlWb26OrB1ZuPwvOuExunpA9HWkWfNWuqpFL833HYmoHamuLtNrJ7boQm+bmD5rrh76NdUYo/kRtiNz1v1TGdbqktHRtyN5eeNU6GRozoHIRtB2716qNZ4afa7DiKjLkqRrul+qUq+0en3kYVdKsYAmSXVnJlVXntLC6iO6OLtbVFN3gjzeDF2ck6eFNUci2q3m3U0vqrljdUGUoz5BlxV+WT5jNC+C3r9NW97QTq90WdfzYyqrR4/zNcjxat7BlREdP//QGhU6GWFvGdCUi7uMV6nX3zvaZFnL/6IaY3R5QfSjFZI0aeTtynas/rXpxSaPraw4pg+rD+vi7G4xfUBnNm+hS7K66sPqQxFNT5q79TVlOVbnx/ABLUkXD7hRPmO0MIKF8Ju2vKHdXunyvMjWVTTUvfsE9XM8mhthI/XugeUqcLxN7gIVzpVdJqjIa7W96P0mj523/K+yxmhyYWx15IKR31aGtZpXZxQh3Ahaedlhfeo7oUta9oopDGZkZumCZp00v3J/RFNP3t32mlrEUUeuKPiS/4NsWdO9f+s3z9Yur3Rpt0kxldW718Xq73g0/8DyiI6ff3SDhqt5VFMA67q440ht9jgRrQ2bv3K6rDG6bOitMZV1wchvK9NavbOx6Q/NspP79bHvmC5pmR9THcls3kIXZ3XWgqqDEbUj721/Uy0dq/HDY9vGe3K/qao2Rh9H0I6s2fCiDnuMLuvZ9AZbofTtfZnyfdI7ez+O6Ph3j6zTCGXFdBEnSVd0Hq/tXqvikg+bPHbeSv+mM5cW/mdMZQXbkflbZjd57Inju7TYluny3H4xfdY0a95KkzLba17F7ohmh7xbPEftHKtRQ2N7bZcOuF6VHqOFEWzMs3r9czrgNbqke/SjFZI/NPVzPPogwnbk/WObNcpkR7zOv6FLO47QBo8votkh76/yr3u9fERs13UXj/wvea3VO2sb39VS8u8UudiWaXJu/5g6lZpn5eqi5p20oGp/RHVkbvE7au1YjR52S9RlSdLk/tdF3I4sX/NPHfYYTelzdUxlDep/jbr5pHd2LWjyWOs4evf4Vo01LSJen9vQpR3O1TqPL6JZZvNW+TcUuSTmz5pvyWutPtgc3S0gUi6g1b2wWrr2SZV5jC7Ij+2DRZIu7jNF5R6jxaubHo1ZeLJYoz0t1aJl55jKGtjvanXyWS3cs6jJY+dteE7GWl08MvrRiqAL2gzSKlU2OWJ36OBmrTZVmtR2cMxlXTTcf8+YD9aHv3dU0Ie7P1Inn42pB0nyzzMfn5Grj8p2NdmLunSNv45cHMNoRdDEnpN1ymO0cm3jr806juae2qHzMnIjXrDd0JBBN6idY/VB6QdNHrtwk/+XfeLQyNdxNHRRm4FaqcomR2MOHdysNZ4aXdRuSMxlTQqMTi2M4IJ4/t5PleeT+ve5MqayWrbqojEmR/OPn94VLdwI2uLVs1TpMZrYK7JNJkK5qOclOu4xWrmu8UXO1nG0sGyXxme0iWqtT12D+l+r9j6rj3ZHEGI2vCCPtbooxosPSbogt79WqKLJOrJ791Jt8ji6qENsnTySdHGgLs9fM6vJYz/av0x5PqlXzwtjKqtlqy4abXL08Ymm7z+1aM0TqvQYXdw3uuktdU3qPlknPEar1jVe/301VZpXsVeTmnUIe4/Bppxb+B/KdazmRTA75MMts+W1VudFsR6sLuPx6KLcflpmy5scjdm3b7W2eBxd2GF4TGVJ0vkF/yFJ+mTjC00eO2/vIvX0KaKde0MJ1pH5x5ue9fLRyumqMUYX9ZsWU1mSdHGPyTrsMVqzofHX5vhq9En1IZ3fvFOjtxVqzLkFX1Qrx+qjCD5r5m1+WRnWalIMM5WCJrXupxWqaPIWEEXF81Xktbr4nMjXizc0edjXJEnzVje96dCCgyvVz/Goa9dRMZXVtl0fnassLTy+pcljP139D38d6R97HZnQbaKOeozWN3FPQF9NlT6o3KcLmnWKaQBD8teRSNuRD7a9qWbWanyM1yPG49HFrXprsT2p8rLDjR5bsvMjlXqlC+OoI5MG+5e8LIwgWM/bv1R9fSaiHTdDyc3toXOVpfnHoruvbsoFtLq94B9t/5eaWasxMfYgSdLIwv9QM2u1qKTxDS527vxIO7zS+Z1iG+KU/BXw/Owu+rTmSJM97YuPbtJAmxH1GpW6Lhx4gxxj9NHqWY0et2jdU7LGaGKMgUny71bT3/Fo8ZHG1yFUV57SxzVHNTG7a0w9SEHjO47Qbq+0s7TxXtuPit9VM2s1KsaRGEkaN/Q/lWGtFmxvfL5+0Y752uc1mth5bMxlebwZOr95J31afajJdQ8LDq/VIMcbc0+0JJ3X+3NyjNGSNY1P4fkk0IidH0cd6dzlXPV1PFrQxKhudXWZlvhOaEKL7nHVkUmdRqnYq9OjMTb0CNrCHe8p27EaNTT2G0qOHfJleazVp0WN3xNne9H72us1Ou+c0TGX5fFm6LwI68jHRzep0GZGtRi9oUn9r5PPGH2yalbjZa3zTyedVHBzzGV17z5e+T5p0cHGpzlWVZ7QIt/xuOvI+PZDtc1rm9xQ4JOSecp2rM6N47WNG3aLvx3Z1vhUqI1b39BRj9HEbrFdDEj+Ud3zMtvrk8r9TXZiLTi+RecqK6bpjUHj8y9TjTFauq7xTqyP1/p3+z1vYGQ794bSvft4dfdJH+9vfDSmqvKEljmndH7L/DjbkREq9lrt3r200eMWlH6gXMdq6ODPx1zW+KFfkbFWn2xrfLr0hi2v6ajHaFyX82IuKyMzS+My2uij8j1N1pFFx7dpqJpHvY6prol9r1aNMVq8pvEL4o83+KccXzAk9uu67t3Hq2cE7cjJE3u0XBWa1LpfzGVJ0nntBmujx2nyVhqf7lqolo5VYRz1f/wQfx1Z2MSo7vpNr+qYx2hiXmyzJ6TT7cinkbQjJ4o02rSI6BYd4UzIv1RVxmj5uqcbPe7TQOfM+EGx/6716XWJOvusPtq7uNHjKsqPaIUt14RWvWMuS5ImdRimLR4n4nWYUkoGtNOWnizWUGVFtcNhQ1nZbTVcWVp0srjR4z4JzB2dMCj6xb91nZc3SSc8Rms3hZ9DXF52WKtUobGtYr+okvwjdq0cq2VNVMBlexaphWM1qH9kW5mHM6pFd610ylRdeSrsMeu3vK5THqMJ3S+Mq6zgL+YnGxrvjf7kRJFGmJyYR7Qk/728hqq5lh5vvKd96WZ/j9aYAbH3jknS6HNG64jHaGvRu2GPqSg/otWq1LjW8TUaQwffqBzH6tPSxqcLfbL7I7VNQB05r2W+VtjyRm8lsHbDyyr3GI2L4wJVksYGwuTSzf5pjuFG0JaV7dJwT07EWxCH0jq3uwpsphY10UP2SWCKw4TC/4i5LEka33W8jniMNm8NfyF34vgurTVVGtcmtmlCQYUDpinbsVq2p/HpQsv2r1B7n1WvnhfFVd6YnG5a6jvRaCfW2o2vqNxjNL57bNN7g8b184+IfdrEBcEnp0o0ytsyrjrSslUXFaqZljXRjiwJ/EzHDo5+U6O6xp4zSge9RkU75oU95vixndpsfBrbNvo1rHWdO/gLEXV0frJnkTr4rPr1vjyu8sYF6khj07xWrX9eFR6jcT0ujKus0X3864mXbZrd6HHLKvZrVEZuTNMbg3Lb5KvAZurTo41f6C/a8oYkaXyc7ch5ncdoXxN15NjRYq03NRrXZkBcZQ0ZOE3NrNXyJkb+lxxcrW4+RbXjcihjcrppWRPtyIoNL6jGGI3vFfssLEk6r5//c3HR2ibakbLdGu3NjXnUU/KP2A2wXi1r4rNmUaBDeUxB5DschjK60wgd8BrtKAk/9fDgwY0q9lqNax/7DBtJGlHwRWVaq4+Lw1/7SNKn+5eri8+qR/cJMZdlPB6dl91Fi2qONtrRuWrDC6oyRmN6xPe5NjJQx5Y3cu3fUAoGNP+l1amTe7XB1GhkbuwjTEFj2w3SJo/T6MYMKw6uVgefVc8e8V00jghcvK8umR/2mDWbXlZ1AiqEN6OZRnhbaWnZnkaPW1a2W8M9LeL6YJGk0V0nqNxjtG7z7LDHrAp8gA+P80K/R/cJ6uizWnlwTdhjjh0t1lav1di2sY8wBY1s3VsbTLXKyg6GPWbJgRXq5LPqnhd7r6YkjRnkX9C7ZEv4ravXbHxZNcZoZLfY1igGZWbmaISnpZaWNT7tZHnFAY3MaBPT+pu6hncZqypjtLGRYLG4aI6MtRpVEN8Fap9el6itY7V0n7/n29GZAe3YsRJtNT6NiDPESNLY1n20RlWN1pGVh9ari8/GPJ0m6Nx+/nn+q4vDr+dbvv45OcZoXBxTwCV/L+owT46WN1JHrONoaeUBjWzWNq7RCkka022CTnmM1jVyQbyixH9BeW4cPdGS1L/v59TKsVqxP/w6zIMHNqjYK42N8+JDks5t2VPrTVWjt3ZZcnid8n0m5nV8QWMG+j9rFjfyPq7a9IqsMTq3e+y97JK/o3OYsrTk5I5Gj1tZdUijmrWLu46ce84onWqiE+vT4nfktVaj4rxA7dv7siY7OvfuXaldXmlk++h2dw5lXOs+Wq3KRqd5rTyyST19imv2hCSN6OsPn6u2hR/5X7b+eVljNKZXfKG6WfNWKlRzrTgZfqq046vRsppjGpV1TlxlSdKYruN10mO0YXP4EetVuz6Wx1oNiWNmiOTvDG/hWC2PoI6M6ZiAdiQnT6ud8kbD5+LD69XP8cS8ji9odOC9WdLIdd2Kjf7QcW7+JXGVlZ3TTsOVpaWNtCPWcbSi+qhGNu8YdzsyvNO5OuExKi4JP813UfF78lqrkQXxDc4M6n+1sh2r5REscQpKrYBWp9t75YYX5RijkXH2jknSkG7+FL6+kUZqZeVBDc9sE3eF6NipQF190urD4XvI1pT67/EytH/s6x2CRrYbrGKvDTv0fvRIkbZ5rUa2ja93TDp9sbSqkfC58tAGdfUp7osP4/FoSGau1lSGvxheE2iYh3aPL1RL0oi8SaoxRqs3hF/kuaLqsEY2ax93HenadZS6+qTlh8JPu1oeeI+HD4r+9hINDc3tre0eJ+xOTYcOblapVxoWZy+7JA0LjFis3BE+WKw5tlW9HU9c0/Ikfx0ZmdFGyyoOSJJsiCmOKze8KGuMRvaMbfF7XcO6jZfPGG3cEj58rqw6rOHN2sddVreuY9TOsVrVSB1Zs2exvNaqIMKbfDdmZJv+2mJ8On5sZ8jv7927Qnu9RiM7RL/j7BllDfTX6dUl4Xv1Vx7ZpHyfiWsKuOSfLjrEk6M15eF3KVsd2J1tWAI+a4Z3Ha9qY7Q+zEWjdRyt9J3QyOzY1jnXlddtvDr5rJY3Ms1rRelCea3VkIHxjfpL0rBW+dpiasIGi/371mqP12hY+9jXOgcN7+tfU7yqkU2pVh8vUn+boZatusRVljejmc71ttKyRurI8k3+UfoRcY4MStLQruNU00gnlnUcrfId07Cs2KeSBeX3mKRWjtWqA6vCHrN6z2JlWKuCBFyPnNuqlzaY6rB1pLjkAx31GI08J/alJLVlDfDvgNpYO7Lq+Hb1t964puVJ/joyxJOjVeXhO8PXBH6ew3rEth6yrnM7j1a5x2hTmKmwjq9Gq5wyjcyJfUpqUM8eE9XOsVrZSDuyfPcnynKsBveLbYOQuoa06qnNpiZsJ9au3Yt1yGs0LAGdIcP7fE6StHJb+NvWrD7hb0di3XsiKDMzR0M92VpxqjTix6RUQDM6PYK2LpBChw6YGvfzDu7j3xxg/e7QyfbggQ0q9UrD28X/wSJJQ5u11Zqq8LtGrju6VXk+xbw7Tb2yAj2j67fNCfn99YFGY2hefCMxktS+Q3918VmtPbIp7DGrq49oWLPYpxvWNaRNP+3w+kNmKGt2fypjrQb3jX2DkKBhgQuYVaULQ37/0MHN2uc1Kmgb/0iMJBVk5mpj1dGw3191bIv6+ExMWx6fUVaXsbLG1NaFM8oK9Jwl4gK10zmF6uKzWnU49FpF6zhaV3NCBVkd4y5Lkgrb9NMur380VSGmOK7ds0Qea1UYZw+qJBUGGvu1u0LXkb17Vmif12hY+/g6JyR/+Bzqba01gfAZytrjReprvXFNAQ8a2u08WWO0IcwH2frASEZhnCMxkn9UoJPPat2R0FN4/CHmuIYn4AJVkoa27qMtxhd2g4vgBerAvp+Lu6zhgXZk9c7QPba7di/WcY/R4ASEGOPxqCAjVxsb+axZc6JY/W1GYupIIFhsCEy/aygYdIfGOTNEkvK6jVV7n9WKMBeN1nG0zilTQXb8IzGSVNi6l3Z4nLCj4+v3r1Iza9W/T+wbDdWWFdgYaW1p6Cllpbs+0WGP0fAEdIZ4vBka6mmhVRX7wh6z5kSxBtgMZWW3jbu8oV3GqMYYbdoeujN8/Y75kqTCBHSYdepYqA4+q/VHQndOO74arXHKNCy7a9xlSdKw1r21xfjCdnSu2btEmdZqQN/468i5gRlIq8LMoCgu+VBlHqOCDvGP1hmPR4M8LbSxsc7wU7s02DSPeVOjuoZ2Hu2vI2EGTFYHPoOG9YpvtE7yd1DkOlYr9q8M+X1fTZXWOuUamh1fJ09QQcse2mJqGl0GVFdKBTTp9IXVxmPF6u5T3KlW8gehbj5/MAplfaAxGZKAECNJhW0HardXOnw4THnVR1XYLP7GUJL6Byrx5n2hF1Sv37tEkjQwAR8sklSY2UbrwlwQHDm8Tfu8RoPbxLcgNygYKteGuSBYe3y7ejueuHtQJalV627K80mbTxSH/P6G7f4APKhr7BuE1DUot7dKvAq749WmmpMa3Dz+iypJKuznD7BrAyO3Da0JXKAO7h9/75gkFWS20aYw4XPf/tU66DUqaBf/aJ0kDezsv7fNpqL35NQbQfPbeGKH8h1PXGsUgzp0HKRzfFZrD4fuoFgXqCOJuECVpMLcPiry2pAXBNZxtMY5pcIETBWSpAGBqSub9obeKGHD/pXyWqv+veObThlUkJGrdWEuCPbuXaGjHqPCBIQYSRrSdZwcY7Rua5hgcaJYA21mQi5Q27Xrq04+q83HQu8KuC4QdAt6xB90JWlQ63wVhxkdt46jTU6ZBiWoM2RIP/90udU7Q69nXb3Pf4GaiKDrD5+ttLEq9EhMyc6PdMJjVJiAXnZJGtBpuKwx2rI99G52m8p2q6/NiHm3vLo6dipQp0Y6OtcV+c+hMMbdSxsa2rq3thlfyPDpq6nSWluhITmJCTGD8v2jR5t2hV7PuuHAajV3bMw7s9YVrCPrKkK3I6W7PtUpj9HgDvF3mEnSsG7nyTFG67eE3kxs1ckSDbKZca1jDTrnnGFq41htPhJ658h1xf6lJAVxrgcOGtSyu7YbX8i1446vRptVpYE5iQkxhYH2YU2YmVhr9q9QlhP/OlYpUEc8OdpYGbqjs3jHBzrlMRrSaVjcZUnSoI5DVWOMtjWyNKGulAtoQZurj2pAZmzbVIcyOLONNlQfDV3Wfv/wf78Yt+ptqH9n//D9luIzF1QfO1qsXV4lLMS0at1N3XzSpjAL09cf3eYfrUvASIwkDW7TVzuDIxYNbAp8sARff7wGBMLn1v2hp2dsrjmhgc3jn05WW15ma22uCj3sviEYdBPQaEjSoM7+Xf42huhFOnx4q/Z7jQa0iX/9peS/aOzss9oQpoNi66ndync8MW8L31C/lt1V4rEhp7kEQ8zgvNgX/9Y1MLAwd8PuxfWmOAZH4jfWHNfA5okZ0ZWkwsxcrQ9z0bj5wGoZa9U3Ue1I4ENj244zR2N271mq4x6jggSM1kn+0fGOPqtNYerIxhM71MvxJCTESFJhm94qDtNBsTmwXqB/l/g2EQgaGLho3LL3zHVo1nG0yVZoYHZiRuskqZ+3hTZXHgr5vXX7VyjDWvXrdWlCyiroMkrWGG3aduZUwAMH1uuIx6h/gj5rOnQYqHN8VpvChM/NJ3ept/Um5AJVkvq16KZi4wvZG72uOBhiEnOBOjDfP6KzadeZG1wEg+7ABAVdyd9Bsb4yTDtycJ281qpPfvyjTJLUv+NQWWO0vfjMqYAlpR+rzGNU2DH+0TpJ6tz5XLV2rDaGCZ8bTu1Sf2XGtYlGXQWtw0/f37LTP9Ohf4I6VQcERv22hOgMt46jzbZSgxIUYozHo/4mS5vDzKBYf2CVshIUdCVpYKdhqjFGW0Pcw7R016cq9xj1T8AyGUk655yhaudYbToaOnxuKdujvgmsIwNadNM24wt5f8o1gXZkSILa4wE9/JtabQgzE6uhlAtoVlZlJ/erxGM1oHV+wp63X6vu2uWxIW9YvfX4DnX22bi2mK1XVuCXJtQv8vYS/w+uT4IaRMkfLMKNWGyoPqpBmW0SVtagzv7ND7YUzz/je5sCF0AD4lxIGpTbJl8dfFbbjhef8b2TJ/Zor9eob6vEBE9J6t+yh0o8TshgsfF4kfJ8imur6roGBYLexj1nLjoOBt0BgdGhROjjbaGiMB0UW2tOqE+zNgkrq1/HIf4LghA7h20/6N+Ctn+C6kj7Dv3VyWe18egWOXWmOEr+qbF7vUYDc/skpCxJ6tuyu3Z6bMj585tPlKinYxIyWidJfQMhduueJWd8b3ugh7rPObHfk6yh/t4W2hQmWGxIdGdIJ/95bwuxeHvTfv+NRfv3Tkwd6dhxsFo5VtuOnhksDh7coOMeo7658e2WWlf/luEvCDaf3KU+CQwxA/P9FxYbQyxM37TD30E4IEFBV5L6eltoW5gZFFt8p9QvQdPbJal/hwLVGKPtIXratx7aIK+16p2ggNal8wi1cqw2hJgul+igK0l9W3bVTo8TMnxuOVmqno4nYXWkf2Djsy27z/ysCbYjfbvEfluQuozHo4EmS5vKz5xObB1HG22FBiZoWqok9e/kD5/FO8+cHRLsMOuTn5gOs8bakX37Vumkx6hfgjpVJal/i67aouqQO5luKtuT0KA7KPB7tCnELJvNgd0dB3Qbl5CyJKmvydK2itAdFFt95eqbwM+a/h0KVW2MinecOfK/7chmNbNWPROwj4Ek9ex+vrIdq42H1kd0fAoGNH+PsTVG/RMYYnq1GyBrjHaEuK/WlqrD6uttmbCyOnQYqHaO1ZYQv8jb9/kvPnp3S0yvjuQPFjs8zhkXjRXlR7TLY9UvgSGmV+CXtCjEqNbmY9vUwWfj3lWorj7ebG0LcdG4vcT/y9Y7QdMXJH9PoxNmeLqo+rj6ZCSujrTv0F+5jlXR8TN3M9ocDLoJmIMd1Cens4rkO6OxLys7qFKv1KdlYoKnJPULBIvNIdZ8Fp8sVSefjXvRdl19vDkqqjpyxghacAR7QAIWpAf1bjdATph2ZHP1MfVLYGdIt66jle1YbQmxVmv7Af/mIb3j3HW2rgEt87TN+M7YOezUyb3a7zXq07pnwsrKD1wQFu87sx3ZdLxYeQma3i75Lxr7mebaGqI3elugl71Pp+EJKUuS+rcvCHtBsMNXpl4JnBnSseNg5ThWJcfP3DlvU6CDsH+CRnQlqXdOZxWp5oxtq48dK9F+r1G/1vFt/FNXv27jJUlbQkyXKz61W90dk5A1MdLpOrI9xHS5rcER3QR2mPVqO0A+Y1QS6nqk5oT6JbDDLK/bOGU7VptDbFy27ZC/w6xXgi5QpdPBomEdOXR4s054jPrkJq6O5Afa9lDtSKI7zIzHo75h2pEtO/0hpm8C60j/dgNV4QldR4qdCvVKYIjp1nWMMqxV8bHtZ3wv0UFXknpnd9J2VZ1x77Ujh7fpkDfBHWaBXbdDhc/tZXvV03rj3uE8yOPNUB9lalt5+DWf9Y5PSKmfGSMrq+LAxX9+lwQ2iF38Iz9Fe+qvsaiprlCR8alfi8QMTQf182Rrc4jGvujoNjV3rLp2iW8b7rp6tOkjxxjt2lN/Cs+O0o9ljVGvdokLTJ3PGa4sx6ooxC/ytspD6ueNf45+XX2yz9E2VZ/xi7wtEGL6BD7EE6F34L4sxfvrL0z31VRph/GpV05iLhiD8tVMxSHqSPGJErV1rNq2S9zIT5+2/VTpMdrdYDSmKDB9rl+HxKzlkKTueePV3LHaGmKtVnHlEfXyZiesLEnqkdVBJaqpN4JmJe0IjNb17JqY3mFJ6h34AN6+u/77WFZ2UDsT3BkSbOy3hLiNRtHxYrV1bNw7YdbVM7eXaozR3n0r6319R6n/Ajk/QVNcJH/4zLBWRSGmVG6vOqa+GYkZPQjqk9VRW23lme1IYPF43wStCZOkPoG2vXhv/RkUVZUntNtj1bNFYtb7SP6Lxp7KUHGIEYsdJ0rV0WcTNuovSb3b9FGFx2h3g8/RLUX+zpB+5wxPWFn5PScpw1ptPXTmhkPbq48rP8F1pEeztipxKs/4+o5A+T0TNFVOknp38QeLhtcjZSf3a5dX6tcqcZ0hHm+G+ipTW0LsUrn9RKm6JLjDLL91vio8RgcO1h9FKNnlH8HrmaC1pZLUPW+cjLUqDrFWa2v1cfVNYGeIJPXJ6qBtIdqR4DKMvj3ju29jXX0DyyCKG9SRkyf26IDXKL9VXsLK8mY0Uw/Hox1lZ9aR4lO71TWBQVeSeuf21kmP0f4D9XcpDnaG9O2UwMGZnheEbUeKak6qd4LrSM9mbVTiK4/o2BQLaH4lR7fJWKu8rombmtEz7zwZa1XU4KJxz94VqjZGvRI4NC1J+VkdVaLqM76+vXyv8uWN+35TdXXv6G/wShuMagUvEHom8EPT481QvrwqKjuzh6BUNeqRwF4dSeqT20dlHqN9DXrIth/ZombWqlsCL767BtbOlR6rv55v955lqjJGvdokLjBJUq/m7VTknHmfk52Vh9VdmQktq09gaurW0vprLLbvDY7oJu53zZvRTHnWo9IG4dM6jopUrZ4JriM9W3XXCY/R0ZP11zOVHCtSprXqnMiLxh4TA+1I/d7oXbuXJrwzRJJ6N2+r4hCNfVHlIfUyzRNaVvcO/nakpEGwKAm0Kz06D09YWRmZWerheFTc4ILAOo5KjaMe2Ylb7yNJfXJ767jH6NCh+u3/tmNFynWs2rdPXPjMCwS00gYzKHaWfirHGOW3TdxUOUnqmdlaJb4zp1OWVB1Rd09i60ifwIjFtga9+tsDQbdPnPeIrCszM0fdHKOdDXqja6ortMPjqHeCO1V7tuymg15zxnqmkuM7lO1YdeyYuGDRK9AhsP1wwxDj7wzp1S5x9VGSejVvqx0h2pHtVUfU25uYUcig7u39G0CVNAgWOw76L8Z7dkncjIZmzVupq2O049Tuel/31VRpl8dR95zEBU9J6pPbS8c85owN4LYeL1ZHn03IztxBPbr5r21KDtefQVEcGPXv1T7++7/W1TOjlXZUn7lJSGn1cXVPcKdqn8Bn8rYGN8cuClzn9UnQGnXJ3450cYx2NejEqqw4pl0eq14tErO0Kahniy7a61Gj98IMSrmAZmVVUrZHXRyTsDnYkv9Gm90co+0n69+jIBhq8tonZle5oLwWXXXcY85YBF9UcyqhU1wkqXvg4ntng1/kHYGpUT3juBt7KL0y26jIV3/u/Inju3TMY9StZeJ6hyUpL3DhVNogoO0s369ujidhc7Alfx3p5LMqPVX/A7ooMHe/dwLX+0hSfqvuOug1Onmi/gjJTl+Fuidwiosk5Xf3XziVNOig2B2YYtk1QRu7BOVltFBpzcl6Xzt8eKtOeIzyEzhVTpJ6Bn53d9R5bVbSjvL96u54EjZ9QfLXka6OUVGDMFga6AnslsDeYUnqln2O9nt0xu5axbYyoVNcJKl7sIOiQYgJ9k73SOAaBEnqldlKRQ0uCA4cWK8Kj1H3BI5ESlL3QHAuDUwxDyqtPKweyoz73oZ1tWrdTW0cq50N6khxYMphfgJ7hyWpR4su2uWxZ6xn2ulUqkeCdgsO6pnnrwM7G0y73X2iVBnW6pwEv7Y8b45KG9SRXbuXqObf0KnaMxCKSnbVn5pdUnFQPeRNaB3JyemgLj6rohMNrkcO+Ef98zombkaDJHUNtCN164h1HBWrRr0SuEGOJPUItiMH649Y7Di6XRnWqksCpwFKUr43R8XV9S+G9+9fo2pj1D2BI5GSlBfoXNnd4HqktOpowjtDctvkq5VjtbPBNWtRYIZDrwStGwzKz+mkEo9zxjKInapW9wRutCVJPQODLzsbXI+UnihRM2vVqVP8tw+oK8+brV0N2pEdpR/LMUa9E9wZ0qNNX1ljtHPXmUs8GkqpgOa/D5pUUnVMPRKc2CWpuzdbuxv8kIIXI3kJ7GWXpK65+ZKk3XtPXxD4aqq012OVl+AGsV27vspxrHY2aOyLT+zSOT6bkHvg1NWjRRftbnBBEJxemZfgUaZuHf2/qLsbhM89NafU9d9QR/I8zbWzwSL44sA8/fwE9g5LUn4gWAR7xCT/B+hej1X3BE+nbN0qTy0cq92n6ofB3WV71cFnE7Y7X1BeVgeVyldvKsjOwBbuPRPcGdIz0EGx40TddThWJdUn1COB6waD8rxZZ7QjuwJT9fIS2DssSd1ye8oaoz17V9Z+raL8iA57jLq1SGwd6dSxUM0dq5IG6yJ3nNylzv+GOtIj5xzt9Dj11qrsDExd7p7AES1J6hoYHdxzqEE74itXl8x/Qx1RpnY22KVvR+CzpmeC25Geuf4p7qV1pi+XlR3UAa9R95aJHWVq26a3shyrPScbtCPlB9TFMQntDJGkvKz22qn6a5l2BaagB0d8E6XHOf5dU3c0uPguqTmpHgmeTilJXT1Z2tPweiQw6pqXwOUdktStdQ85xmhvnftBHTu2Q+Ueo64J7lTtfM5wZVirkgYzUUrK9iovwZ2qktQzu6NKGtSR0kCIyUtwO9Il8Nm1q8F0uT1OpboluONdknooQzsbzETZcXSbPNaqewKn3EpSz9zeqjJGe+rMoDh+bKeOeoy6t0zsKFOH9gOVYa32nqw/8llaflBdHZPQGWaS1K15W5U2mNG2K9AZ0r1j4vYxkKSegXC5o0FnYCgpFdAk/wjajn/DNChJ6tystfbYBj+kEzuV8W9I7N06+Iefd9WZh33o0GbVGKMuCa7sxuNRd3nP+EXeWX1UPTyJbQwlqUvLbrLGaH9gjY9Ut+cvsZW9S+fhMtZqV4OLxr2qUZfmbRJaliTlNWuj0gbrEPae2qdsxyo3N7G9cd0CUxR21xmx2LVnqRxj1D2BC6klfx3pYj3aU1E/fO6qOqquJrEXVZKU1+r/s/fe0XJc15X371Z1Dq9fzsiZBJiDSIqUGJRlJStHy5YsyR5nj8c5yPJo7BlLHkkOkmVZOUtWzoFiziRIgiCIDDzg5dA5V31/VN3u6n7dr7tf133ro0ZnLS0CEIBCV1ede87e++wzQUYTLK9UD+kZWxYy6nKDNj5+ObppcsZREJuYnFUglQMY8fYwY9aijFPJc4QMk95ed7+3CXtf3DnHXOTMrPXjUZdZJk33MGlqnK0bgj9biCvJI6PhMUpCsLxcnWc9a+fLTW4DZvbfd87hCGsaBtPCZDzgLoAFsMnbw1SdpGw6M0PUcM8tWIZUf5x3zHNM2TOSm11mmYSmMWpqTNc5sJ0rJhjX3X9GNkUmSGqC+Eo1/8/GTwEwOuiuxGuzPc98xmH/XSrmmNJMNrsMmAGMeCPM1p01U6lzxAx35wYBJmwG+dxc9RmZtnPKuMtnjccbYMIQnKmTpp4tJdnkcXdGHWA0NEJaq1WinLUbKFV5ZNpRjxSLGWY1GAu5f9Zs8vasmmeayS4waOCaQY4M2cw688hZG/TZ7LIsW/f4GDYE07laA7ipUpIJl30MwFK0LWu18uUZmUdcZqul0uTsUuM1As542jVoOcokNcG4y/pygLHgMPO6qJELTWXnGFeA/E3YNP85xxzCtP3gj7qoU5axyRNlqlQrcZk1Cox6e1y/1liv5bAz45AwSORvwmWpnM8fZciAc46ZN8kgjLmsLweYDI0yp4sa/fBsfokRU7gqcQEYtmca5h1SqClF6DDAmCfEdLlWdni+nGPC6z46LKUg56araNxs8izgfkL0ekMMGDDnKHYSokheE4y7DIYAjAYHmdeocTucyi0w6bIMCmDSRvWnHEPw03bxMdrnntNV5XqeMOfqpKmzZoFRn/t5ZCRqFaGzDhDrbOIUmmky5rKcOBQZps8wOe+QLy8uPUVeE4wqOGsmQ8NMa2aN1f5cIc6I6f6RPDxgFd9zDifHszKPuPyuAYzpAWbqnpFzZpFJl+WUAJN9VoM55ZhnmrHz5bCLDr4AwVA/vYbJnGOh88Lik5SEYNxFQwYZI4F+ZjWzRmUwlV9iEnfZA4BxG4A+51CiTNvA4OiAu3Oz0FiaOkeZEZ/7LNOI/d3MOfNI/BQel+ePwZIvRw2Tcw4lytzc4xhCMB5x/xnZFBpdlUfmiwmGhbsz6gDDdhM/69hxWwHeXSYwAEY1HzP1ShRKTLospwSYsEGIKYeR3kx6Go9p0t/vbvPZE9tE2DCZbeDTUB9PuwZtRSsDMOQy7Q4war/Isw4UaaqYYFKBVC4W20LIMDnvoHCn7eToNoMAMOSLMS+qid4ol5jXYDjg/sM+Omj9+2eWq83nVPo8UQXIH8CE5ue8Y8+bZBDGXGYQAMZ7NtVcA2CulGbYZX05WHIhr1n7Is/ZyJzb6DDAuK+P85QrPy+XCkxrJuMKWKYJu3iacrCs0+kZQoZJNOp+0zQoPMyJqs3+oma9C7IJcDNGw+MYQjA/X/1s50ppJhXIKYeGLsRjmpyzm1uAmRWLcRpT0MQP+XqYdzwjRrnEggbDCg7NkT5LDj27XB24n87MM6IAHQYYw8P5fJVBnpl7DIDxXvcb3fHoJspCsDBfBbFmS2lGFJw1Q3aumHPIDucS1vMy4rKiAWDMF6tRomQzSyzqgvGwe/utZMhZrClH8T2bXWCgbCp5RgbRmS8mKj+fX7SAkeEe9/PISGiUoqg1nJgqZ5hUAKqODF+EXpdHpm0J4pjLc4MAQ94oC2ZVdljIJ1nSBMMK2OoRCRg7lSjZeUYM4bqcEmAcnWlHHpGM07jLhT5YaqWyECw6pNlz5RzDCpjIEfs8mXMAxnP22Myogjwy6o0y4wBVk4lzJBT4GEDVSO+c48yeyS0yokBOCTBkaszmV1r+vqddgzavW/8dUpAQx+z5qBlnsjdLjCpAdYSmMW5qnHfIriSDoCQhBgdIaqKyiHtp+RglIRhxeU4FYNSeC5txJPvFQoJhBegwwLi3h/OOF1kyCGMu0+4AQ3YTv+DQz88ZRYYVsExC0xg2BHMO2eF82mrWBhSgmmPhURIOmn9+4Ql16LCdEOcc7loz+SVGTc11lglgSA+S00Tl5wndusaQy5JDgFH773QyyLPCYFhBHtE9PsYMwXS2iurPJKcQpsnIkPuo5qC/n2VRZQeXlo5SEoJhBXmkUhA4mJ+FUopBBegwwIQnwnmHXEhKi8dVAGY2CLGwUpVvzpklhn3u5xF/IGYxP9mqNHU+M4dumvT3uStxBBgLjbDgUKJM27MW4z1bXb/WsP3dLDiAzplCnBHhflEFMKT5mS852Ar7HBiyZ8rdjNEeC2CUDLJpGMwKk1EFYIjHG2DEEEw7npHp1DQBw6RPAUAxFOhjUaNiOLFgv2sjLs9EAozY0jwpfQVYLKUZ1tyX7gOM6xHOO9RK03aDPe4yowswGLWalUUHGK7qrAlFhonU5ZGF7AJe06Snx30wfCwwyKxmVmaQpV/DhMuSW4Ah2whkwdF8zhSTjCoA3gFGdD/zdUZ6jeJp16CZwiqyhhQkjTEbaZy2H3ajXGJZgwEFs0wAfbqflVK1IJhOzxBRMIMAMGTLdOYXLPtvmfRVIH+hyDA9hsm0g/lZLGcZUJQQ66Ug0zbiPuai7bGMQfsgXrARaKNcYk4zGQm4PxMJMKz5mHPQ/Au5RXoM01UHUxnjtnvitM0OqkSHo9FJfKbJYraqMZ8ppRlVMKcCMNikgR5WgGqO2lKQGfs5LObTJDXBgAK2GmBQ87LksFGfzs4pmUEAGAoNYzpQ/VkbDFHxjPT370I3TWYdcqFFI8+AApYJrDwy41AZTNuN4eiI+4DZoP2uzcctRrxYzLCgwUjAfbYaYBiduUKV+VnILzFgoAQdHrMBnRnbTGPRlkSpAFVjsS3odXlk1sgx4rI1vIwhb4R5Bzs4bzMIQy47vcFqBjmbWSCnCQaCas6aAeFhydF8TucXlQFmg6FhykKwYj8bc3aDNqSg0B+22Z1ZRxO/YBQYVJVH/DFmnXlESvcV5pEFO1dlM0skNcGIAtULwLCpMedgfhbyywwaKHlG5AyyXH2yYDfYKsAQuVN20SFfnjUKjCgwiAIY8kSYM1av2aqPp1WDJhw/HhxUkBBtHa18oeLx05SFYCDoPu0O0KuHWHEk+2mbQVAR8nBcsJvPOXvwflQBggowil5D4S4YBQY8ag7N/kA/JSFI2/MjC3ZjOKRABjhoH5oLtlxIMpHDCuQ7AMOecM3s1GIhwZCqZ8ROfPM2qr9sH2h9Cua0hKYxYMCi4xmZMUuMubw+QMZQkwZ6UAE7MmbPhUkGWRqh9Ctq4vu1IItG1ZRktpBgVBHLNGAjtgt20SjzyIgCwEz3+BgyYNZhOLFAmQFFh2a/v5esVp0vXc4t4TFNehQwyNU8Yr1jiwtHMBUxkQBDWoA5RxM/X0gxqIplsovsefvZWExaqHS/guJb0z30G7DokJTNUmZUEag65O9nQaMCBs5n5tBMk/5+98/REZtxmbWb+EV7zrRfgdkEQJ8eYNlx1syV0ozoahiEIftMWbDHOmbtM2e4z12XZ7Dm1PsNk1kn8yMMBhTMzYKVR5KaoFi0wPfl/AoRw8QfcJ/VGrTVGgv2OzZnS/SGFDCRAEO6nzkHO7hQVKdokKDf3KJFKizZNVe/y2ZsYM2pxwyzkkeMcolZzWRUFfAe6Geubr60UTytGjQZPkWHZiDYR8QwWc5LGaCVNPpDaorvPl+UFapf0FI5y4CihChf5DlbkiFlQ8MKClSAET3IrKMgWBQmA373ExRAr91Ay0J4OR8nrIhl6u3bjsc0mbeT/ZzNSKqYZQIY9vcxJ6ov8nw5w6CiZ6TPll3FbRnlclomRDWfbVB4WLCTfamYY1EXDCtKiIOOokaY1ixav6FmTiUSHSNgmCzZjcWSXXz0Kyq++71hlhxzYctGgX5VTKREbO2isZpH3AdDAEaEj1l75qdcKrAiYFARE9lnP3vLy1YeWSkk6FOEDvcP7EaYJgv2uzZjM5EjCtBhgBFfD3OOmZ8FI8uQIgahzy4OV2zAbDljLYDtU2B+BTAgdJaKVh6RDMKwIlB1KDRESQhW7LNmPrdIv4GSWab+/p0I02TeXqC7aL9z/QpmcAD6PWEWHc/IilGiV9EzMmQX2fP2fZSzTCMK5mYBRvAwU7CAl0I+SUITDCo6a3rt/BSPW7lxuZikzxRr/ZF1hxx1kHlkzm7ih1XlEW+UOSeDbOQZVOCqCNXnfEWC4Rmr5lKWR0yNpYKlVlqJn7KAdwVGcwDDoeGaPNIsnpYN2pDhvmOejJgpiBcsB6olu/joj6pJiL2BXlY0gWFr9eNGiZiiwmpoQGpsLcR2Nj1tzSAokHgB9HhCJE2raMxmlsgolHj12ezVcsJK8iuFJL2KEqLm8TNgmCzYTbycRRtUlRBDw2Q1QdJGyBaMojImMmYjVst2Ily26X4VMwgAA5qfhbKF2MrDrE+RfGfQYTwiM8cQupJrAfSYELelqUu2HLZfgfkJWIjtsoByyTo4V8wSMQVD4gBDNlOwYLODs+kZdNNUMhMJ0K8HWbbZweXl4xgKFQ3VPGIXVqU0vULNM+L1helz5hHbJn5IUfExFBhgUaPi9jZvlpvKfruNPjuPrMg8YssPexXlyH7Nz6I9Oxi3m5heVXnELholqj9fTDKkiInUPT56TJO4XTQu2nlkQAETCdDn72HZwQ7GhUGvorNGMsjzdh6Zy8zhM91fVSNjQPOzbJ810lBjUFHx3WeDgcv2s7hcytCn6BnxBWL0GAaL9py6fEZUjACBZQa14JgdXKTMoIK5WYBe+7yUAI9UNKgwEQMY0Hws2qRC3K4lY6qAHptBnqtb1l4fT8sGTRWlCtAjdBJ2slcpzQDoCw5iCEHSRmxVJsTe2FaL+bEPzaV8nD4D19cHyIh4QqRsdnDRljEMKEqIvRJpSVrN53Ipo6ywAhjEw4J9aMbtJqZXUdLoCVjW1InkOUzDYFGYDCoYAAaI2UzZii07XMov4TVNworkmwPeCIv2AtF4UiZENYWVU7deadA0NegwQEzolfnSRYXSDLCkk6YQrNiNxYqAXkUywAEb0JEy4qX8itI8EvMESNhAjxyEH1TEIPTZf++y/SyulHP0KjxrBtCZt+fCEva+n5iq4iM4iCkEifgUpWKOJa257LfbkEX2iv2ZlgpxYoaphGUCGHAwP3EbgFRWWEkGWTJoZXVMJECvqRG32cEl27ypXxWDEBigKASp1AxGuURcQI+i4ntQAsY2y7pUiDOgiK0G6NGDJOxnZMFWRg0qetcqQI9dP64YBXoVAe9gMT8LRYsdjGfV5pH+4AAlIUilZygWMyxpgiFVwHvMqrtX7BprqbBCv8JnZMATYtGeC0vY71qPojwyLBVtDpOoRvG0bNAGPOoSYo/mJ24jtotpmRDVoBG9tnRyOX4K0zCIC4gp0kVruodBA+ZtxDZZzhJV+PVHfVFSmsAs5itOZYMKZKkAfXZjsWzT/CtGnl5F7jtg6bDnDcvFLmHL2HoUsayyQUul50inZ8lqgiFFA8BeX5ioYRDP2zM4eXUSL4BBXy/LwqRslInbzXWvoia+P1YFWTTbbb/fqwYMAYgJL3EbsV22JUp9fe67TwH0h617thQ/SSGfJKsJehXJif2BGFHDZN4uBBKlLD0K80iPN0LcJsOlxGtAVR7psf7eJSnNM4rKJF5gOQJKxDaRWwGgR1FhFbVnshLpGRaXnsIUgiFF71owNEjAMFiReaSYpF/R3CzAgC/GomZimmalsIqFVeURq0GTZ82SWWZAaR7xEC9bZ82iLavvVzCnBdBvnyvLKydIpaYxhKA30KvkWoFgX10eyRFVCKrGvCES9pqVBXtVzaAiwKzPzk9yRGDJLNGnCHgHGNT8LNpgYNJ+53p61OTISh5Jnq8YRakC3qM9m9DM6sjRcjFDv8JnZMDXw6Jt7pKwWbuYInC6x5aBJxymJI3iadmgxRQ2aBZiayEtS7lFNNOkVxFi1WcX9SvxsyST5ygrTIhgsYNJ+0VOlPP0KKLdASK+HkpCkEvPKpdmSOnMim01vmKW6VMk8QIY8EQqO1wSdkJURbtHbEYpmV1gyWYQ+hUlRLAQ2+WiJfFdLqXVJsRgP4YQLCfPEbcZmVhEzZxW1DE0rWEd1FGFz0hM95OwtfpLWXVmEwAD9mdbip9lxZbKxRShmgD9pqig+kkjT1RhHon5omQ1QbGYqwzCDypYwA3QJ5kf+9CMC4M+hcX3oCdccQRMFBJoCtnqHplH0jOs2Pm4T9G1EIKYKVixVQZLpSx9mkImMthPXgjSmXniaVlYqckjkYh1z1J2Q50UEFVYfMc0Hys2YLyUWyaqaLYaqrODS4kzxG02vlfBXjIZMVOQsF0jU0aBqEpllDdCQoBhlFm0WdYBRY1uReKbnsc0DFaE5TegKgY9IRbsZyRRSOAz1RiSAESD1rmSTM+wZLPIA4reNc3jI2aYxPOWymCpnKVPIfA+4O8jpQny+SRxW2nWo6oesXNvqsUutKdlgxZWWFj1eMLEbWneUn6FXlOdfKdXonGp6Q1JiGHhISNfZKNAj67mcwFEJfOTPK9cmhEJj+BxIi3CpFdhQuzxRUnbaFyikCSsUL4TtfXsycwiKbtwlElSRfQKnbh9aC6Xc2oTos0gLy4fZ8UurHoUydcaFb4RhcV3rydE3JbmqZZmSAn2UvIcK/ZMR68iaQZAWOikbLe3pFEgqmh9BkCPLeeNJ6dYtgGYXkXId09sM5ppmbsY5ZIlFVXERAJEvWFSNliQKKaImgolXiHreUhk5klnLNYirBAM7ENjxTYAskxr1IGqEsFfXDpG3H5GehS52EmgJ1lIUCxmyGqCiCI5MUCvJ0jcloEvFhMMKJqtBuiXDHJiqqJoiIXU5ZGI0EjbKoOkWVSbR/wxTCFIpWcreaRPwQ5MqALGS7lFsrkl8pqgV5GrKFhAY0oyP8U0PWsbA3YVUvKXTM+TstnPqMJnpBeN5ZLtCWGWlALv0h11celoVRmlqB6JOPLIWvG0bNAiKhErXw8JW5q3XEzRp1Ca0Wcv3FvJzLGSsCVeYTXyNYCQ5iVtMz9Js0yPwkMzIpGW1DRpG0mNKkIjhKbRa1qua/lcnIwm6FNYWAU9QfJCUCoXSZTS9JjKLkXULj6SuSXSdkKM2M2viujV/BVTBtUJMWrLkNLpWeL2kHNvTA3L6vFWn/WcvUsxqrKJ90aJa2CaJsvFDH0qmUhbgr2YmalKRRW9awBR4SVla/WTZpmoIldRgJidRxLJ82Rs1k4Vy6TpXnoNk5VCnGRyypJ4KSysQp4gGWE9I4limh6FxXePfc+S2UVS9rsWUTTvCRbzI00ZloVBn8ImRhaNqdRMJY/EFOxcA0vi6zNNksUU6ZTF+kcVMVoAMU+YuN3Er5Rz9CpkIqV8cyk9y4qUiirMI2HhIWWfNSnTIKpwTitmn5nxxBSZYgaPaeJTlP+9wRhRw2Alv8KydAJXCZh5AqTt1KFccm6f2YnMPGn7XQsrBIz7hKcyy70sTPoVjQAB9DjYwbiUnMfUqF4CgV48pknKNiRsFk+rBk3WwRGfwmQf6KUkBNnUNDmjREhhYSWbsaVCghVbr9yjSnYChHU/aRvVTwiTqEKpaMRuLFLp2UphFVSYpHrRWS6mWZEuXooG4AHCNvOSzS6TKOXoUfiMyKY2mY9XCquwwsKq1xMkbjfxy8KkX5HTG0DIbqIzuRXi+WV006wgSypDLruPKEz2MX8PBSHI5pZJGQXCCmWAUbupTebirKSlVFTdfQxrXlIS6BEmPSoVDfaznkhNky1lCBimMkUDQB86y4UUyyvSDVAdYBb2hjGEIJdPkCznNySPJLLLlcIqohD57tMDxM1ihYlUCZiF7Pc4k48TL8TxmCZBhZ8takCymCZpNzERRaZNYAHGaU1QLObJGCXCCmWA0twlnltiRc7gKGIQACKarwIYJ4RJRKW3QEDmkRnSpSwhhWw1QK8pWC6mKnLiXoV1XdATtgDjUp6EkVMqOZfMdDK3XJH5RhTmSAkYF/JJ0qqBd6+VR7K5OIlikpBh4vWqOduEphExIeXYKdconl4Nmi0rU1pY2bMbicRZ8mYZn8JDM+gJ4jFN0uVcReLVq2ApsIyQHiCNgVEukVTo0ARVdiSVWSBTyhI0TDRdXeLo03ysGDlWpF27wjmtkI0Gp9NzJIw8PQoPTScVXkmIKiUF3gjLwsQol0hrgqhC5DtkS6wy+QTxQpKY4kOzPiIKJV4xv+2+GT9D1iwTVHho6t4gPtMkW8pWrM17FTEIABHdTwoD0zCsGRyVJgm2DDaRmbcKK2VXsq+neVkpZ1mxnRyVzWkBYZlHMvMkVEtFZR7Jx0nbspqQUqAnzDJl8vkEhhCEFapegva8TSWPKJQTA0QRpEpZUnYTE1WpaLBzVDx5lgxlQgoZtIDNFudKuYoboMo8Etb8pMyyddYIiCoE3mO2fC2eniVdzhFSqHoByfxkWLYVDX0qATM7/2Yy8ySMotrRFds3IZlfqdQjYYWqrz5PmBXKZO3nMaywHgnaTHg2HydRTBFT/IxETFHxhGgWT6sGTUprwwq7aKnVjyfPkzfLBBQ2aEIIgiZkyjniOTlfoUbiBRD2BMkKS1JmCFGZ71ARlcYiu0hmAxJiUHjJmmXiabUuXlB9/jK5RTshqpN4eXwhgoYtqbENScIqTUJ8MTKaqBQffo862UnQLggyhQQrpTQ9CuXEjSKq0Egj5sgjWcWFFUIQNE1y5TxxWzuvak4LIOIJksIkm1uiJARRlbITu0GKZ+fJlPMEFcoAAYLCQ84sV1y8elTmERsgy2QWSJglpXnEHxzAZ5okismK5DyisPns9UVJCCqy7IBXHTsScuSRRClLTHFZExU6yXKuOhOsEDCL2cxPPDlF2jQJKWziha4TNEyy5VxFKtqjEujxBEgLk0xmHkMIogrVGj2RKtCTLecJK35GAsJDziiRtk0gQgplgGG7sc2kF5SProRCw2imSbyQIFXciDxiAcbZrPU8BhSqNYJ2XZfNJ5UrowCiQiNly8CbhTpYV0HIBk3lDI50f0qkZ8hj4FOIfAMEEWTLBeK5OELhEj6AkDdMWggSK6cAa3BWVUhJTSq/TKacJ4TawsqveSiUDHIFizIOKGQHQ36bCs8sksCgR6E0AyBqQqqYribEiLqEGLKTvdxwH1DYoEkEP1NIES/niCl+1+pDqVTUbqLjqWmypklQYWEFEDCFVVgVEgQMdS5eYO04TAtIJi1ZdsSvUNHQYyG2iewSGaNASKgvrGbJVfOIws8m80g6u0hCGEqlomgaPYZJopjCb79noZBC+aYvgikEcdt5M6jws4WCvQBkCykSRo6YSjAEiGhekmaRpJwJVijdl8zPSnKajDAJK8zHQAXoKRpFoorlxGFPkJSwZgcBogrrESnVTOSWSBsFwoqL74DQSRoF8kWLIVFZj4SlxDe3pHx0RdM9RE2TZCGFaZTxmCZ+hd9b2BulJAQJWxkSVMiyBm22OltMETfyxBQqowAiwluZwWwWTy8Gza7xIwrRCImYxrNL5E2DgKa2aAwhyBoFMqUMQYWOkWDRw4YQzNvby3sUFqgROyGlcnEyZfWFlU/3kcekaFPGPoVJSs5OpXPLJAT0eNQlDYAeNJKlHOlCSulwM4DPLgDkfIVf5X0M2Q1aMU3CKBJTyCAAhIxae6uoQmmGRGzjmTmywiSo+LMFEeSMItlyHrVwgeV+aQjB3LK1B6dHIWAWsSXf8XycjFFUX1hpHnKmQb60AYWVzfyks0vKpaIAUTQSpQypUpqwYsm5z0bx5eLogMLPFgzIPJIibhSIKXSeBYhqflJmqSLxUplH5B6mRHqWrLDGFFRGAEG2nCdfLhBULfHyRigIwaK9l0yl5FzuKU3kl0kbJYKK6zq/8JDDIGc7IvuVAj1WPZLKLCgfXQGImhrJUoZUKUNY8ViCz2O9y3G7HlGbR6xzzAJ6ivQoftcimo+kPYPZLJ5WDVrFJEQh8ie/pFwpTR4Tn2I0LohOxiiRN4qoPVYgbCeJmRW7sFJ4H0PeEMKEZDlHxiwQUsyO+DUfBUwKJWupp8+n7kWWcoWV9Aw5TdCj0MULICI8JI08qVKGiGkqToh2YWWbTfgVIt/+QB+aaZItZciahloZIBCuKzgiIXVMpN8eOM6XsmRhAxo0jaxRoGgU8SourKQ07/zSUwBEFQI9uj9CtGwQLyTIGEXleSSg+cgJk1xRfWEVDlpnzVLyHEUh6FEoFQXoQSdZzpMpZVe9C26H3y6spGlNQCHyLfNxppghaRqEFb9rUT1IEoOkLV+LKNoDBVTAuFR+hZIQhFSyrMg8UiRvFPEpVr1Iad7M4lFAbR7xh4bwGwbxfIIMZcKKFQ1B3UseB9CjskGzG9u5leOYikdXwJLmJco50qUcEcWSc7/dJMUzdoOmkkGz80i2mCaFQURxgxbVA6TMtXciPK0aNBkqGzTNdm0pF3MUBARUN2hCJ2uWKBgFfMoLK+vFnbadhVQ6RmpCI4K1gDJrlJQXVj7dTx6TQtlq0LwqJTX27NKMvbuux9er7FoAUc1L0iiSLuUIK57TkoxZ0pYUBBS5GAEIj5+QaZIpZSlhoqvWfNelu0hUYWFlz9zkihnymiCoWAYbFDpZo0TBKCkvrKQUaSZ+yvq5wnyMEISAXClLxiwrncEBCOg+8kC+vHGF1bTNIPQotPQHK48kjAKpck75DE61sLLziMLCyhuI4TFNMqUMRUx8muI84g2RAlJyli+qzgBCAo0rWWu2NKQwHwMEhWzQSvgV5xFp9jaTOAVAVKEbIJpG2IRsMUPGNAgrZln9mo8cJnl7xkipDNAmFSr1iMJrAfQIH0mjQKqcJ6xYGVUBeux5z5BKN1gbIMiWMhQF+BSzrBFvkJRYu+h/WjZoYYWD2x6bDSmX8uSwpHMqI6h57AatrLywklr96Yy9v0XhjhOAsClImSXSpmKTBKwXuSAEBdvSXymDZkvzlisD8GoPzYjuJ0lpQxKiz/4sCbsg8KuUXdkmOdlSjjImHsUNWn1RGlRoEuKz71tCDomrLqw0nZxZIr8BDZo0yZm2V4NEFQI9AB4ERaNEBpOQ4nwc0H1kheVkB4oLK7sgWJTzFQodygB69ABJs0S6XCCi+F3z28+7dAMMqpRdaTohwyRbylmFlerZEW+ErCZYzscJKLTihqqiYdk2/wkpPNfAmp3KmiUKZgmf4rNGShpnUjKPqKvrwMojJbNERpiEFLOsAc1HDsiXNqBBs01qFjdgTgugR/eTMIukjTwR1coo+/lfkbWWwjzi9YXxmCa5UpYCKFfPRT0RUi2O6qdlg6ZyuFm3C4BS2WLQ/Iq/pJDwkjENCkZROWJVQVoKlhtgj0JDEgA/goJZJoOhXOLl0wPkhaCQtxb/+RQ2FhIgiNumHV7Fny2iB0ljbkhClAWBbCwCiguCEIJMOUcJ8CguCOp3CCmVikqzFdt5M6i4QQsILxmzTNEs4xOKGTRbCjKbl3v51JkkAHgRFM0yGWESVCw78esBSkKQsaVJKgurkG0kkyhaOcuruPn06z4KpknaLBJSPYMjC6tKHlErAw9huSEXAa/izyZdS2fyS0QUq1689jkWl6sRFDodgu1iapTIm2X8qvOxzRjP5GyzFYXmVwBeoGhYlv4hha6iYDPxAvLlHH5D7ViClPjGK3lEca2leSmYJimzRFg58C7rEfscVTin6ASMNyaPRCo7WZvF07JBU2mkIWVWhWKGkhBKbcbB0ipnMe2da4oToo3YzpSzaKZJWDHyXS2sUI5Y+b1BDCHI2geZSgZNDqXHbbZOeWHlDZBnYxJihfmx76NfMaofQiNTLlAWoCt+/vdoaptNZ/h9NhNpH5pBxQYQQc1LDsNCvlHMRNrP/4rdxHi8anOkM4+EVUtFbUlNophSX1jZyPeKvazU61GbI3WhUxImKbNMRLFUtMKg2TLAgGLZVRBBppynIMCrK0a+bYfU6VKaiGqpqN8Geuw8ElLc6AaEhywGBbOMXzHLGrHrkaWyPe+p+LN5bUO2guK9fGC5H5eFIFXOKfcWkITFil2PeBTXIx6hUQbSZpmIYqmoVPSs2GB4QGWDBlaDVskjau9jO+7HT8sGTWV47K45aydEv+rhfs1PVpgUNqJBsxHbaWEQ3YClwD4EBdOwGjTFhVVAzk4VJYOmLtnrHi8BwyRemXdT7KzlCZETYkMSot9ubGVjoXJ2BOyhdLNoMWiKEatf3fUr/MvMHBdli/gNtdC3RL7loaladhLQfWQxKZiG8jwi9z4lzCIAuuLvzSqsihQ2wCShwvwU08oLK48vTMAwWJF5RHlhpVcKq7BqJlI2aHbzGVC49gEghE7aLr59iptPj33vEmZJvTuxvI/2TGRI4UwkQFD32Q2agVc10GM3aHHDziOKAQovonJmq5acyxnMlWKGgOodsMEBhGmSMGQeUXsfPUKjhEkK9Wsf5N6zFdsNUymDhgX0JMtZTCHwKgbD2/menlZ70IKGQDfVPu2SQcvYhZVqBi2k+8kINgSxCtnSvBVdZ1NZ6aUA8AmNjFmiuAGFlWR+Urb7mkexhCGEfbDo6hNiwBuhLARxysoTomwsksWNQTVDmpcVo0QJlJuElA68jt/4RoTkcogXHlA7f6l5AnhNs1J8B72qCys/Oaw8ElEty640aGUQoKk+yIQgbhRAqC+sKgVBOau8sEIIQibWZ9PAsyGFFaSEtWxcZcjZVVkQqy6sQvbeKUB5YaXZJiRFQFc8luC1FQwr5TwICPvVrbQACEpzCwz8is1WIvZ6ghWsYsSrcMEygBeNFaMIWtWJVlVIU6hEOad8JlhoGiHTBsw08ChudD1Cpywgg7UTU2VUAQqZR9Q5fYJlkpOwjV1UAz2ijXrnacWglc3NXCH+U+k1dDsppe0Fg37FSGPQY81OZc0yPtUmCQ4UU/WWdACvsBMiG4BY2X9/spzDp9iKHqzZqbg8WBQnRDkHtqLryiVefpvpkUlKNfIdFB4yZpky4FFcEGBCEus5UYzzgKbjN03iplU0BhWvYgjqAbICChj4FM8peu1iu4BlEayrbtDQiNv7YkKKJbeSiU8YBeUzwQBhBAn7PipHvjUPJdiQfVoyH6/YTVNA4a48gJDwkLDPGtXGXlKKXRImmuJnRPME8Jgmy/L5t42+VEVQ91t5xFSfR3y27DVrL1BSzaB5hKg0g6qlon5b9h03CwQ2Io+YEDetz+ZR3Fjomk4ByGlCuTKqAvQYBXTTVA68B4VuAWaAT+EoFbQ30vG0atBAfWHlsZNSxu7Y/YobC/mAx9mABs0bxmPfvx7FLzGAD424XXyoLqwqDFo5r3xdAUAYnRXbItWruthxHCYhxbuSpLlF0pavqZ4dCek+MhiUBMpdHJ2PhfIGDfCZsGIfmkHVMzgeawYzhYFX8X2UhVTR/rmmeObHKxx5RPUMjgRDzJJykwSwnEXjMo8oZsetGTQobYB8R+asuFlCmGZln5eqCGreyjOiegZNIt9FQFdde2saPtNkRdjPv0LnWbCZeCHIYio3SJOARAEQptrF6WDlkYR9CoQUr7QI2DNu8Q3KIyFEJY+oZ9A85OznXn0esfMxBsENGMsJCI+lDAG8imtk7eetQRPUFlkqQjJoGRuN8ysfSrdnHjCVI1aa0BixrxFVjNaCzaDZT5hyxMpuLFJmCfWtp4XYZu1k4VWNIjnYl5BiqZAspBI2YqvSxQ4gpPlJY1AWAl3x8+8MU3kmAR9UDs2QYgZBukTGMfErngnT7INLNmi64oPMKzSSmlURhBUzun5ZWGES2IDjMSB08raTl+oGzaPplOxrqZ73rDDxwiSwAYVVSPNWADOf4jldKcUugXIGDcBvQsH+3qRjn6qQeSS5AQ7Wus0y5QWKp92s8KKRs/OIyn1aAAE5g4ypfHQFLOYnrW1MHtGFtuF5JG7nEdUR1LwkZB5RXCNrP28SRwBTMfStCSvlZmw0zq+aUrVf5IwmlCdEgDHN+jw9irXDAD6hU5QHi+rCSjI/GHg34EV2omLKJY6Ow0Tl7i6oNmRJIX+ulrELeQKVXSCqk70zdWwUgyaff9UzOBWTHE0oX7Cp2wxF0f7elDNojmMqqJhBlmYuGU1sSGHlVE2on0GrPheq3zUJ9GSFQO0JakVID1Qsq1XnYzmDVhIb06DJt0uYJgHFDZrMI1lNqJeK2s+7KURF2aMyvI4zW7XkXDLxWU0Q2Ig84siRyvOI5swjql2lrXxcEoLgBrxrQc1XAQNV30etjXU4T78GbQOuoSPI2F+S0kW9QMjx96surAD6deuB1wy1KAvUFh+qbcZ9diOR0oTyoVwAv6PYUc2gOec3gooPaLmeIKEJfBsgOwl6qoWVrngGbSNYM2c4n0PV35tzybF6kwTr7y/b35um2sXRkUdU52O/w21zIworZ9HoVQwGOmc8VTdozr1nAXMDCitHU6Z6lk9zSBw3okGTeSRommiqZ1kdIx2qF/Xqju9pQxg0x7umck8q1OYpv+LF6UCNc69HNRPvyIuqHXyd6qHABkhFgw5QwqcY6Pm5MwmBjUG+PQgy9sOguiBw2m+rRqwAtJL18mbSGyDxcjyAAeWFlfUipzRtQxo0ZzOturDyO9iXUFjdknaoJqWyEPg3gmVyzO+pbixqGDSlV7KitkFT6z4VqAF6FBcEmobHvpnaBhjy1DRoPsUujo6CQLVUFKiRtauXOG4c8u31RRD2M7IRJgnOBebKpUl2o2sKga54KTxU80jINEExiOXMI37F9Yhw5JGNELfX5hHF62McTH9gA/JIDdCzoXlENdBTvY/BDWhXavKIYuD959MkZAOuoQutoudV/SI7Z7P8G2DcERDW4VUyiy1+Z/exkci3dIRKaZryPVBQ16CpZtAc7EtQ8XJxj/BUC6uNkJ04igDVDJozNgLo8dvp1WOaeBUuTgcIOqSoyhs0qgfHRhwgG5lHnIWVfwNmImsljqpnRxyFlWojDW8Qv8wjG4F8O5ifjTBbkSE2kEELbQATWaPo2YA5dSlt3BgGrXoV5Qyao27ciNEVJ9CjmkFzPv+qHSM9DqAnuAH5OOi4d+qZ+J/HBm0DKisdjYyNCm8k0rIRhZVPSOekgvJrebWNkzg699X5NuCx9tcwaKpXCFQbQNWzTEKIyoLejbAZdzZoHsVSEHONn6kIn42uRw0TFCPtQSfQswFMvG7W/ldlOPOIcomjo9ENKG5ioJ6JV5tHnGi3arYa3VNx090IqWjAMVPtU1ygOgsr1XvQoNqghTeCiXTmEcUSL6g2Zhsyg+bMI6rdYB15ZCMaNO9GShy1DQR6PP4q0LMBTGTQAbb7FCujfu5MQjZATQBYCz0zQjJoal/kmEP6pFrzCrB54u1sz0FP5NeUX8uJ6vgVMwh+B9qxIQyao5lQLXEMOhZ4qt4nB+C1C4GNkCbVMmiqTUJMx4+VXgqoAgWRjdiD42jcvRshlbYb3I1h0KrPhU8xYBZw3MeNUDRspFRa30CJI1ABejYC+Q44Z6cUKxo0R6HfzqB/tyHPs+AG8ExhhyGVTzGjC+CRO9CUX6k2j6iuR2oatA3Ix94NBXoctc8GyOnlqEVwA3JW0AH0qF6f9HPKoKm/hi40chUGTW2D1hOqzhT5N0BS4Atv4+DJ/0XBt1/9tRxJI+BVex+d83uq98lZ13MkKcWOmE4kM6i4+ADw21Kajdjf4pRIbKiLo9IrWeG3C7noBkiTog7p64bMstr/3ZDCqoZBU9ygOQrUwIasIqnmEdXIt3cjGTSoFFYbgnw7zhf1Esfq59kYBs1620IbcK71OfKIX/F9BNDt3LgR99F5vvgUuxPXAD0bkkcc77bixmIjGTSoAj39inM/1El8FQNmoo2Rjqdfg9aktIpni3zuvjN8/9AMj03Fu7qGk3psZjN+eDrBbCLHF+4/w1cfmlr3tYLR8cqPm2m+f/jELP/4gyMcOt/d5wIqaXAtR7sjM0l+5/MPc9exha6u5ZRsBpog35lCie88Ns0PDs2QzK1/Ls6ZBJst6s0UStxzYpFvPzrNTDy37msB+B27drxNZFePTcX54I+P8oNDM5TKxvqvpbdu0HLFMt969Dxfe/gcqXxp3deCqjRvLZtx0zSJZ4p897Fpzixm1n0tpyW2p0ljsZIpcGwu2dU9bDdM0+Tu44t86p7TnFvJdvV3yecw2qKwOrWQ5qnZZFfX6umZrPx4rT1QZcPk3Eq2a6m4/ERrHSDpfIlcsdzVdaC2IGgmOTcMk3tOLHb1LAJovjBe+96sVViVDZN0vkS+1N3nqwF6FMs3a8CQJoWVaZqcXcoQz3Q/oywl0iNrgHOZQomDZ1dYSncnuQ/6HS6mG1hYbcgMmp0/Qms01aZpMpvIkS109zz2xrZWr9ui0E/nS13nEU/df1WGbGI008TThGUyTZOZeA7D6O5z+Z0mIWsooxK5ImeXMhRK3Z1tTjDcs6FMfOMzu1Q2uq5DZMhMNBpobrSVypd48PRyVzUk1Jr2NWMiy4bJHUcXuP3oPMUuahK9DcBl4zbDuhSN8sGZxQyv/cjdnHcU3b/x7B389+ftQaxDguC0I27UoN16ZI5f+c/7a34tGvDynAs6N3AQIafEcXVC/PKDU/zhlw4C8MGfHOOSTb1curmXdz17B8PRzpESeTua5dVP33Oad3/zCQplg28cPM/LL5ngD5+3h/Hezl96Z9JoNJT7jz84wr/eepySnQzDPp0PveEybtwz3PG1nCyTrwEyMbWc4U3/cR8nF9IAeDTBtTsHef+rL2Yg0jnC5WQp6hOiaZp85t4z/M03D1EsW5+tL+Tlfa+5ZF2fLeA4KEMN2Lq7ji/wzk89SCJnJcSAV+PdL9nPq6/c1PG1QCK2RsPZkWyhzF9/4xBfP3iOUtmkZJiEfTqf+NWruGJr51byrSSOH739BO/97pOUDZOgV+fARIxXXjHJqy6fXNe7LaNRYZErlnn7Jx/g9qMWMPEPfg8ffvPlXLN9YF3X8gsdTIg0kXgtpPL8jy8/yo+fnAPglZdP8js372JTf+eMrNM8ppFU+thcig/+5Ch3HltgIVVg22CYt12/jTdcvaXja4FjBq3B/2eaJn/zzSf4zL2nKZZNxmIBnnfhKP/j+XsJ+jpnAZxsj6dBHplazvBbn3uYh8+sAHDl1j7++fWXMdyzDiRZ0/GbJkUhGjJopmnyrUenec+3n2A2kcerC/78RRfwlmu3dn4t6gqrBuDLlx+c4ksPnCVXLDMQ8TMaC/COG7azZaDzZq6msGoAhpxdyvDfPvcwB8+uEA14+G837uRN12wh5FtfmZC1X5nJYOOc9+RMgrd94gGmlrNoAv7guXv4zRt3rutaTlv/RqZN51ayfP2Rc/zg0Cwz8RzRgIc/fsFebt7X+Zldw6A1yAvFssEHf3KMrzw4xb6xKM/aPcRzLhhlNLY+ZkMCPeEmDdpsIsfbPvEAj52LEw14+Lc3Xs51OwfXda1grHpmNGMQHjqzzOfuPcOXHpxisi/I3750Pzfu7fxcg2oB2oxBOzKT5NP3nObuE4tcNBHD59H4u5cfQNc6z8eSQfabjWeCHz8X5/e+8AhH51I8Y3s/v33TLq5d530UDrdZv974Ph6fT/GKf7mLeLZIyKfzkTddwTN3re963hZ5pFAy+PZj57n3xBLffmyaHUMRPvi6S9d11nha5JFjc0ne9emHmEnkeM6+EaIBD6+6YhP7J9a3C3fF/q5HwqMN//+DZ1d4+ycfYC6ZZ1N/kC/8+jXrqlehdgazUR4xTZP//uWDfPWhcwBct3OAT7z1Kjx651yXaIMfe1oxaILVjUWxbPCrn7ifTLHMZ99+NV/7zet43VWb+Jdbj/Pubz2xLoRHdxQBTlTTNE0+cdcpfutzD+PVBb91006+9M5r2D/Rwx988RHOLq0DvdU9aBKxrXsgTi2k+fOvPcY12wd48M9v4fefsxufrvHpe07zlo/dv67uXSJ+je7KfSeX+MuvP841Owa4/Y9u5B037OBbj03z0n++k/PrYBOcL7Lw1hY7Pz48ywd/coznXDDC597+DL7w689g62CYd37qwUoT1Un4NKfEsbagyBXLvONTD7KQyvPPr7+Mr/3mdbzt+u3ce2KRt33ygXWh/M6G0Gkzbhgmf/pfj/PnX3ucZ+4c5ME/v4UPv+lyxmJB3vaJB/jXW493da16Bi2eLfL7XzjIYMTPZ952NV9+5zVcvqWPP/rKo3z23jMdXwuqMw/RumawVDZ4+ycf4IsPnuVFB8Z5x7O288lfvYrBqJ/f+fwj60KvnHKM+rmYu44v8J5vH+bmvcP846su5rVXbSKRK/JHX36UD992ouNrtZI4/uMPjnD70QX+8sUX8N3fuZ6eoJfX//u9/NnXHl9XHpHPYbRBYXXofJyXfuhO7ji2wH9/3h7e9sxtfOPgeV7/0XtIrOM+Cse+uvoZnLNLGV75b3fxk8NzPHPnIH/6wr30h3382X89zsfuONnxtaBaUGkNbst/3HGSj991ipdeMsHvP2c3l23u4xN3n+I1H7mbuUTnzLVEvnXTRNQ1n5lCibd87D6OzaZ47ysO8Mcv2Muh8wle/9F7181KXpG1/40NWKZ3f+sJfutzDzMU9fMnL9jLdTsH+atvHOKffvTUuq4lgR7RYOfg1x85xx9+6SALqTw9QS9nlzL810PnePEH7+DYXKrjazlZs3rk2zRN/uSrj3FiLsWfv2gfF0/28t7vPsmLP3AHdxxdn5Jizk6Lk9HJVf/f2aUMb/6P+yiWDf7vay/huReM8r+/f4TP3be+nOWc+fHV5a2Hzyxz4/++lX/43hE0AdfsGEATgnd86kEeOLXU8bVqZtDqSijTNHn7Jx/gAz8+yrbBME/NpviLrx/iGe/9MX/7rSfWxcxIqXSoAWCQK5b59U8+wPH5FH/2wn2Mx4K85WP3rV/V463mY3/dfTQMk3+99Tiv+Je7+PJDU7z2yk1E/B7e+ekHOTa3vndN5hFPg4bps/ee4YUfuJ0vPnCWoFfnqw+f4/P3n+Ufvm8Bdp2GbGIatbmlssFvfvYhkrkSv3njDh6divP6j97LX3zt8fWxW5rORbk8UJubZRybS/LGj96LRxP83cv3M94b5Lc//zDT8fWpNqRaSW+QR+46tsAN//BTfu8LB/n2Y9Nct2OQE/Mpfv1TD65LAaA7AbO6HDmXzPH6f7+X5UyRXcMRbju6wJcenOKXPnTHus8auSd1NLoacM4USvzO5x/Gq2v8/S8fYCVd5KX/fCfv/c5hMoXOGbwaN+QGDNoX7j/LVx86xzuftYO/+qULuPPYIv/ru092fB1oz7X6acagiVXSvM/ff5Zjcyk++uYruHaHhT5cPBkj6PXwsTtPMh4L8vYbtnd0Fd1jHV4+zVtTfH/szlP87bee4Ppdg/ztS/ezddBq3v759Zfxog/cwV98/XE+/tarOv5UAdMkI8QqScHff+9JvJrG+19zCQMRP7998y5+++ZdfO/xGd756Qf5xF2neNv1nX02mjBo0/Esv/GZh9jcH+Kf33AZEb+FML7s0nFe9a9387ZPPMCX3nkNYX/7j4yzacKBtCyk8vzRlx9l31gP//TaS/B7rAf1P3/lSm5+38/49U8+wD+/4TJ2j7Q/t6ZrOh4EJcxVC7//53cOc+h8go+++QpusVnOSzb1csmmXt71mQf5068+xvtec0nb17I+WxM56uFZPnffGX79hu38j+fvRdcEz7twlGt3DPCHXzrIP3z/SZ5zwTA7h9v/bE4Gof6lfs+3nmA+leer77qWizf1AvAfb7mSd336Qf7sa4+xdTBUeS/avl4xB16N8YE9Nb/+qXtOc8exBf7XKw7w2qs2V379fa++hFf921389Tee4B9ffXFn13IU3Loj2RuGyd99+zATvUE+8LpLCXh1fvnySUzT5J2ffpD3//Apnn/haOUdbCecuaP++X/w9DL/ccdJ3nD1Zn71mdsA+N7vXs/7f3iUj915kv6Qjz98Xu39aBWyQYvUPSsz8Rxv/o/78Hk0vvzOazkwaSGLLzgwxqs/fDd/9l+P84HXXrJuhrBeKv2XX3+cctnkG7/1TLbZ9+vXnrmd3/jMg/zddw5z0WSsY/az2QzauZUs/+cHR7hl3wj/+5UXVT7DD5+Y5Xc+/zC/9bmH+fyvP6OjzyYLKwFQt3Ptb7/1BCcW0nzm166uoN0XTcb47c89zOv//V6+8zvP7Fhp8LKhK7g18wRps/aA/9rD5/jPO0/xlmu28Je/dCG6Jvi1Z27jf3zlMf7pR0e5etsA1+zobN+d186RZt39mE3k+NOvPsYVW/r4zNuvruTIM4sZXv4vd/Kbn3mI7/zO9R0xCWsVVt8/NMsdxxb4m5dcyFuu3crbrt/OXccW+OOvPsabPnYvn3jrVdywu7MdjCX7M22K7aj59eV0gbf8533kimW+/K5r2T0S5fn7R/n1Tz7In3z1MfpCPp6/vzFa3iyCTnMLhwFEoWTw+188yFDUz8ffeiW77DMlkSvy/Pffxl9/8xDf+M1nonVyHx3KgnqTkFuPzHPrkXn+7IX7KnXHsbkkH7vzFP9xx0lGewId1yMyjzRq0P7y64/z6Lk4H37j5Tz3wlFefeUm3vXpB/n9Lx7k/EqW37xx57rziL+uQH33t57g43ed4kUXjfG3L91Pf9jHXDLH895/G7/7hUf46ruuw+fpDPP3WLD7KgZtajnDu791iGu2D/DB111KX9hH2TD5k68+yod/dgJM+JMX7uvoWvJda8TWfeWhKU4vZvj3N1/Bcy4Y4bdu2sX7f/QUH/7ZCZ6cSfCvb7ycwQ6VNr/qn+R3mUerY/2zhTLv/PRDFMsGn/q1q7lgvIertw3w0g/dwds+8QAfftPlTPZ1xmzJHFnvhnlyIc2vfuJ+JvtCfPyXr+RZu4cQQvDjw7P82ice4N9vO8F/u2lXh9dy5pHae/KZe84wn8rz7d+6ngvGrWYnkSvyh188yLu/9QTP2jPEjqH1zZKN9Na+N2XD5Dc+8xBnljJ8+m1Xc+2OQS7Z1MdffO1xPnL7CWYSOf7pNZ2do0FfNY84vQUKJYNf+c/7uOv4ItfvGuSPnrcHTROcXszw0TtOcmAyxksvmejo8/zcm4Sk8yX+74+OctW2fm7eV6XYhRD8xYv3WUXCD47wxPlER9eQCdgpvzJNk4/fdZKrtvXzibdeVVMYbhkI87u37OLWI/P85MnZjj9T0P5Qzo79zGKG7x+a4U3XbFkljXj+/lGu3zXIv9x6vGOdb6MZNCntyhXLfOTNVxBxNGF7R3v44Osv5fBMomP2p2ZtgONefvWhKRbTBd736osrhQfAcE+Af3nDZSylC/zBFw92zFrImSnnDNqRmSSfvPs0v/bMbZXmTMbz94/yrmft4KsPn+t4vq+Z4+Zn7z3DaE+AP3renpriKRrw8t5XXETAo/N/f3yso2s1i588OcuXHpzinc/aXmnOAAJenX9+w2VsGwjzu5/vnNlNYKFqExPPqPxavlTmAz8+yjN3DvKaOunk5Vv6+M0bd/KVh6b4fIcIuHPXiJNBs76TBH/0/D0EvI6ZDyF490v349M1/uxrj617BsL5p3LFMn/05YOMxYI1h3404OUvXryP1165iQ/99Bj3nFjs6BrS3CJad4j93XcOkymU+dSvXVVpzsC6j793yy6+efA8X3qwcwRcVPJIlUF7dGqFnx6Z553P3lFpzgB0TfB/XnUxI1E/7/n24Y7vY7MZtPf/8ClME/7mpRfWHIzPuWCEP3nhPu49ucQPnugsR0oZTf21fnpkjs/dd5Z3PmtHjRTp2h2DfPbtzyCVL/K7n3+kY7T9pld8hr/f9BLe+sy/qfzacrrAX379cS7f0ldpzqx/m8Z7Xrafzf0h/vBLB1nucJaqmaHLlx+cIl0o8w+vvKgmR24eCPE3L72QI7NJvv3YdEfX8jaRJhVKBu/59hPsHY3yhqurwMu1Owf53u9ez67hCH/wpYPrnimZGNxb+bFpmrzrMw8ytZzlo2+5sgLC+T06H3nz5RyYiPFHXz7I4enOzmzn+hGnNOkLD5zl5EKav33ZhZXmDKAn4OV/vGAvj59L8J93neroWkJ3Mmi1xd+//ew447FAjeR153CUv3vZfm7eO8z7f/QUC6l8R9eT31uojhk/eHaFLz4wxTtu2MFzL7Qa2ljQy8ffehWvuHSC//ODp/j8/Wc7upYznGMJZ5cyfPqe07zmik186HWX0h+2np/haID3vuIAj59L8MGfHO34GhWb/br7+NHbT2IY8L9++QB99rV0TfD3v3wRL7pojM/ee6ZjhsSrO4AeR0zHs7zn24e5Yksft9h1ZMCr8ycv2McHXncpj07F+eOvPNbxZ7v5zT/k4xf/Hq+6/q8qv2YYJr/3hUc4Npfin15zaaWJ2Tkc4UOvv4wzixne8NF7O1ajyOazPkf+++0nMEz49K9dzbP3DFdy8s37RnjRgTE++JNjHc/tNpNKl8oGX7j/LNfvGqp8LrDetb97+QF8usYnOnzXnDHcX9tIfvLuU9x6ZJ53v3R/BYTeMxrli++8ht+7ZTdff+R8x2dNMNAY6Pnk3ae46/gib3zGZj70+ssqgM6fvWgfV23r579/+VHe98OnOjpHxc9lg+b48SfvPs1CKs8fv2Dvqi5ZCMF7X3GA/pCPd3z6gY5oainNcyIFD5xe5uxSltdeuakh2vbma7ayfSjMu7/5RMe0ccB2MnLOoH3k9uPomuDN12xt+Gf+4Ll7WEoXOi6IK/fJcSM/cdcpHj+X4P2vuaQha/XsPcPctGeYLzxwtiNZZU2D5mB+vvPYDPsnetg3tnq+7/pdQ/zh8/bw2Lk4Pzo81/a1oLpvxOd4Sb5/aAYh4B3PaoxavuNZO4gGPLz/h50dLvVyVLAOsduOzvPqKzc11CT3h328/fptfPPg+XXLhmSYpsnffuswu0ci/PbNqxGwkM/Dv73pcvIlg9/7wiMdJY4FvwUUjPdV50F+fHiO5UyRt9+wvSEi9Ts37+KZOwd597ee6Gjg3+m45kz2H739BPsnenjJxeOr/sxIT4A/fN4e7jy2WJkXaydqJI6On/z7bSc4Pp/mf/3ygRpwAqz35a9fciFDUT//90edPSNFOwGHHc/KdDzLdx6b5o3P2NyQRX3Xs3dyzfYB/urrhzpurOVicScT/4X7LXnQm69ZPWsWDXj57Zt38cjZFb5x8HxH15KFqRONPreS5WsPn+N1V21mosEMwOuu3MSu4Qjv/c7hjvKxLFCdcsqyYfK/vvMkWwdC/N4tu1f9md0jUd79kv3cdXyxY9mc0D288Ka/o6e3es++9eh5ErkS737phatYq6BP5wOvu5T5ZJ6//fYTHV2rkTGUaZp85cEprtrWz/YGaPML94+xazjCh35ytCPJnF5jElL98bcePc/Ucpb/8YK9q/JWyOfh73/5IuaTef5tHfJsqJ1ruu/kEvecWOJPX7CXq7bVsrZ+j86/vOEywn4Pb/9kZ2d2wN9X+XFNYXXXKS7d3Ntw9vclF49zy75h/uF7TzKXbF9622wG7dhcintPLvGma7auYpKEEPzJC/eSKZT5cofgi6/SoFUB3LJh8lffOER/2Mdv3ljLUPo8Gv/46ou5ZvsA//PbhztuCIOGdd+dQM8n7jqFEPC7z9m1Kv8/f/8Yr7x8kn/+6TEePL3c0bW89t+lO4rVYtngmwfP85wLRlYxSUIIfuXarSTzJb7QYfMp67l6WfZn7jlDOl/i/7zq4lWf7SUXj/NbN+3kR4dneeTsSkfXQ9O5/JJfrTE2+s7j03zv0Ax/9sJ9q+bNbtw7zMfeeiVnlzL8w/eOdHQpbwM5djpf4isPTvHySyYazj/+xYsvwKMJ/vBLBzurj53GRo789dMj88wkcrzeoa6RMRT189JLxvniA2fXJXMH8PZUa4HzK1n+z/eP8KzdQzWgkox3PXsHe0ejvPc7hzvKkTVAj/38l8oGH77tBM/cOch7XnaAWND5+TX+7Y2Xc8u+YT7w46OV2bR2oh2J49OuQZONhWmafOWhKa7a2s9lm/sa/tahqJ/3vGw/Z5ey/LCDTrrCoDkajB8+MYtP13jehY2lFz6Pxl+++AJOLWb4zztPtX0tgICdnOQS1ul4li/eP8WrrtjUdLD4kk29XLGlj0/efXpdemz5J/KlMh+57QTX7xpc0+TkdVdtZj6Z5+uPtF/IOecrZNz21DyPnF3hhQfGmv65V1w2wZ6RKL//xUc6ctIb8/Va1y1XkbUfPDHDZZv7msqcYkEvb79+Oz86PMujUyttX6sRg/b5+88ggNeuYc7xGzfuZDwW4N9v73yGyhlH51KcXEjzlmu31iDsztg9EuUPn7ubB04vc8+J9mctsoaF3k1Eq5T9fz18jtGeAM9sMjTt0TX+6pcuIFss8+Hb2i/knGi3lGCdWkjz5EySl1/a3AjkdVdtZjwW4P0/ah+1avS7TNPkiw+e5fpdg1y/q7GEK+DVeccN27n7xCL3nWz/Pubtf3rAMST+pQemMEyzKfCia4L3veZiNAF//Y1DbV8LwG9/QnmwlA2T7x+a4aZ9w0QDjQ0GXnn5JJdu7uUvv36IlUz7jXUjBu2L95+lbJpNJVweXeNPX7iPU4uZjhpCiQ47n4S7jy9yZDbJ79yyq6ms6lVXTHJgIsbH7zrVtdvcNw6eZ/dIhAvHGw+6X7Kpl1+5biv/9fC5jmbfGjVoD51Z5sRCmldevnp2C0DTBP/tpp08NZvi+4dm2r6Wsynz2rJb0zT599tPsms4wrObSBgv3dzH8y4c4bP3nemokPv0+RneNzsPkeq58om7T9EX8vKaK1cXVQCb+kP8z1ccYGo5y1c6mKMKhqo1gJQmnVxIc3QuxUsuHm+YR4SwDF6KZYOP/Kz9fFy7B6367H3+vjN4NNH0e9s5HOXKrX18/r4zHRWNcuemcwfmlx44yyNnV/irX7qg4bsthOA9L99PpljmQz/pTLERtP9psrEolg2+9sg5bt47wlissfnCX/3SBYz3Bvn9Lz7S0Uy33gDouePYAovpAi+7tLFk7IotfTxz5yDv+8FTHbkxexsw8YZh8rVHznHdzsGmcvm3XreNkE/niw+sn42U8e+3nWDbYLgio6+PK7f284art/DZ+850NIsvay3nU3XPiUXyJYOXXrIa5AQYjQX4n684wH2nlnh/BzO0ut4Y6PncfWcYjvpr1GzO+K2bdlEqm3zop509j7+3tMxLkylwNLp//70nKZsm73nZ/obvtlfX+PUbtnNqMcO9HZzZwWAVNPLZ7rM/PTLPfDLf1AiqP+zjg6+7jMs29/K/v3+kbbdp8fO2qBqq0rwnZ5Icm0vxS00ePhk37h1mojfIZ+873fY1ZGfrlJ/cemSOq7b1rzmD9ew9w9y8d5gP/vhoRyhB0P4aNI+VaP/11uMYpsm7nrVjrT/G267fxpmlDP95Z/vDl4ZdqMiC5ZEzKyymC7zpGWu7ud20d5iLJ2P87+8/2XYClglRPoaGYfK7X3iEvaNR3rjG9fwenQ+/6XJS+RJf7AAl2xmxErrPsBq04/MpHj+X4PlNmmoZb71uK70hL+/7YftJqn4Q3TBMvvrQOZ69Z3hNB6GAV+cVl01y+1HrpV9vSMDhlhYuZK+6YhODER8fv6vzAd3xsPVu5Utl7jy2wHMvHFlz5mXXSJRXXDrJf9x+kiMz7RWpnhqbfevHsuh83oXNP5vPo/GbN+3k4TMr3NYFG/nQGYsZf1kL/fgbrt7CYMTX0eEiGzSfY/D+O49Nc8WWvjXds8ZiQd717B38+Mm5jobvK/vrbKDnwdPLLKQKvGCNeR6PrvE/X36AeLbIp+/pIEdWCisrDMPkqw9Pcd2OwYbsmYxn7xlix1C4o2vV5xGwWJ+wT+cF+5sDPUII3nzNFo7Npbi7Q3mqMxZTee4/tcyLL1r7rHnns3YQ9nl43w/azyONdnZ9+cEpgl59TRDrxReNs30wzAd+cqzt5rPGJMR+7+4+vsjh6QRvu37bmrMar71qM0vpAj863D7QeXG+wHMyWbCvlSuW+emT87z4ovE13TyfvXuIizf18qGfHGu7IfQ5GDSvbbn/IztHrgU8bh0M88uXTfLxu061vZ7HuYZHMsn5UpmvPDTFcy8cYSjafFbpzdds5dRihu8+3n5j7ddlg1YtUL/56Hm2D4UbKgxk7BiK8IpLJ/jcfRZD1G6EZD1iA2bS+fWXmzSeYLHxf/fyA5xezPD1R9pnETz2tZxM5HcenSbq93DD7sZgoBCC97xsP2XT5He/8HDbz38joOdnT80ztZzlFZc1z/9hv4db9o3w3cemu7JVP7WQ5uBUnDc+Y8ua5+hv3bQT0zT52sPt38fKLKvj124/ukDAq3H51sYEBsBLL5ng5ZdO8LE7Trbd7Nas67Df7eV0gZ89Nc8rLpvE28TRcPNAiFdfuYnP3XemI3XIr8aTvGdhqeK8mSuW+cGhWV55+eSa5+gL9o8RDXg6aqyDgWqDJt25v/v4NP1hHzfuaT6Dq2uCdzxrBzOJHLcemW/rWvrPm8RRiKpM6VP3nMana7ywxTCxrglee+Um7jy2yKk2EQmPqJU4nl/J8tRsime1MST95y++gELZ4H9/v32KWi7yzOVTJHJFPn//WX75srUfPoDnXTjKLfuG+ccfPNW2ZrkeuXvAliRc2cIkQNMEv/uc3cwm8m3L8yq6aPuSR+dSLKULvP367fQ0QfRlbB0Mc+2OAf7r4XNtJ+CtYSvJJssWE/BfD51DEzRFkGREA17eccMObj0y37ZEo36J58GpFabjOV58UfOiSsbLLp3AMOEL96/PsQzg9qPzXDjew0gLK3HZEP748FzbDaFEhQP2Z3zg1DKZQrmt5//PXrQPv0fj421qzZ0Mmiwgv3dohgMTsZaD0q+6fBPjsUDb0ivncyR/+OPDc3g0wXPXaAbBkrG94eot3H50vm2nLclHSVdFyQw+f42mQsZrrtyMRxN88YH2WYQAUiptXe9nT82ha6KlucO+sR6etXuIj991um3wRav817rmo+fiVqPbBPWWIYTgDVdv4ZGzKzx+rr2CWMp3ZElj2MzgLReM1MwnNopfunic3pCXT97VfkNYH3cdt5q761tYYPeHfbzt+m1879BM2wBFPRNvmiY/ODTLcy8cWSW3dYauCX7zxp0cnk60XezXmoRYufkz955hIOxrOeB+w64hxmKBzmRl+14CDle0u48vki2WV80C14cQgt+9ZZclmW2z2Bce52ez8tZtR+fZPRJpmUf+/EUX0B/28d7vHm7rWppjBkfmyh8cmmU5U+R1DeRdznjhgTG2D4X5l1vbb6xlHRK2LcCX0wXuObHEC/aPtjRA+OXLJ8mXDH56pP1xgRsiFngq5V53n1jEq4um6onKn9s1yAVjPfz77SfbZghlYyYbtWLZ4IeHZ7l533BTZQhY9cGfvnAf95xY4s5j7YEvcsbZWfS+/0dPMdkX5EUH1q4RXnLxOMuZYkdKrPr42VNW4X5LE4ZJxnBPgEs29XJrB9+ZZOJNx+Nw29F5nrF9YM37CPD7z9lNsWzwmXvby5G1NvvWdX/4xCxlw+RFa4BKYDWfQgg+8OMOxgVe82l44f+p/LSSR1qA00GfzssumeA7j00Tz7ZXHwcCvQjTxGuaFYPAQ+cSXLKpt6WV/k17hxmM+Ph6m+qQn1MGDZbSBb784BS/fPlEWzusXn3lJnRN8Lk2C2LJoMkHUb5Yz16jg5axbTDMKy/fxLcenW672HnJppsB2DRyMfeeWKJQMnj5GoiODCEE73r2TrLFctuHtNw5JtPn/aeW2DUcqQzirhXX7Rgk6vfwgyfau5YsPnT7ag+fsZqfSzf3tvXnX3HpJGeWMm03Tdt6rMPxlGkhQd9+bJrrdg62tQ/pLddaDMn7ftheY12/1+17h2bw6qKtvTo7hyPctHeYj95xsm1kMzf9MrLnXwVYQ/2PnF1ZNcPRLF55+SQlw+S7j7dnKvCtl3+LT73gU5Wf33pkDp+uteVQ1x/2cd3OQW57ar6tAqS2QfMxE8/x8JmVNdkzGT6Pxuuv3szdJ9oDX8yaH1s/u/PYApds6m0qAXTGKy6bwDThaw+3l4AL9jWkG9rDZ63nuFWhD5Y8++Z9w3zlwam2WQS/nc7lZ7v96AKXbuptCYYA/PoN21lI5fmvNlFbWVhJF7sfPjGDromWxQdYRWPAq7VdEFSlSdbnOj6fYjlTbFkwggVQvOaKTfzw8Oy6Geu7ji8QDXg40MYenzfZ6Pg3DrZ3H+ude4/OpVhMF9raY/XSS8bZOxrlb7/1RFsLir010iQ/hmFy5/EFbto73LLR1TXBqy6f5Laj8+2vXHnNp+BPqg3dbUfnCXp1nrG9dd569u4hNveH+F4HTJMMoWnkS2XuP7XU1n2Mhby8+Zot3HV8kRPzrdcXOBtdySR/+9FphqN+rmvhmKtrgrdet41D5xMcbJOxk0qekN3s3n5sgbJh8pwLWjtdXrm1n8GIr6P7+N9f/mW+fsM/MTJyEQD3nlji4sneljsMhRC8/YZtHJtLVWqmVuGxG1z533tPLLGSKbYFYr3y8kkGwj4+efeptq4l56UkqHRmMcOjU3Heet22lu6TN+4dZstAiA//7Pi65dI/e2qerQOhtnYY3rhnmINT8baVWPKzyX/Z1HKGE/PpprJ9Z2zqD/Gs3UN88YGzbcnzPDV5xMpf3318msm+IPsnVvsKOGMsFuSNV2/hKw9NcbyNdw2Afb8EV7298tOfPSXzSOt65DVXbiJfMvhGu0CPphEwwWffyGyhzNG5JPvH1/5cYMkqr981xN3HF9p6RrSfywbNNLn/lNXEvPLy9hbxjtizM99/fKatG1c/g/azI/OMxwLsHG7PHvS5F46QLZbbdn17+c3/wIOvvYvx8Su4+/gifo/WdhNz2eZetg2G2957UpU4Wj9/5OwKl29pToE7w+fRuHHvMD98YratorEyg2b//KEzy/SGvDVucmvF8/ePVvaftBMHNt0AwDOGLubsUoaTC2luanOBZsjn4deeuZ07jy225WpUvyPjsak4F4zHagZI14p33LCdlUyxbclQceUZlOKXA9YOrVzRaMl6ytg1HGHLQKht6n1TdBOXDF9S+fmtR+a5alt/2wtrb9g9xLmVLMfnWzdNXof8T9d9lea/XZvtV11hgS/tuJXVmoRAPFPk0XPxtpe6bhkIc/mWPr760FRbeeSW8FYA9kSsPHV4OonPo7G9zef/tVduZjFdaNsZtt8+pEulAsvpAo+di7d1QANcu2OAC8Z62t6dp9VJHH/0xBxXbu2jN9Qa6IkFvbzk4nG+9vD5tna+1RdWD9lAz2Vt5q1XXDZJuQOAoj7uObHE1dsG2lpGOhDxc+2OAb716HRbz0j9zjp5ZlzTRvHh0TX+7EX7mI7n2sojel2D9uRMkpVMsa1CB6x3zTTp2ORCxhPnE+wbi7ZE9MEq9m/aO8ydxxbaaj7r46HTK+SKRsuGScar7TzSzmfT6mz2M4UStz41x/P3j7Zl1/+yS8YJ+3Q+3uZoglxXE/JZReIDp5YI+/S2ikZdEzznglF++uRc24Cxxxtg+zYLNE7nSzx2Ls7VbTTVYElvR3sCbTdNVYmj9d/vPj5N0Ku3pdaQq1d+emSuLQWR11Nbj9xxzFICtXMtXRO8/frtHJyKr0subZomD51Zbvtde5GtxPl0m/lYguEy40jzrGc1kYnWxysv38RsIs/DbRih1OQRj59ErsgdxxZ4/oWtGV2A37hxB36Pzgc7YdEccf+pJS7b0tsSVALYPxHjwvGejtxMg1R35T05k8Aw4cI2l2xfu2OAhVSBI23MIf9cmoSYWMWwRxNc2EaCknHLvmFOLWbaKhrljfPqXkplgzuPLfAsh0Vpq7hm+wAhn96RxafPb8kX7j6xyOVb+to6xMA6yF5x6QT3nFhiarl1Y1EqVxm0lUyBlUyx7cYT4OWXTbRN9ctdYfKTPHxmhUs39bZ9H8N+D8+9cITvPDbdlmRieHAvd738+7zphR+tJKh2C1SozirIxL1W1O+IOTGfZsdQ+zu5rrCRzU6dKoEKo3hFmwWqEIIb9wxz1/GFjpdyn1vJcnQu1RZ7LONGuyn+9qOtC2KPY5ZP1318/9AMO4bCbe+JG+kJcOOeYb784FRH8wGmCQ+dXcY0abv4AItFOzqX4lAbqzt+KbaHh06eYZM9G3l4OsHukUhbhT5Yje5w1N+2ocZ7X/gJfiN2gAv3vpw7jy9gmnB9mwe0EIIX7B/lsXPxtpimyqJqBCsZ60Dq5F17w9VbyBbL/FcbrleV2RE7BTx0eoXekLftRnfPaJRdwxG+dbDzBm05XeDkQprLtvS2/Weev3+U04uZthBip1MeWA3aRG+Qyb7mc3zOuHbHoMWQtGEW4txZ5PUGK81gu8//pv4Q1+0c4IsPnO144bJpmjwxnWjo3Nssbto7TL5kcPeJzmdMHzxtGQNc2abKYLgnwDXbB/huGyBurcRR576TS+SKxpqzbs6IBry84Rlb+MbB820ZQUgX2GjQKu7vO7nEZVv62s4jL9g/SrpQ7sjxVsZj5+KUDbNtENerazz3whHuPbnUFogrGzMdDdM0+eETs9y4d6glWyfjOReMUCyb3PZU689WBXqsuPPYAqM9gbbP7VdePslgxMdHbuvc4Gs2kWclU6yxn18rtg9FuGXfCJ++53Rb51o9g1b9bO3VdtftHEAISz7YKjx1DdpPDs9RLJu84EB7oOpgxM+brrGe/3ZqVmek8yUOTye4vIkxYKN47ZWbOHQ+0bYJXNAUFQbtcfuc399mgybB3tvaYJB/PiWOpjXvsGsk2lYHLeMmW3rWDhotZ9B8mo/peI5kvsTFk+19QWAhO8+7cJRvHjzfEfqXL5V5ajbZNnsmQ859tDNU6jQJOWUzRe1Q7jJu2DXERG+Qz7chF5VLiIUJ8WyRo3Oppo6bzeJZu4dYyRQ5PNPeXpxozzia7uGeE4sdJV+AHUNhxmIB7jjW+uXyORyFUvkSM4lcRwsYdc1CiG/tANmUcf+pJTb3h9qSbsq4ae8wuaLRVuJwxr12EVdvCbxWTPQGeebOQb74wNmWDqNeR6ObL+ncc2Kp4yW1r7tqEwupfBufzTGDhskhewaq3eQL8OID4/h0rT2HOd1nIXH2Zzw8nWDfaPsFqq4JWzKx2FZBPDi0j3e97LNouofbn1qgJ+Dhog4+27NtK/Lbj7Z+Rpw2+4/aUq1LHbv4WsXFm3rZP9HT1kyTzCPysHr0XJyLJ9sHesBC9u8/vdSR6xvAI/ahfkkHn00i8u0w1s5lqKZpcu+JJa7e1t/2Z+uEIXEugvfoPh4/H2c46u9oKe6rr9jE1HK2MpfXbkwtZ0nmSh01aFdv7yfk0/nJk52DWI9Oxdk+GG5b0QDwggOjnLTnRNcKp4ujjqiANRdN9rZ9rbdfvx1NiLbO0Ztje/in2XnGezaRzBU5Mpvkii3tg0rX7BigN+TlK+tgPqVxSief7dodA2QK5bYKYsmgeYTGuZUsc8k817TJegJctrmPvpCXH7fBIHvqGrRHzq5wZQfvWsCr85orN3H70YWOVsmAxcQA7GmwxqhZvObKTSylC9zbhgOzHBWQp8Th6QQXTcba/my9IR/7Rnu463jrRrfGJEQPcNfxBfpCXi7d1H5t98art2CY7YG4znjk7AqGCZe3qR4CeOmlE0T8Hj52R3uMdVBoeO3z7dC5OH0hL+NN3NTrY7w3yIGJGN9+rDVg9nPMoK10VHiAVTTuG+tpi7FwShyl28zmgc42u7/myk0kc6WObJBPzKcpGyZ7OijiwEI2L56MtYUiOWfQ5NzOtsH2P5uuCV5yyTh3HV9smaTkXjcdk4M2dd6uLEmGnHtqB9lxxsGpFS7pgK0Di0W4bucgdx5bbNlY+B0zaCdtVraTZhAs6VUyX+poKbFpmjx4epkr1nBmahTX7BigL+TteLntkdkkPl1jZwfNJ1gW5+dWsi13x3gdDMLUSpGyYXLN9vYPaLCax3YKuXpg/PFzCbYOhNqa0ZIRC3m5ed8w33jkfGtkUxpA+EIspPIspArsGW3/gAYL2VzOFHmiw8W9dx5f4Nodg22j7AAXjvcwGPG11VhUZtAQlXd7fwcgFsDLLpngielEy7kfrz3noGGtDjg+n2L3SGfP44svHsM06fj5P3h2BSE6K1An+0LsGAq35S7qZNCO2fNn7cqgZLxg/yiZQrklQFE/O/LkdJK9HTRMYBlTxYJevtCh5bhcPN1Jg+b36Fy3c5CfPtnePKszHjsXr1kC305IOXyr0YRaiaPGofNxNveHOmoGh6J+rtkx0JYSJeQNcXMmC94QpxczmCYd5RGvrvGGqzfz/Sdm2pqxc8bBqRUmeoMMtjHrL+Pqbe2zMRUGTWgV06B2Zj0rf16zz+w25n4qgDGCdL7EuZUsuztQD4HlDFg2zIpDaLshm/69HdR21+8aJOjV25r59zokjvlSmVOLmYY7bdeKa3cM8NCZlZZAT826Do+fx88lODDZ25a8V8bmgRAXTcb4VocNmswjnTwjPQEvr7nS8oVYbGMnYIhqg/b4+Tj7J9pvdMGSpx48u9LSqfLnblG1AOYSOZYzRfaNdfbwAdy8d5gHTy+33PcjO1vD0DkjG7QWjor1cfW2fvpCXu5sQy4nQ+7P6QRlkfGM7QM8cnalJWNXaTxMOLWYRgg6QlABXnTASlI/aNF8ehzb7R86s2wXOp0dmmOxIFsHQm3JDmWsZAqcXsxw0abOrgVWUoxnixw6v/YAt89heXxiwTr0OmHQwHpGLp6M8ZkOLMdPLWZYSBXanj+T4dU1nr9/lB89MdsRY/fUTJLtQ+GOCn2gYuBwdwtEzskgLKatJNiuvEuG36Nz7Y5BftbCmKTGJMSEQ9PxtrXlznj5pRMspgutn0nJWHjDFSnTjg4LAimZaHfoHixGd2o523GBqmmCG3YNcdvR+ZYARcVmXwgOTsXZMRTuqNEFi9USojWK6pQmTS1nKJQMdrUpgZWxYyjCBWM9fLPDhdyHzifYMRRZ01GxUTxr9zD3nlhs+a4513XcY+/r6bRBu2bHAD0BT0sjCOdSWaF5OTafYm+HgEHAq/PSS8b5/qGZjtQhR+esHNlpY33T3mHOrWTbmumQMZfMMR3PdVTEgXXWjMcCLU2pnEyk1aAlOhq3kPHcC0Y4MZ/m2FyLpik8BEKH8OC665FfuXYbAjraYwpWo9vpmd0XlmxMG3K5SoOm86g9utLpM3nNjgFmE/mKIqhZyJUWAgsMh87z8YXjPUz2BTueZz0yk2QsFiAWaj9HBuxZvO88NtPSvEPOsppCVID+3eu4j4WSUZnxbRa6p9qglUwfT822Z6JRHzftHeaxc/GOVkBMLWeJ+D30dXAfwXLhLBlmW3VkUPPgE4JCyeDITLLp7stm8Vxb6nxrizNb+/9TgyaE2C6E+A8hxJcdv7ZPCPFvQogvCyHe1c7fM21LVHato4m5ed8wZcNsiWxKBu2Oo8ucWszg0UTTBY3NQgjBFVv7Kzb27cSRmSQeTbRtouGMZ2wfoFA2Kk6JzaJcYdBMTi9mGI8FO5KKgpWkNveH+E4rZyjdKmp0E47Pp9nUF2rLLa8+btk3wp3HFohn2rNKlZKriztAvWVca8srWun15cwgwNHZFB5NdMyyWoPwIxyZTZJqM0lJlHE9n+1FB8ZJF8od2fc+NZvqmPUByyxh31jrQ9rjkDjOpw2EgLHe9qWbMp69Z4ip5faMSQDShRJnl7Jc0CGDANZsWNintwQokEijL1RBrncMdlYQjPQEuHhTb0dM/HoZXYBn7bEkxa3kSZpjBu3UYrrjhgmsRakXjPW0HLp3ShxlMdtpYQWW5f4jbSCbzjg21zlbB3DD7kHyJaPlklSfr/odHZ1NEg142NTf2Vnj1TWevWe4ZfGhOxq080mTQslYFxh4095hCiWDB063vwD2xHyakR5/x/n/Rlt2247M8TnBSbZrQQ5PW81cp4UVWAqPh1qc2c4ZNNOE04uZdeUROat7RytJ8d4XwX+7HyLDlQat02dkKOpn/0SsLQmbjFyxzJmlzLry/zU7BnjwzHJrNsautTxC4/HzCXZ3OLoCVUCjFfPpZOKPzVvPSCfz92Cd2c+/cJQ7jy22ZXAk4+RCmu3ryMcvv2zCku+3eEac+xQl0N9p3rpyWz+agHtandmOPHJyuUTJMDsGQ4DKO9MJ+HJ2KcNkX7AjRgusMYaegKctwmR3aJydvj6emk1SLJsdgy/bBsNM9Aa5s1WfobUG/dpq0IQQHxNCzAkhHq/79ecLIY4IIY4JIf54rb/DNM0Tpmn+Wt2vHTZN853Aq4Hr2vm3yOiUrQBLphILelsmxIo21NQ5dD7ORF9wzcWCzeLKrX2cXEi3be98dC7FtsFwS8vXRnHF1j7r5WqRpGSDZhjWw95pogfbUODAKHcdW1iTjRzw99FfLvNH8TTTK1nG2tTx1sdLLhmnWDb53qH2UCu5g2g9qOZQ1M/e0WjLF9nvmEE7PG2h7O0auzjjwGSPxea0uRPqzDoltwDP2N7PQNjHN9uUFSRzRUsGso4iDizJxAOn1z6khV5NUnOpMsNR/7ruozQxWav5dJJr51csoKdTtg4sZPPZtpvpmkzTxOWw7Qbo28qJhTQ+XWNiHdd74f5RHp2Kt91YSHOK9eRIafTR6vmvShxheiW75nL2teLKrf08fGZlTbmoLAgE1Qat08IKqOwo/E6bMsdcsczpxXTH8l7A3j+k8bMWclGnG+ypxQxbB8IdFx9gzcjNJfPMrmHL7SysTi1a7+R6iu+rtvXj1UVHqoYTCym2dwhOgNXEXzjew0/baNDe9+rv8vU33cdTdv5fz2e7fEsf5+O5Nc0LnBLHctn6rrauA1Sd7AuxuT/Ena2YJk2HgR2Alf/7w751AZ3X7hjk4TMrbTMWU8uWnHI9gPG1ko1p0exWbfZ1Ti2k1/Vebx8MMxz1t5RUSvdBIQTH59LommBrB/P3Mp6/f5RC2WjrmZRxejHd0ay/jJv2DjMQ9vFfLVa7ON1g1wv09wS8HJiItQTMpMRRM02Ozlu1bSfSZRnyzzw53UGDtpzpWPEFlhT22h2D3HG0tRT2j171df7+Dbdywla9dFr/CGHtDLzr+MKazKebJiEfB55f94/QgX8GXgBcALxOCHGBEOKAEOJbdf9r6nUuhHgJ8G3gOy3/Ffa5FfF7GOlpXxMtw/qSBlp+SZJBw9Q5eHalYzmBDClDa9eWdTaRW3ehE7VfrntaDJRKk5CyaTKXzLdcdNwsXnRgjJJhrolser1BfnbmHM/LFpmOr/+zHZiIMRYLtO1CdT6eJezTO5oJcMb1uwZ54NTymhIen6/60j4xnWDvOiS3UDWoeKzNBu3UQppY0Nux5AosW+5b9o1w21Pzbe07OW1LRtp1y6uPdg9pGdMJk4l1PiOTfSF2DkfWlAKaDpGjnJ/slBmXceOeYRZShbWd+ob2wFu+Cb4wJ+bTbBkIrQvokbv12i2Ij8+n0NfB6IK1x27PSJT7TrVgERwMWrpQZnwdrCdYwFK2WOaJNVwxhV6VSp+YTzMY8a/r3d7Ubz0j7a4/ObWYxjBh5zoAioBX5+rtA/zsqbWLOK9jltUq4tZ31kgZ2mNr7NaS0iTdNJlOWUX6et63kM/DZZv72pbvm6bJ8bnUuhgEsJ7/B04vt70T6qnZJENRP/1t7PasDykpXuuzORm0gu2KvN6z7dodA9xzovXMswwLVF3fM3LdzgFKhsl9p9pjPk8tdG4iJkM28a0WZEswXNM0zq9k1wVgCSF4xnbrPq4pcZfXssc7JvuC6wLDL9vcR9Tv4YEWOVJGPFtkOVNkyzq+N69urTa6vYXs3LlP9PHzCXaNtLfOoj6esaP1qIwEejwmTMWLCLG+53+iN0jE76kYqLQK0zSZWs6ui1QAa1b9fDzXUgor47TdoK2n/n/e/hESubX9BVwzCTFN8zag/q2+CjhmM2MF4PPAS03TfMw0zRfX/a/pW2qa5jdM03wB8IZ2/i1gyVvWgzKCJU86H8+tKT0RtjG8aXpI5ErrLhovmuxlIOxry2EIYCGZ72gYtz7amUOTJiGlssFsIsdwdH3X2z8eI+zT1zaBsA8yU2jMJHLrZtCkXLTdhdWziRwjscC6n5Hrdg5SKBvcv8ZBpjmYn+l4bl0IEsBwNMBYLNB2g3Z6MbPuYgCsJJXMldq6nnS8G13n93bVtn50TXBnm7Ka84nyutAxGdfvGuS+k0tNm89GZ/d6n0nJzh5u07zj5EJ6XUg0WFLFoai/7cbixHyazf2hdR3QAFdu6+PBU83vI1SH+zGtd2y9z6R0o1vr3S5r1WbwfHx9RVz1en08eHq5LVfMo7M2W7cOBg3ghl2DHJ9Pr8nGOF1Mp5az60L0AS4Y70ETlsNls6gWViYzyTI+j0Zvh7McMq7bOcih84m23OwW0wUSudK6GF2w5kdMk7bXTTw1m1yXLBWsnZEjPf41xyCc0qRSyXqO1sPEg7VuJZkrcXKhPfOOM0uZdQPGV2zpx6dr3NVmY31q0SpQt64DNIgGvFy7Y5AfPDG7ZtMkJY6moVEy1g/QPWP7AHPJ/JprCwwboNMEFjgdXV/u1zTB7tFoRanTKs5U3LLX973dsLu17Nznq/7dh87F1zUTBtaKqGLZXFO+LKXSOibn41YNuZ5GV7PnDdtZWQMWqJoplNm0zhpBzsW3lBTbcXIxzVgs0PbKB2fcuGeYyzb38i+3Hmv6e1Tb7E8ATiunKfvXmvxjxIAQ4t+AS4UQf2L/2rOFEB8QQnyYJgyaEOLXhRAPCCEeKBSsw2A9CUPGyy6ZYCwW4L3ffbLp70nn7cLEtG7gelkmaaX+0yfnWjq+mabJfCrP0DobJrBsiQtlg4fPNi92ZGGynCmSLxkMd5GkLhyPrV3oVxo0QdkwGeuisbhiSx/T8RznVrItf+9MPMfoOr8zsFyofLrWkYSn08FmZ+yfaHEfHXFyMb3uQwwsxBZoa4B7JtFdgxYNeLloMta2A+f5hNFV83nRZIx8yahIE1qFEOv/bDuGInh10dKSGyww5PRimu3rLFAlQnz38bURYhnnVrLrLhgBrto2QLpQrszyNAppEiJJyfV+b6OxAMNR/5rP/1DAkl2+Pm+BIWNdvNtXbO0nkStVTCvWCulyu17mR8pu13LXda7rKBvmuou4kM/DruEoj61RxFUaNGA6WWS0pzsQyzTbc+qTsuz1fradwxEuHO9paYIC1vl2dC61blm2JU8a4o6jC033eAlHg1YsgVcXDK0TWJXnRjt5xDRNpldybVt+10fQp3PZll7uPNZePj69mCEW9La1fL5RPPfCEU4vZtY0QZENmmFYz+F6wZeK2/MaIFbI3su6zdBZSHZXa+0ZjXJkNtlWPj69ZOWR9TCRANe3werWmm0VOjaIknHl1n48mlizPvB4qnnk/Mr6lVFgzXw+NhVvy7hM1n7rPdu2DISs2bAOnv/15iwhBC+6aJyzS9mmsnPt/082+6ZpLpqm+U7TNHeYpvle+9duNU3zt03TfIdpmv/c5M99xDTNK0zTvMLvsx6M9SZDsJLUG5+xhYNnV4hnGw95ZvLS6bC7Bg0s9CORK7XU2cazRYpls6ukIXeMPXxmpenvkQzaefthH16HVFTG/okYh6cTzZF22+1KgtXrPViAyqLM+9dgPnPFMlv/+Ns8dGZl3YU3WM/I5Vv6Wkoq/3z0Rv5o9LeB9UmFZFw0EePEfJpkG0PH88l8V8X3QMTPruFIW2zkbCKHJrp73y7d1McTaz0jjsiVdAYj6ysGAC4Ysw6lZnK5+rN0KOLH26E7pQyfR2PHUKQtBu3cSpZi2Vy3VBQsZLMVQixjMd0dE3+VLc2+92Tzg2w1g7b+9+2iyd410eFooJfHTp7h9QXNAl9cyCOtzJQAphM5+sO+jk0LZOwYijAeC6xpf++USsP6iziwAIrHzsWbFo0er3XfPCbMJPLrGhOQcfFkjIjf09YS6bkugR6wQLPHzsVb5pGVbJFMobxulgnghQdGiWeLTb83J4OWL5mMxYIdWYw7Y+dwBF0TbbExK5kihbLRVT1y3Y5BnphONK19nHGqC8ktVBmLtdRKcpykZNfnk+s8R7cOhBjp8a854rEtNMK/zMzxV6UI8102aHtHo8SzRWYTrf0F1uu8KaMv7GPHUHhNtZJTKg3rm78HCPs9XLNjgG88cr6ppFIyaF7TqiO7adCu2mqRCgdbrOMBmLPvdSf7X50hhOCSTb1tSypPdaF6AbjEdhFv9tk0xQzaOWCT4+eT9q8pCzk/NdBF8QFUtrk/2aS4Mk3N/q+ViLs5yOTS6bVYLYAFez9DNwVqb8jH9qHwmsWHfOnmbOOS9TJoYBUEuaLBsWZzOJrdoNlo+3rnfcBy/BkI+9Y0gVhw7LjohkEDSwp4eDpR83fWx2ue9wHMnucAVhJdb8j9UY+fay9xdFMMA+wd62mrIJhN5BiM+Du22HfG/okecsX2WK0S3nXPDYLFdPg8WtOdYSa1B8565Y0y9o31tDXgLC2d18vEgGXwArScMQVYTBUY6OJ5HI0F2Nwf4r41CivNZl5Mw2IQBsPrz5EXTcY4sbAGQGE3gwaCVL7U1fO/pT9E2Ke31VjPxnNdFcNCCJ61Z4g7jy00VVA4pdLQXd66aDLGQqpQcTpefS0fmmniobv5Y7DmWS9oO49YObSb60l2vBXzuVg5R9f/PN6we4i+kLeppLJmBq20flkeWLOKWwdCa7LVMmaT1vfazX2UZ02z2scZ51eyXX22zf0hBiP+NcFAjyYbNOsdXy+DJoTgmlYqg4EdXJ/NoV/zeyTzpa4aNMnQtlPszyXyRPwewuuYG5dxyaY+HjnbHHxx7hOFzlcnOeO1V27m3Eq2qXOk18HEn+vyGblyaz9CrN3Ey5C1WDff246hMGeWMuRLazN2qXyJxXSBzf3rP7MvHI+ha6LiKl4fqhu0+4FdQohtQggf8FrgG138fS1Dsj/dNDFQtfdsdkjLBg26Z9AmeoMMRf08sgarBdWGqZuHDywW7aEzK01f5HpUpFsGDdYYTLcPMsO+n900upomePaeYW5dw+DCOXvXbfEth8Vbzf3IGYzeLhoLaVH7eJsyx26aarDQv3Mr2ZaM3Uwi3xXqDZ1+Nq2rBs2ra+wdjTa9Vv0r0Q1gALBvLMpMIsdyizmcE5WF8OtP9tukU1mL5zFTKJEplLsGsa7a1s/9p5aa5hENCWJZTOR6GQSwim/TXAugsOdm7dd+tIvvTdME+8Z62lr8PZPIMdpFzgK4YdcQyXyp5cL2FxoW1jnQxdl2wF690ZSN1Dzo2AxalzJwgJ0jEZ6aTbWUec0mcng0Qf86pXJARbK1lgkKwELKehe7ASi8usZ1Oweb74MSGrr9mQul7s+avWM97QEGdqM7Glv/M7nPXpTcjqRyNtFdEy+E4IotfWvOcks2sliCvpCXkG/9Tcwztg+wkMo3BwMDMfjrOLMTzwO6q7WkNPWpNiziF9OFrmvWSzbFWEjlOd8EfHFKpYF1GeTIeM4FIwS9enMG2SFxzJeMrpRRsZCX7YPhlntnodqgdfNu7xiOYJhVA7RmMRO3FGbdgIEBr87e0SgHm+RjN232PwfcDewRQkwJIX7NNM0S8N+A7wOHgS+apnmozX/7ukIW5oNdNjHDtsNTM9SqcuAYVoPWTRMjadVWB7Q8WLqRk4E1q7WULjRFGst1h+l6TULAcvcL+/TmxbeNDpcRCMG6tewynm3vaGo2VJp2mqOsc7ZCxgVjPfh0reVs2EqmSDTg6YplGoz4GY8F1hzwd8Z6HBydIdG/p2bXRqO7ZRAAtg9FCHhb30cZ3T4jF03GeHQq3pYrWn+Xh+Zeu9g53AJFPTGfIhb0dnVoyjm0B1o4sC3aeaTbguCqrf0sZ4pN50ecEsduv7MDFSfTlca/wbTyvmzQui2ILxjv4fB0sqVRyGyiOzklwNX2jqa1WITH3vIYsZF/xO/RCK1jIF3G3tEonjUQWzQPHtPEgyBbLHf9bu8ajhDPFitnV7OYTeQZjnbXxG8bCBPxe3i02TNix2LaLuK6PEf3jfUwtZxtvOtKSA9TS5rX7fN/yWQv51ayzCXXdqmctYvzbgC6kR4/fSFvy4YwlS+Rype6fv6v2NrH1HLzORyPsM6yQkl0DTxeZsuXW8nl5lPyPq7/GekN+Rjp8bfV6C6m8l0/jxJ8aQZQOCWOvSHvuqX7YMn3D0zGmo7KaB4/mmmi2+mz22dk53Ck9bJ2rBo5GvCsW3IO1dUzJ9ZyXwZm4t2z/mDJ9w+eXWl41ggXXRxfZ5rmmGmaXtM0J03T/A/7179jmuZue67s7zr9x3cakkHrtokRwnKPebIJ+lE2pEmIlTwGupDvgCVzPLGQXnNn2LxLDNoNu63B9Gb7d8rl6oMS8GpdFfvSKKRpY6FVZ9BiQe+6LMadIQu5ZrKCjL3fxe/ReMH+0a6u5fNo7BmNcqiF7HA5U6CvywMaLIS4XQYt5F9/goL20T+LQeguQema4KLJXh5qwSDL6IZBA4tBTuVLbSGbPevYJeSMdve4TC1n2dwfWrchg4y9Y1Gm47k1mc95FyReYDFoQFNLbk1UGbS+cHf3cSDiZ6I32Lyx6NsKwxdw7wV/CnQvX75grIdUvsTUcnPDoXypzEKqwGhPdyxrf9jHpv5gy8XfCylrbrCbZyTg1dkzGm0OhmgePKaFfEN3wCNQWU5+tMW7NpfMrXtuRIamCfZP9LRk0KSioRsmEqoqm4bvtoNBK5UhGugOMLt8q9VYPNjCtl02Od0CxvvaYOykg2+3YMgV9jxrM0t6KXEslmEw2t13tmMoQsint27QXKq19oy2J/G13u3uPpuUx0tnzfqQKzSGS2bXuR+smvWJ84nGUkDJxNswxXp28jljx1CE04uZlkZ688l817W/VLEcn1975EK+a92eNZdsipHIlRp+b/IMXSs2zCTEzeg2+YL1UJycbyzPKNuIrWnfnm4bi0s29QKsyaItpPJ4NNF1gTreG2T3SIRbm+zfcTJoPQFv10XjmkYh9gNYNruTt8jY3B8i6NWbolYZm0H78juvdSVJ7Z/o4fHzzXXfYLlhdjN/JuPARIyTC+mGiG09+tItgzbRGyTk09c8XKaWM8Szxa7mpmRcsaWPQ+fia65/kNHt8y9NIBrJk+q/xm6vNRT1MxjxtSx2VrLuPCMS/VvrcJEMWrc5cstAiKGov+kcmkdKHA1Bb7D7z3bxpljzBs3jh9+4mycClwHdF1a7bAb52Hzz53/OBTmZjIsnezl4tnVj0Q3DKkMyyA1zlhB4MPHY/1e3zI+0sm81FzabyHUlb5dx8WQvh6eTTd0VwULZhaBr0GzfWmMQmu4onDR6uswj+8dj+D0aD7QwbppN5ugLede9PkPG7pEoR+fWlqbKBq1bBuHC8R4CXq2pzNHJoHV7ZuuaYP9EjIMtmnjXGrSRCEfnUi3VGoupQtcMWk/Ay0DYV3GWbRT/uu/X2Zz/064kgDIu3dRHoWw0NtwSGh7TrDj5dluP7ByOUDLM4pAk2AAAXClJREFUlrLD+VR35ldgmaBM9AZbMp/Swbrb5/9iu/ZvdLZpbkkc//8W3TJaAFsHwyRypYZ7XCSDdsXmAW6xl8R2ExdN9iLE2g1aPFskFuy+YQJLi32wyUCpM5l0M7QqY/dIhFzRqDzQNWE3ugZi3ft2nCH3jzRjLNIFi0HrlmGSsX8ixkqmuCbSvpwu0OfCZ5MShkYsWr0stRudPtj3cWTtPS7SjOIZtkSrm7hyaz8lw2wp8wW6fk4294cYCPtaznxC9w0a2EYhLZJ9wn63u42dw3aDtkZBLE0Sui0IhBBc1cbuwVLZdOXdPjDRy5mlzJoqg6V0gZBP70riAtagOMDxuebFzqxLBzRYjcW5leyahkNL6YIrwOOBiV7i2SJnlxrnLItBs86Yni6Zn6Gon56Ah6Nzaz//3c4yyTgwGaNQNtZkxxdTefpCvq5B1TWlgEKrFk6m6JpB83k0Lp7sbd2guXQfdwxHyBTKjc9sO2ZcYhC8usYlm3qbGpfp9hhEodg96w+Wu2gr1+DljAWCdtvE7xntoVAymrJaYI3lLGUKrny2rYPhNV18n3nVb3E6M971CBA493w2YpAFHqgAPd3WkfJcO9Yijyx0uYZKRjsM8mwiR0/As64daM7YNRwl4NUa1nU/twzaepbi1Ye0vG70wEsG7YUHxvnoW67o+loRv4fdw9HmCDGQzJW6RuJkbB0Ik8o3az6rxX438w4ypFtQwyYmZMkbPut7lSsyQIC9I833j0gGLdxlAyNDMp9Nh8VxUeK4huFKPULXLWIFsGckumahc/fxRfrDPvasc5+QMyrrH1o4mfo8WtfFtxDCmjFqIIOtd3HsCXZ/H/eOWvdxrYIgni12XQyD1Xx6ddHcNRV3BqllXDBuzeE0klSmK6tINFee/4ukCcQaMl+33rXekI+BsI/ja9zHilTOBTBwty0pPtGC+XSDQbvYtnZulrN0pPUVXZ83Qgh2jUQrC70bRaFkEM8WXSlQq7OKzZ+Rbh1MZawpBRQaWiWVCFfe7cu3tlYZrLj0/HcCUHQ7X2RdL1Kxmq8Pjz0GUTJ0V56RfWOyaWrOxqTyJQJeras5LaiOCqwFdC5niphm9zPBYNV1azWDYMspXXj+J/uChH06R5qMk3jM6i7MbgGKXcNRogEPn7z79Jqs7kKye6koWM3nifnUmu+aG/PHYLG6m/pCnF1e/Txq4ueMQQt0Se07Y9uaDZr1xXk0927PloEQ59ZgYhIuFXHyWgCnGyRFJxvjRiMjd3I1bNC8QfjrOJ8xnuOKxAusYmcpXWjYfKbz7jJoe0d7iPg9a7pQrWSKrjAI/WGfNYfToPioz1lufL7do1EW04WK3KM+Dk8nuHgy1tVgv4xYyMt4LLBmIQfuMFogm6bUqqbJbYmjda0e8mugqKZpusageXWNLQPhNQeq55P5rgepZewZaT6r6LOLG0H3rCdUHWHXArGW04Wu591k7BiKrNmgSTY+4kJO3mLvP1rrGel2d52MvaM9xILepgukPYBuulNYgWUUspbEUTb3bjz/k30hdE0w1aDYkbGYzrvS6IJV7B+ZTa6WsAkN3QZ7TLSuZ1nBkoG3UhkkcyVXVC9VqXTz723OZhDcyCOjPQGWM8WGy4ilxNE0dVcY5N1r5CwZyVyx67kpsJgfTazdoC24NBMMsG0wxGwiT8bOTfVRKBkkciVXriWEpVY60uQ+6oBm55Fun8mgT+e/P28Pdx1fbAosyc/WrTIELODRMGn62UDuiey+QQOrRm5UHwtNR7RwwH1aNWg7hyM8/jfPc+XvmuwL4tFEQ0tWKXHU23BZaTdGegKVPSaNIuFS0oBqg3amAYrkNAnplr4FGOsNIARrHpoW8u3OZ5MzUY2+N8mghVw4VMBCPy7b0td0wLlQMkjlS67M14HFIrQlcXTh87UyCsmVyoRcKAZk7GohqYTuVhU4Q6Ko9eBLfSp0o7Cqzqo0n4ssGaZrzefOFo3F2eVsVztwnLFnVO76Wf3ZKvIMU+t6lgmsAn7bYHhNM43lTNE1Jn7HcHhNRiuVt9l4F8CQib4guiYa5mOwnpFc0XClsdA1wdXb+rnzeOMF0h5EBfl24/nfORxhKV2oSGvrI5mzikk3mkFdE4z2BDi/0vwcXXRJKgpWjswVG4AvQlQKJ2EKV87ttWZnZaQLJVfu43DUT8TvWdPJLpkvuVaPjNhMxFyDpc7SatxE69oAAtprmpK5ElEXzjZrh114zWsturD2QcZWm1RoNqvlloOpjD32md2I1fJgMWhCuFOP3LhnGGjO6qZs8N0NEqPVmi2w2Do35JRgAUtnGzHITql0k3haNWhCuCPvAmvR5kSTztawJY7taETbjZEePytNUCSQEkd3PttkXwghGr/INQyaC8WH36MzEg00ndPK2sWHG0UcwI7B5jap6UIJn0fryvK+Pi6ZjHFktvFg+krW3oHmUvO5fyLG6cUM8UytpKwewXXj8222Uf2GiQOr+fS7eB/3jEY5Nt94oHrIvrfuMWjS/n7thtCN6+0YDuPRRNNkH89a36Vb8uWdw5bjVTOjhDNLGTb3d+c8KGOyL0jE72lYgDhKVNfAF2lw0SyWMwX38shQhMV0oekOO8nGu3HeeHWNid5gQ0UDVOWUbgE91+wYYGo5y3R8dU72YCHfbsiJocpYNEOjpemRW8X+eG+A8yvNlSjpfImo3z2gBxoXclLiaKK5cm73hiwFxVrMTzpfduXMFkKwYyi8ptlQtuDOtaA6x9lo5s2jS6dndySOAa/OloHwmvcxlS+5woyDda6txcQs2zO1biiItg7YTo5N5tASWStnuXWO7h6JspxpvEZDN608EvZ5XFHZjMUCeDTRVGVQVUd1/72N9wbx6dqactF0oeRar7GpP0giV6rUApVwAD3N4mnVoLkdY7EA0w2SvWTQ3GzQpM1wM0mZJXF058UKeHXGegKcXmrEDjpn0Nx7AJsxaDJBuSU7megL4vNoDQ+XTL5M2AVW0BmTfSFMk4Z7XGSR7MZMJFRZrfoZo1aLYNcTo7EAmqBpsVMoGa59LrCkUIWSwekGSTGw8l7EkT9wj2UajuDVVzdN9ffRjev5PTrbBsNNd8olXJR4gfXZyobJmQbvtmmanF3KsMklBk0IwY7hSEOmSbMnmYRLDBpYM0bT8VzTfVDL6QL9LjWDlX04C42/t1SuhCYg6BIbv2UgxJkmBYG0snZD0QDVxqKRpNiDQDeFa2eNnAtrJs2TDJpb8v3x3iDnGzSeMjL5smv3UTIWjcBHmRlNU3Ot+dw+tLYJRCrvjsQR2pH4ll2rD6TRSKMzVLdn0ExT79pmX8bukciaTVMy5w4TCdY806nFdEsG2Y33TT6PJ5vkkWxR5hF3zm05vtII6PEi0BCuEiab+kNN2cGK5NyF6+maYLI/yOmF5qqvTN69518qWlaNOAkN7edJ4uh2jMeCDQtUaRIi6B4ZkDGyRpICKXF0T1K2dbAxQlbj4ujSQTbZF2oq35HosFsou64Jtg2EmzJobr1UMuSgaKPnRK7L01xw3gSHNLWu+G5n6XKn4dU1RnsCTDVr0MoGfhcbtIoDYaPG2oiSMIZ463XbXLmWz6OxYyjCk/UNWt3vc+t92z0SbepAJdlQtxo02Vg0mkObT+bJlww2D7jToAFM9gY51/AZEZX/unVIX7SGk2mpbM0guNUMbm9hlCCLYTdcdcFirJsxaLmilUjcet/WmjF6Z07wkrTPNbVGX9jHjqFw0x1eiazbDFqQmXiu4eJX0zTJFMuumF+BVQxG/Z6K5bwzqt9U9y6OMrYNhjk5n24IyBVKBoWSQcSl823HcITpeK4iHauPTL7k2n1cq0HzOBo0t/LInpEopxczTdVKqZx77MgNu4cwTbjtaOO9s8kKg9z99SJ+D0NRf1MGTX5et7waxmKyQVv9vQUAr6G5xrKCzJHNGDR7fMUt8GUg3DQfl8oGhbLh2rWqPg111/t5kzi6HeO9QWaT+VUFsGGbhLg5g1ZNUquRlkLJIFc0XEM1wS4aG7gd1jBoLiWpbYNhzsdzDV1xJIPglsRLXq+RS5ObsgwZ473N5RlSLurR3SnimklT62fQ3Irx3mBT45p80V0GrYoirf7eSobJKy6b4Jm7Bl27nuXAVts01d9Gt6SwO4ctl7JGBYGUNbjWoA1bjUWjBk06RbnFoIHFWJ9bya4qiCviDFOrHEDdxoXjPWiChjvDVuz76BYTP9kXwqdrTVmEdN69Ik5ebyVTrEh1nJG3mXi/S2zdYMRHLOht+IzcXPawN+9z9ay5fEsfD55ZbthYVBgElxrC8d4gxbLZcGVBoWxQNkzXWCawALpGDZr8pnRN79oNUMa2wTDJfInFNQyw3JLmSSfHk01kjm4yaD1BDwGv1vA+Vho0undVlLF7NErZMJvOmKbyJSIuyWD3j8cYjPj46ZONG7REroiuCdeK/W0DYU41YX7k+eNWHpHgdCOV2V9lNV6RjBBxMY9sHQhxeiHTMI+4KTkHuxlcbAyGZIruNoOy9jm7qtb6hcRxzRjrDVA2zFWSGsP+0txl0Cx9dSMUKamgidk1EiFdKK9Cv2saNJdeZIlGN5JnpOSQuEsJEWAw6mvs4ujioSJDokiNBtPlvXSLQZPS1Ho20mju4N5VyOK7URTK7jZogxEffo/W8Hplw8Tjgo7dGfvGoswkck1njNyMXSMRDLOxjXplBs2lgyzks1DURrIr+WubXJpBA2upeaFksJCuK4htB68Lx2OuFcRhv4ftQxGeaDDzI79Ht+Y9dU2wrYnKACw23s1Cf0wWOw3kQlLi6BaDJmeMGrp9ah7yhu7qWXPxpl5WMsWG77brM2j2fWzE/EuA0C1ZKtgNWoMzW35TXn1jnKUl0+XWM7m9hZNjplByDewUwjJ3aTiD5rEAl7LprTjDdhtruc+Cu2olTRNcubW/6eoHKad0i4nfOhhqKnGUTLxbz/9A2IdP15hu8L3tN70MFH1EXATEtwxYAEWj2k46V7pV320dCJEplBvO18k84ta1+kJewj69AYMmHOs6Gsf/0w3aeK8svuuaGFviqAv3Hr5Y0IvPozU8oBMuOl3JkMPb9XMIzgbNLa3+9sHm8xwpl5E/sIbpVzKFVcxnJu/eoSIj7PfQE/A0/N5kI9/tUlRnbB4IrRpeNRQxaBO2XKj+PpYNk7Jh4nOx+BBCMNFELlcsm+gurrQAa4ko1B/Sau7jrmFplLC6sZDvtlsMGtizsw3Q6MoeQBcbi4nexgCFxP48LqoMwNpP2WhO0a3lss6wnBybzKDly4oatOazrG5Lihs2n5qXvOHO7i4Z22zzgkYyd/n8uzdw39zcKF1wF/kGazRhLYmjV3fxPg42Z7XcnMEBS06va6KhQytYkjI3wc6RnsCaM2gC3RWzCbDGO7y6aDiHZpomqbx7M2hgNRZTy5mGowhueguAxcZYUvbVao2KxNHrTh7RNMFIzM90I9dUX4SkGXBVZSBHPBqpo6SrrlvX22YDFE822PNWMSRxKY8IIZjsC60GVYWG1qIm+X+7QWvCjoTZbP3/kXHXriWEYNdwpGFCrDBobkochxujSE65nBsuXlA9WBoxCG5T02DNPRhmdb6hcq1CmaDXXQYNLBZtLQZNdwkdA1sbXS9xVDCDBhbNXzJMjtbNT1UKRpcSvYyJvsaSyrJh4HVJJlq5VgNpqnz0P/Kmy11b1wGWXCjq93DfydVzOPFsESHcBV9GewINAYOS4T5gIEGs1d+blTvcBLHAKq5OL2ZWSSrlALybAMz2wQinlxo7YloSR/euJe9jo2In77LZEFhF40Iqv3rGyB9lxQi6yqBtrszOri6skrkiUb/HtWdSus82MhPIFtxzepMxFgswn1o9BqGiQZvoDeLVG6/+cfsc9Xt0Ltvcy+1NZqeyhZKrhlsjzRg03QJchHDvefTqGpv7Qw0b3UyhjGm6W49sGQhRLJsN59TdNCSBah5pBBpUGzT3vrexWLDhtXjFR/iQ9gZXQawtEuhpMIeWrjDI7ny2K7f24fNo3Hpk9fMvgU63CAxosgvtFy6Oa8dEkyXLI8bzGEr8MZcMX+Lq9aSNdL3uVdqjunloxkJeekPeVZ/NedC4hdgGfToTvcGGcomkggZNzqEsZWrpaTdlGc4Y7w00leYBriF/YCHfi+lCzYyFKgbtOReM4PNofPbeMzW/LtE5tyQnMpotbCwZpqtNBTisnR2Hi7yLQZ97A+lgzbJdta2fe06sXg6cypWIuGRFLGO8N9iQiZFNjcdFNlLmyHMr9QWxdQ0353TBAijyJWNVMVdxTHWR1d0xHG7qiJnOlwi7zCAADR0IKzNoLg33QxWNXsU0vfzf+NviG10tGsdiVmPRaOg+kXW3QA14dUZ7Ag0bNLf3YIL1vZWN1TNvup1MdBednj12Y9HIBELO8rlZED97zzCHzidWj3gY7pqtgCUVnU3kV9U+E0P7CRomSWOza9cCu7FoOE4i1Uru1Vpb1mB1k7mSq8C7nIlvVI/IBs1Nie9YLMB0osEYxNAejhf6XNknJ2NTfxAhaDhjJxlkt57/kM/DNdsH+MmTc6v+vwoY6GL+39QfYmqpbr5OaL+QOK4VEb+H/rBvFfJXNgVhtrh+vQMTvcSzxVXXS7jo9OOMoYh/la1/TYPm4ou8b6ynoQ47nS+ha8I12h2qDVr9fFGmUHY1OcnYNhjh5EJqFapfkTi6yKBdMG5J8w6dr1Lvqhi0gYifF+wf5ZsHz9f8utvrA2RM9AZZTBdWmcmUyu7PoEUDlu67kSmPm7OlMq7ZMcDJhfQqZitTKBFyGTQYjQVI5kqr2BEVDFosaN3H1Q2hlDi6+4xslTKXuiJVxTNZdcRsXBC7Kcv2eTQGI43lQvmiuzNoAFv6Gy+1Nfu2crbU62ozqGuWhKcZg+Ym8AgWY9e4qXZf4ijNveqff5lDNOHumW2dNc0/m5vA0vW2KdN9J5dqfj1XslgmN5nIkZ4AhZLBSt2Oz82bn8ktvZ9jif2uXUter5GkMpW3ru/muy0Z5IYAhcvu3M1UXwBZewZNBYNWX/tIqaibgIHfozMeCzaUuMs60s0ced1O68xeqQP6JVvnNoOWzJcqZAzwC4ljO7G5f3WyL5YN15z5nHHRpLUzpr6RUSEDBBiK+plPNW/Q3GRILt3cy4n51Q+7tLR1a0gWqnMo9W5XZcNU8r3tHI6QKxpNDVfcLIgvHLOekUPnq8+IMzf+8+svc+1aYBWpy5lijcxLheQKnLa9q++jm8vFZdQf0oqISMAyy4DV8yMpl5kYqM4zzay6j9b35nazOxJrUOzYJiEqJI6weg6hULZZXRefybWMEtxcVCpjvDfQcOA+r0BS3GwRvWzivS4/I5v7G69acbtABYuxaOjiW3Rf4jgaW83Eg8PF0UUGDexdaIvpVQWx2xIvqErK6qV5shl0U+I4usay6kLJwOfyuT0a8zPXwKG7wqC5KoO1GeQGz6QlcXQPoFjLWTGnAOgZiwUols2GtVbZMF1tBqH5OhJrJlJ3tY6U7or14EtWwSyrdDo+W2MU0hoq/kWD1r8a+SuWDdcsX2uuZSMt9ShqTtHMz1C0BYPm4ot86eZeAB4+s1Lz66l82fVCpxmDVjZMV9ksGbtGGu+ekgyam/K1WMjLRG+whkGT1/nQ6y/lRReNuXYtcNxLR2NdKLtvWgCOYqfukC4ahutNBayee5DyAgWPCEP2ktV6QCRTcNdsAprvp1HBoAGMRAOrmEizwqC5vHewJ4CuiVWSShUMWsTvYbQnwPEGbodpl9FhsOVCDQqrggKJYyzkJRb0rtorVCrL1SDuvttbbHOjegmb2wUqWE38fDJfmd2WkVFQWMmcVQ9QyLunufz8bxsMUygZq6Swki130w25J+Ah6NWZidfnLHcd88BqmKBxg1YsG3jdPmtsaWr9AmkVpmW6Juw59QYGcNmiaysmwGLHBiO+hlLpXKmMz6O5Wo+MNQEo5FnjNiC+qb/xGITba0/A0eyuUr24L3Gc6LVq/5rPJjRaZar/5xu0LQMhzq/kKJarDEKpbLpuWgAWauPTtVWW1VWJi7tohJQ4Og9Np0mIm8XOxZO9aAIePlM1SphN5JhJZF1/sSSDVj+DZhjuuwEC7LSR9nozDfnIuN0U7h6J1DAxKsxIZAzYDdqiw2427/LiXBmNlrUbholput9UwOodRvLJV9CfMRixCpB6296UiwtfZchDc9V8qSy+Xb6XjXdBqZlB0zRBf3j1Go3qDJq7z+SukQhP1b3X+VKZYtl0PW+NxRrPDuYVuDiCdbbVo/pFm2V1+3zbMRQhmSutAgQzBXdnmaCqRHnwdK0pT0aBzX5/yIdXF6u+N93OIm4//7JonEs2bizcZNCEEPZsWO1nq7rBujvLBzDb4Pkvlg3X3+uRJtJUVXlkMOJjsa6uMwyTVMF9gGK8t3ETky8aro94VNYMNVC9gPtnTV/YcuiuB3rSBXXnaP0zIveguSlxrM5y1zZov5hBaxGb+0OUjVoHnmLZcH22AqyEOBDx1RTDUD2g3ZzTAotByxbLNbMqTgZNDpK7EY12GF39P3/MnccWXUWrwHpxgl59FYNmmU24einAShqDER/H62ZVqiYh7l6vP+yvkYqqMCOpXstudtOrGTS3JY5VuVD1IKtIrhRJHOeSq/XzKjq0WNCLRxOrzAQyLu/TAuuA9unaqnUMqhi04R4/c8lczaFpmraLo4I8ORD2rWp0Vclu94xEOTqbqsmLKiReYBUEqXypMnMsQ5Upz3A0sOo+FktqZLA7hxurDPLFsusyqMu39OHVBfecqJ2dyri8Kwxsq/EG80yi8v+7+9mkoYSU4slI50v4PZrrzOdIj38Vq6WCQRuOBhACzjdZM+F2/m+m1lCVIwcjfhaSdeBcoYRp4upKC7By1mPn4qudbgtl12vIsd4mDFpZ3kd3r9cX8lEsm5WVGTLSCpRYw1FLrVH/2TIu2+yDtQst6NVrWVYhfjGD1irknp9zNQ2aGgYNsBu02iIuVywjhPsH9FDUQvWdqGbZMHnZJeM88pfPqWhw3YoLx3t4wiHNk+F2gQpWY7FKF22aSpoYsBJw/fVUmIQA9Ie9lb1PUJ2dcmshtjMGInKer/qMqHDMA0tSFvF7aoqdko3oq2DQhqN+imWzsixa5QyaBF8W6pDvtMv7tMC6V5sHVru9lQ0TTeCqTh8suVCxbNayWqaVqzSXZ9DAftfqcqQq2e2e0Sj5klEzmC5dvFxfet/EIjtfshgEt3NXX8jbEMQC9yWOFcOVunm+XMlwvWgM+TxcPNnL3XWuqZmi+xJHsJ7/1TNoamYwZTFfv0Im57KrooxGn02F2YrPo7GpL9Rw72ChbCqROMJqaWpZESA4EPGvAueSCvbbgmVItZIpcrhuh1eu5D4Y0h+yllXXM2glRfPOfSELoKjPW+l8yfV8rGuC4ah/leGKCiZeCLF6zZDQfmGz3yp6bbmcMyGWDDUzaGAjLXWoZq5YJuBxdwASmjdouqZVPrebccFYD+fjuVUvl5sDuTKGon7mEqslBSpkgGAxJPWHpgqTELAYu2yxXBlWLVcWYrt6GetaoQYMmqKZSLAR27izQVMjlYDqcmjJWJg2WqXCxRHku13foLm7T0jG1oHwKre3kmEqYf6r0tTqZ5MzaG4XqGCDWBskcdxrLzQ/4thPqcrFdNxG9etnVfJFw/XGE6w8slwnA5dSfvclZX4ifs8qBk2ebW7HgckYx2aTNaxutlBGEwqk2bHVO7zkFXSXZ9B66nKWjFzRcH0EAqzPVq8yUMGggbUvstHy9GLJwK+gYRKCVZJb+fy7fWYPRXwsZQo1TLyKvWRgNWgAdx+vBShUvGuaJhpK3MuKZtBkXVrv9plWMMsNtny/bo1Atmi5gbsNmE30BldJHMUvJI5rR6/dsTsfiGJZjascwEB4NTqcLxlKiuFKg5aqb9BcvxRQdbJ7YjpRM9OngtWa6AuudlU03d+nJSMW9FaYGOf1wP3PJ5smWVxVJI4Kms/ekA8hahErVZIrkAmxmuxVzU2Bo9jJ1sqFFPXwDcEXFSYhANsGQ6sWOhuKnv+Gs4MKGTQrR65u0DyacP1dk9I8p5OjbNDcBukkg7ZqLqZcVpL/+0I+8iWjZq1F1STE3fsohLAcCOtAA1Vn20RvkHShXPNuW/Nu7joGA4zZLJOzGaw0aC6rDCTbUi9xzJfUPCMVdtzRyFckvi6vB9kxFOHE/Op1NYWygdfj7nema4K+UAOVTYVBc1niGPVjmk2ATgVuyOOxAI/XuYFniwYBBWBgPagK6oBVWfusZFfvuFXBII/FAqvycVrB3Dg0qFmFQP+FxHHtkCi7s/gulg3XbYhlDEZ8LKRrhyBVoYxSz55yJPuSIiMNqFqJzsRzFZoYVtPVrlzLRiNksjdNy2xCRRMDjRs0eW23Wbt6Vss01TB18u+sP8hUMQgAoz3BGtckaVqgK2gGK3IhiUbbr5yi/mwVg2aaJumCIgZt0Fro7JSeqNgnB9YBDY0bNLdNEsBi0FL5UgWBBtuKW8HzGPTp9Id9NbMxRUUzmMNRC9Wvd3LMF903SYCqXMhZfFekSUqu5yPhOGuKZcOy4lZwtsnRhCmH22emUHJ1sF/GaCxAtljbDMpzxm0GOejV8WhilVojX1LDslbs7x3Pf0bBwmOwwJB8afW6GlWu2QNhH0t1QE91dsr9GTSgJv+rPEc3D4Q4W2cUYtWRat7rVeB0RT3k9gyaLXGsY9DyRfel0lDd81bPxKvII5v6QiylCzX38hc2+y0i5NPx6oIVp8SxbCqTOA5EfBRKRo1xR07RwydRAOfApYWyu34pwIn+FWtQ23oUy40Y7w1SKBkVR0xVrkIyGjJoiiSO0rhDsroqGTR5vY0wCQHYNxZlNpFnzi72K4imUgZNShzVxmDUMgCSyT5bdH/hq4y9o1EAHj/nXGhuoCuYnR2Orh64N5UyaKv3HBbKaho0WG1/r8qQxKtrjEQDTNU3aCUDv8vFMFgSR6gFyIplde9bJOAh5ZDmqZJ4gZX/oXZhb6ZQVgKGNHKykzNoHt3dd1sIQU/Q28BIRp3EEWAuWb2PFVdpl7+3HU2MZFSYhICcU69VK6kypZI5q6ZBK6uZ5YbG66FUGPKApTJrJpV2u96qShzrTaLUfLaxWIBMAybe7d2lUD2znXL6X9jstwghBLGgr0biWDLULKqGKtIiC7kDf/19vnHwvJLkK1GAbKHWxVHFnApQsZNN5kqkHdfcP97j+rUq5i42iiQTryqTkFjQS7ZYrlnoXNmD5jqDVot8lxVdR8ZA2Fdj66zK9hvgsi19ADxkr2NQhWjC6nkOCZK5LYGSMRTxUygblWSfUuAqJ2P/RAyfrlXuI8gZNPc/m8+jMRD21cygVRk09z/bQCVH1qLRKlgmWG1/X5U4un8vtw02kgGW1cyghVbvOFS1Bw2sWWMn8KhiAbeMaoNWbZosFzsVzeDqfUnyyfAoYJCjAU9jiaNSBk19/t9jF6j15hZFReBLo1lWVaZUg9FqXSdDrqtRwqD1h5hP5muA8JwCm32w8kj9TJgqcLq3YhLSaAZTzcgFwLRjDi1bdN8NE2DfmFUHP+l4/jVz7fv3/3yDBtZDEc/WSrxUMWhynuPcShbDrGrNVTwQPl1D10SN3NByelNToPo8Gn6PRjJfImPr2H//Obv525ftd/1acq+ERFANhTJAsBa/Qq0UtrIHTYFJCFSRb0PRdWTsGonw1EyyItlUxSCA5fTp82iVHUaqFl6C0xFt42bQoDrzmVFk1w7WzsQDk7GaXVDWfKmaD1dvNa50Bi2yejefKokjWChq/ZoVUANQ7BgOc3wuVSOpUSVf6w+vlgsVKxJHBQya31Mjp68waArAx8GID59Hq3NfVnMfxytOz9XnXzJomssMGlijCatdHA0lzeeQLbt1suOqGrSegJdN/cFVTs8FBXvQwJplrd+nWFI08zwYbiBxLNuz3AqeyU39lgP32eUqi6aqsehtNMuqaJbPq2tE/Z4aUMk0TRugUMeOOwE6a95TzSxfb8jL4ekqg/YLiWMbUS9fU4VEg1UMg0VzSjQH3JcTgMUUhHz6qgZNFTsIFouWzBUrTlBXbOlTcrBUF/9ZCUrlMmdoPKtYRePcvVZvUBZWdoNWYdDcvY6M/eMxkvlSJdlXhpsVSDP8Hp0Lxnoq0rxyxa7X/VQU9nnQxGoXR1VRP4egkkEDax/UY1NxSnZDocrFEazDpbZBk3vQ1CC2UDsonlcpcewNkMiVSNvfl6o1E2AZJSRypRozmYIi+ZqUCzkljqWKxNH9exkJeEgXypVcnCuqY9CEEJYr2rKzQVMzmjAY8ePRRI0MVrNLK68CBrkn6KmZ5QN1DJpX1xiM+GsWSOdLZXweTYnS4IKx1at4iiU1a436wxbz4zQsq7oPunsv5a5XJ4OsynkWLAYN4IxjEX1OocQRapl4VTNoAL1hb43EsWSYGKYawKyyrHqlFqBQcS0hBHtHoxx27Ar+hcSxjegNemsljgr2csgYivgZCPt4ciZRY8mq4sUCaw4tu0EMGlisRSJXqu6SUMAeWNfxEvV7Kge07HVVSRx7GjRoVdbO3WfFo2v0BDwV9E+VW6QM6b55yD44VQ43g4X+yXmOokIXR00TRB1odEXi6PqVrBiM1s4hyHdAhZ4drPtYKBvV58QwXV+aLmM0FqiROJYVMmgSDHHmZJUSx/E6FFXOjrjtLAfVfWFO10hVTof1QA9QaeZVMWhARd4u3WBVNJ+wGjRQpXzR7WXVTpRdrurwKGjQon4L5HRGvqjmGQF7F5qTQVMkJwO4YCzGycV0BQwBtRJHqH3+i4r2d+maBYanG0h8VXw2ucN2all9g9bX0OlczX0Ea/fakuNaKqXSw1E/moAZh3w5r2ilBVhrXY441Eq/YNDaiFjIy6HzCb7y4BSmaVq2r4qKYSEEe0ajNoNWbdBUJcSQz1MzD1Y21bGDUNXPV4pTRewB1NqWVnaFKfposTrDCXBIHBU0vNayXilxVMsO7h6N4NEEh85btr2qG7Rx29rWNE1lWnYZTjRavm2qJY7ye5PvXchlu2oZI1Hprmg1TioZtOFogMV0vnIwG4a6GTQpTXWCIQVFqCZU5xCkk51K5HtHA1v/fKms5FoS6KkxCVEkTYKqSZSUOUoGTYXsCmzZrcPcwrJrV5SzemtlsPIqbpuEgJ2zsvUMmrqisV6+rPJaO4bDmGatNE9VYz1gyw6dMkeVa10idTOYqmz2wZob92iiZnY8pwjoiQVXG3eoPLet2scxE6nQbMijawxHAw0kjmryyL6xKNliuWLw8gsGrY2QxfcffOlgpbFQtQcNrGHZp2ZTFB2GE6oYtKC3yqDJglgVEwNViaMsTlUMrcqY6A0yVTEJUWfXDo0ljkbFmMT96w1F/RVnLdVNjN+jMxz1VwbF86UyHk0ou95YLEChZLCYLihz1ZLRaJ5DFYfWF/KhiSqDJtFUVQzacN1+srJhKPvORmMBTJNKQVCZQVPQoHl0jYjfs6pBUwUYSNdUibSrdDEd6wkQ9Oocn6sahahkR/rDvtoZtJI6SXHEb691sZ97lYUVWOj3XCJfmecrKpplAouxOO2Qk2mKXBzByln1DFquqEbiCPD/tXfusZZd9X3//vbe53HPfc69c8eepz1+4RiDDTEOBAiPEB4hhJKqjaPSEAFKUHBVJVEkorRJpEQqatVWqE2b0oBCq5KIVnk4DzUF1Ma0SYhJAhgCxtjY2GObec/cua9zzt6rf+y99l7neDz3ztz7+51z9v1+JMvj65lZe5+9ztrrt76/3/d3/XxrqAZNb6zhQyxArwbNf6/DsXqK79KZIXMXzXUkigT7Z1oDAVqaOZXU5X2XqWXVrB3fP9MaaDC+oRjoAs83k9FKcQQqoxCf5kgFbRuEeex/+XjenV1rwwjkJ1brvbRsCAlApX8FkDeb9EGnF+xMFDTl+hsgV9D8qWamqGYBlw/QUkVjkgNz7WAznP9MMTMV80GvE83NMBA07D2/UaZcqSlo7Ubg4qhbgxZHgsXpqheaP0HVUxDyzY6fJ6li7azvcehrHvqKfdCA59cFa9rs+1TA88H8B/Q2VjctTz8/xVFJsVjoNAdTHDOdJtxAVYfjN6mabrBArupu9rNSIc/XLZ35f9eReTx3caPM2NBV0BpY7aYDtVObfR2TEABYnG7h/FqvXB+1Um6B3NwFGDTT0EpxnJuq2v540ixveK9RXzfsYqqpxAPAgbnBAC1zTqVOfWHq+TXBVVuj3b+35dkWzqx2K9Oynm6qdKcZD/Tc1FyPbz0wi0iArxVW+9EWIRoDNADvfc1x3HUkr8P5P4+cAqCTAuLxL8eNfhCgaSlozaRsPKllMRuSB2i9ckyNjuyeQwtTuLjRx8pGLwiWdMZamGogiWQgFUTTmOTAbHWKpO1QCQDzU0mpNGluhoGq5ueZC+uqJ3HAYLqQdoojkG9ATq3kL7Ky9YPSgPtncge27wQ95bTmyE1DtVNpln+vI9E5gJmfGlQ+NWvQhvvlaW+sbl6eeV6Ko1YQkytol+mDpliD5jepmn3QgHyDCgCnikwDrYbHAHDPjYsAgC88cRZAUIMWN3Z9rMv1r9OcIz7LxQfUmjU4lZFSsUamGTKndGBQzsfAfTDVWyPzPoCXSXFUCnZzBTmf+845OKfTQmbhMjVofUUlcnm2hTRz5bqlfdDTbgwa6W0qqtVTzRjHFjt4rOgFyBTHbfDKm5bwB/e/BrdfP4uHT+R1OJoqk385huYdajVojbjsg1YaaSjuUPMUx9xmPxK9+wKCXmjn16t0Q6V7S+IIR/ZN4cmgOWSmaN6xPNvCWjfFpc2+ukMlMKhYaG6Ggdw1DwCePb+uehIH5BvUkyt5vZuP0BTjMyzPVgpaqhx8NuJooIedpvvswbk22o0Ij5/KU/MuZDfjur7DDQdfrjLe/JBxk6aq227EaCVROf97iqlJQB6gnTi/Xq7/mvV1C53GQE+hfmmzr9AHbbgGra8boC0P1WBquTgCeZPZmVaCh4oAzb9nNBS0/WXT43yDmtuM682RqSKA8PNRMxica+cHnb7GqDowUHDxLQK0taAGX3ONfKEaNK136fJsuzzE9ckhGvufdiPGbCvBH37pmbKer69oEjLcrkbTJAR4AQVNaSwgz47y98YUx6uglUTlZNCsQfOL0XowKdQmXysuUykzZZUJyF/Sa90UKxs9dJqJWlNgILDaP7euXqcFAMeWpvHkmap2RFtBA4CTFzdUA0HP/FSjTGHQXqCWpptoxhGevbhRboa1ntsdB+dwbq2HZ0IHNsU5uTTdxJnVKmACdOfkgdl2eYqqqaBFkeD4/hk8fjo/+Tub3Yjb2p/A0aOvVhnv8imOemr8QqeydlZX0AqjBP9ZbmrW13Uur6BpmSQAwKXN/Ln5Rr1am33fU9TX6moq/0kc4eblaXz7bJ7iKEWD2aZCgOZrp/xmuJtmcE6nFQ9QBdB+P6IZDEaRYHG6WdaFadZp+drfMGjqp5na3m6m1RioQdvsZ4hEby95oEgF7KWZeiueX3vXnfj6cyv44y8/A0BfQQNQBp+biv0UgVxBXgt8GjRTHIE8y8Yf4lJBuwqiSMrJoKkg+JdjGLUH6ea7SqcZ48T5dfzjj32+nITaChqQ18VopjcCwJFAQdOsB/PcuJQXivtc/TTTC5wOzPrNx2aw+Ord28JwDZri/BcRzBbpIGmml3IFAC85sgAAePjp8+p90IA8Xc6/pDNldRAorMaLDWo/1XNxBICbl6dLBa2fZqpjLXQazzcJUZyTAwpymkFEby25cWkaAPBUsdnX3BDsm25irZuW75q+omIxXIOmnuJYHmJVNZ+ac2Sh0yyD+LIPWrL7KY5L3khjdUhBUEy7AqrnlR/QaW5QqyyDUq1WWP/bjQiRYMD6XlNBm20PKWjKpQI+xffMpW5Zp651iPuOlx5CHEmpVqeK5l7DdYraCtpUMykPJ/yBgWbmV+jQLaxB2z5JJIGCprcZ9l9ab0MMYKAgeDfpFKdIn3v0ND764GMAtAO0fLznLm6oGoQA+URvxlEeoFkoaIsdrGz0Szcjzdqwqr5iU9XO3zM/1cBGL8NmPy1O9HWD66miP5+2ynT79bNIIsGXn76g3gcNqFwjnXMmCtpsu1GmlGkqaEAeWDx9bg1p5tBLdRveDytomirT8Hh+o6+ltB4KDpb6aYY0c2obgrLpd7FmVSmOu39vw4qFd1/TMsmZaSVoJlGpNOU1aHpzcl+nUaqRZYAWN3d9nKUh90FtJfJ5CppiDQ6Qu+adXh1UqzU2+iKC6VYyYMaWZnrrlk9x9Ae42gcG1SFulWWjtUXIXSObpVptqaBtKJuEhE7n2ochQN7+4cJ6D91+tmUAxgAtIBIpm2tqbnT8yfNmYBKiFaCFNvd/8MVcnta8Nz/e2dWu2smpJ4oEBxfagymOikHMDcXJd2WUALUxq5f0pqqdvydsxK198gfkyu5aNy1P9LXUmHYjxi0HZvDIcyv47NdPAtA1CZmbSpA5YLWbIlVqihrSbkTlQU9f0WYfyE82M5f3w9G0NAfy+bjZz8qXc1exLgbIe/34IEZ7/u/rNDDViPHM+XX102HfZNYHFmXNj8L3LY4E0824cnEsAwud94CIDJQlaJqEAIWCVtTz+W+ZRg3a/FQDcSRl4Fk2/FZsxQMg+K7ppTgCwPJMC6dXBhU0rec200qGmmLrZRnMtBOkmSvXY+2DzrIx/GZqkmVzYLZyltasQZtpJWglUVmDqa8gR1jvpXl6o1+zNBXk2SqFmS6OV0EcSXmio5m+czmTEK0AbTpokusXYM1aJr/Qrm6m6pt8IDcKCRU0zXt72bEFzLYS/Ks/fQRZ5oLasN0fy+etpw42KY4+QFvrqZ+gAnlawTe+s4IPfvJvAOgq1ovTTfzZN07hk5//NoCt0wp2wly7cgS0UNDajbg0Y9BW0KrUq7x/nbaCBmAg7VBbQbtomOLrGx9XzWz1UhyByhGw3FgpPbvQ3GWjn6IR6/VTBPLPbbOfIStUXd3AuomVzT56aVauIc3G7gdoUSTY12mapziud6vAQrMGZzGo09U25JluJWVPVqCw2VdU0ABgZbNaRzTfo/4z2+ynVYqj4uHjgdlWmeKo+W4TkTyjoVhHNpXXyE4zKbNCysMQZQUNyFM4qaBdBXEk5QmjppFGabMf1KB1+zr1MeFmtG+gMvngc6OXquSVD3N4YQonzq1X6YaK97Z/poUP/eDt+KtvncWfP3ZGVbXz655zzqS+bn5IQdMO0DqNGI+frgxXtHvz+bmvjVciVzb6SBUNGTxTjcqBSrO+AhhMveoZ1KABMKuLfF6Ko/L8P7yvgxOBgqY1nk9xPFemOOo6i+a1rHkwuNFL1Qr7PbmClqKn2N/NE87JMkBTsNkHCrOhS9XnCOhtUP0zqmrQUlWTqIXOYDo9oPfcppvxgM1+T/EQa9jFVPtQyb+ju/3MRkGba5UtLTRr0IDBGuTN0g1WOcW3m5qkOC7PVjV2MRW07ROJlEWCmhO9cnGsVLN3v/KYylinhhpCArqnLEngUKm5gfMc3jeFkyubZVqBZhADAH//5Uew0Gngtx/6tmrdm59/mXPqLQSAoQBNeTMMVKe2Hu06rRDNFEf/kr64YaOgtRoxNnpZHsibKWib6KdOtd4nnI++V5LmZmehUzUH1mqcG3K4UNC0T2wPzOa98r709HkAQUqZ0tq80GmUwaC22QSQp4Z2+1l5sKprEuL7QXUhxdapoRWgzTSDFEdtk4RBV+m8D5ruYQgAXFzvV89NqcH49FCKY5o6tbk/3Aew209V52MZoKUZnEELpeXZdp49kWbq77YBV2nlVGlvZrfeS9XHAioF7cylLm32r4Y4EvXeRcCgygQAn3z/9+Blx/apjHXT/rxu6vDCVLkYqqY4Fn+3ZjFuyMH5oqfWhdwRTfPegPy05S13XI//++hpZM5BRMe23S+0aQYTA5TwdNhCQRgO0DRPvn3QZEGY4ugDJk1bf3+quNnP1L9zSzOVgtbP9OyqgSBAW+upWnE/b7xCQdacj0DerP30pW55SqyZ4viuuw/jE3/+BE4WbS0i0Vsn9wVOhxsGqdLNOK9B65VKjKZJSKVGigMi59BQSHH0Y5WNeq1NQpRTHMN658rFUWe84QBNs063DNC8gqb8Hi1THHv6NvtA7hjsXN6fL1WsQQN8RsNgP0W1A4pi/q91+0G9p6KL42yQ4rjF3oABWkD4YWmeRCRDKY6aG+8ffcVRfOZnvw/fe/NS+TPNNMBw06atwgDVxsZ/lpopXp59002sd9N8A670Wfq/NnPOJL/cu32uFjK/RYpjiKWCponffHgFTfO7BgymJ+UBoW4NjkhuXNNLXXkYo4EPmM6v90p1XHM9mQ0s4i0UZN/D65nz+cGS5vftfa89js1+hv/32OlC+VQMdIPUpDOXuuVz1KLVyGvQqiBeL7DwAdq7f/PzyLJ885QkOgGad7kFwhQvfZOQLHPqKe7hGtlVDqxnhmrQNGtnyzYTm1YpjnE5jkWv1OUig+LkykaloKnVsjbLmuBN5fV/KlTQDFIc20l1qBptUXnBAC0gfP6aG8bmUICmeeotIrjlwOzA/ag6VAb3YqGg+XvxC71mYO2ZasToFqlQWguivy/nnMni68fLMmeioA33yNNKOwGAuSEFTdXF0ac4rveRKrsqAtWmbaOXqdegxYV5gU+b1lTQFqbyzfCF9R6+/uxFAMDx5Wm18cLTb21Lf6Ay73iuaKCueWJ7+/Vz6DRjfOmpC3lgrfjc9nVykxDnHL5y4gLuODSnNhZQ1KD1UvWNPlBlGWz2M9x2roH7z51Hoph2tVbsDzasFLRuWvWBUpyPPsvAZ2vk42kpaDFOnFvH14o1JNXsg9bK7+tS4GKqedBTKWiVSYhmtsZCp1qTy1pWVQWtSpVuxpHa/mcqmP/a9Z5AtddKM0cF7WoYCGJUVabCxdG7KhoEFeHk1hwuXJA0N3DlGMV9+ZMP7Q0xUOXsX9pM1eZJVYMGkxYCsVSLhoXN/lRzMGjSOokDnp/iqOni6NW6lY0e0kxf0Q3rR7Rr0IDcgc0HFZoHMLPtBCL5ZuDz3zoLEeC7b9BJA8/HK57bZs+kBm1xOh/v2YtFgKa8IXjJ4Xn87VPni9RUTTfYJvqZwze+cwlnVrt46ZF5tbGAPGjxh2WAfp2i58a0g/ddWEGilJo3VbQhAQKbfS2TkOCQx6IGp6pB65X3phXITLfytidv+8jnAEDV3MgraJeMFLRmWINmkOIYpoGXpUBKn+X8VAOXCsdUbdOajrGCJiIQKQK0LX4vA7SAgRRHAyt6fzJmYaYR3o6VgqaZAlWNV8nFgK77psefuFza7Kt9lv6vDVMcNZ+bD5BSr6ApbTw8wwqarovjYJqVVyQ1aCYRphoxLm4UCpqyihymOPazTD0gXJpu4n8/cgpAdRKuQRQJZlsJLq738NATZ3HHwTnV8UIHNosUR58u54Nd7YDw7mML+NozF3Fpo2/ivvm5R/M5cudh/QBts1elOGqqgzOtBPuLOsyu36AmOnOy00jQLepKfaPl4brd3SKOBM0kKjao+jbjgwGabmDdCWoEvZGS1gGFb2lUmYTopooOujjmP7MyEusrOxT7dcTPEc0Dg8u5OGo5RnqSSJA6xz5oV0O4Adbc6AybhFioPqH6oqoOBi9/7UL7fLxBBc1CjfRf6NXNvtqJlQQKmg8oNG+tVNCcUz+xAgYbqN+41DGpL/L4Pk2a4/k+aNoBU7sxWIOmbZLzA3dcByBX0n7k5YdVx5rvNHB+rYuHT1zAy44tqI4VOrBZKMiLRYrjsz7FUXm81992AN00wx89/KxyGmB+Xw89cRYA8F3Xa6c4xrnNfl/fxVFE8Nmfez0AwBswN5Sd5da6fTx5ZhXNJML1Rd2iBr5dh4WCMDeVf9cuBAGa1nhPnq1auax1U/RSvSyDVhKjmURlo3btUoEkypWYzb6NSUjovtnPMoii2ZAf67t/7TP4/ONnVOfjQA2aQYojkO9Ts2zrAM3O3mwCiK0VNN8U26BWK7wf3XsLa9AMArR4sAbNJsWxOinTvMdI8powkxTH4nPrp7lltZXN/q0HZvDpn32d6ljDCtr+og+JFnNTDVzc6GGu3VCfjz6QtqhBA4D3v/Ym3Lw8g6OLndJYRouFqSaeOreOlY0+bljUqz8DBtOTLBS0uXYDkQQ1aMoB2vccX8TRxSk8dXZd9X2zrzj5fvLMGtqNSE318fgUx1JBU/4cK2tzAQRqNWj+c/vco6fxpafP4/jStHLD+6hQELyLnd5zayUx2o0IF9Z7ZUCvNf/ffMd1+N2/OQEgP1BNM90azJlWgkubQe2UcqpcM44G+qBpOwY3Ysn7AIquiBGaCz12ahWHF6bUxipTHLtpWVunvR57x3jWoF0FYeBiUYO20R2NgmbhUAnoFmx74lJBs/sspwYUNL3xIhFkzpnY7Pu/u3TMMzIJsVA8vYL22lv34y9+4Y24XflUf66dFKeMTj19uVTQ+ilSxdPhkDfcfgC3HJhRH2d+qoGvnLgAADi6qPeCBioFbWUj782kvdGPCsOV53wNmnK/sCgSvO62ZQC6hjw+Nemps2sm7qmtRp7iWPZ3U37nlAGaV9BinUMKvz7+9H/7G/zl42dxk6JBDlAoaP1U3ZDEMz/VwMX1fqCg6cz/t955EB+5724AubtiL9U1bpppJQONqrU/x7xRewZnkOIoIqV5R6r8bpsLArR7jy/iHXcdUhurstlP1eejJxaf4nhlqKAFDKQBWrg49u2s4QddHPXGCevOLGrrGs+rQbMN0DQ/yygSZA5lAbDm6Zj/2HxhurrNfrEBsXhePkCbn2rg4LzuRh/IXy7nVrtYnm2p319pkd1NkTp9Bc2S+alG+b0+sq+jOlYryU+HrRQ0IHdyPFM0I9b+vgEo574/JdbAKyKr3RTXzeul5Hl8HzSfQaH93EQErSRCVmytIqV33HCN7vH9ugFauxEP1OBoH9DNtRsDLo6a44X1pbmCphygBTVo2vOxmcRmKY5AlR0y1YhV3zU+BfwnvvdG/MoPv1htHGAwxdFvsbRLPKIoT3FMmOK4fQbSABU3wz6oWDdU0KzvDQAaiV3gWaY4WtSglSmOKZqKi30kRWGz058jIoI4Eqz38peL9obRuzhazH1vLjGn3JMpHO/JM2u2NWj9PD1Dsw+aNeHzOqocoIlIefptYbMPAIudKtXWYjzfe+1sERRqEKYm2ShoRQ2agYtjOWYSIesX3+tIK8VxcGs209bdqk01Y6z3UvRTm0DXKzEWAdqMt7/f7KuvkTPtBCsbfTx1dg0rGz0sTrfUxgKKFF8jkxDAK5897J9uqhpgHd8/jd//4KvxEmWTISCf660kwvm1bpm2rz3/Y5qEXD3hM9HM0y9THEsFTf8xWKmDgy6OBgpaNKigaZskAIOd5zXHq1IcbQLPWKRU0NRt9ovP0OJ5tZIIC50GDioW2Yd4k5A00+uT52kHNWiaPX5Gwc1BWtd8R3+zP9NOCgUtNVG09k1X92Qx3nVz+WbRn/Br0IgjzBbposP9BzXwG9SqD5pBgNaIkfmNlegraPfcsA/vfuUNKuN4vElI6vTT6YFcaT231sVmP0USiXraIQC8+2Ofx7dOr+o6BhcK2kcffBxJFOFHX3FUbSzApzimJkZiQBVY9wzeNXcfXTA5wBUR3Lg0jW+dXlXvueaJRJBmWyueDNACrOq0fFCx3rVLy7OqrwtfkLaNqgs10qhRNZCnA2o+uzxAy10cLYSROJJS1dUO0PxjMpgiEBH84f2vwftfe5P+YKjSQPqpgYJW5Mr/xp89ZtIHzZIfu/eY6XgzrQZWNvpY76Xq5hZAlcYD6J/YAlB1AQzxwfSwe6oGrSRC5qrUbIsArd2I1AO00OX2l9/xYtUWE34830sR0C+7WJ5t4fSlTXWnQ6AK0Hydlua9+UOeh09cwL3HF3G9cppvszigqPqg6T43n5pqVe9sxU3L03j89Co2jNb+OEJ+gEsFbfsMBDGaG+/ixMjb7JvUoAVfXM1apvBeTGz2Y28SYu/iCOgGhL6ZYbYNt5/dIE9x9I1DdRcpC+OTkKOLHZOFF8hfYr3UYbWr1yfP4+/pyTNrAGzWEiumWwn+8P7X4Pc/+GqT8WZbCc6tddFLHaYN5sr+mVzRasSiuiZ7LGrCgKrH22xLX/X0m3uvCloEuq0kRlnerxWgBfNv3iA126fm9Y3W5eWZvP5yraevVg+nh2oeHPs06TRzJqq4dzEtMlPNUhwtDLAsOb5/Gt8+s4aVjf7A4YgWSRQhzYAPpFdO3WcNWoBVrzAgfyn7AM0izSt8b1m4AQI2Lo5lH7SeXYDWDr7Ams8ujqSqQTMK0KxMQu4+uoB7b1zEL73jDtVxRoHv83NutWfmKufRboxtzUuO6NcgeGbaCR49uQLg+TVAGvgArZfqmXaE+NRDbRZMFbTB5sBWNWipcoDWMQ7QSne+sgGx7ue4PNuCc3mbCe1n5htIezTvbaadmLhFeppFo3Yrk5D5qQYubuR90CwypKw4vn8a/czh0ZMrJge5UZRnRs3iymPVJwTeBcIvlPbhQCOKytMqi1PvQXVQbxwRKTelFicsSVmDZm+zD+gGTmWKo0EDYsA2xbHdiPGpD7wKdxoUAVvj05HOrXVNzF1CLAL5ujLTSnDy4iYAmChoy7O6BgLDWKh0QOXkaGISMqSgWRwK5i6OPsVRqVF1owpuLQJdr4x4sxXtV7c/nDhxbl3d0nz479dck2dbCbr9DOu91CSAaRYKWhmgKb9vZtoJ0sxhZUM/O8QS38bi7565OHAAr0UseR+0rQ54qKAFhJNbO7hoJBGQ7wVq1QcNyFMbe2lqo6D5RtX+xWKwCWnEUjUaVK1BQ7Hw6hZRV+MFKY4GJ9F1xbsPnl3tqrsPDlOnl6Y1M+2kTJXuGKhNfpNqyUfuu1vdzXRhylBBK0xyVjby5sDa/esAn+KoXIPWtMnS8MxPNZA54GLxOVooaABw4vy6ep3WMJr7kuli3biw3jNx1G0lMS6s90z6oAFAOzgQqVM6/VLhttnPHKaULfaB/DudOgZoV8VAEKP8jJKBYNDOTAPQ/xL7+zGpQRu22Tdy/ZlqxLik3AdNCgXNwamnLgD5Z2mloNUZvzHd7NukuYTU6aVpTRhQdAxOUffPNLf+TbvMO+8+rD7GPsMUR18r65sDW9Sg5SYhPsVR5/tmvf561d/35dNet/zhxKXNvskzC9EMnPyeZ6OXmqzFzdjb7NukOLaDHrB1qkGbDg7kTExCJO+DttX6UZ9PeBewcjoEBoMXK3XEajx/b4mJSchQo2qjNB6/UOmmOObpjd1+ZtOKIRKsdW36oNWZ0HHNOk8/Nt7s1Imw1qfTql+KoxXzI01xtFEtMkie5liTlOJS9b+UB2gWLo4e7abAw2jem1fnNnp2NWiWfdAGArQa1aDNhAGaRYpjtL0UR77NA6x6hQHVCVkc2Th4mSposVfQ7O6rNAkxWjSmmvnzs+iD9vS5NRzeN6U2jid0cWSAdu14kxDA5vDl0z/zfbj1wAwAKmg7IQysOwYmITNGph3WeAXNpA9asbk/tbKJ6WZs8n1rlTb79Vkj/eHE2TUbBW26lZQbYWsFzZdDaBAepFrVQ24GCpr2VtL33by0qdtiyJp2IyrVR4saNL+3Y4B2FYTrhHbet99IWU1yqxYCQLVI2ZiEeJt9uz5oQFXEbWES8uSZNdywpF/LFEdSOspp2+zXmXCjbzEfb71utixyrtNL05pQQbMwCbEy7bDm5uUZJJHg6KL+muUNIE6cX8eSUU1fM47QR4xMySAkxOrAZT6omwVslP/9s7nS2jLYEP/1P3sT/un33wogV3+0CD83SwXNqg9aayDFsT7rl4hgujiUs1LQ+jQJuToGTUKM0gCtAjS5/K81aBgqaKVJSN/GfcrTLjZwqgpaBKz3+nj2wgZuWJxWG6ccL7gV1qBdO+1GXKYwWAVM0waKT92ZG0hxtPs8LTYEltx1dAEP/8pbTGo5/Dp1+lIXLz9mZ8jz39PX4UV3vgJvUhzjwZ9/g0mqLVCp/j5AszhYWuw08dTZdRMFbWmmVR4Y+DprDcJDaYsDavMUx+JAZL1XLwUNyFXdlc2+UaPqIsVxi6H4Vg+wdTq0VdAGDVBsgk8bk5DR1KB5px9tBc03IL5xv/7mI3yhMEDbGe0kwmrXxmoZqIqcNTcfdWegBs0oaPrSL73Z7FDJEqum8GEqtpWCljqHJ9xBnDj2YtVxjhlkTXiGFTSLfcm+aa+g2XwBfG+5NcU1MjbMVAJyBXmzn+WGE7AwCQlTOOu1cPnDECsFbTspjgzQAiy/XOYKmqEBSlKahNjUoImg7ClnFfDOtBrq40Ui+NbpVQDADUsGClpwLwzQdka7EWO1m5pYLQPVy2W1q5e+U3fCmikr5WK+o2+kUWfChs5WbQv8ZrhjFIRaMNNKEEdSpTgarFuLhZlMy2ijXwZoPb0ALcwaMnFxLPqgpWUNmo1JCFC/dHqfhWLZB+3Zle4Vfx93YQEDTodGRhpWGzhLA5QqxdHm3vxCKGJX1+E3c5pqpEh12nd4Qd8kJHyhWKSn1hl/sm91ADNTvFw06yvqTqigWRsXkGvj0MJU+T6zalvgDwPrdIglIphrJ+X7xsJsyytoVp+jN/5ZU61Bs3Xn9u8Zb5JmZbMP1M+Qyj8vC/U/ioAsA1Y3r3xYUJ8VZhcYcDo0UtCs9gGW91b1QbP5AlemJHYLxkwRoGmOGQbVFi+xcF406ph3ZUjZhsFoTvqaqa0WfPLChDVodTXwqBuNOMJisdG3UtB8U+DaKQhB3aXFu9Q/N6uv2ncdnEUzifDBN9yiNsZAf1uDzZ1XBX2Dce29XZjiWLf572/HzGbfOaS48mfIFMcAP7ktFqcqxdFmIxx+cbVvLzG+N/+8tOsGQ3wTVs0xLXvXAeHnqL/Q1x3vdmV1aHDfK47iy0+fx/1v1Nt81J261VTsFZammzi1soklIwUtLRS0uikITWP1Z6FI77U6VJptN/CNX3ub6hgDAZrBZ3isMD7xpRDqClpSBS/TNWsTUipoRjb7aeaQOgZo26bcoJoEaKMzCdFvwl0EukYKWmz8WQJVE1bNnirhY7IwP/FjcKO6c1pBn0MLplsJPnLfy0zGImScyJWzldJyX5t+ZmNpbs2ARbyRiyMArNWobtbaZv/4/rw2/bFTeYBmWYMWpoTXAf/ZtY1cHDPnSvfNF4I7sQC/KFksTtYmIZY93vy9WdVxeKXOysERqJrMauazhxsACzHSj8EAbef4VJC6nbITMm541filR+ZNxnvR9XlT+Ovm2ibjWeHXfTHKoPApxZdqVDc7aLOv/xkeXewgjgSPnbwEwKAPWlBqEfb7rAOWKY5JJOinVNCuCr8oWZx8eMcYs0bVlgYovibM2CTEMi3PpzhqWvaGQZlF8Fk9NwYVO8WfNDJVlBBdXnnTEp748NvNxvuZN92G1912AHcdXTAb04LE+NDYp8hpvkOtsVbQGnGEY4sdPHbKB2i644Xvs7opaP55mdT7S66g9RmgbR8fT1isTwvT+jbtIQMmIVYpjkb3lowkxdG/XGwUNIt7q2owqaDtFGsXR7I7PPjzbxj1JZAxJ4kj3Ht8cdSXses0DA+oAWB5Njd1uXl5xmQ8C6wVNAC4cakT1KDZvW/mahag+c8uc1vkHe4CvlH1VimODNAC/AOyWKB8/nW3r1fDFDJgEqK8/04MG1UD1UI4ihq0VU0FrZiPVu0D/OfYpIK2YyoXRwa7k4Rlc2BCxglr47LDC1P41E+9CncenjMZz4JQQbPKIArdSy0DtLopaGWAtlXUtBtjFS6OfdagbZ+43Ojrfyz7igDt4oZN/rVpHzRrm/14dDVo66oBWv5vq/vyC5TVi6XOeLcrKmiEkElgFJko9x5fLPuT1QFrF0dguIWSyZAAql6wdeFtd14PALjJQNGNRZDRxfHqKE1CDCa5t5j1/Su0sUxxTGLbjf5oFLSi75RBiqNVHZP/HFmDtnNaDVsXR0II2QlN4xq0OmLdqHp4HFMFrVMvBe1HX3EUb3/pwTI7SpOyD9oWCXQ8Kg8oTUIsLGanjVMcLRW0MsXRtgbN8vRotpV/iTXTlSNDV1GgmhdsUr1zRtE8nRBCrpXqPco161pphAqaVZshwx63IXVzcRQRk+AMKExCMmxpEsKdWEBsqFgsdGyaanpsTUJsa9DiUdjsG8j7/nbMnD59gJbwBb1TGtzsEEImCGsXxzoSvqut6o/DMS1q1T11q0GzJI7yhvcM0K6C2DBVbp+xPDzQB0359spUOePUPMvNcGnJqhiE+jGsbqt6blwWdoo/PbUoOCaEkJ3i32VMy752whRHsxo0sTt8D+kYNHSuK3EUoZ85pHRx3D6WfdCsTx/8yUpk4AjYaSXoNGOz0xzrgNDzsffco2oRbOkqGo5nlZpaZ/zpaZ8BGiFkAhjVe7ROJAMKWr1THC3VuroRR7md/1YVTgzQAmLDmh9rp7zYcLP/nlfdgO+7db/6OJ4yd954wfj+77pO9e+3TnGkgrZ7+FqEfmZTY0oIITshoYK2Y8K6M6uDTmuTkAOzLZxc2VQfp87EIkWK45V/HwO0AL8vreMC5e/J4tRjaaaFpaA3hzY+oKjbcytdHK1s9ssaNAZoO8Vvdvpb5TAQQsgY4Ptf8oDu2gk/u9HUoOmP95mfex02FNsL7QWiSNBPM6QZbfa3TWy8If7NH78H+6btXGMAWyMNK0Zhs29BZKygeVG3UbPPcRT409MeAzRCyATgD5VobHTtxJFAJHd3HkkfNIP93Vy7UTsHR2tiEaz3UrgtVFYGaAGWJiEA8KY7dFPkQqzvzZJRpThqY62gldbwrEHbMQlTHAkhE0SDLo67QiOK0E0zu4PVEZmEkGsnjgSZAzLQxXHbWJqEWOPVkRreWhlYzNass731fPSLu3V9ZB3xnyEVNELIJOBV/zrufyzxn5+ZghaHAZrJkGSH+L0dA7SrwNJIw5pSjanhvfnndWh+asRXsrtYpzh65UyzdcBewW92+ikVNELI+OMPOinC7IzEONANFTQ6K04G1TNjgLZtyjTAGk7yOt9b5nKV4tBC3QI02z5opYJWwyDeGl8gntJmnxAyATSS4lSfS9aO8O/PhtFB56hs9sm1E1NBu3oqlWnEF6JAnRW0U4Xl66GF9oivZHex7oNW2uxTQdsxb3jRMg7MtvD+19406kshhJAtafiNj2OEthOs2xVYm4SQnVMFaFfea9WraGeH1NlIo84Kmg/QDtdMQfOPytxmnyYhO2ZppoW/+sU3jfoyCCFkW/h1nwrazmhY16AxQJs4/DPb6qtmdlQuIjeJyMdE5H8EP3u9iHxORH5DRF5vdS0vRFz2QaufglDn4PM7FzcA1C/F0fqZ1bkGkxBCyAvjlZ+MCtqOiK1r0MIArX5b11riA+mtFLRtPU4R+biInBSRrwz9/K0i8oiIfFNEPnSlv8M597hz7n3DPwZwCUAbwNPbuRZNql5hI74QBfy91fGAZbVomnj9PFMcd4IvbpYt8qIJIYTUC6+gMT7bGT5V1KrhN232Jw8vBrkt9lrbTXH8LQD/HsB/8T8QkRjArwP4AeTB1UMi8gCAGMC/GPrz73XOnbzM3/s559yfich1AP4NgH+0zetRoc4qU53v7eM/cQ8e+OIzaDfiUV/KrmKe4mhsSkIIIWQ8aFBB2xXKvZbRST9THCcP/5x2JUBzzj0oIjcO/fheAN90zj0OACLyOwDe6Zz7FwB+aJt/r/egPgegtZ0/o4l1Y2BLyvS1Gt7bG2+/Dm+83a7ptxXWCloZEDJCI4SQPQXNoXaHxLjhd7g/qOH2rpb4Z/al7MomYjv5Rh4G8FTw308XP7ssIrIkIr8B4GUi8gvFz35ERP4TgP+KXKG73J/7SRH5goh84dSpUzu43K2ps8rk1XZuvieHsg+a0arrD065yBNCyN7Cm1tQQNsZPlWUJiHkhfBz44Hs1Vf+fRYXAwDOuTMAPjD0s98F8Ltb/LmPAvgoANxzzz2qS0edAzR/TzW8tdpi3fbBp7ZwkSeEkL0FUxx3B7/XMqtBYx+0iWO7QslOZtAJAEeD/z5S/GxisU4ps6TO6Zt1JTI+MHDFi5kzhBBC9hZJabPPAG0neJMQsxo0moRMHNvNitpJgPYQgFtF5LiINAHcB+CBHfx9I6fOvcLqHHzWFf+orBZd3/+GizwhhOwtmoWCxvBsZ1QKGmvQyOXZVQVNRH4bwF8AeJGIPC0i73PO9QHcD+BPAXwNwKecc1+9xusdC+Iypax+s7zO6Zt1xTqorlIcTYYjhBAyJnhzCwpoOyMZYR80YYQ2EWxXBNqui+OPvcDP/wTAn2z/ssYbnzJcTwUt/ze/wJNDZOy8WZmEcI4QQsheIin7oDFC2wmNEbo4kslgu8+MvqoB1v0rLBERRFLPJtx1xdr2vqxB4xwhhJA9RbM0CRnxhUw4cSSIIzE76GSANnlYmITUjjrXoAHVwkEmA2sFjTVohBCyNykVNFah7YhGbLvP4p5u8ijLqbZ4dAzQAuKaG2lEItx8TxDWdYO+Bq2u858QQsjl8bbwWTbiC5lw4igyS28E6iso1Bm/x2o34iv+PgZoAVWvsHpOeCpok4V1iiNTWwghZG9SujiyBm1HNIz3WQnrViYOBmjXgIhABIhr+qnEVNAmiirF0WY8x0bVhBCyJ4nLFEeyE5JYTBU0vq8nDx9jtJMrBxs1DUWunVikljb7QK7E1PXe6khkrqDRZp8QQvYift2ngLYzlmZaWJxumo3HrKjJwwfVWylo27LZ30v87Jtvw2tvWR71ZagQR0IXxwnC2iTkzsPzAIDbrp81GY8QQsh4IMjfMxkjtB3xT954C9776uNm4zFAmzz8M2sxQLs6fvr1t4z6EtSIhDVok4R1o+ofvusQ7jw8j5uXZ0zGI4QQMh7MtvPt4A++5OCIr2Sy6TQTdJp2W2vu6SaPuFTQrpzEyABtDxFHbEI8SfgAzeqZiQiDM0II2YNMtxL87T//AcxNNUZ9KeQqsKx3I7uDN2SbooJGPLEILVknCL/u8pERQgjRZp9h7RTZHWgSMnls9FIAdHEkARFt9icKbw7CJ0YIIYSQYXz/OjI5bPTzAK1FF0fiieniOFEIFTRCCCGEvACMzyaPjV7eDZ4KGin58VfdiB++69CoL4NsE6YuEEIIIeSFYFbU5PHKmxYBAO9+5bEr/j7WoO0h3vcaO+tXsnN8vaAwyZEQQgghQzBAmzyO7OvgiQ+/fcvfRwWNkDGFKY6EEEIIeSFo/FZfGKARMqaUNvsjvg5CCCGEjB80CakvfLKEjDnsXUcIIYSQYRif1Rc+WkIIIYQQQiYMKmj1hU+WkDHFjfoCCCGEEDK2MD6rL3y0hIwpzuUhGjMcCSGEEDIMFbT6widLyJhDm31CCCGEDEOX/frCAI2QMaUQ0KigEUIIIeR50ESsvjBAI2RMcUUVGpdfQgghhJC9AwM0QgghhBBCCBkTGKARMqYwxZEQQgghZO/BAI2QMcXb7DPHnBBCCCFk78AAjZAxpVTQRnsZhBBCCCHEEAZohIwp3iSEERohhBBCyN6BARohYw77oBFCCCGE7B0YoBEypvgUR0IIIYQQsndggEbImEOPEEIIIYSQvQMDNELGFOfYqJoQQgghZK/BAI2QMYV90AghhBBC9h4M0AgZU8o+aNTQCCGEEEL2DAzQCCGEEEIIIWRMSEZ9AYSQy8MUR0IIIYRciQ+87mbsn2mO+jLILsMAjZAxxTeqZnxGCCGEkMvxobfdPupLIAowxZGQMeWHXnoIAPCOuw6N+EoIIYQQQogVVNAIGVNuOTCDJz789lFfBiGEEEIIMYQKGiGEEEIIIYSMCQzQCCGEEEIIIWRMYIBGCCGEEEIIIWMCAzRCCCGEEEIIGRMYoBFCCCGEEELImMAAjRBCCCGEEELGBAZohBBCCCGEEDImMEAjhBBCCCGEkDGBARohhBBCCCGEjAkM0AghhBBCCCFkTGCARgghhBBCCCFjAgM0QgghhBBCCBkTGKARQgghhBBCyJjAAI0QQgghhBBCxgQGaIQQQgghhBAyJjBAI4QQQgghhJAxgQEaIYQQQgghhIwJ4pwb9TVsGxE5BeDJUV8HGWv2Azg96osgYw3nCNkKzhGyFZwjZCs4R8hW3OCcW77c/5ioAI2QrRCRLzjn7hn1dZDxhXOEbAXnCNkKzhGyFZwjZCcwxZEQQgghhBBCxgQGaIQQQgghhBAyJjBAI3Xjo6O+ADL2cI6QreAcIVvBOUK2gnOEXDOsQSOEEEIIIYSQMYEKGiGEEEIIIYSMCQzQSC0QkX8gIl8VkUxE7hn6f78gIt8UkUdE5C2jukYyPojIr4jICRH5YvHPD476msh4ICJvLdaKb4rIh0Z9PWT8EJEnROThYu34wqivh4weEfm4iJwUka8EP1sUkU+LyKPFv/eN8hrJZMEAjdSFrwD4EQAPhj8UkTsA3AfgxQDeCuA/iEhsf3lkDPm3zrm7i3/+ZNQXQ0ZPsTb8OoC3AbgDwI8Vawghw7yhWDtoo04A4LeQ7zFCPgTgs865WwF8tvhvQrYFAzRSC5xzX3POPXKZ//VOAL/jnNt0zn0LwDcB3Gt7dYSQCeFeAN90zj3unOsC+B3kawghhLwgzrkHAZwd+vE7AXyi+PUnAPw9y2sikw0DNFJ3DgN4Kvjvp4ufEXK/iHy5SE1h6gkBuF6Q7eEA/C8R+WsR+clRXwwZW65zzj1b/Po5ANeN8mLIZJGM+gII2S4i8hkA11/mf/2ic+4PrK+HjDdXmi8A/iOAX0W+0fpVAP8awHvtro4QMsG8xjl3QkQOAPi0iHy9UFAIuSzOOScitE0n24YBGpkYnHNvuoY/dgLA0eC/jxQ/IzVnu/NFRP4zgD9SvhwyGXC9IFvinDtR/PukiPwe8tRYBmhkmO+IyEHn3LMichDAyVFfEJkcmOJI6s4DAO4TkZaIHAdwK4C/GvE1kRFTvCw970JuMkPIQwBuFZHjItJEbjD0wIiviYwRIjItIrP+1wDeDK4f5PI8AOA9xa/fA4CZPmTbUEEjtUBE3gXg3wFYBvDHIvJF59xbnHNfFZFPAfg7AH0AH3TOpaO8VjIW/EsRuRt5iuMTAH5qpFdDxgLnXF9E7gfwpwBiAB93zn11xJdFxovrAPyeiAD5HuqTzrn/OdpLIqNGRH4bwOsB7BeRpwH8MoAPA/iUiLwPwJMA/uHorpBMGuIcU2IJIYQQQgghZBxgiiMhhBBCCCGEjAkM0AghhBBCCCFkTGCARgghhBBCCCFjAgM0QgghhBBCCBkTGKARQgghhBBCyJjAAI0QQgghhBBCxgQGaIQQQgghhBAyJjBAI4QQQgghhJAx4f8DcOrC0R/sqQ8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG4CAYAAAC+ZBgrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABTRUlEQVR4nO3dd3hcV50//veZPppR79W2ZMc9dhwndgopJCEhhZCwEAIbWMqGLLAbdmH5sSwL/NiF5buw8IWlJZSEkiXUkEJCSILTEyd23OQuy5LVextNn3u+f8yM5CiyNJJm5s695/16Hj+SJXnukcee+9bnfM45QkoJIiIiIppm0XsARERERLmGAYmIiIhoBgYkIiIiohkYkIiIiIhmYEAiIiIimoEBiYiIiGiGlAOSEKJeCLFDCHFICHFQCHFn4uNfFEJ0CSH2Jn5dm7nhEhEREWWeSHUfJCFENYBqKeVrQoh8ALsBvB3AuwD4pJRfz9goiYiIiLLIluoXSil7APQk3p8QQhwGUJupgRERERHpZVE9SEKI5QDOAbAz8aGPCyH2CyF+IoQoTtfgiIiIiPSQ8hTb1B8QwgvgGQBfllL+XghRCWAQgATw74hPw31wlj93O4DbAcDj8Zy7Zs2apY49p0RiGo70TgAANtYW6jya9Dre50MwGkNTuRd5Dqvew0mrgYkQeseDAIBlJXkocNt1HtHSnRr2IxiJwe2wwh+KYXVVvt5DSrvj/T44rBa47Bb0T4RM93+OiLJj9+7dg1LK8tk+t6CAJISwA3gEwONSym/M8vnlAB6RUm6Y63G2bt0qd+3alfJ1jaB7NIALv/oXAEDbV6/TeTTpdfU3n8XRvgn84WMXYXN9kd7DSasfPHMCX33sCADgrtvOxdXrq3Qe0dJ95Oe70D7kx9rqAuxuH8Gzn75c7yGl3Vu/9Rzqit1YV12Abz11HCf/81oIIfQeFhEZjBBit5Ry62yfW8gqNgHgxwAOnx6OEs3bSTcBaF7sQCk3SahxoLFZzm3WJJQJC5bE92mW546IckfKTdoALgJwG4ADQoi9iY99FsCtQojNiE+xtQH4SBrHR5RF5rjLSilhUSMfTX2fmpSwQJFvmoiyYiGr2J4HZn0FejR9w6FcpMpP52b5PjU5XVkxO0siIWkmee6IKHdwJ22iBLPcYzWFKkjitAoSEVE6MSARJZjlHqtJTCcHk2MPEhFlCgMSzUuVe49ZmtFV7UEiIkonBiSiBLPcY6VKPUgi2YNkkiePiHIGAxLNa6GbiRqVWb5LtXqQ2KRNRJnBgESUYJYgqEmp0D5I8bdmee6IKHcwIBElmOUeG1/mr/cossPCChIRLdJzxwfm/DwDEs1LlXuPuZq01UhIbNImosX6U3PvnJ9nQCJKMMs9Nn7UiN6jyA7BJm0iWqSu0cCcn2dAovkpcu8xyz1WrQoS90EiosXpHGFAIkqJWe6xah1WG3/LChIRLYSUEl0MSESpMctKKLU2imSTNhEt3PBkGIFIbM6vYUCiealy7zHL96nSYbVTZ7ExIRHRAsw3vQYwIBFNM8k9VqWNItmDRESLMV+DNsCARCkwy9TTfMzSx6JUD1LiFcwszx0RZUfniH/er2FAIkowyy1WSgk14hHPYiOixekYDiDfZZvzaxiQiBLMco9V6bBansVGRIvRMeJHQ0nenF/DgETzUuXeY5adtONnsek9iuzgWWxEtBgdwwxIRCkzyz02JiUsinRpc5k/ES2Upkl0jARQz4BES2WW4DAfs3ybUgJWRUpI3CiSiBZqwBdCOKqhvtg959cxIBElmeQmG9PUWebPs9iIaKFODcdXsLGCRJQis9xiNQWn2JiPiChVHQxIlC5maV6ej1luspqm0mG18besIBFRqk4N+yEEUFvEKTailJhlJZSmVA8Sm7SJaGE6hgOozHfBZbfO+XUMSDQvk+SGeZnlJhtfxab3KLJDsIJERAvUMexHfcnc1SOAAYloillusVKqNMWW7EEyy7NHRJnWMeKft/8IYEAimmKWm2xMqR6k+PcZ03QeCBEZQigaQ+94EPXFDEiUBibJDcqIaRJWVVax8bBaIlqArpEApMS8u2gDDEhEU8xyj5USCh01wn2QiCh1HSMBAPMv8QcYkIimmGU7g5iUyq1iYz4iolRMbxLJJm2ilJnlJqtJhabYuIqNiBagc9gPh9WCynzXvF/LgESUYJZbrKZNH8FhdoL7IBHRApwa9qOu2J3SaQMMSDQvs6zumo9Zvs14BUnvUWQHK0hEtBCpLvEHGJCIppjlJhvjPkhERLPqGA6k1H8EMCBRCnjrMQ4pJaSEcgFJ4z5IRDSPsUAEY4FISkv8AQYkoilmqEIke3FUCUg8aoSIUtWRXMGWwiaRAAMSpUCVe48Zvs9kUFCnB4lN2kSUmukl/gxIRAtihntsLJEUVFnFltxJ2wzVPyLKrLahSQDA8jJPSl/PgESUYIZ7bPJ7UGcfJFaQiCg1bYOTKPM64XXaUvp6BiSal1l2mJ6PGb7PWCIhKZKPuMyfiFLWNuTH8tLUptcABiSiKWa4x2pTAUmNhCR4FhsRpah9aDLl6TWAAYlSoMq9xwzfpqapFZB4FhsRpcIfjqJvPMQKEtGimOAuqynXgxR/ywoSEc2lfSi+gm1ZKStIRAtmhkbfmKZaDxKbtIlofu3JFWwMSJROqtx7zNCknVzunspBjGbAjSKJKBVtyQpSGafYiBbMDPfYmGJN2jyLjYhS0T40iVKPAwUue8p/hgGJ5qXKvccM3+ZUD5JiAYlTbEQ0l5ODk1i2gAZtgAGJaIoZgqA2tZO2zgPJEjZpE1Eq2of8C+o/AhiQiKaYoQdp+iw2NRKSYAWJiOYRjMTQMxZc0B5IAAMSpUSRu48Jvs2Ycvsgxd+yB4mIziR5SC2n2IgWyQy32GQlRZVVbMkgGGMJiYjO4OTgwpf4AwxIlAIVfjgXYrp/x8g01c5iszAgEdHcFrMHEsCARAQgXokwwy12qgdJkSm2ZK8Vm7SJ6EzahvwozrOjMC/1Jf4AAxIRgHjFxQw32djUKjZFAtLUFJvOAyGinNU+NLmgI0aSUg5IQoh6IcQOIcQhIcRBIcSdiY+XCCGeEEIcT7wtXvAoKKcZPzbMTwhhiqnE5Pegyio2S+IVzAzhlogyo23Qv6BDapMWUkGKAviklHIdgO0APiaEWAfgMwCeklKuAvBU4vdEhmK2CpIi+ei0CpLxnzsiSr9gJIbusUBmK0hSyh4p5WuJ9ycAHAZQC+BGAD9NfNlPAbx9waOgnKbCEmoBYYqApCl2FpuVTdpENIe2oUlICTRVeBf8ZxfVgySEWA7gHAA7AVRKKXsSn+oFUHmGP3O7EGKXEGLXwMDAYi5LlDEWYY7VeppiZ7EJIeIrEM3w5BFR2rUOxFewNS5wk0hgEQFJCOEF8DsAn5BSjp/+ORkvNcz6SiWlvFtKuVVKubW8vHzBAyXKJIsQptiNWbWz2ID498oKEhHN5kS/DwDQWJ7hgCSEsCMeju6TUv4+8eE+IUR14vPVAPoXPArKaSrceoQwx1Siaj1IQHw6MWaC546I0q91cBI1hS7kOWwL/rMLWcUmAPwYwGEp5TdO+9RDAN6feP/9AB5c8CiIdGaxmKQHSVOrBwmIV5DMsMknEaVf64APjeUL7z8CFlZBugjAbQDeLITYm/h1LYCvArhKCHEcwJWJ35OJmCA3zEvAHAeeTh01otIUm0VwHyQiegMpJU4MTKJpEdNrAJByzUlK+Tzi95HZXLGoqxPliHgPkvETUnKqyarQFrDxgMSERESvNzARgi8UzUoFici0hBCmaLZKhjxVdtIGEgHJBOGWiNLrRHIF2yIrSAxINC8zNC/PxywbRSZ7cVRaxWYRnGIjojc6MRBfwdbEChLR4plumb9KTdoWsEmbiN6gdWASbrsVVQWuRf15BiSalwq3HrNUkKYPq9V5IFlkFZxiI6I3ah30YUWZZ9GrehmQiGCmw2qTTdrqJCSLhcv8ieiNTgz4FnXESBIDEhESG0WaoFYWU+yoEYBN2kT0RsFIDJ0jgUUdMZLEgETzU+DeYxECZlgpruQ+SDxqhIhmaB/yQ8rFr2ADGJCIAJinB0lT9KgRMzx3RJQ+S13BBjAgUQpUuPWYZxWbej1IrCAR0UytA4s/pDaJAYkIZjysVp2AZOFRI0Q0Q+vAJKoXeUhtEgMSEeKr2MwwTTO9k7bOA8kiq8Uc06NElD4tA74lTa8BDEiUAjNUVuZjMcdJI1OVFLtCh7Fxio2ITqdpEsf7fFhVyYBEtGRm6UFKHtqq0hRb/LBaEzx5RJQWXaMBBCIxnFWZv6THYUCiealw64lvFGn87zQZFGwqNWkzIBHRaY73TwAAVi1hk0iAAYkIgHmW+UeTh9Va1QlIFh41QkSnOdYXX8G2ihUkyjQV7j1m2SgyWUmxKjbFxqNGiCjpWN8EKgucKHTbl/Q4DEhEiK/6MlUFSbUpNhM8d0SUHi39PqyqWFr1CGBAIgKQ6EHSexBpoCnYgxSv/pnh2SOipUrXCjaAAYlSYIZDXOdjMclGkawgEZHK0rWCDWBAIgJgpmX+EhYRr4ipwiK4kzYRxR3rS88KNoABiVKgwg/nZlnFFpMSNota/62tFnCKjYgAAMf707OCDWBAIgKQPGpE71EsXUyTSk2vAZxiI6Jp6VrBBjAgEQEABEzSgxRTLyCxSZuIko73pWcFG8CARClQ4dZjEcIUU4maVC8gsYJEREB8qr2lPz0r2AAGJCIAgMUkJ8JHNU2pJf4AD6slorh0rmADGJAoFQrce0y1ik21gMSz2IgI6V3BBjAgEQEwz2G10ZhUr4LEgEREOO0MNvYgEaWPmZb5q9aDZLEIUzx3RLQ0R3rHUVPoQmHe0lewAQxIlAIVdtIWgGmm2JSrILEHiYgAHOmZwJrqgrQ9HgMSEZKr2Ix/k42yB4mIFBSKxnBiwIc1VemZXgMYkCgFJsgN8xJmWeavYAXJLA32RLR4J/onEdUk1rKCRJReZulBimoSVgWPGmEFiUhth3vGAQBrq1lBIkors1Qh4keN6D2K7LJwo0gi5R3pHYfDZsHyUk/aHlOxl1JaDBVuPcIkFaSYghUkG3uQiJR3pHcCqyvzYUvjT4hqvZISnYFZjhpRchWbxYKYJk3RZE9Ei3O4ZyKtDdoAAxKlQIUbjxDm+D6jmgarUCsg2ROBMMoqEpGSBiZCGPSF0rrEH2BAIgJgth4ktQJSsqTOaTYiNR3pTX+DNsCARATAPKvYYpqEzapYQEoEwkhM03kkRKSHIz3xM9jWVLGCRFlm/NgwP1aQjCsZCFlBIlLT4Z5xVBY4UeJxpPVxGZBoXiYorMzPND1IUrkepOkKkvGfPyJauMO9E2ndIDKJAYkIiVVseg8iDdSsILEHiUhVkZiGlv6JtE+vAQxIRADYg2RkVvYgESnrxIAPkZhMe4M2wIBEBCDRg2SCCkRMk7AoNsVmt3KZP5GqDnbFV7Ctr2EFiSgjzHJYbVTRjSIBIKaxgkSkmubuMbjtVqwo86b9sRmQiGCuKTbVjhqxs0mbSFkHu8axrqYgI72Xar2SEp2BRZjjwFMVjxphkzaRmjRN4mD3GDZkYHoNYEAiApCsIOk9iqWLahIW1QISm7SJlNQ2NInJcAzrawsz8vgMSEQALBZzNGlrUsUKEjeKJFJRc3e8QXtDDQMSUcZYTTLFFolpyu2DZGUPEpGSmrvG4LBZsKoy/Q3aAAMSEQDAao2vYjN6FSkak1PL3lVhT/QgRbmKjUgpzV1jWFuVP/UakG4MSETA1PEcRq8iRTUtYy8WuSpZQeI+SETqkFKiuWssY/1HAAMSEYDpm6yR+1iklIjE5NSqLlXYE9saRDnFRqSMzpEAxoPRjPUfAQxIRAAwtfu0kfdCSlZQ7Ir1IE03aXOKjUgVzV1jAIANtZlZ4g8sICAJIX4ihOgXQjSf9rEvCiG6hBB7E7+uzcwwiTLLDBWkZAXFblPr5x4bm7SJlNPcPQabReCsyvSfwZa0kFfSewFcM8vHvyml3Jz49Wh6hkWUXcmAZOQiRDixD5B6y/y5USSRapq7xrGqMh8uuzVj10g5IEkpnwUwnLGREOnIYoIm7WgiIKnWpM2NIonUMtWgnaEdtJPS8Ur6cSHE/sQUXPGZvkgIcbsQYpcQYtfAwEAaLkuUPslMYeQqxFQPkmoBiRtFEimlazSAockwNtUXZfQ6S30l/T6AJgCbAfQA+O8zfaGU8m4p5VYp5dby8vIlXpYovczQpB2OJqbYFNsHaWqjSAYkIiXs7RgFAGyuK8rodZYUkKSUfVLKmJRSA/BDAOenZ1hE2WUzQ5P2VAVJrYA0vcyfU2xEKtjXMQqHzYLVVZlr0AaWGJCEENWn/fYmAM1n+lqiXGaOVWxq9iBZOcVGpJR9HWPYUFMAR4ZX7NpS/UIhxC8BXAagTAjRCeALAC4TQmwGIAG0AfhI+odIlHkWEwSk6VVsagWkZAWJy/yJzC8a03CgawzvPr8+49dKOSBJKW+d5cM/TuNYiHRjhqNGpvZBUmyKjRtFEqnjWJ8PgUgMmzPcoA1wJ20iANMVJCMfVps8rFW1KTZuFEmkjn2dowCATRlu0AYYkIgAmKOCFI7Gx67aKjYhBKwWYejpUSJKzb6OURTl2bGsNC/j12JAIoJJmrQVrSAB8ecvwik2ItPb2zGKTXVFECLzPwiq90pKNAuLCY4ame5BUu+/td0ipr5/IjKnyVAUx/omMr5BZJJ6r6REszDFFJuiZ7EB4BQbkQKau8agSeAcBiSi7DHFFJvKFSSrhWexEZlccgfts+sKs3I99V5JiWZhioA01YOkXgXJZmUFicjs9naMor7EjVKvMyvXY0AigjkOq02exaZiBclmsXCZP5GJSSmxu30EWxqKs3ZN9V5JiWZhhsNqk2exqbbMH0hWkDjFRmRWnSMB9E+EsHUZAxJRVpliik3Rs9iA5DJ/4z53RDS3Xe3DAIBzl5Vk7ZrqvZISzcIcq9gSTdqKncUGAA6rBZEoK0hEZrW7fQT5ThtWV+Vn7ZrqvZISzcIUR40kl/krOMXmsFmmtjkgIvPZ1TaCzQ1FU9X+bGBAIoJJptg0LvMnIvMZD0ZwtG8CW7M4vQYwIBEBMEeT9vQqNgUrSFbL1PdPROay59QopATOzWKDNsCARARgevfpqKErSBqsFpGVM4pyjd1mmerBIiJz2d02DIsANjcUZfW6DEhEMMkUW0wqWT0CWEEiMrNd7SNYW10Ar9OW1esyIBHBJFNsMU3JFWwA4LAJ9iARmVA0pmFvx2hW9z9KUvPVlGiG6QqSzgNZgmhMKrmCDWAFicisjvROwB+O4dzl2W3QBhiQiABMHzVi6GX+mqbkCjYgvsyfFSQi83m1Lb5BJCtIRDqxmGGjyKhUNiDZWUEiMqWdrcOoK3ajpsid9Wur+WpKNIMZmrRD0RicNjX/S3OjSCLz0TSJV9qGsb2xVJfrq/lqSjSDKZq0oxocqgYkVpCITOd4vw/Dk2FsW5H9/iOAAYkIgFkqSJrSFST2IBGZy8utQwDAChKRnmwmCEgqV5DsVgs0OX0eHREZ386TQ6gtcqO+JE+X66v5ako0g8UEASneg2TVexi6SAbDCHfTJjIFKSVebh3GtkZ9ptcABiQiAIDVDKvYYmpXkACwD4nIJJL9R3pNrwEMSEQApitIRt4HKRRRuwcJAFeyEZnEzmT/0QoGJCJdmWEnbZUrSI7EDuIMSETm8HLrMGoKXagvyf7+R0lqvpoSzZDIR4hpxr3BhhVfxQYAEU6xERmelBI7Tw5he2MphNDv+CQ1X02JZhAQsFkEokaeYlN8FRvAChKRGbT0+zDoC+vaoA0wIBFNsVmNHZDCUQ0Oq6Kr2NikTWQazx0fBABc2FSm6zgYkIgS7BZjbzYYisbgtKv5X9rOJm0i03i+ZRDLS/N02/8oSc1XU6JZ2KwCUYPuo6NpEpGYnKqkqMbJChKRKURiGl5uHcLFq/StHgEMSERTbFbjVpCSlRPVK0hGff6IKG7PqVH4wzFcvLJc76EwIBElOawWw+7EHEpUTlStILEHicgcnj8+AIsALmjSb/+jJDVfTYlmEW/SNuYNNhkMnHY1m7STq9hYQSIytudaBnF2XREK3Xa9h8KARJRksxi3BykUjQGY7sVRTXJ7gxArSESGNRaIYF/HKN6UA/1HAAMS0RS7kXuQklNsiu6D5Er0XoUixnz+iAh46cQQNAlcvJIBiSinGHkfpGTlRNWdtF2JqcVgopJGRMbzfMsA8hxWnNNQrPdQADAgEU2xGXgfJFaQEgEpwoBEZFTPHx/E9sbSnHkdy41REOUAu4H3QZquIKnZpO1KvKAGOcVGZEgnByfRNuTHJTnSfwQwIBFNsVkshl/Flis/eWWbzWqBzSJYQSIyqB1H+gEAb15TqfNIpqn5ako0C5tVGHgfpHgwUDUgAfFpNlaQiIxpx9F+NJV70FCq7/Eip1P31ZRoBrvVuBWkZDBwK7oPEhAPSAFWkIgMZzIUxc7WYVy+ukLvobwOAxJRgpH3QUoGA7UDkgUhBiQiw3mhZRDhmIY3r2FAIspJRt4HKRmQXA51/0u77FYu8ycyoB1H++F12rB1eYneQ3kddV9NiWYw8j5IwTArSC67hT1IRAYjpcSOIwO4eGVZzvVQ5tZoiHRks1gQMehRFVMVJJUDks3KVWxEBnO4ZwK948Gcm14DGJBoHlIas6KyGA6bQMSgFaRAJAa7VUwd2qqi+Co2BiQiI9lxNL68/7LV5TqP5I3UfTWllCiUj+L7IBm1BykcU7p6BHCKjciI/nKkHxtqC1BR4NJ7KG/AgERz0hRKSDYD76QdjMSU7j8CACebtIkMZWAihNdOjeDKtbmzOeTpGJBoTgadcVoUu9WCiEH3QQpEYnA71A5IbrsVIVaQiAzjiUN9kBK4en2V3kOZFQMSzUmpCpKB90FiBSk5xcYKEpFRPH6wFw0leVhTla/3UGaVckASQvxECNEvhGg+7WMlQognhBDHE2+LMzNM0otC+Qg2qwVRTRqyMT0Q0diDZONO2kRGMR6M4MUTg7h6fSWEEHoPZ1YLqSDdC+CaGR/7DICnpJSrADyV+D2ZiEoVJLsl/p/UiHshBcOsICVXsRkx4BKpZseRfkRiMmen14AFBCQp5bMAhmd8+EYAP028/1MAb0/PsChXqBSQbIkl8kacZmMPUnyKTZMw7IHDRCr588E+lHmd2NKQuxNPS+1BqpRS9iTe7wWQm63otGgGLKYsmt0aryCFDbjUP8AepKkpRq5kI8ptwUgMTx/tx1XrKmGx5Ob0GpDGJm0Zr2uf8XYqhLhdCLFLCLFrYGAgXZelDFNpusKZuMGGDbibNvdBmn7+2KhNlNteaBnEZDiGq9fndk1lqQGpTwhRDQCJt/1n+kIp5d1Syq1Syq3l5bm3YybNTqUKkjMxxRYyYAUiGInBrfBBtcD0OXRc6k+U2x4/2It8pw0XNpXpPZQ5LfUV9SEA70+8/34ADy7x8SjHqNSD5LQnA5LxbrCcYov3IAHgSjaiHBaOanj8YB+uWFuRc4fTzrSQZf6/BPASgNVCiE4hxIcAfBXAVUKI4wCuTPyeTESpgJT4z2q0KTYpJQMSAI/DBgDwhxmQiHLV8y0DGAtE8LbNNXoPZV62VL9QSnnrGT51RZrGQjlIoXwEpy0xRWOwgOQPxyAl4HWl/N/ZlPISq/gmQ1GdR0JEZ/Lwvh4Uuu24eGXut9rkdn2LdKdSBSlZ7g0ZbIrGlwgEHqfaASn5/TMgEeWmYCSGPx/sxVs3VOX89BrAgETzUKpJ22bMHqRkQPIyIAEAJsMMSES5aMeRfkyGY7hhU+5PrwEMSDQPTaGElJxiM1oPUrJikuzBUZXHmZxiM1YFkEgVj+zvQZnXie2NpXoPJSUMSDQnhWbYpqfYDBaQOMUWlwyInGIjyj2+UBRPHenDdRurYM3hzSFPx4BEc1KpB2l6is1YFYhkxUT1KbbkKr5JrmIjyjlPHe5DMKIZZnoNYECieSgVkAy6D5IvFAEwPcWkKotFwOOwsoJElIMe2NOFmkJXTp+9NhMDEs1JoRYkw/Yg+VhBmpLntMHPJm2inNI/HsSzxwZw05banD57bSYGJJqTSmexOQw7xZZYxab4PkhAPCT62KRNlFMe2NMFTQLv2FKn91AWhAGJ5qRWBSm5D5KxKkiToSgsAsrvpA3EN4v0c4qNKGdIKfG71zqxpaEIjeVevYezIAxINCeVepBsFgGLAMIxYwUkXygKj8MGIYxTus4Uj9M2taqPiPR3oGsMx/p8eMe5xqoeAQxINA+VApIQAk6b1XhN2sGo8kv8kzwOK89iI8ohv9vdCYfNguvPNs7qtSQGJJqTQvkIQLwPyWhHjUyGo8qvYEvKc9q4io0oR4SiMTy4rxtXratEoduu93AWjAGJ5qRSBQmI9yEZroIUinEFW4LXYeNRI0Q5YseRfoz6I/grgzVnJzEg0ZxUatIG4nshGW2Z/2SIU2xJeU4rjxohyhG/fKUDlQVOvGlVmd5DWRQGJJqTahUkh9V4FaSJYIQVpASvM15BUukMQaJc1DHsx7PHB3DLeQ2wWY0ZNYw5asoalfZBApBo0jZWBWIsEDHk/H4mFLjskBLwcZqNSFf3v3oKAsC7z6vXeyiLxoBEc1LtB3Gn3XgVpLFABEV5DEgAUOCOV9LGAxGdR0KkrkhMw69e7cTlqytQU+TWeziLxoBEc1JtqsJlsyJgoGXioWgMwYjGClJC8u9hPMAKEpFenjjUh0FfCO/Z1qD3UJaEAYnmFFNsis3jNNY+OmOJSgkDUlyBK/73MMYKEpFu/nfnKdQUunDZ6gq9h7IkDEg0p5hiFSS3w1iHnSankgoYkABM/z2MBxmQiPTQPjSJ51sG8e7zG2A10MG0s2FAojlFFQtIRtuJmRWk15ueYmNAItLDz15qh80icIuBm7OTGJBoTrGYWgHJ7TBWD9KoPx4EivIcOo8kN3CKjUg/E8EIfvVqB647uxqVBS69h7NkDEg0J+V6kBI7MRtlewNWkF7P60qsYgsaZ5qUyCx+u7sTvlAUH7hohd5DSQsGJJqTej1IVmgShlnqz4D0elaLQL7Lxik2oiyLaRL3vtiGLQ1F2FxfpPdw0oIBieakYg8SAMP0ISUDUoGLO2knFbjsDEhEWfaXI/1oH/Ljgxebo3oEMCDRPFTbBynPEQ8aRlnJNhaIHzNi1K38M6HQbecqNqIsu+eFk6gpdOGa9VV6DyVt+KpKc1KtgpTnNFgFyc9jRmYqcNu4USRRFh3sHsOLJ4bwvguXm+qHNfN8J5QRMc0YvTjpkmewKbahyTBKvVzBdrpCtx2jgbDewyBSxvefPgGv04ZbzzP2ztkzMSDRnJSrICWn2ELGqEAMTYZQ6mFAOl2Jx4nhSQYkomxoG5zEowd68N7tDSg02ZmQDEg0J/V6kAxWQfKFUep16j2MnFLqcWDEH1Hu3y6RHu569gRsVgs+ZKLm7CQGJJqTshWkSO4HJCklp9hmUeJxIKZJbhZJlGF940H8bncX3rW1DhX5xt8YciYGJJqTavsgTVWQDDDF5gtFEY5qKPOwgnS6ZGAc4jQbUUb96LlWxKTERy5p0nsoGcGARHNSLSB5nPEKks8AAWnIFw8AJexBep3k3wf7kIgyZ9Qfxn07T+GGs6tRX5Kn93AyggGJ5qTaFFu+0wYhgAkDHFUxNBkCAE6xzTAdkEI6j4TIvO5+thWBSAwfvXyl3kPJGAYkmpNqFSSLRcDrtBlio8FkBamMTdqvU5qYcuQUG1FmDPpCuOeFNtxwdg3OqszXezgZw4BEc1KtggQkj6owQgUpHgBYQXq9Yk98qfGwjwGJKBO+//QJhKIxfOLKVXoPJaMYkGhOKi6VLjDIURUDE/EpJPYgvZ7TZkW+y8YKElEG9I4F8YuX2/GOLXVoLPfqPZyMYkCiOalZQTLGafA9Y0GUehxw2qx6DyXnlHocDEhEGfDdHS2IaRL/cIW5q0cAAxLNQ7WjRgAg32XHuAGatPvGg6gqNN/eI+lQ4nGwSZsozTqG/bj/1VO45bx6065cOx0DEs0ppl4+Shx2mvsVpN6xIKoKGJBmU+Z1Tk1BElF6/NfjR2G1CPz9m81fPQIYkGgeKlaQClzG6EHqHQ+ikhWkWVUVutA7FtR7GESmsefUCB7e143b39SoTOWaAYnmpGQPktsOXyia0w3qwUgMw5NhVLOCNKvKAhfGg1H4w7k/VUqU66SU+I8/HkaZ14nbLzXnrtmzYUCiOam2DxIQb9KWEpjI4d20+8fj00esIM0uOfXIKhLR0j3W3Ivd7SP45FvOgjdx2oAKGJBoTioGpEJ3fB+dUX/uroLqHY/f+NmDNLvkFEDy74mIFicUjeGrjx3B6sp8vGtrvd7DySoGJJqTigEpuTN1Li8TT974q1lBmlVlIjj2MSARLcmPnz+JU8N+fPa6tbBahN7DySoGJJqTij1IyZ2pc3kn5q6RAAAo0yy5UFMVpDGuZCNarK7RAP7nqRa8ZV0lLj2rXO/hZB0DEs1JxQpScmfqoRzeR+fUsB8lHgfyXXa9h5KTvE4b8p02VpCIluBLDx+EhMTnb1in91B0wYBEcwpF1VvmnzzsdDCHK0gdw340KLBR21JUcqk/0aLtONqPxw/24R+uWIW6YjVfaxiQaE4RBXeKdDus8DisGMrhgNQ+PMmANI/qQhe6RgN6D4PIcIKRGL740EE0lXvw4Ysb9R6ObhiQaE5hBStIAFDqdebsFFskpqF7NMiANI+Gkjx0jPj1HgaR4Xz7qeNoH/LjSzdugMOmbkxQ9zunlKhYQQLifUi5WkHqGQ0ipkk0lDIgzWVZaR5G/RGMGeDYGKJccaBzDHc924pbttbjopVleg9HVwxINKewogGpzOvAoC83K0jtw5MAwArSPJJ/Px3DrCIRpSIc1fDPv92HMq8Dn71urd7D0R0DEs0pHNXgsKr3z6TU48zZfZDaBuMBaRkrSHOqZ0AiWpDv7mjBkd4JfOWmjVMb5qosLXuGCyHaAEwAiAGISim3puNxSX/hmAa7VSAc03sk2VVR4MSQL4RoTIMtxwJiS78PXqeNu2jPI1lBOsWARDSvQ93j+O6OFtx0Ti2uWFup93ByQjoPVblcSjmYxsejHBCOanDYLJhULCHVFLmhSaBvIoTaIrfew3mdY30+rKzwQgi1drVdqHyXHSUeB9oZkIjmFIzEcOf9e1DsceDz16u559FscutHY8o5kZim5CqG5BEe3Tm4TPx4vw+rKrx6D8MQ6kvyOMVGNI+vPHoYx/t9+O93bkJxYqNcSl9AkgD+LITYLYS4PU2PaViaiXafDkc12HNsiikbahJVo1wLSCOTYQz6QlhVyYCUimUleTiZ6Nkiojd68lAffvZSOz508QpcouBxInNJ153vYinlFgBvBfAxIcQlM79ACHG7EGKXEGLXwMBAmi6bmzRpnoAUiUmlK0g9ObYTc8uADwCwqjJf55EYw6oKLzpHAvCHo3oPhSjn9I8H8enf7cfa6gJ8+prVeg8n56Tlziel7Eq87QfwAIDzZ/mau6WUW6WUW8vLzZ1SYyYKSKquYst32ZHvsqEnxypIh3vGAQCrGZBSkgySLf0+nUdClFuiMQ133r8Xk6Eo/ufWzXDarHoPKecs+c4nhPAIIfKT7wN4C4DmpT6ukWkm2TpISomwoj1IAFBT6EZ3jlWQ9neOodTjmKpw0dzOSkxFHutjQCI63df+fBQvtQ7hyzdtxMoK/sA1m3SsYqsE8EBiRY0NwP9KKf+Uhsc1LLNMsUVi8e9DxR4kAKgvcedcg29z1xg21BZyBVuKGkry4LBacLxvQu+hEOWMPzX34K5nWvHebQ34q3Pr9B5OzlpyQJJStgLYlIaxmIZZptiSu2irOMUGACvKPHju+CA0TcJi0T+QBMIxHO/34ap13KMkVTarBY3lHhxjQCICAJwY8OFTv9mPTfVF+PwNXNI/FzXvfBkmTTLFljyo1q7oFFtjuRehqIbusdzoQzrUM46YJrGhtlDvoRjKWZX5nGIjAjAejOCOn++Gw2bB9967hX1H81DzzpdhZqkgBSPxzSHz7Gr+J1pR5gEAtA7kxjLx/Z2jAICNDEgLsq6mAF2jAYzk6NExRNkQiWn42H2v4eTgJL7znnNybgPcXMSAlAFm6UEKJAKS26FmQGosTwak3Kg+vHJyGLVF7qk9mig1Z9fFA+X+rjGdR0KkDyklvvDQQTx3fBBfuXkjLmwq03tIhsCAlAFm2SgykDhexKVoBanc64TXaUNrDmw0KKXEKyeHsW1Fid5DMZyNtYUQAtjfMar3UIh08ePnT+J/d57CHZc24V1b6/UejmEwIGWASfLRdAVJ0YAkhEBTuScn9tBp6fdhaDKMbY0MSAuV77KjscyDfZ2sIJF6HtnfjS8/ehjXrK/Cp6/mZpALwYCUAWbpQUpWkNwOdf+ZrKspwMHucUidn9OdJ4cBANtWlOo6DqPaVFc01cNFpIpnjg3gH3+1F1uXFeObt2zOidW4RqLunS+DTDPFpngFCQA21BZiLBBBx7C+K9mePTaAmkIXlpXm6ToOozq7rhD9EyH05MiKRKJM290+gjt+vhsrK/Lxo/efp2wv6VIwIGWAWZq0k6vYVO1BAqZXjB3QscE3FI3h+ZZBXL6mghtELtLW5fGpyVcSlTgiMzvSO44P3PMKKguc+NkHz0eh2673kAyJASkDTFJAOm2KTd2AtLoqHzaLQHO3fgFpZ+sw/OEY3rymQrcxGN3a6gIUuGx4sWVI76EQZdThnnG854c7keew4ecf2obyfKfeQzIsBqQMiJkkIXGKDXDarFhbXYDX2kd0G8NTh/vgtFm4NHcJrBaBbY2leKmVAYnM62D3GG794ctw2iy4//btqC/hlPxSMCBlgN4NvekS4BQbAGDbihLs6RidmnLMpmhMwx8P9OKy1eVKV/LS4YLGUpwa9qNzJLfO1yNKh+auMbznhzvhcdjwq9svwPLERre0eAxIGWCWVWy+YBRWi4DLrvY/k+2NpQhHNew5NZr1a794YgiDvhDevrk269c2mwtXxlcAcpqNzGZn6xBu/eHLyHfZcP/t29HAxRxpofadL0M0k5zFNhGMIt9lg4DajcHnrSiBRUCX6Zk/7O1CvsuGy9l/tGSrK/NRXejCk4f79B4KUdr8qbkXt/3kFVTkO/Grj1zAabU0YkDKALOsYpsIRpDvsuk9DN0Vuu04u64IO470Z/W6Y/4IHjvQi+s2Vis/zZkOQghcubYSzx0f1GW6lCjdfvFyOz56325sqCnAb++4kOerpRkDUgaYpUl7IhhFvpPLQwHgmg1VONA1ltX+ld/s7kAgEsNtFyzL2jXN7qp1lQhEYnihZVDvoRAtmqZJ/NefjuBzf2jG5asrcN+Ht6PY49B7WKbDgJQBURMFpAI3K0gAcPX6KgDA4wezMz0T0yR++lIbzltejPU1hVm5pgq2N5Yi32nDn5p79R4K0aJMBCO4/ee78L2nT+DW8xtw123ncgFHhjAgZUA4ao4mpPFgBPkuVpAAYEWZB2uq8vHwvu6sXO+hfV3oGA7ggxetyMr1VOGwWXD1hio81tw7tc8XkVG0D03i5u+9iB1HB/ClG9fjKzdtgM3K23im8G82A8IxcwSkZJM2xb1zaz32doziYIY3jYzENHzryeNYW10wVbmi9Ll5Sy18oSj+fIhVJDKOHUf6ceN3X8CAL4Sff/B8vO+C5dxZP8MYkDLATBWkAlaQprxjSy2cNgvu23kqo9f59a4OtA358U9XncXDJTNg+4pS1Ba58bvXuvQeCtG8IjEN//noYXzg3ldRVeDCgx+7CBeu5Kax2cCAlAERE1SQNE3CF2IF6XRFeQ68bVMNfre7E/3jwYxcY2AihP/z2BGcv6IEV67l0v5MsFgEbt5Si+ePD6BjmJtGUu7qGg3glrtewl3PtuK92xrwh49dhGWl3AAyWxiQMsAMFaSJYBRSgocczvCxy1ciqkl87+kTaX9sKSW+9MghBCIxfOWmjSyfZ9B7tjXAIgTufbFN76EQvYGUEg/u7cK133oOx/p8+J9bz8GXb9rI7T6yjAEpA8wQkAYnQwCAMi8POjzd8jIP3nluHe7b2Y5jfRNpfezf7OrEw/u68fdvXoWVFd60Pja9XnWhG9durMavXu3ARDCi93CIpgz6Qvjofa/hzvv3orHcg0f+/mLcsKlG72EpiQEpA0ImmGIb8oUBMCDN5p+vXg2v04b/73f707bn1b6OUfzbg824aGUpPnb5yrQ8Js3tw29aAV8oip+/3K73UIgAAI8d6MHV33wWTx3ux2feuga/veNCnqmmIwakDIiYoYLki1eQSr3cfGymUq8TX7hhPfacGsXXHj+65Mdr6Z/A39zzCioKnPi/t5wDKxuzs+LsuiJcvrocdz3TirEAq0ikn45hPz7801fxd/e9hpoiNx75h4txx6VNfC3QGQNSBphhmf8QA9Kc3n5OLd67rQE/eOYE7tu5+ArEa6dGcMtdL8NqseAXH9qG8nxW7LLpU1evxlgggh8+26r3UEhBoWgM393Rgqu++QxePDGEf712LX7/0QtxVmW+3kMjAFyilAGm6EHyhSEEUJLHgHQmX7hhPbpHA/jXB5ox6o/g7y5tSnlZvpQSv3i5Hf/xx8OoLHDh3g+cx9UpOlhfU4gbNtXgR8+34l1b63kKOmWFlBJ/OdKPLz96GK0Dk7h2YxX+7fp1qC7kWWq5hBWkDDBDQBrwhVCS5+AurXNw2Cz4wW3n4oZNNfja40fxvp+8gqO98zdu72obxi13vYx/e/AgtjWW4oGPXojGcjZl6+Wz166BVQh87sFmSJMcNE25a3/nKN5998v40E93ARK45wPn4XvvPZfhKAexgpQBZtgHqWskgBqeDD0vp82Kb797M7atKMH/+dMRXPOtZ3HxyjK8ZX0V1tcUoNTjQCQm0TMWwGvto3isuQdHeidQ5nXiqzdvxC3n1XM5v86qC9341NWr8f8/fAgP7evGjZtr9R4SmVDb4CT++4ljeHhfN0o9Dvz7jevx7vMbYOcPoTmLASkDQiaoIHWNBtBUzimfVAgh8Nfbl+G6jdW458U2/P61TvzbH5pn+bp4Y/C/37ge7zi3DnkO/vfLFe+7YDke3teNzz3QjM31RZzupLQ5MeDDd//Sgj/s7YLDZsHHL1+Jj1zayHMuDYCv0Blg9CZtKSW6RgK4ZFW53kMxlGKPA/901Vn4xytXoXMkgCO9ExgLRGC3CpTnO7G+ppAbb+Yoq0Xg27eeg2u/9Rw+/r978Js7LuCmfLQkx/om8J2/tODh/d1w2az40MUr8LeXNKIi36X30ChFDEgZEIoYOyCN+CMIRGKoLeYU22IIIVBfkof6Ejb8GkldcR6+/s5NuP3nu/Gp3+zDt999Ds/CowWRUuLZ44P48fMn8eyxAeQ5rPjIJU348JtWcE85A2JAyoDJUFTvISzJycFJAMAy3uBJMW9ZX4V/eesa/OdjR1BT5Ma/vHUNe8RoXoFwDA/s6cJPXjiJln4fyvOd+ORVZ+G925ehxMOVwEbFgJQBEyFjbzrX0h9ficW9OEhFt1/SiK7RAO5+thVCAJ+5hiGJZtfcNYZfvdqBP+ztwkQwivU1BfjGuzbh+rNr4LCx+droGJAyYCJo7ArS8T4fXHYLp9hISUIIfPGG9dCkxF3PtCIQjuHz16/jlhcEABgLRPDQvm786tVTaO4ah8NmwbUbqnDr+Q04f0UJw7SJMCBlgNED0rF+H5rKvdzmnpRlsQj8+40bkOew4e5nW3FycBLfuXULCvPYZK8ifziKJw/34+F93Xjm6ADCMQ3rqgvwpRvX48ZNtfx3YVIMSGlmtQhDnw4upcTBrjFctrpC76EQ6UoIgc9euxZN5R587g/NuP47z+Eb79qM85aX6D00ygJ/OIpnjw3g4f09eOpwH4IRDVUFLtx2wTK8fXMtNtYV6j1EyjAGpDTLd9kwbuAK0qlhP4YmwzinoUjvoRDlhFvOa8DKinx84ld78K67XsLtlzTizitWcR8rE+oc8WPHkX48ebgfL7UOIRzVUOZ14J3n1uOGTTXYuqyYKxsVwv/haVbgsmPUH0EwEjPkPiqvnRoBAGxpKNZ5JES549xlxXjszkvwH48cwl3PtOKhvd34zFvX4G2bathzYmCBcAy72ofxQssQnj7ajyOJo4JWlHnwvu3L8Oa1FTh/eQn7zxTFgJRmFflOnBr2Y2AiZMh9cF46MYR8lw2rq7iCjeh0XqcNX33H2bh5Sx2+9MhB3Hn/XvzwuVZ87LKVuHp9FSsLBhCOatjXOYoXW4bw4olB7Dk1inBMg80isGVZMT577RpcsbYSTTwbkcCAlHZVhfFdUnvGgoYLSJom8ZcjA7j0rHI2aBOdwfkrSvDgxy7GA3u68N0dLfi7+15DU7kH77tgOd6+mQ27uaRvPIjX2kewp2MUr7WP4EDXGEJRDUIAG2oK8YGLluOCplKct7wEHidvh/R6/BeRZtVTASmg80gW7kDXGAZ9IVyxlg3aRHOxWgT+6tw63HROLR490IO7n23FFx46iK88ehjXbazGDZtqcOHKUjhtxptmN6r+iSAOdY/jcM8EmrvHsPfUKLpG46/DDqsFG2oLcNv2Zdi6vAQXNJYyyNK8GJDSrKowvndQ71hQ55Es3AN74ocpXs4VbEQpsVoEbthUgxs21aC5awy/fOUUHtrbjd/v6UK+04Yr1lbg8jUVuLCpDOX5PGoiHSZDUZwcnMSJAR8O9YxPhaJBX2jqa2qL3NjcUIQPXrwC5zQUYX1NAcMqLRgDUpp5nVbkO21TP7kYRTAS3yr/6vVVKMrj1vhEC7WhthBfvmkjPn/DOrzQMog/NffiiUN9+MPebgDAWZVeXNhUhnMainB2XRGWleSxb+kMwlENPWMBnBr2o3UgHoaSb3tO++HTbhVYVZGPy1aXY111AdZWF2BddQGrQ5QWDEgZsKrSO7Uawijuf+UUxgIRvHdbg95DITI0p82KN6+pxJvXVCIa03Cwexwvnog3Bd//6inc+2IbgPiWIBtrC7GmqgCN5R40lXvRVOFBuddp6pVxUkqM+iPonwihfyKIrpEAOkcC6Bzxo3MkgK7RAHrHg5By+s94nTY0lXuwvbEUTeUeNJZ70VjuQWOZl0d6UMYwIGXAupoCPLinG1JKQ7zQ+cNRfO/pE9i2ogTbG0v1Hg6RadisFmyqL8Km+iL83WVNiMQ0HO/z4UDXKPZ3juFAYlouEIlN/Zl8pw21xW5UF7pQXeRGTaEL1YVuVBQ4UZznQLHHgeI8O9x2a068voSjGsYCEYwFwhgLRDDqj0y9HQ1EMDARwsBEEAMTIfRPhDDoCyESk697DKtFoLrQhdoiNy5sKkNdsRu1xW7UFbuxstyL8nxzh0bKTQxIGbC+phC/ePkUWgcnDbFc9GuPH0X/RAjf/+steg+FyNTsVgvW1RRgXU0Bbjkv/jFNk+gdD+LEgA8n+n1oHZxE92gAPWNB7Oscw/BkeNbHctgsKM6zo8jtgNthRV7il8uefN8Gp80Ci0XAKsTUW6sFU+9rEohpGmJa/G1Uk4hpcuptMBKDPxz/FYhEEZh6P/52MhSFPxybdXwAIARQ6nGgzOtERYELqyrzUZ7vREW+M/HWhdpiNyrzndxriHIOA1IGXNRUBgB45uhAzgekJw/14d4X2/C+C5bh3GU8QoEo2ywWgZoiN2qK3HjTqvI3fD4YiaF3LIj+iRBG/GGMTIYx4o9g1B/G8GS8ahOIxBAIxzDqjyTCSzzMhKIaNBkPO5qc5eKnj0MANosFFkv8rdUi4LJbkOewTYUuj9OGMq9zKpB5HDYU5dlR6LajwG1HUZ4DhW47itzTH+OWIWRUDEgZ0FCah1UVXvzxQA8+ePEKvYdzRrvbh3Hn/XuwsbYQn712rd7DIaJZuOxWLC/zYHmZZ0mPI6VMVIzkVGiyWkT8V6LCRETTWNPMkHef34Dd7SPY2zGq91Bm9afmXvz1j15BRYELd9+21ZDHohBR6oSIhyGHzQKXPV4NctmtsFstDEdEs2BAypB3bq1DmdeBzz/YjGhM03s4U4Z8IfzL7/fjjl/sxqpKL379kQumdv8mIiKiOAakDClw2fHFt63H/s4xfPp3+xHROST1jQfx9ceP4rKvP41f7+rE375pBX5zxwXcvI6IiGgW7EHKoOvPrkHrwCS+8cQxtA5M4vM3rMOWhuKsXb97NICnjw7gTwd78WLLIGJS4sq1lfj01auxqpKH0RIREZ0JA1KG/cMVq9BY7sEXHjyIm7/3IjbWFuKaDVU4f0UJ1tcUIM+x9KcgGImhfciPk4M+nBiYxOGecexuH5nacXZZaR4+/KZG3Hp+PZaVLq3Rk4iISAUMSFlw/dk1uHx1Be5/tQN/2NOFrz1+dOpzFflOLCvNQ4nHgQJXfGmsy26FRUzvVRKTcmoZb3IfkqHJEAYmQhj0xZf5nq62yI2ty0twbkMRtjeVYnVlPjdZIyIiWoC0BCQhxDUAvgXACuBHUsqvpuNxzcTjtOFDF6/Ahy5egeHJMHa3j+Bo7zjah/w4NexH26A/sRttBOGYhtiMTUucNgvcDivcdivcDitKPQ6srsrHRV4nyrzxkNVU7sWKMg88TuZeIiKipVjynVQIYQXwXQBXAegE8KoQ4iEp5aGlPrZZlXgcuGpdJa5aVznn12mJ/Uos3KOEiIgoq9Kxiu18AC1SylYpZRjA/QBuTMPjKs9iEbBxjxIiIqKsS8dcTC2AjtN+3wlg28wvEkLcDuB2AGhoeP2J8dGYhpODkzgxMIkBXwiDEyGMByMIRjSEIjEEozEEI/FpJ4n4jrBSAhLxt1ri2GebxQKbVcBmEVPv263xLfPtiffdDiu8Dhs8Thu8zvhbj9OKEo8DlQUulHocPBOIiIhIcVlrVpFS3g3gbgDYunWrBIDjfRP4n7+04MnDfa878FAIwOuwwWm3wmWP7/rqsltgFQIQAhYBCMR3ho2/H6+w+KNRRDWJaEwiqmmIxiQimoZYTCKiSURiGvyhGMJz7ElkEUCp14m6YjfWVOXjrMp8nNNQjI21hTxTiIiISBHpCEhdAOpP+31d4mNzevpoP27/2W447RbcuLkG5y0vwVmV+ajId6Ikw1WccFTDZCgKXyiKyXAUk6Eohicj6BsPon88iL7xENqHJ/Gn5l788pV4caw4z463rKvC+y5chvU1hRkbGxEREekvHQHpVQCrhBArEA9G7wbwnrn+gCYlPvnrfWiq8OLnHzofZd7s7ubssFngsDlQ7HHM+XVSSgxMhPDyyWE8faQfD+3rxq92deDmLbX4/PXrUJQ3958nIiIiY1pyQJJSRoUQHwfwOOLL/H8ipTw4158Z80cQmwzj7vedm/VwtBBCCFQUuPC2TTV426YafOGGCO5+7gTueqYV+zpG8YsPb0N1oVvvYRIREVGapWUeS0r5qJTyLCllk5Tyy/N9/UQoiqoCV1aP3UiHwjw7/vnqNbjvw9vQNx7CHT/fjVA0Nv8fJCIiIkPRZblWKKJhQ22BYXd33tZYiq+/82zs6xzDvS+06T0cIiIiSjNdAlI4pqGuOE+PS6fNNRuqcelZ5fj+MycQjLCKREREZCa6BCRNStSXGDsgAcDtlzRi1B/B4wd79R4KERERpZFuOyKWeY2/AuyCxlKUeZ146nC/3kMhIiKiNNLtVFOPw/gHqlosAhetLMULLUOQ83+58qSUGPFHcGrYj1F/GMGIBk1K5LtsKHDZUVvsRqnHYdjeNCIiMg/dUkqe06rXpdNq24pSPLi3G53Dfr2HkpPGgxE8ur8HzxwbwCsnhzE0GZ7z6wvddqyuysf2FSXY3lSK85eX8OgXIiLKOt0Cktdp/AoSAKytzgcAHOmd0HkkuWVgIoTv7mjBL185hVBUQ22RG5euLse66gIsK/Wg1OuA02aBRQj4QlGM+iPoGPbjxIAPzV1j+M6OFnz7Ly0o8zpww6YavHfbMqys8Or9bRERkSL0m2IzSUA6qzIekI71MSAlPbyvG5994AD84RjesaUW7922DGfXFS5o6mwiGMELLYN4cG837tt5Cve+2Ia3bqjCP111FlZW5Gdw9ERERDoGJLfdHFNsHqcNpR4HukYDeg9Fd1JKfPOJY/j2X1pwTkMRvv7OTWgqX1zVJ99lxzUbqnHNhmoM+UK454U2/PTFNvz5YB/+9pJG3HnFKrhM8m+IiIhyj27NHTaLeRpxa4rc6BphQPr2U/FpsVu21uPXH7lg0eFoplKvE5+6ejWe/ufL8PZzavH9p0/gr37wIjrY90VERBmiW0CymCgg1Ra5la8g/eVIH7755DHcvKUW/3nzRtgz0Fhd6nXi6+/chB+9bytODflxw3eex/7O0bRfh4iISL+AZKKl3OX5TvjD6u6mPRGM4DO/O4C11QX4yk0bMx5+r1xXiYf//mLku2x4zw934rVTIxm9HhERqUe3gGQ1UUAqyrPrPQRdfXfHCQz4QvjqzRuz1he0rNSD33zkQpR5HfjwT3ehbXAyK9clIiI16BaQhIm2tinKM/6u4Is1FojgFy+344aza7Cpviir164qdOGeD5wPKSU+/LNdCChcxSMiovRiBSkNitzqVpDuf+UUfKEoPnJpoy7XX1Hmwf/cugUt/T589bHDuoyBiIjMhz1IaaDyFNvvX+vCucuKsb6mULcxXLyqDB+6eAV++lI7Xm4d0m0cRERkHjquYtPryumnakA62juBo30TuHFzjd5DwT9fvRo1hS586eFDiGk8GY+IiJaGFaQ0MMuu4Av15OE+AMA1G6p0HgngslvxmWvX4lDPOB7Y06X3cIiIyODYg5QGZtkVfKFeOjGENVX5qMh36T0UAMANZ1djXXUBvvd0CzRWkYiIaAn0W8VmnnwEt0O9gBSKxvBq2zAuaCrVeyhThBD4u8ua0DowiT8f6tV7OEREZGA6BiTzJKQ8h3pTbAc6xxCKatjemDsBCQCu3ViNumI37tt5Su+hEBGRgekSkMwTjeJUnGI71DMOANhUV6TvQGawWgTeeW49nm8ZROcIz2ojIqLFMdFaMv1YTXSuXKoOdY+jxONAZYFT76G8wV9trQMA/HZ3p84jISIio9InIKmXJ0znUM841lUX5ORUaW2RG9tWlOCxA+xDIiKixdFpii33bqqUOikljvf5sKrSq/dQzugt66pwtG+CZ7QREdGicIqNFmzAF0IgEsPyUo/eQzmjq9ZVAgCeONSn80iIiMiI2KSdJg6rOlmzYzje/NxQkqfzSM6sviQPZ1V68ezxAb2HQkREBsQepDSxWU34TZ1B+1AiIJXmbkACgAsaS7GrbQThqKb3UIiIyGBYQUoTu0IVpFPDfggB1BW79R7KnC5oKkUgEsP+zlG9h0JERAajzl09w1QKSF0jAZR7nXDacnv/p20rSiFE/EgUIiKiheAqtjRxKDTFNugLoSIH9z+aqdjjQGOZB/tYQSIiogViD1Ka2G3qVJAGfCGUeXM/IAHAxtpCHOga03sYRERkMOrc1TNMpSm2wYmwcQJSXRH6xkPoHw/qPRQiIjIQNmmniSoBSUqJockQyvMNEpBqCwGAVSQiIloQTrGliSo9SGOBCCIxaZgK0vqaAggBNHeN6z0UIiIyEFaQ0kSVA2sHJkIAgDKvQ+eRpMbjtKGu2I2WAZ/eQyEiIgNRY14oC1QJSIO+MACg3CAVJABoKveipZ8BiYiIUmfTewBmkYun2mfCWCAekArz7DqPJHUry7146cQQYppUJshmUziqoW1oEhPBKIrz7KgvyVOmJ4+IzIsBKU2sigSk8WAUAFDgMk5AaqrwIhTV0D0aQH0Onx9nJFJKvNAyhHtfPInnjg8idNpxLl6nDZetLscHL16BLQ3FOo6SiGjxGJDSxKLID8wTBgxIKyu8AICWfh8DUhr0jQfxrw8048nDfSjzOnHr+Q04p6EIBW47hn1h7GofwR/3d+OR/T246ZxafPGG9YaqOBIRAQxIaWNRpII0EYwAALwu4/zTWZYIRR0jfp1HYnyHusfxwXtfxWggjM9euwbvv3D5G46cece5dfjcdWvxg2dO4AfPnMDejlH8+P1b0Vju1WnUREQLp0jdI/NUCUjjgSg8DquhennKvE44bBZ0jgT0HoqhHe2dwC13vwQAeOCjF+H2S5rOeB6fx2nDJ9+yGr/82+0YD0Tw7rtfRtvgZDaHS0S0JAxIaWKkwLAUE8EI8g00vQYAFotAbZEbXQxIi9Y/HsTf3PMK3HYrfnPHBVhbXZDSn9u6vAS/vH07IjEN77/nFYwFIhkeKRFRejAgpYki+QgTwSjyDTS9llRX7EYnp9gWRdMkPvmbfRjxh3HPB85bcB/XWZX5+NH7t6JrJIBP/nofpJQZGikRUfowIKWJKlNsE6GIYQNS1ygrSItx3852PHd8EJ+7bh3W1xQu6jHOXVaCz7x1DZ483IcH9nSleYREROnHgJQmygSkYBQFbmNNsQFAXXEeBn1hBMIxvYdiKMOTYXzt8aO4aGUp3rutYUmP9cGLVmBLQxH+/ZFDGJ4Mp2mERESZwYCUJqr0IPlCUXgcxqsg1RS5AIBVpAX61pPH4AtF8fnr1y95M1SLReArN2/EWCCC7z/dkqYREhFlBgNSmlgUCUihiAaXffaVS7msIj8ekAZ9IZ1HYhz940H88pUO3HJePVZX5aflMddUFeCmc+rws5fa0TceTMtjEhFlAgNSmiiSjxCMxOCyG++fTXl+/Oy45GG7NL8fv3ASUU3DHZc2pfVxP3HlKsQ0ibueaU3r4xIRpZPx7nQ5SpWjRgKRmCErSMnDdRmQUjMZiuK+l0/h2o3VWFbqSetj15fk4dqN1fjNrg5MhqJpfWwionRhQEoTFQ6rlVIiGInBbcCAVOi2w24VGOAUW0r+eKAHvlAUf3Ph8ow8/vsvXI6JUBS/54o2IspRDEhpkjy83MxbvEQ1CU3CkFNsFotAmdfJClKKfrurE41lHpy7LDOHzW5pKMLG2kL8785TGXl8IqKlMt6dLkcll/lrJg5IySXyRpxiA+J9SAxI82sbnMQrbcN459b6jFVGhRC4eUstDveMo6V/IiPXICJaiiUFJCHEF4UQXUKIvYlf16ZrYEaTXMWmmbiEFIwYPCCxgpSSx5p7AQA3bq7J6HWuO7saFgE8tLc7o9chIlqMdFSQviml3Jz49WgaHs+QkqvYTB2QohoAAwekfCd7kFLwxKFebKwtRE2RO6PXqch34YKmUjy0r5vHjxBRzuEUW5okV7FpJp5jC05NsRnzn02p14EhX8jUz9FS9U8EsadjFFetq8zK9a7dWI22IT9ODPiycj0iolSl4073cSHEfiHET4QQmenoNIBkr0bMxPfeYDQekIy4ig0AitwOaBLwhbm0/EyeOtwPKYG3rM9OQLpsdQUA4OmjA1m5HhFRquYNSEKIJ4UQzbP8uhHA9wE0AdgMoAfAf8/xOLcLIXYJIXbFYuY7Dyt51IiZpwqM3oNUmBc/Q27MH9F5JLnr+ZZBVBW4sLoyPTtnz6e2yI1VFV7sONqflesREaVq3kO1pJRXpvJAQogfAnhkjse5G8DdAFBQv9p0KSLZgxQz8fRNIJzsQTLmFFtR4pDdUX8E9SU6DyYHSSmxs3UIb1pVntV9vS5fU4F7XjiJyVAUHqfxzvkjInNa6iq26tN+exOA5qUNx7imV7HpPJAMSk6xGbWCVJTnAACMBVhBmk1Lvw+DvjC2N2Y3PV7YVIpITGJvx2hWr0tENJellgL+SwhxQAixH8DlAP4xDWMypOl9kMybkIw+xVaUmGIbDYR1Hklueql1CABwQWNZVq+7ZVkxhABebRvO6nWJiOaypHq2lPK2dA3E6FRYxRZKLPN3WI0/xUZvtKttBFUFLtSXZHZ5/0wFLjvWVhVgV9tIVq9LRDQXY97pctBUD5KJK0jRWCIg2Yz5z6YgEZA4xTa7/Z2j2FRfqMu5guctL8Zrp0am/o0REenNmHe6HJS8qZg4HyGS2MPAbtAKkstuhctuwaifU2wzjfkjaBvy4+y6Il2uv3V5CfzhGI708tgRIsoNxrzT5TAT5yNEEj/d26zZrzCkS5HbgRFOsb3Bga4xAMDZdYW6XH9jbfy6B7vHdLk+EdFMDEhpMjUrYeISUjIgGbUHCQAK3DZMBBmQZtrfNQpgOqhkW0NJHrxOGw52j+tyfSKimYx7p8sxAokpNp3HkUlRg0+xAYDHacNkyHwblS5Vc9cYGkryprZCyDaLRWBddQGau1hBIqLcYNw7XY5JVpBMXEBCOKZBiOldw43I67TBF+JRIzMd6/NhdVV2ds8+k3U1BTjcM2HqzVaJyDgYkNLEuJEhddGYNHT1CAA8DhsmGZBeJxzV0DY4ibMqvbqOY31NAQKRGE4OTuo6DiIigAEp7aSJJ9kiMQ12A1ePgOQUGwPS6dqHJhHVJFZV6FtBWltdAAA40ss+JCLSHwNSmqgwxRbRJOwG3QMpyeu0copthuP9PgDAygp9K0hN5fHrtw6wgkRE+jP23S6HTO2DpPM4MikS1WCzGPufjMdpw2Q4BmnmJLtAx/omIMR0QNGL22FFbZEbJwZ8uo6DiAhgQEo7M993o5oGh4H3QAIAr8uGmCanjk2heAWpvjgPbof+Z+w1VXhZQSKinMCAlCY6nM6QdZGYhM3gTdpeZ/z4wYkgp9mSWgcm0VTu0XsYAICmcg9ODPhY4SMi3Rn7bpeDzNykHY5qsBu8guRxxAMSG7XjpJToHPZjWWluBKTGci/84Rh6x4N6D4WIFMeAlCbJjSJNnI8Q1TTjL/NPVJDYqB036o9gIhRFXbFb76EAAJrK4kHtJKfZiEhnxr7b5RBh/nyEiAn2QUpOsbGCFHdq2A8gftRHLqhPjKNzJKDzSIhIdca+2+WQ6aPYzBuRIjETTLE5443Ik2EGJADoGEkEpNLcCEhVhS5YBNCZGBcRkV4YkNJEjSZtzTRN2j6exwZguoJUX5wbAclutaC60M0KEhHpzth3uxxk4gISojEJh8EDksseryAFIwxIANAxHECpxzHVm5UL6ordU5UtIiK9GPtul0OSTdomzkeIatLQB9UC0wEpxIAEID6VVZcj/UdJdcV5rCARke4YkNJEhaNGABg+ICU3QwwwIAEAesaCqC5w6T2M16krdqN3PIgwN/MkIh0xIKWZmfdBAgCLwZutXImz5IIR3nwBoG88iKrC3ApI9SV5kBLoHmUViYj0w4CUJsLgwSFVBm9Bgs1qgd0qWEEC4A9HMRGMoqLAqfdQXqcmEdi4WSQR6cngt7vcwym23OeyW9mkDaB3LB5AqnJsii0Z2PoYkIhIRwxIaWL82JAao0+xAQxISX3jIQC5GJDi4+lPjI+ISA8MSGky3aRt7hKSGSpIbruVPUiYrtBU5FhAynfa4LJb0D/BChIR6YcBKU2mdtLWdRSZZzVBBclttyIQZgUpGZByrUlbCIHKAtdUhYuISA9Cj4qHEGIAQHvWL5wdZQAG9R4ELQifM2Pi82ZMfN6Mx8zP2TIpZflsn9AlIJmZEGKXlHKr3uOg1PE5MyY+b8bE5814VH3OOMVGRERENAMDEhEREdEMDEjpd7feA6AF43NmTHzejInPm/Eo+ZyxB4mIiIhoBlaQiIiIiGZgQMogIcQnhRBSCFGm91hobkKIrwkhjggh9gshHhBCFOk9JjozIcQ1QoijQogWIcRn9B4PzU0IUS+E2CGEOCSEOCiEuFPvMVHqhBBWIcQeIcQjeo8lmxiQMkQIUQ/gLQBO6T0WSskTADZIKc8GcAzAv+g8HjoDIYQVwHcBvBXAOgC3CiHW6TsqmkcUwCellOsAbAfwMT5nhnIngMN6DyLbGJAy55sAPg3zb65tClLKP0spo4nfvgygTs/x0JzOB9AipWyVUoYB3A/gRp3HRHOQUvZIKV9LvD+B+M22Vt9RUSqEEHUArgPwI73Hkm0MSBkghLgRQJeUcp/eY6FF+SCAx/QeBJ1RLYCO037fCd5sDUMIsRzAOQB26jwUSs3/RfyHfeUOsLTpPQCjEkI8CaBqlk/9K4DPIj69RjlkrudMSvlg4mv+FfHpgPuyOTYiFQghvAB+B+ATUspxvcdDcxNCXA+gX0q5Wwhxmc7DyToGpEWSUl4528eFEBsBrACwT8QPdq0D8JoQ4nwpZW8Wh0gznOk5SxJC/A2A6wFcIbn/RS7rAlB/2u/rEh+jHCaEsCMeju6TUv5e7/FQSi4C8DYhxLUAXAAKhBC/kFL+tc7jygrug5RhQog2AFullGY96M8UhBDXAPgGgEullAN6j4fOTAhhQ7yR/grEg9GrAN4jpTyo68DojET8p8WfAhiWUn5C5+HQIiQqSJ+SUl6v81Cyhj1IRHHfAZAP4AkhxF4hxA/0HhDNLtFM/3EAjyPe7PtrhqOcdxGA2wC8OfH/a2+iKkGUs1hBIiIiIpqBFSQiIiKiGRiQiIiIiGZgQCIiIiKagQGJiIiIaAYGJCIiIqIZGJCIiIiIZmBAIiIiIpqBAYmIiIhohv8He2jICechzzMAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "targets = (16, 17)\n", - "xmax = 15\n", - "x = np.linspace(-xmax + EPSILON, xmax - EPSILON, 1000)\n", - "\n", - "mean_lag = eval_mean_laguerre(x, targets)\n", - "lanczos = eval_lanczos(x)\n", - "rel_error = calc_rel_error(lanczos, mean_lag)\n", - "rel_error_simple = evaluate(x, targets[-1])\n", - "rel_error_opt = evaluate2(x)\n", - "# rel_error = evaluate(x, target)\n", - "\n", - "_, axs = plt.subplots(\n", - " 2, sharex=True, clear=True, constrained_layout=True, figsize=(12, 12)\n", - ")\n", - "axs[0].plot(x, rel_error, label=targets)\n", - "axs[1].semilogy(x, np.abs(rel_error), label=targets)\n", - "axs[0].plot(x, rel_error_simple, label=targets[-1])\n", - "axs[1].semilogy(x, np.abs(rel_error_simple), label=targets[-1])\n", - "axs[0].plot(x, rel_error_opt, label=\"Optimal\")\n", - "axs[1].semilogy(x, np.abs(rel_error_opt), label=\"Optimal\")\n", - "axs[0].set_xlim(x[0], x[-1])\n", - "# axs[0].set_ylim(*(np.array([-1, 1]) * 4.2e-8))\n", - "# axs[1].set_ylim(1e-10, 5e-8)\n", - "for ax in axs:\n", - " ax.legend()\n", - "\n", - "x2 = np.linspace(-5 + EPSILON, 5, 4001)\n", - "_, ax = plt.subplots(constrained_layout=True, figsize=(8, 6))\n", - "ax.plot(x2, eval_mean_laguerre(x2, targets))\n", - "ax.set_xlim(x2[0], x2[-1])\n", - "ax.set_ylim(-7.5, 25)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### Test with complex values" - ] - }, - { - "cell_type": "code", - "execution_count": 79, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2YAAALYCAYAAAAXYuFPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9f8x23bYeBF1j3e/37b17TjmNOQiUU1u0iBUCTShRFG2qxBKpYGJCqq1tAW36h8TURElTAyYIIamKQUxINUiQovCfiRppm6Yi0WPSGlI1NcZiTxtqW05/2NPTc/be772Gf8x5jXGNMee6n+d9vm/v593be+79fO+91pxjjjHHnPMa88eYc5m74xme4Rme4Rme4Rme4Rme4Rme4RneLxzvLcAzPMMzPMMzPMMzPMMzPMMzPMP/v4fnxOwZnuEZnuEZnuEZnuEZnuEZnuGdw3Ni9gzP8AzP8AzP8AzP8AzP8AzP8M7hOTF7hmd4hmd4hmd4hmd4hmd4hmd45/CcmD3DMzzDMzzDMzzDMzzDMzzDM7xzeE7MnuEZnuEZnuEZnuEZnuEZnuEZ3jk8J2bP8EMVzOxfNLP/7tec528xs3/z68zzGZ7hGZ7hGZ7hGZ7hGZ5Bw3Ni9gw/kMHM/qCZ/QUz+8Z7y6Lhq07iJv3dzP5y+/vFX6ecz/AMz/AMz/AMz/AMz/B5hefE7Bl+4IKZ/TIA/wkADuDve19pvifh/+TuP9r+/lRPZGYfXvPuUfjU9M/wDM/wDM/wDM/wDM/wvQnPidkz/CCG3wTgJwH8iwB+8yb+x83s95nZz5jZ/97MfikA2Aj/jJn9WTP7S2b2fzWzv2XG/ZiZ/Utm9u+a2U+Z2X/bzJb+YWa/zMxcJzRz9+6/Yma/AsA/D+DvnLtcf3HGf8PM/ntm9ifM7M+Y2T9vZt96S8HN7I+b2T9qZn8EwM+a2S+f8vzDZvYnAPwBMzum/D81y/ovmdmPNfkj/VvkeIZneIZneIZneIZneIavNzwnZs/wgxh+E4DfM/9+rZn9NS3+NwD4JwD8OIB/a6YDgP8MgP8kgP8ggB8D8A8A+HMz7n803/37AfzqyeMf/BSh3P2PAvhtyB2vXzSj/unJ81cC+OUA/noA/9in5N3CfxHA3wvgFwH4ON/9agC/AsCvBfBb5t+vwSjPjwL451oemv4ZnuEZnuEZnuEZnuEZ3jk8J2bP8AMVzOzvAvBLAfxr7v6HAfwxAP+llux/4+7/hrt/G8DvxNjB+iUAvgvgFwL4DwEwd/+j7v7/MbMbgF8P4He4+8+4+x8H8N8H8F/+GuQ1AL8VwG939z/v7j8D4J+a/K7Cf9TM/qL8/bEW/8+6+59095+Td/8dd//Z+e43APgfuPu/7e5/GcDvAPDrm9uipn+GZ3iGZ3iGZ3iGZ3iGdw7Pidkz/KCF3wzg97r7T8/nfwWrO+Of5I85MfnzAH6xu/8BjJ2j/zGAP2tmv9vM/iqMnbUvAPyU5PFTGDtbXzX81QB+AYA/zIkWgP/dfH8VftLdf5H8/Qda/J/c0Oi7X4y1LB8A/DUX6Z/hGZ7hGZ7hGZ7hGZ7hncNzYvYMPzBhnsv6BwD8ajP702b2pwH8dgB/m5n9bZL0lwjNjwL49wD4UwDg7v+su//tAP7DGO6F/00AP42xm/ZLJY9/H4B/ZyPGz85/f4G8+2vlt7f0Pw3g5wD8zTLR+jF3/9HXlPkidB793Z/CWpaPAP7MC3k8wzM8wzM8wzM8wzM8wzuF58TsGX6Qwn8ewB1jUvUr59+vAPB/wDgTxvCfNbO/y8y+xDhr9pPu/ifN7O8ws/+ImX2BMcH6eQCnu98B/GsA/kkz+4XzspD/BoB/uQvg7v8uxoTtN5rZzcz+IQC6o/VnAPzE5A13PwH8TwD8M2b27wUAM/vrzex7ebbrfwHgt5vZ3zAnpv8UgH/V3T++QPcMz/AMz/AMz/AMz/AM7xSeE7Nn+EEKvxnA/8zd/4S7/2n+Ybgn/gY5Q/WvAPjHMVwY/3YAv3G+/6swJkl/AcO9788B+F0z7h/BmKz92wD+zZnHv3Ahx38VY6ftzwH4mwH8HyXuDwD4vwP402ZGd8t/FMD/C8BPmtlfAvD7AfxND8rJWx317+94pJgW/gUA/3MA/waA/zfGBPQf+QT6Z3iGZ3iGZ3iGZ3iGZ/g+B3N/ejQ9wzM8wzM8wzM8wzM8wzM8wzO8Z3jumD3DMzzDMzzDMzzDMzzDMzzDM7xzeE7MnuEZnuEZnuEZnuEZnuEZnuEZ3jk8J2bP8AzP8AzP8AzP8AzP8AzP8AzvHJ4Ts2d4hmd4hmd4hmd4hmd4hmd4hncOz4nZMzzDMzzDMzzDMzzDMzzDMzzDO4cPLyf5+sOXH36Bf+vLX7RGGL96a9B/epr6nC8e3i+5y+sV8W4XCRY5Bn/byfFCOXZyK8mr8nshzl+Iv4rz/es13VWiT9S7P4h7U3i1XP5C/GviXqGtEr1vsfaQd+khF7RXPcHgrvm7xKwy2kZGlc16XPxywGqeGmfsJPNfX0rjiw5UliWv/q7TiU6spdnl6/Fv5sSyqu56HpVv161vdWfb9Nd1rBoP2qV8Kc+uDlbZ5LdZK9f4tXv3f/kj3/5pd/+rN2Juw5e3X+Df+vLH9pFZUWIH5sMVfl4385c/n24Ts/YNbQlbO3Ah1yXrB+kfdturfD8Bc1+Nq1dx/kL8jPuksj+I99fQMOGbsFrjLyz3W/PdddJLvtd5b0ltRcsSfZGvi4He4X/hF/yv8H2fJuk3GDz5mfzqUu5wPd+vmGjTzmzfK61V3lf4T8repAq+t3K/lOegeWxvMq+XcN9Q893rf5fP3u7J7y3uJ/J/Fdz/foVf+2t+xP/cn7+/mf4P/5Fv/+vu/vd8jSK9ObzLxOxbX/4i/J1/4z88ms9hAykMcDPgNjbxBjDbjMeaFoAfgI7MXCdpBtgh3UCMcD4jeqFLvjAfvEA+OThwa3kZ4DfUfAstKq3sUXpLW3rEWR+Vlmldn5XP7rn/fiXtOVUOnzL5ddrUTYtH0/kV7ZEg4w/ScuAfkadVZUleW77m+U7iIt+Q2Zd4UznMGy0bE9YKnRMq5mfWJh/zXfKRSYdNvoyD0juOkpfjUFqcMBtQfZ6G8zR2oZI2ni2fBw8O8Mfv48jnw04cJa8zaA/mFWlJ6/EMGE6ff2IAgtY8ZBp5jb9b8OVv4SO0Ix7x23DiA5L2sBO3GXfgxGEnbKb86IY7jmmYJq3wJZ9jxh1wfBA+N8k7dAUEn9sD2g92zrjB4waHw3D38ed2ZL5b2tTNbbYX8r4ZJD67lQH4YBbPNxhudsw4wwHDBxv6GLB14Iu/7o/9FD4hfOvLH8N/7G/4LbM/H4KhFGSATdgBk250yDMb3QnUlQafeEXwagOUc/bX2wE/DPcPBny4TRkwMVXtTRJv7UDD7mIHxDY9sgM+nwvGis529ubVdmBnbxqm6oJal7HIdCIayuuwvMr4yA54x9RHNkNwP+CSwWp5hm68PEcZCnZTxk1aTDsgMprIuMX9vkp5eClfmRhRzxPLrdmUguXFbng8R9oFu6c4Dtzvlv1CaHd2ILDWVtwffBDxKHiMaRPSRnXsPqJrGj46cPotVH3YudiIivvCu9kBxfzAzcVmKKaSlrgPuB8D931gU6GdeuBvxXK1A7eJ1wWPaatwb/ZmYzNo33HigzlODPv43Ull5NvtzcR25j3sy7Sl1B3Sdn2YEzEDcDPDLerA8GHiPXH/ZkdYwrfg/vcr/PSfv+P//K//xJvpv/jr/tiPf43ifKXwLhMzQCZeQAV77ABZje/6DIhh5YujPpc1saPyKzltDYFSyxqFAWWmcmVEdmXvz9OoGDAGHMLWH9D2AnS+C+0DGZc6eBCu+OzoHvHZyojU6apHD8NqblIj1iiHQdL6KXktdeNNNx66N43fltI3+VkVhu0n2lNNWh4v2s1Ou8uCvz4XZayZXtFu2VtL39rJIbTLWmgZQEg+7jGWAUxrKcW3ml9f7fXs1RuBM3d4DgquWjejz0hms09WWvdVnSnjHGyJbAkhV3xlQh5p58Bg8nJPPb1My98mPDcoIpOaQ547h53EPdVrQ8H9eMbs0xa/a5yttKwDsxyAzokdjH0fOKIyAdwsJlS6qNcXlLLYgvcbO1BkPCRuVz593pSdLwYb5tH4PKJ9ic+OVsMrq/OTsVzr0zdptV+hqGKbNmykN3jtcl7g1YDlF6xbsRmrHbiulWDQ+PVWM2l3dk1Je7wQPMT9Rla9JF7GfQfmRINPpXSXfAVtr2AjwskXMsbxlrbYkQt7Q8puane0A7fqzhnkWZF0EV/sKG1ZlXk0dPOsV7s25NtgNHhzmdIx6i50JWJE+TztTRHWHbAXW/rkmw0km/5VBb4N978/wXH38+VkPwDhfc+YTaB1YKxGQoDQbMbNRmO264KDphhygx9cR2A+4+804JRJWfn3POfox/nPEtz2fLX1j860Evu0JoyKiaTXrq3Fc5ERQKF19tzCtz2jPj9MK4PNAKje4aW+Fj4Xhn7Hp9N6T7uhDQsTSSaQBFZ4ykg9G7LdbEcn3oTySat8Kl+FOl+FzFAwrBY6BhatfNusaARmJAGZbdR7EZS0TAToilGNiqqhSuuSr8igz/U/S6i0q5CjfXGQn5qNpMO2LHpuzQSna3lsuO3MhnVOWmttW2W0iTGLobU03C48iBlnTCwHHz4DhvuFzMmXubF9ZqlOoYi+GTpzqOk5C21d01nqb6b1SGuJKSKjF5mqHKUtvCUolhvgY5l3aHn218El9eGz3OxT49kG7c1wHgb/YPAvbnA+3wz+4cD9ZjhvhvPDgfM2bcMBOD0zWhm1plz0o4F2gDrgxFmBsNapln+WTvQeP4gZupOoaS4wdbEDm7QLxm5os3wb3Nf0G8yJ9tb5QtJq/TXs25WvtmFJ4pJ2ET7TeQO2gu3a4C0I4sXWDhCQIHW7W2xptrkPpmu78MRVivagaynuazuq/KXP4mqC4FD19F5wUtpo61of0gDkvdqmtaGlzebchfZozAuEVsmE1meCmLTE3/QIEVrFxagOzxLWmhW0MVJLXk6bQj6TxiwwgpzuqPboLlNEx9j9AgC3ucfWaAc+E39ZZosyncwH096Y8s2FzlPKSN2ozpIvgm/oRhTP+qaG3oz7z/BJ4f0mZhztTEMdk3TO3MGOK7MfxtelkZnEIi6y4f66gb48wyXsQKY7Hcd377h998Tx3RN291w1UD7lv8knjSn/sSaj5pA/Iq+e1tZ0O1prkaGalqao5hB2JeOUfyuzBqmGhY8+ey2e+SrjUuRIa/kcctlKHAidEphPQ3TVbAqurAqN+uMIovG1XmLL9CHawsjKMweh2rSD3pqIoguVOUWyUh/ey6f9AV50G7nNNAstkgeKXm3RqywUbmlVhzGmuWj42j7DtAota4JmKFdPs1AeaQctjVm0pUk9dlsshMqaHQYyHUcYk5BZBzx0FTK4cxI8nk/VBXSwxHYhtFGeubZr9S8dXfK323g+I8ec+MDSkLNS6ACj7c0jbmrG6vMQyeP58kzpS4E6m27p0f7YTplGgEN1lw1P2lvk5eP3h2P8HQZ8YfAvD/gXY6LmXxwxKSvYpHWmeUtX19ajQkf/6mkf2QGxQYAtHh6atmTd+JR3a3S+d9QEG9pFxiaE9vf4fUUrddSrr8vBByuCIT3Fu4yMX9Xbymf12bgMVPkswk/c2JVv5irY3RMEuNXyysvo+7ODWpF5r9ekhfQHcUvf2bWZ3r1O4JzAMGm32M3/5hAt3oUdsPRVKdVTKjx/Bu6TL9HdUv5uE9kAYtLVFloD6xqtUU4tn9Xmp407yjD56iQmF/V0WdZqgSKt2oG0FqRd7E3gPmVkXqFtkfuI8nIwOxwTmS7jtXxFN9KOIm5ilU5Yww5MvB2/dLr3+YUxIfU3/31O4Z1cGefse0H1hkiBCF7cXDziEA1K0SGewUHGJi0wtnDvJ46POWQb/uC37CCGaSEaH8PK166fL2WUOPU80n70GtqHz13znyCzHxX4+5xl4bvj4w90wcxfXb4JFCaTjAfLC27pmFDOjCUmX1GGzDGp6TK39JGfD2ClMWCEM49CK3TKp8dHVi7dpKfFQhvQzAGE+TQGK5897UW44FvNypqfdRl9ltCx0c0LtMHxwu3Ghtbzr4bebBg/JjIGn7BgbAueHDgZ1IGJGtfktboyhrH2lFGmR5JRLc9YmT1CX6fVoy6xgjtfZKlzOOISqz5OMViQQUb3TtCnh23jpbBUogXWOyBnib3EXdsBi+dy3PSooGJHlmFUR+o3vBACY8hHcf9lO3Adl7Qucjmka2Km8853kzc+wQ6Imq9wvtOWM2Yh28v2pvPpYWtvgoGvdBuZ1UOZFVrL2zEVuQsY9at8RT4g2llgmp5JfqF8Re4qoggtMZIX+Vxh+0bSZCfdhPkaHO67gq60u7juQ5DvrmiFS/zweFQPjngr27OPimvkPl30WJkm+TPfRdcX5cNC69OLoNluAT56d/Ssww4odrcC7exN4JBdl3/skB6hqmYtUCanWBfNqr1x4YtoJwWPEEtxCEsmQ4jPOZx4ujJ+pVBMvtmcpBlkOX0OQNhI6GLIhqeuVszUYyIVDSwMOuDmctDYx6Ts7sDdYR9P4OMJ+wj46ZkXZsOPhjm7gAfL6mqEToviJihjpLmSVTt55CPq2NK2fLfPaOk1Gy+YuD53gfjMvDtfyZtGMnRzpYuuq56P8A7XEiOYWhjY6YBY0o7/8xwaaWt+8hDMtP5GFcxChA6bsUq/kjpWoPHwjLGSKOs+3VwnB2lb2OqmueQgQbcWqv5rondrtCXpopbUczYeiZfMehtLWqwyw2XA1Ny7XNOttMnYQzfzqZSD90OQNuuwVE2Y+CyzZRueAwg1VlK04MuBPsfWdBvsJxaC1lxcNSmHPk/cccN9yuGS0DzLpxPHaFdlpdzGqqAwuzP/qA0UHaib34kz8ofw+OQQjXDqVyZkDozzX1FL9go7kOVMnJk5zMst3Mbvc2L/GSMoHdJA8hXgE9yISS/b+6zfHdYxvtMWGQ2t74zW4matPEi+8yH4AmtalUOqSbpuSYsdn1JnEn+J5TVtlxEzbVEPCOeenXRTPqXNMUPKI1CQ+Vgt7+hnHn2yFlj7CntsEuZiRwhc9LqU36Q8WNUZ/Spwn3z4nO2xh+yXlXY+5W59cOYSodb6jnYt06gDy/4V/cSLclXt8VvLECyHZNz9Stz32pZnpCPrxEk3I3m+XF23Q6XxnEJlfK0NneiMq5+074eUQVv3zOazZ9s8pS2bV9qz6Hgu1HJS5gi3e5WLe1TFZuFI3BfZhyiWfJXGq72JSZlXXaV2xvOJE+5nJPzcdpY0OBx3f/vf5xTeaWJmiGOYdAehgRL/BHMHDm7X23RHnF2HPUHRmmm5Yn3YvEWPqD4PihO0zxP+3Y/Az34b9ud+Bsdf/FnYz38bdj/RV72hRkVkHuACkRmNFo02n4dI6Y7gs/iF+IrWW5ykXZqYA6orw+toezwkvqRlXo2xCR2azAEDtnct6e6ks/qi5YzdJzVB8ttZP6no7saiK0GRedAynbRRup30Rqf1NQE6Lm9j3jNBDmLoSia8nCu0op3Z0D3KPuNdb1ZEpu0NZzKNdjY5k39MNBZa8snNiyiApA21iStp4W2ZD5fg1U5XM8AzpesOuLlhOScRvhhyu19p4IhxcZsLrHUPTnAyNlabu1qQk7LaJ+aAGnJYe17hyXMBvLvLnWkPnPNfn24pvJ0yjsnN56PpivwCiOLfLHC4cqEpgO1PRzJLcFEcR1IcIkjhPzVo9zGpV/GWMDCOJB64H2U46AI2G2lx07a0bDcAHwyY59H8Nt5FO4uRDwdJwodyqE40HNkPqWZFpEK7VJG6ys0fduSksOfVdBh8F0xtcgjp4l6O9lv+eii7eo3PdkhDGRyfZqukfEVmyrEIIfXOB2Lklb3R7f342cYOQdik3CoC9Z1LAXoCR+B+yEk+4dq4rwmOD9JVLm2GRxkyX4SN7JM1ofUobf5HJ06cCBnAMVvHFbYjzPRWXlhkSS3qRVE0bjEuZnm4mmLieg2E3jK5Bd+irlYHpWhlcoS025JR2BJOfriD7WnDhs1IGYn76rngoKv5Js4Np003dOpXbCRlOqLMWnYrupCqTL7TuyLlp70Zi1Pn/BdSvuHWR1jkwlNdVPqcw9OV8SsF2cEwXuKJ0sM7AOd83sT9waLRKFA4MHtZy8tQ1e+Af7zDfuavwO4n/PgCfn4YZxC0ES582HkzrvAttC60tpZPceVAFVDietoFt3flewXtVjf6rHwuJo6Xz70jL7rh82aA+CDfGFQyqoCyL7Tpp73pfF0X7Vr+zMYb+Hc+DuN1y55AZpI2m3cv794lMdImxwHPG9qeNjMK2E5jU3LM39W2+dz1c3lesw/arpsuxoaWItPgjdDuC5+0V7DpseRnGHd6dx7p2rcXgD+89IGzGfqFusvY5QLqivcuAaOWtq8dLtOuJfBWm7Wt6H8lx2iT65Sjd7h1vPN1hMBCxdAux84OKO4/shmrQiuenYDZuOwp2mDbktnjYrcDkvbYyFzardqMxkeXR2N1TvR0gccdrwwxtt/L+Cl2oON+y+/VNuNBeIl2h8cl9HbTcLHagFYXDbsXviUrExzclCJ20aQiaopiB65k7HgceW2zfYzHVnS2go/SSpMrMg2E6JhaZb7Excl2sVWk8bn7IucQPBrBxK1SaV7q60U8fqCb7VhjhrOmlAQeNj3PcU05NUuTiRJppHm45J3lheS9qS0xJMp3X4bq00M+dTlNdZ7+CSMbVfqqxL7j+Azfm/Bu1+UDSCOXL+aEbQKhySRML/KYxjcnaExLNOC/kW01AgAABz5+hP3szwHf+Q78432spn7nBvgJx23fgQ1yzoGIVvlVI1FRNcu3kav1ty5zDH674dvIeUm7yXtJ2/PVfvposNnyt6u4K0P7oHzVqJpk4igTtS2tl+f+u+hV5bL++wWZ+ewO+LGoJwxOJPd4iGx215ubElmh6xOyZYJHkYq4vk8rXYbNebvaDUdxmzS9XllkXWT0pHW1udOtY2YWa4buc1IWe02VL2nFvdVyC6TRqkGTPIq7GeaAYTVA/KZa5e3w+Q2brFk2m8QhrdMwlOEuO1wMaSptihRlmkY53GAsTf7hNOb9DJ1I0+oi6sRRVkDb+CkFYV+bq9q5cv42X/6BjWVZRTCVja67jplsyq6NNs+EEY+TtmjlgLjOIV1OJ8+S99ZmyHOJb2jXaL3bDNAlSjqWp0yFj/SMrc0g+dJHM1vF1E/G/c0YcIuhO9qCW/O3TkIX2qmbB3is+MTVkypix2vpNh1/Y3EYzcZoPr1uK2CH7SHu90LbTiUe/a+ostmb2iezbdeJ1HgxFgVXu+VLxbRgvsQoVo6dXbE3WhDwe5SVtv720LNZNPPJenXY4oK9dgsYd42yjPwmWeE1MZU7X+7DXtjSqU4srcbZ0/K6DsICuaYrY5QALm+6q+PIJu2Az/LpJDgtAhF8bYXJkWmTNnA/6sRqeclfmuZw/616rjyznVWbkbb2cwwO4L4FrB+88D6ujD4HHOfmlpfFAHuC5oq55UOeAZbx7Cu4y5N/MPiXN5xfHPAPB3A7hm3/+e/Cvv0R9vEO3M8Hxqny7Vy2TaTZf76LAcJVmsJXGDSDYldpd++ueFykezFvjW7WKMDFXyB9oXwxqAldWabptFjr4OFgayFaV+au6rTqZoDhlVHsRid4OeC+104mTYjetbl8aqOqF/0QMnedhPSBXLrtp8vFMGpy62GRy6PefQrtoTAHyq5cpndxfQR4va9VvqTwNCR0FdQBW6Zf1xpPyY9q8o1i1+tD8mbENGQWaXN6yOeWln8y2FK9htKRK7AcuEVZLPlq+XJn1NIlxVjexBqHx7XJ1XVl8Mm0Pp/nWY9Nv/j0sAHzNthkoZ3PwDXf0vC82gHDOG+G2Q0OjOv0bzbxyGDntEffPQfm633SyneL3bkrq6vij2VE9Kk1jTdWgndsOBtMfcxX6Dd8H9K2Orq0N7uMuh3wNSofbB+p9tV6Bo1hwVRsdVPINjajjje21PJU5Um6NZShiNiM7fGWRY+JEwWfWV4XSfRHWRAoWc3zX3u7EDe8xvkyFU3PQTf8DJlyD0YxL+0209R+HWkLBFfMJ8afUhfeaFfsVbVYnZo1F/3Ks9ubpA33RGIo3QGdV9urG3vNh/aA5+3o7phprfA8IGVHtoXML/Pl3x3DVdExrsTXZ7VPd3iRjVM+RFruFn511P9eh6cr41cNDoS/9wT/MZ6a6x0xthAEi9u65rNgyjC42ZvLM5iPdLzbAf/iA/xHvwk/HefpwO0GfPiAm9+Aj6Ph379IWQKi+7hN+TS5ILRnjq4uDb1nDyxF5YCi8l35aHFVN6a0qQpWQy3TRn6ARmGVOfhIem+0ES6WAlzievkMelB+DKQib3q+hV690SZgDzIZ5MzfqZtMN14Y7GguI5uBCmUObJ8irO4UOkoB7MjnUaY0tvX83N7VkTl1T6hjymxaehtnpkzkqKt3Wb/j/IHXdsL2yEK6p82XZx0XadrR16fE0Y5MBhSqi667PG8UDTYGUZ58mJOkXfRYeCkfSjGM4MeSzMZ16spn5p27LmnIgLzynsrLOQJlnHXhp+gGQAw3Jh8bF8Vyx+yMzuzFgMKPYV6MAwVP/IRN02M4rA4yKHOuBXvsGB6srzn4OAx5ucC1r9DDYJOHHbcAOL0BL7CW37X08ds3WB7NIL6BOYPagRukHhE3IhrOuE6fiY+7j0kbDKfeAKnCRxmwYFm5ZdjkT2id8gsty2A+m4NupTSshq18d3bAgHLMZsVUIGwuMn3Iyd+Ozedj1meNWmzkS7RaP2zeWOszL0eZctWeskmLaxsZ+IPA3cQ65wmLKmPQei2PCGEBbizQmtYKmHWMNSGtuDGafQAfgMSk4Rmw4ePzrKwAc8VyseuaL6q7XrE3lrGB15M2bJW4f/ZFWkzcHJd5zOvet2lXm2EhGUrtszqZ3Bot65oTjDGhnLhoPi/M6AtbQzmHsa1VvorlI23F8m63TdKS9hDaWgecGo+XZ3R84v4RE3THifL5lTDkWmeAuezuhT4c/fx2oqm0G9K+Efe/H8GBz+4Sj7eGd3RlTMBKV5IZmlELYxaUFfxcXFi6IVgmGqSdSxXnN7+En8DtfsKPA+aG4+MJfhsIH241Lw2Nj3e+B6Ulaj+WMeyxYPkq/+PyPTKK27R9gNCM5ML7Km37d5t2I0dPvxryCyMYienKqIPRvcxjdNny7XWg5Fd8mZdYK+txfhR8lJpv55J94dsnC1dhcWkRWgPixqfIyassV7SCxiVOe2B8ELQ9R5E07+JOMn475qbE8NsTXuIOMgdNS3WSpEhIoylyqPuhn+huop2WIZz0okPegULbXFaWlURV9Kb9arriktPL6mkQISu06LUDxMAs7Kns4oDDCN/S5uBxppTGWLqaqOVBoR6GguU5dpCFuMw60pa2ZCJD6a2vw33ytXHw/piDDtwddsou9035XmN35wvgIabOjoloqSrzWZvSgqkP+H4apkrT1rwkbhHiojyfbG82z1m+RzZy4iQH0Q5wu+gq7XVbWEokTx2Ptf9uNVvfuPafSlta63bCVvN+NAY2OTucroxdlkJxwWd9doAf5cCYaCReVhF9rBoFXd9JF/xVEdxxL4OLHaZCaKu9sVLejuVomFqgLd7szmmNJlUb/+5oQaWV+MJ37klpW9jSp5DGH36PNjhw3zTZyreUb5P3ZeCkM4zGlONBw/uU7J/hzeH9PjANjEGHuqhow1KQZfJ47g3HJj7NvAK3N4MiGvqbwb/xAf7NDzh/7Jv4+Au/Bf/Wl8AXX4ytrfs4w3F8dPh3T+jV0aV1uvCRzhTyc1VYV/J2RsMEIBtmBbeGB17FWJ7jX0nroh+V4aq/dffs7qpzScu8XyGj7hRdJi4EymfqV0u8CNUUsNRfT9vYbvleyMTmycmIr0DMZq7XHgO+yiH/Ms4u9KrdRuxPjQ/wX/W6rcOljYkLC0uVlag/pfo845bDI3O1rg82S/mmwXbViJXEkdamXKGL5DtWBeWWqvl3+vTUN66WDmKbdZh4s3FpcbqsjOuL0/vtSPxJVTaZuWBT09INEo3vqbTxp3zThYXyOTAHQFre/H2Hj/JbDgAUH06vN3SdkbOVEn1SCJwUZC+DdcFy4g3bEWkbtvbOoHgcjTS3dwfnA/APhvPwXBh0jPtjTsDuAL7rmN8paO0P9YW+C9keaKj0fclgNAcp85qkY9slpvK5w94FblzJqTr3FnXJd8GNx89dnhVzpPfoFl8fiDZMdd/zyfTeHrWXVuI+DhGQkZfEjZ6316QtruP+1acoVr1po9TlHZE16nAzaapNuMha3AR7nfjKl2yCp+JXqCqxKNUm5S98SFtxMApUymtB61OmU/KqruUTF8nbiK82vRHQ0h71QhBvugkZgYrlie0sz3BdLCOV0FVcs+KUyQJ7abgTi6erolNGw33aIw8+yHJBcX/Y01PG3VGe+Q9x3lFdA4cN+Ly/E3Z+hb/PKbzPjpk78PE+poW3L1BceY5YN5g7CzLw5v57G3kyLS8IsflydX+pRt0MwwgfB+yLARCnnfDbrbhN3k4AH318B+dAcY9xuqUo3zI6TkkdVlanyipxLVIuqK3FFd0gBsEar8jHPPgXSZRv/xeNVoPXyYFOJhVw4VXGkinTSsHqM3KwpMa3l2/Wn8oEN/lW3VX5tF3IyqTP+hRXlaID3+Sh5eFzGKajvbzim1d/r6uks40Xvh5dQWXkeKCknd8ugXWjh3SVWWgHD4d4hbnNLpGZZXccxukQvgavV+1H4/Pgc5jhXi5hrPmil6NocVR+thuLTlMmr4EfI/WtNByIG8oQKlwZnbzy3MBhdIY8p25IW11YfPrXWtfzjE2+c/Bowz3rBC9RyYPg8xoiaBFTMdPpMPiqa9OQcRyjUrebUDas04qErrqZbTmuZfET/uir7g8C3fXwgY23ds7EKz6Pekm3Qo86TdKkVTsAyG/tV4eNKmMZb4POj1FGA4AT+HA6/O7AYbh/cPhxJF/DdHsUGS6wDu1V2J7Qvfw+pfhWB86pG2R3knfb4XzHsUZ7batEJq9FCZyw9sx4yLNitcq45Sv12vo++cRhGymclkUxVW90jLGyElQ3hzrWKErq7l61wPQAyP80ECpAvS5GmZQvXfA6bqSboM3yDZxkGl2uMgBJ6+fA71pflpjabUbkNQDH9FMUSOyCpQtlafaW+aiaPbB9YOx9Vkrkp1USahxx7hySjefTG7ZFm+FYYpSPOHpAZYpeHh1udmfcPTQNYCxOfRDcp47oBhn4NPNSl/YT52yuswyz7pOWaQ+cfh+QGDvGQ+YDw6369CP4njiHHbO0GVQe7Rz5xkX9pU7SDVy/IUe1578Oi9oVvX6mweE/NJd/vLMro+lT+cDFMAwWnb+PWIdBkU4hI9WIY74KtjO+eE8JYvnNgMPGIMwnizMHfOfBTiouFMJHb2rMm7h27hbtWX73yx4f0Za4SaMTvqWILa/+b6cNI5tzlTWfjRyPZCxjyxfL50v5+D7AVQTTbtn5jH9zYNdTVzkaX8mT0MkmFwNiNSqwaYhKQ9vwBep5rmsXFo0PW2+7NCltYP2ysnntykjf9Z5XTVzflrEH2HFobKtrSeqTfXRuE8hhcE2ryU34Gvh9L4+8Op94lr7EFHppMKDOfzS0s1J14NTKq3xd+O/dmVrxSxaJGVXG3AE7pUFzyKHrxlrOvW6wpKkF46BllVG6HjbOpa8PzKQ34mioEhfnvFjSjc3ouKHX1kuZwg5ouYk9BLkbG4gDH08cJ+AfxiH6IAy8kkP4IsdqBxRT113louxHuG+4pt08Q9Jey/iKZ5c/jdvVwaZMD20VHFeLk3s+s4/pLEHlamkFjfYNugAL8/HIzzSu5p558HnqyrG6MoYNVZvS84o0GbdgaknLvHxLq0LG07xV7zU2Iykb30pa8BgQTA0d7nH/1JvOZtpjkWOlVXszzol5SRC2WDD1Jfw1od1hm24Q3iLvZMGJl8HmLbrkWxs2P4odUke7lQk3GUp5x46lCZ+kHbd7Eh9JkWmzHQv0Zskm/pXRVKt1zfUzvyzfx8T6hyG8062MU3v3c7r05HtvjTa2haVT6/kSB2SHRAD2kSGAZHd4pv9g8G/c4F8Y7h8M5weDHw67A376SHSX/I7eiGe38YS3KANl9pTLOzHyWXFlSytqVNqrswNKq3w6rep1MfBiYB2SdkeLVcZIu9D6Wj7fuHSILqxazyLzlW70m14FelwmZfBC3PPqwBSXIQhBtDHrgkje/rILS7qEEJxF3q6aKN++ScXKpm1SeH3HXRnlGXQq0/wPJ17k08cdYctmZowft13TiM2dNBoYj9cIdxfL81bMS+sn+eTzGbphljLRKWlzGHLOUtCNSm9b1DyoJ4sVU5ovXtZRy4tGW/tBau5Euv/QreYeppNS5jF4Fz6UI9x3Sv/zghEn25yRVjCr5Kvn1dgeeyt7XQi0P12fMgQuZudmSm92ILFt5hM7WC52IN0zqaOKG9ON9YPhvBnOA7kgd3fYxxPHOWxAVFqXgXagFMYeYuoen6oOlgvzNtjW2xJfuibQPDe0HUMXvkfyXvhe0D62VUOQbqt8o5t0dcs2XwpnFQvVK2DlS324COVbe7N3ZWyMBIMUc9Bwv+Tl7DsejXFrB0zf5L+1rr0y589SJ3OXZvYRn5VU9VqzUX4greKVC195H+g0/5M4KLoJ1VhQ+Jk7d5lZx+d9UfmnWJfPXtNqfUXIs7eO6QWhZ5MxMWLKfAd3vMZzyjhKd4fgUchX8dhnnkobH3opeIzpcmgo7U90w8s4zsY3y6n9QPbuJC3tzdBbSgxJG+3kjbj//Qis9x8GV8b3mZjdT+Av/CXgZ38O9hf/Muwv/Szsr/w88N07dOlgXF4g6H3YuL0KKBOFMN90cYGMwRX5ec5rTsT4EWqXvAEAt2O42twM54cD5xcG/3AMF8ZbZhfZdz6WYhuAuIENNZ3Sanx3Myy0oZsLvqjAE9mITOi0Uxf62LMmmeDmwreHRzIqmu92vuhmldXvK5Omy9C519+ZVrXDkdusH6PRn0znb+arOgj6SZvps3zh3rJsb+VfunjwefzLiQDdD9gNVG51adG0VS0WakvXjawUL6NVk8JJDiJjusNIvoZosJVP1oGzw3EHYfI5mmLTrTBFCCNu00CSj1U+0Y+7y07Q0ixl0EsuSDtcGW26h6jM2jtSjcN4Au4HYAfo/2/gubWhN8o+jEe2mZBL+NhUvMp7SCej81CeP8j8AYPbkYOY0Nv8d+ZBGSttO0kjrjG59rr3YHhtsLvDzvFxZ5w+ML4Ze4OnW3qoyspuEhRTxXWRrkUFk9gOi67Fi0E/Incz+JeG8wvD+aXh/PKGk1frq4skUPg8xDqJat14BG2HVmk7llunZdoLvqmX7K/VNm2zW4K39I9kLD98pxub9WeV1ne0tANywZPIVGZ33suXOxGrHagFtVCizYlLaXyBbmUbq9efISXseQmBKV24sSPSjRvzqm4INhTJZ95pI0QumVmHzhht3LWptKkWq3aAE4eoa+LGpG2qCGgIfM76SbtW+2dxjwuZBm2556XImB3FpA4i7bQ3fDbl0+cWThigthKrA4Nn3ia6YfvLxQmbE7usexF6+TloR9ozvDMqlltgueGcju6nlI98h1qynZVJWchv82yd2CaW2fTKfWJlbcuybfIM3+PwTq6MDv/4Efbz3+aoZlwl/40vqoVJ99YyIK5+8RdugurSguwjeXbJs8Oi0jonKby29zZ9cg25O5eYVfnu4q7SHhtamf0Q0zotdrSQ35/K95W0ge8qh8br+43MURZsXFheLF/WZUfiXn+azwIjpQDedOOF76Id06y9yezTYM4nr2mt6Mibriofa7pJA9bykvR2le+iC0N/s0u7e74ei69gfeWWs1CFwbVt2mFY09mkf2DaW13taX0jQy9fpa0raGtaGv00jShq4IDCJq0OEMLIM6vOa/sbc1Vz18lGWm37Bgyj7zr81eP3Lh2SMg7BPFKkg4v0vkXiTws+zvWeJ2BHmVxSpwiM3mGqRXzi+po2pJW0+j6mvfKOnyoxB/w4cJ9YcM5zxdG3d3wWLPdWHlzKyO/s9onJi3g81VG8Qz5Jxk2+HY+lqWzluqLVcMG3Y+Y2NFrLUTBygtDkIJ9otb7EX/6LlEtlVJm3ddDEECFXm6FpD8WdZgdKyj3u9+ewA5rdQwX3yJQxs+eOkQee7WXAWr6OufKz26PVRiRQVqe88wU+u7yE8YUdcMyN/JOKdFR9+GJvehOs+T5U/FY3w0ZMPCYWe/3umF3Q5u98JnqHLYq3MRKrmb2w4PY5nzEDxo7mu3A2+10A/nMAvgPgjwH4B939L741v3fZMXN34K/8PPwv/xzw898GvvNd2Hc/jgtBwi9JUCU6J2JAz9/lPFm4pGXD3B1u7h3GN3F00/APY7X0vA13l3IGxFoGhiXuKm3uREj82m8u+fTwEt/CB02XhjJR2srcMKbrdYGgLjMIrtcuLL18i7tXZyBY3eMX9x6misOFAsg+V4IK6Apw7YAvZNa0UgyrhUq3kWqcsrwt35YoNxaywPSnp4xXkORRDpX0pZNC46yEuglmjJfmOoyTnk1Aygw2Z1k37oOpssKr5RvP+1W6jEWT0RvtWtrWcOIp1wStlbie5UoXQp/x1W1Qdq9wVBcdcBettRfG6gRVynQiVzmVJnezpirF7RLuRUYa+ZDZk5YyUtRM65NP0+tbXFrYntiYZccsVHRgXM6BxHJtZws+GUrawWa1A6Vvzxly1btH+c/b3C37MHbO/Mtj7JiVAbrUv+JgyLROBi+xXHS/S/uIttfCQuvXz0u+Wgblc5E30/aetZRP81Ws6+HKDmC2wwU31vqt/UpwfQd2C7QrBufvxM8NdvPnUiRvv33l2QbXis2rvNJ/vQ0X2rkxk7x5U18gnLe9cVvH4rUaOk42PF52uzdFENr6LA/zZ7cZqfd6s2IiemqNWekGuKGfXSNt7heR9JzUWtfWjFW3c9oM8zdRsimglX0kTYtDz5mwGaxzrKe72BYAxNm1VmMgqCSWG7Qdhe6kz8BdyqP15W/H/e9TcIz2/ta/rxh+H4C/xd3/VgD/TwC/46tk9k7X5Vt8H8yoFXfgfhcQlaHQAVwOIxWF5FkbavxXQCjyNqQBn7QG5ADhsMH/Nn6XXrn5VweKl3XdDSrBvxuey/JS+E9Ie0HbZfRd2s27MjDvyTe0w4BbALaC+8u0qybLAOCq/NvMffNe8ro0nPs8F8kc4aJ+qVt9jiZlMS64YsZLOUj7aYtXm4O7F4pXPiqrGgNvbSl85tsQRtvJ9sygKz8v7hTKp5470V91yqS8YydhSqJnA5LGhdZKveV5ALlKvtBY4RcDB6uy5DX2FlcTu/IM3VRnkV6eMSJz8Yufefq8Phl0PazXKufzOAOhz1VOb+9iKWXWDcv9RivmDvvudwfOf/c+XNo5OSMwaDAOB6jtHlefC7jbajMCY0kruO+QmxKJ+18Y/Itj2oAZ+QKm7gZjl5jabcijsNVNDoQfZnFBq+ESy/sLW9O+yg5cynhd91W4OVlfJtt7Q+bmYW8ehi1faeG+yfwR/Ssqk7gfz/OFLWUmWlUZumdG/fZW5USHURNayhkuf1cyQjFgPm/Kq9qJtJYoGe20nYEuWCNYCwj+d2UJ9p7lTcfhPDNYrebIr+Kx7iUpBtoGJ63hJG2Ay78jl3vEmfCt9k3tivI6Ja22gMoT0SeUT8mHrpJFRrUf9Xp8LQvfj+vy0z58zuE+7eBb/r5KcPff6+4f5+NPAviJr5Lfu7gy2mGwb35z/P7wAbjd4McB//ILYF7DHAZUlzvavaxczQj3RLoezvi8YnnG88EnG0Ne49ItiiTXa/g1z2ikR6PVZ01vPW0+C16OcstufWBTK5/m1Yq3GNMrvsqzPO9++0VaLR/2cfBefltp9ePPImOZUtgAjrIhtZmhpN++N5kNfSU92hH5ynamlXMlvpR9WamclwfgHqehZpYV0gzR1EXmKYdn+eKcRKFn/DAAR7Py1T0mjWK6BK58Jukw+m4wGzubR1MtzzdYoR0raYcxb4+0VVlTxz7znUlpfFz+m1XgyKuPkbRR5jN0EQ2UAxd3Occ2GHW3oXol/Hg2n8ZNOpWVdjZkqes0eQUxml5NSE35zLxM5Ei9Ji9KYQD8HGfIaPrV5c+QRjukjLMEZ8EFnyAo67VldVhlYji0n6xd7hVhTsJOR2zHuk9M5XXQwUypCo7yX7rxWXwjEsUOAGlH1A44MCeDaOXY0Gqai7RbO6Dy8jlkrGl90vJTAgU2d7i+oS1stphaZWQTWxYDZ1sKvo5x8UnB0Otn38Vh80z5vemxyLyxAz2fGPVXPja38hZs1yB8HYrH88Pjxbe00QuOxA2JbuOSsG749HezGUCBlYbdFpJHM76g7eeQw6th4r4a7/BeuKAdNmXHhzif+V2mdWK24RDsVnfL0QV5aH/iPgXCwN/Dsu70ynsXO5CYKjKIvckLUlWfNstN2fICDn60BJOWwO6UG8fYLefFM2aAH2P6YtxxO2Dz+vzhijhsKj+5YjinnQWGL/N9/dwMpq2dEyNtRzzv7cGXXhjHyNu4A3fO42g6gUybkXotmouw2Iwf7vDjZvaH5Pl3u/vvfkM+/xCAf/WrCPI+Z8zMYN/8xmjsxwF8cRvny2ZYjCmwGkFpWBljEbc1GsXAes9AjErLS+Mu+LyOtqetMk4sGy7UXuOuaGvH2aRvtkzOjK4y7uTS4O1np30UHskceCOTqI0MHNSXb9nYpAMNcP5ypu1ylFKI4Q6+fdC2G8TVEUEa5yxUTjRaarlKe8dntxOWxjOH4O7AcXij9fwtTGOnS2S69stPHhqXyetZL4fjsP2etgct5fIwhuFCcdGAvJSny5zv9PCW46x6bnwjqrCVXz4Hi/OPxvil8wK6z9Un0cO8irwtrsih5ROXuwEL2THYXjXX7mLk7BuBlbUt6gUmGlQ3Fv/V9nw8WKV/IdwJcGMQq2e3Aj/LJCYbniMxfJmwRB4r/kaqiy3mR9id+W7kfGQHmp3Y4WuUR56P+WPvgr/h8yKmIm3LBvcvy8ewa/Ybm3HZO3pej+x4KbO3Z6blTpjnwHbDK3bMdnZAMbG1uUXm5dk3CeZrd0z3HszrZKs9aenNal5lkQwdcyXO17j1zFHFWC+0/gKtxImEDuBQbHOHHZc1X2RRPu68Lr8acvVeSFvnjY+HvdnJO7LSvSHFbo+qiW/HwWLBcrhrV433ycj4nmfSYpH5ui9Ui9llVr5npHH4/BqaXdOGAIs1QXU9FRfxSJFLc1ROcWGMn0T/N+L+9yE48FV3vn7a3X/VVaSZ/X4Af+0m6ne6+/9qpvmdAD4C+D1fRZD3mZgdB/DNb8Lc4X4CH74YH3mG4fx4Hx+LCNeRZqhzqQQ0tol/Hu6GdQhyBf6QnRVkOv4ndjAqTWuxYQg9GGBp0EFZ+8DUR4N7ExGUqyZa+KJl0kKjrTJuwm58Yugu5S8b5N65q+qug8gYdUnaR8jEJ01rS3SljIE9R0RV5i2ZGHfresV85/UdJ8nBCigTjbpyuS+ZCXGci5FBQK+vJhZsowjf0cJzbKH5TBn1pILNnMfHkL3ku9Km4nLn0+bZh+y7p6PswHEXr5eH7ihHdJZxdurGfEOvxIE0qgbPXUMZQI16mgbL8zr8M9oCaSE7DjawzICx4noPwwgAp3P1dxrbyVcHj9TFOcXRFW3FpRickk+h5aUWlNli/ffE2Onkh1lPnDDPz3edUbeD/8ndSmrOh2vMgYvBwUvBAb9/BHCD3+/AeQPsy9xp/HCEMGPcpm5SzQ6UfEdjiY0BeHU7723eEBduMLOi37JN3DqHZT/uDZx4HAl74dn7mHZzkCAmUA2jNRvlE3K/CVOxqOZR+q6VV9sbfS595opnGj5veojLP8Q2C0yUtMXePJI1+DJN3eGpQRS9YCbG53fOjcKET8V9bHF/Yz4XmVi+nc3QOywHUqRr2miH52UZirpM+dJN70y+bstRA07+KIfPRn/CcHjuWO1MeeL+lGNit087p5ia0y8LvDoKplrRlery7oabTs6AmKBp+7RpT9gnz/nvbfIhph4GnDhguI8vMBFjw27R7Vxtk4XMdJu0ZqsC6W1YlDxZZxOvHTnB5X7ZLIRch2qzDo5Zf/xANzFp2OJpq2Y+wyXfcXfgZtTq53axfA3nWxcMXxHc/e9+FG9mvwXArwPwn/aveBjvnSZmBv/mB/jHE8BtXE8/d4mOcVp1rKR+mFZKjZ0uHtD9hwOrfgas09pKO4DdSxKYybfR5N/2EJ3YhBa1Yy8uOM2V5MqVEfdK1lc8dUXVvMqxSNtlbGmV99KaNqitgL0Y6x198JlgcUVbVi29ype+YCiuVA4ZKWn1WqZtcvTC5eS8tZFu9IrQK20aI6B8f8+kjYFpJW+CsVw8091ZMi1p1d0xm1k38szWDbjH0jHbvocclTYbVjTfGReGzzOOh4J1IlW63yyfurBwUqIrlB7lW11VTXSzc2V0lanpVfnmmLu6EFIoszF44O5UmThK+aLuVXYaNk/3SgcNXae1oEvXkgOnn/hQ4kTnoOGZ+YTMlCEnjuSuMrNO8rlOdvuKb16t7XCTdiOcPikcBv9wAz5+BH7u28CHG+zb34Z/61s4vnECH244PxzwL2+AfZgyjDLyez1SiHw+pNSGdha49WntR2I7g3bXqVhtBbs3+e4wpskR6t/s4BiQh08CV2qysAMmc47SV/b8g2/gUahhwc54z9/ab3p+WDHHlZfK0fnYKnIcS5h91uy6fMvGdCmftgGxAyqSKqFsSsy6IoMHetUJDGBSfwpCla7YDEm6TNCaHUi39nxjFzaDi1429USHaGIhae2CNtYt5g5RLCLNxZrol/ClKe9wkrQwjE8ggBPFXCEpXTtwH1HRxjKHzKzw6egnYzq34Rvs4GQvO/Ko7llz89yuwTAcCpPTEGODqVH556yPfF7w2JRWMbXKPPKyaBcn7riR0sZEkheThDOqAVycY0Kf2jiabmr7NZlku5SMC3lZBcMVNXXxbtdSvCI4vvKO2ZuDmf09AP5bAH61u/+Vr5rfu0zMHAY/DthtKvEYwGinA3cf3gDHNMaz8ydYs3MRdSwMQawmsDPTsDUj0RbdoId98jKQxtc0b2TegZ4iE1KmUu6d8ZLfMb8Y/TvP/JCol2diX5+UrTLuaV/zrIZHXe6XtBLX4/d8Ure1jrzIXIyizVjDcFVpu1ssu7W0pf5bHeiAFNMHPPk2Y26aXo0k+dCQD4Y17zSWPRBDs84r3yo6J5rr5ECfmdaoL5WJcVe0m8s/hlr4Lmn55mh6XfOVt5YpTx+TM/djGotV57ahDb6R2c495IpvhwQaZ/Z7+TCqDeOmE7pEmh3DkYfJaLIMCoAAgpG9TIxmHu4cOo24uOzDTd561c1yrq2PWovaEXZdw8WWrQPzTAXm2Z3NRTKvDG4Afv7b8O98B4YvhtwfPgLH3Nc7ANj8bIp52IAxOVvxOMFJcHSxA2IjBMfGWT2UtHG2udB6LvqZaLZg18YO2GoHdrivkbbBvNdg+UM7gMe022dkviGSrTJvn3dxn8i3Y3dxO4TBzrmbELryoGXZ7SIvTUdKtbXdxZDtIic1gmmt/qIgEl/sgIRHrowRL3xrXE+75p9ifRptfaw7TY9oCxcr/+TviX1xZsrzny7EI9xf1B4Ro7WW44Gdtv2IRS/Ny4Dcjq34rNKmHA2PiUKBtSd6FVno1nNBCAZ+ZZLPd7rWC1PlA9qbyfDI18XesMzxNDEjziW7z/OAm4W3r4j734/gMNzfb+L4zwH4BoDfNyfbP+nuv+2tmb3TGTPAv/gAv52wj3MWAsvzBx8OmDvO+zncHtsyUm7nIo1tvJG4gnscziRi+DirCb8DlcMOvdPFJbpEIj/KJIOGnFlIv1KZVR8BwAEKCIPE76qpK6OWz+SZLjrFuD6gRaNV2AnD2UBuMb6edVBoFz4+nvXD3hDaOGMmqNJo/ZirfYr8Mis05dPRuwF0+FNHnAVtWfXzlEnBdkR5b55hCMdEK1enUg7PbElLFw/lmyXPurZgsimfq2jl3zAcO2SN8lGUeZHFlCnBXPl60OrkgtXLwU4b35T2enoaRcDhJ3AchvACkLSdllScQHFXqdf9cA/J1WM1m+nmiLhy2KM5WNQT+yEkTq9KJ9/hljKe7sKXrokcBpwYAwd1YaEH1HA5Grs5bmq6mUfiWOq5T5TlhMUsnxfd0LXRcUjf1eEA9XZY9ikvaRUFXhfGWfT7+PfjR/h5jsufzlzVPY4b7t/5ONwap12I1tUa74L7ir8RYwXbAtn74BtYShS6PNqAZIupYgeUNlb9UQQIbOXf1G0UZYPliZMtn24HZtoio9W0SrvgfnbJLO8F7i9nxhgvL7Rcla8uP2zsAFaZKYibhSeAuaMs84cuvMjYQ53sYcH9XCRTKUm74n7x/Z47MYpwFC6LNyp62XEUTFXEIm2EyW8rRzw6YEfoNE3lakMsKbKfMFPHPLc3UpiUl5gZJ8b4H0uM0fp0z5zjUqqlfU7X+DQF4p03e5cTHw+cds7XY0dvYCy17MMFu9dZxoIWLi82QbM/XnQ1OU1cnLuImLtVvf0OjQXuW5SPaUfi+8R9LgadwHSIz3oZvw7c4YHPEHsDlh1l2ieYMcsr7eYe9UlbVad9XJQ70L/v+QwM7v7Lv8783u3yD3w4gNPgtyOAzIYzKzA/6Gy7K+pNOrEFvGW+krysIJq1zoIxKeO8UAAdJrTCN+VH5XN02qX3p+GzfC4yomBS+a02SfAsz0lIfLOBma/Vl8vh8mbYQ2Zm1nF8Q1tEYZkKHyJrkUwGSyncTj5I6vCJ9paLT2A5FBzlrEwxZLKirdW7FGb+h7sGQSs7bHxDPc4KMm07je8hBmbcxuWVJX+5lxvDhoxCG26f0/JaozXpBhzUTF1AaJfBBthtLI0PJ2nTSupApqhxjAcirZE5EK5Rh9l0r7RZLyI/q4vvp+UYvvE66sPUzTSLOhDzwYOT2eoGOQYEmJ/iOHHimP5M2cYs6s7nM+/ISlcSml3hAws+1ahPvlLBWT7NK1Qy8pJ3o73PkwIO3MJlh6acB7Q52aHzzZCZg6gTjg/zmeXTU3QetIKXoQtOCz8x2AH8wh8ZOvxwQ15BNwck5wn3I88Y29Sg2YqpWTVlEWz0PcvfwPDGEJ3mgkkWjv1BN+E1n8Z6ixt8HrSD0RZTr2gnHQeyO1o8oN3JuMUyeecvlU9kKJclWo3XPJx9svFZbQYHj+MFo6utqjOPxXpEhUKwDFn4NkkpdkIwdZQ36U3/sxi+ak84CSHO6SCYbcqiYFm+UGNggbpxq5tZasei3dMN8rEdsEg38Ws2dHVlpPt4lG/aueDsADiJ5mRAvIpKVQf+EqwMdqS73IExSeIkShsgF6FDfkw7DsSZKBfd3KI+xkQjFgmKzeh61TaUtHr+Vy2ZM53lhIa7TDxnHN9ddOCwY565UzyWsh6JvwdG2jF5HfWV5RvF4Zkxd5vu5I7TT9wwjtucwLRb3HXzOFes0zO2t1N0k/YFYgdyx8zmMzvzOHi0AZvPKHwvz5h9P8P7TMww+2N0YGTL4OUdBqiOOyAH6No6uM54zWtN28ewhY+hNOjMt8nRri4OVxiVqT8zCKIFTgEwThY1LOXr+ngd3+XZ6vPS73T85TXN0gd6HouB7Xxtm3ZbvpKvGFggjeSmfOPRMrboxpe0YVAmH3VhAUU2yWuVEn6iKSeNgnUdBa3XtMInSEziW949bSnvZEgXuU+n3YWlR9ZwoRtWez6zT2p9XvGSiWAMxFhfUj8PaWuMnjHloMp9TADL1gHjWDRpJrvyZjWverzqNr0OgnY26nH89qitxfnbY9JFXHPL8pWB9ixE5kMjzZMXNM7J/qZbI4uOXx/cDPjWF2NhjsLeczDkZvBbnK5IGR9gWfm3Y+qsrJwY1B2BkvawtBnA3r68FlMhvzttm7SEkqXepNorRvXyQX6/JGOj9S6z8qkw0R/3fExk2urGM05BrfMt5bOaT1nIaXlf4gbgxWY0WwTHMrtQmSD9fof7shC0IKG6jhW8jQSo+C9p+3Oh9SWuyCT4VHaoSol2tAgmXJZ5GY9bceTfLlfokbaoJBBcB8SusyB8Phe+m3Wb+HfRTQvqhn864KdN3mfBydE3R8OIPaUy9pgpPTtzoQXKmFPlYlsfdXUubc9NjyHMknlyzb7H6RhRfA1W7Jrnz5DZ0tYtFbzL8fMIjvc7Y/Z1h69tYmZmNwB/CMC/4+6/7kWCw8bH76Sh+n1eo3ybO2k+m90cfLmCuO4usAOkXxJk052p8p8NFmyfw5hY6el19U9cK9VlrRtPxRirz7sJzm7SqKLEGZgr18X+LHydfDeui9ZpNVIC8VNX3IvNCNqNkbOWNZ+9pWvPQyZ5SRtdDrixcJrWS7S358gHE5wcsWy9+rlXRYzbBCkH8+qV0BWU5es7mUWOlhYYQEkXnaNdVWzxHz7nqh4vI9EdGUJ3FyFoxV3vmIXYnYFjXiqH1udcz0uXlqg39p58qbsY2u1SETRUM72fS9qAAaBJpXLPPiu7oPWDpbx7MLQosdPwzU5adTNbzWx/0kVRBlvSlz2ERmknDsPhw2nwBGB2hFKXvhod2wA7Qz4adaJhtDmfZ7a6cruuDTjmDvbYNT1Kv//k8I0vgW9+CXznO8N1/XTgOx+B+wm/2XBdP+9wHn3X/j77XxmyCkbHgfbYGt10Om1/5X02yrAzbBivwHKNi151RatwxWfpE5FkYxcK7UamR7jPvtM3OzseZ4S8ZJ2/xBdZjtSNF3tzybfLzLjS2KUt0EdYue9wFtOtje09+HitAzja+kOkzyxnT5reBXK0Z9Xf0ktn+wJyky/sTSNd+hdxPz0giDnHZvM69mlaQ+IlTVG+DcDG7YRIl3YAscNWdNO6p1ZH7gQmLaN9wJRkQL2OnIZ+TvHi4K2/QNWp2I+JbcRjm3qtRRzeA0rLnMYpsHaFf9hzOgjqp5qJqQ66vN7nrmlKyF9HlMeNUnjc4Bh11fQ0PgKd13ZTW9xly6GG1kx+Ynpnb5TvcAfNCWi3vWqbVofezy0Y7osb2Q9m+DpL8V8H8EdfldIALv+MSdhwWfQPB/x2hNuKAXnyvRjnCoIF2DvahNGcjWsBbUmuyEI+Vyv5YqRSLsMy1tkF7Xkism/Ktgs795MS/wJftU99qNqNpBonHYDsaPcPr+C7E/hhIRzFbaXzc4l4VYVINh77J13KVaY2SJJMZrQAfGfWB1hR+dc1Gzt1njTlzIHImIBsSaztpgnk7UnHZJyWuF8o3IcJ0FJ7r+tpdFaG9QwGV+rSWNJ4KA/NpPvDJ32aX1/i9G/kMXSXu2Ki59k5T1jK4El7wkRGOd81056ez2f5V8pnHLBkHFDLTKOeefCPMGnxr0sa8jm1DFbThSzQck2+4So5y2fatj8hmAG3A34c8G9+A/iRb8K/+QX8G1/Av/EB+DCGXccJ2HfusI934PS4PVGswhZ/WYflpaR1U70KvW3SZqqHWJvYJozXLYaHtOW3Zd+5Bth89ypOF4m0+K+xOfG7xy2JK4M861PbzcJ3I0Q5CmhNjgX3Oy35Xu8eLHSObQG3clL/HXM1gfuSPSDpaW96YfzaZsTw4QqPSxwJZ0+PAfje3lRXZl/UsesRO/wFhqs123LFsSm1qWSqei4m2pYfmSVfj+fE1DEBGf/W/BP3mCZlo61THC2Y6oq7htOPgsMQmpG2lT3SWNSx4m2xCWpTDRI/Jmsnqj3R+D41O+XPYbi3d6qjskDpHvF3+JvOFn+/wpD9ePPf5xS+FmnM7CcA/L0A/qevJyItho/uMY32h2Pc0DUN5BhPzh5efLym24sMaNR1cfwrHbp812by19JPVwafQsU+glu6V5KOmEa+/ObalK24U4mhd+FZnlUX851rOTZpYcgzPE0ua8+44ttpG8475idZKI/oKarhIo/L8j6g6XG6MlgHYhQAyGhbdWGaUWYwzkrNnEu+Y+XLHvaKquhMO2npy+7VdWZ1Nal8SryO8Wa+R6uvR2O/MkAwlz5Uy8APKee/Gu/CR8q75Wuyw3uR1tLQOKRKYsBUG0dxd+TStBj65OMvyHjUBqz+fjNvGr8hk8UFHNpmdHzooZvaYMdFMkcAhU8D6vw99Wwsk2rMj6A11s/EOP7PAfhZy2PRuXmXO2kRMvIUSOQzaddFeqGVQVwMWqJvdzerV4ZR8NH/bvOM2e0GfOMD/FvfAL74MJ59fDbF5shuwY3pchgDF/VFIh6zyVjKz4aXt+dmvpH2oc2wLZYP+oozdnyaHYgyOkr7DZuDRivy7/jE747zr8Dj0MVsagG12cU6DNaw46NnZC/4XtoBJFaMc1Q65ByJum6KTjFbv/oCzr5RrnXpfTJCdUccuC9pVX7v1HXhaXFl1OfNhLDIUGg3dkEDi2n95VqJ7vmnPMfkbrUDXe+dxcANrUwL7Na6PHmojD7XqHzGs9iMphqVZtXrAdg8nctJHsso2MwGZvN+39O5Q9VtRtpH3iJMLO8NzgOPdffr2t4MmvzcjJ7fnarCeQ6e5MtC58cKah2mzfCsFOS41mKMy3zms+hRsZ8PS19/hu9J+LpcGf+HGHf4/8LXEuQEaAZznDHT2LQMAdSd618ZLizX3SrPJoSeIwDW0cohjXPh22gTg9b0lMEzXU8bUtP2NJkXV78Nn76btuyuXcjY5dC0pVMuSJz0L/K50g2fnWnKsdV92uCraVtCRz2xbklT0+XEb+ir8033E5ag65XGOXZlTAurAmF7bq0Ub6ffdonHPi1dKqp7osuERrV1XPKlLkdhmkfXSmsB60txc12DnXnImLtXXQgyohugpdtQ4VtGEKWuQq8RN95V3GD5qLNJ5fOAdGydpcyNsvBVqPJWJ/rbwZu7qNe6ml/HRnNiglzp1Fzp1uryLrvBGEi4edR3HuseOlmaJ/U2ZYPPNjGfx/eAHPNz3m8PJosAt2O6rU9XodNx3OfBeTtgZxsglEkYos8lpgaIlEWkSH8p+c5mrK7p+jvrbGMHGH+BXTuMjfbNvnqR9hF2R2lMiktcuypDzycy2b28LlPh+xqZNzi317NnfW7k0bPCD+1LIy6ujBoftthXWgVVLYvPd+J2tpWDaa0mA3r97F3MSX5Efe5tSNga1yeE66PNtzs7MPIjRTqwjbR6Tsxhx7ZCFjwmH6ppyFXdBqMTlL7c8TfLq3uKKx7LHv9OiVL+Qeq5GHfOPr2xGdkuZDeRWG7Fr2CBE2qx+JZM+2RIHKNXAtWR56Ya31L21Dl1M1x4x+K6ict+6qbTeslH8x9IeDQPnc8v/LCcMfvKO2Zm9usA/Fl3/8MvpPutZvaHzOwPfee7P7ugt9sxF345ChSkfY1rCBuW6QBmA9iannz4m+fRSfuidgRpCAjM4JHIJh2iAWctzz649tNWtkubqTI1GR/2tU3ml7a6RxQ+/jrdqNAPZI6kZbl4Q+ui5FfyrODjJXpJ3mUExMtSMpKfgYGukX4Jemq6wr3Es1voxKtfzqxcxwqxX8RLyilg3qjshZfSxngEdOWo+dsmXZ2M5WnQMJOeH1Jm7Z1ODTQXH9eVvymHW+R8Tlq68FV3PfnNHVQMxdocGMxhQZhTPo/yWomny+K5jTPJp55yGLtp7Tn+jnDNAUZbVzcV6pWttLrtWIlTGX2eodM2F3RTneHiMnVzgpPE17u0KO5/d+J+VOXN4B9u8C9u4/MpH6abozn89MBIp09U7+ftOdqYe05w+R9Jb0E/kd6yjMVmuBJEZlVhYauEdk25hg1uwLMOSjk7nbefO1zcPXTcfyU0AmJzdrZ0x/cSu2VBYJdRKZ8U1DbpSyE3yku/5JcF7vbFr/G4iL6ct/X1XeMTeK71sNRzWpCOoTvc73Zqb6/mBMdR+r5vaHhraUwiPKclYasMUJdL/htXqhuxu1vDQbyrUteUsUtl4iquWFdtQWCuKaZ23Ofzisc+O1NOr9JFUTE1Fsms5n3OBatTsHxxKXTF1C6X1qfhPv8U90+MuxkcB+6efO+ax6Sjx4W6tEcZXNNeyMhy8awyxEZ/hsF9nDF769/nFL4Oaf7jAP4+M/vjAP6XAP5TZvYv90Tu/rvd/Ve5+6/68osfQXT5uQcdrj2HDYN9GPyGcf7MkK4VavimUQwXhSOXSMPFUJFKtnOdLi3FWkvazcosgHSPYNaG4bbCpIZ6IUdLGx5HzKu5pfBddeUUWinS1h2x8Q2ZuyucuEEWLxx9Vr7cOTyQc2bb8Fl0w+gJ9Dv3y2mws3wmerUsa9n9ogH0OR7KS87HR6K0sKLjlbG4os5y53KkFCjjo8mYrj5KsmPIkXpUZaaC+mRn+WQf9TZ5+VSyobqwZN3Z/DaYBsdx+LwoxIscfeChrhpVRpOJAWlZq0PC6sqYMme+6T5K+05tjBsQh/sIeQ+3wJW286ErY3UVpFsHdb+nHTKyMU9zb7xqGKBLCg0ZG30MhoUPSl5Zd5g4Rz1GC4iG5Att1p+FFJws36erjeMYBtTprmM43Wv5zKEuk8onV6zH75j4dpemOVrgJTec+Lw2KO5/MXE/ReQE2IDbcGv0Lw74lx/g3/wQZ45xO6JziNizKVv0X9a1HwJSctPiVEDBfV0RX2xGKJ5uPiZ8UW7jA1DsQMFFeSat4mB4QR2btMj+XfhK/9nZmyjbzt4w3wMP7UDgvtV8S/nsMV+mLXZAky+TrRfsAAm52RK6sSwD8+2LdpVz5Bv4fLS4nR0ouAikazKV3EFV/+20czh81KTQ6HjfMJXZWaalm+fWjov8kV/BguST/HPRS+3AcAtF5GWFNt3kErurLsxs7p7plFDLJ/YGh7joGehbW/Bq9s9envKJnFY2K/+OTwDkbnXtvKq/yWkpz5DFF72aYioMZjmYcmf5jiivG7Gd/EYFnk5bdABh2+jaqMcmVDeHYHm6OuqkkvWmE1btMi56jJ28zziU83+f+Pc5ha88MXP33+HuP+HuvwzArwfwB9z9N76CsvSO6A/I3zIWEjSbKY5Gq8GAWA2tI5007CCstJFs7ZO4qi+uJpR8d8arx/P5Ks5EpAKY13k95PNAxiXthU0pbPzltHvd+LVeW2aVts80fLYJX9M+WqncPjcptf685+/7trbLN4BQyhDpunZQBkMuutiLXmXuE7nlmSmdY+y0kle0y62LLd/eV32J35Sv6CD/PcX4d93kWEZ0ErRq1KUvL3zyubtBbts38vA0PNNYSVQkajI6X8XzEczmQGzhW2n51jgZmlR57m1Pq+UbRa+NcuHb25pn2qv+TG3bktvrwhaPJc4PwzndG3kxVN3NbHkp/RZ/VzvQmkX2+wubkUSrzBHXJ0evoF1xsIhRwooar7ADF7RbG3FlB7z++yLtjk/B/bV/76XsNpL4K4IYRK6rfGe4wP11F6DVvdqBpeG0ZyZSwe1Cnm5vHuFx5wPIhKum1aTUaP8ocKX1xkfT5dB9y2eRcUHvKrfQjp371NWCxV3Xzd7o+13db+3NNtC5f9/HTOonUyttlUXxeNtcSm7yZNbiUi/3Le7zX7U3ic69WYaV3LQT/syFy719fEGRz/A1hvfbv5vooOcrgRyY0r1kLCpY2S3xOQLptOLPlZ3MtNO5fJTZE0fXblIGyPFeDcxGZo0rQGKoH4OegCxnXgvzcubUtXxJ7/ocMmMFsJBxk7Y9e6Pd8e2GZuFDkoVv36oX6m35vNWBF2KLQ66M9c2o4OqZfGnBEkx97g7kII58W/7x8co1W/4wGwkK5Iq9KnXAXYllkJOui6Fn27RPV4opYpPR4t1KW4ohaokJHfKWq8LHqxFkE1SZUy1ichw4T49JG11rwt0uZLZCC8mbr8+Qv7oFAvyshO+aWCkrTN1Kpj+9VXcmysVVR+U7XGH4xLa+GjiXtDtayjxuYBTsijLoGYN01cw6Eh0Vtam7zgj3hTaHqT1fx3BpOefT+Qm7ZiUQ94FyQQNx3j+MC6DO+a9/mN9t4zfriIlAuh823FeN66pwvgNwrE45rPurWUroYodXvu+TV5ja3ci2aRRvN3xzF33NY8H919qBHR+Wscv6Gr5A9G3mFrRt0Ns7qQVtZhaDzhyZFmxc7EsFoPEXuNj5Sl2/YAdyVwYljM0SL8rKATppqyZ7u1GM1V/UW+Jy5cNEsbA2CY58mOWS8lXSytdH/0EUmylchBH1zkBXvnStoR6slH+0q7QpjhVzom7B228RDTTtxBE6Yb6D1stztcUsq0X7HLuOhnGP/6r/1GKWr+O+Yrtjve1Qb+gd+MtTv9P90DX9XIybuk+9WMFubPnmDb0nxjX+5QZHR7g53qln86CpdsDBjwS8Gfe/D8EB3HG8+e9zCl/rB6bd/Q8C+IOvSizAWhYE6DI2/+PFHdFidSC6nNIesiJgaO4USQuhHdjr+gqxstBBF7WTGvM9Who1Ylb+2T+rIZ7BKb5taKdhEo+zEl9sHmUWPpSxJLKluFne+YP5qv1cJxLX5TN59poKuqNmM2PXK/EpIK1cEQLy0cQJ8ZvyMb1Jnl7ijB+5l8Q1g9J+tPzO7yhNA0R9WBNUpMxxpTU3xq5JLzJboU37Bxj4nZpOm4ODVIzTiLNPhW6kh6mMHHTMjlN3+rC0oeRrIqMHnwM2zg8VMBDrGjJlAU4HblJWysC9pcCNWd4jJgKD9gNpp/OCSV6H0VHFplm6Rd4nfIKlATxhNWbe8MJnGmp9npJxGDAUNc94ISeB4/syZ7j30cAOjzqbg5pUulNaA8bgxMONKGVM+YknzHPwoCbycD41RPmjdsKtb5b3q4SJ63mzpYWbtLoUzqKFFNqnTPNCZlPsBNudNjHD/IisFzLYBvcXdzjli5SRcjfMkRa90kJkBAb2OB5+zqT8cOor31WEUUxZdVH00/iUM2Vng9NmCBI3Gl8VWCcLSruTupSv2QGJU4HVlZHxoz58KV9it0laKYTjZTsQSaUdHZizkqPKWWhd8Gy+lQW0xNTEt0qb8eOf3JnRuPhIM3ShatK4x62h43Hlo7+JIyY4STuQmIOg4+2C4MS2tRNzi5wdpmqPruxhM1I3R+CFT3tE5SbWJR/m60FLvEvVJ+3APsP9BOC3uejDs3SJqdSOS9kDy91x2AHE50XGh/YSjy3weJwM67Qsw5Cz313k0393fM/tAOwcufgZOOWssckn7U1kImlH3Qq8Rs3nMqCVuLd6Snx/wg/Pd8y+1onZ64OVCgfWyUMYYLMaZxqXQ514r3mVfJR2SuGRoqT3nvalZzTaXp5OuyuvGp5zNXRXunq1jEq/49vj2Mk5gFDl9rJv+I5RceV7rbe1DrrMJV9bBx1Jqxa785kFkbyPzkdTa51MowgTvtbSz1c+C5A2WconZei0C9/5HOysp11ltp5vL/+DtC89Zxlf70KptNE8aN3m29Ac++UF34xLK8OzZbq4UuUg3yrzKt/kNCc/sVJswM4DvUy+kYfFDeKHP/EldsDzVcOqjHVLo1/qwPNClCoH+Vc+AHWbytb71bzk0GlXV8bCVSvwE0N1Syd2WzQMB8ptigXrSKu3IEqaPcbWtFpqWN6gJ2PXUfqdzXgJ91+Lx0el1QebeRUNP+D7Wtz/VDsQfF1+A22n64FMpXzyX935XGSuNqPgNX8TJ7p/XgvL4pzw0fKUtCJrKcHGDmzXJXyi3Cdge+mtM989zu92eyrtVVpf3iAma/F5l428ccPvUtbGt7WRq8CLR8g/zo1h9OlYXBU8ZLbVvf5l+7PaDIpYkQ+Qo6Ke30ALmGr5phXziuWBIVLGjscuaVSA2S6SVU4AAchZYi0w7c0ZeMG88gzthUt6dLzON8vo8etEeKFY2r3PMTjw2X2P7K3h3UrhBJ8GmOHic7Q0YGeW92uu4x/pEJE29qoz7TnzLjCg6cVAJF8J05jEoUircUpbyoAad6qR2GE3Gq2tMm2fRY4FPGdeOuHy3kmJDl7EKB181c2MNajnR5U5aOku4otuioClThKsax21swJes/EorGW0yFQIi+Az8UWlhNuJDlwweBlQ3GEaTIcicmXPSx7q7qSuGnRHwUV5S/B0pzBDDvglrS+0c4ohPLUIWo/ZtgnlHlnR3SaakRTIbY6tLGvETyl/yFJdYON2rnDb8NJu6GbD7khDGxOtkM6CF1sU885bxXyh5Z5odwv0mdn4d9565QZvqxP8MKiWjy465JN6pyuj4SPGiE0ds8P0RuHrofvuQna2jhyumaRtTZ7PMQ6WhnlKPp8esu4WnOS/1CXrwKVlaZ/ThmyItGeMTUyq26Gqd4mOiQE7CmV03+K+fnzXLdO+xmYo747PfhWv2nOVufJZnjUtYa3xdYgdEBl3Mu/qKzAB8qx4FTKNilhl9mwL2iYlv/IJHPmZgrG8ktdlWl/TxvjAoy14KGyji97+p3KCLfksK5+znUgGdcdRXAxX0mjfJs+lfppcJ9JdnJpWviHThnY0Zyv2pvClPEDFdtWx4DHcyjENs6Tlx5jHJGQUPlRIWqZtFVovilp1kRin1oj/nZjvxP0cHwx+iak+O1FUnx9xFpn1fxcc9QWPh00gcBUbQv7asUFd6DebgOoyaZN2tSEj5OVQLFtxnW91n5rxSMs+ZN5PHH5+4e725r/PKbzbxGzYTCvPAMp5suFOY7mKpG5XJFIjM2nDU4Cd3xgnnc7GrUu7j43SlS5kMhTvBN4clXws5FC+fC6eC1L/ugBIuexANZzq4sabCUkjl4+pjIv7DlBWIoOv1bQJWU1UKU8samlaq6wgaYK2lZe0QzcmvxPEI4OS76RW1xMtkCnz/Ek+5cQJ7V/BeSt8op1BQSktoa6qsf5U91YqSP6ED29LYlperRC7Q65Fm2mablJ3aw3q1OCIsnA3BUtemou67Hirk5BRGqzeWEWdh2Fo/b2oyoeuwl7Y5MkHA4pBDsGstj9JS7dEVpLHn1xBL3Xnof2R2pU23FmONGRGOuoma0BVSoOp8rvINGSW24yifAbMlVKeEzmlbOcsi5t8xDpkxZDVarnr9ckm8Rqsyi8yDwedtgjyCYE36I5/UtfaIAwA4gPNs60fcr02b0u0yDQX3i1pR+aeF3PMdAX3WE5p2uyFzDv4ahcudDbhyEo08/LOA5poho77myTZT6S/bzB14WNCb1V86uxqEsjANl3+bPNuxzf6qGVuTeaiVsl3wWO9RCq/55HZmiE+HK1xRYm26LE0gPlsylcymMODjXJiOJ+0tqNNrKCbt3782DROBQ+ZEzcSf1V8C8VWl2P2NtqbK1qLeqC1ZHnCegYeMm3yLPYk8HiqyVtbUWWqzZizt2IHMvOc/EDO+kZaK7SUxYM2F7w4gSImQc9ZRTogz/sm1p7Mi5g668+bbihzaV6hG4s8lZb/0nUTpp98MbGnaVe6HThp54BpN7gXl/WXtKmP/NzLLDPrz96O+8/waeF9XBkFSHmdMRsAe3FMYLPPBpLKIgMCLKTBa9ryTv7lb6OlVz7dBW8irw7S2fG1/21pibGoabsuYmFkglNuHaOWj7rp5W35lbhFN3s51LAvMo8euxRt68Kz4dN1YxK/yuirjCUvU/uZLhAd+fmy0fY1t64Hjcxm1AGJ+WbLOg6PZHn7oaR98Gw9PsTIuNE2drRe9FxaverVeylqb3hEuz7XOK/El+UjR952Dc8PezKLdCOcerB8XsxC3KQ3J92LjNZ2LWtcZGijcTPpGQMlKYUmv+jHu3Ct8yl50BpcOpnPug3IOQE/VVdnFIHn4sZAQwypc3CSOzwhru37QllV30i8Lf+nhIb7K7ZlJyyYW9oQaXNHK3FfZO8rJ/PSj5D/EV6VFbXsId2+PMK+DWoUvvF7Nn7fubHr7xcwdTfhfEnGEox6k3wb7r9Y3gf4OzK0IvNDO1DsqZV644Rv1/eqe2KPW8u+uLSXZ3GV3mG13BDrvRAv0i6SLb+7Hdjl1XfdSp/iH9KWvYZ2TN7OjR6zwT60pSl8kZmLb2dlvPBROxAWcQK0FwK6tEfvHP3eGZcyO8vuLMP4abPRD3ydnxGZyuGYYaStbutqt1In5Jb+trVmd7ZKvVgGvzhvhznpC17V3jONe9aJOgrEBCtL1cJI7DizOqbuan98aObePTjss7vE463hnc6YpQFOQ8VGPjurng0A9qDZ/nIy1zp8P0WpjW9jmBgFYH47zQqtd9472pbPlueGtjzahn6OB7yUF+sksZXXsXm+4LGTOUD9fCz/Wp/78hW+hAyOih/q1ZM40SbRvuTZ+YznKJalG4S2IbHHKNTyHOkmrU6e6mB2b2yLSFbjXxr0ajTBe4i/zz+8dICc3G34jLFmDjIsKr5XiaP4/Fs4TFQZfehJbwUjbQ4WVq/1MHKT9+mOmyUtIj/yyYFGqRMgLguZcBNGlmY5BxbjevpwpemuDa2OQrF6pXR/nuGwXMfMHGje59AhaCl/6lNXhyG0NMJSZGmYbPiOfkX5iE7aXi7zHLdwwdZt6GXcyWFrd/uUcDRceAnLtQFeYa8I75v0gX/RDJ0NAlMdZeKtDSmxlfkqXlnlEbS1fMuEqYcpl0axKruuLvlsaBXbXsL6ra2S7lbsjTLb0j7G8m35dnag8angmnY+qzNxo9MW21Rwf5zLqbhfZeqBF2bEDmzIZSvtQr6XsS8AXtkB93rfzWXawNiU67W0OzvglhcEEaO7Hej4a1Jh7G7EstyLJgKj2IygZXV5tpntYul0O6ZsMYUSt+O82Im4OeQ43eYHm3Uhr0+Ga8fgf4e7c1/+8mLXrXBUkanDIcOAkzN2UfMbW7RbQi/NuCyMSoJwGVb7ImXINBwLJRB542Nej918juH8Ibn8411dGTVUNyWIm6M0ks1gwPuDsXONF95olwUaQ/kmWsn06rnHSadIgN6KW+l3tHzdjZ/QRXm0M14x2xhsvEbGXQdsBvgxre1lvCpU/3mp12rKiwGnYQZepZt6gcP81WXc0VrN2lr9Id7Ji13bdaXV80Br4pKWzyp2GxQU8K6i13xbTLi40BhLdBgAzD4mstC1Q01TXN1eaOmqAWlDdYLh4PfNkj+/e+Plfbp29GuJ0WhPt8iT8rO8Olgg3ozJY3VrKS4eru4eY4TG64i9yZMyTvcU5JkG4txZ0tZmyPfsVvcp0zkXPu4zr7wiWa5JxvgOTrjBuNV0vuE7d5mYhvV3zlo6wWvzPzGwr17hQB2xhB1gy7iED2+03WZ4HWAZR3YFN0SuB/ZmEXSDV8XedLKGSYHHXZYd7YbPlb15iRaN9mEwrJOy19Ippj7STX9zIXOJE4wtK/2lHbV/d5xnAy/4q4fzemGlgjhpCZE4CFY+zRZ174JyNuoFve7sQBcrpyb51C/yqOdPd3ws1etdjV5wI5qRVDXAnez0PKjNLfuo/nWbcRZ8ZhrF3/a+0Cb2Voxf3829tCYT8XKHz+muGPwnVhHbu12C5Mf+RDlUnnRZpLyIyeUJdUusMtXnWcaJ5feWRnWz2qpa39UufL7B8cNzXf77fscMCGMVHieynJNuLfOZ1+Gz81jSu6Fdj4+609VdDA+s3xYrfLGl9e4i2fiaPHMglbSZl2Pyl928OJ9Uz3oOWsoh8pqcezM989b4Qvja1bPqUY3wccIPB+ZA9cpVk/nIAvIiYx2YeOE70ub5qpBxlt6Oltfh468NbGLdU3xTikxtNdbM5WrkerZm5KvKqWU3cxyt7qN5xGr6oK1eUQPWK61eX2zL+6P11OreiM3AcxbEWrxUePfwywPdVmg1zkhfqi+fw7fe8yPEnJDp9dQqzjDG6Wev5UOnVZ76X2fHypOEHvpb+VY9WowseE5o0M+DP+lkD7juFvGZLiZHPAM5aYtJMweAMJgdsPj+zgQCP2TyesCbTjhQifXkSWtBmzXCQYbJvd95ZoH1lc/JR36bnDOYg7oH06PXBXYEvXmx9JOJ8eUzKQ3LC+ZY9nWWTbcEDlSbEueK1/5c8oKlvQFyMB18iVcik/ZRxck+ELcaF94PxH2JLy6FOz67Z6VttmixGXKGOfBL893IFPFRoGu+gK22eXcVvfzRDqzlG3Yo/nrotKi0S/kaGCTmaELJ2ybWTD0m3XQ5PhwLqM7yBU4Zsg82vt2zry70VTvgO9qmjkOK4dKQOEnYLShqLrlYLrSutFaqD8RjiVMZFX/jywLR+LP/r3wgfKxIJZrNKivYVmlZ/pR3noK28TmYxGrF/vHHhTsTzqN8U/4JEh1ji82QOKetmrifk70jdjbNxvVR41KRxHl3ptvYDMrqtBGUQ+LkPNrA+WMu9gF6LjnsugN5AdMzfK/D+93KCDkbkH24huxX2eP4RgFsl7aB6pJ2M74ok70tX0ou5K/k2/kszyZ5nJWt97Q7vr18L/AqMm6e+0HPorcHfFI3G1p9c6kbb+l7XXtioANYwMJfpFVJF/1c6nVjcOW3iW7OM33ehfoidHeJa+Mc8SpBq4NH7i9j7pHUdkm7Ml3GKXG2i7pZ+4jKX89ZkNZihXTbIQdh0nrSkuKUSWzJoYyoK9/6HkElmll3aIte1VnRYuAVb8QN6ALZWqA+zrXNOcuVLi2Z9wvnVzasI3XXa8ggbaWVNPNog99PCFdnf3T+i151j/pzD821Siil6cvNd/r+EXZbctxi2yN7c3E9/tJ/L3B/Z2+CzyM70Ohfk3Z5nh20dJ2tbvZ89br7l+zAgiBFrxP3d0bxlbS7tLt4PcvabdHDoanPNiw7RJe0G2B/ZAe61IrHHfcVe7Mve2H7Eq2y9karMRWPd9rZ98d7W51QzNlij7QhvclZLJCkVXfyhvtQd8BKezpd7G1P67QTXvJSGa2XwjNy2ycLLQt6ptunAx8L7fWYpceu0s7Lc7r8TTBrOZQSvcacvVNwvP1GxuetjCBgWU5GUI1mNTjybMByfgxMmwP6WIRpjXQ1DAgZ/Oo5GUgHEHTzCljReBufPk4sE4BajDL2UreHhbbx3bomlFF8lu+xfWH5WqKp/93lAL1d72RclNVEi+vieduWDp5QB1NWfnmpv86405b606SsgAZOvJ64hKCt5aGhO4xnqbI1BZst7d61RM9jkbbX9VV9xmB7JrAwNC3xVVtY2rYHszBJF4YH4FW/My6EtvLMbr30v54vaYsro08+fJfueqTlNe+5NsooE90kX14hbzY/4OlZ1nTxIB8E3xPqUnhMN0EXmWb+sIg72/PcR8UdJvnOP4JX3Bo2DVHk3WmPoNO8OAAyyJXL1twvyWPKyLKzPsfQ4a0WuvYkbw2Arn0855GLdgmEiTnSges4L/NHsyHw9LoIO9Hsz05kGzqE8A28UpY6gFyLW+RCT2Opj50Y3Q09+CzlFTkWvb5M66pHm5gj5ehmsIRX2aa9HYjY0KsvaeNMcMuu4/GOdkE+xf2SNM9V9UHq3oMgw9iV87aDRdSoMjKuq+JKNb6ozaMMG1Tf6z25bml1gYZCE78yhdKqd4LKTwVkffFsqn5qwzE/vTHbfMRZtS+B3c0OUAbWn+IxL8NAyOgI7CZt4L5nGeycbtsVF2HpQkmpTtkNM1/5poti4vjIr+IziN1qbyauc9jLfGjXhswetMU90dNFUu2Hb2zTXdqAI+1Y0HvGvR33vz9h2N63/X1O4f2lmRO04sqoz90/j64uEqfRfI5rsq3GQdPy+6KWz6bPHXTnf/NKbUlnkmbjWmI1ky0tRA4awsU9Ee25l2krc5XDdmlbGVKHk05cU+IK6x0fSaVVYBwtdL+7LmPhm2npmhDuCSGkt90cUdwE7IWWxK6uF8gRjTyHS0TIwTiWbwJ/PGN8hoFSG6XPyZ3vaEWnO9cSdbNpqon6tAe09AzLIYK6V3RaC3Woe2XUS+iV9dvdIlVmy4xkMhRuRabDhZovZRxn0tJYUTYasJ3rDAclxAHSpox+SWtGw3UM1zqMyR9bAJcBGDf0NvzCHOlaEs/Ut2qo9AFxKXRfQNnA+vNpQI4oO+Z1+ScOnE5nmyONuLgjWlSKTvR0oqvGH0KbbU4HOG8K2tmtPsY/0imNulrsQHbx1f0dmXen1YYnRcisNa38LUXIPCKJtuUrWn3fPndS3eOkzyvfVr4dFhS2i14371qIV+LK2PN7rBtV8YpXqTvb0mb5bE2742tA2aS+oL3Szeh/UheR6fzpK7XiYtGJZ37XtMpsxf2X7IAB2dDjuYrBf49wVVVeieWdtleoFxtpYRNRnjMftLSaJS9MyS8X+ZTJFtrE/TYxnMpJO2D5b9h8dq6JkwEK4r6H6frnHM/Y+LSA1Fe1GVbqI23P4Js4KXwjrXwc2iyeLZ4tF3/DDqTNNlm029qXYudq+UJey4W5ohuEM2ehBTgB9VKVCyh9RsEduPvx5r/PKbz7rYzs4NkfLBtCIsJc3UwTMc4JOGJlRQd+QSu/4Y0PlsuZUq45coTn2QartFVGpUWVAe25x1tLa6jXE2/4oD3rYKQ/v4rvo2e+UyOxSVsQWi2D5SJX5uvXfJby9bQTKOYuSAf/Gi5oo6n01R9faDUtcTtaWTzQqiCWlmwaEx2M5A2AlU8ZrDmwuF6YFnGeZ7AaF1zKM8HeEZdTOF6k7QfFV92g6XuVcQ0C+dov2JB0gHNZnplBLN/L9b7glFOmeYZqalpeYraKhI6JL1Kt20Gyli5WXOe0LcSQC4jQBrm7vAqjlB0+zxmcFt4A1SuA7rM5cVRsE/SLdli8dIok6WAacjAvH7rZuTi+JiRWA6W2rjAoMEDxt2J5+be9q3yFV/PpusTjEtflqPFRE6/BVMk76kjx4gV8fhV2KxZ3mVt36zLHwqDIWcatr5Cx6m6X9tPtQOA+WpoW4pY5SlHqs9Z9sRPkA/abDQ7ucNEQ3ab08au0+sykCx67vH+Mx4/iztadzV6mLXauJM5/TJ5b9JJfx9BwJJGGuNCywYQ7rC6KTdr55pggV3Z7J3n0ywlgyYf7qgNo3OfFGmeeCV/nIVb48g8pTuYeEyWXBMmXWGJwlFtBJ0Jz8jnOfuXdxtRVtlHtXHlEKNM3pXiVOTEo6z7r38q7zzvobuYPdnjHM2abHj3Buhi6smw0G8kEqugYLIUYW5+P7Pux5a4XeTCtoQ2ebDZeaZQuZ+KUVlusNPLiLiPPJa234iHjNf9LsNng/E5Gqkb1unM12dNOXQRvzzoKpvRdlqDli3xX177iRlh+V+WQNpOk9XSgSFQFFtowACLDNPYIg0vabA2MLyUMvaqhSLaOYQDp1rHQ+upeScMR7Zx5OevPY3CyuFBKg4j/RnkQxuvalVH0NStfq8Akr6X+rL5b8o02V89usI2ZlEvzdU0njTk+Ds2a9GgKvSjprtf5NtrI2+cqKeuNE65SqJWWfHk+Id0Gc+Q5KLuLzqxXz5xSbdlS7xirsfX82sif7i+lTrB3XWS+hnG7YxwGD934pKXePMacenN9n7q9NtR68IK9rGIvwLC2nZqT/G7Y5mFPVrzSNhu0Lm2wYzkTxT+CR3JZU+A+5bjAY+WLHtdxX9N6UU1rh/K8sxnS9bWv1PYNGXVnGdQ+Kp9ePnVhj/pcZJz4Vc6p1jKmbmqBdTEu+C2CYX7bUmhd+TItE2PBVJu01jMmnqqMDkTnmrSKxykU2epzTwt5vrID2NK2bACM8866COlRhGqbSr9hmnjufDztUZTOW11XmZomxnhhLq7TNu/asj6kivtkgVhn0QEjLfE4GvAx5ZHdIvd50ywAP2B2NsygUhKPR9wxabLD0DZpusRjLZ8Nt8CwL+RfbdVHz52r0L4N90OWY/Dd2IHJx0P+8ay4P9LRThzp4jmpTyXF/PbcM3zPw/tdl89+Mtu0aQTtn4/nPDLimdYybdDKLVrm4I7tTJ+00V/77YeFbxEF0BUNMVwG5A2HnrLJgnvK6Ekbrh56MxZdRyT/qptVxmJRrZCV6FgBmvbwwjuo43pmNm+xZGe3hW8fCUg98dnpMiKb5xvdFIEKHwKpTWBnRFtF9Qe0qNv1cCyuJdG2RHeIkU3K55IsBsCsn/k9pcWtI2jVfW380fUH1IvqbuqN9DbLwwZfXU2q4rWeM44uHnzZGqwXgpARjU+uXLYG0fPNrccYF5crJOZ2QRuTpLENRa/upyyfA1n3wUf4Fv1Po8Y6SBFwm33dfXZO0Gc/3VDWQWn6pcVV061tkA+crpk8gzDcEfN8nKXryfw75syf192PtMeQy9J1Ud0+s0GKe4vlVc6GdBVS98dsBtln4MjzGHuUeFWwACEAx4ojUSXi0m6Uhc2SDYC0h4VboAEFj9mRSMsbGfMaflSooU1RrEYOSaVag2+8E3lVRC3iUtb2nLZO+QoPSQug2KrF3vS07XnUwaS1jNNdu4JB/JO+f9HzL2WMaGP/r4i82IHo+8QBwX0evNm0oYUW6bIWqKP5Qm/TE0XwXSmYZMv+EgrxjCf2peZmnPDxtBHesNx9rf20l2kzYOlujMIXOPTmULCdJF8XvmCcpA3dSb48ymCwbAvCM+0Y60DKx/ROjA2htJiCZWl7LIWqHWUQRLF92hv28ULrtYzJ1nDMjq834sYEhhjr2WJPPk++vDE3dsqCdsWa1I2FbgwIO6C4z/oe58Xm7bt+4LQjzpAhZDS4M48jbch0d3dUGU+fbpYhY//XxWZcjA8/k+B4ujJ+tWBrBYfJk36mZ63SJMqg45DBnORJ2pL3RDTlG5huLe1mV61gLFrcBe1SPjEaW9ou20aGV8m4k/lRXmIVBziIbPw9Rm3VHWHLxyqthiKzgqMXmQpf1PpLSos0i2vLoptOm5yt8F3lqOkN6kYIq/oIPSEnHxFFWYV2kSMlLu908mddT9BJ3GZ3R/O4Y4K2yCFp+xgnKnbr2lhl8EK8wvdCy07slnWUJVr47g2C6tGw6lUnGh5GOdYeI985QBTDfhcwWXaDyS/K/MiBYtnLDR5GCXfE1I9ls8rv2pgkspiAxg4UyUtfzUPl1p6BsVp7xATWhY5pkbunLe/XBxO8FiyPIplgm+A1n1U1SjtfjvFK6meLiwitbbC72Z8FU1X+TosXaOV5h+VZwY9tRO//wlex+1W4z3yXPuMIt03CbNf/Rfl2GNptohXaTb4aGtaFyxcLe1G+ylcarom9kXy7Xei/tc3XRbPsowD7iBXakpe98FyCGJQFJxzHsbMbkq9rjJX4FY/5Is9RDHuzYmrmuebcQx8vHJaXM92pqznhTpe8V9ibLk1L+4j20XPuuqG2b/bL5cZdS7scOGmSDjQ90lZtiz951mxgedgjTAsz5eq74Q61ZRPLI6+MS4l7YNqdTIfQ7q3w5xQ+t++RvTW843fMEBOvXK3zaGzdD5pX2Ebag5lMuo1RiMaqLZG0W0ATWuWlcdZlrs/qysaOXTqlV447GXVuU2RaOvgFn9fwLfFz+NXKWwDA52DGJa7wuei0gmMxwJv1FE5G3Y6JLruMqg++UiOx081KGwWadkDiNZSBRzMUJlltqbVCuxmRSonyS5qNsV48COhmZqnV3lyBsaLpPs4Z0GWB+anZB1Zj5jNdfG8lxFl1cawHlqQv16LFdfl+rTcauDBSjTbKpzKhq9JCN5K1SrK4ArlPt72yy6b7wer647krJzHW+BxxfTP5mJTdlpXIdC8c8Jy3bB2hHXFsyf+aFlJdWHxCq0e7AZ81ddFb0qZc1MHbXVpGn7Q9vkLaRqQV1x7FbsXfyGvSmmCZYsrBNIk5K05I+o5HmrbbhZZX+f0IjxXLbD+gvECngk9Xm9aFj9W8Sr5GvTU8jgS+py2dzpdB4zIKLDL4ItO+wB423roQO9rC16XszUFNXRlNnvdCzHwbHnM31oG8ja9jefZRRLoVL/vEa8HjSeYzraDJ5USEu0f6XCXsC1+bCgsZmfYCj5tN1CqgZu4DgnAHYK6ugTZ1M37bhq8yOspZMSt8l8/8lX6Ru7TERZLSjS8uGqGuQs7cXVSHwzyikfaVnh159b5Jnik720I0PxbDxtvTTSYb2QBSbwB3TFMXHo0l5c46Xu2NaktaAstdbMbnG6ivt/59TuH9XBkvH7jqKwg/EAA1FdIgl0Gw/E00CCMgKQkU+x2ebIGlzXaZOx95vqzmbkBFRjXqi5vlTg7HltGlzD2RVR4cXrIAC3lsdy8nBIPZdlXFyM6ikJerL1u70NM2w6cfQV2SXNDaJulDWgGtDe0y2TDVRS2U7OHksxPULwyj8CDtvnp9/9sGvTjxXfNZcphXGgswq2GgMRWbVGiHbc0zOXRRYV/Idif/utLmdcY6xeHziSpPXvte0+3SZh59RCnyhhuJOl3lVchxFb5vZJD8lT6e5/YBr1E+RUbukKXhHAPnTDfyu7vyyXMGyuecfOI6fbNwT1G+vDoZSxlGnL57S3ho/gwykPEYnMTzlq9HO8oFD1Q8Lu1RhDjqc7RA0jabsS3ABZZfla8/LzJd0V/woZh1SPUCbeOnr3e0w50sU607bJl2qV9tQAuftnCyyNyJ2sTqqjFd0F6nbSmWOqhLGDXKFwVs0+50I3zXiVXWaN91KnbgQWMJqeenWwruOxZ7kzVhIlPtdyv+y5ITcXDyrmeqerux4fEk9bTQbvn5xFqLtB1zz2l7id+n0s4yp4vfAAguQLL0ittaPgQ+i0tj2IeUg5hKzwREftUtMGxI/JvvaU+mhAX3z4L7aHHp4kjeCz8HKv6nvYnn2c4i7hG2fSbhjuPNf59TeMcdM47K8t90RclOXyZOuloK/ite6kdDN/X/bwhsm7NcO9qUNUVVY+Y9rcoJSW+oF4/Q+LflHb5zoZ3FzPNyTK7PIpcBLeFL5UPNSHYLnHIfUlaxFHTrCBkhtMIn4O3IdLzCPq7fDZlm7e/KR0ZypmR43dQCqi9+CdP9JbKbel3alUk+1uRYVTUHR8O95JjbVMXFst+EhX6Vcc2rh7EqW/UOYHGZXCrasgzRn1hHjbas2CH1AylJPWvAP0u/fkFvTQtY1pHXLsJD11e01mizo7Bnj2diRp7do+QznSdFxLBvxyDIcNgcUIi/P6bhdpdvz4Q73tjNOmxeZe/6Xibcs3yFNgYEx3AzFVpKdUg7u/tIx4n8KO/ga1HeNjj05DPqilcuU+eUK3myrejA6yhV0AHlFSGqojaALQ43LHfphMVDYcE2W67P1/GnU5k2gU3qELDCR10bVbaHuL+UdT52DGmu9sTZgvtW89nZjEUO0s7fW5sh2KblWnjJUQLFjd3nLbMy1rIrj9URZp79YqS5lGcSHSzrqNs861zFrw+2eW4KFbdXA2DS0axVWOfRm3+4N3bcL3jVaSdyXIzCYndGMJG4GBgtfqERH8XL2wVdOkr+TgwqhUPdwSFvxeNIK3aAmhp43BrzzI/yHcgzWei0DRgCQ7VRlsHJ+G1SHi/X5etEihda2PxLPIudT/3MidDGJG3iNPNNLGd5csC04LEZ9PxaxWOWfWA54edwx0fXz6SMdIu9ucRyaSejZaB/ygWSPs6uO8cINnbPPvdZ2TsGM/snzOyPmNm/ZWa/18x+8VfJ7x1vZXTtzcv4ebQTn2nR0LeNKLUvt+eIVyg3pHWV1nZNKwZ+kXFPW55b+bYrufos1+UTf65kXHVTn7vMVy4vmpfjgo/8KIMdid/RLuhdaL2d4fHG10OmwtdRGW+ClqfLPGTosxovP9WAZnvdM9VJFUG26kwYdV1Ie3bNq8sk5Lu0daLlRYY08jJkb+3m4Vi7uHJyBVYk1LrWsgetF1oO/vlRzNTrSnvpJgtsBxUhRfd7Uhmg+5k1//hg88UWuO1k3PJRufJ3a+3XSWWANFwse4W1fKy+7rpZ+Ja+vAeNqybxlYx0aWizvkxq7gLbe9xSHrEZQVvqBVvcX/lU2uVM0qvsjSDFcYWL7bnCjwzm9nlf2YFX24wrmdW/a/4073qVzAUXP8Xe8HlxMdS0TWanr3HTVWWKNUHBJ5Zv/i72udqbVeZNu2GM67lNrZO9bspYGas74kP3RKjXQ8VXtu3EjZR7yOQlr25vul0p0cunXBp2ShwEZQsf79+UTIrtD6m/aCnNl/6StvfdhUJ2lQru72l9oZUkxQ6clzrs9qYmsMAbdrmPfZi+tEcXVTlKnykkbIdeaZG0vI24dRpc6fFzCg7MC7He9vcVw+9y97/V3X8lgP81gH/sq2T2jvt3thmgAtLm52NvEJ60TMe0ak9qm8tEytOA2KmT3KNtzrQPDz0mDlbem3RavB2tlj1kcpFN8+i0S+bXcTsX90tSl7+NPh6x7MpY7WVTSlNkvb4YKzaY/MUIYs1qS1tkbC+KZXXNNvPsZw2UZE5EDJ7xG3nynMJ40XesaoHShKhaXZ/bgILjVBeCckhZaK+abLowWRj68aa6FK5y72izEVGmkJEySf154xurgHRj8epK6FOus8uofCUdnC6SJs/zxkID3M6Md3VDGc93p8vJIc+A+1FcQ4aM1Z0xZZ5pow4Ocb3JFV5+PFpdWngw+3TWqTW+hrsP90V1fzkn3/uUS10th8tKTRtuMA6R7WHPfzlIHcWzYboWzQYQeDMT7EaqjNfBtdBWsJ/Rln+PRbxyL042FH17bIgy9PcNTxe5UGlK2ob7DWKTjLIppjgW3KjlvQihK6/pth3f18x3zK7Cokcv5Qvvis0E71KWeP9AiMCn8WBKq5Syk1DYzudDcH8rYqu/yrfmtYgYtBMXoe7h0ifbpHxtvVb0uvKTDzoz78DopB3vE1O5cBTYZjWv3GVyGcJVF/XExYqTIP5K88odrEqLyCtPw3U8TpduVFriPlbcJx7cNT/fYSrrR90bh4vhfbEDJrTVdtG1HDbGG4G9k+fd6XquNqS6VUYZnGU/mq4OcVEn7jeXS/eYcH9F1P8eh2Hr3vr3VYK7/yV5/BF8RVW92wemw2A1w6Tuhz4nTvFi7ss7aXvadnVx7HJrPO2+bF3Hd9llvqduh0WGXgRDrHw5VO6WlvGtvEobNAfg97zfJMYXKobVd8DmWflZzct7fnzfsggPDIMsh9lKiwva9ClM3fTEXc/AnNxYnQgKbSmXKm/mW/Qq5S/BrV0Ew0K56EILKidenFf/J5/0fuFKoUW89lN3g+mNWs50nkmbftPl0bUrhC7KUUmj3J7PB2BEeZaq0dbV07ypcBTQxQ1qPouMSVtlZNq8Gt35iFlkZGeeaUNnNgYeh8VE+ARwixKci27ymeXLNnQ6cGO+GJe+H8ZVTx+Y4IYDwEcH6C87DKvjhqQdbSx5evA5cI6pXbSDE1buthoyUsgz2wkA9xP9BrybjVu2cAKn30ZlclBmB2DnMLh+R15awpVv7XCpnDE4OuK9z/rkZSvA6H8pdY40Ofh5S4gBfriMzdayYJusK4duM459XLu+MW1xwZM/FXszyeueDIVe5BiT9oyLZr7jo0HwYidTeSy6zvc7ewN5Lol73l1mYG8H2AYMo1veAzFGrF/oCjPdRjdb/CVfbe/mJe3IL/G4lKvJ7eU9I3WGpAQCdg7YIelcwClk7DInT8X901v6bvTF88BnF4w+yz6o8SI7bwQm7hjfteIY+WBgmYc+ks9wc/QNH0DtHBEhbAoTW6BmtI10B5/8JpYvNgSGmwMfowVb8NzS2uBzYLpnig0ZtGfSRr/Y2RtDxnrKNIkPGPxMXa24z9IKlqfQgd3EpfGMTAsIprrgHrF7Yst8vpnhcMPhjnHV/TGt1gmzY+5sG875lUvq6fRzujk6fHTelJGanJ8FOHHiBp1c1/JKhaJ8A/AzDGPC+Z6ns+yfBPCbAPx/Afyar5LXu7oy6srlAFWi+VzBtvxzM8RtW5NWDVKstIN5evBRsI4Dn6aSMJ4yWaQN1GX+jS8gvy3jfZf24llpOU4tt7IKn51h2upi85y6eVmmUr6pJ7ERU1ep2z4Qqrrxhe9i2Muz5Dt/e4kjjKAJ6RkftL6Wt5OErA69Dt+aTFZ04pmGhstTRDKKplYsny98NaxG0kO2Xit9fBmHvNvtc/ABrLtzav2ZEF4j8fC5LDi0pMP+eHmO6vPZslyGfrqdwbTNx52ayIkzpwuNT5cmzidMWlkBz1Vg4O4GPws4FVrK6AV4EGlNnnkPGJNllXSZu+FzmOetUXeY4FwqUHcXUzbRTeEr9e87vgk8Xt7kuYia8+tD5CeY6iPrGDzELqfiivbh+Zz92dJGoHk/lLRCM9QWabSKKw6mXhTfFNs0jx2Goj1rD17SajXMd9blUhk6Vr/Et/1+jR1YmoXkc2l/REblo9hcZIz0Lu+YtmE536siJf667Mp37WclyE2gADGVWK5yTawl3tKFUBG0lPMFnG96tfLvS7hfn4+QYF7chMTPl2hjonXFVzCGbHZeF4p1M+NQfZ7zyrSdfqGVdCnzZu+e9bTNqErokoDu4ucp59gC9/szcpdcbJWiZnzPbL5Vm8CdT+d/o69RwZl/nitG4ZueMBWPD1VUsW9e8nCtR7EZ6g3TNPnDHn7czP6Q/P1WjTSz329m/7fN398PAO7+O939lwD4PQD+a19FkHfbMeOOVYToeLM7R7/X7j07kFwQMvJCPhOMg8TEOHjynQOaCkpXfMej7sAp3zIm4vMm7WSbMqph0bykHOQbGKnGU0S84hvi79K2Zz9yPaiUD9PYzAX2WBlTWpPnoPW9jB0ojQp00Y0a6clT83KMgaUpV+qmpg1bvOHrsPyY7JSytgs+5+1KQMbnToOUkfphkVbL1/hYyMzzV1bSdr15qc8YZ2wuGAGmCxqtmZ2Tn13SMmvWV66sctczXSqr7rIJZl17yHCbQpGWMtlMN3Yhq5uNYS7IOELPI/l4wbSGoWftUxy/mSgjDc7c2WIdWLqWjPXHoSufnc8e0A4XEB+XjM0V3RM2ZRQbOctzApJ2xkk7St0Z+DHnsdk58kyDOeJvdJ2x5Gs2ZDycK+MH7vBBP9vjHWM11rkKLTKGu5LlQOqQfpFnST4x6O4X5m5oxGGPbWwfxP+ZlrJp41hwjzSiXMdwOXPjYAQLHuuPnBRSzw2PscpMQSLtLr2+d3nHtntFu8XumnZrM1r5Om1i9/x1Is47s8+P1lFpS3moo4ZXC+4Xm+HBN3dlmKxheTbS+OGnC+hgQyuIps8be0M8Nk0rOFbsj7H/FwWM3hP9rpWfP6OdeH2OvLPQ5JULU5Rl1WtgKdlO1dyJEY5CW86IUS1FDltssYP4VaQZxZP8zeYOzJRJcX+ofpbvxLiMTWVTWqS3jTW+ilcQMXd9iRjbDaz7CbpNHjDY9EBgONHsTWRBjJ3eFxPbbYKK+bghciD1gXvYDAfsmDZjegaFXUhAOgF8hE1PDhkX2MjrcOCc2H0P3J+u+MjdzIHzAwPH3uI97E94dEw7wJJzH/SEi51DcXH9HMNXdEn8aXf/VVeR7v53vzKf3wPgfwvgH3+rIO9/Xf4ExgAmWU21+dx3Y5LWGm1mbIDcAMi0MhAyGzc8TUMLG+ltJi2jbXS++dz5KGkjH0FuALTJk3wpg4Ljji8gALXhq0lDN7wsyERmvY3wEICbwFhkPnSgQOFT2b07jNh09xvPvtVNrTT+JGFQFp6hu6DLeJsD/LjxUfN2ZdPjDJi0kVfo0AD3hTYnaKkHs3TuqLcJJh+HLExwfBB81paThtvSjXLmlWoxHdOADekwunLUwVWnVRl55spK3OxvkLM3Ub5oGVleodVbznLlNiXlTjaNHhXizDXKxzqbPTkmP+JHP5/LjndpdaSVV5PxYcN1kJMZls+1Q25praS1kHHd6eOgFAhnTMSOz4zgdfY8I3HMCSyvQuYZBMBw2jHeTyALWh+6OOPcmoVxjrMXnS9k8DGrPc5y2HLvwqcHxQr2k+JuJvgk/Sn6YuhV8SlBRau6/64wYfUdavomcvll+khaT5lLHLuzPGt8SVvsVbS01NuOtuu0P1slqXi8oUWgAy9vu05sSxGCVvlE39jYDO0bidWZdtiQxHI3pI2M5A3nLfMbMljzQLF1ooiKx5rWpXSQ8gGIfmOz/uyoEzwBsy2tw6J9a16AuJOmMFM1bIfNDmzKd1TWMvG05KPeCUOwKDc3WVTmqtfWJ7oMMWiwMpkdbVsWGKfOA7snbXnWOimDQg9M5eLaYgdm4XU3yJVx9K/h4pe3Ms66seGMzjrjWS3MCQ8w3VjtgLcbD3kGbFe+ivu0gZxAsd2nvHGNvh84J59znrshtqd9GLYCPnBebUfa2im72gxUPaHk+/mGcZbufS7/MLO/UR7/fgD/j6+S3zvumEEsTTYAggjxzEu8xnVaBDpkvOVz4Tt/O5am5pKmY2o8K99+dfFraK/yknc06AEdvXxHe/4UmS2fim7IWN+0JSqPSUcdTIXsIuciY1D6mvZB+Qgf8XsxoE3mwreW0ArfXgal7RCUtARwHWeUlJwgaHTjY52v5os1Tp/zmv0u55rvkDHPC9XMWu2zvTjmql4tl23KGoXctYWLMEhGAx/uI8hR1kPamPHE7MfXxhCFyNIZgHPJ1zflG8Y3D0c/bOuNtsrRZSaZi4yMzzKEsWyr1AAvAVFlk9ah9RdjHZuTeNb8Bm+cXFWvlEFSaDf1nT5eGeJchaU2gIa5co154pksoM0l3GIjgjbVo/Vf3OnytcgFkavx1fQdYyF8Na+e7wWfIgd3p/AA9xst7cQl7j+wGaqT7p5Y8NmBK3v76Xy9pu1lKuXTtNKGo2vYmu8mDJlWT4SCZ83eKB5XW7XisXZBPMSNC9oqaYQtll+XcOETHp9nT/HIZiCUnFXCSZUUclsevGwzvP0MIyq4GLuTFRdzJk4st0+wA9rJZqeZMT6fDfPbYMFHykfxGCXtsVZT043AuC48mujdNuSqt3EJyJjosV3pznLsOM/y0o5FnpAJNrhDJ7qRMviOtlnSzznc3++M2T9tZn8TRnX9FIDf9lUye7/LPwCkQWDL8Gj54TpGlxOgugFap0UiotBGZDc8RNAZlwMEcVlT48J07JzSQv0ibQkXxmhJ77UoJW8pfzwvriQvyxGuKky7GEavuuojDWtCzjwKqyl81c062CxytPLV7Z+kjWoLJa2DLX9I2yY/ruX1Wi7+3OQVpFpWib4EMRugGuMdE8JdoEgG8OC3uvZdhpkvffmHgSWhuCM2NRSjN38S7C3+g3B1AxBuFKXsnrRaPhr6uCrf0+2iqsMXWurCp4zh2mfZX3T38ozy0YkwBaO7krZdnjMwO+YZLFtoYw1z0vI8x+KOWIYEapJ91P+sg3l1R4WmWT4OJ8dNWQdo2olSpK2r+nTRHXeLJZ90QYoLHMSoU490aB71my4tw92ljDc+PWjDKO/mz4m/6dJeXYgLQWtoo43Oc5S0EWwImoUnTfJVGzDifeFT0y54pXk0iZeJj9J6Emxxv+WltC/h/tZmNMzZu6GPF4EJLrrc8XmRr+/d7G3zW10MdzbD9UcdOFabTlrp7/Ic2G0V+5hr5dtqIbAt8TjPXy61X35W3J/lXcaT7KApmN7eeJi0UKk/aYpw5EKOYqPS7iZ72ga7m+C4LMlb6gy6M6mqs8OLDOluhyQAXdi1L1PG4WY32iIxjnhkYU9TF/VIgvLxeefieD9dzx34eBrGRRwzH89dJZ+AaUEHmvGhS2NOWhOK0rQZjrz/YCoj7GlVWn5k+gL3oy2Z0B7QDyTQs+IQW02XSd0xPW1wUctFd9yYlPtwzfxcg2PzSZnvF2/3/8LXmd/7TC9NgKlj2JxwuSCGxX8ci947sE+0Uft/tRifuycKwtPtwZtgO77tnUtWfGbaktRago2BvWxfnRarCpe82rOpQpR6ZyT198HBzkq7LV97Z5eF2tCWQvUDvnMkw0ouLo1YdPNwECl1MJ5tWz4x1RFVYtmmSzn2A4alPGHU93xLUtfzVz1YlUtHdwHTZNjyvagbwrRPRfoF53St8zC+SpsHvUOClNoo3bwS2OsV7a4GcsPX43elTVnT8Gk+ce0+cjfKJTeXfE6hPRvtvcRL/loGpPuho15hP1wweEWxXs8MwOWmt2nYM12lHVfj0/WQLjTpGjOu8adbotW4wldl9aIjLdNbg054ykK3tXaYwC8DdazYDI2zYgcq3/l3jPKzC8Ri20xkyTwnFruCdBvgVeSF9sp2sWwbm3LJK7B8n/WWT7M3JiXN1r6WP1fR95V+2RQusHxL/MhWCaDlzpjvPL5X2njxYN3fd+QPNBoD4ilHAbOL8l3lQ5xc0iVu9UufeA6ZHgfL1j9MbISjfkMShdZ3dkBsSD3vS0GTxr1ickra7EArn8GR33IRfZBWdKOlj+dwuatX6Ecaj9Yif77QMi2mPDYvmBl4ZyXvxWY47YEJbstV835kPpP2DuHtKJhbP02iruyjZHqlvQvPeqW/0uZnVbq9uReZBfP9iE8JnJbynfL8DN/78I7X5c/OfYzfDkwjIAM3kz+guLjAUVfgWtrhi96MvDz6WDaaOGoLMlvPeyN6xOk1/Z2XyrPLV11gphjOq835fCWTTqsvDPdV2szLyuqdSwG5IgXM9B+HMU97a1h0HjL4nq/knbTeZOq0Y+Umx1mWC0NUUC97+OE76tbS3MonXylvyCF8Kl8sE7DMehrAeQj9/AgpgKPXz5JP/zfiu0xN5BakW4DmhFf4JuGU2GsXycFG56uDhB3XMaE5IGkf0Dq4ajv6352jZQDDTcWKHMaRJAdXmm/UT+Vbh2Q61BLG0R4N4wpiB3yuG7oB4bv/iDb5WNxAMI+Az3YZLdHnzlvcOMISsT7m8XF1G7OxMnpOxd1xA1dQk5Z878E3+xdXcWmqxwTNcQ+9URKEwZ/rjpOWJx6O3nc/NWzwKR6OzTOrnf9SJ0codZStYWi1GY2X4gbT4wGm9n+nLMUlXvN+RLvh4/KOK/DRfg1lzL2j3eFKKVuXaacrRu7Kd2ae2lKUr9FOaFkf2RuJWtpS143QAoYjNwRE8dn3u/1RzFHvBOsyAlWO8qJOPazIVPM9P/YGqCVesXx0UQrpolPmnbztAutIejQ95sVGgcA1XmjzdcoQyLThw/zkBFfLt8pI9+zbkXh8+qqMajOIi0Wa0HWvn7owShuiJReZlud5QYYDY9dsXClvnY8B9FHA3HnLMQ1FG7TcKXPajKkxOMe5NmyGzys4Ip+JuQJ+w0WPH105BSQmlqPKMK7cn7bIUGT0+Zwla+0T9LAZKdIjyJuSP7dg7+nK+LWG9ztjBjRAziYVjU5v4nrJCEp8Oa+AGhfGLiziRiahXQx3z7cbFdTnPlAoLh6d1hC3YC0yvUSLqpudjJdl6HwYq7Tn/JaSy2BhQ4sNbU0r8eU30v1w6s0abclLK0ifBZqYlkPOhW/B3HWwWYG+GqAOyGEUZ7tSp4csS2twykd0eSwGRQZsaiTRjHGRmSAqO1agjm0tH1Y1B5PehlG7n7vjOK723CotH32W6e76Zvwu+4k2dT3fHlq+FKC0v+qydC1Uurt4ZDNusDTNZbl5MmSU97HOOt39SjOUtqyw45JXxxtNQeN+ip5aK5/YYE0mJnTJbZbADJyseZXg4r+sB+H31kD5ol20QVfcmod1YiW/w+Ww7JKtruiFtipMeFZa3U1jmi1mCv2CuVe0GzzmZKO7Xqk9ew2Wdxmp2j4G3pVhSzs7qrktuN/xG2i4jeS76m6lXcvXBoIBHJiLHClH7aJiRy7sTXQLqefV3vgKdmKrCm47+wSHsytf10fWh2K96hEd27PH79zYbUnLqjOccy2ImHscD2g3XSfd6FaZbIexC15m2qGnsYxnWuFbWkFLbTeOOTGWuKUMnn96Oya4N7TKzd2kaBzu8LZgNCQPI9/EH+7sTtqdzWgl454ed0Gl5gK/79XaFhsysu5ePsUZfEkLeVdxfzbisBcWKWwUYaO1zyc46Lr7gx/e8Wts+ZMDFAXJxU2BjcJwcdBaV9ORKDTzKkYQ9V+NJ1m0xh2t8pZeUmhfCIX2Sq4doe1pr2QkM45DOq0OyfaEyEPpGzkfFrXrhvm9pu9s9Fjql6EbhjYgIUhpXusAxKsBLRaUaSrjWEVyAT8pa97rvBFZJgKZv9e8uqw16ZpWbFSKX3uH2TDKCu6OLocY6lBbFsy1jFFWAJ6ujCpn0rq4NyJ+m3G/x4s86UJicunFYFbk9nZblI/zWGqetHzhcjhpUw/q3sL/Uma6edB1ZPJptJzQnfLHuLu4pjiOkDHKI41SXUvGs+M++56ZuhROVxnPOh2ujOnqeEe6rVAOl/jkeyxuLSkjotzabt4UiFebgdRU6+xLHr/T1QibzoSQpueprT9oyV9ucqw2Q9JMOba4z3dHo++4/RIevxb3N7QU75MxtQ1yH9EaMFbXORAO+fa0ZUzd9YroVS3xdfkSKDKr0Q88P9jENsDGErrxvTIbhgVoek0UcjyokD7At7nL0jz0cnjTRRJMrflesHXhseMzqVP1PiZTRxYwJkeNgZq86Aahy5pn2gFxJZ8suNxT2qikZfojdpXY12qdJKamHUjsT9ynm3y4V9MueOJvx/mwGXPGcXrWd9oiA+2augoSY4HpFhi4mHhcbYaF++TpQhvvB61iLN0o72IlovxW84p/IbhfXOOPfKZePPVxl3QuaR01//109vMKdxxv/vucwvtLMwcbYaQs11GKK4YDuyX+SqtxFtcoz75Xw4F51qCRkU2/+hjr78iXgyZgrOT0VV4laFci1/Ll32LzQil72thkRKaJZ9HN+rwKmrR98OJo5MvYZlXIfOuS30VaXntsjTbKt1SUFohpx+9cUdSCUzdN6iBP2pG06qZOYChz5svno+Q3NSlFr9cicyDSr2sutVANZOPLeEOOS1z5UqYYBFgtT5RXy6l80i2vp6WE2V7zv5U2FXAiZRqeSQ71XVv4zvZAY1R0K+49PivACiiMKyxd+Gq9pyvjNI82XfY6rfCddn+6g+TAga5/OR60RWYOEGyCDNPlldnZJ5n3YYYbeF3+Dfx+BQ364HsI7TCwmi/zo8zw6WLFK5dDp3kNiTHf0JeUd4WNTwsKWMZ6k+5csNvySnzGs43scF67dWwzJ1/vYFIbc7zLa9qb6Ej+S1eXLDqNQcuHVWaTeYW867StOHuGW13UtOW69QsZq43U/76Br5Gn4PyGtmB32xoyFZLYoLZFFFI+mdIxVZtAwzbm1zfrUsCkdbEDdqD2Z0s58iyD0rKII26ZoMlzXIxU6stKXtZIA/eNNseEb2ZUF9skTyRd5aNX7UtVUD0Sx3fp0sd6cdxd9+AR9ccJS1Rn1DH1YFJeK3xjQWuxA9npaBuHy+K0XXYMes+Jz9beTBnKJSHFDoxvTKy4L21BdOOC3am8Y+L+wP4DjjNkP2KxEHIt/8BwYnkt72ScEys21sD2OoG1ReZaB8/wvQ/veCujg9eHam1770tYMDXS0ec1pgua3ybPgs9sZF7nfC/xBVpeaPnimtZ3cVhpuUOF/v4VMnZ3x4Ir8HRp6XmZpOu0k1Ecpo7y5oywyuFVN00mNNrgxDptMtegloCMBwMHy6hnqsTlZJntepGJV8SbXawDNNo0HBPCeNvX8rGnLNUO2F7iU8VOV5atTFFFUxuTOFbIZCXCDDHCdqVlWxG+JjrXtCxXP6u2lKfTzkQnR/mUkxlkU5uZGvL6Ygv58vB646p6oQGN3+OF9dEMKJOnW4vNaafR6FOv4uq47NrWk5hpFCdSxUBouLDImnPr+D7/b9Pt86iDN6mnrf//KlZEcHJWDbGQzrrgH29nU5h4S+Dim5aRPBS/i0sh+5WW0erq+7oDV98pXBgwXY4ESkh3hYMXmHplmx7Sqlz6Tpu3hjfw7WXGA9pHMi43pL+mfEHvWxlZRl/imx3ocaVPy8PSGGta5pVtXTF0b1/U9ZP2o0zUpC/Fr6kn5RN8N7yusLvHR15AgMdjm5GiuQPnCYzLPuTMNPHYVr7qKmmt8he+Q/JEhwDFALmRitg9r/W7nwbnrB9sYom12z4gkqhL+4B0xVtJqO1gVkz/OHYcO/C5a+T8Hs3EbmK9HrchA07sevsMZVFDvZ0pf8E7N5jdk4tjei5wojTHHWEI5jg6dt48zgKHvvZmpcg08j8De8PORaqxY3fbluLzCNyh/GEI77Zj5rpiCsHZ4n7VgJ9NLwC7IBf0C/UbuAXHgFujsknbXy51btl5slyr8Y3ySZwOfBYZ9AOaylfAptNSjjgboeVFChmYlapaype2uNWFyE3qlS9dSj11o/UXoCgAF659anw8FWuAz9uSqnGu8jGtkU+TsfuaJ7iihGX1sdAmn0XmYCSg2X3/5GHnyiixKLBINqLH4h/ellvHiprIjzlVKOXobnStPc9sWaJzk3ZUCeXRkldazZc1z/Nlw36pK0mj9fyDp9sG5Q+3R6s3FQ53PNLpAKDySakw3VJsTtLPMYCfiYsLoQtfn24lkxbOmxrznIALbboQjsPfQ6/ZP8+sNNCF5+OsT5rMs+TFnS3ewoX4TVegkzdz+aADjuGKKeXSm8Wqm43hjuqK+lVuZYzAT6Eo/gW+SN+HxYSutCfFVAg2ueY1z3xE+oEjXHw5H9E6z4x0uSfNpi/o80M87vnNtl/Kgz3tFd+CWT3tzlZB3PV2MrK+tU5mouiPcn6RabuQXUaHnMVR6o6pwbPmtSz0KQMBDvJhsCs+gamVr+omM/FaPBNS9zmh6bivrbaz8VZextfTPzB9qDKW3EUXfJeTQp7xErvNv1Y+padMxILuIso8ASQOemJXYvfEssC+Ucp0AWdan/jqUZ5aza3NQfE3+Ybb3vxNGUbZicHHcBk8h0vf2Oi8I8YxLq6Zre64KzYwVNwaU2yxGdXWDluVegKm67jUz/h+2dzhxxl6GXg8eOWti6RTDKcuLG3TTHt64vx9dvDFXVTsK8O9NtXPLpxz5/Atf59T+AykEcMce+8y7ypG29BdGyDR4RvVaGMeYInBkHeLKJ2vxCldJJG08dzTysCjkLRByew7YacLX3F/eVHGrpudjC+VTye+86r8kmZDm2JV14vt7ZdNyhyjdQVLmXt5rD+utAjaC+3MtHXrHjmYsPK4lRmet1vSOAPpTlHFqXxiZ6bx3aXVxqcuHcU9ppfSECul0rtyt0nkCBHCxUPjpDMVVxNpr1oELZ/UPd0xb8ZzBnI+1Btt68Th4sLEIYPVfj11YbNCaJyZwD155vR31NdhdEekmyDvJRQDW2QMJYdBSzfBetYsyzpKcc7BQbilTD3Tm4BuKVwF1bw4ucszB+mq4yKXHFeX8lTadMXMtG5aXgva7uL7ScGmxnb9sVS11fNXpe9nK9YfkWy6k1uktWhb0Sdt78a30JpVPoblOUTYxC+0jWHET75a5t3uxCO+u3x13tvTLq7lu/LR5pCY+RnzVkRRWhJZ8gVKH7UuNPMycUEkc9b56FYbuVko5Wuo7qjJxyafwrvpZov7DfeI+0OudOpWF+IUNcsAKO6PtNXF3R7aAXUxNJGr96sj1dHkmnWpdTTzqYHYMH/7pBHdLBRF/mwwtCc34w6bxJdiTmybGFDcAmfa6mLY8ClwETEJo2CBZaSddmC4DWKurx6Bc8TfzBclD+Jk6MIapqLiLQyRl7o9zlYjro0GcxtXpDgwPnVyG5OIsKe1vOM6e4u2odjtxb1S7M1sQyflir9DypRx+63ZzyNwd/Gtf59TeBdXxmjMYnxjoFPAMBuC7tRkWs/O1i8EmXnpAKrHWTIqfHPAJjJd5XVU2tfwjdBpgdxBn2U2tLy6XFixdNkVfEnGePZF5sC0UEzjq2V6qCt/mFZdR4B5SUUH7LQeqRyN3/HpwcSdk9Cp+Yq83MlhQwkDrM9CQfJ18OpNHpd8yNdLXEnbZLzGRubrIWPyHbdz+fy2Sq6iimqWfGmIvaW9druJ56XhRI+Guv6NldF62DPPhEw6ExO3kTHzX6cMxTyGgXGWIlangWzrp3t8m2z8b15PXNxlTKrcJ4fx2w1tFbqqr9+kKRK0Cy+Q7dr1gLYxdbY5meDqqqzueo8PpsqwxFJ3C4b0bXrm5cOIb88HvSJwkLfb7VK86h4GIYnMNNrYbNJm57/EulKulvcj2kr5Skzd0G5wnw/lpsCWF3a0j/hYS1sw1bc6ztSjjc/7GUaCjcyD1qNeVr6Jx8tOV6MFvJVPsbz1fe1TJv9q/Ub5vPHtNmJnM6Tf2FLi+jzxyU/tNxuZl/AIU19+fmQzAKpoDsbL9YIv05Ie6FiOXPDCuZav24EWHbjOxa9Y8Bs2ne1pVFPlGw0s3DETowLKCmzR8yG1QYzUsvL6fz8xzr2dR2Bj5BuFIXhxQtftQOatdsDIQxqueVKcKgfbo2ccvy0m1MVmpG7OxYbkAkPWBi1W0E5O0TK86uZtaP/9D09Xxq8lJEBwENxd4dBdSQrosyPzWVfB0xCQyzKRYLyk6XFFSpP0LR81ckWmTVqWg65ZSzzfdb7yTHybOJUatdqJCCwxUGy6Sb35vnxCbzRy8IVPd9mJ93RZ6XXY9XqhG3RaVc6Z70oZJK9iRnm2SAUxTFeSHK7zKmSl3U+iEvwiho3JalodqFsYpW4o1jxjYcJ3fBXmsRjJuETCucLIgXqvpTWEGsV4cmDOopUcqtDRxtKISzudLhu8sSpMJlf6XIyKVn4fqEypwghLwzLk171CpgYkg2c2Orq+3P3AWKssFlmMb6VN3eSAQldlq203cVV0KXvKmHIec/hDV4v5nbNEvnSzCd1NXXPF05WvR7sBELdKAmN11p1DuWxz0isQrmu97j8l9MbTsC+7TcNyg0YOUsGneKasmi/0tzQujY7rqi9oFRc5eVC8QsXUS9oNHm/zWiSUdI/sjerKGh/q9QKPB9Z6KZ/aUIhuBNkQ/UHl8MTja93w5aQOnorlASLJI2wDstDx3sNmLDZB+GT/bQAupeLLghuBx/mcLoGWBneD+5FjgZXpymibdFVZBRdLXrampxSnExkf4L7KKEaE79SFPc5jkYvoxoCygBuo6aOFqEzDa0L0WgYQaW+yiqy4KqoLJ3NPl8opIzHE1e61ErD+TkxbxDuCqd9MPSa5ZalrTGWcS7HpCth1k/UXiAt+m9JCqrQZzPHuBxw3Od1hje94P3Qz26rsYlhxnZd6FXBN19nsZFr3pv1iC0zP8HWH97n8w6otqkaCI/45oJk3binoB21ZbUPZYocDzpOKakyFLxfBjWk0f5WxG2oNDnF9ma/av73shc9RRA7D111eFlqftA3Qi171fV8w01OcpXzFaoyOPmXk5CzqpmWxe1Dwje+U7WgWOVCVqi85wj9sOD2b5aqez886HpJFybBbNsDEfXY8J9w/onWf34SZco4J3Tg3E+4cIoEJuI2drcq3DlRaqdWGOa+9rzsg3eiMxEOWw+ZOh01jQ+Auq5HzzA/f+NCjTQNpMODwaYKEr0sfpVKj+Dmhy7bOXUDHYb7soNGmnZPP4TYGkz7qnsb5hOPwA34Mc3hiHOz2I+fsx0wnU8uQf/TdVd8cxNCNxZivcSJ5DpmOY0x2ABx+wI4xEOSe1jnN/OkHDsuzYTcfuEYjfvj4cO6JnEyeOMZtXH7gsJPDlFnuY5bCI73jxOk26nnedTl0k3wPHHBjue5z6nnEOqlBaAWEHLPNHIN2t9v6KcHNmoucvItK0Cn5bOVhB6yOe5bd9YYZisfkM/tb7lBNTNtscVxhKhRjZrtLPih2TnN1oS15edLsYE9/F7gW++Cd0cbzQM1J2LmFqYeMPkdnNj++vgrWbAagm48phzyutJKj0A77o0NjpM3XgmD9bWrEbQ4ykc9lJyx0VbSzkTFd37Kws1mZz7stuiGrfNIV0xLLox4rHneFZ/MkbeJisTSy45EnprISwhMiaGfdTeNUi+fR90YuRNKhG00bquOzp81I3Ae4COAUAYndQE4oiTmHLpaGvRFsEywPj4Ejz7EhLBYxdVxEfzo/JwAcs52fpf6IuYbDTwwXwHO2pWF/zoPI7LiBros5WTPR63ApnLYKNu1cthi6PZqn6+eYYNpEZZ9xx9RNtQbDDgBndKJz6nXmiwPmjnN+amJMRWlJzrkIOMp24oS54Tz09uTPN6Q7/w9+eKdbGcUiE6AkCsgJkTeyClSWtFZpw0CtliTei00ORo8mYr1ZlrQmzywi5bA135KWz7LEn5OgB7TdIG2ed+6Jy7OWSbbCBq2OFoDtoIcG5YFMTkOvIwqRsboyejXsl4Dgizyb/aeWV6ffPKtxt8ZC4jvn40iDd5bR2LW7iMbvm+oj47zKUQeBc6JIo7uwrnJ02kU3l2k3Y4heGEsTCdT50H1ZhmPn9EnKMwfeGvBc/ec7llUGOTrEqMMr7V9yG5gP9xQ/LUFEcUgL3gbFaxm4s9w4mwmprwxCV6P+cqfRm+HhgImG9Q4WYqjEZcW3Dq5yqJv/utLGf2UQ5vnmzUcNrP4YciawlZ16soyDMqvMWhfdO+GxHfDyPnRyhbEc13ac72mXdi//WpNJZcxxrkxWa55bO6ALjr1TvkTbddPwuBbBrvPyB3GaP8QeaTuIHS6sLu097RghZubq+3mleyC8IEi4664q5Yr7BLidG3rm4XT71Lw0m077EESrTI9k3GH3gEbG2EKrbFU+fWc7vlWqGh7UATAXCH24yN5PNriJ3SGUJ/GsYy+ZcfLFet/ordmbInFgJvK/4sUR5dd2N7E8baiFfUJpguk+zn4zJp8WtGlv1CfjDHZlScrH353nwUQ72bm8yqpgIjKkV4BNOQ4Y7lEu0zJp9qWIbwX+70+4f+byvTa823X5l7tJswVY6ahYgH5xt0M2wzIZAupqHdOvPTb5XNAucfoshvuRge5+9gufKH/l8ZB2YwQDkh7JvMQRLCotXGyGow126gCHIaGhx/teRhZQsVriE0RTJiVZZH5EK0NPk0z6oMBaPtU+5QiqTKKZvBkZxfk0qC58Ot8akofm5LETwyjbLBilC4wXg/P4DEMSu/Wxcd3lWgcNrbqjLrO8YXC8GqKS55SVO5HRxxg/6XLqaYh7sNznJToevFNm3e3Lcg9qHgS2ouleOq7Wmu92kMTtj4OkkIPuIWNSmSUYaetNdWzb/JhoNnzHaGPqmtoxtcjA//Kd1elipqknEbKl+dihJLcr/HxNmPWSO18T6y1l07RREYqrHQeFdsFU07y8VNWKfZWm2BuN2zxDnq9s0xV2sxq3ff8F2iUvED+x6K7rpk5kOx5n5txcWfjOidG+7WkZNnZikX8qQGQuLvNs/o5Sh0sQnKh8m01Q4BRhTDHmApvV3d1mef2UBNvyEtDKP5F2h8dLe5hEPW63WDf6aXNjc3pbZHa7M6+1mqbCJ63KfbTbirs6C87O3Xt37smrrqbEMjl14VtxH7nrpm+dWKsye3jAJKYqJg4MHbc6Tl8HEaf8uygn8Xi0m5FXrpXQhgk/R3Gbzo6vTZpp+ZHpQ9qJt19Y+55lCtdfpZnvbUZkKn1zyDwE9Fbfn1NwPM+Yfa0hdenxfCrAdQC/zAh7Iym/l3aoBjRAN/PaGb3y3NKq2/qlvNY6k9Ka/LtrYxuj+ZCXhmPPN8t+PSoY0WLtX2j/pUqNwOAvCyrlq4O/HW3ehNhpC5hejCKLCbUJ2I5lUJGJhLZMyrIy0jCto4cAUs8/FbiLaZ0QyElAa2Mhc8tDjagpvdJNbgXs418ragw3EUlfduTUcEw9hDkUWi566+1nqQnENcfkU66mR16ZPyYtes2vxXdf8qrkKaM3mT2viGfeMbGb513PkEX4zAZziiw0oo56VTH53pG3M2L+zhsWj+WqZ9XpcJfkRST1envqinLewbNjFrq4w3Da4HPHfGZaFz0K3U6v3urkk0Mbs9afxJTZTrhCHU09Bxm1byZA5RkJbwOdRkNsPYRWV1bUDryiTLHjpekvaMtr9SAgzy53l39nb4ClvPYCLfX5sCI5yDWbLma+8lXjvDMfm12FhwylPMQ5F5kzqYuLozJEzJTqYHRN24uQtONhV/8LRrd2tVyUVMyW4iRgD9uZZVNWm9hkebTJxsW4nMS40InLXyFKPrQXgY2WeXY70Gm5M6pthRjJl8OpL2UiHjvYHxPDr3Dft7TEq6nHhvsjr45t6aFQ0qJjPDGVsqi9GXTE1PL5ET9w+pG4b4nP9Xr75H0PPQzljktAMr+kHfneJ023N9TVPWQS3alNAG2E2gTG8ebGzzkMV8a3/n1O4f2kmQZNV+EcyMuDOJjS5Zw2gdLfw9BunmdeZTcLKDd/RV78eUHLSUAs7tqUtxvYzS6btTg92rPIxDMyjdbkPFo8d11Qp1xSM6u6aLoJVwWRo1xXzPfHFNpmvCprKmbvhkQ+M534pix8ShzG2S/L59TzWAXLG5eQ+YSeJS/m05U1KzJXSOd5LNWzFGg1yj58/FOzo07CJTVptZq1jMA0erDFUDvTGpa4UX6R0JRGyjONzXHU98yrDCw6X2z4zsYYriTcXfKqW5O0wdVSjybpznmbmUvDDNrJR2kHcGSnsylH6tFyIjE7KI0qaSNtABGlPOZ1+ZOHGN1oB/MPIpPPTjI+mloqAXHGQQYShrxwY2RNOVNj6W6T1+XfccMY0hxzgEW6W5SXgwAPvc1yOKS848zQiDti8lkuHzGeW8jyxkBM282nBILo7JO8ur6A62Hwm2CPIXfUshpgUBtBHGHeUZ2q0JE3scFbHGxeeX5BK5246MBX+3N1e2IUs2E5DgC3i7SiikirtLZ/XnHexWYYm9w+L6rohrwshFgM355dK4FNaLaloVcFLCbMnaEhlheZbMqcL0Y5JukaYqeM7SwFUj426yBF8lYnNs8es8y1YHHtvGfzpSdAabhdNaxXkb9gm4aY0JAwaSsed12MPsrzz+GhILivUnmjVfaLbcLsabMNreWlXg6Rm9iC6KM8Hs70cUEUG3mzNzlMIWardjUPkYlX0RNnJ+6PuaXJANBhUyY/MbH1CJmZf+pP86rlSzzOeE5wom6caSkzbYZNnD7meWHGDhf2YVuEL8bFIFG3Qpt2gHg908szbUjy5SSbV+kPPaV9zTb0DN/b8G6ujIFoQDUGkN+LEZwDHKVFpfVL2vWZWdLmdtouk+u/jf2n8AVQXTR6fl6KWzB3wW4dXPS8YrdiL6Og20K7eGf7NLIqUymfa9I1FBclv6TdlDD4RbFUx6KA3fmyqlfJa7MlbyKjCx/mVZtrmwJZtqHdOYNaTZ22xgafDQY+aJ6VtqUYBmef9pq2xhXXmfmvS3yGPoPdy0xXxgB7ewVta9vFvXe8aYz6c77rrY7P+vHNYfDrtdCNS+HDhY4cNAi6mL5j4aoUyWcOGGTXb/etlVyv9liFnU9LWg1jJdYjreLNo968g+pPCx27pe3HWKm+WxuP2AHtjS9hdyyKecH9zmeL3RdLmC/hvsqxuBz1tOdiBra/S76PZI7f/moZFxZ6nou5vZIWwHDXDUzt9sZFpgvs7raqGOELngB4ZqnU76vCXsadme04su58qb3ZsLqwLxFd7MDG3tiatrN3HwtfO/uy8GmiZc/yJe36LJcbAYJrDX9ndvczsYqpSta2PmtunS+WtDvcb4LMdLwyK9zFBQfXcV5ewb+TuTTQplcv6RRLp+2IhnLKTiXPl6kMjQ9MaNMO0CLlfx31kpgZ45g0Z027CW/H/e9POD97CV8X3nH/rrZO763XRpeLq2QNS2NjIK021YATQ3Qi92ocw+DahRFkvr4ZjG34Ku/C11A/I2Lyt2n/XMgJVx6Rg/GMWwYjkUdeAKC0IWW3Iq7688ijlCvqQd9PdwTy0TIuLyrfTpvLgHRjEoNQ8hKpwuifU+ZZ5s5HtiIsCusbVXhzDyFt1UXoZGkUejZg0jYo7aue1M1SJTsZF73mc3ejNfMoqxs3n9eWHO1baFnL2fYt3F+if+kPr6XMeMqfadIIArlW6oiPPoeITs2U9km3Pb47nWxk5bKk9fKs+BAuhDaw5e4j79Fd71Pukae60bhnGc7popN86PI4aWca9/xEQNCCbogsLd08PeS9+1xdtikTlI/F5JbuL5TxDrrZjGfyJe1d+DK9ujWmeyXKs4GfX3hLqKBZhgkXeTZkCTvAXTTixGbeWvF4vnFAdlZSrMAJoau0KHy0vy5YoL9NaDqWM81cOOGG6y6rxUZuZAy5g0/VzZLvRufqfsi2otQ6V1ppdzKmXjNjL/GVjT+gRTZCDRtMTZxvIvUdN9rbJuPCF4gFvbj23GRRAwC/f+UKlBHvvehbPgup5FHaXMNjpuGUh315dJORKtOKLJqH2PFsVyZpbdZJw1GRv+CxKx7bdMfzYo/GOEbtzcw/CGkHmh6beoNv7EilPVE7EPJOGU/3wPbhmTAxdtqYdKEkzufu0T3KOvgO+zGXury5ysOE9pgu5cRS4nHKeHfgY4x507XebbofsqzEbpYH2NiBWR90VXTqYcT7HEyyfgbtEbgfeW36/OcSxkLvD8cHpt9tYpYgOYxrrIDQbRAT5NQtRSc0L9Kuq0qQrCI985V/Td/p+4t0xUVC5expm4ywzbMBpgdsVWbJa8vH1jTqIpDeQBvl6CPl0EIdkMsK7JoP/xyLTFk5e1pNxzoEsBrQkFfPmB2TLoSPxMP1ojGWH5l0SiN8oy1J+TptuAaFWh3uZ+aNdr28pAVobOs728kIAN5oRadcZQsqz7yOkp8JX81Lg5SPejSTNlTbYI6VpJQzwZifWBkcDpmslmNmNO0/0m8/aU/XElQ+TfRwnSnnASOBhxzZqMYVxodxkjh8gYZPfyl1HbRIf8pvxhjUlWbQFB8tGWgcM+0RH7VWF0LD0NXhgIcrY+7odb45GEi3zlgLFT7KV3URZ9ws5TDh81Vuvmoer60iJY1pWuq30ibuW0LSLNYln7ApBtCtj11I+NiWNtMWsSjL5szYbGq9iFs7QBfowJym5i6TprOWMOCOLqOCEwUGt+WzlHG6sHfbh07boyWvwlsFNPbG/N94kQWI/qvbOv1YgvIv+hDFlDmXKiCfTfgCqx1Qoi3+8hxek/mKlg29L9SF/AWQG1+3isfSbpj2AHIiOfMw4ctqSOzmQF8mXaIrK9jWZNZSUgYdA0xa4v4RMz2rfUTkx7QZ6Uqe8TkRtCyfUWbaG3UjHBXEcg2WFoQG4GaD2O0GLv6cC+6neyLLk5sGWe+c9CSNyigu6xNjT08ZT9oBM9yMX1YjFtP98JC0qfi0N4n7HmWf7u+4we2GE7doF868ZgfjpGzY3no++nMOPyxnzN73VkZjj5QV0NlROTgDZBA0/8ZzAoamjfTQtJ12Rrv823ld8r3Ie8rwWOaNjFjzDZcW7QOtT+hK0fJ+x3cjV3Fx0ecujyK16kfs2CrHbgTtkrbGH0vame/cgaIRQZMxFtWCtmq2Dm56+XR3q9OvfPvzoQMWeBitMmjWPLUMS2h8sZbXSrp9+fpgTiv+HMttpexpWDd5dQnDiF273TSurXiWMk6+PLyspTvCqOverNDWTGf0qtNF102ohOKaxk+uVHKyfw4jHz74PlZWfbZzJZbbZGNIFIM9uQhlxo3J2XzSg+dt0gwgLu1g3meLd+2MU8nexAuoM1WHB22MpTyR2UU2/e7XWwLd0DtOuog+yiLxIjuiTmkz1ngdBG1xn1nQGJNmh5lX2N3iFzx+lFe7FS+qC1W1r8Jyyu+buKIbfyCTL+WTY4aznSMXfujyvckLwifzy0YYro09LeUoZ9d8zbcbTk3bzvXRRXfIvsNczShlrbhxbQeCdtooP/s5sQ0eL3idONxvur2yA1rCPZ9aVte2/iLtFDLk8ah/mMtnTgbWrbQ9JOKxLdmsGS545TXtbFAN9zlWCPydruVuYSPyC3t6qU0wzOI2PXmkGrLcAejnHyrf2XbVpSbwuNo1pR2/ZeGBmIosT1m0nGRj1w/4eBpOv4UuaB9YJ4nds75qAw0sdxuTxYM7etOuqR2I/zJ/sQknfHuD5zN8/eGdp4keDSaNorxDNRIRJlDFQEYNpP72lo/XvAiiZzNmC9+wnvNRDBI7z5Xffcmry6iGjazOSg9vclT1lZ8qcxmcsOxRvrkjEKtp1dVvZ6wjq9B94h3dDyIvBUPXPBFuC8y8uzFE2ilwDAZCxgTtdDH0xmxWilxLGy6FHTiFb+ab8uqzajZg0PksMoXqfEsLjROBQg751yQu25wMuFksfYbW33DJOB3zEpQzEhV+m7rudcv8x3vd8cnMsh30dqEyzhXFEzEgyXgax3wuhsj1OdtQlkXqOGia7LMzq0zcFTzPMQEalzmfS2MgLW9nZJ2E62LwkcPSwRdBmyrlACUzyyuu56qnHWOiaEc7bYCmmykuXZy0XXAFVNx77u0522MOmrhSy7MXbqLXtwQd6fdcVNXa3gOvpPdtbIb22Y57ZQLn4L0uKwZ7+y3PyjPyAYqN2eJ+Kb/Ey/gp6gv1b6GVdN3O7YLicW0PqddwXzPAdcHMMc6mlvK1vmOVU7FbTa9jOCiCqP0hbWTspe5LJ2IZFBy7bhgd+FLtTVSCasO9eMHXrk+ZPOOKCNr4xCW29xXpZ7pTtsi4+XdHq9jGBCYSnyfmRJgO0imN5u/yHLSzkZ6oeHIWWltpKYtlVTLTE/N8medExedEQfvA2J1HtiNX3BRMnc+n0iJtU9LqoE0mLROP7w58dCC/z5G0LnyjKPP5LhWsunHRDZXTZTyjnUzbEzaDfA0f3QA7aHGyvFNvFDRwQECBrvSB3UFroXPyRdCqvUq3x7wJ+PMNdBV969/nFN5nYmYyqVeXDgDqSsKJQMZ5PpukFaPLPwPCVUV5GZAGVm9mtMgu+TZDLHZUi1JcK1aZ988qY3l3Q2X0Aq0JT74vhqDTAuMSjwOo7gfVnUTjqLtx/sEj1iU+vttlKPl0vhbxzZWMv7WwRkkkHjyqe+FeAyB3hSyik09djUsZaMjFhSV0k2mLUlz0L2mTH2Jlj2DMPw8+NE71WfkWPuL+Em6bpXyUzsKYWKx0joxc5FAZiwpJH2WfLhKii1SpiX7EkG1oXaIOmwDEiYSJQTWIsa58Q5XUx/wdkxnSUtdLmY8wnNRHPY8BwBwnDuRB6rxOOAwnad3gfgx3ELkJS2l1guOe19dXF0OZDJmljCBQD5nu82+4sQy+hY/xezwq/xwo0JVxAs9CG+4sttCeLC8HTW8IQ7dGPyvRt1U8k9+MT5zL3gTSah82JO6LfYmx85ULu2fajqm1k89/j5q+2w/lW/JCytftoMp2tQsdtFpedDzepy3PZvMmwoER0xlr4gzSvXLqfCIPW0eVQWIgMsEx7E3glehjSl3RqD10XNSJoyqEUqhMghuBACUvYUg+JuVZKh6B5SbpVM8H+VkXcpKLDLwtMO0aVhkjJB+lZflcaEffH/V5OxjLPBJnzNLtTd39dbGKWDfKly2ENqPKjLBVQ6cIhRJHDiTu5268TEiifMSrqXPOQSKvGAW0OJbvCLyibmIXinSxWDXKdKOXgdH9UbDRUhdxDf0cRJ5Wr6b3cA/PZ7oqqnulB3Yfi61i/kdsw1l8ZPqcda/25sRYwKMcJyRfR2I3JyJiB7qtOoN+6tOOyO9zc/nrIT4H8Ia/zym8462M7LgjhKk1fUZ7ZuOtOXlG5XNzF4nfL+i/5yVsa5w+K22/RviCiTcegWGxYoJqcHv5NrTTGgUIRZrCy5fpOF1LYsoieeXqoqlVmcl84cPzBKsroy+uJqYy97RFhz1e/PJDQVqeImYtT4lf+fBMhfI1pQ0xVveR4/Bp8JoLGbpb4MuugLu0o0n0aXeVMeZDWqaokznQ99nQas/gvE2lmuRtIryRcSxazwTizhdmsOsZKWj417MyTfnOAYILXeEjz8hVwGzNzFNK64UE0fE42DDgPHPVxpvOPVmkKPJMA86ye/yKcUdRferGMD7jLOlnWg5A+M2c8fqMeMoZ3ZQigAMTWZU27jFRrxZuKt7EG7yyYE6lXTeGx8HqD6cCdCdGOvuCqY44U/Y6m9H4drE7pm6eo671oqgHuP/I3mxlpMJtDByPnUz2QEbJ0l9Rni4jABnkE7s95Of5wlKGsBnCfIP7vQwkrfWXOLy4tHfXxiKzJq1YvrpFqgwb3G98F9yvKghpOEF1qb+aoonQ+F73ohXntzbxitayqMPDwqq+bOyamHH3hK+7vcGqK5WuQ0GTaelu0tbvugXN/j9x3yZ13eFkAzpTszNecT8YKx43+YspSaiOSc8O92miaI/igjXhM+J6WxQWs0MY69MT67uUbFcO4COv78eoo175Y0GPDooILE88rdLQAyGfZ4l3BiooX+O6+n7Bgc9u5+ut4V3PmGm/BDA6IFfXDNPVjogtaTutGm01CmqMe1qmR0vbQzc+LY6yaPxijCw7WpBqGTRv9umN8XUt30KrhrSWy0hcdK3l8/quPweiJBB2fST4SJytfKuLZKYd2W4MpsYDE7RlV6aNTrwb0F2diXFR3XTdqWHO5xZmkz0Iou450Vhk8IV2tcwX4DfTjgPfns+9aJuyu+f5sgH0g75+H6h3Dw47RlodtAPjfJ2GMdjKyZAh3WOPyC8HOWPAMN0ouBpZWpGH0T/hcUyZbSF3bpOPTbOUz7z5UZqyW+BK5sOc6NZCiWVgVZRjGe/z+zdII83LeyihTvTH+zSMR5R2rleWSjzgfsKdt3AdIRPzPuE5/pz/ydymexbPh7HE3DkVd7Lkm6UmLZqMMTH9xBADhXmRUAzuOZGfbQjWFt8IPR2/mb7YjA1eK1aqIGhphdaPFW8L306rz80LYpF9JyNJN33/SsaCv7ZkNd53myG06u48+uAG90/Ep8MqbS97pa1ujhIKbUs0B9h6cVRJMXGD2FGxinybndvZG1XOg/rl79p0eM6I6QL44Scz8ppX4S+0G75a3t1kMO1Afal4zK4U/Q16uqlXy97eSFOtqjR5z1t/e1AZhdiM7pFjUmaRNHEfgvvlOTB1pD3kabUDgr8OWPnW6IyNdmjTLho+zm9j8phHVC8s+FpgprQ58rFxw+ONOpq0TEvc1wtZYjF07rqFyoxHECiX2Bj+nrKEd8XkoWcVI72UKWwIJ2eOnGRqvNhIm7paJqufWfjcd/ReG96/FKxn6cCL4beWdhfH3woGgoPbrGgwxX3EG+1l2Awcuog7vsEne1IdEOwGIC/wXWEnjWQxar182KuUuuk8y+C7ydfLVzJX4/2gXy8DjtDrBlg1b3X/IWmQVNfFSzGNBkLA8kEoq4o7w6bgfTHr95Y2XPH6+EH4EJy3g6RucqWiCPYB2jbkSjVZkUld2Er79Bbf085Mwt8diBU7Fx5pViNV5R9pB/NwD4T86yPdOd/RLeVsfHnF8SkyR9WQj08d+GgHOVVMfiMPli1lCv97R+ghffLVPSQcquLmxHC38Uyf1zNPvtLeDXkVMt0i756XqNQr+HkFfrqp3D1luWOcqxhXJCct3RkzL7rB1Cv+3xR2WG5TqZatQRdLrjC1vN3YjMvdKgD8tnaRqcu4o92kXfgKwYKLD2wTUMv7EqZqWzZc6aZlRL4N/LYDLg5yzeGCG8sO8o7PldzFBlhLJ0iguL80gNkrKcsr7c1WPyICJ5O5gIGlEZnIWBFz/rbWM1xtkS2mq8bXTuFotqiZTxfaOkXKPlQ3V1zVnPZBdRTYXVtFugAOvdZPlNS2uKTxmgdPu6WNtBgPeWCqugvm+8RKS5sweQS+m7xHxePAX9o+lsHVoXvSFLsD4cur8y0mT8TTsANuYh8m5hb8HHLwEyVqmyrGTo+Yw4PHnbiPatsCq7mQJ5h/R7VBd5HlXvjrrb5ZHtqqz/mM2Q9TeD9XRoLFPGsATKPE78vYfG897fztqO6KTGfyfPXtsJm1nxi7BicqQD+gLTg933HnYbE3lFFlskqbfDxWPdOjS1a6ukzAXkY+9PLETMLroGShBUwsQXgPHICfDp5Fm7FV56j5jPJlXgaT7wd51i/m5ETSrjLVCZDdfNzacs4r1LvxifLF/loKWdzsUHaODL7sJGn5SvGsFAH8UPRxYPmoZ2a28uWK5v7msLEvcizup5PW2yq7CMkdpDhLcqZhGkldbrPSAQJi4NPdWrizQjcYpc0PZbfzHHN0EeVznjOYEsqyPuuq0nJfKRhJOaf2fJSVTT/T5p6UySjHqfkYqUyzZEcY5nBpMSStIwbP4XLmDrcDmC6C7nfkcnHuUA2Z6TI6OrT7OXeL5m6Yn8kHAG+xM4ydhI9+G3Rj6IPTDhwcQpHvHECwI7g7TraDeHcfMk9a87uc9aCLMvnMNVPe504ZPzVoJybuK7Zr0EbN6i3YOV1OFRc1HeumubPFRYxz1KHtu+CXY3wpV58taToeB62Wp9sBPnZapVHV9rJ0HhC6RhMeJxc2w9yBW/K22c6T52iAfsO6saVp+U+zN4lPE8tFRpPf3YPCmm6g8dTjXL10XmwRFYNxwdHMV+3NyFvB2hc9ZluoeNwX6hYbMfM+nLivCmnuikU3tUtgwtXiMkn+l7QDj4sdMMTOXk6wKpgvLouRJtARsZulfGGIBVrX/Tgttg2DQ1szZ0HjEymDgpeAAIL3Ueasr4WPSfy0cRApGKdtUN3sx0ewtVEl7sMxz1NJgUtDj0YItrLADkexA+YaPxRumFvxc0dseFsQj6ltg/l9emwbbu64n0fwda+4736vukOWl3xpBxzzJkZi/+Q7awcnzpmvgW71MUh+zYr1ewb//C7xeGt4xx2zCoy7CU/52KEVypVWDezOmF3Q9jH71hB2yXcDgB1fmbB5o68G1qPTO1CMcy97Ly8elG+VyR/rYj7HYKyXJ0Y+r8irGL4+gfME3AC4klMVqfDxsB25GudJu9GNxBaZFo/DVicFg1Y7XiWWSce4bXCXmqPBxldLv2BfaTmFdNe2rdfBTBO6opieA49Buzn3JjJ1iXqdlEllNpOQo6znUp4zP655GcIYoo3RPFZERSoRqmiJIwrJtupVr9s/T67qisvso6AycoCItWUvnJ1SJ61BC8WB4Vht/RjGNosYfNyrGNCdslLS4AShLZFbafPfdG15S3jQkQbDFdus6hbAupO2weOFT46noGp+hN1FDiFfZdzzfclWlc58SlLbVMeOdvOcZwj3fAP7NuVj/cY7Qpbv0tbnFck71nWbkXaPcX6RtnV+4HSR6cK+bPPq1hj12Ts2PBqL1t6VH12nIJsy9Hy7/Ymkax8rTc40fcNfgbzhxm41qtu1TflakkYreCE6n014R5WZ+sCb+9kKL7TbHURtYwXqK4ISsAumapuLpr2C3enAR/G4ANo4rOE1Xd8zrvK9anOLun3kZSHZGf3fHfiu5128VmiakJN7rc/00gic01irNvWquUYJXrKF7xhG+/vhuPzjHSdmMqqQVz30QcUK9g/SFuC4aFO2xgXtg/zj2YWP5mWVxvuzMopBxUwUh8y9dsBVGZcyr7KSz3QV3SljsQQt0bwYo0+jtvItQnE3QQGKKDmBzutzzc9z8BlxLiuMIpPX8jG6macYBPuGT3lTDEF774S+HOiaYe5w0T2xGeT5auUr+ZbEqpt9XfextWr55ATIIO4jDh4Yjqude/kKn9FolE+PL7lE+cSUSVq66sFSc7EYgDSCjnYFMSxcBqdI6UJojLealhXYXFroFqPy3+cq51g/PYu7ztlkUNfFIQczO6a7CfNNmcOlUvr1fdKOvI9wiaGMJxz3KSNXv0dcXmc80h3hvsJBw3BZyRu7wh0Tx3BrdBNadZ9Mlx19Hpo8cN+C6WtCBcLAyqXxKcZw9GBlwM3JRm/zW9F2kyVbr3/2lnYjsmB3xjc4rnag5yd9v8g6y3aJzxv5V76zF+4wlB2WprcTdw1Gc547ZF2zvv6Mf32rjYjrGKtJF9od2E1bVjg3WmuGYFkkkfoDrvG4hMVWoTyPXZyzLHZ0FdfidT7cYV9Zd7tWPg1SpgQefBw6+O56zbasWlpSek46Q+ONVtMrTha8Ju5PodSFP13WhdatYGy9ir5e4e7CF8RXGZjlR2JG3D0mKsT9cT7JzGDnfdKny2DKJLTINCNv4rGn/KGHsQtXXQht6nWMa0jLuhyLcUNmnmEf+D2x/LSQU+0N83b5fXfBdeHrSHdKFMwfuon6kvr7nMPzuvyvGOiud2UEaYeLYVt8x/Iv3EOsznOWfJT2Fdcdq1zbHYWej6GtZpVireVrbih05UiXgQe0Vt8p3yKH/I5LjVXGph9Nq+84QyH9IkYpsy2RvGZ3XaGreYp/TRl4lRXGg0ZQlTMaQncPUd2h2Dwr+XJlabk2WJucsOQNVqrz4xh/NApWCsZ8rbSncHPY6oZ5J21p2xyj9OegHC4ut4MXeMwyTsXurknuuomr90URVTcmi8Mz3yhLngnIiZPoCo7ltP8sL10Uox0KH3WfCTcY12dE+WCDdzrWxCmSqHfa8MNoBMfV9DAaSYu6cmlTMcGbBY5vkk1BaAwHz1z5jOuJ3TBWF3h98dRn/I16uxlwm44m4R7jgM87zcfV+aN83X0mB0d8phxHPjtg4zLrMMyZNkFgDAp2I9bXBbHxtaFKu6cuvceZZiAkAhfbfDtuyOUchcUjWvnruBn9bxPX8+p8iPe4jb+uH9U0acNO7cfvM60qRfjKtYd2JaOC+1xgir6tDCvQzDwt/k2398oo4jbKMvJX4YTP7CrLbhPTqdtvMYA7XbUGtNoBoH7kvqUFxN78/9j7m9DtluZdDLqq79+z3/9JdCAEjSSBZOAkIiocMnEkBFEnwZkOMnEQJwpCQCSZCJmFaHAgwhEdCIITHYg4MUMn4jFEo0YhSFBDHGTkV867n3t1Oai6qq7qtX7P/nrf/35OeNfmt597rdXdVV3dfV39Ud3LajIu4nZlsE/i8nMdfY+OyzYocbV+8bh7FqyO5WjXlZhvlYesFd72Auag67SSH3IbU7M5Euo0lzbTUR4wI8Z64Zcelz/5BlUeo13ABh5POYmLxJCRP8FF3qctlhleeTjGtleF3WVXQzKGpNWN3tNVkA2UE2NTbpRNhGWFDkz1KpN+vyxcLhc2ri0DMsFy4j5g4DH/PHxsi934ju75p1wenV/H4qM/m9K4b8Pef7n+fNfv6spYs4PZDtUdhSN2VvKzx6pxWKc7ZUnH7u98NeFFI1aZ93vG13THezzrf/DRN+Ny9q8GrHgI+3D/pNNwYYOkJUlnCWCuivkR18ez4eOtcqBh7/kNfR1byhoyqDEJC+M7uiD4rQNR39wxmXmVuGd+VEs76oTqcDp9nYMkzvDVv2IDPSJfZ08j7bNX4EcH86DgE/vOuN8Iy85Eb6LpaHvP6GYYs7DaHzvl1CPODmq9P3T0I7pJ3HrgtLhh71cRVQw4ZEXpE1so0fHJdCVRwZ/ERQ9+Wq7lx0YN7kqgp2Ws9awE8n1Wsv5QdMuk3K6AXVTMsHYeIgvx7L0XPL+MXLmqGXevgW8N6IbPNfrjuV7rKinLJxaNsOe/dHj5lQRtPjEfxFwfWD5Xxbzx6BsYO+7RaVS+5LmzifzCuJ/h8e23xL2lpeHVDtoOP8vfJzoMrvsWZ6DLuznEe4Xt0G/WTbFN2cqrfG48h7PMzvLzqTeFfJJurfbTa6M6mVP1yp9a/bPqmrIm31B2Y3vzhJdIokG8824jCrpnnfjZWN5dYOrlI+y34wbG5j9nJwjEfeu4WSEKGc5Keehyyj2qSOXbjmcMxBUv0RiFqbwvcGAgWZ2izpK03tjJN4KLBht8Q8zdDry3FcZ+Fpc6EQ9LWbOWq0BGO4ud2jbx1DUucTnjvX1h57nEWqcbu6lP1cjCaIfFdwQPECrOwF1nflLHz3zi+x6WRRn+vitmZvZPm5mb2d/3W9L5/VbM1gGobOAu7dFxcxk4CWjEzXjg0aouz5mm1s9sHVrhn/DogZtal+P5aKvysOS6xlWwPdiXxCXopp3VT3WU46YHGY+4pysJCS/vSHyis7vnRvoGhGj4n7heWMbxfmDMT8VlGXg/Fp2G66KELZ22C1F0STy6TLpjDtI6LV0Bwc02CmIS9SxPCdvkvA9eUztP24wOtlZG5lWA8dxf1Sa91abSqdxHykaiOhOQ9jLyQxVpC5fg3qnV/yWslozmawO4dgApj3r2DZh3vaCrjoswU5HoOhY1KmcpBTI0rFUWIzRdY+Ja5Z64nbP94ZJUbjZQV79Zbzaob4etuBnHM/BGRw5XEtpKBmVSFo785s8yLLzBTqkj3E7gHceph6brADzcbCoswoUFJVdnQ61O/qI+W+I67i6AP/cqGSyYauDdEfIxWwAZqFvzAvwZU0fFPpEhf+TS6eDiM65g++PKHY62ISo/TjRqH006qOdl1qYZvHbIPc1YTYt6CLZ1+xVcf+KBk1e9ZVW7OQUduN+vlUPEOHxXI+NiguaWk5tGgwd9oBvvtgR9wn3FvDMtyc/km9MNvWuSobOjk1vtOrfhvg97dV7mRNgnroxSQRQ3b3wiOp7qBm6EJRT3a0hJMwjmRsdcVBYeH5Z4MOF4l7bcoiOrPVd8lvYBJC71IMbqCYF+5M9dZVILm/jrgs/EMsnv5V77y+KD6xc4zQfnKYuO+iA1eg9yuaU73RxFJymZcGPsAaHqyBZQeJxhthu+bg6urrINT83VSQDe0zXdS2/yQANB8YBwCPF1uoe2i2S7zn/PQ7Pfd2BmZv8QgP8UgP/bb03r9xmY6Zgslyuqo5uHz9RKCj8Tz3dKSJ1c/zB5Ji6G+tuBGGS8Zpp8zyNmbx4VR9mVOCUztP63exM9LOBS49YpWpqw2Gqs7jimXOoIznopBJ+2sYfTIjuAyX+l/yssR7uru4ue1DjtY0Pn1sOOn1po+cNNVRphiUfGwf0oBMaVwhthZs3xVgfsOanrxtBxkGLmoTpLfb8MWCud0kbc1q9cRMqe9/qlJm33FtEx5doI250LEstwGxIhuhqkM5XsfrjP/PVHaFOHkmsYvVfvn9SD+4SYjqGbdhG/ycCKZV2FrfeQopR3QNjWlMRpqDnwSMVklanb48uQ7j9ZKI6HuDbdEX3Bcx/XRVsaOx49wOH9TvdDzk7yKGJPPXe5noTb4TLA3HHh1W4leeTgNpLLqv1ktdeM6QBwX7jK7dEy7qo8kKSr00HXGKQrS7pb+rDlL7smrgtq5OrIifvV/k5OEBcwxUzjvWIuqwDQJ9Kq+g8wovg6UENgZZw0qHIln7cmfej8AF1Dp+O1CJNrSZiyYeLROp4dSk2Xw4d0eTLl8lLq5iYocQ3o9ltAZIdM1fGcnBQbucS1xhAs5Qb/JG01nh0/TTAm7onHWp6R1q0ECxeVu+LkW8NKO43TIjWu5K+wUO4rDxnXRkbucRUXW53OL10Z1UbN4ZVTFSHPWCEn37AeEDeGhbzT9Sy/wth8F03bMb+HqmXSgx2kLW6re9o6vKtKTWoRn2WgU3WoBk7KL4ZX9jPbZTAwlYOSSIuu3av4hp882bkqoLxAV3YfOpKfyBntmZEHTddA4WU8rNXazZBYL1iunDGPz6cdBfeFf5ozuOeNfCH9AZM8/IlWlv4cl1eZ/W4rZv8igP8ajp7ir7l+83H5OUr8HwL4D6RCf8vd/9s/FS/ag437sZoFQL8VpxMiSpJsh3VfaR+y+PsgpnsnEoPo/QxqD+8e5I6wp06WdHQONE0SFTJ7TOs8cnjkzyS8f64H1Skm85E/EgNfNehK3ALpe9wp12/p3sJ2Lp47T2dYHUlIXBtxFfxbbuXD7nFN44rcMu0nOvOYfIcem/wcdpoxB9E2/9W8j7inrb4hh30Dqsxvy5wuKR2FJJZfUZGwtz7KTS7JtWcbiwI/ievImUJ2AixdMzRvpdPRWFnzM15qWQTPVd14vqtjEU/bBWTUEQ8f/viY8yo5Qw+Iy/GJJaUqA3ilO+U0SWtPtHLIPDBrjtykna6MR/545yLH2xTVEYGrm5ehenTWtiMZs2mdw7DfyjouGWw8tpT0gPv5/sRuYtn49zzCnr8fcP/Eaw2jmPtNLMcncjXuLe9676iPZDOA2Qz7SVpAU4bbQ1jBuJMzIu63sNuPyPaJbfxZR7X1yadiyzG+O94V/yhWqQ6HrVxxvfI3uVHTOnEex/3APdUZenmtmsET94cOI/ANu7+F5XMu7YFDfgqP+Y+3flORG3nmu/EPAA5ghoM1YDvzzkk677AmYYsT5sUVJCtlO2zEnGnVQMqeztCbcuzEVOW1J7sRY3NwRQM+tl/RsVwBE6OslkOlvOR9J+gNv4LHxFu+c9BT4zX5hQFoF8Ytt+/OpPIAhm2aF0KPUIb3T9z0eZ37Pq7f63RFM/snAPyb7v6/u0/m/PLrT/EdszeAf9rd/2Uz+/cC+N+a2f/S3f9Pn0UoIs19BTqQaGAncWeVUuDGGRYFRIMkngBfn+0Dj890gel+oqTwidxHQhx5nwQzdB7A2Y2u5GpY1eSB8E4iO20Tf9pt+yRuvVbgbE685eckUOn43fQ9OnwYYQ+dyy6tUue5Qarx+SQy3O9V7E0OC4OQyWdyL3GpAmfgbH7oZqSl+evxt8o7KoOHncdMcMZdEqOR/hTjeSpTJ+vOw0BUvsjlIClfaVgrojzswGipB4F9ZfpnXLoGzrQ0bqS1D7jVUjB42xwAbEeddIdZx42Q7fNUTqHenE19rtJ4Ns4pF+Uqw3agoXf9nivYvWp2bwt8ECtqHnvE4HBfeO+F7a/Sg8I2+ngOptUk3/nzuk9rW+oveyOj2B1xAMiFJbbxLGOW74lrP/cinipe3TG2B+deK5f4/I+WG/n/dliuqI0V2DPugT+f5pnvn8LaPWjoOLGgVGT+FffPtE6+kWvwp9lPxP1p3K/vRbm0Bztx/dDjU9tNDuEEjp16KMdUvIdM/oz8NW4fKzvGvKEHbEPn0zYqvFfuLStRYcGh6Mhfgja585lvbpJm9oRvNOStL5h4z0+33JP/RgtON1PF91ba264H3+gEGYmNGMS6zQ7/BZ58OzUili+WX8W1rnOJsIxdK6/FvUB8g4vln9jHe/K9IG+4MvIblt4GNoCnF8Os+hU9GG2+WSYHTDmR36qeI917a6KJ+IxoY9Sm8dtweaxqFYukXTeCH9g/bh6lnbxSKk7NLG0Ayx387mhxhAtXWffN2E5YNf5dfP19Zva35f5vufvf4o2Z/UsA/v6HeP8sgH8G4cb4J7l+88DM3f8tAP9W/v5/m9m/BuAfAPDpwOwxnfo/G7QguuzFBBrb4+ZI6AakEteUGFGgjAXgGm1xwtZAKJFjx2+mf4Y/fz/dF1BkIgvxvdgzM4963BUsHP0srgDtvCY5TzLz9izBc+fsW3JjdskfMqV5kbSSgHrufkiRGcUeBMwQOAhmlP4hu9MPXP68+3nLXs3w8bejj6V/qpCojseqBK07QT9D7oz7mPzI2oKXLdldeEqdnYFKI39sn5+B0rbE2uCQsnhIa7rbdDaXkqT03SoNtxyAQEg233MQgxh2LXDfWnfMKnSGBawGM1qzjB1R5DDGUZZi2apemyl45KGOFbZyRGqd8gkp9kJ4Uu8k+Cs7Iyu7FK1b5D34PWTp6ZIv53HOjoVVdTG2gy5s416PKKUL/Kj4QjioUNPce4CV5y4uXOXUGP/xNMYY8P6K68Q+sT3fu/5Yakvtph7pZLpuT2l12KrT/F6qfNC5wj7xDe5p4ele2vVjHlXHgfv39H8O7le7OnU8IzzZ6gjdndhTTq9U3tznJfajko+ZuOOxcoZiV8HE6EgLKR2rerfVJ2fX2HAbaIhKCke37N0i9U19gNpElaW4/5TfI+0KbYenxCzRUw3tID/ZLsL4rGfDXFYdlds30ISDTo1Y7z6r44XzS3D/SKvnpHq4FIjUnFF8Y413a6RlNSnVGJv4qVxlqgFqEBIfmW7bHxrWaYxaLubR59jJHyHPsGtQZom1tQYYeUF+fNx6dXBJHlDx4ldwWKJd1ns3T5dFjyoGw5UDvrH7JcvvqjQX4BtvM7yq8A1X8uhCTyawJBiX/9+Sm1v7+Z4ux291Sfy33f1vfpq8+z/+9NzM/iMA/hEAXC37BwH8y2b2j7n7//PXKPKnWDGry8z+YQD/cQD/658RWshXHq8jjHoTvY6wBCTWyk/cSTSs/qszZY+DCZLkbT/WJzIyP1wsqfci75bO0NH6nbPDKvpoukO2TR2BWq4uV5OyDXvDz3kdOsPR/umGQsCz1yJ5VBcCGGIfGIT4V7/vWUN1WQF0v0mVgb4HsJbDN20le6gqgKh4xJ0FFiSi92vNkGKOqrZ071oa1wLY1gKuS+VYgex0tZnp9qzUQZZp1+6aeunIJqQqzqKNyr0WYDynPsuPs37k4ppBRg+0ug5SflrJdXAnnSv2Uio/QozSIXjlisWC471R+6XMdhE1nPVX9DxnPdLmITepsg4+CGtwFtCqRAGeQqc6BtyQGFnCmW9tGOl61h0iF7kO96ttY+z/MK2NOAqZXQnSMQ2LBBAHZNaXA/YLL9Twznd2PPLPL7FNlgG4/yRXoSjXt8gxuPfMFMsoZqmzIyKN6LPvLP28KyMee35v6T3tgdV72tZm3Jpowz0sgBqMgdX0SS5wb0iaBmWe758w9ZB/5qdm0Bn3iuPEZ9hWqeSeurACneELJ6o33AoZuq3SIJmmS5p2WYdBdrxfKudEAtz4htXUgcPVXMtg6l/vFY+XFw/5pZ3KzlZlQvF2YGrUOq4EYmABamKutJIVAyuuaty3JOvljuu6V8g7lh/5G3LlhUMzcNhK48aknmI1LFEidd0ue9JcuRfqbEIQR+/puttmHQO3G/9Yc1jc58An+zQstfe2bJChb0/K9WpT5X64tfTqWMTdA49bq5zCq/KTuuLcV8hjLuRbYe2DIHyTOqZtPOWGGinLOVT0wpd2CacdlQe6nsVhMQoWF+p8PAPedXKxwa2myHrFjUNRcyD5h3KDI1bqZ3JvcF2RwEJ8kMWSfbgqSNB5Win4fi7Hbx6Y/Tq57v8qgH8/783s3wDwN9393/61af7JBmZm9u8B8D8B8F919//Xw/t/CsA/BQA//D3/vnyoAc4IwFgJUrLR8CcO4hMy43P5N2vuiHsjhod0BumeJHiGJyHdiLnz1ml7uh3MFY12d7vneeRP3t+JGAUYReIjrhCq+dA7+psOzcitM/XkFqlpM60nvTR/sirXZORDZ1ton/mzIeYeJeUozeFwYTjs2n3Pz0lwcJ/Nd1TZT+McfiR0XaCk9SDndsnspxKQ1JLA5ScPSvTeMpLwKdd9DkjPiy6IlKMdL6b1qDcAdYuIDpGXLtfWBnfUIUDKPeT60eEj+SSNwnUtR+PWveT5/CU6kXyrlR4N0CVOrOJx7lPcPvJ/n5UJkril9UGPLdfZ4cuRg7Kpu6c7SzSFhwJgs1WdgeqAlRwbwTXkkPf5g+frc9xPa52r/YqNLO9PMNjP55/g4kg7q8O5SPBN3H9K6+fEPXW96dh2z57QHXNOHRjX9d5v+S3bnKsmTO9h0Nk6inHymLbyUNP8adzHNuaPOrKddPinyuQ3u7LKetpq6uAHIJ/3mnKvpNO+Jw9o6p/iGpoznC6DZ0U57SEP7Cl/ElI9CW5V7OSB26pXVnUH9hat/DM5/eR8ZrewjcefYtsRN3T2oo9v4n6ZKdFduKkGWmMy9cRj1XGGrWZTdZgDVsO1Fy7vkwkBacOCxdNNsHmI43ziPkouHuqB/JuGHRxmUZ/iCP9VwTqnz2m7+yiTcmGnRYoLsg0OLyM/a+9xGb53X8bv7UPRv/b6iWb18y4z+4IYlP2P3P1/+hTG3f+Wu/9Nd/+bH3/19943YwOTharNNkDfCMpG9RxkVQ2E93bEzd++4m9LOHb6z07Q0EvlMi00GD5edk+z4hIt+O+6m+J8oHDj+mDols2YvtEMN2x1J0HN3OycKChpuDNygrC3loOMpSPQ8EwSukFPvz3FLM9afBDTiOzDFb6zQ9tISMc3sUf7Q2dYYwhHHgGfM3uHbUYHo1T1m1xNr19xUHMQA2c4fWa91ppy1nCNjn/nedqhOwP9jHujevZzfhbN0pWvMxXHInuTg8+wnATVHV1sP9u5npSzdyXXap2pjvaVZySzrc+ds4dCulkum/bKtnFlOrGCuKvD5d6nXDG9S2wQcj3veSpiE3+dkIUY8O2K26dCqY5Mx2GlEwAs23WkP49v3pv2tD6NMU8WiwNDDDwpLOTGISLXYZurZOd7vjOb9sTPd2VU3P/yh7+364vOkh14zfLRgdfo+I/enshivGykt8GQ8sYD7lciB76Oa3SCPolrn8TVbJ9MoJw0G/yRwJTr/ojGN10bZfT5Z3IOpFyAS2e0OO4bOKm8jSPo6SJ+S6bAOjI7B6H5vFzFfUR7wv1Pc1emv/PAZ3EZbbyTiscVGD22/0j2Fvdbcr4l9/wczahRmW4vNB3Gkbgar/o+M+gIS7yLB4fc0rEj8L6wLRNbXIGSfKW3tmBq438fm09MJc5j4HF9hLkUmoMtAGMA5rD8dEt2wbbwtjf+Ms3LyUvE7tybfPKN080cNdGncRmf+buod+L3lWnCevVxyk2PBtEx3q3CfZ7SGBN7jftqK3IG61Dza57+KLh//WmGDH+WS+3ye33HDADc/R/+LatlwJ9gYGYx9f/fB/Cvuft/6+dHlH+VHMcxwoZez51heW+ND2PFyo77W9wlssgDHBetn4irWZB3dj6T33akUUcXj/zm/Qv3js8hZ97bDIPjnaEUKLvIEgePS273jU68ZuZkXb3mBSfb3hXOuKYKSyfGHsLe7qWTo7OEVUalR1eEMROZ7+xM7FFH+W0zWTv+VdvMuOE2yO+TPK9+idyhY993SVilrfnr1Tt5b7r/qISB7pUkR5ZFubDQdELybaIOa6Jj97vivx74huFGudOQRvCM8rOlB2ckWWUnzFh3xTYAB3+to+OQc2uE4TNZciUesrzo1gELl72XscOrcXvA44fcWLXCkNNhp87VPTrkRtw+xr6IG9x7ZgAc1/6odKMTsyRu5I/xHFY6scPDe3i6v5jB8eqjnnNAhwq7egU472915NdcCjXZPgf8DCyXCu/3JBT+NO6oBg9pm9/UGCcIPsZFt7VH7D7CDjNJ2NE+mN6L2etnhUFnfvjT7K7jiUnIej/k5st1pIdDzgsghlCJUw8QG/K/VGwkPD7ZcShpN6VVP5sn5a5OS7PecjsDxKt7VbVWUQROirBhK/s0Lm1q4nEgef0GzynW1b1qJIXvh1y6wTUGTbMByM+2pDO3rFDRtXryz7QFr3J/VLmYcp+TsMJjxeco0sDYrZVbjYl2u5w8IPZ44KrJAxGZ2N272DgIkbAIN9CXOcyBbR1ul11ZDqLzN/gGhcfkAtqi02l8XsCBsVtthZ3H9vfnSkq/jNuTcStPlmz+CVtEh6k/d5DH76dcncxj57iLp3nvL9dfz/WncGX8TwD4JwH8q2b2r+Szf8bd/xc/FTGWVT0LHt0oWe8b20bb5b3j/v6prftD3LrPfUq10qDpfBZ3ALjEOd+NuD7Djt9s/dnStxANphwXN8MnuQcT9GXAdBOUsKWzl91N08qZItsa867HaZvuvIbsJjMfuIbDNpXUxFjpbMiGasctLt8N+anzHCB7ycHtXci5vZf7fqb/enfqf+Z1Dt7CddNFD81i++JH0/Ej7mmOJIGds1/bhk3PuO3nz+7Y3QVU5fhxz2fzCGUGtM7XDiGx2vPCWDnhLOw4Gcq6DrmN5JBhXeVI3aVBbvk9605WWh6X3/sQvFbSvewrkUqOtR7ojtcyukZ2PR/tQ/LQRjTAduJSEOp7r1pBNOTeJJYPcTRJOuoh9c9npXwfL+LO9mQ9C04MbksVPrbcX3klvri4munJiye2fwvrTqy/Ye4TdvN+dKok3YewIy37RM4Z9xu4ONMR7Dvq4yPvSXp3WxyIeurlDHtyxBMPRIFbdWoPW+l1xq1nP5NfBI/1Xg9VUoxFtkUls8mvz+n+Fr6B6qx4X7p54expm5OH6tUZ9Jv3wnk/Iy4M4Deur22duZ8TF1a4AKAGY27t+klliMcADrdkLbvWiTpw5f6bfJNYprgf6XB/oAneitySY10HfT6igNCYK1xxMmMPXqic8hELNOP6KZdG7rhVHrW62GF4z0+3cN9bcHEMht77he1LK3DzR8Ulr3vGPVzXqRN8cOZI0HxQkLYWy/w9VOPv6vqev7P2S64/xamM/yv8ivJqUjlAv6vBqFZ1r8B+EOCN9I74lEt8dZ7I5XdZpdNBpmda9eDhnQ0y0kbNdE8t7Z6WA77Y5ptQa8bIiDs+5KruRsCohjXllusMP455AocjNsGeh4+owW4Hk/iDbRJCq8gFxASkoYQgYOCO8hc3p+tBAmhNP9JoSjgucQ82Trvewt7uldZlH1HGtQwXAx/OKFLuk8FaZdqCYaWK3MJquhEgy4v3jpzw6HpBVzdDuI9c7g1gGUcHeEWW3m59JyGXCV3Kq14frosWp09pH/Ry4L25wTgdWrbFYTHe6fGYZAWYbe296tYnRsKYT9b1kPvyh7i50dkyU5aDpyv/YhV5l4tD9AsM3IR+lTtO6KHH44eNux1dIBakXN+lI5BHHXusipnlqZJpyZ0d5HcC1/I4VzFOBuuTyajbtojL0yqvggzDZdGOX4iBF99xVa5PP+MHRVvHC8jj863uf9VVjTnyM/cM2h27De0Wlqv26spnEvUxLiQs28dxEqPC+E1Xa64S760b4d3i5kNit2YRkLavDa10ZkOxKZ86jXRom3g58gu11R2PS+sDnxW7lXNYjxQLfGl3WnnO7zoq7gvf9N4WKjt1VOSN8kugpK2Ef4bcgwcmr1m/e+Qb5Yy2Vbs9Ju5n3H3R1tZxbRgXPDSogqXQcV96aE+I/wpHij0UfwuP89XlueL4boRSuY3/Ip+PhQcayg3uuaaee4WJqTyhkNkOLPNYdOWgzhFug1pkG7CV+JW2OF3ygXQ7dp5oyHsrOWVuT75JnQyOywyvbAz8RAj5ZfvG3oH74Z1w4Y04SdEAXIbgENrCuqyVB+L04D64BPC0Tbpxpo48AIU4z9XVC3GADF0+AeCrG9wMyzboZrqTqwKPg8feZvji/Fon+QswrDiJt/Iep+1G3sIWoQdCrhmPlkr+jHJxo3vlrzqP96/t+r2+Y/anvn5fh1FpeWXORMaCkPyhGGefxpUbe4hLskJ2CF5ol0a9JB1ypw4QKi0+E5cWFa8/atZxadx204h0vE+s4moBV8arRVunNgTGu7nsL4D76UleGXU15fYMcFLxQnyC3pgTNvzB2IfZ89fqtMqdJf96csOmrpDBjaxAkOhIKMaDSlQJx+w5ubqAnI32efWoysNN7gONmbfD7ADCleW1PFwieNqezripleiSKAWi+TcJO8hYwp463Ope2mMtlCvjSF8HZ1D3kDPvkFlEhpU6mHWuypyizndZEF62Al62O3DNGlI8dbLetHzOiFVfrut9h2XcdueLGt4DR4blPgUzVnUPN5Fsb5ztbLfAdpPZzgaU+c8TK7ZZrXAxbneG2/9/uhxmK7TeM2fo5nfhhZ0nM24Ss4ULC90XL+TehhyNcO9YuFwucWGRuOWqmZ0CR+4tk71xovNvucwA9noax7K+QZ/xldWgjJjI6gK5n+k9/MaB+xLmlNvKHu1J5Q4dH+JyQk3fqc5Lfr+A/oasuIsfdhv5T9vY0J8d+Wmb4WZIWwzFBUeYQerF36cxDDctHznBcMOoNrZMuojcwmtrd0SHxbtlNdC8c5FVnviu2vAU/sv4Bve4JvfEWE7gfeY6r4MwXdHmvco943IA1VzWFVjmUFonCz7iajqfExfara4rpw+5NnDfSo4NOZXyoUOfIti4aWmnPkQkdHHBX9YKH/kjj1vlt64T96WAHBCu6vwXlue/tixOCoZj5/HfPvLQOjYPCGZ6uqxb4yTj3vDV5b4wNfKwRWcAeFkM9GKf12r89ROPg28cXa9qL7BgOXHfrd0iOcjdI0/r4IzD5t/hxf12v/cesz/F9Sc9Lv9nX2z7CYRgheIz/f1wr+FuYe0h7tM7/usY32cZcuyTdDUP4wScjvNr4lZnGIgl8jPvFdbvJ0DquyHXR1wgwY2HU4x3PsmTxqGAodOUgye5a6ZdmcPRKaNck7Bj0KXvq3ddtCBrfPpi3hvz7uSC1kPkDjmY6ZC4T52N7+H1395rxj1Su+mImdebXIicp7j29A7gYMfQgD2zxcT3Q7r4JGy8049ssk5rW3q6jDqSTIHaxNz57MRomdhjlTqKHn0SoQzQJW69Gq4lnm30iMtBtBve2+B1lHN+iV7izgz6TTwf10qrd6ZJ8vXNO4gesnJJMewQkJzZn6mXiPYW6XbnjwPSXino3OrglC7O1XmS373KLfrj119z0kfarfKANKzCVModOIiBrYWpD5jbcjvyz+IbjfutsE9pSdxu3X7LQ1Urf8B9Sfs5/y7vXADpjvtj/xzIA59xRONrCVZ8Pm2s9pV7lqeuyNsRtlYzH/jnhvtlgwGKN06cuP/b+aZVvuN+fLrFAzuOBYXPXM1VTumAz959ovM3wpIjAVSHVTG2FzHp+ib6fqrjKfvp3XkdWC4N8XITuamNZ7rI+lmkgsK24CpiKtNmZRQgzncTuxW/iW2JsQ583T3QadzXrEydbNRW5YFZBsRUCYlzZdmqRmWdS/Kja7162BAryR+dMgZnxBiO/Wtxs+e9aR52edsUjVv/Zo7/cv35r99vxayAu1dAokL1EjvbWbXlo825PBoPjopZ70QODLmXq9M741ayQuLOv1MPJZsHlZRA73F96qANcKjn1WidepUdHbr/TMOOi+9cbCOAFflTAEt9NoHlTDcVFoK8va+8S4mpgYssEi6EPOgzraVdalVSPt53ZOm0sAyGYXN1YtQr14RvOlb1qdm3kF/pZGXQb718imVHPdPnt0dVBzkrFgELpx/ExDMv9xED8rsstJmKOmbERv5QcZrQpVOdDWL0Qao4ZB+GsIIDdbpgnRSZDUOP9i///9LxWIFi2MqtlAPTojUcI62I23sUePLWGzGbTCLTQUpkKUgyTmzsuFOuiY5NiYV3YtgNh2ePzmR1tS23Yu8DFujz1nINp20Yx9MYYnap2q3jYGMEMHgLaXuP5vUrCdrajjqJNXgAWS4uqhWuoTD4rPTa6ay0zrak7fgBj+GHrOcs3OT4T8VNTLXzPfuLGR+rEHQ2aB8qDrnO9CvDPvlIf2c9bq71yYlH2D7BgGF96vUEOrRNqZSG+gSPKwliDnNVePxkC5dq65L1jvuL+IZ48w2+CRUPXLTOqzvat7lycqy4MVwlLPk7bDnrD+VqzfLHnypnbwOw6uiGp1WP2zO557cMlW9OOR34/mzihuXphSi3wRH5aIyf8g2scNslbkMqJ52Y5wfOqCdWA9e3r1x9bdzvla6OyzSRq2Q3HiideiLUcxDaYYn7bYE8z1NstfB2w4XXqN5WcbvtDh6QisRVzpMHmgh6gHefPs7DQLQ8nwDxO7p4gvKv+fuert9nxQzKmY4x7SLkYMDw67/HxZ0k7B6m4po8TzBUAtOViZ8sp6f3ovNdR+0R3CPWxlpOxZVLxLNc85kvfe/4pPVUXINzv1X5sj/olW3SAtthWz3Dn5vyTZ9xf5IWX1mnZdJJsTNOS+50c3/QZ7IP5jh1HpzvCb7GGbuTdRL6jlUNu4Vw2ZuAAD87bJXl11sjOKt85jdIqCfCNe8zPw6LgRfbTMoOG4my9DdXonV2OoTADZL2tNmNpD32NOnZTczNBrD4fmQxS1/Krz9ynXE9yeWYeabO4aIRckNO7j3I3ya24C4LBweEub9K4rIrVZv5kf1J48qsV34ui/1ascct7pFlsCws5B6nfJEurXTkpEC6jXB69KgBPBbaKhcOfr7aPT4iSxeWBeTer9irYGZ4w3KPXdS0Kz9OGosL/JRoVMb4jnDWF6dO8Wy7pc5zD8SvuuYSsDw/MG31z8/bt8RFBvzENb0mzT/BfQ1+yvsm33wT9+f9yF/p8C1ueIg7orBtzDbyQDH1L4dCs10pHucTQ+z5lAOynpL9tK/Gl4Urd2x7QhbVd+KQDyOYidY35ZnZn8k3d6VLn8kZYuNjJsoM9ZmU5/x9g29uBrbuhX9y1YFItzcil54xistpGx76M/xNRA9ijLaPRLhIT+SPPlWFRBXZ9Ijo8xH9zLLKyUk7rQO1KlUTZx74a71vbfBAplEY6pb7vtKFz9l/6OFXlWDKre2f3vvZlnnuuw07kkuKI1LHbmnAyxcuu/CC4v6Gube7PbHVUZyBkU/yTcTl8Y1WUuK6ZJbqZZb71wLzaetXskX8f4Xzoq/y5GD12cYyj/1s3+/1/bkk/trrdxuYNVFElfrMXWTM/B2uGBVW4z4SH5qsz3t+QPOIS9CuPo2Ahnb2VJb0NYkCzzpqbDlily4d7ECsIy4PkSjO4b0D6RadKZno5I2EjG2dX0eSr+jVtogOattispjK6XSt0xn5O/OPu7uI6GjjXsP2ffzL2eWW+7mcU4/TPSRfSTb1vQO9ulM6Nngy/FrA1zdTE1vU9ZC/8VbvW0d9fur8HBdJnKt8+rcveIFvUSoAA4/4j/QlJbKUuCTN/m+Q0SptpI7VvXV9c8cyywMv4hAQ0tA9L/l/76e9n6QHDtFItpAhO1QmOeT/M2zlGzVTbsgB2zZwr1j0P7zjWu4frG3odCfhNu/WkflVnS0rmXbhUGldlWsgsrWkc/T2Vw7iUfHLpRReOtF9hVvPu2uycrb5qjbtOaTTVNx26cjDQeJ+wXH9DBemh0uaKPcuPa18ORuhxtO4Bx4Pl3BJzwE5XKTlepi4PP/4auiov49/zxW7wv2fEXfkp7Avu/4LwBu52n7kR+MWD5wDGROdJr/cVsbgtQeu2uWhk0m6bBu3tMDwM6926nhg+cyTl9yJi+QFaSWv7DjnErV1F18Sz7Qwr1/CN3cOEZdyo/ufoV3jY7+4vyWzFV7U0t8Uo3X703bl97iCsY2/Ehad352nDfKeZiAGVLRyvWadkEFboanUTxe1B2c84LE7Xqsnzt57FXLOzOtoLfUrDM2Gq42u8FjyPyadfPRLqB/zVywSYvJo+jDuiftE+7BlniJkdRxJapH3vtGeAFzFVjzmoHDB/WobmyHwOApwwfH2Dzhegd1WX7VM21yDT3gqNL2oXHRqHjC4v5DDy9TJchC9Mjc7sWjBfYMfvv6er+9t5evXXr/bwMyB6RL4KXHJMxxEdYQ7B0rfjOvylw1S436LqB/ljA6Dz7gniX2qo6P2mT30fBojvBriqSNPxbrpcMh9fK/6Aj1QrPX5Q6dC95+XP84on3FrppkdJZvvTQZDQBK1W7kFtNPZ/bInvc6wgr1axkvi2hHvaUCXHIC9bZbfWZRn/g5d7qc4Th3tUcfW6xbVw32E7hRAzEIu7dA+pMUXLJ8mulNHHx2XM25v9O7yprvi259O32FkvpIhzCjPdlnpDsoWHYtuQthxwlr/Pzt71Ck7DLt7LnNio9pXu5PUPKv7HAywXUnF35CVQ+u26g74WQhZbtemrVC6mhzocm+eVp0m4ixnkmPyh7ZKMXSVqmRioL6krs20n9vbz7ruWZSBzufYdrunbkf7vcXlvz2Ovq/+fAv38/5x8vAp7jrinPmrjqjIoV7noEz+7fAnlou8I111dxpaVx4ecPHkyPx9S/vWJlVu6/cpT3xats8cwo5zuIR1/Z5trOP+er451DoBWssvHzmAvQ9jHDhZbeuBb57k3CYUv6HTuZcNmT848jtejTHrmKy4cSQgDUTymjioFlgj7sTjGBDswkbL1a/gIxPMTjkeDdP9yN8NfyOciY6Nv6h2UBhtI2dpv8Z92uXauYeXOXZPzyLJn4dtSmc6ILoX35xyR41hHgUbUqGhC1bg/nbgx/2CXuFF4fVp2ThJsbWMirNR7JfhOZnHlcXAXT1JstvTaPqFIXaz4/d0OfDvmhWz332P2ROoPz5/aFzAMwlrQ2QD+Ky8ztU2dnoUi256q2xteQDG0cCf5U83KfsMo64u986WPBe5XGGL159llPoo+GpCd7nlgVIdDZ9l9K1mqvuGGFb21RxZGjeqVq/spStK2S0CrBshn3L13bOqlV9Rs03aCt+iU8cpBU2Uz5VI5WhivSfjWUdm1UXHUuNJBlgfvFYHXmuuFJ0y6rfwHBMkyEcA9duPAJsVM7in2yAaNJOiYwDLpO0YWDtQ+wKcewBQcXelR5LKZ6njpXHLNtFQNpB/kZcI2421KMl6XhMkt9SZulzeeY/3JkRIyrbSadMGqod32txTcZ1xwWOA2y2nTnRk3LRFxXWRS7cZX31CI/RUyLQb2p2G9xXWFy5v2+1fSR0DixXj2FSOle/Cches1uvAfX1+G9CcYdeBsU9NVvFO333GVUeahuN9AY3oofyzRDavE+cFy296HqIe3wmmfivu8NQYHif+7biHHM0DY3/r6oX7avT3VablWC8mPMMqwIoTwIh/uz/xOOPes1eZSG8Sr/AABPcHiQy5rvc3HujQxC5tEuo5IGIrPDDD9mmGMw73cGr4foex8uAqN3GKpwhKk4m+jxO3mEHyQrrpJZbD0+2PcZIMeEhJ7clisRb2KGbSHTHfK7+AA3eRC+7FatwnXl+QZgUvHfipmcb9xnJyzFU6rspfnfZX5WgD28kZhaneeEywuzw/d2KxOheHgAh37bz3/swL5b4lPf4beq86FXLDcGGlTnlaLxbemJywhYO+3XL/cv2prt9vYAY8MBAazAZ6YQC7hq2OexItec+OeyU/GMKl5WGy/qfiKpFWOBloxdHOoquGZeIEvZPU0x0ijk12fSy98uxsUzZwO9NiZubU0UofQ9+rnU0SqOP8xVVyCniQJ3I6CI8ufpKD7gBInk2mgcbsocc74/HE2hNS26I7zqrMrRpp2EMOcGRjKDw7DCtttVaS1Cc9oz4WmTQQYW5uVRK3XNe87yMtqbNoAu18h7vE4lHA3pXzNjAb94cdaYss2zPsdo1nEpiDuZ4hZfkty4FGETfgQy7lyNHO1d/pBtE63W3DQiKBj0yhy6DK2gwvYlA2mq1Enm4unmGb9ClHZ/L5nuW8Gtqk7Pt+Zf7yd75fxr+Nt/dZ706STkJtO8qHqFNOfw6ArjNqG5VrR/5616AZDyD5bVfg1SyrKvajEZ543A8FF9VzTMIaJB7LVOMQg5RrTtzHEVcf20N8eX/Hd5UfGTB9Xrhx5Oe8H5gqelAnsY2ZoT4SXcZs/Ll99kT+wu45CHMVbeO/26U6deWR2J9dJ6ba5AEmkzjrG6XBdKtn3HOPtmZOcaLtUZijcf0hBUNxjaWd12JrbkUeuzgDn+73dbk+/0xnlM6CaoChju8PjBWdHjB15o7i7cE2Weqis0HxuHWi/kswlrZ6vTZ2cqQfcodOQ27r2IdyaOeLOp9xRSdoUzZwPL9slQvx5a/EPasJLvcD+3KG6eQBYvHEfeaRdlxS9gzTnQ1HTIItM7yW4YWNa78qv8R91JH3bZcYOAKN5QfflG1m3B7QAuE8+arJQA17dxD+ji7XiYVf/vc9Xb/fHrNqpah25d1+498173G+P/7NVGc4povjPQHlIFWdlR3pn9of9bPCnnqcadgcdNU9dXbAdpPHCP+g42DM98NbXQABAABJREFU8/2jjrH/pDtE2tS8dD03Nt9OX+G/w9bUs4cFxc5MV+UI0TR0MT9Vemc1kTjhEjF6JgyfdhuD2pseHZ7vTjnSn5BOj3S7My6TgPWM4OfXtO0Z0h6imuTvW2HVNvqL7iPVQc+w2jk403JYHjLT+Rv95syjlxtjNCy6UMSm5qN4OhjgnrOfS4g366drutkRqY3m8+SsyJAfCkLqtjZ46mhx8MGsDABnH/cqUtZ9dc4fYwrfy8ZhGyvS1s3xo8vtXT+77jgr7ihQfiPn637BuaRSFbMcZwDLjsRwQ6LFDjnHvZ5+Wc8r11bYFOWDX3UpHt8wlTii7VXub1hu06ZPmPeI+3x2nsj7c+Me4W/pqi6Y2H7nKp/PNp6Pyz9s0HZpDv0lfFOeD1IpzgFy6e2SeP1UJL+nNeQaZFA9cb94RjBVdZhHt0+sZcd8W2uyYGKD5rnRXI2tX68Dj4/6fcdUx+BNNtvNUxDvcZ8u5ZansCV3Nsh8NoHrSY4nD13bbmEHn3wSt+XmypZ9Q8fHXlJJyLbWFfN9Ley9Sk7QAcuLvN34FlxFYdzjp+2UBa35MXThWNU3LcfQrVfywo1dMzihsPaAjf3NzKDirlP9MdFAHasH4UB8BiYmUOJx7O0Kl13gq78Ewb1khe1CQE9oxf7t04+XbaSaCOOOPAQfemWJA9OQsc3w+kY5fw/XXz4w/ZsvrTjdwGrGnw0vK33dM+xJkjjJSN6x4YschmcdPuPeOh/WckvXQ64nqJwyNL06wtVyY6a6PpZSXo23j/PWDErKNuMOvb0jjU4hvMGEOifZRAiXuPLb5NmRvyZ7JebOb6f7QATmpQdJur7xpGQwovpBHmrH9PkeYafeQAMTdWTX9HHmUl1UHuLyqn0GBgA7Ce1I8KgLJcS7zhfEa6cfJHPvYqFWhwiX/OxyiQDohDGswXb2gLnlJocAaJ1hGkfEe7ua1KpRKmaeec16ZBnunfJWfmQ6Vp7WnMVKFxBVWF1twoWlddxDdrqZeHbFSseeIdS4l6PcQ2KFMcqPti03GyHycnk57i/E6V31Ac8aFDNsk/NVdg4dL/QA2mkrRKdl4cr0mBbdbRYuj1MY6wOj1AmAfsiUs6SXt9ytOor7Swxg+1MCEJ1/1VV45QNT53XHmMEV/BNsBzBxHP3u5IvBKUfYn4pLOZWOaisJ8Cj600W3uepobOnKZatx847lIlfaxoEi+WriUw3W/SGhG5+ywufrdWps97wpH4ncbPw3gKpOpWbuwLqA0Wyppu+TF/LjyVWeI3tWPKY8APd6fl+xmvmp/oZqqa7yjGvEfeC1At38jHzkXW9u2J2Vyc/wPvOHwdP60+sV9xYtOcideXWpwC6pqNyyqaPy5FrpKq6N9jX6QRJnIw57co+DtAxebozuYUdiaGGvtxyM+2c8ZrvYEv+qPM92S0bcO9z/Ysy1yx3RXbFb/jKdwtANwFdg8ab+E0cHRxT+cppg8gC9ML4mf6zcq0d9LrdyY/TE/RmXaa9ygSxucuEbzHfkT+WB+t6cf9+nHka52K/++56u33ePmQIw7fIz3BHH7N4Zl24tn8VFhy3feQlTchlH/n0Yq009gJj5eEhD5YbOOfNy+u+ny2B/k0wOktB/evlmvDh1oiIVnC/VA4C20KUpzUR6T/UMpg1d4u8oFFjZo3TUpZPxuHXUNMQDQsKnY4Bl53npag3AnpQdtqkwg6jlnaEAcq6KTbXrcrErU1vAxwJeiwPLBdPyucWNdzUbJnW5OM1V/4hLtx3L90NHn/GBcIn4WOkcFwWdYbUByYc1pZcW6XYh9EBZ3LBETz5IHC9CcrNxvwx4Wa58OeDpV1wDvkz8HldyJvihLoRuGSfrAX/v4dcWYemGEh1Fg61wZYzBLF1aVsntQSfTTFDPRjTcAi1Ptyr3R9VR3Rwj7k45lmXC9A20FXDlXgAlfFQeIm4NTvMd0225a8gNnbv8OLiGqdvjqrSu59HUL7vY5sczaafWdfwRj+14rmETUy3Vhs24lnjGlZsH6Oq6fWZT5VKOiVybcgd2K46cck8Xduuz6k65iuWfc9UhV7mm9Le7HtqoqdMZ5tE2B27Q1RyqrIRUOSONjstMD4pbyFOEeyiheDThVgx+4L7art3MxMbEOkAKQXQU1clFr4XsoSfu2+O4TAaCkj/eq22+IdcVj/NBmzQChfszV6HaMLEy1a6Mh3bP91mHiJmF++h/iW03/fOeE6kvC46M/6IBnXF7MlBxEjWZspVvOGizyTeNi1TBRprseDmiXn0YYHBsvIbctHwNxmKgtmpQRJzmEfkqN9LvSTlY4zMrobo9Kl4DMdCPc3Bzbxjf2eQMgBNoMhDES1w+hQdswW1Vmow7bcN90MxPepDYWT/+cv05rt/1VEYFa3aokM/r/SdhFT++dT/iHukaMF1aTPSwT+IeuijxR3g/fgu6n/nT63RNkA7ocBfB1OPuKjMYqOXakVbeWepiGhYESK+TYJ2zQmW4B7nDNj47AXCJ40KA1ENdSHymgwBMJHCOcN4AeFgHPsJ2fmGSv8FNqofM0sq9nXFVrucqKPgdkyM/+Ma9UNwtXUxbzcvH7xpU2nzniFOnJtfHHWevzVC2fDrl63Md0yYyRWpVsYqdsrPTLh6UfeXxvN08SFziIgqTetNyqjGpWwaAms+nXOwhV+1/VlF35ObpfjE7MX5YIzLiaTc/5Ug0t9SxVGdaIdytOzjDFZM6+atIXU/Xgppfs5MQROu0JIaJI044EJ4odNY2o0GPUD//Gt9pNKmPhrrXUy1L1xOPcdwf2H7qfr47PV81rdsK23mPaetvySke0NZruJnPLE3ic1+UiT4ODExV27Du3GzxIEvQuu5vmKP3/SG9eKvvDOlybFWf3Wb0pXiU+TG5V6y3pXEbjwvLKykxzKd8c+RPbVE6iNwDrwvnMXF/ngjo2eZj5WOuKNxxcl7fxv1vlknKjSb5SdhMeu9wFw/DN+Z/Kjd/PfMceuKpyiQDZD0fq6Hy7ob7W/da4R4XdFjHTU5wlbon3vmGnOHViKLsyAvKGRx0vXdPcFnWa5XjZVif2EGRgvtTrgSq32I3xTTisTc/XuXOqPkDIHzT/NMuiIrr8af52QeOKWkpY3CFvM37fV7f94reL7l+txUzJ4hDiM4eiDh/f5rGE/lIOrdyUoLNjlKdsMP3vNFwouOQcxK8M10fAZ7iVg4ZttqDzaP3Dz2KAHMgECnlf+JS6Nrg3SWtVNq6KU4i53t9KcSkOkHStX4SWfc2EGZaqrW6qDSpeM10jSIs1vAmCNMUM10XN5e03STtaVdNmp1Z1fk2EGEqicYaN9w0rPSYnQRI/rTyCFl6p21n2dNqIrf0eGwnEfa6QrB5W75coU75R178yJ/qM91CWKJWbo4988k6GIHD3cKxseJ4CU83FqhLoMalvE5rP8jZaijQhUUJiYOBBgne82Srr75gvsQLy+LTDCN/Fh/kyYa9Mz3Pnme7VFrZOUsg9yCyvqsdMyzoOrKSmA1fN5c7rpvdu9xytvO0m7dcLWN+yBRC1qxINasLwOkIJULPuvJLryrHNGHpqtiNT955v28jYOD+1nRZTGniGmis+VzTrnRVZ9HpxlV26FtyoxEPrqINTwxySMfxE1dG1kkd7LgMhgo4DqXBuqt65MvS3buTSGDZXniVGo/OWbQGdtwkLi+xK58bM/GZi3fqVUeae7sfjrpHvhFMmnzTcqpMJAMjHfd+V+lWK6o/7lEaAwp+oWM3R1bbfqhMU/+2jR/vb02s8i6DJccY8Mysx8l9Zlbu4proT8ltuzbf8P9sJ9tNsKH5xLOiuZYPeGJh/L3GGe+dPx4W5WzIiLQK6wWbWAO/xRlwcbtXfMwVr3D1I8aO2jw4uVbFaqVshQtr7Ss04Rsxt3PwR1yPsBviLpvpK6BsLLzzCP+FqxI23G1Bz43Nla0qp3Tn360Xy2twYsplCTuoo5URHPV1te/20vr3S/++p+v3WTHjGER8MnRM0gCO+U2gJNOIK8/4W4iWcSus4S7nlTdPnW6NW24pRyDVkfdm8JVkZZ5xrQc1Qw/rDwsBQQqvbAjZ2NvdAulu2Arwm2XTrjLLJOxsY6Y15cKKiGJG0YaOxAlbEczp7ig9hrOZ0qe9FfKhMxZ1Frmp8xo2jhP7yjRdVWpGjacfLmvA4MyZZf6qmogcrTqVNm3qyNO1wpJllrZchYV77kWq2OEGZ63jnAlkMtFRW6KII2eWu2bUrGB//LgDM3/8f5Hz6OyEtmbA6wVcnvUxN4NrXMppvlO5WafcYg9MBmL5OOSgD5ato+o+4EEACxVuGbCyjMuy1itlKLslgUj+ghu5h8TyWzNRHuG66EXkL96nXg6SmY+qvJFexBZNML5J043ADeUyQqfIzbJ3YGFhL4flsrKZ5fdlYo+fGUlu42VxaMFCfLhzw7DWgqM/SOoW9/AFw45OzMVOSHwg3Dw/F2rJvOjTupZvGBZ27g8y31i2BtGaAZcB4bwT+/ti1Wrjw4FrxbuIb/DFD5ECW9YTf9FFmxMHiUmC7XVvVQ2+jcfHva8jXZO4BtgH4G9p9/zXW85IF5Obznug8fGmI9sOG7ToPNwNl/whwg5szfx56ZVoYHbwnFfcDsskEo/zwVYbGhEBQ8f06w0Ze911GnyTNj9sE7jRcp18lPq0F0NiX+nVeMx3LLDaX4YOG+9bQxecBLrOM6eL9gqpgr8sgiMubXjoyJXtVS6YzEtZo9P1DoPsQK/8LmcEE68AHWCrXBIGGqfs5FnEIPK1gF3uG63DkJv5HE4ODJq/lznU1ZKYSo4M7BavEuEMEEudnEEXzF51oh49EZl1pWwjn8bJWQhOksHV80U4g987LSxoF8KKCy/Hpo/l+HGjjpVfWd92NvoIZ9i4sgxydar4JvhfvwnpAHbW3RfoMsiiXaljYr+hvkkWam6sxclUw4VXTmLug2+Ca2AW9xarbFHZNswjLAveENwF3zBb2Ih/yTe73IQ3zIG9VvxOvvqer+9tr9ivvX6/UxmPJYjqENq8P//VMCOsHWGPMCXH5F9H92NN0lifxJVwz3L9kCskUeT8EJapGQoJ3b3AfeSHOKXEd+S3VpEIQDY1Gd+wHVykBESdyACSUQ1fgePlOnU6wqpZpnuIVglxIyy9utMQpJruIzWb96TTg5zj3k65EHIAZHAonRbrsCrXlsN3jn0O/PrMXeTpfnYP/Hj+uesJgDkArDqVd5tuLcrh7T7SJyMCsF3pdbkxsfi3idoPnc8bDJuyN9Wbj2VFqcgV1eERCr83BhI1Ijxn/2pgzJUgbei1GqF12tnjCOLaPZvIw1ZuGXTKnPmqno+oNgqiwvKNScGJfTM5/R7b5f3dimn1Bfh1X3HKuDEQHC0JtTqXuxi0tW0DXvl+A3lKGEvhp1y0fuJyFMY+Yps8+yaWH88cau/P41Y+JcMDU22U1LPc8/nAZGmzn/GA3Lt5nkJqwG76ufON/0T+XPT3YdexEpZpmdzDXQa0uTJU9rEj7pRbAz7KHVk+5GjdkUkkq3c+8XhMRiqO0x1LwkKv57hzgrQrwJ0HjuJV3D901H3PXo22LDWvn+CB59+i8yfvb5yhcONeh2o0dynkCN6kjk94/OSeSDw5xrQjrZl9S/UM74sz6dYJVGJ+JITmLfWWKT0mZ7ikVStlbGuVh6yzNUMne8GogZo56zc5hQP35lyHCco6RG7ZwsbbwQNi1xKYGX/7q2iFGN8NwCQ/1nWQ6p+ckLaMgWpPBrId1wpnlX0OQFEZ/S6vXm39u//6XVwZi0B1Yzb/tE7q38LodNyR8/htUoH5m885q/WAm9UWGPfUEQ86HK5/JWsBPH2x29jh8sG4x7L+HJSR9I4OxEPey40Q33AtoVyu6HWOcuYt/qqOb0u/p2Jxya/8HnKOToTm146OnaGIInTAmFyuewv9apXFGUcg59DjJufJbulf0IOeuF9SQcy4Vz7DFbdn3Oy8u3ud6ie5x7iE5Att9fWT/k91FaGTM8CZv3zsngMN9GBIOBtd9hBSlGGnj+RuHSLGfYTEqvo+wtL15DzKGZDw2chONwMSWzsatc71Nll8i1zm1490KNW9j0zu/LNSCqGpXNe0SHgdJvLrQ1p/dBR570fcslTl8/I4NYzlST3646okWnFPER0ibLvTbLOx5uW5mrYl3m6/m8okBwe/ad70YB3i5U9NOJEHTm4orMZxv+azsXrEk+CYw1Pumnr5etDx5Cqmdup48gDxeaxyANg9GTftw3XKI38m72VgNHGfeI75vjYnNg8U1AjPVWMX96jZXIWb1BasO7TZ4Iy+CnPUFv4U1qsdldqKQQ9ytE4orlf+aNLj/cTfO1dF3Bk2sKzVGfk7H9/qzT3s1GuYoYpk6HnIpU6BDTLh9hDmCbhn2sTUrAoDoWaaej+yl6taxKu3W7QLUapw/dAxBB8PB1dJ5oRvvHjgpjHOwU98jsTAz5E0xireQ+I6xv+zUDa6rdqQ2y6EM78T9zV/PMjjq7+AmhSLl09xb2aj7rfE26y1gif5xCd1lnzzl+vPf/2O3zHrQr+V9Ul+OmhRUj/vNa68/6wu1WRN1tuTbyruE3jZPSxnbs783a6nuMgWFttIikTtht6pDhNfCQ6Zjt0UPeQKkTwOUuS+HuVKEGzHiKM+HvNJDk0UBZr0XV1PnuOex9Dzo510k7hlxyLM5nnwaUcH6pjnx/KTq4rAmqw5sOqo3ROL7KWe1oebMYZJJ+Le4+usN8Eyz52Fs5xuVV+esx9Es8s/IjDs91ob7xoMaRkYuE/AakYSE6ilIzMI3aPeuYl7UenIjlS6kVpYCO45aDK8dDDoYmWpJ3vnvr3qXFLrHEikzgvh5x8ewTmIcJavVVy6M4abSnw6tDZMI8jc4OG0kulWWK5C5b3BsDx2fy3LSlGzy8xLGIvngNG7iHsP6ALs3t9minZuuJydoiiby4Elsx4XIHJR9q5ytVj9gtHlNDogZhtvj1MoZzfFYODB/NF4r8SiFyxz8euGZrdBVL0o4xTmcjCkQR5R48T5T3B/VFkD7AX4Je1IjTAN8vllrS8HB9o2Riv7BodENTHsrE8mdeCz/LEtlOxv4rEokrg4YZH3xyoOO8Bno6+fP8E3GdarCfgR1yWsj7jGsKUzEmsCnArfZTm+cR8N5g+8Ub/tCGpti06aiDRroFHHFL5y0tBsw7myLe4JWgw1keV93y8pLV4uyTu7CHedjxzSk4R5WA6Czo2LWT6aOyny8ltITOUAi5iahVLWiUOJ5gC40mKRuhcWEvcjJWInOaKxzS1dtz1cxIn74eUQWL6yD2YeE178HtjmStqJ3YntyQQ1MR22iwzstMoCJ6wMWI6Vtgm+8dqOyb27bgtmV/MN0q2R2O8LF3bUGcF9em24x0e4DQhvnHds2XA0zy04sBcuk9Zv8SmaDwue2GYZLwrCEBN9lHsZe5mcBIxyfTGucztAsOD3fP3l8I8/xZWAoFivGrFPU5fOgMq78hw4N5Oe+9NKlsNfHv69yyuNR1lCgqbpUA/r94Ac7UvQlnsfewjyrwgWuVcGodvwmz5tkzOkmr/D/XKuOvlBbMgjh5sxDHJroral6wbzKH6Rnp2+7mw1CUVC8z4GUfKIM6X5e60mOQ64qMdrcV8S7yP8Wp7Hx5rI8SlntRwODiKPkZdyv/S7jmqmIrI0lln4lNuQa3i9UIOcvrTT1ETXcedg8CnsSEFJD+gVVtc0QoCZZZ4ce/fS83nEfWl6+nXBxrNyGeBSAvobKl5fhSfUc8UrKnu7Gkbn38zzJKz1IBcSV1eZ6H7X+rt3AzDVmcfwDz04M8gjo3kUMACsWIX0OOY+/P9XE3WeINldNSudLDcJtW0k/3XPzoeEhcHqPsK683hkHm0d0viRac5ebqR+4PHNK+KWfSIP2e0AP5cQSq/SOZou88uO0qpyqQ35NUL4FQSoeGbaIZVGqFh54qzNdMoD6eQFiVuDO71fgMemurmiYTPu+M3m/IjH1JGKYf5BMJVBFuspmgdekj88pwGgTy7MdkQ97En26gT2kb+VroutmwwiLFyzAztTFrpTP1YFT0zFlHtb+VnzWfONFdcoLtqSlr7iby2Hb446WLfDri3XZnkNW/rwajA2yaxDyyB81LbhoHnGdXk2cX9iedrqcOMdg0MbQft5Ybk+k3sccVMfWzlIuthYODjpAqxFnIGP9ike+4HtpjpmLXFfoneHXTkweJnhuhqvzoo7sVowKGX36r/gvs24lnl0t3AT1FXfIc9htnLPXbiLe+EgPQhWezowf+A0hklY8s2q+8Jm9D2/HcnG76OC8sPbkaeFja/71Vg/5LzyAJaUg5WrWondqS+Um6C8B+Em5umVHCLtKMOezrff21WD/1/x9z1dv+/A7CxjgowJRoCdsb78DHsSJuvhgxyHzwNFvP73M+IeemoyTMcktM3wI011bxxpeh/hf8bhe3u4fwyLw10mfvvSuJ/ojKnj6TVAnW/lUtCngXO+6Fs6H/p/SjiIDkO5aTxN4HyWH2gH4dARs7MQA7iZu3FE8oAoeed5LL2/MK8Hxv0sfz8T+8643dGV91Rr390QNH93YHp6J4FUjp92lZDsQKDtYxLv2mrJGfcm9+y44GbJGRY+5T4XwREHeTojidigs95UompPdnZaTk5k5FON+4T9MafAfO+j7PO5p0vLfnXrSqK3CuO3Mmk9H6xkGnfP967lQC+A/PPbmsovvyxTP+pM/To6mLf7W6xv8MApNw1o38CNR5JWuU9yPsGcG1eNvB74tOkhgcLW+rOJ5Xe5x++B1T4HtmdY8sI911HeR1pTzsT1R775VMfTTXDGPSdLe1UpP+I7cONgIs3P2fZnBm963Twz7BbkMQnfDt8c0JxyfZT9E86f2P2EBfXL5vuzSOpfp7u4Rp7YfsNFHwhXej+5GJ4c8ikep5Ix4ZXH0qtt/ND7MesyGDTm+eCblNOFcvD4A88x+N6xsjRUP2yj+7BH+3Qb0VhGHWY2sJN+uuXH6l3YKvKquN9q+ZDfnHr6bMndyafJNxoXtzBSC+wbbeA7uf7ygenfeh2g6zqLlO+rMuqq0uwjjDjVsE0qIcPiYZXJO51dnaM7MLC+us14g8gNgHG5WMBeSPmWf+qutiBwiutKuwRMsJt71Q6dD3E9xRYIeDZg3f9wS5NRF+mlU680ZB/cfCHp3uRmUI2bhNNuGL3vq1xYJGnu+6Jku9lqZn9a54lwvFQu+HMXc3i9YfgxoEvFY7Vv94B95PdZp1Pnso2GlTIps95FiI6exxNHJV2mnXC76VF1nb+PdyQRhx5BfI83n+nxvnm/85RItCujxu/jjy3caJ3kxtlSFElvSZfHH7OULsh7l09jmNWxzWzbDuCdp3IZgIVwJeH+rJ3xIy/WR0Uj3D8ibKy09b3V7GjlXeTCw1Uk8hurZFeVnJXst+fpmrYlH/H8cu5HWHgz7shf1BTWA86SXuBgPeJczvbdq4SlA2zY+frNRJZ1rxqWVOgj2Fm1q7zseH/wwRClf4LfA3/9fj/in3qwnhux2IcOuiBdGH7gk8uEDoBwG3/guie5lc5D26/PqCjuH/YY+9FUzLHfy8xDLwlbrb3yeygxuMoPnjvTimfKR4GpiTR+DHCIxwaUoxn384hcU50ILmILhu39wVOf4j2xzXA7p55AHkeengm2Ww8B5zs3pW0+Md2tWG94fMR1Ddg4Slv2FQT72UAo7Kgd+tn2XWzDVajK3wMeD9yX99EV2zVhyInWwv2MyKIbHOLtTM2VrD6KX7Audbig+jcPwAKbL88dJAYsXIX17lYHZrX+7TWyyUdp16vyQG7quJfH5wt24vVV2B1x3048jpWty4GvbnAzLI8VYuL5e0dakfbquN5YzQ9E70p3lgFytfJC81jHtdKZ+pNPv9er69tfBma//UrUM/k9ftoMN1ES1ZEHwNXaBm0N++RG+MrwubxOPUzTl3+buOQfw3APqQ/RHr5nFVfcHmGoD1tavrMXgFeA300N6se45Yp15IthDf2+8h8v7CFsd5C8yMuMOnnLhEHFUrjJ/9uYyE7AN+Te8pdujIvve/aUZl0LWK92x2GitVZx1qVDFgP1O9fHMhiccTtZE/edYItwfzG8VpImlujW6btb5SXEpOWGK4aEhegu91VcaHNPkg0hy+K4/DjyWNxG2PEwypKoh9zQ2aRjqe1TgY3lcNQ/aeTuUe9fFn7uHJSg3Blbf3fEnqi0TW9ktyRtaxu7Zi1dWFIuBzgsVR3ocsAHi/1WH+nCFCcgrvpGTARe3RkZ6bYrSa9W0bWk3W7apUXccW5uKFYHcezM34eFhHe5tFCndmVkmWwZVNGNiEf9D52wEId+vOIIfjA9Dgx6hjrcliV/P3dZ97NL2rP86DqlECL397iYrubrOeyQ+6pinBj7iZxnnU8d7R6X/7qGzXDFVdZujC8Z4Dxgzs1V8UluxU17Fr+IXMZd1vuxHvJnC7APLeqjUAQYTf6btoswn/GNoG7/knphllyQLvXEfXsBPBXPAMBN1YGM+FuOTVkjX8wO0IHz2W2ABHreto3XCoxlYfcHt9UYU267lfFe8l963HXu/PZeRDUhy34tujN645dg3ZR7Vv545q48Z8k3FKoTOz0AO/E4Jhoa99eKyTjPwQH32Xb+usDKVZC8UHLjnitRN1f7VHq4W8JKF8aN1bfgyA8DbAMXPgpf96YdGtcDlxdq9azyR76xMbgtV/jMIONGZgW7Mwv8PudasVf6ZTsHT4HTsXUj/FQjLa/8bJgc9LVk4tGEF0LmVXzTcWNSsN0vrXRsvvnL9ee/frfDPxQ3AQFOO+71uYaXdxN05/3tnQF6BHyvdkn4M13DXY4liX6qkx9xfeZnxPXiOxhywtLmhtwnHXGXgwc54wh7qFtLu1MQQqhH3SeMOaek4Ak8rhhfWuk9YZX7ujQPfThG69EuYP08wvZf6xxETbBskvW7nDPuYavhoij14xywnray1CEIyIdO99OLqiQxS1DlTzlnWJX7HBa3uFGnQsdr92oTbSLjkyN/8SsIo9A7nnEjNbPNVU2Pyut4hu8yvZgiPu65mtCl01/1Rm1nQLmNmGNVqr1hnzq6Nh6uAvBhM2rpTBHuMVPJGdncX14DFiC2QWvceseBZJZSHbZBu41BTW5ur3R5MEfGrVX8iP/jXrjia2vgwSZe73Mq58gf9851Sw5L8YhoehJomG4+WhNUR4wFmF908SAJ6qdi1MbMitTRb+G8hiuctPtvrQ71iasT2z+JO+TYc1zWS+bxxhE4DdclY4i9MDbSOuSULHEtetLz4IHbaherL9jkZg3RNl97exIbdUA78Db1WoceLmGf+KZP6T3dF+8cUdlwwB9OdA18mLjveMBUYrukHekLF5m+O3UUrvLG0ktdGXHH41PdofqJ3abPz7gnhyiGe9kBAK7rxH0fDcEkLBTbU45OYn2bbyLQE2c0/sZjruJ0zfeKO468F/v2hNi+8Y0kfZPro1JlaIkb1Sw8M77uNblbMYk6uXfcDDD5pkV8xjfof1pH4j528EAOCt97xb43hF0dQH26JOPqUfvNN2g0L64Sbko5aOs/2NFG+/lG9f0url9LS9/b9bsNf7UzQ9yvF8Bw5RuR0GE1/qgx6yH9+i1svBu4K3HGFezSxhYNrl0xho6Zlh6Jz9/te5+y9DfTvuVRXEAOnSinbcN0m+zGveiYbNvvS7/jL2db6frEjylOV8ZOx0f+Mt0i+8wPkVDInZu9h80nFMJFZ8t0dq2rt6MYE3p0Ezx6k2VyFn3ZRuV3spQdpOkd17qa0BWDh4Lo8bhDcOrYb++ujDWLVrbRzsA9rKhbdgNiRerauaJnVwfyGddx/9d9vvcjnrqW8F/Tdy7DAa8aDQfSFcPwCmbDvtqG9d2dTOPusUVqEbdAtMsk88cTsspskLCOkb+NOPHwvS2GP45wUSL50q3Dz7h5n2E5MPftudqWsjfgWJHvjVo9K/cXxs08cEVtu+HrFUssL1xpD2v5u21bJ4JluhE2wqubzfZw3anVMP6btSze+bhHhfn1Z3NVbUh9if2F0fz3qHNSpILluGHbaLp2j5sFHf88xcVDXHuQe8oBWcQVNOvwjDrSvlas+F5kOZJ/JmbU3QFYJvk9EKa5ipo98k12ar/pxm6lf7ccSUsmtca92AaC3SgradzOX5e9TpLFH7G3jqrnYVlHXB1wBf5MOSfuNx5PO5WcQi3cVrOYFtt7HBbVcbtCtl10ZQwQTjz08uOecR3db9G4lX+Jd12IFaGl34ewI93z/pCfcmplRvjVMdi322tixfb50pH47sm37uAW1+YMNCZt6zRLKau0Gn9N9vdN1/kqnyRrv8WNUwx/9PBwWZlfekqcuA+IHNoi/+j+6I86Sjuve8HuDFw6I3B/Y2EFecRkhHOg7WWLC4x78I2Lm73TtTHqarUokburdUfatRWAZdfV9Pu7soz+4sr4G67bCgpf5KlZ9Uzfq8uKyb19End1p7/jWpPkC02ymXCNY5gukVzl8Mas0y4XSiv3SF3NurkUUoi6WC7vPOT70fdQe81pS+mkpNJl31OuidwEkMMdsF0XMmq6WMa+Kboy5ulLQ66qFC/syIAtsUXJifsYOJQzYt6j3mncZenSsuIkxC6gKVddG/MQ2qmjd3654tCrc2JCqXeGB50tjsz9WPG3Fjs9EXqMoxK4m+TpMkKlW+fTxSMwVN0e+/1h+ZQVOn6k688YJjttlV0XdQdhTyczXeAl913sCmrSDaqwCZjWhAvQ1caLlOguwY5Hy+2TAvm+CajtwJMhWe7lvmdNliMurGcMHVWvP7L9lbufhxtIu7AkSSP2ddXHqI2DMsrlKVcdl/sJNmc1mT/LUxiZ16GX47UcZhsbsWoW7oj5V64m8e9lq3TYdF2EyJGTvXaG1fxd1ItuNrSvWaWzfyt1ZMOyp8fAwHozNEbl78YsDMw88XiE5d8LgsHdeauqbHcdBvZSWeEfuiRaARbjGrgCMFz9CtysdXqhJw7tyV2cihKwug1W2BOPDYJnNvjm0SNAsS9dLBUPed34ppW766G4kfnVlXDV0dI0vahMPI4E6Z7HU2YnnqueVnFJ5F2EgpmiV3Neyiq5inBiV5H9sjw5OE/2K3wexhC5QOGIYl2/t2nWITdx7ohrR1y6sMcKWbfXIdcPuT51npzI1TDhDNi0jXAGCmN1gIJ0Y6cuNv6F5Kf4RgdHmFjOgQYiWGEVhG92TS5wP9jkAYdhmeEjT/+sfWNiG5ey5DiMLvgxUWXFF9vkd2K96kjTODnCVmM346Tc13K8EBNY+i4wWFwbYbjsFXvC6KaobvT5rFzqbRWHRNhIq7nuNXjgyveX/0bc/3Nf/hv+vqPr93Nl5P/kYA997tbvTozqmRO5P9NY+t5nWLdaGTNGNnnfGNr3j+/8kNPvSMquqzTWAd0cvvpRESNT3k0KfsZn/kSXAvubj9HdjaNdBvOeyTzGZWE49rapAxxnM/UiVR/6FQGLHJOw9f0QBPRFn6VLtJNi3IRKl5MZWaC3/IpOgHQMcv5fdVzixgOX9MRF79BZ5UQ9dFyXKjE7H3cUmGV0rjLqL3IeHt4DwJwxxug37W3wvWYY73RH90rJVWbLdYVwajyfuQpA0nem5bxP4L+DPTsAHNx2KqUAmJaLhJ4x7DIkobo0UK7uSv713sP9x29xmbd7CXb+mGdaVFxemJpp6e4ZhQIyf1ow7oa3rwobegvgFHC66Gj1WPUunE1x5qj81r48eV8dx2o3v/Lq/lrrwfsHu0qRnZVu4r5yhr6v3932AdSg3lUPw6Mej1x1tFf/VC6Kb4gNt7jlWgb5RqSEPXU6+ecTTNGwwDwevvG523aXa2Ogwatzd+MbrWOCkxOj/OAqn78x/+1Vsta5B0w+/ka7hR8W8P7Ei+j4Ge5PTJNBKnM4eG1yxAK/yYjkSKmUh05nHT65+fn3U9wH98zj3Vg54bKW1r3C9o5ekwwumG6cyGK6NmQ4rMunwRr3/gTTjtDX1oqhoPYZ31D5PeVywlHzo8BgEEzl8pw92BR5GAf1ottgl1Pcc/Kw17YLpkV8fesNxF6rPDndndFptDLCFfn39lfiteE8nfUzuQO78/+KmS3h8zwoFwNnff3L9ee6ft/hrx2/5XCO2RBQnYqaccjVLpnkv6Vbbnfa/g39vZgnAFHgSp2UukQrGQxBKnw0Gj8GCOr6GDrbSKv6nEDsM1hNRQO7TrsRz4Tbi3CNurScPn0x83DYxmSjdZGRI90+Be3ttOskN9cCLJ1Jamzo047F2cnEliixjrgvurAUmUyyVtvYYTcTW7ADUS4rB0nxw9H8G3v1TMyIrLrppxCnc7UmowMg4Agts9JpEq7OrjKa1YOjg2x4BE53PTJ52m7Ya5B2E0ZvrK4HJ58dTTAqOskT6FMJedEF8dq5jqkNmR0KWQ2Tpe3WK9853R5FRxL61qVKUx16Fpb37IC+92saAyYyWy5P64r80GUwKp2SrcYu4nM6Cd5tw5AMG26JMYBdR4dle0tS/XiQSrk+SadA81R5P/K41VgVkC5aVi4vv/TSYhLx/XN4FKDL7CewfnCGqZzG1wYn9jnubfQzvhlMWdWUbuqH3KXc5OWeqAOtulecGLg/Gad0NLZNFwxxmchs3J+cceebemkYPGASt+dBBDCUbx5c5aPPq3LE7ge21eEkUn4sljnBxEkzpnUefKVA6bOt2wOmCu7jyOJ9Em9yVWUP0rp3YpnGZbqCBvpT7XLLb0ee4dieB5adg7TGbbou0+3zoVodRXRuA7AjbHXvP1fRj/ortqJ79XuvPIzqiCe4r3lGpUtO0dfCN1LliAHUuEratRDobWH4eiXub5fyVWNYVneJq3oLljd02hFW8VrcIDFPvgyMjRWqH/eSfcgpR/I78ftW4w675vMEK/1GHFdH27iSn8zfb5iS+2u5fi9XRjP7b5jZv2lm/0r+/Wd/S3q/24pZcUYB/3w5sOFp+OifvHsgbkcyrTWgOYIUemnZa0Dws3V0CbRmnR4AZjhIRDJQnQ0nox15OAQ/2sqP8NHg7ZjF1ez1+0azW9KFKRxMbcBeM+P8eeRP1hoG6d5WdCoUwzX8FKFyEFnZjzD8AHV92NNs5G+ddYNLA0c6I6/5lIOwWfRNzpD8LeqalYUD2xh+vG55VuLoFTiDP5SDxmWNYpUzTexQtqkjQlvWEbMN3L6xFiHioAomYSJfyNpaflkv7erU0bXjkM9d4ljIopSl9pS4WpY8JCMGPbGXyhxYFqS04DVTuC1nDLNJ7WpSBrM8cIPvqIWHe03st/bquIWc6HBtRD5XrrRwlhweh4Fc5ngh9h2wrm7mN3MTch0X6Fkcn0Et333j2YisD4ad090LDvPYB0e3IzPDlfsHli1c6DVEwOro/Vi1MVxla6u8U86FPlk1XF9mLbqc9uvy+6XXZ5jqbAwKLQem3ngB33hnD3HZ/NP10V+AvwP3Tyw/L5d0HjN0xpUGeq7W1W+bv52u7KDFRXq5jkl4yzUDZ/4/6TYZCuNbj9OSzzqWJ8MCpOI9GGDGJe7PtAdqyLvTYyDcw6VrKVhAbBUcPnWSOk7Xuyn30CHD3+U+BFPOIKamTq+1cVmfkvdN2+Dz+zPuzTZyE3a20t8kbtgq4t+qdFF3c2I8N0iV6rqruMz6Jnx65thGGvlvAWLbLvS0W8bclRtFPRaPGbalm19iOeUUvue7beQ2z88HcGLJE/cDA4ezoofX0rZAw+2Z5opBHE8TXuij+F/JS0A8736QxVZTkwktD9tfssIXh//Ey5gE313+Kc+NczmGNzyPguotL2FncZqmW5bv2MsdzIJLtjVcUm+Yn65HC1e4b6V+vw73/7qu31m9f9Hd/4U/RUK/z8BMSel0V5SWXPf8dz3EhUCl7hvQmgoDXnqfK0WOHJz08bb3uIeOJ6GKHoUmTwTMFaVzVXDIyYyz13i4g3V+faRt8rtAdXVcUx0pXtxy6sj5jKJuG2YOWwZ/xWEb44QjRxylX/ZoECepqzuJaf6HHIPZluXy0/Uv9xWIXV8rcGstD1dGYS+DyDk6WtGBxQi7xKXU0C4/jtg3pgPaHiRFfjk4DJs6lseKXpwYJoU9hxojrbZXUr9rRyXiBtFxfvazsKiBTZeSw2zVnoztL3B/wflNObqGBO/pAEvlppWO0abOZprtzmsSpMmgGR71wjzK7/1V9zJo99K735Vpx0qT7m9j59RwfjU4Otur2ouJGyT38hhWGo33sbfEAWy84J6KuoMnJm7baV9amEWYsrLjUN1KkVtuNzkKcd9wGgMO+AV1T9xwLIs9EGaOH2uDlMSFZSfkyn1hjl1dD6vOyUpSjrLa8NQ38nV1fox17lj5s9Db/Rpl/4uuA1NrAM82x7I+V83O38oZ6/ldpGOzw7eqqGG1wnHX6/ZbcYRyDqxvTPU7VylGKvaj7WA5m2BMyCAuT5Je4X429GM/G99v4i8qudvKXx38gcTd1JEY7IvunkmWDKtcO/KX6orNDQ9yDr6psIaJqeCes6iJr1eMD9dyvD0nCiU/ozzgg290A/l8F8/XsYKqLv+67y0GYd2JtxXdXfJGDfQhgx+OaAy3pvPppGUNgLq+nGH1/onX9g5935tHtCPrmFRtV9xPwTVesKEH+YQD5NprTPsyjRq03XEfHNhchrk5VC/lS4x5hdDFYbnKM/hGo9rEY3JEZEPxOLB7pREuvOCcJfIc6NTgL0K7pKXdP7OFQs2Dbwr33TOuFWd4Dn5C/cDYV3Lmyzw/Mr1Snz34ZvvGKp5zmO9DLkthCWegOMPYGcaFbcCLOvGrZWbFI/5rcf+v4XLgN698fS/X7+bK6BASfnoHNPAfgAsc90rEfsQFhFCnC0i1H3wj7kM5DzcVIZXWQ1won3KoriZnfnKmRiBpzvzijDt16NUzr3fnzLGG11WxuHf5neAPcTnwI63Kn490zjzZoec8ol5Ju2Xy/RKC5D1nzq7zeLjDteYzElRZzMF0eVEdZ1z7JC6xeF9PFZYhp5PSvY6dbjdn6/g87Jk/vfTDmMBDJ+DQY0gtQn6W4+M+ieuWbpcnsvzcgfc1K6hD6tgTMGhddw3ifDrE3fXgT5PfGTcDX9uw96qOyJHB6BCUjg+6m8CLP9cEClQnm7ny3XnhwSZfNw/taLX4b8TVVjNapTzrtlnv3I/ym1r1/8tgv/o6cf/E+pG+H/c2fw+PJ5vvR5oceEu6ttsW33SRlPthz7Pt173IIRayQt5w/6gcW+ullIDd5cZzf9SZMbsj+wkP6K3YVSeFWMcGSX7GN5/JecINO+7xhKkYPLEMhRtz4usACqr0VCZHVh5UPHDRZcDmQ8figXzX7mWdiRro3MDsju2fY2rLK/3tbrt7/nJSZls/PfFoVBTB3iduPyRMDjkSqnsB4uJIl/1lmGFEB7rpTQz1b/NNcZUkol44LHO7ZTTdxW3wj0lFuru8TbmKmifwc3D+hMuqo+d9TJwG7v94vQbXnfjfKkxb3bD/lD8M6TJR+1xffwvu/7VcJJdf+wf8fWb2t+Xvn/qFGvyXzex/b2b/AzP79/2WrPxurowARudggOU5G/cQ73HAJHFP95Fzlani5KzERrsyPsqkLsSaLEuj4PTvvxGoknGBdD4vdpJ0895fgH31FmLoxn4S+5nfB+QdIOpP4IaHWdzByDnTuaHT2eeKDbIM+K0Uh6yaqVwT22AOvPR3D8o480rJMcO0LFao3lfkkyY+ie3ZhbJJYKVbkKf7wLLDjFRX9fV2f4m4tXMkZ303tr8+JeCT2J50rFUrxxjAPq2UQXTu2hWudTwg5WUbe79G3ksvoDpVMRs562q56GSYci8U+UpUG5zFjZUfeHx3LKq652wusGxn/nvmlu9iTrH8X2rmknOC7uGKwfJ6uWVbJhlGZVg5aNlKyBzdW7uCvD1dHw1Y2PjqH1gI98WdfiRuhpVKlDtZWCjkONDrT7Fa1YwZRlrwWsXafmHD8TIgXAhjtWthYePCdsM7V9A/cOHv+Bc4Iu4bF7BjRU1B5IWVq2aG+hCvt2ujI5aOok7H6ZKXhdaGFXUGO2b/bWHD84OjkVa7Of7Cq/Cqqkmr/bRC9Q08rmJkFOUMcu2Jv1kvbSG8sq9PG04n/MnqnWJ9z8xjRh7Yf7ynfvUkvROga9RtCxc1NY7KHamZdB2rDUP2k514LAlbYEytfNCVMYXc+Gbk22a6fHrjpnv8wuPaTxYP6ttoOckXp/ESgY7ye+Kb02pqS9Yh133FYVe1FScMG0KamzxHZYunp+4V/YlRJ2i7b3NTeyocUWly4YCyIeZPz/fdZThakdpGuhnFQ5UYB+eNm+WBYO1+T/dByu7ytMQRBGa6jzIOEF0drxaOEq93e4sA3rgvegMoV/lwY6c7uceqkzfuLzQ+14DbgbfH4WbE/R/3CkxlxUj77Moc178s+cexsHD5lX2CKZezP7aZVn7qBVHnCn/Jb26Ab1xZMB+2gc2zgZJv6M+PhWs7YME/OxtalFR8l21jFwbEfb73dF00FBddVRcC7Fby6a7c/rv2+rfd/W9+9tLM/iUAf//Dq38WwH8XwD+HqDH/HID/JoD/4q9V5PcbmB1kzJVmNuhqfAdZnCQ54kpaMAuffYZ9coNcKPfBMYN+6DLk6D1ba+lkg+Rqpu6Uy0QrLpEqDGIb0UOMEU4mnWhttI2ieZKYdmRKrolNGsi56Ro5cLrNBJYtgq3WC9jvkfl8L5HQ9g4XAx8uk3HMrhcZMBn6yLMTz/ys1enSlYSDxWVIt8GNP6L9KR3WeallfI07LzM/3FRsDIC6+GLItRg+0+RR+YDDXsALho+X4+uVZSl5EuOgiZ73aRvMoLRNpZNEeLoyMi11ZaSwZSuOcoZj66B6Y+5DdO901eYit+J6u/5o7uhu2PUr763bhsP72OvNb2+lS56znAydX7paBDG+rKXFAAXgBobel2SZQav6t73rmOeyNN31LAdoyyyOpr82Ln+BHeS9Ha9lJWeM3L3bI+XEICsC7G1Yixusdw3urA1ZOrpvqAvhxsJrOT4ceGHjax6VH9/acXFdDN/eGoBm5z50WunuEiARnflwR4zx5YL5hY8s+7KT2UiXaUHcbn71JbikHTljUdoM+rQKU3HXEVf66rxny/cFrBfylDp1if0G35yqZ9geaGT5CV5VIzzvAcyDk6xw2V4We96gtmkwKF2Zf7bFwwWP6U6vjU6zwxrotsi4gwcM8OXZ0es0Ao86f/39r0OORtPsS/qTB1D8UIMgy4OUeJ+8HZ16wQnQzvXrEcsr34WpUZjtXun1rj8qPcyeuM+nuZK3DK8X8DU5Uid5x35BSZMu5X0vZVCZaLvawRm2JmfYkc/+tIB0tFQOkz7L7+CqLhNrQVzhqbQYj3oYesKachP3d5Tp/opuNA7IiDdhvzmHmEq99s4tAzlCc9GfLnflki5xo3RbDnVcZni9HLiAy18Vllio++licM22R7nExVUSBt/U5GLGE0zwxN9qT3RlXIbXNnwgXBkvrIQOB9YO7LaF+iA187sN6yW4v8IeLq6Mjh3p7QtrxcRcTDTkvj3ExBx5wJVPv+PrnGz+06bt//jPCWdm/z0A//PfIut3c2UEMIDb9RnvBQ2H28pT3EYZ1MeS+UTqkuc9VzZqhubp7xY30xUd5yytvlOwi/ud37Yq+SYwUZ1cR/XKJK22h7iP2JRZJjRdXcrEinxdnp/trMlJN1gT+Kebgx/lIgTI9A8yPkm/Rae7iMhdCRKaD9WZYncuQyuZw878audD73tPxbAN0y92jPcvkctPMdagzACuwMRpgzw/7+mab06sGydiYnYO9N/RuXhIyyW0e7joxfdSbgn1vfdfn9bEsJ1W/GvlLlP7vBj9FvdQcoclw23wdVpEM9D5OeVKPh1lfqmnRyM9evi1TkYMyXjbLdxHVAWbcuqPHVFMOdbuETnQEttVwtlGREfuY+OUMDeebwd+3PHdmYKIInmrzoJLWlV9xarZneotIKJHt7gIraejWdl1tutfdB3YOp7nv6WSYMv5r1YPP+KePOB2ptedq6rSGvf8e3g+6oSh5KTUg6v8yJ9jUy9rDmDFNdkvGzop6BDLM+3TJmPiaU4gNS4CPThQTCXez3/hiNUgPdV12Ecwk3LEF2wMcOrfiW2Kx12y6HcHD8CQbl5r2kb0GpzO/N3kQvTywZuqy9Ax9cHQOX67c9+UYIzWoRvu/xQP6L/TBf5buE9xxJqLH16WBFjywyVbGlO7vbWDXrWRbHjVrgoLM6luYjf89axHO0+xnHBoItvvctgLqPQFU493lScaR/H44CpLudvzMynHrLzK5b42zSd/l00r85/JZVoSWDhD67g78HUbLn+xFQwOIu6rnY1l0oU9cL7Ug8O1oRQMdX0xrTf2K3H/r/Py3/D3Gy4z+w/K7X8OwP/ht6T3+33HTOs+5Lej64nPMKe7lGJKNTOteIMQ81/L2b5tJatdPmaDU7LtcCJ8Yc4WWrt7+XL0RxjRgCarVgRbk/e1arE+cSWj3U43Bu80h3VMjCYkxjwrCfW3a+LZyjCxSTQPxVibR81VoTjQx/Fa/1tZljTdOYPX17Cp9fH4pUcGstIxZ6R2EOJau91smD+fZPUo92a7vNFyylccOPJvMa9cscp4ewfArxUH2MZvzWD/1vpt1HnVzpeu0yQcq2MfiOWdat5r6TPsdsujnBfMwvWNDnjlrWRBHC51oAkmnsQMoN3KdnRWvQ8W0VxvyY8hiut9Rem+YsNPnZjVM8fh+rh3yLX8eGtPXlrpH+USriQf6Laj28INyZMOmKWrH5uUhZPGeyOPcs4yOjrKgQUxE2l577Dh1gmky4mHleOYDbp3LVzOYze4ulXrWBU3zv8xIecX3Fa4MuIL4HmqoudG+mVY7hknVtIuT1fG1Pm9YwbUc6D4BvADy8/brcax8Pb6tDTcImyaH44/hUNLYuqSzgzLh8ZmX2HgdL+bnQyG91ng6LisAOUqZuWU9cg3qsN4xoNK6r1gNeU5OcNh+r4wSPDK0QP2lZWbvloVAH1wyYlX579GOZIZNvYRr12xtdM1cNEBi2UOQL/NWFx0AK0d7zNzXunmvbXcMvVIRuJniIpOt+zleBfWPxdWpOvjniv9LtjtSBdFm3JNsK4wlfhjve9tb66MA7Y29pXeEkxzFiVqVekTrqpvONZ9xx021vtU26Re8zMpa21c10vMmX2AhVy5az1UHhVQsxJT6ccweMf7t9n8lpch7t85QfhKu9ApwrNsyUXkDBO57AtQ1kbwDV0eOQZTuYDiceo/eOBKPlqwZVi2y27UeWXb5Im7QKyy7c16HDh2pTOFZ3521i8D8TgR1OLTAbFeGDWQLvnM9Xbgx/wA9MuuxujkmxcaezaSBzKuFTfe+eZyFA9seLh1wstNsvkocP5VhR+c+f1eHFT/Ltc/b2b/MUT1/zcA/Jd+S2K/ryuj/FsdQXVHRBOqAX2AjxKthAVPkMpO3WNckuQCrM7HbrYlXvrQwUSOt1wgGqS6TFrLQeaHIOx2oBSys8nOMF0OUqdyleQAb9Q5gw4ebq4xJuFKDwK5uG4A0+0M8ZynwAExsHi9kH70CcmMW7KqBIfOHNBUX0ryP90IvQdOkjZ1VBfCiLyBV/j2l+7Soehv3nSeho6Y76zIGlivJoRluu+Af2HjMneWt702PuDYOzoMgMlA4+goUUegepwapof0loPKihadcekcLrFTueUwdla5jwVcrFP5Nr5vI/UcLiaMo3F5aml3jr1A3xZXCoLlbgPdUR6sr1Ydole6MlIXytE6xYmKGIymbbJTUT2kIrP0nNdO2up7DuJIZg7UQCBcJMPl8GNxpWqJRcDuW+QVNuICK07BQw+qduqdziZV314wcN8W/IKtBbc8JzFdLGMAafBsh6/lWNvx9ld9zyyOb45j7VeexLVlYBz7w8IdcaULS+x52IhvZi3sOtGMri/RRfgw6gjA03lyebo9ArZ+PUFH0Ul7fcBy13viMcPSDd3uf1Uu1YB9prsQPZra2tLlyypV3H7udSb02cFVGfvmOr+ojz/zgIQ1oFzYzXXXomA20NhuhV5QN3eI+9dogwWqXLWydDOfHFKrSIi2v18OuzYMr9EW1O3sCVPbbvGjBkMw2T+WpyNCVeU+rcbXtWTVbDleL4fvjTetVBjUZeKwxnXjtCu1UU7QuD0iMbPaOxymUUz1wRFmiYWv3OvsPMGUmCp2E7lc6SHvcYDU+Tl53KuYlTN4f8Y1Sz0vx3loRbUJGVGZYmqpazWILjnVl7AeeAI33O+PknsFfeUYvw/nyG0kmU7Ve1ZzloFLHCUWkevGo/EReMV+Vb23MQnWPBB15ePl+PHyOAAkZZJvOU8SLug7dYxh0F79uZaPxPU4AXgn9kfYF3VI9VdiFT/JsjhJ5Z5H8m98LMdHDri2rzqmH1i4LAZcMTnHgR4nA3svt+4Thu8YjLKN52ReIDzSLhzgXfFpmLVSxy2nff/l0svd/8k/ZXq/34oZMAiVnSR97+sIf/4+SLMwRogBmLM94ySr6gjb0ONRx1u6T/dAD4xcSDveqrs/4Jk/19ioDrmMDE9bARgdkyOH1cEogjVJV+7LjaWSnStoAE9AzMHVOJbea4B8Dljr/SB+0UMHEkNup8Uj/OPxHnasuFlee9tMSz9EOvTqWbXW2ceMKo/OL3tUx4gdPK+0xj6x0jGgbboyavmITo/vT9u0ye24/zlxqxeZgL73agLN6A4leMaL//WgEoNAIy4V25Ojn7C7wnadA4KE3vv0qO7ESKBBMjuzY2XzSOMg7bOzACsdNePlAqIZrxUqblYzkWNlK221hlkmPuyovRWv9z1LbqhvwzDdcmvM4VzeX27VGVURlWaOYiiRcsr0ZayJOoqfikIjbtlOVhd+xcUBWXsjQJTL+6cBkXVxDMQ8OGTsJxst0EdYAJzO/iSu/B64lhY4ueks/8rXHetmbXfoHjFd4q2WovwDzPuyzR1TRnUnLg4tE7PsM45ArSxMjjwwlXJOHuD7dbynaWqQ2JhqJkFx4Hgl47lKpZZ0wfUp5wn3Z5EK31R9nzqNmnHouFZ8W9CRn5Spjsy97E9s/PlY/lC+j3ntdxzcxEqUjWC1Dphl4OcbV904MZdDGa4aMa73pIFO7T3xkQsY3d39jdLKOERMy7iRXuPxs1w0DfCJctUofeEyj1OCnRuV+fkVWaonLrZnkAnnpXcR89CQL/gpthn8Y7Ww2ngTK0CXWx6Xf+cbxSlN+YkH0KYHOfLEu8ldbUdn7n8l7v+1Xd+7fj/z+n33mGF2DEYlYMVLQs6tFWOljJfVfcZO8ijffw6AZLYRQLRvR7q0tGuZ3wpXqn+S4G3Wk3k4a4YM0oa1b73vQ9TqWf0GD0neE3ALsFvOnByz0ZkZOhrChUAAWr8xY2Irz68O2rDxg/76wNuWOnhr0veyj/rr10c+3WG5ATVmfvoPnjp5LLAPYUSis7OidUQ6AYy2JH+xmif61rtOKuJGKelHkrdbfeem896yqwgHzg3WxHnDsFVNvCH4QdCI7w5cbwL1ruenqFHvvZ+RTF3DmPVHkcsfPV9BTA060017OMJOnAWkz7yXTMpK1zzwd9crPyq2SZ2jnruyEhTFXNeMqHu5XW4PN4+v+5WHdzTRqW089diiM/eBMbw4raQ8ptbuiU86FpGytKnTtbD3CveVkmUlkw2/m8DqzyM82VVxzqMzwr0FJjpCdezCP2vez7r8+LcuO376fPet8JWg39uZ8sAT7hcm+Ww6zRnoeMT9wluB4zXD3PQzNA8sHDzARKL87LUq7elW17hMzKn8qYWGvgALcbjlH43VbMZD8oC7l2uZy3/a4aScTncWgVRoqOt8r+70ICm8E7rSBR7vCrvSjsSdV/tYofZbjvx2yx/FQVvQBCbtxHtQ09dcHSsdyRGJIXRlnCtOaoz5c4R5qDczmOJel4m8vcV1N1zXAnzd3PhH6qdOVNUP9VlPNehI1iRerxqyWtRJhKkXeXzo4OjB26hSB5EPc4lc8bwoPhlZ1MrrFY+fIwmdd6W7XSapFF9zVS1Wt8gh7UrHKV1dlYt0XDDai39CqpVcTzu93XD5io9DS57IN5S1ucqHdfQrJg8AxPK0han7n4JtD4bxG3H/r+2qMvp1f9/T9butmHG1Rfof8lJ+O+5EBmlaZ8fb+NOEvPqddnx8xZIuO2G6MtHgJzoo6TxM8tcPupZQS+0UFEnP+wIpnmK00ovYDoPYvKUcH49F7kHaNuTG+/opg6Pzg6Dz+GLvfE7BIkdIY5TL1FEHPEp6JMEeLPY8EGejXq8FXOEeEUjdNqdauio4VDxso5vP2x6nzm0v2orumITghZ2uhQ6kJ/icfbxRjPzSnsxTiLOcqce3rkhPT+GsBiGiap/BGfvoxGhbnZryY8heewHoNkK/+DhxkJ0GQO3tz1mGe8bdxe7zmH7j3rfczyfv21aRLx4RXEc7Gxco6DoTOUqnjyRd1sHOrSH3F7js01s55M09B1xcXk65OdvrUV+4R8tyILSrzVrSa5B+zBrT5Tc7gHSVSvfFa7fb9pUGXu6wFcfjp6FgtlJu+PGx7dH0OfdCbctmK0l/W7qeWQ/vf/F1Yuhxf8Nzb64YM/sHpt7iFSZ0WA5U6I7Dyb65YvBwjyn3U65C1iUdCJ48MPRXHvDaX9YrwhM0nuQOefAb1tBu7caO9kQfXEI8E8xcwHpt+HtV+ne+OfFq6ljtj3p8EnbgL/UVVzQr75Jw671kYAezma6dun2uox4Kde5vHubBXf/y/kj8ea2dPC7H+D/IPTHckTgwsFzw5uQqoPCKrmq6XaDieuj0rg1ceEjfmkMcgIdLrvkMojrXYIPuk9SObTVtw31e1bfXpsDyk+6E2salj8VPpwC5D9kbj1f2QR7louVylUt5wNAu7D10CoVDTuRv56Zfg+FleeCYpSu56b6rdCPkiiLysyI50rfiGyR3hCs5OdKgQ8Jgqp4I93RVzIyuNsgr8biakIVbo2XGX2Z4m+GVeQMseCIttsGTkcOu/GiKJc9clZujnX2P13eu3s+9ft8Vs5OcgbtG6+F39zWKcMdKGu/7vG/MZSDE/jIONtjRscKmR53qUX5UpahkHO7QNaNW+0Aqa7Jhp37s9Xqlusu7lyTpnANU661e7S6SaugALAZW/awGOxU3CUaytxB+08tioBEufkEClp1HUzmVruiU8co0GanlODiLWitUop/unerj8uP+I/chvF5e33jSa62ph8rVAXgNOrvUOinvPXLDNpYT3zb3ny1D7FEyh+8A3pZUEoe9nq4nbAnisXqvAyY9dfKpG1BHTsOx83QnrvqgKKrvR+V/0FFnDkMg7w3t45UrWKJzDDKiMi+L9y84Lp5kpn8jLofj69Ax27I9y/VcaudqkC6/Zzc0anm5KMaAa61ckaoj/BmGdpN8EwfUls7Vu8POnH0F6wZdeWLQRF86Exts5i/r2Y/7Y+iTNS/Syng+5Eb+SfFIO3a5MS5SJ+OrApW56rhqvPObrhum9quBvzQF5vsn7B9VB2CBTuDgpwlyn5lJI5xYjpnJszfNsBbYPt37MLmIOuPgAYuE1aWvTqRm+2Y+Bm6wjqPqxSMPAJj4LPt0C6vbc6BPcewJpxDN7+HZsxxXFTM/B98swae7jjoR1/aoZ6tr+sfqYr2Ga33maY3bgeXjNF7rPc211lA2Qbvhl20OrlpitxVxX4tyWoluN1JeRz26TX7NyGNS7FtxtSYbEPvLUt9dH3S+4+fEDRy41bYsnPcD06rhCQ66cl/j5tLyu3i8UP/dG761XHnGVTnKmVwGNCa2SzqPM2I6he8I7OsPmKsc6rBucl31uoVdgweQdrXUqYeBJ681HpMjlzn+eH3A/SVyyR+v+rbawP3kiA3uN2Nexc5OLF+oz9UUkPauysELvx35/8zXUx3/uX/fz/X7Dszsk99Pz77dxx1ExhnEQZj5vFwQdYzEqwYPPcSaq+qc7pEB2CmH97dVMelgKObwUQ0kXHrewiqnoqIjf09bTB0jWq82MR09ibHJOAcj1mQdcQ9Bkk7r9SCXZC36z0GYmOq4B2TjccLKK6aqAIRPf9lN4kPSG6Y56kwR24jb5N1BHS/rk+qKwPOd7tG68hjn4lMZjEstGnL1wdTZxz+p9s/LH1PwPJpY9xkcVar45eG6v5PZxUw/DMGyl7d+CEsXU7qafL1WDBQehLOzYZ/ozEfDTZC/XfVhqJmQSwr8paeGbVdXQb2sZhjhpzUw9wxJh15aRmcQVpjBdq2hDdFR4D4DNYNnEopVZ93Sj567xslZYt739LVIcLVZv4q4v+GSovaHZxPL5Teq/zDjHmmXLRbDTRc8B2LRsN4dcU99bvdnfUaV4XR1PAZsJw9ouo4cKEq7Ut46MFVPA546Sz06ufLANsXjHkQ1tnlVrp6EnHxz1tkjbze+uWObus4rHqsuIZL7nYlns0hufDruDyw/aZWc9wnuny7tZ1y2oWs3hjCM8olku/Kn11jpxAOXafRv8VzKLJfpPY8fGfVE8OkW5Ph1rsZi3GtCD3icduWk1nWNSjnASV39Ih8YZSmwmU/ugHIgnoSMCqSnO/O6tuWBT53fkfnUja1Bcb9W5FzQ9tGbpeWOWvFgV88Tnn98f9SLqF/NS8TugdyFR4dUV7d5/jvLzBD18gn3P5tI/sv1p79+/4GZP9wrqD4BxxPpMKl1f9/fi5F31pXY10GoJ46WDokGtX+0UKDlHETUICgy4UIEyNMY5c+QZ5QeBxaobQ4dCwOOvBF86Tuv+twGRWiCMtGRjktm/Hq85tFnHgmadpfrEFebh44C5S6xxbJd5GbwPqHLNugW9npRv877Ofs4wV3ANYmeg7/KntVayLBFlV/ORSFdF+uQlHz2Wg46jp26nLOcTPN09+hSaZqbK2VSFY5q1yXCWdAIv/i5A/LyRn5sN+/rz9qOx7sqDa9X+V46cD73XA3CTWLZSSrxodAmbXfUB4Ar7O7S2N57FRxWnyig3lfp3nngLOFG+9iXjqw3Hscfxz6rOOlwp33iXbzfqddVRGetlwPbV7xz2snqcACudm2x3c68Zy3GBWTtWthYeHsc/AEDXrZzL1x0Ii6R61jxHPFue+xP2NmqLuf73OcxCD5cVnbquD30cBh4atcecfHbLto9slz3OhAbuH7ygD38+9Q5JT7pH9N6tZzSRWBsYKzGIw9ooxt6PEzMMdWaNARq31n+Nk4aDmAXuYKphaeJ74/XjW8yqQO7daVK8W7l9xEKN0SQsfEfncAyowxYiZvlnsgsGwa26/Cv8djjrzwXdrjpGveYecslPsnN4JvjakyVfBnVplzmq3XjlIYZW1byEeII/2VX5/9mmHtx3VbKcOC6YL6aVfcrMT8j/u73yzYK/Arvs+ILrvNZfffsxP1sGNNjAqMO6Dcma9+rYnkWUkyw+uQj0QmJuQGSjfFssLX/C8RRDGWanzouOYM4SOx7O13EN4y4n7I2Tce4J99wksdztzvzjCW4H7hMfOaqF3mQmBp4nJ+4ccd7hwv8F+ziK8YPLooB5VV4Hum/N4oHLl+4NooHiP0O4ILh7Qxrta+Nn1TZqWPYd4mNv9PLf8Pfd3T9PgMzJUGTR0/kerqWaJj8XcCrxx7y3gA77oH8/UK4M7q4huAByJ/IF5Ku3Iern5CfQdDe00UiIoWbhgRZiP0P3OGfAHO3TaSn7iKnbTpoh613Zsd9u3EA00VvWej0Wkmst0JSo+VFgFU7eMhdek9d0mZ6HH64BVKU13H5vF7L8fFyfLx2nsrYLmZq/yYmUbVLS8Jam0vDnvcdMzoHPM0LcdzuawFfXtkp+GyZ11sWbcH6ULcP5m3XCYywhjMtleblZhOzcHpSQdsh7DcrEfPKd2orz/JkqE1XFuqodnUrI6lLy1qGl21cF2aHQK5azTnyr1Pkocdq2xTxoQYWJGeGIL/TDZKfDuBx+Q7HhRcs10j3pkVW2dgk3XbDETdBrCQ82mGV3JjlFBcWox1F/9TztYAPc7zg+Lpf2Fgzf5SVOpKcWWCeAzIfcjPvtpKsWdbpwmKA1bsGinKD/K3Tp2zrNu/vWJeiHlwMB+7bcc+A50Rd4r7HR4AG7t/wU9NSrio5Exx6kssa8g1HIzU0D2TYhbh/AXqs6YEa+CbfnHkY1cq6TAcH2uC6wGCmmbjx4fFpBCfqaWYbR8QKQ45n2MYnwXqbSfFvJdfQJfK1xH18hYte4L5Y6eAbz5snXKzykTJ5xPmjDpaLv8W+dHO6+ztey/DlRYfhF/q4/Eyt2rnoePDAbYA2BkNTR7bfc5KvolrabQEvc+z9Yq7u9Z52FB1phRoIDh3tprOetsh67VLvvXQOvV+vjSs/LdCyW3Rj+dSD/58DyQ7b/NP1swe3eV8Zz7gW+7A+cm/d9rbV5iT8WJK15AxCYfNNuTwOPF7zYA+6ohtA/GW/JVRKV8bsd73WhR89Jum85AY4MWxOWWBj5TfY6MrIrDBsN7RNzrTmkCgyq4Ek96twcvU34/6f+/p3ycDs+/jAtIltBB/alQODkKpzw7TgHbZ6/PL2CNuujBY+/dWbx+d/Fb+fST8v9fUJyMaZtZHzDD//tfptOYNkIw8t556/p4Ek2x/llaktSY9dSZP0EW6CI4whBxm5CVaNaYeaw15e8obc236CzAOfwWe4uu/3/DAlHP0hyE/wQjstlV+RO+KKTiZxTeK2zlv2l6WOWTQ9I/Wk1B0BTt0/zQtwS/FbcaWUw0XvLa4aHDzxJ0lUOqAB4l02NVuZ9UIHiXEvB4jkjJweIlMCGNfjyOTL+fWVlJ+VqlZbfcZl2kDs5fM6nS0HK1kWMG5Wps6ssCHNqteR8XPn9Xsb3vkxVrUNiZi26fxTmwhLVz/eq1y+MPClV3pmXoNIVch3EOqP+4Wd+wI44ExEE4JFKatnEJiUiduOZlxm6/KMfk5nVF3eoj7tzMonlfQnrhPb+aywnw9/Cott8ilxvznj6KnCy7XRYKjF/09kKD/5+e5B7uAmaePRV1MecH2DPuQiEq7TvHG3xad8k/eKY0C0n/quGXmGQYi1Jw/k81VpIF2qbNilYaLtXlgurueNqWd+432tjHG1TjHXep9xYSxr4T4ncVyVatwpuVKG6DBMu2UL/5QtXKI+cBWQOsXH6RXhZ5lM7FdeK6x7iEu7SvZ+Fmc4on/zvtQle9aD1k3w69znmJhsghORiB86ygBKvYkyLLEbMLzflpOEoi8H17UinHHTNi4KNV5Fxmqg88gZLKFQaFWFpY6R7sZ0rW/+mXxj9d05lGyD9kEnD1AG8bXKUPDXyzYAbMdgL1ftfrwC95WPWR/gyRm1eug5UBTuKtrxsldpmtxEXjDavDy6uD6MyRnf41VK/t1//W6ujK5/3oXu0lbUzhVuxPVR2fQ0rLFnwzqs+v0GcQH7JZ0R0WEoC5Q7ZOs8fXF5SpISeVWT5ZqUDMRaT4MDO+fJ6cooDX4qJt2D0WAKzlpOaUnUlM6BoEQfqRt60cXSc3/SWoCtPKPeK9g00inXRU71ZJ14C3euK4XhtVOQczb9Pt0GiaubLi3iZjPlnpfYTMISYcuMPtOCdAqYzvmORzlf6V7wsRwv2wnuYlfRRetz2RRdzzVOPBPwd/mTOCqJkLrdcV0524y3NKAGf6khRbzRKZuy8PCvKjziHmHnwAZ4X3H/sUJIu/6hXElOtz+6c/B+I90cMy6PBuZK1JV1jBG2qFt5TaUuj07MtblCvMeqVLkqol1Q1J2Fbo50L6Gc4T4p6XCTNnWswSo6XffQ6497wQ34st5tcm93lnJz2dQxXBPprkjXRhe578pDykHP+tK1hhvKy44JbDxV8tdcXv/DnUerQ3a/10GBA2MPmWL8cFsnSOnhInnCp78mfmtd4H3J4r1DeKDl9CcdAA6Q3VC43zyA7qTmC0th5kB8EH1Xniq/0kbbNNVLvg06qtOspijb+LBNf7YknhXupwHWAuyVOjG6q2X4T+eLuoZLe+Nx60S5qHT4uRI6mfXnSzbW4gApBkAG4OPF71l13idFHnt5+M6YP33IyN3xrUFZ2WyHSyAc8HQoy3rHdvRlxUmIPLa/BHvbyYdIvw3KqJeP+47b9dFvdRRHWJ5o+FoXAsypvosLezeqOw8cdV8mpFTf0tkFF1mShTmJjRcA5IfG3YcrPehC6Fa/K4/Tm7ZlI/H04IwtNlQeKB5ylnLo9L4Mr1dwpEvd0f1c8S+xvT0ieAjKlTpQVXITXSGLq1xcFwcPdPoXuK944Ytd8HRnDDntdr/dcl90591L7grXRJHT+i7Q9b/d6KXMIDplT2wPkPn+rtEv+oV/39P1uw3Mzhkb40Pr96drQQ12hNQirnWEck2Q32h3kTqFawH2gV49yzS+KbcC9P2xrRY3V8Y8oIdTgVb38Shc9tptY30A9iJQr9I/E59GUDJ+2Fs37Lm8T6wSHQ2xSvYql8q8p27m+Pi48OXLlfsMdApeC/Khh4VpCz0BDfA8zcrAWaAl5WNIe+QK3sscH9QJji+28cMH8LH6MNdIVeV2a7uVqWq65NQt0M0ufr8sVuiYj7hHdRpe1iedvZbjh9fGD+nSwmPNx3dC5K9W824uJPrTRH8rrm+7Wlf9MMCIbwhdv3xEHh3q0pJpJxFyXxeEfGk39z65lK4brI4kxpJI4jMltm7kdBt8vZD7ywD4gtXHCpmrdDGs3qnYcvRGlCxThgXYEgdOHStq6h9ho+y/5N6Va78q3drrkJ0YPQUsXP1WEXWf9kWXw66bpbZZ7t2KCujiarKkAD2x68sKV8Yf90ftG4s9D+HectUeMKu9ZBxUbbq/uOUsLvcKrBrA1dH/7Ggkhu7Sn3H7/tdeE1P14YSwGx6TQDVumL7qpRU2ZiAekMayNsC+APRWIraWHNHjpmOm1e1AYPjA4+Ib1VGg0zjxZQCWY70A++DK+8KNWezETz5/aPjVLnHjBbPkAuJr4uRKLCvXbAvX7I+PDVu73P2NNqs0D3wStdi2YFaYCsS/fWpu8wAnu9YKXCB2fSQ+r9Tphw/Hl48L/ACwHXqwROv0YAFDrV8VT9/n79KH96tPqbS0E3H/wxwfy/HDRxyXv53fw5IVbJF8Yqq6hA+9RmfxyF/FlftZBKHnK3Hf8+Q9N2CXM/5djgzSCueEv+gKF6953wOWW13gElGGKdfU3F/mWdfVJbHkwHLiNyaGw2YoPCZvlL5Z2F5KNF6ZvOu/nmoN3I8Y21/Ng7VNghOVPdHFe0Bxku6Gi18z0UPvq01UvRg8wN/JA1mvXmvj7QvbY+UsuIh8s4pveAIjeaD2hLkFv4ht3OLzJxvJlbDijLACtwZkXNwH5H+5/nzX7+/KyPbLFydW8P4M+3TPtIWkbh8XhRfgmtGlxUZa/kncEyeHHnaG4GxaExCeVl0krqXuHq1Z5E7S5TwvV904a9dyOj0SXZsndchZ0vG9GHFN4Kzia4XbiHmcpOSS/uw5MA0Cs8w2VvhdxGZiL6Ns9POp8350aQG4SbZ8lNKuMsuZaWv+hgulHbYZ9aTLX11cIDp25K2FjffWSncimrrG8P1RLx4uO/69p/0UtytvfGx0VEqw82ASt19zwBIyeoAZeW8i3je5NZiScqa7HgxAusXuDbyv+a03hwHu1dFwpgfKUbvmb+u6RJO064UhGnqSbbmDMPGa30+dDF8v7dG2K423hmX5s5TPsWMEbrl9umnYoj1qui1qerzebunKyBWZnDFPZbZZuOmAs71VeRvTHEXEmj/q2BnKwXdZpm3XWPPLr09xn/ppmHx/boG5YbXYy6XYxnpYuguZAX5lh++aLbDyrtgO4QENazNsr/wJ3qXcqHaCz2OwRB4IlyRdinzU6Yhb8sqTQFZ8DFC+IabW+6oFrQPyfkkF921D5uDbA8s735o/6QprxXmI+xLcN3pIUFfiftb76zpwn5+/YZonzuuqoClXYe7XRqz1qG20ppDX6v1Cre683yYFd+LxM2fSqmfYn7r/nDPYnuNuXwa/lnrMavci4lbbv2PqmBlh8iZ4XHHl64b2UN5MInW7rt4XXGAvchqlmU6/v08EJFdV3o96KPlzgolgLRATk+/3wt7pWu9ZtqJj0IU1Z5iWQvyf6Ot2yqkE5L7bML0MLV3NOaB7b8O7PrrY2F6rlAMP530daeAZp+xGud5u6YyXZTRgxuw34f5f23WS5t+l1++2YnZeOjvFe/ZdBOc+j1sBXEhZGif/NdQqGfdg0KWlCeeg/Nl+G7dOMCw3lSbLdoPAaMQmcsZAhXsfluSBcdPtoXRsnJy6HTp27lqfImUlT+MhGzmDmt83g8cyfB8AchLMgaslFwWWBIehapLl3EPfH/nkgOxVuJEbrZM8dn4r7FXuJTSNV0f/s0EO0CuCjBgzoO2iMjowxtWxnl02OMz5Uekob9+Oaxs+VpfMrX7yzoFZuTrY+ZSrQSb3pC4/wp2JbQfe7MTQyUL9VKiZm6RF9weMAVnl5wg7rxw4VH214h8mEycLAnuvdEUVWeWywp6F6tQrYz50FJ1TJbN2Q2Hja1pjXNYbupY4vu4VdU56DXM/S7YeBzha2NosmA91nbGWu0moWiJDViaSFefyhR/3C+6vcI9lF8DpulldxJHfdrX0UZ60rH4KoMveU6dwgeV/p46/2aVF4VWwojoHfH6vWvM340Ljpsueui+iOyi208NwNUfc+KbK34cshgW63jkL/cBe1bP4TTA0OvXeQi8AL1PmGn3VSU0+D7Ni8Coiu/GNuvPXB5uTq3pibLrv7YsrOnQTpW2mbVtfm/3NUvoZBwtry/Mg9Fjo+0W90k48JfWDrvfDTZCCvZQoHdQYUn5qV0seYH2pwa05zLaslHnxkTtxf+H10slXKSuojqpGujJKNkbULtmub1WeEsc1vOVeMcvyW1hrd/mPxP3A/ZZR38Xa/exWek88kI2Xa/DVNLJe7CsmeV+vmd+yTY0sXIo29GhbkJ3bNrx/Qqbm2lSiJpjoeg583SvL/+riEu8RzW9/rw3dNtGHYHXvoeWGDbsMus8ZYccBIZnW1x0rZR8Ztr0gvA6VcqA/heP3MgnPim4Lu9pJhM8NM5VW5DusE6to0ehs1uzv8yJp/Jq/7+j63VbMBrY/2ISAmZ+EarIkGQvRVTpCxAarmU6H92lUROEXgEtnAXSJhgzsQ26Rdz4b+tfIw4rsANQsbamYgzfOUPLDvwEIDn/FKXXhhvExGoKN+pNybl3zuLfUf8gtkkKRoWG6ZQA9OCP5fLw29rrwda1D1r3TEmkLLEjHgjaswSDzlL/7KPyAiI/SOfZr9UxlDBp/WAtf7Y21wi+pD2GwHHC1bTjQ6hUAsY2pziazoZxx6vMVl3QkkHqgSHrjy8vxZb3xd+yjpNdKkVrOWSbZ6akwUn5HWMIrJK7DpdqfdQGA5ylia1eZxrJCdnIMeeBArujkVGrV2+ZIsM5t1/pCkboSlc/4MV82ZnKidXkseHSSOSvv2flzErHHSaUbPYFhKELUEb/u1XAPAnotA9I3PxtFvEOcxOWZ7408FM/io9fIcuOpXDVDmzqsFatXliulywx7Ab4da6WTkIB9hUVMNLiUu8Pga8FxFd5w1XBb1OUXNoAr9gvuF7btmF+yBYNj2xXuV2vhyk04ZovHh8TsLwzbVpOs9YmRdcJkFpRh5axtbJZ3Dx038mPDv5Khn7Bcnz1xwo0HjvccoCgnSB8nbZGt5wX4h2O/o27QYfCZb7q8P5WrWpp3fSy+yXIWjHF0ew4xDns58HK4bcBed1k/yTcqR6INbKO7+HzHSblXrTgltr0c++PC9V5YtrGre6i8JqXCtodnTG2ZwgOlA2MGJ3IwRqwvHlgb1174WBeW8WjNsAHlUgk36UpKXStbMK/kI+6tszn44qCw9zrzW5rNVV9ejvd644/2GhWanX/FZcUowJqboZd1pdSnDZPRDtcnnAHk9gUHl/NsL/RE72xgtc2BKzzctZB4bACwMz+LnXWW38E6ac/ijNW8Ncof3qvW2W6ryiS224o9aDzNOvaH5kFJ6SpAVXltj9Mz6+wBoPuJmS5dMLcHD5ixzwD41acmxicsFvbuVdZNrt6Ar+STPETOVr5P4ywzxEehw2ODw/Ywn6XLffaAjLWLbYjO8LGMfl2rJjBgK1dqL6xluLJzSPOFF1Gj+Y4OL66dLur2gvkb29JWsML6RPiYdDaD28qJuvvWne/t+rW89L1dv++KWXWWnonv5rqi5AupxHzO+ObTDdEAfsvMdbBFH/+Hk7B6yVffpcTS0SVG3q3ZuCoZIUCGLmLKWVTup1oL5VN928P2iR3HMcie8igHJLaW22bsAZjOmnKgWCtD9a21NZUwSR9eBFlEIXZc69C+XCUoO8kG/AA1B4j8VhjGn63Q79rrE7mZvKyKOe+lIyCljnFSHlqvcUhLksrLeoa5bGXhMsRvnnSBHFl/IFwpzsd3ld4vwUbpEAHIfVNd6iY1gY2r9ZZ33ZCCAEbDO+/vHQp9UK4SWddrNU8bvPf93GOmcphekJ90pUR3EuMx8wkSdc++0kZr6cdGY3NQn3pllRZ1mTJXZv/MS8uFhOf9BI9zhQ61X+nr9QXcxO1pxEiLH+VSOdkBqG+ZiU2qTDiqQeUP2QYtdeI+BKZtQHViftXl6FWyNs380+DHfFBPciqePojhqplOyrHtp/vZp22J4K2zEycP1LMHHkDrGEl5ydej4PvfLmPll3Ydl5SV/06+kbDEcr2nnuP0WbRcDtZeKw9eSh13uotblX+bx25y1WxqJ+uJGXldOqhOhsJ9YmpzgGcbnd0XLSqU7m26RrLm4kK8IZedX4lr+o42tMkDMedxa7tigG9g90+B+hOmjre3sFo+O0+ZjQ63YbllU3iaZCFuKv6ejRJged5W+nzaYKz0ZdrLgOvrKrShvPaImLjaK3bWaeo99R0cdqZbU5uZhuTJkYOojKs47C0nwgrfuMoCDNzLFw1z5iXTcbvprsgLIA/XCUxYcPyd65VpLLELgp+OGale6O9vtVV+RBdH7KWzE4CFXxox5mmjf7n+vNfvNjDzJ+l2/12kc7ilTDeO7nTr4O3m0sK699KEoawyGQM+XQpxvFM51EFrr+iohKt7ndhsuTHagNgOw77qA+GfMDxWDc17UznT0+yp3CQTBmRHOchwg24dcMQxsQkgw1Z6mTx6IMlw2eiBnkBLz5iK3Fqx41YCiwMQXstrnBQzQEdHSTsJg3X66ONTX04612wyyVmyw4NHDFNHujbGYqhjX6tdJA/7U49hNpuvZni/RbFPwp5VuZ6nnTbdZG/JThvVU4//tZuI49R9uABXnqVHU3btBheznZH+17fNPBwi6HJ4annKkaFIa2Xiwjvqgg6Zvf9Pnbi/TAUOuzb5VRBx+/ND08aJQ3+X36KNPjNEB+K944SuzlHkYtfHTQE9pt8hHqHUWfIYRyxLWY965GVRHaYDGPtUfs11Ynll8gH7q6/hgu3lIuwz7DfjkgekItWg7BM8Kx1zMm8B4xTez3ig5IiOP4XHTOrKmuldJ+0zOfiEbw5beP+UlbL21EANKojD4lru3u5jLnoMOT7Kr3musU8HbePkX3AycuJ+1mxxcQ938Y88xc88XOHOeb6R9WMwf5sIU/1xcLF1C6gJ0wyrAzTyQJoKe586cfL1ADVWIXso3yPu2TVhW7i9U1IgU3u4+4c745SNGfx4IDrJ7zu/nPwqeRsPFMuSj955QAoHKdVk1E4i91BbXYKZ3ylcsFh07HJsznAg3f2tTqCuIhnZyxjWepVt0jiebpLj5NVhdOEbDvDZlqlbKsrTF/94faQ5GgjVtVQPtYxVOLtNfHXtllL1kjbVO/tTLKCz0n1v1z3Dv+zvO7p+f1dGxwR6R80CVqCH8UC13+7V90slegU+9HOn+8RCuJC8HTxZywv9RJCm+aAzZE9RhO8Ga9yrxeYhLiM6SDHkOcC2YiWBjUHlHJ34ss3TO+kQAKiZ2tJDfwPQvQX8cGZ9r2vFiVMfr40f3+vTBtouem1H43d8Uq/0PElbNFgCvfrEra+v0mfL3i4gji5+Ya2NL683gC9VftSDrjbtroq0cgzwBm7SXca7jAjuKCKO+wVk/NRp7RygbYQ//4WPFZ97vLBEl9Zh6pjWculQ2BEW7UZZcdnxzDpQeyMkW+3nH+tja23gLUnXn4XLSX6nJU5OpPtCp7bBubN0fagOmbWLh1N+pgUgfNnDNWIDdUwyV2a5j4zfYGn/lEhsb4RLI4KgPDuly/iNJboaWbqyNAXy8IgXesY0ZlhJkK3/9uxwwQHf2Ds6EGuhPrgZOhsud8RBpUFYtnPWHAuXX9U2zQxvBz4MMF/YtsOFMOunpW14f2UcFubeXhMjHxYf1t1msQ/OYn+EG4AdJyxG5hdsOa7tiQMtx0j6BhjdbmzhitihI5BhQ8jydKgxjxl3/PrLHOJamhd9SVnk7KgkH9Sl8RQac+K4OorEX9bvAwthnvu5UpY0GtatgecuOo505A+fvKPa2WHT/R7IQQmSi9YyXDmjN/HpsIHyjfCAA+LdEP/EKb/kIGT541glQmAqvCfmlmGlC/n6uLB/5ISFcqkIXm0vnioXKsT7tahqYqrYvFzbdI+vASY6BT80D8Rx+VJZmK+Df5bYbkziZVidrBsDmKaT1gsofHjR9R6Ol12h29pYduUKo9hqdbou6c79ZnrZTX+2mfVJ3NGkPHAyXJiBhfyuBjNlUoYcfJdrPSTzyZ7eTJpolUHYAek6FRM/Wddy4GXGdJofLN1Bq/GFb3ZOmkRidGN0RDPxFeksh3BVRiMPhEBsTzdsoHEvNd5ON9CQ6WXQqGPXxWXsLC/3aA/pzbRzIsMRR+TzdOGd9uRWg3L+S0y/qgxjtW1n5TcsbN85uZb86vm5HSCciHd4frolTmy63S46wQc+r9DJVqZrCD5KI2/EZ32wQo93QkNQSPLPajtdRnjSk42/x0uB/O/u6/dzZWR7ZscusfU2m6orY+qSAq/7IrgjLjv9xt8vtPvIK/8WYJfQoOfvkmvoqbt06Uk/hzo2Wbz7eoaMOnixH1ekmHlDrlAhdHq94njb18dGnbXKDB5yNP/AJBzdT0OAtREWfTw+dciZy4VdxybHUcUbH6+NH16Oj/TvVy3awFb39C2PtI8BmURn3sPccmR/EvHHKwZI/P2x6NKy8eUVf3/4uHBd8a0PXW2pQZm3inrPpyyTIsYqo9SRVSE7DnVUvqWr5ypnN3wsx5fl+MPHTgLWpdr7pYMs6oLOwi2swz4l46cZUZKmYWV5Ovz9Ao++LrdEuurlSYnqFkjdR19M9KAdefhFu7903ro+sLMSbcdycHFdVqc0nu6MtU9B7sMOS7Sh3hIWdMVZoHvJrvRX2TAGQMH8K0nulSPcnd+QgfP7MyG3j4vPkvdqzfkelU8gOxfp3tLFo6tyxJfV+EO3kyTJtYCXbfyd9xdsf5UejjgUxP2VB4EscV2MTPbx+NEAveTEUdWOlaup1LHBeX5IO8vQ51THz76YTSmmcc9/GraqnOa+sYhoicd9KGsOuwtzkRgvLmsvh314TEluiAJxSbWK/SPWbaD924QHJP6Nbxq60V4SWZavxlx+ruTFadLVkV3klpvTyTeK7QTU1Kv3ojLpHpy9Xj6+D0Y9lsUR8F8W8OUj91Pt7qhGQl1OkWDP9HOyUct05T3NVkfPgzrweeK8tXv4i/fwOsL/y8cVncteBtR/bpiKLIP418D93f26XRRpN9WxbcNBYej8MseXtfHxAr587JwcW5JqWoCYYaeOqMmPG/C7hvssbt8TDQF23qMDv16eroyNv8Q1uuu1q5+17MLzsmBiXaej3/Ca2LtKf3Jx9QEMeH04/A1gx2dSjGjk/Vd1vnAfpV9/87Ir4skD5Jv65ArEpbCAI+y6zKr/UbYqV0a1V9qk8DdxqGywMqzwhNiwXR3PsvfWMY+5X2Z4meHL2vi6X9j+0bhfOgjfoLm8fXuI5AfflI5enLDLXXEV/0R7bR27wX+nl/+Gv+/o+v0GZsAsYz+e2/HeJFyjEMqqQhDVZ5J0xsdIBZDtOhRh3FOuTSW5X61wTNvgob9Rz7p3Wb0KnU3Sik6gKOEq97SN3zD94Kp5JflFGhyMSbMu8N942a6BiLvHcfleufm0jfZM8HxWxKgkSJcCJXi60wA1W9q7fTY+LL6rAwe+Xq/K+1N+b4MdO/49wg53tyfbADGLa32YRu2FSNq4LtQ3sJ6viQKn3p95C5xN4qfiVqcAiNm2NwGdVao3ZZ9yBlj5XbZ2CIY7lUm64/EYMRbRvq8Frz1m6BeanDxoHXKmVE5oLoUksLo4atyRP87sZ3ld2/C++C0bkS72OGcOraytVv+kIWrTuNU55lhW9/LbOX/n/arBGsCJbqc1pnVGudx7fHuoJJ87OMtvYFi+sd9IzwPLp3o/yY8DmycPuFRS6au0TD0FbouBfopvTn5RHuC7g0ld/62BI2qAVmIEi30jJyjOVELO4Bs+f+IBXQ3Jd+wQMw8meNWrP6jJOeKZb34mZXJk58+njYdc9GRc6ahtWdzFBfd5v4QHDDlgy4odR62LYR8w1Q499N9ZsX2orp9jMey2DfzgI9op4m23cIfTjvgn9ebUce4l/Eznn86fXp4eAPu9Rlu7O0zPKjf73wceH7Y+8bhw8XRx1MAOXF8B36+J+SeWP8lhd08UPt3fI/yNRArP+1CmbgNA4P51rTtvp46Rv8+QTx0jmbYkofmziaGW2GUMhzzYKQeZf7xecTrisIof/zK8T3oT27RbJ2Pws9Ko+5Jyq6+t43d9+W/4+46u329gNst8uJI8BYkHbJUzhB/300fWwx9ZXdTSVS6ObXPgY+7GcD8kJxlQTvv6Ysq3AxAqKnWma9wuYDXbNVAxOLA3lgPrtWF2pVzv7A/rSFNV/DQIwGrcngsHepbSExX7W2ExKFv8ZGHm9+Pl+PL6GuncKvQn9hO5jRRqR+kkON1WSI47V/B26nvFb3MAF3xHvB9eb9TJeylUXZGUhkzUKChVsE8QjkFgdo7TTaX2QkA7NTmAXWEr31GZf/h442O9Yw7hiaSeytNbF9WZYR1aB+UP8q/EYufi2o53Hnv9Wld2ABEfGmXVl1P0YwO7x6lTPCo5QZ/1+anjP/SQvJRPvDeJugPXO36/Vq4wbsQMaumXcs8T/mWDvSPcHEtH9hrz7/JwY6FecSS+BBGjbQsXj/e18iPr70g7/3bu09uZn71RM8bxUc+sYekO4iLXkcfPe2atbGitU86EXlVLI83LgR/TteYL3nD3kL0X3lfKytnrd+oIhE4XbZWuiLsUsrINvOXsXA1jegFd+QFUwhjWvQ/1M68TLnQwdQbyyMbRTvimcbEUyw6P4nEJrFUljzYKwD8S+842V8kOgKvKPXgATMNbpna6BCi9sCsanNnuk2h3YOr6cGBdTHXIudnQmtemaezo8PdqFuUbcT914POF1ont9bUcr4/3MFLxqYtGzvRpOmKaq2kq/11GdLnLNLHBow6Cl8I1PFz90wUawA8f79RzFtFs3JTfmEX8Lk4ckw/kCM/BYT9fhfOenJ08uS7sveEX8OW1E/cVkKVyDdwkJt478VqqLmnou7MTrkUB4lO6ra+sU9iAbYNfPmxVmMu2kL/ZxJRvIM/0HctXOayKwb1cmK8NwOMIf2ALH00d5uYpu33pJQ+bZHbl8yD8bIhXHupek3WU+/re8b3W1wI+7N0TJMWBcl98ZsUJnmBFTKWMS+r/Rrqlq32yjVniczxrPP5jDhS/ZF8w8rjycKrUC3EfaSUPUW/wg9gBXFyN612UC++yTXtahMqB891+7Vfj/l+uX3b9/q6M/M1/7fazg9Q0kUwl2YzkyUBuNsg4Nwb1gOgDsC+IgZkoETNmD1NXJq4kRt9hiQPOxMy4tpD+uoFc4aViNTP3SrcWWx7ueV8crx+u6OTn2c0tl7KO6bLDFJzxUs8TO9LpTcrh0tEf9tzttrEcH+b44WPjr77EStX2D2jP4zYDCc1fG8czcLsUqCdQNvxlZXt+v4wHbvywNr6sODb/i134q483/saXN/6eL19TqrgNptsoy750SblnP1BnH+PYXD5IW4ieHxZ7hXiE+Q8rZnI/zPFXr6t0emFj+ys6QLdZti4HgO+tymzqqGGt2kzr3LYWU448vpbhy0fovN8v2Lb8A+SIuxioPchlmRho17SjCFFiVruOad9UknFfL/rmG3CtdKXDjYy5OkqXwvMq9y3qwiyh2yosyHRJO2A2XerjWsCXj6DI6/oI2Zuz80GCo8yGu0vuPtnsaFkeslHWK9KLDdrWOpbrWu+V47WWhyuxXfjRP/DeH3FkvtNNceGiq6bFkfh1ULJxTbftsG2VXGDlEfpW95x2oJtNlTXbkB82/IUX8UlgpIujTfyAMejGYUCNkOof63ftI537wrJSEfe/RGInhvPG/HhIIwgPTLlHZqgDwyy674Yuga9R5768Nj6+OD6+XMiNNGB9ifz/TL5xLSeMuB0v8Q3xWYfeIxouea886fZjhZv4X3154+N1wenCTrtThuHgccErsc+JC2ULD1epVYXs5cm5zPHFPHE/dGqM/REGP0pw4iIrTmDwQxEd+pZdAbxMtxNufAgffaT74pd0a/zBNv7Glwt/7w9f8WFX4n5j3Ux54n61/RPbIXY98wd0e5Wwkh0AwHo5Pj5yX/G1YNcaroLkgVg+F/1Ux6M8/VO7tuC2axvVLfcWZ3/n9YrRjF0rT4gsgTVpWDahe6LkbfPzKvnQb3U/scvUY/lY+a38Rv378oqR4b6+hHxu6Cqc7wGdunjTiyEmDKSP4+xniV3TLbnGt8Rn5c/E41fi/pe1cV0fuK4X9vWKvKcb4+UrJ+JQuL139n9N/DeEbygz9PbS0au8W0fq0+7w3/nlv+HvO7p+t8M/sq/yqQsg+2WP7zgzWml5uQDzydgEbvlv3tdeAEN0/K4enzrTK7ls8ZxVyMuOe0j6qeNY9jfU7GnNBC6uFrVrnJcLyckiapusSdbyVA8daAC5x8Jy6uiwDcevvK9vhaVLy8drxx4gd7z3kkML7nIBQL9JM+E+u4fWYZQol7QQy6V8E130JMlwsQxAubbh6/5I2V2CZTKxxZArOjJWwVGuqNI2fF7uillmr9cu3V64al+Eu+OP79dtRen58tu/57xAFc9D3Keyf4oVK1QkmwxtVSW6fVSnq9C+kvF8Tzt6zcyL3LL1g66QdpfpxqxuH/XOGjBm4jPhplWSYrj+1UlYoqiD7fxu1+Z4KivCEbOrX78u7L1ygLLLTizTPuBGysUNsF37kjgnicM2q41ZfZfQ2G+GW4jvDsOBH68Xvl4f0UlArJrpBAs7DfDGV4Ji2c7T+EuVd8HOuG9XYwy7R7uY3ZtffEkHyo9nhQLy/uSBn8UZtHvtN3P5qDJgF7Cu/l6YcnPZjvfFH8IDD/U70jr4BoKHWYleNcYhJkb9dQfwtTP/yDeV33ZlOuX0fbYLwc7G0RyCpxcAPQLMYi/jx3LwLKorT6urfJrW+9MWJ9aR7yDY6xV3DR332Gdswl3G1SnivluenkpF7nqQb36aq9Cd+nKpVNsIhyAO+KCXB90ZV7bfH/fE/ZvcT2zl38By+yR/n3NGhs0g+73g10uDi1tvc2VjPQtYZBBvlwZ8wnm+OH+ITgic2u9uxLG6NXGx4zd2OdtN8Y/YkE1QMKv4Rm1TSft47w68v/ZAR4Nz4lFduzjhlncTPx4w4saR1ZB28UC0q8SEDPj1WvjxelV+Y4DICTLvfbAuGFG2JN+a6ETLKP9QpwfcF5L7Tbj/576UOP4uv37fPWbAnRGro4jRhuJ994yaLI8Gn66LAG4dovKtp9vgFR07ujIKnjZAwLq3U68d6p5YlzUfS58IJKfqjxjym17iEpHuI3AAV2yOJfmqK+OYORLMVHeCYVwBaAIaPIiOgwxgHvrxyoHGh3yc8tqGj7Xxel2V7igu6Yy0i4OXjuxA0som4bin3py++1buJ30SY7gyfrELH7aBHXu54MBfrR/RQNlKOS08i6/14AwS+zvZ+aGd6uhm643e/K7ax2pi/rB3fMA53TIuN/yNjzeW5alKj1gxXXDUbqV71cEsX7SbjbqVONTm085AdOCvd2yuXuI2aPsoxIrCes961RWtVBL3RCWBcu+qNL2a0Ehnxwcz/Vp4rQvwGKSx/vdlLVfLM9umukcChj38FHPPQxlWG066fFTbCLe/61p4f33hZVbl6Tz4g5UeuXKnK2UOOOJ4RNZtSzvpbHC7BYZxDe1eyCbkpWN4/V9u8R0bX/iy3uF642GL7XRVaR2ZW7qweJxJlm6NLNR2VdRDAEIntpkGnMsB8x6sH1X3F106MG9QfKrDuPOA4JkCIMPypE3tezhxzjxc5nhg5sdGuTI+tdEhh4n5ePc4SLPjt3WYxpjs0L8Sb+jK+AWwRZ8uihK+YfGdcqjSqSLzYN3+2pUv/n0BWd8D9+Nj9NEY92X4eHnjPrMleOGqAH9W+ZbD+PGucXEhsP9VSzB7cKKZ48O4t3hXG/+rL+nyqbiZOMOxRa2kiC1ZJuVih24XVW2Kf1q/4EjU/rIPe+PLurBwAdvxfi/8sMJ+AwcxjaUDCFQ5PNT/498u+5m/eldmTszchuttMF94rXe4nxIfxS1Qy3IUFdMS97uq9xVeVpLQOpX7nvQBAuuAfRn8bXnIkpfbZFf5LDDeJ9Z13e4CPTm0y6910HIYXcJ8vT245+vXhZdZbJeo3S3E+MyrlMPgG3RacPRq9mEnGslg6c7e+7w2yyJb6LUNP74X9n7hi4Ur8U5XyutCcZ870m2xK5aDQ0Urd8pRJvVebRPhrTIY3KNt4zdOyf3ZL53n+aV/39P1u62YAUIuMlug9wzDRuRLXvCquJ6/JQAHaYbYZ8ZWax57uH4AvA7/mG5cdJJo4uV7If5SQNBfiJgdfJ4CBSCO56WrBoCP184T14Av641Xutr4jzEzfrpbIEd8DiDPhY2GvlpPSAPlb6s8eBmtZhOX1yliAN1G6LJxwb44/ALe7xf4SchIxiHqTdnVE2lapiscN7xzj1uZjXbK5z0QAj7WhR9WkPPLNr6s8AN/Xwv/n/WHSN1YduiZNEefkFZvUxf0jFlDr7G6BGGWi6dXXXxlHhY2flgxgH1h46/Wj1gfwPXF8O/88YfUKWe2jpbvbnlCWqbukHudyUuXiMXS83BDWblaBM58T/tb9eLCXenj5XjDYZfB3qs7BUfHNzo1SZgsH2u3DZ7bpDqNDhvYuapC7d6RsKGtOPHzWunS8o4TqByA52w9sj64GZZni9SVMdYqtr+S46Xz+IQCZtwyWVbn1wr3kS8fG3/8o+cJlgtYuZK9E4Ok40db0A0wOlrRuDcsZ9LJxzbIE7bgHk6GWLOOaVm+DPjDKyYk9rVwXa886jkcFrcBtnauM8cgbMPwykbu+RxId5aUi3KraUxzy2OmZWmZbXfbQh64PyvNL7lotyecJ6yg/80KjtHPYdxyzSmjpS0b9z3xFgt1wuv6Ieqbsf42PIv9W2bxQJbb4BudBpdEvPC189ZeAnkCb+Lbl1fMRNgF4EdmdhXuSAUWT4x+W/zDd2qPkkn8zfaN3mNsCwBdslOvl2381ceG/cFwvV/DJSvKRHmRton/OeY3IIkSBJE4mTdLucrUKm8voztjutIL7v/BvgLbcL0X/n9//NJpi1yuooeboNYoVN5RtmgdY+UrMsiJOQ7oy90/J3Y5AAt39je+wIFt+Pr+iGxVwlqjOu0wR/zg6ruN92cbs3rHiRMDEgeaB1RUfN7GcdkGrg/Y1xVeclztX9nHydkgDgo4Idw8kJ8+KEzFsOs58cg+TzmayoTty6J6v16Od+I+V7/8lbi/EG71CzlaSWyvPkrbtstTLdztuvaZne7uatMsgx8+HF9/dOC9yo3R3eOwOG/ujc8QSGazwZdc6pPYxbqJtHW52UNBwuvEamr5Ms89ixfgFtsQVkyzrcWDSDZsb+xlWFhw7Bx40S8rJl6I+9t37p2nK+OCr6t/g0f2L2y/mv8t14TPkfBfrj/L9SdZMTOz/7SZ/V/M7F83s//6z47ojz9/8n5stua98KPDsft0U9QGaAFaElh4KxwNVjFV/Ph1ufrTDJ1TiToc5ztvndiUuUK1kpTelz1KqLg3uSPA48VcrKXm6pMHAcdyOdzCrpgRzNlL357H5Yt9bul/8hI5ACzbeBKAdFvFxaXn/S3dRbpT8wXv0mvZxh+vJeTQs6zSdalfE1e8y8daB5a0nX/eYQ25kpe/P+zCD3k4yQsbX+vY8Sdb4CCzSW5naO3g3Q3tn/xmWMn/BlxO6DpnQaMaSa8OXEW563hrkZ7k+okrgebhVjN+fPUM5UbtOeg+ZjvTPfHCKXcGyZWkzC/3hs1qwK5dxvD82CgD1ZSwdJBLZuvlw6ZHgfpZG+WldA4/R77Q+ccr93gelZmz/7XfTWZ5Adm0XXsj5tynzhsMC7noUOD4G8j5qABnffgU9/0eOBf+pFgEf5lHOaYd8BxQ5N+7066s5d/QieVnzQM3Lceyg9rWs4jlncixxNZy0buWhDyd5adcuvAPY0nzle5rPhCsJQ8kpq74pkNh3Q+Fr3E/cP8ssQNTC3/tDPsUl2FbNq84EbH56ANvfCk3ds+2oHLndR8wzDICiAcpt+rSHFgeaIGXtTvvyzb+sN7hTWI7VqWrUL7F0z/DNj8R91t4zDpfzfdrDvQTJ8ZkpPe+qKqvo61NHiD09IqNckZq8BlESLD944p9bpm2FXaFlHH2h8+bnxwf2ImDtMwEkTOZcNvtzqMB6D3OjNN8RE+DWk+SgWNx4lAgB3w3hY/ewgFAP6YLe9tHW3IFqxVQl7w7Op7WGw4i7dCpy/rep9NPSnyXl/+Gv+/o+s0DMzN7AfjvAPjPAPhHAfwXzOwf/VacssEpXcHwbOs1o6wz3Q8WJTlJL2kcR71itnLBsbgMremc/Y5Gs74fHQERfALnmrqF3g6sXd+PgW281hU6JUH5FTNKnZJX1gID7WabofKaJFSrI9ko6abBFb3y7zevAxleFqtBPJ1x71zRMXHAttP6kyzmx6zVrj04NC1P9ICHbqcvu8KlxWMd4Id14curT+26roUv6xpy7KxH1I2mq8GXdEJdQSfrR31WoWfV2FHpY5M3vtg7yflKcl74w9qV3bsro49/znePhOtd9T6tco+yohlcbwN2ztyxWOZhpF3X2eNNIQ5IJ0vrFJ/Zza6q/oibHTE2z/11xaB7kHMqfTLOaMunjbIzctS56qzb7BzPuHuMdb6+47s6TWaG7hmUodpWVSiZf5v7f+h2XdglOg87+nEv2f96Lfz4fqV7pdfAcLj3HHFZGu0Ca61DLfnl/XkMPVAxpJWipsx/C5M91VFr6J4jRsW9M+6Br7O32fvo4MCi22BWB87MV735ho7mo3zHe8c9Pyfm6B5fGYS8bOMLcR8ObMX9luMmQzTtIx6Y+syn0jZKJ+WBwFJ+U3JZnHL7sS68EC5dC3lMPa+yq8gxEXlUFZMJuFv9Fq7iyn/s2c19bgjc/7Le+OG16yS/a8f3nZ7sXngltjlxwyqkD+wK27SXg35fzbDxYVceIOT4sDf+6vXGBzY+cIW7v5YV9Tj7Kd7v7CijoeNTvXTJ3xFWcp9doHAZ9He+THdZc9Rpu4OLFPcrPRpSPIX8STcf0ZRrtezjBEbH/nHFSmHKbRMddiJGneVnPYmqERquiXw+8EzjKz4HRy6sbXK845F8Nj5jIcAwJjvKsyRtsaZcReUJcWFQvuckwfY4vv/H90fgPgek44+I3pbnPrzi+rZMwz51sbt2ZlKD2S8rV8a/XH8d159ixewfA/Cvu/v/1d1/BPA/BvBP/KyY93bVFelsS09hz7M77+0PxRrlTE1sEULWAdRNrt9rY530a7c42hjGZlZWfMcxDhQA8J2rQzFTWA3cTzl+3Gues7OmJ+y5RjFJgh3kfEof5L0LCOPkyFihiqX1N24GcebdYu+SEDP7rfSZU9/76lDSrEfZm/fsHHL2FoiDGF640qXxwl99XAAuGYBK/aEsMVOcXjffB0BZBY40+KX77hXuKvv4fziN5ScPcOEDb/zweuPL+oov9nXkp6/uFoSNuywEKR/C+qwCR7XQoUc/t7AZeoaX+wyMbciBOr5KN/l72MD69lO7AvaJXb2aQNzL7OvOzs/Kl3nEL3haJNBtqHS0Sov2qqPzWQdlVSzaAvU35XqpWyb36WIGx/JLjnG2OACBHRrv7Rqem9UKKmr/VutSJ2c56yCtbKJH1rlRiuk6g/7gbg1qvY9qjr/V5J1pd5sSe6R8/YwAP4fQbTWPVbZex8gvQeSnAR5GVz/38uMPmGfN6HN9f8YZoxTg5mbjHazat66Qf/gMevY8iEN8IW1O3/up16kjuqPfmBw6hMqJ+ytXiISnKu8PciffdLugEbuNQOpmN6mozIiBnwOelZ1o91pvvNYFs42PD8F9VzMpCM22rjygtlJ7mcf+nrDwjECOWtb4FRh74WNd+MPHG8DVtqFcQcuuEmd9zbZpjSNa9g6vz4YUR5rmOj8n4x4Tq7jCpfEV/5ZM5nXCasuRMrrph2nHswqecUcyzvaQ++RsjyPxif2WmHars7W/y8tWyuPc66T5mJjKQYSVfVuE5ZaO/BTPOC6fNjvKy+3IoNWBNF3H7fi3+x6njclVPS5OHjePEyM30l6GPsc+01K5bqPfUvUFxFQU3xFDp86SdIEQ8xz1/mWOL7YrINPT7dTX1rVAPUHRqh8T7YH1qobLuQ+5r6sqWe9hju7B939cvsL7L/37nq4/xcDsHwDwf5f7/0c+G5eZ/VNm9rfN7G9f/87/V17IPzrwP94HIsmSu4QdfvUmEcv1BHo2O9xzxeaFOC5/Pwg+0zEea/uZjt1V572PdwkE0tFJu4C09HrFoSDr5Xks+JSX2wgedDxskO9c4vexvJ55YQKOOqo7fbn5pfftlidhxQbwZRtvulKlYTt7Vr+VDDV/fV9qqGmwaBtjcRksdzXFL8DxguUq2sdy/OHjwr/z/gDQp2EZ7YEmNjt19h641pHSPnXmCiP1dLUNYlAWe3HC//rDgNcCfnhduHzhcrranBVGygwNyDeXxSOszrNp2JG6RC5XBVtY+UmG/X5hHF+tkav+aL3RZLv81K6650EJteqYz7hA7k9bhvXhuN55XLvW96HH0ZarSTJ/nVst+6hjXZ4mOo72x70e6PYHANvzwOwxi2zVBrtupx2q3sy6Xfv2iAFA1SPWR61zqw0AII41/1ix3/PH64WGbR/507aMTG1l/mpeNdsY35VtMm5Xn6jbJPLWkTsUft6luP8+cV/q13AC0OyXbMwHXRwD8+YLkeGZR57m8AHY+xCkaZwNS4DAVI496HHqwPhoTlirI7yMbYGdLq08WYePdtUq2JOY0tNEZ70nLlSZWteH7ZZujBZ74ZbfcV/zeg5+FDcOTG0dI1C0ldYJrLO54WaBR+kvmO/A2Bfwh9fGH98vAK+JeZn3iak2uaHyj2rbpx7dNtawmyvu53eeeGjWD3mYDE8JbtNMDJm2Ebkn8B+d+Oe4fc9Wj8wW+zj22vBLvt3gTEsqbTWyLAcWx2FX3jzmIfsA0Y3oClKfQvDe07heGzv3cRXyS93FcT/HLLNvpRgyWoZi7NFILY3U2LawPgBYc2SltSRukYjVoyV2Oz9/cHK6YurQ2V3ChgvUWhafb3ld6bYr+3O0D6f8ojxQdup+i2d26r0fYZHtQ2zDuAb/kwwY/qyXuvL/0r/v6Pprs7O7/y13/5vu/jc//sbfe39f/3uKjEl6R8CxSsWrek8y05VCbKFnm94PgGhPvxmhn93l6szDdKEEdPZO3AhLx3yzY0l97pnRVB8u65djhg0+/qEebIJsdJavqJPlg/iwcyT2vha+XnoUMIadyj1Snj25H1T+dVZ4mNHrWVx72Co+v9uzQP/O1y+fll91kCW5m21Mb1VOf1yUp9XVKY1w6Cd2y8PcI+zf+fqB9359Y1XhtMt8ZZ9FO1M58q35PeX4Nuz3saIm3HOm5NJRaMDu2GpXv9V1PNi1exl95C9wfe3vXNz1bwn8PY9H9iMc2iiUK3G1Lc86xlzEz+uy+ERE3o+TXiUdk7iQelMdZ5+Eq2Zp/eW97+PQBK/6t93w4/ucFDFpRxqXNrORTutw1L9RU9ve/P9UqU8R+znXI+4f9R2Q/oY8O4Lc4n6TMxrUcmWklmXielj4Hwl/msHHHWYPsjv0wC+tC95l4R7uxvvq/SpVAod7nMr0WbAtVZvN0ZApoXlgs2sMwPNExriubfiqn/44MKE7yK2CNPXM80Mb9AjQEHRzyEIfG564z+2xbvg774/BkZp/rrQp1g/cmChY8vRfDNtIOrpmkC6ozOcf3wvv6zXMfuMbVdeO90fdPrFwQKoddWn0U/KXhwdLYOzt9aPcG37f3nzGXV6rMDPticehF2oyjk/v/eJZRqcvyLNburx/6Gto+HZdReV1X5Z9L2bO4+Cn1jLLVBqXH/WnZM2V79nPmXWdBWr5xuhan32cP74/0HwsNoX04Yp/zvo6TTQ4HPoBdcUFict0vfPyl+v5MrP/ipn9n83s/2hm//xvSetPMTD7NwH8Q3L/D+azn3cNAsG9nY3+hWP0Rk920rSc4XM0zHNMYf1V9DdilehjKnF3ifFuVI7pQllkHyhs58jFNSDgtcYs+0M8msH7DbwvwLHw+nCsdc3sftYj8FKxw51yy8VpAk+ZJiPEEdtMxPDecRDC1x0+4X94fZ22Ej3oytj6moB1L6cTqsLdi5FNfqOPMgcAs/g6fRL5hYWvbvGtMDP8jY+vY6A0XHhUWx//gOWjOtI3nTq1bbq8mId0l89nhj/uhT9eL7w9jk3+w/qxOgl6nbONpZVPe6q2lc5DXMfM75nHvR3Xhfi455fokZbXIV3zPusESD3S+qUf2DztamXXabsSlHF3evysjwtYGzUbWU012hQzOL7X4rTjdFPpDzqHHl3nDh0t/yfT0Q7HtYG9V34E9Q3nt5CqnbZxtkxbj3qDWW/EaJU1xZg4NllsU8LoQuj4ehmwgL/6+BHAlfs9+YmBMAbDVtbgcZxzPvDUw0pH6txxIzvZbefAkXaTjvRvdmlRewJj62q9B+Zg6vbO7++rwWcF2XyYtt3IQz8M/sVxS9yPdEbaPp+N31XppA7Ttpb7Ar3ckIgjjjj6+roA34b1sbFe76HKaWyt74Nv2OZGs+nGWfcebYPHaFNWfa4ChssX3tvwzhNc//AlcT/zJ/OeN+MpHrXZiLAmuNA6saY1psbacR31nTp9vQx/fC9cbvjh452Th9LxHZij2NmDAFDWMJ1wlU/c2KJjtBsedR73X33hj++Fr9cHXsvxh9ePw+6jEvlpG8fZ3zixfNjxiFvleoZnHbvy1McfruD7F3JiOmPIQtq4OCd7DHZzxHALHhBkD2HbzsTjfaXSLwde2mGA2Cvl8HVVaFQ5tC2n3LOOdZ+nAWcPN8zA/WvnCnFyJNtxYRPpp+TEw/4MRbqWpw5QPYjB3m2o20n2azwMz2c79YIBf/j4CsvvfJjYovpw9e2T4I97ncoJItBVnhWHH7d2kHu6NbLOMa3v3JXRf+Pfb7jM7D+J2ML1H3X3/zCAf+G3pPenGJj9bwD8h8zsHzGzHwD85wH8z35WzGx/kFF7jdCP+wjLaSLre9xdoNrdUcDYDPAVKwd7RQfuZTEjIsv80X4EqT6TAxz3qlPc+5Z3fJp6bE/C9oXLX7j2gtsLWAv2crwvYO9Xzr6nbsYsHkZyfSd2LWQJuVaowoHRyoGUJQmuJJ2Ft3/gj/sDl3/gjS9YKzpvf9xfWrC3GMl2/WgXkAYrBazAl94RwA4hdznEN5xeuHLPyxsf+OP+Ae8dv23FN7D+zvUFG69Mt90pTHSsIqLOaZuqGyb1JGX3x7Sz4+Koo2Sv/MLNhRd+9P8/e38TslvTrYtB16j7We/n8fdET+M0TEckdkQCORERQtSchogtG1FBMAgeCAhqR5DdsieJNgQbYaNpCCJG/EknIeZ0BBtRTkNEMZiuBNTTUDjZe3/veu4aNsa4xrhGzXk/633X+r5vrX385vve67nnPatqjBpVdV31M6rmJ/zsn/DEG7Y98PZwfPaFn/enw70i0/Iuz7inEZt/+tKw/VBnW8/8TonpCveTw942tr/B36yPIF/Io4RxTcwkXcx6GOXVwU+7dlOlkp2YAzlIdDx+2tHxWYYswvirK1S5A9+YPa1v8GHjElnNUepcPe86V4GBdN0CPv30hK0nnnjA3sQWaitDuTvZIQfOY7vFNuXiwt/VjTC/m0FJnYZ/LOA3nzb+bW/v+OwPrHwLr9lOl1CaQlxW0kXosRq34nChzvtKnT3bY8cN2/XzPpihdfyGS3FfcEOgozHWJYzGBTCX2RDufnzGvSoM92SnyeDL4shwujI6et+vyK7vjn59AzFscJdkhGGB+q3at6+qwMS2973wtAd8LeARnUN/PloOum5deQAQq0l17t+muy2y/NgZi8rz9Edh29Mf+O0zVvzf/Q32MNhy/Pw+cX/YqABrumixXY426F2PCuxY7yoNQ+zaip1cwUU/4fN+4GmfgLXw6eH4+fnA0+uA+8YrtjOx33UsQQ+Iq20mF61sDwvuD7z7I/H/gc/+Cb/dn/C+3/C0Nzzegk9+fv4EHkRTgwgtMZrRbeDAwHbauUtSIRRwKxkMWzlhe1iO9RNgnzZ8P6K/U1hm49AwnyrOxqhycTZI6twVYXCe1Vs5AlMWsN4Mj5+4v3HFS5sWGvdZd8z6uPmjvfFe3dkHVw3cF46oupHpZtjA/Q17JEc+rGxCj3bJbKeTOmi9Ofs4ba/G3DKtYOoqLAlyfizg05vjN2/veM/3foSHr9crjkLB5psuopSTyU1XRhPh0g6UjxiWnGHNnz/09Z0GZgD+aQD/XXf/LQC4+//rWxL75oGZu78D+K8B+FcA/N8A/Avu/n/9RZEnp1zvX4Q9n/YKBz/ZkUjCtZwZiEdZQfeKDf3vNmb9hGPy41POXc2UgtUZnGir1h2IJB0XQaGT4+kxI7ix8P4Mt7PbyyS/qqv81B326n7mp5flOSvTG67joy+pdY99Nnsb3rfhL97jJbdDLq637LjPZ5lmwbsJGxBs1VZUKzes8gPHu6/sOBj+/PMn/LzfblaQ6F899euOINcKQiY7o5oT1852ZkyP9N3pYuYOvLvh3WO17Lf7gT+n+0Fp9Po6ee6G90SrXxs38+Kx8ll7urnawDmJvJc1HdTJV1WeYqEbuX1SFm7qY6+2aNy9YyKAD+M9L94nG1ZcV159LXcIJrE4jEdciwtL1eRD572Bn5+rbbM8j12nPfpeOyMmdry40jCeiOsRQXx3cFWwLx4c6O747TNfv155Qr+/MF31+nUgPCyH+U0Xl3quUtR+SdbVS0zUqmYgrppfc0lzAmbLuONHgc5LXCDtXtjVQohfdAFyIPA+X4Pg74h3FWXaWiQXJVhoVU2EBzS8zsIfuFO45/LJ1rb3wt4Lz+d0Nx5yDtx/2Z+QBzp50fk7cJg84MTBXD1Fr5r99vMj2qhkaLS2G8zpFXUyD+04A/sF98lHae/S1xNjYwLxL56xQlUGhg9j3OGEH3wTX6ZtIHVGclj1qZezIn9PN3xO3P/5+cCfff4kuK98k6m86Mfc9S10Tutk/es2gZluDYo9X8Fgll0RP7skcCvGjw8n7QR7rXDt7iM4eNFH9JZ+SuD+gfeFk52HzEbjj8m92HCsMlquvb7Aule47w583oadLozgO9+oU7q0Sw8pcTdrqFmVFctaeWAdJ01Y/RuNtdXczX/b8PNz4d1N4ib+Z1ju24uy2MV5tIPBxRYqe3IaT2jtU4z3aAfj8KIf9FIT/9rPN17/EIB/zMz+D2b2vzOzf/RbEvudvGDa3f8lAP/S10XOjzTaTlfCGBqs7bjHEfdMK+pcvlgx39YOAO+AecxUdsIQFwEnok8iNvm7PeOnaGVLEzBnOiUmZ3CXR5fJHZ/fDc/P4aeORzRyukT18jykt3bKCSDw1KPUFmSk2SJ+NHbfBl+5G2LRndHwjgf+4ul4JuGYPfC23vG+H5UokwqTeJvLgDrlTcskXUJMdI5N1M94ibB52ybt5IZwNQAAC/fFhY1/6/NP+Oxv8bLp7FzYWfY0+4EoXMUo1y+0vZfFoB7meU96ypc7epTZcwPbDJ+xsHdA9Z893/Bvvf+Ex0IenW/1AtFDg55RG/deRcPyBMve+gWo6jmlYc/qybDP58J6GNanZ5QfCacSIulIgaLL0uQeJs1PiE/vWS+CsCDtKURtz4GiG9ZPT/hfxLsHbYmbpZB0ZL8qGnhKWrv3eO1BYQMweJZvxFulf1S8jT6QNco+XVp84dMb8FhxBHa/vD3i85jn6idkXWfFW9ZlGZ0LK1xo25D8eqLGDNkGtJbEAsxvnw/YMvzm7Wf8vfdPcThD4kDM64dexJtuX5H/2HTuMO8Ozy5bQOpYHKu6YfA8IrNe2Mvyu6vOv/TSCnqD2aX3GcdnuAY5qzTN0h1PXyP1RHSYEmvhgP8cPVN/ZJ7c5itHDh2JSQO/Tx03mgcszKiDKrCeWtb5zfMPF2w7/D32t9jDsl5nApTvqGPqxbMo2oSAcPOAfM+w20kd0QifO1Zj4yRQcWPfCz/jAWzDbz9/wrYH1uMJ5MuT2YYB4pOWSd6WXBttlX+ZCSvbpLvijsNQlsWEzee98VgGeGCWvxv+7P0Nv31+wtvbs2UpPpGHkiNbdnOSi47kgXrzZNoqzgBiWzA4NjYMn7flQVUL2wP7/+L9E/7e559gtvCwJz77ai5i+RUOKqaePIC2E6O42Inljpk/iCjaHB5bI7AA+/QO//yQ8yMyjvvVY6LkVYWZOhaHMw2MyZqwqw8udiSPerTR7Qb7yePsFkMOgEQPfZVFdzAkk15t4TIIryYxcZuVlk3VPV94jThl8v3d8EiOfH5ewSGryUwH2SzD5uHkm+1YeR4NT9ANLrLS/8oZ0ebZleRqVwwUV7qwv+Pv/Rxu9av6q1wpy4ZrudJLkvG8l8reE+Txb9evSKudDhL3KQrpBvlN4P8HuE5c/nXXXzOzvyP3f+ruf8obM/vbAP76Tbw/QYyl/r0A/mMA/lEA/4KZ/Qf8K9/I/TsZmH3NVY04ezeX/jS5MAObI9ydWHG8Z5cLpJCJ7OyF8a3xbOSbkVd0INcK+RsotwcggA3dmDigo5ya20hOb/QRWdV6hdSR3L55KvnCM2do3mB4LsOO3ll1OEWrnjXiahA7jB5xog1aA9lhVQcHHnmsNjxWfczwzLfG237kvvggGFsPbDzwSDB4uvQ+CnQKXkSedUEaG3+VepgjO0Pt8cnZWodh4VlGDpD77AtPbHxKWetheCwvN0bOEhZppG36fSK0JsuWKNlF1MAVHZZw7+ly31h4RwwMYQ989oU4k/GZJnngU8rb6W5SAy653C32CeX3nnmku0HPetZgAJZkHHFZ3hq2AbgL3Rbw9tPG+3P3nkrmuVzhopG5sZy8yLStxvf5pFwSAQnUjjrQDIR+x1Sn+/bm2G9P/PzzG/Cgy4tFR1QORLRl+S6oVHPFiVU18DGSWZSRkQjB09XaHqoj1SN3LYv3SH16e+K3j4292n2Iq2b1Ul6TFcWsj9FVyyLQjoYdZYJp41IE0Vmfr82Nuv9XPj3x2/0ON+DTw9M9JfR5LJZTHvVPWdb5d+NL2umciHxBeuPKErtFx8pgtoA8cKdwmrO3X3lZYepEqBq0HmGJE4RaduJqUFt6pV05e6CDMRhsB+77SjcwIZ8xeW6iY8npHtXgm9YURQgb8DdOSmX75+xQ/t3+4CgI8T7bFS6WnvZNh6Mr38jqpZvwj2Vb784obSoAHBNLCGxay/Akl2DlPt6Vx8CnHon7e2uBWXMP802d0G5ZXbiK+1Z4ww6iG2tc4p8/8NwOrA3DA5+fhqc5PsEA2zBbeHu47F2acjmREHU/VwOBgQtqG9qYK0lhm+CacONN11M84OHciPfcZ7ZsA/aGJ8KFPSbzHsV1o/zylx5ExpeauCOfHliu9YtYVi77izZDrsiIqOV4/AQ833du3UCVk1lMxpaedI2z5AEoRlm949OhXIXipolt/Cd7BZysc7oyOtanDfzs3cbYHB+AjPoLOztdFdQ6Tith8g3xWOph3FmV71qOTz9t/PyeLaTcFz1G6KvvzSA8wPwl37CPajF5S+/RaRuUfLXN4AwAa2385tMTPz13nmSJ3FucuJ+cycFa6OSto9hvGc+3DhELdMk2sU1PBjRLdD4d/rtYWfqRr7/r7n/j1UN3/5uvnpnZPw3gf5UDsf+jmW0Afw3A//trFPld7DH7qqvI2KFeImCv+Pae370rGOHvuhwpLcD1vgGlJiyO/acXPb1Bdj673nMCs581+V8cuY2+yXSlowvIylOLbpTJQUJlJQ1jIxDmrLOLuwhG27/IcPnEpueeMXx/xh49LQzDEd8PO49PD3rIOy11om7PpEZmysXS4/CPjdgP9/Q4cENzYEcGpxwp+xv9myGu+xL6jWXtFsv3fMS7nVbqZvjtU08Nu6LZqeP87rdhB0e/iHvOHmrYvWOgSVO7lhEHGCalNaprvwC9CUpL96P8nTq35huxr6bkGF/sXS1DLX58WlYTkrpmnNIOu561U+Di/cm0I63qgwo597XFpTDS5QD2rhG3awnvj2c3miPt9PRHwUm4sUw7DTsCDbD1zEvHFnzaZnbw/JLfb3NpkcXFC84D3R+r50fYwRmH6tdqF+7HfUhGVf5cgpe07bi/fBce+EL9bhdoGaBpAPKE87CLKMH9pB/ZB3yjPHC5GkdNMJ/3wzVbbYHGRQfdtBNjt43DEqbkm/p94tNhG+a1cF9cDJs/gT4UhDohXf5DpzilVOReNUkMvseoy6mOxQsmwbUP0fG28OIT8dlu+O3zocdQfcEWN89/R3EbI7z4SXGfeJ8O1JVCd8YbN04emDrc1cG+Li+B9v77fF/VmOPkW58B7HovPYiRtk4wAZcq98JOQ1O4A++DIyV95rfSEL45dGpn4XsU4X1zqaatYa3q/c++cjLEUe6K6M8aLQUD99uVHujTIv1G7mm31rHy/y3A/4e4/Bs+33b9bwD8JwHAzP4hAD8B+Ltfm9h3WzGriw3JB4dcZ08NGD1lspryraZDY7NHlWH5ri5zi9O5uM+AgS0IIZb8vUcIokfR0uS1C3B5/kN3mRi4cZY8XCoXAF/Acy3gubG34flu8Y61SqfWwUQJadTHLe3Hh/Qhd6BcmjiB23usQkq8dJaZWnhHvFPtt+95DLCdtngtN3sPcbcMemRj54Z2V4rQgzbi9atPz9kaC1/LJxy/fT7w8154szhOjJupRz05y8+1A84VqNRiZWcgdYmZ15xJxYL7rjrq6EFZ2Amwp+N9G/78/VOthk2bHNcw3ijdSyAuAsjEXZbnTOYsj8wy3p85u752bLiWDnzVY/PbuEC6yTFKEr+6kbCrVfprEdD1r/sGuXIcnb9VM7kue970vsmRM4yVtszqMFupXrr2kaDsqHMZh3Gzem43vD8fqZMSG+usElrct6tqhl/telr2KCJnlUxCXSw0hu1OeUlyw+fcX/bTesdf2KdaLYuVrSDqJmvZT0biTsOY5/OFdA3ly9GPuK46W02G6Qr51153K2PaoWJdZ9hXJ4GZeE2wfumgbyraHIBnQlG5hFu7weZPdBvsHz7I9eCbrHxy8JOb18CwXlrvjsXBWL68/PnZxONC1D7k3vNNGKBN17gftwa3Xe5TUd+538j6MCrEnrd389jf8jnc9YbL4qomNW1wpyBd4YCq+z4ysAv7O8NpKwvb7CzjdzwA3/j8XPjt8w2PMa3cfEMsb1K0YwDRZXmLnZbONmEpEN1CS+EiBC9AcP+C9dK2h22IA/LjadJ5H3ZxmnXg/tlhjokI93jth/uKd5kdWD/3F7eOxQMkmMHj0663bcJbpxbp5WrteQLievM5V60flq1yFLsKwCjPyrtwlVjteI1Ii1C7x6AsTp6mO3dEbtuc/FNYnt/LlfwF37jgvh7YRM+GaJk9TN5ueN8xCf3p8axJx5WcaOh7xon89kCtJjgvfEPumLaBxOvqsZMnvg33f9/X7XzsH+765wH882b2fwHwM4D/8te6MQLf2ZWxuF8bVt4XcSon2k1cvRhH/2aE8p11pMtIvsjVoiNVlyM6Ijs7WBRy9ulO3Zg2DMaNSWwuxY3W+7l2uGM983jV0IWnNZ626s5H9VzUJkOP+OIbsIez3eegJXyp15K3ByCPaa1R8cL7pquTwddjrGgsLaRiQTGfB3j5WV55v3Nfw07g2uk6w5nZsGswz7sj3QQT2reFu5lxgGtZXgmc0lE5q1UTYgw+H0pEGZfFRlLeyEn1TYZpHVf42AEebj8PM7jFJvBejejyvxucUcdyqaHL36gBSs1zD9m6pHkHnaH7Wnn4xdo5Mxm/u03daIsSa1meWQrnfoL+3nb1kRbjOupENsZdSSyPDaw8z59tNXUwLU+Na1dyVmKTrUepo3RvRf8z3YWNt8cTZm94rC0Hk5BAAV1Bs8KBXLU/OwVaEtKMS2cSOXEPxAPGjXbytp54syfeHk88nrnXIAdjq9KOsHG4mXen6MTPyn+Tr8u/LE9UPW69ULb9Rga8w+5HY2XBTNY335h7CLXgEu/9xH/HPCExM+eIVbSqI1UOGefwI9F9gKduBRQ1kIvEhrfntnCf3OG6ZR5YthEDS18rfdtHbZ+2usN7MC8CMKkX3Y58W7jGJ9/szQ5y7Bcxwbb3HKA9bMNXekeUVwe6MIYKwgNtsG77ylk+7R3FE/v/7IFsaxvvbrEHaFuSFbAsXi69fYFdxMJ7wUytFp5lwbahtdYKb1WXzo5ZeBjQNgH1C8s2HoX7aSs88NwPWB3dz11Md3g8abxMduCwxlVeg8StqmCdty6drAOJsQEoESLcYRMRpdoYcY7pL03r4JuTe07uNcHiu7iPwP/mIvSnBmVe4ac3QFvyYhsTLdJIbLs1cTfy27LWY+ffJ56YBcLTEJnPnngVL43M7eAmR7ji66Tn0YbVlrp1gLj/sCc+rY21drmsT1f64NfYmxlxvdJqImQzqYnBtHPzslfcifsshG/E/D/Eda6C/6HEuv8M4L/0u0rv+62YNULWJe1t2nf0ZDAj3FZwCeTdna0K5rECxZbp73KEqerFGmr9k/aguCm7iKD8dVFMH42A7I0iujofz6J7xFW6iBMvGm0U8pbvyFW/8Ug6hF6dZw7GNG7EiSnPGNzsso0DuWIUw6Hob8S/TO+pu3RH/0HIkXJzNOxpj5UnynnO2nNFrObgLVYathkMCw9nl/4ZNjKH+yMOCknbrAX8/IwX744VHAKUe5ECiXqxTHRwVnFjYBUraRsoHWPFDLKKtrEjT+AKZNpqxQu5u77eE3TXm0nMR7eswnLdVInu0o+8RHYYVh6rHqd/6shq6QpVZL8HRQR+baPcH+Ke+w6RNvL0p8+9XtZ++EgTaB1duWfr8eZ4/oV1hmo0kaRq0fHoPQ6o75W/xTqeM4arZ3xNtkQWiVKfIquoC/TXf3CPIG2Q4c/9ZVyhottg7bXwjfUQuxUJRj1YaFKsGc3qm+zen5PP13K8PRxvjzi4hYMy6rA4wMUO3WsQKQNhkyPvYdGxfKAKaPlT9jh4Hi4S+tbUSIY1aVO/6krVHKhKqzA7rrTHdMlmOOrBRO+U6b1FcevlopTNHPaeEyyqiHWnl+23al7ejxMshQfqcA5RlwnXDkjPVSvhspBnMbh80jg8qCkna17xzTCiTnwQUxU3uGcwMBj+qNJ1e8KTFzbIhz0p4U8TUraWM6m2213ZM3jAcl9zhGu+icfxbFsMdpD8w60BrJjuz+p4Bu6LTgP3T0zlim/rXV4obj2gkrg+dAjbBCdGGis3ScZbFHbqZBmuEdmrJGmYa3W1obQ80PpYmHzG7ahLyt4Tz9Yy2GPn5KrUf/Oxp6m+mzUGy6X74OwBlNcEBI+zrhB/q7bY5N7gBs+Bb8ThaZHnPqsaKFrvp2q5qqGPk3KNeUrj2GPqqJN6cehF7gez8NBRjqSbuhnGMfWWq0gy51McYKpTl8rgAThqUcAhOln0D23txP6Nz3tJ34ZlS9k+eLw9JDqvc8Jw8o+8RQFcKeP+1Zj0o77Tbn+8fn/X+nKQ3+P1gtyLf89B2Mu4PsNK3CJJTo/yJZobsiQy40xg6Id0e5u+z6cceSZxL4NK2HDpcMRqkm/g+TSJ7ORckXNk1ubvl36Kn7c1DOvHzk5QMVfMqub+gs/PFat72us4y+CUrbNGBGDa8dDRD9tUkTrKzSb8+oNSnx6b1X/7/sDlErvriVV6/8I0bRedbQOgq9IC/aDz10a7Nv78fERn5+XszZQ6bHbpZ141rJpxhPUzLbn2jrKMBDKP4gIRZZK/3xDznNE97SgDHio4+hp+xEWZ+fmurOAjbiUlehXRFQlp7mfcGjjBi6xM0u3m3nWELi2uvSALYjfRca6ytY6GXZ2YGtJbP+fqVtUedY1RQqXO+e25rciZg0OumEW60iGSQSZraPUHACyfe+AMzxdl2/pXJwW75H/N5cCLSbfX4W+aAAYeaxA/fnAA2xtfiPvvirBHGqJPYWURkh86veCBDi6/5CBIcB8IzHdHTMbVu86yIwRMvjFJHz5tqXxz0dHSnWnqSq2qpQjuR73LY/xvbHMtl1fYeuXLyJ5XxzHZYzATbUW94gj/+Pz8/kCdIHOjBjvMwImTahvmukr1wmsc0KlOtE1Urdbpc75XrXC/5N7kH4qpWsdEjQNnhtnPZ5o/ZsXjdOO915h0iRGEyC1MJQe0MMMp54r7L6+B5ZOLn0+riZJz6/2Fg+wsvxseEOMo39xhquZJeeC58zRoabw8dKrKgthnvTLG5F/zDXsL7aiu+TXBY0dMhnMifHvgPr00yBdr8M3sjXCirtwRzzIY/NPPFjh515wC5YKjzv2Ql3/D5we6vu+K2cmI2krO+zs3Fcblb3k0LAxxGhf9/NONpNAOSYbpPmIPwN+9m42OEookBTf0SOZMq2aAHXL6I11XMgxrNQ8KSFfG6Eil7GcCw8pVJV+RZvkvHzakPiacIjMctGPrGAlsulGvPnxhGdLtxeAL3Sl8ombclqV7lwpUc6XLUdgxH1puPk6AWuDeLANXLx0Lz+cuuRGJ/tJxpHS4Ma4sW49VKRgei70tCm7yKgVJVmmb6gq4xkyyRcxSL2+Xy4WYQQo3GxJMuLzGs4W9Hb99Rt7WcjzsHZ/3dd/Bqw4Dy9dGOZuE7UrYq6KdRV1IZfUwxOlhO0lmvW08P3vXkSRGks4kR9HXuikson0OXm3I7g6Oo10r4HnCmYl+jlg1e4QPOzevFB+rPiRHsQrbBRx5SmGawtGuqgeeVDfMabbomLCDxOeP9cTbesfn/ZYuMEmEHEglefFkQ2aoX/qJIkBY5xXZCW33ETZO6eTozLmFG5rD8ViOv/L2M/5iv9VgrwiYxF6ELASbRG7ZaQFfjVH7jQycNGHWong58EMXfur81TyWXK/zV4Xh8wyfqsv7ElbswxEDO57lixxGd6Cn1skBua/Y6arOQ5G6SideNjjUSl+bQM6fT9WKb9DH5bO9Zm0zC7n7iez0hSu3Py3KeSEi79XYerwCgHoAeqiJ2OzEY7bfdGWMDmW3/67AifuetnnGa0qAOLVuP2/0oS1KJ0BgP9JkkSSO7nSvXM4BH0+oDUWfG7mCko1+p/u6LTz3jv2yMKzC/cfElMJIn+VKvEzcGJxk+eoUA+KQlDDmstzjlnVpuQFr4/NO70ALnnt/ht7Ldrxm4537ncU+WkaC45B7zKCF63dhXfidVaX+OsD97GaO9fYEPj8SRKWCCM5chAvNg/xTWM6q0/WayZGriCXML1fNPHn98ZZu9XIwSdfJlm2HjpMWZLLBuYpkiKNRver+NA5506tANsv34Xg83rGfn2I1izqlfNYL9SYJb5EthTbLrFxCzQtTW2f+3vyZTTsmI3KV6jdvT/zZ53fA+PqdxHl6aeQ++1aZg8rmFJ7kHHlw4cu50s7XW0S0BeBzuUW+nmz+Ma6/Xxb0vt+KmTaW/tOdGd5qhyxJr+JWlCbWbtP9X4clQaNnkBaA53RlLDfHBFa+V6LCZGu3InR5BlFCyEnzzZcl61QRj2Z3WzFQTJeWOFI10uz8jYyWBEu9+owNO7J+ztZygMSwK49FTpeM1M9slU/1rjN3ZxlcCjLdbCwbdHUkOEtWZW+1iBlE1nKri+kAjyh4YuG5V9hpxXH5z/2ADspwyC09zKTP26RpDNCGvNjKc/9f2Um/I4+dXgtrLTwesUL19Mc94UpHMO5pm6pyl6s78ZK/Q2XlkPo9wfstj9oNdyWrSD0T2J2Yrv6eL65k56VnH8tdkXGKT9MJyjotJlyTD0lW6xHH03sXGJhouaXICpUkNfJctmF0bRfGOneUfc08dmNdFvsfPz0cWI6ddazsLLOndCVB2s4M6foXaQ3dnPu+4lqUa7Sj9QBWyTWL+7GAnx6On2zjfb/F0cdGd8Z4HsltvJmXS86Cj+Oa68CQDLtYJqJjFYHtck1FDvJWZ2hg9K+5WFcULvWvnd+pU5u6KpZJQK1qQx7/c+sJM/aod6O6dYRR0Ww1h7zmgSmrj+Fngy6Gkg5t41NVqDdLMCif2W4bzANaj0vmqxPfluD9xJRpWXojeOL+ZoJZ/2EoXpig03L5I6c3ezLHR37LxTDTIo4G7mvCwQNcC9h4pOtbzMAsumVnq/K0w+gQw8b9sJfY5vKhHpa2qc1neuB484BnPXk8Ir/PvZrnTmOdOhqKt0/sPvl19IVYH7v5Vh1j+mvFQCNcGR8SuQDi2sjOKgJAX0vCSqZ82uEg4Wz8BpaS4P7OCZZ+FYqnTiQT70kx5YGBIXdykJhK48ysS6zK38OAT28xeIm+BfVIHYaLP9ug8kAIKrkpuE7NpckLQ1w4st3/m6tiIu7TA/jN4xl1fZGPvF6TYqI/eQAI7GbxPkzdFX1y16EHcvKEqLhsV/0031hWncsf8/Jv+PxA1/c9lVEamKuBBDir4Rt0gqPBLf8Z/IAkAfnFaqTvScoIAn12ugpOMdNzl7AVCobsvhf8KZ1rYoYB8ofhEsiwuYK3323ku10oGVx7NoecwgRjJoosxyy9CiZx534GvqeIbi0k7nce4X/I8UrBEgSloHTww98gOrK0TEqrggVAuU0d3aKj4G74+ZmHk+S+tgJnkavH1vO+5I2NETRL2i47VZW/LGo36ibZsVxp9HitwPs+me71Zfbxff3+K+OG+bNOee57g5SFdceJeaCNyh4siSJGIWlZwZv3uhEdWfVnr4Pt/bnzQJXKIEk50jPDPIr+lAtIuTs4A4kkc7Nd6ZZtjC4tJHxvgyGP5abbYFqx3QSBduejTp4EBpjlIStdg2ugBEs3FdHRVEddjUvZ0W6jXn32laubXnIW9zlg94Au5ZbbpMX0QbvaRNg+iXEOJGsWur5z14x13vGVF9vlNHlhhUsYXhcI1rA3hyxd5CmnbIsDL96BercYcVUzZRpXlC1OslKCeNCoJbKBdBnuVZg+9ZZ4lEk9EV4f0vexxMBfzDfVNKxsyZNLPdM7mXLYj5ieH54SzFTJiWM7lFFOJML8sD6p7ZjfMo1QipZVr3yRCz1PjwyefH9av1uNyosdrE3c4+NhVcoizzVlXnlAcX9+B6xw//kMPtKK1JijBXU8S7u+wnJimzaLL3KGhZ18I17BwN9YfqvTVSwFAB5bb6rzMXGnuH+ni3KKDtjovr03EPvGUenzYCXI3+ado3kWXpHlegWrVrb4kdWtkc/q+MWP271WYycet9zFeGUblQPB8j1sY/DG/dKZDX22Z+JxtEHg571yb6PXZ1lzxzyifxffWPJNOUoZOl6GXaIjOaIGpNjh3GWosN9379MXLqHyv+zXd7Oz390cRvV981w/9ICKJZX+eLiY8T5mS2/iPwNhne/PqDbDSj7x9OxEyBfR8QBfkesb4sNM/+/cx7VXkOAzidt42EWn1+4/1nLENi4/RDYiByq3/M6de7dQ92XWCrPwvsOd5fnkARLPFnYsa9MkzB9NWcfz+7BYyuSesfTd9zwef6dLi1vq0TqFXz/w83t8pytjDSRV3k1DVdtsQMIm8TNe6etZ3TiDmgPVzXf8AE9/4H0bfn6uOHbXgLX2cAs4tZi69b32Mao8ndQsYdSmaXxtKpa/7J3HEy9gPZ5RKZX0ByHK78fFjuWlzuvg5mJolOva8Lpy5ImkwFuehsV9blZ/MUmHREkuTbleOrFLivrLo8ll8jR5kL0s1ETtTp2eDrwtx1pP0GdfgYOuKTVoqc5n6JD90yLY6N957vFJHZ34kqsIfJ52MtXZEa5TBvxmfc7BWLpRIshZ95vxPiLv3rOQtZiTpTvzw70FUUiRNg+/ISE7HJabocy1Jn7FdY4NWHyFv/KhWRU49L4wP2xWQKa4vxGn7LJNP9POZZNM9sIRYRM/5WLK7Z778bzSSB7ICSTPvcROfNsGf7c4xt8MWFsSUrnHb2UcMa3PAN3uONgiFxBP41ju+L2xjRMmz3eDrQXYEzVB6Fc5UyfFJsXjKw9EleMk15o84LGv+Zl6PTfwvoHPz+AEHtJTA2XmVRIf+Cg6s6rs0rEHWCAPJDfBUTZyFx3Tju/b8PkZR5s/LDiy9pq7GOT4GroHxyvcXrD8tGtlz+f9TRnsdDt9vD3jcCrDsb8MECiU/WaQv8JNBCT0oMklSusQz7aIstTnuYNL19tz4H7NV6jcs2KJFwVto5MbUZoY/aZS2eehRZFMaL2347mBtzfH2+MdupeWGBuDLuK2y6ArrlW2CIxdqWC9ggSt+jLBfQhXKR551HczC9xHvNycrz5hXnvNWCbniOUWtjDfoodMyFU6PRvEnpHifk0S4o/XH+L6bgMzHfDU/fHc5KZmsjRu3duIxRdpDjcWxiFZA7H3zDBdWqqxdlpDLi9P4tfBSbllyGfmJHVvIuLzmq00nr7jnY9ELLplDbkW6VH3yl/zQFoomvB0EwxiITGNl4r6I9zzkO+x4cym0ykrOxllDjWSFVByiTy4s8uJq1jsLDAhJUC6LpI8n1h4ergybli+7X4n3KyWA3Vh0VILuaMfLfn3dFkpyOKzdFnhRm8e9OEIN5aNR7q0RNk9VnaBd5RX69D1IVbtVEeTwVDrSFuqewjv+ZtBnp+86khXRg4Q6ZI01Onw9ZvV/RhYKrEdjXbU8qFj1N0+kCLcLt4ePSiDIV1GIoDlPRPR07oW95PJfbgt+UUXuuvVPdrV0UC3QoYF3tJtcCXg8NQsM5GLJOzVxyb38yTL1f7/JPEpV3RifrP+Vt6SqB9r4zePjbf1hNsql0vK5DHJZjGgbFfGne4ubP0p10KnN8k75fK009YxGj5nTummsyB14ldeiuUsqzEj7lI1fQS9xIWEu+C/tH1iqCPqmLNcYZ2GfInvtEW3KwbhYzP0IKV6yBNztH8O0TNcx1NgVkSDw3Y7E6lAOzNefCNyj0j81xk+bdODtXQZ9Fg/Jc4VJj3oeXLwqcoZVSE9DLJQa9DEZ5L/xtrmAU98fdJNkK7iyUPh6m/plt160bzlCpYgEu7xmR+q4d2mIXGZlZ19gFo1zD3VwY3NmZsu7RY48bbysJ79QG0rwMxvy1XcZzkeeh125TPLPKgrY7nLartajsdb/N0MX3uSAOl+FOZW3PGb1am+Z1vlxFTfj3+6TmZ21iOw6/HYFaFwHvm9BoftvslnrSNXjho/oHrYdFEu93H0QIhxFoKLfnpz2NrRL0uXwdBPvETAQ5fY/icPBAeYhJ24P21n477cHiMq3pbjNw/HT+sZ/Lmib0GbN+6H/Ee6fZrF6bwP2i31ZWe/41l1o6VXlMgkuFhtqmv0D3v5N3x+oOu7uTIWPmfNcH1gx3OgNhRfnvF+GJazJvH9EheRgDnigAlO1Rx61LjqlCMtvmZrLvrflfSgyWqAvNkJrhsWG9Qr72OUhVr2l7jCOnWvDWn2ZyQzBiH0q9bcg+aep0Vu2soHEFKZHkSgiNlKThoMe+gc1E9CP0YWgAySAFgcs0+I5WrjvDiYoU4Eyj7tCCmLbXLYRmym9c+GHlImSmj59zlcGU+rehWB1fPu3d25hmja8/msfJeVLqmgHOC2viHXMj9TTrtNaNrqNjhcCC/5y48in7jv8d4BPH31gBAuew4oh+56pzy5T93riH4hpSGXLjk3OtpycJbgcxVJ55OzhkFcWux7zsRCDsxW15zKg/fv0LzuMbgcrtjWq9yt9y7XFIhLi9qK8gzi/kLb8cPVtuFmg34Orz0XvXb8ddeJqeNSTL15VHO6Etd8hm3cZx5bbsBWtn2uYEmSH/LNiQv6hdhQkTszLgk6y9tnXMZxoA4muciRtnnhG5IBlwELyyffKL/Rbo0/uMRlHdhPAPsxuU11GvyjLyjnzx/g4GGEiYSspZGum+WZDumavc8Tea1Xn9Ik5BTifjyLmqRcVTpby44y3VUfW0tOpM78OIDPUqeueNw49fL5r4j7pbBFUTsnPAX39aTCwifFI/1bK2wMf3DBcO3LqzAX85IgMXHZD3yk0fjVEbMl2jW/jaspPnGmJha1v3LwgC0Az6g3z+eqOjNcGU+szvzpoBS5omXEyOFJIvjKuHIMv+rc6YZO2w3vfJ9m6jxdEjH4ZgywIe0hOWbaWHlx957xlE8d284/+HVCzF/S6/u6jGo7Pn5XAhpkrpeNPxC/jXIlIMG2e5qwbR6Vr66MsA7yocJ+/Ylx/YxyfOguwWOSi/i39T6DGnlpYxDaUoY99RgrhJwR5axhupakkaf7npU+YaoFutq8PzkLeBTCTUPo2dhOywRiQzBnT/sIaerAuKUX6FpCUgw3m/dnzFrShWt0iG4b6NnjW7VS1nvpIHr3Ufhlp8qyzi5n2HT/+fxceAiZKfmcdehWzUsFap2qc5C2O0vkmp73oBqA+H3NBV0lHAH3clMhaVKuzWfaXHoWN/4WyXg/o5vNdp6uJhFCa5A4ItHOvJLlWCWzmUz1V0WnrB09WSxhWQff9wOfcoayVkWkE9KzukGMj+pQ9Cxu1548IRFJdFUsjuXpckhXE+O28LaxZfm9PxfMFj49npXmg3a1GBjGa8lyIFuD6h6UUS7Dsx7UCWrUUcOiw5oDfEvTNzozzusot4GX6L9SBebllRXQN7n0E5fCcm3kvuLRmluO3wo5dDxVzAZazld0WXdJ8A6PYbkXyIB3A/KkyGFd1efgm6nEVLxgkR4W2iezlAviK1eumhP2zn3F0T1Mvfzg4p5UU2UHJqk7KJh36qXFrc8E90snDsgMz+dDXvKbcg8qfI2LhpMfmHd97vW9+crzkBJdOasj/J8L9wMRKST52pjquGtRp84ouyAHiz4yq2VgqR9PU36sxn0w7rkcnWIm1naAnqB6EWU0DFnzFQxuF1KLdz0ywJzpGg1S38M18Vi4StrCSoLpCXDrrKb+ecRZYFnqFFsQAh9rwESMTTxeiwd68N1hkwccSJ3UU+PgG1dvUmJs1wPiPrdLAIafVvZELA4FKWxf4sJecvpVKg/aymNvc8/h7Aof5dN7/OL3Z+oUYblX7XeI+r+XS8e+v/bzI13fbcWMk3sArghqqGPXPY0WFR7VyB24HtvLdDbCXcUdtk85JlOvQkbIhugNIAf/dKeJRzsrA1jKNYv9bWaAeWyy3Zn48pGvdOJFHeuftcMJnGe+KEfv62h+yZ/50L8xzmPgl3LreGfwGGUurVvpUr7Q2juSwqj0wXWvVIUzlxlte5dJRTK6jYSc7QEUT0+3g9qz7IAt1B4c82OPg9rKqyz1BdtFujq4ZFmn7hzFbwBrpx1H6lbH5+/UcbMiex6bD9T+nuqkiR5apt5ZlDCj1oGdhOqki96nzUPoQbZZ+R8Ph70jVoWeIWeU6UVuJzkGaaXz1FFJdEQfLO7DFS3cPsLdLva99Qxqz3TKPVD1sjsIBu6pMipZx9I3YZ2cP5pwNsPYF7Dxyd7xW3vA8czBEkle/fvRnQ0TMmSHB92JcREc2afdrWxK+1z1DbfBT+uJ9XwmYe7L7CrlRgdBVrqgM8k9AKP+sz+kAzTam22jbV+qfsU1VriIUdU25bti6pLf+SyPgfeF4oGRLrkhlxrNbIyPNlAdqaED+UY6ehe+Of964v7iOhNBD8UDAMN66Mp0n/K72Wwvd7ivfzdkY0s+KD6xxsmya/ONWx68UdyDPPUwO5VrdbJaaRT3iwf4yHGpKo7cN+e5QqJ4bIm1Dr7/OHiAh3Mk0C260jr61N5e+VXcYxSmb1qYVjQY5eXRNnQCuPsCeXx+YW8gZnRaFxwbO/HskWnx/VFeFePE56M4aT+b7bLsfGK5loAngttR50SGw3t/rBygpOXYoflMsVye3ehA+zeE3fDAURl6YMUVpaMTZ8CYGGT4oZMEV0xKzvDLc+oo/ZMMHzyQg5j1hK1HeGxkuyi5S/PYfFMfI5/3ahf5R70pOBHGPt5ZvGrThR24n5hP98nJN9z3pgeC0NY+ZPTK9uT/HtCh65IxB21Nr3/+eP2+r+86MIsv8efSP7kjqPM3sw+DD1mXuCAmwp7o/Qij5V7lqo5+l+ZIQncFZGOwGZZy4lQmaerPbIGwl3Lqp0tnXDD2kpFOIBqayk1izZlAK3Ra4NG4Y8+WK1DOgdjUkWlLR5Qz2MYeRoQbrpClY1moy8z68/7sl3oWibJepbyicpdSGUe/nrbx6lR0h8/BbrrVqS7WsVIxQ6xQ9U6c0yieJCLSjzwPLCcgE0zPuPjgMhlwZyeFRzkzcteVlkVgX4eO6tpQboOp8xoE7DKj3cTP8lw5YbEMeH8e9Sh1bT3EZshn/GskQgM3bNe+gyRFpRYdpDBPHBQvA2zF3kX/DBg3Vh755YBnvMiTcvM5jzImuZcLYcnJNLmhW/ajsZsSZZ0EvGPAFa9gsEyvN3ubdAqQtqnj8TPvy/p0yQW+iDRst84TumyXjhVX7PoYqxW//PoS7t9iHfsKYKfkiHtZpsjnPkIVD1R9f9oV99GyLlxw6lz8I51Gz3Zqo9ZdMmuXH/KXg4uqX/vKNt76XVf6VO7BA350CwcPENtyBcg99mG7aL3OuKmAkO2VChztVm55j3JNZwwdahCz3Rzw3W1wAe9Pwyw4rQoc3GXexU6QMKFPzVAWxupEnrmLjpkPWGLpTu5e4DvNrjswX+G+pJh19UVVvok78xulNUXqPqhdHi+d1iSZ5jA7npVLGy1k6Pp09gHM++XPiV/lCumI4/sTl7iap+mOSSTyQIbQ/bz8a8nFfVIh8XbqpdzEwRHzFvhpzXVj4A/ZW6cDn2gnFx4gjlvzDyB4nHELu/PIRPMdk6c50I5Dp4IjH2vjs/OU4E6X+8QMjDvlmsot7qJc8umuFbj0GRrt5iG4X6c2/vH6vV/f15XxJQjl9aIO+HnjN2H9JrDnICa/1z6D12g4dKzZA+1JvNDPL0rqgySg04XB8/ETh073mavkDCONU2/ap2eF+cPMm5qRpEgZT55YpWmeZruMKFpcg/mdDdV1JB5e8iOqu6EO4nh/z3fGaEAllbvOTOlxJ0dsc0OCPQMnJzrmc55m+XnPNSUbeZ0zen6j47nKdNqh+OMIe0lLwj3rVE7JIwm4Vni6MZ06T7/+JrZ+Jt084f/Iv6yEoWepfUfnavXDa6dAmucY4AxRnZ923+uDLRi39wMceTnaU+0TSXJSwp0dJG8zltwbUjz0AhCrv5grXyZ6scMQiymGJ6K+043GvA/5oGtjuYxab/bmIPIhzzkIAzuDOI5crpel5uCPeqvbzbdcYl5+6RZ5E/ZsMDju/eb7eR1h7P1Vgh/rPBVWUL2Kn61dnrqkkcn0CcI3Khe+H7qKHa+5OOXOQUCvhtzxAE9njAmmvVe7OqZc17Tv6HMo1ZbogcSd657Vy8Tr1Fw1Nazcnxv3xRY67pD8vcLF21p3VsLkmw7d791snUPPz8/eYXSnx5Axv0QWjjo2BxeHisezidf5Tdz0FduxMAfx5c92LcvXcu7vhwoD9wIL2WSe2wY+u5ZfxtU+Qg32kq+Ui3FEXRe5M1nFRcoJF3ab5feCb9SFsuR4vC+sa4m8O+zE43GUvtepuZ1tr0E+91I+XNNuuQsbb0vleB7uEToOuXRlFLm98scVOE2bZhBeu21HP9Dl3/D5ga7vMzC7I9rzL6/zCOONXug4jXocUTzikvh4eMUTAVpAHEs/AO3Qh/xDNBNXyDOMu/dz1SH/eh6ZnIL72N1tucn6MJQdcnCkzWCHLXoQZvMeCRs8otjl+Pwdz3gEfB/n3K6RCobTRtqZRc8eiz7tmx95qt+2EBxN5XE8Mvdxkfy4N+N951HAhu5IYso6LFlfXG3irC45MOX+Dxh0X4Pq4eg9BhyM8QhlHpYSKxO9yVwvXc3rfqcPjyQJLWb1EbfyqveXPEuCBjze+hTEUWEugOvVAePgYdrVcDmSmDpWjqS+qAtr9ewcaxkeD0e9V0J6pjUITsHSteyBRP6ovv8dNwyjRxJTV37C5jnQzB7yQqwIPdbnGLRwL8G5d8uRM4rd+M69XezORme478Gy1M7kTclpHpY5frL3MXPJbmJvcOeeNuooLi60Y8mNfQecifXSufVYVedaZ79W0l93+fEBcDThgS01cLngvNxrfOWBfcTlHl7g9YDi1POi0w0eH/nqo/fJGfaaB559hL0vNBcpvlJhn7+f+4yab0zkND/wFTScGKm9cDnoGXic97FSPo/6tQKeQ0Vp7m3inNTT/WOlS+Nmvcczw/F0SOWBZ742BWbZWZdCUHxK/XoOcg5My/tDy0ywdAM1KCye9gP30Vy1y4HCYchXymgzkXZePx1YPq+eFNWFLnWOOXlOy8A8XDHTxFg8/bY3N0XY83j8kVpUnFOP2jM4BmzEvL63xEiSiJuVWQxxQiN4BL02KcHQU7cxZk4dtItU7ntn3fSy6EgpzBEFZTmgedjzGDyhcb0GUDI56fQWYYG/wGMOePK3anzCr4HPE+iWOT49kpcufNP68LUntIHyANyxkmOLB6ixK0CGHn3svtF4Ubr3lfXHuNrkf+n3mH3fFbP2IOgG13V7PjgNJ3VpdLgSlOK+jzqWw357bwCXd/f9RtVKj99LxyCZkmM3cnqaE5wOYrqjQ5L/ulOo5f6FNI7f2YZy2XhUOeShhwadhqrje8dUme5xSVIkkrvM/lkel29eM5ldJnb9uMF93cjto4F3dRBEx7znyYd1LhgHSgk1MdsWaa2FOs440usi0ntePYBR24gt6od0cynN5Ih8fc0B9UofK1vxfp04Brud0iDpzGOR246DnI6LHWI/4rrU1zO/dXalxeBnLcdzl08DwJUsEw2t7aHpwuezCnvJXf5nx4pVrZolIa74vK3n2N8YdvA+Ht8Ay7BotfNv7vkwdF03u5FrZVdpialjlkeS0WMZ3jhQtAfW6mOX21UE7YZirAWSXyW2jPuwI40a7aKOsR/3pWu4mrwtx5ttvPsCj2Pmalyl7Y5HxcNwZQzZPsOmraKWxB5J1vdImzodK4G5EfyrL+lQVVEZBkGGjqg5hCpzGYDZ8eUaV1HfCveN2E+8VrkstxtMJf623C6zkPsB3wCTB9QWC+EayD1fgjqV1kd8M3Su0m4VXXAj8adxN0s05bpgqSXuwxyuR/grV2X+2lStIxSvmN1bvmnbtFkmHhP7bMVnmWOrK+MFF9nGU48x8O+wjan9ccGSWsWTNFtOYke250dtWu2XTDskHBhW09N7zMv19zMuLnHb0sGfPJp+4D7DVKVRi/BGRk+sXxq2sFoHg92HYp3jjUlgs2h/b2+OzdFeAZbLkfhWYXtwpLr2hJL+FSUbY/lMAFxboiXWva2de7bWyCPxulzIeZ86rmoykQ5x0312sA3CN7hiN10To/zCHf7TAn56PPF0K50K98W1noM9y0GYvNQo988hu5ZyKAhEZ7ZurpplwcbeNpbsnjb+ES//hs8PdH2/gZkff/n9DpxufjvJbY546XqD1z1zujHyhK5zsKRy9XkNCK8zM7ChlUA9ZRzk45yFmHL8acip05HfAur+MlZOVA+XuEVywxQaJsk6la7sCoG7G/azZw6ZnbP4BKkHuSoZtRwr3feWufqMNMi5zQMA2DsGQ+9PwzHho0mE4WSwBxOblR36GRXtsNe4bR8Ry2ceLhFcWbte1wp9gt0r8GvKnWG7nGbc6hQgwjzzFQxNbCOE7Ck6YwunHR8GMFZQWS2qTe2jD9BhAM935RU7gbOSvfIV35n3cUpj1yDQ5dD0e6XnoJsHe+Ea9gSAWAVdkneuxokuQmzcT1e6yoiCpNlxtuRjrsD1EcvIuLtndB11ZHLvdejVsD46/5CDcJ3hqVpRTn3MPveq1cmSZ1xwJpadhnaP+arrQ0yNP+fs5YnHA/dlUHCNOxsrO0AV78CNC+6fStzpnsCgE3sjr8JVxQO8K+zO2s7F7DsuwrkR30fG1QthyNcYt5hkBx42jjmyLbw3f9zzzZR18g0RYfDY4AVilEz8jXwQZFpuudYL34xMZEVQ/rl7p2VaZqyWtdKKWs1VHMwNewH5Uu65v0zHQlfc/2U8YLdxZ/g7zqBXzPOpDwXziP/EKpFjpd9sdFb4E2H7vtNS1/bCYdXRkby9BBc7vOpU+rDxpBx1FycGqxy+DPri5XDB/dxTZXGg15OaSP60scecDuUdh4AkloacXXxTq4dl935hc+Gteec98ZiePJ/3ykNQQmbgPtPgfdvxwfIxdVdsjmieEDf74puOW/vNtKxvwfGP1+/6+m6Hf9TFOq/syq/8nX/7sKMOu+UZ8vuyOBlx9U+8L6zdiNPpzPJkI4AvaSzuVB0HB3iTzEFKl2kS1dmRR+FLxDwhyxADDOdA8extDFIRYs6wIw7OuAeHbsRpkZkBnoaoW7A3YhUDOSB7z9McbW0432lDBQheVFOw/GzG+tv2TDPBdudhEDC6q/TBDlt90i2Pt30G2ba7XM5yuUt+7TjFEUXwRqLXsNiX6jiqguVpXQneawPbYrWhXG1yo+6yjefWI5SnNdQdxDDLqbghNaDLHX9v1xJr2zO5rKsrG9d2w/PJVapnnI5WgvMEqNpYrWRk05UGrPc+bNMbh+NH66S7g0RS9DrILk+Bi5eN2jsPd/EshybryveFrL11qmfdFkzlahFUHlFx4xQ2YD+jbsWLmt/heAOPEb7ubeAgy8DZAQ7QWF7jRaTgkfgOeK9AudzX7kTvwzfcHe8OPGzjN+szfva3GiwRQLnfLE6a04M8qGOENd91aiNdWIZrDF0ds1NAu0YbYgcidf6W64KpwEhSAOt0m+IKTUFiYqoZ4tUnTGslUJynIqSnGd0G61CLk29OHXE8U5yj/xsbYMn10nnwwBk2sYzHv0WzEWHDHq3RGKAB4jqW7W5r+0UNbGwpD1jpyIWV7WGnOsXX+kRYWByIcdrI1DaiPVJOg9O17oR3osXgLDlxwRKNk9YRNvr8Hr8Qs3jS8cDAqOFDH0PzxcD9bPtrRz2n3Ko2WURAx90IL8CdHPl8hsslT5p9PzD2LErF1ImxxPY+7bCesxpYBxztII3OuNtjb7GtcGV8lu8/TmOVkXpiSDHWSqfUWDyJem863asr7JDTz7hK+ng8YRZTRiWHKlnzTHFSypzvXBTbEdvFGKx225G413WhsBu7vArfFvBpfcbP/gmW5c18lNyDUzjo6arWgzVmyKTMCpsTUyOvzPuuduTovXi/sXf8RQ7G+h1nPQiLA+B6cu7EfXBiruziWK5Y7nXyZL0kyMhNjfs//PWNtPSjXN/XlbEaN4roWKHrw9+23JPYJJzelQtLun9YueelOwjxSYhSXULG7FOhqCzVS9q6t8H8iEwUdX4oL++1aQcThUsLO1Gdo84e5Vu7mlnNMuZHXUtSbuMCbYTSv10GUStijEdSWI8Zn8jRgHM227SVdTw78ztsk5DgK1+iGx9H3hcUrXBdNMNaQc5etM3ZLnFhkdnWIRe98tcD1IZch6Xc7oNtb/27eEP2TlcDWG8Cdl9Qd4pZs7Xu528C4LNOt45N7Nf8GbrPo6WxLFxHgljEJ5Da2BkDaUMWg+vPRZpNMF3VRypVN9h6rMKuFUf4v63eY8BBOHWuE61gU+7Skxdv9Bc7LoSbBvWIwU82erRMQ7h7PB7AT7kfw9cjXE9SlnhXth6rbdGuJVEH+Prb3kZA+p0znAuckAgibNfGUPptOX7z2Hhb0V2sE7lSJz0E5G31LChnXsul5ZDbm8R53/v0+Jyac7XNEJ3nr5k5LdtJh9D04SzFuJf+nQ6GRlh11ySm4MoDcthgDBS861u1Srafc//uRqWHI05hqeg8tDx5QPcoJ+4H9mcHr/rGhh4tivuiSb40f5Sb+G3eOFE8IB4QYaMI71vjZnwzOX2RrlspSwtKOERXt0LdqHC0WLnlEUOdLSL5hyvoOPDYTSZy1hWTymNA9KBcKQLKrHgnhpo1vh7PHcjVRLbk8Nqge2W4MnpOzDXWae1sucLFL/TCWY/Q+KKn67Lenli4Es9iMNnyB1irbTKB2QZFpzKTaXb0a8hV/W2GpU5vjxg4uBHbMy/VDlD3JcdOPabcep6/N9YhcfBot1mKhsDuT2+BmRsPcFBGXFRsJw6KycrdLzCVeiSmttEzXIQlzq8cddZkW87sPczx08Px03rCbYmc5psoitwTPeSSFxrL+/Cn+Bvm2MK1bIkTF4trvxL3/1BX6Pj1nx/p+r4rZlEf67ve6mMFVej9DcG7/Nthj5S1YW1gCamd/DbleOtoL9JuZ+/jaGd530flZWoNkpJbH1Ki+OzXKADCN1tzfNjVq5GpdRKUbARtYK/ZqCQmbrquAWavDEQU5uHIn/ezIRf3V5PUQaZgtrinKAdLG8fgi/d0N1BbyGqG5FVnA8NKTadeEMW4Vvk171lZA6rTscETnnidrf7uvmudvTCOHX+vad3F7cr4pLuoSVgB8yI9grSpXXr1pGbipNcs/ZiQOvRwgJupMcuEboMjD+rkjnTfQMcVJ6LSv06Sqpdv8jlRt91ZqGa5mlRvPOS6x0wzlxdKrrV8HRhOu0u9q/xq+fYArkqItiwbx6fqesZ9bsPzWI7X09ZOd50+Pjp1Xi0H0IEm3W0w7NyYt8Huc7tf4quuaC9Wg7PdDybWyc8D/wVTz7ga7FzRK6xOwcaDll5wyMRueVhqNE74Ic8Plr/wgB3JySSVPScXNYZG7MIvtZW230PLyUdENEUm5QH1mQDqZc9qK3jtzyvZB8ZKEnFfgHvVUQdVhc+arUt2siY6DtxInqv8aj5P3O9ym/ltneo9nKXzrFmD5vIHnjLbk5Rnfv0mU69w/0txP+IMH0WyB+53eOI+H5UtClMz7AJ6xaTxTXGxOINYNPIWVx+wlBjrOghsbhk6Hvg79T/LunJ80be9TTpsDeIWgN06OZhfiZtpqQdE20LzrXJRhi1cJSeNtLs8Ahv64BEzx9NjH71B5abuB3ZPnutB2ZVvWsd1xk0+iom9mfZ4J9uPeJ0E8pf0+n4Dsyz/cxleDVsvvyT+bvkOTEIAUEv7d2Hz3kk/STjmbAw5qzRIht/9WuDxhuFwkUSQsW5ypYuMm1/1YE3fSdLlsgTg6bBtiu0vriY7cGb1tI0G3cjZKRdbJBnnW57rhd6g7Q3PHeGfHJRJIenehOpsjzI5BqOuQaxCVIdgB/AsC1eSmJmLv5szvis9UB3tNljMiAIcdVW8+6u28TQYCbnex2PpWoPOADsO5vFy6cX6kZ2G5zP0euTM1vbcHHwpTJ5s1YPU4bKSf3Wgipx9456I41VCMrutL5aMev1ehwq0O0uYK221RlfjolMRgaPrGTFcOZ+kweKwmQfW9TjpMmz2WLs7Q1ZF2O+PwVWOSdqsh4vlh45LN8F202iCdOaH6SQ5v7vFEcSWJ0Jad1mVUMfqV7qyqDuiucOWHhWz8zQukj5PV9ypY7tPWdWbcEV991gh/sne8bM9YOARA92BWHJfex+85XCly1asnm04VrqpPMDOyLP3rXnuSRCdIm4W0NdcXv9k/cmumI2fJ+TyoCADLN3i1JNucsYN3mrdppdA/jRcGYVvCgPVHV6xTTmCvrkn7qN5wfX0u3K7JyglF+VrUjo7Aqgucbn9mPqoO7/y5akn3fkx82dArvw01tWesneEwXVyQYu+CFQLQZ+j8MxYpoIhxR0ZuN3ZwzY7OcFXT6DuJ92gm4cqDQpQ10bFfzEbbxonkPVeWI7USvxjq99Stjtf3bKjjcK8XEjnpN/UqX7KdlW6HbqecWGJdfnbHWc4mo9gBpMXOb/C/cJrlZkKORRTU46WoWBs2ZU3qqN8HitwVMuP2jCu2mraoxuiclNNQGUJjgGJO3gKpaXhOViMyTjLAzk23rMv2INDumqeAzsvrlrolw4FHnutMvH9kTRec5WnXXlmgRfGuscEL7Dwyd5hFt115RvKoV6x+sVJuXZbVx4AT+NduprXro4rJ+IWWZIc0Rn4MS+fMPSX+fquL5hWUi3ik+dAcgLDnY6XJxfQFSB/GW7wBK2G4UZbj8R1Jp9cFO3TpqwkDZOEK0wiQbt7KDMKtDDfFJKZVheKdg9Jwpej3oqYKXcdck5jVlapHwdEjYoESA6KzD2X//P0QyMwN2vU7Itf/zoIZjbue18YWgfJz065nrahv3+MPzsuT0mSyG3X5Z1XzsS6hk9byCxuhSdZuZfnkbk6MfW433O/4Oj0LpJxuJtcBoOpZwBy234tVri0f+nF0/UM7PiRyFO6DIxJPF0PbAFvD8fzGS+t1JnKXv2okm17kmytScUeXoSggy7UoKob0XxuZVfq+8i9D/Z8AMZTAENQH6aR6ayrXAbnUfnMhW7IprtIO0gdHxO3QAMecPy0Nj4bXT8Zlhunm6z74I3IFeWi5DKuV1yQ6HmfdYsukYzbnRHLvWUbn5/PsBtQchdyBS7TbHfEtgXl8EXWhNGH2IbHK5etPNx3rpvbRzX71ZfUDsFAJoqu1LwVyOzaIfzRkFg/yCJRYUglzUF2rlqukQDxPgK7Dsoq/eaqgX2Zn6ub18Sl2G9V3c/KjFVF1+gm2eqwUB1haN/QxlpkXq8Zo42yHZEHTPddCU6+GTcDd6ZEfZw8J5NaSkWDugvXCPkzbtXsVGhbDMqcKwwLOQhojK0E2XgodwwcreqUAcfAInE/vSDo0tj0KHzlnv0Sy4mbrEuCleNlzlrBqkNPla1xP21ReKwVmfhMs5KPqi5Rbsc1czwewPMpaUo1qLjWeRga5z+Dx0E8k/xkfk10KC6gXSkz7bSW90uOxR7NnSFpYKrpAJnYbW3z4eLOE2e9eKC2f/A3aWsPCxf2z3nuQOE59ZU8mc3TbslVyHQeq+2nbuetcxUFukvnVXXDxdPxwMZPa+Nne+JhdDns/NSeOcPhhg7Zg4wL3ywH1qMHZX1Ko3Aoy9ZZJhMD/3j9fq9zqPOHvfzmq6M68XqvgWxEuNaVrl4Z/hKAvvl9P+QaWtYhx8eXE3LnF92kHWETGEgMyuAAYrY0758+BFaeHRjvuaFCqmf57WsnSDWVBffDNr2/rDsFnhq4L/g4LdKHLTB+9iO+D3nuZ7SQ2f787XRwp7M+e/rqmbib/OqphXXKYj3XsC7paz1qxlKdT6DSI9Cf+6wZR0x9fEPWzI8+k37TqYXExbykAvMdcmIZXC4SZQ46pktIh3EkgVanMmVxZl0GLcAk35hkiHALsaqoOtkr2xxyAdHPe8DXiXnlhXLZ+HgoCOAXO1v9NvdbVDZFDu+Z55bLTJ0t0aFVyuQovk6b9z2go4yndK4MO2divQi901YdOn9tSn1uuRG8bbJG+bEukLS/8iXT0xTzd/k7zHbc+xFfVLzW5i7u/l44AIBugxpX733+prA7foeYmYlLoJMHllvvbQCgldaf3joi66z618Nm/od+2or8eDmzxJW0GlO7dnfKEf566u00BN9rNeSMiytwYm/lAeGbqUPfMx+K13trfkQntmf5WfdMVy5GfbLizZbbupeOooNyCAdK43Thy3XiPi5Yd//9Lq6fT8fdmS735/VzGUQBA7u1rTe29ACi+EHyoBhth5zhCih49XyuSrfwSBrdGbdXqgRL5Tc77afgcHBTTwBI4zbUYTPZ8gZPhJx062YdKxwXXqAdBID8Lj+DB5pvAdTBHPx8zvWrUFNw3m74SCYLoGGP8uR9rbhZnvZoresSALWvxf0/5OXf8PmBru+2YkZ8g6NriXzno7pGx+5FgmdaDLj6WTnObfTnlOPyV+KeuqhbpMqpPQZMo4jDJC1hJoYtnXTTtbgDCu253F+/qbKO4UdC2c7T+HB1nZAZK0fos58ksaOQtDRO0fr4Q0KimQj2aYy0DT01rfLQAxeC+23hO+QIeC+5doBLu7EcCpV7CcsoLO/eGdC4fFF3vHNEsm6a6Msq/9I2Z8BRFzRtu6YFoNw0KickNmsS7oS7jmlboN2KOIYN/TIrWEnZ2ZZDXpWfbJQHdFWsv8/Ogsit+yCRmI3sAcacXVWXwjkIK97KpJ65XO6UDRmoUA483UN6LxfTmytl6JlO7fB479UyyceZzoLufTA80Pnrd6MFuXLWc5Cv75ql5YEguorG+6430w1ymZdMurTovrevvm6XkW8uxWHpYMy0jt8Vc5yQJfi7AXsGTr/sRCvf2PU3FdM/5C+rn94h9IWrhIvWeGdFYreu7Ggaqhc56Q6e7RI7w87JE6SdSFfuCC4qjhOuApkJR7m4Brjw9kn5iscUoR4UXorkvacb9Fahv6AufrHeNGdg9YrijOoSsrmKA9NnDn568Dcnhu7lioo3HHnnaeHVnl/HBYB4ETbyYCpWutRH9bpNp3We2NC/nTxa/DM4Y2IhcX/vJe//kvweeSfXLVlday46wxHbfeRDB5Y9udSrTdT5+eTUuZeMen+m5mXI70EhXSjJCa/5Rge3ezwHdBUN8ZJwB96YLsRVEVfcJ7Yvca0n38TKWA8AH9xDxnumz7RoH+/8fDPu/76vH1y9X3p9txWzMTnCe/Rvgm39l6R6niB1OVHqfO4SV0gDEFI5BN/95fecQTSdscv03VtWbZh2NLvzt20YJxJWOMJ+C7RDB1eZh3xo/rzv56lMJjOWIds34r0nyL8J6hE22MAC0VAEJpz5yl467qQvt85UehJHfLcuLo99ZSQWRwx8nvnbc6P8+Je6SiRz3b0Pp1eiaBOM+yBZ9IpZZzNgXHUR3es5WP7s8GyxfV/VnUh+ZP27W4BUfXRQMmZ+eX/D/yiiSfBd+Z4Vu6ZziZ1ypyvs7A6xc1L30rD5Lwc4cOkGk7xBnfp9MlU/ZJbz1JOEx6sGCymq71k600BsDRzwVznYBn3z38qPv5VuuV52hciy0tennKFzPqPQLOAG4x4YRYgNvhj0E561YmVC7OPIe0D2HczBKtAkHo1e7SiD1LxftSGr476sMr/kOjCrsE0x/PjrfH7BOvnuN2EkbJ1aKKs/xgpwhj/0tEO3E48vDVflMq7qCFzzkHFjsOhpm8lVV47MerZpJ+/np902MXbmjbjPZ97VoubGHEAdMUoVXGRRTmQgnx9ybsqlPDv4bsyUtxWniwN4UFBj1tJOxGEb5ZthD/T3WVxcMbPK896cbLMeEIpulYYbPA0QkyC1ibAF2ZQdYb1tJboxLquWHXGVP04emHG9vUprteiwjc2Yl8tYzyjDO+6Q6nwaOgrm6yA3HsbK01rayOTxwNAjbquVt8dKWQ2gQvbF+6Li2hjQ9aFGnnued0++DQ6JdPTIeuI+WdCE56qsQZ1kIOldvuX2qXIynbUcnx7P4IFasYsPcZ6H1Uy+mbzXK3Q9qVj5QXNEubWnvrW2OLsxP+TFLsPXfH6k6/vtMQMmUJs80Nqc4VzvgXG4x2Wl4wxLUmbjlwM4zII89bhjjeuSXuksPS2XCAGC0nXxm8ps/N1HtrkXqKY56rANO/LSnXnFxuEqlgeTtN4HegsQuEQ22oZ2JeFwN+oTORhNnervaW8AaQftL/MFtWVXqqhl49yorIOlTMlkj8BCdDYsX6ApLpBqsiY2O+QeJ5BlB9nEkD0ICb03LBdFj71qGTj2vC08FvDzZ+A67zGNNMlq7ilrNazCxvosQdYqbMyeRjgl8nSuKZ16f1/rYWPWUldwTFZ4rIyhA7pHV7G4r43VVsSrZFGLAd6+94/l2J+tSsNgsKXvY4m81eZpoJ6pHOoRs5x9fz0BUdPlLGfYKQY/C285Owsz8HWxbJacqY5N4t0JqOPyGTbtjRyg6wmJy3SPQq+qqW263u1Me+OxN95tyb4K7g9oUn2zXrGrY54pB3GsMu8fK/MAS9JvW63c0wBYzrZSL95/HZMNDOV1YGr93MXQnVQccdFxdZW60+WhPomDzKMB9rSBT8o3mi4sOOLWewKBWRNTZxgeWHIf1wvmsQBsh7lWWu9x8ZE/7mOugVwZIhQoW2VneAqmIdixo50E25bsZR2nDUpUE84obvEhp7e3iRxEON8GTs2PiacwDno2MDvAy2qy8UkuKsAvwBac6xVAhdRyOMw60mWTOsLQk0KeJ1p2q3TaME/Qgz3K+2SuP3e9iMqsk2JWeFvZPQ9uYd01O+LiElcPgyIG7dyzdeI+zC57v8iTfTJfKFGeCMSGsQ+sMVU5o/caQg6/ivyZx/6trTSPsA1XxlSnltsYSr5pnZtvqh6O7AqnWg9KDOSBhbeHY73HsKTLv/dYxb6zXXZmmsRyuOfrCVru5DEXTvSBz0B7KhTuP8Jb4c033n3VHmy+p/JRVT9wvQ7NObB88IDnypjwntZss52HSrX+PMiMK2d/vH7/1/fbY3ZHzndhfkFc/1JY/e7H9+eV51/K9/mbz5vr4PHM3+6v4wszkOnHaZFHBk+5Elf14MDDJeJlVeuiYkKFn7boGUedWa207srPzh9uzOgTvNjpkgxVd7h/t3HP2dXnU+Mecu/yOzLot19PHcv8R97OcqStnnvlGUfn5fKRqIdOd24p95df7Djvpy2eo9NwlWP1udNROgU4XKDu7l/qGWFZ5s+9jhXFGVeJmeRFXW/ljLgcsESemlTmLOuZ3z32Oh5xs7N2yhlpl9uHQV0bWfZ3OlIPJT7LWsSV3neXQ1soxzruY7UOa8iRw0cYFyp3S6fumIHOJRdNa5bJr7xOkLlpgnewe5/WTfyBizcPcjnEnrgHiFdyXvHNQT6XFE9cEcUu4hP3uyj8ssf5Fe7f6ny66V8S8hs9EvPJVW6v95gxrk1bX/H4Ts5ZFS6Gur3nKtGuQdlNhMyf6jRw8ag39zrK/VH2GzNMHswcryNxtF4+ses0wOkK+BGW33GG8tMZN3RvT5PxtHviF7l3ra0Yw6/P7+Tq3UjbvMzw9HWVdOg0VvK/wDczHT1Y6cRU9QqYeByLz12ZFY+Vb9R9cfDIIefkm+JXOzGVPBAxORFG3H9usknzxULzWvMN5cpg78jvMq/TMxd2ucOHrfYIa/gd4v4f6vJv+PxA1/cZmCmp5efginh8Gm7fxMXRX2Z6tfP5iKv3W6O5xD3CngVXv9lFD8/j5U9ZdHH054s8JQFSNt85MzJ46kCXSsYV29hBAtNdQvcRWG/nknKI9NKlkYMyAJeeQuVf7C3PhyuJuEDo75b3dFNxWLi3lF5WroPt3hIvHLVaaaJgu8kvTk6ssOW+Q3XKd6d/hzeMXrJcca1cXxwxm7ewc4B3I/yi0/WQAKDjFimSjC+9nOstq83O1x2YGR6LLyWSsH7GlL9OMjP0zHwMOQBHu9t1fF0JDOLIulzqR7thh4HulSPumRsnKXSAXmXyGly0mTw15MqSEBBI/My8Vx3aO2aX4wXR4T5Sm7btzm1QXFi46lZy92i6lAuV2wV6dBj2GAhvj1PGfrJ3LHte5ZLYzXNWN/cuOFcCM+yL+5JZeQoQCJ1z9dvPAd/XXIKZ0r70Y8d941zfj8mmF5gak8fR0DquRXiqMhr/oeodZrzC7jMvh4ti5y3yPzhmSx4MGPuqPpBrdDO/sWFdd1xWmW/9gdaJzOPP+JjZ4cLeuEnZ7VXoM3+wYSc+I64PmwEHHlu9pzI+C/uZvIBqwJ2lS/7uJiXpfaAmbhfG0WWXMj3zS5rfyUfPd/SqlD1nuVC4dVp9Xd20R9QZdIQdXDXCc+LL83UDhrV0Q73fyNXG19dYrbbAcpWrYzwOUlyetWJRud1RrxiK1SO6gLrkubGM36U3NAYIhrmKyPDE/cb506I+4tJN9bE23uwdxvdusnMCHoRRNVMGf4m3hSccsHnJ6ZUzpsVMuXAGYIL78NhfBnPB/T1Wxh45CCXfXLCc+vqOvcLRSQUE9/uIf8uxc9iwtwOQF37w68S5X/v5ga7vfyqj9vcPoGejYj2sv45wP5R7NWyEtZx9tJFuERvQiTOcyFEdVQ+N2O5XqqONuB0jwxp1Ht3ElpPC6OhYbXDYSg2DTpe3JJgkjdYrf0vbFDlTBlD7ywJEmajVQRhD8MC5m3sBUKZZB9Z6p1MEYQljdNEJdM4Zye4yPtPt04ab2jwdwFTFoUfnoYFe80skF4IU8BZFK23mwZbBHuF2F8S9QPegUdZo21gJMNFDzOiSHy0v1RmV5CRFWmYBb49wS9i+UpZoZDN8p3+SYNeHqo75vIuwU+qNx1nyUkGp09uKPUxDDm2jM5BjNWiWdriaWMuUtJaZ1JFx6DdIkJWOOd6W46dH7OPychuM548ht91HWLNXlWG7J5YeEs9SrwUDB2Qkaq/8Wen4SL0+2Y46BTkK2ix1NAAbb5BN28Yj7yMdPTI5OgR0twQM+8jfPOa5jvBPOXNV7VdeimX8TerK6PQRjw8CtSOu9ilN4jZWWctd6FdvCIafcYd8mcugjjb+m7qecStc6jHuKZgHMY1UD7mIuq78VmEP3Fc7X3Lo+lv01eJLYkrGLVfGAlLqoPglSpJvCoAHgJzJ1CBtnJSbwDLd74ixIdyEFAtDq36GXJO2PwZhLD8NCxxhLf+/cpVXWKtw6wHZM9UHGl04c8hJ5Dh0vLWrxGV+KUPrHNoiWCtfSbIa9yF6D4484lbNOGzDDjyyWIW6Kw5dniuvijkLeDwMb4t7iteoS/NIfBvxT0w1hoHglcbNiM64aCwf7Zb4+ogJr71m+RWfjLaUNk63wOIIUxf35gzarm0zcZ8433nYeCzHp7Xx03rCs82nk2W9JiWKNAZow7UejeV8TYqtHlA27qdLZXlubOHIPlxk7Kn7ga8aH3zF50e6vu/ALOqndDYFN4A5c3oXV8PKT/r4JCAmXEvHe4Kgj3ii490znUXwq5p+96Oow0ZGAtcOvB4scpWL0VE55RT40J5H/ms+xy9JXUxVs6Nychhl5mLbKKLTJbHtGCQ6zOqTMEkCrZR1X0OTMuQKHlfSVid6GDwGRpP0zgxfV9eEVNjJgQ8iUp156arevtlcWLPBH7q0nKtG/exMkZ3tM7+nXCDK7/mcHQHuJbCshD0gkrSHi96sW7c6c4bumGmZJy0CnFV0R3YaWu7YA2D6Xi4vXSlHT0BUOUyvh/OQuEleCRo9kxn3dBuk9QzTNgY5EVHLofLeNX3MWkqekCR4F/fMH6n83WNutcun8+3gDK+Ljl7yTQhX3SAtib1P6HTUxnfpJPQejX07kP/F17EccGLbqM0v4LMCupSB8MAlrmIMu2XbsHiuiTz9kG/OsJJ+r3zOXATEuOTvmrh5DrJ2foYt7Co3ZTg5TIFxSh5/OJyuFanE2I6q8+JW2N97izH5pjDVu4Nz0VnC+tXGlNvYqpgqrvR8xEnDbfD9GN4Oo1RMDv7Iexx803H1qK3mDCWrk6tq8OqoyczA2OaPS5GUAe6vV5jauHik9VFctM2eY4VRMELSv+K+8oKPOI0FXvesAIb+rno2Z8QzHuyllePLfKNhgcb6My4uOqt+fbquYC6ifJ9Zz5UzdFC6DrnDE2Ng6pUz9Fj6sAn1zdNui6t29VMMdJFdbWsoJ+qpu81rLZfeFL2Kp94W65Bbx+Nb35vY7fsOGH7B5d/w+YGu73b4xzCEyW9yMEc1UZtxKqqufOGIy+9cIxai4OyiP/mYBGcFwky3OHXoK0QrMgH0Mv8KsnYJe+pYL3AiOTH/tSn2OM5ZiQKdrrqKtUFc0jnkonVssmXnwi/JtNsJ89MFYRJWuTji6gEn4gq38ne1NVoHM5+mgZQBZ5U9CIcbsOVse5DQh26lkxWAm6ZLfZgvdgKq/CK0Ep6amC+S5omR2X2IfBgjqF2906F1Kmzm2XvjdOjfbnJ3YYtgoKUYJPgED6R41kCIz6e7pZKGlU2LGFOPKq+ya9t5lZGA3pvWcan2M90+32xXGGMHCrMDUGmJ3uNExCINldMn3F3jsg156Ui7Pj1dUW1X56GPCp4uLTB5Oaf34NOzUCyrEJsobUPi1tMjSc6QuAEJhs87Wucb3vFzvtOmiN77aP1yu5ETzzgoi7LO4/KzjjAuN3xXWKNOslvSt+j4tUymlTSwWNtTtVXF8lOU1rnkALNo2iceX9R0lCtjLfKr3DPsealsxWMC1vLpYpgBigdK7xuA26h6aBMcZtxqo62C642qq78dfMPBiyLbSEbKgS/qDmwUvjkw9WK70fanXoWx8HRL90FTdNHiWVbMC93F40SWt8a+wo1Wop9ZvcZGzVjQfIPHdYbWgbWUU0LTtM+0jRldCDHwUuPqQGjir9imVRv5g7VtIHErT1WvDc90RV1rY+/eifRS7vl6GcFQS4PVibOCdSyzkecss6oiKSNWZ70O7xhclold+Ebpk3gbuehJsswPXc3L/bIM55U/qrlSqe2Op1seiLTxHifxFD61a3x3mx4G1GmcicdaJs1H3gegpLlX2jHSjcNQpBRLxnPHpMUnPPHniPCPge3dhw05faKicQ8ZuTVtRZ0eyjfoAerKKZzy2hjc9LW4//f3ZWb/cwD/obz9qwD+P+7+D39tet9vYAZpay5/6oSb/E0wXz0dCuc1rs3fJnMxQoISkCc8TW0Kp1bHrQWZ4peJ0qWXp5J3J3B5StXesxpBAKhJwCo/oa/ay3qt2nEZvM5LgM2r9d3gnidMiM7sHPNUPwolSQ6bO0zzZ9cytsUTovxCzn26kSZqPagimGVvd5mFfJMejsgBgHHylTNpQqDBvMG6VspSRwDS+berna1XNDyJK0iQM8DtijPJx/JdND0h4MAEbw4W0lZBRtzrY7XW3b7/XdpW/0YBLwPeFvBcMtCnfui0Z+WJ/JqcwOVudTJW2GbKimrS6ViWjdNwi+Xp5YrxcLoyZsuysy5kx8JC25rJlO/qcodDx5Wk17OWV3c9xl+wchtcuwdOhib8npm8utXUyVeG4R7C987wnTFxOiJlhlkej9brgemW8rCNnx4L73iHrU94bNU5B9xiC13Ne4z8Od7klMYH0O4zCEIu9xfv08YMiAHc4lajOJ3sa65q1ulveeJ4XYJtjDjCev9Wad/gNa/q5CLLTMpR5QwsP+LWjYTrsJYEYRLMmjOEh7xG6gxI0CICp7vxjezgyI5r5v2aStGp26TNuIJfRsUuo7rEmZTVqprCinTCJSrzU1hWDTFuvdvIlcRTZ05qelrBuP82n49ljJ5oBZQjre9FTltFMLPwWHQ0cpMXJsUzK2zWFOPkVAuMdXLShVFT/5YDWE6i2IHl1sbKMmFcSz0M5DnLCTFO5iSvWZwSuPdGve+ApkqcVNUol2VvEsFWkXW47BvzVT2C0plbDPib8tOycK2sExW1KEG7kxcBe3SeFasL+8Chk6erXtclPaUxJiVZ+h2f398W8JvHxvsz9O8XPJ+4zwFO89BD8wer/WbFN6qz1DO2Aw7+1+oJNu7n/bQ2fvYNGPeT9WBMB11TDvmGtvTBAw+gTuelnfpdaG0bpB4xSdn2+JGvc37oD3W5+3++dDD77wP4/35Let9vZZLkKrf6+yARPpfwJ3Ge15jhOsXq/iquuvgR1zu86nrhIExBppHEz2KE9RE6f/LiRwfy2GSNiw9s40PHaVe/7P++9Gj0uV/DEu72YavqcGR+DSNixXPqKLqp3z5tMfYZjGcYriS1JyG/b74Hx69y+N1vykTl9p1BR18u+bvWs+nS0nkA3o9+66yPftSaObDyU/nz2zl9q3enkmZtq3T/JNEpEF9bUa7+SI8yiLzv2X8osDZ5frS/V+0RCLdP1WO8nwiqQ9a5Qy8Nu8xrZpxx+W4oLx2zw5T6ns3REHWqdLJe+e1+ktpCNmxb3otNHNf89G+7B6FhjdKLftYlt1xkO265RVZPhhNFLumoHTlLy5W/tuGoC5cykI6W5vfXXgOjRkOs68QRHfxObJvp+t2Do5qY/i7AeNXiGveS/I2O9Vxw8uwsnHvHqofqyJMZ7+Xc5g+HnPMZNO5r3OA+V5dSrtpwIZC5+jx5LvlGYfamslRynrI5KLtRTfMiXe8a2IwQQ08rTpgrmF7xT9fGygfdOCvcwU117xyPAEAdSKVyhtwPcfEe9+/j+iVu2fMIu1n3FfcLy73SqoGHYZRvPzuvmwNETs4YGMT8RkrhWdK9BHV3D75RzHXBXMVy0V/C2sFV48N4hZlt7zgzbraT7qkQU/lr6H7yzejmveSbHpgi06bbYAjr8Aa0z4NMXiiYDc6QvPp4BpRbOstjHBgyywqlEyruulaCH+vyb/j8Di6Lxv9PAviffUs6329g9qqAXR6fRjsJ64x3hr29J4LGh8vqFcbm7YeDw1OOAXwp4hl36KA/KTnwVKw8SemSRZfot4TzQtSryifE03kyIcoMk6eGWboLSg5vkiOz3cmdBTkGW4c++il3p9Ixw9XpbHdPJb2Lpnzu8rWHJ63XL0AhAfKIxxP0PugEyWz5fOJFjJegFVBkYVTX6MTf1Dl3xGlmwBgqn9eIe8itznHeryPssklnbBtj0hdNbrRzuAspGUl809lFr1UrFaIduZqBdRJdp2Wio9qYYQ0sP8PTV6xekhgZtwhdZnQpRwY97eMfJFgznbZlxrNnNdno57vfOpwjTgzbMLxV56XlskNz5s+yAGuG17oD0Lbpl1ezXlRHJONyD0KkRXL+Oiar+ZjxY6d1aXHS6b3FM6nKlz6uNg7tKx97y0Zc/yDumf55r3E1mPWzMYmmuL8R+8vsmJP2GfSVjiceU87gDI2L5KoBvBLEE1+fkEIbkYdWMvXxUscr35wTVFbqEH/7RMa4H6cXj8Y/s3Jer3BxRPGZo9bqiCpxudHaPfaXnZ4Hwio4v35Rxxf9B8+wF119hiW+cn8SExirvcUZrdjAa7OaqHZwRa5trvuXejVP8mNsaznA8Kh3Tzes9p/uuQnJnzaUwS+Dbzzje32/7vsqMfWJcY2umqIPFUN7cdRkZHIUMZmTU/YVfFN4a54YyxMdaSeetGjJR+FeaXna7nB/R3gOqZy1epBXtigegPBAvwMUoDdJ6sP9ZgB4KmO5TP6o1x0v/JrP7+b6xwD8P9393/iWRL7fC6Y3pgeFA7ImPmdiGM5Qfvj8jhWVvV7g+dGVA54ImwlWw/RGu5Q3IJYAI7r4cV+90DPumQ/N73EdfNfco2h5Et4vkXOEbfDLmx0/+JqdllrFczRAeT6QlYSyyaEqfygsQZKXdl7E9Keew7xUyHx0ONYCnk8tlCN/JYeneXXqlNnAKPpC2q2rH3ia1aUOW/9eM2v14KJI2Yon6PHnwzRlmw4m+aM5KvBVFB+0Fq3XaYsi5iMNEwGhs9d3tRPBXXXUDv8ZgemGG8W+TEbEnoaU5UK+1YGQ77kKZZc8MOyRJ8kxCacGT3jCbGFhgy8VZ/yRH+mM6CpUzQBjNnF9v0zpmiRpzucG4CmdB6Rby8bDNh72hPljuCfSbYn5pT5neVYHqurnlrBqq64XVv/IKts3MBnhA/D2gyYem01MBXrfFTFV6w/vucVUse6GM5RvHMEZCt0j08oDjnuuusPyA5dHvTOgTtQ9zUe7kGeISXf5kTjNN9Yz9y4Ye6fj5boBPN2bfQL8mc87nXhJ2dTPFXeC10c8UJFcxSqJtHqssw5y9mHwOztCsHRwEwukw3Y3QfnA2VhlsvRe7kW8YOElv5jPRjFWnTmnLmc2ecADla8pOgfstI3EvmCo4RI214wGN0XYice1bzXbIvdBnenRlVF31/c8pvIYMfvEq+aMwEXNQeMfN2V44m7sUd55CmHsOev+kZfOxNWWSx7QhjbWdUsv6jYP/9CVM4cl34S5duK+xymWm4OwxnDyDW2juyFUR9aD+K7H31vZQm07373Z7eJHd2X8xuuvmdnfkfs/dfc/5Y2Z/W0Af/0m3p+4+7+Y3/+L+MbVMuB77zHTdvkK3O3mN713zM4p0OSuchTdchDCisij91/HbXlFGieYejYr5S7H2HDMqJqXxj6rVmVmOaubTUcZ7bQDZZ/kUckegQtwBLFE51jCaJ0CNAxYBn/P36pzIYQwp/Au5ackQBvYGRb3xUzmKgpx5N6B0OP5ZK8r9NAim3J67xjvTyJuuRa2Io3ZNM0gfzTAGwxrAf75TPgKaA38swK7kkLmROcMNG4RC/r+XPkyM9jDge3wtaJDDNLAJH8dBMaM4dS5/PbRexoUzKuvZccsJyBH3gOPh+P5DP/13z5nJ8AMuV+AOtlIa+w14Kym2kbk8BStNkd3InQFjqTmFvu9bHvIbcsKoeZertXEx71eLVdX/1SO+P8DTfrMj+864p56rkdu6PaNJ9YgZ+7VC/333DNmuZdDOgvjuPyFwoJxjDJkX0XqzD1ztMVXuVoQN4FRSatNHnW3O9bHPfq3+v4CFy9xc+LJDDBxG7xi+ZGucNWNM0MpEgMQH7pUm3SBKZaue4/AF4DPs4N08pxm/cpVOVTQ3wqkZlvkq0HU9fuCx6yYuWrWOks4n1H8UkDHqhg9E0ghuZcnuHNmaGJZD9wq5U2jmOSvgVFdxebA8JRxcHTaBjnhwf1cEcglLvdPWUzkrMwvJxjA4psVRqQPdS7YTW7m73YNqwOPwRkWbXQn/j01MhIHtRFrpRt1JXUcuN97zOws3zs8pn090vEdPOLvyjdegzIzTavT0WPoQ49WuyfFpH2vTnu65IluNThaKSt3eUrahcfGQa5wj+leXD/2wSmOyj5jxCDvAdmXTDymvX0n7gNvvvF8X+WFQy+GOnUX7ZWB/O2BnrBbUiZV1LS773Hcv1nGJa/Z5IzX2Pf9r4GbX3f9XXf/G68euvvf/FC+2RuA/xyAf24pOgsAAQAASURBVOTb1PierozAIM35ZT6/760fl7949iouifZ58+xOB31+6n2XwPFQX8oYj/2qs+hkMoAYYRn8bhAkv3c/4rVOurrEL7Niyx4reQl1RbprBaNHcdWp5JzhLpXg/F0oIMnKd7joHZkaX4eck/jOWDekeJ9W/nSoSBeX/byDiIMVRh16pfPH10Vn3MSljrIP70ajFwO6TuRywMjoJOqM4Uw7Ogzq5pH7wLIuxUumpcMw+w+g2wVTW6PeHBX2IO5zQKbuL5fSkR/2DupEdRnFJQQkaOkUcCVZ5FDHGXfO+FLHXgncR7tIm6cr191ePJ0FHR0CykpDzz5Ylic6rh06ijWK/MMquweV33T1BI2Wo0PqKOuuzXtJ4nxX+oAPf/E7NoD3+2h1fdB8z3SHzhfg7z9nW7+8HPrpA/cl0hQ25EnYE79OnUZcvzzWGz/tpdrflMdFVU3kBVfdeeH7RRfRJ3F/e794euh8JHLPN7jWjUOkHXJnm7yuGfD9lvoy7Du5Z9Y+wiA/7oHD7CdOHmlTd7ozXuQMbMfL6w6PZybucd/k03Fp0ziF83UGcPDNxNQL3xxJTZf4Y9JPPlUI+TzcxTVZkSurCH3c/nTh75VJjAOehns7gOEGKXLadnRtDNx/30vsuQ9X9DycgzocHBn81HIuk5QD93e5MwKdl2vYH/jyb/h8+/U3Afzr7v7/+NaEvu/hH/qX17nRWD/yHq2K67hN6zKIOF+4Rb/+6Ht1+OO7xvFDpl3CWb/vS+V4DrT89b1+d3MefzYBnBhxlye9H5ddKp6790DxzAc0HSt79Ms+NSFcv5+/jXu/dLr4nQOtJpUcSCSM7h3Et1OXIMEwzth3JDqrnH5p9mGeI6x7u0nqWJplf6mSu8P1q94sZ+vOzdGl4ZQLG3JnGTpNJ5Ex0j11PS93bgIOX/UzZPWfqn61zDoaOX+4y4+opcPnXj0AG5mEzluzOIXwUq+8OTNuOQPeg0SzqLuUw21hsQgh7jU+CaVIruTUG55S2zgJ8YF38HQsXXWybhQp16oQLv0WyZJ2VDpd6jhnqWtwJaPpZcAnvMPwlBeCRpg5+Iu9CL2a5/PeVK7mvWdzo7x7/5llWLXF11w9BrXZuLYXFlk2Jhmvzn1hXiaL6w7bJZ0R9xk4MzqnJwbefdB/C38PbMN2VPN6wQM8FETxV3Xk6yLuec5KVIs9QerUebYrFz1s+5Bzwo4/oe8DweVgpVfVgIAkKvhZRvK9x29hG2Iq8XrTVC7trDrjR/5Ert3ZZoSVW7/qoTqMqsDmL8nufFcYX/Q+Bt3UR2S90mPa4/r7WfZnWvWndHTh7Rn4fn/6zW+XcvazWgE4+ykeA6b66qi+SD4LXNk3ImM1juU53AL9HPD5aI/GuBdMnYPF1Ca7WV62jFMRn9BDmNQ7QXluoSomHukWDnjHTWAxSQM1sHJYbpZcI3/etsxGsxbwaT1h9uy9zrIPrFwkoRN/OXCEJ6Zuee6H3PmMLqg1KUoeeNngf5yL/PE1n9/B9V/A78CNEfhOA7OqPHwHjRrG+rdRB/huKALyDeDVvTTeBgb5/XjXTX097gfuuzZK6djpL6fcDRjy5aEZ28zqtzMuv4YrRPwQnU+beXAM/QcyGnU95Wg+qA+BsgTXAKYOAOGjqimSQ7+7pxy7dH4gcv20HUi0qYPEnfwRL6a0hTy2F3lSnehdpN1xbejROtLeBelmfe/TCWVLfnv1TsJauHk8lhepX1YGgcpfy+2wZif0qW1S57wfdTvvT1tRTrlppK2q9hk/QggsJesP0jbrkMs0XGWidRK/FCmTIJvHimN7fbgwyesNuBpk7SbZJdBttvdm4SaszXvqnyWocXnU/Fu6/zlWlFHGnS6U7d6icUlm4Woiz6Fy1c3KS0d2NEcHwMJGb8vxyZ7YZngY65qXS2XEOVwZU4c6hn+40uw+chnAcscb6MYSz9+OsuarIeBzNvVXX1ncWo4s7htPuEmaW36Xvwo1Ytp5cU/yQu1NO+vSxFD57Nc6xoBKGsuN3OIBtt/CZzReLcHFow43Zs/8jWc394WJgjnt3lgNrWxR4QGpo6oH9IerrcSlHNQp5aJ06vg+dETpCKQtjKfIzueCYBX/IkfabskRwzYe3cQdeKUKM3vUMe26wqUtXEkbN+5aicqtshc5iu3D+jaf1cEc6KLW9HlEPF81wkZ38o1EPUt4yhWOGK8KaTOLfLVVK0Wd3hYHhqtXdOgaKOkuiXuRW/rKQD2NE5jaihWm1n3ndCWmfsp3gMHSXdwoMzF5DH66DrWOnhzZSrZcL1ms+JOrfOTPEStubyveYbbdSmeGm8fl9+tYILgf9as9IsxbTlQHrpLRNF73anOGffyORjC/t8u/4fOtot3/KXf/5749pe+6Yjat4S8MZOcXDaODJiFq7eZdDE6wyM/1KOCP414BU38TwvAjIGdvXJPWsJ0GT+iaYUdSQ996eWl+puujYx169xx586HmpZ5VAKuTGcdbWSUwz+Taosq1PG2YhTOAdYCshk3Zs8MvvvvbcuXMgOOFyUNuus3V5KlNOXXiF7MjxySb8Z4gbIedCWWZbpbZc9NFb+b9omNm+kKF44dpgbM22BF5Eq20rx2nTnmFaRAvwi0XjTagkqbOXJKoO+7U+Ch2aEl2ZfQ6nri5rHUi35VbHuXINFdtKte8nLOVklb9rmEZ3lunp5fz/9SH+hF0EMS3Ss6uDkYN0o7lmO63UMddNhm2h87Khk6903KDG9Z7JrZxrWZTRa9e7Qp5qvMIazmbqvfmYr9Zm3/VJfX+Du8vPHA0mzOts6l8EfdZ5BtYImPg1Yu4r3Ssg0Hqt9kYLjqqm7rxPjF2z67x4BuNmwp3fr1/L3g5G6X1M5N8KJZX8Jzjd8uVM5u2GTjYeOZoOaXCca/2Ow/wOPH3LA9i8d4G3wvDndEloZG/lutqGy2H8tBA1YeKKpxRLVN1Si5yT9xXqPugoVzcv19heVYC/yjsJfFWYx8DwDnhRtxvbDXo88YFDdvYhzHgoR7nX+Iu03PPVzML3xg0XZ28gugn+VfcPzjj5IHuIPZhHzr7zxOun+IuXmmWXL/KNVnat8Bd4vMFy08eMJ6QKe/yFJt7VlhOPPfg+I5veoVrrqLtMehSjxOAA+HmoYXOb/NC8t7J43+8fm/X9xmYadkmGkqfbIK/uqWQCM4wN2HVpXDEpdw8Cnjw0RH3lqzPv4ccp3sIPFe6QuHbtNSVxC3I75n35F+ZIe7j4YHpijhhWZfyNW7LOeSWTf3a6VCb070SLn/mMcnakXBNj8y4J5FXLJImk3a6LQbsbuaB5qCtgQJzVaDzYZIPH/limUxXFRnIiS5+hGMa2+f9M/cZFJneuYvoM+lJuvdfytXZ1K56Puoyw0rpjDqdZo/Z0/KbEn0cMvBIFYdcn4m1FqGjFKaepsUAnDdgMJ6Gxf1l5cro3QFgBJJ1D4hE59KJJBp1zlSOPtcisBykZjorOzJsGuG6ka4k0mlx855BzHTrJMq0TcvdY1AJNCGGK2PM3EYWI27hUbqesCyfHgT6Zu/ggLQGpUqgScb1kuk82YtHLJO4HwmY5rnKhh60PZDk7TylrHU0Doa/9brbS+Vo/JCPh1qXsHW/+/lwJT+epakKR869a2PA4J2OtqU7Hc1nXEjcTvxGZ0/srkmvHASkMhr9VdzgG6+6/CpsJOlHHqU9n3lov2ycrnATOmJ1QjFo5NftKleen9h6+c11Ys3g23pfceLCwD5Rwlh4qQdKR5/5vbENuVDzxVU31a+y64FncRomXRm18sywenNSRPHAGV7sxLze2lzyxwnC9stoLCpb1H3jLD8cIEwdHYqpfFTzlpkuV37OdvJMt8+xIn+0RZUDlVMVvfWuV0xIWLV9HaDqub9ZJKgtnh7eEsueCLcq5RgvDB1H7bsdfJNyIO0x2whtwD1nANLF0PowWdeBlOGZg+pP9g5OqdcrVpzeDbTzrn1uPRmX8onlx327wytXaVyknIj7ww/M/Bs+P9D1/U5lzErKF9JX45bnAPrAOi9srUaq/fHEzDEwgDT2iitYqTNHOuvDyTQ7C8tbTuWBYbVHay2QcGhEDpM/RXj5ZzVCRQez3U68Zjkks3o2quZ1/ICcDTF5fuZBjS3GkhwMNoZJ3CnXzboMbD7PniLYvBW43LjMjyqvxbDOWZ3Q0VNns5suIle31B+MIJpdXV3VrI42ALou8lS/Ol6/KkdXCHZHWHfcrU4sXO6wpwN0hUOWZ9nCMn+HaazLrQcaPPlLbJ91peRa52+UZ+psFm4PT6mwWl01bF8d19CutWu1LIPK9VzdsuoQ2er0DTMfdMF7+IbZklk6kfsqLvTUwnZH5P4CPWxkoU90NG+3FOZQMWMBeDPHT8vxvsL9g6/aWfVJOR6nJVaHxyGnHMombGNZziOJx2bwtBXnPeiOyLih08Yzen54eM+KlhskUMT8KLudq2jHaY9AuEVmfVsAHrS/e7pIOvg+s3lS5mVJ+BddhQ1ZCK7NCy94gMrfkKdimZ2RD1wEGqtLD+KUyrEOy+RukrrqeN6ncj1ZIZwwzrXO7ztxPoHzhOLS48ifmw0sZX5c8hLxxYiJQZohpaOesUCsmBnmap20TXZ1i6tIcBXWDo45jYd6FkegEzNnmyJp2ELsjxtMR9w4QfWIa533ds3N/JngfskdjFGTacoZtFXo6oAL7sO1CAoXO27vkZ5Yb9I4NH8zbulM3LUOyxMD1xYtrG1WnFh82nH7Suua4r4ceuETiytd0Xtg9wIeDjz51usS0fnrckBibMaFYGZ9DJb7u5Qz4MpVgePjACr4SO/NgJ8ewNOTQ9B11kZcFL9wgLZW88BKPGZhT7dAH9wEB9aymhSt1Sp4VqkduO8bfw6MQ5fINzzx8QGvCTZ+HpU/PYgk7N9xrd3uqSM4YZg8t7qsz1XeH+pyXPvsf0mv738qo89bXn784JhhcYY9k76Le8iqyiYzrGdYdVNR7htCb+I6kC6GJmHt7o+k07/Y2N/UDaP+DNv5oeOZsh1xla3ujdq01yEuG7iHbbqDSkOozqecJpTW0SWsHVE8eiAgeBcUXrLgR/YPufmT3+pIPbTytFwAPVN6txKG3EPihudw/fFRH0vurY5+gJ9a6D6tGTdJm6u1jFvqXFpZkUH2B5scjmr0JbnDxZDfGbbuZcYyOwnqPsL8k6zOuPNdZodcxu0ai+GuyM6m5HfkIX1+6dKinRncya1r308EnHLqfqY3D+7oQam6S8I4+71E9lzpOuuNHeXZgzlRJ+Oe+bvYZmDW/mriGCsJl2p+raElk9gmuHcHLWedHbLtKP4jm4UFiuUjgSPsGffDq619pjVsoUWhOt3ELaznveDxGfeVRvW5wxzVSQ9ruUtLXNx1AqKyJ0XeK1Uip0FhmqZcDNszQ6MrSxpOHVuDWAHGsE3r1NiuJqCeFVZ19FNuruaN+Yorhr5qV22ID56deExOvPBRhzVLr44DjxsbrnxjEveWu+i+Zwe+on9TLL/MoGfl2Jj4hKGLyzH0/Xy4DUp4O/O3JOxo7MIBlb/c5+yOd892RKw0+WCehkgdp20od4ttiOWVmaFjD+pmXikrvDi0cU++oV4XOxqfEVcjLgesujLWclFydOK5cP/LQPd9L/+Gzw90fd+BGTDB5jSSkuQRTNu63cR95UlQcaOO4m7iV8V/sR76eav0YTPYlypF6nS6XZxxO78vatRNpgexHNHahcMxpmhJdOUOZJfyumrQv9QAZvqCINw3ZL+YRKO7yNBL8uQkRRL2mCaL5xr51E277UC7pbxqmGfYvm0d+TNPjXw6YCeC3cbVSuq3Ya+ujFOuzeBHNjrse7nmHgYlCJM8jhJVOR3Np9wCeZEqAZY8N7TLRxxLb7GhOIm2Nn+nnDPu4Dbq7JpbJDe5pENbuuRRMgidifY4YGPlSYYymCF58d1oOgNqWXl7RlTjyUwmm5DTFrU7sw7z0DKoxRQH4r1qT3C/2KMzgVit7DIsks7Vrjqsw4OM+yTM1rHyx3TqJC+XtHa77HzNJR2iy+/1SIDFMNvded0B/C1uTNzXxnPOsh6e4R136HgjR7Cg5fpwNR/tSOKaBxeVKyMf38gtzBLbjDaaci/A8MI2kajd5gdPTHwdoK35c/3x4up3wbjx+1VPnaS7PHZguqlQtyN/imPH3QxrF51fY6rmT7A4Px+eXKx6ptgKc84SXKLaYZcs43p6jewO7Gc8Ha/LODDmlVx13Yz0OPE31Spczu93nMFVMwdiAOtzZUnjAs0ZKIz1UrUHFR1XFS/O8AirrxEJnGxMUx3f3cDj4slho2dRHHXF+XXivkEmKGQgRDwunUOP5gGuxvnodr2RiwbfbMT+X9Wj88f3WrYOfBdlroQl1nPSo3lAOUNw32ad+xGvyzzsr/j8SNd3G5idE7SXPQSyOqMrWuOeewBu4tqruARe1jl5fIl76ngS2klijp45rP1lU+4lPT/jowCF4S8dB70/Nxv7EeascMPmdsg/ydlnHPM21F26N3J9BLEphwG2hE0CGGM5VcO5n0H3r3UgdtT58+Sck8hPw1IGxowofxswfcTt7Iged0aoTJ1qjWHNy6DcA3eJhkEzwyJAnxDYpGynqNuLYM2K1WneDJQw822A+PRbl0f2Xcpn3wAeWT/2QmgHvspSXHFUTurYg7au2GNwMeLmvbDzgoerIBzlIiMWbRKk3I57laP3Mrsr4Z3hRjlPFxi44w1xBD4HeO22NAdPdEnUQeFYQUR24uzU30ruORA+4360KvWly849YAcuNpYf5X7isU6qyW+3uMqwfteernEHZ2xcOOSObyrukZ92//ORramAQoQM4k4s1bgcVN7ZZsi9+ahsxw0PHHKGdjLwEDkV4sj/4KfLiPd+RFDcnPt13VEHKw39Dnw49ajj9S9Ad+p8Fso17KmjRg2VsmM97GX3kTQtZx08h1ZSD44y0DB12JZhlBIFcNXGxXDktw+znXKJM156aPqv7ajTnwe0xeACHGztkUq7MipWt0gbSfmwTfPNxLvz6nkZwWZsPPKQo+CRPZ+f7cAAusYWVsq+tG4ljcOlk+RF80c8Jrsu34n7XnvHXp+eeHOcv6yU6eTc4KXkzOHwcdHJx+D2j9fv//p+e8yAAbI10XT3Fx88uwsr4R0Ys518Vo2dBJdhtN+K8/udHmd+IL/XBjmNqkp1YM6AwpKvnuELDDsgzttWrv700lsfhH4DaCM7qaMSmp3547TTUxTUjgHD3MU9023BI657JXHZK6KHZFhmtY8x93SxFEhq9VLOjHwlmAmiLVdCmcG9M1a6VmTP+hMzgZ+3SfrSmZHLdPQ9TXVLKGUGa1u6A7o454edg7xWkyzmyaG6D2zKTRBfWk7HfgKZ5XUcpyfCcy+FpRbIemaAp8/7zmoF1TnT0P1Mec9ridzYc9LEPFxpMn+aJVsHmS7KyNnDFXu48ARiD6PKzTji3tLEB3G94dHFLaf3weUpWhKWesT9liOUm2DfASzb2OkjWWSbZRIkPU/R6r2HkfkFtYeXHVVuuzFpByI7AWKrt68gaBt/pab5EegWX15jOcPWwg31PsK61gdDT8Kh0/goLo6w2m40SzZ7sWOyqvFxtn0DYj/XZ8diJ5247BjyGE33wFX+RttH8Y1rRguvGsTmQURSUpK4kSt8Ds79xFjVKTlLAWuI0YGdNX4MXQXrbElaT/TAUIKeNNzGEJvbYU80HsfKkKQ06sIs155siX1p/g7M6RrgMuS6yNX0Tp3l91udQ7rTQ0DU7AmYXg+5yy85ceCtaVLEq1BGMfXkH9WJ9qu9fOlGtzewluP5bqXDwFUxgBbZWo1XTNc0rvLAyAPxuvPWUondFv2tHXU5Xsnggt2oQSMnf2sVbDU4tAu/t/55v8wPvmkeoMcEqj5trAdgG3jsHYeAaHlA8ZicIXykuH9guQHFzTbk5opc2c5zsIrKz/d3sfvC9etp6Ye8vv8es7xu7WkvvitYn3G8eKxJTR/roMUxD6i7I/3zq/6mZH0qcsod/9w8zMrvpZNdw9TXI/4L24SOfujo9bXcYc60zg4JcP+C0AvzvVT4Xs4Z9s7euOlsJFlh8x1mr+UqQGF0Pm7CHk/stMNBjLNrhTo1c+8mnAh4U15KGodKtysS0tsYA6kXJD+iOurF3NoJ/iju3bNJmEqC3L901bFI8Ygbs7aO5zZcThUdevglrX5YzUZ+6hWiOjYY7W4yIMUAYyO2bhNPZ0cvWlq/IwaVF02njhwuOaJvyRUXl+O5uhaNvGYn1mFZrxb6PVicRWWe9xjs1QyoumoaZe4bHUUHknc2su6o8Xj+3831Eg+O9vISy8fDjxJH4xXDP3+pYhL3Lqi0y9uwx/OB3X64qT/lACRV4xXXSTjFcqccZx32M7TcnafDZhjhxwhuQ87ruCN7ov8N/jKtl3h3c0R86uVPq2DNaDNdP+7FMlf9btvgHca6pBIJ16rZPjJzYPlZfnYEv5N7xzcRdpbp3R5Buldu57mZLecec1reFcvT3e1om4NfLzMVek1se+7jrXh3fDN0FP3h4yTZi52Eq048bnxr3KecOI+kG3IMSDlQkUlHTb8wlYc2yQrVmrgPTL5pPJ6D6pi8C77eO/Y7L9FJB4jrBZarNwn/lh7CA3P1TtzYwRdQt80eX3ng0x/y+qMr47dePv+ebhv1/e7DZ/v+bxlbN1Lz6F9JRyfeNV3XNHGkL3oVbujhIe6/KO59fqzDkVjOMLiXexcu8mhHWLuEtSP++W43f0p4vUZZ2aHLKScNq3Y+4p4D3b07Go6/6sc+VkVOckgj+p1cDiuOOnfuMyi1fIb1816+DdeHw3bdT5mCyzw3th4hDx39zMOQlb0ZD9M81jnC/ijuqYscIX2Ea+pXxa75K9pjXbZ4gTKS3LTzxQEC3VZHxwRNPkAPVCJ8ne0o9uxeUBGz07deB1uRZhD/xvLDpaVTBbxfyMz8Tp0w0i13kizAIHyryjxdDr3It+Ka49N6h+EpYaM854qjxMtOBE9XpNwKO3TucsgS69nTjKvPvuYqnB8vPETjXqkhz12wvNV8jal3x+WfYbJgjur98qj9ei55OHHjIv+GB5qP/KrTeR3P71zrL5ODlf5NJ/kS1z+MG2lnB/oYUI09bDcybm1TcV884/O6j7ahPFDcVKsPLmFPW0zcr1QPmTpuVEVOHojvtM3hHJ2DbK6in3vxSg6utnmFv36EPfmGOlKHyqryKc5BDsNcj+k/Ui4codwxZaB6YWJn/Su2oM1Dpg8uGoMGoFfOWO9xyB7fcoCRYZfoHau8XQ6aDsuxqlA2pLU2lr2j93IhT0qNAVNlgm6PWQCrrDAn46SGHDqj4pqG8A4fR+knR9qz3D/D9T3zZ217w3nS88R2G3GvA68+KNZFVuihbpA/7HWDj7/q8wNd32+PGZJscQyQgHtDScNSjBleTcezD+NKKy09GNYEzDLseI7W++h9weQ/7Th0/tgjkKkK0YkzGvN9LP0sdLDjfuoQ8kSP6vF2T6SeuVrOjhXEhIwC9qtdLwZ4mb9cRRrpSFyR0UcBJ2Tnuc91sDddaSx+2VvSEZ6OtDK3I/9TZ3UludhVwurqHHUsOegj0Ndi+alNcIlb+QN1jPiz+k4d4R1u1MeJ6yoNZparKY7tq2SVhJHflnuVY6MuaJ3eJ8HcxNVjgh95XO9bvvOn3StFBpOyjmujLVu58vGEspKj7TEVcYln4EoXA0dHYpnhbZGoLJ5nWkvSiyP7qShXwvpeffbd572umpn3KprdxIXFIPGxgDd7xqZ5lgPLtuwscQ29N4H7CEyO0uf7ckrJfexZ2BUWrpvb49myS0X75dcGm3x8XP4OfEJjp0ncNk38tY7P36/1GWPSC0DhPhiWdVabrchVGXdyPpLb+ZuJnxxS72bU/Gna1djtltcG7iPqlMEuci9hX+Gisc86w7a71wWwLm1/JpZtVfSo68DFKJPGKnfUaXRmgG/JQ+GxyJG4l/xJOV/5JsK+xlTGpZ0aY2kAxZz7uJNvTjnXejSxtzjRwgY6cKIJ1gp7LZsvKY4wpqaShpD5EVtd8LjkYgws+Hu5bRfuW8WNY9oDY7lHjPZrHOx8TLko7FMsh8hVHQuPXfdInbXcaxD2thzLHcBCeeFDDvEwKxys90+aTR5Iucx/Y6oX3ywYeDjVfJ+ZFw84ws3xsYCf7BkpG3mrn0U+9mW17pFylwEP47sqUQMuHo+/cnJxHBgi9S/Cp5XHpN4fr9/n9f1XzHIUNmbv5LoC1P397YrbR/eO8bLRyzMXoDwHii5/jvRthBG0Ux0rrg071EtmdxD4ZYaYJjI/7g8dDaKjH88Ekhimnp8jZKCa+jaAbmeMZ5r2NIrD5QXRR1iRO6KLLdTtjkA8iiD12NvEjqKD2GIs1tm0uV63g0+xU2C8ye8he9gRvdL30VX5u5r8pR4kkkHgR9g5aJpl/azXDWQ9u3FLmbOrdH04VgA/knujew0i0Kting2ijwLu/FFHhtW9B9Rn9pAd3FvGhmYiF5ku3Q2Zj1qVoosjy8/TRTY7FEGGKtfrO/NheoKjJFZuKox/HCiip3zxOOJewcsZa8QekidiQ2ANRIwnR3ZaHOW0vTmDuzu/6cKictSVpk4l47MKh0P/X3kpxvjxkbb70nsCGNgGdHGMewlfuvrRIbsuHM88HTqOZzc6XuJqWL1VmR74Wi8cy72ymietlz7shagLTN0rwfqu6TgwwrJ2VrqYbs6l0+lxwfp9cspZVoW3+c9ZfhL3xFTXuE5dUsyxmtciXXS4A9WDB77AN/q8dxsdSarpM/15XH48OIvtjP+le7ZvH8++zF3MZ7jWQ3ACSg2CW1IrFE8BwZxKudIax9YLNvJZ7W+UtvvcgPsaaVZcyrNDruAvMXO8PmXE1VPcVOfOX+/J6jLfCfg98eXXsGV/XRXbyTu9XG5ig3Y5b33V60EHpTUp5gDc8e5LbJt7lOvQp902yjAPsU2Ha53KdnKwiFm67EPu87Ap0/K81OIf7Dp55dd8fqDruw3MGhNN2o6Xi4eRDNQFJO/9zqBKHo4YcJ1xD+x2b07RNNV97q7QKjwfdbtsV4tTJwqnThAyyYEY3CT8jIahk93rqHnA4U6hz7YPd0VTxmK61FNdgdihBuOZRFC5amTVWZ+Z4KXP/CXLlVppV+7hio6qRR6URV/IRZWvhKHKoj5/GO4hlY6POBpXw+4d+rH3F3swzlYfiY6BKWb6PsLKb9ZhNSt0ETligQPk7TwkQiu09CzGoKWJ9u7kymFu7x+ph1GffMZBiN5XJ8YMb3T78JaLkZ+Ie+2MtCJFGEZze/cDONMn9WOJnO4ctIfZYzkW3mNlyZRE+3sdfVzJsibwnoO1JmXOnvZR9Gk5We1SnWm7jQDrT/5eZKty9cXZ3EgecvcclGV+eDyzuqlAAUp1ZMfJZVB2Vulfeg0XZ7/8XmnftLdS0WdUvR/Ypdnh9QT8OfqIJfcjzD/l4JCjfPMlHc+42KEXV4tZ/pc4R/5DbtvJeBIwfOStuC9mQTKuBQ+Ijt0PdxZ/HIZQA4OrTudAs+KWnjbzUqfqdh6Pvv4Rl/fWg7YnAKzio7HPTTJ0yzclRHW/4RvGbdjC9Xj8xpCd/LSWoXD/5F+V20peJvGI5T7uccQl97bxXP/JsPGaDQ4Y5iz0/UqgV+pxL+kpBnp31Jk9s94zaVKwA489BmUw7skKUp+4f/SPBk54YTVzXQNYR2EqAxjm6baav8D9CL13WOexgDe8o0+77cTqyH6buM8J9VXqclWN+e4TEQPX5XRfwVTPRrckv8+U92ZPmMk7xzjJZz1paIL7wRE9aCMn1EmY3vv0Qo9n8kRwRnysgLG56se9dOz+NZ8f6fq+x+UfLoRw1HKtsV1bG5yBGf6Y+BnPx2yLd6AiQnRnjFEvcfWeMu8+aDl3s17xrDseHddGXKTMAjTVDUEtsZJml/wNl47TxUMv2lj1ohaMq7OlVKAOqBMHGJKaddghV9PZdHXgb6pTxjWVq64kuYx/xLWlc5kzLiQtliFwNyuMIQcip0pA4iaM9SyvRZ7dESfrpetICFqR1uWAks6flR6FoKPM+a3qlYQ16nzoeF7L0u2hKuh0E7Mp+mIb1aVnXtuuw/VEtR46dWNyoFwxHtbLi2al2UxX6gIJsd8Royce4qLToqtJpjuOoa+4aQsD3gz4ZGxTaxzGUHIt9VjiioI+BCS+9yqUnonWOjJP4jKZdZsy2PF4YOOTxeZrt3ZnYbOkm0q4sHi6opCoxa0N06XnYTpL2y46LMcH417qSawQfs1lQGMmMVEwtHiAelwwc95rh95UT+qqzeOCsVIefoQ/+UXaVdVx+xVxEw8HD2TYrshUsd2WTttddFa+dHT7Ht4YKI6A5t0mZ9COAxdXj12qhQ3sm7Y53d9NDZVhWUas75WYcEjgRiSi2Gf0z8pOe9mqdGod7zhj6qj5+TLf8FmJkWdm6sK+RtwuR42LS/5epX2nsw/OEFdGqYiN+/xNbCntfPa2Z63zwTeU0+Wp1fe+bKcL5lrA20K9T8slD8y7VdlixLXKf6aFLH9I2NLDhlskq01aT9pnDDreluPTcizfAB7DXbwxVeP287WaUxTLHXQTjMgLXuURbXauZJZ7PAzwjQc2fjLHp/S5XkMHukxiDPYiu5twwlI8wupJmRC5AKzjcnWv05UJzR/18m/4/EDX9zkun0YwZKeMDb9vXcMSOzWeXZPT58ZONMMecSsJPRAEM+xtXMzvJrq66H+mVfmD5O/Mg3e0IlY7kspGzPwdOIpCtCGX81pXO9Htq34++KAGFsdhHm5XORHZJX8awPtP9WRQeXSJGylZhwV6wJFL6j0ZeVSGYS2RSVuk4ZxpZdqTHNUlTW0B6ZTs1qvqLmGzSXYq8OqaPcwpt+Pa7fN84qHT7bNMZe/TEUF6sx/IHXrRhYO2lLiC9Td6eGrjo1rEPO7q+PA8FlnrDWfyRIehs9ruGpcNXV39Kqwg84LjiZiB58mMoy5I3OkWueeECuUbdb7KPU8Zq7QuvzdWxeJIna888wRZFbPWebgzSlrML10o1Z2p3S81busC9B6LX3tlv1XKJ1NVrDOZzZdKdYd3BSOKk4rfBx5XdC2+G77R7yX3xOMvcdWNXEdg6ng5sBcUw3YnOCDk5AH+zcw6Ezgmai7t+IbniKmnaYJKTDw6DtswnSKj++dL83OUrR1xOS/PEq9VKeL+ZvLCR4a2Z+noI39nmQI2Vtq+yDelYj/XQU55sRzzFecq/6y/Pr6f+HuH5XzJ8xc5Q8rXj4Fn43d+B8b9qeMrLL9/dmh84rEssTowdEJhl6R98E1h2ompJ2fIzM0Z9sTpZcgTGcPdn+7prQMm37zkgZywKr7puO0qSo8L6qwwMfmEv/OIlBq0Yh5yomFH2Wb4R+E45fAjXEGd9BliQKrXj77HzO5mpv8SXt/Vznb5F1D3huFKADTQaHh0e9PLz980LtPdM53byycETlZEu1deo12XR6UNZ9sN9zwFwyHsjEdg6/y1XvHstI3KHJmoBMQtMu81bD1zzvvL8cs3elJNtQ0z7FqgZz4nZvf93UXxRdJ3iV2CR0jXwYmVnJYlp3GNNJj/jutHPhyoY+mNs7op5nU+bjI5frLSxQHAjvIaerJX2DE5+7jrAAJWQHEBudPNptzqGnuT6dR8GkOzVoSgZQuS4apZOKfYaiPXgzBuLNNyrLJWcQESENdyI87CXJlfzKvHEOchJEjypD3HzGutjIlbSmaepHnOdNKwpztMxJ0925W1+5l2f+AdfPkpdZyriE3CJnIeZaudG7y9dFywendW29xbR2kQlnG/9lTGyprf/EAYpLgyhb+O29VZzXb77uLqQ+VknImpb/nmksBNHvJ3jau47z7vifsjH6lTHIpyPeD+Is9nVGk91zinaz0g7zSb4OWad8rZxJj44dQr3GFv5B5hBr/oE8Vjzd9hw/rrtKk3VQ2XQbWIGOuoN81rLfsV38zfrbHN854iuC9VEmWXV23Tg77kU9ahU+7NvZ96Hph6ytk7dNL9Yt3IehA07yW3B99o7i5KDujqAcOJx9x7Po55t26DYQ6rTF34RvA4dJQsQHDQ/TJoiZS99KKL+/YYlNHd3zJdndjqe/KATFyJh0R7HzDf6lqunIHGWHRcckZ6EgMwvKV7YewDk7gm7ogVtyfTGJZu98T9clOXxsfDQcgv4SQVYdfvAvf/eP3i65sGZmb2z5rZv25m/2cz+1+b2V/9xXEPolGgAyahMSzx5BL39O3f4ILGfVzqcKeYpG/nEceHPrr3quJc4s6BDmXMvWiWaQm62vGOmyO+iVyX3JgSzou4RY7DdaTvC541TyC4SzqH3VoLeW6aPxs6DTmYHSXn/eGSA7eL6GNojzqhq6F75E91Ljkg6XGfxxFXCRgu5JpV4VBq2uqqM+tN1/ezDKR6OJpgxO3vpJzSTX/zqCS1CjV8p4bGlSd9oi+U5h4YeA9aasCSedTyrxm+05Rp3XDx6PeujFWkI05rfK6RTte+JlTNGfXViQuSvpeOJLUHNsKf/zioQ2oFBvmKWTNPdtFT5UpHBABXiq2Aq+M64iSwNyF4vlen96Z16ZOQTWxsoILSGTING3KtjmEJ2/Rx0WG5Ov0S6Mr5K6/GUh84yfQUu7i/9YKplP9qP+8Zd085d7h/4RtJs+Ry8HTuW9s3cTP+iceXTrWkdTTpib8HljffCG54dEYHeIzOMuMShyc31aqRrJBN90cbi2NM69YbY9hAKhIU9y/AMOIXHmvYajRzBWHyDTp/ku7JN/PZyTf3Ojr/KdwXnsbp6mVHgU++gXvxza27u+hBGSdX3XdikhGNPMRP598v8g4loXGFB1gPRM5FunCVT7GRFojTUdnu+cabb6B8MwePuh+r91B3dnslqAdGrWhzZryrsj0Q7leYOs+6Uqju4a2rNkJefuTPx+BUaig88/awcGlc2DXQK+w+8kfcbzs1RxTfGPkypWQZL5HLXPrQMS3ylbj/B7lOnPy1nx/o+tYVs38VwH/Y3f8jAP7vAP7bvyZyuXDwng3IZ8emOj7H/Yw77085GubEKfiMP9I95TL8SbB3uinh8SOdA8tn9Z/RIdzg21B96UqXvvSSFuUUEd3sK0M+u/jGiD4u+0mE1EyCKoFHWLtWatF5iS0CJWX+yW/A/UhL+xhjppB5qdk80eNlA5v57XBWrh6lTWG7uiWqnnYTt2usmckR/kzpRh291eTLdTSMfr9CdX9ptY6EHeUPn8sEmt6pl7pAnBvBhwl8xtW07lxNRoMA4uWbudfgCU0siadW9NqtrnV0+exwCZG42gDXUU27RKgjM53prdwrAoPbugwWhysNTp1Q4Wv/VtpjyfN5dPPuvRAmpJ/6l6vJItG222eTM//zSosnNq7VaawBmrniZlFfa4+Ctf272F10jDBvF3eAX3hV8Vjjo1vd3+P4Fesu+HujzskNo9cBzIEcDtlHesoDd3IucUUnu9GvcVGyYYiXTLtdno+wp85V3ckohxzXdMaunP7Ufj/WLAS+Gu7zM2SYcJNkRlfvb/nlyjeavxNXY4JL9NsAfOGyT5o4fLlvS96V88d8IzyTuK/Yj2xH++SKszxO3NebD7nrDDyfTyzvymOGWF08+gQvk0Jjq95P971IoNpXVTL5+yIPjU9x8i1fK3DPN8QuZNzJE8TvKx47i6SlCy4qTtdKWIV3zJk94Rok34y4V76BsY0JxxQHvOIB4jFrbu4bQ5yO+DSejW8ltw+W2nkSY6elfDNdKnfrlGk9BNdneB/lZfaNr0n5A1xVHF/x+ZGubxqYufv/1t3f8/ZfA/Dv/+WRb75e2rRfwurtLQScP7yIqwnoSg3QAH0bdyJgfz9/x839yPONASh4z4L5sM4ccovPLnLEWsxIuUX2f8X08BEUzz7CYPDmqaXNe5IcTIjuEvcuU/11Dlo6rp8z1wjd7/ZmXHozh5yLG0vj6VWnM6iEDfeRYyB2yauPb+f+jqmfuM7ks/uBVdSddciy1M83OxOM6ZjEdbp9ME8ZFqPkrx0MIdDSUcxdJJ6kER0fx95W+5WSKy6zkWqtZX6j49U2JQfT3YTp6Kx1zdpm+T1r0sBTB/XTP08mbBIEOPN6dVupmU1vu3JQxsT6/WBzYqrnQZt4i4wz3cW06p4TI8fqnfdGcR9xxU4FA2d+vVYRv4nHpP7y29GtmlirjfND3JDLX/wFatXLboJfb17k1eXzpbgDcyS6Hz88Gayx85dm9zawq4pRqEPuja6uD5KLcA66Tn4xwO10c5rGuZyeOPD4zpBTx4vOG+UGOXTmV8WNG9v4q7uDb4Br3Dsdfd8dlf+Cb2ZjbjEHn5q054k5J07eH8qgrtkXOcoht3x5J+fAY5OTCjU7N3iMxMLW6YZDqDR0Yu6aPx3UzLjKIY2jivsRtrGubWV4Op35UOGGHFP89Y/5xjZ0Ym56vJAHqOMWuzaWpy8Dnr7EXXG6RS7s431m+8pV1lg+DgTBdL+c0x7ynkuJ+4vx6Htd/g2fH+j6Xe4x+68A+Jd/aeDRVkgAel+/+wzjaDfFGxfGl/ck41MO/1zkSiU85L7WtdrdVQeNAwGwO50zQAHElyqTMPwZdrhSfmSrV7o6k8/OqpKoVuZz9exyj0ZkTdePe8n8IGMJT3A3GnKwwWmbU9Grjud+Br/LHt1wfIa7hDUHTp/+S6Nvud3Jna8ZONV3yeqd3BqwSljKcngRYXf8T8X6lxvHS9C19s59hqG33Gleql9QOht/Rr1XBTLrWfljZy9+GwNJTGLlEfB05SqXjrpXbU2+o+p1kGe6jZQrYw9+aLdTLjPcE7qG3rLNlS6pr/ydxO1xfPE8nEM7Ox3+sd6L9NuaRyfm0LkP+Ri1KuK62lHfdda7KrWD2NdNHfkF1yWp/Gtpv9r/Ja7oURX8BvduVLnDNp3AEfdzXQ2yM6wfz+7kHeFextVn5/6ywx7quf1F3Acw3v956jJsc8MD8Ns9aIrdPDnOpW2qDhfX1i/p7BKYSX7Brn7HGYbeIJQ6zyoegV3vj6sn+Sa2U0cXeZfiOpLjYVjdVo50KcePp36rGk4Uvin6gwc0fMtxJMZWgXbkyT/XTncPJmZU2kZzKpIzrl/y50eeam/ukbM7V8jWcUo8eaBWthxH3FsjC24m3tuu/VzjPW4XOVL9/OSbU0fBEOQ+LimH/r4Pr4EeWD5s1wRa28EPHlD+8Bq4sQEVz2WhKO5r/LGbXiZmKeeP1+//+uKpjGb2twH89ZtHf+Lu/2KG+RMA7wD+px+k87cA/C0A+Onf/g+gSGGxwy9FXq1QupcENza2jXiVSYGeXOdv5z3j5s91kA6iHp4raKZyRY9zxseP316G9czwJazVbJbLvoUzL3b81m6BrWP9Ush6koSkd2ObaTNB6N1HKIiJxIBTbq09uMMO45ikX6aSPN+ViaeOltM58T4eg7oXzvKz+fXUQ0KUvz/DywwvdTOjaaYRO+5KNw01SlYCJWXD1LMGc1me5m09C53Zp9F4DroshIw47Fd1dJgtPFa+1FO7/h52vNTjLrW2R8pdq0G6XUlCHl+DyWdWDVs7LVZlb4iBzRY54Xa5S059yl2x046aGGHLzjKLC4+jjO/cEed36uhYaSvbYVM1TR8tjxpQlsVMVivd87UJXQN00HXOBoddRQ50n1iQ8QPAAxvxUlZuYI/VuZ4hbTejyJVXugYerc+OgrgnJuA8rPWMzkB3EGIlUO5/oe/HwP2/8le7gZsVdo8FMetuAAdlS35roOh88ncD5mq5hHFEmYLHVfsV9zW9k1e0036H+x/FVZ2JH61Yt6HiGcFQtnnaZqQJNC6Ujn6ELYHCBfxjMaC44bkKboltXDVjU5GwcX/DCZL3YWdRbXT47fgrtonbqKDOhqs811nKG0vMcblXQyQPOOr3iXXCBQdXjb4AiAlLykIrzmFXO+Vc76ft5g/3cQ3u2kkPOSt15GrM4D0zwUkknzb+Ng/awKtIT7gKOrtPu2ZZlTsd7ZarSiv2zH5+bpg9MiaxW6qBTb6ZL7rvVbXiDMWkA1NNPkx7YPmyONo+XvxW3AlgyFmyEsZntYLlcRz+xH3hyxpIGXgSrg6slKsccYT/23a82Yajj8cvTpDTbdv91AFxjzfwmH4vXnnA8Vb93+OALQTX1MElJw8c2PejXT+aS+LXXl8cmLn73/zouZn9UwD+swD+Cb+8jXak86cA/hQA/h3/vn9w4leBKWbrUWI9K8QLAr57dkvWXYdHcHxQ8c7MFaaf+bgJS1k8JmcMVGRU4jBYntVdbfjQb8g9lJjjgZviuKTnHzz3+ZX7BF6l9SLNcndRLc+4asdzJGbzMYkuXjjtHcjOhEKXS9xXah89qourRd63pTVsr3LtDbjPxegZ+hfKOX+/1qov6AjRKfY/nJ1g1fCMe6aroHx2IOq+ymAoPpun3Dxr30iDvyZlEALF4apZHULCyRFX8mN+DKSGgtJ5A182yuFPE5SGPeVI9xjDrRMOG3LvOheUr2Fj0BmwEJ2a5wCyPuKeeR9uRRe3sX2jo6dOO98r1DqqbaZdz/x9fCnu/zv/gX/wABTDaAvGgcjZQz2iQAYsiqln8Fe4n5PIFwm/C755JVduB96rCdKj40yamH6KHfd3PCR8enKVW0+/XK6BxTYMO/jl1b1eyk2pxND7hjtxPtO0si3whdwt84r7ow4Z7mrcLUf+UlxkR7haDuvjkYfL+Op4fi9X7+91tA/iUh93w/PY7/wKj4WRbjKiYf24v/KN2St7RaC9AR9Tedd6/zp/frXVEe88DIq6qcte42KinIv+uOEbwW51FdT8qTvg12Kq+U53/9Bp615Nxj04gwzKl0qfcpLZ0n0xJ/F8Y0xa5nPaZg2d1XvkB75+cPV+6fVN7zEzs/80gP8WgH/c3f/sV0UWcuLsVjMzv7Kl6PzFnSLXhzWLmUlzha3quLq0pD4DXCTNQT7aseWX3Tf1+BV5Z1gz63jKUvQ5I6DrChZDWQ5ISu5Nc+FM6K3h9IcMcOoLpus3G99vAzf7i9zxvp5DkQtBlz3CDl7l18RuUi/cvcA9fgi24vwAZ+qs6pHIUj2q7EPpU69z5dM7VUk3AnCfwVqO55MraUfXwbSj0ra5W3Hle344uK0Z95t+SMUrHSMv27kqFR93dVbwypeWC0F5jpGzLgxhGOBOY5LkSBpnXIceAe/4TLvTHgzLjkDJ0U6Bj2ccIDFuke+Y8Z6kOGaevd9f9jDHsndsX8fpV1KPc5Wtk+6TGvtEK5LZHnJVpyjPLbYCdG8XXVEfC3jz99oDx1Mt1f2wOhvlShTP+lj+Q84YDLKzkWlKWFTYL6LxL7u6MYzfRv3mzxv5MiwrnLATy2/giPRC7wjPuFxFgFanQ+5tDrtwrnxzE+wVTIbO3tyk2LcAfzr6JMNO0A65mr8huNpZ82nFJf9grpbd5tMBehgUMo7BkORf83nahgCreFwBrRezzHsvmxixzZjPNnLVTJ7azDZBaGBKZa8x1USWhsUdHue/hp7gsuQb33nARlYs9b7orIb9KIeYM+VeeUF1H3js1F/4peQQg/vQiWhI7Q1xl7+B5dTzlNsi496aMyosXJTGwJydGXrYhmWnrL1FUofEfZO4TGyOuRVTccHjC9bpKhM4ObHhvrGxsBbwsHe84+2yktT7cPM4+bSNFQ80wDTuY+KzO3RF0oaOPibUdAvCJzzxWeQyfzymP/Kn7z8THEeUPQ8XgWD7Qt+vkttcxbhaD37Yy2e9/Mt8feses/8hgH8XgH/VzP5PZvbP/ZJIxOiYHRTfcOK3d5+szpBSg2frrnSKjDJ94QFj+PxrhQwdXr+y0Rvkr+g09PcZ+U7uuGd+xC1E4w6VaBuTZya6FLLfnGbmouVwLWRaJ9t0Wpe4ZXddbWmErhPhxJWw4hpQ74/KQZPKmaeDQZ5ZqwQICbbOtpDvCuO1Ki5Pmuv8iMo3DbfdQULolMu0UFAFdBdb45pkseOqvWeZFIjyNLUPdbSWc8QtETaaQem4zMI9TwL2oHXauUpDiqTDWj9kWAlcbiX5Sx23XnWMtoqwb6YvypyrsaOuU9983O/sAriS12eusRwy71J+qHhW1qlTDT2+vxnwVqS6sETwcEdMgmQeV6YVpvG+j4LAkhzW/rIRt91neHgIG/PDNj6Z44EngDgshYPF+C5xIXvVrI/XD/1VZz1pMeLGoNJm/liWkMHt2J/w6y5zXHDf5BM8IMhQnJAlLHunxjj9I3zm35oU698ucqTeKTTdYfnI0wdpnYOp+Hvipso5cP/Mj+qk0KLcxVMWqc9tfqzw+SXui3rKxcRYxr3YpuQQj8UeCjLSfz+5ioU1sDwbrQ62Kr8X28jgaFRX4pXkl/UCQL+QOVvCbdyWbgbYshyTef3Wdr6Lixd8c9abQoxLXBODVn++/+m2flQc5aYxeKxLKourXE8sw4irxTlt0+2Axbcs3KkfolMPJtpdPJ9I4jIpZMpVnYEzbpevF8bOGNFoDKHTp+X5zsZHHUhFPH6IjppK5M8ybT94oFfuho6JfYWpxVVS9nmQxydzvOE55Brolp49Ek/cr/wnL1SB+HRhh/LN7vwZDwSxkT+6UHJw+kNf/g2fH+j6phUzd/8PfnVc4IIKVr/fhJeG4SNw4/nolZ5hD0HS3vsQkWxM4/s1as1o1fMbuSNDNm9bTv5iCNcSgiBJ80X+nDowrctUqh8kJ0jWVsm0dZbSh86OdrWpAe1u49UuKEe/tHSMDCR/KpYAMvhCf/AjrPdPuTKiG8Iv07UV18fPKpflMIvN52qbhCV+9szh6c7Vq2XhQuLjGY6wt3U8Zw7PWcsZdqZ7Equ9COuOOsK/9D/CRp6pmw/yVfSyV3HRceu9aRLXNK5Ul52bRSf4u6TNGTuRo/nTFR/p4VtW2pbLD+o3HMQJi5nkpzYnuoeobeJBXnIEcdnNs371rDZX+CYB634ysSvtyFUN63nM6YZIW+0jf34MJHfNnFPOUhsxzfyrOs13DelM66+/Cve1Glee2fbuhn3+kjOACXcvedZmlVwMeMKHtP1KdODil/LXccfp6ScP8K8vVPWSZnOH+xd+O5+dcSHPB2c07vPgiise92CYTfJqG5eJqPzJWq9Wkkn6zJ/Nd12N5q1fUw49XRr/G8TrMIbiyJZLDlEl+5TI1unkm9pfdVNfTyxyt3lSMNPCNW7nTrHrCPoS978Ud5an011c6vBHcplhq+f54Sr/C6wbYSUuBHO0fGI1SPQAZgM9cP/8q3ZYmHxjA/db57GSRz5jfdmB+1y1u7ptyx5e4Rg7vl90JB6LLZRfKWfuK0atFm7PMxGpfx5OFZM33KtGXfOZpFUvpC7bKGc0Dxi5FpJWhRU7//H6vV+/y1MZf/lV5ZytQMteX+C5I4xHG+1nuPBTpevdNq/p5vcimae0ZXRcqnZJY2Jhxznl7sQf/sbTGjUPnsSRfy+nJ4IvB5x5O/v7Jccx07qxt48MqlxJ2FMy71Nfz02x5TbhMShz95kuWo57H4s+dCGJlc2lDkhAzwAzrNi83uo8C6f0Px+L3GFD6sCf0gY45crzCncX14FyaDuFFWl6yxnxgH7ZtOqYYF75qyxhqCD5Yy3Ynp5T7GWRBCUflxnokVcfXDYO3PR+0GQs7QfSEfNO2IHcM2U9q+jS4feD3DKNwdskKtGRLpM2wjrYL2ldXTrqTVY7yyEOwtgjro240VFRue2OqBmmnlIm5kGoSZp0ewxb9d9yJ0Uc3LKAnD3l4AkVNgg23MTMhVATeBiWq13L9QXV8e6sUM27DrjK2ZluDmi+9mKDqkaMy4mFnhXWj9/je1Zm5Q2ethtFMDlEzFA4+TwGcBecOOJi1rvSiQee4dSx1bvmXcLI6p+L7FOngUGi0126A5PSHv6Cb26xW5XYgD/1sUi9iTufAxcDeIDH1NE6Xzj0P5ItG21N2C92/EV8c+roX+Cbu6yozjtX1nL04Ydc1UcnVSt9G6rAGVfDi20uK4FeWR1hd/oNVmdcBqiX/KkC4OtzvHlcuxV+DBy9OYL6Bw80/ptns9mAux1YX6YDoO56M3/NIW3V4i5PzqhkHGPiTQrSJC7zl2fRBe6Dg6W0N09EHJNiKAw1TB4IfTKc+9Cx5UfjDDyG4IxVMT13jN4eeMJSr3otinNghZYDtHcBPFfNmm807ILjQY5yTuTNuLSjoQ8V+1GvGn9/5edHur5pxexbrsIHm/flA1yGuq4cXSa/MniNG9h4OUnkEkiSV2BhZ2SAZoHAvCqIhB1YIadFMo8mOnVcy4ZuyVFeDUOX7S1B8QLGa+oQ6WpGrexW6ZVciFw1yjFY5UxTHvHksHYHc0HURBVHp2smGfeEssXMyKoD/fHL1hl/9feaMeWGhNRpvORTCkjrUdmuZld9POuTkiRu7QUgqEp+EcQCfZaRaWf+PuPaITdsk9BY96Wf1k8jXGb2lxfdLjJbbdZApclDLx5m2Ag3hefBsKXr2arcw2WU9ciPUxnR9cpYRmInrcOgLTPHhnAZ3DkzBzykvqSpannTKr8kxG67hjGr6VYjh2py1nkzoNJhWevKEnViWYx30UAHP0dcN6y6z7CM6y55D9FrtU7L4wQxPucGbWbiAcen5Xg+k8Q17bQFZ1vPZ+puaRA3SWCEDSLud66xI8KXnHZZZ535SopWdKp2j+zQQLCep/UqBg8MJaagphc7Li5xRxKyZ7fqssa9YCqqCVceWL+ZIQlbvPbCRNRZqvf1EuicEVF75vjb2I5G+7jdcIZluompLNjKH9sYys62kJOhEYF2dboTlo6irKPdzAfPW+Or4PEeSThMycAxOIOVWvsAg8fFb67qBl0ViZM48k8c1WcWeNV7hFuIe592Wl4OWW9sOwrLRq2T7NTPKZf5YxGJTnOarbG66uJiqBxE2Az7eAB7dxomYc7VKp1AqmDl5tl8o6tfVng9MdW0ctjU0YlX2gfIBjZOCS7cJy4euFc5uuFLN1i1E3Xf82pXivsPc3wyx9NcXB4dsOmybk687ftVJzFOOeuis66MRf7W6sEfbcKJygXHp7Xx/myX9FpVo1yJuzJufQfKxnqSpvH3tNdCv/tsucfJk3AQ52tLAixdPX/g60fX7xde321gBqAHURByERwynO+xsBlXsFt5sIm/0xqX9JHh8hFOugzm7D7dl3LtqCMnRt/GFUI5jsu/2gbTNmJHde+46HTY41KND7tGpIy4AfXln4v8/PEAybNzVLYx1OysyTNGK7/BeDA6S5yFvKwyZtijvIeWLvfMp3QuPnYfsQpfZJ2dCcbl+IuzcBHtmu5ZJS/uJPcZwMzAqSPfTUOD765kXYRTj+oIHIee3MhpN8EbuaeaFzkRt4sx7qMWzE4C7cX0Ts+3cY2KcT1qzyD17Iyqq1vUEchjpm/akHybLqdeenuRGfPQtjGR08ev7O6o8rnKO2ahdnV44jOOvB8HjMzy4gy2yumOyXWgZZd0u47S1fGrrqP9dRNJrS3r7+yrSrvCxDq8uL+pjH4UF16ldcT1m98Vj78k94qp8sW0bkSa+vaHC7brfSkiOomCt5whSl147oYnC95ujXIK1YxQfz/Cu+TnxGNZyVdCKB3biF0PjkIp8Qd++XF/KTN1bVSey0M9ysg+8IjtpurCANhixRb7IQ/4i+95f8FjvLi8yqVW347n5YJYignXsu2fpFw6tz10vjHSEfUH3uRjqWtj4bNw/x6/CguFq/r+lOMxYK0OpjR0kTM4nyYr3NG6d+rg0zbsBhTGNubCPDFNOS0xVSZRO67Yg/XHdp4SLPlTfhw8EPHaHTH5ZthVsTxW3aijPieXUFa7Nv64l/3Y6v3i6/u4MvK6dHzk0WArDJY5+XXcSGKX5+f9nr9fBtsvyOqWZO/k2vzt9jowY+DPl+KKPp2MH/cogj09PO5dGI608sYlQxX3lNNBcDHIyOKVZPxVRi+/dVw/M8m83xGF3n9BxwI3O38TOaL56Yaze6R3kxlvHW55+J5w1ZXxw+xVp6F1KJcW3dRfciRdu9Ga3GPz+WXwq6tWDJdx9dC4GrTk8xiUHWml0hzkaNzLqWHMILja7HKPSmPG1dWrnhVkUk/npu0muT5EQ0jRMz+0x5EW5TwqH33Soo2wIkeArKtJvuoAVjOmGGHny0c1Lt1pSgfPsM7umpY9dSzftyBun3HPqvu116j+UjXdBA9ODH3ZGT044wg74ib2j37pLd/cKMrbGwMoLvL5BVbuLuGidfxsRz5eYe7Ve/2FMILmHTeVzo37dPsccxB3djWJC+LiCXDyrICFiTdqCeHM6CY2vlSGjMl6rTh4EupHtffkE1yxboZrpTzffThK6I5vHDfPZse6Ht/1Py6/3x/KoEiiVVsvvkur8OKCxROfiamsQx9NKM7sBW7SC3m7zYmhgzOUbwZnZMJ6qFGLiMj64uozbq928Xl3LbfzMBvyv8b14rV2bwz7wflCas23D/1r8isxtebiDh5QrrJE4u0rVrQsXoBN/Sm392RzxU73qx18w7Kj+6VN/SLuvuC+YX+bC/sf4vJv/PxA13cbmNlpkOOvf/DcdqdhJDUNA9wbneEz/SK9O/C704vfRf4pp/SW/XAv83vR0fvWmuTOuP5KRzCiEKva5oVN+rnN57sN09wiws7KrHw6NiIxqk85mGEvbUO47RK2bOEzgJYDdTpyceo4Fvl8ZrFtzrg87SnNXD0i/uYAuAIkBXZTN71ixg8c/L7oz4xbnQnX/I2otHU99tZLBiJ6Oa7mrAro0m5EraylWdW88uZ5z9k4P8zB51Z/W5nSI9vBvYcC99pxDvco6TOPN2m41AkO7NrNZg94aNscFjcSn4T166poESqOI7LdmwQhnSSRt+Rwj7hHdhRc+p1WOTKxcIO8ELVhkm9qFR0POlT7sGPr9kFv7AvX6KNK3a73dzlxXQbviRsn3p6Lt/NAoCPsue/MAH3V4CXu3emP1HVg5jUv+tdObnqhn2JCjZ3u0j1+89T1unhrH8blJBLlaNPQPcqcTddVBG2LJumMuB9g2K1Ocn87QXqXjnDkhVOoqNpKI57pMl/WKFr4eZOXjuozG3Yo6Z0uwZpPP+IbzYJ69/jxrDHVZv7yGV3vOOi74uJsy6NsmUPV8QVvqPL0KHExluImBwPrpvM2bOgdl+3ixOMFxS/riclhGzb5WeE058bBiG282bMGNWqLlus9uHPNE/teMhCbZuvvUk/0VQEdlq6fcZDWY3FgheIAs3a/Jd8Qnxl38oAOxLqeb3TaI3+idN/fFvz/319m9g+b2b+Wp9P/HTP7j35Let/PlVEaer+74QBMrRknIPP9XkewCnvpXUryCVYllsRm17inK4imOQ4+zN+G25VitN3HrWbonRGz1knwvGUc6dlhm9kZP77c9Kxdg7h0vMQnueIij3g24ILOtN8LuXpsubsYusgwM8qeQkUV5wnqKD/sw8WySIBAd9aFufFCOtM2yjleAj7tpO6KnaRV/sxWu1xVSmfFErnehHI5wWsaUlwoW7677FkoJSNe/LxhFvufbJOai3LTn74FtFtd6FxyoAQfP6wyeRDD0nilYxtMXzCqR7H3CqPsBRM5Zsi9FCmv3AQtZhDXLEd9V808QrlJifeqc+Q33mWD91BiEKq4WHI2texmsl/L556xSNerbvHIaKatOqqczkMQ5SPfQ1R7JZJ8Sdp1mhddMvMZCfoBLTPPY6tTJ8R7bjhzy3vabGV41elXX9rDsy7rchsd2Nu4yFMaCQ1lZAl3wfzjt4orbqN2uIufqk6OwtBxQO4rvsm4v4Srqm3ddD5vcSx/147oGai6ui/sGvnwuncmJvatbavOG8yBnOHCP4EVWfOvsNeYWjgpad3YRgAZzW8WK1TcY1xcRbmTb6KzLEAwQH2ajiEVY03sV1VhcLHVitBZgiWOqh7p9r2NfkkfoIFa0b2Pq/jbtlyW74qEi16ti83bjtg1R7DuwDYpq4HHuMPjLuSVA7a1HHv3JGfJkT3MECwzz/3NKld41DLNzoas9LnPuEcaMbm2kiMdbnxpCLlo4r7GXRbvlyTODyxPnVfVTRfbuPCAgcfWl3dJlucC8OYbf76BnizjEf49AIzX4bCh7jo9cnIE77ve1PvNJE+PsilucB8/9GX7y2F+T9c/A+C/4+7/spn9Z/L+P/G1if0ArowNAupKB7kfRDfiymPHfdiTGPz4rttS/Ih+R7gv+iO3M0i/MG7JZZjnvcqa1Ic6vrIN/KrCbVyRKvaynjoVVrpPb0g6jENf/u44aOhDQz9SI0n57OcdEYY+o2pIYV/sqFoMMs6kXoESTZVm46lT9wGvlUAHZNdB3/Ua/Zwj7IzrFUFnyEvXkfrh6icrPnc2noPI416qSdwfs4fUZ2N2GO4uGaT0LKvIPYObH9+bCKcr40xHe5fbaTurf4dLyyFX96ppWNbv7kyccf2G6EX/LAP3dGk5HN00/OlCSddGuidqTNqiN3jvEXeOudolJuLOzsnXX4ovL7DEjxZzfnGcG1VGY7/FOsH9C2W8wmfGvQum2P0qjV8Sl1ykpuDv0oEesPqBuifU+BHxin36UAKkC7SuhJ1pqX4XJP+gooxB26nlBZ8wy89nO5rp+vzVD6P6Bwbw7vCX2F9Y2RsnX3HkTbrHYEpD3rp4S1ydvBn4KxjvztekyKOD8+/yd6/WF3D/bMdjgmnade+DJGzqceKi7sfCwONXcSceD52hWN7XlvZ4Hew1ds+9WD3Veb5UWuXqeyDVRb50stPOVc3x7j2b1G6OHVYHpMMtVDiCE3e6glYTeeBH95BFH2B4Wxw8/kNe/g2fb5f8787v/x4A/+a3JPZdD/9QlKiK1ud65z0ujR3HDGuNJSTswEi/+Z6BBgkaLrOBRTwfFJyCnc6OaryaeTzzgyMPJ1md8jXsnY72Io1daHPtaH8wsBsVlydREdguxAopE46I2sj6XpkghHlfBxRcdIkANWiRhqQzzRVNnlX2NO6xEtiDoTAOSXGsrNqL7MqPhl794bJ/n+rV1/1MrF/kRZq930bjjXTkuVaBcnPYrecyx7PcHgyOPZpUGzZL2fulmP0eiMrtjVG8/oQdvXJhEtfh4cRSq1JSFzKPy7zk2rBJfqoAEStnbGNFRmEJzj42WWnZk3BYx/LkUTMsvGP7Y3aAILNZR1yunGVKecKVZ25dFmscfP9M3/esc+RxjzoQzSheMv2EDdcSEzk8AKTe6VQDNBbKrlO3PPea9R4FHseceeI7ckb+JL9fcx34W0lt7+U8qdDmjakG9OFG/eclZxgyrnXbIHaw/oxcKD5/hKeaD8q5I/ebuOfqUllSsL9XTGYaJ8/1yvz1upy0e6vzGXniseLseM8mu2din+EB4ofu0AyJmV5wFfE37HXodJspk7jNN2dcHx1ajWqH3Mk3U8XIbIVVTK4TgidXyTlCl/wp35RtXvDNBfc5OBVMLZNGc620G2OlYlA35TAZAJnYUgeZJ5azYAxdv4kT7eqXK5jetinc4emsVT8zbuK+ylEeYK61bp94HA8XgHZPLHzG9AgB8mTd9QS7cXecESm65HePybglPBBxqaOBsy+rKkefuOhp5yU235nHhSdWIvEqG12x3SzrvTUPxATf5BsMbpJX6JTOe+hhR1n/qNfXOHLI9dfM7O/I/Z+6+5/+wrj/DQD/ipn99xBF9B//FkW+63H5cKDefudZNeSoY9dphAK6/I0th2CvLioHolXn+fjLIDVLKcTlp9y+HXk4QVenpocLC2VTR1FHdbwbeBSAKqbaGff44bQFXQYStZXjLi6GilarFfEnxQgbDabTZ4AvTcvjCGUhFZVjdsi1I+5BgpaueZeVa7c+irrSwqHn7AnYyK+QU9rGbuzaL4Nm3YmjfVei2fMZiU1AM0lXSMHblfE6e5mEVDrkEcIlF2P2tFxcxI50ZVzZxsIFMCoZ1TOJS7mG6WYXR98nZXOwc+qR3TY9Yrh7B7Rru4Dsp+MdG4ZHEbllXEZufVVOf2rgqHHTGGukJTpl2j3o5CoS8IaNJwzAmxCo5NVQedTBIuU4ptsg/DgyGVp+kXCX37OOtNfZzjdz7B1nc/WR/S/yyxK0eE1CpLXrKOcQtnPwybh7xKU7TA2MGTfD/tJVBL2kSMGeZ9QmVsBMvsqzIxZexZsV4mfhjLo/2sLR1KN9y7vHTJ75iRsnlqtcm3FH2JNvNsS99h7L2ePyz8JLNjnilY53p0KWeMENjUtso2X7njp56RT9czlAgjhxSavjDs6kHOp2xIXoOE4oTSyfp7SgAK/qjpCdSQZd+Iau5qLVhedO2yjmdCFY54E6Um69WiBd9Aq/7uM6j3Q/sA0ddcg9OWOVba6ujCz7ZcAuvtdXUFDvQ4w2xMRU9kvueEAnoxilOM9duLh1DBc+x+fEdm2jt3JS6Tp6XurRK76pdBKPT7haZY32Hnizjfcdlb4Hd4Ld9ZepcZCF1pE6pF3pFhj6CqbWi6FZYDlAq7oQz97g2DXp2Ic/9bH8APyJeCVOcAbrXPMACuuDB/LVPAcPWD0X20ie9H1sf59ef9fd/8arh2b2twH89ZtHfwLgnwDw33T3/6WZ/ZMA/scA/ubXKvIdV8y0Uy8LpGzvx30jil7WYQVL+Mc1vootssGlZ38hOcGpjwiwBkvZ2VC+uFwvdKzZJmdDGNm8rM6M/CmWcir1yPcklyRkmQktMj7IkhugzW3oVHKAS17rZK+yRRcUOyKlogL5jY6XsOZwumc4pGDypyH3cM0yteONSxYLj6SlZTBIbNZFvvOGn1kBznp7jTuo0WbYAva7uCizDlKbIeL55gEHXDE8wuogoxpIGe/U+SbumOHwiqODQFaFalMA+JrlEVd05KEXxSUixw55dcTyEdYgpCIkOvWNe985v8p4MjHQRxC3aVtu62QqV/JR5ZkN2oRMOVLo2pMzqRk2+3wR3uUwEGvS7GKZ76JhOYyN46Bd901cmkPKkNPw9g0+8NL2BmgIjtUqMfNOkC88zs7oKzwenDEvvoi6qpjGPbF74MiNHBE/OOKUe2ST8s/j70eTu8nPl+S46HjLpy/iOjM/ECYCWVZL8qRTQV21HLbx1lmy3+Xpk9do9NSRjh2N3XYk1Him6Sg+RX4sqyqNKkG6AXaMgzPKFZ24r/k5cTLlbLdjBdO76k4QV00l4XuMJcZpi3nlhSG/VPKbE39AY441dpI39P6i6k3e7VWgu3iMyzpYbU28BojzeQ+5n7jful44wxvneiClmvTBSSg8VgS2xu3iEJSctlHEWIdOPek2BzE14BG8L87wXfUssHyXrbg/0GHFPZGeaGzpXWLNGa22ui+ePMDJODamDqsDPNrt3JLww10OHA3wd5u8+8uBlpn9TwD81/P2fwHgf/Qtsr7PHrPkd/ZFBouI/7dLfYp2YB2XAe5O4kLU9cuJhDJTmn2b2S8jYZ5y0emef0sOcYFpnOlKFocciau6lYi7tI64I22cOvvVNrQbAPN0tHIfadz+rVaaJKHPstzi/V2SluoMnq7ngMvsHeTkp8qDz7xBy93aVrfMoHm2o72qXMz6RM6XuC1X6uU12wFlmf9+oacfs/Y+YqtOENuU+dSMFG+0saTmU8f63Tq98BQzIT6xlhTmWV2rPGg07x/rq8182RlX5Kjtdpbfw+KAErgMYjzJjaFTjqY9noEdKBJqkwt8Y+ZOyMo5A+lpq3A7fCCOuT8HT32Efw7YIK6AzveI0f20V74ou9xQOBOtdoTlAoVXXJ5tthHl94b3ktn5dyFNn3sDRhl0fg18bzAHaSy7fi0AG8LIb84uvzyO/QtX5XU0nvyBnf8nBq57gQN/s5niC86Q4o76QpXP191pu76J7xruTJc6+wvZLs1DTKZYN9LyGz0w/6qcgZk3eg7TXeJ6v3crBxWXtr9nkrR/FZsa7sT9VEqP31ePipJ7plUfchM0saubxG65c0AoxhxyfOqYkSfu+wwrKgCjynVVlkzc86kPHU3wWTRuHmDUs+xFZwGPimv9NA7GqpElH7roSLzqe7FI4caoNyD/iFzVijpJ2WtYDjRqNUlWYhj35JuJ+zpAkIGk66CjK7tibBwk1Ji2qkI5NvKQJTwzwZMnkHHyb5qVPEA78ojXPrJe8zMxloOwgfvJN258dUvoxLTWoVNNwPkeMunpQNsAfbgTvF01HSjOqDEolDPEPf4Hvzh/+DWfb7z+TQD/eH7/TwH4N74lse/nyoisEDKz4wCGWxkD5r3nrF5Pso3xfM/IeMZbRzrGdPInrYUMpuFZ/xNBOFF4rsAMJDRW9Bv9VUfcPD/04YxUTWbqM0e5b150Hv0Wu7jOAPaBbW6IqPLl+dM6Zj3ji3t/r7RErpkYEXEaf9jDJB20oWpZX55X/lwiqCEzTJ/9Oss59bKyjboTRDpxihTz46VjxCu4CkBePXgjAC9DuHE+cRuX4blpl3Yr26WEWKFL977KD21BotPBloFEVPyb6S7LY3HJ0QDUHbNcctSeKbdsBfQJW8OulM48Rh1iXJ6qacvrPk6KQg5i2em36kyZuF2Z5JFFq3Ul5EjlkEHmAmeLewb01LHCJlm9GfCe/m59AmI8azfCiEtvIkO6i6asha5XHTebmsTlc5YREAPCiusxCPuEBccTwCPSpr3d8iSzyFO5I1IPE6L2OFGNOj9sPqeOLEu+D2cdOpuE+7WXdfWBltooOhOMLiyoSON7cYZgFleOzNG+REz3gI3CVqanbpGCryd2R1uYabcCck84lfycXDUW2Bdgx+FPqusFyy/YNk00XUInHg+7EjBG+WT+M+44Cp+NqbjhfNZyDJZu7a1jlZniYnGGpEU7172kXTpKWsMWk2+aQ2zaLW00X/SeGHtid+rY2yETs8xgy9JNtk8bnNYMDO13JsaXJZiqfDpGWcT2I25zlYPuk8VNtN2zy6qQ2nnKYepUaecz4iT7XFWm3N8qK0NqtsJUEo3ldoh2ZXys2Ivty2OShLgPcRsULmae1/E8sK7xuVcFJW7eL60bZdHmgYcBnwzYy4G9Mk+JqadedqxKmWKqiUulTnpl8zblgdz+kIa7csbGJ1vYMjDSwzrKTV9sg6GTgRN2q1Yfc/BpvQ952qYHf3Wab+oc/KiI9ANe30+9/yqA/4GZvQH4CwB/61sS+76HfxwIqy4sAAo0AGKy1LxLXMywJ2EqqWtsEriEVZ73I+5FDjruWSfcXse91dmPHw6dR35OcrrTCW2yi443ZNx2fVG7HTCfBtSxk5aLM9A5hccg5rV9zU3yr8kfangKrGckbm8OuBK3z+8K3kVEHed0e6B5FPQ7KgkxHnDQ40DPRFeW42GkdSWJtnvry4HhrLOXWnbJ36urTp2S8OrCckn3sEUQud/ocZV72tEWG1rHHZPKUqjLzrD6eaFjhr/a9bWOdzqz/DYHopRLYquymDqWqx/zABKo/t5hdRWtB7g9u9qrdBSTK59Hh29d7CPyKh2m3Wnyvm0z07Aj7pxN9W8m6BqAQYr+uB+DDLlXoCi0OnD9xMGRNh/IcrYfgU7c1+su7Qtq3uHvi7AJh+02eIfVGvfm+ZCtdqt7H3GRMvn8LE2TDxxYfhhQCudqqwP3z3Y2Rt0QW8m96Bz3ouEJDTdyf13t/IgzDtxX/qn8Wb0H71zRugwGbuSMVT6p45ewJ6Z+CetozosxZkf89plNXlMsgGLdL8DUU7X66qgJxjvcv/BAcWH+Jvd24tfJN1qZ73A/v28/1wHv5GLInScSd0O2cX/F2PHi6xvO6DkKS9zXuBhcVIeRYMpTt/sIvo+B2BZzeIfL/PU7PSNPP/KqGXH0e1zu/r8H8I/8rtL7rna2Y+l8tAUA019rBruNK6SG+6iN8QyvYRTIhLTq8ZGgye937mcXLlEdzw9u7s+4rzKE4/eRdy/CuLhBHIm5HxVbZR7uP1du9Hubjx8kltslrob9/7H3r7G2bVtaGPa1Mdfe59StW4BQFQYKMAQbQixkJ6ogW4oULFWME8sicYSC85AsJ/KfyD9QjB0b4hApxlZi+aVEsitRYpmEOLESDMgWiJKT+EdwonIkbIjjCMdAGcLjGup17z3n7DV7y4/eHl9rvY+51t773LvWucx+7zp7jjF66+3Re/9af7TRh3L2njrz8JwN9a0haS+Y5TmzK8Hz/JfeOwDgQ1y3a8Cmz1D5bX/0wC+pejC/1o5CzGiPdWTH/mIp09moHeQmqB89l5a1Oywk37opoTmo87zKTib5KuoqX4REmM3z9CstMk1fSDtDRl+/o0JhqUrik23S8jwcjkbT8lpTV7Hdo3wYvpjvWSONhXZrcxGW4jqR7l3GCBv00xQlrwEPj/GJotSQFpLdbeMyhpPWzJvX9f2zeehK1Sf7k8Z9Lounde+ddoO1TXExeesjS+6H0QlrectOmJenGisUa9vhzDvavLdgnea9J1NWb70H6jvoPyofl7GovvNVHfg7xm7049BDpVDNnTxBy49PMFULxxTCAunoUcqsmWkVuidFU9eNqrV99QkhA2UZmLvU9c2as7DVyZeRpJre9VgnShsZFxWl0O4mbdum0sJwdPOrmKZgXSBs1FNM1rDtsqXoGqWTEQ9DPTS7qldo/bYC5ZCMkHP1N4Gp3d9QVEDeN5nIWV1N39htFJTJk/ONcEEvSHNyhCifI1mIb9Mv8dj7R4ZBwmwFqT4y8XkQbRogsD9arkWkQO38oko77TKQEzzbMXM7FNy/p+9GerGJWYD5oD+gOoQA6fp7WUxfYs7peXOAgcmOg5uWtl3gwAoAfaIWtAPlJfMiM+r957T0ZRWg09K/stzboP0J7xiLbJyOeA4H2UWmZUjRylfE1tgi017GIGen0/P29Eyb8kyk+HF2sGUmmnkbFQADUHVwTRAlZlklqmVAFUfKa+Y9S2qEexWrA/byok5ZyRu0XQKBJt9mm3RyYt2uTIMh0t+VYFt4CKP9pkbFdX9uG5p2SZZJZCG/5F1yXKu+goFLyEJhgIvTS1o1ScIWhW92InaW7MizP+UAlQcQ83RFDy1Mp+sANd8PyEGATyqFZZC0Q8q47qLlqi2ddycsf9J+SGqLxlsMKx0+cJoxx/zA7h3iM1w8e+bFsb85owWWZ51vx9/dhK6kzTPt9ztfuubJZZG527jrQGldZMnB+G5XpuZdr5fMYZubM49T2ywTmej0N2hhC2kK1NAVvyaZUTG1Py2l7mxIYHXbXntsV5PxjO8uosEnhx0Xvad6JoEuE4SbmEpsEqn5SP9S210TktmxjPG4YmiZtBS+1Q9Ik0koV8fmg/0ALRY6BY9S+mKj7w5N7ByoOF99gZAuTq/U6WpkQn3phne1HGvdpfZw8ovJcZGcOHkZkdewvYTLt99Oo8iFuYPuJV+JvDVUlXfOXmniTvEhf68ovVwoozuVDq7C/9LgOJFhXnJnZZpelv8m1OUdDseaXJ2t5UiTiWm2uHRDhh0OxiCu0epACfWLrLq53pblwu4bXIJ3/Gd2cKKN0JIYfU4hxepl2vFEOLsX3KMu2WkI5WMD14G0x2pHlnJW9bRVOVmy0/ZKabY5a4IzK7c5pdcq1sbg9xV5sEV1IzXx+wIZUmh2DbazUvg62dZv4LD85dri3q/BVDZ8kphtsK5UZtZLFCUB7mS9fFfCapc/U3U55sDpULerJK0krducbXPQ5wI4lCR33TQYHeW9EW2hoRrvzOUE5pjlXzdhSOSk5vsAPMmavNwJHkkUA4ZwdPGbHKrMtiP9KHpRXFQxRHHRgYFyQHixjWDMo/at//B7I/5dNA5hOjZy+OArP1CdTp5PHz8Po3oqKWG5r6JL4Eu8A4TWli2sXRhEBdmI1U57JWxYMNUboXVuHQSPRru8v8W0DodCNCfqsc9gH9IiwSsqGKZeiDdDeJ/XdKgrhTF+OF/NvsE+0GXsfoR9ZQgQeavP2NFW1RxzSLns7lv9lmKcdGu8ll/rJEn9QA+XmcuERLOZTaP6pmiXzIcbimcVtXNIypn/VYfSB2tZ2vnQmCTC0U7weGmvVq5QnnLwihg2LqSJ33k/Px2gsHeX3PjWprxaKqamXTzvYRO2Q8RsVRVin+HXakZIX5Tvq3ne5JuTB94NKz4D1WfM34dFcqi9Z0oygHEwP7ESu0yuv/kbriNeSDug4SPYD6TupbNFuYH7krrOstz/jAg/hV370fuxC0bNub6rpuTHyQ+wDC3k8jWnlwpl/LLTC4Yy6uZXu+aQA6EnbXarpxdezslzhX+K4lm0PlhX+o0z2g1QLmI2BxPOv58adiL+Uk7JMAvrtllstaEtoSX+SIF8GQxtAqtP1kkJYyFvv/LSSq/9uqiXJ2su2lY+QSD0exFYy7U02oyzr3m1qVZXItd62AJye94Ea9fkOFv9nQ2Y4yhnKm6Z0J3QxmCG7CFSK2J32mMSa7HbIXnK11hs1dq+rLT8vNcHjwuXGH6pz8v7YnQ91F3wnHBO57WGpYQMUu1RnimvNHZad6z+u07K3EkqxMJRZeGbK6ijThR9tdhCZdI2SoMJo6XTvOZ1tSzLHKu2H+oAFyxHxQPFErq49P39Zb17huXeQZcPICIcQV+cC9oTvjc38Xdl+aOGZdCW1TFONup4Few7w83q2e5AFdqKg9DmIzeThzO+SoSquqVN/Rrffh31l3JtU6Nd61Nblhu432Q+fUfMfFHBsq5vF3jjX/jO4ieYlJ6dYbebaBS5dv6HC14xWEjPrn/B/Y0MFX9T/zFQ0exGf6v+ZtZe8T8bf9pxv5aVkyXmF+9gh8+qp9+WBS/470wVU1sUQxs7+KSoYjeINvsp435MEnkiFWXngpr7BT9zx/mJJPCxbYT4sq/iJJt7ry7pR/y9ovRyE7MIM6A/NA/kTjt+i4VkECKB/Hw5Yrle7/7EgUZQ+GqvLF3LL886343D7WXI5rkQbdlm57Lp3uJgN/r2kJZtKNGtRuoyh6HDrTGK0XXNm3UkKPF72srhug798lp2cililWk3mGA+t0JQ8plUu3b9livPK/HM/8RepGoqFbrC90TGcPrULgAJJxIH+uoqbjQ5swF/9HTVIe8K/bGMXeZl8t601BDoTD+lycUwh6Ohz3QExkdRnEKZ4Kg7UXMqipiM9I6iyIEGtxPfkfXj8kUGDlzjpMaZnSdWs9zDZHTa+bwGwUgcJMK0gxz3AIfdMC3fmaEtV3goStqmhzL6wCX/Do+xprx8PLPrB/jAxu2oxV5S5HrPdAtrNOtYrNEKHSGPoesCmve9Ba+UGj9qGJ/rIID00SxjDtO3dtvG07cx9UTvUx/j/zSZi37eZoHyuRbOt4RQun4Usrn4qqCVpnsMzWveHS3qvWjBO12aPrtrD/tO2hhJ7ielBf86rf+2/npGa7hVFtyaHtvFg2i8e9q4bjY4i6LS9qxHXLFtdn7G88+J2GroU3+DahtfGJrPJeyaqJSMJf6lhcwo0xFqzBNejy6T89dy7ZjjudcJQ44lJe5M5WszYeXqbqI/mifr+mdPmAdonyAnU16hB0vmNo+8yDMR/JMq1DGKCMqTLphPUTwY7kdIoY75h/QhotU/FT9AeQUjrhmUPFrCrV92HEG7yPf0HU8v944ZUMCbV124E5TGjmzwMjKfh4oI0fLgcusMiGnZsAggs8d8WAL9GzJK5uc8wafTNv2KjJLlqevlYNP04+tum3lt//NjdXHCd2CxVaElmRwlI2ZaS8nFxMFHJIEzDCWVT1SEP/PQvsybQkirP8sfMvuzxqeXRTJLK5fD5jhvdX5OS3VPbcFDdrxstpA2/ZxP5Zv2C9MYbfAK/Ygv1wE5n0PqZIH59HaU1PyMQy+ILzottbf4z6qfl3UI4jMY8+Hkyx9/FpFcQEHlmxMy5ytGK1ZLYkfeVyfvjqjoY/I8WGZB5Rsrk/ZvlZFDNWlQIvaZgrCrrbTSipDL6HLUQCg/Fnk6x2EHRAtgO13OVwDV/DYQMCe9IjP0SHXJy0csAzNEiR1ChhWRvq4D0b1XmipHX516CPzj9aX/Un3ndmYahttd9QOMT5TiBByp/NHxCrVfAelvOC9ShgYp275xSss3CO+Xsna436639t7SykZGwuP2MK222mbBAuIT/of9AKdiG+LrMkrixoL7rZxqWNOk8E0pAyKMD9P6hKP6jDRo8U2sryD4CDmG7DYSeVnm6gdSlD1fI1UU21Tcnyk+3yFYfEyU14jXxQryA9EWnFbqpqCA9BPSD2kLAQ45cBHF0DrYdwydbcFxMo3B71Blu8lOU+0668DX8kv75eatGdp3EbUJFPUB1x1VjvQ3zQ+A/UDzGUJhkIG/3sZ4J2zqdMgMM7wU3Jd4LzuP5U8/MK/rCY/OJ/okpPGlQ7ZMRj+gK0IdqazXnNwPfMjfa0ovZGdF3QrIwwViUYOwMoCDnueDShtjeGLVkwjC0WJQFgeShQ/R9rI878bhaJN5AcFe8O4lctA12WZZAGP5hfI6gRddQgKqENtr/5jPcEBBtU2RozmxqBNd8/oswu200Erl05MLO1Jxha5hRcTHr5sF8vciI7KJguy6sz0QK5StaZN8ySudcHo2Nk3VYeXF6u2us8ZJNgB8suRTtLp51mVyFR3nebzCeUtsOrXPoSZTtFfboZF0VPnisZefaBp+LFYx/P4aspI6nHSc6ZPjA6gaQEJhOLbzVMZlEULIsirRdnNQyItYeInvaJUO5jtb9t4ijyh8MBKSehikEo8pG+g9gSlKftTUB0EllHHTiUUU/M7pjSZ5O3WwbSBZdpI4rz9gPbTJ0XCymwtATMbQ/A1avjMsiLylc+xkbvreoI0JIlc/+4FOu5GxY/fCf6GlxYJFRs0uNppct/h6N6Znq7/peFxlLKecixo+UFmxgwrzESctsYW+VfeyAe+WfJco9CM+qrJg/bzfi+58yUd4uczxDI8ltCjPmP8OniMUbhPK2PmUiRdfS33V4EzGXdKuItX1lT6Z0Hf3U6aG+/T8YD+w4bP4m6DMcO8asjefDp+6OHY0rI1JWPgBwuGNH6g4TbQyMRuG3YmphvjUp65BnTzzfTQlWpex2pM/5RI2lfQZfNgIT1IOOh4/of/pvvNiSWFHfn7g3ytKL3P4h6JWr/dgQqwAFlFAYl0kss9kTVlgIUh5T71Mb7GjXQP5fhIBavMTNW1AaBuWIJgfCu0AXJB18u8yFad14ry6jLkiRmAodKHEyxwO842y+jUpVAb0UPhKmr9UHpPFEE7j2Vkq3yXqh4Yo1yYV5EzcOYvDKrUKtluKAw8ok2bvPAbYStLkmx/cTodBpCmW10HUnwWaKT3rjtaeuQzzWRyDwgLOe9LuScK1uM1dFrKaD25kZxyUAlJPeL17VsEMl8i80T2PHW010JA81IDlAiROllKdL0cr/Juk5DQV4aS98DSHlmdS+FicPdnKtYl2YX1BYRAkviJ5hepBE9ZZuUfYgvlqGJ3lWt5vIBl91Tl1QB59rCMmg7Opz3Z70WtM0PzYZF9BTf3oRLEm4zxcZA4gBhSH8vsNrqeHAsHsMHO7zB+1mmftUAeAQ+dHgDsuesOKQ4YYe6KVU0NC4BmHz4YPOTI7dB76cSCxKyCl027xkH4Hpi4qJIQ3DOoyB5+xltHtFhi7E6c37o1QJTTc+/aRdkiH1egl0CAU6t+U6/oxp0VG7nxcjxvaroSa7QqGW1uqkzQKtS79F9HXo++7HqQvNL85GYaPfxOPY8cqPtVjLZSwHd1WSrcIs+OOVj9Q/USVWUv5CHxWJMbypCYjLjT7mZX1NJbbHdn4AZLdBRGZ0QIXM7Y188hzOPop7cab7qVO2iKClBBIPW9OVP2z6hIn40+mVGrh5g8CHPKIYQfLJ98RHwKP93iNk0QkkdWmYW5OeHLRTPozop3NeCReCzDGnGg94BGP8F1u728j/IAGtgPpVdjf6OJvdrRJ57U6TMbXv1sGoIH1Vze9ilDGuIYNChS5SicetrPSCpejPqCgQY93QsrLK3/bUAwHTQfzDa3wX8/rfOk5r0Kw0+y0IKBnn0ILL1sZ2SEvdm26igFftQ2FLjb9QlYfxKTVK99WP16eh5KsYSqsjyRhlPtUCIu2n8RnY5seXsGZMmTFJC/XREvaeVkZWpJhb+kIqSxK2vkYUcpI+bXJCJskG8gqtQVf5Q1Sk/EQPzEwT7IqOtlvLSZN/bIehJmZYyM7LnZNWg4NcVtdBLG6J0CEHHq5AnfiUvTz9uUdv+hCowRVO0GM2gKHCebkKNv7RdSccw2DdH3nYELLJGXSSoSAiObpXZNPrqSyjKVcSdnm0fhJe2DgQQYOG80LJCdl4BAnxQXV6fM3fWadzNBGUeACDqk0mZGp4KPp57b/UMfhtvZ2tOwIhTQSuCJEJ7T6H7RhKxCeMZ9KG+HF1N63tPTMNzNp8bmWLbUtFdoNpi55S1+pdVbKSvWf5W86zucqhKDbLXagfAebsYyMWeoksECLPoz73J9Dp+izpFQLe5w+o8osB+onIktZqHml+p/Ya91gaj8BmrGtuAx/X5SwTIGQyz99ssN9EKYmbebV7m+2vipp4X3f5EozSMGVFIVxn0MyuTo2MheM8Xbk9tBFS5Yh7GqT+xmWzd9vTPkELKvpRHyd1rPM0Ebvr7kT5DIWWtTJXwhqDvMiFsqIAaFwcXQszz017PzABe4zJGnZkmS60Clo6SAPnXj/RuzIfLebLaodCgtTn0IeXpehQ/2+5uSj8OgIroOgnVN5dF/FE7qyIPIKUxmbv+ffa0ovsmOW4Cy5WolZ+UrXsYLHgIAYtyMyS4V4Jt16OLgjQo7vmS9fN9/Blz1vuZn4f563XZcJGDeW5/DlIncyFz6Stmkyd0sW8ymafppKsg6CWr6TMZ+ooHkdHx0WYtNtE0LRA2dU6s8AdwcizBewFftsBAuJVgH6imBKkoX2j3rm5KEIQivY6VBu5Y1VtxvgONVxEB1rHYDBlY3ay502uS1XzVuvuQFze9JcSbYKS3PNmpej03J4yEbhaDE7GSvtEnJIQDDf4ZrtoR+EIaFT6sEgwuEiLofzMwLSscqXk8VctUzafJ7dJTtihrTkSmvqyeGLmkfpK8yBeznraZBdn/guWqH9kDR3ybx6YzzcoYTxOyhNOaKNB04r9TPGZYenNBXN30/Qdh+yw1/2NwvWtcR4XKxIk7+dL8Lu+pn+5mlf1ZnQ7IdDGZvMGsqTnQsfTX17cvxsGJt82EdY3z47FGXRL2nV+ohwWT1vuW5iStV4gSDMSZUOiQ9yR941843nT+Px++T1Nql8YFrQnuE6Y/W8jrDByD8Klp7rh1X/6Bwzoqaerth29zd+IOrLZWK/zX7NOlIJKYTj9iqjR7tcw1S0mCauh9lK0mbdh/A7Mo7FcFsRLqdd4Z2AxNJYbGGzMZYv4Yrkj9iHVP9Ctgo+WmSKieO2fr8iu2bfA+lF7exbpPM3wAHYAeaEzYzuQl47x3QExiBaasMFezuwu0NgnG6dg8uSdr0U1e/v8hb99mX1Zyz/iQqntKzHllZbfv/jsE9Mp8kfDOUyab7BVdKUbo7C83Z7GbV22manwpdoK+8Tz7urJ2zkbqEyXb8p/94B7gYmOclbxeEr7hoBzabfOmDfy+hhg1rjLbtESSkUCpZcrf1VvoD1ZVKH20o4WpffFgb88LxDIzijzrNQ+986MMmQu/lb4pGAwgLhz5N22QmjSlTYmqmwPVwvctb2OI4YLnyt06B/78z5zpVNP9Z4npLlE5Z5j3VQFTucoz6bogzSIZ8nH3KoOgdWR9SN7QwqbGdvBK2orTQr086j+D80KdmqJKltzHUIogUkW6Fafxe86JmX+PPbtB0Xd3I9iak7ef2+n6y4k1g3/56YQPqzE0xdxTEs3+Cg2ju8jjfRhaMcjf5cqygZn9vGfUg15DxtsCkB4rmDL2YefOn9qEaoLOPG4KUNlDB7xt+mLsw4jc/SW/xGTCCVJhkblTzz0nTVO9SS34savuvoFLuuuyOEF82F52LkWeIxT5knIX3GtEk7aAg55lP4zpjtSKFNCMqkwfE4jRMHWbgcypOa9DVTn3xf8Oq4T9jTJy1efseniscebZH07jtq3sl4Yqr3rvyQtNtKROYHpu3vWPhK8J27iCYv6Ph7bR+oVsN5TZ/jtDNf56O5eP6aU/TpD/h7RenlQhn5Jd7NMfQ0Z8u89tevF6dlLywDq1M8A45ItDq4paW01KWe0LLMzo+ccXkWzCo966c7WtZJN7RdRtOnYPINJyJxae6nvUC2HXwsZQn9q+t9plV6pu3fnvocj2jryj7Nundyeh/dFOuDj7zefX0tf+12l0r+hW+6gmKafq27Y47DdWzqPhcvcseJG1Q6rW39g+q+yFVzuvvq7yTsFxGc7/QsvuLYB+xSCqi0IYWmU0oh519uePDukA8Aqg3qKulAHE0cciUtK8ODDRAfd77szCTspmBuqRL1p/I3j+73iRwf1OGhRDyQOArtmhcQ0nfmUZLb9Qu6Xgebtv3cVBarCC/zUAeaIDCWc15t12w+f9ZolrxA9X4b2qi3HbZ1fD/J2xf8l+P3z9q7nvBt17ew/EzmoPHWsJkccfQGx1+t3XGlPZURXcabM5GK9ztg6qMXF8NlbbS9m1U8J36EmxP3C/CtohSlNnK2vCyHh0Kuhe6wvBUVtGsH9cW46M/evynygxeq8qdQKROvyuIc2wY1L0ux25mq/mYQ7udjgYe3AxE2Wsr19sTPNGm5DTtWkn+pk7Jst/O9L4s66KHnTYZ8tbQ2BqW8glxcSP2k6VvBjCegCgFEcdg3QxL33QCrr4rICsUiv8uhwXfWwXwLkPiWxXZdaLvff23JIw4+5O81pZc5/MMSR0/kTyng6mmGfuSzldZv1ENAgk9cRLusbLzcJqM22shr4txKnfZWdm06K3/4uk08Ol/1exu9sp8tms27jC1SbVXCf+zfWNWX2Ym5eAU5w2WrEWl7KYJFXo/LVlY8bL1tLCQXFVdsw23CuJRK55QVvDN9bTBS79stj78fV89jYNzMX97d6nyaLGh5nd7gP/uNSV4d7lwVTPtVF5qhcDP3wbRdRgG9HF7dcoK7bGlBtIr5fpNi7sa8A4izO8qmK+9eIScUIrq+sH6kc5zH8WdZcVx88EmXI8bsgACDduCclvgeojgO3gmrx8nHAIGuU2bQWHeQHPOaYUZlvjx/CCCqGP5+FPHNWh0ksdnGu6PzF5dnxPsnoRP82gc01t99YEAY1k+afG4KvBHXEGnnMlpc23YYxWi10K7j0xlhR7XoPsQvrtmslrGtWp0E1tGjsGkW2/nmRVVrkbH9GwuDKzye8yWfWLC8PS/qaWRbsDxeMbO+w/085Cl+YQWydVjIXpntSsI9YdfwfdlV+mi41q/jMWCh4PnM+3qRmwxWfC/7EAo5Cxs61h0d952X67vBVFDfPwu/L7kRSrMPUW19UiaiDhrYVGyouoCe8S9vH+wzpeU+KKQQHY8j1G+my6G42i6NTxw5nE78JCjyIb7Xlr5pRn4wlp/5gaCIKlGyhSBOVoR9ZoUO9PGyDqEwRHFpJK67H2BanghOWziuaXlnDpjH0lfMnetUh84Q+8T5KU9+JmZkmLrbMS1FfoB81eF85idW3CaB/cTLJ8oCxNH5rzIpNqDx1Uwv+IFpEIjbf3XC39a25MgD1EH1oO1fztvYFnzjCVB3YDtaotfdw0WOZ4mVjs7+boixpyVySDrXTrjI3MY8lZZA2o7L9zL4HYlSD9ulaawKRX2yIzip/Q4GbKuxHwB0GWtZGxkV9Z4PAoKuT66aAyMHqXxjseR6xYONJJ0yng4CGt/1OhXwEMtpk+Sdg/b6bxfV28X5RDId1k7NY0PrK7rX0iHRBki0eop0Eu7IwsGSOeOoevvNduSBSTWshp680sy7YBfiG5MqX3lUIHfKtEzQ/Fq6HMb3SEGqXORgFRLhP9zj+hH328GT5k4kh7TUNsbvIXAIkJWrKfOXHdKiVi73yPj9JGgC+1gxNIzhwq2Djg0NJ6NlHNmx2EVN3MbUljcKwh73daXdyrTju2HV8+6wPFJEs+htH3nGd+dv4r5hfevvT+rn3bXhfnk7kCY4hQ8ZucN9SWzvs7r3DLQDpXa4TCB+2ZWvvsX5sFzdv9BGJWm4nsQIYOubph2nMrxYsCwKFj9X/kFqtJ4e6bjPtAseUxmHKEWN8WEllJl2kVj3ykcJ5xnL5z/T31A51HgFaLiZbEM/xz9omTixPTLao5ZbMJVoFzxu1znhUfjiXEIVn66QC3zz98ADTcgO9W9ZznLSZOSbQuYRC4gT5+v7aFMn+r3DsFeUBKbnB/69pvSy7/KRQ/IBdmwrxv2Wj50Y5+kjcEW+xMI0/VthgvmpLqLTE75FLqxjfGValgONlv1EC5uJxMB5xpdotZXPfuqWzDyy6Hz4XS5fPa3OsjmbrgfbBgbtLNczaV0/3dmKdnxSQeLbHnfWcYO8hG5ss4QyWnvz8pV5dgW8jpxy854CVGtZZ7Ii2xkP0/kzHKEOMfBPAhzkSDbjDZMvC5plaR/XFF5Td7Fmr+WZ1foEPs2xSNrCQci/6aJk15mrhzi6foYYkccPtmBaNny3ScgGrxOyqOiM6Qc3qb4bidhZAmgiE3LX5pjXk8dBMu5CizL/sCP8FQ8WunJEiW7XLKuEYDov4XJrx8qBl4Yd0zZ1UCTt3/dO3GBLyLmy6SGjLUo4lpcyKMMt7GNaWojjQVjJ7/21l+W69/LP+OoOU0n23X2aNAjJvMiIZ8io9d5Cy/3qJN9sgxn6WvJ+CF+0975O7DavdbkO27QJQRiu2KbiRpGnibjIDJoAaRG/6tt6Ai8MBYmX43Kx2F6HS5KmjiGBb2HGQtuiVpYNw6wYYbdFpca3V/HERdeBdlSVw+kzVqlP5pJX1SGwU8i3gPql8fUwyubSSV9ZHnhYtlj9V0zNBSB1yWM3aCR+S/2366f234PsyBFb/F3IwFTi75McwBe6qJZ1HZTPXa18R0yo4RxInOawzZS5TkKjwS22obqm8vxGLeOevtPpVRyXXzs1Ayxt32rmEyDfsSJazgvMwZbzYVofDEDymhYSAhgWvrrn4wJEGdSDuQy0ctHy8uXONh3oFj5dhxu0eS0b2vxfFULbpSx84mpzWuM8wjaPku1S5tHGzY6kA9smUhm4CGX2F1uJj5ZWVfJ2PtrjjjYOtMhkxeQL0kstABDUY5HduUrTr9umytRt4dex29Noj3mT5MIyaXW2Lo/rEn2S+RaNON7f73RaqcAveVTwgMJfu/Z85bs2yKPaU2bPq8SHZU7azjcsG3zMYjIPBblYnjiow1Q4trQIax/iR1/nscY+Ui206LtqXV+ul5n3AgtpUQ6xJFqbZez4HGSx0Fc1+qNzO7LmKDSTabnP4MPTgk/UZqLtSckbDKmv+33H+aP5jMRJomXxY2KH0kZdjiLjDlMbnwWfT/Xd5LWH2vLGX44hC63srolP6Lv1GfIkbezWhV9IWwVu7iYWjW/1N+RfTjDV81aZaZdFyHbeJ6IfCOm39zeRlcUl23i7Whu6tTp71iMZtPEJf+Ormty0aZzCZUU69TeyNO2K5VIwFkUuV08WOdg3+DUfyx98glaAxjd347Jue95DxHbP2GtU2zDu+zWHbYN+xx/XnzheAdm2pdBGA4dCxHg5LhqFovLNciRsXkLYZR6X78LErpm0I/vh4e9ZQR5K7tJ5qOODTe/CPyr7jLzmlsqfX+HdO9Hpmzjs1d+FnjasIetFvzZeeJVpfMTfK0ovGMpo3pC3rmn1tszOlX/YXwmoJ8fDE5zujJDX09GpbTWMlCMC+gnLi9z5rIvVr2VDt6UlmQDkN9y0ZkFV+VS/vhK8tUXop1X+oM06EMBWmqsjFanKMJ8A+bhmu2p1rJRXO63J4rtECsfSZsjFoEbnTilHF1QXNe/aTipfd3AZjlGTO7EZPiJNNDmRMccSxRanaUO7ud6t2qajPaE9ue8Pq9NMabTRLOGoO1rL4qdFet/rK3zTx2W/jHKkHlfRelVVyJ5HWKQ0fAHxlQyoddGk0QrqyqHY7tosdz22vvC1U7XcYU5HqJG37k5paa4jyuy08+lBZcQ7ZaHfiEGaEL/5eMQKb/+j1mu/lHY53zNxH+R7/gX0yNJBMtvMHFyQjWjlX/kZjzbd/I77XBaJkjuzq4wFQ0H+xoTrz2/S8nWXKbCJcYv067Tteuczdtfhb8g2XUaOXvF/ubtmWbLq7nx3/oaz3KD1D/HmpFIxbNesHEvPwrFM5FMcu5MF+RdNxAr94nr1C4r9JMplKhoKl3kL93WDu4tjKLTSrpfkvoq+/XdG28Mbk3tthAsfGsFvEPjUrY1hQdG9fVJeP4resZRXJzICoGM5ArM7X62XRGsoqZQnds2Yj09inG6w+kYzzEeMCLtPbPeM2amUfEZi7bD39ua9q0hGK5mfSbweBcsz3H/SC/kb5xP+Z4nwGFnf4vT+G4b7O5B7Pel7JZTxZQ7/6D3YPY47aVsB1Xw7dOYbAnAQLBTxdvJs360TzoIFyDh6otU4Ar46h5OjH2rZm3qU/W04C7gclpnbQlGJyxuIM7MV57Qhk7SbG6HqwLkP4TE74vISLPGORxXihPl1Ry8C7Y2/5dVyX/M3hAZNzk8WGWZZxCccUKOVBuS78DZJAUtoHNvXScUkzNlPUUOky5gi5YQlj6Iu6tvk1/O6o+AwG2E7gtyNObHYkQPCsWmzW56E5by0/gaKXeMfzbzeNuKYemsUYrSC2v+G2u6YmgOgkwaEaAHNtuX6ucyqxTa9HwwoLlp3qFL7SR+7bpoLZ3PCcwX0oIEMhykRbRTtEx6B2mJPmUiFI1eIuoOtZcVRzLYc69wGbBVUr/4GQqHlVU6A5NLpnL3dON/5ernbnjsrnf6liHKU6mAHC89OtuvhrVB5O5PxSxt2H1NO9TKU2lJ2wrnw4DNYskexzph6Q6XATNZko239Nw4iHME24UUb+U6MM+wmv7gbJ3S77/xNyLbg785n7PE4Fr6sAXpbWL5bqSttrZgdH1llPKGdvabSuiylTtxXNZm0LN4K4ZTVvRcjCP8iVCGlKpvxeaeMJ9De17U0Gy167nC/NLHAPln5eHmwPM1kjpuUKwbuEzcJYFvTnnk3bcJ9W/jEMcfqxCfxmHyGMG7kItNVByAy+6ApUE6LFMZnJD7brX7KYsd9CZkSf6cIffKb2DbUPi0tgkOuGLhAAmNn6u+QJaYqICObX9m+nPkTq0fRx3Heo05yUJpyHwAuuOKKA7koqKFP8h1hx/Q5zJf6o+YkbdqGvqFZaGeGg+rv1Sbqh1/19OLvmEXomgKzhfZAM/uvIhvO7AfwbzDkihoyL6jsHv5CvJiLMB9ZwyBhvPiPnyct80mZIq+yjHnPL0qIhaR+RX9p16h8S7mUxG3u/+t542OUgrMJa9RQ1w/rdZWxh5ZEwS2vpIIuB9cX415yjLwz1ML129HWFlb4CIWwkF0RTpJlyrpy51raDjK0raQllLHyrabc5AWH5wlnW31CyJUg7haIUFShAoKY+ZotRGoZgjYhaPXCdjNCX5E7BLjQjk/KQbQ+EIfTzlTDNOh0qtYPRIGL1YEPHhwXYuBV9JunTl0Etpp4BG0ePV1ps79R/XloiV37+388JRGx0x8tdObwfmG28bIPKC5QPMQq6fxfpXU5/Fhlt+EI2+T7E/kNnYPaEduVrymAhvpuhgS9b6qYROV48wuczNDG0j51zRv1t6n/kN1pUcsLJOBxZ6d1XEQ+83IKLTottQ/2GcQn9HGI8sfU3htaFdqy67LB/TMfIdafGRe7foWp4+mmrMpXVr4NjwstpxaGvmJ5N4RnpyA1ei6QImPnk4N9rwAycPMDvRYYjwP3Y9H4+bQF94tckqSN1n1KhP9RHZRGTKb0huZlS/xGWwSgMputYjJhGXzXsVcJY2oWJjFZvYjkAhTXEepBUSwjNEMB4zm3SZcxbOGYyrStzxPtRYA3h0c3CIUV2gm8ZNbJJ2lh10VGM2zi8fQJjvPZhxj3tdCK4f4F17QH5hQubMMyhq0mbQ9lnLvPGULpfcYjNhBy5vc2BdUP3D8w/d1JL3pcPnsi5R+EsX4rVtn89xO0flcbHy84nPrQZVKB7pi6M20q+GMlWt3QxiXpt9D6wKQ5cQHKS8S++Nf5bK9vpGUdRIoRUc6cVcxJrsx827IbuV8v8zCR9Aiy0sZi56ZypBsuzne2G6H7OoOThW8rLGy+hpY43zko1yAJycjR+d7K3vyrXFEuOt+eV4OHLM/34TAeWplhg7u8tLtTPP3Ku9CSs6pcz2jTjhDMKGK+f5NWm2z0r6UI7VNEJ+LQvl3ahX0OEZrIbdrCSVlsxypzqsxhKslfLW9OoHjFVrxNRSNUwwWm5UGHv7OQu3wxbjTb1HAYBx6nNdu5Dqa0T5SOGxa4ldRnE14/yEFNjstraNkcwPqOsvdfCVwEiBYVJ4nrCtb+x/jk1wELmv7mBI+zJqsskeh666sY95vonU+n5QiMrb8506/R6gke+6RUmPY5/ob5EqZ2d7P1r7ewnOuNcH9/lrPmfxc/UttJg5FCV/zN6WDByiunRW6we4Pl/nv1N7efb/GY7k+xxULvdx/t29NWaPeIgtpxznDxFix0O1LtuKRkX8I15xP+fPUDHAoY1zJxsoTjRUdLmok3ijG0fF5g9XO00+XYJWknoIWlO13gcu7yVVPlgtmkzUOn0mRHpSV9Kq0G3eQxcvFTHdO7v6G6RpU1js5ns7zapGirDF/Z9GIT4Ln7a4aMdsLXFq5lJ2pJtqVN3vYHtA9Xa/z57rlXIq/I6EDlj4YTWPn4x569PRSHt/uX5Cq0GiKRY7rBtz3rfJXzNL7MS+j5DDtoIw2i4zCuapudRwP89CYPgdvZRqMumn5eX1yol2PZ8yhCrc+RH3cs5VUWOLuhjY/LqKhDeFWSH+CxdoDbEr7pD719k3sKkTftRhcZEYOG3hYW9dRMpR7mqTmwQy87RUxZdB1kuU248cJbRrVb0pKdSIdYnVSysPp11YvbnNvYZfHQRuh0XBk+0m1Dzqg9VoWtT3L98Q5RlSm7KlVStBsNW+afUN9RO7BCQ/fY6bBrf99tmDzzQ9PToTqtWN/ksgLY/Rn1EZGBi1pd6ZQwdjI0l2pSFjKQzEM2Nk3meSkaRtZV1K2/o+O4WE5dpM5Y/sVcXBtZJNdpwRXDi/J+kudBpV1xvwFFbfZIDK2+qmBs+yv93P+on7Uuv6elvCyzdppmxlPaxi8mdhNATmxTTRFV228UmhYqWPhm/gXLNfuVF6ajPm8QkqNKYLFb2qbiMcua97PgmMMKXUcodp5aeIs282qZPKdPlCpO2DX7KE8ud+IPxyBrhJ22TKyovuI9X8PUKWJiX/dVXEfVr83GwWGPQ+fpkrlQRItZ6vztX9Nv8QOcx81ptHHiIZdLwvbd6JAbviM1AUiCRtHfw3UbRfsUP05+5i02VH93i+X3vD7x0bgGLNQaapEagiNOLc6IhzgCn2jn81xwK++TGe4j8tpkTUkO6kTFbqIm0+tOHJnwvn+vKb3YjtnhgG/Xscgdy8vW7Y7cjm7h0XVS5dferrz3FYNTMBE/pwEUh1MIyygF34Mvr4hEuz3omRds8rPMQaskNourSVuWQdRuH9SgpOXlYhS58UX5pckoKrVAtrn9d/qeaRs/QjnrrMqYCEijjboBZ3Vm+agcIdsAcyGyhPp4Js07bJt80Ql21PhexhIKZHJKq78SmuEOxuLi+eQuP5o4naWc8J12PLgCVOwDmdRowzZaZFQFjmNWgII/8BlwH3nDOVldTJNJ9JkMYzDBiy00P/jpSpmMsTLXaKOHRZtjWgf+yeYQf6VU5+A6bOkymyRWFjvieC/K7BabMJAyCHAZ57+8IpjlHnwtigf1Y45hoSYaO0U72mhLIePUk0/C4j4pCrOF2PuOHrKTtuHdQ4HiAYor5sJJditNvYx+fgg6J3nHUb9Nc/E6Eg9p4RVU0tdkOOhenIwpRZ33ShW7s0+pn6hpO/J6ODZ4tsTumCZbWR7D41jRYczzRjPdCB/5Dy5nZnasE9oKi52iHa3kcwHjAUgHu6W1rBBZ8nnxMch2iB1fp20+o1w3n7HzayUC3Hj4u32dtrSHjZ9T6/uJgWbXsA37eKqgjuXiJ7hK1IEAkMORgfBLrZ0cUXltfIHsvOq6piE0cIRrzH/SLriV7Ts6asby9r3GTfBisOE3+aosWwKD0uCJ5b6IKqSft5to6KZvtncpm9VyaPixYBGGJb+Aahsgw+YcKw7Z+ARvDMbH6WYYe24u8juuHibItG6L3BWiOiN/A8OMqZ8s/mbi2CDarH8R4OEYuA6BzAD41I31U8JF43Mcrq1jefoZlnnaiSIVwkeuvmp2GcWDDJvEahw84otwju2w+/1E3mjJOjKveH2RTOQzoPVVAVDeuuX5StNXYPL4nPSyoYzanKkPKt0x2G8A5gQIkJXqgJwW8lY09syn9E8ga/IJoKBQGs7bZOphG8GX8RybvGe0RKMtfKTbotOWZ80QRaYmo7a82gcfcYH6MW6h386S5V9k1FoXnBYdap3EC8Rboi5oKIIYqHS73UhKtGXHxttO45MvRddJmV4VET4iIOcYXGpJN2WT8D15kEOW1UvOdpMvEtNM+gYt66c3ZdqM5apOJ7QxlqRGOGxw5i64LmHZ5JAmWyX10XjjK4kqmd/blPFyvi6BiG2uhCF90LfSzuc8KDKZJenzWzau384iACFg2tNWKoeorapW58vvo0XZJuNRysoV3lwNdwtVOeYYh1aiMVdf+b2KDwllzIFC4swcrxEASJrdMSVCHVHhTUtGysva+JjTu3UpoPsf6r/JILAuQpW57DNM5SaH1KVcb8rSa8NVz9x9omxouwNkBjs/QDbWztNosxu0+m5+IMif8Dc73xS8Gu5HJsdyRU6sgJwoh20Iu5ttlhMynsLj5SoPXBI2vk1YVK2H6UpdhLnJV6t9ipPd4DG7QG/bRWSJZ5W+lrXSKt3fyCyoB2gF1mFVveMxtYHljJ4naKsUT+TtfZXocm4uDY8Fc6EP5DMY99M/+XgVULNFYnwWOFAmSK2cxHFQvp2GGpNYxvJcvBuF1hcofLFOUH0EX7Pv6qGWKH5rPr/cqJMXT4pynsRXOb1cKCOw7zzuSE+o2AEsmZbeunnO3qy/X9a9ZfPuhXcvdsd7o0Tz2UlLDrhj4U21ihMju96wbad1mbxDtwgKGiRptY2wPvbfTgvdG6fIzIVqua/d0TKtZ/cBWlNNm20Wx8gDgZ7CWZFMvazdz1C3x/Q3+U/GOQCWiZfSf5chw87RK0reKZPYuEXOaWXTZJXyFsdeW3GnlUYrPImR9hmCzTDIqyp3wuZfWpUpud14BfguGjlNISfpOik5H+NFB6EaD1+NrHmdD3/Y0/OC+BxI2hRf4zn3wPouh8OCxDeSsxz/yHTy5faaxSRfIfoDHtY0P1idu4zcx2lll+vE871nymZ5DtxKf3mvv8+65+39RDdZ2N9M8ylDbu2TZ5i6E+EJ3F/wuDXVJnwdMDvZE/6m6HAi1uIHNjJ2LPfOMNdJqISb/maPi3u+2eaW9tT1c9reODZszuskkXTmc6OjHwbZWuRauDZBAveFkcM7TOdLMnGf3eHxbgyhtbkCK5b7iaMVYxlzzmgTd/nay82dMsfFuuPO+kmj9QVvl6lj+SmtrrjoeLz4AaXfG0xN/K+4qApcrY3lIWfrN72E/MC0nYIPVlIuv/kBcV0CU9WuB9FW+3uN5YFNAxe3uw4cFq4I4pu2GXloidq1+wMPgyz2qDtlWQeZ9/1R/54+JL3cB6a7c9L6Fw7MezH9Be1Y6Up5I6+l0yp3/CYc03a+nUfHpJ08O/mA22UxMD6H9iRvt7PeoI1ZVZcpypFKVOwm9d4t2zTS5b22jZ0Vm+tdaiJC2SHKqm9JJJyg5e18c9ITVyy/sAKdL7KNh0L0XkLJ6nykDJ7KwCzK8j0Rp2WBfUJRKyXLSXfGJtQsqchcpxlJ61TntOTWbNQ5nf3AMnmx3xK2WRuVmm3qgNaHDaxj3lvHOhr1LTbhEVFclGVKSslCTQUxfNCSv9Ky1Yi2icANj69F/IOj8/2Hw/mCnLylHEAkz3zHLMv10JVuuXUwkjW7GSe+V6Jx6LxuDdongfPbMpR3tGs2q78D638lr8Yzp4k6k2Vs3HAxZeKyyoepQb83f13muO7+hcoj1Kg31ua/+hunbfd2vku7TFFo4pVPDGN3smUttpPZqphP6bYub8hIPmMFnfW6z0al5Sv3s7132lVfFGyLmwr4lmXBybhP0QnxtIaSs0yet9TvwrfS8m6W43w/pn41QUUdxn0xA6jptI+KEP9q0cJHTZDuB7oH4IgC3oWOYBR4+eNJ2ohaJwm3VchhmXbzDK94euo8D//TDDcMDFiua30W7Oa2AjROtLCHDJlPq/DOWy4oXmwBLcIRydfs/Q1FPChp7D5jow9H9h4kR9SZnNvz1aRYjfiAv1eUXiyUUaD2ja75HswWZAk1YgBst8SXtaNntLxtYlMaldEqyJlPoba0pWySb7fwyysfPZxj1a/d49EQh7RI9Tdq98KXcZvqEwqp//b3CeQZtNKeSey+UFFSVUi1Et19ByPlSCLNH4vNJh+t8pGdpX1AE8LObAXr+IfbBN8Ikfk9CFSgt8qofJL5csBAM7QDsk8aclcJW0POUKzUhZ31cYDaog0kfNBA8e7NpQRtmIDab8TYc8cIu85rjp2HYr7vYM9XWnqPyvjMeH3buYmXIM9o03GX8D3JDzjn+w65cygbvukwNUOj4vtex4QVe+eN28dx5ArqAX9fC/AV3Tzq2N8lSPsIycxHKnM4ojM6UFeT+ahjiB2Vb041j3UW+Ldqss1oyLjlW65R+B5IWrcYh7EczOiZKQfEpaGFzRgCoo4iqwRe0+P6WwEluRi7g5axZQzEceDY5KXMZULRVN/7jPq842TP620kdqh6Xl35dn/TsZt9RsdnbbSLHwDJMADqCfuoaGZAIR9hCzmhtT5a677iYHYNvshswpcVoE8aDBVulS2cRx0XXI7mQ6i/uh39eqgWW8XYhGzDPoP18+9uBanXUeBY4iK/Axt5QXVseOSHKPtnVlwmkYr9RTn/UiK1uYL7B71/RzL7wRnHoaXE46BJgpniosCjKoDLOa0gsB3I96G5rJ0fQNgm66DjMZd1mEEuAB6HLn2KaeNdrqAlXNSK5b0+PRTQUcbftXNGuVslUB3zPTwFLqr4XMUwV8Nv8gIaH7UvYF3V2pznHOQzjJYnceIn8nqdKGF9rddXmb4CIj4nvdxnCbo3WcfO6Q3Z2Foy3M7r10IPaJDtgwThvFvaxls22XW9Xsra6Ui04VhGZXtKhzpg2Mm8PO763LjuMvokdpv3Voe4aZuTkwtLue25TNBzo51RT3tuaJl3ebYa+nxg1MulVUR7QUlLQ9mMKJyUBjLux2+l/UCkDQDNMFFdYypeuslm/HCiXRlQRGOAV0GGi4QzWGjJadJgqUdIPUW7/1A04jebbnuEMuU/G7LFIW/qzbw6/RkGUvmUHSvJMDnn6854kZloRT080eXKyXuGJLG+rN+gAVLaI2QGnQyGFsqjSnz76Vsbu+IjUx99Fm71osJ9axtTrZu0y0Od5XTMUS5+8U26dt8l7wlfoPTtrYyBG6i2fobPKA9PIKbz3fqMs2vajYzHpz5Dl8L7wSZnnxLY2WZRwnG/6fBc2pZh8zsLLk2gDdRPU9Bmb2fbLH6OjLpzgWf+xn1i+gHdYvcON1ymEmbX+HRfUB43DGVM3YU314WiFO7qgoQ/0kanZXGKF+YApclEx9QVj48uM9Hyu13ZtmJ6tKF1H2UhiA33XcIa0l5GA6jvnqUcnhMYdsLj/Lu2jp3+hPW138oTPJcFzVZh9DwOn2TsPrXq/rrTjLT4sL/XlF5+YkbhhtU72k9/uSLaPCHNEpqWDU6zj3SEPBUli5FVJgY4+7GEi6DxRX0eAwnd04o/ZzaKeAG8jZfOHSzdjzkpybzaZk9b5Fd+THb2K2keoC2yTNvUPKqaVbOxW+rXZsI6V3OqmNURn9KCW4Js8q6ebB2wufzrM189d+cwr/e2KXx1H8oYFlf6XWjpunUHlHZjgN5DGTd6TVJ+V0fzjnIOlOuelGlZSPj7D7bD5aXpSivBx2mTaZknoj4Wol0n/t0Za4wgfFJ2iEBkwI+P58mOH8c8J2j04rVq4cu0scLtAqoD33wqttuVZw+S05dJfwAR0lIGF+oyeK3RxJBkAgDRpI2jnXmQFsZ02mpnPuL6gxPjQAkx4D+qY/uMSTnsgdtd8SFaab16I7+CVaRSpnMuYZAuW+tYDducLWMdY32HlI77kZcfMQ3r0Gi3WG6iVzut19rKyzppfMI5mV17fsamDZYvtumy9h/dWHTfQyWXOctSJ1LbWci4gEz8ZJyQhTYeVDv6AFoNrUQC93lQC+TEpPubZb3hpGtl03ZMzclebZ55L8uqusf72y15fx9spvKf6gd4eYg3VjzqIdo3S8H1JfOUxE6buOgyOX5VHcoEJ2yeeQ+itRqCHwjFC1XQed6nh4vnJIUnaWwn2hnV+e4XY26XMW/wbp7GYlzHcqrBubspiftebmK7800sr/4G4WvZN83IEikye1kV91mfe9olEfkbReSPisi/KyJ/UER+3seU97If8vYVwnA6AojkvWzB0en8ezvuyKrPkHBguQqAtTWxI0cd4jvfHag4H6E/liEOwSsgQzIiyw1cas89BbDLhtZ6Dsso2Fyf8F31Ezf2qi8JmeDb6gSA9KVQpvW8Ik1G+189kz+QoejLMhbDgQa0K+1eP/9tbU3yeuYlmUPnPsiRsGsI5HzFd4IsjC5GK5128lNv95s2F06G7O4yS+ggWVajc9oe7lh2V4yvnvDlUJUgKG1O2kCkyay1IG19rIxTrCY9JCTcRQvZKX2W+YD01Hl64BG26n3Pna3EJMqPc56OzN5/s6L7SuQhXoeodVCcr30SgGidr4cnhr4zd4TOuIweAjMP7Ji6HLAwE0i0henkuQY16gfuqN0WRntI4t+xyeuSu4xeTR8SyhgpsBwL7mXdND/gTxz3w2esZU1bYD2hK0Kera93nOTG3kcnPW/DyY6p2TdQ/dEJlkfXIh+StiBRukztmmXa8dnKJC7zxOKCx4wZkCoT6RvtpGG5bGTstEW/wtcNQ51wyWxlbfxN1qekfqwF4b7jduKIgNtDsOu4H7TzL75dWOqkCt39TfcvW3+D5BtYJow5m7xg3Gde7jOSTzMp/faQeBQ71mtuB8SvtUFo4uslJlXp9wSEg1EHCP3EbGfNlbSsduP6UzD+SjzO82W9vgQX69jc/BQ+gam2YZx0PyCYoYkZzlgncz7JqrZJORJDJCaVF/HFOG6/NSx9Tgz50I8a1tivC60/k7QktVTTz/1NXw5/hSm2iT/g7+PS/xLAf19Vfz2A3wfgt39MYS8zMesgSrfKoJQdd/RW8sa8wlWLIyD1f5X4WrNT1A88++PI63zyeW+YfL074n/Jqxs1jV2o48fSd77d8TKf3TWaXZV0dRUbrfIKdqE1Ap7U7mxz0r7Lsc+hAMvY+BZ9NK/VT3bayLOhFaaFtk3WjZEaXy46ThOcJU2KXb8259WdZaf1zNJHp5G/NqB1LKw2GMh6lc1zl2mETdqzVr4Ddr6EbQVU8bZ8ZJc3ynPnyneNStNtCo2ypTlL6XzXkkifDDeJSYrkvyUOn0tV5LtK5uy6rQ6eGdQWkeOJZhsAJIffqCu3ed/lNxk1N9MjlCb0mR2hLL5gHUzEC+2xU6lpG3g4xy5kpR3LLx/qoKmjWKNVvnbZqFP5ynA28JS31H9UF9VH6fsIvBLzHYyhDve3MdXreW3fZ3hcMJZF3fFVesaYaj+6jH13ql/f8hnKZTd15uUBX/TBkMDZwLSdflHOOZY/7QfO0jQOh7BXnk2/hvu1TjqnBbzBUkX1ke0Yy+O3Tfwb7C9l7/mu+F7fJ14xSDV9TMdFTqMtUHR/E3jbVkqkNyCA+hli8rJ5vE1S+hCV7RgfMqDKsdFPSuPVhS+H5Z37jCqzYjb1ufPZaM0WNZSe8dciUuLfscXyQhu/ps5HYHrFcoVMfxT1Y6fokm9iX8ZyoIWEIrDTRLMy3ObVZ/hOYOLvh3wm5buWpmk+/O/j0q8B8G/a7z8C4L/6MYW96I5ZG9ekAy44qZRX0jnwwBxGP5JW+zNHW0WsUoeTBuezrqv5L8vRHYJ6pTros5PVWm6n14GMaNLo+4R6RNv52n8UlQ/fZycaZpX1Gf+7hqkkYQkHOuFb7EjyToChsA2VKgfryHy93sO4bh4JWzHUF4F2tMqDN7eFohorZQw9QJDe7Aq406nNxCdyRTrST5vyU+WpFIuU41ST2Wi7uVgntHKGO7O+3B8ESpe6tL9w0o1PhqUw71ZutLnNhxGE8ug6CAoxNAfE2W6yDbkYNdzSy9JSVtakG5lDG2e1TyfpHZTbDIUYKrVFIMJsYgzo/YbsGuu9qjE57G27NCTj5R/WnacyusxKZVXaakcttvEXvOMa7X2OYjc6JtmM/LGuOZugTY5G2hMwk1P/L3UY/Vrz36E5cWh4zB1pjlM0jsoPTYK9Fr7cwWLXnjsc89X2b4pc8CL+1c01Z3sGbURIFxnP+RTf5Nf+vd2us+vhH/zezbU6v/KQ+DYZK6109Zs9uC9wbwKPXBda6bGcOutX6ZpXszgscBadbaHUB4vE+tPALmy7q2AFlPgC2vIybfM/1DwX2p2cAMbQMsHK9pm0PNcow6HgW2XMyahf228aW/CnELDhA/hu/1Sq7naBcLHxqaud9qSG1Ytk3oVWKq2Al3Lm96xli7ED0u7xSbd+PzAEoOerX3PbCOVVMrrj9TUwOBcY/cCQGf7OWJ4HR7kviE+1mPzsbzg0MsbEROuTQui06YUr6BUmX1x8oXfM/gSA32y/fwuAX/4xhb3cqYyGO24Ob7glJA2AHjkhUMkcJa8frnUIjxHrx4gc59hZ+A/vr/z8IEfnSyeKejCU6xAdpSmDeq0uE+nPA+AgJ5ljwN/yylZGc3xNRouUq4rXDzVxBWQivkK6HlRxaiPC+bygzibMRpIvDcgBwyM+r5X31jdlDQzEaV5QCK8xqJSypOk3wPZRiC+Dndim2C4bI1TyxCK1Z76DJaIYOGroQpQjU0TWHbATqTz+HUkLCkmbhdcwFOEQifo76zaHojEtMVr0/NSAk4/RH1r4iJddOp7Rc7le9+bUPWwuqlUVcRKaAnL4AGfWrJ/sNWPja51EXtiAzE72UgUu4quf6fC4iXMzg8l1UWCIAiPfGfF25G8oOF/0shwLQOEjZueD+Dit41gcGKK1HM91EcXQK0SPWCF1Ex8HwmmXkxZVIXQiGiD0XoHiArF3F5C09nS2P8nuqkp2/vCVU/HRiUj0g6aqdRfJ/GpK9WcA1SrBT8eRTbl5E4225q+0VluBqRU3/BvnUMxRzC1MJb79G1oR/neS9xTLJcvY+gyh8sj/dBliwtfqhvvJUz7jtr+RRpv1sPiBwA0r2z507pllJyThLLsFhjYNI6ccsrFNuSYlOZRRha6NScVg5qNLu3FM7VheT/WT4CvOF+Yz/HfHcgDHIdAr2cD6gCgMG9IjsL9Je1jfigHAlF8MR0S7b0qcjMZAeOwh3AcEV8GMDpJOazKC7YEV24TwyrDOww5dn6ClCAkQVnqa7+8qhmi2f6sjsb7OfsC7tyidOun6Ee6Xa5Mp39OV4ucylNGjAoA3gtkOwnZThgNquO/y+0ElZouir70zTWgZ9tD1REdrwWknKaOr150+boL1gyLyE3T9Y6r6Y34hIj8O4Bdv6H4HgL8XwD8nIv8DAH8AwBcfI8iLTcxy5cO9mTdQe74BxTimHSidJ76xwnkN6LbjB6XbWrNwhyzADDU+UhzxIqPsyyj3XG3XN2Sm5/TvaYjkIiPS0YKuN3x0Q3vyKlSRhd8hUH7WHMJSdjBGE9CyE+mqn5KM1lbI0OX9Nnao2NCW+l7DQ2JE5M9Dpmyj8awQtiFfa1e3wym01j31CZYxq4ydtpZy1iYv8DDBuZK5be0bWl3suNiKaQvxCo4LrTceG1RwhjVsZXN65qJ7DihW6ejHVsY5Qph8pnMbNGPooU+6kdHfRUuZETJqsfrGrntp43fpSketo+owlQYy2rqCpuyUt+KTWr+2ch1rFxndcX9EchwAMcIe6xjLY+VevCdkfq+yHe4HVhWCotDTtASg3b+0sXbFxR2mVtZZVxTlsbdFytjbte743PAZLNrOZzik90+3JJMb+p3JWGS64Qd2fKAV9wsDLPV2hkfRq8hX8cQiiXWhfbL/6ulFXrNfOydGNW7H3/V6kVHXJztanjv6s3O84jK7T1zTzu95Ex/QnqHJqMUPsi1md2x+IIoadSG3PD/za7NSRvv0TkdjD2GfWKPZR7gs8huJnalPYqrrpGGbait+7sl91UaH8DdrOVrkaPXdtK1+o6aPerf49advqOqPnD1U1R99gv5vAwAR+TUA/o6PEeTlJ8LW8bS20Rpx1b3dijR5/yyvPSuP+7tcrdwtG9Vd1mS347PDlh2jrn9X5xbticzhCE98zC5lVk27hYx7/YvDpZuq/fbOTZw9SsaK9m6HCzH6G0I7Lfp7IW7kE7k9icPcJkMMQNrzsHUdWZQSeLtrY7SOfZpmAKF+jCMKbG8GlaoeLSY5sF0cQae1nYHu83Qjo7QjiVu/5bwCQKjPd+37uPkodKgroghfFPqw752L9FpoUzAeSddJzHTAqcAMIUzH1vWs4SH5EraHivC7XCttLXWpg2iB05secaU4FPy0vP8w9UmZIoQ3QmMk7Yp+bLJxJ1og28KhZ33u6aSbX1Xj9ihmIpueEn1tU5Zypka0a3iburmFjyXk0W86bkvL24k7HgeW5b1TTNxg+a6o9aIr0NTsMrs8dEDXSnRiIjdxl/EJwc4f042u7K6QhfbJR6nzzvDSHrJuLbJjQWSizSbZjENFsUQ7P+C4WAnPF80mTfbqxWfcoJ3icxSSRYQwVkjVdTtP0ixrmA5DJ450Wu9W8c6U4RZ/swuy4rGIh6NR+J7jpPAkhydF9Qjs+VFtiU2DianZ2HjnLqMKCPc9H/iaDED68Jxy4q9jqutjlDpLdHndp/CpjOlvlLC8+hsJGb0RtWukz4iQTa19/3CBXnMKfP+Av49IIvKL7N8DwO8E8M9/THkvNjGLCdFyfLw1z0Sx6ozGmrd4Fs67Az8iqasdnZac0Zm35PytjGUxsIuyoS1ZulxP0AaZ3r7WRssOaXW+KUSZKG+8Q+ezyOYotJF78Qs39FvuGYKXqmHap+zYbz/B96xJSGt+ENRd4UKre9pox+cgkXs6u1WtvubWn90yPNW1rEboZu3dzOF86VO0C5XvxUkJsxIqsepnBziAj4VeJwWxGlgm0hrN19+J4LcEuo1CN7VQkMCP5Oj6SZZaSuLBwK758cRHKZ+/a5B8lGhn7jwSPyd8Efai+R2yfOk9Zet10m0lqBlSxpwQ830Y3w9JBSd6g0LDfbuf9VJpy6IaNv9y3tHyouX1l6iWiRzRLjqc+AG67rSF7w7nuJs+hak73md5b2BqnwwvPqORFXG7K3gPvgSIKccuD9GXJa4bE4oneW/yKd3I33121GknIU86l0W03RVPhLfyZUMou1v0OCFqWTKqWsTO07pTtt3CLSKSASXLzK8Y0ZRHObe2f2Hho8gGJwp+ITQxk3wG6ZIo7Lm8uPpExTE/73OOgm2Bf4mbObEBlZ5pNH4hv+nFfPtkKXbRCLykgBnjPmJB8SIkU5mIuZ16H9KWBxEFIUU/BB25ZAsbTQ1ffgfnGcmb08sc/vF3i8j/B8D/G8CfA/C//pjCXiSUcc7CvbNL9JJoWspgRCNeSajYLX5HintS83rxSmytT8TgpZWXg2VnL4wNlS2VC1SnVValNjKXcAIBdJx0Bk0sFaZt+rG+TLsM0qg8v+Y6AShoSTlPXgdfpK13Mq6riwn4s87F9GsG3ulH5Yju6sRpNWP6sdomWhQ1xyLj4skQGYsYSiEgAuhQiJ1stg5kT2hDZKGVyDQ0txGezB1dxLBn5p0+g959IL5MO0OJJMLc+moqvzvh5QpdZ7OxsDrSOUJGtLwytHQHIf28Dnp4nvMVGXSM+yZMgwry10oKr9LxgTxxcNKW3T5a5jwAXA6vSXs/q8f8h5ya9gSvciJ+8/UFtGIsGVZ4jAHogXjfgWhDR2Rb8xfD3Tb+jsbMqhSWkiu8/t2fA9f5fl7oc5RV6w65z02iNISIdmkFBpBZDRcXcYLl4TxWcOt5oYiG11ettQpitNYSBGVhKrEt0KPpWMQoG+PSDahIOwjyuHzyiR1Tz/h0POb7N30Gae6Zuk5F1o3P2Pq5kzICFbLblWvvs9rrlJ5tBXyKlvwNVW+yD+MQVtl1+p26M18rVNrY5YS2gFvF8orHE4f7fc679wPTkIdIvk/Nu2Yu7ZZvVgq3CX5X1d+J7X4ApdxE9vBlJuMV899HTbwNrFt8RtJOPvVdqeivIGz3cqNzV1qFj638fVoF5Ij3duOsAmN80K6iv1uXiMRtchS+6Y9mPj/+vuN+8CG5oNOvDczIiAEPI8zoCH53jQ/9CP8i6YfKp06o7n1HMd5HEz48ZMfnqQ7+sumlPhStqv8sgH/2yyrvhSfC3Pz9P/vrREKUAbIuP+bPXHltLHk0mDh9npd/uFA733DG51bRTcaQeRTSvZP0Z7tBwC2+twpu1yXSztQ+nRCTD1O+AWDbV07k6BHSW5lk/2yhb6OP1Rmv7y71F/Ezny60RaYmY9ln0a7VbduczQW7WF2fXiWrTMx6DWGR0hFkeca9lUNYpm2qoMWMQoMio51NS8pClWAjP9Nq5bOGpzIfJM1G5mpYbujm+lpH4dAZHtRETbOjgzZb0ZBIu23IwaOfjjjL2Uff8aor4B8qLTJFhVegkYWWBpvQxbm5s8/r3Vtn75Nao73hTEvNbHazVoLE6gWfA/cXY67ldvWe2fefon0KjzubGONuZNzqd8aIH+3MSD6tl7u86vNc/bTj8UbGQst23QgpnOcMUc9p/ecyNpBm+CX841aqODI/N/OMvvFkKON63Uk7xu7yzUiBlPO5tEI/6uJU4bCEMq5aEW7Q86G3u1iZGBPf2Alr4T3dj3d/k3nrThPT+niHdz8XnAcKbeFcZG60VN+1nPn8QojqR+17W60+stq8+xsObWR/k76r06YpZ3g8hTKi1Qm+At8x+x5JLzcxq32F+pnmtYL3zONaVAptPkM6s8i7yVexdHWWy5HL0uT1jrWW1ycznrZhNyRz0Rk1z45PARBNEO526frHe0MbPv0v7Yh90vbzloz9+cb3FYfa7YqNfttyvG1oygCcj/0WGbWVTXXd+TRargMHx1JHQSpFxPlbT2TUNe+NaxJ50a8tg1S5T1hXPkp8pFWR7wLSkH2RURHDfLXJRKzWVSF9Th17Q04bx2szHw4P8esch/s1CyWlDhRlpR200qnrUfISRhs5cLbrbliWo0zowgG29prWSitL7miJzPcM0hmbHG0AEfWgPOFTaBz7LGEbDvmctmFaNDvP9EEOuuFd7cfeUWlE4vg1sOK+/3OjrBLyvvymQrZl2H9U+xgQ2fezzhbc35VXZDrPW/pw7WTl2pvdKRZuaJ/CkS1tH3B3fvRw9VWy6ntGG923C5m/MzpiOwvYT8rs360OdK09Q7f7Nq9kU7K+BtG1Oxfayny3sNcT88iitDbtxs7v7XCfaQsfu8P/XdoRbvkBl1FjVWG11cTXmEAoYwzzEVpbdbxq8x975nzVrofd8A8j15y1ec6sM2x+7gxOkOKQRtnQ5se9PV/6qtXfuNwjrgHEgpq6l2i07tcuku+X7fB40mawvtd77hrSZ16gsRjHZghf5fhCCn9lJmSxivkBf68oveyO2WhhAWqzcndgQIYWZW8wWrvkvP6nlu0s7KF/cLEBp4cIRFlUrjvX4Nt6LNOCaYMZ/dN7uz+LESXxZfmavgufLvPGNqcydlq7iDrgHtodcuEziaTTSqXhW7OuJWiLXXFSVthqXgQIe0zijjbkTxn9WnqsGzMiPp1W2a7i/dzLa9bxo+cLrRDQd/5UBCT0cVqugNrUkzbDLFMfBmAGZG6kJbwSfAw0W6Y60NC0tDHXj221CQazEyTzlMM5aTosRESJp4PGIhPVXxytL70JZkhIfIfMZMqXuMVCQKq+zrOEVdH1AlXFsbmjdqEmcdS9l+11hAw9meF3YuEkYk69hkHW46ItXMZs5aE0AOy9NKp7sk1MGVtfPSSlejJk7SxZQwt8dZMEtvrQKnGf2xWfWihcJjJfPbBgQ+uNpOMX9xOlG50v1bcAW0wtaaSuPUpb6Lc3B77HRSVf6ldC9Luxhdygxea6y+j0rb4KLRptdMI9lrNcHUcmL/cDWGn5mi5CDkmcWXTYkQPw0EX2A9NYizWTX/RfNoIQ7p/QOk5QxVUsf9oPZBiaLPXHakUYWjQo2dJq6QcseBquY3ngJuNiGdBLu7YJi9Edds3Pa3tc/UDVJ9sMh2nHEfCQDNUu2M10nnd+G+zBryUxdk/rursP8faqwZefZ+C5Urtx23iJ9k0yWlwMnTT9b5EpismJbtJmWLuA+lTUvbhpSj+GgOSv7dN95utN7zEJu0/MNonBOZb8eO1Fo1EveT2/UP62qqnY5S34mUCmCsWoebXxpZTN2bbUW96F1kVk3fsf5RVgOQlraTI8KOkPN+2rRHB1GRsdTwq1yVvqw8piHfrzbgteLeayt6KU98aqneMkJK26hQCFr1Q+0sIKC70WfQHqt1E+01bwUrW9CnVIJCaFtmos/ZlwLm35NrQmR3Gw3VtjOobMcx7KuDv8o4SsAEVGRXvPDS3r0jDy36HmVlVK3/KK9QkJXzPfHEjsjvvX0LOGgPh9y+P6apaTL2kDYk6THV1VkEJEqC/43aPbmSUWbim9jLr7qMD8/plvIwnn8bLMZmK7agYkIq5v2rPuqrF8q44EC8hhzQekUFUNe3V5zrheOqTvZrplfeBD5us7UiVsydsQN+8dLSvM+MUykn9Rwg3d0HI/65ga16F7l39Pu+PT8bjo1/U+8wOkPneN0jTZr+2a7iKT0LVWGbu/oeIiLDDy5sEKUcbmUJc17BxbP84RjEMT53XxA5p678r2iZxnKjZptKxhD/9ufmDxC6d512sg66a/w3yblnq54+eSNxVc8biWVELLGfe95JODSxyfA3eb7VMOwoTAe8J2tzOtsAtA9zLqQZN14Ma0m1ZMDb1yd81PpcuPNtf3UXqYuttVk2HI4ZO0+cgsGAOz1DeF1cD6/v5ywcuweqUN/8oY537Dc1ojftXBjArcJ2ZfQlomF4oMXfTVpzL5yd7DfW7Sagl7ZJ8uSs+Nj0Bjx661U/hRpMXJ0IppcTQ0cucwwfiXil8dSJWxYI/nY8fDxynTtTQZt+EylLfwpd9xv//rehiwedrWH/3b64DLX8YQaUa6AWLM5fuKDii1zkW8vfrnBUGLNZ66U8RC1KOCN96DdJRWlgEvDyRapWiTv4RGUVnRDajNscyct9O6Wfy4/N2kq1a808oGr2ol+k///tcsOR0O16eScfz5MFoxp8aHkcz+wOF6ZFMrS1BFF9iJWaWNKTzkkCd+ZZCNqOmQV8hWInQkfqP1vGFzcTnmjRVgOSRHiDZt47TJcf7FBLPLpHksv1e4lxtH3ltesS0Z/5QANHfZuKpTRvp+sckUL8l/QIpQKW19g5qlWujicg3Gq945PK8G7Zy/yhpdMXxixcpiLqgUWbIDrP6m5o13X2oX3+rHzxYMfUbSwpfKeoLvGR7HLl0v0/OaoF38W5hT+ShddyxfabeYo8CC+96pnQdwuw7iX26DZFTiUxex2g4s00neA+je7DAntCzjuR/ozSaaemlzO9WywKFzl2ZZAAm+ig1ZmGRGQ2ixsRtgCWaXKkNiWTXLoOvA/Sb/LEtLWS6UV3tgGvuMmCNnw660mrz9Fw3c5q5cDroqrRiF0kRLCi4qyZjfVJ/twG2RpWijNbtK6ub+9MA1cPwQAdcX8+Wj8wE6gMrqMo7lX2RGOSiq6o7wN70Vvbr0cqcyfqnpRY/L5yOMe+iiDG+0s7eL7yIJOaBo4u1ac6ITfCCASHWsHE6A2oA9b5RT+GrjI8HHZeFrLxdeDvOS+hxIH2H9OYCd83baLmPnyw4kQkRSlcSnVkfxrE3IzvjGU58ANT5VZgpdbLYpISIhxyx3/mk+h9ayXD8H7JAxT2WC8wDppqjtIlarkL85uSOA75JxW/TnEnzIcsiTvxA7bCU8Bll28skyaviLM55yLP1BMiSEW7vLvI68qASSUaNOJBxM7NghwyTYNuL6hV2z6jr4LCFIoV8Nu5khHi2MLAik0B5hV6TMyMFSXz2O0EAeVIGbVNXPN7BEJVYqgXnU8OETO3VHnquXceiHqoXPJO2F7O60F1sV9QYZEy/Tzweshw0u3ISlT5kdj5BRym5enuolhTbL8hCf1W7PTRI6IXDTBwH858yjfqm+Q8oYF3asprze7snHMDAVP0G4WMpiqPFyleQNPKY26So00Ci04ZtILNTnDDrcZnd8tn6g5V0xNcstMqaZ0SG18OFrKt53aOZzaXm1+aoTPxB4nDLX9/qUfKQE3nJZEzSqvtjmdXwS+ASQ8Zh9hoLav5cdRWjlU6ZETtt4BV5Zu27hblFg9AXrMWTXwH3SD8gPAnM/Dry2SowpR6N1edUayZykWX1F3giwK6LGnYLHFp7Y5PEw9WhTYVumzf4YdgdccuKL8OMZKs+0UrJzn/JvVzL+AYmppW3HvzWMkE8xdDxOGRL3e1+G1tMSPc13sEf0sYN8RpzYq2IyRm01OyvqCb2SWF74pg/nd/NS991C4z19J9KLHJfvKwG9FU6AQcUGHoD7rkSAQpbBfRJw8KJ7bYLCO23eMYIv5Y3wkGSfPxysmg5eBNO6A1z1o+v+HgM9Z322tlpk3Fyzufs12jOS+XSThS46X5Q6slssk9QCQh8nl9SvKGIIFY5I+Zm5wTO9LB0kR6lvYIaKkSLcNvy3jw2XEBB7FiuaBGj8zzLSK9Zcn9UQlDUEcZd3V5ZPcp7L90yOHd+euhwLLbVvsvSWdi2HhjqS4S61lA2j9rDzOcTWJ12maH9dvwyb8b+jXXvz79pleAzxLbJ6KI4Pi6bjHEBOpLeJwy2ND/1NPjWMpU4UaaBCg4mw1XL9RCc7SwV31Eqy6Aiho/QZKxjnGBhosFTG4QUXM2+Ecdt9IWGybJLvBFMDy4s9Ol49j7bgjzWfwJkdbfcDjjleeSe43/1NL3fbtLw5D5QJJsNIh5RnXRc/znI87Qd4x024AZzy0XRi7JtK3qfxmP0AYLtIBZctd/eVRcTb+Bz0J3nPr1d8ctebu4LSaPXEn7BeunnO/DTmlztbrNfKpA0HOPzwRK6NjMnoFt9WzkZf7j7h37c21/Ivv/PWcb8eHHKO+4RARVfuHnrUdpSLaMD8Qifrw42wY/lACfPcyMCh7P7G9Qei/Xc9vdRx+V92etkJcAd7GtsIXQeulNgJbS133ovB/wmt+X97qEsfnf/0vHuZg1EPMbTf0slYP837pS1tMKfQtgfNp5f7xRlv6HeqnWLwhidMdr2Rl/kuMnWhzuj7BbePeFpDAZey4qacFpsDmF05ug6Mw+nZZStrD7irMUTajY3U7GCXNrPkXmX0/MOE3L4rRcl3M5yOfajTamZuYG5ZNduUh2RIe+4DczBt6UPMiVdnKeTD81JnEPTQC15C8TfIal5rRVDMl7h566CcaGUSSKFdy4rQE+SOWZxA6btomtLMvHW0epg8sekfz7gOBtld4Y7abSPIxQivvwMobeigGKmoJ60DFv+P+KjvA5LWykeGHGnqkMw8B3XD5JsQoonpnicaXlolxiKDfivCRk63YMDmsmKbnmY7peUPT9O1bLJv+e6K1hUyS7jeht5vLROvDV8FyutUp8Vu+M7nus17hosoNE8JaI+UH5OBC3ZbPSt9BiVAVU2/M5nIyN0Ao7+D442wsV4qZaPUAs6J+xoia+TtE5EY/6j3aOdCYYK47QPiwIkoZ8V9BHbtQrz7db7p5PC6xKFsaIVo82nWrbQGGT2+l0W0XWbVPKQp3xMDLWYlph70rxsnQxvV6D000GkpQgLzWPowrOnA+nlkjwIW5eD50mdM2rH6G03bur+RIiPZSstlSBHlQNPP3QSmV5J4NeJ9/15R+lImZiLy3xMRFZEffDbNXAKO+M4M6TAgVgBXBa4KuWrdTaL3LQtIZj+o7wToSlshk7pu0OgzJmXrg4hkaDJxyAr1x7VMHr22zrPj/XwZ6Zpt01gvzmZXxi49xRdaBs5P0j/BpzjqPiM4LbMNe05ss5/ftWnWTt7ajPZ9veWJ33ryoJPWkcdmZZCmELv6ZRayf+rvjO3ogn4Z5/g3yepAurhQmuXFCn+EXyj4XbWk9QonJ4qlNhAvMG9lNEwpzs/vNXmVdpnKJEDIFrVzK93bydFfE2X+kDpR4wkKm9jl6lpM469Dj955OSIs8/FHTeugY5/05tPnJGnGCFwcAB4H9HEA7x6Bz6/AF1fgkfCfJzOoE/FZnqCbxsG+D0D6RdmpaJ3jFGM7343PeDY+L53zaVoFqp97is8Zrpz5gR3NUzh9w9/EaLzlvYWpEaIYE2xdO8cpvSTfUtnrZOmpdNMPJHgQFmz47goNmJGK5STjgnXRzP09YClmrkgJG+Tbk057Q7jwA0Jy5H9Cuo6pnWegRkQCuB7WN5cS1/KWAVWxRa2d7J6JfVwvPnXKKZSQfdJmMV9HrYNhuSuWa2uTqTfvbsVksE1q0w/m1BHI8MOJ0ya1ZDle1triNLQCXfNv56tR/iyBy2W9+RyeV5kUc3b9oX+vKH10KKOI/HIAfxuAP/N+lFpi+qcPtfhqjXYbrxNhaATyhkMSAKqEYdmkl3eUeNah3vxQnWkZvIg/Jl2pPIDCZyiv9wxB0a88r7erjM6PXljvg+BeQHGs3Rec+KBQpeEJi7zw1Rv8Tm3jfKTYZAmviArPMuu3pahAf0bIGSt7IU/3+k7LlbxYI4ffatfVW2YzkrXKis+yZcGMpGKiaXR+tyBCdpxPM01GWdUK5QMzJj+l94b4PSS3WwpZaRGRwVOe2a/qiYKa9Kd80yJ10iim/qzji0wT9T4ydVXIoae0hY/4YEPC0dQPcLo70nhfqcrI7ndeHwo8Wt3zIMFPNQS0vktg3GPQo1rsLGQ3IT450cpBmbQ6AWznT1DfzTLalEOQIS32XxnwHUehOgmZxSsgbRX6gY/hz+OnWd8PSRJ9nCyryAHRVSFDA/dVAOXTRhQFXGL443azsjX8S+dDsjD2NWzgvhi45drvVC94VRSuc5ET/I9uNehwFW/ijZbEuu0HKO/iB5ruPQAlLgjgROt1ec7/NtZcnGNdkeM0zhmLH/DxAf+FSIypLF/9EU/TZzQptbdv9gMVuxeJtRmhxM+6jJU4bXOCx8h+eBYqWN8tzsYhku18mbAVu7I0k6P3S0Vi7upf+ntHGjTO8/AJq+njGDRa/8R6WfzAQbQzr9ejRkg7SZGRKA333ZZOO3F0ToGuI0rE6jOAibEdU92OI/KK5yWfwaGR0nxI7m7l9YMAj5jRDFpsNSgscuI+14GXPd8jG+UduViMI2y/EGWPfBG4rzI/8GGw/11K2sD3q5u+jB2zfxrAP4gK10+nTaec95X+QPHtEmTIy225yjnZwRbaTSVqU6Jj7MKbgKA7pTPaLhbf85t0iMg23w0ZT/m2C20yx9BUcLoysnvXbCn6pEoLn40Dr2Vp/jqbOZosvqK3OXj7hm20cEkhue14uXZ9K/SEBzXRdNeBwJkBb8fld3a1ze1j4K0cl17pwFJN453zrYaLQU9cdSdojvFMbEkHyI7brqpJ2qDHncnKl+2fdmUZ+jpyeX+BaMsOlM4j/L0TeJjhhfTvegq8Ne1kzMHDWvfeDncyIuLltZSUtJeweQslsutJXldKPR3NxvmR77qzLe3fmf+pQNgbqeH+FDEaJ+RRIe8G5Dr/ykrmjrYVvYP7cs2+RbpdO8DS9Q1/A1BZZ5hzhotN+A1qnK9UPxf3+/UJHi9tjGQqTXon5BkfLqrz7To0Wg5j3PoB/kmz7KXcInPFreoFrG2UvNz4O1MvpSmkrXOdpSbjDo+3mBr9sOZtgkXeEjWrIKze+QHDq/BV7QCksspQ/UDIpNnkGfdyEpmnBO+Sd/M6iamYOk+SNfk3tijYX3Bf498eeeC7j8xnpUWj7fol37JwRxXA4YKhHyiv0Ua0I+vWwtYFo+oOrfq3bpN14nxJJ+Xvn2V+TwfoUJ17+o6mj5qYichvBvBnVfWPPSPv3yciPyEiP/HFu2/Om9GG5yopxqCtRbvvjnQocMX2/YCMFaIGryjH52e4Sf2LY5OpH6qX1bC48HVOCvCxz8rPN/xuYT0Pfkrq+fqs7ezfrcztWjcsd3ndufVBAjuJDZ8YfPiqz0bGRaYk2etV9DsZtbAnOqNdGDWZAUgrPJ/Jkjdsoez46NmZbezG2WJPbXL1HbP+b38biguZA/CVyT6kRekds6YHdpcZysjlFh105iuNSNKRxHA/FNZGuxFBJ5WABjJKk1L7Tw/R613UO5VP9A/RueO0DaG0Kwp7rAOStDJP2IvYsft1xHMxCm5i/X02/7zApXXghdZ45xzE7e4hLhK0bBNhob0cApydw76VGPffBe6r4TlNvr54BL64QtwHPNpJZFeFPmrF8t0faAIxlN4nI9pVuqTh/HFN7ZT7wSmmNqwpz+r1Dje2dP1+K0tP8j0b9894N5pSzJlcz+K7WUDb8MtLrTKeEjc89vrY1V+TeZVx8t3icbfHMpuyvxv2XLFgI8+ZiGwb1RVjgybl8oUXfzpDH8/9TZHJcdTs5+iRMkcsyIoJMREjb2j/yUlBVX7ioGlACvN/U7K2b6910uSYutvdV6e300t8d37u0E36s7Buz8E75G6FCgNpmy5oQqpSmRr4bGAEfz/tIgMSu1/2LHwTv5GWMvpOoje6fF9OiZbsKuWK3kfrB1S94lQ2dt7z7xWlJ0MZReTHAfzizaPfAeAfwQxjfDKp6o8B+DEA+Hk/8MNz3V4zRECB+b6BNw5RQBQae64KcGiRZt6Jg7Sy03uDgk7bs+eH/xbarkbsQkSzHYBciJZ0EsU8LYc7KPVm7TLSKhCCds1r46cCdkzreRfa/QhyfXas+rJtuozxbNSibiVZ9JNT23QZxcMeOZRxo0MZiPhUiG3BbYAaB4eSlNNBVU3GZxhHARxasx6mt4gtCfLbO6Rw0KZ+IhKrj5Wt7U9QGztEFxE9rGGoxndOzOXYAH+ue2QwnBMjJjTJNyrCnsmS1xl4aT2UUVDzTv3M4prPcsG11kEPufOmM/VnGTN8hGX0dIgUBxN8/S8MOaLNHaq4umYWH5d8UfRj6fOY5BHfBov8wTdXRLmsuFZeDZ4GOszWh2rBKteHy6rHOvtKrMDDHOP4bB21zUU+14dX0ie6zlDGzfHYN1LB/a//cDCTQ3JyNgbk3RU4BCrHVOjtBXoI9CKQhwQSHTrjYOF9reMVVTBpA2COc2ircH+CV/bRFa8kcix8Je23gw3qUivuG5aJoHxPR3pZG1ohXW9jKupIc0NbZMYmrxdr+n6Yv1lDGZ/yA/5XDurwf+H4BCjjMWAgonmjTKLIDxht8QO8XdWNI0w7ecZJ0V5/W9tIYCo/e5YvDj9AmHrwUfterqMmha8p4b4Re/i0BKPKp1ZK9QOBG7KGMhZcNNwPLAyfMTH5WiYHqV9geYytNNqgN4fqB2Ydr3z9epTdR2pSpo9C5MBF/duadIgL+QwAtKMkUW7aWeMTJEJ8q2283PQ3M7GMYj4k6/adZl6xZ/lZlFFwX4vMzb+Y7LkDWe0KtjHy0zQhWV+IeG3plU2wPjQ9OTFT1R/d3ReRXw/gVwH4Y1ZZvwzA/1NEfoOq/vknOVsnjTH38F5rEzII9GIBNjEaSZCN/hqNFeVoZSA7cPkhxFdRDhUJIsR6MsILA9TyiYevAErNW44vjrxZprZrgPBxhBm2tCxvPyYZG779WSmr0fIlUE9zg6JNnnEzVT4K8e/BdL5B4Kxymh0O1jtc1J8u2+rFPuUuGVz4VhNALJ8PACTNuPh16MbmtndignSfXMWS4LMsurZrDz+MiQ0Vd4tWwfKnPQOwjbdY/3Da3Ueo2TkxH891NL6rTHR3l5eqqfQZMUu6uaRkR9bOBpCjM039DmuH+9N0anfZycH5itl9IuU4Q86NwyDjqOXg4yGgJpO2c8lhEQPwoCupR0Cir64q8VeS3/K67iSjF1X1W+3j4Yv+3tYHvWOm0z5q/VmgwOMV8sUjZFyBywXjjUDfPACXwyY/EmplP6NBxUgMnHVGPVbqYp3DiNiN+N3q9sxnnGG527u0mWf6gXB5RitoeVmeTkt23foB+u3wF8+aHwiIJb51JzHp+mdgVmw751Nemma+nLyPS/MDmAtA5VRQauPBx8smvirkL1of01bOoo/kHnPVrwkezMgmftkxkPQkNttrtgA/Y7+wGy9r/LvScq7uB6KrnfiBs2saNSX+BeZwXp3LRNa3d3wCw+iadTpaZVQ89oMyZhlTN/tXM8KBQyENja1tVyyPd8KtzXl5QRt5ObRwnZT15JhRdghFAFxpUmZd7+AzLZsO4V+Qfo748i6i71QmvZ2+SH2oYKcI8h2zD8T971ZSvLpDPD40ffDhH6r67wL4RX4tIn8KwI+o6jeeJkZ4AcHIo4JtFUEPgVwEY6hJaI1hgFvR5Os4Hy1Y0pkdStcV3gKDRWeYI93XIeE0Zja1f9lbot5DzYuel52Z3dd2vfULA3OVtNOyMk2mW3y32exm4ILrJlUeXmEtZZ3S0gCqwiyPXfKdexoHaTMjQl9vNzu7bwyz8fzqHltQByteTuhsK4PeTsroxvJTXi83i1T4QRrFWTunUtdKDryqzPYozpPAez6sfGKw6CXRCnL+tztN00nmIEitXCHbcNNOx5pjON/M7KvhvtAgwUcR+1kybXUcpZrDaZZdbbizCfFjpZVlzPapza50HHFM2OobaUfIhLK6WCwbExyBWmjJHBQgnudHPynkEWo7Vu3I5YV25Sq0CjuP1h+Rl9tSjlt88sfXMEotcNoHcL4q7dbygUOGRb1vUmAMiFgLefc4J2WPA7g+Qh8AuRzQMTAuDzZqmGFG69YKXY4Q1PqCY0T1A27D2b+pPEXNCz+Mp/qM3KJb1Y+Pry+2vO0HNkXVvGS6fo7E4kOw0sTtlpf5BivyA/Gg+yO31c6R7PiitiuBVH9DtKsfkArnds9AiRhoVUiIb+B8M57a86izim0VbxkfDes0B+XKBjMsSV8hRaeKV/PBfqesIHfxtfvKSllRaBWQAx51wr4i58iOUc6X+gU1HCU/IM7HypiY6Zhq5QjnTV2mKJL8eBfVyi2qUJcrEQOp+Qnu57UbNneHHI8dCSfVDJgZAA7C51lYTpQt6iHsyLgP8A6dptZRt0fYJowBGwnjKLtsCnjUg9bj+t1nrP5mtU3WpRItwi/UQ7WIxn6JNdCl6Hv6jqUX+sA0bIdM5/sAftMbwAEMDMhxQenR4REMK5aQFsp7ILqdg0fkted2h/6bfEp+A8Lt+JqJvVxJGRlwOPxDTvm4nvk7gK3RFr48KNjwlSZj/wBpABgpWEJWHAfYAJ12MYkUPnLoypf0SUCS8k+1ndRK0HB9kZQmIOEFI38LYYnl6swrhZb4bkZLHPIiUBq3TUNLoa0WytBFsfC9BO/lNMhmG6Y9IoSnrewaX1chd2GzX/Bqa9KmvGJOg8MtJ+20MU8O6+SAzO6Ot+jnOmbDz4FFmjlsQYONQ2hSAiUb+1Gm2ZYPoRBK1GguDimUcNqTz0CG+8w2lx9wjoGM5w/beA3whMaVSLsqvA409OM6uJgtoumqDXpEZriMye6Dg3J6ouTz+ZtP+/IJ3NTjgqxPgb3cHVauJ3lNW0hoQAGiz08KyGfvZgk/9y1690sM9xV6pRAfbw8HSmQENzK3JdjE3L/n6GkWVbqg0H+RuO917rQuxlNY3sIEU5jbtNEoO+SkCinxc/0A8ZH+rPHtkyGX2quF5e+22vobf1z4SMN9H4w2vt0PbGReojQ6M/4pQicuskJADUdc60QOKqskw1SpZXl91x1NqXUStFX24geEsFw77iffwNtG29zT7LfqXaSGMiKwHJVP1HW0BLvnIeuOxxnKyGyLz9PZr728A4phOMb82DY5AWJ/k6cyuv5JNzbt1WVkf5NmT5sO6woT1QYGRB/Ap+Y6hk75yJ+6b5UcTrpvcr9wtPy+yOd1wgeE5Om6QAllhC9M5vL2DEdE4bPulKW2FU6lyMXh/qwfV2i864zXnBTQ8XS2r0D60iZmqvor35PAQgmthY658qA0afDBSR8QpzN2JE/n6VjIXlgPyXG6tbrAa6VwPfEhl3s1clwkRYF6qdegsjjzbkLSr0MmPuAEWAXYyIGm3xlfbTL2sJSzo6BB9rqZl+VtMmuhJS/LMvo/u3Gf60AhLkUmYs9AXR9KCBLvBdStK8qrtWz3Nfaskmi2vx1zG+31Kk0FtGeFu76oc3eqUmkzynN9xsI7pJcct2hPUbjnxXrd8oO4c17RcG+nZXHjcxukTby2qfybtFUHnox5X9aodh+xjJDbHdyxKlnk90erXdemzcgm5X6tPz7JzJ3ulEmRHzFN/vk7J3ECxGp32cFzWT2PTX1TjxglBN5+SNIxgJ/7JvDZ54iXCR8e5m/X95KgpC5d9P2UgW3HUFL9gCs8jcG4L8iyghvjptv7GVjuUJFh95Se8gMj88TiyVne3TXb4Bbut+uKx0n7VOWyD1n8Dev7LH9z4gdY5lIuK9AEah2rxAt0n0G4r+06y/SsHD7enA0rruvTJcKi8Sl9f4NPldgW3qLh3sjbJOze6iYulvu7ss9oKRWflXRhx2g4ZHBu/FHBJr0/c5kauzNM7f5m06oK7fD8kmGJ/Q/I0MByoIb/7niM9APpG/pnBqwso10klsr/cHtQpEViOIcubmwTdibPy34Qzc+5EOILoq84LSEEX830pXxg+oOSfTharvPF7+NxzA9Kj9nYMGReq0YsdUW9VgF1RFUwO052tNSdc3dasSsXtK1AvqYPVrNMPB4AaBCwKWur1g5HidZ90bYZNpFh6uuGtkV3LGHzZ2lHu8h6IuNcAZJ+M6vPK2XF0EpbKo5tr8Z3r0y3Ta2HPGZ8+XDQ4tgxQ0QYDOw7KHUgpWl/tosbsTsv5SG5ZNM24+Tvpt8yHsydAj85tBzNfiP5SqvXifeIaENaMpfywtUSbWkvys/ZsQE8z2K3HWWTuaKX6srXr1epJk0cD68+aamdxCc87lxjddJOxsqtd9erdjCvn9pqMkQHXcbSOf3HXFl268yVzXS8fNLarC9/E2xEntQvBROZIYwatMj3J0BH57uMUV9qk5vdW2jPSQr83LfmpOyb355/3/oc+Pzd5Ogjl8cZnlmwwC3SHa91jqwDJC1nU6LV1mS1tpXdZOMpLM86FQKy59ECyE+knI+fSd8dpu75FHjSItopLfPpON7E2D4DKl+umuozbvgBomX5lxmbP9j5jFt8moxJq8kKLnA9FmfSKrwHkRSrXFyhJ8YrCwmVzVq2ySzGve9WJrmGjiy/h2CmfqvsjLuxb2S2kZaXL4LO9Ks+IydTCpBr1ZU2rn2nqE20iowaMjpt7G5FmCDzqi9V5L6YY+x8b8RDnQNXNpM0nrT4tbrcBY83/iY6xby+hPjmb8LbTCkPdRlyQieB5f7ZBw055r9K4ZVsm/Sj81+eaFb9Jq3zWWr/dSXF98wHpl9mYjZ0OuMv3gGfP0Ie7Rx8zFMYPWzFgVi4JytyN8n/+EMdnAeUt91fygnZ8r64IwCVxYnLGgCGzH/9+kzGdj1pyUkAyyC+842wj/b4VMYdLYHgltbpSRZtecsg+YR32lPsunnRM5nJ4cRWekyadckeef1Ux92WXmsni+0i3n2xLOqArw3+NjJnfcryPB6pT/DYkk0jtjXPOhbvXa8VVK55N3aONfHIoB6+m+9jiWXbjRpiKECOnCceaGFFhfP8kzptVKJlR6ysubep0DcHKksLofrW+p9SPSI+USMVNfkSGXJH042blovxfesrLkHqoDn4EH6mlFfRRqjFNv7jzL14aw3bGLOQQdxBkx38WiZ9hFFtO/sz0tB5GqMCOA7I2zfAJ2+AhwP6yZt56MdxAHIkTg3E4ljBY8bQwFg3gCTmgGjJhA3aM0wbhFeWUTb+paQFU2Wldf47P+CyNKy9heXVR21Q4xamsn4nfDpyLhh79qDzQrcN833aD/TQ1c3I/FSO6m9OZHQ+XrZmG5rPzvE4cnFdMHBah+z1Uop3f7NMUNfFDy86onS0vgtZ8i6LivOPaUH/0iinTN7jneuCqaufCS6hX/qMCM1sBNFHlvuaOrTGydJm6D3pBy1VWHezMiCv6+el1l2y7GDBRxNLtfzHj2cia0i1jbcldt1+Aq/TxunDRjkX4vx9ZFrE5NB78QlZ3b3junG+Xkfss3wvWRpV/e8MC95191eVfLXlQ/5eUXqRd8wEiiNmqvM8eh2Avj2AhwNyCMYh5sTVx8RgdE8nzT27vWNjDTBpQbSexwc9PHAVfpyFiblc9yMND3lgFbS0nLVxD5Xee4YgV1AVNdKDrhlQ2BfswuqXVGyTsveovrIa56/wbGhb9Sx843bQ0ipe6Ge2pdhw1sMnXHEylxUcxypzdsrbbdH9PMuYYGsSNWMm8Eqhyzu5SxVNQYD+3hrHvDutbvlmCIRG6Sh24rSsoJrTp2YZktb30bLpcQMsk1SRljc178flQ7ocyROgVzEVNmGTLLPbRgTsEso3VURjQhdtOPQgeyHfMYsrQb4rEv0bFpYmG33P9MudNdfSX/Dm52apeB/Ad7d4lTLeA4vnU+aBeby0sgyBfc51hIw8EaM1ZWpDtPJKdgbdi+OZgeWo/OMD1vTE+qocF+CTT4CHC3C5AN/3CfDpG8jlgnGReHfYBx8MNkV/wv3Mi8g3+5RUbIvqNv/jFqNmELSotAEO7geIFzOVKIN8F9mSkxKdd7uiALKbn0R+n/uBbozdb7aN3259yE0d2J1k8zHZNfzATtGsRrLriR9gAXdjJmX46yiWt0/9gDSZb6U2OVOhdxalhfMxENkN9gMrtu1omW+2pe4zOO8e9xNjK4HeoE0cXPl4r8hrf8eM88ZEc4kGmRORgewj5TtGssrhPBm7E6+MZrGNxrOttw79pFxHnQbygvT1vI6mHraI4kMqLuSnXDR8FdEWyQbZUeCRGQPz/a/pIw90X+OHl/QDqlykaRsKS20+XwBcWnn+iZW4JxnA2Lv1PX1n0svsmCkgnz9CHh9txDHmC8LHgXE5pnPu528HurUBu9/V/Hd5yLT8YFsQ/dg+XsGm8NlMBJ5RdHX+45zF1ol0PpL3Sv4T23i5QbtjSvZVuFPayHTLNniC9lxD46uIb5qVrKVW7V/KeypftontgknPK3xPy6Mip1b3BYPiLa3x4TvbuH3S1feVlOy6p9WQx99PonWzk3eu3LB0cM4iisfCO9N8yZlUCloxzsmXQjuBXNmmPw4p5P07aTZ0Pkmbq4Zzwma/m8wxXmlb0xHV0Mdxu+11k3GeE5B86jfK6mEdKfPMn2cMMK2VZeWGraTastqC7a858ImFp2I25NQtdcxn7T6k1NGHTMrgsjxeIW/fzonZ27fQH/ga9JO3GG/fYLx9AN7QgU/O8RwSyo9SQ7uHhBsx5sOGtnHYY+oJkLc+2TF1h/suV4erKKr1ccbQpawTPosf2NAu+pOtShgyY7mc0J4JwbRWuC5VTODQZOQKPmkWpa2f+gE4Tk/ldG30J9c3GqMqKbOzyInPcDY7f7Nj1V3RQusYkWaMvSVFCQ3c09bffH2UXRNdJwRNVml5CcmXncyC+6HDbAt1gTS/9SgR7IfAOt45kiKjla35PEpUKonqr+yAhZztvp74myDjEPZepvmB6AO5WOc58gtFHgbJ+llepedQ0zHfVRP1kPUsuOoxn03bSVz7Kw2Av1/2yqdm3yM7Zi8zMbsO4PPPIZ+/Az7/HHh8hI4r9Ho1z28fGfVG760T81aOkbyjzUcytIU5No89MENLnkgznHcF0c63lI0Ut4bYaJMZibmUt4wPF4Ean86XUh8/9uvFZ+zKpD9+vHTJnby93GIbKnBnwxP95k+jFax8eVTJ9D3vYrPN7LXl0bO8mo5uPtW9PZyW+762ayv4DBuKSDZSG3H8I78D0OnsGY3uzt8Ocn3y5K6ikjkO7xYlaELdRbi0KbMQbV+NzNU8XeRagvlaV+5y88RraE7RnNbXBLM5cvka1Zurr72CVqcUZbCSdF82eVknCVobPMIdex2Q57tuE0jCrjGi3/RNbx6ek5pvHVTsJmL+mGSxBvuxp3PJ5QLxMMavfQq8eQO8fQNcDuDhAj0uJrgmBnnDa/i7+AG7d9MPgO9XveeOXqelwcyg697pTjC15GXaHoYJbg+d9kRut82mS2/D9BlTvW8/kU/oFj9X7B60Mvp1Nle7J7f16zKXAmW9V/JaXyK+u3z7e9OwynI1vl7uMrU4NgZpQJiLLIY+WxsKWPwQUWtfPh9Pdsmmgv7pFn8/7YxC6Wby8RgLftdYVtMqqNPU7pcoPNpiF78llf3Ad5udT059uFraVRhMSZeqrId6xqRU/ITfLKsjXe8LFVOBGE4vjTLpg5Z8U8fjnnKi5T4gx8bsVaqHch1qtEZrvvGU/U1E0rhvgtKhH6cN7hUk61zfAxOzlzkuXwf0W9+GHoe9U6DzK+9vH+aEjOMdFPNEJQU4lmM2aIkWVjbYqaVpuVZn33bksiFO4JNwWtFAmQ87rVpM0jrfHPFRRvunO2GpWWLCuUPMhS/JyG2sjaA6n937BXpjuh5m7M6O5y3Mw9UP2+yUd1pp+inVgVQenOij114n8T5MKHUucx5BbMwCcSk0wQeLZGeUrBIhdU7rbmjma46BxTHbZFm8GyJLvWbYhoeSMG1Tz3eyxA/RSZkqn2xHMTmjMJ1YaaWO4lUidJ3urNPWCd8cmPBBEtxgRu7AmWNmWuYDCheZzxQXomW+qliPFI6Yl2F8aIUwm1yUzRZcV55d4XXLO0NLmK8rOEMF3VhVP3uBW/JzXBzKSV/nmOVAKTSSbAGBYOBC7fCQujLXQ2urjJIyQlFCkJ6bBPbhaIE+zPfJBIAeErgv0f/YHo7H1AECj8kPAPl+Mm75AbMHDWy0GYBDslUB+7RRZN7zCZGLzqd+wBm3dsZ+J/C0ihd5JVVf/QDna7yX8MgdLnZ6l7Xn3VwvJ0q2tlX0bw80fxBjLL6KxtBJH/pIud7tr2XRUmwb36SDlia3EFs7kLhB8rABqL0WTDXvUnCyq0RtvGCqF9fw2YXzd0LF7cS4b5zr51moL9FoaneE//wEiQYfDsELGen9sAYjEJnhcldlPJ34dBxlJJe4X/IxlnvInW75sM8IC0jmF/h7XpN4lMmO10GWHZ8j8XYm/LmSDR7359ERR9D6ddJOu/qBICqOKV7wPEr/0vh2ORzf12dq0eK1rrMO/de8uhDWv+pTGRXz1ajvgfQiO2Y6FGo7ZRhX6HVgWTHX6liW7kId1ldzIrt0Wnpe/tHmRYF9u9P1t6BJXGUqZW1AvdN2mc/e1dry7dKd8QVqyMbmugww+qOdI1yY72U85fMs21Ddxr9esdpkXvM+h6+H1ayjkVpa2nc3SuCsUiRprbuSNj48iK/5egU8nzZXHNe8vaw+ifRnJTsNEEqbWyR02k2/gPoXaOL2EgPfaHsoYxY2Jem02NJ2+1TaMjCEO1RFudlSWfUMW9F/t2TOt9JGmcqBpz6Q8zKV/mbeg8tpAwx/qd3lyQHbzD/DYXIAdCsJyfF+SeaE5nKkEB4ZkZIXW60HjbSGpv1n9QO1YIL7ZQWDabVOLHohjX6Pbc/wA37PhR9YYYTyPYmpZ3k/Bo83zf7ZtLfyfgBt7IIBi9++7TM6lnf+rf2JLva7ScsiLY48y1yxex17lJZ+guX+bMW6mhwzRivhjHbb5G/6m3pdNDxr65YzPv2x64ZIX9AfOg/2A7tx2Bltlu13RtG7YmTF/bLzFJatz/P9L6VFsI7HtjvXyk3OeZpilTAtkGGeeSw/4H6g562lp+lqHImHzvf8SVeo7+k7mF5ox0yBd4/zY6KffgJ8otCh85TGT9/aLhpgn0KfDUJAEzBr0kKX9EyMhb9sOZ8QDZAnfXF3DCevVKaBh+3qxdJ1nKbUVOsNV2Ze9Lzt+rS5+0pto+2rsstO7GKbLdt63fNyuYxaoHxuOkW1R/s9L3XLfDl8aaHNHUy+VwRgmbt8T9imOO7Nbm08ZjmNUToJqfp5XloGzTNKJG0WQmlzOF7UbP+5cpu0wcxfKCIHq0jA5XL6ZMUz8PkpuXNWneA8dhphBP8pdK3wj3V6HySzm8KFD7tFzr/hszjnJu8Z7dwZ1LBxUT1oBRpvGfgu5Ih+vnNW2vjwLuK8HrGLWi2E2J3N46idVgz2tI9bZk4dEFvB7Efgs4yx26eACJ00ZjIfbg3XHyt2xcdk3X1bXgnl3zMJ5jfLYvn2gMp8qwFDgcMP2/B+JGlLxlHHxMCeHTgRLe261ff8qLLYv3j7t44vghlFYHxrqBTxKbr2yjvxAzsbKfUd+rf7m6UoxusNli+0J86g3y+tQp+g3fBabUN6UabuB8JnhA5s0+5niVn0K11lbLrwfaWypWFqF5dplwgVQQH3CHNnG1FBC+4rFj8QsSZLm1pps//MHaBJ5n4jfYY3yc6H9c3+DsI68wOeVxL3Q/7iUxF1AmiYZpY/hRAPAe02t7K8zQlFefSm3sM8HY/jGPsWISLwnbIRus+x5gzB2U1ShH57QxeLkIj2Gv7GbAUKkXScd6Oqwg8Umbg/CDrstMaY1Pnpa1L0m5KOKMv9DAXz0zO/9rq1A0bMeGpc+X0ysWe9+7zK9MpCEj80vcypjMcB+fr3zWbzA98PvH2YJ3S9tUkZrA0dBiiSjaP0WkoKzFMc/eJAPXY/QJKcnt/h5zqdcLbvYYNPYBwALsh4KMvLtHXAQKDpINj58PP8EEaCl+xpeYAQg9YbfMs2P8lYvAQ71o3MS4RWsyunLtMEAqmDmhP5Xb8emlAcqF/7ex+RVxa+LYKPCprMhNoJ1ycCqFnmc1oRWmn3E9/seVkA8LJDH4lv7c7rFsoIfyaFNkMIb4RBOjj7AIIqWE3mcCrKfJT4ThkPQVZWcTCI0JLiyMKpC3VdpbBIqd/SlMrXfZdY6IwUPu5QKfTPJztEezTbZNflAZGE8r4X5OeAefjtUOCB+AIphzvAmG+ovZweTTEPRzHLk614wgyojhlmQhMJgU12hV/ETtosa0SozTSchzWmjD5QmfILQYFG6IvL6aGLeZ0tg09wfHaKuB+Zh3wchzeE2gcHIJe8Dj8AzCP3L9l+4bL4uE5Qy3KloyzxcQuCCBX3RXXyuSpwAEME4wHz1GAlGyz+BnFdXNUz/IDbuXzPzLEbe1oo5pcFOl/K2/3Lk5jqMnX5cVuOxQ9QWd1XKa903PADUz9BTAj8eVRbtkGnrfoJ6aCc/URYqs8ih7b2TmX1EPaG+8ssa4v73nhhfSFlXrA8ivYwyLQNP3MjHeLvBU+5PLxv+jUO+W58Qlyzf2ljfi9DGVnDLkPvBxzKCMI+p3XUCf1kYu4MybOlrOKrBvFFqfuC3SYvtZqgdUy8wr7XFT5yEO7Rji35G0gsA5h8CFoOGVz9DePoKD5CyK6PMg/8GPZ1MyE7wkqeYZB5LWHB9FWJ7VIO60p/Osvw+zFmESnPX3W6T8w+Ignspe8H6Cdv5kvfby4zaJYANL/BBIrpt65ReuFsWA7cCtDK0Mwr9AwikDzFIMCJHcR0kjo/hK0ALtZ4Lyh8uJ+a0ABk7rS0AQM2fNSfscOxkJb+HgDT8sroNlzkhHYrM1tSWl5/oJyJ+J6UVQolfxe3RWhkteYt8reXOCZpxoUv+nV9OMmOidNqUXrBIGGFK220y+DbDFjK6uBRpS5sSIdYZWt5c4DaZaa8FMooRLvwvXGdfe08DLKJXGjD6WzbipR8VQ4breqGL9F1vtMew3z0+u5ADflIu6zBJSvf/s0Yn+DyrpkQbeq9DmRKPfVBHF/RDg3XRcrAMpt+knLGyq0iJrredl1eiNNKddK0usH33zf5R6SVjOT9Odu5BH5PLE8/kP1KQ1bu5+4HKqbSAIr7tzPY4L68UxxXhV4m5gsf6+5FF3/jhqoPixwdUztf9kVWVufTaRe+lBbagqnn10XRhv27vE/5gcVXxbXufdeGOPxAnAqx8on7Wz+w8TdbebXu3EnDY9qNWmWdrUr4RsfQRlN2sE7wN/C6M6OKqeoxn/4OL9NXPvU++wn7M9w4py1sl+STSEEe0NT9OsvhuJ/4u+Nbj9JP9mf+Rpe2IfRkbgQYZr+Hv1Hjc173Z/7G9cn30/hbagqFjtzb47agQC5ItLL5d/qqee8I/lpk3nWLIzhuIeaVJX11H4r+0PQypzLKMXfKvv790O/7FPq1T+e3bI4DET/F3UUxJ1JD8zn/ntkA1XmwR1zDdnDth53sxZOy/LOT0VRjxRSPgFwBuSrkUecO95XKB2IXgsMgQn71kK4NP6Lt5W1xsjtJuxedc3fN+YqMrSxFOfWyDDT6v3S5vHazyYMN35VWF/1U7cXrGGVVmeKFf8Uic9GVbR0ji2pI9boPARWl+FurMN2w1J687LS/FiFDJnM6MRjtMjc2bpuuM+tbRJylE8TSoHRLm+GTy1iG+AZ/KkzjX8/D19QPYGE2NHhW6zekdh4jrIgBUq0TLTLy5LqPy3kU6KEjaLTuwjLsZmZYBvSNdgpmk0DX22lDqzw6H8qhJm7IiT1q1zwe9OCaKfWIssBlBX6NrIlFxqkMy+hjXrJ+yAC4c67t5mafuJVE7B0zAUTmwR8xy7B/Bqh/OGtbcfZGyW1paOCX0xY8CbX9gm5C05nPj8VB3gHHIyDvFPJu4PKokGuYvchUr8O8KLOD1lfBYuDk3sm/q7/pfEk1Ktdpw+fsZOLE19TvukyF74bnXkal+qQMBM3dzPOmFPe6ZA4dtdFWG6TyfL/LlEZOHFvrO8p0/SqjbGPI6951Ot733b2lyRE2bPGfRtoDijKz7LTc9bpcVifhb2xSWvJGO2o2b/7P8VcxcZ/rkP2e29rXXwKXlv6grGbIxOsG7G80jFQXlSKUHIAidxSz4DRQ7osxX9dv4u8gbIqFd8Zy7bSJv8VnRFvwHa1h2O9H6xveS/UZTpsTq7SbYB4oAqd1Pgrkcfr0zPX1Z4xprzEpoDo++O81pZeZmB0CHDOURd4+zNBGBSAHfNPUG4hA5mlk0SGFBhH2FyMsiWtvnIf6c2tajJfI3zKAy6PieFQcnw08fDZwuY55+u0hUHthPfqtNj5A7nJJOue5YkMy2wpFdB4huorHAbJbWsPbYhshkPJbG9oC3kzb7VoKKiLF95fEy+ZrovfQqSIzOq1sbOMr80d5XhIhc+HJZXmWAFlS2IBGbKteVBDxP/bb66/YyunVC/b8KYvnF37eLJRhDYJ5+hU/RzxXs1uGbiStct7d8nO0qfpf7bTNXYWVQvUpI6SWlXyl0kYbE6Kt8nkImvepYuesnrlbYWXl7pPnpdAfu4626n1TnF9qHe270UZfBoUJSqV1grJCGvU3RcjQEinOOHUvlii7UAfqarlgRlBzR4/3LkFhgGFyCf3qKq7bT+w0OWpzHiLkmAUNmTQ5hfIfumcmblD7V2gQZ0VXOWLQIPTNN5MmsI1w32k1rwWJVzysiigtBeQ6d8iOR83ufxHomwv0wezkdaJZRvEDssHjE0xlXCx47DZw2dh2hG0LpnJeF5XKXXCRrzt2bwZfynQsxwlt2TVebON1X44tyH4i5CP8HU/1YWJSRJ8lfb19s20KOjHWETZ7X/ARiJqMjm3CWjruC5VM8KbsFyriGFsuSxJDnZfxrXtkUvTT8FWkj/90fwnGsqwzr1BpeeM/fM/HMQ03mK+ETlkHyUjCZBptQbKNMq2b1fkylnf5o/QV67LdMFpM4tSJEo/hCNsmP480oHLh30qb1xwKmLteWebBcpW2nXlTPwmbCfLkRefh3ywr2C5ZNtuotB6vP7eaZJueofbs+3h3DviYCIm/WpKI/BYR+RMiMkTkR9qzf1hE/qSI/Psi8pueU97LhDIC2eraLR/U9XeRNHJYXkUAV26CpHcSqf0vijPauBerA3bzUXG8G7ODHAK96FzVTdyMvD58UCqbHlDUg4dspFDb0EY2htbnkqLeDk9kO6LREh++3ss8r+Pjhf7HJDyeYpn8H0Kcbhu+XmgX2+jKW2hw2AfYu+R5ePLSRj7RxnjFshdY8nPeugs1ZaSws165GweT7xRUpuzw+zsFPW/eTz6xElvgttNqGx8+LXOhbe1JvZJt5NnntiyJspI727Q6Ko95FHxm1zr829RJpY3+0/kG8Yln317zewl72oPiluswzmznJSwTbx66WS62s7cVQqm0XwuTLE+a8pt09BHS+6SyFWvaOoiV0e18xJ/ZyEFvPK642PxAadG1WkBmB66a73cB872oywG9zH48LloGivVgHe+/VZWQ/8wPdFxs/3Zc7Fi+YOoOq05oAZKrOIwN39a8l9b8vn5ga5uUq+TlPkjhpLP+srGXtSFsaNFSsQ0JK4mUWTiX1XyDUBghN2niWsoiPlvcuMF37XKMsWs5y24obTsVTN34DMsFQd9J0Kft6g+6uwHvhPmO+LHSbvhUFmbXEv6pxQ4iurGL1e0NPm2NyMpKX+thotO3+6mM+cdz9Xrsk793THWA2jZWPK4y8kizmoYmiuQzqhaZpPy2A54ILwWISS2HsIPuv9r0cqGMfxzA3wXgX+CbIvKfAvBbAfwNAH4pgB8XkV+jqte1iEwvs2MGAS4XpDehsBsK/ym3aKa1ADk4c/vtAKG1qXOodOxWPSou78acmD0O4DrMKc8/vVA3ZK/IfIn9Ciy6y0oy5t+ZI+Ri0zYbvjxAOyuo9d1TWl2ze96uz/Za988zEki3tNO2yx1z6GKmb7SLM2D5zbBSOXFEUqHhwU9fvoZuf2YdblaZhNr6aRHnMf9WSHlUssrGebfmydZaVh/FHJopL0mwOhF2eoLyMnHmUhoMs/PSUrVSwktpMqt9zNgGTPFT6ZnmdQyy6p/TStCOoFUPZ4IUmkOoDN3zVb4OQEunXt3tvM5QE7VvkJGd0AE6a9EHj/lCuummnC9l7H2dJwvVrszG7ZQuHwAOOZjDe6XZR3st6oo5G3mi1vi6NsOFJkKq+L7SxEoxwxeviuPxCrkOQMfE/DeC8SAYbwVK3/JxvjEYD0yh66LvKlzHxZRrY4cnsLxg346+J91c7sZbs2vEb+ZTEFQQAQNB2jA19L3pq7TmZVqWsQHoDn7ZZqt+3E+4R3JIuz0P+Wpevubw0EXIjb8p4EeJcQI2GdgMIRoKrItiu4mG74KsTHfvUdEAX3xnjYom+x9t8tPFKHgr/AbK6qgTjxN/A584lrH4myzbw/9i4mb9vHxGBJyH3gvXPJuR8xxCMmD6xzkJGjkkUMsbeuS1xHUymrSO1zNEMUL2Gx73FioYOILWvklWnvPOX+1Erl1qXuu+TsG8DtIfx+LTa04RD/sBfx/FVv89Vf33N49+M4B/WVU/V9X/EMCfBPAbnirvhd4xs/8o2ntfif4JduTw7N86MELQhDe4ReuOZgzg80fI5++g3/4C+CvfhHzzM+CLR8h1BNjJsCbs70JYCIac8HW5JV8FSZm3MtrfqNBdzFWAf+NTiDABYE9b7dVo2z1xfaw331wr6TyaHEB3YJxHVn1OypN2O8MqnkMrZWVzydcd/3ZLsGX2dlIe7Twq0OskSrfGNPGhg58UUcp7aDz4cNoz9Rb5i0jER3KA0GSsXaouUkyX0apCE9Kjb7ibcp3DICmROi05K6ftUkf5cTf3nLyfjNbl2ErzWhY9pSiPSiG5izWhTMKCewmBHIi0+rRRj5R8PA3KxBO18mHo6JvZO1gOSRHzGdXx0rJL065DBKrRD0/hDBHvM/hKpwQ++r/WH4ZOTPX7g7Cc+4Tl7RgnhMXxTpqqHe6UtlbVOGhq2K5ZxB9xWRAamKHKvMX9YsaGLWd2qrQ7LFdd803pWtktT/xUwvnO1wra1vXawFdaFkTbvxt9pPuBXXlcJhd4yzZdXi0NfNUBhkLNXoX9rlzHq1u2cbk2k6dtXqD1QOdlKOUZlBCjH9MZk0MjdfWV89bkWM7vM6eI+f7n1ufo5OdIlH4AZfLZd5tywgb4d+jYZ2ihlLCNY3XaZhLummTFRQrak5x4cdQCa+2lBOy0SaljeR+W7lI/w4anUbXLTFku2sNRfYJotmsya2oWXqFMkpXz9t26ivsapbHErzCpznH9h/59Z9IPA/hJuv6P7N7N9HKhjMCc5MTeNlW5NUL6T6JZ67BWjBdoeSttrhqpTbbsWgfk80fIT30Lx7sBvLlA377B+L630LcH9BCMC+Z7ES4jO5YN3xJC2VFVat7eG6T3Dk0SLpOLibwkSoQmkF1DDDcjXUuj5bJK+Ur4znw4Mbo0/dk2W1pUGmVbhfdGHcdHfVreCN9iWYSyr0bh1XMORfDYqGhqWs3OSFiqd8GujTFA4KcKySU/kyM5lZehm0qKjGuftFK5+cqiKDIUyPtFHh/P+sfkjFZT/Vm8o6EUd0/XCepa8kLqhM/fQxAgPzZqGqXzSftJG1iU9wma4TkqEke+g0Zv1dm/I98/o2cHgEcWCQIJfSXsme8OaKmDlIHr10vy5764M8g2U6aso9ng4hM/AlzFvrFGfLscfn1A4x0FXznm9x1Y5nkttMo7d8bimQgu4pxbP3iP5D1K4ug7OcGrbKP+DTJAy3uBdieITv2AIk/aOzRwTB7VbGtvL12OGRUhmEfYU+cQKqvgMT9zdOkyLj6jKFDwOHSE85F2Xfku/oZMwHbt42+hNuXXHS6DxHGv2YB94hJuXKGuQ1+Vka85a9iGQYjLqG2xDCgJjzx/I0vjeRixeJuzcmgXtDetYhy/VmsBNZ6tdRYlbK94pYr8BAO87ZNeUZYGRvcj0zmJxViqVsNWLO/1Z9jtbbnLCDqy3vpNnjJrUQYC6nCtLZjM87j8yreEJloj6j4jd9Jq7TutZ/dPrHg6pGJwvDsMTZkxDyZp1RV80fimbdw4Hcs3O1KxiKcmV9IWW2DgAo/3UFyD7yy3+xvHeS/7sJmX0LU/X4/Wr+DgT/y9ywud/XC0vK8ufdzO1w+KyE/Q9Y+p6o/5hYj8OIBfvKH7Har6+z+GcU8vNzGjlhWmHIDvyxYHt/MwfeBKQEivAuTIlT3qgTwK/6e+jcvPfgZ5VOjbB4zLAX04gMuBwd8s47TD3AWA/bqPDjb6kQ1CXdT7nBa+x/5hpz0NJeHnR3vO6vCNzjcy7WXc18k+7Wj7w6hz5dpfrVVpda0jerSMqKovbDJXQ0vno0dOdCLnpjZNJuYsxVDnaTe5ZdoyyLH/sCy3aHuqm4AZWqLt2gUrZffYeslQrnlqF4+28n0i7yQ7vq6MFplb+IbQtX3sueattJ5i7Swa7ZUa/0pbjzCgkMIYJZAtim11I2PLqxn+XPsvrxsDUibZtgvU6nOV2YZ86jCXGJkDiPnfumLaDyZ4flokMaV2C/fKNgzsbgDW8O4mbtCuF64KGRoTknnYxzE/hyIb3Dhqa+GLaL7ZCCpf6ZepT+fj4VgJCrmDV43zBKbe8APvQ5uND8WNYUMb/uSsaez4HCwfoVP3p6qWN0OqRNOalc8G50/rpFK7Dqe43+VaWEt1I6Xua0hbL6f3/QULyDbd38QHmuttLv2Ez3o9VdZ4yFhfRap8+9u0HVedWFRxpZcC568mfxjfxSB/o4oj+CrQ+TKmNt8kds3+eFkQb3l7qrKSHIXvWP3Alj71DazVa5kIM9YuIYqwulIvgyao5j+WaAkqK04J7oMQV4lmyhzY+D2avqGqP3L2UFV/9APK/LMAfjld/zK7dzO90DtmiN6gHHYCzdBGHo2wc/BGGP+CQiDS7Stdp8dAXj8O4FtfQB4fIV88Qr79OXB9xPHuEePxEdcHmSuoGfybQOd8/TeHwrQQRg/T83Cu0M9p/QPJQIQ/lpD0ij+N7yaP/2zYoe2ZkowFPjuOctm9T3Z80ZN7LNNG1m15Xd9FNq8XhyC9QdsNUPlUW+lNG8QjRs7OV4DYbdIzpwP09xmqI63yxrOgbWz36ieMB3B3oZte/X4pNzOWck0w+kkyTcbZH9Mhx4vY1Vs0/Wyiton3yY9Om/sSc1tR9y6jr1JzTWT9CaoDmmVjDoqzQpuNvBN5GhQSZ0EjffWV+MYx/Jy3yLjy9Svpu2rqoDHp2DlPGeqAUIJSYteFpctV6sTT2T7TOW8HF89JczYOHUoYpBlaaNfcNxYsJ9yatCQn5eXrgrf+bUpV6FVjZ2JOgmCnBnMjTh+QQmHF46Hkt2oeT3sZqX0Lgp+2vDu+Z5gat25gaum/nE9Q5F8G8guTpmbTe8tnx9fLWvA4676c0MvgLJSff26aaTkk5oRvCWVm/WImHxlLCrk2K/cpYq2Ujvu7T1Fs69MEm6rI1qQJuTtD78wz7wxSTJtt/Aj8eZEBcrUKCL+iitL7zB07rXYm/couqfsQu56+f8XyFMs/hdInE9mO4t1jMfw0LeZOkx9NX+1SS8kIi8RUO9DeZSQKrvtqK8fnlFnbTNEtLDGwTNvwzuV8X23mjdBGEpo9b2AicdhP2HVjx9ebdIwP/vsOpT8A4LeKyCci8qsA/PUA/h9PEb3cO2buMGV/NKfjSL7P5Z3Kco7Emzi8A0mbAxeURhlYflwgn34C/frXgE8+gXz9+yGffgp98wb49C3koPfIJMWGJs9YGfPVZXXAaQN61of163nDCPmPCNOi0Ha84evQd0MrqHy7bQotybSA+MbpdX1DF3fwRebCueTt+nWZI7/XhRPEuc5MK4jjYatPbLbxCvGyjAldFz4ksxa+BGDlutIKxZNMGb2s1TYJsHmd9SU5qM8RRChZAJrk4MmeAJVWqYpMv3yfT1qdSFsAFuIp7IlJPwvjUO7/tdwssNKW/JJHCYdm3Y7i0xmig5IzktLuLzQ48vypH2kpUnTOi+ngY5OFJke+4ukhhc73KLRWp1RsNqNimGnrmNDlYMEPBjhae+T1BFmuM59Gufm0nsRYGtSzU+zEddyHGqZq6DT7pGvc/ADTimzxGEw7x1vUh23AYa+QqRvnIFqhOu5Y3nBStnztz4/TJxmrH5D4633SNc+82ff3mNptgy3tDlNZnyhE+mSA+BDfLS3/XJvthlYW/RY8Lrp67TLfzHvmb6KdR97KN3F/tWvH/bp9mK15u3DnNco6YcX9FcuZFvHcZczd7bQH559jLerbpJ+g16/U//YxTcg/C++uOnjuMMcxNcpyB5z5Oy7WBabk3bF8bcuJX9VnhOqhHwiLFNYOPXeb0PgkKq2s1F7nQRwcWp67c5M+9LMyj2iDwz6TovU5AD9wBEXKbAe+wMlwfTgt+pH985MQB3UOzwPikDKQHbOyXmmamP7Bfx+RROS/IiL/EYC/BcC/JiJ/GABU9U8A+D8A+H8B+EMA/rtPncgIvFgoIwNXjujmAK9dAwTIZjyFrWhy3sTAYmLlhwRkOr2kqACfvJ0ruG8v0E8f5sp76QcJICGT9Wl+NsOq83kRSqwLKdNag/e+qakmq1sANGjzWYsEW/oO0wLI9wk2MiY6NT4+qNjlLYxW/q5jd/hZ1qZTNP3KOxGSJ+dFeZ2ZGTFDHjFf1t3hytY22nzwJrSk6KNRkQFgxRYUoocK1j2rN8/I2+TgxHkLOAdXhnnmcx7KmLddMK549EwbWl30CeeJVcYsY+Vzm9bsGJ2l0ov1uTnoX/Vt5+xFzcVqMeOO9Lw1C1uZxi3oYY5hd+uUsWrsz4ACBByhVMaHmnxSkFJz9GHovFdpqaOHDaXkZdoYtAgNbj8gTXx1HentjWhDhJMiTQukfbSWVXZIHBcdsQ2/YoXe7KUq9ROD3t5jtsbPNr7JWfKOlwAFPKINtV3mjt1K9e++ii6Bit0d9/v1As8nuK+7a5ezO9UNn477ITMojxdz2rD2+tVrWbsi+yrQg8an8tWFb7xPbFjuex6zmWz8U1eCGRTwq5jbpKqldGxbKpDz3qKlUvglQu/bJ9gdfIPdBo9b+au/6T8SL6WZKCvZ+WpWuIe/Rz8/47vU/GrrE/1WLOelLZY589UTDw2/A8vJ32AsfoDf3wXyMyliIez5fbPafuduaN1D8dFEhrKTIs43ZDH/6XbFQCxWBd+6yNhD170OPhz1vwtJ8WLH5avq7wPw+06e/WMA/rH3Ke+FQhmpC9j+czhV2iZXNzQ7Bw9b8V3d7WlbsJDCdMhRoN+HAiqQT99Cf+D7gK99Av3690HefjJPaFE6wp+R32fXzkeT/8QUbbTtX8K6eeJRDhQE9flNWronjc/Wj2xoFZW2X5d/N2nJ22TmgVL4mCJjs5W2Iopdydn77g3pUw8iZ5tK2vlMn2KblCkHchpNYPngQdQLDa/9MSvt9UTtiOse4JAWSftJ2jLNnSdlKectZVBeoKxWLs6MKqaIiDzeOFxBzxuNZrFM6hV567sAGo0+HW0fdEW1EW3qUzPtfHVEyAnRdvmJNqtOkAsAWZWlyZe2Te3GrW6hJQffM2p3vjGIUK/N7A9RLuZRzjngyAndbAsKCNM6TRXU688d7EAuQLF+aUfegfOH9f2M905s9OgD9mfYrnmm9uz71hBL23YH7BU8oshCK6r2jTLLQ+HiZWfeF+OssbDPSBM2PzA6X2Q/X7BNiq/y0+7CHvG34RP9LunBt70dlsZJ+fh2o1XKW7KfVa+ufLoPKQVJvbf4G5zQet1zXiUfySLRkf7cSAptMNHCw8uq9UGT+SplKsAydLtHow0TVHnLCv3zQhmjD1NTSVq1/yetFs674TTRIm21qCMStskmWStGG030I5RskcrY2WwV+K+wyY5jqFZ8cpzc8O1tTjdtIacy2S4YmRP32xtzpI9b8/A7IWPKrMHJ5KW8Oc1KP3CYHF3fEeUMKifDOk3dwPo5edSmleWNnbdUxF+7daz3yaG6LYLWyc6A4Z6+zPRih3+UxSClVYwj3yQWKPQ4YH0lHGigdF/gTlPwAAEAAElEQVT78C396GXk4EY+n3kP4K1gPA4c4wHj7cM8kesiwMOMb8lyNMqKD4Qy97K4IKe7Q7xDvgu7KYtummy3tEBOq6Ms+o1WVht56rHKKE2Gfl3Ydv12fOjZIiMwV0CjbtuOhnb9pOg3bNUnZOXfKtA4ys50i3bTwMX5CNOS/5WsgzkobULyMlIbbM9wMCDvZMtRUPhayMh29JU4gQqHQEw9/LNKnHee1NWAM5j6BE4hRlz4QIqDjOsjf08k15LXZXTHFLTuJTyvewEbEEyzUQhJkVNb25EZcuaDJa9Pvw7IqB1EFbiILOEhGcoGKzdtNb+KobN96SXpdJ7sFU3F2g07MV8ZVZV5SlbgjTvQHPDtaWfeC7ItTIhQXCC4wnb4yTQCobbhp3VJWCPtPDnl6VxS9HGnXL69Q6dxAYqDT2U8W6J/Kmnqj5BrCirAHLUdtM8YjaWFlgceK4SMqS5bjokIcnyQZOvIfgBV2Lo0JsNcCRzkHUZN425Drxnb+kEbXcaZN7FFXOcdLfEpfJ/wN55fjxPaBmt9Z4vheOdv2FV2WwiSL9Nmv+c2rVvagsckV/DjOglanbTBl8MGtX3bWIgJ2y77UhHgZvOXokPmdUxNGQHEARp50mLKyHisOodHjtfzego7w5aFhkc0gFBFfgZl8gGM1suJWa+EH8vfiaFqeJOKaTWHdyEeuBT9pi+7ap7BlhFMqHaDQI7ke2H8dazjjs91DbGunD6j18nEgYmpc+dI5gKYHtRW6qsAERLsxZh+KSOFaNPwIP5Kf5bwP4n72Zkdk3086bjsH5M+JPH6Amor3o4IX9O/GPqRDskXha/fkS/hNN7vWtLv2Lti39X0cqGMZ6mM7u3aSSg8RN0bSA57GAR5Trb8EIFwuReZh3wI6ovB1NDzn8bHRXR+5CA55KOEhwQthUwi/ULKi+okn8G35PV/2Jz8o+XdXcckjP/IDIXvGZ+u0pavRF2HzFu7Wm0rDdRG89ZtHziHlhu+vSmWay2T8wR9+9HzugoaJKVcaXlLivBL7Q82vUXIabfGsmRNJadsh49RVtqNPktR27TKvBF5uez95bm0u2ethp8hYy+XHVs+zpA/HjisdVKvu131RuZN/bItpGRFXcHvH6Tmd9kQu2puG2lyFb6tcuOdTEvHehh3l/qjkuOxh6sx7pcFouYHJg5m3nKcMy3z5wBeS18sC1GEx9k2eZC68QNFjk6LLaZyUDPgtm75Ou4Dez9gKt7MmwpuaXcyL7hPfG/5G2xkXJrKKf52DNrrW7KW+kPxp+FTGCMUNaT9REb/6H3stLe6XuzKspZnHNa9YmzXD1Yn5eh4L+oJfI5uYPqd720z7Qa7dzJurzf19YTM/HOsGZ6g1TR+r4T38VVPyFy3Zjm/FrzwZ3tWHfc3fv3UzkoO0v45uLv04/J58tgb4CrXbjzBv+s7dM0vfMm4/2UmBWa0xfdAerFTGQtYhaNS0D79bVptDd+duXsNzeLYwShgH7M2ssuB8VYwLoLxcMyTGKnI/qtM2LpQVZPdGLv1Gy3/ROqdcku7FsF5l+uNWXdFbWVuP7uvPuUL8NjoFDKiynRDuxgAFZfPALo3jQ3fIrDW+1qYaMizZCYhNcVDbSS7Ci7qlDyyy3piW2oqW2dU1aMwjka7S6GulR18oJVWuGSgxA2SXDlhIJmky8ADa8YIf6wtb4bZ8FRC4AfrpdRrEAsCIFwfNfFzBd1CSITfBWMDodBWThoie3hb+lLjq97aUg42vKiFu5TOa+EwxF/QPjrtptJ8JsY3QmmU6sT4uDsOPIUPUqdhZlmygskzU9SH6a90V1vOktWf8yEGqETRJv1TKPw37F8136GIY/F9d6vzZT6iTcIT/bX96pga9Tsoc3RufsOlirNwK9hRb+8g8xZtl7Hb1a+pSax8Ou2G905WKQTnMi+3zppgKcrqQPNf7Xy00SJpowbLaJxCHp9K4qjURCxtH2S0Js7ODh0KnOpk8qsOsmtJJuPqN6r/kehYjpol1LIJczKfsWeE5sJ1j2XCW2nXN6zKAhTxVaINPJY9LeNxVCnt3nK5TlneLwt7pMw5RuB6J6mKv1FkaCZ70Nw48D7CY+UjOiT7gSpTYc06tH7M/rW/ORyHoPgOq/I+2itMqoCOD/97RenlQhm9wdjxOjJjhci7BgygNwYBPfKsFGIVrbmFKUkfIfojuXAMD/zl8+BDZWTvs8HLQWUCMdCSQBqmrQ6XBJu/nOfWg7XrYowbeTsNPe/6yYYPvZu7LgDtbHMmi5DpnuJ7K3GzAKodvU5K+WvhWRWNKelHETFZJ7KotE2uZ+ol9aF5kIiKsTxxzG4fJW0YeVhLvVdDGb0b6EbXtcg06lqt2R/cqa4hVvOpABZe1mntvdJNG3Fnz2EcUERUGeI5vESkK02+cU8VOPhVbi+yHsCSFMKfUAwLeCQQO+8jHHOWkUZQW62uHViRn2j0f50v9y9vX7tuJqb5wX0y2pK/k+HSr6VM2XvKxlUp8j7jmIYFPtw9yyBgHSbrxXD7oPofEi9AiKh9u7U2uvQhs57HQcMhb/xXagP2vgwOAS50HONstBt3My92uLj6AWMB1F24Rsuhe6U8GGH4rwY2nA953wdane9NP9Dun4Wwu31L9if8zdZW/mzD90kfYve9yXQf2QNsSlHqJ9b1PcpNZhDvgr/dj8viB0oZ/LC807AmxpU+fduGpTvdpj0tC2P+7pbjI4eq3fI3IZMv3mgUuV/Fr7YNVI6dQsKe/n5e8+PKpjuhzUmVhW825MoiNRrLioYzZNFxWPiJL0ahTqwSJbm7C7R+GynyplWyDjgxX3bPPvFz/Q84FKb+2QHMF5ltDlR/x8+KgdpP9gJlp0z4/lFoX2v6Xtkxe6GJmbbBWHmE0j3pXRIAOUjQvJC13YPxJnyhUrgZDTigA/7tiK0jZT4hIzJUkZwk9zJeTCpqkiMUyruEKjAfz9mcaPAlvXe2OOtUZQNQ6vUuHKa8l9b4KqrNIc1mNwYZ8ZhtQ7T5/lArq6MuZXO67sikl4GqaNZJa5+6IQlSLfoJeoXWxsiOx7PmOwBMmsFrPsFhu6aTSNoiovgYQePdAs57bGzj/ATpxMM2YjaNiZLJqB69bnoJ6Kh2myLJ/AXiG36Z3zMRjUFJDFoWWmfePsos1ew8ZGGnnvrYwCXqfjq4DLMxnWhi6PnnOpI5SGFb5nsA0UyiDyffXHnlNqqLPv7PbpzGtAKWERDJ751Vvs5HqBycXGdHObhD3ghBOk02TigTZpE8+7rEdYMac2J19EnvOCP1uHTstu+Kxa2RR6gMW7hzh5BYbvVLuO+4uPiBsCTAA/iOx6d+oKk8y0qcj75ouhY/sKFd/EAWmpHSjDEuu3i9bGhdlnpZsxBfijItjxKPV39TQdv7FNFucZHKWUa5WN51kzbB0q1A+bD6DGZsLagPBjJ3FbK9cM4Y62VJLzv4ru1l68tO8vKC7y7vub9RHITlzFfhOKCUd8PW9FbMd1m7n3Mc6NO96m4rLfuTNHPuYuX7s3af6ni/K0h+IHTvPsP2C8TrKutfMMpR9IC/o8wa0G8KT3VfxD6jT8QPg8ZDEyJn70++Tsv+hm2R17WLsN/nz6BkN8mOwT5j6Sv39B1JLxfKuEMS2k0sTZTBe3Mdp40pMuSEwkOKZ1Tk/aH1iCDd8PXODWQ5LDa/MLyl3ejT7vDCq99YB2HaqPZ8nuJ7a1U15JCdvM3x7/gizVtGpU/I3ItduO9k9mreFF1+nzebmruFZMQR3F2OMho4kdFvdOIdrabzi5xnMrb0lONe6rZLeIt2yVzfS+g7c9lPNiMdsaOBG60q5vsejaL8jhDCzre/M+W0SrQhHfIjonSv0Tjf4VeaQ0TWfal6GhDkiVuZn8Nf0J6h3Ld8Ss897G5Xf422l7OFq8iLfaFw57/nlqV8mIeeg6zWMCk+Lk/b9FvUb8qqkQJX1FDFRwUeh/0eOB7nfajdt3wL7m+FpB8LXumaV/Z541pq9vUC4cPKNVp53iJ3Temmv6Fn7+MzWkEL7SJfy9uL2vibnW0yJKzSxu3WnbZ+bgMqQXam5K6uue/LIlXrgg33T/1Nf7T6mzM/sKv7LXZH16rGuI37joUaBS/RIyTIU58SWPF4FjTcVpnxebRWAPuBTt59xjpwWfFYwNWY07Sj+Ruf6AhGq0PFhfiK1oNKalPU9q99w0zz+eH4He6gSsf+5tKuy8EdqJ+Fkd0zTRvOhaydN3a9XmzK8Lz0PRLKKPujWb/DTEX+EoA//V1nfDv9IIBvvLQQX4F0t9Pz0t1Oz0t3Oz0vvUY7/bWq+kPPzXzH/a90utvpeelup+elu52el16jnd4L979bSUT+EKa9PjR9Q1X/9i9Lno9JLzIxe41JRH5CVX/kpeV47elup+elu52el+52el662+k7k+52fV662+l56W6n56W7nZ6X7nb6qzO98n3Je7qne7qne7qne7qne7qne7qn7/10n5jd0z3d0z3d0z3d0z3d0z3d0z29cLpPzDL92EsL8BVJdzs9L93t9Lx0t9Pz0t1O35l0t+vz0t1Oz0t3Oz0v3e30vHS301+F6f6O2T3d0z3d0z3d0z3d0z3d0z3d0wun+47ZPd3TPd3TPd3TPd3TPd3TPd3TC6f7xOye7ume7ume7ume7ume7ume7umF031idk/3dE/3dE/3dE/3dE/3dE/39MLpPjG7p3u6p3u6p3u6p3u6p3u6p3t64XSfmN3TPd3TPd3TPd3TPd3TPd3TPb1wuk/M7umvuiQi/xcR+e98IO2vEJGfE5HLly3XPd3TPd3TPd3TPd3TPf3Vm+4Ts3v6SiYR+VMi8m2bJP15EfkXReTr3yE+P+rXqvpnVPXrqnr9kvn8PSJyNX3475d+mXzu6Z7u6Z7u6Z7u6Z7u6XWm+8Tsnr7K6e9U1a8D+JsA/KcB/MMvK85Hpz9qkz7++3M9k4g8POferfS++e/pnu7pnu7pnu7pnu7pO5vuE7N7+sonVf3zAP4w5gQNACAif7OI/N9E5KdE5I+JyG/c0YrIrxaRf0NE/mMR+YaI/G9F5BfYs98D4FcA+IO2e/UPisivFBEVkQcR+a+JyE+08n6biPwB+/2JiPyTIvJnROQviMg/LyLf9yE62s7dPyQi/w6Ab4rIX2dy/LdF5M8A+DdE5BCR3ykif1pE/qKI/Esi8vON/lf2/B8ixz3d0z3d0z3d0z3d0z19Z9J9YnZPX/kkIr8MwH8RwJ+06x8G8K8B+B8D+IUA/gEA/0cR+aEdOYB/HMAvBfDrAPxyAL8LAFT1vwXgz8B25lT1f9Jo/yCAXysifz3d+68D+L32+58A8GswJ4x/HYAfBvCPfoSqfzeAvwPALwDwaPf+8yb3bwLw99jf3wrgPwHg6wD+Z60Mzn9P93RP93RP93RP93RPryTdJ2b39FVO/6qI/CyAnwTwFwH8D+3+fxPAv66q/7qqDlX9IwB+AsB/qRegqn9SVf+Iqn6uqn8JwD+FOXl5MqnqtwD8fswJE2yC9p8E8AdERAD8fQB+m6r+ZVX9WQC/G8BvvVHk32w7fP73H7Tn/5yq/qSqfpvu/S5V/abd+28A+KdU9f+rqj+HGdr5W1vYIue/p3u6p3u6p3u6p3u6p1eS7hOze/oqp/+yqv4AgN+IOSH6Qbv/1wL4LTzJAfCfA/BLegEi8teIyL8sIn9WRH4GwP+GynlO+r2wiRnmbtm/ahO2HwLwNQD/Nsnwh+z+Wfq3VPUX0N+vbs9/ckPD934pgD9N138awAOAv+aJMu7pnu7pnu7pnu7pnu7phdN9YnZPX/mkqv9XAP8igH/Sbv0kgN/TJjnfr6r/xIb8dwNQAL9eVX8e5m6bcPFPsP8jAH5IRP4mzAmahzF+A8C3AfwNJMPPt8NKPjTtZOF7fw5zUurpV2CGPP6FJ8q4p3u6p3u6p3u6p3u6pxdO94nZPX2vpH8GwH9BRP5GzF2vv1NEfpOIXETkUxH5jfYuWk8/AODnAPy0vZv229vzv4D5vtY2qeo7AP8KgP8p5vtsf8TuDwD/CwD/tIj8ImC++yYi38l3u/53AH6biPwq+3TA7wbwv1fVxyfo7ume7ume7ume7ume7umF031idk/fE8neD/uXAPyjqvqTAH4zgH8EwF/C3EH77di39/8RgP8MgJ/GPDDk/9Se/+MAfqeFI/4DJ+x/L4AfBfCvtEnQP4R5IMm/ZWGSPw7g195Q42/ZfMfsP3sjf0//KwC/B8C/CeA/BPAZgL//Pejv6Z7u6Z7u6Z7u6Z7u6YWSqN4jm+7pnu7pnu7pnu7pnu7pnu7pnl4y3XfM7ume7ume7ume7ume7ume7umeXjjdJ2b3dE/3dE/3dE/3dE/3dE/3dE8vnO4Ts3u6p3u6p3u6p3u6p3u6p3u6pxdO94nZPd3TPd3TPd3TPd3TPd3TPd3TC6f7xOye7ume7ume7ume7ume7ume7umF08NLMP35v/BBf8kPv8GDAAcUAwL/7u0XemBAMFTwTi/2zJMClFfiPy0L+ld0pVHuSKRd7XP7XdlwOZXJ8u5u78RXCFSBEfNmp60ynpfTtF8Y66l+Z3INAKoyZSM5tqouZeh6T87y1vy3ZNKQaWerWzJla1jyvqetutxhH4W13efT9rxntnpfmbz9q/WrWzJt2UU5t2S6Ldcuu8v0MbaSTrK0q/fRU6NFqMpNmXa0z62/M+zYZ1f7rwQuKI73oK/l3Kq/M1v1PuPpJ//Ez31DVX/oVJCWfv4vfNBf8sve4GGjwRdm7wHBox7Wn2/bfaj34JRQFYC4nRKrHCsA4JD55BDFETze3z7P7r+nOtSGO7D2UZGp006u2/XVk954tpbnmqjdHXqYLc/a9/tj0nNstS+32+qs3t4HjzZji026hSdsqzNG7+/nbviqW/pZu3GZ3HfvZHqqrFsy7Yrbt++VG9ffXq73Hafcqrvn2+qp+tNnt6un+twN/ej2COx/f1vt2/ltbFr0a2z/1B//5nvh/ncr/aa/9fv1P/7L1w+m/7f/nc//sKr+7V+iSB+cXmRi9kM//An+md//a/ALj3f4+vGId3rgs3HBT18f8FPjU3yuF3xrPOAb1+/HIy5GZV1Z0g0fILCS2tgUChgYDYCcXaYBwRiCx+mm46kAEEmH7ZA27/s9IIZuopWWnL0/84FA5lOIdj5zUPKoBz4bD/hM38CniItMynxr2ZUvKK/Ch3VZFkrePpwRmUD1qAc+Hxd8a7wlW3Wd2DZKtpm8DskpQuXbbQGrZ11k4kHtox54HBd8c7zBI96kXYXrwGwf5Yz53MtXMb56k+9qq7UORBRXveBq7fkzfYviVDXbb5WRbUXtg+rA8+5tlTL1fiGiUD3wiANfjAPfHm8xep8KuzZ9+vViq327kS1tkxnAIw48jgOf6QO+sLa+tu2drZTqSVp/8/vW5sguZ/XHdpxt/YIv9IJvjzfRcnY4cF5/a1stOBB800lWWpJRJo494oIvxoFvjU9w5fpbbLXWH0JfKThQ23pv981Wza4C4O//df/nP433SL/oh9/if/77fzV+wfEOXz+GYcqBnx0X/OXrp/gCF3w+Lvgr10/xBR6W9s/2HxBcVfBOD6jO6dVVHZUdrx7wblwwcMEA8KgTCd7IFW/kiq8dn+PTh8fFPrs6AxD9anJQWvBSiEizT8XjY9PuOm68M9z/ln6CxH0F1Ntb9zdcbm07LBMa35RpxbrD9BMZGHrBIy74bFyi3fX27R722PTXfd8nDGy2EpuOs11Bbdafv8MF78YF39I3+FzfGAZknXQ/hJCr4VPBDa4/DdzgOtr5cbeb4/7n+hA+8mP83CrzCNwo2EbXve+rwnDjQrjxtJ+rY5xdez3zzXVssfriWdYjJsbOMQ75yJvt5rn+Rk/qiNqr9D41cf+dXqz+PjmvPyqv2nHXbob1sUlzLLaQbf2Fv7L6ezcu+OZ4G2Oc23Xgz0mWjt0LDlQfgLDVaGPFme/v/bV/9L1w/7uVvvGXr/i//+Ff9sH0b37Jf/CDH0orIr8FwO8C8OsA/AZV/YkPFgQvNDFTAN8aBy7m6j7XA/+/d1/DF+MNfm58gm/pAz7XC0asWs90zP4L9W5DCCa2iKPUQNW4iTk5Xk3w1YfYCbJV1pqf+Bq1qJc98x0wvkqdzpbxJxkNC1VwGCj4mlPyEdgjvNMDVxwmowQv3h0QIKBDoDNvAKoED7eVP3E9OIb1UH9utJKWEltJutrkzIf9hS/ZVgShb+U787othapjtYVChuA4ACV9GYycxzuSJ3QbXgfJfQRAmtWiDmTly/pLynVLZndgqnMAeMVRFgNc/rDzEAhtCtT6RLTlWQdCbb/biusPrV+knsMc4hV15S3aL+kXumO2/awDOeFb283UxVtIlTUpcuAwNrZK05ituN0UW0gMJACUdiNuQaal/ljjuHXuUusc4D/qgasewcz1C331vD8C7HCF2s18OoI3FcC2Ciybda8KXDEHpGpDiT3fWSdcf4yFXH8C4NA5OqkYsSZ1u1K/+JAYeAXwuR74mXFAdOCdAn/x+ik+07f4metbfK4XfIaHWQ+StXVwp0D2fYHijVxt9wT4RK644sBVH3DBFXIorjp1vgC4QDAw8CADb+QRKoYOWyzo/UqjX/kw6CBrLbgBHuDOxUGvi+wbOYAeCtspvBDue/tW8je1X40xfUrFDZMhcEO3+kErpiauCsR2yALLDDeifYMHfNlvfcBZcaP6uUPdM0nBOi+H+xH74wO5yBq4r9zLzBbNZ4RsHbvJGBU3DKFEilxOq+TH477V36NecCWNn+XnnvQ3k3LApwsuoUQ/FOTYJCyncwHjEZfpA+LpLb6GbaRv93OzP6644W3niDvAQdidckmMcXh8d7vdPMffuISAWr/we4zHh/Y+ZWMcTMz3HaqVb7Yb9k213YDa84FBJanmGNakKvUlmvXg2WZbJ9xnP7fBm7Uvd7uu41uUdpOLU97Ojpr7FSfFVcdLMf/jAP4uAP/Cl1HYi0zMHvXAX7l+gs/0wE9fD/zs9VN8e3yCb443+NnxfXiHCzkhwPpgNP4J5gLoSPclCtEctAs1WXciDt8TXBXvxmEr5ILPxwUiggeZATXHYc5AgOuANVZfVROTSaCqkJFO0QfoU6YptNP4ANnF91VaI4Wq4hGxThETU+8sMjJv1dMDQjX4ig1MIcfsYgR2EMUw8J07Yl6m5GoSXV8HYpCqQ3GVYwI0DlwxyDbEFwI1Odjyk693/nRfs/5Snzrpq8B1QDBUbaI4S3a7EvfgOwBrG0fRL+rTZIKBN9sGpM9huxfs7H1BQGzYcAXmpBqCYY4x6w/Gw1zBIGC2OvG2gZHAPVevqe6LXa0dSOoE9TqZdrzaoEH1AAbwSMA8yGLerrhOxqD6U7WVZXdsoH6lYSuJus/FiT6AiwmsWjtXH3Bkm+R2I0udZPsUFeKh0BgMyOwX/twwIiTiwYj9eoTvoM/+eMWR7TVw4Ji6SQ4sub1G/VlDcRwTw4xDfcrt9tMYVDmND/0FiiusrfskrfQLjcGNYE7g2DYH9Quvgxx0aeTV0taPfX+M1qEYPCp9Zrqq4Kevb/C5CL4J4JvjU3xbP8G39Q1++tFxH8TbrCej1b/huUzbHvLOJFM84IqrPuKqDxBVXFVtp0dil+0Qm1iq4Iurlzsni96+IRoTaAGgIvO5YerEiYojI6057yq10ZF9dA6WNOoaAB4B2/PJdge3xUjdHdsKX253rW+M1jdE3XfRAgN80jNsAJu4cW244e1MQo5jTlob5hSZWv8diug7ghGYKtbKhvoQ2Fuu+88DqgOPKjO0MnDDeIrORTmnlj1uVH+TdlRtfcMALnDe+6Rw3c9/HyFz0QsKHcAVz/RzSv231F/ifOAGBtw0W39KecX66Du3keaOMvu5yjf1E3oWPlKsP2JE2w7cID/gMjlOHKG9j3EydH2M2e5996qEprr+3G6obae+3qe4TiouwvsigCEjFvu8zU1fZJP9oeYjrQ/dqr/Sbsjf+A4sT8Ks3cR19Efvn6lDGePMFSRcddp/W3+YC20CwSEy+yNhOePAvj9mn4ZhZPQF8pnULV9dUuCD/NKXwlv13wPSf39sepGJ2RUH/sr1+/HZ9QuoCN7pA97pBT83PsEXtl0buwWm52xi/ns22kOOAIDDZm0aOSq4O5QB2ZEHLvjs+oCfevd9+Hy8xcNxxaeXd/ja5Qu8wUT4q/J7CC6ZBl9vshO31RybC220kkAfQK1KKzrz+SGA6AHRORm8xmZ0rkylLdhFO0hUvhIyAULWK7aKiSMiv8ul8NUxWwMbgqv4DpXL5UMXH+hpXM3BB/Hlmi22WuvvQA5eY+1H/JfX7yzxUS8lPO+gZ5m36SvOF4B0mcgW6c2pLbjNwyNRHU05xhALHbGWWCboShZjW7V2E/JfQgcJW3W+1i+sTvzpLMfkUNjqaZae+uzqD6f1t2u/QjLPdsT9MXpJk8sGDSZjtgWuP7JV1J/bQnzUlLUuztH7hbP1sA1Z+iPLJJDZ1tlWS91XmXzXYl7yeuucLPkOWSIG1bV4Xyb9QINfn8yrWFvnOlnrz3/n6rpbx1MMy/OJ1rpPefP6Y13ewIGfHl/DZ3iHoV/DO0zc//Z4i8/1TQxQGAtiwrvBKx+Su1XV7HGRGOLj+y5XKHKScbXVZ4WFQeJh0ujAIYIHVCxw64pqDlbsN6gf7du3DxhrfwYU6b/V1tVn+38cgnd4QLQYbg86AOG6aHxLW2r+xmUKf1pl9AG0FJlygfCd7WwLsm15YddGW/rVE+17eiYf+nrv4H2Y7G/Ox7lfLcTXB5zebsKuJ34uay7x122auCGtjjQknPrlUJwxdmxw45af29cftxvn4oNslslrcrWrWF0nbjwkbtwcp8AWr7zNmUzcH5/EDbYr4aJhGfQyZWIfaWMFnhq/zzilYlSt67U/ZpsLSc3fzFdbHk7qDzh0Dv19wWHql7tLax2xv8l+v++PI6QfgRHTb7/jMc62/kZEBalafzQZ937uhr+ZSzSISRzZkVz+PX0H08uEMirw2XjAF7ZC6rHZQ4+yypGN3Ro3NXiBpMM2/LZ2GLTiz5DhiJlmj/+5x7f42Xef4t244O1x4AFX6IN1bd0NSCYjj2SoDVgiXM9ph6+qm1wZHJUg4vr6C9ZXZCicOwDl7Se/LrbxfLNTDsmQkBimmwwR1qfUuYUHc6mrGi8dMxROx2G8ptGHCK0m5nRpgpftDZFM4bwhANcfUHaC3G3GsFOKYAG9j+OIQwPcxoMHCSZT7l5KTmqcL9WuD/Rd5ozUzLJcvoOEcr5DBddxzJ1PWw1DlCWhnzSZ9NRW0yYHtTmNBlhlKv1EvYbyMJ1HnTvEg2Ta1p/VyUF2mvpl/UU7CT7ZjqCzakez2wFvY37Qw+z7j3igVdbn1F9Uyawzqr8VM3w4ZXwprKMP/zwk7jpmqNRQa+uLrdyJ+e85eVALo0oEW+uEZWSZin5B6XY+5oChtPW0ozQ+Lttwh6zz6VH4MjY1uwLwd3sYT3MIkn3ofZIC+GJc8Jk+QAznPh8+CJIZtun2sfYNWHvo9a8JBwU3ZP5n7nYNvBFYOJGXPXm9G8DjeADsOURxiNDQaFcPNCD1HNQeavt2uWgQRHbgcj1M8DrEQtgPQCSwYDLIckq/ksaXQmyf8jeTD01HbEvOc6jjmWZfCFzsOgR+bfrVU+3b+tWwylx8U7cVLNQYD7ZbYXUrpufie3v7VsQuXVRMTu+rLbI+HTfm7lXW6DC+c6J4+Ntu2Y5OxinbdqPPaTcwW+CGXa3+Om54Xzgdp8zn7p8U3g1J39IfMyP3R29/YW94O+QxTkYEffA4Ra3uwt/k5PG8P2ZfhrcbnbZ6Z+Mu9xu1/rICObwxS5TwF+znen+s9cn9MRuHGO2gxbh92Gf2oWmq2/3R+1Cpv8A1m1hTf8y14tqHXmsa+KhQxh8UEX437MdU9cf8QkR+HMAv3tD9DlX9/R/DuKcXmZgNCH7m8WsYmMPGq84VJpERTUTkwMCY8cDonT23fmFAOfPO8uOlZ81VAA49gMwdqZ/94i2+/e4tPnt3wTcfP8HX3rwDBHg4HnG8eaTQkQRwB/MRQx0fGknlJblK4uDh0C9GO/SKw7exZUL945AMG8RcwfGyfDVKRHDt4QaatlDbbh+m7LAOGNvVgSYSO0SHAxytx9sYJ2L6JyiNGSa0q5PGN+3uMoU1s/7IMjJyJUjhoWFT36xLs60q3sVAxkPffCLrKzspEzbX0W5Kq/IVJqt7RayQcpsD2TnqT4c5Z18PU4xxlDoJjS2cApBwGKPVH1tnqJ8mZ/3C2kXspHX9nFLGdDgG7grFdciJTFM/t+VQ1y+dWk4DzIG6v6QBh0AwdESb8vh+n3ypDfgfh71LiXzXU4oOSQsOyQpn4+3E+gWOopOIUOhinv8a/QIcIidQHfMlcPi7lAPX8XBSJzmkEHN3vngSoapmC2m0/t5BTDp9VENtLBy/9bF3mBNDDA+HOWy8oEvbFuTgKhqx81Lv11KxqbQbClcyfTT0qwPL90lDBT9z/dTC42bEwrADCaJviWzat84w4E37HjJ3vb0eVC3OQBQXUYjOHn7IgWMoPsOclCke5i7auOCQAT0AHQNvRLIevJ2Jt7Nh+s++HvgljvvUr8LWdekk2132deg8CMXb3ei4AdsZ9n4lbgvDjda+uU5H6GDvNhJeIVbdXV/vKzbQHYIv9GKRG44bMU4tOjh+1fZN+m/9zSzr8EEgeD/G+8Ls+95mofMVhMQNCWzwMUDxN0+27+Tr7zIKpNmCcXH6fKW+gXGFHzijOACdPhLNZxiSL/jUdWd/s2831n/Zrowb1l4nbhwYckzcwJwY1THRia3gExHzN6B2w/51aTcVg9TbrttK1d7fvQDmu6+2gBnjFO9T7zNOsX+9fhf9Sn/0wbvppwNXO/xjAoFinu13YKk/s5Xzm5M6r0/EGIf5Zh1xu7HoFvXxH2GrW07neQMDB6C+cOjI3seZo777x/2RQsH37SbbvsL7I401QiZEXb/GNCMjPkq+b6jqj5yWr/qjH1P4+6SXmZjpYScOYjb4CCu7ZOiFKgQXjHLtA0EHglzDPLTlVYEcFIqSXclGZgceroLjC8G3fvpr+OY3vwb95HO8+YFvAj//gvHmao1ZbcLIA34EQB1xUpXzyMGSQHEQrTstz3PYaWEpc64ozUMILvDZT9mdUa38/Npto9P18CQlV7/n5CdWUWwr2wd5c9ChVCcOgTPWmUMiIswm+EyUyi10yYG7D/IPrjtzAAHeiMnYIR6aiBnCE3wweSgww3/maq6fVOeTB+bLMoGBMOqAZUonwDLCbOJ5YA6p66c4IHrMHUZ9iDYnja/opdWf0MRZMU9GI5cjau8PUVuP+nRAN11ZP8UM07DdiGscRb7pUyqkk9qOmYcu8iCTBszeLhWNluwafDIMEi7XwHwnQzmUsdcfEhes/Wr0oexTT9NK648X0s8nIDYg1ll/sTbb+tQR67E+/LjQwTZuG+oHvT+i6pMHDFl/DFovx/vfJU7Hy7au3i3gk8zADAcnZJvudeLEfqpdhCiTnUUvALW5LPf5aeDAO32LobBwPal2wuzrByovKWqM2r4HEve9zdq1TxBip1AUb3VA5cB1KK46T7m8yMAneAc5gMtxzXohXIz/Ej4F7tsL59zuDozEQdiAPPStfX/uFB7z3y1u+A467aBh3745bG72Rxv4aw2dWuqfsQ6KQw+omEwAtTuNsm76m9K+e7tTi0TwQW7FK+7r5V/DWMgBjPl+0qN6KOPA4W206OfqMV57/ZGfngBW2ne2uarvgQODfYRc5hHrMvvoO7yx0Lj9OGXBJ3D73bSbWKDkNrfzp4P8uOe0Q1xwwdWGe1u7tvqDqrW5gSPC2Ykvtxth/fgwmgHBJdtcoFqOcR7xEGOcW/jE7WY7Thmo7aa1Oa4/sQXK7I8yF4jEcF8esDu52PUDtWkOn92NU47S5g4MwuPalyuuZbITZyG1/tqYLl4bMJsU/XbjsO5PwzZaaA+VkDkWSl5xeql3zL7s9EKnMs5wr+PgDp7NsTfN7LY2oEN2/vmcT72ygawVGOtQkqWJzNUIBfDuswd8/tOfYDxeoHLBMYaBnVFKDh2AHNKJXfM2v4IcwYbWBQ6AIkDK73HJDGvxYAl1Co7V5kFAluOlO+z0NpqyC9h6UY6VG09ULERgWtZf2nW5xHWgOkkQThgOLUNMso2PC0OaHAQNoiWz4pAMaRkKe+kaYUcusdYJ2cZlpDrJuiKJuN0gh1cSD6NlTlBVdzgU7GLASE2F7ASSh6PVnYDAm3RiWtaoh96qtScAdpiMRZir18l5n8p2XtuTc8xQE6Oluq/9sSbWb1j4T2lzpCX15vlcrARrrxoOZv7X3xyYbYFpe5uTHMRRHcwxSYbZgPXzHWr0OnNc2Le50m7IHNFuNPvj7FNMi2ijQyXa+i7VdgNbzW0MKZ8i38Q8/v/s/b/PbUuyLQiNmOs751TdH08YQLcBHoJ/AA8HCSQQPFpCwsQAjBZeSwg1emobA+EggfVsMLBaGDg0Em220Ug4gIWJg1ri6XFv3aq918zAyBgRI3LmXN+3966qvat0purU/tZaMzMj48eIyMzIzLVsFintGuj9/Zrn9DigOtup09MUxdKeGyJwDpsvXfVsrsR1GbEdA2DHwBGrB38Yb3h6HHQRp6S6y9pFmUfYRuFG07PkR2FBsxcL+XtIVAKdxFyf/31W3ID4G5/65VYrUrpijainUlv1xL6rNF3qBSJNr/GrfOQpuEHBKI1cq9vrd+HIVXOrf3y/DngIvqo/Jd3BK+LGnd6wHwifoXaV/U+btY1+U+dqtRFQPkVrVjj7dEtffh+nXPHpXm+O5MeFD8FvAxLbyo+L3ToPthCqVW8geuNqj4VKqTcRE5A/F73x4mvhhvg0keETDyg87fCp9Ca02ot+9RmKAx2fVn9KO8HFHjXdn/zVkw9Vb7h3jitfhQMhHa84pSbBix4Sov6+7NESb2aMU5lBKT9hmfda8TJO8e7Xc8gd7Ta+Bk9sofnX5/qY2X8XwP8awH8GwP/RzP5v7v7f+Nr6vtses8/+wON0vMmRhppGNr8BEJ+pZJx94DHI5SpZdpqKSV0EHGqXAxjjwO9/9zM+/8MvePze4J8eeDwcz9/9jOc/M3BBL9uh8aI7gkNoBFCz2EBLI5mvFY1AAH0ri0qFyws9KyhqQC4gA3Fmsx3O0EfjMfvE/QajrSrNijgr4itfIz3v0zgw/IExUPnMMJnR9wuvrvJz8DSu09FmcPXEJfbP4g/yk/0bsZng6XMm8HKtAtsldLrKT4HmqjdHBCRMcZGx5tyfBA5AqiwPBTg9TkAEN82X8H2RUZMfukNxfEBvpK65KpZvpqyBeU7kXP0JhzNcjiIXPov8co8g3bIM/F3o0LJXvQntFb7SchiYn+Fw5mC2ZmVLfsUbrtZNR1c/nm4XzLCKl0JGYY8rX+WkPDquobxyCSZcdAUGsyF6EzN1ztWrRW9g6ciVNwcYJNSspgbLyqtPcV0FHM3pKl9p98TTIUEMgDgVVPQGHqfHVbCR9kj5XmQtPP7CxzFTanOyYMFyUoXFDxzuslewY0EGppSCQVLSIPUChw0c44hshDc45gEEx2E47YHP/kQeMY+5enOPi042p54xqGWwxlXQ02PChLgxJjYf8eYZtvAZld6lQayB7muuErT+3eJT8Mq5V9Qv/rVoKv2mFXKC8OlzNWiMCPZMsEve3el3yaj8TWHTpHENIGlj2b/hYmOTIdzLNXGD3mGjN2ob3vVmXV2uVEbS4Pkbg2td7Vht4xxMO3tkylnqdtK06V9kS3DFcR5qNt89/Yav0j93TjTHADnK8gTXT5JN0vYoje4Tq53iVW2M3djjgotH1uXh87uPYX9d/Lan347/wi4a7jv1xpsMbu0RIr/QOQ6G7+zx4BYE7uVyzxXP1b9Qo+roer/gzWqPeWK0VX+CWVGOOtDtkbw6k1fI2pve4EZvFp3bxqiCl5NmdL4ucfTxQ6cyzgOCvkvb7v8+gH//j1XfdzuV8XfPn/CzncCDIO4VNCTY+mXgkd8DYLpXBW7zYY4xnWW+m2UNsIHf/vb3+Ju/+xl/8/uf4T8B/gY87cC/+sPf4B/8xE+PE788nvj58QmPsOp5D0VlhdcGXMs2uQoYO09ocqXwrmVHBaGO2vwNOd4WatAMvlzqmv1LQ4IaV/2txz/XbwEzskR/6GccOL0WsbkhFa3u+e6cXap8ZtaXqVykPcoMkUntqot3mALg87jXgw5NBgiDQUysJJBXI0GIPFv7B+mfiY7FvSO26I2sbOrMHGWSA3Bw78Ps7dwrKMcGZCDvotscRFuCngbrQAUmTW+gOmiNdwYCLFMKTf47luPWxaYMIhWvAZ8LzexH6pDq3JD+leO0cHb5PR1kOJzJqxv5hTyoTzP/vevNzIcU3Wo6J/boiz360gfzdmrf1PtuuwwSzI+wXdFt0Rso3lgfcDV79KoXLvbYbCp2mFrNoLKeYay34wDLqt7oZm/OqF/s0cUesz9rWWS5L3mGGz6Nh3xTbXmcijjTsbo+n2L7K5YrnhlmQDqE7pqEYaA98Ih7zN7sDWaRDjeAc/wCM+DtGPjleOLt4AH+qt+H8AxYcZ9B0RG2hvjtjPCX9OQqTLxzRhqcA7VXicGk2Ns8hGYs7ZaOnk2GszzxSfeXJF9Fv/VktwMPnKGJbnN/49NtDlzhzQapy4UFXX6IlEoOElXPiDnmeURD0zuLfgCVkjrvv5qHkTxjLx7XLdQmayDS8emqN+FPiHUWfBWdY38NTL3sNNZdb7yP7sh2Zvqt8GSNF4JWHnc+RCanF6Zykqv6V3TUqmWVdXe4z4mImcVhJRP1LyI/xdS0R+8yOZtNUX6WsnKRAeL31GGfe0uJ+8/YT582lVhGXoXewC46Z2JTrF+xXPXGwKP4J82n0Dx9Iu8vmzo/fTf7KTa12KND9CblucoPqQ3Kx+mjqfPddulnJ22Un/DKRW9sozfSP1vsgrpY8tC42mBN54qvR0jgR35+TWX8lsfjfhSr6/cqlJOXxAg5m8PgxeGYuSdADjNszpTMr9ayVK+agToOwy+/+Yzf/t2neab1wzHeHP/6+Rv8bCd+8XmMw89vj6CG6R1yM4eAd7abRhOzlTljUtT0oVHtheOUybOtmJWDWXk1a3RAaKrkCRYjL2r2r1LY6NgZ2HC2qGrnsGMMnjh1PVsIILg/5Htrv/OpHmu7u/7RwSRbhBfzezhT4Y7ldw7g1v4h0986Taoni964cJW5FNmvDpBz8/AMGLr7Twlf+5efPHQsdFt5kzRTn8jFiMx9+RwtZVAf5c4b+VH2ZVMXy2sDVJc3ijtXe6xclS5PldJn300nrDKg85m5+qRxBpJ72aOVFXvU39Dp4+W+Yxg8Bmmlr8vrGSoWDpDr9zpHZVa9WcqqXai2+BxE8My1jmuFA9ruvU1ZkBE6RzzNdl+V5SDny5+Bx7SntCPOglcY5Vyy9lXvbOmztz7OL5Xa9d1Z71wVm2HYTzZd+TkMvx8/4+0AfvKZMPp2DKzD1ytNZQWU6QyZawBKHSoSaanUSTTcHxmAhU0m+I348+jtenon0bvsNUuCaavz/yW4Tg2gXY3Q18B9Rx7Q1evSML+wADd6B3hec5NlJzPj3UNoirKNV3V0BRxx3QExg2s+C2828jPUqiL72/GJ0ajYRlvnKw7Xd1NmZx5sMesbIpMrtimv5mBX91ZP3q1lFY2K5nlIw2OhLGTjwOfcL3tnU+IHWJaQxyUvdHmu8mNYTN1fNg2gYpxZz9MP+DDMCad7myIfD6z4dOdPQ28iHuy47/Ff30PGGsaw0HXD1aZswZuepNlprrKlCV06Ghu0TJTGq6kjT7G/FeHmgUAP8dvY6JzEB6JzQC2dFvXkzRzMIQbH8xAl9a0/1uPAtx7+8cM8322P2XM8cJrDZfGx0lJQiokyA6YheapoOYVD6gYAGz0/eM6iF4yPWBr++W8+4+/wOxyfBj4/DP/68y/4/ac3/OKf8fQDb8eJv8VnyZ0Gx16g026pX04aK5iiX+39K3e9OqMnV10yYF1d+13/Jg2TxhVECobHUlctZYtjEs5PxzxnTd37ipkuv2tazSo/W2QGIGeffNc/1g0GVfrrBK55WuTs8RCa17raiUPwGiuIprl8o/u0OIhV10xIW3VuHmKBHCh2+R3goRW7/s1TF6uu2s/grTfv65xznDbpDHk9x4HPMdBY5ae8KZsqOpNbH9G5pLF4TF1o+99Cpz6Hw/HcA3HXv6rnPZtSXlX/hCKvvmlZDAua6roK0j/T/Io3cxYXjeaXNoXrk3rjGvZpuuXsu/uk6/QKE+9w7mJTQtTVpjpvVp17bY+bDr3zOAyfx1FTAypDq/BYQ6+7PrpgudohV3Q0zKxUauTqgQP46Tjx2U989gO/P3/CH843vB2OXx5z4PYb/5yUGMironkn//nfkcEMpCwLc2Cj8qctDLecHOAgfa74VlCldkR/xKelJaF45AB8cBKg+Fjw4WlT0/dwz03su4ElBs+A06Ts1SfudAco24GJvXrvT+nZhleYvPqU6cZcA4g+rbyRzw3LhU8s38oKrvT+zZoL2edz+tTtyavquWGP5Xusq5V80l80umSibHiKeSKtyoTymxh7TWV8DzcGNcP79QCGpawjTiBUvQ1Ohc6ln0u65AoGWr3wHFCppgtoNCJkovy405sJ30GTc9V7fuY2kXnJdPhIafuCi4k/gZsQvSmR5W+DvPGuN1ufka146DoHZZ2mLv95UXn6RDJMac5yOi07Px1QvbGIU6ibFRNQp37k55sOy/+Bnu+TyuiGT+cjDPwz3sJL59HYQBpe36uhwaMBcnRwDOyjLAAvIWUAaSggPByPX+b+m797+x38D45x/oQ3PHCeB37/fIMdjt99/gkP/ISf3+YM6mHz5KQjZhRroBNOFMyatkxzy2AjU7JolN5TFN1z8zBgOJ3AUu+yP8DcK5a88trrdJhhjFH1Nj7WcjZ5Rb4aeNfRSF4BhhOoI64dmQrHspl+YAwZy3FniqLxiOIwf5unarEdM+nfRd5M1JhCNNShH6RyuMx7yYw+Az6mjLHylIMBetwvmsxkX1LoGAZlv9E5IO8vc0QQSBqDWckbIPeyAbVfQGluepOpejNQG27Z+9xTudM5xOW64RjgdpEfUyjn6Y1iU5D+hTe52BT1xuZR3kVzt13aCdt16jp1LB3DDGpr07HaFKbeeNe5dOTz9Abw0uHSuaLpqnOkb3Zwyo8TI0XzPEGy21Tj807nQLxxCQwina3pTZ8sWe3xDLqmEzV8GooDtYfBzHCu/Zt5Nklb3pMEHUDvseoQJ6w4MZPeKlD76DMc+HzO4+kfprz00iUZgDf+qAwblsdsM63fZjCjAVLxcu5BcLNIWTxxjBM+DkwINfzhPFK/xjnw08Px8zHwOBwPO4vmCDLJd6BOBJ34pH7AY2I6dDN5zQDM8Qzb8sA2Jr8RN45ox+GCDWV/1IfhhXW8+xDEchc9s+k/uKZ/2IGny9HYNvcfnpFWaRG4MmW7ju1H0djk2bG8ZNqRQGVU/rR0QSflqINPGHj3WWHZxOOx2FUOmMkb0iA6lz6kapryjE+KbYaZKtsGEWYhv6BhIPE5yy68UTtz6QPf7XpTdFEnLPCpaOC+bZUfMrXeMFeFU17wSok2bHEj27F+3VDpftSLwjp3z3KIeI53RxIneYgY4JNX5OwSHyEwiNjs3vF36pz6xJJJuKvk24xTqAucSCwMSdw3YJwesUVhefNrwivypusc+Vg6N720/AbPOIV9TZ9h0xJO95QfgMjiQA1QrWTvjcbwN/LZJF5wiN4g9Eb4Wv2rAbXGi78+f/rnOx3+Yfjd51/wwD/BfqqZ8vlwuTaCF0kBsvz/6WAP1OzUIe/WjE2YimyMZFkaxJytfMDegF9sYPinUP46Gecfz9/ikw+8HSd+8/bEL49nGquuEThquT0mP/pMkyfKVp8zTSDnrQEggJ4pEZCpxpitkVQTTYsxTIdbB+t6ll05zLKxs2oOJuB4tFSEame4YVyW1DVAKwhzr+SSiRxMkSyZWHHhIj/ybSRvDuEd25yD2M+jjoAXqTdeNd5oWlnjyDs656pzPCq3aJq9K16dIj+dYZv66DFbSDpk1TflS9l7ys+AOZC0O53zrnOIfTHTD0T6T5cfA6Ez0oy2NuXv2JSkKFXlykeXn2h/BzDm3X11U04MFG/7121qr3NBZ0vLhQTwwZtmj3RWx5wRHbEHjm27Hm/8jk1RvvHNtKlV50pLrX3v6cJn+emuiVWfRqdJ9WRrUwtNteq3yMT751qbU2rLHnWF76OPw/AZb3j42VZuOFxQ3a6ktiudqnelvdGCDJBpk+oztK7neAD2wE+PmbmBxDfDH8YD//j8e/x0DPx8nPjbt9/j734WGWaERJosU752Nlkz5RM3asXBA1EmVihuePBjBnXISRM9mXLVO/UDc58QKXbhaNQbM+MOZIohh0yHR7htBh/Ile3EPtIU/Tvgt76YfqDQVPwAiuYaDAViCB6Z1GWYx/h/bmmfE+Du+kvcYDuIPY0lg9WfIq1w+gzFzNI5C3nOKxAMYxx1Lys+4Isdcd3DbOs1lle8UNZppWPi55CD7qlon4ekMr7ADYRuOKqduh9LeVV87iuaYo+BOTyVtHBjcuTMg0lqGLX6Yl5LUC1Eu16+C0Jj0VT6qDSnzJLO6hUA+DAM3PMKztUkiM5p3Sm98BmF5YdMbUmLYo8jY4La5DP//zkeFeOknVvKup1uvsiTOgfRmsKQBTOWrQcufFtl8KM9Pf/uL/v5bqcyjsHZ0VpUNr+O9md8ReOvZ85cxTJ6QpS132vmi0Ax/8/AVaC45NbjtncHfn488bc/hyk78IfzAYw3nI8TP7vhl0dsfXUFf7YJDG4OD5q5p4tAtxxam3/rusdMiXhkKhUNovVPeDXTCSVIAIQ3NWMIATPOQrXlftJhFVOzD0w/OIf1Y/4thxswjxQeEPJUHjGLmPKds4tH0HyVX2pL0GSyGZsrUtM5c+NuvV/947uUQW0xv/KRNGiqlGZ1dp3j2/yLKREWJzzZIr+a7TIQ/wRMjasQ8a4zZSt0WeSXcalT5wqg2T/VOQ/5ffZj7hNU+bG/GzspPSneXGxKZeTV7tQ5y1lptla84qTIEae+WSrpCv55J1DIZCw6p3eyXHQ55Vv6WpjRU3QYUJwjeJV7WK42lal4F14JVolOqU3lbHjq85xZT52TPnC9J9N/sKS03OAAnIcL6btFVGKVi86BM6c6y53VNb66rVL6yGMxO1vHd1CGeQls9ElX5HIWX+0oZDhwbOzXcyKk0NZjxYy8fHANPmxg4JfHE6c7nueB/9+nX/B5HPjlceJ8PPE3j0+5CpI0CS9X/tShUIHAoStEfU/bRsr06UemsXNiIQcAERxy5j2x3AA9yIgydLiAF5JO8nyH+5qqiMDcUwZAHCxl/7Kue1+8tckVy62n5alFTj30nBgZ0TbxtdI+gUy/oy40XKQvrtAUojdFMWmqnZwrpprHXpsoO0Ke54jVPP73xb7Y5AqSTbtJYelNabDlD+QVfeTTj379B66xlpt1X1xwLTZWMmh+ILBtBF6pXZQ4rjEOD0zJaO8dX6x+rmM53y4MGRJbpM83DqYCJ111LnQdcdhZ+qK9L6btsi3Kc+pyyV51f+7RUrvf2KPYBeOuzzwtUuWXuiz2uMRHqy9OHwEekCTYJLziQ9NQXVCf8MM9PmP6v4bnu62YfT7f8A+fBn4+PuM44gQg40lAAGC1pA7EAGBUcJNggHRWh/wGMLVkpgLNiyur3jG8ZurdAR94OxzHMVNcPo83/OGcZ+b/08n5bsc/PH/C4zhj1cXqeGY4mErFS0GZLlHBAbEzzCbLlhP/PHiEODLPH5HS0dKfZHl6pnV4pgkGzkuqTfHRAlUIKgR5gwRA4qyGjTwK2INXPEGvvSs0sp2a3fZM99F0TPNK6dHUEsO8M42zp0oz2/Xh89CI2Ew1PFwo3xVZUwZ58aKThwaeQARpx4VX7vc612i2A+6jcsJ9HmIwLx4VpxF6SOCk3pwj3XamWgyK0zHTC8DJDOAYVbYuKrUMcKd/NcDGTCFL+Y3cnD4d1YiUyqNAnHxWnbuzKZU9QudCH0njnPUemRrH/Y/UdWe5iErIG/L1dOoNMWGjc1R7L+dBmm2xIQZxnnzydHOn10lhU37GiqaesZ2wKdUb6pWnXlF/EWmsr3Su3uXAgzSTVwNT1qdTt6t/igPI3+9sKrCKOifyq/C/UMtgcTJi0cz03y95Zj+OSMGRlC248Gra3JH8Eb0LY6jrIVYdnT2IQ3ORieZiG8M9Bt1TB90d5gM/H/Mks0/nxPvTDf/46Sc832Yo868+/QY/P554hCOpk8soMwY1gosiw9LR6J/KOyZyztgzNTH2kLpKh+v0yujv6LioMqz1sAoAVVc8TgtU+ZOPjpk69RzH1JoVN4iLxFRcfTH1bB5MYWBQu2L5PDCuAkoPA7DwNyNkOYIXekBKu5IE3jDm6osjbTBops0h6j7Ebmb8XrhgYfvk7EynJY3n5BUP/SBuADJoIW93vpjtQHDjiuVuyleWtaSp/Ev0zyvGucMN8mryhvglMU0MYCfNloemHEJTj8Moa8qzgn3S/GnMVeFpg+ojR9EUtj4GJ8HUF5eN3fli89FjCwB6THwgEuY61sDpR64KT12fen/xxeRx+mLHsfgB5SPfJ80jdW7Wocfd+JLyOiLumplKLjEOwi5i64lVmxdfnDbGwWzY4+hYpRh5gDZ6YNgIPz77N74C9/9cT8YRfwXPdxmYjfPAv/pP/h7jb3+H5+9+xk9vJ356e+I3v/wBv/3NGW9xMBWOxSs/f/7s6dDpuPOGci7r83MMiWgCPBUNNi84fGJeLg1ESsdjntZl9nmC5QH8dAz8ZI6fY0CWS/NLuwDSmJmKQJIP6EywRxqDFc0Ipz8mECjQ5+xflDWvYCbTFqKuwXZzMLTSlLWg5veKN8xzZv8QAx4fwBNvuaTOJXRDBGripCmvPIvIPZytVdkMyKaTqEtcq2yjuYqGXCcdJw6cVOUcdEYAkjQSICO9It99wIRGDTAmjw/WFIOfHc0se8DxwJy5BZ7+1uQHFB28W6hoFvkKzRd5uceKg+rcqgtlF4ggxuIFlV/2j2URaTka8H/EpmJCoNOcB1jPo/IlRbJmPOdJUnMvSwR9EXhq/2YQ461sthPRrZP++PfKxy57ykDt0egqQ9dPHJkKOTeTe+qCYlMGgKkX1BvKgMmI7+vc7JPoZw5Q5mTNEw8Mnr6Wsi/DUNkfERWuNlXt2pY3fBfKm9QLtL+/5Dlx4B+fv8VP9gmfjwce5jhs4KfD8cAZAb9jni7XZRhxkeAI6bImh8Ms0594NYLa1dTVKcmTvLRIczyANzj+9pfnnJ03x0+Pmcr4y9sTsMB9kWEGfDWbJcE20jZS7zD71+RgADw47vMEPSTmVJBrcfraVobZ/1cyLD9AvC45dppnmh8numa6f8P9SEebp95d9W4khkxb4KP3S5W/0esPEoyQeIlYGXCmRc4B7Bl0BQND36sdoNtoJlDmwF998RI/wCPFkDJb+Jo66VMmgV9jWDsBcdIsV65sfbFlXaWv5A3te6Q9K40aE1AGNSgCYA/A5x15p+BGDu5SnlV23lN2jR9Ufi7ybbJX3UbPrLCYvPKcePbFR1bSJ1e20vbTx5A37/vi7hP12hv6JMXFmox74qdNjIP0N5z4mL74sfhitIHggZE0N38KplvqNIpcJs54MDgyJMapLAcUb4RG1rfTOcpP9QgAOEmbp6AmzY9lYPvr8+d4vttx+f488I//+BucPz/xyy9PAI7f/IJSRS/YzGKiFQqr8ArM+P+HtzdyLObhJDOVavC0M9Zp+Z4DeBwnfjHHw4Cf7InjwcVjbRHEUWjKZVIQMybtmPYNzXM2dQalZ55Sx5pA6uQvglf/pS+hdz4AiPQPr5+FJovZl/oqhm4DcZ+GpRwiZGz97dRKPdG/a4/is4vsIbKOL7UuwqlDaGr0VP9a99BPk1p5M8MN/n3tlcm3Wpr/evSBlxRrO+pAqRONjoqQF6qqb3c6V6xaU34Z0iBXXVzklb3zhTe0E2nNATxEbxwlI9rUVV+lv6u+hszyKG5xws1+aFeLfkDaXldv+qdVFzLsuUiT8h2uh/DEr2pjvtOE6mvbf+WdNxy+Qz6rzrHPs8rSMHfbYFVjxMXSc/5JP4O2Jh/UYohVSw+vWvkVu8wceA4AxxswBvwYeDjwsDMPLio+Xdsmb7uOLnIQ43AWbbUwNRS5apa/Uv/c8ctj0vQwx0/HZ/x09CF8l+H0N7UzRxoEB45lXCsuzrJWuOHSzoxZr7ZxkeHG31xk2NvlREDy1fT3wIrAjeHHtS7bYOrGrz1oWRti0q7U52xeJI1515TXgVQrPSsuNtuwDW928YORIX6hsfDJEwcL9y2xjQ1/my+WsiuOZNkrjaXLkZkwOPwNecvMyuqLb8PvjV8A2USOZFfIm8J9lnJw4vIhtay+uMuvq8j7vviKGVUB73DMPsVPc1JkHv6jMY62yza+xhfzl4oXKmJxVOEqW2nsp5ffTttdMRHEDE0fvvI1p70akwvXrjSTqjbN9QM+loe2/KU/3yeVcRh+969/AY5f8Onvfo/fnvMSveNx4uef/2m+ZBFix4zhXMqWAM2YQ4z4jbNr/D+Hps2pBQ03wHloxJxRmgMizxjZfR4S8fY2cMaRr2/HyMDpvEkxZDqFB81pBFYnZk2aDHUZ83zX3Mvh2LzjI+9Uccn/XXkTBkU65hL3bDhThLJd5Q3L6sBITpGDAThxOvAZ5FWkHkTlTGdjagxPkYPp6XPsX4EI5cd2mKaRwYyPnA1POUpdcOAccxaJAcSIGcXZ35qd0hMZ62Qu8hGoNCOe3lR0VP+iLhCYY46rvPSkyQ2fxwPAERP0kyY9EUxXz5IUZ76+t3anPxGlh9XMlQTeeiWArDeAx1x/HnN1wAdz9T3z7I12AQ23w12QNxYrEKvHckT/aku/GTLVkUJI2ZOZXkcBg4HpoMwqfTTikeYsUtctJRY/WaVnUZu9Zrg5y+nxbsokip8++fXZ56EQQOiU2IkLn3WexVAz9m7Aw5FBCve2YCl7q3P5OWY3I9Vt8E4cnmS22DZWm0KttjJdqfGVNMfnh4f7tbkH15f+pT1ai5I+/Djmnt1P5wO/PJ742Q2PAO3DlrnjZHCXoQZUsBngHclL4LQhNhmYk4HWpPs5Djz9DbxKQoMrOOYq2ePEc0z63o6ZxaFHRXcZzg++wdTUOwY8kXpMX2WYB+ecDnwevDqCh6wUXnngmWM0zCkZhr8RW4msyHyZM+IlQ09bGcRyn7py+gkETcMfM5UKuc4b7SZLJ+Ysvnhi3QCa3+6+yiSANTvkMvHon/g98pzpxi7H+M9+SNo5/xNdOOBxyuG0uhxEbHzxtCEPCmsgzncr7REY51z1n6lwjxnYN3RP8XyjL+5p9Zq6CSAPGMr0vmH4xBgHor+hF2ssVb54+nH+2GKctV3xA2a6pYQDy5HxkEUqiV6TkvsEA+fZm1q9o+WUH4nqk1eZUnhjF26GB+1vWgEeYDrq9BnnMHwK+RUuTKE1X+zzlq8TBsZszY8LbxRzalWXPlLlOftP+2NZ87lw8MxrblC8Sn8TmJh9L19cvFiwCoKJrv50hfVu57b8+qM9DuQJmX/pz/dZMTMAv0xD+Sf/GebA2zgjtUTTJYA8gt0BGhkCrObljchBS7oNzgJm2b48y8djsDdgucy/pkg6gMfhATpx5LLLXiYQYKss0zhaSkCkLWR6BNNBliVlvQD4lFTGeGnDG5atpWtkgCW8sc6bcgpovNHPBodHCgtdU6b/7NqxCX9GGm1Jz4NLCkSXyeExKHG6wgd0j0zdk+IJzsOYEmE4fUlllLraMr9xfsou73K2KA+LMDkdKfrDwQpTTAoPpwx4kqYv8uNgRQcHehBMzuLluyPfPQCc2p+lf5ruweAtDwSw0idzx2kWA2tUCgTtwoG6PDhoJW98ys7EpjIdRNu1AnNfaB7CVwBp647YU8MBoz/qIstM2eFkQNfPw+d9iNkf7+kwPOkKYAAo8kSnceb1U36eR4V3XY/+ysAfQc/U0b1NkVdMe8tJA3iuiKx8pCMPCwmdOjZYRbs3kd/oaWEbzOj2OCWi+2Qr9lpo5uD2C59zHPiHP/wWPz+e+MP5hl8eJ345PgNm+OngMQDB8cV+R9CshwGoDIkTB47MTCibRNM7DxnOCTa9aBZlSwB+elAeE3meXmnNfJdYkDJExw3ab+qsK8YhU6z0BN6Zwn5kXWer67HpXwy6QBkGjWOVoS0yXHGf+5siJc2OdG4Dj84rrt5k/0a3DbYZeuTBG4gtEAEGccOJOcj+1dpWpSlPXtEeeKmyw/GowwkWP95tMC5jVozxh/ii8DdaFr2sysDM8/6rGRxyMJSXbSzxgocMYjLiC3xxt1/uexsxyCr8ZVlEjDPvQXxEvbN/u1iKAX/1933ccJEf9wLyXceRqcXUV7dHxnNrjNPlVydW7tIry6YGeAhJ2QVPdPTEKy07MNN1K5X8iFVSj0NJrjEO8ecp9qgQu/JmtmtN9pUWOM/qVb4mz3Pg7y9jHA+fcUi9u7iF8V/GUui+2KU/Gj8QM+pgpq/D/T/n8+uK2bc8Bhw/jekwD8AOhx/A43H21ARQ6QOeMxIqQJFP7W9O6rZFb68a+TZBqzebtdRXHt/aWsemc+FgBuQgAqFR69zRDJ+zuvp+L2/y/54OYf+mDB4Ww1oTAq68yu5MY46NxH5DEWlH49G1FwZbvt2lTWn/9LvQBUf+99yl2QhNjcpFrPouT8DKdhKo+Lm6ti74u/zrKT9rfDCuqGDHPeENZ7IZSG76hlainnmqlsX/xF5s6iNPGiTPU2YXppj85bkyUd9kzCa8sjRLpVlZTj7G0QYA6i4ilr3wxoTDDLCppvp31ugikzjcBzGbu+vqpb/z2Ouyq1UQG92mbpCzSZe1/pPoHKziqnNUusQb9m+sWGXyQu/UzvoueCmrJld8XftHbUPDtS95HHNw9snf8DgGTnM87QH486IvSmdpq+XdW3cQ7F0ki442a4wTEPls9D2J6TJcsVxlCMEN6kPSjKuk8tTekGvhhrSUOVK+9K9W32kbXybDLv9yQIjVthhoAH1lsfGKe5rv2y1+Gfo/wRul2dmzXqbw2dIuM+3TbCkjLYftk+8NKy/98dZO81UrG9eyMRg98wTLsud2gqnY4IDlBNRHfTH/8cYrq4FG69/ssTuv/lhtqmq79u9qYE0mi95s8Wbz0A7d6+Lra/29smssdY1kvPem/VbyrNJA12fHXLk7B0+O3NfWY5wd7aU3HduvdPmlBNuwlp3iwIJVWov4NZTOseLq7azJl7J0N9K7ytJC+aEs+xW4/+d6HL8OzL7tORz47Vmnmr2deLw989h6mCpDMZpBb1aDspHrDeUKxNdNxXWseWzuF7RdAZwpWAaAhy+I7rd3DUinzLUZvnvIuyvN7OAY88hWjxO62H9rZT35QbN2oQnQ4105M4ubuq7vciXIgZhpnKdznZEQwBWXbId1uu438Lio8MpX8qZ8gtX3NqVO2SbN3ml2VNqgg0vYvX8184qcxQK4p2ORn/X6s3/O37rjd1ijieWGR+qBCw8BCa7mo0f2A95SDaoXwtulHeXjaHw3sYu54jJ83hV2xhHhegx+8Sb6C5Gf0HLHG2+8qV8HXtN8eu0v42EMLHEpK7yh7cJKP9vKleoSsAR+SJmsNHnoK3V98OQ+oaTzZuVJnyA5Vr5atV/nX3ZeJVZl/2zOunqktMQExLtYBQ7w+343W97nPXwasLkEe3dYRXz90sfd8PvPDzwOw89vwBGpgk+vQfCdnq2x7U6Gu7KlO6GjHqlwI071yxIu9bxnG+QJXtI8sl270NzKuuAGyIugKVIPGUzv+nesvPkCGSpv+MMsHntbxoHT39CvaXCxfSz9u9pgBXfCR6v3lOZjS3P5iHngB/cnHfDUX7u0oz6A7fJAom4bnWYystPx2q4yPc/nIUekqfdvo6drO7b4YljugVp94E7vK+7xHGhwAFvXet/IJH5zLzr4W8MNFG4kX6XdlnqK4hVRb/gcaMBxG+OsfYTw/sor4afQxIcrbSzr4BUMpWPcH8hBtWKsxjjJG7ZZV2FeZDJXzxaahS8Xmg25akz+zRgnsGqNcUzqkRhH7X4bS600pt1b86d3cdivz5/++S4DMzsGfv7NJzzPB8Y5V8tOPPCH8YZ/+PSGNwPeHicOG/N44lkqUhHik5kAWJ8DKZAlPM7zb1KJrTZ/s4a6/6CXBZBpNAabp361466RS+d0UTV7ccS7BbBUbA2esyKfI36uUJ1ewbYtZQn4fFbejAAMLmProG32L88elKN/o39Dj221PGAD8DitroYLemzwYZ7tvuZN8DhBwKDBAQE3sTGDh2g3ZK+zuKe8nM7Ai0/VHxdeTb4evns3RRIOcYL5iZLDBMeSn8VeIHZ5DN75EjOjwxe9UZkUTQf768KrFfyFxjnj7rPXkorFmcWp6xHwDc9ZJd3vx7qo65yb1qPn2+yaXe2iHfcrfEI4EA4EKOd5F1HwyhfH0cp66b6pLYddDJZymFXuPS1fOVL3vVi8W/SZG84YCCXf2JJF8JEyoSxrprrmI7Ud5Z06XbWLwoFDsMoAeNjfM687MNF1ZPoJO6GynzTVMLfsjafulU0VDghfJVje4etXPc+ZtvdPvzOcbw/gNw/YeeD5dPx8AD//9MSBgbdHFak0K0t973KY7x0hoxyopFwdFnteK0Ni9uYcutaFVpejy5AyNVrWC9so70Hvs9QVL/BAiyesVqi4hzB01OISJt50aK1/nseCmxmOGxusyUWVoWCM8XTE4KpxEHTkwEL1ru6F4mFaO9tAnnyqgXLxEeJPC68qDZurDtTRaTd6b+U5KgJg6praFGnCIr8p37q6mrVMXlnHGNIcv5VdUcaIPZmTb5Tf2r8uE9pgl8kQPcqy/FV8RvYvdazwt9qdWM+3zsDJ2S7XhRQXrzGOUW+kXcUNCM0HAO7Z4tvKu6Byrv6EDT69Bt2XeKHh1SH+Jfo3kP2dd8Ut+JuDlF42sZz9sXl3GX3k2MY4ous3MU7aVFBxSPxX+ovUbR1UghgSHx82fdFzcJLeLzEOr43pfnxiBlIm06ZaLCW+SGOcxBunTo2cFBAyf+hHB9R/yc93GZgdBvz25yc+PR3n44Ad8zScxzhgz9/gzQZ+8id+eZtOup4cqSDvyIq9StMZ156VcqARBFnNiDktIBzh51D+/oiAM0r0mQ+vC9Sj/877u0jHIUcFq6cf4gQDe6LWCf3nQKxM2aYs++tScZkPB6xwSPqWLe8+GlDwt9MHePZOgf8xgSPuamlu1igT7nUQmvo6eckioL1ftl0853H/erO9DjiQADa59xwPkZ9rRs7SDlCHQwj5pjSxFPWkyp56dxEi513kN0Ftymzm9Jf8BrRdlYXKJJyMe+2xKsqXdy1pzBz+4BX350z9m3svpvwipSWO5h7o7XDwUJyrdAt3zwApyZB3Tx847LgMWknTDGQfRRccDLmew0TX6fFc2iE9Hrw5ureQDxZ7FbmHcQhNEJoYtPEAlOSVz1n4MXjB9LHhTbWbNGWvkxDha2FVhYM6Lwow2WZcMIOr2AAGclZ+pYPvckO3AzhsAC5YtdJspZ8MtnJWXvJ2C2/WAeiXPYc5fvs48en3D3z+3W/w+W3gHz49cP72wKdf3vDz24mfz8/4218+4YG6NqVj27TJxPKc+rjHDVZT65STJ8+hWNbtarXB1TbI07TBhgVlg8DcL3oIbhAXa6+Lp0yHc78z7Yw1xz6Yiw0W7ZM3exscGE1HK+wM22RZfu8xX07c8B2von83eKW20S7HtdovRtxImjJo9LSbgUdSbTBwlJz3kM6W2kEYFRMojrj8OmqvbXrCWb/aYNP33Hvl6SPpKxC8GueceOBaw7nDK1MbjLK42uAZ1yOU3rBs0NRSU+fkAyU0PPbWBk94MEnJZMGQhTeIfazMJDBtV2Ip1YV58IdjmO77o47Nf4n7wJwU4TUDDj3wR589Xp2uvAq7N6UJqE/lW7v2T6rnCiflx7TPvuZWaqT5HGLLUBEHzSg9KbxiRaP7gYxDZn9OLmNFW8/x1mlytrPz4xVrMP5TTJx6VtddUKdm25OqWeaY8lTf8QMvmTl+TWX8psfM8fZ45szlccyw9Q/PnwCcOI8TsIGfEaoXSgjQ8hg4pyXOk2i6dWC+SYisAIzDB6YtzRlyMbYIQhTUOWN6+NEGIxqM1bIwAdPSH9BA4qeEqhpwTJN3L4ej4UfBmfgYHYFs+q6s67yJdhlQJk0AV13Y0ojvmQ7HucU9bxaaoh14gTSLzvjRpJrKt6/wyFv31BHOVaCgKfkZ5YUOphOUvLr8MnedK4KWksxApqjSZLZOI2euHbyCgXu5eFJV6SrgtVEnO8i6aoWC786WbflbHgnQylXPp2YBqesZipVdZCX96bn5qM3iy7uTJj1ot+yCvNF2Jk+YKvW46How5EIX+66tM7Wkc0v5sxiGl4r2vUG1anfGqtR4QVNpA2eV9b0ImhaZaPiXB80kZ8ilK2a496PUrzKz1g5/G36Iw653XUssODZtObBKZMjTRTNL4Sv83wHH2zjx6fc/w3//gP8E/OH5E4bN/V7P8QTc8be//EFow9Y2MhjNJDNiRLdJXaE0cJ8lIl3VbtrpaYsrn2sCRx+lsctBD6Fm3aot1Lt5WuQjaGJ9RwZDDNuuE1o3tpH9CCTi0odLWSMWWH6t+sFUuIGVV2zjDq9e2wbTPBM3vKTU0+pIc7UwhvrI4r+GzGugrFKah8Ec4m8cNZRgCQOD2ByiWdnCmgo3cZ9ZLgai5L1M1GpBp5VE3slkTXXU4Q+rYdmJsZx4Jk07mSBw0ZM368+kPbHcS69gxKv5MNZIqoJmTpqQpqes0fI5WmvVP+4tbHhl8qZfUxtnuzwcQzAzMyoUAwP3MSfjmq6jcBFuC282uEh1Jm8weUV/U3LvWNXZbZkVdLU/9a89vk0N22BGwZz68cV2/Ug9MCmrdP2oj2PK76/h+U4rZo5f3uaFov/k07wHDjzHA+dnw2/eJkg8Pj9hFqYb+SKcTTIjOE3l0lvV6ZzbnJaPSBGL5duBXEYHLJb554rXTDlD1DtpZrDvYlIZajkvguQ8g5R1LuXPmfxJY4VpNmoZHz7v+RmInHAHeBiAee1ZOMzwBHBEHpjlIATxmTQF7QDG8GrXPG9+58xu0Rw8doAnBI0xHfREpxHKX7zJY2fBNqodDKZ0TEr0xnmupEBkQt4+UXuDyBsGi0zNfEpK0hgRENg86rvzppwY6+JKoJlHu5PmM1LDmM4DWQ2psgiZyApadPfpc9ZmFp3pB9yzN2f4ypmBMgkaDy+ZcCaQx2vnyUiR2pabxpky5LQJoC68nTSfY/KKHvL0pX92wxuw3UnjmamYlS6Rg9ekOXgDz/0xTOZSPvrwyOkPBzS6o6du6LHedmln0jrc0i5O1L6UtGVK38oRqVuk7B3cixdpn+6Z129CU1o+McgMY6i+Bv5I/MAV1uC80HzkasYa5LCN0vVpQw2rRF+ZVqOyT0zkZJF76OxMV1plX2ECBz5efB8hVzswNDf6g4+Z4yd3/OY48fl0fDofON8Mn84H/jAMf/ObGfD+63/6Bf+pv/k92rHu3uU/0ga99J6BmCmdhfsIvZvXpMQK1aj59NTZ4PuKi7V6aZKaqnKooNdW3o7SlZW3gOM54rRfAO4jVxLSJn36s9OoOxCdfGUbCPwNG+S+7uRr2CfLJi89ccN9gnOegEh/kzgi7VK/xVddbWMeE84TNGmLLFv2GbYxrLI+AlNnWm+ks/t8tyYBmdbKGKDwiitLnrwRfxq+HZH1wtWMtHPXWCN8PgxulrgBHEHjsZeJ18rOIfrZZY3eLqi/s10OaMcm1nDVsTEzkbhmco4pv6tMABCTmh9PpEOd0tdt6oob3jHH6fMdbgfgY/IKvE4Goc9zanqkP6VNUT+RMRz7y5W8S7shI+q6R3BxOAobSLPNISzviJzyG3kCYsZwYRvpxyXG0Rhuq3NsNzIadpgRHxveuDs+00dG/0QrBavswptun6MwY3IkfcDc2oG0L/ImYyBXmQD4Ctz/cz6/pjJ+a8PHwHDgb36eA5ExBj6fc6aGlxofx4SgORGwDIgifSIVLWYyynA4gxNBEo7MOyZ48+YlnqQEoOULI9qd6RQoQ3INdMIgwSBBki8J7nRSObgLmiF9YqpYpntJKpwXSDoYfMgSswQMSTM86dDVFgaMg/obRpl3W2UwHTRZ8MaOueqyXmlAgE7ecFBbvAEqp3uY0lzv6p04k+ZafvcA6JzFYdlwjSfquoOP8Iafp0zsVibIukSe0t+23hIpAe4PzAEej72+4w0DhAimcZVJXbMwKaIdtF1WUeewcqJ1rlvwFUc662def3DTPwDcj9NWDMX+kkZD43PaYwTHsaw7X0a3i0PoHUAel7/jDVJe1f8MSqm3MEl9Kt6IJbf+The82MVsCPQ/LX1LeIP6dnLal3Qt0sFoDDPFp2RvEgwRM7rtNhsCdc1SftU/pKu+YmJhRg7AdZJglUn2wRtvCrt6f7/0MQN+83ef4A78/TH3mjzd8Ae84fN4w/N0fH6eePwW8CZ/Ymjnj+5H4bu5n0v0aMVjRFD49ANPud77SFyvdtLPL+023Vl8U+Gmtjv9zRyw0SZmDUfg6xwMeT8u38m7WDkQH1LXpOAq//Q9Lj5jTZFlsOat7OQdaZoMUL0rW2C7glcZOk7Cz8UXIWRCDtii76veUUf1XUQ/TsQewcUXA6/9DQ/wYjseQa3a1eyf5+eLTVrsN14wdjjyjq4tXq282cULKhMG8Sn7oBk1qE/9bHGIxcLQpOPpb5kSOoIXO5nU4WZXvFptqvpHPjuOOGbe9TcwyI8V0jgu3wPPiFJMr+w2pdh2xavyeXV7J+0k8TfaHcZYgpED67VM+5yreW9N1w9jjIYXvKHeuPjx0jkPzDigmLHEf5dYI2Qf21pOwSodPO140+POI2OriCD37Yo/zfghpJJxyg+cyvjX9Hy3gRnA+8HGXP6P1AKzuTfisIC9DD5CnYzOjOrl6OfX9tSvLBsA7Y4M3OfghzPkLF0zEtUuH/nF+SsBnsFKqLF70Ryv05jnF5YOhWWZmjGDemvtFnUIZ7LSaO1tl+81uKC7Y3pI4w3WtLAy43n7fKTGmbZTZduN8ne8kVnNTC8QEVp8cHGcuvLHmgeOPBhheD8KuPRC2vEq65BgnjIhzYtMXHlvLHvVDodlltCJfqx54w0Qne2ahZTJwpvWAjlUPV1euuiChyOfabtxcWawo6VrufImajelUWn2SzszjcRyMJZH9maddRAHBwDuQF6orrypaVjWDtWFMveitQZnK28so8fVdpVCABkAjtFXY1/r6yoTLO2QZkv7q4epW4u+qk0JVs3DUqzVDVt4I/0z4y/Rmqs8ISWU+uiP2GOenNYw4+tSRtyAn35z4jg+4dN4g58HxqfHTLPzwP4jKJKBF7ml8lecT6xrmKNgJjprKNxPnuxkuLYruFEVY4d1HpGQg0F5rM5rWRe9c6YtUYcnFVSbwqvFNlL+K17Vw7Lcj12JxepPlS6AWQnzWHMejFDS2PEmBWxS0YJX27JNBh038mJxmTiY/gg440Re6rvi03z2/katsK8PKebc6By3TLCsl97NQZlBT+Rd8aoe4uSGN1uZdJ2bvprtXGWvnEjc8GpZJwdWzCnxdbwqmwpd91X22te97DngOb0flIWs5+pvup5AePWVMU5gWvqqkIO74fOYaf/OiZD0awtvemeTRvVdO53z9mnTP8PSX4lRm25u8Cb6X378GuM4LAf6a7slN+TAuWxS4+of85mx149L35c8f7SBmZk9APzHAP7f7v7P3y/h+OnhOMeA+YGHHTDM47wfNmdlzgE88ngsLrPGjI15HCVdgVfd0G5zmT8ckUU6GNM2RgDq5zxgY6azERRnO5XGcBCvw0keGfBYvWszzeTw+ZmGo3nPJ7w2KFvMQMQy/mmTvmcOFI90jPP9KjtnT4cYSV+Cjm7MlDWLmbloBzY3pR48zSra5SrgSLCd/RvuMYtkM71G0mxgVpc3Rh8uvEH174DnFQlZNmZ3uA+LK3cgzTYHOkcC3eyvu+NzHAE/+QRJxdCN4DoDND8f4GxngOALmRwxs4W4ePeAT1lhpkAc3p3C6byLaK58kqYzQdBFl0XH4MBY9XVSP2wEbypcIG+on0BB55EOiQGDxf7AqesjrjE4o2xNgsXJk06ujc4bFG+c9pd2ofumEKdkiS5YrMYCOMMnzvSfN6RzjA5a2hCyrElZpXlYBAsZNPfgwabpbHgVZcNWg1Nx7HXwyuVqiNRXiL4yNcq2MiFbHZrjz3ejnE290f6q/OZpb7S/mFFOrDLRV+ENVt50PcrhoK06CAnehDcGZBqcrGp+zfP2yxM//fLE89MB//wTxvMNvzkM//SHn/A4BmAHfv/5wC8/LTKM/1T+pjifseHI39xUV6bS+QA+jSMDnZkuflQfMwJTTC0sIJa76A6Y0ii2npdg56o31zgmzY/gO2gLIWN44caU4fQ3e5u0G7xixSMzAgzSv+SrrMApX+PXEYHqPJiEh2WovaC3W6OI5m9Sl3RFHJSfMwosPYzRFn9nqtgZ2PB5zKPpAdSkAYgi1e4rfzP9EeW88RkL5rhgTrcNx/ATp0+9cg/cCE5fMNY2vFlkMnWOMU75jJF8RWAuM1z4W4T94cfdgU9nZN54DSIvmHPx4yMGfeTrEDtAxjhX2Zc9MsOh7HP2D+74HNgP2TP7nr/J+EFw81WM4xHjqM6lrjuHrOT6DOg/jYi70gce4bcFB9KPLxiRst7w1YuvnnYwuVUZOzFhEv07Q0afI+0z5efWeWNXGTDuPF184osYx6k7IbMH4lJ7Mzxjpc+y6q/D/T/Pwyyzv/znj7li9u8A+H8C+GcfejuW/Y/Q03M43o6ZJMy819Pf8PvnnHF8s4HD4pj6DDrRPo8YTEzgfyQa0klW+qHFTxGoeqXC6TIw3wWqXSdI5zzFBOf0L8YZtUlLLXsDhxdN1U7NUMxqYhbXecdT0Zw+JgaY9Xhb1ibI8YTI4g0dr2X05jHwyFSLAAlL5zjBivnowx4xMHP+rwWm81ha4Q2KZo+B211ZOmg6iEhNn5KWFJ2KaOYL8066R+cNG4bLfWqzLOuvdvnqVSYQHUPMUJozne2RNCuvWB3TNOCc/QzeEBhFnsobdrF4c6QHYXg3prIhT1VKnZuBe+135ImjFg7owIhB4yw7ijdZNtpVPja7iLKrXQDgUdec6U4ZOPnKYLLWUT3215BX2k4vW04vaRa9YaBYT9hFylNsOW2qHPQcPh1pW3UC6U5fkQ62bAxbvnqTSQSckiblqD2DKf8tVi0pLa+wKnmDtCG1C8+gh/3vZXUWtdlU1OVJ75c9Hjx4+3ngt2+f8XhOjX48Bh6PmVLzHD/h//tPDzzM8fPjibfHmL5hpdM3NohH4vHhDrcu71kJ5YYrbiSh4jOCz8qfK26g/MAFr3LNCnMw9MAZ/Dt8hDR4nx9i0FGpjMTUVYYdr3a2Ubyx4A3tfOqhy/4ppM+ozzOdcQ7SiPssW7a+8qbZVfobz6abr0ofBYDDGbGN6l9gneDGcD359uv9TfJmxaugadc/tP7xxMPpkxQ3GBo3G212pXY0ZUK9KT9+5Oce4yD7cIRNZlnqXIzqB46m66958widI1/LpiycU9e58VLnXO0CHIqGP5IY50v8zT7GWfja8CpON11inHm6QZxUHAO+0yvGueLNzo+LfgpvrnxdMBRHui9iqgGwOFUxt0s4WozTeLP14wbPcxJQGNnK9hjHb/o3p5+rf1+H+n+eZ2rIrwOzfMzsPwfgvw3gfw7gf/KRMlwJUkEfD0+7hM89AHPtQU7Pmy3GTMtCRxWdE5XySw/X6vv9MvF8K+cb6MhRJ0bt241wf06ngA4Mqfy97fr/CLeNqQ11KeS1Z/xK0z60d4iYjI3Vb5btAHsTiyB7rTJ4zQtHK5RdmjX9XrlCuDDhTWt14U3Ry143vtEpBaGnS0pEVNZ4k8FogKBVWbqKrF1IU7fZysp3SrMFE5wrVEKCtz9ueIMeTFd39rKuJANcZJ1l5afhTNko+/Cgibrby0q7fqVZ7cJErAa/2OfV/gwc6D7xWtcv8pLKer1lTe33LFtJXNvWrOo4NyeZNd5sZSK8ueErG2tYhYVX0t85+zsfnhb5Eawi5jU7v7ELYpamo13KyuCC+vqlD/WU8ifVP72deDzqTqnfnw+84cDbceI4DG8oPiqdTb8bPxDhBXIFLO1LaOgYW31c66oy0u4NhiZNIdgr5qC1MBAn/MV3PC1SSFpSMjcydGl3sY2Vwm6TloTWWncV5rvDeQCB1rzw5l1/w9atvyH+RuVJ/Ol1xV/hZ84tTV/jb1z0UoihhjadI8ZI2aQ7Tr6F4IZzEKtlhcaXOvcar8jXqUc8FVnfs/RHTBe/+BsWaP5GW7r3N1fMudc5fq+Hxz836bEf8TfJG8Gr9V27watESvHliiHnWbi/yr7YdKfr0vd3/XghNKRc6n3aZWAV+gmkF97c+JsLXe13T13Vb8hPlWXxFb8+f4bnj7Vi9r8C8O8C+Pu7F8zs3wbwbwPAL//Zv0fmVksw98gVrukIzjHTGt0cfjiO4TgOgOoyzHIZGVYnmQG1+Zd1r2Ax8/kRpxyFHYT6zVkMLt96BioAN+zScOejIN3upij7in4JP5pBznbnfqk4QY8pGt5p4tt6AARQKzCc4ambLMoxALK610CF/3UwKF6aBAwOvTPMUwaRxmAMHDlD3IHAlOZ0WOkHNV5sTqkueZx/zNlupuhJsOeveePmIhPP/gGz/jyhqMlTAy4hEHVEMMsOB57JzSjpPAGvpN54EwqYvOGslvOdUUBftV5keJXnnO8abvh8znu5xggH4eXQi1M166z6UHxcaV7KpoysBaIWtllbu2f7T5/OefKnuFyz8SKTRV7s/3QkdBjxO7Ssy36Kuvh5hxnUqXlqn8XeH1rRnGktfV14o/JcZLLy9Q6rVLcpa+59eLrFZbp68lTxaodVQK3s7DEjypNZDTORs6lalr8fbURz/yju/+bf+PtJu3ElCHh7O/F4G/j8nGnsf3g+8IfPb3gbjp8fs7WfHqfIrOhcceOVbZC3SBnPmfo8dXPHH5jUNWYqseLVpY29HTLLAlakmtgGfO5r+eSPHAA507Iwmr3yxN2iUdqNuoo2z2B99m/FK/qy+RJTtNK2whZOn9sKvs3fkM++xdDCKw0hHeVpkAyc6cYzgG64ga/1N9Z4AyBXVlasI6q3w3+ASPvk6mJ979Dj8T3lXbJfaEwMnQ2rzt3jBvlV+jWCz8TY/Qmzi66LvylJ7GyKtuEXnbPsedc5i/6eQcfnWOmk/LaYevE3RQvMJMYr+le+8ndd4T5dbWEeC3eOiQkDx/Tj2W5hquHOj0cPRE8ofNr62j/iDb9lUyxMl3Xy7lgvrPqYv8HNOy6+eNalMQ6vnSq86dc7jI/B/nd7ft1jFo+Z/XMA/x93/7+a2X/17j13/5cA/iUA/P1/8d/0M4bfma6AGrt7lokjTB/TETwBPDIdBVmWiVrqJtUQFBgReytmEH3A7ciALDoEyIWKDP44u2E2l4lhdbJP6mr2Zz7VrgJxkr+Unf+cbhkMzmOx4wdXmghFadIwofGApWNhDUfyDCscJP+4PymPWI6yT9SsyxjIq1/7ka9TRkMcmkk7JsbOL47sE4+EB+BzF+DsSSHtBDgNIOpQBMMEMPaVm/TJmQJEv8pEaKykmBJKOb45SXCKQzPjLKXnQOLpqJWW4eniuH8vnf3S7p08LeTpEpBpYHDlK8QeDObHHPBL7eeossydb84Wlm3orGo5E9WjsotyQFbyRCWuZHAVzxBenRIgU9evMiEdwhvjiamv5FltHqDOkV4NBnpQNTIY9ewTdXHHmyZP4WtiRQYaV6yik5587TqWWBVpzqdLycarwqrUOTCw4C9lUwdoUywpnDDRMfaH/bPO01dPw/3/0r/hT0clMsXmm8McP2Eex3468DwZHEUQfpIX6/1vcQvWgqtX2+i4caZVe+L+KxssTEViHQ+yucp/9TdWezbau8h6B46cjANK72j7xI0jMNYlAi0dPpImtcloJm1I2601hXxNbCNwI+wTXrj/rr9xVBpVwFbnTZUtbKe9MnQEdn7bUSv/gCVuUN7c+8hDDezCq9lG6Q13ne8xdNrkpKmVTT6MoKOiFwb2pH6o3nilAU/erDpXGlV7mwrLru9edW7SyP3hlt9+RNdT5xZ9vbcp8qZ0jvt4DSq/Wvklr6Ysa/h8wVTFHKBRxNgr281SdWhK4VVouheNnKDjpoQTxP44kCr6u8XUIXorelO6jfy2+xvqNnXoisc5SeIWWBU9NcY4H/A3qRvkUy1MlE9csWv+9bjEf7qe2wd5P9rDleG/huePsWL2XwHwb5nZfwvAbwD8MzP737r7f/9VIY/c2crr5g+i8JEHXcGCpNFJ2VzGv6gNYd6WPRzWZuU/ux6LXRTOf2bwAKmfOfEDvKSyHCAisjQgZ1dY1ugM4o1aQfBwEMC8V4PL/AXHnThHW4oDksbpKkbuCcufwmZ7u8EPq76dXhcK5j0pMrt1oo4C5tGzLY2QstHP8a7eTg8ZiDE0RLa74ysl7xg+Zi/C6XwaIr+EfJMagzdmF5mQQVNe3tvVsgBOv+PrhK+5qhPH5Q/uW9S6rP6NaKdmrlmZVC490nokDgUvO93zlTRNnZqreV1+xVdrvEI44Nt2m01NJ6ISqNPyPPrX65oaNTHgOfa63mSy8sarrcqvuCtb1HfeOHT4cSTlcwWDF1833hSb0eSp7cIbb1Im5I2vnETq76TraGXnoHdWQFzQGl71l7zxCNzLppiiEz2jHjFOWGkO+XU7+dJnunuWt2gXQK4S/HQ4xtuJ4wAeNvA4ThzHUVjf7Lf3oXjJPhWdiRtG3JjHYud+JfDwhI9h6l7+V39j8MCNY4M5Yht2RPB1NNxgBgb8lb+xrfzv/E21ezRdudrGIwPxJ+a+G2rTPW82tuBRF3a2AfHjI949lncf5W9oo45IFxfccPJVy159SGoIB8IXvnruuZlvq/y6v+SAEU7cOGISRbBM8UrlBe82SULD3yhfB0bik77a6pL+DdQ18Q7gObiPKvRkbfeL/M18izaleDWhmnyjdVnpHALr3PA8eaCRbfzNDZbHL/d+vPubK16xN8pXTD2KWGbwugPrNkXu8xCr6QM3NCYr7/3N2OLxfJeyB2McBz6ftcezBtQ3/kakqLFxYdP6nvBV1r7bPXmiAz/yU6v6f9nPNw/M3P1fAPgXABArZv/T9wdlKmS6UrukxxwcmJlHFgrdQp+v5afa/6VBos7WV4uZdpapcKKolm4tvq3ArOcmT6PhwZHVbhgipqFzUycvGiTAc9+cp9GgTkAE59XVJCrsOBYOMNUt2wXnROLEJulf7r1IqoumwIb2/ZxtO+ri3exfQRzfzXtzKE8hc3gHMr+h6Z6vBMcjeDXTR7TGDHwT6CO0NgZqNVvHUjUrFjQ2PZqzrkPe2/M1ZrojdYRBPVvhBdBz75XoVQ7yLU+0nCwyzP1FwotYrZtAXLzTk0k7X2tGUo8Hd3TdhtKUfmLWqbOA3WGTtvrWhSamS3CWc8iAX3X9jLRBzoAXHSITWKNjzxuRp5R9zZvY3+MM3GfV50DpuneaVHpXvJF2F47tdH3HV37WWWkP3Tpj36LDqr9W7TJo4L603HMSjrnwZk+d6kXZ48KrS3++7FG9SBsMg3QAhw38/DYl/nicuTpRmGMxoZCQlTixo1tTCA/ESlymnXXcABbb32AqpO/6rkH13Rd6an2Nb6zpQWPMdPFzgxswaeWlv5ny/5i/KV3Z20bcETkCz7zPvV958wJTF/t97cf7quh6hPiApd/uA6Dyi7e4ke8VH6/+ZmcbtUamOsc2bczvJ24QX6uWXbuv/E3a76pzglf5bupRxTjT9o84QI373ogb0a69xlRLXNz5GzSbcgiGho6RmFXnpvxof6Lrzd9cdXvVm73OXXVbIbDwplZSe4xD323JK9KevI2yyXl/x99ICiUxNPVo1fVmF1NmwxETz/SR8b6tPoT9WPx4YlWt0M3tGtWnI9/lASUu+tp9pMxN/XCPYx5u9tfwfLd7zMYwmb0BQDjP1ANkWkLofx6NClimBVqqGzBixoTHmurlf9NJTYU3m0eGzyNbY5ZnCBinQUfhnKmzDK6ppAM2Uxvj/VNTIC3eC4AzwzwtR2j2uK0exkA1wMVnO7l5OfjBugeQvGonKUr6ymEeqRI0swobXGg6ZaWIfOVx3vMSz+mgLYjkLO4gb6JJM5snIE7BzLkX4Y1bb7cuLKyBE93siZkyYMlXyYuO5fan89eSAZimMIQ3XjIYBE1LCddpSNH5yok3nF5BG2MkruRqIMsVKab/zFluz7+HsYaSPVNxPXiRs6lBI2e63JC8yKB2FM2nvHvlq82AYaRWzuPyQ6fq1NBodyB1YQ5UalByouRD3qQE2C7T/Ry5LY79odNket5zBF8GZMAa/BjCJysZ3POmynqUtcCE45XOUV/BmeVKh5izp4o31S4vK6U8z8ADtsP9O+xvnRQ2eTOsBpErX+F0pIJVbsm/wVRUlN2rbmf2gIkdAHCjTc2gLI8M1/5JENUxo7BKFhO+7HHAR/Eu0zcTJx3HI+RlZ2ZLDJ96WZhKfs6jrUfIMIM1U9uoAapjpnc9R/EycaPJ9GpXHMMwLWn1NzwkQPWb/saNMvLI+vDK2pgWOfc7x2z5BTfE31xxsfsbyn/rbwzBq4kjvC6CvDIfF9wovRs4xyPrPRc9w2JXw2uABnjITW1j8TdwwGIvVOjDvDR34BDZF25MpzP9NsNvyr5sXTGVq/pVF21Q+Wpx1Lisuhj1L2QNweNYZXnm1Tt22c+VMU7SrP4GkTYomMoVGdW50BvqOo9yD+8HwxGrSN0u5qriNFgfqsvk8x5Tp07FYN/E31DnQj9TtxlbwRNTmU2z4sZT9iu2I//D3xSmlr2V3ggOaFwGiN7EYHIs9ggHY8yyqRkvPMc82AyYMcuJm3ih2eOkUTH14m/QY0fFqjNkjND1My46z3fPuhcP0U6AU65MrrxRm8r4YuHNNcZBrlQXVpVvapiBX58/x/NHHZi5+38I4D98/81Ywo6gcBgzlWW2Mz1/GbCmz5QDPRJAGFwxwIDlxE0o1ZGOj7eqzwHfkYu2OQoM0DwZQGRwSarmvihNgdDBUdFBQCtH5fF22/zZgIMBvuywkXpNypIXRgQC8u6NkTQIbxjIWQUB643zE2CslQWYe12nTsEhv3PQNXmDL+BNOgXLeabkhcvvvMfrTGc1Sz/dSn7ZLoNrttHbTVlrO/JbfkZfHmcKnkv/kkZDkx+Pcp59p5OIuSuPQORCU9FMu4DQ7xe9me2W/BDOK5JGmBp0GPzkEfA7+Um7KQO85A37k3oUwSP/xtJOblwPXecgZAAhP7vyhn1IWCjeUFt0T8GubN7/9q7OTV7QsY1MJ762247Lx17Hqr+dNwykAJ0UWXQuiODR3JZ4JDTtbAoV2CqeOjxwL9oV3qDpUbSbYVbwquENmr5+9HGEnIMHGfQQNyIwPSZApb6TIu1jBT0l/1vbEIwyC511rtbWEfC8y6fLu/yRYvnqbxi0rpi6tY30TdS7A5nqN+oI8cINLdtxsR3gssh/9Te2lX8MUX0Gh2Ub9EXE2Edyt7fTdXj6gaUdLLx45W9AWVEXjg0fZ4rXAGfIVUPKXnfxAjHVnCsd+q74/IXGlK9PW8yV3NTXR4w8KhUu27WIPWSg2DH1tR4ZELGGlM0Wuh7VQQ6zXYutEac/mo/UCQaVJ2vjpLaLXdzHD3G8e+JG1JJ+oOuN4YG5By7uRoXl6lSLF9aydzaFPaZywDv9Tdmy5X9WfDUO3nkC4s43O/+HPE5e9eYdfxOwFtTSLizkU7qeMjocNqa+nsMKqzZ6s9XXJTZW3kRvFn+DhsWrTNi/H/f5dY/ZNz0T0MIHuuV316NjI+CHLHHTMOKdGUgCehfT9GHLZ1Q7DLYdTA+KmZ2s9+hl6ZthspmZ/VjaoSNPOpADxEcYJLvoC81MfztHPxbbCdQJwdeyzkZQtBW/13eZxKA9RQJYbedhwDN59HSDZ/qIADt5w7qEXxSYtgvgMuvezT3CCpOypr8iN4CfHikt8sJMYdF5VEuaGm/c2jeTppVX2q69lP08xY8pLfzdLnVxbvGir9LfcoSk85XsO2+UF5GinqlwY9hWfte67NrOOzalMrroHC9yx5wtZLrIGEdeEl5UbNppuqA2ZhlEZ4n4UO+KrqvOsZpQ2hFtnV4zlYpG7C9UBlT4C6+q6tWmLrh2wZAicOqVpm8VLlxsSsom3niGU7C13Z0eObnKN5f+bnjxJQ/H2Fp+tW9N2ckgr8lU+iippre2IfwaOBI3+jUp7+lZ0b71Nyum3sp/hxsWene9JsXgTXeGl9XW1IRf2mn+BvxhJ3+kTaofmLgx8WLixnK0ubTTfXPpWVa32qC002Vv0h/S1D/Tbz+H4TneKjsBSBtUH18XJyP/3wE8bNGblTcoB1UYRL4i63QwXTxSZDPlE63d1BtfeLPFus7XO39zKavydMsyn0et22S7XhJvMkFqXedNs4tV15Wvva6VxoxxHO24/PYuMVXLljiuNuV2kb2epjsPz5JWgjcxjgYziJwrjFh0HdXONW7ZY+pqFxmASJ31btDovdYR302serzk64pzjBkVq973N/GNXXWOqcTtyoIf7HGgJh/+wp/vk8role5li3IdPtWgXbAKxxnLtxYvsyyXnCv1wGFHzN4woJVZMgMiZQXzCHFMRzhPiAPyEljmEke7VHrGz3OZPWY+HMhZbffcR5unEzqW1JhJ0/B587sz/cAjbdAPwElXQLsFb6Id3nQPSLvW251AWjR648Xs32nGw9FAQZhndycNY+57Aw7AB05USsuFN9FupYNYaxecAQ7gMGlUZX/CcYzqnzlyxokxkaZpDOG5+2yH7UJkb0Ij9a52qYnOGWdGC4jZXydfbZU9MpBBHlE80zRceGXG2SeRHxw2ODs+Z/IIlJQ9qCcYrezOLhQ+uX8F/oA5T6UrPipfTfpLe1QaVV/TpgyVcpXg7qWvuXoXaVDxbqYNumCC0Q7Llskb2s3hPDkqZIDijdlMffLQBbi0C654UvJd57j/6DnmCga8TjXjqWq8tmHFqpnGKTIBLrxJnWMKmU1Z2KpzLjIIfvCAFOpfYlUwS7HKgjdMVWTKy4C0KzRT9ofa/WIXQ2VPTPyK5xwQLIjJgYYbhZNJJxyWJ4lu+rizDVtsI8r6cDxPzqwGbig+D8GrsEHFDUe0e4ep4auOjfz3WHfAxzyum6n1hRszEFLcoB1RN+6wXP1N+lOfAWD5U+pD8ZEn3wJlC+5ziDdog7HJ7RB/2vQhdMm48jk80nod59H9Dfcjqb5zP+7EiaAxZA33eZ1FSzeuYHLSVP3joCLT7G58MfVGy1oGqX2ij9hNzCVOMEUWPnD6m+irxCmLz6Af73rU9ebO31xiHPdM8R02+/o5BhrE11rNpL6itgm4xDTgSaIH3MbFLtaytthFxjhYYpzh7ZoUyi/7Zwum0iczXrjD1JRJYYb6m9I56oOm5cW+NzfADpgPPOOgG42lAO4ZZXrqccUqL91guwSg1M9c7ervzt9nB7lv+hzMBlqwKmKriv86zh0QnSONwps7f5MxDlW78THikh/4ydPV/8Kf77fHzCswp8PTJVXuraJDnArhFTlaOUkCSd5fNBw8MARRls6VgJQBDTgjzWV+gMbrbpUqwlmHVOAwQtIcTs00EuBsXTpF5IzD4QQ9dotzINF/eKbCka7pF0mTYYSBk8Y0JXHOyRsyI5wVDdDcccat8dNxzTCMgDiB8pggEGk2mTC08AY0aIu7QswS/FyCwCpb7fjCG8AyzYq55BaOumYdLSLXkl/xpmSAYE1PKWQdBOjujD1448Kb6l/wxitwYn883DhcUpKof1E2D/HYyC95g9H4Sh0LaSx7baK86HnCk8dev9CFeU+L9XYNSVPjjUNSHGY7I9lGPa/+AAuv0mFc9TWkMfm/8IqaDFjYMmi8AIMcDvjbSmOk8zTZy15I2JSnrDp469+0Pzq8M1OSvDkud1xsipjR5C3BRZenJR85l632SJ1DBGl0xkDshYnTuRIjccUqW3jDsHJIOxwt0Da13dpPUHW5lM29wF/wTK1+CB5ThmUbp2DqSmf1WftYenZkINnpLNwPzToQ+xo7biC1gnIhXhE3KmXrPV/ltAWVP270zo7YnxYyfhc3IDrbdWdQhtRn0dFcKUDxxgVTV6zjpNKkyZAHxodNarptYlDweZVf3p82OqamvxF975jqtWcwA/Epbx/iI8Umr/FC6L9NbS6c9+TNe5jq8jqvLyFN88B9SfscbxlME4rY38Ov8YLilcYLihssu/LmGuOUTNIZg7gh6ZWLvo5ohzrmcnQKeaN2MstSp7pduMjgEuNEbjG9/pq2yxXeshvpn6lMOm8SU0V+igNbnQNhZcrviKuTeHJx+eLiqztDxxiU4SpP3/CGsRTTqhumZjsj5Bu+0WMtzZn2ucQ46P1F2B8cOSjDViav/U3xRXRd/Muvz5/++X6pjEjMBBCqyoAvv6nPxGPkr/P/PbE3/t8YN+q3gU+sxDhcqcMalDZtI6E1ypr1l7gcXV+nJwhaLDvrC024lC0i1lzZ4orUiYS0RvU8LMH6+8qLpV4exU0+9bJV7+lobWVdyVcsaVYL5fmyt3YQNGj6hAJA73vQGIOLeQjI0d7VmLHzBpM3Xv3Tx4XGpN9tocn6+4vGBEQ2mpZGsAaAFX7teJNeu/7ypV21i3p91k5eOeII+Bv5pWLbQuMrfV34qHa0vHuVyVztnPtEih/pX0BSwj3rAFvayYH+wpudHrEsy9zZhXukDYrtN74aceeKTatmJc6pzl10+6pH17+Qs8t3vJrVrLa81rS0EwBqC18bP5rt7ij7gmfBEJBOxY0VZEX+duljx40LL9VMskNxUM8oBl1sf7Ex2uTeBje8NcEN7MvudPQpNH3UJicH/OJvFFMXbU26GQpT/sKiLPkcgHNlW/mg/tSlxlVXclVnj6lF4YZGV95a9sPBVZfi1dUmRSvE8Momi/dXTF3LFs9q0YCMnn8NjyPgk4oaNFR3dhiqSNSqXWSy6vadHs1viLM8/bbo7rEVRAZK0V5fGQOJ3qDkecfH/NaRg5un0CRm3XnReCXVLrx5F1M3OkceeNIeW1sGr0nxxd/Y1d8sPgTgwKrrNpBQK+WKWvKqLL4s90z5GXq8pzhQjOhW/1q3V+YtyCxvrVj34z0O+/VUxm993I/anAmFEQGNsNYWNwIAeAGiBrFe7wKIqTe+HqdkRUuxhP6M/S2TntVQVvUm3Q4uHTtiaypnPoj2YlDpD3ze95KrEmvZKMojbudAlW8yeiinVxt/e7ACXAHgwGjtFMcnrTl7AsNZR6RkAzMVbsrMvfhdjlTatQBeyCmKrCiJLV6UPFfeaEfmezwN8pzHS82TzOiEfH1PIFFYONKx0Mm4pBt4olzpETJtjhvZW6XLrBdP0JvkszcUFC4PaSh0XXkTthEDCoDboaMNY7rhpJG317A/1CkONHx0+dXxxmEvjUa6iKtuRwdrkBMv1YwbU99m2bpawLPqk7ruGuwIv6KedohFRlUoXnnN/h5bmpPc7LNtys4TtixP++TqMmVZtjzrpJSo86GJJVeUvh4NM4Cu26/lCe9pn51XnrQWkFx5szrWxC6ziU0+EtfmqsxsN8v6puyXPs5MCRc6ZR/EgqkwbavLn3i1lb+WjXYaL4kbBnguVxSNehJp46XojjWcLF+lMky8infrJLTaA2Q20zuHI1KpiFyLTJd2VL/7AQLY+htafdczLTtPhOPlsgbk1S2OI6/dmCTUegplUoPr2c4huMh7CPeYWnzMAbbKk2fRB80WmEEbbbwyycRZ8EpXvA2l72TtFVO9JO0LplKOsKQgT0CE+khk6nP6m0zt6zQ21KD8gsaSiW/5SrHqgNERMc5pmZZXPnLRo+z5VdeVN0Uj+77q9k2Mg9JXD7t4MqlW5Rj6yxUn0lO6LjQ23nBF8QZTAdFt0gix5Yn7dYR/xIj8Xd2Wl99M3rTYSmxKdPtdTE17pC+ywKpAGnP4qCkoPXxoHWedIk+HhQ3Vu4fgym38kJwrnuu7P+ozfj3849ue4eFcAyiBUpop+3AClp8agGjZOUDj7BR/tyyr5zaxrjlrU+B5ipEQKvj5kCXcWu6fjwbWTB8sR1jAPeu1rDfvlYiyzPGu+5M88mWLNzr7lgFeGqrOW1VvrdFY9CRcWAU5pNmF9jzWNQcbleIE9AGDBdrlLCQ0gCNY6+ei+ZDPOotLH2IQGm0OMObyvoUTU9dSOoXsn/BK5Zlfr7JPP5y6VdwVWjONbkr1DHqoV9nXmd+TAQfpUvqUNypPTaMgaFuTb/HmaJ8RzsvSUV/lh0qrMmSahOovhcnc9eKT2FQYle6vcup2lNVt+HDELPysicf5p95atZl1kZciv7z3x1VzV8zosr3KzzKAmIfuzBrIN30qFVb0hIFpaU3TbQt7Jm+4ulH22GlWeT6sVvVjKkr0KupgimjKr3hTdo+ki/KaWWalY5Y0MkUHWXa1C11d++gzeTpr4D6ixAGhewYTZVeeGONJuOKTynDFVA8dStvw6byHM91YcCOD6KlTihNqk5SZi6SSt2HP3SYXTHVLfeYR5RM34u6inDypSROmyZn4RHLvaHKR/tIn4kaGK42CdQc8DsaatU9/FG2GrtQKjhXvqMvib3j3E8VnTSbKm6DRCusikQ5gmw6MUSn+dQ1I1N3iBcEvkVvyxoVGq3c7hu4wlfu96SP6AVQjj4NXuyqaiIsm/G40bm2Sh0uIri8xzkqjDqY54Zvt+MqrROacQCtfrPhkoo8b3c53xR6Fr/C5+oO4P7ZiHHmT/nCDsYqp80RF8c13mEqsE10v/ZiDp1OwvjJL6CPFJyb+CNUaA+Skwi6WKkwl3w/pX1lBDA8Tq6ZPGktmUMZWC29U19X+yDO3BSNf6TrlRhq/HPb/bI/j13vMvvExcARfcACIzq5vo59a15NXANR4hCXCkRsAvZG9HGoUc+AcjxkkSlU6G3qhKdtiNOZCEz9HO0qmTG0MHLVJFrGiIAyYhzUUXOZloVJV9sIjuPbiJ51bEStzLcIbl3wOBpBV8xEBxAFYHY7Q1utytWcRAQps6l3locoTS5rGIXxF8FHCHwZMETQ+3aDpBuzfliiCS3yvee0szn/6muDKm/XdyXMLD8zTPnvjnQ6YsE9oAgM3/UF1OytAeBwGPdZ0PahOnjjqVLriVTlc1QVWXTPFMUBqMull56SF0jnlNA+OEJpFg+DIU8OIC7O46ueehanV2ehOt/l5GRgCoghhj+H9zeIUOhe6EDZ1S4P2D6Lb1ni1lJISJjRXWb3jyIEMlvtz5dWVN+i/VVQpsldcXPDVqgJX+X3hk6dz7mQ6jWijZ/lj6PneJoftMLV0dEhAZQA+j0cbYLqh6aXiRLdJJJYnlxbaLzbZMHVDo89rNsbg1S0VFrdsCIhNRhBYp5IuNokFr/IX0ZVcASheIUsdssox992sPqM5uAVT7/1Nl0lbfV0xVeTgsCaf5+j2qVWkfjf9v7PJ8mcGxgv3vFGaAAhu1GENGRav+MVBF3q80CqH4vHVJqfeHHXYGSTGIQdk8hgAni3GWXDiZWy1yC9l4yU/jQHWGGfla7YKPE/6IiEm6y9MXWlS+SV3hDfpNolX3nGg2wWPdTmCxjgNkcQIb5LA1Kn6d49VhQPz44r4vYY7rAJ4gmVJVKGo17TTqUWe5KttYmPrmNFlfuuKf4jHYb8e/vGtjwqZ6shLWVuQYwwtRcGhUErAXmqUdxV8WHautjDQ6Uajg55LCKU+ScA1g/il3QrtvVUqbivfHeHUnyc3xKIKwNvnulBQ/M9GJx08Gahmb7A4i4spE3/iXYfO2q+uvvp3SN+BvixeeNVbS/llronKcw8GySuP0yLbyoZf2yG4QuU5mTaszxDW5ucoa8V7BkSNZiu3MUalDXJ1IyEtZq3IP9Xf6qh150hHG06hacHq7GMgfiR9BfB68bWm2XQ3KzRle9yEPGmavFKZXMsi+RtWGw6Gd7uw5QHy6gCGOugykrQucYomBuhib2yX6SxNb1x4LvLrEjJ4XJ5O+Y3G5N4/vdtHB+/VYMcbdqOV1eBJMOfQsk6HA5znzv6qbsUbF3vc0bxi5EojFt6s99d8rf8rjeuYWstlZZNN/gtu8K+md1zp2rRTuD9n6T8JLxOLvfpVPmPSpD7havsNMYpBapMLph4b3Ph81up26r/gBlCrEIUT2Pib0h0ozfBFz9Dkr/1D4AYv3lXsV7sir1KvLvIrf3OHG8qbC6aiT5ISNz6NAy7B6tYmF73Z8sa0rOjNhjeJqWIbgOEM3Jj34hVulH6KTS7UXHT7BW4A3uyC2zNU11s2j89A9fMgv682RV4Zqo9czW54JRrO1b87vTGwPHW9aCy/feQAKHV7i6nCq52vIo1ZSvuHqmPBVMVFxjhPt8pYUiyXvnfedBvaQWLyNdq3/J7xUbVzh1XPU/02JwuuW06SRiua1C5Wz1Gr0lfeqK6rzi1u4NfnT/R8n8M/fC4X9/SnqTx5uzmm9Zt8Pgwz/SBWcnI5Poy5pc0Z8ojlw+Lo1/BibqjN39N1YAxpU9OBGEAZ653gOcEnHGRZGwwex7yjZjNZFmG88R3vqYhmgTBEgpW75wwzUznAOsyCZmRbmRJndCwTsgY8+EhwMBw8fhrIPRXskwdfp2M85r1ckT7ig6lwfJc0yUlzOjtFMGLKgRx7DadTsHYpY8IPvxOZkMZzlPzcAD8DdiLtQ/XGrGSf6V6EHmP/izcVBgUlojcWNCMcj40IzEIH5v1lwSv3HHCY8MZQA5WkMZC19Ir9rdQIgjIA4WPwMHTSk0ek65iDMh63nrqO1ClLJpduJl0u8vOqv8uEvPGsJo/8J72cdEHl+6cTjACWM/ElP5O+lN7wWOjG1yYTyPvElwgAnbxSubHPx7znzbHYn9iU6qvqGFAz1tT1VW8i5dCjbKWLuGCVJVaRrzmBhEi+IVZNxoKH9/CKCsrTDbVSGbw5LnYxy3JeSoOu1C3yVezi6/zzpP2KqWKTqWfCH9vhxpVO2AyAchLAZPWDvBTcABD3+hV+WcNUR54OJ3Z1laH4sKirQjvLAIinyjmmn7Ps4TxgQ0/Ny+tkVL9BXFSbLP1mf5tNYikb8m+nmgJNR2fZua9sBK8Om/uVGm+ogokT95h6tUnFDepZ1DCU5zUhaWbws3wRDLFndtY9zG5wf5atVQjhTfgvt07jMG/XEsCnfZHP5GtY3twnSOZ4XbPRMTXilGTE/Hm1SfjCG+pc0NV4MxRTmdpHXZj7F9kr/p26KDblqWNHxQM5WLUeW4ne0AjTHoWv1HWXWAOoDAnDpNlD1/eYWrw6Fmxr+or6G8StDaZeytoc7p6DKbLAGN5inFp9XGOA4NhYaex+rvFGMHWNNXyNUQOrZuoh4GcN3iyzmSr2aLFx8KNoFH+aeLXHyOIr9bB07kcfl/16j9k3Pk6HFQrBb9tciDtg9dnphYGciQxvnAaWtUu6BY0DxuVqz4AN4B1BViQwYEA5Osjv0uzaqaa8jcYcboVpBA3sn2NJaXHEsdhWlVmfJyq+IfvLgHIaXnNrQqNnkO7JK0jZonkWmGkTTzcMOzJYzdk5UxrX/gakt4BfX1UadT6xnBHIKyiNIT83jPMog8x3rbXV9AYIXq7t0AmWTObPpTecddZ2SNNhMb9rHhv6RX4aqKX8+rqZtbqQdRs6TaVHaDZUZT3fPUJ+DPBmSoTyqnRjSF1lQ8ciA+WVtsvAJfon9qcaAfB+O88Ip44Ctov8vNUQ/UPJs2zOrjRmKeENA3jhLu0xU5IimGgz8nSwL/S1MITYUmW7XcyyLmX5jEX27CqDeB4wkFyR1eAuP8B8RGpR8aZjZL666JE3vl1l4hvwe//x6PcOUyOa2sowf4fgk5HCgR2dagu5oT4xd/LyHIIbW0xF6r/aJFb+5F+CGxCa85dD7LN4ecRRGmYzoB9DMyaiLnuNqWqDK250PVv4GM/wja+yx4TJESvbwpsmk6TxFaauNil8bZha9CuWkebj4MQKZBXhBlMb7hduqO07NnwN7OMgg+lenvLqPD4wyo+7hX88kq+28FVjjdUm53cdU7kuRZ0r+ZWmnYuu85oCBuDPUb7oXUzlSzlBeI8bFVtd7aLsj9MXsRc+BhptEvNdTEWsrIof3/Cm4wBplImMtf8Sh83uGiDyy1RUjXHY3+TNlcY1XlgxVXGAvCHPjXwVXX9qjJO1HEXSljekEWjxniCLi24DqEP1QN3umKH2+KM97tfTzP9Sn+94KiPA2U+gQtP+LIGd9V8qNiiAzd8QAQsxnwCNWCYekcp48rCNqMkIFlrXQpMMEqz/gktKpOznmb5MHU3v34ABsXQ9luNtNSBYKdP+zc9Whr57F0v/Fr6qTCiiEReg+tAwcpVX55Pmm0+wmXnUOTtn9e6aI76W1SAtXVxc5swUvXpXS6zSs9ZfXyQ8/Misc+P70tvXZacerjTd8afRJHq16hxpqgILb3IZ61p2BgqWl0yPOuSMvqVRlE5GdG7X39J1/mIXTrey1nWO/DnHsej6TstvcKBHegBM7M+Lr1td74EvnSFQxxOvB8pc+6c03egrv7npH3ZlFVh88jmxyvWIab/yRj6rTgFXvNkfv82asSkrKK1B3EcfRw5w7zAVQAxTPN/VhCkLIbq+q3RedDSbnrgfuPGMS4o7Pa8wtQd0636RPTLz7QVznCFS4b5jYv5zvMKNK6a+ssnhBw7JZ7zq2RVzElvDPokbPjYyyzKFPysvZn8rGXDFCdrk5ANg7/CVR9Gf41iOgC+aAMHUGz+3Yur13ZIRD41hzYobEJqGW+4tbj5DbXIng0azUtR5pTRVWY01WJI0Twx7nhwE72m6xAAaOmz5GJ+9PlM2U52ufG32h4hx/JX8bnCRv+cqHy7xAsgbif8aBAcDy1MgfFEMgHjgDQpv7nh1lcFdbGUx+XHFVPJGaWw+csF9IPbTpi5sPG/T13f8jRYWHcnTctUO1NB/uOd++8Ff2vP97jHzMizYVAC9uHS9fBQ0RKsyAPK7kb/NPxwOi9w6swPwZYZ41F4Sc48BR7yLmmmiDnPi2VhFRE9MB2rtukkAMWcszELRBw3piLQE6e+Io5PZiqMHh9G/PBnSlv6RPutQaoAsvx+oFTWuOkHKss8e4dGII8Tre56sluNqLQ+AKWnunWZg8rnkWTKxJj/SiFsa3eex15M9sZrqUq/yhr83+TFg0nZmu76UtaV/k9dXGplylidNeaQkSfThsQql6bJGgvyqc8lT4U2V3dOYZc1CfnWEv2Gu5qUM2F6TX9mq9u9seqPtSupW8CY/x7vn6DblDglCmcqI5GP1z5puq14l79KmaG/Kx5qhJW8yPUb6R16MMfdz2QHYc+QFqCzvwbC88FR12QQHFNvSFsOmFr0pvorMpY9zJtAyFbNhVeq69jccq1nHG+xpnh9rMod2zbK29E8n1L70qRT2PaZy5Yh2zUtu87QzTuBY8cqlj92eZ9/anhK/XrNBvXuNqYobFbTtbYO2JjrmSNtIvybpms/lmobTDTyR1BI3NpjadCdoF5tM3mzwytRXpW6T8Dm5xJMY4R4DjuqDBrivMHXV78KnxWdQ1i9sAx73qmU5YsjUmw9jamDQvb+p1GsKsmSxyACB+yM65WNmS5BucJIh0vUWzJEM6OD1HlNXGn3lDVDXJVDXmQrXcOMeUydulD1C8LiwrePG1I2VT4HHYhec6HieBuchFIxxPoKpIgMqwHnDmxMz/lPZcw8p11RG+GL4CNznjwPnKNwvnUReYA5XTBU9om0pXqjObX2VgxeHcz8qJwOm/CZN7o/o5yZOcVfTTfmb9dh4i1Vr/Ed7bBhYNP6oj+PXFbNvfnKmqClCoQr3LhFxNPXCA3APqEOVEb1r2kmU5Uf3eVO7MbisfV0TSMrBhS+NdhPJEzizH1zOdkmXiIDzSCOZRlCzDtMpHq1/YQxgMFbpI4XZHRhZ9hDeuHdHzSjCo+J615bPjjoO/MjPjknn0wNQdQkdu8DhSF5Zo3n2JOlImZAaS5pceSXyZNk8wjboa+mVC29AXnjN/Ew8CqS2habguEsQ7+4ZJlLnJo1adiaS8OhppjIyHSJ1S0cW1DHMQf6qc1wTUV5YtJuyF/V0dJonqh6iZw9oGlEFA14SyMCSDuS1/Dy8crfHDY0h6snXCkor/ad4VTKodku+ojg5kLAsAzguuh26eljM7KLuR0udshEyPfAcwOkPuOh6OfkrVhU2EQdqhFMOOAY/LHeDVZn+ogOF+J0nvlE/xYA6VkngnHiDRV9LBVv/dK9fyh60R5b9Og/tibFB54KpxK/1bqsvxdTS0XkYhXnsMw4EmGJ8jRt3mLqzyT2mhi46mm3A7GLf5C8cORnwLZh64c3WJguXJl9jbw0Dclji1MDR9sDNn74MU682qbhxbG2y0rIhE7dxrYBzX1DZQMkPESDfYCqD4MabTiNT8M6LTa40xhEJZoDiRmLqvS+eeDtp1gHaxzC1eENeUX4VtE8MGv7ICd97TMUlBkD29x6vStVnbEW+0n9QyzVdnOI6JYX9fUwN3gWYX3lzpfGKA5PGnNykrpuBq3DnWHB/wVQXed5hqvob5WtiU2BR2kaTX6UUlv1Z7oG7lZ/Y3/ux8Y5XlH0MxlwP8lH7+/X5Uz/fbWAGIIWcyt9kTiPdKQIB1/JNIOMQTPCpshkDyLv8YshdLVmPAKRtCnv+n9YX7WZH6jSipDljpaiMQJ/0W/477+eqmvmn2frFQjNWXioQaDvFm5ZOYZ6fMyAKftZx+YBgxjLOEI74huekoDMOBIY7XhUrPIGfYRZpsnpFSUjnxDhDeXVRMVPeLCttW3kWX3lp7YjUwUVEra9NiZRW8uaSXyofF5OoOQ5vNCo/psOZO3K6TPjFtKne7sKcJaUD66ta19K/DBSiWJ7y5i/kl7Y3yzp4jHXnzaU/7aHTR+Mr9eKaDGh1MuNiF9q/q/wWmxIFV2fd6Lz0r59SV7VOXR9Mk/Klivjj2j8l0dJx73Hgshu14SmwK/t1z2tM5Uo8+W3Ska/AVCMPo6wTM5AHvXwcU+9tsk5PiZ+WTIdWtV9VnD0+R/c/l8a+BFOXRu5s8spXJOa7Rwq79yvFTeT3ZZgqtN1gzr2Odtw4x3oWc2FM59UXYOoN5qx939nCPMVS2ln6d7XJTjOzaxrblFe38uunI7IblCFT64tZO0yVkhtMVSzQdPEK8ku3oWWXulx4cY5DdPQ1plZ/56MyoS72eGHhjVVt+i+CT8jU+qLxWzGVeJNvL9hEXW89dQDWsaoO7xIZbHQ9ufHh2PhSS4qh6uXK3sWCf8jn13vMvuUJI+DFoZZK6KlyAMLJ9uXoqAA1hwzkTH84WQsHybLUeq2inXgTVp1qGoV4qp6ZFHZrjrZo0QYMM8Dr4Usdsztf5CyG9u9kwMCZcdkz0IxC9mpxDwODlA4gAcDCa2i/IAURs4RRdtZ8zlQ43p/kyMHKbN/SMc8gZw3vgnb13pffwQbr66x/DYomX+GOM/LUmSaUYX/wpsHwIj/2T3UuT+5S3iyhgeoQJV80zhSkeerbkYya5FlzulqW9BmDDgQfBWwrvQ8588fVLVl0aJydlI8clAGWR4fpyg2aTkhF8D5j2PYHWq4EsAtkP5y6rqmLEaBYle2HfhSPtaqSndiU8MZhkqI8v9QLNecdRFRQ8c6YRw63C9J9XqI7DzqozfxqPyy/kz1xYE354PEUEzc4+8g+ciZ31sXVnZQ7RgVXMXfZVsoom4v81mO9lTdFs4Ypl+Biy1ct++VP4f49pmqKVmHTDlPlsIMXmDri99OndZ3n0Q7mqUDsPUxVWjRFKE7L81olcOOJmIUhyVtT3iJS2OcAqA54oo+8w1RW/QpTkfzBomdd/itfDcPPOdDg/pahIeSs72sx1YG8J0xtkhZrW181++LukTYoh21Qy32g0si+BlORdA9DnMq44c0L3HA8or1XNilhs+lqLIQ+lI7cYGrjzYobPnJQnbgBQCcQsO0fPYPlyYRMq6s0w2vZ1HLzZhcQ3N+l+5fsXmNqD7o6zd5qspQzcYC8KRwYOIz9M5ifJT+fmUK54rmTX5PTNbYiN4ZbwwyV3+RrZAdE1yqDaNqME6vGA8lKwZNsN8tRfu/FxsQ5bPg6UvZGe6RMkts/5pMLGn8Fz3dbMRsBRrpknQMivhRgUD6sFE7NGghQjakR42fuVwvDoBJzRtbD+Q3oXi5rOdK8qLnv4yjgyWAswCWVn+2aBg2d/nJTBaqDF0u79+Pwo0TNppI2Aochj0+Fp7NMvnGwEn05pKw6TYtogP0w6B02noEVhVSzfCuvvLcfET4NvHgzHy69q7+f3Zq84NlNyTu3jfyi3TawKgDbya90yaLfNcuZAVp7T8uFTMA6i1fTQcmbM24QOqRs6o7KDxmcqtMu3Z5cY0pnuVNvNB5edyNFDJXHrRe4e9Go9hjtevBiiE7NIku7SbPnv0h6ha+hxAqieUqy0M4ByHR6EhaKPWoaJ/tUq77T5sSM2t6+Q5z4LHe0leo6KGWHVavsV2za40BiltLsyJOxdjrGAB0eNIleVeB+Iz+hv3hzR3PhKVPTEk+lrGWJL3vc56RTbsqnDA1zn6BZMosDnBZQNF4GPw3t/rE5WVByOVQPDXl40UxNDnrIg3cxVfQ7/Q3toQI4dsNFZ1Unyp4t9XlI2nrR9ApTywb3mGqZ9Kr7rNQnXm20MO3AEZM5COy3pCsx4Wsx1U0XldImS6bB68SNKVgLnMz0RdcrY7xs0ovOL8ZUj/2xtpcfMDF1npjHPsxrNmZdHrgh9mGCOYndqSTla2OQmrq/wVTV7fLjG9wwS3yZg4RVrxZMpbzA1bdl4KO88V628SZl2nGjdD38olPXhU3fhKny7ooZ+R/fPeAcxMNFfvOtynbZY2rDAbHRLc0pb1xjGLXvxPLZAOVHH+k38qtsM2s0ttgY8g6IVRov6LvzO9I697lqnP3luP/nfH5dMfvWJwJYSzn3pKL4CgAdQQEpbK5m8akZlXIk5aBq8JTVOhUwPnMwVBX2d61m8ZUul3eVcl3BMPnFG01IpzD9TeQFxxunAMWlgSRBA0bPBhhI8z3b2BL7Myd4CjgLhCGpEnNI6XG8dJ8/XGsUXnm9lLM4uYrUpX09IQ7pu+bvxU2XegEOZo9WtEnfShYJsmSXL+02HhUBLLvKYeUBQfB5LvID+43eB9ZRClODpQ1ZnoqtK3nKm/p2rt4A3FMD77o+ZV0zbLSxDPaF/uv8pEOtQnm18oaTFkDNp1cQaBddz6BN+91os+IVSdIGF66XoXr7vZ+sF541dH066gqWaRer/Kw1hMKm1aaknoXU7EfZI7+uDwxOXWhqzV54RAYJT73e7U9IRbHYrdPc+LbHlPefCAGWmeTSYYiIrOQr3zcc5k8qWuvvuHA/6Q7d4x1d0oS8e4+pxQiWU5sU+W9sUv9teGuT3+dJmrS3fyRMbaTHm+5SUoJGA8yOVHodOKae4U+AqU7q1gQx6qjl+3nIUrMta9V9PaYKry6YagkATA6fAbrJ1oiS4a1MXC3sY5i66v9L3BBs4p2R+ZXg1ytMrbY6DkLqufguVFo0fyybsqyAh6+pfULr/xJM7d3teLDK3gBfA3g7AINMYt74RMqV7vGLMTU+Bb8L/dQ3Mb4lBlq70mnl1bux8WojyqtFflnKAdicmWww8lW4/+vzpc933WN2efZY3oNYdcIHi5loKhV7TSQs3TtiuX0eQX3VtLvAg+1woAa4rBxEC+K0hFwEQsQRpPVLrrTBY+VnDsq6exGjVvSRdnqals8DdaTjVbYcaXP2ltQg4SJ46sGn4Ya2/KD0LHyTsOOC9AUVnW/6ux4WIXBUjgjIFKD+5quggE1I/6x+4wxv9wzV7kHeSH8MZP3kK3VK5guR8su2FGLjG3o8yi/qdRgOAenkVZOfyeeSrWPO0FKnOKvb2oUJxyQU8mtQoHzs9KuD6TRP0lzKhuMOuvoA1qR/G5sSJ+j1f1tHowFLt+Va/VXXTD80gOXI61UXVH6kSXjlwpu22t80Rq3jQrPyag7G5t6H00sX+7PiESqYrEgAsCXwlAa71cxPlQZH3Fsw42ser5676HPJd+VlBThXTK1+iOksvOy4wZWD5wU36s9bTE27+oBNSiCkd+fRJqv6wo0nj+zTrv3RMDVozklGpZkz571/vKD4dGVK59ofDVPRbTInUxe+Ejc+n4esHPeq087UsL4YU9F4tWKq8tXCrzPd+JV9rvi7qJ78dsXN9MeiN69xY6YOPnPSUnCC795gatM5kSlt6JDPOsiHVfps6dwiv0GaCve/GVNjBRzkDXpsxd9I02rLYzCVUWkKDiyYWir1NZgqkymiUzusciCuO7CqdMur1kROPjX5KW+cE7aUCXGONqEA5UKjLQ3+WM/k168rZl/9OKZxttkaoDlfvpjLs4aaccHcN+InoGk8ma4AwOzAuUAW50GorJmq4bWkbgBgmkYYxpd0GDA8lpIDuAfhQWdJJk2npGmwEp19GWGglaYRhuKIu2OKNzyxhw7l2i55YTiDNxb0Z9loq/pL+qqd2T9Pmk6hafgVzFV+Q/o7V0Y8+aanCfUUASseBZDmkb3R0nEpiyUlQt5us0ZX+Z1DeaU6FjOfzKvjMr4Vz6F0sEGfOmN+ZJog5cyZr+KNtNuW/hb5edEzRLfnzDpgoq9mHjTPsjNlcoY9bg4fNRM4eVV8nbyRdrPsypseX5F+LYsbmjN9SGKh1eZGV9AP2FQEbqE40yxc6ppljbofsh+i27kvI2mynLC5ys+6/ND1plJCo7+LvmKhueY3wrEPSFnRRaPNScCgOqZ6A8OJVX6kCYDPPqfo4alHh1nDJUMva9lusvyrnrQP67aA0LupZ9bbdgTdIWvyJ/h5ZLwQNpkCxxY3NLYYnSE3eoevs8ko62bz6oHorxvyBMbCjUqH8pR3x1TS9fWYKtiGSHVceFM0TizL1Hq89ol/LEx1yHUW8fMhekfesI1Ok8qPovl2TD1a2aP2VWU8EvdDzmhd5Oc3uKHyex9TeTLlYcBJee5scsWNEddTOGBuDRcVU5F6U/gUbAlMtWYXlvERbbdiiFX2Dmt8BcIXca/zqKHIHwVTQwYGq1TUBVNzzpGDKjvisuugyX3GZTeYysHZt2GqcQEw5adYdRD3ZdtBphJD5APaxRIbLzT32FhTgHlCcui6l91oWuZsl9O4P+pjOH9o+j7+fKfDPwB43aelUHrHVg7gqOLprHK0X+Vr547Ulu963ARvAUCatqTzFUXsjibP/5PqQRqd/qac87YC0McJEE6j/OyatmRY54lsqWpiuLV2ayaEDaFFJflT1qZpKRkJwOzIfoAHWwSvaoa2asvuVRUlP85WFdEXujpXoyWrz+410wrUBYz5brS15ZVfeQWSkiQIr4IX4X+kXjqe6jAdNxADbEmV6juI2H/p6UZvLvLr3N3IbwK0HmccoU6+O9a0XSlf+kqa69dVPEV/1zm2iF3ZVdcjbfDMk8yulkabIjWKA8kBlVuUKhzovKHsq/Lq6Ex3OTJgwujpWxDeKKlXXpTewGSgkXJcOERnr2UXl0iN5wb1/psLr3rZ1tfsaNEGj8GsBstgRRmpLLZsO1F97PG1X2ifPQKmzktrtphKlHIWuZtwl4FPS0cEuNtjxQ3SQN2pfTqlOxe5vIupG5uU2f1M64zj1nMwlFjRDa/PdH8JprIuxdRuV4fwarZeuH+Ozqs/G6aSaqt2KKNxApra21eY3sFUZWaWWOXnQiO/ExZC9BIz7dMd8FGpjJejzRf5Vb8FR9xaf+llNarxrU2WXRTP50s8ZXbt38Wmmt1rZ1dMpd7U4En52PnroCQS9y0GjoH7q2n9qTHVYbEw5PFfbNcI+VWMc8XU1LQ/KqYiYxzq3FSh+fnMzBKlSar6wthYn6ZXLV2z8DXL3mTR/AiP49cVsz/a00Kn+KAB4e7d5ndWf3PzFESIIbjm9H+QXi+j0PNvJDS6JWkdqHWaYtOyA+eJODVMC78i07e8aWAfdShOLHEp8ieRA7FvrnDUqsuOLO2f/pK8WR3OQrTyQ58djQPoqYyXTtw/O7Vpi1fxkslLV1554y3B1MFjuNUJAGgObBVmTym8lV8QuurQLvziw4nq4QY/K3ShTF6y6h17XF7r3zS+dV3QoOTkaZ8ZVq2zctvaq5/3Cnh5Gn+XPqmPzRNb9beViht73GFT1yNfynYMWXsOt1zleZ48GEjeeNHfFauWisHZY/at2d07WPUlmLlUi1Xvrrix/HXHS5840O5jk3p3ctAUdlflXmjUdrZ90HpR771vk+vAw/MKi3ms+YFVVH8cTO0d3dIoZTmhPsJHbth04cmfAlNXVVfcGJdk5E7RS0xtdHVMXdtuQbD2Qz5P3OcR/i9so2Gq2L7wJrOQW7sW3zk2bMWa9lm4YXGypiWdAFdXlDlIm2KfvRG2f654dR8fUQbuiNMGS9dT7F+FqVrBwtctjeWLHcixxunE/e+Bqfv+zhj1jiObMrjy6pU6XnW788aXXvzYK2b4dcXsW5/BU7jcZWCvqRYAj/UE+rv8PFUmjCGUnsvaevqaOi4FwlGbKHJpHQtNnAVrdUUFFvnk8zfOsHJZfykbtI1Rv9VRz57vngNxESRQx/VjvjVc6i1wvfKGxlmzvjzq1pM3lu9ioXkCNFM+HOOUS7i9ZNJmsrOyWXbOICpv6sLqenWXEnClWflI8M5BWTqg8GgfkN90frXa91J+/N1KVpyhGsBMUcqogcHV5BWBdVbl+R1QwRR5M2lW3iBPdFp5UTO4nrK/6hxlPNNGOKj2nKVk3V1vmh8We0xbE/tLmQQtYRbgLJ/yhjPXSePod8bQYc+TEdd2+ucLZggfFQf2ZclLA1N8LXs4+TTGke3kjG5gkU5C2oIZrZ2L/BDvxMlmo2iu1MzST8rTVNdpf4OpSGv/sOj6xIzQuEXX79r1lJ+r/BpNBMEve+ZsdKXclY3W7zS0lu51wY05GOPfY1xto6VkebXDCSZERFd6t9GVjb5napcBNr4AU0FMPfLI7UnjzBw5z5m5MX3ZzJZoQdOfBFNL/gxwM13JmQqH2S79pfDiz4GpDsfhVrriwPNEDTQovwiIlTffgqmnR0qY1SmfiV+w8ONlKzzC38I5DY+/he+p27T9qNkWGg9Dtpt2YdHHUdjW7Tf0NfhInjKor4nf0rnLFhLBnKZjW0xVXb/iFTM1KOv8LeTX08Upe/9KTNVU1I9hqqVMDjhG4P60P/MRl7zfYCp81vdhTC3erph6RNmjYRcSq846lEDiwQ/4RKzxn+hr6DZxt+LQYPAckV3wlOnAvz5/+uf7nsooCk/gS20hGIpSwuRXJyhy/rbciho039V66D7SKWkaVeHnSli1izAOaRfoaQue7WbBtNDp3x1M2SHNRzjq3H9AcJeAoGgKq4cC94bG7DuX333pD5Jm0EGiAMjC21Xbcipci+InOSqz1mcJjtZ2+8lcpDkCkYWPEYPPvGiCixvyVMaPyG+jNx+RHyVAIEQGIrPsDBaZ/26REhF8Tb20LkLYVn4WX/hSJoPnC81Img+r3yaqHvPQqdyzSFtQ2aP1v4SpbOw6V2Le8Ya1XPkK99g3MQPNSfdC85amjgNhFqlYHU9sW/ZIOhyM5KJHdQfWMdOkZloEdVDkFQEQmp6rjnXnyif3Pi7900tat+2gOlZ7BdVu9vLb46vyirqp7R4X+SHt0fJd7nv58se2fSzcWPQuAiBOa7Ms2RKMfYGp9XvqXfoCgOl5r3mpetd1R4jM511MhcXNUqSpcGPuJ3wgbbvJ6oaPfyRMfaiN0j9GFDvvsFxxA1kXjj8dprr0b+L+QalgpkSuSv5RTFWf2GnOC4x9rqQcB/swrY9YQfkBcwvC0z389nGhqTPPVM3bT6TpdMNxfAGmRjO63ygnsHM/tonzoU3RJ6J0G8Srj2KqlG2YuvLVcdhRq9wZ41AXVpta7PGbMHVhdHkRwOZewicC9wUXrC4Yy7Ypp49h6lV+xFT2eSw0wwPF0pdb4ML7PhFJ41V+pGNgqrynbiPjPbVHs1XXvxb3//TP3CP+ayrjNz+Z2hUangaXRtudkX4SXNl+4WUCm3anEB3ImRJXK1PDh+8KvyJEoCiq8zKSoow9KhqZmjEv0rTOD+/tKKkrjasPv7A1Nybzi6qhd8cSx+dpZnL3FJ2e46YsNrxa/yxeKeARiJRL1VdEAHMk+Lkfi/y07Cq/DY0Xvdk5TC7xZ0iQQVrKz0lPzC6vjNfnBb6pH9897+r20qz7bC/varnwKmo16kbVpXRqikY59fmerUT70szC1yGBmjOlZWN/WnZpIb9oRZsezReUxvyd/fHOitSpPMIfyIMOND114Y01xfJGly3ObKUx7VFq03iOv+Re2K38VjT5iPx0NrXzKuWnTj1rd+y17wsexfZ39K7xUvSuGHSPqW69XuLXCNy44yV6LRdcdILWgjkfx9TqIFOgX+GGL39cxmkQGZIL72Jq4ddqGzO4tqBprtQUr7wCQNvJ64+HqauvGuEXhzvGOF674pU3C886blQ7Ra1olFurZ4WrSVPEE02X/cqbG5+40kU8NmnoFaZ2+0bGOGdkAeya1fr0xxbQv8JU4B1M7XycE0szE2GcGuNYTNCsNtV1/esxtZugNqMxznkG9guTPu4Ti5YvwVQhqbUz45rYd3pJce5Ss1bWs79XHCje4CI/A6xje6fLLu3+aM/568DsGx6fQO9p2VQan8PzWL6tfOpako1wAggl4p816RUpCO6zHa6seOWvGwwYwPkUJaVlGh0nmhVN4xIEyjNhmQpWs1QIgKnZqurfcaihOnDwNvnZ6Bjc6IlqN4jxAzlT7+7wI9wY+wfAEhXkEIzgyyxKvslqWpI96zusTs00OMaIvXg+r+tlQOOsK9JSnYLkdAyKJq4w5uDUKt2CM5kHRQDy2lIETEfS1NWZ/hMz/CHvKR/Zcxf9v+jNRX5oNGmKyZQDZ5Drb85y6bvD634kR6QeMMcg9aYA0Nw5JVU0ir5a07/QA3hcqlt64yFjzluTr3Tuz5OzbmEHUaGHDdGNmfkMwlgvL9FlKmw41s6b6JLNI7aPCFynPB12WJ5AqSuAIwOG4HleMhw8DfvIwxIkWihnU7oFKxnrrPFFfqPU4DiCZqsglButnXzc6Hr0PHgT73KQUJ63cMBWB+lif57t2SJ7w9SZ59My6nFi1UGLQOKAuYcNBR9TfiLzJr/iVepN0HtIM1yJXWX/pY8P0bvEDSx6N7GNM7azYLVNV+Ghc68w1dIvIMtNW4hUN/d5oFHaZNlg6V3QdVBHqx0fmDPqX4KpoiORcTf1Lg5WcnjaQi7MZb6R6jfEFq6YWoOZBVN9tjsvjpVVPPpRhoxDDx3QVDiZhiDjj2/E1ODjBVNXvjoHigddTOqsb/Sm+UTaTvAm4wuTtT6xhYnb1KPO18NqfyNTxUfwyjDmHnHRm6tPTIht8iPRdBmHOc7xcUwtGic2nc+pU0YH48hF8ZS+Yk4Yih2Ik51Vb74CUzFTUWHEp3m4zZCrIVzjh2QsPWjv3z2mrryYNBMHDs+v8v1zwf1xWjTsE6e8dEMx9YIDiYvU7K/D1DRv0YXzjJUyYlVmMJVPzNhKPpMFvvOJYVPTTufabsXGyM9mevCNZ2j3oz6O2gb0537M7H8J4L8D4BOA/xeA/6G7/6uvre87pjJy/VRmI8vmGfMEm60pjms98YXl38yLpQJq4CiWDMCOA8hN4EWPJrTzbRatoKA7qVmUg58gxpkT3J0Hm2HgkF+wQ3bM+pmzjgI1dYYW4FqOKMw1wYrL/MJ2RzqcdNJcEQiOn+XHgqmG44gjVv0A/FFSiA5nqoinHwdQDnz+jgRNL9xLRyWib8oQMVATeAtcYUETZdYDh+ak35VfzeKSdSVPwH2UHpnNI6jZPwt5gAH1Qynp7eYvlscNlyui/LrTTicESx7n/o3eTDkn189RtqW0SP+Q3SpQZ52uzid4o4FzlrU8TnpQNsMz7z0DBFSbUyaW+oOU4PQEaY4QHqTQoIt+8pjwpuuS4s2I1A0eaW2IY6nNgTGTzqqDyudCpwz20gGi8Url1J8aUKwHWKjsgZluMs746MUbWOOi4A9tvf4uHKBue+ej93ZzpY7YpQHa2pUPPcTZKbSms03vGHS+w0tnX15gas7oBAM0iG24nxRWO6veDeGP+B2XyZbXmGoZjKU+MsCjvsML9ze8UV5ynx7rc7ZWZpTPBVNz4q3UQuZjgodWuJOpjORNx9U4UzzB+iWmuvZZUm5DnxumZtmgKerz6DHTxTmktjhePD+TM4kbgosNNwQU3Hlw5y2mclGFg14nkBowzgc42+bJ2GqHf1b/lFdd1rS9j2Bqyd4jJc1hD4OPGYfkqZpBtPSYzEleuep6Pl+BqUCMAWqiY6rRrDzll+BTyujWMZX3ne8xtRBJB0Wo6qJJDkeDr6QRNkV2Tpo8YpwGHVJZw4HkzZ1P/DimZgqqGjMcwBG8UmlUu/3zVY+6/CZWkfzBdqND3AObcTPCu4XP+PXZPv8BgH/h7k8z+18A+BcA/mdfW9n3PZVRcDAtWD3ksi6uwcAy3tgs48dnRQxtLwIRd4efHYCasauHy8oFBJYuaSCeKxDsztqGZ6H+js8grNWtH9TzXmhVJ4zlr07+hZ9ijIXY5br14IgW5CQKROsSuKzc0QBhJ7/8NeXXuz9/KxrmbNcNr8T5q+xNWr7K7/4p56xf+uUlQz/Vr+oVXt3Jz8r59dJVW+teJ+5iF1qU99qoQ1HHk4Hmrv4NHfpCTjzw66bbljOBFTQB3AtZdwCxidXuK/he6aognj+uikeahK+LDEp9LYO+cVrpGcm5w6otr4TGrL8+9zK1arEbwDlqtfOadt0F1+S3ccwrb1Qmq85RToqpr/r57uNkeeBi9MP0N+zaUEzFlT+KFQumslBNikVQ75iHqLzUuwWzdzRt8EnpKkxd/A+uOmHAkt5ViHnRu9DXmjsPPNb238HUAsR1sG1pt2z7XdyQzqyQeJFn83e1upN4vVYQhXz5V++ubKeDyD9VVo0muijvLKYeB6qQN/eY6guvzuUy4Ev8cHUXSy+lqCj7RzB1pZHbIaauY+ExpH+cCOv9U1z8Nkz1rOEw5Kh2Ht7FKjc+cTUqlVexZvuq1rudFAuBeyvEDBzLBnT/1qUxZVZ+FEx1h5h98qJ1qelW6Y3Kk/an7fvS7habLjR18lN+atQQnMDu+SYP8Cd+7LulMrr7/0k+/kcA/nvfUt93HJjRmaBQfuep9NXmWEx+8rSw+U9X6jVq4ejfl7umovaYULpq59wsaTNtgz8tjrI20hK5g05bnKY6kqAp95YNXT0gm8q4uBJNBqRzTgDps0UaYO54VUGnwIfY8kyvjN8bPgtwuVefjDQKzaiZZBXuKr+VVxnwe9FFdeFAA41XGcqoyMURc5bqlfyyKhGBKKSj8WfSFIPESBuEW5efLD+Ze+19SflNWZgX0dM3OHqOe3d+DfnDQPiVY6ZwkCZvB7fUP5Zl1QN50xsRVn51tUcv3rR2vH2kI9C0z3wUB1Ya5fH1D+s0kVelNzu80QpjpjHSt7oj3nR8IajPngoNqussxtQw0O5KT9teVCMeIO/FuwYeCwELK/s7C69WGn1SpTPlk9z5RZKu9valz0bv2j6aF3rX6VTMKl6tmFo2VLbjo1+wqm1sabySf8HBXOED3sdU6ylO9EOnpHfNNsgbKsiNbQgd9d1rTE0NEJrEYwCBr89z2VB/kV/VVbTsMFX4ECsqisOOyas8iTAwtdta0TUnvnTf1GKAiYueevO+TywbnCmViyGgMLW+87TP58nVH6GJq3/Y+8T8IbkTrSy6/FFMnRRavsI99ClfilxYaotP1LvJLoPsL8TUSU/x9Rzcy3XkRB5w4xPlDII7X7zD1DYQ8aJ54gQnGKRj4Yc4qM6Dwb34SptK3EG9Q8Z1nyi8QY+n7jGV/OMknaQ4+7oyhsbrFY6T59jFD55lMoWUX6jsF/o37u2Hehy6cPBVz3/azP5j+fwv3f1ffkU9/yMA//tvIeT7Dcx0BoCKaSgFoP4QP63+pgNmoM9Zq5xL83LIQM3OMoBkXrhH+tSBOJZUH5N/4z+2g5PGaYVLCtZD5jvoGMIZaQBi4odjdTmP7Scmz1cteRIfE6wFkzpN0l8NOIpXM7/C3FoesiFOg7LpOA861jhBb/av6iOxyZuVDqUxnFiCnZX8ZpngGmnKPsyGBnkhKaogD/mhOc09by40Un7kF293ZEAEFI2ZWz4/kzzjXohIpWkH25AJo/Oqy68CmZmPjwRnneFeZ/Bysjl1HZE2NcF9GA8UCK67A5kSEW2mEpZtrXqT+zHUTow0zSoyH33R9TodquwRXjY4eS5CW3AAGdCgBg1q29QZXNNIcpImg0HR9aA3B/yyqpINkb60qdJdKE1A6k32z4hDZY+Z2txcfrGVJjbpl5UlN3C/ZHvZS1e6/ISuJZCruKYcsMnXLTBLVlvYn/D0a55BAyz+vad3xI2k05TOWUYHsyumjniHchlpoysvV72zWklZ9O5ySqRxas22/ofp4ZTTSN2Z7wwGRRwkuPLmXu/g3vqnmIrUddatvCmfyHTBGhdaDE6EDvcLr7r85uc2pk5IIwhZ0CU+0abvpdyGlg0Msyib+8zdcnBXeNQxdXZ2ozcbHSte8euwybRnJH5NTPWkMUtoZLziBuFkh/sInyLdoI+wQ+KWD2Bq4pkM/BnjzJNJUhUEN/Y+Mm1LBzDs54qpUDo6pnJ7HaSqnAx3K5p2vHFDXsFAX3zB1FrJNWlH02fN5MRDwdTcCmHIdE/qgDdehb3QBjUuET3STvaBP2T7yGtMtVG2zQE/7TN9JOtZY+gl3lVeqfw4GKP0FF8OlT3xdCok8nqJH/g58U0rZv+Ju/+X7340s/8zgH9z89O/5+7/h3jn3wPwBPC/+xZCvtPhH6W4TWkwlWD6WAEEGiFK/5HGcVWVUsZ+1DUDj7GUPTVtaaFJJxManmcU0+myTmV1YE9qNZPBEmkij658ou++gKrSZMXCfbNys728laAHApyj8XG5PHlX+YU3SdMkylvRAGQsfJTgsfbpiZOUGkYcTJIkrfK7482WRuGN9+6teqQrRt1JBrC31SCH1uZ3vEma0s1gTcO5dM8k+Mj+WfIPJisSTNWQ2lw6kZONXanFHKknMjOLa7qIBmi+42s42XSCXM1L/hYOKE1thtSWxpLk4rna46rr/GemBbGDR+nHusJo1V81ruLNITRagoamtLDMBUdSfqIYpgUssEt0yoG8s2bDK2HIVp4X3gj+rHzs9ShtX/ikrIqXupLRngsvqXdK71J91tl5qYPjPHzmqbhRu5IYuL7UuwsvgYapykvBjaV7DTdggJ+IiRODEqB+78obB6wCy1vhqH1mMOb5udtFbWC0D9iC6rv2tFRxDZg6b4qG+HWxK5Uf8WycrKd0tmxho9+dfbc86sHrBlMXOufA/AVuoLOGasTfrnSFLgw0HV8xdeUNcaTRx7LE/WiM6L2LHxo2XYBkg6lW30Lf8rLW+f+edmHwq/y2vDn2PjF0bochRfaRvEpdVUxVowr5cRKz6zoqXsXuof75hRKWcuvv7jHVwVggj+ln2ue5XN1yR8cFM2VFrL2mvlin5UVhF5i/b/fHeBz2rStmr+t3/6+/+t3M/gcA/jmA/5rr3ouveH6gsyVFUdujTvn6m8f3nQ3XN2M+ouDF53/zJJ6PlA0S9ecL7yuDmHTh9etQVfco1I419027WnN0Pn+/kO8JsDuaXlna3NtS/PVlALspIH+/oHFt/EJYfcEjf+ueq6p+OIOrOyLm51verDRuFVBAWj67fKYu8b/zictG3T4Y+hL5bbvU6Lrqdjk61jt8s2/x3TaUxquq7OyxByS3IXfO5p6DKZb8YRPBrryRf/c2taMLlw5sVBQOnvp2Q/j6rLy5laNGWPtXVH5pez5XLsYHseqWN/n3hr+7Z+UNiAe2seNvexrGKBYI/nXSrvq90l1+oXipZXzl5Ubfb2WZjX6Ql2vVi/wT9/PuvIWOfJZUVgd8rUwGKRefcWMbF3YLX903e3hfdTorscQ8l3Zes0t8FeUEXOWnJ+hdAt0e6CueNBELPin0V5v1+/zelt+teMXVlXXSMp8+SCs+7bgR9PvyOctbts3ffXlXZchj6W/blX7z8yXGWfjY+gSxx03V5NWQ3937QKMR8rqiLR4U/VdfXd3qmMpqh+paZHCsMtzx5oJV114kDWvZ3qXC1AtWDfJq045XnauZX5kjdGxebfavtpJYb5cyvz79MbP/JoB/F8C/5e6/+9b6vmMqI3ImotIngErw5Uy+zxkyOK6pJT5H9TG7xX0DOeNg9bmG+3NmYub1o3Qu19uZLmby+lKWMwm5jG6tnZZaMslOWhqNAGxJfxpxTGvuh/AqWykPPbWR012axpHpGdHOCL6Sb0qTt6rYLmf5LY8DzuV7veejFUZZLusRXs3PVj8vdDQZlAbkTE6dFDbb4WlodmDONHu1o7zJ9KDkDXLmNWcaDZHWucpXZvkM8BAKZ9apG0w79Ew3QMlPZaVAt5NfvJyz/fw8vGhKvSmdc7UhzMtG509H6nqmuIzertLBvYpJ/8ILyOeuc7NAO7o5acbGHkufqVZ8MvUmPvFI/6v8gEp34ZfovGK7VvOB6r5H5JLkkcMnZcjj1I+Sn/CKKVlJ08KbtudTZt+TikyVmXxsvFl0PbGKfEodM8EmaZed3NqfZxtdJh1rYFY6ttH188SXP6R9o3edt4J1N3qHkCkE9xOHxTYcvFoijoUetdJilKmTlxCZig0GuxU3ipfof294mVifX3qkKE26zGPSxOclt6frvjs2MOsa9BX6k1FvsOCVb/yNfF6wjXpotKuYoDDMvV9D9O6CG640hU1yM7TtfaKILPg1PwyVn/OS6cLx4i0j0wPprwdD3tku/bPGD+WLyycO8iaxfOENmCpYKYRlKxxUW2DbgHucyNtwI2hqmCp6a+UT2Z9JB/tD3c71rpBXl32mNQ9mkLLDJS9bdDv/TZ0iTTzl2heaut7Ayt4appJXpMm5bSTklD7yvZjGhDerjObvg7xpZdlup3nyadI9YFN+SdcAxiN5QlXr9jZ/nFgl/mdDs8poKKYCactd15FYlVfIEAMyfiheAAJjbBf0e0HnEF4N3/KZdJgXXYAt9ogf+hnfb63pfwPgFwD/Qcj6P3L3//HXVvYdD/+wFpAAEM/XvijjPSrirgCwBlL9N6lFgsUZkDAfn1qtGq5KqTRZo6ec044mtisGrACbv10/WxyVP8LSMr+3jTbQ2iU91hr2aFffFaBgOfd2Vjf32DTHbbFR120OyjI53pdzvsuBpG9U5Ljwirwpv1X9Wd5NhBTeWSzHnxCaVt4ITU2erKi+50/Fx87yxhsQ2IOvIDgf5XDdev+FjibPFjwsfI3+WHt3oUlk347tT52aNPNwmYWRWpnwZt+uLe8qr2Y3Fme8OlBphjn+eT9LF1L/25bCtzR657m866UyCxutXk1dd9R1B4tMsJPfK96I/dFh0oGoDupHYWzKE7hg1YWxzf5ueEMHf1RDao8lTO1e8fJyAtwXPYat3i3Ytspw5S3r8bDH+u2KxwxYBn3ImEdM5IXdwp8vto3Ks8Kel8QNpM+g/D3rBXAcsGF4OjDvi6ScaCys4kpjw3LxVcqbq/+581UUR9TN8ueBdqXMS9xX3hS5vZ3Om3SnG1/l0T/3eUdWyd8q7dMRh3Kt9lFlGT/s2knZe/Bm8YnT/1jjm17UO3mFTMvudmdCyHv6iiznboFXKy72aMCTN3wr+mkrrS9wgzLh3yGoih+UJgq6/A/Llk5Z1ylQbcIfxe/gQWcA3o9plDddRvVUuzuXkRzi6CoHThXj2DjgGuOwMtGnau4VViH5eolhqqfJR+q6RZbExKqanu5ZN9JGYPkVI9nQa6xafVdl4DiOiz1q53+sxx04/4SpjK/b9v/CH7O+73iP2fxnlFojZ1/QvpAyJj8piOyqrx8S3JEYOmcDUWmDNSnvGJGbnG1pA7Z80/ZbiReJdyvvf9OfhXim7Y2BeVdG4WHwqcDJWtkMnYrElg8v71rnDVDtJInL4x4nIJ7I1TJWq3hpS/9WsdjCqyrb5eiX/gFY6Jp89XnnyDia2qyZ3isod/kpgeJssyYpddG1m/4Oj7RPfZXgzI+9nUuo+6Kd9Ru7/BBcjZUk99D3c/7bTErKW6tD9CSZ0PWoiYcGlPHH/KP4J/YYjtF9zjK/lJ9ddaFDhKxsbHT9okcbOFkDnOG4pO3qaVbxxULTC96sWa2L81htuZkJSo/GYNqL0LV2alGGxpuFZlvoUB18T9e3QPGBh31pevcuL1/p3SIW7N9NOIy6PoQbSjjbudOzj/Cy2cZV73z4vEdphxs0xXd4pT7j4j4Xn3iLXyAfkWmDQ1PZzPoVFQuz2oAF5M3eJ662caVJcYP+mqeUHk0mtmD3q/gBl/jhhc4t/Vu/YsqZD+JGpViu9pnVNkwtmtQnWgUlNz7xBS5G3e7lt+t3GUzky6/ih2QK9Ejo1f+4fFDdVnKHxDjzwA39/V4f+UVhxqa/8oF602jLn2XQH91xEPd50nPVtYq+0fUKq1av/kod5f9zZ15MILnqevZ/8Rk7THyp22vbVVj38Sq+tAnFH/T5U+4x+3M+3+3wD6a0GD8j9OWAHHwllnhEkBG/JSjkxZaAH5ECdJRmUs0slHfOIs42/Qywc558htLqw3pbdIoDkKPwsG6srF1m/H85WWn0dEN4X0IGpiOcBxAdM/NAT8I6UDTp7Ex2iHyMz5L+5HmoYvTXIiUmHH9Nmk3v7tFfp6yGJRjoPWLW2g2Z7uS34RWAbAcjaHRE+56f7RAaLegatecm07cSjFx4ZSW/C69MMCpA1B1+FF+1XU9mlizYZB577RHEcDUvU7Liq0zh7fLLNCcerSXtJk3Sv3FEmZU3kNQ/tzgEL+4Kg6wOBG9sozfTpgSwM5DQY0hM5FeOkPZhoxxeTaLQuR+o4IoYYO2Vwv9rKpsJ45mOnJML1BuWRem2iS6ox27HPqdeha4PKQdpx6QOQwvoV7v3YQ0zqmHaGHWOvPGcXWZ2TW2U94omqEdpNx0HUN2Y/yr+LHpTUUrR6MHBxCoIH6+m/LEncX/FjQX3ab8xO9/1TvBpYK6UCHaTl7SFWpgI3HjG4Jb9vcUNymi2a4qpUow6mnq32i8VhanzYSO0DR4UNANC4kbNsNuBeYHzIfoO4WM+ou/EI/pE9WvV4ZRjreJM2uh7ziH+RJq6x9Su4tRRtcnuE/MrdqH7ROIkM1zCFvJEOp/9NPJGbWHnf1bckNTapjcX3Ci+AiRLgCSuYJi0D3hcEp59CX9jhqmvA9MGX/lECF8vPhFXn+gFs8SNmXJ8iI800K9hkUnziXkKYPyU8cMRvOjxQ9of/Rvo30rX2NrIfcXBy0GcZBkUDoj8yJtyTKpjpFH8uPoflDrw9NEx6l9u18hzJP2RCtl1vdR9YnrJhKvIdaJlj1kZ48AdF594KGaEjIbjfE5eZT1iUy1+UN0mYzbyI1YR5zKFn76qSM1/eVX6gaDjB30cy9Uef8HPd1sx4wzjwCinIN9jNUBqioI45LN5lZW9Y06rPWigMruQ7Vprt+1pcaSDbBocn9vEMQOL9XPinlWAr4YFGtp8J9PQ5FS/CazKG53zWhpebUd440ITg5MEkcW5NueTdXde9at3HJnyRKBWEvW58MbzmOnsH7Fo1N6HNuuXAbPhcv1Ck58cbxXORxgPKlaCnZeMLGStFzF6IpcvwOapLxbM0TQH5z496mvjhdCXvAmwXmgqGg0Q3pCPl/5d6hddVzGJ8xFBNBqLZgfEMasZrHs5ujPlrHBEFyZmxQ8yK9v0JOXXZSxWBF44nc70WOiQsqWr8YJxwiKCkyEpZUFWBQoLb1r/hWbl44avnrruZfei67T+PNp5GPp1ByaDUunfyviVjwMLjZ03NZ1VAQSvJtB46Yse0b0atET/lD9WPIcGaxJ8JFkLLrrwkiebNcyFwY6jAvKXuLF8tzwXnPfl82qT8pvAghyLHsHuHW4Qc+64v9G7iz8N/MvA/OITq7+GSFs7MbFZ6jLpw4UhO73b8kYyBUQRtZqyXYJ/x+TEjZwQWuSpvGn926Rpb3iz84npe2I1YeqXARaZNuOA+YHqj+Cx6uty6uKt3ohd3PnEGqAVzs1VIabMCs5JXdruhcbEOuUNgjcdB1z4msrR7Gby9TjK1g/Mw58KY5eYZokf0le5TLYLIfSJzZZQ/FAcqLrCtnDgIO770XjFAWhTokUmU54u2OQLb+anxkeqPiwGpV3HHAcsdGpOtKhuL/FD0tSc1KwneSNsTR0R3gSe0jIaZMDkNPNfnz/18x33mAFw4JAjhj3/4s9r+l4vS+eMVHyNGAI0+fpNfq5H2qCCyCHLtZMu+XGJZC7pBQR2oTkHQ717F3+vv/uFpmpHs0r4ha21KaatqSUV1WT5O5rUyAf3contH63ce2lWK68U6sSjLBi4Pu7ygyM3tOdn5RUAR59FsXdoqv6lh2y6Zvq7r3VFr08B7PiN6T97mkh8QWIWX+ophO0kzz9s0z8G9YCNo4tkKe/ywyWFEOtTq3g645b1Lo55te00+gEcTW9KX0uvxOYWnfDdB9FttV+Fh0tKLyz120+U/NRLxZ++8HlNw2l0Me0261rbXf9ozSGmOxiXNkxbMVOfa2pQt3um9CS7VccvuLZ8/EoHTb1o8ySrfDdtXLCSerfY4KVsw9uwMuL+Ke9vcUPqWoKSLU7e4D68gsR9BYzmAH+uuFF66KvO+jt6d8HUxUfepTQ12dAXWZ+Y0LZW1/Ou3ilvEp0W2rMy1pDEpVkOLJc9i/y8f772T3RuwxtbfGJCwNJO50MMohPNQ6YvY5pNXao3UBp3Hdnbvr4498tWn0q3N45gQ9NtauqHfWKviz8Pwdh9TNNpvAxikyB1PL68s3lS3v19x9R1kxhn8sqy4MSvjU8U3aaidN74UiAJ2eK+xlHuaFg151pvYhpR1PI/ncZ3MVPpuPz0lcD/Z3rOH5y+jz7fcY+Zl/K8whY+DdvFQxDl16gw7WD+xlRGIByHY85AjLS+VnY1uCK0C377jXieBHNfnOoSOWgqHDKVqre78TV73igv1s/NJqNecwlCTVhaKZ5M+8wLeKV/jRM9blh8iNe7C43e5Gnt/e1KWdBUKS2dJU1++tsreRJMUyG6/NJltb5k0cgF934Ut8rvzo8aUPtIfO1w6U2CbtWdh23kF9Ik3W/sfUgC3KRdaGVCd82cXflYsJ0+evmdG4hnWTEoq508GSCrh1e2Zbtdby4rNhIUeOON93dNnOy6ykd6JLjKGes7Xdd6l3Y6IUsjO3sMmetMdAYFkfI5D2CQNMKdTSXzQn5XgJJeiM41XV/3PC4VqDy/9Pli3Oi2kJoedF5kKO+suJHYHqmDUmApj25rq8zyh41+X3Cjyipt1T1PvRt+XGRIfN7R+q7ebfuSDS+THZtAjsfSuzDyQsqN3q1ty9MwdVmx0+mOvsdK+Dhs7uVaI0ltaocb8fVkuJUIF0xdecP+zSqvQiCO5X2aznT/K29e4sZKu9lStORw5xMbXYPYzzur1NYW3Fiw23pVwhu0yZyyAa1z/5hZ3hPmkZp90Tkxratut8qQA95mn1Zxi/rNrHvKvq+mRRrqk7ouPG9P8Gbtu4C5J86IrBvtG/uM/hREsV9W+/pd2HvhhajLoiezmpKvrdi9+ES1QNUDB4SvP+bj+HWP2bc/Q4DxPV76+p717wNsuGSbhg2kahXOhdoNAU/IKsKCnZd2NvQ0XE+jl2DD0EBWq2/+0jGDMP6SK0FW/6px0mGvvPH+2bQR5Y0vNC68msZobV9FRIvX/sF4wvhlZtnyj+4F6y/5LP3LJfjsnzDcA0IyiFhYJQRoVkZ+jvpsebcEuemfAqD6sgtvkAO1RlSTiy/fW9tX0uSnRZQ3UN7wXY8+LkKgggmNq5403jBgYvspV5Gf2BTTAFt/o6HuF2uAajEo2zvBaiqPyk7FXYS8OpvFyOh4LIjuPNu0yZfvdH23ZGedV3mEP12thy2BMlPNR8rerUcjBszBIjcyuHVdV5tadJttXQ7SWvHgA1jVffllff7jz7Br24kbxdeZ2rzpI9QGZfC8dnDjMwzITISk/z3cyCPiqYdVV9aiqim44cQYsVcpJY/VBKHStMMNu/79Uu9IE0TvBcNYkWs7Opjwqrv5AcVk9k/1jn+tSrTDVCm7ml9rMOzRI8U/9+ddaMINbvR2k6Z8v35uuAhUnL1ZoUx8xOR4ZbvsedN4YQuLGqYuZfm5+URcK0maHfCj4pGG+ze4sYtTdvondqF64y8kyLpyAjr3sZnU7XvebPq31SP6PilUPhHz/4g3UZfFimK5SWGwoSZNyZuU0ZVHq/w6b/jiwqH0c0JTf1V4LjJY2m68lD3aandrLGXRIWIVjo6oFxj9oZ9f95h920Pt8C7wVfgNd8QH5tcbnNMgj3ZIR9TSJ2wC+4DNgwouaR1eFbYZpd5ma3ehSX0CP+e7Jp+Fxqwgj6U3ebc6xlzlO960viw0Jc23vGGQMQu42fzPgcy/Vpq17AveFEFSlu+/xxvxDC4NuWGuMN6l5Sx/++ZfwamugwK2K2+KhBW847j8pKk4osPAu/SdS0buhairrq92YilAvhDO6Gn9uoNr1Yv8elLL5d2N/PJFDXiClkaz6nped6C6jv630KX/bh0GdWPRz/b5tlzIL4693uo6rjTd8kowRHGgeOMLb5bVBjjmEf6zDQxrwf8tZmLhle10W2edu24r6Wt/1smXjz8h4y1uWJJ1wae1FlXStfokOA4oWOhmkATg47ixwVhbXppVc4DjV727KcvMBNAfKe5HzR03rjTd0dVoWl5y529FXPFVXjRM36j7btb+3+H+K0yVz8kbqatnFwgvhDX+BL4KN1ZbUJqTpitvpk9cV5MR91wXbsxUuL2NrvJbfeQlfnjBG5MaSZVnHY7aw2vAabHvbaFj8/mCsZcfN7wJxhltfNOITqiYzRVGu5xguTBkoUV/38YPK88Vr5LZ6RyrPrMpPwfgR8dYif9exg98V18WO23sMHTZb/RVJyvm1oiN/W1ounzYvbzljYuyLc834f6vz5c+32946cvfjqtmUb/9WuRS2apQqq0uvkbqdEfsL7N6T1vZ0eXylfuV5lsSV6TZeFWf3/vgXi17t+z7S8vr8rO/y5tLUw5gPWp95U3yT8os7aozXmm8NnpPU3ZjAGD6gZbdtr+rauGFfl5JueON/EadGhzoKx2+oOMN0G95cye/zav9c60ozrRd3PJGq9jr9n2Zl3Tc8S945c93yoo8d7p+0e27dm/aT8cH1GqKpI/sy67y+wKZ3GHU7h2fepRYpZc6v4IahLU1+7ymodxXcdW5V3bwRc8r3FgJc/3wATr1/bQ3GTmxiOM6KHuFGxed3ODCpYxtvy9eSrAnuIGP4kb09ZY77stKqfBjwZ57bLPag63Y0buT/7jaa/62wdRd4FeNdpo2snC393FDvriKoFL08w3KZC2zY/DyLnnjKb+N7BfeNF7t+Lqh+ULcDV/Jo9L1oPeddiZJL2x/bfYWU/l5Ta9E8r3tV99iQvHmEv9tbKr/uegg+YHl76V/vuq40HXHm3sMX0lc+PiezDlwfwerbuO/pP1qf3bhjXRn2YeYvLlW80M+A/bV//1Iz3dMZUTzFfl3LteGgvCzHKPPMnksKXhqVbxgU630qHJ46XYeP6wXEw82azWDkmW904pZX61uIX9kKpK2mx9kIo1TcJo+4azLOQtFoleaWNY7/5TGtd0h7cL7srjyVdIRMzUt7nSarFBGQjpAGoSmhTemaVot7dGKXytvOGsUy+3Zh9wnEl+OXrbpyTu80bIen/XnRCSlOXgzhnfaT58HbKCAdTfjSJmQpn41ROfNpX/KVwK48Cb3DrE8A6sYhJjK/o43F93GhTedz3KQhNhbyitOm5sfPfY+sANLJ+7qDd5c5Cu6rayGhz26vBvtq/ySrR6f5SJdrix0HZ8fWqqq9I8ySbnz+o747IlRtDMIb5C6ns2ewiuD4BxmPcqLVbdBfs0O5vUECx/A/Xiabpk0kVes2vt44aOPox+PrrrH34P0bpPvYOoQzAmZm5Ql/cZjys/qfwboW9xY5A5vNDe9S7mgeB22Pk9dnHVZww2pX+6IZLD0Pm5YW0Fqepf261IF9Y5Y7M0ndt2x2pv6EdzI71d8stSlrDptwUTv4l2RgYX8mu9K+Vl1+A43FttYsS33YF7sagog8Ut9ouhc6iP5POKIri/CDalj3Qqw0rzi/MqbxN8oqLgB/xhutGWoorFd+7LEQw60i7DLJ3p8TpGEL/K5UmYSTyQfS34as13iv3fih1vewGa6XpStC9SRB6SscZc3vl5503zxDqtQZYfSJP3NvaZij/TbabeOCoo0/tv4xIuuS7sD3m3ZKSsTvnqRKGV1+/yP9rh/vwum/9jP9zsuH0vApU4BSEPKFJf1rE73m8spqy5b6sqiw1PxLUEn2tEpiFRaFbYv+wjUIpZtsxfvKmSEMTQaj9mWDsoqxUfoWvrn6s2yrvpsarVegYrWlc+QsjTYwgLMVqXdxQ5e8aa9PHwexbwjZMcbDbrJqzgiWeXXADj721lzjXjWd01fFqdx5Y0pzUxpibtKUn4OMkTAU08MXWhaeaN6FKCJV7yxzosWYNKhrO9m/6sd0TgAG95cckley09fnXf5lK60WeaL/KTs8LbOb8o7dTDZCe17RoDLuxOLpqM+UNk11uV71z8sKxeObmOqN72TIXv9LHym3hwGG3En3eVgoBUTlc87vdFnhwNXe01Hne9aK/olT+G+9sGb2FzpuODViqnv4Ya8yWPnY7DgTAuNd6/t9mZf22Avm6CJ8C/H/G7Lyy/GDdEdfVT+LHvDq4v57vDYDHYA48n6lv7dtNtwf3UR6Zs29u6+sYU73Mf7uCEtu/pED58ohBm0LBrs7+w3U/ZIE462Vf3LcMOynVe432i6xX0rIg6HDat0/4/ghpOqamyNH7a4n68sPtHoGEOeR+mzn/5SfpME2tAig7Hgwod84rWtqWMj7W+ajZXNKZaTN4s9vsQqVD3Th668eWGPgVVz0u+4XO1xy5t34oU9nq7yJW/u8fRHfH7dY/ZHeax7F19+ky/N6nePL4boiWkFNuGhPapTnHlzixWAdvB1TE7Mb+aJhVqXEAIe812B2dDarOvx6kfXuvIOllgN0jiqTombrbV9B7bwUT77liZtd02H6XWZgv2JdjQ9L8e9e8ibtb/0C01+1t/NjHnHyqbZB85oDWtHrZPWkh86H5e67ELTog1Njdb+SmVWvMnZNy3q1jktvLHczV0+s5mFWR61P99feLWSpB89Xg35HdrO2tDCm3YVQtqbyqjbVPvNF94sn7O/eTKqoRO/vqs4UH2YPwlvVp276BXu30VowjDgiWW1cMGBpaxe+wFgzkoKDbba50UX6rfyf8Fhjy7mfVI3NF26vuCAH43DK2Y26a7pPl2ZF0z8gsd3uNHrOiKIKVu4yvBd3ODvSaeDpyY4UHv18tWGBC9xY/JywdSL3i3ddpliW3lJPftm3DAM986bF3rnSx9WKEi9W66zWHFw5VX3iR7+p2iwS0Or3ilNOxyxypj4ItyoN/SkuiTjEj+8ik3kizFf8NNgJ+BDLk829P5ecOPeJ14wFcuz8gZiGx68I27gG3DjZfwgf7ETW/uDyMTCHJdUxwuP68t9/Lfo+gv/c5V1x1wAExMii+qOV2vfzVf53ccPvsZWF11X2aOw6pwTcxzn6Z2q2febuGSLVav8Gm+W3+yFPH+wx2G/nsr4zQ9Xq9p3XprMgKssD7nhVF7J2CX+zaXtpSwg7yCWsjlj4+GBIjUy92cYDR7Vrvd/vY8uql06HO1Sfh9f+ljS9YIvETRc0gazHluiE1zeceFN/qvtcEaJ4K+ILk8OMgju8CUlYtMO/1144wtvVEYtdYvOLOsP8Ft5lTNuJT+s8oP1/jvQTn5yiG9f0JE6t6hlMQdb+eXpSO7lrFa8GGiK0XV7pUMaPkrn9vKTskaabM6Y2kZ+jTfLd46eDrTwprdbrAW7JjRdUlEdc/CTbYn8yG+R/VV/0Wm94Q1WnVscUsrPYuP+MEmVcvAGdVujz5aK3VOwwFcXe2y8af3xS38mDySF7LSqJBTWfJO2utSlqUArvubBIxed48mZ8vuYhwCRry/mY14/uxT2O0y9sUnFBo/6triherdMMM20JYc3vauyO9xwxY2BSzuv9C6DNxjswkv/I+FG17v3eDNXCa3e0bKKG8mA4hXk/QzmhDcuNHZeXH11lk29mx2xpBEdY09U4C0+st4jj666kJ8XPVxtwQhCyX9R+A1uIPbwuseS3jhCV6WdlF/ReOsTEzfsihsZP6y8EbuARdon96tHF9zAi7NvcWMU7M6G93xMXr3kjTe5zLgLcx89bSz1ZnG0G1tuGNswA83+LvGDpMz2Sd9JozG1Xnw+eZX0SHt3WLXGnXUoWLdNlm0+Eeg6rD4yaUKP/xZbJK2u372DVerHU5LBGyRfHd+E+78+X/R8p1MZUTP5MqWgp+2tv2lwPPXI6xV1EKxXVzSbEnO9yeE2Z7Zmur2AF7U26nLeYplGWb+nbyFdSr8DdigS82UC4VFGAZQzCjr1FKXZdNHoGiQqr8IiTfqQqSXJc+/Gn+8mcgm5tV9jfmxeo/HKlwFPWT8u8oOH75JO9BQIpa9XRXRgsJVBRL66yG+XwpV6wwCA7/a2U77xbl/duKZtWHks+MKrllqz6HpLcdjwJj8RKDf8mWX9mm4ZTrL1P38nrVLZjU2tvGnvqs5Vpxr5+hMQ6TMnyVTdjoq1DeGNiT3mu3e8afTqF7jIHtxzdUTKG3Ma0yfaXiYAbLFHv7NHLUt2rzzld1GWzprHg7fLbxe9acucqp8DyyB71Tm/plu2CS2ZS3Xv6vQFjyVtC5YJblztt9eRwQx5u+hZ/h0N5rs5OVApqg33F16uuNEwlfxJ3eko3/2YnhBZdyF1XlrxmHtntd2s7oO48UHeIGhwt7kXLnyTDnAMeImxmSaoWCBtrTpqbSl+Aw6J695c0/xJvoOhr2bU//va36XdXaxh8m5PF1ieHW5Qfl+MG51GX3hjyQ/t5ZRR1+1Jc9mX56sxB7xg7AvcgGzXADYxTX+3Y+pCE/E425FTLR0VT9zIZNsups7Rjj6k68prgkoqVgwSDwOemJNzuc8YcMZwiVGl6zTdi/zYvwUH0PTm6qsm7yZ9nnuADXBb5Oet3a4jS/y3YJWtsbH2QQnhZ+Mg2nFNh/+xnh/tEI+vfb5rKmPfgwQYjiugqrHyu9Ab6kjLSGFdmzSlaCTsMcBST8LiK/JxPTxgW6EuT2c5hENej6it/uxo9kBTOxea+L7pu3vetMqt0iX49WVJfdOv3qN4IY8ChgigO2tdrbrQpJ/NoePdnMWyqmvlUHYpwJGpGjY0FQY3ckIApzhVgqy0e4jTI+YpJ3p1K43lyVb5rYUNywyg0m5I3vBd0viu/BKM2Sa9MyIV9djOeuUMp8pv0fuVN+uzTYkgS4TPTMEqXefv0fcrdcmrfhm6BiJ73ihfVj2/pL2p0GNVJftvjjURUI+ax9Jf0pW+dOWNrcoRn63stOoJGQ7A/Gi87+mma8GS13y3NsHMbnq+a50Vl/68xsAPPhlECGPsfdywpZKO+72PW9zQIEgCwTx5U9rZhh0b3DiWdrX0mlUkCNp5sePlO7vrP4objTcsexWy/CY+kXXz31XvVtpN2tnpneiOQ0hS+5Uedr274gb/a7ixVGHxxz1uFIgVzose5bs7f73BDQRd34obIj8A78QPRQcvDmaV7D9XPTJtMLHgSkI10vt3iAwu8rtg6vos9qn7pAZau+/Gf4qhho/jwA5T2Q/VQcdla8uM/45ecHXsvpFffOi63vl6pVloTKwKFvja6gYH9JF2V7/9ersGFj3a4dyP+bBvfw3PdxuYTVnbxpDlSU1dvef87M0K5DXDXEIGcMklcGRA7zIoU9D2rDbW1mjYfq1upTeBRa1eyDR9Ob/0su84dYozWnZBzs6bVmdrt/Omp38pYOmell3HopGnAeGcrVXYu1Ft3POoyW+V76U+R46Uo2wNyABwULa2Fz7c2ldzM/QtjaE3WUFbPaybYm5N31EpLcuKyYcAbXWQUvbWThpurrKPfwdmSgSUV52vTbe/gjfZrtbXyhdNTLOxCGIqwLBru5icL5tedNvLf+140/SmyU/ayyAovj4NOf3s0m4nqni14VeZ7Q1vNL1E+doqCwRy1BH+2mHBqtZndmY1ACVzxxsGr+vKMCS1Ed7i8C9+yuMHmTI7/wo3srDi/ivcaORXHx1xGm/91Nr8GtyIdwrL7crb1Dva8vz/XM2Q0yIvdvXeoz5G5N909h0bp/wVS424ken+UUhsP7uZ7W54o1i2403q3VqePqLjgzHtMxVxz6N73PggpiY9XRtax0F7drRTgj+MGx1TPxw/mMjERMeEr5kCPXSpqfq39jk786W4sfrEvqR96Z9FiqzZMthfH40PNv7mEv8JjRNXgKZYpDl4lhO8wMSgwH2mN1f8V6z5UPwnNK5+b19eeJPfhK6fBl2B3ZTcISAu8Z/QuNM5uymrTdpfQCrjr4d/fONTju5G24DKt133vhCw+B8wZ4yOUF4HOPtvF5CxasMFNgnAiQE6Q2oVS1CxTaqT6SeLnGUWaDnDJI2Oj2UzXx5iCQL02ZBYis0KcnW8pcR03iSNwpttBJIE9g951Grkzs+ZVWttJG9aDr3IhB224k2VX+UQfTogqSrW90blbFv0QzfNZ9neJ7vjjbRrZjN1lftOkkW28AZXmoE4Rjn6mUeT2/qaFJDKbPk7mbp5t+FPM46LnXTg9dB7S9bdH4H/FbyROlwwvmberNWZ7Yzlczt5cTrhkp8tNPotb2aAsuhcUVT0shtDeBUrKquut6e1K3xIpi86t/JG7fHSQFAix9Qnr6Pt3fi4tXuh8R3eGKZ+KL1at0tA9DVPrrh7t8mmd1+AG+zTBTdQX2jlqmfr56jrw7gh7fJo92Yb3DP2Qnec/Qv/Y0FT2lXUtSubdNzhhsqbqsP+bfSuzNMSF2hf5tb6I3MDi96RNya8wfu8CVIueifym/tjkY0bcAkfHLjI5Cq/hTdrBcSYG9wAvGFbQhvxdQjG4kU7ZI5gamHhRue867ZpWVaoMnLMPU/iIyHN+qIbjTerH5Aj2d1W3CgFTZxSnwhUHLaNcTbtINqxhTfJ8M6bKw5MX9UOq1C+OjoWjpLfXI0Ka5R2yJ5b3gCwgyuilmzXuKzJLxvf6RhEXgvuC8O+OP4js457f7P2jzQ7NkV+ff4kz3c8Lh83ki6tLfhFBZEZIKx6XIrr+tr67oWI6SSup83o59WSTL+9xFR9kma+VRmANVPXnJqCHpAnsHWqrP2jHW5Hiq9BL2lae2Z8t5/M2OpC5G7HANKY65y+YEULa39fJjR38lsejd1qklYqaryKgME7b66n4FX7msKVOngrv0469kWSbjvCAZ7UqdKV6xxtryRTE9QuNrqueuPBqJa337rLWb+Qnd7dpzSlDm541XhjW96sfEj5FdlVIP1MyI+z8tLn9dqKtr9ysUcT2a+8WVLv65+d/BC6b5C03epvsxKlieVFfm2DtgYpH+RNo8qsdH2RX+tYYwppWr5uNCL75zvebKoVkr7q6QMmXIUQX34IN5RnuOOtBJArbqSNSn0fxQ02KDSkHBcaV95en+qsJ+5r3R/HDVv5+oI3vd/aXfbTqjAxNtu5wf3UO194s8GNj+jd0pemdytuIOhqPFbcWEh96RNFXo3mOhN59Zk86dH8aDZ6i2X5+66d3oBHV5cs4I4xdtX7XKclnjWbeoEbWjew94nJK5d20YTUIDDkl75KfaTqeiNlI79O8QU7nX+2+EFLBm+0f5SfHL7W37826PrzigMraav9LaJYfVPyiplTK1ZpY/Q3/HYnVu2r0OzCs/lbB97GRyw0/2iP//Wcyvj91v1oPfF3phGlgm4s0Zd/83tPw/X33hVlhiOPkl3p2ZL8XjubOvIrXwuKAbU6fC7zw2pmc+XNUo+Scu3uhmCvpi41rE4tyjJg2PbXizdVk+/f1f5qu16kwv3Fu0udmZbk2d3bMmsV3ghOOtZ2nf3pha/8c8zUPOVV9KvP7H4Bb17puu9fubRDPnH/w45Ha/cu1bySibeuYNEFBf5WR6ZYLjWtNL5jj63wrW5fCi+64nky3lbXWzPdplzf+SgO8LHb7kVn7MqrD/DmijV7ndvyasebD9rUu8/VjL4eN2gLO9wAliB0qZO4ofh4ZxuXZr3TtuqgNrUyd6VRfQ99Uaug/r6T4dqu/n7LGy2y6y/5Maz4cvdu617n5xVjhbwNb3ZBZSvLup/WPvuOF+/hxvKf2sItb3YyZ2olcWN0fCga38GNTmRrbtevS/ygAbV3vWr079pb+5f1+LXMHW6gp8LuwM2pV8tAo8V/vuDAQtudTTWabvvpaBNbi76q377SLu0oTS/ay3fXOGwTP2zrbD6ydGLX3obkbvcs+Ep+64D0Tud+wGeyy776vx/p+W6nMmaaxDn/XWe2dea6PXxPbztn4bG8I5/bkjIvl44BkANtad5tqYs/raf+cBakveuvadTywHI7PQREYzrjuuGhqmr3LEm/heZruxteZVmTm9/5u4F3/jhigNHy323hjSNnBS98vOFNmzHb09gm1lhv6I4fgH0ucmdZ6bds4G40w0IvvAovNBdf2d/O15IfGrhPXk35JU1uva7h1c4tb1Q+e96Y9Xc1JWmmVHLGLF4+RX5aVtpN7hmb3cjzHd6sm+CzS+r4aJvkFatbZbCzR+2D0Lq2+8ouUqdzzwZihtCDpijIFBRpl37uYo/azsLXW94sqbiNr7w/kLxqaUTeeXWjN2mftItXOrfyBqHD2c5X7jVQ3F/tOT9/AW58ANsuM73c28g6Lj5DCtzoTh2iYVXPwveGGzveCm64pGLP9HtfCDdpFx/DDWHNHW9sKXtNZbTSrcOAz9JJnsKYvFlwf8WNr+RNP+20riTJHUCCsasv/hbcMLvhjcnQmQbiclpqYptn/6zpzTu4cccb/n6HG0z3Tcb5nGA6pb9DKjPZF7bDjeTDzqa8Pr/Ejfguy85yM92fe3gXH0neJDgsD+X3LqauNJduN3sNW86rUii7UfL7ovhPeXNpB1J+o+uLz/Dl3ljWy/f3ccpNu4LdVz2SSm2j67o95Qd//lpWzL7LwIz6645+hC2NDovDyXL1RbvtPJCAvxbIWH7RbjsfPhU/9lTaqe32ZieN1U7e/yE0aztY2mllm5MRoGDZAzMwiPuYjBfCJm+kf8KPRlP2v/Om07jyeaUZ/aHhhtPhTNdFfgAuaZA7mqKd9XhuExpXvl5vq8fk1zkBVVPd9LnQ5H7ByJU3d+02XjmW9EovIMz9fJbyW59V11s7oZ/9WXX9Rn4rr6aXm4NXIE+dIskX2WtVr+xxLavtpq7fyA9eOgXMDc6jrPsq+9bMRcc6TS90+0Pyw+R9HJaSdfGwAT4bvLnl1cAGB17wZmX0EQ7ckJNJ1e4qg7WmV/hzj6eNN8nj1U6+7EkY2amSYvuFtze4sdjCu7yNhmfKMULnlJcdY6+4cc/Ll7jxireqd4Gxprag3d/4yFvcWHRyx5tbX5WECm48l8vptfvqI0Hcv8eNL+PNBjcOm0FjpFcSYy+4oSU3NGq17/vErnMXPA7cpy433HgnTvmoL1591VW3BVSBqQtHTD4+Kz3PAeRIlnVdzgf5mE3t5VdPgwmfNNldjCPtZgq9VPeq3atPfMEr7OSHkp93+a3YbVLNJf5Dl8lr3F/KbmJUDGRc2OW34kBrtvm5L4n/bMObquvrcP/P9Th+HZh9+xPy1plXG5B7ICzycT1e78Y1N2gquJYVmxppvK23xBPUeZlsS1sKp5IfNcGW7QpNRzN4A4TmtYPHsLjHY5YeOvsGmZ182iXPufNmwaylncvAw9vbrbTJTwTssTg1/mhx3Hq105e+r63I0cAbmVzyVgTUeUQvQUjvqoZN3TDufRhVVNZldqwBL9fMdqp7oPyyF1vH4Pl+O3bWUHrCmUrZI9jdFfpeD+OehSVY2D6Oruu4yg/e9ApupeujjkyHLZujrduU+u75uuj+pmzT9Yv8Oq/S5vKyX6FYeOMh65KQL73r9tjqsZJnBiPSozGs7kQjYbDpBE9rs5WrHq14A+ium1XpWrPv80aaYSqjuc3B4rCL/JJXHbmaSjLgaPJb+KjpUytv2lHrGlB86UNn/wo3/AtwIzCVlX8YN56IwL4IU15ebB8dN/T4+EKcF7ihvN3ihs0U9rtrUrLdL8ANBnXxrLzpta+4P2myYTOoX/Suye8djH2FG+/xpl17Q145Ms1S62qmrAH+juYvxA3ljTWdE7acf2zcWDBV29tiKvrj8V+erMl6F9ywWHksKl7gRpfJRX4NN9YB0azAAdhz+qL1HjqlosV/G7y6j/+Kxi0OwNoAcqZ9MiYU3xS8anoz5JRufEv89w7uw2pf59M67l+wqrfzMv4zXHil8YODB+Ykp9AHZF+J+78+X/R8v1TGtHzPeAhALpsa0Gbw86hOfZd1WZWjw1mX5m0p6wPAKXeMBE3G4NRIx027CKXVZV4Lo9S2d+3SKa5lHXEQAlmznCrJpWzaYdKIC40ubbdJERZuvOoyMKUbmMf3nwHC5vNYWfbhTiaQ71c+8re1bEuV6jTaQqM7gHPOuCmvtnryDo0uNOXsU/ZvaVfra/XGuydkdcVzJcjYzkZfLehP/i99mPLzame8I7+trpPkMQdnRtBdZGK20FgOeLWL1v+VJ6PizSsf49SrE8oA5EEUC29mncmcXlezA1twABfebHVOaHTuF4n2eprKXn7sD5REbYvPh3nj1Xe+fzL9pwKF1aZs4Uf2L9n2Qn64YojyxkPn2izv1zzDKnA3iLJiy9sP48ZC53u4cSCu/ojKDXbRu0u7OxpRvP0wbiy6A/cInqWhNX3ow7ix96cALrxZabzgRkwwpZwC92994pY37+DGO7xJW0iaUQONBTd2/nRG6aT563FDeePB10bTaYX7JnxDb+td3LjwVfjlgKsfuMMN/j5ChjDc4kaw7s5H7nFjY1Pv4UZ2kPLrqYzsarZjqPjvS3Ru4QU/X3BAZerIGIdf8NTwP23890p+s6w/GeN44oNpPWIGdzbVF1Pv9Sb1UMuya7QlfvGDPr+umH3jU6mMpUk5Fx7Cd02tcNRMTOo+tTIMgoqj7/J9XdoNJ2qRCofhtRLkiCVyz7p0qirb5Vful+Pykyb3vtzOGaTsRjlVkp8G5JOmlq4o/WnTZ0lztWsHig4aJN+3XralI5JmAlbQaEfQwGX+4OOFN2ucJTJps4w0dGg79dkWGtvRvhkEWYLy0eTnrWyjUWVEvioQNj1Z+RypCeoksfSPeuWO49zIT1QrA2mVH9BTE1R+CopSdis/4SvTNADA3OLCSfrEnlrT9AaoGc+N3rjymUSJ3qjsL/I70OkUvUqZsKxhoVF0nTOpq00lb7pdrOkvja/H5AXlpzO6F5sCXuKN8iIxInmDd3ijuBf94Xdc6WddbeYXe9lnf7tur/JrqXqKp1J0Z8sffjzIbXYlyTOr3n0JbpBOqecON2jD5ijcV8fDP1cxqO1/C24ozexfXlXkOIj7bGfFVCV1xY1jlSGEN3bPmwV/d7hRuI+Gsd+EGxu+drvqfMQB4GF5eAvT2L0Ir/dX3P8j4YYtOrfFfcGNS/B8LGUbzUu7JvwTHLzq3JJuyf6Qt5qVsJHfBTeivT1udJlcdW6DG3zfgpfHPPziEuM0/eztfln812n0VX5qC0b5zXc0W2nni1v8YP718d9iF3axR0xd5/ULOoN8weOuN9v47xU2qfyEN6nrKr8f9HH8eipjPmb2nzez/4uZ/T/M7P9uZv/OxwujlAVoAx7+zIe6Wgbvy7sCdsu7BBqaf71qlzSq+Yp3wG40St00xNv+2UJHp/GAtf3l2Ww6nOrLhTdS70rj2i5tNHnwoiwXxcruDe7zvzyEwOu3C2+URqD1t9OoMrnyZq2tvWtAplDKZbH5s6QiXHmz0rjKZHllLdv4ao0u9zie2CMl6UU7r3nTy6r8svRN2ZSfyIipGnUS3UJHNnuj69qHbLK/e73bauGr0AQAnhut0VJRZ3+7XXQal/5e9OQVb6zxZq+xNld1nks9i01d5cffHZpWki/7+r70d+WNr9VEUMxB2d2zyG+VwaXkTn6q2yKD4SawmN7+q54Llku7u89fjBtal/I2cGOumuFy8Eftq3FcTmG92MY34oZi7CgbzVTGVb/7P/tnwY2LLZAu6ZLyZqms/tPTXHGV35U3Szvv4cYL3gzaAitYcKPTvvpx3MrgW3BjoGxh8iLwdcENTiK8kpkmu7/0VascoTrnLe7uaaQo3HhhU/9/9v4fVLdteRuEnhrzXWufc+/v93UHBmLboEEjdCAKjYmRYqAmHZhooBg1Bh0IJkqDBiIIgpnJB5o1mCgo0iAamoifYqKt0AjinwYR/L7755y913rnKINRVeOpGmO+a619zr173x9n3rvPeuf7zjlHjaeqnqo5Rs0xv5438v4j3gisnGPPjM0SI7md0u7H8r8aE5Flcjt3XlC6xoOcdMjxC/I/LTzAYguSXaWVUfH1+V9qaLMvyPlf2Lr9+yW8/9fYfluVcW53AP81Vf0/iMjfA/jfi8j/SlX/z49O8ofZfZZ2fImUjfl0rfEbnawAjUwsBLY5djfFrFYKpwBEx/NSs1RHY3ZF67X9oUzBWOGu2Y884kziJdn4RY3M4H6ulZ05ecRo6Yl5G03+7Q+Az/23cXXB1jeyjANj1SX/qQO477FK7aL0z/rL3Usyk/5CRP8Qo4Wmv5i6pxP8OS61xrwUzqTaYgPCxttvWY74LXCClULIyKIJrihJk4GTnBge4X1QDJSL3Vxjg1z26Ppmv4DPLO9P1iIj1PTnBlT157YgMrHwc6u9KsZos5coEc6P/HH6EMnsz5fZCWIlfjECr/bUFMXNWZJR9ETYJJmqHFd+EbPn4+/ojg6ZTH98ri7YuP1K5hjxPugDXCs2Pm5pmjb9NSv/EdVxY0u25/rTik31R7OluMGt+iuqy445ZFQpB35gC96vXX6Xb7yTN9q88LXdyWzMsJx2JtMHGduHvkEyvIc3yop7iTfczzweOf/TqFn4q2NmPyUZi/7ftDtR8j0E7+Mh778Hmzd4o5xbsXEZ+Z1O6TU3XlZoONTn0ROnVj2BZGSZkI991L/A6vRLqt00StKJ+1zgLqAc5wJX5w2LLztcJ046++pynjY5Jjr4xHljaadgU/3xEW88tG0iTPEVsAkrxayyvLDPygNfnf/xuU2Dixwn3GE3PArpuuX9xafeyv8IryqjMmiQKHEXmbwfz715nygnTvor0FR7Df06ryZgi46a5vyP+lfHHL+rTX8rZYxNVf9dAP+uff6jiPzbAP4FAA9vzNyXZw27/cM0btg0ccSqKNswgobmIIjsGMOgZJ7BNggqZVDMGaogpjxjlYj81CmmjabNLMFkZvYNmchD3CfaPDdK42Q8hyGd+i7IpQgCK70Sch7iJCp30jIs4yUA/vyaFlm59tpH0qP8x2YYJzb2PUyGPnXifyeuYvpMwuRIVfG2mYg5zW+hL+pCDLLO55pMHqG8VMGbINJZcdWUKPSQVvwL6l8p13OcZcxweJnNTic+SpltjmOKEBxlJaicUdC8t0laZBz4kd0p27rrz/unBZvZbuivkB+Xoiz6ZBsgGb30xJMgtnURROI8zEtZA+uWSrBIJsUsm/Lvqw54QMQ762ZTXzRafIqxEZlyhGXufDZ4gM+VxFXzsYXJc1wa5lylrBN4gU7urya+MT9QTH06VsAsnQoMSeZqc19Z0hK877wRnApKeKpvfJA3iI+l+EaUPDl19HJuI99obnd2UX+G6NfgDTr3Td6gUT4VgTDvO2/4Z0q8ddcO212Jp/FoZfIF8uEdb8TNrvfhK3ijxIwsM0ocH3133l1iZKOSS84fdtsv4Y2qe1DfjTei3Qe8kWxug80kE7PdXf4QNoeUZ4uX4Zm/V94YN6t+PZ03dA3QU8bjC+/hjYe2jZTjxIy32Qrrb1xj9anp9dleP5z/0afON2Xuf55DXfF+7HOMLPlfI6yA6buuvwcxMZrR2T+ZP4/ZdD/Xbc1vdqlkNnD0dhuVY3bS+cbqRv9B/XMwyad+2/7i2y8uZeRNRP4DAP6jAP637zq+6ljpHyZJLr9vjy3X5nN1PbeueJjPLe1cbUpkxWdfnJtq9Oux9ntMt9819Slk0rJPslxjI/k7+m0ZAdnIHAV7vfT3Tf2h9O+RjPNffPOgf5y4CL9AE6stfEzGrL9UBlDtaKO/uHE8Mzha+vCwtLHoKb0fB2+UJmxk5ECZV6Jj4dZz39RfvcbiC7xNrfBzQgrYzOf+XOH+X7VTcU3nX5/r/sZlnzEsTL69030t2akyLzpJSMgeP/ubSxvVSmTt3FK6yzpZ2kXd39hcbb9uW5u76Pg7t8vY/lHfIJnezRs6OXbLG5fnmm38WryRukzInpr5OR/4IZ+svPFWPGW7ixJ2+23LG0W2rUxvyHjpz7YlP1OTyw/p2Qzf0smvwxtabI4KB5eEe233I7b9Nm8Um6u8gTd4g9qvMmcs3+CNHcdc8iSVNt515f336m/DA7w91r2m0uOB07z5eMT76XpYbQ7VbtJHKd9nqV1/Yevmf6qYL5ne+OA2j06/Z/095qbMPzv9fa+bYsyYfe2/72n71W7MT+r4zwABAABJREFUROTvAPxPAPxXVfUPm9//NRH5JyLyT84//3kavztCuTl6RFDrzYTunWdzbpzsbcZKPBfn8r+ef/M3wW/bqzKXPm3PtevLORxCL859jI2W/XI8X+IKmyz1+HP6SBiRC/3T0saHsPGSPzrl+lySSUEv5C4syPpiGTftbvEszSx8eHWuyZTftZXJUx+09167qVw6L3who73vLY1IpuvWU9/GZjZfbW5/buwKkq0vHX5vu7s+XJnw0kFkm2N7uedgtnUL+ic7mbE/Nz0P8IbNRXmuIsp/2P8eJbxaOPGRzS3dq3zqWNn/PAF9z/Yu3q/+817f+KW8UbOqR3a2afereAMbmQHEaz/KAMaHeYPsescbj87Ndofpn1e8oRizJezjfyne8P0L3ggffvQ32sltvI83+ITxvdL+ljfqJQt2W4z42LT/fptLvBHPUhJv8HVKjJTSznYgdjXqVcaQo+iP7EowXzmxxeWd2Hwo/8PAZh4+/hvllZyg72wi+ePbPrWcW7Cpx6pf13f88QjImAGtOltynGwMCmzaXuGaMknZtz9v6P572f6h3Jj9KqsyisgTxk3Zv6mq/9PdMar6jwH8YwD44d/3L6rXhbstzBIKO95xqstVix3Cdb6bmvCrcwGh50nsYv5MlZ8oyMtkk4xK30fyndrRa5lJzCiB4+VWO5Y3wS8PZ6f+TXlnuZ4kbHJtdpZh/V42uOpcIEUAhRo2MhM0bidKlBwb64DYMwI7bHY1/Sg6cPtwGXvpf72x5yHBKNcDPX+ybzddK9kNUn8f2Vz8YsYt5dxUL26/6UW7yW70wuZ8nx9iiDIOs0cvbRCdCT7LFNjgw9hIvdZ7ztW57zwQI3OOR3y+8Kli21tc3X5dxqpTlhHmfxG4dJY4GzY0oTbP9T4km7vANb4sG/NAtbET49kQAImrCFcB0vOOVQePbG61z2vbTv17x/Zu3gfi+Yfw7yJnavstOVm+8A085o2lnV+ZNxpGZ9wedP6m3Z8FgiVgJCO8v96f+Vv2DZ0yL76x4Y0rmYn3J3+9wRsnJjaCEkf27TzkDd5CnzoXQgBmqR3xRrabX4E3uNyxlb+VN+JAwF+TsuV9YLXXBRt8NR8zb8RiKQKLxRlzgLjLzhVYgu/PnrHcO3+8lHFjc1r3LUYWbH61/E/K91423vlczbyvgBhWXnKZeL/29x35H0gNV9hMrGX6lMp8Jozi5ZIrs0/V/M9xr7kk6DfG8RGuFy76PWz/kFZl/MU3ZjKs838I4N9W1f/+u88DMrlf3okTkUQWhFIr619rIZ1paDoPIqe0P3fYyzeLGEw6yw+8UbsQ/2NfazlFopFkQ0b4Xt+r50wK49K7jdrN/atnSLkQYzUFUSaz5VxFOyVu0hIJXgroMkoWlWWerc9TSH9phIyDgotWR7oqrvXcne8mbC5sjrGqNuX688Tk9NcdTDHWZmc7Fh72yi62nBxGqx1tdBPPMOlYCWt3DBybR7Zd+ss2t7GFh8t1CzV9Aq3eaKbmpdjNI2MDEq7CD34DdZQ+lTBxYOu2bHkkNUXma2Ef2xzzgHdFkGTMKtDxDEqz58xOklmLKt7wqbGXbW7LA7o7k8zwLfgfbA9537H2flz6xoM+ivURwLJqACcX8g7e5/1fyBvKPqKrLzTnjT554z28P3zDsbkScP2489GlnI+U9CHesFjxi3iDzokr201tDNjdiTdql39t3lj0l09r4OfeZrnsnvilYPMO3vDvmDeA1L/cjAbvi8h4obNy/3Lze+Mms/KB2Y/yRtIfpv6ajPcJ+usqlkb942w3+dQH8j+tOlBf9IzOFQlQWs9Yreg84v29zQnwOKdh/ZHuBRjPTdYcp5ybfKrmf5Ubqn/ucpraW9ng+Nv2F9t+jVLG/ziA/yKA/6SI/B/t33/2zbN2FrD5bgnem/21xOMBAfNxivx8y1U79ZydHDXp212Lf16uo/CpY7ljvCWe5dKZU8S+Tv8TUD+u2q2OV2ReUKvT7WdI8Kb+av8+hs0jmXIDUaph19hVrL2r3Y2MV+fGadXmkk1l/W1LkqrM1Y79HyUf1bzfi+tSqnFBwrtzP4JNyPTg3PHXbL0jPeP51fqr536kf3U/yj7faPfC3x7p5CM4juuTHZVnanbnVo6In/UD7Zbv6rlvIPt4e6Ot5C87f6jnXcqp+z663fGrI9hP8DWc+gHfeFD+JCfQzpX3t9d6l+2Un7+GN5jPdu3WzfkquE0z173lG2/J6H5w6nzuTTe+/yG7KefWYx+cm2Jk1/xKkjftprb7EWzeklGmLk6kG8U39Vd96lF/dudfyByNK2yVWcnnVZ29s92H+d8VNnwy6U9Kufh67oUcb+gvdLH56VJmwupDvM8/q2Z/3Jx7JQZjo8uP3+fmr3b6mn/f0/ZrrMr4v8HX3Eez8fnZPFKgiCnaOoWcRtiEBut8hEnLFHw53o91J1QfQYCkdtO5LksRP8++bd4SX/d5CtrKeuaQBOYzUy0fL3a8AlEKhIqPrc6ltYyEr6OgVcCKzNzf2LFgc04RpSuWae9yrkSbQu0o3oONQGxELIuRj5WY6o8RIB8HI4wrVqNdKdfSxeaQL5u5uthR6s85fx9YFUwduqq/WA7bj1d7StcOrDM2UdbwTlyt/E0bIK9DiNS/S5ytXfapC2xm/2Q5F1KOVYlSG+WSJOIA4Ep/FzKyPkJG3du295WOd/358sSXtl5t5ZFPJX8yLGg4LMn4qH+eXDnwVv6TeIB0EpxQfCrx2Af9cf7mF/+K7Yr3gVTGzbamviS1Yi2R28qp1Md6LPGGY0C8ERWE3sXEqV/PG77N1U/pN8V4uH/DG3xIOi+1wwe6Tr+SN3xlAOcy46WP84ZMX2DfkMwjse14QyR0mWRMcXuKsPAGr/T50G52uL7PN7zzemfesJvGDW+kdr+GN6ic7b28AQz7lXPa+pv6i59k+kX8+wBvJGxlymQ+E89R8rnRP26z/Esy5nahGxu76F90/g5EmbXYDdqO9+lyuW8X+nPbs6b4UZgsk4NRsEgVEpsctfBNnQldfAqYq6Dmy67Y2MWUbX03Q/0dbd/b+8i+dvtVnjH76CYKez8QaDnjedMRlsXGrcD27ea+DySrHO+CmL+nt7W7A8TyqLgshUvVMJp9SeGxWkhGJRmzzEMQ+hMOaQ01k0msrtgTFZ3Y+D5jE89luHOW0pLxXhfG9QJHEyN7qJ0rgxBat/Ifx7xNLOqmLG9goSFz1Z+Q/lTKEvFZpCAhCIBuM4zWZrSLjf627XoHZMFVdjbn3UgyydB9s3MMq6Q/5HMzNhsZTabqF2FztYMmI1+r6kJoNm/xvx02bAtzybb1WMcq+kdLemPsz4YQ/qdmr8nWeYnrLTbU32LblzYXUNG51J/RP4OyDf8bKx/Lvr/cDnDtU1VmANoVcjAWVX8bznC7OyUv8b6zG+8rSH5POAgb5XaqzMxrcKwKV31we8j7INdzW2UO9eb7yvsrb0w5lX3BeYN8WNLzWhvecOHKAMvHeSPz8TZhNLs7NryR4w3150L/vsBByOh+FbZ2wRvkC253zhuV96M/Dzk17+z5eMMb/jvjFDFSIh45b1TeD+DCbqjv+ABvXHBOyoDF44Lrby7Z/z5spg7+KrwBvK0/MvaFN45fyBuBFT3D6+em/k0Z3c+mf2YOUsdSHVYNGKY+CZsa12RgrRiz1g/1h+qPQu3oPNb1518V/UX+F0pggpn6mzewLDNdp8gY/Q0Tzq9NSL9t9JfLHqs/Kr7XTRX/YJ4x+1WXy//QxsRp/1KiA1yXszgp0ff1XC4B4pXQsgPLTOoftUtbakfzsQqUJYq1XCcbTUvfSMxqQDHKBh9hU+UiWZLYmoly7V9uB/6eEW7J+1TKBrdYPcQGe2y2ui/6o/7Ey0ABez5JLttdNg6Kb9pc0d9S0142w0ZNf3LVP83nrtjgDWxA2GyIaHstidmga58qMmr+/dK2d+cWuRZ98rGO1aZdv/RV/x7ZdsLVT2Tb9StL/hkK4C4Zqx1Xpf4xrqtPeZsK+t3PzVcq+pNYhCGexXvL/y79MetgsaOH/eNzV6nfvVU5N1eqfXqE7WPeQDo2XnSsGFiekuR5s6Sd9n8ZbxQdu210POb9nW880P82ZpC+q48utgPgTd6IC2/aeQsb9ivv30PewFz4pA/eeKS/uFLqD7VzIWPCdbnAeu64CZbgjW3/Lu2VZf6VeCMd+07eyFe69Cm8lze8eS1y9fmdnPm3yxyn/B6Dx8luSl+qzAmvoj/71Xnh62Px4/xv+6oEANiVXQdnjDgU+tu0yzLG7Ff1qQseWOMNgb2UsGP/nNt3tP1WyvhLNx1kH+UIguG0bf6NmSBkJ/VRdvWVa+gcvxaPqIxyCqxkegcOHVx/qF84HxanKX1h7YlgjMQ15mClc+vrXjGnghvyQhteKnMCegIHH3+FjbFNTPubnE0Q5YzK5wY2GdfonwDSZXmGXDvyw8O+YhGdK9zOOdrXvmnHOhwPrXsA6lL6V/QXxxLR3D12WeetfGbbrhOLECYhs2zsRhf9VazAn33/NLkw3iPTOq1GSfbKuvfVxZZ2fHvDL6ZMOkuU/EcvY7xrvIKhabxePffP/TGWEs+b9qoTkN1s/FHmP37+J8g9yn+GocY1qv44uEnRwZvYFH9ceIDkVIwSlvuQSUXm6lw7riLf3eqPfaqVc3T+HjGcfdn74YmM+V8XxeEBtXRl548s81Z/dG7CI5UurjiuxPbOTYt9k74e8VP8VVCp9jt5wy4USdNX8kbY8kd4Q2d8SLxRNytbalGCaEok3hDuJwqOsS9Zh/FG713/Jv8m3iB5xvMtQo6Yb518oD904he/isUqqdT+Td6o+gNG2dlpckPiHO6fw73wvgv/Xt5QGDZY9UdKECv7jAkux+oqx3lvLP4ob/DWJ29oU7S72QepKtoljuUcp+oPkIXrEhZFfyjnAogSWT93zozbdWqOg6y/wMlj1Xvyv6q/mgN4jmMxQjY5TtKf+aPPVk1TKPGG8Vn6p4HTFkfTn89+jykheZgD7PKwBZsrnnOb85UlN3Hgt+2vs32zG7M0I2rWofx9B1kNpmHzd77cfceYbudjU7EtEFPDwbejvGRUoI2VsFIWwA6cEhSkN6MHMXsTVo8fx5IQQyyh/mkKFJ4uD3K3lbD43J2zFMKJ47mmmHGtEV2Rprbnl/lwOTCCdAeEO7joZMpYbxiD8HkTBPFk3Qse6X7ob16CyzTErwEKxqw/6pxKxcaFtvZbOgMM6igRELrW0KdY+UHz+nC2E5m6SUnCQnzzi5jd4GO32JAxWrteehBlGmbr0c1NSVnyxypTajf7FOvek4Vpn9nGVDSSXde98DXYd3f4JM4oPlVtO52j+Vy3M9afndJo0YPoj5/b5nGLfDuf8rp+/0rnjsgouYtR0CZURjdCvZffjfItdmxc+NSqz0hQQkZNp/GKjZPU/JKUPShyEv+BbfaRvqz+UO1bEOWt4a8f4Q3M6z7ijbhG/Egy7bYUBx7wht/EMW8U/waJLvxcCTAHSvrs/4w3KPEG1A5jRZgENnaxHW9g+GeUYvUSI6vNkQ/sOZWOLbH4Td5IHGW84clpRzIb5v1I5hkbFovyh4e8UWQe1yJ9Bm9YUm9ln+pCyYQg2etON1e8YZzzJm/4dUC8YbhIn8+lLnbD+uN91l/o5X28MUyrnIuJFYBZ7u8Nu/9tY2KGDadEPP1w/lcMQoDQudiKysAF79c8jP2x5ffPpvxPa6xiTAGt8dTaDipK9krHuT9e+NQkTkwdXNocAUO2Hcd+19s/nOXyv10pIzCZKoL/xX49fntudsRUPaLruVHI4eUjtKW9YoxV7YuMtF/Lcdf+VZlLMN61e4VNaZ/9qR77Jq6l3TjeyP3y3Kv9Xbvv0f3VZgQXJPfelczwQCcX+0mSnc2lI2dtutxXsaV+ru3Wdui67/cLy0ZIRn4IeylF4OvudPJA5it/3Jnl0l+/Y1Zk/fG17e+b/njhU4tbvtk/yYGTf9vZ0ZX+SCb1dncy8zcJGzqX7hD0iqse+VRtq+rg4tytBzKuvzQAVn3T9zsfdUy2NvoR3mB/qGWDD3jjraRk9Y1rbLe8oePbxBsbX3oz3ryFzcbOpryZN0C+8Ig33s2xFQ/+fMUbhX5Hqvsr8T4dd1naiAe8oVMmqD0XfhYbLPz14Vi842c++y3eCLmu/fkSmypjHP9+3sh7BQxewZLk2R26s/mM6/vzv/rKlHT9siz9Je9f+NRWX5f++SCXqvbn+ntHu5f+8I5266MRNff43rffShl/4Xb1rCOAfIcu9Bfz+3pu2uLuv1wPGA878upAMaKgyE8PW7N0rTQSuNn4YfE4zPeVRklZPu5ft893uxg5puxuofnccCzCZhvpcIlr7FYCM6y475f68y6WtlNJ1Xt0z/Kn/umc5XAdkvRCmAFIU/tacKlmtcXmPTL7uR2j7JNnytYuLOb5SH8Kw7KOiO1kRBmJ92NdJpPPiZbK2JcRxG3/ruxGNQ8qeEc2ZRBpUYVzTWS2dkP6y/ZZ7GaDjV7IvHTYLujJlVWlzYF08v2w5SuFXudAa7tbPZaT3P9sdFmMq7To75FPSZFVjZOCm9LCCHb8Us5YZP3oVjGrctL3y4hyjQmbPqZ2kM9deD/KdQvofG61O7q+0GfWw8qpq09u/UpdJuJ9YJb6bfBO8eYt/63tsf6veMNjkduCIvfPrlVj5OL71WZCf+/gjepX/vsdS/ItwKwUueJ99xXn1EtskH0xgSNxfJThGW8Eh1D8uZxcfsippX/htNfnbnnDuJ9znC3vk/62OU6KUR/jjRmMp0y4uoH18knS366/DynoAR97HuaVJDHzr5hlu2/xPtsTtZdmI3c84Pq7iFULV6UY6TOCNAf3HrspPPDwXFC/XeY9i3yXmwL/YGbMvs2NmWJOB9u/ZYTDf9uUlkjd3xFo3aK0T+wZHyMp/v0d7VzaqTuVycxlFGO/esCmXash5qAfgY+n9qsctJ/ObfTXmTtwdbK0Bry/FKz8GQ1Vr3qy0qFOzx1U/XEbV9iEzFJ0TyR5MZcbVd9dZvm611EzAFWf1q7KvHYNDMnm+MdO2Gjpb5yr+VgnPl2xifLKVr7jZrmdNq/1uH8yr0sipIQYgD8jGMcyNl/lj2Iyjs6m5zmKY0Y8oOdVpF73ot3A9ZH+HJuivypzXZAhXccP1tyuEjbbm7NWruPHpmdnNjxQ+19s32+mL7kKhM0j/e3OZbupPLfR3y/d5CRbZ55gLIrNL5zqS7G/lzeij+NiwRuVF+xY+G/V7uxvxXq2Q8qg8rbhY9M3YiPeiAET+15YZ55Yb3hj6cNO/4zNB3kjLiO45I1qO8n3dbZT/fMjvDGTV4rb5DeP+CqwqTJzSdgVNjLtb+e/UVkYM+wrbyzYtDDF1ff9WN5vyM/mfZQ3vI8XvLHYTbUdADtO/RBv8M0H2/c79Jf6V+OrY/lW7ddicy6z5TgdaNxBynEW3q+5GOjzpT/K++M4P+7C197oL+1Xu9nxAOMB4K3877ft22zfbMbM+fhdW3X0nePHD7wpHUtMZMbvRiuvoyYcUmS6bOeiSWquDEY8ONeZHaNG3AmERsgvz62jL7vv+fftsZL3O2Z9vckXNz9Kz928B5siU1LFo3PfI7OYmDL0t10t6Aqb+p1v+uDLQsjejzhyPKw4ZLJETOgme7EHmcFJd9gsIrzPtsdoLckMzJs7WE0/6+8K5yLr3v+yTzE2Y9Sw2olSv8fBKhjvANK1h7+G/sYpE6tUqiHppBScVBWty/qMzluy7fTXZ3+TsOlYAo/0p1C0NpNWqf53xQOPtvBHeg7GM/F0zFsyf3xzyGV2cRW7fJkG3n5N3rgjv+T2ov1Hdkf3VnsZgKT/R7whDZBudrcRI13/0id3JyDreKN/LXYXp5isi9094o2dbNHf0sBHecOfvxTEIi4f5o0qD/OZcyhzwwPe8Jm34P138Mb2t0e8r6CZrL8Cb7yhvw/xxgbrEPv8Bfoj2Sc2D/iqxkiZhwB2U+Z+UWPke2QLnypxnJ19h1Uy/iw6BBG75S45x/kwD2xoe6OrMaPI8hUZv+dN8f57iu98+3bPmPlICTCdjkBNAFewy36UEvC13jpXYdP8tPxrf8e59K/6WW16e27s6nLuGA2cMsnVuSzHA5m1nqtFvnfiCsCeLxv7Ua7A17+SsVxXyv7SPx3k8KbMrnMPzhsZHup+I9uiu0fXWr7Ted0TeVEBl4/P6+XvI5kf4FpfJZDPneCJl5DUfhfctjb3QbtJJ1zqz2z8tNlY96n32E21fz58p+ONjIp6bsaqnVIOpl3njp2sb2HzSH/AmgR5+YvZ+q699dkTLP3/iD8qNGNzce5XbVU/1Sb5uwvbSb7+C3mjtilVps25i53t2uH+XGHAgjpvPHhuSlm2jm2MvPTfD/BGvFYASGXQCZuNfCzjpW88OPdDvHH3QaaJB+vyzfzhHb4Rv9VLVd7wXMZewZDiUb3We3l/J+/X8EbH/rnFcs1kN9X/vpY3dv3yHOeeuU2L/pJcj3yM+vLe/C89ksGG1of/La+G4GvV396w18v8tp6w3JBTv143cijelfMstv0mNkK7mSMemej3snXIV//7nrZvVsoIRbxsFLTY05xynp/TiEPdb7TLo2/l7eZ+LGDfWZ0zIOP7u8bBy6p5tV26DFxOYNYW8/R6DDn6sZoGUVJ/VYA7xoghTXvHiPEjbHYy73BV2BQ7j+Toig2dq+eYKXMRcdryyk7CqWRyg01ql/pTceVyg925td7cZYrp13zeTn9OlMo6qvoT+neBa2xhc+Nk7SNhWPRC295er2XO2FRcZcUmld1ovIKhwcph7mZU3B/FXLb/od08kDHOlc251R8lHv6OskDs+ndhN7W/mF3CO3ggnjEhm1NRqD936ksh9xWrrf5Ku5c2V3GFvK17W8I/LuZloOQXk2/KuZd2c41rlChdnDs7/MHNEptUsiaIKoE0eUVtp1dLuKzMOR/hje5Yut0ZlnaeMh5XnFrahWLvG239mziHeANkd3H+W5zK2GTT2MeMhM0Fb0TZnI79Pn503hilXyRr7Z+Lv/MNb+cKm/fwhi8hDjq39C1hs+XFFcd0Pj7OG7jP7xSAqObyQyEa2cWHDXcxVl/NG57jXPBG4n22GxIhYfW1vBH9GfpT7p9TbNHfu/3Rdz+S/5XcKnIcGSZ22KMutWx4S38XMTIg3+QLl5xabcFt/RFX7Wy7YJNtG3iY/0UsZkLedfz72hT47hbx+Nrtmy6X74ta+AOHAant8MP+aQEM3jdDSc/oKBBJaT1WyIHb+BvT/H5uyzbL9lnl1HIskxw61rfGh+FL7h+s3Tb+qsnk/hg+Z85/iQ3JkR5gdeEDpA2Ohk3FNZXC8cIWHFhh5xIx1f6l8gEmrPhdqF0t5wrJqFN/berPsVp0wvqr2GiRqx5LSbmqTmw8weLo1CZWyqWM3gci3rSQxc7mLu3GzxX7TdMiAOiAtinz6KDbh44RXT+3+pC9myXevfMeu6lYhc1pOTfjiIbxsj67Oaur8qbPO7thmzvm72mhBj656i/OLTbn/qemP+OFsCO6iRBMHlv0xTJt/dHl0g2uJLPpb2ClQJdYNrnaRbzTp3Y/2Q3JOLtufkBYsF3FuW43+tW1FsxnSU7/rcq5sbNIkCXb3ZDzHbxhdhclS37tajssY/UVswfWqZ8XOqR2/Vx3ycob7g/6JZdARyJnNrfjjSqjYwx8jDfivWwwmcXsWFwm5pUpm/PGQ99gc6d2R7x5B2+A7K7RufqG3XisN9+IY7fYTB1+lDc8Hikybyw+WfQXr9244lS2m1/AG0kmg0SL/tgcphBFRlZJ2OAFb/C5IN81/9OuEbd31760deZY0p/3KymXcWXOCBDGIIR4PHr1UlTj/bPoBLmdR9gkripioeZ/rHs/12wqnq2jZ1jfwwPX2OR2Mja04IdiLuEP7BfM+a62fzjL5X/TF0wnJuBAaPu8Qsz2GN4l4/eaY00/TmMbhG1k9YpcdiDzWqkdCnRc3rDI6KJu+pVmZDb945fZxlKydXsvNhcyrtjQeYaNEpbzRAXusmD1of5dtYsVM1F+OezUnzq7+YiWlbRc9bfqb4sNEVj8vNVffglrPteDk8nmJUncLMmywyYfzO0W9aZz58EDG6WGMNleMUflL7Co/pjaWdqlH3TdZ/2NZFmSzL6yIHykktvFis2VrS/+6Fjp7tx88OrLFpBPBV43tp769wY27/ZHG8FmW+cEyoR0rmpFfx/CZnMs5Qm5f9XWkXH86vDHtlI59Z28Eafr7tz38Yb8irzhMrHKfy3eCG7YYLPl8iveWHCdHdzxhkgbNz0dNvBF/brC5oo3kLFKGC3nXvCG6S8WDerAUWLkm3bzyDf8Ul/LG66/qxj5Xmzqj4TVm7xBJ/giWZHjkK1rweJNvioyPra5DW/EueM9qK4/qTHyHXx1KaP3jfqn6UfK/zbthM7ukrDa+RS0/PyAB+pN2SOe403sR4FYiaxf5OLct7Cxtt/mjPmuy+EPE6zxrrivZv7ftg9s3+TGTJANFifmTAvNOG3LNCzPDCOvgULsNyqBEJQ3v3eM+Wqe4aFpYi5nSzNAQCpfGTMjJBM2MnOnebp50z9PVOUEWkN4ktj5XBbxEBtv10iojmSm/gErNo6n/9hlEFYbH5uVMoaLekzv+RpXZTZJXxv9jXOVjt2VbUg8/N0FaK4/a9dvMFPpE2Pjl9Ep7xYbl6uWzfiP9dwTwCk4XM7NCpb6FjaCPDLl7Vi7nEAAKNgQcSb92SUFEJ0L4W772+kqJu+lPhUrVsXWa9lN2Pod+UWmm/KopeytwJKwaXsZxXxnCdYq2SeNE3COl7xz2W6VI/WPbQ4PsHHtsD8Kc1W9gcXMNGx5aWVeeAsb9uULbNzWllLIN7kKH96870luBuYdvFGxXeV8H29EcqVTSUr2F/ctm9Hy6vsAyQykwa0tCAtvmC/cZb7X2Fdx9Nnrt7BhHbLAF74xZM5YbWW82643pnKNTUe+xhVv+AmFc97FG17K2JFWKdzN2F1iwzZ3JeNHecOeD4zJo15iZC/2w7zBMjOEMm19iePMG83KJms8dblcV6a/mMzl/lF85JLM9/jjYgMX/hho3DFyHOtwjAm8xTnUzpL/VT5+K/9zHzAZtAPtjuB9Oc3/ik5qfrRgwzwgF+du+rf8jmFj6lxF/vcIm6QL3nkrx7noXz5319L3tV3y7t/Y9k1nzELN7hzAGEmR6UNKx6fk2IMonRtGmnZs3+ev41gFmsSAgK/OVcuSwPu8sYPXhN0ur+VcLiVJIFg7MS3uyQGv6ifII6cMZcWGZXFchWRiMvDEL47NrxiMSx6I2alYyczbXbwbK24VV//LMqbfi/7SkBis7EyiPCWVohJGFRuOW6DLAgUb1r3LKEB9OHYphxFEgh6rc+3aZciusCG5UvmIXyAuTH1XwN5tkNqVY5C8WElEBLZaHkIyuss4jpFQX+mvdozlqrZO+hsiSw5sVwRbkoiEDQc20h+bz9wkQRfBz7ESs3XIluwTVraTSvR22NBPK1eZAKE/mcfC+iFYyu8WoSpXfQSbKvPO5oirvmZrikW1tQTa/Wfp0yM544R38oYd07ws1O2b26Aysor42i5WrJO4b/BGlNAiVk5dzE6xlLq9mzeWG1TgLd4AMMorX2ELgFCnLmw72kU+dJH5wfmXvIGJlUSMtPM78a++jQ3b0BLHvoY3BFG+LDp4Y8thF7yWYpUfaoM9j3McIi4aiay8gdNsnRpcfL98jHY22MSBlY8LNiGw64/KBmPl2wWIDUC1nXdhw3JqPtZ+HF+ZPx72uUvob9GJYRY3020v7g7Lgc0j25ZyUieuUsgV6ZKMl/7IflF5oHJTuXQtcf+et38oz5h9u4pRJgT7LLvf63cUZ+u5SzCg34NEfMcVuJtS5/OqrDuZ6XvhdoqNSPnAN2m1PzjzyWuAKBvJsMMm9W+XZRTCYlFjqt9XUtqcu9uvMids3pKxXpt1L1QH3QG5y/5cbqf+3QXr3bkPtnSTrVnmtIIeFlNYr/UIm4Lxcq2ETZVx6k9+of7idz7u4tzlWqg6ms8WwPV3oTOh73yAQh5hU3xZ6FzeKo5xb+BYlVK3Rzrw81K/L+wojr2wfb/6/Mo+1RJnzXIsN807mct+xGdOvLDvX+KqX7IVfLb2zG2zffP5fK7Qn/fwhhrvP2r7vVjqTofX173kDSBeUry0e8VX9P2iw+ob1f7f4g3/x6WMGxmqjB85drtd8YYCY1EN5IURSObq+3HJgk2V4RfzhslUeaPaa7WvR1xe9y95I65dbsqIN4RnM/XC9/m3N3gjLiUZqypT4g3Xm4rN5j3wvw02zPtxLGPDx5bf/bOmRnzzhxaHTI2P3WCzgIDN73Yay7ViI4t8mWMl5Eo5zpXd1L/v5IF8iTX/y+1+vzc+qoCqfPW/72n7dqsywsjC7/TdeMwW09Q93z6afaaS+EIaTDSpnpqZVjGX3PURakWMmqZ6YG/DZaojcSxbPYe+f6h6k1m9fER8yXy5TJqW+GZdk461bKO0E13yfcnXSOcqZkmEah7NpWOF9mPkmUZqtRxPOdLbN57wa1ids8k0Rkqn/nhL/dtgE4PpdTQZyA/Xkv5iVkVLc24bnjx76Yjpj8vca3DRgk0pid8ompol/YVfOFZeG66YK9HpbDAIetO/sFcvYyjYhHAX2PA2xNepPxPWV8Jq5KDLuYIoMVts+w1swh9NTl7UJNlRXEujVEpklnuyH0MnP6TsldpM2GBjK/lyW2zSdbo9Z6BeHjV0mLDxdmo54tXQG3NV1T3WYL4V/KMbY+dflevET1S2FfaMwvsu7FuyXPAGz1LWZCVxLmOphE+b17/i1OQbuoGOeEPuSA/tu83WeKOVU3e8X7EpDac451AQVlCZscj2hfgscHmD9z2O6zvi+Pt4w+Syxx9khyn3j/TF7S83pXyBr+ENKzdGy2Xi7FeBFdk25zjC7RdslhynYhMBi47v/iwlGSPk2vfJjqL88wqbCU+2hzc4p+ov9Yt86hE2fuyOB1yeeBzGryt04BYrTN6XC94HZum9z/KzL9ZYRT71Ho6qMSNsyvXhfokLbK50cMEDlasYnjhgJ+N3vP22+Mcv3MSWJh07hcCAYQCeQHf6jcteNgl1GJnMc5HOtcDSZ5AZIznTOlMppczrCRBLHUdZV+0XhnPGuXT8m5uWhyttlCuVkLGDSZHDyzokH7PFphFhEdEwIQYh8cxBRzw3pdSOALNksLZ7hU099y3HN/2N4DAaiv52ej7nqn+l3YfYnPNzwtW+W8TkQKf0nVL/av0226ljU23bz+UkcSdztUm3dei0Iz/dbb30L9l61R/741lsu2CzbApIE1vpbUassHXHxje/jospe2zCH78Smx2ubp+AwBdKYWxChitsKldxf3bbgk0+N/pnMsWoM34FbB7p/urcX7jFyH3byMl/+Rx8RR952/GGn8O+UOzuijfmc8nl2AtOBWa/amlUzcDjhmDHG4849T3YXPVvxxvNZApCRbK7re+7PbKA7+ENvkY59xFvRGLM5+94Axfx5iuxecgbKvOdb765rb/BG4vvfwgb7HUvmEqpvIGN77u8bHMVGyop3PZHy346hlZixJTp0qd22LhOqox07iUvcv7nuAmohFnsZohyHNbde7nKdzhf3GFVN5LZZZpcRY34x02estjNB7hqwfU9Mv+2/erbt7sxA6axgDhOaGeXpHOgu7qw7o6Vy/3mLxut16gy2P5CSI/kuBp1kPmFx2bYIgMQzBcn++E7PHZYXLW769ciCyY2cc54WDhq+v3Go7Zzpa/dtjsXm/0qE7URpXAy9Nc+oL8PYbPr34Mk0JPaWMLfjt3OmHpwfITbI3svtn41K9tMJlWMF2h+jf7o95gBrOfa323pD2NmI5biAc9WQBTsr/dQJlwc474qFJO2PKDzo8vTRjLQNGN16feP5Cw4X2Mji0zj3AmcAvEC22uee/BdkWkZ0b3ggbiEGeq7ZrcvtuWZliu/e9fFyrW231/zhnyQ97ffvZdTH/3uu4J4hvAhb7xnexQbyJ4VRRw6rwHzubd38sbStWqnu3M3+k4xz13DZzrMR30FxDd54614s8PmF/CG60/yoamt6NaFrS8ce3nu4rSJN/xX6UV/j7B6CxviDZ7xnvqSGQcowC05jpXIfoj3H/n8Q16ULVR+XCP5R44zeSMw5P6+R84L/WX8Of/LjhTjdMFVGyZ4j099hKuATZAqDv4db/9QFv/4rp4xS8lPNa7d8f5Vuca2nU1bOBHPAiUS7HTsTibdnHMlL+/SMaMedj1WdSYMwu107ImauDhdy47dYvMerOrm7/2p2BRM0rUcuwtskvvTrNxO5iWI+fVfizzv6d9O5mqDF+cqy0fnKB0QAYewYpwSHDvMtfz0Bjbx/XIZnceY/paL73QHrP27sNfL/YTN5ljVYdOvQIOuvvSe65pfVH/lc+OrYjuLDlkxO1unrcqq9Zirz3W7wiZ2FTFrYaVubGdDGDr3g9hctntlE7t2P7otfcSKV7XNi/MVyL6xOe6SN2y1wcRfj3gf+bc4lv4+4uftVnmjE+/7d9wmy/VBbJZ+XFxi2E7hjRNGACTDG7yRZCztLrj67qM+MW8o7DU3uo+RF/2uuuZu/iLe8D/3lfeXriz9WeVc2q27D84dHwdv8HNv4GfzrmzKr1OPqbhe6H7B8upHBeSuKcfZ+tSV7b4H150srL/4ioygW+zecWZtu17rSt4q4873Htn8Bqv4uzl2u983171qd6c7++17X/gDwG/PmP2iTYcDqJev+YiTYC09qNO3/ree68cyvryv8/iYqvcp5zINHNO5wFh1h6Z2YzCKy9moHV4ulUsC6lS90PExzd2Rlrf1GvnABoQN9TOmoF0+mmaPw2rJB2if/sYLLXklIq9ztrbbOfun1L9dKRz3L+EoeX+HTSrNUDqvwZalJ9nt3IpN6GHXP8OI2wmZHWfGyOvueTgjzh1lJXEDJIB62cYOm6LPJHexG32AjW8xws6611GSpKev9GbHUhkv24OvcqXebtFB1edSbskyV/1Bpw02wJdyHhcF4jmNjX0u2PjLYl1/KPGkcEbYYn3GJA1LGcjx3CKgoiNQ25Bqxatik0pAqm1XfbbU6spVDeZsSFw1yreG/uI5Gn4u4z3YvIerdlspKfrwppjPQVVe7EXPOzkdt0e+seHF8De3HZ8pE0quducCU7/EG8EBV76x4Q1Ue9vwRpQTMW9gyld5w+UP/V/Em2UlNsz9hE3lDX8G264try5IxmaJ44zF0l+KGTuZQTgIRkkl6/+UGSMFiTdqeR6XjcYrDLifbHMVGxTeCGyw8IaoxqI8zBuArH5ltu4yLlxRbbuey/3jc72d0N/AWVOMtOfDd9hU7s5QXMZxxuKKNjJviMnkBoDw3ZQbX+gktfsgx0nXKvqr+ZFCoafMFcEFaKdZUsn/eEvt7rjK9VPbxR7XJWZEjmP6JP1dlaJCkHIch/ghNiT/Lv9b4tx3uim+3Q2WiPy3AfyrGGj9fwD8l1X1//211/tmM2YCpBHCSBrrvv+j7wWIUZw0wuhbOddHF+KfG1oDlZ1RO3xup2vRSMVOxl07LH/tzyJzmzLBkmlfIWiLjeZ2Iz72axnfkjn6y+cSAac+mQ6aZtku9fcI1zdk9H34ud5Z118ZbW4s11X/sG+HdfImNva/0J8Aeoxjm8pjbB7YHOPKbV5hMwOfyaRRtDX+24yoT//tol2DdudDVUe7c3fHDhzn/ziZGAFHxhLFD7Bxt0i2TV1vF9gkmu5FZj+aSsd8Kecx8i2xjH+yr18dm/q7yeR2ZXKpZP1VLlqwcex+CVdd2fpXbhVLHgXeyfkIy/fyRmyeJIUvTI7dcqrLRPhwyfRH9A+65ji28IYZuO54o/Qvtp0OC0+gnPvYNwpvuI8K0O6FNyo2m3ZdxiusZrulf+SgzBtS9Kf9bd7Ycjf1/0O+kTjH8FDzS88lOqxscOWNnYy7dpc4ztgQrmI6mv2TmaUzn8FKUXvhfZ3nRrvkj++J4x/mDYuRsBgpKtt4s8VGN+1+hDOqbehoH0DKcdp5rb+P5jir3Vz7yWKvbf6TU+L1O+9td8kdH8lIOMfxiw4SY/y25e2/p6r/YVX9jwD4XwD4b/6Si33D95iZhXAtr868BKB9/46DjSCvLGSfaeGhNNo427Xf3blesbzpvbbrBhrNybzW7thLmRVpRSN3Ru9zPDQc5SP4Kmxiv57r7WDKsT2XsGKHbq8jkcHVuaX9t7BJuBI20T/uB8mU9HcnmQibBQvflXmZnYxVJ+8/V+I9P3If/7azCu/EZrGbem7RcZxHWI3ZgDltMsp/yvE7n6rtvkfG3bkkY8UqAsDdZmAf2esjffoMzMW5W32ynZgoCplB2mdVdrb+NfrbYcN844cTdwFOkSZgHzi9xVWxeb+/VmbXH+9Th5bE4r3bslTdqp+v5dRl/wFvtLuO1ep0Ar6sNvsGL35E/y7CJW/osLtL3ti1/QaXu68r7Vdsko14E8wbffD+1hdqf69i8YU/K7JvhA9c2vdctKXdgeMt3ijYZL/a+MZ7/YrwB/NGx/qajV/AGw/1KaUPF7whbldv8Qa3A+rfL+GNra2bnPaS6UtfvrLt9+Jaz/WtfucYOU5v2Xrp97uwqXHbZVMsWBNUQB/vVNvmOA/6t8uNH2JTdA8gYneO44UovsNtp6q/Sruqf6Dd3/9SUb7JjZkAcxng8nB7kIxgTtk66SjW8hwffaepWgGuyw/JIWMJcZdDEav2cOmAL4Ea+YTOfnD5SipT8gBk50bQ2ZR0eH8BTMISYLzs0MUYJyVMaruFoKM8qGLBMlP/mKxmBxHlP2jAeQC3F2rHcVXMkpo+TwXJlUq4dO4HkXBJQNkP3Xu7HVE+0tscHapYOA4xN0yEA1l1UHF8iE09F5iJlePrN9sPsKklV9F/mqUEybZgQxvbesL1Pva7ZKxAOqllYY+wAZ9bsKn6DJlYJxgyQTHLJjr9fGHb0c6u1KLKjKy/kCOV1pRjvXykGVY+YlpkdP1tZWRsiqxVhoUHSH8so1hJUpTSsa1TWSTbpD7Chs/1DvXNPsm0s9OPbKLTlsfdEQAru6rYLhznxyi2HHvpG0X/8LJBAF2k8IbaX1mwjWt5/9nH+VjX3YZzIrHa8YbbncthiZg08W4H3+oD2wk+dnl3XHDlG31z7H383tu4mfUYubVvx6TGYvL9xe5cZlC7HF+ZN/z4R7xBsaiTDhirpdT6ETZF91V/oWvmjQYcXi7L2HjXChbb/KFu1SddZv55wxuMVeWN9LJy7lPpcy3P2/oF+WflnMQbQMpx/ByhczkvSXkKx94dB9F3j+JAyMm4nvOYfiiOFwAyFyqptv6hHMePYX+sMm5xlShx7qI2uytLeaWQroL37buF99sG1we657x6EAG+303xTZ8VE5H/DoD/EoB/BuA/8Uuu9e2eMfOE34jNk1gcSEFMrawonMLu/hPpgfyMj6WA6PW9QseGA9FzQVBLGMLDNzJWYqgBiAgzRh5gDnGU39skJaWpa4WNkNv1tSukUemEzHNVDTe/Dif1DiUTkuRA7wfFd1lVo392/cNnXVhm7l8jCLi/pL/YqF24jL5TbYHOjZFYKjtrHvgIm+iAB08B9MR8lorbZSyArT6Zy7mthAWR63FOchYOVjtbL/aa+us6uMKm6F7YT/zfYZfthpUHdsIm/JHtY4NN2iedxI35A1xDTtIfdNq6ejBn22753IqN281VuzxCLoxVwTX0acdEKTHMbg7qn9l2jPLu9Mc2R+e+pfuFq8imfNZMdvrjxIGxYN+uOtn4Y8U1cPQkgBOOD26Jn7vsObVjy/tXcibfeNBH9U41507d8MZ8B1WNRUu8ITwm0SL7J4b+cRRd8I3mA95AH8qOAUMeJHyH7Ygn5A7NI9+44A0IzdZyjOwyecPt22QSLTIScCkm7njDdy7OjXJ/hT0Dan2pNwQf8I2IVVWfvr/hDQApHof+7pNjE6eS/uK6NMDAz8CpXfvS5uogyhVvHKaP+wPeINkrVcd2xRvsJ0DOcXa84TJ7PHoH76f9ig3dPC65BvPXQeemDgH+Prgo+7zL5H1qxwe5OccJLt9gs41NhcvSpANVkqiSTA2jZJdvlpiPim1L3efumt2oc+aFbWd1y/z9q0sl/krbLxPv3yMi/4T2/7Gq/mPfEZH/NYB/7+a8f0NV/2eq+m8A+DdE5L8B4F8H8N/6WkG+WSljJmyiZGKGMOodU3AgxDRupX1PrLUYGjADufQZnFchsQSGuFBtp8pkJJSSPpZp1wf1j4p2pwaVfLa0n2Tz7xfHmjJWLN9KsATkwKdCqAPa5LJ/AAUBxgoTG8ZqObbsV6GCbLpC/EHdwOaiUxt9ppFHD5AuJ8m48/elvyGb6Y+Dl/BBBAaL6vZb7Kj6wYJN0f1V3+XUWPgj96L6Y27fD0slEUV/ad9lLK0ErqQqdB2zjOBzZX9ulRF7HWzLtdIHkqFwRgh5n7MWA1dZzt22u9NBaXfHXb6GwU5//rX0VX/x7j73qV2zxcbSj5VXNiJf/f5VW+X9jW9c8X5avOGRb1y1/YbdLfWZdtEdR+7iyeIbfqBguflfeAPGG69DtjmVtuGNul3EuUe+oRWnq+sCY1W4ixi59SvN1+b9iIlXdncRM97LGzW53PrGo3hT+pP4uMiQaIZ5w89VAI06uIlnl7yx41TvC/ePdV9iVfAGx+34TSan1nYv+Clhw/q74MWtftX74TnObPeK97fbIxyxYrNsSUa6i7krpI87n0V/m3a2tu/fbfRXbQ5Y+6j8I2AljVQGsMFqEXLXX5fR9lVIVhBOD3S/XbL/O9p+4YzZ/1dV/5Xra+t/6p3X+TcB/Fv4BTdmu0nzv8o2Eg3Mmn8FxvK3hdjY+ihTcAf3850Y67kK+p3P7Yr2qnPES2GJmMaUs7qMndrr81hu1wMA73Mwk/I770cXVcfNzx020knvaekYAdvb7ZjlLoRN9Nfb1dwugHhh9IINNp8VFgTHVDpk9ku6ktcWjF3m0t95Q1zOoWN5f2JT+mcyHbSyX+jEE1gtusLEbCcjvDs7mSpO2HxvN4nyilTOIIaVqNr7sbLtV+z4s5Icoau3sPG++jmnjmdq+Lqk2zie/bHs8zks02LrfnzRZ8LV273rGDH1ANanvMPeydYdR52fq24Wf3Q5MfHY6W7iqoDxQqPANM6dHbjyZaHrMT8kf6y47rAp+hSzdVFEYptsfWPbO2wWe9v9Y3yIX5LuUY794LZy6vQNtp1FVmDq82t945y8ETM3F5wqqjO5rRgW3SZ8NjqMvvPv0Sc1HSOqNaId16nj5TNXnfiL23nLxje+Uc+NflKMjJtLtc5WW6v966QLanf7uhU+9528IScgFLfdF9jWgz9qu6UdxrnqL9pF2U82p8EbPlCw2LYSp7qdATMWs/2Szrm96hd8bo3zwRuU42Rb15VTQ+b5PV8zYcPtYP7b8WK2OY2b6uB9P9Z+u8px6oIfO39c+Jjlqrpl3TvH1htxl6naOstEfpParTFxc41LO1MEV8VMmU4MOMdh21j8seKEaTcsc9r4Bm3377dt2UTkX6LdfxXA/+WXXO/bLpfPIzOCXJMvmGVfRixRH0vHpHPZaQQjiaGBhqi5tUPVSgbj2RIBvK5Y1Z1UQ5AokfPpc2pbunVF5l/IPDb+uXMoZhmDOzD93qGxVGr0j65VZfERv/T8B/91bC0RVr3AxmXmEgqXGYB2CeLk0cSQx0o3dNP/wAZItdfRLhMWEZECqTY6cFIXVWbN+s5uCJtU811JuNiN7rCp55Is3tAYjbYlk6vdNNJ9xYZlpO+rjFHGc4WNyQwTyQPj0K0MG5CJTfJB/1xLQWTFRlDaZVunoOtyJFzJFz0IQWgJf5812NmN919oH5ijkeT3zBlJf5jHTpsj/UXALvbJ2Gz8MdncI7t5p83BZPEZDvXnDq7sxtoRYM4SlP7u7CZwdC4i/WuRMcn/kY15/y3eILyYU4OfvtY3gl9HBU/mDVnjzSPeIGwX36jtcsxYfGvaHYg3QDLMJRAxSwhdNlA7psPQ/1WsKr6RYswUKUbVPUYOLGS1u/f4xlW8qbg+4Bx+nkw9RjJvOCiPfINlRubjuAmtvnERxwP8rrN9j5FX2Pi559rOu3mD4zhfXwlC/x7DnpYYiVXGGqtY9ofxZiPjjo8DM9bfGzmOc4Y0jLJwtme2+0ecyn5BulBSW2z+SgZuh7mKcrdHecpiN49wdZcudhMhlPXHfr/JjZe82tuudvNWjoNyLtvTd7rxPMFfefvvish/CEPD/3cA/5VfcrFvVsoYzmCKnh8lOwk5cziRbM6lJHAlACSDSiMpmHXOfA4T2tJO3S7a5T4km44sM/cjko026pyZ5yQijOaLUv/S9f03IayB3G6RcZHNvmtOIGpYLfpRk1Hmubvr2t9U38zYVBz34qTjBEC7V3I1rIzZVGSPzVW7O/nLuXWLr01p7az68wM9csraXtXBroGqvyvbosOaiOlP471E+dgxMxDP4JCYSQGpozOwV/mSP5Z+xG8e2BrGCDh4pb+sP78oQ7bAlJKQFbdkc6AAxM0BEBFIA1rXyIWzftSw2eiPbDvJusNCC37bTvkx9hA6xkxP9gPNclD53RYb3q22/MDGluO+stZCnL/czoCZWJbfkkxXfPWG3FsbMWzkdYPDDiffYd7YJSjsG2RTW/8m7ovfBON1CKXdGDwpMqY2qoxCuF7IuOBWLtNcJsXCG8O+VqFSjOY2NvpLPIFilxuZnDc8Ro6XhBNvCJ3ovHGB+WITlT8e2Vs9F0CzZ4HaKUFttVPBGxV3avdN3qjte582x7Iejnu5bmDkBxd/LP1b2q37D+JQOo70117tVQdi9y9h0Hvev7r+Ykel3d1v2/yDbs63+oPpr2Kw4fKEI9u6d28j46J7x0o2OU6xdVXJfrfZkn8p7V9xxINrfY+bAr+0lPHr21b9z/2a1/uGy+XnvwIdo8GcJfFxm4CZ+GEXADY6itisGE54J++0prV6zntJuv7OpFkF2AnlMtxJRvqJR1sUCiWSEObZq6RlJ+smlsVPhGlaBngT3MclZudC5kJO8V0N3CQ7z9AteJG80jFfelqxouuKElYlcHEf0w9lq2IuG/XHlwGO0gYQtnEhs7GwOSSsasPr+ZvtMpDqWJ3LlyfW8ttbzsUy1u/eaV+L7s3/2ouOGc8r/QnZ+k5XO5mLDb+Hq6darKTM5NvZatg6PZymWvq3E5WCYb0xTP3gXbWEpQ+7ijbesBsB5up4wRkbHVxxpK6mET/y6PRHt4X3M2+JYrxwWSa2q3DIWC4XumjXeeM03iejXnRKMlZeBDBHwhmjjayK4js77rXPKfli3qCTx0tUrTn3v0c+yCP0bXPMlez++wn4st2XnErtVZkTR1CbW95guU3enc2qAsK8EXYzj1niOPNzuWbETpbpg76hHStvbLGZMu247tKMr+yGsIpdpfzBbD3x54bfl0Z38fkBb3w0x4nny5jLyrOZqnve3/rjLiYUWVL3a/+MF+LdX1f66zpGLIiD0qGu3uLbWxzqd3XfKzZeiauqrZtggpwP1nbY3nfqrscsYl34w3e1KfCuYP83sH27GbOyIiNsVH+A62WEA+QU3MwneAoY/o+NFcjTyOVcr7MV2Gi0l+dR8EoOLEQetawBSMacVs2pgbGUCSaZvVzEy08UUUkZ+NC0PnwhAMamyBi4VZn7+vnq3FmTPIQRTvgMoyhrEIVSKYljwyVKaZrfy78ck07nOQ47XXYnp0mSXEYWW8GGbW4pM6o6KbqPc6s+4cdqwkp7fnFxXXZ4Mm3GJmyJv/c+F2yS/XF/NoEa0LFgy4v90DDIXOa+25SAbIExoLa02g0HMPYTkj/p0/XHZY8CCClwliqOWTUlWcNuuLSN2yGd1RKdOJdUECXNrj+VWMlsazfmD/FdJ5kJs9oul/YsJb8kv7ertmSyYB4b3MT4Gk5eahaBmUplWMZUarOTkYM6f6g8+97Nkp+tnMZ37ivoI9EQATrzZdE/2jt9w/E5MWcugHjWRn10Gpt4s+PFqrOLdmN2RwnH6htqOnaOtVI4tIHFjHNz5hTuC212kUtX082gt1V8WXe+wfzTES9g1gNb3pi+UfRp7STfKLhd+UYc28u53pdzcEQkwH69JtkHDSuBrLGqlHkmfqp4vOUbLoMOZaqVnVXeiGt59r7j1GI36Nd2s+iW9AlMm4r+GzbhUyV2uX1F3z0ZL+emUvRdjlOz/k2OA0V+xizIjfRE8egtTt3mZRecuo0Zp/fZhGG+BeaiNS6TCsk4ZY4XZyPnCUlG7mrdL/IPH5gLPHEZMp9bc+NqN0IyLnnZA1y3Nvfb9hffvt17zPwB4jbLzHq9laf53ail9gu48WAaZT6XPvN1/TieUr93HLZ0M/og+BgRi3OdieeFxXep3V1AjOexSJ44l2W0QIwDY2GETt2oUxZB7hbxdeLIyxdvsXiEVU3qydlVBlZRsmiJdfVZL3HRInMaPWUyr/JgfhcDNdQIJ3DaALl3tE4H0OjSJH6dAZRs7l124+TMhCXzmCgbaoImOpeAp4VsepcoCR3qyvoTkZh1iTjpolFbO5vjvirh6gTc/BoNOF47mgolSDL7HefqBJ1x3Ogkfqr6dLlqHzAJ3/HAye/rI7uxi88R6mnrywge+7eLoXTKlYzlXC9JEgz9xYIpJ4Cj2g13KmOU2uj590pxj2wwnn8xWz/uiEV42G44EXlo23wu//wObEL+esw7N/H+VjlLt9V1bG01xcrHb/DGTv70nq4D9pJp+734zYw3dgHT/2U7D3gjJZC10zr0Gr7QgdZnabF2ieW5gQ1v6Kr/FdCLWLXzDTo3ZJI9b9R4E6WNNVZtsIpzi90ldRY7C95w3q+8wbxAeoToKnP1g6K/dCN9JaPTpOvPeb9f80avcduwSrwvWSfJbgr/JqwqdG7rhfeHT30gxyn+FgO2D2RMF/CvTX/Shv/hnDmOertJpoIV1/q9M3/g/dnODHsRvz3vwshxGtdPqiwxH3Af3cQqb7/wflIOym+af3Zcm2HVzpLjLFiRTVzZjeR4wzaX+vZWrPqOt2/4jNmvurW3D/kLbLvAyQEX5pPlu3pMnF6+u2xr057QsthS5YpjKYLRKnbMZY/ajeP65jv7y8fMN71TQ9Ruku8Km/r9hax6uTPxFwy5mr/D7Kpd1t9Fe9tto9PdYo9px7Bqd5JpJ49/+cjmrmS6kG/5TnN/xV+gSasmCeuy/LsS4027uZL3og/yQjZ+6VMsp17K+B672W6ElarZ+jmPTz5f9bfTQcGGS1MfibHYHLd5mg61XKTqcHe9N+ymrjL30EXCdjB44VXXdkJGdjwkbOLwBzyw7cvXnPvmdu0H8fU7sXwo50WzfuBYln79fo/t/hoP29kct8hXriun8Qa3GzWyV75RZaa/D3jjqgtaf+wYz+J1rO1c+sY7jeQN36jHumzOG8K8cSXTI2zqubt2dzJf6fROvLG7ZtHfTo0P26jfbXcQnBGl9MQbD3Mc/26X4+xkfkPGpe9x/eF/zW09zr0A5dH+rv+PftbNPZJ/F7z/oJ2d3Tzyi/fIrauMwGyrvZQch0/a5RWlb7WdhzZ3ZdvA30aVoP6Cf9/R9u1KGWPa2WpjBct06xjhVPjbznk2RzH3Y2SMprIV87PQsT5qKCcAu9HoTXCYcpqMUa3xEmI72cutfKMym2hPpxzLC4y5zIZeOMnTxCFjn6MlCiqJsKGNWBHLR/9CBqWpEcyp7IorMF++aZsyNgEujYx1RAlSPwS3k48z0DRjP2Q0xqPR7/Qyxo2OuNQkbgzblDHO0YGlYJTnOWmOlZt0vFBZDStILrWAIlY261kOthvHcSk9df2RQw971RGco8xD5k1HLfcxLKbdqI060zMkVH6zjIYrX/dCRky/kFdYCYvgeJ0yd1S7kVDlOIhsDpilY7jQiWPB/lj0F9c+Aek6S7BONyU1/fvqb5Jf/moSVp9KcpGtp5n1qj86V1WhpyUMhlXYup0b9tFNjvBHsz3kdtPWV2y2x7KM3j9bqKI34LAEZpS4iL08vA5vFmzYpu1vzMZxu9w/3WAn5dgPbuJ+ByCesjeedd4YuldAZa42diEnyxXlXzvfILnHs0CajvV4I16KJsMXL3m/xiri/ZCxkUqq3SUsjTfM7lQkbDB4X8eMu3Oot6fdYhXxfsgFjNJN8g0on4tL31D3DecNERyE8xVvVN8IHT2yb+eoyhu+77zi59/HrFTEktNmFuyuI8XIpAPzTtaRY1xKtrY+yf1LvjF4w2N1b4LbKwncOceRqZ/C+5ft+j7zBnPqrj+Gy+SNTY5zYBoKV04AgFopPvnU1m4MD/4cvidYStqjlNFivYLKxc1u5qqfG963vGirE9JljTe68z/OgeymDM3056+uoHgDzHOizLapYTNsrfNMXpyP1W4MmzRxWnFV05/a4yHW5+Cbw/hI3cdITsMmrmsy1JgI4NLmkhx+5e/sBiZv8s0W//i1t29/Y9bG525kA8Wcgm2YxNGR3jDviS2XHPD0dMoudRrYSMDMKW6AvgraOd6n5LXlAszEnUg7prxN/jjenQWYwYRktK9n4kE/p4BpDtuPMWPmKylFuzalPrEp7bhRKsYzATp/dhm80Uj+7VjGht+36EQw+iE4fIbRsTGSU6zYDNwoEFYCJSd37FiFHtuT7oXaOzCemTL9weTndtX6GO1SmWfC378odpPkDJz3MmoToCn0sEPv05YdkyZu6zJJNrCRFVcPfNyuIJfAPZAxdOW2Tvqb2GRbT0tTWxmOJ0iXdnMigujijxys3Paa6e8mwGeNlVHVZYYUbBAyphubln/3Z0R3th4yMWeQH2kTSFPoDcAXwfFabJ2xcW7ydmwgIXyochX5lLg972Skc0O1xFWHzzAK5sBHnzeHnezGsUlcteEmloN3IXS85GO/Kv4p2SO8DxiYY5RXdcfHkzO2HZabdJiSDDz2DX8ORJuM93QFlnjMG1v9EywymwmOJnsA87H7s8tEvAFM3pg3QaCbf+KNwCbzfrTr2BBvBF9tfIP1Lf6fG6AvI0YK+dhD3mCZXCkX/FR9A4xN0T2XwvVDcPTxkuK4qfYYScdGVXaxG467fu2UP5T45Ptb3pDBG7jgDW0jnqcch2RkHGssrnYzbuJWbJI/m5y7HCfkAcZia4IFGwAxZqIuR4nFqXyWb4DoA3NwyNXsfLuGrzI7sZGCDeGo8/etPnfxxtutfiF5XxqAJwAvlOMoXYdiYuIbl8ltsOQpuIqJdH7kD/VcWIw8So5DXBW88IY/+tepfPURjm4L3CfX3/e86duH/C1s3+w9ZuoWovYFgFo3K9AZOKhunR0L68+5HT92fpX25a6Q0y0YqdZ+XK9cOEVfgGc4XHZ2fqFuJpGZ+Lg/5j3NRkriHEXBhtqlg9TA4JuymozyKeHUFRv7m4LVXQHCaqu/Ig8TwPK2+l27wFIJw6M2gav/aC9PztjwNa7sRmcHq+FoPXanI+QbWAx7FeuAvICUi7AF5SL0hE1oL//GIlZ4dxv/aIkdl7Q0LSez3UT0k9luaSiV+7PaN9jsZEw4Kob+XvO5abQlsJkNLA/eF93H12/gxYGK/RKqMVIJlfxbfC4OBRq53NkN/63X4lNK4PavBBg31VS+BbXAvdHn+Fz5dHNssa2FMwuGi/99ePNGp50tsrUV251PAsRtb+j6IW/MVq55Iz6YpyjJZF3ZPQoT7bqM7hvcrlbeILlErnkj5HqD9zd+XGnA+8/nCobc8qponXjf7SrxRpYn47qLVdecmrABmYrEn5Gouo/WjnHLi93YAfU5VqwYLZerXdjxxovzRlhKflZRpWCj5AqyxGJ+TkjshyTTjnOKc8pd0e6kP7/Bi3MveJ85VXNfGQP+3fOF6o/cn3ETQbwf1935Y+F9tXuW6ui1z5j6XHIcFFz9Wn3Yupx0fghv2jRw/Dnoik16NpFtu4i8PKpRCZVklrvOyptHXH7hjw9te0eYO39kG/xt+4tv33jGTM2GxEZw3NKHt/so2LALzUGzbjytLXhY3hXtv84VuWDixKh3G54rniQIhifTiJEI0E8d+85QNEqyOHeZ2lYva+Tv7xg1xTSN3iBWnqWEjRo2snE8joLIZVMFG+5/ktmP6RhE5Ul9w1xVyZnDS1qsvCRK0GwWxQm7yswEUJd/dWz4pb1Jn5YwHCfpSuncw8g8RZSd3UwbTKPQLt9uhMjl3pWlnkN/rSECzQgoEiNTbjdegsYjvm7rk9BlLe8xGaNbtC8ks/qxJ0ZNP8agWnO5fBWz6GNm6Gpzy+hoJX8ORPzCYLflGkisfMt1HO+x4f4ENla2gVHWBbESZ7Kb6C8QMwVsN9sAxb55WtR/QdwMjqR5dizUUtpF1/CDsO3aDtt4JEUbXCtXcdm1IEqSRKzcKLCZ6oIlP4lP2R894EamgLXUxwVyXKsPfs3WDcXDG52c6glH3/BGKpujRMH1FwnghW+k9u+KowPdSn8iaXPecN6PcydvBLyGbawUSlhWHbpvhD3arH3S/x3jGdDgHh0ziF7q5qPjFG8WvmLeKL4xOIfaJWziFE4W+8SqCdBtlgXupwkbtdZl8Q3grVhFlyjYrLw4sWon4gZeVOegX9NZwrjzyeIbsfLnTicP8gcu08apoyz7hWRNvIHHOc5BHEexKmDhsVAO7VUmtj87Dxa3Rwk0Iv4AgLKte/BQiZk5x0t5MbGrOFB4w0v10is7fDsxZjpjNpBznNnOlvcD17JZO/wYjFTbNhkTrp7jdKC96oxj5+wfy6+W47gvp1yD9cnt1rjn/eP8z/vAcVwBeR2zrb7Co9iPW94vjYQFUoXMYjfE++mmsvqj243r83vcFL+VMv6iTZFKWqTRVDZNxzrZxnQtMGrBfCvlAkLXj3ZABsmBx68l4x0tqaSlDwUnYnEB/MbEks7WxrHp8ixXLU1w8nSHwHSImHk4AIWXd8mA5KjYIG4GAxuhf0A4XFrK3NqNEg+XSwgiP9YJAQAOgYpCTomyz3mBC2xE5o0u6Fhu128a+SDlAEen1Ws1QW+KQ/MzGSMoT2zGCJs8wGYmDI2wCSzY13lG1e3Xvlezp4mV5Q6C8cGWee5tmJ7X8DvGS7t94voe23YbUNJfzOpZKWo7+7R1qC2bXLDxz/W3VtotCVa0i2kSQt8n/3N/byPoitn60MsQxP1+XEjsErKWbfD1i904Hottg45zn3c+OMa126lovlorycSlqNUfIyEp7dR2Q1+EXZq8JZlT+Z1ySdJ4PmPhAdbhVblllH7R8eSP6Vrkg3Xk+UMb8/4JxPuAFk6dSVrwei2No98Zr8DSP1feMF1qG2lL4g3TYUxqbHwjxSrGFhmzpV0qgeLfoKZH0RGNgzckSp89geMYGRM+7LeBzbQHjj0Lt1UZyUZn8m7tnBQjgS1vJN8oPs++IdV4CqeKli4t+hvtK8YNmohQxfzEpsn0jXRB29dHvM+8UvaTbzDv38x+TxBvVGywcKo/r6TdODA4D0l2dtUUByTrzylNgRmLOMdpCN7Y5TjS7EaVBx0LNgunVv7C5NYljovJBR0rawrQRS85Nbiu8L7LwjGUsdGKDe973kE5jt7M56zEeWIzE6SBjcybGUGO465H87/0CALhMIXFMqsrjrEAOGDPBypxleeb088FSDe/SQbWnxZ9uhKVrlPzasMNiqTf73L77gV83/aNZswUMQPGdRZLAid8Cp2LeS4bNzFX5dXS/OQ7LdP83GySI7PyJKVsrb58tf/OhMQr68QIKstMhN9epwBBNldJUXg1OR8dmcpuSI7Yp6MjUS3yA7BnMjQnZ7WmTTAeVnVpEjaZ0BPMrHsii8DmQkb4SJeWayWQgsaWWdeKRW03bQWb+hNvs8xG1mtqOUNhJRLURAlql7atSJiRKSzNQDelcPVc5ON5i6W5N3jwtViFcS5/70TvMln5zyydLHbTsGmXbI6xecu2dzLOuDv9766Q/oatszxVn+YLtd064Mj64qDMV1y4KjlobnrhTLpDTDwA0gVf4gGfclfTYhzv3AQ6uYEjvZeRq1qikPsw7ILLujPvp8QHWPoYv5GeR7m4vfoDBcL4ovIGy5UbWbAt/ltVxm0K/U3leY6N0NHFD/zVLtWWF2yqnZi/Lv3m67hUvady/2nfSn0uMbL6JF+3glBCL9FT5uB0rKK9FECYZ4NTFfko7sMUt8YMjlFaZA7cPsQbLlflVOy5l/vj7YKOFSw3ZDVeCV2/3QtOMnFYmmVHwsr7i0/ZtptM2fHG4DjTXylp3gNBv8n0x1gwBRnHPGhcBHmjD+MVDDzFhGTP6rqMczKuC58U/T2M49xdzTuJqzb26o0ENtaxsL/ari6nbrfyVMHDY7+P7bsX8F3bNytljCRES0DlsjvoNCovTTIrYVJKQQmYX9R9ioBy6lga9Y7kIQIsq9aMGv5JA/7uiupYnkDUJzz5mF2tb8hmS6y3V8VYjZKO4RIt6m/MvOl883vEI504xhSv/caBJclFPuybqN38dOufSsZGCzZ+2ZqdULIaeNSYtSMswXw4FnNfrCTC++SBqBKILNi4/sb3/rxjeqbK1ajz2ks5CX/22Qe7UZxRwl6W3mWWI5D+Joy08hLhEe2yffK5ZOtJPr4U1c5DZ4IlvpKayZ/8yy+1lDpKvj71P1URVP/j61j5iJdYCj1TNOyZ7WiUbXDpTMImdZxikIvKdkPnJjk5WIX+ch84QQtbt9HbpSzQf2efwzx30R9j4zZHwVy81O0V08780B1X8Qx+yhvMD8jvUfDa2rZDwbb+lSUtwWlKq751hdo7wob/Zo5hTmWecd/Y5nYPeCOeb6m8Qf4ZMl5wKhgP2WC7/I6MZ+KN4XiSeAMTmyb7dgEroS3JyKadmsSXx4rmeYk3Bk7xPk0/t5uOIHveELb98XnhFe/PR3zD7a4rDuONeA5HETPCSUZ+Z2VweeF9hozsJpV9VrkSb4wLeylc5g1Z7YZnCKnPYiQTJWhcbsZYVXmKTPFVn3nOljco9rrZJRtjjiXb1upTgeuOc4qt24qM7QUzx/GydJ1c7zpK/sjX4lhd9y84lfvIrwQDPMfBHMyoPKAy9cM5Tu3vJo5npY0T0829Y8M2F1xVcpxybpUxsODfpXBTKVVNsdrb3snfsPblt+0vsn27Z8zuFnDMOkQQDgnht6rzkqAWsAVW4kJLpbPR+KByTTacPASIemXBMFqbUo/6dPOCWMTAE7CGscQ3yRxlODGYbecKYvQmlXFwUOwb2Y0xVfuofW4wZyeCaKMd9YfDUdrp5OAmM6xEKMomhIIEYTOX6x/nd7uWqOnkhfBwEmNsDDcogFOt5EqMDO15AKH+h4yY5VZOVI2wKuSvqmj2pb8SYHJiWebdsTmm/ly/0e4DbPzaV0vEj36o2Sv9djo2fmNrfTO78ZU4FQUb1p3OdrkUIW1UU8+2Duo/oON6VLZrsWa+KBSYKxta+UjgYf4Yz4Exrt7ETsbqh93kC6Ma153yjpI9NKEgN7BxueF+1WDPkliwNMzDH82Owhd3+iP8532rGfYpUS4mHqBNf2JYuE4j2dn5PT0ncInNYk8TT4HGMwU4qY3myia+sTbSktrhU+YX3ZITxka9n0iDAQBmqTFz10c34wOf5UmcemZsgzdkihFyuu68X2/xBvuGgmx3rMw4Pk47e4s3qk4nf5j/1kG0DafGjArHAbvRgXbijSGjbuIe88ZlvGFuY2xcJ+z3zuXq+JmyzR7kVPO/WQLopakhU+hk8v5I5gvv73zD9frIN5SwawLtGo+6DTpx3iCjW3yj8D7ZjcfoxTeYNxTZxjwH4KmMu8dpjRvXyRt5f7Ebx8ehIP1I1d8OM8fD8fKZk8QbM6ixrTtv8Ct24jk6LzU8CjZuV+7PnG8R10X//D1pJqPch4zzeAlb0s76s9gjLuPkfccm7GnHqRQTdznOiDw6sIkcRyZvmHxrjmr+EbZy7Y8uR4qRLGu1ue4yScQ2z/90Z9uOjdlNYBN5GF2b7VonV13FyBnkv+Ot5kV/o9s3uTGLGnKffbHyFlWMN65DEaW9VjIxpmeFSqAQJK3VWNiAiKhii6RH0EVx+MIWfoJiPIxqiZqIBHGkshu4fJgjrzICmroYxiWX8mGeizba0kNtJSU7twP+sJIYNmKyDCkdG53986SaZGQsghM0vho/k1O6iIcTLsaoUvPykA40e7mO0g1lmkGgEr14D08wdU68An7J+y6M1H0R9Bvw9NrHC7kFW2wa6SgSEVenaip5gciyKFyYkic3yHCGnDLeNYTDnhM5aQT1YnbF5WibMkExu5+jdSRMaheLfvnnBoxkpc2ywTjB7EY9eUj+KOGrQ22unKm/5Geh8yIefRf7dvOnh4wH1Dv5idrj3gaIl9JosvXSnGaZwh9ZLA9c9F0IBViQ0xhNbCfQoJ6bTmwiEDuGo123m8Xvvd13cJViyhjdMmLRpri9dhw6ZzpFnW8KDyjQd3ZDpTbL4ocb/TE8GSt81TaeE9HBG0Ll7DBOTbwx/Xf1DeaYVW4+3jGIpKwJ9ADaC/OGXvCGEm8I8f5s13FvCahrTt3xxrj50zGLfBLXRcJL7ZKPTmym/ue0JDkdycyzaP799CM7BpbzHsPuGr+cvvKGuG9g8gjxvohGXB+nE++TTy5b8Q3v0oiRgLx0tK6pHytvrLF4yohJFISV01Pihypgsjm7IT00ZjiCN5Swcd4A22+xG0XcSPm5O/0lkcu+fxc5Tqs5zhWnUrxhzJWA83MLLAvP4oLr2pBJjzFD3HxAHKPdkeZMIm0Lt9lPHosL70+bozavsCG5m2A8U4YxmxdcbjfNiVPNcMVkDrOGn5dt7jJm8z42xzXmqhPNcgjPcVZsxoX61m5kxYbbvpKNMKs29l1utT9/o1t7+5C/0GaW60vLimK+O8L202cAEsFT02XShysjpzYBShBe1vbqNpdBRyQLs7l8guYTc7uaj9HalvfXl2z1jNCmtCs2GSOd+1WW0pCyXFVGOjkSEmCM1Nx1jOCkY/Xy/JgZoS/jc223z90rPaTgbLqQF11txdtU62zIMgmf2+WS0Yf6u8KGsQj96dSJt824cHlQ2HfpbMipez6seO9+9+9PRXvRacuhN119J85f25XyebG5os9FPLc5O6696EiuXBf2D+namvtS9bdrZ9cuf9zZmCced7N1xqZuPfc98cCF3bAs74pvlau+0HcXpzAPSM++sfANX6eC2Ndjf5Vtxxu9cMglbxQwNzrcqmvx3eELfI2VNzAA67jUYdqqY/B1UtvYPGg4eaPdH/DGTkZkH01xoGchr0x5kZ/l7pNjU4xMvFGy3qo/3djZe7GpMlrbzQdzLnmDbko3GK7+e7E94A0tB8lJvNHzsQtfVX0mIOZ5Un56sLv8MG4GLcfh/i53TJj6ZJuj7ZJj+d5/w8fbkxSxBHzK/5jvNr5ZfT5jU2R+dLO/0ykQq08v7TCnkt2Prx74mKy6ftfGONijLZwbb3krybiJnUWuaOfC7y957nve3La/9t93tH3D5fLHELnbjrRpxV6m4T9qG0vNdp858mEDgIY8MGfCgMu3mc99Be4jUe1Nx5Q5MB+m9rIDkRmbBUY8s47Ya9lTCRotw5yWb9Ysh5ic0jCnkE+1UVxFh40o0WpFXmYz/E0R5ZY+xSjEBj685CVo/iyCLYEag2AXWAmspOMcM3hjRUHB8aJzVbKOMXo5ho8AG8XxsjNYfXOTMdoUrxIw3LRRjf/pmG/kKqUk2jGeu/GSLCf4GBky3Hx4rOksxTDRx8zNLCEZ7Wq8TJv1t7Uj15nQb/ZySm2CU+xllWINqg6szH7jGQghgo/SEqGXnWOMIjpWbpA7bHzfmoSa/k7T3wHgi0Z5XhCvwJWIKNMVRPmIzwQ7Tl6Ck+qIrrAJvyDdKtLrKnxxB7cNYGA47AaQw/rfx+xGkhGgF6/aCKKXoHCplsvk8u2C5YlRsnWM1TOPF+tjzOAUbFgnNjwaZcSVq9zvBanssdNvSZ8uo9k6BOiHRMLdmtiq31NHiaucB+wl4W5zzrXLqyH8L9sz21h9IfVHNwVa78OOmDfc7g6hF/Myb9jJVHaVnr9hTrVyJk+KVv/1Gw21FXO7lTo6byCtuKjNSi+ZXwunChCvTdnpm7FMdsh9sBc46wGcAhz3Trwx+uRxIPPGBhsTI0rQ/Pm9Pn+T5vF0xZF5A6+DK86j4/bFfV+GkFY26Bm1Anvej5g0eX/HGwkb9m2WUTF8QWEvKdaYgZdudtQETdR4A8QbLiNd+zC+8ZlQ12flMiW5+LPL9Tpi5JihGrw/bMRlsnYhe95vk/cdixHnqs1NbNzGgsYXbrO4DaAbVmzCgZvIrC4MjtQoWUWfehg+pfY5l+1Wn5u8SPKeiAqJfgx4IsfxSpwGNJncpiJoDeg+0GD2FHa+8cfldRWMjWPln4Fh66G/juPVbQrooNyO8j/m1NyuUownO6ptXuU41ic9EbbebxI5zh4bu2DN/2IVS+YqDK5iW36EjV58/g633eDj3+L2zZbLH0uuKzo86fOEgZ5/OAB/V1E8n0V3tgpEzaxU41FSkmJJKlRkvG/Cp/lpCXGf6x1Jo01lezvNEkXbBy8N7NdWctL6TrM2ZfX6YwAzODVzwo7xgLNjcwwnc1/zQBQka1Ft+prkWmtnMsNiwUanPzNWAuvjE4DPHTcevWmULBs2qmOJ8S6WELL+KOj6TUeUWwI5yCDUMInXN7/eAfSncdMRD8jGDRgFM7cbuknO2CDKcOTI+pNqNxclSQN+GdjeAOg5sFJE/Xkc5zKqRCLZFGnZ3YSNBfSQ+cjY8HvoGCu3OWkml3QcL4hnzNLNqu9r1mckqJ7keKctiRzhee6zykJ0/44Ba4DcBlbSLTjb4MZYGrnYTeEBUYsn5kMTm1KG4+267bGNsc2b/qSpBcFp60OHin6QDgwb329t1d/CVZrlcTmqvAk0mH5vVlJmXKXGVeK2LtPOkt1ItpuUDPv7aTD3/eYk5FBKmJkzvrLWQvz9UwtvYCRrO94X8sksWpIp5ET2Z/99YCKQG9Bvs1wcxrE4ZGbv8W7EkXx6jj15Y+AY+jfewGxuy6nJL9wemowGbgB63/CGlfbiPbwhYepw3+d449gp8sqa4c9klzJ4X5vi9gJ6xc2Ug9/lOPTpSbbpTxAvQc+cKdnu+Df3aZTvPXE9TFZ7SbivhOz9H5ia/GRHYRfchu/bjaLvh34EK7d5zAj5xGIRgJ9P3F6IN5rlOI6/x2m3G7dtt3VSSbSriUoecmr8bjkOboAeHcedcpymiNUvPMdhf5TVHxk7ibuiqZ/gNhRcBSk3U+P9fhPcep85TqcBaAy+DTvifnqZJbUb/khyeP43bRl5I2OMPM5ynONVSH/GqYn36z75I1YeyHEck6s0y7EY/GFYHZgvmRbysYf5X4mRbts1jivilU6MTS1HDZvi437b/mLbN12VEUA8hDm+0pQYxDKt7n2KZEBzeWUAhSzsm5QEgRzEfaC92rNc/puCRiJtX1muVY4abbOvSZwb75Qq15/n2sezx6huBBod/0mJSTh2lcm9FbNTSV7JxGlfTycGtWn/ukK+6JBNfabTGDwIkJzfLsA3gOLBAlpAIGz8WG8/Okuykczyojju2Pc3sNH0+yTzrJ8sJ+NVAo6TlSKZgyggUKB3eybDVpsCyE43OtnZEzH5DLQkH2HDcsT5LiPJKi/+uoP8QHOWQ3MSlfzNgg4XzrMc8xJJhi2Zu/+/2iqkdFDqH/c3GqDzXX87bPz8DOc8t+Xv/ckt6Qr5gjGKGoqTwgMZm9hnGWePJoVtzpF6uH3vsjUD1W/KkLDRpb+MTcaNhPdgvWsbBSqd3yU+/ZpNyfep70J2B+d94gkewGE9iD/8fyFn/Mi8hmF3x11z59luGa8dxy4+m6+Vls0uXLJLtAUKnB3tC8bstoGsJYnKvCEb+efF62JAgU3ISHKUGBm80THKjRNvrJwaegKg0EUu0XgaOsqsrrDx3yoHO9cJMF4S/qK2AESJ73aybOLPvNQF7zM2pCCnvMcxsg/e6ARs/K6YD7iVflXeSNkwycen7JzWruM/NeuH88ajHGdWnAC++NLCwTtsMHGt2Oy4zQfVRo6DTY4zT4hXKpEMiJ9dxmnrD7GxH8PmiBPE+9DtGeze54+aeT+eYaw6jMZzk8wDob/i+0qfnfJCXjWuekUeYHBsNjHRjUAJR7b19PoD4vIkI7DEle+s2m+/Xen+b2z7Not/QKOUERhEHqNbN03lBCI6p2OBMZICiVGSyBHH3C5i1SyaQhcgvc1eMIJf+9IhCpyH4uYPEWuzsipfncsCJHRMIQNjBLAjVg0ab3r3wF2sN7INidEgCGLmjUAZ0+R3Hctim2YCJ7XvbFSwd0AOncvLUvnBXAlK8iwVEKNTMdLjWJWZhCB5xSizeTGZ2yD6WWrqGbH9tRWb5hDzjGijfTUL8DY44iHK3balJEwuHeNGo4/SAzixyniKyrHxBMNfshlLYnv/+tTPxIJYiEZ0Q1UloIeIquPh/RcBjjFoIN3eP6KY2Lg93GgZ24656l7AYlj1+TmwoYQqkXLZ1+76M/s9LKFRA9sPjtpGuvamXaGl7Ac2ROd0KS0ysv+Frb8CcgL9NoKFePKCqZNkN/xyUVU0yChvIf3xvreTZnc4+nAJR8MY/b+7rZuPvPYJjQy7nQO7VIrr/uiJgmETwzTGDZfY1CSaI6Qnx85VXvbZ28RGZZY6YXConuO3yYlSVifUOYvmeFSs/GeSefr+xzZRRTyj6g0wtwVvYNq++vfWR+P9SPq4BN3ldJk3+h83GuMl6z1WP7GYEqvjGe/D5DDekLBFlx1R0hTxgOMRzyh7klX1D1ipOMazQM4bZ4+y7MDG7drtqrs+nPeNm8I3rGF/TKDaXeFUtjvn/fYyVj08b8YbUS9JvC8Dp4mNpHa16o/0m/iqcJeIxUg6FB3AyxhM9dkknB3xhmggqlhSvHE7kKnrhfdJJuerhE3YnH3nZWddDStJvOHE4aXGozMjJma7ybyhV9gUH+yVUzkOYOpPVEYpajyHNHOcoT9vy3R06rA5+/lcsCm8Mbt1yW2J9+9AexXIzXyXcxy//Wky87+IgaB4o0UnNQ6QHCRj+hw5gGMFjEdbZLz3TVyFQvnfyPei+sZ5n+P4MeO4O73DO6tTsr7id5JZOuJZyn4b5CMdo/QUA799/ocY4BAAnfLnOTsJKPtj5X3mKhfwK3n/r7r9Tdw9vr19s1JGnJ5QYNzBizl7HxFDxbm8hSErECMQMc1uhhI3apjBM+6J4vfp/yoCfRrlQQe/D+sYz0CMmxodK2VJg2As995gpQlt2rM6sZmzpXY5iXDnANL9mmOiDdBDoE8Dl2b14XBsTp8yV1uRZ9apd/cc5wMP0tEgMjZ+02LtFlHi+CCmJ1sFjMt/DkX3hxIs4HUgsLE0duAS2EhA1SPAEzZKMoK+Y+ysf7jZ6k6GFcSxgWGjo2xDZNyUiSUsFDj8BtX7nbBpGYuIGyRHws3qyPQJkJ9mMj3KMmbOHCecLUqQ1ErhXI1KcrnxVNtO2JDNJXLHIHJ90mG/9xl0VPvQn9mN6Cy76T4K7QMTAhuImNiIKS7inGabCzGU/rrNCaCHlWl0f4YRMwHwztlABPuYdv8O89lFwiaNVkuGnDeOMaNsxRKrm8lPZYPSNPo01DSidtwTaeYBD9STBwo2usoi9qHanALQ21hd7ZnLdp2r3NaB4IFRsqKhyKk/hP4A0qfpI9l6wW3i+/Xxr92NU5k3DqDb8vBdHZsW1JF8wxNX1rFj7ZclLEvuOOzuNgYo0DFe2G3+5iscMu/7YECrvuHc1TfYui1ULJmPCV+1FVP7M4CfLBlz3hDMZxBjoMp5w1cInTVwg/fNJwkbb2zOSub94Dbi/eCNBhzBGzp53wxZmsSYyfhr2Nk120H6C76iUkaZf1OpuN3ssqOqALgJ+m0EWueNrj0ehRh1eF4aPWQcz+GYoYvbmvFG3FTLNTaldDeXkg8C0JvhH7yhs5yM9S5t8gbbdslxQPYUfec4TrKyTwZvyFi1uMuQJ97dV3mjKboMfUapG/lja9bH1F7m/R3JMvc5540cZ5QSa81xGsJuVD2OD9tuNigcqxsL0I1/I66WGJnsBhk7vpkcfGh5V8Mo+6QcB8b33fMHtwddeT8w5L5z/GO9AflYktH1rTcZqzx3pMc1Uo6jKPmfDRiq21PpuyDnf8Vuls8yvyhh67vbalz9W92+XSljzNpgWouRcyyGkSzYCEt1Ep0Hx+KEQDZ2/okDEBQjKfRSKouCqawuRotASXzxeCLHWiLhcgR5FBm17I8pdaB90ZgFBMTq+8fR/H6ZFHgxl1SOFzbKFH/KJFN0kn+eO/ejdEQBee1oJ/XMR7QoEYmLKF3Qr2vRbopr/QAFI8x2QZcLHIsypcNmgCY2qVRGEZEx3sPlDxoLppxBTlranVix0ycb9D90jeZLOQMzSXe5XCdLKe5swGfZRrvzeyWsFmxInvTRg9Z5op00BOYGcEVmCzZ03fAhkpmx4p8oX4pjPSgqRvmWjrQ3Zj1iFLf0pujE7ddVWWcznUJCX7RxHuEyu47ly1wtcvKATCy8vCWSLUkXExt95gHHaKdAHgESRC90OadCOXWuGuYZO49GJ6wk/CuwIdzCHum0ZEf0Q3Ax7/+SzbnM7b6ClBq3H67sjMr56ktj0+Z6taaDN3zkm8uOWUYgP8PJ13vgG4tP1mOZIr1f6lUchA3zt3OZLyqjGFy2iZHJR/1SF7yx5bbYF3uGlzrBvA9BvNuQB1WWyDa/dik4od7iiGzWya+NNxYe54MDL/pLcSLzBvmzc0zhEpaxloK53LzKrBrpZS7H5H1gwxvIfOUkV/WHDadW7HTyhsdI5RyH+psDB2GZjAQTs4t22QU7UFWfPrQvPeU4KR75d8wD1WF8hk8mbrubDMeCqWYnkwBzCX//zXkfmM+XJR1Kxsbl+Bps3K2dq7xfHTi+KPFAfs6OO5FzDc8vZBWg9Dtk8uvZ8cnGJJvrd7ex//+Nb7uQ85ffdBChP2Apvq9qzqZhkP4wthsaMA0pbER1/q3E7McpssGp2uyP0gOdFqi7xrVEp7OJluuWtgZhFcug66Rj+Vr+Wwe0DxKFzQQ5NrAyIJbTMRH7jp3ML8rtOlEzToujcZTxrftS66N/gVGn/nSdd00hc+5vxcaXbk8ycR8cJ8G0Az+3j4AzXlSOmaC7HF2njXW3KceEsAVhSPoJbLgfJVlecOs6Shk/D0JUs9+QifSFsHUnX7Jdunq13QjNbFOdjpV8PKx/7XWUb7H+PEENG4/gOL+P46o+kf/FxnJxJ9w0/ITTEwaM2SjHpntbnZZ757Yly8C8sOEBrdgUWbP/6QyCYXPTViY32fUZu8pVrL8dNkk/8+CSp40+mv8dNrrs/j71w7Y0/4r7KOMU2JVn00hHO0rAxbEf2lzewvuTN5TsnWy8ZoGJU/e8wZzKskoHYLyvTQcndR2LkjhvkG/MdsjuiCsW3iBOSfy1SWjiXGu3vWDMWvaCTfHDyWcovOGCTN/ggbWKVZQpBa7cX2vzpY+X06IHl84YybxAdrfBKWNDv0uWtf7m+9FF4/1GMXJwrPNsnzJEHJ/8kPCI7zN8A5srJy46dP2dM3lOsYh5A/a5E6e8wRvBsaS/hCuQB04IZ9ExQHjc7RU/pD+lHCcw8GuTzyz6hWa7KfpcsCGZAO+vjoHng3nA27rGJscqaod4v9pcOXTlY7rGzHGov0kuTf427XUeu+Z/hE2xb86f4lgXUjArSe5qK5DyuUp5Dij/yxcT+y7aJw4ISav+6Ob2V+H937YPb9+slFFe+5ge7zJG/dpY2WgYwzLeMcnHjVYwR0caP4tAfxWLIaVcWwCF1Q2/2Fs9D7HVgKxe5eCyELuGPWsyV7VSuEsMyRWx/C13hWTUEAZ0e2xB18qmcD8HVk3GimGtzRX9gLGUapR6zKlpNEBP+9p/72p4Y44cWilOGgkD4UeAqY8eowOvA4OxDPPUHwDIiTGiY9U1HaOdWF2tYuMyyk5GwqjcFKn9z0eF2v0cPx52YW22xPTQcSXrS76JZ1ywYsMzb3xi+jtKfwBA+mmr0AnkaOjQmNETn03p8zmluIgM/WVsrF3Wn89SlqQ6mbwa5qYqVQVe+tDXIcAxa79cZ6qOGxCzWL66my+/HTMKQv6oueRlwcaCVxzg5ww+ENefrcqoomlVPV+aW+nuRejZn5DxYiYpVtJyvdZj2sCqO+bax/OeYjZL2Ex4ZZZ1Og8IxvNqphC39bTEe5FtMUpPGqxLo9xoLOGP1z7aMK5yPw9bV8RyyNJ1ltqYj8WKetRmXaWU9aYbPT5KVi83VcjrOTh1rIk9ZLy1sdT4MUZYhoqGfHOZcQ39LpzqMwGc/BQ5JX5yYMcFBm9I5g2BPTeckzxJHD8YP54laSi+Qdgq8rL99tucNRl6iWeL+jleBdJgmMh4ETvJMBNlx0GC90Mev67ZqMeB8JPK+7RJ8Ib5qep8buqQwaijpth8Q1K745oWE2DPnx30vKyXnXVr55gpZXDdRn+hRbHZgPs52jb9xbOCRxxqvxXOT7xhx/kKk8B8dgsPeAPzfFW70RfjfV9uvQk6xSI57PU7qvMVH47SFW+wjB4jyf6l9g2YOY7bQeto946xGrXYoxCAr5CqphYvmR2l/wCEnlN3ndaSZ/Y51h8rjnMl51rBeIDNuF3crvwZtuBLmf0Ql4/CH+V/gQPNbiUZgfnsFK8WqjpWklYAOCEvCFsPbIz7x4LPxPse8jh3IP29H5v8tadoLn67mxIsRs6YZXrCvJ6extslR0VwwZjJXbBRwmaXT38N7//VNpmA/Y1v36iU0R5ohMbNRO+Av5MBqvOBRWcZAF5eACCqHzzXEHPu2cLY3Nfqqn+RSjXF0+cTzYK72AO6g2RlLuPqBiuIkbfRrmB6JtJnqtCYG32h9YPd4GgD5OUcIyaw+Gfz2t4u/EF+HaRCuYaRjWQZSUQPl86RwmJsnE8gFnz7nFLnQCWSRgnHw7cmb2QhpjRvVzCDuTqJzBrxVZFIwUAwHtDXG3D8fI53TzmJwGqvu79Tzc8Xw2osNNHVFpxIMiJIyNtBkalyrZP7CGIWYM4eK5kN29EYHe6OatwAaMHGcFNNycCEXKLdpCeXmUD0JaTVbjpuL4qGMVuiHWg2W6UQdCPraTezg8o+ppqwmWYjySySjMnIppB6KNpnK/sU4wEImi2Eop5Iuhwyg6TLLRaUukezZqmg+UEE3+KPyf8swoolHmplg9I9udJIBjo9lxU2EzfKj7hK9/qTjf4YP5F4juX2uQdXqXGV80Cn2QpYYuWzviO5mFyl6vFZScbF8Zdt2vr623u2pgPbZp3tpuNm2HWXuwGXvEGJhAsqCl4jKmNbjoUI9ACOzxveILuLd3IRx17yvkrhjQ1mRRR3fREZ/W+C9nofM6OK8eyRneGVqx4jnfdn5uarWprdeQmW80ZwGw0wME6ElQC29LdhBTXet4PZwdvg1GY81+0mRhrJpGK0Qb5BWKSyQePfiU3V59Rf+9Ij3mDHGzL147w/HIV8A8xts62GuXLdNo4nfQ4OGu93O8csRx/96hi2rsZtEOJ9SuIzb2SfdP2J29glNglUuK33Azg+99Cf30/7oxlRxmt2k0o74XFgxsiBjVK6MwQJv2y5e0mu5s/uwxbhId6X8f65GJwNGZ3LMXl/wcbjBPkBY8MQOXbmqHGtJoCeOOLZcMSrkfzsceM9hBnPaflFDBvZ2Q3x2AabS66ynE+b6Y+5imwbtpiHt+H6HDnOhqu8Mc1fVWzSwJEf+JW8/1fb9O1D/ha2b1LKKICVHGCWC43UcBzgRMn/3JA8CUIciqqNRTdsk2ZcPi3dPp822qKQs8/yh1R+ZpdxuUhGpf3hm/RF/VQFWyL46Ft76eOh2FOjtMYy1lm2QWUIGRsKzoHjG/j4IdsfDK+7Al80XoSKE0FGUC//cZIiEoXLwElM6TJ0jw11L22enHXF8XmsHy52EyOnjlWetFzE5SQZaknEJQSPsKkHqkK+9PEs0Em2FFh5u5rtnK6Zuktk7eaSyiVqxse2TufKXa2mv4cNcTnEW9jsVORBkOULk35EkC6XKg5LrryMcNhRNxzI/9i2i1zc3Ht4efFHzuZV0V7P8QC423TXxEepf+yHgcU+ek1sHkhZ+QDm6+ewK3W+5NKV6vchi6YuVtF0g9YVVz0S+b3b4P3sE1HCDkxs/fOGN7JvTOw9CVpuNIoAkzd6tD+433ijlHhdc+r8l3l/bu/2Dbe7lz549sx+yXhEqSpfZyPjFMB3c6OLtGwXnCDereysd+MM5LhYeaM24qPyYNF04dTApkKz+4J4I8o6+9Sfx4IrGf1CDm3Nh7ft5lOzzMEbHce9Z95wObpzat/a0KXjJWwe6HADnvNGynHc9/wCFRu3aZmXZd4YP+/JQMvnva2Pf+2zPa/Ojx1YSYpU/6sdJIGuaOmSr5gQ63evCnlx/8Mot+dSaMNLKcdJfSZb3zXJnvg+rhrYHF/cZgyXylGJ99/OcSonVUHTI2lXOH6v286v3vvvO9q+USmjQu5nlFWM0jeBzwV7OZSMAYyY7RplHDSDZdP+cyrbysKERgg5cWUH6x14HV/0Q8dIFzDk6R2ih5VANBv3kliSWU7J75PomCOR3RrwVXF8tEUQox1pKptLXFSBF4WeOlYO0z7esWYvl4YC6i9tjvWbnSQyNnISAQDwaS5fPQzQUZIiyEva8nS8i/XaIbZ6WT8U+HxCxlJNQB8rPMkh0LthpXMBDghstTvXF+vPZfJFH6gUjllvM6Wu2kf5m2KUeZ33kZi0NkeImuulTVPwBE7GiNIclZ4zD6OUwrFRmrFZsYFiriCpOsjdRrZ6UxwvfejPajEGNmTrsJk/G4Wb+rNlzmGHnjpLvw7YzZnkwQGXkWUDoHe1MiSMVRBfT2gbI+9dYSWNZuuK8dJnsycHTdx2vayP7cZV5mVzRX+m2ixjN6w67IWnFnwOgS2/ZeU/grEW1mwrSsrE+s7YkFyDB1wIybbEsnCwvitwH6VSZ1O0z2rPQgy7Um3DTqxU0P0eGNgs/hc2RW34KDBkrrpXExElnvBnDVTHymF/HLpsTdB7m6WL2oYfAvN1EfBSNhlYG1a+wiYEUVLlM3ChU9KZc1tabv+jm/P+WErTsCRfsLJa99PQMfF85jaZC/qAfcOOX8p/J29AdaxYd1opnL/UHLDKBZPjcO22aXfAtW9UThWSpSaDSjuvNjDYFKf08ZLi4A3jUN+XHjFTbTGmBZvqG1HmW2Iky1M+66mQe4dgYIU/3wfve6ww3hAV9KNDbfVigc1sNxm0LUD3yhPXJ5cop5k/ZB+l/WELI0ZKH7Ptqifk1eSwGnL1El9b9RYI80i876+SmLzB3Gb6PSiuM2/U0tS7Qu9j5dtT+nilTBvxyLEaZYxm657ziJpfXfEG+aTvu4xkQ1yyFzfW3fRnnI6zj2egD6+OaLMEVMeqkrG66Ekl0pU3/CXxjs1OfxaC0+tzYLp+7WNG6oDlWtZ/5n01oiSfGTLpzPecFzz++iliMnVMf9SKDVK5Ku42e9dGjnN86cFNo+qi2Wx6m5wKt6kH2KSZv6m/kPshV42qDQCTq7rEuxvjuodz0/QxX+glclDK/3rNcdyOpMjiHaz++Nv2F9++yYwZFJD7CTlPSLeRE5tdEMUYcYoRYUzyxgjG7Pwpf6A6Ww/uACIpknGIlS004GkkqsdPr2gvd5PJRuLOcTMi/TSZRuLpKy41BU3xS4xMuLvGbCCJ4cbP8TntNIHcxjL+eD1xfLmjnSfwesbMmc+kxYPMNoIORZSh+UpHj7FZZawLazmGcshYthWK28/nwCX0Z6sY3RVNx6hq44Di+rKRnEhjWX9BDLJiQ4E1kUNrtmwy0L6cOF462muPG37pvnhE1peXvjROjKzdmBHdYQPDumCT9dcgN0F/HgHn+OmOdh9ytfsocWkn6c+vabdgW9tWwOtukh1h6jMJWWxMTX94tldDmP7avdssgdnRiYEZpv5kSkUjb4yNzMSn53ZdJtnhpRjB6SY4nwG8KtqXc9TQv86ZDJ8ZbtCpG7ZtH82s2LgcaijxTRnLSPpzn4D5n6ri+HwfJamvfdi6Ao1m0MLfKjfFvslQeYA9IWwu6y/JaVh52W67zxn1RjyQ9Zdtea7suXJk6FNInyTw1ta/ZlNAXo1nncvu7quZ9+eNy1u+gY1vFB0n3hhY9iegfT5xvJxor+fkjbPPGHDlG8z7qa3CG5J5Y2d3Y78BT4L+3AZv/Pw6MDK5xJPG+8r7EgM9yL5xyambGMl2h/m9iABPAr0pbj/fB++/Wqmec8ddgT4y5HHDYwlgPMM4feOSUwscvBOyuP6OIdP5JMBLHzMvd7vZdp2ZbOEblfdj9mrG7cSxuxgpKLrOesch0Gcr+/zsMXLaUusjx0kLT/ngTPAG9Tl4Y9UfDNapJ1zyhj5ZjPzpjvZ6RvxpNpuXbLtPbNzWE+8HNlKwkaw2lkH5B0SOcz4Bcu/D/+4duBvvu1x9tfWQwvQZtl7b3cpI2KLsCyBHG7wvitvnIVPO/1guw6bPnMa0srebBMya40SMFMRz3jNHHfo7vlgVxyb/E7u5bbv8b5fjVBl5eytH/d43/QX/vqPtm82Y4exmgYMt3UhihsJJSj0+i9XzelyU6ZQKeEnPjJkyz3XDmrlJkHX7fKK9WomX1cOIyHz4uE8SUPfiTemNU6zz0GxqyhUzRSA56Ng47rWj/XzaizPHCIloixdDh7N54qLesqUxYkHSZRQp2Ox0Yn/blCmCuw69tJ/vkNNe7NRhOqQRVJW4SXSGFIXNokzyXp9QmsElYcMyR6JhP9t++9xniZ4tJhNYybSj6Xz5OydyLYFNuTHGRmcXk0MTC8p93JRJvOVSgHbAl1BXsh/Xn6pjNXDkGUcuJ18CXdUfYwVPADBKWn6aCUwajeQo76OfAQymDqu9IgQOn00VFiwTsPojgPZFcXw5MQcXhjz8EnQmz5HguY35jQQV17jdcHJX7Sh3IiAIGe6K20/nCIKKeKdczAi2KdDwvBWbxFXhU5ZUFLO6tHWSH13Rfu5oL91mQTDt26c+/DUQ8MSEZNJxobXrBFRp17H6NcoYx/V08n6816oRb4y/zqIxKAGWu/BGI5zdJqgbYcaFN+TzOeyOeaO3Mfpt05iO+xg9vuZ9JKz3vJGw3fGGAvLS0X4ar7QYdtXiWS0uS93yhnqKSNhseONN32D/xeh/+7MNDtpCRqG3GN3nmXvX37hozCzowEbcZ20/ZhYY1w1PsLzSgfaljzJ24lixFyfPFTMY68kjHo4m344Lx/tUdw2zLzS6dIA7eP/257vNyEpcl23bTxRV05nmHMf7LzDemKVzU5nR5bTvth1fKYCOwRuvxhsOMj27NXkf8OfRU4winxrhyXmP2gHl+NxdPjFAk/G4xmeTyV8UrlrseZ4bOY6CYhGVanP+kOJ4ljH5UOBu/+6K46cxOD/jjsz8TzFywxQj5/WGPRWODQ4r+nM5tXwmrJqV97fP5+D93ucMrHFTxEi6kFQOrNhAS9OSf2e91W2Xe3wvW8X6b3j7hi+YPkeCJQKc7gRjZcSxCEebNyZOAqet1OYPWNq/qGaxTYD8dnoytjjs7JCfhxPenxS3+wnxFz922M2M/ROBtjZWKrKHVX0lPX/mIyzWp41jlF5mqRCPWgti9ZtwhFMhX85RE34bqw621z5W5up34Pk2grUAej/hqz75tH5MhVOfm1jsalNGn9rWig2Rp8cnNcJqP90BAc5jEEWUDMo5ZLq1UfIogLaG1gX91FjcEoYrrExBxWSWVcYtNn4Nl/HskM8ncD9xPin07JBTxsiXnpBn74pd7+mwRAYxVR92MqJN1p8nIB3AQSV6FRu2aVXg9YR8PsfLRmGr+h3NyP1mz/8K+t1KNmzFMF8RLLAxGUeVnxk5rBSh6s+wqkFn6q+Pm2oozqcx6xlBR04ojrhxkKbxAvNuNwBeUomTbNvbZVufXpCfIanBmWxdXjv6k45R9z5K8SJxsCWw9FTgsARMh0+NxQl0DNYLgCZeITfCtVJJUuUBxZosG4nIa4d8OcdLdFsf71g7zLGsxG1iMxcjUdcfyB89gekTg1QmVW296G/auo6BGtXBVX005mYrtsqiL4cdLyc/NbCRhlEmJRqcFDzg+mQeK9gsSdYuaL+1KYbfRtInQ682MOAP4Y+yqY606FKzpAjIvOH6N3NhbNk3Yjs75PNInu9Piqezj1mD4xi8EbKO87UN3hgv3LXyIC5ZesQbknlji53zxssJfL5DD8UJxfHa7QXhzhteFnhGiW/MBBykPvcNnTzhvnEal03fwGp3/tF19fMdEMV5A27nCDLi+sJh+mpDj60Zt+lMjonbgidOk8MHFuwfl3bBRI/7LlNp8MbLabzRx031YQEljhWor2xpA3VRosW+oVbS3TFKql3vi28g88ZsxhYKGvFo8IY9z3vYaqNWqt9E0K2kXIU4tdp2s5vEyhvqShrn9gveCAzOwfvQjvNJ8dS74SrwEnoA0HMMesfLyc+ZY4msvBFxIDh1HBg2SNiEjJTj4OWEvHT0W4dKR7vLLBkWjJJYBfTsMyYCI/+zQXztErqY+d/EZuEBxqVg5TFy6A+4N8XzXQfv20opgwcw8z9YjOwaN2xh2554Lb6u1jTZ2KMcxyYO5BxxW+35a0GDSocvTqQq49EHmkzwgdIl/2NbBkh/vkO/F1sfMuG73qTK+ze6fZsbs35C//hn4IfnYRQ3u/l4us0kFUakvVmds9XGe3Kt8xkcqwYDkHhiJpQKeibM7K4J9AlQOSF//gz84WfocQCfnoHnp0E0hwC3YybzsOCvQiRPF+86ShEhM3lfRuCkyIg5onEM4utPHfp6R/unfxgN3m7Ap6c5Iq4NImPEcpyv40bJyIqfP+oe+GmYj7FRB4V5JIs7EtBPQNcT7Y8/QX4yfX16jkO6KtrzgW7lET2WK/bgqxBpiFkDBfTwc128B9i0KePYH6Vd/VDgyyvaH38CjgN4vkGebva8SkeTNuJI17jeeE7P+sod7rBlsmma/4YZdAirugkAtecvRincCfnjzyOpuzXop2fgPpLpfjSbJZZ4zmcEQsdm1od3asGxSvpTzKXRnVdJnwKMxOCTjBuNn15GsnUcw86b1c4rILcO1QPS7eWvza5gDjawaZP8b5J1sgPFkzPXpx97iJWUKfTeIT99GTfVtwOCWyydjpvVzfvgDdSea/Ggr4C0aUesT536BDBnv6p9i/82Ekx9Hl+0n18gdzFuOqBHGwlMjJZKJODjhsza6W7bNvejOfbOhk3GVrAhW1cMrPQHQf9plHzKlzvQ2hhs8LtRU9cJexYunmWYdpOCb4dxFeZsBz+7UPVH0NZZl3dv/YT+6c+DN/oT8ATgbJBPN7uptDa6geC8gZZ946A+Ma+Tb8D7dRDaxhv9hvFM1M+vwD/9I/Q2fEGeb1D5NAZRnhoULUrt1BTDM0MIX5i+seUNl/OKN442eP9Z0fuJ9s/+FLyBT89m74p+a2Pm3XGKG//RToPiPApvCPGGZt6orwSIGOnm3QB9FnQYl/3pPnzh2Xl/2HwDxrOOY2wluHzqz5+tXbFx3qg5LIk/c0jTp94wEtXXO+SPP40E+ulmfOZE00b/nLvg+pHkg1vfIN6YvoEcI1nm1qDHOUrYtaP96WfIHcDRoJ+e7BkgoGsDniIxGD5o+QTUYtRNQkbmjRoHlHgjsCk2ps3KKw9F+/wC+fl1yPr8NGKFve6mAThvw646vbw8+u45jgkiN5m5/AUXODYJr+D9Yet6KtqfPo9ZoNsBeb4Nm7/rGGwQGQMN8BxHxuB4w0X+x5wqWU9VRo6RgjFQ9YOg/1FHKfGLRk46nlUcK0mOG2SZWFkpcbwv0+ONx6IFmzXHmfGHbEyn/voTgNcT7fPrsKmnY5j50QAZK1meh+V/3lfTXwzOOFFGjjNF88GjGn8YKsSxq66/q21HIn+DW3v7kLc3EflPi8j/VUT+HRH5r795gmLMmJ3d6mMHA3D9tV035cG5BGgSf2gjKYWcg75f9PZyh/zhZ+D+CpwncN6HHL3bDY6GwULdn+dFQ0aZDewSsBHL5+f4nXaifO0E5J/9BH15hd5P6HlGSaV0l4nK3XQQl0/tx28ViyzSAshDm1YdyfPPL8DrfWBl71nLq3SxTFl/GiU5pSXCLre5fqfI5CD3jvbHL8BpMp3nZDa4XYl/nDZDuhWQzRV4/LfLcq6d6ami/eGL4TRKB8ftukbbXpLHLwQepRzWwQ0W8dUFOVZs6iXk8x3y5dVk6jbdMHUSOCRbZ/8rpVLQjA3ri67DcnAgAgC5K44/vUyZvEykI2xLTCj3+yyDFGzmr0EPRbR57uwvx3VAIT+9jgVvmAcSNpOvVl6YjWpcmHgAWUZsZcgcoRDIax/PvTlOZFPez8RN6vsTmp19B67MvbrB5kLOd2+qtpz45NjpD7PDwRvkk/PnfcYQvS76T59Z5tcT7Q8/Ge/fxz9Flol4Y8hE2KLEpsUuLXncEEfiRP62A+2ffYZ+eYHe79C7lVTRKmzCeiK7m1JtbHCDF5B948ruoAB+fkX7+QW4G8d2n3Gn/u14I/SZfeOKUzeUNz8Lc5uOZz//8GXKdPodNHMssg+W3xIcFRs/Zfd9Ec77I6qQP78AL5ZLxHNS7jgaduGzxr5fjXW1mh0o89hL3hdAXs4xc+arTtszZSAdJG7TwhFWfsqelXIctqMiOJ+XfurA8ecvZkvO/eN75/5pN/Na8zqU3+3k4K91OWS/3xXt59fxrsXuz0sqyOyC9wMrk1EkCzM5VYhTc162xB8+t+Q4x8+ncZPpMClQw78UzPukSC4x43YyVSyblB++9/uyfyjbL74xE5EDwP8AwH8GwL8M4L8gIv/yo3PGyyrv0C+WkJ1zyWz1xF2HDWqMjMxkzevVwxDrjYb4L4ha7WR1gnFT+NML8PMXnDjRX16hr6/Al1e74dB4kDiMXxTkk9EXVX93RmpizSGEAhMTqUeJrqMU7g8/o0uHvppMr6/Q1xeoJQ1jJrGDSyP95kgMFZdRmFVMBh/xvcJm+Xx2tD+OwHw/X6H3V+jrHeo3aB5ouuvEsO8TmyQCXduJJFhiF6zzne64xtmBz3fgpy/ocqK/jhtYfT3HAhK2LPwYTuuolxlm4km90ahjw9GKZb7a/KJdR9ngH7+MshhP+O4n8HIfRO866lrsiNtRkpGwSTJd6K9uZlftp1fIeaKjQ88RpMcCLhr6GzINAf29KKw/98eBFRI2j0TwnCjh1dUShleorYoKX3jh9GfOuvHAxM3Pd3+bSLkgpLOqvwslhj+qDlv/830kgt3tqAP3Hr7u1+WBG9WJDetkVERPTctUaLRbA/EinCra5zvayx39wCjb7bZSamAzo+vERmMwRKAzL+X+uhxkjUvyQBAHVz1U+H4bLzd/hb7cZ+LaB+bB+yBOhd1qEO/HtQpkk1OnwqX4hgLjwfnPr5A/fUbHHf3lBfpCvG83QeK84dhhcv9oxrGdZpecmD9W/UuR2XnjDz9D5Q7cjffvryNGuo4VBSubGY1L6tQ/cyowecNwrTpM6vSds6P9+Qvk5RWnnuivNlAY+vNX3ihicEcctjn8FuX+Dl7ChnRY4uXWN84+eONPX9DbqCzR+wm938dAmN/EWoysp4dNJW6b2CSs/Jwr33ROMhs+/vg6Ot9t0NIW7lJ7VsiPTbxPnMrYMzZLHLAvrlzQuU66Qn4ag3Gn9IHRaQvd+IAhDVKC2mE4GKvK+2uOU/aps2Hrr4rjz69jdtUGU0eu5f5nvH/ywEbJcRibnd04CRYeWGSMHEfRfjqNJ/scKLRnsjU4NFgqyoHDjgo2fLMm4Yu63PhCMq7xdR9lu4eV1ms33receRqRhH8537j+ZLloUncmd8K1wERt4bftr7D9GjNm/zEA/46q/t9U9QXA/xjAv/rwDO0WeJzAzAmCLJBnE3hGxjZ+v8RM/M1pugcmP4DOs30VoN8EvWEkq19egJcXS+7n6JLaCNNIJhE3IFNGpBFMUEDyd7TlvlO8tH9psEWA/qmNSp7X15HI2Gp1471mjpVSEqHRJ5A8UToSTAvwA8ZX2PC1vBvnJ1+a+hyJzOvrvOmg962NFYOy/lxfvCBJzLKxCBtstjLCuOgJ0NuoO4fdwKJbkD6d4NU+E9aOlyemnS7KKqszV45N0Wf8lXHK+UMbS0Tfzzm7aMk0dGIVgYY+J3vQjI3rL++v2KTgoIBC0Z/MpnTcZOBuSUy3YMgzsraCGCihCH+6kC+N/FW96bStSfajNKQ/ySjZcC64d0uQO+LdNjF7hniXUswY8EgJ8UCy9SJjxWrKPJ4F6c8yb8xsZTV0mt2nFcMiArIcPV93j40uvxM0U0bTnz4J+iHo6DGYBU8gol2XbV43bmb69EnWXzRZZajY+DWLjB/aVI33bVCnd0DPuQKiy9iZvxSJx4lTeMAny+n+nZv3hE4PQX8S9KbQlzHDMXh/znSoxyO7bsjGftBn+zxrWeMA65cHrkNmAToU56djLLd+t8E4T+5PipHunx2xGlsaDGedF96fsqH4Ys7PJm8A57MYb5xjJuiFeL9rXsGyk77c/pz3d76BK99YfWfKOuTpT1Y2fvdYZHHbZfGZBeYJ532UmW57FQ1jlQYnLngj9CmDL85PbYwFnufgV78RolnYyf+e17CMBZttjmNf9annnU96OWt/lpHniM58q/cYUI384ZzyBcch233KD7yhnttN2PA+++OhkU/oaTc/p3F/5X3n+zPbR+SECRvNPGY/VB5g7vPjVYD+CVCxYZjTFwEZN9rxnlRuW71iAcm2QycX2GSuKngCOcexlafHQK9hxDeOPOgR2Ng/33fw2ZcSp1LbG2z42l/F+3/FjXPfj/77nrZf48bsXwDw/6D9/6d9lzYR+ddE5J+IyD951S/DGFubzzWojhpioRI9mQ+oApqltaGRPPJA+zKGIQLwOmwGjGdvjjZqivk6BxXZNowaaGo3HpolOaifJMP8TefJebCSuhcPjD4daJ/vUe6A3kftdWCjkINW3/H662hz/uN2oy3H7gobyYbaRAKD9tKpfw3S2kzcub9+nZARWxmv9Vd+Z5zMNiAy6q1/4of2x0O7wv1rLZfTXOgIfll+l1r1kEXmvCOGVXvtY2l1l7lJbrdJwiaWyXWsat83MkegXLCpUA2ZVGS8Vy2J3KLdRcZi68L+aNhULK6xKTJaW3pro3yEDzjGogLwZy2oJHbYOmNTZZYVGyZewoZljp9FxvMOXcfy0QLjJvM/cyqV7FNCtr7Hhv1eCi/YIUV/81Q7/hAcnzvS7FajkjrzsUDyApuQ2Z/HUfq9YqN5f+oP79oW3gfsvYbzmddkd4VHwL5B/LWzO+U+8rX8D3GsPh1j5VQA6onL4Q+R2BnB+x69CR9ezAKm+8Qba2zKwEwRB28AcmtjZca44TOucmy6Lryx8kS+7pu84b5xyRsH9BC0L3fqjxjvS7putOu8IdTmO3ijxsSUKzFvNIE+H2M2iH6X223ylbqMs8SfsdCWuS364Ac0wmYn085Hb2NhlHYy77eMeWuBzQxjHCNXfe54JMmw4Y3Qn1iO8/k+OSL0B4zFpiTs1eXI2JBPYfojy5jBKPv8zNJhMt3aeF7WZ7a62nu1xgVVATkYG00yejtskyi4xs5OJsmfRcTyPluSPn4bPDA5tnAVpowkAmHDnDrPnTZnx27j+NBLvzW0nyluqw79WezO5FiwUUCrYO6ThfeT3Jqv9Tezec3z1/z7jrZf5Rmz92yq+o9V9V9R1X/lST7ZA7GkfXKqMFoj1IHbBG5+R/ZT73h9tKT8FIFDMcpHPt/jpcZqwVVcT4WQYh2LaDeeHBqyS67wV2rT3fMi9zJnGFlQ++l1PsQMQG7jrakKjWQrtWHJhFoLaSWpGlBo5wqbSloqgLyc9pJpO8Nudny0cDyrLxMbQRrIqTJrIixGaiOjlJ8Fg9BPtVI4mTjQdbVJaid0GpeauEWziowtS7ULQvyblTe1z3fqvMSNPtv2bENBT6ClxWICG3W9zv1H2KybjlXDXnlIr2WfEz4ayW4Yh2z/bHNvYLNgBaArjp/u82ZCYL6Y/Z7bTdiEjEo4TG3WPlWK4O/Fz1WFfD7naDZg+pttMTe54FN/ww/i2sz9WfoFm60eMGxd7h3yuU/G3vBAsmPGxtrh6w95lqc9EzclbAonvHdbeL95MmFGYKvKZt4nP5GCbU2mNcvJJXQ7bH12oP30MmxNEb4Q+Ui56arxZ8sb5V+y4UeYMe//fJ92CECOI8dEW/xpXG/0eMYkf0q04L/hDe9TxWbdRrmxfOnzqzZvsirHZryzZe19I2O0jYl1vytwAu3PLxBfkdAS2NlfWXljy/sTy+obSe4dNLV3qpCfX8cqjH7C0RZ7dv1RQRztEzamt8m1Gyn4q02cd95oP5/TnkuedWUHKY7Tdalq7l3YLMfYjO/xk73Y3ft8NPhA3BIji/58P187W1zKPUiWCU79caykOR9dwRwo9+s57wc2Kzft+Jg1m7mKZNrYuuc4x+dz8CRgEwXZthNvits/Znll7bvOPwuH1Tj+lbz/2/bLtl/jxuz/BeBfpP1/v313vUmz0chRIz/Ifa7CpTaC6vtxI2WGFoNxnSwMdi4blgc4skBPMsYoqUBuB/Tvf4B+eoI8PQHSxpKoljRAAV/1TFwOe/hSzHm8RM/j35jipn3/o4hZME4sYlOMskVp0E839N89A8+3GLkVxsZLFAMbtV2Jaff4DbPd2VbBRuex6NNB/bmGMcp14Py757GK2XGY/myxDU+0AisfVZoPpCZsEitM9mCSCZ1tooCavHI06O+eoM834HaDNFo3XgQNilhUovQ9wrSWNIJl7MhbRzmW5IXaMsxDf+ePtsqUJVRjZUgD1staZKyKNesGKNukjHjiRZHiApsakeIZj6Ph/vtnW/2z2W89sPL+zQ6ZLJL1Ge36qfAR/X0ACL0yVlbOo0dD//GG/txidDnUU7Fhu6AgIbVkxHkgxGXd579u8w6tL1HdnxrOH9t8h5UD6Tf/6nbDkXtcrDE2mrkqJKHZVC4b3vmjV+TiJjh/9wRtbfyLdjt8qf7gSwCxOIv7p2KuThoyuoBTpoDfcF5u/qu9vXcTAW5jVkq78ZzxhgR3u70zb8wGmVO3OgRxXfENESCeCztu6L9/Rv/0DHm6jeXyfVGExGW80BLJgIEvY5t5Y/rt8I3qlPx38Ia2Bv10oP/+E/A0VkyNGOgzzHZSLLdu5w8fnLwReXj4xrRTFVK3Y8MyIQ4d398a+j/6Afp0y/qDRkPp2VO7VqDl2HieG75hqfmsGF2wYd+Iv70Dx4H+4xP6823MsLc2fSp4X8vF5ufor3ObTh8VJc6s2NS/DuuptuLhgfP3tiqw688Xa/C+2NK6o90ZByJuY3JqlMsW/Tmsi09Sl7tn/reG8/dPY1VPW8kv7gp8NqvyfuQ4ExvlPKzkOIkSih0Jx1AF9ARUBP2HA/15xKLxugC7is8K93mx8CHm/dL3muMsPMBQlriu1j89nPfdiSRe25Q4lGM+8z7xxPi5cqrtu39W/XU+ddiwSkP/YawKPHjf9TfqFRth4zzgL7VfsGC53B+5zNFlSHk0kml8t1v1gY/++462X+PG7H8H4F8Skf+giDwD+M8D+J8/OkFEID98An54hvzwDLkdY8nbY/wNLj4kSnW0PjGpgI9yuv/kaX7J+yjnHgfkxyf0f/QjbnrD8cOPEFsqX354HkvUi8xSRp9Ga1OmaMdlhEZpwpSRbJxkmueTXE0gPzxB/9EPkOMJx9MnyA8/DJk+jZs0aeOZHLlZOYKNjsBm+rjdAvqyn77hwGEE7Emd3A7gd8/Q333CTZ7RfvwB8vw8lyg+7ObjGMQfJT2OlQz9ZWy0YIOMjUzsQj6qLBrLNt/Q/+4HtH7geBoJ1pDJbohkBACXLxJXk6najcYuMxrJUPVZ9ScN8nxA/+4ZuB042vNYWvpmMvny5oKBS9i27Sf7paSuYrPTH2MjcYlxnaNBf3yC/njD7TwgT5/GayBux5DNR3YFo9TEZwys3MdtO+S2ZlK5FmMTuCYYM9scI4npf/cE6YJ2PAFPT2OW4PmI0l0VGWW70Zam67AcEsDNhiUALNhQoEmY3hr0x5HsNb1Bbk9h18EJgsEJNLue9AnN1+1Vf0XGRY6C32EDNT/e0O4Ydm58Of75Oue6ljI6bp5Ds60LlZgxn5IMC0f8gk2kQZ4/Ac/Pg89ullDfjkjOAES5WvAG2eGeNxiyjK3LLcDQw9GAH57Q/7kfcegNtx9/gHz6ZLz/w+APa3/4RZvdbtyQEJaF27hNwjYgLL6BZq8M+PtPwNMzjtunKdOn57GM+DGeqZLDy8cFUQLN7dZy/6X8a/qsEHZXvNF/NN7vN7QfjPefn8Yy/k/H9AdP+N3mSH/+vs24k2gVm2tOlbKPQ4BPT+h//wmix4iRn4xjP92sHBUjRh5e7mVtE+97uV4q46y8wTe/G97gg+XpgP7uGfp8w4Hnob/bMTB6OmIgGofxGYi7KA4kbHxwlXS10x+Dxd/J0YBPN/TfP+G4N7SnZ+Cwm8abxUhv4KCG2uT5uDtvj3jjDf2xTTaBPDf0v3sGVNCa5RGOld/4Q4Ab2REytyUeYJ+MdgsPLP5I8gkG7/9wQ/904OjO+8d8jZPZuT9+M3WQed95YNoNc+rkjCv9pTjeGvB8oP/+BrkD7bCB52Nyph+asQGVj1bDJT1Eu4IEl6Q/v5j3/6rbP5Abs1/8HjNVvYvIvw7gf4nxRqX/kar+nx6eJDII/naYobfxrid7EaMasXpVrY+ZKBuOPyvgo4j1xk02//hnG6k6XoF2e4I8YSbQh42YNBmjYGbk8WodjISxu6wuo1ApH2BOxiUmgxHm8flfzFLdFQcOyNPzSFyengKrcaMh6Fbo3R0D83LHjssul3foVEeLKIFJDFLu707FcZdBWApL7D0Qmu7aIHUF0FvBxjCL0WgfaXXdEbvvsCH4xqE2Gtq+6CCrp6f53hGvY28yyhy9rYZZ4876ozanjq0koCY6LkoiP/99CCivHa03iCfyT+MmKEpsjhYlQBqyuFyYQUAyNpdlURExy/dMNqeivcISYR16ux12I2ZYtRblRrUEz/GaOrOkyxunpHWrvzIE