From 137e7755104042841230d40f0e6f1132d9d430db Mon Sep 17 00:00:00 2001 From: Kuster Yanik Date: Fri, 22 Jul 2022 15:26:31 +0200 Subject: Polished some sentences. Corrected missing amount in formula. Added new information in chapter Wird das Ziel erreicht? --- buch/papers/lambertw/teil0.tex | 14 +++++--------- 1 file changed, 5 insertions(+), 9 deletions(-) (limited to 'buch/papers/lambertw/teil0.tex') diff --git a/buch/papers/lambertw/teil0.tex b/buch/papers/lambertw/teil0.tex index 2905605..30c4b60 100644 --- a/buch/papers/lambertw/teil0.tex +++ b/buch/papers/lambertw/teil0.tex @@ -46,9 +46,6 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \label{lambertw:table:Strategien} \end{table} - - - \begin{figure} \centering \includegraphics[scale=0.1]{./papers/lambertw/Bilder/pursuerDGL2.pdf} @@ -57,14 +54,14 @@ Daraus folgt, dass eine Strategie zwei dieser drei Parameter festlegen muss, um \end{figure} In der Tabelle \eqref{lambertw:table:Strategien} sind drei mögliche Strategien aufgezählt. -Im Folgend wird nur noch auf die Strategie 1 eingegangen. +Im Folgenden wird nur noch auf die Strategie 1 eingegangen. Bei dieser Strategie ist die Geschwindigkeit konstant und der Verfolger bewegt sich immer direkt auf sein Ziel zu. In der Abbildung \eqref{lambertw:grafic:pursuerDGL2} ist das Problem dargestellt, wobei $\vec{V}$ der Ortsvektor des Verfolgers, $\vec{Z}$ der Ortsvektor des Ziels und $\dot{\vec{V}}$ der Geschwindigkeitsvektor des Verfolgers ist. Die konstante Geschwindigkeit kann man mit der Gleichung \begin{equation} |\dot{\vec{V}}| - = const = A + = \operatorname{const} = A \quad A\in\mathbb{R}>0 \end{equation} darstellen. Der Geschwindigkeitsvektor wiederum kann mit der Gleichung @@ -80,12 +77,11 @@ Aus dem Verfolgungsproblem ist auch ersichtlich, dass die Punkte $V$ und $Z$ nic Wenn die Punkte $V$ und $Z$ trotzdem am gleichen Ort starten, ist die Lösung trivial. Nun wird die Gleichung mit $\dot{\vec{V}}$ skalar multipliziert, um das Gleichungssystem von zwei auf eine Gleichung zu reduzieren. \begin{align} - \label{lambertw:pursuerDGL} - \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot - \dot{\vec{V}} + \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot|\dot{\vec{V}}|\cdot\dot{\vec{V}} &= |\dot{\vec{V}}|^2 \\ + \label{lambertw:pursuerDGL} \frac{\vec{Z}-\vec{V}}{|\vec{Z}-\vec{V}|}\cdot \frac{\dot{\vec{V}}}{|\dot{\vec{V}}|} &= 1 @@ -105,7 +101,7 @@ Zum Beispiel könnte ein Ziel auf einer Geraden flüchten, welches auf einer Ebe \end{equation} beschrieben werden könnte. Mit dieser Gleichung ist das Ziel auch schon vollumfänglich definiert. -Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung immer komplexer. +Die Fluchtkurve kann eine beliebige Form haben, jedoch wird die zu lösende Differentialgleichung für die Verfolgungskurve immer komplexer. -- cgit v1.2.1