5KvctRdFQ4sgqE/DnjyIaRN0G63sbtsgX0HVoduW+dqVDGq6TjZmM6d3HTdAzV60dxtYha4cr+Ae0x9s1NcHdMDtesnqhf52tm6/ic22the1gRjjzGOO7M7yLf/sl+FSm2rrxE0FC8Y4+vCAT9+1iUCen+agQGvxXJfLtuONFAcSb8xLR3zdYUufxWZC2ouiHU+Qp26DPE/AQRx1GNcKpr4x/q28IRe8MbENOXWXB1hUeVUcvaE9PY3E8vkJuN2C9ydvePsCRZulS6R/Xhki8UaNA1f6dP/Swfs4bsBTH/J4Uiht8OvtiHaq/sIeIanMKvodJYgPuG2ByvTXDruRbvFOxngGrY2FvYJHk58MbNgnmAOCWHwrvFExG/0CxchjXNRiZHBF5X3iNuZ9OO/vsHlLf4k3BlbHi6K1NrIzuwFKMZLsZ/bJ4rhkfWbeUMrDsN3cL6oO2+uJQ83/aXAmYt8xY+LMcajf1O4Omyt5FlFqjHwB0I6Blc16Bkacc7rPy7Dxbn6fYmSzGOl9gq4Y7/TnvmeT0u2LmhwanJl4P8qJTY/H5Cq2/Yld0Ui1KcImcl//7teYyvkLbt/bIh5fu/0qL5hW1X8LwL/17hOaAD98GkZwNOhTs5flWWrkzy/5aI0nOh1j2dDK1iVAQxClFRrZG5KBQTFeHvv0hPs/9zvcvnwZhOrk6aMSbcjRQcTlCXhcj240dOxH0qZjVC4M2ssWZJJCyHQqcFcIDvR/9AP6HzqO3iwpHEkp7CWjTkrijtfHKndB7hxAFPMLyTImbIgc/MZDbaUtOQX44Rn3f/Qj2p/OuOkIIrCRyg6UGxYKdIqZuIZcmPrUIhNjw/1xyF8B3A70f/QJ+pNC2g168yRGbKaz2XW5PMHMhrCo+gsZO4BD4+YOSoGAScDsVe7jpkx/fEL//Yl2h820IG6qZ3I5bWGWqJT+y8Qm/6bTtjtGIGGs/MZDh/7aCejTDfe/f8bRz7gx89p59Vlh74sZd5bxAhuvf8cFNo4rB9ETY9UrNJy/f4Z+stK22wF4wnIgyonHyDsPJ1NQY2zIWETMfo+pX8Ymsg0/r9uzXKdAf7zh/N0d8gWWeAogOgdsoBtbtkSFuaqMVApxk8tYK7KrP6qOpB3twP33T7h9PmMWLxLxKLWxk2MEtfSdeWCx7WEMk6smNvy8Qhb2A1vwviUVN4Faqa/f4IwXrZPczhtSsV7xCj8ibNV8I1StQLvLKGX8539E/0nQjiNe1jpegOszHM771JA85v2dbyRhd7zRdQzGaYP+3Secv7/jOGWUZlvy5UmiJ18+m929v8n+B28MOFbf0KT/ic3kHOcNoJ0C/fSE+z//A27/vxNys8QQGC97Po7oHr+Y1ov7w75lj02CgmKi73fm/eANoMmB/vefoP+0Q1qDHsfgu2Yc29rwwZv7hiuJYsDyEM4j38DkDdsPuzhtNeIO6O+fcf+7O54+AxIzijJnYRdOpRzHsEkDJmw2hfdrddoaIxXyCuhxw+vff8Lt8+scZPK+eLVLiTfO0xKDTxtsXH9W4b3DRjk2iWF1V7Ru5ZU/dDTMm/suiMHChFXz6+abm7guAZA4tuZDdfP+2MAlPt1w//0T2p+7zXQa1zfk/M/16hphrvI4YNggYTPlv9If52HyOto6f3eD/kntptF4HzKrWyJ/8OoJ+ldtm/x8xk/MnNUPd8xBx38N7/81t+9dvnduv8qN2Ye3ZjMbImOE/GhjtLJJOIOX6yknY37jgRJwNk4qOyPz3AUYo1e/u6HbKLT84CNuGEnr0xFJ2JBxOEGdGRr9mQ4rMXph7R6gETfx/+/t5ybADzecv1f0P90ht6c0gpvKbG42y+gjSTbtH227TAxMYEOB2zHj2NUmThAMIv890H8GDjmATzRi83TEc1QjqWnz5sNJ1j6LkUiMci0zTnKNTdHz1B8g//QOPD/PGy8PPj4b5DNDGKSZ9Cckq9sHY9dILscGRGoE7XhG5Ib73wG3n88xykwjuGCsrFTKR8AlZvKI2OP6suqEE8TdjKjEYeMZg9/dcHxWNLFSQcfGZbLgoVHK6H2cMi22HQlPbrrqT+w/yR8PGc/h/R7QP57A8TRlMjtyPeEm+aaMyjRG/x/YuicPWs9l4Uh/zwf674D+c4fIDXgiv3c7Epnc0KZtpyTcccS0s5nQZ94SKZixPwoAfw7vBRA04BmI8uqnFjM9Kp6IGscJomRljsxOucRtD27bpE+Wr+gvrvfRTYj3n49ICtUqJnCb3MrltWK8rzDer/pOvpGxrfrWQybv/9NXtE9P8GdadMcbxqudfCN0RYmaiGx5I9mdg3fBG+fvgduf76OC4xi49CZW6mVY3WTyfgPEbjwiqeKbI9N/5k72jY3dje4M3jga+u9u0M8dBw7gE83QhkygAcPJpV5y7+WWaYCiYSaudK+0lUWmrYnr74cb7r8Hbn88gaenOVhyDH+I1Z6fDDO7hlq53vANofI9a4jbbRQjOX8A3bT4Z5vp778D+p8VrT0BvvR65A8UI5n3mVOD96eczhs+E5P0t/NJsi01/fUXRdMGfKJZxSfLH5rx/k0sv2KumDdGC2/wzEn1R6YRup5gtKM/HEN/fzohhz8yYrYdeRcG78eAPaZPwQZv+AaNlQIgHvGo2CRfmF3D7UD/O0A/Kw404HlWTSX9CXGUN+s2Zthsc0OSN2Gz0Z//roeg/3jgfAE+/bNzDPA2sfyZ+NJtO+UMuZ98YfapCQLyVveB+bzyb9tffPs2N2YgYnRDFkSyESMKQqTq30PCgONOHlhW4Ot+THFGvhFRQYxUomkkWjF6al47/8JGBUlGmzYOwgdC5imjbL/X0of4q8BxNzysb6lsqSElzwkbTNwcqyjZ8m2DBe8nWYig5dVWBZGiP+8XlQmqBQZeqbHjoh3ZYNPyPusskUbX8R6a5kke5iigYJRDtNlOJa/azizboBt/lnkj09Sbxl/xskGdicssP0BKCqbOZG3HZaQuX5FoDT58DWDYuqgMW3ds3Gd8VFeqjLLBBhZMdR7L7QIzQWTdV/0JIKfb+iwP4aTcXzHkGGvxxzHbItP3Gi38gWseqFvo0/TXXmbf3NYnL2FihRWb6n8rV+X9rYykN9+XV0XrUyc9RnG9HT/QTmyS+pVW0EOxD76h2emzYvU1m4BKxF3u8lmMN2Ri2k2QLW+Y/gPbinXpa2xeBcC84UmrjDIqjc+g2XYh3tjpXx9i6Tgk3oBGv9rrkENVVt7gG5pob9q/37wmDmXZKA68aXcs7+tYXMQT47jxcd9okmwplfl6+wLUUsZdvKky1ljk/ZFzlBt7+Zv6gKr7BvVja98PsGF72eYPLC/4Cx2vk7H2UoVE4g06P+IllcCSzLxaY7rp3shY+d6PlVegqftd5Q2XT6b9VH+sOhHqe9UnpgyJUwtW0oHjVaYduf/Z8Z3PMztL8TPsy7j/2PA+pgw7GZfcQm314uiXRFyaPiXW5lUcd5+c132TB6oc/B0wqqjuUy/db1A5PtX8j7E7iv6aJBmvsInPG/19t9vfhJBvb9/mxkwAPB/hbGMUycv1ECP3YTApuTaiSgQG+B1NKl3k9ojfVIDWFfIy3gdx/+HA7WcdZTUuk8tlQTvKJIw8ncztitYu1V7bfjTOCZHJtCQNVtIid8H54w16zNUQASSZujlfjN7IDHwJmypjm7KGTAUbxk2BWXv93HB+amiqtuoUY0XYOWEBA5OiPyVslOUg/fmKYVm/JFof5V0NgvPHA/qnnkYig8gPurknYo+bbJdxi40JQEtTJ5uqm1pJy+sYFey3jtYV/bBZ4KONctNjznR2ESoncqwKNlyWGzN9hKuu8iQb6wp56ZBDcH4SHK9AvzUb+bSEgG1dnLxJXxWbeMHVSNqY3IX1B7ZB2kx/6Bj6u9nKV84D4uWMdKPPI5Umh85WBzbqvyN8apTSSE6uOPj4vr3AV15txbCn8c4wpRnh+dyiYdNIf1FmQ/pzbISxIH1ubLtu0hXtVSFHw/1Tw+0Lxuiyc5Fz04EpF/sfZJZuothNtphItuir6Y/Mt1+zCewZQoGXFmdsEbMagPH+4Z+vfMP6xL6Bt3ij49AxC6l/0swbzPuRLPs+8YbxQ+L9yhvIvFETVcfEeb+9YsyMPnW0U0eZoGNzQ+YNGtBcsAFhwyVorH/BWgLNeoLJ9UUhx4HzueF44RhpWNkiVJHAxgydmj+TZZFvJGyEsKlx2//657MP3tAxm6CHLSVuvBE3jv6cDfFG9lHCpmFyrMvYJ56LvugrEdjLyIeP6o8H+tN4r6avzKj2nLpShYs/75x4f+EN3eY4QH4UYrsJ84bg/kPD7TNxGfH84I25KiHfWO14Q7n8khXmuNpX0mgwlvn4rpATY/XDmw2s3Cbvj3zQchz77jL/AxKXTTtiGQO2qUPCaeQ4He1FoU8N96eGm6LERJnVCIFdjdvOk/t8r/J+zXHqoy2e4xwQnD806J+nTH3hfc0xkn2qY8bvplDPaR5gE7PESx++380XrPuHsH2TG7PhfAcZu1Bg9BFCDEPnQO0jhmR0EZsBcLnQpP6SiPm1jjaS588WmJ9v1K7E82X+0G4aGWkenGEByEd66HwmFC4nIZkFwynd3rUJ9FOD/qjQn4dM3q8gdne8hihBc5lcRi7XQ/RdosHRvpguEFjH5nI6XLeG/iOgX/pYfaq7TKY/f2g3bqob4UQdbBOrQRLyWH+MjUzRnID6D2Oa/3Y7R2lNkJKMqX6Zcs7ZPCKv6CRh0xgbiX4l+8nxJ8mvT0N//fMBfeqz5MKw8tLcgU0jHWVsZvLn+plgjLYLqbpdpWPslGOsNNg/A/p0g37SiUUsoYy4yc72OrESt2khu5EpF+uP7SjJ4+ceAn1u0E+A3nTqDwhbB/FA2LbburUrouByZ7cPUgmU5aqcQWag0oAb0H8H6GcdC7YAxAMyZ3vcr30Gg2TyBD5jo7OsEvm3BRvk7/vR0H8Azp8VT08N+iTTrw6UUlS3FfIFtjF/BkERM54geXf6i/hNsn3NpiJzERXXb4yYk29I5v3KG4tvUB+r/qtdaBurr51f7rg9yYY3jimTv1bCEzEvSxcsvJ85tfAKJo5bu2sySuF+UOhPbcgQzwsPrNTlcH51OZqmcq+pfywyiMlW7W1ndw0YyfHvRowM3ghsZkzszvNUPaGe0AKQNp7xTZ1mGXFhd243YT8YM4ifAP0E9FtPvOFlZxF3D2Te5xVnQTJEu6Ss4s/MZSzj+NyAJ4wbxZ+ZNyRynBjUaZ7j2Lls2yIb3ih2s+GNkJEOGbYweGPkOAf0WQgbId6QGGhNca7mD64MepZdZeo05KF46X4XumwyXinwA9B/atDbLTg65TjC+iuc2hCDD6kcl3QS/lj0V+3Mf9JbQ/9R0H/WgYs5RuQ4HBcpHtXYvNqNlTlf6a/aFH2vbQzwnp+B262RHI4NcYLnOJFHs/6M9+3CnuNE+xfYsFx1rO673X5pkPpOtm9WypinsMkQzZjzFDsZEG1sJIs+mGC0GBSPUgjGQ7s8Td4kJX/ebpQiYCy9zisWcXKTXmNBfx8ZdRCa/W0+dc3ttllvPrEiwmLPJlwm4U95QxYl7Hb4MkmrXTBhU2S0wN9Zpnfor/7G+ktykMz+r3FJhJMp240nqkkGmlmj32xJhxWbIrBjyCO+PuqpIminPRAc3xs2Qtiw/mpQ9KRMAH8Ra7TL+gTyTbVilsOEDjWwkj6Df3qmDLl9xiawBtINYcUmy5ixSTr20Tjrm7wOe/YEcdVfy/pzbDDlCjFEZoK8w6aqUmg/7EPGbIGfzzc50W6R0aOX95Fv5gM32WNTbDs9v8DyNucq0pGtpLnHxmSkNitnKCnxiqsqzguuH9k8sSLeB/N+ZAEXvLHY6LTDd2Er87iFNw5J2C4+6Tokf5i8QcnXG74R/QiZBSpjxrjFoNeGN+JYklHavBi1GddN2BddFN/gkXZ/ldHAAaOE1nxgx6lXsWjqSBL2qd3qg9wHxowGobTpjJGuP7ejsKvCGwbCxGbyROXYR3F8+cu+1wEu+4xn8FwXC2Y73pCMCVZ9Jlv3L0h/jr2343YVvrZwKkg/zhuy6s+Pq3fyLFPRH2M47Fojx/Eb1C3vL9g4N2RsENiQPv13P6jgWWX2WAQFBG3mf5X3W+VUWW4As90YjhfYbO3IvxCMbCTyQSDnxgQAY0PYVd5P8ZjaYWy0YlVl/J637/7O8X3bNyplFPT0zEYuF4nyjXAGlGQEKfn0aVkfRWHO8PN5Hw2jZPDESFSPFoExHhB2mfyBb5crbtqsXRoljDIldwiKmaPfxW7Kb/ClnF9ho1k95J0zipjlXd43Hmm2UfMpo8kZibeGA8f1CjaL8/mqcJjOHou1eAIRo4Gz3ZjyF0Sds5Kc0U5Z4nzZ/KYQ83zpo2ywvSLNIITdyBU2UrAZPef6/ozNkGmLzfJZTX++YpVhTkvSg+07RuJlErUFqNCHYAMJ4dTmbrX1kEsV7d7Hoaav+bCwZP/zkbYIRnbx9sBudrZeZUhBBKOkpY/kSp+sLcbDE/dSQpaxcRw25bnujztsku7tKw+Cqmj3UTaI1iMYh/4aaPR02g2XN6dnyN6DjR+LfK7/Lmpcdbp977EBlSHNJM0wKX4f2LQLGa+4is/9iq1bCeZqd/adzyzseKNNHWr89/28gcQbOnnDsWxZpjRgmHhjYjp5w3jiPb6x5Q1AXsfsaDwHGPFmcm56noufxTPez/onXK7073q+4o1XtRhpPO+8LxUb+y7iOFdtlHYdG2vX47UPzET7lTcEgzd8BT0v561y7HiDZl6Sb0RcJDtpo+9p9uFKJu+JYRWLRMDbnDkFApvJZTXHueQNt7sib2wb/Ylq5DnMqbksVwo2E9NdvsC8EVzA+qlySe4TbJXn9opZjp3sBqQ/xka22HD+B+e6ilvBJt3QxpcjxxHn884xEtn/OH9IAzkTm73+Vmx2n/1azvnyqlZtQ9i4Dg+kwbk1x5nYDK7yXHkeX7HZyrW1+9+2v9T27Rb/OIamu99opClYH2HwkX4jBo8zTqIAQL8D83c1P+UA5D+PV5hpONv5qeH4GWm1ISaKzjceLsdhDqKD4HkUhW/Y/Dstxr6MdNmOQnA2QX8SnE9iZe6cqNCNhiCcrPsNoZO7IhLduDbNgASJZbHSub71SD4HVlCNFd2ittrJCIaNjThGgA590c1s3MROOfhmDmqfN/nXuJER6E3Qnw/0AxDGyYKMyorNtJu5v4wSVXIqxBnHlZxQAfQb0J8azueO43RbcnJv+YaVkxxP9IqMe2zW5aa3mwJdx/Na3fTX7nOFxe7BmPUXWE3c4Den6b0sFZv8cP+SL1c9eiL+3HDeFC38nvUn4Pp5FcaG5PABAm/I/fFChywTJ0QDK0U/gPuz4PaC6ftCn9PNPPOVXLaZeICSG2VMlM71Q90PDsH5LOP+qz47afKlRVb8Oi4j+f20+cwDO9tek5gLLN/aRABLIrrzKyeF3ifQ8xLAgu3C+5XrKu9bF9nX9dbQnxX9mL6w8gZW3veBDboWQqbpG4E9Y9byfkrEAfRj3Liezy0WxJnYGG4sIwirDW/47+FH3hIfW7b4Xo33j/Hv/NTGe/RawYl9spH+4PZG/svcwL7hN0E7OUDHx3lDJ/2p4Tz64A2+fuKNKd92ASJO8DE/X8XIVZbxsUPQb8NH78/tgjfyTRmkYIP1umscII6tvFHsTbtd9xDcPzUcP/fIcYJPNzlOxoZ90vzxLd7w/eqPsTNuEJRyHCUfXHi/2Paj/C/JkWxsxQeUK3UMnPrRhv505oPBVRWbyCfekf+9BxvrpAApRx05jowch2+qyeYDi5r/tYJdJMKkP4pFAOazp1/D8d94++0Zs1+yCSxAa4wwiQdiD9Q+Ms03Ilw/D4RzxEhby5a0HenyQ44Gferoz6N8RNLzWmvCsNYX132XIScynjwK/e773fdDXhk3NZ8a9I/j/Swu/1xgg/p6k9knrxH34w2r0c68OfID0kgJY6N2rl8H4zr61NCfANFuS7vb7+lZIJn1583/Mo6ZRH30zrHQ2d1BJkQWqWYahvkT0J8FcmokLhFwbtwuyUj6FG+T9ecj5qG/iQ0nYp7o5dE5s9/nBpEzklAPHvyMyqLPYtt+7MBmypSwCbvJ+mMbUwHaYfq7jVX9WH/+qoq4OK2UurXtxf9IZpnthm37bwUrbSPQ9GeB/mHqby4aMPUJep5l2ra1QzIm3yAb290MVZsb8gvkpuNZjAYI2lh0ATCuIns+6khzkcMxfIQNbWtChOl/tvhDfwLaOV4jEvojzkz6MxnzkuC5v1WfD2277vP3793c7gWxvLqYb0Qi4DbVim+UwZvAsknwlYB0Ab4e6NzBDeezQE5MO/MkJvlk22O79Q3NWDLfYMogYoURiX+dN8T61UZk3vAG6Lk3j6Mrb6zc5lyw6N/tQjOuKhg3PE8N/cl4g+xOH/KGFGwky+ixodhZ8kk/FvMzgPAF/dSAP5xjZjv5whz4WvRnz+jseIMHCdxu0oAEy0j6BIw3DkV/aujHOXnDMWef3MXx8vx68rOLGBnYbDgmrn0T9CdAn6xE9lZi5CVv0HX595AZ2R+l6I9xK1iNvAXonxr0jxo5zsz/SH+U/8F5gG8YiGN5VnTGcsKK+4P5121dDgGeBHrrELS0kBJj02PmUTJfkT5z/lewqbgWf+Q47ov+jBxH8kJmR7VXKfnftPXBA6XdDZ8mmUjmJY5/z9t3L+D7tvb2IX+ZjUtvssNP4t4myMqJqc5RweoMu57RaPRYwcVK9GhkmEsVa9IepTQN00Fquz4uWUjU202ikLGzPclrny9nZwLfySiIm7/Rrq7k/QgbIiu+8VjO9RUjfaWohggwYGxkXqeWBk4Z3pCx7MdnH/Uy/UWJJdlQxYbr1IO8va8P7CawEBeIcKvEH6Nx40C5d8SlhbGw2U2y7WRHssNG34eNy1xx9cN6H0vu2vUcK9YPl0L5imC7/voo/eKPTN7+WSmBYBldbXeNaqeQiZNaCnSBDWG1+NCVLVdf3RK46c9KSOJb4qqdXbOvT7tRw0avsUHGZhnVtWPH5caSydmmCg8kjthgQcOJWZ9kN7V9lO/1jePe2Ha87zcTMQJc7TL59xRiYKkhz5KM0Qe/jthwcnvVmUjRv8S3jC37xo43dna3wWrxXzpwvHi36Jiw6eQbPFo+ZLjmDcWcLUoy83YVq3z1VJbJsQFxauGxRX8g3jChEi/s9CdIvOF8I2pYlbi98oYsvL/DZtsu43DBqTNuO2/YsuaM1TEvnvqz8Ebl1MkblduiRT9X53VYwMhxqkwPeYPiA3aDV/nzEm8qr+54QjFynD6PqTpAkmvl0JT/vWE3i60Xf522Dshdpv9d8P6CDdm689FbOc4lNtS/lOMQTlv9sV3t8mbGosbiEHCV4yqOf5ebc8NX/vuetm9Uyigz2Fji7KOevjBCTMEu08JcnuCOO8s0fAW2CETstLyvCj0F2hruP3S0F8SoTRhzYzkQIzlMBp4czHYltwnF8txbCVxTJoylZHVMXZ83Qes6boAcGy6PwByljSSFZws2hDVk1OhftMsY0bkK2PNAgN4EL58anjvLYWUHRhQ+wuIzY72UvtXykiBlxqaO4FTZgLFk7zls5XwSnIf9zCNWVB4RhEZBYE7zV7vROdq0wTFtSvICQyYdI5X3J8FxUimnk+YxQI+b6kYBnkgW5gveUKyoFfa56stFivYE0K5DMQdw/7GhnVNHcRN2UPmWyyWkP7e5VIpq+6WkjMk8klvNMkIBPRWQhvunjuMAGsYKi5GkkK0vPIBVfzORrjLusYmNfz9NtqeG+1PHzZabHoHYuIpkSvpb7OYBNtRuYFNu0GYSq1Ze0vD6g0IKV42ASZ8xz+dnfdjfRIZb+/sbtzcaVWeM1dcGMl863HmDed9vjqDz3WHVN8SEYLwwbTQwDa5D0b8C9v6y/txxHv6OLuJ9foZXdL4ewa91yRtDpqF/zf5b9J+wVQxlqKA/NdyfFMdd8yCS8QaXLu58EiCu8/5WbNoeG2BiN3JCs7ub4P6jxGIbHnt94NKT1EhmZcSY9/gG22yKA7iQsSv0PrA6P41n1cXxkWxHC+97/ypvBIde5A9VX+6zNkgLwUjqFcCzjBLoV6XBBkwuc5t6gI1yzLR2aowM/01+MPXnOQ46RinjD5JzHOtSsnVM3o8bkUj4NzGSq18Im4e80QGcgEDQP+nMcUJ/Zheso1hteiiC9Zlvyvb+yPpLgyauSwA4LZ94Erx+Ejx9xli9MPI/yrsImyX/c06t2FwMhj/EjXOcT4Lzsx12TK5K2FD+x1zvpcWpv25z5dgaJ6FIcfyref+37UPbN1ouf5JlTBPb93NaX2OaPwh2V8oYhp1rgKN0g49t0670JsAz0F/GjZCkBTNymdJcZpfa8X0avYCYMzMh8SieOSg7g28juAB4FpwncPwsEJEoV1TBLF20/kwZNZVLePDhJCVjU5I4xpGc0CebcJNRXvly4lABbig6cb1KntpvBR8aheZ2XVczqdlgU4n+EOgz0O8K/Enm4mTyNjZJDskyRUkFybS9AeK2oj8CPGE8I/L5HPoj4mQ72pWS5NLNajf7G8UtNm6Lvn8zrL7YC4oPZGIvCUT4issVfc+2XksZQ38b/aagCIzSimdBv3fgJ/9dFr8PffEiEMUfs91Iwibph/Bkm5s4Dv31T2OJ6Wb+FwkAl6IucmS7qaWMs2yPsNthQzYn1I4+C87XjuduXMW2UUpcdjK5PnjgQ1i3RV9K+wDZC+9/cIuVD8nu4lqBl99Izn54glTlHHjJVs7EMTzQcQjwDJx3xdOfBcL4lPKgBcukf4lZtMoDfqMclRVA9hvGGta3W0P/pFDnDeL9tRTOZbTkv5bQJluS2Q63D9JzxdXt0jn2i6CdErw/sWDfIBlj3/UnBZspF+so+Yf7cJXxJsAn4DwVt5+9jYnN5NHJI+wnW94In5gyLXG8YJf0JwIcGM+qfz7RkNvlZfpDn2w3D3lj6qMOWiauJRnFcFbn/RcrRW05x7niDY/jgcGCzZ43trbNuoTZzZNh9WcNOwu7ubXsK+mRhIoNc2r+LWHjfdjYWIj3JOOVJC86Bp7rOyEv878SqxdOJTt3bGxLnEoyxu/MVX/E5Cpv9zJHpYEaPj7w2Pgj7wv2sQrF3r7H7R/IjeO3W/xDEAlh7NuzW3Okyw4uD1XnO3zJxiWIYMEjcWlUzphLAYiNdLGh1jLBaEeQanUzUdJMkMvK7YL26ft0LT/ORpWS4zI2IaPESFaWSQKzSBLSrFW+dpURdV/Gnpxjh8/3zJKxSUm+jRw5yUGmbKzPKscyisN2InTMifke0LAbCWxmKaOEvthu0igYy0FtYiNP1WOM7rlkd7FvKFFjOwqdaLxIk20/Vnm7kDHJEoRbsML8TRWjPE/54fFC3jFayj4ldC2TqYyW7rC4tKMiIzpG0kcj6IxNLCKw2I1sdbLDZknWCzbTnmxM1lZBjGPDbsiO6LmneGao+uOFjFs5WE7GDW6ToyQp2TqmrSdsyNYTD7n83OcH2Gy5C6ucH9mS3fl+JBhFbjCnItsIx4lHclaZnfdPtruV9x9iGfof/3wZ+ylb4fOKbSv7/j9V4D7lZWwyt1fewBYjzlG2MbH6Sjk25L9j8EbyRTtpi43/PnlDyUYf2btu5NnFSDkxVnS19zPleOOyZt/QN3hjxxnv0ScwbMhfTu/7UyYQb7hMlTd2Nv5Af4TLjvfjHMPqKsdh3q+2nmaNvxKblN8R1mN1TWRduK2HjG5jV/qbOc6b2CR9ze8jvlpsnOXik8tX3q9Y8bH0m6yYb/NAyfInXQqM9yXhnxePudLfxJEXynrk98vfwlVfy/t/tU3fPuRvYftmi390D8ZuYIcrnkpvjKi68IsEzRl9lkYxRjdABrVxAG7bmhm11zJK4Y4XzBFOJ06epQCVtLRptD1a5WBIU8elXd7Xsg/FuFHsgD47MflUPjlhjH6UkgjMAKgLNpZU+2g7Cjbm0LuEFR2QV4E2xXkDvffNa7xJRk9gDy9vYX2OCy8ylxK1aFfnZ6XPkCFDs5KI80lwM72w3SztQOJ+YpKO32yUcyFJR5zkQZEIK4hUB1a4C/Cko8ymK412I9rprK+qvwbEO1nabHS8lDvbjXq7bE8leUeHLXQwSqXi/TEy2wkfiyDpxF5szs8RaqwmEpvPlfRdJumC80nx5PZto/Co7ULRQeU+O7tpbuejYW2l3Y3dM2e4/uQu0CdFvwnkPhYKEOiKjdvYgWt/5JFL80cOug8Do/0+lkwe+dP9aZQk5ZuI/z97//Nq29K0C0JP5Jj7fF9PhFKuaIGCTRUbF7s2vIgNRYTqKlpgacNeQYF1O0L1tKQ6gvDZtmFTEBvW/QOqcRGkqlUgFIIoeEEbeu979l5zhI3MiHwiMnLMOdfa513rfOzBe969xhz5I/KJiCdj5IiRQydXyex3Bv0SbC4H7lWQkLlry6cvHjP1Oj49mBs2VLwRsXWpJQkiK0/wGEezaG+AqOD+DbjRCvhM46o4FROzZrgOXyj070fi1CVQZbu7oz/huDFvEKdaW4VvLCnRHohNfnNsTIaEVcARQ6YfiLxhPAkku5PgC7roD6X+VFZsFv4CyajDH1Rw/xvg2/9PPVB17k52Y7wBwy6lfeY5AhVvkEzhEPgW8M4bh0DeRtxidmO6zvqzXzLvCyIGST8lpzJuMmKJHwBEOm/8PsZKts6xlWODbOvUD3HsYuuET8UXZlO49//0byyOs9gq+Z9x21Z/Qu0r7OZkkZn/Zex0YGH+90OAo6dXyvc4J04ZkeI/k6rWpx/8N+NacKnPYOfgKum2fvsL2avZdoqNQ5pn6FcTV6X+R7vL3K10nsfwBY+v9q7Ye49P/cB0n5gxFT4mag9G+XEtEB/zD0NyxyHDcn4XzFQhe5Q9ftcDOP9GcNo3pwo5OnEBnEJpRGv9SpgU5rlPgNavTDm9rMlijtIA/SY4f1PoXwR6aO/IZea0MvjOg2AZMfuN2EjEhh5fL+k+GcsDOP8W0PFBVttxaj7WNznyTTXJzHI6NqRPIOhWSEZh/cmc5M7fhv5Gu1rob+o+6xMeMCkFy10nsmBjunK7M3JvLK/0dJ+/Uejv0pl12alPAjZhtfnG+qMbOrKpgAfjxDISVuK2Dty/83hlsZuATdEvqN85HoTrWZ/Z1n2SHvq7vymO36VvWz5Wv6944GTcTH9sN0L+CJIJU1/BL4K9dZ/TvzFbP10np3AAP/0x2M2SnpXSF2XKEWRGwVX2O4b+/lZwvim0aeSBBZupT2QZC2ziDR5hyLZNcvvf1sYrB8njPslyXPFG8A0gpOqwnDwW1wNxrfH+eIfrWd5wHys4dVSFNgogN5zq2Ca76zvVdd7QlnzBsPExTPtHi9hk/fO8lf3XUtvcRsnuBOi7H/4tcP7onDh5/wneSCldcb6Rkje2dsd/jzny/pvi+Av8Myk1b6hvUJV9I/C+2Tzrc2BlPuhzJMnr47OdIv9Wod9l8oYwX8nk8qy/kNqYeN8C/Nyv2U7CMMwnjWIc0lGJjdl6q/tdXhNZdmkc5VjXSUZBl0G/9RRL/Qug7cR8Ytdlqvwx49Z5f2LV/0s2V2Dj+iSbE8GMcb5LxyboD6Ef9u3SbtKGcYutz+IpbqS/R7/nbwL9oeB3XR2bkO48bdtxC3ZDMmL6PTBlzNiwvO/i+1/Hu4/PTWUEYJp3QvenKnwd4e7eVzvoPDxFQDSk5QlD+q3RqoDfMHBwLv3/4tMTeoROpBSeaHC7Sa5qRZdXUdp46dP7GzOrYL5oHbAZgi4rs8C80ZApA/cbxxVx49UXvZsE8Xp4YsKOnHXQpsxZf+z8eSUpLIL4ctL8SU5xsquwCfrhpghXO89pg6FsgU04Z/FcfxfY8HibRHuxuljLZlvfHdHmBGJbK1Fag/ufVWJbJzn7y9SElZet/XFr21x3/GBPrjkYCTzAduMtMK5R10F/UsjKuGWbs8nrDbAIIZQNTwep32w3GZvcL50vu3cVf8tQppyt6CfPmvFJBDBxyVwVOqMb2IU/2X6rLl84nJNYhyT3wm0NyTeSnBXHFv4e+lezu8kbnjoV2pFk30V6FxAWMB5x6sJtNGa5j81IZPbvPmm+kH1DJekjpZvTeBZsCpCC/BhP7zReL3kj9TlllMA5gSdSuwuntvW6lZE3a3cTP7B98/gq/w1jJjk2vME24b/p4P0R5W6xGW3aRmdxfIRrjh8K/y3ncepXBs+2c9pInvemjMz7OuWwuxe39Wg/C69nTs3X0dtvzvv0JGrD++VcTFhVvB/65brVNfvNNnEJR+zHGqo4NWOzzNuZuyoZx//Z9ROAvDWX5NxiwzemU3+LjA+wWWx9g+uvYz1E5F8H8G8D+E+o6j97bzuf+B2zOHnYTmr+ZXLOlR+GyI6veRWCSYpXgRHJ3K7LHWMLHfo2hclBDscB19JvgxMYgHmHx/VJZg9GB88FkhCMpHNA7j0lYhKlDjn6b/bNHE6Nu8TGUvOQrgFzZQSbcxvaHZAbcLb5kVEU2MyNPizn2h7r8zsKaeJzornAxnQ3fhcF5NSeVnkb6WY2ViL6Sxktdc53grrGwvEmbNzGeEXxDpzfxtNDtX6tfRkyabLtmaKRsQl2VNl2kifLKIoe8DH2JhP3k7HittvE1cumutHmCv2xzY2Zqm8qMHwfAxeydR0+ZbJ58BXkUMc1689kzEGRy8P+qIYVxkvcOutf2Y3AG9LUb4UN21H+d8HPuaoX0oPf9yCOJHx8vOHpzsBoSIpmO4gVurYxM052WJ0ioH94DJt71idD+l6y+4Bnxs0ODuoTb7SxyyzzhuOw4Y3Str2fgmP5era77BPaOVZvSLwBeoKw4dSW9E62k3kj6AIIY851e3plxwUHoHfZ+v6sG33DecOGSTy/lWvjGyqYu/qdAv12Jt5gLq94I8uceIP9Bum3rL/x70wjQ7ep8QRWz9GOc6ZhN/13zgMTV8Zm0clGhoAnXZcTfbdBoH/8+kccj+s9+F/kWC30F3aKTP9pZXMmF/F+j3FYf0CI+zwOLLjsETbMhajnxGoeaG+AHIKzNX8nr/KtyAXM+wpViU+OuT9B3J04y4j4uyj8HWy99Z1qRRDm4oyNn1MWk9+dY9o6xy0hNt7ZmfH+Vz/eMy/9pENE/mUA/3UA/7ePtvUpUPNd/LwB6pNkdNJBnvY7dNZN7fghqTMbYVIYT/bnMR/na+oXQUb4hJYJvxPSfK8jE0ZemQjisBZGYHoegruTpsR+KmwEKzZMXtBwDXadhSNZGdNTgPvA6Lzxlvix34ANiHDpHAU23meWn2XMukO/GTub9Elnh03WUdCfzDFnmzJclQjTdUT4aLx2iuI8us7uBx7aTZxEpo5YrtAv4vk24MMse8rASoD7NyFbj3Isk7W9Q8hYmV9kOQwrlidhw2Vtgjtbf6fmLhhBzcbWyW6CzdkRuGNvN/5vxnXIesLsCjjpJsjqRZmSffEkaX0ln9rZDY+h4qqz6cTL+yNbL7Dhmxj3P/KLpf8ks9UN2GUbfPVoScbFN9aAw+0wc1zCOXBbISf7d/+4+Xt5oz73BTQGLHMq6X/KqDjBvKErNgc8TW9iE30j2Cpjw3ME26qJmezAeQPTF+43PMcbIgFntruAY4HNpW8E3uhB6nkM3riaI3e8QTjxfLNwbD5K3uj6u7duV/ebrjc6T9pNxgZAySmZ+xw3BBPzsXqMk3njYYwjkfcTb+S4JuNU+qNoT9O7jRjn6P+djWUo/BG6YFPdWJSx1aMYBz3GuQtwjpugCptr3hePta7iv6zPLQ8rRiyIxzGO9UHjr/3xMTbL35U/fsVD8dnfMft3APwbeEAhzxyf+h0zAGMLaplGbN9usXMjAyBsyQsgEIUKyhfrrbtAKsPgcQjOm6Jp34I6lo8BAqdahVUHKWQimXn1VAX+3Z5qfN3x+qq4nOjbo9rvgpjXzTIajjzmJLOm8WmWkQg5lBvqsW2IRRttDGH9JmxAaTesv4aAlY+Dr++wSZOCjrb0NnaLtE1O2I787ynjxAaEjYQxrzJHTMJ/6ZqM90XguCFiU9mNEXsxXpE+YeEgnWTcsu5l1tXRFcb7NE0RbD1+7iBiA5FiV7iLfnf6K2T2pxI36Y9uDkn6yzpY/VFkLBIQNtm2801IDpj4Sa1zyM1Wblv012FHpYxJn/z+itoYKrvJupQko9UdXCVn+jSE6ZbLNhA2conNYuuCBVcb7y7wf/boT3eE5JSoB3r/MixYNMI2y9mIUzN+qHlDxztB8oaSN7zfDW+4/ybeCP1m/ScM47wwXuC/6eimRd4Y/THvBzviMSYdBvslOQA85o2G7guHQrQVvCGz7cz7y3xDMm+wWTim8g+zk28K+f/CtxBfeH/IGL7zmXxDr2KNfBOSfSPwhvTzb/2GWlDxRmE3Avh72a4TWfvFrJ/jiaC7ao48+sJlu2PPG4Xd7GIek2nhgoHrOs+t/KvjPXU5NelPJlY+JvZHCf5oTxj9xijHcBmbJJfVVQDNbL0pmrZlI6xpN3I9jx9JLyWuSY6dzdl7mzfMGCfZeojDMu9t/LHS5+JzID1w2a9+/JwbrJcPEflvA/i/q+r/ReTjYH1aKmNO3ao+Crs8zjbDQnLKfC07XjI0bfCtw/sW8DqvBWIhmbi97FxVvyQjj9v/rWQeJ75Vt8uU5EgyGMH31MeUEseOhs35RsZQf+w81QUs+sF4vB4mkr7UcokNkzCVY1wXGRtm2ufblNFIhDHiMXi/PrY+Fh77os9xElbHKuxYf5ynTnYVUpKC7Q9ZMGyRX+KlLra2Pru+1J8MzFymQNbZbqLNXdl2loPxyCvAXtdM6T4uBb+PuE1fm9iEQLPAhq/5kW/CTP6s16E/GWCt2CAsZORgZPF76neRkeWU9Pf4V06MlBbGIvVr/VhqFKZtV9gs+tzgWOL63ok62dLCG+63Q/aCCwLvF+0/0r+cvaWFN8juWL+PeCNzm/XztFwDA/cFHefGsQGblTdmOmvcUS/0U+GYeSP7hl0f6eJTpke8QdesH8au4g3TAWLdBSvjDejYrQ5BJ3wTFlLQYPpbfeMZbLaxBtkwAP90y543rjm1srl84+qFSzmorvGGxRM73lhinKHnIlAveT7pczkqv/B5W4ZOxt/MZeSPpd3sFraQzvO1XIau247Ydn3iZHaDaWeFjA/thq8RNtV8CoEDGrjK/s03mR5rRflK276ydS6T7TPp4e/h8S+JyD+l879T1b+zExH5JwD+QVHvHwP4N9HTGH/K8Xm7MtpOYuPUX/okYjBHdwMHFnLrdbGQ+0L0yVHVDL8B92+AfEf4qKS/85aJYggSA34KGK0PDl4SCQc56G8oZkrVt57S0nxrepqEHRuajCGjX5IDdb8Zi/I/KtvfvVHgELx9U9y+Yz7Nc2ymB/sTOLte6Y90w4/jWWZvm+VlQib9HX+B72zEN7Na9Dv7me8H+fb4lZ3klazxu8Pq19RvGM9vwP0mOO5kv0PeqbMZgGb9MTbI2JS4otSf4SSG1W8C/AVxRVAwn1RbH47dMEjGpgpUcp9JrirQ6qmPivu3vmLZ1PQ3+szBML+PAJqcTCc8aWT/4psjKqO5/NCfHsDbTXC8Ya7qOjZdxqkzuB0hTYqL7aDoE+nINjgqaQPuvwHtB3z12/u1J46j8gxSLUiMuInYhi7Uj11Pci22/pEj92Vyum+M37McxU25Jo4NQUNhC97WObD8Nh9QzFSyzPuRN/pvnCYnpH9EO7vwjSAbxvi1p3e93YDbnXWIwLFxUSzyRoXN4oeZNwp+s787b/RdEOWeeUML3njsG5k3Ms8vvE84QdCDZxkc28b9GmPDmSVgGaNvMO9fYsO4VnxmL6gqoIfgxzfg9mPyhvlZ4H3mVNKBp142Hjz1p1w2YrPMXUCXqwH3v1l5Y7V1zCfaoDYfYPOUrdPfHuPcgHuTzvtJHxzjRLuZ8Z+3S7Gi/bbMN5WMVtb4Z7wj+PYbcLNPCwjbDdkULUJfxX/OoSwXyeDnSNcE89MCUsc4ARv3t2TP3DaNlzEp53Eg8e+YB5bJ6osdH5Pvn6nqP9w2rfqPqt9F5L8I4D8HwJ6W/WcA/J9F5L+iqv/P9wjyeU/MzCDGy+A2yVgKgBsNEyOV9TIjyOAAWhDrLk6p6I+Fv/VtkwUKoe2ZPTAdRhm2UAZCmgo/fgfgWxCXNz8gGZPMdk1uPXhuf1HfxtXxCmlJMreet3ZDW4wrwpOkOGES1unchoexbWv7oZ2LaXKOu5FJTOERJBklBNM5zWiHjVjZFHjpN+C8A8e/mIGpt3dc6I+xSquDRnyLzWRsKhybAN8U9xOQ34fcWUeOzaq/iI3EvtvsPqwgSmoXpGc7xvs09zfBN9UQXOWUq7B1s/kcjbdaxV3s5sofWdc3QH8T6F80XpeIBdsN20nwx3F4imQqm2UWIZ0QrnKgb+X8Y3RHqW472+4NiAcIy6o06ySN78ofve0DwDdA3wTt1JhKLKQzJBlR8CnZnGMAKtNqbIKdgf598fD3NHIAQak4yvoXQHwBJeLldkZYXflG5n388xmYsr1P34gyVryfF40e+Qbz8fQV6d89PAXn751jp54kpv4xb7CvgeTKcwrjRNjwQmSQEbOufuvbrbcTiTcyNhLGl7Fanh5kW+KxpHkgp6bqN8F5V5x/EUjTeI0WbYUWMb0d98niqdAOGypjZrTw8dG57Pyu+GZ25tcYG0FOuYtPhqTkL7abPI9nGZk3PMaxdPFgC/xenqw6SbFVedNR9Uvz9DbG+Qa0f4GxmcUcX+bUNcaheT3M42l+sfMk41xcmWVnjNNvXpvpj+3P25aIgeGIpB/EvgOnFraedT31B5xvgts/10X34VNSeR7fpDvzPJ7970r3Nuz38v5f4xDgU24cVfXfB/CfdDlE/iMA//DPtysjzMCMRCUYLcDGlSZOFJMfojPkiX0xpoa+OgKMR9fNtTpTRzjQ13nuDiDh5oJXFXh1LawCMmEhXaM69tRFhydMbISwMZnUcfSyNO7lnH9PMsLGg1jGOpWxMxzvnsRYdGz67ydIfxuZWH9LSkTSZ8BH4JtyyB1o2pLdTKyi/gqZsx1lu8n6y7gyjlbOsBpbO3HdbOv+hPhKJiLMYDfJtnd1bTW+b8VtGOywmLauBTZsR5VeFhkxy1cy4t6DvuBjku0m6i/YEadVFTph2YKdk669rtU/AXkDxPQXsBor4MO2vW4OmArfzrafMWOZQ91h6+D0H3TM+MmYlv64jnfHCaHfzAMbfb50eF8Sx82LT4Bj6/Jd+CTb4cKjBZbmo4E3gu9P2a54gxffKjyZO0sZ02+KYXfjaRC0c+h8ZyXzyJDN5qpk49kmsx3mv1lmxxXwLeD7Fv6PeSP4RsB1w6kVbzA2+SbA6t37IsXKm2w35hPFHJkXd5KMWadsR5mP/fAPAmPhjTXGsR01k61zXxfycMCceSfzhrwBMmIczTEO2/oFNoteNnbDN3Albxh+Iz3bYy62G8M5xTjlIsKun6xPtvfkF4yX3CeX6sZulOeqfLOU/l34l7HK46FDBQ6s3HW+6ZDtteL9Rz5V+Z+dbxZ5c9kve+jjIn+G4/NuzOjFW5uclQwgPK6FRAKw1bfxf+Gc27SDiZRWuuxdrvutf+Q2f3Het4wdDeQXqTWtmIbJOhtxJo5KRtsKGNpXyJvM8Q0n9FRG75exofxi64xXoKzvhIkXl/Rv6y+sNoU/5r9/A/C99xuwokfqIdgqZA6T7Th3MQqyDWXHdTESFeD+revPcZWBhT/FGLJxuoEirsaBbW72dWVzgaPELqC/i/et7xgpY9tkqztX1Sxtg7GJ70ks/bJMTPiGUS5r7Q79yQG8fQO+3UHYjH6XdB9M/UEWbILdvOCPijH3nug3Ghi74/3lytZJf96vUvoeot2QjMFuMlZ5wlH1d/H0BtwPGaun024iV+n0A6T2uV+eDJPth6Ar/zvqiHasZPhf+zFshNKOot2wPud4A1ftsBnn2bazX7x3AowcG31SB191nAveTzr28aSg5co35IS/c3O/jf1NGB8peIOxBJYnHuUqeerXG8icM+xO7uhPNW6DN9iPhNoy3kDifQ8gx8H9miwsGwoc83gGx0oD3m7At7dr3lh8o+CNUp+jr4WP09/GG33e1sgbfnNPvGH6o5tEQOM8ADyW0cpm3jC8XuKNmvdNny5D1h8/4TBZrGw+n+vMvsHN2zdF+/FEjMM2V2BTcRtfyzIvvDF4X1SB3wD9F0l/uxjH8VDnvZfmG8KmlHHEXnrrKbL4Ds8WyTGOP/46yKYgtU4GN1U3Q2UcJhNXMZkkxTgcL2z9cfS38ylJ50g4Zn8U+u+rHoovkWqpqv/Zj7bxed8xs+AgpbTwpCdA+Np5fOkY66NfflyLSaLL34L4mBg6b7JMFk4PopfRFVHm0DZPoDTO6nF1KaOlLN3txeHh1Y5NnHwDHhS0qqB4tI1Ylx2NHlWzE/oQW5cLP6Q/RQi7cyX98Yv7wJoKd6xjlyyjyUIklWXsKS2EVboBDVg1+EPRbjcS+t3pROzvUDeWXVIZDwW+Cc7vQM//SXYzSDToCEBOiS1tGySj4SRRRg4eWEZ8A84fgoNtPeHU/VHnhJSuGx5ZJy5P0meVPhEwNv39/sDWW/ZlWX0KUWfK19gfs61zOyLATUcqo3SWp8WYkOYJAJkHlp0kyW5G3xkb69YDT9YfJifq3wD3s4tztcOq7SS49MP2bNCaTrgd0hHbdq4bgvlXDgtsacfD7Pt9HBJ0uHB5walBNvYNMiU13r9Lf6JywRt5vilToln/lYwmTw6sA8cI9JtCT+KNUbjsN9hZTPMteR9xHIH3C9/w4sPuzjfBIXGOXHjjuOB9wibrRKnvhTfGtcAbI9X4vPe0z0veWHxjymQ3SkAh45Bh5xs73jh/61hd8UYZ43A67c5usk8SluW8JUN/A6tb4n1OE+x1H8Q41dwEOn8ixhFr5zdAT4F+7/qTK/3lGCfba2U31K9x6nausp8PAH8D4G1YZdWvYxNtPcyRA2O3m41tL/6YcDU7aQMr/EVX3mesjPd5fEkngcsFi82Futk/Sa5fxx9/fGIqoxnVWC0CwiqfnYcVCK+LafSFwYcJCdG4uD0FRkpci6sFixHKlJEIqeo3O1xYKXkkI8mF+wSkxmZ6S4XNIuOVzLluGo85cU+1abEt1p+xEWKap4+Xscgy5n5pAiplJMDknmSqdA8psVlkLOvuceUx8X+S9SeA71Ipg+xZfzLrLrbNZFzIfCWj6w7d1gUtPSGZMvU2ydYrf2Ss7NoTuFb69jYsnZj6CWXH4MtJIp9nzmDbyzIinRNOsPStUHfa+jK+R3aTeSCXfdLWucDCVRXGFUfSeK9kDDimutzXS0ceo7cVsS1538omOa7mgdIGB6bi6QAP7G7HqS/oP9sklw3+eQfsq8WV3W15v2g380aFDftG9u2FN3iOzLxxxfvPzDfY4FiM0dPYH/GG8f4T2GTef+Qbuay75hsg/ITukf4yp17ZTZ4T85iQ6irxGQ2w5g3i/cpuUj+L3TA2WfdV3cGxrL917k1YXejkkc1VfMLtus3f0T8JxGU5zdOwknqO9H6ekHHh41yX9Zfjrke6z1xenSc7Knmu4NsvfWQF/0mPT7kxc2dowExTQryL9//4cTv9zqt7Vtfaz+TGE8Koa1ujNuo7lLXzRufWDztY6jfISAS3TExs7HTeUyIUeosvvEdsYg50Xv1wGYH5hMZkpJWfxeGEsGCZFD0lonV+sEVK11+uW4w3X8u6DjrKK3IZVxP6BKADq+/cFtmMzDQD74dX3Z6xm8Umsb4cDvhMKPchk8lumPsqpOmt/+tEmu2mkJFX7hzXjYxBf+Ph3Wrre/2V/kg4IfWbn6SxbTsWVmYYpe32ydc0/K2rjTEuDasPEVYZm/zEYKk7sML4oG4LPiVJJ2PCbljlR+wzT9RBxgeYW9qu71q586HcFgUNgSOFOGFn69jXfe/hiwSFnOFDtvYe3fjtzGVZTpJnmQeyfgUzXVx1ZmOQXU97W3cWZN54ar4p/LGcq7S/Q7LwPtvdwGbL+zv/RWqLzzc4Mla2Vfd5wFNAA28U2GR+Cv6Pwn+f8I3MG+1Muy8mfyh5w9rgWAOz3x2nXvqGdNoH0D9nwbzh9i6z3SFbeJcRJFvWSbIb1tEjjhF0LmPesDJbn9rFOCxrljGdPxvjINl65Gez9VoHld0sNrfDtBXXMOz7KGIcs/Wdj+1kzHbD2GROreQcMc7CVU/Yemk3GS+W6cKOxjS3+udXPH7dmH3sMKPMd/D9P5kkbo40yvljfmuHgo/tJGP/Ul0F0MwJj05Uc4GmuBksnLkyeMH8/YrAcl0V9IWZW98yuTUdBC+jrfSSZ3Ikwym0XQUmCZftDQGvBLW+tW373idojHnFJxl6ry04OZL+QL+n8ywjB/KaZPNrB3rfSX/eryCQeyBLtoVHdkMyLcFp0O1Ij7oJ8F1xNuk3/ovdSKib7aWUifVqdVMw5G2kQwdW2vr20jHFLupv6YuxA8ma9HKpz9S88bx/APYA7qLd1iXaOgfs/pL4xoeCXDnwzDJudH02oN0A/d7/Fiq/tRugttc07mw3JoOg0BvbuwB6G0EB2XqvH98zcB6gulW/l8HVDif7DQjvbbxyhACxesLBNxxt9lUGWTs5K9+gMXcspb9PMtI+g91ZMGbzDfdXcepHeGMY2Hko2vjA7V0EB42ZsfHxkn1X9r7MLwmbvFBSzQNmd/g+bI54I3//6pFv5JvXUA9F2cK+jDdwAOchODJvSOINTDmDb+Qx+5hWHB/anNX3OVK7TTVqd2CzYCxprqpwI2yCHEK8Ydc1llUMWz8Gb5D+hIN5a2MX41Q+tNjmitU2xjkAPQRn0863ELepNcaJN2ilHjI26ajmiR4AxjLnATTp8zZ04hs3ASnGzP5IMdjT/phwnv3CUxS15fkochXz6c5uyhuxHW6V7RfYfrXjK7xj9jOOz/uOGT3RCcaZv3XCT0/Sk5SF7Om65rr53zacqaGvSoSVPSn79QDhop9lFWczEYS6mGX1Pn7TSO5dpoiNVtgUWD2SealL5ZxMB1aCiVWvK6ie+uz0FwIowvVkYqnwyuTQANzHE/7xgvqC1QNs+Ka7Omcsyrr8u52aXjD0RzexvS5hlfvJ54SDJmwuZUy4+bbRorD0+Ep/GatM9lt/fLJuDmQgI2A4FUew7VV/YQEm280FD+xsLpxjTmaNsDKbiuOTpR8fX14kWuquvrsNbBizMfGeh+JGXNXLbGwdSQeVTz3wi5i6NtsKv7162CJAxYsFtgAu3yl7yjfyGN/GAtNbxRt1P+EcWPz3Iacm/SPZCvNGK3mDbSfpu5qrQJyafbIYjweqgTfgAeENz/HGzjcWfV7Y3bL4mnjDAlZVnd/TrHjjQif5puwht6WyvJgW6w/eP3NbsujgpfmG7bjw7+343sa8fUb96YY3wly8+GeNzfKEysph/c0XZo5xsTGGU6aSUzc6KW276Nf/traQYpyxUGiiVLZe+2Mhy87meE7JeBW6txvGm+mvwCr0k7DKvB9wrfqt7DPb3Fc+ft2YfeAYSo8OrcEpl5U1diqgNnCkuiDjyv+O7VrlnKshVb/5b5Zl1+8StGf5C5nR5uDkPomhl9+kc3JdlqslGZ7Ahm9yy9WpkTbY+5EFE8eG9BLwqEhzJw/3i3TdzhUz7TOTedYV41/dLOS+GSvEujvdu7yKueU1KC2qWvWr/IBlrHDYyUhlyhXE04yr23vW83ZVl/u5wGaZmDe4ulw6zOlN0zsZydY3N6+L7FnPVjdhsV1dtXqqPYgBIKY/8Ad9Y//l+Fh/ILvZ2fYO1/G38K5vO7spbHlnr2G8IBmvsLnS57NH5ZO8fTfJvYzR5CzwCTI+8A1oP5e7rkEg+0bhk6EdljH3m/Sfff6SN8aJ80ZjbOLKPX9raaejrT/nBZeNb8hIpeonUtvdRRD4cC5ONrrjY69jKygVb3D8sPMNlq3AKQTtmHW28pD+cNrPe94oOZVlBqLN7fSXcS0WTcQGeUZOXXyq4tSrfqmPJQ4jzC5t/YUYZ+H9B9js+NgPasfbB6AU4+Q5km09p+3mdkI/XK44X2QwiMjWM1eVaaY09qsb5W2/9O+j+PbX8ccfn5fKOIzH03J86+diy/CKLMbvAgSjfxTo5zt+bYLzBpxvsR0APgmG1CF2rt3kVhAGEP9eVjBGdzaG8zZznSdhdQcNY2hp3Om/3Q1hFcwu5Dr+zyexJrg3xaGprkTcnRy8XjH5VrIRNn5a6Z512QR66+kjjAcwiX7RX/6X5DI+XLDJq2Itlu1EqmGyux+C42T9JQyQJsmdnRY6vAy+Mk7WswD3Az3ID3VnwKeEVZZxkWFnNywjB7S5rKLrb6TnNWC+j5FtnWzqBOmTjnxTxnZVYjQKL7aLvkp5bzI2yJOA8zI+HrvJaLaUVjIZi9AOYZN1zzZ2ftOx8xvX5RSuiBWwtpn97+EqrmGoc7wJ+qcP63v6pIQxsr3snip+yDeAsToufXfG3ycGoV+YnUVs55MthGDaZdjdlG1kzLyBY/LG2ahik/mOI9DT07DBhsfNuD+SceGNwQNNcN50Ljgxb+wWxayfNPYwP2+eNFR+lTkGx+QNAfxJrOb4IWPCmDE2ud8KG5YltWO6MN5vd6CKH5aFBdnopOANwdRJ6b9JXp63t7wxcCtjnGqsrEOSWah8iNsQ9SA6cdInY5wd7y+8Sf143Z0eicvsnroB0ENwP7qQksa7cCr7/s7/sr6zXEXdZT5tPdX55PfIxiAy7y9ZD7t+inPvN/F8ebP7FQ83+D//8ampjAsR8sopEAzNz7MT8uoATwQXdYFu7Lih78IDLVbmZfZDMoYJp3AmKX4LZdvsgssJ+vhlbOesv+vq6INEneQvxldN1uG/J+paP6IDqzftZBXqSl13o4NFlpYws38eyTjeTdJvAP6iKbiUGNTlybbVupIs2wVWglhG0G3K9fddw9bQ/s4K6+WRDlL5MLm/oHvR8T7Nm/aUJK6bPleRn5rt/t5iw/o0nJHqW7834DwB+a64mV/ImKSLG+GX9AksE+uClRT1moxPQ2gsZw3KOr6nZMw63DwJXPQHQI5h6wf6E/4w+cbt0hcsAq4bHW5wWbgq6fNdR8H7lW9s7Ttff9U3xrtlekd/ipxuSqMO6V3eLHPq59LGQDIi6kAQeeP8rrgJ/LMiPN9UtpNtPvv+zjd2v1W8oYf2OWCxM0nn1Gb+1lv2tYpTs8yIOjH92bx9QnGQ/pg3QjBdyVjJTOcPeSPPW4f0z38Yb2zsKMu0YNEKbBpempsCb9z6Iu9N97xRxjg8htRnuDlKWJUxDuuTbf0v3dZnm7KM51LGHIdt6i76o3OPcYZd4fv4SmAxRy7xAqI/bm+w8pxoTT+S0Wz9BgCTq3r7Un/CoLL1jUzPYFPa3Bc+fr1j9sHDVkZgRpZIxYwnEIDXRTCUvDrATurXuG/pjagtlYylnF52XQUM/bS138opt06ax5POFRiP1MWtrMJmu5o8ZAzjrmRhLDKuVNedGgDuAv7mSGgTRDKJDMqbaK6H1E5lC1nGodB+Y91ewobPd3qqZMzYhL8ZL9MfX3+ATbbX3O9Sfje+LCPr+y7gtN1XbfshNhnXjBsSVgBwAs2XvR/YTdXWI31aOaD2I9aJ9X9i2Prz+nva5ip9bcYHa/scXGWNPdtvsoWHto61brVaqun8lcM/yi2ApcZV+JRcvrG7xTewYhl4QwHcdRmvjndJnvWN0q4ytqNukDH3a2Ipxgs+OmV+0e5CXFL5ZNY3jyHJ5XjdTV80R1bpxiZjlmmj26rfiuccC8IKJ9BUAm8s/vUz5oGqbtK988bASrDpp2r3Ae9f8dXV05HAG7Yt/YXdLNhgvf4otinHV+haBWNb+qi/d/N+hdNV3VBeYdvh++stCautb19gUtnRdg4nbLqMOnxP+4X3xDgX+lvi6ge23uvqamNf8dDHRf4Mx+d9YJq/3g4yFL8eJ7HFAclI1FaULuoubVhn0r/0Lm9jdy5PqZztuIxtVquMVAvjRiq71FUqqxjbo6KvdI1UqoVw0/i8X8PCZKB/l4Agn2dSQZRRxxbi9xvQfiBujJDrJP0EmSsSrbBJ2HG7I32/k7v09DwB/AnVI2xKfRbYaJJRklzAmPgq/dkuWJYjcYFNsFezuYQr+HqFK4+PdGEBn94BOUYqY87v534/gE22m1weVN6wAkbarpDsm/FV2AR9PmPbiHW5rMukgN46Vm1sEe79JJt61h+Xidv6TONzWbIfjDSyzlWFrSd9Zf09jQ0SrpUdZpt85Qi8P1OpypsGxod9h+WuxkTjWPxXtXOZ9M1UTkjCst90hLobbJd+k98FOyPeAza8YRx7iPNGtjskuba28x79k/wnBo+dGOmV6Dcdgv0cmfvNXEcYlf2mukHH9veJsfA1dkFkzsn4JGy2vtFWGa/mJqFyfoygHt/6zrdtbEj1SowTeKPQSearp2KcsZnYeQPkR8EbR5KR5ypg8bGtXxA2l7xBc6Qa72uBf4VNZdvk26VfZJtwuYa32yMWHT55APdDoW+YG8vQ2P3fwrbLOTHjmuQIYx43ZCrj/UmV/u3Y1rlKANrIqxgfEOdI/jf0U9f12JGvY8gFLLbw6/jjjk/7jpk5T/7CfEiBGOXcQPLjV3pcC2AJWrfpEtbPt0HyACR/VZ1lunpMzHLl//I1q4spM7/Eqg390fUJ6CBRUEqLHnEs1WPwkC4THsen8RXXmNxKrN46iUqlkwILofMlPaTAqsLG2yGZvOy3ngrXBk7hxs/ayjIwFsV5fhdgh01pG62T+3n2SfB4hM0TNlfpPoyJscEss+jvt25XTaKt62Y8Od2Hsan+LvslOwnlTf5h6/iOoHsfb2o3jJcXY5J+Q6pXS7hK+GcGtPb3DV2AcfMTtr1OdrPze05bkSz/DpvCl33SPAD9rdvVMYKHhedQyHSFDclZpXYFbIq675mkHUMUvP+AUyveCGWHnItvLGOSzmV3AKKJNzZpoYh8+oj3WZ9P84al9b4BN7JtDki57m6e2803GQ9g4xtDZgGm3d2BmyTe4D4L31hk3P3H/WLV88I5B/qi5W9Ae8PKG1d+lWU8Zrk8JsPm0jdYvhs6x5JMNg8v2Ox4n+whY7GNcQocmTeM963fvKi38z+XI2HD83jlF94WZtuBN4z3v/UYp/TlKxkzNtU88Oz4BP1GB+r6sw+El7YuWGIr9qmATdYn2xEirprLWsMj7jpPoLUpUzW+xcZyv9nmnsBmy4Nf+PiVyvjBwz/a5+dYz9nwuK7UZZXPZf2bz+0pMTQq0x2PjHRZ5QadJ6et/l7OWWa+DjJ836Fr02+F3UU/Cx5XMjIWrQcxCvhK86UMF9gsTw0eycxtF/3o0KNj9SQ2i51U+iZ5t3XD+BT+bREAcs7CW2yordLGnqy714kZ9/jxBJSY9ZEtVOP386trQHiqEPvRIGNfQZXXxlfYcuiXrpc2lvVJ+gNkPmEcWO345iE2CcOdjPnvaWMDq/GD6JRpV7fCbelXLnDNdlT6ctLhC8cl7z/JGy9xXdWPnZuR7vzO/q70/6JvPM0bd+KNarwUmF/7flE2+8YWm8Ebo7JwavYz2FRzMWHzyCdLG7VUKutT0VMsGd8HnFqO98ond7gGGRNvnE/wxrYtkmFj69snIBveUNS8UdnQVgev+iN2dTXILpzCzv3uzk1+Ka494n0ae6V7vQ+8ztnZM5z6FDYsU8KmkrP/NmxKEGOcNL4FmwK3/VxcjCf7Z1X3Kx/6uMif4fi8zT8E85FztRIrZIuJ0CGIK0e86m3l6W8gTZaDtOTefzqPsfpmzsV1JbabZczlw99ZjrbK5bLZMYhBvgH6l9gnj+FkLLIMG2II13g8ebzjP19BUfRtkw8aU9GPFjrxySITAR8bbDKJhv+GTE3QX1Cn1bcrbJbxZZ2RvM9gwzseWjyDE9CbdkIcS4vLylgiwNzPFtcKm6WuRnktzaYBelgql6z9Xuhvse2X6xJOdnGIidsIuuy9lStseOyVjvL1jE06t19E+gSoZus3QJt6jmW27Uu/r2TMus/yMjZJf55SJsD9pj14z+2i8PsrbLL87H8b3X/khsyPgjey7TC2FW+Ucm+wRbrmvKHoOxvStTNjl/5ezhM+YXxV30/wBjJvFDrldsNcdFE2cN0Gm4U3AN/WPPBGxuLFuTj0XdXVec44hblI0R8fy4Y3EjaLLio+Rvr7AtesP+eNY8Mb2a5Q2AmSDFe6x8RjYr7yhu2keT8U8ra3qXK8hVyZ28IYnuENa2DYesdBYluVDA/8MchYyV/VpetuVzZH3musXsEm29TOF9abZO1ON9KbGzpW+h3R/676JTvn86fjPzBXrTJ/ySMI++c+Pu87ZmYQm5UOYE4mmVCtLIA4ETApIRm8Xae/zxv6+xqNvqpu/Vo/BQE4se/6ben3Ssbqb/Rg4Ww9NVzaqCoJGx5fcS076ZWMlZMugVCDBzFngz9hVMOJ+wGCjkqZGddnsGGZ6G/DShrCuzwZm0yMpT55vExuCRs7z9cCVuNG8ZSRZrkpy+1km9vaWIGN/wbUxE8yaaOtka0c6wvY+pTLDBr/0/4omKveY3fPQ/p2yUL+V4yxxCbr64HM5QTE10h/50gfPtsaKz7DN4t8XJ4Pmf9UXCXoWKkAetAOgTK/4QSu+yw23P7O/wpsZpsKWQbzxCGJT/Nq7DNcXtTdch2Xtz6k8z7eADH+YD1seH/LGzyGNsuyHK/wxvk2Px1R9VPJUfHGruwWp4zlaPf8BsgPoB09pdF0oakfYN9v1p9iXzfjJJB+owPAN8MaW+XrMd7nojGwXN7vhf60wiNdf5o3xntcZ/MsyTCmcnyC0n+3AXGuW/Bi4I2b9EXLBpxt8IZh80SME3DNMmeuSDiVvCHiO8yeMvTH9Xf6y/Jd9BtsLusv15X+h/P+iCc4xlnsAlixGv8GfeZyScaIDZ+L38yqzZEtchXLVi1clfphbDbzaRX/leP/gsefQMSnj0/dLh9AnLzYuOxvunFbcsRbqsuTZDYmr6vhujZATpk5vyzHrp9E3NvrF3Uz4fRdKofjDWIwEq0m3J2MfmRCq7BJMq7jVSfTmfUjpdNuVx9fwWYzvnADL6PE0B2S/nx8PNE/iU1lR7t3HktCSzqR1i/ssNndPIZ+dtjwpHnhF3ajav2Jyty4ZcEVtU5Y5gtsFt/djk88fUTo6UA1vqU9amvRX6VPXrHm8dnTgRQQ2ntl/bJssSn9vuIqrHWvfVlTWfG+VHrHsq37IjaV/krO0NRP+qzJK8fOzrLttOK3Kz1gxWPLG1bnTryfbJb7CbJnfDb+u/gVtXN5w6fEGw+weWquuuCNvW8MlxxPW8IcuRvfA9644tSSY7iu/yuz7E5/V/0m/S2bjfwM3gDQjDd24xOUWAHE5c/WZdsueEMb/AmsbOsWuF3h+kj3Ln/NG+5/9j3Noh//7SfHf/mpsM+RDf4et5nalm+SHT2rv2qRaP6mMSYetj65Ctt4sMSmkjFjg01Zx2bFKtT7dfxhx+e9Y5aNYfxWTq5WHmt5YFOWzmd59d/FcolPQNvM8c9tl7vppGCnXCEVGk9xLZCX/WYvvtlOfrmt5EwLNtxPdeNbyVyMxXcqMjkV8+OiKD5mm8nqifGXMnNZFONjuRSU4jX15+3n8bFMz2BTkOjyH1aZ4TLFNoNOuPzF+LfXivExIc+yg1h9G2Cgf8xWoo/Rvzufqkg/Y3O5qpnbMlXaJgwi4brrhPVn15LsW5mTnns7usrP+KFj1fuYWLHvXfo9UNt2gV2sO207j1UsFRUk00/CZuGqjNVO5nceFXbLiv3OJ7H+/ZQeMm8Ag2MT7xNeFe8vvJF83LHON8PA4hs7uzMZd1yueXwX2Gz5l2SsfdlLTd6QB7z/TL+MGV976BsJK+28IQfxRrb3at7OdvYSNg94w2IJMXsjubC2dzk+FDb1Ad7oN1Nk62yfWG29tDnG9QrHjFW+PmIc2wGRbaMa7xrDzd9fif9Ypqqu74rK/RA2oV0eW+4348jyp7H2voibslwe4yj6t/C6XZV8nWz8lfgvy5vjv639fsVDHxf5Mxyf+o5ZMPJ0LRt5eZdP7dhh7xwIlbMgK7ffCQs9LeJtPBmyduxaISvLtPSTxrcjqCxjf9ma+jiAu+hcfaPxqmAa4IYsKmyqVXwfH8uS6hoxnzLex7uPCbHo8xVsdjKrkLoc8zVItL56CsnUn3fViIQ32ITJOOtop798yCAzpTTB1lNH/Fs7hf5ysPIQm2zbNr5Ud/7XO2LCPm9AM6xyP7mdjAWw+uMGG8WVLfQP1uqwJ7kBQrbudRsiz7IPPokNy1OOM5U1O5eRJnVsbrIrbKzMgg3bnAsDXz3O2Pi2eDRW5oUzcVXGZuHLCptsjyzfgg2lLj7yhUdH5ZN0lHbGMj07xke80dDTe79PXwjXiv4WGUbZh5xajM/asiDoijcueSK0dYEN2xnbe2rPT5Kv3W9AOwmrhMMzvnHJbTSeR7wBw+novCGQ5elBGN/GJ13XG2y4/jO8Ye2dDWjEG7nPqznymXlcy7rXvOFYka0DKN/RdJ1W2FRcAUQ7IpkW3lBKyW4xbTfEZFixCf678cd9/EfCVnqx/9qMcZYnVBvbXvwz29mmLsvIi8sLV4l46qe9glCOb2c3ZK8PuWpjc4vMX/T4tSvjRw7BNIr86DobRvUoG3Xd4LyhrtapRbZdt6b0LqvLZc0pyNiF++GyRfpEdlARTXU7Q0lD30r2O/w7GmE8LF/ldLLBNa/8bHAFNGz16t+XsvcyRPY62WHDOq0evycZBfA0xUp/4Yb6BuAvUX+lTjbYZBtb6kqqa+MT4BQN+tND+6npL78HRHV329vy+EJdSrOobkomNnG1Uq2/G/pWzpDwuYNHPvW0/i5xXW1dh63jwGP/yzp6hE0O0gr9uT+GlWHxbwjCPlexs6OsA9PpDpvETcsYmAe4bbs23suARl7YcaQM3w0+9QibnUyUThn6ffXY2Wz2jQu7YzkFaYxL3Rd4Q2I/QcYsc7YdRDsM7SVsS95oQGsAvgH4PvxCqR/DBhfYZP0bNpVvPMsbdvPqn0lJdvfIdh7ICGxuCq544+hztt4A/E7XCp1c9lthw/p7lTfskzK2CdWGy7fzzQ6bHONs60rdj/HGuepv9ykBjqV22LCMy2c0tryh/fM/Ouzqd5Kp8L+MzbJz5tPY6IpN+O/schy9johErPL4RhslV2VstnZTx3+TVzXGqL9LHQ8W+lvkSPor/dP/W+M/1l9YaPmKx68bs48d7lh8noiwzDXf1eWDDDTvJOZ1z/F46j4v55WPst9C3u05kzfX5Tzn0E9f9bLdItfrNFkYMVQybs63MnvZGTAYBsLgPLMtfe4nT2wZGzzC9Rn99Sjm8fjS+SMZd+PjR/3V2AmntS6mjT2LzbPjIf2Ftm2Z9pH+8qSY/fFKDg5EgswXtq4ydiF9oD/mAQ68UJTdyMhl8/jngsmIhk+FnnN7i9KXN/oL/eS6lVyLzHM9VKmSKCYv4AE24iNx1T+NDSps1ImgHO8LR57YA5Yf8Q3JZR/zhvHtU/a9sx37uz2uu+eNkZ56Tt3v+ll4/xm+2pRVL/sEb0isU2KDDW807Oeqql+T6YI3xPR4gcUz+vyZvKFDppI3NtjglRjnFd4Q+Iecxd7lYv1VfFXp95GN8cIG/bvyhk6s1GIcKdt+hA2430KuhzzgsmoYHxTQ/JmbKoZ7xFVZ5gWbnW2TlJmrNJW9spvKH5FkrMqS9rd8muffX8cfcnzq5h+KZOB2DDJXKgtUxgI3zmDXQkaWJwnjAp0Vz0OdKJRlSf1W/9r8ZUbLMvv4wGV1nPfH/NFZ+pfeFRiPrnt6V0WWHnBV2GRZGRf+zbHRcU0dg9nPeIqgAI6+7W57g6/e5H62N44SZeSA0YNIzbgqycE4zYqe0vJGspP+2MZ22ISJ/EL3MvQG/1eC7ueNxsCqKQ7+Vgv3hyexSTYWzh2bRPRJf/4dlAPQQ/uHbJus2BT6dKizXxQ+teI6fTD7MnTIBUBvwP37sPUHPmXt7fRX2pydB2zI/+z3YWgKgdyAtyqlBbVO8CI2AVuTovUfsg8B3Tf0GDsK3mf6VsmR3F+WI2OT7G5nYyxv9MMXD7Pv7FfUN8uyyJnLJjl7W495AzLwRErrBUpO5euLzKyHCkt5gjfshwO4W7p4xbEy1lee0GHGyn3Du2S7y7yByRutp+fBfKHQz1afxsEFrsE3+N/MG0l/OnxUb8D5fUKIWSTI9BCbtvENOw8y7nkDGvWXU+Gqfv0o4qHFL/gw/fn4SKY24VLtbfcdqGv9MT8759h/ecGh8JMFI8aG47ChKJvnMXZFbfoYG29jwwMBngWboqznvM07HlX0nVoPuK0vMRzbesYm80CJTeQBl7fNqzN7ZGLFabsVNiVXbexotW2K/3JaNwjLP8NNWQ6W/6THp9yYsbGbwsOX3+335IjL+QiC3CkbG6jANz/gsnY+0oL0bnVkkSkHEVkOJzAyWEtTyzc/ssgh9fhu6C/sWtqgtWl1MfutAsJKRsf1EY4px9n7PbpcOlbspU1yX7DJOFO/yza7hf4CrkLXOZ2AZLLV3ICVPBhvHh/LkWXM+vNzCXVd/lsneH0bhJhXtiqd2bVC5oAjpoyX2OS6B3p6rD0xa7LYZ6W/5+3mGldg+oUfGauNn3hdGl9pc1jtxmSq9SkLrjpkwpDpwLT1PL4wfpDNIV175I8yBGeuSmU9TWroj2VasKlSWjbYuK9kf1tsrvf37p0Yx1Hxe8CHn6w8sp2dHT7yDeOyE9Df0X0BsZ6XL2xpp/8FHxtPavuSN070FGh0uVzm5JMlNlc+iB020+4q3hDijb7r4LS7Z3k/YLPD8ZHusw4GVucP4OByKPph/q1wxJQx8+9LvGFYWdon3QDtds0VFHPVxZz4kDe4XcB547RvYbW46LrTX+BY+/sRH+cxgHkjyThSiU9ajNv5cpCD+8hlx/kz8V+09bE1/fDB883edaY5csPl/jdjw7FfcT3Hfyav2ZGk8YmlMpr/4Qls2M8zNuk6yzg/aSOrn3DZr3oofr1j9tEjr4RdnZerO7K2FVdbNf49Ksy645X2E+FF3af6rc5BJJXH80zdPB5+0rLr550yXuM4HdOd8j4KVKlwV/2SQz/ul68r9tikAFbhL4Rv+7k4X/LWn5GpqDt+ATBWue5RpjyZPcTmGaygq91IvN4T+kehO6Juf6rdjJOB1YKr/z1xFAFUgWa2/l5sCv3Z+cR81V+s2z8N4U+Ik/6e8vsxnqdxTXLtrvUnBJ2n3mXreQxZZvo96yjULa69erzLJ7ks0r87H7Xx5TFZHcXcYCP3I7nd4jzJWPI+gHJ77g1vABgvdbwTm1w2+CTLdc0bwRcEfefUUeHdcyJfu+r3EW+MnwJvoNbJy75Bcn2EN6SQ4Wlskq1fYbW062V/Em9cYbXB4rrssPMh2zbGkSdkLK6/FP8ln1IzL9+FdC9TqTMg6CyUfXZ8oW6XWYH5QfUP6K/izJWrcl2NN2VJzi95ZMf5kx6ful2+YGPsiH+HsnzOhsRHqBtTBv1R/Sn9/aQ2HhPTToNlygoQPmIMIK5CAKUB+6NrW5G4GN+o0P87rKbEVBnrl+tWWFn/9qg7yDQkEyRs0q5NvAJs29I3gd7T9vQ2PknYLFhMGf1fYZx1i01Ot4QCOIduD0B/PKG/Qp+LzS11B1oBm44Dxt9B79qJFDeFfu8zkHJKUoHNUzZnOEqSyfVHuzohpkTIiW7rtrMTetkFG0nYIMm5w9FtTv3c62Y/sI+MKnq6iErfBWspj73dMDYX+lv6df9TeiIxapsAipH2qThF0HTFKqf3BP21Apt03eUqxhdsrpGtD35irlqwSfrLMpd8wzjnlJZQN+L43uMRp2rSZw5ulid/rOc9LHoAAPiNSURBVMNneOOE88Z5APJjRDwJH+uvknlJVy3Lvsgb9kmE2/BjnWUzHwcuuOANHsOWN8J4py+oAHgb/7Xxcduz4P3EG5e+IaRrobrP8gbzvop/d8qC6ytsXvGNgAWnng79yQu8gVewYRmBuJjHtv4e3mhjFA/0V314ODxpwQarzBtet9Ifpq3/Lis2hg/3k3278Isok53X8V8eU8eqn5+tp6KqyIKNcJ38FCrjSmNBGsP1fEocO24UPcaB/CRsruI/su3ku1/9+PXE7COHwHeGW26u+LEwEB/vjnJM7mzw/Ji/5+Lae0eDzDjAOgD8hv6YuKHnRJDxhYDB2ryQMRw2YSx1tR4f17VUxju1K9QP1z2ew2aLK9AteTwl6046sQoE9A3Qu4xJTDbjG+c5zYMGWBH/giuNdx0f6fMm0DuAptCjrePbYFOmRKCoyzJmOzIyZN0LZkrLHbMsyRDKH1Muw+Y5mxu2LTRgs+3Rh8uPYScjJak1BVrbp+M9bTcrriyzLnULf7yNdypFoQfhlOoaNqDxMW7X+pM5OUtt26HySGnR+2ijyTI+55sjVr20uSdxZdxc5gPAt2nraJE0dMs3m35Ixhy89rpS1E02957DbIN1yP0zbzC2En1ji+UzvDF2AXUsj4RlkRLEfpV5Q2UWXXwjpAfhmjcohb1fm/7A2AAIH2gOtvMQm6hD08UyPvuNuawplO0u8cZHfOMl3mjovnD2tLPzgjcyNrt0y1pG6fYBwdwkQmLdC/35DWyBTcn7Fa7Wdtth837eMP0+tBvqh/3iZd7wHxS4icc4vltg0a9h87TNvRL/SezHY5zxfUP0hMaSU5c4jM+TTy28cRX/Zf0Bj3n/gU/VPMB+cRI2HP/Ftj9C+7+O149P/Y4Z39xmZ7k6X1ZUuawgGpcV5GvUpwIzfQTJwXf9ZJn5vKXfKxnLun3SEfsgpKWdXWGR5SBstLi2PxeqG7HyNA1gbAJCrELHU/08wvUJ3XtFKfSn6wRT2k2WuRpDsqMVm7WurfYLED8yvRsP183YVDJhte14XR0ex0cmLvbSfKhrx7P2WuK66dfHkxckhv4G4YvOgT9lN7lsVdftl8tIxCq3afUEQX/L9at+EXENK6qy0V9Y2Ek2NyIyx7RK32J53u1TuV8uu7G59xw73hgnUV8Fl1Z1fyZvbNqu+n3IsTD9P8cbXSa6Rra8YAHSP8v4qg4L/Vs7Jvo0PqrL/VX9ctl87uN7jTdYfyKApHn7ZWxGwRVnDeNyzix4w/Vn7fAAn8BGQ79JfiDItJR9hTfokcdTvMFyXPrFE7wBOm+AWMYN2/qDfp6ax/16bTeBf0kmHTfeIiMd1Qo8i83Wpwostr5Mo6LHPl0+qdM+CzmC3ZDM4cnaFhuA380r9ZkfQny1IxvHn/T4tBuzs3LmC8MqrzF5Chl3WTde893zgL47l21VfEUEdp5Wy2jOir+FugpwepCPgeSior4jVyVH8bQxtxv+fhlXXdtSlJuaLPqrrmP+/gyJ7Il+4uj6c7lIfxfj8ydm/BtmH8FWWoXNRmY6+qpbpet5fuaV+QqbgMXetntdLcfrfdiNhqZ+ku52+nvGp3Jd8HU+Glx3pr+dzkq7STa+01+V3oQk8yKfoi+KPNDfJVZtlbcKQrlvvr7ob9i6mK2Pdz71CR7YTtQ+3L3dlDY3xvfeQxm7HW9kngHx6SOeeMQbc+D+se7AG1dY5qck+Xr59+D9J3ij+4IsY3yIDRI2oR99gE0MGBlrnOjvlxU6u9Lf4hug81bIlLApeYNlNN441jG9hk0aQyWXt1nzhtgV442j0DWdn6l+KX/AstBfwPVJ3sj+m8b3bIwz+fgF3mDusz9PeJZSpb8QP237ifU02c31XKVRDwr0F80k9J/7XeKHvBBP/bpMO/0lbPI2+j5HnoP30bnqKd5ffIrOF2x2dQd37ebxL3j8SmX86FEQox/D2IWuV8FmnmS8XcvR3RBwaKd1gred4cp+5aK+OQ8F8eFfr0dCsmN7Xe0ECnHnP8WzWiI2coFNajqclbjGwKQa3wymRl7/fc0lzzJa/2oyI7Y7gyUWaB3DOr5OFEG/N0B/IMRdWzvh8aV/H2KTxhdlHDcDgr4z0/iPX9q1up7qUGGDrLdH/Y4aYcKR2GfSnyptEZ6wQnX+pD9yWf+t2YimfjMkGO++NRr/1m4e6ZHLD0sp7Tr7Ctm6mO81zF0/sbGjjI2VWwaJVX8tFTP9WYfF2H0R4irYf+SPld2A7GYZH6ciYTb2jqO6Kcty8rj5KcSU/x28IYk3jPcFe96n82xn7DuTjzXWzYI94A20/t95IGxI5XUrP8PEc6v/4vyKNwzyaW/jPeczvYNM7e44VgUzWHovb6Sybj9t5Y1Zd46h5I1LbJSUmsqVOA6sDuB86/xxnOt42da2nKrX/SDX9bY3vGEYDN4I26Hv7Cbrl2KcyRX8d80bflB8JIZVA7SN9/FojFtskv9tsRlYPIz/Ultm52cDxD5XsUlHXcaX5Fhwzccm/mOlBs5t6J+5sVRoSdjweAqbDby/1N3oT4AQUDXC9asePtA///Fp75gFA08EYkc+D2WXukpl0xas46YkTyJ69P8wvusU5EiTxnLNzluSMcisweB5PE5uLPMI5PUYjmkzjiSZpMCGZTK5in59DNRvxEaX8Ylj0JmDv0B/hQ0qGXf6JP3pUjbqD+hEpQroTYDfEWUKOKPU/XM2R9jIxuYknotirJrOb8ZkbCwzYae/gI08wgYJG1lkgvTJpr/bIHEL+EufusKq8Kk2u4+2Los+fYvpm/Sb6is7ubL13G7SnwT9aT0+l6m/PamHQCxQHW2dFTb0Hs3CGZz/Dw3v17DuJfGAfZ9s8Yujy9UnctLfpU8hlrv0qdgvyOYsyBHXp8Y+nz24/6ftrP9dvWvSyz7JG1Re28DSeN9KX2EJaif/90zdJ3hDjTdIF+XTl6c5la5VdW27fCuQZbKb1/fwBnNq4+vv4A2huuO6HmPHug0WJU9SW9E3Vt6IvnHBG+MdbQFGutng/UInFe9f240GbE7inKd54wbove8UvHz64xFv2PmF/q54Y+pg8IfVtZs8veb9LTYS/bHj+kL8J9SmtQHEd/+uYpwLW39oN75hTY7/Yl3X52kxqqzx4JN8gyDzta1HbtKge/4g+Jc9ft2Yfexw4wFhWU2CfE51l93NtnVjEOH92tfUz1k+T767892Koe76lWgv+3xjhaos30HhvrbYZKdkWUNZWgnisiRztQKjAJQYba27YqPPyBjGv9Ff0L06YXX9pfGMfm2xh9u77ucVGQuZhAqeikZv9bptmM0+rb+Qef6UX4SbFKrrtj7quExF3bLdZ3xqKyPraGIlAyt7x2w7PgtSd3Jxu1tsss7218T3vE/9Zt8v+0HpU8Aa8CDJjKquNaoE444HdvaaZC+xaOEsXhdX34Lzq8eWN3KAhnWMi1wXZbc+aqRwnzoueR7pvMLyWT3kuSrLZAVPhSTeeH6+KfoNMq88WcnIvKEwHx3FNz4YUqu430Xmvd09zRv6gDeY9yveSPp9ijcyrva3xPHIeB1CKh1Joa9L/ekWm4/yRmk3yZ5rm9PtnFHxRimzFT0V41lZ7POB//mwHNfi3btscxu/sPpTLgU/KS154ZE/ej/7flebi3YEIMQ4sotR83gQdZLlffR+s11fXvuxI5//Ov6w4/NSGVOwEtK77FySoZGT9PNhSMWWqCHdJTv7mJN7/CX+jlnfDWe2v8hIl4KDhrK61gWPp5a5yzUb5FTGS2w2DpsdKJPfInOu6zLRBN2GXOfc2atMEQlkgHmzJ+OX1k+m7ostbZEmp0LGToYyUiLQ2xjl/QkH0pjpPPSzxSbiEWxOZ/51ug3y1APTX9ZB1qcfyY7yFsShbjU+jXXDMVbAT93rL9u6B2mmux02Ja48vkT2ZlcC4KY4f2ywKla8SzvJdlTZjVTjm3UdP6B/WqABUmD1tP4yNoQnfJIcL3eDyuYgx/AS4Dx0BMpPcJVG/vG2EzfxQoDJ5A3zGFTTivA7jo1fWV8qQ+5RNgdHQYfv4Q103tcm0Jv21LPBG5d+hVWH7+INmMzko9agoMvUxDcE9CPbmaTf0njV+JBkX8dHdpZ5g53/6OmV2PFG6Vf8ezEXP8sb+R1s6gPMsVUwyv4jiFjIT+ANxtDEpE+SPMUbG/1V2PTfnuSNhLXeFOfgjdDeZnyONftUwvFZ3nCZ6RSCdY6UDTaV3bBPPRv/Sew/YjfGeQBn0/7tsI3+GBs/ruI/q1vanBKOCbchd3/CT1xV2k2sWy7GuXyyylzhzeP9ExxMF3/241PfMQMQHtX7ObBsV96DcJQGlLdpldEAr2hJaguC8VX17iD2hErGtYoY2ClhjraUFYRVGCobxjcaFJ5QGsZ2zgDe4rbGW2xYppYCsezAUhAzybhgBcxUxhv8myjCG5OkR+jlCmGJqxI2kSiy7isZIejpeTcA3+EyieztJGCVdfJA96stSFhpzFsU2zdRfLLI/TLeu37bi9gs45vErzf0TUkAhI0tcqB9iU30qS02y/jM5mgCaOjB4Ck4f/Rdy8NNYJtNQlDeoK1+IYUtJ5mtiaIub6eOsV1+SN/Y9WsyPmM3QuMbFf03rHV1BHh6A2SsMrutX/SbF7Uqv5CtzMnmduN5z5HsKo9Z+No41yw72XeQ88o36Fxu6OAk3riqW84/7+WNNAZtOjv4EfHOvLHON5t+BH2Qab4J6VJm86yDwTkeMN4wfYF4f7dzsf+0440LnLMOFt6wsjcAp0Df0N8DxWrfj3zDZRw4POSNanwDV+MNvQH6pj6Q/GTlQ/ONvIM3mowUaO0KyxsaVZyazxedYMYZi8yScN3MxTf0xZE3jTJdYLMs0AQZpaib4r8Up8x2BJ5+eUOPu9DCawiL/i79cbT3tM1ZP8k/GCt/EivexZXdXHPV8Km2q6suU++nuGn7ysevG7MPHEwo7Hh2jug8y0pJMuK8AheMHHO1ItQ9RyVK77KyS7uz1W2/lzKx41Fbc0UiObJKTxssiSTaXlglst92WC24XqwqTSldpmXLVsI26G/BpsJtEsA6Pr2QadTV8Y6B6ZHkWsg8YbWzm6dsjtuqDhmTTrW9bbb1F2VaZcwybcgdA5ST/YCuP9BfbvtSZpMrShXlEgJQAdGY/hNSkGgMlzywYFPJyDaXfG40oKOY2lbcV+Od1Z7mgVJmRirob7ybZqmVJpykAOuRTkbb+yDnmgeizGmifuWQC973vlY5+AnZozHu9OB9YnAWPT3Y9VvJ9HHe0DD+2QD6N/0e8cbTPljI6H51wRt2mI9qfz/JftvyRoVVxkaALe8LYcNIZbvzzsET6Iu8/w7eGIVXrNRlFZXneKPs9w/kjXPi7vUyxz6BVfbHS95YZE58a3c0la0v45v9Sm63wDVzVLh5LbCy3lQFcsryZPPKNqbNPaG/fHOYZcrnRhWnhIeRr/FAYTeZB0Ldab8s5UdT2P9ah6g+LvQnOD7lxswMmmyvdAaeBLofDwdqlHYI0Ef6dKkbHsXrrAsAele0JjgPHdsCS1039cPneaLlJ1a+4gAg5KaMspLqQtFf9gTQjpGqoIhpNplsAskgBjGMVcB1XEu7NE3iTM58DlkP4GwCjO+QmEyuT9aZPwGxtubq7LI7VCMdhbosk/2gcCWN3OvzUMgbFv1lrKb+lM4zNrOO7GxukQn+BMjffXP9KZQ/UgzTD7Xh5zr65Z2zKJXRsSG74fGkDUd8RfTshCVNRnqsOgEv47Vz1skWmxrX3aSwHOPdFb0p9IcEmStb3+okYJNxJWwQU8jCDlPDmEUBaN/44GyCdq76C1g98KkFGw6INnUXzlD4u5R6dN5yW9e9TjqOG59ibrKgbRlfCqxCXbx8XPI+tbvlfURfqHljI6f9fcKfZp9js5dL3hD+9yO8sfEFJlEAclPo95o3qs8/bHnjgvcf8gbLaLzRdPBtwRsJq8gbMd271F/FG8DggmijGP4JYGySlVIQw/jmb0Ltvswb9PRl8gbpk3nj6Fi1E6X+3Pb/mrzREm/s9LfpN/tj1knJG66HOsYB0J/m2SJric3Un41XWX9JZtYJjy9wHX003HG14Q1bV9Hxupls5rl5/ij+CzywLKj52cTTRzwGYZk3B+bT2MxVScbef2HrgsCRl/EfnS+p9b+OP/z40I2ZiPwvAPy3AHwH8H8F8D9Q1f/Pc3XjZOw6TykS1SPX5WvustYVsMMWdQ9AvolPFjiS1Vld6tvnBUntNS37tXIy5GQZOwlJJwqXX0ckotA3CalEmrFI53zDEORL/fb2xImi/0B/p/oAPL1S79o3K2ptfayfcPYxer9K2Dynv/BiqsszSPUYf+uqP+83ycQ6cb1Aa7u5sDnhyY11YukQqv4tLECewCbZq6hPerxl7mxm2NwyviQj6w/oabsN0TFYHj6/8qmqbraZjE0+FwVu0rfufxMaO5WlbsL1S9vOnNHtxW/KLupi+DcUOO+KmwjAwRVhw8Fgr7r6FGStm3Gv6s5FnaGVkR7bPxAO8I5hIhGbXQpLhU0PPChQMX/EWheZq96ZzO+7sFW8YSlSyL4hc0FNMLEtxyhpjHFHTBzaU421B6yZ95/jVOA9vLHTCwTOG5p4I88363g3vHHB+3484o3BZ3q3nQYlynzFG74rKfH+I9+wo/FvZndU9zZ2GXzrAWvQ4BYblvFF3pDHvAGgy3VXtNYNYdxzrNg8mIsveeOCc3a8YXE+6y9gQ/gE++U5lHYsVL8JfIE3/FrXHxQALaZW2Ni5Z1OUPvUg/lt8mWWmvg5AvwnOU3HwvJ309yj+2+nP0xA5pnHbjjpwGZn3G0r9PeYq8fFNjezjP/Zl72v7pO+LHYovLuDzR3tc5PL4dwH8F1T1vwTgPwTwP322Yny8nAwea9AbVu7deM1QbUJKbWGta1vb+tMs+tD00q9EQ81Gq9DglOHmSfpanlBdl0lNJraisD408orpl4xNws/LyrBO7jfhmGUGZNi0Rqwc1yHLOcikcNJMWGu/jM0YgK/+6CTaUfa0NrDqDz5+5QXUKEeBXZVGtZUx9es2R1iFXPK5bNr/d3+ATbLP8KHJOcDrsjY+O8ZEMafIKZM9McaF/iI2q04yVhObyIi5LoDFl/lJSOx31R/7VH6Clzlj0Z/5E6/6LRMh+4XOxi7sBlkn2afMtiuby/2mmxzSXsdp2FyeeLJPRa661h+g/aZMZh/T5rL+NAQQnhb5zqPiDSV/X7DNvnHBGzltyU+DjQ5rOLkk1qDQrj3U4TO8QUdhd76KnXgjzjfXnBqxKeyMAuScxsTvWRuu9t+7eIOur3xsvnHBG4w5t8W+kPS3YONtfIA3lgWIyPuuP+uD/fMZ33+VN1DX7f4M0sEsrzacjZ884o2wQErjf5o3WGZxZPtmQhc6yTyw+NQr8Z8d6aYs+p/2BVWz9YVTUdat9GfxH9ddY5qElY9PF1703cOt/qO5+Em76cgUMY3hmng/3GR/wcPXpt7x31c6PvTETFX/T3T67wH4V56unI0ddE5/u0NinQRCkC7r9ZAigVjWb8gEviujOaRzWNGuLu1mEnkgU5oQl12nrPghRGI7OUiGTDhpYlvSWBgLwrjCFSegqmhHGy0VxEVy7bApsbjAqrxxLfTXV9pp5mE5qn5dxl4nXEfU0SJTxorl0imS3AT4seosykG2HWyi8gtN5/H6xEsSuY7DiX3oj2UK+rvQCRDsZtVfxibXJblshgLWNKRFf498quiHx7OTKY9BexDTU1rauCarTDJet9zxQCUj25xICErCf2BbIJu2Lcsb/GVw7xOzj0usrMaVP+5sG+n6Ow9luRb7hWdSXPvGA94I15MvkN3p0Z+M8qACX+V+sw65XzziDZZHFrvzzm8C/X7BG1lGb6eQKWOFjQ43uOKE84a+whsNBdft+7nkDa9LerJBHlZ/HhG3NCcu4419lrwRdL4Zg9J/TfZz0VYnFzIuNpf1p3W7pD8Betqd2Xqlv6wTGqtz3Xt5g+dxt/W0iVga/4xv9v0+Ff/t9JfjLkXf5KZ1hS4xjuFU1A1clnWQZa6wKuwv62+mIMrSrxZ1g821JLNEzBeZlvElrL7yoY+L/BmOn/mO2b8K4H/3bGFN/y6Tof0WnH91luUDhfwvZl2htvrvCrSGmQs8CIz+DbJmR0spOSaT53q7wcsiz2LgTmY0vjZlyf3Mc12djEk2f3S5wqeUA/FZ6niMroKeAjoIXpe6o36jH0kmz2cuZA5t5HHT5BNwPdDTIQ5A34pheT9FwNSow2dsbo5upk6EuqOPoUYjcOE+vN9Y9xKbHU6lLk2AFQfTnzYAGnP0A1YbGVds4rWSvLdjGLgOG3db97bi2MI7HokHtv0gBQSE87aujf3oO765/8mMu8qdCnGtszieaHM9BLh0yF7maDjf5u6Vnk4peOxTVzrImOOZugmzF46K991qi/5e5Y0od/aF4ZzMG6Tj2C/+GN6QXHfYtcJXwU9RtEvemLw/XwmQ533jkS9Qn9oEZwOOAz3t+K/NG+HHob/MG1yf+vkpvAEP0y9l1Ia+mErvX/e23onNA5tb9ZfnyD4OPQTnW0/Pq2Kbre4HXgHf9/IGqC4Efav/8TkSQUij4/iPX3d5Jf4LcRM2+gOWVE17D08PAe7znbBtum3Cbfp4gdWCY6y7j3EU+oa+YPMj1t1x4lPx3+Jfm/GF8kOmL3x8tSdf7z0e3piJyD8B8A+KS/9YVf/3o8w/Rp/q/rcX7fxrAP41ALj9x/7j86VSNqhM2IIY5IccYi1fiK3qCrCmRVqA2mTY2zQ4Df1mGedE4v16P7FfXnXp7fJNSy4LeFJ607FAWMuU+0UaH2O14Gjie1sroTNONl7xSVC2Dp/T9RDGKwlXDTL3Vbkamzw+b/uUHmT9Hsl9S3iprYxjaXOhrlK+9ao/lX5dDwA/EGaNZcU49bPYnPWj0W5soghYFXn5JqOnItk7HgJfqbQhomhrxQZJ5j2uoV3CKtx4NaUP9RX9PMkD0S+uZQqfOMD49h2NR0aas78H2oykYluWkrMEBWF8iLhudB+2MbcxsMyWes1clfW38anF3y64aQkMkl93mxNQ7aeOivcDXtLNwH7zVe4/ijfsPd4DwF8K3thyKi5843XeiIsQY+HQbKJNIXjlu5JRc79B/7qVUXLZgOvwBQXkmBiVvJE41nnuI7xBMmc/k9a/HynGG4xj6ucaG6zYvMIb7Aumz7GxhOTgdTMXP7Y5jboM+gOQ5oWSN86+IUnJG5mTGBtKyXvIG9s5sdCfdP2h2b+1/30k/su6l4RNTrd0rLyMRKyquoU/SsAiYiXjZnTaeeTbdc4gWx9c5XEX+1nyv4xVZXOX8UMYX62/X8cffzy8MVPVf3R1XUT++wD+mwD+a6r7vSpV9e8A/B0A/O1/+l9WN0QgGiwKoqCyHilxzLStO8v6NTu3VDid7axBIctIN2TMu5lEq7qL4+SydqMIQEfAikRYeQIqsZnny2NxllcIDXdwHl+qq8BsjuRi/WVsRurFKrMmbJJ8FVY82Vrd8X6BnBv9SeyHiTTYDevgCZtb0jy5rhWlQXFfC64LNtd2U2JVyZjr6hTbd/FL45t2U2HD51l/jA3VZRl5wrSyhlNOy5M5cZQpP49u4LgnDnh22GQZFf4BZxBWfTMZLfqd5/wUK2PztD82izd7eZVu4xVX6VYnsd3c7073lXxLGlmF68XxkPdHn4994yfyhg7eeJlTp7x/Vd4o+0XkWJnX11SrjA32+k+8YTxb8oYk3iAZpox2fsEb5fg01PWy5gcn7a58WXfPG9XTup/NGzvfv7Y5jXUTrkjYPMcb6v1wqvRujvR3iZ7ljQXzjT8q+pPXc4LOvF/V3flU8AtUdYs50ceUxqfzv+CSRd2cmhrGz1Jy7Bg4v5irJOovxKhnbyPMLw/0V6XwR87M/sfjq+aqgkO+4qGPi/wZjo/uyvjfAPBvAPivquo/f6lyuimzqd+NVGibT5oIgnFUdQeZydJPUdfI4ui78fh2pnwNm62Oh4OKzn678Qq1f0Hm/n5TrKtAX5U41J9QeQqCY4MFm+VxO03SOZ3O758Lp+Tx8XNhSwe1rYBnQMAkM/uZMoMm7kSUEqos2ICwyTfvLpUAchOcd9q1LfQ7dJJIKso4bS4JRDJV2CT9wdpUyKE9vSXnVRS2HQhzQ+ZMyB1GthsEGSt7tdVzOQgrGvtqN6S/4rysi/S3T1a6pvSI2ZQALdp6bJu8eWPrgTN06sTbr3At/dHaVmg7ofbELAW/QX+FHS3vgphZZX/Miz628ppkVOIjaZOrqrpl2k2wV8PeBEtl6VjnOPbHTaVHR6kH5o3KN34CbwT/H+VHmtfCsZsbjdU3irnqZ/KGXbZ0PPORgE2WbRP0PWF3eX71uWjwhm23rkXZD/FG5c/MbUHm/nvmjWDT2UYf+MYfzRtzfMRl5Xgl6k9jGd+nk22bZKx5o59Lw8/nja3dXPljLyQNfcfP72nr+8qn3hP/LXZz5Y+T66Sh34ydM5a7jP/A+pt1AhbhUPpXAlb5dRuv2QC5AXrvL3y+J/6L8cO1/iI2tf6+5KHgkPVPfXz0HbP/FYC/AfDvDof/91T1f/xUzWRA2Shzig+XXeqma3Fb5VE05EUPQzvgL1fao2tri1ejL/ttLKPEcpXM7gwSxm2PveUAoAJ9G9vuosKGxiabfhzXVSbOva/qzv5kEvhNoHebP2RTd8o0dUBYpX6F+owEnGWW9eVj0h++Y5umEb499rTdUD+bukF/MP2NieE28vqllbYQdEJyaNWPnfIKfuPrstgC24tPzgfGjlOz/zC+RcaMzb5sKXO4NrY0pndj3NZP9Bx6mtCU+l9TZ4p+LTCBzCd3hQ0u2FBdw1EaILfxjlljABmbWn9Txt1Et9btMk0dZp309BiZ+hPA3/e0AfFstMEm+5SM38rNUawM1Y0+RFtUv3qU9kG8UWL7Dt5wOWfbju2Bvls+8UZl78ti0NY3ZP6OF3hDiDeUeANtldnrEA6j3+rTIH540P6a3UGG/ok3XHbGJo3vQ7yR2pi+n3R/oAf1b1N/S5ugb1CVNoefwxsDQ1E4b8B4Y8F1tJv1VT11WnCtbHuWywuQnlZ3w/z+nBS8scMm2etsFyh5g8s84o2RWnlSjANEm6p0sMUmXavjv3k9PoUc+gPGzc+Qo/g0hB8t9fvT4r+4qCIWW46Y0Agm8MAjbFKcAox5bas/vkGUxIH7t6G/zPHrxgxQ1f/8u+sCwSC2j6/FzyIxsqGFupranf/KKC3jMbFAoOe0eddpqDsJLxJysfIXxpdJVmk8/XrI9R2+AmA8wl6flAVsMhYl6fTrPPbgjEtZW3EyuUb+tfkxCVz1U6ZEbGSKmEVs2LviY/4pc29KeoRFGF9js8eqspNSf5h1V5ksr9+wimOosdnIREjEh25Xtj6wcjWx/mSmDRZla9vfybQJIAoZK5lMf8O4ex598ouA11bGC7l2uGbsHGX61/QHqrvBpuSbgES0m0r+BZvctqVtnVOO0qeyXIFvNjhl/ZltN9BkrvZprTjeV48x1ogBfi5vPGF3Ih1L5rmHvLGR6128sciUOdZGk+sWMjWSKSCTsdnjanLEMaiTjxa8cYnVM/5pvz/AZrE7a1+BmCGRdJKxqrigkmtTluVqKS7x+qY/1HUXbIL+Ch1l3nB5AXv6xjYnXMJiHMVj3ri01w1OmQtMf494wxo8hTNxS5/a9xMxuY7/ijkx4GozOQCV8G7/Y1svfOwKq238V+jP7EkA3OFcZboPMWklE6bMl9xU1GVeDPpLuP86/rjjZ+7K+PwhoK+3m+Osj1x5whTMSd1vWFLdMDEzyQLwlxYbpROc/YV6bTrSNABPQ3I56DF72/U7+7G684Oo1m53j6v0L53FxopgnxyXr7dXRC6x35Duk50wjG/WnS8vs8zw76D0x/w6vx9DOIePatu/kvuJ483Y8OSb85wlydhlUog0aFOcOOOToKLfoL/xb0hfFRjKRFipX19pMtYkXHVgJehpUraSarrPOFT6k+QXXSMf1x/Q05GOE+e9hfqUmUq2DeSPMucblKnHWp9xckoyK/o7ECLQG4C3NP7Uzwym4k5rWcYdroZN2DE146oTKzTpdU7WydRfnuiCbevqjxmzS2zGuX/8Gejv1BwCPRQ4TyDZusuU7ZX0s7w7kPSnO38MMqW6rx7sC4RP9I138kZhowtvnOi8Lx3L8+0J3hDiDalt9GneKGT26AnoO4Ka3ZXYJBltvsm8keem0n/t/Jr3W+u8AeKNkvfJN57ijSXN7Am7U8wt/I9eR7EbL7okDRMbxuoF3mBsdAgSZDLuaIKzaX+HkfSnhFW0V+oXKHiDseOdkPM1wsq4DujvczXijcFFwbZLe11leo9tB/3ZoWPuPEZdredif4dqyPha/LfnAXs6FeIi7Vh13j+B+1gYz/GfYm83IH98Jv57xPsK6Inx5FrHNw47GMsC1yvx36bfh7b+xQ8e2p/9+JwbMwyb6UuEgNBORmEFQmAvoTr5irsgOd1aV+x8HNNQh1Pa42HjEl4F46Ucl5PSd6p+7dK4sfM0Eye+XlbyahTXtb8V0Le5He5ufFUKC0/OYcexjCs9yhbCRoVXcoZTHoOQRjwYUzE22IyT8BFModx9kE4qHE33ksrCMFHgNpZ3GnpKC5NHiQ33Ofpg3PtoQ78I/WrEKuNqGUgKYOjPcPQbVaGtlLmup1SQgl0PSZ4kowQZeae6ob+Gbu/32S5Puq6TgM3oN+kkfJwy1/U2CNdFfyazzr3f3xDTihKu4ckyCs4I2MS6nq5VYhPLGt4C+HbJGEGdK5b0t/VH4d+TP9rvl9jYedcfFq4iW882ZePb+NRWf9yvyMJNUIEcPOu9cwb0dzGG3BZlNR7HO3nDfPqKNw6dWCbecB0m3xcbrftkYTuJU7e8ITVvAOg3Y2Z3BwY26vV88eQp3ngRG2TbYd7vAWsIekxfOvucfIWXeOMKm+kL1pj2VLgTXSvGNdUcKTOI/2m8UXCbASMKv+kveaPqB8/M41ZeAx45nTTOA8Qb9g3LkO4/dIrZVuANioFW/dkl2esPs+HAG037gE+yg8peDYzjnfFfwibwfprHjWNFAVvsReOYhvSX/0sy22sixmtl/Gc4Jn+MMmGMXSLvT2Q2XPVE/HdhN2v8l3zwq9/57Pcf/FMdn3ZjFiZXiY4GjJWH9Ji43LBgEFasmwgZkdwWQkasG2oGGWO/sZ9Zm/sRL5tSFxF5cgY6g6hCSkvGJsq+pgHwyPPqTsaKz0dKTe7LRLMnZSU2SNisOgFklSnrZMiUUyIW/ZlgI8haVpMXOUkmurbo70FqFNduEstycqOoFDLVRMlpSNs0M5Yp1036a9yar46RkoIdmZwrNouNZX/0G43oU6utFykRHaSpP5Bakw6mD3nHpY0h1a1SXFjXi/7G6q39pwm2Wbiw7YwV/cbvhzyNDffD4Kgi64/rBqwe6e+CTzM22fbj+fNHxnK5OVjsu1+75A3S93O8MY4zYZn7Zd/P58viHVa8so1usJ3+L5D7bLJjw7aTZXyeNypsqKfE++QL0gXheCzMkdwnj5fl2vDG03a38AamjwqdbsZ3OY/b8YhTNzbn2Nkppcjmfp/ijdQv6/4Rb+TUOFeF8UbAQ+YZ6X7xz0V/zMeP9Jf+HqQq1ucpQX+l3YSm9ny12DpjgVV/c6Ye6f6Gyb3Xj0/vanst4wcXNuNa8H7ClWWy38WMPOtvY6+s24Uz0/nyJDvbclX3ix9f/b7x2eNTbszCpGdKt7QGNpZcb1mR1FQ3XUuO7nwjmFuRSq9vO071fhD6WSbmIMPoOU8gW+OndmWS1ALQ+BZWDBBiv8s31bYykVwNc1fGfM1k4vGNy6rwtE//8NCVTLHlVSc7rDKRE/kE/Y2JGaJQsR+kHMMaWGGVo8DC+uW6kdiG/rg9w+uoU/Li6Bj3jE3+u5Broz+fPK08r8RbrzwxMzZJhlUnG5kY57ZepwRiBqDr7xDIW6Z91n3s+8qnVpk3+gP5H4/JFDZekFabeZlvslyP9Md+8Qibyk8UY1FE+sdPacewGAwU/ljpbytz4oFlIt609eTBfrcE9B/lDWr7Kd4AgGZp6xJ1mn0fScYUMKJhBk473qC6NW905ekN/RuIoV+Esk/zxg4bvx59ARkrAHpHD1Jt3uCnTcyxOT3qgjdewybZoPsCOm/8iDrL/h1kfCdv1Nio9+Hyng94o4xTsu1f83HJG66SpFu3dekb3jBvJLt5zBvRp7jsyhvFIXzjMapwjMNprdw2NfY4/ivsZsMDFncpOiR6oqfW5++qFXazjf/GOK9tjvU35QAAyePLMSo9wfXxMm9VMm3shrEpeZ/lGIuB+cHClzuY2//kx6c9MatJBwvhl15OxlV9+X16oK5GSufCu9PQUoGQbKsTWn2ZPhJkpDZTv6Estc8rO77LYzMnEZR4CLcRHXbBI/0dd2WklRw7H2UCVgJATqj0ROspV0EAIss4L3XCMubxbfvAfOTYYp/CpF2RGfXHZO2VK/1ZvwlL5Tasv5EepQGnMTlsdMjvPKhj/kD3WX8sIx+eyqhQT5Gak9I6abCx7PpNf7P92s/huszxQztwnmalswL7XWnrF3KV2Iyc+SGjBwfsf6jr87Uw8RV9uv5gQYCs9n2Fja/aFvqT/n4Z6D1Yttf87sw1NtMv4hbvmQfW8YfUnvceO1uqZPV/BXsu3/y9819BT4V7w8Ibjo/7INtjvinLOEvNG+xXKbV+mrz2uo3aAcuVgmTqN/PGsgvv9m+z0prrzBbl1u1OG/q3p9wWUjDqGDzSST7fYGO4ZxmtLOPtKXcJG3kwj1/I5LxR6LPjrN6Hy2wcO9LtAm9s45T5d5gfeLw2vgXHwRsuc34XSP1dWeVUPKrbZX+GN6ZM1/FD5g3Ginh/vK/O79Fu+82H+Sewxn+P/NFwGeX9p4bBB/1zBzJuYvkGLfKIzPqsL/df0L8oyo5x+O95bhp8MHjfFi+9PWorc1XAo8Bmq78xNpaDY4RKFb+OP+b4tM0/wo5DblwIq0rruyWIE0ebdVV0bp07+CiQoT36NasT9BfqrYPNF+hzv2oWyw6/K8v9IpLXWnc0q+hOegIytpLNMq2pGIlUzakLGVWHI1K/LWDDbVGKy4EezAjGSvM1Np7uU21j7x3381UmXfWX68og+oZ+o+H95PFmbBB0shIugg1mu1lSo6iumA027Zd9K2ANdX2DkI0+w/bNi00V+iuwmfobk3XDfKfAPw2hAQslOyrTfbLMhU+x3bj+tLD11jdGwQHI29SfVmW3to2H2EgKatsG10V/GPrTeb0cLwgrv/GS9Tr1W2JT6g8Ik7y95+NcddWvxpvbxbZXv1iwuZAxBETPHm5bCHhw0PwSbyz6TryhRV3jjQPAd9liuXIqVrt7kvcB0LslxUKKjcGevLUW+dWxif1e8cYz2EjTBZup/+ELY0OEd/HGxkevsCntrqWyCuBQyA/BlvdTv+WcSPpa58SETfLfqD/iDRk4VbxRYRH8FwlXO1eP+RebC1xHcg0bF9vQ4lXeAFDppMu04dTF3zJW6HrT0Z49YSxkej3+u7B1qxDGNf6RoT97WiYDSLYr1omMmpW9JmyiDWqtv+QH+YmUxThBf4tfZK66iP8exQ9J95JwRZLvqx1yPi7zZzg+7x0zoK+aVJPP+JtKRoO2uvmxN9UNKQaVM5zzJyMAdyQMucI5gpOhOs+P1BMxdN6adaOMOthoXBw3QhrqFzJtsMkybh+pV+TlK2lEFEa6Wow36G+jk0p/O5kK/QXsGuZjfpVY1scb+93pJMiUseJ+EzaRoIg87T8mRhrTrp9wZP3hGf2tunf9jc8v2BWR3Pbsd5tKvJW5xia845n1x22f/C7eJqjDhf4e2PZiN4sMhJWdkq1f2c0jW9dnsLnQp+vPohRFf+F7SZtjufY+lf3iEptcl3riXd9ePfhmkfH5q/CGY4lpd/z0L/soLvRf4PMe3pCmvsMsFPQ9RsImz20XvMHYyANsvB8/T7ieJsaYJJd5rpDpCf+9xIZtLcnIu9V5cJ/HSFjkfhdfSLg+zalQWGrcyhvDs69S8h5weZCZcMy8scQPVjvzPrmrEq6v8cYVp6KsO+WjsmmOVBpP0F/iHO8n8OjGbi5sPb+HF2Ic/95b1FGQ6QqrrL8r/5MdjnRuMc4po9U9ly91C2ziQk7Rb6U/wvVdi3F/7UMfF/kzHJ+XyujbV2Od482IdZ6vzoB0LvFch+EbqS79WAEBGnCeJ3wnRY1tx3xr7kfjOXR5GrKSMmKqnbc93NSfcFB6U+rXd/0xcmEIeEIssbJJFj7heJoDjaNP7B2jkO7VFKq0Q9hWf2mnMADLCuimruE657mYS7+UPYTeEYz9ZuLf9uuTb8Qmpx6y/lRTmo3CJ2zTn1UO77wl21bMXZyexcbPja4lFSdSVdOlYGIFmW1V/SzYFFhlTJOMMXUx1TUnbWdfchWy/2Q3ywohPwVb3uWI2GS/iGlS067N1r1tX/iRNDbMymM8nrpIPKG5fJbDbYuwcR6I3XqLAnCqm7IvV7pQ+n3BBpCkQ05JCpwCnfaaA6RXD+l+Gjl1yv0Sb1TcVvEGsPbVJm+I3/0+yRtVv4lTc9oZ80bG0jdDGHOR9uX7aAOv8kbWYcamvFGcZe2pmNxHBft8i2G1S1f39gi7p7GhYDXYnYabI69/KPlo8gVUvJFlpPPETzavhSdQ2SeJN2b6sgb9LbiUvLH2u8jo1XXGNIwz80bQy8DuUOj4zAYlq73GGzv9UQol689SF3Mc5q9oHNR+Gm+w9YfzzUSH5xfmAccG8RCet9uwJ3ayF7FZUvCTjMH/kl9MbGg8gHMV7jRHPor/ln4VS4wjfmV5Uuf6M+ew8S0Ifq3jI1n2X+n41HfMrgLm4PxmdWky4TL5BiFsZ8vMa4TfMLaTHSkRZJnSps8EudwZ7XdJziCj3+kw5Zhym15XAW3jpdiUL07BaHiPwBx5RwZpgulbtKZ+M7kx5uObLDjQP1hpDVXEyPgnGQGMZ+Y8jnktElqWSeb4re7Rm8KB/gJ4m0JwW8JtVxiFMcjESgZWKRVOuGxLdW/aAxnFfB9oHCfl8QsQ6noK0gWuc7KVZOv8LkSqa+0PnHA3PLjhZ7EhOTbYMBZx8rZ+NF4/BNCx8Ye/R5F9Cn3TGQ7kkz9OKFZsYr8bHzQc22hrYKW2wluVJx+qvlMWbsRRXOM0FF7hTLiKpTCavYOwSr4c+kkY+jsRoWzuazNWs6NqfK8eMnrfyLnlDeLdLe/veAMIcsvgshCRJLvrfpLkKO1v/NAYW8J1wVY6p/K1Nn6/ofOGp0C/zhv7OVFWuzPfMKm9rsyFCvvMBgAQx672tfkPvY+SN67sjrsi7MwfZmo9FWyx7jVvRBvWxOUePGd75fEYrrbIrAMrSx2sfOmSN/gbUhfxQ9Vuquvvc2Vbl9QvLnjD7JV0MNNWn+PUxdYFHnfhzT7SVegm/8Z2A2or23rQH8mRsaFGRMb3BA5AxuJDuAGpsDEByn59WWe1t4BNrsvjoxj11MBVkuoGrDYyr/qbBev3RQ2bKHf7ync+CvzaLv8jhzkSHf5uQRX4J3K1u3+eVxu1FJ1lOIkZmE1Apr9Tqd1KJqxGDyQDtnWH2M/ijCyTAOb+SjIJdDy6Fq+nuZ+ATYEVTdb2AFwIm/xO0lwX0QS/AkZRKvHD0shtMNnV42WZzAYMq912tlmmgJV0P9RE2EGmrL/KrjYykQoWuQwXxhU6XlVXcMHRnXg7ecKtsGHsskzLNsmMjc1zfn3Y2EhrMWJ2bY22t3Z1gU2wK1sgJrmirc9+pq13uTxYw0x8CbgW+spj2GGTbfBSfy6UhKfm2dZjoJZ5YP7rWGVsJLZzZetmVxhYUc1VB8lupvymP3qn1uQjGQOWy9/GzXmDgRcOId5n26Lry7ViTC/zhtld8ybGv7POwmUXvOHvabB9kxyu652vcFkhmU7MjAvv7jXeyPNcfmLgg8++4Kv2LFD/U63jQu+cGrdy6vx3h9WV3UVeIrujJzHrk8CKyzJvsA76sdiRJL4irMLfXmfYJj21e403Co4NvIFYV/qog62TzEMYkklWnWSZGKuBrWLlfUllLzm1wHEIDb9JgI3f7C+NeaM/tqtX4gc7JMVwXSbDjW7qk60YNqVMGSsegx8Tx8rGKq5SR3XDTaX+aq66jB9MjiUV8gO8/+t4+fjcJ2YKD6qXFJYdeQGYXyiHG6GZmJOz0ASpg7oVMSVCMVbfdGwhT8YPLKuRTFhdptWBc87w+pgfVJceI1uZ01LhMFOVAnk9wGpgw7vuEAhOHtPR5q5103l5wuk8ZS8RazvBXzbc7uzkTswTdcSGd72yKYZXnFwmL4NADiFtlD93kOwmrppLHN9CwDGIUcfGbI6xEZfc6nj6zCHAm87Zo7R161cWbLKMs+ycWiaZDxnLupi23bTr7xz6I1xnSgkRu7WwwcbJm2xOvE3pNsM+QzL3DW7E9We2nieRaNumEwQZt9hkDjGZC1z9CYGOa5aK6i5I2EjWCU27z2JTcEbABvCVeH/Hp2GkEtuYfF/Frd0ossxY/HG1m+HvZhL++zlw/cAMnfxqxxtXPimkh6d5g9MGh5319zhskI95Qy/1v+pw/itBZmOpgKXp1J4OvpM3JMnIKbNx/pl2N1OpND5NULM77SnH9/lY0Bci20zhy/3CxxdxdU711xlqu+sYJRtVjI8To/sC8cbkZfqbsFn1RzKx/szmXT1a+pXbnBJWB3oqozbM3Rkf2w1SvytvXMQP5L9qNmD9aLc9PZ7kDZn9Bh+o9Lfh1ICNl6Gx2WJcI6zaE/HfhU9FHph1F07N85yMtF3t86Q0wXkoMNI+ozwrVoH3eYzEczXvR2xWrlIfhooA7UTYeERiv5lvLrmK9adk69kfZcY2mV+/6vFZIorI/wzA/xDA/2v89G+q6v/xve197o0ZGdjy5Xc3wsqA0zam9k96WZb/zg4j/FX1EWS7aMI3Nrj4t//BL0Wq7GQeR2PLsTQIzHZu3fF6PvhtdUIQVpWDjh8WrDiFIsikQd5w3Qj8ZuUVniN6JRP/S9gIYRP1Z7t+IVZuCcfQH0ZKBPq7D7SLm6DQX0X2hhWng5mMGYs8aZjugw1r19+wKZ1L1kGG8F7BkInHl7EJONpkz3ZUYeO4nv0mEUrfn5tYaRrP0lZl29xvicVqnyLpphYAbiO4ext2RXBF27YZJI8P07a32GxkHloQrtvOmSZ4qqcyhhtFFwDJtklerLgu2PB7e4JkRyQrzp5i4zcUKfDM/JJ5gMYXsEL0x6WtoItebprNB1ZPl9S71VZc7o1Pst1teYNFF4ADF7mNQKwp2O4f8QbjsXLq3s7mzT/clnmnM2mdN1QBub+DN9gXXsRmN1cJdPKG38iygpJM2d5JxuU1g1C2sjtN5ySXP0lQ6H1cvOKNissrX4CE+QZsM4vM0TekjSBetX9gurVxQ0RtcaWtD17xxjgS7y+84TrRPj9Cx87ET/JGwVdq/T6y9Qob0dBWnyPRsXpTqPN+tm0bYGGfkuO/bOuYuue6JlPlj0e/rNqzCtR2aLR+8r+hX9bfxuYy74vNPyxjjFE7Vwm9Kynpei1TidWOq5K/lNgEzvjiN2efK96/o6r/9s9o6BN3Zdzc+MgsYeeh7Lg2Da+uO09zPzGo0MTQmjWb6vK5ogdvS8BCZRVTDhGhYQwH4HNvV1A9KSuJ1Ca+1C5ft1cYQj+j3RiPz7ozGNWxIigzlSrrpPi3woZlkiRjPNTm2yBzCJBHFeW0s6IfxsLJHPO6Isroj/l11d+KTRqflxPbZC3KxOf53SCSKWPDvF62lbHJMltJVZw2mRR2sugv2WvGJteNtn6te3X9WZ9VUEvosM3R9QWbFs8X/eXz1I9Au+7OULjmAfJPTxMcsX7mgStbX/zCZZ1PtRVdf8qbCuzaMawSNo1vRID16SRhowkboWu9YCnEw2ObZjZHcc2pVq+oW/KGrFgCWNKNNenhEW+0hI+X11qmrOMgo7fxKm/QACpOrfzoChu2B6pV8kaWkewu7+bWSEbIi3Y3ynIKNNB5vw//AW8YToUOwjiWuhrHm2ReFyk6b8xXI3KQnbBCxkpL3ngYPzA2oSyhoHZzhuIoeCNhlW39EafueB9DlokwcKmDC5ki/Wx4IGNT+HYvO5zu1L5bK+cTk/6qOPQRV13OiS2Wnf3FRTBP203y7LCJWCp9BmXIPE6fwybzKb7sIcCf4aHeU8fn3ZhZIINhILxNMDCNDgCnWfl2tbZSZhMaxt/e9nx0rbYSMM4hMl6IVfgHGM/kHL7CRLOBWF/jfNkdaV4LqW/UZsy1Jhlt4jPGavZnRUJyiY2tFimMnHo9MVzHI2rvlx/zV6spirFq0/rL6KqOhTv6wOoKG8bRUg9AMs7duApsCqw8uG/oH4RkjAgbp0hnmfWGzMa711+BTdBPT4lQm01HKqNqxDXqhDC+wGaR0VIMyLYzVmZv/Z1FjLRBk9/+Y/1Vth3TOQI2hV8E/QVsphbE7HTMhSKCs9EkFibmja1721O3MmQ29Gx8rL+IDU2YwEiJUhuob8jR9TftZmLD/DTH3PUzy5Y+5eOz/skPKPjy4OLsk7MI+lOeUydQ4YlXhdWUmb3B9eXYmP2Ymwz8nGujz1Co8Nqx8MaQm8aw+q/OPsN1EOfN9r1dRCz7oWNXWemZeXfWS90vzwMK9M2hRlvOqZg+CbC+2d4mB638Y3YnZHcrb8Ck4H7sd7a7xm1X46OyzqmzrED7Qpzxhvc5++X5Zv0AN+vonP6W7G7aLok5eMMwZn1OtPSaN5DS+YP+JkvM+IE41TGpsTGpXN8cyI+dBp/njR3vF5xK8QNbaJ4jm43btssX6amorsuMPfN+tt/VtitOjbvdzvIh7ho23hdFxP3IfMr1N7CaqZeTy3y8wy+m/00eWLBJc6T43DiGKu7Jni4+Fx9rbKbNXXBVmm8iNgjY5DlDbJHG9Wd2jZ5mv8PGOWbPVdZOjQ3janjmG/+/t8e/JCL/lM7/TlX/7oX6/xMR+e8B+KcA/nVV/X+/V5BPuzHjdEF+Ib1MLxjOMHmlG2JenfAPw1rtRs4Bqiv90bVCesqSaHwMznLYF+toiU0ERLIkY+oXIMKSpZkpGwdjYzh6at/RyGc0BDJ1GMb1jE1ctURISQPJXGIT6uqwEoGeJ6QdA+5J3qyHGbSv2ChjI5qwQCCwjI3Q+Jz0b8Cp2j9QnOp2chUnXgbjTNgsu1S2RHaETeyHV6N6+SbAeWoPnu3hBm3pHgiOdHI+wmanv4xN0MnwE0vTOJV2pMsyJZ+yySr1W9q2BRSXtg5PiRDoyFzsk087BWdYeTQZ3JNJn8YDQu0mbMgGXQ7M1CKbmAH0p0ipqu2EpQ2QtAU36z+keWasGJsUuEjgLknYnNH/hPU3inOaTfCxtV1Ntr1+74gCieAXEvQVsGI9vXK4sWbOQc0bE4SN3U1bWnljtCQasAQAuSnOU9Ga1PgE3rBLZ213i4/aD6lfb4uwJB4RUecNveCN2W//4bRzuxb8V+M1gLDphXkBKvN+p/oul9wwdmec/pDnDLukhkVhS8C5PFEDycxjsCKNcZVxm3SOe41neGPYjfO+XSdf6B1R/FBgM2XSkN4FwHlV74P382csFv1Zz5HbMh/v4oeMjRg2Xk5HKiPGXCQjNZWAqnjDfDDILHEeT9iwXOucaLxBdoM+b+upI02bjpxyt/C+NbKPH0z7LcQ40R+jrXcZT9uS3tNlAcjp9sDYSMaGJhd+x8/jB7F+osxCNsfzuMkrx/A/Ya7SGYMOjljiv+QXCw+Y3bBd2XhHWwZBy5lPX/XQcUP9/uOfqeo/3F0UkX8C4B8Ul/4xgP81gH8LHaB/C8D/EsC/+l5BPm1XRiYXM+BM2DMo7kfeTTA0mdrLk9k8V/pJcYrM1RKqG4iTSMflH1eXlJZ6qIVM9bkfp8R2g0wrVhmb5aaVxpdJqcKGy46lmGLThTlAu1ebBVZsFiLdyrTBpsJ5+yTC5Mp1EXYlkl1dayJj5cVXmWSsnlrgEGS0skMme+KzykSdXOmPzpeJn8dnj6ZsJc0nnLWu63Bca+kGhwaf/lwn5xWbBO3YeEExJuitrUd9AoZVvKFiOfY2ZwsHSPJ2LoD9Jwg7mWW5dFn4UDQkrJL+mAfKdC2uGG4sMBZvbVU1YpMnYO5XgD2/BJnibyV/AovM7zp4DNk/7WY59YUczICuZV6obKOSdTzVeJ43pN75d5w/45OLnqiumc/5kDeS3eWbw+D7UaZdmuB66CqrxusLb9C1Ms2TGsszbph/kl9V53r2lf5Sf8wbCZu8c18QodDfjveXuQpqTgpFdEgN6BS8kXw6H/IAm1qfkTf694mnEhW45g1rh/iLx3AZPywy6VJ33C4NWyeZ0vgkYbOP/+r4YT8npvGCb/6CISDHfxkbAcJ485H19wpnzLHrlAOEFV1f4j9qd/uqi8tRzIkC5KfEH+L9v9Ihqwp+2qGq/+gpGUT+NwD+Dx/p65OemKlPOjOghxuZH8mgu0PrUnamT9M5t8VpdeOanph56iYPyeJShJS8cZ0f8ycDdhnTJGAyesJCklka5nsPGKsjmPWDFAUBLdgsFvocNoyrEFa+e5nGuprrMqltnDv3c4mNIJC7PW1Qy7s+baxRDl1u2Ai7Jain8SjJfIFNbGcESGN+BnR8Zyf2o+XNBPZ2E47C1quJjLEaK4Nq37FxO8+2XoxJuC+Wd/U/1xGRu3LZptQ/PGhYPyugq0yWgnelz4ozsMoUJ2qNfjAuu0yF7hdbX/y+kGmxt6TXsDpr40z9nBGrNYWy0AkuuMn6tbqVP8r0x9x2fEL5yjEG8QpvXKbkIdl75MhG/mn677yvvZOm46OtU4aVN7SUMeDVlMTQYDsz0Klt1GQ8dch1rGVX3ki+Uck0bMmvExaZN+Z5wfvMG8scydhs7O4ZTpWC24bMmd8sDQ729JjG4DIFbHZ2k7Didi7mqsmxK2/4jaKqTeOXuneOlQsZN9jM9Lf+Wyv0F3ijafgECKitS5lQzU01Nqs/ks2hP3lxeQbHhpuGV7Gp9DfGH9N6FQs2nimAaVcn6dJkSvaasan9cYdNOjcgkj+6TMRVIidOn8y4vSFX5ur0RLe2G6Sn7WsMgYQjq+tLHnnYf6VDRP5Tqvr/GKf/HQD/wUfa++QPTGOd8Pw3nV5rxrEpaz8pMFKkJiXL4gz2pwJyAq1B7YOHkNlvJRP/G9KYqB/FGkx4tZjX7EzpAxiT+kgZVH8kTu0ZBhXJZhltsrJLhM28vmLD/fjKY+vpKHro+J6ZYCUdxHMlbOzJTTEpSP7Xn/LQGJBXF8eKU5OuP98uP41P7J2SWXfqi0pbmzyG6m8i0jEtuO77ZNzl6ASYsWZsEskqr6YWk6Bjg4TNfO+AZQzn4+mUp0P4FuHpqcHikzLbFrKjStepXwFNUIYyTU49zWjA4DexEm07B3EDX9Zf6BCA2MxvdS0A90Lrk1uzz44F6c/SaPgobb2X09C2xnJ07lwQ2tFQL18TOaHSug/yO2bB7zNW2f+S3ytm2ly2MSs2/NEWHLjbdx2ZczJ/MW8Ui1O5bMBSDMaJZeCNUUBGKqg0jHT6HW8g2Ar7GQdgc76JN/vZzpw3ho3atth9rEO/YjuD7nhjnLtvCL1zOrGZ3aqPx9LrdnNi9A3tftMAkYZ5Y5Z4Y8OTce5Ndoe67rTDiY3rDHD7lnZ2HTbt769ZzvgrvMH9uv9eY5NlzrwhArR24m3syrifQxD1V/W7xQYh9gjvQOfxDZ2JyOQN59gNb7B9Z18vsdGADfujjLl3ytUd2/yuNeA0/S3YJDkuFubCT+GG5NofZdiV6qh3YOzGq5h54zT2jM3w5el76PNPXriyFFWWqeDjkqukv4tn7zzXXLXKyFjlOdF27VwXdRmbOb4Q4+T58Isdf+QTswfH/1xE/svoyvmPAPyPPtLYp96YhXQDHY+qzagVfaUjvbeRJ/IZoK2BDp9LzpP17VEB/FBL1u6rJUb8LsfabyC1bT9IMoK+xzLes7F31XTk9J+AHMD97XSZoOibbhAWeaedkLahUUZpBTbVewmjLV8xVSOvvkGDbbhi7KFjTN4Pp94oxg3dFDGnliz6Y10nHBuXhY7VN4EcCv0xZQI66fN3b9pBOmI5PBBP/VJAWGFj5y33Yy+VH8B5177l7pQqYNPaOWXOWCVslncyHmDj111/gLa+2YE262z0e9D4hk0+Z9t1oFLbOoAWsbLc+nYo7m86nxBrlzHYeuKF7H8s05pbzzcTETtZOML0pzjvUqZ+BVtP49vadtYZ9zvUkf1RUj86bqJOJ8peecHmwralXfvYFZ+2hlJ/rx6u52d5Y7lR1aWupPFnnmT9t9Y59hy8oZe8AWDbb8IuY1vIbOcZyyadW9uB4Qsb3gDSu2lY+euSU/dzotp8RLg27e9+3m0BhT9Jspt/nrG7S77iOXHIkexQFcCheEtY5XlOdr5h2GT95Xkg8eKON4z39QDe3hCfgoM4VRNvYMXqmjcy76/jDTK2sU9QG4uGvlg14ocLbKw/k3+Lzeh3548t4drsHecb8PZ2Am2GoGUK7I73sc5V/CQrz82B92E3rKOLptBTIAq8WZ90AxJigMRVHMMtcRhymmCWSe0rMT7+HOOcijLGaVLEDxu+WebEK2zSDX7Ldd/J+3/fD1X97/7M9j51V8Z+cwZfcXiUUmBl4xOCbCiJ6MKqiczrYxFhPv0ZN4qhX6TVD7s++1Akmb1kJKQs81wFEpKxn91JJmB9N8Bl9NWTVcbeMqWy5LobbMpVFB1wGWaGVRs1Zcrp1Z/WX42NljKRXEMWX9jycRRY8dF210a/hU4iVgmbLBOGTKFxrfVnB9l+XHXP+jVsKplG3Tzp2zWTTeO218F+GZtwaFKsEt4FVnI13nhTctrHRjdlH9pRKdMT2CRcA9SngUxy+Q1FbWOXtn1hc1tskoyeXmPRRGXrG91vcWUZ8zmdhRVrL5sd64mDuHPljTmefl7bWYnfZow1bwxrD4HeI954nlOf4/1axs4brMTN+EjmZzm1xo38N/mGW/4ShxVyPOrnChu7WQBKbBbsBu+faY6ssMm+sfLG+7DhvwPv80ugO2zeyRtXvH/FG1CsTzmyHA0FdhnDPJ5Nvw/8z+Ba9Ifh9wzoBqupk2k3rBXJ889Gf5LOQ5plrusrB4jYULxwOScW43mFq0TstNBLaUe1/tjHqkyb8Pelrr/goZifq/iTH5+eyhjJmIxFaAIcZWbqiLWRgzGQwQ+ntce3Iy/ctpbt19t4KneOCUiow9kWyxQfP2POXLlf5+ghcwps5s49J90AddlEGrRhpmnkwMTHYHUTmekkpzwBre/dDFzAv0/nVqCvJI/tbU9R8DbqMZVipNUYbtakQ/YImylTb2Jsszxk4bZc7mbbBA+ZZLUFDf0K+MZBgv5s3BHX2a/OMukGzjduPwd+TQE5odqmroX0p0TeIgkbxUwdUoTUAyFTI/0B8Ik8vD+lmNdNrvP0hpZtoIPuabtmsUCQyd18CgiC5Qkn6bebevelvkLe0z57ymm2dfg7NnNVXUl2gbq+Vqxyik9c7Z5jtyHoeCG9p7udwx9lYoOo+8w/jE140rnhKp5EA67uu+qFmyhO3vZ6se3Uj5KMIw1m1V/hj4jX4i6HWa4XD7fhzBvER9q5jTk1BBES7Updzkpu8l/F0Ckg0vpTzjvzRrK7NN+sdkdyBE5dsY3vb5CMo6hn0j/iDbZvTBxrTq31bdd5tzolGedGOICoOm/oOXlfpe4XGH4c7K7AhvQV3/dk/536bYSdojlvdH02Cs7r8Ub9YZRc+WnOkcxtSDLO8RiGPU3whBwHIPehP+INt+PJNewHNTaxXzF9e78sB43dUaN5oRm5ifOAX6M5wv2EZPTr7KOYfWZ/dJkw221+I2U8L8ChwJvpL3M5IlY09mUuJlFLGQm/QNs0BkGPteQA0M5JKqY/r8Qd6phiKYYD4PGDzbGF3y8cMfrgLmxH8B4PRq4KPCDT3xxz5uzsU+SP29gq8wDZ5Jc+3jktfbXj03ZldCIlgxaAVjdkGj+AGGzFIh5As+Ek8rI+BdOI9QDuaoQzK+fdB2e/Mg07G7efs+dzMNF/bzS+xdgHSbYD0Lv24GHU1YRNJAJNuJCTkpyTuRQ1sedz6YQlgvOmkFMhh8BXcqx9L4soR0pdnFjU53Hrct3I1HsWAc4DM6ebX0ArJok9VgDfrObUuJy2AsIG3C0E0k60TtPQe+94ltWIVZF6UMo8Ol+xqAJ8P51VR6ArtxN37Z961arwpt8w4yFiFYmasLLrnqYxbW66w3hfEefAqoXJLL5HIROboDth0SJW5I9xUSTZVdiuuEfIesP4XIVbdWrXDJZBBJYglC+JDW1w1ZK6yLrPk2xP+TyNmDh9i7EJ+AgyVoudFD7FtsD+KFj98V0H41LyhqQVfCROZWzHDn9XWPI4bcFn8L6EVLiEl/WTuIIFYHvIN/yZc7JvNEph6i/V9/9+vOnKG437iTKiwIbrrimEfLPBbq7INy4iAG6In2nI2ASgE44kc765ZzyjzAhzZOSNPh4Z74T3renTt+oyNhfxQ56bM7ft5sQ+jxNvuP5kylSmwmV9rnJPmSwgznw1sYm2Pm3Mgm2oYYXE+wmLJaah7Jfxe7zZqedE81PmVF/MYd2PedvSssXGAyzp/NmHqOGIGzBu1JNMXNfHFH0AQ452KPQ+0it3qYzhpgczBTbrL+lk+v0a47AZ9nPC+UB/zeVNcSeu2spU2na0wZWrau6yKpw+HXfZ/HrHFxfv6eNzPzANJOdDNLZZehKDkyiXT8H2sgrHl8cK4eSzvl5AdfM24cumDLQKMW/iVplmHSJ+GtMyvvHTqX1tbdl1ic5tNYlXkpf0H560GRtfb8mTlQZVOFYn5g5PPB7Euvb/jrORbSFTxLMivwcyaSewvrOmlMRSyTRlz/qbdUUGNsX4glxZZrcpHSvNdK1qC/HvrBPGKLTlbF7IBKC6QeBdwxyLQia29Ry4mxzB5ryuLNiQB7nNTf2xzpL+GqJMGRtcYbPK6O0uti5Bxg6tjh0/FXOx5kp/EaudjFa9xpV5ZS0701BtfNWNWGXrWGww2lj2ZRtzDICCP2rG9bUjBFc73pACuwtss/6jL9D5GNrclOABb2zkqPt9AstRN3yGznhDjNXfwRuMTcVXBa6lb3jxMVepQHyHQeLyQqZaf4Rd6LeYx5Mcfp54w3U6ru76qWRa4ocrGbMdXWE1ThSgLJGpn8CpiNjoEtOkIPhCn1mmSr9q/CEy23eZ4oY1HD8I6QiG3ZVM1C/b9iLTqH4mLEtOBRBjmthPmCMhAZup3sq2Dd9+3gwjHe90UT/UOqbdrhybuamKH7LNrTKyTxu2Nh9FW1/mRMYijS9zlVxwU4AZunzDLPrCr+OPOj4xlXFsJhGIbaZ0RcdncjBD5LoeEc8ASSeR9BuvbszN2tJepn/E0NKDhhybNLOQJmRERf2CjJ1XCLMzTAe2sp0I1UekY/OR4YC2KQE7O/fj4xsTqmOj5FU0OVm7o6ww6SqvqOjAb5SjdASe5Bwb0597t6UNYf4W0gRHMd+GtRrf6I5lHL+fFtyb/lJd0HimjKbHSn9YsSGcVegbPDYPKJHqeOICiL9ozW0xEQbiHjKFsulcQ7+W4oDwfo7rbzTraTYj9mtNcJcT9s2WRX+S/S8Sv20DzeOZ5wjYTD8Z8oXV1j4T9nRw8VVSe6+iIzj9NOh+6VcSlmQ3yHVH/2wLLuOQ4GT/u8PSpFb9kYyPsIHhPeUxm+uqIGxMNwGrvumHtIae3mJcJbQrWGHrGRu3qf43p3fPiVqnzMHmlHTBQcKLxyPeCD6YzyO2c/WZdZ54Azq6mEHFeQqaAPcxfowxTqyyL6z+a1KJ63SPJfPGkhYq6N/zs9TexPtuOy4jNlgVXG79YJadOEXfmOPG+CYffDGnL5TcZ4Sa9Wd2RzahPD6sMrGd5ad4jg2UUiZnYN/TBhXSevqZLaLseOO5+IGwkYjNOifCjAv+lH2A1bGyVFSsdkTYTNXWc2LUzUS2mhOFZLYYR8+OVZgjia+Cr1/GD5HXuV+VOEdG3mfdw8udHuM0sP16/GdjLWSa2ES/sLQ7CXWTHh2r2VYbsYDd6rTWWX/O55lT5/ie4SohmQ2PvT/C7VFsTjnHQs5I2cVSd2CT44fEVcFeC25ybNx5sHxu5Ks/LQOA4qXYP+XxiTdmwzndoAFAYwoT2NkxDMuu1l8on83Tl9+BaezoTiwNkNv40LsAZ0758POT3n+IZUAO5fLDdmkCpkHDC7OMVpYhOUR7M6fiflit8f+h7iAmJnOh373alGmeTWx8KFTXiX7UOA6F4Ow7Fx1m+9OBeeaIJLVO2JX+HMc0vmbBY5gQiWQPBfREay3qD9LfHxmzg8uUsWH9yawbsAl2M995c5Ok60Z4GJ8VODmVL/U59TfPeZKMdqMJG4RUmpiaMW/aPJA4esn72SdDqkmruVLiEbBJtpzPqzRBss6Ia1M09BuL/u7UmBTMZv2la5JjkZE4hI59apsFx7PhnlI2r1vKoGpPHZlNn77K3Gsn7hLWX5IZCDoyGdl1xNImJbd9jmsH3k5FEyFbH/bTdthk20bwR2GZF67SsGMYQItaHtC9eJBcmvoyWwr8tPBGxNLwzJzqcjOWNPZ2U6ie3RdSWhnLGPpd/EEhyX8jb8y6eRc4k9mrtu4Dqv09rns7hvwdG35XcbE7cOB4PSdOGedYnEtZ//1usd/43BrOH9o51mvqeG9K9tik3dt4/lnsjMYHaNjJTzB22LMT0Z5eCcV571zrweTA0iui80zvdNoY9wNEm5uBPWFTcGrYEVHgT13sUxY8z+X4oebUgVtoN52P8QRXIGziXNV5X0TxQ3tIfw+7GApA882UizrjDTa2drPOiZFTx86MXrmP6U2F0sV5QCSj2TZxWXcJ8XKVPhesMHew7PZ3upuL1T0Ud/QboRDjCN94RTlKHwu2TToxu9lyas1Vx0hl7J+HCN2MeU5Wn2J9jvFFf5SBzUwjn1yVOSbj+rVvfP4M947PHJ/4jhkR9fhLJKYW7dLMvJaRbbE6wMbvAZn3aDanfoedb65Y2JAWyeRKAQWPbZHJJqssk8TzJn1fBoGEz4xwvysWWY7Zb8TKfuabKWqb66Z+/D5skSPqz7qpscnnU38+njxe8jLJ43OZ4CleU6IdVgU2hYxhdAEbemJm9prs0z/Omz+AmrDa64/GRnaz2KcURcfZsrrrMCvizWCNTdB1aSeP6+Y0wWzrjgPGs+LcLpWt+mW7yX6/6HMrY/+362WsIGLcWP9ggU33U3/bnVILGYHVfjM29XjJ/6AuKx+P6l7J+MjvF/1tfeyFg/2d+la/fIXlWnexqw0evMlCqFK2G+uyDne+sbwzivg3206WsbXO+w3zc34sw5XddZkmeq/MiROCwjdGYZHOr5pWokOaeqqbOVQod3PZwCHJlHVQ293wWM11JXYt8d81fijGb23xacWp4lJ03hibpJyadb/GD8/yfj5fOTXNPy7z1J95l255f/a7xDgsI48pgJPnxNGfY4OlX733v895p1/IVGDlXdacGvUnpczhXVnHFZQujuWQAhtgz1XbOfERp2augsIyFTTZlWzlWLlKEHFc5HAxCmySL+dFsC91KD40NX2l4/OemAHTCI3kKPXNs602RC7jEbT92ngygjmTzrI8yQn6Y/4pRGj7pS/Op+s8WQk5Rjj3iSKuPLNN5fdseNILN0NAWNnaYpVkzLsASiorjtXYcersOyn5e2beFpFVxoZkzB+yDf36RBdvJHxBj3AyveppZCUjeH2n/hCvV3aTsYl6HmWb9vcxdKRfsE4SVll/ARvZ9UtNBfIGZjAW7dHG0p8ADYyD/qJd8IQ8FyVNRqUJONm9ncu8jsLnQgqMzhHOtnTRHS2OBv3N8wusBKXM8RzT1oGxVmOBdg4GWH/D9jD0Z1wFjFX71E9aZJjYaKk/G59I9z17JwPUltp4g//VWKljwYHXnptsRzAQNpyW8/7DeDvpSfxq4HL1J8ORN+zvndwWmMwUwml382VLhb/tQn0CQMgausLS5C9kZJ7PvhD0PxYIJ29wuuosa3bnt0RBRq19Mul46l/9hkFIRra785SxyyyKrbpX3ndsmAsc1+fnxMipE1f/hpnBSXOkcl3DKnHJdk5kbMY1KXySy0Vd98sdK7Mra1j9PHwSBY/nRItxKk7tT+imzqRlG+tzpA+RxmB8NfmEsCnO1xTFYh4IWCHYlfuGmO4UUFn1l7EhGTku8X7zwi3NiUrYdRkirtN01WMcHRuJKajtBYvc77nMJ3t9PuLUcUNpT/dOijBCvzZnSNnPOifGMYDGZ9iw/iTpXgq9f8WjD/0jc9PXOT55u3yNpz5Zwo2suvnp/05HFW5PQMaj4V/h6pYm0M4x8fDV3BewWCTLxWShdLOVJzDMiSKQvf2f7TB4qm8FHL6wyP2wfFlepOvkXE6OIdjPxhxXVfoHULUTSxOs+T9rv1erb/OHK2yG3I4Ty2Srhf23dijO06idiKXCIgVT/ASJ+1omq9BUurn2sXW9ietP18phfLM9P69sTtI7OPFxKrAQZtZfTzc5m4xtr60/tWhvgw3IH0dBiXUXW6QxLfoEYYUxUQl8a3pg7sxomwP5myMcoCx2Q//mdwIWFUTbmMHpsLF2Qs42JlGBf4k+cxUFYBmrkj8YhxAE2+ouY0P2BQByokFwSk/vvY9BWRqiJlzneKXwKQA+XpYvBaoWINB1Tnt79/RngSrrxds3HQLR7rhsYVPpt2plmm8A7EPExzHS4SCL3dW+T/OLYMXyklNnxqlxRQvcNvjDA/kdb7BvECbULuuag66IHwd5E0e2uybaF2RkpBv7x9/W+cIG6Pxs/Q++CnNi4C8B27vh4dgIy2o4nOivKgAA8wYKnWD7bzUn+pyA5CMh1lAv6wuJomjtRPNdug4ao/WHoJ85bzAUJBNDhMipGH2H+Qe0COF9nf5Jmfk+J1Ifta3HlPBrTg3iBk4lGcfCiMVePUVu6M8worE6p7qfUL9FrLBgBZZjxd1VpfB5u42YUE+OcVgnZK9jvtnPiTOWEOtZNPBA5tRw0yiKhi7T7VB8H9vlc1tTJPap1fanzof+8lxMxZkzFT32m4tlKy/9On7+8enfMZvOqPR3dY7l3L9I785O15bz2LbVO8e7DOJfUSenMzloZ5o8wfSJ3qpq/BK8xn7z+0iLTA3Qe7/vub8BvCucPsAmy+yOlWR0EnqAja8MSt8VqB3A/d4plLfdZY+ubkhn0Q1WT+qvLbpXQAVnU+iPa6wiNoRVJdOCVWqLyN7K+nBlvKt4ZP0hTRyP9PfAbrJMO/2NgEhFepzgL4LPftCiHDOYGn8TFv3G8wIb8uW9Tc26dwxbv+v0v9LvafxKMi8yZWyel1EGznoK0MZ78o2FIGwW2y6wKnazqrHp/bZwnnTf+tjauNkPciU/ifqL2GQZF6wQ+20Jt0Z1MzRPHdw/981BlmEX7O6KU/kdj9XuMm+MvTXQDsWPNzywu51vTCx9CIU/X9ld1reiv08SfSFhs5kjfeoCXuLU4JPA3IHNbqTGI6qzGddFY6mxemJODHZ3khy2WBo5lW24NUBUoE3x9nZCGi2cVDIV3OA3Bxdz4rIbXeDU3K5C0OCbhATn4PjhiTnx2Nnvc5zKundbzzHO1fwz6i76fIpTo40ZpzIc7ei3YsfRPw3xiv/t+WqPjfdbyOi23nqM4/4nIAeN8YMvJhoPXNp25qoHnJpwbQLgAA5duSraYC+346pr/cV+/QnnqNuY58w2vvJxPi7yZzg+b7v8sCKjlFbWz69WbwB+ITEFJsV52CjBboDOvkahKqGsr9AMhguTIOATJcAkZGVjeQ4Y8uh9InI2nKsR58njV+pzyqTcVno5M076sa0Vmyhjo9Qhc2hL77IXYXtZjQG+iYcZSKiP6QE2D/SXx9AaRiojlvcMFqyS3cSXmFf95X4CNmHCMRKjuujdr++XxTEu+nvQ74rNiuu0bVoBs/E5TiHhM+gv+2MVAF5ik3HFlAlJxh7vCck1J5ySB9h+L2Ss7KayuZiaQTiGEfEICq5K2MhORoCejID0N2Xm8VY7DXpKy2LrfPaa/pZ+ZS+T2XqUMYD99LFgiYTJA2yz3ckid+LUULffeKtieb8lcxAyb1ximfh3M1d1qtGErXqzXSbyhYTN6hscNMag7xlOjT5pPkuYq3e95Y3AqYb/K5xKPhlvFDfcxrzBdyWGlZ/v5hvm/QtskPpF5NTJbdkTBCjb1tfmRLzOqYYjhr/2GGfljcv4wW2K+Sph8w5OdT8YHx8/z4Y271CLOZFnq8KnSk6N/Wb9MWfMT4LNORJjh1vblTtwOePBi6yZUxPfhH6RyzJ3JZkFgHHVmLvNtiU0VsQ4CzZ8jWwKtqgQ+w3v49IT2XyD9xWPX6mMHzyWydf+BqbBK52P60a+nZfJCGmLeza+GUwToSjQ39o4xmqBQuXeG3bi5C1suR9MUhxPk8TLMpEmmWl8LqNvWTsCMD2hELR29F3hZGzX7WQ3vzDv813RT8bGb1USzssKk2EjLJO3OPq2u45Iqv1PmZO66EiDthWmhI3kuowN/GVXSzcI+oNhPQjtUIyvFI9+CSsna1JBwOYJ/ZGIPja/fk59ngNtsacbd9Be8CGQCvrbEe7Gbjo058BmEKvb+ay7puIImpy22f5sm3TPwaylyMWAp7ZtZbtZZJ7nU58zBak17dv4ow2/MCXEfgNWbOtkv6oX/VLZGXXShKPTW3yLcLTue4SN+IAx7b0IDiM2SP3O35b3VZI/elBg2TW+ZX5tryiwgSRsrIRu+s1ctejvPRPgeoMzxwjH0j4B8MjuWK4dp8YxDT5C/3TE0RTnSViy3VVYCttdtMlHOswB7ZQZ8PfLZNyoCKV3JWycJy0gDgFjwlgZqw2njraExmfvvfVPANtToHN8SiLyRjUXP8WpiTdiytrUr1WZN51Df9L1dzeOFXLJym6e5A3fNY9wjZya9OdYdbn7zo53V5vjZ/0/OSdmu3mOU1l/Ayvtn4ZoclKMQ1Ra6QQTR7ab93HqLNvxOAFt8FdJRoxjorhMom6foJuja07lm/uN/hZ96qDBE9ADrSmayeSTao3NllMxq77KqcxV9r5sE+lp17biS7hu50QhGQr9VX7PA4x8Ghelv+wxIf3TH5+0KyOtQoUVNcS7f8kGHoPzOU1IejxrZDiJXZa2gAOK/sZuI88SL7/rd8ol6fHzdFjhurNZX5l2x+CbSNv6VxX3e2ceIWEk4RRWamWVw2SM5D6d0X5YV2vmeNt4zI/xHpfY0w6Z/UwRNJAYQnqIECFNHThWQt/NkLm9bSWTydVf/5lYzYE/r79oF+Ly7/THj/oj0aPfIEJxDJmWlBbuK2AB7PVH46W/Y7CpZV2/mYfgdoyXm2XsV5XIfGLFY80yrv1auTABCRE+tRt00oDb0N959pvG2WkMYlmmrM/uR+RTwn1FmVifbqK8kk5bb3eZjjmYBavIVRkrTwcyPFKgF3B+gJWtDnuqbZi9V15jrMKqe2E3s37GirhK5vhy3VcP2xQn2x3bf2sXWCL6YC+/59T1qQs6b6jiTd5vd02inkyHz3Bq9SSoB5InzrsMu7PKGtrFosNa/12P+oBTGasZCAvQ73VUcLsRbwzdsU4mzpNTu078ysc4lfAymY033s4TMKyw2s0Vp4rZwuijCY9J5zn4fLZ1ZL8aUWHgMusn8zNhs86JbOvU78Kpq+7jFv46vhxgMU7MdVu5PdsR3ch8iFPpcwcYT74O4IYT97sAcnhbMrDMMrHdvJ9Tkw1aGQik9RvY46a4/9BuUp5J9WD++UmcKouM/ZoOW/+RX41Y0knTnBiwqrnKZAx2k25gjU/z+L7mMW8k/+zHp35g2g3WjThu/2q/+W0wl03n8zDjjoEOX7dvjgjiyotSWT/P/fCMUfTbZROwUwYnLZ1Jfci9piLKnYJ6K8h1MzYsl11ibGg8Qjg3Gr9N1r6MovNaxqq3RZ6fZFxkSli1EhuZ8tPE4BBIv2lUlRKrUn/VOebfMRVj1R/b5GJjBoEOHWZ9cQFnzSf0l+w36zOX5evN1GaclQiYZZokboOJOFX9xgmIsCF9zYlg+rIErGTFKvj5FQ+s2/LvZJrBzcQm2Jy1regbHVxhle2RgrpAETusFv+rsWJXcv1RO/qU/qjtl/VndaOtRxt95aixDFxf+MJi7wIAZ/EuUOTU7M+Mpc5t8caFCyytz0qHQOw3Y4nIX4seSKbF7vzJ2MTMVttrnniFUxNWJGP/bLMCKqB9lQibbP+rzp7h1BWrbGdsH/CElnNIGXlfXIa9TNx2xmbKNOcG03XCjuvS9Hj3xa/N/JN8MssEv1z0m20oc2qqq+PHM8c4WaZ0vsQAkv5+gVNb0qep6dSxaVGy9ajPxINpfDsZa05l20awX1aJ7xbMdpM51QX5OZzKT8oqrKJMdv1qTsxYEWdUPpWwYA7JMkU/+nX8UccnpjKuk2A/poH7drCCsJ1xf8RafT/DjMxuJkC/9/P5LgXGCrSx/WhDgJ6aMGXkfu1L6UZu8ZG5UlvDIVhmktXkdhnHnf6p3SnaWJ10ORCJgfstsSkmGnfA8GjbsBqrqyRzG9d0vMzVDkDeTkrpkyijOf3AJo5vYjBXTGO/HFzYf04cJJNv/T5e1O3peSnIsn4TNlF/KWCQmZKS+41BzCrzeGPRdzw8GnD3VKCpI3G2ndt67/S3tZtlVY71NT/q3QxH7dNxaz3FaM6mjDMTvbUpoV8lXDkoa6T7sq4oZopZHx+A/jFPURwyPu5ZjZcwZ/25TnSWzbrvdlaNj3mAcFXbeU5xCHCXE6fd9PvEZT5O9pp9SllHD/oV47lV5ibzHVgdL2I3OXtoMfQnutefBp/K2LD+RltBf5hlfcxwrN47QfNTiVruJOcWSw3vjuw41fBsoh7c2JPH1k6c/hX40ebgy53diY2B+32ZUzGDMel+dZ697+MQvL0N3miyYB/4KYz3J3CqnQ8MekAIHG2kQHOq+l+JUzt/0fgw9Xe0E2+D5bg8+6vbXOJUw660G+ZUf3+OZMQqY98VWHE0wV1O3J03IjaZU4Otk65zv4tPVpzqMsLe7IB9nFho19tor5FTmct/Cqcm+1Soc2prs272ZfNTb+uncOooq+JjaANj+1bfcQDt7Q77NmrFqbsYZ+GuJzl14t3b7btgk/5EccgdJ6b/XcXGMr81NX1osRvyP4ofwq6ZxoVc94sffwIRnzo+8cZseL0bdLdEewyuo0xI/XPCFTf6+Rs/Mh/noS2vSqSjI+BR/yaMy2TLKuAJZDrUJJ44acybgbUuy2Q/ucwyyGmQRBtpg+KlNb3kmVJ4POABhL7lY+NshBMkYjUDBCOdOL7WxtbSlqbBA0r6W9M2aHykS3Z4m4xZ14yV4yRdl1budiiAE/fWlkAxyBD0N3dVmpMzX0fAiicoDqZsvJzS0oZNKk60U1x/Nh0H8k545NSDfGMyX1bmvuZYp/4mVhjja03HhHiiteYfQVVgGc9yzjvPgbaiX3Bd69qGAiZks6DNJwN7t0bdTqz1+LL+bHfa0jiTmK71CJvsu/TtW0CGPmknOn/iuIwvymickTmmY3xO/ZNOeHyMFePaxD64KFA9Ia35JOz9kkwRKw3pWobN5AnqM/Xbx5f5NMr46jF1ke2Oz0dZxnLg2S8QPw3fOBIvuk8Sz3Xe6Lx4OzqWrbWRflz0C5ZHZuAUdAgwgFecmn3yID04b6ii6Qk5Du+j4icp9PA+Tu31dfzd0k2N+8J5okkLc+Rfi1Odz3zwitvgjTv7nOsk8tPHOJX42X5L3ObjPfrcfR/plY2MWZLuJflVxaP8e9WvCebnHA9hBNUjhlG9O28w14V+EjZXsZVhoy5v9ovEG3RjJM1uJM+uv2Nvn/IHcWqsq64TbGKczKnR1mtOrfrt49tzKnOE6e/mMSpS6rykTYVIxkexsaRXI8jmWmFzxwd5/696/Epl/MAxCDYaVAyu5gusdrADk7ELnTP5pYnAg2EjIG6+qLvI5IQlSY6cflnIyO3SeX7sP0SEyHjFmWVCKhtkJigCsdfYLP2O6/yOARO8PcVTI3ulsT7AisdrpLHTX5i8ksxzjGoxByAWukRcsRmf4Rixkst+42QVxxfjQSK0pD/ZYRPGN1fxPqq/LJO1peB24JNMxiaMh86Rr4NxvK7L2z4D8KwxAXCaHBmrpd8Y7D3y+x02XJdxbPBP++JU9dcMav1djzf0m209jY/j+x2uPcjUpOMh45MylT7F2KS2Fv0lGd91SN3Xldwm58RD6VxJiatPhjESbwDwdHYvW/S75zZEHb7gk2GRzMcweOOs7eivwqmhrs2Z6rxRyvVX4FS75n2Y/gLvVLzx8zg1y8w+2prifvbf/UlLlmmjvyV+qHjDZYy+v/ikaMQVk/fzHMnpbYuMhR1dcWrAIsmU39XrMnVZw+bFT8whP5NT803sCbvpW2OcLBNSWxWn7mz7Un+53UlzOFM/mVOWuixH4X9X/hj1ySR5pn6/2KGw/VL+9Men3Jh1xZuBpBUuUr2vaPi/k/Tmage8ncXxkhlZvZ4/D9+qu8sznzKFSWshOr7JM/l7eXssPmWsJwWIDbuvSAZHCrsYTerKKxWGof2dseHAQsiheKtqq5eD1tiui9lXATV/6T5hFVZmJlZ9dZKf5CnJkGTGlJlxFx+fjpbGb03BqYGBUGkCCdedFKf+pClEL2QSRVhFZYIfKQKW/mOpqCU2bruM8/mU/uIkb22uN9QBq1Nx6tCBxsm4wmbaI+8CxXozDFebCzcS2dYJRwWgp63Wy2yTcJ3YbdrNZYd8bsMPdN9Poy2odttqzZciVv0tOPePcE5OoH5JJmDay/QxC6gEHCwE/alMrjJbe0J/C1agfpv5X+qXdDTta7V1t8d3HFXwuNqdYb5i6XJKWo0v5eTAuvuBju8Ptab9naBRxnQIGF9F/42+/xynBht1PZDMTUPkfBzAj/v0sb8mpyJgBdxP431rZ0Q9D/zqZ3Cq+41G/SmJwR/oBte1MV5xKtnNs5zKMrsOrA3tizmH8wbb8F5/nJK22uu0AXuq4Rk7YRxJf+P8HNutCwSHKE6ZsYXNl9OnWB/AM5w6+41+F2yd44uxGj5TZIEfzDsVD5hNFTzgxUpOTVyQODVzBs6ui/6dvGhTfxVOXebTzlWn9mwu5jnGG/7v4zkxYID5GxIWjOeMpZVk/XX80cfnfmBa2PgRSGIeZmA8wcxrlmoU0u/cQOPtcxt1zKCPduI8+7s3d3txaTTgclAQxDJRpuMi83QgciTrOwXnfA4Pfk/Md9+8E5JptJ1kij7DqRqUX7/IwaRosq/fQpN2QgZWZ8Aq6i+cQ1dsmCSY8PiaoCC3SXCGvzaF3Puj9nt8Q32RadGfgDZ+iUFGxip88ySRU6yr0Haiab/Z6Om6/Pb+WjdgAz5P9sx2ErDqMoWPeAbS7QHoTe84RdCO+R7c1o4MG+pnfu5vDV5YfgntsD4nwVvXXW8jpYxvAkf7NFxMX1p5QBKP7Gx7ldHKzgnOtlCXRX8rVkuKGcsUbJsCIsbOr6f3ZYOtA4Kzv7N4tu6HylcnVhEnkzH69rRtwyzzEXME0jWW8X3HTLlmLAWrX0XXjXLzUydZsK44hn35aCfuZ8PRxs5+w+6yrcSAbNY3odj3bWw7n3TbzzaKzvdo/WlZ543+PpAPPsj1EU5N/YLeQ0VMaQIUR+tptPdT0FobvCHYzYmZQz/GqfkmavbRpO8026RNrMimMicFGdmuLjk1vo++cGq4oeyfLjmkv1/WZYo7ayLrhPS605/Jz/0u/pp5g31WThwieBPpqYzacYNfz1wQ+Xb6WBVbXfDVNsbp/RztxP0+Fr/4kzIJG8eLsbji1HyzhnxetDXG1zkBEGlorb8jOI8ck85+X+fUnX8Ozkj4H+3E2+CqHyfpj/B8PTYuODLVrTl0xeHLHb9SGT928LsPYUVjWIeGa6Os8PlMPxDbRtqs2l7uzgRHxGOka+/f+Nbmqqkf7jdN1FoQyXJuZbNMxXkDcAqaLWZtZXrhfFM3BPJ5vODxKlQbDhXcW5ex0VaywAabC5kmgV9jwzI1JBlbX/RrTXHe91jpBXa+OmgyFXaUsbFzI7xKn0cDfgSZAH7vr/+rJGO2G5LrCdtedsKytsaLw5AeVrTx/sNsa/WpChugy4GAFeYuWgpAlHS0s/V5c9Ua8DZuqn/c+7tTU6YnfSr1o09gk/nGZRpYKfoL4G+sv6XuXl9TB4zNA1vHXmYRBczWxb4BxHLteOCB37P+TOYFG7tU8GkU4enDnyQHPCa2+khuTCxl2Ap/mPcKS6CP+dS+KPBdQVg+z6kf90l6l8Z9tL/Hm7fFjosOH+fUFmSa7UebVcjYZEYbvacW5Hpsd0LYPMOptU+u7xq/Df39uJ/wTwv81fU3MLGMlwYcCshbv+GY4WG2deKrBasrTh22fuEXJW9gvnO5f+9t5VTnunfpD4RNWqBoCpz9vdDvd7l+F2/RwQucWtr65AwfH6atHw1oY/GhjkXqGOddnErnpvuVq/oT4ls78V2v3ltc/fGV2DjbTX5iximXVO1rHn8/7ss+8YmZB7VxZayrXskA5g0UYIahMX1EzKCG18o0rN52nNzsaQl0/NsjArDj5X6tHW43WmkMEIA5wQgAX72numtKi7hMOWDgfoRw437jI3XrN9dVx7DLuMocH4PPrubv69OMqT/CCqyvesU0p0fEI+LIOtGRppHfE8nkHjZoyFglu8n6tZe02ebiKlzsF8DY8noftHRsUMpY6a9MLYEmmSqZ5/hmZobE3deyvT7wKcjEosJxfp4n4lb647i57zt07W19lTH5VMaVy6YnSR5wBN2bjL3+6Zxgrax+svrjaicus8SXumMaYMIJzDdTByfxgqnDru/0KWF8jJXhmvi0xIb4dJHxvVN04oK8OOKYSCi7cir5FaWj2hO1jKXV1YGlPShjvJ7l1OmTCPhc+aSnvO2wVfTsskKHdrzMqVn/SaZwzm37TUj3h3msc+LP4NQVG8KV7WLI1DcyMhuha5gOMu37FU4VAOdTnBpkwuT9yBsUyHPdMRBO+XuWU+d4K5+c5wLFqQ16Drsi297FOMEfw1z1Kjak+zRXmXuey7wNOt7Hqas/FjY36k2bm3Y1SZaxiTJ+iFMJi2xHrWHBSk9MriqxKvSXsCpj4xKbyQOGjf0+edls9+se8uuJ2ceOGLh2o7GtQZnsgHUy7n8DwJkmdDJanUbZnWKkJw2nsChHmvSURqVwgLYTnTLCJ1AISMZJYLEsOaPXJTIWNf+c/ejZx9+k785lS3EEhuFj/c7J+MQk/CmHVfV+xOQAYRnfPZgObZVHrrelnKlVliGz6Y8mPcd4nchkKDDohILNCTOTAtKEMXQ/9HfXe9BfvvmZdmL9TjuBreqRzEsA6HX7/zXrh3DtOeoKOW2FdUZaM20Srr8lIJU51ihzwnHRfZpMGVcA/h5KExztjrsepO08KZJPKQA5XS67MTCs1n5WmRvZnE2o/bzbXBMJaZ/R/7L+Vh5gf+S6rD9gxrvR5kY7tBpueuvfxzL/q7AqxgfWZ+KbEDxiylTaXPSLJifu0nf5PFrfXdN6mfzG+iOfIn/UhRMLHiBsODAOtj7KvnxIDCijX2nyqxi0XnKqL7ytnBpWf2mMTRSHnLjTk+xnOXWxb7AOCyy5rut7PonS8YRKpL8L1NO7DnycU22uiXUDtxlWZd1z+Kaif6aBieLncSoWfU6ZkOwO6DcrhzTcnWNl2neIEa44FRFH18msG2VmfY46VHfyhqDJHbbVQ+8/xilxbibdvoNTs09y3Sb3MUc23ERxElbZfldOjTa34Lrr13lj3FQm3dt4mjTcDsX3O69GvI9T3W5MxpIHZl2hec3GZ1uRtNZxO8Fz5IucWviF2x9mfbZ1AdflWK+nEd+OE3fNtr7yHMBYcb8pNg7l6/HNV38i937p49eN2QcO4fQIgB0sBIlktL1MDCI5sJVQliYzzPZ55bc1jCcultKSHWKVbZLB7KctMuV+eWzReeJX49VTGfU48XYKWv8EvWPmdYUe6wcZ0wQ02SHi2DJWmM6XcW19xf42VnD6qtdkcMZoCRIW/bF+YypN1q2lACw6oTEoAD0VbwBsJUdA2ADQUn82XiwySYtPWrhstsG2yNQ32tBj7NLlMpn+1OWo7AahnymXID+5zU9wVluf6Rr96WJ/R6kb+twZLMrE4y11cqE/CzRd9xTkrDY3cAZwqOItYeXtkr1HHWSdKdXVVUbMtuycOaPXVd+oQFVxP4FDzPtSMGxtJHuUbDfJx3rVufU6j69JHt/ECtJxUj3xHYf7mss9wVl4IGyLnPlGksyMdcCmsHWyi2ePbsfUt/2YObXFIPFDnCrrk6QDCm2K7yC9vMipIlWwudoZUl3GVjDt7o7OVW/3EyI3wvgjnEoyymM7C3JZVkJTnO0cKeyzn/dzauSJidWKTckbo86JE3Le0ZqlMmIspsQYYHaTObXYXj3or+KcC944e1B7P/t4FAC/Q7/DxuYCluMRp15hk8/7k7wT3+UYN8rVzfGD2KrANWPDT63CzV7B+weAb+P9To9xpJDpklNrHghPgpKtTyy53ih7Cr5hzNtNuq0H/a39AntOFZbZ8Wauitj4dZh9DP2h8/4PHGFDsbXf2eeiv0WmhFVhN9EnIxf9Ov7441NTGXmSi8TJE5rA79rpuhuRBTpIzpHqgq7PjR/GVvAivnNcKRO3la8jyjxTItJkFQIhJYMnGccNop5CfVjbcVtklgnkgDY+xm7GpZtgg4IArtufpClsJexUjI0HWEf7foNDp/GaPqYe59/wsnVd8THZx0vX8YHt5kp/yebCS94SZZwB3lrXV1JlfKzSy6W63m/EIlxbxlths8FRVlxNZTqHFcsG0l3lKm1u1+8G12xzbusKqOYtpKlu4cvV+CuZeLLPbcWnxEp+2f+1FGfGMeqv0lce7xOcIcPmyLZn3b6pwDls3VJkYz97rNb36zI36Ra7RbfKdWMQ8NrxBKfK7KvC0mR7zKmmT7oZHvZvn2jY8fwjTs12NjfOqG0WSHgy/sZlp31kfWK1cuqeJxYdZlspsFnTzibv2w6C9nx2se+PcGqBe+WTi4wWMGtvOfBvwibItIw/8nPw30V/GZskI72fuvDGhf687Xdw6pX+jDcszVkzbxT2me0KPl5rd9VXtm1ZZFx5X8j/FOtnFZ7lVJ6LX+EBwyZy4NBfD3N6Hxuslnn8glM5tlqxYZsi/Xk/F1wFAIUt7/WXbUoLnAc2oN+zzJI/Z/HFDoXv2PpnPz5vu3yZNxtmLP2YRK9GXsJ17F0BMyjdfKFc3bC8LIic1HbBAhru/TsRThTWj8mj9O+U2aSE9Utk6zvijLK2RX94XC1K531r1PMERAUHgDe5Q7WNMcTVDRA2wDq+viJvExY5aHDIWVZgK30DU6sLBc6xKYI/5h8jV6F+5+S/7DonJl9vzycNmcTnthGwWfXZCAt7nN/kRE//kaAHjIkAG/3NJylTB6xPmL4yVpWMmE9aBPCUJFV7kXjcWId+Lf0nTpCsvzYm1oxNlnkrI0bAN17aPuTEfYws680IP2+HXtoc4corxI9wne+V9u2cRTB3x1PDiCY66ndOitPGVOOkCFC/yZfVsDNb1Dipq/aFGmjXX5M7zrHZhtvRg3666DzR2hRJAQ6vxCZcheo2mTf4qsZVJ04R159Sv0Lja7Pmwk1VAOS+zP4z2m2Zq2gV+9XjEacyLwIYmQ1XnBp9MHJq5A3DWbVNX/D0ruc51d9P2ek/+Ki6XWdsrQ8di14qlkp1Dn3MMq9xqs5PMaX5xs5bwEYJVxvfOXwLuAlwyH3edAROJawq38DE3edMn8enT84biz3v+4hGCtitnXi79xTL8ATrKU4VhHSvjU829merS+02uyHrpIrboTjud9zHvM2cWvsk4B/oVkHFqSAfNBlZf3EeZ6x6D60pDox06IGV8vjcxuDzTYgBxjjW2GrDG5rtk7BSHe8VAzdR/KBY7tKnFl6c/U5+qmRc69p4PXtCxoelobgdivb2hjsO2I1N1l8eb8WpHEttuYrqtmDr5rmgefuON/SUf4sHvV/3x1di4+gXHFvx+JgD4zvbX+8Q6K93zD56eEpLInDanM0N3OtInAhySsRBhjOJwa6nlJYDgJzAHWhnQ7tjEl+QaU46Jlk8X1MR2Bl4C2JBfkF0PjIGgJvt+it9i9QWhKDxOIZxgp/9gP6WMXb1tswJq/E1dkZ0TOTov/0+Us74heTlxfeMTfhq/CTg6fiMRcImfXE+THRGRqp4k/6uElfOKTxTJI1tDZ1MmKP8XFeWuknGsYPZ271/H6kZWzth17buN5HQBUez34yNZGwKHXg/Rx+jvlkK7xzAWhf78Sefmtd0fmeH+5XVPrmt36D4gb51ub+PItNeY78Tq+XF72w3PvHlfjOuGnAVs3X0GzTebcz0Ax4fLR+GiSvgYHqNwVjlFxlXweyzT/MnWjvGrq07rjKZO45HixPVEXTL/pjtc8rI/sk2956DA6OKU7lvrhN2divktBGz3Cyz6QwC/CYn5E3w1tpIz9Oy38iphYxbO0uc004KyPpxMJaH2Xv/fMvcYMFke8ypbjuFne2wcQ6GzQkVrifOs830LvMBw8ZM/glOzVgBc75pAdc4l2Ue+Q0A9MTbvS2biWROnTfR6xyyvE+2wdWCXKcnzFjD27qdkLvgfgow0gZXTl19ct5I9XbC6xYLrtEnBQnLNFeNiB0A8HtTtJPGGjj1I7HVvMFj/Vk5qztt3bjjxI92h8ixmRNXTl3SOjd8tco4bXBiHu31Nr5Bdj8VjbdZdJztrzT/GDZJB1P311wVsEkyGe/bXHRQKqMIcRWPFXv9ldhQvyZ/xvVIscaXPn7dmH304OBqnPvfk0Bg5B8Moqg7vcHbEvobXtwmlO40qgLVFurOyiSTxHbdeULrGgKpanxCZSM5nj7O/ihdo0xAHJ815nXiRABY2xHXiNU6nkpmm48VirkUS7husOJtEzzAoPEs/TJBB72l9JGJCFQ0fBg24Mp2sxkvTyjrjQkRX1k3yzhsCnOjjNAuSCdX9iorNlKWfVzXV6V1pGqwuVrdna3rrh8jdg1186rh5fjUViJnqoaVzSl4iz8GmWIaZH7vLcuU7SjXvWuX5w6FuhDqvVyNb8GV5Ges4qcfcmpU4RdjOONh3orrTn9Jpia5riYZua0U8KYbqXcdAueqK05dfBJGdRU/aSi7+mTSv/bUPP8EsCSsiTce+VVtZ2nu2vFG0L8F0TNtkNvltq44lRe7om1YXb2sC74m09Z0tFNygaxcXnNqN14PPhM2LmPGZpS1pw3QwfnoXBZv7rmx6Wda6IAXJaq5eJZfuXt5jxU6dq8cz68lpUBf+ORqc3tObQGvM+K4+C9gmzyobWzG/vtIJszrV7yx1k3Y8A28nIPyjdBSKqP3WbfNMq1+cR0vwItTfOQyomeRqGsw8GLoN8mUscllo80VXEW653btdx3nmvrJPLDUZTlC3cfzTbD1Atdfxx9/fOqujJx+0LLhF5MLryjwY3J7qTWSYXSwXldgqyWnCvSUsRJxx3nvJfPX2/vETU4WVmGM9M34KaAhmdjoPQhSwG7GwiQx7vgPAQS0Cw+3A8R+lsBg9APeWUd9fELjE8Jm4h/Hi/HOVBOg6empjD4ea4vGwfqMq/JsBBwQ5nFxXSM1AROPnkBD38nMEyxl6h48cS36U98Vz/UsE5tJyhOrttQlWYW3pQdu4zs7OgZoQdPEZpLctI+5o9Zq63Mcyjr3lAZ6jwa8unhC9RipcIqmUSYTmMcxdQsfb9SJ/ZZw5YlAh2z+28AxYSXaU6XeoLMuc0HqJ9uR80DihVg3YsO64MkImAq8CfADJyyr3uxwp7/AC7aSseMq8uFg26IpZRKTq7Q/FT7kxKkmUwokFp0gYZNsLvmf/T7TaqIfRn7Fy4ePecup0SddRvYNiW2FF/qzvD6OqX+F9E2MBm+43aHiVParKfv0feY14ifCqcQwcN3Q4DDHb4Ke3mVtLLxRcKrZb+WTiHW8XLJR1/kYn6A/9T/PkfJsO8JxPzRnPObUzBv8bg1hxLpIc7FgvEIyzGA+xdHgk0IycN246QPpL/VbxQtWrmeecFniDhWft3XsMMucWn/OgHgjcEPk1Kx7EfX3PucTvYhr5w2LcU7c7620k2xHARuXc/YfbsaJUxu4XR7jbJOmSHp6r5ecWsVWwV6YT6p4IeneUjTnTUm/AzqHjppoXywMMcCGUzHbyrbdEjbMUaDxQQoZMRaQjKtgXIUg+xgi4k1Vmm8S3/BcvPKcuv/HBQL1cX/p49cTs48dbiQwQkJwZIN3JWwAqW74jQxHskESaTRR3FpPPehbksa1yvAIPbXL7+CY0XLKRNyOeJXJt8nGmh50aydOBZoKmpiLrM5YTbzzvYI00Qj16zKea7lCRoHiEIXKiTfpW7dCUz8clIbx1jL7NcPPy04ZmSS4Lt+gGlaHyBiPGwMFmsnGyA64bNTnSWXzJMDtJZnlBKRPzneREQhP1H0BYnSebaP5zWWxMk5+MW0O0z6RbI7qHzihDXg7BcfRoOd4LyNhE8eGOdHY9YwFXws3PbNuTEWONneT/r5Uaw2t3QHGqvCTqJM5vli2spts6xHXEEyibyt9l/kZjWjrZM/Jp/KEK1wv1NWlbkiDTL7R5MTtENzHN9/M1tWvpxuELTaFrWe7YT7NN0pkB3GV9tnDApiVU+3zF/M86/+E36xg6t95InDOxDamZven2bfWn4weTdDOO+bL/plTmdcv+MpxyQHb/D3OV1nG/rLzqcCb3iHSIm8EW7FAytqe6XqP7UxhN16a5My8Ieg3Pt+OO+4KtKP1D9QjvlfsfGRBNeGYfWPyhyZ+5sC38o3T58CmMt4NBJo0NLl3rDb9ct2ovwveSGMqfSNwW99c/Wh3iPLnd658Ms63E4vMxxufHOWaZBlnW4cotN3HDs9tlJ2CLJ9NQOSDOVfNfnn+eag/sXZiLKLniUMwPi3QANgN485u1lgx6yTHCza+aZ9xjN23Z1t9Lurzdmt3inF28w0tEmW7yTpxubOMPIdG+zT5vh19ybm1/gkl65R1bbj5gugi82rbPhdnfBfbXmX+sofi1+YfHzlE4LnE/qRnrK5Xu+3YER/9Up509d0q5PfTRl86J89TRl7yfb6j5Nurp7bCk6khn5Xlb9nw2Hwc5HiLwZvzjG+h6Fh1+w5ArHAeX8Iqjg8IAXWWSXMgw++58SoZwLtNtZGjjgZKcSNslMiasGoXMkfdx5z/ICON3/pt0je1aNJ9MWPF/dBcFPt9RkZwv7XNTfKD26VW+kvY1DZWYRNXWzPpru8LRFy1CeQcE5UIpM30v4a6ri4yTTl2dQOuFblzP0dfDWx9P+fpf4sO9jrJOMpi2+v7ABO7FODS97COBuAugLSAs/n9KlNhc9aPcVWQOWGDqM/of/03HWOBTLsSXe2G34urbJv1GVPOcl3yx6ruOydo8XeLC05NcovLraU/b2/KqK7zoo+xP61tYwdEf59EEewh4jG6DXrJ/WZ8ar1w3anvzmX2BMjfl6X5bzvP5fGh1uHuhraq26+dfZOUc678NxrQkm6M5/W34yvZcCrLeBwKPYFDAb3rgtVzPrm3Gztf3rcrxgfDEf1ZTxObG2Uz3ifjBezqaomrVGVpvIdkW6/ihxgvXM7NuNJfPY+z/51QHOPNjb1MCSseX+LU5+IFtvt1HjhVx7YDvXHWfZ6Lr2KrxW4K/W11AKS6zFV9US5iQ1iZTiRjVfPNLjZeuBhIdfGlj1+bf3zo6CvTYUMDmUZvhzkSgPIL825ctiKj85otaAg0BQO9n1PF5Zj90kQ45OSJjAMCwBxWCxlnf+Dy9JttPGDt2XfV7JgvayqQnH1JpSi+bO84uozwsvZhyuxokuoaxncjUdGZAuN1R1tOhFW/pgOrW8iM2G9Vl4nV0wZ1Pnr3fgPOpAOzmw02aIQ5EOzTsJl1o8y2va1tlX8Qmc1+85H72evTcQOPr9tNWO0iWzcZVckfNOGc+sn2yzJlHbAc8eaH6ypt9EP/qgy84uRlaVase5ZjKkvJ/0Dj0VR3lZH1mbGwd/FaU+CeZGasgkzsn7SSSv20pax6WRuvkMwmUxtcZVtfN8DTbCxIKbHKtu0BzrS5ijPsvGVsiPs+MjnzB1cf+2S07xLbpIfMqR5cDHxOWlVdeaPywdV/c7/9SRz870dYeqpQ4n2FhLKv8H7Vb5xP49y0YFPx/vDPyBu6bE5ScexTPlnZGY2v+hC2qkwfDT53MSdufDLgnDg1Y5P5ixd4+8/zUwfe59Yna1t3+Uh/zBuGlfOEkoyZYwWe8qyjnZNkglZYbWIrie1OOQu+Qj4vYpxxYxXnyOzLEatqrmp8jTmVFo+XJ1KVPwqgp81FEvXBm3UsOon6k2Iu3tl6TC/s7Vg/K1dJyIqpsOn/Th16rBFwjXZTxcaLjGQnvDHSlz1+3Zh97PDVX96yVoeRjXMPRtyxaKKy3yYzBnLtRXiyYlLp6UA9LWjkX49cXox+Y7pIrMtBIbis3xDaGAQx753GMMq2QCqdrO5oI1h9g6L1FIIkk/UjCZtFRuTr03DndQ6Wpk7aAKO1E+0uw3Hv9IK6kY6d19iwPiOu9dfprW4nIKt7hoBAoDhEcG9df2+n+LidV9g2eBLl87EJhZQyRpuTVDdsWYtxQ9ZO3LUNvfb0vNyvaSHY6yU2Udese0GPniI2J+kEc0KXnm6j2qaNBGzE67rN5X5TEB+D9PTSfJCR6w7sRNCk2xfuPSWpP23sk8hcXQQ0rPJpwuaM/WSZ6cZ+fsemT1DB/xTQdo50KUGTO/o6KvkJZr8uo9urljaXfcyiXcciYZVtro2Ap0kbXCVwL5eBVbITxsZONNsNEINo5oGwbXL0ixnsv3bYWCo5d5xqepnYdk51HT7iVLWbu9G/6ngvVXBrd/zQuX1M/55e7fsYOgxPEaF8cfpEocOFU5MeDkufFUm8MX3S9bD1yZpTq7qGa9zlL47PZGqiuB13/DjVseJ2s04QbGf1yR02pYwFrs1kaie+y1vHqjsSOF6ofDJm5JzLvH2FDXOq3yjYglw70bThaHc0EZw4gv7Y93O8sM7Ve5vL8QLbEeukpyxajKP41k7cR9quQ4Wr2OoMOPI83jl1bzdzh96B42LrwBsabk3RTH/ZtovY6pE/vsKp7o+j49bOvju3nDja+NzBaKmKrZj31/lGl35KTi1sm2U8oDjR3NZ/qKWi7rGZMiabq3zqAhsMrlIhW+8TMX4df/zxad8xM6fntIa+3Xj/W21CJTLI6RPCdTmQS22tdU8PAFVPfL8fOCjClILMnfg9NxcQFUg79/2GXcF6u5NIctmByQncjhM/TkGTYyuTtJgSYVj10zOkD+RH14abTwR8rqtO5BScrW8lG7bLR0wv6O/y6Dxv6o/5TZ/8vkPoZ8Em6vrIMre+G+NNT3zHAU6z6dhYVY3YMVaKYEMmU/mY39ua5W0bb8e5nTjPY3xfp0WZfCIHkerUn7ScEhFtezY1bc79oq1j4Bs8bX299FTB73ILt4qVX7D+Jm61vc5TsiMtbI51AkU7AJz9HcEf94ZbM80Wfr7oM9rcDLaSPxZ2NFNaKr/oE09/H6+/u6heU7e+bP3s0sYyh6w2t0tJggdbCvQNboirFDlljlL3EjaKySGznz3PedBC1zKnvHzIsHEKMMONhQDQZN/I88K5tTPJvoHkG9rtTkVxaA+LDgJI2lnjYXWJC/JcFTk08Qb2de0GAKdtGKS0XXfXYeCNjU8udobCRrP+myYZNdiOasPNFgKE0s4WbM5an4X+gJVTs8yhrsynoMaTCsWpJ76fLWLFWCS+8lcUYL7P83bFqYVvJJkA9GC7KUQPaBufuWm8U+zeXldsIses/pznm32MIx7jyOD9Y3Lsg9gq2NzCqeqcmvWXbbuMcVrnom848eO842g3l7/b9mTcyEHrvBCxeY5TDcdwM9JOiDbcjrHA23qqbL/RivEChBfn1vgv+NRi24lTgWhzEv1RGnDixE2B33HM7fKXeGGdx9mOdn6RsekjijbYQP434q6ve3Rs/j4cn7pdfiAoKJEZ383LOO8rw/BzjPOqrj1Ct5liErIFdv2Rus5UDcz2ENqy37tXu4FiOjhIRjuPT+/Gqhn1M1M8SMZBMHofQQbJkWXikDHI6LhusMGKq53zkwcnf/pXvR4I1/GbFPqTqK+JFa3GldhEGbvcUUYo5oLjwM5kqnRvclmaCkAvsRPGlT7DKhmSDQR9wm1LEfuduNuFqD/GqpGtx6cTq0zr+WrrNjwFQppg8IuMu9T9rv4X9Tn9Ivbj2+7ayqYyDFNIq7fWLfoNuwzWMk5som0LkozeDkbqp9Kv/EQqysl+kHW92jqifoYRN73Q54DM/gs6oXGs+uOtjS1ojrYd/K/w5ewXLOOalvvckZ8y5ZS7K06NPmib6+w5tfINS6U6J6XDdSgK22nQcCvtO3OqrPjsOHWxO/MFUU+DfswbO2ySTpd+HsmI4L9WtUMksa3Sr57hjcfzDetzbtetM7CGjlcRWpJptYXKbuK23y9y6sL7U25lW6KymRe32GDyxmI3kvu9iHGIN9zWQ7/RXtluZlZA9MfYT6W/F2IcBc6TWVXnDTlz5VN8VXAqNM0ZZHPEGRKudcD6Gy7icnG8UL5y8ZRts35pfIuMUS6OURf9yQ4bLfrY20013/gY3d+47hc+Bl5/H45PuzGzF1I5r9W/VSJmcsPJxJxhGJGYGbKjTCflr6hLaGs+qeuFFa0pDrnDHvJbWRll59fbzXnhwURLMknu1yNhpbJY6kLg7450Lho7KMkJ2DfWdNad/YzxpH77MfO94xfnE65U1x7rx1XLnpuuGLuYyRvuOHyHJhufi8GBlsTxWXqB/y2TKLCRMWM19WcvxDbccOLNV/nSDQ9MaVGfvMvfMLkFi50+fXykk2aBlZ5dpqb4fva0wSYTK9bPqs/er+rEpuM6g/ps29kGY9sKeyMJ0voGLpSKypOgYWPvFPRmWCerT8V+c1rg9GXTt60gYmChKmgN+KYn3uQOaBu+TTcxPunUPsXpL5Xf+0QtUV62Ofc/Vf+m2nEAx3nHOVIukXQfZEw25n5N/YanU6xP8hOvSyu6UIsTzp5+J3cPfzKvmf6cb5QmWABKNtWSzc3gKE/shc2F4Pv5QwYOE0sNPFLxfO471l198LIuMG5+ut0d9xM/xk51/WnpOmewT8Y0stW+nTcKvrqqe2rf/EMhOBrQ/v/tvW2odcuWHvSMmnPt/b7n46bT6S9INyb+iNAYRWibQBCNaUKrjf1biSj+CIQoCXRoNP1bEBSTHwpykYBgQAJGA4ofachfNbFNq4kfBInRxpC+dnf69j3n3WvNWcMfVeOzaq137ffce/a+98zinvvutdasqlHj4xmjqkbVrDvqTdzIbY0y9Dc1Ko0uCDXepLRQCb7cazWWAiy0oWI1Xnn9TnjFV2Ryl79xMvC2VJzsG24wTnXHhQg6aaRkVxNcROLNczAVGpjGZ5nbbjYRYS2MFc1HznBj7sev49UMU2/ZBQKvWhsLMU5T3BjlV2BxWe5nputWt055k3WwQvx2u5X3orgf4z+vrwU2tplNdcOeyN5lgHhdZ0B2TP2CGgNYibHShg0LSkf6iIsu7ryBNzO7gMjQYWhIcU7jk1IKsNKODSXYX3zW6VHWOaV3jKXyGIQ3qo+Ux/fKy3Er44cXIjtIGEEpHzC038QQyLeT6i6urjmf/lsyLAD9IoyKc1mwyAtS4HOihQYHAAoKjmbftgIBEA+jv5/GVdvZsfd3rOkKZDBmA3bfr5IHAwP5Xm78Ysj2tD0rACeAHK+y5i6TCq4EoqXdXiQ8TLyZyZNcv0YTB755GoWnIUUgywTAqbTXxJ5L6fJzeuLqzlYbDdBjSleWSaCRUroBJZpVtrVfUbwqT1SX/ZgGvRHHFGXn+4mOeULj9HOjqXID+YVH+WW96UyPNDrecKY/O8rMG9U51y+a/W1EWGgxXQcG3dagL+sY8cCbwOPQ1kTnSrS/tntVwXtLJdbJqzj3K7o96H3SOW9jwpsZX4eAgxiFAVp6kFAQsArZLsjZNjGiM52lsKR+PW+CPLK+fpiTbq/eGPvyeij8uIqpQf7PsQ3GIpcV8O5wo8uqOD1DwpzcL0x3Rkx9j20g8nZdWlBPHfeJ1nAxQsQz1t9Yxgse9Ew+Bxp5Jn/Dp2y/hdtrUioDVNYBN8KEDqlukp//POh3qrtQ7ifiIrr82pk8hhNwPBfm2jE6R954vQm8wYh1wqtQt1SUSgAq6l5AhfrJVMMNs8nr/ib2M5FnwtSAGxTlZ/bZWpMYhyC7slG3Y7wQdZ1gvo3Rzj4Fuwi86bfaau/Rj7cYpy0NbrVojDPD1DI5OvA8TDWa7NmOkYCzkzZl5UI9xiEX42T767xz9Qe9cfoqv4k05N1tBLMhozHu5IJayiczQBmrfD+JBrnsJWNV5M0Nf6Nj67r+bcD9L6sctzJ+wSIC9mBg27Dts/w+TjTGuiXVVWNytydZP02Au/5MwfHps+z6FZqcYQWlllWK9OwAJEj9KENYU1oA6ocuEy8Cjex4A/d7dEzZ8Ag8bE/r856vjuaqqV1s/PfnKrJM8ngZg/wU9H1dN74i7Uz4aqtCyrwQYN6iyTubcbLkz1iNepPbWlLA1OQn61eINCHyKsYTKQVkoJkTb67p0Zxm+af2lxfRFfllvQEijZ43WX4DzaGutxMnP7AKcqrrDCClqw0phclO9NlJ3anOeRrRd8KYsfeKylfpV8cbA+9BXld4Q+/ha8YMeVaw6iqvJjyf8uYKX6e6PuNrcvjPLy6Qu4UbSidP+TE8K5+9bcz64aZz0tIUU93O7jXdKR8o/xnmyEUiDAy4n+vKpVWCqeVGP3lyqP2q/Hkcn/K5B6Xc0gZV5s4nhnYzn934Cia8gXvW0wyzkWndjhuduhu8qiNNQX6j7XubHOXHU75G3IC7GKv3GwxlguX6+YqeIMkz66vixmijssNWmWCpqEDbpeGuR+3fMN5ruu79eKCRE1+T31NesPPbk7Tda/r6QZia/I2TIyjL0zZaKss45zJQ+mS8Aauu+xu/0KCyV9rH8QGweIIJ4HSJWLDdK7yZYNV9/sbajjFOhZtzH+U7WL4tEzMi+jkA/zaAH2Tmb7y/BquByOciq24ghNuK0M8C+d9DcCCrwlZXgz4BkgywXdnlEOyy79glqUYNg6xPp/gKJrrS5/rt36M/S86J2S2UUPrNibEOmXti+EoVFzVagzGCp8mNl2S85rCVN77fTiO58clnQFZuGT5toxHZVoMKKqrcgqUy6YDjUkqKbzfIIMtT6sLoz3UDXz2vGmkLtVuUIHz2eqL8lvNaPu0H3Xl1vpakR278QqekVcgLJj1f22UyIj/GBfL+KahOeNmHtARKNPfxFrLfRO5GYwXpax9M9n5FD1yxM7X3tBRG2frLpYP8Iq8ABPmJvEK/RDaGTpfwJvAt25+sIJKXX4UGgnfy5v02FfVo1DkvW8EEC46XLuMKu+xHnp3q2BVeXePNVb4K/jm94S6/UhjFYVXgVXLww0HybH/BxroedcO6B6vMWd9fTGZZDh7LhU6oDajtq6w4tWVnOgY/oLjYdJYBcHsPPBbasc1wg+Yylf6n/kaf9XSYbjX5V9UZ75sEy5ga7hc0G/UZEh5TVZeS/EfeXJN/dePrvHHfy7M7twWBhhstFS4GyiNvZjRd9zeio9HfeJyASzUllmS3Vm8tOy510c+MTFPsR9qOmScTGoN9V9dGtGOpy33RksFYSkWp7XISETXUJxtNg7+Z+KrR34w0qW4rftj4quAG1X5co7ixOh3X8ZreyKThGj7p+Lv8fFqd1y2LpWqKcVoq45kYchmQ14vWzR2YOtPtib/xNANR55oM2+SsFKCUGm+e1rowe5S0yCu6PY1xROeSPpL6U5Fr+7eincVrWNXSKxHsfKavEfc9VkXeRJyDo2vAGQD5BfKvthw7Zq0Q0Y8B+EMA/vbddSBb4wIG8r3Abnuo1qLPA81g/BZsrGtbwXJ20yZ7XVlVKRlYgAdCTz0AFq69Vamb3t5OirEOhGQs1eiGS60h13dvXVOnWMYkBt2+o6XxpaJdvd4hJIzPjxd9vJEmdqDZ+6WosNYWa/DfFlDcNbJgEGq7SYka0C9Cr1ImQTD1QGC8pSj3K3VzCsuQNuf4GoBfx0JgRkuFc1v1kLpsdWkiE+u3jv1y7vcOvvYAlxnYS+ljdyuVPa9dzjQXBcrIm6lud16I3jTdgDlZR2PkK4NaDgt4K1gWhp7/En7IYNVRmBOK6RUyiTI5SN1ZupbYn9JV7FkCQKXxqlLBIoGz2kXs9x7eWF1xJhJ8XdG5TpPylVoQAwb2fibPeG4YonhE0e4NMxxfp/3O+drUoqqOCa9QgEeRHwGV8nhtfCM2ZbwZMYQhwR2u67bjlZ+oPauQ4R0lfgCMWhds3Fata23XRJ+WHWvZsS4ueEhBYBuT0aM6GvCoYRkIwNI+LVRG3KCMOT5oSbwd/I3tQtmzebzcn3W2QRXUYi5UxQ04OdW5vqfxBl/XeTr6G0ejx0XUpKNV33HETFgXKG5c4801/fa8yrYR7Zm13ZkfkAAUAFhTGVvketVHlhu4McP9RLPaZPIDxaeGEaNwBTP1V6W0c8YtjrmB5f4zv0/nOm8U67weGW74Z5el2Spzfy2QLl6YjK7xRm+tzP5Gn2XtR32iPtvllHWO0CZbS/tp54Klzzyyv5EYMOtN4M0UU6O/oemzWecqTn0rqHLpqXtX4gW0xWk5/xn00/FOabjmb5ysxVa97O3CoR0MYC0FO9/hb5yvGnXdcKWU6p5NMQ6yzpkfDJD92goj33TzXVu+HTtmfxrAzwP4i8+pZC/Ak39kFaCVvUomMinw+LQGwILH7Bi8c/RGEOqG7+Nz8rsBrwUjqpg0rxtXVa7UBWArEeagCrWD4ED7157nSM9kvJ6mSH9/LoHSbMU7rCa58bSY1b9E1deJ4yN9II03OdxIZKRpztcst06vA0gdn64EeV1ovw00c+bVWPdevrbDzeIMk/zI60SWwTipGWStP4x89W3P+ArufSUeRpm58UndQJPx4lrdQBMc/xDPWOg/nfc+/Semytzgzcz+XN0gz6zrWV/7GGTlNNtw3LEZ2/U6pr+7Z2NjHCa+ojfw+qFjNPlJP0xsG0kDr6A66fnix5d10pM2YNVE1l6eH1Ku9gWAibHvhKdtAdCual9oR1mS7Xej9RMMT6eVyRjdb1PcSDLNtq+/3fQ3LrC7A3Ma7rcvKmeabuj7B/obj1+3bAOMoKfv403W/Wwr12zD+524+GFpWH7M0h/D9N37kFxXh+bpH+Q3sY1kk9dlwMorTv14vvq67ZE6kW/ma+KNG0sc7/isKjh13HDj+6L+BoEHCa8UsCZ+oABU0dMHk3/JMsm+OY9zsKnR32R+efoDr/SZ+L66oR/gZvrwvf6G0uepzrH0HbFKb3yc2dQQJwlNPHkWk2fnn6Xt153KyDh2zAAQ0c8C+BVm/mWaRfpXK0JXFVo7EUzadePt/RvFP+NWhABoQCNAo6l3nRS7bIKDAQJtFZB923CrPORp8sbX2o7v4rItX2mwTOrae1R8AOxXSHp9WXVyYODP9MQ0Chuvp9EH/npDluQTk4GL1XVjJEvTk/G1G8P64VpdtYwgbHWNN2GS0+kIV4c7sC2ubl4p9O3rZJHRE8MtDdY7+gjCrv5EJrZl7z5/CF+5/Qew45XxIvAGDlRLkonS68fXaWbuL5M2ffLPRr62upW5B3ys4/Dy8bxSE6FkU142jsdeB1VvWOTp9Cvbp5vlL4X76wG7rhen61N9RRhf5o1e+JFpHHhjPPFwXiG73jzy5ibejHpiWOWeu8rXKFNpm0G6y7pA7tl0tjXBG7i2pKlSHFbB2xRGu4DTbWePYxB7f2krsXWqO1wJXAlP24qnbW2/LW2lmOCyH9KCVnF22ybVCfP93/KMYixjc7zMOppt/0P8TZapYY7HXsMvjxvRblK/z/Q3Jn8LHsfFyjluWOaJpPXywJuAix5Tnf2+3zaajuVbEf3qPfftSc64kbA71xXReUy9ylc/tolNDjIwFmN1sjNcnPdzj7+5xps55kSdqz1fnCAvK+58+gL+BurHR974Z61NDs/aKzuAlYCzjn3ib2ii2zd0ffA3Ca+u61x7RyvD+lMdctkX2Y8H+c18FYw3QX4EPeYy6GfvVxdrdGe0BvsbZZ99McL4hptIHd8DX3Fd50jbPMp3urx3YkZEvwjgRyY//QKAP4WWxvjeQkR/BMAfAYDHH/rUHAZM1lybkaHnQouxaaDNtpphubj9sxyAJQEUOKNiBLBAC24WVBSiftagt0kyN4t1LWhttXUHgKNyz+qKoRjguroO3NpuS2u73UzVzNxWdMzxNzY5g3QBbftP8s07TT6geU9dgDW4heSoM/XUkR27A1cxWHM+7qW2KVDyz9NQl2/wxgWLOgbusiOcCmPbd/jzieTTgSa8GWRyha/8HL72sS8AFiog7F2Xr/DGyX6QyYQ3pf8Y+OoiA/tsQWID14oV0NQfufDGT4Ra/aTbyDKIuj3W5XYbWQf1qK/JPgEQtVMPbfV2A6HMx8cIdT1NKhPqMrmnro4jBkdNrXcsBNV1Oe6svMEV3iS8kcUUzxt16DNeBLoizlVwT5+hljZTXatpvBmrvN6MlwTMcc4HHhaAxkDs3hJw/4c/dXzvk7H+ioTPzwBzz3FixkJV06e435Q5p5MdnRKkRdvwuNEWiPb26oFSce64cQ+mfoj8vUzV9j3fiYGeorSg2WeZ4Ibc5naPvxlk6OQfbSPqoeJ+H1uhipU67pe9L+7QlDceF4HRBjNvvH433JDZDYeJI9h8h9FFKOgpZ4IbcLbgMTUvVsDzJr44OWexZJzwuKgBN0nEsqMQgYj6qwWW3oadf8x179M5m6zcE+PI+OTzjnZz5VIqtiovBXqfv3G8yZjqFw2cbtsk2OmcyM995q5XBbWnrzf53e1vEu5ft6mo6+YXRbJd5zojS6lY9h3tlQc7Nn/2fLCpKzHOwFfTo3BNvXyZ8Mnbn/CsxTgFD0vFRbBqIvupH/c6le0i0JhjOPHjHOoqo19z+arsmDHzT82+J6LfC+B3A5Ddsh8F8EtE9JPM/Hcm7XwdwNcB4Gv/wA+zvsUcXV0rYa8FTJa6eCoVa38bfAFjLTAFCbfLIAADVKltMpBzfdeGqljBuFRg7ZVlxc8mCLB+AFj+cKd82q9+jHURd8go0bgSINd9Xmp7b1ijCcE4qBul73cA88AbAykx4FA3O2d5Ft34uQeHPQVBCAm8CuBt4/O7MLZChAgWLL9l3hiN/spWgFEWgCtjZcYTWHklNId+CmLdQSYmr8ybfPNiuG46y7MA4J6Cy4kmz5sQQExohj1rvPHysvZUXn4M3iFRC+t54ZajTsBiA2qpJc6mzOlN+oWTJ0/q+pV0L8+Jzsn5hcoVtBfjlcjrhkwslSTJL9vfMD6HA1PMYBAv4MLYaq+rLdU7ZOJ0o5is421dk36BwKuonxIEUDtt4HDB82qKVe5Miaz+RvuzYCbrka5wo+my1PW2fE+Z4j638W4o2PeC87bg6bx2nlW8XTc8nmqfnG14WKqzf6NTdDyfO/a2Eey3n29Za9O7dzBeTjE1yNT1e49NhrNrJtOB5n6pS/vIuDDbdeMJUwkTbPP9DrrDMZCm5BNLGl+wjQpQu29w74tgq47oQ/xN6ld5U90ODStuSLuZ5tZHu1zjspeAZTcx9Ya/ISQac7D9Xp1jVDjcIBrH53hji7ozP54C9VB3HuMEXXe84IWxUsGOCuwN9+/zN+lWysHfPE/nFs+r0jBsLRVPlVV+9/mbSZyS8Mp0LuOV92vpnGWpqFzAhbHU9r3nVbBdz5tsf2pTho1KV8KMcRGNgx2IjTEYlXc88YLVOcX3+5srvniGA44OibVV54ZYEa+7fFUmZtcKM//PAH5IPhPR3wLwE/fdyghIfjXksoR+cFbAayXuZwzEACNgBQBLv5mSE3wet4G9pTIyy/QQWg8E6EqXbONLXZgxyIqX9qugm/tlfd7asVVDoZlAskjhevETJ7LP4PC51ZjQnCZdFGiUut4xWt0h+CJ9BSTQLwURSoXG4sbahkiuXyeTXNfzWEAPgg5+vI2v7QrZ2ZkM4c/Im+sycXxNvMp6E3SO42+iSLUm+eGZvFHwxpQGpH5pWtfLsDnDKM1JXaR+PS/g7ULsL8os/B2Cq/kY5BZE5N8GXb8lE29/0Ju8rtd1duF+UzmhG2BYgJnIJPMGV3jjgyV9/kOwqq9eIvLVZDLBqszHqV1gpHlWN+HNh/jn1le3/a6W58uCd08PeLqsWNYdHz1WvD1dcFoZa9nCGaNMJyVeetugYcyNt7XjBvPI58AfjLzVnQvVb/es4HfWMx/0OJu03ySI4p4Qovs/EIDxuDHIkDJv5npGxDdtoyTbKNRvmBUbzViHZ/ibTEf47HYTMm6IL3DyRHfa3LM2RtlfwdTBVyV8eqZtwNGIzlu5kddso/ZJqPFGdMp4c2e/sxhHdc5eluxlzz2VcabrN/0NzXzVyKvb8ZEsdKXxdWVibvtksd33+Zv78cr46i//sX8HnQtxoG0O+PFd9+MzPXq/Hx/tkcP4WHU9yS/5G/h+Z1f2T2xqZo+y4DCP/xhxEfQVFsZx+ccXLYSGU5W5X+fdAtoK6rtkhNJ3zUSR2CkWuOXdQpUMqrDxxiAMStmMqV1JWqhgxY5KTTWL6yfkG1M0DlBPf/KTRgWAnLrQ2+mTTq0btpgBllRNKlhpx4VIU338il/OwQ9gnZ5tJOW6GGhsfIt8El6wts1YaMOOBZrSojRMxkcMomppkUCiuUYala/c3+fjeDc46nZlRCmMZa/YaO/yvM4b0xMHXp03QvNNvXH0Nxrte+EVuN0uuJSKpW6ovDSaMm8cKM5pzrzBoHPG10ld1TnW8S+FcaINZ7REqXldDnW7WTi7iKmOoveR5nG82k9vm8E9jZGw0o6NWpJH6ePFUBfuPwtIwWjOKOhN2qES2We7cE5OZFC5AihYCVhpw84LiNqCiQWd13iTMCPxBokmtddrOqeyF6zi92KV5w153vRAO4+/BXgjb6hPTq9jxgeWSgAx9g14elpwOa+4bAvOlwVvqAK19f12fWpnogia9hvOjCRsBrJt2DM02BKBSsFpb3rXJkMzfGJoYMddrwKmSkq0HM7PtpFwQ3ltbRW4gL4wTthxroTKi/mqIMPRrqC86bjo5Y/32Aazwycnb7YxLFRxKhvOfeIz4024nn/qb25h6ogb+VmRfdP3dmOn+siOG+JvDFNv+RsZr+jYbdsIr5+Y+OKt07kSB9yQupE377Mrk8nw2oOEV+TSXG1RQOyhc6vzShLh3u9v4HQb6ost68j8QLYLOWMt46OkcwzW3aOFKgptAC/P8De3YpxbfDWfiT5e2XFkqYt24dBKF+x9f5jcs1PeALjqix3+GvYYLok9hjNrfnxgEBWUApzqjq0vcQy8cTK5J+6c+Rs93xd02/yLt6nXW1r89b1Qvm0TM2b+Xc+rQdiYcN4WVC6oTNgqoYWMO3ZivCmM1b9xPgXqApY9ZgqKExUpAWtX/FMBGBXnsmCVlRxIihpiXUe5AI5/VlcxyLaN5XczcLu+mDt9OW2DmAG9CrgNjDvNeg1/Gp+0lYFdnW/hxBsLCP14Zk6zUEWpABe5wtocs++38ZXv4A20dr4uf3FMtrrCG+tHDvueUIFKuJSi8iNAg5gsA+MVnB4hyIQQZeL5qG2RyUDoYqCf/yEAFXVrvPIBgtfXqGOR5jZ+A1wve+NN0m3HmyCTHsycSgXvBKIVq449poOM+hp5YzRbcHBV59znGV+JABQG14qdSpc9m6NzNElAG2TS+ej1hlw/UdYjr+RzsClqE0IqFXUnFFpUBuwCDWi/WSZzXmDghfDuhl04PgKMh9LebXUu6xSrsr5mzEDnRdSbG7wpiTc+oIAf2/PKfl6w74R3v/kWl7rgwoSnumLjgsoVey14XCseVnt9SSFvwwnLke3Gr/qO+r32mRHXHVspOLH84nGxcXdInw4+xPgzYt0ENzQo5IT7Xe8qA2XHXklxg3s/ggUEhBS0W3j1HNvIvGrjq2AuOC3NFoioBwsZ9x0WqE2mtLqh34kfx6jDwpuIG4y2m03YuAbcuNffZPnJDkV8VngTZY+hbp8A9Ah5rxVEaz8jPsYpIhPb9Xgfb+BinFu8iWmN4jceUABUPHX5GW9y/OB84uDHI175DCZIPfVVI274SbWeW9t3bFSw0AqfVTDzNzObuhbjeJ3zeOXxmZIuUGmXfzyUiloJSyGHizleyH4cSQbdngEwXdc5o5Edn6IdAMCJGEw7LlSi/c14c8WPE1hfwXELM2b2VzKfX/3k7HujvNiOWWXgshG22lRoq4RaFwMhqu58gCmvD+zaZzIj9IFR/84O9bZngWi8zOjQ5doNaXQISqv9Uu+XzTiG1ATYs/HgeAdz/yz5tmSlwugkV9fy1mf9+EBTeJcAzfHR2hc6/OfaecNo/+O+CjTKYMobiCG3vyNvRpmEIDHzxn22FV5o2mfgzVUZ+M/Sz3tkcoM3gNMLcNcbkZ9/T9UtfXWT40Em0jaujk/1s+u6BqV9vAWyu99uOWV2ejGxi+v6yoEmJNnnzzo+Rl8VjDJQ+fVv5ro+k5/R7J2v6k14+fWMRjjZu2BL+N51St4TNNAReGV1r8rEy3PAjFGe0/Eyt/NlDcqu0+RkP2KGc94eE+/EjBCkht+eV3gnfP73HvH02QN2IpyZsK/Uzp4Q47RsWMt+l/z9mcjISx/0THCfepoQEQYZ5n4CfyIuXrMNSrw1Oc15C4je9b1Rsna1/QGvJhjqxkuuXx3f1DbmvCpom5uoBLkJcfDF+TN6ettUJhlDET87vFKWU7aNqrajl4Q5XhHu9Te1LzB6f1Nv2GBMD/Oyh/oMhqR9ekyJvMkyueLHM28cvw1T3s9X7v6oMmwi1Wm9VVcn7IpXE93OvFLeRN3OCyoIMY7n1fNsCnguXrXAhcJ4HYb0xZHaBS11vW4F3vi2Ag03dG6qNzn92WQiu1fMBCa7DOhumVDGyNuYMdpjjf4mTIxfafmqnzH7omXbC3ZecdkX1NreUlZrWzEpSwPJvQIPS+1BhCn7mHMvBg+AXFoZWlBIIH1OUmPaC5PbCsaCtkPVq2vQEg3UVq+oAyO1WVwAJ6Un0JxywBNIBoXvIHoixkbtpZXBAYb+Io122J+MZmdsI2/YXdqRUhup3StFaAebCe1ykqXs2Dupvt/IGwcsQz+dN2x8DgFsGp93KD6lgNEcj6R37R24PMhF3kg/9jnLJGzdk6Mh13Uv5xaaJQ2gdn6cqODSb0CUlbqWltL7c+mJwotRJpk3kaagnwwNvCLNbVeR0XZr17JjAw28irzJ+urTGqL++psmSXlDSpOsWuukVeTHDK5NZieq2IihqSyu38FOkr6as71lF3761/5enANTmip3VjMWai/urdydlOhrGLuTvfbr+glpTI7PYZXUxktUbTw9aAOjpS5yW2lfadMpf7Yhc7LcA1Qaxy78ozmvMmZQ4GPUz+cWZuDdtx5weTrh6VsnnKmgLgDvFeWjDQ/rBaUwLnvBR6h3yZ+SHCIOZzvq2M/Nz6x1x45i/bDrp/db9Cy0yV8CvZltkLPBPPFv30WaTO/afydiXLA3ialPcv7H22CQv9f/0TZ0ty7paKvjfKSmVrHDDWDZG01ZJpbOFnFReH/NNgjN9+pOtPhT5zNimm8FcQNLbu8kxol2nPsLJHLd6/7GYxsnPTG9ptSvpev5SUH3GWoKLcOn1Ip6lTeI40u4OI9xYGlmvt+JPAHblWmhf8OyFU3Xp7xxMrFdU+fHr8Q4FMZnk7ARU6IubH3CcaKKS1v2nfhimtpU9lW4YlMeU5v8muyXDuXtRkbnx3kBUwuIG68w8sbhYvbjN3WO5I7OzoMr8R91vBHeVfSN9IBVnTdaJ8a3t/14jnFiv3GRoyqtkeZXXBjHGbMvUioTPr+csNeC83bCUlq+8VoqPnlzwVp2rFTxuOxY3JvuveKpoUijxHrbk5xJmN3k1Rxs+w6lrdiWUrB0AxOxjmlYrY4qtHSEuJVN/XOrZznsHav6bV19xRYtWNa6xM3B7MBeCoqc+gw0mWOQm7/aLogLILzTFPr9s/KZYQGdjiduixO4n/MjVK4otEBAb+SNb0tkknhT0lkXR3N81uTHQHJsjS+SpnEpi8pPiqREmONwvJG+2T/LSUYwZ+TALgdbXk/ksDOYsRdGkaBe23F1aaJjcsU/ie5k2Ts+hn49b+pI49JSLJkJxfEqyAtehhaA5NSLW3Zh6S9W1+SX2ioMoh2o7eKfBdVmsMi8cWcqBt7kFJfYr9gMT+QnOmadVogqVCYnP3PEo0wskDOar2CVo3kZxueCWvLnN/okshCY9yA/JpMhpJ3QTw00eZoHWwUG5zykDpWoN88tlQvOa8G+EOoj4/HhgrLsqAvw6aef4/G04bRuePtwUVz0eAVIgDe3QaE7304XcKOg6d3e7F55mfBKgx6tzF1O0tZov8HfqC2M8s+8pdInHSBUdB2EEMVukpL0jJJtwGQo+r5kHVW+xlQoWQiIeNyCPt53lKUEXqmOKo/5pm1Y2qdPK5v4U4LSrHxVX9WNs1RwJWzUbu5EX923ulAfr2muNOLVdRvsekaykGG33InOqd9WXrQndq79fXGksrvJmxS3TG1w5k85ptHpNfSCG2gx1YgbQovjjeB3kAl0EdvjldLvGBfwChWLG0/ADeHlQqCdsBP3V2KYj4wY6vHK60mnI/DqSr8ssrRnC9zOLBhAxakQiAnMtcVdfbeIA2/MjytvMmYEXc6xVNTtga9ONoDYZ1tYXajLExILx7TXWYzjafa67jFzhhk57dOnbFuE/ErLsWP24YW5XY1/2Qr2va1JLIXx0cMFj2VruyBlw6I3YZmDlcBPcU7BxD8rqwjaYzdu0micdM4jAYs0FwMwBQVph6Bb0kzewI0OcQKAPetXnWQ8edvf08MyHoogJc8WTHjTaTKQsLEPvAm8Y6VRvrbxcr89r71nLZyLciDuZRB4ow9zaBPpWS8/DWxCP1Fe9reBWPuGXTut39xP5pWCDUW+6kwNXm6ON258Ao5QXrHjVeKNgm6vS+P4bGdw5I3Qco039oU5cTmrSECgy9OkjsV9tlJR4F74rkGH9RvSOtjzxt6Jo2Ngawc9CBBdL5z5agGk8oZG3sj5Oi8zsYNRZl1eiRdyyyf3ftjzBlkmIof+jrHcr+dj/2KGLxlDMmZEX5iChIRjWfZB1n64qR+t6upmmlQHKevGfYUZuNSCrQD0ZgctjLLu+PjNGR89nLGu7ZKJU6lTbAt6BkenPIs5pvpd58LQ1XDF2P45phrxYIOxX2+DzTZ8XS9vYMRUP3n2v1V2+pzwSoMmN95sG3MbJMjEK/KVIl+lHx88Cm4w3ZTJiFfRNqI/tb+B5AcG3KColwJiXQp2TqrZflHGenmazzUZZBvkqzaovPG24XgRccMuZ5jiFXss77iR+er01cctwQ+k2CPwdcANO5ek4yMM/snzprh+ZzGO580Y4wgdFmvI7wXA3ieOEiMI7o94NUk1Bl2JcWK/ao/D7zzwtxD6u1nlaIsyNeG1xVJ+PEqjj/FmsZSTxQyrrI7V3dUDZdnTVF9nmBExMslEMST/LbzxE0vJhjnKd7q82I7ZZ0+P/QpvAsqGx2XH47rhcb00x+yuEfbGdD1/HpNnoVvD+SbDCoKkTpWesmR1R2MSB0i+LZobntCmddJn6GcXDLPDUfLv3+FJ3eRkulHHczdS/Oqsf9ZomtHcMJk7ODRoWMh4mPksNFnqSqYRAbgpAEjkBRiJN93Jkcm+9tUskNupciDqJ9ORN86BMet1uCaTGJzAtadA2nmDqfwaTSsxLknWmhJgcVuUiY5vHIc6wglvWvtWV3UEjLYGTy19qy8GsD6X+/Wyd/KTfvznq3YR+Wjy8zSJpjfnsoCxERDeFeZ4lfsJNoX4LIlcSZ7NZ0fgHC7bSrz82/li8uPUj7TveKX9OF0f5BcDgbjg4z5Pxld7bULCKhk3ket3hjdJn3RW7HiTHLLwEa5OHMfzS2XCE6+gNxVl37CuO7728Ts8lA1vTxc8njasVIN+zmxDgrk4Ng4663HD235Tp3aL3wLWwCdgUl9gQbArkz+cLVCyDU1lQtR3pVnsVWgVWbDgRsV54iOQxneXbeTvMx7D3WI32G+7EIEBfWWNXQd/Qyac+nV2nf1pcf8Ck7qqo/YsN0UCJR8pY2i39fp+aOg38srJikfb8H5k4KuzQVmQW/pNj3DPjrgotAIh/bMbVRtvilvUV3laRtwAbAdEYxy0jITa3xmgu3gTmUSa3W2LQlPmjaPZpxdL+7bo2nd70KcYousupvATBEufG7E8xzizfi3WiDqe/Vxx58IB9B3YCuIyyCT48YwZIuMUW9GkX1I7idjlZWBnw1vfC1WdPI5+RdpKMU7HqhL6Yb1N2qdkZ/7NMcMWG15tOXbMPrzwTtg/azm9YAY9FmBl0E54+9HFGTw7xW6fLU1QFNgmZxkoijd6sK6AE9pV/CsRdipYC6PWntffWyOtC/efAGxMM/OpRECcBMYbDwHZKROaLZccAPdzLSC7Statr0VAjTROeUM81I2fPeAYD/0EBGg0rQzUUrHyjp1ZeRWdQj/8nfoNvHE0x617l+JBSX7JiaJzZS0VdW/y2+vueon9kPImgqM8HmUSeTVOAiwI8HwU8AW1l1NWKii0Q06g+APAvq4P5MXxBYB0NMmV15lXdrh5pFWc00roN33uOlI/nrgrxCNvJjQPwUGwMe80ZHzOYaM55sqEhQqINpDX9aEu4G3ZbEouHBAayaUKyWqvXdTiA5LMR/mXmbAToZCtV468IYwBjgu4dJxW1wdocYV+jhnCicIVK9pZs5UKap9OWGByA6tcelbQLQmYyK4XjvZo56TgsCEuXD2zELCeLgABD283vF03rMuGx3XDJ4/vYqprwquih+Vh+PQM3Ih6184Un5Yd2x7214e62Tau2WD0NxZcBaxzdpRT/Va0MyV7IZS6oU0bJdiqcxt0tmETpOfJcK53ja6VdlTuuIEdnGx7xJyZDXpfFHU0+mZnV05HIbxzfmQhwsLdR/ZL4GV8JfkbP1EjIMqEKkzHYr9mGzO76rtzWpexUutpo4IFO9qpoohX0J6STN7ni2/4Ko+LMUW0tcXUUj7XUrFX8y+mRxGvfIwTbw2OdlSoBl0IKe0azJtdqK5wO8NVRY7TGMdKWFBP8o0xjsjEpg4+DTJiRrQLQnudADOwFWoxDm7HOHprqqNZ/6NkU348yd8MGBLk6bCqVGx3xDgy+ji+CVY5WUYfFvFGMSLJ5XUWftGJGRH9qwD+GNpexn/BzD//oW29zOUfTODz2sLQhVH3in1b8PD2M3c2qBnDkHYVPnfQmjxrythKrNtWo7i23GPmJaRAmHG1oobJzgg9AE76lbK4372zMYBzdaltqVdigHGDptzPLN3ABybx2aFffTbzqv3GKKgFKJsEQjStG3PxY5t5hSnIDyPIRvnF1D+IU6stuH9invLK6nKkQ9san22O39GR6sa87pT22Ouv1N5r46+Wj+8PmshEeNi/8Z8zb5DqXr/uttHP3M6HFLb3r4RnqTeb2hn5aP22S02y04HpHAP+XEke70LA1ttoKS0ilPQsA4OzJs+fGmjKAYVPxQDs0o8ZTUQMVLQzA3vTc3O/ztZ7P8HeCE5HPTZN+EopzZXj+Tt7N03vp7SxLajgeBRP9TDQqN9P0mkdX30/gz1yjXVTW3E6c18pxHg4NYx4WCrWpZ3VeVw23f0Q/PA22HTW9DCeDfLBWmtD9Y5H2y8F4CoXu0zSuSj1c0WGMh6Tt7ONiU1KW/l8SLOrir0QVjDOm+Cr4UaY/ITxSaAeJwz3ynBB9HN+YtaCuIIVjAvLrkNsaz4+s0G/uFJyP8pHv/OV7FfGl3CDuZ0NFEySetdigCBfeNtwPl55xdqP97fqEzsvgo+QOkvzkX43Qn3XFNsaHUug+ZYvjnz0EyIwOxtC99uMioKl7OB6msjE+vV4NbtF12PwtThsGtMgxWHEuDCa/KYxzhX5cX/NwJRX7W/PR+lLvloCTvrMDEY/2dnOBt4R4wT9zXaReGXxX/TbRvMkznR6A2asqHhX5/FgxkT9PcU0ZfJZnvVYNYvhct1XWxjtZcgvUIjoDwD4WQD/MDM/EdEPfZH2XmZiVoH6eQFOXYF24NTv+vPBi3xuTsKcE4AABKPT9I4jArI4M5arwxlREV1fophKBxnowv3ulXY2IYg0Wz+eZkmnAuS9G3k8SDTOeONpisHK1bYc6GuAAQcWsgrDkS+5rl/NRpCJgHusH98NkmTQeTHy0Wiuyqs40RhWcSm3bfKcOet4DW3kjZf90K5SM8paxhfO6PQUk6zrFmw4fXK8mNUlZF5FuwAkYLKxE7hdwDF5Vj9z4k2SX+Bj4keQyYyvTO3sIjcd8c4rOJXEGx94ZHszvfG8yTRZPa9jDROgUsy70UFvlDej/Cj3G35zctW/42ruwEeC0gXE3zwOeKepek9iD47uK3rjabY6fnyt7hd6yTQBD+uGpb8KZS0b3vSbGL1cymAbRpe/ZWyKE26MZSJD5sbQyhjGD6fvpdyQ4cw2OMos0FzmNLe6FXJhkPimgLFeHpSCJB9QJXs23SDXVuRNxi+tx33BpNM1YKvaQsf8JL9sV0O6l/u73KA566TQRrXR5iekpu9uPIGXnufZNhL+lsQbmtU1nsjFZDLp9r9FmSDaq3/5sPJ1xFCTf+w30JVplv/vLqllFUh6XvK/HnPI7wb6fsn69WPUZxFosrqSfth37hnN/nRs+uUQS4UjF8X+bu16ufE4eXB1B113+OXHI5d5ZJqCLWMW49zqN9MssmXlDdwin68rJzjaubeoV9cwcdCjFD/MfHG0zZyFln3VKy8vt2P2RwH8m8z81Mjgv/tFGnux6/IXMHgDlmXHm/WCtTC4ErhWlKUngLEZVFjpgSiLz8PuDgfoQRaHVSHqaWICSBUVhQqob/NX3iA5ulJqP3y613ZIV1dk/Bvme9d5B2pYnQKgkxv5jR3NsAnZQgVr2VGYABR1SGIlyhvyIBPzwYPRuX4LjDc368I5526sa6lY6i6XOad+4mRVtuThr1/upQz9ugBAxkcC+sbTTGO7cIFwKju2fqtZGx86/clxY9avp7k7qTzRd0Aenk3ttktS2g2WLRV1B3OBpPf5Mx1M4rQc7yY0aq59Dw41BYY8SFZnF1Hn2jSjOYBCjBPt2ACn6xLEOJvSfkgdTbuhLOqNvKvNnJydB4l8lPE6JwgGUaNp4QpCS9MQhxT10zsip59dftQ9T9F2I1/FoWS+io55GhktdXAhUvm1szSmCyITzyuGS48RXpDnDbtnfUAQgz2lEYIZXdZcUKil3EioY7xJtiz9SaAvv7EPBp09zvSG2DATsm9YnT2aRdxbClW8PZ27Xe54qxd9tFOsGhBObYP7ldPG2yzDcIues33A2ajTu2YLDjeo2QUzUCuBa/tuLS2kLWVXfogNzvW9y4FMhkTJ9pEmFmjnqleqWGhD7bgB4XcPmKNM3YU+MxliLkO5ujvon9MdS4lqwfzSeXWGx43WsexAR2xzZ8/Unv1ijuNT10nBak5X03OnNS6GEhZasNLedxGK+qpx1ywH/J3eQU9I/Y3JJNEsQXvwvZ0urigoWGlv8kNRXgUaXN37fTEHe7adPVIeS93i6ra2CUQFJ+yoJBepmE3MfXHEDXYysomj7Xx6rCOZ3Igtdz7bzp70W7CWisItldHHOJlXUz/OQIzDsm9qPFuU5hmNpouVG73t9sMc4+QdY9dvZ2TOnMn9eiyPNCc8djZlN20WnGjHRXFfYhzbJaSZ3ggvkp+LiyXyrMUT/sye+DX77/m4/xUpvwfAP0ZE/waAdwD+JDP/lQ9t7EUmZlQYb7/2hFIqvvbxZ3g87VjXDR+/ecLDKlDclDemfHAwPH8gmFLaSl7Z8r8x2ju5wO09Uxf5LI6OGFzb/VfnCnx+ecRK7R1Qj8uO07pDVzjc6pNPjxocAQCUces6roB2+qhi46LGzZ1ndvtc6yPncpsxxdRGmj7rjd/z1QNu67cyg6liryWkawkd2cCtH+uXPagm+SnQO9748XnnJmXp42zv/UGQX3Ey8TSF8aqezGh2fEw0U/pu4GO/cnevHTRJ9DnVg6XScJeV8J0TzQBcmgZcABFpEvo9rwoqmApOVMF7eyHror3G3UjPG5k8ZJuKaUXRpkJKxISPNr6um30iu3HFQkunv+s6WbsEc4IznVsmehN57oIJpxeCL8pXcaSFsO9tIsDkeYUBb5QmHb8FpGrPiGMvma8Dr5JNAUDhvkC0dtC2s0/xRtJYN5zJKJlmz5uoc1k/B5rp+SkjBcDbZQeB8WZpi3GFKhba+4VPs7452EbEFAlO3BjpOi+z3l0qHC+b7tRK2HnBthN+6/yAtb/776P1jE/KZvKf6rvXu2i/PhU7+zUq3Ob4XLHVbitJh3X3ZCLDckWG3jayDOPi4dx+mQgnqqh7C9Qyr8J5GDJfXNhsAY7mmX8JwbbKz9EEwNuVyW/HhckFwIYbhosYdFjGBrAdm0jyjDT1BRXHN1CUJ5X+OpJSsXMJeuzjFrjxme0/wxdT0v3MZ/ILooxTAcAFzBWXQljZ7ILcGAZfTPZZaKYgP/Mzw/gcr4C2IxpsuXT5VcF9kQ7crpjYaor/HI1MyRdT4mOSWdDrwppi2Gy5Yu2Hv/edgvxmvjjfqBx9MeAnQZGPQMRYhAUIn84N5Rij9vf1rZ5XabKV49tAI+KzMwz1k9/ZERNb5HyZVMG7yxfbMfsBIvqr7vPXmfnr8oGIfhHAj0zq/QIaPH4/gN8H4B8F8OeJ6O9n/jCCXmbHrACnt2d8/HDGx49nrGs7AL4UM3Y1cBL18W9O90pmNyd5UGrKSLbqIp+7YjGbQYxOot3WVSvw2XbCeV/BpYJQ+8uvpf/ajY8GmuyzGJ9bBe99xfHZShXDdn2gbfqx86SfCGAjr9zfAqRsq9Sa4iJtdV55AGZwX22KvPIpTvCfPW8mwWaQH8GBQQ00eSATYEL/XN2Nf1MZUORVHG889wVCT6OCe9Z+97sFWSZypoC7HAWkTdaevn51tcr+Ns3m5K/xZs4rkYHQVLv8RE5wTi3ogtDF0abCb4h8BM3oMMedaZYxt2FRGF9uJ/br+6lOb3pfbDqHxEejEaBhFdRoldvoIDtl/gZO6Z+gMgWQ0kOSziWaAc/Xmc55XWjdS9qn8W+OA+PZEOH1qDcl8MYwU14u6s/c+PRZBL7dX4jajt9KO05lh+wA2qTdDp5fk+GA5TzD1P43st4JeMVdda9XQMP9b54f8dnlhIel4nEBPlk9FkQZCk3F2Uak2XSG0N6PFHyVpsKhvXBZgcPru/kQj3X3ybDRHFOguz+d0twvcOo6V7selQlNWd/J0eVxw/vIqKMceDTXO8dnjrjhxyd+7xou2gS26mQ36k3iRcdFDb49hpOXCYOJgSqTVuESqxyif0rtZPzNuEEyPqdzsIUiUWadNEJ8EbVb+NwYva+a+RCjN+NMlp/JKPhTIu2HkMfDnfsW74RdqCs0zfj4Pl+c7d7sL+KxXhwFiXEIpdvh1BcnH3LbF8/jGNOvKPusGzqd5UbpiBkJEwMOXNO5OtgjuX+jbtgtmLGd11r4i75g+hvM/BNXW2f+qWu/EdEfBfAX+kTsv6e2cvkDAH71Qwh5oR2zik+/9jnerhd8cnrC42lDKXLLjyg/IIpEBNu6BrrTaF+KgwFFo22TCJdORNYWYNety1vVKze1px7A7pXwtC/Y9gXnvZ2+X6jgqS54xAa7zr8ZKCimj+Tb6Xwetjwr4xPaGS2dk6jdOHipLfDwqxexHzFsKICM6S7SjzkTaUtXBcnR3Pvz1/jqVc6FsfQbizrL+785V96DuzhnoRlKs5efyh6RJhufd1JefsBaN+y9d2sr0gRUt+3PYXzUByOpUQLARdq5pnOOVklLEVhYqWKjvaXDOjQL6VoTvbFH2ckr0yR8FbuYyc9AduuT1xXcDoI72lvzbteBPG8sGNG0SE6yHi7BSLcAEk9pbtPFRYP1rd9w4VOE4pmKdBOq55ULnoQXuEqj8UZ0QWRQu/yY2iUhC/a+Au55420XTrd9sObt0et21rleV3gs9pho5s60RbCq93gdB+J4ddWdJraadK6EdEU/vibboDfPLATG2/XczpdRu/BjKT7VzfedcaPZL3eaxmvGOemDBajeNjRILYxT3bD3FGhCw5RLpbYYt614t62otU0kP7s84OPTGSXhhk8tm+pdGn+4KEFWrUkWAtBTGSe44eQcbQM3ZAjlo8dmC7CqXmilNCoe16536Old24Abwa9NfLHp/wzLI24U31b39WIb0o4EncwLqDBO2LHVRfVeaUt643dzRl/MjlcZjxsumv06njsdEzTz8tv5Q3wxY+aL446Fkz07THV0+V1CpvYS51PdIOG+H1/2IctVmsfUbBlf8ONsKchNZtXhcre/vqvYbhqsOk44mrL8xviv69kVX5xxX+S3BH01GdTe3qlUbLxjg9Mnj7Hy2S3aNr1xfqDzkV28oOrrZc/Wbvu+orh+KvelpMJY69bTrl0K9wzLE40mr5E3Jnuorpvsha918HOvtnDTvxcq/xmAPwDgLxPR7wHwAOAbH9rYi0zMSmGs645TT18MtwN1RZPV4aU45XKKBqq2Otq15VraBhDTC5tjBoipv4G+AAxsdcFeCZ9dHrDxoiD46emMx2XHWioelw2nspuTcf0wXCpVp2m2Ldz+Frra9xrYlQqq/WpstCvYxBjGt7fD9esdHyfesL6d3laKZ3yNu0Stn9p4VQGmeA2y8DmAQRhvfNO9pr84UJ3JT+rq9joh8Fh0iBigHe2VB44m61cC5hio+BRYoN/ApbxhS6lwDgoSLEx0Tp1mYVBtY6qdV7Z6OurCkII342uSn4C7yjPJHpRSm9DSPYnaddfyLjrtRwMTmUh03vS2nmVTiLwpno8wPZOJyAN2EHG/jtuuG6TUjz9f43lj8ot6szibUn1l35bwMdruQtwXcwi1tN03C/hGm5JUKAkslkSz8mmqc84eqT8vfFI96XwlAhEBO+FCC9buLNn3I7LvuiAJFNdTpzGx5TrYrlBMsEWB1i+eXQoxHkvbjXnsGMoAdFdlYhumo5Gfqnfk5B/0jtV+/e6kHrTf29XmBYStFlQmXGrBua44LYw3a8P5N+uGh35JyYOn2cuw86YEvXOXHXR5yi1r5Pxak387Yznghti+8ntWFwk36lU+Cq+y75ERZcxZSgWq4EaBTCqY3fh663NcHHkzYjlPcdH42OlyO2coO6gCm8cN7gFxcVjeg2/VC2dXwkevN55X8s5HGXMJQW/EFeo7RVTa+U/FjTt8sfGqyyBgud+lZee3u01SxC+dDImOUa+8N51aJVsIc1+suCiTloR1JnvTG78L5e3RuaMgTyKAuvw87s98secVTXjTcDPrXOKN+ow4SQsYAsZDinF8PJHtIvqQOtijYnmnx7AK4dnRHj1NEuPsV2Icq6u80ZrXfHFjRvE6qLzqekOi78abPL5XXb7YjtkXKX8WwJ8lov8FwBnAv/ihaYzAS+2YoV1X/Fj2CDxkE5bw9nYAuj2rwAr9rwEYOcOrbdLV24X820FEHGbbo+srB11LP7us+K3zA0CEldrFJG/WrV18QRUPS039IvRb3G9Ko3MGcRLTnss0m8FIY+zGY4Gb8YoDTSTPgAId8qzxikN7xleGpHW0nYRWt6IFibImkVMIfFAnda0PJ08fwOpnCrwpsKDYrrcl4xtrUqq+xFJpyrya8E1pTDonB36zDGMqG5zsTb9IabbzPyo/324PZEy5rV/ND+dRfqHfQPNE9tpvu/9K6STPG9dO5g0xSuCj0SjjzfqjQ6I0Xl3pFNlCJ8FSvK57mwq8cWOfYcZM50icidMRwDlN56wJkvbZccHZSbapKIOoc/p8xio/vkBHPpSf7JHb/gXruCYymehJlpc/C+KvjGbM+eqxs6VNGX0Lnl9afzUEFAPua1+TMXq6KOMPnFxYPxMy7ttLpaF2xrjUgs/3Eyq39089rJd+6UXFWjY8LpsFguCeUmc0i47p56R32r9MQqVuz7yQ9C65rc7ot1StEa8My70MjY9R3iXoaA3tEkFvwxQ8lV0VmbZFnTUfMeJT9MVznJzUFdxPPqNlGDgcFxP1+j3FxYltkO8n1Q06F2Wb9dUufjA8A6Pf9kn6W8aNgLmJV54fMyyPZ7K9PCWYZleXATaf4nk1ww1lxb3+JuGi2liyiyKTY/mscVdPtXRjf64vRqZRv3dpn3k8ysPI1+rSid/ni4d+Z7ybyg/R7gefkXEfivt8RX5e/rlu9gPt84inWW+oDzBOYKEx+VHGwsxnAH/429Xey+yYEeOj0wVlYV2Z0RUYmGP1yg14R+yMCz5dAhAFVwXsqxcZvNrbYYClFCz9+t13+4p3WztbQAR8cmpBxEfrE9alYiVPlzNCt9Ig/Vq6GhztrGkDkNUVqcuADwZXYlxIXKI5JnmWPS8ANUBZGWrf99VzoVMN33KHPd/j4Wh5RWbnHQEnAJe2JuhkAgNlJzcdH2x81F8GGieoaXxe1o435PmqFLedz4UZO9s4Iq8kCKN+25E908YX+cipnwywQedYaBOZaFc4EXD28oPRBHZOjGScPT9fnlWQNT1SnXN0DDrngbTD+c7t27b6XPu3LlAiWxWUcbcUHsdPvmJTDtj9ZCfylZUWiA2IbqmuN4cjOhVtag8yQefBlK9Z58jpetK5bI+dvDZ+ENpLVEuwKZ1Ui+7f0Dmh2e9Iy3uYruucyVVkUkHt/WWQF9AXtQ/GOD6pe1PnyGQS9IacnjkbD/YobX5AOdFu/U9k6AMs283pOxIB4yNeUZbD7FlqEx87z9O8wKUWPO0nPG0LKgreLhe8XS94Uy44FcZj2TSlTnYiwkF/sQWHBQGvHE2mOyZrQTT0ieAZGTcc9riACQ7LIx/7DgEAuZG3sPGm6Mwm2q8EZq3tip3bFUsLGO2G0n4mh3xwGP2cx43gE25guZe9T80dfAbcVJH6ba5KS8RnwUXA++I5lquesNmK7Mgsrg6yvgpYUE9jJ9nFqMAV3Bh9sfH8GpYbjcLHzhvBxS7PZpOCBRxwo93mKrcfMjDBDdE5IkS+iN6oPbKTSbaxiL/wuKFxWLuEasWOM7UQVC7zirgo7cpkcIZ10RfrRTHuWbU3518VOzptksa+Uu18Xaa+eNh1y3jTZWALDCNvss8I9ogYo4rPWGjHJi8td2eeZeI7YLnDC7EaXXwL/jTpjbNb79PN934Y7n9p5Ytd/vFqyotNzE6l5e4vemKC9TeHE5AdiKYw/nxHNBQ7KGtRX5GXc3bDktWKAgYqgc8FT9uCd5cH/L3f/ASVCFyAB+x4c7poGsvb9dxv7ZFiDtb3LQ5K+4UDDte3PCvj84HOyhUV6MYoayzR2Fn78U5ePtuqow/UPG/k7BQUcCJfwyqJgCSArRAW3s0hOZnYan7nsxtfGXjj+u00KG+mvJJVZsv3ZzTl3VGwUsXe34PnZSLBTgxUTZc8X2y8c/kZLxwfnXOHc2aVuaXZJPkJb1l0lnxdcUAOoJU3pABp4/N6zc5ObHzCyaW3WQlYKSjybZsiBJ0Dsk1Z3Ws6F+3E6jK3yWvllqax0KZUS7ujTRmPR8zwNmVybYG+LMNEeSofe125gYsB7IWwSI7/hDehXyDy/IrOhRsSU93Z+Mw2a+MVtdcw7NxPVHbeLGTnc0VuM8yINMtqfdI5GYPSOPLqQydlhRgPtDv+ONygfv6DLOhRebIsKFggaOcWs56NE+ecxlx6uE0MnOsCArDShlMhPNAZD8uOh7Lj09NTe43LBMttQjPHckkp9PrjcSRmBHBfHSfs/bp86LJYmwz51f+sd6XLf4rlyTbCeUnYQozRBFjwXQEi1H6NP/Rdo5J66hZvYHrnA1Ghy/tnw3Key0gXZBwuCr4x4QRqaXDUzr7J+n8Yr9O5LL+I7RFTLaiF43FMfQs0yncd03ZqV+Z7f+j7vYXl1Hke9cbtzqlumS7oC4HJ9yNlw4mAnYBCBSs3+Q1YnuQnOmcLEHFBQRaA5/YY5Qf3majtSK3dWy+FsO57H+Go2228rt1B55xNJXuMemNxSbBH5WO7lZt5x06EU6cv2FTiTdD1FKOSw2OxR70MLce3AWtHrDp1TDh13I/y48SbRPNMb5TO6iZ0Dtf6M4vjTZ6QvtrC/GIvmP52lxdKZWzvxHqgXa8I5S58CxvNmKWEvNn+bNi+JTPYkG7glMv/DhD284Jf+8bX8Pn5DehUsT5sePPxEx4e2jt23vRJWXyHR1RUBUO5hMA5XLuWNRvLSHMBsBXGUoEzkwMDRjvUKzUzr5DGZ7zxgAfXjwdwXe2Rur0dXZ8kRqlAqaOM7Dxa758Z8Va4BN6uo5jzjzg+RnCaixtbJ7qBfK04Y4njCbwaJ/tZb/wZx5FXPhiPwUukscm+1p6TvcdJp79RbSaTsHKdaB4O9d6k0bfD3RkWMDPKboeUx2el38gbPXcRDrvb7zOdm9rjwCtg494+VxRa7DdOMqEYcCyQQCjTNLODGAAHGify22trv1RGIUIIPJH1JvZ726YSNlHk4zhZ7O2Q2GDbGWaYfZrepH4Vm+y8kezShUBUV1tzvyZbpXGwx+c7aAJjXRqeobev73HSgKHRJBf1GNbNsDyOKU+ApgsVhbG1m4PweX3AxitAwFqAT8pFU9ZPdMFSeGJnphO3sFxwX3kNj4v+XGQPJguwMuO8A/G2Vpc61nm13NAd07tJP0lXprhBVpep7SQUtn7k8SXU9fpyHctlAcCfqzF5Gm+y/PJZXGbGWhlnnaSY7POZyqvYjaQ3E3zyvBzOpyUaAWApQNmBUmzcsqjoZTLD8ps+8ipNMT7yOqcTEeKmV0QRC65gudmMPTP3LxE31XanOmefVwIuDCyVASaUftDtNpZ3vRl45/RmguVLtl1pVycc1g7LgsEOUKERU/XvvoBGxuOM5TP5ZVwTmoNvSnaxEHBhRqkVlTDFcrVHiv3Kzur1OGzm14zXnuZsj6+6HDtmH16IgMdl08OaXnHiaolXkP4dgLgiDXVYAUSR68ago3LBvhF+49c+wWfffMS3Lm9werzg+x7OePvwDqfTjrfrWfuxlQ23yoHYb06PiH8jjM9WuTxtMsjuvFh+88HFyKs8vvgeldFZx9+s7rAt7wBJx6db7h6sXF3ygVeUgW877oT2f/Xa3+SAkkNqIieAmx36cyU5EJtNqP3vozyv8OCa49B+GjGyUvpe+fGMJh8wjL9bn5G2maxl5bCg588rn3IbM/2NfDdZRpqARPcVe5QdO68LTY1agBwPuMtzBP/S06hH1zBjome+TRrH7cent5yFz50X6fnxprRoS1l+xhsku4+/R7mycKHperLfvGMeHHHWm/fp3ERGAYuvtPucQmgpOdLTTIYt2GHFgrjKO8dyw424Y+LrypgrE7gSnuqKjQu22nYVH8uGpbSFwseywS4cadTGXeXrWK7BTJCLtWN1AfFVgJwhTBP4jE8U2/Kr63BtTm2DLMgWmqJc3Zh6kFu52YDudPf/yh1YMGK5YdscY6LPiDaQxsItkM+TJePdeBPjDMs9jZIud91nRKwfeS6Tzqp2Nvr361ju6fdtU+JL6C/pXMQ9tCRQtvG1wwn5RdFX5Jd0+yo+eczpGKNYR3F81FtotMtuvtAw9gvH9/fqjadNnx11aHpkAlANj37gmvxcn5T1Zia/zsOkN6MNRV5JjEPcFkL0NmyH5Vf1xts3Od6EcXtdH3Et4pVkVnwI8h/lueVlUhlRcaK9Bxbpyk8PQLLi5IFEwR7IB9gJ5kDboz6FwBsOgSvj6byAmbDvBU9PBQ8PDN6Ax/2MTz9+arcRAohXhAud5sSaw2y/ZzoM8KE0Wd32t62E9O1utJQlog3tPBfcGYf2LwMaAJhTywAFhLx9mEF6Q9RDrp6vrm6b/BAW2rEQoSUfZJCW4vLq+3WxKgMJSrWvOvCt6UdP1yS44MOuoibhFRGWAqzYsHUaRSDRwXCoGxyk5L93muU2rwxYUj+Ml7y+yqpbO5S9UEWhDUKV1I3jM/mJU7CUEKdzLH1FhxJ1PcrPO64i+faFcMKGMy/w7zFBrovbvAlOYGqPlnJqKaV+vO27hQhLIZy44lxF10V+du1ybKvpgr+R1D8rviOnn2a+yqAzjdxPYiyFsPDWruYeZM/Km6jbcM/6CwSczmVHKE7W2UW2qSLniIhwKhWVdyc/r4MEj6ciL3gcyJihvEn2mGWfefUBhYhxog0VBTsD1AVheucCh2AbhgUenzxuCC8HuejY2tOVGTt7vlacSsVSKt6UDY/l0nHfJua2U5R2vR0+iY+wFx772xE9zeMCCndaFq5YwSh0QTvlmPHYMPTWrmD0p842Ms3OLwbb72MocvkGLXgoO87sJ7sexyf9Ol1p72aLk9tw0cNE74Jdeb3jxpmFCk6oeOqpjCNvIhZEfOo/ed5QtA2P+QOmTmhkEBYQVqpYaUPlgnYuMuqNXIs87Arq3xO9STwW+XleNfnW4MflIotCBadSsXPjVbDvqfw6xna8yHGK6s3AG0AnY4IbMBtqNMulM42mczUfOcRwE188i1MIsBdOK31RbywWHOsCrOnSCxEWbNhpUV5F+QGgrAve39RRb7RuHW032GN/P2KvX7miEKGUghUVF96VJhlv0BuVXZJn0NfIZ4sRJBbwvrc/yx5PPwz7v6zCRyrjh5e2Y7br3wYG4hQAVdquMM15WSDJQZngHGg3Spcik/sBGMvCeHyz46Pf9g7b559iOVXgLYMeK95+tGNdDFj8la2tL9YPrV92NMX0g+CAOIFfieOTPogqtp2wdPGI87jWjwSuFqzE30rgVQaD9rc3UgnIZKwMBpWKWinsXmWZhFt90INOPz5Ku1tkY7PVt1YWsl2EduNYHF+7vbndbHQBsCpwAPFdLn5FKfJqqjdhAhTr6u+unbzCXdHe97bt7II0+1f5pivyniY/eXbgTklvXL/SVrALxytSGG5B6VPnlQWEc5uiPlbv6HxaBgOahhz6VT4lnXK8g/t+QcWF+T3yi3SGHWG3mqv9+rqOn4M9TlYw0fV9q/2Shwn+GH+iLt/SOX/mRsYX7DHgnu+nYw1X8E44w14HYBMSV9fVo+JtCCiFEy6kMfi6TrZAS5MS58yhz/sLgfFQdmzcAjP7wQcKo377HcWs32AfFDWZ+mvPPZkVBKYFVAoe6o5vgfBQGCu1nY4H2rEWx48Cp//J3ySavK9CGgsjXSE+2AZjR5t0b3vFQisybgi3Som20X6bY4HXd/nP+Bp39Vpdj8ft4psTGLW/G8jrXcbja/p9bbw+KPapctHPmQw8jjAYJ4cbAa9yv5T0RnSC/KJf+0/w2njheeVxERGPSwtewRX7XpOtTPTGy4+T3gTcthR+n9Krn4ERR4RXxCiFQNxeeXCua48mJKYZY4SII06HU5ziF2UHvXHHCBq+I8pT+EZd10M7ySdS8s2w8SlfRW8YAz55/Q4ZD0M/7TOXirq3BTAbX4oByOlA/3cJOhZjhJilgqDnVKI8oy9u6dVtd3jHhZcoP7xPb9L4/Gf2fE3+xr2ft/F19FWvt7SJ8vdCebkzZn3ltH1uKqPK78FffxOlJ8jKAunv/gYeFwQSADdBI1VNAH2b+FwI9Lai7BvWt2c8fnR2ARs7sDAaw78E2JkAjv1Q/NwAXb6TMdn4gLZr0s54ynW2gKyGhDNniSbPCwUD4RW7ACONR/jYPtbgkKRtOVouAQe73+zsRLy8IMrHy6/JBNJPH1Nb2BegiHX1ViY3Pv2VfODSQZiEppFXtoLW9Yb6rVaOF9a/59U8PcYHbpLmyf4mNMcrP14E2Y+8os5XTbfxesOubtgtGXkljojZAN3TNJdfpKsBXrSpEvr1LxSf2eOor60zVnMMdNF1Xc96U5xMjWbS36L9GV+HlWgAsrLItffDPnjEWJeMvmafM53zK5m2GjnY46SurFqrNaZVYa+Hg/72lCJPU9S5iLfaprN/n24s54wEEyV0eU4hAAtqTxuSdASvd2Zz9+s3El1RN5qKETYAOy/YmbBXYANhKTtWLlhoxyPtKKW9p9Djk/wbdSleOR1pSpMP9nSJ/O1GNMENgUUQHG7Y+KLfuKXf0fbDjsEgf9O7MGkJuNGDOUBpzrh4S79nKXhev20CYBgb5Ofqet+uu0Gq9+6K9KDfM15N9GbQ71gXQX5eHlDcb6QIjVm3Z3qTsc3pTRq/6Y0bn/g53f0SwOoTjS6Xcac843HWG2ePNNObbHNOvpRxMeoYmFrotbONx/FqljIcfBEB4OoWCUZ/k2lSGRBA7gXYHutqt0PAMlpmWC6oN2LCiAM+/ZOSbo/2KHplNtVuQe1yzPLjid4IXU5/B3vMfE3YlG0u0/x81P8SC+Ml32P2bS0vdivjY9mxc+2X4TboF0WMKQVpyzkph3/jfDNymzwQWoDHqmwtEGcAKIx9AdY3Oz757d8Ent7i7dt3KKeKCwhvUPWgpoEUXIDKjqb2r/WbblaiaNDReHxaTm0pPqVg3SsutAPhEhDY6g63sQO43q/QRt65R74qH3W8AvhmzOIEVyIstGHH0nmOTruftJgDlXYH+YV+O9+cUxJAKz0toDkZdvJs7QIt+W2lvesRQr8gl8IloNoVQ/VGwdbJj23VnXrdKM84TpNfC+oKtYP8W09pKc13NjkmGdyWn09nNLto3+1zvvYlMVI7YKA23si1u2IbWUbwugH3OTsUkTX51Cer2/RGgrsoA7s5CkDnzYl27CjGI9GjmfyC3rgFg7T7FXGgunbg2rJAT1iHrtMrKhba2+UH5HSdauQ5YOMV3fK80LoOM1xAoDTzKIPFTVzR02zatddZ1znUlR3y9jGmJd9tj+L8BYtlZ9K19dxCYJxohwQ47H4BDNvaN1m/e8CX9ZtkVdomCIUNK8VXMwoqtzNmO9qq+APtAAgn2tvLlFHbDgPhOhY43Ij+RvBJUm/b8xlH2nj89e6GG6B2BfzicQOyqu75X3FTv0XPWGj2fM3yz7Zu4+HaMG7p6Xkb2k6e983X9dt8kIwfBL0Qw+s3OXnqs/A6yw43GOACora4e0GBLBTNx9f1Rts2XjXsEjl6fzP2O+BGsg1mAqhgLYyFJZUR1u+1OIVSu1OdE5/hJ4U2Hlvsi3XR6yxEWLGp1Q3+ZohpbLzX+erjMK83JneZ0BZZcABQqbY4jwgrb7hQj/vI9Rt8pMec63EKU3Vxw3X5WRZLHAN35VxLxcobNpgeRvnJwi8jxim3cSDqjV/kEH/uJ4GOJhQU4n5T5Gbjo7lMpnqTzzwSMMiP61DXLwB6vXnVhY9Uxg8uCyp+x/pbODPhbd85e6or3tUTzjgBMOOO6UKmJEDcrtULM+ANEfo06bft/9ey49M3T6AL48IFHz/seFh2nJYNn5zOWDV9MYFQseAFEMfl+lWjE/B3gQ/H28z8BE0+t1b2dt16v9lCfg+3U8HoY7R3QUkqSQPDGHDF9J64tT3eGsWOf9wdm7zTSXjYATPJIKQ2zvqF69fXDaCCkM4G96zKn9prDYiBjQpWD6Ic0ycWNzEGxbQb8Fx+FlBYwBzT4iJdAEClv/STgZ0JBYuNQSZVjlcLor7O0m4yH21yFPVGdSHZQWNGnzRUoNCCFaPsVW/ohvw4/p7TprLeBL6G9ERxRjuIGTudsKBdzS0P+H5ziks89G/2FukSuzC78jrXGk9pb6UFEYUB3tt13KqjNPLK3y7n7d7LBD04yAs5rV+fduPH5xZySg/aQZCJrJdf1PVxtTjgDcfUIH8rIwOKGTLpCo46nDNAsM17y0IVv339Fs51wWOfjF+44B0/4IlXiHXM9NvkEHUBJK+DkHG19OZ2jq3gUhfsKKjcwt8Lr20XkRlrYTzQBTLhOrmXX0dd6UEPRv5c0+9cN6T5IupdKRWFG5ZVLlgg7wNrTxTHe0K/9VX6hQV5g35n+U9xQ9rKuFHbbcS8412lENBqWzICsZPBz030m5J+h0kZB3l6nQw6iwriHZXa2RtZkSKwvmv0lp+b6XejOflTzOXp8anZt7wIewPXhBuu7jROUfvN8jNsmwXe2VcNftz50ra4y1jdgkiIU8SmHPD7+CHrjb+Iw/uq0R5tfPJ7w6626LK7GEfKB8cp2Z9esUfdVUu8Ut/MQKE18Goa45DwVuT5Pr2xZ6VQ+t37DEBsYwcqjzGOlx+aTYWzeEGe1/Rm4m9I6htvvD362OAo37nyQmfM2mrXR+WCB6o486m94JlWVWoBpnC7TDAmQK5m94cV27OWJGnKlFWKFPg+Xs/YsLRzBssl5kz3mj4QhCp9C+RCvwyE6+LB8Gl0fnxqlILQMl4WPkGf9atiOv7+bNFDzKTt+5WU4aA13G9ujBpcs423gFF7P7U7zrBbBJGBjcXq3ug3yM/LFtDDxIqydmhb++X+sljnBODbdiDlx+NlQmHsojedh7PD0YMuePCT27hYU1tIlc8DnaUzZX3NKb1Rfk5vrFn49Bf/m6VptBvfNEhydfXwOzm9uSk/S8NR3ji99HXFSer4KMqgqRLrE4FX+mzvd6ApO2gne3jMyAfnRRdo0o85V3lZLNinHSVdd3afL0wRGxl0Tnjjxm7j8xgxwRuVICZ8vaU3xhvBDFKbSthEntYY4Mvk0nTuw8pKOx6XJ5yIceEVVFe845Om7I76Lek1I3/yrmPTuxb8gxkbF1y4aeLObWVeNUICVR3zHrDAMFV4x6G/9pmcHEgnbZJCmVOAgm0E/TacknNHcOOTvyXAGnHD0XhFvxXrA15N7MphOQ+44eXPgcZrfi7ghk+BTrYhbUXMYdj5WsP9ZqedLqc3GXNmNF3T78Xpt70bzNmVTlTSJBRuJ4HbJIfkRVO47ee8v9FFlWfpTf9tytc2dnu7Z/I374lTfGZHHG/V8VzTmyHGIWiGD8nuWJ/FBT4SEOXnsMzh28z/jP6m0aQ7o05+ftFf6u7UfD6DYgwzyE/aIKDvwEW9SbrteZX4GLNNaqKx+VO5ibFDlvGq84JdqjRUjiZ/OGyKekOQ7J5B1xNvokw+FPm/84WBvsv/3V9e7IzZ96/fwgNtIDDe1R0LHrDzgt/kli7RFJ0D+NjWtRglQ4J4Oz8TAbflNCsyRDqo4pOHM5Zlx3k/4WFpN0W2RRxRdq/kHsT6igVZUCPpKOF8DVkApQ5ODFmclltFET9zIsam/RvfIG2ogQkvfJ41YrpEABSh2Z61CUMErCIA2v1xy+Gv3Z1wXw1rKYW2oml12fFL+lEwUl5hkF9Lr+gOjhjk+FpQoc2BUajdhFXZ80ocgAUSOl6yZyxVCNaPk4k9nydxjp/qcORzE+BKjItbVPC0hVQaYXCYBBo4xhS8BNxh0aLro+qEyL6qdBYwlp4eK+cAxMnckp/S3leGs66rjUhwRaKD5jAab6yuhH5EwMI7SrvNxckeSX7RKQP9bCBbcKb2L1ghspGJp66+uxQeCTQlKEYFqGDldjEJd10f5EdZbzovKPLM8MJjhgWHQoS3R1lOsol1S3ot1CY2zEaT6SBM9tTO3gT5ye/uPApRTTjQ6nv9zLoO8sHw8wqB8X3lc5xoA6HiHT9goRMqCn6dl4l+V/3XB+xQXs5xgxnYeMHGCy61oFLbPZORCOYQ7bAzNL0NRCwv1DEHEe9lApYxp0xlarauu7uqo3263eucqKWwm97JDrEFzINdIfnIbhui32G3VuwK7tmOqa0PS7fc+9UMC2rjFVNsK9DmfXGXlcNUxQ2t6ycqzjbg/YXRXLQtkTVj5YqLyC9goWHqoDfONqLeRJkEf9rtiyb4JLgBVDAVLN0nBtwg4Gqc0vuZ641PYxVeCG7AnhV5ds77HVTA4YbQ5Hyvx9SgN5jpTdV/vW43votfQxxftgv0tE8AK1VcnH08O05BtCl/BlL8jfqIFJcJGuhZz97FQoyltHOwDYpc7EFeb+pEb1IcNvib6NeInE9UGVh8W9uQUUBYUdvkEdHf6Pn4zqsCSV139siC3RZLzfQmLrL4xYyIN6+2MONIZfwC5UQVP7CcsZSKH6Z32Olz/Mb2gF8tF1z4MzzVgm/yI97xijOWkAMtkwUxSD/Xan/LF5L33Z7fQdBXprNMfip2JjwuwONS9TcQUIoAVO6nH5LUyRW3WxvZui7hze9inAAo539zn9jEMVBtwdjKe/uiVylyKrx58nR+gWF5za5fqduDMYbUFRpdah/Huug0F2KgNthcdMtcHHmTiwdzn9Ll+yVAwU0n2DL5c861DwoLVZWHPwvhn2PI9ck1OPRC1Z2B4wBCunIlslZwa3UXqet4kXnlaRa1I7QXQaICTO08EIiUN7IK73kjJIseKR9VBtxpirL3PJCAwc6hseuHLZWzENbKINpdP2nRII1vCTonuh3ll3mlDpMcHcxmF6K3BKBu4FKwV6fr3k46LcEeg/yo25DxY9EgxxYT5AC8BLESABTfj9gHb01+ZQfjGg7kdL7m0LP89MyB8rV9XpLOCQ5Qd7xefn4HfyMC0x50QdLeTNeNHe3sFFTAfnVVzthYv8YXGR9d4euHlJUqfttywUoVP1jOqLjgm/uCXy2M31He4YIFv1VPOPOCc78uvtFmNirBJHdEYCaceUFl04MLn7D1iz6+VR9QsaDf54IdLf3tRBvWUvHxsjleRnwKdqWBijycsVxwg4McBI99+lNICdagnYC6ofaFJiimUg+EDetD+hM73CCzQWGc6pkbH/Rn8z/+AgzS8bVdxFoIp1pRAm4YPrWJbZ30K8XZPjxu+EDQ+zE1exdUO2yjFn/tpeBUiy06DHjlfWLGbrO5QHPCjc7k9/jxGnFDp37Z9o2mUW+i/Eaa22+aNud8FTz/HB7D8XEhAmMXRgEMLA5To95YgD/zcyNu2ISq0ZR9vvliSD/dtWuMc9XPvSdOQfY3wlt2fI366p9vY+j2xYxKhAWLLUwOcQrg7wwY9YaD3gSfMegNFLNmNiUvDOcKbERYvfwwj1MgfHIYFnDA9Zuxydu2x5tsy6+5HDtmX6AQGCvt+H5s+HQBnhioyw7gW/iMT/isnrBvhCdeIAdz5R/KnzX4Yf2hLazZPL+62ix/xjmA+yBgOukXsjIiIMWJJtsR8kFF3EL3/bBOcsQ4xbEz52ctFZtldcaRLWkroV9Po5vEFWDo1z8jNykJX4Um1HhhCPxYycAF5Np1/S7yu+clyMZH8st1vhpLZOLJ+o6lcTyO74E3rl/2udoueFKQ8/1yrDvIz/SC2X5jpyemR6ZjPk/fAzMlmuD4PO9XxhftQv4lfU8eoowcXZI2ppex+H4dr3CTV8nR+2dVBtBgmVFRaDFeBd1me5/ggAMSMGf5mQ76FD3PGyS+Gq+AUgDssoo76dfLT2i+Ij8bf8IMcjQ7HgLejvtvPbVScMf3WzjJr9e9T36exs4n8jSZ7WbbdsdC7i6ENjn7Gm34pABnNJyr+Ayf0YLP+QSA8Rv1jWvfFn90jNyu3mAGLrxg56Y7e20JiTuvqH3CtvOiE7gdwF4XoAAFBW9Q7+OPyp+Dfo945QMr0wUAalcAt+vV3fh0hZ8QEjssfdLGLjJS3lDUH+l3yFaY4EY+x0rhXLXt+hC74HGq3+Z/AnZrv3OcDG0FnxH5TY5HLU2Udeojfp8m+j5id8KNifww0CS0INCSbb92nMJuO7na7x1+7ra/MZqHLAmyfjS9TfSWGZXgcMMwRzB1rjd3+LmAV04/HU1KozBQMJZhmUk0+l6RX9ZX41WMU4wmhxHIfi7pWLApBNxfKN5EPcY4Exsb7F74yiGWinqT5ZfxGN0X2ngzr+Z6k23nFg5g0JuMc9IuJ/qO8p0rL/SCacYPLmd8rQCfEOORKr6fnvDrRPj1+oA39IACxm+eHy2dbxIkqJFIw2xvcGf9LG4mFll/NaUlIJw5IN+SAsIYcEorNdEjPeSgF5iCg6q9rFZm43COXev280rEQ78+sDG62KUFWts6Pm2XQz+70gRQlfo89KsgDAZ0BdDazE5mkGcXg3cMhPFZhQgGwBT4as81mdjYzMHk8VkuttTP/To5XJOfLDd1/FsmfBS1sSCiVbB+MfSbn800R/kZjeKYJW0irHQrXbN+3PiSngRZ00xvROWyXYg+mIz6QSAwxDHckgmlfnnar+cVBXscJ+02pi40Jz9mf4B98hqIZ8gPga8Rt7zeTPnMsuJPYBa7rnpm0F96EoM2L1M/bieTie0qrzjXtQk7qc4930UTGN9XNnxtAT4m4MSMT5cnfFyA/6+ueKg7Cu/4Zn3ordfAD58uBbCmK+61YAfhwm2yVnlpEzYU7Eyo/axZ7dsMpbaLPyzJd86fKFM3afM7XkEOnj/RF2jKFKV+BtyQxFUKfcPJwvdzHbeTziZMDWNWP2M+ohCwc9OFEvgT9Vt2KfwKe8Sr0eaQaFYaA26w08W2eyU2IUV2FGQ8c5nM+vX+ZuJPpzhhfMx+XECDe/qzfj/DVI9tQW+i/IyXWX6jHx98Rv+uLUh43FiQMXWsy4HGwc9d4Q11Htg5MU5ttb/Fdpv8XLuDn5N2Z34u6rvHqyHWeI/OaSwiuE/cF6CL0jX2m2Vy3R4HuU10YcCM7uOYBRjY9B+2yz2LU9QW3Nhtp9/T6HHgCmbM/Lhx7nWW75FURmIHdF9ap0S/CuD/+tI7vl1+AMA3XpqI74Jy8Om+cvDpvnLw6b7yGvn09zHzD9778IH739Xl4NN95eDTfeXg033lNfLpWbj/ZRUi+q/Q+PWh5RvM/NPfLnq+SHmRidlrLET0V5n5J16ajtdeDj7dVw4+3VcOPt1XDj59Z8rB1/vKwaf7ysGn+8rBp/vKwaevZvmQowJHOcpRjnKUoxzlKEc5ylGOcpRvYzkmZkc5ylGOcpSjHOUoRznKUY7ywuWYmFn5+ksT8F1SDj7dVw4+3VcOPt1XDj59Z8rB1/vKwaf7ysGn+8rBp/vKwaevYDnOmB3lKEc5ylGOcpSjHOUoRznKC5djx+woRznKUY5ylKMc5ShHOcpRXrgcE7NJIaKfIyImoi9y9eb3bCGif4uI/jci+p+I6D8lou97aZpeSyGinyai/52I/iYR/WsvTc9rLET0Y0T0l4nobxDRXyeiP/7SNL3mQkQLEf2PRPSfvzQt38vlwP3b5cD92+XA/veXA/vvLwfuf3XLMTFLhYh+DMAfAvC3X5qWV1z+EoB/kJn/IQD/B4B//YXpeRWFiBYA/x6AfwrAjwP454jox1+WqldZNgA/x8w/DuD3AfhjB59ulj8O4H99aSK+l8uB+3eVA/evlAP77y4H9t9fDtz/ipZjYjaWPw3g5yGvpz/KUJj5v2HmrX/8bwH86EvS84rKTwL4m8z8fzLzGcB/DOBnX5imV1eY+f9l5l/qf38Tzfn8zpel6nUWIvpRAP8MgP/gpWn5Hi8H7r+nHLh/sxzYf0c5sP++cuD+V7scEzNXiOhnAfwKM//yS9PyXVT+ZQD/5UsT8UrK7wTwf7vP/w8Op3OzENHvAvCPAPjvXpiU11r+DNqEob4wHd+z5cD9DyoH7sdyYP8zy4H9N8ufwYH7X9myvjQBX3Yhol8E8COTn34BwJ9CS2f5ypdbfGLmv9if+QW01IQ/92XSdpTvjUJEnwD4TwD8CWb+zZem57UVIvoZAH+Xmf8HIvonXpic7+py4P595cD9o3wZ5cD+6+XA/aN85SZmzPxTs++J6PcC+N0AfpmIgJam8UtE9JPM/He+RBJfRbnGJylE9C8B+BkAf5CPdy5I+RUAP+Y+/2j/7iipENEJzTH/OWb+Cy9Nzystvx/AP0tE/zSANwC+RkT/ETP/4Rem67uuHLh/Xzlw/4PLgf13lgP731sO3P+Kl+M9ZlcKEf0tAD/BzN94aVpeWyGinwbw7wD4x5n5V1+antdSiGhFOxT/B9Gc8l8B8M8z819/UcJeWaEWAf+HAH6Nmf/EC5PzXVH6yumfZOafeWFSvqfLgfvXy4H718uB/feVA/ufVw7c/2qW44zZUT6k/LsAPgXwl4jorxHRv//SBL2G0g/G/ysA/mu0Q81//nDM0/L7AfwLAP7Jrj9/ra8OHuUoR3m95cD9K+XA/rvLgf1HOcp7yrFjdpSjHOUoRznKUY5ylKMc5SgvXI4ds6Mc5ShHOcpRjnKUoxzlKEd54XJMzI5ylKMc5ShHOcpRjnKUoxzlhcsxMTvKUY5ylKMc5ShHOcpRjnKUFy7HxOwoRznKUY5ylKMc5ShHOcpRXrgcE7OjHOUoRznKUY5ylKMc5ShHeeFyTMyOcpSjHOUoRznKUY5ylKMc5YXLMTE7ylGOcpSjHOUoRznKUY5ylBcux8TsKEc5ylGOcpSjHOUoRznKUV64/P8BfF5B3vt5aAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "targets = (16, 17)\n", - "vals = np.linspace(-5 + EPSILON, 5, 100)\n", - "x, y = np.meshgrid(vals, vals)\n", - "mesh = x + 1j * y\n", - "input = mesh.flatten()\n", - "\n", - "mean_lag = eval_mean_laguerre(input, targets).reshape(mesh.shape)\n", - "lanczos = eval_lanczos(input).reshape(mesh.shape)\n", - "rel_error = np.abs(calc_rel_error(lanczos, mean_lag))\n", - "\n", - "lag = eval_laguerre(input, targets[-1]).reshape(mesh.shape)\n", - "rel_error_simple = np.abs(calc_rel_error(lanczos, lag))\n", - "# rel_error = evaluate(x, target)\n", - "\n", - "fig, axs = plt.subplots(\n", - " 2,\n", - " 2,\n", - " sharex=True,\n", - " sharey=True,\n", - " clear=True,\n", - " constrained_layout=True,\n", - " figsize=(12, 10),\n", - ")\n", - "_c = axs[0, 1].pcolormesh(x, y, np.log10(np.abs(lanczos - mean_lag)), shading=\"gouraud\")\n", - "_c = axs[0, 0].pcolormesh(x, y, np.log10(np.abs(lanczos - lag)), shading=\"gouraud\")\n", - "fig.colorbar(_c, ax=axs[0, :])\n", - "_c = axs[1, 1].pcolormesh(x, y, np.log10(rel_error), shading=\"gouraud\")\n", - "_c = axs[1, 0].pcolormesh(x, y, np.log10(rel_error_simple), shading=\"gouraud\")\n", - "fig.colorbar(_c, ax=axs[1, :])\n", - "_ = axs[0, 0].set_title(\"Absolute Error\")\n", - "_ = axs[1, 0].set_title(\"Relative Error\")\n" - ] - }, - { - "cell_type": "code", - "execution_count": 80, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAJICAYAAAAUzce/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3iV5f3H8fdzRpKTk713QnbCDISdMBVFceCsHf6sbbWt29ZRR22r1lHrqNUOtdvWPREUJWAIK+wA2SQhe6+Tc5Izn98fBxEEQiIBjvp9XRfXJZD7ee5zwOfwyfe+v7eiqipCCCGEEEIIIc48zZmegBBCCCGEEEIINwloQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHkICmhBCCCGEEEJ4CAloQgghhBBCCOEhdGd6AqMRFhamJiUlnelpHMVsNmM0Gs/0NIQQQowBeaYLIcTXiyc+17dv396pqmr4sX7vKxXQkpKS2LZt25mexlHWrVvHggULzvQ0hBBCjAF5pgshxNeLJz7XFUU5cLzfkyWOQgghhBBCCOEhJKAJIYQQQgghhIeQgCaEEEIIIYQQHuIrtQdNCCGEEEII8c1ht9tpbGxkaGjoS18jMDCQsrKyMZzVyPn4+BAXF4derx/xGAloQgghhBBCCI/U2NiIv78/SUlJKIrypa5hMpnw9/cf45mdmKqqdHV10djYyLhx40Y8TpY4CiGEEEIIITzS0NAQoaGhXzqcnUmKohAaGjrq6p8ENCGEEEIIIYTH+iqGs898mblLQBNCCCGEEEKIE3A6neTk5LBs2bJTeh8JaEIIIYQQQghxAs888wxZWVmn/D4S0IQQQgghhBBiGI2NjXzwwQf88Ic/POX3ki6OQgghhBBCCI/36/f3UdrcP+pxTqcTrVZ7zN/LjgnggQvGn/Aat956K48//jgmk2nU9x8tqaAJIYQQQgghxHGsWLGCiIgIpk2bdlruJxU0IYQQQgghhMcbSaXrWE72HLQNGzbw3nvvsXLlSoaGhujv7+e73/0u//nPf770NYcjFTQhhBBCCCGEOI5HHnmExsZG6urqeOWVV1i0aNEpC2cgAU0IIYQQQgghPIYscRRCCCGEEEKIEViwYAELFiw4pfeQCpoQQgghhBBCeAgJaEIIIYQQQgjhISSgCSGEEEIIIYSHkIAmhBBCCCGEEB5CApoQQgghhBBCeAgJaCep0+Y401MQQgghhBBCfE1Im/2T0G61M7+4nCmqgRy7g0C9vJ1CCCGEEEJ83SQlJeHv749Wq0Wn07Ft27ZTdi+poJ2EAJ2W78aE8ilezC+uYHVn35mekhBCCCGEEOIUWLt2Lbt27Tql4QwkoJ0UH62Ge1NieJABgvVart5Tyw2lB+i2y7JHIYQQQgghxOjJmrwxkKI4+Sg3nT8caOfpA6182m3ikfQ4LogIOtNTE0IIIYQQ4uth1d3QumfUwwxOB2iPE3uiJsLSR094DUVRWLJkCYqicP3113PdddeNeh4jJQFtjHhpNPx8XBTnhQdya3k9P9pXx/ntgTyaHke4l/5MT08IIYQQQgjxJRUVFREbG0t7eztnn302mZmZzJs375TcSwLaGMv2M7Byajp/amjnibpW5m0p58G0WC6NDEZRlDM9PSGEEEIIIb6aRlDpOpZBkwl/f/+TunVsbCwAERERLF++nOLi4lMW0GQP2img0yjclBjJJ7kZpPh6c2NZPd/bU0vzkO1MT00IIYQQQggxCmazGZPJdOi/V69ezYQJE07Z/SSgnUJpRh/enZrGg6mxbOgxMb+4nJebu1BV9UxPTQghhBBCCDECbW1t5OXlMXnyZGbMmMH555/Pueeee8ruJ0scT1bNOhSX/bi/rVUUfhQfztlhAdxe3sDPKhp4t72HJzLiSTB4n8aJCiGEEEIIIUYrOTmZ3bt3n7b7SQXtZPTWw78vYdr2n0HTjmG/NMngzRtTUng8PY4d/RYWbK3gpcYOXFJNE0IIIYQQQhwkAe1kBCXAt/6L3m6CFxfDxw+Afei4X65RFK6ODWPdjExmBhq5t6qJS3ZWU2OxnsZJCyGEEEIIITyVBLSTlXEuW6c/CznfhQ1Pw5/zoH7LsEPifLz476Rkns6Mp8w8xKKt5fypvh2nVNOEEEIIIYT4RpOANgYcej+48Fn43tvgsMLfznEfpGczH3eMoih8KzqUT2dkMj/En1/vb+aCHVVUmI9fgRNCCCGEEEJ8vUlAG0spi+Cnm2DGj2DLn+BPc6C2cNghUd56/jFhHH/OTqRu0MrZWyt4uq4Vu0uqaUIIIYQQQnzTSEAba95+cN7v4JqVoGjgnxfAittgqP+4QxRF4eLIYD6dkcnS8EAerW1l6fZK9posp3HiQgghhBBCiDNNAtqpkjQXfrwB5twE2/8Bz8+Gqk+GHRLupecv45P424Qk2mx2zt1eyWM1LVhdrtMzZyGEEEIIIcRRkpKSmDhxIlOmTCE3N/eU3ksC2qnk5QtLHoIffOyurL18KbzzUxjsGXbYeeFBFM7I5JLIYJ460MaSbZXs6D/+fjYhhBBCCCHEqbV27Vp27drFtm3bTul9JKCdDnG5cH0hzLsDdr8Cz82E8g+GHRKs1/GHrERenpSMyeFk2fYqflPdzKBTqmlCCCGEEEJ8XenO9AS+MXTesOg+yLoA3rkBXvk2TLgUlj4OxrDjDlscGsCnMzJ5cH8zzze082FnH09lxjMzyO80Tl4IIYQQQogz67HixyjvLh/1OKfTiVarPebvZYZkcteMu054DUVRWLJkCYqicP3113PdddeNeh4jJRW00y16Mly3FhbeB6XvwXMzYO+bMMwZaP46LY9nxPP65BQcqsrFO6u5t7IRs8N5GicuhBBCCCHEN1NRURE7duxg1apVPPfccxQWDt+p/WRIBe1M0Oph/h2Qtcy9J+2Na2HvW3D+78E/6rjD8kP8WTs9g0dqW3ipsZPVXf08mRFPfoj/aZy8EEIIIYQQp99IKl3HYjKZ8Pc/uX8vx8bGAhAREcHy5cspLi5m3rx5J3XN45EK2pkUkeVuIHL2g1D9ibuatuu/w1bTjDotD6XF8U5OKl6KwuW79/Pz8gb6pZomhBBCCCHEmDObzZhMpkP/vXr1aiZMmHDK7icB7UzT6mDuze6W/BHZ8M5P4OXLoLdh2GEzg/z4ZHoGNyRE8N+WLuYXl/NxZ99pmrQQQgghhBDfDG1tbeTl5TF58mRmzJjB+eefz7nnnnvK7idLHD1FWKr7cOutL8Inv3Kfm7bkNzD1GtAcO0cbtBruT4lhWXgQt5bX8709tVwWGcyDabEE6+WPVgghhBBCiJOVnJzM7t27T9v9pILmSTQamHkd/HQjxE6FFbfBvy6E7tphh+UE+LI6N53bkyJ5p72HecXlfNDRe3rmLIQQQgghhBgzEtA8UXASXP0uXPAHaNkNf5oDm/8EruPvM/PWaLhzXDQf5WYQ5aXnB3vr+NHeOjps9tM3byGEEEIIIcRJkYDmqRQFpv0f/HQzJOXBh3fD35dCZ9Www8b7GVg5LZ17kqP5qLOP+cXlvNXWgzpM4xEhhBBCCCGEZ5CA5ukCY+Hbr8Hyv0BHBfxpLhQ9DU7HcYfoNQo3J0byyfQMxhm8+WnpAf5vTy0tVtvpm7cQQgghhBBi1CSgfRUoCkz+FtxQDGlnwycPwEtnQdu+YYelG314b2oav0qJobDHxPzicv7b0iXVNCGEEEIIITyUBLSToKoqVVW/RVUPnJ4b+kfClf+By//hbsP/l/mw7jFwHL8yplUUfpwQQcH0TLKNBm4vb+Cq3TU0DEk1TQghhBBCCE9zRgOaoigXK4rygqIoryqKsuRMzuXLsFpbaGl9G5f6IKVld2G1tp/6myoKjF/urqaNvxjW/RZeWAjNO4cdluzrzVs5qTySHkdxv5kFxeX8o6kTl1TThBBCCCGEGFZvby+XXXYZmZmZZGVlsWnTplN2rzEPaIqi/E1RlHZFUfZ+4dfPVRSlQlGUakVR7gZQVfUdVVV/BPwYuHKs53Kq+fjEMGd2AQrn0Nr6Lps2L6a27jmczqFTf3NjKFz6Inzrf2DuhBcWwye/Bvvx761RFL4fG8a66RnkBhi5u7KRS3dVU2uxnvr5CiGEEEII8RV1yy23cO6551JeXs7u3bvJyso6Zfc6FRW0fwBHHK2tKIoWeA5YCmQDVymKkn3Yl9x38Pe/cnQ6fzSay5k180NCQvKoqXmSzZvPprXt/dOz1yvzPLhhC0y5CoqehL/kQ0PxsEMSDN68MjmZJzPj2TcwyKKt5fyloR2nVNOEEEIIIYQ4Ql9fH4WFhfzgBz8AwMvLi6CgoFN2P91YX1BV1UJFUZK+8MszgGpVVWsAFEV5BbhIUZQy4FFglaqqO8Z6LqeTr28Skyb+iZ6ezVRWPcy+fbfS2Pgv0tLuIzBg8qm9uSEILnoOxl8C798CLy2BWT+FRfeBl+8xhyiKwrejQ1kY4s+dFY08UN3Me+29PJWZQLrR59TOVwghhBBCiFFq/e1vsZaVj3qcw+mkW6s95u95Z2USdc89w46vra0lPDyc73//++zevZtp06bxzDPPYDQaRz2XkVBORZXnYEBboarqhIM/vww4V1XVHx78+feAmUAl8H/AVmCXqqp/Psa1rgOuA4iMjJz2yiuvjPl8T9bAwAB+fn6Hfq6qLlQ2oKpvAf0ozEJRLkVRQk75XLQOC8k1/yK2eRWDPlFUZNxIb/DEYceoKmxAzz8wMITCZQxxAVa0yimfrhBCeJwvPtOFEEKcOYGBgaSmpgLQ+/snsVVWjv4iquru43AMXunpBP3s9mGH79ixg8WLF7N69WqmT5/OnXfeib+/P/fff/+Ibl9dXU1fX98Rv7Zw4cLtqqrmHuvrz2hAU1X1xtFcNzc3V922bdtYT/ekrVu3jgULFhz16w7HAHUH/kxDw0uAhsSE60hM/BFa7bGrWmOqrgjevRF6aiH3B3D2r8Hbf9ghHTY791Q28X5HL5P8DDyVlcB4P8Opn6sQQniQ4z3ThRBCnH5lZWUnvd/LZDLh7z/8v4OH09rayqxZs6irqwNg/fr1PProo3zwwQcjGn+s16AoynED2unq4tgExB/287iDv/a1ptP5kZryc2bN/JiwsEXU1v2BTZvPpqX1HVTVdWpvnpQHP9kIs2+EbX+D52dD9Zphh4R76XlhQhIvjk+i2WrnnG0VPF7bgs11iucqhBBCCCGEh4qKiiI+Pp6KigoA1qxZQ3Z29glGfXmnK6BtBdIURRmnKIoX8C3gvdN07zPOYIhj4oRnmTb1Vby8wigt/Rnbtl1Kb9/2U3tjL18452H4wWrQG+A/l8C7N8Bg77DDlkUEUTgzk4sjgnmyro0l2yrZ1W85tXMVQgghhBDCQz377LN85zvfYdKkSezatYt7TrBv7WScijb7/wM2ARmKojQqivIDVVUdwI3AR0AZ8JqqqvvG+t5nQn2XZcTdGoOCcpme+zbZWY8zZG1l+/Yr2Lv3FgYHT3ExMX4GXL8e8n8Gu/4Hz82E8pXDDgnR6/hjdiL/njiOPoeT87ZX8tD+ZgadUk0TQgghhBDfLFOmTGHbtm2UlJTwzjvvEBwcfMruNeYBTVXVq1RVjVZVVa+qapyqqi8d/PWVqqqmq6qaoqrqw2N93zOhvX+Ic58p5IltQ1S0mkY0RlE0REdfyuxZn5CUdCMdnR+zecvZ7N//exwO86mbrN4HFv8SflQAxjB45Sp484dg7hp22NlhgXw6I5NvR4fyx/p2zt5WQXHvwKmbpxBCCCGEEN9gp2uJ49dSsNGLny/JoLbPxdJnCrn37T10DYzs0GedzkhK8m3MnvUJ4eHnUHfgeTZtPovmljdO7f60mCnwo7Ww4B7Y9w48NwP2ve3ubnMcATotT2TG89rkFKwulYt2VnN/VSNmp/PUzVMIIYQQQohvIAloJ0Gv1XBt3jgen+fL1bOTeGVrAwt+t44XCmuwOUYWsnx8Ypgw/ilyp72Oj08MZWV3sXXbxfT0DH/Y9EnRecGCu+D6TyEoHl6/Bl77Hpjahh02L8SfddMz+H5sGC80drKwuIKinpFVDoUQQgghhBAnJgFtDPh5KfzqwvF8dGs+05KCeXhlGUue+pSP9rWOeH9aYOBUcqe9zvjsp7DZutix8yr27LmRwcGGUzfxyPHwg0/grF9D5Wp3NW33K8NW04w6Lb9Nj+OdnFS0Cly2az93VjRgckg1TQghhBBCiJMlAW0MpUb484/vz+Af35+OTqvh+n9v59svbKG0uX9E4xVFQ1TUhcye9QnJ426ls2sdmzYvobr6cRyOU1Sp0uog71b4yQYIz4C3r4f/XgF9wzcumRXkx5rpmfwkPpz/NHcxv7icNV0je51CCCGEEEKIY5OAdgosyIjgw1vy+c1F4ylv7ef8Z9dz95sldJhGtj9NqzUwbtxNzJ79CZGR53Og/i9s3LSYpqZXUNVTVKkKS4Pvr4JzH3Mfcv38LNj+z2Grab5aDQ+kxrJiahp+Wi3fKanh5rID9Ngdp2aOQgghhBBCfM1JQDtFdFoNV89OYt3PF3Lt3HG8sb2RhU+s4/l11QzZRxayfLyjGJ/9BNNz38bXN4nyinsp3noh3d0bT82kNVqY9WP3AdfRk+H9m+FfF0FP3bDDpgYa+Xh6OrclRvJmWw/zi8tZ1dF7auYohBBCCCHEaVRRUcGUKVMO/QgICODpp58+ZfeTgHaKBfrquX9ZNqtvm8es5FAe/7CCs578lJV7Wka8Py0gYBLTpr7KhPF/wOEwsXPX99hdcj0WS+2pmXTIOLj6PVj2FDTtgOfnwJa/guv4jU+8NRruSo7mw2nphHvp+P7eOq7fV0enTappQgghhBDiqysjI4Ndu3axa9cutm/fjq+vL8uXLz9l95OAdpJGGrKSw/148f9yefmHM/Hz1vHTl3dw5V82s6exb0TjFUUhMvJ8Zs38mJTkn9PTs4nNW5ZSVfVb7PZTsPdLo4Hca+GnmyBxNqy6A/5xHnRWDztsor8vH07L4K5xUazs6GNecRnvtPWM+H0SQgghhBDCU61Zs4aUlBQSExNP2T10p+zK3wAOu53/3nMbuogYBnOnYfDzP+GYualhfHBzPq9ubeD3qyu48LkiLp0axx3nZBAZ4HPC8VqtN0lJPyE6+jJqap6kvuFvtLS+TfK4W4mJuRKNZoz/SIPi4TtvwO7/wYd3w5/nwsJ7YfYN7iWRx6DXKNyWFMXS8EBuLWvgx6UHeLe9l0fT44j01o/t/IQQQgghxDfC+tcq6WwYGPU4p9OJVnvsf7eGxfuRf0X6iK/1yiuvcNVVV416DqMhFbSTYDUPEBARRcu2jbxww7UUvvx3zL09Jxyn1Sh8e2YCa+9YwHXzknlvVzMLn1jHs2uqRrw/zds7nKysR5gx/V2MxjQqKn9J8dZldHWtP9mXdTRFgSnfhhuKIWUxfHw/vHQ2tJcNOyzTaGDF1DR+mRLD2u5+5hWX82pLt1TThBBCCCHEV47NZuO9997j8ssvP6X3Ub5K/1jOzc1Vt23bdqancZRVb76Os7GWyk1FaHU6JixawvQLLyEgLGJE4w90mXlkZTkf7mslJtCHu5ZmcuHkGBRFGdF4VVXp6FxNddWjDA7VExq6kLTUX2A0ppzMyzrezWDfW7DyDhjqh/l3udv0a4evjO23DHF7eQNb+swsDPHndxnxxPl4jf38hBDiJK1bt44FCxac6WkIIYQAysrKyMrKOqlrmEwm/P1PvNLtRN59912ee+45Vq9ePapxx3oNiqJsV1U191hfLxW0MWAIDWfZLXfy/af+RGbefEo+WcVLN1/HR3/+Az2tzSccnxhq5M/fm8Yr180i2OjFLa/s4tI/bWRn/YmrceDenxYRfg6zZn1Iaurd9PZuZUvxeVRU/ga7vfckX91RN4MJl7qradkXwtqH4IWF0LJ72GEpvj68nZPKw2mxbOkzs6C4nH81deL6Cn2DQAghhBBCfHP973//O+XLG0EqaGPii99t7e9oZ+v7b7KnYDUuh5OMOfnMvPhywhKSTngtp0vlze2N/G51BR0mKxdPieHOczOJCTKMeD42Wyc1NU/T1PwqOp0/yeNuITb222g0p2D/V9kK+OB2MHdC3m0w/07QeQ875MCglZ9XNLC+Z4C5QX48mRlPomH4MUIIcbpIBU0IITyHp1TQzGYzCQkJ1NTUEBgYOKqxo62gSUAbA8f7MDf39rBtxdvsXr0Su3WI1OmzmLn8SqJS0k54zQGrgz+tq+aF9bVoFLhuXgo/np+Mr9fIm4AMDFRQWfUQPT0b8fVNIS31F4SGLhjx0skRG+yBj+6FXS9DeCZc9BzEHfPv2yGqqvLflm5+Vd2EQ4V7kqO5Ni4M7VjPTQghRkkCmhBCeA5PCWgnQ5Y4ehBjUDDzv3stP3rub8y69CoaSvfw8j238cbD99NYunfYsX7eOu44J5M1t8/nrKxI/rCmioVPrOOtHY24XCML1X5+GeRM+ReTJv0VVXWyu+SH7Nr9fQYGKsfi5X3OEAwXPw/feROsA+4GIh/dCzbLcYcoisJ3YkL5dEYmc4L8uL+6iYt3VFNlHhrbuQkhhBBCCPEVIgHtNDD4BzD3iu/woz/+nfxvX0PHgVpe/fXdvPLAXdTt2j5sV8P4EF/++O2pvP7j2UQG+HD7a7tZ/vwGth/oHtG9FUUhPGwxs2auIi3tPvr7d1O8dRnlFQ9gs43sGiOWdpb73LRp18CmP7pb8tdtGHZIjI8X/5k0jj9mJVBlGeKsbRU8e6ANxwhDqBBCCCGEEF8nEtBOksvlGvHXevv6MuOiy/jhsy+y8Jrr6Oto481HHuDle26nausm1GGuNT0phHd+OpffXz6Z1v4hLv3TJm787w4ae45fpTqcRuNFQvz3mT1rDbEx36a5+X9s2ryI+vqXcLlsI34NJ+QTAMuegv97H1SX+3DrD37urqwdh6IoXBYVQuGMTM4KDeDhmhbO21FJ2cDg2M1LCCGEEEKIrwDZg3YS7HY7f/nLX/D19eWKK67Az89vVOMddjulhQUUv/s6fW2thMYlMHP5FWTMzkdznMP0ACw2B3/+tIa/Fu7HpcKP8sfxkwWp+HmPYn+auYrqqt/S1V2IwZBIWuovCAs7a2z3p9nMUPAQbP4TBMbDhX+AlIUnHPZ+ey93VzbS73ByS2IkNydG4KWR7yUIIU4P2YMmhBCe45u4B00C2kkYGBhg1apV7Nu3D51Ox7Rp05gzZ86oO7u4nE4qNhay5Z3X6WqsJygymhkXX072vIVodcfvvNjcO8jjH5bzzq5mwv29ueOcDC6bGodGM/KQ1dm1jqqqR7BYqgkOnk1a2n34+2WOav4nVL8F3r0Buqpg6tWw5CHwGf496rI5+GV1E2+29ZBt9OGprAQm+/uO7byEEOIYJKAJIYTnkIDm4TwtoH3mgw8+wGazUVJSgqIo5OTkMHfuXEJCQkZ1HdXlonrbZra8/RptNdX4h4aTe8ElTFy8BL3X8dvQ76zv4TcrStlZ38v4mADuX5bNrOTQEd/X5bLT1Pw/amqeweHoJybmcpKTb8fbK2xU8x+WfQjWPQIb/wB+Ue5lkBnnnnDY6s4+7qxopMNu54b4CG5PisJHK9U0IcSpIwFNCCE8hwQ0D+epAe2zD/Oenh42bNjAzp07cblcTJw4kby8PCIiIkZ1PVVVqdu9gy1vv0pTeSm+gUFMO/9ipiw5Dy/DsatIqqry3u5mHltVTnPfEEsnRPGLpVkkhI686mS391Fb9yyNjf9Go/FhXNJPiY+/Bo1mDM8oa9oO794I7aUw6Uo491HwHT7I9tkd/Gp/M/9r6SbN15unMhPIDTSO3ZyEEOIwEtCEEMJzeEpAe+qpp3jxxRdRFIWJEyfy97//HR8fnxGNlYB2Bhx1UHV/P5s2bWLbtm3Y7XaysrLIz88nJiZm1NduLN3L5rdf5UDJTnyMfuQsvYCcpRdi8Dv2X7JBm5MX19fw/Lr9OF0q389L4saFqfj7jPyQarO5hur9j9LZuQYfn3jSUu8mPPycsduf5rDB+t/D+ifcLfrP/z1kX3TCYeu6+/lZeQPNVjvXxYVzV3I0vlJNE0KMMQloQgjhOTwhoDU1NZGXl0dpaSkGg4ErrriC8847j2uuuWZE4+UcNA8QEBDAOeecw6233sq8efOoqanhr3/9K//5z3+or68f1bXisidw2b0P8p2HnyQ2awKb3vgfL9xwLYUv/x1zb89RX2/w0nLT4jTW3bGACybH8JdPa1jwu3X8d0s9zhG2rjcak5k86a9MmfJPtFoDe/bewI6d36bfNPzZbSOm84KFv4Dr1kFADLx2tfvHQPuwwxaEBPDpjEz+LzaMvzR2sGhrORt6TGMzJyGEEEIIIY7D4XAwODiIw+HAYrF8qcLLSEkFbQyc6LutQ0NDFBcXs3nzZiwWC0lJSeTn55OcnDzqqlRHfR1b3n6Nyk1FaHU6JixawvQLLyEg7NjLKEsae3lwRSlb63rIjPLn/mXZzE0d+d4yl8tBc8tr1NQ8hd3eQ3T0paQk/wxv79Et2zwup8O9L23dI+DlB0sfh4mXwQnel409A9xeUU/doI3/iwnl/pQY/HTH73wphBAjJRU0IYTwHIdXn9b+46+0H6gZ9TWcDifa4/w7MSIxmYXXXHfCazzzzDPce++9GAwGlixZwssvvzzi+0sFzQP5+Pgwb948br31Vs455xy6urr497//zYsvvkh5efmwB1V/UXhCEstuuZPvP/UnMvPmU/LJKl66+To++vMf6GltPurrJ8UF8dr1s3n+O1MZsDr4zotb+OE/t1HbaR7R/TQaHXGx32bO7AISEn5Ia+u7bNq8mNq653A6h0Y87+PS6iD/dvhxEYSmwFs/hP9dBf1Hv5bDzQn2o2B6JtfHh/Ov5i7mF5eztqv/5OcjhBBCCCHEYXp6enj33Xepra2lubkZs9nMf/7zn1N2P6mgjYHRfrfV4XCwa9cuioqK6O3tJSIigvz8fMaPH49mlOd99Xe0s/X9N9lTsBqXw0nGnHxmXnw5YQlJR33tkN3J3zbU8lxBNTani6tnJ3HzojQCfUe+P81iqaN6/2N0dKzGxzuGlNQ7iYxYNjb701xO2PIXWPMb0HrBOQ9DzndPWE3b1mfmtvJ6qixWrooO4VcpMQTqR34mnBBCHE4qaEII4Tk8YQ/a66+/zocffshLL70EwL/+9S82b97M888/P6LxUkH7CtDpdOTm5nLTTTexfPlyXC4Xb775Js899xw7d+7E6XSO+FoB4REsvvYn/OiPf2PasovZv72Yf95xI+8+8RCt+6uO+FofvZafLkhl7R0LuHRqHH/bUMuCJ9by7011OJyuEd3P1zeJSRP/xNScl9Hpg9i371a277iCvv7do3oPjkmjhdk/hZ9sgKiJ8N6N8O/l0Dv8vr3cQCMf52ZwS2Ikr7V2M6+4nI86+05+PkIIIYQQ4hsvISHh0FYlVVVZs2bNSYfG4UgFbQyc7HdbXS4XZWVlrF+/ntbWVgIDA5k7dy45OTno9SOvbgEMmvrZsep9dn74HlazmcRJOcxafiVx2ROO+tp9zX08uKKUzTXdpEX4cd+ybOanh4/4XqrqpKXlTfbX/B6brZOoqItJSf45Pj7Ro5rzMblcsP1v8PED7p+f9SvI/QGcoMJYYrJwa1k9peYhLokM5sHUWEK9pJomhBg5qaAJIYTn8IQKGsADDzzAq6++ik6nIycnhxdffBFv75EdRSVt9s+AsfowV1WVqqoqCgsLaWxsxM/Pj9mzZ5ObmzvivwCfsVos7P54Jds/eAdLXy+xmeOZtfwKEidPPWI5oqqqrC5t47cryzjQZWFBRjj3nZ9FasTI/xI7HCbqDvyZhoa/ARoSE68nMeFHaLWGUc35mHrr4f1bYH8BJM6FC59171Ubhs3l4tkD7Tx9oI0AnZZH0uO4IDxw7I4JEEJ8rUlAE0IIz+EpAe1kSEA7A8b6w1xVVerq6igsLKS2thaDwcDMmTOZOXMmBsPoQo/dOsSegtVsff8tBro6iUxOZebyK0jNnYVyWDXK6nDyz411PLumGovdyfdmJXLL4jSCjV4jvtfgYAPV+x+nvX0l3t5RpKTcQVTkhSjKSa6kVVXY9TJ8eA84bbDoPpj1E/eSyGGUDQxya3k9u02DnB8eyCNpcUR4j64iKYT45pGAJoQQnkMCmof7pgS0wzU0NLB+/XoqKyvx8vJixowZzJo1Cz8/v1Fdx+mws+/TAra++wa9bS2ExiUwc/kVZMzOR6P9POh0Dlh56uNK/ldcj7+PnlvPSuO7sxLRj+JA6J7erVRVPYTJtJeAgMmkp91HYODUUc33mPpbYMVtULkKYnPhoucgInPYIQ6Xyp8b2vldXSsGjYYH02K5LDJYqmlCiOOSgCaEEJ5DApqH+yYGtM+0trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFKxaT1b3n6NrsZ6giKjmX7RZYyfvwit7vPqUnlrPw+tKKOoupPkcCP3nZ/FwoyIEQcbVXXR2vo21fufwGZrJzJiGSkpd2IwxI5qvse4MOx9E1beAbYBmH8XzL0FtMNXxqotQ9xW1sDWfjOLQwL4XUYcMT4jrw4KIb45JKAJIYTnkIDm4TwxoJm6h9hesvm0fZh3dHRQVFRESUkJiqIwZcoU8vLyCAkJGdV1VJeL6m2b2fL2a7TVVOMfGk7uBZcwcfES9F7u/W6qqlJQ3s7DH5RR02kmPy2M+87PJiNqNPvTzByo/yv19S8AkBD/AxITf4xOZxzVfI8y0AGr7oB9b0PUJHc1LXrSsEOcqsrfmzp5eH8LOgUeSI3lO9EhUk0TQhxBApoQQngOCWgeztMC2pDZzj/u3oDez8XMc9NJmxGFt+H0dAzs6elhw4YN7Ny5E5fLxYQJE8jPzyciImJU11FVlbrdO9jy9qs0lZfiGxjEtPMvZsqS8/Ay+AJgc7j4z+YDPP1JJQNWB9+emcBtZ6UT6jfyxiVDQ81U7/8dbW3v4eUVQUrKz4iOuuTk96eVvgcf/AwGuyHvdpj3c9ANP68Dg1ZuL29gQ+8A+cF+PJERT6JhdE1YhBBfXxLQhBDCc0hA83CeFtDsViflm1oo/rCSoV7QeWlInRZBdl4sUckBp6UyYzKZ2LhxI9u2bcNut5OVlUV+fj4xMTGjvlZj6V42v/0qB0p24mP0I2fpBeQsvRCDn/svdI/ZxjNrqvj35gP4emm5eVEa/zcnCS/dyENWX98OKqsepr9/F/7+40lLvY/g4BmjnusRLN3w0T2w+38QnuWupsVNG3aIqqr8p6WLX1c341Th3pRoro0NQyPVNCG+8SSgCSGE55CA5uE8LaB9Zu3atWSPm0ZpUTNVW9uwW50ERxvJnhtN5qxofPxOfedAs9nMli1b2LJlC1arldTUVObNm0dCQsKor9VaXcnmt19j/7bN6H0MTD57KbnLlmMMCgagut3EQx+Usa6ig6RQX35xXhZLsiNHtT+trW0F1fsfw2ptJSJ8Kampd2EwxI96rkeoXO1uyT/QCrNvhIX3gH74rpdNQzbuqGigoNvEzEAjT2bGk+Lrc3LzEEJ8pUlAE0IIz+EpAe2pp57ixRdfRFEUJk6cyN///nd8fEb2b0YJaGfA4R/mtiEH1dvaKd3QTFttPxqdQsqUcLLzYohND0bRnNoKzdDQEMXFxYdOO09MTGTevHkkJyePuqLXUV9H8TuvU7FxPVqdjgmLljD9wksICHMvo1xX0c5DH5RR3T7A7ORQ7l+WTXZMwIiv73QOUl//InUH/oKqOkmI/z5JST9BpzuJ/4GG+mD1/bDjnxCS4q6mJc4edoiqqrzW2sMvq5uwulzcMS6a6+PC0Z3iPyshhGeSgCaEEJ7DEwJaU1MTeXl5lJaWYjAYuOKKKzjvvPO45pprRjReAtoZcLwP887GAUo3NFO5pRWrxUFAuMFdVZsdjTHw1O55stlsbN++nY0bN2IymYiNjSU/P5+MjIxRB7WeliaK332D0sICALLnLWLGRZcRHB2Lw+niv8X1PPVxJb2Ddq7MjednSzII9x/F/jRrK/v3P0Fr69vo9aGkJN9OTMzlKMrw55wNa/9aeP9m6G2AGdfBWQ+A1/CNSdqsdu6qbODDzn6m+PvyVGY8WX5jcNi2EOIrRQKaEEJ4Dk8JaLNmzWL37t0EBARw8cUXc/PNN7NkyZIRjZeAdgac6MPcYXOyf2cHpUXNNFf1omgUkiaGkp0XQ8L4UDSnsFLjcDjYtWsXRUVF9Pb2EhERQX5+PuPHj0ejGV2Djv7Odra+9xZ7Cj7C5XCSMSefmRdfTlhCEn0WO38oqOKfG+vw0Wv56cIUrp07Dh/9yENWf38JlVUP0de3HT+/TNJS7yUkZM5oX/LnrAOw5jdQ/BcISoQLn4Xk+cMOUVWVd9t7uaeqEZPDxW1JkdyUEIleqmlCfGNIQBNCCM9xeLjpfX8/tmbzqK/hdDrQao/dyM8rxkjQBSknvMYzzzzDvffei8FgYMmSJbz88ssjvr8EtDNgNB/mvW0WSouaKd/cwqDJjl+wN5lzosmeG4N/yKnb++R0Otm7dy/r16+ns7OT0NBQ8vLymDRpElrt6CpV5t4etq14m90fr8I+NEhK7ixmLb+CqNR0ajoG+O3Kcj4payMu2MA952WxdELUKPanqbS3r6R6/2MMDTURFnYWaal34+s77su8bLcDG+HdG6F7P0y7Bs7+DfgMf35cp83BfVWNvNPey3g/H57OTGCiv++Xn4MQ4itDApoQQngOTwhoPT09XHrppbz66qsEBQVx+eWXc9lll/Hd7353RPeXgHYGfJkPc6fDRe3uTko3NNNQ1g1AQnYI2XkxJE0KQ6s9yfbzx+FyuSgrK2P9+vW0trYSGBjI3LlzycnJQa8fXTOTwQETO1e9x45V72E1m0mclMOs5VcSlz2BDdWdPLiilPJWEzOSQrh/WTYT40Z+qLbTaaWh4W/UHfgTLpeN+LirSUq6Eb1+5HvcjmAfhLW/hU1/BP9ouOAZSDv7hMNWdfRyV2UjXXYHNyVEcltSJN6jrDwKIb5aJKAJIYTn8IQljq+//joffvghL730EgD/+te/2Lx5M88///yIxktAOwNO9sO8v3OQso0tlG1swdxrxRDgRdbsKLLmxhAUcWqqNqqqUlVVxfr162loaMDPz4/Zs2eTm5uLt/fo9sdZLRZ2f7yS7R+8g6Wvl9jMbHdQm5jDa9sa+f3qCrotNi6dGscd52QQGTDySqHV2kFNzZM0t7yOXh9M8rhbiYm5Eo3mS54317gd3r0BOspg8lVwzm/Bd/hDvnvtDh6obubV1m7SfL15JjOBqYEnedC2EMJjSUATQgjP4QkBbcuWLVx77bVs3boVg8HANddcQ25uLjfddNOIxktAO83s7RY27CtmwcIFJ30tl9NF/b5u9hU1c2BvF6pLJTYjiOy5MSTnhKMbxX6ukVJVlbq6OgoLC6mtrcVgMDBz5kxmzpyJwTC6Bhl26xB7Cj5m6/tvMtDVSWRyKjOXX0HEhGk8/2kNfy+qQ6dV+Mn8FH40L3lU+9NMpn1UVj1Mb+8WjMY00lLvJTQ0f7Qv181hhcInoOhJMITAsich64ITDivo6ueOigZarHauiw/nznHR+J6iSqcQ4syRgCaEEJ7DEwIawAMPPMCrr76KTqcjJyeHF198ccRFDQlop5HTbKflt1uwebsInz8O36mRaP29xuTa5l7rwapaM/2dQ3gbdWTMjCI7L4bQGL8xuccXNTY2UlhYSGVlJV5eXsyYMYNZs2bh5ze6+zkddvZ9WsDWd9+gt62F0LgEZi6/Ap/0aTz2USUf7mslJtCHu8/L4oJJ0aPan9bRsZrq6kcZHKonNHQhaam/wGg88cbOY2opcVfTWktg/HJY+jvwCx92iMnh5MH9zfyruYtxBi+ezExgdtCp+fMQQpwZEtCEEMJzeEpAOxkS0E4j1e7CsqeD5o8rMPQooFEwZIdgnBGNd2rQmJx5prpUGit6KC1qpmZXBy6nSlRyANl5MaROi0TvPfZVtdbWVtavX8++ffvQ6XRMmzaNOXPmEBg48j1kAC6nk4pN69ny9mt0NdYTFBnN9IsuwxQ/hYdXVVLa0s/UhCDuX5ZNTkLwyK/rstLQ8E9q657D5RoiNvY7JI+7Gb0+aJSvFHDaYcMz8Olj4O0PSx+HCZfCCUJjUY+Jn5U3cGDIxvdjw7gvORqjbuz/LIQQp58ENCGE8BwS0DycpwU0AOqKKNw/wOyJ8zBvbcWyow2X2YE2yBtjbiS+06PQjdGZZ4MmG+WbWyktaqa3zYLeR0v69Eiy82KISPySzTOG0dnZSVFRESUlJQBMmTKFvLw8QkKG37P1RarLRfW2zWx5+zXaaqrxCw1j6rJLqQoZz5Of1NA5YGV5Tix3nptBdODIl1XabJ3U1DxNU/Or6HT+JI+7hdjYb6PRjK7ZCQDt5e5qWtM2yDgfzv89BEQPO8TsdPJYTSsvNHYQ66PnyYwE5oWcuf/5hRBjQwKaEEJ4DgloHs7jApq5E36XilOjR5u6CDLOQ01ewmCDDvPWVqxVvaCAT0YIxulR+GSGoGjHoKqmqrRU91G6oZnq7e047S7C4v0YnxdD2owovA1fsoHGcfT09LBhwwZ27tyJy+ViwoQJ5OfnExERMep5H9i9g81vv0pTeSm+gUFkn3sxm7wy+dvmBjQKXD8vhevnJ+PrNfLXMDBQQWXVQ/T0bMTXN4W01F8QGrpg1Ady43LC5j9BwYOg84ZzHoEp3z5hNW1rn5nbyuuptlj5TnQID6TGEiDVNCG+siSgCSGE55CA5uE8LqA57XBgI41rXiDOvBt66wEF4nIhYymOqHMw1/hh3taGy2RD4++FcVokxumR6EJH14DjeKwWO5XFbewraqarcQCdXkPqtAiy82KISgkcfUgZhslkYuPGjWzbtg273U5WVhb5+fnExMSM+lqNpXvZ/ParHCjZibfRSPyii1nlSuHD0g6iAny489wMLp4SO+JDvFVVpbOrgKqq3zI4WEdISD5pqffg55c+6rnRtR/euwkObICUxe6W/EHxww4Zcrr4fV0rz9W3E+mt57H0OJaEjW5JqBDCM0hAE0IIzyEBzcN5XEA7aN26dSyYPx/aS6F8JVSshOYd7t8MHoeadj5Dvudirg1mqLIHVPBODcI4PQrD+FAU3cl3AlRVlfYDJkqLmqna2obd6iQ42kj23GgyZkVh8Bub5iUAZrOZLVu2sGXLFqxWK6mpqeTn55OYmDjqa7VWV7L57dfYv20zeh8DhjkX8s5gPPtazUyOC+SXF2QzLXHkSypdLhuNTS9TW/sHnE4zMTFXkTzuFry8RrcsE5cLtr0EHz/grqCd/RuY9n04wRlou/ot3FZeT5l5iMsig/lNWiwh+rGtaAohTi0JaEII4TkkoHk4jw5oX/ww72+Gyg/dga32U3DawBCMI3E5FvVczAcCcfba0fjq8J0aiXFGFPoxOvPMNuSgens7pUXNtNX2o9EpJE8JJzsvhrj04DFpXgIwNDTE1q1b2bRpExaLhcTERObNm0dycvKoK3cd9XUUv/M6FRvXo9HpMOVezPsDUbQP2Fk2KZq7l2YSFzzy98dm66a29g80Nf8XrdaXcUk3ERf3PTSaUQbVngPw/s1Qsw6S8uHCP0BI8vD3drl45kAbzxxoI0in49H0OJZFBI3uvkKIM0YCmhBCeA4JaB7uKxXQDmcdgP1roGKVO7QN9qBqvLGGfwez42wGW/zBBV6JARhnRGGYGIbGa2z2MHU1DbCvqJnKLa1YLQ4Cwg1kz40mc3Y0xjFqXmKz2di+fTsbN27EZDIRGxtLfn4+6enpaE5QcfqinpYmit99k9LCNdgVHQcmXMwacyguFH6UP46fLEjFz3sU+9PMVVRX/Zau7kIMhkTSUn9BWNhZowuQqgo7/w0f3ete1rr4lzDzetAM/2dUOjDIrWX1lAwMsiw8kEfS4wj3+hINTIQQp5UENCGE8ByeEtCeeeYZXnjhBVRV5Uc/+hG33nrriMdKQDsDRvVh7nRAwxb3MsiKldBdg1MNxGL8LmbrAhxmA4qPFt8pERhnROE1RmeeOWxO9u/soLSomeaqXhSNQtLEULLzYkgYHzrivV7D3sPhYNeuXRQVFdHb20tERAT5+fmMHz9+1EGtv7Odre+9xd6C1fSq3uxNX8bWwSDC/b2545wMLpsaN6o5d3ato6rqESyWaoKDZ5OWdh/+fpmje4H9zbDiNnfIjpsBFz0H4cPvcXO4VP7U0M4Tda34ajQ8lBbLJZHBY7o3UAgxtiSgCSGE5/CEgLZ3716+9a1vUVxcjJeXF+eeey5//vOfSU1NHdF4CWhnwJf+MFdV6Kx0B7XylagNW7Gp2Zg1l2Cx5YJLiz7WiHFGNL6Tw9H4jM1ept42C6VFzZRvbmHQZMcv2JvMOdFkz43BP8TnpK/vdDrZu3cv69evp7Ozk5CQEPLy8pg0aRI63eheg7m3h20r3mb3x6toUP0pTjiXAw4j42MCuH9ZNrOSQ0d8LZfLTlPz/6ipeQaHo5+YmMtJTr4db6+wkU9IVWHP67DqTrBZYMHdMOdm0A7/uirNQ9xeXs+2fgtnhwbweEYc0d5jty9QCDF2JKAJIYTn8ISA9vrrr/Phhx/y0ksvAfDggw/i7e3NnXfeOaLxEtDOgDH7MB9od1dnKlbhqi7GYp2F2XUedlcCis6FYUIoxjkJeMX7j0kFxulwUbu7k9INzTSUdQOQkB1Cdl4MSZPC0GpPrnmJy+WivLycwsJCWltbCQwMZO7cueTk5KDXj26p3+CAiZ2r3mP7qvfYSzRbIufRq3qzdEIUv1iaRULoyPen2e191NY9S2Pjv9FofBiX9FPi469BoxnFks+BdvjgZ1D2HkRPcVfToiYMO8SpqrzU2MEjNS3oFIVfp8ZyVXSIVNOE8DAS0IQQwnMcHm5WrVpFa2vrqK/hdDrRao+9NSUqKoqlS5eecA4XXXQRmzZtwmAwsHjxYnJzc3n22WdHdH8JaKeZqqp8+umnY/9hbrNAzTrU8pXYSyswm2dicc5DxYAuYAjjjGiMczLQ+I7Nnqb+zkHKNrZQtrEFc68VQ4AXWbOjyJoTQ1DkyTUvUVWVqqoq1q9fT0NDA0ajkTlz5pCbm4u39+j2wVktFnZ/vJLNH7zPRiWR7cG5oNFybV4yNy5Kxd9n5O+H2VxD9f5H6excg49PPGmpdxMefs7oAtO+d2Dlz2GwB/J/Dvk/A93wlbFai5XbK+rZ1GtmXrAfT2TEk2AYm/2AQoiTJwFNCCE8hycENICXXnqJ559/HqPRyPjx4/H29ubpp58e0f2/UgFNURQj8DxgA9apqvrycF/vaQFNtdvZv2wZ/dExpH77KvzmzkVjNI79jVxOaNqOa++HWHZ3YO6bgl1NB+wYonowzknAO3cayij3eR37Vi7q93Wzr6iZA3u7UF0qselBZOfFkJwTjk7/5ZuXqKpKXV0dhYWF1NbWYjAYmDlzJjNnzsRgGN25cHbrEHsKPqZgxQd8Qhrl/pkEeSvcsTSbb81IRDuK/Wld3UVUVT2M2VxJUNAM0tLuJcB/+GrYEcxd8OHdsOc1iBgPFz8HMTnDDnGpKv9q7uLB/c2owH3J0VwTG4ZGqmlCnHES0IQQwnN4whLHL7rnnnuIi4vjpz/96Yi+/owHNEVR/gYsA9pVVZ1w2K+fCzwDaIEXVVV9VFGU7wG9qqq+ryjKq6qqXjnctT0toDl6emh75BF6P1mDxmJB8fLCd/Ys/Bctxm/BAvSREafmxl37sRUXYN49gKU3ExU/dNo2jPEd+M5JQ5udD7qTr8iYe62UbWqhbEMz/Z1DeBt1ZMyMIjsvhtCTbF7S2NhIYWEhlZWVeHl5MX36dGbPno2f3+iu63TY2fdpAe++/wkryaDFJ5px/hp+c/k08tNH/v67XA6aW16jpuYp7PYeoqMvJSX5Z3h7j+LPsGKVu4nIQDvMvRnm3w364ff0NQzZuKO8gXU9JmYFGnkyM4FkX6mmCXEmSUATQgjP4SkBrb29nYiICOrr61myZAmbN28mKChoRGM9IaDNAwaAf30W0BRF0QKVwNlAI7AVuAq4CFilquouRVH+q6rqt4e7tqcFtM+sW7OG6X7+DBQUYCoowN7QAIDPxIn4L16E38JFeKennZK9RmpvB5a1GzHvtWIzRwMODLrtGBO78c6dhJKxBHxHeUjzF+/hUmms6KG0qJmaXR24nCqR4wLIzoshLTcSvfeXr6q1trayfv169u3bh06nY9q0acyZM4fAwMBRXcfldFK+sZC/v7ueD9U0TPoAZoQr/PY7c0iNChrxdRwOE7V1f6Sh4Z9oNHoSE39MQvwP0GpH2DxlsBdW3+duyx+a5t6bljBz2CGqqvJKazcPVDdhc6ncNS6a6+LD0Uo1TYgzQgKaEEJ4Dk8JaPn5+XR1daHX63nyySdZvHjxiMee8YB28IZJwIrDAtps4Feqqp5z8Oe/OPiljUCPqqorFEV5RVXVbw13XY8NaId9mKuqiq26GtOaAkxrCxjaXQKAPi4Ov0UL8V+0GN9pU1FG2SRjJOzNPZgLdmIpd+FyeKOlHaPuE3wTetBNyIPM8054yPKJDJpslG9upWxDMz2tFvQ+WtKnR5KdF0NEYsCXvm5nZydFRUWUlLjfrylTppCXl0dIyOjCpepyUbplE0+/u5V1rkScio7z4+FX311AaNDI/8e0WOqo3v8YHR2r8fGOITX1LiIizh95yN5fAO/dAn0NMOsnsOg+8Bp++Wur1c6dFQ2s7upnaoAvT2UmkGE8+a6aQojRkYAmhBCew1MC2snw1IB2GXCuqqo/PPjz7wEzgbuAPwJDQNGx9qApinIdcB1AZGTktFdeeWXM53uyBgYGjrs0T9PXh3fJHrxLSvAqK0NxOHD5GrCOn4B18mRs47NRR7n/6oRcYGxTCamz4t1nBFz4aLZj1H6E06+FrvDpdIXOoD8gDZQvt29NVVUsndCzX6W/AVQn+ARDcLJCYCJovb5c9WdwcJCGhgZaWlpQVZWIiAgSExMxjnJvn6qqNNbW80apmd3aBHxUK+cEdnP+tHi8fEYeelS1HJf6CtAApKJRrkRRRhZytQ4LyTX/JrZ5JYM+UVRk3EBv8KQT3A82oucfGBhE4VKGuAArOimmCXHaDPdMF0IIcXoFBgaO+Lyx4xmuScjpUF1dTV9f3xG/tnDhQs8MaKqq3jia634VKmjDcVksmDduxLSmgIF163D29IBej3HGjIPVtUXoo6PHdG6O7iHMW1sxb23GNeBEox3AqKzCqPkInb8LMs6FjPMheT7ov1xQtFrsVBa3sa+oma7GAXR6DanTIsjOiyEqJfBLLe00mUxs3LiRbdu2YbfbycrKIj8/n5iYmFFfa23RDh5aVc5+ZyChjl5+mKnjmm+dh8FvZN9JUVUnLS1vsr/m99hsnURFXUxK8s/x8Rnhn1XdBnjvRuiugdxr4axfg8/w1cYOm517q5p4r72XiX4GnsqMZ4L/yXXTFEKMjFTQhBDCc0gFbYyMdImjqqqPjOa6X/WAdjjV6WRw1y5MBQUMrCnAVlcHgHd2Fv6LFuO/aCHeWVljtm9NdaoMVXRj3trKUHk3qODt34zR8QYGV4F7yWXKIvcyyLRzwC989PdQVTrqTewraqaquA271UlwlC/ZeTFkzIrC4Df6g5ktFgubN29my5YtWK1WUlNTyc/PJzExcdRze23NTn5XUEeny5txQw1cN9HAhZdeiDEoeETXcDhM1B34Mw0NfwM0JCZeT2LCj9BqRxBsbRZY+zBsfh78Y+CCZyDtrBMO+6Cjl7srG+mxO7gpIZJbkyLxHoNunUKI45OAJoQQnkMC2hg5RkDT4W4Sshhowt0k5Nuqqu4bzXW/TgHti6w1tQysLcC0poDBnTtBVdFFR+O/cCF+ixZhnDEdxWv0AedYnH1WzNvaMG9rxdljReOt4hu2H+Pgf9BbtgEKxM+EjKWQcR6Ep4/6HrYhB9Xb2yktaqatth+NTiF5SjjZeTHEpQejjKINPsDQ0BBbt25l06ZNWCwWEhMTmTdvHsnJyaMKsVaHk+c+2MlfNzdjdSlMHijj+1MCWbh8OQFhI+vYODjYQPX+x2lvX4m3dxQpKXcQFXkhykiWizZshXdvgM4KmPIdOOdhMAwfEHvsDn5Z3cTrrT1kGH14KjOeqQGn4DgHIQQgAU0IITyJBLQxoCjK/4AFQBjQBjygqupLiqKcBzyNu83+31RVfXi01/a0gKaqKre+ugu9pYNL509jUlwgRm/dSV/X0d3NwNp1mNYWYN6wEXVwEI3RiHFePv6LFuE3bx7aUXY5POb8XSrW6l7MW1sZLO0Cp4pXtBZjWBmG/v+iaTv4XoemHgxr50P8DNCMbg1vV9MA+4qaqdzSitXiICDcQPbcaDJnR2MMHF1LeZvNxvbt29m4cSMmk4mYmBjmzZtHeno6mlFUljoHrDz67k7e3NOJl9PKrL7tXJkTyeyLLyM4OnZE1+jp3UpV1UOYTHsJCJhMetp9BAZOPfFAhxU+fRyKngJjGCx7CjLPP+GwT7r6ubOigVarnR/HR3DHuCgMWqmmCTHWJKAJIYTnkIDm4TwtoHUNWLn8z5uo6TQDoFEgIyqAnIQgcuKDyEkIJjnMiGaU1aLDuYaGMG/axEDBWkxr1+Ls7AStFt/cXHcL/0WL8IqLO+nX4hywYdnRjrm4FUfnIIqPFt9sX4xBJXi1vQ2168FlB99QSD/XHdhSFp2wM+HhHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDx3V++RwONi1axdFRUX09vYSERFBfn4+48ePH1VQK2/t51dv72bzgX6C7b3kdW/inCmJzFp+OWEJSSccr6ouWlvfpnr/E9hs7URGLCMl5U4MhhGEvJbd8M4N0LYHJlwKSx93B7Zh9DucPLi/mX83d5Fs8OapzHhmBkkzAyHGkgQ0IYTwHBLQPJynBbTPrFi9FmPieHbW97KzvoddDb2YhhwABPjomJIQfDCwBZETH0yg75drsa+6XAzt2eNuMrK2AGtVNQDe6enuJiOLF+MzfjzKSexRUlUVW20/5q2tWPZ0gsOFPtYPY04Qvr670NSuhKqPYKgPtN6QvOBgdW0p+EeN+D69bRZKi5op39zCoMmOX7A3mXOiyZoTTUDoyJuVOJ1O9u7dy/r16+ns7CQkJIS8vDwmTZqETjeyaqaqqhSUt/Pg+3up6x4i0drE3I4iZkxOZ9byK4hKPfEST4fDzIH6v1Jf/wIACfE/IDHxx+h0JwiwTjsUPQ2fPuZuHHLe72D8JXCCZZvru03cXtFA45CNa2PDuCc5GqPuzHUnEuLrRAKaEEJ4Dk8JaNdeey0rVqwgIiKCvXv3AtDd3c2VV15JXV0dSUlJvPbaawQHH711RQLaGfDFD3OXS6Wmc4Ad9b2HQltlmwnXwbc6OdxITnywO7AlBJER6Y/uSyxVs9XXu5uMFKzFsn07OJ3owsPxW7gQ/8WL8J01C4336JYQHs5lsWPZ1YG5uBV7qxlFr8EwORzjtDC81L0olaug/APoPeAeEDvNvWct4zyIyDphyABwOlzUlXRSWtRMfVk3AAnZIWTnxZA0KQztCN8Xl8tFeXk5hYWFtLa2EhgYyNy5c8nJyUE/wjPnbA4X/9l8gKc/qcQ0ZGeypZLcjo1kTshi1vIricuecMJrDA01U73/d7S1vYeXVwQpKT8jOuqSE+9Payt1701r3gGZy+D8358w8JodTh6pbeGlxk7ifLx4MiOe/JAz990hIb4uJKAJIYTn8JSAVlhYiJ+fH1dfffWhgHbnnXcSEhLC3XffzaOPPkpPTw+PPfbYUWMloJ0BI/kwH7A6KGn8LLC5Q1uX2QaAr5eWSXGB5BystE1JCCLCf3QHFDt6ejCvX49pTQHm9etxWSwovr74zZ2L36JF+C2Yj+4YiX4kVFXF3jiAubgVy+52VJsLXaQvxulRGHPC0QxUQ8VK94+m7e5BwUkHw9pSSJgD2hNXs/o7Bynb2ELZxhbMvVYM/noyZ0eTPTeGoMiRtZhXVZWqqirWr19PQ0MDRqOROXPmkJubi/cIw2qP2cYza6r496YDeGtczDTtIqutmITMTGYuv5KkyVNP2Jikr28HlVUP09+/C3//8aSl3kdw8Izhb+x0uLs8rn0YdD5w7qMw+VsnDLpbege4vbyB/YNWvhcTyv0pMQRINU2IL00CmhBCeA5PCWgAdXV1LFu27FBAy8jIYN26dURHR9PS0sKCBQuoqKg4apwEtDPgS7XZV1UaewbZUd/jDmwNvZQ292F3uv884oINhwJbTkIQ2TEBeI/wH90umw3Lli2HqmuOtjbQaDBMzcF/4SL8Fy/CKylplK/y4LWtDiy7D1bVGgdAp2CYEIZxehTeyYEoA21Qscr9o2YdOK3gEwRpS9wt/FMWn/AMMJfTRf2+bko3NFO3pwvVpRKbHkR2XgzJOeHo9Cd+H1RVpa6ujvXr11NTU4OPjw+zZs1i5syZGEZ4MHh1u4mHPihjXUUH0QaVOV0biW4rISo5lZnLryA1d9awy0lV1UVb2wqq9z+G1dpKRPhSUlPvwmCIH/7GndXualrDZkg9Gy54GgKH32c46HTxRF0rf6pvJ8pbz+MZ8ZwVOvz7LIQ4NgloQgjhOQ4PN5WVD2IaKBv1NZxOB9rjFAv8/bJIT79/RNf5YkALCgqit7cXcP/bMzg4+NDPj/caPiMB7RQbqw/zIbuTfc397PwstNX30Nw3BICXVsP42IAjlkbGBhlOWMlRVZWhfaUMFBRgKijAWl7uvl5ysrvJyMJFGCZPQvkSp6vbmgfce9V2dqAOOdCF+uA7PQrjtEi0/l5gHYCatVC+Eio/hMFu0Ohh3LzP962dIHiYe62UbWqhbEMz/Z1DePvqyJgZRXZeDKGxI2uO0djYSGFhIZWVlXh5eTF9+nRmz56Nn9/Ixq+raOehD8qobh9gYrDCrOY1+LRWEBqXwMyLLydjzjw0w7x/Tucg9fUvUnfgL6iqk4T475OU9BN0umG+k+NywdYX4JNfgaKFJQ/CtGtOWE3b0W/mtvIGKsxDXB4VzG9SYwnWn3xnUSG+SSSgCSGE5/iqBDSA4OBgenp6jhonAe0MOJUf5q19Q+xq6Dm0NLKkqZchuwuAcH/vQ90icxKCmBQXiK/X8P8Ytzc1YSpYy8DaAszFW8HhQBsait+C+fgvWoRxzhw0I6wwfUa1O7Hs6cRc3Iqtrh80CoasEIwzovBOO3jmmcsJDcVQ8YE7sHXvdw+Onvz5vrWoiccNIKpLpbGih9INzdTs7MDlVIkcF0B2XgxpuZHovU8cMFtbW1m/fj379u1Dp9Mxbdo05syZQ+AIjixwOF38t7ieJz+upG/QzjlxOibUrMLaWE1QZDTTL7qU7HmL0Q2z323I2sr+/U/Q2vo2en0oKcm3ExNzOYoyzNy7a+H9m6G20B1sL/gDhIwbdq5Wl4un69p4tr6NYL2Ox9LjOC886ISvUQjhJgFNCCE8hyxx9HDfxID2RXani4pW0+dVtoZeag+2+ddqFDIi/Q9W2NyhbVzo8dv8O00mBgoLGShYy0BhIS6TCcXbG+OcOe7q2oIF6MKGb/t+1PzaLZi3tWLZ3obL7EAb5I0xNxLf6VHoDj/zrKPy831rDcWACoHxn1fWEvNAd+yDuQcHbFRsbqW0qJmeVgt6Hy1p0yMZnxdDeIL/CauKnZ2dFBUVUVJSAsCUKVPIy8sjJCTkhK+vz2LnDwVV/HNjHT56DVemeRG39wO6ayvwCw1j+gWXMHHREvTex99D2N9fQmXVQ/T1bcfPL5O01HsJCZlz/JuqKuz4J3x0H6hOWPwAzLgOTtCtc6/Jwm3lDewZGOTCiCAeTosl3OvLdRAV4ptEApoQQngOTw5od9xxB6GhoYeahHR3d/P4448fNU4C2hlwpj/Mu802dje4l0TubOhlV30vJqu7zX+gQc+Uz1r8JwQzJS7omG3+VZsNy/bt7hb+BQXYm5tBUTBMmoTf4sX4L1qIV0rKCcPPoes5XAyWdmHe2oq1qhcU8EkPxjgjCp/MEJTDuzMOdLiXQFasgv0F4BgE7wBIPctdWUs7GwxBR99DVWnZ30dpUTPV29tx2l2ExfuRPTeG9JlReBuGryb29vayYcMGduzYgcvlYsKECeTn5xMREXHC11fTMcBvV5bxSVk78cEGfpDtjffW92iu2IdvYBDTzr+YyWefh7fvsZubqKpKe/tKqvc/xtBQE2FhZ5GWeje+vsNUx/oa4f1bofpjiJ8FFz0HYanDztPuUnm+vp3f17Xip9PwcFocF0cEjfjPUYhvojP9TBdCCPE5TwloV111FevWraOzs5PIyEh+/etfc/HFF3PFFVdQX19PYmIir7322jG/4S8B7QzwtA9zl0tlf8fAwQqbu9JW0Wbisz/qlHDjoQpbTnww6ZF+R7T5V1UVa0XFoSYjQwe/S6BPTDjUZMSQk4MywnPGHN1DmLe1Yt7WhqvfhsZfj3FaFMbpkei+eOaZfdDdXKRiJVR8COZ20OggcQ5knO+urgUnHnUPq8VOZXEb+4qa6WocQKfXkDotguy8GKJSAocNJCaTiY0bN7Jt2zbsdjuZmZnMmzePmJiYE762oqpOHlxRSkWbiRlJIVw33ovewnc4ULITb6ORnHMvZOrSCzD4H7thh9M5REPD36k78CdcLhvxcVeTlHQjev1xGnyoKpS8CqvuAscQLLwHZt1wwi6ZFeYhbiuvZ0e/hXPCAngsPZ4ob6mmCXEsnvZMF0KIbzJPCWgnQwLaaaSqKvdtuA9tt5ZLZl1CVmgW3tovf+7YqWQasrOnsY+dn1Xa6nuP2+Y/JyGYcP/PX4e9tZWBdeswrSnAsnkzqt2ONigIv/nz8Vu0COPcuWj9TnAgM6A6VYYqujFvbWWovBtU8E4Nwjg9EsP4MBTdF5bsuVzutv2fLYXscDc4IWK8uyNkxlKIzjliqZ+qqnTUm9hX1ExVcRt2q5PgKF+y82LImBWFwe/YyyYBLBYLmzdvZsuWLVitVlJTU8nPzycx8ehAeDiH08Wr2xp4cnUl3RYbl06N4//S9dR8/BbVWzej9/Zh8pLzyF22HGPQsY86sFrb2V/zJC0tb6DXB5M87lZiYq5EozlO8DK1wQe3Q/kKiJnqrqZFZg87T6eq8kJDB4/WtuClUfh1aizfigqRapoQXyABTQghPIcENA/naQGta7CL76z8Dk0DTQDoNDoygzOZFD7p0I84vziP/Aewqqo0dA8eqrDtrO9hX3M/Dtfwbf6dA2bMRUUMrC1gYN2nOPv6UPR6fGfPwn+RuyukPvLESwSdfVbM29owb2vF2WNF46vDd2okxhlR6COOc+ZZ1/7PW/jXbwTVBf7RkH4uZJ4PSfmg/3zvl23IQfX2dkqLmmmr7UejU0ieEk52Xgxx6QeblxzD0NAQW7duZdOmTVgsFhITE8nPzyflBEs8+4fsPFdQzd821KLXavjJ/BSWj9Oye8WbVGxcj0anZeKiJUy/8FICwo79HplM+6isepje3i0YjWmkpd5LaGj+sW+oqrDvbVh5Bwz1wfw7Ie820A5fGauxWLm9vJ7NfWYWBPvzu8x44n2OH1yF+KaRgCaEEJ5DApqH87SA9pn31ryHX5ofJR0llHSWsLdzL4OOQQBCfEKYFPZ5YJsQNgGj/sTVpjPB3ea/74jDtI/V5n9qorvKFm3UMbhzJwMFazEVFGCvrwfAZ8IEd5ORRYvwTk8fNtSoLhXr/l7Mxa0MlnaBU8UrMQDjjCgME8PQeB2nw6GlG6pWuytr1WvANgB6I6QuPrhvbQkYQw99eVfTAKVFzVRsacVqcRAQ5kN2XgyZs6MxBh676mmz2dixYwcbNmzAZDIRExPDvHnzSE9PRzNMg44DXWYeWVnOh/taiQ0ycNfSTPIiVLa++yalhQWASva8Rcy46DKCo2OPfk9UlY6O1VRXP8rgUD2hoQtJS/0FRmPKsW9o7nQvedz7BkROhIv+CDFTjjs/AJeq8o+mTh6qaUEB7k+J4eqYUDQe+M0EIU43CWhCCOE5JKB5OE8NaF/8MHe4HOzv3c/ujt2HQlttXy0AGkVDalCqO7CFTWJy+GSSApPQKMN35DtThmvzH+Hv/XnHyLhAMmxdOAo/ZaCggMGSElBV9LGx+C1ahP+ihfjm5qIM04beOWDDsqMdc3Erjs5BFG8tvjkRGKdH4TXcmWf2Iagrcrfwr1gFphZQNJAw+2BXyPMg1B1uHDYn+3d2UFrUTHNVL4pGIWliKNl5MSSMDz1mx0uHw8GuXbsoKiqit7eXiIgI8vPzGT9+/LBBbdP+Lh5cUUppSz9TE4K4f1k2Kb52tr73FnsLVuN0OEifncfM5VcQnpB01HiXy0pDwz+prXsOl2uI2NjvkDzuZvT6oGPfsPwDWHE7mDsg71aYd+cRFcVjqR+08vOKBgp7BpgdZOTJjATG+XrmMl0hThcJaEII4TkkoHm4r0pAO5Y+ax97O/dS0lHC7k53cDPZTAD46/2ZGD7xUGibGDaRIJ+gUz/xL+GzNv87DjtMu67LArjb/GdGudv85/qrjD9Qgs/WjZg3bkS1WtH4++M3bx7+ixdhzM9He5z/UVRVxVbb7z4Ee08nOFzoY/0wzojCd3I4Gp9hGmKoKjTvPLgUciW0uRucEJZxcN/aeRCbCxoNvW0WSjc0U76phUGTHb9gbzLnRJM1J5qALzYvAZxOJ3v37mX9+vV0dnYSEhJCXl4ekyZNQnechilOl8qb2xt5/KMKOgesLM+J5c5zMwhQh9j+wTvsWr0S+9AgKbmzmLX8CqJS04+6hs3WSU3N0zQ1v4pO50/yuFuIjf02Gs0xwu5gj7sd/67/uF/zRc9B/PTjv18H3+//tXTzQHUTDlXl7uRofhgXjlaqaeIbSgKaEEJ4DgloHu6rHNC+yKW6qOuvc1fYDv6o6q3CpbqrU0kBSYcC26TwSaQFp6E7XsOIM6zbbDuiyraroZeBw9r8z4gysNBcR+b+XRh3bMLV0wM6HcYZ0/FbtBj/hQvQxx691A/AZbFj2dWBubgVe6sZRa/BMCkc44wovEZw5hk9B9wt/Ms/gAMbwOUAY7h731rGeZC8AKfGh7qSTkqLmqkv6wYgISuE7LwYkiaHodUeWSVzuVyUl5dTWFhIa2srAQEBzJ07l6lTp6I/ToVwwOrgT+uqeWF9LRoFrp+XwvXzk1Fsg+xc9T47V73HkHmAxEk5zFp+JXHZE46+xkAFlVUP0dOzEV/fFNJSf0Fo6IJjvwfVn8B7t0B/E8y+ARbeC17H2dt3UIvVxp0VjXzc1U9ugC9PZSaQZhy+AifE15EENCGE8BwS0Dzc1ymgHYvFbmFf177Pl0Z2lNA11AWAQWcgOzSbSeGTmBw2mUnhkwj3DT/pe54KzkNt/j8PbZXt7jb/GtXFYrWDs7rLSd+/C5+WBgC8s7LwX7gQv8WL8MnOPip0qKqKvXEAc3Erlt3tqDYXukhfjNOjME6NQHOMs92OMtjrDi4VK6HqY7D2g84AKQvdSyHTz6V/yJ+yTS2Ub2xhoMeKwV9P5uxosufGEBR5ZMBRVZXq6moKCwtpaGjAaDQyZ84ccnNz8fY+9jLBhm4Lj35YzgclLUQF+HDnuRlcPCUWh3WQXatXsv2Dd7D09RKbmc3M5VeSNHnqEe+Fqqp0dhVQVfVbBgfrCAnJJy31Hvz8jq68MdQPn/wKtr0EwePce9OS8oZ9i1RV5a22Hu6rasLicvHzpCh+Eh+B7jgNVYT4OpKAJoQQnsNTAtq1117LihUriIiIOHRQ9euvv86vfvUrysrKKC4uJjf3mHlLAtqZcKo+zFVVpdncfESVrbS7FIfLXZ2KNkYfUWXz9Db/JY19n4e2hl66zTZiBzqY117Ggq4y4pv3o6guNBGRBCxeiP+ixfjOnIHG68gOgy6rg8HdnQxsbcXeYAKdgmF8GMYZUXgnD3/m2SEOm7ui9tlSyL4GQIG46ZB5Hq60pdS3hVK6oYW6PV2oLpWYtCCy82JImRqOTv958xJVVTlw4ACFhYXU1NTg4+PDrFmzmDlzJgbD0UslAbbWdfPgilJKGvuYHBfILy/IZlpiCHablT1rVrP1/TcZ6OokMjmVmRdfQer0WSiH7XdzuWw0Nr1Mbe0fcDrNxMRcRfK4W/DyOvpwRGrXw3s3Qk8dTP8hnPUr8B7+IdVhs/OLykZWdPQxyd/A05kJZPsd+7UI8XUjAU0IITyHpwS0wsJC/Pz8uPrqqw8FtLKyMjQaDddffz1PPPGEBDRPcjo/zK1OK+Xd5UeEtmZzM+Bu858VknVEaIv1i/XYNv/13ZZD+9h2NvTSWNvM1OZSZrXuI7ejEm+HDYePAWXGbKKXLiFo4Xy0QUFHXMfWYsZc3IJlZwfqkANdqA++06MwTotE6z/C1vGq6t6rVn7wvLWWXe5fD0mBjKWYY8+j7EA0ZZta6e8cwttXR8bMKLLzYgj9QvOSxsZG1q9fT0VFBV5eXkyfPp3Zs2fj53d0kxOXS+XtnU08/lE5bf1Wlk2K5u6lmcQF++J02CktXEvxu6/T29pCaFwCMy++nIw589BoPw+HNls3tbV/oKn5v2i1voxLuom4uO+h0XzhtdvMUPAwbH4eAuPggmfcHS9P4P32Xn5R2Uivw8EtiZHckhiJ1zCNUYT4OpCAJoQQnsNTAhpAXV0dy5YtOxTQPrNgwQIJaJ7mTH+Yd1g6KOn8PLDt69p3ZJv/cHe3yElh7jb/vvrh9yKdKUN2J3ub3G3+S2rbsBUXk75/F7Na9hFiNeFUNHQlZ6HJm0/ShecSl516KHyqdieWvV2Yi1uw1faDRsGQFeKuqqUd/8yzY+prgsqD563VFoLTBoYQ1LRzaPS9gNIDsdSU9OByqkSOCyA7L4a03Ej03p8Hp9bWVtavX8++ffvQ6XRMmzaNOXPmEBgYeNTtLDYHf/60hr8W7selwo/yx/GTBan4eetwOZ1UbC5iy1uv0tVYT1BkNNMvupTseYvRHbbfbcBcRXXVb+nqLsRgSCQt9ReEhZ11dDhvKIZ3b4DOSsj5Lix5GAxBw74d3XYHv6xq4o22HrKMPjyVmcCUAM/8OyTEWDjTz3QhhBCfOzzc3F/VyN6BwVFfw+lwotUd++imCX4GHkyLG9F1JKAdgwS0kXG4HFT3Vrs7Rh7cz1bXXwd89dr8t/QNsquum7qN21E2FZJUvp3E/lYAGgOjaR4/Hd28+aTmTWdiQjC+XjrsHRZ3B8jt7bjMdrRB3hhzI/HNjUIXNMoloEP9sL/AXVmr/AiGekHrzWD8OVSoF1FaG0VPuw29j5a06ZGMz4sh/LDmJZ2dnRQVFVFSUgLAlClTyMvLIyTk6KWIzb2DPP5hOe/saibc35s7zsngsqlxaDQKqstF9fYtbHnrNdpqqvALDWP6BZcwcdES9N6fN/Lo7FpHVdUjWCzVBAfPJi3tPvz9Mo+8kX0IPn0UNvwB/CJg2VPuPXgnsLqzjzsrGmm32flpQgQ/T4rCR+uZf2+EOBme9kwXQohvMgloHk4C2pfXZ+1jT+eez5dGdh6/zf+k8EkEeh9d6fEEdqeL8u3lNK/6CO3mIqLqytGqLrq9/SmOHk9Tdi7G2bOYlBxJTmwAUe1WzFtbsVb3AuCTHoxxRhQ+mSEoow0XTgfUbzq4b+0D6KlDVaEl8CJKbRewvykUhx3C4v3InhtD+swovA3uzpu9vb1s2LCBHTt24HK5mDBhAvn5+URERBx1mx31Pfzm/VJ2NfQyITaA+8/PZmay+9BtVVU5sHsHm99+jabyfRgCApl2/sVMWXI+3r7uqpbLZaep+X/U1DyDw9FPTMzlJCffjrdX2JE3atoB794I7ftg4uVw7mNHHO59LH12B7/e38x/W7pJ9fXmqcwEpgd65sHrQnxZX4VnuhBCfFPIEkcPJwFt7Iymzf/kiMmkBqV6ZJt/Z28vrR8X0LbqY3Tbt6C3DjKk9WJHRDqbosZTMW4SqWlxzA33Z+aASsj+flSTHY2/HuO0KIzTI9Ed48yzE1JV6Ch3V9bKV0LTNqwuXyqViykdOofOvgB0eg2p0yLIyoshOsXdvMRkMrFp0ya2bt2K3W4nMzOTefPmERMT84XLq7y3u5nHVpXT3DfE0glR/GJpFgmhny8tbCzby5a3X6Nu9w68jUZyzr2QqUsvwOAfAIDd3kdt3bM0Nv4bjcaHcUk/JT7+GjSaw6qIDhsUPQmFvwOfIDj/CRi//IQv/9NuEz+rqKdpyM4P48K4Ozkao/bY35kS4qvmq/hMF0KIrysJaB5OAtqp9cU2/7s7dtM95D4XzKAzMD50vDu0HQxuntbm32WzYSneSv+aNfR9sgY62nEpCrWRKawLzWBT9ATa/MK5ONCPC/FiXJ8DBfBKDsRvZhSG8WEoui+5ZM/Udmjfmrp/HR1Dseyznk/VYB52p57gSB+y8+PImBWFwc8Li8XC5s2bKS4uZmhoiJSUFObNm0diYuIRlx20OXlhfQ1/Wrcfp0vl+3lJ3LgwFX+fz/efte6vYsvbr1K9dTN6bx8mLzmP3GXLMQYFA2A211Bd/QidXQX4+MSTlno34eHnHLk/rXWve29ayy7IuhDOewL8I4d9yQMOJw/XtPD3pk4Sfbz4fWY8ecFn7owRIcbK1+WZLoQQXweeEtCuuuoq1q1bR2dnJ5GRkfz6178mJCSEm266iY6ODoKCgpgyZQofffTRUWMloJ0BX9cP88Pb/H8W2sq6yw61+Y8xxnwe2MInkRWShZd2hJ0TTzFVVRkqLWWgYC2mtQVYS8sAMEfGsi9pMisD0qj1jWOp4s0FeBGFBqtewZwaSNS8eCLGBX35m9vMsH8tVKzCVl5AdXcWpYNLaLOno9GoJE/wJ3tRKnHpwVhtVrZu3cqmTZuwWCwkJiaSn59PSkrKEQGqtW+I331UwZs7Ggnz8+JnSzK4Ijce7WHNTzrr69jyzutUbFyPRqdl4qIlTL/wUgLC3Msou7qLqKp6GLO5kqCgGaSl3UuA/2EHYjsdsOlZWPuI+1Drcx+DSVfACbqAbuod4PbyemoHbVwdE8r9KTH4H2edtxBfBV/XZ7oQQnwVeUpAOxkS0M6Ab9KHudVppayr7NA+tpKOElrMLQDoNfrP2/wf/BFjjPGINv/25mZMa9cysKYA89atYLdDUDC9k2dQkjCJOm0S2b2Qhw49ChU6lf3RPvhMCGVycihZ0QF4fZnqmssJjVuh/AO6du+ktCWdisH5WFV/AoxDZM0IJuucHPS+Gnbs2MGGDRswmUzExMQwb9480tPT0RzW1r6ksZcHV5Syta6HzCh/frksmzmpR+4t62ltpvidNygtLABUsvIXMuOiywmJicXlctDc8ho1NU9ht/cQHX0pKck/w9v7sL1wHZXualpjMaSd424iEhg77Mu0OF08XtvCXxs6iPbW87uMeBaFBoz+/RLCA3yTnulCCOHpJKB5OAlonqnd0s6ejj3s7nRX2fZ17mPIOQRAqE/oobA2OXwy40PHn/E2/06TCfP69ZgK1jJQWIirvx/F2xufmbPonTSXbl0qIc1OwmwqA6h8jJ1VWgeGOH9y4oPISQgmJyGI6ECf0YfPziocpauo2VxLaWMSTbaJKDhJiuwge04kMfmz2FNWTlFRET09PURERJCfn8/48eMPBTVVVVm5p5XfriyjqXeQs7Mjuee8LMaFHdmso7+zg23vv8WeNR/hdDhIn53HzOVXEJ6QhN3eT92B52ho+CcajZ6kxJ8QH38tWu3BjpAuJxT/FT75NWj1sOQhmHr1Catp2/vM3FpeT5XFypVRIfw6NYYgveftXRRiON/0Z7oQQngSCWgeTgLaV4PD5aCqp+qIKtvhbf7TgtKOqLIlBZy5Nv+q3Y5l+3ZMBQUMrCnA3tQEgM/kSRjnLMPmlY6r0Y7GqdLgBW84hljlsmEBIgO8yYl3h7WchGAmxgZi8BrF0j5zJ71bP6F0QyvlTYkMugIxarvJim8gY24cBwxxrN+8nc7OTkJCQsjLy2PSpEnodO7AM2R38rcNtTxXUI3N6eL/Zidx0+I0Ag36I2/T28P2D95h1+qV2IcGScmdyczlVxCdmoHFUkf1/sfo6FiNj3cMqal3ERFx/ufBs7sG3rsZ6tZD8gK44A8QnMhwrC4XT9W18Wx9G6F6HY+nx3NuuGd2BRXiWOSZLoQQnkMCmoeTgPbV1TvU627zfzCw7enYg8l+sM2/l/+h9v6TwicxMWziGWnzr6oq1soqBgrWYCpYy9CePQDox6XjO3M5ilcqzn4VVafQEu3LWh8XK7tMHOi2AKDVKGRF+x8R2pJCfUdUZXMOmqlbs4HSzV3Ud7qbryR47yYrvpGh5HiKWnS0dnQTEBDA3LlzmTp1KvqDB1W3m4b4/UeVvLa9gSCDntvPTueqGQnovnCMwOCAiZ2r3mfnqvcYMg+QOCmHmcuvIC5rAj29m6mqepiBgTICA6eSlnYfgQGT3QNdLtjxD1j9S1BdcNavYPoPQTN8qN5jsnBreT37Boa4OCKIh9LiCPOSaprwfPJMF0IIzyEBzcNJQPv6cKku6vrq3M1HDoa26t7qo9r8Tw6fzKTwSWekzb+9rY2BteswFazBsmkzqt2OLm48hmkXgy4BnAq6SF+UyWGUhujZ3mZiZ0MPuxv6GLC6G6kE++qZctiyyMnxQQT46Ie9b3+HmbLVOynfZmJg0BuDppcMQwG+kd3s0KXT0A9Go5E5c+aQm5uLt7e7bf6+5j4eXFHK5ppu0iL8uG9ZNvPTj+60aRu0sGv1SrZ/8A6Wvl5iMrKZdcmVJE6aTGvrW+yv+T02WydRUReTkvxzfHyi3QN7G+D9W2D/GkiYAxf9EUJThn8PXSp/rG/jybo2/HUafpsWx0URQR6xL1GI45FnuhBCeA4JaB5OAtrXm9luZl/nPko6P+8aebw2/5PDJxNmCDvBFceOy2xmYMMGBtYUMLBuHU7zEPqEWXhnLUHRh4NWwTAhDOOMKHRJAezvMLOzvoed9b3sbOihqn0AVXVv4UoN9ztUYctJCCItwv+IboyH7ulSqd/XRWlBFXXlFlRVIdprL+HGTdQYgqh1ReLjpWXWzNnMmD0HX19fVFVldWkbv11ZxoEuCwszwrn3/GxSI/yOur7dZmVvwWq2vvcWpq4OIpNTmXnxFSTljOdAw19paPgboCEx8XoSE36EVmtwn/+2+3/w4d3gsMKi+2DWT0Ez/NLOsoFBbitvYJfJwtKwQB5NjyPSe/igKsSZIs90IYTwHBLQPJwEtG8WVVVpGmg6Yi+bJ7T5Vx0OBnfuxFSwFlPBGpw9TvSJeeiT5qJofdD4a/GbG49xWiRaf/d8+ofslDT0uUNbQy8763vosdgBMHppmRwf5A5t8cFMSQgizM/7iHuae62UbWqhbH0j/d02vHVWonw/pcunm1pNDF4aF9NTQpl99iX4RcRjdTj558Y6nl1TjcXu5HuzErllcRrBxqPfH6fDTmnhWorffZ3e1hZC4xKYefHlJOSMo6bu97S3r8TbO4qUlDuIirwQRdGAqRVW3A4VH0DsNLjoOYgY/uHpcKn8tbGDx2tb8NZo+E1qLFdEBUs1TXgceaYLIYTn8JSAdu2117JixQoiIiIOHVT9+uuv86tf/YqysjKKi4vloGpPIh/mp89I2/x/tjQy2hh9SgOAqqrYamrcTUYKPsXeqUefmIcuLB1woY/WELA4A5/scJTDqmSqqnKgy8LOhoNVtvpeSlv6cbrc/z8mhPgeDGzuSttnbf5Vl0pjZQ+lRc3U7OrA5VAJDGnGqi+hAQM6xclUvw7m5mQSOPkCOn3ieerjSv5XXI+/j55bz0rju7MS0WuP3j/mcjqp2FzElrdepauxnsDIKGZcdBkxkwOpqX0Uk2kvAQGTSU+7j8DAqe5q2r63YOUdYDXB/Dth7q3uro/D2G8Z4vbyBrb0mVkY4s8TGfHE+njG+XlCgDzThRDCk3hKQCssLMTPz4+rr776UEArKytDo9Fw/fXX88QTT0hA8yTyYX5mDdfmP8wQdkQDklPd5t/R2cnAunWY1m3D3uGDLmY6Gu8AUC14JWoIujAHr7hjL80ctDnZ29x3aGnkjvoe2vqtAHjpNEyMDWTqYUsjg7RaKja3UlrUTE+rBcXHgia0knZnH6gupiilzA3uJDR7PuVh5/DQdi1F1V0khxu57/wsFmZEHDO8qi4X1du3sOWt12irqcIvJJTcC5cTMWGIugPPYLO1ExmxjJSUOzEYYsHc6Q5p+96CqIlw0fMQPWnY98mlqvy9qZOHa1rQAA+kxvDd6FCppgmPIM90IYTwHJ4S0ADq6upYtmzZoYD2mQULFkhA8zTyYe5Z7C471T3Vh/axlXSWcKD/AOBu858enH5EaEsMSDwlbf5dg4MMbNiEqWAfji5fNEGp7t+wNeGd6k3gspl4J8YNe42WvsGDFTZ3aCtp6sPmcDdSiQrwISchiCnxgaRpvbBXmqjb2YHVaUGNaKaPJlRcTKCSfLYQblAoiLyah5tzqemH/LQw7l+WTXrksR9YqqpyoGQnm996labyfRgCApl6/lJCspppavkHAAnxPyAx8cfodEYoex8++BlYuiDvNph3B+i8j3ntzxwYtPKz8gaKegfIC/Lj95nxJBqGHyPEqSbPdCGE8ByHh5tfv7+P0ub+UV/D6XSi1R57v3x2TAAPXDB+RNc5XQFNel6Lrx29Rk9WaBZZoVl8K/NbgLvN/2dLIks6SlhZu5LXKl8DIMArgInhE5kc5l4WOSFswpi0+dcYDASctYiAsxahOp0MbNyFaW0VTkcQtgZ/2p7ahTrwCoZsP/zPzsNnwvijKkjRgQaiJxo4b6K7k6LN4aKspf+wvWy9rNrbCoBOozAxxZ8ZmjBC2gJRemKx+jezz1fHHjWDTJ2FeU3v8KHtGf7tdR7P1FzCuU918O2pEdx23mRCv7DvTVEUkiZPJWnyVBrL9rLl7dfY8L9X8DYamXLeDfinllF34HmaW94gJeVnRGdegpI4Fz66Fwp/5w5sFz0Hccd+WAEkGrx5fUoKL7d086vqJhYUV3BvSjTXxoahkWqaEEIIIb6BpII2BuS7rV89LtVFbV8tJR0lh1r9V/dUo+L+/2Fc4LhDVbbJ4ZNJCUoZszb/qlNlYH05pvUHcA4YUBQNjo4yXN0l+EwKJ+CsRfjOnInGa2T7sjoHrOw62C1yZ30vuxt6MVudRDoVpru8SLU5sfk0MWhsRlUcjIsMZkFIKwGNBTzdPZP/OM/CV2Pnlow+rl4yG6+oTHe7yWNo3V/FlrdfpXrrZvTePkw6fxKGxO0MWPbi7z+etNT7CA6eAVUfu1vym1pg9g2w8F7QG4Z9HU1DNu6saGRNdz8zAo08mRlPqq/PqN9fIU6WPNOFEMJzyBJHDycBTZxKZruZvZ17D1XZSjqPbPM/IWzCEUsjx6LNv7PPiqmoDnNxC6pVi2ozY6/fhKNtK745afgvXoRx3jx0wcEjv6ZLparddGhpZEldD7qmISbbIci7FYtvE6rWjo8xnLycRMIGq3l0h5Z1g8kkKa3cE/QJZ09ORslcCvGzQHt0MO2sr2PLO69TsXE9Gp2GiRckoI/Zit3eTkT4UlJT78KgBMLHv4Ttf4eQFPe5aYlzhp27qqq80dbD/VVNDLpc3JEUxY/jI9Ad4xgCIU4VeaYLIYTnkIDm4SSgidNJVVUaBxo/D2wdJZR3l+NQ3W3+Y/1ijwhsmSGZX7rNv+pSse7vZWBzM0OlXaAqOPsPYKsuwNG6E9/JE/FbtAj/xYvwSkgY9fX7Bu2UNPayc087nbs7MJjqsRsbcWltDDn96A9JxTc4gOIDvdQPejNbU8r9un+RbTRB2jmQsRRSF4P3kQ+3ntZmit95g9LCAhStk+wL/NGH70bFRUL890lK+gm6+u3w3s3QewBmXAeLHwDvo89lO1y71c7dlY2s7Oxjsr+BpzMTyPIbvgInxFiRZ7oQQngOTwloV111FevWraOzs5PIyEh+/etfExISwk033URHRwdBQUFMmTKFjz766KixEtDOAPkw/+YYcgxR3l1+RAOSVrN7D9hne98mhZ1cm3/ngA3LjnbMxa04OgdBceLs2sPQ7vdx9TXglZqC/0J3WPOZNAlFM/oGJ3abg02f1rNjwzb6HTW4dEM4Hb6U26PZRjCKRsGlqpznv59f8gJR9gbQesG4eZBxnjuwBcQcul5/Zwfb3n+LPWs+QvEaJON80AVXoteHkpLyM2JCz0Up+C1s+QsExcMFf4CUhcPOUVVV3uvo5Z7KJvodTm5NjOSmxAi8vsTrFWI05JkuhBCew1MC2smQgHYGyIf5N1ubuY09nXsO7Wcr7Sodkzb/qqpiq+vHXNyKZU8nOFwoPlacbdswb3wDrGa0YWH4L1yA38JFGOfMRuMz+j1b3S0DrF25ibIDO3FoLGidBgZ04/jQ5k+f0wWoJGo6uTlwPQtdmwixNrkHxuQcDGvnQeR4UBTMvT1s/+Addq1eic6/m9QlFrR+7fj5ZZGWdi8h/cB7N0JXNUy9GpY8BD7DN2TptDm4v6qRt9t7yTb68FRWApP9T91RCULIM10IITyHBDQPJwFNfBXYXXaqeqqO2Mv2WZt/raIlLTjtiNCWFJB0wiqby2LHsrsDc3Er9hYzil5BG2zF0bQJ86fv4hoYQPHxwTh3Lv6LFuK3YAG60NBRzdthd7L+o2K27tyMxdmHxumNzied9dpgynoH8dJpcLlcJLoaWaLdwVKvnUxQK9GgYjXGos06H132+ZA4l8HBIXauep+dq97FJ7KF+PxetD5mwsLOJi3xVnyL/wsbnwW/KLjgaUg/54Tz+7Cjj7sqG+i0O7ghPoLbk6LwOcaB20KcLHmmCyGE55CA5uEkoImvqp6hnkNVtpKOEvZ07mHAPgAc1uY/fDKTwyYzIXwCAV4Bx7yOqqrYGwcwb23FsqsD1eZEF2FAFz6EvWY9A+s+xtHSAoqCYcoU/Bcvwm/RIryTk0c8V1VVKdmxj3UFn9Jj7kBx6ulzpFDsHULjkJ3s6ADyUkNpM1k5cKCW9P6NnK3ZTr5mDz6KnUGtH51R8/AZv4yAzIWUFG1i+6o3MCbUEjWtB41OJT7+GpK98tCtuBM6ymDSt+DcR8A3ZNi59dod/Kq6mVdau0nz9eapzARyA40j/4MQYgTkmS6EEJ5DApqHk4Amvi5O1OY/OTD5UIVtUtgkUoNS0WqOPGDRZXUyuLuDga2t2BtMoFMwjA9DH2llaF8R5rUFDJWWAuCVlORuMrJoIYacHJTjHNZ4OFVVqa2t45MPC2hub0B16qgbSmGbLhCLqnJJTix3Ls1Eq1HYVd/LnroWXNUFJHUVMp/thCn92NFS6TOZjqgF9Dkiad9XSGBaOSEZfWgVf1KTbyauphml6CkwhMD5v4fsC084t7Vd/fy8ooFmq53r4sK5KzkaX6mmiTEiz3QhhPAcEtA8nAQ08XU2YBtgb9feI7pG9lh7AHeb/4lhEw8FtonhE49o829rMWPZ2op5RzvqkANdqA++06PwigNL8XoG1hRgLi4Gux1tcDB+8+fjt3gRfnPmoDGeuALV2NjIuoJPqa6pwu7Ss28olRLFD71W4doZidxyfiY+enfoc7pUqlp7adizHl3VKlK6C0lwNQKw15nIpsFJ2NV+YnNq8YuxoCOGSdE/IPjTl6C1BLIvhvOeAL/wYedkcjh5aH8z/2zuIsngxe8z4pkbfOYevuLrQ57pQgjhOSSgeTgJaOKbRFVVGk2N7O7cfSiwVXRXHNnm/+BB2pPC3G3+dS4Nlr1dmItbsNX2g0bBJysE44wo9NF6LBs3YFpTwMCnn+Lq70fx8sI4ezZ+ixbht3AB+oiIYefU2tpK0foi9u7bi8nlww5rKrWKgSCNhuunJHDtBel4G/RHjTM1ldGx7R28939EdP9uUF1s7k+k3BhM1LQ2vAPt9PelMNGeSUrF/1C8/GDp4zDxsuMemv2ZDT0mbi9v4MCQjf+LCeX+lBj8dCeuEApxPPJMF0IIzyEBzcNJQBPfdEOOIcq6yz5fGtlRQpulDQAvjZe7zf9nSyOVLHz3OrHsaMdltqMN8saYG4lvbiRaoxbL9h0MrC3AtKYAe6O7wuUzaZK7yciiRXinpR23eUlnZydFRUWUlJTQ7PBjmz2ZTlVPrFPD99OjueDsZCIS/Y893tyJWvkRlj0r8KpbS53JwJ7wEPwm9aPoXDSXJzCju48s134awuczcNbvSE1NQz/MEkaz08njNa38tbGDGG89v8+MZ0HIsffxCXEi8kwXQgjP4SkB7dprr2XFihVEREQcOqj6jjvu4P3338fLy4uUlBT+/ve/ExQUdNRYCWhngHyYizOp1dx6RAOSfV37sDqtAIQbwpkSOpnFQ7PJPBCLd4MLAJ/0YIzTo/DJCgGNgrWqioGCtZgKChgqKQFAHxfnbjKycBG+06ai6I+ujPX29rJhwwa2bd9BpT2YnY4ELKqWbJuWi4ICmTMvnvQZkXj7Hj0WAPsQ1Bailq9g/651lEeo+KRacNkUgkt8mDjYig09j7q+R1XMReQkhpATH0ROQjBRgUcfKbCtz8xt5fVUWaxcFR3Cr1JiCNTrxuidFt8U8kwXQgjP4SkBrbCwED8/P66++upDAW316tUsWrQInU7HXXfdBcBjjz121FgJaGeAfJgLT2J32ansqTxiL1u9qR6AaHs43xo6n7mdkzEOeaMaNfjnxuA3IwpdqME9vr2dgbXrGCgowLxpE6rNhiYwEL958/BftBBjfj5aP78j7mkymdi0aRMbirezYzCMUmc0CgozhnTMdnqRNS2S7LwYolMCj3+kgMsFzTvZX/QXqtSN6CMH0bYqTK4aIFgdpFKXzvWDN1DrdO9Niw70ISchiJz4YHISgpgQG4iPXsuQ08WTda0819BOmF7H4xnxnBM2/FlrQhxOnulCCOE5PCWgAdTV1bFs2bJDAe1wb7/9Nm+88QYvv/zyUb8nAe0MkA9z4ek+a/P/2bLIfR37yOpJ5NzeucwYmIAWLZ0RA5Djz7iZEwj0DQLAZTYzsHEjA2sKGFi3DmdvL+j1GGfMwG/xIvwXLkQfHX3oPhaLhS1btvDxxh1sNEdQ5wohUKswf9CLdItCSJSRrLkxZM6OwuDnddz5qqpKdfEfqOt4AY3BQmipiwmdvWgVMEdMY1P0d/nQkkVxk4WG7kEAdBqF7JiAQxU2nzAfHm/poNQ8xCWRwTyYGkuol1TTxInJM10IITzHEeFm1d3QumfU13A4Hei0x/k3QNREWProiK4zXEC74IILuPLKK/nud7971O9JQDsD5MNcfNU4XU53m//OEqobyvEvU8htzSTaHka/doBt4eV0ZFpJSE451OZfo8Lgrl3uJiNr1mA74D582zs7C/9Fi/FftBDvrCwURWFoaIitW7fyVuFuCgci6FKNjPPTcR7++DYOodEqJE8JJzsvhriMYBTNsatqLpeNir3P0tT6Ij62QVJ3W4n6f/beMzqu67y/3tMHU9B7750ACRKsAEmAklUoWZJrHKc4juM4LnGL7b9tJXbc4yK32ImT2IkTv44tOyqWRFWCDWAn0Uj0QrRBr9Pbve+HCwKE2ClAHFFnr8WlxeHM3Dtzlg7OD89z9vG7CEgqtHoD5N7FQsbdnDVs4eSEisbBOZqH53D5ggBEWfRYS6LpidBg0aj5Wm4y70qJveK1BIKLiDldIBAIQoc3QkD7+te/zunTp3niiSeu2CkkAtptQPwwF9wJ2D12eppb8Z+ZJWHIjEbWcD6slxciGzgT3UFefP6S5r8srgzL6DyOOkUy4m5qAllGm5SEtaYGy55azJWV+IHTZ87wi7pzHLXH4kLP9uQw3hEVz0zjDF5XgPBYI0U7kinanoQ5wnDFe/P5Zug4/00mpp8g0eYlv8+JRgaPJgKzNAuoIG0LFN5PMO8+uoKJNA7O0Tg4S+PQHF0uD/7SKOQIPRFzfu6R9exIi2JDehS5cRbUVwmIgjcnYk4XCASC0CHUWxz/67/+i5/97Gfs378fk8l0xdeJgHYbED/MBXcaQYcP59lx5o8Po5oJ4NMGOB3bweNh++g0XgAg1ZK6ZIws12aS1GzDdeAQzoYGZI8HtcWCuboKa+0ejNu3cbqnjx+93MFpRyQqFTxSFMEf52QxcGKSka45VGoVGaUxlFQlk14SjfoK1kaHs5v281/GM91AfruLhAUvs6oE5Jy7iHa0KueoAcTkQsH9yp+0zcx7Jc4OzvJvw5McUvmQAzLa9jnUo27CDVrWp0cutUauT4skynz19kvBnY+Y0wUCgSB0COWA9sILL/CpT32KQ4cOERd39fNbRUC7DYgf5oI7FVmW8V1YwHlyDFfrFAQk/PFqerPGecV6nFOzZ5hwTQCK5r84ppj1EcVUDulJaRolWH+c4NQ0aLWYNm3CXLObM/Fp/ODUJO0uC2Z1gPdtjOF9W8voPjFBx7FR3HY/5kgDRduTKNqRRPiivORSpqYP0tn+FSKGO8nvcqEJynToq4i+99MkBXugcx/0HwHJD6YYyL9XCWs5NfQENHyyfZBTCy5KtTrWzQTpGpinY8xOUFLmw6xY82JgU0JbQaL1mpp/wZ2FmNMFAoEgdAiVgPae97yHgwcPMjU1RUJCAv/4j//IN7/5TbxeLzExMQBs3bqVf/3Xf73stSKg3QbED3PBmwHJ5cfVPInz5Bj+UScqnZqwsji863S0GrppmWqhZaqFtum2Jc1/giGOPc4MKnsgqXEI9YURAPT5+TRsvZt/cScy6g8jTuvhw9sSeM+eSkba52mrtzHYNgNAelE0RTuSySqPRaNdDkmS5GfE9r8MtX+XnM4xEqa8jHvNNJsepOjtHyU1Kw1Vbx10Pg/dL4JnHjQGyN5NsOB+fhFZzTdGHGhVKr6cm8LDMeG0jiysaI2ctCufw6hTU5ZyMbApoS0h/HLNv+DOQMzpAoFAEDqESkB7LYiAdhsQP8wFbyZkWcY/7MB5agxX0ySyL4g2wYS5MhHThngkI3TNdinGyClF8z9kHwIgeVbNvcPRbOyWiO2eRJZkntm8l18nb2cBAzn6BT6yI4W9u7fgdUi0Hx2l4+gojlkvYVYdhVuTKK5KJjJhucfb75+jv//HeJv+g4LuBbR+iRNTaQxG38PmR95D5vqNqKQADB6Djn3Q+RzMKccOXMi4h09lfoijRFMdaeG7hWlkhBmWPufInHsxsM3RODTL+ZEFfEHlLLnkCCMb0qOWQltJsqL5F7zxEXO6QCAQhA4ioIU4IqAJBKGF5A3ibp7EeWoM35AdNCrCSmMxVyZiyI5YsjPOeGZonWxdCm3nps6hmnewoVdmW5+W/H41vy28h2fStxFUqVmnm+CDm5Oo2bMbozGMwfPTtNXbuNA6jSzJJOdFUlyVTM6GOLR6JRQ5nX30n/8yMadfIGnCyxwmnu3PQ07awNZH3k1u5VZUajXIMky0KW2Qnc8jjZzlV0kP8JWcjyCptXwxJshflGxErb38cG1vIEibbbHKNqRU2oZnFc2/TqOiOCl8ObSlRZEWHXb1c98EIYuY0wUCgSB0EAHtdUalUj0M7AXCgZ/LsvzStZ4vAppAELr4Rp24To3hPDuB7AmgiTFirkzEvDEBjXWldCMoBemb71MO0p5qoc3WhLGll8I+C63GhzgeW4YRPxs1Q+y1zvOWBx8htqQE57yXjmOjtNXbWJjyYDBpyd+SSElVMjEpyuHZ0zP1TDZ8mszWLgw+ifNyFvs7k4hIyWLzw++kcPtO1JpLKl0Lo9D1AsM99XxGv5UDUZVsWTjPY3ITOXnbIWcPGMOv+rkn7B6aLglsLcPzS5r/GLN+qSVyQ1okZWmRWAziLLZQR8zpAoFAEDqIgHYTqFSqXwAPABOyLJde8vi9wA8BDfAfsixf92ABlUoVBXxXluW/vNbzREATCEIf2R/EdW4a58lRfP0LoFZhLIrGvDkRY97Vzzyz++ycmzpHy0Qz5462caqvmDFtGlEqJ1tVF9g0cY7oaIjfs5v8bXvx2HS01dvoa5pECsgkZIVTXJVM7sZ4tHoYHfgl6pf/kSTbPK4wC4ftmzjfHSQiIZHND72D4p170OpWVslkj53Hz5/kH+YseIHP9v+cvx59Gk3mDii4TxGNRKRc8/MHghJd4w4ah2aX9rP1TjoBUKmgIMG6VGHbkB5JjtD8hxxiThcIBILQob29ncLCwtfUkXI7A5osy3R0dLxuAW0n4AD++2JAU6lUGqALuBsYBk4B70EJa9981Vu8X5blicXXfQ/4/2RZPnuta4qAJhC8sfBPunCeGsd1ZhzJ6UcTYcC0KQFzZQLayGtLNiRJ4n9OnecHz/cx69GSrp5hk3qQ8oFOUi60M5wOji3FRFbuIXaikOnGIHNjbnQGDXmVCRRXJROVLDNx4rPENPwOoyfIRFoZB/pLGekewhIdQ+WDb2PdnnvQGVbey7jXz+c6B3lh2s4GaYbv9zxG4egR5R+TyqFgrxLYEtcpqes6zLv8NA0vykcWQ9uCJwCAVWj+Qw4xpwsEAkHo0N/fj9VqJSYm5pZD2u0KaLIsMz09jd1uJysra8W/rVmLo0qlygSevSSgbQO+LMvyPYt///zizb06nF18vQr4FvCyLMuvXOU5HwQ+CJCQkLDxN7/5zS3f71rhcDiwWCy3+zYEgtBFAvMERAypCZtWHnLFwkKahDMOuIbB3heUeWnAzzO9fvxBmSLNGGUaGzkjFyg510aYc56WLBWNuRpc6VvIsFcRPpaKSlJjjITIHBUxqQPkDH2XNNsQbqOO5sS30NxkxTE6gtYYRkL5JuJK16PRLx+ULctwDB3/SRguVPyRb4IPjj9H4tQJwhc6USHjMcQxFbuZ6ZjNzEWWIKsv37d2xa9Dlhl3yvTOB+mdk+idkxiyS1ycjRNMKnIiNeREqsmJUJNqVaMVVbbXDTGnCwQCQeigUqkwm81oNLcu4pJl+bbtCQ8GgzidTl6duWpqal63gPYO4F5Zlj+w+Pc/BbbIsvzRq7z+b4E/R6m0NcmyfPnBAZcgKmgCwRufwIwH5+kxXKfHCS74UFt1mDcmYK5MRHuFM88uMmH38L0Xu3j89BAmHaxXD5HDGBlI5J0+SVzvALIKupPVnM4LYyJuE+nuaiIdSaCViCsxsLngFImn/wmjy8NERir2si/S9FInF5rOYDCb2XDvg1Tc91bCrMt7zqZ8Ab7YPczTE3OUWsL4fmEa61QO6HpRUfj31kHADYZwyL0LCvcq/w2LvKnvxekN0Doyv1RhOzs4x5RDaP5vB2JOFwgEgjuLUJzXX88K2k0FtJtFBDSB4M5BDsp4umZwnhzD0zkDEhiyIzBvTiSsJBaV7spltfO2eb7yTBsn+mdINqvYQB9xwSmyEhNZ73Zjra/He74NgIV4M2fy0xgJ30CsZxN6yYjPYuOu9J9SOnMer17N+Oa7Uad9grPPHKDn1DF0BiPlb7mfjXsfxhIVvXTdfZNz/L+uYab9AT6WnsAnMxMwqNXgc0H/Ieh4DrpeAOckqLWQsUPZs1ZwH0Rl3Pz3c1Oa/yhKksOF5n+VEHO6QCAQ3FmE4rwesi2ON4sIaALBnUlwwYvz9DjO0+MEZzyoTVpMG+Ixb05El2C+7PmyLPPi+XG+sa+dwRkX6+O1FHnbMXjnSE9PZ/u6dcR3d+M4cBDX8ePIfj++yCh6ynYxElaKxptEfFgTe2K/S7TfyUi8kVMlNVjN78DR0E3vsWOotRpKa97C5re+nfC4eABm/QG+1DPC42Oz5JuM/KAwjYqIS+5PkmDk9JLCn8kO5fGE0mXJSNJ6UF+jp/MaXFfznxyxuJctkor0KFKjhOb/VhBzukAgENxZhOK8/noGNC2KJGQPMILSuvjHsiyfv+WLXIIIaALBnY0syXh753CeGsN9fhqCMvqMcMyVCYSVxaHWr6wQeQNBfnn0Aj/e34PbH+SuTAPpC634HHMkJydTXV1NXmoqroaj2Ov24zh0GGl+HmdEGiPrHmRMn0VlxK9Zb9iHXw9ns8L5N60FjzePsr4o9B0zqGQoqq5hy8PvIjpZMTjun17gM51DjHn9fDAtjs9mJWHSXCF0TfcqQa1zn3JQtiyBNWk5rGVWg+61tSq+WvPfPDSP269o/mMtetanLR+mXZYqNP83gpjTBQKB4M4iFOf1tbI4/i+wG4gFxoEvybL8c5VKdT/wAxRz4y9kWf76LV3gCoiAJhC8eQg6fLjOTuA8NUZg0o3KoMG0Pg7z5iT0KSsFDlMOL4+93MVvTg5iNWp5e0EYlrFGFuZmiYuLY+fOnZSUlKCSJFxnzuKoq8NeV4dnZJTJ2PV4i4uoTPgfYlQ2xuP0nExP59ceLX3TXkr7wikYsqKWVagLEim6/x62lO9Bp43gq702/ts2TVaYnscK09kWeQ2xhGtmcd/aPujZD34n6C2QU6uEtfx7wBR99dffIBc1/2cvGiOHZulb1PyrVZCfYF1qjaxIjyQ7Vmj+X42Y0wUCgeDOIhTn9ZA9qPpmEQFNIHjzIcsyvgsLOE+N4WqZgoCELsWCuTIR0/o41MblilDH2AJfe7ad+p4psmPNvLckDHfvaaamJomOjqaqqoqysjK0Wq3yvj092OsOYK/bz0y3DfMGA3lpZwhqoSvXzKh1N86Et3BuvofZhhbiOnzogmoG412MlxnJLCwjzLqVpxyZjPrhL1JieTQ7CbP2OnvB/B64cGS5FdI+Cio1pG9b3rcWk7Nq3+Gcy0fT0NxSa2TTpZp/o5b1i4r/DYu6/0jTm1vzL+Z0gUAguLMIxXldBLQ1JhQHXSC4E5HcAVxNEzhPjuEfdaLSqQkri8O8ORF9uhWVSoUsy9R1TPD159rpm3JSnRfLe4uMDLQeZ3R0lPDwcHbs2EFFRQW6Sw6qDkxOYj9wAPfhp7AYGgi3zjERbaA9OwLHxL3k5H+EuKIoDj7zKwYO1CN7/EzGBzmdNclYDHii343DfBfhag8fSvDwx+lFJJoTb+BDSTDatBzWxs8pj8cWQOH9SmBL2XTL+9aufEmZvimnci7bYnDrHFtAWvxxkB1rVs5mS49iQ1okhYlWtFdq4bxDEXO6QCAQ3FmE4rwuAtoaE4qDLhDcyciyjH/YoVTVmiaRfUG08SbMmxMxbYhHY9bhC0j8z/EBfvhKFw5vgD/enM5DOVpaTx9jcHAQs9nMtm3bqKysxGAwrHh/yWHH9/svou//FUE1dOeFMRgez2zrg8QHKii6r5AR23lOP/skrvk5TJlJOCpiOBwu0aipJaBLxOg4QKb3FSpiCyiLLaMsrozimGKM2uvsOZu9AJ0vKIFtoAGkAJjjIP9eReGftQv0plX/Tp3eAC3D8zQOLR+mPeXwARCm07AuNWKxwhZFRXok8Xew5l/M6QKBQHBnEYrzughoa0woDrpA8GZB8gZxt0ziPDmGb8gOGhVhpbGYKxMxZEcw5/bzg1e6+NWJQUx6DR/fk8euZDjWUE9fXx9Go5EtW7awZcsWTKZXBZ/pXuSnP4Jq8BgzVgttRTrmXVmMN70bo81MTkYAKdVP65mj2KeniM/KYd1b385/WsN5fEomDDeJ9sexz+4HQKvSkh+dvxTYyuPKSbOmXd206J5V9qt1PAc9r4B3AbRhi/vW7lNCmyVuTb5XWZYZnnUvyUcaB+c4b5vHH1R+ZqREhilVtrQ7T/Mv5nSBQCC4swjFeV0EtDUmFAddIHgz4h9z4jw5hvPsBLIngCbGiLkyEfPGBPpcXr6+r52DnZNkxpj4wv1FFEcEOHLkCJ2dnej1eiorK9m2bRsWyyWyD0mCU/+B/MqXkQnSmxnBYGIA11A5o61/hDxnJsneQljiNBc8EyzMzxKdkkbEw+/hR4Y4OlxeHow18VbrKP0zzbRMttA61Yor4AIgyhBFWVzZ0p/SmFIs+ivIRgI+GKhftEI+D/NDgArSNi9aIfdCbB6soVbf4w/SNrqwVGFrHJxjZO7O0/yLOV0gEAjuLEJxXhcBbY0JxUEXCN7MyP4g7nPTOE6O4eufB7UKY1E05s2JHJf8fP35DnomHGzLjuHvHygmRuPmyJEjnD9/Ho1GQ0VFBdu3bycyMnL5TWcvwB/+FvoP4U7MoinDg8sA/sHdDJy+n0DAgnW+D7P9CDMRDhYCXsxxifQ88j5+o7EQqdXyrfxUHoiPJCgF6Z3vpWWyZelP73wvACpU5ETmUB5XroS22DKyI7NRqy7ZAybLMNa6GNaeg9Fm5fHonOV9a2lbQL32Fa2JBc/SPrbGwVlahq+u+S9PjcT8BtD8izldIBAI7ixCcV4XAW2NCcVBFwgECv5JF85T47jOjCM5/WgiDOgq4nlG6+eHDf3Mu/38UWUan7q7ALXPQX19Pc3NSuApLy+nqqqKmJgY5c1kGc7+N7z0KLLkZ6xkPW3WLnS6WHSeP6P3lULmF9SoAx6sUy/jpAuHQcVCUgYv3/9e+nQmHoiL4Jv5qcTpdSvuc8G3wLnJczRPNS+FtgXfAgAWnYXS2NKltsh1seuIMkYtv3h+ZFky0n8YJD+ERSstkAX3KS2RhmscAbCKBIISneP2xcD2xtT8izldIBAI7ixCcV4XAW2NCcVBFwgEK5EDEu72aZwnx/D2zAHgywnnl9oA/1/XOEadho/U5PIXOzLxOO00NDRw9uxZJEmipKSE6upqEhISlDebH4FnPwHdLxFILqUjP4JxqROLpYgY08cZOJ1C9+kxAn4Zo7uZgL2eBWOAs2VV1FfuwaJR8/XCdN6WGH3VFkBZlhlYGKBlarnK1jXbRVBWqlPp1vQVrZH5Ufno1DrwLEDvfiWsdb0InjnQGCB71+J5a/dCeNLaf+GX8GrNf+PgLPYraP4r0iNZHwKafzGnCwQCwZ1FKM7rIqCtMaE46AKB4OoEZjw4T4/hOj1OcMHHsEnNv4QFODTtIC06jM/fV8R9pYk4HA6OHTvGqVOn8Pv9FBYWUl1dTUpKilJNa3kcnv8sst+No/IRWixteHw24mLvJj31Mwy3Gjhfb2NqyAGBIVSuQwxbZV7Y/Qi2xHSqJm18M85MzrYtqI3XtyK6/C7aptuWQlvzZDNT7ikADBoDJTEly6EttowEYzQMHleqax3PwdyA8kbJFcutkPHFa7pv7UpcV/MfZ2bDJa2RBQmvr+ZfzOkCgUBwZxGK87oIaGtMKA66QCC4PnJQxtM1g/PkGJ7OGU5JAf5Z56fX76cyI4p/eLCEdakRuFwuTpw4wYkTJ/B4POTk5FBdXU1mZibYx2Hfp6H9GeSkcmyba+heeBJJ8pGW+mdkZn6UWRu01dvoOjWO12FDDpzgWF48RyrvQhcM8KE//JY/1kpYa2qx1OxGGxV1vVtX7l+WGXOOrWiLbJtuwy/5AUgwJSy1RZbFrqNI0mDsflmpro0szqWRGUpQK7xfOShbo7vGFdeOi5r/s4vykaahlZr/stSI5cO00yOJt66d5l/M6QKBQHBnEYrzughoa0woDrpAILg5ggtenGfGmT85xtOzdv4DL/PIvK0kkc89VEJ8uBGPx8Pp06c5duwYTqeT9PR0du7cSU5ODqq2p+G5T4NnnsD2v6Er0cPoxJPodFFkZ32C5OR3E/Sr6DkzTlu9DVt3H1P6dvZtL2MoOYvCC1187j9/SubUJGEbNmCtrcVSW4MhK+umPocv6KNzppOWKaXC1jLZwohjBFA0/wXRBUqFzZJB+fwkqf1HUfUdhKAXjBGQ9xYlsOXeBcbwNfimb4yLmv+Lga1xaI62V2n+N1w8TDs9kpLkcAza1ZGiiDldIBAI7ixCcV4XAW2NCcVBFwgEt4YsyXh75xg7buPf2mw8LvvQqVT8VXESH3pbCSazHp/Px9mzZzl69CgLCwskJSWxc+dOCtJiUb/4BWh9HBJKcd79KToW/o+5uROYzXnk5X6RmJhqAKZHHLQ12DjX0M6x+EkObFoHwNvOneR99XUY2zsA0GdlYd1Ti6W2lrDyclSamw8hU+4pWidbl1ojW6dacQcUPX6UIYqymGLK1GbKZm2U9p/A4pwGtQ6yqpWwVnAfRKSu0jd863j8Qc7bFpZaI5su0fzrNWqKk8OXQ1ta5C1r/sWcLhAIBHcWoTivi4C2xoTioAsEgtdO0OGj48gQ3z7WzyGflwTUfCI3nrfdk4chLZxAIEBzczP19fXMzs4SFxdHdXU1JbohNPs+DY4J5B0fZ7K4gp4Lj+H2DBITU0Ne7ucxm3MACPiD9DVOcvBIJ/+Z4KE/JYFUWz9/3tfBPdFWjGcacZ48CYEAmuhoLLt3Y91Ti3nbNtSvPlj7Rj+XFKRnrmeFgKRvvg9Y1PybkyiXdJTNDFM2PUy23486sQwK9yphLbHsdd+3djXGFzxLtsjGwTlahufw+CUAYi2GpZbIDWlRlKVG3JDmX8zpAoFAcGcRivO6CGhrTCgOukAgWD1kWebI0UG+/koXnW4f69DwydhINlelY1ofj6xTcf78eY4cOcLk5CRRUVHs2rKesrHHUTf9CmLzkR78PkO00X/hJ0iSh5SU95Kd9bfodJFL15kdc/LD4138Z1iAoAqqTr3M3dN2qh55mCT7NPb9dTgOH0ay21EZDJi3bcOypxbr7t1o4+Je02e8puZfrWNdQE3Z/ARlXi9l+lgi8+9TwlpmNWhvr3XxUvxBic4x+5Itsmlwjr6pZc1/QeJilW3RHJkda75M8y/mdIFAILizCMV5XQS0NSYUB10gEKw+QUnm8WMDfPelTqa9Ae5Bx4e0YWSUJ2DenIguzUJnZyeHDx9mdHSU8PBw7s83UND1U1QLI7D1w/iq/4a+oZ8xYvstWq2V7KyPk5Lyx6jVy3KOEZeXj53q5qgUIGl8mHsP/h9pUjgV972djfdsxtfciL3uAI79+/HbbKBSEVZWhqW2FuueWvQ5ObfU2ncpV9b8dxKUlepUhj9ImcdDWVBFWeJG8gofQZd/L4TdmODk9WTW6aNpePkw7aahuSXNf7hRy/rFlsiLlbbGkw1iThcIBII7iFBcq4uAtsaE4qALBIK1w+EN8NMDPfzHkT7UMvwxBt4j6bDGmzFvTiRsfRz9owMcOXKEwcFBIk1a3hXdRvLwcxCVBW/9MY64eLq6v8bs7FFMphzycj9PTMzupWAlyzJPTczx+c4hHP4A284cprKxDr02ibwte9n+jj1EJpjwdnVh378fR90BPOfOAaBLT8daU4NlTy2migpU2uu39d0ILr+L89PnlcA20UjL+Fmm/HYAjJJEsc9PuSGOspRtlJW+h/ikjaty3dVG0fw7ODu4HNq6xu1Lmv9Es4odBSm3TfMvEAgEgtUlFNfqIqCtMaE46AKBYO0ZmnHxrRc6eK5llIQwHR8Os1AzE0CtURNWGou5MpExzRxH6o/Q29tLnn6CR9T7MXnGYNNfIt/1ZaYcp+ju/gZu9wWio6vJy/0CFkv+0jUmfX6+0DXCM5NzZHo91L7wW2JGu1Fp4onLqqHywT3kViSg1Wvwj4/jOHAAe10drmPHkf1+NBERWHbvwlJTi7mqCo3FvGqfX5ZlRp2jtEw00XxhPy1jp2n3zeBfLN4lSirKzCmUpVZRnn0fRXElGDSGVbv+auLwBmhZrLK90tjDoFPDtPNyzX9FeiTr11jzLxAIBILVJRTX6iKgrTGhOOgCgeD149SFGb76bBstw/OUJVj5VFwUeT0OZE8ATYwRc2Ui8ylB6k8fo6/zHHepT7BZOo1sTUb90I+QsncyPPwr+i/8iGDQRXLye8jO+jh6ffTSNZ6dmOPz3cPM+gO8w2cn+/e/xD8/hkodjTFiGyW7dlO6M42YFAsAQYcTZ0MDjrr9OA4eIjg/j0qnw7R1K9baGiy1tegSElb9u/AFfXRc2E9L51O0TDTRElhgRKdU8LSoKDSnUpaynbKEDZTFlZFqSX3N7ZirzcGDB9m1a9c1Nf+pUWFLtsgN6ZEUr6LmXyAQCASrSyiu1UVAW2NCcdAFAsHriyTJPNk4wrdf7GB8wcuD6xL524x4Is7P4uufBzUYC2Nw5Ws5OdzC3LmXeYiXiWMab/E7MTz4HXwamf7+HzFi+zUajYmszL8lNfVPUKsVCceMP8A/dI/w+/FZCkwGPu6dZuZ3v2J+YhiVOgKNsZKkvK2U7kwnd1M8eqMSjORAAHdjI/b9ddjr6vAPDgJgLClRJCO1tRgKCtYmKLlmmGp7kpbup2mZbqNFq+KcwYB7UcwRbYikLG69cjZbXBmlsaWYdatX5bsVrjanr9D8L7ZG2uY9gKL5L0kJZ0Pa8mHaKZG3pvkXCAQCweoSimt1EdDWmFAcdIFAcHtw+QL866E+fnaoF4C/qs7mA6VJ0DyN68w4ktOPJsKAt8RIs7ud6Pafs4OT+LQR+O75NuGV78bh7Ka7++vMzBwhLCyTvNzPExu7Z2mx//LUPJ/tGmbc6+dDqXG8fXaIs0/8hon+HtRaK2rdRozh68nfnEpxVTLxGdYVe9t8vb2KZKSuDndzM8gyuuRkRTJSW4OpshKVTnfVz3jLBLzQf4RAx7P09r5Ic3CBFoOBFksE/SpF2qFCRW5ULmWxZZTHlVMWV0ZWRBZq1eu3B+xm5vSxeQ9NQxcD2xwtI8ua/zirYckWuSE9krLUCEz61dkPKBAIBIIbJxTX6iKgrTGhOOgCgeD2MjLn5tsvdPB0k404q4HP3FPA28uS8XbO4jw1hrd7FgB/toFBVT2Fwz8lgUkGI7ZgfOSHxGcWMTV9kO7ub+By9RIVtZ28vC9itRQCsBAI8pUeG78anSYnzMBjhWkkDHZz4onfMtx+Dq3ejFpXgUpXRmxaDMU7kinYkoDBtDJ4BSYncRw6hH1/Hc6jR5G9XtRWK5bqaix7arFUV6MJD1/9L0iWYbQJOp+Hjn3MT57jnMFAS1QyzeExtATt2AMuACw6C+ti1y1V2cpiy4g0Rq7+PS3yWub0Jc3/Ja2R/Zdo/gsTLzlMOz2SrJjLNf8CgUAgWF1Cca0uAtoaE4qDLhAIQoOzg7N85Zk2mobmKE0J5+/3FrMlO4bAjAfn6TFcp8cJLvjwmLwETP9NnuMZPBhoTHovWXs/SVJyAiO2/6Wv74cEAgskJ7+LnOxPotfHAnB4xs6nO4cY9vj4y9RYPp+dxGx3ByeefJwLTWfQ6sMIi9yEz1uK1mAmtyKe4qpkknIjLmu/k9xunEePYq+rw3HgIMGZGdBqMW+uxFKjVNd0KSlr80XNDSphrXMfXKhHkgIMhMfTklZGiyWKFt8sXfM9SBc1/+EZlMWWLYW2vKg8dOrVqfqt9pw+6/TRtHguW+PQHE2Dc9i9SsUwIkzH+ouK//Qo1qdGEmFag+qlQCAQvIkJxbW6CGhrTCgOukAgCB1kWeYPzTb+6fkObPMe7itN5PP3FZEeY0IOyni6ZnCeGsfTMY0k9xAe9n0ipQHayeVcxvuprNlLSkok/f0/ZnjkV6jVRrIyP0xa2vtQqw04A0G+3jfKL0amSDfqeawwjaooK+N9PRx/4rf0nDqGVm8gJm0rDnsxQX8YkQkminckU7gtkTDr5QdNy8Eg7uYWHAfqsO+vw9fXB4ChsHBRMrIHY0nx2uyx8sxD98tKYOt+GbzzoDXiytrJ+bT1tJgttMz30TzZzLRnGgCjxkhxTPFSW2RZXBnxpvhbuvxaz+mSJNM76VissCmVts5xOxd/HOfEmZcqbBvSoshPsAjNv0AgELwGQnGtLgLaGhOKgy4QCEIPty/Ivx/p418O9hKUZP6iKpOP1uRiNSoVk+CCF+eZcZwnbegX/j8idb/Gh5YX2MVs2j3s3LWLxCQVvT3fYmq6jjBjOrm5nyMu7h5UKhXH5xx8smOQfrePP02O4e9zkgnXapgaGuDkU7+jo+Ewaq2GlKIdSNJ6pkbUqDUqssrjKKlKJrUwCtVV2u28/f046g5gP1CH+2wjSBLahAQstTVYa2sxbdmCWn950HvNBHwweBQ69imBbX4QUEHqJuT8+xjN2ExL0EHzVAstUy20T7fjl/wAJJmTlloiy+LKKIopuiHN/+2Y0+0eP63D8zRerLQNzi1p/k36Zc3/xT1tcdbQPK5AIBAIQpFQXKuLgLbGhOKgCwSC0GVs3sN3Xuzk/84OE2vR8+m3FPCuTWloFsORLMl4e+dwN5wgrO9LGNUd9JHDU9RgTsxn566dxMVN0tP7TZzOLiIjN5OX90XCraW4ghLf6R/lZ0OTJBp0fKcgjT0xyh6yubFRTv7h95w/uB+Qya6oIixqG4NtEl5ngPBYI0XbkynanoQ58uoBIDAzg+PQYUXhX9+A7HajNpkwV1cr1bVdu9BERq7+FyfLMH5uuRXS1qg8Hp0NBfdDwf34kjfQMd+jHKY92ULzZDM2pw0ArVpLUXTRitCWYkm5rAoYCnO6LMsMzbiXKmyNg7Octy0QkITmXyAQCG6WUJjXX40IaGtMKA66QCAIfZqH5vjqs22cHpilMNHKPzxQzPbc2BXPCdo9+J/5Afqu7yPJcIAaGlQFxEbFUr27iqjo81y48EP8/lmSkt5OTvanMRjiOTvv5BMdQ3S5PLwzMYqv5KYQtXge2cLUJKeffYLWV14kEPCTv2UHSQV7GO7UMNI5h0qtIqM0huKqZDJKolFfo71O8npxHT+OfX8djgMHCExOgkaDqaJiSeGvT09fmy9wfgS6XlDCWv9hCPogLBry74GC+yCnFgxWJl2TtEy1LIW289PncQfcAEQboymLWzRGxpZRElvCqYZTITmnK5r/+SVjpND8CwQCwY0Rimt1EdDWmFAcdIFA8MZAlmWeax3lm/s6GJlzc3dxAl+4v4is2JVngckz/ciPfxj12FFm5SKelGsZVOuJNIWzY2cF4dENjIz8D2q1jsyMvyEt7f0EVHp+cGGcHw2OE63T8k/5qdwfF7n0ns65Wc7se5rml57D53aTvXEzJbseYtpmpv3YGO4FH+ZIA0XbkyjankR4bNi1P4sk4Tl3TpGM1B3A29UFgD43B2vtHqy1NRjLylCp12A/ldcOPfsX9629CO5Z0Ogha5cS1gruh/AkAAJSgJ65nqUKW8tkCxcWLgCgVqlJ1CayPWv7kuo/MyLzddX83wxC8y8QCATXJxTX6iKgrTGhOOgCgeCNhccf5Of1/fz0QA++oMSfb8vkY3vyiAi7xOgny3Dmv5BfehQCQS5o38VznnSm1A4sOhNbKjKxJu9nevoVjIZkcnM/R3z8Xs453HyyY4hzDjdvjY/k63kpxOmX39fjcND4wjOcff4PeBx20tetp/KhdxL0J9HWMMpgmyLiSCuKpnhHMlnlsWi01w8svqEhHAcOYN9fh+v0aQgG0cTGYq3ZjaW2FvO2baiNxtX+KiEYgKHjiwr/52C2X3k8eQMU7FUCW0IJXFJdmvfO0zrVSstkCwc7DzIsDWP32QGw6qysi1u3ojUywhCx+ve9ClxL869RqyhMtC7JRzakR5IVaxZVNoFAcMcTimt1EdDWmFAcdIFA8MZkwu7hey928fiZIaJMej55dz7vqUxbafGbH4ZnPgE9LyMlVNKhez+HhiYYV80RptKzqTAMU9rLuDydRERUkJf3KCZLGT8ZHOexC+NYtGq+kZfKQ/GRKxbnPreL5lde4PQzT+CanyM5v4gtb3sXsemldBwdpf3oKI5ZL2FWHQVbkyjekURUovnyD3EFgvPzOA4fxl5Xh/PwESSnE5XRiHnHDqy1tVh270IbE7PK3yZKqJ3shM7nlMA2fBqQITJ9cd/afZCxAzTLgfXgwYPs3LWTCwsXltoiWyZb6J7rXtL8Z4ZnrghseVF5aNWhWZ2acfpoXpSPnB2co2loDsclmv9LA1t5WuTKXwoIBALBHUAortVFQFtjQnHQBQLBG5tzI/N89dk2TvTPkJ9g4dG9xezMj1t+gixD82/ghc9BwItU/f/oclXRcPYUQ/4J9LKailwHYWkHCEgzJCY+TE7233EhGMkn24dotLu4Nzacb+WnkWhYuSD3+7ycO/Ayp/7wf9inJonPzGHL295FzsatDLXP0t4wSn/LFLIkk5wXSXFVMjkb4tDqb0xSIft8OE+ewlFXh72ujsDYGKhUhG3YsKTwN2RnrebXuYx9fHHf2vPQdwACHjBEQN7dSljLu5uDxxuvOKe7/C7OT59faotsnmxmxjMDQJg2jOKYYmU/W6yi+o8zxV32HqFAcEnzv9wa2TWxrPnPjbesaI3MT7AuCWwEAoHgjUgortVFQFtjQnHQBQLBGx9Zlnnx/Djf2NfO4IyL2sJ4vnB/EbnxluUn2cfguU9Dx7OQXAEP/YSBcT2H9h+kb34YozpIWdYAxuQTqDRaMjL+mtS0D/Bzm4N/6h/FoFbzj7nJvDsx+rJWt2DAT9uRA5x6+vfMjtqITkljy8PvpHDHLtyOAB3HRmlrGGVh0o3BpCV/cyLFVcnEplq4UWRZxtvejn1/HfYDdXjb2gHQZ2YuSUbC1q9HpVkDQ6HPCX0HFYV/1wvgmgK1lpmIEqK3/gkU3KtU2q5x7zanbUWVrW2mjYCkVKduVfN/O7B7/LQMz69ojZy5RPNfnnrJYdppkULzLxAI3lCE4lpdBLQ1JhQHXSAQ3Dl4A0F+efQCP97fg9sf5E+2ZvCJu/KINC2eOybLcP5J2Pd34FmAXZ+Fqk8yNjbJoX0H6BjpJszgpDSrDUN8B3p1PLkFn8MVfg+f7hzm+LyTmmgr3ylII9V4+VlmkhSk61g9J576HVODF4hISGTzW99B8a49aDRaRrpmaau30ds0iRSQic8Mp6QqmdxN8eiNN9f257fZsB84gKPuAM6TJ8HvRxMVhWX3biy1NVh27EBtMq3G1/qqDxlU2h87n8PZ+H+YXcPK44nrlhT+JJWv2Ld2JbxBLx0zHStC281q/kMBWZYZnHEt2SIbh+Zou0TznxYddokxMoripHD0N7AvUSAQCG4HobhWFwFtjQnFQRcIBHceUw4vj73cxW9ODmI16vjEXXn8ydYMdBf3pzmn4PnPwbnfQ8I6ePgnkFTO9PQ0h185SGvHOazWcYqym9CFj2OWi8jJf5RnVDl8rW8UFfAPOcn8aXIM6iuEBlmS6D17ihNP/Iax3m4s0TFseuBtlN11DzqDEY/DT+eJMc7X25gddaIzaMjbFE9xVQrxmdabDiJBux1nfb2i8D98GGlhAZVej3nbNix7arHs3o0uPn4VvtmVHDx4kN2lqYq+v/N5RTgiSxCeAvn3QuH9kFkN2hurIt2o5r88rpySmBJMujUIoKuAxx/k3Mii5n/RHDl6UfOvVVOaHL7UFrkhPYrkCGNIhk+BQPDmIxTX6iKgrTGhOOgCgeDOpWNsga892059zxTZcWYe3VtETUH88mK44zl49lPgnISqTyoVNa2Bubk5GuobaDx7hpi4bnIym9EYnEQ6dmJI/RRfUYVxeM7B9kgLjxWmkRl25QAiyzIDrU2cePK3DLedIyw8go33P8T6e/ZiMJmRZZmxvgXa6kfoOT1BwC8Rk2KhuCqZ/M0JGM03L6GQ/X5cZ84oCv/9dfhHRgAwlpUpkpHaGgx5easSCC6b051T0P2S8r321oHfBXor5O5RKmt5d4Mp+obf/3qa/7zIPKXKtvgnMzx0Nf+j826aFlsiGwdnaRmexxtQRCrxVsNSWNuQFsk6ofkXCAS3iVBcq4uAtsaE4qALBII7G1mWqeuY4OvPtdM35aQ6L5a/f6CY/ASr8gT3LLz4KDT9CmIL4OGfQqryc8But3Ps2DHOnjlGQmIjqantqFERbdvL6aT38W2DTACZz2cn8ZepcWiuEXqGO85z4snHudB0BoPJzIZ7H2DDfW/FFK5o6L3uAN0nlara1JADjU5NbkU8xVVJJOVG3lKgkmUZb1c3jgN12PfX4WltBUCXlqZIRmpqMW3aiEp7a2HgmnO63wP9h5ara45xUGkgY/vyeWvRNy84uaj5vxjYWidbsfsXNf9661JLZFlcGeti14W05r9j1L5UYWscnOXCtAsQmn+BQHD7CMW1ughoa0woDrpAIHhz4AtI/M/xAX74ShcOb4A/3pLOJ+/KJ8ayWP3qeQX+8HGw22Drh6Hmi6BXWuhcLhcnTpygsXE/ScnHiI+/gMobjrr/T/lpei2HzbDJauL7Renkma99Xtl4Xw8nnnyc7pNH0RmMlN19H5seeARL1HJlaXLQzvl6G10nx/B7gkQmmCjekUzhtkTCrJfvfbtR/OMTynlrB+pwHTuO7POhjojAsnMn1j21mKuq0FhuXFxyw3O6JIGtcTGs7YOJNuXxuCKlDbLgfkXccgsHc0uyxIX5C0pgW2yP7JnruUzzXx6nGCNzI3NDVvM/7fDSPDy3ZIy8VPMfadKxPk1o/gUCwdoSimt1EdDWmFAcdIFA8OZi1unjB6908asTg5j0Gj6+J48/25apiBs8C/DKl+D0LyA6G976z5C5Y+m1Ho+H06dP09LyJEnJ9YSHT6FypNE2/rf8OCMLt1bFpxJi+GhRKtrr6NanhgY4+dTv6Gg4jFqroXT33VS+9e1ExCcsPcfvDdJzZpy2ehtjfQuoNSqyyuMoqUomtTAK1WtQuktOJ46GBhx1B3AcPEhwbg50OsxbtmCprcFaW4suMfGa73HLc/pMv1JV69wHA0dBDoIlQdm3VnA/ZO8CXdgtfS4Ap9/J+anztEwtt0ZeqvkviSlZqrKVx5UTGxZ7y9daS4TmXyAQvN6E4lpdBLQ1JhQHXSAQvDnpHrfz9X3tHOycJDPGxBfuL+Lu4gSljaz/MPzhYzB7ASr/Cu76EhisS6/1+XycPXuGtvb/IjHxKAaDC4ejmv/1/hUHY80Uu+E7MTFs2JCM+jpnns2NjXLyD7/n/MH9gExRVQ2bH34H0cmpK543bXPQXj9Kx4lRvM4A4bFGirYnU7gtCUvUa1O5y4EA7qYmReFftx//wCAAxuJiLLW1WPfUYigsvKzFblXmdNeMUr3seA569oPPDjoT5NQqYS3/HjC/tgAlyzIjjhFFPrJYZWufaV/S/Cebk1fsZSuKLkKvufVK5VpyLc2/Wa+h7BLN/4b0SGItQvMvEAhunFBcq4uAtsaE4qALBII3Nwc6lf1pPRMOtufE8PcPFFOUFK6c/VX3NTj+LxCRBm/9oRIaLiEQCNDUdJKu7n8mNvY0KhU0Bj7If6prWdCo+MvBAB+JjCCqMgl9qvUqd6CwMDXJ6WefoHX/SwT8PvK3VrH1kXcRl7Fyn1bAH6SvaZK2ehsjnXOoVJCxLpbiqmQySqJRa16bJEOWZXz9/dj378dRdwB3UxPIMtrkJKw1imTEXFmJSq9f/Tk94IUL9cv71hZGQKWGtC2L+9b2QmzuqlzKG/TSPt2+IrSNOkcB0Kl1y5r/xT/J5uSQ3AN2Pc1/erRpcS+bEtqKhOZfIBBcg1Bcq4uAtsaE4qALBAKBPyjx6xODfP+VLhbcft5dmcan7i5QDhkePAFPfwSmu2HDn8JbvgZhkSteHwwGaWk5TH//Y0REtjHrj+O32kc5ok4l1yHxpVY3ZZYwzJsTMa2PR32NM89c83Ocee4pml56Dp/bTfbGzWx95N0k5RVc9ty5CRftDaO0HxvFveDDHKGnaEcyRduTCI+99RbBSwlMTeE4dAj7/jqcR48iezyoLRYsO6sZSkyk8kMfQhMevirXWoEsw2jzcivkWIvyeEyeEtYK90JqJahX72DuCdcErZOtNE8pbZHnp87jCSp6/BhjzIq2yDeS5v/swBxjC8ua/3UpEStaI5OE5l8gECwSimt1EdDWmFAcdIFAILjIvMvPD/d389/HLmDUafhobS5/sSMTg+yHQ9+Chh8qe6Ue+AEU3HvZ6yVJorX1GYaGv0dY2AjHfDX82vBB5tHz5xMyf9nswKhRE7YuFvPmRPQZ4VddGHscDhpfeIazz/8Bj8NOemk5W9/2blKL1132mmBQYqBlmvP1NgbbpgFIK4yiuCqFrPJYNKtUMZHcbpzHjmOv24/jwEGC09Og1WLatGlR4V+LPjVlVa51GXND0PWC0gp5oR4kP5hiF/et3Qc5NaA3r+ol/ZKfntmeFVW2N7Lmf6nKNjhH68iy5j8h3LDiMO11KRGEXac1VyAQ3JmE4lr9jglo0RlF8t1f+MXtvo3LmJubIzIy8nbfhkAgEFwTty/I4KyLOZcfg1ZNerSJKJOOHH83H5p/jIzABY4Ya/iviL/Bob5C9UiWKDLuZ1PCE0iGIL/wfoTjxq2Ee4L8ZbeXt48GMcowpoMTVjVnLCqcmisHNXXAS7ytkcTB4+h9TuwRqdgydjAfkwNXCHcGn0TidJCE6SBGv4xPC+PRWsZiNLiNqxceVLJERHcLGyd6KOxtJG5GaQ8cj02lI2c9ndkbGE3IQF6DwBImOVnvPc0mz3HWe09hkR340NNq2MBp41bOGLYwr7nx89ZuhgAO3Op+5Y+qD7e6H0mlHKatlk2ESVmEyVmYpGzCpCw0rG5oXC1kGVy+AA5vALtH+e/FwAZg0muwGrRYjFosBi1GnQhsAsGbgVBcqz/+oe0ioK0loTjoAoFAcDXm3X4Gpl24/UGsRi0Z0SbC9TKPOH7DI47f4FBb+UX4RzgRVn3F12tUPiosT7Au7kXOq0r4N/ljzGkiyJjx8fBggOp5iUwvBIBWs4oTVhU9RhXyFYKXKugnbrSZpIFjGLwLOC0J2DKrmI0ruGJQQ5aJWpBImg4QMy+hAubNakZjNUxFapBWwfZ36ZwePTtOQV8jBb1NpNu6UcsyC+ZIurLX05GzngtpRQS0q6+F18gBCn3n2OQ5zibvMeKD4wB06wo5bdzKacNWhrUZV/6OVgEZCZ9qHLe6D9diYPOqRkClrBn0UgJhcvZiYMvGICejIjTDTiAoKYHNG8CxGNoWt7KhUatWBDaLQSuMkQLBHUgortXvmIAmWhwFAoFgdQgEJX57eojvvdTFrMvHOypS+cw9BcS7euDpDyv7pIofgvu/C5b4K76H1ztB67mvMjp3gP+V/4w6zVuIlwN8ryCd3RozzpNjOBsnkN0BNDFGzJsSMW9MQBN+uUkwGPDTfuQgJ5/+HbOjNqJT0tjy8Dsp3LELtebKC3/nvJeOY6O0NYyyMOnGYNKSvzmR4qpkYlNv/NyzV3O1OT0wO4vj0CFF4V9fj+xyoTKZsFRVYamtwbJrF9qoqFu+7lWRZeWMtY7F89ZsZ5XHo7IUI2TBfZC+DTRrew7a9TT/pbGlKw7UDmXNf8/EJZr/oVm6JxzIspJ3c+MsK4yRefFC8y8QvNEJxbX6HdPiKAKaQCAQrC4LHj8/qevhFw396DRqPrw7hw/sSMd48idw8FvKodb3fRvWvfOq1Rq7/Tznzn+JMy4vP5M/yqQ6gd1+B9/dWExKeCTu81M4T47h7ZsHNRgLYzBvTsSYf/mZZ5IUpOtYPSee+h1TgxeIiE9g80PvpHjXHrS6K1eqZElmpGuWtnobvU2TSAGZ+MxwinckkVeZgP4a8pIrcSNzuuT14jpxAvv+Ohx1dQQmJ0GtxlRRsaTw12dk3NR1b5gFm7JvrfN56DsEQS8YIxV1f8H9kLtnxfEJa8VFzf/FsNYy2ULHTAcBWdH8p1hSVgS2wujCkNX8L3j8tAzNLxkjGwdnmXX5AUXzX562qPlPi2K90PwLBG84QnGtLgLaGhOKgy4QCAQ3w4UpJ998vp0Xz4+TEhnG5+4r5MGkBVR/+BgMn1SkFQ98H8KTr/h6WZaZnHyJls5/4v/z7+YFHsDic/O+gIMPbdtETEwM/ik3zlNjuM6MIzn8aCL0mDYlYq5MQBtpXPl+kkTv2VOceOI3jPV2Y4mOYdMDb6Nszz3ojMYr3gOAx+Gn88QY5+ttzI460Rk05G2Kp7gqhfhM6w1Z/W52TpclCc/5NkUyUncAb2cnAPqcnEXJSA1h5eWo1Gsg2vA6oLdOqax1vQDuWdDoIbMaCu+H/PsgYo0EJ1fAE/DQMdOxHNqmWhhzjgGLmv+YIspiFWNkWVwZSeakkDQtyrLMwLSLxqHlw7TbR4XmXyB4oxKKa3UR0NaYUBx0gUAguBWO9U7z1WfbaBtdYGNGFH9/fwHrbb+F/V8BjQ7u+bqi5b/KolqSvAwN/ZIX+57nX+W/xKZKpWiin7/QytxTtYOEhATkgIS7fQbnqTG83bMAGPKisGxOxFgUjeqSM89kWWagtYkTT/6W4bZzhFnD2bj3YdbfsxeD6eqiClmWGetboK1+hJ7TEwT8EjEpFoqrksnfnIDRfPV9Y691TvcND+OoO4C9rg7XqVMQDKKJicFSsxtrbS3mbdtQh63OcQErCAZg6MTieWv7YKZPeTxpvVJZK7wfEkrXbN/a1Rh3jtM61UrLpNIa2TbdtqT5jw2LXVFlC2XNv9sX5Jxt+TDts4OzjC94gStr/pMj12CMBQLBLRGKa3UR0NaYUBx0gUAguFWCkszvzwzxnRe7mHJ4eWRDCp/faiD+wGfgwhHI3g0P/giirt7C5/VN0dH7Q346quIZHsIUdFPV2co9MZHs3LmTlBSlqhOY9eA8PY7r9BjBeR9qiw7zxgRMlYnoXnXm2XDHeU48+TgXms5gMJnZcO8DbLjvrZjCI675ebzuAN2nxmmrtzE5aEejU5NbEU9xVRJJuZGXVXBWc04Pzs/jOFKPo24/jsNHkBwOVEYj5u3bse6pVfatxa7BXi1ZhqkuJah17IPhU4AMEemLh2PfBxk7QPv6txz6JT/ds91LbZEtUy0MLAwAoFFpyIvKWxHaMsIz3jCa/5aReXyL1sjEcOPiXjYltJUmC82/QHC7CMW1ughoa0woDrpAIBC8VhzeAD890MN/1PejVsFfV2fxkfAj6Ou+rASAu/8RNv0lXKN1z+7o4Pn2f+e79moGVZmULvSw8VwXJWmp7Ny5k8zMTEDZR+bpmsV5cgxPxzRIYMiOwLw5kbCSWFS65WuM9/Vw4snH6T55FJ3BSNnd97HpgUewRF1fQT85aOd8vY2uk2P4PUEiE0wU70imcFsiYVYlrKzVnC77fDhPnVqqrgVGR0GlIqy8HMueWqy1teizs9em5c8xsbxvrfcABNxgiIC8uxb3rd112UHlryezntmlKlvLZAutU604/A4AwvXhrItbR3ms0hZZGltKhOHaofx24QtIdIwtLIe2oTkGpl0AaNUqipLCl0NbWhQZMaaQbPEUCO40QnGtLgLaGhOKgy4QCASrxdCMi2+90MFzLaMkhhv58i4r9/R9C1XvfkjfDg/9M8TkXPX1siwzOrGfb3ed4nf+uzCpfNw12Ex8/wQZ6elUV1eTm5u7tFANLnhxnhnHeWqc4IwHtUmLaUM85s2J6BKW2xqnhgY4+dTv6Gg4jFqroXT33VS+9e1ExCdc9zP5vUF6zkzQVm9jrG8etUZFVnkcJVXJ9Iw3U1NT89q/uGsgyzLejg7sdXU49tfhaWsDQJ+RsSQZCVu/HpV2DcyMPhf0HVzet+acBLVWqagV7lX2G16jOvp6IMkS/fP9S22RLVMt9Mz2IKOsWbIispaqbOVx5eRE5qBVr63F8laZcnhpWrRFNg7O0Tw0h9MXBCDKpFNaIhdbI8vSIgg3rv6xDQLBm51QXKuLgLbGhOKgCwQCwWpz6sIMX322jZbhecpTwvlhUTuZp78GAS/UPgpbPwzqq7dwSZKPQ72/59FhI71ks5k+trT14Z90kJSUxM6dOykoKEC9WJGTJRlv3xzOk2O4z09DUEafbsVcmUhYeRzqxXaxubFRTv7h95w/uB+QKaqqYfPD7yA6OfWGPte0zUF7/SgdJ0bxOgPozFCxJ4vCbclYol4fW59/dBT7gQM46g7gPHEC/H40kZFYdu3CsqcWy44dqM1rcDi0FISRM9DxnFJdm1IEJySULiv8kze87vvWroTD5+D89PmlKlvzZDOzXmUP4xtN8989YV/RGtk9oVQLVSrIi7ewIS1qqTUyN94iNP8CwWskFNfqIqCtMaE46AKBQLAWSJLMk40jfPvFDsYXvLy3RM+j8r8T1vcipGyCh34C8YXXfA+Xd5pvn3ueny/ko8fH+7VdWBrnmJ1ZIC4ujurqakpKStBccv5Z0OnHdXYc58kxApNuVAYNpvVxmCsT0acqSnn79BSnn3mClv0vEvD7yN9axZaH30l8ZvYNfbaAP0hf0yRHn2nDOaEsljPWxVJclUxGSTRqzeuzDyrocOCsr1cU/ocOIS0soNLrMW3birWmFktNDbqEK59N95qZ7l2UjDwPg8dAlsCatLhvbS9kVYM2NBTzsiwz7Bhe3sv2Btb8z7v9tAzPrWiNnFvU/FsMWsrTIpZC2/q0SGKE5l8guClCca0uAtoaE4qDLhAIBGuJ0xvgZ4d6+dnhPkDmu0W9PDD8GCqfA3Z9FnZ8QrE+XoOWqU4+0dZDWzCFCnU7HzX66D9tZ3JyiqioKKqqqigvL0d7SZufLMv4BhaUqlrrFLJfQpdsxlyZiGlDPGqjFtf8HGeee4qml57D53aTvXEzWx95N0l5BTf02Q4ePMj64s20N4zSfmwU94IPc4Sewu1JFO9IJjz29bPzyX4/rrONOOr2Y99fh394GADjunWKZKSmFkN+3trsY3JOQ/dL0Pkc9NSB3wl6C+TUKq2QeW8B0/X3/b2eXEvzr1frFc3/YmArjy0n0ZwYknvAZFnmwrRrxWHa7aN2goua/4wY0wpjZGGi0PwLBNciFNfqIqCtMaE46AKBQPB6MDLn5tsvdPB0k40Ci4f/iPstaaMvQuI6eOinkFR2zddLssyPu47xmE2LSg7wV6Z6Hggr5cSJYWw2G+Hh4Wzfvp2Kigr0+pXVD8kdwNU0gfPkGP5RJyqdmrB1sZg3J6LPCMfrdNL4wjOcff4PeBx20kvL2fq2d5NavO6ai/JL5/RgUGKgZZrz9TYG26YBSCuMorgqhazyWDSv46JYlmW83d1LkhFPSwsAutRULLU1WGtrMW3ciOoqB3q/JvwexeB5sRXSMQYqDaRvU6prhfdD9I1VKl9vrqX5jwuLWwpsZbFlFMcUh7Tmv3VkpeZ/wq5o/g0XNf/py6EtKUJo/gWCi4TiWl0EtDUmFAddIBAIXk/ODMzy1WfbaBqa469iz/GZwL+h981B1adg599dty2u3+nkY61nOe22UiK38oX4IVJ1b6GhoYXBwUHMZjPbtm1j06ZNGF91ULUsy/hHHMoh2E2TyN4g2vgwpapWkUBQE6D55ec58+yTOOdmSc4vYsvb3kXW+k1XDGpXm9PtMx7aG2y0Hx3FMevFaNFRuDWR4qpkohLXYH/YdfBPTOA4eBDH/jqcx44h+3yow8Ox7NyJdU8t5upqNBbL6l9YkmC0UQlqHftg4rzyeFzhcitkysZr2j1vJ37JT9ds14rWyEH7IKBo/vOj8leEtozwjJCtso3Oe1a0RbZeQ/O/LiUCo05o/gVvTkJxrS4C2hoTioMuEAgErzeSJPNMi41vPd+Ba36Kn8X9nq32lyCuSNmblrrxmq+XZZlfDg/zld4xgnKQP1L9ng9l5oFcQ339CXp7ezEajWzZsoUtW7ZgMl1e6ZC8QdwtkzhPjeEbtINGRVhJDObNiWhSTZw/9Aon//B77FOTxGfmsOWRd5K3eTuqS8LE9eZ0SZIZapuhrd7GhZYpJEkmKTeCkqpkciri0d6Gs64klwtHQwOOugM4Dh4kODsLOh3mykpF4V9Tgy45eW0uPntBCWud++BCA8hBMMdDwb2KaCR7N+hCu5pzUfN/sTWydaoVp98JQIQhgnWx65baIkvjSgnXh9/mO74yvoBE++jCUmBrHJxjcEZo/gWCUFyrh3RAU6lUZuAQ8GVZlp+91nNFQBMIBILQx+0L8u9H+viXg71UyWf5nuk/sfqnUG37KNR84bqL9RGPj0+1dXFoPkC+3M7H9E+yK//9+Hyl1NfX09HRgU6no7Kykm3btmG1Wq/4Pv4xJ85TYzjPTiC7A2hijJg3JWJcH01X01FOPv07ZkdtRKekseXhd1K4Yxdqjeam5nTnvJeOY6O0NYyyMOnGYNKSv1mpqsWmrkH16gaQg0HcTU1LCn/fhQsAGIqLsNYoCn9DUdHaLMzds9D9ihLWel4B7wJow5R9awX3KQp/S9zqX3eVCUpBRfM/tWyM7J3rXdL8Z0dkr6iy5UbmormGwfR2ci3Nf7RZv7iXbVHznxqBVWj+BXcgobhWX5OAplKpfgE8AEzIslx6yeP3Aj8ENMB/yLL8reu8z1cAB9AmAppAIBDcOYzNe/j2ix28fLabfwz7LW+TX0aOzkH10E8gY9s1XyvLMr8bn+XRrgE8wQBvl/+X90SMUZj/BdyuOOrr6zl37hxqtZqKigp27NhBZGTkld/LL+E+P4Xz5BjevnlQg7EwBtOmOAZn2znx1ONMDV4gIj6Byre+g2m1jto9d93UZ5UlmZHuOdrqbfQ2TiAFZOIzwynekUReZQJ64+07o8vb169IRuoO4G5sBFlGm5iItbYGS+0ezJsrUenXwG4Y8MFAvdIG2fk8LAwDKkjbvKjwvx/i8lf/umuEw+fg3PS5Fa2RFzX/Jq1J0fwvBrayuDJiwmJu8x1fmetp/vPjrStaI3PjLKiF5l/wBicU1+prFdB2ogSr/74Y0FQqlQboAu4GhoFTwHtQwto3X/UW7wfKgRjACEyJgCYQCAR3Hs1Dc3z12Tb0Q0d4zPgfJEiTqDZ/EPb8AxiuXWUa9/r5XOcgL0zbyaGfv5J/xOakzeRkfxqHQ0N9fT3Nzc0AlJeXU1VVRUzM1RfG/im3slftzDiSw48mQo9pYwKThjFOvPQ4Yz1d6MwWdrz9PZTtuQfdq/a73Qgeh5/OE2Ocr7cxO+pEZ9CQtyme4qoU4jOtt7WlLDA9jePgIewH6nDWNyB7PKjNZsw7q7HW1mLZuRNNRMTqX1iWYax1UeG/D0aVMSMmd3Hf2v2QtuWa5+iFGrIsM2wfpnmqeSmwdc50rtT8Lx6kXRaraP511zGb3i4u1fyfXQxt825F8281aClfqrJFsj4timhzaB5XIBBcjVBcq69Zi6NKpcoEnr0koG1DaVW8Z/HvnweQZfnV4ezi678OmIFiwA08IsuydLXriYAmEAgEb0xkWea51lF+8Fwj73X+kj/XvkTQmorukX9W9ihd57V/mJzj851DLAQCPMzveVi1j9zMD5KW9n7sdg9Hjx7l7NmzBINBSkpKqK6uJiEh4ervGZBwt8/gPDWGt1upghjyonAluHnxlV9gtw0RZg1n496HWX/PXgymm5eAyLLMeP8C5+tt9JweJ+CTiEmxUFyVTP7mBIzm27tYlzwenMeO4airw37gIMGpKdBoMG3apFTX9uxBn3pjh33fNPPDy/vW+o+A5AdTDOTdoxghs2uuG95DEU/AQ/tM+1JbZMtkC+OuceCNp/nvn3IuKf4bB+foGFvW/GfGmJZskRvSoihMsqJ7nc4JFAhuhVBcq7+eAe0dwL2yLH9g8e9/CmyRZfmj13mf93GVCppKpfog8EGAhISEjb/5zW9u+X7XCofDgWUtTFkCgUBwh+ELyrx0wY+tv5Wvqf+dbPUoAwlvYTDvfQS11w5BC7KK/yKMo+hJl8f4IN8li3lUqneiohK/38/Q0BA2m41gMEhMTAwZGRmEh19b6KB1Q/iwCuuICp1HhV8nMRPpoGOsnrHBVjR6A3HrNpCwrgJt2K0p2IM+mflBmO2V8cwqhvrwVIjKUWGK4/Yv0iUJ3YULGFpaMDS3oB0dBcCfnIy3vAxvWTmBjPQ1MTNqAi6iZxqJnTpB9MxpdAEnkkrHbFQ5U7GbmY6pxGcIrfPWbobZwCwD3gEu+C7Q7+1nyDeEX1aqU+GacDL1mWQZssg0ZJKmT8OgDs1DqL0BmQsLEr1zQXrnJXrmJOa9yhpSp4asCDXZERpyItXkRqqJMorAJggdQnGtXlNTE9oB7UYRFTSBQCC4M5iwe/jh862ktfyQv9I+h8cYh/HhH6EpvPe6r31hcp7PdQ0x5fPziO4Qe33/SlxEGfl5jxIeXobL5eLkyZMcP34cj8dDdnY2O3fuJDMz85rvK0synq5ZBvadwzKlAglUSXr6HC2cbn0WtV5L+V33senBt2GJuvXAMDlop63eRtfJMXyeIJEJJop3JFO4LZEwa2i0jvkGBrAfOIBjfx2uM2dAktDGxWGpqcFSW4N52zbUhjUIEkE/DB5bVPg/B3MDyuMpG5cV/vFFymapNyg3qvkvjyunLK6MdGv67Q/wV0CWZWzznuXDtAdnOTeygC+oNEIlRRiXKmwb0iMpFZp/wW0kFNfqIdvieLOIgCYQCAR3FudG5vn1E0/y55PfoUA9zHjWIyS88zEwXTsAzfkDfLnHxm/GZsjSe/nL4GNkBU6TmPgwOTmfwWhIxOv1curUKY4dO4bT6SQ9PZ3q6mpyc3Ove1B1dcV2nGfGcZ4aIzjjAYOaKZ2N053P45BnKd19N5VvfTsR8Vdvo7wefm+QnjMTtNXbGOubR61RkVUeS3FVMmmF0ahCRMwQmJ3Fefgw9roDOI8cQXK5UJlMWHZsx1K7B8vuXWijolb/wrIME+3L+9ZGziiPR2ZA4V4lsKVvgxDd13UzzHhmODd17qqa/4vikbK4MtbFrsOqv7K59HbjDQRpH7Uvh7ahWYZm3ICi+S9ODl+0RiqhLT1aaP4Frw+huFZ/PQOaFkUSsgcYQZGE/LEsy+dv+SKXIAKaQCAQ3HnIssxLLUPYnvkaf+L/PS5NOK63fIekre+87msPTC/wd51D2Lx+3mUd4F77P2BUBcnI+Gsy0j+ARhOG3+/n7NmzNDQ0sLCwQFJSEtXV1RQWFqK+QsvepXO6LMl4++ZwnhzDfX4agjIug5PztnqGXB3k79jB5offSXTya9urNW1z0F4/SseJUbzOANYYI8U7kijclowlKnRa3iSfD9eJE4rCv+4AgfFxUKsJ27BBkYzU1mDIylqbi9vHFvetPQ99ByHoBWMk5L1FCWu5d4ExNM8nu1kuav6bJ5uXVP8XNf8qVCs1/3Fl5ETkhKzmf9LupWlo2RjZPDyHS2j+Ba8zobhWXyuL4/8Cu4FYYBz4kizLP1epVPcDP0AxN/5CluWv39IFroAIaAKBQHDn4g0EefbFFyk6+QWKVf2ci9xD2nt/TERcyjVfZw8E+VqvjV/apskwqPmY8RmS5n6BwZBIbs5nSUh4EJVKTSAQoKWlhfr6emZmZoiLi6O6upqSkhI0muXF7dXm9KDTj+vsBM5TowQm3ATVQQbsbfTMNxK3IZctj7yT+Mzs1/QdBPxB+pomaasfZaRzFpUKMkpjKK5KJqM0BnUIiRhkWcZzvm1J4e/t6ABAn529pPAPKy9DpVmD4OB1QN8BJax1vQCuaVDrIKt6UeF/H0SskeDkNmH32Tk3taj5Xwxtc945QNH8XzxM+2KVLZQ1/13jl2j+h+boEZp/wRoTimv1kD6o+mYQAU0gEAjufKbmHZz5339k9+gvcKnCaC79Ajse/mt02msv9Otn7Xy6Y4gBj4/3xAZ5yP1Ngo5GwsPXk5/3RSIiKgAIBoO0tbVx+PBhJicniYqKoqqqivLycrRa7XXndFmW8Q0s4Dw5hqtlEgIyc/5JeucbUeUa2PS2d5CcX/iav4e5CRftDaO0HxvFveDDHKGncHsSxTuSCY+99mHftwP/yAj2ugM4DtThPHkKAgE00dFYanZjra3FvH076rA1uG8pCEMnofM55cy1mV7l8cSy5VbIxLI39L61KyHLMkP2oaW2yJapFrpmupY0/6mW1GVjZFw5BVEFIa35bx6aW2GNFJp/wWoSimt1EdDWmFAcdIFAIHij09d2Gumpj5Dr66BBuxn2Psb29aXX3LPiDAb5p74x/n14kmSDji/GDxA39lV8vgkSEh4kN+ezGI3JAEiSRGdnJ0eOHMFmsxEeHs727dtxOp3s2bPnhu5RcgdwNU9gP24jOOYmIPsZcnTgjHNS/Pa3kFZa9pr32ASDEgMt07Q12Bg4Pw0ypBVFUVyVQlZ5LBpt6FTVLhJcWMBx5AiO/XU4Dh9GcjhQGQyYt2/HUluDtaYGbWzs2lx8smtx39rzMHQCkBVlZsF9isI/owq0d+YC3x1w0z7dvhTYmieamXBPAIrmvzimeEVoSzAlhOQeMKH5F6w2obhWFwFtjQnFQRcIBII7ATkYoPsP3yGj+TG8spbfxvwNu971CfITr73X6NS8k092DNLj8vLuhHD+Qv8ss8P/CkB6+gfISP9rtItaf1mW6e3t5fDhwwwODqLT6di5cyeVlZUYb+Kgat+wnYVjI7iaxlEH1cz7ppgyjpH24EaytlauykLYPuOh/ego7Q02HLNejBYdhVsTKa5KJirx5s9qez2QfT5cZ85g31+HvW4/AdsoqFSElZVh2bMHa20N+pyctQkKjknoflGprPXWQcANhnDI3aMYIfPugrA1EJyEEGPOsWVj5FQLbdNteINeAOLD4lfsZSuOKSZMG3rVWQCXL0Dr8DyNi/vZzg7OMWlXPodBq6YsNYKKi6EtPYqE8Js/ZF5w5xKKa3UR0NaYUBx0gUAguJPwTXQz/eu/JmnuDIelMk6Wfon37915zVYnT1DiexfG+OnQBHE6HV/LMpE5+0PGx59Br48nJ+fTJCW+DZVq+TfvAwMDPPXUU8zOzmI0GtmyZQtbtmzBZLrx888kbxBH4yjTdd3oFrQE5QBTjBJRlUb2fdtRX6dV84auIckMtc3QVm/jQssUkiSTlBtBSVUyORXxaPWhKYyQZRlvZ6ciGdlfh+e84hDTpacvSUZMFRWotNrVv7jfrchFOvdB5wvgnAC1FjK2L+9bi8pc/euGGP6govm/VEAyZB8C7izNf3KEcbnKlh5JSbLQ/L+ZCcW1ughoa0woDrpAIBDccUgSzqP/hrbuy/iDMt9X/QlJtX/Dn23PRn+NNr+mBRef7Bik3enhbQlRfCZhmqn+r7Ow0ITVWkpe3qNERVYuPf/gwYPk5eVx5MgROjo60Ol0VFZWsm3bNqzWm9Obe0YWGHn6DOqBIDqVAZdsR11gIuORLeiiVqdS4Zz30nl8jLZ6G/OTbgwmLfmbEymuSiI2NTR17Bfxj43hOHAAe90BXMePI/v9aCIisOzehaV2D+YdO9BY1qAyKEmKtv+iwn9SEZwQX6K0QRbcB0kb1uRg7lBkxjND62TrUmhrnWzFFXABEGmIvExAEuqa/7MDs0uVtuFZRfOv06goTgpf0RqZFh0WkuFTsPqE4lpdBLQ1JhQHXSAQCO5YZgdw/d9HMA0f4bhUxI/Nf8ufP1DL3cVX30/jkyR+NDDBDwbGiNBq+WZeMpvlI/T0fhuvd4z4uPvIzf0cYWFpK+b08fFx6uvrOXfuHGq1moqKCnbs2EFkZORN3XLQ66f/6WO4z0wQpUpAkiUCcRLx95ZgLo5blTPPZElmpHuOtnobvY0TSAGZ+AwrxVXJ5FUmoDeuQVVqFQk6nDjr63EcqMNx8BDB+XlUOh2mrVux7qnFUlODLuHWz527JtO9ywr/waMgS2BNgvx7lepa1k7QvXla5oJSkL75vhXGyCtp/i9W2bIjskNW8z9h99A0OLcU2FqG55c0/zFm/VJL5Ia0SMrSIrEYQvv/E8GtEYpr9TsnoGVGyKe/VHW7b+My5ubmbvqHtUAgEAheA7IMjnECswMEJPhO4N106Et5NP4YRcbpq76sTZfAJ2LfToshhb3Oc3xt5mnclkEGwqeRVZC+EEXUoJaY8JUHZU/7DdQvJNHsUNTlZeZpqiJGidV5b/q2+8aiGB8vJ16/DqPGTJAFwqNasEa1oNUt3Px3cQU8fiOd00W0TZQx445Fq/aRH9NBcXwr8eaxkBcaypKMa9iDo8eFvduJf04xExoTDVhyTVjzTBji9GtT/ZD84J5V1P3uWSWsqdTKXrWwaOUQdXVo2hDXEjsS5/DRgpcWlZcWfMyplHZCs6yiFD1lGCiXDaxDTzShGdhkZFy+IA5vAIcngN0bwOMPLv27SafBYtRiMWixGLWE6TSoCPH/YQTXJRTX6qr377szAlpslll+8EtFt/s2LiMQCKBdi355gUAgEFyTyECAP5ueYIPbSaOUzd/5/xpX+DjZcXXotc4rvkZCTX/4PfREvhWN5KVo9jfkeI6yIcJNjsWHO6CieT6MXqce+VULM03ASPh8DhZHOipZjctsYz6iB7/efnM3LoN1ykjF4AZKVJtIDMsClUxPWBeno47RYT2HtLj4fU3IYHakEzexhajpcjSSHpdplKn4E0zHNhLUul/7NdYaWSZmWia3O0Bud5AUm/K9zIer6MnT0J2nZThNjaRZi0W0rGj8g36QAkpYA2XvmkarBDXVm6MN8kp4kXEg4UDCiYwLmYv/yxhkMKPGghozKkyoQzbmyMgEpZV/Lq6OVYBGrVrxRwS2Nx6huFb/r784c4cEtPxY+cEfPXi7b+MyQjGVCwQCwZsGWWbr9BB/3N+CIRjkB4G38x/yvaRmdJGW2oNafeWg41BF0aq9izl1MnHBfkoCdaSqRlkvd5KkdzEjmTkTzGFcjrzstWqfmvDRcKzjVtSSGleUi/mUeXwW303fvmncT1azhlJnEVnWdZi14Th0bhoTuzmd1MWMaXWqahq/jujhTGIv5GGej0FSB5hNHmQysxtHzARvlDWnecFHzvk5cs/NkNE1j84v4zFq6CuOpKc0ir6iSHxha7QQ8zmUypprBnyLvwDQmZSqmikGDBbeMF/kGiDJEk6/E6fficPvwOl34peU88xUqDDrzJh1Ziw6C2adGb0mdI87cPuDODwBpdLmDeDyBbi4ZDbqNFgXK2wWgxaTXhvyVek3O6G4Vv+v+/7rzghoYg+aQCAQCK6KYwL2/R20Pc2APo8P2d+PI6qQL9xXxL2liVdshwvKMj8fnuSbfaNoVSq+nJtCUmcLJcUuenr/CY9nhLjYu8nN/X+YTJmXvd7lcnHy5EmOHz+Ox+MhOzubnTt3kpGRcdPtd+N9PZx44nEc58bIidhAclgOKlTosyKwbE4krDQWlW51qjWTg3ba6m10nRzD5wkSmWCiaEcShVuTMIWH7qL51UguF85jx7Dvr8Nx8CDBmRnQajFvrsRSuwdrzW50KSlrc/HZAeh6ATqeg4EGpcJmjoP8exSFf/Zu0N+4/fNORJZlxl3jy4dpTyqaf5+k/CIj3hSv7GOLXdb8G7WhudfP6Q3QOjK/ZIw8OzjHlENpcTbq1JSlLB+mLTT/oUcortXvnD1oIqAJBAKB4Hqcfwr2/R2Sa5Zf69/BP87fz4aseP7hgWJKUyKu+JILbi+f6hji6JyDdfj5+dYyUvQyQ0O/4MLAvyBJftJS/4zMzI+i011+BpvX6+XUqVMcO3YMp9NJWloaO3fuJDc396aD2vTwICee+h0Xjp8my7KOgtjN6AMGVGFazBviMW9ORLdKZ575vUF6zkzQVm9jrG8etUZFVnksxVXJpBVGr4q85PVCDgZxNzfjqKvDvr8OX38/AIbCwkWFfy3GkuK12bfmnoOeVxQjZPfL4F0AbRjk1ChGyPx7wRK/+td9A+IP+umc7VwR2oYdwwBoVVryo/OXAlt5XDlp1rSQNC3KsszInHsxsCkHap8Xmv+QJRTX6iKgrTGhOOgCgUDwpsY1Ay/8P2j5LXOWXD7i+gBH3em8oyKVz9xTQPwVfrstyTL/Y5vmS11DqDUavpidxF+kxOL3TdLb9xijo79Hp4siO/uTJCe9C7X68jY6v9/P2bNnaWhoYGFhgaSkJKqrqyksLER9k8r2ufExTj39e84dfIU4Qyrrs+4i0hMDEujTrZgrEwkrj0O9SmeeTdsctDeM0nl8DI/TjzXGSPGOJAq3JWOJMqzKNV5PvH39OA7UYa87gLuxESQJbUICltoarLW1mLZsQa1fg2phwKdU1DqfVwLb/BCggtRKJawV7oXYfERP3DLT7mlap1qXAlvr1ErNf1lc2VJoK40tDWnNf5ttYTGwCc1/KBGKa3UR0NaYUBx0gUAgEKAcSPzsJ5Ad4xxPfC8fGLwLWWPkw7tz+EB19hV/o/37A4f4v+hUDszY2Rph5rHCdLJNBhbs5+ju/jpzcycxm/PIy3uUmOgrm4UDgQAtLS3U19czMzNDXFwc1dXVlJSUoNHcXKCyT09x+pknaNn/IuqghsqSB0jV5sFsAJVBg6k8TqmqpVhWZbEX9Ev0NU1yvt7GSOcsKhVklMZQXJVMRmkMas0bT4oRmJnBcfCQovCvb0B2u1GbTJirqxWF/86daNZif4osw/g56Fg8b220SXk8OnvxcOz7IW2LIhwRLBGUgvTO9y4FtpbJFnrnewFlL1tOZM6K0PZG0vw3D83j9l9B858eSVmq0PyvFaG4VhcBbY0JxUEXCAQCwSLuOXj57+Hsf+OPzOEx88f5l95YUiLD+Nx9hTxYlrQi2Bw8eJBdu3bx27EZvtRjwytJfC4riQ+mxaEGJidforvnm3g8Q8TG1JKb+3nM5uwrXjoYDNLW1sbhw4eZnJwkKiqKqqoqysvLb9oo5pqf48xzT9H00nP43G7Kyu6iKGE7qgE/sl9Cl2TGvDkR04Z41Kt05tnchIv2hlHaj43iXvBhjtBTuD2J4h3JhMeuzkHbrzeSx4Pz+HEcdQewH6gjODkFGg2mjRuV6tqePejT0tbm4vMj0LV43lr/YQj6FHV//j1KdS1nz6JoRPBqFnwLnJs6txzaplqY984DYNaZKY0tpSxWaYtcF7eOaGP0dd7x9hAISnSNO2gcml3az9Y7qQhn1CrIT7AuBbaK9EiyYy2o30CtxqFKKK7VRUBbY0Jx0AUCgUDwKnrr4A8fh/khRgv/nA+PPUDjmI+NGVH8/QPFrE+LBFbO6WNeP5/rGuLFqQU2WE18vyiNQnMYkuRlaOiX9F/4CZLkITXlT8jK+hg6XeQVLy1JEp2dnRw5cgSbzYbVamXHjh1UVFSgv8k2O4/DQeOLz3B23x/wOOxklVSwqfRBDMMa/DYnKp2asHWxmDcnos8IX52qWlBioHWatnobg+enkWVIK4qiaEcy2evj0GjfeFU1AFmS8Jw7p0hG6urwdncDYMjLxVJTi3VPLcZ161DdZHvqDeG1Q89+pbLW9SJ45kCjh6xdUHg/5N8H4Umrf907BFmWGbQP0jLZsrSfrWu2i6CsVKfSrGlLVbby+HLyo/LRhej5dfMuP03Dc5wdmKVxaI6mwVkWPMrZf1ajlvVpkZe0RkYSaXrjiHxChVBcq4uAtsaE4qALBAKB4Ap4HbD/H+HkvyFHZXIw/+/5zJlIphxe3rYhhc/cW0Bn44kVc7osyzw9MccXuodxBCQ+lZnAR9IT0KlVeH1T9PV9H5vtcbTacLKz/paUlD9GfZWFoCzL9Pb2cuTIEQYGBjCZTGzbto3KykqMxpuzvvk8blpefp7Tzz6Jc26WpPxCtu16JxEL0bibJ5G9QbTxYZgrEzFVJKAxr87i1D7jof3oKO0NNhyzXowWHYVbEymuSiZqleQltwvf4CCOAwew1x3Adfo0BINo4mKx7q7BUluDeds21Dc5TjdEMABDxxdbIZ+D2QvK48kVi62Q90FCidi3dh3cATdt021LVbbmyWYm3ZMAGDQGSmJKlNC2GNwSzAm3+Y6vjCTJ9E05aRycXWyNnKNzbAFpccmeHWtm/cXWyLRIChOtaN+ArcevJ6G4VhcBbY0JxUEXCAQCwTW40AB/+CjM9OHb8D5+ovlT/uX4JGoV3Juh4Zt/toewV8k3Jn1+Hu0e4emJOUotYfygMI1Sq6JRtzs66O7+OrOzRzGZcsjL+wKxMbuveQsDAwMcPnyY3t5ejEYjW7ZsYcuWLZhMN6dmD/h8nDvwMif/8HvsU5PEZ+aw5cF3kKzPxXV6HN+gHTQqwkpiMG9OxJAduSp2RkmSGWqfoa3exoXmKSRJJik3gpKqZHIq4tGukrzkdhGcm8Nx5Aj2/XU4Dx9GcrlQhYVh3rEda00tlprdaKPXoI1OlmGyQ6msdeyDkcV1T2T68r61jO2gCc1qUChxqeb/YpWtfbp9SfOfYEpYskWWxZVRFF0U0pr/luH5Fa2RUw7lc4TpNKxLjViSj1SkR15RhPRmJhTX6iKgrTGhOOgCgUAguA4+Fxz8Bhz7CViTmdz9T3y5PZnnWkdJijDy2XsLeKg85bL9H/sm5/hc1zCz/gAfS0/gE5kJGNRqZFlmamo/3T3fxO2+QHR0NXm5X8Biyb/mbYyMjHDkyBE6OjrQ6XRUVlaybds2rNabM9UFAwHajxzg5NO/Y3bURnRyKpsffic5uZV4zk7iPDuB7A6giTZirkzAvDERzSqdeeac99J5fIy2ehvzk270YVoKNidQXJ1MbGpoGvduBsnnw3Xi5JIVMjA2BioVYRs2KJKRmloM2Vlrc3H7uHLeWuc+6DsIAQ8YIyDvLUplLfcu5e+CG8IX9NE500nL1HJr5IhjBFA0/wXRBUtVtvLYclKtqSFpWpRlmeFZ95J8pHFwjvO2efxBZV2fEhmmVNkW2yNLksPf1Jr/UFyri4C2xoTioAsEAoHgBhk+DU9/RKlarH8v/+m7hyfGY2gdmac8LZJ/eKCYjRlRK14y6w/wpZ4RHh+bJd9k5AeFaVREKO19kuRjePhX9F/4EcGgi+Tk95Cd9XH0+mtXW8bHx6mvr+fcuXOo1WoqKirYsWMHkTdpF5SkIF3HGzj55ONMDl4gIj6Byre+g+Idtfi75nGeHMPbNw9qMBYqVTVjftSqVNVkSWake462ehu9jRNIAZn4DCvFVcnkVSagXyV5ye1ElmU8bW049tdhP3AAb3s7APrMTCx7arHW1hK2fj2qm7R13hA+J/QeUCQjXS+AawrUOsisWm6FjFwjwckdzJR7itbJVlqmljX/7oCix48yRC23RcaVURpTikUfmiIXjz9I2+jCUoWtcXCOkblLNP/JEYuBLZKK9ChSo948mv9QXKuLgLbGhOKgCwQCgeAmCHjh8HfgyGN4deHoHvlnnnCt59svdDBh9/JgeTKfu7eA1KiV7Yf7pxf4TOcQY14/f50Wx2ezkghb3Avi883Q3/8jRmy/RqMxkZX5t6Sm/glq9bWrVtPT0zQ0NNDU1ARAWVkZVVVVxMbG3tRHkmWZvrMnOf7Ebxnr6cISFc2mB99G2Z57wSHjOjWG88w4ksOPJlyPaVMC5spEtFGr0xrlcfjpPDFGW4ONGZsTrUFD3qZ4iquSSchcHXlJKOC32bDXHcBRV4fz5EkIBNBERWHZvRvrnlrM27ejvsm21RtCCsLwqeVWyGlFcELiOijYq4S1pHKxb+0WCEpBeuZ6lgJby2QLffN9wLLm/2JbZFlsGdmR2ahVobkHbGLBs7SPrXFwlpbhZc1/rEXP+rTlw7TLUyMx36Ga/1Bcq4uAtsaE4qALBAKB4BYYbcbxqz/H4uyH0rfj3PMNfnZqnp8dVhZnf1Wdzd/szlmxiLEHgny118Z/26bJDjPwWGEaWyOXf8PucHbT3f11ZmaOEBaWSV7u54mN3XPdgDI/P09DQwNnz54lGAxSUlJCdXU1CQk3JzaQZZnB1mZOPPlbhtpaCbOGs3Hvw6y/Zy96Qxie9hkcJ8fwds8CYMiLUg7BLopGtQp2RlmWGe9f4Hy9jZ7T4wR8EjEpZoqrksnfnIhxleQloUDQbsd55IgS2A4dQrLbURkMmLdtw1Jbg2X3bnTx8Wtz8aluJax1Pg9DJ0CWIDxFCWoF90FmNWjfeAeOhwoLvgXOTZ6jeap5KbQt+BYAsOgsiuZ/cT/buth1RBmjrvOOt4dAUKJz3L4Y2OZoHJql702g+Q/FtboIaGtMKA66QCAQCG6NQ3WvsEvTCIf+CYzhcP93GEm5j2+/2MnTTTbirQY+c08Bb69IXbFwOTJj59OdQwx6fLw/JZYvZidh1i63uU1NH6S7+xu4XL1ERW0nL++LWC2F170fh8PBsWPHOHXqFD6fj4KCAqqrq0lNTb3pzzbS0caJJ39Lf9MZDCYz6+95gIr734opPILAnAfnqXFcp8cIzvtQW3SYNipVNd0qnXnmcwfoOjVOW72NyUE7Gq2anIo4iquSSc6LvGOqagCy34/rzBlF4b9/P36bDQBjeRnWRYW/Pjd3bT6zc0pR93fuU46X8LtAb4XcPVC4V9m3ZgrNc8LeKMiyzMDCwIoq26Wa/3Rr+orWyFDW/M+5fDRdrLJdQ/NfkR7J+jeo5j8U1+oioK0xoTjoAoFAILg1lub08TZlb5rtLBQ+AHu/x5kZA199to2moTlKU8L5+73FbMmOWXqtMxDkm/2j/Hx4ilSjnu8VpLEzelmSIUl+Rmz/S1/fDwkEFkhOfhc52Z9Er79++6LL5eLkyZMcP34cj8dDdnY2O3fuJCMj46YX+eN9PZx46nG6Tx5Dq9dTftd9bHrgESzRMciSjKdrFufJMTwd0yCBPisCy+ZEwkpjUelWp5VrctBOW72NrpNj+DxBIhNMFO1IonBrEqZVkpeECrIs4+3qwlGnSEY8ra0A6NLSsNbWYqmtxbSxAtVNHl5+Q/jdyqHYHc8p+9Yc46DSKCbIi/vWotdIcPImw+V3KZr/qWXN/5R7CrjDNP9xZjZc0hpZkBD6mv9QXKuLgLbGhOKgCwQCgeDWWDGnBwNw/Kdw4OtKe9i930Ja90c80zrKt57vYHTew/3rEvn8fUWkRS/vMzox5+BTHUP0ur28NymaL+WmEH5JNc3vn6O//8cMj/wKtdpIVuaHSUt7H2r19VvQvF4vp0+f5ujRozidTtLS0ti5cye5t1CNmR4e5MRTv6Oj4RBqtZrSmrupfOs7iIhXFo7BBR/OM+M4T40RnPGgCtNi3hCPeXMiulU688zvDdJzZoL2BhujvfOoNSqyymMprkomrTB6VeQloYZ/fBzHgYPY6/bjOnYc2e9HHRGBZddOrLW1mKuq0VjW4Ew5SVJ+4XCxFXKiTXk8vnixFXIvJG+AtTiY+02ILMuMOcdWtEW2Tbfhl/zASs1/eVw5hdGFIa/5P7soH2kaWqn5L0uNWHGYdqhp/kNxrS4C2hoTioMuEAgEglvjinP6VI9ybtrgMaU97IEf4DYl8+9H+viXg70EJZn3V2XxkZocrEaljckdlPjuhTH+ZXCCBIOOb+encnfsSh2609lHT883mZquI8yYTm7u54iLu+eGgpbf7+fs2bM0NDSwsLBAUlIS1dXVFBYWor7JBfbc+Binnv495w6+gixLFFfXsPnhdxKdrLRRypKMt28e56kx3OemICijT7cqe9XK4lAbVsdYOGNz0tZgo/P4GB6nH2u0kaIdSRRtT8YSdWfunwo6nDgbGnDU1eE4eJDg/DwqnQ7Tli2LCv8adImJa3PxmT7oXFT4DxwFOQiWRCi4V6muZe0E3eq0twoUrqn5V2spjCpc0RqZagltzf/FwNY4NEfbqzT/Gy4epp0eSUlyOAbt7dP8h+JaXQS0NSYUB10gEAgEt8ZV53RJglP/Aa98GVRqeMtXoOJ9jNl9fPvFDp44O0KsRc+n31LAuzaloVms/DQuuPhExyCdTg/vSIjiK3kpROtWtrJNz9TT3f01nM5uIiM3k5/3KFZryQ3dbyAQoKWlhfr6emZmZoiLi6OqqorS0lI0N6l6t09PcfqZJ2jZ/yIBv4/8LTvY8si7iM/MXnpO0OnHdXYC56lRAhNuVAYNpvI4paqWYlmVxWTQL9HXNMn5ehsjnbOoVJBRGkNxVTIZpTGoQ7yd6laRAwHcjY3Y6w5gr9uPf2AQAGNx8ZLC31BYuDYLdtcMdL+shLWeV8DnAJ0JcmqVsJZ/L5hjrv8+gpvmWpr/aGM0ZbGXaP5jSzHr1qC6ugp4/EHO2xaWWiObLtH86zVqipPDl0NbWuTrqvkPxbW6CGhrTCgOukAgEAhujevO6bMX4A8fU/b1ZFbDW38M0Vk0D83x1WfbOD0wS2GilX94oJjtucreMq8k8cOBcX40ME6UTsu38lPZGxe54m0lKYBt9HH6+r6P3z9LUtI7yMn+FAbDjVn/gsEgbW1tHDlyhImJCaKioqiqqqK8vBztTe5tcs3PcWbf0zS9+Cw+t5vsikq2PPJukvOXpSayLOMbWMB5ahx3yySyX0KXZMa8ORHT+njUYauzn2p+0kVbwygdR0dxLfgwR+gp3J5E8Y5kwldJXhKKyLKMr69PkYzU1eFubgZZRpuctCQZMW3ahEq/Bvv1Al64cERpg+x8HhZGlF9KpG1Z3Ld2P8Tmrv51BQAEpAC9c71LFbaWqRb65/sBRfOfG5VLWWzZkuo/KyIrZDX/4wueJVtk4+AcLcNzePwSALEWw9I+tg1pUZSlRqyZ5j8U1+oioK0xoTjoAoFAILg1bmhOl2U4+0t48VGlLWzPP8DmDyKr1DzXOso393UwMufm7uIEvnB/EVmxym+8z9ldfLJjiFaHmwfjIvlGfgpx+pVmN79/gQsX/pmh4f9GrdaTmfEh0tLej0ZzY3s6JEmiq6uLw4cPY7PZsFqt7Nixg4qKCvQ3uZj3OBw0vvgMZ/f9AY/DTnppGVse+SPSStat+M235AngaprAeXIMv82JSqcmbF0s5s2J6DNW58yzYFBioHWatnobg+enkWVILYyiuCqZ7PI4NKskLwlVAlNTOA4exF53AOfRo8geD2qLBcvOaiy1e7DsrEYTHr76F5ZlGG1e3Le2D8YUwQkxeVC4GNZSK0F9+9rX3gzMe+c5N3VOkY9MNdM62bpC878udt0KAUmkMfL23vBVCAQlOsbsi/KRWZoG5+ibWtb8FySGL+1j25AeRXaseVU0/6G4VhcBbY0JxUEXCAQCwa1xU3P6/DA8+0nofkmpLjz0E4jNw+MP8vP6fn56oAdfUOLPt2XysT15RITp8EsyPx2c4HsXxrBo1XwtL5VH4i9XzLtcF+jp+RaTUy9jNKaQm/NZ4uP33nDYkWWZ3t5ejhw5wsDAACaTiW3btlFZWYnReHMb+H0eNy0vP8/pZ5/EOTdLUn4hWx95N1kbNl12P75hO85TY7iaJpG9QbTxYZgrEzFVJKBZpTPP7DMe2o+O0t5gwzHrxWjRUbg1keKqZKJWSV4SykhuN85jx7Dv34/jwEGCMzOg1WKq3IS1RrFC6lNT1ubic0OLlbV9SpVNCoApVmmBLLgPcmpAf+ePwe1GkiVF878oH2mZUjT/kqxUpzLCM1a0RuZF5YWs5n/W6aNpePkw7aahOeyLmv9wo5b1iy2RG16D5j8U1+oioK0xoTjoAoFAILg1bnpOl2Vo+S08/zlFaV7zBdj2UdBombB7+N6LXTx+Zogok55P3p3PeyrT0GrUdDo9fLJjkLMLLt4SE84/FaSSZLh84TEze4zu7q/jcLQTEbGR/LxHCQ8vu6nPNDAwwOHDh+nt7cVoNLJ582a2bt2KyWS6/osvIeDzce7Ay5z8w++xT00Sl5nNloffRd6WbahfVUGRfEHcLZM4T47hG7SDRkVYSQzmykQMOZGrYmeUJJmh9hna6m1caJ5CkmSSciMorkompyIenf7Or+rIwSDu5hYcBxSFv6+3FwBDQQGW2hqstXswlhSjWgszo2de2a/WsU/Zv+adB60Rsncv71uzhqZK/k7E5Xdxfvr8Umhrnmxm2jMNgFFjpDimeKktsiyujHjTGh2a/hpRNP8Ozg4uh7aucftr0vyH4lpdBLQ1JhQHXSAQCAS3xi3P6fZxeO5T0PGsoip/6CeQoIg+zo3M89Vn2zjRP0N+goVH9xazMz+OoCzz70OTfKt/FL1axZdzU3hPYvRlVSlZDmIb/T29vd/D758mMfFhcnI+g9Fwc3a/kZERjhw5QkdHBzqdjsrKSrZt24bVar3+iy8hGAjQXn+Qk0/9jtnREaKTU9n88Dsp3LELzRX2u/nHnEpVrXECyRVAE23EXJmAeWMimlU688w576Xz+Bht9TbmJ93ow7QUbE6guDqZ2NSb+3xvZHwXLixJRtxnG0GS0MbHL4a1Wkxbt6Jei31rQb9iguzcpwS2+UFABamblhX+cQUQgkbCOxVZlhl1ji6FtZapFtqn25c0/4nmxKUqW3lcOUUxRRg0oWlLdXgDtCxV2ZTQNu28iuY/PZJ468ougVBcq4uAtsaE4qALBAKB4NZ4TXO6LEPbU/Dc3ynVhZ2fgapPglaPLMu8eH6Mb+zrYHDGRW1hPF+4v4jceAt9Li+f6hjk+LyTXVFWvluYRprx8kV0IGDnwsC/Mjj4C1QqDRkZf01G+gfQaG5OljE+Pk59fT3nzp1DrVZTUVHBjh07iIyMvKn3kaQgXccbOPnk40wOXiA8LoHND72Dkt13odVd3k4l+yXc56dwnhzD2zcPajAWRGPenIixYHXOPJNlmZGuOdrqbfQ1ThIMSMRnWCmuSiavMgG9cW0kBKFIYHYWx8FDisK/oQHZ5UJtMmGuqsK6pxbzzp1oo6JW/8KyDOPnF1shnwNbo/J4VJZSWSu8H9K2gubNMxahgi/oo2OmY0Vr5JtB8z/d08TdtTW3+a5XIgLaGiMCmkAgENw5rMqc7pyGFz4Hrb+DhFJ46J+VqhrgDQT5r4YL/LiuB48/yJ9szeATd+URHqbjl7ZpvtprQwU8mpPMnyfHoL7C4sjtHqKn99tMTOzDYEgkN+ezJCQ8iOomTW7T09M0NDTQ1NQEQFlZGVVVVcTGxt7U+8iyTN/Zkxx/4reM9XRhiYpm04Nvo2zPveiust/NP+XGdWoM55lxJIcfTbge06YEzJWJaKNW55Bbj8NP54kx2hpszNicaA0a8jbFU1yVTELm6shL3ihIXi+u48ex1x3AUVdHYHIS1GpMFRVY9uzBWluDPiNjbS6+YFs2QvYfgqAPwqIg7x6lupa7BwxvnipnqDHlnloR2M5NnbvjNP/bk7X8+m/vuc13uBIR0NYYEdAEAoHgzmFV5/SOfYpExDkJOz4Ouz4HOiV8TDm8PPZyF785OYjVqOOTd+Xx3q0ZjPr8fKZzmEOzdrZFmnmsIJ0s05XbjmbnTtHd/VXs9vOEh68nP++LRERU3PRtzs/P09DQwNmzZwkGgxQXF1NdXU3iTR6QLMsyg63NnHjytwy1tRJmDWfj3odZf89eDKYrL+rkoISnfQbHyTG83bMAGPKilEOwi6JRaV/73ilZlhnvX6Ct3kb36XECPomYFDPFVcnkb07EuErykjcKsiThOX9ekYzUHcDb1QWAPicHa20tltoawsrL12bfmtcOvXVKWOt6AdyzoNErh2IX3KdU2MKTV/+6ghvmWpp/tUpNTmTOkua/PK6czIjMkNf8D3Wf568e2XO7b2cFIqCtMSKgCQQCwZ3Dqs/p7jl46YvQ+CuIzVf2pqVtXvrnjrEFvvpsGw090+TEmXl0bzG78mP5zfgsX+4ZwS/J/L/sJD6QGofmChUfWZYYG3uSnt7v4vNNkJDwILk5n8VovPlFrsPh4NixY5w6dQqfz0dBQQHV1dWkpqbe9HuNdLZz4snf0t94GoPJzPp7HqDi/rdiCo+46msCcx6cp8ZxnR4jOO9DbdFhqkjAXJmALu7mhCZXw+cO0HVqnLZ6G5ODdjRaNTkVcRRXJZOcd7lN882Ab3gYR50iGXGdOgXBIJrYWCy7d2Gt3YN521bUYWtw5lwwAEMnFvetPQezSgggaT0U7lUCW0Kp2LcWArxa898y2YLdZwfA+v+zd9/hcdVXwse/UyXNqNeRLMnqzd1Wsa1iXAjGNsWEwCZvdrObzZvNbioECKEk2RBCQgiEtM3mTdmS3Q2ExRQDJrihZkuy3C3J6sUa9ZFGml7uff8YQgpG1sgz9tj8Ps+T54kd3TK6ztE9Or/fOZooViSteLfF/4rEFSHX5j8U39VFghZkofjQBUEQhMUJWkzvPgCvftHXmn/9P8GWR0DrSzpkWeZA+ziPv95O36SVmoIkHtlZTFRsGA+cv8BbU7Osi9bxTFEmBfqLL//zeKwMDP4rg4O/ACAz81MszfwH1Gr/lyPZbDaam5s5evQoDoeDnJwcampqWLp0qd8JzFhvN00vPU9X8xHUWi2rtt1M6a7dRMYnvO8xsiTj6JzG2jyKo2MKJNBmxxBZbiBieSKKAM08mxico63eSGfzKC6Hl9gUHcWVqRStT0UXoOYl1xqv2Yylto65gwew1tYhWa0owsPRV1YStWUzkTfcgDrh/Z/doskyTHb6ErXzb8CFFkCGmMx3Kms3Q1YVqD5Y1c5Q9adt/v9Qaeua6Xq3zX9WdNa7Cdsf2vyrlVdvz2EovquLBC3IQvGhC4IgCIsT1JjunIP934CWX/gaJtz6I8iufvd/dnkk/vPoAM/u78Tq8vKx8ky+tC2ft602Hu68gNUrcV+2gX/MSEbzPg01HA4j3T1PMjb2KlptMrm5XybVcIff+9MAnE4nx44do7GxEavVSkZGBjU1NeTl5fmdqE1dGKTppd/R0fA2SqWS5ZtvpOzWO4lJnr8Nu3fWhfX4GNaWUbxTDhQRavRrktGXG9AEaOaZ2+Wlp3WctnojIz1mlCoF2asSKalMI6M4MM1LrkWyy4W1ucVXXTt0CM/ICCgURKxe7esKuXUr2uzs4FQdLeO+JZAdr0PvIfA4ICwG8rf5lkHmbYOI2MBfV1i0P7T5f3dp5MTpd9v8R6gjKEko8XWMTPS1+k/SJV2xewvFd3WRoAVZKD50QRAEYXGuSEzvq4NXPgfT/VD693DjP/9ZkwST1cUP9nfyX02D6LQqvrg1nx3rlvD13hFenZhhZWQEzxRnsizy/Zedmc3H6ex6nNnZk0RFLSc//xHiYssWdbtut5vjx4/T0NDA7OwsqampVFdXU1RUhNLPfUozY6O0vPwC597ejyRJlFRvpvz2jxCfNv8ySlmScfaasbaMYj87CV4ZbUYU+nIDESuTUIYFZuaZyWilrcHI+aOjOKxuouLDKa5MpXhjKpEBal5yLZJlGWd7+7st/J1t7QBoly59t8lIxJo1KFRBmD3nskHvYV9HyPP7wDYJSrWvola4w1ddi80M/HWFyyLLMkar8Y8NSCZO02ZqwyP5hlCn6lP/rMoWzDb/ofiuft0kaCsTEuRXd+y82rfxHjMzM363JhYEQRBC05WK6QqFh9j4DqJievB6IpiaWI3D/ueDY/vV0fwkZjXN4aks8czxT+aTOJP1fK9yC7Nh4fztqWb+7lQTGkm66DVkZCw5E0yVDuDRu9D3JZB4LAuNZXGJhhfoiYridGwsc1oNsS4XK6dnyLZY8Lc+Z5clznvt9ElOvEC6UkuRMpzYhSyDUoahiMhHoS9CoYlDllzI9h5kawe4Jxfxyd7Li5JR1VIGNflMqdJAlkj2DpPp6STZewEl1877UzBILhfemWm80zNIc3O+JYoqFarYWFRxcahiolEog5CsIfsq0TYT2KZ8w+EBtHrQxYMuAbSRQbiuEAgSEja3DavbisVtweqy4pScAChQoNPoidTo0WsiidTo0arCCER9NhTf1bN+858iQQumUHzogiAIwuJc6ZiuDTORmHwCjdaCZTYT09RyZOnP99kcDTPw05jVDGhiWOsY4xP2NvaUrmVfXgm5pkkeqX+Tksmx972GpPIys3yY6RXDyEqZ2HNpxJ9OR+le3J4QCeiP1HMqNo6ZMC1RbjcrpmfIm5vD31dyhyzR5XXQIznwAKkKDUWqCBIWul9Fm4xCV4QiIheFUo3smkK2dSDbukF2+Xk3F2dVRDGkzmdInYdTqSNMspHh6SLD04VetgTkGtcy2evFazbjnZnBOzMDXi8oFCijo33JWmwsyovMxQsItx3s7yRrzncSRXUYRMT7ErbwGAjRDoOCj0tyY3VbfEmby4LVY0OSvQBolBr0Gj2Rmkj0mkj0Gj2qRTzPUHxXv24SNLHEURAEQQi2qxLT3Q54+7vQ8Czok2DXM75hvn/6JV6J/24a5Jn9ncza3dxdlsG6dal868I44y43/5iZzH1ZBiJU7//y4nCO0tPzFKOje9BoEsjN/TJpqXeiUCyu0iFJEp2dndTW1mI0GomKiqKyspK1a9ei1frXZMNhsXDizVc5/vorOCxzZC5fScXuu8lYtnJBe5wkhwfbyXGszaO4jVYUGiURKxLRlxvQLg3MzDOvV2LgzBRt9UYGz00hy5BeFEdJVRo5q5JQBah5ybVMdruxtR5n7uABLAcO4h72DUEOX7GCqK1biNy8hbCC/ODsW7NOQdebvq6Q3QfBbfVV0/K2+pZC5n/Il7QJIc0jeeie6f6zBiT9s/2Ar81/Xmzeu0sjF9rmPxTf1a+bJY4iQRMEQRCC7arGdOMJePlzMHYWVnwEtn8X9H/eMc9sc/PsgS7+40g/4RoVn9qUQ3+Kht+Oz5AbEcYzRRmUx86/xMs8e4qurm9hNh8nMrKY/PyHiY/bsOjblmWZnp4e6urqGBgYQKfTsWHDBsrKygh/n0HV78flsHP6rTc4tncP1plpUguKWL/7brLXlC74pd41bMHaPILt5ASy04s6KQJ9mQHd2mRUkYHpzjhnctBxZIS2BiMWk5PwSA2F6w0sq0ojLkDNS651sizj7Op6t4W/4/RpADTp6b4mI1u2olu3FkUwqmtuB/TV+pK182+AZRQUKsjc4PvlR+HNEJ8T+OsKQWF2mjkzeebPBmq/X5v/lUkriQn783EeofiuLhK0IAvFhy4IgiAszlWP6R4X1D8Dtd/zLc/a+RSU3P6eWVA9ExaeeL2d/e3jZMRHcFt1Fv8j2zA6Pfx9eiJfzUlFP0/DBlmWGR9/je6eJ3E4hklKvJG8vAfR6bIu6/YHBgaoq6uju7ub8PBwysvLWb9+PTqdf3PMPC4XZw/vp/nl3zE3OUFSVg4Vt99FfsUGlAvc2yS5vNhPT2BtHsU1OAcqBRHLEtCXGQjLjQ1Id0ZJkhlqN9FWb6T/1CSSJJOaF0NJVRq5a5PRaIOxD+va5B4bx3L4MHMHD2A7chTZ5UIZHU1kTQ1RW7egr65GFRmE/WOSBCMnfB0hz78B4+d8f59U9E6TkR2wZB0EYzC3EBSSLNE/2/9nDUjma/NvPG1k62YxqDooRIImCIIgBFvIxPSxc/DyZ31VteJbYMf3Ieq9Lenruib41t52zo/NUZoVR+LKRF5y2sgM1/J0UQZVcVEXOfkfeb0OhoZ+Rf/AvyBJbjIyPkF21udQq+c/7lKMRiO1tbV0dHSg0WgoKytjw4YNREX5d16vx0N7/WGaX/od0yPDxKelU377Ryiq3IRKvfA9dO5RK9aWUWwnxpFsHlTx4ejLUtCvM6AK0Mwz26zLV1WrN2KesKONUFNYnkJJdRqJ6Zf3/bzeSFYrlsZGLAcOYjl82Ld3TaNBX17+TnVtC5rU1OBc3NT3Tgv/12CgEWQv6JOhcDsU7oScTaAJwmBuIaj+ss3/qYlTmBwmAMr15fzyzl9e5Tv8cyJBC7KQ+WEuCIIgXLaQiuleDxz5MRz6tu+F8ebvwsq731NN83glftsyxNNvdTJtc1Gz3ED7Eg2DssRfpyXwtdw0otTzV3KcznF6ep9mhxt/JAAAmKFJREFUZOQFNJo4cnLuIS31LpSXOVx2fHycuro6zp49i1KpZO3atVRWVvq9YV+SvHQebaB5z/NMDPYTnZRC+W0fZtmmbaj92O8muyXs5yaxNo/i7DWDEsIL49GXGwgviEehuvyqmizLGDtnOFdvpPfEBF6PRPLSKEqq0sgvS0EbfvUG9oYi2evFfuIEcwcPYTlwANfAAABhJcVEbfG18A8rLg7OvjX7NHTt97Xw79oPrjlQR0DuFt9SyPybIPLKzesSAudP2/wPnx/mU9s/dbVv6c+IBC3IQuqHuSAIgnBZQjKmT3b5qmlDTb5GB7t+ADFL3vNlZrubnxzq5tcNfahVSopXJnM0VoFBp+V7hRlsTYi+5KVm587S1fU4MzPN6PX55Oc/QkJ81WV/hKmpKRoaGjh58iQAK1eupKqqisTERL/OI8syvcebaXrxeUa6z6OPi6fsljtYuXU7Gj/3u7kn7dhaRrG2jiFZ3KiitehKU9CXGVAHaOaZw+rm/NFR2hqMmIxW1GEq8kuTKalKIyUrMM1LrieyLOPq62PuwAEsBw9hP3kSZBl1aipRmzcTuWUL+vIyFH42oVkQjwv663zLIM+/AbMXAAVkVPj2rBXthMT8wF9XCLpQjOsiQQuyUHzogiAIwuKEbEyXvND8/+DAP/uG9H7oW7D2b95TTQPon7TyxBvtvHlujMToMOTCWIbjVNyVGs8/5y0hTjN/BUeWZSYmfk9X9xM4HEMkJmwhL++r6PWX31TBbDbT2NhIa2srHo+HZcuWUV1djcFg8Os8siwzePYUTS8+x1DbGSKiolm74zbWbN9FmM6/Jh2yV8LRbsLaMoqjcxqAsPw49GUpRBQnoFBf/t4kWZYZ65ulrd5I17ExPC6JhCV6iivTKKwwEK4PUhv6a5xnauqdfWuHsDY0IDscKPV69DXVRG3ZSmRNNaqYmEufyF+yDKOnfYlax2u+/w6QkPfHfWsZ5RCUWW9CoIViXBcJWpCF4kMXBEEQFifkY7qpD175vO83/dmb4NYfQlzWRb+0sWeSx/a20z4yiyFFz4VsHfFJOr5bkM7NSbGXvJQkORka+nf6+n+CJDlIX/JxsrM/j0Zz6WMvxWKxcOTIEVpaWnC5XBQUFFBTU0N6errf5xo+307TnufoO3GMMJ2e1TftYu2OW9FF+//i7plxYG0Zw3ZsDK/ZiTJSg25tCvqyFDRJ/jU6eT8uu4fOljHa6o1MDM6hUivJXZtESVUaafmxoqr2PiS7HeuRo1gOHWTu0GG8k5OgUqErLfW18N+yBe0i/v0siPnCO5W116GvDiS3byh2wXZfdS13i29YthCSQjGuiwQtyELxoQuCIAiLc03EdEmC4/8Gv/8ayBJs+waUfeqiXei8kswLrUN8781OJi1OIjMjmcyO5LbMBB7PTydRe+n9UE7XJL29z2A0Po9aHU1O9hdYsuRjKJWXX/Wx2+00NTVx9OhRHA4HOTk5VFdXk5WV5XeiMtbbTdNLz9PVfAS1Vsuqbdsp3XUHkfEJlz74L8iSjKNz2ldVa58CCbTZMUSWG4hYnoBCE5jKycTgHG31RjqbR3E5vMSm6CiuTKVofSq6ADUvuR7JkoTj9GnmDhxk7tBBXN09AIQVFPiajGzdSviyZSiC0ZnRMQvd+30JW9eb4DCDKgxybvDtWyvYDlH+VYSF4ArFuC4StCALxYcuCIIgLM41FdNnhmDvl3wvi5kb4NYfQ2LeRb90zuHmp4d7+GV9HxIyrqwo9PnRPFGUyW3JC6vazFk66Op6nOnpRnS6XPLzHyIx4YaAfBSn08mxY8dobGzEarWSkZFBTU0NeXl5fidqUxeGaH7pedob3kapVLJ8842U3XonMcnv7YK5EN45F9bWMawto3inHCgi1OjXJKMvN6AJ0Mwzt8tLT+s4bfVGRnrMKJUKslclUlKVRkZxfEBGAlzPXAMD7zYZsR0/DpKEOimJyM2bidq6Bd369SjDwgJ/Ya8bBo+808L/NZgZ9P39knV/XAqZXHzRpcjClROKcV0kaEEWig9dEARBWJxrLqbLMpz6H9j3IHicsPlh2PDZ990bM2Sy8Z03OnjtzAjqCDW2vChuXJHCk4WZpIRduiImyzKTkwfo6n4Cu72f+Phq8vMeIjKyICAfx+12c+LECRoaGjCbzaSmplJdXU1RURFKP6shM2OjtLz8Aufe3o8kSRRX3UD57R8hYUnGou5NlmScvWasLaPYz06CV0abEYW+3EDEyiSUYYGpqpmMVtoajJw/OorD6iYqPpziylSKN6YSGaDmJdczz/Q01tpa5g4cxFJfj2yzodDpiKysJHLLFiJv2IQ6Li7wF5ZlGG/743Ds4Vbf38dlvZOs3QyZG0ElunheaaEY10WCFmSh+NAFQRCExblmY/rcKOy91/db/CXr4Laf+H5z/z6a+0x8c+85zg7PQowGzbJ4HivL5m5D/IIqVpLk4sKF39DX/0O8XhtpaR8lJ/uLaLXxAfk4Ho+H06dPU19fj8lkIjExkerqapYvX45qngHcFzNnmuTYq3s4vX8fHreLgopKKnbfRXLW4pueeK1ubCfGsTaP4hm3odCq0K1OQl9mQJMeGZB9ZF63RO+pCdrqjVzomEahgMzlCZRUppG1IgGlSgxWvhTJ6cTW1MTcwYNYDh7CMz4OSiURa9cQtXkLUVu3oM3KCs7FZ0d889bOvw69b4PXCeGxvk6sRTsgdyuEX7qzqnD5QjGuiwQtyELxoQuCIAiLc03HdFmGcy/C6/f79sls+gpUfQlUF6+MSZLMiyeGeeKNdqYsLryGCMrK0/jh2hzSwxe2/8nlMtHX90OGjf+NSqUjO+sLpKd/HKUyMPunJEni3Llz1NXVMT4+TlxcHJWVlaxevRq1H4OqAWzmGVpff5mTb76Gy24jZ20ZFbvvIq3g/RPZS5FlGdfgHNbmUeynJ5DdEppUPfpyA7rVySgjAlMtMU/YaGsYoaNxBNusC12MluINqRRXphGTJIYqL4QsSTjOtfmajBw4iPP8eQC0OTm+JiObtxCxaiUKP38BsCBOC/Qe8i2F7NwHdhMoNZBd46usFe646OgMITBCMa6LBC3IQvGhC4IgCItzXcR066QvSTv3IhhW+Kppqave/8udHn72dg//8nYPHhkU2VF8dVsBn8pKRrnASpDF2kVX1+OYTHVERGSRn/dVEhO3BqwjoSRJdHZ2Ultbi9FoJCoqisrKStauXYvWz5lYDquFk/v20vr6yzgsc2QuX0nF7rvJWLbysu5XcniwnfRV1dxGKwqNkogViejLDWiXBmbmmdcrMXBmirYGI4Nnp5BlSC+Ko6QqjZxVSag0oqq2UK4Lw1gO+pqM2FqOgceDKiGByBs2EbV1K/oNG1BGBCH5lby+mYbnX/clbCZfgxNSV/1x35phhdi3FkChGNdFghZkofjQBUEQhMW5rmJ6+6vw2pd9CVvVPbDpAVC/f6OE4Rk7X3+tjf1nRpHDlGStSubX25eRo1v4vqfJqcN0dX0bm62HuLiN5Oc/TFRkUSA+DfDOoOreXmpraxkYGECn07FhwwbKysoI93NQtcth5/Rbb3Bs7x6sM9Ok5hey/o6/IntN6WUnU65hC9bmEWwnJ5CdXtRJEejLDOjWJqOKDEx1cc7koOPICG0NRiwmJ+GRGgrXG1hWlUZcgJqXfFB4Z2ex1NZhOXgQS20tksWCIiwM/caNvuraDTeg9nOo+oLIsm8Q/fnXfPvWhpoBGWIy3qms3QxLq0AtOnpejlCM6yJBC7JQfOiCIAjC4lx3Md1mgjcfhlP/DUlFvmpa+kXfCd7V2m/ii3vOcGHMAtEa/nprLt8oz0G1wKRFktwMG/+H3t5n8XhmSUu7i9yce9BqA/uCOzAwQF1dHd3d3YSFhVFRUcH69evR6fybV+ZxuTh7eD8tr7zA7MQ4SVk5VNx+F/kVG1Be5iBiyeXFfnoCa/MorsE5UCmIWJaAvsxAWG5sQLozSpLMULuJ9nojfacmkSSZ1LwYSqrSyF2bjEYrhin7Q3a5sB079m4Lf49xBBQKIlatInLLFqK2bEabmxuceXWWiXf2rb0BPQfBY4ewaMjb5qus5d8IEbGBv+51LhTjesgmaAqFQgk8BkQDx2RZ/vf5vl4kaIIgCEKwXbcxvestePWLMDcC6//J1+1R+/6JjCTJ/PuxQZ7Y14HL5iE6PZIf376SmvSFd79zu2fo6/sRF4Z/g1IZTnbWZ8nI+ARKZWDbnRuNRmpra+no6ECj0VBaWsrGjRuJiory6zxej4f2+sM0v/Q7pkeGiUtLp+L2j1BUuQmVn/vdLsY9ZsXaPIrtxDiSzYMqPhx9aQr60hRU0YH5nthmXe9W1czjdrQRagrKUyipSiMpw7/vh+Cr2Do7OnxNRg4cxNHWBoBmaea7TUYi1qxBEYB/H+/hskHf29Dxmi9ps06AUg1LN0LhTl91LW5p4K97HQrFuB6UBE2hUPwK2AWMy7K8/E/+fjvwLKACfiHL8nfmOcdu4HZgCnhNluUD811TJGiCIAhCsF3XMd0xC299DVp/DfE5vrlpWZXzHmJzevjSG+f4fcswsiRTvtrAz29ZQZxu4UuurNZeurufYHLqIBHhmeTlPUhS0ocCXoEYHx+nrq6Os2fPolQqWbt2LZWVlcTGxvp1Hkny0tXUSNOLzzEx2E90Ugrlt32YZZu2ofZzv9vFyG4J+7lJrM2jOHvNoITwwnj05QbCC+JRqC7/+yLLMsbOGc7VG+k9MYHXI5G8NIqSqjTyy1LQhotW74vhHh3FcugQcwcOYm1qArcbVWwskZs2+Vr4V1Wi1Adheakk+dr2/2Ep5ESH7++Tl/k6QhbeDKlrLjqsXgjNuB6sBK0GsAD/8YcETaFQqIBO4EbgAtACfBRfsvbEX5zik+/8Z1qW5X9VKBQvyLJ853zXFAmaIAiCEGwfiJje+za88nmYGYCy/wvbvgFhkfMecnZijk+9eIrRPjOqMBWf25bPFypzUPmxRG9qqo6u7sexWruIja2gIP9hoqKWXeaHudh1pmhoaODkyZMArFy5kqqqKhL93EMkyzK9x5tpevF5RrrPo4+Lp3TXblZtuxmNn/vd3o9n0o712CjWY2NIFjeqaC260hT0pQbU8YG5hsPq5vzRUdoajJiMVtRhKvJLkympTCMlOzDNSz6IvBYL1vp6X3Xt7VoksxmFRoNuw3qitvi6QmpSkoNz8akeX6J2/nXfoGxZgqhUKNgORTshqxo0YmbeH4RiXA/aEkeFQpEF7P2TBG0D8A1Zlm96589fBZBl+S+Tsz8c/3HAJcvy8wqF4jlZlu+e73oiQRMEQRCC7QMT011WOPAYNP3M15Dg1h9C7uZ5D5FlmR+fucAzb5xHmnaSmBDB07evoCY/acGXlSQPxpHn6e19Brd7mtTUO8nNuZewsMC/yJrNZhobG2ltbcXj8bBs2TKqq6sxGAx+nUeWZQbPnqJpz/MMnTtNRFQ0a3fcxuqbdhKunz+xXfA1vBKOdhPWllEcndMAhOXF+oZgFyegUF9+ZUSWZcb6ZmmrN9J1bAyPSyI+TU9JVRqFFQbC9ZceVC5cnOx2Yzt+wtcV8uBB3ENDAIQvX+5rMrJlC2EFBcFJhm0m6Pq9bylk9wFwW0Gjh7yt7+xb+xDoEwJ/3WtIKMb1K5mg3Qlsl2X5U+/8+a+BClmWP/c+x+uAHwE2oEOW5Z9c5Gs+DXwaICUlZd1vf/vbRd9vsFgsFiIjAxOgBUEQhKvrgxbTo83tFHX8EJ3diDH1Rnpy/w6vev4lWmYJfjCmpPe8DYXDS2Gymk8WakjRLzyJkGUbsvwqMgcANQrFThTciEIR+G51LpeLoaEhjEYjXq+XhIQEli5dSnS0/0OCLaPDjLQeZXawD6VWS/LytaSsXIs6wr/GJPNR2yH6goKoYQUahwKPVmZuicxsuow7QKvnvG4Z8wBM98g4pkGhhOgMiMtRoEtGVNUuhyyjGhkh7NQpwk6fRtvXD4A3IQHnypU4V63ElZ8PQZi3pvS6iJ05Q8JUM4mTzYS5TMgoMccUM5lYzlRCBXZdasCvG+pCMa5v3rw5NBM0f4kKmiAIghBsH8iY7rbD4e9A4w8h0gC7noHC7Zc87NURE/e92Y6jy4xKhk9szOJLW/OJiVh4JcZm66e7+ztMTL5FePgS8nIfIDl5Z1ASBLvdTlNTE01NTdjtdnJycqiuriYrK8vv64319dC853k6mxtRa7Ws2rad0l13EBkfuEqFLMk4uqaxNo/iaDeBJKPNjkZfnopueQIKTWBe8CcG52hrMNLZNIrL4SUmOYKSyjSKNqSiixbt3S+Xe3wcy+HDWA4ewtrYiOxyoYyKIrKmhqitW9BXV6Pys6HNgkgSjJz841LIsbO+v08sfGff2g5YUvqB2LcWinE9ZJc4+kskaIIgCEKwfaBj+nArvPw5GG+DlXfD9u+ALn7eQ8xuDw+eGeDVhkHUwzaiIjQ8cFMhHy3LQK1a+IufafoIXV2PY7G0ExOzjoL8R4iOXnm5n+iinE4nx44do7GxEavVSkZGBtXV1eTn5/udqE1dGKL5pedpb3gbpVLJshu2UX7bncQk+7eM8lK8cy6srWNYW0bxTjlQhKvRr01GX25AE6CZZ26Xl57WcdrqjYz0mFEqFWSvSqSkKo304niUARgJ8EEn2WxYGxuZO3AQy+HDeKenQa1GX15G5JatRG3ZjCYtLTgXnx74Y7I20ACSB/RJvn1rhTsg54Z5O7tey0Ixrl/JBE2Nr0nIVmAYX5OQj8myfG7RF/kTIkETBEEQgu0DH9M9Lqj7PtQ9BRFxsPP7UHLbJQ87bJrli03dTJ+eQjntIi85kq/tKqGmYOH702TZi3HkBXp6vo/bPYXBcDu5ufcTHhbYZOcP3G43J06coKGhAbPZjMFgoKamhqKiIpR+VhVmxkZpeeUFzh3ejyRJFFfdQPntHyFhSUZA71mWZJy9Zqwto9jPToJXRpsR5durtjIJZVhgqmqmESttDUbOHxnFYXUTFR9OcWUqxRtTiYwTzScCQfZ6sZ88+W4Lf1d/PwBhxcVEbd5M5NYthJeUBGe5qX0Guvf7krWut8A5C+oI3z7Uwh1QcBNEBqnByVUQinE9WF0c/we4AUgExoCvy7L8S4VCsQP4Ab7Ojb+SZfnxRV3gIkSCJgiCIASbiOnvGD0DL38WRk75ErQdT13yhc3i8fJYj5H/PHGBiM5ZvDYPW4qSeWhHMXnJC9//4fHM0T/wMwYHf4VCoWLp0n9gaeanUKkiLvdTvc/1PJw+fZr6+npMJhOJiYlUV1ezfPlyVH7uE5ozTXLs1T2c3r8Pj9tFQUUlFbvvIjkrJ+D37bW6sZ0Yx9o8imfchkKrQrc6CX2ZAU16ZEBe7L1uid5TE7TVG7nQMY1CAZnLEyipTCNrRQJKP6qkwvycvX1YDh1k7sBB7CdOgCyjNhiI3HwDUVu2oqsoRxmAMQ/v4XH5KmrnX/dV2MxDgALSy/64FDKxAK7hfYmhGNdDdlC1v0SCJgiCIASbiOl/wuvx7Us7/ARoI+HmJ2HFnZd8UWuctnBP2wAXzpuI6LOAV+bj65fypW35xPoxP81uH6K750nGx18nLMxAXu4DpKTcgkIRnKRAkiTOnTtHXV0d4+PjxMXFUVlZyerVq1H7OYjYNmvm+Osvc2LfXlx2Gzlry6jYfRdpBcUBv29ZlnENzmFtHsV+egLZLaFJ1aMvN6BbnYwyIjAzz8wTNtobRmg/MoLN7EIXo6V4QyrFlWnEJAUnef6g8phMWA4dZu7QQawNjch2O0q9Hn11NVFbNhNZU4PKz/l+CyLLvl/OnH/DN3Nt5JTv7+NzfbPWinZCejmorq05eqEY10WCFmSh+NAFQRCExREx/SImzvuqaRdaoOBm2PU0RM+/T8bmlfhu3wg/7x4lus+Ca9BCdLiGe7bl83/WL0XjR+VleqaFrq7HmJs7R3T0agryHyYmZu3lfqr3JUkSnZ2d1NbWYjQaiYqKYuPGjaxbtw6tnxUMh9XCyX17aX3jFRxzs2QsW8n6O+4mY9nKoCxdkxwebCcnsLaM4h62gFqJbkUi+nID2qzAzDyTvBL9Z6ZoazAyeHYKWYb0ojhKqtLIWZWESiOqaoEkORxYjxzBcvAQc4cO4Z2cBJUK3bp177bw12YEdintu8zD0PkGdLwOfbUguSEi3rcEsnAH5G655AzFUBCKcV0kaEEWig9dEARBWBwR09+H5IWmf4UD3wSVFm56HNZ8/JLVtGNmK/d0DNI9ZiG9z8rEiJXcJD2P7CzhhsKkBScMsiwxOrqH7p6ncLnGSUm5hbzcBwgPD1JDBd4ZVN3bS21tLQMDA+h0OjZs2EBZWRnhfg6qdjnsnN6/j2Ovvoh1ZprU/EIqdt9NztqyoLW0dw1bsDaPYDs5gez0ok6KQF9mQLc2GVVkYJbKWaYdtDeO0NZgxGJyEh6poXC9gZLKNOJTAzQTQHiXLEk4zpzxNRk5dBBnVzcAYfl57zYZCV+xAkUwOjM6ZqHngK+61vkmOGZAFQY5m3zVtYKbITo0W/iHYlwXCVqQheJDFwRBEBZHxPRLmOqBV74AA/WQs9k34Do2c95DHF6JZwbG+PHAKDEmN5Hdc4xPO6gpSOKRncUUpCy8xbjHY2Vg8F8ZHPwFAJmZn2Jp5j+gvsTstss1MDBAXV0d3d3dhIWFUVFRQUVFBXq9f9f1uFycPbyflldeYHZinKSsHCpuv4v8ig0olYGfiwUgubzYT09ibRnFNTALKgURyxLQlxkIy41FEYDujJIkM9Ruor3eSN+pSSRJJjUvhpLKNHLXJaPRBuezfdC5Bgd9TUYOHsLW2gpeL6qkRKJu8DUZ0a9fj9LPXyYsiNcNg0f/uBRyut/392lr/7hvLbkkZPathWJcv24StLyMEvl7X/rN1b6N95iZmSE2GOuABUEQhCtOxPQFkCWy3a+yzPmvAJwL+zR9mlt9047nMRgB/7FUwXA4ZHVYmLkwh0uW2RCuY7s+ikg/fuuv0EwQnvZfaOIbkNxxOI0fxW3aBAR3eZ3NO8O4qwuzZwQlKhI0WSRpc9Eo/XsJliUvlqnTzIzU4nZMoQlPJDa1msiElSiClKgBhHskkhxuEh0e1DI4lAomw9VMhqtxB6jhh+SVsM26sJpdeN0SCiVERGnRx4ShCVCXSeG9ZI8Hr9mMd3oar9nsq3orVaiio1HFxaGKjUGhXviMQr+4bWCbApsJnHO+v1OH+8Z06OIhPAa4eslaKMb1O+5bJxK0YArFhy4IgiAsjojpCxchjbLG8X1SvMeYVK3kePgDWJVL5j3Go4A3U+ANg4Jwu5fcM3N0m21oFQpu0kVSFaFH7cdv3VX684Qv+TdU+m68thwcF/4WrzXwjTj+ksM7y5irixnPMAqUxGsySdbmoVX6N0dKliWspjZmjG/jso+h1sYSm1ZNZOJqlMogvUwDClkmzuklyeEm2i0hAzNaFRPhasxaVcAqH067B5vZiX3ODYAmTIUuRosuShuQyp3wPmQJ7+wc3plpvNMzyG4XoEAZGYkqLhZVbFxwKmsAXhfYTb5kzT4DsgRKNejifPvXIuJ8f76CQjGuXzcJmljiKAiCIASbiOl+kmU4+V+w7yHfi9mWR2D9P8IlqkDtFjtf6hjk1JydTZpwFB0zHO2eIitBx8M7S9hWnOzX/rSxsVfp7nkSp3OU5OQd5OU+QEREkBon/AmTyUR9fT0nT54EYOXKlVRVVZGYmOjXeWRZpvd4C00vPsdI93n0cfGU7trNqm03ownWi/Q7PJN2rMdGsR4bQ7K4UUVr0ZWmoC81oI4PzLUdVjfnm0ZpqzdiMlpRh6nIX5dMSVUaKdmBaV4iXJwsyzjOtWE5eJC5gwdxdnQAoM3OJnLLZqK2biVi1SoUfo6UWBCXFXoO+Vr4d+7zVdmUGsiq8nWELNgOscH//2koxvXrZomjSNAEQRCEYBMxfZFmR2DvPb6Ob0tK4bafQHLRvId4JJmfDY3zvf5RIpRKPqbW8XbjED0TVirzEnhkZwnFqdELvgWv18bA4C8YGPg54CUj45NkLf0MavXC97gtltlsprGxkdbWVjweD8uWLaO6uhqDwb8h27IsM3j2FE17nmfo3GkioqJZu+M2Vt+0k3B9cLvlyV4JR7sJa8sojs5pAMLyYn1DsIsTUKgvfwmkLMuM9c3SVm+k69gYHpdEfJqekqo0CisMhOuDVzUUfNzDw8wdOozl4AGszS3g8aCKjyfyhhuI2rIZ/caNKHX+VYIXRPLCUPM789ZehylfgxMMK3171op2+P57EJL1UIzrIkELslB86IIgCMLiiJh+GWQZzv4vvH4/uCyw6StQ+UVQzf/S3W1zcE/7EC2zVm6IjWTDLPz67V5m7W7uLsvkyx8qIDEybMG34XCM0NP7FKOjL6HVJpKTcy9pqXeiUAR//5PFYuHo0aM0NzfjcrkoKCigpqaG9PR0v881fL6dpj3P0XfiGNoIHWu272LtjtvQRccE4c7/nGfGgbVlDNuxMbxmJ0q9Bt26ZN8Q7KTAvLy77B66jo3RVm9kfGAOlVpJzpokllWlkVYQK6pqV4B3bg5LbS2Wg4ew1NYizc2hCAtDv2GDr7q2eTPqpKTgXHyyy5eodbwOQ02ADNFLfB0hC3dAVjWoA9NtNBTjukjQgiwUH7ogCIKwOCKmB4BlAl6/D9pe8v1G/LafQOrKeQ/xyjK/Hp7k8Z4RVAq4Pz2Z0bNT/OfRAcI1Kj63JY+/q8wiTL3wJMs8e4qurm9hNh8nMrKY/PyHiY/bcJkfbmHsdjtNTU00NTVht9vJzs6mpqaGrKwsvxOPsb4emvc8T2dzI2qtllXbtlO66w4i4xOCdPd/JEsyjq5prM2jONpNIMlos6PRl6eiW56AQhOYpHdiaI62eiOdzWO47B5ikiMoqUyjaEMquujAvKQL85NdLmytrcwdPITlwAHcRiMA4atWEvVOC39tXl5wEmfrpK91//nXoeegr+mINgryt/mStfwbfXvXFikU47pI0IIsFB+6IAiCsDgipgdQ28vw2n2+hgFV90LNfaCevxI2YHdyb8cQDTMWqmIj+WJiPP92oIcDHeNkxuv46s1FbF9u8GN/msz4+Gt09zyJwzFMUuKN5OU9iE6XFYAPeGlOp5Njx47R2NiI1WolIyOD6upq8vPz/X7RnbowRPNLz9Pe8DZKpZJlN2yj/LY7iUn2bxnlYnnnXFhbx7C2jOKdcqAIV6Nfm4y+3IDGEJgxB26Xl57j47TVGxnpNqNUKshelUhJVRrpxfEoRWORK0KWZZydncwdOIDl4CEcZ88CoMnMJGrzZiK3bEG3bi0KdRCafbjt0Pv2O0sh3wDrOChUsHTjH5dCxmX5dcpQjOsiQQuyUHzogiAIwuKImB5gNhPs+yqc/i0kFfuqaenr5j1EkmV+Y5zimz1GvDI8nJtKvk3m2691cH5sjvLseL62q4TlSxa+1M/rdTA09Cv6B/4FSXKTkfEJsrM+d0X2pwG43W5OnDhBQ0MDZrMZg8FATU0NRUVFKP0cKjwzNkrLKy9w7vB+JEmiuOoGym//CAlLgt9sAXxVNWefGWvzKPazk+CV0WREEVlmIGJVEsoAtdI3jVhpazBy/sgoDqubqPhwiitTKd6YSmRccBunCH/OPTqK5fBh5g4cxHb0KLLbjTImhshNNURt2Yq+qgpVZBBmEUoSGI9Dx2u+ZG2i3ff3ySW+ZK1wB6StgUv8fygU47pI0IIsFB+6IAiCsDgipgdJ55vw6pfAMgobPgebHwJNxLyHXHC4uP/8EIdMc5TH6HmqYAnNZyd4+q1Opm0u7lybzv03FZIcvfCXdadznJ7epxkZeQGNJo6cnHtIS70L5RVq++3xeDhz5gx1dXWYTCYSExOprq5m+fLlqPzsojdnmuTYq3s4vX8fHreLgvKNVNxxN8lZOUG6+/fyWt3YToxjbR7FM25DoVWhW53k26uWHhmQ5XBet0TvqQna6o1c6JhGoYDM5QmUVKaRtSIBZYDmtwkL47VYsTY0YDl4AMvht/GazSg0GnTr1xO1xVdd06SkBOfipt53hmO/AQONIHsh0gCF233JWvYm0Lw3HoRiXBcJWpCF4kMXBEEQFkfE9CBymOH3j8Lxf4f4XF81ben8e8JkWeb50Wm+1j2MU5K4PzuVjybE8rO3e/h1Qx8alZLPbs7j76uyCfdjP9Ts3Fm6uh5nZqYZvT6f/PxHSIivutxPuGCSJHHu3Dnq6uoYHx8nNjaWqqoqVq9ejdrPZWO2WTPHX3+ZE/v24rLbyFlbRsXuu0grCP48uD+QZRnX4JyvqnZ6AtktoUnVoy8zoFuTjDIiMAmwecJGe8MI7UdGsJld6GK0FG1IpaQyjZik+RN+IfBkjwfb8eNYDh5i7uBB3IODAIQvW/ZuC/+wwsLg7FuzmaDrLTj/GnQf8DUm0ughd7OvhX/+TaD37dMMxbguErQgC8WHLgiCICyOiOlXQM8hePULMDME5Z+GbV8H7fzLo8acbr7SOcS+yVlWR+l4piiDCIfEE2+08+a5MZbERvDgzUXsWpnq1/60iYnf09X9BA7HEIkJW8jL+yp6/ZWrQEmSRGdnJ7W1tRiNRqKioti4cSPr1q1Dq/WvOYbDauHkvr20vvEKjrlZMpatZP0dd5OxbOUV7YgoOTzYTk5gbRnFPWwBtRLdikT05Qa0WYGZeSZ5JfrPTNHWYGTw7BSyDOlFcZRUpZGzKgmVRlTVrjRZlnH19LzbZMR++jTIMpq0NCK3bCFqy2Z0paUo/Px3vSAeJ/TX+TpCnn8D5oygUEJGBRTuoMmcRMWOjwb+updBJGhBJn6YC4IgXD9ETL9CnBY48E1o/leIXQq3/ghyNs17iCzLvDw+w0NdF5jzSNyTlcLnM1No6Zvisb3ttI/Msm5pHI/uKmF1RuyCb0WSnAwN/Tt9/T9BkhykL/k42dmfR6NZ+DkulyzL9Pb2Ultby8DAADqdjg0bNlBWVka4n4OqXQ47p/fv49jePVinTaTmF1Kx+25y1pZd8db1rmEL1pZRbCfGkZ1e1EkRvqra2mRUkYF5UbdMO2hvHKGtwYjF5CRcr6FwvYGSqjTiU4OwL0pYEM/EBHOHD2M5eAhrYyOy04kyKorI6moit2whsqYaVfTC5xwumCzDyElfotbxOoydYcSwjdTP/G/gr3UZRIIWZOKHuSAIwvVDxPQrbKARXv4cmHpg3d/Cjd+E8Pmbf0y6PDzSdYGXxmdYFhnOD4oyKdFH8ELrEN97s5NJi5M71izh/u2FpMYsfNmb0zVJb+8zGI3Po1ZHk5P9BZYs+RhK5ZUdnjwwMEBdXR3d3d2EhYVRUVFBRUUFer1/yYbH5eLs4f20vPICsxPjJC3NpmL3XeRXbESpDP5MuD8lubzYT09ibRnFNTALKgURJQnoyw2E5caiCEB3RkmSudBuoq3eSN+pSSRJJjU3hpKqNHLXJaPRXtnPLPyRZLNhPXKEuYMHsRw6jNdkArUaXVkpUVu2Erl5M9r0JcG5+MwgR480sv7mvwrO+RdJJGhBJn6YC4IgXD9ETL8K3HY49G048mOISoVbnvXNPbqENyZm+ErnBabcHj6fmcI9WSm4XF5+eriHX9b3oVTAZzbl8g81uUT48XI+Z+mgq+txpqcb0elyyc9/iMSEGy7jAy6O0Wikrq6O9vZ2NBoNpaWlbNy4kago/zpPej0eOhrepuml3zFtvEBcWjoVt3+EospNqILRJv0S3GNWrM2+qppk86CKD0dfmoJ+XQqqmIUPJJ+PbdZFxxFfVc08bkcboaagPIWSyjSSMq9M507h4mSvF/up01gOHmDu4CFcvb0AhBUWErV1C5GbtxC+fFlAq72hGNdFghZkofjQBUEQhMURMf0qutAKL3/W10p71Ufhpm+DLn7eQ2bcHr7ebeS5URP5ujCeLcpkbYyeIZON77zRwWtnRkiNCeeB7YXctmrJgudoybLM5OQBurqfwG7vJz6+mvy8h4iMLAjEJ/XL+Pg4dXV1nD17FqVSyZo1a6isrCQuzr/BvZLkpaupkaYXn2NisJ/opBTKb/swyzZtQx2MfUGXILsl7Od8VTVnjxkUEF4Uj77MQHhhPArV5b+gy7KMsWuGtnojPccn8HokkjKjKKlKo6AsBW2AmpcIi+fs6/M1GTl0EPvxEyBJqFNSiNx8A1Fbt6KrqEB5mf8+QzGuiwQtyELxoQuCIAiLI2L6VeZxQu1TUP80RMTDrqeh+JZLHnZwapb7zw8x4nTz6YwkHshORadS0txn4rG9bZwZNrMqI5av7Sph3dKFJzaS5OLChd/Q1/9DvF4baWkfJSf7i2i18yeOwWAymaivr+fkyZMArFy5kqqqKhITE/06jyzL9B5voenF5xjpPo8+Lp7SXbtZte1mNH7udwsUz6Qd67FRrMfGkCxuVNFadKUp6EsNqOMDc08Oq5vzTaO01RsxGa2ow1Tkr0umpCqNlOzANC8RLo/HZMLydq2vhX99A7LdjlKnQ19VRdTWLehralD7+YsJCM24LhK0IAvFhy4IgiAsjojpIWLktK+aNnoalu2Gm78HkUnzHjLn8fJYj5H/ME6RHaHl6aJMNsRGIkkyL54Y5sl9HYzPObl1VRpfubmIJbEL35/mcpno7XsWo/F/UKl0ZGd9gfT0j6NUXvnKk9lsprGxkdbWVjweD8uWLaO6uhqDweDXeWRZZvDsKZr2PM/QudOER0Wz7uZbWb19F+H6yCDd/SXuySvhaDdhbRnF0TkNQFheLPpyAxHFCSjUl9+dUZZlxvpnaas30nVsHI/TS3yanpKqNAorDITrr+yeQ+HiJKcT65Ej71bXvBOToFKhW7vW1xVy6xa0mZkLOlcoxnWRoAVZKD50QRAEYXFETA8hXjc0/ADefhLCouDmJ2H5h+ESlY766Tm+3DHEgMPF3y1J5OGcVCLVKqxODz97u4ef1/r2vHy6JofPbMpFH7bwZW4WSydd3d/GZKojIiLrnf1pW65K9cVisXD06FGam5txuVwUFBRQU1NDenq63+cydrbTtOd5eo+3oI3QsWb7LtbuuA1d9PwNW4LJM+PEdmwUa8sYXrMTpV6Dbl2ybwh2ki4g13DZPXQdG6Ot3sj4wBwqtZKcNUksq0ojrSBWVNVChCxJOM6e9TUZOXAQZ1cXANq8XKI2+5K18JUrUSgvnsCHYlwXCVqQheJDFwRBEBZHxPQQNN7uq6YNt0LhTtj5fYhOnfcQq9fLd3pH+MWFSZaEa/h+YSab4n3NIYZn7Hz3jQ5eOWUkOSqM+28q5MNr0/3anzY1dZiu7iew2XqIi9tIfv7DREUWXfZHXQy73U5TUxNNTU3Y7Xays7OpqakhKyvL7wRjrK+H5j3P09nciFqrZdW27ZTuuoPI+IQg3f2lyZKMo2saa/MojnYTSDLa7Gj05anolieg8GNA+XwmhuZoqzfS2TyGy+4hJjmCkso0ijakoou+8pVS4f25hoawHDzI3MFD2I4dA68XVWIiUZtvIHLzFvQbN6D8k+W6oRjXRYIWZKH40AVBEITFETE9REleOPpTOPgtUIfBTU/A6o9dsprWPGPhno4heuxOPpYaz9dz04jR+CpmrQPTPLa3jZNDM6xYEsOju0ooz1743jJJcjM8/N/09j2LxzNHWtpd5Obcg1br356wQHE6nRw7dowjR45gsVjIyMigurqa/Px8vxO1qQtDNL/0PO0Nb6NUKll2wzbKb7uTmGT/llEGmnfOhbV1DFvLKJ4pB4pwNbo1SejLU9EGaOaZ2+Wl5/g4bfVGRrrNKJUKslYlUlKVRkZx/IITeeHK8M7MYKmrY+7gQay1dUhWK4rwcPSVlURt2ULkDZuoP3Mm5OK6SNCCTPwwFwRBuH6ImB7ipnp8c9MGGyF3q68lf2zGvIfYvRLf7x/lp4PjJGs1PFmYzocSfUv3JEnmlVNGvruvgxGzgx0rDHz15mIy4he+hM7tnqGv70dcGP4NSmU42VmfJSPjEyiVgWkZ7y+3282JEydoaGjAbDZjMBiorq6muLgY5fssAXs/M2OjtLzyAucO70eSJIorN1F++10kpM//PQ82WZJx9pmxNo9iPzsJXhlNRhSRZQYiViWhDAtMVc00YqWtwcj5I6M4rG4i48MoqUyjeGMqkXFXp6GK8P4klwtbc8u7Lfw9o6OgUGDdsoXSn/z4at/enxEJWpCJH+aCIAjXDxHTrwGSBMd+CW993VdBu/GbsO7v4BLJx4lZG/d0DNJhdfDhlDgey19C/DvVNLvLy89re/nZ2z14JZlPVmXz2c25RIUvvGGE1dpLd/cTTE4dJCI8k7y8B0lK+tBV28fk8Xg4c+YMdXV1mEwmEhMTqa6uZvny5ahU/iUwc6ZJWvfu4dRb+/C4XRSUb6TijrtJzsoJ0t0vnNfqxnZiHGvLKJ4xGwqtCt2qJPTlBjTpkQH5/nvdEr2nJmirN3KhYxqFAjKXJVBSlcbSFQmoVJffvEQILFmWcbS1YTl4iG6Xiw1fvvdq39KfEQlakIkf5oIgCNcPEdOvIdMD8OoXoPcwZFXDrT+E+PkTBpck8ezAGM8OjBGrVvNEQTq3JMe++7+Pmh08+WYHLx4fJjFSy30fKuQjpRmo/FjWNjVVR1f341itXcTGVlCQ/zBRUcsW+SEvnyRJtLW1UVtby/j4OLGxsVRVVbF69WrUfg6qts2aOf76y5zYtxeX3UbO2jIqdt9FWkFxkO5+4WRZxjU456uqnZ5AdktoDHr05QZ0q5NQ6gLTndE8Yae9wUj7kRFsZhe6aC1FG1MpqUwlJkDNS4TACsW4LhK0IAvFhy4IgiAsjojp1xhZhhP/CW8+7Ov6uPVrUPEPoJy/QnTOYuee9kFOW+zsTIrhOwXpJGn/+AJ/amiGb+5to3VgmuLUaB7dVczG3IXvLZMkD8aR5+ntfQa3e5rU1DvJzbmXsLDkRX/UyyVJEp2dndTV1TE8PExUVBQbN25k3bp1aP0cBOywWji5by+tb7yCY26WjGUrqdh9F5nLV4VE50PJ4cF2cgJryyjuYQuolehWJKIvM6AN0MwzySvRf2aKtgYjg2enkGVIL4qjpDKNnNVJqDSiqhYqQjGuiwQtyELxoQuCIAiLI2L6Nco8DHvvga43Ib0cbvsJJBXMe4hHkvmXoXG+1zeKXqXksfwlfDgl7t2Xd1mWee3MCE+83sHwjJ0PlaTw0I5ishIX3ozC7Z6lv//HDF34D5RKLVlLP0NGxidRqa7e/iVZlunt7aW2tpaBgQF0Oh3r16+nvLyccD8HVbscdk7v38exvXuwTptIzS+kYvfd5KwtC4lEDcA1bMHaMortxDiy04s6KQJ9mQHd2mRUkYHpzmiZdtDeOEJ7wwhzJgfheg2F6w2UVKURH6DmJcLihWJcFwlakIXiQxcEQRAWR8T0a5gsw5nfwRsPgMsGNzwIG78AqvmX8XVaHdzTMUjrrI1tCdE8WZBOWvgfX9wdbi+/rO/jp4e6cXkl/nZjFp/bkk9MxMKXzNls/XR3f4eJybcID19CXu4DJCfvvOpJzODgILW1tXR3dxMWFkZFRQUVFRXo9f4lFR6Xi3Nv76f55ReYnRgnaWk2FbvvIr9iI8pLVDOvFMnlxX56EmvLKK6BWVApiChJQF9uICw3FkUAujNKksyFdhNt9Ub6Tk0iSTKpuTGUVKWRuy4ZjTY0vhcfNKEY10WCFmSh+NAFQRCExREx/TpgGYfXvgztr0Dqal81zbB83kO8sswvL0zwRO8IaoWCb+Qt4WOp8X+WQI3POnjq9+f5XesF4nRa7rmxgI+WZaD2o0GEafoIXV2PY7G0ExOzjoL8R4iOXrnYTxowRqORuro62tvb0Wg0lJaWsnHjRqKiovw6j9fjoaPhbZpe+h3TxgvEpaVTcftHKKrchMrP/W7B5B6zYm0Zw3Z8DMnmQRUfjr40Bf26FFQxgem+aZt10XF0hLZ6I+ZxO9oINQXlKZRUppGU6d/3Vbg8oRjXRYIWZKH40AVBEITFETH9OnLuJXj9PrBPQ/V9UP1lUM+/pK3P5uTe84McmbFSExfJU4UZZEb8+Qv72WEzj+1to6nPREFKJI/sLKGmIGnBtyXLXowjL9DT833c7ikMhtvJzb2f8LCrO2MMYHx8nPr6es6cOYNSqWTNmjVUVlYSFxfn13kkyUtXUyNNe55nYqCP6KQUym79MMtv2Ibaz/1uwSR7JOznJrE2j+LsMYMCwovi0ZcZCC+MR6G6/KqaLMsYu2ZoqzfSc3wCr0ciKTOKkqo0CspS0EaETuJ6vQrFuC4StCALxYcuCIIgLI6I6dcZ6xTsexDOPA/Jy+D2n0DamnkPkWSZ/zBO8ViPERl4OCeVv1uSiPJPqmmyLPPmuVG+/XoHgyYbW4qSeWhHMXnJkQu+NY9njv6BnzE4+CsUChVLl/4DSzM/hUoVsdhPGzAmk4n6+npOnjwJwIoVK6iuriYx0b8h3LIs03u8haY9zzHSdR59XDylu3azatvNaPzc7xZsnkk71mOjWI+NIVncKKO1vqpaqQF1fGDu1WF1c75plLZ6IyajFbVWSX5pCiVVaaQEqHmJ8F6hGNdFghZkofjQBUEQhMURMf06df4NXxMRyzhUfgE2PQia+V+6hxwu7u8Y4vD0HOtj9DxdlEmO7s+raU6Pl39r6OdHB7txuL18fP1SvrQtn1jdwqtEdvsQ3T1PMj7+OmFhBvJyHyAl5RYUiqvfBdBsNtPY2Ehraysej4dly5ZRXV2NweBftU+WZYbOneboi88xdO404VHRrLv5VlZv30W4fuFJ7ZUgeyUcHSaszaM4OqcBCMuLRV9mIKIkAYX68p+LLMuM9c/SVm+k69g4HqeX+DQ9JZVpFK43EK4PzEgAwScU47pI0IIsFB+6IAiCsDgipl/H7DPw+0d8bfkT8n170zIr5j1ElmV+O2ri693DuCSZr2Sn8umMJFR/UemYtDh5+q1Ofts8SFS4hnu25fN/1i9F48f+tOmZFrq6HmNu7hzR0aspyH+EmJj5q31XisVi4ejRozQ3N+NyuSgoKKC6upqMjAy/z2XsbKdpz/P0Hm9BG6FjzfZdrN1xG7romCDc+eXxzDixHRvF2jKG1+xEqdegW5eMvsyAJkAzz1x2D13HxmirNzI+MIdKrSRnTRLLqtJIK4gVVbUACMW4ft0kaMtS8+Tn/+6pq30b7+HxePwe9CgIgiCEJhHTr396xVnS1L9GwxQm6UbGvHciM39jiMkwFT8oTuBIko7iGSf3tU2SZXW/5+v6ZPh/sopTKElH5v8qvJQqFv6uJSNhTz2GJe8NpLBZwkfXENW1E5XTvz1gweLCQ7dyki7VBC6Fl2QpkmJvCklyJAr8SyQkScLrdiF5vKAAlVqDSq0JSDfFgJNBjQatHIYaLQoUeHDjUjhx48TPj/7+l5FkvB4ZySshy6BQgkqlRKlWIvK0xQvFuL78id0iQQumUHzogiAIwuKImP7BoMROsup3JKgO4JKTGPb8PTa5eN5jZOCQQc+PCuOxq5X8de8Md/ebUf/Fq5QsQxMKfimrMKJgLRKfUnhZ6scLtqRyYl16EOvSwwDoBzajH9iM0huYDoOXy4OXHuUUnapxHAoPCZKOYm8KBjna70RNliQ8bjeSxwOASq1GpdGgUF79JZ4Xo5CVaGUtGsJRoUJGwoULl8KBpPAG5iIyeL0SkldG8vr+gSlVClRqJUqlImAJ4QdFKMb16yZBE0scBUEQhGATMf0Dpr8BXvkcmHqh9JOw7Z8hPHreQyZcbh7uGuaV8RmWR0bwg6IMlke9d7mbyyPxH0f6efZAFzaXl4+VZ3LPjQXE6xe+P83hMNLd8yRjY6+i1SaTl3sfBsPukNifBuB2uzlx4gQNDQ2YzWYMBgPV1dUUFxej9DPBMo+P0vzyC5w7vB9Jkiiu3ET57XeRkO7/MsorQZZlnL1mrM2j2M9OgldGkxGFviwF3aoklGGBSQhMI1baGoycPzKKw+omMj6M4o1pFG9MJSpAzUuud6EY16+bJY4iQRMEQRCCTcT0DyCXDQ49Dkd+AtFL4JZnIX/bJQ97bWKGBzsvMO328PnMFL6UlULYRZISk9XFD/Z38l9Ng+i0Kr64NZ+/2ZCF1o9mEzPmVrq6Hmd29hRRUcspyH+U2NiLvttdFV6vl9OnT1NXV4fJZCIxMZHq6mqWL1+OSuXfcOY50ySte/dw6q19eNwuCso3Ur77LlKyc4N095fPa3VjOzGOtWUUz5gNhVaFblUS+nIDmvTIgOwj87olek9N0FZv5ELHNAoFZC5LoKQqjaUrElD5sd/xgyYU47pI0IIsFB+6IAiCsDgipn+ADbXAy5+FyfOw+v/ATY9DxPx7v0xuD1/rGuaFsWkK9eE8U5TB2mj9Rb+2a2yOx15rp7ZzguxEPQ/tKGZbcfKCX95lWWJs7FW6e57E6RwlOXkHebkPEBEROhUmSZJoa2ujtraW8fFxYmNjqaqqYvXq1X4vMbPNmjn++suc2LcXl91G9ppSKnbfzZLC+ZeiXk2yLOManPNV1U5PILslNAY9+nIDutVJKHWB6c5onrDT3mCk/cgINrMLXbSWoo2plFSmEhOg5iXXk1CM6yJBC7JQfOiCIAjC4oiY/gHndkDtk1D/A9Anwq5noGjnJQ97a9LMA50XGHO6+UxGMvdnG4h4n4rGofPjfGtvGz0TVirzEnhkZwnFqfMvq/xTXq+NgcFfMDDwc8BLRsYnyVr6GdTqqAWfI9gkSaKzs5O6ujqGh4eJiopi48aNrFu3Dq2fg6odVgsn33yN1tdfxjE3S8aylVTsvovM5atCusOh5PBgOzWBtXkU97AF1Ep0KxLRlxnQBmjmmeSVGDg7RVu9kYGzU8gypBfFUVKZRs7qJFQaUVWD0IzrIkELslB86IIgCMLiiJguAGA86aumjZ2F5R+Gm5/0JWzzmPV4+Wa3kd+MTJETEcYzRRlUxF58xpfbK/HfTYM8s7+TWbubu8sy+fKHCkiMXHgTEIdjhJ7epxgdfQmtNpGcnHtJS70ThcK/JYXBJMsyvb291NXV0d/fj06nY/369ZSXlxPu56Bqt8PBqf1vcGzvHqzTJlLzCqm4425y1paFdKIG4Bq2YG0ZxXZiHNnpRZ0Ugb7MgG5tMqpI/xLW92OZdtDeOEJ7wwhzJgfheg2F6w2UVKURn3rxqu4HRSjGdZGgBVkoPnRBEARhcURMF97lcUHDD+DtJ32NQ3Z8D5bdwaX6ndea5vjy+SEuOFx8ckkiD+WkoldfPGmasbl49kAX/3lkgHCNis9tyePvKrMIe5+vvxjz7Cm6ur6F2XycyMhi8vMfJj5ugz+f9IoYHByktraW7u5uwsLCqKiooKKiAr3ev+TB43Jx7u39NL/8ArMT4yQtzaZi913kV2xEqQyd5PRiJJcX++lJrC2juAZmQaUgoiQBfbmBsNzYgIwYkCWZoXYTbfVG+k5NIkkyqbkxlFSlkbsuGY02tL9HwRCKcV0kaEEWig9dEARBWBwR04X3GGvzVdOMx6FoF+z8PkQZ5j3E6vHy7d4Rfjk8SUa4lqcLM6iOf/8liD0TFr79WjsHOsbJjNfx1ZuL2L7c4Mf+NJnx8dfo7nkSh2OYpMQbyct7EJ0uy59PekUYjUbq6upob29Ho9FQWlrKhg0biI5e+DJPAK/HQ0fD2zS99DumjReIS0un4vaPUFS5CVWItVS/GPeYFWvLGLbjY0g2D6q4MPSlBvSlKahiAjNOwTbrouPoCG31RszjdrThKgrKfVW1pMzQWRIbbKEY10WCFmSh+NAFQRCExRExXbgorweO/gQOPg6aCNj+HVj1V5esph2dsXBvxxC9dicfT03ga3lpRM9THavrmuBbe9s5PzZHeXY8X9tVwvIlMQu/Ta+DoaFf0T/wL0iSm4yMT5Cd9bmQ2p/2B+Pj49TX13PmzBmUSiVr1qyhsrKSuDj/hnJLkpeupiM07XmOiYE+opNSKLv1wyy/YRtqP/e7XQ2yR8J+bhJr8yjOHjMoILwoHn2ZgfDCeBSqAFTVZBlj1wxt9UZ6jk/g9UgkZUZRUpVGQVkK2ojQT2gvRyjGdZGgBVkoPnRBEARhcURMF+Y12QUvfw6GjkLejXDLDyAmfd5D7F6J7/WN8rOhcVLCNDxZkM6Nie+fdHm8Er9tGeLptzqZtrm4c206999USHL0wvdsOZ3j9PQ+zcjIC2g0ceTk3ENa6l0olaH3Im4ymWhoaODEiRPIsszKlSuprq4mMXH+PX9/SZZl+k4c4+iLv2Wk6zz6uHhKd+1m1bab0fi53+1q8UzZsbaMYW0dRZpzo4zWol+Xgr7MgDpAM88cVjedzaO01RuZGrai1irJK01hWVUaKQFqXhJqQjGuiwQtyELxoQuCIAiLI2K6cEmSBC3/D/Z/AxQq+NBjsO5vL1lNOz5r5Z6OIc5bHdyZEsdj+UuI07x/wmS2u/nJoW5+3dCHRqXks5vz+PuqbMI1C99DNDt3lq6ux5mZaUavzyc//xES4qsWfPyVZDabaWxspLW1FY/HQ0lJCTU1NRgM8y8n/UuyLDN07jRHX3yOoXOnCY+KZt3Nt7J6+y7C9Rdv2hJqZK+Eo8OEtXkUR+c0AGF5sejLDESUJKDwY4be+15Dlhnrn6Wt3kjXsXE8Ti/xaXpKKtMoXG8gXB+YkQChIBTjukjQgiwUH7ogCIKwOCKmCwtm6oNXvwB9tZBdA7f8EOKz5z3EKUn8oH+MHw2OEadR852CdHYmxc57TP+klSfeaOfNc2MsiY3gwZuL2LUy1a/9aRMTv6er+wkcjiESE7aQl/dV9PqchX7SK8pisXD06FGam5txuVwUFBRQXV1NRob/896Mne007Xme3uMtaCN0rNm+i7U7bkMXvfBlo1ebZ8aJ7dgo1pYxvGYnSr0a3doU3xDsAM08czk8dLWM0VZvZHxgDpVaSc6aJEqq0lhSEHvNV9VCMa6LBC3IQvGhC4IgCIsjYrrgF1mG4/8Obz4Cshe2fh3KPw3K+SscZ+ds3NMxxBmLnVuSYvl2wRKStPNXLBp7JnlsbzvtI7OsWxrH13aVsCojdsG3KklOhob+nb7+nyBJDtKXfJzs7M+j0Sz8HFeS3W6nubmZo0ePYrfbyc7OpqamhqysLL8ThvH+Xpr2PE9nUwNqrZaVW7dTestuouL9W0Z5NcmSjLNr2jcEu90Ekow2K9o3BHtFIgo/KqvzmbwwR1udkfPNY7jsHmKSIiipSqNoQyq66NDf03cxoRjXRYIWZKH40AVBEITFETFdWBTzBXj1S9D9FmSsh9t+Aol58x7ilmR+OjjO9/tHiVQr+VZ+OruT569WeCWZ3x0b4qnfn2fS4uKONUt4YHsRhhg/9qe5JuntfQaj8XnU6mhycr7IkrSPolSG5pI2p9NJa2srjY2NWCwW0tPTqampIT8/3+9EberCEM0v/472+sMolUqW3bCN8tvuJCbZv2WUV5t3zoW1dQxbyyieKQeKcDW6NUnoy1PRBmjmmdvlpef4OG31Rka6zSiVCrJWJVJSlUZGcTzKAIwEuFJCMa6LBC3IQvGhC4IgCIsjYrqwaLIMp5+DN74CHgdsfgjWfxZU8zfmOG91cE/HIMdnbXwoIZrvFqaTGjZ/pWLO4eanh3v4ZV0fKqWCz2zK5dM1OUT4MeNqbq6dru7HmZ4+gk6XS37+QyQm3LDg4680t9vNiRMnaGhowGw2YzAYqK6upri4GOUlKpZ/yTw+Sssr/8vZQ28hSRLFlZsov/0uEtL9X0Z5NcmyjLPXjLVlFPvZSfDIaDKi0JeloFuVhDIsME1hpkettNUb6Tg6isPiJjI+jOKNaRRvTCUqQM1LgikU47pI0IIsFB+6IAiCsDgipguXbW4MXrsXOvZC2lpfNS2lZN5DvLLM/xua4Dt9I2iVCv45bwl/ZYi/ZIVoyGTjO2908NqZEVJjwvnK9iJuXZW24OqGLMtMTh6gq/vb2O0DJMTXkJf/EJH6/AV/3CvN6/Vy+vRp6urqMJlMJCYmUlVVxYoVK1Cp/FvmN2eapHXvHk7t34fH5aKgfCPlu+8iJTs3SHcfPF6rG9uJcawto3jGbCi0KnSrknx71dIjA7KPzOuW6D01QVu9kQsd0ygUkLksgZKqNJauSECluvzmJcEQinFdJGhBFooPXRAEQVgcEdOFgJBlOLcHXr8fHGbY9ABU3QOq+ZcR9tqc3NsxyFGzlRviovheUQYZ4Zfe99PcZ+Kbe89xdniW1RmxPLqrhHVLFz5PTJJcXLjwG/r6f4jXa2NJ2sfIzv4CWm38gs9xpUmSRFtbG3V1dYyNjREbG0tVVRWrV69G7eegatusmeOvv8KJfa/istvIXlNKxe67WVJYHKS7Dx5ZlnENzvmqaqcmkN0SGoPet1dtdRJKXWCWspon7LQ3GGk/MoLN7EIXraVoYyollanEBKh5SaCEYlwXCVqQheJDFwRBEBZHxHQhoKyTviWPZ1+AlBVw248hbfW8h0iyzL8NT/Kt3hEUwKO5afxNWgLKS1RAJEnmxRPDPLmvg/E5J7euSuMrNxexJDZiwbfrcpno7XsWo/F/UKn0ZGd9nvT0j6NUhm5zCFmW6ezspLa2luHhYaKioti4cSPr1q1D6+egaofVwsk3X6P19ZdxzM2SsWwlFbvvInP5qmuyk6Hk8GA7NYG1eRT3sAXUSnQrEtGXGdAGaOaZ5JUYODtFW72RgbNTyDIsKYxjWVUaOauTUGmuflUtFOO6SNCCLBQfuiAIgrA4IqYLQdHxGuy9F6wTUPUlqHkANPPv3Rm0O7nv/BC10xY2xOp5ujCTbF3YJS9ldXr42ds9/Ly2F4BP1+TwmU256P3Yj2SxdNLV/W1MpjoiIrLe2Z+2JaSTFFmW6e3tpa6ujv7+fnQ6HevXr6e8vJxwPwdVux0OTh/YR8urL2KdNpGaV0jFHXeRs7Y8pL8H83ENW7C2jGI7MY7s9KJOikBfZkC3NhlVZGAScMu0g/bGEdobRpgzOQjXayhcb6CkMo34tMA0L1mMUIzrIkELslB86IIgCMLiiJguBI192teO/+RvILHQtzcto2zeQ2RZ5n9GTHy9exiPLPNgTiqfSk9CtYAkYXjGznff6OCVU0aSo8K4/6ZCPrw23a/9aVNTh+nqfgKbrYe4uI3k5z9MVGTRgo6/mgYHB6mtraW7u5uwsDDKy8tZv349er1/SYLH5eLc2/tpfvl/mZ0YIykzi4o77ia/YiNKZWDa2l9pksuL/cwk1uZRXAOzoFIQUZKAvsxAWF4sigB0Z5QlmaEOE231RvpOTiJJMoacGEqq0sgrTUbjRzObQAjFuC4StCALxYcuCIIgLI6I6ULQde+HV74Is8Ow4bOw+WHQzr9nx+hw8UDnBfZPzbIuWsczRZkU6BdWFWodmOaxvW2cHJphxZIYHt1VQnn2wveWSZKb4eH/prfvWTyeOdLS7iI35x602tCfIWY0Gqmrq6O9vR2NRkNpaSkbNmwgOjrar/N4PR46Gt6m6aXfMW28QFxaOuW33Ulx1Q2o/NzvFkrcY1asLWPYjo8h2Tyo4sLQlxrQl6agirl0tXYhbLMuOo76qmozYza04SoKyg2UVKWRlBkVkGtcSijG9ZBN0BQKRSbwQ8AEdMqy/J35vl4kaIIgCEKwiZguXBGOWdj/DTj2S4jL9u1Ny6qa9xBZlnlxbJpHuoaxeiXuyzbwTxnJqBdQ8ZAkmVdOGfnuvg5GzA52rDDw1ZuLyYhfeDMHt3uGvr4fcWH4NyiV4WRnfZaMjE+gVAbmRT6YxsfHqa+v58yZMyiVStasWUNlZSVxcQtvpAIgSV66mo7QtOc5Jgb6iE5KpuzWO1l+wzbUfu53CyWyR8J+zldVc/aYQQHhhfHoyw2EF8ajUAWgqibLGLtmaGsw0tM6gdcjkZQZRUlVGgVlKWgjgpfohmJcD0qCplAofgXsAsZlWV7+J3+/HXgWUAG/mC/pUigUO4E4WZZ/o1AonpNl+e75rikSNEEQBCHYREwXrqi+Wnjl8zDdD2Wfgm3fgLD5qwoTLjcPdl7gtQkzKyMjeKY4k2WRC2sEYnd5+XltLz97uwevJPPJqmw+uzmXqPCFd/azWnvp7n6CyamDRIRnkpf3IElJH7om9maZTCYaGho4ceIEsiyzcuVKqqurSUz0rxooyzJ9J45x9MXfMtJ1Hn1cPKU7b2fljTejDV94U5ZQ5JmyY20Zw9o6ijTnRhmtRb8uBX2ZAXWAZp45rG46m0dpqzcyNWxFrVWSV5rCsqo0UgLUvORPhWJcD1aCVgNYgP/4Q4KmUChUQCdwI3ABaAE+ii9Ze+IvTvFJwAu8AMjAf8qy/Ov5rikSNEEQBCHYREwXrjiXFQ5+C47+C8Skwy3PQt7WSx726vgMX+28wIzHwxeWpvClpSloFziwedTs4Mk3O3jx+DCJkVru+1AhHynNQOXH/qOpqTq6uh/Hau0iNraCgvyHiYpatuDjryaz2UxjYyOtra14PB5KSkqorq4mNTXVr/PIsszQudM07XmOwbOnCY+KZt3Nt7J6+y7C9ZFBuvsrQ/ZKODpMWJtHcXROgwxh+bHoywxElCSgUF9+d0ZZlhnrn6W93kjnsXE8Ti/xaXpKKtMorDAQHhmYkQChGNeDtsRRoVBkAXv/JEHbAHxDluWb3vnzVwFkWf7L5OwPx98HNMuyXKtQKF6QZfnO+a4nEjRBEAQh2ERMF66awSZ4+bMw1QVrPg4fehwiYuc9ZMrl4Wvdw/zv2DRF+nB+UJTJ6uiFL1s8NTTDN/e20TowTXFqNI/uKmZj7sKrSZLkwTjyPL29z+B2T5Oaeie5OfcSFpa84HNcTRaLhaNHj9Lc3IzL5aKgoIDq6moyMjL8Ppexs52mPc/Te7wFbYSO1TftZN3O29FFxwThzq8sz4wT27FRrMfG8M44UerV6Nam+IZgB2jmmcvhoatljLZ6I+MDc6jUSnLWJFFSlcaSgtjLqqqFYly/kgnancB2WZY/9c6f/xqokGX5c+9z/HLgG8AkYJFl+b6LfM2ngU8DpKSkrPvtb3+76PsNFovFQmTktf1bEkEQBMFHxHThalJ6XSwd+C2Zg3twaWPpLPhHphLLL3lcq6zmF+iYQcEtOLkTB9oFvs/KskzLqJfnzruYcsisTVZxd6GWFP3CKySybEOWX0XmAKBGodiJghtRKK6NfVlut5vh4WEuXLiAx+MhNjaWpUuXEhvrf2Jgmxxn9PhRpns6UajVJJWsImVVKdrIK9MQI6hk0E1C9AUl+nFQyArscTKz6TIWg4wcoOaMjmmZ6V6ZmX6Q3KCNhNhcBXHZoA73P1ELxbi+efPm0EzQ/CUqaIIgCEKwiZguhITh4/Dy52D8HKz4CGz/LugT5j3E7Pbwzz1G/nvERJ4ujKcLMyiPXfhLqcPt5Zf1ffzkUDdur8Tfbszic1vyiYlY+DIzm62f7u7vMDH5FuHhS8jLfYDk5J3XxP40AKfTSWtrK42NjVgsFtLT06mpqSE/P9/vzzA1PETzS7+jvf4wSqWSZZu2UXbbncSmGIJ091eWd86F7fgY1uZRPFMOFOFqdGuSfEOw0wKTDHlcXnqOj3Ou3shItxmlUkHWqkRKKtPIKIlf8MiIUIzrIbvE0V8iQRMEQRCCTcR0IWR4XFD/NNR+D8JjYedTsGz3JQ972zTHl88PMuxw86n0RB7MSUWvWnhpY3zWwVO/P8/vWi8Qp9Ny740F/FVZBmrVwitqpukjdHU9jsXSTkzMOgryHyE6euWCj7/a3G43J06coKGhAbPZjMFgoLq6muLiYpQL3Of3B+bxUVpe+V/OHnoLSZIortxE+e13kZDu/zLKUCTLMs5eM9aWUexnJ8Ejo0mPRF9uQLcqCaUfA9LnMz1qpa3eSMfRURwWN5HxYRRvTKN4YypRl2heEopx/UomaGp8TUK2AsP4moR8TJblc4u+yJ8QCZogCIIQbCKmCyFn9Kxvb9rISSi+FXY8BVEp8x5i8Xh5vHeEXw9Pkhmu5emiDKri/Ftid3bYzDf3ttHcZ6IgJZJHd5VQnZ+04ONl2Ytx5AV6er6P2z2FwbCb3Nz7CA+7dipIXq+X06dPU19fz9TUFImJiVRVVbFixQpUfiS9AHOmSVr37uHU/n14XC7yyzdQsftuUrJzg3T3V55kc2M9Po61ZRTPmA2FVoluVbJvr1p6ZEAqqV63RO+pCdrqjVzomEahgMxlCZRUpbF0RQKqi/wiIRTjerC6OP4PcAOQCIwBX5dl+ZcKhWIH8AN8nRt/Jcvy44u6wEWIBE0QBEEINhHThZDk9cCRH8GhJ3xDrbd/F1beBZd44T0yY+HejkH67C7+Ji2BR3PTiFIvPLGQZZk3z43y+OvtDJnsbC1K5qGdxeQmLXwJm8czR3//vzA49GsUChVLl/4DSzM/hUp17bSjlySJtrY26urqGBsbIzY2lqqqKlavXo3az0HVtlkzx19/hRP7XsVlt5G9ppSK3XezpLA4SHd/5cmyjGtoDmvzKPZTE8huCY1Bh77MgG5NMkpdYLozzk7aaWsw0t44gs3sQhetpWhDKiVVqcT8SfOSUIzrITuo2l8iQRMEQRCCTcR0IaRNdPqqaReaIf8m2PUMxCyZ9xCbV+LJvhF+PjSBIUzD9woz2JoQ7ddlnR4v/9bQz48OduNwe/nrDUv54tZ8YnULbwJitw/S3f0k4xNvEBZmIC/3AVJSbkGhuPx27VeKLMt0dnZSW1vL8PAwUVFRbNy4kXXr1qH1c1C1w2rh5Juv0fr6yzjmZskoWUHFHXeTuXzVNbNnbyEkhwfbqQmszaO4hy2gVqJbkejbqxagmWeSV2Lg7BRt9UYGzk4hy7CkMI5lVWnkrE6irqE25OL6dZOgZWVlyV//+tev9m28x8zMDLGxsVf7NgRBEIQAEDFdCHUKWaJ4ro51M3uRUNEcdxtdkesvWU0bDNPxvwmZjGsjWGuZYqdpGJ3k9evaFo+CQ5ORnDCHE66U2ZRopTTWjsqPd+ywsAHi4t5CGzaK07mEadONuFzpft1HKHA4HMzMzOB0OlEqlURHRxMVFeX3HjVZkrDOmJidmkRye9BGRBCdlEz49dD18S/ILi/eWReSxY0syyjUSlTRWlSRWvz6RzQPr0fCNuvCZnbh9UgolArUETJJabEBOX+gfPKTnxQJWjCJH+aCIAjXDxHThWtFlHuSyqnfkursZji8gMaEu7Go5+/06EHBwVgDb8ekoPd6uM00xDKb2e9rjzlUvDkRRZ9NS6LWw4eSLORHuvw4g4xef5qY2EOo1Ras1mXMTG/B6732ZoY5nU7MZjN2ux2FQkF0dDTR0dH+J2qyjG1mmtmpCbwuN5rwcKISk66LOWrvIYNkdfuSNacHAJVegzJKizIiME1FAJw2D1azEwk3iamxATtvIFw3CZpY4igIgiAEm4jpwjVFkuD4v8HvvwayBNu+AWWfgkskB2fmbHypY5BzFge3JcfyeH46iVr/XoxlWWZ/+zjffr2dvkkrNQVJPLKzmIKUhVd+PB4rA4P/yuDgLwDIzPy/LM38NGq13q97CQVGo5G6ujra29vRaDSsW7eOjRs3Eh3t33JSr8dDR8PbNL/0O0zGC8SlLqH89o9QXHUDKj/3u10L3GNWrC1j2I6PIdk8qGLD0JcZ0JemoIoJC8g1QjGuXzdLHEWCJgiCIASbiOnCNWlmCF79IvQcgMyNcNuPIWH+7oBuSebHg2M83T9GlFrJt/PTuS3Z/8HMLo/Efxzp59kDXdhcXj5Wnsk9NxYQr1/4niyHw0h3z5OMjb2KVptMXu59GAy7r6n9aX8wMTFBXV0dZ86cQalUsmbNGiorK4mLi/PrPJLkpavpCE17nmNioI/opGTKbr2T5TdsQ+3nfrdrgeyRsJ+bwtoyirN7BhQQXhiPvtxAeGE8istYAhmKcV0kaEEWig9dEARBWBwR04VrlizDyf+GN78KHidseQTW/xMo5+/a2G6xc0/HECfnbNycGMN3CtJJCfO/y57J6uIH+zv5r6ZBdFoVX9yaz99syEKrXniSNWNupavrcWZnTxEVtZyC/EeJjb3oO2zIM5lMNDQ0cPLkSSRJYuXKlVRVVZGUtPBRBeCrVPadOMbRF3/LSNd59HHxlO68nZU33ow2/NrphOkPz5Qda8sY1tZRpDk3ymgt+nUp6MsMqC8x8+xiQjGuiwQtyELxoQuCIAiLI2K6cM2bHYHX7oXzr8OSdXDbTyB5/hbuHknmXy9M8GTfCOFKJd/MW8JdhrhFddjrGpvjsdfaqe2cIDtRz0M7itlWnLzgc8myxNjYq3T3PInTOUpy8g7ych8gIuLaHOw8OztLY2Mjx44dw+PxUFJSQnV1NampqX6dR5Zlhs6dpmnPcwyePU14VDRrb76FNdtvIVy/8LEH1xLZK+HomMbaMorjvAlkCMuPRV9mIKIkAcUCk/9QjOsiQQuyUHzogiAIwuKImC5cF2QZzv4vvH4/uCyw6QGo/BKo5q+Mddsc3NsxRLPZyub4KL5XmEF6+OKW0x06P8639rbRM2GlMi+BR3aWUJy68P1YXq+NgcFfMDDwc8BLRsYnyVr6GdTqa7O7ocVi4ejRo7S0tOB0OsnPz6empoaMDP8TT2NnB017nqP3eAvaCB2rb9rJup23X58NRd7hmXFiOzaK9dgY3hknSr0a3VpfVU2TrJv32FCM6yJBC7JQfOiCIAjC4oiYLlxXLBPwxgNw7kUwrIDbfgqpK+c9RJJlfjU8yeM9I6gU8LXcND6eloByEdU0t1fiv5sGeWZ/J7N2N3eXZfLlDxWQGLnw5g8Oxwg9vU8xOvoSWm0iOTn3kpZ6JwrFwgduhxK73U5zczNHjx7FbreTnZ1NdXU12dnZflcsx/t7adrzPJ1NDag1WlZu207pLbuJik8M0t1ffbIk4+zyVdXsbSaQZLRZ0ejLDehWJKLQvPffRSjGdZGgBVkoPnRBEARhcURMF65L7a/C3nvBboKqe6DmflDPnyQN2J18uWOI+hkLlbGRPF2UwdKIxXXVm7G5ePZAF/95ZIBwjYrPbcnj7yqzCFMvPMkyz56iq+tbmM3HiYwsJj//YeLjNizqfkKB0+mktbWVxsZGLBYL6enp1NTUkJ+f73eiNjU8RMvLL9BWdwilUsmyTdsou+1OYlMMQbr70OCdc2E7Poa1ZQzPpB1FuArdmmTfEOy0Py77DMW4LhK0IAvFhy4IgiAsjojpwnXLZoI3H4ZT/w1JRb69aenzN+CQZZn/GjHxje5hvDI8lJPKJ9MTUS2imgbQM2Hh26+1c6BjnMx4HQ/tKOKmZQY/9qfJjI+/RnfPkzgcwyQl3khe3oPodFmLup9Q4Ha7OXnyJPX19ZjNZgwGA9XV1RQXF/s9S808PkrLK//L2UNvIUkSRZWbqLj9IySkZwbp7kODLMs4e82+qtrZSfDIaNIjfVW1VUnUHqkPubguErQgEz/MBUEQrh8ipgvXva63fC3550Zgw2dh88Ogmb8b4LDDxf3nhzhomqMsWs/TRRnk6/3vpvcHtZ0TfOu1NjrHLFRkx/PorhKWL1n4/imv18HQ0K/oH/gXJMlNRsYnyM763DW7Pw3A6/Vy+vRp6uvrmZqaIjExkaqqKlasWIFK5d9yTotpimN793Bq/xt4XC7yyzdQsftuUrLnH71wPZBsbqwnxrE2j+IZs6HQKplc6mHV32+62rf2Z0SCFmTih7kgCML1Q8R04QPBMQtvfQ1afw3xub65aUs3znuILMu8MDbNo13D2CWJ+7IM/GNGMmrl4qppHq/Eb1uGePqtTqZtLj6yLp37PlRIcvTCEz+nc5ye3qcZGXkBjSaOnJx7SEu9C6Xy2h3oLEkSbW1t1NXVMTY2RmxsLJWVlaxevRqNxr/xB7ZZM8dff4UT+17FZbeRvaaUit13s6Rw/q6e1wNZlnENzWFtHqXfPsLavxYJWlCIBE0QBEEINhHThQ+U3sPwyhdgZgDKPw1bvw5h87dsH3e6ebDzAq9PmlkZFcGzRZkURy5+HpfZ7ubHB7v4t8Z+tCol/7Q5j7+vyib8Is0e3s/s3Fm6uh5nZqYZvb6A/PyHSYivWvQ9hQJZluns7KS2tpbh4WEiIyPZuHEjpaWlaP0cVO2wWjj55mu0vv4yjrlZMkpWULH7bjJXrFrUKIVrTSjGdZGgBVkoPnRBEARhcURMFz5wnBY4+Bg0/SvEZsAtP4TczfMeIssyr0zM8FDnMLMeL19cmsIXliaj9XPP1J/qn7Ty7dfb+X3bGEtiI3jw5iJ2rUz1a3/axMSbdHV/B4djiMSELeTlfRW9PmfR9xQKZFmmr6+P2tpa+vv70el0rF+/nvLycsLD/Vtm6nY4OH1gH8defRHLtAlDXgHr77ibnLXl13WiFopxXSRoQRaKD10QBEFYHBHThQ+sgSPwyudgqhvW/g186FsQPv++sEmXh0e7LrBnfIYSfTjPFGeyKmr+mVSX0tgzyWN722kfmaV0aRyP7iphVUbsgo/3ep1cuPBv9PX/FElykJ7+12RnfR6N5tqfETY4OEhdXR1dXV2EhYVRXl7O+vXr0ev1fp3H43Zz7vB+ml9+gdmJMZIysyjffRcF6ytRKq/N8QXzCcW4LhK0IAvFhy4IgiAsjojpwgea2w6Hn4DGH0GkAW75ARTcdMnD9k2Y+UrnEJNuD5/NSObeLAPhqsVX07ySzO+ODfHU788zaXFxx5olPLC9CEOMH/vTXJP09j6D0fg8anU0OTlfZEnaR1Eq/dvHFYqMRiN1dXW0t7ej0WhYt24dGzduJDp64YPAAbweDx0Nb9P80u8wGS8Ql7qE8ts/QnHVDajU1+4+vr8UinFdJGhBFooPXRAEQVgcEdMFARhuhZc+CxPtsPKvYPsToIuf95AZt4dvdBv57aiJfF0YzxRlUhrjX2XnL8053Pz0cA+/rOtDpVTwmU25fLomhwjtwqs8c3PtdHU/zvT0EXS6XPLzHyIx4YbLuq9QMTExQV1dHWfOnEGpVLJ69WqqqqqIi4vz6zyS5KWr6QhNe55jYqCP6KRkym75MMs334jaz/1uoSgU47pI0IIsFB+6IAiCsDgipgvCOzxOqPu+7z8R8bDz+1By6yUPOzQ1y33nhzA63Xw6PYmv5KSiu4xqGsCQycZ33ujgtTMjpMaE85XtRdy6Kg3lAjtIyrLM5OQBurq/jd0+QEJ8DXn5DxGpz7+s+woVJpOJhoYGTp48iSRJrFy5kqqqKpKSkvw6jyzL9J04xtE9zzHS2YE+No7SXbtZeePNaMMX3wjmagvFuC4StCALxYcuCIIgLI6I6YLwF0bPwEv/BKOnoeR22PEURM7/4j/n8fKtHiP/bpwiK0LL9wszqIy7/BllzX0mvrn3HGeHZ1mdEcuju0pYt3Th1SJJcnHhwm/o6/8hXq+NJWkfIzv7C2i181cHrxWzs7M0NjZy7NgxPB4PJSUlVFdXk5qa6td5ZFlm6NwZmvb8lsGzpwmPjGLtjltZs/0WwvXzd/kMRaEY10WCFmSh+NAFQRCExRExXRAuwuuGxh/C4e+ANhJufhJW3AmX6PzXMD3HvR1DDDhcfCItgUdz04hUX14TCkmSefHEME/u62B8zsmtq9L4ys1FLIldeIXH5TLR2/csRuP/oFLpyc76POnpH0epvPaX8wFYLBaOHj1KS0sLTqeT/Px8ampqyMjI8Ptcxs4OmvY8R+/xFrQROlbftJN1O29HF33tNF0JxbguErQgC8WHLgiCICyOiOmCMI+J8/DyZ+FCCxTcDLuehui0eQ+xer082TvKzy9MkBam4anCDDYn+NfM4qLndXr42ds9/Ly2F4BP1+TwmU256MMW3tzCYumkq/vbmEx1RERkvbM/bct103LebrfT3NzM0aNHsdvtZGVlUVNTQ3Z2tt+fcby/l6Y9z9PZ1IBao2Xl1psoveUOohISg3T3gROKcV0kaEEWig9dEARBWBwR0wXhEiQvHP0X3+w0VRjc9Dis+fglq2nHzFbu6Riky+bko6nxfCM3jRjN5XcKHJ6x8903OnjllJHkqDDuv6mQD69N92t/2tTUYbq6n8Bm6yEubiP5+Q8TFVl02fcWKpxOJ62trTQ2NmKxWEhPT6e6upqCggK/E7Wp4SFaXn6BtrpDKBRKlt+wjbLb7iQ2xRCku798oRjXRYIWZKH40AVBEITFETFdEBZoqgde+TwMNEDOZrj1hxCbOe8hDq/E9/tH+enQOIkaNU8WZnBTYmCWyrUOTPPY3jZODs2wYkkMj+4qoTx74XvLJMnN8PB/09v3LB7PHGlpd5Gbcw9abehXiBbK7XZz8uRJ6uvrMZvNGAwGqqurKS4uRunnkHHz+Cgtr/wvZw+9hSRJFFVuouL2j5CQPv+/gashFOO6SNCCLBQfuiAIgrA4IqYLgh8kCY79Et76uq+Ctu0bUPr3cImX/ZOzNu7pGKTd6uCOlDgey1tCgvbyq2mSJPPKKSPfeaOD0VkHO1ek8uDNRWTEL3x4tts9Q1/fj7gw/BuUynCysz5LRsYnUCrDLvv+QoXX6+X06dPU19czNTVFQkIC1dXVrFixApXKvz2CFtMUx/bu4dT+N/C4XOSXb6Bi992kZOcG6e79F4pxXSRoQRaKD10QBEFYHBHTBWERpgfg1S9C7yFYWuWrpiXM/4LukiR+ODDODwZGiVGreaIgnVuSYgKy/8vm8vDz2l7+9e1evLLM31dl80835BIVvvAh1VZrL93dTzA5dZCI8Ezy8h4kKelD183+NABJkmhra6Ouro6xsTFiY2OprKxk9erVaDT+DfS2zZo5/vornNj3Ki67jezV66jYfTdLikqCdPcLF4pxXSRoQRaKD10QBEFYHBHTBWGRZBlO/AbefBi8Ltj6KFR8BpTzV2TaLHa+1DHI6Tk7O5NieCI/neQw/5KD9zNitvO9fed58cQwiZFh3PehAj5SmoFqgfvTAKam6ujqfhyrtYvY2AoK8h8mKmpZQO4vVMiyTGdnJ7W1tQwPDxMZGcnGjRspLS1F6+egaqfNysk3X6P1tZewz82SUbKCit13k7li1VVLbkMxrosELchC8aELgiAIiyNiuiBcplkj7L0HOvdBehnc9hNIKpz3EI8k8y9D4zzVP0qEUslj+Uu4MyUuYC/0J4dmeGxvG60D0xSnRvPormI25i58b5kkeTCOPE9v7zO43dOkpt5Jbs69hIUlB+T+QoUsy/T19VFbW0t/fz86nY7169dTVlZGRIR/g6rdDgenD+zj2KsvYpk2YcgrYP0dd5OztvyKJ2qhGNdFghZkofjQBUEQhMURMV0QAkCW4cwL8Mb94LLCDQ/Cxi+Aav7KWJfVwT0dgxybtbE1PprvFaaTFh6Y2WSyLLP39AjfeaOD4Rk7HypJ4aEdxWQl6hd8Drd7lv7+HzN04T9QKrVkLf1HMjI+iUp1/exP+4PBwUHq6uro6uoiLCyM8vJy1q9fj16/8O8XgMft5tzh/TS//AKzE2MkZWZRvvsuCtZXorxEdTVQQjGuiwQtyELxoQuCIAiLI2K6IASQZRxevx/aXoLUVb5qmmHFvId4ZZlfXZjk271G1AoFX89bwv9JjQ9Y1cXh9vLL+j5+cqgbt1fi7yqz+dyWPKL92J9ms/XR3f1dJibfIjx8CXm5XyE5ecd1tT/tD0ZGRqirq6OtrQ2NRsO6devYuHEj0dH+zbLzejx0NLxN80u/w2S8QFzqEspvu5Pi6s2o1JffIGY+oRjXRYIWZKH40AVBEITFETFdEIKg7WV47ctgn4bqL0P1faCevzLWb3dyb8cQjTMWquMieaowg6URgatUjc86eOr35/ld6wXidFruvbGAvyrLQK1aeLt5k6mRru7HsVg6iIlZR0H+I0RHrwzYPYaSiYkJ6urqOHPmDEqlktWrV1NVVUVcXJxf55EkL93NRzi653km+nuJTkqm7JYPs3zzjaj93O+2UKEY10WCFmSh+NAFQRCExRExXRCCxGaCfV+F07+F5BK47cewZN28h0iyzG+MU3yzx4hXhodzU/nkkkSUAaxUnR028829bTT3mShIieTRXSVU5yct+HhZ9mIceYGenu/jdk9hMOwmN/c+wsNCd3Dz5TCZTDQ0NHDy5EkkSWLlypVUVVWRlLTw7xm8s9/txDGO7nmOkc4O9LFxlO7azcobb0Yb7t9+t0sJxbh+3SRoJSUJ8n/+5qarfRvvMTMzQ2xs7NW+DUEQBCEAREwXhOCKHhtj6amzaBwOxvJyMBYWIF9i9ta4FMWP7Ddx3JPDMtUQX4zYxxLVdMDuSZahaTiDfz+1hnFrFOtSL/CJVcdZEj3nxzk8OBxGnM5RQEF4eCphYakoFFdmn9WV5vV4MM/OMjc3hyzL6PU6YmJi0Gr9rXLKOK1WZifHcVqtKFUqIuMTiIxPROnnTLb3E4pxvXTd/4gELZhC8aELgiAIiyNiuiAEn9LtJr2tnaSBIRx6Pf2rV2JNiJ/3GFmGA+5l/Ny+FTcqPh7ewO3aFlSKwL3Lur1KXusq5IW2Fbi8KrbndfKRkjNEhbkWfA5JcmC3D+F2m1AoNEREZKLVJgDX3/408A29npudZXZuFkmS0UVEEBMbQ1hYuN/nctlszE6O47DMoVAqiYxPICo+EeVl7lELxbh+3SRoYomjIAiCEGwipgvCFdRzCF79AswM+WambX0UtPN3CRxzuvlK5xD7JmdZHaXjmaIMiiMDuyRuYs7J02918lzLINERGr60NZ//s34pGj/2p01PN9PV/S3m5s4RHb2agvxHiIlZE9D7DCV2u53m5maOHj2K3W4nKyuLmpoasrOz/W6eMt7fS9NLv6PzaD1qjZaVW2+i9JY7iEpY+GiEPxWKcf26WeIoEjRBEAQh2ERMF4QrzGmBA/8MzT+H2KVw648gZ9O8h8iyzMvjMzzUdYE5j8Q9WSl8PjMFjR8DqBeifWSWb73WRkP3FLlJeh7ZVcLmwoXPPpNliZHRF+np+T4u1zgpKbeQl/sA4eFpAb3PUOJ0OmltbaWxsRGLxUJ6ejrV1dUUFBT4nahNDQ/R8vILtNUdQqFQsvyGbZTddiexKf7t7wvFuC4StCALxYcuCIIgLI6I6YJwlQw0wsufBVMvrPs7uPGbED5/K/dJl4eHuy7w8vgMyyLD+UFRJiuidAG9LVmW2d8+zrdfb6dv0kpNQRKP7CymICVqwefweKwMDP4rg4O/ACAz8/+yNPPTqNX+zRS7lrjdbk6ePEl9fT1ms5mUlBSqq6spKSlBqVx4JRLAPD5Kyyv/y9lDbyFJEkWVm6i4/SMkpGcu6PhQjOsiQQuyUHzogiAIwuKImC4IV5HLBoe/DUd+AlGpcMuzkH/jJQ97fWKGBzsvMOX28PnMFO7JSiHMzyTgkrfmkfiPI/08e6ALm8vLx8ozuefGAuL1C28N73AY6e55krGxV9Fqk8nLvQ+DYTcKRWDvNZR4vV7OnDlDXV0dU1NTJCQkUF1dzYoVK1D52QTEYpri2N49nNr/Bh6Xi/zyDVTsvpuU7Nx5jwvFuC4StCALxYcuCIIgLI6I6YIQAi4c81XTJjpg1cfgpsdBN38TkWm3h693D/P86DT5ujCeLcpkbUzgK1Qmq4sf7O/kv5oG0WlVfHFrPn+zIQuteuFJ1oy5la6ux5mdPUVU1HIK8h8lNvai7+rXDUmSaGtro66ujrGxMWJjY6msrGT16tVoNAsfEg5gmzVz4o1XOLFvL06blezV66jYfTdLikou+vWhGNdFghZkofjQBUEQhMURMV0QQoTHCbXfg7qnQZ8IO5+G4l2XPOzA1Cz3nx9i1Onm0xlJPJCdis6P5h4L1Tk2x2N726jrmiQ7Uc/DO4rZWpy84H1WsiwxNvYq3T1P4nSOkpy8g7zcB4iIyAj4vYYSWZbp7OyktraW4eFhIiMj2bhxI6WlpWj9HFTttFk5+eZrtL72Eva5WTJKVlCx+24yV6z6s+fw/9u77/Aoq7z/4+8z6QmEEAIhhJAQSAihKhCK0osgWBZx7RVFFHUtrI9t17Wtoth4BGy4ytpFRUQURLqU0KWlASmQUENNz8z9+yM8v8fHNeMEMplJ/LyuK9fF3OF7z5eZXAc+nDnneOO4roDmZt74pouIyNnRmC7iZQq2wtxJcHAbdBoLF79YFdicOFVp5+nd+czOP0rbIH9eTmpD37BGtd6aZVksSz/MM9/uZPfhIi5o34zHRyfTMcr52rlfstuLycl9h5yctwA7MTG3Ehc7EV9f19e41UeWZbF3715WrFhBdnY2QUFB9OnTh5SUFIKCarYrZ0VpKT//+D0bvvmS08cKadk+kd5/uop2PVIwxnjluK6A5mbe+KaLiMjZ0Zgu4oXsFbDqVVg+pWrjkFEvQOcr4Hdmq1YWnuLB9DxyS8u5JTqCx+OjCPGt/YOjK+wOPlybwyuLMzlVWsFVvdrw4IhEIhq5fmhzaWkBu/dM5cCBufj7RxAf/wCtosY12IOufykvL48VK1aQmZlJQEAAKSkp9OnTh5CQmn1EtbKigh3LFrN+3hxOHDpIRJs4ev/pzxSUVjJ4yBA3dX92FNDcTH+Zi4g0HBrTRbzYoV0w9y7I3wQdRsOYl6Gx8y3XiyrtPLe3gFn7jhAd6MfLHdowINw9s1PHi8t57cdM/r0mhyA/H+4e0p6bL4gjoAah8MTJrWRmPsOJE5to1KgjCQmPEd60r1v69TYFBQWsXLmSnTt34ufnR48ePejXrx+hoa7PSAI47HbSflrOuq8+ozB/H+GJydzy9Atu6vrsKKC5mf4yFxFpODSmi3g5eyWsnQFLnwXfALjoOeh+7e/Opq07fpoH0vLYXVLGdVHhPNE+mlA3zKYB7D58mn9+u4sf0w7RJjyYRy9O4qJOLWuwPs3i0KFvycqaQmlZPs2bj6B9u4cJDo51S7/e5vDhw6xcuZJt27Zhs9no3r07F154IU2bNq3RfRwOO1mpa8jIzmXM1de6qduzo4DmZvrLXESk4dCYLlJPHMmCeXdD7hpoN7RqS/4w5xtslNgdTM0+wMzcQ0QG+DElsTUjIpq4rcUVGVXr0zIOnqZ323D+NiaZztGuP5/dXkpu3ixyct7A4aggJuYm2sbd3eDXp/2PwsJCfvrpJ7Zs2YLD4aBLly7079+f5s2b1+g+3jiuK6C5mTe+6SIicnY0povUIw4HrH8HFv+jagZt+FNVh1z/zhlom08Wc19aLulFpYyLbMpTCdGE+/m6pcVKu4NP1ufx8g8ZHCsu58oerZk8ogMtQgNdvkdZ2SF273mJgoIv8PNrSnz8/bSK+jM2m3t69jYnT55k9erVbNiwgcrKSpKTk+nfvz9RUVEu1XvjuK6A5mbe+KaLiMjZ0ZguUg8dy4Z598Le5RDXHy6dBuHxTkvKHA5eyznItJyDhPn68nxia8a0CHNbiydKKnh9SSbvrc7G38fGXYPbM/7CtgT6uf4xy5OntpOZ+SzHj6cSEpJIQsJjNAu/0G09e5uioiLWrl1LamoqZWVlJCQkMGDAAGJinM+ceuO4roDmZt74pouIyNnRmC5ST1kWbJoNix4HRyUM/TukTACb8wC043QJ9+3KZdvpEsY0b8Jzia1p7l+zg5NrIvtIEf9csItFOw8SHRbEw6OSGNM1qkbr0w4fXkhm1vOUluYR0WwI7ds/QkiI80DakJSUlJCamsratWspKSkhLi6OAQMG0LZt2998Hb1xXFdAczNvfNNFROTsaEwXqedO7If590HmIojpDZe+Ds0TnZZUOCxm5h1i6t4DhPjYeCYhmrGRTV0OTWdj9e4jPD1/F7sKTtIztil/G5NMt5gwl+vt9jL27XuPvdkzcDhKad36BtrG3YOfn/vW1HmbsrIyNm7cyOrVqzl9+jTR0dEMGDCAxMREHVRdVxTQRETE3TSmizQAlgU/fwbfPQQVJTD4Eeh7D/g4X7OVUVTK/Wm5bDxZzPBmobzQoTVRAf5ua9PusPh8Qx5TF6Vz5HQ5Y8+L5qGRSbRsUoP1aeVH2LPnFfLzP8PXN5T4+L8Q3eoabDb3zQJ6m4qKCrZs2cKqVas4ceIEkZGR9O/fn+TkZGw2m1eO6wpobuaNb7qIiJwdjekiDcipg7DgQdj1DUR1h8tnQGQnpyV2y+KdfYd5fk8BvsbwZPtorokKd+ts2qnSCmYs282slXvxsRkmDmzHhAHxBPm7vj7t1KldZGY9y7FjawgObkdCwqNENBvktp69kd1uZ9u2baxcuZKjR4/SrFkz+vfvT2FhIUPq0UHVzre4ERERERGprxpHwlUfwJXvw4l98OZAWPY8VJZXW+JjDHfEtGBJryQ6Nw7igfQ8rtq6m9ySMve1GejHf41M4scHBzIkqQWvLM5gyEvLmLt5Pw6Ha5MpjRt35Lzu/6ZrlzexrEq2bh3Pli23cLoo0219exsfHx+6d+/OpEmTGDduHL6+vsydO5f09HRPt1YjmkGrBfrfVhGRhkNjukgDVXQUvn8Ytn0GkZ3hsteh1XlOSxyWxez8ozy9Ox8LeDw+ipujI7C5cTYNIHVvIU/N38H2/SfpHhPG3y9J5vw2rh/S7HCUs2/fB+zNnobdXkx0q2tp2/Ze/P3D3di197Esi4yMDNLT07n00ks93c7/oRk0EREREfljC2kGV7wNV38MRUfg7aGw+EmoKK22xGYMN0dHsCwliZTQEB7N3M/YzVnsKXbfbBpASttw5k26kBfHdSX/eAljZ6zm3o83s/94iUv1Nps/bdrcSt8+S2jV6hr253/EmrVDyc19F4ej+tnDhsYYQ4cOHQgNDfV0KzWigCYiIiIifxxJF8OkddD9Glj1MrzZH/JSnZbEBPrzcbd4Xk6KYWdRCUPWpzEz9xB2N34SzWYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKKl26h79/OEkdniSl13xCQ7uRmfUsa9eN4vCRH6lPn6L7o1FAExEREZE/lqAwuGw6XP9l1S6Ps0bA949CeXG1JcYYro1qxvKUJPo3bcyTu/O5ZFMm6UXVz8DVhpAAXx4c0YElkwdxUaeWTFuSxeCpy5izcZ/L69MaNUqke7d/0a3rOxjjw88/T2Dzlhs5dTrNrb3L2amzgGaMiTfGzDLGzPnFtRBjzPvGmLeNMdfVVS8iIiIiIrQfCnetgV7jYe10mNkP9q50WhIV4M/sLm2ZkRzL3uIyhq9P57Xsg1S4GJbOVnRYENOuOY8v7uxLVFgQkz/fymXTf2J9dqFL9cYYIiIG0zvlWxIT/s6pUztITb2EXWmPUV5+xK29S824FNCMMe8aYw4ZY7b/6vpIY0y6MSbLGPOws3tYlrXHsqzxv7o8FphjWdbtgHet3BMRERGRhi+gMYx+CW7+turx+2Ng/gNQdqraEmMMYyObsqJ3EhdFNOG5vQVcvDGD7aeqn4GrLT1iw/nqzn68elV3Dp8q48o31jDpw03kFbr23DabHzExN9Gv7xJiWt9IQcEcVq8ZSk7OWzgc7l1bJ65xdQbtPWDkLy8YY3yA6cAoIBm4xhiTbIzpYoyZ/6uvFtXctzWQd+bX9pq3LyIiIiJSC+IuhDtXQ9+7YcO7MKMvZC12WtLc34+3O8fxTqc4CsoqGLkxgyl7CihzONzaqs1muPy8aJZMHsh9wxJYknaIoS8vZ8r3aZwqrXDpHn5+YSQm/o3eKQsIC+tF1u4prF07kkOHF2p9moe5FNAsy1oB/Hr+NAXIOjMzVg58AlxmWdY2y7LG/OrrUDW33kdVSHO5FxERERERt/APhouehfGLwC8IPrgC5k6CkmNOy8a0CGNF7yQub9GUV3IOMmJDBptOFrm93WB/X+4blsiSyQMZ0yWKmct2M3jqcj5JzcXu4kcuQ0La0b3bO3Tv9h42nwC2bbuLTZuv49SpHW7uXqrj8jloxpg4YL5lWZ3PPB4HjLQs67Yzj28AeluWdXc19c2AZ4HhwDuWZT1njAkBXgdKgVWWZX34G3UTgAkAkZGRPT755JOa/QnrwOnTp2nUqJGn2xARkVqgMV1EAGz2cmJzPqVN7peU+zchI/FOjkb0/t26TZYv7xDMMQxjKONKSvF377Fp/9+e43Y+Sisn67iDmMY2rk3yp2MzH5frLcuOxQosay5QhOECjBmLMU3c1nNd8MZxffDgwdWeg1ZnAa026KBqERFxN43pIvJ/5G+BryfBwe3QeRyMeqHqTDUnTlbaeSornw8KjhIfFMArSTH0DqubgGBZFvN/LuD579LYf7yEEcmRPHpxR+IiQly+R0XFSbKzXydv32xsNn/iYu8kJuZWfHwC3Ni5+3jjuO6ug6r3AzG/eNz6zDURERERkYahVXe4fSkMehR2fg3TU2D7l+BkkiPU14epSTF81q0dFZbF5ZuzeCxjH0WV7t9ywRjDJd1a8eODA/nrRR1YlXWE4a8s558LdnHS5fVpoSQkPEqf3t8R3rQfu/dMZe264Rw8+K3Wp9WBc5lB8wUygKFUBbP1wLWWZbntA6tBMR2sdvfNdNftz1plZSW+vr6ebkNERGqBxnQRqU6CPYenS1+nsyOLxb69eTrgDo7amjqtsYBSh4MKh4UBgnxs+Jo6+swj4HBYlBdVUFlqBwMBIX74BvlSkw4sqxK7owwsOxhffGwBVO0XWD9447i+Y/LQc5tBM8Z8DKwBOhhj9hljxluWVQncDSwEdgGfuTOciYiIiIh4UqZPLNcFP89L/jfSv3IT84ru5dKKpU5n0wwQZLMR7GPDGCi2OyhxOKireSibzRDY2J+gpgHYfG2Una6guLCUynLXZ/OM8cXXJwSbLQgsB3Z7EXZ7CRbu3a3yj8rlGTRvoDVoIiLibhrTRcQlRzKr1qblrYP2w+GSV6FJa6clxXYHL+4t4M28w7QM8OOFDjEMaxZaN/1StT5t4Y4DPLtgF3mFJQxNasGjozvSrrnr6+MqK0+RnT2T3Lx/YYwPsbF3ENvmNnx8gtzY+bnxxnHdXWvQRERERET+mCIS4JbvYOQUyPkJpveBDf9yOpsW7GPjifbRzD8/gUY+Plz/8x7u2ZXDsYrKOmnZGMPIzlEsfmAgD49KYt3eQi56ZQVPfrOD48XlLt3D17cx7ds/RN8+C4loNoi9e19lzdphHDjwNZalGbXaoIAmIiIiInI2bD7QZ2LVAdetusP8+2D2pXAs22nZ+U1C+KFXIvfHRvLlwWMMSE1jweHjddBwlQBfHyYObMfSyYO4smcM76/OZtDUZby/OpsKu2shKyioDV26vM75532Mv38zdux8gA0br+TEic1u7r7hU0ATERERETkX4W3hpm9gzKuwfzPM6Avr3gRH9WEnwGbjv+Kj+L5HIpH+fty6PZsJO7I5XO7aTou1oXnjAJ4b24X59/QnOSqUJ+btYOSrK1iafsjlezRtmkKvnnPp2HEKpaX5bNg4ju077qO0NN+NnTdsCmgiIiIiIufKGOh5C0xaC7EXwHcPwXsXw5Esp2VdGgfzXY9EHm7bku8Pn2BgahpfHTxWp9vZJ7cK5cPbevP2jT2xOyxu+dd6bno3lcyDp1yqN8ZGq6hx9O2zmLi4SRw+vIg1a4exe88rVFYWubn7hkcBTURERESktjRpDdd9DpfPhEM74Y0L4KfXwF79OjM/m+G+uJYs6pVIbGAAd+7M4ebtezlQVnezacYYhidHsuj+gTw+uiObco8x8rWV/P3r7RQWubo+LYR28Q/Qt89imjcfQXb266xZO4yCgi+0Pq0GFNBERERERGqTMdD9WpiUCu2Gwg9/h1nD4eBOp2VJIUHM75HA39u1YnnhKQak7uLjgqN1Opvm72vjtv7xLP/rYK5NacOH63IZ9OJS3lm5h/JK10JWYGArOnd6lR49PiMwMIqdux5i/YY/cfy49+3G7o0U0ERERERE3KFxS7j6Qxj3LhzPgTcHwPIXwF79zJiPMdzVpgU/9upAx5Ag7k/L45qte8grdW0Wq7aEh/jz9OWd+e4v/ekWE8Yz3+7ioldXsHjnQZcDY1iTHvTsMYdOyS9TXn6EjZuuYtv2eygpyXNz9/WbApqIiIiIiLsYA52vqJpNS74Ulj4Lbw2Ggq1Oy9oFB/LVee15NiGa1JNFDEpN4739R3DU8RnGiZGNmX1rCv+6uRc2A7fN3sD1s9axq+CkS/XG2GjZ8jL69vmBtm3/wpEjS1i7bgRZu6dSWXnazd3XTwpoIiIiIiLuFhJRNZN21YdQdKgqpP34NFSWVVtiM4bxrZuztFcHzg8N5uGMfYzbspvskupr3MEYw+CkFnx/3wD+cUky2/efZPS0lTzy5TaOnHatFx+fYOLb3kvfPotp0eJicnJmsmbtUPLzP8Oy7G7+E9QvCmgiIiIiInWl4xiYtA66XQ0rp8Ib/WGf87VZsUEBfNatHS91iGHbqWIGp6bxVt4h7HU8m+bnY+PmC9qy/K+DuKlfHJ9vyGPwi8t4c/luyipdC1mBgVF0Sn6Jnj2/JCgwhl1pj5C6/nKOHVvr5u7rDwU0EREREZG6FNQULp8B130B5UVVG4gsfAzKi6stMcZwXatmLE9Jol9YY/6elc9lmzLJLCqtw8arhAX788QlnVh4/wBS2obz3HdpDH95Bd9vL3B5fVqT0G706PE5nTu9RmXFcTZtvo6ft91JcXGOm7v3fgpoIiIiIiKekDAM7loDPW6GNa9Xbcmf/ZPTklaB/nzQtS2vd2xDVnEZwzak8985B6l01O1sGkC75o2YdXMvZt+aQqCfjYkfbOLqt9ayff8Jl+qNMURGjqFPnx+Ij3+AwsJVrF13EZlZz1FZ6doZbA2RApqIiIiIiKcEhsKYV+Cmb8ByVB1u/e1kKKs+oBhjGNcynBUpSQxrFsqzewq4eFMGO0+X1GHj/2tAYnMW3NufZy7vTOah01zy+ioemrOVQyddm93z8Qmkbdwk+vb5kZYtLyM3dxar1wxh3/6PcDiqPz+uoVJAExERERHxtLYD4M7V0OcuWP8OzOgHu5c4LWkR4Meszm15u1Mc+0srGLEhnRf3FlDuqPtDoX19bFzfJ5alkwdx24Vt+WrzfgZPXcb0pVmUVri2Pi0goAXJHafQq9dcQkLak57+N1LXX8LRwlVu7t67KKCJiIiIiHgD/xAY+RzcuhB8A+Dff4Kv74aS407LLmkRxoqUJC5r0ZSXsg9y0YYMtpysfj2bOzUJ8uOx0cn8cP9ALmgfwYsL0xn60nLm/5zv8vq00MadOf+8j+jSeTp2ewlbttzE1q23U1S0x83dewcFNBERERERb9KmN0xcBRfeD1s+hBl9IP17pyXN/H2ZnhzL7C5tOVZh5+KNGTyzO59Se93PpgHERYTw1o09+ei23jQO9OXujzZz5Rtr+HnfcZfqjTG0aDGSPr0X0r7dQxw7nsq61FFkZD5DRYVra9zqKwU0ERERERFv4xcIw/4Bt/0IQeHw8VXwxe1QXOi0bEREE5andODqqHBezz3EsA3prD9RVDc9/4Z+7SP49t7+PD+2C9lHi7j09Z944LMtHDjh6vq0AGJj76Bv3x+JihpHXt77rF4zhLx9s3E4KtzcvWcooImIiIiIeKvo82HCMhj4MOz4EqanwI65Tkua+PnyclIbPukWT4ndwaWbMvlb5j6K7J45ENrHZrg6pQ1LJw9i4sB2zN9awOCpy3htcSYl5S6uT/OPoGPSs6T0mkfjxh3JyHiSdamjOXJ0mXub9wAFNBERERERb+brD4MfgQnLIbQVfH4TfHoDnD7ktGxQeCjLU5K4KTqCt/cdYUhqOquOeW77+saBfjw8KonFDwxkcFJzXlmcwZCXljF3834cLh4T0LhxR87r/m+6dnkTy6pk69bxbNlyC6eLMt3cfd1RQBMRERERqQ9adobblsDQJyBjYdVs2s+fgZPNNxr5+vB8Ymu+7N4eY2Dclt08lJ7HqUrPzKYBtGkWzIzrevDphD40a+TPfZ9uYezM1WzKPeZSvTGG5s2H0af39yS0f4wTJzeTmjqa9PR/UF7u/COg9YECmoiIiIhIfeHjC/0fgIkroVl7+PJ2+PhqOJnvtKxf00Ys6ZXEHTHN+Xf+UQalprHk6Mk6avq39Y5vxrxJF/LiuK7kHy9h7IzV3PvxZvYfd+08N5vNnzZtbqVvnyW0anUN+/M/Ys3aoeTmvovDUe7m7t1HAU1EREREpL5p3qFqO/6LnoM9y2F6b9g02+lsWrCPjSfbRzP//ASCfWxc+/Me/rIrl+MVnjsM2mYzXNkzhqWTB3HPkPYs3HGAIVOX8fKidIrKXOvL3z+cpA5PktJrPqGh3cjMepa160Zx+MiPLm/t700U0ERERERE6iObD/S9C+78CVp2hXn3wL8vh2M5Tst6NAnhh54d+EtsJHMOFjIgNY3vD3t26/qQAF8eHNGBJZMHcVGnlkxbksXgqcuYs3Gfy+vTGjVKpHu3f9Gt6zsYY+PnnyewZctNWNY+N3dfuxTQRERERETqs2bt4KZvYPRLsG8DzOgLqW+Do/oz0AJ9bDwSH8V3PRKJ8PPl5u17mbgjmyPlnptNA4gOC2LaNefxxZ19iQoLYvLnW7ls+k+sz3ZtbZkxhoiIwfROWUBiwt85eWo7lrXYzV3XLgU0EREREZH6zmaDXrfBXWuqDrpeMBneGw1Hdzst69o4mO97JvLXuJZ8e/gEA1J3MffgMY9/NLBHbDhf3dmPV6/qzuFTZVz5xhomfbiJvMJil+ptNj9iYm6iX98lGHOFm7utXQpoIiIiIiINRVgbuP5LuGw6HNwBM/vB6v8GR/W7NvrbbDzYtiWLeiYSE+jPxJ053Lo9m4Nlnj0I2mYzXH5eNEsmD+S+YQksSTvE0JeXM+X7NE6Vutabn18YxjR2c6e1SwFNRERERKQhMQbOux4mrYP4wbDocZg1Ag6lOS3r2CiIb89P5PH4KJYUnmRAahqfFhR6fDYt2N+X+4YlsmTyQMZ0iWLmst0MnrqcT1Jzsbu4Pq0+UUATEREREWmIQqPgmo/hillQuAfe7A8rXgR79bNPvjbD3bGR/NirA4nBgfwlLZfrft7D/lLPb1sf1SSIl6/qztxJFxDbLJiHv9zGmP9exerdRzzdWq0ynk7ENdEzrom14YkLPd3Gfzh+/DhhYWGebkNERGqBxnQRaZDs5VUhrfgI+IVARAL4N3JaYmFxoKyCnNJyDBAbFECkvy8GUzc9/05vR4vKyT1aTLndQdNgf2KbBRPo6/Mfv9cbx3Vz64KNlmX1/K3vaQZNRERERKSh8/GH5klVX/ZyKNgCx3PAqn6nR4MhKsCf7o2DCfHxYU9xGTtPl1LqZHfIumIwRIQE0D0mjJimQZwoqWBr3nFyCouo9IL+zoWvpxuokYgEuOVbT3fxH7YsW8agQYM83YaIiNQCjeki0uAVF8LCR2Hrx1WzaJdNh9Y9qv3tgUAny+KDgqM8mZWP3YLH2kVxa3QENuPZ2TQbEA34nSzlxYXpzNm0j/Bif+4fnsjVvWLw9bF557h+a/Wvm2bQRERERET+SILD4U9vwLWfQ9lJmDUMFv0NKkqqLTHGcEOrCJanJNE3LITHM/dz+eYssopL67Dx6rUIDeTFK7vxzd0X0q5FIx6fu53R01axMvOwp1urMQU0EREREZE/osQRVeemnX8jrJ4GMy+AnDVOS6ID/fmwazzTOrYhvaiUoevTeT3nIJVespti5+gmfDqhDzOvO5/iikpumJXKBzvLPN1WjSigiYiIiIj8UQU2gUtegxu/BkcF/GsULHgIyk5XW2KM4c8tw1mRksSQ8FCe2VPA6E0Z7Dpd/QxcXTLGMKpLFD/cP5CHRyXRpfl/bhzizRTQRERERET+6OIHwZ1roPcdkPoWzOwLe5Y5LYkM8OPdznG82SmWvNJyRmzI4KW9Byj3kk06Av18mDiwHd2a169tNxTQREREREQEAhrBqClwy3dVuz7Ovgzm3QulJ6otMcZwWYumrEjpyJjmTXgx+wAjN2Sw9VRxHTbesCigiYiIiIjI/4rtCxNXwQV/gc3/hhl9IWOR05IIf19mdorjvc5tOVpRycUbM/jn7nxK7d4xm1afKKCJiIiIiMj/5RcEw5+C8YshIBQ+uhK+mli1Rb8TI5s3YXlKEldGhjMt9xDDN6Sz4URRHTXdMCigiYiIiIjIb2vdA+5YDgMegm2fw/TesOsbpyVhfr682rENH3WNp9ju4JJNmTyRuZ9izaa5RAFNRERERESq5xsAQx6D25dC45bw6fXw+c1w2vkZY0OahbIsJYkbWjXjzX2HGbI+jZ+OnaqbnusxBTQREREREfl9UV3h9iUw5G+Q9i1MT4Ftc8Cq/gy0xr4+vNAhhjnd22FZcMWW3fxXeh6nK+112Hj9ooAmIiIiIiKu8fGDAZPhjpUQHg9fjIdProWTBU7LLmzamCUpHZjQujmz848yMDWNZYUn66jp+kUBTUREREREaqZFEoxfBCOehd1Lqtambf7A6WxaiI8PTyVEM+/8BIJ8bFy9dQ/3p+VyoqKyDhv3fgpoIiIiIiJSczYf6Hc33LkaWnaGryfBB2PheK7Tsl5NQljcswP3tGnBpwWFDEhNY+GR6s9a+6NRQBMRERERkbPXrB3cNB8ungq566rOTVv/Djiq37Ux0MfGY+1asaBHIuF+vty0bS937czhaLlm0xTQRERERETk3NhskHI73LUGWveEbx+E9y+Bo7udlnUPDWZhz0QejItk3qFjDEhNY96h43XTs5dSQBMRERERkdrRNBZumAuX/jcc+BlmXgBrpoOj+l0b/W02/to2ikU9OxAd4MeEHdmM376XQ2UVdde3F1FAExERERGR2mMMnH8jTFoH8QNh4aPw7kVwON1pWXKjIBb0SOSx+CgWHz3JwNQ05hwoxHKy8UhDpIAmIiIiIiK1L7QVXPMJjH0bjmbBGxfCypfAXv06M1+b4Z7YSH7o2YF2wQHcvSuXG7btJb+0vA4b9ywFNBERERERcQ9joOufYVIqdBgFPz4F7wyBA9ucliWGBPL1+Qk81b4VPx07xcDUND7MP/qHmE1TQBMREREREfdq1AL+PBuufB9O5sNbg2DpP6Gy+pkxH2OYENOCpSlJdGkczIPpefx5625ySsrqrm8PUEATEREREZG60enyqtm0zlfA8inw1kDYv8lpSVxQAHO6t2NKYms2nSxm8Pp0Zu07jKOBzqYpoImIiIiISN0JDoexb8E1n0LJMXhnKPzwBFSUVltiM4aboiNYnpJE7yYhPJa5nz9tzmJ3cfU19ZUCmoiIiIiI1L0OI+GutdD9Ovjp1apNRHLXOS1pHejPR13jeTUphrSiUoauT2dG7iHsDWg2TQFNREREREQ8IygMLnsdbvgKKsuqtuP/7mEoL6q2xBjD1VHNWJ6SxMDwxjy1O58xGzNJKyqpu77dSAFNREREREQ8q90QuGs19LoN1s2Emf1g7wqnJS0D/Hivc1tmJseSU1rG8PUZvJJ9gApH/Z5Nq9OAZoyJN8bMMsbM+cW1y40xbxtjPjXGjKjLfkRERERExEsENIbRU+HmBWBs8P4lMP9+KD1ZbYkxhj9FNmV5ShKjmjdhyt4DjNqYwbZTxXXYeO1yOaAZY941xhwyxmz/1fWRxph0Y0yWMeZhZ/ewLGuPZVnjf3VtrmVZtwMTgatq0ryIiIiIiDQwcRfAxJ+g792w8T2Y0RcyFzstae7vx1ud4pjVOY6D5RWM3JjB83sKKHM46qbnWlSTGbT3gJG/vGCM8QGmA6OAZOAaY0yyMaaLMWb+r75a/M79Hz9zLxERERER+SPzD4aLnoVbF4F/CHx4Bcy9q2rXRydGNw9jRUoSYyOb8mrOQYavzyDT8qmjpmuHqclp3MaYOGC+ZVmdzzzuC/zDsqyLzjx+BMCyrOd+5z5zLMsad+bXBnge+MGyrP+IxsaYCcAEgMjIyB6ffPKJy/3WldOnT9OoUSNPtyEiIrVAY7qIiHcxjgrisj+lTe4XlPs3ISPxTo5G9P7dus2WL28TTNeKYib6V9ZBp64bPHjwRsuyev7W93zP8d7RQN4vHu8Dqn21jDHNgGeB84wxj5wJcvcAw4Amxpj2lmW98csay7LeAt4C6NmzpzVo0KBzbLn2LVu2DG/sS0REak5juoiINxoOBfcQMHcSXbb/s+qg61EvQEhEtRWDgPGVdn5aubJejevnGtBqxLKso1StNfvltWnAtLrsQ0RERERE6pmobjBhKax6FZZPgT3L4OIXodNYMOY3S0J9fQj67W95rXPdxXE/EPOLx63PXBMREREREaldPn4w8K9wxwoIi4U5t8Kn18OpA57urNaca0BbDyQYY9oaY/yBq4F5596WiIiIiIhINSKTYfwPMPxpyFoM01Ngy0dQg/01vFVNttn/GFgDdDDG7DPGjLcsqxK4G1gI7AI+syxrh3taFREREREROcPHFy64t2pL/hbJMPdO+HAcHM/7/Vov5vIaNMuyrqnm+gJgQa11JCIiIiIi4qqI9lWHW69/Bxb/o+rctBFPwfk3g+1cPzBY9+pfxyIiIiIiIr9ks0HvCXDXaog+D+bfD7MvhcK9nu6sxhTQRERERESkYWgaBzfOg0teg/wtMLMfrfZ/5+muakQBTUREREREGg5joMfNMGktxF2IsbzrkOrfo4AmIiIiIiINT5PWcO1n7I8e7elOakQBTUREREREGiZjwNSvyFO/uhUREREREWnAFNBERERERES8hAKaiIiIiIiIl1BAExERERER8RIKaCIiIiIiIl5CAU1ERERERMRLKKCJiIiIiIh4CQU0ERERERERL6GAJiIiIiIi4iUU0ERERERERLyEApqIiIiIiIiXUEATERERERHxEgpoIiIiIiIiXkIBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJeQgFNRERERETESxjLsjzdg8uMMYeBHKAJcKKWblsb94oAjtRCL+IZtfnzVJ/V59fB23r3RD918Zzueg6N6VLbvG1M8JT6+jp4W9+e6kfjeu3dyxvH9VjLspr/1jfqVUD7H8aYtyzLmuAt9zLGbLAsq2dt9CN1rzZ/nuqz+vw6eFvvnuinLp7TXc+hMV1qm7eNCZ5SX18Hb+vbU/1oXK+9e9W3cb2+fsTxGy+9l9RP+hmoUp9fB2/r3RP91MVzuus5NKZLbdPPQZX6+jp4W9+e6kfjeu3fq16olzNo3qa+pXIREamexnQRkYalvo3r9XUGzdu85ekGRESk1mhMFxFpWOrVuK4ZNBERERERES+hGTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCWi0zxoQYY943xrxtjLnO0/2IiMi5McbEG2NmGWPmeLoXERE5d8aYy8/8W/1TY8wIT/fzawpoLjDGvGuMOWSM2f6r6yONMenGmCxjzMNnLo8F5liWdTtwaZ03KyIiv6sm47plWXssyxrvmU5FRMQVNRzX5575t/pE4CpP9OuMAppr3gNG/vKCMcYHmA6MApKBa4wxyUBrIO/Mb7PXYY8iIuK693B9XBcREe/3HjUf1x8/832vooDmAsuyVgCFv7qcAmSd+Z/VcuAT4DJgH1UhDfT6ioh4pRqO6yIi4uVqMq6bKlOA7yzL2lTXvf4eBYizF83/zpRBVTCLBr4ErjDGzAS+8URjIiJyVn5zXDfGNDPGvAGcZ4x5xDOtiYjIWaju3+v3AMOAccaYiZ5ozBlfTzfQ0FiWVQTc4uk+RESkdliWdZSqdQoiItIAWJY1DZjm6T6qoxm0s7cfiPnF49ZnromISP2kcV1EpGGpl+O6AtrZWw8kGGPaGmP8gauBeR7uSUREzp7GdRGRhqVejusKaC4wxnwMrAE6GGP2GWPGW5ZVCdwNLAR2AZ9ZlrXDk32KiIhrNK6LiDQsDWlcN5ZleboHERERERERQTNoIiIiIiIiXkMBTURERERExEsooImIiIiIiHgJBTQREREREREvoYAmIiIiIiLiJRTQREREREREvIQCmoiIiIiIiJdQQBMREREREfESCmgiIiIiIiJe4v8BszKEA6cVlZ8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "z = 0.5\n", - "ns = [4, 5, 5, 6, 7, 8, 8, 9, 10, 11, 11, 12] # np.arange(4, 13)\n", - "ms = np.arange(6, 18)\n", - "xi = np.logspace(0, 2, 201)[:, None]\n", - "lanczos = eval_lanczos([z])[0]\n", - "\n", - "_, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(12, 8))\n", - "ax.grid(1)\n", - "for n, m in zip(ns, ms):\n", - " zeros, weights = np.polynomial.laguerre.laggauss(n)\n", - " c = scipy.special.factorial(n) ** 2 / scipy.special.factorial(2 * n)\n", - " e = np.abs(\n", - " scipy.special.poch(z - 2 * n, 2 * n)\n", - " / scipy.special.poch(z - m, m)\n", - " * c\n", - " * xi ** (z - 2 * n + m - 1)\n", - " )\n", - " ez = np.sum(\n", - " scipy.special.poch(z - 2 * n, 2 * n)\n", - " / scipy.special.poch(z - m, m)\n", - " * c\n", - " * zeros[:, None] ** (z - 2 * n + m - 1),\n", - " 0,\n", - " )\n", - " lag = eval_laguerre([z], m)[0]\n", - " err = np.abs(lanczos - lag)\n", - " # print(m+z,ez)\n", - " # for zi,ezi in zip(z[0], ez):\n", - " # print(f\"{m+zi}: {ezi}\")\n", - " # ax.semilogy(xi, e, color=color)\n", - " lines = ax.loglog(xi, e, label=str(n))\n", - " ax.axhline(err, color=lines[0].get_color())\n", - " # ax.set_xticks(np.arange(xi[-1] + 1))\n", - " # ax.set_ylim(1e-8, 1e5)\n", - "_ = ax.legend()\n", - "# _ = ax.legend([f\"z={zi}\" for zi in z[0]])\n", - "# _ = [ax.axvline(x) for x in zeros]\n" - ] - }, - { - "cell_type": "code", - "execution_count": 81, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 3.53233831 4.88557214 6.2238806 7.56716418 8.90547264 10.23383085\n", - " 11.5721393 12.91044776 14.23880597 15.57711443 17. ]\n", - "Intercept=1.34093, Bias=0.854093\n", - "35.0\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW8AAADgCAYAAADMreetAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlUklEQVR4nO2de7QkdXXvP9/q7jkDyEMcRAR0wDdwQbgTgter4hOCKCqEBZF7ETBEYwjxcUXiSnCZZYImK2rEFZ0IIksl4lsTJXANyDIL8A44jgjB8JQZQRwQFYSZOV37/vGrM1PT9KPO6a6q/nXtz6xec7r699j12rVr//Zv/2RmOI7jOHGR1C2A4ziOs3hceTuO40SIK2/HcZwIceXtOI4TIa68HcdxIsSVt+M4ToS06xagCFLbEnXqFsOZQlLbBHi46yxiZiqr7aOOOtg2PvCboWVuvOGufzOzo8uSYVyiUN6JOuw0t7JuMZwp5OHH7sSYr1sMZ+J0S2194wO/5trr/3Jombn2GStKFWJMolDejuM4E8XArNwHRNm48nYcp3EYKd30sbrFGIvKBywl7SvpKkk3S/qxpLOrlsFxnKZjmM0P/Uw7dVje88A7zexGSTsDN0i60sxurkEWx3GaiBnWjdvyrlx5m9m9wL3Z37+RdAuwN+DK23GcirAorOth1OrzlrQSOBS4vk45HMdpFmYp1n20bjHGojblLekJwJeBPzOzX/f5/UzgTAD5uKrjOBPFII3b8q5lhqWkDkFxf87MvtKvjJmtNrNVZrZKcuXtDEA+SdhZApYp72GfEUi6SNL9km7q2X6WpP/MAjI+VNYuVK4VJQm4ELjFzP6+cD2fye/0JQFKm4jnbMfszGQVhsYfsLwYuAC4ZGu70kuB44BDzGyTpCeP28kg6jBpXwj8L+BHktZm2/7czL41qIIQUqsK2ZzIkDoQ+cBTDBgGpHWLMTlsfLeJmV2TjdvleStwvpltysrcP1YnQ6gj2uR7LMFUcsvb6UeiNqnm6hajAWyB8lKNPA4reXo8pJOwvPvxbOBFkj4APAa8y8z+XxkdxeFMlkjc8nb6ILVJ/LleOmkKpi3VdVi2h8aAdOQDYoWkNbnvq81s9Yg6bWB34Ajgd4DLJO1vJSwWHIXyFsHCcpxeWskcaeoP9rIxpZW6vI1NJfeQovmRfWw0s1WLbHg98JVMWX9fUgqsAH6xBCGHEolGFC08JazzeFqaQ256l47RpZtW6PMu20UzAZ/3AL4GvBS4StKzgWXAxjI6ikJ5C5Hg1pXzeDrJDqQWxWUcNanNY6puYDitIIJIo90mw+tLlwJHEtwr64HzgIuAi7Lwwc3AqWW4TCAS5Q2i5YsxOH1oJ3Ok5g/2stmSPkpaoeuydNVthuY3j9mEnTzgp1PGarggUShvIVpxiOpUTIflpIo7L3MMbEl+S1plSKbKVt9WZMByqolGI8rdJk4fWur4eEgFJOqgSmezlqu8NQHLu26iUN5CtN2v6fRDVcQEOy11ZmuuhdnYPu+6qWN6/HLgGmAu6/9LZnbeiFoks3ThOBOjbW1SvzZKRySVWt4q3ettaL7CuPUSqMOc3QS8zMwezhJUfU/St83suhpkcSInyf455SIls+W6LDZJZ6qpY3q8AQ9nXzvZZ2QozUy9sjlOZCS0SGbI5+0DlktEIcvUDcAzgY+b2eMWY8jn825rh2oFdBxntjFDXXebLBoz6wLPl7Qb8FVJB5nZTT1lVgOrAXZo7W6z/GqczlK2Nmcmmck33ypnjJZArSEcZvaQpKuAo4GbhpVNbAYvngU8HbUTATOlwM0HLBeNpD2ALZni3gF4JfDBoXVgpgelEkvc+nammpY6JBXOcq4i2sQt78WzF/CZzO+dAJeZ2b8MqyATHZvdiRjz6s7wo8mZBVrqVJuiouwZlmYwH/ciHnVEm6wjrBi/CERrlsKUejGYd9eJM8W06NCucNGL0i1vDxWshgQxN8NToLeEaYKOM7W0rU1Hyyvrr2z/ujDkbpPyEdCZYceC0SJ17e1MMR2WkVp1yq70wVHD3SZVIIlOpRMEqsXMmPeQE2eK6dgyUlWpvH3AchRxKG9gboZXS7EUtlRo1TjOYllWccBA6dFlBsy7z7t0BHSS2bVMt5hozXIcuxM9LZJKFbhKX6neLe9KCG6T2VXeLc3U9AdnBunQJqkw9W75K+kA3bGXQbsIOBa438wO6vntncDfAXuYWZPXsIT2DFvenVS0Ztin78wAlpJUqC6q8XmPHSRwMXABcEl+o6R9gVcBPx23g2HUpryzSTprgA1mduzQskB7dnU3iUI4pONMLUpQOevo9u+u7A6MsZW3mV0jaWWfnz4MvBv4+lgdjKBOy/ts4BZgl5ElBa0ZNkxbKt/OcJxxSBBJla7LkvsyA5sfqbxXSFqT+746S5g3EEnHEQzSH6rkfagrJew+wKuBDwDvGFkez93kOHVS9f1XSX+jLe+NZraqaHOSdgT+nOAyKZ26LO+PEF4rdh5UIJ/P+wnJzsywy9sHKx2nagyY/BydZwD7AQtW9z7AjZION7P7Jt1ZHVkFF0Znb5B05KBy+Xzee3T2nPnph5W+kjaQtEJ/rRMJE74kzOxHwJMXvku6C1g1S9EmLwReK+kYYDmwi6TPmtkpNcgyFUhufZdJij8cnR4MbMxscJIuBY4k+MbXA+eZ2YUTkK4QdWQVPBc4FyCzvN9VRHHP8q2XKMSyO+WQuNXt9CMd754zs5NH/L5yrA5GEE2c9yz7vIVou/IujbjTDzWTKkIFbUzlXTd1L4N2NXB1kbKzrLzbwpV3ybjP29keQTduZ2U0lndrhnVbO4FO3NfRVNPthlh6Jx7c8h5NFMobzbbybmm2E2/VzZYUzPOlO3lMMB/36lxRKO+wAPHs3nydRHRnd/dqZ7Mgnekh79mjigF8Kz1zYblEobxhxqfHm7tNyqSVgPzh6OQI0+Pd8i6dWfd5dxJjtoMh6yX4u117x0T5d4PGDhWsmyiUN8z2JJaWgMSVS1kE5R33jepMHnebVIAwWjP93quZDoWsGz+28VFJtIm7TRZPNuf/N0AXmB+ZuUulZ4islRbmdmGJeJhghJR+yuSW9xi8dDEJW5IZtrxTRNw2wHTjTpP4cMt7NJG4TWb75pvlB5PjTCOG+7yXigFXSDLgk6NWp5h14r6Epp9EHmvi9GByy3uJ/E8z2yDpycCVkv7TzK7JF8gvxrBr6wl1yOg4zgwTu+VdSwSemW3I/r8f+CpweJ8yq81slZmt2qm1Q9UiOo4zy5ggTYZ/ppw6VtLZCUjM7DfZ368C3j+qnod7OUtllid41cmYi6/XigGpZxVcNHsCX81yF7SBz5vZ5aMqzXJuE6dcXHmXQ6LyFHgMWQUlXQQsLOt4ULbtb4HXAJuB24HTzOyh8YTtTx0r6dwBHLKYOmK247ydcmnLfBm0Eog7mZqw7tgDlhcDFwCX5LZdCZxrZvOSPkhYNeyccTvqRxShgsCMz7B0yqSdQNcXYygBxe06GXPA0syukbSyZ9sVua/XASeM1ckQolDeISWs4yyNTmK0I48smEY2pUZa0htN2WfLTKTjW96jOB34QlmNR6G8EbQ8cZOzRDqJRW0hTispwkp6o6nCy1XA571C0prc99VF56RIei9h+dTPLVG8kUShvGc/MZVTJh1Z7Nk/pxIz6MYaBmaF3CYbR+Zd6oOkNxEGMl9uZT3diEZ5h0Enx1kKyxIj9WilidO1BEX8VCwjVFDS0cC7gZeY2W8n3kGOKJQ3+BRyZ+l0EiOtW4gZZD412iXdmKX7vBFm4ylvSZcCRxLcK+uB8wjRJXOEmeMA15nZW8aTtj9xKG9BK/Hbz1kaHSD1AcuJs1mg0t6IS35TsvEtbzM7uc/mC8dqdBHUlc97N+BTwEGEs3S6mV07sDwebeIsnZZ8zKQMWkpKmwBVyYBl5A/0uizvjwKXm9kJkpYBO46qUN4T3pl14s4dN70kijedcQgVjNskrCO3ya7Ai4E3AZjZZsJU0qHEfZidOkkjVTDTTuwG1bg+77qpw/LeD/gF8GlJhwA3AGeb2SM1yOI0gLhv0eklobyBxSocGrGPg9RxXbeBw4B/NLNDgUeA9/QWknSmpDWS1jw8/2jVMjqOM8MsuE2GfaadOizv9cB6M7s++/4l+ijvbCbTaoD9dlhhsfrWHGdWkSzqVM0+YLlIzOw+SfdIeo6Z3Qq8HLh5VL3Y/WtFif2CcppFtKmaTXTTuIey64o2OQv4XBZpcgdw2rDCojlZBbt1C+A4BWnLygsVLKfZrRjj5/Oum1qUt5mtBYrnDFBzlLdb3k4slBk/X8mAZQRLnQ0jihmWwugkzbBJPe20EwstGZ2Ssn2WPknH4o82iUR5Q6ch0+O7lkR/UTnNICjvcu5LlexLD7lN4r7PolDeiYxlrfm6xaiEzd1WtLPWnGbRSVK2lKUAK9CrXXebVICg3WqG5e0JuJxYaKUpcyXFClYRxeKWdwUkNMfybmkZqSfAdSKgk6SlXatVLIPmlncVyGi3mjFg2UpSFLlF4DQDS0Li6jKoYl6HW94VIIx2Q6JNfMk3JxqS8qJCqojzdsu7AiQaZHmbhws6kVDe+EwVoYLTYHlL6pjZlqXUrSMl7HOAL+Q27Q/8pZl9ZGAdjFZDlHcic5+3EwUJRqJy7suyQwVBY4fkSrqIsNDw/WZ2ULZtd4J+WwncBZxoZr8cUP+fgGMlzQM/A9YB68zsY0X6ryO3ya3A8wEktYANwFeHVhIkDYjCMFNI9lO3II5TBMU70cWAdPx83hcDFwCX5La9B/iOmZ0v6T3Z93MG1H8xsI+ZdSXtDRwCHFy085HKW9LLgDcCDwE3EZ4ON5nZpqKdDOHlwO1mdvcE2oqepiTfcmaHmOckjPvgMbNrJK3s2XwcYVFigM8AVzNYeV8PPIlguW8gGLLfKtp/Ecv7IuDPCOu4Hgy8DjgQeGbRToZwEnBpvx8knQmcCbDX8rmoL5LF4krcaTwlG/QFQwVXSFqT+746S1U9jD3N7N7s7/uAPYeU/STwXUkXEhT5OjP71SihFiiivO82s69lf3+xaMOjyDIKvhY4t9/v+XzeB+66S2O0WYL7vB2nCgoMWG40s+IJ9B7XvpmGW2KfJei4NvDHwMGSlpvZM4q0X0R5XyPp7cBHzCYaB/F7wI1m9vMJthk9klFSrp9G4w9EJ48R8giVwM8l7WVm90raC7h/SNn1ZvY3+Q2SCofOF1HeBwD/DThH0g3AWmCtmY1rhZ/MAJdJL8Ia40qQmrOvVSKLPxFRk4gh2mQA3wBOBc7P/v/6kLJrJZ1tZh9d2LCYscSRytvMjgeQtAPbFPnvMoYLRdJOwCuBPypepxkKrdPqRjuCP83EPiHDmSzB8h47VPBSwuDkCknrgfMISvsySWcAdwMnDmliT+AVks4BbgR+yCIM48Khgmb2KGGl9xuK1hnS1iOEUdZiCFoNSkwV9+JM04tb3vFQ+pmawCQdMzt5wE8vL1j/RNjqKjmQYBgfTkHDOI4ZlhhSM5R3U9IAVE06A4mImkX5b9rT8oabuUpuzD6FiUJ5N2WSDkCnswUrZyCl0UzLjeoUpOxQQVTWgGVlxKG8gaQhbpOQw8Wt70nT7SbuNomIStawjHwYLQrlLRlJQ3KbdDrzpJGvaj2NtNvz7jaJirKXQSstVLAyolDeEPc03MXQas2TlLQ6SZPZMt/2VYoiopqsgiX3UTJRKO9geTfjxmu1m/GGUTWtzWljIpac0bjlXSFNifNut+fdN1sCSZI2JmJpFoh4kk5l1KK8s+n2byY8AH8EnGZmjw2v04wbL/Eg71JotbqNMQBmggr0auxXQx2LMewN/ClwgJk9KukyQnbBiwdXgqYk/FDajIdU1XjaASePAfNueS+53x0kbQF2JKwiMYQG3XithuxnxUjWmEFvpxixuycr99hnScf/DvgpcC/wKzO7omo5HMdpLmYht8mwz7RTufKW9ETCahP7AU8FdpJ0Sp9yZ0paI2nNA495BIbjOJMlNQ39TDt1uE1eAdxpZr8AkPQV4H8QEpNvJb8YwyErdjA1xOftlIOSBrneKiZG90OYHh+f3HnqUN4/BY6QtCPwKCED15rhVRxnPHzAMi7KDxWE2EMD6lg9/npJXyJk0JoHfkBmYQ9CNCfO2ymHpNWl3Z6vW4yZwyyh241vsosR5xtDnlqiTczsPELi8mI0KLeJUw6tJG1MZsoqMbNycvFUoFe7kduD8cywdJ+3MwZJK/XUAyVgJS0vV7bbxGz8NMFLmWw4SeJQ3gK55e2MQdKepx3h6/20YybSMo5rJZb30jtZ0mTDCROF8m5SYiqnHFodzxlTBtZtoS3xvRUbExmwXORkw8kShfIGkPsrnTFwt0k5pLJSxhKqCFAYx/I2sw2SFiYbPgpcUfVkwziUtwy55e2MQdKZ94ilEujOt2hF6NI0Cq2ks0JSPox5dTb/pHey4UPAFyWdYmaffXwz5RCF8hbu83bGI2kLc+VdCrE+FAssxrDRzFYN+K3QZMMyiUJ5I482ccYjaaeYX0OlUMZ4VOkPhPHzl9Q+2bCufN5nA39IMKr/ycw+MryGNSYlrFMOolvB2lrNQ6mizLU/7oDlUiYbTpo68nkfRFDchwObgcsl/YuZ3Ta8XnwXiDNFtIDEQwUnTWJpOYZVBJN0Fj3ZcMLUYXk/D7jezH4LIOm7wBuADw2s4W4TZwIIHzeZNN35pCQXR/mrx8eQOXAYdZgiNwEvkvSkzF90DLBvDXI4jjMmMRtVXRv+mXbqSEx1i6QPAlcAjwBr4fEmkaQzgTMB9t3FX3cdx5kcITFV3VKMR12JqS4ELgSQ9NfA+j5ltubzPuypHfMBS8eZTmK1vmMfRasr2uTJZna/pKcR/N1HDK9gzYrzNmGpv204EVDSIhdle6MtEtfIMOqK8/6ypCcBW4C3mdlDwwqLeJ/uS8FSTwfgxIGUlpOuuYKJPwVmWE41dblNXrSoCjLUaVAi/W4Cbnk7EaB2SlLGvVmy6W245V0NMrSsQcp7UweL3iPnNAElKa0SlHcVU+7d8q4CgToNUmbpPMy36pbCcUaTpiSdybtNylbebnlXhUDL6haiOqxr8ZsFTiNQu1uOS7P03CYeKlgNCTAX92yoxaDNaSxnxmk6SUprbvPk263CbVJ6D+USh4pIBMsbZHo/ugm55e1EgCWUYnm722Q0cShvCZZ16paiMtTehLnydiJAqaESfN5VJKaK/RaLR3l3GmR5t+QpcJ1o0LISlHfJ179b3lUhQTsOUSdCW1Eu6uo0kARK8R5XYnnHfY+VphElXQQcC9xvZgdl23YHvgCsBO4CTjSzXxZoDWs3yG2SJOAzLJ1IUIR2lU+PH87FwAXAJblt7wG+Y2bnS3pP9v2ckS01zfJOVE+yXsdZCmVcq6Vb3oaVnDO8bErTiGZ2jaSVPZuPA47M/v4McDVFlXfSoEkrSeJLdjnxEKH7oeDq8UORtBvwKeCgrMnTzezacWUrStXm7J5mdm/2933AnoMK5vN5P23PBlndjhMbkRoa3fEfOh8FLjezEyQtA3YcX6ri1PZybmbGkLWOzGy1ma0ys1UrdnPl7TjO5FhYgHjYZxiSdgVeTLYugZltHpUdddJUrRV/LmkvM7tX0l7A/UUrWoMWj5X7vMvDx4GdjAKW9wpJa3LfV2eLxADsB/wC+LSkQ4AbgLPN7JHJS9qfqpX3N4BTgfOz/79euGaDlDftNrQblEWxSuYbtKhHzFSQErZAqOBGM1s14Lc2cBhwlpldL+mjhACMv5iclMMpM1TwUsLg5ApJ64HzCEr7MklnAHcDJxZsrFkDlq02tBu0v47TSwV+9O540SbrgfVmdn32/UsE5V0ZZUabnDzgp5cvqb2mWd4NSgdQGWkaPk7jMYx0DOVtZvdJukfSc8zsVoJeu3liAhYgjpFAJdBuzvR4WzaHXMlMnjR1t0kslL6I5URmWJ4FfC6LNLkDOG1suRZBJMq7WTMsWTYX+fSB6UTzW2BLCelLnRIoV3sb0B1z9NrM1gKDfOKlE4XyNsAa5PO2ZXNVpHZoHJYkaNNjdYvhFKECn/c4bpNpIArlHSzvJrlNljfLx18R2pygVhyXfOMpPdrExra86yaOK1lJo5R3umw5atCbRlUoTZsVcho1JWtvQSpX3tUQY+qyJWLtZc0KjawIS7vNSnAWMyW7TYLlHffgdRxXshKsPVe3FJVi5pN0Jk7aJfGHopPhPu8BDMjn/fvA+4DnAYeb2ZrBLWzXWqMsUWvPQdqc/a2M5FF3m8RCFQOW7jYZyMU8Pp/3TcAbgE8uqiWBJXG8JEwCQaMeVlUR3FGuvJ3gNpkn7rfbSvN5m9ktAIo0hWRVNOlBVSWWtPyhGAul64gwxzJmplZL5PN577v3TjVL4zjOLGEY84rb8p7ad8jt8nk/qVmDlY7jlI/RHfqZdqbW8t6eZg1YOiWhtk9+cgD3eVeGIfcDO2NjSQualCMnZirxeU+/dT2MqvN5Pwh8DNgD+FdJa83sqAKNNWqSjlMSSbtZCc5ipvRJOpD6gGV/huTz/uqSGnTL2xkTa89hy5bXLYZTBJXt3jK6bCm5j3KJQyMqgZbfdM54WPsx0mU71C2GUwCrwPL2UMFKECT+uuuMSWs51tmxbimcIlRheZtb3qUjJcgtb2dMLN1CunyXusVwilB6dNlkBiwltYA1wAYzO3bsBhdBFMob5MrbmQjWebhuEZwCmMpV3obRnUzyt7OBW4DKrYI4lLcSksSVtzMeKWBzT6xbDKcIJStvDMzGs7wl7QO8GvgA8I5JiLUY4lDeCHm0iTMmCcux9hPqFsMpgEr2eYfMJmMPWH4EeDew89gCLYEoNKIAeZy3MyZqtT1PeixUMGCZjh6wXCEpn7Z6tZmtBpC0kO76BklHliPjcKrO5/23wGuAzcDtwGlm9tDoxhJaiec3ccbDrAtueUeBKki7ZDbS8t5oZoNWh38h8FpJxwDLgV0kfdbMTpmkjMOoOp/3lcC5ZjYv6YPAucA5oxoSInHL2xmTFGiV7Ut1JkMVbpMxQgXN7FyC/iKzvN9VpeKG6vN5X5H7eh1wQln9O04vbgDEg8pegBgrYnlPNXVezacDX6ixf8dxmopBOqHxDzO7Grh6Io0tglqUt6T3AvPA54aU2boYw9Oe9qSKJHMcpxnEv5JO5cmNJb2JMJD5RjMbuHxzfjGGPfbwWXGO40wOIwxgD/tMO5Va3pKOJsRFvsTMfltl347jONuw6MNGS7O8s3ze1wLPkbRe0hmE6JOdgSslrZX0ibL6dxzHGUxwmwz7TDtV5/O+sKz+HMdxFkXklrfHTjmO00DiH7B05e04TjOJYFByGK68HcdpIIYxMNgtCjQkWm9qkPQb4L7s66+AXXM/935f2LYCtlukblC5hW0dYOOIMr3bOrk+ypRryyLaHyXXIFlnXa5B7S9Frn7XShPkWtiWPydLlatfufz3p5hZadn6JF1O2I9hbDSzo8uSYVxiUd5rgBsBzOxMSasXfuv9ntu2tc6IcgvbDjOzVSPK9G47rAq5gBsX0f5QuYbIOtNyDWl/0XLR51ppgly5bQPvx6JyjdjvrXVwBhKT2+SbA/7u930x5Ra2HVagTO+2wyqS65sDyi1VrqLbZk2uQW0tVq5B10oT5Oq3faly9dvWez86gzCzqf8Aa8quU0UfLtdsyNXkfZ9muZr2qXx6/BJZPbrI2HWq6GMpdVyuZvaxlDpNl6tRROHzdhzHcbYnFsvbcRzHyVO33wY4GrgVuA14T5/f5wh5v28DrgdOzZW/PPv/VuCoAeVXZn3cTlhM5WfAWuATuT5eTBg9nycsEJGX6TLgv7LPqf3K9+yH5fr4Rq6PdwA3A+uA7wBPz9X5OSGUamsfBeoM6uctwI+y7d8jpNUddrx6yx8w6njl+jo+k+OsYX30Kb+qwDl5E/CLbPta4M0FjldvnQ/n5Epz2/PH68TsGP8Y+PyoPkbUGXROPpzr+yfAwwy/vnrLP1Sgj6cBVwE/IFwvx+TqPJDty3bnpE+dv8jK3EUIBVyQ4RNZ+acTrsN1hPzV+xQ4J711/hm4H7gJ6PaeE8KStf+QHZt1hKiThbZO7T1WTf7UrbhbhBt4f2AZ8EPggJ4yf5y7eE7OLvz9gUOAR7P/98vaafWUPym7OW4HXkS42fr1sRI4mLBk24k5mfYENgEvAJ4I3JH9ny9/Qs9+PDygj5cCO2Z/vzUn16FZuzcBRyz0MaLOsH52yf39OuC3I45XvvxrCcp36PHKyu4MXENYEWn9sD76lD+8wDl5E3BBn2tl2PHaWofHX1vdPn08i6C4Fuo/pUAfg+oMPCc9ff4p8GuGXF895c8CPl3gvK8G3pr9fQBBAd8OvIqgBNcBr+w5J/k6BxEU9v7ZPj7ap48vsu0B8zLgswWOV2+dfyNEktwEPNzn+BwDfJugxI8Ars+27561u/ugY9W0T91uk8OB28zsDjPbTHgqH9dT5jjgM9nf9xBuxDsJJ/m7wDFmdifhSX14T/kvES7e27K61q8PM7vLzNYRrLNnLshEuNjWAkea2S8Ja3Ae3VN+u/3Ivvfr4yrblgb3OuC5mVzPzdr9HEFZX0mwZgbWGdHPr3NfDwYeycr3PV495XciTJIYerwy/gr4IOF83DOsj57yjwEHFuwjz+GMOF79yueurfk+ffwh8PHs3EJ44Izqo2+dYeekhzcDPxl2ffWUP5nwsBjVhwELie93JTwgbgP+O3Bp9lnF9uckX+cFBGV6B9sm7fT2cQDw79nfVwGvZ/Tx6q3zAuDBfgcm4zjgEgtcB+wmaS/gKOBKM3twyLFqFHUr770JN/AC67Ntg8o8hXDzPynbfmeu/ELdreUtJOx9jPCaBuFG+yPgTyS9aIBMu+f62xv4aZ8+hu3HcsINfrak1w3o4wyCxXlPru5C24P6yNcZ2o+kt0m6nWDlXZWTsd/xypf/EOEGXOij7/GSdBiwr5n9K8FN9fNhffSUB9hjVB8Zx0taJ+lLhAdRkeN1vKR1wN+zvZJoA2+XdF3ueD0beLak/5B0HfDqAn0MqgMjzr2kpwP7EiznheM18PrKyu9HmF08qo/3AadIWg98i2AVj9qXfJ0Ps/1SXrsB75D03dx5+SHwhuzv1wM7Eu6tYX301tk5axtguaQ1PedkkE4ooisaRd3Ku0ruJfj4/oLg2/28pDKW6Hk6cB5wBfARSc/I/yjpFIIF9PWiDQ6oM7AfM/u4mT2DcAM/f1T7ufLnsG1R6L7HS1JCUIzvLCr+kPLDzsk3gZVmdjDByvqTAn3l66wDXpL77e0Et9MfsO14tQkugiMJFu5bCG8SwxhWZ+i5J7jxroXCSTVOIrw95tPfDerjZOBiM9uH8AZ0VoH283X+GjgyO7/3Eo7XFwjjLgvn5V3ASyT9gHBsHyywL711NuT25+kWZlHmz4lTkLqV9waCJbLAPtm2QWXuI1geD2Tb98uVX6i7tbykdlb+yWa2ycweyMqtJfjqnt1Hpgdz/W0gKJfePgbuh5ltyMrdQrBkDl0oJOkVwHsJvuW7szoLdRfa3q6PAXWG9pPjsuwYLcjY73jl+WfCQ2LfIcdrZ4J/9GpJdxHcTEdLWjWgj1/2lD8C+D/AgcPOiZk9YGabsnY+lbU79Hj11LmEYOEvsBOwIXMLLByv9YSBsi2Zm+dOgmIedk4G1SlyTk4Cvkbx6+skgrujyPV1BuF8Y2bXEu7tZ4zYl611CG9oc8CK7Bjulh2vG8jOi5n9zMzeYGaHEq7JLsFvP+yc9NaB4NJZ2Bd6zskgnVBEVzSLOh3uBCvmDsKNuTBgeWBPmbexbQDyDwgDNvuxbXDs+dn3OwiDVPnyJxEGTO4g+P6WZ30cRTjxu/f0dTFhwHJBpt4BpTvzdbLyJ+T24xDgCVkfLySMih+QlT2UcBM8q2ffn5+1e1PWz9Y+htQZ1s+zcvIdl8k/7Hjly78GWFP0eGV1vktQaAP76Cl/NfC7o/oA9srVeT3B5z/qeOXrHE9wme0HPJlgiR9ISEb0X2yLqvlMVn4F4bX8rhF9DKoz8JxkZZ+blctf8wOvr1x5FTzv3wbelP39PEJEyh1sP2D5qvw56alzEGFcYD/gqVkfBxIGMDcQ3IkrgCQr/wHCOMaoc9Jb5/2EAf+bgblcmYVz8mq2H7D8flZm96zdJ/Yeq6Z+6hcgvOL9hKCk3pttez/w2uzv5QQFfBvwfeD0XPkrsv83Au8bUH7/rI+fAZsJr4Q3EiyahT5+h6CAHiFY9Xfn+vhy1taDwEcHlP9x1sdPCTfjvYTwu2/k+vi/BN/w2uzzjdy+35+1cxvBNTKqzrB+PprJs5ZgTb1lxPHqLX/gqOPVc/6uJvjWB/bRp/yqAufkb9gWiXIVQZmNOl69dc7Myq8nvLX9MDue/5CVX3Dp3Jwdx5MK9DGozsBzktV7H3B+n2v+cddXb/lcnWHn/QDgP7J9XEtQ1Av9PJB9biWMaQyq896s/H1su+7uBf4qK38CQcn+hPA2NFfgePXW+ULW5jxhYPQewsPhktzx/Xh2bH4ErModg9Oz9m8DTqtbd9X98RmWjuM4EVK3z9txHMdZAq68HcdxIsSVt+M4ToS48nYcx4kQV96O4zgR4srbcRwnQlx5O47jRIgrb2cqkfTvktZmn8cknVi3TI4zTfgkHWeqkfRWQprRk82sW7c8jjMttOsWwHEGIel/A78HHO+K23G2x5W3M5VI+n3gjcBxZralbnkcZ9pw5e1MHZKOJSxnd6yZPVa3PI4zjbjP25k6JD1AyLL3SLbpY2Z2YY0iOc7U4crbcRwnQjxU0HEcJ0JceTuO40SIK2/HcZwIceXtOI4TIa68HcdxIsSVt+M4ToS48nYcx4kQV96O4zgR8v8BcthPbE9QNgsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbgAAAEoCAYAAAAqrOTwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5H0lEQVR4nO3deXxU9b3/8dcneyAbkGQmLGHfQhDRiEoFZQkm1kpXr7W22upFe+t29dbqbW/ttb3313u73NpS6/XWte7a2trWoCCbCi4BFcImqxDMJIQlrNkm398fM8EAE0AzyUwm7+fjkUfmnDkz8/EI8+Z7zvd8jjnnEBERiTVxkS5ARESkMyjgREQkJingREQkJingREQkJingREQkJingREQkJiV09A3M7CHgUqDGOVcYXPcMMDq4SRawzzl3ZojXbgMOAH6g2TlX1NF6REREAKyj18GZ2VTgIPBYa8Ad9/wvgDrn3D0hntsGFDnnajtUhIiIyHE6PIJzzi01syGhnjMzAy4Hpnf0c9rKzs52Q4aE/EgREelBVqxYUeucywn1XIcD7hSmANXOuY3tPO+AV8zMAf/rnHvgdN50yJAhlJeXh6tGERHppszsw/ae6+yA+yrw1Emev8A5t9PMcoH5ZrbeObc01IZmNgeYA5Cfnx/+SkVEJKZ02ixKM0sAvgg80942zrmdwd81wAvApJNs+4Bzrsg5V5STE3I0KiIi0e71X8HW48YxW5cG1odZZ14mMBNY75yrDPWkmfU2s/TWx8AsoKIT6xERkUgbcBY8d83HIbd1aWB5wFlh/6gOB5yZPQUsB0abWaWZXRt86gqOOzxpZv3N7KXgogd43czeB94G/u6cm9fRekREJIoNnYr/Sw/T9PTVNM3/cSDcvvIIDJ0a9o8KxyzKr7az/poQ6z4CLgk+3gJM6Ojni4hI9GtsbuGNzbXMW+1j/rpGrm64kFve+DlMvaNTwg06f5KJiIj0UPVNfpZ8sIt5FT4WrKvmQH0zackJXJ+/k+urF9N0zr+QWP4gDJ0SnSM4ERGRVgcbmlm0voZ5FT4WbajhcKOfzNRELh7npbTQy5TEdST96Sfw1ccCoTbiwk47TKmAExGRDqk73MSCddWUVfhYunEXjc0tZKcl8fmJAygt9HLesH4kxgenfLz+1LFhNnRqYHnnSgWciIhE3u6DDbyyNhBqyzbV0tziyMtM4cpJ+ZQWeika0pf4ODvxhRfceuK6oVN1iFJERCLHV1fPy2t8lFVU8fbWPbQ4yO/bi2svGEpJoZcJA7OICxVqEaKAExGRdu3Yc5h5FYFQW7l9HwAjctP4zrQRlBR6KcjLINB2OPoo4ERE5Bibdx08GmoVO/cDUJCXwe3Foygd72VEbnqEKzw9CjgRkR7OOcd63wHKKnzMq6jig+qDAJw5KIu7SsdQWphHfr9eEa7yk1PAiYjEstd/FWiD1XYSx9aluJ0rWTX4mqOhtm33YczgnCF9uftzBVw8zkv/rNSIlR0OCjgRkVjW2vvxK4/QMngKH7z1EoNe/SfutNv464E3iI8zJg/vxz9OHcasAi856cmRrjhsFHAiIjGsOf8C1k++l6GPf52n3Ey+4H+ZG/y3kjRiMj8r9FJc4CGrV1Kky+wUCjgRkRjT0Oxn2abdlFVUMX9tNXsPx3FH0gz+Ke55Noz5Nvd94RbSUxIjXWanU8CJiMSAI42tfR+reHVdDQcaAn0fZ4zN5Wu52zjnncVwzh2MLn8Qqi7ptAbH0SQsAWdmDwGXAjXOucLguh8B/wjsCm72r865l0K8tgS4F4gHfu+c+2k4ahIRiXUH6ptYtCEQaovW7+JIk5+sXomUFHopHe/lMyOySd7xBjx3O1z+SLBjyJROvUVNNAnXCO4RYC7w2HHr/8c59/P2XmRm8cBvgWKgEnjHzF50zq0NU10iIjFl3+FG5q+tZl6Fj9c21Qb7PibzxbMGUFqYx7nD+n7c9xECPR67qPdjtAlLwDnnlprZkE/x0knApuC94TCzp4HZgAJORCRo14EGXlnrY16Fj+Wbd9Pc4uifmcLXzs2ntDCPswf3Cd33Ebq092O06exzcDea2TeAcuB259ze454fAOxos1wJnBvqjcxsDjAHID8/vxNKFRGJHlV1R5hXEQi1d7YF+j4O7teLa6cMpbQwjwkDM6O2RVa06MyA+x3wY8AFf/8C+NanfTPn3APAAwBFRUUuHAWKiEST7bsPU1ZRRVmFj/d27ANgZG4aN04bQUlhHmPz0hVqn0CnBZxzrrr1sZn9H/C3EJvtBAa1WR4YXCci0iNsqjlA2WofZRU+1lYF+j6O65/Bv8waRUlhHiNy0yJcYffVaQFnZnnOuarg4heAihCbvQOMNLOhBILtCuDKzqpJRCTSnHOsrdofbGbsY1NNoO/jxPws/vWSMZSM6559H6NRuC4TeAq4CMg2s0rgbuAiMzuTwCHKbcD1wW37E7gc4BLnXLOZ3Qi8TOAygYecc2vCUZOISMQc1//ROcemt19iR8Ub/PueYj7cfZi4YN/Hqz5XwMWFXvIyu3ffx2hkznW/01lFRUWuvLw80mWIiIS2dSnuuWtYf8GveaZ2KLtWz+eexp9zS/Mt2LCplBbmMWuch+y02On7GClmtsI5VxTqOXUyEREJkyZ/C29u2U1ZRR9219/Ef758A9mumNsTXmXl5Hv57ZTLyOwV+y2yooUCTkSkAxqa/by+sZayCh8L1lWz73ATqYnxTBszldq4am7c8Du44A4unP6lSJfa4yjgREQ+oSONfhZvqKGswsfC9TUcbGgmPdj3saQwjwtH5ZC68w147lmYegeUPxhokdUDLq6OJgo4EZHTcKC+iYXrayhb7WPxBzXUN7XQp1cinx2fR0mhl8kj+pGcEB/YeOvSY/s99qD+j9FEASci0o59hxt5Jdj38fWNtTT6W8hJT+YrZw+itNDLpKF9SWjb97FVD+7/GE0UcCIibbT2fSxb7WP5lt34WxwDslL5+vmDKS30clZ+H+La6/vYqgf3f4wmCjgR6fE+2hfs+7gm0PfRORia3Zs5U4dRWuhl/AD1feyOFHAi0iO19n18qcLH+8G+j6M96dw8fSSl472M9qjvY3engBORHiNU38fxAzL57sWjKS30MixHfR9jiQJORGLDce2xANyWJVSvX84TCV84pu/j2YP78IPPjuXicV4G9VXfx1ilgBOR2DDgLHjuGtyXH+a9hDNYu+zvfHb9Xfxz40285TZx7tB+fOP8wVw8zosnIyXS1UoXUMCJSLfnb3GUu3GsG/AjZj92FUubZ/D1+AX8zvNDZheVMLfAQz/1fexxOhxwZvYQcClQ45wrDK77GfA5oBHYDHzTObcvxGu3AQcAP9DcXsNMEZHjfdz30ccra3zUHmwkKSGHftmXccu+x6mffDt3zZoT6TIlgsIxgnsEmAs81mbdfOCu4O1w/gu4C/heO6+f5pyrDUMdIhLj2vZ9nL+2mrojTfRKimfamFxKC73MSNlA6p/LYOodpJQ/CCMv0rVnPViHA845t9TMhhy37pU2i28CX+7o54hIz3S4sZklG3Yd2/cxJYHisR5KCr1MHZVDSmJ8sD3WtWqPJUd1xTm4bwHPtPOcA14xMwf8r3PugfbexMzmAHMA8vPzw16kiESPUH0f+/ZO4tIzgn0fh2eTlHBciyy1x5LjhOWGp8ER3N9az8G1Wf99oAj4ogvxQWY2wDm308xyCRzWvMk5t/RUn6cbnorEnr2HGpm/tpqyiire2LSbRn8LuenJlBR6KSn0MmlIO30fpUeLyA1PzewaApNPZoQKNwDn3M7g7xozewGYBJwy4EQkNtQcqOeVNYFQe3PLnqN9H79x/mBKx3uZOOg0+j6KtKNTAs7MSoA7gAudc4fb2aY3EOecOxB8PAu4pzPqEZHosXPfEV6u8DGvwsc7Hwb6Pg7L7s31U4dRWphH4YAMtciSsAjHZQJPARcB2WZWCdxNYNZkMjA/+Af1TefcDWbWH/i9c+4SwAO8EHw+AXjSOTevo/WISPTZVnuIsgof8yqqeL+yDoAx3nRumTGS0sI8RnnSFGoSdmE5B9fVdA5OJAqEaI3F1qWBSR0X3MrG6gO8tNpHWUUV630HADhjYCYlhV5KC/MYmt07MnVLTInIOTgRiXHB1litMxfdliX4n72G54f9mP/7xWI27zqEGZydH+j7WFLoZWAf9X2UrqOAE5FPZ+hUWr70MP6nr+bNfrMZ/9Ef+XbjTbz9Xl/OHZrCNZOHcPE4L7nq+ygRooATkU/E3+J4e+se5lVU8fKaZr56+EJuaXiYv2R+jc9fcAW/LfDSt3dSpMsUUcCJyKk1+VtYtnk38yqqeGVNNbsPNZKcEMecQZXcwGLqi25n9nuPQPYV0FuNGCQ6KOBEJKT6Jj+vbaylrKKKBWur2V/fTO+jfR/zmJ6yntQ//z/46mOBiSYjL1JrLIkqCjgROepQQzOLN+yirKKKRetrONToJyMlgZkFHkoL85gyMjvQ9xHg9WfUGkuimgJOpIfbX9/Eq+uqKVvtY8kHu2hobqFf7yQuO7M/JYV5nD+s34l9HwEuuPXEdUOnKtwkaijgRHqgPYcamb/WR1mFjzc21dLkd3gykrninEGUFOYxaWhf4tUiS7o5BZxID1Gzv56X1wRC7a2tgb6PA/ukcs3kIZQU5jFxUJb6PkpMUcCJxLDKvYeZF+z7uGL73kDfx5ze3HBhoO/juP7q+yixSwEnEmO21h6irKKKeRU+VgX7Po7Ny+CfZ46itNDLSE96hCsU6RoKOJHuJET/R7dlCbUb3uSJxC8wr8J3tO/jhEFZ3Fk6hpJxXoao76P0QGEJODN7iMC932pab3pqZn0J3Ml7CLANuNw5tzfEa68GfhBc/Ilz7tFw1CQSk4L9H92XH6Yi6UzWvPFXStbdxc2NN/Gm28g5g/vyw0sLuLjQy4Cs1EhXKxJR4bqj91TgIPBYm4D7b2CPc+6nZnYn0Mc5973jXtcXKCdw128HrADODhWEbeluAtITtbQ43t2xl7Vv/J1LP/hXHmuewVXxC7g/598YXFTCrHEectPV91F6lk6/m4BzbqmZDTlu9WwC94kDeBRYDHzvuG0uBuY75/YEC50PlABPhaMuke6u2d/C29v2MK/Cx8trfFTvbyApPpvM7Mu4pe5xjpx/O9+/+PpIlykSlTrzHJzHOVcVfOwjcIPT4w0AdrRZrgyuE+mxGptbWLa5lnkVPl5ZW82eQ42kJMZx0ahcSsd7mZm6gd5/KYOpd5Ba/iCMukgXV4uE0CWTTJxzzsw6dCzUzOYAcwDy89XMVWJLfZOfpR/sYl6FjwXrAn0f05ITmD4ml9JCLxeOzqFXUkLghqLPXfdxi6yhU9T/UaQdnRlw1WaW55yrMrM8oCbENjv5+DAmwEAChzJP4Jx7AHgAAufgwluqSNc71NDMog01lFX4WLS+hsONfjJTE5k1zktpoZfPjGjT97HVzpXq/yhymjoz4F4ErgZ+Gvz9lxDbvAz8p5n1CS7PAu7qxJpEIqruSLDvY4WPpcG+j9lpSXx+4gBKC72cN6wfifEh+j62Uv9HkdMWrssEniIwEss2s0rgbgLB9qyZXQt8CFwe3LYIuME5d51zbo+Z/Rh4J/hW97ROOBGJFbsPNjB/bSDUlm0O9H3My0zhq5PyKS30UjREfR9FOkNYLhPoarpMQKJddWvfx9U+3tq6mxYH+X17UVropaTQy4SB6vsoEg6dfpmAiMCOPYePNjNe8WHgUs4RuWl8Z9oISgq9FOSp76NIV1LAiZxKiPZYbF0KO1eyefR1R5sZr94Z6PtYkJfB7cWjKB3vZUSu+j6KRIoCTuRUgu2x+MojuCFT2LHyZbLLrufu5H/hub8tAeDMQVncVTqGkkIvg/up76NINFDAiZyCGzKFLRfNJe+Jr/O8zeKzjWVc23Qz/pwi7p7s5eJxXvqr76NI1FHAiYTQ0uJYsX0vZasDLbJ27nPcnjidm+KfZfWI6/n1528hJz050mWKyEko4ESCmv0tvLV1D2UVVby8pppdBxpIio9jyshs/uPMvUx9fwmccwfjyx+E2kshXdeeiUQzBZz0aI3NLbyxqZayiirmr61m7+EmUhPjuWh0DiWFXqaPySW9ajk89124/BG1xxLpRhRw0uPUN/lZvGEX8yqqeHVdDQcaAn0fZ4wN9n0clUtqUpsWWWqPJdItKeCkRzjY0MzC9TXMq6hi0fpdHGnyk9UrkZJCL6XjA30fkxPiQ79Y7bFEuiUFnMSsusNNzF9XzbyKKpZurKWxuYXstGS+eNYASgvzOHdY35P3fRSRbk0BJzGl9mADr6yppqyiiuWbd9Pc4uifmcLXzs2ntDCPswf3Ud9HkR5CASfdnq+unnkVVZRV+Hhn2x5aHAzu14trpwyltDCPCQMz1SJLpAdSwEm3tGPPYcqCofbu9n0AjMxN48ZpIygpzGNsXrpCTaSH69SAM7PRwDNtVg0Dfuic+1WbbS4icK+4rcFVf3LO3dOZdUmUa6f3Y+0Hb/J04hcoq/Cx5qP9AIzrn8G/zBpFSWEeI3LTIlOviESlTg0459wG4EwAM4sncAfvF0Js+ppz7tLOrEW6kWDvR/flh1mXMpE1b/yV4rV3clPDTSxv+YCJ+Vn86yVjKBmXR36/XpGuVkSiVFceopwBbHbOfdiFnyndjHOO9xPOYE3+PXz2sauY3zyDq+IX8Ot+P+Disy/ml4Ve8jLV91FETq0rA+4K4Kl2njvfzN4HPgL+xTm35vgNzGwOMAcgPz+/04qUrudvcaz4cG+gRVaFj4/q6kmI60uv7M9xy/4nOHTebfyw5IZIlyki3UyX3NHbzJIIhNc451z1cc9lAC3OuYNmdglwr3Nu5MneT3f07v6a/S28uSXQ9/GVtcG+jwlxTB2ZTUlhHiW9PiDtr9dB0bVQ/qDaYolISNFwR+9SYOXx4QbgnNvf5vFLZnafmWU752q7qDbpIg3N/kDfx9U+5q+rZl+w7+O0MTmUFOYxbXQO6SmJgZuJPnfdx6Gm3o8i8il0VcB9lXYOT5qZF6h2zjkzmwTEAbu7qC7pZEca/Sz54Ni+j+nBvo8lhXlcOCrn2L6PoN6PIhIWnR5wZtYbKAaub7PuBgDn3P3Al4Fvm1kzcAS4wnXFcVPpNAfqm1gUbGbctu9j6XgvpYV5TB7Rr/2+j6DejyISFp0ecM65Q0C/49bd3+bxXGBuZ9chnStU38ec9GS+dHaw7+PQviSo76OIdCF1MpFPrb2+j1edO5jS8V7OylffRxGJHAWcfCKh+j4O6deL66YMo7TQyxnq+ygiUUIBJwHttMdi50p2FMw5oe/jKE8aN04fSWmhlzFe9X0UkeijgJOAYHus1tmLO999mb4vzeGelDt46m+LACgckMF3Lx5NSaGX4Tnq+ygi0U0BJwC4IVP4cPp95D7xdf4UdzGlDS/xraabaehzJt+/JI+SQi+D+qrvo4h0Hwq4Hsw5x/uVdZRVVDGvwseHu/3cljCNmxOe4f3hc/if2TfjzUyJdJkiIp+KAq6HCd330Zg8IpsfFu5m2qqlcM4dTCh/EPZ8DjJ17ZmIdE8KuB6gyd/CW8G+jy+vqab2YGvfxxxunzWamWM9ZFYvh+fugMsfUXssEYkJCrgYFarvY6+keKaNzqWk0Mu0MbmkJbf536/2WCISYxRwMSTQ97GGsgofC1v7PqYkMHOsh5JCLxeOyiElsZ0WWWqPJSIxRgHXzR2ob2Lh+hrmVfhYvCHQ97FPr0QuGZ9HyXgvnxmeTVKCWmSJSM+jgOuG9h1u5JW11cyr8PH6xloa/S3kpifz5bMHUlroZZL6PoqIdMndBLYBBwA/0Hz8jeks0ALjXuAS4DBwjXNuZWfX1d3sOtDAK2t9lK32sXzLbvwtjgFZqXz9/MGUFgb6Psap76OIyFFdNYKbdpIbmJYCI4M/5wK/C/6OfSdpj8UFt/LRviPMq/Axb02g76NzMDS7N3OmBvo+jh+gvo8iIu2JhkOUs4HHgveAe9PMsswszzlXFenCOt1x7bHYuhT/M1fz9zH/jwd/+wbv79gHwGhPOjdPH0npeC+jPer7KCJyOroi4Bzwipk54H+dcw8c9/wAYEeb5crgutgPuOBUfP8zV1Oe80XGVD7LDQ03sfzNdMYPcHz34tGUFnoZpr6PIiKfWFcE3AXOuZ1mlgvMN7P1zrmln/RNzGwOMAcgPz8/3DV2Keccaz7az7wKH2UVLVx28EJuqf89z/X+KjOmf5n/Hqe+jyIiHdUVd/TeGfxdY2YvAJOAtgG3ExjUZnlgcN3x7/MA8ABAUVGR67SCO0lLi+O9yn2Bc2oVPrbvOUycwTf77+D61MUcPOs2vrL6URh4JfQdFulyRUS6vU4NODPrDcQ55w4EH88C7jlusxeBG83saQKTS+pi5fybv8XxzrY9R0PNt7+exHhj8vBs/umi4ZSmbSTzb/8NVz4WOFw5ZpraY4mIhElnj+A8wAvBSREJwJPOuXlmdgOAc+5+4CUClwhsInCZwDc7uaZO1eRvYfnm3ZRV+Ji/1kftwUaSE+KYOiqHOwpHM2Osh8zUxMDGr/9J7bFERDqJBSYvdi9FRUWuvLw80mUcVd/k5/WNtZRV+Fiwrpq6I030Topn2phg38fRufROjoYJqyIiscXMVhx/fXUrfet+Socbm1m8YRdlFT4Wra/hYLDvY/FYD6Xj85gyMrv9vo8iItLpFHCfwP76Jhauq6GsooolH+yivqmFvr2TuPSMwB2vJ6vvo4hI1FDAncLeQ43MX1tNWUUVb2zaTaO/BU9GMv9QNIiSwjzOGdJHfR9FRKKQAi6EmgP1vLymmnkVVby5ZQ/+FsfAPqlcPXkwJYV5TByUpb6PIiJRrmcF3El6P+4svD44nb+K8g/34hwMy+nNDRcOo7Qwj3H9M9QiS0SkG+lZAXdc70ffe6+Q+fd/5D9S7+Dxvy0EYIw3nVtnjKJ0vJeRuWkKNRGRbqpnBVzwOrPGp7/Bc8yipP4lvtV0M4czJ/C9kjxKC70Mye4d6SpFRCQMelbAQWDkNvJrfK1iLu8Om8PPZ9/EgKzUSFclIiJh1vOm/21dSv6Wp2DqHUys/iMD9r4T6YpERKQT9KyA27r043Nw078f+P3cNYH1IiISU3pWwO1c2X7vRxERiSk96xzcBbeeuG7oVDU2FhGJQT1rBCciIj1Gt7ybgJntAj7s4NtkA7VhKCcWad+0T/smNO2X9mnftC8c+2awcy4n1BPdMuDCwczK27vFQk+nfdM+7ZvQtF/ap33Tvs7eNzpEKSIiMUkBJyIiMaknB9wDkS4gimnftE/7JjTtl/Zp37SvU/dNjz0HJyIisa0nj+BERCSGKeBERCQmKeBERCQmdctWXdnZ2W7IkCGRLkNERCJsxYoVte1d6N0tA27IkCGUl5dHugwREYkwM2u3q5UOUYqISExSwImIxLD7l2xm2eZj2z0u21zL/Us2R6iirqOAExGJYWcMzOTGJ989GnLLNtdy45PvcsbAzAhX1vm65Tk4EREJrdnfQu3BRnz76/HV1VNzoJ4pI7K55uF3GD8gk621h5h75UQmD8+OdKmdTgEnItINOOfYf6SZ6gOB4PLtr6dmf30wyBqoCa6vPdhAy3ENqhLijPg4Y8WHe/n6eYN7RLiBAk5EJOzuX7KZMwZmHhMkyzbXsqqyjhsuHH7C9g3Nfmr2N1B9NLDqqTnQcEKQ1Te1nPDaPr0S8WSk4MlIYaw3A09GMp7MFLzBdZ6MFD7wHeA7T66kobmFP66spHS8t0eEXLfsRVlUVOR0mYCIRKvW81y/uWIio/PSeWWNj/98aT3/cM4g0pITjgZZdTDU9hxqPOE9khPi8GQEgyozBW9G8tHA8mam4ElPITcjmZTE+NOqZe6VE/nx39bhWhw1Bxti5jClma1o755yGsGJiITZ2YP78Pkz+/P1h9465nDhg69vxQyy05LxZCQzICuFs/KzjgkyT0Yy3owUMlMTMbMO17Kqsu5omBWPzWXuok387qqzWVVZFxMBdzIKOBGRMGlo9vNceSX3LdrER3X1eDOS8e1v4JLxXv5xyjA8GSnkpCeTGN91E9jbHhItLvDy64WbOFDfHPJQaazRZQIiIh3U0Ozn8Tc/ZNrPFvODP1fgzUzhrtIxNPodN08fwZtb9nCkyU//rNQuDbfjFQ7IwJuRwoK11RGroStpBCci8ik1NPt5Njhiq6qr5+zBffivL59BvBk3PvXu0UOD5w3vd/Q8WCQPC5oZMwty+dPKndQ3+U95/q67C8s/JcysxMw2mNkmM7szxPPJZvZM8Pm3zGxIcH2xma0ws9XB39PDUY+ISGdqaPbzhzc/5KKfLebf/lxB/6xU/nDtJJ6/4XymjMxh1c66Y8Js8vBs5l45kVWVdRGuPHCY8nCj/4TuJrGowyM4M4sHfgsUA5XAO2b2onNubZvNrgX2OudGmNkVwH8B/wDUAp9zzn1kZoXAy8CAjtYkItIZQo3YfvblCXxmRL9jJoSEOr81eXh2VEzqOG9YX9KSE5i/tobpYzyRLqdTheMQ5SRgk3NuC4CZPQ3MBtoG3GzgR8HHzwNzzcycc++22WYNkGpmyc65hjDUJSISFqcbbN1BckI8F47KYcG6av6jpZC4uO5V/ycRjoAbAOxos1wJnNveNs65ZjOrA/oRGMG1+hKwsr1wM7M5wByA/Pz8MJQtInJyDc1+nn1nB/ct3tztg62t4gIPf19dxfuV+5iY3yfS5XSaqJhkYmbjCBy2nNXeNs65B4AHIHChdxeVJiI90PHBVhQjwdbqotE5xMcZC9ZVK+BOYScwqM3ywOC6UNtUmlkCkAnsBjCzgcALwDecc7F//wYRiVqxHmytsnolMWlIX+avrea7F4+JdDmdJhwB9w4w0syGEgiyK4Arj9vmReBqYDnwZWChc86ZWRbwd+BO59wbYahFROQTaw223y7ajG9/INh+/pUJTB4eW8HWVnGBh3v+tpYPdx9icL/ekS6nU3T4MgHnXDNwI4EZkOuAZ51za8zsHjO7LLjZg0A/M9sE3Aa0XkpwIzAC+KGZvRf8ye1oTSIip6O+yc9jy7dx4X8v5t/+soaBfVJ54rpzee6G8/nMiOyYDTcIBBzA/Bi+6FvNlkWkx6lv8vNs+Q7uC47YzhnSh1tnjorpEVsoJb9aSmZqIs9cf36kS/nU1GxZRITQwfaLy2P7UOTJFBd4uG/xZvYeaqRP76RIlxN2CjgRiXmhgu2Xl0/g/B4abK1mjvXwm4WbWLShhi+eNTDS5YSdAk5EYkKom4wu3lDDE29uZ9XOfVTvb1CwHWf8gEw8GcnMX1utgBMRiVZnDMw82tD4rPw+/LRsPY8u34ZzMGlIX/7n8jMVbMeJizNmjPXw53djs/myAk5EujXnHAcamslJS+b6qcO47tFyDDjU6GeMJ50ffq5AwXYSxQUennxrO8u37Gba6NiaxK6AE5Go1djcQs2Beqr311O9vwFfXevjenzBddX76znc6D/htV+YOIBfXj5BwXYKk4f3o3dSPAvWVivgREQg9DmvZZtrWVVZd8q7RTvn2Hu4KURgHRtkuw81nvDapIQ4PBnJeDNSKOifwfQxuXgzUsjNSKb2YAO/fnUT3zh/ME8ERyXR0ME/miUnxDM12Hz5x7Njq/myAk5EPpW257wmD89m2eZabnzyXX75lQlsqz3UJrDq8dU1UH2gnuq6QJDV7G+g0d9ywntmpyXhyUghLzOFCYOy8Gak4M1MJjcjJfA4I4WsXokhR2XLNtfy739dy++uOovJw7M5P0puMtodFBd4KKvwsXpnHRMGZUW6nLBRwInIafG3OHYfbMC3vz4wwjrQwNSR2Vzz8Dt4MpL5aO8RkhPiuOaRd054ba+keLwZKXgyUiga3AdPZsrRZU9GCt7MFHLSkklK+PTNlVZVtn+TUQXcyU0bnXu0+XIsBZw6mYj0cM45DjY0Hx1pHTvyCgRZdV09uw424G859vsiPs5ISYjjUKOfYTm9uWBEdiCwjgZXMp6MFNKSE3QuLMr9w/8up+5IE/NunRrpUj4RdTIRiRGf9LxXY3MLuw6GmJxR9/EEDV87kzQyUhLwZgaCamRudiC0MlPwpCfjDY7APqg+yM1Pv8u1Fwzl8be2U1Lo1Wipmyou8PCTv69jx57DDOrbK9LlhIUCTqQbOXre66sTGZOXwStrfPzk7+v46qRB3Ltg4zGjr+r99dQeDDFJIz6O3OAkjbH9M7hodO7RkVbb0Vdq0smviVq2uZabn/74HNd5OufVrbUG3Py11XzrgqGRLicsdIhSpBtp8rfws5c38PvXttAS4q9udloSuekpR0derbMNAyOvwPo+7UzS+KQ6MotSotOs/1lCv97JPDXnvEiXctp0iFKkm2vyt/DCuzuZu3AT2/ccJjc9mZoDDZQWerluyjA8Gcnkpqd0aJLGJxUqxCYPz9borRsrLvBw/5It1B1uIrNXYqTL6bCu+9sQBe5fspllm2uPWbdscy33L9GNxCU6NflbePadHUz/xWLueH4VmamJfHfWKJpbHDdPH8FbW/fQ0OxnYJ9eXRpuEptmjvXgb3Es2lAT6VLCokf9jWg9f9Eacq3X7ZwxMDPClYkc65hg++MqslKTePDqIu4qHcODb2xj7pUTuW3WaOZeOfGYP9MiHTFhYBY56ckxcxPUHnWIsvW6mG8/vpL8vqns2HOE+4IXhYpEgyZ/Cy+s3MlvFm1kx54jjB+QyY+uHsf0MbmYGfcv2axrvaTTxMUZM8fm8tf3q2ho9pOc0L2bL/eogIPAF8I5Q/qwYF0NBvzl3Y8YkJXK4H69I12a9GDHB9sZAzP598vGMW107jETQnTeSzpbcYGHp97ewZtb9nDhqJxIl9MhPS7glm2uZeX2fXxz8hCefHs7f1xZyfMrK5k9oT/fmT6C4TlpkS5RepAmfwt/WlnJ3EWbThpsIl1l8vBsUhPjmb/W1+0DLizn4MysxMw2mNkmM7szxPPJZvZM8Pm3zGxIm+fuCq7fYGYXh6Oe9rSec5t75UTuvmwcD3/zHNKSE5hV4OGliipm/nIJNz31Lht8BzqzDBGa/C088852pv18Md/742r69ErioWuK+Mt3PsP0MR6Fm0RMSmI8U0dls2BtDd3xMrK2OjyCM7N44LdAMVAJvGNmLzrn1rbZ7Fpgr3NuhJldAfwX8A9mVgBcAYwD+gMLzGyUc+7EtgphEKpX3X1XncWqyjp+/PlCfv/aVv6wfBt/ff8jSsZ5uXH6CAoHaAKKhE/riO03CzdRuTcwYrtntkZsEl2KC7y8vKaaip37Gd+NJ+GF4xDlJGCTc24LgJk9DcwG2gbcbOBHwcfPA3Mt8Ld5NvC0c64B2Gpmm4LvtzwMdZ3gVOcv7iwdw/VTh/HwG1t5eNk25q3xMWNMLjfNGMmZMdSAVLre8cE2YWAmP55dyEWjcxRsEnWmj8klzmD+uuoeH3ADgB1tliuBc9vbxjnXbGZ1QL/g+jePe+2AUB9iZnOAOQD5+flhKDu0Pr2TuG3WaK6dMoxHl23joTe28vnfvsGUkdncPGMk5wzp22mfLbFHwSbdUd/eSRQN7sv8tdXcVjwq0uV8at1mkolz7gHgAQi06ursz8tMTeTmGSP51gVD+cPyD/n9a1v4yv3LOW9YX26eMZLzh/XTF5S0q8nfwh9XBCaPKNikOyou8PAfL3Xv5svhmGSyExjUZnlgcF3IbcwsAcgEdp/mayMqLTmBb180nNe+N40ffHYsW3Yd4sr/e4uv3L+cJR/s6vYnYSW8mvwtPP12YPLInX9aTb/eSTx8zTn8+TufYdoYnWeT7mNmgQeAV9d134u+O9xsORhYHwAzCITTO8CVzrk1bbb5DjDeOXdDcJLJF51zl5vZOOBJAufd+gOvAiNPNckkks2W65v8PFu+g/sXb+ajunomDMripmkjmDFWX149WWPzx9P9K/ceYcKgLG6dOZKLRmnEJt3XzF8uwZORzBPXRW/z5U5tthw8p3Yj8DIQDzzknFtjZvcA5c65F4EHgT8EJ5HsITBzkuB2zxKYkNIMfKezZlCGS0piPN84fwhXnJPPH1dWct/iTVz3WDkFeRncNH0EF4/zEhenL7SeIlSw/fjzhQo2iQnFBR7+b+kW6o40kZna/Zov63Y5HdTkb+Ev733EbxdtYmvtIUZ50rhx+kg+Oz6PeAVdTAh1W5ilH+ziybe3s7qyjp37NGKT2LTiw7186XfLuPeKM5l9Zsj5fxF3shFcj2q23BkS4+P48tkDWXDbhdx7xZk4Bzc/9S7F/7OEP66opNnfEukST4vutNC+tk26G5tb+Mnf13LNw28zr8JHdnoyD3/zHP78T5N1LZvEnImDsshOS+q2zZe7zSzKaBcfZ8w+cwCfO6M/89b4+M3CTdz+3Pvc++pG/umi4XzxrIFRfTuTo3eKDl4I37brS092sKGZ3PQUvn3hMK57tJx4Mw40NDM8pzf/dmkBF2rEJjEsLs6YMcbDS6uraGxuiervsFB0iLKTOOdYsK6G3yzcyKrKOgZkpXLDhcP4StEgUhIj06G72d/CroMN+Orqqd5fT/X+Bnz766muq6f6QD1bdx2iqq6ehHjD3+IYlZvO8Nw0ctKTyU5LIic9OfCTlkJOejL90pJIjO9ef+BbNflb2HWgIbgf6vHV1ePb30DN/np8wZ+a/Q0cbGg+4bWXTejPvVecqWCTHmHB2mque6ycP1w7iSkjo683pe7oHQFmRnGBh5ljc1nywS5+s3AT//aXNcxdtInrpw7nq5PyeXT5thPO7SzbXMuqyrqQXVfa45xj/5Hmo1/M1cHQ8gVDrDq4vvZgA8f/eyYhzvBkpODJSGbCoCxy0o/wfmUdIz1pZPVOZL1vP69tbGB//Ylf9BC4IDQnLfnj8EtPPrqc3WZ9VmriaU++CXXO63T3i3OOuiNNH/+317XZJ/s/3ien2hejPelMHZmDNzOwXHuwgbkLN/ON8wfzxFvbWb5ltzr4S49wwchsUhLjmL+2OioD7mQ0gusizjmWb97Nva9u5K2te8hOS2JWgYeyCh+//dpZJxwWbP3ybGj2U9M60gqONAJf1B+PPqr311PfdOK5vj69EvFkpAS+pNNT8GSm4A1+gbeu79sr6WjwtH7+Vefm8/hb24+po77JT+3BBnYdCP60fRxcrj3YQM3+BhqaT6wlIc6OCbwTQrFNIK7asY8bnzrxcOkvL5/AsOw0qg+02Q919VQfODbIQn3+J90XbR3//yXU/yeRWPaPj5WzZmcdb9w5PeqOXJxsBKeAi4C3t+7hNws38trGWtKS4/G3wHnD+rF8y27OG9oXjKNf4HsPN53w+uSEuODIIvDjDX5Jt35RezMChxA/yaHQcH2JO+c42NB80iBsfbz7UCP+lhP//KUmxpOeksCeQ43kZaXw0d56UpPiONhw4hUkbffF8YHVuu6T7ovjdWREKRILni3fwR3Pr+JvN10QdQ3oFXBRauX2vcxduImF62uOrstJTw5+UQe+rL0ZgdFG65e1NyOFjNSEsP8rKhJf4i0tjr2HG08MwWAQrvhwL5V7jzA0uzeTh/frsn0hIsfafbCBov9YwM3TR/LPUdabUufgotRZ+X24bspQVn64ly+cNYA/v7uTe684MyKHvSJxp+i4OKNfWjL90pIZ4z32uWWba3ltYy03Tx/B429t57Nn5OlwoEiE9EtL5uz8PixYVx11AXcy3XMKXIxoPQx431VncffnxvHbr5119Hqrnqzt4dHbZo1m7pUTtV9EIqy4wMOaj/azc9+RSJdy2hRwERTqBqxzr5zIqsq6CFcWWdovItGnOzZf1jk4ERE5LdN/sZgBWan84drjb/kZOWrVJSIiHVZc4OHNLbvZX3/i7O5opIATEZHTUjzWQ5PfsWTDrkiXcloUcCIiclom5vehX+/u03xZASciIqclPs6YMTaXRRtqaOoGd0pRwImIyGmbOdbDgfpm3t66J9KlnJICTkRETtuUkTkkJ8R1i8OUCjgRETltqUnxTBmZzfy11UT7ZWYKOBER+USKCzzs3HeEdVUHIl3KSXUo4Mysr5nNN7ONwd992tnu6uA2G83s6uC6Xmb2dzNbb2ZrzOynHalFRES6xvQxHsyI+sOUHR3B3Qm86pwbCbwaXD6GmfUF7gbOBSYBd7cJwp8758YAE4HPmFlpB+sREZFOlpOezMRBWSyI8rZdHQ242cCjwcePAp8Psc3FwHzn3B7n3F5gPlDinDvsnFsE4JxrBFYCAztYj4iIdIHiAi+rd9ZRVRe9zZc7GnAe51xV8LEP8ITYZgCwo81yZXDdUWaWBXyOwCgwJDObY2blZla+a1f3uIpeRCRWFRfkArAgig9TnjLgzGyBmVWE+JnddjsXmE7ziafUmFkC8BTwa+fclva2c8494Jwrcs4V5eTkfNKPERGRMBqek8bQ7N7MX1dz6o0j5JQ3PHXOzWzvOTOrNrM851yVmeUBof5LdwIXtVkeCCxus/wAsNE596vTKVhERCLPzCgu8PDwG1s5UN9EekpipEs6QUcPUb4IXB18fDXwlxDbvAzMMrM+wckls4LrMLOfAJnArR2sQ0REutjMYPPlpR9E582IOxpwPwWKzWwjMDO4jJkVmdnvAZxze4AfA+8Ef+5xzu0xs4HA94ECYKWZvWdm13WwHhER6SJnD+5D395JzF/ri3QpIZ3yEOXJOOd2AzNCrC8Hrmuz/BDw0HHbVALWkc8XEZHIiY8zpo/J5ZU1Ppr8LSTGR1fvkOiqRkREupWZYz3sr2/mnW3R13xZASciIp/a1FHZJEVp82UFnIiIfGq9khK4YER0Nl9WwImISIcUF3io3HuEDdXR1XxZASciIh0yY2ygq8n8NdF1mFIBJyIiHZKbnsKZUdh8WQEnIiIdVlzg4f3KOqr310e6lKMUcCIi0mGzCgK99qNpNqUCTkREOmxEbhqD+/WKqsOUCjgREekwM6N4rIdlm3ZzsKE50uUACjgREQmTmQUeGv0tLP0gOu7ZqYATEZGwKBrch6xeiVFzE1QFnIiIhEVCfBzTx+SycEMNzf6WSJejgBMRkfApHuth3+Emyj/cG+lSFHAiIhI+U0flkBQfHc2XFXAiIhI2vZMTmDyiX1Q0X1bAiYhIWBUXeNi+5zAbaw5GtA4FnIiIhNXMsdHR1UQBJyIiYeXJSGHCwExe6c4BZ2Z9zWy+mW0M/u7TznZXB7fZaGZXh3j+RTOr6EgtIiISPYoLPLy/Yx81EWy+3NER3J3Aq865kcCrweVjmFlf4G7gXGAScHfbIDSzLwKRPVArIiJhVVzgBWDBupqI1dDRgJsNPBp8/Cjw+RDbXAzMd87tcc7tBeYDJQBmlgbcBvykg3WIiEgUGeVJY1Df1Ig2X+5owHmcc1XBxz7AE2KbAcCONsuVwXUAPwZ+ARw+1QeZ2RwzKzez8l27oqPPmYiIhBZovuzl9U21HIpQ8+VTBpyZLTCzihA/s9tu5wIXPJz2RQ9mdiYw3Dn3wuls75x7wDlX5JwrysnJOd2PERGRCJlZkEtjcwuvbYzMoCThVBs452a295yZVZtZnnOuyszygFAHW3cCF7VZHggsBs4HisxsW7COXDNb7Jy7CBER6fYmDelLZmoi89fWUFKY1+Wf39FDlC8CrbMirwb+EmKbl4FZZtYnOLlkFvCyc+53zrn+zrkhwAXABwo3EZHYcbT58vrqiDRf7mjA/RQoNrONwMzgMmZWZGa/B3DO7SFwru2d4M89wXUiIhLjZo71sPdwEysi0Hz5lIcoT8Y5txuYEWJ9OXBdm+WHgIdO8j7bgMKO1CIiItHnwtGB5ssL1lVz7rB+XfrZ6mQiIiKdJi05gfOHR6b5sgJOREQ61cwCD9t2H2bzrq7t6aGAExGRTjVzbC5Al/emVMCJiEinystMZfyAzC6/u4ACTkREOl1xgYf3duyj5kDXNV9WwImISKcrLvDgHCzswubLCjgREel0Y7zpDMhK7dLDlAo4ERHpdGZGcYGH1zfVcrixa5ovK+BERKRLFBd4aGhu4bWNtV3yeQo4ERHpEpOG9iUjJYEFXXSYUgEnIiJdIjE+jmljclm4vgZ/S+d3NVHAiYhIl5k51sPuQ42s3N75zZcVcCIi0mW27DpIfBzHHKZctrmW+5dsDvtnKeBERKTLnDO0L2bGi+99BATC7cYn3+WMgZlh/ywFnIiIdJnJw7O56tzBVO2v5wcvrObGJ99l7pUTmTw8O+yfpYATEZEuNWfqMLJ6JfL4W9u56tz8Tgk3UMCJiEgX27b7EHFm3Dx9BI+/tZ1lmzvnujgFnIiIdJnWc25zr5zIbbNGM/fKidz45LudEnIKOBER6TKrKuuOOec2eXg2c6+cyKrKurB/lnX1LcTDoaioyJWXl0e6DBERiTAzW+GcKwr1nEZwIiISk7rlCM7MdgEfdvBtsoGu6fjZ/WjftE/7JjTtl/Zp37QvHPtmsHMuJ9QT3TLgwsHMytsb1vZ02jft074JTfulfdo37evsfaNDlCIiEpMUcCIiEpN6csA9EOkCopj2Tfu0b0LTfmmf9k37OnXf9NhzcCIiEtt68ghORERiWI8LODMbZGaLzGytma0xs1siXVM0MbN4M3vXzP4W6VqiiZllmdnzZrbezNaZ2fmRrilamNk/B/8uVZjZU2aWEumaIsXMHjKzGjOraLOur5nNN7ONwd99IlljJLSzX34W/Pu0ysxeMLOscH9ujws4oBm43TlXAJwHfMfMCiJcUzS5BVgX6SKi0L3APOfcGGAC2kcAmNkA4GagyDlXCMQDV0S2qoh6BCg5bt2dwKvOuZHAq8HlnuYRTtwv84FC59wZwAfAXeH+0B4XcM65KufcyuDjAwS+qAZEtqroYGYDgc8Cv490LdHEzDKBqcCDAM65RufcvogWFV0SgFQzSwB6AR9FuJ6Icc4tBfYct3o28Gjw8aPA57uypmgQar84515xzjUHF98EBob7c3tcwLVlZkOAicBbES4lWvwKuANoiXAd0WYosAt4OHj49vdm1jvSRUUD59xO4OfAdqAKqHPOvRLZqqKOxzlXFXzsAzyRLCZKfQsoC/eb9tiAM7M04I/Arc65/ZGuJ9LM7FKgxjm3ItK1RKEE4Czgd865icAheuZhphMEzyfNJvCPgP5AbzO7KrJVRS8XmLauqettmNn3CZw6eiLc790jA87MEgmE2xPOuT9Fup4o8RngMjPbBjwNTDezxyNbUtSoBCqdc60j/ecJBJ7ATGCrc26Xc64J+BMwOcI1RZtqM8sDCP6uiXA9UcPMrgEuBb7mOuGatR4XcGZmBM6lrHPO/TLS9UQL59xdzrmBzrkhBCYJLHTO6V/igHPOB+wws9HBVTOAtREsKZpsB84zs17Bv1sz0ASc470IXB18fDXwlwjWEjXMrITAKZHLnHOHO+MzelzAERipfJ3ACOW94M8lkS5Kot5NwBNmtgo4E/jPyJYTHYKj2ueBlcBqAt8pPbZzh5k9BSwHRptZpZldC/wUKDazjQRGvD+NZI2R0M5+mQukA/OD38P3h/1z1clERERiUU8cwYmISA+ggBMRkZikgBMRkZikgBMRkZikgBMRkZikgBMRkZikgBMRkZikgBMRkZj0/wFhGivRNtCNJgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "bests = []\n", - "N = 200\n", - "step = 1 / (N - 1)\n", - "a = 11 / 8\n", - "b = 1 / 2\n", - "x = np.linspace(step, 1 - step, N + 1)\n", - "ns = np.arange(2, 13)\n", - "for n in ns:\n", - " zeros, weights = np.polynomial.laguerre.laggauss(n)\n", - " est = np.ceil(b + a * n)\n", - " targets = np.arange(max(est - 2, 0), est + 3)\n", - " rel_errors = np.stack([np.abs(evaluate(x, target)) for target in targets], -1)\n", - " best = np.argmin(rel_errors, -1) + targets[0]\n", - " bests.append(best)\n", - "bests = np.stack(bests, 0)\n", - "\n", - "fig, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(5, 3))\n", - "v = ax.imshow(bests, cmap=\"inferno\", aspect=\"auto\")\n", - "plt.colorbar(v, ax=ax, label=r'$m$')\n", - "ticks = np.arange(0, N + 1, 10)\n", - "ax.set_xlim(0, 1)\n", - "ax.set_xticks(ticks, [f\"{v:.2f}\" for v in ticks / N])\n", - "ax.set_xticks(np.arange(N + 1), minor=True)\n", - "ax.set_yticks(np.arange(len(ns)), ns)\n", - "ax.set_xlabel(r\"$z$\")\n", - "ax.set_ylabel(r\"$n$\")\n", - "# for best in bests:\n", - "# print(\", \".join([f\"{int(b):2d}\" for b in best]))\n", - "# print(np.unique(bests, return_counts=True))\n", - "\n", - "targets = np.mean(bests, -1)\n", - "intercept, bias = np.polyfit(ns, targets, 1)\n", - "_, axs2 = plt.subplots(2, sharex=True, clear=True, constrained_layout=True)\n", - "xl = np.array([1, ns[-1] + 1])\n", - "axs2[0].plot(ns, intercept * ns + bias)\n", - "axs2[0].plot(ns, targets, \"x\")\n", - "axs2[1].plot(ns, ((intercept * ns + bias) - targets), \"-x\")\n", - "print(np.mean(bests, -1))\n", - "print(f\"Intercept={intercept:.6g}, Bias={bias:.6g}\")\n", - "\n", - "\n", - "predicts = np.ceil(intercept * ns[:, None] + bias - x)\n", - "print(np.sum(np.abs(bests-predicts)))\n", - "# for best in predicts:\n", - "# print(\", \".join([f\"{int(b):2d}\" for b in best]))\n" - ] - } - ], - "metadata": { - "interpreter": { - "hash": "767d51c1340bd893661ea55ea3124f6de3c7a262a8b4abca0554b478b1e2ff90" - }, - "kernelspec": { - "display_name": "Python 3.8.10 64-bit", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.3" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py index 53ba76b..208f770 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.py +++ b/buch/papers/laguerre/scripts/gamma_approx.py @@ -8,6 +8,7 @@ import scipy.special EPSILON = 1e-7 root = str(Path(__file__).parent) img_path = f"{root}/../images" +fontsize = "medium" def _prep_zeros_and_weights(x, w, n): @@ -26,17 +27,6 @@ def pochhammer(z, n): return np.prod(z + np.arange(n)) -def find_shift(z, target): - factor = 1.0 - steps = int(np.floor(target - np.real(z))) - zs = z + steps - if steps > 0: - factor = 1 / pochhammer(z, steps) - elif steps < 0: - factor = pochhammer(zs, -steps) - return zs, factor - - def find_optimal_shift(z, n): mhat = 1.34093 * n + 0.854093 steps = int(np.floor(mhat - np.real(z))) @@ -44,6 +34,7 @@ def find_optimal_shift(z, n): def get_shifting_factor(z, steps): + factor = 1.0 if steps > 0: factor = 1 / pochhammer(z, steps) elif steps < 0: @@ -56,7 +47,9 @@ def laguerre_gamma_shifted(z, x=None, w=None, n=8, target=11): n = len(x) z += 0j - z_shifted, correction_factor = find_shift(z, target) + steps = int(np.floor(target - np.real(z))) + z_shifted = z + steps + correction_factor = get_shifting_factor(z, steps) res = np.sum(x ** (z_shifted - 1) * w) res *= correction_factor @@ -112,167 +105,3 @@ def eval_laguerre_gamma(z, x=None, w=None, n=8, func="simple", **kwargs): def calc_rel_error(x, y): return (y - x) / x - - -# Simple / naive -xmin = -5 -xmax = 30 -ns = np.arange(2, 12, 2) -ylim = np.array([-11, 6]) -x = np.linspace(xmin + EPSILON, xmax - EPSILON, 400) -gamma = scipy.special.gamma(x) -fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5)) -for n in ns: - gamma_lag = eval_laguerre_gamma(x, n=n) - rel_err = calc_rel_error(gamma, gamma_lag) - ax.semilogy(x, np.abs(rel_err), label=f"$n={n}$") -ax.set_xlim(x[0], x[-1]) -ax.set_ylim(*(10.0 ** ylim)) -ax.set_xticks(np.arange(xmin, xmax + EPSILON, 5)) -ax.set_xticks(np.arange(xmin, xmax), minor=True) -ax.set_yticks(10.0 ** np.arange(*ylim, 2)) -ax.set_yticks(10.0 ** np.arange(*ylim, 2)) -ax.set_xlabel(r"$z$") -ax.set_ylabel("Relativer Fehler") -ax.legend(ncol=3, fontsize="small") -ax.grid(1, "both") -fig.savefig(f"{img_path}/rel_error_simple.pgf") - - -# Mirrored -xmin = -15 -xmax = 15 -ylim = np.array([-11, 1]) -x = np.linspace(xmin + EPSILON, xmax - EPSILON, 400) -gamma = scipy.special.gamma(x) -fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(5, 2.5)) -for n in ns: - gamma_lag = eval_laguerre_gamma(x, n=n, func="mirror") - rel_err = calc_rel_error(gamma, gamma_lag) - ax2.semilogy(x, np.abs(rel_err), label=f"$n={n}$") -ax2.set_xlim(x[0], x[-1]) -ax2.set_ylim(*(10.0 ** ylim)) -ax2.set_xticks(np.arange(xmin, xmax + EPSILON, 5)) -ax2.set_xticks(np.arange(xmin, xmax), minor=True) -ax2.set_yticks(10.0 ** np.arange(*ylim, 2)) -# locmin = mpl.ticker.LogLocator(base=10.0,subs=0.1*np.arange(1,10),numticks=100) -# ax2.yaxis.set_minor_locator(locmin) -# ax2.yaxis.set_minor_formatter(mpl.ticker.NullFormatter()) -ax2.set_xlabel(r"$z$") -ax2.set_ylabel("Relativer Fehler") -ax2.legend(ncol=1, loc="upper left", fontsize="small") -ax2.grid(1, "both") -fig2.savefig(f"{img_path}/rel_error_mirror.pgf") - - -# Move to target -bests = [] -N = 200 -step = 1 / (N - 1) -a = 11 / 8 -b = 1 / 2 -x = np.linspace(step, 1 - step, N + 1) -gamma = scipy.special.gamma(x)[:, None] -ns = np.arange(2, 13) -for n in ns: - zeros, weights = np.polynomial.laguerre.laggauss(n) - est = np.ceil(b + a * n) - targets = np.arange(max(est - 2, 0), est + 3) - gamma_lag = np.stack( - [ - eval_laguerre_gamma(x, target=target, x=zeros, w=weights, func="shifted") - for target in targets - ], - -1, - ) - rel_error = np.abs(calc_rel_error(gamma, gamma_lag)) - best = np.argmin(rel_error, -1) + targets[0] - bests.append(best) -bests = np.stack(bests, 0) - -fig3, ax3 = plt.subplots(num=3, clear=True, constrained_layout=True, figsize=(5, 3)) -v = ax3.imshow(bests, cmap="inferno", aspect="auto", interpolation="nearest") -plt.colorbar(v, ax=ax3, label=r"$m^*$") -ticks = np.arange(0, N + 1, N // 5) -ax3.set_xlim(0, 1) -ax3.set_xticks(ticks) -ax3.set_xticklabels([f"{v:.2f}" for v in ticks / N]) -ax3.set_xticks(np.arange(0, N + 1, N // 20), minor=True) -ax3.set_yticks(np.arange(len(ns))) -ax3.set_yticklabels(ns) -ax3.set_xlabel(r"$z$") -ax3.set_ylabel(r"$n$") -fig3.savefig(f"{img_path}/targets.pdf") - -targets = np.mean(bests, -1) -intercept, bias = np.polyfit(ns, targets, 1) -fig4, axs4 = plt.subplots( - 2, num=4, sharex=True, clear=True, constrained_layout=True, figsize=(5, 4) -) -xl = np.array([ns[0] - 0.5, ns[-1] + 0.5]) -axs4[0].plot(xl, intercept * xl + bias, label=r"$\hat{m}$") -axs4[0].plot(ns, targets, "x", label=r"$\overline{m}$") -axs4[1].plot(ns, ((intercept * ns + bias) - targets), "-x", label=r"$\hat{m} - \overline{m}$") -axs4[0].set_xlim(*xl) -# axs4[0].set_title("Schätzung von Mittelwert") -# axs4[1].set_title("Fehler") -axs4[-1].set_xlabel(r"$n$") -for ax in axs4: - ax.grid(1) - ax.legend() -fig4.savefig(f"{img_path}/estimate.pgf") - -print(f"Intercept={intercept:.6g}, Bias={bias:.6g}") -predicts = np.ceil(intercept * ns[:, None] + bias - x) -print(f"Error: {int(np.sum(np.abs(bests-predicts)))}") - -# Comparison relative error between methods -N = 200 -step = 1 / (N - 1) -x = np.linspace(step, 1 - step, N + 1) -gamma = scipy.special.gamma(x)[:, None] -n = 8 -targets = np.arange(10, 14) -gamma = scipy.special.gamma(x) -fig5, ax5 = plt.subplots(num=5, clear=True, constrained_layout=True) -for target in targets: - gamma_lag = eval_laguerre_gamma(x, target=target, n=n, func="shifted") - rel_error = np.abs(calc_rel_error(gamma, gamma_lag)) - ax5.semilogy(x, rel_error, label=f"$m={target}$", linewidth=3) -gamma_lgo = eval_laguerre_gamma(x, n=n, func="optimal_shifted") -rel_error = np.abs(calc_rel_error(gamma, gamma_lgo)) -ax5.semilogy(x, rel_error, "m", linestyle="dotted", label="$m^*$", linewidth=3) -ax5.set_xlim(x[0], x[-1]) -ax5.set_ylim(5e-9, 5e-8) -ax5.set_xlabel(r"$z$") -ax5.grid(1, "both") -ax5.legend() -fig5.savefig(f"{img_path}/rel_error_shifted.pgf") - -N = 200 -x = np.linspace(-5+ EPSILON, 5-EPSILON, N) -gamma = scipy.special.gamma(x)[:, None] -n = 8 -gamma = scipy.special.gamma(x) -fig6, ax6 = plt.subplots(num=6, clear=True, constrained_layout=True) -gamma_lgo = eval_laguerre_gamma(x, n=n, func="optimal_shifted") -rel_error = np.abs(calc_rel_error(gamma, gamma_lgo)) -ax6.semilogy(x, rel_error, label="$m^*$", linewidth=3) -ax6.set_xlim(x[0], x[-1]) -ax6.set_ylim(5e-9, 5e-8) -ax6.set_xlabel(r"$z$") -ax6.grid(1, "both") -ax6.legend() -fig6.savefig(f"{img_path}/rel_error_range.pgf") - -N = 2001 -x = np.linspace(-5, 5, N) -gamma = scipy.special.gamma(x) -fig7, ax7 = plt.subplots(num=7, clear=True, constrained_layout=True) -ax7.plot(x, gamma) -ax7.set_xlim(x[0], x[-1]) -ax7.set_ylim(-7.5, 25) -ax7.grid(1, "both") -fig7.savefig(f"{img_path}/gamma.pgf") - -# plt.show() diff --git a/buch/papers/laguerre/scripts/integrand.py b/buch/papers/laguerre/scripts/integrand.py index 0cf43d1..f31f194 100644 --- a/buch/papers/laguerre/scripts/integrand.py +++ b/buch/papers/laguerre/scripts/integrand.py @@ -2,48 +2,32 @@ # -*- coding:utf-8 -*- """Plot for integrand of gamma function with shifting terms.""" -import os -from pathlib import Path - -import matplotlib.pyplot as plt -import numpy as np - -EPSILON = 1e-12 -xlims = np.array([-3, 3]) - -root = str(Path(__file__).parent) -img_path = f"{root}/../images" -os.makedirs(img_path, exist_ok=True) - -t = np.logspace(*xlims, 1001)[:, None] - -z = np.array([-4.5, -2, -1, -0.5, 0.0, 0.5, 1, 2, 4.5]) -r = t ** z - -fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 3)) -ax.semilogx(t, r) -ax.set_xlim(*(10.0 ** xlims)) -ax.set_ylim(1e-3, 40) -ax.set_xlabel(r"$x$") -ax.set_ylabel(r"$x^z$") -ax.grid(1, "both") -labels = [f"$z={zi: 3.1f}$" for zi in np.squeeze(z)] -ax.legend(labels, ncol=2, loc="upper left", fontsize="small") -fig.savefig(f"{img_path}/integrands.pgf") - -z2 = np.array([-1, -0.5, 0.0, 0.5, 1, 2, 3, 4, 4.5]) -e = np.exp(-t) -r2 = t ** z2 * e - -fig2, ax2 = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(5, 3)) -ax2.semilogx(t, r2) -# ax2.plot(t,np.exp(-t)) -ax2.set_xlim(10 ** (-2), 20) -ax2.set_ylim(1e-3, 10) -ax2.set_xlabel(r"$x$") -ax2.set_ylabel(r"$x^z e^{-x}$") -ax2.grid(1, "both") -labels =[f"$z={zi: 3.1f}$" for zi in np.squeeze(z2)] -ax2.legend(labels, ncol=2, loc="upper left", fontsize="small") -fig2.savefig(f"{img_path}/integrands_exp.pgf") -# plt.show() +if __name__ == "__main__": + import os + from pathlib import Path + + import matplotlib.pyplot as plt + import numpy as np + + EPSILON = 1e-12 + xlims = np.array([-3, 3]) + + root = str(Path(__file__).parent) + img_path = f"{root}/../images" + os.makedirs(img_path, exist_ok=True) + + t = np.logspace(*xlims, 1001)[:, None] + + z = np.array([-4.5, -2, -1, -0.5, 0.0, 0.5, 1, 2, 4.5]) + r = t ** z + + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(4, 2.4)) + ax.semilogx(t, r) + ax.set_xlim(*(10.0 ** xlims)) + ax.set_ylim(1e-3, 40) + ax.set_xlabel(r"$x$") + # ax.set_ylabel(r"$x^z$") + ax.grid(1, "both") + labels = [f"$z={zi: 3.1f}$" for zi in np.squeeze(z)] + ax.legend(labels, ncol=2, loc="upper left", fontsize="small") + fig.savefig(f"{img_path}/integrand.pgf") diff --git a/buch/papers/laguerre/scripts/integrand_exp.py b/buch/papers/laguerre/scripts/integrand_exp.py new file mode 100644 index 0000000..0e50f43 --- /dev/null +++ b/buch/papers/laguerre/scripts/integrand_exp.py @@ -0,0 +1,36 @@ +#!/usr/bin/env python3 +# -*- coding:utf-8 -*- +"""Plot for integrand of gamma function with shifting terms.""" + +if __name__ == "__main__": + import os + from pathlib import Path + + import matplotlib.pyplot as plt + import numpy as np + + EPSILON = 1e-12 + xlims = np.array([-3, 3]) + + root = str(Path(__file__).parent) + img_path = f"{root}/../images" + os.makedirs(img_path, exist_ok=True) + + t = np.logspace(*xlims, 1001)[:, None] + + z = np.array([-1, -0.5, 0.0, 0.5, 1, 2, 3, 4, 4.5]) + e = np.exp(-t) + r = t ** z * e + + fig, ax = plt.subplots(num=2, clear=True, constrained_layout=True, figsize=(4, 2.4)) + ax.semilogx(t, r) + # ax.plot(t,np.exp(-t)) + ax.set_xlim(10 ** (-2), 20) + ax.set_ylim(1e-3, 10) + ax.set_xlabel(r"$x$") + # ax.set_ylabel(r"$x^z e^{-x}$") + ax.grid(1, "both") + labels = [f"$z={zi: 3.1f}$" for zi in np.squeeze(z)] + ax.legend(labels, ncol=2, loc="upper left", fontsize="small") + fig.savefig(f"{img_path}/integrand_exp.pgf") + # plt.show() diff --git a/buch/papers/laguerre/scripts/laguerre_plot.py b/buch/papers/laguerre/scripts/laguerre_plot.py deleted file mode 100644 index 1be3552..0000000 --- a/buch/papers/laguerre/scripts/laguerre_plot.py +++ /dev/null @@ -1,101 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding:utf-8 -*- -"""Some plots for Laguerre Polynomials.""" - -import os -from pathlib import Path - -import matplotlib.pyplot as plt -import numpy as np -import scipy.special as ss - - -def get_ticks(start, end, step=1): - ticks = np.arange(start, end, step) - return ticks[ticks != 0] - - -N = 1000 -step = 5 -t = np.linspace(-1.05, 10.5, N)[:, None] -root = str(Path(__file__).parent) -img_path = f"{root}/../images" -os.makedirs(img_path, exist_ok=True) - - -# fig = plt.figure(num=1, clear=True, tight_layout=True, figsize=(5.5, 3.7)) -# ax = fig.add_subplot(axes_class=AxesZero) -fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4)) -for n in np.arange(0, 8): - k = np.arange(0, n + 1)[None] - L = np.sum((-1) ** k * ss.binom(n, k) / ss.factorial(k) * t ** k, -1) - ax.plot(t, L, label=f"$n={n}$") - -ax.set_xticks(get_ticks(int(t[0]), t[-1]), minor=True) -ax.set_xticks(get_ticks(0, t[-1], step)) -ax.set_xlim(t[0], t[-1] + 0.1 * (t[1] - t[0])) -ax.set_xlabel(r"$x$", x=1.0, labelpad=-10, rotation=0, fontsize="large") - -ylim = 13 -ax.set_yticks(np.arange(-ylim, ylim), minor=True) -ax.set_yticks(np.arange(-step * (ylim // step), ylim, step)) -ax.set_ylim(-ylim, ylim) -ax.set_ylabel(r"$y$", y=0.95, labelpad=-18, rotation=0, fontsize="large") - -ax.legend(ncol=2, loc=(0.125, 0.01), fontsize="large") - -# set the x-spine -ax.spines[["left", "bottom"]].set_position("zero") -ax.spines[["right", "top"]].set_visible(False) -ax.xaxis.set_ticks_position("bottom") -hlx = 0.4 -dx = t[-1, 0] - t[0, 0] -dy = 2 * ylim -hly = dy / dx * hlx -dps = fig.dpi_scale_trans.inverted() -bbox = ax.get_window_extent().transformed(dps) -width, height = bbox.width, bbox.height - -# manual arrowhead width and length -hw = 1.0 / 60.0 * dy -hl = 1.0 / 30.0 * dx -lw = 0.5 # axis line width -ohg = 0.0 # arrow overhang - -# compute matching arrowhead length and width -yhw = hw / dy * dx * height / width -yhl = hl / dx * dy * width / height - -# draw x and y axis -ax.arrow( - t[-1, 0] - hl, - 0, - hl, - 0.0, - fc="k", - ec="k", - lw=lw, - head_width=hw, - head_length=hl, - overhang=ohg, - length_includes_head=True, - clip_on=False, -) - -ax.arrow( - 0, - ylim - yhl, - 0.0, - yhl, - fc="k", - ec="k", - lw=lw, - head_width=yhw, - head_length=yhl, - overhang=ohg, - length_includes_head=True, - clip_on=False, -) - -fig.savefig(f"{img_path}/laguerre_polynomes.pgf") -# plt.show() diff --git a/buch/papers/laguerre/scripts/laguerre_poly.py b/buch/papers/laguerre/scripts/laguerre_poly.py new file mode 100644 index 0000000..954a0b1 --- /dev/null +++ b/buch/papers/laguerre/scripts/laguerre_poly.py @@ -0,0 +1,98 @@ +import numpy as np + + +def get_ticks(start, end, step=1): + ticks = np.arange(start, end, step) + return ticks[ticks != 0] + + +if __name__ == "__main__": + import os + from pathlib import Path + + import matplotlib.pyplot as plt + import scipy.special as ss + + N = 1000 + step = 5 + t = np.linspace(-1.05, 10.5, N)[:, None] + root = str(Path(__file__).parent) + img_path = f"{root}/../images" + os.makedirs(img_path, exist_ok=True) + + # fig = plt.figure(num=1, clear=True, tight_layout=True, figsize=(5.5, 3.7)) + # ax = fig.add_subplot(axes_class=AxesZero) + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(6, 4)) + for n in np.arange(0, 8): + k = np.arange(0, n + 1)[None] + L = np.sum((-1) ** k * ss.binom(n, k) / ss.factorial(k) * t ** k, -1) + ax.plot(t, L, label=f"$n={n}$") + + ax.set_xticks(get_ticks(int(t[0]), t[-1]), minor=True) + ax.set_xticks(get_ticks(0, t[-1], step)) + ax.set_xlim(t[0], t[-1] + 0.1 * (t[1] - t[0])) + ax.set_xlabel(r"$x$", x=1.0, labelpad=-10, rotation=0, fontsize="large") + + ylim = 13 + ax.set_yticks(np.arange(-ylim, ylim), minor=True) + ax.set_yticks(np.arange(-step * (ylim // step), ylim, step)) + ax.set_ylim(-ylim, ylim) + ax.set_ylabel(r"$y$", y=0.95, labelpad=-18, rotation=0, fontsize="large") + + ax.legend(ncol=2, loc=(0.125, 0.01), fontsize="large") + + # set the x-spine + ax.spines[["left", "bottom"]].set_position("zero") + ax.spines[["right", "top"]].set_visible(False) + ax.xaxis.set_ticks_position("bottom") + hlx = 0.4 + dx = t[-1, 0] - t[0, 0] + dy = 2 * ylim + hly = dy / dx * hlx + dps = fig.dpi_scale_trans.inverted() + bbox = ax.get_window_extent().transformed(dps) + width, height = bbox.width, bbox.height + + # manual arrowhead width and length + hw = 1.0 / 60.0 * dy + hl = 1.0 / 30.0 * dx + lw = 0.5 # axis line width + ohg = 0.0 # arrow overhang + + # compute matching arrowhead length and width + yhw = hw / dy * dx * height / width + yhl = hl / dx * dy * width / height + + # draw x and y axis + ax.arrow( + t[-1, 0] - hl, + 0, + hl, + 0.0, + fc="k", + ec="k", + lw=lw, + head_width=hw, + head_length=hl, + overhang=ohg, + length_includes_head=True, + clip_on=False, + ) + + ax.arrow( + 0, + ylim - yhl, + 0.0, + yhl, + fc="k", + ec="k", + lw=lw, + head_width=yhw, + head_length=yhl, + overhang=ohg, + length_includes_head=True, + clip_on=False, + ) + + fig.savefig(f"{img_path}/laguerre_poly.pgf") + # plt.show() diff --git a/buch/papers/laguerre/scripts/rel_error_mirror.py b/buch/papers/laguerre/scripts/rel_error_mirror.py new file mode 100644 index 0000000..05e68e4 --- /dev/null +++ b/buch/papers/laguerre/scripts/rel_error_mirror.py @@ -0,0 +1,28 @@ +if __name__ == "__main__": + import matplotlib.pyplot as plt + import numpy as np + import scipy.special + + import gamma_approx as ga + + xmin = -15 + xmax = 15 + ns = np.arange(2, 12, 2) + ylim = np.array([-11, 1]) + x = np.linspace(xmin + ga.EPSILON, xmax - ga.EPSILON, 400) + gamma = scipy.special.gamma(x) + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5)) + for n in ns: + gamma_lag = ga.eval_laguerre_gamma(x, n=n, func="mirror") + rel_err = ga.calc_rel_error(gamma, gamma_lag) + ax.semilogy(x, np.abs(rel_err), label=f"$n={n}$") + ax.set_xlim(x[0], x[-1]) + ax.set_ylim(*(10.0 ** ylim)) + ax.set_xticks(np.arange(xmin, xmax + ga.EPSILON, 5)) + ax.set_xticks(np.arange(xmin, xmax), minor=True) + ax.set_yticks(10.0 ** np.arange(*ylim, 2)) + ax.set_xlabel(r"$z$") + # ax.set_ylabel("Relativer Fehler") + ax.legend(ncol=1, loc="upper left", fontsize=ga.fontsize) + ax.grid(1, "both") + fig.savefig(f"{ga.img_path}/rel_error_mirror.pgf") diff --git a/buch/papers/laguerre/scripts/rel_error_range.py b/buch/papers/laguerre/scripts/rel_error_range.py new file mode 100644 index 0000000..7d017a7 --- /dev/null +++ b/buch/papers/laguerre/scripts/rel_error_range.py @@ -0,0 +1,32 @@ +if __name__ == "__main__": + import matplotlib.pyplot as plt + import numpy as np + import scipy.special + + import gamma_approx as ga + + N = 1000 + xmin = -5 + xmax = 5 + ns = np.arange(2, 12, 2) + ylim = np.array([-11, -1.2]) + + x = np.linspace(xmin + ga.EPSILON, xmax - ga.EPSILON, N) + gamma = scipy.special.gamma(x) + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5)) + for n in ns: + gamma_lag = ga.eval_laguerre_gamma(x, n=n, func="optimal_shifted") + rel_err = ga.calc_rel_error(gamma, gamma_lag) + ax.semilogy(x, np.abs(rel_err), label=f"$n={n}$") + ax.set_xlim(x[0], x[-1]) + ax.set_ylim(*(10.0 ** ylim)) + ax.set_xticks(np.arange(xmin + 1, xmax, 2)) + ax.set_xticks(np.arange(xmin, xmax), minor=True) + ax.set_yticks(10.0 ** np.arange(*ylim, 2)) + ax.set_yticks(10.0 ** np.arange(*ylim, 1), minor=True) + ax.set_xlabel(r"$z$") + # ax.set_ylabel("Relativer Fehler") + ax.legend(ncol=1, loc="upper left", fontsize=ga.fontsize) + ax.grid(1, "both") + fig.savefig(f"{ga.img_path}/rel_error_range.pgf") + # plt.show() diff --git a/buch/papers/laguerre/scripts/rel_error_shifted.py b/buch/papers/laguerre/scripts/rel_error_shifted.py new file mode 100644 index 0000000..1515c6e --- /dev/null +++ b/buch/papers/laguerre/scripts/rel_error_shifted.py @@ -0,0 +1,31 @@ +if __name__ == "__main__": + import matplotlib.pyplot as plt + import numpy as np + import scipy.special + + import gamma_approx as ga + + n = 8 # order of Laguerre polynomial + N = 200 # number of points in interval + + step = 1 / (N - 1) + x = np.linspace(step, 1 - step, N + 1) + targets = np.arange(10, 14) + gamma = scipy.special.gamma(x) + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5)) + for target in targets: + gamma_lag = ga.eval_laguerre_gamma(x, target=target, n=n, func="shifted") + rel_error = np.abs(ga.calc_rel_error(gamma, gamma_lag)) + ax.semilogy(x, rel_error, label=f"$m={target}$", linewidth=3) + gamma_lgo = ga.eval_laguerre_gamma(x, n=n, func="optimal_shifted") + rel_error = np.abs(ga.calc_rel_error(gamma, gamma_lgo)) + ax.semilogy(x, rel_error, "m", linestyle="dotted", label="$m^*$", linewidth=3) + ax.set_xlim(x[0], x[-1]) + ax.set_ylim(5e-9, 5e-8) + ax.set_xlabel(r"$z$") + ax.set_xticks(np.linspace(0, 1, 6)) + ax.set_xticks(np.linspace(0, 1, 11), minor=True) + ax.grid(1, "both") + ax.legend(ncol=1, fontsize=ga.fontsize) + fig.savefig(f"{ga.img_path}/rel_error_shifted.pgf") + # plt.show() diff --git a/buch/papers/laguerre/scripts/rel_error_simple.py b/buch/papers/laguerre/scripts/rel_error_simple.py new file mode 100644 index 0000000..0929976 --- /dev/null +++ b/buch/papers/laguerre/scripts/rel_error_simple.py @@ -0,0 +1,29 @@ +if __name__ == "__main__": + import matplotlib.pyplot as plt + import numpy as np + import scipy.special + + import gamma_approx as ga + + # Simple / naive + xmin = -5 + xmax = 30 + ns = np.arange(2, 12, 2) + ylim = np.array([-11, 6]) + x = np.linspace(xmin + ga.EPSILON, xmax - ga.EPSILON, 400) + gamma = scipy.special.gamma(x) + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5)) + for n in ns: + gamma_lag = ga.eval_laguerre_gamma(x, n=n) + rel_err = ga.calc_rel_error(gamma, gamma_lag) + ax.semilogy(x, np.abs(rel_err), label=f"$n={n}$") + ax.set_xlim(x[0], x[-1]) + ax.set_ylim(*(10.0 ** ylim)) + ax.set_xticks(np.arange(xmin, xmax + ga.EPSILON, 5)) + ax.set_xticks(np.arange(xmin, xmax), minor=True) + ax.set_yticks(10.0 ** np.arange(*ylim, 2)) + ax.set_xlabel(r"$z$") + # ax.set_ylabel("Relativer Fehler") + ax.legend(ncol=3, fontsize=ga.fontsize) + ax.grid(1, "both") + fig.savefig(f"{ga.img_path}/rel_error_simple.pgf") diff --git a/buch/papers/laguerre/scripts/targets.py b/buch/papers/laguerre/scripts/targets.py new file mode 100644 index 0000000..73d6e03 --- /dev/null +++ b/buch/papers/laguerre/scripts/targets.py @@ -0,0 +1,48 @@ +import numpy as np +import scipy.special + +import gamma_approx as ga + + +def find_best_loc(N=200, a=1.375, b=0.5, ns=None): + if ns is None: + ns = np.arange(2, 13) + bests = [] + step = 1 / (N - 1) + x = np.linspace(step, 1 - step, N + 1) + gamma = scipy.special.gamma(x)[:, None] + for n in ns: + zeros, weights = np.polynomial.laguerre.laggauss(n) + est = np.ceil(b + a * n) + targets = np.arange(max(est - 2, 0), est + 3) + glag = [ + ga.eval_laguerre_gamma(x, target=target, x=zeros, w=weights, func="shifted") + for target in targets + ] + gamma_lag = np.stack(glag, -1) + rel_error = np.abs(ga.calc_rel_error(gamma, gamma_lag)) + best = np.argmin(rel_error, -1) + targets[0] + bests.append(best) + return np.stack(bests, 0) + + +if __name__ == "__main__": + import matplotlib.pyplot as plt + N = 200 + ns = np.arange(2, 13) + + bests = find_best_loc(N, ns=ns) + + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(4, 2.4)) + v = ax.imshow(bests, cmap="inferno", aspect="auto", interpolation="nearest") + plt.colorbar(v, ax=ax, label=r"$m^*$") + ticks = np.arange(0, N + 1, N // 5) + ax.set_xlim(0, 1) + ax.set_xticks(ticks) + ax.set_xticklabels([f"{v:.2f}" for v in ticks / N]) + ax.set_xticks(np.arange(0, N + 1, N // 20), minor=True) + ax.set_yticks(np.arange(len(ns))) + ax.set_yticklabels(ns) + ax.set_xlabel(r"$z$") + ax.set_ylabel(r"$n$") + fig.savefig(f"{ga.img_path}/targets.pgf") -- cgit v1.2.1 From 3cb2fa354f814fa98474610dac744281285dafc6 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Fri, 15 Jul 2022 11:40:55 +0200 Subject: First version of section 'Gauss Quadratur', fix to gamma_approx.py when z=0 --- buch/papers/laguerre/quadratur.tex | 148 ++++++++++++++++++++---- buch/papers/laguerre/references.bib | 11 ++ buch/papers/laguerre/scripts/gamma_approx.py | 18 ++- buch/papers/laguerre/scripts/rel_error_range.py | 2 +- 4 files changed, 151 insertions(+), 28 deletions(-) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 851fe8a..7cbae48 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -5,25 +5,57 @@ % \section{Gauss-Quadratur \label{laguerre:section:quadratur}} - {\large \color{red} TODO: Einleitung und kurze Beschreibung Gauss-Quadratur} - -Siehe Abschnitt~\ref{buch:orthogonalitaet:section:gauss-quadratur} +Die Gauss-Quadratur ist ein numerisches Integrationsverfahren, +welches die Eigenschaften von orthogonalen Polynomen ausnützt. +Herleitungen und Analysen der Gauss-Quadratur können im +Abschnitt~\ref{buch:orthogonalitaet:section:gauss-quadratur} gefunden werden. +Als grundlegende Idee wird die Beobachtung, +dass viele Funktionen sich gut mit Polynomen approximieren lassen, +verwendet. +Stellt man also sicher, +dass ein Verfahren gut für Polynome gut funktioniert, +sollte es auch für andere Funktionen nicht schlecht funktionieren. +Es wird ein Polynom verwendet, +welches an den Punkten $x_0 < x_1 < \ldots < x_n$ +die Funktionwerte~$f(x_i)$ annimmt. +Als Resultat kann das Integral via eine gewichtete Summe der Form \begin{align} \int_a^b f(x) w(x) \, dx \approx \sum_{i=1}^n f(x_i) A_i \label{laguerre:gaussquadratur} \end{align} +berechnet werden. +Die Gauss-Quadratur ist exakt für Polynome mit Grad $2n -1$, +wenn ein Interpolationspolynom von Grad $n$ gewählt wurde. \subsection{Gauss-Laguerre-Quadratur \label{laguerre:subsection:gausslag-quadratur}} -Die Gauss-Quadratur kann auch auf Skalarprodukte mit Gewichtsfunktionen -ausgeweitet werden. -In unserem Falle möchten wir die Gauss Quadratur auf die Laguerre-Polynome -$L_n$ ausweiten. -Diese sind orthogonal im Intervall $(0, \infty)$ bezüglich -der Gewichtsfunktion $e^{-x}$. -Gleichung~\eqref{laguerre:laguerrequadratur} lässt sich wie folgt umformulieren: +Wir möchten nun die Gauss-Quadratur auf die Berechnung +von uneigentlichen Integralen erweitern, +spezifisch auf das Interval $(0, \infty)$. +Mit dem vorher beschriebenen Verfahren ist dies nicht direkt möglich. +Mit einer Transformation die das unendliche Intervall $(a, \infty)$ mit +\begin{align*} +x += +a + \frac{1 - t}{t} +\end{align*} +auf das Intervall $[0, 1]$ transformiert. +Für unser Fall gilt $a = 0$. +Das Integral eines Polynomes in diesem Intervall ist immer divergent, +darum müssen wir sie mit einer Funktion multiplizieren, +die schneller als jedes Polynom gegen $0$ geht, +damit das Integral immer noch konvergiert. +Die Laguerre-Polynome $L_n$ bieten hier Abhilfe, +da ihre Gewichtsfunktion $e^{-x}$ schneller +gegen $0$ konvergiert als jedes Polynom. +% In unserem Falle möchten wir die Gauss Quadratur auf die Laguerre-Polynome +% $L_n$ ausweiten. +% Diese sind orthogonal im Intervall $(0, \infty)$ bezüglich +% der Gewichtsfunktion $e^{-x}$. +Gleichung~\eqref{laguerre:gaussquadratur} lässt sich wie folgt +umformulieren: \begin{align} \int_{0}^{\infty} f(x) e^{-x} dx \approx @@ -43,20 +75,93 @@ l_i(x_j) \delta_{ij} = \begin{cases} -1 & i=j \\ -0 & \text{sonst.} +1 & i=j \\ +0 & \text{.} \end{cases} +% . \end{align*} -Laut \cite{abramowitz+stegun} sind die Gewichte -\begin{align} +die Lagrangschen Interpolationspolynome. +Laut \cite{hildebrand2013introduction} können die Gewicht mit +\begin{align*} A_i + & = +-\frac{C_{n+1} \gamma_n}{C_n \phi'_n(x_i) \phi_{n+1} (x_i)} +\end{align*} +berechnet werden. +$C_i$ entspricht dabei dem Koeffizienten von $x^i$ +des orthogonalen Polynoms $\phi_n(x)$, $\forall i =0,\ldots,n$ und +\begin{align*} +\gamma_n += +\int_0^\infty w(x) \phi_n^2(x)\,dx +\end{align*} +dem Normalisierungsfaktor. +Wir setzen nun $\phi_n(x) = L_n(x)$ und +nutzen den Vorzeichenwechsel der Laguerrekoeffizienten aus, +damit erhalten wir +\begin{align*} +A_i + & = +-\frac{C_{n+1} \gamma_n}{C_n L'_n(x_i) L_{n+1} (x_i)} +\\ + & = \frac{C_n}{C_{n-1}} \frac{\gamma_{n-1}}{L_{n-1}(x_i) L'_n(x_i)} +. +\end{align*} +Für Laguerre-Polynome gilt +\begin{align*} +\frac{C_n}{C_{n-1}} += +-\frac{1}{n} +\quad \text{und} \quad +\gamma_n = -\frac{x_i}{(n + 1)^2 \left[ L_{n + 1}(x_i)\right]^2} +1 +. +\end{align*} +Daraus folgt +\begin{align} +A_i +&= +- \frac{1}{n L_{n-1}(x_i) L'_n(x_i)} +. +\label{laguerre:gewichte_lag_temp} +\end{align} +Nun kann die Rekursionseigenschaft der Laguerre-Polynome +\begin{align*} +x L'_n(x) +&= +n L_n(x) - n L_{n-1}(x) +\\ +&= (x - n - 1) L_n(x) + (n + 1) L_{n+1}(x) +\end{align*} +umgeformt werden und da $x_i$ die Nullstellen von $L_n(x)$ sind, +folgt +\begin{align*} +x_i L'_n(x_i) +&= +- n L_{n-1}(x_i) +\\ +&= + (n + 1) L_{n+1}(x_i) +. +\end{align*} +Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein ergibt sicht +\begin{align} +\nonumber +A_i +&= +\frac{1}{x_i \left[ L'_n(x_i) \right]^2} +\\ +&= +\frac{x_i}{(n+1)^2 \left[ L_{n+1}(x_i) \right]^2} . \label{laguerre:quadratur_gewichte} \end{align} \subsubsection{Fehlerterm} +Die Gauss-Laguerre-Quadratur mit $n$ Stützstellen berechnet Integrale +von Polynomen bis zum Grad $2n - 1$ exakt. +Für beliebige Funktionen kann eine Fehlerabschätzung angegeben werden. Der Fehlerterm $R_n$ folgt direkt aus der Approximation \begin{align*} \int_0^{\infty} f(x) e^{-x} \, dx @@ -66,16 +171,15 @@ Der Fehlerterm $R_n$ folgt direkt aus der Approximation und \cite{abramowitz+stegun} gibt ihn als \begin{align} R_n -= + & = +\frac{f^{(2n)}(\xi)}{(2n)!} \int_0^\infty l(x)^2 e^{-x}\,dx +\\ + & = \frac{(n!)^2}{(2n)!} f^{(2n)}(\xi) ,\quad 0 < \xi < \infty \label{laguerre:lag_error} \end{align} an. - -{ -\large \color{red} -TODO: -Noch mehr Text / bessere Beschreibungen in allen Abschnitten -} +Der Fehler ist also abhängig von der $2n$-ten Ableitung +der zu integrierenden Funktion. diff --git a/buch/papers/laguerre/references.bib b/buch/papers/laguerre/references.bib index e12e218..2371922 100644 --- a/buch/papers/laguerre/references.bib +++ b/buch/papers/laguerre/references.bib @@ -4,6 +4,17 @@ % (c) 2020 Autor, Hochschule Rapperswil % +@book{hildebrand2013introduction, + title={Introduction to Numerical Analysis: Second Edition}, + author={Hildebrand, F.B.}, + isbn={9780486318554}, + series={Dover Books on Mathematics}, + url={https://books.google.ch/books?id=ic2jAQAAQBAJ}, + year={2013}, + publisher={Dover Publications}, + pages = {389} +} + @book{abramowitz+stegun, added-at = {2008-06-25T06:25:58.000+0200}, address = {New York}, diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py index 208f770..9f9dae7 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.py +++ b/buch/papers/laguerre/scripts/gamma_approx.py @@ -1,7 +1,5 @@ from pathlib import Path -import matplotlib as mpl -import matplotlib.pyplot as plt import numpy as np import scipy.special @@ -58,6 +56,8 @@ def laguerre_gamma_shifted(z, x=None, w=None, n=8, target=11): def laguerre_gamma_opt_shifted(z, x=None, w=None, n=8): + if z == 0.0: + return np.infty x, w = _prep_zeros_and_weights(x, w, n) n = len(x) @@ -73,6 +73,8 @@ def laguerre_gamma_opt_shifted(z, x=None, w=None, n=8): def laguerre_gamma_simple(z, x=None, w=None, n=8): + if z == 0.0: + return np.infty x, w = _prep_zeros_and_weights(x, w, n) z += 0j res = np.sum(x ** (z - 1) * w) @@ -81,6 +83,8 @@ def laguerre_gamma_simple(z, x=None, w=None, n=8): def laguerre_gamma_mirror(z, x=None, w=None, n=8): + if z == 0.0: + return np.infty x, w = _prep_zeros_and_weights(x, w, n) z += 0j if z.real < 1e-3: @@ -90,8 +94,8 @@ def laguerre_gamma_mirror(z, x=None, w=None, n=8): return laguerre_gamma_simple(z, x, w) -def eval_laguerre_gamma(z, x=None, w=None, n=8, func="simple", **kwargs): - x, w = _prep_zeros_and_weights(x, w, n) +def eval_laguerre_gamma(z, x=None, w=None, n=8, func="simple", **kwargs): + x, w = _prep_zeros_and_weights(x, w, n) if func == "simple": f = laguerre_gamma_simple elif func == "mirror": @@ -104,4 +108,8 @@ def eval_laguerre_gamma(z, x=None, w=None, n=8, func="simple", **kwargs): def calc_rel_error(x, y): - return (y - x) / x + mask = np.abs(x) != np.infty + rel_error = np.zeros_like(y) + rel_error[mask] = (y[mask] - x[mask]) / x[mask] + rel_error[~mask] = 0.0 + return rel_error diff --git a/buch/papers/laguerre/scripts/rel_error_range.py b/buch/papers/laguerre/scripts/rel_error_range.py index 7d017a7..7c74d76 100644 --- a/buch/papers/laguerre/scripts/rel_error_range.py +++ b/buch/papers/laguerre/scripts/rel_error_range.py @@ -5,7 +5,7 @@ if __name__ == "__main__": import gamma_approx as ga - N = 1000 + N = 1001 xmin = -5 xmax = 5 ns = np.arange(2, 12, 2) -- cgit v1.2.1 From 7a8795dcb555a551fd09a3c9b15002675e30891f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Fri, 15 Jul 2022 16:24:48 +0200 Subject: Change image scripts to PDF format, update Makefile, add complex plane plot --- buch/papers/laguerre/Makefile | 17 +- buch/papers/laguerre/images/estimates.pdf | Bin 0 -> 13780 bytes buch/papers/laguerre/images/estimates.pgf | 1700 ----------- buch/papers/laguerre/images/gammaplot.pdf | Bin 23297 -> 23297 bytes buch/papers/laguerre/images/integrand.pdf | Bin 0 -> 16109 bytes buch/papers/laguerre/images/integrand.pgf | 2670 ----------------- buch/papers/laguerre/images/integrand_exp.pdf | Bin 0 -> 16951 bytes buch/papers/laguerre/images/integrand_exp.pgf | 1916 ------------ buch/papers/laguerre/images/laguerre_poly.pdf | Bin 0 -> 19815 bytes buch/papers/laguerre/images/laguerre_poly.pgf | 1838 ------------ buch/papers/laguerre/images/rel_error_complex.pdf | Bin 0 -> 198151 bytes buch/papers/laguerre/images/rel_error_mirror.pdf | Bin 0 -> 26866 bytes buch/papers/laguerre/images/rel_error_mirror.pgf | 3051 -------------------- buch/papers/laguerre/images/rel_error_range.pdf | Bin 0 -> 25704 bytes buch/papers/laguerre/images/rel_error_range.pgf | 2730 ------------------ buch/papers/laguerre/images/rel_error_shifted.pdf | Bin 0 -> 16231 bytes buch/papers/laguerre/images/rel_error_shifted.pgf | 1433 --------- buch/papers/laguerre/images/rel_error_simple.pdf | Bin 0 -> 23353 bytes buch/papers/laguerre/images/rel_error_simple.pgf | 2934 ------------------- buch/papers/laguerre/images/targets-img0.png | Bin 836 -> 0 bytes buch/papers/laguerre/images/targets-img1.png | Bin 429 -> 0 bytes buch/papers/laguerre/images/targets.pdf | Bin 12530 -> 14757 bytes buch/papers/laguerre/images/targets.pgf | 1024 ------- buch/papers/laguerre/presentation/presentation.pdf | Bin 0 -> 394774 bytes buch/papers/laguerre/scripts/estimates.py | 12 +- buch/papers/laguerre/scripts/integrand.py | 11 +- buch/papers/laguerre/scripts/integrand_exp.py | 12 +- buch/papers/laguerre/scripts/laguerre_poly.py | 16 +- buch/papers/laguerre/scripts/rel_error_complex.py | 43 + buch/papers/laguerre/scripts/rel_error_mirror.py | 12 +- buch/papers/laguerre/scripts/rel_error_range.py | 25 +- buch/papers/laguerre/scripts/rel_error_shifted.py | 13 +- buch/papers/laguerre/scripts/rel_error_simple.py | 14 +- buch/papers/laguerre/scripts/targets.py | 26 +- 34 files changed, 167 insertions(+), 19330 deletions(-) create mode 100644 buch/papers/laguerre/images/estimates.pdf delete mode 100644 buch/papers/laguerre/images/estimates.pgf create mode 100644 buch/papers/laguerre/images/integrand.pdf delete mode 100644 buch/papers/laguerre/images/integrand.pgf create mode 100644 buch/papers/laguerre/images/integrand_exp.pdf delete mode 100644 buch/papers/laguerre/images/integrand_exp.pgf create mode 100644 buch/papers/laguerre/images/laguerre_poly.pdf delete mode 100644 buch/papers/laguerre/images/laguerre_poly.pgf create mode 100644 buch/papers/laguerre/images/rel_error_complex.pdf create mode 100644 buch/papers/laguerre/images/rel_error_mirror.pdf delete mode 100644 buch/papers/laguerre/images/rel_error_mirror.pgf create mode 100644 buch/papers/laguerre/images/rel_error_range.pdf delete mode 100644 buch/papers/laguerre/images/rel_error_range.pgf create mode 100644 buch/papers/laguerre/images/rel_error_shifted.pdf delete mode 100644 buch/papers/laguerre/images/rel_error_shifted.pgf create mode 100644 buch/papers/laguerre/images/rel_error_simple.pdf delete mode 100644 buch/papers/laguerre/images/rel_error_simple.pgf delete mode 100644 buch/papers/laguerre/images/targets-img0.png delete mode 100644 buch/papers/laguerre/images/targets-img1.png delete mode 100644 buch/papers/laguerre/images/targets.pgf create mode 100644 buch/papers/laguerre/presentation/presentation.pdf create mode 100644 buch/papers/laguerre/scripts/rel_error_complex.py (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/Makefile b/buch/papers/laguerre/Makefile index 1ed87cc..48f8066 100644 --- a/buch/papers/laguerre/Makefile +++ b/buch/papers/laguerre/Makefile @@ -8,14 +8,15 @@ PRESFOLDER := presentation FIGURES := \ images/targets.pdf \ - images/estimates.pgf \ - images/integrand.pgf \ - images/integrand_exp.pgf \ - images/laguerre_poly.pgf \ - images/rel_error_mirror.pgf \ - images/rel_error_range.pgf \ - images/rel_error_shifted.pgf \ - images/rel_error_simple.pgf \ + images/rel_error_complex.pdf \ + images/estimates.pdf \ + images/integrand.pdf \ + images/integrand_exp.pdf \ + images/laguerre_poly.pdf \ + images/rel_error_mirror.pdf \ + images/rel_error_range.pdf \ + images/rel_error_shifted.pdf \ + images/rel_error_simple.pdf \ images/gammaplot.pdf .PHONY: all diff --git a/buch/papers/laguerre/images/estimates.pdf b/buch/papers/laguerre/images/estimates.pdf new file mode 100644 index 0000000..c93a4f0 Binary files /dev/null and b/buch/papers/laguerre/images/estimates.pdf differ diff --git a/buch/papers/laguerre/images/estimates.pgf b/buch/papers/laguerre/images/estimates.pgf deleted file mode 100644 index b82fa5d..0000000 --- a/buch/papers/laguerre/images/estimates.pgf +++ /dev/null @@ -1,1700 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.500000in}{3.600000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{4.500000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{4.500000in}{3.600000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{3.600000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{3.558330in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{3.558330in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{2.076777in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.733533in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{0.733533in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.733533in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.088276in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{1.088276in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.088276in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.443018in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{1.443018in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.443018in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.797761in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{1.797761in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.797761in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.152504in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{2.152504in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.152504in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.507246in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{2.507246in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.507246in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.861989in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{2.861989in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.861989in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.216731in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{3.216731in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.216731in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.571474in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{3.571474in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.571474in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.926216in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{3.926216in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.926216in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.280959in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{4.280959in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.280959in}{2.076777in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.156403in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{2.156403in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{2.156403in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.370575in, y=2.103641in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 3}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.339026in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{2.339026in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{2.339026in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.370575in, y=2.286264in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.521648in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{2.521648in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{2.521648in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.370575in, y=2.468887in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.704271in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{2.704271in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{2.704271in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.370575in, y=2.651510in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 9}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.886894in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{2.886894in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{2.886894in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.282209in, y=2.834133in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 11}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.069517in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{3.069517in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{3.069517in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.282209in, y=3.016755in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 13}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.252140in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{3.252140in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{3.252140in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.282209in, y=3.199378in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.434763in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{3.434763in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{3.434763in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.282209in, y=3.382001in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 17}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.144121in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{3.490987in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{2.076777in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.733533in}{2.205011in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.088276in}{2.328577in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.443018in}{2.450780in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.797761in}{2.573437in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.152504in}{2.695640in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.507246in}{2.816934in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.861989in}{2.939137in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.216731in}{3.061340in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.571474in}{3.182634in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.926216in}{3.304837in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.280959in}{3.434763in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.458330in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{2.076777in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{2.076777in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{3.558330in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{3.558330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.653384in}{3.039504in}}% -\pgfpathlineto{\pgfqpoint{1.219775in}{3.039504in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.039504in}}{\pgfqpoint{1.247553in}{3.067282in}}% -\pgfpathlineto{\pgfqpoint{1.247553in}{3.461108in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.247553in}{3.488886in}}{\pgfqpoint{1.219775in}{3.488886in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{3.488886in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.488886in}}{\pgfqpoint{0.625607in}{3.461108in}}% -\pgfpathlineto{\pgfqpoint{0.625607in}{3.067282in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{3.039504in}}{\pgfqpoint{0.653384in}{3.039504in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{3.039504in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.681162in}{3.376418in}}% -\pgfpathlineto{\pgfqpoint{0.820051in}{3.376418in}}% -\pgfpathlineto{\pgfqpoint{0.958940in}{3.376418in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=3.327807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.820051in}{3.172561in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=3.123950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \overline{m}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{1.944826in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{1.944826in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.733533in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.733533in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.733533in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.733533in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.088276in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.088276in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.088276in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.088276in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 3}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.443018in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.443018in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.443018in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.443018in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.797761in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.797761in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.797761in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.797761in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.152504in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.152504in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.152504in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.152504in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.507246in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.507246in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.507246in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.507246in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.861989in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.861989in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.861989in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.861989in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.216731in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.216731in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.216731in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.216731in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 9}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.571474in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.571474in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.571474in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.571474in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.926216in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.926216in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.926216in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.926216in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 11}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.280959in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.280959in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.280959in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.280959in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.507246in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.772636in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{0.772636in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{0.772636in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=0.719875in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.04}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.101325in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{1.101325in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.101325in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=1.048564in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}0.02}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.430014in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{1.430014in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.430014in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.149695in, y=1.377252in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.758703in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{1.758703in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.556162in}{1.758703in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.149695in, y=1.705941in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.02}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.733533in}{1.489478in}}% -\pgfpathlineto{\pgfqpoint{1.088276in}{1.287300in}}% -\pgfpathlineto{\pgfqpoint{1.443018in}{1.330411in}}% -\pgfpathlineto{\pgfqpoint{1.797761in}{1.291760in}}% -\pgfpathlineto{\pgfqpoint{2.152504in}{1.334871in}}% -\pgfpathlineto{\pgfqpoint{2.507246in}{1.541510in}}% -\pgfpathlineto{\pgfqpoint{2.861989in}{1.584621in}}% -\pgfpathlineto{\pgfqpoint{3.216731in}{1.627733in}}% -\pgfpathlineto{\pgfqpoint{3.571474in}{1.834371in}}% -\pgfpathlineto{\pgfqpoint{3.926216in}{1.877483in}}% -\pgfpathlineto{\pgfqpoint{4.280959in}{0.530617in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.556162in}{0.463273in}}{\pgfqpoint{3.902168in}{1.481553in}}% -\pgfusepath{clip}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.733533in}{1.489478in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.088276in}{1.287300in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.443018in}{1.330411in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{1.797761in}{1.291760in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.152504in}{1.334871in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.507246in}{1.541510in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{2.861989in}{1.584621in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.216731in}{1.627733in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.571474in}{1.834371in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.926216in}{1.877483in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{4.280959in}{0.530617in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.556162in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.458330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.556162in}{1.944826in}}% -\pgfpathlineto{\pgfqpoint{4.458330in}{1.944826in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.653384in}{1.629858in}}% -\pgfpathlineto{\pgfqpoint{1.511473in}{1.629858in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.629858in}}{\pgfqpoint{1.539251in}{1.657636in}}% -\pgfpathlineto{\pgfqpoint{1.539251in}{1.847604in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.539251in}{1.875382in}}{\pgfqpoint{1.511473in}{1.875382in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{1.875382in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.875382in}}{\pgfqpoint{0.625607in}{1.847604in}}% -\pgfpathlineto{\pgfqpoint{0.625607in}{1.657636in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.625607in}{1.629858in}}{\pgfqpoint{0.653384in}{1.629858in}}% -\pgfpathlineto{\pgfqpoint{0.653384in}{1.629858in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.681162in}{1.762914in}}% -\pgfpathlineto{\pgfqpoint{0.820051in}{1.762914in}}% -\pgfpathlineto{\pgfqpoint{0.958940in}{1.762914in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.041667in}{-0.041667in}}{\pgfqpoint{0.041667in}{0.041667in}}{% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{-0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{0.041667in}}% -\pgfpathmoveto{\pgfqpoint{-0.041667in}{0.041667in}}% -\pgfpathlineto{\pgfqpoint{0.041667in}{-0.041667in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.820051in}{1.762914in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.070051in,y=1.714303in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle \hat{m} - \overline{m}\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/gammaplot.pdf b/buch/papers/laguerre/images/gammaplot.pdf index 26c772d..b65cf1b 100644 Binary files a/buch/papers/laguerre/images/gammaplot.pdf and b/buch/papers/laguerre/images/gammaplot.pdf differ diff --git a/buch/papers/laguerre/images/integrand.pdf b/buch/papers/laguerre/images/integrand.pdf new file mode 100644 index 0000000..676ac98 Binary files /dev/null and b/buch/papers/laguerre/images/integrand.pdf differ diff --git a/buch/papers/laguerre/images/integrand.pgf b/buch/papers/laguerre/images/integrand.pgf deleted file mode 100644 index 4514936..0000000 --- a/buch/papers/laguerre/images/integrand.pgf +++ /dev/null @@ -1,2670 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.400000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{4.000000in}{2.400000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{2.400000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% -\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfpathlineto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.315623in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.905974in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.905974in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.905974in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.905974in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.496326in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.496326in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.496326in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.496326in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.086677in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.086677in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.086677in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.086677in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.677029in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.677029in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.677029in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.677029in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.267380in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.267380in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.267380in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.267380in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{2}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.857732in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.857732in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.857732in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.493336in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.493336in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.493336in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.597292in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.597292in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.597292in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.671050in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.671050in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.671050in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.728261in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.728261in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.728261in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.775006in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.775006in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.775006in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.814528in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.814528in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.814528in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.848763in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.848763in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.848763in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.878961in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.878961in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.878961in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.083688in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.083688in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.083688in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.187644in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.187644in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.187644in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.261401in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.261401in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.261401in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.318612in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.318612in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.318612in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.365357in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.365357in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.365357in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.404879in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.404879in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.404879in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.439115in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.439115in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.439115in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.469313in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.469313in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.469313in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.674039in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.674039in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.674039in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.777995in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.777995in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.777995in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.851753in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.851753in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.851753in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.908964in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.908964in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.908964in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.955709in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.955709in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.955709in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.995231in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.995231in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.995231in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.029466in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.029466in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.029466in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.059664in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.059664in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.059664in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.264391in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.264391in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.264391in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.368347in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.368347in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.368347in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.442104in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.442104in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.442104in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.499315in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.499315in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.499315in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.546060in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.546060in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.546060in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.585582in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.585582in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.585582in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.619818in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.619818in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.619818in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.650016in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.650016in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.650016in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.854742in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.854742in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.854742in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.958698in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.958698in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.958698in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.032456in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.032456in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.032456in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.089667in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.089667in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.089667in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.136411in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.136411in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.136411in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.175934in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.175934in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.175934in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.210169in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.210169in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.210169in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.240367in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.240367in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.240367in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.445094in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.445094in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.445094in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.549049in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.549049in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.549049in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.622807in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.622807in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.622807in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.680018in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.680018in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.680018in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.726763in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.726763in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.726763in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.766285in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.766285in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.766285in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.800521in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.800521in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.800521in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.830719in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.830719in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.830719in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.086677in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.923813in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.923813in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{0.923813in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=0.871051in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{1.384398in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{1.384398in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{1.384398in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=1.331636in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{1.844983in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{1.844983in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{1.844983in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=1.792222in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{2.305568in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=2.252807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 40}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.876223in}{2.315568in}}% -\pgfpathlineto{\pgfqpoint{1.884777in}{2.056573in}}% -\pgfpathlineto{\pgfqpoint{1.895403in}{1.785467in}}% -\pgfpathlineto{\pgfqpoint{1.906030in}{1.560489in}}% -\pgfpathlineto{\pgfqpoint{1.916656in}{1.373790in}}% -\pgfpathlineto{\pgfqpoint{1.927282in}{1.218859in}}% -\pgfpathlineto{\pgfqpoint{1.937909in}{1.090289in}}% -\pgfpathlineto{\pgfqpoint{1.948535in}{0.983595in}}% -\pgfpathlineto{\pgfqpoint{1.959161in}{0.895055in}}% -\pgfpathlineto{\pgfqpoint{1.969788in}{0.821579in}}% -\pgfpathlineto{\pgfqpoint{1.980414in}{0.760606in}}% -\pgfpathlineto{\pgfqpoint{1.991040in}{0.710007in}}% -\pgfpathlineto{\pgfqpoint{2.001667in}{0.668018in}}% -\pgfpathlineto{\pgfqpoint{2.012293in}{0.633173in}}% -\pgfpathlineto{\pgfqpoint{2.022919in}{0.604257in}}% -\pgfpathlineto{\pgfqpoint{2.033546in}{0.580261in}}% -\pgfpathlineto{\pgfqpoint{2.047714in}{0.554493in}}% -\pgfpathlineto{\pgfqpoint{2.061883in}{0.534399in}}% -\pgfpathlineto{\pgfqpoint{2.076051in}{0.518729in}}% -\pgfpathlineto{\pgfqpoint{2.090219in}{0.506510in}}% -\pgfpathlineto{\pgfqpoint{2.104388in}{0.496980in}}% -\pgfpathlineto{\pgfqpoint{2.122098in}{0.487962in}}% -\pgfpathlineto{\pgfqpoint{2.139809in}{0.481354in}}% -\pgfpathlineto{\pgfqpoint{2.161062in}{0.475710in}}% -\pgfpathlineto{\pgfqpoint{2.189398in}{0.470818in}}% -\pgfpathlineto{\pgfqpoint{2.224820in}{0.467304in}}% -\pgfpathlineto{\pgfqpoint{2.274409in}{0.464935in}}% -\pgfpathlineto{\pgfqpoint{2.355878in}{0.463636in}}% -\pgfpathlineto{\pgfqpoint{2.571946in}{0.463236in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.463227in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.463227in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.613104in}{2.315568in}}% -\pgfpathlineto{\pgfqpoint{1.629745in}{2.089937in}}% -\pgfpathlineto{\pgfqpoint{1.647456in}{1.880032in}}% -\pgfpathlineto{\pgfqpoint{1.665166in}{1.697213in}}% -\pgfpathlineto{\pgfqpoint{1.682877in}{1.537984in}}% -\pgfpathlineto{\pgfqpoint{1.700587in}{1.399301in}}% -\pgfpathlineto{\pgfqpoint{1.718298in}{1.278513in}}% -\pgfpathlineto{\pgfqpoint{1.736009in}{1.173312in}}% -\pgfpathlineto{\pgfqpoint{1.753719in}{1.081685in}}% -\pgfpathlineto{\pgfqpoint{1.771430in}{1.001882in}}% -\pgfpathlineto{\pgfqpoint{1.789140in}{0.932375in}}% -\pgfpathlineto{\pgfqpoint{1.806851in}{0.871838in}}% -\pgfpathlineto{\pgfqpoint{1.824561in}{0.819113in}}% -\pgfpathlineto{\pgfqpoint{1.842272in}{0.773190in}}% -\pgfpathlineto{\pgfqpoint{1.859982in}{0.733194in}}% -\pgfpathlineto{\pgfqpoint{1.877693in}{0.698358in}}% -\pgfpathlineto{\pgfqpoint{1.895403in}{0.668018in}}% -\pgfpathlineto{\pgfqpoint{1.913114in}{0.641592in}}% -\pgfpathlineto{\pgfqpoint{1.930825in}{0.618577in}}% -\pgfpathlineto{\pgfqpoint{1.952077in}{0.594844in}}% -\pgfpathlineto{\pgfqpoint{1.973330in}{0.574736in}}% -\pgfpathlineto{\pgfqpoint{1.994582in}{0.557701in}}% -\pgfpathlineto{\pgfqpoint{2.015835in}{0.543268in}}% -\pgfpathlineto{\pgfqpoint{2.040630in}{0.529192in}}% -\pgfpathlineto{\pgfqpoint{2.065425in}{0.517591in}}% -\pgfpathlineto{\pgfqpoint{2.093762in}{0.506810in}}% -\pgfpathlineto{\pgfqpoint{2.125640in}{0.497214in}}% -\pgfpathlineto{\pgfqpoint{2.161062in}{0.489009in}}% -\pgfpathlineto{\pgfqpoint{2.200025in}{0.482252in}}% -\pgfpathlineto{\pgfqpoint{2.246072in}{0.476511in}}% -\pgfpathlineto{\pgfqpoint{2.302746in}{0.471764in}}% -\pgfpathlineto{\pgfqpoint{2.373588in}{0.468140in}}% -\pgfpathlineto{\pgfqpoint{2.472767in}{0.465494in}}% -\pgfpathlineto{\pgfqpoint{2.625078in}{0.463918in}}% -\pgfpathlineto{\pgfqpoint{2.950952in}{0.463282in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.463227in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.463227in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.139517in}{2.315568in}}% -\pgfpathlineto{\pgfqpoint{1.162187in}{2.158775in}}% -\pgfpathlineto{\pgfqpoint{1.186982in}{2.002481in}}% -\pgfpathlineto{\pgfqpoint{1.211776in}{1.860593in}}% -\pgfpathlineto{\pgfqpoint{1.236571in}{1.731785in}}% -\pgfpathlineto{\pgfqpoint{1.261366in}{1.614850in}}% -\pgfpathlineto{\pgfqpoint{1.286161in}{1.508694in}}% -\pgfpathlineto{\pgfqpoint{1.310955in}{1.412323in}}% -\pgfpathlineto{\pgfqpoint{1.335750in}{1.324836in}}% -\pgfpathlineto{\pgfqpoint{1.360545in}{1.245413in}}% -\pgfpathlineto{\pgfqpoint{1.385340in}{1.173312in}}% -\pgfpathlineto{\pgfqpoint{1.410135in}{1.107857in}}% -\pgfpathlineto{\pgfqpoint{1.434929in}{1.048435in}}% -\pgfpathlineto{\pgfqpoint{1.459724in}{0.994491in}}% -\pgfpathlineto{\pgfqpoint{1.484519in}{0.945519in}}% -\pgfpathlineto{\pgfqpoint{1.509314in}{0.901062in}}% -\pgfpathlineto{\pgfqpoint{1.534108in}{0.860703in}}% -\pgfpathlineto{\pgfqpoint{1.562445in}{0.819113in}}% -\pgfpathlineto{\pgfqpoint{1.590782in}{0.781874in}}% -\pgfpathlineto{\pgfqpoint{1.619119in}{0.748533in}}% -\pgfpathlineto{\pgfqpoint{1.647456in}{0.718680in}}% -\pgfpathlineto{\pgfqpoint{1.675793in}{0.691950in}}% -\pgfpathlineto{\pgfqpoint{1.704130in}{0.668018in}}% -\pgfpathlineto{\pgfqpoint{1.736009in}{0.644074in}}% -\pgfpathlineto{\pgfqpoint{1.767888in}{0.622929in}}% -\pgfpathlineto{\pgfqpoint{1.803309in}{0.602322in}}% -\pgfpathlineto{\pgfqpoint{1.838730in}{0.584374in}}% -\pgfpathlineto{\pgfqpoint{1.877693in}{0.567294in}}% -\pgfpathlineto{\pgfqpoint{1.916656in}{0.552622in}}% -\pgfpathlineto{\pgfqpoint{1.959161in}{0.538965in}}% -\pgfpathlineto{\pgfqpoint{2.005209in}{0.526514in}}% -\pgfpathlineto{\pgfqpoint{2.054798in}{0.515384in}}% -\pgfpathlineto{\pgfqpoint{2.111472in}{0.505040in}}% -\pgfpathlineto{\pgfqpoint{2.175230in}{0.495834in}}% -\pgfpathlineto{\pgfqpoint{2.246072in}{0.487962in}}% -\pgfpathlineto{\pgfqpoint{2.327541in}{0.481229in}}% -\pgfpathlineto{\pgfqpoint{2.423178in}{0.475624in}}% -\pgfpathlineto{\pgfqpoint{2.540067in}{0.471085in}}% -\pgfpathlineto{\pgfqpoint{2.688836in}{0.467626in}}% -\pgfpathlineto{\pgfqpoint{2.897820in}{0.465174in}}% -\pgfpathlineto{\pgfqpoint{3.230778in}{0.463759in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{1.919726in}}% -\pgfpathlineto{\pgfqpoint{0.351044in}{1.822511in}}% -\pgfpathlineto{\pgfqpoint{0.386465in}{1.731785in}}% -\pgfpathlineto{\pgfqpoint{0.421886in}{1.647114in}}% -\pgfpathlineto{\pgfqpoint{0.457307in}{1.568094in}}% -\pgfpathlineto{\pgfqpoint{0.492728in}{1.494349in}}% -\pgfpathlineto{\pgfqpoint{0.528149in}{1.425526in}}% -\pgfpathlineto{\pgfqpoint{0.563571in}{1.361297in}}% -\pgfpathlineto{\pgfqpoint{0.598992in}{1.301355in}}% -\pgfpathlineto{\pgfqpoint{0.634413in}{1.245413in}}% -\pgfpathlineto{\pgfqpoint{0.673376in}{1.188181in}}% -\pgfpathlineto{\pgfqpoint{0.712339in}{1.135136in}}% -\pgfpathlineto{\pgfqpoint{0.751302in}{1.085972in}}% -\pgfpathlineto{\pgfqpoint{0.790265in}{1.040406in}}% -\pgfpathlineto{\pgfqpoint{0.829229in}{0.998173in}}% -\pgfpathlineto{\pgfqpoint{0.868192in}{0.959031in}}% -\pgfpathlineto{\pgfqpoint{0.910697in}{0.919590in}}% -\pgfpathlineto{\pgfqpoint{0.953202in}{0.883286in}}% -\pgfpathlineto{\pgfqpoint{0.995708in}{0.849870in}}% -\pgfpathlineto{\pgfqpoint{1.038213in}{0.819113in}}% -\pgfpathlineto{\pgfqpoint{1.084261in}{0.788547in}}% -\pgfpathlineto{\pgfqpoint{1.130308in}{0.760606in}}% -\pgfpathlineto{\pgfqpoint{1.179897in}{0.733194in}}% -\pgfpathlineto{\pgfqpoint{1.229487in}{0.708309in}}% -\pgfpathlineto{\pgfqpoint{1.282619in}{0.684185in}}% -\pgfpathlineto{\pgfqpoint{1.335750in}{0.662437in}}% -\pgfpathlineto{\pgfqpoint{1.392424in}{0.641592in}}% -\pgfpathlineto{\pgfqpoint{1.452640in}{0.621830in}}% -\pgfpathlineto{\pgfqpoint{1.516398in}{0.603286in}}% -\pgfpathlineto{\pgfqpoint{1.583698in}{0.586059in}}% -\pgfpathlineto{\pgfqpoint{1.654540in}{0.570209in}}% -\pgfpathlineto{\pgfqpoint{1.732466in}{0.555126in}}% -\pgfpathlineto{\pgfqpoint{1.813935in}{0.541626in}}% -\pgfpathlineto{\pgfqpoint{1.902488in}{0.529192in}}% -\pgfpathlineto{\pgfqpoint{2.001667in}{0.517591in}}% -\pgfpathlineto{\pgfqpoint{2.107930in}{0.507416in}}% -\pgfpathlineto{\pgfqpoint{2.228362in}{0.498166in}}% -\pgfpathlineto{\pgfqpoint{2.362962in}{0.490100in}}% -\pgfpathlineto{\pgfqpoint{2.518815in}{0.483057in}}% -\pgfpathlineto{\pgfqpoint{2.699462in}{0.477169in}}% -\pgfpathlineto{\pgfqpoint{2.919073in}{0.472312in}}% -\pgfpathlineto{\pgfqpoint{3.195357in}{0.468528in}}% -\pgfpathlineto{\pgfqpoint{3.567279in}{0.465794in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.464684in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.464684in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.509286in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.509286in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.509286in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.464684in}}% -\pgfpathlineto{\pgfqpoint{0.839855in}{0.467276in}}% -\pgfpathlineto{\pgfqpoint{1.176355in}{0.471031in}}% -\pgfpathlineto{\pgfqpoint{1.427845in}{0.475971in}}% -\pgfpathlineto{\pgfqpoint{1.626203in}{0.481991in}}% -\pgfpathlineto{\pgfqpoint{1.792682in}{0.489188in}}% -\pgfpathlineto{\pgfqpoint{1.934367in}{0.497450in}}% -\pgfpathlineto{\pgfqpoint{2.058340in}{0.506810in}}% -\pgfpathlineto{\pgfqpoint{2.171688in}{0.517591in}}% -\pgfpathlineto{\pgfqpoint{2.270867in}{0.529192in}}% -\pgfpathlineto{\pgfqpoint{2.362962in}{0.542170in}}% -\pgfpathlineto{\pgfqpoint{2.447972in}{0.556405in}}% -\pgfpathlineto{\pgfqpoint{2.525899in}{0.571697in}}% -\pgfpathlineto{\pgfqpoint{2.596741in}{0.587768in}}% -\pgfpathlineto{\pgfqpoint{2.664041in}{0.605234in}}% -\pgfpathlineto{\pgfqpoint{2.727799in}{0.624036in}}% -\pgfpathlineto{\pgfqpoint{2.788015in}{0.644074in}}% -\pgfpathlineto{\pgfqpoint{2.844689in}{0.665208in}}% -\pgfpathlineto{\pgfqpoint{2.897820in}{0.687259in}}% -\pgfpathlineto{\pgfqpoint{2.950952in}{0.711718in}}% -\pgfpathlineto{\pgfqpoint{3.000541in}{0.736950in}}% -\pgfpathlineto{\pgfqpoint{3.050131in}{0.764743in}}% -\pgfpathlineto{\pgfqpoint{3.096178in}{0.793072in}}% -\pgfpathlineto{\pgfqpoint{3.142226in}{0.824063in}}% -\pgfpathlineto{\pgfqpoint{3.184731in}{0.855249in}}% -\pgfpathlineto{\pgfqpoint{3.227236in}{0.889130in}}% -\pgfpathlineto{\pgfqpoint{3.269742in}{0.925939in}}% -\pgfpathlineto{\pgfqpoint{3.308705in}{0.962468in}}% -\pgfpathlineto{\pgfqpoint{3.347668in}{1.001882in}}% -\pgfpathlineto{\pgfqpoint{3.386631in}{1.044406in}}% -\pgfpathlineto{\pgfqpoint{3.425594in}{1.090289in}}% -\pgfpathlineto{\pgfqpoint{3.464558in}{1.139793in}}% -\pgfpathlineto{\pgfqpoint{3.503521in}{1.193206in}}% -\pgfpathlineto{\pgfqpoint{3.538942in}{1.245413in}}% -\pgfpathlineto{\pgfqpoint{3.574363in}{1.301355in}}% -\pgfpathlineto{\pgfqpoint{3.609784in}{1.361297in}}% -\pgfpathlineto{\pgfqpoint{3.645205in}{1.425526in}}% -\pgfpathlineto{\pgfqpoint{3.680626in}{1.494349in}}% -\pgfpathlineto{\pgfqpoint{3.716047in}{1.568094in}}% -\pgfpathlineto{\pgfqpoint{3.751468in}{1.647114in}}% -\pgfpathlineto{\pgfqpoint{3.786889in}{1.731785in}}% -\pgfpathlineto{\pgfqpoint{3.822311in}{1.822511in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{1.919726in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{1.919726in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.172813in}{0.464531in}}% -\pgfpathlineto{\pgfqpoint{1.445556in}{0.467006in}}% -\pgfpathlineto{\pgfqpoint{1.619119in}{0.470663in}}% -\pgfpathlineto{\pgfqpoint{1.746635in}{0.475454in}}% -\pgfpathlineto{\pgfqpoint{1.849356in}{0.481479in}}% -\pgfpathlineto{\pgfqpoint{1.934367in}{0.488655in}}% -\pgfpathlineto{\pgfqpoint{2.005209in}{0.496748in}}% -\pgfpathlineto{\pgfqpoint{2.068967in}{0.506212in}}% -\pgfpathlineto{\pgfqpoint{2.125640in}{0.516845in}}% -\pgfpathlineto{\pgfqpoint{2.175230in}{0.528287in}}% -\pgfpathlineto{\pgfqpoint{2.221277in}{0.541086in}}% -\pgfpathlineto{\pgfqpoint{2.263783in}{0.555126in}}% -\pgfpathlineto{\pgfqpoint{2.302746in}{0.570209in}}% -\pgfpathlineto{\pgfqpoint{2.341709in}{0.587768in}}% -\pgfpathlineto{\pgfqpoint{2.377130in}{0.606219in}}% -\pgfpathlineto{\pgfqpoint{2.409009in}{0.625151in}}% -\pgfpathlineto{\pgfqpoint{2.440888in}{0.646590in}}% -\pgfpathlineto{\pgfqpoint{2.472767in}{0.670867in}}% -\pgfpathlineto{\pgfqpoint{2.501104in}{0.695132in}}% -\pgfpathlineto{\pgfqpoint{2.529441in}{0.722233in}}% -\pgfpathlineto{\pgfqpoint{2.557778in}{0.752502in}}% -\pgfpathlineto{\pgfqpoint{2.586115in}{0.786307in}}% -\pgfpathlineto{\pgfqpoint{2.610909in}{0.819113in}}% -\pgfpathlineto{\pgfqpoint{2.635704in}{0.855249in}}% -\pgfpathlineto{\pgfqpoint{2.660499in}{0.895055in}}% -\pgfpathlineto{\pgfqpoint{2.685294in}{0.938902in}}% -\pgfpathlineto{\pgfqpoint{2.710088in}{0.987202in}}% -\pgfpathlineto{\pgfqpoint{2.734883in}{1.040406in}}% -\pgfpathlineto{\pgfqpoint{2.759678in}{1.099012in}}% -\pgfpathlineto{\pgfqpoint{2.784473in}{1.163569in}}% -\pgfpathlineto{\pgfqpoint{2.809267in}{1.234681in}}% -\pgfpathlineto{\pgfqpoint{2.834062in}{1.313014in}}% -\pgfpathlineto{\pgfqpoint{2.858857in}{1.399301in}}% -\pgfpathlineto{\pgfqpoint{2.883652in}{1.494349in}}% -\pgfpathlineto{\pgfqpoint{2.908447in}{1.599049in}}% -\pgfpathlineto{\pgfqpoint{2.933241in}{1.714379in}}% -\pgfpathlineto{\pgfqpoint{2.958036in}{1.841420in}}% -\pgfpathlineto{\pgfqpoint{2.982831in}{1.981361in}}% -\pgfpathlineto{\pgfqpoint{3.007626in}{2.135511in}}% -\pgfpathlineto{\pgfqpoint{3.032420in}{2.305314in}}% -\pgfpathlineto{\pgfqpoint{3.033838in}{2.315568in}}% -\pgfpathlineto{\pgfqpoint{3.033838in}{2.315568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463227in}}% -\pgfpathlineto{\pgfqpoint{1.608493in}{0.464332in}}% -\pgfpathlineto{\pgfqpoint{1.753719in}{0.466657in}}% -\pgfpathlineto{\pgfqpoint{1.845814in}{0.470263in}}% -\pgfpathlineto{\pgfqpoint{1.913114in}{0.475121in}}% -\pgfpathlineto{\pgfqpoint{1.966246in}{0.481229in}}% -\pgfpathlineto{\pgfqpoint{2.008751in}{0.488306in}}% -\pgfpathlineto{\pgfqpoint{2.044172in}{0.496288in}}% -\pgfpathlineto{\pgfqpoint{2.076051in}{0.505622in}}% -\pgfpathlineto{\pgfqpoint{2.104388in}{0.516110in}}% -\pgfpathlineto{\pgfqpoint{2.129183in}{0.527394in}}% -\pgfpathlineto{\pgfqpoint{2.153977in}{0.541086in}}% -\pgfpathlineto{\pgfqpoint{2.175230in}{0.555126in}}% -\pgfpathlineto{\pgfqpoint{2.196483in}{0.571697in}}% -\pgfpathlineto{\pgfqpoint{2.217735in}{0.591257in}}% -\pgfpathlineto{\pgfqpoint{2.238988in}{0.614343in}}% -\pgfpathlineto{\pgfqpoint{2.256699in}{0.636732in}}% -\pgfpathlineto{\pgfqpoint{2.274409in}{0.662437in}}% -\pgfpathlineto{\pgfqpoint{2.292120in}{0.691950in}}% -\pgfpathlineto{\pgfqpoint{2.309830in}{0.725837in}}% -\pgfpathlineto{\pgfqpoint{2.327541in}{0.764743in}}% -\pgfpathlineto{\pgfqpoint{2.345251in}{0.809414in}}% -\pgfpathlineto{\pgfqpoint{2.362962in}{0.860703in}}% -\pgfpathlineto{\pgfqpoint{2.380672in}{0.919590in}}% -\pgfpathlineto{\pgfqpoint{2.398383in}{0.987202in}}% -\pgfpathlineto{\pgfqpoint{2.416093in}{1.064830in}}% -\pgfpathlineto{\pgfqpoint{2.433804in}{1.153960in}}% -\pgfpathlineto{\pgfqpoint{2.451514in}{1.256295in}}% -\pgfpathlineto{\pgfqpoint{2.469225in}{1.373790in}}% -\pgfpathlineto{\pgfqpoint{2.486936in}{1.508694in}}% -\pgfpathlineto{\pgfqpoint{2.504646in}{1.663583in}}% -\pgfpathlineto{\pgfqpoint{2.522357in}{1.841420in}}% -\pgfpathlineto{\pgfqpoint{2.540067in}{2.045605in}}% -\pgfpathlineto{\pgfqpoint{2.557778in}{2.280040in}}% -\pgfpathlineto{\pgfqpoint{2.560250in}{2.315568in}}% -\pgfpathlineto{\pgfqpoint{2.560250in}{2.315568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.542109in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463227in}}% -\pgfpathlineto{\pgfqpoint{1.874151in}{0.464332in}}% -\pgfpathlineto{\pgfqpoint{1.937909in}{0.466610in}}% -\pgfpathlineto{\pgfqpoint{1.976872in}{0.469931in}}% -\pgfpathlineto{\pgfqpoint{2.005209in}{0.474251in}}% -\pgfpathlineto{\pgfqpoint{2.030004in}{0.480261in}}% -\pgfpathlineto{\pgfqpoint{2.051256in}{0.487962in}}% -\pgfpathlineto{\pgfqpoint{2.068967in}{0.496980in}}% -\pgfpathlineto{\pgfqpoint{2.083135in}{0.506510in}}% -\pgfpathlineto{\pgfqpoint{2.097304in}{0.518729in}}% -\pgfpathlineto{\pgfqpoint{2.111472in}{0.534399in}}% -\pgfpathlineto{\pgfqpoint{2.122098in}{0.548992in}}% -\pgfpathlineto{\pgfqpoint{2.132725in}{0.566577in}}% -\pgfpathlineto{\pgfqpoint{2.143351in}{0.587768in}}% -\pgfpathlineto{\pgfqpoint{2.153977in}{0.613303in}}% -\pgfpathlineto{\pgfqpoint{2.164604in}{0.644074in}}% -\pgfpathlineto{\pgfqpoint{2.175230in}{0.681154in}}% -\pgfpathlineto{\pgfqpoint{2.185856in}{0.725837in}}% -\pgfpathlineto{\pgfqpoint{2.196483in}{0.779681in}}% -\pgfpathlineto{\pgfqpoint{2.207109in}{0.844565in}}% -\pgfpathlineto{\pgfqpoint{2.217735in}{0.922753in}}% -\pgfpathlineto{\pgfqpoint{2.228362in}{1.016973in}}% -\pgfpathlineto{\pgfqpoint{2.238988in}{1.130510in}}% -\pgfpathlineto{\pgfqpoint{2.249614in}{1.267327in}}% -\pgfpathlineto{\pgfqpoint{2.260241in}{1.432197in}}% -\pgfpathlineto{\pgfqpoint{2.270867in}{1.630870in}}% -\pgfpathlineto{\pgfqpoint{2.281493in}{1.870279in}}% -\pgfpathlineto{\pgfqpoint{2.292120in}{2.158775in}}% -\pgfpathlineto{\pgfqpoint{2.297132in}{2.315568in}}% -\pgfpathlineto{\pgfqpoint{2.297132in}{2.315568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.857732in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfpathlineto{\pgfqpoint{3.857732in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.396609in}{1.363948in}}% -\pgfpathlineto{\pgfqpoint{2.149723in}{1.363948in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.172861in}{1.363948in}}{\pgfqpoint{2.172861in}{1.387087in}}% -\pgfpathlineto{\pgfqpoint{2.172861in}{2.224582in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.172861in}{2.247721in}}{\pgfqpoint{2.149723in}{2.247721in}}% -\pgfpathlineto{\pgfqpoint{0.396609in}{2.247721in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.373470in}{2.247721in}}{\pgfqpoint{0.373470in}{2.224582in}}% -\pgfpathlineto{\pgfqpoint{0.373470in}{1.387087in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.373470in}{1.363948in}}{\pgfqpoint{0.396609in}{1.363948in}}% -\pgfpathlineto{\pgfqpoint{0.396609in}{1.363948in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{2.154036in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{2.154036in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{2.154036in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=2.113543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-4.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{1.984223in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{1.984223in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{1.984223in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=1.943730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-2.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{1.814410in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{1.814410in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{1.814410in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=1.773917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-1.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{1.644597in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{1.644597in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{1.644597in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=1.604104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-0.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{1.474784in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{1.474784in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{1.474784in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=1.434291in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.434771in}{2.154036in}}% -\pgfpathlineto{\pgfqpoint{1.550466in}{2.154036in}}% -\pgfpathlineto{\pgfqpoint{1.666160in}{2.154036in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.758716in,y=2.113543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.434771in}{1.984223in}}% -\pgfpathlineto{\pgfqpoint{1.550466in}{1.984223in}}% -\pgfpathlineto{\pgfqpoint{1.666160in}{1.984223in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.758716in,y=1.943730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 1.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.434771in}{1.814410in}}% -\pgfpathlineto{\pgfqpoint{1.550466in}{1.814410in}}% -\pgfpathlineto{\pgfqpoint{1.666160in}{1.814410in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.758716in,y=1.773917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 2.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.434771in}{1.644597in}}% -\pgfpathlineto{\pgfqpoint{1.550466in}{1.644597in}}% -\pgfpathlineto{\pgfqpoint{1.666160in}{1.644597in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.758716in,y=1.604104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.5\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/integrand_exp.pdf b/buch/papers/laguerre/images/integrand_exp.pdf new file mode 100644 index 0000000..5e021d5 Binary files /dev/null and b/buch/papers/laguerre/images/integrand_exp.pdf differ diff --git a/buch/papers/laguerre/images/integrand_exp.pgf b/buch/papers/laguerre/images/integrand_exp.pgf deleted file mode 100644 index 34dcd90..0000000 --- a/buch/papers/laguerre/images/integrand_exp.pgf +++ /dev/null @@ -1,1916 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.400000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{4.000000in}{2.400000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{2.400000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% -\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfpathlineto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.315623in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.419129in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.419129in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.419129in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.419129in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.522635in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.522635in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.522635in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.522635in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{0}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.626142in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.626142in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.626142in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.626142in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.647811in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.647811in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.647811in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.842129in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.842129in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.842129in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.980000in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.980000in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.980000in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.086941in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.086941in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.086941in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.174318in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.174318in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.174318in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.248194in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.248194in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.248194in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.312188in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.312188in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.312188in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.368635in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.368635in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.368635in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.751318in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.751318in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.751318in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.945635in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.945635in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.945635in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.083506in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.083506in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.083506in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.190447in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.190447in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.190447in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.277824in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.277824in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.277824in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.351700in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.351700in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.351700in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.415695in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.415695in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.415695in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.472142in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.472142in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.472142in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.854824in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.854824in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.854824in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.049142in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.049142in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.049142in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.187012in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.187012in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.187012in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.293953in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.293953in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.293953in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.381330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.381330in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.381330in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.455206in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.455206in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.455206in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.519201in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.519201in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.519201in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.575648in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.575648in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.575648in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.958330in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.136976in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle x\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.831585in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{0.831585in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{0.831585in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.130035in, y=0.778823in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{1.200081in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{1.200081in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{1.200081in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.130035in, y=1.147319in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{1.568577in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{1.568577in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{1.568577in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.130035in, y=1.515815in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{1.937073in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{1.937073in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{1.937073in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.130035in, y=1.884311in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.315623in}{2.305568in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=2.252807in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.373018in}{2.315568in}}% -\pgfpathlineto{\pgfqpoint{1.403680in}{2.190322in}}% -\pgfpathlineto{\pgfqpoint{1.436785in}{2.063912in}}% -\pgfpathlineto{\pgfqpoint{1.469890in}{1.946019in}}% -\pgfpathlineto{\pgfqpoint{1.502996in}{1.836080in}}% -\pgfpathlineto{\pgfqpoint{1.536101in}{1.733568in}}% -\pgfpathlineto{\pgfqpoint{1.569206in}{1.637995in}}% -\pgfpathlineto{\pgfqpoint{1.602311in}{1.548901in}}% -\pgfpathlineto{\pgfqpoint{1.635416in}{1.465862in}}% -\pgfpathlineto{\pgfqpoint{1.668522in}{1.388480in}}% -\pgfpathlineto{\pgfqpoint{1.701627in}{1.316383in}}% -\pgfpathlineto{\pgfqpoint{1.734732in}{1.249226in}}% -\pgfpathlineto{\pgfqpoint{1.767837in}{1.186687in}}% -\pgfpathlineto{\pgfqpoint{1.800942in}{1.128466in}}% -\pgfpathlineto{\pgfqpoint{1.834047in}{1.074281in}}% -\pgfpathlineto{\pgfqpoint{1.867153in}{1.023873in}}% -\pgfpathlineto{\pgfqpoint{1.900258in}{0.976996in}}% -\pgfpathlineto{\pgfqpoint{1.933363in}{0.933425in}}% -\pgfpathlineto{\pgfqpoint{1.966468in}{0.892948in}}% -\pgfpathlineto{\pgfqpoint{2.006194in}{0.848182in}}% -\pgfpathlineto{\pgfqpoint{2.045921in}{0.807271in}}% -\pgfpathlineto{\pgfqpoint{2.085647in}{0.769926in}}% -\pgfpathlineto{\pgfqpoint{2.125373in}{0.735878in}}% -\pgfpathlineto{\pgfqpoint{2.165099in}{0.704881in}}% -\pgfpathlineto{\pgfqpoint{2.204826in}{0.676709in}}% -\pgfpathlineto{\pgfqpoint{2.244552in}{0.651152in}}% -\pgfpathlineto{\pgfqpoint{2.284278in}{0.628017in}}% -\pgfpathlineto{\pgfqpoint{2.330625in}{0.603848in}}% -\pgfpathlineto{\pgfqpoint{2.376973in}{0.582470in}}% -\pgfpathlineto{\pgfqpoint{2.423320in}{0.563642in}}% -\pgfpathlineto{\pgfqpoint{2.469667in}{0.547142in}}% -\pgfpathlineto{\pgfqpoint{2.522635in}{0.530870in}}% -\pgfpathlineto{\pgfqpoint{2.575604in}{0.517084in}}% -\pgfpathlineto{\pgfqpoint{2.628572in}{0.505519in}}% -\pgfpathlineto{\pgfqpoint{2.688161in}{0.494854in}}% -\pgfpathlineto{\pgfqpoint{2.747751in}{0.486355in}}% -\pgfpathlineto{\pgfqpoint{2.813961in}{0.479077in}}% -\pgfpathlineto{\pgfqpoint{2.886792in}{0.473249in}}% -\pgfpathlineto{\pgfqpoint{2.972866in}{0.468664in}}% -\pgfpathlineto{\pgfqpoint{3.078802in}{0.465462in}}% -\pgfpathlineto{\pgfqpoint{3.217844in}{0.463696in}}% -\pgfpathlineto{\pgfqpoint{3.476065in}{0.463106in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.305623in}{2.306753in}}% -\pgfpathlineto{\pgfqpoint{0.357556in}{2.207555in}}% -\pgfpathlineto{\pgfqpoint{0.410524in}{2.111664in}}% -\pgfpathlineto{\pgfqpoint{0.463493in}{2.020811in}}% -\pgfpathlineto{\pgfqpoint{0.516461in}{1.934720in}}% -\pgfpathlineto{\pgfqpoint{0.569429in}{1.853129in}}% -\pgfpathlineto{\pgfqpoint{0.622398in}{1.775789in}}% -\pgfpathlineto{\pgfqpoint{0.675366in}{1.702464in}}% -\pgfpathlineto{\pgfqpoint{0.728334in}{1.632932in}}% -\pgfpathlineto{\pgfqpoint{0.781303in}{1.566982in}}% -\pgfpathlineto{\pgfqpoint{0.834271in}{1.504413in}}% -\pgfpathlineto{\pgfqpoint{0.887239in}{1.445036in}}% -\pgfpathlineto{\pgfqpoint{0.940207in}{1.388671in}}% -\pgfpathlineto{\pgfqpoint{0.999797in}{1.328651in}}% -\pgfpathlineto{\pgfqpoint{1.059386in}{1.272001in}}% -\pgfpathlineto{\pgfqpoint{1.118975in}{1.218506in}}% -\pgfpathlineto{\pgfqpoint{1.178565in}{1.167966in}}% -\pgfpathlineto{\pgfqpoint{1.238154in}{1.120190in}}% -\pgfpathlineto{\pgfqpoint{1.304364in}{1.070135in}}% -\pgfpathlineto{\pgfqpoint{1.370575in}{1.023050in}}% -\pgfpathlineto{\pgfqpoint{1.436785in}{0.978725in}}% -\pgfpathlineto{\pgfqpoint{1.502996in}{0.936968in}}% -\pgfpathlineto{\pgfqpoint{1.575827in}{0.893791in}}% -\pgfpathlineto{\pgfqpoint{1.648658in}{0.853293in}}% -\pgfpathlineto{\pgfqpoint{1.721490in}{0.815286in}}% -\pgfpathlineto{\pgfqpoint{1.800942in}{0.776466in}}% -\pgfpathlineto{\pgfqpoint{1.880395in}{0.740227in}}% -\pgfpathlineto{\pgfqpoint{1.959847in}{0.706417in}}% -\pgfpathlineto{\pgfqpoint{2.039300in}{0.674921in}}% -\pgfpathlineto{\pgfqpoint{2.118752in}{0.645658in}}% -\pgfpathlineto{\pgfqpoint{2.198205in}{0.618582in}}% -\pgfpathlineto{\pgfqpoint{2.277657in}{0.593681in}}% -\pgfpathlineto{\pgfqpoint{2.357109in}{0.570970in}}% -\pgfpathlineto{\pgfqpoint{2.436562in}{0.550488in}}% -\pgfpathlineto{\pgfqpoint{2.516014in}{0.532283in}}% -\pgfpathlineto{\pgfqpoint{2.595467in}{0.516402in}}% -\pgfpathlineto{\pgfqpoint{2.674919in}{0.502869in}}% -\pgfpathlineto{\pgfqpoint{2.754372in}{0.491669in}}% -\pgfpathlineto{\pgfqpoint{2.833824in}{0.482725in}}% -\pgfpathlineto{\pgfqpoint{2.919898in}{0.475406in}}% -\pgfpathlineto{\pgfqpoint{3.012592in}{0.469947in}}% -\pgfpathlineto{\pgfqpoint{3.111908in}{0.466349in}}% -\pgfpathlineto{\pgfqpoint{3.237707in}{0.464113in}}% -\pgfpathlineto{\pgfqpoint{3.436338in}{0.463174in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.305623in}{0.645541in}}% -\pgfpathlineto{\pgfqpoint{0.761439in}{0.642725in}}% -\pgfpathlineto{\pgfqpoint{1.066007in}{0.638726in}}% -\pgfpathlineto{\pgfqpoint{1.297743in}{0.633576in}}% -\pgfpathlineto{\pgfqpoint{1.489754in}{0.627177in}}% -\pgfpathlineto{\pgfqpoint{1.655279in}{0.619518in}}% -\pgfpathlineto{\pgfqpoint{1.807563in}{0.610228in}}% -\pgfpathlineto{\pgfqpoint{1.946605in}{0.599500in}}% -\pgfpathlineto{\pgfqpoint{2.079026in}{0.587055in}}% -\pgfpathlineto{\pgfqpoint{2.211447in}{0.572366in}}% -\pgfpathlineto{\pgfqpoint{2.357109in}{0.553860in}}% -\pgfpathlineto{\pgfqpoint{2.575604in}{0.523394in}}% -\pgfpathlineto{\pgfqpoint{2.747751in}{0.500305in}}% -\pgfpathlineto{\pgfqpoint{2.860308in}{0.487457in}}% -\pgfpathlineto{\pgfqpoint{2.959624in}{0.478383in}}% -\pgfpathlineto{\pgfqpoint{3.052318in}{0.472081in}}% -\pgfpathlineto{\pgfqpoint{3.151634in}{0.467575in}}% -\pgfpathlineto{\pgfqpoint{3.264191in}{0.464767in}}% -\pgfpathlineto{\pgfqpoint{3.416475in}{0.463378in}}% -\pgfpathlineto{\pgfqpoint{3.787253in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.305623in}{0.481145in}}% -\pgfpathlineto{\pgfqpoint{0.635640in}{0.488320in}}% -\pgfpathlineto{\pgfqpoint{0.933586in}{0.496945in}}% -\pgfpathlineto{\pgfqpoint{1.224912in}{0.507598in}}% -\pgfpathlineto{\pgfqpoint{1.582448in}{0.523115in}}% -\pgfpathlineto{\pgfqpoint{1.900258in}{0.536352in}}% -\pgfpathlineto{\pgfqpoint{2.059163in}{0.540765in}}% -\pgfpathlineto{\pgfqpoint{2.184962in}{0.542107in}}% -\pgfpathlineto{\pgfqpoint{2.297520in}{0.541053in}}% -\pgfpathlineto{\pgfqpoint{2.396836in}{0.537970in}}% -\pgfpathlineto{\pgfqpoint{2.496151in}{0.532665in}}% -\pgfpathlineto{\pgfqpoint{2.595467in}{0.525152in}}% -\pgfpathlineto{\pgfqpoint{2.708024in}{0.514374in}}% -\pgfpathlineto{\pgfqpoint{3.078802in}{0.476620in}}% -\pgfpathlineto{\pgfqpoint{3.171497in}{0.470632in}}% -\pgfpathlineto{\pgfqpoint{3.270813in}{0.466519in}}% -\pgfpathlineto{\pgfqpoint{3.383370in}{0.464182in}}% -\pgfpathlineto{\pgfqpoint{3.555517in}{0.463186in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.305623in}{0.464876in}}% -\pgfpathlineto{\pgfqpoint{0.761439in}{0.467643in}}% -\pgfpathlineto{\pgfqpoint{1.072628in}{0.471607in}}% -\pgfpathlineto{\pgfqpoint{1.317607in}{0.476838in}}% -\pgfpathlineto{\pgfqpoint{1.529480in}{0.483541in}}% -\pgfpathlineto{\pgfqpoint{1.721490in}{0.491783in}}% -\pgfpathlineto{\pgfqpoint{1.926742in}{0.502914in}}% -\pgfpathlineto{\pgfqpoint{2.357109in}{0.527350in}}% -\pgfpathlineto{\pgfqpoint{2.463046in}{0.530369in}}% -\pgfpathlineto{\pgfqpoint{2.555741in}{0.530705in}}% -\pgfpathlineto{\pgfqpoint{2.635193in}{0.528875in}}% -\pgfpathlineto{\pgfqpoint{2.714645in}{0.524904in}}% -\pgfpathlineto{\pgfqpoint{2.800719in}{0.518239in}}% -\pgfpathlineto{\pgfqpoint{2.900034in}{0.508055in}}% -\pgfpathlineto{\pgfqpoint{3.191360in}{0.476223in}}% -\pgfpathlineto{\pgfqpoint{3.277434in}{0.470193in}}% -\pgfpathlineto{\pgfqpoint{3.363507in}{0.466376in}}% -\pgfpathlineto{\pgfqpoint{3.469444in}{0.464070in}}% -\pgfpathlineto{\pgfqpoint{3.628349in}{0.463169in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.305623in}{0.463107in}}% -\pgfpathlineto{\pgfqpoint{1.330849in}{0.464262in}}% -\pgfpathlineto{\pgfqpoint{1.615553in}{0.466686in}}% -\pgfpathlineto{\pgfqpoint{1.800942in}{0.470351in}}% -\pgfpathlineto{\pgfqpoint{1.946605in}{0.475416in}}% -\pgfpathlineto{\pgfqpoint{2.065784in}{0.481710in}}% -\pgfpathlineto{\pgfqpoint{2.171720in}{0.489427in}}% -\pgfpathlineto{\pgfqpoint{2.271036in}{0.498774in}}% -\pgfpathlineto{\pgfqpoint{2.376973in}{0.511055in}}% -\pgfpathlineto{\pgfqpoint{2.502772in}{0.528063in}}% -\pgfpathlineto{\pgfqpoint{2.668298in}{0.550356in}}% -\pgfpathlineto{\pgfqpoint{2.741130in}{0.557768in}}% -\pgfpathlineto{\pgfqpoint{2.800719in}{0.561613in}}% -\pgfpathlineto{\pgfqpoint{2.853687in}{0.562830in}}% -\pgfpathlineto{\pgfqpoint{2.906655in}{0.561627in}}% -\pgfpathlineto{\pgfqpoint{2.953003in}{0.558442in}}% -\pgfpathlineto{\pgfqpoint{2.999350in}{0.553265in}}% -\pgfpathlineto{\pgfqpoint{3.052318in}{0.545097in}}% -\pgfpathlineto{\pgfqpoint{3.111908in}{0.533592in}}% -\pgfpathlineto{\pgfqpoint{3.211223in}{0.511641in}}% -\pgfpathlineto{\pgfqpoint{3.297297in}{0.493479in}}% -\pgfpathlineto{\pgfqpoint{3.356886in}{0.483097in}}% -\pgfpathlineto{\pgfqpoint{3.416475in}{0.475149in}}% -\pgfpathlineto{\pgfqpoint{3.476065in}{0.469667in}}% -\pgfpathlineto{\pgfqpoint{3.542275in}{0.466025in}}% -\pgfpathlineto{\pgfqpoint{3.621728in}{0.463989in}}% -\pgfpathlineto{\pgfqpoint{3.754148in}{0.463156in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463089in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.305623in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{1.734732in}{0.464184in}}% -\pgfpathlineto{\pgfqpoint{1.933363in}{0.466528in}}% -\pgfpathlineto{\pgfqpoint{2.059163in}{0.470012in}}% -\pgfpathlineto{\pgfqpoint{2.158478in}{0.474900in}}% -\pgfpathlineto{\pgfqpoint{2.237931in}{0.480939in}}% -\pgfpathlineto{\pgfqpoint{2.304141in}{0.487984in}}% -\pgfpathlineto{\pgfqpoint{2.363730in}{0.496330in}}% -\pgfpathlineto{\pgfqpoint{2.423320in}{0.506982in}}% -\pgfpathlineto{\pgfqpoint{2.476288in}{0.518698in}}% -\pgfpathlineto{\pgfqpoint{2.529256in}{0.532762in}}% -\pgfpathlineto{\pgfqpoint{2.582225in}{0.549309in}}% -\pgfpathlineto{\pgfqpoint{2.635193in}{0.568318in}}% -\pgfpathlineto{\pgfqpoint{2.694782in}{0.592333in}}% -\pgfpathlineto{\pgfqpoint{2.774235in}{0.627244in}}% -\pgfpathlineto{\pgfqpoint{2.860308in}{0.664840in}}% -\pgfpathlineto{\pgfqpoint{2.906655in}{0.682676in}}% -\pgfpathlineto{\pgfqpoint{2.946382in}{0.695343in}}% -\pgfpathlineto{\pgfqpoint{2.979487in}{0.703395in}}% -\pgfpathlineto{\pgfqpoint{3.005971in}{0.707856in}}% -\pgfpathlineto{\pgfqpoint{3.032455in}{0.710320in}}% -\pgfpathlineto{\pgfqpoint{3.058939in}{0.710608in}}% -\pgfpathlineto{\pgfqpoint{3.085423in}{0.708590in}}% -\pgfpathlineto{\pgfqpoint{3.111908in}{0.704193in}}% -\pgfpathlineto{\pgfqpoint{3.138392in}{0.697415in}}% -\pgfpathlineto{\pgfqpoint{3.164876in}{0.688326in}}% -\pgfpathlineto{\pgfqpoint{3.191360in}{0.677079in}}% -\pgfpathlineto{\pgfqpoint{3.224465in}{0.660340in}}% -\pgfpathlineto{\pgfqpoint{3.264191in}{0.637141in}}% -\pgfpathlineto{\pgfqpoint{3.317160in}{0.603110in}}% -\pgfpathlineto{\pgfqpoint{3.389991in}{0.556439in}}% -\pgfpathlineto{\pgfqpoint{3.429717in}{0.533689in}}% -\pgfpathlineto{\pgfqpoint{3.462823in}{0.517120in}}% -\pgfpathlineto{\pgfqpoint{3.495928in}{0.503059in}}% -\pgfpathlineto{\pgfqpoint{3.529033in}{0.491601in}}% -\pgfpathlineto{\pgfqpoint{3.562138in}{0.482650in}}% -\pgfpathlineto{\pgfqpoint{3.595243in}{0.475960in}}% -\pgfpathlineto{\pgfqpoint{3.634970in}{0.470429in}}% -\pgfpathlineto{\pgfqpoint{3.681317in}{0.466577in}}% -\pgfpathlineto{\pgfqpoint{3.740906in}{0.464236in}}% -\pgfpathlineto{\pgfqpoint{3.833601in}{0.463225in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463091in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463091in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.305623in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{1.939984in}{0.464147in}}% -\pgfpathlineto{\pgfqpoint{2.092268in}{0.466466in}}% -\pgfpathlineto{\pgfqpoint{2.191583in}{0.470132in}}% -\pgfpathlineto{\pgfqpoint{2.264415in}{0.475002in}}% -\pgfpathlineto{\pgfqpoint{2.324004in}{0.481222in}}% -\pgfpathlineto{\pgfqpoint{2.370351in}{0.488054in}}% -\pgfpathlineto{\pgfqpoint{2.416699in}{0.497227in}}% -\pgfpathlineto{\pgfqpoint{2.456425in}{0.507465in}}% -\pgfpathlineto{\pgfqpoint{2.489530in}{0.518055in}}% -\pgfpathlineto{\pgfqpoint{2.522635in}{0.530870in}}% -\pgfpathlineto{\pgfqpoint{2.555741in}{0.546275in}}% -\pgfpathlineto{\pgfqpoint{2.582225in}{0.560725in}}% -\pgfpathlineto{\pgfqpoint{2.608709in}{0.577289in}}% -\pgfpathlineto{\pgfqpoint{2.635193in}{0.596176in}}% -\pgfpathlineto{\pgfqpoint{2.661677in}{0.617588in}}% -\pgfpathlineto{\pgfqpoint{2.688161in}{0.641715in}}% -\pgfpathlineto{\pgfqpoint{2.714645in}{0.668721in}}% -\pgfpathlineto{\pgfqpoint{2.741130in}{0.698732in}}% -\pgfpathlineto{\pgfqpoint{2.767614in}{0.731825in}}% -\pgfpathlineto{\pgfqpoint{2.794098in}{0.768009in}}% -\pgfpathlineto{\pgfqpoint{2.827203in}{0.817460in}}% -\pgfpathlineto{\pgfqpoint{2.860308in}{0.871236in}}% -\pgfpathlineto{\pgfqpoint{2.900034in}{0.940491in}}% -\pgfpathlineto{\pgfqpoint{2.959624in}{1.049910in}}% -\pgfpathlineto{\pgfqpoint{3.012592in}{1.145724in}}% -\pgfpathlineto{\pgfqpoint{3.045697in}{1.200737in}}% -\pgfpathlineto{\pgfqpoint{3.072181in}{1.239967in}}% -\pgfpathlineto{\pgfqpoint{3.092045in}{1.265696in}}% -\pgfpathlineto{\pgfqpoint{3.111908in}{1.287616in}}% -\pgfpathlineto{\pgfqpoint{3.131771in}{1.305172in}}% -\pgfpathlineto{\pgfqpoint{3.145013in}{1.314197in}}% -\pgfpathlineto{\pgfqpoint{3.158255in}{1.320914in}}% -\pgfpathlineto{\pgfqpoint{3.171497in}{1.325202in}}% -\pgfpathlineto{\pgfqpoint{3.184739in}{1.326953in}}% -\pgfpathlineto{\pgfqpoint{3.197981in}{1.326080in}}% -\pgfpathlineto{\pgfqpoint{3.211223in}{1.322518in}}% -\pgfpathlineto{\pgfqpoint{3.224465in}{1.316226in}}% -\pgfpathlineto{\pgfqpoint{3.237707in}{1.307188in}}% -\pgfpathlineto{\pgfqpoint{3.250949in}{1.295416in}}% -\pgfpathlineto{\pgfqpoint{3.264191in}{1.280948in}}% -\pgfpathlineto{\pgfqpoint{3.277434in}{1.263854in}}% -\pgfpathlineto{\pgfqpoint{3.297297in}{1.233509in}}% -\pgfpathlineto{\pgfqpoint{3.317160in}{1.197929in}}% -\pgfpathlineto{\pgfqpoint{3.337023in}{1.157701in}}% -\pgfpathlineto{\pgfqpoint{3.363507in}{1.098074in}}% -\pgfpathlineto{\pgfqpoint{3.396612in}{1.016699in}}% -\pgfpathlineto{\pgfqpoint{3.489307in}{0.783086in}}% -\pgfpathlineto{\pgfqpoint{3.515791in}{0.723512in}}% -\pgfpathlineto{\pgfqpoint{3.542275in}{0.669948in}}% -\pgfpathlineto{\pgfqpoint{3.562138in}{0.634247in}}% -\pgfpathlineto{\pgfqpoint{3.582001in}{0.602594in}}% -\pgfpathlineto{\pgfqpoint{3.601864in}{0.575027in}}% -\pgfpathlineto{\pgfqpoint{3.621728in}{0.551453in}}% -\pgfpathlineto{\pgfqpoint{3.641591in}{0.531666in}}% -\pgfpathlineto{\pgfqpoint{3.661454in}{0.515374in}}% -\pgfpathlineto{\pgfqpoint{3.681317in}{0.502222in}}% -\pgfpathlineto{\pgfqpoint{3.701180in}{0.491819in}}% -\pgfpathlineto{\pgfqpoint{3.721043in}{0.483762in}}% -\pgfpathlineto{\pgfqpoint{3.747527in}{0.475990in}}% -\pgfpathlineto{\pgfqpoint{3.774011in}{0.470829in}}% -\pgfpathlineto{\pgfqpoint{3.807117in}{0.466943in}}% -\pgfpathlineto{\pgfqpoint{3.846843in}{0.464611in}}% -\pgfpathlineto{\pgfqpoint{3.913053in}{0.463342in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463133in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463133in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.315623in}{0.463273in}}{\pgfqpoint{3.642707in}{1.842295in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.305623in}{0.463089in}}% -\pgfpathlineto{\pgfqpoint{2.012815in}{0.464177in}}% -\pgfpathlineto{\pgfqpoint{2.145236in}{0.466468in}}% -\pgfpathlineto{\pgfqpoint{2.231310in}{0.470022in}}% -\pgfpathlineto{\pgfqpoint{2.297520in}{0.474999in}}% -\pgfpathlineto{\pgfqpoint{2.350488in}{0.481293in}}% -\pgfpathlineto{\pgfqpoint{2.390215in}{0.487975in}}% -\pgfpathlineto{\pgfqpoint{2.429941in}{0.496933in}}% -\pgfpathlineto{\pgfqpoint{2.463046in}{0.506629in}}% -\pgfpathlineto{\pgfqpoint{2.496151in}{0.518866in}}% -\pgfpathlineto{\pgfqpoint{2.522635in}{0.530870in}}% -\pgfpathlineto{\pgfqpoint{2.549119in}{0.545206in}}% -\pgfpathlineto{\pgfqpoint{2.575604in}{0.562253in}}% -\pgfpathlineto{\pgfqpoint{2.602088in}{0.582432in}}% -\pgfpathlineto{\pgfqpoint{2.628572in}{0.606199in}}% -\pgfpathlineto{\pgfqpoint{2.648435in}{0.626675in}}% -\pgfpathlineto{\pgfqpoint{2.668298in}{0.649663in}}% -\pgfpathlineto{\pgfqpoint{2.688161in}{0.675387in}}% -\pgfpathlineto{\pgfqpoint{2.708024in}{0.704072in}}% -\pgfpathlineto{\pgfqpoint{2.727887in}{0.735941in}}% -\pgfpathlineto{\pgfqpoint{2.747751in}{0.771212in}}% -\pgfpathlineto{\pgfqpoint{2.767614in}{0.810087in}}% -\pgfpathlineto{\pgfqpoint{2.787477in}{0.852749in}}% -\pgfpathlineto{\pgfqpoint{2.813961in}{0.915782in}}% -\pgfpathlineto{\pgfqpoint{2.840445in}{0.986071in}}% -\pgfpathlineto{\pgfqpoint{2.866929in}{1.063701in}}% -\pgfpathlineto{\pgfqpoint{2.893413in}{1.148547in}}% -\pgfpathlineto{\pgfqpoint{2.919898in}{1.240215in}}% -\pgfpathlineto{\pgfqpoint{2.953003in}{1.363283in}}% -\pgfpathlineto{\pgfqpoint{2.992729in}{1.520395in}}% -\pgfpathlineto{\pgfqpoint{3.085423in}{1.892158in}}% -\pgfpathlineto{\pgfqpoint{3.111908in}{1.987861in}}% -\pgfpathlineto{\pgfqpoint{3.131771in}{2.052935in}}% -\pgfpathlineto{\pgfqpoint{3.151634in}{2.110666in}}% -\pgfpathlineto{\pgfqpoint{3.164876in}{2.144368in}}% -\pgfpathlineto{\pgfqpoint{3.178118in}{2.173763in}}% -\pgfpathlineto{\pgfqpoint{3.191360in}{2.198463in}}% -\pgfpathlineto{\pgfqpoint{3.204602in}{2.218101in}}% -\pgfpathlineto{\pgfqpoint{3.217844in}{2.232348in}}% -\pgfpathlineto{\pgfqpoint{3.224465in}{2.237356in}}% -\pgfpathlineto{\pgfqpoint{3.231086in}{2.240910in}}% -\pgfpathlineto{\pgfqpoint{3.237707in}{2.242981in}}% -\pgfpathlineto{\pgfqpoint{3.244328in}{2.243542in}}% -\pgfpathlineto{\pgfqpoint{3.250949in}{2.242572in}}% -\pgfpathlineto{\pgfqpoint{3.257570in}{2.240051in}}% -\pgfpathlineto{\pgfqpoint{3.264191in}{2.235965in}}% -\pgfpathlineto{\pgfqpoint{3.270813in}{2.230303in}}% -\pgfpathlineto{\pgfqpoint{3.284055in}{2.214227in}}% -\pgfpathlineto{\pgfqpoint{3.297297in}{2.191820in}}% -\pgfpathlineto{\pgfqpoint{3.310539in}{2.163151in}}% -\pgfpathlineto{\pgfqpoint{3.323781in}{2.128364in}}% -\pgfpathlineto{\pgfqpoint{3.337023in}{2.087674in}}% -\pgfpathlineto{\pgfqpoint{3.350265in}{2.041374in}}% -\pgfpathlineto{\pgfqpoint{3.370128in}{1.962211in}}% -\pgfpathlineto{\pgfqpoint{3.389991in}{1.872752in}}% -\pgfpathlineto{\pgfqpoint{3.416475in}{1.740592in}}% -\pgfpathlineto{\pgfqpoint{3.449581in}{1.561637in}}% -\pgfpathlineto{\pgfqpoint{3.522412in}{1.162429in}}% -\pgfpathlineto{\pgfqpoint{3.548896in}{1.030578in}}% -\pgfpathlineto{\pgfqpoint{3.575380in}{0.911767in}}% -\pgfpathlineto{\pgfqpoint{3.595243in}{0.832596in}}% -\pgfpathlineto{\pgfqpoint{3.615106in}{0.762533in}}% -\pgfpathlineto{\pgfqpoint{3.634970in}{0.701714in}}% -\pgfpathlineto{\pgfqpoint{3.654833in}{0.649950in}}% -\pgfpathlineto{\pgfqpoint{3.674696in}{0.606769in}}% -\pgfpathlineto{\pgfqpoint{3.687938in}{0.582419in}}% -\pgfpathlineto{\pgfqpoint{3.701180in}{0.561339in}}% -\pgfpathlineto{\pgfqpoint{3.714422in}{0.543263in}}% -\pgfpathlineto{\pgfqpoint{3.727664in}{0.527915in}}% -\pgfpathlineto{\pgfqpoint{3.740906in}{0.515013in}}% -\pgfpathlineto{\pgfqpoint{3.754148in}{0.504277in}}% -\pgfpathlineto{\pgfqpoint{3.774011in}{0.491647in}}% -\pgfpathlineto{\pgfqpoint{3.793874in}{0.482432in}}% -\pgfpathlineto{\pgfqpoint{3.813738in}{0.475875in}}% -\pgfpathlineto{\pgfqpoint{3.840222in}{0.470164in}}% -\pgfpathlineto{\pgfqpoint{3.866706in}{0.466822in}}% -\pgfpathlineto{\pgfqpoint{3.906432in}{0.464389in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463286in}}% -\pgfpathlineto{\pgfqpoint{3.968330in}{0.463286in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.315623in}{2.305568in}}% -\pgfpathlineto{\pgfqpoint{3.958330in}{2.305568in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.396609in}{1.363948in}}% -\pgfpathlineto{\pgfqpoint{2.149723in}{1.363948in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.172861in}{1.363948in}}{\pgfqpoint{2.172861in}{1.387087in}}% -\pgfpathlineto{\pgfqpoint{2.172861in}{2.224582in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.172861in}{2.247721in}}{\pgfqpoint{2.149723in}{2.247721in}}% -\pgfpathlineto{\pgfqpoint{0.396609in}{2.247721in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.373470in}{2.247721in}}{\pgfqpoint{0.373470in}{2.224582in}}% -\pgfpathlineto{\pgfqpoint{0.373470in}{1.387087in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.373470in}{1.363948in}}{\pgfqpoint{0.396609in}{1.363948in}}% -\pgfpathlineto{\pgfqpoint{0.396609in}{1.363948in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{2.154036in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{2.154036in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{2.154036in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=2.113543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-1.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{1.984223in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{1.984223in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{1.984223in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=1.943730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z=-0.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{1.814410in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{1.814410in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{1.814410in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=1.773917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{1.644597in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{1.644597in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{1.644597in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=1.604104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 0.5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.419748in}{1.474784in}}% -\pgfpathlineto{\pgfqpoint{0.535442in}{1.474784in}}% -\pgfpathlineto{\pgfqpoint{0.651137in}{1.474784in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.743692in,y=1.434291in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 1.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.434771in}{2.154036in}}% -\pgfpathlineto{\pgfqpoint{1.550466in}{2.154036in}}% -\pgfpathlineto{\pgfqpoint{1.666160in}{2.154036in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.758716in,y=2.113543in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 2.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.434771in}{1.984223in}}% -\pgfpathlineto{\pgfqpoint{1.550466in}{1.984223in}}% -\pgfpathlineto{\pgfqpoint{1.666160in}{1.984223in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.758716in,y=1.943730in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 3.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.434771in}{1.814410in}}% -\pgfpathlineto{\pgfqpoint{1.550466in}{1.814410in}}% -\pgfpathlineto{\pgfqpoint{1.666160in}{1.814410in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.758716in,y=1.773917in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.737255,0.741176,0.133333}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.434771in}{1.644597in}}% -\pgfpathlineto{\pgfqpoint{1.550466in}{1.644597in}}% -\pgfpathlineto{\pgfqpoint{1.666160in}{1.644597in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.758716in,y=1.604104in,left,base]{\color{textcolor}\sffamily\fontsize{8.330000}{9.996000}\selectfont \(\displaystyle z= 4.5\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/laguerre_poly.pdf b/buch/papers/laguerre/images/laguerre_poly.pdf new file mode 100644 index 0000000..d74f652 Binary files /dev/null and b/buch/papers/laguerre/images/laguerre_poly.pdf differ diff --git a/buch/papers/laguerre/images/laguerre_poly.pgf b/buch/papers/laguerre/images/laguerre_poly.pgf deleted file mode 100644 index e1c73bf..0000000 --- a/buch/papers/laguerre/images/laguerre_poly.pgf +++ /dev/null @@ -1,1838 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{6.000000in}{4.000000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{6.000000in}{4.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{4.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{0.041670in}}% -\pgfpathlineto{\pgfqpoint{5.953330in}{0.041670in}}% -\pgfpathlineto{\pgfqpoint{5.953330in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.041670in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.041670in}{0.041670in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.501875pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{5.952738in}{2.000000in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{1.967361in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{1.999925in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{1.999925in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{2.000075in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{2.000075in}}% -\pgfpathlineto{\pgfqpoint{5.755703in}{2.032639in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{2.000000in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.501875pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.579040in}{3.958330in}}% -\pgfpathlineto{\pgfqpoint{0.611667in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.579296in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.579296in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.578784in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.578784in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.546412in}{3.761225in}}% -\pgfpathlineto{\pgfqpoint{0.579040in}{3.958330in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.137944in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.137944in,y=1.902778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{5.696848in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=5.696848in,y=1.902778in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.067259in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.090821in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.602601in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.114382in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.626163in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.649725in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.161505in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.673286in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{5.185067in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=5.953330in,y=1.907254in,,top]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle x\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.493592in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.197062in, y=0.440831in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.246796in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.285427in, y=1.194035in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.000000in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.393452in, y=1.947238in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.753204in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.393452in, y=2.700442in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.506408in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.305087in, y=3.453646in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.041670in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.192311in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.342952in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.644233in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.794874in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{0.945515in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.096155in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.397437in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.548078in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.698718in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{1.849359in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.150641in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.301282in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.451922in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.602563in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{2.903845in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.054485in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.205126in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.355767in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.657048in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.579040in}{3.807689in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.447062in,y=3.762497in,,bottom]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle y\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.150641in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{2.150641in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{2.150641in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.308814in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{0.568913in}}% -\pgfpathlineto{\pgfqpoint{5.952738in}{0.568913in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.550027in}}% -\pgfpathlineto{\pgfqpoint{0.112674in}{2.487733in}}% -\pgfpathlineto{\pgfqpoint{0.183678in}{2.428338in}}% -\pgfpathlineto{\pgfqpoint{0.254681in}{2.371843in}}% -\pgfpathlineto{\pgfqpoint{0.325685in}{2.318247in}}% -\pgfpathlineto{\pgfqpoint{0.396689in}{2.267552in}}% -\pgfpathlineto{\pgfqpoint{0.467693in}{2.219755in}}% -\pgfpathlineto{\pgfqpoint{0.532780in}{2.178489in}}% -\pgfpathlineto{\pgfqpoint{0.597867in}{2.139660in}}% -\pgfpathlineto{\pgfqpoint{0.662953in}{2.103266in}}% -\pgfpathlineto{\pgfqpoint{0.728040in}{2.069310in}}% -\pgfpathlineto{\pgfqpoint{0.793127in}{2.037790in}}% -\pgfpathlineto{\pgfqpoint{0.858214in}{2.008706in}}% -\pgfpathlineto{\pgfqpoint{0.923301in}{1.982059in}}% -\pgfpathlineto{\pgfqpoint{0.988388in}{1.957848in}}% -\pgfpathlineto{\pgfqpoint{1.053474in}{1.936073in}}% -\pgfpathlineto{\pgfqpoint{1.118561in}{1.916736in}}% -\pgfpathlineto{\pgfqpoint{1.183648in}{1.899834in}}% -\pgfpathlineto{\pgfqpoint{1.248735in}{1.885369in}}% -\pgfpathlineto{\pgfqpoint{1.313822in}{1.873341in}}% -\pgfpathlineto{\pgfqpoint{1.378909in}{1.863749in}}% -\pgfpathlineto{\pgfqpoint{1.443996in}{1.856593in}}% -\pgfpathlineto{\pgfqpoint{1.509082in}{1.851874in}}% -\pgfpathlineto{\pgfqpoint{1.574169in}{1.849592in}}% -\pgfpathlineto{\pgfqpoint{1.639256in}{1.849746in}}% -\pgfpathlineto{\pgfqpoint{1.704343in}{1.852336in}}% -\pgfpathlineto{\pgfqpoint{1.769430in}{1.857363in}}% -\pgfpathlineto{\pgfqpoint{1.834517in}{1.864826in}}% -\pgfpathlineto{\pgfqpoint{1.899603in}{1.874726in}}% -\pgfpathlineto{\pgfqpoint{1.964690in}{1.887062in}}% -\pgfpathlineto{\pgfqpoint{2.029777in}{1.901835in}}% -\pgfpathlineto{\pgfqpoint{2.094864in}{1.919044in}}% -\pgfpathlineto{\pgfqpoint{2.159951in}{1.938690in}}% -\pgfpathlineto{\pgfqpoint{2.225038in}{1.960772in}}% -\pgfpathlineto{\pgfqpoint{2.290124in}{1.985290in}}% -\pgfpathlineto{\pgfqpoint{2.355211in}{2.012245in}}% -\pgfpathlineto{\pgfqpoint{2.420298in}{2.041637in}}% -\pgfpathlineto{\pgfqpoint{2.485385in}{2.073465in}}% -\pgfpathlineto{\pgfqpoint{2.550472in}{2.107729in}}% -\pgfpathlineto{\pgfqpoint{2.615559in}{2.144430in}}% -\pgfpathlineto{\pgfqpoint{2.680645in}{2.183568in}}% -\pgfpathlineto{\pgfqpoint{2.745732in}{2.225142in}}% -\pgfpathlineto{\pgfqpoint{2.816736in}{2.273274in}}% -\pgfpathlineto{\pgfqpoint{2.887740in}{2.324305in}}% -\pgfpathlineto{\pgfqpoint{2.958744in}{2.378237in}}% -\pgfpathlineto{\pgfqpoint{3.029748in}{2.435068in}}% -\pgfpathlineto{\pgfqpoint{3.100751in}{2.494798in}}% -\pgfpathlineto{\pgfqpoint{3.171755in}{2.557428in}}% -\pgfpathlineto{\pgfqpoint{3.242759in}{2.622958in}}% -\pgfpathlineto{\pgfqpoint{3.313763in}{2.691387in}}% -\pgfpathlineto{\pgfqpoint{3.384767in}{2.762716in}}% -\pgfpathlineto{\pgfqpoint{3.461687in}{2.843261in}}% -\pgfpathlineto{\pgfqpoint{3.538608in}{2.927209in}}% -\pgfpathlineto{\pgfqpoint{3.615529in}{3.014560in}}% -\pgfpathlineto{\pgfqpoint{3.692450in}{3.105314in}}% -\pgfpathlineto{\pgfqpoint{3.769371in}{3.199471in}}% -\pgfpathlineto{\pgfqpoint{3.846292in}{3.297032in}}% -\pgfpathlineto{\pgfqpoint{3.923212in}{3.397995in}}% -\pgfpathlineto{\pgfqpoint{4.006050in}{3.510530in}}% -\pgfpathlineto{\pgfqpoint{4.088888in}{3.627012in}}% -\pgfpathlineto{\pgfqpoint{4.171726in}{3.747440in}}% -\pgfpathlineto{\pgfqpoint{4.254564in}{3.871816in}}% -\pgfpathlineto{\pgfqpoint{4.317102in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{4.317102in}{3.968330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.903346in}}% -\pgfpathlineto{\pgfqpoint{0.089006in}{2.812566in}}% -\pgfpathlineto{\pgfqpoint{0.136342in}{2.726886in}}% -\pgfpathlineto{\pgfqpoint{0.183678in}{2.646188in}}% -\pgfpathlineto{\pgfqpoint{0.231014in}{2.570351in}}% -\pgfpathlineto{\pgfqpoint{0.272432in}{2.507888in}}% -\pgfpathlineto{\pgfqpoint{0.313851in}{2.448976in}}% -\pgfpathlineto{\pgfqpoint{0.355270in}{2.393535in}}% -\pgfpathlineto{\pgfqpoint{0.396689in}{2.341486in}}% -\pgfpathlineto{\pgfqpoint{0.438108in}{2.292748in}}% -\pgfpathlineto{\pgfqpoint{0.479527in}{2.247242in}}% -\pgfpathlineto{\pgfqpoint{0.520946in}{2.204888in}}% -\pgfpathlineto{\pgfqpoint{0.562365in}{2.165606in}}% -\pgfpathlineto{\pgfqpoint{0.603784in}{2.129316in}}% -\pgfpathlineto{\pgfqpoint{0.645202in}{2.095939in}}% -\pgfpathlineto{\pgfqpoint{0.686621in}{2.065394in}}% -\pgfpathlineto{\pgfqpoint{0.728040in}{2.037601in}}% -\pgfpathlineto{\pgfqpoint{0.769459in}{2.012481in}}% -\pgfpathlineto{\pgfqpoint{0.810878in}{1.989955in}}% -\pgfpathlineto{\pgfqpoint{0.852297in}{1.969941in}}% -\pgfpathlineto{\pgfqpoint{0.893716in}{1.952360in}}% -\pgfpathlineto{\pgfqpoint{0.935135in}{1.937133in}}% -\pgfpathlineto{\pgfqpoint{0.976554in}{1.924179in}}% -\pgfpathlineto{\pgfqpoint{1.017973in}{1.913419in}}% -\pgfpathlineto{\pgfqpoint{1.059391in}{1.904772in}}% -\pgfpathlineto{\pgfqpoint{1.100810in}{1.898160in}}% -\pgfpathlineto{\pgfqpoint{1.148146in}{1.892991in}}% -\pgfpathlineto{\pgfqpoint{1.195482in}{1.890255in}}% -\pgfpathlineto{\pgfqpoint{1.242818in}{1.889833in}}% -\pgfpathlineto{\pgfqpoint{1.290154in}{1.891605in}}% -\pgfpathlineto{\pgfqpoint{1.337490in}{1.895453in}}% -\pgfpathlineto{\pgfqpoint{1.390743in}{1.902115in}}% -\pgfpathlineto{\pgfqpoint{1.443996in}{1.911083in}}% -\pgfpathlineto{\pgfqpoint{1.497248in}{1.922187in}}% -\pgfpathlineto{\pgfqpoint{1.556418in}{1.936824in}}% -\pgfpathlineto{\pgfqpoint{1.615588in}{1.953657in}}% -\pgfpathlineto{\pgfqpoint{1.680675in}{1.974431in}}% -\pgfpathlineto{\pgfqpoint{1.751679in}{1.999437in}}% -\pgfpathlineto{\pgfqpoint{1.828600in}{2.028834in}}% -\pgfpathlineto{\pgfqpoint{1.923271in}{2.067569in}}% -\pgfpathlineto{\pgfqpoint{2.041611in}{2.118583in}}% -\pgfpathlineto{\pgfqpoint{2.331543in}{2.244603in}}% -\pgfpathlineto{\pgfqpoint{2.426215in}{2.282642in}}% -\pgfpathlineto{\pgfqpoint{2.503136in}{2.311279in}}% -\pgfpathlineto{\pgfqpoint{2.574140in}{2.335430in}}% -\pgfpathlineto{\pgfqpoint{2.639227in}{2.355291in}}% -\pgfpathlineto{\pgfqpoint{2.698396in}{2.371186in}}% -\pgfpathlineto{\pgfqpoint{2.757566in}{2.384783in}}% -\pgfpathlineto{\pgfqpoint{2.810819in}{2.394863in}}% -\pgfpathlineto{\pgfqpoint{2.864072in}{2.402724in}}% -\pgfpathlineto{\pgfqpoint{2.917325in}{2.408195in}}% -\pgfpathlineto{\pgfqpoint{2.964661in}{2.410916in}}% -\pgfpathlineto{\pgfqpoint{3.011997in}{2.411496in}}% -\pgfpathlineto{\pgfqpoint{3.059332in}{2.409815in}}% -\pgfpathlineto{\pgfqpoint{3.106668in}{2.405755in}}% -\pgfpathlineto{\pgfqpoint{3.154004in}{2.399196in}}% -\pgfpathlineto{\pgfqpoint{3.195423in}{2.391314in}}% -\pgfpathlineto{\pgfqpoint{3.236842in}{2.381347in}}% -\pgfpathlineto{\pgfqpoint{3.278261in}{2.369216in}}% -\pgfpathlineto{\pgfqpoint{3.319680in}{2.354842in}}% -\pgfpathlineto{\pgfqpoint{3.361099in}{2.338144in}}% -\pgfpathlineto{\pgfqpoint{3.402518in}{2.319042in}}% -\pgfpathlineto{\pgfqpoint{3.443937in}{2.297457in}}% -\pgfpathlineto{\pgfqpoint{3.485355in}{2.273309in}}% -\pgfpathlineto{\pgfqpoint{3.526774in}{2.246517in}}% -\pgfpathlineto{\pgfqpoint{3.568193in}{2.217003in}}% -\pgfpathlineto{\pgfqpoint{3.609612in}{2.184686in}}% -\pgfpathlineto{\pgfqpoint{3.651031in}{2.149486in}}% -\pgfpathlineto{\pgfqpoint{3.692450in}{2.111323in}}% -\pgfpathlineto{\pgfqpoint{3.733869in}{2.070118in}}% -\pgfpathlineto{\pgfqpoint{3.775288in}{2.025791in}}% -\pgfpathlineto{\pgfqpoint{3.816707in}{1.978262in}}% -\pgfpathlineto{\pgfqpoint{3.858126in}{1.927451in}}% -\pgfpathlineto{\pgfqpoint{3.899544in}{1.873278in}}% -\pgfpathlineto{\pgfqpoint{3.940963in}{1.815664in}}% -\pgfpathlineto{\pgfqpoint{3.982382in}{1.754528in}}% -\pgfpathlineto{\pgfqpoint{4.023801in}{1.689790in}}% -\pgfpathlineto{\pgfqpoint{4.065220in}{1.621372in}}% -\pgfpathlineto{\pgfqpoint{4.112556in}{1.538569in}}% -\pgfpathlineto{\pgfqpoint{4.159892in}{1.450735in}}% -\pgfpathlineto{\pgfqpoint{4.207228in}{1.357750in}}% -\pgfpathlineto{\pgfqpoint{4.254564in}{1.259495in}}% -\pgfpathlineto{\pgfqpoint{4.301899in}{1.155851in}}% -\pgfpathlineto{\pgfqpoint{4.349235in}{1.046698in}}% -\pgfpathlineto{\pgfqpoint{4.396571in}{0.931918in}}% -\pgfpathlineto{\pgfqpoint{4.443907in}{0.811391in}}% -\pgfpathlineto{\pgfqpoint{4.491243in}{0.684999in}}% -\pgfpathlineto{\pgfqpoint{4.538579in}{0.552621in}}% -\pgfpathlineto{\pgfqpoint{4.585915in}{0.414138in}}% -\pgfpathlineto{\pgfqpoint{4.633251in}{0.269432in}}% -\pgfpathlineto{\pgfqpoint{4.686503in}{0.099051in}}% -\pgfpathlineto{\pgfqpoint{4.706884in}{0.031670in}}% -\pgfpathlineto{\pgfqpoint{4.706884in}{0.031670in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{3.405463in}}% -\pgfpathlineto{\pgfqpoint{0.077172in}{3.276626in}}% -\pgfpathlineto{\pgfqpoint{0.112674in}{3.155330in}}% -\pgfpathlineto{\pgfqpoint{0.148176in}{3.041328in}}% -\pgfpathlineto{\pgfqpoint{0.183678in}{2.934373in}}% -\pgfpathlineto{\pgfqpoint{0.219180in}{2.834225in}}% -\pgfpathlineto{\pgfqpoint{0.254681in}{2.740644in}}% -\pgfpathlineto{\pgfqpoint{0.290183in}{2.653396in}}% -\pgfpathlineto{\pgfqpoint{0.325685in}{2.572250in}}% -\pgfpathlineto{\pgfqpoint{0.361187in}{2.496978in}}% -\pgfpathlineto{\pgfqpoint{0.396689in}{2.427355in}}% -\pgfpathlineto{\pgfqpoint{0.432191in}{2.363161in}}% -\pgfpathlineto{\pgfqpoint{0.467693in}{2.304179in}}% -\pgfpathlineto{\pgfqpoint{0.503195in}{2.250195in}}% -\pgfpathlineto{\pgfqpoint{0.532780in}{2.208874in}}% -\pgfpathlineto{\pgfqpoint{0.562365in}{2.170757in}}% -\pgfpathlineto{\pgfqpoint{0.591950in}{2.135727in}}% -\pgfpathlineto{\pgfqpoint{0.621535in}{2.103667in}}% -\pgfpathlineto{\pgfqpoint{0.651119in}{2.074462in}}% -\pgfpathlineto{\pgfqpoint{0.680704in}{2.047998in}}% -\pgfpathlineto{\pgfqpoint{0.710289in}{2.024166in}}% -\pgfpathlineto{\pgfqpoint{0.739874in}{2.002854in}}% -\pgfpathlineto{\pgfqpoint{0.769459in}{1.983954in}}% -\pgfpathlineto{\pgfqpoint{0.799044in}{1.967361in}}% -\pgfpathlineto{\pgfqpoint{0.828629in}{1.952969in}}% -\pgfpathlineto{\pgfqpoint{0.858214in}{1.940676in}}% -\pgfpathlineto{\pgfqpoint{0.893716in}{1.928551in}}% -\pgfpathlineto{\pgfqpoint{0.929218in}{1.919131in}}% -\pgfpathlineto{\pgfqpoint{0.964720in}{1.912245in}}% -\pgfpathlineto{\pgfqpoint{1.000222in}{1.907730in}}% -\pgfpathlineto{\pgfqpoint{1.035724in}{1.905424in}}% -\pgfpathlineto{\pgfqpoint{1.071225in}{1.905169in}}% -\pgfpathlineto{\pgfqpoint{1.112644in}{1.907257in}}% -\pgfpathlineto{\pgfqpoint{1.154063in}{1.911687in}}% -\pgfpathlineto{\pgfqpoint{1.195482in}{1.918226in}}% -\pgfpathlineto{\pgfqpoint{1.242818in}{1.927991in}}% -\pgfpathlineto{\pgfqpoint{1.296071in}{1.941509in}}% -\pgfpathlineto{\pgfqpoint{1.355241in}{1.959146in}}% -\pgfpathlineto{\pgfqpoint{1.420328in}{1.981048in}}% -\pgfpathlineto{\pgfqpoint{1.503165in}{2.011566in}}% -\pgfpathlineto{\pgfqpoint{1.651090in}{2.069201in}}% -\pgfpathlineto{\pgfqpoint{1.763513in}{2.111866in}}% -\pgfpathlineto{\pgfqpoint{1.840434in}{2.138807in}}% -\pgfpathlineto{\pgfqpoint{1.905520in}{2.159456in}}% -\pgfpathlineto{\pgfqpoint{1.964690in}{2.176109in}}% -\pgfpathlineto{\pgfqpoint{2.023860in}{2.190419in}}% -\pgfpathlineto{\pgfqpoint{2.077113in}{2.201057in}}% -\pgfpathlineto{\pgfqpoint{2.130366in}{2.209372in}}% -\pgfpathlineto{\pgfqpoint{2.177702in}{2.214674in}}% -\pgfpathlineto{\pgfqpoint{2.225038in}{2.217895in}}% -\pgfpathlineto{\pgfqpoint{2.272373in}{2.218934in}}% -\pgfpathlineto{\pgfqpoint{2.319709in}{2.217705in}}% -\pgfpathlineto{\pgfqpoint{2.367045in}{2.214131in}}% -\pgfpathlineto{\pgfqpoint{2.414381in}{2.208145in}}% -\pgfpathlineto{\pgfqpoint{2.461717in}{2.199693in}}% -\pgfpathlineto{\pgfqpoint{2.509053in}{2.188731in}}% -\pgfpathlineto{\pgfqpoint{2.556389in}{2.175227in}}% -\pgfpathlineto{\pgfqpoint{2.603725in}{2.159157in}}% -\pgfpathlineto{\pgfqpoint{2.651061in}{2.140513in}}% -\pgfpathlineto{\pgfqpoint{2.698396in}{2.119294in}}% -\pgfpathlineto{\pgfqpoint{2.745732in}{2.095510in}}% -\pgfpathlineto{\pgfqpoint{2.793068in}{2.069186in}}% -\pgfpathlineto{\pgfqpoint{2.840404in}{2.040354in}}% -\pgfpathlineto{\pgfqpoint{2.887740in}{2.009058in}}% -\pgfpathlineto{\pgfqpoint{2.940993in}{1.970974in}}% -\pgfpathlineto{\pgfqpoint{2.994246in}{1.929939in}}% -\pgfpathlineto{\pgfqpoint{3.047499in}{1.886065in}}% -\pgfpathlineto{\pgfqpoint{3.100751in}{1.839483in}}% -\pgfpathlineto{\pgfqpoint{3.159921in}{1.784731in}}% -\pgfpathlineto{\pgfqpoint{3.219091in}{1.727049in}}% -\pgfpathlineto{\pgfqpoint{3.284178in}{1.660521in}}% -\pgfpathlineto{\pgfqpoint{3.355182in}{1.584703in}}% -\pgfpathlineto{\pgfqpoint{3.432103in}{1.499366in}}% -\pgfpathlineto{\pgfqpoint{3.526774in}{1.390881in}}% -\pgfpathlineto{\pgfqpoint{3.674699in}{1.217398in}}% -\pgfpathlineto{\pgfqpoint{3.816707in}{1.052009in}}% -\pgfpathlineto{\pgfqpoint{3.899544in}{0.958859in}}% -\pgfpathlineto{\pgfqpoint{3.970548in}{0.882403in}}% -\pgfpathlineto{\pgfqpoint{4.029718in}{0.821859in}}% -\pgfpathlineto{\pgfqpoint{4.082971in}{0.770385in}}% -\pgfpathlineto{\pgfqpoint{4.130307in}{0.727425in}}% -\pgfpathlineto{\pgfqpoint{4.177643in}{0.687455in}}% -\pgfpathlineto{\pgfqpoint{4.219062in}{0.655212in}}% -\pgfpathlineto{\pgfqpoint{4.260481in}{0.625776in}}% -\pgfpathlineto{\pgfqpoint{4.295982in}{0.602970in}}% -\pgfpathlineto{\pgfqpoint{4.331484in}{0.582572in}}% -\pgfpathlineto{\pgfqpoint{4.366986in}{0.564749in}}% -\pgfpathlineto{\pgfqpoint{4.402488in}{0.549670in}}% -\pgfpathlineto{\pgfqpoint{4.432073in}{0.539326in}}% -\pgfpathlineto{\pgfqpoint{4.461658in}{0.531108in}}% -\pgfpathlineto{\pgfqpoint{4.491243in}{0.525122in}}% -\pgfpathlineto{\pgfqpoint{4.520828in}{0.521471in}}% -\pgfpathlineto{\pgfqpoint{4.550413in}{0.520264in}}% -\pgfpathlineto{\pgfqpoint{4.579998in}{0.521608in}}% -\pgfpathlineto{\pgfqpoint{4.609583in}{0.525615in}}% -\pgfpathlineto{\pgfqpoint{4.639168in}{0.532395in}}% -\pgfpathlineto{\pgfqpoint{4.662836in}{0.539892in}}% -\pgfpathlineto{\pgfqpoint{4.686503in}{0.549296in}}% -\pgfpathlineto{\pgfqpoint{4.710171in}{0.560667in}}% -\pgfpathlineto{\pgfqpoint{4.733839in}{0.574065in}}% -\pgfpathlineto{\pgfqpoint{4.757507in}{0.589550in}}% -\pgfpathlineto{\pgfqpoint{4.787092in}{0.611937in}}% -\pgfpathlineto{\pgfqpoint{4.816677in}{0.637805in}}% -\pgfpathlineto{\pgfqpoint{4.846262in}{0.667277in}}% -\pgfpathlineto{\pgfqpoint{4.875847in}{0.700480in}}% -\pgfpathlineto{\pgfqpoint{4.905432in}{0.737539in}}% -\pgfpathlineto{\pgfqpoint{4.935017in}{0.778584in}}% -\pgfpathlineto{\pgfqpoint{4.964602in}{0.823745in}}% -\pgfpathlineto{\pgfqpoint{4.994187in}{0.873154in}}% -\pgfpathlineto{\pgfqpoint{5.023772in}{0.926945in}}% -\pgfpathlineto{\pgfqpoint{5.053357in}{0.985254in}}% -\pgfpathlineto{\pgfqpoint{5.082941in}{1.048218in}}% -\pgfpathlineto{\pgfqpoint{5.112526in}{1.115976in}}% -\pgfpathlineto{\pgfqpoint{5.142111in}{1.188667in}}% -\pgfpathlineto{\pgfqpoint{5.171696in}{1.266435in}}% -\pgfpathlineto{\pgfqpoint{5.207198in}{1.366660in}}% -\pgfpathlineto{\pgfqpoint{5.242700in}{1.474655in}}% -\pgfpathlineto{\pgfqpoint{5.278202in}{1.590673in}}% -\pgfpathlineto{\pgfqpoint{5.313704in}{1.714975in}}% -\pgfpathlineto{\pgfqpoint{5.349206in}{1.847823in}}% -\pgfpathlineto{\pgfqpoint{5.384708in}{1.989482in}}% -\pgfpathlineto{\pgfqpoint{5.420210in}{2.140222in}}% -\pgfpathlineto{\pgfqpoint{5.455712in}{2.300316in}}% -\pgfpathlineto{\pgfqpoint{5.491213in}{2.470039in}}% -\pgfpathlineto{\pgfqpoint{5.526715in}{2.649672in}}% -\pgfpathlineto{\pgfqpoint{5.562217in}{2.839498in}}% -\pgfpathlineto{\pgfqpoint{5.603636in}{3.074227in}}% -\pgfpathlineto{\pgfqpoint{5.645055in}{3.323682in}}% -\pgfpathlineto{\pgfqpoint{5.686474in}{3.588329in}}% -\pgfpathlineto{\pgfqpoint{5.727893in}{3.868644in}}% -\pgfpathlineto{\pgfqpoint{5.742072in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{5.742072in}{3.968330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.062802in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{0.094923in}{3.775703in}}% -\pgfpathlineto{\pgfqpoint{0.130425in}{3.577919in}}% -\pgfpathlineto{\pgfqpoint{0.160010in}{3.424649in}}% -\pgfpathlineto{\pgfqpoint{0.189595in}{3.281426in}}% -\pgfpathlineto{\pgfqpoint{0.219180in}{3.147834in}}% -\pgfpathlineto{\pgfqpoint{0.248764in}{3.023467in}}% -\pgfpathlineto{\pgfqpoint{0.278349in}{2.907931in}}% -\pgfpathlineto{\pgfqpoint{0.307934in}{2.800839in}}% -\pgfpathlineto{\pgfqpoint{0.337519in}{2.701814in}}% -\pgfpathlineto{\pgfqpoint{0.367104in}{2.610489in}}% -\pgfpathlineto{\pgfqpoint{0.396689in}{2.526504in}}% -\pgfpathlineto{\pgfqpoint{0.426274in}{2.449512in}}% -\pgfpathlineto{\pgfqpoint{0.455859in}{2.379172in}}% -\pgfpathlineto{\pgfqpoint{0.485444in}{2.315152in}}% -\pgfpathlineto{\pgfqpoint{0.515029in}{2.257130in}}% -\pgfpathlineto{\pgfqpoint{0.544614in}{2.204792in}}% -\pgfpathlineto{\pgfqpoint{0.574199in}{2.157833in}}% -\pgfpathlineto{\pgfqpoint{0.603784in}{2.115957in}}% -\pgfpathlineto{\pgfqpoint{0.627452in}{2.085922in}}% -\pgfpathlineto{\pgfqpoint{0.651119in}{2.058810in}}% -\pgfpathlineto{\pgfqpoint{0.674787in}{2.034483in}}% -\pgfpathlineto{\pgfqpoint{0.698455in}{2.012804in}}% -\pgfpathlineto{\pgfqpoint{0.722123in}{1.993637in}}% -\pgfpathlineto{\pgfqpoint{0.745791in}{1.976854in}}% -\pgfpathlineto{\pgfqpoint{0.769459in}{1.962327in}}% -\pgfpathlineto{\pgfqpoint{0.793127in}{1.949931in}}% -\pgfpathlineto{\pgfqpoint{0.822712in}{1.937252in}}% -\pgfpathlineto{\pgfqpoint{0.852297in}{1.927487in}}% -\pgfpathlineto{\pgfqpoint{0.881882in}{1.920414in}}% -\pgfpathlineto{\pgfqpoint{0.911467in}{1.915820in}}% -\pgfpathlineto{\pgfqpoint{0.941052in}{1.913500in}}% -\pgfpathlineto{\pgfqpoint{0.970637in}{1.913253in}}% -\pgfpathlineto{\pgfqpoint{1.006139in}{1.915424in}}% -\pgfpathlineto{\pgfqpoint{1.041641in}{1.919988in}}% -\pgfpathlineto{\pgfqpoint{1.077142in}{1.926642in}}% -\pgfpathlineto{\pgfqpoint{1.118561in}{1.936660in}}% -\pgfpathlineto{\pgfqpoint{1.165897in}{1.950553in}}% -\pgfpathlineto{\pgfqpoint{1.219150in}{1.968576in}}% -\pgfpathlineto{\pgfqpoint{1.290154in}{1.995219in}}% -\pgfpathlineto{\pgfqpoint{1.520916in}{2.084084in}}% -\pgfpathlineto{\pgfqpoint{1.580086in}{2.103653in}}% -\pgfpathlineto{\pgfqpoint{1.633339in}{2.119144in}}% -\pgfpathlineto{\pgfqpoint{1.686592in}{2.132279in}}% -\pgfpathlineto{\pgfqpoint{1.733928in}{2.141744in}}% -\pgfpathlineto{\pgfqpoint{1.781264in}{2.148956in}}% -\pgfpathlineto{\pgfqpoint{1.828600in}{2.153779in}}% -\pgfpathlineto{\pgfqpoint{1.875935in}{2.156106in}}% -\pgfpathlineto{\pgfqpoint{1.917354in}{2.156033in}}% -\pgfpathlineto{\pgfqpoint{1.958773in}{2.153953in}}% -\pgfpathlineto{\pgfqpoint{2.000192in}{2.149848in}}% -\pgfpathlineto{\pgfqpoint{2.041611in}{2.143710in}}% -\pgfpathlineto{\pgfqpoint{2.083030in}{2.135551in}}% -\pgfpathlineto{\pgfqpoint{2.130366in}{2.123782in}}% -\pgfpathlineto{\pgfqpoint{2.177702in}{2.109457in}}% -\pgfpathlineto{\pgfqpoint{2.225038in}{2.092656in}}% -\pgfpathlineto{\pgfqpoint{2.272373in}{2.073477in}}% -\pgfpathlineto{\pgfqpoint{2.319709in}{2.052037in}}% -\pgfpathlineto{\pgfqpoint{2.372962in}{2.025387in}}% -\pgfpathlineto{\pgfqpoint{2.426215in}{1.996269in}}% -\pgfpathlineto{\pgfqpoint{2.485385in}{1.961326in}}% -\pgfpathlineto{\pgfqpoint{2.550472in}{1.920172in}}% -\pgfpathlineto{\pgfqpoint{2.621476in}{1.872660in}}% -\pgfpathlineto{\pgfqpoint{2.716147in}{1.806369in}}% -\pgfpathlineto{\pgfqpoint{2.964661in}{1.630566in}}% -\pgfpathlineto{\pgfqpoint{3.035665in}{1.583932in}}% -\pgfpathlineto{\pgfqpoint{3.094834in}{1.547616in}}% -\pgfpathlineto{\pgfqpoint{3.148087in}{1.517423in}}% -\pgfpathlineto{\pgfqpoint{3.195423in}{1.492921in}}% -\pgfpathlineto{\pgfqpoint{3.242759in}{1.470928in}}% -\pgfpathlineto{\pgfqpoint{3.284178in}{1.453976in}}% -\pgfpathlineto{\pgfqpoint{3.325597in}{1.439369in}}% -\pgfpathlineto{\pgfqpoint{3.367016in}{1.427302in}}% -\pgfpathlineto{\pgfqpoint{3.402518in}{1.419128in}}% -\pgfpathlineto{\pgfqpoint{3.438020in}{1.413082in}}% -\pgfpathlineto{\pgfqpoint{3.473521in}{1.409282in}}% -\pgfpathlineto{\pgfqpoint{3.509023in}{1.407845in}}% -\pgfpathlineto{\pgfqpoint{3.544525in}{1.408883in}}% -\pgfpathlineto{\pgfqpoint{3.580027in}{1.412509in}}% -\pgfpathlineto{\pgfqpoint{3.609612in}{1.417585in}}% -\pgfpathlineto{\pgfqpoint{3.639197in}{1.424593in}}% -\pgfpathlineto{\pgfqpoint{3.668782in}{1.433595in}}% -\pgfpathlineto{\pgfqpoint{3.698367in}{1.444647in}}% -\pgfpathlineto{\pgfqpoint{3.727952in}{1.457806in}}% -\pgfpathlineto{\pgfqpoint{3.757537in}{1.473126in}}% -\pgfpathlineto{\pgfqpoint{3.787122in}{1.490660in}}% -\pgfpathlineto{\pgfqpoint{3.816707in}{1.510457in}}% -\pgfpathlineto{\pgfqpoint{3.846292in}{1.532567in}}% -\pgfpathlineto{\pgfqpoint{3.875876in}{1.557035in}}% -\pgfpathlineto{\pgfqpoint{3.911378in}{1.589571in}}% -\pgfpathlineto{\pgfqpoint{3.946880in}{1.625636in}}% -\pgfpathlineto{\pgfqpoint{3.982382in}{1.665297in}}% -\pgfpathlineto{\pgfqpoint{4.017884in}{1.708612in}}% -\pgfpathlineto{\pgfqpoint{4.053386in}{1.755638in}}% -\pgfpathlineto{\pgfqpoint{4.088888in}{1.806421in}}% -\pgfpathlineto{\pgfqpoint{4.124390in}{1.861004in}}% -\pgfpathlineto{\pgfqpoint{4.159892in}{1.919422in}}% -\pgfpathlineto{\pgfqpoint{4.195394in}{1.981705in}}% -\pgfpathlineto{\pgfqpoint{4.236813in}{2.059281in}}% -\pgfpathlineto{\pgfqpoint{4.278231in}{2.142169in}}% -\pgfpathlineto{\pgfqpoint{4.319650in}{2.230377in}}% -\pgfpathlineto{\pgfqpoint{4.361069in}{2.323900in}}% -\pgfpathlineto{\pgfqpoint{4.402488in}{2.422716in}}% -\pgfpathlineto{\pgfqpoint{4.443907in}{2.526790in}}% -\pgfpathlineto{\pgfqpoint{4.491243in}{2.652101in}}% -\pgfpathlineto{\pgfqpoint{4.538579in}{2.784105in}}% -\pgfpathlineto{\pgfqpoint{4.585915in}{2.922669in}}% -\pgfpathlineto{\pgfqpoint{4.633251in}{3.067630in}}% -\pgfpathlineto{\pgfqpoint{4.686503in}{3.238112in}}% -\pgfpathlineto{\pgfqpoint{4.739756in}{3.416115in}}% -\pgfpathlineto{\pgfqpoint{4.798926in}{3.622253in}}% -\pgfpathlineto{\pgfqpoint{4.858096in}{3.836605in}}% -\pgfpathlineto{\pgfqpoint{4.893453in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{4.893453in}{3.968330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.160076in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{0.189595in}{3.747453in}}% -\pgfpathlineto{\pgfqpoint{0.219180in}{3.543692in}}% -\pgfpathlineto{\pgfqpoint{0.248764in}{3.356610in}}% -\pgfpathlineto{\pgfqpoint{0.278349in}{3.185290in}}% -\pgfpathlineto{\pgfqpoint{0.307934in}{3.028848in}}% -\pgfpathlineto{\pgfqpoint{0.337519in}{2.886428in}}% -\pgfpathlineto{\pgfqpoint{0.367104in}{2.757208in}}% -\pgfpathlineto{\pgfqpoint{0.390772in}{2.662802in}}% -\pgfpathlineto{\pgfqpoint{0.414440in}{2.575943in}}% -\pgfpathlineto{\pgfqpoint{0.438108in}{2.496251in}}% -\pgfpathlineto{\pgfqpoint{0.461776in}{2.423358in}}% -\pgfpathlineto{\pgfqpoint{0.485444in}{2.356904in}}% -\pgfpathlineto{\pgfqpoint{0.509112in}{2.296546in}}% -\pgfpathlineto{\pgfqpoint{0.532780in}{2.241948in}}% -\pgfpathlineto{\pgfqpoint{0.556448in}{2.192785in}}% -\pgfpathlineto{\pgfqpoint{0.580116in}{2.148746in}}% -\pgfpathlineto{\pgfqpoint{0.603784in}{2.109526in}}% -\pgfpathlineto{\pgfqpoint{0.627452in}{2.074834in}}% -\pgfpathlineto{\pgfqpoint{0.651119in}{2.044387in}}% -\pgfpathlineto{\pgfqpoint{0.674787in}{2.017914in}}% -\pgfpathlineto{\pgfqpoint{0.698455in}{1.995150in}}% -\pgfpathlineto{\pgfqpoint{0.722123in}{1.975844in}}% -\pgfpathlineto{\pgfqpoint{0.745791in}{1.959752in}}% -\pgfpathlineto{\pgfqpoint{0.769459in}{1.946640in}}% -\pgfpathlineto{\pgfqpoint{0.793127in}{1.936281in}}% -\pgfpathlineto{\pgfqpoint{0.816795in}{1.928461in}}% -\pgfpathlineto{\pgfqpoint{0.840463in}{1.922970in}}% -\pgfpathlineto{\pgfqpoint{0.864131in}{1.919609in}}% -\pgfpathlineto{\pgfqpoint{0.887799in}{1.918188in}}% -\pgfpathlineto{\pgfqpoint{0.917384in}{1.918860in}}% -\pgfpathlineto{\pgfqpoint{0.946969in}{1.921938in}}% -\pgfpathlineto{\pgfqpoint{0.976554in}{1.927100in}}% -\pgfpathlineto{\pgfqpoint{1.012056in}{1.935622in}}% -\pgfpathlineto{\pgfqpoint{1.053474in}{1.948158in}}% -\pgfpathlineto{\pgfqpoint{1.100810in}{1.965037in}}% -\pgfpathlineto{\pgfqpoint{1.165897in}{1.991006in}}% -\pgfpathlineto{\pgfqpoint{1.331573in}{2.058466in}}% -\pgfpathlineto{\pgfqpoint{1.384826in}{2.077333in}}% -\pgfpathlineto{\pgfqpoint{1.432162in}{2.092015in}}% -\pgfpathlineto{\pgfqpoint{1.479497in}{2.104371in}}% -\pgfpathlineto{\pgfqpoint{1.520916in}{2.113060in}}% -\pgfpathlineto{\pgfqpoint{1.562335in}{2.119621in}}% -\pgfpathlineto{\pgfqpoint{1.603754in}{2.123950in}}% -\pgfpathlineto{\pgfqpoint{1.645173in}{2.125978in}}% -\pgfpathlineto{\pgfqpoint{1.686592in}{2.125667in}}% -\pgfpathlineto{\pgfqpoint{1.728011in}{2.123013in}}% -\pgfpathlineto{\pgfqpoint{1.769430in}{2.118036in}}% -\pgfpathlineto{\pgfqpoint{1.810849in}{2.110785in}}% -\pgfpathlineto{\pgfqpoint{1.852267in}{2.101330in}}% -\pgfpathlineto{\pgfqpoint{1.893686in}{2.089767in}}% -\pgfpathlineto{\pgfqpoint{1.941022in}{2.074119in}}% -\pgfpathlineto{\pgfqpoint{1.988358in}{2.056068in}}% -\pgfpathlineto{\pgfqpoint{2.041611in}{2.033177in}}% -\pgfpathlineto{\pgfqpoint{2.094864in}{2.007901in}}% -\pgfpathlineto{\pgfqpoint{2.159951in}{1.974353in}}% -\pgfpathlineto{\pgfqpoint{2.236872in}{1.931958in}}% -\pgfpathlineto{\pgfqpoint{2.384796in}{1.847001in}}% -\pgfpathlineto{\pgfqpoint{2.479468in}{1.794181in}}% -\pgfpathlineto{\pgfqpoint{2.544555in}{1.760299in}}% -\pgfpathlineto{\pgfqpoint{2.603725in}{1.732074in}}% -\pgfpathlineto{\pgfqpoint{2.656977in}{1.709318in}}% -\pgfpathlineto{\pgfqpoint{2.704313in}{1.691575in}}% -\pgfpathlineto{\pgfqpoint{2.745732in}{1.678218in}}% -\pgfpathlineto{\pgfqpoint{2.787151in}{1.667088in}}% -\pgfpathlineto{\pgfqpoint{2.828570in}{1.658371in}}% -\pgfpathlineto{\pgfqpoint{2.864072in}{1.652952in}}% -\pgfpathlineto{\pgfqpoint{2.899574in}{1.649539in}}% -\pgfpathlineto{\pgfqpoint{2.935076in}{1.648228in}}% -\pgfpathlineto{\pgfqpoint{2.970578in}{1.649110in}}% -\pgfpathlineto{\pgfqpoint{3.006080in}{1.652268in}}% -\pgfpathlineto{\pgfqpoint{3.041582in}{1.657780in}}% -\pgfpathlineto{\pgfqpoint{3.077083in}{1.665714in}}% -\pgfpathlineto{\pgfqpoint{3.112585in}{1.676130in}}% -\pgfpathlineto{\pgfqpoint{3.148087in}{1.689080in}}% -\pgfpathlineto{\pgfqpoint{3.183589in}{1.704609in}}% -\pgfpathlineto{\pgfqpoint{3.219091in}{1.722751in}}% -\pgfpathlineto{\pgfqpoint{3.254593in}{1.743532in}}% -\pgfpathlineto{\pgfqpoint{3.290095in}{1.766969in}}% -\pgfpathlineto{\pgfqpoint{3.325597in}{1.793068in}}% -\pgfpathlineto{\pgfqpoint{3.361099in}{1.821829in}}% -\pgfpathlineto{\pgfqpoint{3.396601in}{1.853238in}}% -\pgfpathlineto{\pgfqpoint{3.432103in}{1.887275in}}% -\pgfpathlineto{\pgfqpoint{3.473521in}{1.930260in}}% -\pgfpathlineto{\pgfqpoint{3.514940in}{1.976709in}}% -\pgfpathlineto{\pgfqpoint{3.556359in}{2.026533in}}% -\pgfpathlineto{\pgfqpoint{3.597778in}{2.079626in}}% -\pgfpathlineto{\pgfqpoint{3.645114in}{2.144145in}}% -\pgfpathlineto{\pgfqpoint{3.692450in}{2.212550in}}% -\pgfpathlineto{\pgfqpoint{3.745703in}{2.293837in}}% -\pgfpathlineto{\pgfqpoint{3.798956in}{2.379315in}}% -\pgfpathlineto{\pgfqpoint{3.858126in}{2.478643in}}% -\pgfpathlineto{\pgfqpoint{3.923212in}{2.592375in}}% -\pgfpathlineto{\pgfqpoint{4.000133in}{2.731415in}}% -\pgfpathlineto{\pgfqpoint{4.118473in}{2.950766in}}% -\pgfpathlineto{\pgfqpoint{4.248647in}{3.191037in}}% -\pgfpathlineto{\pgfqpoint{4.319650in}{3.317476in}}% -\pgfpathlineto{\pgfqpoint{4.378820in}{3.418354in}}% -\pgfpathlineto{\pgfqpoint{4.432073in}{3.504493in}}% -\pgfpathlineto{\pgfqpoint{4.479409in}{3.576524in}}% -\pgfpathlineto{\pgfqpoint{4.520828in}{3.635455in}}% -\pgfpathlineto{\pgfqpoint{4.556330in}{3.682531in}}% -\pgfpathlineto{\pgfqpoint{4.591832in}{3.726097in}}% -\pgfpathlineto{\pgfqpoint{4.627334in}{3.765832in}}% -\pgfpathlineto{\pgfqpoint{4.656919in}{3.795780in}}% -\pgfpathlineto{\pgfqpoint{4.686503in}{3.822646in}}% -\pgfpathlineto{\pgfqpoint{4.716088in}{3.846238in}}% -\pgfpathlineto{\pgfqpoint{4.739756in}{3.862621in}}% -\pgfpathlineto{\pgfqpoint{4.763424in}{3.876683in}}% -\pgfpathlineto{\pgfqpoint{4.787092in}{3.888322in}}% -\pgfpathlineto{\pgfqpoint{4.810760in}{3.897435in}}% -\pgfpathlineto{\pgfqpoint{4.834428in}{3.903922in}}% -\pgfpathlineto{\pgfqpoint{4.858096in}{3.907680in}}% -\pgfpathlineto{\pgfqpoint{4.881764in}{3.908605in}}% -\pgfpathlineto{\pgfqpoint{4.899515in}{3.907380in}}% -\pgfpathlineto{\pgfqpoint{4.917266in}{3.904460in}}% -\pgfpathlineto{\pgfqpoint{4.935017in}{3.899802in}}% -\pgfpathlineto{\pgfqpoint{4.952768in}{3.893364in}}% -\pgfpathlineto{\pgfqpoint{4.970519in}{3.885102in}}% -\pgfpathlineto{\pgfqpoint{4.988270in}{3.874973in}}% -\pgfpathlineto{\pgfqpoint{5.011938in}{3.858488in}}% -\pgfpathlineto{\pgfqpoint{5.035606in}{3.838504in}}% -\pgfpathlineto{\pgfqpoint{5.059274in}{3.814920in}}% -\pgfpathlineto{\pgfqpoint{5.082941in}{3.787635in}}% -\pgfpathlineto{\pgfqpoint{5.106609in}{3.756547in}}% -\pgfpathlineto{\pgfqpoint{5.130277in}{3.721557in}}% -\pgfpathlineto{\pgfqpoint{5.153945in}{3.682565in}}% -\pgfpathlineto{\pgfqpoint{5.177613in}{3.639473in}}% -\pgfpathlineto{\pgfqpoint{5.201281in}{3.592183in}}% -\pgfpathlineto{\pgfqpoint{5.224949in}{3.540598in}}% -\pgfpathlineto{\pgfqpoint{5.254534in}{3.469933in}}% -\pgfpathlineto{\pgfqpoint{5.284119in}{3.392224in}}% -\pgfpathlineto{\pgfqpoint{5.313704in}{3.307291in}}% -\pgfpathlineto{\pgfqpoint{5.343289in}{3.214956in}}% -\pgfpathlineto{\pgfqpoint{5.372874in}{3.115047in}}% -\pgfpathlineto{\pgfqpoint{5.402459in}{3.007394in}}% -\pgfpathlineto{\pgfqpoint{5.432044in}{2.891832in}}% -\pgfpathlineto{\pgfqpoint{5.461629in}{2.768202in}}% -\pgfpathlineto{\pgfqpoint{5.491213in}{2.636349in}}% -\pgfpathlineto{\pgfqpoint{5.526715in}{2.467060in}}% -\pgfpathlineto{\pgfqpoint{5.562217in}{2.285470in}}% -\pgfpathlineto{\pgfqpoint{5.597719in}{2.091342in}}% -\pgfpathlineto{\pgfqpoint{5.633221in}{1.884459in}}% -\pgfpathlineto{\pgfqpoint{5.668723in}{1.664615in}}% -\pgfpathlineto{\pgfqpoint{5.704225in}{1.431621in}}% -\pgfpathlineto{\pgfqpoint{5.739727in}{1.185303in}}% -\pgfpathlineto{\pgfqpoint{5.781146in}{0.880889in}}% -\pgfpathlineto{\pgfqpoint{5.822565in}{0.557917in}}% -\pgfpathlineto{\pgfqpoint{5.863984in}{0.216210in}}% -\pgfpathlineto{\pgfqpoint{5.885447in}{0.031670in}}% -\pgfpathlineto{\pgfqpoint{5.885447in}{0.031670in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.041670in}{0.041670in}}{\pgfqpoint{5.911660in}{3.916660in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.226531in}{3.968330in}}% -\pgfpathlineto{\pgfqpoint{0.248764in}{3.767229in}}% -\pgfpathlineto{\pgfqpoint{0.272432in}{3.569453in}}% -\pgfpathlineto{\pgfqpoint{0.296100in}{3.387479in}}% -\pgfpathlineto{\pgfqpoint{0.319768in}{3.220430in}}% -\pgfpathlineto{\pgfqpoint{0.343436in}{3.067463in}}% -\pgfpathlineto{\pgfqpoint{0.367104in}{2.927764in}}% -\pgfpathlineto{\pgfqpoint{0.390772in}{2.800552in}}% -\pgfpathlineto{\pgfqpoint{0.414440in}{2.685078in}}% -\pgfpathlineto{\pgfqpoint{0.438108in}{2.580621in}}% -\pgfpathlineto{\pgfqpoint{0.461776in}{2.486488in}}% -\pgfpathlineto{\pgfqpoint{0.485444in}{2.402017in}}% -\pgfpathlineto{\pgfqpoint{0.509112in}{2.326572in}}% -\pgfpathlineto{\pgfqpoint{0.532780in}{2.259543in}}% -\pgfpathlineto{\pgfqpoint{0.556448in}{2.200349in}}% -\pgfpathlineto{\pgfqpoint{0.580116in}{2.148431in}}% -\pgfpathlineto{\pgfqpoint{0.603784in}{2.103257in}}% -\pgfpathlineto{\pgfqpoint{0.621535in}{2.073496in}}% -\pgfpathlineto{\pgfqpoint{0.639286in}{2.047036in}}% -\pgfpathlineto{\pgfqpoint{0.657036in}{2.023678in}}% -\pgfpathlineto{\pgfqpoint{0.674787in}{2.003232in}}% -\pgfpathlineto{\pgfqpoint{0.692538in}{1.985512in}}% -\pgfpathlineto{\pgfqpoint{0.710289in}{1.970341in}}% -\pgfpathlineto{\pgfqpoint{0.728040in}{1.957548in}}% -\pgfpathlineto{\pgfqpoint{0.745791in}{1.946967in}}% -\pgfpathlineto{\pgfqpoint{0.763542in}{1.938442in}}% -\pgfpathlineto{\pgfqpoint{0.781293in}{1.931819in}}% -\pgfpathlineto{\pgfqpoint{0.804961in}{1.925698in}}% -\pgfpathlineto{\pgfqpoint{0.828629in}{1.922372in}}% -\pgfpathlineto{\pgfqpoint{0.852297in}{1.921528in}}% -\pgfpathlineto{\pgfqpoint{0.875965in}{1.922875in}}% -\pgfpathlineto{\pgfqpoint{0.905550in}{1.927217in}}% -\pgfpathlineto{\pgfqpoint{0.935135in}{1.934045in}}% -\pgfpathlineto{\pgfqpoint{0.970637in}{1.944868in}}% -\pgfpathlineto{\pgfqpoint{1.012056in}{1.960198in}}% -\pgfpathlineto{\pgfqpoint{1.065308in}{1.982607in}}% -\pgfpathlineto{\pgfqpoint{1.219150in}{2.049183in}}% -\pgfpathlineto{\pgfqpoint{1.266486in}{2.066673in}}% -\pgfpathlineto{\pgfqpoint{1.307905in}{2.079881in}}% -\pgfpathlineto{\pgfqpoint{1.349324in}{2.090815in}}% -\pgfpathlineto{\pgfqpoint{1.390743in}{2.099253in}}% -\pgfpathlineto{\pgfqpoint{1.426245in}{2.104380in}}% -\pgfpathlineto{\pgfqpoint{1.461746in}{2.107498in}}% -\pgfpathlineto{\pgfqpoint{1.497248in}{2.108581in}}% -\pgfpathlineto{\pgfqpoint{1.532750in}{2.107630in}}% -\pgfpathlineto{\pgfqpoint{1.568252in}{2.104672in}}% -\pgfpathlineto{\pgfqpoint{1.603754in}{2.099759in}}% -\pgfpathlineto{\pgfqpoint{1.645173in}{2.091658in}}% -\pgfpathlineto{\pgfqpoint{1.686592in}{2.081149in}}% -\pgfpathlineto{\pgfqpoint{1.728011in}{2.068416in}}% -\pgfpathlineto{\pgfqpoint{1.775347in}{2.051412in}}% -\pgfpathlineto{\pgfqpoint{1.822683in}{2.032130in}}% -\pgfpathlineto{\pgfqpoint{1.881852in}{2.005410in}}% -\pgfpathlineto{\pgfqpoint{1.952856in}{1.970574in}}% -\pgfpathlineto{\pgfqpoint{2.207287in}{1.842753in}}% -\pgfpathlineto{\pgfqpoint{2.260539in}{1.819638in}}% -\pgfpathlineto{\pgfqpoint{2.307875in}{1.801233in}}% -\pgfpathlineto{\pgfqpoint{2.355211in}{1.785225in}}% -\pgfpathlineto{\pgfqpoint{2.396630in}{1.773451in}}% -\pgfpathlineto{\pgfqpoint{2.438049in}{1.763982in}}% -\pgfpathlineto{\pgfqpoint{2.479468in}{1.757005in}}% -\pgfpathlineto{\pgfqpoint{2.514970in}{1.753139in}}% -\pgfpathlineto{\pgfqpoint{2.550472in}{1.751324in}}% -\pgfpathlineto{\pgfqpoint{2.585974in}{1.751644in}}% -\pgfpathlineto{\pgfqpoint{2.621476in}{1.754169in}}% -\pgfpathlineto{\pgfqpoint{2.656977in}{1.758958in}}% -\pgfpathlineto{\pgfqpoint{2.692479in}{1.766056in}}% -\pgfpathlineto{\pgfqpoint{2.727981in}{1.775495in}}% -\pgfpathlineto{\pgfqpoint{2.763483in}{1.787296in}}% -\pgfpathlineto{\pgfqpoint{2.798985in}{1.801463in}}% -\pgfpathlineto{\pgfqpoint{2.834487in}{1.817991in}}% -\pgfpathlineto{\pgfqpoint{2.869989in}{1.836858in}}% -\pgfpathlineto{\pgfqpoint{2.905491in}{1.858030in}}% -\pgfpathlineto{\pgfqpoint{2.946910in}{1.885581in}}% -\pgfpathlineto{\pgfqpoint{2.988329in}{1.916108in}}% -\pgfpathlineto{\pgfqpoint{3.029748in}{1.949487in}}% -\pgfpathlineto{\pgfqpoint{3.071166in}{1.985574in}}% -\pgfpathlineto{\pgfqpoint{3.118502in}{2.029913in}}% -\pgfpathlineto{\pgfqpoint{3.165838in}{2.077278in}}% -\pgfpathlineto{\pgfqpoint{3.219091in}{2.133774in}}% -\pgfpathlineto{\pgfqpoint{3.278261in}{2.199921in}}% -\pgfpathlineto{\pgfqpoint{3.349265in}{2.282904in}}% -\pgfpathlineto{\pgfqpoint{3.449854in}{2.404360in}}% -\pgfpathlineto{\pgfqpoint{3.580027in}{2.561142in}}% -\pgfpathlineto{\pgfqpoint{3.645114in}{2.636131in}}% -\pgfpathlineto{\pgfqpoint{3.698367in}{2.694373in}}% -\pgfpathlineto{\pgfqpoint{3.745703in}{2.743049in}}% -\pgfpathlineto{\pgfqpoint{3.787122in}{2.782752in}}% -\pgfpathlineto{\pgfqpoint{3.828541in}{2.819328in}}% -\pgfpathlineto{\pgfqpoint{3.864042in}{2.847879in}}% -\pgfpathlineto{\pgfqpoint{3.899544in}{2.873571in}}% -\pgfpathlineto{\pgfqpoint{3.929129in}{2.892611in}}% -\pgfpathlineto{\pgfqpoint{3.958714in}{2.909339in}}% -\pgfpathlineto{\pgfqpoint{3.988299in}{2.923607in}}% -\pgfpathlineto{\pgfqpoint{4.017884in}{2.935270in}}% -\pgfpathlineto{\pgfqpoint{4.047469in}{2.944185in}}% -\pgfpathlineto{\pgfqpoint{4.071137in}{2.949243in}}% -\pgfpathlineto{\pgfqpoint{4.094805in}{2.952380in}}% -\pgfpathlineto{\pgfqpoint{4.118473in}{2.953528in}}% -\pgfpathlineto{\pgfqpoint{4.142141in}{2.952616in}}% -\pgfpathlineto{\pgfqpoint{4.165809in}{2.949579in}}% -\pgfpathlineto{\pgfqpoint{4.189477in}{2.944349in}}% -\pgfpathlineto{\pgfqpoint{4.213145in}{2.936864in}}% -\pgfpathlineto{\pgfqpoint{4.236813in}{2.927061in}}% -\pgfpathlineto{\pgfqpoint{4.260481in}{2.914879in}}% -\pgfpathlineto{\pgfqpoint{4.284148in}{2.900260in}}% -\pgfpathlineto{\pgfqpoint{4.307816in}{2.883148in}}% -\pgfpathlineto{\pgfqpoint{4.331484in}{2.863488in}}% -\pgfpathlineto{\pgfqpoint{4.355152in}{2.841228in}}% -\pgfpathlineto{\pgfqpoint{4.378820in}{2.816319in}}% -\pgfpathlineto{\pgfqpoint{4.402488in}{2.788714in}}% -\pgfpathlineto{\pgfqpoint{4.432073in}{2.750348in}}% -\pgfpathlineto{\pgfqpoint{4.461658in}{2.707620in}}% -\pgfpathlineto{\pgfqpoint{4.491243in}{2.660455in}}% -\pgfpathlineto{\pgfqpoint{4.520828in}{2.608787in}}% -\pgfpathlineto{\pgfqpoint{4.550413in}{2.552558in}}% -\pgfpathlineto{\pgfqpoint{4.579998in}{2.491717in}}% -\pgfpathlineto{\pgfqpoint{4.609583in}{2.426220in}}% -\pgfpathlineto{\pgfqpoint{4.639168in}{2.356035in}}% -\pgfpathlineto{\pgfqpoint{4.674669in}{2.265589in}}% -\pgfpathlineto{\pgfqpoint{4.710171in}{2.168330in}}% -\pgfpathlineto{\pgfqpoint{4.745673in}{2.064252in}}% -\pgfpathlineto{\pgfqpoint{4.781175in}{1.953370in}}% -\pgfpathlineto{\pgfqpoint{4.816677in}{1.835719in}}% -\pgfpathlineto{\pgfqpoint{4.858096in}{1.689983in}}% -\pgfpathlineto{\pgfqpoint{4.899515in}{1.535245in}}% -\pgfpathlineto{\pgfqpoint{4.940934in}{1.371677in}}% -\pgfpathlineto{\pgfqpoint{4.982353in}{1.199498in}}% -\pgfpathlineto{\pgfqpoint{5.029689in}{0.992518in}}% -\pgfpathlineto{\pgfqpoint{5.077024in}{0.775107in}}% -\pgfpathlineto{\pgfqpoint{5.124360in}{0.547814in}}% -\pgfpathlineto{\pgfqpoint{5.177613in}{0.281092in}}% -\pgfpathlineto{\pgfqpoint{5.225582in}{0.031670in}}% -\pgfpathlineto{\pgfqpoint{5.225582in}{0.031670in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.579040in}{0.041670in}}% -\pgfpathlineto{\pgfqpoint{0.579040in}{3.958330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.041670in}{2.000000in}}% -\pgfpathlineto{\pgfqpoint{5.953330in}{2.000000in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.813961in}{0.080837in}}% -\pgfpathlineto{\pgfqpoint{2.944352in}{0.080837in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.977686in}{0.080837in}}{\pgfqpoint{2.977686in}{0.114170in}}% -\pgfpathlineto{\pgfqpoint{2.977686in}{1.076018in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.977686in}{1.109352in}}{\pgfqpoint{2.944352in}{1.109352in}}% -\pgfpathlineto{\pgfqpoint{0.813961in}{1.109352in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.780627in}{1.109352in}}{\pgfqpoint{0.780627in}{1.076018in}}% -\pgfpathlineto{\pgfqpoint{0.780627in}{0.114170in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.780627in}{0.080837in}}{\pgfqpoint{0.813961in}{0.080837in}}% -\pgfpathlineto{\pgfqpoint{0.813961in}{0.080837in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.847294in}{0.974391in}}% -\pgfpathlineto{\pgfqpoint{1.013961in}{0.974391in}}% -\pgfpathlineto{\pgfqpoint{1.180627in}{0.974391in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.313961in,y=0.916057in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=0\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.847294in}{0.729762in}}% -\pgfpathlineto{\pgfqpoint{1.013961in}{0.729762in}}% -\pgfpathlineto{\pgfqpoint{1.180627in}{0.729762in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.313961in,y=0.671429in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=1\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.847294in}{0.485133in}}% -\pgfpathlineto{\pgfqpoint{1.013961in}{0.485133in}}% -\pgfpathlineto{\pgfqpoint{1.180627in}{0.485133in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.313961in,y=0.426800in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=2\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.847294in}{0.240504in}}% -\pgfpathlineto{\pgfqpoint{1.013961in}{0.240504in}}% -\pgfpathlineto{\pgfqpoint{1.180627in}{0.240504in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.313961in,y=0.182171in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=3\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.045823in}{0.974391in}}% -\pgfpathlineto{\pgfqpoint{2.212490in}{0.974391in}}% -\pgfpathlineto{\pgfqpoint{2.379157in}{0.974391in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.512490in,y=0.916057in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=4\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.549020,0.337255,0.294118}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.045823in}{0.729762in}}% -\pgfpathlineto{\pgfqpoint{2.212490in}{0.729762in}}% -\pgfpathlineto{\pgfqpoint{2.379157in}{0.729762in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.512490in,y=0.671429in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=5\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.890196,0.466667,0.760784}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.045823in}{0.485133in}}% -\pgfpathlineto{\pgfqpoint{2.212490in}{0.485133in}}% -\pgfpathlineto{\pgfqpoint{2.379157in}{0.485133in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.512490in,y=0.426800in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=6\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.498039,0.498039,0.498039}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.045823in}{0.240504in}}% -\pgfpathlineto{\pgfqpoint{2.212490in}{0.240504in}}% -\pgfpathlineto{\pgfqpoint{2.379157in}{0.240504in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.512490in,y=0.182171in,left,base]{\color{textcolor}\sffamily\fontsize{12.000000}{14.400000}\selectfont \(\displaystyle n=7\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/rel_error_complex.pdf b/buch/papers/laguerre/images/rel_error_complex.pdf new file mode 100644 index 0000000..d23ebd1 Binary files /dev/null and b/buch/papers/laguerre/images/rel_error_complex.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_mirror.pdf b/buch/papers/laguerre/images/rel_error_mirror.pdf new file mode 100644 index 0000000..e51dd83 Binary files /dev/null and b/buch/papers/laguerre/images/rel_error_mirror.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_mirror.pgf b/buch/papers/laguerre/images/rel_error_mirror.pgf deleted file mode 100644 index 45d502e..0000000 --- a/buch/papers/laguerre/images/rel_error_mirror.pgf +++ /dev/null @@ -1,3051 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.482258in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482258in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.482258in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}15}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.213542in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.213542in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.213542in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.213542in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.944827in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.944827in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.944827in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.676111in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.676111in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.676111in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.676111in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.407396in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.407396in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.407396in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.407396in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.138680in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.138680in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.138680in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.138680in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.869965in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.869965in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.628514in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.628514in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.628514in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.774771in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.774771in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.774771in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.921028in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.921028in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.921028in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.067285in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.067285in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.067285in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.359799in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.359799in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.359799in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.506056in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.506056in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.506056in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.652313in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.652313in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.652313in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.798570in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.798570in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.798570in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.091083in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.091083in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.091083in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.237340in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.237340in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.237340in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.383597in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.383597in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.383597in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.529854in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.529854in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.529854in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.822368in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.822368in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.822368in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.968625in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.968625in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.968625in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114882in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.114882in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.114882in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.261139in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.261139in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.261139in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.553653in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.553653in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.553653in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.699909in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.699909in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.699909in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.846166in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.846166in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.846166in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.992423in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.992423in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.992423in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.284937in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.284937in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.284937in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.431194in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.431194in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.431194in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.577451in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.577451in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.577451in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.723708in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.723708in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.723708in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.676111in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.795783in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.795783in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.795783in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=0.743021in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.128292in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.128292in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.128292in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=1.075531in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.460802in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.460802in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.460802in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=1.408040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.793311in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.793311in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.793311in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=1.740550in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{2.125821in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.125821in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{2.125821in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=2.073059in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.534881in}{2.468330in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{2.410308in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{2.323241in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{2.290263in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{2.260440in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{2.234100in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{2.212190in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{2.187621in}}% -\pgfpathlineto{\pgfqpoint{2.098781in}{2.169196in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{2.148508in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{2.124676in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{2.096167in}}% -\pgfpathlineto{\pgfqpoint{2.175759in}{2.079305in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{2.059868in}}% -\pgfpathlineto{\pgfqpoint{2.197752in}{2.036671in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{2.007374in}}% -\pgfpathlineto{\pgfqpoint{2.219746in}{1.966175in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{1.888819in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{1.852553in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{1.935490in}}% -\pgfpathlineto{\pgfqpoint{2.263733in}{1.966273in}}% -\pgfpathlineto{\pgfqpoint{2.274729in}{1.982554in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{1.991421in}}% -\pgfpathlineto{\pgfqpoint{2.296723in}{1.995381in}}% -\pgfpathlineto{\pgfqpoint{2.307720in}{1.995469in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{1.992029in}}% -\pgfpathlineto{\pgfqpoint{2.329713in}{1.984911in}}% -\pgfpathlineto{\pgfqpoint{2.340710in}{1.973415in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{1.955869in}}% -\pgfpathlineto{\pgfqpoint{2.362703in}{1.928150in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{1.876035in}}% -\pgfpathlineto{\pgfqpoint{2.384697in}{1.718273in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{1.891334in}}% -\pgfpathlineto{\pgfqpoint{2.406690in}{1.936950in}}% -\pgfpathlineto{\pgfqpoint{2.417687in}{1.962930in}}% -\pgfpathlineto{\pgfqpoint{2.428684in}{1.979802in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{1.990917in}}% -\pgfpathlineto{\pgfqpoint{2.450678in}{1.997647in}}% -\pgfpathlineto{\pgfqpoint{2.461674in}{2.000526in}}% -\pgfpathlineto{\pgfqpoint{2.472671in}{1.999568in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{1.994278in}}% -\pgfpathlineto{\pgfqpoint{2.494665in}{1.983378in}}% -\pgfpathlineto{\pgfqpoint{2.505661in}{1.963807in}}% -\pgfpathlineto{\pgfqpoint{2.516658in}{1.926370in}}% -\pgfpathlineto{\pgfqpoint{2.527655in}{1.802233in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{1.906504in}}% -\pgfpathlineto{\pgfqpoint{2.549648in}{1.968180in}}% -\pgfpathlineto{\pgfqpoint{2.560645in}{2.002136in}}% -\pgfpathlineto{\pgfqpoint{2.571642in}{2.025121in}}% -\pgfpathlineto{\pgfqpoint{2.582639in}{2.041717in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{2.053754in}}% -\pgfpathlineto{\pgfqpoint{2.604632in}{2.062026in}}% -\pgfpathlineto{\pgfqpoint{2.615629in}{2.066751in}}% -\pgfpathlineto{\pgfqpoint{2.626626in}{2.067672in}}% -\pgfpathlineto{\pgfqpoint{2.637622in}{2.063874in}}% -\pgfpathlineto{\pgfqpoint{2.648619in}{2.053110in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{2.029136in}}% -\pgfpathlineto{\pgfqpoint{2.670613in}{1.962275in}}% -\pgfpathlineto{\pgfqpoint{2.681609in}{2.287874in}}% -\pgfpathlineto{\pgfqpoint{2.703603in}{2.268373in}}% -\pgfpathlineto{\pgfqpoint{2.725596in}{2.244071in}}% -\pgfpathlineto{\pgfqpoint{2.747590in}{2.213742in}}% -\pgfpathlineto{\pgfqpoint{2.758587in}{2.195581in}}% -\pgfpathlineto{\pgfqpoint{2.769584in}{2.174687in}}% -\pgfpathlineto{\pgfqpoint{2.780580in}{2.150023in}}% -\pgfpathlineto{\pgfqpoint{2.791577in}{2.119594in}}% -\pgfpathlineto{\pgfqpoint{2.802574in}{2.078703in}}% -\pgfpathlineto{\pgfqpoint{2.813571in}{2.010520in}}% -\pgfpathlineto{\pgfqpoint{2.824567in}{1.900106in}}% -\pgfpathlineto{\pgfqpoint{2.835564in}{2.018416in}}% -\pgfpathlineto{\pgfqpoint{2.846561in}{2.050303in}}% -\pgfpathlineto{\pgfqpoint{2.857558in}{2.064566in}}% -\pgfpathlineto{\pgfqpoint{2.868554in}{2.070369in}}% -\pgfpathlineto{\pgfqpoint{2.879551in}{2.070744in}}% -\pgfpathlineto{\pgfqpoint{2.890548in}{2.066944in}}% -\pgfpathlineto{\pgfqpoint{2.901545in}{2.059435in}}% -\pgfpathlineto{\pgfqpoint{2.912541in}{2.048179in}}% -\pgfpathlineto{\pgfqpoint{2.923538in}{2.032617in}}% -\pgfpathlineto{\pgfqpoint{2.934535in}{2.011350in}}% -\pgfpathlineto{\pgfqpoint{2.945532in}{1.981005in}}% -\pgfpathlineto{\pgfqpoint{2.956528in}{1.931030in}}% -\pgfpathlineto{\pgfqpoint{2.967525in}{1.753590in}}% -\pgfpathlineto{\pgfqpoint{2.978522in}{1.906932in}}% -\pgfpathlineto{\pgfqpoint{2.989519in}{1.954561in}}% -\pgfpathlineto{\pgfqpoint{3.000515in}{1.977707in}}% -\pgfpathlineto{\pgfqpoint{3.011512in}{1.990569in}}% -\pgfpathlineto{\pgfqpoint{3.022509in}{1.997247in}}% -\pgfpathlineto{\pgfqpoint{3.033506in}{1.999389in}}% -\pgfpathlineto{\pgfqpoint{3.044503in}{1.997671in}}% -\pgfpathlineto{\pgfqpoint{3.055499in}{1.992216in}}% -\pgfpathlineto{\pgfqpoint{3.066496in}{1.982655in}}% -\pgfpathlineto{\pgfqpoint{3.077493in}{1.967919in}}% -\pgfpathlineto{\pgfqpoint{3.088490in}{1.945469in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{1.908177in}}% -\pgfpathlineto{\pgfqpoint{3.110483in}{1.818345in}}% -\pgfpathlineto{\pgfqpoint{3.121480in}{1.847277in}}% -\pgfpathlineto{\pgfqpoint{3.132477in}{1.916791in}}% -\pgfpathlineto{\pgfqpoint{3.143473in}{1.949559in}}% -\pgfpathlineto{\pgfqpoint{3.154470in}{1.969729in}}% -\pgfpathlineto{\pgfqpoint{3.165467in}{1.982965in}}% -\pgfpathlineto{\pgfqpoint{3.176464in}{1.991413in}}% -\pgfpathlineto{\pgfqpoint{3.187460in}{1.995991in}}% -\pgfpathlineto{\pgfqpoint{3.198457in}{1.996990in}}% -\pgfpathlineto{\pgfqpoint{3.209454in}{1.994217in}}% -\pgfpathlineto{\pgfqpoint{3.220451in}{1.986881in}}% -\pgfpathlineto{\pgfqpoint{3.231447in}{1.973065in}}% -\pgfpathlineto{\pgfqpoint{3.242444in}{1.947748in}}% -\pgfpathlineto{\pgfqpoint{3.264438in}{1.836594in}}% -\pgfpathlineto{\pgfqpoint{3.275434in}{1.948642in}}% -\pgfpathlineto{\pgfqpoint{3.286431in}{1.995519in}}% -\pgfpathlineto{\pgfqpoint{3.297428in}{2.026825in}}% -\pgfpathlineto{\pgfqpoint{3.308425in}{2.050779in}}% -\pgfpathlineto{\pgfqpoint{3.319422in}{2.070356in}}% -\pgfpathlineto{\pgfqpoint{3.330418in}{2.086987in}}% -\pgfpathlineto{\pgfqpoint{3.352412in}{2.114313in}}% -\pgfpathlineto{\pgfqpoint{3.374405in}{2.136291in}}% -\pgfpathlineto{\pgfqpoint{3.396399in}{2.154606in}}% -\pgfpathlineto{\pgfqpoint{3.418392in}{2.170212in}}% -\pgfpathlineto{\pgfqpoint{3.440386in}{2.183713in}}% -\pgfpathlineto{\pgfqpoint{3.473376in}{2.200878in}}% -\pgfpathlineto{\pgfqpoint{3.506366in}{2.215135in}}% -\pgfpathlineto{\pgfqpoint{3.539357in}{2.227105in}}% -\pgfpathlineto{\pgfqpoint{3.583344in}{2.240242in}}% -\pgfpathlineto{\pgfqpoint{3.627331in}{2.250814in}}% -\pgfpathlineto{\pgfqpoint{3.671318in}{2.259348in}}% -\pgfpathlineto{\pgfqpoint{3.726302in}{2.267741in}}% -\pgfpathlineto{\pgfqpoint{3.792282in}{2.275225in}}% -\pgfpathlineto{\pgfqpoint{3.869260in}{2.281308in}}% -\pgfpathlineto{\pgfqpoint{3.957234in}{2.285800in}}% -\pgfpathlineto{\pgfqpoint{4.067201in}{2.289020in}}% -\pgfpathlineto{\pgfqpoint{4.221156in}{2.291054in}}% -\pgfpathlineto{\pgfqpoint{4.496075in}{2.291963in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.292072in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.292072in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{2.410760in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{2.270043in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{2.240649in}}% -\pgfpathlineto{\pgfqpoint{1.120070in}{2.212677in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{2.186340in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{2.162155in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{2.135297in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{2.111331in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{2.084526in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{2.062062in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{2.037030in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{2.008709in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{1.987478in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{1.963816in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{1.936980in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{1.905744in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{1.867808in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{1.844903in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{1.817778in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{1.783691in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{1.735362in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{1.634970in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{1.653720in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{1.713348in}}% -\pgfpathlineto{\pgfqpoint{1.680904in}{1.736454in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{1.747122in}}% -\pgfpathlineto{\pgfqpoint{1.702898in}{1.750959in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.750060in}}% -\pgfpathlineto{\pgfqpoint{1.724891in}{1.745290in}}% -\pgfpathlineto{\pgfqpoint{1.735888in}{1.736891in}}% -\pgfpathlineto{\pgfqpoint{1.746885in}{1.724621in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{1.707639in}}% -\pgfpathlineto{\pgfqpoint{1.768878in}{1.683974in}}% -\pgfpathlineto{\pgfqpoint{1.779875in}{1.648549in}}% -\pgfpathlineto{\pgfqpoint{1.801869in}{1.516139in}}% -\pgfpathlineto{\pgfqpoint{1.812865in}{1.616888in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{1.651892in}}% -\pgfpathlineto{\pgfqpoint{1.834859in}{1.670631in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{1.681175in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{1.686301in}}% -\pgfpathlineto{\pgfqpoint{1.867849in}{1.687174in}}% -\pgfpathlineto{\pgfqpoint{1.878846in}{1.684214in}}% -\pgfpathlineto{\pgfqpoint{1.889843in}{1.677342in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{1.665946in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{1.648507in}}% -\pgfpathlineto{\pgfqpoint{1.922833in}{1.621311in}}% -\pgfpathlineto{\pgfqpoint{1.933830in}{1.572170in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{0.922914in}}% -\pgfpathlineto{\pgfqpoint{1.955823in}{1.570606in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{1.618175in}}% -\pgfpathlineto{\pgfqpoint{1.977817in}{1.643784in}}% -\pgfpathlineto{\pgfqpoint{1.988814in}{1.659613in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{1.669369in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{1.674560in}}% -\pgfpathlineto{\pgfqpoint{2.021804in}{1.675792in}}% -\pgfpathlineto{\pgfqpoint{2.032801in}{1.673136in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{1.666159in}}% -\pgfpathlineto{\pgfqpoint{2.054794in}{1.653690in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{1.632939in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{1.595827in}}% -\pgfpathlineto{\pgfqpoint{2.087784in}{1.492861in}}% -\pgfpathlineto{\pgfqpoint{2.109778in}{1.620458in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{1.653259in}}% -\pgfpathlineto{\pgfqpoint{2.131771in}{1.674134in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{1.688140in}}% -\pgfpathlineto{\pgfqpoint{2.153765in}{1.697231in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{1.702223in}}% -\pgfpathlineto{\pgfqpoint{2.175759in}{1.703335in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{1.700296in}}% -\pgfpathlineto{\pgfqpoint{2.197752in}{1.692210in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{1.676943in}}% -\pgfpathlineto{\pgfqpoint{2.219746in}{1.648848in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{1.583789in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{1.559107in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{1.652992in}}% -\pgfpathlineto{\pgfqpoint{2.263733in}{1.694151in}}% -\pgfpathlineto{\pgfqpoint{2.274729in}{1.720290in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{1.738543in}}% -\pgfpathlineto{\pgfqpoint{2.296723in}{1.751458in}}% -\pgfpathlineto{\pgfqpoint{2.307720in}{1.760107in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{1.764865in}}% -\pgfpathlineto{\pgfqpoint{2.329713in}{1.765614in}}% -\pgfpathlineto{\pgfqpoint{2.340710in}{1.761681in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{1.751422in}}% -\pgfpathlineto{\pgfqpoint{2.362703in}{1.730736in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{1.685427in}}% -\pgfpathlineto{\pgfqpoint{2.384697in}{1.534265in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{1.713742in}}% -\pgfpathlineto{\pgfqpoint{2.406690in}{1.765610in}}% -\pgfpathlineto{\pgfqpoint{2.417687in}{1.797700in}}% -\pgfpathlineto{\pgfqpoint{2.428684in}{1.820556in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{1.837547in}}% -\pgfpathlineto{\pgfqpoint{2.450678in}{1.850061in}}% -\pgfpathlineto{\pgfqpoint{2.461674in}{1.858644in}}% -\pgfpathlineto{\pgfqpoint{2.472671in}{1.863322in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{1.863608in}}% -\pgfpathlineto{\pgfqpoint{2.494665in}{1.858230in}}% -\pgfpathlineto{\pgfqpoint{2.505661in}{1.844128in}}% -\pgfpathlineto{\pgfqpoint{2.516658in}{1.812109in}}% -\pgfpathlineto{\pgfqpoint{2.527655in}{1.693333in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{1.802901in}}% -\pgfpathlineto{\pgfqpoint{2.549648in}{1.869801in}}% -\pgfpathlineto{\pgfqpoint{2.560645in}{1.908895in}}% -\pgfpathlineto{\pgfqpoint{2.571642in}{1.936918in}}% -\pgfpathlineto{\pgfqpoint{2.582639in}{1.958434in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{1.975261in}}% -\pgfpathlineto{\pgfqpoint{2.604632in}{1.988170in}}% -\pgfpathlineto{\pgfqpoint{2.615629in}{1.997368in}}% -\pgfpathlineto{\pgfqpoint{2.626626in}{2.002580in}}% -\pgfpathlineto{\pgfqpoint{2.637622in}{2.002879in}}% -\pgfpathlineto{\pgfqpoint{2.648619in}{1.996005in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{1.975709in}}% -\pgfpathlineto{\pgfqpoint{2.670613in}{1.912304in}}% -\pgfpathlineto{\pgfqpoint{2.681609in}{2.286279in}}% -\pgfpathlineto{\pgfqpoint{2.703603in}{2.260179in}}% -\pgfpathlineto{\pgfqpoint{2.725596in}{2.228979in}}% -\pgfpathlineto{\pgfqpoint{2.747590in}{2.191492in}}% -\pgfpathlineto{\pgfqpoint{2.758587in}{2.169661in}}% -\pgfpathlineto{\pgfqpoint{2.769584in}{2.145041in}}% -\pgfpathlineto{\pgfqpoint{2.780580in}{2.116593in}}% -\pgfpathlineto{\pgfqpoint{2.791577in}{2.082324in}}% -\pgfpathlineto{\pgfqpoint{2.802574in}{2.037536in}}% -\pgfpathlineto{\pgfqpoint{2.813571in}{1.965398in}}% -\pgfpathlineto{\pgfqpoint{2.824567in}{1.850973in}}% -\pgfpathlineto{\pgfqpoint{2.835564in}{1.965212in}}% -\pgfpathlineto{\pgfqpoint{2.846561in}{1.992969in}}% -\pgfpathlineto{\pgfqpoint{2.857558in}{2.003040in}}% -\pgfpathlineto{\pgfqpoint{2.868554in}{2.004587in}}% -\pgfpathlineto{\pgfqpoint{2.879551in}{2.000641in}}% -\pgfpathlineto{\pgfqpoint{2.890548in}{1.992452in}}% -\pgfpathlineto{\pgfqpoint{2.901545in}{1.980484in}}% -\pgfpathlineto{\pgfqpoint{2.912541in}{1.964697in}}% -\pgfpathlineto{\pgfqpoint{2.923538in}{1.944528in}}% -\pgfpathlineto{\pgfqpoint{2.934535in}{1.918576in}}% -\pgfpathlineto{\pgfqpoint{2.945532in}{1.883463in}}% -\pgfpathlineto{\pgfqpoint{2.956528in}{1.828635in}}% -\pgfpathlineto{\pgfqpoint{2.967525in}{1.646254in}}% -\pgfpathlineto{\pgfqpoint{2.978522in}{1.794561in}}% -\pgfpathlineto{\pgfqpoint{2.989519in}{1.837058in}}% -\pgfpathlineto{\pgfqpoint{3.000515in}{1.854970in}}% -\pgfpathlineto{\pgfqpoint{3.011512in}{1.862490in}}% -\pgfpathlineto{\pgfqpoint{3.022509in}{1.863715in}}% -\pgfpathlineto{\pgfqpoint{3.033506in}{1.860286in}}% -\pgfpathlineto{\pgfqpoint{3.044503in}{1.852874in}}% -\pgfpathlineto{\pgfqpoint{3.055499in}{1.841594in}}% -\pgfpathlineto{\pgfqpoint{3.066496in}{1.826070in}}% -\pgfpathlineto{\pgfqpoint{3.077493in}{1.805227in}}% -\pgfpathlineto{\pgfqpoint{3.088490in}{1.776515in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{1.732801in}}% -\pgfpathlineto{\pgfqpoint{3.110483in}{1.636375in}}% -\pgfpathlineto{\pgfqpoint{3.121480in}{1.658528in}}% -\pgfpathlineto{\pgfqpoint{3.132477in}{1.721071in}}% -\pgfpathlineto{\pgfqpoint{3.143473in}{1.746660in}}% -\pgfpathlineto{\pgfqpoint{3.154470in}{1.759428in}}% -\pgfpathlineto{\pgfqpoint{3.165467in}{1.765025in}}% -\pgfpathlineto{\pgfqpoint{3.176464in}{1.765578in}}% -\pgfpathlineto{\pgfqpoint{3.187460in}{1.761986in}}% -\pgfpathlineto{\pgfqpoint{3.198457in}{1.754515in}}% -\pgfpathlineto{\pgfqpoint{3.209454in}{1.742947in}}% -\pgfpathlineto{\pgfqpoint{3.220451in}{1.726463in}}% -\pgfpathlineto{\pgfqpoint{3.231447in}{1.703108in}}% -\pgfpathlineto{\pgfqpoint{3.242444in}{1.667823in}}% -\pgfpathlineto{\pgfqpoint{3.264438in}{1.535239in}}% -\pgfpathlineto{\pgfqpoint{3.275434in}{1.635700in}}% -\pgfpathlineto{\pgfqpoint{3.286431in}{1.670295in}}% -\pgfpathlineto{\pgfqpoint{3.297428in}{1.688518in}}% -\pgfpathlineto{\pgfqpoint{3.308425in}{1.698445in}}% -\pgfpathlineto{\pgfqpoint{3.319422in}{1.702864in}}% -\pgfpathlineto{\pgfqpoint{3.330418in}{1.702946in}}% -\pgfpathlineto{\pgfqpoint{3.341415in}{1.699120in}}% -\pgfpathlineto{\pgfqpoint{3.352412in}{1.691314in}}% -\pgfpathlineto{\pgfqpoint{3.363409in}{1.678921in}}% -\pgfpathlineto{\pgfqpoint{3.374405in}{1.660431in}}% -\pgfpathlineto{\pgfqpoint{3.385402in}{1.632133in}}% -\pgfpathlineto{\pgfqpoint{3.396399in}{1.581847in}}% -\pgfpathlineto{\pgfqpoint{3.407396in}{0.524177in}}% -\pgfpathlineto{\pgfqpoint{3.418392in}{1.577882in}}% -\pgfpathlineto{\pgfqpoint{3.429389in}{1.624206in}}% -\pgfpathlineto{\pgfqpoint{3.440386in}{1.648547in}}% -\pgfpathlineto{\pgfqpoint{3.451383in}{1.663089in}}% -\pgfpathlineto{\pgfqpoint{3.462379in}{1.671545in}}% -\pgfpathlineto{\pgfqpoint{3.473376in}{1.675427in}}% -\pgfpathlineto{\pgfqpoint{3.484373in}{1.675347in}}% -\pgfpathlineto{\pgfqpoint{3.495370in}{1.671379in}}% -\pgfpathlineto{\pgfqpoint{3.506366in}{1.663096in}}% -\pgfpathlineto{\pgfqpoint{3.517363in}{1.649332in}}% -\pgfpathlineto{\pgfqpoint{3.528360in}{1.627302in}}% -\pgfpathlineto{\pgfqpoint{3.539357in}{1.588931in}}% -\pgfpathlineto{\pgfqpoint{3.550353in}{1.484732in}}% -\pgfpathlineto{\pgfqpoint{3.572347in}{1.609963in}}% -\pgfpathlineto{\pgfqpoint{3.583344in}{1.641642in}}% -\pgfpathlineto{\pgfqpoint{3.594341in}{1.661443in}}% -\pgfpathlineto{\pgfqpoint{3.605337in}{1.674431in}}% -\pgfpathlineto{\pgfqpoint{3.616334in}{1.682563in}}% -\pgfpathlineto{\pgfqpoint{3.627331in}{1.686666in}}% -\pgfpathlineto{\pgfqpoint{3.638328in}{1.686963in}}% -\pgfpathlineto{\pgfqpoint{3.649324in}{1.683193in}}% -\pgfpathlineto{\pgfqpoint{3.660321in}{1.674466in}}% -\pgfpathlineto{\pgfqpoint{3.671318in}{1.658658in}}% -\pgfpathlineto{\pgfqpoint{3.682315in}{1.630130in}}% -\pgfpathlineto{\pgfqpoint{3.693311in}{1.564756in}}% -\pgfpathlineto{\pgfqpoint{3.704308in}{1.539887in}}% -\pgfpathlineto{\pgfqpoint{3.715305in}{1.633725in}}% -\pgfpathlineto{\pgfqpoint{3.726302in}{1.674989in}}% -\pgfpathlineto{\pgfqpoint{3.737298in}{1.701400in}}% -\pgfpathlineto{\pgfqpoint{3.748295in}{1.720107in}}% -\pgfpathlineto{\pgfqpoint{3.759292in}{1.733672in}}% -\pgfpathlineto{\pgfqpoint{3.770289in}{1.743189in}}% -\pgfpathlineto{\pgfqpoint{3.781285in}{1.749054in}}% -\pgfpathlineto{\pgfqpoint{3.792282in}{1.751172in}}% -\pgfpathlineto{\pgfqpoint{3.803279in}{1.748899in}}% -\pgfpathlineto{\pgfqpoint{3.814276in}{1.740623in}}% -\pgfpathlineto{\pgfqpoint{3.825272in}{1.722283in}}% -\pgfpathlineto{\pgfqpoint{3.836269in}{1.679727in}}% -\pgfpathlineto{\pgfqpoint{3.847266in}{1.531779in}}% -\pgfpathlineto{\pgfqpoint{3.858263in}{1.715001in}}% -\pgfpathlineto{\pgfqpoint{3.869260in}{1.771225in}}% -\pgfpathlineto{\pgfqpoint{3.880256in}{1.808385in}}% -\pgfpathlineto{\pgfqpoint{3.891253in}{1.837162in}}% -\pgfpathlineto{\pgfqpoint{3.902250in}{1.861100in}}% -\pgfpathlineto{\pgfqpoint{3.924243in}{1.900242in}}% -\pgfpathlineto{\pgfqpoint{3.946237in}{1.932119in}}% -\pgfpathlineto{\pgfqpoint{3.968230in}{1.959293in}}% -\pgfpathlineto{\pgfqpoint{3.990224in}{1.983092in}}% -\pgfpathlineto{\pgfqpoint{4.012217in}{2.004303in}}% -\pgfpathlineto{\pgfqpoint{4.045208in}{2.032354in}}% -\pgfpathlineto{\pgfqpoint{4.078198in}{2.056851in}}% -\pgfpathlineto{\pgfqpoint{4.111188in}{2.078528in}}% -\pgfpathlineto{\pgfqpoint{4.144178in}{2.097887in}}% -\pgfpathlineto{\pgfqpoint{4.188166in}{2.120717in}}% -\pgfpathlineto{\pgfqpoint{4.232153in}{2.140708in}}% -\pgfpathlineto{\pgfqpoint{4.276140in}{2.158325in}}% -\pgfpathlineto{\pgfqpoint{4.331123in}{2.177533in}}% -\pgfpathlineto{\pgfqpoint{4.386107in}{2.194101in}}% -\pgfpathlineto{\pgfqpoint{4.441091in}{2.208430in}}% -\pgfpathlineto{\pgfqpoint{4.507072in}{2.223114in}}% -\pgfpathlineto{\pgfqpoint{4.573052in}{2.235471in}}% -\pgfpathlineto{\pgfqpoint{4.650029in}{2.247413in}}% -\pgfpathlineto{\pgfqpoint{4.727007in}{2.257119in}}% -\pgfpathlineto{\pgfqpoint{4.814981in}{2.265949in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.270438in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.270438in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{2.096171in}}% -\pgfpathlineto{\pgfqpoint{0.537241in}{2.072200in}}% -\pgfpathlineto{\pgfqpoint{0.592225in}{2.045920in}}% -\pgfpathlineto{\pgfqpoint{0.647209in}{2.016869in}}% -\pgfpathlineto{\pgfqpoint{0.691196in}{1.991240in}}% -\pgfpathlineto{\pgfqpoint{0.735183in}{1.963066in}}% -\pgfpathlineto{\pgfqpoint{0.779170in}{1.931828in}}% -\pgfpathlineto{\pgfqpoint{0.812160in}{1.905970in}}% -\pgfpathlineto{\pgfqpoint{0.845151in}{1.877583in}}% -\pgfpathlineto{\pgfqpoint{0.878141in}{1.846096in}}% -\pgfpathlineto{\pgfqpoint{0.911131in}{1.810672in}}% -\pgfpathlineto{\pgfqpoint{0.933125in}{1.784240in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{1.754860in}}% -\pgfpathlineto{\pgfqpoint{0.977112in}{1.721547in}}% -\pgfpathlineto{\pgfqpoint{0.999105in}{1.682552in}}% -\pgfpathlineto{\pgfqpoint{1.010102in}{1.659920in}}% -\pgfpathlineto{\pgfqpoint{1.021099in}{1.634178in}}% -\pgfpathlineto{\pgfqpoint{1.032096in}{1.603800in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{1.565541in}}% -\pgfpathlineto{\pgfqpoint{1.054089in}{1.510065in}}% -\pgfpathlineto{\pgfqpoint{1.065086in}{1.368423in}}% -\pgfpathlineto{\pgfqpoint{1.076083in}{1.455624in}}% -\pgfpathlineto{\pgfqpoint{1.087079in}{1.500578in}}% -\pgfpathlineto{\pgfqpoint{1.098076in}{1.518081in}}% -\pgfpathlineto{\pgfqpoint{1.109073in}{1.524804in}}% -\pgfpathlineto{\pgfqpoint{1.120070in}{1.525255in}}% -\pgfpathlineto{\pgfqpoint{1.131066in}{1.521191in}}% -\pgfpathlineto{\pgfqpoint{1.142063in}{1.513326in}}% -\pgfpathlineto{\pgfqpoint{1.153060in}{1.501802in}}% -\pgfpathlineto{\pgfqpoint{1.164057in}{1.486277in}}% -\pgfpathlineto{\pgfqpoint{1.175053in}{1.465746in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{1.437864in}}% -\pgfpathlineto{\pgfqpoint{1.197047in}{1.396283in}}% -\pgfpathlineto{\pgfqpoint{1.208044in}{1.311200in}}% -\pgfpathlineto{\pgfqpoint{1.219040in}{1.304398in}}% -\pgfpathlineto{\pgfqpoint{1.230037in}{1.375864in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{1.403793in}}% -\pgfpathlineto{\pgfqpoint{1.252031in}{1.417960in}}% -\pgfpathlineto{\pgfqpoint{1.263027in}{1.424689in}}% -\pgfpathlineto{\pgfqpoint{1.274024in}{1.426298in}}% -\pgfpathlineto{\pgfqpoint{1.285021in}{1.423762in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{1.417393in}}% -\pgfpathlineto{\pgfqpoint{1.307014in}{1.407017in}}% -\pgfpathlineto{\pgfqpoint{1.318011in}{1.391882in}}% -\pgfpathlineto{\pgfqpoint{1.329008in}{1.370190in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{1.337389in}}% -\pgfpathlineto{\pgfqpoint{1.351002in}{1.276750in}}% -\pgfpathlineto{\pgfqpoint{1.361998in}{1.173419in}}% -\pgfpathlineto{\pgfqpoint{1.372995in}{1.298409in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{1.336621in}}% -\pgfpathlineto{\pgfqpoint{1.394989in}{1.356892in}}% -\pgfpathlineto{\pgfqpoint{1.405985in}{1.368417in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{1.374252in}}% -\pgfpathlineto{\pgfqpoint{1.427979in}{1.375668in}}% -\pgfpathlineto{\pgfqpoint{1.438976in}{1.373149in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{1.366666in}}% -\pgfpathlineto{\pgfqpoint{1.460969in}{1.355672in}}% -\pgfpathlineto{\pgfqpoint{1.471966in}{1.338776in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{1.312610in}}% -\pgfpathlineto{\pgfqpoint{1.493959in}{1.266625in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{1.092992in}}% -\pgfpathlineto{\pgfqpoint{1.515953in}{1.249958in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{1.301028in}}% -\pgfpathlineto{\pgfqpoint{1.537946in}{1.327434in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{1.343371in}}% -\pgfpathlineto{\pgfqpoint{1.559940in}{1.352940in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{1.357785in}}% -\pgfpathlineto{\pgfqpoint{1.581933in}{1.358578in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{1.355438in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{1.347990in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{1.335161in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{1.314403in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{1.278582in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{1.189991in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{1.219923in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{1.290187in}}% -\pgfpathlineto{\pgfqpoint{1.680904in}{1.323441in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{1.343820in}}% -\pgfpathlineto{\pgfqpoint{1.702898in}{1.356971in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.365025in}}% -\pgfpathlineto{\pgfqpoint{1.724891in}{1.368879in}}% -\pgfpathlineto{\pgfqpoint{1.735888in}{1.368801in}}% -\pgfpathlineto{\pgfqpoint{1.746885in}{1.364571in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{1.355371in}}% -\pgfpathlineto{\pgfqpoint{1.768878in}{1.339246in}}% -\pgfpathlineto{\pgfqpoint{1.779875in}{1.311137in}}% -\pgfpathlineto{\pgfqpoint{1.801869in}{1.192742in}}% -\pgfpathlineto{\pgfqpoint{1.812865in}{1.300215in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{1.341768in}}% -\pgfpathlineto{\pgfqpoint{1.834859in}{1.366892in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{1.383664in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{1.394872in}}% -\pgfpathlineto{\pgfqpoint{1.867849in}{1.401685in}}% -\pgfpathlineto{\pgfqpoint{1.878846in}{1.404532in}}% -\pgfpathlineto{\pgfqpoint{1.889843in}{1.403341in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{1.397503in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{1.385507in}}% -\pgfpathlineto{\pgfqpoint{1.922833in}{1.363642in}}% -\pgfpathlineto{\pgfqpoint{1.933830in}{1.319726in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{0.922665in}}% -\pgfpathlineto{\pgfqpoint{1.955823in}{1.328308in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{1.380807in}}% -\pgfpathlineto{\pgfqpoint{1.977817in}{1.411254in}}% -\pgfpathlineto{\pgfqpoint{1.988814in}{1.431834in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{1.446256in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{1.456031in}}% -\pgfpathlineto{\pgfqpoint{2.021804in}{1.461769in}}% -\pgfpathlineto{\pgfqpoint{2.032801in}{1.463542in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{1.460922in}}% -\pgfpathlineto{\pgfqpoint{2.054794in}{1.452738in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{1.436203in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{1.403242in}}% -\pgfpathlineto{\pgfqpoint{2.087784in}{1.304362in}}% -\pgfpathlineto{\pgfqpoint{2.109778in}{1.439949in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{1.476656in}}% -\pgfpathlineto{\pgfqpoint{2.131771in}{1.501382in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{1.519185in}}% -\pgfpathlineto{\pgfqpoint{2.153765in}{1.532019in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{1.540705in}}% -\pgfpathlineto{\pgfqpoint{2.175759in}{1.545461in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{1.546020in}}% -\pgfpathlineto{\pgfqpoint{2.197752in}{1.541484in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{1.529723in}}% -\pgfpathlineto{\pgfqpoint{2.219746in}{1.505090in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{1.443450in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{1.422146in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{1.519367in}}% -\pgfpathlineto{\pgfqpoint{2.263733in}{1.563822in}}% -\pgfpathlineto{\pgfqpoint{2.274729in}{1.593219in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{1.614690in}}% -\pgfpathlineto{\pgfqpoint{2.296723in}{1.630784in}}% -\pgfpathlineto{\pgfqpoint{2.307720in}{1.642575in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{1.650438in}}% -\pgfpathlineto{\pgfqpoint{2.329713in}{1.654255in}}% -\pgfpathlineto{\pgfqpoint{2.340710in}{1.653354in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{1.646090in}}% -\pgfpathlineto{\pgfqpoint{2.362703in}{1.628365in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{1.585982in}}% -\pgfpathlineto{\pgfqpoint{2.384697in}{1.437712in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{1.620049in}}% -\pgfpathlineto{\pgfqpoint{2.406690in}{1.674746in}}% -\pgfpathlineto{\pgfqpoint{2.417687in}{1.709635in}}% -\pgfpathlineto{\pgfqpoint{2.428684in}{1.735262in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{1.754998in}}% -\pgfpathlineto{\pgfqpoint{2.450678in}{1.770232in}}% -\pgfpathlineto{\pgfqpoint{2.461674in}{1.781513in}}% -\pgfpathlineto{\pgfqpoint{2.472671in}{1.788869in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{1.791816in}}% -\pgfpathlineto{\pgfqpoint{2.494665in}{1.789084in}}% -\pgfpathlineto{\pgfqpoint{2.505661in}{1.777614in}}% -\pgfpathlineto{\pgfqpoint{2.516658in}{1.748214in}}% -\pgfpathlineto{\pgfqpoint{2.527655in}{1.632047in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{1.744213in}}% -\pgfpathlineto{\pgfqpoint{2.549648in}{1.813700in}}% -\pgfpathlineto{\pgfqpoint{2.560645in}{1.855368in}}% -\pgfpathlineto{\pgfqpoint{2.571642in}{1.885948in}}% -\pgfpathlineto{\pgfqpoint{2.582639in}{1.910004in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{1.929343in}}% -\pgfpathlineto{\pgfqpoint{2.604632in}{1.944734in}}% -\pgfpathlineto{\pgfqpoint{2.615629in}{1.956374in}}% -\pgfpathlineto{\pgfqpoint{2.626626in}{1.963980in}}% -\pgfpathlineto{\pgfqpoint{2.637622in}{1.966616in}}% -\pgfpathlineto{\pgfqpoint{2.648619in}{1.962011in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{1.943908in}}% -\pgfpathlineto{\pgfqpoint{2.670613in}{1.882610in}}% -\pgfpathlineto{\pgfqpoint{2.681609in}{2.285279in}}% -\pgfpathlineto{\pgfqpoint{2.703603in}{2.255100in}}% -\pgfpathlineto{\pgfqpoint{2.725596in}{2.219712in}}% -\pgfpathlineto{\pgfqpoint{2.747590in}{2.177946in}}% -\pgfpathlineto{\pgfqpoint{2.758587in}{2.153945in}}% -\pgfpathlineto{\pgfqpoint{2.769584in}{2.127134in}}% -\pgfpathlineto{\pgfqpoint{2.780580in}{2.096478in}}% -\pgfpathlineto{\pgfqpoint{2.791577in}{2.059981in}}% -\pgfpathlineto{\pgfqpoint{2.802574in}{2.012948in}}% -\pgfpathlineto{\pgfqpoint{2.813571in}{1.938547in}}% -\pgfpathlineto{\pgfqpoint{2.824567in}{1.821840in}}% -\pgfpathlineto{\pgfqpoint{2.835564in}{1.933780in}}% -\pgfpathlineto{\pgfqpoint{2.846561in}{1.959219in}}% -\pgfpathlineto{\pgfqpoint{2.857558in}{1.966953in}}% -\pgfpathlineto{\pgfqpoint{2.868554in}{1.966146in}}% -\pgfpathlineto{\pgfqpoint{2.879551in}{1.959827in}}% -\pgfpathlineto{\pgfqpoint{2.890548in}{1.949246in}}% -\pgfpathlineto{\pgfqpoint{2.901545in}{1.934868in}}% -\pgfpathlineto{\pgfqpoint{2.912541in}{1.916649in}}% -\pgfpathlineto{\pgfqpoint{2.923538in}{1.894029in}}% -\pgfpathlineto{\pgfqpoint{2.934535in}{1.865606in}}% -\pgfpathlineto{\pgfqpoint{2.945532in}{1.828001in}}% -\pgfpathlineto{\pgfqpoint{2.956528in}{1.770660in}}% -\pgfpathlineto{\pgfqpoint{2.967525in}{1.585743in}}% -\pgfpathlineto{\pgfqpoint{2.978522in}{1.731493in}}% -\pgfpathlineto{\pgfqpoint{2.989519in}{1.771409in}}% -\pgfpathlineto{\pgfqpoint{3.000515in}{1.786718in}}% -\pgfpathlineto{\pgfqpoint{3.011512in}{1.791611in}}% -\pgfpathlineto{\pgfqpoint{3.022509in}{1.790185in}}% -\pgfpathlineto{\pgfqpoint{3.033506in}{1.784080in}}% -\pgfpathlineto{\pgfqpoint{3.044503in}{1.773966in}}% -\pgfpathlineto{\pgfqpoint{3.055499in}{1.759959in}}% -\pgfpathlineto{\pgfqpoint{3.066496in}{1.741680in}}% -\pgfpathlineto{\pgfqpoint{3.077493in}{1.718056in}}% -\pgfpathlineto{\pgfqpoint{3.088490in}{1.686535in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{1.639983in}}% -\pgfpathlineto{\pgfqpoint{3.110483in}{1.540689in}}% -\pgfpathlineto{\pgfqpoint{3.121480in}{1.559946in}}% -\pgfpathlineto{\pgfqpoint{3.132477in}{1.619561in}}% -\pgfpathlineto{\pgfqpoint{3.143473in}{1.642191in}}% -\pgfpathlineto{\pgfqpoint{3.154470in}{1.651968in}}% -\pgfpathlineto{\pgfqpoint{3.165467in}{1.654541in}}% -\pgfpathlineto{\pgfqpoint{3.176464in}{1.652036in}}% -\pgfpathlineto{\pgfqpoint{3.187460in}{1.645352in}}% -\pgfpathlineto{\pgfqpoint{3.198457in}{1.634754in}}% -\pgfpathlineto{\pgfqpoint{3.209454in}{1.620023in}}% -\pgfpathlineto{\pgfqpoint{3.220451in}{1.600338in}}% -\pgfpathlineto{\pgfqpoint{3.231447in}{1.573744in}}% -\pgfpathlineto{\pgfqpoint{3.242444in}{1.535181in}}% -\pgfpathlineto{\pgfqpoint{3.264438in}{1.395920in}}% -\pgfpathlineto{\pgfqpoint{3.275434in}{1.492979in}}% -\pgfpathlineto{\pgfqpoint{3.286431in}{1.524130in}}% -\pgfpathlineto{\pgfqpoint{3.297428in}{1.538864in}}% -\pgfpathlineto{\pgfqpoint{3.308425in}{1.545256in}}% -\pgfpathlineto{\pgfqpoint{3.319422in}{1.546093in}}% -\pgfpathlineto{\pgfqpoint{3.330418in}{1.542545in}}% -\pgfpathlineto{\pgfqpoint{3.341415in}{1.535039in}}% -\pgfpathlineto{\pgfqpoint{3.352412in}{1.523503in}}% -\pgfpathlineto{\pgfqpoint{3.363409in}{1.507327in}}% -\pgfpathlineto{\pgfqpoint{3.374405in}{1.484999in}}% -\pgfpathlineto{\pgfqpoint{3.385402in}{1.452808in}}% -\pgfpathlineto{\pgfqpoint{3.396399in}{1.398571in}}% -\pgfpathlineto{\pgfqpoint{3.406190in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.408615in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.418392in}{1.386526in}}% -\pgfpathlineto{\pgfqpoint{3.429389in}{1.428716in}}% -\pgfpathlineto{\pgfqpoint{3.440386in}{1.448858in}}% -\pgfpathlineto{\pgfqpoint{3.451383in}{1.459133in}}% -\pgfpathlineto{\pgfqpoint{3.462379in}{1.463253in}}% -\pgfpathlineto{\pgfqpoint{3.473376in}{1.462727in}}% -\pgfpathlineto{\pgfqpoint{3.484373in}{1.458165in}}% -\pgfpathlineto{\pgfqpoint{3.495370in}{1.449637in}}% -\pgfpathlineto{\pgfqpoint{3.506366in}{1.436714in}}% -\pgfpathlineto{\pgfqpoint{3.517363in}{1.418227in}}% -\pgfpathlineto{\pgfqpoint{3.528360in}{1.391387in}}% -\pgfpathlineto{\pgfqpoint{3.539357in}{1.348118in}}% -\pgfpathlineto{\pgfqpoint{3.550353in}{1.238927in}}% -\pgfpathlineto{\pgfqpoint{3.572347in}{1.353878in}}% -\pgfpathlineto{\pgfqpoint{3.583344in}{1.380261in}}% -\pgfpathlineto{\pgfqpoint{3.594341in}{1.394657in}}% -\pgfpathlineto{\pgfqpoint{3.605337in}{1.402123in}}% -\pgfpathlineto{\pgfqpoint{3.616334in}{1.404614in}}% -\pgfpathlineto{\pgfqpoint{3.627331in}{1.402950in}}% -\pgfpathlineto{\pgfqpoint{3.638328in}{1.397347in}}% -\pgfpathlineto{\pgfqpoint{3.649324in}{1.387538in}}% -\pgfpathlineto{\pgfqpoint{3.660321in}{1.372625in}}% -\pgfpathlineto{\pgfqpoint{3.671318in}{1.350477in}}% -\pgfpathlineto{\pgfqpoint{3.682315in}{1.315447in}}% -\pgfpathlineto{\pgfqpoint{3.693311in}{1.243398in}}% -\pgfpathlineto{\pgfqpoint{3.704308in}{1.211672in}}% -\pgfpathlineto{\pgfqpoint{3.715305in}{1.298459in}}% -\pgfpathlineto{\pgfqpoint{3.726302in}{1.332466in}}% -\pgfpathlineto{\pgfqpoint{3.737298in}{1.351399in}}% -\pgfpathlineto{\pgfqpoint{3.748295in}{1.362392in}}% -\pgfpathlineto{\pgfqpoint{3.759292in}{1.367991in}}% -\pgfpathlineto{\pgfqpoint{3.770289in}{1.369269in}}% -\pgfpathlineto{\pgfqpoint{3.781285in}{1.366601in}}% -\pgfpathlineto{\pgfqpoint{3.792282in}{1.359866in}}% -\pgfpathlineto{\pgfqpoint{3.803279in}{1.348392in}}% -\pgfpathlineto{\pgfqpoint{3.814276in}{1.330533in}}% -\pgfpathlineto{\pgfqpoint{3.825272in}{1.302188in}}% -\pgfpathlineto{\pgfqpoint{3.836269in}{1.249161in}}% -\pgfpathlineto{\pgfqpoint{3.847266in}{1.090218in}}% -\pgfpathlineto{\pgfqpoint{3.858263in}{1.261856in}}% -\pgfpathlineto{\pgfqpoint{3.869260in}{1.305823in}}% -\pgfpathlineto{\pgfqpoint{3.880256in}{1.329949in}}% -\pgfpathlineto{\pgfqpoint{3.891253in}{1.344782in}}% -\pgfpathlineto{\pgfqpoint{3.902250in}{1.353688in}}% -\pgfpathlineto{\pgfqpoint{3.913247in}{1.358056in}}% -\pgfpathlineto{\pgfqpoint{3.924243in}{1.358433in}}% -\pgfpathlineto{\pgfqpoint{3.935240in}{1.354846in}}% -\pgfpathlineto{\pgfqpoint{3.946237in}{1.346809in}}% -\pgfpathlineto{\pgfqpoint{3.957234in}{1.333050in}}% -\pgfpathlineto{\pgfqpoint{3.968230in}{1.310510in}}% -\pgfpathlineto{\pgfqpoint{3.979227in}{1.269993in}}% -\pgfpathlineto{\pgfqpoint{3.990224in}{1.142660in}}% -\pgfpathlineto{\pgfqpoint{4.001221in}{1.243608in}}% -\pgfpathlineto{\pgfqpoint{4.012217in}{1.301819in}}% -\pgfpathlineto{\pgfqpoint{4.023214in}{1.332149in}}% -\pgfpathlineto{\pgfqpoint{4.034211in}{1.351321in}}% -\pgfpathlineto{\pgfqpoint{4.045208in}{1.363884in}}% -\pgfpathlineto{\pgfqpoint{4.056204in}{1.371634in}}% -\pgfpathlineto{\pgfqpoint{4.067201in}{1.375318in}}% -\pgfpathlineto{\pgfqpoint{4.078198in}{1.375108in}}% -\pgfpathlineto{\pgfqpoint{4.089195in}{1.370687in}}% -\pgfpathlineto{\pgfqpoint{4.100191in}{1.361075in}}% -\pgfpathlineto{\pgfqpoint{4.111188in}{1.343949in}}% -\pgfpathlineto{\pgfqpoint{4.122185in}{1.312980in}}% -\pgfpathlineto{\pgfqpoint{4.133182in}{1.238385in}}% -\pgfpathlineto{\pgfqpoint{4.144178in}{1.241964in}}% -\pgfpathlineto{\pgfqpoint{4.155175in}{1.323721in}}% -\pgfpathlineto{\pgfqpoint{4.166172in}{1.361866in}}% -\pgfpathlineto{\pgfqpoint{4.177169in}{1.386190in}}% -\pgfpathlineto{\pgfqpoint{4.188166in}{1.403030in}}% -\pgfpathlineto{\pgfqpoint{4.199162in}{1.414722in}}% -\pgfpathlineto{\pgfqpoint{4.210159in}{1.422252in}}% -\pgfpathlineto{\pgfqpoint{4.221156in}{1.425947in}}% -\pgfpathlineto{\pgfqpoint{4.232153in}{1.425647in}}% -\pgfpathlineto{\pgfqpoint{4.243149in}{1.420614in}}% -\pgfpathlineto{\pgfqpoint{4.254146in}{1.409065in}}% -\pgfpathlineto{\pgfqpoint{4.265143in}{1.386460in}}% -\pgfpathlineto{\pgfqpoint{4.276140in}{1.336089in}}% -\pgfpathlineto{\pgfqpoint{4.287136in}{1.243109in}}% -\pgfpathlineto{\pgfqpoint{4.298133in}{1.378553in}}% -\pgfpathlineto{\pgfqpoint{4.309130in}{1.427339in}}% -\pgfpathlineto{\pgfqpoint{4.320127in}{1.458322in}}% -\pgfpathlineto{\pgfqpoint{4.331123in}{1.480714in}}% -\pgfpathlineto{\pgfqpoint{4.342120in}{1.497596in}}% -\pgfpathlineto{\pgfqpoint{4.353117in}{1.510260in}}% -\pgfpathlineto{\pgfqpoint{4.364114in}{1.519216in}}% -\pgfpathlineto{\pgfqpoint{4.375110in}{1.524465in}}% -\pgfpathlineto{\pgfqpoint{4.386107in}{1.525490in}}% -\pgfpathlineto{\pgfqpoint{4.397104in}{1.520937in}}% -\pgfpathlineto{\pgfqpoint{4.408101in}{1.507479in}}% -\pgfpathlineto{\pgfqpoint{4.419097in}{1.474617in}}% -\pgfpathlineto{\pgfqpoint{4.430094in}{1.314577in}}% -\pgfpathlineto{\pgfqpoint{4.441091in}{1.485673in}}% -\pgfpathlineto{\pgfqpoint{4.452088in}{1.551495in}}% -\pgfpathlineto{\pgfqpoint{4.463085in}{1.593377in}}% -\pgfpathlineto{\pgfqpoint{4.474081in}{1.625643in}}% -\pgfpathlineto{\pgfqpoint{4.485078in}{1.652565in}}% -\pgfpathlineto{\pgfqpoint{4.507072in}{1.696993in}}% -\pgfpathlineto{\pgfqpoint{4.529065in}{1.733708in}}% -\pgfpathlineto{\pgfqpoint{4.551059in}{1.765480in}}% -\pgfpathlineto{\pgfqpoint{4.573052in}{1.793716in}}% -\pgfpathlineto{\pgfqpoint{4.595046in}{1.819246in}}% -\pgfpathlineto{\pgfqpoint{4.628036in}{1.853592in}}% -\pgfpathlineto{\pgfqpoint{4.661026in}{1.884205in}}% -\pgfpathlineto{\pgfqpoint{4.694016in}{1.911839in}}% -\pgfpathlineto{\pgfqpoint{4.727007in}{1.937013in}}% -\pgfpathlineto{\pgfqpoint{4.770994in}{1.967392in}}% -\pgfpathlineto{\pgfqpoint{4.814981in}{1.994712in}}% -\pgfpathlineto{\pgfqpoint{4.858968in}{2.019449in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.025274in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.025274in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{0.835937in}}% -\pgfpathlineto{\pgfqpoint{0.493254in}{1.256802in}}% -\pgfpathlineto{\pgfqpoint{0.504251in}{1.291493in}}% -\pgfpathlineto{\pgfqpoint{0.515248in}{1.304580in}}% -\pgfpathlineto{\pgfqpoint{0.526245in}{1.308198in}}% -\pgfpathlineto{\pgfqpoint{0.537241in}{1.306018in}}% -\pgfpathlineto{\pgfqpoint{0.548238in}{1.299517in}}% -\pgfpathlineto{\pgfqpoint{0.559235in}{1.289274in}}% -\pgfpathlineto{\pgfqpoint{0.570232in}{1.275334in}}% -\pgfpathlineto{\pgfqpoint{0.581228in}{1.257247in}}% -\pgfpathlineto{\pgfqpoint{0.592225in}{1.233822in}}% -\pgfpathlineto{\pgfqpoint{0.603222in}{1.202253in}}% -\pgfpathlineto{\pgfqpoint{0.614219in}{1.154448in}}% -\pgfpathlineto{\pgfqpoint{0.625215in}{1.040899in}}% -\pgfpathlineto{\pgfqpoint{0.647209in}{1.147619in}}% -\pgfpathlineto{\pgfqpoint{0.658206in}{1.170105in}}% -\pgfpathlineto{\pgfqpoint{0.669202in}{1.180735in}}% -\pgfpathlineto{\pgfqpoint{0.680199in}{1.184559in}}% -\pgfpathlineto{\pgfqpoint{0.691196in}{1.183522in}}% -\pgfpathlineto{\pgfqpoint{0.702193in}{1.178435in}}% -\pgfpathlineto{\pgfqpoint{0.713189in}{1.169509in}}% -\pgfpathlineto{\pgfqpoint{0.724186in}{1.156468in}}% -\pgfpathlineto{\pgfqpoint{0.735183in}{1.138408in}}% -\pgfpathlineto{\pgfqpoint{0.746180in}{1.113191in}}% -\pgfpathlineto{\pgfqpoint{0.757177in}{1.075165in}}% -\pgfpathlineto{\pgfqpoint{0.768173in}{1.000188in}}% -\pgfpathlineto{\pgfqpoint{0.779170in}{0.965596in}}% -\pgfpathlineto{\pgfqpoint{0.790167in}{1.049574in}}% -\pgfpathlineto{\pgfqpoint{0.801164in}{1.080824in}}% -\pgfpathlineto{\pgfqpoint{0.812160in}{1.097048in}}% -\pgfpathlineto{\pgfqpoint{0.823157in}{1.105375in}}% -\pgfpathlineto{\pgfqpoint{0.834154in}{1.108347in}}% -\pgfpathlineto{\pgfqpoint{0.845151in}{1.107033in}}% -\pgfpathlineto{\pgfqpoint{0.856147in}{1.101804in}}% -\pgfpathlineto{\pgfqpoint{0.867144in}{1.092536in}}% -\pgfpathlineto{\pgfqpoint{0.878141in}{1.078551in}}% -\pgfpathlineto{\pgfqpoint{0.889138in}{1.058202in}}% -\pgfpathlineto{\pgfqpoint{0.900134in}{1.027383in}}% -\pgfpathlineto{\pgfqpoint{0.911131in}{0.971895in}}% -\pgfpathlineto{\pgfqpoint{0.922128in}{0.810490in}}% -\pgfpathlineto{\pgfqpoint{0.933125in}{0.979693in}}% -\pgfpathlineto{\pgfqpoint{0.944121in}{1.021217in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{1.042901in}}% -\pgfpathlineto{\pgfqpoint{0.966115in}{1.055287in}}% -\pgfpathlineto{\pgfqpoint{0.977112in}{1.061740in}}% -\pgfpathlineto{\pgfqpoint{0.988108in}{1.063645in}}% -\pgfpathlineto{\pgfqpoint{0.999105in}{1.061546in}}% -\pgfpathlineto{\pgfqpoint{1.010102in}{1.055466in}}% -\pgfpathlineto{\pgfqpoint{1.021099in}{1.044917in}}% -\pgfpathlineto{\pgfqpoint{1.032096in}{1.028623in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{1.003523in}}% -\pgfpathlineto{\pgfqpoint{1.054089in}{0.960416in}}% -\pgfpathlineto{\pgfqpoint{1.065086in}{0.830465in}}% -\pgfpathlineto{\pgfqpoint{1.076083in}{0.928751in}}% -\pgfpathlineto{\pgfqpoint{1.087079in}{0.984265in}}% -\pgfpathlineto{\pgfqpoint{1.098076in}{1.011855in}}% -\pgfpathlineto{\pgfqpoint{1.109073in}{1.028241in}}% -\pgfpathlineto{\pgfqpoint{1.120070in}{1.037968in}}% -\pgfpathlineto{\pgfqpoint{1.131066in}{1.042829in}}% -\pgfpathlineto{\pgfqpoint{1.142063in}{1.043567in}}% -\pgfpathlineto{\pgfqpoint{1.153060in}{1.040349in}}% -\pgfpathlineto{\pgfqpoint{1.164057in}{1.032854in}}% -\pgfpathlineto{\pgfqpoint{1.175053in}{1.020100in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{0.999757in}}% -\pgfpathlineto{\pgfqpoint{1.197047in}{0.965493in}}% -\pgfpathlineto{\pgfqpoint{1.208044in}{0.887519in}}% -\pgfpathlineto{\pgfqpoint{1.219040in}{0.887632in}}% -\pgfpathlineto{\pgfqpoint{1.230037in}{0.965829in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{1.000316in}}% -\pgfpathlineto{\pgfqpoint{1.252031in}{1.020877in}}% -\pgfpathlineto{\pgfqpoint{1.263027in}{1.033844in}}% -\pgfpathlineto{\pgfqpoint{1.274024in}{1.041545in}}% -\pgfpathlineto{\pgfqpoint{1.285021in}{1.044960in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{1.044410in}}% -\pgfpathlineto{\pgfqpoint{1.307014in}{1.039726in}}% -\pgfpathlineto{\pgfqpoint{1.318011in}{1.030162in}}% -\pgfpathlineto{\pgfqpoint{1.329008in}{1.013925in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{0.986467in}}% -\pgfpathlineto{\pgfqpoint{1.351002in}{0.931067in}}% -\pgfpathlineto{\pgfqpoint{1.361998in}{0.832872in}}% -\pgfpathlineto{\pgfqpoint{1.372995in}{0.962900in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{1.006057in}}% -\pgfpathlineto{\pgfqpoint{1.394989in}{1.031183in}}% -\pgfpathlineto{\pgfqpoint{1.405985in}{1.047476in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{1.057995in}}% -\pgfpathlineto{\pgfqpoint{1.427979in}{1.064015in}}% -\pgfpathlineto{\pgfqpoint{1.438976in}{1.066021in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{1.063990in}}% -\pgfpathlineto{\pgfqpoint{1.460969in}{1.057374in}}% -\pgfpathlineto{\pgfqpoint{1.471966in}{1.044787in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{1.022861in}}% -\pgfpathlineto{\pgfqpoint{1.493959in}{0.981052in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{0.811526in}}% -\pgfpathlineto{\pgfqpoint{1.515953in}{0.972546in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{1.027607in}}% -\pgfpathlineto{\pgfqpoint{1.537946in}{1.057946in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{1.077759in}}% -\pgfpathlineto{\pgfqpoint{1.559940in}{1.091151in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{1.099764in}}% -\pgfpathlineto{\pgfqpoint{1.581933in}{1.104275in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{1.104802in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{1.100974in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{1.091716in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{1.074483in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{1.042143in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{0.956989in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{0.990316in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{1.063932in}}% -\pgfpathlineto{\pgfqpoint{1.680904in}{1.100499in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{1.124150in}}% -\pgfpathlineto{\pgfqpoint{1.702898in}{1.140536in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.151786in}}% -\pgfpathlineto{\pgfqpoint{1.724891in}{1.158800in}}% -\pgfpathlineto{\pgfqpoint{1.735888in}{1.161845in}}% -\pgfpathlineto{\pgfqpoint{1.746885in}{1.160704in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{1.154558in}}% -\pgfpathlineto{\pgfqpoint{1.768878in}{1.141454in}}% -\pgfpathlineto{\pgfqpoint{1.779875in}{1.116333in}}% -\pgfpathlineto{\pgfqpoint{1.801869in}{1.003819in}}% -\pgfpathlineto{\pgfqpoint{1.812865in}{1.114186in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{1.158603in}}% -\pgfpathlineto{\pgfqpoint{1.834859in}{1.186562in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{1.206139in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{1.220125in}}% -\pgfpathlineto{\pgfqpoint{1.867849in}{1.229688in}}% -\pgfpathlineto{\pgfqpoint{1.878846in}{1.235258in}}% -\pgfpathlineto{\pgfqpoint{1.889843in}{1.236763in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{1.233595in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{1.224244in}}% -\pgfpathlineto{\pgfqpoint{1.922833in}{1.204998in}}% -\pgfpathlineto{\pgfqpoint{1.933830in}{1.163677in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{0.922658in}}% -\pgfpathlineto{\pgfqpoint{1.955823in}{1.177378in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{1.232401in}}% -\pgfpathlineto{\pgfqpoint{1.977817in}{1.265350in}}% -\pgfpathlineto{\pgfqpoint{1.988814in}{1.288409in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{1.305288in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{1.317498in}}% -\pgfpathlineto{\pgfqpoint{2.021804in}{1.325651in}}% -\pgfpathlineto{\pgfqpoint{2.032801in}{1.329817in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{1.329570in}}% -\pgfpathlineto{\pgfqpoint{2.054794in}{1.323739in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{1.309537in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{1.278890in}}% -\pgfpathlineto{\pgfqpoint{2.087784in}{1.182304in}}% -\pgfpathlineto{\pgfqpoint{2.109778in}{1.322423in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{1.361369in}}% -\pgfpathlineto{\pgfqpoint{2.131771in}{1.388316in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{1.408322in}}% -\pgfpathlineto{\pgfqpoint{2.153765in}{1.423343in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{1.434198in}}% -\pgfpathlineto{\pgfqpoint{2.175759in}{1.441106in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{1.443801in}}% -\pgfpathlineto{\pgfqpoint{2.197752in}{1.441385in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{1.431728in}}% -\pgfpathlineto{\pgfqpoint{2.219746in}{1.409184in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{1.349617in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{1.330370in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{1.429635in}}% -\pgfpathlineto{\pgfqpoint{2.263733in}{1.476118in}}% -\pgfpathlineto{\pgfqpoint{2.274729in}{1.507528in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{1.531000in}}% -\pgfpathlineto{\pgfqpoint{2.296723in}{1.549079in}}% -\pgfpathlineto{\pgfqpoint{2.307720in}{1.562841in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{1.572662in}}% -\pgfpathlineto{\pgfqpoint{2.329713in}{1.578423in}}% -\pgfpathlineto{\pgfqpoint{2.340710in}{1.579451in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{1.574104in}}% -\pgfpathlineto{\pgfqpoint{2.362703in}{1.558281in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{1.517788in}}% -\pgfpathlineto{\pgfqpoint{2.384697in}{1.371394in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{1.555594in}}% -\pgfpathlineto{\pgfqpoint{2.406690in}{1.612142in}}% -\pgfpathlineto{\pgfqpoint{2.417687in}{1.648868in}}% -\pgfpathlineto{\pgfqpoint{2.428684in}{1.676321in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{1.697871in}}% -\pgfpathlineto{\pgfqpoint{2.450678in}{1.714908in}}% -\pgfpathlineto{\pgfqpoint{2.461674in}{1.727983in}}% -\pgfpathlineto{\pgfqpoint{2.472671in}{1.737122in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{1.741843in}}% -\pgfpathlineto{\pgfqpoint{2.494665in}{1.740877in}}% -\pgfpathlineto{\pgfqpoint{2.505661in}{1.731167in}}% -\pgfpathlineto{\pgfqpoint{2.516658in}{1.703520in}}% -\pgfpathlineto{\pgfqpoint{2.527655in}{1.589101in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{1.703010in}}% -\pgfpathlineto{\pgfqpoint{2.549648in}{1.774234in}}% -\pgfpathlineto{\pgfqpoint{2.560645in}{1.817635in}}% -\pgfpathlineto{\pgfqpoint{2.571642in}{1.849943in}}% -\pgfpathlineto{\pgfqpoint{2.582639in}{1.875718in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{1.896769in}}% -\pgfpathlineto{\pgfqpoint{2.604632in}{1.913859in}}% -\pgfpathlineto{\pgfqpoint{2.615629in}{1.927182in}}% -\pgfpathlineto{\pgfqpoint{2.626626in}{1.936450in}}% -\pgfpathlineto{\pgfqpoint{2.637622in}{1.940721in}}% -\pgfpathlineto{\pgfqpoint{2.648619in}{1.937721in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{1.921182in}}% -\pgfpathlineto{\pgfqpoint{2.670613in}{1.861402in}}% -\pgfpathlineto{\pgfqpoint{2.681609in}{2.284549in}}% -\pgfpathlineto{\pgfqpoint{2.703603in}{2.251411in}}% -\pgfpathlineto{\pgfqpoint{2.725596in}{2.213008in}}% -\pgfpathlineto{\pgfqpoint{2.747590in}{2.168179in}}% -\pgfpathlineto{\pgfqpoint{2.758587in}{2.142632in}}% -\pgfpathlineto{\pgfqpoint{2.769584in}{2.114265in}}% -\pgfpathlineto{\pgfqpoint{2.780580in}{2.082043in}}% -\pgfpathlineto{\pgfqpoint{2.791577in}{2.043971in}}% -\pgfpathlineto{\pgfqpoint{2.802574in}{1.995353in}}% -\pgfpathlineto{\pgfqpoint{2.813571in}{1.919359in}}% -\pgfpathlineto{\pgfqpoint{2.824567in}{1.801051in}}% -\pgfpathlineto{\pgfqpoint{2.835564in}{1.911381in}}% -\pgfpathlineto{\pgfqpoint{2.846561in}{1.935200in}}% -\pgfpathlineto{\pgfqpoint{2.857558in}{1.941307in}}% -\pgfpathlineto{\pgfqpoint{2.868554in}{1.938863in}}% -\pgfpathlineto{\pgfqpoint{2.879551in}{1.930899in}}% -\pgfpathlineto{\pgfqpoint{2.890548in}{1.918663in}}% -\pgfpathlineto{\pgfqpoint{2.901545in}{1.902621in}}% -\pgfpathlineto{\pgfqpoint{2.912541in}{1.882730in}}% -\pgfpathlineto{\pgfqpoint{2.923538in}{1.858428in}}% -\pgfpathlineto{\pgfqpoint{2.934535in}{1.828313in}}% -\pgfpathlineto{\pgfqpoint{2.945532in}{1.789008in}}% -\pgfpathlineto{\pgfqpoint{2.956528in}{1.729956in}}% -\pgfpathlineto{\pgfqpoint{2.967525in}{1.543319in}}% -\pgfpathlineto{\pgfqpoint{2.978522in}{1.687338in}}% -\pgfpathlineto{\pgfqpoint{2.989519in}{1.725514in}}% -\pgfpathlineto{\pgfqpoint{3.000515in}{1.739072in}}% -\pgfpathlineto{\pgfqpoint{3.011512in}{1.742204in}}% -\pgfpathlineto{\pgfqpoint{3.022509in}{1.739006in}}% -\pgfpathlineto{\pgfqpoint{3.033506in}{1.731118in}}% -\pgfpathlineto{\pgfqpoint{3.044503in}{1.719211in}}% -\pgfpathlineto{\pgfqpoint{3.055499in}{1.703398in}}% -\pgfpathlineto{\pgfqpoint{3.066496in}{1.683304in}}% -\pgfpathlineto{\pgfqpoint{3.077493in}{1.657852in}}% -\pgfpathlineto{\pgfqpoint{3.088490in}{1.624492in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{1.576089in}}% -\pgfpathlineto{\pgfqpoint{3.110483in}{1.474932in}}% -\pgfpathlineto{\pgfqpoint{3.121480in}{1.492314in}}% -\pgfpathlineto{\pgfqpoint{3.132477in}{1.550041in}}% -\pgfpathlineto{\pgfqpoint{3.143473in}{1.570771in}}% -\pgfpathlineto{\pgfqpoint{3.154470in}{1.578635in}}% -\pgfpathlineto{\pgfqpoint{3.165467in}{1.579281in}}% -\pgfpathlineto{\pgfqpoint{3.176464in}{1.574838in}}% -\pgfpathlineto{\pgfqpoint{3.187460in}{1.566201in}}% -\pgfpathlineto{\pgfqpoint{3.198457in}{1.553636in}}% -\pgfpathlineto{\pgfqpoint{3.209454in}{1.536925in}}% -\pgfpathlineto{\pgfqpoint{3.220451in}{1.515245in}}% -\pgfpathlineto{\pgfqpoint{3.231447in}{1.486643in}}% -\pgfpathlineto{\pgfqpoint{3.242444in}{1.446057in}}% -\pgfpathlineto{\pgfqpoint{3.264438in}{1.302705in}}% -\pgfpathlineto{\pgfqpoint{3.275434in}{1.397697in}}% -\pgfpathlineto{\pgfqpoint{3.286431in}{1.426764in}}% -\pgfpathlineto{\pgfqpoint{3.297428in}{1.439399in}}% -\pgfpathlineto{\pgfqpoint{3.308425in}{1.443676in}}% -\pgfpathlineto{\pgfqpoint{3.319422in}{1.442382in}}% -\pgfpathlineto{\pgfqpoint{3.330418in}{1.436687in}}% -\pgfpathlineto{\pgfqpoint{3.341415in}{1.427017in}}% -\pgfpathlineto{\pgfqpoint{3.352412in}{1.413299in}}% -\pgfpathlineto{\pgfqpoint{3.363409in}{1.394925in}}% -\pgfpathlineto{\pgfqpoint{3.374405in}{1.370381in}}% -\pgfpathlineto{\pgfqpoint{3.385402in}{1.335956in}}% -\pgfpathlineto{\pgfqpoint{3.396399in}{1.279468in}}% -\pgfpathlineto{\pgfqpoint{3.404932in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.409899in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.418392in}{1.262863in}}% -\pgfpathlineto{\pgfqpoint{3.429389in}{1.302745in}}% -\pgfpathlineto{\pgfqpoint{3.440386in}{1.320560in}}% -\pgfpathlineto{\pgfqpoint{3.451383in}{1.328489in}}% -\pgfpathlineto{\pgfqpoint{3.462379in}{1.330242in}}% -\pgfpathlineto{\pgfqpoint{3.473376in}{1.327329in}}% -\pgfpathlineto{\pgfqpoint{3.484373in}{1.320358in}}% -\pgfpathlineto{\pgfqpoint{3.495370in}{1.309401in}}% -\pgfpathlineto{\pgfqpoint{3.506366in}{1.294028in}}% -\pgfpathlineto{\pgfqpoint{3.517363in}{1.273069in}}% -\pgfpathlineto{\pgfqpoint{3.528360in}{1.243734in}}% -\pgfpathlineto{\pgfqpoint{3.539357in}{1.197947in}}% -\pgfpathlineto{\pgfqpoint{3.550353in}{1.086216in}}% -\pgfpathlineto{\pgfqpoint{3.572347in}{1.196016in}}% -\pgfpathlineto{\pgfqpoint{3.583344in}{1.219786in}}% -\pgfpathlineto{\pgfqpoint{3.594341in}{1.231545in}}% -\pgfpathlineto{\pgfqpoint{3.605337in}{1.236349in}}% -\pgfpathlineto{\pgfqpoint{3.616334in}{1.236152in}}% -\pgfpathlineto{\pgfqpoint{3.627331in}{1.231772in}}% -\pgfpathlineto{\pgfqpoint{3.638328in}{1.223428in}}% -\pgfpathlineto{\pgfqpoint{3.649324in}{1.210850in}}% -\pgfpathlineto{\pgfqpoint{3.660321in}{1.193139in}}% -\pgfpathlineto{\pgfqpoint{3.671318in}{1.168166in}}% -\pgfpathlineto{\pgfqpoint{3.682315in}{1.130280in}}% -\pgfpathlineto{\pgfqpoint{3.693311in}{1.055346in}}% -\pgfpathlineto{\pgfqpoint{3.704308in}{1.020705in}}% -\pgfpathlineto{\pgfqpoint{3.715305in}{1.104545in}}% -\pgfpathlineto{\pgfqpoint{3.726302in}{1.135574in}}% -\pgfpathlineto{\pgfqpoint{3.737298in}{1.151496in}}% -\pgfpathlineto{\pgfqpoint{3.748295in}{1.159445in}}% -\pgfpathlineto{\pgfqpoint{3.759292in}{1.161966in}}% -\pgfpathlineto{\pgfqpoint{3.770289in}{1.160131in}}% -\pgfpathlineto{\pgfqpoint{3.781285in}{1.154313in}}% -\pgfpathlineto{\pgfqpoint{3.792282in}{1.144393in}}% -\pgfpathlineto{\pgfqpoint{3.803279in}{1.129696in}}% -\pgfpathlineto{\pgfqpoint{3.814276in}{1.108576in}}% -\pgfpathlineto{\pgfqpoint{3.825272in}{1.076931in}}% -\pgfpathlineto{\pgfqpoint{3.836269in}{1.020563in}}% -\pgfpathlineto{\pgfqpoint{3.847266in}{0.858239in}}% -\pgfpathlineto{\pgfqpoint{3.858263in}{1.026453in}}% -\pgfpathlineto{\pgfqpoint{3.869260in}{1.066952in}}% -\pgfpathlineto{\pgfqpoint{3.880256in}{1.087567in}}% -\pgfpathlineto{\pgfqpoint{3.891253in}{1.098842in}}% -\pgfpathlineto{\pgfqpoint{3.902250in}{1.104143in}}% -\pgfpathlineto{\pgfqpoint{3.913247in}{1.104858in}}% -\pgfpathlineto{\pgfqpoint{3.924243in}{1.101533in}}% -\pgfpathlineto{\pgfqpoint{3.935240in}{1.094192in}}% -\pgfpathlineto{\pgfqpoint{3.946237in}{1.082349in}}% -\pgfpathlineto{\pgfqpoint{3.957234in}{1.064730in}}% -\pgfpathlineto{\pgfqpoint{3.968230in}{1.038274in}}% -\pgfpathlineto{\pgfqpoint{3.979227in}{0.993784in}}% -\pgfpathlineto{\pgfqpoint{3.990224in}{0.862420in}}% -\pgfpathlineto{\pgfqpoint{4.001221in}{0.959274in}}% -\pgfpathlineto{\pgfqpoint{4.012217in}{1.013330in}}% -\pgfpathlineto{\pgfqpoint{4.023214in}{1.039439in}}% -\pgfpathlineto{\pgfqpoint{4.034211in}{1.054322in}}% -\pgfpathlineto{\pgfqpoint{4.045208in}{1.062528in}}% -\pgfpathlineto{\pgfqpoint{4.056204in}{1.065849in}}% -\pgfpathlineto{\pgfqpoint{4.067201in}{1.065030in}}% -\pgfpathlineto{\pgfqpoint{4.078198in}{1.060240in}}% -\pgfpathlineto{\pgfqpoint{4.089195in}{1.051159in}}% -\pgfpathlineto{\pgfqpoint{4.100191in}{1.036805in}}% -\pgfpathlineto{\pgfqpoint{4.111188in}{1.014850in}}% -\pgfpathlineto{\pgfqpoint{4.122185in}{0.978963in}}% -\pgfpathlineto{\pgfqpoint{4.133182in}{0.899359in}}% -\pgfpathlineto{\pgfqpoint{4.144178in}{0.897831in}}% -\pgfpathlineto{\pgfqpoint{4.155175in}{0.974381in}}% -\pgfpathlineto{\pgfqpoint{4.166172in}{1.007214in}}% -\pgfpathlineto{\pgfqpoint{4.177169in}{1.026117in}}% -\pgfpathlineto{\pgfqpoint{4.188166in}{1.037423in}}% -\pgfpathlineto{\pgfqpoint{4.199162in}{1.043460in}}% -\pgfpathlineto{\pgfqpoint{4.210159in}{1.045210in}}% -\pgfpathlineto{\pgfqpoint{4.221156in}{1.042995in}}% -\pgfpathlineto{\pgfqpoint{4.232153in}{1.036646in}}% -\pgfpathlineto{\pgfqpoint{4.243149in}{1.025419in}}% -\pgfpathlineto{\pgfqpoint{4.254146in}{1.007523in}}% -\pgfpathlineto{\pgfqpoint{4.265143in}{0.978410in}}% -\pgfpathlineto{\pgfqpoint{4.276140in}{0.921361in}}% -\pgfpathlineto{\pgfqpoint{4.287136in}{0.821523in}}% -\pgfpathlineto{\pgfqpoint{4.298133in}{0.949917in}}% -\pgfpathlineto{\pgfqpoint{4.309130in}{0.991449in}}% -\pgfpathlineto{\pgfqpoint{4.320127in}{1.014960in}}% -\pgfpathlineto{\pgfqpoint{4.331123in}{1.029650in}}% -\pgfpathlineto{\pgfqpoint{4.342120in}{1.038578in}}% -\pgfpathlineto{\pgfqpoint{4.353117in}{1.043021in}}% -\pgfpathlineto{\pgfqpoint{4.364114in}{1.043466in}}% -\pgfpathlineto{\pgfqpoint{4.375110in}{1.039890in}}% -\pgfpathlineto{\pgfqpoint{4.386107in}{1.031747in}}% -\pgfpathlineto{\pgfqpoint{4.397104in}{1.017652in}}% -\pgfpathlineto{\pgfqpoint{4.408101in}{0.994238in}}% -\pgfpathlineto{\pgfqpoint{4.419097in}{0.950964in}}% -\pgfpathlineto{\pgfqpoint{4.430094in}{0.780000in}}% -\pgfpathlineto{\pgfqpoint{4.441091in}{0.939598in}}% -\pgfpathlineto{\pgfqpoint{4.452088in}{0.993268in}}% -\pgfpathlineto{\pgfqpoint{4.463085in}{1.022242in}}% -\pgfpathlineto{\pgfqpoint{4.474081in}{1.040722in}}% -\pgfpathlineto{\pgfqpoint{4.485078in}{1.052809in}}% -\pgfpathlineto{\pgfqpoint{4.496075in}{1.060152in}}% -\pgfpathlineto{\pgfqpoint{4.507072in}{1.063425in}}% -\pgfpathlineto{\pgfqpoint{4.518068in}{1.062752in}}% -\pgfpathlineto{\pgfqpoint{4.529065in}{1.057760in}}% -\pgfpathlineto{\pgfqpoint{4.540062in}{1.047379in}}% -\pgfpathlineto{\pgfqpoint{4.551059in}{1.029065in}}% -\pgfpathlineto{\pgfqpoint{4.562055in}{0.995686in}}% -\pgfpathlineto{\pgfqpoint{4.573052in}{0.909540in}}% -\pgfpathlineto{\pgfqpoint{4.584049in}{0.941921in}}% -\pgfpathlineto{\pgfqpoint{4.595046in}{1.014643in}}% -\pgfpathlineto{\pgfqpoint{4.606042in}{1.050366in}}% -\pgfpathlineto{\pgfqpoint{4.617039in}{1.073230in}}% -\pgfpathlineto{\pgfqpoint{4.628036in}{1.088886in}}% -\pgfpathlineto{\pgfqpoint{4.639033in}{1.099466in}}% -\pgfpathlineto{\pgfqpoint{4.650029in}{1.105872in}}% -\pgfpathlineto{\pgfqpoint{4.661026in}{1.108376in}}% -\pgfpathlineto{\pgfqpoint{4.672023in}{1.106762in}}% -\pgfpathlineto{\pgfqpoint{4.683020in}{1.100216in}}% -\pgfpathlineto{\pgfqpoint{4.694016in}{1.086787in}}% -\pgfpathlineto{\pgfqpoint{4.705013in}{1.061420in}}% -\pgfpathlineto{\pgfqpoint{4.727007in}{0.948666in}}% -\pgfpathlineto{\pgfqpoint{4.738004in}{1.059048in}}% -\pgfpathlineto{\pgfqpoint{4.749000in}{1.103576in}}% -\pgfpathlineto{\pgfqpoint{4.759997in}{1.131746in}}% -\pgfpathlineto{\pgfqpoint{4.770994in}{1.151641in}}% -\pgfpathlineto{\pgfqpoint{4.781991in}{1.166055in}}% -\pgfpathlineto{\pgfqpoint{4.792987in}{1.176164in}}% -\pgfpathlineto{\pgfqpoint{4.803984in}{1.182402in}}% -\pgfpathlineto{\pgfqpoint{4.814981in}{1.184707in}}% -\pgfpathlineto{\pgfqpoint{4.825978in}{1.182476in}}% -\pgfpathlineto{\pgfqpoint{4.836974in}{1.174207in}}% -\pgfpathlineto{\pgfqpoint{4.847971in}{1.156199in}}% -\pgfpathlineto{\pgfqpoint{4.858968in}{1.116278in}}% -\pgfpathlineto{\pgfqpoint{4.866486in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.866486in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{0.835897in}}% -\pgfpathlineto{\pgfqpoint{0.493254in}{0.660479in}}% -\pgfpathlineto{\pgfqpoint{0.504251in}{0.705644in}}% -\pgfpathlineto{\pgfqpoint{0.515248in}{0.728746in}}% -\pgfpathlineto{\pgfqpoint{0.526245in}{0.741963in}}% -\pgfpathlineto{\pgfqpoint{0.537241in}{0.749005in}}% -\pgfpathlineto{\pgfqpoint{0.548238in}{0.751379in}}% -\pgfpathlineto{\pgfqpoint{0.559235in}{0.749695in}}% -\pgfpathlineto{\pgfqpoint{0.570232in}{0.744023in}}% -\pgfpathlineto{\pgfqpoint{0.581228in}{0.733932in}}% -\pgfpathlineto{\pgfqpoint{0.592225in}{0.718253in}}% -\pgfpathlineto{\pgfqpoint{0.603222in}{0.694197in}}% -\pgfpathlineto{\pgfqpoint{0.614219in}{0.653684in}}% -\pgfpathlineto{\pgfqpoint{0.625215in}{0.547172in}}% -\pgfpathlineto{\pgfqpoint{0.647209in}{0.667544in}}% -\pgfpathlineto{\pgfqpoint{0.658206in}{0.696577in}}% -\pgfpathlineto{\pgfqpoint{0.669202in}{0.713587in}}% -\pgfpathlineto{\pgfqpoint{0.680199in}{0.723637in}}% -\pgfpathlineto{\pgfqpoint{0.691196in}{0.728681in}}% -\pgfpathlineto{\pgfqpoint{0.702193in}{0.729536in}}% -\pgfpathlineto{\pgfqpoint{0.713189in}{0.726420in}}% -\pgfpathlineto{\pgfqpoint{0.724186in}{0.719063in}}% -\pgfpathlineto{\pgfqpoint{0.735183in}{0.706568in}}% -\pgfpathlineto{\pgfqpoint{0.746180in}{0.686802in}}% -\pgfpathlineto{\pgfqpoint{0.757177in}{0.654114in}}% -\pgfpathlineto{\pgfqpoint{0.768173in}{0.584381in}}% -\pgfpathlineto{\pgfqpoint{0.779170in}{0.554998in}}% -\pgfpathlineto{\pgfqpoint{0.790167in}{0.643925in}}% -\pgfpathlineto{\pgfqpoint{0.801164in}{0.680121in}}% -\pgfpathlineto{\pgfqpoint{0.812160in}{0.701198in}}% -\pgfpathlineto{\pgfqpoint{0.823157in}{0.714293in}}% -\pgfpathlineto{\pgfqpoint{0.834154in}{0.721949in}}% -\pgfpathlineto{\pgfqpoint{0.845151in}{0.725241in}}% -\pgfpathlineto{\pgfqpoint{0.856147in}{0.724539in}}% -\pgfpathlineto{\pgfqpoint{0.867144in}{0.719723in}}% -\pgfpathlineto{\pgfqpoint{0.878141in}{0.710119in}}% -\pgfpathlineto{\pgfqpoint{0.889138in}{0.694082in}}% -\pgfpathlineto{\pgfqpoint{0.900134in}{0.667507in}}% -\pgfpathlineto{\pgfqpoint{0.911131in}{0.616188in}}% -\pgfpathlineto{\pgfqpoint{0.922128in}{0.457318in}}% -\pgfpathlineto{\pgfqpoint{0.933125in}{0.632167in}}% -\pgfpathlineto{\pgfqpoint{0.944121in}{0.677682in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{0.703303in}}% -\pgfpathlineto{\pgfqpoint{0.966115in}{0.719571in}}% -\pgfpathlineto{\pgfqpoint{0.977112in}{0.729851in}}% -\pgfpathlineto{\pgfqpoint{0.988108in}{0.735530in}}% -\pgfpathlineto{\pgfqpoint{0.999105in}{0.737155in}}% -\pgfpathlineto{\pgfqpoint{1.010102in}{0.734748in}}% -\pgfpathlineto{\pgfqpoint{1.021099in}{0.727824in}}% -\pgfpathlineto{\pgfqpoint{1.032096in}{0.715107in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{0.693538in}}% -\pgfpathlineto{\pgfqpoint{1.054089in}{0.653924in}}% -\pgfpathlineto{\pgfqpoint{1.065086in}{0.527682in}}% -\pgfpathlineto{\pgfqpoint{1.076083in}{0.629097in}}% -\pgfpathlineto{\pgfqpoint{1.087079in}{0.687971in}}% -\pgfpathlineto{\pgfqpoint{1.098076in}{0.718881in}}% -\pgfpathlineto{\pgfqpoint{1.109073in}{0.738545in}}% -\pgfpathlineto{\pgfqpoint{1.120070in}{0.751514in}}% -\pgfpathlineto{\pgfqpoint{1.131066in}{0.759578in}}% -\pgfpathlineto{\pgfqpoint{1.142063in}{0.763483in}}% -\pgfpathlineto{\pgfqpoint{1.153060in}{0.763396in}}% -\pgfpathlineto{\pgfqpoint{1.164057in}{0.758997in}}% -\pgfpathlineto{\pgfqpoint{1.175053in}{0.749304in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{0.731990in}}% -\pgfpathlineto{\pgfqpoint{1.197047in}{0.700721in}}% -\pgfpathlineto{\pgfqpoint{1.208044in}{0.625700in}}% -\pgfpathlineto{\pgfqpoint{1.219040in}{0.628738in}}% -\pgfpathlineto{\pgfqpoint{1.230037in}{0.709854in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{0.747213in}}% -\pgfpathlineto{\pgfqpoint{1.252031in}{0.770617in}}% -\pgfpathlineto{\pgfqpoint{1.263027in}{0.786397in}}% -\pgfpathlineto{\pgfqpoint{1.274024in}{0.796883in}}% -\pgfpathlineto{\pgfqpoint{1.285021in}{0.803057in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{0.805238in}}% -\pgfpathlineto{\pgfqpoint{1.307014in}{0.803257in}}% -\pgfpathlineto{\pgfqpoint{1.318011in}{0.796371in}}% -\pgfpathlineto{\pgfqpoint{1.329008in}{0.782786in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{0.757956in}}% -\pgfpathlineto{\pgfqpoint{1.351002in}{0.705161in}}% -\pgfpathlineto{\pgfqpoint{1.361998in}{0.609553in}}% -\pgfpathlineto{\pgfqpoint{1.372995in}{0.742126in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{0.787816in}}% -\pgfpathlineto{\pgfqpoint{1.394989in}{0.815452in}}% -\pgfpathlineto{\pgfqpoint{1.405985in}{0.834231in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{0.847216in}}% -\pgfpathlineto{\pgfqpoint{1.427979in}{0.855679in}}% -\pgfpathlineto{\pgfqpoint{1.438976in}{0.860108in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{0.860478in}}% -\pgfpathlineto{\pgfqpoint{1.460969in}{0.856243in}}% -\pgfpathlineto{\pgfqpoint{1.471966in}{0.846017in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{0.826432in}}% -\pgfpathlineto{\pgfqpoint{1.493959in}{0.786944in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{0.619669in}}% -\pgfpathlineto{\pgfqpoint{1.515953in}{0.783026in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{0.840352in}}% -\pgfpathlineto{\pgfqpoint{1.537946in}{0.872937in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{0.894981in}}% -\pgfpathlineto{\pgfqpoint{1.559940in}{0.910583in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{0.921391in}}% -\pgfpathlineto{\pgfqpoint{1.581933in}{0.928079in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{0.930767in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{0.929082in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{0.921952in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{0.906831in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{0.876587in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{0.793515in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{0.828905in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{0.904571in}}% -\pgfpathlineto{\pgfqpoint{1.680904in}{0.943172in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{0.968844in}}% -\pgfpathlineto{\pgfqpoint{1.702898in}{0.987236in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.000478in}}% -\pgfpathlineto{\pgfqpoint{1.724891in}{1.009469in}}% -\pgfpathlineto{\pgfqpoint{1.735888in}{1.014478in}}% -\pgfpathlineto{\pgfqpoint{1.746885in}{1.015288in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{1.011079in}}% -\pgfpathlineto{\pgfqpoint{1.768878in}{0.999898in}}% -\pgfpathlineto{\pgfqpoint{1.779875in}{0.976687in}}% -\pgfpathlineto{\pgfqpoint{1.801869in}{0.867955in}}% -\pgfpathlineto{\pgfqpoint{1.812865in}{0.980194in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{1.026471in}}% -\pgfpathlineto{\pgfqpoint{1.834859in}{1.056277in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{1.077690in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{1.093499in}}% -\pgfpathlineto{\pgfqpoint{1.867849in}{1.104874in}}% -\pgfpathlineto{\pgfqpoint{1.878846in}{1.112244in}}% -\pgfpathlineto{\pgfqpoint{1.889843in}{1.115538in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{1.114148in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{1.106563in}}% -\pgfpathlineto{\pgfqpoint{1.922833in}{1.089072in}}% -\pgfpathlineto{\pgfqpoint{1.933830in}{1.049496in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{0.922657in}}% -\pgfpathlineto{\pgfqpoint{1.955823in}{1.066653in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{1.123389in}}% -\pgfpathlineto{\pgfqpoint{1.977817in}{1.158040in}}% -\pgfpathlineto{\pgfqpoint{1.988814in}{1.182790in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{1.201351in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{1.215234in}}% -\pgfpathlineto{\pgfqpoint{2.021804in}{1.225048in}}% -\pgfpathlineto{\pgfqpoint{2.032801in}{1.230867in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{1.232261in}}% -\pgfpathlineto{\pgfqpoint{2.054794in}{1.228064in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{1.215486in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{1.186452in}}% -\pgfpathlineto{\pgfqpoint{2.087784in}{1.091471in}}% -\pgfpathlineto{\pgfqpoint{2.109778in}{1.234773in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{1.275297in}}% -\pgfpathlineto{\pgfqpoint{2.131771in}{1.303813in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{1.325380in}}% -\pgfpathlineto{\pgfqpoint{2.153765in}{1.341952in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{1.354351in}}% -\pgfpathlineto{\pgfqpoint{2.175759in}{1.362794in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{1.367016in}}% -\pgfpathlineto{\pgfqpoint{2.197752in}{1.366118in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{1.357972in}}% -\pgfpathlineto{\pgfqpoint{2.219746in}{1.336930in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{1.278858in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{1.261098in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{1.361842in}}% -\pgfpathlineto{\pgfqpoint{2.263733in}{1.409796in}}% -\pgfpathlineto{\pgfqpoint{2.274729in}{1.442670in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{1.467598in}}% -\pgfpathlineto{\pgfqpoint{2.296723in}{1.487126in}}% -\pgfpathlineto{\pgfqpoint{2.307720in}{1.502330in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{1.513585in}}% -\pgfpathlineto{\pgfqpoint{2.329713in}{1.520773in}}% -\pgfpathlineto{\pgfqpoint{2.340710in}{1.523221in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{1.519286in}}% -\pgfpathlineto{\pgfqpoint{2.362703in}{1.504869in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{1.465774in}}% -\pgfpathlineto{\pgfqpoint{2.384697in}{1.320772in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{1.506356in}}% -\pgfpathlineto{\pgfqpoint{2.406690in}{1.564281in}}% -\pgfpathlineto{\pgfqpoint{2.417687in}{1.602378in}}% -\pgfpathlineto{\pgfqpoint{2.428684in}{1.631195in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{1.654103in}}% -\pgfpathlineto{\pgfqpoint{2.450678in}{1.672491in}}% -\pgfpathlineto{\pgfqpoint{2.461674in}{1.686911in}}% -\pgfpathlineto{\pgfqpoint{2.472671in}{1.697389in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{1.703445in}}% -\pgfpathlineto{\pgfqpoint{2.494665in}{1.703809in}}% -\pgfpathlineto{\pgfqpoint{2.505661in}{1.695424in}}% -\pgfpathlineto{\pgfqpoint{2.516658in}{1.669098in}}% -\pgfpathlineto{\pgfqpoint{2.527655in}{1.555997in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{1.671220in}}% -\pgfpathlineto{\pgfqpoint{2.549648in}{1.743757in}}% -\pgfpathlineto{\pgfqpoint{2.560645in}{1.788467in}}% -\pgfpathlineto{\pgfqpoint{2.571642in}{1.822081in}}% -\pgfpathlineto{\pgfqpoint{2.582639in}{1.849160in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{1.871508in}}% -\pgfpathlineto{\pgfqpoint{2.604632in}{1.889890in}}% -\pgfpathlineto{\pgfqpoint{2.615629in}{1.904497in}}% -\pgfpathlineto{\pgfqpoint{2.626626in}{1.915038in}}% -\pgfpathlineto{\pgfqpoint{2.637622in}{1.920568in}}% -\pgfpathlineto{\pgfqpoint{2.648619in}{1.918808in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{1.903485in}}% -\pgfpathlineto{\pgfqpoint{2.670613in}{1.844893in}}% -\pgfpathlineto{\pgfqpoint{2.681609in}{2.283975in}}% -\pgfpathlineto{\pgfqpoint{2.703603in}{2.248513in}}% -\pgfpathlineto{\pgfqpoint{2.725596in}{2.207752in}}% -\pgfpathlineto{\pgfqpoint{2.747590in}{2.160537in}}% -\pgfpathlineto{\pgfqpoint{2.769584in}{2.104212in}}% -\pgfpathlineto{\pgfqpoint{2.780580in}{2.070776in}}% -\pgfpathlineto{\pgfqpoint{2.791577in}{2.031485in}}% -\pgfpathlineto{\pgfqpoint{2.802574in}{1.981643in}}% -\pgfpathlineto{\pgfqpoint{2.813571in}{1.904418in}}% -\pgfpathlineto{\pgfqpoint{2.824567in}{1.784875in}}% -\pgfpathlineto{\pgfqpoint{2.835564in}{1.893964in}}% -\pgfpathlineto{\pgfqpoint{2.846561in}{1.916538in}}% -\pgfpathlineto{\pgfqpoint{2.857558in}{1.921394in}}% -\pgfpathlineto{\pgfqpoint{2.868554in}{1.917694in}}% -\pgfpathlineto{\pgfqpoint{2.879551in}{1.908469in}}% -\pgfpathlineto{\pgfqpoint{2.890548in}{1.894967in}}% -\pgfpathlineto{\pgfqpoint{2.901545in}{1.877653in}}% -\pgfpathlineto{\pgfqpoint{2.912541in}{1.856485in}}% -\pgfpathlineto{\pgfqpoint{2.923538in}{1.830901in}}% -\pgfpathlineto{\pgfqpoint{2.934535in}{1.799499in}}% -\pgfpathlineto{\pgfqpoint{2.945532in}{1.758900in}}% -\pgfpathlineto{\pgfqpoint{2.956528in}{1.698550in}}% -\pgfpathlineto{\pgfqpoint{2.967525in}{1.510609in}}% -\pgfpathlineto{\pgfqpoint{2.978522in}{1.653318in}}% -\pgfpathlineto{\pgfqpoint{2.989519in}{1.690179in}}% -\pgfpathlineto{\pgfqpoint{3.000515in}{1.702415in}}% -\pgfpathlineto{\pgfqpoint{3.011512in}{1.704220in}}% -\pgfpathlineto{\pgfqpoint{3.022509in}{1.699689in}}% -\pgfpathlineto{\pgfqpoint{3.033506in}{1.690462in}}% -\pgfpathlineto{\pgfqpoint{3.044503in}{1.677209in}}% -\pgfpathlineto{\pgfqpoint{3.055499in}{1.660045in}}% -\pgfpathlineto{\pgfqpoint{3.066496in}{1.638594in}}% -\pgfpathlineto{\pgfqpoint{3.077493in}{1.611777in}}% -\pgfpathlineto{\pgfqpoint{3.088490in}{1.577047in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{1.527267in}}% -\pgfpathlineto{\pgfqpoint{3.110483in}{1.424726in}}% -\pgfpathlineto{\pgfqpoint{3.121480in}{1.440718in}}% -\pgfpathlineto{\pgfqpoint{3.132477in}{1.497048in}}% -\pgfpathlineto{\pgfqpoint{3.143473in}{1.516374in}}% -\pgfpathlineto{\pgfqpoint{3.154470in}{1.522828in}}% -\pgfpathlineto{\pgfqpoint{3.165467in}{1.522056in}}% -\pgfpathlineto{\pgfqpoint{3.176464in}{1.516188in}}% -\pgfpathlineto{\pgfqpoint{3.187460in}{1.506119in}}% -\pgfpathlineto{\pgfqpoint{3.198457in}{1.492115in}}% -\pgfpathlineto{\pgfqpoint{3.209454in}{1.473957in}}% -\pgfpathlineto{\pgfqpoint{3.220451in}{1.450824in}}% -\pgfpathlineto{\pgfqpoint{3.231447in}{1.420760in}}% -\pgfpathlineto{\pgfqpoint{3.242444in}{1.378705in}}% -\pgfpathlineto{\pgfqpoint{3.264438in}{1.232393in}}% -\pgfpathlineto{\pgfqpoint{3.275434in}{1.325892in}}% -\pgfpathlineto{\pgfqpoint{3.286431in}{1.353460in}}% -\pgfpathlineto{\pgfqpoint{3.297428in}{1.364587in}}% -\pgfpathlineto{\pgfqpoint{3.308425in}{1.367348in}}% -\pgfpathlineto{\pgfqpoint{3.319422in}{1.364530in}}% -\pgfpathlineto{\pgfqpoint{3.330418in}{1.357302in}}% -\pgfpathlineto{\pgfqpoint{3.341415in}{1.346091in}}% -\pgfpathlineto{\pgfqpoint{3.352412in}{1.330824in}}% -\pgfpathlineto{\pgfqpoint{3.363409in}{1.310891in}}% -\pgfpathlineto{\pgfqpoint{3.374405in}{1.284781in}}% -\pgfpathlineto{\pgfqpoint{3.385402in}{1.248781in}}% -\pgfpathlineto{\pgfqpoint{3.396399in}{1.190708in}}% -\pgfpathlineto{\pgfqpoint{3.404004in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.410851in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.418392in}{1.170908in}}% -\pgfpathlineto{\pgfqpoint{3.429389in}{1.209179in}}% -\pgfpathlineto{\pgfqpoint{3.440386in}{1.225373in}}% -\pgfpathlineto{\pgfqpoint{3.451383in}{1.231671in}}% -\pgfpathlineto{\pgfqpoint{3.462379in}{1.231785in}}% -\pgfpathlineto{\pgfqpoint{3.473376in}{1.227222in}}% -\pgfpathlineto{\pgfqpoint{3.484373in}{1.218593in}}% -\pgfpathlineto{\pgfqpoint{3.495370in}{1.205967in}}% -\pgfpathlineto{\pgfqpoint{3.506366in}{1.188915in}}% -\pgfpathlineto{\pgfqpoint{3.517363in}{1.166267in}}% -\pgfpathlineto{\pgfqpoint{3.528360in}{1.135233in}}% -\pgfpathlineto{\pgfqpoint{3.539357in}{1.087737in}}% -\pgfpathlineto{\pgfqpoint{3.550353in}{0.974286in}}% -\pgfpathlineto{\pgfqpoint{3.572347in}{1.080614in}}% -\pgfpathlineto{\pgfqpoint{3.583344in}{1.102633in}}% -\pgfpathlineto{\pgfqpoint{3.594341in}{1.112629in}}% -\pgfpathlineto{\pgfqpoint{3.605337in}{1.115659in}}% -\pgfpathlineto{\pgfqpoint{3.616334in}{1.113676in}}% -\pgfpathlineto{\pgfqpoint{3.627331in}{1.107500in}}% -\pgfpathlineto{\pgfqpoint{3.638328in}{1.097347in}}% -\pgfpathlineto{\pgfqpoint{3.649324in}{1.082949in}}% -\pgfpathlineto{\pgfqpoint{3.660321in}{1.063407in}}% -\pgfpathlineto{\pgfqpoint{3.671318in}{1.036589in}}% -\pgfpathlineto{\pgfqpoint{3.682315in}{0.996848in}}% -\pgfpathlineto{\pgfqpoint{3.693311in}{0.920045in}}% -\pgfpathlineto{\pgfqpoint{3.704308in}{0.883523in}}% -\pgfpathlineto{\pgfqpoint{3.715305in}{0.965470in}}% -\pgfpathlineto{\pgfqpoint{3.726302in}{0.994592in}}% -\pgfpathlineto{\pgfqpoint{3.737298in}{1.008595in}}% -\pgfpathlineto{\pgfqpoint{3.748295in}{1.014611in}}% -\pgfpathlineto{\pgfqpoint{3.759292in}{1.015185in}}% -\pgfpathlineto{\pgfqpoint{3.770289in}{1.011391in}}% -\pgfpathlineto{\pgfqpoint{3.781285in}{1.003600in}}% -\pgfpathlineto{\pgfqpoint{3.792282in}{0.991693in}}% -\pgfpathlineto{\pgfqpoint{3.803279in}{0.974994in}}% -\pgfpathlineto{\pgfqpoint{3.814276in}{0.951858in}}% -\pgfpathlineto{\pgfqpoint{3.825272in}{0.918182in}}% -\pgfpathlineto{\pgfqpoint{3.836269in}{0.859769in}}% -\pgfpathlineto{\pgfqpoint{3.847266in}{0.695384in}}% -\pgfpathlineto{\pgfqpoint{3.858263in}{0.861522in}}% -\pgfpathlineto{\pgfqpoint{3.869260in}{0.899930in}}% -\pgfpathlineto{\pgfqpoint{3.880256in}{0.918438in}}% -\pgfpathlineto{\pgfqpoint{3.891253in}{0.927591in}}% -\pgfpathlineto{\pgfqpoint{3.902250in}{0.930753in}}% -\pgfpathlineto{\pgfqpoint{3.913247in}{0.929312in}}% -\pgfpathlineto{\pgfqpoint{3.924243in}{0.923815in}}% -\pgfpathlineto{\pgfqpoint{3.935240in}{0.914285in}}% -\pgfpathlineto{\pgfqpoint{3.946237in}{0.900236in}}% -\pgfpathlineto{\pgfqpoint{3.957234in}{0.880393in}}% -\pgfpathlineto{\pgfqpoint{3.968230in}{0.851695in}}% -\pgfpathlineto{\pgfqpoint{3.979227in}{0.804945in}}% -\pgfpathlineto{\pgfqpoint{3.990224in}{0.671302in}}% -\pgfpathlineto{\pgfqpoint{4.001221in}{0.765860in}}% -\pgfpathlineto{\pgfqpoint{4.012217in}{0.817600in}}% -\pgfpathlineto{\pgfqpoint{4.023214in}{0.841373in}}% -\pgfpathlineto{\pgfqpoint{4.034211in}{0.853902in}}% -\pgfpathlineto{\pgfqpoint{4.045208in}{0.859733in}}% -\pgfpathlineto{\pgfqpoint{4.056204in}{0.860658in}}% -\pgfpathlineto{\pgfqpoint{4.067201in}{0.857423in}}% -\pgfpathlineto{\pgfqpoint{4.078198in}{0.850196in}}% -\pgfpathlineto{\pgfqpoint{4.089195in}{0.838656in}}% -\pgfpathlineto{\pgfqpoint{4.100191in}{0.821822in}}% -\pgfpathlineto{\pgfqpoint{4.111188in}{0.797365in}}% -\pgfpathlineto{\pgfqpoint{4.122185in}{0.758953in}}% -\pgfpathlineto{\pgfqpoint{4.133182in}{0.676800in}}% -\pgfpathlineto{\pgfqpoint{4.144178in}{0.672700in}}% -\pgfpathlineto{\pgfqpoint{4.155175in}{0.746654in}}% -\pgfpathlineto{\pgfqpoint{4.166172in}{0.776867in}}% -\pgfpathlineto{\pgfqpoint{4.177169in}{0.793125in}}% -\pgfpathlineto{\pgfqpoint{4.188166in}{0.801761in}}% -\pgfpathlineto{\pgfqpoint{4.199162in}{0.805101in}}% -\pgfpathlineto{\pgfqpoint{4.210159in}{0.804129in}}% -\pgfpathlineto{\pgfqpoint{4.221156in}{0.799164in}}% -\pgfpathlineto{\pgfqpoint{4.232153in}{0.790038in}}% -\pgfpathlineto{\pgfqpoint{4.243149in}{0.776006in}}% -\pgfpathlineto{\pgfqpoint{4.254146in}{0.755276in}}% -\pgfpathlineto{\pgfqpoint{4.265143in}{0.723301in}}% -\pgfpathlineto{\pgfqpoint{4.276140in}{0.663359in}}% -\pgfpathlineto{\pgfqpoint{4.287136in}{0.560600in}}% -\pgfpathlineto{\pgfqpoint{4.298133in}{0.686038in}}% -\pgfpathlineto{\pgfqpoint{4.309130in}{0.724584in}}% -\pgfpathlineto{\pgfqpoint{4.320127in}{0.745077in}}% -\pgfpathlineto{\pgfqpoint{4.331123in}{0.756714in}}% -\pgfpathlineto{\pgfqpoint{4.342120in}{0.762557in}}% -\pgfpathlineto{\pgfqpoint{4.353117in}{0.763880in}}% -\pgfpathlineto{\pgfqpoint{4.364114in}{0.761169in}}% -\pgfpathlineto{\pgfqpoint{4.375110in}{0.754400in}}% -\pgfpathlineto{\pgfqpoint{4.386107in}{0.743028in}}% -\pgfpathlineto{\pgfqpoint{4.397104in}{0.725665in}}% -\pgfpathlineto{\pgfqpoint{4.408101in}{0.698944in}}% -\pgfpathlineto{\pgfqpoint{4.419097in}{0.652322in}}% -\pgfpathlineto{\pgfqpoint{4.430094in}{0.477972in}}% -\pgfpathlineto{\pgfqpoint{4.441091in}{0.634137in}}% -\pgfpathlineto{\pgfqpoint{4.452088in}{0.684334in}}% -\pgfpathlineto{\pgfqpoint{4.463085in}{0.709791in}}% -\pgfpathlineto{\pgfqpoint{4.474081in}{0.724706in}}% -\pgfpathlineto{\pgfqpoint{4.485078in}{0.733183in}}% -\pgfpathlineto{\pgfqpoint{4.496075in}{0.736867in}}% -\pgfpathlineto{\pgfqpoint{4.507072in}{0.736433in}}% -\pgfpathlineto{\pgfqpoint{4.518068in}{0.732001in}}% -\pgfpathlineto{\pgfqpoint{4.529065in}{0.723198in}}% -\pgfpathlineto{\pgfqpoint{4.540062in}{0.708952in}}% -\pgfpathlineto{\pgfqpoint{4.551059in}{0.686718in}}% -\pgfpathlineto{\pgfqpoint{4.562055in}{0.649362in}}% -\pgfpathlineto{\pgfqpoint{4.573052in}{0.559179in}}% -\pgfpathlineto{\pgfqpoint{4.584049in}{0.587464in}}% -\pgfpathlineto{\pgfqpoint{4.595046in}{0.656026in}}% -\pgfpathlineto{\pgfqpoint{4.606042in}{0.687526in}}% -\pgfpathlineto{\pgfqpoint{4.617039in}{0.706099in}}% -\pgfpathlineto{\pgfqpoint{4.628036in}{0.717395in}}% -\pgfpathlineto{\pgfqpoint{4.639033in}{0.723544in}}% -\pgfpathlineto{\pgfqpoint{4.650029in}{0.725446in}}% -\pgfpathlineto{\pgfqpoint{4.661026in}{0.723368in}}% -\pgfpathlineto{\pgfqpoint{4.672023in}{0.717094in}}% -\pgfpathlineto{\pgfqpoint{4.683020in}{0.705805in}}% -\pgfpathlineto{\pgfqpoint{4.694016in}{0.687548in}}% -\pgfpathlineto{\pgfqpoint{4.705013in}{0.657266in}}% -\pgfpathlineto{\pgfqpoint{4.727007in}{0.534402in}}% -\pgfpathlineto{\pgfqpoint{4.738004in}{0.639578in}}% -\pgfpathlineto{\pgfqpoint{4.749000in}{0.678796in}}% -\pgfpathlineto{\pgfqpoint{4.759997in}{0.701552in}}% -\pgfpathlineto{\pgfqpoint{4.770994in}{0.715918in}}% -\pgfpathlineto{\pgfqpoint{4.781991in}{0.724684in}}% -\pgfpathlineto{\pgfqpoint{4.792987in}{0.729021in}}% -\pgfpathlineto{\pgfqpoint{4.803984in}{0.729358in}}% -\pgfpathlineto{\pgfqpoint{4.814981in}{0.725625in}}% -\pgfpathlineto{\pgfqpoint{4.825978in}{0.717212in}}% -\pgfpathlineto{\pgfqpoint{4.836974in}{0.702610in}}% -\pgfpathlineto{\pgfqpoint{4.847971in}{0.678109in}}% -\pgfpathlineto{\pgfqpoint{4.858968in}{0.631528in}}% -\pgfpathlineto{\pgfqpoint{4.861012in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.861012in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.579480in}{1.327933in}}% -\pgfpathlineto{\pgfqpoint{1.431363in}{1.327933in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.459141in}{1.327933in}}{\pgfqpoint{1.459141in}{1.355711in}}% -\pgfpathlineto{\pgfqpoint{1.459141in}{2.361108in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.459141in}{2.388886in}}{\pgfqpoint{1.431363in}{2.388886in}}% -\pgfpathlineto{\pgfqpoint{0.579480in}{2.388886in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.551702in}{2.388886in}}{\pgfqpoint{0.551702in}{2.361108in}}% -\pgfpathlineto{\pgfqpoint{0.551702in}{1.355711in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.551702in}{1.327933in}}{\pgfqpoint{0.579480in}{1.327933in}}% -\pgfpathlineto{\pgfqpoint{0.579480in}{1.327933in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{2.276418in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=2\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{2.072561in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{2.072561in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{2.072561in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=2.023950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=4\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{1.868704in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{1.868704in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{1.868704in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=1.820092in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=6\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{1.664846in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{1.664846in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{1.664846in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=1.616235in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=8\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{1.460989in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{1.460989in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{1.460989in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=1.412378in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=10\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/rel_error_range.pdf b/buch/papers/laguerre/images/rel_error_range.pdf new file mode 100644 index 0000000..fca4019 Binary files /dev/null and b/buch/papers/laguerre/images/rel_error_range.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_range.pgf b/buch/papers/laguerre/images/rel_error_range.pgf deleted file mode 100644 index 7448afc..0000000 --- a/buch/papers/laguerre/images/rel_error_range.pgf +++ /dev/null @@ -1,2730 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.929865in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.929865in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.929865in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.929865in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.825079in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.825079in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.825079in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.825079in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.720294in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.720294in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.720294in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.720294in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.615508in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.615508in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.615508in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.615508in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.510723in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.510723in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.510723in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.510723in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.377472in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.377472in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.377472in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.272687in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.272687in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.272687in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.167901in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.167901in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.167901in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.063116in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.063116in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.063116in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.720294in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.870428in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.870428in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.870428in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=0.817666in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.277582in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.277582in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.277582in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=1.224821in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.684737in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.684737in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.684737in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=1.631975in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{2.091891in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.091891in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{2.091891in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=2.039129in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.666851in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.666851in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.666851in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.063892in, y=0.614089in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-10}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.074005in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.074005in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.074005in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.119255in, y=1.021243in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-8}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.481159in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.481159in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.481159in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.119255in, y=1.428398in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-6}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.888314in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.888314in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.888314in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.119255in, y=1.835552in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-4}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{2.295468in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.295468in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{2.295468in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.119255in, y=2.242707in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-2}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{1.007279in}}% -\pgfpathlineto{\pgfqpoint{0.486738in}{2.025203in}}% -\pgfpathlineto{\pgfqpoint{0.491219in}{2.086414in}}% -\pgfpathlineto{\pgfqpoint{0.495699in}{2.122169in}}% -\pgfpathlineto{\pgfqpoint{0.504660in}{2.167085in}}% -\pgfpathlineto{\pgfqpoint{0.513621in}{2.196503in}}% -\pgfpathlineto{\pgfqpoint{0.522583in}{2.218308in}}% -\pgfpathlineto{\pgfqpoint{0.531544in}{2.235552in}}% -\pgfpathlineto{\pgfqpoint{0.544985in}{2.255967in}}% -\pgfpathlineto{\pgfqpoint{0.558427in}{2.272033in}}% -\pgfpathlineto{\pgfqpoint{0.571869in}{2.285104in}}% -\pgfpathlineto{\pgfqpoint{0.589791in}{2.299176in}}% -\pgfpathlineto{\pgfqpoint{0.607713in}{2.310379in}}% -\pgfpathlineto{\pgfqpoint{0.630116in}{2.321308in}}% -\pgfpathlineto{\pgfqpoint{0.652519in}{2.329506in}}% -\pgfpathlineto{\pgfqpoint{0.674921in}{2.335409in}}% -\pgfpathlineto{\pgfqpoint{0.697324in}{2.339262in}}% -\pgfpathlineto{\pgfqpoint{0.719727in}{2.341173in}}% -\pgfpathlineto{\pgfqpoint{0.733169in}{2.338997in}}% -\pgfpathlineto{\pgfqpoint{0.755571in}{2.333322in}}% -\pgfpathlineto{\pgfqpoint{0.777974in}{2.325350in}}% -\pgfpathlineto{\pgfqpoint{0.800377in}{2.314693in}}% -\pgfpathlineto{\pgfqpoint{0.818299in}{2.303794in}}% -\pgfpathlineto{\pgfqpoint{0.836221in}{2.290178in}}% -\pgfpathlineto{\pgfqpoint{0.849663in}{2.277625in}}% -\pgfpathlineto{\pgfqpoint{0.863105in}{2.262345in}}% -\pgfpathlineto{\pgfqpoint{0.876546in}{2.243203in}}% -\pgfpathlineto{\pgfqpoint{0.885507in}{2.227316in}}% -\pgfpathlineto{\pgfqpoint{0.894468in}{2.207657in}}% -\pgfpathlineto{\pgfqpoint{0.903430in}{2.182057in}}% -\pgfpathlineto{\pgfqpoint{0.912391in}{2.145580in}}% -\pgfpathlineto{\pgfqpoint{0.916871in}{2.119417in}}% -\pgfpathlineto{\pgfqpoint{0.921352in}{2.082040in}}% -\pgfpathlineto{\pgfqpoint{0.925832in}{2.015965in}}% -\pgfpathlineto{\pgfqpoint{0.930313in}{1.821679in}}% -\pgfpathlineto{\pgfqpoint{0.934793in}{2.033623in}}% -\pgfpathlineto{\pgfqpoint{0.939274in}{2.090719in}}% -\pgfpathlineto{\pgfqpoint{0.943755in}{2.125058in}}% -\pgfpathlineto{\pgfqpoint{0.952716in}{2.168821in}}% -\pgfpathlineto{\pgfqpoint{0.961677in}{2.197738in}}% -\pgfpathlineto{\pgfqpoint{0.970638in}{2.219262in}}% -\pgfpathlineto{\pgfqpoint{0.979599in}{2.236325in}}% -\pgfpathlineto{\pgfqpoint{0.993041in}{2.256563in}}% -\pgfpathlineto{\pgfqpoint{1.006482in}{2.272512in}}% -\pgfpathlineto{\pgfqpoint{1.019924in}{2.285498in}}% -\pgfpathlineto{\pgfqpoint{1.037846in}{2.299487in}}% -\pgfpathlineto{\pgfqpoint{1.055768in}{2.310628in}}% -\pgfpathlineto{\pgfqpoint{1.078171in}{2.321497in}}% -\pgfpathlineto{\pgfqpoint{1.100574in}{2.329646in}}% -\pgfpathlineto{\pgfqpoint{1.122977in}{2.335506in}}% -\pgfpathlineto{\pgfqpoint{1.145379in}{2.339319in}}% -\pgfpathlineto{\pgfqpoint{1.167782in}{2.341191in}}% -\pgfpathlineto{\pgfqpoint{1.185704in}{2.337932in}}% -\pgfpathlineto{\pgfqpoint{1.208107in}{2.331775in}}% -\pgfpathlineto{\pgfqpoint{1.230510in}{2.323254in}}% -\pgfpathlineto{\pgfqpoint{1.252913in}{2.311928in}}% -\pgfpathlineto{\pgfqpoint{1.270835in}{2.300352in}}% -\pgfpathlineto{\pgfqpoint{1.288757in}{2.285843in}}% -\pgfpathlineto{\pgfqpoint{1.302199in}{2.272386in}}% -\pgfpathlineto{\pgfqpoint{1.315640in}{2.255857in}}% -\pgfpathlineto{\pgfqpoint{1.329082in}{2.234848in}}% -\pgfpathlineto{\pgfqpoint{1.338043in}{2.217074in}}% -\pgfpathlineto{\pgfqpoint{1.347004in}{2.194526in}}% -\pgfpathlineto{\pgfqpoint{1.355965in}{2.163893in}}% -\pgfpathlineto{\pgfqpoint{1.360446in}{2.143288in}}% -\pgfpathlineto{\pgfqpoint{1.364926in}{2.116316in}}% -\pgfpathlineto{\pgfqpoint{1.369407in}{2.077260in}}% -\pgfpathlineto{\pgfqpoint{1.373888in}{2.005550in}}% -\pgfpathlineto{\pgfqpoint{1.378368in}{1.882953in}}% -\pgfpathlineto{\pgfqpoint{1.382849in}{2.041310in}}% -\pgfpathlineto{\pgfqpoint{1.387329in}{2.094823in}}% -\pgfpathlineto{\pgfqpoint{1.391810in}{2.127854in}}% -\pgfpathlineto{\pgfqpoint{1.400771in}{2.170523in}}% -\pgfpathlineto{\pgfqpoint{1.409732in}{2.198956in}}% -\pgfpathlineto{\pgfqpoint{1.418693in}{2.220205in}}% -\pgfpathlineto{\pgfqpoint{1.427654in}{2.237090in}}% -\pgfpathlineto{\pgfqpoint{1.441096in}{2.257154in}}% -\pgfpathlineto{\pgfqpoint{1.454538in}{2.272987in}}% -\pgfpathlineto{\pgfqpoint{1.467979in}{2.285890in}}% -\pgfpathlineto{\pgfqpoint{1.485901in}{2.299797in}}% -\pgfpathlineto{\pgfqpoint{1.503824in}{2.310876in}}% -\pgfpathlineto{\pgfqpoint{1.526226in}{2.321685in}}% -\pgfpathlineto{\pgfqpoint{1.548629in}{2.329784in}}% -\pgfpathlineto{\pgfqpoint{1.571032in}{2.335602in}}% -\pgfpathlineto{\pgfqpoint{1.593435in}{2.339375in}}% -\pgfpathlineto{\pgfqpoint{1.615837in}{2.341209in}}% -\pgfpathlineto{\pgfqpoint{1.638240in}{2.336766in}}% -\pgfpathlineto{\pgfqpoint{1.660643in}{2.330115in}}% -\pgfpathlineto{\pgfqpoint{1.683046in}{2.321023in}}% -\pgfpathlineto{\pgfqpoint{1.700968in}{2.311669in}}% -\pgfpathlineto{\pgfqpoint{1.718890in}{2.300028in}}% -\pgfpathlineto{\pgfqpoint{1.736812in}{2.285434in}}% -\pgfpathlineto{\pgfqpoint{1.750254in}{2.271890in}}% -\pgfpathlineto{\pgfqpoint{1.763696in}{2.255240in}}% -\pgfpathlineto{\pgfqpoint{1.777137in}{2.234044in}}% -\pgfpathlineto{\pgfqpoint{1.786098in}{2.216078in}}% -\pgfpathlineto{\pgfqpoint{1.795060in}{2.193226in}}% -\pgfpathlineto{\pgfqpoint{1.804021in}{2.162037in}}% -\pgfpathlineto{\pgfqpoint{1.808501in}{2.140934in}}% -\pgfpathlineto{\pgfqpoint{1.812982in}{2.113103in}}% -\pgfpathlineto{\pgfqpoint{1.817462in}{2.072206in}}% -\pgfpathlineto{\pgfqpoint{1.826423in}{1.918795in}}% -\pgfpathlineto{\pgfqpoint{1.830904in}{2.048380in}}% -\pgfpathlineto{\pgfqpoint{1.835385in}{2.098745in}}% -\pgfpathlineto{\pgfqpoint{1.839865in}{2.130564in}}% -\pgfpathlineto{\pgfqpoint{1.848826in}{2.172192in}}% -\pgfpathlineto{\pgfqpoint{1.857787in}{2.200156in}}% -\pgfpathlineto{\pgfqpoint{1.866748in}{2.221138in}}% -\pgfpathlineto{\pgfqpoint{1.880190in}{2.245059in}}% -\pgfpathlineto{\pgfqpoint{1.893632in}{2.263365in}}% -\pgfpathlineto{\pgfqpoint{1.907073in}{2.278010in}}% -\pgfpathlineto{\pgfqpoint{1.924996in}{2.293596in}}% -\pgfpathlineto{\pgfqpoint{1.942918in}{2.305919in}}% -\pgfpathlineto{\pgfqpoint{1.960840in}{2.315784in}}% -\pgfpathlineto{\pgfqpoint{1.983243in}{2.325387in}}% -\pgfpathlineto{\pgfqpoint{2.005646in}{2.332488in}}% -\pgfpathlineto{\pgfqpoint{2.028048in}{2.337427in}}% -\pgfpathlineto{\pgfqpoint{2.050451in}{2.340380in}}% -\pgfpathlineto{\pgfqpoint{2.063893in}{2.341226in}}% -\pgfpathlineto{\pgfqpoint{2.090776in}{2.335496in}}% -\pgfpathlineto{\pgfqpoint{2.113179in}{2.328338in}}% -\pgfpathlineto{\pgfqpoint{2.135582in}{2.318651in}}% -\pgfpathlineto{\pgfqpoint{2.153504in}{2.308718in}}% -\pgfpathlineto{\pgfqpoint{2.171426in}{2.296346in}}% -\pgfpathlineto{\pgfqpoint{2.189348in}{2.280768in}}% -\pgfpathlineto{\pgfqpoint{2.202790in}{2.266203in}}% -\pgfpathlineto{\pgfqpoint{2.216232in}{2.248103in}}% -\pgfpathlineto{\pgfqpoint{2.225193in}{2.233233in}}% -\pgfpathlineto{\pgfqpoint{2.234154in}{2.215070in}}% -\pgfpathlineto{\pgfqpoint{2.243115in}{2.191907in}}% -\pgfpathlineto{\pgfqpoint{2.252076in}{2.160142in}}% -\pgfpathlineto{\pgfqpoint{2.256557in}{2.138515in}}% -\pgfpathlineto{\pgfqpoint{2.261037in}{2.109768in}}% -\pgfpathlineto{\pgfqpoint{2.265518in}{2.066846in}}% -\pgfpathlineto{\pgfqpoint{2.269998in}{1.980110in}}% -\pgfpathlineto{\pgfqpoint{2.274479in}{1.944224in}}% -\pgfpathlineto{\pgfqpoint{2.278959in}{2.054925in}}% -\pgfpathlineto{\pgfqpoint{2.283440in}{2.102498in}}% -\pgfpathlineto{\pgfqpoint{2.287920in}{2.133192in}}% -\pgfpathlineto{\pgfqpoint{2.296882in}{2.173830in}}% -\pgfpathlineto{\pgfqpoint{2.305843in}{2.201340in}}% -\pgfpathlineto{\pgfqpoint{2.314804in}{2.222060in}}% -\pgfpathlineto{\pgfqpoint{2.328245in}{2.245745in}}% -\pgfpathlineto{\pgfqpoint{2.341687in}{2.263905in}}% -\pgfpathlineto{\pgfqpoint{2.355129in}{2.278449in}}% -\pgfpathlineto{\pgfqpoint{2.373051in}{2.293939in}}% -\pgfpathlineto{\pgfqpoint{2.390973in}{2.306193in}}% -\pgfpathlineto{\pgfqpoint{2.408895in}{2.316004in}}% -\pgfpathlineto{\pgfqpoint{2.431298in}{2.325552in}}% -\pgfpathlineto{\pgfqpoint{2.453701in}{2.332608in}}% -\pgfpathlineto{\pgfqpoint{2.476104in}{2.337505in}}% -\pgfpathlineto{\pgfqpoint{2.498506in}{2.340419in}}% -\pgfpathlineto{\pgfqpoint{2.511948in}{2.341242in}}% -\pgfpathlineto{\pgfqpoint{2.543312in}{2.334119in}}% -\pgfpathlineto{\pgfqpoint{2.565715in}{2.326438in}}% -\pgfpathlineto{\pgfqpoint{2.588117in}{2.316132in}}% -\pgfpathlineto{\pgfqpoint{2.606040in}{2.305584in}}% -\pgfpathlineto{\pgfqpoint{2.623962in}{2.292425in}}% -\pgfpathlineto{\pgfqpoint{2.637404in}{2.280328in}}% -\pgfpathlineto{\pgfqpoint{2.650845in}{2.265664in}}% -\pgfpathlineto{\pgfqpoint{2.664287in}{2.247421in}}% -\pgfpathlineto{\pgfqpoint{2.673248in}{2.232413in}}% -\pgfpathlineto{\pgfqpoint{2.682209in}{2.214050in}}% -\pgfpathlineto{\pgfqpoint{2.691170in}{2.190566in}}% -\pgfpathlineto{\pgfqpoint{2.700131in}{2.158204in}}% -\pgfpathlineto{\pgfqpoint{2.704612in}{2.136028in}}% -\pgfpathlineto{\pgfqpoint{2.709092in}{2.106301in}}% -\pgfpathlineto{\pgfqpoint{2.713573in}{2.061139in}}% -\pgfpathlineto{\pgfqpoint{2.718053in}{1.963988in}}% -\pgfpathlineto{\pgfqpoint{2.722534in}{1.963948in}}% -\pgfpathlineto{\pgfqpoint{2.727015in}{2.061017in}}% -\pgfpathlineto{\pgfqpoint{2.731495in}{2.106098in}}% -\pgfpathlineto{\pgfqpoint{2.735976in}{2.135744in}}% -\pgfpathlineto{\pgfqpoint{2.744937in}{2.175437in}}% -\pgfpathlineto{\pgfqpoint{2.753898in}{2.202507in}}% -\pgfpathlineto{\pgfqpoint{2.762859in}{2.222972in}}% -\pgfpathlineto{\pgfqpoint{2.776301in}{2.246425in}}% -\pgfpathlineto{\pgfqpoint{2.789742in}{2.264441in}}% -\pgfpathlineto{\pgfqpoint{2.803184in}{2.278885in}}% -\pgfpathlineto{\pgfqpoint{2.821106in}{2.294281in}}% -\pgfpathlineto{\pgfqpoint{2.839028in}{2.306466in}}% -\pgfpathlineto{\pgfqpoint{2.856951in}{2.316223in}}% -\pgfpathlineto{\pgfqpoint{2.879353in}{2.325716in}}% -\pgfpathlineto{\pgfqpoint{2.901756in}{2.332726in}}% -\pgfpathlineto{\pgfqpoint{2.924159in}{2.337582in}}% -\pgfpathlineto{\pgfqpoint{2.946562in}{2.340458in}}% -\pgfpathlineto{\pgfqpoint{2.960003in}{2.341258in}}% -\pgfpathlineto{\pgfqpoint{2.995848in}{2.332633in}}% -\pgfpathlineto{\pgfqpoint{3.018251in}{2.324413in}}% -\pgfpathlineto{\pgfqpoint{3.040653in}{2.313457in}}% -\pgfpathlineto{\pgfqpoint{3.058576in}{2.302255in}}% -\pgfpathlineto{\pgfqpoint{3.076498in}{2.288243in}}% -\pgfpathlineto{\pgfqpoint{3.089939in}{2.275291in}}% -\pgfpathlineto{\pgfqpoint{3.103381in}{2.259464in}}% -\pgfpathlineto{\pgfqpoint{3.116823in}{2.239512in}}% -\pgfpathlineto{\pgfqpoint{3.125784in}{2.222815in}}% -\pgfpathlineto{\pgfqpoint{3.134745in}{2.201937in}}% -\pgfpathlineto{\pgfqpoint{3.143706in}{2.174267in}}% -\pgfpathlineto{\pgfqpoint{3.148187in}{2.156222in}}% -\pgfpathlineto{\pgfqpoint{3.152667in}{2.133468in}}% -\pgfpathlineto{\pgfqpoint{3.157148in}{2.102693in}}% -\pgfpathlineto{\pgfqpoint{3.161628in}{2.055038in}}% -\pgfpathlineto{\pgfqpoint{3.166109in}{1.944257in}}% -\pgfpathlineto{\pgfqpoint{3.170589in}{1.980062in}}% -\pgfpathlineto{\pgfqpoint{3.175070in}{2.066716in}}% -\pgfpathlineto{\pgfqpoint{3.179550in}{2.109557in}}% -\pgfpathlineto{\pgfqpoint{3.188512in}{2.159769in}}% -\pgfpathlineto{\pgfqpoint{3.197473in}{2.191373in}}% -\pgfpathlineto{\pgfqpoint{3.206434in}{2.214378in}}% -\pgfpathlineto{\pgfqpoint{3.215395in}{2.232383in}}% -\pgfpathlineto{\pgfqpoint{3.228837in}{2.253536in}}% -\pgfpathlineto{\pgfqpoint{3.242278in}{2.270086in}}% -\pgfpathlineto{\pgfqpoint{3.255720in}{2.283503in}}% -\pgfpathlineto{\pgfqpoint{3.273642in}{2.297911in}}% -\pgfpathlineto{\pgfqpoint{3.291564in}{2.309367in}}% -\pgfpathlineto{\pgfqpoint{3.313967in}{2.320542in}}% -\pgfpathlineto{\pgfqpoint{3.336370in}{2.328939in}}% -\pgfpathlineto{\pgfqpoint{3.358773in}{2.335015in}}% -\pgfpathlineto{\pgfqpoint{3.381175in}{2.339026in}}% -\pgfpathlineto{\pgfqpoint{3.403578in}{2.341091in}}% -\pgfpathlineto{\pgfqpoint{3.412539in}{2.340206in}}% -\pgfpathlineto{\pgfqpoint{3.434942in}{2.335131in}}% -\pgfpathlineto{\pgfqpoint{3.457345in}{2.327832in}}% -\pgfpathlineto{\pgfqpoint{3.479748in}{2.317979in}}% -\pgfpathlineto{\pgfqpoint{3.497670in}{2.307882in}}% -\pgfpathlineto{\pgfqpoint{3.515592in}{2.295301in}}% -\pgfpathlineto{\pgfqpoint{3.533514in}{2.279438in}}% -\pgfpathlineto{\pgfqpoint{3.546956in}{2.264574in}}% -\pgfpathlineto{\pgfqpoint{3.560397in}{2.246040in}}% -\pgfpathlineto{\pgfqpoint{3.569359in}{2.230749in}}% -\pgfpathlineto{\pgfqpoint{3.578320in}{2.211972in}}% -\pgfpathlineto{\pgfqpoint{3.587281in}{2.187822in}}% -\pgfpathlineto{\pgfqpoint{3.596242in}{2.154195in}}% -\pgfpathlineto{\pgfqpoint{3.600722in}{2.130832in}}% -\pgfpathlineto{\pgfqpoint{3.605203in}{2.098931in}}% -\pgfpathlineto{\pgfqpoint{3.609684in}{2.048485in}}% -\pgfpathlineto{\pgfqpoint{3.614164in}{1.918820in}}% -\pgfpathlineto{\pgfqpoint{3.623125in}{2.072068in}}% -\pgfpathlineto{\pgfqpoint{3.627606in}{2.112884in}}% -\pgfpathlineto{\pgfqpoint{3.636567in}{2.161657in}}% -\pgfpathlineto{\pgfqpoint{3.645528in}{2.192685in}}% -\pgfpathlineto{\pgfqpoint{3.654489in}{2.215378in}}% -\pgfpathlineto{\pgfqpoint{3.663450in}{2.233187in}}% -\pgfpathlineto{\pgfqpoint{3.676892in}{2.254151in}}% -\pgfpathlineto{\pgfqpoint{3.690333in}{2.270578in}}% -\pgfpathlineto{\pgfqpoint{3.703775in}{2.283907in}}% -\pgfpathlineto{\pgfqpoint{3.721697in}{2.298230in}}% -\pgfpathlineto{\pgfqpoint{3.739620in}{2.309622in}}% -\pgfpathlineto{\pgfqpoint{3.762022in}{2.320735in}}% -\pgfpathlineto{\pgfqpoint{3.784425in}{2.329082in}}% -\pgfpathlineto{\pgfqpoint{3.806828in}{2.335115in}}% -\pgfpathlineto{\pgfqpoint{3.829231in}{2.339086in}}% -\pgfpathlineto{\pgfqpoint{3.851633in}{2.341112in}}% -\pgfpathlineto{\pgfqpoint{3.860595in}{2.340125in}}% -\pgfpathlineto{\pgfqpoint{3.882997in}{2.335007in}}% -\pgfpathlineto{\pgfqpoint{3.905400in}{2.327661in}}% -\pgfpathlineto{\pgfqpoint{3.927803in}{2.317753in}}% -\pgfpathlineto{\pgfqpoint{3.945725in}{2.307600in}}% -\pgfpathlineto{\pgfqpoint{3.963647in}{2.294949in}}% -\pgfpathlineto{\pgfqpoint{3.981569in}{2.278989in}}% -\pgfpathlineto{\pgfqpoint{3.995011in}{2.264023in}}% -\pgfpathlineto{\pgfqpoint{4.008453in}{2.245340in}}% -\pgfpathlineto{\pgfqpoint{4.017414in}{2.229904in}}% -\pgfpathlineto{\pgfqpoint{4.026375in}{2.210914in}}% -\pgfpathlineto{\pgfqpoint{4.035336in}{2.186417in}}% -\pgfpathlineto{\pgfqpoint{4.044297in}{2.152119in}}% -\pgfpathlineto{\pgfqpoint{4.048778in}{2.128114in}}% -\pgfpathlineto{\pgfqpoint{4.053258in}{2.095002in}}% -\pgfpathlineto{\pgfqpoint{4.057739in}{2.041407in}}% -\pgfpathlineto{\pgfqpoint{4.062219in}{1.882969in}}% -\pgfpathlineto{\pgfqpoint{4.066700in}{2.005485in}}% -\pgfpathlineto{\pgfqpoint{4.071181in}{2.077114in}}% -\pgfpathlineto{\pgfqpoint{4.075661in}{2.116089in}}% -\pgfpathlineto{\pgfqpoint{4.084622in}{2.163504in}}% -\pgfpathlineto{\pgfqpoint{4.093583in}{2.193977in}}% -\pgfpathlineto{\pgfqpoint{4.102544in}{2.216366in}}% -\pgfpathlineto{\pgfqpoint{4.111505in}{2.233983in}}% -\pgfpathlineto{\pgfqpoint{4.124947in}{2.254761in}}% -\pgfpathlineto{\pgfqpoint{4.138389in}{2.271066in}}% -\pgfpathlineto{\pgfqpoint{4.151830in}{2.284308in}}% -\pgfpathlineto{\pgfqpoint{4.169753in}{2.298547in}}% -\pgfpathlineto{\pgfqpoint{4.187675in}{2.309875in}}% -\pgfpathlineto{\pgfqpoint{4.210078in}{2.320927in}}% -\pgfpathlineto{\pgfqpoint{4.232480in}{2.329225in}}% -\pgfpathlineto{\pgfqpoint{4.254883in}{2.335214in}}% -\pgfpathlineto{\pgfqpoint{4.277286in}{2.339145in}}% -\pgfpathlineto{\pgfqpoint{4.299689in}{2.341133in}}% -\pgfpathlineto{\pgfqpoint{4.313130in}{2.339179in}}% -\pgfpathlineto{\pgfqpoint{4.335533in}{2.333591in}}% -\pgfpathlineto{\pgfqpoint{4.357936in}{2.325717in}}% -\pgfpathlineto{\pgfqpoint{4.380339in}{2.315178in}}% -\pgfpathlineto{\pgfqpoint{4.398261in}{2.304397in}}% -\pgfpathlineto{\pgfqpoint{4.416183in}{2.290936in}}% -\pgfpathlineto{\pgfqpoint{4.429625in}{2.278538in}}% -\pgfpathlineto{\pgfqpoint{4.443066in}{2.263468in}}% -\pgfpathlineto{\pgfqpoint{4.456508in}{2.244634in}}% -\pgfpathlineto{\pgfqpoint{4.465469in}{2.229050in}}% -\pgfpathlineto{\pgfqpoint{4.474430in}{2.209842in}}% -\pgfpathlineto{\pgfqpoint{4.483391in}{2.184988in}}% -\pgfpathlineto{\pgfqpoint{4.492352in}{2.149994in}}% -\pgfpathlineto{\pgfqpoint{4.496833in}{2.125309in}}% -\pgfpathlineto{\pgfqpoint{4.501314in}{2.090890in}}% -\pgfpathlineto{\pgfqpoint{4.505794in}{2.033713in}}% -\pgfpathlineto{\pgfqpoint{4.510275in}{1.821687in}}% -\pgfpathlineto{\pgfqpoint{4.514755in}{2.015892in}}% -\pgfpathlineto{\pgfqpoint{4.519236in}{2.081886in}}% -\pgfpathlineto{\pgfqpoint{4.523716in}{2.119182in}}% -\pgfpathlineto{\pgfqpoint{4.532677in}{2.165313in}}% -\pgfpathlineto{\pgfqpoint{4.541639in}{2.195249in}}% -\pgfpathlineto{\pgfqpoint{4.550600in}{2.217343in}}% -\pgfpathlineto{\pgfqpoint{4.559561in}{2.234771in}}% -\pgfpathlineto{\pgfqpoint{4.573002in}{2.255367in}}% -\pgfpathlineto{\pgfqpoint{4.586444in}{2.271551in}}% -\pgfpathlineto{\pgfqpoint{4.599886in}{2.284707in}}% -\pgfpathlineto{\pgfqpoint{4.617808in}{2.298862in}}% -\pgfpathlineto{\pgfqpoint{4.635730in}{2.310128in}}% -\pgfpathlineto{\pgfqpoint{4.658133in}{2.321118in}}% -\pgfpathlineto{\pgfqpoint{4.680536in}{2.329366in}}% -\pgfpathlineto{\pgfqpoint{4.702938in}{2.335312in}}% -\pgfpathlineto{\pgfqpoint{4.725341in}{2.339204in}}% -\pgfpathlineto{\pgfqpoint{4.747744in}{2.341153in}}% -\pgfpathlineto{\pgfqpoint{4.761186in}{2.339088in}}% -\pgfpathlineto{\pgfqpoint{4.783588in}{2.333457in}}% -\pgfpathlineto{\pgfqpoint{4.805991in}{2.325534in}}% -\pgfpathlineto{\pgfqpoint{4.828394in}{2.314936in}}% -\pgfpathlineto{\pgfqpoint{4.846316in}{2.304096in}}% -\pgfpathlineto{\pgfqpoint{4.864238in}{2.290558in}}% -\pgfpathlineto{\pgfqpoint{4.877680in}{2.278083in}}% -\pgfpathlineto{\pgfqpoint{4.891122in}{2.262908in}}% -\pgfpathlineto{\pgfqpoint{4.904563in}{2.243922in}}% -\pgfpathlineto{\pgfqpoint{4.913524in}{2.228187in}}% -\pgfpathlineto{\pgfqpoint{4.922486in}{2.208757in}}% -\pgfpathlineto{\pgfqpoint{4.931447in}{2.183535in}}% -\pgfpathlineto{\pgfqpoint{4.940408in}{2.147815in}}% -\pgfpathlineto{\pgfqpoint{4.944888in}{2.122413in}}% -\pgfpathlineto{\pgfqpoint{4.949369in}{2.086576in}}% -\pgfpathlineto{\pgfqpoint{4.953849in}{2.025284in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.007279in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{1.007279in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{0.624581in}}% -\pgfpathlineto{\pgfqpoint{0.486738in}{1.642673in}}% -\pgfpathlineto{\pgfqpoint{0.491219in}{1.704046in}}% -\pgfpathlineto{\pgfqpoint{0.495699in}{1.739960in}}% -\pgfpathlineto{\pgfqpoint{0.504660in}{1.785183in}}% -\pgfpathlineto{\pgfqpoint{0.513621in}{1.814894in}}% -\pgfpathlineto{\pgfqpoint{0.522583in}{1.836978in}}% -\pgfpathlineto{\pgfqpoint{0.531544in}{1.854487in}}% -\pgfpathlineto{\pgfqpoint{0.544985in}{1.875272in}}% -\pgfpathlineto{\pgfqpoint{0.558427in}{1.891674in}}% -\pgfpathlineto{\pgfqpoint{0.571869in}{1.905048in}}% -\pgfpathlineto{\pgfqpoint{0.585310in}{1.916013in}}% -\pgfpathlineto{\pgfqpoint{0.603232in}{1.926280in}}% -\pgfpathlineto{\pgfqpoint{0.621155in}{1.934111in}}% -\pgfpathlineto{\pgfqpoint{0.643557in}{1.941144in}}% -\pgfpathlineto{\pgfqpoint{0.665960in}{1.945601in}}% -\pgfpathlineto{\pgfqpoint{0.688363in}{1.947787in}}% -\pgfpathlineto{\pgfqpoint{0.710766in}{1.947855in}}% -\pgfpathlineto{\pgfqpoint{0.733169in}{1.945838in}}% -\pgfpathlineto{\pgfqpoint{0.755571in}{1.941657in}}% -\pgfpathlineto{\pgfqpoint{0.777974in}{1.935102in}}% -\pgfpathlineto{\pgfqpoint{0.795896in}{1.927898in}}% -\pgfpathlineto{\pgfqpoint{0.813818in}{1.918608in}}% -\pgfpathlineto{\pgfqpoint{0.831741in}{1.906723in}}% -\pgfpathlineto{\pgfqpoint{0.845182in}{1.895618in}}% -\pgfpathlineto{\pgfqpoint{0.858624in}{1.882018in}}% -\pgfpathlineto{\pgfqpoint{0.872066in}{1.864979in}}% -\pgfpathlineto{\pgfqpoint{0.881027in}{1.850923in}}% -\pgfpathlineto{\pgfqpoint{0.889988in}{1.833739in}}% -\pgfpathlineto{\pgfqpoint{0.898949in}{1.811875in}}% -\pgfpathlineto{\pgfqpoint{0.907910in}{1.782153in}}% -\pgfpathlineto{\pgfqpoint{0.912391in}{1.762206in}}% -\pgfpathlineto{\pgfqpoint{0.916871in}{1.736221in}}% -\pgfpathlineto{\pgfqpoint{0.921352in}{1.699020in}}% -\pgfpathlineto{\pgfqpoint{0.925832in}{1.633118in}}% -\pgfpathlineto{\pgfqpoint{0.930313in}{1.439000in}}% -\pgfpathlineto{\pgfqpoint{0.934793in}{1.651110in}}% -\pgfpathlineto{\pgfqpoint{0.939274in}{1.708367in}}% -\pgfpathlineto{\pgfqpoint{0.943755in}{1.742865in}}% -\pgfpathlineto{\pgfqpoint{0.952716in}{1.786935in}}% -\pgfpathlineto{\pgfqpoint{0.961677in}{1.816144in}}% -\pgfpathlineto{\pgfqpoint{0.970638in}{1.837946in}}% -\pgfpathlineto{\pgfqpoint{0.979599in}{1.855273in}}% -\pgfpathlineto{\pgfqpoint{0.993041in}{1.875879in}}% -\pgfpathlineto{\pgfqpoint{1.006482in}{1.892163in}}% -\pgfpathlineto{\pgfqpoint{1.019924in}{1.905451in}}% -\pgfpathlineto{\pgfqpoint{1.033366in}{1.916305in}}% -\pgfpathlineto{\pgfqpoint{1.051288in}{1.926503in}}% -\pgfpathlineto{\pgfqpoint{1.069210in}{1.934280in}}% -\pgfpathlineto{\pgfqpoint{1.091613in}{1.941257in}}% -\pgfpathlineto{\pgfqpoint{1.114016in}{1.945666in}}% -\pgfpathlineto{\pgfqpoint{1.136418in}{1.947809in}}% -\pgfpathlineto{\pgfqpoint{1.158821in}{1.947836in}}% -\pgfpathlineto{\pgfqpoint{1.181224in}{1.945776in}}% -\pgfpathlineto{\pgfqpoint{1.203627in}{1.941550in}}% -\pgfpathlineto{\pgfqpoint{1.226029in}{1.934945in}}% -\pgfpathlineto{\pgfqpoint{1.243952in}{1.927692in}}% -\pgfpathlineto{\pgfqpoint{1.261874in}{1.918345in}}% -\pgfpathlineto{\pgfqpoint{1.279796in}{1.906386in}}% -\pgfpathlineto{\pgfqpoint{1.293238in}{1.895209in}}% -\pgfpathlineto{\pgfqpoint{1.306679in}{1.881512in}}% -\pgfpathlineto{\pgfqpoint{1.320121in}{1.864336in}}% -\pgfpathlineto{\pgfqpoint{1.329082in}{1.850148in}}% -\pgfpathlineto{\pgfqpoint{1.338043in}{1.832774in}}% -\pgfpathlineto{\pgfqpoint{1.347004in}{1.810613in}}% -\pgfpathlineto{\pgfqpoint{1.355965in}{1.780354in}}% -\pgfpathlineto{\pgfqpoint{1.360446in}{1.759931in}}% -\pgfpathlineto{\pgfqpoint{1.364926in}{1.733138in}}% -\pgfpathlineto{\pgfqpoint{1.369407in}{1.694257in}}% -\pgfpathlineto{\pgfqpoint{1.373888in}{1.622719in}}% -\pgfpathlineto{\pgfqpoint{1.378368in}{1.500291in}}% -\pgfpathlineto{\pgfqpoint{1.382849in}{1.658812in}}% -\pgfpathlineto{\pgfqpoint{1.387329in}{1.712488in}}% -\pgfpathlineto{\pgfqpoint{1.391810in}{1.745677in}}% -\pgfpathlineto{\pgfqpoint{1.400771in}{1.788652in}}% -\pgfpathlineto{\pgfqpoint{1.409732in}{1.817376in}}% -\pgfpathlineto{\pgfqpoint{1.418693in}{1.838903in}}% -\pgfpathlineto{\pgfqpoint{1.432135in}{1.863453in}}% -\pgfpathlineto{\pgfqpoint{1.445576in}{1.882265in}}% -\pgfpathlineto{\pgfqpoint{1.459018in}{1.897335in}}% -\pgfpathlineto{\pgfqpoint{1.476940in}{1.913610in}}% -\pgfpathlineto{\pgfqpoint{1.494863in}{1.924439in}}% -\pgfpathlineto{\pgfqpoint{1.512785in}{1.932715in}}% -\pgfpathlineto{\pgfqpoint{1.535188in}{1.940202in}}% -\pgfpathlineto{\pgfqpoint{1.557590in}{1.945046in}}% -\pgfpathlineto{\pgfqpoint{1.579993in}{1.947582in}}% -\pgfpathlineto{\pgfqpoint{1.602396in}{1.947984in}}% -\pgfpathlineto{\pgfqpoint{1.624799in}{1.946303in}}% -\pgfpathlineto{\pgfqpoint{1.647201in}{1.942478in}}% -\pgfpathlineto{\pgfqpoint{1.669604in}{1.936324in}}% -\pgfpathlineto{\pgfqpoint{1.692007in}{1.927486in}}% -\pgfpathlineto{\pgfqpoint{1.709929in}{1.918081in}}% -\pgfpathlineto{\pgfqpoint{1.727851in}{1.906047in}}% -\pgfpathlineto{\pgfqpoint{1.741293in}{1.894797in}}% -\pgfpathlineto{\pgfqpoint{1.754735in}{1.881002in}}% -\pgfpathlineto{\pgfqpoint{1.768176in}{1.863686in}}% -\pgfpathlineto{\pgfqpoint{1.777137in}{1.849364in}}% -\pgfpathlineto{\pgfqpoint{1.786098in}{1.831798in}}% -\pgfpathlineto{\pgfqpoint{1.795060in}{1.809333in}}% -\pgfpathlineto{\pgfqpoint{1.804021in}{1.778517in}}% -\pgfpathlineto{\pgfqpoint{1.808501in}{1.757595in}}% -\pgfpathlineto{\pgfqpoint{1.812982in}{1.729942in}}% -\pgfpathlineto{\pgfqpoint{1.817462in}{1.689221in}}% -\pgfpathlineto{\pgfqpoint{1.826423in}{1.536149in}}% -\pgfpathlineto{\pgfqpoint{1.830904in}{1.665898in}}% -\pgfpathlineto{\pgfqpoint{1.835385in}{1.716425in}}% -\pgfpathlineto{\pgfqpoint{1.839865in}{1.748402in}}% -\pgfpathlineto{\pgfqpoint{1.848826in}{1.790336in}}% -\pgfpathlineto{\pgfqpoint{1.857787in}{1.818590in}}% -\pgfpathlineto{\pgfqpoint{1.866748in}{1.839849in}}% -\pgfpathlineto{\pgfqpoint{1.880190in}{1.864158in}}% -\pgfpathlineto{\pgfqpoint{1.893632in}{1.882820in}}% -\pgfpathlineto{\pgfqpoint{1.907073in}{1.897787in}}% -\pgfpathlineto{\pgfqpoint{1.924996in}{1.913918in}}% -\pgfpathlineto{\pgfqpoint{1.942918in}{1.924675in}}% -\pgfpathlineto{\pgfqpoint{1.960840in}{1.932894in}}% -\pgfpathlineto{\pgfqpoint{1.983243in}{1.940324in}}% -\pgfpathlineto{\pgfqpoint{2.005646in}{1.945119in}}% -\pgfpathlineto{\pgfqpoint{2.028048in}{1.947611in}}% -\pgfpathlineto{\pgfqpoint{2.050451in}{1.947971in}}% -\pgfpathlineto{\pgfqpoint{2.072854in}{1.946248in}}% -\pgfpathlineto{\pgfqpoint{2.095257in}{1.942379in}}% -\pgfpathlineto{\pgfqpoint{2.117659in}{1.936175in}}% -\pgfpathlineto{\pgfqpoint{2.140062in}{1.927278in}}% -\pgfpathlineto{\pgfqpoint{2.157984in}{1.917815in}}% -\pgfpathlineto{\pgfqpoint{2.175907in}{1.905706in}}% -\pgfpathlineto{\pgfqpoint{2.189348in}{1.894382in}}% -\pgfpathlineto{\pgfqpoint{2.202790in}{1.880489in}}% -\pgfpathlineto{\pgfqpoint{2.216232in}{1.863031in}}% -\pgfpathlineto{\pgfqpoint{2.225193in}{1.848573in}}% -\pgfpathlineto{\pgfqpoint{2.234154in}{1.830810in}}% -\pgfpathlineto{\pgfqpoint{2.243115in}{1.808032in}}% -\pgfpathlineto{\pgfqpoint{2.252076in}{1.776640in}}% -\pgfpathlineto{\pgfqpoint{2.256557in}{1.755194in}}% -\pgfpathlineto{\pgfqpoint{2.261037in}{1.726625in}}% -\pgfpathlineto{\pgfqpoint{2.265518in}{1.683878in}}% -\pgfpathlineto{\pgfqpoint{2.269998in}{1.597313in}}% -\pgfpathlineto{\pgfqpoint{2.274479in}{1.561595in}}% -\pgfpathlineto{\pgfqpoint{2.278959in}{1.672460in}}% -\pgfpathlineto{\pgfqpoint{2.283440in}{1.720195in}}% -\pgfpathlineto{\pgfqpoint{2.287920in}{1.751046in}}% -\pgfpathlineto{\pgfqpoint{2.296882in}{1.791988in}}% -\pgfpathlineto{\pgfqpoint{2.305843in}{1.819788in}}% -\pgfpathlineto{\pgfqpoint{2.314804in}{1.840784in}}% -\pgfpathlineto{\pgfqpoint{2.328245in}{1.864856in}}% -\pgfpathlineto{\pgfqpoint{2.341687in}{1.883371in}}% -\pgfpathlineto{\pgfqpoint{2.355129in}{1.898236in}}% -\pgfpathlineto{\pgfqpoint{2.373051in}{1.914223in}}% -\pgfpathlineto{\pgfqpoint{2.390973in}{1.924909in}}% -\pgfpathlineto{\pgfqpoint{2.408895in}{1.933071in}}% -\pgfpathlineto{\pgfqpoint{2.431298in}{1.940444in}}% -\pgfpathlineto{\pgfqpoint{2.453701in}{1.945190in}}% -\pgfpathlineto{\pgfqpoint{2.476104in}{1.947639in}}% -\pgfpathlineto{\pgfqpoint{2.498506in}{1.947957in}}% -\pgfpathlineto{\pgfqpoint{2.520909in}{1.946192in}}% -\pgfpathlineto{\pgfqpoint{2.543312in}{1.942278in}}% -\pgfpathlineto{\pgfqpoint{2.565715in}{1.936025in}}% -\pgfpathlineto{\pgfqpoint{2.588117in}{1.927069in}}% -\pgfpathlineto{\pgfqpoint{2.606040in}{1.917547in}}% -\pgfpathlineto{\pgfqpoint{2.623962in}{1.905363in}}% -\pgfpathlineto{\pgfqpoint{2.637404in}{1.893965in}}% -\pgfpathlineto{\pgfqpoint{2.650845in}{1.879972in}}% -\pgfpathlineto{\pgfqpoint{2.664287in}{1.862370in}}% -\pgfpathlineto{\pgfqpoint{2.673248in}{1.847773in}}% -\pgfpathlineto{\pgfqpoint{2.682209in}{1.829809in}}% -\pgfpathlineto{\pgfqpoint{2.691170in}{1.806711in}}% -\pgfpathlineto{\pgfqpoint{2.700131in}{1.774720in}}% -\pgfpathlineto{\pgfqpoint{2.704612in}{1.752725in}}% -\pgfpathlineto{\pgfqpoint{2.709092in}{1.723176in}}% -\pgfpathlineto{\pgfqpoint{2.713573in}{1.678188in}}% -\pgfpathlineto{\pgfqpoint{2.718053in}{1.581208in}}% -\pgfpathlineto{\pgfqpoint{2.722534in}{1.581335in}}% -\pgfpathlineto{\pgfqpoint{2.727015in}{1.678569in}}% -\pgfpathlineto{\pgfqpoint{2.731495in}{1.723810in}}% -\pgfpathlineto{\pgfqpoint{2.735976in}{1.753613in}}% -\pgfpathlineto{\pgfqpoint{2.744937in}{1.793610in}}% -\pgfpathlineto{\pgfqpoint{2.753898in}{1.820969in}}% -\pgfpathlineto{\pgfqpoint{2.762859in}{1.841709in}}% -\pgfpathlineto{\pgfqpoint{2.776301in}{1.865549in}}% -\pgfpathlineto{\pgfqpoint{2.789742in}{1.883918in}}% -\pgfpathlineto{\pgfqpoint{2.803184in}{1.898682in}}% -\pgfpathlineto{\pgfqpoint{2.821106in}{1.914527in}}% -\pgfpathlineto{\pgfqpoint{2.839028in}{1.925141in}}% -\pgfpathlineto{\pgfqpoint{2.856951in}{1.933248in}}% -\pgfpathlineto{\pgfqpoint{2.879353in}{1.940563in}}% -\pgfpathlineto{\pgfqpoint{2.901756in}{1.945261in}}% -\pgfpathlineto{\pgfqpoint{2.924159in}{1.947665in}}% -\pgfpathlineto{\pgfqpoint{2.946562in}{1.947942in}}% -\pgfpathlineto{\pgfqpoint{2.968964in}{1.946135in}}% -\pgfpathlineto{\pgfqpoint{2.991367in}{1.942177in}}% -\pgfpathlineto{\pgfqpoint{3.013770in}{1.935874in}}% -\pgfpathlineto{\pgfqpoint{3.036173in}{1.926859in}}% -\pgfpathlineto{\pgfqpoint{3.054095in}{1.917278in}}% -\pgfpathlineto{\pgfqpoint{3.072017in}{1.905018in}}% -\pgfpathlineto{\pgfqpoint{3.085459in}{1.893544in}}% -\pgfpathlineto{\pgfqpoint{3.098901in}{1.879450in}}% -\pgfpathlineto{\pgfqpoint{3.112342in}{1.861704in}}% -\pgfpathlineto{\pgfqpoint{3.121303in}{1.846966in}}% -\pgfpathlineto{\pgfqpoint{3.130264in}{1.828796in}}% -\pgfpathlineto{\pgfqpoint{3.139225in}{1.805368in}}% -\pgfpathlineto{\pgfqpoint{3.148187in}{1.772757in}}% -\pgfpathlineto{\pgfqpoint{3.152667in}{1.750183in}}% -\pgfpathlineto{\pgfqpoint{3.157148in}{1.719586in}}% -\pgfpathlineto{\pgfqpoint{3.161628in}{1.672105in}}% -\pgfpathlineto{\pgfqpoint{3.166109in}{1.561494in}}% -\pgfpathlineto{\pgfqpoint{3.170589in}{1.597466in}}% -\pgfpathlineto{\pgfqpoint{3.175070in}{1.684283in}}% -\pgfpathlineto{\pgfqpoint{3.179550in}{1.727284in}}% -\pgfpathlineto{\pgfqpoint{3.188512in}{1.777807in}}% -\pgfpathlineto{\pgfqpoint{3.197473in}{1.809707in}}% -\pgfpathlineto{\pgfqpoint{3.206434in}{1.832994in}}% -\pgfpathlineto{\pgfqpoint{3.215395in}{1.851266in}}% -\pgfpathlineto{\pgfqpoint{3.228837in}{1.872794in}}% -\pgfpathlineto{\pgfqpoint{3.242278in}{1.889684in}}% -\pgfpathlineto{\pgfqpoint{3.255720in}{1.903408in}}% -\pgfpathlineto{\pgfqpoint{3.269162in}{1.914828in}}% -\pgfpathlineto{\pgfqpoint{3.287084in}{1.925372in}}% -\pgfpathlineto{\pgfqpoint{3.305006in}{1.933423in}}% -\pgfpathlineto{\pgfqpoint{3.327409in}{1.940681in}}% -\pgfpathlineto{\pgfqpoint{3.349811in}{1.945331in}}% -\pgfpathlineto{\pgfqpoint{3.372214in}{1.947692in}}% -\pgfpathlineto{\pgfqpoint{3.394617in}{1.947926in}}% -\pgfpathlineto{\pgfqpoint{3.417020in}{1.946078in}}% -\pgfpathlineto{\pgfqpoint{3.439423in}{1.942075in}}% -\pgfpathlineto{\pgfqpoint{3.461825in}{1.935722in}}% -\pgfpathlineto{\pgfqpoint{3.484228in}{1.926647in}}% -\pgfpathlineto{\pgfqpoint{3.502150in}{1.917007in}}% -\pgfpathlineto{\pgfqpoint{3.520072in}{1.904670in}}% -\pgfpathlineto{\pgfqpoint{3.533514in}{1.893121in}}% -\pgfpathlineto{\pgfqpoint{3.546956in}{1.878925in}}% -\pgfpathlineto{\pgfqpoint{3.560397in}{1.861031in}}% -\pgfpathlineto{\pgfqpoint{3.569359in}{1.846150in}}% -\pgfpathlineto{\pgfqpoint{3.578320in}{1.827771in}}% -\pgfpathlineto{\pgfqpoint{3.587281in}{1.804004in}}% -\pgfpathlineto{\pgfqpoint{3.596242in}{1.770748in}}% -\pgfpathlineto{\pgfqpoint{3.600722in}{1.747565in}}% -\pgfpathlineto{\pgfqpoint{3.605203in}{1.715841in}}% -\pgfpathlineto{\pgfqpoint{3.609684in}{1.665569in}}% -\pgfpathlineto{\pgfqpoint{3.614164in}{1.536073in}}% -\pgfpathlineto{\pgfqpoint{3.623125in}{1.689652in}}% -\pgfpathlineto{\pgfqpoint{3.627606in}{1.730627in}}% -\pgfpathlineto{\pgfqpoint{3.636567in}{1.779710in}}% -\pgfpathlineto{\pgfqpoint{3.645528in}{1.811033in}}% -\pgfpathlineto{\pgfqpoint{3.654489in}{1.834008in}}% -\pgfpathlineto{\pgfqpoint{3.663450in}{1.852083in}}% -\pgfpathlineto{\pgfqpoint{3.676892in}{1.873421in}}% -\pgfpathlineto{\pgfqpoint{3.690333in}{1.890187in}}% -\pgfpathlineto{\pgfqpoint{3.703775in}{1.903821in}}% -\pgfpathlineto{\pgfqpoint{3.717217in}{1.915127in}}% -\pgfpathlineto{\pgfqpoint{3.735139in}{1.925601in}}% -\pgfpathlineto{\pgfqpoint{3.753061in}{1.933597in}}% -\pgfpathlineto{\pgfqpoint{3.775464in}{1.940798in}}% -\pgfpathlineto{\pgfqpoint{3.797867in}{1.945400in}}% -\pgfpathlineto{\pgfqpoint{3.820270in}{1.947717in}}% -\pgfpathlineto{\pgfqpoint{3.842672in}{1.947910in}}% -\pgfpathlineto{\pgfqpoint{3.865075in}{1.946019in}}% -\pgfpathlineto{\pgfqpoint{3.887478in}{1.941972in}}% -\pgfpathlineto{\pgfqpoint{3.909881in}{1.935568in}}% -\pgfpathlineto{\pgfqpoint{3.932283in}{1.926434in}}% -\pgfpathlineto{\pgfqpoint{3.950206in}{1.916734in}}% -\pgfpathlineto{\pgfqpoint{3.968128in}{1.904321in}}% -\pgfpathlineto{\pgfqpoint{3.981569in}{1.892695in}}% -\pgfpathlineto{\pgfqpoint{3.995011in}{1.878396in}}% -\pgfpathlineto{\pgfqpoint{4.008453in}{1.860352in}}% -\pgfpathlineto{\pgfqpoint{4.017414in}{1.845325in}}% -\pgfpathlineto{\pgfqpoint{4.026375in}{1.826732in}}% -\pgfpathlineto{\pgfqpoint{4.035336in}{1.802617in}}% -\pgfpathlineto{\pgfqpoint{4.044297in}{1.768690in}}% -\pgfpathlineto{\pgfqpoint{4.048778in}{1.744865in}}% -\pgfpathlineto{\pgfqpoint{4.053258in}{1.711929in}}% -\pgfpathlineto{\pgfqpoint{4.057739in}{1.658508in}}% -\pgfpathlineto{\pgfqpoint{4.062219in}{1.500240in}}% -\pgfpathlineto{\pgfqpoint{4.066700in}{1.622922in}}% -\pgfpathlineto{\pgfqpoint{4.071181in}{1.694714in}}% -\pgfpathlineto{\pgfqpoint{4.075661in}{1.733849in}}% -\pgfpathlineto{\pgfqpoint{4.084622in}{1.781572in}}% -\pgfpathlineto{\pgfqpoint{4.093583in}{1.812339in}}% -\pgfpathlineto{\pgfqpoint{4.102544in}{1.835009in}}% -\pgfpathlineto{\pgfqpoint{4.111505in}{1.852892in}}% -\pgfpathlineto{\pgfqpoint{4.124947in}{1.874043in}}% -\pgfpathlineto{\pgfqpoint{4.138389in}{1.890686in}}% -\pgfpathlineto{\pgfqpoint{4.151830in}{1.904233in}}% -\pgfpathlineto{\pgfqpoint{4.165272in}{1.915424in}}% -\pgfpathlineto{\pgfqpoint{4.183194in}{1.925829in}}% -\pgfpathlineto{\pgfqpoint{4.201117in}{1.933769in}}% -\pgfpathlineto{\pgfqpoint{4.223519in}{1.940915in}}% -\pgfpathlineto{\pgfqpoint{4.245922in}{1.945468in}}% -\pgfpathlineto{\pgfqpoint{4.268325in}{1.947741in}}% -\pgfpathlineto{\pgfqpoint{4.290728in}{1.947893in}}% -\pgfpathlineto{\pgfqpoint{4.313130in}{1.945960in}}% -\pgfpathlineto{\pgfqpoint{4.335533in}{1.941868in}}% -\pgfpathlineto{\pgfqpoint{4.357936in}{1.935414in}}% -\pgfpathlineto{\pgfqpoint{4.380339in}{1.926220in}}% -\pgfpathlineto{\pgfqpoint{4.398261in}{1.916460in}}% -\pgfpathlineto{\pgfqpoint{4.416183in}{1.903969in}}% -\pgfpathlineto{\pgfqpoint{4.429625in}{1.892266in}}% -\pgfpathlineto{\pgfqpoint{4.443066in}{1.877862in}}% -\pgfpathlineto{\pgfqpoint{4.456508in}{1.859667in}}% -\pgfpathlineto{\pgfqpoint{4.465469in}{1.844491in}}% -\pgfpathlineto{\pgfqpoint{4.474430in}{1.825679in}}% -\pgfpathlineto{\pgfqpoint{4.483391in}{1.801207in}}% -\pgfpathlineto{\pgfqpoint{4.492352in}{1.766583in}}% -\pgfpathlineto{\pgfqpoint{4.496833in}{1.742078in}}% -\pgfpathlineto{\pgfqpoint{4.501314in}{1.707835in}}% -\pgfpathlineto{\pgfqpoint{4.505794in}{1.650831in}}% -\pgfpathlineto{\pgfqpoint{4.510275in}{1.438975in}}% -\pgfpathlineto{\pgfqpoint{4.514755in}{1.633346in}}% -\pgfpathlineto{\pgfqpoint{4.519236in}{1.699502in}}% -\pgfpathlineto{\pgfqpoint{4.523716in}{1.736957in}}% -\pgfpathlineto{\pgfqpoint{4.532677in}{1.783396in}}% -\pgfpathlineto{\pgfqpoint{4.541639in}{1.813626in}}% -\pgfpathlineto{\pgfqpoint{4.550600in}{1.836000in}}% -\pgfpathlineto{\pgfqpoint{4.559561in}{1.853693in}}% -\pgfpathlineto{\pgfqpoint{4.573002in}{1.874660in}}% -\pgfpathlineto{\pgfqpoint{4.586444in}{1.891182in}}% -\pgfpathlineto{\pgfqpoint{4.599886in}{1.904641in}}% -\pgfpathlineto{\pgfqpoint{4.613327in}{1.915720in}}% -\pgfpathlineto{\pgfqpoint{4.631250in}{1.926055in}}% -\pgfpathlineto{\pgfqpoint{4.649172in}{1.933941in}}% -\pgfpathlineto{\pgfqpoint{4.671575in}{1.941030in}}% -\pgfpathlineto{\pgfqpoint{4.693977in}{1.945535in}}% -\pgfpathlineto{\pgfqpoint{4.716380in}{1.947765in}}% -\pgfpathlineto{\pgfqpoint{4.738783in}{1.947874in}}% -\pgfpathlineto{\pgfqpoint{4.761186in}{1.945899in}}% -\pgfpathlineto{\pgfqpoint{4.783588in}{1.941763in}}% -\pgfpathlineto{\pgfqpoint{4.805991in}{1.935259in}}% -\pgfpathlineto{\pgfqpoint{4.823913in}{1.928102in}}% -\pgfpathlineto{\pgfqpoint{4.841836in}{1.918869in}}% -\pgfpathlineto{\pgfqpoint{4.859758in}{1.907057in}}% -\pgfpathlineto{\pgfqpoint{4.873199in}{1.896025in}}% -\pgfpathlineto{\pgfqpoint{4.886641in}{1.882520in}}% -\pgfpathlineto{\pgfqpoint{4.900083in}{1.865618in}}% -\pgfpathlineto{\pgfqpoint{4.909044in}{1.851691in}}% -\pgfpathlineto{\pgfqpoint{4.918005in}{1.834693in}}% -\pgfpathlineto{\pgfqpoint{4.926966in}{1.813117in}}% -\pgfpathlineto{\pgfqpoint{4.935927in}{1.783915in}}% -\pgfpathlineto{\pgfqpoint{4.940408in}{1.764422in}}% -\pgfpathlineto{\pgfqpoint{4.944888in}{1.739199in}}% -\pgfpathlineto{\pgfqpoint{4.949369in}{1.703539in}}% -\pgfpathlineto{\pgfqpoint{4.953849in}{1.642419in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.624585in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.624585in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.483205in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.486738in}{1.256227in}}% -\pgfpathlineto{\pgfqpoint{0.491219in}{1.317344in}}% -\pgfpathlineto{\pgfqpoint{0.495699in}{1.353000in}}% -\pgfpathlineto{\pgfqpoint{0.504660in}{1.397701in}}% -\pgfpathlineto{\pgfqpoint{0.513621in}{1.426883in}}% -\pgfpathlineto{\pgfqpoint{0.522583in}{1.448429in}}% -\pgfpathlineto{\pgfqpoint{0.531544in}{1.465392in}}% -\pgfpathlineto{\pgfqpoint{0.544985in}{1.485345in}}% -\pgfpathlineto{\pgfqpoint{0.558427in}{1.500896in}}% -\pgfpathlineto{\pgfqpoint{0.571869in}{1.513400in}}% -\pgfpathlineto{\pgfqpoint{0.589791in}{1.526633in}}% -\pgfpathlineto{\pgfqpoint{0.607713in}{1.536901in}}% -\pgfpathlineto{\pgfqpoint{0.625635in}{1.544846in}}% -\pgfpathlineto{\pgfqpoint{0.648038in}{1.552109in}}% -\pgfpathlineto{\pgfqpoint{0.670441in}{1.556842in}}% -\pgfpathlineto{\pgfqpoint{0.692844in}{1.559314in}}% -\pgfpathlineto{\pgfqpoint{0.715246in}{1.559653in}}% -\pgfpathlineto{\pgfqpoint{0.737649in}{1.557868in}}% -\pgfpathlineto{\pgfqpoint{0.760052in}{1.553857in}}% -\pgfpathlineto{\pgfqpoint{0.782455in}{1.547380in}}% -\pgfpathlineto{\pgfqpoint{0.800377in}{1.540140in}}% -\pgfpathlineto{\pgfqpoint{0.818299in}{1.530688in}}% -\pgfpathlineto{\pgfqpoint{0.836221in}{1.518448in}}% -\pgfpathlineto{\pgfqpoint{0.849663in}{1.506880in}}% -\pgfpathlineto{\pgfqpoint{0.863105in}{1.492543in}}% -\pgfpathlineto{\pgfqpoint{0.876546in}{1.474304in}}% -\pgfpathlineto{\pgfqpoint{0.885507in}{1.459024in}}% -\pgfpathlineto{\pgfqpoint{0.894468in}{1.439286in}}% -\pgfpathlineto{\pgfqpoint{0.903430in}{1.413586in}}% -\pgfpathlineto{\pgfqpoint{0.912391in}{1.376988in}}% -\pgfpathlineto{\pgfqpoint{0.916871in}{1.350757in}}% -\pgfpathlineto{\pgfqpoint{0.921352in}{1.313307in}}% -\pgfpathlineto{\pgfqpoint{0.925832in}{1.247154in}}% -\pgfpathlineto{\pgfqpoint{0.930313in}{1.052783in}}% -\pgfpathlineto{\pgfqpoint{0.934793in}{1.264638in}}% -\pgfpathlineto{\pgfqpoint{0.939274in}{1.321640in}}% -\pgfpathlineto{\pgfqpoint{0.943755in}{1.355879in}}% -\pgfpathlineto{\pgfqpoint{0.952716in}{1.399426in}}% -\pgfpathlineto{\pgfqpoint{0.961677in}{1.428106in}}% -\pgfpathlineto{\pgfqpoint{0.970638in}{1.449370in}}% -\pgfpathlineto{\pgfqpoint{0.979599in}{1.466151in}}% -\pgfpathlineto{\pgfqpoint{0.993041in}{1.485924in}}% -\pgfpathlineto{\pgfqpoint{1.006482in}{1.501357in}}% -\pgfpathlineto{\pgfqpoint{1.019924in}{1.513775in}}% -\pgfpathlineto{\pgfqpoint{1.037846in}{1.526923in}}% -\pgfpathlineto{\pgfqpoint{1.055768in}{1.537125in}}% -\pgfpathlineto{\pgfqpoint{1.073691in}{1.545019in}}% -\pgfpathlineto{\pgfqpoint{1.096093in}{1.552227in}}% -\pgfpathlineto{\pgfqpoint{1.118496in}{1.556912in}}% -\pgfpathlineto{\pgfqpoint{1.140899in}{1.559342in}}% -\pgfpathlineto{\pgfqpoint{1.163302in}{1.559638in}}% -\pgfpathlineto{\pgfqpoint{1.185704in}{1.557810in}}% -\pgfpathlineto{\pgfqpoint{1.208107in}{1.553753in}}% -\pgfpathlineto{\pgfqpoint{1.230510in}{1.547223in}}% -\pgfpathlineto{\pgfqpoint{1.248432in}{1.539933in}}% -\pgfpathlineto{\pgfqpoint{1.266354in}{1.530419in}}% -\pgfpathlineto{\pgfqpoint{1.284277in}{1.518099in}}% -\pgfpathlineto{\pgfqpoint{1.297718in}{1.506451in}}% -\pgfpathlineto{\pgfqpoint{1.311160in}{1.492006in}}% -\pgfpathlineto{\pgfqpoint{1.324602in}{1.473609in}}% -\pgfpathlineto{\pgfqpoint{1.333563in}{1.458139in}}% -\pgfpathlineto{\pgfqpoint{1.342524in}{1.438168in}}% -\pgfpathlineto{\pgfqpoint{1.351485in}{1.412077in}}% -\pgfpathlineto{\pgfqpoint{1.360446in}{1.374689in}}% -\pgfpathlineto{\pgfqpoint{1.364926in}{1.347649in}}% -\pgfpathlineto{\pgfqpoint{1.369407in}{1.308519in}}% -\pgfpathlineto{\pgfqpoint{1.373888in}{1.236730in}}% -\pgfpathlineto{\pgfqpoint{1.378368in}{1.114049in}}% -\pgfpathlineto{\pgfqpoint{1.382849in}{1.272315in}}% -\pgfpathlineto{\pgfqpoint{1.387329in}{1.325734in}}% -\pgfpathlineto{\pgfqpoint{1.391810in}{1.358665in}}% -\pgfpathlineto{\pgfqpoint{1.400771in}{1.401117in}}% -\pgfpathlineto{\pgfqpoint{1.409732in}{1.429311in}}% -\pgfpathlineto{\pgfqpoint{1.418693in}{1.450299in}}% -\pgfpathlineto{\pgfqpoint{1.427654in}{1.466902in}}% -\pgfpathlineto{\pgfqpoint{1.441096in}{1.486499in}}% -\pgfpathlineto{\pgfqpoint{1.454538in}{1.501814in}}% -\pgfpathlineto{\pgfqpoint{1.467979in}{1.514147in}}% -\pgfpathlineto{\pgfqpoint{1.485901in}{1.527210in}}% -\pgfpathlineto{\pgfqpoint{1.503824in}{1.537349in}}% -\pgfpathlineto{\pgfqpoint{1.521746in}{1.545190in}}% -\pgfpathlineto{\pgfqpoint{1.544149in}{1.552344in}}% -\pgfpathlineto{\pgfqpoint{1.566551in}{1.556983in}}% -\pgfpathlineto{\pgfqpoint{1.588954in}{1.559368in}}% -\pgfpathlineto{\pgfqpoint{1.611357in}{1.559623in}}% -\pgfpathlineto{\pgfqpoint{1.633760in}{1.557752in}}% -\pgfpathlineto{\pgfqpoint{1.656162in}{1.553648in}}% -\pgfpathlineto{\pgfqpoint{1.678565in}{1.547064in}}% -\pgfpathlineto{\pgfqpoint{1.696487in}{1.539724in}}% -\pgfpathlineto{\pgfqpoint{1.714410in}{1.530148in}}% -\pgfpathlineto{\pgfqpoint{1.732332in}{1.517747in}}% -\pgfpathlineto{\pgfqpoint{1.745773in}{1.506019in}}% -\pgfpathlineto{\pgfqpoint{1.759215in}{1.491465in}}% -\pgfpathlineto{\pgfqpoint{1.772657in}{1.472906in}}% -\pgfpathlineto{\pgfqpoint{1.781618in}{1.457246in}}% -\pgfpathlineto{\pgfqpoint{1.790579in}{1.437034in}}% -\pgfpathlineto{\pgfqpoint{1.799540in}{1.410542in}}% -\pgfpathlineto{\pgfqpoint{1.808501in}{1.372329in}}% -\pgfpathlineto{\pgfqpoint{1.812982in}{1.344428in}}% -\pgfpathlineto{\pgfqpoint{1.817462in}{1.303458in}}% -\pgfpathlineto{\pgfqpoint{1.826423in}{1.149882in}}% -\pgfpathlineto{\pgfqpoint{1.830904in}{1.279376in}}% -\pgfpathlineto{\pgfqpoint{1.835385in}{1.329646in}}% -\pgfpathlineto{\pgfqpoint{1.839865in}{1.361364in}}% -\pgfpathlineto{\pgfqpoint{1.848826in}{1.402775in}}% -\pgfpathlineto{\pgfqpoint{1.857787in}{1.430499in}}% -\pgfpathlineto{\pgfqpoint{1.866748in}{1.451218in}}% -\pgfpathlineto{\pgfqpoint{1.875710in}{1.467645in}}% -\pgfpathlineto{\pgfqpoint{1.889151in}{1.487069in}}% -\pgfpathlineto{\pgfqpoint{1.902593in}{1.502268in}}% -\pgfpathlineto{\pgfqpoint{1.916035in}{1.514516in}}% -\pgfpathlineto{\pgfqpoint{1.933957in}{1.527496in}}% -\pgfpathlineto{\pgfqpoint{1.951879in}{1.537571in}}% -\pgfpathlineto{\pgfqpoint{1.969801in}{1.545360in}}% -\pgfpathlineto{\pgfqpoint{1.992204in}{1.552461in}}% -\pgfpathlineto{\pgfqpoint{2.014607in}{1.557052in}}% -\pgfpathlineto{\pgfqpoint{2.037009in}{1.559394in}}% -\pgfpathlineto{\pgfqpoint{2.059412in}{1.559606in}}% -\pgfpathlineto{\pgfqpoint{2.081815in}{1.557692in}}% -\pgfpathlineto{\pgfqpoint{2.104218in}{1.553541in}}% -\pgfpathlineto{\pgfqpoint{2.126620in}{1.546905in}}% -\pgfpathlineto{\pgfqpoint{2.144543in}{1.539514in}}% -\pgfpathlineto{\pgfqpoint{2.162465in}{1.529876in}}% -\pgfpathlineto{\pgfqpoint{2.180387in}{1.517394in}}% -\pgfpathlineto{\pgfqpoint{2.193829in}{1.505585in}}% -\pgfpathlineto{\pgfqpoint{2.207270in}{1.490920in}}% -\pgfpathlineto{\pgfqpoint{2.220712in}{1.472198in}}% -\pgfpathlineto{\pgfqpoint{2.229673in}{1.456342in}}% -\pgfpathlineto{\pgfqpoint{2.238634in}{1.435886in}}% -\pgfpathlineto{\pgfqpoint{2.247595in}{1.408979in}}% -\pgfpathlineto{\pgfqpoint{2.256557in}{1.369903in}}% -\pgfpathlineto{\pgfqpoint{2.261037in}{1.341086in}}% -\pgfpathlineto{\pgfqpoint{2.265518in}{1.298089in}}% -\pgfpathlineto{\pgfqpoint{2.269998in}{1.211274in}}% -\pgfpathlineto{\pgfqpoint{2.274479in}{1.175302in}}% -\pgfpathlineto{\pgfqpoint{2.278959in}{1.285912in}}% -\pgfpathlineto{\pgfqpoint{2.283440in}{1.333390in}}% -\pgfpathlineto{\pgfqpoint{2.287920in}{1.363982in}}% -\pgfpathlineto{\pgfqpoint{2.296882in}{1.404401in}}% -\pgfpathlineto{\pgfqpoint{2.305843in}{1.431670in}}% -\pgfpathlineto{\pgfqpoint{2.314804in}{1.452127in}}% -\pgfpathlineto{\pgfqpoint{2.323765in}{1.468382in}}% -\pgfpathlineto{\pgfqpoint{2.337206in}{1.487634in}}% -\pgfpathlineto{\pgfqpoint{2.350648in}{1.502718in}}% -\pgfpathlineto{\pgfqpoint{2.364090in}{1.514883in}}% -\pgfpathlineto{\pgfqpoint{2.382012in}{1.527780in}}% -\pgfpathlineto{\pgfqpoint{2.399934in}{1.537791in}}% -\pgfpathlineto{\pgfqpoint{2.417856in}{1.545530in}}% -\pgfpathlineto{\pgfqpoint{2.440259in}{1.552576in}}% -\pgfpathlineto{\pgfqpoint{2.462662in}{1.557120in}}% -\pgfpathlineto{\pgfqpoint{2.485065in}{1.559419in}}% -\pgfpathlineto{\pgfqpoint{2.507468in}{1.559589in}}% -\pgfpathlineto{\pgfqpoint{2.529870in}{1.557632in}}% -\pgfpathlineto{\pgfqpoint{2.552273in}{1.553434in}}% -\pgfpathlineto{\pgfqpoint{2.574676in}{1.546744in}}% -\pgfpathlineto{\pgfqpoint{2.592598in}{1.539302in}}% -\pgfpathlineto{\pgfqpoint{2.610520in}{1.529601in}}% -\pgfpathlineto{\pgfqpoint{2.628442in}{1.517038in}}% -\pgfpathlineto{\pgfqpoint{2.641884in}{1.505147in}}% -\pgfpathlineto{\pgfqpoint{2.655326in}{1.490370in}}% -\pgfpathlineto{\pgfqpoint{2.668767in}{1.471482in}}% -\pgfpathlineto{\pgfqpoint{2.677729in}{1.455429in}}% -\pgfpathlineto{\pgfqpoint{2.686690in}{1.434722in}}% -\pgfpathlineto{\pgfqpoint{2.695651in}{1.407388in}}% -\pgfpathlineto{\pgfqpoint{2.704612in}{1.367409in}}% -\pgfpathlineto{\pgfqpoint{2.709092in}{1.337613in}}% -\pgfpathlineto{\pgfqpoint{2.713573in}{1.292375in}}% -\pgfpathlineto{\pgfqpoint{2.718053in}{1.195143in}}% -\pgfpathlineto{\pgfqpoint{2.722534in}{1.195017in}}% -\pgfpathlineto{\pgfqpoint{2.727015in}{1.291995in}}% -\pgfpathlineto{\pgfqpoint{2.731495in}{1.336980in}}% -\pgfpathlineto{\pgfqpoint{2.735976in}{1.366523in}}% -\pgfpathlineto{\pgfqpoint{2.744937in}{1.405996in}}% -\pgfpathlineto{\pgfqpoint{2.753898in}{1.432824in}}% -\pgfpathlineto{\pgfqpoint{2.762859in}{1.453025in}}% -\pgfpathlineto{\pgfqpoint{2.776301in}{1.476040in}}% -\pgfpathlineto{\pgfqpoint{2.789742in}{1.493567in}}% -\pgfpathlineto{\pgfqpoint{2.803184in}{1.507471in}}% -\pgfpathlineto{\pgfqpoint{2.821106in}{1.522064in}}% -\pgfpathlineto{\pgfqpoint{2.839028in}{1.533350in}}% -\pgfpathlineto{\pgfqpoint{2.856951in}{1.542109in}}% -\pgfpathlineto{\pgfqpoint{2.879353in}{1.550212in}}% -\pgfpathlineto{\pgfqpoint{2.901756in}{1.555668in}}% -\pgfpathlineto{\pgfqpoint{2.924159in}{1.558800in}}% -\pgfpathlineto{\pgfqpoint{2.946562in}{1.559773in}}% -\pgfpathlineto{\pgfqpoint{2.968964in}{1.558630in}}% -\pgfpathlineto{\pgfqpoint{2.991367in}{1.555306in}}% -\pgfpathlineto{\pgfqpoint{3.013770in}{1.549603in}}% -\pgfpathlineto{\pgfqpoint{3.031692in}{1.543091in}}% -\pgfpathlineto{\pgfqpoint{3.049614in}{1.534522in}}% -\pgfpathlineto{\pgfqpoint{3.067537in}{1.523414in}}% -\pgfpathlineto{\pgfqpoint{3.080978in}{1.512960in}}% -\pgfpathlineto{\pgfqpoint{3.094420in}{1.500114in}}% -\pgfpathlineto{\pgfqpoint{3.107862in}{1.484011in}}% -\pgfpathlineto{\pgfqpoint{3.121303in}{1.463122in}}% -\pgfpathlineto{\pgfqpoint{3.130264in}{1.444668in}}% -\pgfpathlineto{\pgfqpoint{3.139225in}{1.420761in}}% -\pgfpathlineto{\pgfqpoint{3.148187in}{1.387663in}}% -\pgfpathlineto{\pgfqpoint{3.152667in}{1.364843in}}% -\pgfpathlineto{\pgfqpoint{3.157148in}{1.333997in}}% -\pgfpathlineto{\pgfqpoint{3.161628in}{1.286266in}}% -\pgfpathlineto{\pgfqpoint{3.166109in}{1.175404in}}% -\pgfpathlineto{\pgfqpoint{3.170589in}{1.211122in}}% -\pgfpathlineto{\pgfqpoint{3.175070in}{1.297684in}}% -\pgfpathlineto{\pgfqpoint{3.179550in}{1.340428in}}% -\pgfpathlineto{\pgfqpoint{3.188512in}{1.390430in}}% -\pgfpathlineto{\pgfqpoint{3.197473in}{1.421802in}}% -\pgfpathlineto{\pgfqpoint{3.206434in}{1.444553in}}% -\pgfpathlineto{\pgfqpoint{3.215395in}{1.462282in}}% -\pgfpathlineto{\pgfqpoint{3.228837in}{1.482978in}}% -\pgfpathlineto{\pgfqpoint{3.242278in}{1.499021in}}% -\pgfpathlineto{\pgfqpoint{3.255720in}{1.511877in}}% -\pgfpathlineto{\pgfqpoint{3.273642in}{1.525457in}}% -\pgfpathlineto{\pgfqpoint{3.291564in}{1.535987in}}% -\pgfpathlineto{\pgfqpoint{3.309486in}{1.544143in}}% -\pgfpathlineto{\pgfqpoint{3.331889in}{1.551626in}}% -\pgfpathlineto{\pgfqpoint{3.354292in}{1.556549in}}% -\pgfpathlineto{\pgfqpoint{3.376695in}{1.559196in}}% -\pgfpathlineto{\pgfqpoint{3.399098in}{1.559703in}}% -\pgfpathlineto{\pgfqpoint{3.421500in}{1.558091in}}% -\pgfpathlineto{\pgfqpoint{3.443903in}{1.554265in}}% -\pgfpathlineto{\pgfqpoint{3.466306in}{1.547998in}}% -\pgfpathlineto{\pgfqpoint{3.484228in}{1.540956in}}% -\pgfpathlineto{\pgfqpoint{3.502150in}{1.531747in}}% -\pgfpathlineto{\pgfqpoint{3.520072in}{1.519820in}}% -\pgfpathlineto{\pgfqpoint{3.533514in}{1.508564in}}% -\pgfpathlineto{\pgfqpoint{3.546956in}{1.494649in}}% -\pgfpathlineto{\pgfqpoint{3.560397in}{1.477023in}}% -\pgfpathlineto{\pgfqpoint{3.569359in}{1.462314in}}% -\pgfpathlineto{\pgfqpoint{3.578320in}{1.443619in}}% -\pgfpathlineto{\pgfqpoint{3.587281in}{1.419372in}}% -\pgfpathlineto{\pgfqpoint{3.596242in}{1.385629in}}% -\pgfpathlineto{\pgfqpoint{3.600722in}{1.362199in}}% -\pgfpathlineto{\pgfqpoint{3.605203in}{1.330228in}}% -\pgfpathlineto{\pgfqpoint{3.609684in}{1.279705in}}% -\pgfpathlineto{\pgfqpoint{3.614164in}{1.149958in}}% -\pgfpathlineto{\pgfqpoint{3.623125in}{1.303027in}}% -\pgfpathlineto{\pgfqpoint{3.627606in}{1.343745in}}% -\pgfpathlineto{\pgfqpoint{3.636567in}{1.392307in}}% -\pgfpathlineto{\pgfqpoint{3.645528in}{1.423101in}}% -\pgfpathlineto{\pgfqpoint{3.654489in}{1.445540in}}% -\pgfpathlineto{\pgfqpoint{3.663450in}{1.463071in}}% -\pgfpathlineto{\pgfqpoint{3.676892in}{1.483577in}}% -\pgfpathlineto{\pgfqpoint{3.690333in}{1.499495in}}% -\pgfpathlineto{\pgfqpoint{3.703775in}{1.512262in}}% -\pgfpathlineto{\pgfqpoint{3.721697in}{1.525754in}}% -\pgfpathlineto{\pgfqpoint{3.739620in}{1.536217in}}% -\pgfpathlineto{\pgfqpoint{3.757542in}{1.544321in}}% -\pgfpathlineto{\pgfqpoint{3.779945in}{1.551748in}}% -\pgfpathlineto{\pgfqpoint{3.802347in}{1.556623in}}% -\pgfpathlineto{\pgfqpoint{3.824750in}{1.559227in}}% -\pgfpathlineto{\pgfqpoint{3.847153in}{1.559692in}}% -\pgfpathlineto{\pgfqpoint{3.869556in}{1.558037in}}% -\pgfpathlineto{\pgfqpoint{3.891958in}{1.554164in}}% -\pgfpathlineto{\pgfqpoint{3.914361in}{1.547845in}}% -\pgfpathlineto{\pgfqpoint{3.932283in}{1.540754in}}% -\pgfpathlineto{\pgfqpoint{3.950206in}{1.531485in}}% -\pgfpathlineto{\pgfqpoint{3.968128in}{1.519481in}}% -\pgfpathlineto{\pgfqpoint{3.981569in}{1.508147in}}% -\pgfpathlineto{\pgfqpoint{3.995011in}{1.494129in}}% -\pgfpathlineto{\pgfqpoint{4.008453in}{1.476353in}}% -\pgfpathlineto{\pgfqpoint{4.017414in}{1.461497in}}% -\pgfpathlineto{\pgfqpoint{4.026375in}{1.442556in}}% -\pgfpathlineto{\pgfqpoint{4.035336in}{1.417961in}}% -\pgfpathlineto{\pgfqpoint{4.044297in}{1.383547in}}% -\pgfpathlineto{\pgfqpoint{4.048778in}{1.359475in}}% -\pgfpathlineto{\pgfqpoint{4.053258in}{1.326291in}}% -\pgfpathlineto{\pgfqpoint{4.057739in}{1.272619in}}% -\pgfpathlineto{\pgfqpoint{4.062219in}{1.114099in}}% -\pgfpathlineto{\pgfqpoint{4.066700in}{1.236527in}}% -\pgfpathlineto{\pgfqpoint{4.071181in}{1.308063in}}% -\pgfpathlineto{\pgfqpoint{4.075661in}{1.346940in}}% -\pgfpathlineto{\pgfqpoint{4.084622in}{1.394143in}}% -\pgfpathlineto{\pgfqpoint{4.093583in}{1.424381in}}% -\pgfpathlineto{\pgfqpoint{4.102544in}{1.446514in}}% -\pgfpathlineto{\pgfqpoint{4.111505in}{1.463853in}}% -\pgfpathlineto{\pgfqpoint{4.124947in}{1.484171in}}% -\pgfpathlineto{\pgfqpoint{4.138389in}{1.499965in}}% -\pgfpathlineto{\pgfqpoint{4.151830in}{1.512644in}}% -\pgfpathlineto{\pgfqpoint{4.169753in}{1.526049in}}% -\pgfpathlineto{\pgfqpoint{4.187675in}{1.536446in}}% -\pgfpathlineto{\pgfqpoint{4.205597in}{1.544497in}}% -\pgfpathlineto{\pgfqpoint{4.228000in}{1.551869in}}% -\pgfpathlineto{\pgfqpoint{4.250403in}{1.556697in}}% -\pgfpathlineto{\pgfqpoint{4.272805in}{1.559257in}}% -\pgfpathlineto{\pgfqpoint{4.295208in}{1.559680in}}% -\pgfpathlineto{\pgfqpoint{4.317611in}{1.557981in}}% -\pgfpathlineto{\pgfqpoint{4.340014in}{1.554063in}}% -\pgfpathlineto{\pgfqpoint{4.362416in}{1.547691in}}% -\pgfpathlineto{\pgfqpoint{4.380339in}{1.540551in}}% -\pgfpathlineto{\pgfqpoint{4.398261in}{1.531221in}}% -\pgfpathlineto{\pgfqpoint{4.416183in}{1.519138in}}% -\pgfpathlineto{\pgfqpoint{4.429625in}{1.507728in}}% -\pgfpathlineto{\pgfqpoint{4.443066in}{1.493604in}}% -\pgfpathlineto{\pgfqpoint{4.456508in}{1.475676in}}% -\pgfpathlineto{\pgfqpoint{4.465469in}{1.460672in}}% -\pgfpathlineto{\pgfqpoint{4.474430in}{1.441480in}}% -\pgfpathlineto{\pgfqpoint{4.483391in}{1.416527in}}% -\pgfpathlineto{\pgfqpoint{4.492352in}{1.381415in}}% -\pgfpathlineto{\pgfqpoint{4.496833in}{1.356663in}}% -\pgfpathlineto{\pgfqpoint{4.501314in}{1.322171in}}% -\pgfpathlineto{\pgfqpoint{4.505794in}{1.264917in}}% -\pgfpathlineto{\pgfqpoint{4.510275in}{1.052809in}}% -\pgfpathlineto{\pgfqpoint{4.514755in}{1.246926in}}% -\pgfpathlineto{\pgfqpoint{4.519236in}{1.312826in}}% -\pgfpathlineto{\pgfqpoint{4.523716in}{1.350023in}}% -\pgfpathlineto{\pgfqpoint{4.532677in}{1.395940in}}% -\pgfpathlineto{\pgfqpoint{4.541639in}{1.425641in}}% -\pgfpathlineto{\pgfqpoint{4.550600in}{1.447477in}}% -\pgfpathlineto{\pgfqpoint{4.559561in}{1.464626in}}% -\pgfpathlineto{\pgfqpoint{4.573002in}{1.484760in}}% -\pgfpathlineto{\pgfqpoint{4.586444in}{1.500432in}}% -\pgfpathlineto{\pgfqpoint{4.599886in}{1.513023in}}% -\pgfpathlineto{\pgfqpoint{4.617808in}{1.526342in}}% -\pgfpathlineto{\pgfqpoint{4.635730in}{1.536674in}}% -\pgfpathlineto{\pgfqpoint{4.653652in}{1.544672in}}% -\pgfpathlineto{\pgfqpoint{4.676055in}{1.551989in}}% -\pgfpathlineto{\pgfqpoint{4.698458in}{1.556770in}}% -\pgfpathlineto{\pgfqpoint{4.720861in}{1.559286in}}% -\pgfpathlineto{\pgfqpoint{4.743263in}{1.559667in}}% -\pgfpathlineto{\pgfqpoint{4.765666in}{1.557925in}}% -\pgfpathlineto{\pgfqpoint{4.788069in}{1.553961in}}% -\pgfpathlineto{\pgfqpoint{4.810472in}{1.547536in}}% -\pgfpathlineto{\pgfqpoint{4.828394in}{1.540346in}}% -\pgfpathlineto{\pgfqpoint{4.846316in}{1.530955in}}% -\pgfpathlineto{\pgfqpoint{4.864238in}{1.518794in}}% -\pgfpathlineto{\pgfqpoint{4.877680in}{1.507305in}}% -\pgfpathlineto{\pgfqpoint{4.891122in}{1.493076in}}% -\pgfpathlineto{\pgfqpoint{4.904563in}{1.474994in}}% -\pgfpathlineto{\pgfqpoint{4.913524in}{1.459899in}}% -\pgfpathlineto{\pgfqpoint{4.922486in}{1.440390in}}% -\pgfpathlineto{\pgfqpoint{4.931447in}{1.415069in}}% -\pgfpathlineto{\pgfqpoint{4.940408in}{1.379229in}}% -\pgfpathlineto{\pgfqpoint{4.944888in}{1.353760in}}% -\pgfpathlineto{\pgfqpoint{4.949369in}{1.317850in}}% -\pgfpathlineto{\pgfqpoint{4.953849in}{1.256481in}}% -\pgfpathlineto{\pgfqpoint{4.957385in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.957385in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.484920in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.486738in}{0.865993in}}% -\pgfpathlineto{\pgfqpoint{0.491219in}{0.927217in}}% -\pgfpathlineto{\pgfqpoint{0.495699in}{0.962980in}}% -\pgfpathlineto{\pgfqpoint{0.504660in}{1.007892in}}% -\pgfpathlineto{\pgfqpoint{0.513621in}{1.037282in}}% -\pgfpathlineto{\pgfqpoint{0.522583in}{1.059035in}}% -\pgfpathlineto{\pgfqpoint{0.531544in}{1.076201in}}% -\pgfpathlineto{\pgfqpoint{0.544985in}{1.096454in}}% -\pgfpathlineto{\pgfqpoint{0.558427in}{1.112300in}}% -\pgfpathlineto{\pgfqpoint{0.571869in}{1.125092in}}% -\pgfpathlineto{\pgfqpoint{0.589791in}{1.138700in}}% -\pgfpathlineto{\pgfqpoint{0.607713in}{1.149332in}}% -\pgfpathlineto{\pgfqpoint{0.625635in}{1.157631in}}% -\pgfpathlineto{\pgfqpoint{0.648038in}{1.165321in}}% -\pgfpathlineto{\pgfqpoint{0.670441in}{1.170464in}}% -\pgfpathlineto{\pgfqpoint{0.692844in}{1.173330in}}% -\pgfpathlineto{\pgfqpoint{0.715246in}{1.174044in}}% -\pgfpathlineto{\pgfqpoint{0.737649in}{1.172617in}}% -\pgfpathlineto{\pgfqpoint{0.751091in}{1.170011in}}% -\pgfpathlineto{\pgfqpoint{0.773493in}{1.163673in}}% -\pgfpathlineto{\pgfqpoint{0.795896in}{1.154614in}}% -\pgfpathlineto{\pgfqpoint{0.813818in}{1.145013in}}% -\pgfpathlineto{\pgfqpoint{0.831741in}{1.132778in}}% -\pgfpathlineto{\pgfqpoint{0.845182in}{1.121387in}}% -\pgfpathlineto{\pgfqpoint{0.858624in}{1.107479in}}% -\pgfpathlineto{\pgfqpoint{0.872066in}{1.090112in}}% -\pgfpathlineto{\pgfqpoint{0.881027in}{1.075824in}}% -\pgfpathlineto{\pgfqpoint{0.889988in}{1.058399in}}% -\pgfpathlineto{\pgfqpoint{0.898949in}{1.036283in}}% -\pgfpathlineto{\pgfqpoint{0.907910in}{1.006300in}}% -\pgfpathlineto{\pgfqpoint{0.912391in}{0.986219in}}% -\pgfpathlineto{\pgfqpoint{0.916871in}{0.960098in}}% -\pgfpathlineto{\pgfqpoint{0.921352in}{0.922758in}}% -\pgfpathlineto{\pgfqpoint{0.925832in}{0.856714in}}% -\pgfpathlineto{\pgfqpoint{0.930313in}{0.662449in}}% -\pgfpathlineto{\pgfqpoint{0.934793in}{0.874414in}}% -\pgfpathlineto{\pgfqpoint{0.939274in}{0.931523in}}% -\pgfpathlineto{\pgfqpoint{0.943755in}{0.965868in}}% -\pgfpathlineto{\pgfqpoint{0.952716in}{1.009627in}}% -\pgfpathlineto{\pgfqpoint{0.961677in}{1.038515in}}% -\pgfpathlineto{\pgfqpoint{0.970638in}{1.059985in}}% -\pgfpathlineto{\pgfqpoint{0.979599in}{1.076970in}}% -\pgfpathlineto{\pgfqpoint{0.993041in}{1.097043in}}% -\pgfpathlineto{\pgfqpoint{1.006482in}{1.112770in}}% -\pgfpathlineto{\pgfqpoint{1.019924in}{1.125476in}}% -\pgfpathlineto{\pgfqpoint{1.037846in}{1.138999in}}% -\pgfpathlineto{\pgfqpoint{1.055768in}{1.149566in}}% -\pgfpathlineto{\pgfqpoint{1.073691in}{1.157813in}}% -\pgfpathlineto{\pgfqpoint{1.096093in}{1.165448in}}% -\pgfpathlineto{\pgfqpoint{1.118496in}{1.170543in}}% -\pgfpathlineto{\pgfqpoint{1.140899in}{1.173365in}}% -\pgfpathlineto{\pgfqpoint{1.163302in}{1.174037in}}% -\pgfpathlineto{\pgfqpoint{1.185704in}{1.172566in}}% -\pgfpathlineto{\pgfqpoint{1.208107in}{1.167654in}}% -\pgfpathlineto{\pgfqpoint{1.230510in}{1.160227in}}% -\pgfpathlineto{\pgfqpoint{1.248432in}{1.152203in}}% -\pgfpathlineto{\pgfqpoint{1.266354in}{1.141938in}}% -\pgfpathlineto{\pgfqpoint{1.284277in}{1.128852in}}% -\pgfpathlineto{\pgfqpoint{1.297718in}{1.116619in}}% -\pgfpathlineto{\pgfqpoint{1.311160in}{1.101580in}}% -\pgfpathlineto{\pgfqpoint{1.324602in}{1.082579in}}% -\pgfpathlineto{\pgfqpoint{1.333563in}{1.066705in}}% -\pgfpathlineto{\pgfqpoint{1.342524in}{1.046961in}}% -\pgfpathlineto{\pgfqpoint{1.351485in}{1.021096in}}% -\pgfpathlineto{\pgfqpoint{1.360446in}{0.983931in}}% -\pgfpathlineto{\pgfqpoint{1.364926in}{0.957001in}}% -\pgfpathlineto{\pgfqpoint{1.369407in}{0.917981in}}% -\pgfpathlineto{\pgfqpoint{1.373888in}{0.846301in}}% -\pgfpathlineto{\pgfqpoint{1.378368in}{0.723727in}}% -\pgfpathlineto{\pgfqpoint{1.382849in}{0.882102in}}% -\pgfpathlineto{\pgfqpoint{1.387329in}{0.935628in}}% -\pgfpathlineto{\pgfqpoint{1.391810in}{0.968665in}}% -\pgfpathlineto{\pgfqpoint{1.400771in}{1.011328in}}% -\pgfpathlineto{\pgfqpoint{1.409732in}{1.039731in}}% -\pgfpathlineto{\pgfqpoint{1.418693in}{1.060925in}}% -\pgfpathlineto{\pgfqpoint{1.427654in}{1.077731in}}% -\pgfpathlineto{\pgfqpoint{1.441096in}{1.097628in}}% -\pgfpathlineto{\pgfqpoint{1.454538in}{1.113237in}}% -\pgfpathlineto{\pgfqpoint{1.467979in}{1.125857in}}% -\pgfpathlineto{\pgfqpoint{1.485901in}{1.139296in}}% -\pgfpathlineto{\pgfqpoint{1.503824in}{1.149798in}}% -\pgfpathlineto{\pgfqpoint{1.521746in}{1.157993in}}% -\pgfpathlineto{\pgfqpoint{1.544149in}{1.165574in}}% -\pgfpathlineto{\pgfqpoint{1.566551in}{1.170621in}}% -\pgfpathlineto{\pgfqpoint{1.588954in}{1.173399in}}% -\pgfpathlineto{\pgfqpoint{1.611357in}{1.174028in}}% -\pgfpathlineto{\pgfqpoint{1.633760in}{1.172515in}}% -\pgfpathlineto{\pgfqpoint{1.656162in}{1.167531in}}% -\pgfpathlineto{\pgfqpoint{1.678565in}{1.160051in}}% -\pgfpathlineto{\pgfqpoint{1.696487in}{1.151975in}}% -\pgfpathlineto{\pgfqpoint{1.714410in}{1.141649in}}% -\pgfpathlineto{\pgfqpoint{1.732332in}{1.128481in}}% -\pgfpathlineto{\pgfqpoint{1.745773in}{1.116168in}}% -\pgfpathlineto{\pgfqpoint{1.759215in}{1.101019in}}% -\pgfpathlineto{\pgfqpoint{1.772657in}{1.081856in}}% -\pgfpathlineto{\pgfqpoint{1.781618in}{1.065823in}}% -\pgfpathlineto{\pgfqpoint{1.790579in}{1.045840in}}% -\pgfpathlineto{\pgfqpoint{1.799540in}{1.019572in}}% -\pgfpathlineto{\pgfqpoint{1.808501in}{0.981581in}}% -\pgfpathlineto{\pgfqpoint{1.812982in}{0.953791in}}% -\pgfpathlineto{\pgfqpoint{1.817462in}{0.912930in}}% -\pgfpathlineto{\pgfqpoint{1.826423in}{0.759572in}}% -\pgfpathlineto{\pgfqpoint{1.830904in}{0.889174in}}% -\pgfpathlineto{\pgfqpoint{1.835385in}{0.939550in}}% -\pgfpathlineto{\pgfqpoint{1.839865in}{0.971375in}}% -\pgfpathlineto{\pgfqpoint{1.848826in}{1.012997in}}% -\pgfpathlineto{\pgfqpoint{1.857787in}{1.040929in}}% -\pgfpathlineto{\pgfqpoint{1.866748in}{1.061854in}}% -\pgfpathlineto{\pgfqpoint{1.875710in}{1.078484in}}% -\pgfpathlineto{\pgfqpoint{1.889151in}{1.098208in}}% -\pgfpathlineto{\pgfqpoint{1.902593in}{1.113700in}}% -\pgfpathlineto{\pgfqpoint{1.916035in}{1.126236in}}% -\pgfpathlineto{\pgfqpoint{1.933957in}{1.139591in}}% -\pgfpathlineto{\pgfqpoint{1.951879in}{1.150029in}}% -\pgfpathlineto{\pgfqpoint{1.969801in}{1.158172in}}% -\pgfpathlineto{\pgfqpoint{1.992204in}{1.165698in}}% -\pgfpathlineto{\pgfqpoint{2.014607in}{1.170699in}}% -\pgfpathlineto{\pgfqpoint{2.037009in}{1.173433in}}% -\pgfpathlineto{\pgfqpoint{2.059412in}{1.174019in}}% -\pgfpathlineto{\pgfqpoint{2.081815in}{1.172462in}}% -\pgfpathlineto{\pgfqpoint{2.104218in}{1.167407in}}% -\pgfpathlineto{\pgfqpoint{2.126620in}{1.159873in}}% -\pgfpathlineto{\pgfqpoint{2.144543in}{1.151746in}}% -\pgfpathlineto{\pgfqpoint{2.162465in}{1.141357in}}% -\pgfpathlineto{\pgfqpoint{2.180387in}{1.128108in}}% -\pgfpathlineto{\pgfqpoint{2.193829in}{1.115713in}}% -\pgfpathlineto{\pgfqpoint{2.207270in}{1.100454in}}% -\pgfpathlineto{\pgfqpoint{2.220712in}{1.081127in}}% -\pgfpathlineto{\pgfqpoint{2.229673in}{1.064931in}}% -\pgfpathlineto{\pgfqpoint{2.238634in}{1.044703in}}% -\pgfpathlineto{\pgfqpoint{2.247595in}{1.018021in}}% -\pgfpathlineto{\pgfqpoint{2.256557in}{0.979167in}}% -\pgfpathlineto{\pgfqpoint{2.261037in}{0.950460in}}% -\pgfpathlineto{\pgfqpoint{2.265518in}{0.907573in}}% -\pgfpathlineto{\pgfqpoint{2.269998in}{0.820866in}}% -\pgfpathlineto{\pgfqpoint{2.274479in}{0.785003in}}% -\pgfpathlineto{\pgfqpoint{2.278959in}{0.895720in}}% -\pgfpathlineto{\pgfqpoint{2.283440in}{0.943305in}}% -\pgfpathlineto{\pgfqpoint{2.287920in}{0.974004in}}% -\pgfpathlineto{\pgfqpoint{2.296882in}{1.014633in}}% -\pgfpathlineto{\pgfqpoint{2.305843in}{1.042110in}}% -\pgfpathlineto{\pgfqpoint{2.314804in}{1.062773in}}% -\pgfpathlineto{\pgfqpoint{2.328245in}{1.086325in}}% -\pgfpathlineto{\pgfqpoint{2.341687in}{1.104296in}}% -\pgfpathlineto{\pgfqpoint{2.355129in}{1.118593in}}% -\pgfpathlineto{\pgfqpoint{2.373051in}{1.133662in}}% -\pgfpathlineto{\pgfqpoint{2.390973in}{1.145388in}}% -\pgfpathlineto{\pgfqpoint{2.408895in}{1.154562in}}% -\pgfpathlineto{\pgfqpoint{2.431298in}{1.163156in}}% -\pgfpathlineto{\pgfqpoint{2.453701in}{1.169076in}}% -\pgfpathlineto{\pgfqpoint{2.476104in}{1.172650in}}% -\pgfpathlineto{\pgfqpoint{2.498506in}{1.174047in}}% -\pgfpathlineto{\pgfqpoint{2.520909in}{1.173311in}}% -\pgfpathlineto{\pgfqpoint{2.538831in}{1.170607in}}% -\pgfpathlineto{\pgfqpoint{2.561234in}{1.164569in}}% -\pgfpathlineto{\pgfqpoint{2.583637in}{1.155862in}}% -\pgfpathlineto{\pgfqpoint{2.601559in}{1.146605in}}% -\pgfpathlineto{\pgfqpoint{2.619481in}{1.134809in}}% -\pgfpathlineto{\pgfqpoint{2.632923in}{1.123845in}}% -\pgfpathlineto{\pgfqpoint{2.646365in}{1.110500in}}% -\pgfpathlineto{\pgfqpoint{2.659806in}{1.093927in}}% -\pgfpathlineto{\pgfqpoint{2.673248in}{1.072627in}}% -\pgfpathlineto{\pgfqpoint{2.682209in}{1.054419in}}% -\pgfpathlineto{\pgfqpoint{2.691170in}{1.031068in}}% -\pgfpathlineto{\pgfqpoint{2.700131in}{0.998814in}}% -\pgfpathlineto{\pgfqpoint{2.704612in}{0.976684in}}% -\pgfpathlineto{\pgfqpoint{2.709092in}{0.946997in}}% -\pgfpathlineto{\pgfqpoint{2.713573in}{0.901869in}}% -\pgfpathlineto{\pgfqpoint{2.718053in}{0.804747in}}% -\pgfpathlineto{\pgfqpoint{2.722534in}{0.804728in}}% -\pgfpathlineto{\pgfqpoint{2.727015in}{0.901814in}}% -\pgfpathlineto{\pgfqpoint{2.731495in}{0.946906in}}% -\pgfpathlineto{\pgfqpoint{2.735976in}{0.976555in}}% -\pgfpathlineto{\pgfqpoint{2.744937in}{1.016239in}}% -\pgfpathlineto{\pgfqpoint{2.753898in}{1.043275in}}% -\pgfpathlineto{\pgfqpoint{2.762859in}{1.063681in}}% -\pgfpathlineto{\pgfqpoint{2.776301in}{1.087000in}}% -\pgfpathlineto{\pgfqpoint{2.789742in}{1.104824in}}% -\pgfpathlineto{\pgfqpoint{2.803184in}{1.119020in}}% -\pgfpathlineto{\pgfqpoint{2.821106in}{1.133992in}}% -\pgfpathlineto{\pgfqpoint{2.839028in}{1.145646in}}% -\pgfpathlineto{\pgfqpoint{2.856951in}{1.154763in}}% -\pgfpathlineto{\pgfqpoint{2.879353in}{1.163299in}}% -\pgfpathlineto{\pgfqpoint{2.901756in}{1.169170in}}% -\pgfpathlineto{\pgfqpoint{2.924159in}{1.172699in}}% -\pgfpathlineto{\pgfqpoint{2.946562in}{1.174053in}}% -\pgfpathlineto{\pgfqpoint{2.968964in}{1.173274in}}% -\pgfpathlineto{\pgfqpoint{2.986887in}{1.170510in}}% -\pgfpathlineto{\pgfqpoint{3.009289in}{1.164422in}}% -\pgfpathlineto{\pgfqpoint{3.031692in}{1.155657in}}% -\pgfpathlineto{\pgfqpoint{3.049614in}{1.146344in}}% -\pgfpathlineto{\pgfqpoint{3.067537in}{1.134476in}}% -\pgfpathlineto{\pgfqpoint{3.080978in}{1.123442in}}% -\pgfpathlineto{\pgfqpoint{3.094420in}{1.110006in}}% -\pgfpathlineto{\pgfqpoint{3.107862in}{1.093305in}}% -\pgfpathlineto{\pgfqpoint{3.121303in}{1.071807in}}% -\pgfpathlineto{\pgfqpoint{3.130264in}{1.053394in}}% -\pgfpathlineto{\pgfqpoint{3.139225in}{1.029712in}}% -\pgfpathlineto{\pgfqpoint{3.148187in}{0.996838in}}% -\pgfpathlineto{\pgfqpoint{3.152667in}{0.974128in}}% -\pgfpathlineto{\pgfqpoint{3.157148in}{0.943393in}}% -\pgfpathlineto{\pgfqpoint{3.161628in}{0.895772in}}% -\pgfpathlineto{\pgfqpoint{3.166109in}{0.785018in}}% -\pgfpathlineto{\pgfqpoint{3.170589in}{0.820844in}}% -\pgfpathlineto{\pgfqpoint{3.175070in}{0.907514in}}% -\pgfpathlineto{\pgfqpoint{3.179550in}{0.950365in}}% -\pgfpathlineto{\pgfqpoint{3.188512in}{1.000578in}}% -\pgfpathlineto{\pgfqpoint{3.197473in}{1.032160in}}% -\pgfpathlineto{\pgfqpoint{3.206434in}{1.055117in}}% -\pgfpathlineto{\pgfqpoint{3.215395in}{1.073050in}}% -\pgfpathlineto{\pgfqpoint{3.228837in}{1.094048in}}% -\pgfpathlineto{\pgfqpoint{3.242278in}{1.110385in}}% -\pgfpathlineto{\pgfqpoint{3.255720in}{1.123531in}}% -\pgfpathlineto{\pgfqpoint{3.273642in}{1.137487in}}% -\pgfpathlineto{\pgfqpoint{3.291564in}{1.148382in}}% -\pgfpathlineto{\pgfqpoint{3.309486in}{1.156894in}}% -\pgfpathlineto{\pgfqpoint{3.331889in}{1.164805in}}% -\pgfpathlineto{\pgfqpoint{3.354292in}{1.170139in}}% -\pgfpathlineto{\pgfqpoint{3.376695in}{1.173181in}}% -\pgfpathlineto{\pgfqpoint{3.399098in}{1.174065in}}% -\pgfpathlineto{\pgfqpoint{3.421500in}{1.172812in}}% -\pgfpathlineto{\pgfqpoint{3.434942in}{1.170412in}}% -\pgfpathlineto{\pgfqpoint{3.457345in}{1.164275in}}% -\pgfpathlineto{\pgfqpoint{3.479748in}{1.155451in}}% -\pgfpathlineto{\pgfqpoint{3.497670in}{1.146081in}}% -\pgfpathlineto{\pgfqpoint{3.515592in}{1.134141in}}% -\pgfpathlineto{\pgfqpoint{3.529034in}{1.123036in}}% -\pgfpathlineto{\pgfqpoint{3.542475in}{1.109508in}}% -\pgfpathlineto{\pgfqpoint{3.555917in}{1.092677in}}% -\pgfpathlineto{\pgfqpoint{3.569359in}{1.070979in}}% -\pgfpathlineto{\pgfqpoint{3.578320in}{1.052356in}}% -\pgfpathlineto{\pgfqpoint{3.587281in}{1.028335in}}% -\pgfpathlineto{\pgfqpoint{3.596242in}{0.994815in}}% -\pgfpathlineto{\pgfqpoint{3.600722in}{0.971496in}}% -\pgfpathlineto{\pgfqpoint{3.605203in}{0.939635in}}% -\pgfpathlineto{\pgfqpoint{3.609684in}{0.889222in}}% -\pgfpathlineto{\pgfqpoint{3.614164in}{0.759583in}}% -\pgfpathlineto{\pgfqpoint{3.623125in}{0.912868in}}% -\pgfpathlineto{\pgfqpoint{3.627606in}{0.953692in}}% -\pgfpathlineto{\pgfqpoint{3.636567in}{1.002466in}}% -\pgfpathlineto{\pgfqpoint{3.645528in}{1.033470in}}% -\pgfpathlineto{\pgfqpoint{3.654489in}{1.056114in}}% -\pgfpathlineto{\pgfqpoint{3.663450in}{1.073849in}}% -\pgfpathlineto{\pgfqpoint{3.676892in}{1.094657in}}% -\pgfpathlineto{\pgfqpoint{3.690333in}{1.110869in}}% -\pgfpathlineto{\pgfqpoint{3.703775in}{1.123925in}}% -\pgfpathlineto{\pgfqpoint{3.721697in}{1.137793in}}% -\pgfpathlineto{\pgfqpoint{3.739620in}{1.148622in}}% -\pgfpathlineto{\pgfqpoint{3.757542in}{1.157080in}}% -\pgfpathlineto{\pgfqpoint{3.779945in}{1.164935in}}% -\pgfpathlineto{\pgfqpoint{3.802347in}{1.170222in}}% -\pgfpathlineto{\pgfqpoint{3.824750in}{1.173219in}}% -\pgfpathlineto{\pgfqpoint{3.847153in}{1.174061in}}% -\pgfpathlineto{\pgfqpoint{3.869556in}{1.172765in}}% -\pgfpathlineto{\pgfqpoint{3.882997in}{1.170314in}}% -\pgfpathlineto{\pgfqpoint{3.905400in}{1.164126in}}% -\pgfpathlineto{\pgfqpoint{3.927803in}{1.155244in}}% -\pgfpathlineto{\pgfqpoint{3.945725in}{1.145816in}}% -\pgfpathlineto{\pgfqpoint{3.963647in}{1.133803in}}% -\pgfpathlineto{\pgfqpoint{3.977089in}{1.122628in}}% -\pgfpathlineto{\pgfqpoint{3.990531in}{1.109006in}}% -\pgfpathlineto{\pgfqpoint{4.003972in}{1.092044in}}% -\pgfpathlineto{\pgfqpoint{4.017414in}{1.070142in}}% -\pgfpathlineto{\pgfqpoint{4.026375in}{1.051304in}}% -\pgfpathlineto{\pgfqpoint{4.035336in}{1.026936in}}% -\pgfpathlineto{\pgfqpoint{4.044297in}{0.992744in}}% -\pgfpathlineto{\pgfqpoint{4.048778in}{0.968783in}}% -\pgfpathlineto{\pgfqpoint{4.053258in}{0.935709in}}% -\pgfpathlineto{\pgfqpoint{4.057739in}{0.882147in}}% -\pgfpathlineto{\pgfqpoint{4.062219in}{0.723736in}}% -\pgfpathlineto{\pgfqpoint{4.066700in}{0.846271in}}% -\pgfpathlineto{\pgfqpoint{4.071181in}{0.917915in}}% -\pgfpathlineto{\pgfqpoint{4.075661in}{0.956898in}}% -\pgfpathlineto{\pgfqpoint{4.084622in}{1.004312in}}% -\pgfpathlineto{\pgfqpoint{4.093583in}{1.034759in}}% -\pgfpathlineto{\pgfqpoint{4.102544in}{1.057099in}}% -\pgfpathlineto{\pgfqpoint{4.111505in}{1.074641in}}% -\pgfpathlineto{\pgfqpoint{4.124947in}{1.095261in}}% -\pgfpathlineto{\pgfqpoint{4.138389in}{1.111349in}}% -\pgfpathlineto{\pgfqpoint{4.151830in}{1.124317in}}% -\pgfpathlineto{\pgfqpoint{4.169753in}{1.138097in}}% -\pgfpathlineto{\pgfqpoint{4.187675in}{1.148860in}}% -\pgfpathlineto{\pgfqpoint{4.205597in}{1.157265in}}% -\pgfpathlineto{\pgfqpoint{4.228000in}{1.165065in}}% -\pgfpathlineto{\pgfqpoint{4.250403in}{1.170304in}}% -\pgfpathlineto{\pgfqpoint{4.272805in}{1.173257in}}% -\pgfpathlineto{\pgfqpoint{4.295208in}{1.174056in}}% -\pgfpathlineto{\pgfqpoint{4.317611in}{1.172716in}}% -\pgfpathlineto{\pgfqpoint{4.331053in}{1.170214in}}% -\pgfpathlineto{\pgfqpoint{4.353455in}{1.163976in}}% -\pgfpathlineto{\pgfqpoint{4.375858in}{1.155035in}}% -\pgfpathlineto{\pgfqpoint{4.393780in}{1.145550in}}% -\pgfpathlineto{\pgfqpoint{4.411703in}{1.133464in}}% -\pgfpathlineto{\pgfqpoint{4.425144in}{1.122217in}}% -\pgfpathlineto{\pgfqpoint{4.438586in}{1.108501in}}% -\pgfpathlineto{\pgfqpoint{4.452028in}{1.091405in}}% -\pgfpathlineto{\pgfqpoint{4.460989in}{1.077376in}}% -\pgfpathlineto{\pgfqpoint{4.469950in}{1.060319in}}% -\pgfpathlineto{\pgfqpoint{4.478911in}{1.038775in}}% -\pgfpathlineto{\pgfqpoint{4.487872in}{1.009814in}}% -\pgfpathlineto{\pgfqpoint{4.492352in}{0.990623in}}% -\pgfpathlineto{\pgfqpoint{4.496833in}{0.965982in}}% -\pgfpathlineto{\pgfqpoint{4.501314in}{0.931600in}}% -\pgfpathlineto{\pgfqpoint{4.505794in}{0.874455in}}% -\pgfpathlineto{\pgfqpoint{4.510275in}{0.662454in}}% -\pgfpathlineto{\pgfqpoint{4.514755in}{0.856680in}}% -\pgfpathlineto{\pgfqpoint{4.519236in}{0.922688in}}% -\pgfpathlineto{\pgfqpoint{4.523716in}{0.959991in}}% -\pgfpathlineto{\pgfqpoint{4.532677in}{1.006120in}}% -\pgfpathlineto{\pgfqpoint{4.541639in}{1.036030in}}% -\pgfpathlineto{\pgfqpoint{4.550600in}{1.058072in}}% -\pgfpathlineto{\pgfqpoint{4.559561in}{1.075425in}}% -\pgfpathlineto{\pgfqpoint{4.573002in}{1.095860in}}% -\pgfpathlineto{\pgfqpoint{4.586444in}{1.111826in}}% -\pgfpathlineto{\pgfqpoint{4.599886in}{1.124706in}}% -\pgfpathlineto{\pgfqpoint{4.617808in}{1.138400in}}% -\pgfpathlineto{\pgfqpoint{4.635730in}{1.149097in}}% -\pgfpathlineto{\pgfqpoint{4.653652in}{1.157449in}}% -\pgfpathlineto{\pgfqpoint{4.676055in}{1.165194in}}% -\pgfpathlineto{\pgfqpoint{4.698458in}{1.170384in}}% -\pgfpathlineto{\pgfqpoint{4.720861in}{1.173294in}}% -\pgfpathlineto{\pgfqpoint{4.743263in}{1.174051in}}% -\pgfpathlineto{\pgfqpoint{4.765666in}{1.172667in}}% -\pgfpathlineto{\pgfqpoint{4.779108in}{1.170113in}}% -\pgfpathlineto{\pgfqpoint{4.801511in}{1.163825in}}% -\pgfpathlineto{\pgfqpoint{4.823913in}{1.154825in}}% -\pgfpathlineto{\pgfqpoint{4.841836in}{1.145282in}}% -\pgfpathlineto{\pgfqpoint{4.859758in}{1.133122in}}% -\pgfpathlineto{\pgfqpoint{4.873199in}{1.121804in}}% -\pgfpathlineto{\pgfqpoint{4.886641in}{1.107992in}}% -\pgfpathlineto{\pgfqpoint{4.900083in}{1.090761in}}% -\pgfpathlineto{\pgfqpoint{4.909044in}{1.076604in}}% -\pgfpathlineto{\pgfqpoint{4.918005in}{1.059364in}}% -\pgfpathlineto{\pgfqpoint{4.926966in}{1.037538in}}% -\pgfpathlineto{\pgfqpoint{4.935927in}{1.008075in}}% -\pgfpathlineto{\pgfqpoint{4.940408in}{0.988449in}}% -\pgfpathlineto{\pgfqpoint{4.944888in}{0.963090in}}% -\pgfpathlineto{\pgfqpoint{4.949369in}{0.927290in}}% -\pgfpathlineto{\pgfqpoint{4.953849in}{0.866030in}}% -\pgfpathlineto{\pgfqpoint{4.955708in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.955708in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.476072in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.486604in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.486738in}{0.478523in}}% -\pgfpathlineto{\pgfqpoint{0.491219in}{0.539826in}}% -\pgfpathlineto{\pgfqpoint{0.495699in}{0.575649in}}% -\pgfpathlineto{\pgfqpoint{0.504660in}{0.620701in}}% -\pgfpathlineto{\pgfqpoint{0.513621in}{0.650222in}}% -\pgfpathlineto{\pgfqpoint{0.522583in}{0.672103in}}% -\pgfpathlineto{\pgfqpoint{0.531544in}{0.689399in}}% -\pgfpathlineto{\pgfqpoint{0.544985in}{0.709842in}}% -\pgfpathlineto{\pgfqpoint{0.558427in}{0.725874in}}% -\pgfpathlineto{\pgfqpoint{0.571869in}{0.738848in}}% -\pgfpathlineto{\pgfqpoint{0.589791in}{0.752695in}}% -\pgfpathlineto{\pgfqpoint{0.603232in}{0.760516in}}% -\pgfpathlineto{\pgfqpoint{0.621155in}{0.768797in}}% -\pgfpathlineto{\pgfqpoint{0.643557in}{0.776336in}}% -\pgfpathlineto{\pgfqpoint{0.665960in}{0.781238in}}% -\pgfpathlineto{\pgfqpoint{0.688363in}{0.783807in}}% -\pgfpathlineto{\pgfqpoint{0.710766in}{0.784193in}}% -\pgfpathlineto{\pgfqpoint{0.733169in}{0.782429in}}% -\pgfpathlineto{\pgfqpoint{0.755571in}{0.778437in}}% -\pgfpathlineto{\pgfqpoint{0.777974in}{0.772005in}}% -\pgfpathlineto{\pgfqpoint{0.795896in}{0.764852in}}% -\pgfpathlineto{\pgfqpoint{0.813818in}{0.755570in}}% -\pgfpathlineto{\pgfqpoint{0.831741in}{0.743650in}}% -\pgfpathlineto{\pgfqpoint{0.845182in}{0.732489in}}% -\pgfpathlineto{\pgfqpoint{0.858624in}{0.718808in}}% -\pgfpathlineto{\pgfqpoint{0.872066in}{0.701665in}}% -\pgfpathlineto{\pgfqpoint{0.881027in}{0.687522in}}% -\pgfpathlineto{\pgfqpoint{0.889988in}{0.670241in}}% -\pgfpathlineto{\pgfqpoint{0.898949in}{0.648270in}}% -\pgfpathlineto{\pgfqpoint{0.907910in}{0.618428in}}% -\pgfpathlineto{\pgfqpoint{0.912391in}{0.598420in}}% -\pgfpathlineto{\pgfqpoint{0.916871in}{0.572361in}}% -\pgfpathlineto{\pgfqpoint{0.921352in}{0.535094in}}% -\pgfpathlineto{\pgfqpoint{0.926198in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{0.934082in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.934793in}{0.486953in}}% -\pgfpathlineto{\pgfqpoint{0.939274in}{0.544124in}}% -\pgfpathlineto{\pgfqpoint{0.943755in}{0.578546in}}% -\pgfpathlineto{\pgfqpoint{0.952716in}{0.622436in}}% -\pgfpathlineto{\pgfqpoint{0.961677in}{0.651457in}}% -\pgfpathlineto{\pgfqpoint{0.970638in}{0.673060in}}% -\pgfpathlineto{\pgfqpoint{0.979599in}{0.690174in}}% -\pgfpathlineto{\pgfqpoint{0.993041in}{0.710438in}}% -\pgfpathlineto{\pgfqpoint{1.006482in}{0.726351in}}% -\pgfpathlineto{\pgfqpoint{1.019924in}{0.739240in}}% -\pgfpathlineto{\pgfqpoint{1.037846in}{0.752999in}}% -\pgfpathlineto{\pgfqpoint{1.051288in}{0.760751in}}% -\pgfpathlineto{\pgfqpoint{1.069210in}{0.768976in}}% -\pgfpathlineto{\pgfqpoint{1.091613in}{0.776459in}}% -\pgfpathlineto{\pgfqpoint{1.114016in}{0.781312in}}% -\pgfpathlineto{\pgfqpoint{1.136418in}{0.783835in}}% -\pgfpathlineto{\pgfqpoint{1.158821in}{0.784178in}}% -\pgfpathlineto{\pgfqpoint{1.181224in}{0.782372in}}% -\pgfpathlineto{\pgfqpoint{1.203627in}{0.778332in}}% -\pgfpathlineto{\pgfqpoint{1.226029in}{0.771849in}}% -\pgfpathlineto{\pgfqpoint{1.243952in}{0.764647in}}% -\pgfpathlineto{\pgfqpoint{1.261874in}{0.755306in}}% -\pgfpathlineto{\pgfqpoint{1.279796in}{0.743310in}}% -\pgfpathlineto{\pgfqpoint{1.293238in}{0.732076in}}% -\pgfpathlineto{\pgfqpoint{1.306679in}{0.718298in}}% -\pgfpathlineto{\pgfqpoint{1.320121in}{0.701015in}}% -\pgfpathlineto{\pgfqpoint{1.329082in}{0.686742in}}% -\pgfpathlineto{\pgfqpoint{1.338043in}{0.669275in}}% -\pgfpathlineto{\pgfqpoint{1.347004in}{0.647002in}}% -\pgfpathlineto{\pgfqpoint{1.355965in}{0.616624in}}% -\pgfpathlineto{\pgfqpoint{1.360446in}{0.596136in}}% -\pgfpathlineto{\pgfqpoint{1.364926in}{0.569285in}}% -\pgfpathlineto{\pgfqpoint{1.369407in}{0.530324in}}% -\pgfpathlineto{\pgfqpoint{1.374087in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.381679in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.382849in}{0.494655in}}% -\pgfpathlineto{\pgfqpoint{1.387329in}{0.548240in}}% -\pgfpathlineto{\pgfqpoint{1.391810in}{0.581353in}}% -\pgfpathlineto{\pgfqpoint{1.400771in}{0.624146in}}% -\pgfpathlineto{\pgfqpoint{1.409732in}{0.652684in}}% -\pgfpathlineto{\pgfqpoint{1.418693in}{0.674008in}}% -\pgfpathlineto{\pgfqpoint{1.427654in}{0.690939in}}% -\pgfpathlineto{\pgfqpoint{1.441096in}{0.711027in}}% -\pgfpathlineto{\pgfqpoint{1.454538in}{0.726823in}}% -\pgfpathlineto{\pgfqpoint{1.467979in}{0.739625in}}% -\pgfpathlineto{\pgfqpoint{1.485901in}{0.753303in}}% -\pgfpathlineto{\pgfqpoint{1.499343in}{0.760984in}}% -\pgfpathlineto{\pgfqpoint{1.517265in}{0.769154in}}% -\pgfpathlineto{\pgfqpoint{1.539668in}{0.776581in}}% -\pgfpathlineto{\pgfqpoint{1.562071in}{0.781384in}}% -\pgfpathlineto{\pgfqpoint{1.584474in}{0.783863in}}% -\pgfpathlineto{\pgfqpoint{1.606876in}{0.784163in}}% -\pgfpathlineto{\pgfqpoint{1.629279in}{0.782312in}}% -\pgfpathlineto{\pgfqpoint{1.651682in}{0.778228in}}% -\pgfpathlineto{\pgfqpoint{1.674085in}{0.771693in}}% -\pgfpathlineto{\pgfqpoint{1.692007in}{0.764441in}}% -\pgfpathlineto{\pgfqpoint{1.709929in}{0.755041in}}% -\pgfpathlineto{\pgfqpoint{1.727851in}{0.742970in}}% -\pgfpathlineto{\pgfqpoint{1.741293in}{0.731662in}}% -\pgfpathlineto{\pgfqpoint{1.754735in}{0.717785in}}% -\pgfpathlineto{\pgfqpoint{1.768176in}{0.700362in}}% -\pgfpathlineto{\pgfqpoint{1.777137in}{0.685955in}}% -\pgfpathlineto{\pgfqpoint{1.786098in}{0.668292in}}% -\pgfpathlineto{\pgfqpoint{1.795060in}{0.645719in}}% -\pgfpathlineto{\pgfqpoint{1.804021in}{0.614783in}}% -\pgfpathlineto{\pgfqpoint{1.808501in}{0.593802in}}% -\pgfpathlineto{\pgfqpoint{1.812982in}{0.566079in}}% -\pgfpathlineto{\pgfqpoint{1.817462in}{0.525300in}}% -\pgfpathlineto{\pgfqpoint{1.821582in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.829231in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.830904in}{0.501711in}}% -\pgfpathlineto{\pgfqpoint{1.835385in}{0.552175in}}% -\pgfpathlineto{\pgfqpoint{1.839865in}{0.584065in}}% -\pgfpathlineto{\pgfqpoint{1.848826in}{0.625825in}}% -\pgfpathlineto{\pgfqpoint{1.857787in}{0.653889in}}% -\pgfpathlineto{\pgfqpoint{1.866748in}{0.674941in}}% -\pgfpathlineto{\pgfqpoint{1.875710in}{0.691703in}}% -\pgfpathlineto{\pgfqpoint{1.889151in}{0.711616in}}% -\pgfpathlineto{\pgfqpoint{1.902593in}{0.727293in}}% -\pgfpathlineto{\pgfqpoint{1.916035in}{0.740011in}}% -\pgfpathlineto{\pgfqpoint{1.933957in}{0.753603in}}% -\pgfpathlineto{\pgfqpoint{1.947398in}{0.761216in}}% -\pgfpathlineto{\pgfqpoint{1.965321in}{0.769332in}}% -\pgfpathlineto{\pgfqpoint{1.987723in}{0.776701in}}% -\pgfpathlineto{\pgfqpoint{2.010126in}{0.781456in}}% -\pgfpathlineto{\pgfqpoint{2.032529in}{0.783890in}}% -\pgfpathlineto{\pgfqpoint{2.054932in}{0.784147in}}% -\pgfpathlineto{\pgfqpoint{2.077334in}{0.782254in}}% -\pgfpathlineto{\pgfqpoint{2.099737in}{0.778123in}}% -\pgfpathlineto{\pgfqpoint{2.122140in}{0.771534in}}% -\pgfpathlineto{\pgfqpoint{2.140062in}{0.764234in}}% -\pgfpathlineto{\pgfqpoint{2.157984in}{0.754775in}}% -\pgfpathlineto{\pgfqpoint{2.175907in}{0.742627in}}% -\pgfpathlineto{\pgfqpoint{2.189348in}{0.731245in}}% -\pgfpathlineto{\pgfqpoint{2.202790in}{0.717268in}}% -\pgfpathlineto{\pgfqpoint{2.216232in}{0.699702in}}% -\pgfpathlineto{\pgfqpoint{2.225193in}{0.685158in}}% -\pgfpathlineto{\pgfqpoint{2.234154in}{0.667298in}}% -\pgfpathlineto{\pgfqpoint{2.243115in}{0.644413in}}% -\pgfpathlineto{\pgfqpoint{2.252076in}{0.612896in}}% -\pgfpathlineto{\pgfqpoint{2.256557in}{0.591393in}}% -\pgfpathlineto{\pgfqpoint{2.261037in}{0.562751in}}% -\pgfpathlineto{\pgfqpoint{2.265518in}{0.519937in}}% -\pgfpathlineto{\pgfqpoint{2.268966in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.276735in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.278959in}{0.508278in}}% -\pgfpathlineto{\pgfqpoint{2.283440in}{0.555927in}}% -\pgfpathlineto{\pgfqpoint{2.287920in}{0.586704in}}% -\pgfpathlineto{\pgfqpoint{2.296882in}{0.627462in}}% -\pgfpathlineto{\pgfqpoint{2.305843in}{0.655075in}}% -\pgfpathlineto{\pgfqpoint{2.314804in}{0.675869in}}% -\pgfpathlineto{\pgfqpoint{2.328245in}{0.699612in}}% -\pgfpathlineto{\pgfqpoint{2.341687in}{0.717772in}}% -\pgfpathlineto{\pgfqpoint{2.355129in}{0.732254in}}% -\pgfpathlineto{\pgfqpoint{2.373051in}{0.747562in}}% -\pgfpathlineto{\pgfqpoint{2.386493in}{0.756795in}}% -\pgfpathlineto{\pgfqpoint{2.413376in}{0.769509in}}% -\pgfpathlineto{\pgfqpoint{2.435779in}{0.776821in}}% -\pgfpathlineto{\pgfqpoint{2.458181in}{0.781526in}}% -\pgfpathlineto{\pgfqpoint{2.480584in}{0.783916in}}% -\pgfpathlineto{\pgfqpoint{2.502987in}{0.784131in}}% -\pgfpathlineto{\pgfqpoint{2.525390in}{0.782194in}}% -\pgfpathlineto{\pgfqpoint{2.547792in}{0.778015in}}% -\pgfpathlineto{\pgfqpoint{2.570195in}{0.771376in}}% -\pgfpathlineto{\pgfqpoint{2.588117in}{0.764025in}}% -\pgfpathlineto{\pgfqpoint{2.606040in}{0.754507in}}% -\pgfpathlineto{\pgfqpoint{2.623962in}{0.742283in}}% -\pgfpathlineto{\pgfqpoint{2.637404in}{0.730825in}}% -\pgfpathlineto{\pgfqpoint{2.650845in}{0.716749in}}% -\pgfpathlineto{\pgfqpoint{2.664287in}{0.699038in}}% -\pgfpathlineto{\pgfqpoint{2.673248in}{0.684357in}}% -\pgfpathlineto{\pgfqpoint{2.682209in}{0.666293in}}% -\pgfpathlineto{\pgfqpoint{2.691170in}{0.643082in}}% -\pgfpathlineto{\pgfqpoint{2.700131in}{0.610978in}}% -\pgfpathlineto{\pgfqpoint{2.704612in}{0.588910in}}% -\pgfpathlineto{\pgfqpoint{2.709092in}{0.559301in}}% -\pgfpathlineto{\pgfqpoint{2.713573in}{0.514236in}}% -\pgfpathlineto{\pgfqpoint{2.716387in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.724197in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.727015in}{0.514387in}}% -\pgfpathlineto{\pgfqpoint{2.731495in}{0.559548in}}% -\pgfpathlineto{\pgfqpoint{2.735976in}{0.589256in}}% -\pgfpathlineto{\pgfqpoint{2.744937in}{0.629081in}}% -\pgfpathlineto{\pgfqpoint{2.753898in}{0.656248in}}% -\pgfpathlineto{\pgfqpoint{2.762859in}{0.676781in}}% -\pgfpathlineto{\pgfqpoint{2.776301in}{0.700292in}}% -\pgfpathlineto{\pgfqpoint{2.789742in}{0.718306in}}% -\pgfpathlineto{\pgfqpoint{2.803184in}{0.732686in}}% -\pgfpathlineto{\pgfqpoint{2.821106in}{0.747899in}}% -\pgfpathlineto{\pgfqpoint{2.834548in}{0.757077in}}% -\pgfpathlineto{\pgfqpoint{2.861431in}{0.769682in}}% -\pgfpathlineto{\pgfqpoint{2.883834in}{0.776939in}}% -\pgfpathlineto{\pgfqpoint{2.906237in}{0.781597in}}% -\pgfpathlineto{\pgfqpoint{2.928639in}{0.783941in}}% -\pgfpathlineto{\pgfqpoint{2.951042in}{0.784113in}}% -\pgfpathlineto{\pgfqpoint{2.973445in}{0.782132in}}% -\pgfpathlineto{\pgfqpoint{2.995848in}{0.777908in}}% -\pgfpathlineto{\pgfqpoint{3.018251in}{0.771215in}}% -\pgfpathlineto{\pgfqpoint{3.036173in}{0.763816in}}% -\pgfpathlineto{\pgfqpoint{3.054095in}{0.754237in}}% -\pgfpathlineto{\pgfqpoint{3.072017in}{0.741936in}}% -\pgfpathlineto{\pgfqpoint{3.085459in}{0.730403in}}% -\pgfpathlineto{\pgfqpoint{3.098901in}{0.716225in}}% -\pgfpathlineto{\pgfqpoint{3.112342in}{0.698369in}}% -\pgfpathlineto{\pgfqpoint{3.121303in}{0.683541in}}% -\pgfpathlineto{\pgfqpoint{3.130264in}{0.665275in}}% -\pgfpathlineto{\pgfqpoint{3.139225in}{0.641739in}}% -\pgfpathlineto{\pgfqpoint{3.148187in}{0.609003in}}% -\pgfpathlineto{\pgfqpoint{3.152667in}{0.586372in}}% -\pgfpathlineto{\pgfqpoint{3.157148in}{0.555694in}}% -\pgfpathlineto{\pgfqpoint{3.161628in}{0.508152in}}% -\pgfpathlineto{\pgfqpoint{3.163851in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.171618in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.175070in}{0.520087in}}% -\pgfpathlineto{\pgfqpoint{3.179550in}{0.563003in}}% -\pgfpathlineto{\pgfqpoint{3.188512in}{0.613358in}}% -\pgfpathlineto{\pgfqpoint{3.197473in}{0.645074in}}% -\pgfpathlineto{\pgfqpoint{3.206434in}{0.668159in}}% -\pgfpathlineto{\pgfqpoint{3.215395in}{0.686221in}}% -\pgfpathlineto{\pgfqpoint{3.228837in}{0.707410in}}% -\pgfpathlineto{\pgfqpoint{3.242278in}{0.723934in}}% -\pgfpathlineto{\pgfqpoint{3.255720in}{0.737263in}}% -\pgfpathlineto{\pgfqpoint{3.273642in}{0.751457in}}% -\pgfpathlineto{\pgfqpoint{3.287084in}{0.759560in}}% -\pgfpathlineto{\pgfqpoint{3.305006in}{0.768065in}}% -\pgfpathlineto{\pgfqpoint{3.327409in}{0.775835in}}% -\pgfpathlineto{\pgfqpoint{3.349811in}{0.780934in}}% -\pgfpathlineto{\pgfqpoint{3.372214in}{0.783682in}}% -\pgfpathlineto{\pgfqpoint{3.394617in}{0.784240in}}% -\pgfpathlineto{\pgfqpoint{3.417020in}{0.782650in}}% -\pgfpathlineto{\pgfqpoint{3.439423in}{0.778842in}}% -\pgfpathlineto{\pgfqpoint{3.461825in}{0.772618in}}% -\pgfpathlineto{\pgfqpoint{3.479748in}{0.765656in}}% -\pgfpathlineto{\pgfqpoint{3.497670in}{0.756606in}}% -\pgfpathlineto{\pgfqpoint{3.515592in}{0.744980in}}% -\pgfpathlineto{\pgfqpoint{3.529034in}{0.734108in}}% -\pgfpathlineto{\pgfqpoint{3.542475in}{0.720807in}}% -\pgfpathlineto{\pgfqpoint{3.555917in}{0.704199in}}% -\pgfpathlineto{\pgfqpoint{3.569359in}{0.682722in}}% -\pgfpathlineto{\pgfqpoint{3.578320in}{0.664246in}}% -\pgfpathlineto{\pgfqpoint{3.587281in}{0.640362in}}% -\pgfpathlineto{\pgfqpoint{3.596242in}{0.606985in}}% -\pgfpathlineto{\pgfqpoint{3.600722in}{0.583735in}}% -\pgfpathlineto{\pgfqpoint{3.605203in}{0.551957in}}% -\pgfpathlineto{\pgfqpoint{3.609684in}{0.501599in}}% -\pgfpathlineto{\pgfqpoint{3.611355in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.619005in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.623125in}{0.525455in}}% -\pgfpathlineto{\pgfqpoint{3.627606in}{0.566343in}}% -\pgfpathlineto{\pgfqpoint{3.636567in}{0.615255in}}% -\pgfpathlineto{\pgfqpoint{3.645528in}{0.646389in}}% -\pgfpathlineto{\pgfqpoint{3.654489in}{0.669163in}}% -\pgfpathlineto{\pgfqpoint{3.663450in}{0.687030in}}% -\pgfpathlineto{\pgfqpoint{3.676892in}{0.708028in}}% -\pgfpathlineto{\pgfqpoint{3.690333in}{0.724426in}}% -\pgfpathlineto{\pgfqpoint{3.703775in}{0.737665in}}% -\pgfpathlineto{\pgfqpoint{3.721697in}{0.751769in}}% -\pgfpathlineto{\pgfqpoint{3.735139in}{0.759802in}}% -\pgfpathlineto{\pgfqpoint{3.753061in}{0.768250in}}% -\pgfpathlineto{\pgfqpoint{3.775464in}{0.775963in}}% -\pgfpathlineto{\pgfqpoint{3.797867in}{0.781012in}}% -\pgfpathlineto{\pgfqpoint{3.820270in}{0.783714in}}% -\pgfpathlineto{\pgfqpoint{3.842672in}{0.784230in}}% -\pgfpathlineto{\pgfqpoint{3.865075in}{0.782597in}}% -\pgfpathlineto{\pgfqpoint{3.887478in}{0.778742in}}% -\pgfpathlineto{\pgfqpoint{3.909881in}{0.772465in}}% -\pgfpathlineto{\pgfqpoint{3.927803in}{0.765456in}}% -\pgfpathlineto{\pgfqpoint{3.945725in}{0.756350in}}% -\pgfpathlineto{\pgfqpoint{3.963647in}{0.744650in}}% -\pgfpathlineto{\pgfqpoint{3.977089in}{0.733707in}}% -\pgfpathlineto{\pgfqpoint{3.990531in}{0.720312in}}% -\pgfpathlineto{\pgfqpoint{4.003972in}{0.703573in}}% -\pgfpathlineto{\pgfqpoint{4.012933in}{0.689815in}}% -\pgfpathlineto{\pgfqpoint{4.021894in}{0.673086in}}% -\pgfpathlineto{\pgfqpoint{4.030856in}{0.651960in}}% -\pgfpathlineto{\pgfqpoint{4.039817in}{0.623630in}}% -\pgfpathlineto{\pgfqpoint{4.044297in}{0.604925in}}% -\pgfpathlineto{\pgfqpoint{4.048778in}{0.581030in}}% -\pgfpathlineto{\pgfqpoint{4.053258in}{0.548023in}}% -\pgfpathlineto{\pgfqpoint{4.057739in}{0.494522in}}% -\pgfpathlineto{\pgfqpoint{4.058907in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{4.066498in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.066700in}{0.458798in}}% -\pgfpathlineto{\pgfqpoint{4.071181in}{0.530496in}}% -\pgfpathlineto{\pgfqpoint{4.075661in}{0.569563in}}% -\pgfpathlineto{\pgfqpoint{4.084622in}{0.617102in}}% -\pgfpathlineto{\pgfqpoint{4.093583in}{0.647686in}}% -\pgfpathlineto{\pgfqpoint{4.102544in}{0.670157in}}% -\pgfpathlineto{\pgfqpoint{4.111505in}{0.687825in}}% -\pgfpathlineto{\pgfqpoint{4.124947in}{0.708635in}}% -\pgfpathlineto{\pgfqpoint{4.138389in}{0.724911in}}% -\pgfpathlineto{\pgfqpoint{4.151830in}{0.738061in}}% -\pgfpathlineto{\pgfqpoint{4.169753in}{0.752081in}}% -\pgfpathlineto{\pgfqpoint{4.183194in}{0.760041in}}% -\pgfpathlineto{\pgfqpoint{4.201117in}{0.768434in}}% -\pgfpathlineto{\pgfqpoint{4.223519in}{0.776088in}}% -\pgfpathlineto{\pgfqpoint{4.245922in}{0.781088in}}% -\pgfpathlineto{\pgfqpoint{4.268325in}{0.783746in}}% -\pgfpathlineto{\pgfqpoint{4.290728in}{0.784218in}}% -\pgfpathlineto{\pgfqpoint{4.313130in}{0.782541in}}% -\pgfpathlineto{\pgfqpoint{4.335533in}{0.778641in}}% -\pgfpathlineto{\pgfqpoint{4.357936in}{0.772313in}}% -\pgfpathlineto{\pgfqpoint{4.375858in}{0.765256in}}% -\pgfpathlineto{\pgfqpoint{4.393780in}{0.756092in}}% -\pgfpathlineto{\pgfqpoint{4.411703in}{0.744320in}}% -\pgfpathlineto{\pgfqpoint{4.425144in}{0.733304in}}% -\pgfpathlineto{\pgfqpoint{4.438586in}{0.719812in}}% -\pgfpathlineto{\pgfqpoint{4.452028in}{0.702942in}}% -\pgfpathlineto{\pgfqpoint{4.460989in}{0.689060in}}% -\pgfpathlineto{\pgfqpoint{4.469950in}{0.672146in}}% -\pgfpathlineto{\pgfqpoint{4.478911in}{0.650747in}}% -\pgfpathlineto{\pgfqpoint{4.487872in}{0.621933in}}% -\pgfpathlineto{\pgfqpoint{4.492352in}{0.602805in}}% -\pgfpathlineto{\pgfqpoint{4.496833in}{0.578244in}}% -\pgfpathlineto{\pgfqpoint{4.501314in}{0.543927in}}% -\pgfpathlineto{\pgfqpoint{4.505794in}{0.486842in}}% -\pgfpathlineto{\pgfqpoint{4.506504in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{4.514387in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.514755in}{0.469210in}}% -\pgfpathlineto{\pgfqpoint{4.519236in}{0.535291in}}% -\pgfpathlineto{\pgfqpoint{4.523716in}{0.572652in}}% -\pgfpathlineto{\pgfqpoint{4.532677in}{0.618923in}}% -\pgfpathlineto{\pgfqpoint{4.541639in}{0.648959in}}% -\pgfpathlineto{\pgfqpoint{4.550600in}{0.671134in}}% -\pgfpathlineto{\pgfqpoint{4.559561in}{0.688618in}}% -\pgfpathlineto{\pgfqpoint{4.573002in}{0.709243in}}% -\pgfpathlineto{\pgfqpoint{4.586444in}{0.725396in}}% -\pgfpathlineto{\pgfqpoint{4.599886in}{0.738457in}}% -\pgfpathlineto{\pgfqpoint{4.617808in}{0.752388in}}% -\pgfpathlineto{\pgfqpoint{4.631250in}{0.760280in}}% -\pgfpathlineto{\pgfqpoint{4.649172in}{0.768616in}}% -\pgfpathlineto{\pgfqpoint{4.671575in}{0.776213in}}% -\pgfpathlineto{\pgfqpoint{4.693977in}{0.781164in}}% -\pgfpathlineto{\pgfqpoint{4.716380in}{0.783776in}}% -\pgfpathlineto{\pgfqpoint{4.738783in}{0.784205in}}% -\pgfpathlineto{\pgfqpoint{4.761186in}{0.782486in}}% -\pgfpathlineto{\pgfqpoint{4.783588in}{0.778539in}}% -\pgfpathlineto{\pgfqpoint{4.805991in}{0.772159in}}% -\pgfpathlineto{\pgfqpoint{4.823913in}{0.765055in}}% -\pgfpathlineto{\pgfqpoint{4.841836in}{0.755830in}}% -\pgfpathlineto{\pgfqpoint{4.859758in}{0.743985in}}% -\pgfpathlineto{\pgfqpoint{4.873199in}{0.732897in}}% -\pgfpathlineto{\pgfqpoint{4.886641in}{0.719313in}}% -\pgfpathlineto{\pgfqpoint{4.900083in}{0.702306in}}% -\pgfpathlineto{\pgfqpoint{4.909044in}{0.688295in}}% -\pgfpathlineto{\pgfqpoint{4.918005in}{0.671202in}}% -\pgfpathlineto{\pgfqpoint{4.926966in}{0.649523in}}% -\pgfpathlineto{\pgfqpoint{4.935927in}{0.620195in}}% -\pgfpathlineto{\pgfqpoint{4.940408in}{0.600646in}}% -\pgfpathlineto{\pgfqpoint{4.944888in}{0.575349in}}% -\pgfpathlineto{\pgfqpoint{4.949369in}{0.539620in}}% -\pgfpathlineto{\pgfqpoint{4.953849in}{0.478448in}}% -\pgfpathlineto{\pgfqpoint{4.953990in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.953990in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{4.958330in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.579480in}{1.327933in}}% -\pgfpathlineto{\pgfqpoint{1.431363in}{1.327933in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.459141in}{1.327933in}}{\pgfqpoint{1.459141in}{1.355711in}}% -\pgfpathlineto{\pgfqpoint{1.459141in}{2.361108in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.459141in}{2.388886in}}{\pgfqpoint{1.431363in}{2.388886in}}% -\pgfpathlineto{\pgfqpoint{0.579480in}{2.388886in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.551702in}{2.388886in}}{\pgfqpoint{0.551702in}{2.361108in}}% -\pgfpathlineto{\pgfqpoint{0.551702in}{1.355711in}}% -\pgfpathquadraticcurveto{\pgfqpoint{0.551702in}{1.327933in}}{\pgfqpoint{0.579480in}{1.327933in}}% -\pgfpathlineto{\pgfqpoint{0.579480in}{1.327933in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{2.276418in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=2\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{2.072561in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{2.072561in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{2.072561in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=2.023950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=4\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{1.868704in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{1.868704in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{1.868704in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=1.820092in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=6\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{1.664846in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{1.664846in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{1.664846in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=1.616235in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=8\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607257in}{1.460989in}}% -\pgfpathlineto{\pgfqpoint{0.746146in}{1.460989in}}% -\pgfpathlineto{\pgfqpoint{0.885035in}{1.460989in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.996146in,y=1.412378in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=10\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/rel_error_shifted.pdf b/buch/papers/laguerre/images/rel_error_shifted.pdf new file mode 100644 index 0000000..d0c2ae0 Binary files /dev/null and b/buch/papers/laguerre/images/rel_error_shifted.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_shifted.pgf b/buch/papers/laguerre/images/rel_error_shifted.pgf deleted file mode 100644 index 32f95e0..0000000 --- a/buch/papers/laguerre/images/rel_error_shifted.pgf +++ /dev/null @@ -1,1433 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.426895in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.311094in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.311094in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.311094in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.311094in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.195293in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.195293in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.195293in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.195293in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.079492in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.079492in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.079492in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.079492in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.6}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.963691in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.963691in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.963691in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.963691in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.8}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.847890in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.847890in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.847890in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.868994in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.868994in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.868994in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.753193in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.753193in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.753193in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.637393in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.637393in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.637393in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.521592in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.521592in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.521592in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.405791in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.405791in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.405791in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.637393in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.063845in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{1.063845in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.063845in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=1.011084in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-8}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.621244in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{0.621244in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.621244in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.754807in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{0.754807in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.754807in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.870504in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{0.870504in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.870504in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.972556in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{0.972556in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{0.972556in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{1.664417in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{1.664417in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{1.664417in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{2.015729in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{2.015729in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{2.015729in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{2.264989in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{2.264989in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{2.264989in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.027778in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.027778in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.426895in}{2.458330in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.560934in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.580408in}{0.569463in}}% -\pgfpathlineto{\pgfqpoint{0.602291in}{0.682173in}}% -\pgfpathlineto{\pgfqpoint{0.624173in}{0.781226in}}% -\pgfpathlineto{\pgfqpoint{0.646056in}{0.869487in}}% -\pgfpathlineto{\pgfqpoint{0.667939in}{0.949002in}}% -\pgfpathlineto{\pgfqpoint{0.689822in}{1.021281in}}% -\pgfpathlineto{\pgfqpoint{0.711705in}{1.087473in}}% -\pgfpathlineto{\pgfqpoint{0.733587in}{1.148469in}}% -\pgfpathlineto{\pgfqpoint{0.755470in}{1.204977in}}% -\pgfpathlineto{\pgfqpoint{0.777353in}{1.257569in}}% -\pgfpathlineto{\pgfqpoint{0.799236in}{1.306710in}}% -\pgfpathlineto{\pgfqpoint{0.821119in}{1.352787in}}% -\pgfpathlineto{\pgfqpoint{0.843001in}{1.396125in}}% -\pgfpathlineto{\pgfqpoint{0.886767in}{1.475639in}}% -\pgfpathlineto{\pgfqpoint{0.930533in}{1.547004in}}% -\pgfpathlineto{\pgfqpoint{0.974298in}{1.611536in}}% -\pgfpathlineto{\pgfqpoint{1.018064in}{1.670244in}}% -\pgfpathlineto{\pgfqpoint{1.061830in}{1.723922in}}% -\pgfpathlineto{\pgfqpoint{1.105595in}{1.773202in}}% -\pgfpathlineto{\pgfqpoint{1.149361in}{1.818600in}}% -\pgfpathlineto{\pgfqpoint{1.193127in}{1.860538in}}% -\pgfpathlineto{\pgfqpoint{1.236892in}{1.899369in}}% -\pgfpathlineto{\pgfqpoint{1.280658in}{1.935389in}}% -\pgfpathlineto{\pgfqpoint{1.324423in}{1.968848in}}% -\pgfpathlineto{\pgfqpoint{1.368189in}{1.999962in}}% -\pgfpathlineto{\pgfqpoint{1.411955in}{2.028915in}}% -\pgfpathlineto{\pgfqpoint{1.455720in}{2.055868in}}% -\pgfpathlineto{\pgfqpoint{1.499486in}{2.080960in}}% -\pgfpathlineto{\pgfqpoint{1.565134in}{2.115374in}}% -\pgfpathlineto{\pgfqpoint{1.630783in}{2.146227in}}% -\pgfpathlineto{\pgfqpoint{1.696431in}{2.173814in}}% -\pgfpathlineto{\pgfqpoint{1.762080in}{2.198381in}}% -\pgfpathlineto{\pgfqpoint{1.827728in}{2.220139in}}% -\pgfpathlineto{\pgfqpoint{1.893377in}{2.239261in}}% -\pgfpathlineto{\pgfqpoint{1.959025in}{2.255900in}}% -\pgfpathlineto{\pgfqpoint{2.024674in}{2.270183in}}% -\pgfpathlineto{\pgfqpoint{2.090322in}{2.282217in}}% -\pgfpathlineto{\pgfqpoint{2.155971in}{2.292094in}}% -\pgfpathlineto{\pgfqpoint{2.221619in}{2.299893in}}% -\pgfpathlineto{\pgfqpoint{2.287267in}{2.305678in}}% -\pgfpathlineto{\pgfqpoint{2.352916in}{2.309501in}}% -\pgfpathlineto{\pgfqpoint{2.418564in}{2.311406in}}% -\pgfpathlineto{\pgfqpoint{2.484213in}{2.311425in}}% -\pgfpathlineto{\pgfqpoint{2.549861in}{2.309582in}}% -\pgfpathlineto{\pgfqpoint{2.615510in}{2.305893in}}% -\pgfpathlineto{\pgfqpoint{2.681158in}{2.300364in}}% -\pgfpathlineto{\pgfqpoint{2.746807in}{2.292994in}}% -\pgfpathlineto{\pgfqpoint{2.812455in}{2.283773in}}% -\pgfpathlineto{\pgfqpoint{2.878103in}{2.272684in}}% -\pgfpathlineto{\pgfqpoint{2.943752in}{2.259699in}}% -\pgfpathlineto{\pgfqpoint{3.009400in}{2.244782in}}% -\pgfpathlineto{\pgfqpoint{3.075049in}{2.227889in}}% -\pgfpathlineto{\pgfqpoint{3.140697in}{2.208961in}}% -\pgfpathlineto{\pgfqpoint{3.206346in}{2.187930in}}% -\pgfpathlineto{\pgfqpoint{3.271994in}{2.164715in}}% -\pgfpathlineto{\pgfqpoint{3.337643in}{2.139218in}}% -\pgfpathlineto{\pgfqpoint{3.403291in}{2.111324in}}% -\pgfpathlineto{\pgfqpoint{3.468940in}{2.080900in}}% -\pgfpathlineto{\pgfqpoint{3.534588in}{2.047786in}}% -\pgfpathlineto{\pgfqpoint{3.600236in}{2.011797in}}% -\pgfpathlineto{\pgfqpoint{3.665885in}{1.972712in}}% -\pgfpathlineto{\pgfqpoint{3.731533in}{1.930270in}}% -\pgfpathlineto{\pgfqpoint{3.797182in}{1.884157in}}% -\pgfpathlineto{\pgfqpoint{3.840947in}{1.851193in}}% -\pgfpathlineto{\pgfqpoint{3.884713in}{1.816301in}}% -\pgfpathlineto{\pgfqpoint{3.928479in}{1.779333in}}% -\pgfpathlineto{\pgfqpoint{3.972244in}{1.740115in}}% -\pgfpathlineto{\pgfqpoint{4.016010in}{1.698449in}}% -\pgfpathlineto{\pgfqpoint{4.059776in}{1.654102in}}% -\pgfpathlineto{\pgfqpoint{4.103541in}{1.606803in}}% -\pgfpathlineto{\pgfqpoint{4.147307in}{1.556228in}}% -\pgfpathlineto{\pgfqpoint{4.191073in}{1.501993in}}% -\pgfpathlineto{\pgfqpoint{4.234838in}{1.443632in}}% -\pgfpathlineto{\pgfqpoint{4.278604in}{1.380575in}}% -\pgfpathlineto{\pgfqpoint{4.322369in}{1.312114in}}% -\pgfpathlineto{\pgfqpoint{4.366135in}{1.237357in}}% -\pgfpathlineto{\pgfqpoint{4.409901in}{1.155155in}}% -\pgfpathlineto{\pgfqpoint{4.453666in}{1.063994in}}% -\pgfpathlineto{\pgfqpoint{4.475549in}{1.014442in}}% -\pgfpathlineto{\pgfqpoint{4.497432in}{0.961826in}}% -\pgfpathlineto{\pgfqpoint{4.519315in}{0.905760in}}% -\pgfpathlineto{\pgfqpoint{4.541198in}{0.845777in}}% -\pgfpathlineto{\pgfqpoint{4.563080in}{0.781307in}}% -\pgfpathlineto{\pgfqpoint{4.584963in}{0.711642in}}% -\pgfpathlineto{\pgfqpoint{4.606846in}{0.635889in}}% -\pgfpathlineto{\pgfqpoint{4.628729in}{0.552901in}}% -\pgfpathlineto{\pgfqpoint{4.652296in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.652296in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.627570in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.646056in}{0.528730in}}% -\pgfpathlineto{\pgfqpoint{0.667939in}{0.609305in}}% -\pgfpathlineto{\pgfqpoint{0.689822in}{0.682645in}}% -\pgfpathlineto{\pgfqpoint{0.711705in}{0.749896in}}% -\pgfpathlineto{\pgfqpoint{0.733587in}{0.811953in}}% -\pgfpathlineto{\pgfqpoint{0.755470in}{0.869523in}}% -\pgfpathlineto{\pgfqpoint{0.777353in}{0.923175in}}% -\pgfpathlineto{\pgfqpoint{0.799236in}{0.973378in}}% -\pgfpathlineto{\pgfqpoint{0.821119in}{1.020517in}}% -\pgfpathlineto{\pgfqpoint{0.864884in}{1.106852in}}% -\pgfpathlineto{\pgfqpoint{0.908650in}{1.184228in}}% -\pgfpathlineto{\pgfqpoint{0.952416in}{1.254160in}}% -\pgfpathlineto{\pgfqpoint{0.996181in}{1.317795in}}% -\pgfpathlineto{\pgfqpoint{1.039947in}{1.376027in}}% -\pgfpathlineto{\pgfqpoint{1.083712in}{1.429564in}}% -\pgfpathlineto{\pgfqpoint{1.127478in}{1.478974in}}% -\pgfpathlineto{\pgfqpoint{1.171244in}{1.524725in}}% -\pgfpathlineto{\pgfqpoint{1.215009in}{1.567200in}}% -\pgfpathlineto{\pgfqpoint{1.258775in}{1.606724in}}% -\pgfpathlineto{\pgfqpoint{1.302541in}{1.643567in}}% -\pgfpathlineto{\pgfqpoint{1.346306in}{1.677963in}}% -\pgfpathlineto{\pgfqpoint{1.390072in}{1.710110in}}% -\pgfpathlineto{\pgfqpoint{1.433838in}{1.740180in}}% -\pgfpathlineto{\pgfqpoint{1.477603in}{1.768324in}}% -\pgfpathlineto{\pgfqpoint{1.543252in}{1.807206in}}% -\pgfpathlineto{\pgfqpoint{1.608900in}{1.842420in}}% -\pgfpathlineto{\pgfqpoint{1.674549in}{1.874278in}}% -\pgfpathlineto{\pgfqpoint{1.740197in}{1.903041in}}% -\pgfpathlineto{\pgfqpoint{1.805845in}{1.928931in}}% -\pgfpathlineto{\pgfqpoint{1.871494in}{1.952132in}}% -\pgfpathlineto{\pgfqpoint{1.937142in}{1.972805in}}% -\pgfpathlineto{\pgfqpoint{2.002791in}{1.991083in}}% -\pgfpathlineto{\pgfqpoint{2.068439in}{2.007081in}}% -\pgfpathlineto{\pgfqpoint{2.134088in}{2.020897in}}% -\pgfpathlineto{\pgfqpoint{2.199736in}{2.032612in}}% -\pgfpathlineto{\pgfqpoint{2.265385in}{2.042294in}}% -\pgfpathlineto{\pgfqpoint{2.331033in}{2.050002in}}% -\pgfpathlineto{\pgfqpoint{2.396682in}{2.055780in}}% -\pgfpathlineto{\pgfqpoint{2.462330in}{2.059665in}}% -\pgfpathlineto{\pgfqpoint{2.527978in}{2.061684in}}% -\pgfpathlineto{\pgfqpoint{2.593627in}{2.061855in}}% -\pgfpathlineto{\pgfqpoint{2.659275in}{2.060187in}}% -\pgfpathlineto{\pgfqpoint{2.724924in}{2.056682in}}% -\pgfpathlineto{\pgfqpoint{2.790572in}{2.051334in}}% -\pgfpathlineto{\pgfqpoint{2.856221in}{2.044126in}}% -\pgfpathlineto{\pgfqpoint{2.921869in}{2.035036in}}% -\pgfpathlineto{\pgfqpoint{2.987518in}{2.024030in}}% -\pgfpathlineto{\pgfqpoint{3.053166in}{2.011066in}}% -\pgfpathlineto{\pgfqpoint{3.118814in}{1.996091in}}% -\pgfpathlineto{\pgfqpoint{3.184463in}{1.979040in}}% -\pgfpathlineto{\pgfqpoint{3.250111in}{1.959836in}}% -\pgfpathlineto{\pgfqpoint{3.315760in}{1.938388in}}% -\pgfpathlineto{\pgfqpoint{3.381408in}{1.914586in}}% -\pgfpathlineto{\pgfqpoint{3.447057in}{1.888303in}}% -\pgfpathlineto{\pgfqpoint{3.512705in}{1.859391in}}% -\pgfpathlineto{\pgfqpoint{3.578354in}{1.827671in}}% -\pgfpathlineto{\pgfqpoint{3.644002in}{1.792936in}}% -\pgfpathlineto{\pgfqpoint{3.709651in}{1.754939in}}% -\pgfpathlineto{\pgfqpoint{3.775299in}{1.713385in}}% -\pgfpathlineto{\pgfqpoint{3.819065in}{1.683534in}}% -\pgfpathlineto{\pgfqpoint{3.862830in}{1.651826in}}% -\pgfpathlineto{\pgfqpoint{3.906596in}{1.618118in}}% -\pgfpathlineto{\pgfqpoint{3.950362in}{1.582252in}}% -\pgfpathlineto{\pgfqpoint{3.994127in}{1.544042in}}% -\pgfpathlineto{\pgfqpoint{4.037893in}{1.503274in}}% -\pgfpathlineto{\pgfqpoint{4.081658in}{1.459696in}}% -\pgfpathlineto{\pgfqpoint{4.125424in}{1.413013in}}% -\pgfpathlineto{\pgfqpoint{4.169190in}{1.362872in}}% -\pgfpathlineto{\pgfqpoint{4.212955in}{1.308851in}}% -\pgfpathlineto{\pgfqpoint{4.256721in}{1.250435in}}% -\pgfpathlineto{\pgfqpoint{4.300487in}{1.186991in}}% -\pgfpathlineto{\pgfqpoint{4.344252in}{1.117724in}}% -\pgfpathlineto{\pgfqpoint{4.388018in}{1.041627in}}% -\pgfpathlineto{\pgfqpoint{4.431784in}{0.957383in}}% -\pgfpathlineto{\pgfqpoint{4.453666in}{0.911681in}}% -\pgfpathlineto{\pgfqpoint{4.475549in}{0.863239in}}% -\pgfpathlineto{\pgfqpoint{4.497432in}{0.811735in}}% -\pgfpathlineto{\pgfqpoint{4.519315in}{0.756781in}}% -\pgfpathlineto{\pgfqpoint{4.541198in}{0.697911in}}% -\pgfpathlineto{\pgfqpoint{4.563080in}{0.634553in}}% -\pgfpathlineto{\pgfqpoint{4.584963in}{0.566000in}}% -\pgfpathlineto{\pgfqpoint{4.617026in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.617026in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.658262in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.667939in}{0.489403in}}% -\pgfpathlineto{\pgfqpoint{0.689822in}{0.563865in}}% -\pgfpathlineto{\pgfqpoint{0.711705in}{0.632240in}}% -\pgfpathlineto{\pgfqpoint{0.733587in}{0.695420in}}% -\pgfpathlineto{\pgfqpoint{0.755470in}{0.754113in}}% -\pgfpathlineto{\pgfqpoint{0.777353in}{0.808890in}}% -\pgfpathlineto{\pgfqpoint{0.799236in}{0.860217in}}% -\pgfpathlineto{\pgfqpoint{0.821119in}{0.908482in}}% -\pgfpathlineto{\pgfqpoint{0.864884in}{0.997068in}}% -\pgfpathlineto{\pgfqpoint{0.908650in}{1.076697in}}% -\pgfpathlineto{\pgfqpoint{0.952416in}{1.148883in}}% -\pgfpathlineto{\pgfqpoint{0.996181in}{1.214776in}}% -\pgfpathlineto{\pgfqpoint{1.039947in}{1.275266in}}% -\pgfpathlineto{\pgfqpoint{1.083712in}{1.331062in}}% -\pgfpathlineto{\pgfqpoint{1.127478in}{1.382734in}}% -\pgfpathlineto{\pgfqpoint{1.171244in}{1.430748in}}% -\pgfpathlineto{\pgfqpoint{1.215009in}{1.475489in}}% -\pgfpathlineto{\pgfqpoint{1.258775in}{1.517280in}}% -\pgfpathlineto{\pgfqpoint{1.302541in}{1.556392in}}% -\pgfpathlineto{\pgfqpoint{1.346306in}{1.593058in}}% -\pgfpathlineto{\pgfqpoint{1.390072in}{1.627478in}}% -\pgfpathlineto{\pgfqpoint{1.433838in}{1.659822in}}% -\pgfpathlineto{\pgfqpoint{1.477603in}{1.690241in}}% -\pgfpathlineto{\pgfqpoint{1.543252in}{1.732541in}}% -\pgfpathlineto{\pgfqpoint{1.608900in}{1.771177in}}% -\pgfpathlineto{\pgfqpoint{1.674549in}{1.806460in}}% -\pgfpathlineto{\pgfqpoint{1.740197in}{1.838653in}}% -\pgfpathlineto{\pgfqpoint{1.805845in}{1.867977in}}% -\pgfpathlineto{\pgfqpoint{1.871494in}{1.894617in}}% -\pgfpathlineto{\pgfqpoint{1.937142in}{1.918732in}}% -\pgfpathlineto{\pgfqpoint{2.002791in}{1.940458in}}% -\pgfpathlineto{\pgfqpoint{2.068439in}{1.959908in}}% -\pgfpathlineto{\pgfqpoint{2.134088in}{1.977179in}}% -\pgfpathlineto{\pgfqpoint{2.199736in}{1.992354in}}% -\pgfpathlineto{\pgfqpoint{2.265385in}{2.005502in}}% -\pgfpathlineto{\pgfqpoint{2.331033in}{2.016679in}}% -\pgfpathlineto{\pgfqpoint{2.396682in}{2.025931in}}% -\pgfpathlineto{\pgfqpoint{2.462330in}{2.033295in}}% -\pgfpathlineto{\pgfqpoint{2.527978in}{2.038797in}}% -\pgfpathlineto{\pgfqpoint{2.593627in}{2.042456in}}% -\pgfpathlineto{\pgfqpoint{2.659275in}{2.044281in}}% -\pgfpathlineto{\pgfqpoint{2.724924in}{2.044274in}}% -\pgfpathlineto{\pgfqpoint{2.790572in}{2.042428in}}% -\pgfpathlineto{\pgfqpoint{2.856221in}{2.038728in}}% -\pgfpathlineto{\pgfqpoint{2.921869in}{2.033150in}}% -\pgfpathlineto{\pgfqpoint{2.987518in}{2.025661in}}% -\pgfpathlineto{\pgfqpoint{3.053166in}{2.016219in}}% -\pgfpathlineto{\pgfqpoint{3.118814in}{2.004771in}}% -\pgfpathlineto{\pgfqpoint{3.184463in}{1.991252in}}% -\pgfpathlineto{\pgfqpoint{3.250111in}{1.975585in}}% -\pgfpathlineto{\pgfqpoint{3.315760in}{1.957679in}}% -\pgfpathlineto{\pgfqpoint{3.381408in}{1.937425in}}% -\pgfpathlineto{\pgfqpoint{3.447057in}{1.914695in}}% -\pgfpathlineto{\pgfqpoint{3.512705in}{1.889340in}}% -\pgfpathlineto{\pgfqpoint{3.578354in}{1.861183in}}% -\pgfpathlineto{\pgfqpoint{3.644002in}{1.830017in}}% -\pgfpathlineto{\pgfqpoint{3.709651in}{1.795594in}}% -\pgfpathlineto{\pgfqpoint{3.775299in}{1.757619in}}% -\pgfpathlineto{\pgfqpoint{3.819065in}{1.730158in}}% -\pgfpathlineto{\pgfqpoint{3.862830in}{1.700841in}}% -\pgfpathlineto{\pgfqpoint{3.906596in}{1.669528in}}% -\pgfpathlineto{\pgfqpoint{3.950362in}{1.636058in}}% -\pgfpathlineto{\pgfqpoint{3.994127in}{1.600247in}}% -\pgfpathlineto{\pgfqpoint{4.037893in}{1.561881in}}% -\pgfpathlineto{\pgfqpoint{4.081658in}{1.520707in}}% -\pgfpathlineto{\pgfqpoint{4.125424in}{1.476431in}}% -\pgfpathlineto{\pgfqpoint{4.169190in}{1.428699in}}% -\pgfpathlineto{\pgfqpoint{4.212955in}{1.377090in}}% -\pgfpathlineto{\pgfqpoint{4.256721in}{1.321088in}}% -\pgfpathlineto{\pgfqpoint{4.300487in}{1.260060in}}% -\pgfpathlineto{\pgfqpoint{4.344252in}{1.193213in}}% -\pgfpathlineto{\pgfqpoint{4.388018in}{1.119537in}}% -\pgfpathlineto{\pgfqpoint{4.431784in}{1.037719in}}% -\pgfpathlineto{\pgfqpoint{4.453666in}{0.993230in}}% -\pgfpathlineto{\pgfqpoint{4.475549in}{0.946002in}}% -\pgfpathlineto{\pgfqpoint{4.497432in}{0.895712in}}% -\pgfpathlineto{\pgfqpoint{4.519315in}{0.841974in}}% -\pgfpathlineto{\pgfqpoint{4.541198in}{0.784319in}}% -\pgfpathlineto{\pgfqpoint{4.563080in}{0.722178in}}% -\pgfpathlineto{\pgfqpoint{4.584963in}{0.654843in}}% -\pgfpathlineto{\pgfqpoint{4.606846in}{0.581421in}}% -\pgfpathlineto{\pgfqpoint{4.628729in}{0.500765in}}% -\pgfpathlineto{\pgfqpoint{4.640354in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.640354in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.629284in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.646056in}{0.523540in}}% -\pgfpathlineto{\pgfqpoint{0.667939in}{0.606470in}}% -\pgfpathlineto{\pgfqpoint{0.689822in}{0.682166in}}% -\pgfpathlineto{\pgfqpoint{0.711705in}{0.751775in}}% -\pgfpathlineto{\pgfqpoint{0.733587in}{0.816190in}}% -\pgfpathlineto{\pgfqpoint{0.755470in}{0.876120in}}% -\pgfpathlineto{\pgfqpoint{0.777353in}{0.932133in}}% -\pgfpathlineto{\pgfqpoint{0.799236in}{0.984698in}}% -\pgfpathlineto{\pgfqpoint{0.843001in}{1.080965in}}% -\pgfpathlineto{\pgfqpoint{0.886767in}{1.167335in}}% -\pgfpathlineto{\pgfqpoint{0.930533in}{1.245562in}}% -\pgfpathlineto{\pgfqpoint{0.974298in}{1.316962in}}% -\pgfpathlineto{\pgfqpoint{1.018064in}{1.382543in}}% -\pgfpathlineto{\pgfqpoint{1.061830in}{1.443099in}}% -\pgfpathlineto{\pgfqpoint{1.105595in}{1.499264in}}% -\pgfpathlineto{\pgfqpoint{1.149361in}{1.551552in}}% -\pgfpathlineto{\pgfqpoint{1.193127in}{1.600386in}}% -\pgfpathlineto{\pgfqpoint{1.236892in}{1.646119in}}% -\pgfpathlineto{\pgfqpoint{1.280658in}{1.689046in}}% -\pgfpathlineto{\pgfqpoint{1.324423in}{1.729418in}}% -\pgfpathlineto{\pgfqpoint{1.368189in}{1.767451in}}% -\pgfpathlineto{\pgfqpoint{1.411955in}{1.803328in}}% -\pgfpathlineto{\pgfqpoint{1.455720in}{1.837212in}}% -\pgfpathlineto{\pgfqpoint{1.521369in}{1.884598in}}% -\pgfpathlineto{\pgfqpoint{1.587017in}{1.928209in}}% -\pgfpathlineto{\pgfqpoint{1.652666in}{1.968378in}}% -\pgfpathlineto{\pgfqpoint{1.718314in}{2.005381in}}% -\pgfpathlineto{\pgfqpoint{1.783963in}{2.039452in}}% -\pgfpathlineto{\pgfqpoint{1.849611in}{2.070788in}}% -\pgfpathlineto{\pgfqpoint{1.915260in}{2.099557in}}% -\pgfpathlineto{\pgfqpoint{1.980908in}{2.125901in}}% -\pgfpathlineto{\pgfqpoint{2.046556in}{2.149940in}}% -\pgfpathlineto{\pgfqpoint{2.112205in}{2.171779in}}% -\pgfpathlineto{\pgfqpoint{2.177853in}{2.191502in}}% -\pgfpathlineto{\pgfqpoint{2.243502in}{2.209185in}}% -\pgfpathlineto{\pgfqpoint{2.309150in}{2.224887in}}% -\pgfpathlineto{\pgfqpoint{2.374799in}{2.238657in}}% -\pgfpathlineto{\pgfqpoint{2.440447in}{2.250536in}}% -\pgfpathlineto{\pgfqpoint{2.506096in}{2.260554in}}% -\pgfpathlineto{\pgfqpoint{2.571744in}{2.268731in}}% -\pgfpathlineto{\pgfqpoint{2.637393in}{2.275080in}}% -\pgfpathlineto{\pgfqpoint{2.703041in}{2.279605in}}% -\pgfpathlineto{\pgfqpoint{2.768689in}{2.282303in}}% -\pgfpathlineto{\pgfqpoint{2.834338in}{2.283161in}}% -\pgfpathlineto{\pgfqpoint{2.899986in}{2.282158in}}% -\pgfpathlineto{\pgfqpoint{2.965635in}{2.279265in}}% -\pgfpathlineto{\pgfqpoint{3.031283in}{2.274442in}}% -\pgfpathlineto{\pgfqpoint{3.096932in}{2.267640in}}% -\pgfpathlineto{\pgfqpoint{3.162580in}{2.258800in}}% -\pgfpathlineto{\pgfqpoint{3.228229in}{2.247847in}}% -\pgfpathlineto{\pgfqpoint{3.293877in}{2.234696in}}% -\pgfpathlineto{\pgfqpoint{3.359525in}{2.219244in}}% -\pgfpathlineto{\pgfqpoint{3.425174in}{2.201370in}}% -\pgfpathlineto{\pgfqpoint{3.490822in}{2.180932in}}% -\pgfpathlineto{\pgfqpoint{3.556471in}{2.157764in}}% -\pgfpathlineto{\pgfqpoint{3.622119in}{2.131669in}}% -\pgfpathlineto{\pgfqpoint{3.687768in}{2.102412in}}% -\pgfpathlineto{\pgfqpoint{3.753416in}{2.069718in}}% -\pgfpathlineto{\pgfqpoint{3.797182in}{2.045851in}}% -\pgfpathlineto{\pgfqpoint{3.840947in}{2.020195in}}% -\pgfpathlineto{\pgfqpoint{3.884713in}{1.992619in}}% -\pgfpathlineto{\pgfqpoint{3.928479in}{1.962974in}}% -\pgfpathlineto{\pgfqpoint{3.972244in}{1.931088in}}% -\pgfpathlineto{\pgfqpoint{4.016010in}{1.896761in}}% -\pgfpathlineto{\pgfqpoint{4.059776in}{1.859763in}}% -\pgfpathlineto{\pgfqpoint{4.103541in}{1.819820in}}% -\pgfpathlineto{\pgfqpoint{4.147307in}{1.776610in}}% -\pgfpathlineto{\pgfqpoint{4.191073in}{1.729749in}}% -\pgfpathlineto{\pgfqpoint{4.234838in}{1.678769in}}% -\pgfpathlineto{\pgfqpoint{4.278604in}{1.623102in}}% -\pgfpathlineto{\pgfqpoint{4.322369in}{1.562039in}}% -\pgfpathlineto{\pgfqpoint{4.366135in}{1.494689in}}% -\pgfpathlineto{\pgfqpoint{4.409901in}{1.419903in}}% -\pgfpathlineto{\pgfqpoint{4.431784in}{1.379266in}}% -\pgfpathlineto{\pgfqpoint{4.453666in}{1.336166in}}% -\pgfpathlineto{\pgfqpoint{4.475549in}{1.290329in}}% -\pgfpathlineto{\pgfqpoint{4.497432in}{1.241431in}}% -\pgfpathlineto{\pgfqpoint{4.519315in}{1.189085in}}% -\pgfpathlineto{\pgfqpoint{4.541198in}{1.132824in}}% -\pgfpathlineto{\pgfqpoint{4.563080in}{1.072078in}}% -\pgfpathlineto{\pgfqpoint{4.584963in}{1.006139in}}% -\pgfpathlineto{\pgfqpoint{4.606846in}{0.934115in}}% -\pgfpathlineto{\pgfqpoint{4.628729in}{0.854857in}}% -\pgfpathlineto{\pgfqpoint{4.650612in}{0.766856in}}% -\pgfpathlineto{\pgfqpoint{4.672494in}{0.668065in}}% -\pgfpathlineto{\pgfqpoint{4.694377in}{0.555619in}}% -\pgfpathlineto{\pgfqpoint{4.711566in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.711566in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.426895in}{0.463273in}}{\pgfqpoint{4.420996in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.750000,0.000000,0.750000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{{3.000000pt}{4.950000pt}}{0.000000pt}% -\pgfpathmoveto{\pgfqpoint{0.658262in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{0.667939in}{0.489403in}}% -\pgfpathlineto{\pgfqpoint{0.689822in}{0.563865in}}% -\pgfpathlineto{\pgfqpoint{0.711705in}{0.632240in}}% -\pgfpathlineto{\pgfqpoint{0.733587in}{0.695420in}}% -\pgfpathlineto{\pgfqpoint{0.755470in}{0.754113in}}% -\pgfpathlineto{\pgfqpoint{0.777353in}{0.808890in}}% -\pgfpathlineto{\pgfqpoint{0.799236in}{0.860217in}}% -\pgfpathlineto{\pgfqpoint{0.821119in}{0.908482in}}% -\pgfpathlineto{\pgfqpoint{0.864884in}{0.997068in}}% -\pgfpathlineto{\pgfqpoint{0.908650in}{1.076697in}}% -\pgfpathlineto{\pgfqpoint{0.952416in}{1.148883in}}% -\pgfpathlineto{\pgfqpoint{0.996181in}{1.214776in}}% -\pgfpathlineto{\pgfqpoint{1.039947in}{1.275266in}}% -\pgfpathlineto{\pgfqpoint{1.083712in}{1.331062in}}% -\pgfpathlineto{\pgfqpoint{1.127478in}{1.382734in}}% -\pgfpathlineto{\pgfqpoint{1.171244in}{1.430748in}}% -\pgfpathlineto{\pgfqpoint{1.215009in}{1.475489in}}% -\pgfpathlineto{\pgfqpoint{1.258775in}{1.517280in}}% -\pgfpathlineto{\pgfqpoint{1.302541in}{1.556392in}}% -\pgfpathlineto{\pgfqpoint{1.346306in}{1.593058in}}% -\pgfpathlineto{\pgfqpoint{1.390072in}{1.627478in}}% -\pgfpathlineto{\pgfqpoint{1.433838in}{1.659822in}}% -\pgfpathlineto{\pgfqpoint{1.477603in}{1.690241in}}% -\pgfpathlineto{\pgfqpoint{1.543252in}{1.732541in}}% -\pgfpathlineto{\pgfqpoint{1.608900in}{1.771177in}}% -\pgfpathlineto{\pgfqpoint{1.674549in}{1.806460in}}% -\pgfpathlineto{\pgfqpoint{1.740197in}{1.838653in}}% -\pgfpathlineto{\pgfqpoint{1.805845in}{1.867977in}}% -\pgfpathlineto{\pgfqpoint{1.871494in}{1.894617in}}% -\pgfpathlineto{\pgfqpoint{1.937142in}{1.918732in}}% -\pgfpathlineto{\pgfqpoint{2.002791in}{1.940458in}}% -\pgfpathlineto{\pgfqpoint{2.068439in}{1.959908in}}% -\pgfpathlineto{\pgfqpoint{2.134088in}{1.977179in}}% -\pgfpathlineto{\pgfqpoint{2.199736in}{1.992354in}}% -\pgfpathlineto{\pgfqpoint{2.265385in}{2.005502in}}% -\pgfpathlineto{\pgfqpoint{2.331033in}{2.016679in}}% -\pgfpathlineto{\pgfqpoint{2.396682in}{2.025931in}}% -\pgfpathlineto{\pgfqpoint{2.462330in}{2.033295in}}% -\pgfpathlineto{\pgfqpoint{2.527978in}{2.038797in}}% -\pgfpathlineto{\pgfqpoint{2.593627in}{2.042456in}}% -\pgfpathlineto{\pgfqpoint{2.659275in}{2.044281in}}% -\pgfpathlineto{\pgfqpoint{2.724924in}{2.044274in}}% -\pgfpathlineto{\pgfqpoint{2.790572in}{2.042428in}}% -\pgfpathlineto{\pgfqpoint{2.856221in}{2.038728in}}% -\pgfpathlineto{\pgfqpoint{2.921869in}{2.033150in}}% -\pgfpathlineto{\pgfqpoint{2.987518in}{2.025661in}}% -\pgfpathlineto{\pgfqpoint{3.009400in}{2.019929in}}% -\pgfpathlineto{\pgfqpoint{3.075049in}{2.006301in}}% -\pgfpathlineto{\pgfqpoint{3.140697in}{1.990642in}}% -\pgfpathlineto{\pgfqpoint{3.206346in}{1.972882in}}% -\pgfpathlineto{\pgfqpoint{3.271994in}{1.952941in}}% -\pgfpathlineto{\pgfqpoint{3.337643in}{1.930721in}}% -\pgfpathlineto{\pgfqpoint{3.403291in}{1.906108in}}% -\pgfpathlineto{\pgfqpoint{3.468940in}{1.878966in}}% -\pgfpathlineto{\pgfqpoint{3.534588in}{1.849139in}}% -\pgfpathlineto{\pgfqpoint{3.600236in}{1.816439in}}% -\pgfpathlineto{\pgfqpoint{3.665885in}{1.780646in}}% -\pgfpathlineto{\pgfqpoint{3.731533in}{1.741498in}}% -\pgfpathlineto{\pgfqpoint{3.797182in}{1.698684in}}% -\pgfpathlineto{\pgfqpoint{3.840947in}{1.667921in}}% -\pgfpathlineto{\pgfqpoint{3.884713in}{1.635231in}}% -\pgfpathlineto{\pgfqpoint{3.928479in}{1.600466in}}% -\pgfpathlineto{\pgfqpoint{3.972244in}{1.563453in}}% -\pgfpathlineto{\pgfqpoint{4.016010in}{1.523992in}}% -\pgfpathlineto{\pgfqpoint{4.059776in}{1.481853in}}% -\pgfpathlineto{\pgfqpoint{4.103541in}{1.436763in}}% -\pgfpathlineto{\pgfqpoint{4.147307in}{1.388399in}}% -\pgfpathlineto{\pgfqpoint{4.191073in}{1.336377in}}% -\pgfpathlineto{\pgfqpoint{4.234838in}{1.280229in}}% -\pgfpathlineto{\pgfqpoint{4.278604in}{1.219387in}}% -\pgfpathlineto{\pgfqpoint{4.322369in}{1.153142in}}% -\pgfpathlineto{\pgfqpoint{4.366135in}{1.080603in}}% -\pgfpathlineto{\pgfqpoint{4.409901in}{1.000620in}}% -\pgfpathlineto{\pgfqpoint{4.431784in}{0.957383in}}% -\pgfpathlineto{\pgfqpoint{4.453666in}{0.911681in}}% -\pgfpathlineto{\pgfqpoint{4.475549in}{0.863239in}}% -\pgfpathlineto{\pgfqpoint{4.497432in}{0.811735in}}% -\pgfpathlineto{\pgfqpoint{4.519315in}{0.756781in}}% -\pgfpathlineto{\pgfqpoint{4.541198in}{0.697911in}}% -\pgfpathlineto{\pgfqpoint{4.563080in}{0.634553in}}% -\pgfpathlineto{\pgfqpoint{4.584963in}{0.566000in}}% -\pgfpathlineto{\pgfqpoint{4.617026in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{4.617026in}{0.453273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.426895in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.847890in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.426895in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{4.847890in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.192161in}{0.532718in}}% -\pgfpathlineto{\pgfqpoint{3.082624in}{0.532718in}}% -\pgfpathquadraticcurveto{\pgfqpoint{3.110402in}{0.532718in}}{\pgfqpoint{3.110402in}{0.560496in}}% -\pgfpathlineto{\pgfqpoint{3.110402in}{1.565893in}}% -\pgfpathquadraticcurveto{\pgfqpoint{3.110402in}{1.593671in}}{\pgfqpoint{3.082624in}{1.593671in}}% -\pgfpathlineto{\pgfqpoint{2.192161in}{1.593671in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.164383in}{1.593671in}}{\pgfqpoint{2.164383in}{1.565893in}}% -\pgfpathlineto{\pgfqpoint{2.164383in}{0.560496in}}% -\pgfpathquadraticcurveto{\pgfqpoint{2.164383in}{0.532718in}}{\pgfqpoint{2.192161in}{0.532718in}}% -\pgfpathlineto{\pgfqpoint{2.192161in}{0.532718in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.219938in}{1.481203in}}% -\pgfpathlineto{\pgfqpoint{2.358827in}{1.481203in}}% -\pgfpathlineto{\pgfqpoint{2.497716in}{1.481203in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.608827in,y=1.432592in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=10\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.219938in}{1.277346in}}% -\pgfpathlineto{\pgfqpoint{2.358827in}{1.277346in}}% -\pgfpathlineto{\pgfqpoint{2.497716in}{1.277346in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.608827in,y=1.228735in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=11\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.219938in}{1.073489in}}% -\pgfpathlineto{\pgfqpoint{2.358827in}{1.073489in}}% -\pgfpathlineto{\pgfqpoint{2.497716in}{1.073489in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.608827in,y=1.024878in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=12\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.219938in}{0.869631in}}% -\pgfpathlineto{\pgfqpoint{2.358827in}{0.869631in}}% -\pgfpathlineto{\pgfqpoint{2.497716in}{0.869631in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.608827in,y=0.821020in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m=13\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\pgfsetlinewidth{3.011250pt}% -\definecolor{currentstroke}{rgb}{0.750000,0.000000,0.750000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{{3.000000pt}{4.950000pt}}{0.000000pt}% -\pgfpathmoveto{\pgfqpoint{2.219938in}{0.665774in}}% -\pgfpathlineto{\pgfqpoint{2.358827in}{0.665774in}}% -\pgfpathlineto{\pgfqpoint{2.497716in}{0.665774in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.608827in,y=0.617163in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m^*\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/rel_error_simple.pdf b/buch/papers/laguerre/images/rel_error_simple.pdf new file mode 100644 index 0000000..24e11b6 Binary files /dev/null and b/buch/papers/laguerre/images/rel_error_simple.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_simple.pgf b/buch/papers/laguerre/images/rel_error_simple.pgf deleted file mode 100644 index 2439d65..0000000 --- a/buch/papers/laguerre/images/rel_error_simple.pgf +++ /dev/null @@ -1,2934 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{5.000000in}{2.500000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{5.000000in}{2.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{2.500000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.482258in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482258in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.482258in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \ensuremath{-}5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.109073in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.109073in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.109073in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.109073in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.735888in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.735888in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.735888in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.735888in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.362703in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.362703in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.362703in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.362703in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.989519in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.989519in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.989519in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.989519in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.616334in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.616334in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.616334in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.616334in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 20}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.243149in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.243149in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.243149in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.243149in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 25}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.869965in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.869965in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 30}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.607621in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.607621in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.607621in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.732984in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.732984in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.732984in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.858347in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.858347in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.858347in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.983710in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.983710in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.983710in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.234436in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.234436in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.234436in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.359799in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.359799in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.359799in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.485162in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.485162in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.485162in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.610525in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.610525in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.610525in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.861251in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.861251in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.861251in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.986614in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{1.986614in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.986614in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.111977in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.111977in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.111977in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.237340in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.237340in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.237340in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.488066in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.488066in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.488066in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.613430in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.613430in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.613430in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.738793in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.738793in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.738793in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.864156in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.864156in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.864156in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.114882in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.114882in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.114882in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.240245in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.240245in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.240245in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.365608in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.365608in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.365608in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.490971in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.490971in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.490971in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.741697in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.741697in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.741697in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.867060in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.867060in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.867060in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.992423in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.992423in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.992423in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.117786in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.117786in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.117786in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.368512in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.368512in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.368512in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.493875in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.493875in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.493875in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.619239in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.619239in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.619239in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.744602in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.744602in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{4.744602in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.676111in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.041670in, y=0.410512in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-11}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.697986in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.697986in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.697986in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=0.645224in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-9}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.932698in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.932698in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{0.932698in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=0.879937in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-7}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.167411in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.167411in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.167411in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=1.114649in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-5}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.402124in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.402124in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.402124in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=1.349362in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-3}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.636836in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.636836in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.636836in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.097033in, y=1.584075in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{-1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{1.871549in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.871549in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{1.871549in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.183839in, y=1.818787in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{1}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{2.106261in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.106261in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{2.106261in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.183839in, y=2.053500in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{3}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.690196,0.690196,0.690196}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{2.340974in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.340974in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.482257in}{2.340974in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.183839in, y=2.288212in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle {10^{5}}\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{1.754205in}}% -\pgfpathlineto{\pgfqpoint{0.493254in}{2.019288in}}% -\pgfpathlineto{\pgfqpoint{0.504251in}{2.042641in}}% -\pgfpathlineto{\pgfqpoint{0.515248in}{2.050108in}}% -\pgfpathlineto{\pgfqpoint{0.526245in}{2.050176in}}% -\pgfpathlineto{\pgfqpoint{0.537241in}{2.045361in}}% -\pgfpathlineto{\pgfqpoint{0.548238in}{2.036564in}}% -\pgfpathlineto{\pgfqpoint{0.559235in}{2.023921in}}% -\pgfpathlineto{\pgfqpoint{0.570232in}{2.006908in}}% -\pgfpathlineto{\pgfqpoint{0.581228in}{1.983910in}}% -\pgfpathlineto{\pgfqpoint{0.592225in}{1.950189in}}% -\pgfpathlineto{\pgfqpoint{0.603222in}{1.881573in}}% -\pgfpathlineto{\pgfqpoint{0.614219in}{1.884842in}}% -\pgfpathlineto{\pgfqpoint{0.625215in}{1.926450in}}% -\pgfpathlineto{\pgfqpoint{0.636212in}{1.939872in}}% -\pgfpathlineto{\pgfqpoint{0.647209in}{1.943485in}}% -\pgfpathlineto{\pgfqpoint{0.658206in}{1.941360in}}% -\pgfpathlineto{\pgfqpoint{0.669202in}{1.934890in}}% -\pgfpathlineto{\pgfqpoint{0.680199in}{1.924441in}}% -\pgfpathlineto{\pgfqpoint{0.691196in}{1.909649in}}% -\pgfpathlineto{\pgfqpoint{0.702193in}{1.889114in}}% -\pgfpathlineto{\pgfqpoint{0.713189in}{1.858716in}}% -\pgfpathlineto{\pgfqpoint{0.724186in}{1.799567in}}% -\pgfpathlineto{\pgfqpoint{0.735183in}{1.782399in}}% -\pgfpathlineto{\pgfqpoint{0.746180in}{1.833386in}}% -\pgfpathlineto{\pgfqpoint{0.757177in}{1.850485in}}% -\pgfpathlineto{\pgfqpoint{0.768173in}{1.857161in}}% -\pgfpathlineto{\pgfqpoint{0.779170in}{1.858149in}}% -\pgfpathlineto{\pgfqpoint{0.790167in}{1.855162in}}% -\pgfpathlineto{\pgfqpoint{0.801164in}{1.848916in}}% -\pgfpathlineto{\pgfqpoint{0.812160in}{1.839643in}}% -\pgfpathlineto{\pgfqpoint{0.823157in}{1.827223in}}% -\pgfpathlineto{\pgfqpoint{0.834154in}{1.811140in}}% -\pgfpathlineto{\pgfqpoint{0.845151in}{1.790185in}}% -\pgfpathlineto{\pgfqpoint{0.856147in}{1.761445in}}% -\pgfpathlineto{\pgfqpoint{0.867144in}{1.715196in}}% -\pgfpathlineto{\pgfqpoint{0.878141in}{1.572762in}}% -\pgfpathlineto{\pgfqpoint{0.889138in}{1.698583in}}% -\pgfpathlineto{\pgfqpoint{0.900134in}{1.716349in}}% -\pgfpathlineto{\pgfqpoint{0.911131in}{1.716239in}}% -\pgfpathlineto{\pgfqpoint{0.922128in}{1.702510in}}% -\pgfpathlineto{\pgfqpoint{0.933125in}{1.663978in}}% -\pgfpathlineto{\pgfqpoint{0.944121in}{1.620733in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{1.699269in}}% -\pgfpathlineto{\pgfqpoint{0.966115in}{1.728962in}}% -\pgfpathlineto{\pgfqpoint{0.977112in}{1.746635in}}% -\pgfpathlineto{\pgfqpoint{0.988108in}{1.758337in}}% -\pgfpathlineto{\pgfqpoint{0.999105in}{1.766290in}}% -\pgfpathlineto{\pgfqpoint{1.010102in}{1.771577in}}% -\pgfpathlineto{\pgfqpoint{1.021099in}{1.774811in}}% -\pgfpathlineto{\pgfqpoint{1.032095in}{1.776376in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{1.776523in}}% -\pgfpathlineto{\pgfqpoint{1.054089in}{1.775424in}}% -\pgfpathlineto{\pgfqpoint{1.076083in}{1.769923in}}% -\pgfpathlineto{\pgfqpoint{1.098076in}{1.760408in}}% -\pgfpathlineto{\pgfqpoint{1.120070in}{1.746983in}}% -\pgfpathlineto{\pgfqpoint{1.142063in}{1.729347in}}% -\pgfpathlineto{\pgfqpoint{1.164057in}{1.706592in}}% -\pgfpathlineto{\pgfqpoint{1.175053in}{1.692698in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{1.676497in}}% -\pgfpathlineto{\pgfqpoint{1.197047in}{1.657053in}}% -\pgfpathlineto{\pgfqpoint{1.208044in}{1.632441in}}% -\pgfpathlineto{\pgfqpoint{1.219040in}{1.597524in}}% -\pgfpathlineto{\pgfqpoint{1.230037in}{1.525604in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{1.537523in}}% -\pgfpathlineto{\pgfqpoint{1.252031in}{1.578018in}}% -\pgfpathlineto{\pgfqpoint{1.263027in}{1.592425in}}% -\pgfpathlineto{\pgfqpoint{1.274024in}{1.597694in}}% -\pgfpathlineto{\pgfqpoint{1.285021in}{1.597702in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{1.593795in}}% -\pgfpathlineto{\pgfqpoint{1.307014in}{1.586349in}}% -\pgfpathlineto{\pgfqpoint{1.318011in}{1.575089in}}% -\pgfpathlineto{\pgfqpoint{1.329008in}{1.558888in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{1.534614in}}% -\pgfpathlineto{\pgfqpoint{1.351002in}{1.490506in}}% -\pgfpathlineto{\pgfqpoint{1.361998in}{1.416100in}}% -\pgfpathlineto{\pgfqpoint{1.372995in}{1.502705in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{1.527886in}}% -\pgfpathlineto{\pgfqpoint{1.394989in}{1.540201in}}% -\pgfpathlineto{\pgfqpoint{1.405985in}{1.546078in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{1.547571in}}% -\pgfpathlineto{\pgfqpoint{1.427979in}{1.545393in}}% -\pgfpathlineto{\pgfqpoint{1.438976in}{1.539547in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{1.529328in}}% -\pgfpathlineto{\pgfqpoint{1.460969in}{1.512687in}}% -\pgfpathlineto{\pgfqpoint{1.471966in}{1.483205in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{1.392330in}}% -\pgfpathlineto{\pgfqpoint{1.493959in}{1.462505in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{1.502427in}}% -\pgfpathlineto{\pgfqpoint{1.515953in}{1.522570in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{1.534701in}}% -\pgfpathlineto{\pgfqpoint{1.537946in}{1.541960in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{1.545484in}}% -\pgfpathlineto{\pgfqpoint{1.559940in}{1.545557in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{1.541811in}}% -\pgfpathlineto{\pgfqpoint{1.581933in}{1.532911in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{1.514991in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{1.471110in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{1.455947in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{1.524776in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{1.556770in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{1.578643in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{1.595546in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{1.609424in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{1.631519in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.648783in}}% -\pgfpathlineto{\pgfqpoint{1.735888in}{1.662871in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{1.674670in}}% -\pgfpathlineto{\pgfqpoint{1.790872in}{1.689203in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{1.700894in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{1.710435in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{1.720592in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{1.728489in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{1.735954in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{1.742298in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{1.747154in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{1.750770in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{1.752994in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{1.754026in}}% -\pgfpathlineto{\pgfqpoint{3.429389in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{1.754519in}}% -\pgfpathlineto{\pgfqpoint{0.493254in}{2.181128in}}% -\pgfpathlineto{\pgfqpoint{0.504251in}{2.201913in}}% -\pgfpathlineto{\pgfqpoint{0.515248in}{2.206736in}}% -\pgfpathlineto{\pgfqpoint{0.526245in}{2.204138in}}% -\pgfpathlineto{\pgfqpoint{0.537241in}{2.196641in}}% -\pgfpathlineto{\pgfqpoint{0.548238in}{2.185146in}}% -\pgfpathlineto{\pgfqpoint{0.559235in}{2.169783in}}% -\pgfpathlineto{\pgfqpoint{0.570232in}{2.150008in}}% -\pgfpathlineto{\pgfqpoint{0.581228in}{2.124151in}}% -\pgfpathlineto{\pgfqpoint{0.592225in}{2.087265in}}% -\pgfpathlineto{\pgfqpoint{0.603222in}{2.012959in}}% -\pgfpathlineto{\pgfqpoint{0.614219in}{2.021124in}}% -\pgfpathlineto{\pgfqpoint{0.625215in}{2.058129in}}% -\pgfpathlineto{\pgfqpoint{0.636212in}{2.068517in}}% -\pgfpathlineto{\pgfqpoint{0.647209in}{2.069376in}}% -\pgfpathlineto{\pgfqpoint{0.658206in}{2.064626in}}% -\pgfpathlineto{\pgfqpoint{0.669202in}{2.055639in}}% -\pgfpathlineto{\pgfqpoint{0.680199in}{2.042809in}}% -\pgfpathlineto{\pgfqpoint{0.691196in}{2.025866in}}% -\pgfpathlineto{\pgfqpoint{0.702193in}{2.003663in}}% -\pgfpathlineto{\pgfqpoint{0.713189in}{1.972966in}}% -\pgfpathlineto{\pgfqpoint{0.724186in}{1.921325in}}% -\pgfpathlineto{\pgfqpoint{0.735183in}{1.850576in}}% -\pgfpathlineto{\pgfqpoint{0.746180in}{1.923920in}}% -\pgfpathlineto{\pgfqpoint{0.757177in}{1.941559in}}% -\pgfpathlineto{\pgfqpoint{0.768173in}{1.946553in}}% -\pgfpathlineto{\pgfqpoint{0.779170in}{1.945065in}}% -\pgfpathlineto{\pgfqpoint{0.790167in}{1.939109in}}% -\pgfpathlineto{\pgfqpoint{0.801164in}{1.929423in}}% -\pgfpathlineto{\pgfqpoint{0.812160in}{1.916087in}}% -\pgfpathlineto{\pgfqpoint{0.823157in}{1.898587in}}% -\pgfpathlineto{\pgfqpoint{0.834154in}{1.875417in}}% -\pgfpathlineto{\pgfqpoint{0.845151in}{1.842331in}}% -\pgfpathlineto{\pgfqpoint{0.856147in}{1.779898in}}% -\pgfpathlineto{\pgfqpoint{0.867144in}{1.762527in}}% -\pgfpathlineto{\pgfqpoint{0.878141in}{1.809789in}}% -\pgfpathlineto{\pgfqpoint{0.889138in}{1.823622in}}% -\pgfpathlineto{\pgfqpoint{0.900134in}{1.826680in}}% -\pgfpathlineto{\pgfqpoint{0.911131in}{1.823354in}}% -\pgfpathlineto{\pgfqpoint{0.922128in}{1.814840in}}% -\pgfpathlineto{\pgfqpoint{0.933125in}{1.800842in}}% -\pgfpathlineto{\pgfqpoint{0.944121in}{1.779173in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{1.741528in}}% -\pgfpathlineto{\pgfqpoint{0.966115in}{1.425341in}}% -\pgfpathlineto{\pgfqpoint{0.977112in}{1.733313in}}% -\pgfpathlineto{\pgfqpoint{0.988108in}{1.763336in}}% -\pgfpathlineto{\pgfqpoint{0.999105in}{1.777868in}}% -\pgfpathlineto{\pgfqpoint{1.010102in}{1.785653in}}% -\pgfpathlineto{\pgfqpoint{1.021099in}{1.789455in}}% -\pgfpathlineto{\pgfqpoint{1.032095in}{1.790513in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{1.789493in}}% -\pgfpathlineto{\pgfqpoint{1.054089in}{1.786789in}}% -\pgfpathlineto{\pgfqpoint{1.065086in}{1.782650in}}% -\pgfpathlineto{\pgfqpoint{1.087079in}{1.770657in}}% -\pgfpathlineto{\pgfqpoint{1.109073in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{1.131066in}{1.733343in}}% -\pgfpathlineto{\pgfqpoint{1.153060in}{1.707635in}}% -\pgfpathlineto{\pgfqpoint{1.175053in}{1.675702in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{1.656452in}}% -\pgfpathlineto{\pgfqpoint{1.197047in}{1.633904in}}% -\pgfpathlineto{\pgfqpoint{1.208044in}{1.606132in}}% -\pgfpathlineto{\pgfqpoint{1.219040in}{1.568002in}}% -\pgfpathlineto{\pgfqpoint{1.230037in}{1.492814in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{1.501409in}}% -\pgfpathlineto{\pgfqpoint{1.252031in}{1.538524in}}% -\pgfpathlineto{\pgfqpoint{1.263027in}{1.549490in}}% -\pgfpathlineto{\pgfqpoint{1.274024in}{1.551259in}}% -\pgfpathlineto{\pgfqpoint{1.285021in}{1.547705in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{1.540169in}}% -\pgfpathlineto{\pgfqpoint{1.307014in}{1.529026in}}% -\pgfpathlineto{\pgfqpoint{1.318011in}{1.513998in}}% -\pgfpathlineto{\pgfqpoint{1.329008in}{1.493955in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{1.465760in}}% -\pgfpathlineto{\pgfqpoint{1.351002in}{1.417650in}}% -\pgfpathlineto{\pgfqpoint{1.361998in}{1.339156in}}% -\pgfpathlineto{\pgfqpoint{1.372995in}{1.421582in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{1.442488in}}% -\pgfpathlineto{\pgfqpoint{1.394989in}{1.450426in}}% -\pgfpathlineto{\pgfqpoint{1.405985in}{1.451821in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{1.448717in}}% -\pgfpathlineto{\pgfqpoint{1.427979in}{1.441822in}}% -\pgfpathlineto{\pgfqpoint{1.438976in}{1.431133in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{1.415935in}}% -\pgfpathlineto{\pgfqpoint{1.460969in}{1.394171in}}% -\pgfpathlineto{\pgfqpoint{1.471966in}{1.359410in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{1.263092in}}% -\pgfpathlineto{\pgfqpoint{1.493959in}{1.327646in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{1.361757in}}% -\pgfpathlineto{\pgfqpoint{1.515953in}{1.375881in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{1.381771in}}% -\pgfpathlineto{\pgfqpoint{1.537946in}{1.382547in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{1.379323in}}% -\pgfpathlineto{\pgfqpoint{1.559940in}{1.372356in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{1.361248in}}% -\pgfpathlineto{\pgfqpoint{1.581933in}{1.344630in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{1.318592in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{1.266142in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{1.241894in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{1.301044in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{1.322660in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{1.333319in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{1.337986in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{1.338336in}}% -\pgfpathlineto{\pgfqpoint{1.680904in}{1.334919in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{1.327605in}}% -\pgfpathlineto{\pgfqpoint{1.702898in}{1.315497in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.296075in}}% -\pgfpathlineto{\pgfqpoint{1.724891in}{1.260797in}}% -\pgfpathlineto{\pgfqpoint{1.735888in}{0.519076in}}% -\pgfpathlineto{\pgfqpoint{1.746885in}{1.257532in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{1.289548in}}% -\pgfpathlineto{\pgfqpoint{1.768878in}{1.305714in}}% -\pgfpathlineto{\pgfqpoint{1.779875in}{1.314575in}}% -\pgfpathlineto{\pgfqpoint{1.790872in}{1.318655in}}% -\pgfpathlineto{\pgfqpoint{1.801869in}{1.318855in}}% -\pgfpathlineto{\pgfqpoint{1.812865in}{1.315305in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{1.307462in}}% -\pgfpathlineto{\pgfqpoint{1.834859in}{1.293652in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{1.268916in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{1.206680in}}% -\pgfpathlineto{\pgfqpoint{1.867849in}{1.227879in}}% -\pgfpathlineto{\pgfqpoint{1.878846in}{1.277323in}}% -\pgfpathlineto{\pgfqpoint{1.889843in}{1.300401in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{1.314112in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{1.322369in}}% -\pgfpathlineto{\pgfqpoint{1.922833in}{1.326549in}}% -\pgfpathlineto{\pgfqpoint{1.933830in}{1.327055in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{1.323636in}}% -\pgfpathlineto{\pgfqpoint{1.955823in}{1.315185in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{1.298591in}}% -\pgfpathlineto{\pgfqpoint{1.977817in}{1.262110in}}% -\pgfpathlineto{\pgfqpoint{1.988814in}{1.195296in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{1.289475in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{1.322227in}}% -\pgfpathlineto{\pgfqpoint{2.021804in}{1.342129in}}% -\pgfpathlineto{\pgfqpoint{2.032801in}{1.355628in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{1.364797in}}% -\pgfpathlineto{\pgfqpoint{2.054794in}{1.370371in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{1.372378in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{1.370141in}}% -\pgfpathlineto{\pgfqpoint{2.087784in}{1.361645in}}% -\pgfpathlineto{\pgfqpoint{2.098781in}{1.340509in}}% -\pgfpathlineto{\pgfqpoint{2.109778in}{1.258231in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{1.337313in}}% -\pgfpathlineto{\pgfqpoint{2.131771in}{1.386533in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{1.416465in}}% -\pgfpathlineto{\pgfqpoint{2.153765in}{1.439016in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{1.457526in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{1.487469in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{1.511626in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{1.532075in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{1.549871in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{1.572894in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{1.592585in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{1.609711in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{1.629408in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{1.646237in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{1.660749in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{1.676223in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{1.689255in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{1.702255in}}% -\pgfpathlineto{\pgfqpoint{2.725596in}{1.712886in}}% -\pgfpathlineto{\pgfqpoint{2.802574in}{1.722846in}}% -\pgfpathlineto{\pgfqpoint{2.890548in}{1.731634in}}% -\pgfpathlineto{\pgfqpoint{2.989519in}{1.738919in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{1.744563in}}% -\pgfpathlineto{\pgfqpoint{3.231447in}{1.748887in}}% -\pgfpathlineto{\pgfqpoint{3.396399in}{1.751846in}}% -\pgfpathlineto{\pgfqpoint{3.627331in}{1.753541in}}% -\pgfpathlineto{\pgfqpoint{4.089195in}{1.754161in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.754192in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{1.756434in}}% -\pgfpathlineto{\pgfqpoint{0.493254in}{2.278618in}}% -\pgfpathlineto{\pgfqpoint{0.504251in}{2.297753in}}% -\pgfpathlineto{\pgfqpoint{0.515248in}{2.300924in}}% -\pgfpathlineto{\pgfqpoint{0.526245in}{2.296672in}}% -\pgfpathlineto{\pgfqpoint{0.537241in}{2.287522in}}% -\pgfpathlineto{\pgfqpoint{0.548238in}{2.274372in}}% -\pgfpathlineto{\pgfqpoint{0.559235in}{2.257353in}}% -\pgfpathlineto{\pgfqpoint{0.570232in}{2.235920in}}% -\pgfpathlineto{\pgfqpoint{0.581228in}{2.208398in}}% -\pgfpathlineto{\pgfqpoint{0.592225in}{2.169830in}}% -\pgfpathlineto{\pgfqpoint{0.603222in}{2.093676in}}% -\pgfpathlineto{\pgfqpoint{0.614219in}{2.100656in}}% -\pgfpathlineto{\pgfqpoint{0.625215in}{2.135897in}}% -\pgfpathlineto{\pgfqpoint{0.636212in}{2.144614in}}% -\pgfpathlineto{\pgfqpoint{0.647209in}{2.143818in}}% -\pgfpathlineto{\pgfqpoint{0.658206in}{2.137423in}}% -\pgfpathlineto{\pgfqpoint{0.669202in}{2.126800in}}% -\pgfpathlineto{\pgfqpoint{0.680199in}{2.112346in}}% -\pgfpathlineto{\pgfqpoint{0.691196in}{2.093801in}}% -\pgfpathlineto{\pgfqpoint{0.702193in}{2.070042in}}% -\pgfpathlineto{\pgfqpoint{0.713189in}{2.037916in}}% -\pgfpathlineto{\pgfqpoint{0.724186in}{1.985469in}}% -\pgfpathlineto{\pgfqpoint{0.735183in}{1.906049in}}% -\pgfpathlineto{\pgfqpoint{0.746180in}{1.982150in}}% -\pgfpathlineto{\pgfqpoint{0.757177in}{1.998529in}}% -\pgfpathlineto{\pgfqpoint{0.768173in}{2.001970in}}% -\pgfpathlineto{\pgfqpoint{0.779170in}{1.998824in}}% -\pgfpathlineto{\pgfqpoint{0.790167in}{1.991138in}}% -\pgfpathlineto{\pgfqpoint{0.801164in}{1.979639in}}% -\pgfpathlineto{\pgfqpoint{0.812160in}{1.964367in}}% -\pgfpathlineto{\pgfqpoint{0.823157in}{1.944703in}}% -\pgfpathlineto{\pgfqpoint{0.834154in}{1.918851in}}% -\pgfpathlineto{\pgfqpoint{0.845151in}{1.881454in}}% -\pgfpathlineto{\pgfqpoint{0.856147in}{1.801434in}}% -\pgfpathlineto{\pgfqpoint{0.867144in}{1.823671in}}% -\pgfpathlineto{\pgfqpoint{0.878141in}{1.858105in}}% -\pgfpathlineto{\pgfqpoint{0.889138in}{1.868238in}}% -\pgfpathlineto{\pgfqpoint{0.900134in}{1.869149in}}% -\pgfpathlineto{\pgfqpoint{0.911131in}{1.864396in}}% -\pgfpathlineto{\pgfqpoint{0.922128in}{1.855086in}}% -\pgfpathlineto{\pgfqpoint{0.933125in}{1.841204in}}% -\pgfpathlineto{\pgfqpoint{0.944121in}{1.821572in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{1.792333in}}% -\pgfpathlineto{\pgfqpoint{0.966115in}{1.735889in}}% -\pgfpathlineto{\pgfqpoint{0.977112in}{1.713198in}}% -\pgfpathlineto{\pgfqpoint{0.988108in}{1.768084in}}% -\pgfpathlineto{\pgfqpoint{0.999105in}{1.787295in}}% -\pgfpathlineto{\pgfqpoint{1.010102in}{1.796238in}}% -\pgfpathlineto{\pgfqpoint{1.021099in}{1.799938in}}% -\pgfpathlineto{\pgfqpoint{1.032095in}{1.800301in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{1.798256in}}% -\pgfpathlineto{\pgfqpoint{1.054089in}{1.794325in}}% -\pgfpathlineto{\pgfqpoint{1.065086in}{1.788826in}}% -\pgfpathlineto{\pgfqpoint{1.087079in}{1.773855in}}% -\pgfpathlineto{\pgfqpoint{1.109073in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{1.131066in}{1.730001in}}% -\pgfpathlineto{\pgfqpoint{1.153060in}{1.700844in}}% -\pgfpathlineto{\pgfqpoint{1.175053in}{1.665376in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{1.644328in}}% -\pgfpathlineto{\pgfqpoint{1.197047in}{1.619966in}}% -\pgfpathlineto{\pgfqpoint{1.208044in}{1.590361in}}% -\pgfpathlineto{\pgfqpoint{1.219040in}{1.550380in}}% -\pgfpathlineto{\pgfqpoint{1.230037in}{1.473325in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{1.480034in}}% -\pgfpathlineto{\pgfqpoint{1.252031in}{1.515247in}}% -\pgfpathlineto{\pgfqpoint{1.263027in}{1.524294in}}% -\pgfpathlineto{\pgfqpoint{1.274024in}{1.524125in}}% -\pgfpathlineto{\pgfqpoint{1.285021in}{1.518615in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{1.509105in}}% -\pgfpathlineto{\pgfqpoint{1.307014in}{1.495970in}}% -\pgfpathlineto{\pgfqpoint{1.318011in}{1.478930in}}% -\pgfpathlineto{\pgfqpoint{1.329008in}{1.456856in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{1.426611in}}% -\pgfpathlineto{\pgfqpoint{1.351002in}{1.376429in}}% -\pgfpathlineto{\pgfqpoint{1.361998in}{1.295843in}}% -\pgfpathlineto{\pgfqpoint{1.372995in}{1.376155in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{1.394925in}}% -\pgfpathlineto{\pgfqpoint{1.394989in}{1.400705in}}% -\pgfpathlineto{\pgfqpoint{1.405985in}{1.399917in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{1.394608in}}% -\pgfpathlineto{\pgfqpoint{1.427979in}{1.385483in}}% -\pgfpathlineto{\pgfqpoint{1.438976in}{1.372539in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{1.355059in}}% -\pgfpathlineto{\pgfqpoint{1.460969in}{1.330987in}}% -\pgfpathlineto{\pgfqpoint{1.471966in}{1.293892in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{1.195210in}}% -\pgfpathlineto{\pgfqpoint{1.493959in}{1.257372in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{1.289061in}}% -\pgfpathlineto{\pgfqpoint{1.515953in}{1.300734in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{1.304140in}}% -\pgfpathlineto{\pgfqpoint{1.537946in}{1.302400in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{1.296627in}}% -\pgfpathlineto{\pgfqpoint{1.559940in}{1.287077in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{1.273351in}}% -\pgfpathlineto{\pgfqpoint{1.581933in}{1.254079in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{1.225350in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{1.170170in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{1.143153in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{1.199493in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{1.218257in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{1.226021in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{1.227747in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{1.225112in}}% -\pgfpathlineto{\pgfqpoint{1.680904in}{1.218661in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{1.208264in}}% -\pgfpathlineto{\pgfqpoint{1.702898in}{1.193022in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.170413in}}% -\pgfpathlineto{\pgfqpoint{1.724891in}{1.131894in}}% -\pgfpathlineto{\pgfqpoint{1.734908in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.736881in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.746885in}{1.121974in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{1.150572in}}% -\pgfpathlineto{\pgfqpoint{1.768878in}{1.163257in}}% -\pgfpathlineto{\pgfqpoint{1.779875in}{1.168572in}}% -\pgfpathlineto{\pgfqpoint{1.790872in}{1.169036in}}% -\pgfpathlineto{\pgfqpoint{1.801869in}{1.165550in}}% -\pgfpathlineto{\pgfqpoint{1.812865in}{1.158239in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{1.146558in}}% -\pgfpathlineto{\pgfqpoint{1.834859in}{1.128830in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{1.100090in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{1.033762in}}% -\pgfpathlineto{\pgfqpoint{1.867849in}{1.050777in}}% -\pgfpathlineto{\pgfqpoint{1.878846in}{1.095939in}}% -\pgfpathlineto{\pgfqpoint{1.889843in}{1.114634in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{1.123854in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{1.127507in}}% -\pgfpathlineto{\pgfqpoint{1.922833in}{1.126963in}}% -\pgfpathlineto{\pgfqpoint{1.933830in}{1.122619in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{1.114217in}}% -\pgfpathlineto{\pgfqpoint{1.955823in}{1.100642in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{1.078772in}}% -\pgfpathlineto{\pgfqpoint{1.977817in}{1.036854in}}% -\pgfpathlineto{\pgfqpoint{1.988814in}{0.964431in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{1.052816in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{1.079577in}}% -\pgfpathlineto{\pgfqpoint{2.021804in}{1.093274in}}% -\pgfpathlineto{\pgfqpoint{2.032801in}{1.100335in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{1.102814in}}% -\pgfpathlineto{\pgfqpoint{2.054794in}{1.101423in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{1.096163in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{1.086322in}}% -\pgfpathlineto{\pgfqpoint{2.087784in}{1.069850in}}% -\pgfpathlineto{\pgfqpoint{2.098781in}{1.040319in}}% -\pgfpathlineto{\pgfqpoint{2.109778in}{0.949171in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{1.018840in}}% -\pgfpathlineto{\pgfqpoint{2.131771in}{1.058014in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{1.077153in}}% -\pgfpathlineto{\pgfqpoint{2.153765in}{1.088010in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{1.093709in}}% -\pgfpathlineto{\pgfqpoint{2.175759in}{1.095367in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{1.093244in}}% -\pgfpathlineto{\pgfqpoint{2.197752in}{1.086946in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{1.075103in}}% -\pgfpathlineto{\pgfqpoint{2.219746in}{1.053809in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{1.006076in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{0.986519in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{1.050335in}}% -\pgfpathlineto{\pgfqpoint{2.263733in}{1.076597in}}% -\pgfpathlineto{\pgfqpoint{2.274729in}{1.091884in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{1.101163in}}% -\pgfpathlineto{\pgfqpoint{2.296723in}{1.106113in}}% -\pgfpathlineto{\pgfqpoint{2.307720in}{1.107282in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{1.104549in}}% -\pgfpathlineto{\pgfqpoint{2.329713in}{1.097016in}}% -\pgfpathlineto{\pgfqpoint{2.340710in}{1.082166in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{1.051461in}}% -\pgfpathlineto{\pgfqpoint{2.359996in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.365391in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{1.057357in}}% -\pgfpathlineto{\pgfqpoint{2.384697in}{1.093968in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{1.114744in}}% -\pgfpathlineto{\pgfqpoint{2.406690in}{1.128233in}}% -\pgfpathlineto{\pgfqpoint{2.417687in}{1.136963in}}% -\pgfpathlineto{\pgfqpoint{2.428684in}{1.141841in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{1.143002in}}% -\pgfpathlineto{\pgfqpoint{2.450678in}{1.139907in}}% -\pgfpathlineto{\pgfqpoint{2.461674in}{1.130891in}}% -\pgfpathlineto{\pgfqpoint{2.472671in}{1.110998in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{1.053664in}}% -\pgfpathlineto{\pgfqpoint{2.494665in}{1.079831in}}% -\pgfpathlineto{\pgfqpoint{2.505661in}{1.134319in}}% -\pgfpathlineto{\pgfqpoint{2.516658in}{1.162527in}}% -\pgfpathlineto{\pgfqpoint{2.527655in}{1.181467in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{1.195065in}}% -\pgfpathlineto{\pgfqpoint{2.549648in}{1.204714in}}% -\pgfpathlineto{\pgfqpoint{2.560645in}{1.210838in}}% -\pgfpathlineto{\pgfqpoint{2.571642in}{1.213206in}}% -\pgfpathlineto{\pgfqpoint{2.582639in}{1.210740in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{1.200360in}}% -\pgfpathlineto{\pgfqpoint{2.604632in}{1.170364in}}% -\pgfpathlineto{\pgfqpoint{2.615629in}{1.110355in}}% -\pgfpathlineto{\pgfqpoint{2.626626in}{1.211724in}}% -\pgfpathlineto{\pgfqpoint{2.637622in}{1.252138in}}% -\pgfpathlineto{\pgfqpoint{2.648619in}{1.280286in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{1.302773in}}% -\pgfpathlineto{\pgfqpoint{2.670613in}{1.321902in}}% -\pgfpathlineto{\pgfqpoint{2.692606in}{1.353952in}}% -\pgfpathlineto{\pgfqpoint{2.714600in}{1.380715in}}% -\pgfpathlineto{\pgfqpoint{2.736593in}{1.403978in}}% -\pgfpathlineto{\pgfqpoint{2.758587in}{1.424684in}}% -\pgfpathlineto{\pgfqpoint{2.791577in}{1.452140in}}% -\pgfpathlineto{\pgfqpoint{2.824567in}{1.476274in}}% -\pgfpathlineto{\pgfqpoint{2.857558in}{1.497812in}}% -\pgfpathlineto{\pgfqpoint{2.901545in}{1.523305in}}% -\pgfpathlineto{\pgfqpoint{2.945532in}{1.545810in}}% -\pgfpathlineto{\pgfqpoint{2.989519in}{1.565862in}}% -\pgfpathlineto{\pgfqpoint{3.044503in}{1.588061in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{1.607587in}}% -\pgfpathlineto{\pgfqpoint{3.154470in}{1.624853in}}% -\pgfpathlineto{\pgfqpoint{3.220451in}{1.643032in}}% -\pgfpathlineto{\pgfqpoint{3.286431in}{1.658840in}}% -\pgfpathlineto{\pgfqpoint{3.363409in}{1.674726in}}% -\pgfpathlineto{\pgfqpoint{3.440386in}{1.688257in}}% -\pgfpathlineto{\pgfqpoint{3.528360in}{1.701266in}}% -\pgfpathlineto{\pgfqpoint{3.616334in}{1.712045in}}% -\pgfpathlineto{\pgfqpoint{3.715305in}{1.721923in}}% -\pgfpathlineto{\pgfqpoint{3.825272in}{1.730569in}}% -\pgfpathlineto{\pgfqpoint{3.946237in}{1.737769in}}% -\pgfpathlineto{\pgfqpoint{4.078198in}{1.743442in}}% -\pgfpathlineto{\pgfqpoint{4.232153in}{1.747886in}}% -\pgfpathlineto{\pgfqpoint{4.430094in}{1.751221in}}% -\pgfpathlineto{\pgfqpoint{4.694016in}{1.753230in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.753773in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.753773in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{1.762704in}}% -\pgfpathlineto{\pgfqpoint{0.493254in}{2.348594in}}% -\pgfpathlineto{\pgfqpoint{0.504251in}{2.366527in}}% -\pgfpathlineto{\pgfqpoint{0.515248in}{2.368495in}}% -\pgfpathlineto{\pgfqpoint{0.526245in}{2.363041in}}% -\pgfpathlineto{\pgfqpoint{0.537241in}{2.352687in}}% -\pgfpathlineto{\pgfqpoint{0.548238in}{2.338335in}}% -\pgfpathlineto{\pgfqpoint{0.559235in}{2.320113in}}% -\pgfpathlineto{\pgfqpoint{0.570232in}{2.297476in}}% -\pgfpathlineto{\pgfqpoint{0.581228in}{2.268750in}}% -\pgfpathlineto{\pgfqpoint{0.592225in}{2.228974in}}% -\pgfpathlineto{\pgfqpoint{0.603222in}{2.151584in}}% -\pgfpathlineto{\pgfqpoint{0.614219in}{2.157443in}}% -\pgfpathlineto{\pgfqpoint{0.625215in}{2.191463in}}% -\pgfpathlineto{\pgfqpoint{0.636212in}{2.198974in}}% -\pgfpathlineto{\pgfqpoint{0.647209in}{2.196977in}}% -\pgfpathlineto{\pgfqpoint{0.658206in}{2.189382in}}% -\pgfpathlineto{\pgfqpoint{0.669202in}{2.177560in}}% -\pgfpathlineto{\pgfqpoint{0.680199in}{2.161911in}}% -\pgfpathlineto{\pgfqpoint{0.691196in}{2.142177in}}% -\pgfpathlineto{\pgfqpoint{0.702193in}{2.117239in}}% -\pgfpathlineto{\pgfqpoint{0.713189in}{2.083965in}}% -\pgfpathlineto{\pgfqpoint{0.724186in}{2.030518in}}% -\pgfpathlineto{\pgfqpoint{0.735183in}{1.948071in}}% -\pgfpathlineto{\pgfqpoint{0.746180in}{2.024152in}}% -\pgfpathlineto{\pgfqpoint{0.757177in}{2.039427in}}% -\pgfpathlineto{\pgfqpoint{0.768173in}{2.041688in}}% -\pgfpathlineto{\pgfqpoint{0.779170in}{2.037334in}}% -\pgfpathlineto{\pgfqpoint{0.790167in}{2.028418in}}% -\pgfpathlineto{\pgfqpoint{0.801164in}{2.015664in}}% -\pgfpathlineto{\pgfqpoint{0.812160in}{1.999096in}}% -\pgfpathlineto{\pgfqpoint{0.823157in}{1.978055in}}% -\pgfpathlineto{\pgfqpoint{0.834154in}{1.950639in}}% -\pgfpathlineto{\pgfqpoint{0.845151in}{1.911038in}}% -\pgfpathlineto{\pgfqpoint{0.856147in}{1.821833in}}% -\pgfpathlineto{\pgfqpoint{0.867144in}{1.858238in}}% -\pgfpathlineto{\pgfqpoint{0.878141in}{1.888826in}}% -\pgfpathlineto{\pgfqpoint{0.889138in}{1.897222in}}% -\pgfpathlineto{\pgfqpoint{0.900134in}{1.896843in}}% -\pgfpathlineto{\pgfqpoint{0.911131in}{1.891030in}}% -\pgfpathlineto{\pgfqpoint{0.922128in}{1.880877in}}% -\pgfpathlineto{\pgfqpoint{0.933125in}{1.866462in}}% -\pgfpathlineto{\pgfqpoint{0.944121in}{1.846897in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{1.819337in}}% -\pgfpathlineto{\pgfqpoint{0.966115in}{1.773055in}}% -\pgfpathlineto{\pgfqpoint{0.977112in}{1.677277in}}% -\pgfpathlineto{\pgfqpoint{0.988108in}{1.772491in}}% -\pgfpathlineto{\pgfqpoint{0.999105in}{1.795146in}}% -\pgfpathlineto{\pgfqpoint{1.010102in}{1.804656in}}% -\pgfpathlineto{\pgfqpoint{1.021099in}{1.808065in}}% -\pgfpathlineto{\pgfqpoint{1.032095in}{1.807765in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{1.804863in}}% -\pgfpathlineto{\pgfqpoint{1.054089in}{1.799960in}}% -\pgfpathlineto{\pgfqpoint{1.065086in}{1.793414in}}% -\pgfpathlineto{\pgfqpoint{1.087079in}{1.776207in}}% -\pgfpathlineto{\pgfqpoint{1.109073in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{1.131066in}{1.727572in}}% -\pgfpathlineto{\pgfqpoint{1.153060in}{1.695933in}}% -\pgfpathlineto{\pgfqpoint{1.175053in}{1.657937in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{1.635611in}}% -\pgfpathlineto{\pgfqpoint{1.197047in}{1.609961in}}% -\pgfpathlineto{\pgfqpoint{1.208044in}{1.579060in}}% -\pgfpathlineto{\pgfqpoint{1.219040in}{1.537774in}}% -\pgfpathlineto{\pgfqpoint{1.230037in}{1.459404in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{1.464792in}}% -\pgfpathlineto{\pgfqpoint{1.252031in}{1.498674in}}% -\pgfpathlineto{\pgfqpoint{1.263027in}{1.506382in}}% -\pgfpathlineto{\pgfqpoint{1.274024in}{1.504866in}}% -\pgfpathlineto{\pgfqpoint{1.285021in}{1.498000in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{1.487126in}}% -\pgfpathlineto{\pgfqpoint{1.307014in}{1.472618in}}% -\pgfpathlineto{\pgfqpoint{1.318011in}{1.454196in}}% -\pgfpathlineto{\pgfqpoint{1.329008in}{1.430731in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{1.399086in}}% -\pgfpathlineto{\pgfqpoint{1.351002in}{1.347495in}}% -\pgfpathlineto{\pgfqpoint{1.361998in}{1.265490in}}% -\pgfpathlineto{\pgfqpoint{1.372995in}{1.344373in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{1.361705in}}% -\pgfpathlineto{\pgfqpoint{1.394989in}{1.366037in}}% -\pgfpathlineto{\pgfqpoint{1.405985in}{1.363791in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{1.357012in}}% -\pgfpathlineto{\pgfqpoint{1.427979in}{1.346409in}}% -\pgfpathlineto{\pgfqpoint{1.438976in}{1.331974in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{1.312993in}}% -\pgfpathlineto{\pgfqpoint{1.460969in}{1.287409in}}% -\pgfpathlineto{\pgfqpoint{1.471966in}{1.248790in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{1.148573in}}% -\pgfpathlineto{\pgfqpoint{1.493959in}{1.209188in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{1.239319in}}% -\pgfpathlineto{\pgfqpoint{1.515953in}{1.249420in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{1.251243in}}% -\pgfpathlineto{\pgfqpoint{1.537946in}{1.247907in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{1.240525in}}% -\pgfpathlineto{\pgfqpoint{1.559940in}{1.229352in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{1.213991in}}% -\pgfpathlineto{\pgfqpoint{1.581933in}{1.193070in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{1.162677in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{1.105820in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{1.077112in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{1.131745in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{1.148788in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{1.154816in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{1.154791in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{1.150389in}}% -\pgfpathlineto{\pgfqpoint{1.680904in}{1.142154in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{1.129957in}}% -\pgfpathlineto{\pgfqpoint{1.702898in}{1.112899in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.088457in}}% -\pgfpathlineto{\pgfqpoint{1.724891in}{1.048087in}}% -\pgfpathlineto{\pgfqpoint{1.733654in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.738164in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.746885in}{1.034412in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{1.061106in}}% -\pgfpathlineto{\pgfqpoint{1.768878in}{1.071868in}}% -\pgfpathlineto{\pgfqpoint{1.779875in}{1.075240in}}% -\pgfpathlineto{\pgfqpoint{1.790872in}{1.073743in}}% -\pgfpathlineto{\pgfqpoint{1.801869in}{1.068274in}}% -\pgfpathlineto{\pgfqpoint{1.812865in}{1.058962in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{1.045258in}}% -\pgfpathlineto{\pgfqpoint{1.834859in}{1.025486in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{0.994682in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{0.926267in}}% -\pgfpathlineto{\pgfqpoint{1.867849in}{0.941171in}}% -\pgfpathlineto{\pgfqpoint{1.878846in}{0.984201in}}% -\pgfpathlineto{\pgfqpoint{1.889843in}{1.000739in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{1.007779in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{1.009227in}}% -\pgfpathlineto{\pgfqpoint{1.922833in}{1.006453in}}% -\pgfpathlineto{\pgfqpoint{1.933830in}{0.999853in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{0.989168in}}% -\pgfpathlineto{\pgfqpoint{1.955823in}{0.973284in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{0.949076in}}% -\pgfpathlineto{\pgfqpoint{1.977817in}{0.904793in}}% -\pgfpathlineto{\pgfqpoint{1.988814in}{0.829975in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{0.915936in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{0.940242in}}% -\pgfpathlineto{\pgfqpoint{2.021804in}{0.951452in}}% -\pgfpathlineto{\pgfqpoint{2.032801in}{0.955995in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{0.955922in}}% -\pgfpathlineto{\pgfqpoint{2.054794in}{0.951945in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{0.944064in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{0.931567in}}% -\pgfpathlineto{\pgfqpoint{2.087784in}{0.912401in}}% -\pgfpathlineto{\pgfqpoint{2.098781in}{0.880139in}}% -\pgfpathlineto{\pgfqpoint{2.109778in}{0.786220in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{0.853078in}}% -\pgfpathlineto{\pgfqpoint{2.131771in}{0.889400in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{0.905643in}}% -\pgfpathlineto{\pgfqpoint{2.153765in}{0.913561in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{0.916275in}}% -\pgfpathlineto{\pgfqpoint{2.175759in}{0.914901in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{0.909698in}}% -\pgfpathlineto{\pgfqpoint{2.197752in}{0.900268in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{0.885243in}}% -\pgfpathlineto{\pgfqpoint{2.219746in}{0.860713in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{0.809687in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{0.786781in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{0.847188in}}% -\pgfpathlineto{\pgfqpoint{2.263733in}{0.869978in}}% -\pgfpathlineto{\pgfqpoint{2.274729in}{0.881729in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{0.887405in}}% -\pgfpathlineto{\pgfqpoint{2.296723in}{0.888682in}}% -\pgfpathlineto{\pgfqpoint{2.307720in}{0.886106in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{0.879552in}}% -\pgfpathlineto{\pgfqpoint{2.329713in}{0.868119in}}% -\pgfpathlineto{\pgfqpoint{2.340710in}{0.849287in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{0.814514in}}% -\pgfpathlineto{\pgfqpoint{2.356907in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.368519in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{0.811998in}}% -\pgfpathlineto{\pgfqpoint{2.384697in}{0.844256in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{0.860575in}}% -\pgfpathlineto{\pgfqpoint{2.406690in}{0.869498in}}% -\pgfpathlineto{\pgfqpoint{2.417687in}{0.873546in}}% -\pgfpathlineto{\pgfqpoint{2.428684in}{0.873620in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{0.869847in}}% -\pgfpathlineto{\pgfqpoint{2.450678in}{0.861682in}}% -\pgfpathlineto{\pgfqpoint{2.461674in}{0.847449in}}% -\pgfpathlineto{\pgfqpoint{2.472671in}{0.822186in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{0.759316in}}% -\pgfpathlineto{\pgfqpoint{2.494665in}{0.779770in}}% -\pgfpathlineto{\pgfqpoint{2.505661in}{0.828355in}}% -\pgfpathlineto{\pgfqpoint{2.516658in}{0.850457in}}% -\pgfpathlineto{\pgfqpoint{2.527655in}{0.863068in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{0.870099in}}% -\pgfpathlineto{\pgfqpoint{2.549648in}{0.872919in}}% -\pgfpathlineto{\pgfqpoint{2.560645in}{0.871928in}}% -\pgfpathlineto{\pgfqpoint{2.571642in}{0.866866in}}% -\pgfpathlineto{\pgfqpoint{2.582639in}{0.856622in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{0.838072in}}% -\pgfpathlineto{\pgfqpoint{2.604632in}{0.799467in}}% -\pgfpathlineto{\pgfqpoint{2.615629in}{0.730349in}}% -\pgfpathlineto{\pgfqpoint{2.626626in}{0.822032in}}% -\pgfpathlineto{\pgfqpoint{2.637622in}{0.852086in}}% -\pgfpathlineto{\pgfqpoint{2.648619in}{0.869070in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{0.879416in}}% -\pgfpathlineto{\pgfqpoint{2.670613in}{0.885177in}}% -\pgfpathlineto{\pgfqpoint{2.681609in}{0.887067in}}% -\pgfpathlineto{\pgfqpoint{2.692606in}{0.885087in}}% -\pgfpathlineto{\pgfqpoint{2.703603in}{0.878527in}}% -\pgfpathlineto{\pgfqpoint{2.714600in}{0.865338in}}% -\pgfpathlineto{\pgfqpoint{2.725596in}{0.839094in}}% -\pgfpathlineto{\pgfqpoint{2.736593in}{0.751238in}}% -\pgfpathlineto{\pgfqpoint{2.747590in}{0.824204in}}% -\pgfpathlineto{\pgfqpoint{2.758587in}{0.866682in}}% -\pgfpathlineto{\pgfqpoint{2.769584in}{0.889134in}}% -\pgfpathlineto{\pgfqpoint{2.780580in}{0.903315in}}% -\pgfpathlineto{\pgfqpoint{2.791577in}{0.912350in}}% -\pgfpathlineto{\pgfqpoint{2.802574in}{0.917358in}}% -\pgfpathlineto{\pgfqpoint{2.813571in}{0.918601in}}% -\pgfpathlineto{\pgfqpoint{2.824567in}{0.915685in}}% -\pgfpathlineto{\pgfqpoint{2.835564in}{0.907245in}}% -\pgfpathlineto{\pgfqpoint{2.846561in}{0.889376in}}% -\pgfpathlineto{\pgfqpoint{2.857558in}{0.845091in}}% -\pgfpathlineto{\pgfqpoint{2.868554in}{0.829010in}}% -\pgfpathlineto{\pgfqpoint{2.879551in}{0.896332in}}% -\pgfpathlineto{\pgfqpoint{2.890548in}{0.926132in}}% -\pgfpathlineto{\pgfqpoint{2.901545in}{0.944992in}}% -\pgfpathlineto{\pgfqpoint{2.912541in}{0.957884in}}% -\pgfpathlineto{\pgfqpoint{2.923538in}{0.966490in}}% -\pgfpathlineto{\pgfqpoint{2.934535in}{0.971364in}}% -\pgfpathlineto{\pgfqpoint{2.945532in}{0.972386in}}% -\pgfpathlineto{\pgfqpoint{2.956528in}{0.968667in}}% -\pgfpathlineto{\pgfqpoint{2.967525in}{0.957695in}}% -\pgfpathlineto{\pgfqpoint{2.978522in}{0.930937in}}% -\pgfpathlineto{\pgfqpoint{2.985152in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.993809in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.000515in}{0.944967in}}% -\pgfpathlineto{\pgfqpoint{3.011512in}{0.985782in}}% -\pgfpathlineto{\pgfqpoint{3.022509in}{1.010868in}}% -\pgfpathlineto{\pgfqpoint{3.033506in}{1.028785in}}% -\pgfpathlineto{\pgfqpoint{3.044503in}{1.042076in}}% -\pgfpathlineto{\pgfqpoint{3.055499in}{1.051663in}}% -\pgfpathlineto{\pgfqpoint{3.066496in}{1.057703in}}% -\pgfpathlineto{\pgfqpoint{3.077493in}{1.059680in}}% -\pgfpathlineto{\pgfqpoint{3.088490in}{1.055958in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{1.041616in}}% -\pgfpathlineto{\pgfqpoint{3.110483in}{0.990133in}}% -\pgfpathlineto{\pgfqpoint{3.121480in}{1.022509in}}% -\pgfpathlineto{\pgfqpoint{3.132477in}{1.083633in}}% -\pgfpathlineto{\pgfqpoint{3.143473in}{1.119001in}}% -\pgfpathlineto{\pgfqpoint{3.154470in}{1.145751in}}% -\pgfpathlineto{\pgfqpoint{3.165467in}{1.167995in}}% -\pgfpathlineto{\pgfqpoint{3.187460in}{1.204794in}}% -\pgfpathlineto{\pgfqpoint{3.209454in}{1.235403in}}% -\pgfpathlineto{\pgfqpoint{3.231447in}{1.262072in}}% -\pgfpathlineto{\pgfqpoint{3.253441in}{1.285925in}}% -\pgfpathlineto{\pgfqpoint{3.286431in}{1.317792in}}% -\pgfpathlineto{\pgfqpoint{3.319422in}{1.346086in}}% -\pgfpathlineto{\pgfqpoint{3.352412in}{1.371604in}}% -\pgfpathlineto{\pgfqpoint{3.396399in}{1.402189in}}% -\pgfpathlineto{\pgfqpoint{3.440386in}{1.429588in}}% -\pgfpathlineto{\pgfqpoint{3.484373in}{1.454371in}}% -\pgfpathlineto{\pgfqpoint{3.528360in}{1.476944in}}% -\pgfpathlineto{\pgfqpoint{3.583344in}{1.502518in}}% -\pgfpathlineto{\pgfqpoint{3.638328in}{1.525575in}}% -\pgfpathlineto{\pgfqpoint{3.693311in}{1.546462in}}% -\pgfpathlineto{\pgfqpoint{3.759292in}{1.569042in}}% -\pgfpathlineto{\pgfqpoint{3.825272in}{1.589262in}}% -\pgfpathlineto{\pgfqpoint{3.902250in}{1.610259in}}% -\pgfpathlineto{\pgfqpoint{3.979227in}{1.628821in}}% -\pgfpathlineto{\pgfqpoint{4.056204in}{1.645249in}}% -\pgfpathlineto{\pgfqpoint{4.144178in}{1.661731in}}% -\pgfpathlineto{\pgfqpoint{4.232153in}{1.676062in}}% -\pgfpathlineto{\pgfqpoint{4.331123in}{1.689932in}}% -\pgfpathlineto{\pgfqpoint{4.441091in}{1.702910in}}% -\pgfpathlineto{\pgfqpoint{4.551059in}{1.713673in}}% -\pgfpathlineto{\pgfqpoint{4.672023in}{1.723322in}}% -\pgfpathlineto{\pgfqpoint{4.803984in}{1.731635in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.735049in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.735049in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.482257in}{0.463273in}}{\pgfqpoint{4.387707in}{1.995057in}}% -\pgfusepath{clip}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{1.776224in}}% -\pgfpathlineto{\pgfqpoint{0.493254in}{2.403219in}}% -\pgfpathlineto{\pgfqpoint{0.504251in}{2.420206in}}% -\pgfpathlineto{\pgfqpoint{0.515248in}{2.421228in}}% -\pgfpathlineto{\pgfqpoint{0.526245in}{2.414827in}}% -\pgfpathlineto{\pgfqpoint{0.537241in}{2.403528in}}% -\pgfpathlineto{\pgfqpoint{0.548238in}{2.388229in}}% -\pgfpathlineto{\pgfqpoint{0.559235in}{2.369060in}}% -\pgfpathlineto{\pgfqpoint{0.570232in}{2.345477in}}% -\pgfpathlineto{\pgfqpoint{0.581228in}{2.315804in}}% -\pgfpathlineto{\pgfqpoint{0.592225in}{2.275080in}}% -\pgfpathlineto{\pgfqpoint{0.603222in}{2.196735in}}% -\pgfpathlineto{\pgfqpoint{0.614219in}{2.201671in}}% -\pgfpathlineto{\pgfqpoint{0.625215in}{2.234740in}}% -\pgfpathlineto{\pgfqpoint{0.636212in}{2.241304in}}% -\pgfpathlineto{\pgfqpoint{0.647209in}{2.238361in}}% -\pgfpathlineto{\pgfqpoint{0.658206in}{2.229821in}}% -\pgfpathlineto{\pgfqpoint{0.669202in}{2.217055in}}% -\pgfpathlineto{\pgfqpoint{0.680199in}{2.200463in}}% -\pgfpathlineto{\pgfqpoint{0.691196in}{2.179786in}}% -\pgfpathlineto{\pgfqpoint{0.702193in}{2.153911in}}% -\pgfpathlineto{\pgfqpoint{0.713189in}{2.119711in}}% -\pgfpathlineto{\pgfqpoint{0.724186in}{2.065391in}}% -\pgfpathlineto{\pgfqpoint{0.735183in}{1.981333in}}% -\pgfpathlineto{\pgfqpoint{0.746180in}{2.056903in}}% -\pgfpathlineto{\pgfqpoint{0.757177in}{2.071266in}}% -\pgfpathlineto{\pgfqpoint{0.768173in}{2.072589in}}% -\pgfpathlineto{\pgfqpoint{0.779170in}{2.067287in}}% -\pgfpathlineto{\pgfqpoint{0.790167in}{2.057414in}}% -\pgfpathlineto{\pgfqpoint{0.801164in}{2.043691in}}% -\pgfpathlineto{\pgfqpoint{0.812160in}{2.026137in}}% -\pgfpathlineto{\pgfqpoint{0.823157in}{2.004074in}}% -\pgfpathlineto{\pgfqpoint{0.834154in}{1.975548in}}% -\pgfpathlineto{\pgfqpoint{0.845151in}{1.934531in}}% -\pgfpathlineto{\pgfqpoint{0.856147in}{1.840042in}}% -\pgfpathlineto{\pgfqpoint{0.867144in}{1.883070in}}% -\pgfpathlineto{\pgfqpoint{0.878141in}{1.911652in}}% -\pgfpathlineto{\pgfqpoint{0.889138in}{1.918892in}}% -\pgfpathlineto{\pgfqpoint{0.900134in}{1.917554in}}% -\pgfpathlineto{\pgfqpoint{0.911131in}{1.910889in}}% -\pgfpathlineto{\pgfqpoint{0.922128in}{1.899990in}}% -\pgfpathlineto{\pgfqpoint{0.933125in}{1.884984in}}% -\pgfpathlineto{\pgfqpoint{0.944121in}{1.865118in}}% -\pgfpathlineto{\pgfqpoint{0.955118in}{1.837985in}}% -\pgfpathlineto{\pgfqpoint{0.966115in}{1.795200in}}% -\pgfpathlineto{\pgfqpoint{0.977112in}{1.527200in}}% -\pgfpathlineto{\pgfqpoint{0.988108in}{1.776572in}}% -\pgfpathlineto{\pgfqpoint{0.999105in}{1.801850in}}% -\pgfpathlineto{\pgfqpoint{1.010102in}{1.811631in}}% -\pgfpathlineto{\pgfqpoint{1.021099in}{1.814694in}}% -\pgfpathlineto{\pgfqpoint{1.032095in}{1.813795in}}% -\pgfpathlineto{\pgfqpoint{1.043092in}{1.810166in}}% -\pgfpathlineto{\pgfqpoint{1.054089in}{1.804460in}}% -\pgfpathlineto{\pgfqpoint{1.065086in}{1.797064in}}% -\pgfpathlineto{\pgfqpoint{1.087079in}{1.778069in}}% -\pgfpathlineto{\pgfqpoint{1.109073in}{1.754192in}}% -\pgfpathlineto{\pgfqpoint{1.131066in}{1.725664in}}% -\pgfpathlineto{\pgfqpoint{1.153060in}{1.692083in}}% -\pgfpathlineto{\pgfqpoint{1.175053in}{1.652119in}}% -\pgfpathlineto{\pgfqpoint{1.186050in}{1.628800in}}% -\pgfpathlineto{\pgfqpoint{1.197047in}{1.602151in}}% -\pgfpathlineto{\pgfqpoint{1.208044in}{1.570246in}}% -\pgfpathlineto{\pgfqpoint{1.219040in}{1.527951in}}% -\pgfpathlineto{\pgfqpoint{1.230037in}{1.448568in}}% -\pgfpathlineto{\pgfqpoint{1.241034in}{1.452936in}}% -\pgfpathlineto{\pgfqpoint{1.252031in}{1.485794in}}% -\pgfpathlineto{\pgfqpoint{1.263027in}{1.492473in}}% -\pgfpathlineto{\pgfqpoint{1.274024in}{1.489923in}}% -\pgfpathlineto{\pgfqpoint{1.285021in}{1.482019in}}% -\pgfpathlineto{\pgfqpoint{1.296018in}{1.470100in}}% -\pgfpathlineto{\pgfqpoint{1.307014in}{1.454543in}}% -\pgfpathlineto{\pgfqpoint{1.318011in}{1.435068in}}% -\pgfpathlineto{\pgfqpoint{1.329008in}{1.410544in}}% -\pgfpathlineto{\pgfqpoint{1.340005in}{1.377833in}}% -\pgfpathlineto{\pgfqpoint{1.351002in}{1.325173in}}% -\pgfpathlineto{\pgfqpoint{1.361998in}{1.242092in}}% -\pgfpathlineto{\pgfqpoint{1.372995in}{1.319895in}}% -\pgfpathlineto{\pgfqpoint{1.383992in}{1.336141in}}% -\pgfpathlineto{\pgfqpoint{1.394989in}{1.339381in}}% -\pgfpathlineto{\pgfqpoint{1.405985in}{1.336037in}}% -\pgfpathlineto{\pgfqpoint{1.416982in}{1.328156in}}% -\pgfpathlineto{\pgfqpoint{1.427979in}{1.316443in}}% -\pgfpathlineto{\pgfqpoint{1.438976in}{1.300893in}}% -\pgfpathlineto{\pgfqpoint{1.449972in}{1.280791in}}% -\pgfpathlineto{\pgfqpoint{1.460969in}{1.254080in}}% -\pgfpathlineto{\pgfqpoint{1.471966in}{1.214327in}}% -\pgfpathlineto{\pgfqpoint{1.482963in}{1.112971in}}% -\pgfpathlineto{\pgfqpoint{1.493959in}{1.172439in}}% -\pgfpathlineto{\pgfqpoint{1.504956in}{1.201417in}}% -\pgfpathlineto{\pgfqpoint{1.515953in}{1.210359in}}% -\pgfpathlineto{\pgfqpoint{1.526950in}{1.211016in}}% -\pgfpathlineto{\pgfqpoint{1.537946in}{1.206507in}}% -\pgfpathlineto{\pgfqpoint{1.548943in}{1.197945in}}% -\pgfpathlineto{\pgfqpoint{1.559940in}{1.185586in}}% -\pgfpathlineto{\pgfqpoint{1.570937in}{1.169031in}}% -\pgfpathlineto{\pgfqpoint{1.581933in}{1.146909in}}% -\pgfpathlineto{\pgfqpoint{1.592930in}{1.115308in}}% -\pgfpathlineto{\pgfqpoint{1.603927in}{1.057236in}}% -\pgfpathlineto{\pgfqpoint{1.614924in}{1.027305in}}% -\pgfpathlineto{\pgfqpoint{1.625921in}{1.080708in}}% -\pgfpathlineto{\pgfqpoint{1.636917in}{1.096513in}}% -\pgfpathlineto{\pgfqpoint{1.647914in}{1.101295in}}% -\pgfpathlineto{\pgfqpoint{1.658911in}{1.100016in}}% -\pgfpathlineto{\pgfqpoint{1.669908in}{1.094352in}}% -\pgfpathlineto{\pgfqpoint{1.680904in}{1.084847in}}% -\pgfpathlineto{\pgfqpoint{1.691901in}{1.071373in}}% -\pgfpathlineto{\pgfqpoint{1.702898in}{1.053029in}}% -\pgfpathlineto{\pgfqpoint{1.713895in}{1.027292in}}% -\pgfpathlineto{\pgfqpoint{1.724891in}{0.985620in}}% -\pgfpathlineto{\pgfqpoint{1.732718in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{1.739129in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{1.746885in}{0.969314in}}% -\pgfpathlineto{\pgfqpoint{1.757882in}{0.994678in}}% -\pgfpathlineto{\pgfqpoint{1.768878in}{1.004102in}}% -\pgfpathlineto{\pgfqpoint{1.779875in}{1.006127in}}% -\pgfpathlineto{\pgfqpoint{1.790872in}{1.003274in}}% -\pgfpathlineto{\pgfqpoint{1.801869in}{0.996440in}}% -\pgfpathlineto{\pgfqpoint{1.812865in}{0.985753in}}% -\pgfpathlineto{\pgfqpoint{1.823862in}{0.970664in}}% -\pgfpathlineto{\pgfqpoint{1.834859in}{0.949498in}}% -\pgfpathlineto{\pgfqpoint{1.845856in}{0.917289in}}% -\pgfpathlineto{\pgfqpoint{1.856852in}{0.847460in}}% -\pgfpathlineto{\pgfqpoint{1.867849in}{0.860941in}}% -\pgfpathlineto{\pgfqpoint{1.878846in}{0.902536in}}% -\pgfpathlineto{\pgfqpoint{1.889843in}{0.917629in}}% -\pgfpathlineto{\pgfqpoint{1.900840in}{0.923213in}}% -\pgfpathlineto{\pgfqpoint{1.911836in}{0.923195in}}% -\pgfpathlineto{\pgfqpoint{1.922833in}{0.918943in}}% -\pgfpathlineto{\pgfqpoint{1.933830in}{0.910855in}}% -\pgfpathlineto{\pgfqpoint{1.944827in}{0.898671in}}% -\pgfpathlineto{\pgfqpoint{1.955823in}{0.881275in}}% -\pgfpathlineto{\pgfqpoint{1.966820in}{0.855545in}}% -\pgfpathlineto{\pgfqpoint{1.977817in}{0.809727in}}% -\pgfpathlineto{\pgfqpoint{1.988814in}{0.733363in}}% -\pgfpathlineto{\pgfqpoint{1.999810in}{0.817765in}}% -\pgfpathlineto{\pgfqpoint{2.010807in}{0.840500in}}% -\pgfpathlineto{\pgfqpoint{2.021804in}{0.850127in}}% -\pgfpathlineto{\pgfqpoint{2.032801in}{0.853073in}}% -\pgfpathlineto{\pgfqpoint{2.043797in}{0.851391in}}% -\pgfpathlineto{\pgfqpoint{2.054794in}{0.845792in}}% -\pgfpathlineto{\pgfqpoint{2.065791in}{0.836275in}}% -\pgfpathlineto{\pgfqpoint{2.076788in}{0.822128in}}% -\pgfpathlineto{\pgfqpoint{2.087784in}{0.801300in}}% -\pgfpathlineto{\pgfqpoint{2.098781in}{0.767360in}}% -\pgfpathlineto{\pgfqpoint{2.109778in}{0.671750in}}% -\pgfpathlineto{\pgfqpoint{2.120775in}{0.736902in}}% -\pgfpathlineto{\pgfqpoint{2.131771in}{0.771502in}}% -\pgfpathlineto{\pgfqpoint{2.142768in}{0.786009in}}% -\pgfpathlineto{\pgfqpoint{2.153765in}{0.792175in}}% -\pgfpathlineto{\pgfqpoint{2.164762in}{0.793122in}}% -\pgfpathlineto{\pgfqpoint{2.175759in}{0.789965in}}% -\pgfpathlineto{\pgfqpoint{2.186755in}{0.782963in}}% -\pgfpathlineto{\pgfqpoint{2.197752in}{0.771717in}}% -\pgfpathlineto{\pgfqpoint{2.208749in}{0.754859in}}% -\pgfpathlineto{\pgfqpoint{2.219746in}{0.728480in}}% -\pgfpathlineto{\pgfqpoint{2.230742in}{0.675587in}}% -\pgfpathlineto{\pgfqpoint{2.241739in}{0.650795in}}% -\pgfpathlineto{\pgfqpoint{2.252736in}{0.709299in}}% -\pgfpathlineto{\pgfqpoint{2.263733in}{0.730167in}}% -\pgfpathlineto{\pgfqpoint{2.274729in}{0.739978in}}% -\pgfpathlineto{\pgfqpoint{2.285726in}{0.743693in}}% -\pgfpathlineto{\pgfqpoint{2.296723in}{0.742990in}}% -\pgfpathlineto{\pgfqpoint{2.307720in}{0.738415in}}% -\pgfpathlineto{\pgfqpoint{2.318716in}{0.729840in}}% -\pgfpathlineto{\pgfqpoint{2.329713in}{0.716366in}}% -\pgfpathlineto{\pgfqpoint{2.340710in}{0.695472in}}% -\pgfpathlineto{\pgfqpoint{2.351707in}{0.658614in}}% -\pgfpathlineto{\pgfqpoint{2.354686in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{2.370793in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{2.373700in}{0.651862in}}% -\pgfpathlineto{\pgfqpoint{2.384697in}{0.681968in}}% -\pgfpathlineto{\pgfqpoint{2.395694in}{0.696110in}}% -\pgfpathlineto{\pgfqpoint{2.406690in}{0.702832in}}% -\pgfpathlineto{\pgfqpoint{2.417687in}{0.704654in}}% -\pgfpathlineto{\pgfqpoint{2.428684in}{0.702477in}}% -\pgfpathlineto{\pgfqpoint{2.439681in}{0.696426in}}% -\pgfpathlineto{\pgfqpoint{2.450678in}{0.685957in}}% -\pgfpathlineto{\pgfqpoint{2.461674in}{0.669393in}}% -\pgfpathlineto{\pgfqpoint{2.472671in}{0.641770in}}% -\pgfpathlineto{\pgfqpoint{2.483668in}{0.576511in}}% -\pgfpathlineto{\pgfqpoint{2.494665in}{0.594548in}}% -\pgfpathlineto{\pgfqpoint{2.505661in}{0.640685in}}% -\pgfpathlineto{\pgfqpoint{2.516658in}{0.660307in}}% -\pgfpathlineto{\pgfqpoint{2.527655in}{0.670408in}}% -\pgfpathlineto{\pgfqpoint{2.538652in}{0.674895in}}% -\pgfpathlineto{\pgfqpoint{2.549648in}{0.675139in}}% -\pgfpathlineto{\pgfqpoint{2.560645in}{0.671536in}}% -\pgfpathlineto{\pgfqpoint{2.571642in}{0.663828in}}% -\pgfpathlineto{\pgfqpoint{2.582639in}{0.650899in}}% -\pgfpathlineto{\pgfqpoint{2.593635in}{0.629629in}}% -\pgfpathlineto{\pgfqpoint{2.604632in}{0.588265in}}% -\pgfpathlineto{\pgfqpoint{2.615629in}{0.516347in}}% -\pgfpathlineto{\pgfqpoint{2.626626in}{0.605191in}}% -\pgfpathlineto{\pgfqpoint{2.637622in}{0.632363in}}% -\pgfpathlineto{\pgfqpoint{2.648619in}{0.646422in}}% -\pgfpathlineto{\pgfqpoint{2.659616in}{0.653798in}}% -\pgfpathlineto{\pgfqpoint{2.670613in}{0.656543in}}% -\pgfpathlineto{\pgfqpoint{2.681609in}{0.655368in}}% -\pgfpathlineto{\pgfqpoint{2.692606in}{0.650275in}}% -\pgfpathlineto{\pgfqpoint{2.703603in}{0.640551in}}% -\pgfpathlineto{\pgfqpoint{2.714600in}{0.624146in}}% -\pgfpathlineto{\pgfqpoint{2.725596in}{0.594630in}}% -\pgfpathlineto{\pgfqpoint{2.736593in}{0.503446in}}% -\pgfpathlineto{\pgfqpoint{2.747590in}{0.573026in}}% -\pgfpathlineto{\pgfqpoint{2.758587in}{0.612056in}}% -\pgfpathlineto{\pgfqpoint{2.769584in}{0.630997in}}% -\pgfpathlineto{\pgfqpoint{2.780580in}{0.641602in}}% -\pgfpathlineto{\pgfqpoint{2.791577in}{0.646994in}}% -\pgfpathlineto{\pgfqpoint{2.802574in}{0.648287in}}% -\pgfpathlineto{\pgfqpoint{2.813571in}{0.645741in}}% -\pgfpathlineto{\pgfqpoint{2.824567in}{0.638959in}}% -\pgfpathlineto{\pgfqpoint{2.835564in}{0.626572in}}% -\pgfpathlineto{\pgfqpoint{2.846561in}{0.604673in}}% -\pgfpathlineto{\pgfqpoint{2.857558in}{0.556271in}}% -\pgfpathlineto{\pgfqpoint{2.868554in}{0.535980in}}% -\pgfpathlineto{\pgfqpoint{2.879551in}{0.598993in}}% -\pgfpathlineto{\pgfqpoint{2.890548in}{0.624386in}}% -\pgfpathlineto{\pgfqpoint{2.901545in}{0.638733in}}% -\pgfpathlineto{\pgfqpoint{2.912541in}{0.646999in}}% -\pgfpathlineto{\pgfqpoint{2.923538in}{0.650860in}}% -\pgfpathlineto{\pgfqpoint{2.934535in}{0.650865in}}% -\pgfpathlineto{\pgfqpoint{2.945532in}{0.646885in}}% -\pgfpathlineto{\pgfqpoint{2.956528in}{0.638024in}}% -\pgfpathlineto{\pgfqpoint{2.967525in}{0.621760in}}% -\pgfpathlineto{\pgfqpoint{2.978522in}{0.589552in}}% -\pgfpathlineto{\pgfqpoint{2.978535in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.000502in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.000515in}{0.592162in}}% -\pgfpathlineto{\pgfqpoint{3.011512in}{0.626979in}}% -\pgfpathlineto{\pgfqpoint{3.022509in}{0.645857in}}% -\pgfpathlineto{\pgfqpoint{3.033506in}{0.657338in}}% -\pgfpathlineto{\pgfqpoint{3.044503in}{0.663945in}}% -\pgfpathlineto{\pgfqpoint{3.055499in}{0.666578in}}% -\pgfpathlineto{\pgfqpoint{3.066496in}{0.665366in}}% -\pgfpathlineto{\pgfqpoint{3.077493in}{0.659763in}}% -\pgfpathlineto{\pgfqpoint{3.088490in}{0.648096in}}% -\pgfpathlineto{\pgfqpoint{3.099486in}{0.625402in}}% -\pgfpathlineto{\pgfqpoint{3.110483in}{0.565104in}}% -\pgfpathlineto{\pgfqpoint{3.121480in}{0.588134in}}% -\pgfpathlineto{\pgfqpoint{3.132477in}{0.639300in}}% -\pgfpathlineto{\pgfqpoint{3.143473in}{0.663990in}}% -\pgfpathlineto{\pgfqpoint{3.154470in}{0.679196in}}% -\pgfpathlineto{\pgfqpoint{3.165467in}{0.688829in}}% -\pgfpathlineto{\pgfqpoint{3.176464in}{0.694259in}}% -\pgfpathlineto{\pgfqpoint{3.187460in}{0.695887in}}% -\pgfpathlineto{\pgfqpoint{3.198457in}{0.693455in}}% -\pgfpathlineto{\pgfqpoint{3.209454in}{0.685850in}}% -\pgfpathlineto{\pgfqpoint{3.220451in}{0.669953in}}% -\pgfpathlineto{\pgfqpoint{3.231447in}{0.634013in}}% -\pgfpathlineto{\pgfqpoint{3.242444in}{0.567577in}}% -\pgfpathlineto{\pgfqpoint{3.253441in}{0.661953in}}% -\pgfpathlineto{\pgfqpoint{3.264438in}{0.694719in}}% -\pgfpathlineto{\pgfqpoint{3.275434in}{0.714432in}}% -\pgfpathlineto{\pgfqpoint{3.286431in}{0.727527in}}% -\pgfpathlineto{\pgfqpoint{3.297428in}{0.736057in}}% -\pgfpathlineto{\pgfqpoint{3.308425in}{0.740739in}}% -\pgfpathlineto{\pgfqpoint{3.319422in}{0.741575in}}% -\pgfpathlineto{\pgfqpoint{3.330418in}{0.737857in}}% -\pgfpathlineto{\pgfqpoint{3.341415in}{0.727538in}}% -\pgfpathlineto{\pgfqpoint{3.352412in}{0.704194in}}% -\pgfpathlineto{\pgfqpoint{3.363409in}{0.619270in}}% -\pgfpathlineto{\pgfqpoint{3.374405in}{0.695202in}}% -\pgfpathlineto{\pgfqpoint{3.385402in}{0.740685in}}% -\pgfpathlineto{\pgfqpoint{3.396399in}{0.766182in}}% -\pgfpathlineto{\pgfqpoint{3.407396in}{0.783452in}}% -\pgfpathlineto{\pgfqpoint{3.418392in}{0.795624in}}% -\pgfpathlineto{\pgfqpoint{3.429389in}{0.803819in}}% -\pgfpathlineto{\pgfqpoint{3.440386in}{0.808305in}}% -\pgfpathlineto{\pgfqpoint{3.451383in}{0.808692in}}% -\pgfpathlineto{\pgfqpoint{3.462379in}{0.803621in}}% -\pgfpathlineto{\pgfqpoint{3.473376in}{0.789193in}}% -\pgfpathlineto{\pgfqpoint{3.484373in}{0.748427in}}% -\pgfpathlineto{\pgfqpoint{3.495370in}{0.735950in}}% -\pgfpathlineto{\pgfqpoint{3.506366in}{0.806971in}}% -\pgfpathlineto{\pgfqpoint{3.517363in}{0.840575in}}% -\pgfpathlineto{\pgfqpoint{3.528360in}{0.863355in}}% -\pgfpathlineto{\pgfqpoint{3.539357in}{0.880294in}}% -\pgfpathlineto{\pgfqpoint{3.550353in}{0.893092in}}% -\pgfpathlineto{\pgfqpoint{3.561350in}{0.902319in}}% -\pgfpathlineto{\pgfqpoint{3.572347in}{0.907878in}}% -\pgfpathlineto{\pgfqpoint{3.583344in}{0.908904in}}% -\pgfpathlineto{\pgfqpoint{3.594341in}{0.902917in}}% -\pgfpathlineto{\pgfqpoint{3.605337in}{0.881422in}}% -\pgfpathlineto{\pgfqpoint{3.611912in}{0.453273in}}% -\pgfpathmoveto{\pgfqpoint{3.620603in}{0.453273in}}% -\pgfpathlineto{\pgfqpoint{3.627331in}{0.907017in}}% -\pgfpathlineto{\pgfqpoint{3.638328in}{0.954276in}}% -\pgfpathlineto{\pgfqpoint{3.649324in}{0.986379in}}% -\pgfpathlineto{\pgfqpoint{3.660321in}{1.012034in}}% -\pgfpathlineto{\pgfqpoint{3.682315in}{1.053510in}}% -\pgfpathlineto{\pgfqpoint{3.704308in}{1.087620in}}% -\pgfpathlineto{\pgfqpoint{3.726302in}{1.117269in}}% -\pgfpathlineto{\pgfqpoint{3.748295in}{1.143814in}}% -\pgfpathlineto{\pgfqpoint{3.781285in}{1.179394in}}% -\pgfpathlineto{\pgfqpoint{3.814276in}{1.211152in}}% -\pgfpathlineto{\pgfqpoint{3.847266in}{1.239965in}}% -\pgfpathlineto{\pgfqpoint{3.891253in}{1.274752in}}% -\pgfpathlineto{\pgfqpoint{3.935240in}{1.306188in}}% -\pgfpathlineto{\pgfqpoint{3.979227in}{1.334872in}}% -\pgfpathlineto{\pgfqpoint{4.023214in}{1.361236in}}% -\pgfpathlineto{\pgfqpoint{4.078198in}{1.391409in}}% -\pgfpathlineto{\pgfqpoint{4.133182in}{1.418930in}}% -\pgfpathlineto{\pgfqpoint{4.188166in}{1.444160in}}% -\pgfpathlineto{\pgfqpoint{4.254146in}{1.471806in}}% -\pgfpathlineto{\pgfqpoint{4.320127in}{1.496941in}}% -\pgfpathlineto{\pgfqpoint{4.386107in}{1.519873in}}% -\pgfpathlineto{\pgfqpoint{4.463085in}{1.544168in}}% -\pgfpathlineto{\pgfqpoint{4.540062in}{1.566117in}}% -\pgfpathlineto{\pgfqpoint{4.628036in}{1.588663in}}% -\pgfpathlineto{\pgfqpoint{4.716010in}{1.608807in}}% -\pgfpathlineto{\pgfqpoint{4.803984in}{1.626816in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.639057in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{1.639057in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482257in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.482257in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.482258in}{2.458330in}}% -\pgfpathlineto{\pgfqpoint{4.869965in}{2.458330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetfillopacity{0.800000}% -\pgfsetlinewidth{1.003750pt}% -\definecolor{currentstroke}{rgb}{0.800000,0.800000,0.800000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.800000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.911537in}{1.939504in}}% -\pgfpathlineto{\pgfqpoint{4.772742in}{1.939504in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.800520in}{1.939504in}}{\pgfqpoint{4.800520in}{1.967282in}}% -\pgfpathlineto{\pgfqpoint{4.800520in}{2.361108in}}% -\pgfpathquadraticcurveto{\pgfqpoint{4.800520in}{2.388886in}}{\pgfqpoint{4.772742in}{2.388886in}}% -\pgfpathlineto{\pgfqpoint{1.911537in}{2.388886in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.883759in}{2.388886in}}{\pgfqpoint{1.883759in}{2.361108in}}% -\pgfpathlineto{\pgfqpoint{1.883759in}{1.967282in}}% -\pgfpathquadraticcurveto{\pgfqpoint{1.883759in}{1.939504in}}{\pgfqpoint{1.911537in}{1.939504in}}% -\pgfpathlineto{\pgfqpoint{1.911537in}{1.939504in}}% -\pgfpathclose% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.121569,0.466667,0.705882}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.939315in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{2.078204in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{2.217093in}{2.276418in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.328204in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=2\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{1.000000,0.498039,0.054902}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{1.939315in}{2.072561in}}% -\pgfpathlineto{\pgfqpoint{2.078204in}{2.072561in}}% -\pgfpathlineto{\pgfqpoint{2.217093in}{2.072561in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.328204in,y=2.023950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=4\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.172549,0.627451,0.172549}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.943976in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{3.082865in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{3.221754in}{2.276418in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.332865in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=6\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.839216,0.152941,0.156863}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.943976in}{2.072561in}}% -\pgfpathlineto{\pgfqpoint{3.082865in}{2.072561in}}% -\pgfpathlineto{\pgfqpoint{3.221754in}{2.072561in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.332865in,y=2.023950in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=8\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetroundjoin% -\pgfsetlinewidth{1.505625pt}% -\definecolor{currentstroke}{rgb}{0.580392,0.403922,0.741176}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.948637in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{4.087526in}{2.276418in}}% -\pgfpathlineto{\pgfqpoint{4.226415in}{2.276418in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=4.337526in,y=2.227807in,left,base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n=10\)}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/images/targets-img0.png b/buch/papers/laguerre/images/targets-img0.png deleted file mode 100644 index 6e110dd..0000000 Binary files a/buch/papers/laguerre/images/targets-img0.png and /dev/null differ diff --git a/buch/papers/laguerre/images/targets-img1.png b/buch/papers/laguerre/images/targets-img1.png deleted file mode 100644 index 999a4d2..0000000 Binary files a/buch/papers/laguerre/images/targets-img1.png and /dev/null differ diff --git a/buch/papers/laguerre/images/targets.pdf b/buch/papers/laguerre/images/targets.pdf index c050efa..e1ec07c 100644 Binary files a/buch/papers/laguerre/images/targets.pdf and b/buch/papers/laguerre/images/targets.pdf differ diff --git a/buch/papers/laguerre/images/targets.pgf b/buch/papers/laguerre/images/targets.pgf deleted file mode 100644 index f5602fd..0000000 --- a/buch/papers/laguerre/images/targets.pgf +++ /dev/null @@ -1,1024 +0,0 @@ -%% Creator: Matplotlib, PGF backend -%% -%% To include the figure in your LaTeX document, write -%% \input{.pgf} -%% -%% Make sure the required packages are loaded in your preamble -%% \usepackage{pgf} -%% -%% Also ensure that all the required font packages are loaded; for instance, -%% the lmodern package is sometimes necessary when using math font. -%% \usepackage{lmodern} -%% -%% Figures using additional raster images can only be included by \input if -%% they are in the same directory as the main LaTeX file. For loading figures -%% from other directories you can use the `import` package -%% \usepackage{import} -%% -%% and then include the figures with -%% \import{}{.pgf} -%% -%% Matplotlib used the following preamble -%% \usepackage{fontspec} -%% \setmainfont{DejaVuSerif.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setsansfont{DejaVuSans.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% \setmonofont{DejaVuSansMono.ttf}[Path=\detokenize{/home/mup/.local/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf/}] -%% -\begingroup% -\makeatletter% -\begin{pgfpicture}% -\pgfpathrectangle{\pgfpointorigin}{\pgfqpoint{4.000000in}{2.400000in}}% -\pgfusepath{use as bounding box, clip}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{4.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{4.000000in}{2.400000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{2.400000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.982055in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.982055in}{2.358330in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{2.358330in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{0.505591in}{0.463273in}}{\pgfqpoint{2.476464in}{1.895057in}}% -\pgfusepath{clip}% -\pgfsys@transformshift{0.505591in}{0.463273in}% -\pgftext[left,bottom]{\includegraphics[interpolate=true,width=2.480000in,height=1.900000in]{papers/laguerre/images/targets-img0.png}}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.505591in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.00}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.000884in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.000884in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.20}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.496177in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.496177in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.40}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.991470in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.991470in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.60}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.486762in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.486762in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 0.80}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.048611in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.048611in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.982055in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=2.982055in,y=0.366051in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 1.00}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.629414in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.753238in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.877061in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.124707in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.248530in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.372354in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.620000in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.743823in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{1.867646in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.115293in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.239116in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.362939in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.610586in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.734409in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.602250pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{-0.027778in}}{\pgfqpoint{0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.000000in}{-0.027778in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{2.858232in}{0.463273in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=1.743823in,y=0.176083in,,top]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle z\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{2.272191in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=2.219430in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 2}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{2.099913in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=2.047152in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 3}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.927635in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=1.874874in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 4}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.755357in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=1.702596in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.583080in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=1.530318in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 6}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.410802in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=1.358040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.238524in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=1.185762in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 8}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{1.066246in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.320004in, y=1.013484in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 9}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{0.893968in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=0.841207in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{0.721690in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=0.668929in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 11}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{-0.048611in}{0.000000in}}{\pgfqpoint{-0.000000in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{-0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{-0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{0.505591in}{0.549412in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.231638in, y=0.496651in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=0.176083in,y=1.410802in,,bottom,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle n\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{0.505591in}{2.358330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{2.982055in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.982055in}{2.358330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{2.982055in}{0.463273in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{0.505591in}{2.358330in}}% -\pgfpathlineto{\pgfqpoint{2.982055in}{2.358330in}}% -\pgfusepath{stroke}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.000000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetstrokeopacity{0.000000}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.260501in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.355254in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.355254in}{2.358330in}}% -\pgfpathlineto{\pgfqpoint{3.260501in}{2.358330in}}% -\pgfpathlineto{\pgfqpoint{3.260501in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfpathrectangle{\pgfqpoint{3.260501in}{0.463273in}}{\pgfqpoint{0.094753in}{1.895057in}}% -\pgfusepath{clip}% -\pgfsetbuttcap% -\pgfsetmiterjoin% -\definecolor{currentfill}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.010037pt}% -\definecolor{currentstroke}{rgb}{1.000000,1.000000,1.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfusepath{stroke,fill}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsys@transformshift{3.260000in}{0.460000in}% -\pgftext[left,bottom]{\includegraphics[interpolate=true,width=0.100000in,height=1.900000in]{papers/laguerre/images/targets-img1.png}}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.355254in}{0.733996in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.452476in, y=0.681234in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 5.0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.355254in}{1.072399in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.452476in, y=1.019637in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 7.5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.355254in}{1.410802in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.452476in, y=1.358040in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 10.0}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.355254in}{1.749205in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.452476in, y=1.696443in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 12.5}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetbuttcap% -\pgfsetroundjoin% -\definecolor{currentfill}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetfillcolor{currentfill}% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfsys@defobject{currentmarker}{\pgfqpoint{0.000000in}{0.000000in}}{\pgfqpoint{0.048611in}{0.000000in}}{% -\pgfpathmoveto{\pgfqpoint{0.000000in}{0.000000in}}% -\pgfpathlineto{\pgfqpoint{0.048611in}{0.000000in}}% -\pgfusepath{stroke,fill}% -}% -\begin{pgfscope}% -\pgfsys@transformshift{3.355254in}{2.087608in}% -\pgfsys@useobject{currentmarker}{}% -\end{pgfscope}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.452476in, y=2.034846in, left, base]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont 15.0}% -\end{pgfscope}% -\begin{pgfscope}% -\definecolor{textcolor}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{textcolor}% -\pgfsetfillcolor{textcolor}% -\pgftext[x=3.817276in,y=1.410802in,,top,rotate=90.000000]{\color{textcolor}\sffamily\fontsize{10.000000}{12.000000}\selectfont \(\displaystyle m^*\)}% -\end{pgfscope}% -\begin{pgfscope}% -\pgfsetrectcap% -\pgfsetmiterjoin% -\pgfsetlinewidth{0.803000pt}% -\definecolor{currentstroke}{rgb}{0.000000,0.000000,0.000000}% -\pgfsetstrokecolor{currentstroke}% -\pgfsetdash{}{0pt}% -\pgfpathmoveto{\pgfqpoint{3.260501in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.307877in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.355254in}{0.463273in}}% -\pgfpathlineto{\pgfqpoint{3.355254in}{2.358330in}}% -\pgfpathlineto{\pgfqpoint{3.307877in}{2.358330in}}% -\pgfpathlineto{\pgfqpoint{3.260501in}{2.358330in}}% -\pgfpathlineto{\pgfqpoint{3.260501in}{0.463273in}}% -\pgfpathclose% -\pgfusepath{stroke}% -\end{pgfscope}% -\end{pgfpicture}% -\makeatother% -\endgroup% diff --git a/buch/papers/laguerre/presentation/presentation.pdf b/buch/papers/laguerre/presentation/presentation.pdf new file mode 100644 index 0000000..3d00de3 Binary files /dev/null and b/buch/papers/laguerre/presentation/presentation.pdf differ diff --git a/buch/papers/laguerre/scripts/estimates.py b/buch/papers/laguerre/scripts/estimates.py index 207bbd2..21551f3 100644 --- a/buch/papers/laguerre/scripts/estimates.py +++ b/buch/papers/laguerre/scripts/estimates.py @@ -1,10 +1,19 @@ if __name__ == "__main__": + import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import gamma_approx as ga import targets + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) + N = 200 ns = np.arange(2, 13) step = 1 / (N - 1) @@ -32,7 +41,8 @@ if __name__ == "__main__": for ax in axs: ax.grid(1) ax.legend() - fig.savefig(f"{ga.img_path}/estimates.pgf") + # fig.savefig(f"{ga.img_path}/estimates.pgf") + fig.savefig(f"{ga.img_path}/estimates.pdf") print(f"Intercept={intercept:.6g}, Bias={bias:.6g}") predicts = np.ceil(intercept * ns[:, None] + bias - np.real(x)) diff --git a/buch/papers/laguerre/scripts/integrand.py b/buch/papers/laguerre/scripts/integrand.py index f31f194..e970721 100644 --- a/buch/papers/laguerre/scripts/integrand.py +++ b/buch/papers/laguerre/scripts/integrand.py @@ -6,9 +6,18 @@ if __name__ == "__main__": import os from pathlib import Path + import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) + EPSILON = 1e-12 xlims = np.array([-3, 3]) @@ -30,4 +39,4 @@ if __name__ == "__main__": ax.grid(1, "both") labels = [f"$z={zi: 3.1f}$" for zi in np.squeeze(z)] ax.legend(labels, ncol=2, loc="upper left", fontsize="small") - fig.savefig(f"{img_path}/integrand.pgf") + fig.savefig(f"{img_path}/integrand.pdf") diff --git a/buch/papers/laguerre/scripts/integrand_exp.py b/buch/papers/laguerre/scripts/integrand_exp.py index 0e50f43..e649b26 100644 --- a/buch/papers/laguerre/scripts/integrand_exp.py +++ b/buch/papers/laguerre/scripts/integrand_exp.py @@ -6,8 +6,17 @@ if __name__ == "__main__": import os from pathlib import Path + import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np + + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) EPSILON = 1e-12 xlims = np.array([-3, 3]) @@ -32,5 +41,6 @@ if __name__ == "__main__": ax.grid(1, "both") labels = [f"$z={zi: 3.1f}$" for zi in np.squeeze(z)] ax.legend(labels, ncol=2, loc="upper left", fontsize="small") - fig.savefig(f"{img_path}/integrand_exp.pgf") + # fig.savefig(f"{img_path}/integrand_exp.pgf") + fig.savefig(f"{img_path}/integrand_exp.pdf") # plt.show() diff --git a/buch/papers/laguerre/scripts/laguerre_poly.py b/buch/papers/laguerre/scripts/laguerre_poly.py index 954a0b1..9700ab4 100644 --- a/buch/papers/laguerre/scripts/laguerre_poly.py +++ b/buch/papers/laguerre/scripts/laguerre_poly.py @@ -10,8 +10,17 @@ if __name__ == "__main__": import os from pathlib import Path + import matplotlib as mpl import matplotlib.pyplot as plt import scipy.special as ss + + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) N = 1000 step = 5 @@ -34,8 +43,8 @@ if __name__ == "__main__": ax.set_xlabel(r"$x$", x=1.0, labelpad=-10, rotation=0, fontsize="large") ylim = 13 - ax.set_yticks(np.arange(-ylim, ylim), minor=True) - ax.set_yticks(np.arange(-step * (ylim // step), ylim, step)) + ax.set_yticks(get_ticks(-ylim, ylim), minor=True) + ax.set_yticks(get_ticks(-step * (ylim // step), ylim, step)) ax.set_ylim(-ylim, ylim) ax.set_ylabel(r"$y$", y=0.95, labelpad=-18, rotation=0, fontsize="large") @@ -94,5 +103,6 @@ if __name__ == "__main__": clip_on=False, ) - fig.savefig(f"{img_path}/laguerre_poly.pgf") + # fig.savefig(f"{img_path}/laguerre_poly.pgf") + fig.savefig(f"{img_path}/laguerre_poly.pdf") # plt.show() diff --git a/buch/papers/laguerre/scripts/rel_error_complex.py b/buch/papers/laguerre/scripts/rel_error_complex.py new file mode 100644 index 0000000..5be79be --- /dev/null +++ b/buch/papers/laguerre/scripts/rel_error_complex.py @@ -0,0 +1,43 @@ +if __name__ == "__main__": + import matplotlib as mpl + import matplotlib.pyplot as plt + import numpy as np + import scipy.special + + import gamma_approx as ga + + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) + + xmax = 4 + vals = np.linspace(-xmax + ga.EPSILON, xmax, 100) + x, y = np.meshgrid(vals, vals) + mesh = x + 1j * y + input = mesh.flatten() + + lanczos = scipy.special.gamma(mesh) + lag = ga.eval_laguerre_gamma(input, n=8, func="optimal_shifted").reshape(mesh.shape) + rel_error = np.abs(ga.calc_rel_error(lanczos, lag)) + + fig, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(4, 2.4)) + _c = ax.pcolormesh( + x, y, rel_error, shading="gouraud", cmap="inferno", norm=mpl.colors.LogNorm() + ) + cbr = fig.colorbar(_c, ax=ax) + cbr.minorticks_off() + # ax.set_title("Relative Error") + ax.set_xlabel("Re($z$)") + ax.set_ylabel("Im($z$)") + minor_ticks = np.arange(-xmax, xmax + ga.EPSILON) + ticks = np.arange(-xmax, xmax + ga.EPSILON, 2) + ax.set_xticks(ticks) + ax.set_xticks(minor_ticks, minor=True) + ax.set_yticks(ticks) + ax.set_yticks(minor_ticks, minor=True) + fig.savefig(f"{ga.img_path}/rel_error_complex.pdf") + # plt.show() diff --git a/buch/papers/laguerre/scripts/rel_error_mirror.py b/buch/papers/laguerre/scripts/rel_error_mirror.py index 05e68e4..7348d5e 100644 --- a/buch/papers/laguerre/scripts/rel_error_mirror.py +++ b/buch/papers/laguerre/scripts/rel_error_mirror.py @@ -1,9 +1,18 @@ if __name__ == "__main__": + import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import scipy.special import gamma_approx as ga + + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) xmin = -15 xmax = 15 @@ -25,4 +34,5 @@ if __name__ == "__main__": # ax.set_ylabel("Relativer Fehler") ax.legend(ncol=1, loc="upper left", fontsize=ga.fontsize) ax.grid(1, "both") - fig.savefig(f"{ga.img_path}/rel_error_mirror.pgf") + # fig.savefig(f"{ga.img_path}/rel_error_mirror.pgf") + fig.savefig(f"{ga.img_path}/rel_error_mirror.pdf") diff --git a/buch/papers/laguerre/scripts/rel_error_range.py b/buch/papers/laguerre/scripts/rel_error_range.py index 7c74d76..43b5450 100644 --- a/buch/papers/laguerre/scripts/rel_error_range.py +++ b/buch/papers/laguerre/scripts/rel_error_range.py @@ -1,13 +1,21 @@ if __name__ == "__main__": + import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import scipy.special import gamma_approx as ga - - N = 1001 - xmin = -5 - xmax = 5 + + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) + N = 1201 + xmax = 6 + xmin = -xmax ns = np.arange(2, 12, 2) ylim = np.array([-11, -1.2]) @@ -20,13 +28,14 @@ if __name__ == "__main__": ax.semilogy(x, np.abs(rel_err), label=f"$n={n}$") ax.set_xlim(x[0], x[-1]) ax.set_ylim(*(10.0 ** ylim)) - ax.set_xticks(np.arange(xmin + 1, xmax, 2)) - ax.set_xticks(np.arange(xmin, xmax), minor=True) + ax.set_xticks(np.arange(xmin, xmax + ga.EPSILON, 2)) + ax.set_xticks(np.arange(xmin, xmax + ga.EPSILON), minor=True) ax.set_yticks(10.0 ** np.arange(*ylim, 2)) - ax.set_yticks(10.0 ** np.arange(*ylim, 1), minor=True) + ax.set_yticks(10.0 ** np.arange(*ylim, 1), "", minor=True) ax.set_xlabel(r"$z$") # ax.set_ylabel("Relativer Fehler") ax.legend(ncol=1, loc="upper left", fontsize=ga.fontsize) ax.grid(1, "both") - fig.savefig(f"{ga.img_path}/rel_error_range.pgf") + # fig.savefig(f"{ga.img_path}/rel_error_range.pgf") + fig.savefig(f"{ga.img_path}/rel_error_range.pdf") # plt.show() diff --git a/buch/papers/laguerre/scripts/rel_error_shifted.py b/buch/papers/laguerre/scripts/rel_error_shifted.py index 1515c6e..dc9d177 100644 --- a/buch/papers/laguerre/scripts/rel_error_shifted.py +++ b/buch/papers/laguerre/scripts/rel_error_shifted.py @@ -1,10 +1,18 @@ if __name__ == "__main__": + import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import scipy.special import gamma_approx as ga + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) n = 8 # order of Laguerre polynomial N = 200 # number of points in interval @@ -19,7 +27,7 @@ if __name__ == "__main__": ax.semilogy(x, rel_error, label=f"$m={target}$", linewidth=3) gamma_lgo = ga.eval_laguerre_gamma(x, n=n, func="optimal_shifted") rel_error = np.abs(ga.calc_rel_error(gamma, gamma_lgo)) - ax.semilogy(x, rel_error, "m", linestyle="dotted", label="$m^*$", linewidth=3) + ax.semilogy(x, rel_error, "m", linestyle=":", label="$m^*$", linewidth=3) ax.set_xlim(x[0], x[-1]) ax.set_ylim(5e-9, 5e-8) ax.set_xlabel(r"$z$") @@ -27,5 +35,6 @@ if __name__ == "__main__": ax.set_xticks(np.linspace(0, 1, 11), minor=True) ax.grid(1, "both") ax.legend(ncol=1, fontsize=ga.fontsize) - fig.savefig(f"{ga.img_path}/rel_error_shifted.pgf") + # fig.savefig(f"{ga.img_path}/rel_error_shifted.pgf") + fig.savefig(f"{ga.img_path}/rel_error_shifted.pdf") # plt.show() diff --git a/buch/papers/laguerre/scripts/rel_error_simple.py b/buch/papers/laguerre/scripts/rel_error_simple.py index 0929976..686500b 100644 --- a/buch/papers/laguerre/scripts/rel_error_simple.py +++ b/buch/papers/laguerre/scripts/rel_error_simple.py @@ -1,10 +1,21 @@ if __name__ == "__main__": + import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import scipy.special import gamma_approx as ga + # mpl.rc("text", usetex=True) + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) + # mpl.rcParams.update({"font.family": "serif", "font.serif": "TeX Gyre Termes"}) + # Simple / naive xmin = -5 xmax = 30 @@ -26,4 +37,5 @@ if __name__ == "__main__": # ax.set_ylabel("Relativer Fehler") ax.legend(ncol=3, fontsize=ga.fontsize) ax.grid(1, "both") - fig.savefig(f"{ga.img_path}/rel_error_simple.pgf") + # fig.savefig(f"{ga.img_path}/rel_error_simple.pgf") + fig.savefig(f"{ga.img_path}/rel_error_simple.pdf") diff --git a/buch/papers/laguerre/scripts/targets.py b/buch/papers/laguerre/scripts/targets.py index 73d6e03..206b3a1 100644 --- a/buch/papers/laguerre/scripts/targets.py +++ b/buch/papers/laguerre/scripts/targets.py @@ -10,24 +10,33 @@ def find_best_loc(N=200, a=1.375, b=0.5, ns=None): bests = [] step = 1 / (N - 1) x = np.linspace(step, 1 - step, N + 1) - gamma = scipy.special.gamma(x)[:, None] + gamma = scipy.special.gamma(x) for n in ns: zeros, weights = np.polynomial.laguerre.laggauss(n) est = np.ceil(b + a * n) targets = np.arange(max(est - 2, 0), est + 3) - glag = [ - ga.eval_laguerre_gamma(x, target=target, x=zeros, w=weights, func="shifted") - for target in targets - ] - gamma_lag = np.stack(glag, -1) - rel_error = np.abs(ga.calc_rel_error(gamma, gamma_lag)) + rel_error = [] + for target in targets: + gamma_lag = ga.eval_laguerre_gamma(x, target=target, x=zeros, w=weights, func="shifted") + rel_error.append(np.abs(ga.calc_rel_error(gamma, gamma_lag))) + rel_error = np.stack(rel_error, -1) best = np.argmin(rel_error, -1) + targets[0] bests.append(best) return np.stack(bests, 0) if __name__ == "__main__": + import matplotlib as mpl import matplotlib.pyplot as plt + + mpl.rcParams.update( + { + "mathtext.fontset": "stix", + "font.family": "serif", + "font.serif": "TeX Gyre Termes", + } + ) + N = 200 ns = np.arange(2, 13) @@ -45,4 +54,5 @@ if __name__ == "__main__": ax.set_yticklabels(ns) ax.set_xlabel(r"$z$") ax.set_ylabel(r"$n$") - fig.savefig(f"{ga.img_path}/targets.pgf") + # fig.savefig(f"{ga.img_path}/targets.pgf") + fig.savefig(f"{ga.img_path}/targets.pdf") -- cgit v1.2.1 From e1f5d6267540ea8dc758696fb08cb7540362cf8f Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Mon, 18 Jul 2022 17:34:37 +0200 Subject: First complete draft of Laguerre chapter --- buch/papers/laguerre/Makefile | 2 +- buch/papers/laguerre/definition.tex | 6 +- buch/papers/laguerre/gamma.tex | 242 ++++++++++++++------- buch/papers/laguerre/images/estimates.pdf | Bin 13780 -> 13780 bytes buch/papers/laguerre/images/gammaplot.pdf | Bin 23297 -> 23297 bytes buch/papers/laguerre/images/integrand.pdf | Bin 16109 -> 16109 bytes buch/papers/laguerre/images/integrand_exp.pdf | Bin 16951 -> 16951 bytes buch/papers/laguerre/images/laguerre_poly.pdf | Bin 19815 -> 19815 bytes buch/papers/laguerre/images/rel_error_complex.pdf | Bin 198151 -> 195590 bytes buch/papers/laguerre/images/rel_error_mirror.pdf | Bin 26866 -> 26866 bytes buch/papers/laguerre/images/rel_error_range.pdf | Bin 25704 -> 25105 bytes buch/papers/laguerre/images/rel_error_shifted.pdf | Bin 16231 -> 16317 bytes buch/papers/laguerre/images/rel_error_simple.pdf | Bin 23353 -> 23353 bytes buch/papers/laguerre/images/targets.pdf | Bin 14757 -> 14462 bytes buch/papers/laguerre/main.tex | 2 +- .../presentation/sections/gamma_approx.tex | 24 +- .../laguerre/presentation/sections/laguerre.tex | 3 +- buch/papers/laguerre/quadratur.tex | 14 +- buch/papers/laguerre/references.bib | 18 +- buch/papers/laguerre/scripts/gamma_approx.py | 1 + buch/papers/laguerre/scripts/rel_error_complex.py | 4 +- buch/papers/laguerre/scripts/rel_error_range.py | 2 +- buch/papers/laguerre/scripts/rel_error_shifted.py | 2 +- buch/papers/laguerre/scripts/targets.py | 4 +- 24 files changed, 211 insertions(+), 113 deletions(-) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/Makefile b/buch/papers/laguerre/Makefile index 48f8066..85a1b83 100644 --- a/buch/papers/laguerre/Makefile +++ b/buch/papers/laguerre/Makefile @@ -28,7 +28,7 @@ images: $(FIGURES) .PHONY: presentation presentation: $(PRESFOLDER)/presentation.pdf -images/%.pdf images/%.pgf: scripts/%.py +images/%.pdf images/%.pgf: scripts/%.py scripts/gamma_approx.py python3 $< images/gammaplot.pdf: images/gammaplot.tex images/gammapaths.tex diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index 9ebc288..42cd6f6 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -125,10 +125,8 @@ Die Laguerre-Polynome von Grad $0$ bis $7$ sind in Abbildung~\ref{laguerre:fig:polyeval} dargestellt. \begin{figure} \centering -\scalebox{0.8}{\input{papers/laguerre/images/laguerre_poly.pgf}} -% \includegraphics[width=0.7\textwidth]{% -% papers/laguerre/images/laguerre_polynomes.eps% -% } +% \scalebox{0.8}{\input{papers/laguerre/images/laguerre_poly.pgf}} +\includegraphics[width=0.9\textwidth]{papers/laguerre/images/laguerre_poly.pdf} \caption{Laguerre-Polynome vom Grad $0$ bis $7$} \label{laguerre:fig:polyeval} \end{figure} diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex index a28c180..eb64fa2 100644 --- a/buch/papers/laguerre/gamma.tex +++ b/buch/papers/laguerre/gamma.tex @@ -23,8 +23,8 @@ Integral der Form , \quad \text{wobei Realteil von $z$ grösser als $0$} -, \label{laguerre:gamma} +. \end{align} Der Term $e^{-t}$ ist genau die Gewichtsfunktion der Laguerre-Integration und der Definitionsbereich passt ebenfalls genau für dieses Verfahren. @@ -72,7 +72,7 @@ allerdings müssten die Gewichte und Nullstellen für jedes $z$ neu berechnet werden, da sie per Definition von $z$ abhängen. Dazu kommt, -dass die Berechnung der Gewichte $A_i$ nach \cite{Cassity1965AbcissasCA} +dass die Berechnung der Gewichte $A_i$ nach \cite{laguerre:Cassity1965AbcissasCA} \begin{align*} A_i = @@ -85,7 +85,7 @@ A_i } \end{align*} Evaluationen der Gamma-Funktion benötigen. -Somit scheint diese Methode nicht geeignet für unser Vorhaben. +Somit ist diese Methode eindeutig nicht geeignet für unser Vorhaben. Bei der zweiten Variante benötigen wir keine Neuberechung der Gewichte und Nullstellen für unterschiedliche $z$. @@ -95,10 +95,10 @@ Auch die Nullstellen können vorgängig, mittels eines geeigneten Verfahrens aus den Polynomen bestimmt werden. Als problematisch könnte sich höchstens die zu integrierende Funktion $f(x)=x^{z-1}$ für $|z| \gg 0$ erweisen. -Somit entscheiden wir uns auf Grund der vorherigen Punkte, +Somit entscheiden wir uns aufgrund der vorherigen Punkte, die zweite Variante weiterzuverfolgen. -\subsubsection{Naiver Ansatz} +\subsubsection{Direkter Ansatz} Wenden wir also die Gauss-Laguerre-Quadratur aus \eqref{laguerre:laguerrequadratur} auf die Gamma-Funktion \eqref{laguerre:gamma} an ergibt sich @@ -111,15 +111,16 @@ Wenden wir also die Gauss-Laguerre-Quadratur aus \begin{figure} \centering -\input{papers/laguerre/images/rel_error_simple.pgf} -\vspace{-12pt} -\caption{Relativer Fehler des naiven Ansatzes +% \input{papers/laguerre/images/rel_error_simple.pgf} +\includegraphics{papers/laguerre/images/rel_error_simple.pdf} +%\vspace{-12pt} +\caption{Relativer Fehler des direkten Ansatzes für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome} \label{laguerre:fig:rel_error_simple} \end{figure} Bevor wir die Gauss-Laguerre-Quadratur anwenden, -möchten wir als erstes eine Fehlerabschätzung durchführen. +möchten wir als ersten Schritt eine Fehlerabschätzung durchführen. Für den Fehlerterm \eqref{laguerre:lag_error} wird die $2n$-te Ableitung der zu integrierenden Funktion $f(\xi)$ benötigt. Für das Integral der Gamma-Funktion ergibt sich also @@ -130,6 +131,7 @@ Für das Integral der Gamma-Funktion ergibt sich also \\ & = (z - 2n)_{2n} \xi^{z - 2n - 1} +. \end{align*} Eingesetzt im Fehlerterm \eqref{laguerre:lag_error} resultiert \begin{align} @@ -147,17 +149,19 @@ und für $z > 2n - 1$ bei $\xi \rightarrow \infty$ divergiert. Nur für den unwahrscheinlichen Fall $ z = 2n - 1$ wäre eine Fehlerabschätzung plausibel. -Wenden wir nun also naiv die Gauss-Laguerre-Quadratur auf die Gammafunktion an. +Wenden wir nun also direkt die Gauss-Laguerre-Quadratur auf die Gamma-Funktion +an. Dazu benötigen wir die Gewichte nach \eqref{laguerre:quadratur_gewichte} und als Stützstellen die Nullstellen des Laguerre-Polynomes $L_n$. Evaluieren wir den relativen Fehler unserer Approximation zeigt sich ein Bild wie in Abbildung~\ref{laguerre:fig:rel_error_simple}. Man kann sehen, -wie der relative Fehler Nullstellen aufweist für ganzzahlige $z < 2n$, +wie der relative Fehler Nullstellen aufweist für ganzzahlige $z \leq 2n$, was laut der Theorie der Gauss-Quadratur auch zu erwarten ist, denn die Approximation via Gauss-Quadratur -ist exakt für zu integrierende Polynome mit Grad $< 2n-1$. +ist exakt für zu integrierende Polynome mit Grad $\leq 2n-1$ +und von $z$ auch noch $1$ abgezogen wird im Exponenten. Es ist ersichtlich, dass sich für den Polynomgrad $n$ ein Interval gibt, in dem der relative Fehler minimal ist. @@ -168,9 +172,10 @@ könnten wir die Reflektionsformel der Gamma-Funktion ausnutzen. \begin{figure} \centering -\input{papers/laguerre/images/rel_error_mirror.pgf} -\vspace{-12pt} -\caption{Relativer Fehler des naiven Ansatz mit Spiegelung negativer Realwerte +% \input{papers/laguerre/images/rel_error_mirror.pgf} +\includegraphics{papers/laguerre/images/rel_error_mirror.pdf} +%\vspace{-12pt} +\caption{Relativer Fehler des Ansatzes mit Spiegelung negativer Realwerte für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome} \label{laguerre:fig:rel_error_mirror} \end{figure} @@ -202,8 +207,9 @@ dadurch geeignete Gegenmassnahmen zu entwickeln. % und Abbildung~\ref{laguerre:fig:integrand_exp} grafisch dargestellt werden. \begin{figure} \centering -\input{papers/laguerre/images/integrand.pgf} -\vspace{-12pt} +% \input{papers/laguerre/images/integrand.pgf} +\includegraphics{papers/laguerre/images/integrand.pdf} +%\vspace{-12pt} \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} \label{laguerre:fig:integrand} \end{figure} @@ -211,7 +217,7 @@ dadurch geeignete Gegenmassnahmen zu entwickeln. In Abbildung~\ref{laguerre:fig:integrand} ist der Integrand $x^z$ für unterschiedliche Werte von $z$ dargestellt. Dies entspricht der zu integrierenden Funktion $f(x)$ -der Gauss-Laguerre-Quadratur für die Gamma-Funktion- +der Gauss-Laguerre-Quadratur für die Gamma-Funktion. Man erkennt, dass für kleine $z$ sich ein singulärer Integrand ergibt und auch für grosse $z$ wächst der Integrand sehr schnell an. @@ -223,8 +229,9 @@ dass kleine Exponenten um $0$ genauere Resultate liefern sollten. \begin{figure} \centering -\input{papers/laguerre/images/integrand_exp.pgf} -\vspace{-12pt} +% \input{papers/laguerre/images/integrand_exp.pgf} +\includegraphics{papers/laguerre/images/integrand_exp.pdf} +%\vspace{-12pt} \caption{Integrand $x^z e^{-x}$ mit unterschiedlichen Werten für $z$} \label{laguerre:fig:integrand_exp} \end{figure} @@ -246,9 +253,9 @@ Damit formulieren wir die Vermutung, dass $a(n)$, welches das Intervall $[a(n), a(n) + 1]$ definiert, in dem der relative Fehler minimal ist, -grösser als $0$ ist. +grösser als $0$ und kleiner als $2n-1$ ist. -\subsubsection{Finden der optimalen Berechnungsstelle} +\subsubsection{Ansatz mit Verschiebungsterm} % Mittels der Funktionalgleichung \eqref{laguerre:gamma_funktional} % kann der Wert von $\Gamma(z)$ im Interval $z \in [a,a+1]$, % in dem der relative Fehler minimal ist, @@ -287,12 +294,13 @@ s(z, m) = \begin{cases} \displaystyle -\frac{1}{(z - m)_m} & \text{wenn } m \geq 0 \\ -(z + m)_{-m} & \text{wenn } m < 0 +\frac{1}{(z)_m} & \text{wenn } m \geq 0 \\ +(z + m)_{-m} & \text{wenn } m < 0 \end{cases} . \end{align*} +\subsubsection{Finden der optimalen Berechnungsstelle} Um die optimale Stelle $z^*(n) \in \left[a(n), a(n) + 1\right]$, $z^*(n) \in \mathbb{R}$, zu finden, @@ -305,9 +313,17 @@ s(z, m) \cdot (z - 2n)_{2n} \frac{(n!)^2}{(2n)!} \xi^{z + m - 2n - 1} ,\quad \text{für } \xi \in (0, \infty) -. \label{laguerre:gamma_err_shifted} +. \end{align} + +\begin{figure} +\centering +\includegraphics{papers/laguerre/images/targets.pdf} +% %\vspace{-12pt} +\caption{$a$ in Abhängigkeit von $z$ und $n$} +\label{laguerre:fig:targets} +\end{figure} % wobei ist % mit $z^*(n) \in \mathbb{R}$ wollen wir finden, % in dem wir den Fehlerterm \eqref{laguerre:lag_error} anpassen @@ -329,21 +345,14 @@ m^* \operatorname*{argmin}_m \max_\xi R_{n,m}(\xi) . \end{align*} -Allerdings ist die Funktion $R_{n,m}(\xi)$ unbeschränkt. +Allerdings ist die Funktion $R_{n,m}(\xi)$ unbeschränkt und +hat die gleichen Probleme wie die Fehlerabschätzung des direkten Ansatzes. Dazu müssten wir $\xi$ versuchen unter Kontrolle zu bringen, was ein äussersts schwieriges Unterfangen zu sein scheint. -Da die Gauss-Quadratur aber sowieso nur wirklich Sinn macht für kleine $n$, +Da die Gauss-Quadratur aber sowieso +nur wirklich praktisch sinnvoll für kleine $n$ ist, können die Intervalle $[a(n), a(n)+1]$ empirisch gesucht werden. -\begin{figure} -\centering -% \includegraphics{papers/laguerre/images/targets.pdf} -\input{papers/laguerre/images/targets.pgf} -\vspace{-12pt} -\caption{$a$ in Abhängigkeit von $z$ und $n$} -\label{laguerre:fig:targets} -\end{figure} - Wir bestimmen nun die optimalen Verschiebungsterme empirisch für $n = 2,\ldots, 12$ im Intervall $z \in (0, 1)$, da $z$ sowieso um den Term $m$ verschoben wird, @@ -369,11 +378,20 @@ Den linearen Regressor machen wir nur abhängig von $n$ in dem wir den Mittelwert $\overline{m}$ von $m^*$ über $z$ berechnen. +\begin{figure} +\centering +% \input{papers/laguerre/images/estimates.pgf} +\includegraphics{papers/laguerre/images/estimates.pdf} +%\vspace{-12pt} +\caption{Schätzung Mittelwert von $m$ und Fehler} +\label{laguerre:fig:schaetzung} +\end{figure} + In Abbildung~\ref{laguerre:fig:schaetzung} sind die Resultate der linearen Regression aufgezeigt mit $\alpha = 1.34094$ und $\beta = 0.854093$. Die lineare Beziehung ist ganz klar ersichtlich und der Fit scheint zu genügen. -Der optimalen Verschiebungsterm +Der optimalen Verschiebungsterm kann nun mit \begin{align*} m^* \approx @@ -381,61 +399,127 @@ m^* = \lceil \alpha n + \beta - z \rceil \end{align*} -kann nun mit dem linearen Regressor und $z$ gefunden werden. - -\begin{figure} -\centering -\input{papers/laguerre/images/estimates.pgf} -\vspace{-12pt} -\caption{Schätzung Mittelwert von $m$ und Fehler} -\label{laguerre:fig:schaetzung} -\end{figure} - -\subsection{Resultate} - -\subsubsection{Relativer Fehler} +% kann nun mit dem linearen Regressor und $z$ +gefunden werden. +\subsubsection{Evaluation des Schätzers} +In einem ersten Schritt möchten wir analysieren, +wie gut die Abschätzung des optimalen Verschiebungsterms ist. +Dazu bestimmen wir den relativen Fehler für verschiedene Verschiebungsterme $m$ +rund um $m^*$ bei gegebenem Polynomgrad $n = 8$ für $z \in (0, 1)$. +Abbildung~\ref{laguerre:fig:rel_error_shifted} sind die relativen Fehler +der Approximation dargestellt. +Man kann deutlich sehen, +dass der relative Fehler anwächst, +je weiter der Verschiebungsterm vom idealen Wert abweicht. +Zudem scheint der Schätzer den optimalen Verschiebungsterm gut zu bestimmen, +da der Schätzer zuerst der grünen Linie folgt und +dann beim Übergang auf die orange Linie wechselt. \begin{figure} \centering -\input{papers/laguerre/images/rel_error_shifted.pgf} -\vspace{-12pt} +% \input{papers/laguerre/images/rel_error_shifted.pgf} +\includegraphics{papers/laguerre/images/rel_error_shifted.pdf} +%\vspace{-12pt} \caption{Relativer Fehler des Ansatzes mit Verschiebungsterm für verschiedene reele Werte von $z$ und Verschiebungsterme $m$. Das verwendete Laguerre-Polynom besitzt den Grad $n = 8$. $m^*$ bezeichnet hier den optimalen Verschiebungsterm} \label{laguerre:fig:rel_error_shifted} \end{figure} - + +\subsubsection{Resultate} +Das Verfahren scheint für den Grad $n=8$ und $z \in (0,1)$ gut zu funktioneren. +Es stellt sich nun die Frage, +wie der relative Fehler sich für verschiedene $z$ und $n$ verhält. +In Abbildung~\ref{laguerre:fig:rel_error_range} sind die relativen Fehler für +unterschiedliche $n$ dargestellt. +Der relative Fehler scheint immer noch Nullstellen aufzuweisen, +bei für ganzzahlige $z$. +Durch das Verschieben ergibt sich jetzt aber, +wie zu erwarten war, +ein periodischer relativer Fehler mit einer Periodendauer von $1$. +Zudem lässt sich erkennen, +dass der Fehler abhängig von der Ordnung $n$ +des verwendeten Laguerre-Polynoms ist. +Wenn der Grad $n$ um $1$ erhöht wird, +verbessert sich die Genauigkeit des Resultats um etwa eine signifikante Stelle. + +In Abbildung~\ref{laguerre:fig:rel_error_complex} +ist der Betrag des relativen Fehlers in der komplexen Ebene dargestellt. +Je stärker der Imaginäranteil von $z$ von $0$ abweicht, +umso schlechter wird die Genauigkeit der Approximation. +Das erstaunt nicht weiter, +da die Gauss-Quadratur eigentlich nur für reelle Zahlen definiert ist. +Wenn der Imaginäranteil von $z$ ungefähr $0$ ist, +lässt sich das gleiche Bild beobachten wie in +Abbildung~\ref{laguerre:fig:rel_error_range}. + \begin{figure} \centering -\input{papers/laguerre/images/rel_error_range.pgf} -\vspace{-12pt} +% \input{papers/laguerre/images/rel_error_range.pgf} +\includegraphics{papers/laguerre/images/rel_error_range.pdf} +%\vspace{-12pt} \caption{Relativer Fehler des Ansatzes mit optimalen Verschiebungsterm -für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome} +für verschiedene reele Werte von $z$ und Laguerre-Polynome vom Grad $n$} \label{laguerre:fig:rel_error_range} \end{figure} -\subsubsection{Vergleich mit Lanczos-Methode} -{\color{red} -$ $\newline -$n = 7$:\newline -Lanczos Polynomgrad auf 13 Stellen.\newline -Unsere Methode auf 7 Stellen -} - -% 2. Die Fehlerabschätzung ist problematisch, -% weil die Funktion R_n(\xi) unbeschränkt ist. -% Daher kann man nicht einfach nach dem Maximum von R_n(\xi) suchen. -% Man muss zunächst irgendwie das \xi unter Kontrolle bringen. -% Das scheint mir äusserst schwierig zu sein. +\begin{figure} +\centering +\includegraphics{papers/laguerre/images/rel_error_complex.pdf} +%\vspace{-12pt} +\caption{Absolutwert des relativen Fehlers in der komplexen Ebene} +\label{laguerre:fig:rel_error_complex} +\end{figure} -% Ich möchte daher folgendes anregen: -% Im Sinne der Formulierung des Problems, -% wie im Punkt 1 oben könnten Sie für verschiedene n -% nach den optimalen Intervallen [a(n),a(n)+1] suchen, -% und versuchen, einen empirischen Zusammenhang (Faustregel) -% zwischen n und a(n) zu formulieren. -% Das ist etwa gleich gut, -% da ja der Witz der Gauss-Integration ist, -% dass man eben nur sehr kleine n überhaupt in Betracht zieht, -% d.h. man braucht keine exakte Gesetzmässigkeit für a(n). +\subsubsection{Vergleich mit Lanczos-Methode} +Nun stellt sich die Frage, +wie das in diesem Abschnitt beschriebene Approximationsverfahren +der Gamma-Funktion sich gegenüber den üblichen Approximationsverfahren schlägt. +Eine häufig verwendete Methode ist die Lanczos-Approximation, +welche gegeben ist durch +\begin{align} +\Gamma(z + 1) +\approx +\sqrt{2\pi} \left( z + \sigma + \frac{1}{2} \right)^{z + 1/2} +e^{-(z + \sigma + 1/2)} \sum_{k=0}^n g_k H_k(z) +, +\end{align} +wobei +\begin{align*} +g_k = \frac{e^\sigma \varepsilon_k (-1)^k}{\sqrt{2\pi}} +\sum_{r=0}^k (-1)^r \, \binom{k}{r} \, (k)_r +\left( \frac{e}{r + \sigma + \frac{1}{2}}\right)^{r + 1/2} +, +\end{align*} +\begin{align*} +\varepsilon_k += +\begin{cases} +1 & \text{für } k = 0 \\ +2 & \text{sonst} +\end{cases} +\quad \text{und}\quad +H_k(z) += +\frac{(-1)^k (-z)_k}{(z+1)_k} +\end{align*} +mit $H_0 = 1$ und $\sum_0^n g_k = 1$ (siehe \cite{laguerre:lanczos}). +Diese Methode wurde zum Beispiel in +{\em GNU Scientific Library}, {\em Boost}, {\em CPython} und +{\em musl} implementiert. +Diese Methode erreicht für $n = 7$ typischerweise Genauigkeit von $13$ +korrekten, signifikanten Stellen für reele Argumente. +Zum Vergleich: die vorgestellte Methode erreicht für $n = 7$ +eine minimale Genauigkeit von $6$-$7$ korrekten, signifikanten Stellen +für reele Argumente. +Das Resultat ist etwas enttäuschend, +aber nicht unerwartet, +da die Lanczos-Methode spezifisch auf dieses Problem zugeschnitten ist und +unsere Methode eine erweiterte allgemeine Methode ist. +Was die Komplexität der Berechnungen im Betrieb angeht, +ist die Gauss-Laguerre-Quadratur wesentlich ressourcensparender, +weil sie nur aus $n$ Funktionasevaluationen, +wenigen Multiplikationen und Additionen besteht. +Also könnte diese Methode z.B. Anwendung in Systemen mit wenig Rechenleistung +und/oder knappen Energieressourcen finden. \ No newline at end of file diff --git a/buch/papers/laguerre/images/estimates.pdf b/buch/papers/laguerre/images/estimates.pdf index c93a4f0..bd995de 100644 Binary files a/buch/papers/laguerre/images/estimates.pdf and b/buch/papers/laguerre/images/estimates.pdf differ diff --git a/buch/papers/laguerre/images/gammaplot.pdf b/buch/papers/laguerre/images/gammaplot.pdf index b65cf1b..7c195f2 100644 Binary files a/buch/papers/laguerre/images/gammaplot.pdf and b/buch/papers/laguerre/images/gammaplot.pdf differ diff --git a/buch/papers/laguerre/images/integrand.pdf b/buch/papers/laguerre/images/integrand.pdf index 676ac98..76be412 100644 Binary files a/buch/papers/laguerre/images/integrand.pdf and b/buch/papers/laguerre/images/integrand.pdf differ diff --git a/buch/papers/laguerre/images/integrand_exp.pdf b/buch/papers/laguerre/images/integrand_exp.pdf index 5e021d5..5fe7a7b 100644 Binary files a/buch/papers/laguerre/images/integrand_exp.pdf and b/buch/papers/laguerre/images/integrand_exp.pdf differ diff --git a/buch/papers/laguerre/images/laguerre_poly.pdf b/buch/papers/laguerre/images/laguerre_poly.pdf index d74f652..21278f5 100644 Binary files a/buch/papers/laguerre/images/laguerre_poly.pdf and b/buch/papers/laguerre/images/laguerre_poly.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_complex.pdf b/buch/papers/laguerre/images/rel_error_complex.pdf index d23ebd1..c7bb37a 100644 Binary files a/buch/papers/laguerre/images/rel_error_complex.pdf and b/buch/papers/laguerre/images/rel_error_complex.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_mirror.pdf b/buch/papers/laguerre/images/rel_error_mirror.pdf index e51dd83..8a27d41 100644 Binary files a/buch/papers/laguerre/images/rel_error_mirror.pdf and b/buch/papers/laguerre/images/rel_error_mirror.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_range.pdf b/buch/papers/laguerre/images/rel_error_range.pdf index fca4019..bb8a2d7 100644 Binary files a/buch/papers/laguerre/images/rel_error_range.pdf and b/buch/papers/laguerre/images/rel_error_range.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_shifted.pdf b/buch/papers/laguerre/images/rel_error_shifted.pdf index d0c2ae0..b7e72dc 100644 Binary files a/buch/papers/laguerre/images/rel_error_shifted.pdf and b/buch/papers/laguerre/images/rel_error_shifted.pdf differ diff --git a/buch/papers/laguerre/images/rel_error_simple.pdf b/buch/papers/laguerre/images/rel_error_simple.pdf index 24e11b6..3212e42 100644 Binary files a/buch/papers/laguerre/images/rel_error_simple.pdf and b/buch/papers/laguerre/images/rel_error_simple.pdf differ diff --git a/buch/papers/laguerre/images/targets.pdf b/buch/papers/laguerre/images/targets.pdf index e1ec07c..9514a6d 100644 Binary files a/buch/papers/laguerre/images/targets.pdf and b/buch/papers/laguerre/images/targets.pdf differ diff --git a/buch/papers/laguerre/main.tex b/buch/papers/laguerre/main.tex index f4263de..d69fbed 100644 --- a/buch/papers/laguerre/main.tex +++ b/buch/papers/laguerre/main.tex @@ -13,7 +13,7 @@ benannt nach Edmond Laguerre (1834 - 1886), sind Lösungen der ebenfalls nach Laguerre benannten Differentialgleichung. Laguerre entdeckte diese Polynome als er Approximationsmethoden für das Integral $\int_0^\infty \exp(-x) / x \, dx$ suchte. -Darum möchten wir in diesem Kapitel uns, +Darum möchten wir uns in diesem Kapitel, ganz im Sinne des Entdeckers, den Laguerre-Polynomen für Approximationen von Integralen mit exponentiell-abfallenden Funktionen widmen. diff --git a/buch/papers/laguerre/presentation/sections/gamma_approx.tex b/buch/papers/laguerre/presentation/sections/gamma_approx.tex index 3d32aae..ecd02ab 100644 --- a/buch/papers/laguerre/presentation/sections/gamma_approx.tex +++ b/buch/papers/laguerre/presentation/sections/gamma_approx.tex @@ -49,7 +49,8 @@ R_n(\xi) \begin{figure}[h] \centering % \scalebox{0.91}{\input{../images/rel_error_simple.pgf}} -\resizebox{!}{0.72\textheight}{\input{../images/rel_error_simple.pgf}} +% \resizebox{!}{0.72\textheight}{\input{../images/rel_error_simple.pgf}} +\includegraphics[width=0.77\textwidth]{../images/rel_error_simple.pdf} \caption{Relativer Fehler des einfachen Ansatzes für verschiedene reele Werte von $z$ und Grade $n$ der Laguerre-Polynome} \end{figure} @@ -81,7 +82,8 @@ von $z$ und Grade $n$ der Laguerre-Polynome} \begin{frame}{$f(x) = x^z$} \begin{figure}[h] \centering -\scalebox{0.91}{\input{../images/integrand.pgf}} +% \scalebox{0.91}{\input{../images/integrand.pgf}} +\includegraphics[width=0.8\textwidth]{../images/integrand.pdf} % \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} \end{figure} \end{frame} @@ -89,7 +91,8 @@ von $z$ und Grade $n$ der Laguerre-Polynome} \begin{frame}{Integrand $x^z e^{-x}$} \begin{figure}[h] \centering -\scalebox{0.91}{\input{../images/integrand_exp.pgf}} +% \scalebox{0.91}{\input{../images/integrand_exp.pgf}} +\includegraphics[width=0.8\textwidth]{../images/integrand_exp.pdf} % \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} \end{figure} \end{frame} @@ -144,15 +147,16 @@ da Gauss-Quadratur nur für kleine $n$ praktischen Nutzen hat} \begin{frame}{Schätzen von $m^*$} \begin{columns} -\begin{column}{0.6\textwidth} +\begin{column}{0.65\textwidth} \begin{figure} \centering -\vspace{-24pt} -\scalebox{0.7}{\input{../images/estimates.pgf}} +\vspace{-12pt} +% \scalebox{0.7}{\input{../images/estimates.pgf}} +\includegraphics[width=1.0\textwidth]{../images/estimates.pdf} % \caption{Integrand $x^z$ mit unterschiedlichen Werten für $z$} \end{figure} \end{column} -\begin{column}{0.39\textwidth} +\begin{column}{0.34\textwidth} \begin{align*} \hat{m} &= @@ -173,7 +177,8 @@ m^* \begin{frame}{} \begin{figure}[h] \centering -\scalebox{0.6}{\input{../images/rel_error_shifted.pgf}} +% \scalebox{0.6}{\input{../images/rel_error_shifted.pgf}} +\includegraphics{../images/rel_error_shifted.pdf} \caption{Relativer Fehler mit $n=8$, unterschiedlichen Verschiebungstermen $m$ und $z\in(0, 1)$} \end{figure} \end{frame} @@ -181,7 +186,8 @@ m^* \begin{frame}{} \begin{figure}[h] \centering -\scalebox{0.6}{\input{../images/rel_error_range.pgf}} +% \scalebox{0.6}{\input{../images/rel_error_range.pgf}} +\includegraphics{../images/rel_error_range.pdf} \caption{Relativer Fehler mit $n=8$, Verschiebungsterm $m^*$ und $z\in(-5, 5)$} \end{figure} \end{frame} diff --git a/buch/papers/laguerre/presentation/sections/laguerre.tex b/buch/papers/laguerre/presentation/sections/laguerre.tex index ed29387..f99214e 100644 --- a/buch/papers/laguerre/presentation/sections/laguerre.tex +++ b/buch/papers/laguerre/presentation/sections/laguerre.tex @@ -55,7 +55,8 @@ L_n(x) \begin{frame} \begin{figure}[h] \centering -\resizebox{0.74\textwidth}{!}{\input{../images/laguerre_poly.pgf}} +% \resizebox{0.74\textwidth}{!}{\input{../images/laguerre_poly.pgf}} +\includegraphics[width=0.7\textwidth]{../images/laguerre_poly.pdf} \caption{Laguerre-Polynome vom Grad $0$ bis $7$} \end{figure} \end{frame} diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 7cbae48..4ca6913 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -48,13 +48,13 @@ darum müssen wir sie mit einer Funktion multiplizieren, die schneller als jedes Polynom gegen $0$ geht, damit das Integral immer noch konvergiert. Die Laguerre-Polynome $L_n$ bieten hier Abhilfe, -da ihre Gewichtsfunktion $e^{-x}$ schneller +da ihre Gewichtsfunktion $w(x) = e^{-x}$ schneller gegen $0$ konvergiert als jedes Polynom. % In unserem Falle möchten wir die Gauss Quadratur auf die Laguerre-Polynome % $L_n$ ausweiten. % Diese sind orthogonal im Intervall $(0, \infty)$ bezüglich % der Gewichtsfunktion $e^{-x}$. -Gleichung~\eqref{laguerre:gaussquadratur} lässt sich wie folgt +Die Gleichung~\eqref{laguerre:gaussquadratur} lässt sich wie folgt umformulieren: \begin{align} \int_{0}^{\infty} f(x) e^{-x} dx @@ -81,7 +81,7 @@ l_i(x_j) % . \end{align*} die Lagrangschen Interpolationspolynome. -Laut \cite{hildebrand2013introduction} können die Gewicht mit +Laut \cite{laguerre:hildebrand2013introduction} können die Gewichte mit \begin{align*} A_i & = @@ -97,7 +97,7 @@ des orthogonalen Polynoms $\phi_n(x)$, $\forall i =0,\ldots,n$ und \end{align*} dem Normalisierungsfaktor. Wir setzen nun $\phi_n(x) = L_n(x)$ und -nutzen den Vorzeichenwechsel der Laguerrekoeffizienten aus, +nutzen den Vorzeichenwechsel der Laguerre-Koeffizienten aus, damit erhalten wir \begin{align*} A_i @@ -135,7 +135,7 @@ n L_n(x) - n L_{n-1}(x) &= (x - n - 1) L_n(x) + (n + 1) L_{n+1}(x) \end{align*} umgeformt werden und da $x_i$ die Nullstellen von $L_n(x)$ sind, -folgt +vereinfacht sich der Term zu \begin{align*} x_i L'_n(x_i) &= @@ -145,7 +145,7 @@ x_i L'_n(x_i) (n + 1) L_{n+1}(x_i) . \end{align*} -Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein ergibt sicht +Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein ergibt sich \begin{align} \nonumber A_i @@ -168,7 +168,7 @@ Der Fehlerterm $R_n$ folgt direkt aus der Approximation = \sum_{i=1}^n f(x_i) A_i + R_n \end{align*} -und \cite{abramowitz+stegun} gibt ihn als +und \cite{laguerre:abramowitz+stegun} gibt ihn als \begin{align} R_n & = diff --git a/buch/papers/laguerre/references.bib b/buch/papers/laguerre/references.bib index 2371922..d21009b 100644 --- a/buch/papers/laguerre/references.bib +++ b/buch/papers/laguerre/references.bib @@ -3,19 +3,17 @@ % % (c) 2020 Autor, Hochschule Rapperswil % - -@book{hildebrand2013introduction, +@book{laguerre:hildebrand2013introduction, title={Introduction to Numerical Analysis: Second Edition}, author={Hildebrand, F.B.}, isbn={9780486318554}, series={Dover Books on Mathematics}, - url={https://books.google.ch/books?id=ic2jAQAAQBAJ}, year={2013}, publisher={Dover Publications}, pages = {389} } -@book{abramowitz+stegun, +@book{laguerre:abramowitz+stegun, added-at = {2008-06-25T06:25:58.000+0200}, address = {New York}, author = {Abramowitz, Milton and Stegun, Irene A.}, @@ -32,11 +30,21 @@ year = 1972 } -@article{Cassity1965AbcissasCA, +@article{laguerre:Cassity1965AbcissasCA, title={Abcissas, coefficients, and error term for the generalized Gauss-Laguerre quadrature formula using the zero ordinate}, author={C. Ronald Cassity}, journal={Mathematics of Computation}, year={1965}, volume={19}, pages={287-296} +} + +@online{laguerre:lanczos, + title = {Lanczos Approximation}, + author={Eric W. Weisstein}, + url = {https://mathworld.wolfram.com/LanczosApproximation.html}, + date = {2022-07-18}, + year = {2022}, + month = {7}, + day = {18} } \ No newline at end of file diff --git a/buch/papers/laguerre/scripts/gamma_approx.py b/buch/papers/laguerre/scripts/gamma_approx.py index 9f9dae7..5b09e59 100644 --- a/buch/papers/laguerre/scripts/gamma_approx.py +++ b/buch/papers/laguerre/scripts/gamma_approx.py @@ -7,6 +7,7 @@ EPSILON = 1e-7 root = str(Path(__file__).parent) img_path = f"{root}/../images" fontsize = "medium" +cmap = "plasma" def _prep_zeros_and_weights(x, w, n): diff --git a/buch/papers/laguerre/scripts/rel_error_complex.py b/buch/papers/laguerre/scripts/rel_error_complex.py index 5be79be..4a714fa 100644 --- a/buch/papers/laguerre/scripts/rel_error_complex.py +++ b/buch/papers/laguerre/scripts/rel_error_complex.py @@ -24,9 +24,9 @@ if __name__ == "__main__": lag = ga.eval_laguerre_gamma(input, n=8, func="optimal_shifted").reshape(mesh.shape) rel_error = np.abs(ga.calc_rel_error(lanczos, lag)) - fig, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(4, 2.4)) + fig, ax = plt.subplots(clear=True, constrained_layout=True, figsize=(3.5, 2.1)) _c = ax.pcolormesh( - x, y, rel_error, shading="gouraud", cmap="inferno", norm=mpl.colors.LogNorm() + x, y, rel_error, shading="gouraud", cmap=ga.cmap, norm=mpl.colors.LogNorm() ) cbr = fig.colorbar(_c, ax=ax) cbr.minorticks_off() diff --git a/buch/papers/laguerre/scripts/rel_error_range.py b/buch/papers/laguerre/scripts/rel_error_range.py index 43b5450..ece3b6d 100644 --- a/buch/papers/laguerre/scripts/rel_error_range.py +++ b/buch/papers/laguerre/scripts/rel_error_range.py @@ -21,7 +21,7 @@ if __name__ == "__main__": x = np.linspace(xmin + ga.EPSILON, xmax - ga.EPSILON, N) gamma = scipy.special.gamma(x) - fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5)) + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2)) for n in ns: gamma_lag = ga.eval_laguerre_gamma(x, n=n, func="optimal_shifted") rel_err = ga.calc_rel_error(gamma, gamma_lag) diff --git a/buch/papers/laguerre/scripts/rel_error_shifted.py b/buch/papers/laguerre/scripts/rel_error_shifted.py index dc9d177..f53c89b 100644 --- a/buch/papers/laguerre/scripts/rel_error_shifted.py +++ b/buch/papers/laguerre/scripts/rel_error_shifted.py @@ -20,7 +20,7 @@ if __name__ == "__main__": x = np.linspace(step, 1 - step, N + 1) targets = np.arange(10, 14) gamma = scipy.special.gamma(x) - fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.5)) + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(5, 2.1)) for target in targets: gamma_lag = ga.eval_laguerre_gamma(x, target=target, n=n, func="shifted") rel_error = np.abs(ga.calc_rel_error(gamma, gamma_lag)) diff --git a/buch/papers/laguerre/scripts/targets.py b/buch/papers/laguerre/scripts/targets.py index 206b3a1..3bc7f52 100644 --- a/buch/papers/laguerre/scripts/targets.py +++ b/buch/papers/laguerre/scripts/targets.py @@ -42,8 +42,8 @@ if __name__ == "__main__": bests = find_best_loc(N, ns=ns) - fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(4, 2.4)) - v = ax.imshow(bests, cmap="inferno", aspect="auto", interpolation="nearest") + fig, ax = plt.subplots(num=1, clear=True, constrained_layout=True, figsize=(3.5, 2.1)) + v = ax.imshow(bests, cmap=ga.cmap, aspect="auto", interpolation="nearest") plt.colorbar(v, ax=ax, label=r"$m^*$") ticks = np.arange(0, N + 1, N // 5) ax.set_xlim(0, 1) -- cgit v1.2.1 From f0ff46df0f4c212b44cbed4c01ad357c75f0bdbb Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Tue, 19 Jul 2022 07:40:48 +0200 Subject: Fix typos in gamma.tex and quadratur.tex --- buch/papers/laguerre/gamma.tex | 2 +- buch/papers/laguerre/quadratur.tex | 9 +++++---- 2 files changed, 6 insertions(+), 5 deletions(-) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex index eb64fa2..b76daeb 100644 --- a/buch/papers/laguerre/gamma.tex +++ b/buch/papers/laguerre/gamma.tex @@ -245,7 +245,7 @@ Für negative $z$ ergeben sich immer noch Singularitäten, wenn $x \rightarrow 0$. Um $1$ wächst der Term $x^z$ schneller als die Dämpfung $e^{-x}$, aber für $x \rightarrow \infty$ geht der Integrand gegen $0$. -Das führt zu Glockenförmigen Kurven, +Das führt zu glockenförmigen Kurven, die für grosse Exponenten $z$ nach der Stelle $x=1$ schnell anwachsen. Zu grosse Exponenten $z$ sind also immer noch problematisch. Kleine positive $z$ scheinen nun also auch zulässig zu sein. diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 4ca6913..75858df 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -41,10 +41,11 @@ x = a + \frac{1 - t}{t} \end{align*} -auf das Intervall $[0, 1]$ transformiert. -Für unser Fall gilt $a = 0$. +auf das Intervall $[0, 1]$ transformiert, +kann dies behoben werden. +Für unseren Fall gilt $a = 0$. Das Integral eines Polynomes in diesem Intervall ist immer divergent, -darum müssen wir sie mit einer Funktion multiplizieren, +darum müssen wir das Polynome mit einer Funktion multiplizieren, die schneller als jedes Polynom gegen $0$ geht, damit das Integral immer noch konvergiert. Die Laguerre-Polynome $L_n$ bieten hier Abhilfe, @@ -76,7 +77,7 @@ l_i(x_j) = \begin{cases} 1 & i=j \\ -0 & \text{.} +0 & \text{sonst} \end{cases} % . \end{align*} -- cgit v1.2.1 From 2b3fb7f75fd66876ed1a1d77f4fd0b16a6dfe772 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Tue, 19 Jul 2022 08:06:58 +0200 Subject: Add missing files --- buch/papers/laguerre/images/gammapaths.tex | 1024 ++++++++++++++++++++++++++++ buch/papers/laguerre/images/gammaplot.tex | 73 ++ buch/papers/laguerre/quadratur.tex | 2 +- 3 files changed, 1098 insertions(+), 1 deletion(-) create mode 100644 buch/papers/laguerre/images/gammapaths.tex create mode 100644 buch/papers/laguerre/images/gammaplot.tex (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/images/gammapaths.tex b/buch/papers/laguerre/images/gammapaths.tex new file mode 100644 index 0000000..efa0863 --- /dev/null +++ b/buch/papers/laguerre/images/gammapaths.tex @@ -0,0 +1,1024 @@ +\def\gammaplus{({\dx*0.0190},{\dy*52.0728}) + -- ({\dx*0.0200},{\dy*49.4422}) + -- ({\dx*0.0400},{\dy*24.4610}) + -- ({\dx*0.0600},{\dy*16.1457}) + -- ({\dx*0.0800},{\dy*11.9966}) + -- ({\dx*0.1000},{\dy*9.5135}) + -- ({\dx*0.1200},{\dy*7.8633}) + -- ({\dx*0.1400},{\dy*6.6887}) + -- ({\dx*0.1600},{\dy*5.8113}) + -- ({\dx*0.1800},{\dy*5.1318}) + -- ({\dx*0.2000},{\dy*4.5908}) + -- ({\dx*0.2200},{\dy*4.1505}) + -- ({\dx*0.2400},{\dy*3.7855}) + -- ({\dx*0.2600},{\dy*3.4785}) + -- ({\dx*0.2800},{\dy*3.2169}) + -- ({\dx*0.3000},{\dy*2.9916}) + -- ({\dx*0.3200},{\dy*2.7958}) + -- ({\dx*0.3400},{\dy*2.6242}) + -- ({\dx*0.3600},{\dy*2.4727}) + -- ({\dx*0.3800},{\dy*2.3383}) + -- ({\dx*0.4000},{\dy*2.2182}) + -- ({\dx*0.4200},{\dy*2.1104}) + -- ({\dx*0.4400},{\dy*2.0132}) + -- ({\dx*0.4600},{\dy*1.9252}) + -- ({\dx*0.4800},{\dy*1.8453}) + -- ({\dx*0.5000},{\dy*1.7725}) + -- ({\dx*0.5200},{\dy*1.7058}) + -- ({\dx*0.5400},{\dy*1.6448}) + -- ({\dx*0.5600},{\dy*1.5886}) + -- ({\dx*0.5800},{\dy*1.5369}) + -- ({\dx*0.6000},{\dy*1.4892}) + -- ({\dx*0.6200},{\dy*1.4450}) + -- ({\dx*0.6400},{\dy*1.4041}) + -- ({\dx*0.6600},{\dy*1.3662}) + -- ({\dx*0.6800},{\dy*1.3309}) + -- ({\dx*0.7000},{\dy*1.2981}) + -- ({\dx*0.7200},{\dy*1.2675}) + -- ({\dx*0.7400},{\dy*1.2390}) + -- ({\dx*0.7600},{\dy*1.2123}) + -- ({\dx*0.7800},{\dy*1.1875}) + -- ({\dx*0.8000},{\dy*1.1642}) + -- ({\dx*0.8200},{\dy*1.1425}) + -- ({\dx*0.8400},{\dy*1.1222}) + -- ({\dx*0.8600},{\dy*1.1031}) + -- ({\dx*0.8800},{\dy*1.0853}) + -- ({\dx*0.9000},{\dy*1.0686}) + -- ({\dx*0.9200},{\dy*1.0530}) + -- ({\dx*0.9400},{\dy*1.0384}) + -- ({\dx*0.9600},{\dy*1.0247}) + -- ({\dx*0.9800},{\dy*1.0119}) + -- ({\dx*1.0000},{\dy*1.0000}) + -- ({\dx*1.0200},{\dy*0.9888}) + -- ({\dx*1.0400},{\dy*0.9784}) + -- ({\dx*1.0600},{\dy*0.9687}) + -- ({\dx*1.0800},{\dy*0.9597}) + -- ({\dx*1.1000},{\dy*0.9514}) + -- ({\dx*1.1200},{\dy*0.9436}) + -- ({\dx*1.1400},{\dy*0.9364}) + -- ({\dx*1.1600},{\dy*0.9298}) + -- ({\dx*1.1800},{\dy*0.9237}) + -- ({\dx*1.2000},{\dy*0.9182}) + -- ({\dx*1.2200},{\dy*0.9131}) + -- ({\dx*1.2400},{\dy*0.9085}) + -- ({\dx*1.2600},{\dy*0.9044}) + -- ({\dx*1.2800},{\dy*0.9007}) + -- ({\dx*1.3000},{\dy*0.8975}) + -- ({\dx*1.3200},{\dy*0.8946}) + -- ({\dx*1.3400},{\dy*0.8922}) + -- ({\dx*1.3600},{\dy*0.8902}) + -- ({\dx*1.3800},{\dy*0.8885}) + -- ({\dx*1.4000},{\dy*0.8873}) + -- ({\dx*1.4200},{\dy*0.8864}) + -- ({\dx*1.4400},{\dy*0.8858}) + -- ({\dx*1.4600},{\dy*0.8856}) + -- ({\dx*1.4800},{\dy*0.8857}) + -- ({\dx*1.5000},{\dy*0.8862}) + -- ({\dx*1.5200},{\dy*0.8870}) + -- ({\dx*1.5400},{\dy*0.8882}) + -- ({\dx*1.5600},{\dy*0.8896}) + -- ({\dx*1.5800},{\dy*0.8914}) + -- ({\dx*1.6000},{\dy*0.8935}) + -- ({\dx*1.6200},{\dy*0.8959}) + -- ({\dx*1.6400},{\dy*0.8986}) + -- ({\dx*1.6600},{\dy*0.9017}) + -- ({\dx*1.6800},{\dy*0.9050}) + -- ({\dx*1.7000},{\dy*0.9086}) + -- ({\dx*1.7200},{\dy*0.9126}) + -- ({\dx*1.7400},{\dy*0.9168}) + -- ({\dx*1.7600},{\dy*0.9214}) + -- ({\dx*1.7800},{\dy*0.9262}) + -- ({\dx*1.8000},{\dy*0.9314}) + -- ({\dx*1.8200},{\dy*0.9368}) + -- ({\dx*1.8400},{\dy*0.9426}) + -- ({\dx*1.8600},{\dy*0.9487}) + -- ({\dx*1.8800},{\dy*0.9551}) + -- ({\dx*1.9000},{\dy*0.9618}) + -- ({\dx*1.9200},{\dy*0.9688}) + -- ({\dx*1.9400},{\dy*0.9761}) + -- ({\dx*1.9600},{\dy*0.9837}) + -- ({\dx*1.9800},{\dy*0.9917}) + -- ({\dx*2.0000},{\dy*1.0000}) + -- ({\dx*2.0200},{\dy*1.0086}) + -- ({\dx*2.0400},{\dy*1.0176}) + -- ({\dx*2.0600},{\dy*1.0269}) + -- ({\dx*2.0800},{\dy*1.0365}) + -- ({\dx*2.1000},{\dy*1.0465}) + -- ({\dx*2.1200},{\dy*1.0568}) + -- ({\dx*2.1400},{\dy*1.0675}) + -- ({\dx*2.1600},{\dy*1.0786}) + -- ({\dx*2.1800},{\dy*1.0900}) + -- ({\dx*2.2000},{\dy*1.1018}) + -- ({\dx*2.2200},{\dy*1.1140}) + -- ({\dx*2.2400},{\dy*1.1266}) + -- ({\dx*2.2600},{\dy*1.1395}) + -- ({\dx*2.2800},{\dy*1.1529}) + -- ({\dx*2.3000},{\dy*1.1667}) + -- ({\dx*2.3200},{\dy*1.1809}) + -- ({\dx*2.3400},{\dy*1.1956}) + -- ({\dx*2.3600},{\dy*1.2107}) + -- ({\dx*2.3800},{\dy*1.2262}) + -- ({\dx*2.4000},{\dy*1.2422}) + -- ({\dx*2.4200},{\dy*1.2586}) + -- ({\dx*2.4400},{\dy*1.2756}) + -- ({\dx*2.4600},{\dy*1.2930}) + -- ({\dx*2.4800},{\dy*1.3109}) + -- ({\dx*2.5000},{\dy*1.3293}) + -- ({\dx*2.5200},{\dy*1.3483}) + -- ({\dx*2.5400},{\dy*1.3678}) + -- ({\dx*2.5600},{\dy*1.3878}) + -- ({\dx*2.5800},{\dy*1.4084}) + -- ({\dx*2.6000},{\dy*1.4296}) + -- ({\dx*2.6200},{\dy*1.4514}) + -- ({\dx*2.6400},{\dy*1.4738}) + -- ({\dx*2.6600},{\dy*1.4968}) + -- ({\dx*2.6800},{\dy*1.5204}) + -- ({\dx*2.7000},{\dy*1.5447}) + -- ({\dx*2.7200},{\dy*1.5696}) + -- ({\dx*2.7400},{\dy*1.5953}) + -- ({\dx*2.7600},{\dy*1.6216}) + -- ({\dx*2.7800},{\dy*1.6487}) + -- ({\dx*2.8000},{\dy*1.6765}) + -- ({\dx*2.8200},{\dy*1.7051}) + -- ({\dx*2.8400},{\dy*1.7344}) + -- ({\dx*2.8600},{\dy*1.7646}) + -- ({\dx*2.8800},{\dy*1.7955}) + -- ({\dx*2.9000},{\dy*1.8274}) + -- ({\dx*2.9200},{\dy*1.8600}) + -- ({\dx*2.9400},{\dy*1.8936}) + -- ({\dx*2.9600},{\dy*1.9281}) + -- ({\dx*2.9800},{\dy*1.9636}) + -- ({\dx*3.0000},{\dy*2.0000}) + -- ({\dx*3.0200},{\dy*2.0374}) + -- ({\dx*3.0400},{\dy*2.0759}) + -- ({\dx*3.0600},{\dy*2.1153}) + -- ({\dx*3.0800},{\dy*2.1559}) + -- ({\dx*3.1000},{\dy*2.1976}) + -- ({\dx*3.1200},{\dy*2.2405}) + -- ({\dx*3.1400},{\dy*2.2845}) + -- ({\dx*3.1600},{\dy*2.3297}) + -- ({\dx*3.1800},{\dy*2.3762}) + -- ({\dx*3.2000},{\dy*2.4240}) + -- ({\dx*3.2200},{\dy*2.4731}) + -- ({\dx*3.2400},{\dy*2.5235}) + -- ({\dx*3.2600},{\dy*2.5754}) + -- ({\dx*3.2800},{\dy*2.6287}) + -- ({\dx*3.3000},{\dy*2.6834}) + -- ({\dx*3.3200},{\dy*2.7397}) + -- ({\dx*3.3400},{\dy*2.7976}) + -- ({\dx*3.3600},{\dy*2.8571}) + -- ({\dx*3.3800},{\dy*2.9183}) + -- ({\dx*3.4000},{\dy*2.9812}) + -- ({\dx*3.4200},{\dy*3.0459}) + -- ({\dx*3.4400},{\dy*3.1124}) + -- ({\dx*3.4600},{\dy*3.1807}) + -- ({\dx*3.4800},{\dy*3.2510}) + -- ({\dx*3.5000},{\dy*3.3234}) + -- ({\dx*3.5200},{\dy*3.3977}) + -- ({\dx*3.5400},{\dy*3.4742}) + -- ({\dx*3.5600},{\dy*3.5529}) + -- ({\dx*3.5800},{\dy*3.6338}) + -- ({\dx*3.6000},{\dy*3.7170}) + -- ({\dx*3.6200},{\dy*3.8027}) + -- ({\dx*3.6400},{\dy*3.8908}) + -- ({\dx*3.6600},{\dy*3.9814}) + -- ({\dx*3.6800},{\dy*4.0747}) + -- ({\dx*3.7000},{\dy*4.1707}) + -- ({\dx*3.7200},{\dy*4.2694}) + -- ({\dx*3.7400},{\dy*4.3711}) + -- ({\dx*3.7600},{\dy*4.4757}) + -- ({\dx*3.7800},{\dy*4.5833}) + -- ({\dx*3.8000},{\dy*4.6942}) + -- ({\dx*3.8200},{\dy*4.8083}) + -- ({\dx*3.8400},{\dy*4.9257}) + -- ({\dx*3.8600},{\dy*5.0466}) + -- ({\dx*3.8800},{\dy*5.1711}) + -- ({\dx*3.9000},{\dy*5.2993}) + -- ({\dx*3.9200},{\dy*5.4313}) + -- ({\dx*3.9400},{\dy*5.5673}) + -- ({\dx*3.9600},{\dy*5.7073}) + -- ({\dx*3.9800},{\dy*5.8515}) + -- ({\dx*4.0000},{\dy*6.0000}) + -- ({\dx*4.0200},{\dy*6.1530}) + -- ({\dx*4.0400},{\dy*6.3106}) + -- ({\dx*4.0600},{\dy*6.4730}) + -- ({\dx*4.0800},{\dy*6.6403}) + -- ({\dx*4.0810},{\dy*6.6488})} +\def\gammaone{({\dx*-0.9810},{\dy*-53.0814}) + -- ({\dx*-0.9800},{\dy*-50.4512}) + -- ({\dx*-0.9600},{\dy*-25.4802}) + -- ({\dx*-0.9400},{\dy*-17.1763}) + -- ({\dx*-0.9200},{\dy*-13.0397}) + -- ({\dx*-0.9000},{\dy*-10.5706}) + -- ({\dx*-0.8800},{\dy*-8.9355}) + -- ({\dx*-0.8600},{\dy*-7.7775}) + -- ({\dx*-0.8400},{\dy*-6.9182}) + -- ({\dx*-0.8200},{\dy*-6.2583}) + -- ({\dx*-0.8000},{\dy*-5.7386}) + -- ({\dx*-0.7800},{\dy*-5.3211}) + -- ({\dx*-0.7600},{\dy*-4.9809}) + -- ({\dx*-0.7400},{\dy*-4.7006}) + -- ({\dx*-0.7200},{\dy*-4.4678}) + -- ({\dx*-0.7000},{\dy*-4.2737}) + -- ({\dx*-0.6800},{\dy*-4.1114}) + -- ({\dx*-0.6600},{\dy*-3.9760}) + -- ({\dx*-0.6400},{\dy*-3.8636}) + -- ({\dx*-0.6200},{\dy*-3.7714}) + -- ({\dx*-0.6000},{\dy*-3.6969}) + -- ({\dx*-0.5800},{\dy*-3.6386}) + -- ({\dx*-0.5600},{\dy*-3.5950}) + -- ({\dx*-0.5400},{\dy*-3.5652}) + -- ({\dx*-0.5200},{\dy*-3.5487}) + -- ({\dx*-0.5000},{\dy*-3.5449}) + -- ({\dx*-0.4800},{\dy*-3.5538}) + -- ({\dx*-0.4600},{\dy*-3.5756}) + -- ({\dx*-0.4400},{\dy*-3.6105}) + -- ({\dx*-0.4200},{\dy*-3.6594}) + -- ({\dx*-0.4000},{\dy*-3.7230}) + -- ({\dx*-0.3800},{\dy*-3.8027}) + -- ({\dx*-0.3600},{\dy*-3.9004}) + -- ({\dx*-0.3400},{\dy*-4.0181}) + -- ({\dx*-0.3200},{\dy*-4.1590}) + -- ({\dx*-0.3000},{\dy*-4.3269}) + -- ({\dx*-0.2800},{\dy*-4.5267}) + -- ({\dx*-0.2600},{\dy*-4.7652}) + -- ({\dx*-0.2400},{\dy*-5.0514}) + -- ({\dx*-0.2200},{\dy*-5.3976}) + -- ({\dx*-0.2000},{\dy*-5.8211}) + -- ({\dx*-0.1800},{\dy*-6.3472}) + -- ({\dx*-0.1600},{\dy*-7.0135}) + -- ({\dx*-0.1400},{\dy*-7.8795}) + -- ({\dx*-0.1200},{\dy*-9.0442}) + -- ({\dx*-0.1000},{\dy*-10.6863}) + -- ({\dx*-0.0800},{\dy*-13.1627}) + -- ({\dx*-0.0600},{\dy*-17.3067}) + -- ({\dx*-0.0400},{\dy*-25.6183}) + -- ({\dx*-0.0200},{\dy*-50.5974}) + -- ({\dx*-0.0190},{\dy*-53.2279})} +\def\gammatwo{({\dx*-1.9810},{\dy*26.7952}) + -- ({\dx*-1.9800},{\dy*25.4804}) + -- ({\dx*-1.9600},{\dy*13.0001}) + -- ({\dx*-1.9400},{\dy*8.8538}) + -- ({\dx*-1.9200},{\dy*6.7915}) + -- ({\dx*-1.9000},{\dy*5.5635}) + -- ({\dx*-1.8800},{\dy*4.7529}) + -- ({\dx*-1.8600},{\dy*4.1815}) + -- ({\dx*-1.8400},{\dy*3.7599}) + -- ({\dx*-1.8200},{\dy*3.4386}) + -- ({\dx*-1.8000},{\dy*3.1881}) + -- ({\dx*-1.7800},{\dy*2.9894}) + -- ({\dx*-1.7600},{\dy*2.8301}) + -- ({\dx*-1.7400},{\dy*2.7015}) + -- ({\dx*-1.7200},{\dy*2.5976}) + -- ({\dx*-1.7000},{\dy*2.5139}) + -- ({\dx*-1.6800},{\dy*2.4473}) + -- ({\dx*-1.6600},{\dy*2.3952}) + -- ({\dx*-1.6400},{\dy*2.3559}) + -- ({\dx*-1.6200},{\dy*2.3280}) + -- ({\dx*-1.6000},{\dy*2.3106}) + -- ({\dx*-1.5800},{\dy*2.3029}) + -- ({\dx*-1.5600},{\dy*2.3045}) + -- ({\dx*-1.5400},{\dy*2.3151}) + -- ({\dx*-1.5200},{\dy*2.3346}) + -- ({\dx*-1.5000},{\dy*2.3633}) + -- ({\dx*-1.4800},{\dy*2.4012}) + -- ({\dx*-1.4600},{\dy*2.4490}) + -- ({\dx*-1.4400},{\dy*2.5073}) + -- ({\dx*-1.4200},{\dy*2.5770}) + -- ({\dx*-1.4000},{\dy*2.6593}) + -- ({\dx*-1.3800},{\dy*2.7556}) + -- ({\dx*-1.3600},{\dy*2.8679}) + -- ({\dx*-1.3400},{\dy*2.9986}) + -- ({\dx*-1.3200},{\dy*3.1508}) + -- ({\dx*-1.3000},{\dy*3.3283}) + -- ({\dx*-1.2800},{\dy*3.5365}) + -- ({\dx*-1.2600},{\dy*3.7819}) + -- ({\dx*-1.2400},{\dy*4.0737}) + -- ({\dx*-1.2200},{\dy*4.4243}) + -- ({\dx*-1.2000},{\dy*4.8510}) + -- ({\dx*-1.1800},{\dy*5.3790}) + -- ({\dx*-1.1600},{\dy*6.0461}) + -- ({\dx*-1.1400},{\dy*6.9118}) + -- ({\dx*-1.1200},{\dy*8.0752}) + -- ({\dx*-1.1000},{\dy*9.7148}) + -- ({\dx*-1.0800},{\dy*12.1877}) + -- ({\dx*-1.0600},{\dy*16.3271}) + -- ({\dx*-1.0400},{\dy*24.6330}) + -- ({\dx*-1.0200},{\dy*49.6053}) + -- ({\dx*-1.0190},{\dy*52.2354})} +\def\gammathree{({\dx*-2.9810},{\dy*-8.9887}) + -- ({\dx*-2.9800},{\dy*-8.5505}) + -- ({\dx*-2.9600},{\dy*-4.3919}) + -- ({\dx*-2.9400},{\dy*-3.0115}) + -- ({\dx*-2.9200},{\dy*-2.3259}) + -- ({\dx*-2.9000},{\dy*-1.9184}) + -- ({\dx*-2.8800},{\dy*-1.6503}) + -- ({\dx*-2.8600},{\dy*-1.4621}) + -- ({\dx*-2.8400},{\dy*-1.3239}) + -- ({\dx*-2.8200},{\dy*-1.2194}) + -- ({\dx*-2.8000},{\dy*-1.1386}) + -- ({\dx*-2.7800},{\dy*-1.0753}) + -- ({\dx*-2.7600},{\dy*-1.0254}) + -- ({\dx*-2.7400},{\dy*-0.9859}) + -- ({\dx*-2.7200},{\dy*-0.9550}) + -- ({\dx*-2.7000},{\dy*-0.9311}) + -- ({\dx*-2.6800},{\dy*-0.9132}) + -- ({\dx*-2.6600},{\dy*-0.9004}) + -- ({\dx*-2.6400},{\dy*-0.8924}) + -- ({\dx*-2.6200},{\dy*-0.8886}) + -- ({\dx*-2.6000},{\dy*-0.8887}) + -- ({\dx*-2.5800},{\dy*-0.8926}) + -- ({\dx*-2.5600},{\dy*-0.9002}) + -- ({\dx*-2.5400},{\dy*-0.9115}) + -- ({\dx*-2.5200},{\dy*-0.9264}) + -- ({\dx*-2.5000},{\dy*-0.9453}) + -- ({\dx*-2.4800},{\dy*-0.9682}) + -- ({\dx*-2.4600},{\dy*-0.9955}) + -- ({\dx*-2.4400},{\dy*-1.0276}) + -- ({\dx*-2.4200},{\dy*-1.0649}) + -- ({\dx*-2.4000},{\dy*-1.1080}) + -- ({\dx*-2.3800},{\dy*-1.1578}) + -- ({\dx*-2.3600},{\dy*-1.2152}) + -- ({\dx*-2.3400},{\dy*-1.2815}) + -- ({\dx*-2.3200},{\dy*-1.3581}) + -- ({\dx*-2.3000},{\dy*-1.4471}) + -- ({\dx*-2.2800},{\dy*-1.5511}) + -- ({\dx*-2.2600},{\dy*-1.6734}) + -- ({\dx*-2.2400},{\dy*-1.8186}) + -- ({\dx*-2.2200},{\dy*-1.9929}) + -- ({\dx*-2.2000},{\dy*-2.2050}) + -- ({\dx*-2.1800},{\dy*-2.4674}) + -- ({\dx*-2.1600},{\dy*-2.7991}) + -- ({\dx*-2.1400},{\dy*-3.2298}) + -- ({\dx*-2.1200},{\dy*-3.8091}) + -- ({\dx*-2.1000},{\dy*-4.6261}) + -- ({\dx*-2.0800},{\dy*-5.8595}) + -- ({\dx*-2.0600},{\dy*-7.9258}) + -- ({\dx*-2.0400},{\dy*-12.0750}) + -- ({\dx*-2.0200},{\dy*-24.5571}) + -- ({\dx*-2.0190},{\dy*-25.8719})} +\def\gammafour{({\dx*-3.9950},{\dy*8.3966}) + -- ({\dx*-3.9800},{\dy*2.1484}) + -- ({\dx*-3.9600},{\dy*1.1091}) + -- ({\dx*-3.9400},{\dy*0.7643}) + -- ({\dx*-3.9200},{\dy*0.5933}) + -- ({\dx*-3.9000},{\dy*0.4919}) + -- ({\dx*-3.8800},{\dy*0.4253}) + -- ({\dx*-3.8600},{\dy*0.3788}) + -- ({\dx*-3.8400},{\dy*0.3448}) + -- ({\dx*-3.8200},{\dy*0.3192}) + -- ({\dx*-3.8000},{\dy*0.2996}) + -- ({\dx*-3.7800},{\dy*0.2845}) + -- ({\dx*-3.7600},{\dy*0.2727}) + -- ({\dx*-3.7400},{\dy*0.2636}) + -- ({\dx*-3.7200},{\dy*0.2567}) + -- ({\dx*-3.7000},{\dy*0.2516}) + -- ({\dx*-3.6800},{\dy*0.2481}) + -- ({\dx*-3.6600},{\dy*0.2460}) + -- ({\dx*-3.6400},{\dy*0.2452}) + -- ({\dx*-3.6200},{\dy*0.2455}) + -- ({\dx*-3.6000},{\dy*0.2469}) + -- ({\dx*-3.5800},{\dy*0.2493}) + -- ({\dx*-3.5600},{\dy*0.2529}) + -- ({\dx*-3.5400},{\dy*0.2575}) + -- ({\dx*-3.5200},{\dy*0.2632}) + -- ({\dx*-3.5000},{\dy*0.2701}) + -- ({\dx*-3.4800},{\dy*0.2782}) + -- ({\dx*-3.4600},{\dy*0.2877}) + -- ({\dx*-3.4400},{\dy*0.2987}) + -- ({\dx*-3.4200},{\dy*0.3114}) + -- ({\dx*-3.4000},{\dy*0.3259}) + -- ({\dx*-3.3800},{\dy*0.3425}) + -- ({\dx*-3.3600},{\dy*0.3617}) + -- ({\dx*-3.3400},{\dy*0.3837}) + -- ({\dx*-3.3200},{\dy*0.4091}) + -- ({\dx*-3.3000},{\dy*0.4385}) + -- ({\dx*-3.2800},{\dy*0.4729}) + -- ({\dx*-3.2600},{\dy*0.5133}) + -- ({\dx*-3.2400},{\dy*0.5613}) + -- ({\dx*-3.2200},{\dy*0.6189}) + -- ({\dx*-3.2000},{\dy*0.6891}) + -- ({\dx*-3.1800},{\dy*0.7759}) + -- ({\dx*-3.1600},{\dy*0.8858}) + -- ({\dx*-3.1400},{\dy*1.0286}) + -- ({\dx*-3.1200},{\dy*1.2209}) + -- ({\dx*-3.1000},{\dy*1.4923}) + -- ({\dx*-3.0800},{\dy*1.9024}) + -- ({\dx*-3.0600},{\dy*2.5901}) + -- ({\dx*-3.0400},{\dy*3.9720}) + -- ({\dx*-3.0200},{\dy*8.1315}) + -- ({\dx*-3.0050},{\dy*33.1259})} +\def\gammafive{({\dx*-4.9990},{\dy*-8.3476}) + -- ({\dx*-4.9800},{\dy*-0.4314}) + -- ({\dx*-4.9600},{\dy*-0.2236}) + -- ({\dx*-4.9400},{\dy*-0.1547}) + -- ({\dx*-4.9200},{\dy*-0.1206}) + -- ({\dx*-4.9000},{\dy*-0.1004}) + -- ({\dx*-4.8800},{\dy*-0.0872}) + -- ({\dx*-4.8600},{\dy*-0.0779}) + -- ({\dx*-4.8400},{\dy*-0.0712}) + -- ({\dx*-4.8200},{\dy*-0.0662}) + -- ({\dx*-4.8000},{\dy*-0.0624}) + -- ({\dx*-4.7800},{\dy*-0.0595}) + -- ({\dx*-4.7600},{\dy*-0.0573}) + -- ({\dx*-4.7400},{\dy*-0.0556}) + -- ({\dx*-4.7200},{\dy*-0.0544}) + -- ({\dx*-4.7000},{\dy*-0.0535}) + -- ({\dx*-4.6800},{\dy*-0.0530}) + -- ({\dx*-4.6600},{\dy*-0.0528}) + -- ({\dx*-4.6400},{\dy*-0.0528}) + -- ({\dx*-4.6200},{\dy*-0.0531}) + -- ({\dx*-4.6000},{\dy*-0.0537}) + -- ({\dx*-4.5800},{\dy*-0.0544}) + -- ({\dx*-4.5600},{\dy*-0.0555}) + -- ({\dx*-4.5400},{\dy*-0.0567}) + -- ({\dx*-4.5200},{\dy*-0.0582}) + -- ({\dx*-4.5000},{\dy*-0.0600}) + -- ({\dx*-4.4800},{\dy*-0.0621}) + -- ({\dx*-4.4600},{\dy*-0.0645}) + -- ({\dx*-4.4400},{\dy*-0.0673}) + -- ({\dx*-4.4200},{\dy*-0.0704}) + -- ({\dx*-4.4000},{\dy*-0.0741}) + -- ({\dx*-4.3800},{\dy*-0.0782}) + -- ({\dx*-4.3600},{\dy*-0.0830}) + -- ({\dx*-4.3400},{\dy*-0.0884}) + -- ({\dx*-4.3200},{\dy*-0.0947}) + -- ({\dx*-4.3000},{\dy*-0.1020}) + -- ({\dx*-4.2800},{\dy*-0.1105}) + -- ({\dx*-4.2600},{\dy*-0.1205}) + -- ({\dx*-4.2400},{\dy*-0.1324}) + -- ({\dx*-4.2200},{\dy*-0.1467}) + -- ({\dx*-4.2000},{\dy*-0.1641}) + -- ({\dx*-4.1800},{\dy*-0.1856}) + -- ({\dx*-4.1600},{\dy*-0.2129}) + -- ({\dx*-4.1400},{\dy*-0.2485}) + -- ({\dx*-4.1200},{\dy*-0.2963}) + -- ({\dx*-4.1000},{\dy*-0.3640}) + -- ({\dx*-4.0800},{\dy*-0.4663}) + -- ({\dx*-4.0600},{\dy*-0.6380}) + -- ({\dx*-4.0400},{\dy*-0.9832}) + -- ({\dx*-4.0200},{\dy*-2.0228}) + -- ({\dx*-4.0010},{\dy*-41.6040})} +\def\gammasix{({\dx*-5.9998},{\dy*6.9470}) + -- ({\dx*-5.9800},{\dy*0.0721}) + -- ({\dx*-5.9600},{\dy*0.0375}) + -- ({\dx*-5.9400},{\dy*0.0260}) + -- ({\dx*-5.9200},{\dy*0.0204}) + -- ({\dx*-5.9000},{\dy*0.0170}) + -- ({\dx*-5.8800},{\dy*0.0148}) + -- ({\dx*-5.8600},{\dy*0.0133}) + -- ({\dx*-5.8400},{\dy*0.0122}) + -- ({\dx*-5.8200},{\dy*0.0114}) + -- ({\dx*-5.8000},{\dy*0.0108}) + -- ({\dx*-5.7800},{\dy*0.0103}) + -- ({\dx*-5.7600},{\dy*0.0099}) + -- ({\dx*-5.7400},{\dy*0.0097}) + -- ({\dx*-5.7200},{\dy*0.0095}) + -- ({\dx*-5.7000},{\dy*0.0094}) + -- ({\dx*-5.6800},{\dy*0.0093}) + -- ({\dx*-5.6600},{\dy*0.0093}) + -- ({\dx*-5.6400},{\dy*0.0094}) + -- ({\dx*-5.6200},{\dy*0.0095}) + -- ({\dx*-5.6000},{\dy*0.0096}) + -- ({\dx*-5.5800},{\dy*0.0098}) + -- ({\dx*-5.5600},{\dy*0.0100}) + -- ({\dx*-5.5400},{\dy*0.0102}) + -- ({\dx*-5.5200},{\dy*0.0105}) + -- ({\dx*-5.5000},{\dy*0.0109}) + -- ({\dx*-5.4800},{\dy*0.0113}) + -- ({\dx*-5.4600},{\dy*0.0118}) + -- ({\dx*-5.4400},{\dy*0.0124}) + -- ({\dx*-5.4200},{\dy*0.0130}) + -- ({\dx*-5.4000},{\dy*0.0137}) + -- ({\dx*-5.3800},{\dy*0.0145}) + -- ({\dx*-5.3600},{\dy*0.0155}) + -- ({\dx*-5.3400},{\dy*0.0166}) + -- ({\dx*-5.3200},{\dy*0.0178}) + -- ({\dx*-5.3000},{\dy*0.0192}) + -- ({\dx*-5.2800},{\dy*0.0209}) + -- ({\dx*-5.2600},{\dy*0.0229}) + -- ({\dx*-5.2400},{\dy*0.0253}) + -- ({\dx*-5.2200},{\dy*0.0281}) + -- ({\dx*-5.2000},{\dy*0.0316}) + -- ({\dx*-5.1800},{\dy*0.0358}) + -- ({\dx*-5.1600},{\dy*0.0413}) + -- ({\dx*-5.1400},{\dy*0.0483}) + -- ({\dx*-5.1200},{\dy*0.0579}) + -- ({\dx*-5.1000},{\dy*0.0714}) + -- ({\dx*-5.0800},{\dy*0.0918}) + -- ({\dx*-5.0600},{\dy*0.1261}) + -- ({\dx*-5.0400},{\dy*0.1951}) + -- ({\dx*-5.0200},{\dy*0.4029}) + -- ({\dx*-5.0002},{\dy*41.6525})} +\def\gammasinplus{({\dx*0.0190},{\dy*52.1325}) + -- ({\dx*0.0200},{\dy*49.5050}) + -- ({\dx*0.0400},{\dy*24.5863}) + -- ({\dx*0.0600},{\dy*16.3331}) + -- ({\dx*0.0800},{\dy*12.2453}) + -- ({\dx*0.1000},{\dy*9.8225}) + -- ({\dx*0.1200},{\dy*8.2314}) + -- ({\dx*0.1400},{\dy*7.1145}) + -- ({\dx*0.1600},{\dy*6.2930}) + -- ({\dx*0.1800},{\dy*5.6676}) + -- ({\dx*0.2000},{\dy*5.1786}) + -- ({\dx*0.2200},{\dy*4.7879}) + -- ({\dx*0.2400},{\dy*4.4701}) + -- ({\dx*0.2600},{\dy*4.2074}) + -- ({\dx*0.2800},{\dy*3.9874}) + -- ({\dx*0.3000},{\dy*3.8006}) + -- ({\dx*0.3200},{\dy*3.6401}) + -- ({\dx*0.3400},{\dy*3.5005}) + -- ({\dx*0.3600},{\dy*3.3776}) + -- ({\dx*0.3800},{\dy*3.2680}) + -- ({\dx*0.4000},{\dy*3.1692}) + -- ({\dx*0.4200},{\dy*3.0790}) + -- ({\dx*0.4400},{\dy*2.9955}) + -- ({\dx*0.4600},{\dy*2.9173}) + -- ({\dx*0.4800},{\dy*2.8433}) + -- ({\dx*0.5000},{\dy*2.7725}) + -- ({\dx*0.5200},{\dy*2.7039}) + -- ({\dx*0.5400},{\dy*2.6369}) + -- ({\dx*0.5600},{\dy*2.5709}) + -- ({\dx*0.5800},{\dy*2.5055}) + -- ({\dx*0.6000},{\dy*2.4402}) + -- ({\dx*0.6200},{\dy*2.3748}) + -- ({\dx*0.6400},{\dy*2.3090}) + -- ({\dx*0.6600},{\dy*2.2425}) + -- ({\dx*0.6800},{\dy*2.1752}) + -- ({\dx*0.7000},{\dy*2.1071}) + -- ({\dx*0.7200},{\dy*2.0380}) + -- ({\dx*0.7400},{\dy*1.9679}) + -- ({\dx*0.7600},{\dy*1.8969}) + -- ({\dx*0.7800},{\dy*1.8249}) + -- ({\dx*0.8000},{\dy*1.7520}) + -- ({\dx*0.8200},{\dy*1.6783}) + -- ({\dx*0.8400},{\dy*1.6039}) + -- ({\dx*0.8600},{\dy*1.5289}) + -- ({\dx*0.8800},{\dy*1.4534}) + -- ({\dx*0.9000},{\dy*1.3776}) + -- ({\dx*0.9200},{\dy*1.3017}) + -- ({\dx*0.9400},{\dy*1.2258}) + -- ({\dx*0.9600},{\dy*1.1501}) + -- ({\dx*0.9800},{\dy*1.0747}) + -- ({\dx*1.0000},{\dy*1.0000}) + -- ({\dx*1.0200},{\dy*0.9261}) + -- ({\dx*1.0400},{\dy*0.8531}) + -- ({\dx*1.0600},{\dy*0.7814}) + -- ({\dx*1.0800},{\dy*0.7110}) + -- ({\dx*1.1000},{\dy*0.6423}) + -- ({\dx*1.1200},{\dy*0.5755}) + -- ({\dx*1.1400},{\dy*0.5106}) + -- ({\dx*1.1600},{\dy*0.4480}) + -- ({\dx*1.1800},{\dy*0.3879}) + -- ({\dx*1.2000},{\dy*0.3304}) + -- ({\dx*1.2200},{\dy*0.2757}) + -- ({\dx*1.2400},{\dy*0.2240}) + -- ({\dx*1.2600},{\dy*0.1754}) + -- ({\dx*1.2800},{\dy*0.1302}) + -- ({\dx*1.3000},{\dy*0.0885}) + -- ({\dx*1.3200},{\dy*0.0503}) + -- ({\dx*1.3400},{\dy*0.0159}) + -- ({\dx*1.3600},{\dy*-0.0146}) + -- ({\dx*1.3800},{\dy*-0.0412}) + -- ({\dx*1.4000},{\dy*-0.0638}) + -- ({\dx*1.4200},{\dy*-0.0822}) + -- ({\dx*1.4400},{\dy*-0.0965}) + -- ({\dx*1.4600},{\dy*-0.1065}) + -- ({\dx*1.4800},{\dy*-0.1123}) + -- ({\dx*1.5000},{\dy*-0.1138}) + -- ({\dx*1.5200},{\dy*-0.1110}) + -- ({\dx*1.5400},{\dy*-0.1039}) + -- ({\dx*1.5600},{\dy*-0.0926}) + -- ({\dx*1.5800},{\dy*-0.0772}) + -- ({\dx*1.6000},{\dy*-0.0575}) + -- ({\dx*1.6200},{\dy*-0.0339}) + -- ({\dx*1.6400},{\dy*-0.0062}) + -- ({\dx*1.6600},{\dy*0.0254}) + -- ({\dx*1.6800},{\dy*0.0607}) + -- ({\dx*1.7000},{\dy*0.0996}) + -- ({\dx*1.7200},{\dy*0.1421}) + -- ({\dx*1.7400},{\dy*0.1879}) + -- ({\dx*1.7600},{\dy*0.2368}) + -- ({\dx*1.7800},{\dy*0.2888}) + -- ({\dx*1.8000},{\dy*0.3436}) + -- ({\dx*1.8200},{\dy*0.4010}) + -- ({\dx*1.8400},{\dy*0.4609}) + -- ({\dx*1.8600},{\dy*0.5229}) + -- ({\dx*1.8800},{\dy*0.5869}) + -- ({\dx*1.9000},{\dy*0.6527}) + -- ({\dx*1.9200},{\dy*0.7201}) + -- ({\dx*1.9400},{\dy*0.7887}) + -- ({\dx*1.9600},{\dy*0.8584}) + -- ({\dx*1.9800},{\dy*0.9289}) + -- ({\dx*2.0000},{\dy*1.0000}) + -- ({\dx*2.0200},{\dy*1.0714}) + -- ({\dx*2.0400},{\dy*1.1429}) + -- ({\dx*2.0600},{\dy*1.2142}) + -- ({\dx*2.0800},{\dy*1.2852}) + -- ({\dx*2.1000},{\dy*1.3555}) + -- ({\dx*2.1200},{\dy*1.4249}) + -- ({\dx*2.1400},{\dy*1.4933}) + -- ({\dx*2.1600},{\dy*1.5603}) + -- ({\dx*2.1800},{\dy*1.6258}) + -- ({\dx*2.2000},{\dy*1.6896}) + -- ({\dx*2.2200},{\dy*1.7514}) + -- ({\dx*2.2400},{\dy*1.8111}) + -- ({\dx*2.2600},{\dy*1.8685}) + -- ({\dx*2.2800},{\dy*1.9234}) + -- ({\dx*2.3000},{\dy*1.9757}) + -- ({\dx*2.3200},{\dy*2.0253}) + -- ({\dx*2.3400},{\dy*2.0719}) + -- ({\dx*2.3600},{\dy*2.1155}) + -- ({\dx*2.3800},{\dy*2.1560}) + -- ({\dx*2.4000},{\dy*2.1932}) + -- ({\dx*2.4200},{\dy*2.2272}) + -- ({\dx*2.4400},{\dy*2.2578}) + -- ({\dx*2.4600},{\dy*2.2851}) + -- ({\dx*2.4800},{\dy*2.3089}) + -- ({\dx*2.5000},{\dy*2.3293}) + -- ({\dx*2.5200},{\dy*2.3463}) + -- ({\dx*2.5400},{\dy*2.3599}) + -- ({\dx*2.5600},{\dy*2.3701}) + -- ({\dx*2.5800},{\dy*2.3770}) + -- ({\dx*2.6000},{\dy*2.3807}) + -- ({\dx*2.6200},{\dy*2.3812}) + -- ({\dx*2.6400},{\dy*2.3786}) + -- ({\dx*2.6600},{\dy*2.3731}) + -- ({\dx*2.6800},{\dy*2.3647}) + -- ({\dx*2.7000},{\dy*2.3537}) + -- ({\dx*2.7200},{\dy*2.3402}) + -- ({\dx*2.7400},{\dy*2.3242}) + -- ({\dx*2.7600},{\dy*2.3062}) + -- ({\dx*2.7800},{\dy*2.2861}) + -- ({\dx*2.8000},{\dy*2.2643}) + -- ({\dx*2.8200},{\dy*2.2409}) + -- ({\dx*2.8400},{\dy*2.2162}) + -- ({\dx*2.8600},{\dy*2.1903}) + -- ({\dx*2.8800},{\dy*2.1637}) + -- ({\dx*2.9000},{\dy*2.1364}) + -- ({\dx*2.9200},{\dy*2.1087}) + -- ({\dx*2.9400},{\dy*2.0810}) + -- ({\dx*2.9600},{\dy*2.0535}) + -- ({\dx*2.9800},{\dy*2.0264}) + -- ({\dx*3.0000},{\dy*2.0000}) + -- ({\dx*3.0200},{\dy*1.9746}) + -- ({\dx*3.0400},{\dy*1.9505}) + -- ({\dx*3.0600},{\dy*1.9280}) + -- ({\dx*3.0800},{\dy*1.9072}) + -- ({\dx*3.1000},{\dy*1.8886}) + -- ({\dx*3.1200},{\dy*1.8723}) + -- ({\dx*3.1400},{\dy*1.8587}) + -- ({\dx*3.1600},{\dy*1.8480}) + -- ({\dx*3.1800},{\dy*1.8404}) + -- ({\dx*3.2000},{\dy*1.8362}) + -- ({\dx*3.2200},{\dy*1.8356}) + -- ({\dx*3.2400},{\dy*1.8390}) + -- ({\dx*3.2600},{\dy*1.8464}) + -- ({\dx*3.2800},{\dy*1.8581}) + -- ({\dx*3.3000},{\dy*1.8744}) + -- ({\dx*3.3200},{\dy*1.8954}) + -- ({\dx*3.3400},{\dy*1.9213}) + -- ({\dx*3.3600},{\dy*1.9523}) + -- ({\dx*3.3800},{\dy*1.9885}) + -- ({\dx*3.4000},{\dy*2.0301}) + -- ({\dx*3.4200},{\dy*2.0773}) + -- ({\dx*3.4400},{\dy*2.1301}) + -- ({\dx*3.4600},{\dy*2.1886}) + -- ({\dx*3.4800},{\dy*2.2530}) + -- ({\dx*3.5000},{\dy*2.3234}) + -- ({\dx*3.5200},{\dy*2.3997}) + -- ({\dx*3.5400},{\dy*2.4821}) + -- ({\dx*3.5600},{\dy*2.5706}) + -- ({\dx*3.5800},{\dy*2.6652}) + -- ({\dx*3.6000},{\dy*2.7660}) + -- ({\dx*3.6200},{\dy*2.8729}) + -- ({\dx*3.6400},{\dy*2.9859}) + -- ({\dx*3.6600},{\dy*3.1051}) + -- ({\dx*3.6800},{\dy*3.2303}) + -- ({\dx*3.7000},{\dy*3.3616}) + -- ({\dx*3.7200},{\dy*3.4989}) + -- ({\dx*3.7400},{\dy*3.6421}) + -- ({\dx*3.7600},{\dy*3.7911}) + -- ({\dx*3.7800},{\dy*3.9459}) + -- ({\dx*3.8000},{\dy*4.1064}) + -- ({\dx*3.8200},{\dy*4.2724}) + -- ({\dx*3.8400},{\dy*4.4440}) + -- ({\dx*3.8600},{\dy*4.6209}) + -- ({\dx*3.8800},{\dy*4.8030}) + -- ({\dx*3.9000},{\dy*4.9903}) + -- ({\dx*3.9200},{\dy*5.1826}) + -- ({\dx*3.9400},{\dy*5.3799}) + -- ({\dx*3.9600},{\dy*5.5819}) + -- ({\dx*3.9800},{\dy*5.7887}) + -- ({\dx*4.0000},{\dy*6.0000}) + -- ({\dx*4.0200},{\dy*6.2158}) + -- ({\dx*4.0400},{\dy*6.4359}) + -- ({\dx*4.0600},{\dy*6.6603}) + -- ({\dx*4.0800},{\dy*6.8889}) + -- ({\dx*4.0810},{\dy*6.9005})} +\def\gammasinone{({\dx*-0.9810},{\dy*-53.1410}) + -- ({\dx*-0.9800},{\dy*-50.5140}) + -- ({\dx*-0.9600},{\dy*-25.6055}) + -- ({\dx*-0.9400},{\dy*-17.3637}) + -- ({\dx*-0.9200},{\dy*-13.2884}) + -- ({\dx*-0.9000},{\dy*-10.8796}) + -- ({\dx*-0.8800},{\dy*-9.3036}) + -- ({\dx*-0.8600},{\dy*-8.2033}) + -- ({\dx*-0.8400},{\dy*-7.3999}) + -- ({\dx*-0.8200},{\dy*-6.7941}) + -- ({\dx*-0.8000},{\dy*-6.3263}) + -- ({\dx*-0.7800},{\dy*-5.9586}) + -- ({\dx*-0.7600},{\dy*-5.6655}) + -- ({\dx*-0.7400},{\dy*-5.4296}) + -- ({\dx*-0.7200},{\dy*-5.2384}) + -- ({\dx*-0.7000},{\dy*-5.0827}) + -- ({\dx*-0.6800},{\dy*-4.9557}) + -- ({\dx*-0.6600},{\dy*-4.8523}) + -- ({\dx*-0.6400},{\dy*-4.7685}) + -- ({\dx*-0.6200},{\dy*-4.7012}) + -- ({\dx*-0.6000},{\dy*-4.6480}) + -- ({\dx*-0.5800},{\dy*-4.6072}) + -- ({\dx*-0.5600},{\dy*-4.5773}) + -- ({\dx*-0.5400},{\dy*-4.5573}) + -- ({\dx*-0.5200},{\dy*-4.5467}) + -- ({\dx*-0.5000},{\dy*-4.5449}) + -- ({\dx*-0.4800},{\dy*-4.5519}) + -- ({\dx*-0.4600},{\dy*-4.5677}) + -- ({\dx*-0.4400},{\dy*-4.5928}) + -- ({\dx*-0.4200},{\dy*-4.6279}) + -- ({\dx*-0.4000},{\dy*-4.6740}) + -- ({\dx*-0.3800},{\dy*-4.7325}) + -- ({\dx*-0.3600},{\dy*-4.8052}) + -- ({\dx*-0.3400},{\dy*-4.8944}) + -- ({\dx*-0.3200},{\dy*-5.0033}) + -- ({\dx*-0.3000},{\dy*-5.1359}) + -- ({\dx*-0.2800},{\dy*-5.2972}) + -- ({\dx*-0.2600},{\dy*-5.4942}) + -- ({\dx*-0.2400},{\dy*-5.7359}) + -- ({\dx*-0.2200},{\dy*-6.0350}) + -- ({\dx*-0.2000},{\dy*-6.4089}) + -- ({\dx*-0.1800},{\dy*-6.8830}) + -- ({\dx*-0.1600},{\dy*-7.4952}) + -- ({\dx*-0.1400},{\dy*-8.3052}) + -- ({\dx*-0.1200},{\dy*-9.4124}) + -- ({\dx*-0.1000},{\dy*-10.9953}) + -- ({\dx*-0.0800},{\dy*-13.4114}) + -- ({\dx*-0.0600},{\dy*-17.4941}) + -- ({\dx*-0.0400},{\dy*-25.7436}) + -- ({\dx*-0.0200},{\dy*-50.6602}) + -- ({\dx*-0.0190},{\dy*-53.2876})} +\def\gammasintwo{({\dx*-1.9810},{\dy*26.8549}) + -- ({\dx*-1.9800},{\dy*25.5432}) + -- ({\dx*-1.9600},{\dy*13.1254}) + -- ({\dx*-1.9400},{\dy*9.0411}) + -- ({\dx*-1.9200},{\dy*7.0402}) + -- ({\dx*-1.9000},{\dy*5.8725}) + -- ({\dx*-1.8800},{\dy*5.1211}) + -- ({\dx*-1.8600},{\dy*4.6073}) + -- ({\dx*-1.8400},{\dy*4.2416}) + -- ({\dx*-1.8200},{\dy*3.9745}) + -- ({\dx*-1.8000},{\dy*3.7759}) + -- ({\dx*-1.7800},{\dy*3.6268}) + -- ({\dx*-1.7600},{\dy*3.5146}) + -- ({\dx*-1.7400},{\dy*3.4305}) + -- ({\dx*-1.7200},{\dy*3.3681}) + -- ({\dx*-1.7000},{\dy*3.3229}) + -- ({\dx*-1.6800},{\dy*3.2916}) + -- ({\dx*-1.6600},{\dy*3.2715}) + -- ({\dx*-1.6400},{\dy*3.2607}) + -- ({\dx*-1.6200},{\dy*3.2578}) + -- ({\dx*-1.6000},{\dy*3.2616}) + -- ({\dx*-1.5800},{\dy*3.2715}) + -- ({\dx*-1.5600},{\dy*3.2868}) + -- ({\dx*-1.5400},{\dy*3.3072}) + -- ({\dx*-1.5200},{\dy*3.3327}) + -- ({\dx*-1.5000},{\dy*3.3633}) + -- ({\dx*-1.4800},{\dy*3.3993}) + -- ({\dx*-1.4600},{\dy*3.4412}) + -- ({\dx*-1.4400},{\dy*3.4896}) + -- ({\dx*-1.4200},{\dy*3.5456}) + -- ({\dx*-1.4000},{\dy*3.6103}) + -- ({\dx*-1.3800},{\dy*3.6854}) + -- ({\dx*-1.3600},{\dy*3.7727}) + -- ({\dx*-1.3400},{\dy*3.8749}) + -- ({\dx*-1.3200},{\dy*3.9951}) + -- ({\dx*-1.3000},{\dy*4.1374}) + -- ({\dx*-1.2800},{\dy*4.3070}) + -- ({\dx*-1.2600},{\dy*4.5109}) + -- ({\dx*-1.2400},{\dy*4.7583}) + -- ({\dx*-1.2200},{\dy*5.0617}) + -- ({\dx*-1.2000},{\dy*5.4387}) + -- ({\dx*-1.1800},{\dy*5.9148}) + -- ({\dx*-1.1600},{\dy*6.5279}) + -- ({\dx*-1.1400},{\dy*7.3376}) + -- ({\dx*-1.1200},{\dy*8.4433}) + -- ({\dx*-1.1000},{\dy*10.0238}) + -- ({\dx*-1.0800},{\dy*12.4364}) + -- ({\dx*-1.0600},{\dy*16.5145}) + -- ({\dx*-1.0400},{\dy*24.7583}) + -- ({\dx*-1.0200},{\dy*49.6681}) + -- ({\dx*-1.0190},{\dy*52.2951})} +\def\gammasinthree{({\dx*-2.9810},{\dy*-9.0483}) + -- ({\dx*-2.9800},{\dy*-8.6133}) + -- ({\dx*-2.9600},{\dy*-4.5173}) + -- ({\dx*-2.9400},{\dy*-3.1989}) + -- ({\dx*-2.9200},{\dy*-2.5746}) + -- ({\dx*-2.9000},{\dy*-2.2274}) + -- ({\dx*-2.8800},{\dy*-2.0184}) + -- ({\dx*-2.8600},{\dy*-1.8878}) + -- ({\dx*-2.8400},{\dy*-1.8057}) + -- ({\dx*-2.8200},{\dy*-1.7552}) + -- ({\dx*-2.8000},{\dy*-1.7264}) + -- ({\dx*-2.7800},{\dy*-1.7127}) + -- ({\dx*-2.7600},{\dy*-1.7099}) + -- ({\dx*-2.7400},{\dy*-1.7149}) + -- ({\dx*-2.7200},{\dy*-1.7255}) + -- ({\dx*-2.7000},{\dy*-1.7401}) + -- ({\dx*-2.6800},{\dy*-1.7575}) + -- ({\dx*-2.6600},{\dy*-1.7768}) + -- ({\dx*-2.6400},{\dy*-1.7972}) + -- ({\dx*-2.6200},{\dy*-1.8183}) + -- ({\dx*-2.6000},{\dy*-1.8397}) + -- ({\dx*-2.5800},{\dy*-1.8612}) + -- ({\dx*-2.5600},{\dy*-1.8825}) + -- ({\dx*-2.5400},{\dy*-1.9036}) + -- ({\dx*-2.5200},{\dy*-1.9245}) + -- ({\dx*-2.5000},{\dy*-1.9453}) + -- ({\dx*-2.4800},{\dy*-1.9663}) + -- ({\dx*-2.4600},{\dy*-1.9877}) + -- ({\dx*-2.4400},{\dy*-2.0099}) + -- ({\dx*-2.4200},{\dy*-2.0335}) + -- ({\dx*-2.4000},{\dy*-2.0591}) + -- ({\dx*-2.3800},{\dy*-2.0876}) + -- ({\dx*-2.3600},{\dy*-2.1200}) + -- ({\dx*-2.3400},{\dy*-2.1578}) + -- ({\dx*-2.3200},{\dy*-2.2024}) + -- ({\dx*-2.3000},{\dy*-2.2561}) + -- ({\dx*-2.2800},{\dy*-2.3216}) + -- ({\dx*-2.2600},{\dy*-2.4024}) + -- ({\dx*-2.2400},{\dy*-2.5032}) + -- ({\dx*-2.2200},{\dy*-2.6303}) + -- ({\dx*-2.2000},{\dy*-2.7928}) + -- ({\dx*-2.1800},{\dy*-3.0032}) + -- ({\dx*-2.1600},{\dy*-3.2809}) + -- ({\dx*-2.1400},{\dy*-3.6556}) + -- ({\dx*-2.1200},{\dy*-4.1772}) + -- ({\dx*-2.1000},{\dy*-4.9351}) + -- ({\dx*-2.0800},{\dy*-6.1082}) + -- ({\dx*-2.0600},{\dy*-8.1132}) + -- ({\dx*-2.0400},{\dy*-12.2003}) + -- ({\dx*-2.0200},{\dy*-24.6199}) + -- ({\dx*-2.0190},{\dy*-25.9316})} +\def\gammasinfour{({\dx*-3.9950},{\dy*8.4124}) + -- ({\dx*-3.9800},{\dy*2.2112}) + -- ({\dx*-3.9600},{\dy*1.2344}) + -- ({\dx*-3.9400},{\dy*0.9517}) + -- ({\dx*-3.9200},{\dy*0.8420}) + -- ({\dx*-3.9000},{\dy*0.8009}) + -- ({\dx*-3.8800},{\dy*0.7935}) + -- ({\dx*-3.8600},{\dy*0.8045}) + -- ({\dx*-3.8400},{\dy*0.8265}) + -- ({\dx*-3.8200},{\dy*0.8550}) + -- ({\dx*-3.8000},{\dy*0.8874}) + -- ({\dx*-3.7800},{\dy*0.9219}) + -- ({\dx*-3.7600},{\dy*0.9573}) + -- ({\dx*-3.7400},{\dy*0.9926}) + -- ({\dx*-3.7200},{\dy*1.0272}) + -- ({\dx*-3.7000},{\dy*1.0607}) + -- ({\dx*-3.6800},{\dy*1.0925}) + -- ({\dx*-3.6600},{\dy*1.1223}) + -- ({\dx*-3.6400},{\dy*1.1500}) + -- ({\dx*-3.6200},{\dy*1.1752}) + -- ({\dx*-3.6000},{\dy*1.1979}) + -- ({\dx*-3.5800},{\dy*1.2179}) + -- ({\dx*-3.5600},{\dy*1.2351}) + -- ({\dx*-3.5400},{\dy*1.2496}) + -- ({\dx*-3.5200},{\dy*1.2612}) + -- ({\dx*-3.5000},{\dy*1.2701}) + -- ({\dx*-3.4800},{\dy*1.2763}) + -- ({\dx*-3.4600},{\dy*1.2798}) + -- ({\dx*-3.4400},{\dy*1.2810}) + -- ({\dx*-3.4200},{\dy*1.2800}) + -- ({\dx*-3.4000},{\dy*1.2769}) + -- ({\dx*-3.3800},{\dy*1.2723}) + -- ({\dx*-3.3600},{\dy*1.2665}) + -- ({\dx*-3.3400},{\dy*1.2600}) + -- ({\dx*-3.3200},{\dy*1.2534}) + -- ({\dx*-3.3000},{\dy*1.2475}) + -- ({\dx*-3.2800},{\dy*1.2434}) + -- ({\dx*-3.2600},{\dy*1.2423}) + -- ({\dx*-3.2400},{\dy*1.2458}) + -- ({\dx*-3.2200},{\dy*1.2563}) + -- ({\dx*-3.2000},{\dy*1.2768}) + -- ({\dx*-3.1800},{\dy*1.3117}) + -- ({\dx*-3.1600},{\dy*1.3676}) + -- ({\dx*-3.1400},{\dy*1.4544}) + -- ({\dx*-3.1200},{\dy*1.5890}) + -- ({\dx*-3.1000},{\dy*1.8013}) + -- ({\dx*-3.0800},{\dy*2.1511}) + -- ({\dx*-3.0600},{\dy*2.7775}) + -- ({\dx*-3.0400},{\dy*4.0974}) + -- ({\dx*-3.0200},{\dy*8.1943}) + -- ({\dx*-3.0050},{\dy*33.1416})} +\def\gammasinfive{({\dx*-4.9990},{\dy*-8.3507}) + -- ({\dx*-4.9800},{\dy*-0.4942}) + -- ({\dx*-4.9600},{\dy*-0.3489}) + -- ({\dx*-4.9400},{\dy*-0.3421}) + -- ({\dx*-4.9200},{\dy*-0.3693}) + -- ({\dx*-4.9000},{\dy*-0.4094}) + -- ({\dx*-4.8800},{\dy*-0.4553}) + -- ({\dx*-4.8600},{\dy*-0.5037}) + -- ({\dx*-4.8400},{\dy*-0.5530}) + -- ({\dx*-4.8200},{\dy*-0.6021}) + -- ({\dx*-4.8000},{\dy*-0.6502}) + -- ({\dx*-4.7800},{\dy*-0.6969}) + -- ({\dx*-4.7600},{\dy*-0.7418}) + -- ({\dx*-4.7400},{\dy*-0.7846}) + -- ({\dx*-4.7200},{\dy*-0.8249}) + -- ({\dx*-4.7000},{\dy*-0.8626}) + -- ({\dx*-4.6800},{\dy*-0.8973}) + -- ({\dx*-4.6600},{\dy*-0.9291}) + -- ({\dx*-4.6400},{\dy*-0.9577}) + -- ({\dx*-4.6200},{\dy*-0.9829}) + -- ({\dx*-4.6000},{\dy*-1.0047}) + -- ({\dx*-4.5800},{\dy*-1.0230}) + -- ({\dx*-4.5600},{\dy*-1.0377}) + -- ({\dx*-4.5400},{\dy*-1.0488}) + -- ({\dx*-4.5200},{\dy*-1.0563}) + -- ({\dx*-4.5000},{\dy*-1.0600}) + -- ({\dx*-4.4800},{\dy*-1.0601}) + -- ({\dx*-4.4600},{\dy*-1.0566}) + -- ({\dx*-4.4400},{\dy*-1.0496}) + -- ({\dx*-4.4200},{\dy*-1.0390}) + -- ({\dx*-4.4000},{\dy*-1.0251}) + -- ({\dx*-4.3800},{\dy*-1.0080}) + -- ({\dx*-4.3600},{\dy*-0.9878}) + -- ({\dx*-4.3400},{\dy*-0.9647}) + -- ({\dx*-4.3200},{\dy*-0.9390}) + -- ({\dx*-4.3000},{\dy*-0.9110}) + -- ({\dx*-4.2800},{\dy*-0.8810}) + -- ({\dx*-4.2600},{\dy*-0.8495}) + -- ({\dx*-4.2400},{\dy*-0.8169}) + -- ({\dx*-4.2200},{\dy*-0.7841}) + -- ({\dx*-4.2000},{\dy*-0.7518}) + -- ({\dx*-4.1800},{\dy*-0.7215}) + -- ({\dx*-4.1600},{\dy*-0.6947}) + -- ({\dx*-4.1400},{\dy*-0.6742}) + -- ({\dx*-4.1200},{\dy*-0.6644}) + -- ({\dx*-4.1000},{\dy*-0.6730}) + -- ({\dx*-4.0800},{\dy*-0.7150}) + -- ({\dx*-4.0600},{\dy*-0.8253}) + -- ({\dx*-4.0400},{\dy*-1.1085}) + -- ({\dx*-4.0200},{\dy*-2.0855}) + -- ({\dx*-4.0010},{\dy*-41.6072})} +\def\gammasinsix{({\dx*-5.9998},{\dy*6.9477}) + -- ({\dx*-5.9800},{\dy*0.1349}) + -- ({\dx*-5.9600},{\dy*0.1629}) + -- ({\dx*-5.9400},{\dy*0.2134}) + -- ({\dx*-5.9200},{\dy*0.2691}) + -- ({\dx*-5.9000},{\dy*0.3260}) + -- ({\dx*-5.8800},{\dy*0.3829}) + -- ({\dx*-5.8600},{\dy*0.4391}) + -- ({\dx*-5.8400},{\dy*0.4940}) + -- ({\dx*-5.8200},{\dy*0.5472}) + -- ({\dx*-5.8000},{\dy*0.5985}) + -- ({\dx*-5.7800},{\dy*0.6477}) + -- ({\dx*-5.7600},{\dy*0.6945}) + -- ({\dx*-5.7400},{\dy*0.7387}) + -- ({\dx*-5.7200},{\dy*0.7800}) + -- ({\dx*-5.7000},{\dy*0.8184}) + -- ({\dx*-5.6800},{\dy*0.8537}) + -- ({\dx*-5.6600},{\dy*0.8856}) + -- ({\dx*-5.6400},{\dy*0.9142}) + -- ({\dx*-5.6200},{\dy*0.9392}) + -- ({\dx*-5.6000},{\dy*0.9606}) + -- ({\dx*-5.5800},{\dy*0.9783}) + -- ({\dx*-5.5600},{\dy*0.9923}) + -- ({\dx*-5.5400},{\dy*1.0024}) + -- ({\dx*-5.5200},{\dy*1.0086}) + -- ({\dx*-5.5000},{\dy*1.0109}) + -- ({\dx*-5.4800},{\dy*1.0094}) + -- ({\dx*-5.4600},{\dy*1.0039}) + -- ({\dx*-5.4400},{\dy*0.9947}) + -- ({\dx*-5.4200},{\dy*0.9816}) + -- ({\dx*-5.4000},{\dy*0.9648}) + -- ({\dx*-5.3800},{\dy*0.9443}) + -- ({\dx*-5.3600},{\dy*0.9203}) + -- ({\dx*-5.3400},{\dy*0.8929}) + -- ({\dx*-5.3200},{\dy*0.8621}) + -- ({\dx*-5.3000},{\dy*0.8283}) + -- ({\dx*-5.2800},{\dy*0.7914}) + -- ({\dx*-5.2600},{\dy*0.7519}) + -- ({\dx*-5.2400},{\dy*0.7098}) + -- ({\dx*-5.2200},{\dy*0.6655}) + -- ({\dx*-5.2000},{\dy*0.6193}) + -- ({\dx*-5.1800},{\dy*0.5717}) + -- ({\dx*-5.1600},{\dy*0.5230}) + -- ({\dx*-5.1400},{\dy*0.4741}) + -- ({\dx*-5.1200},{\dy*0.4260}) + -- ({\dx*-5.1000},{\dy*0.3804}) + -- ({\dx*-5.0800},{\dy*0.3405}) + -- ({\dx*-5.0600},{\dy*0.3135}) + -- ({\dx*-5.0400},{\dy*0.3204}) + -- ({\dx*-5.0200},{\dy*0.4657}) + -- ({\dx*-5.0002},{\dy*41.6531})} diff --git a/buch/papers/laguerre/images/gammaplot.tex b/buch/papers/laguerre/images/gammaplot.tex new file mode 100644 index 0000000..5a68f0a --- /dev/null +++ b/buch/papers/laguerre/images/gammaplot.tex @@ -0,0 +1,73 @@ +% +% gammaplot.tex -- template for standalon tikz images +% +% (c) 2021 Prof Dr Andreas Müller, OST Ostschweizer Fachhochschule +% +\documentclass[tikz]{standalone} +\usepackage{amsmath} +\usepackage{times} +\usepackage{txfonts} +\usepackage{pgfplots} +\usepackage{csvsimple} +\usetikzlibrary{arrows,intersections,math} +\input{gammapaths.tex} +\begin{document} +\def\skala{1} +\begin{tikzpicture}[>=latex,thick,scale=\skala] + +\definecolor{mainColor}{HTML}{D72864} % OST pink + +\draw[->] (-6.1,0) -- (5.3,0) coordinate[label={$z$}]; +\draw[->] (0,-5.1) -- (0,6.4) coordinate[label={right:$\Gamma(z)$}]; + +\foreach \x in {-1,-2,-3,-4,-5,-6}{ + \draw (\x,-0.1) -- (\x,0.1); + \draw[line width=0.1pt] (\x,-5) -- (\x,6.2); +} +\foreach \x in {1,2,3,4,5}{ + \draw (\x,-0.1) -- (\x,0.1); + \node at (\x,0) [below] {$\x$}; +} +\foreach \y in {-5,-4,-3,-2,-1,1,2,3,4,5,6}{ + \draw (-0.1,\y) -- (0.1,\y); +} +\foreach \y in {1,2,3,4,5,6}{ + \node at (0,\y) [left] {$\y$}; +} +\foreach \y in {-1,-2,-3,-4,-5}{ + \node at (0,\y) [right] {$\y$}; +} +\foreach \x in {-1,-3,-5}{ + \node at (\x,0) [below left] {$\x$}; +} +\foreach \x in {-2,-4,-6}{ + \node at (\x,0) [above left] {$\x$}; +} + +\def\dx{1} +\def\dy{1} + +\begin{scope} +\clip (-6.1,-5) rectangle (4.3,6.2); + +% \draw[color=darkgreen,line width=1.4pt] \gammasinplus; +% \draw[color=darkgreen,line width=1.4pt] \gammasinone; +% \draw[color=darkgreen,line width=1.4pt] \gammasintwo; +% \draw[color=darkgreen,line width=1.4pt] \gammasinthree; +% \draw[color=darkgreen,line width=1.4pt] \gammasinfour; +% \draw[color=darkgreen,line width=1.4pt] \gammasinfive; +% \draw[color=darkgreen,line width=1.4pt] \gammasinsix; + +\draw[color=mainColor,line width=1.4pt] \gammaplus; +\draw[color=mainColor,line width=1.4pt] \gammaone; +\draw[color=mainColor,line width=1.4pt] \gammatwo; +\draw[color=mainColor,line width=1.4pt] \gammathree; +\draw[color=mainColor,line width=1.4pt] \gammafour; +\draw[color=mainColor,line width=1.4pt] \gammafive; +\draw[color=mainColor,line width=1.4pt] \gammasix; + +\end{scope} + +\end{tikzpicture} +\end{document} + diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 75858df..27519d8 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -8,7 +8,7 @@ Die Gauss-Quadratur ist ein numerisches Integrationsverfahren, welches die Eigenschaften von orthogonalen Polynomen ausnützt. Herleitungen und Analysen der Gauss-Quadratur können im -Abschnitt~\ref{buch:orthogonalitaet:section:gauss-quadratur} gefunden werden. +Abschnitt~\ref{buch:orthogonal:section:gauss-quadratur} gefunden werden. Als grundlegende Idee wird die Beobachtung, dass viele Funktionen sich gut mit Polynomen approximieren lassen, verwendet. -- cgit v1.2.1 From 2625b1234dd68a9cc3ce50675ac0b1cb80eca275 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Patrik=20M=C3=BCller?= Date: Tue, 19 Jul 2022 16:31:48 +0200 Subject: Correct typos, improve grammar --- buch/papers/laguerre/definition.tex | 14 +++++---- buch/papers/laguerre/eigenschaften.tex | 37 +++++++---------------- buch/papers/laguerre/gamma.tex | 55 +++++++++++++++++++--------------- buch/papers/laguerre/main.tex | 14 +++++---- buch/papers/laguerre/quadratur.tex | 19 ++++++------ 5 files changed, 68 insertions(+), 71 deletions(-) (limited to 'buch/papers/laguerre') diff --git a/buch/papers/laguerre/definition.tex b/buch/papers/laguerre/definition.tex index 42cd6f6..4729a93 100644 --- a/buch/papers/laguerre/definition.tex +++ b/buch/papers/laguerre/definition.tex @@ -15,16 +15,16 @@ x y''(x) + (\nu + 1 - x) y'(x) + n y(x) n \in \mathbb{N}_0 , \quad x \in \mathbb{R} -. \label{laguerre:dgl} +. \end{align} Spannenderweise wurde die verallgemeinerte Laguerre-Differentialgleichung zuerst von Yacovlevich Sonine (1849 - 1915) beschrieben, -aber auf Grund ihrer Ähnlichkeit wurde sie nach Laguerre benannt. +aber aufgrund ihrer Ähnlichkeit nach Laguerre benannt. Die klassische Laguerre-Diffentialgleichung erhält man, wenn $\nu = 0$. Hier wird die verallgemeinerte Laguerre-Differentialgleichung verwendet, -weil die Lösung mit der selben Methode berechnet werden kann, -aber man zusätzlich die Lösung für den allgmeinen Fall erhält. +weil die Lösung mit derselben Methode berechnet werden kann. +Zusätzlich erhält man aber die Lösung für den allgmeinen Fall. Zur Lösung von \eqref{laguerre:dgl} verwenden wir einen Potenzreihenansatz. Da wir bereits wissen, dass die Lösung orthogonale Polynome sind, @@ -47,7 +47,7 @@ y''(x) = \sum_{k=1}^\infty (k+1) k a_{k+1} x^{k-1} \end{align*} -in die Differentialgleichung ein, erhält man: +in die Differentialgleichung ein, erhält man \begin{align*} \sum_{k=1}^\infty (k+1) k a_{k+1} x^k + @@ -138,8 +138,10 @@ Differentialgleichung mit der Form \Xi_n(x) = L_n(x) \ln(x) + \sum_{k=1}^\infty d_k x^k +. \end{align*} -Nach einigen mühsamen Rechnungen, +Nach einigen aufwändigen Rechnungen, +% die am besten ein Computeralgebrasystem übernimmt, die den Rahmen dieses Kapitel sprengen würden, erhalten wir \begin{align*} diff --git a/buch/papers/laguerre/eigenschaften.tex b/buch/papers/laguerre/eigenschaften.tex index 9b901ae..4adbe86 100644 --- a/buch/papers/laguerre/eigenschaften.tex +++ b/buch/papers/laguerre/eigenschaften.tex @@ -3,24 +3,11 @@ % % (c) 2022 Patrik Müller, Ostschweizer Fachhochschule % -% \section{Eigenschaften -% \label{laguerre:section:eigenschaften}} -% { -% \large \color{red} -% TODO: -% Evtl. nur Orthogonalität hier behandeln, da nur diese für die Gauss-Quadratur -% benötigt wird. -% } - -% Die Laguerre-Polynome besitzen einige interessante Eigenschaften -% \rhead{Eigenschaften} - -% \subsection{Orthogonalität -% \label{laguerre:subsection:orthogonal}} \section{Orthogonalität \label{laguerre:section:orthogonal}} -Im Abschnitt~\ref{laguerre:section:definition} haben wir behauptet, -dass die Laguerre-Polynome orthogonale Polynome sind. +Im Abschnitt~\ref{laguerre:section:definition} +haben wir die Behauptung aufgestellt, +dass die Laguerre-Polynome orthogonal sind. Zu dieser Behauptung möchten wir nun einen Beweis liefern. Wenn wir \eqref{laguerre:dgl} in ein Sturm-Liouville-Problem umwandeln können, haben wir bewiesen, dass es sich @@ -40,7 +27,7 @@ und den Laguerre-Operator x \frac{d}{dx^2} + (\nu + 1 -x) \frac{d}{dx} \end{align} erhalten werden, -in dem wir diese Operatoren einander gleichsetzen. +indem wir diese Operatoren einander gleichsetzen. Aus der Beziehung \begin{align} S @@ -58,7 +45,7 @@ Ausserdem ist ersichtlich, dass $p(x)$ die Differentialgleichung \begin{align*} x \frac{dp}{dx} = --(\nu + 1 - x) p, +-(\nu + 1 - x) p \end{align*} erfüllen muss. Durch Separation erhalten wir dann @@ -76,6 +63,7 @@ Durch Separation erhalten wir dann p(x) & = -C x^{\nu + 1} e^{-x} +. \end{align*} Eingefügt in Gleichung~\eqref{laguerre:sl-lag} ergibt sich \begin{align*} @@ -117,14 +105,9 @@ Für den rechten Rand ist die Bedingung (Gleichung~\eqref{laguerre:sllag_randb}) 0 \end{align*} für beliebige Polynomlösungen erfüllt für $k_\infty=0$ und $h_\infty=1$. -Damit können wir schlussfolgern, dass die verallgemeinerten Laguerre-Polynome -orthogonal bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$ -mit der verallgemeinerten Laguerre\--Gewichtsfunktion $w(x)=x^\nu e^{-x}$ sind. +Damit können wir schlussfolgern: +Die verallgemeinerten Laguerre-Polynome sind orthogonal +bezüglich des Skalarproduktes auf dem Intervall $(0, \infty)$ +mit der verallgemeinerten Laguerre\--Gewichtsfunktion $w(x)=x^\nu e^{-x}$. Die Laguerre-Polynome ($\nu=0$) sind somit orthognal im Intervall $(0, \infty)$ mit der Gewichtsfunktion $w(x)=e^{-x}$. - -% \subsection{Rodrigues-Formel} - -% \subsection{Drei-Terme Rekursion} - -% \subsection{Beziehung mit der Hypergeometrischen Funktion} diff --git a/buch/papers/laguerre/gamma.tex b/buch/papers/laguerre/gamma.tex index b76daeb..2e5fc06 100644 --- a/buch/papers/laguerre/gamma.tex +++ b/buch/papers/laguerre/gamma.tex @@ -8,8 +8,8 @@ Die Gauss-Laguerre-Quadratur kann nun verwendet werden, um exponentiell abfallende Funktionen im Definitionsbereich $(0, \infty)$ zu berechnen. -Dabei bietet sich z.B. die Gamma-Funkion bestens an, wie wir in den folgenden -Abschnitten sehen werden. +Dabei bietet sich z.B. die Gamma-Funkion hervorragend an, +wie wir in den folgenden Abschnitten sehen werden. \subsection{Gamma-Funktion} Die Gamma-Funktion ist eine Erweiterung der Fakultät auf die reale und komplexe @@ -26,10 +26,12 @@ Integral der Form \label{laguerre:gamma} . \end{align} -Der Term $e^{-t}$ ist genau die Gewichtsfunktion der Laguerre-Integration und -der Definitionsbereich passt ebenfalls genau für dieses Verfahren. -Zu erwähnen ist auch, dass für die verallgemeinerte Laguerre-Integration die -Gewichtsfunktion $t^\nu e^{-t}$ genau dem Integranden für $\nu=z-1$ entspricht. +Der Term $e^{-t}$ im Integranden und der Integrationsbereich erfüllen +genau die Bedingungen der Laguerre-Integration. +% Der Term $e^{-t}$ ist genau die Gewichtsfunktion der Laguerre-Integration und +% der Definitionsbereich passt ebenfalls genau für dieses Verfahren. +Weiter zu erwähnen ist, dass für die verallgemeinerte Laguerre-Integration die +Gewichtsfunktion $t^\nu e^{-t}$ exakt dem Integranden für $\nu=z-1$ entspricht. \subsubsection{Funktionalgleichung} Die Gamma-Funktion besitzt die gleiche Rekursionsbeziehung wie die Fakultät, @@ -62,7 +64,8 @@ leicht in die linke Halbebene übersetzen und umgekehrt. \subsection{Berechnung mittels Gauss-Laguerre-Quadratur} In den vorherigen Abschnitten haben wir gesehen, dass sich die Gamma-Funktion bestens für die Gauss-Laguerre-Quadratur eignet. -Nun bieten sich uns zwei Optionen diese zu berechnen: +Nun bieten sich uns zwei Optionen, +diese zu berechnen: \begin{enumerate} \item Wir verwenden die verallgemeinerten Laguerre-Polynome, dann $f(x)=1$. \item Wir verwenden die Laguerre-Polynome, dann $f(x)=x^{z-1}$. @@ -92,7 +95,8 @@ und Nullstellen für unterschiedliche $z$. In \eqref{laguerre:quadratur_gewichte} ist ersichtlich, dass die Gewichte einfach zu berechnen sind. Auch die Nullstellen können vorgängig, -mittels eines geeigneten Verfahrens aus den Polynomen bestimmt werden. +mittels eines geeigneten Verfahrens, +aus den Polynomen bestimmt werden. Als problematisch könnte sich höchstens die zu integrierende Funktion $f(x)=x^{z-1}$ für $|z| \gg 0$ erweisen. Somit entscheiden wir uns aufgrund der vorherigen Punkte, @@ -101,7 +105,8 @@ die zweite Variante weiterzuverfolgen. \subsubsection{Direkter Ansatz} Wenden wir also die Gauss-Laguerre-Quadratur aus \eqref{laguerre:laguerrequadratur} auf die Gamma-Funktion -\eqref{laguerre:gamma} an ergibt sich +\eqref{laguerre:gamma} an, +ergibt sich \begin{align} \Gamma(z) \approx @@ -157,11 +162,12 @@ und als Stützstellen die Nullstellen des Laguerre-Polynomes $L_n$. Evaluieren wir den relativen Fehler unserer Approximation zeigt sich ein Bild wie in Abbildung~\ref{laguerre:fig:rel_error_simple}. Man kann sehen, -wie der relative Fehler Nullstellen aufweist für ganzzahlige $z \leq 2n$, -was laut der Theorie der Gauss-Quadratur auch zu erwarten ist, -denn die Approximation via Gauss-Quadratur -ist exakt für zu integrierende Polynome mit Grad $\leq 2n-1$ -und von $z$ auch noch $1$ abgezogen wird im Exponenten. +wie der relative Fehler Nullstellen aufweist für ganzzahlige $z \leq 2n$. +Laut der Theorie der Gauss-Quadratur auch ist das zu erwarten, +da die Approximation via Gauss-Quadratur +exakt ist für zu integrierende Polynome mit Grad $\leq 2n-1$ +und hinzukommt, +dass zudem von $z$ noch $1$ abgezogen wird im Exponenten. Es ist ersichtlich, dass sich für den Polynomgrad $n$ ein Interval gibt, in dem der relative Fehler minimal ist. @@ -347,7 +353,8 @@ m^* \end{align*} Allerdings ist die Funktion $R_{n,m}(\xi)$ unbeschränkt und hat die gleichen Probleme wie die Fehlerabschätzung des direkten Ansatzes. -Dazu müssten wir $\xi$ versuchen unter Kontrolle zu bringen, +Dazu müssten wir $\xi$ versuchen, +unter Kontrolle zu bringen, was ein äussersts schwieriges Unterfangen zu sein scheint. Da die Gauss-Quadratur aber sowieso nur wirklich praktisch sinnvoll für kleine $n$ ist, @@ -367,8 +374,8 @@ aus dieser Grafik nicht offensichtlich, aber sie scheint regelmässig zu sein. Es lässt die Vermutung aufkommen, dass die Restriktion von $m^* \in \mathbb{Z}$ Rundungsprobleme verursacht. -Wir versuchen dieses Problem via lineare Regression und -geeignete Rundung zu beheben. +Wir versuchen, +dieses Problem via lineare Regression und geeignete Rundung zu beheben. Den linearen Regressor \begin{align*} \hat{m} @@ -391,7 +398,7 @@ In Abbildung~\ref{laguerre:fig:schaetzung} sind die Resultate der linearen Regression aufgezeigt mit $\alpha = 1.34094$ und $\beta = 0.854093$. Die lineare Beziehung ist ganz klar ersichtlich und der Fit scheint zu genügen. -Der optimalen Verschiebungsterm kann nun mit +Der optimale Verschiebungsterm kann nun mit \begin{align*} m^* \approx @@ -423,7 +430,7 @@ dann beim Übergang auf die orange Linie wechselt. \caption{Relativer Fehler des Ansatzes mit Verschiebungsterm für verschiedene reele Werte von $z$ und Verschiebungsterme $m$. Das verwendete Laguerre-Polynom besitzt den Grad $n = 8$. -$m^*$ bezeichnet hier den optimalen Verschiebungsterm} +$m^*$ bezeichnet hier den optimalen Verschiebungsterm.} \label{laguerre:fig:rel_error_shifted} \end{figure} @@ -433,8 +440,8 @@ Es stellt sich nun die Frage, wie der relative Fehler sich für verschiedene $z$ und $n$ verhält. In Abbildung~\ref{laguerre:fig:rel_error_range} sind die relativen Fehler für unterschiedliche $n$ dargestellt. -Der relative Fehler scheint immer noch Nullstellen aufzuweisen, -bei für ganzzahlige $z$. +Der relative Fehler scheint immer noch Nullstellen aufzuweisen +für ganzzahlige $z$. Durch das Verschieben ergibt sich jetzt aber, wie zu erwarten war, ein periodischer relativer Fehler mit einer Periodendauer von $1$. @@ -511,7 +518,7 @@ Diese Methode wurde zum Beispiel in Diese Methode erreicht für $n = 7$ typischerweise Genauigkeit von $13$ korrekten, signifikanten Stellen für reele Argumente. Zum Vergleich: die vorgestellte Methode erreicht für $n = 7$ -eine minimale Genauigkeit von $6$-$7$ korrekten, signifikanten Stellen +eine minimale Genauigkeit von $6$ korrekten, signifikanten Stellen für reele Argumente. Das Resultat ist etwas enttäuschend, aber nicht unerwartet, @@ -519,7 +526,7 @@ da die Lanczos-Methode spezifisch auf dieses Problem zugeschnitten ist und unsere Methode eine erweiterte allgemeine Methode ist. Was die Komplexität der Berechnungen im Betrieb angeht, ist die Gauss-Laguerre-Quadratur wesentlich ressourcensparender, -weil sie nur aus $n$ Funktionasevaluationen, +weil sie nur aus $n$ Funktionsevaluationen, wenigen Multiplikationen und Additionen besteht. -Also könnte diese Methode z.B. Anwendung in Systemen mit wenig Rechenleistung +Demzufolge könnte diese Methode Anwendung in Systemen mit wenig Rechenleistung und/oder knappen Energieressourcen finden. \ No newline at end of file diff --git a/buch/papers/laguerre/main.tex b/buch/papers/laguerre/main.tex index d69fbed..57a6560 100644 --- a/buch/papers/laguerre/main.tex +++ b/buch/papers/laguerre/main.tex @@ -11,15 +11,19 @@ {\parindent0pt Die} Laguerre\--Polynome, benannt nach Edmond Laguerre (1834 - 1886), sind Lösungen der ebenfalls nach Laguerre benannten Differentialgleichung. -Laguerre entdeckte diese Polynome als er Approximationsmethoden -für das Integral $\int_0^\infty \exp(-x) / x \, dx$ suchte. +Laguerre entdeckte diese Polynome, als er Approximations\-methoden +für das Integral +% $\int_0^\infty \exp(-x) / x \, dx $ +\begin{align*} +\int_0^\infty \frac{e^{-x}}{x} \, dx +\end{align*} +suchte. Darum möchten wir uns in diesem Kapitel, ganz im Sinne des Entdeckers, den Laguerre-Polynomen für Approximationen von Integralen mit exponentiell-abfallenden Funktionen widmen. -Namentlich werden wir versuchen, -eine geeignete Approximation für die Gamma-Funktion zu finden -mittels Laguerre-Polynomen und der Gauss-Quadratur. +Namentlich werden wir versuchen, mittels Laguerre-Polynomen und +der Gauss-Quadratur eine geeignete Approximation für die Gamma-Funktion zu finden. Laguerre-Polynome tauchen zudem auch in der Quantenmechanik im radialen Anteil der Lösung für die Schrödinger-Gleichung eines Wasserstoffatoms auf. diff --git a/buch/papers/laguerre/quadratur.tex b/buch/papers/laguerre/quadratur.tex index 27519d8..a494362 100644 --- a/buch/papers/laguerre/quadratur.tex +++ b/buch/papers/laguerre/quadratur.tex @@ -6,19 +6,19 @@ \section{Gauss-Quadratur \label{laguerre:section:quadratur}} Die Gauss-Quadratur ist ein numerisches Integrationsverfahren, -welches die Eigenschaften von orthogonalen Polynomen ausnützt. +welches die Eigenschaften von orthogonalen Polynomen verwendet. Herleitungen und Analysen der Gauss-Quadratur können im Abschnitt~\ref{buch:orthogonal:section:gauss-quadratur} gefunden werden. Als grundlegende Idee wird die Beobachtung, dass viele Funktionen sich gut mit Polynomen approximieren lassen, verwendet. Stellt man also sicher, -dass ein Verfahren gut für Polynome gut funktioniert, -sollte es auch für andere Funktionen nicht schlecht funktionieren. +dass ein Verfahren gut für Polynome funktioniert, +sollte es auch für andere Funktionen angemessene Resultate liefern. Es wird ein Polynom verwendet, welches an den Punkten $x_0 < x_1 < \ldots < x_n$ die Funktionwerte~$f(x_i)$ annimmt. -Als Resultat kann das Integral via eine gewichtete Summe der Form +Als Resultat kann das Integral via einer gewichteten Summe der Form \begin{align} \int_a^b f(x) w(x) \, dx \approx @@ -44,11 +44,11 @@ a + \frac{1 - t}{t} auf das Intervall $[0, 1]$ transformiert, kann dies behoben werden. Für unseren Fall gilt $a = 0$. -Das Integral eines Polynomes in diesem Intervall ist immer divergent, -darum müssen wir das Polynome mit einer Funktion multiplizieren, +Das Integral eines Polynomes in diesem Intervall ist immer divergent. +Darum müssen wir das Polynom mit einer Funktion multiplizieren, die schneller als jedes Polynom gegen $0$ geht, damit das Integral immer noch konvergiert. -Die Laguerre-Polynome $L_n$ bieten hier Abhilfe, +Die Laguerre-Polynome $L_n$ schaffen hier Abhilfe, da ihre Gewichtsfunktion $w(x) = e^{-x}$ schneller gegen $0$ konvergiert als jedes Polynom. % In unserem Falle möchten wir die Gauss Quadratur auf die Laguerre-Polynome @@ -67,7 +67,7 @@ umformulieren: \subsubsection{Stützstellen und Gewichte} Nach der Definition der Gauss-Quadratur müssen als Stützstellen die Nullstellen des verwendeten Polynoms genommen werden. -Das heisst für das Laguerre-Polynom $L_n$ müssen dessen Nullstellen $x_i$ und +Für das Laguerre-Polynom $L_n$ müssen demnach dessen Nullstellen $x_i$ und als Gewichte $A_i$ die Integrale $l_i(x)e^{-x}$ verwendet werden. Dabei sind \begin{align*} @@ -146,7 +146,8 @@ x_i L'_n(x_i) (n + 1) L_{n+1}(x_i) . \end{align*} -Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein ergibt sich +Setzen wir das nun in \eqref{laguerre:gewichte_lag_temp} ein, +ergibt sich \begin{align} \nonumber A_i -- cgit v1.2.1